THE
| ppExEST 4244020202
Mlcn-caMPU'rER -

LYTYTYYRY
. .

ey
ELTIY LI O

LYYy
CYYYTY Y
ooe

The Intel Microcomputer Fair consists of an exhibition and four
simultaneous seminars. The seminars have been arranged so
that you need only attend those papers which are of direct interest
to you. Most of the papers start and finish at the same time so
that you can change theatres in between papers if you wish.

.
scesese
.

%0
.

In the exhibition area you will be able to see the latest microcomputer
equipment demonstrated and you will be able to discuss your own
microcomputer hardware and software requirements with leading experts.

.
.

LIXTTITLN
.
.

sesscccce
.
.
LYY Yy
.no..
T
HO
o 3¢

.
.
.
o
.
.
.

The seminars cover all topics associated with microcomputing. Papers
will be read that will be of interest to the newcomer to the subject and
to the engineer who already has experience of microcomputer systems.
A complete seminar programme and a summary of all the papers is
included in this book.

H :
ceee® “eoe (L)

The book contains a timetable for the four seminars, a plan of the
Hilton showing the location of the conference rooms and exhibition,
a summary of the seminar papers, a selection of useful data sheets
and technical articles, some blank paper for your notes and a form
for requesting further information.

secccoe

oo

The object of the Microcomputer Fair, which is the first event of
its kind, is to enable you to obtain any microcomputer information
you may need in convivial surroundings. We very much hope you
will have an interesting and enjoyable day.

siel,

Microcomputer Seminar Programme

t}

Suite A

1) 9.30 - 10.15 Programme Management, R.A. Perrin, Computer, Analysts
and Programmers Ltd.

2) 10.35- 11.15 4040 Peripheral ICs, Tom Cubitt, GEC Semiconductors Ltd.

3) 11.30- 12.30 OEM Computers and Microcomputer Kits, Bob Robinson,
Rapid Recall Ltd.

4) 14.00- 14.45 8080A Peripheral ICs, Tom Cubitt, GEC Semiconductors Ltd.

5) 15.00- 15.45 Microcomputer Development Aids, Tom Cubitt,

: GEC Semiconductors Ltd.

6) 16.00- 16.45

Suite B

1) 9.30 - 10.15 Cross Products Advantages and Use, Howard Kornstein,
Intel Corporation (UK) Ltd.

2) 10.35-11.15 Basic Programming Techniques, Phil Pittman, Rapid Recall Ltd.

3) 11.30-12.30 Advanced Software Techniques, Bill Betts, GEC Semiconductors
Ltd.

4) 14.00- 14.45 Handling Interrupts, Bill Betts, GEC Semiconductors Ltd.

5) 15.00- 15.45 The Coral Compiler, Bill Betts, GEC Semiconductors Ltd.

6) 16.00- 16.45 PL/M v Assembly Language, Phil Pittman, Rapid Recall Ltd.

Suite C

1) 9.30 - 10.15 3000 Series Overview, Phil Pittman, Rapid Recall Ltd.

2) 10.35-11.15

3) 11.30- 12.30 Programme Debugging Techniques, John Payne, Computer,
Analysts and Programmers Ltd.

4) 14.00- 14.45 Microprogramming the 3000 Series, Stan Mazor, Intel
International

5) 15.00- 15.45 Introduction to PL/M, Mike McCullough, Intel International

6) 16.00- 16.45

Suite D

1) 9.30 - 10.15 Introduction to the Commercial Aspects of Microcomputing,
Keith Chapple, Intel Corporation (UK) Ltd.

2) 10.35-11.15 8080A Overview, Howard Kornstein, Intel Corporation (UK)
Ltd.

3) 11.30- 12.30 8080A Overview (continued)

4) 14.00- 14.45 4040 Overview, Howard Kornstein, Intel Corporation (UK) Ltd.

5) 15.00- 15.45 4040 Overview (continued)

6) 16.00- 16.45 Discussion. Future Trends in Microprocessing,

Keith Chapple (Intel), Bob Robinson (Rapid Recall),
Edgar Valentine (GEC Semiconductors)

PLAN OF THE HILTON

Ground Floor

4 LUNCH R EXHIBITION

\

A

AN\

MDS FILM(pm)

] -

o
\
\.

X
- o |
: 2
: : D

BENE

{, J Service

Area

NOTE: If response to any particular Seminar exceeds
the expected numbers it may be necessary for us to
change the lettering of the Seminar suites. Notices
First Floor | t° this effect will be clearly posted.

=

Stairs to
Patio and
Ballroom

Stairs to
Patio,
Baliroom
and Park
Lane

CORONATION
ROOM

Suite C

Al1/1

Iﬂtel Microcomputer Fair Seminar Suite A
PROGRAMME MANAGEMENT

by R.A. Perrin, Senior Consultant, Computer, Analysts and Programmers Ltd
CAP House, 14-15 Great James Street, London WC1 N3DY
' Tel: 01-242 0021

This paper describes well-proven management techniques used in the development
of software products. The techniques and project organization described are
suitable for a small project of up to five people, this being typical of the current
size of microprocessor projects.

Project Manager Responsibilities

The motivator for the project will have laid down the objective s in terms of its
basic functions, characteristics, the operating environment and the planned volume
of the production run. He will also know the maximum development costs and time
which can be tolerated.

The responsibilities of the project manager can be stated as follows:
* Produce a plan for the development of the project.

* Monitor development against the agreed plan and report deviations.

* Ensure the product performs as required.

Development Plan

The purposes of the development plan are to measure the cost and duration of the
project to determine if it is worthwhile continuing and to make sure that resources
are available, that activities are started on time and that progress is accurately
monitored.

The project manager in the production of the development plan must
decide what activities have to be done, work out their interdependence and thus
the sequence in which they will be carried out, and calculate the time and re-

sources required.

Al/2

The most obvious, and perhaps the most difficult of these, is the
first: deciding what has to be done. Probably the worst error that can be made
is to miss out an activity altogether. It is thus necessary to have a clear idea
of the activities which are normally present in a microprocessor project.

Feasibility Study

The Feasibility Study lays the foundation for the remainder of the project and
should include the following topics:

Project Objectives: These are basically the 'terms of reference' for the
project and the project manager must ensure that he is given all the relevant
requirements of the product in terms of its function, its interfaces, its required
performance and reliability, and its operating environment.

Outline Design: The outline design will identify the functions to be performed by
discrete logic and programmed logic. The hardware/software tradeoffs can be
decided by examining the project objectives. Once this has been decided, initial
estimates are required on the components needed (1/0 ports, memory chips,
support chips, DMA, interrupts etc.). It is not essential at this stage to have
selected the processor, but it is important to have identified the type (e.g. 4 bit,
8 bit, p-mos, n-mos).

Preliminary Project Plan: The project plan will in general contain the following
information:
* Major activities; estimates of cost and time

* (Critical activities

* Problems, unknowns, and uncertainties

At this stage, a rough estimate may be made on the length of an
activity, based perhaps on previous experience or on the knowledge that a parti-
cular technical difficulty exists.

The completion of the Feasibility Study is an important checkpoint in
the project and two parallel activities can be initiated after it has been agreed:
programme development and hardware development. This paper will specifically
pursue the programme development, although parallels with hardware development
can be readily seen.

Programme Development
This consists of the following major activities:

Programme Analysis: This activity produces the Functional Specification which
is a user-orientated document which specifies in detail the action to be taken by

Al1/3

the programme for every event whether it is initiated by an external signal or by
elapsed time.

Programme Design: This activity produces the Programme Specification which
describes how the programme is to be constructed. This is a crucial stage in
the development of a programme. A badly designed programme will result in
extra time and costs during programme testing and may result in a programme
going 'live' with undetected bugs. The programme is divided into logical and
functional units (modules) which, in terms of logical complexity and volume of
code, are capable of being understood quickly and easily. Another rule for a
module is that it must have only one entry and exit point, and should normally
return control to the module which invoked it.

Flowcharting: Flowcharting can be a useful step prior to coding. It is a useful
discipline in that it can assist in ordering the logic within a module so that the
logic can proceed in a step-by-step fashion. The correct ordering of the logic
within a module is important in order to avoid the 'tangled ball of wool' construc-
tion with its consequential problems of testing, documentation and maintenance.

Much of a module's complexity arises from a module containing many
jumps to other parts of the module - these jumps being both forward and backward.
These sudden transfers of control tend to make it difficult to follow the logic of the
code, and difficult to know at any given point in the code what the present condi-
tions are. The complexity of the code and its jumps may also increase as a pro-
gramme is maintained and modified.

The flowchart should be used to build a module structure so that control
flows from top to bottom or from beginning to end. There is no back-tracking
except for the 'repetition' or 'DO WHILE' structure.

Coding: By this stage, coding should be a mechanical translation from the flow-
charts. The project manager should have ensured that programme standards such
as linkage between modules and passing of parameters have already been defined.

There are certain golden rules which the project manager must ensure
are obeyed:

* An instruction must not alter another instruction at run-time.

* 'Tricky' code resulting from a programmer's obsession to save
a few bits of memory or a few microseconds of processor time must
be actively discouraged.

* Comments should be extensive and meaningful in terms of the appli-
cation function rather than a description of the machine instruction.

Preparing a Unit-Test Plan: Unit testing is defined as the testing of a collection of
modules in isolation. The objective of the test plan is to identify the test data

Al1/4

required to exercise all logical paths of the test unit, and to predict the test
results. The test data should test not only normal conditions but also error
conditions, such as invalid data and table overflow.

Unit-Testing: During unit testing, the project manager should ensure that proper
records of test runs are being kept and that the test runs are cross-referenced
against the test plan.

Integration Testing: Integration testing is the testing of the complete programme
as a functional unit. Even if the unit of the previous stage was the complete pro-
gramme, integration testing is a progression from unit testing since we are now
concerned with testing the ability of the syStem to handle combinations of test data
and conditions arriving in realistic circumstances.

System Testing

System testing is the testing of both discrete and programme logic as an entity or
system. It is important that some programme test aids should be available during
these later test stages in the anticipation that things will go wrong.

. Documentation

During the development of the project, documentation has been building up as the
natural completion of a stage, e.g. study report, functional specification, pro-

gramme specification, programme listing. The project manager should ensure
that user manuals are scheduled as early as possible.

Estimating

Estimating and scheduling a project are important responsibilities for the project
manager. There are three methods of estimating with which the manager should
be familiar: experience, quantitative, and constraint.

Experience Method: This approach takes advantage of experience on a similar
job and simply assumes that like tasks take like resources.

Quantitative Method: This method depends upon ability to estimate programme
size. The programme is broken down into its constituent modules and at least
one module which is considered to be of average size is studied in detail.

Deliverable instructions = number of modules x average module size

Implementation effort = deliverable instructions
programmer productivity

Implementation is defined as the flowcharting through to unit testing stages of the

Al1/5

project. The programmer productivity depends on the manager's judgement as
to the difficulty of the programme. Productivity rates of 10, 20 or 30 instruc-
tions per day are selected according to whether the programme is 'easy',
'medium' or 'difficult'.

Finally, project effort = implementation effort
0 . 6

The magic figure of 0.6 is obtained from statistics which show that 10% of project
effort is absorbed by the design stages, 60% by the implementation stage, and 30%
by the integration and system test stages.

Constraint Method: Based on constraints, time or costs, the manager agrees to
do the job within the constraints.

Scheduling

Scheduling is necessary at two levels: activities within the project, and activities
to people. The activity chart (or PERT chart) is used to show which activities can
be conducted in parallel, the dependencies between ac tivities, and the critical

path of the project. It is important to identify the critical path since the manager
is then in a position to know which activities can slip without jeopardising the overall
timescale of the project.

Bar charts are useful to show who is assigned to each task, their pro-
gress, and when significant events (checkpoints or mistakes) occur.

Important statistics to remember in the scheduling of a project are
that on average 30% of the elapsed time of a project is consumed by the design
stages, 40% by the implementation stages, and 30% by the integration and system
test stages. Whilst these are only average percentages, a project manager would
be wise to consider his reasons if his percentages differ significantly.

Monitoring

The monitoring functions of a project manager are continuous in the sense that he
should know at all times the state of the project and its difficulties. It is useful,
however, to have regular meetings at discrete points, normally at weekly and
monthly intervals.

In Conclusion
It has not been possible within this paper to discuss all the functions of a project

manager. Indeed some of the subjects mentioned are worthy of papers in their
own right. However, it is worth emphasising that the techniques described in

A1/6

this paper are all well-proven and have been built up over years of successful and,
unfortunately, less successful project implementatimms. Since these experiences
are well documented, the onus is upon the engineer entering the software field to
learn from these past mistakes and successes. To err once is human, to repeat
the mistakes of yesteryear is difficult to forgive.

Bipelar PROM Numerical Cross Reference

Intel Part Number . Intel Part Number
Part Prefix and Disect For New Part Prefixand |- Direct For New
Number Manufacturer | Organization | Repl t |Designs] Numb Manufacturer | Organization | Repiacement |Designs(1)
1024-2 HPROM-Harris 256 x 4 M3621 745287 SN-TY . 256 x4 36211
1024-5 HPROM-Harris 256 x 4 3621 745287 DM-National 256 x 4 3621-1
1024A-2 | HPROM-Harris 256 x 4 M3601 745387 SN-TI 256x4 3601-1
1024A-5 | HPROM-Harris 256 x 4 3601 745387 DM-National 256 x 4 36011
27510C AMD 256 x 4 3601 75713 DM-National 256 x4 M3601
27S10M | AMD 256 x 4 M3601 1574 DM-National 256 x 4 M3621
27511C AMD 256 x 4 3621
271S11M | AMD 256 x 4 M3621 7610-2 HM-Harris 256 x 4 M3601
7610-5 HM-Harris 256 x 4 3601-1
5300 MMmi 256 x 4 M3601 7611-2 HM-Harris 256 x 4 M3621
5300-1 MMI 256 x 4 M3601 7611-5 HM-Harris 256 x4 36211
5301 MMI 256 x 4 M3621 1620-2 HM-Harris 512 x4 M3602
5301-1 MMI 256 x 4 M3621 7620-5 HM-Harris 512x 4 3602
5305 MMI 512x 4 M3602 1621-2 HM-Harris 512x4 M3622
5305-1 MMI 512x 4 M3602 7621-5 HM-Harris 512x4 3622
5306 MMI 512x4 M3622 7643-2 HM-Harris 512x8 M3604
5306-1 MMI 512x4 M3622 7643-5 HM-Harris 512x 8 3604
5340 MMI 512x 8 M3604 7644-2 HM-Harris 512x8 M3624
5341-1 MMI 512 x 8 M3624 1644-5 HM-Harris 512x8 3624
545287 SN-TI 256 x 4 M3621 828115 N-Signetics 512x 8 3624
545287 DM-National 256 x 4 M3621 825115 S-Signetics 512x 8 M3624
548387 | SN-TI 256 x 4 M3601 828126 | N-Signetics 256 x 4 3601-1
545387 DM-National 256 x 4 M3601 825126 | S-Signetics 256 x 4 M3601
825129 N-Signetics 256 x 4 3621-1
5603AC | IM-Intersil 256 x 4 3601 825129 | S-Signetics 256 x 4 M3621
5603AM | IM-Intersil 256 x 4 M3601 825130 N-Signetics 512x4 3602
5604C IM-Intersil 512x 4 3602 825130 S-Signetics 512x4 M3602
5604M IM-Intersil 512x4 M3602 825131 N-Signetcis 512x4 3622
5605C IM-Intersil 512x 8 3604 825131 S-Signetics 512x 4 M3622
5605M IM-Intersil 512x 8 M3604
5623C IM-Intersil 256 x 4 3621 8573 DM-National 256 x4 3601
5623M IM-Intersil 256 x 4 M3621 8574 DM-National 256 x 4 3621
5624C IM-Intersil 512x 4 3622
5624M IM-Intersil 512x 4 M3622 93416C | Fairchild 256 x 4 3601
5625C IM-Intersil 512x 8 3624 93416M | Fairchild 256 x 4 M3601
5625M IM-Intersil 512x 8 M3624 93426C Fairchild 256 x 4 3621
93426M | Fairchild 256 x 4 M3621
6300 MMI 256 x 4 3601 93436C | Fairchild 512x4 3602
6300-1 MMI 256 x 4 36011 93436M | Fairchild 512x4 M3602
6301 MM 256x 4 3621 93438C Fairchild 512x 8 3604
63011 MMI 256 x 4 3621 93438M | Fairchild 512x 8 M3604
6305 MMI §12x4 3602 93446C | Fairchild 512x4 3622
63051 MMI 512x4 3602 93446M | Fairchild 512x 4 M3622
6306 MMI 512x4 3622 93448C Fairchild 512x 8 . 3624
6306-1 MMI 512x4 3622 93448M | Fairchild 512x8 M3624
6340 MMI 512x 8 3604
63411 MM 512x 8 3624 Note 1. The Intel® PROMs have the same pin configuration and dif-
fer only in access time from the PROMs in the first column,

The exception is the 825115 which has a different pin con-
figuration than the 3624.

- ' A2/1
|nte| Microcomputer Fair Seminar Suite A

INTERFACE TO THE 4040 MADE EASY

by Tom Cubitt, GEC Semiconductors Ltd

Two very powerful interface chips have recently been added to Intel's 4-bit micro-
computer family. These are the 4269, a display and keyboard interface unit, and
the 4235, a parallel 1/0 device.

Interfacing to Keyboards and Displays

The 4269 enables the 4040 cpu to be easily interfaced with a wide variety of input
devices such as encoded and non-encoded keyboards, switches and push-buttons,
and will also drive alpha-numeric, numeric, or on/off displays. These displays
can be of seven-segment LEDs or Burroughs Self-scan* or Panaplex* displays. If
required, a single 4269 will drive, and individually control, an array of up to 128
LED indicators. '

There are several advantages that accrue from the use of the 4269.
For example, reliability is increased and overall system cost is reduced because
of the lower component count. Many of the routine operations involved in handling
keyboards and displays are transferred from the cpu to the interface, leaving more
processing time available for other system tasks, so that throughput is increased.

During system initializationy the 4040 cpu outputs a control word to
4269 which selects one of three possible input modes (sensor scan, keyboard scan
and encoded keyboard input) and one of two output modes (individually scanned
display device or self scan display). The 4269 is connected to the CM-RAM line
and, therefore, has a fixed RAM address which allows up to four 4269s to be used
with each CM-RAM in the system without any additional logic.

A keyboard with up to 64 keys in an 8 x 8 matrix can be connected to
the 4269. A shift input enables the number of keys handled to be increased to 128.
Alternatively, using a control and shift input, 256 switches can be connected to the
device. An eight character first-in-first-out (FIFO) RAM on the chip functions as
a keyboard buffer. ‘

When used with a non-encoded keyboard (keyboard scan mode), pressing
a key will result in a code being placed in the buffer which describes the position in

* Self-scan and Panaplex are trademarks of the Burroughs Corporation

A2/ 2

the matrix of the key which has been pressed. The user's software assigns a
value to the key and may interpret it as a simple numeric value or as an instruc-
tion to start execution of a sophisticated programme sequence. Automatic switch
de-bounce and two-key rollover are provided in this mode.

When used with an encoded keyboard the output code from the keyboard
is loaded directly into the FIFO buffer. Keyboards of this nature are likely to in-
corporate their own rollover and bounce protection.

In the sensor mode, the 4269 will monitor the condition of up to 256
switches. The de-bounce and rollover logic is inhibited so that simultaneous
contact closures can be monitored.

A status buffer indicates the number of characters in the FIFO and if
character over-entry has occurred. Another output indicates when a character
has been entered into the FIFO and is, therefore, very suitable for generating a
system interrupt.

On the output side, two 16 x 4 display reg1sters continuously circulate
information to be displayed in synchronism with the keyboard scan lines. These
registers are directly accessible by the cpu and can be treated as normal read/
write memory. All of the 4040 memory reference instructions can be applied to
the display registers. It is even possible to implement a system in which the 4269
display registers provide all the RAM storage needed by a system, eliminating the
need for any RAM chips at all!

Under programme control, either 4 x 32 or dual 4 x 16 individual
displays can be accommodated. If desired, Self-scan displays of 16, 18 or 20
characters can be driven or an array of up to 128 individually controlled LEDs can
be used.

The 4269 resides on the 4040 system's timing bus and derives its basic
timing from the @ and ﬂ clock signals. Synchronization and chip select informa-
tion are prov1ded]by the sync and CM-RAM lines respectively.

Programmable Parallel Interface

To cater for parallel 1/0 requirements, the 4265 general purpose programmable
16-line input/output (I/0) i.c. was introduced; this, under software control, pro-
vides 14 separate modes of operation.

The 4265 enables the 4040 cpu to be interfaced to a wide variety of
peripheral units with little or'no extra logic. These peripherals may be those
normally associated with computers, such as keyboards, tape punches and readers,
printers, etc., or the external devices often found in microprocessing systems, in-
cluding such devices as D/A or A/D converters, indicators, relays, control valves,
actuators, transducers and the like.

This versatility is due to the programmability of the 4265. The function
carried out by the device is determined by control information fed to it by the cpu as
dictated by the programme during the initialization or 'power up' sequence of the
microprocessor.

Basically, the 1/0 lines of the 4265 are arranged in four groups of four

A2/3

bits. The characteristics of each group of four lines, or ports, are determined by
instructions from the cpu. There are 14 such instructions which can be divided into
three groups. One group allows any of the four ports to be individually set up as
input or output ports. This is particularly useful in a process control environment
where the 4040 is being used to control machinery, on/off devices or other logic.
The second group of instructions is concerned with multiple-bit data transfers.
These can be either synchronous or asynchronous and can be eight bits at a time with
full hand-shaking (data requested/data acknowledged) capability. The third group
allows interface with standard off-the-shelf memory components.

The 4265 is compatible with the other members of the 4040 family as well
as TTL and provides the designer with buffered strobed inputs and outputs. The
8-bit data transfer capability means that peripheral devices designed for use with
the 4040's big brother - the 8080 - can now be interfaced with the 4040 with the mini-
mum of trouble.

Each 4040 cpu can be connected to up to eight 4265s using the data and
control busses to provide 128 I/0 lines.

The Intel 4265 is housed in a 28-pin plastic dual-in-line package.
Operating speed is compatible with other 4040 system components.

0o DATA
D10 BUS 3
D20—=—— 0

D3 O—<—— U

—| MODE REGISTER

|—e——O W0

10 o wi
p—<——O0

w w2

1

SYNC
MODE DECODER

4
10—

A g
A4

INSTRUCTION 2
DECODER 1/0 PORT

CONTROL
LOGIC

[

|—e———0O X0

——=——O X2

TIMING | O X3

REGISTER

T

F——9°0YYo
0 V1
O Y2
O Y3

[Tl

!
|
7S

CM O
RESET O- —

I

w L .. on
l——<—+—0
2 22

VSS VDD VDD1 (/0 PORTS ONLY) F—e——023

il

L

4265

A2/k

PRINTER DISPLAY TERMINAL U

SING INTEL PROGRAMMABLE I/0O DEVICES

To Cash Draw

I/o System Clock I/o
4 4201
o] !
© 4002 4040 4308
RAM CPU ROM

Sense Lines

L7

0

m.omz (o)
Lines g

7

.w
L7

O 0 0O 0OO OO

Printer
Feed

Programmable GP

Y

1/0

Interface

Interface

bl b

Line Feed

Solenoids

Drum Printer

e—.
le——

Rib. Shift

Data

Enable

Scan lLines

Programmable Keyboard Display

——— - 1
[N] 1 Ll
——_— | 1C
i 11

Front

Rear

") " A3/1
iﬂié Microcomputer Fair Seminar Suite A

OEM COMPUTERS AND A DIY KIT
by Bob Robinson, Rapid Recall Ltd

Two recent introductions by Intel are a complete OEM computer system and a com-
prehensive kit of parts for engineers who wish to obtain hands-on experience by
building their own microcomputer. While both of these systems are based on the
8080A microcomputer and are very similar in architecture, they were designed with
entirely different objects in mind.

An 8-bit OEM computer

The OEM computer is on a single card measuring 305 x 171 mm (12 x 6.75 inches)
and is complete with serial and programmable 1/0 ports, 1K bytes of RAM, sockets
for 4K bytes of ROM or PROM and a single-level interrupt system. The memory
size and I/0 arrangements can be expanded as required up to the maximum allowable
in an 8080A system using standard components and sub-assemblies.

The card, which has been designated the SBC-80/10, is the only complete
single-card microcomputer system that is available today, and has been designed to
fulfil all the general purpose computing requirements of a diverse range of OEM ap-
plications at low cost. For this reason the interface control chips are configured by
software, and sockets are included on the board for user designated line termination
and driver circuits to provide the signal level translations that may be necessary.

In addition, three serial interfaces -~ RS 232, current loop TTY and TTL - are included
on the board as standard.

A single 8251 is used to implement the serial data port, which can be
linked to the three serial interfaces. The 8251 is programmable and will provide
serial data transmission and reception to virtually any known standard including IBM
bi-sync. The 8251 provides the following options: asynchronous or synchronous
operation; odd, even or no parity; one, one and a half or two stop bits; and word
lengths of 5 to 8 bits. Parity, overrun and framing error detection are incorporated.
Baud rate can be selected to one of 15 rates from 75 to 19,200 in the asynchronous
mode or to any of 5 rates from 3,490 to 56,000 in the synchronous mode.

Parallel and individual bit outputs are provided by two 8255 programmable
peripheral interface chips which together give 48 lines which can be configured as
inputs or outputs in a wide variety of different ways under software control, as shown
in the table. '

A3/2

A whole range of OEM Possible parallel 1/0 configurations
support cards have been announced
for the SBC-80/10. These will Port Unidirectional Bidirectional Control —
enable memory expansion up to 64K Input or Output
bytes and 1/0 expansion up to 504

. . . 1 8U. 8L6 8 -
input lines and 504 output lines. 2 8U. 8LS _ _ —
Also available are card cages, back 3 8U. — - 8*
planes, connectors, and a variety 4 8U. — - -
of cables. In addition, a proto- 2 28 - B _ -
typing kit is announced which will i
enable a complete special—to— * Port 3 must be used as a control port when eit;\er port 1

- port 2 are used as a latched and strobed input/output or —
purpose OEM ComPUter to be de g:)rt? is used in its bidirectional mode.
signed and built. U = Unlatched LS = Latched and Strobed

The SBC-80/10 is a
proven design which is intended
for large-scale production. If
required, a licence can be supplied that will allow the SBC-80/10 to be manufactured
by users.

All of our support aids, such as the MDS and ICE-80, are fully compa-
tible with the SBC-80/10 and will greatly speed prototype development. Programmes
can be written in either assembly language, using a resident assembler, or one of
the many cross assemblers that are now available, or they can be written in PL/M
and compiled using a time sharing service or an in-house computer. —

DIY Development Kit

For newcomers to the world of microcomputing and for small-scale production,
there is a comprehensive set of components known as the SDK-80 kit, which enables
first-hand experience of using both microcomputer hardware and software to be
gained at low cost. The kit, a proven design by Intel, includes a monitor and in-
corporates all the 1lsi chips, crystal, i.c. sockets, printed circuit board, board
connectors and other components necessary to construct an advanced 8080A 8-bit
microcomputer system.

Supplied with the kit is a set of detailed step-by-step building instruc-
tions, in addition to the latest 8080A System, Software and PL/M manuals.

The programmable nature of the interface devices and the way in which
the board is designed allows the microcomputer to be configured in a wide variety —
of different ways and a generous amount of space is left on the board for the user's
own circuitry.

Communication with the microcomputer is carried out with a standard
teletype or visual display unit which is interfaced to the microcomputer via a
serial 1/0 port formed by an 8251 universal synchronous/asynchronous receiver/
transmitter (USART). Links on the board allow this communications port to be
RS 232, TTY current loop or TTL compatible. The transmission rate can be set

A3/3

with wire links or switch selected to any of seven values from 75 to 4,800 bauds.

The kit is supplied with 2K bytes of PROM and the board will accommo-
date two further 8708 1K PROMs to bring the total up to 4K bytes - sufficient to hold
some extremely sophisticated programmes. The PROM supplied with the kit for
the lower 1K bytes of programme memory is already loaded with the System Monitor,
which enables the user to immediately communicate with the system using the tele-
type or vdu, and to perform such actions as entering and running a programme , pro-
gramme checkout, altering the contents of read/write memory locations, examining
cpu register contents and so on. The second 1K PROM supplied is uncommitted and
can be used to hold the user's own programmes.

Read/write memory work space and a stack area are formed by two 8111
256 x 4 RAMs, which together provide 256 bytes. The board supplied with the kit
will accommodate a total of eight 8111 devices giving a total of 1K bytes of RAM.

A single 8255 programmable peripheral interface chip supplied with the
kit provides 24 uncommitted input/output lines, which can be configured as required
by the user. Under software control any of these lines can be inputs or outputs and
can form 8-bit wide synchronous or asynchronous ports, bi-directional busses, indi-
vidually controlled inputs and outputs, etc. Space is available on the board for
fitting a second 8255 to double the number of I/0 lines.

The monitor communicates with the user via the teletype using the
monitor's command language which consists of a series of single characters.
of these commands consist of a character followed by one or more hexadecimal
numbers.

Most

Block diagram of the SBC-80/10 OEM computer. .

RS:232-C
- COMPATIBLE
DEVICE

PERIPHERALS =

SERIAL DATA
INTERFACE

" CONTROL

CONTROL
INTERFACE B i INTERFACE

48 PROGRAMABLE
PARALLEL 1/0 LINES

SERIAL DATA
INTERFACE

+ 12V ————P

+5V=——-p
-5V ——P
—12V——">

POWER SUPPLIES

. 4K x 8
'} ROM /PROM
i SOCKETS

RS-232:C
INTERFACE

il TELETYPWRITER

INTERFACE

\N 7
JUMPER T

2 INTERRUPT
REQUEST LINES

1 INTERRUPT
REQUEST LINE

BAUD-RATE
GENERATOR

PROGRAMABLE

COMMUNICATIONS
INTERFACE (USART)

. DRIVER/
. TERMINATOR : |
 INTERFACE

INTERFACE

ADDRESS BUS (16 BITS)

BUS INTERRUPT
REQUEST LINES

PROGRAMABLE =
PERIPHERAL .

2 INTERRUPT
REQUEST LINES

SYSTEM BUS

DATA BUS (8 BITS)

CONTROL BUS

EXPANSION

> MEMORY
)} AND 1 /0

»

A3/4

COME TO THE j
MCROPROCESSOR
COURSES BY |
INTEL

With the continuing invention and
discovery of new techniques and
applications in microprocessing, the
necessity for intensifying Intel’s already
highly successful training programme for
the design engineer is evident.

s
TiTiemeT
RETeS

The new season of Intel courses will be
held at our well equipped, purpose
designed training workshop at Oxford and
run by our applications manager, Howard
Kornstein who will be explaining both
practically and theoretically his first-hand
knowledge and experience.

Apart from the weekly Microprocessor
Courses which are already planned by Intel §€
and its distributors, Howard will also be
pleased to arrange courses on request to
‘meet customers specific requirements.

~—

i , A4/1
lntel Microcomputer Fair Seminar Suite A

8080A PROGRAMMABLE SUPPORT DEVICES
by Tom Cubitt, GEC Semiconductors Ltd

Intel have introduced a number of programmable integrated circuits, which are all
designed to relieve the cpu in a microcomputer system from the routine tasks in-
volved in 'talking to' a peripheral device. In doing so, the peripheral chips leave
more time available for more important system tasks and thereby increase the cost
effectiveness of a system by enabling it to achieve a higher throughput. Addition-
ally, the peripheral and other programmable support chips reduce cost and increase
reliability by drastically reducing package count.

This paper will briefly describe the latest five devices that have been
recently introduced by Intel and which fall into this category. All these devices
share ce rtain common features in that they are 'told' what role they are to perform
by the cpu during the system's initialization or power-up sequence, and they can all
be made to respond to the normal cpu I/0 instructions, or can be connected to appear
as memory locations to the cpu. In this latter mode, all the instructions that nor-
mally reference memory can be applied to the interface. In some applications this
is an advantage. ‘

8255 - Programmable Parallel Interface

The 8255 has three major modes of operation which, between them, cover most
microprocessor interface requirements. Under programme control, the twenty-
four 1/0 lines can be divided into two eight-bit ports and two four-bit ports and any
of these ports can function as either an input or an output. For unidirectional-bus
handshaking interfaces, the twenty-four lines are divided into two groups of twelve.
Each group of twelve lines provides eight data lines, which can either be inputs or
outputs, and four control lines for handshaking and interrupt. In the final mode of
operation, eight of the lines become a bi-directional data bus and five lines are
available for handshaking.

As mentioned earlier, the way in which the device functions is determined
by a control word which is sent to the interface during the initialization of the system.
This control word is stored in registers internal to the interface chip. It is possible
to programme half of the device to function in one of the previously mentioned modes
and the other half in another. For example, one half could provide an 8-bit synchro-
nous input port with full handshaking and interrupt capability; four more lines could

A4/2

be used as inputs to monitor peripheral status and the remaining eight lines might
be employed as outputs to control external equipment such as relays, motors, etc.
Obviously, a very large number of other configurations are possible.

8251 - Programmable Serial Interface

Serial microcomputer interfaces are very similar in function to the normal serial
data receiver/transmitter circuits one finds in any data communications system.
The difference being, of course, that the precise function to be carried out by the
interface is determined by a control word output by the cpu.

The 8251 provides synchronous or asynchronous reception and trans-
mission of data words between 5 and 8 bits long. It provides facilities for one,
one and a half or two stop bits; error detection for parity, overrun and framing,
and will function in accordance with all known data transmission standards including
IBM bi-sync. Speed of operation can be set anywhere from d.c. to 9.6k Bauds.

8253 - Programmable Interval Timer

Microcomputers are frequently used to control mechanical devices such as printers,
relays and motors which have a response time that is orders of magnitude slower
than the microcomputer itself. Because of this, the microcomputer often has to
wait for the mechanical unit to complete its current task before it can demand that
the next task be carried out.

One way of creating the required delay in microcomputer operation is
to cause a programme loop to be executed a given number of times. This loop does
not normally perform any useful function other than keeping the microcomputer
occupied while the mechanical peripheral completes its task. This technique is ex-
tremely wasteful because while the microcomputer is executing the programme loop
it cannot be doing anything else.

To overcome this problem, Intel have just introduced the 8253, a pro-
grammable interval timer which is designed for use in either 8008 or 8080 micro-
computer systems for peripheral timing purposes. The new device allows the
microcomputer to carry out other work instead of waiting for a slow peripheral.

The 8253 is housed in a single 24-pin dual-in-line package and is de-
signed to be connected to the system's address, control and data busses. It is of
n-mos construction and requires only a single 5V supply.

In essence, the device comprises three independent 16-bit counters
which are dr iven as 1/0 peripheral ports. Instead of setting up a software loop to
provide a time delay, the programmer causes the cpu to output control information
to the 8253 which causes it to start counting clock pulses and then to interrupt the
microcomputer when the required delay has elapsed. Between time delay initiali-
zation and the interrupt the microcomputer can carry out other tasks.

Each of the counters can count in either binary or BCD from d.c. to
3MHz to provide an extremely wide range of different delays ranging from micro-
seconds to hours.

The 8253 can also be used as a programmable baud rate generator, an
event counter, a binary rate multiplier and a real time clock.

A4/3
8259 - Programmable Interrupt Controller

The efficient management of interrupts has long been accepted as being the key to
the effective use of microcomputers in those applications that require a prompt
response to external events coupled with large processing throughputs. The rate
at which external peripheral devices can be serviced determines how many other
tasks can be assigned to the microcomputer. The more of these tasks that can be
handled by the microcomputer the more cost-effective the system will be.

The 8259 is a priority interrupt controller which allows the entire
system's interrupt structure to be configured by the software and to be changed at
any time during the course of a programme. The new device will handle eight dif-
ferent priority levels and up to eight 8259s can be used in a system to provide up to
64 levels of interrupt without additional circuitry.

The 8259 is programmed in the same way as the programmable 1/0 de-
vices in the 8080A family. Control words sent to it by the cpu under the control
of the programme determine how the 8259 will respond to interrupts and allow the
programmer to select from a number of priority control algorithms which are pro-
vided by the 8259. Amongst the facilities offered is the capability of individually
masking specific interrupt requests. '

Interface with the microcomputer itself is standard and follows the same
rules as for the other 8080A family members. A special input is provided to
enable it to perform the role of either slave or master for use when more than one
8259 is being used in a system. Basically, the master accepts INT inputs from the
slave or slaves and issues a composite request to the 8080A; when it receives the
INTA signal from the system controller (8228) the first byte of the CALL is put on
the bus. On subsequent INTA signals the interrupting slave puts out the address of
the vector (the first instruction of the required interrupt routine).

8257 - Programmable DMA Controller

The transfer of data between a mass storage device such as a floppy disc or mag-
netic cassette and system RAM memory is often limited by the speed of the micro-
computer. Removing the microcomputer during such a transfer and letting an
auxiliary device manage the transfer in a more efficient manner greatly improves
the speed and makes mass storage devices more attractive, even to the small
system designer.

The 8257 programmable DMA controller is a single chip, four channel
device for this purpose. Each channel is assigned a priority level so that if
multi-DMA activities are required each mass storage device can be serviced,
based on its importance in the system. In operation, a request is made from a
peripheral device for access to the system bus. After its priority is accepted a
HOLD command is issued to the cpu, the cpu acknowledges with a HLDA output
which signals that the DMA channel has complete control of the system bus.
Transfers can be made in blocks, suspending the processor's operation during the

Ad/4

entire transfer, or the transfer can be made a few bytes at a time, hidden in the
execution states of each instruction cycle (cycle stealing).

The modes and priority resolving are maintained by the system software
as well as initializing each channel as to the starting address and length of transfer.

The system interface is similar ‘to the other peripherals of the MCS-80,
but an additional 8212 is necessary to control the entire address bus. A special
control signal BUSEN is connected directly to the 8228 so that the data bus and
control bus will be released at the proper time.

The 8257 generates, upon a peripheral request, a sequential memory
address which will allow the peripheral to access or deposit data directly from or
to memory. It also keeps count of the number of DMA cycles for each channel and
notifies the peripheral when a programmable terminal count has been reached.
Other features included are two-mode priority logic to resolve the request among
the four channels, programmable channel inhibit logic, an early write pulse option,
a module 256/128 Mark output for sectored data transfers, an automatic load mode,
a terminal count status register, and control signal timing generation during DMA
cycles. There are three types of DMA cycles: Read DMA Cycle, Write DMA Cycle
and Verify DMA Cycle.

More than one 8257 can be used in a system to increase the number of
DMA channels available.

—lp +5V
POWER

SUPPLY : GROUP A GROUP A

= GROUND —%] coNTROL < : PcZRBT)A

GROUP A

PORT C

UPPER

BIDIRECTIONAL (4)
DATA BUS DATA
G— I ¢ ™
BUFFER

GROUP B

PORT C

8 BIT LOWER
INTERNAL

DATA BUS (4)
REA][?/ r
WRITE
CONTROL {4 ———p] WRITE |
LOGIC _ Jcrour 8
—_— CONTROL

RESET —————=pp! [

o3

\

=0

A5/1

-
lntf;j Microcomputer Fair Seminar Suite A
;’

DEVELOPMENT AIDS
by Tomr Cubitt, GEC Semiconductors Ltd

There are three distinct types of microcomputer development system, each of which
is intended to serve a different purpose.

First Stage

These systems are often referred to as evaluation or prototyping cards and normally
comprise a microcomputer complete with RAM, EPROM, a teletype interface and a
basic system monitor, which enables the user to carry out basic machine code pro-
gramming and a limited amount of debugging. The recently announced SDK kit,
which is the subject of a separate paper, is a first stage system. The main value
of the prototype card is as a low-cost means of obtaining 'hands-on' practical ex-
perience with a particular microprocessor.

Second Stage

The Intel Intellec is a 2nd stage development system. This is housed in a metal
cabinet complete with front panel switches and looks very much like a minicomputer.
It enables programmes to be automatically assembled into machine code from sym-
bolic statements; it enables programmes to be edited and provides some fairly
sophisticated programme development and debugging aids .

Third Stage

There is only one third generation system at present; this is the Intel MDS and
ICE-80 combination. MDS has been designed so that it is suitable for use with both
8080A and 3000 Series microcomputers. In fact, it will also be suitable for use
with any future microcomputer we may introduce. In this paper we will discuss the
MDS configuration used for the 8080A.

The MDS for the 8080A microcomputer contains a:\ 8080A microcomputer
with 16K (expandable to 64K) of RAM, a system monitor and 1/0 ports with interfaces
for a wide variety of peripheral devices. The monitor is comprehensive and provides

A5/2

a large number of facilities for both hardware and software development and de-
bugging. -

ICE-80 comprises a hardware section which fits into the cabinet of the
MDS and a software package which resides in the MDS RAM. _

With the aid of the MDS, the systems designer will develop the prototype
hardware and software for his system. In the user's prototype circuit card there
will be a socket which would normally contain an 8080A cpu. The ICE module termi-
nates in a 40-pin connector that electrically and functionally 'looks like' an 8080A
cpu. This connector is plugged into the cpu socket on the prototype board so that
- there is direct communication between the prototype system and the MDS. It is just
as if the facilities available in the MDS had been built into the prototype system.
Sections of the microcomputer system within the MDS can be used to replace sec-
tions of the prototype circuitry so that the whole process of hardware/software inte- —
gration and system diagnosis becomes a controlled step-by-step process.

The key feature of ICE is that the developed software is checked out in
Real Time in the designer's own hardware. This provides a complete and totally —
real test of the operation of the microcomputer design. Testing is done with an
easily understood and conversational command language. Software operations can
be monitored by setting emulation breaks on specific operating conditions. Events
leading up to the break can be examined.

If there is a hardware fault - for example, an unwanted voltage spike is
appearing at an output port - then the spike can be used to automatically halt pro-
gramme execution and cause the MDS to print out the 44 programme steps that were
carried out immediately before the spike occurred, so that the cause can be deter-
mined.

The MDS has recently been enhanced by the availability of an Intel disc
system. This can be supplied with either a single or a dual disc drive. It employs _
standard diskettes (about the size of a 45 rpm record) which have a storage capacity
of a quarter of a million bytes each. Data can be transferred to and fro between
the MDS and the disc at very high speed. For example, it takes only two or three -
seconds to load the assembler and editor into the MDS from the disc as against two
to three minutes with a high-speed tape reader or tens of minutes with a teletype
tape reader.

Assembly listings, intermediate files and object code can be stored
- directly on the disc. There is no need to wait while the terminal punches inter-
mediate paper tapes. The time saving during a complete project is significant.

The disc system is controlled by an Intel 3000 bipolar microcomputer.

A disc resident software package called ISIS (Intel Systems Implementation Super-

visor) is supplied with the disc system and enables the user to manipulate his disc

files. There can be up to 200 files on the disc which are allocated names by the

user, and the file name is the only information that needs to be given to the system

in order to store or retrieve the file. The actual placing and retrieval of the file

or the disc is handled by the software without the user needing to know where the

file or disc is located. -
An attractive feature of the operating system is its 'random access'

A5/3

nature. Any data location in a file can be accessed immediately without carrying
out a sequential search.

Earlier development systems required the user to load and read the
paper tape once for each 'function' of the assembler. Very often two or three
such 'passes' were required. With ISIS and the disc all passes take place auto-
matically and in seconds. This feature alone can save days of development time.

The disc system is designed for use with an Intellec MDS which has 32K
bytes of RAM.

To demonstrate how things are done with ISIS, imagine that you have a
paper tape copy of the source code for an assembly language programme. Assume
this programme was written for use on a memory-based MDS using Monitor 1/0
calls, and you want to convert it to a diskette-based programme that uses the more
powerful I/0 facilities of ISIS. You load the paper tape into your high-speed paper
tape reader and initialize the Intellec MDS to run under ISIS. You tell ISIS to copy
from the reader to diskette, giving the programme the name PROGA.SRC on the dis-
kette:

-COPY :HR: TO PROGA.SRC

Then you call the ISIS Text Editor:
-EDIT PROGA .SRC

and make the text changes required to convert Monitor 1/0 calls to ISIS I/0 calls.
Now you can call the assembler to create hexadecimal object code and a listing file:

-ASM80 PROGA.SRC TO PROGA.HEX LIST PROGA.LST

Programmes must be in absolute binary format to execute with ISIS, so tell ISIS to
convert the hexadecimal code to absolute binary:

-HEXBIN PROGA .HEX TO PROGA .BIN
Now you are ready to debug your programme by executing it under the Monitor:

-DEBUG PROGA .BIN
3100H
.G

If errors occur, correct the source code using the editor and repeat ASM80, HEXBIN,
and DEBUG.

When you are satisfied with the state of the programme, it can become
part of your permanent library and executed by simply entering the file name:

-PROGA .BIN

If you prefer a shorter name, you can rename the file:
-RENAME PROGA.BIN TO PROGA

To check out a programme in real time

-ICE 80

A5/4

loads the in-circuit emulator software. The command
.LOAD PROGA.HEX

loads the machine code for execution under ICE 80.

Figure 1: Intellec MDS System Block Diagram

UNWV
LINE PROM |
PRINTER PRGM TCE CABLE
|
FLOPPY BN‘:!CE | TCE SEM
ESSES INT_ 1 oPTiod SYSTEM
‘ DS RN :
¢ _L__—I. — 1
=T r T ndER CWIGH
| TTY | |Parem | |SPEED

| | TAPE Ebg ! FPUNCH

Cmmmwm e b = |

B1/1

-
Inté Microcomputer Seminar Suite B

Cross Product Software

ADVANTAGES AND USE

by Howard Kornstein, Intel Corporation (UK) Ltd

A large part of microcomputer system development can be carried out using a
mainframe computer for programme development and debugging, and system
simulation. If you have a suitable in-house computer all that is required is the
Intel cross software relevant to your application. This software is also available
from several time sharing bureaux in the U.K. All you need in this case is to
rent a terminal and modem.

All the cross software is written in ANSI standard Fortran IV and re-
quires a computer with a 32-bit word length (such as the IBM 360 or PDP-10).

Using the cross software it is possible to write assembly language
programmes for the 4004, 4040, 8008 and 8080A microcomputers. The high-
level language PL/M (a sub-set of the IBM language PL/ 1) is also available for the
8008 or 8080A microcomputers (it is interesting to note that a programme written
in PL/M can be compiled for use on either the 8008 or the 8080A or any other
microcomputer which we may introduce for the future for which we prepare a com-
piler). Also available is CROMIS, for preparing microprogrammes for the 3000
family. Simulators are available which enable the mainframe to 'look like' a
microcomputer so that you can try out your programmes. The use of simulators
is recommended for those programmes which are not greatly dependent on real
time events. The cross product software which is currently available from us is
as follows:

MCS-40 Cross Assembler

The MCS-40 Cross Assembler, M AC40, can be used for both the 4004 and the
4040. MAC40 provides capabilities which reduce the time and effort involved in
programme development, debug and documentation. The cross assembler allows
usage of the high speed I/0 and text editing capability of a large computer system
to further shorten the programming task. ’

MAC 40 translates 4004/4040 machine assembly language instructions
into the appropriate machine operation codes. In addition to eliminating the ‘
errors of hand translation, the ability to refer to programme addresses with sym-
bolic names makes it easy to modify programmes by adding or deleting instructions,

B1/2

or to move the programme to another memory location. Full macro capability
eliminates the need to rewrite similar sections of code repeatedly and simplifies
programme documentation. Conditional assembly permits MAC40 to include or
delete sections of code which may vary from system to system, such as the code
required to handle optional external devices.
Output from MAC40 may be punched to paper tape in hex format for

loading into an Intellec 4 Development System or may be punched in BNPF format
to programme ROMs.

MCS-8 Cross Assembler

Known as MAC-8 this programme provides the same facilities as MAC40, but for
the 8008. Output from MAC8 may be loaded directly to the 8008 Simulator
(INTERP/8) for interactive, symbolic debugging or may be punched to paper tape
in hex format for loading into an Intellec 8/Mod 8 Development System. It may
also be punched in BNPF format to programme ROMs.

4004/4040 Simulator

The 4004/4040 Simulator, INTERP/40, is a complete simulation and debug pro-
gramme for the Intel 4004 and 4040 microcomputers. Programmes can be run,
displayed, stopped, and altered allowing step by step refinement without con-
tinuous reassembly of the source programme. INTERP/40 provides commands
to control the execution of 4004 and 4040 programmes. Debug features are built
in to help reduce the time and cost involved in programme checkout. The pro-
gramme also provides symbolic reference to storage locations and operation
codes as well as numeric reference in various number bases.

8008 Simulator

INTERP/8 is similar to INTERP/4 but is for use with the 8008.

MCS-80 Cross Assembler

Known as MACB80 this programme translates symbolic 8080 assembly language
instructions into the appropriate machine operation codes. In addition to elimi-
nating the errors of hand translation, the ability to refer to programme addresses
with symbolic names makes it easy to modify programmes by adding or deleting
instructions, or to move the programme to another memory location. Full macro
capability eliminates the need to rewrite similar sections of code repeatedly and
simplifies programme documentation. Conditional assembly permits MACB80 to
include or delete sections of code which may vary from system to system, such
as the code required to handle optional external devices.

Output from MACB80 may be loaded directly to the 8080 Simulator

B1/3

(INTERP/80) for interactive, symbolic debugging or may be punched to paper tape
in hex format for loading into an Intellec MDS Microcomputer Development System.
It may also be punched in BNPF format to programme ROMs.

8080 Simulator

The 8080 Simulator, INTERP/80, is a complete simulation and debug programme for
the Intel 8080 microcomputer. INTERP/80 provides commands to control the exe-
cution of 8080 programmes. Extensive debug features are built in to help reduce
the time and cost involved in programme checkout.

INTERP/80 simulates execution of all 8080 machine instructions. Pro-
grammes either compiled on the PL/M compiler or assembled on the MAC80 Cross
Assembler may be loaded directly into INTERP/80 for simulation and checkout.

INTERP/80 provides commands to:

Set Breakpoints : Measure Programme Timing
Trace Programme Execution : Examine and Set I/0 Ports
Dump and Modify Memory : Perform Interrupts and Stack
Manipulations
Examine and Modify Registers : Perform Address Arithmetic

INTERP/80 also provides symbolic debugging capability. Memory loca-
tions may be referenced by their symbolic names, either through labels or variable
names. This eliminates the need to know the specific absolute address of each
variable or label.

PL/M High Level Programming Language

PL/M is a high-level programming language, specifically designed to ease the pro-
gramming task for Intel's 8-bit microcomputers, the 8008 and the 8080. PL/M
is a powerful tool, well suited to the requirements of the microcomputer system
designed. The language has been designed to facilitate the use of modern tech-
niques in structured programming. These techniques can lead to rapid system
development and checkout, straightforward maintenance and modifications, and
high product reliability.

The PL/M compilers convert a free-form symbolic PL/M programme
into an equivalent 8008 or 8080 object programme. The compilers themselves
take care of all the details of machine or assembly language programming, which
permits the programmer to concentrate entirely on effective software design, and
the logical requirements of his system.

Output from the PL/M compiler may be loaded directly into the 8008 or
8080 simulator programmes for interactive, symbolic debugging or may be
punched to paper tape in hex format for loading into an Intellec Microcomputer
Development System. It may also be punched in BNPF format to programme ROMs.

B1/4
3000 Cross Microprogramming System

The Intel Series 3000 Cross Microprogramming System, CROMIS, is a software
system that supports the generation of microprogrammes for Series 3000 pro-
cessor and controller micro-architectures. It provides extensive programming
facilities that greatly reduce the time and effort required to develop, debug, and
document a microprogramme.

CROMIS consists of two major software subsystems, XMAS and XMAP.
XMAS is a symbolic microassembler which is dynamically user extensible in the
size and structure of the target microinstruction format. XMAP is a complemen-
tary subsystem which maps the microinstruction bit patterns produced by XMAS
into the desired physical microprogramme memory locations.

In addition to providing four built-in microinstruction fields and cor-
responding mnemonic sets for the basic 3001 MCU and 3002 CPE functions, XMAS
accepts user definitions for extended microinstruction fields and their associated
mnemonics. Graphic debugging aids, string macro capability, definable defaults,
and extended address generation further simplify the microprogramming of
Series 3000 computing elements.

XMAP accepts the microinstruction file produced by XMAS and gener-
ates under user specifications one or more programming files for use with standard
memory components. It enables the user to specify the mapping of the field into
the physical bit positions of the microprogramme memory components.

CROMIS is designed for use on almost any modern computing system
with high speed I/0 and on-line file facilities. It is available in ANSI (standard)
FORTRAN IV source form for user installation or may be immediately accessed on
any of several major timesharing services throughout the world. To insure the
long term reliability and maintainability of CROMIS, all component programmes
are written in a highly modular, structured programming style with extensive
operational documentation.

User's Library

In addition to the Intel software just described, we also have an extensive library
of programmes submitted by microcomputer users. The library currently con-
tains a number of cross products for use on a variety of mainframes in addition to
a useful selection of utilities.

B2/1

-
Inté Microcomputer Fair Seminar Suite B

INTRODUCTION TO MICROCOMPUTER PROGRAMMING
by Phil Pittman, Rapid Recall Ltd

Once the decision is made to use a microcomputer in a particular system, design
and devel opment usually follows a fairly standard pattern. From a study of the
system requirements, the hardware designer can select from a family of micro-
computer parts those components which match his needs in terms of processing
power and the number and characteristics of inputs and outputs.

At the same time, the programmer will map out flow charts for the system
and will estimate how many instructions will be required to cause the microcomputer
to carry out the desired task. Since these instructions will be stored in semicon-
ductor memory, it is now possible to calculate how many memory packages will be
required.

The hardware designer sets about designing the printed circuit boards
and the various input/output interfaces, or orders a ready-made OEM board, while
the programmer writes his programmes. To check them he will use a microcom-
puter development system such as the Intellec 80 or the MDS. These systems are
used to develop programmes and have several facilities which make the task easier.

At some stage the hardware and the programmes (software) are com-
bined and the whole system is checked out. It is here that the MDS comes into its
own, as it is designed to aid with both hardware and software development. Using
an in-circuit emulator (ICE) the MDS system is substituted for the central proces-
sor in the user's system. Without going into detail, since this is the subject of
another paper, fault diagnosis and system development become much more straight-
forward than they have been previously.

Programming

A programme comprises a set of instructions that are followed by the microcom-
puter to produce the relationship between inputs and outputs required by the appli-
cation. There are many different instructions; basically, however, they fall into
six groups: arithmetic, logical, input/output, data movement, programme gontrol
and data manipulation.

Each instruction is represented by a unique binary bit pattern, or series

B2/2

of binary bit patterns, within the microcomputer's memory. The whole object of
writing a programme is to produce the binary instructions which will cause the
microcomputer to carry out the desired function. There are three basic ways in
which this can be done, which all start in the same way - the flow chart.

The flow chart performs a dual role. It graphically illustrates the way
in which a task is to be accomplished step-by-step, and provides the programmer
with an overview of the whole system. Flow charts have the property of almost
infinite expansion.

The programmer divides the job to be carried out into a series of inter-
connected tasks. Each task is progressively divided into smaller tasks until each
one can be represented by a single microcomputer instruction. At each stage of
this process a flow chart will have been produced, showing how each task is to be
implemented and how it fits into the overall scheme.

It may be found that a particular task has to be carried out several times
during a programme. Common tasks such as these need only be written once; they
can then be called up as and when required. With some microcomputers, such as
the Intel 8080, these 'subroutine' calls can be made conditional.

When a microcomputer is called upon to execute a subroutine, it stores
away enough information to enable it to return to where it left off when the sub-
routine is completed. Returns from subroutine can also be conditional. On a
production line, for instance, an example of a conditional return could be: go to
the subroutine 'put components in box'. Is the box full yet? If no, repeat sub-
routine load. If yes, place full box on conveyor and get new empty box.

When the flow charts are planned to the programmer's satisfaction, he
begins the process of writing programmes. He usually starts with the minor sub-
routines and continues through the more important tasks, which link the subroutines
together, until he reaches the overall controlling programme which links all the
main tasks together.

Programmes are usually written using a suitable computer terminal,
such as a teletype, coupled to a microcomputer development system such as the
MDS mentioned earlier.

The object is to produce a series of binary instructions to be stored in
the microcomputer memory. This series of binary coded instructions is called
the object code: the sequence 10110111, 11110000, 10010101, 01111000, could
well be a series of instructions. When it is considered that a programme may
comprise thousands of such apparently meaningless collections of 1s and Os, it is
not surprising that easier ways of programming were developed.

The first step is to make the binary words easier to handle by using a
form of shorthand called hexadecimal notation. Hexadecimal is, in fact, more
than just shorthand - it is a number system in its own right with the base, or
radix, 16. An eight bit binary word (or byte) can be represented by two hexa-
decimal characters as shown in Table 1. _

It is possible to write microcomputer instructions in hexadecimal
notation but the process is tedious, fairly cumbersome and, therefore, expensive.

B2/3

Table 1

Binary Hexadecimal

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

T EOOWS OO NOUR WD RO

A much better approach is to use an assembler language. Each in-
struction in a microcomputer's repertoire can be represented by a simple
mnemonic code which is constructed in such a way as to describe the operation
performed by the instruction. For the Intel 8080, typical mnemonics are:

Mnemonic Explanation
MOV Move data
ADD Add
SUB Subtract
CMP Compare

When a programme is written in mnemonics, a computer is used to
convert the mnemonic code, or user's 'Source Programme' as it is called, to an
Object code that can be followed by the microcomputer. The computer employed
for the conversion can be a microcomputer development system (Intellec) or a
mainframe machine. Obviously, the development system, or mainframe, has to
be programmed for this purpose. This is done by loading a programme called an
'assembler'.

A resident assembler is run on the microprocessor development system.
A cross assembler is run on a mainframe computer.

Assembly language gives the programmer a great deal of freedom. For
example, subroutines can be given names or Labels to enable them to be called
when necessary without the programmer having to know where the subroutine is
situated within the memory.

B2/4

Assembly languages provide many other facilities to make programming
easier.

The next, and last, step up the programming ladder, is the use of high
level languages. For Intel machines, the language used is called PL/M and is
written in Fortran. ’

Like the assembler, it is the function of PL/M to produce the binary
coded object tape that can be loaded into a microcomputer. At the present time
the translation between source and object code must be carried out on a mainframe
computer.

The use of PL/M provides the programmer with advantages that can
greatly reduce the time taken to write a programme. A disadvantage is that the
object code output of a compiler is often longer than assembler produced object
code for a given programme and therefore more memory is required in the micro-
computer system to store it. This last statement assumes that the programmer is
100% efficient in his use of assembly language. For very large programmes, the
use of a compiler language is likely to result in a better structuring of the programme
since fewer instructions are involved (see later) and, therefore, could result in a
shorter object programme. The choice between the use of an assembler and a com-
piler must be determined by the ability of the programmer, the precise application,
and the size and complexity of the programme to be written.

A programme written in assembly language to move the larger of two
numbers, A and B to location C, might be as follows:

TEST SHL B ; LOAD ADDRESS OF B
LAM ; LOAD B INTO ACCUMULATOR
SHL A ;LOAD ADDRESS OF A
CMP M ;COMPARE B WITH A
JFC L1 ;JUMP TO L1 IF BSA
LAM ;LOAD A INTO ACCUMULATOR
L1 SHL C ; LOAD ADDRESS OF C
LMA ; STORE ACCUMULATOR IN C
END

Nine assembly language instructions are needed. In PL/M the same
programme could be written as a single statement:

IF A> B, THEN C = A; ELSEC =B

Both of these programmes will produce the object code that causes the
microcomputer to carry out the desired function. However, the object codes from
the two programmes will probably not be identical.

Another advantage of PL/M over assembly language is that, providing
one understands PL/M, there is no need to have any knowledge of the architecture
of the microcomputer. A PL/M programme written for one microprocessor
could be re-compiled to run on another without revising the programme. In

addition, PL/M enables such tasks as multiplicatibn, di\}ision, etc. to be imple-
mented without having to write all the individual subroutines.

B3/1

Intel Microcomputer Fair Seminar Suite B
ADVANCED SOFTWARE TECHNIQUES
by Bill Betts, GEC Semiconductors Ltd

Most engineers are introduced to the microprocessor as a component with the
built-in ability to perform a dazzling number of tasks dictated by a sequence of
commands or programme. In the beginning programming is taught or learned
at the assembly language level, where each bit pattern to be interpreted as a
command is represented by an easy-to-remember mnemonic. Programming at
this level involves the programmer in the disciplines of allocating, maintaining
and saving all registers and their contents and offers great scope for trivial, but
hard to find, errors.

Switching to a high level language avoids this type of problem since
the detail of the register and memory usage can be left to the compiler. High
level languages are available to the 8080 microprocessor user and are the sub-
ject of other papers at the seminar. These are block structured languages
whereby all the programme is segmented into self contained blocks of code.
Parameters used within blocks can be common to all the programme or unique to
the current block level. In a nested block situation, local names have limited
validity in the next lower block level. This ability to nest blocks and in fact to
call blocks within themselves can be very powerful,, provided one is careful not
to create an infinite loop.

When using high level languages one often requires to use previously
written and proven routines. To use these sections of programme, one can copy
them out at source code into one's programme before compilation. If one final
programme is very large or uses a large number of names or labels, then the
size of the compiler memory needed to run the compiler may be excessive com-
pared even with the final object code requirements. For this reason it is con-
venient or even essential to compile the programme in parts and to link the re-
sulting code blocks together. This linking requires not only that each new block
is placed into addresses contiguous with the proceeding block, but also that this
is correct for both read only and read/write memory. As an exercise in arith-
metic this is not beyond the wit of most engineers, but the problem is compounded
by labels and procedure calls. Whilst it is possible or even mandatory to define
every procedure before it is called, labels can be, and often are, forward re-
ferencing and all these addresses relevant to the names and labels must be

B3/2

available to every section of the programme at compile time. An alternative
to this is to format the output code from the compiler so that the addresses
requiring external information for their formation are identified. By care-
fully defining the format and by using an intelligent loader programme the seg-
ments of the programme can be stitched together in any required order.

To expand the apparent size of a procession memory during prog-
ramme execution one can resort to various techniques. The technique of over-
laying part of the programme area with new programme data from a buck store
is well known in computer systems where all memory is read/write. A similar
trick can be played by writing one programme as an executive or supervisory
programme and a set of operations. By configuring the operating parts of the
programme carefully one can stack them one to a PROM chip. If the chip selects
of these PROMs are driven from the bits of an output part then the sequence of
operations can be controlled by the executive by outputting a defined bit pattern
to this part and calling a routine which is always the same address. The selec-
ted PROM will respond and operate until the return instruction.

An extension of this technique is to interpret data as instructions.
Obviously this 'data' needs to be carefully organized to make sense as instruc-
tions , but by running part of the programme from read/write memory the actual
instruction sequence obeyed is a function of the data at run time. Such 'live'
code is very powerful and if used with flair can be the trick that buys the memory
space required, but any scheme whereby the programme itself is modified by the
events taking place can be very difficult to debug since it may never be the same
two 'looks' running.

. B4/1
gl EU Microcomputer Fair Seminar Suite B

HANDLING INTERRUPTS
by Bill Betts, GEC Semiconductors Ltd

In many microprocessor systems, the rate at which a peripheral device or
devices can be serviced determines the total number of system tasks that can

be assigned to the control of the microprocessor. The higher the throughput

the more jobs the microprocessor can do and the more cost effective it becomes.
Efficient management of peripheral servicing will have a significant effect on the
overall cost performance of the microprocessor system.

A common method of servicing such devices is polling. Here the
microprocessor must test each device in sequence and in effect "ask" each one if
it needs servicing. It is apparent that such an approach could occupy a large
portion of the main programme looping through a continuous polling cycle, thereby
having a detrimental effect on system throughput and limiting the number of tasks
that can be assumed by the processor.

Furthermore, the frequency of polling each device must be related to
the response time required by that device. One must ensure that any input is
acknowledged and acted upon before a second input appears on the same peri-
pheral. This may mean that the polling routine must visit certain peripherals
more frequently than others to satisfy their various needs.

A more desirable method is one in which the microprocessor can be
executing its main programme and only stops to service a peripheral device when
told to do so by the device itself. Effectively, any peripheral requiring attention
would activate an asynchronous input to the processor that commands it to finish
the instruction it is executing and fetch a routine to service the peripheral. Once
the peripheral servicing is complete the processor returns to the main programme
exactly where it left off and continues as if nothing had happened. The method is
called 'interrupting' and it can drastically improve the throughput of a micropro-
cessor system by limiting the time spent on peripheral operations to a barest
minimum.

In a simple interrupt system every peripheral device has equal access
to the asynchronous interrupt input to the processor. Once the processor has ac-
knowledged the interrupt and has made records of all the current values of the in-
ternal registers so that it can recreate the pre-interrupt status, it must inspect

B4/2

the peripherals to determine which device caused the interrupt. By a simple
one pass poll of the peripheral status or by reading a special interrupt status
port the requesting device can be identified.

Inevitably, the time will come when two or more devices will simul-
tane ously demand attention and such situations can only be resolved by allocating
some priority to the inputs, either by the order in which the devices are scanned
or by using a Priority Interrupt Control Unit (PICU) such as the Intel 8214. The
PICU functions as an overall manager in an Interrupt driven system. It accepts
requests from the peripheral equipment, determines which of the incoming re-
quests is of the highest priority, ascertains if the new 1nterrupt has a higher
priority than the interrupt currently being executed and issues a further mterrupt
on the basis of these decisions.

Each peripheral device or group of devices will have in memory a
special section of programme, or routine, associated with its particular require-
ments. The PICU must indicate to the processor wh1ch service routine is re-
qu1red to execute the currently requested mterrupt. Th1s 1ndlcat1on is g1ven by
issuing one of elght requests for the 1nterrupt to "vector" to the correct Interrupt
Serv1ce Routme. o

- Add1t1onal poss1b1l1t1es 1nclude the masklng of part1cu1ar levels of
mterrupt either by add1t10nal hardware or v1a the Intel programmable mterrupt
controller 8259.

PROGRAMMABLE INTERRUPT CONTROLLER

3

_BLOCK DIAGRAM

M LR S SRS R F A

— . DATA \
0,00 T ¥ BUS . <:>
BUFFER

{ IR S

I3 3 N 5 ¢ i3 o, . » o

o T ' § CONTROL BUS 3
ﬁ)y——————:“ : M:‘o! BN s I e ":;'f;? s s RERS SHGE watn s] I 15 IW]WTN‘I’ [»iu o
WA e 0 o b (0 | REQUEST ge—r— IR 2.1 :f. .y Tt AN SEncLy: DATABUS(®) . | [' i Lo - it
AAREERE RN TTLTAN et - LATCH Jasi—4R 3"| INTERRUPT . i 5

WRITE) MASK |e—— 1R 4 [REQUESTS 1 B] o
i AOSHE INTTTT ENTTV] registeR el ms]l S 5 (FY P IS R
Ao <—— IR6 . . : . .
o ERRERTY B oy ele—iR e Rl = L . i
Ay 0,-Dy b WRINT INTA

8250

IRO IRO IHO IRO IRO mu IRO IﬂO

CAS 0 ———=Q

chs SLAVE
= PROG.

B 3 G st
LOGIC

INT \

INTA ————=(Q

INTERNAL BUS 8259 System Interface.

B5/1

-
l“t&l Microcomputer Fair Seminar Suite B

A CORAL COMPILER FOR THE INTEL 8080 MICROPROCESSOR
by Bill Betts, GEC Semiconductors Ltd

With the coming of age of the 8080 microprocessor and its wide acceptability
across the industry as a standard device, people are becoming increasingly
aware of the advantages to be gained from not only standardizing on hardware
but also on software.

Coral 66 is a general purpose programming language whose definition
has been formalized and issued by the Ministry of Defence as an inter-services
standard for military programming. It has also been accepted and adopted by
many sectors of the control and automation industry.

The concept of transportability of programmes between various
computers/processors is usually accepted as being a desirable feature, allowing,
as it does, programmes developed on one system to be used directly on a different
or improved machine. This concept allows considerable time and effort to be put
into a sophisticated software system without the worry of future redundancy or
obsolescence caused by hardware improvements. However, it is recognised
that no standard language can be equally ideally suited to a number of processors
and Coral 66 includes, for example, the ability to write in the main programme
code statements in 8080 assembly language to make specific use of particular
hardware features of one's design.

Coral 66 is a high level block structured procedure orientated lan-
guage based upon Algol 60 but taking features from Coral 64, Jovial and Fortran.
It is designed to be as general-purpose as is practical and is for use by skilled
programmers. It has no inbuilt assumptions about specialized applications
except, in its application to the 8080, that decisions are taken at compile time as
to the allocation of storage between read only and read/write memory.

The use of any high level language in a real time as opposed to a
problem solving or data movement situation is dependent upon an external pres-
ence of a set of routines handling the communications between the programme and
the real time world. These procedures that provide this interface are not in-
cluded in the Coral 66 language definition but can be easily created by reference
to many standard handling routines mentioned in other presentations at this fair.

Some of the advantages of Coral 66 when applied to an 8080 micro-
processor stem from the availability from other work previously carried out of

B5/2

proven routines for defined tasks and also a source of trained programmers.
Other advantages of using Coral 66 over other high level languages must in-

clude its standardization by published "blue book" specification; full floating
point arithmetic capability and the correct handling of signed quantities (both
bytes and integers) in such things as loop counts, array efforts, multiply and
divide. Other notable features could include conventional argument passing,
two-dimensional arrays, macro facility, common declarations and the use of
code to enhance performance.

The compiler is written in Coral 66 and so by compiling itself on
itself arrives at a compiler written in 8080 assembly language. This enables
the compiler to run on an 8080 system such as the Intel MDS. Intended pri-
marily to run on a floppy disc based system the compiler will operate from
paper tape in any 8080 system having at least 48K of read/write memory.

~ In the first releases of the compiler the output will be in 8080
assembly language. Whilst this requires the use of the MAC80 assembler to
create the object code required to run the programme, it simplifies the linking
of segments from various sources of code. Later editions will output directly

in the Intel relocatable code format to be compatible with the relocating linker
for load time allocation of addresses.

- B6/1
lnté Microcomputer Fair Seminar Suite B

Which is the most cost-effective?

COMPILER OR ASSEMBLY LANGUAGE?
by Phil Pittman, Rapid Recall Ltd

When taking the decision to use either assembly language or the PL/M compiler for
a microcomputer system design project, there are three main factors that have to
be taken into account. These are the cost of writing the programme , the amount
of memory needed to house the programme and the number of systems that are to
be bui 1t.

If a large production run is envisaged the programme length is the most
important factor since, if this can be reduced, a smaller programme store can be
used and the resulting saving is multiplied by the number of systems that are to be
built. For small production runs the cost of programme preparation (writing, de-
bugging and documenting) is the dominant factor.

The PL/M compiler enables programmes to be written very quickly but,
generally speaking, may make less efficient use of the programme store than pro-
grammes written in assembly language.

It is most useful to be able to calculate how many systems have to be
built before the overall costs of programming in both PL/M and assembly language
become equal, since this enables the most effective language to be chosen at the
beginning of a project. The factors that have to be taken into account to perform
this calculation are explained below:

P - Cost of programming per line. This will be the same for both PL/M and assembly
language. Since a programmer will write about 25 lines of programme a day, it is
realistic to set the cost per line at £5.

B ,B - Number of bits generated by a line of assembly code (B) and a line of
a’c . a
compi ler code -(BC). Average values are Ba = 16, B, = 80.
M - Cost of memory per bit (see Table)
EC - Compiler efficiency (see Table). This factor compensates for the dif-

ference between the amount of memory for assembler code and the
amount of memory for compiler code needed to implement a particular
task, and will vary from programmer to programmer. In general, how-
ever, for systems below about 1K bytes EC will be about 2 and will fall

B6/2

towards 1 as the system increases in size to 4K bytes.

Table

Memory cost Compiler expansion factor (Ec) .

per bit

(pence) 1 1.1 1.25 1.5 2
EPROM ‘

0.73 @ 334 128 60 26
PROM .

0.47 ’ co 518 200 93 40
ROM

0.12 o 2031 781 365 156
N - Number of systems to be produced.

L ~ Number of lines of programme.

From the foregoing it can be seen that:

Cost of memory=NxLxBx M
System cost = cost of memory + cost of programming (P x L)

When the system cost is the same in both assembler and compiler code the following
equality applies:

NxL xB xM+(PxL)=NxL xB xM+(PxL)
a a a c c c

Since the compiler requires a different number of lines to implement a system when
compared to the assembler language, it is necessary to introduce the compiler ex-
pansion factor. Solving for N at the same time gives:

N = P(1/BA-EC/BC) / (Ec- 1)M

which is the number of systems at which the costs of programming in PL/M and
assembler language are equal. If you are producing more than this number of
systems it is less expensive to use assembly language.

If we assume that the compiler requires 25% more lines of programme than
the assembler language and low volume production is being employed, it costs less
to use PL/M for 780 systems in masked ROM or 128 systems in EPROM. For a very
small system in which the worst case value of 2 is taken for E_, it is cheaper to
use PL/M for less than 150 systems in ROM or 26 systems in EPROM.

A general rule of thumb emerges for an average system. For a production
run of less than 100 systems with EPROM, or 1,000 sy stems with ROM, it is better
to use PL/M.

For very complex programmes it is usually better to use PL/M regardless

of the production run, since inefficiencies are likely to be introduced by the pro-
grammer writing a long complex programme in assembly language.

. ci1/1
lntej Microcomputer Fair Seminar Suite C

3000 BIPOLAR MICROCOMPUTER OVERVIEW
by Phil Pittman, Rapid Recall Ltd

General purpose bipolar computer components, such as the Intel 3000 series,
enable digital computers to be constructed with an architecture and an instruction
set that is defined entirely by the designer. This means that the characteristics of
the computer can be made to exactly match the requirements of the application.

The central processor unit of a general purpose digital computer can be
divided into two sections: the arithmetic section and the control section. The
control section fetches an instruction from the main memory and executes it by
carrying out a whole series of sub-operations. In effect, the task is broken down
into a number of small steps, each step being executed in turn by a sub-operation
until the task is completed.

The instructions which define the sequence of steps necessary to carry
out a main memory instruction are called micro-instructions, and the sequence of
steps is called a micro-programme. The instruction which is fetched from the main
memory is called a macro-instruction.

: The user of the computer writes a macro-programme that causes
the machine to fulfil its intended function

A macro-programme is made up from a sequence of macro-
instructions

: Each macro-instruction is implemented in the computer by running
a micro-programme

: The micro-programmes are written by the designer of the machine
using micro-instructions

The user of the machine is not concerned with the micro-programmes
which provide the instruction set that is available to him.

One family of bipolar microcomputer components is the Intel 3000
series, a set of components realized with Schottky TTL technology. The two most

important circuits in this family are the 3001 micro-programme control unit (MCU)

ci1/2

and the 3002 central processing element (CPE). The MCU determines the

sequence of execution of micro-instructions from the control memory, and pro-
vides carry logic. The CPE represents a two-bit wide slice through the arithmetic,
logic, register and data bus portions of a computer central processing unit.

Several CPEs may be wired together to produce a central processing unit with arbi-
trary data bus width. For example, to produce a 16-bit wide data path, eight CPEs
would be used.

Other members of the family include the 3003 fast carry chip, the 3212
input/output register chip, and the 3214 interrupt control chip. The control
memory portion of a central processor or controller built with this family may be
realized with standard field-programmable ROMs, mask-programmable ROMs or
read/write memory (RAMs). \

The micro-programmed approach is useful for bipolar microcomputers
because complex macro-instruction sets can be realized as sequences of relatively
primitive micro-instructions. The logic of the final macromachine remains rela-
tively simple, with most of the complexity being represented by the contents of the
control memory.

When using the Intel bipolar microcomputer family, the 3001 MCU im-
plem ents most of the functions of a micro-programme control unit. When used
with the 3002 CPE slice, the basic micro-instruction functions are established,
although additional logical elements drawn from standard TTL families may be
added which will alter or enhance the micro-instruction set.

MEMORY ADDRESS BUS OUTPUTS MEMORY DATA BUS
—_— A
A, A .0, 0

MEMORY I_ — . T __ ————— 1
i
I
|

0UTPUT 0UTPUT
ENABLE BUFFER BUFFER

€0 MEMORY DATA
ENABLE

| MEMORY
n‘\eoqurség AC REGISTER
|
L 11
LM“HEAD{ M : A"S'ET;]!A(EJLIC ©—— CARRY INPUT
oN -
mme cAaa ," d F— smn RIGHT
/' . T ¥ |
s“'" ’“G“ ,,:: MULTIPLEXER MULTIPLEXER
. T T l
: It
f——] ! |
F .
'”"cm‘" I FUNCTION SCRATCHPAD
DECODER REGISTERS I
INpuTS :a e
L}
50—1-— 1 I
L — iy p—
M, Mg Iy 1o K, Ko
Nyt ——— S——
MEMORY DATA EXTERNAL MASK BUS

BUS INPUTS BUS INPUTS INPUTS

Central processing element. This element contains all the circuits representing a two-bit-wide slice through a small com-
puter’s central processor. To build a processor of word width N, all that’s necessary is to connect an array of N/2 CPEs together.

c2/1

Inté Microcomputer Fair Seminar Suite C

WHY USE A MICROCOMPUTER?
by Richard Forster, Jermyn Distribution

There are five basic reasons why the designer should evaluate microcomputers:
* They save development time and costs

* They reduce the number of different components that have to be bought,
tested, stored and accounted for

* They will do the same job as a random logic system in a smaller space
* They reduce production costs

* They give better reliability

Most of these advantages stem entirely from the fact that the gates and
maze of interconnections used in random logic systems is replaced by an ordered
set of instructions which are stored in semiconductor read onlv memory as binary
patterns. It is realistic to think in terms of a single 2K bit memory replacing about
28 mixed s.s.i., m.s.i. and 1l.s.i. packages in a typical system. The saving in
circuit board area is immediately apparent. What is often forgotten is the fact that
the number of interconnections between the board and i.c. package is reduced by about
60%. There is also an equivalent reduction in the number of boards inside the packages
from the chips to the leadouts. The increase in reliability that results from just this
factor alone is significant.

The systems designer used to thinking in terms of TTL has to exchange his
knowledge and experience of Boolean algebra, Karnaugh maps and minimization for
expertise in software. He has to learn about assemblers, simulators and PL/M. He
has to acquaint himself with floppy discs and the MDS and has to delve into the
mysteries of structured programming.

Engineers who have made the transition have found it enjoyable and interes-
ting and many consider that the exchange of a soldering iron and a pair of snips for a
keyboard for building a prototype system is a change for the better.

While programming can be learned from books it is far better to attend a
proper course of instruction and to have the benefit of practical work whilst learning.

Once the necessary software expertise has been obtained, the designer will

c2/2

find that the time taken to develop a system will become shorter. He will also
find, with careful board layout, that one microcomputer card will be suitable for
many different projects. In most cases the changes will only concern the memory
size, the type and configuration of the 1/0 ports and the complexity of the interrupt
structure. Some of these changes can be brought about with software alterations
only.

With a microcomputer late changes in the specification of the product
being designed can often be implemented in the software, and there may be ro need
to rework the board design at all. With random logic these last minute changes can
be exceedingly expensive in both engineering effort and delayed product introduction.

MCS-80
MICROCOMPUTER SYSTEM

Type Group Description
8080A CPU Central Processor
8080A-1 CPU Central Processor (1.3us)
8080A-2 CPU Central Processor (1.5us)
M8080A CPU Central Processor (—55° to +125°C)
8224 CPU Clock Generator
8228/8238 CcrPu System Controller
8008, 8008-1 CPU Eight-Bit Microprocessor
8702A ROMs Erasable PROM (256 x 8)
8708 ROMs Erasable 1K x 8 PROM
8302 ROMs Mask ROM (256 x 8)
8308 ROMs Mask ROM (1K x 8)
8316A ROMs Mask ROM (2K x 8)
81012 RAMs Static RAM (256 x 4)
8101A-4 RAMs Static RAM (256 x 4) 450 ns
81112 RAMs Static RAM (256 x 4)
8111A4 RAMs Static RAM (256 x 4) 450 ns
8102A-4 RAMs Static RAM (1K x 1) 450 ns
810784 RAMs Dynamic RAM (4K x 1)
8222 RAMs Dynamic RAM Refresh Controller
8212 1/0 8-Bit 1/0 Port
8255 1/0 Programmable Peripheral Interface
8251 1/0 Programmable Communication Interface
8205 Peripherals One of Eight Decoder
8214 Peripherals Priority Interrupt Control Unit
8216/8226 Peripherals 4-Bit Bi-Directional Bus Driver
8253 Peripherals Programmable Interval Timer
8257 Peripherals Programmable DMA Controller .
8259 Peripherals Programmable Interrupt Controller

C3/1

-
: |nté Microcomputer Fair Seminar Suite C

THE CONSTRUCTION AND TESTING OF PROGRAMMES

by J.L. Payne, CAP Microprocessor Group, Computer, Analysts and Programmers Ltd
CAP House, 14-15 Great James Street, London, WC1 N3DY
‘ Tel: 01-242 0021

There is a difference between programme testing and programme debugging.
Programme testing is the process of checking that the programme works in all
cases in which it is supposed to work; programme debugging is the process of
locating and correcting programme bugs indicated during and after testing. The
best way to debug is to minimise the need for it, and this is achieved by proper
programme design.

Programme Design and Construction

The design of a programme is based on a Functional Specification. This defines in
an unambiguous way actions to be taken by the programme for each event. In other
words it defines what the programme has to do. The Programme Specification is a
document which describes how the programme is constructed. These two documents,
together with the programme listing, form the major part of the programme docu-
mentation.

The most important part of programme design is the structuring of the pro-
gramme and data. Programmes should be broken down into logical or functional
units. Such units or modules will often be subroutines and communicate, where
possible, by parameter passing or in some cases via global data (data common to all
subroutines).

Subroutines should be constructed with only one entry and exit point, and
should always return control to the point following their call. They should be designed
independent from a given set of data. This generalised approach often enables them
to be used elsewhere in the programme, and it helps anticipate future modifications
and adaptations. Such generalised routines can contribute to a library to assist
future projects.

Simplicity of coding is another aspect of programme design to be stressed.
Unnecessarily complex logic or tricky coding taking advantage of some obscure pro-
cessor dependent feature is to be avoided as this can impede programme checkout.
Future maintenance is almost certain to involve programmers who are unfamiliar
with the coding.

c3/2

The correct structuring of data is also important. Fixed parameters and
variable data must be separated as the former will be stored in PROM and the latter
will reside in RAM in most microprocessor systems. —

The goal of structured programming is to organize and discipline the pro-
gramme design and coding process in order to prevent more logic errors and to
detect those remaining errors. The two most important features of this approach -
are (1) top-down design and (2) modular design. Top-down programme design is
similar to top-down report writing.

Reports are structured hierarchically and written from the top of the -
hierarchy, that is, starting with a brief synopsis. Much of the work on structured
programming has suggested that programme correctness is more likely simply
because of the way the programme is developed.

The use of fairly detailed flowcharts is also to be encouraged. They assist
in the design of code segments with a minimum number of internal paths. Ideally
such segments should be one page long.

With microprocessor systems the choice of languages will often be res-
tricted. There are, however, three language levels possible; machine (in hexa-
decimal, octal or binary), assembler (mnemonics) or high level (e.g. PL/M).

Machine level programming is always to be discounted. It has no place
in a professional approach to programming. So the choice will be between, say, -
PL/M or 8080 assembler. Three important points to remember here are:

High level languages are not a panacea - programmes must be properly -
structured.

* High level languages reduce programme coding time.

* Efficiency of compiled code is often unimportant.

Testing and Debugging

When designing a programme the programmer should pay constant attention to how
he will test it. The ultimate result of a programme which is difficult to test is that
it is never completely tested.

"Bloody instructions which, being learned,
return to plague the inventor." - Macbeth.

It is often helpful to include diagnostic features in a programme, particu-
larly in areas where programmes interact with hardware. A typical facility might
be to provide a count of the total number of parity errors or a count of time spent
waiting for some 1/0 operation to complete. The intelligent use of flags to mark
access to subroutines or data areas can often pay off. Saving interface status in-
formation before initiating a command sequence to that interface can assist in de-
bugging hardware/software interactive problems. -

C3/3

There are two major groups of tests to perform when adopting a progres-
sional approach to testing and debugging. The first group is known as unit testing.
This is testing individual or groups of subroutines or modules in isolation. Data
are selected to test all possible combinations of events that can occur. The out-
puts are monitored and compared with the pre-determined results. The tests must
be methodical and repeated after errors have been found and corrected. The process
is clearly iterative.

The second group is known as integration testing. Hopefully at this stage
most of the bugs associated with isolated modules will have been found. Integration
testing is the bringing together and testing of the total programme (all modules).

For most microprocessor programmes this stage will include the full hardware con-
figuration. Unit testing, however, will take place in an isolated environment using
either a test harness (a control programme) or a simulator. The additional unknown
of new hardware increases the argument for diagnostic features built into the pro-
gramme.

When a bug is found during integration testing and the faulty module corrected,
it is necessary to go back and unit test that module again before proceeding with inte-
gration testing.

The use of up-to-date listings and symbol tables is crucial for integration
testing. When used in conjunction with an Intellec system an interactive on-line
approach to testing and debugging is possible.

Such features as memory inspection and insertion, programme tracing and
breakpoint insertion enable the Intellec user to interact with the running programme
directly.

Conclusion

The paper has attempted to show the major steps in professional programme testing
and debugging. It has emphasised strongly the initial design and construction as
major factors in programme debugging and laid guidelines for the testing methodo-
logy. Such a short paper cannot deal with the mechanics of testing and debugging in
more detail.

THE INTELLEC® MDS
IS THE WORLD'’S FIRST
IN-CIRCUIT MICROCOMPUTER
DEVELOPMENT SYSTEM.
IT HELPS SAVE CONSIDERABLE

TIME AND MONEY
IN THE DESIGN, DEVELOPMENT,
DEBUGGING AND MARKETING
OF MICROCOMPUTER-BASED
PRODUCTS.

Use of the Intellec® MDS can help manufacturers get to the marketplace with their products
months ahead of the time required with other development methods. Larger shares of market
can be captured earlier, and held, and the effects of price erosion can be minimized because
of the very fast product development enabled by the MDS system.

A user can tailor his Intellec® MDS development system to his own unique requirements. If he
wishes, he can begin with the basic MDS system and expand to the ultimate design configura-
tion in a series of modest capital investments.

The sophisticated MDS system can eliminate literally thousands of man hours normally re-
quired in research, product development, engineering and programming. The cost and time
savings provided by the use of this new development system can be most significant.

The Intellec® MDS system can be used immediately to design, develop and debug products
based on either the Intel® 8080 CPU or the Series 3000 Schottky bipolar microcomputer fam-

ily.

The new MDS system can be used for any number of new, user-developed products or sys-
tems, because its support is not limited to any one Intel® microcomputer family.

In a single, self-contained Intellec® MDS system, all the hardware and software required for
efficient, cost-effective product development is supplied.

The MDS supports all program development, prototype debugging and production and field
testing of microcomputer-based products. This single-system support eliminates the need of
separate systems to perform these functions.

The internal capabilities of the Intellec® MDS eliminate the need to use dial-it-up time-sharing
computer services and their associated costs. In addition, the delays often caused by in-house
computer service are eliminated by the self-contained MDS system.

Product development projects are fully supported by Intel® in the form of the most extensive
hardware and software field applications assistance in the industry, international field service,
and comprehensive documentation.

The Intellec® MDS Microcomputer Development System is available now, enabling users to
design, develop and debug their products much faster, at considerably less expense, than was
ever before possible.

c4/1

-

k?it&g Microcomputer Fair Seminar Suite C

MICROPROGRAMMING THE 3000 SERIES

For some time, microprogramming has been recognized as a powerful technique
for the design of a complex processing system such as the central processing unit
of a general purpose computer. Recent advances in high-speed LSI circuit tech-
nology have made it possible and economically practical to apply a microprogram-
ming solution to a wide range of design problems.

A microprogramming approach to a design problem requires two distinct
steps to achieve the design objective:

1) Design a microprogramm able processor capable of meeting the
design objective.

2) Design a microprogramme that will direct the activity of the pro-
cessor to satisfy the design objective.

The first of these steps is a logic design problem; the second step is a
programming problem. The Intel Series 3000 Bipolar Microcomputer Set supports
the first aspect. CROMIS, the Cross Microprogramming System, supports the
second.

Series 3000 Bipolar Microcomputer Set

The Intel Series 3000 Bipolar Microcomputer Set is a complete, compatible family of
high performance LSI circuit components that serve as the basic building blocks for
custom microprogrammed processors and controllers. The set's two major compo-
nents, the 3001 Microprogramme Control Unit (MCU) and 3002 Central Processing
Element (CPE) establish the foundation of a flexible microprogrammable architecture.
The user can build on this foundation to meet the requirements of a wide variety of
special applications. .
Although a user's configuration is designed to meet the requirements of
his particular application, it is worthwhile to consider how the Series 3000 elements

c4/2

might be applied in a typical microprogrammable processor-controller implemen-
tation. The configuration illustrated in Figure 1-1 may differ in some ways from
the one a user is microprogramming. However, a discussion of Figure 1-1 identi-
fies the roles played by the Microprogramme Memory, the M icroprogramme
Control Unit (MCU) and the Central Processing Element (CPE), which are funda-
mental to the architecture of any Series 3000 configuration.

The microprogramme memory may be viewed (see Figure 1-2) as an
array of locations, each providing storage for one unit of control information: a
microinstruction word. Each location is identified by a unique address. An
address applied to the address inputs of the microprogramme memory selects a
location. The bit pattern stored in the selected location (i.e. the microinstruction
word) appears in the form of a pattern of binary signal levels on the control lines
connected to the data outputs of the microprogramme memory. Thus, each bit in
the selected microinstruction word determines the state of one control line.

A group of related control lines forms a function bus. Each function
bus controls the operation of, or supplies data to, a functional unit in the system.
The grouping of the control lines into function busses imposes natural functional
divisions on the microinstruction word. These divisions are called 'fields'. Each
field of the microinstruction word drives a single function bus and thereby governs
the behaviour of one functional unit. Therefore, each field of a microinstruction
word can be viewed as providing an instruction to be executed by one functional unit
in the system. In other words, the microinstruction word consists of a fixed
group of instructions that are executed in parallel by corresponding functional units
when the microinstruction word is selected from the microprogramme memory.

During a basic operating cycle, called a microinstruction cycle, an
address is applied to the microprogramme memory, selecting one microinstruction
word for execution. The fields of the selected microinstruction word dictate the
functions to be performed or initiated by the functional units in the configuration
during that cycle.

One of the microinstruction word fields controls the operation that de-
termines which microinstruction word will be executed during the next microinstruc-
tion cycle. Another field specifies the operation to be performed by the data pro-
cessing section (the CPE array). Still other fields may control an external main
memory and 1/0 devices.

The design flexibility of the Series 3000 computing elements makes it
impossible to describe every format exactly. However, the microinstruction word
format below reflects the general requirements of the typical configuration illus-
trated in Figure 1-1: :

STANDARD FUNCTION FIELDS USER-DEFINED FUNCTION FIELDS
cp FLAG JUMP MASK MAIN o
ARRAY LOGIC | FUNCTION FIE MEMORY | con
FUNCTION | FUNCTION Lo CONTROL TROL
7-BITS 4-BITS 7-8ITS n-BITS n-BITS n-BITS
CPE mMcu Mcu CPE MAIN 1o

"MEMORY SYSTEM

CcC4/3

It includes a

The CPE is a complete 2-bit data processing module.

number of general and special purpose registers, arithmetic and logic circuits,

and several busses for data input and data output, as illustrated in Figure 1-3.
For example, 8

Virtually any number of CPE's may be connected, as shown in Figure 1-4, to im-

plement a data processing section of any desired word width.
CPE's may be arrayed to produce a 16-bit processing section.

As CPE's are wired together, all registers, arithmetic and logic
circuits, and data paths expand accordingly. However, the seven function inputs
(FO-F6) to each CPE are connected in parallel to form a single 7-bit CPE Function

This arrangement allows the microprogrammer to view

Bus for the entire array.
the CPE array as a single functional unit capable of executing a variety of data pro-

cessing functions on N-bit operands.

conrroL 70
AILMORY AND 170
d [’
& s
<]
CPE FUNCT/ION
aus Jooz
CPE ARRAY

AT/CRO
PAdY
ALRIORY

RIGHT ourpyy
CARRY INpyT

ALAG ourpPur

rLAG /407

Pl Linsied
ANNOWLEOGE

A7
SROBE
LALBLE

Fig. 1-1. Typical Series 3000 Configuration

c4/4

T

ADDRESS

DECODE

T ¥] 1
- —— T T T — — - —— —— — —
- —— T rTrTT————————————————— = —
-——trrrr————_————— e ———————— —
——e— —— e - —
" 4
| SELECT T T T T T T T CROINSTRUCTIONWORD ' ' ! ! 1 1 1
¥

cLoCcK

CARRY IN
(CARRY FROM
3001)

CPE FUNCTION BU:!
Fo—F

RIGHT OUT (CARRY TO 3001)

K-BUS |
(2N LINES)

T T

CONTROL LINES

Fig. 1-2. Microprogram Memory

A-BUS
(2N LINES)
o]

D-BUS
(2N LINES)

3002
CPE2

3002
CPEn

/\{E/\ VAN

—
— —

]

1]

M-BUS
(2N LINES)

I-BUS
(2N LINES)

c5/1

-
lnté Microcomputer Fair Seminar Suite C

AN INTRODUCTION TO PL/M

There are two main approaches that can be taken to writing a programme for a
microcomputer. The programme can be written either in assembly language or
in a high-level language like PL/M. In some applications it may be beneficial to
write some sections of the programme in assembly language and the remainder in
PL/M. This short article is intended to form an introduction to PL/M, to describe
some of its characteristics and to highlight some of its particular advantages.
PL/M, which stands for Programming Language for Microcomputers, is
a subset of the IBM language PL/1. A single line of PL/M will generate the same
amount of object code as several lines of an assembly language. Source pro-
grammes written in PL/M are therefore much shorter to write than the equivalent
assembly language programme. Programming costs have been shown to be propor-
tionally lower.

Source programmes written in Assembly language can be assembled
to produce the object code either by a microcomputer or a mainframe. At the ;
present time PL/M programmes can only be compiled by a mainframe computer.

A programmer writing a PL/M programme need not have a detailed know-
ledge about the architecture or the mnemonic instruction set of the microcomputer he
is writing the programme for; in fact, a PL/M source programme can be compiled
for use on either the 8080 or the 8008. However, the PL/M programmer need not
hold himself aloof from the nitty gritty of the cpu internal operations if he does not
want to. For example, he still has the power to manipulate the stack pointer just
as he has when writing in assembly language. He can also call utilities (sub
routines) that have previously been written in assembly language.

The following PL/M programme fragment is a sub-routine (called a pro-
cedure in PL/M) to be run in an Intellec system which calls the character print
routine that is resident in the Intellec monitor at 3809H

C5/2

/*THIS IS A COMMENT*/
PRINTZCHAR: PROCEDURE(CHAR);

DECLARE CHAR BYTE; /*CHAR IS AN EIGHT-BIT QUANTITY*/
DECLARE IOCO LITERALLY '3809H';/*IOCO IS MONITOR PRINT ROUTINE*/
GO TO IOCO; /*PRINT THE CHARACTER*/

END PRINTZCHAR;

The character to be printed is passed to this procedure when the pro-
cedure is called:

CALL PRINTECHAR('A'); /*PRINT A*/

If desired, a second procedure could be written which would call
PRINTECHAR and use it to print a string of characters of variable length. The
address of the first character in the string and the number of characters in the
string will be passed to the procedure when it is called:

PRINTESTRING: PROCEDURE(NAME,LENGTH) ;
DECLARE NAME ADDRESS, /*NAME IS A 16-BIT QUANTITY*/

(LENGTH,I,CHAR BASED NAME)BYTE;/*LENGTH,I AND CHAR
ARE ALL 8-BIT
QUANTITIES. IN
ADDITION,CHAR IS A
BYTE WHICH IS POINTED
AT BY THE ADDRESS
POINTER NAME*/

DO I =0 TO LENGTH-1; /*CONTIN UE UNTIL THE NUMBER OF
CHARACTERS SPECIFIED BY
LENGTH - 1 HAVE BEEN PRINTED*/
CALL PRINTECHAR (CHAR(I)); /*PRINT THE CHARACTER
POINTED AT BY NAME + 1
(I IS INCREMENTED ON EACH
ITERATION OF THE 'DO LOOP'*/
END; /*END OF DO LOOP*/
END PRINTZSTRING

This routine could be made to print the text TEMPERATURE in the following way:

CALL PRINTZSTRING (.TEMPERATURE,11); /*THE '.' CAUSES THE POINTER
'NAME' TO BE SET AT THE FIRST
CHARACTER 'T'. 11 IS THE
LENGTH*/

The examples have served to illustrate what a PL/M source programme

looks like and it can be seen that the programmes are easier to read and under-
stand than an assembly language programme.
When a PL/M programme is compiled it will probably generate more

C5/3

object code than a well written assembly language programme which does the same
job. In other words, a PL/M programme will increase memory cost because it
will require more ROM. On the other hand, it will cost far less to write.
Obviously, these costs will be equal when the cost of the amount of extra ROM re-
quired, multiplied by the number of systems to be built, is equivalent to the dif-
ference between the cost of programming in assembly language and PL/M.

As a general rule of thumb, for an average microcomputer system, with
a production run of less than 100 systems when using EPROM, or less than 1,000
systems using ROM, it is more cost effective to use PL/M.

The PL/M compiler is available on several time sharing services in the
U.K. You can rent a terminal from Timesharing Ltd, Tymeshare and Honeywell Ltd
and start writing microcomputer programmes with very little capital outlay.
Obviously, when you get down to hardware development and hardware/software inte-
gration, a development system, such as the MDS, will be necessary.

PL/M™ HIGH LEVEL PROGRAMMING LANGUAGE
MCS-8""AND MCS-80""CROSS COMPILERS

Reduces program development time and cost Hexadecimal or BNPF object code formats
Improves product reliability and eases maintenance Written in ANSI standard FORTRAN IV
Available for 8008 and 8080 Instantly available on worldwise timesharing services

Comprehensive user documentation

PL/M is a high-level system programming language, specifically designed to ease the programming task for INTEL's 8-bit
microcomputers, the 8008 and the 8080. PL/M is a powerful tool, well suited to the requirements of the microcomputer
system designer and implementor. The language has been designed to facilitate the use of modern techniques in structured
programming. These techniques can lead to rapid system development and checkout, straightforward maintenance and
modification, and high product reliability.

The PL/M compilers convert a free-form symbolic PL/M program into an equivalent 8008 or 8080 object program. The com-
pilers themselves take care of all the details of machine or assembly language programming, which permits the programmer to
concentrate entirely on effective software design, and the logical requirements of his system.

Output from the PL/M compiler may be loaded directly into the 8008 or 8080 simulator programs for interactive, symbolic
debugging or may be punched to paper tape in hex format for loading into an Intellec® Microcomputer Development System.
It may also be punched in BNPF format to program ROMs.

The PL/M compilers are written in ANSI standard FORTRAN |V and are designed to run on any large-scale computer system

with a minimum 32-bit integer format (word size). They are also available for immediate use on several worldwide timeshar-
ing systems.

C5/4

Programme Library Enlarged Threefold

During recent months we have increased the number of programmes in our library more than three-
fold. These programmes are available to all users of our microcomputers and can save a great deal of
time as there could be a routine in the library which you could adapt for your latest project. You can
join the library for a period of one year free of charge by submitting an acceptable programme for
inclusion or by paying a fee of £60. Some of the programmes currently available in the library are:

8-bit Library

Cross products

Cross assembler for HP 2100 DOS

Cross assembler for NOVA 1200

8080 Cross compiler for PDP-11

Cross assembler for HP-3000

PLM83 (PL/M 80, pass 3)

PDP-8 Cross compiler

Cross assembler for IBM 360 and
NOVA 1200

Cross Assembler for PDP-11

Macro Assembler for PDP-11

Absolute Loader for PDP-11

8008 Macro Definition Set for
Assembly on PDP-11

8080 Macro Definition Set for
Assembly on PDP-11

Cross Assembler for Nova 1220,
IBM 360/40 and CDC3300

Nova Cross Assembler for Intel 8080

Intel 8008 Cross Inverse Assembler
for HP 2100

General

Re-entrant interrupt handler

Paper tape labeller

8080 Triple byte counter

Seven segment hex display

Banner print and punch

Low pass filter

Page Listing Programme

Load to buffer and save pointer:
Retrieve from buffer by pointer

Clock subroutine

Interrupt driven clock routine

Comparison of two memory fields

Octal console emulator

Data array move

Octal PROM programming

Digital-to-analogue conversion for
eight outputs

Terminal editor

Compare register pairs BC. and DE

8080 Idle analyzer for approximate
cpu utilization

MACB8080 Demonstration programme

Shellsort (array sorter)

8080 Macro definition set

Reformat of PL/M80 assembly listing

Calendar subroutine

Mathenatical

8080 Floating point with bed
conversion

Fast conversion: binary to bed

Floating point multiplication

Signed magnitude bcd addition

ASCII to EBCDIC Conversion

Calculator control programme for
Intellec 80

8080 Least squares quadratic fitting

Random number generator

Natural logarithm

Subroutines to find sin x and cos x

PL/M Histogram procedure and
random number generator

Fixed and floating point routines

Fixed point square root

8-bit psuedo random number generator

Binary to bcd subroutine

Fast floating point square root routine

Natural log routine

BCD Multiplication

Sin x, cos x routines

n-Byte binary multiplication and lead
zero blanking

Decimal multiply subroutine

Hex to decimal conversion routine

ASCII to hex check and conversion

Operating, testing and debugging

Binary punch/read routine

Tally R2050 high speed reader driver

Integrate Tally 2200 printer to an
Intellec 8/MOD 80

Symbol table list generator

8080 Debug programme

Memory check for static and dynamic
RAMs

CRC Table generator

CRC Calculator

Assembler oriented line printer handler

High-speed paper tape reader with
stepper motor control

Time sharing communications

Driver for very high-speed reader

CRC Generator

Octal debugging programme for
MCS-80

Operating system to replace Intel
monitor

Symbolic microcontroller assembly
language

Digital filter programme

16-bit CRC routine

Trace programme

Table look-up and build-up routine
for 8080

Reader test

RAM Diagnostic routine for 8080

Interrupt service routine

8080 Dis-assembler

8080 System loader

DISASM 8080 Dis-assembler

Transfer parameter addresses between
calling programme and subroutine

Elementary function package

Memory diagnostic programme

CRECH (CRC for IBM floppy disc)

Paper tape to mag cassette

| Command (loads hex into sequential
locations)

Compare object tape with memory

DEBUG (two PROM packages for
minimum 8080 systems)

TTY Reader/punch test

Centronics model 101 printer handler

TI ASR733 Terminal editor

TI Silent 700 to Mod 80 interface

BOOT (Bootstrap programme loader)

Routine to write/read blocks of data
on standard audio cassette recorder

IBM Selectric 731 output programme

Games

Blackjack Maze

NIM Game of life
The word game Numbers
Gambol Kalah
Mastermind

4-bit Library

Cross Assembler for PDP-8

Cross Assembler for NOV A computer
BNPF Tape Generator for PDP-8
MCS-4 Simulator for PDP-8
Chebyshev Approximation Package
Parity Checker/Generator

Parity Generator, ASCIHI Character
Code Conversion: ASCII to EBCDIC
Delay subroutines

Bit Manipulation Routine

Universal Logic Subroutines

8-bit Parity Check Annex

Binary to BCD Converter

Data Compare

Paper Tape Edit

D1/1

lnid Microcomputer Fair Seminar Suite D

Introduction to Microcomputers

THE COMMERCIAL ADVANTAGES

by Keith Chapple, Intel Corporation (UK) Ltd

The reasons why the microcomputer has so rapidly become successful are threefold:
1) They save money and time.

2) They can achieve a very high performance and result in equipment
that is versatile.

3) They have captured the imagination of engineers who, by and large,
enjoy working with them.

In this paper we will discuss point 1. Other papers adequately cover point 2.
Point 3 is evident from the correspondence we receive and the discussions we have
with our customers.

The microcomputer provides the means to replace randomly connected
logic gates and flip flops with a sequence of instructions that is stored in some
form of read only memory. Experience has shown that between 8 and 16 bits of
memory are the logical equivalent of an average gate. Since an average TTL i.c.
contains the equivalent of 10 gates, it takes between 80 and 160 bits of ROM to re-
place a TTL package.

ROMs are currently available with capacities of up to 16,384 bits; so
a single ROM of this size will replace between 100 and 200 packages. At the other
end of the spectrum, a 2,048 bit ROM will replace between 13 and 25 TTL packages.

It is not difficult to see that the package count in a microcomputer system
will be far lower than in an equivalent TTL system. Obviously, the microcomputer
system requires a cpu, I/0 ports etc. which require a few packages in addition to
the ROM, but overall the package count will be considerably less.

Fewer packages mean smaller circuit boards, smaller cabinets, fewer
cooling problems, fewer interconnections, fewer connectors, lower power con-
sumption, increased reliability and lower manufacturing cost. In addition, the
work load on support departments such as Q and A, goods inwards, etc. is much
reduced.

The overall reduction in manufacturing costs can be very substantial;
in fact customer estimates indicate savings in the electronic portions of equipment
ranging from 20 to 80%.

D1/2

The rapid acceptance of microcomputers and the large number of
applications which are currently using them in equipment have enabled us to
invest large sums of monéy in the development of new components, development
aids and software. This investment directly reduces the cost of developing
microcomputer based systems and can greatly shorten the time it takes to
actually get your system on the market.

Customers indicate that product development cycles have been re-
duced by between six and twelve months. At the start of a new project product
definition is often speeded up once the decision to use a microcomputer has been
taken because the incremental cost of adding additional features is usually small
and can be easily estimated. These additional features may, in themselves, be
quite major, but may only require a longer programme and perhaps an extra
ROM in the final product. By the same token, through software changes, a
single identical circuit board can be used as the basis for a whole range of pro-
ducts; each product having its own characteristics which may be very different
from others in the range.

In summary, the use of a microcomputer is likely to provide you with
the following advantages:

Simple, and less, hardware

One circuit board may be used for many different applications
Lower production costs

Increased reliability

Reduced power supply, cooling and cabinet requirements

Reduced work load on QA , board layout, incoming inspection and
other support requirements

Easy to make engineering changes

Easy to customize equipment

Easy to provide more facilities

Reduced development time

Reduced development costs

Fewer field failures (not so many components)
Fewer warranty problems

Increased profitability

. D2/1
Eﬁgu Microcomputer Fair Seminar Suite

8080A OVERVIEW
by Howard Kornstein, Intel Corporation (UK) Ltd

The 8080 is a complete family of components that enable powerful 8-bit microcom-
puters to be constructed. The family is supported by a comprehensive and
sophisticated set of hardware and software aids including the MDS and its peri-
pherals which are the subject of a separate paper. 8080 systems can also be
obtained ready-made for OEM applications (SBC-80/10) or in kit form (SDK-80)
for one-off use or for educational purposes. '

At the present time the 8080 component family comprises three 8080A
cpu's which offer a choice of operating speed and temperature range, a clock
generator, system controller, 12 peripheral i.cs (five of which are programmable) ,
8K EPROMs, 16K ROMs , 1K CMOS RAMs and 4K n-mos RAMs.

Software available for the 8080 includes a resident assembler and editor,
a variety of cross assemblers and editors, a cross compiler for the high-level
language PL/M and a disc operating system.

The 8080A itself is an 8-bit parallel central processor for use in general
purpose digital computer systems. It is made on a single chip using our n-channel
silicon gate n-mos process.

The 8080A contains six 8-bit general purpose working registers and an
accumulator. The six general purpose registers may be addressed individually or
in pairs providing both single and double precision operators. Arithmetic and
logical instructions set or reset four testable flags. A fifth flag provides decimal
arithmetic operation.

The 8080A has an external stack feature wherein any portion of memory
may be used as a last in/first out stack to store/retrieve the contents of the accu-
mulator, flags, programme counter and all of the six general purpose registers.
The sixteen-bit stack pointer controls the addressing of this external stack. This
stack gives the 8080A the ability to easily handle multiple level priority interrupts
by rapidly storing and restoring processor status. It also provides almost un-
limited subroutine nesting. '

This microcomputer has been designed to simplify systems design.
Separate 16-line address and 8-line bi-directional data busses are used to facilitate
easy interface to memory and 1/0. Signals to control the interface to memory and
1/0 are provided directly by the 8080A. Ultimate control of the address and data
busses resides with the HOLD signal. It provides the ability to suspend processor

D2/2

operation and force the address and data busses into a high impedance state. This
permits OR-tying these busses with other controlling devices for direct memory
access (DMA) or multi-processor operation.

A computer, no matter how sophisticated, can only do what it is "told"
to do. One "tells" the computer what to do via a series of coded instructions re-
ferred to as a Programme. The realm of the programmer is referred to as
Software, in contrast to the Hardware that comprises the actual computer equip-
ment. A computer's software refers to all of the programmes that have been
written for that computer.

When a computer is designed, the engineers provide the Central Proces-
sing Unit (CPU) with the ability to perform a particular set of operations. The
cpu is designed so that a specific operation is performed when the cpu control
logic decodes a pérticular instruction. Consequently, the operations that can be
performed by a cpu define the computer's Instruction Set.

Each computer instruction allows the programmer to initiate the per-
formance of a specific operation. All computers implement certain arithmetic
operations in their instruction set, such as an instruction to add the contents of
two registers. Often logical operations (e.g. OR the contents of two registers)
and register operate instructions (e.g. increment a register) are included in the
instruction set. A computer's instruction set will also have instructions that
move data between registers, between a register and memory, and between a
register and an I/0 device. Most instruction sets also provide Conditional
Instructions. A conditional instruction specifies an operation to be performed
only if certain conditions have been met; for example, jump to a particular in-
struction if the result of the last operation was zero. Conditional instructions
provide a programme with a decision-making capability.

By logically organizing a sequence of instructions into a coherent pro-
gramme, the programmer can "tell" the computer to perform a very specific and
useful function.

The computer, however, can only execute programmes whose instruc-
tions are in a binary coded form (i.e. a series of 1's and 0's) that is called
Machine Code. Because it would be extremely cumbersome to programme in
machine code, programming languages have been developed. There are pro-
grammes available which convert the programming language instructions into
machine code that can be interpreted by the processor.

One type of programming language is Assembly Language. A unique
assembly language mnemonic is assigned to each of the computer's instructions.
The programmer can write a programme (called the Source Programme) using
these mnemonics and certain operands. The source programme is then conver-
ted into machine instructions (called the Object Code). Each assembly language
instruction is converted into one machine code instruction (1 or more bytes) by
an Assembler programme. Assembly languages are usually machine dependent
(i.e. they are usually able to run on only one type of computer).

The 8080 instruction set includes five different types of instructions:

Data Transfer Group - move data between registers or between
memory and registers.

D2/3

Arithmetic Group - add, subtract, increment or decrement data in
registers or in memory.

Logical Group - AND, OR, EXCLUSIVE-OR, compare, rotate or
complement data in registers or in memory.

Branch Group - conditional and unconditional jump instructions,
subroutine call instructions and return instructions.

Stack, I/0 and Machine Control Group -includes 1/0 instructions, as
well as instructions for maintaining the stack and internal control
flags.

o7 Do
8080A CPU FUNCTIONAL a1 DreC S oNAL
BLOCK DIAGRAM DATA BUS
— DATA BUS
BUFFER/LATCH
88IT) . 88BIT)
INTERNAL DATA BUS INTERNAL DATA BUS
& _—
2 3 N rey 1 >
< . 4 <
ACCUMULATOR TEMP. REG INSTRUCTIO
L m] l u] REGISTER () MULTIPLEXER
4 " (Ll
w
> FL;II;AF?.o;ss' m H TEMP REG. TEMP REG.
ACCUMULATOR - - [[} [[
LATCH & 8 REG. REG.
N ARITHMETIC INSTRUCTION o D ® €W
A Locic 053"‘3“ b REG. REG.
UNIT MACHINE w TR T W] | REGISTER
aLw — CYCLE @ REG. REG. ARRAY
. ® ENCODING 2 e
N & STACK POINTER
‘ |
. PROGRAM COUNTER
{ INCREMENTER/DECREMENTER
ADJUST 1 ADDRESS LATCH 116)
/7
TIMING
AND
CONTROL |]
POWER { — +12V [ADDRESS BUFFER ""]
SUPPLIES | —= 45V DATA BUS INTERRUPT HOLD F— ODRESS
WRITE CONTROL CONTROL coumm CONTROL SYNC CLOCKS
— 5V
—wo |] Vol
WR DBIN INTE INT nom nomwmr SYNC 1 -2 RESET <Ay
Reaoy ADDRESS BUS
PIN CONFIGURATION BLOCK DIAGRAM

XTALY —
> OSCILLATOR »————-osc >
XTAL2 —]

ReseT [18 vee B> ranx —
Resin(] 2 8] xTALY ——D—-—O‘ >
ROYIN(]3 wf)xtaL2 cé‘%f" —'D__"
*
meaoy (14 8224 13 Tanx 620 ¢y Ao, (TTLI[E>
syne [s 12[Josc
s) 1l muld B> syNe— §T8T8 [7>
sTSTe ¢
. g L L B> mesw 5
ano[e o[Voo SCHMITT
INPUT ca RESET [>
> rovin o o Reaoy [©>
‘L_J

D2/4

Do =—b <+— DB,

Dy = <+—DB,

Dy =——p ‘ll.leN
CPU | p3 = <— DB, | System
Data < > Data
Bus | D4—> <*+—DB4 | pgys

D g ==—p < DBg

D¢ =—b <+ DBg

qu" Al.l_uw.c

Driver Control

INTEL 8228

MICROPROCESSOR
SYSTEM CONTROLLER

STSB
DBIN

WR
HLDA

MEM R
MEM W

D4/1

-
'“@ Microcomputer Fair Seminar Suite D

4040 OVERVIEW

The Intel 4040 is a complete 4-bit parallel central processing unit which has been
designed to be a replacement for random logic. The cpu can directly address 4K
eight-bit instruction words or 8K with a bank switch. Seven levels of subroutine
nesting, including interrupt, and 24 randomly accessible index registers (24 x 4)
are provided which may be used for addressing or for scratch pad memory for
storing computation results. The interrupt feature permits a programme sequence
to be interrupted, with normal programme execution continuing after the interrupt
service routine is completed. Provisions have also been made to permit single-
stepping the cpu using the 'Stop' and 'Acknowledge' signals.

The 4040 is an enhanced version of the 4004 and as such retains all the
functional capability of that device. It will execute all the 4004 instructions, and
is also electrically compatible with the other members of the MCS-4 family (4001,
4002, 4003).

4040 CPU BLOCK DIAGRAM

g BI-DIRECTIONAL
g DATA BUS

DATA BUS
BUFFER
BT (4811
INTERNAL DATA BUS l INTERNAL DATA BUS
c =
1) Ze) 4 A) Ity
> 4 Ly Ao 4
[Awunuuronl TEMP. REG. l INSTRUCTION STACK REGISTER
o 1w d REGISTER (1) MULTIPLEXER MPX
FLAG PROGRAM COUNTER o
FLIP-FLOPS frome—————
LEVEL NO. 1 2 3
INSTRUCTION
DJARITHMETI DECODER LEVEL NO.2 4 s
A Loaic AND [°
UNIT
MACHINE
(ALY) ____.J—‘ CYCLE E LEVEL NO.3 §] ?
ENCODING 2
N % LEVEL NO. 4 x| @ [}
. G LEVEL NO. & £l 10 n
e] LEVEL NO.6 12|
LEVEL NO.7 " ®
7 -
POWER ™ s "l B
IMING ADDRE -
SUPPLIES AND STACK §
2 3
. 10V SINGLE x
—o 8y | CARRY ROM RAM STEP - . s
OUT _ CONTROL _ CONTROL _ TEST CONTROL _ SYNC_CLOCKS §
Tl e 7
ey v S—r— qesv| |st0P STOP SYNC 01 62 R .
CMAOM CMRAM WK 1 02 RESEY SCAATCH
01 03 INTERRUPT

INT ACK

D4/2

4040 Pin Definition

Wwl]r ~ aPe
o[}z 23 [] cwaom,
D; (: 3 22 :] CM-ROM;
0[]« 2] voo,
steack [_]s 0[] cmnam,
s [040 w [] cmAam
wr [18] cmnam,
INT ACK [: 8 ” j CM-RAM3
Vss [:] 16 j SYNC
¢! E 10 15 :] Voo,
¢ [n 1]] voo
neser [z 3] rest
D O—D 3 Bidirectional Data Bus. All address and data communication between the
processor and the RAM and ROM chips occurs on these 4 lines.
STP: 'Stop' input. A logic "1" level on this input causes the processor to enter
the Stop mode.
STPA : 'Stop Acknowledge' output. This signal is present when the processor is in
the stopped state. Output is "open drain" requiring pull-down resistor to
VDD'
INT: 'Interrupt' input. A logic "1" level at this input causes the processor to
enter the Interrupt mode.
INTA: 'Interrupt Acknowledge' output. This signal acknowledges receipt of an

Interrupt signal and prevents additional Interrupts from entering the pro-
cessor. It remains active until cleared by the execution of the new 'Branch
Back' and SRC (BBS) instruction. The output is "open drain" requiring a

pull-down resistor to VDD'

RESET: 'Reset' input. A logic "1" level at this input clears all flag and status
registers and forces the programme counter to zero. To completely clear
all address and index registers, 'Reset' must be applied for 96 clock
cycles (12 machine cycles).

TEST: 'Test' input. The logical state of this signal may be tested with the JCN
instruction.

SYNC: 'Sync' output. Synchronization signal generated by the processor and sent
to ROM and RAM chips. It indicates the beginning of an instruction cycle.

CM-RAM0 - CM-RAM,: CM-RAM outputs. These are bank selection signals for
the 4002 RARI chips in the system.

CM—ROMO - CM-ROM_ : CM-ROM outputs. These are bank selection signals for
programme ROM chips in the system.

CY: 'Carry' output. The state of the carry flip-flop is present on this output

D4/3

and updated each X 1 time. Output is "open drain" requiring pull down resistor to

VDD L]

Instruction Set Format

Each instruction is divided into two 4-bit fields. The upper 4-bits are the OPR field
containing the operation code. The lower 4-bits are the OPA field containing the

modifier. For two word instructions, the second word contains address informa-
tion or data.

The upper 4-bits (OPR) will always be fetched before the lower 4-bits (OPA)

during M1 and Mz times respectively.

ONE WORD INSTRUCTIONS TWO WORD INSTRUCTIONS
15t INSTRUCTION CYCLE 2nd INSTRUCTION CYCLE ,
Dy D Oy D D; D; Dy Dg Dy D Dy Dy D3 D Dy Dg
RN nnnnonnn
Dy D, Dy Dg Dy D Dy Dy OPR OPA OPR OPA
Ll e Defe{xfx]+]
I OP CODE l MODIFIER J I 0P CODE l MODIFIER J
OFR orA
UPPER ADDRESS MIDOLE ADDRESS LOWER ADDRESS
oP CODE MODIFIER X [x x| x b AR Ay A A Ay Az Al A A Ay A
on T
INDEX REGISTER CONDITION MIDOLE ADDRESS LOWER ADORESS
lex]x]xln“?“sn Rl lexlxlxlc‘ Ca Cy Ca] r‘:‘r Ay Ay J A Ay A A
OR OR
INDEX REGISTER PAIR INDEX REGISTER MIDOLE I LOWER J
X x| xjx 2] Aogn!s% X X | X | X |*X]q “‘o"sosa A [*l Az Ay Az AL A A A

OR
DATA INDEX REGISTER PAIR UPPER DATA] LOWER DATA J
Clxfxlx0e o™ o] BRI RN R x| o 0 0 o]0 8 o o

Input/Output and RAM Instructions and Accumulator Group
Instructions

In these instructions (which are all single word) the OPR contains a 4-bit code which
identifies either the I/0 instruction or the accumulator group instruction and the OPA
contains a 4-bit code which identifies the operation to be performed. Table II illus-
trates the contents of each 4-bit field.

"Dy D, D D D D Dy D

lexoLxIx]xlxoLxlx]
wimevmre [T T To [o] <]+]
cemsrondrod [D [[x[x]+]

WHERE X = EITHER A “0” OR A “1",

D4/4

4269 INTERFACE TO DUAL 16 X 4 NUMERIC SCANNED DISPLAYS

INT -———ro

betr[Z)

SYNC ——»

CM-RAM ———

oS)

DE- 2% —
MULT!-
PLEXER \ —

4269 Ag-Asl 4)

DECODER

s Ol Colol (Ol
s P 0| |

RESET ——»{ ﬁ « ” « [« ”
omA”V o | A s | 2 S
s [T memmmM) L] YN IV LN
e o (L] AN U (H
TO SEGMENT - -
ANODES
4269 INTERFACE TO BURROUGHS CORP.
SELF SCAN 16, 18, AND 20 CHARACTER
AUTOMATIC DISPLAY REFRESH
INT <—
4269 .
1. 65 @ Vee Vee V&'
SYNC DATA INPUTS h h h DISPLAY
—_
>ﬂ |°§ wulo m v 00 [1XI1]) 900 00 00000 00000 0008 O []
LT AT ST s 0000030
CM-RAM ———> Az cock | | ilchleed SR 38T 1e/18POSITIONS
A > |
3 RESET — ——
RESET ———» h “ o
omAHv NG BLANK = 16DIGIT
18 DIGIT
OR
MCS-40
INTERFACE 20 DIGIT

	Fair76001
	Fair76002
	Fair76003
	Fair76004
	Fair76005
	Fair76006
	Fair76007
	Fair76008
	Fair76009
	Fair76010
	Fair76011
	Fair76012
	Fair76013
	Fair76014
	Fair76015
	Fair76016
	Fair76017
	Fair76018
	Fair76019
	Fair76020
	Fair76021
	Fair76022
	Fair76023
	Fair76024
	Fair76025
	Fair76026
	Fair76027
	Fair76028
	Fair76029
	Fair76030
	Fair76031
	Fair76032
	Fair76033
	Fair76034
	Fair76035
	Fair76036
	Fair76038
	Fair76039
	Fair76040
	Fair76041
	Fair76042
	Fair76043
	Fair76044
	Fair76045
	Fair76046
	Fair76047
	Fair76048
	Fair76049
	Fair76050
	Fair76051
	Fair76052
	Fair76053
	Fair76054
	Fair76055
	Fair76056
	Fair76057
	Fair76058
	Fair76059
	Fair76060
	Fair76061
	Fair76062
	Fair76063
	Fair76064
	Fair76065
	Fair76066
	Fair76067
	Fair76068
	Fair76069
	Fair76070
	Fair76071

