INTEL CORP. 3065 Bowers Avenue, Santa Clara, California 95051 -« (408) 246-7501

M-8

A Guide to |
PL/M Programming

PL/M is a new high level programming language designed specifically for Intel 's 8
bit microcomputers. The new language gives the microcomputer systems program-
mer the same advantages of high level language programming currently available in
the mini and large computer fields. Designed to meet the special needs of systems
programming, the new language will drastically cut microcomputer programming
time and costs without sacrifice of program efficiency. In addition, training, docu-
mentation, program maintenance and the inclusion of library subroutines will all be
made correspondingly easier. PL/M is well suited for all microcomputer program-
ming applications, retaining the control and efficiency of assembly language, while
greatly reducing programming effort The PL/M compiler is written in ANS/ stand-
ard Fortran 1V and thus will execute on most machines without alteration.

SEPTEMBER 1973
REV. 1

© Intel Corporation 1973

TABLE OF CONTENTS

Section Page
I INTRODUCTION TOPL/M [e 1
II1. A TUTORIAL APPROACHTOPL/M i i i 2
1. The Organization ofa PL/M Program 2

2. Basic Constituents of a PL/M Program 4

2.1. PL/M Character Set iiiiinene.. 4

2.2. Identifiers and Reserved Words 5

2.8. Comments i e e 7

3. PL/M Statement Organizationcc0iiuiieenn.. 7

4. PL/MDataElements0 00t iinnennennn 9

4.1. Variable Declarations 9

4.2. Byte and Double Byte Constants 10

5. Well-Formed Expressions and Assignments 11

6. ASimpleExample e 15

T DO-GroUPS .ot ii ettt it ettt et e e e e 16

7.1. The DO-WHILE Groupciiuiineuinnnnnnnns 16

7.2. The Iterative DO-Group0 i inirenon.. 17

7.3. The DO-CASE i et enan 18

8. Subscripted Variables and the INITIAL Attribute 19

8.1. Subscript Declarations and Value References 19

8.2. The INITIAL Attribute 21

9. ASortingProgram e 22

10. Procedure Definitions and Procedure Calls 23
10.1. Procedure Declarations 23

10.2. Procedure Calls0. i iininnnnn.. 26

11. Based Variablesttt i 28

12. LongConstantsotiiii ittt iiinnnn. 32

13. Scopeof Variables 35

14. Statement Labelsand GOTO’s iiiiiienn... 38
14.1. Label Namesttt 38

14.2. GO TO Statements0iiiiiiiiinannn.. 39

14.3. Scopeof Labels i, 40

15. Compile-Time Macro Processing 43

16. Predeclared Variables and Procedures 45
16.1. Condition Code Variablesc.c...... 45

16.2. The MEMORY Vector............... 46

16.3. The TIME Procedure iiiininnnnnn. 46

16.4. Type Transfer Functions 47

16.5. Bit Manipulation Procedures 47

16.6. I/OProcessingcou e eenenennnnnn 48

III1. THE FORMAL DEFINITIONOFPL/M i 49
IV, COMPILING AND DEBUGGING PL/M PROGRAMS 51
1. PLM1 Operating Procedures.cuiiiiinueennnnan.. 51

2. PLM2 Operating Procedures. 61

3. Program Check-Out 63

4. Implementation-Dependent Operating Procedures 80

V. PL/M RUN-TIME CONVENTIONS FOR THE 8008 CPU 88
1. Storage Allocation it 88

2. Subroutine Linkage Conventions u... 92

3. Use of Assembler Language Subroutines with PL/M 93

A GUIDE TO PL/M PROGRAMMING

I. INTRODUCIION TO PL/M.

PL/M is a programming 1language designed specifically
for the INTEL MCS-8 Microcomputer. The language 1is
structurally similar to PL/I (in particular, PL/M <closely
resembles XPL), with data types and primitive operations
which reflect the architecture of the MCS-8 CPU. Thus, the
systems designer can use PL/M to quickly and easily express
programs which execute on the MCS-8 CPU, with little or no
loss 1in execution efficiency when compared to assembly
langquage programming. In addition, programs written in PL/M
are somewhat self-documenting, are =easily altered and
maintained, and provide upward software compatibility in the
INTEL 8000 CPU series. That is, programs written in PL/M
for the 8008 CPU can be recompiled for the 8080 CPU with no
alteration of +the source progranm. In each case, the
resulting object code takes advantage of the particular

target CPU architecture.

The discussion of PL/M given here 1is in two main
sections. Section II provides a tutorial description of
PL/M; only a minimal amount of programming experience 1is
assumed, and the discussion is mainly expository. Section
III presents a more formal approach to PL/M, providing the
exact syntactic structure and corresponding actions of each
statement in PL/M. Section III is intended as "a reference
manual, but may 'be used as an introduction to PL/M by
readers‘who are familiar with block structured 1languages
similar tc PL/I or XPL.

The remaining sections provide system notes on the use
of PL/M, including compiler error messages, control toggles,
and execution controls and commands. Appendix A contains
sample PL/M programs; it may be useful for the reader to
refer occassionally to this appendix to find - instances of
the various statements as they are discussed in Sections II
and III.

IT. A TUTORIAL APPROACH TO PL/M.

As mentioned above, this section describes the PL/M
programming language from a tutorial viewpoint. The various
structures of PL/M are introduced at various levels of
complexity. Examples of each of the constructs are also
given. The overall structure of a PL/M program is given
first.

1. The Organization of a PL/M Progran.

A PL/H program is arranged as a sequence of

declarations and statements separated by semicolons. The

declarations allow the programmer to control allocation of
storage, define simple macros, and define procedures.
Procedures are subroutines which are invoked through certain
statements in PL/M. These procedures may contain further
declarations which «control storage allocation and define
nested procedures. The procedure definition capabilities of
PL/M allow modular programming; that is, a particuiar
program can be divided into a number of subtasks, such as
processing teletype input, converting from binary to decimal
forms, and printing output messages. Each of these subtasks
is written as a procedure in PL/M. These procedures are
conceptually simple, are easy to formulate and debug, are
easily incorporated into a large program, and form a basis
for library subroutine facilities when writing a number of

similar progranms.

In addition to the procedure declaration facilities,
PL/M allows a number of data types to be declared and used
‘in a program. The two basic data types are Byte and
Address. A Byte variable or constant is one which can be

represented in an eight-bit word, while an Address variable

or constant requires sixteen Dbits (double byte). The:
programmer can declare variable names in a PL/M program to

represent Byte and Address values. PL/M also allows the

vectors of Byte or Address variables to be declared.

A number of arithmetic, 1logical, and relational
operations are definred in PL/M on Byte and Address variables
and constants. These operators and values are combined to
form expressions which resemble elementary algebraic
expressions. The PL/M expression

X * (Y-3) /R
represents the calculation of the value of X times the
quantity ¥-3 divided by the value of R. When values in
expressions _are both Byte and Address type, PL/M

automatically converts the Byte value to an Address value.

Expressions are the major components of most PL/M
statements. A simple statement form is the PL/M assignment
statement which allows the programmer to compute a result
and store it in a 1location defined by a variable nanme.
Thus, the assignment

Q=X* (Y-3) /R
first causes the computation of the expression to the right
of the equal sign. The result of this computation is then
saved in the memory location represented by the variable

name Q.

Additional statements are provided in PL/M for
conditional tests and branching, iteration «control, and

procedure invocation with parameter passing.

Input and output statements in PL/M allow the
programmer to read the eight-bit value 1latched into a
particular MCS-8 input port, or set the value of an
eight-bit output port. Procedures can be defined which use

these basic input and output statements to perform more

complicated I/0 functions.

A compile-time macro processing facility is also
provided in PL/M. This facility allows the programmer to
define a name in the program to represent an arbitrary
sequénce of characters. Each time the name is encountered,
the corresponding character sequence is substituted into the

source progranm.

The section which follows provides a detailed
description of the format of a PL/M progranm.

2. Basic Constituents of a PL/M Program.

PL/M programs are written in free-form. That is, the
input lines are column independent and blanks can be freely
inserted between the -elements of the program. The only
requirement is that the declarations and statements are all
terminated with a semicolon. The characters recognized by
PL/M are given below. These characters can be combined to
form identifiers and reserved words.

2.1. PL/M Character Set. The character set recognized
by PL/M 1is a subset of both the ASCII and EBCDIC character
sets. The valid PL/M characters consist of the alphanumerics

0123456789
ABCDEFGHIJKLMDNOPQRS STUVWIXZY?Z
along with- the special characters
$ =/ () +- v x <>
all other characters are ignored by PL/M (a blank is

substituted for an unrecognized character).

Special characters and combinations of special
characters have particular meanings in a PL/M program, as
shown below. ' ”

Symbol Name Use

$ dollar compil

sign and id
= equal relati
:= assign imbedd
. dot addres
/ slash divisi
() parens list a
+ plus additi
- minus subtra
' apostrophe strin
* asterisk multip
< less relati
> greater "
<= less or "

egual
>= greater "

or equal

<> not equal "
colon label

semicolon declar

2.2. Identifiers
identifier is used to
procedure names, macro
Identifiers can be up to 3
character must be alphab
can be alphabetic or numer
ignored by PL/M, and can b

name. Thus, valid identif

Lo

Note, however, that
words in PL/M which cannot

er controls, number

entifier spacer

onal test and assignments

ed assignments

s indicator

on symbol and comment delimiter
nd subscript delimiter

on

ction

g delimiter

lication and comment delimiter

onal tests

delimi ter

ation and statement delimiter

and Reserved Words, A PL/M
represent names of variables,
names, and statement label names.
1 characters in length; the first
etic, and the remaining characters
ic. 1Imbedded dollar signs ($) are
e used to improve readability of a
iers are

X
GAMMA

NGIDENTIFIER
INPUT$COUNT

there are a number of reserved

be used as names in a PL/M

program. These reserved words are shown below
Reserved Word Use

IF conditional tests and branching
THEN

ELSE

DO statement grouping
PROCEDURE and procedure definition
END ‘
DECLARE data declarations

BYTE

ADDRESS

LABEL

INITIAL

DATA

LITERALLY

BASED

GO unconditional branching
TO and iteration control

BY

GOTOQO

CASE

WHILE

CALL subroutine call

RETURN subroutine return

HALT machine stop

OR logical or

AND logical and

XOR logical xor

NOT logical not

MOD remainder after division
PLUS add with carry

MINUS subtract with carry

EOF end-of-file

Blanks may be inserted freely around identifiers and
special characters. Blanks are not necessary, however, when
two identifiers are separated by a special character. Thus,
the expression

X * (Y-3) /R
is equivalent to
X* (Y-3)/R
in PL/M.

2.3. Comments. Explanatory remarks can be used
throughout a PL/M program to improve readability and provide
a measure of self-documentation. Comments are sequences of
symbols from the character set of PL/M bounded by the symbol
pairs /* and */. Thus, the sequence

/*¥THIS IS A COMMENT ABOUT COMMENTS*/
is completely ignored by the PL/M compiler, and has no
effect on the program. Comments may be freely interspersed

in a PL/M program, and may appear anywhere a blank is valid.

2 PL/M Statement Organization.

The statements found in PL/M programs are one of three

basic types: simple statements, conditional statements, and

groups.

An example of a simple statement is thg PL/M assignment
, A =B+ C * D;
Note that simple statements are always followed by a
semicolon. Other forms of simple statements are defined 1in
later sections.

Conditional statements are preceded by the reserved
word IF and contain one or more other statements as a part

of the statement body. A conditional statement could be
written in PL/M as

IF A > B THEN A = Bj
which assigns the value of B to the variable A only if A's

value is greater than B's value.

A more complicated conditional statement involves an
alternative, denoted by the reserved word ELSE. The
conditional

IF A > B THEN C = A; ELSE C = Bj;
assigns the larger of the two values A and B to the variable
C.
Statements can be <collected together in groups which are
delimited by the reserved words DO and END. These groups of
statements are then +treated as a single statement in the
flow of ccntrol. The group could, for example, become a
part of a conditional statement: *
IF A > B THEN
DO; A = B; B = C;
END;
which would perform the two assignments to A and B only if

A is greater then B.

Simple statements, conditional statements, and groups
can be labelled for control flow purposes. The label may be
a PL/M identifier, which precedes the statement, and is
separated from the statement by a colon (:). Thus,

LAB1: A = B + C * D;
is an example of a simple statement labelled by LABI1.

The exact details of the various simple, conditional,

and statement groups are discussed in following sections.

j; PL/M Data Elements.

PL/M data elements represent single bytes, double
bytes, and strings corresponding to 8-bit wvalues, 16-bit
values, and ASCII character strings of length greater than
two. Data elements can be either variables or constants.
Variables are PL/M identifiers corresponding to values which
can change during execution of a PL/M program, while
constants have a value which is fixed. The expression

X * (Y-3) /R
involves the variables X, Y, and R, and the constant 3.

Variables must declared in PL/M programs before they
are used in expressions. The declaration tells the PL/M
compiler how to handle expressions and assignments which

involve the variable.

4.1, Variable Declarations. A declaration for a
variable or set of variables is headed by the reserved word
DECLARE and followed by either a single identifier or a list
of identifiers enclosed in parenthesis, and terminated by
one of the data types BYTE or ADDRESS. Thus, valid PL/M
declarations are:

DECLARE X BYTE;
DECLARE (Q,R,S) BYTE;
DECLARE (U,V,W) ADDRESS;
Thus, expressions involving only the variables X, Q, R, and
S produce single byte operations, while expressions
involving U, V, or W would produce double byte operations

and results.

Additional facilities are present in PL/M for declaring
vectors, macros, and data 1lists. These facilities are

discussed in later sections.

4.2. Byte and Double Byte Constants. Constants
representing single and double byte values can be expressed
in several different ways in PL/M. First, PL/M accepts
constants in the binary, octal, decimal, and hexadecimal
bases. In addition, ASCII strings of length one or twc are
translated tc single and double byte constants.

In general, the base of a constant 1is represented by

one of the letters
B OQDH
following a sequence of digits. The letter B represents a
binary <constant, while the 1letters O and Q denote octal
constants. The letter D optionally follows decimal numbers.
Hexadecimal numbers consist of sequences of hexadecimal
digits (0,1, ... ,9,A,B,C,D,E,F) followed by the 1letter H.
Note that the leading digit of a hexadecimal number must be
a decimal digit to avoid confusion with a PL/M identifier (a
leading 0 is always sufficient). Any number not followed by
one of the letters B, O, Q, D, or H 1is assumed to be
decimal. The numbers must always be capable of
representation as a single or double byte value (a maximum
of 16 bits). Thus, the following are valid constants in
PL/M
2 33Q 110B 33FH 55D 55 OBF3H 65535

The dollar sign symbol may be freely inserted within
constants to improve readability. Thus, the binary constant
11110110011B
could be expressed as
111$1011$0011B

ASCII strings are represented by PL/M characters
enclosed within apostrophe symbols ('). Strings of length
one or two translate to byte and double byte values as
mentioned previously. Thus, the string

IAI

10

is the same as 65 decimal. A pair of apostrophes ('')
within a string results in a single apostrophe in the
internal representation of the string. Thus, the string
11191 hecomes a single apostrophe followed by the character

Q.

5. Well-Formed Expressions and Assignments.

PL/M expressions can now be more completely defined. A
well-formed expression consists of basic data elements
combined through the various arithmetic, 1logical, and
relational operators, in accordance with the usual algebraic
notation. Thus, an expression consists of a simple data
element, such as a number or variable, or an expression can
be two (sub) expressions separated by an operator:

expressionl operator expression2

Examples are
A+ B
A+ B ~-C
A*xX B+ C/ D ,
Operators in expressions have an assumed precedence which
determines the order in which the operations in the
expression are evaluated. The valid PL/M operators are
listed below from highest to lowest precedence. Orerators
listed on the same line are of equal precedence and are
evaluated from left-to-right when they occur in an
expression.
¥ / MOD
+ - PLUS MINUS
< K= <> = >= >
NOT
AND
OR XOR
The expression
A+ B * C

for example, results first in the computation of B times C

1

since the multiplication (*) has a higher precedence than
the addition (+). The result of this <computation 1is then
added to the value of A.

Parenthesis can be used to override the assumed
precedence Ly enclosing subexpressions which are to be
computed first. The expression

(A +B) *C
causes A + B to Dbe evaluated first. The result is then
multiplied by C's value. Following are a number of

well-formed PL/M expressions

A+ B-C*0D
A- (B+C) *0D
A/ (B+ C) *
A/ (B +C)
A OR B AND OFH
A+ B> C=-0D

Each expression results in either a single or double
byte value. The number of bytes in the result is determined
by the number of bytes required by the subexpressions in the
result. Generally, 1f both operands in an expression are
byte values, the result is a byte value. If either operand,
however, 1is a double byte, the result is a doukle byte
value. In this case, the shorter operand 1is padded with

high-order zeroes.

Two exceptions to these rules occur in PL/M. The first
is in the <case of the *, /, and MOD operations. These
operators always result in a double byte value. The second
exception is the case of relational operators. A relational
test results in either a true or false condition. A true
condition 1is represented in PL/M by a byte value equal to
255 (all bits are 1's), and a‘false condition is represented
by the byte value 0.

12

Suppose the variables X, Y, and Z have been declared as
follows:
DECLARE X BYTE ;
DECLARE (Y,Z) ADDRESS;
given these declarations, the expressions below yield
results with the precision shown +to the right c¢f the
expression:
X + 5 single byte result
X + 300 double byte result
X + Y double byte result
Y + Z double byte result
X / 5 double byte result
X+ (Y> Z) single byte result

The NOT operator is a unary operator, and thus PL/m
expressions involving NCT take the form
NOT expression
The effect of the NOT operator is that all the bits of the
expression are inverted (1,s become O0's, and O0's becone
1's). In particular, true <conditions <change to false
‘conditions, and false conditions revert to true. Examples
of the use of the NOT operator are
NOT A
NOT (& > B)
NOT A OR B

For convenience, a unary minus sign is also allowed in

PL/¥ expressions. The form of the wunary minus ih an
expression is

- expression
The effect is exactly the same as the expression

0 - expression
where the "-% in this last case is the subtract operator.
The expression -1, for example, 1is egquivalent to 0-1,

resulting in the byte value 255.

13

Recall +that the assignment statement is used to store
the result of an expression into a variable. The declared
precision of the assigned variable affects the resulting
store operation. If the assigned variable is a single byte
variable, and the expression is a double byte result, the
high order byte is omitted in the store. Similarly, if the
expression yields a single byte result, and the receiving
variable is declared as type ADDRESS, the high order byte is

set to zero.

It is often convenient to assign the same expression to
several variables. This is accomplished in PL/M by listing
all the variables to the left of the equal sign, separated
by conmnas. The variables A, B, and C could all be set to
the expression X + Y with the single assignment

A, B, C=X + Y

A special form of the assignment is allowed within

expressions in PL/M. The form of an imbedded assignment is

and may appear anywhere an expression is allowed in PL/M.
The expression to the right of the assign symbol (:=) 1is
evaluated and then stored into the variable on the left.
The value of the imbedded assignment is the same as the
expression on the right. The expression
A+ (B:=C+D) - (E::=TF /G)
results in exactly the same value as
A+ (C+D) - (F/G)

except that the intermediaté results C+D and F/C are stored
into B and E, respectively. These intermediate computations
can then be used at a later point in the program without

recomputation.
Note that the form

A= (Bz:= (C:=X+17Y))
has exactly the same effect as the multiple assignment to A,

14

B, and C given previously.
It is now possible to construct a simple program based
upon these expressions and assignments.

6. A Simrle Example.

The following PL/M sample program reads data from input
ports 0 and 1, and writes the larger of these two values at
output port 0. ©Note that the twe pseudo-variables INPUT(0),
and INPUT(1) act like PL/M single byte variables, but have
the effect of reading the values latched into input ports 0
and 1, respectively. Similarly, the pseudo-variable
OUTPUT{0) can be used in an assignment statement in order to

write values to output port 0.

The complete PL/M program for performing this simple
function is shown below

DECLARE (I,J,MAX) BYTE;

/* READ INPUT PORT O AND SAVE IN VARIABLE I */

100E:
I = INPUT(O);

/* NOW READ INPUT PORT 1 AND SAVE IN VARIABLE J */
J = INPUT(1);

/* SET MAX TO THE LARGER OF THESE TWO VALUES */
IF I > J THEN MAX = I; ELSE MAX = J;

/¥ WRITE THE VALUE OF MAX AT OUTPUT PORT 0 */
OUTPUT (0) = MAX; '

/¥ GO BACK AND READ THE INPUT PORTS AGAIN */

GO TO LOOP;

EOF

The symbol EOF (end-of-file) 1is required in PL/M to
indicate the end of the program. Note also that the GO TO
statement causes program control to restart at the point

labelled 'LOOP:' where input values are read again.

15

In crder to effectively construct more comprehensive
PL/M programs, it is necessary to consider the structure of

PL/M statement groups, including the locp control groups.

1. DO Groups.

As mentioned previously, statements can be grouped
together within the bracketing reserved words DO and END as
a DO-group. Recall that the simplest DO-group is of the
form

DO;
statement-1;

statement-2;

s
. L3 -

statement-n;
END;
Several additional ~DO-groups are defined in PL/M which

control program flow. These groups are shown below.

7.1. The DO-WHILE Group. One form of the DO-group is
called a DO-WHILE. The DO-WHILE has the form
' DO WHILE expression;
statement-1;
statement-2;
statement-n;
END;
In this case, the expression following the reserved word
WHILE is evaluated before the statements within the group
are executed. If the expression evaluates to true (i.e.,
the rightmost bit of the result is 1), the statements up to
the <corresponding END are executed. At the end of the
group, program control is transferred to the top of the
DO-group and the expression is evaluated again. The group

is executed over and over until the expression results in a

16

false condition (the rightmost bit is 0). Consider the

following example:

A = 1;
DO WHILE A <= 3;
A=A+ 1;
END;
The statement A = A + 1 will be executed exactly three

times. The value of A at the end of execution of the group

is four.

7.2. The Iterative DO-group. An Iterative DO-group
allows a group of statements to be executed a fixed number
of times. The simplest form of the Iterative DO-group is

DO variable = expressionl TO expression2;
statement-1;
statement-2;
statement-n;
END;
The effect of this group is to first store expressicnl into
the variakle following the DO. The group is executed with
this initial value once, and control returns to the top of
the DO. The value of the variable is incremented by 1 and
tested against’' expression2. If the incremented value
exceeds expression2, contrcl transfers to the statement
folloiing the END; otherwise, the group is executed once
again. An example is
DO I =1 TO 10;
A = A + I;
END;
Note that this DO-group has exactly the same effect as the
following DO-WHILE:
I=1;
DO WHILE I <= 10;
A=A + I;
I=1I+ 1;

17

END;

A slightly more complicated form of an Iterative
DO-group allows a stepping value other than 1. This second
form is

DO variable = expr1 TO expr2 BY expr3;
statement-1;
statement-2;
statement-n;
END;
In this case, the variable following the DO is stepped” by
the value expr3 instead of by 1.

7.3. ThexDO—CASE. Another form of the DO-group is the

DO-CASE statement. The form of a DO-CASE group is

DO CASE expression;

statement-1;

statement-2;

statement-n;

END;
The effect of this group is the following. Upon entry to
the DO-CASE, the expression following the CASE is evaluated.
The result of this expression is a value k which must be
between 0 and n-1. This value k is used to select one of
the n statements of the DO-CASE to execute. The first case
corresponds to k = 0 (statement-1), the second case
corresponds to k = 1 (statement-2), and so-forth. Control
transfers to the selected statement, the statement is
executed, and control then passes to the statement following
the END. |

An example of the DO-CASE is:

DO CASE X - 5;
X=X+5; /% CASE 0 */

18

DO; /* CASE 1 */
X=X+ 10; Y = X - 3;
END;
/¥ CASE 2 */
DOI =3 TO 10; A = A + I;
END;

END /* OF CASES */ ;

Before giving more comprehensive examples, it is useful
to define the notion of a subscripted variable and its use
in a PL/M program.

8. Subscripted Variables and the INITIAL Attribute.

It is often wuseful in PL/M to —reference nmemory
locations with an "offset" from some base address. This

feature is allowed in PL/M through subscripting.

8.1. Subscript Declarations and Value References. A
subscripted variable is similar to a simple variable with
the addition of an expression enclosed within parentheses
following the variable name. The location referenced by the
subscripted variable is the sum of the base address of the
variable and the subscript expression. Any variable name
can be subscripted in PL/M.

Suppose a PL/M programmer declares the variables X, Y,
and Z as follows

' DECLARE (X,Y,2) BYTE;
The first memory location can be referenced simply as X or
as the subscripted variable X (0) . Similarly, X (1) refers to
the location Y, and X (2) references Z's location.

PL/M also allows a fixed number of locations to be set

aside in the declaration statement. These fixed locations
start at the variable name specified in the declare

19

statement. For example, the statement

DECLARE X (100) BYTE;
provides a memory area of 100 bytes starting at X. In this
case, X is called a vector. Note that the size of a vector

must always be a constant.

Several vectors of the same length can be declared in

the same declare statement. The statement
DECLARE (U,V,W) (50) ADDRESS;

causes three vectors of length 50 (each) to be allocated in
contiquous memory 1locations. Note, however, that these
vectors are of type ADDRESS, and thus each element regquires
two bytes; hence, U takes up the first 50 two-byte
locations, requiring 100 bytes altogether. The storage for
the second vector starts at V and requires the next 100
bytes. Similarly, W occupies the 100 byte area following V.

As mentioned previously, a subscript can be thought of
as a displacement from a base address. This displacement,
however, is affected by the declared ©precision of the
variable. That is, if the declared precision is BYTE, then
the displacement is measured in single bytes. TIf, however,
the variable is type ADDRESS, the displacement is measured
in doukle bytes. Thus, given the declaration of U, V, and W
above, the first element of U is U(0), and the last element
is U(49). The first element of V is V(0), or U(50).
Storage is always arranged so that double byte variables are
at memory addresses which are even numbers; hence, there is
sometimes one extra word allocated between contigous byte

and double byte variables.

Before continuing, it should be noted that the
subscripts <can be complicated expressions, and not
necessarily Jjust the simple constants shown above. Note
also that subscripted variables <can occur everywhere a

simple variable 1is allowed, including expressions and

20

assignments. A single exception to this rule is that a
subscripted variable cannot be used as the indexing variable

in an Iterative DO group.

Two built in functions are provided in PL/M which are
based upon the declared size of a vector. These functions
take the forms

LENGTH (identifier) and LAST(identifier)
where the identitifers correspond to variables declared
previously. These forms can appear anywhere an expression
is allowed in PL/M, and result in the declared 1length and
last element number of the specified variable, respectively.
The following program, for example, uses the LAST function
to set all the elements of a vector v to the constant 5.
DECLARE V (100) BYTE;
DECLARE I BYTE;
DO I = 0 TO LAST (V) ;
V(I) = 5;
END;
EOF

8.2. The INITIAL Attribute. The values of variables
can be initialized in a declaration statement using the
INITIAL attribute. This attribute takes the form

INITIAL (constant-1,constant-2,...,constant-n);
and must directly follow the type (BYTE or ADDRESS) in the

declare statement.

The purpose of the INITIAL attribute is to preset the
values of memory locations starting at the location named in
the declarations. The constants given in the INITIAL
attribute are placed into memory before the program starts
(these constants become a part of the object code and must
be loaded into random-access memory). The following are
valid variable declarations which use the INITIAL attribute.

DECLARE X BYTE INITIAL(10);

21

DECLARE Y(10) BYTE INITIAL (1,2,3,4,5,6,7,8,9,10);
DECLARE Z (100) BYTE INITIAL
('SHORT','STRING',OFH,33)#

DECLARE U (100) ADDRESS INITIAL (3,4,333Q);
DECLARE (Q,R,S) BYTE INITIAL(O0,1,2);

Note that the number of bytes required to hold the
constants given in the INITIAL attribute need not correspond
to the length declared for the variable. The constants are
placed into memory without truncation starting at the first

byte allocated in the declare statement.

The wuse of subscripted variables 1is shown 1in the
example which follows.

9. A Sorting Progranm.

It is now possible to <construct a more comnrlicated
program, given the expressions, DO-groups, and subscripted
variables which have been presented. In the program which
follows, a vector A is initialized to a set of constants in
unsorted order. The program below sorts the values of A
into ascending order.

/% FIRST DECLARE A VECTOR TO HOLD THE
VALUES TO SORT.
ASSUME THERE ARE NO MORE THAN 10 ELEMENTS TO BE
SORTED. EACH ELEMENT IS BETWEEN O AND 65535 */
DECLARE A(10) ADDRESS INITIAL
(33,10,2000,400,410,3,3,33,500,1999);
/* START THE 'BUBBLE SORT' AT THIS POINT
EXAMINE ADJACENT ELEMENTS OF 'A' AND SWITCH INTO
ASCENDING SEQUENCE. - RECYCLE UNTIL NO MORE
SWITCHING OCCURS */)
DECLARE (I,SWITCHED) BYTE,
TEMP ADDRESS;

SWITCHED = 1;

DO WHILE SWITCHED; SWITCHED = 0;

/%¥ GO THROUGH 'A' ONCE AND LOOK FOR A PAIR
WHICH NEEDS TO BE REVERSED */
DO I =0 TO 8;
IF A(I) > A(I+1) THEN
DO; SWITCHED = 1;
TEMP = A(I); A(I) = A(I+1);
A(I+1) = TEMP;
END;
END;
END;
/% THE VALUES IN 'A' ARE NOW IN ASCENDING ORDER */
EOF

[Y
les

Procedure Definitions and Procedure Calls.

The procedyre .cdpabilities of PL/M are discussed in
this section. A proce&ure, or subroutine, is a section of
PL/M source code which 1is declared, but not executed
immediately. 1Instead, the procedure is called from various
parts of the progranm. The call amounts to a transfer of
program ccntrol from the calling point to the procedure.
The procedure executes, and, upon completicn, returmns to the

statement following the call.

The use of procedures in PL/M allows construction of
modular programs, allows construction and use of subroutine
libraries, eases programming and documentation, and reduces
generated code when similar program segments are used at

several points in the progranm.

Procedures are described in two parts: how to define

them, and how to use them.
10.1. Procedure Declarations. A procedure declaration

consists of four main parts: the procedure nanme,
specification of values which are sent to the procedure, the

23

type of the returned value (i.e., BYTE, ADDRESS, or no
returned value), and the description of the actions of the
procedure, called the procedure body. The procedure may be
invoked anywhere in the program after it is declaread. The
form of a procedure declaration is
procedure-name: PROCEDURE argument-list procedure-type;
statement-1;
statement-2;
sStatement-n;

END procedure-name;

The procedure-name is any valid PL/M identifier, and is
used to name the procedure so that it can be called at a

later point in the program.

The argument-list takes the form
(argument-1,argument-2,...,argument-n)
where argument-1 through argument-n are valid PL/M

identifiers. These identifiers are called formal parameters

and are used to hold particular values which are sent to the
procedure from the point of invocation. Each of these
parameters must also appear 1in a declarations statement
within the procedure body (before the corresponding END).
Note that the argument-list can be omitted altogether if no

parameters are passed to the procedure.

The procedure-type is either BYTE, ADDRESS, or «can be
omitted 1if the procedure does not return a value to the
calling point. The procedure-type defines the precisicn of
the value returned so that proper type conversion takes
place when the procedure is invoked as a part of an

expression.

The execution of a procedure 1is terminated with a
RETURN statement in the procedure body. The RETURN

24

statement takes the form
RETURN;
or
RETURN expression;

The first form is used if the procedure-type is omitted (no
value is returned to the calling point). The second form is
used if the procedure-type is BYTE or ADDRESS. The
expression following the RETURN is brought back to the
calling point in this case.

The statements within the procedure body can be any
valid PL/M statements, including nested procedure
definitions and invocations.. A number of valid PL/M
procedure declarations are iisted below.

NULL: PROCEDURE;
RETURN;
END NULL;

SUM: PROCEDURE (X,Y) ;
DECLARE (X,Y) ADDRESS:
/% ASSUME U IS PREVIGUSLY DECLARED */
U= X+ Y,
RETURN;
ZND SUM;

ZERO: PROCEDURE BYTE;
RETURN O
END ZERO;

IDENTITY: PROCEDURE (X) ADDRESS;
DECLARE X ADDRESS;

RETURN X;
END IDENTITY;

PLUSXY: PROCEDURE (X,Y) BYTE;
DECLARE (I,X,Y) BYTE;
I=X-1Y;

RETURN X + Y;
END PLUSXY;

25

10.2. Procedure Calls. Procedures can be invoked
anywhere after their declaration. There are two pocssible
forms of the call, depending upon whether the procedure-type
is present or omitted in the procedure declaration.

If the procedure-type 1is omitted, then the procedure
does not return a value to the point of invocation. 1In this
case, the form of the call is

CALL procedure-name argument-list ,
where the procedure-name and argument-list correspond to
those defined above. The effect in PL/M is to assign the
actual values in the argument-list at the <call to the
identifiers given in the argument-list in the procedure
declaration. The elements of the argument-1list in the call

are called actual parameters, and are not restricted to

simple PL/m identifiers. In fact, any valid PL/M expression
can be ©placed in the argument-list. These expressicns are
all evaluated in the actual parameter list before they are
assigned to the <corresponding identifiers in the formal
parameter list. If the procedure is declared with an empty
formal parameter list then the actual parameter list is also
omitted. Control is then transferred to the beginning of

the procedure named by the procedure-nanme.

Thus, given the ©procedure definitions above, the

following are all valid procedure calls

CALL NULL;

CALL SUM (5,3);

CALL SUM(Q,R + 2);
In the last case, for example, the value of Q 1is first
placed into X in the procedure SUM. The value of R + Z is
then computed and stored into the formal parameter Y.
Control then passes to the procedure SUM where the variable
U is set to the sum of these two values (it is assumed that
U has been declared ahead of the procedure SUM). Note that
automatic type conversion occurs between BYTE and ADDRESS

26

values when the actual parameters are assigned to the formal
parameters. .

The second form of a procedure call occurs when the
procedure is declared with a procedure-type of BYTE or
ADDRESS. In this <case, the procedure call results in a
value which can be used in an expression. The form of the
call is

procedure-name argument-list;

and may appear anywhere a PL/M expression is allowed. The
following calls demonstrate a number of valid PL/M procedure
invocations '

I = IDENT ITY(I);
X = PLUSXY(X,Y) ;
X = Q-PLUSXY (X+Y,Q)/ (X-Y);
DO I=PLUSXY (Q,R) TO PLUSKY(Z+R,Q)+10; END;

As an exahple- of a procedure declaration and call,
consider the sorting program given earlier. The segment of
the program which performs the sorf can ke redefined as a
procedure. Assume the procedure has a single formal
parameter which gives the upper bound of the sort loop. The
value returned by the procedure is the number of switches
required to sort the vector. ‘

DECLARE A (10) ADDRESS INITIAL
(33,10,2000,400,410,3,3,33,500,1999) ;
SORT: PROCEDURE (N) ADDRESS;
/¥ SCRT THE VECTOR AT 'A' OF LENGTH
N + 2. RETURN THE NUMBER OF SWITCHES
REQUIRED TO PERFORM THE SORT */
DECLARE (N,I,SWITCHED) BYTE,
(T1,T2,COUNT) ADDRESS;
SWITCHED = 1; COUNT = 0;
DO WHILE EWITCHED; SWITCHED=0;
DO I = 0 TO N;
71 A(I); T2=A(I+1);

27

IF T1 > T2 THEN
DO; A(I+1) = T1;
A(I) = T2; SWITCHED = 1
COUNT = COUNT + 1;
END;
END;
END;
RETURN COUNT;
END SORT;
/% THE SORT PROCEDURE IS DECLARED ABOVE.
CALL SORT WITH N -2 = 10 - 2 = 8 */
DECLARE NSWITCHES ADDRESS;
NSWITCHES = SORT (8) ;
EOF

.o

The program shown above illustrates a difficulty in
parameter passing which has not yet been considered. 1In
particular, the SORT procedure would be much more useful as
a library subroutine if several different vectors coculd be
processed by the same subroutine. As shown, the SORT

procedure 1is only capable of sorting the particular vector
A.

The next section introduces the notion of Dbased

variables which overcome this difficulty.

11. Based Variables.

Based variable features of PL/M allow computation of

variable addresses during execution of a program. A based
variable is similar to the variables discussed previously,
except that no storage 1is allocated for the variable.
Instead, corresponding to each based variable is an address
variable, <called the base, which determines the memory

address for the based variable during execution.

28

Based variables are declared using the BASED attribute
which specifies the base. The form of the BASED attribute
is

BASED identifier
where the identifier is a previously declared ALDRESS
variable name. The BASED attribute must immediately follow
the name c¢f the based variable in the declaration statement.
The following are examples of PL/M Dbased variable
declarations
DECLARE X BASED A BYTE;
DECLARE (X BASED XA, Y BASED YA) ADDRE‘SS;
DECLARE (Q BASED QA) (100) BYTE;

In the first case, a byte variable called X is declared.
The declaration implies that X will be found at the location
given by the address variable A (which must be declared as
an ADDRESS variable elsewhere).

The second declaration above defines two Dbased
variables X and Y both of type ADDRESS which are located at
XA and YA, respectively.

The third declaration defines a vector based variable
called Q based at QA. VNote that the vector size need not be
stated, however, since no storage is allocated to Q by the
PL/M compiler. The only use for the vector size is to
provide values <for the LENGTH(Q) and LAST(Q) built-in

functions described previously.

In order to make effective use of based variables, it
is necessary to allow programmatic reference to the assigned
address of a non-based variable. The memory lccation
assigned to a variable 1is designated by preceding the
variable name with a dot symbol (.). Thus, the expressions

.A and .A(5)
yield the address of A and the address of A(5),

respectively. If A is a BYTE variable, the value of .A+5 is

the same as .A(5). Similarly, if A is of type ADDRESS, then
.A+10 is the same as .A(5). The address reference to a
based variable is allow and results simply in the value of
the base.

An address reference using the dot symbol can be used
anywhere an expression is valid in PL/M.

As an 1illustration of the use of based variables,
consider the following loop which initializes the elements
of a vector to their respective element numbers

DECLARE A (100) ADDRESS;
CECLARE I BYTE;
DO I = 0 TO LAST (A) ;

A(I) = I;
END;
EOF
This same function can be performed (rather

inefficiently) with the following loop using based variables
DECLARE A(100) ADDRESS,

QA ADDRESS, Q BASED QA ADDRESS;

/¥ SET QA TO THE BASE ADDRESS OF A%/

QA = .A;

DECLARE I BYTE;
DO I = 0 TO 99;
Q = I; QA = QA + 23

Note that QA starts at the base of A and moves up by
two bytes on each iteration since each element of A occupies

two bytes.

Based, variables are, most commonly found in procedure
parameter passing. It is often necessary to return more

30

than one value from a procedure. In this case, the address
- of an actual ‘parameter can be passed' to the procedure
"instead of the value of the actual parameter. The
corresponding formal parameter is declared within the called
procedute as an address variable. This formal parameter is
 then used as a base for a based variable whithin the

procedure. Any changes to the based variable then alter the
“correspohding'actual parameter.

In the case of the SORT procedure, for example, the
_address of a vector to be sorted can be sent as an actual
paramétér} The SORT procedure then operates upon a locally
defined based variable. The revised SORT procedure is shown
below | | |
SGRT: PROCEDURE (Q,N) ADDRESS;
DECLARE (N,I,SWITCHED) BYTE,
(Q,T1,T2,COUNT) ADDRESS;
" /% AND THEN SET UP THE BASED
VARIABLE TO SORT */
DECLARE A BASED Q ADDRESS;
SWITCHED = 1; COUNT = 0;
DO?WHILE SWITCHED; SWITCHED=0;
DO I = 0 TO N;
T1 = A(I); T2=A(I+1);
IF T1 > T2 THEN
" DO; A(I+1) = T1;
A(I) = T2; SWITCHED = 1;
COUNT = COUNT + 1;
END; END;END;
RETURN COUNT;
END SORT;
DECLARE B (10) ADDRESS INITIAL
(33,10,2000,400,410,3,3,33,500,1999) ;
CECLARE C(5) ADDRESS
INITIAL(*A',32,0FFFH,22Q,2D) ;
/¥ NOW'SORT THE VECTORS B AND C */

31

DECLARE (N1,N2) ADDRESS;

N1 = SORT (.B,LAST(B)-1);
N2 = SORT (.C,LENGTH(C)=2);
EOF

The SORT procedure has two formal parameters Q and N.
Q is an ADDRESS variable which gives the base address of the
vector to be sorted. The parameter N gives the upper bound
in the sort 1loop, as before. The variable A is declared
inside SORT as an ADDRESS variable based at Q. Thus,
references to A 1inside 'SORT are actually references to
memory locations starting at the value of Q.

The SORT procedure is called twice. First, the vector
B is sorted bty sending the base address of B. The second
call sorts C by passing the base address of C as the first
actual parameter.

The section which follows introduces the concept of a
long constant. These long constants allow manipulation of

data which exceed two bytes in length.

[=y
o

Long Constants.

Recall that PL/M allows direct representaticn of
numeric and string constants which require a single or
double byte internal representation. It is often useful,
however, to manipulate constants of indefinite length. This
facility 1is provided in PL/M through the wuse of long
constants.

A PL/M 1long constant 1is a set of contiguous memory
locations represented by the address of the first byte. The
memory locations for long constants are allocated in the
same area as the program storage, and are initialized to the

string and numeric values specified in the constant (program

32

steps and long constants are normally a part of the Read
Only Memcry portion of storage, and thus cannot be aitered
during execution). The first form of a 1long constant is
simply
. constant
where the constant is a string or numeric value. The result
of this vexpression is an address value providing °the
location of the constant. The second form allows several
constants to be gathered together and based at the same
address. This form is
. (constant-1,constant-2,...,constant-n)

Again, the result of this expression is an address value

giving the starting position of the constan'ts in memory.

Valid PL/M long constants are
. 335
- tTHIS(IS A LONG CONSTANT STRING'
. ("THREE', 'STRING','CONSTANTS')
e« (3,'CONSTANTS',O0FFE2H)
These long constants can appear anywhere a PL/M expression

is allowed.

Another form of a long constant allows the constant to
be named and accessed as a subscripted variable. This
second form is a particular case of the declare statement
called a LDATA declaration. The form is

DECLARE identifier DATA (constant-1,...,constant-n);
The following are valid PL/M DATA declarations

DECLARE X DATA ('LONG STRING?') ;
DECLARE Y DATA (0,1,2,3,'STRING',4) ;
These two declarations have an effect similar to INITIAL
declarations except that new values cannot generally be
assigned to the elements of X and Y. In addition, there is
an automatic vector size assigned to elements declared in a
DATA declaration which is the number of bytes required to
hold the constants listed in the DATA attribute. In the

33

above case, both X and Y are treated as BYTE variables with
vector size 11. As a result, the LENGTH and LAST built-in
procedures can be applied to DATA variables to determine the

length of the constant string.

Given the above DATA declaration, the expressions below
evaluate to the result shown on the right

X(0) = 'Lt
X(10) = G
Y(3) = 3

LENGTH(Y) = 11

As an example, consider the following PL/M procedure,
called EQUAL, which compares two 1long constants for
equality. EQUAL has two formal parameters which give the
base addresses of two.long constants. The last byte of each
constant is 0ffh. EQUAL returns a 1 if the constants match,
and 0 if not.

EQUAL: PROCEDURE (AS1,AS2) BYTE;
DECLARE (AS1,AS2,I) ADDRESS,
(S1 BASED AS1, S2 BASED AS2) BYTE,
(J1,J2) BYTE;
/* COMPARE UNTIL A MISMATCH OR OFFH
IS FOUND IN BOTH STRINGS */
Ji, J2, 1 = 0;
DO WHILE J1 = J2;
IF J1 = OFFH THEN RETURN 1;
J1 = S1(I); J2 = S2(1);
I =1I+1;
END;
RETURN O0;
END EQUAL;

Assume that the following declarations occur in the
progranm
DECLARE X DATA ('WALLAWALLAWASH',OFFH) ;

DECLAKE Y DATA ('WALLAWASH',OFFH);
The EQUAL procedure can be called by
I = EQUAL(.X,. (*WALLAWALLAWASH',O0FFH)) ;
As a result, I is set to 1. The value of I in the case
I = EQUAL (.X,.Y)

is zero since the strings X and Y differ.

As a final <comment, one should note that the
fundamental difference between DATA variablies and BYTE
variables with the INITIAL attribute is in the allocation
of storage. DATA variables are stored in the same area as
program code, as mentioned previously, and cannot generally
be altered through a PL/M assignment. BYTE variables, on
the other hand, are allocated in alterable program stcrage.
The INITIAL attribute provides data which is preloaded into
these locations before the program executes (and hence is
volatile storage). In this case, these initial values can
always be changed with assignment statements during

execution. -

13. Scope of Variables.

An important concept in any block-structured language,
such as PL/M, is the notion of variable scope. The scope of
a variable din PL/M is .the range of stat¢ments where the
variablie can be used in expressions and assignments. The
scope of variables 1is controlled by the arrangement of
DO-groups and DECLARE statements. A variable 1is available
for use only within the DO-END statements in which the
DECLARE statement for the variable occurs. This range is

called the scope of the declared variable.

Consider the following PL/M program, for example:
1 DECLARE (A,B,C,D) BYTE;

2 B,C = 10;

3 A =B+ C;

35

4 DO;

5 DECLARE (Q,R,S) BYTE;
€ Q, R = 20;

7 S= A+ Q + R;

8 END;

9 D=2+ A;

10 EOF

The
and D which can

declaration on line 1 defines
be
lines
R,

C,

DO-group between

used
4
three variables Q, and S which are
the that although A4,

anywhere in the program, the variables Q,

throughout

grourp; is,

four

variables A, B,

the progran. The

and 8 contains a declaration of
defined
B, C,

only within
and D can be used

R, and S cannot be

referenced outside the range of statements beginning on line

4 and ending on line 8.
R, and S.

A more complicated structure is given by the

skeletal PL/M progranm

DECLARE (A,B,C,D) BYTE; /* BLOCK
DO; /* BLOCK 2 %/
DECLARE (A,E,F,G) BYTE;

DO; /* BLOCK 3 */
DECLARE (B,H,I,J) BYTE;
END;/* OF BLOCK 3 */

END; /* OF BLOCK 2 */

DO; /* BLOCK 4 %/
DECLARE (A,E,K,L) BYTE;

END; /% OF BLOCK 4 %/

36

These lines delimit the scope of Q,

following

1 *x/

/% BLOCK 1 IS COMPLETED %*/
EOF

The declaration of A, B, C, and D at the top of block 1
makes these variables global to ary nested inner blocks in

the program. That is, they can be referenced anywhere in
the program where there is no conflicting declaration.

The variables A, E, F, and G at the top of block 2 are
said to be local to block 2 and global to block 3. These
variables cannot be referenced outside block 2. Note that
the variable A in block 2 conflicts with the declaration of
A in block 1. 1In this case, any reference to A within block
2 refers to the innermost declaration of A. Similarly, thé
variables B, H, I, and J declared at the top of_ blcck 3
cannot be accessed outside block 3. Again, the declaration
of B in block 3 overrides the outer block declaration of

this variable name.

Block 4 is parallel to block 2 in this program. The
variables A, E, K, and L are local to block 4. Thus, the
variables E, K, and L are undefined outside block 4, and
references to A outside block 4 ‘affect the variable A

declared on the first line.

The notion of scope of variable names extends to
procedure names and to formal parameters declared within
procedures. A procedure declaration is treated the same as
a DO-group in defining scope of variables. As an exanmple,
consider the following program

/* BLOCK 1 */
CECLARE (I,J,K) BYTE;
P1: PROCEDURE (I,Q) BYTE;
/* BLOCK 2 */
DECLARE (1,Q,J,R) ADDRESS;

37

END P1 /* AND BLOCK 2 */;
F2: PROCEDURE (J,Q,R) ADDRESS;

/% BLOCK 3 %/

DECLARE (J,Q,R,S,T) BYTE;

END P2 /% AND ALSO BLOCK 3 */
/% BLOCK 1 IS FINISHED %/
EOF '

The variables I, J, and K are global to both the P1 and
P2 procedures. The procedures P1 and P2 constitute
independent parallel blocks, each with their own 1local
variables. Note that the 1local variable I declared in
procedure P1 is used in all references to I within block 2,
instead of the global variable declared in line 1. Note
alsc that the variable Q defined in P1 is completely
independent of the Q declared in P2.

The principal advantage to the scope of variable
concept in PL/M is that subroutines are independent of the
program in which they are imbedded, with no problems arising
from conflicting declarations. In particular, 1library
subroutines can be written as completely modular subprograms
with no dependence wupon the names used outside the

procedure.

14. Statement Labels and GO TO's.

PL/M allows program statements to be identified with a
statement label, and allows unconditional transfer of

program control to these labelled statements.

14.1. Label Names. A PL/M labelled statement takes
the form

label-1: label-2: ... label-n: statement;
where 1label-1 through label-n are valid PL/M identifiers or
constants. Any number of labels may precede a PL/M
statement. Valid labelled statements are
L1: X = X + 1;

LOOP: Y = 3;
L1: LOOP: X = Y + 5;
30: Y = X -5;
1L0O0OP: 30: L1: Q = 5 + Y,

The function of numeric labels is to specify an c¢rigin
for code generation. The statement "30: ¥ = X - 53" for
example, specifies that the object code for this statement
is to begin at location 30 in memory. The identifier form
of a statement label has no effect on the origin <¢f the

code, but does provide a destination for GO TO statements.

14.2. GO TO Statements. PL/M allows three distinct
forms of an unconditional transfer. The first is
GO TO label;
In this case, the label is an identifier which appears as a
label in a labelled statement. Program contrel transfers
directly to the statement with this label.

The second form of a GO TO is
GO TO constant;
The constant is any valid PL/M single or double byte number.
Program ccntrol transfers to the absolute location in memory

given by this number.

The last form is
GO TO variable;
where the variable «contains a computed memory address.
Control transfers directly to this <computed absolute

address.

39

The following program illustrates the use of latelled
statements and GO TO's.
DECLARE X ADDRESS;

IF Q > Z GO TO LOOP;

GO TO EXIT;

/* COMPUTE AN ADDRESS AND BRANCH */
X = .MEMORY + 13;

GO TO X;

GO TO 30;

EXIT: HALT;

EOF

14. 3. Scope of Labels. It should be noted that the
identifier fcrm of a label has an implied scope, similar to
variables and procedures. This implied scope can be made
explicit through the PL/M label declaration. The form of
the label declaration is

DECLARE identifier LABEL;

or
DECLARE (identifier-1,...,identifier-n) LABEL;

The 1label declaration informs‘the compiler that a label or
set of labels will occur at the same block 1level as the
declaration. The 1label declaration is only necessary,
however, when the implied declaration does not correspond to
the programmer's intention. In particular, any occurrence
of an undeclared label in either a GO TO statement, or as a
statement label results in an immediate automatic
declaration cf the label. This implied declaration is most

40

easily seen by <example. The programs to the left below
contain undeclared labels. The implied declarations
resulting from these labels are shown in the corresponding
progvams to the right.
‘ PROGRAM 1

{ DECLARE LOOP LABEL;
LCOP: X =X + 1;] LOOP: X =X + 1;
GO TO LOOP; | GO TO LOOP;
EOF { EOF

PROGRAM 2

S

DECLARE LOOP LABEL;

LOOP: X=X+1; LOOP: X=X+1;

DO; DO3
. . . DECLARE Q1 LABEL;
GO TO Q1; GO TO Q1;

|
|
|
|
|
Qg1: Y=Y+1; { Q1: Y = Y+1;
GO TO LOOP; | GO TO LOOP;
END; i END;
}] DECLARE EXIT LABEL;
i GO TO EXIT;
{ EXIT: HALT;
|
R

. ® o .

GO TO EXIT;
EXIT: HALT;

EOF EOF
PROGRAM 3
X=X+1; X=X+1;
DG; DO
o o DECLARE L1t LABEL;:
GO TO L1; GO TO L1;
L1: Y=Y+1; L1: Y=Y+1;

DECLARE L1 LABEL;
L1: Q0=Q0+3;

GO TO L1;

EOF

|
|
|
i
|
END; | END;
s - . |
L1: Q=Q+3; |
GO T0 L1; |
EQF |
The only instance which requires explicit declaration
of a label is when a GO TO statement in an inner nested

41

block references a 1label in an outer block, and the label
follows the GO TO statement. Consider the following
program, for example.
/% BLOCK 1 */
X =X + 1;
DO; /* BLOCK 2 */
GO TO EXIT;
END /% OF BLOCK 2 */;
EXIT: HALT;
EOF
The implied label declaration created by the PL/M compiler
for the label EXIT results in the program
X=X+ 1;
DO;
DECLARE EXIT LABEL;
GO TO EXIT;
END;
DECLARE EXIT LABEL;
EXIT: HALT;
EOF

Note that the resulting program is in error since the
implied declaration of EXIT in block 2 indicates that the
scope of EXIT is only block 2, conflicting with its
occurrence in block 1. Thus, the label declaration can be
used to remedy the situation. The programmer overrides the
implied declaration with

DECLARE EXIT LABEL;

42

GO TO EXIT;

END;
EXIT: HALT;
EOF

As a final note, the PL/M programmer is encouraged to
use the IF-THEN-ELSE and DO-group constructs in the place of
labelled statements and GO TO's whenever possible. The
effect 1in most <cases 1is Dbetter object code and improved

readability of the source progranm.

15. Compile-Time Macro Processing.

PL/M allows declaration and expansion of simple macros
at - compile time. The LITERALLY declaration in PL/M allows
the programmer to define an identifier to represent a
sequence of arbitrary characters. The PL/M compiler
automatically substitutes the defining string at each
occurrence of they-defined identifier. The form of the
LITERALLY declaration is

' DECLARE identifier LITERALLY string;
where the identifier is anyﬁval%d PL/M name which does not
conflict with previous declaratioﬁé, and the string 1is an
arbitrary PL/M string, . not exceeding 255 characters in
lethh. j

The following program illustrates the use of the PL/M
macro facility
DECLARE TRUE LITERALLY '1°',
FALSE LITERALLY '0°¢';

43

CECLARE DCL LITERALLY 'DECLARE',
LIT LITERALLY 'LITERALLY';
DCL FOREVER LIT 'WHILE TRUE';
DCL (X,Y,Z) BYTE;
X = TRUE;
DO FOREVER; Y=Y+1;
IF Y > 10 THEN HALT;
END;
EOF
The declarations on lines 1 and 2 allow the programmer to
use the symbols TRUE and FALSE instead of 0 and 1, which
often makes the program more readable. The declarations for
DCL and LIT define abbreviations for DECLARE and LITERALLY,
respectively.

The DC FOREVER statement on line 8 first expands to DO
WHILE TRUE. The macro expansion of TRUE then results in a
loop headed by DO WHILE 1 (which executes indefinitely,
until the HALT statement is executed).

The LITERALLY declaration is also useful for declaring
fixed parameters for the particular compilation, but which
may change from one compilation to the next. Consider the
program below, for example:

DECLARE ASIZE LITERALLY '300',
PBASE LITERALLY '4000°¢,
SUPERVISOR LITERALLY '200°';

DECLARE (A (ASIZE) ,I) ADDRESS;

PBASE: A (ASIZE-10) = 50;

GO TO SUPERVISOR;

EOF

44

In this case, ASIZE defines the size of the vector A. The
value of ASIZE can be altered in the LITERALLY declaration
without affecting the remainder cf the progranm. Similarly,
the value of PBASE defines the starting location of the
program since it expands to a numeric label. The expansion
of the PBASE macro results in the statement

4000: A (ASIZE-1) = 50;
In the case of the SUPERVISOR macro, the statement "GO TO
SUPERVISOR" is replaced by "GO TO 200" resulting in a

transfer to absolute address 200 in memory.

16. Predeclared Variables and Procedures.

The LENGTH and LAST forms described previously are
called built in procedures. A number of additional
predeclared variables and procedures are described in this

section, which are intended to ease the programming task.

It should be noted that these variables and procedures
are assumed to be declared at an outer encompassing block
level which is invisible to the programmer. Thus,
declarations of variables and procedﬁres with identical

names within the program override the predeclared names.

16.1. Condition Code Variables. There are four
variable names in PL/M which can be wused- to test the
condition codes in the MCS-8 CPU. These names are

CARRY ZERO SIGN PARITY
Any occurrence of one of these variables generates an
immediate test of the corresponding condition code flip-flop
for a true condition (value 1is 1). The use of these
variables is somewhat irmplementation-dependent, and is
described more completely in the section c¢n PL/M systenm
notes. In any case, these variables cannot ke used as the

destination ¢f an assignment.

45

16.2. The MEMORY Vector. It 1is often wuseful to
address the area c¢f memory following the 1last variable
allocated in a particular program. PL/M provides this
facility by automatically inserting the declaration

DECLARE MEMORY (0) BYTE;
as the last declaration in every program.

As an example, consider the following progranm. This
program assumes it will execute on a machine with 10 pages
(2560 bytes) of memory. The program initializes all
remaining space after the program variable storage to 1's.

DECLARE SIZE LITERALLY '2559',
I ADDRESS;
DO I = .MENORY TO SIZE;
MEMORY (I - .MEMORY) = 1;
END;

EOF

16.3. The TIME Procedure. A built-in procedure,
called TIME, is provided in PL/M for waiting a fixed amount
of time at a particular point in the program. The form of
the call is

CALL TIME (expression) ;
where the expression evaluates to a byte quantity n Letween
1 and 255. The wait time is measured in increments of 100
usec; hence, the total time-out for a value n is
n(100 usec).
Thus, the «call to TIME shown below results in a 4500 usec
(4.5 msec) time-out
CALL TIME (45) ;

Since the maximum time-out is 255*%100 usec.= 25500 usec
= 25.5 msec, longer wait periods are affected by enclosing
the <call in a loop. The following loop, for example, takes
1 second to execute

DO I = 1 TO 40;

46

CALL TIME(250:;
END)

16,4, Type Transfer Procedures, two builtein
procedures are provided in PL/M to convert ADDRESS values to
BYTE values, The procedure calls take the forms

LOWtexpression) and HIGH(expression)
The LOW procedure returns the lowe=order byte of a double
byte value, while the HIGH procedure returns the higheorder
byte, Either call can be used wherever a byte expression is
valid {n PL/M,

The built=in procedure DOUBLE converts a BYTE value to
an ADDRESS value, The procedure call takes the form

DOUBLE(expression)
16,5 Bit Manipulatien Procedures, Six procedures
are provided in PL/M for shifting and rotating expressions,
These procecdure calls take the forms :
SHL(expressioni,expression2)y
SHR(expressioni,expression2)g
SCL(expressioni,expression2))
SCR(expressioni,expression2)y
ROL(expressiond,expression2)s
ROR(expression3,expression2))

In these cases, expressionl can be either byte or double

byte, but expression2 and expression3 must be single byte

values,

The SHL and SHR procedures shift expressionl to the
lett or right by an amount given by expression2,
respectively, The precision Of the result is the same as$
that o0f expressioni, Note that the value of expression2
must be greater than zero,

The value of SHL(100080011B,2), for example, is the
byte value 00001100B, The call SHR(1s0000581100B,1) results
in the double byte value 081000s0110B,

‘The SCL and SCR procedures are identical to the SHL and

SHR procedures with the exception that SCL and SCR shift in -
the previous value of the carry flag, where SHL and SHR

47

shift in zeroes, For example, the statements
HIGHSORDER = SHR(0$0160101B,1))
LOWSORDER ® SCR(0101860101B,1)3

assign the value 00101010B to HIGHSORDER and the valte
'10101010B to LOWSORDER,

The ROL and ROR procedures rotate the value of the byte
expressiond to the right or left by an amount given by
expression2, respectively, Again, expression2 must be
greater than zero, Both procedures alvays return a byte
,value. The value of ROL(101180000,2) is 1100500108, and the
value of ROR(111180000B,8) 4is 1111800008,

The SHL, SHR, SCL, SCR, ROL, and ROR calls can appear
anywhere a PL/M expression is allowed,

16,6, 1I/0 processing, The built~in procedure INPUT
and built=in variable OQUTPUT were introduced earlier, 1In
general, the 1nput call takes the form

INPUT(constant)

where the constant {s in the range 0 to 7, The effect of
the call is te read the {nput port designated by the
constant, The result of the call is the byte value latched
into the port, The call to INPUT can appear as a vpart of
any valid PL/M expression,

The pseudoe=variable OUTPUT can only be used as the
destination of an assignment, The form is ‘

OUTPUT(constant) = expression}

where the constant i{s {n the range 0 to 23, The value of
the expression {s latched into the output port designated by
the constant,

This section completes the tutorial introduction to
PL/M, The section which follows provides more detaliled
discussion of the {(ndividual statements and constructs ot
PL/M,.

48

NRNNN NN o e bt e i

N

Wwww

W

III. A FORMAL APPROACH TO PL/M.

(Section III is currently incomplete, The BNF description of PL/M is included, however, for reference purposes.)

NN
Vo <~

w W w
N = O

Vit Lt I B B BD DD D D W

v

oo oum

49

1 <PROGRAM> ::= <STATEMENT LIST>
2 <STATEMENT LIST> ::= <STATEMENT
3 I STATEMENT LIST> <STATEMENT>
4 <STATEMENT> ::= <BASIC STATEMENT>
5 <IF STATEMENT>
6 <BASIC STATEMENT> ::= <ASSIGNMENT> ;
7 <GROUP> ;
8 <PROCEDURE DEFINITION> 3
9 CRETURN STATEMENT> §
0 SCALL STATEMENT> 3
1 <GO TO STATEMENT>';
2 <DECLARATION STATEMENT> ;
2 HALT 3
5 SLABEL DEFINITION> <BASIC STATEMENT>
6 <IF STATEMENT> ::= <IF CLAUSE> <STATEMENT>
7 l <IF CLAUSES <TRUE PART> <STATEMENT>
8 KLABEL DEFINITION> <IF STATEMENT>
9 <IF CLAUSE> ::= IF <EXPRESSION> THEN
0 <TRUE PART> ::= <BASIC STATEMENT> ELSE
1 <GROUP> ::= <GROUP HEAD> <ENDING>
2 <GROUP HEAD> ::= DO ;
3 DO <STEP DEFINITION> ;
4 DO <WHILE CLAUSE> 3
5 DO <CASE SELECTOR> 3
6 <GROUP “HEAD> <STATEMENT>
<STEP DEFINITION> ::= <VARIABLE> <REPLACE> <EXPRESSION> <ITERATION CONTROL>
KITERATICN CCNTROL> ::= <T0> <EXPRESSION>
| <T0> <EXPRESSION> <BY> <EXPRESSION>
CWHILE CLAUSE> ::= <WHILE> <EXPRESSION>
CKCASE SELECTOR> ::= CASE <EXPRESSION>
<PROCEDURE DEFINITION> ::= <PROCEDURE HEAD> <STATEMENT LIST> <ENDING>
3 <PROCECURE HEAC> ::= <PROCEDURE NAME> ;
4 <PROCEDURE NAME> <TYPE> ;
5 <PROCEDURE NAME> <PARAMETER LIST> 3
6 <PROCEDURE NAME> <PARAMETER LIST> <TYPE> ;
7 <PROCEDURE NAME> ::= <LABEL DEFINITION> PROCEDURE
8 <PARAMETER LIST> ::= <PARAMETER HEAD> <IDENTIFIER>)
9 <PARAMETER HEAD> ::= {
0 | <PARAMETER HEAD> <IDENTIFIER> 4
1 <ENDING> ::= ENC
2 END <IDENTIFIER>
3 <LABEL DEFINITION> <ENDING>
4 <CLABEL DEFINITION> ::= <IDENTIFIER> :
5 | <NUMBER> @
6 <RETURN STATEMENT> ::= RETURN
7 | RETURN <EXPRESSION>
8 <CALL STATEMENT> ::= CALL <VARIABLE>
9 <GO TO STATEMENT> ::= <GO TO> <IDENTIFIER>
0 | <GO TOS> <NUMBER>
1 <GO TO> :3i= GO_TO
2 | GOTC
3 <DECLARATION STATEMENT> ::= DECLARE <DECLARATION ELEMENT>
4 | <DECLARATION STATEMENT> , <CECLARATION ELEMENT>
5 <DECLARATION ELEMENT> ::= <TYPE DECLARATIOND ,
6 l <IDENTIFIER> LITERALLY_<STRING>
7 KIDENTIFIER> <DATA LIST>
8 <DATA LIST> ::= <DATA HEAD> <CONSTANT>)
9 <DATA HEAD> ::= DATA (
o | <DATA HEAD> <CONSTANT> ,
1 <TYPE DECLARATION> ::= <IDENTIFIER SPECIFICATION> <TY
2 <BOUND HEAD> <NUMBER>) <TYPE>
3 <TYPE DECLARATION> <INITIAL LI

<TYPE>

N0

<IDENTIFIER SPECIFICATION> (

<BCUNDO HEAD> ::=

67

<IDENTIFIER SPECIFICATION>

68

T> <VARTABLE NAME>)

69

0

<IDENTIFIER LIST> <VARIABLE NAME>

€

<IDENTIFIER LIST>

Omi
~~

>
A

=4

<VARTABLE NAME>

o
~

BLE> <IDENTIFIER>

<IDENTIFIER> BASED
<INITIAL HEAD> <CONSTANT>)

—

™
~

<BASED VARIABLE>
<INITIAL LIST>

14
75

<INITIAL HEAD>

N
N~

*

HEAD> <CONSTANT>

~
N

EXPRESSION>

<ASSIGNMENT>

o
e~

<REPLACE>

80
81

::= <KVARIABLE> ,

<LEFT PART>

CAL EXPRESSION>

XPRESSION>
: = <LOGI

<EXPRESSION>

aNm
@

OR> AND <LOCGICAL SECONDARY>

?NDARY)

0O

<LOGICAL FACTOR>

[co)ee}

<LOGICAL SECCNCARY>

89

90

oo

<LOGICAL PRIMARY>

~N
o

N> <RELATION> <ARITHMETIC EXPRESSICN>

AD> <CONSTANT>)

1

<CONSTANT HEAD> <CONSTANT>

EAD> <EXPRESSION>)

R>
H

<SUBSCRIPT HEAC>

nO
—N

EAD> <EXPRESSION> ,

<CONSTANT>

- O\
NN
-t ot

<BY>

124

tt= WHILE

<WHILE>

125

50

IVe COMPIIING AND LCEBUGGING PL/M PKOGRAMSe

This section discusses procedures for compiling and
debugging PL/M programs. A complete compilation of a PL/M
program is performed in two ‘distinct parts: the first
phase, r1eferred to as PLM1, scans the source program, and
produces an intermediate form. The second phase, <called
PLM2, accepts this intermediate form and produces the
machine code for the MCS-8 CPU. All errors in [progran

syntax are detected in PLA1.

The debugging process begins following successful
compilation of a PL/M progranm. This debugging phase
consists of an execution of INTERP/8 which accepts the
machine code produced by PLM2 and simulates the actions of
the MCS-8 CPU. INTERP/8 has a number of facilities which
aliow monitoring of CPU action, allowing symbolic and
absolute reference to machine code and variable storage
locations (see Appendix III of the INTEL publication "MCS-8
Micro Computer Set 8008 Users Manual") These three phases
are described in detail in the sections which follow.

1. PLM1 Operating Procedures.

The first pass of the PL/M compiler scans the source
program, and detects improperly formed declarations and
statements. A listing of the source program can be obktained
during this pass. Errors are listed by line number whether
the source 1listing is produced or not. An error message
produced ty PLM1 takes the form:

(nnnnn) ERROR m NEAR s
The number nnnnn corresponds to the line where the error
occurred, s is a symbol on the line near the error, and m

corresponds to the particular error message as given in

51

Figure 1IV-1.

Before discussing the files referenced by PLM1, it is
necessary to present the file naming scheme used thrcughout
the three programs PLM1, PLM2, and INTERP/8. These three
programs are written in ANSI standard FORTRAN with the
intention of being as independent from the host computer as
possible. Thus, only a few assumptions can be made about
the physical input and output devices or FORTRAN logical
unit numbers and corresponding file names used in any
particular implementation. Instead, these three prcgrams
use an internal file numbering scheme which is consistent
between the three programs, but which may differ in terms of
FORTRAN logical units from installation +to installation.
The machine-independent approach here is to give the file
numbering in terms of devices types, and allow any
particular implementation to assign the most convenient
FORTRAN units.

The file numbers wused throughout PLM1, PLM2, and
INTERP/8, along with the corresponding device types, are
shown in Figure IV-2. Two examples of FORTRAN unit number
assignments for the PDP-10 and IBM System/360 computers are

shown in Figure IV-3.

A number of compiler control switches are used during
the execution of PLM1 to control I/0O based upon this file
numbering schene. Additional switches are provided to
control other compile-time functions during this pass, as
given below. Compiler control switches come in two forms:
compiler toggles, and compiler parameters. Compiler toggles
can take on only the values 0 and 1 (generally specifying an
"on" or "off" condition), while compiler parameters can be

any non-negative value.

A compiler switch is specified to PLM1 by typing a line

52

ERROR
NUMRE®R

1e

11

12

14

15

16
17

18

19

20

22

Figure 1IV-1.

MESSAGE

THE SYMBOLS PRINTED BELOW HAVE BEEN USED IN THE CURREANT 3L0MK
BUT DO NOT APPEAR IN A DECLARE STATEMENT, OR LABEL APPFARS [
A GO TO STATEMENT BUT DOES NOT APPEAR IN THE BLOCK,

PASS-1 COMPILER SYMBOL TABLE OVERFLOW, T10 MANY SYMBOLS IN
THE SOURCE PROGRAM, EITHER REDUCE THE NUMBER OF VARTARLES [y
THE PRNOGRAM, OR RE-COMPILE PASS-1 WITH A LARGER SYM3IL TA3Lf.

INVALIpD PL/M STATEMENT. THE PAIR GOF SYMBOLS PRINTED 3604
CANNDOT APPEAR TOGETHER IN A VALID PL/M STATEMENT (TH]S ERRDR
MAY HAVE BEEN CAUSED BE A PREVIOQUS ERRNR [N ThE PROGRAM).

INVALID PL/M STATEMENT. THE STATEMENT 1S [MPRIPERLY E3R2+E0--
THE PARSE TO THIS POINT FOLLOWS (THIS MAY HAVE NCCUIRIN 20-
CAUSE OF A PREVIOUS PROGRAM ERROR).

PASS-1 PARSE STACK OVERFLOW. THE FROGRAM STATEMEMTS aRe
REFURSIVELY NESTEN TOO DEEPLY: EITHER SIPIFY THE DRAa554%
STRUCTURE, OR RE-COMPILF PASS-1 WITWH A LARGIR PARSE STaux.

NUM3ER CONVERS!OM ERROR. THE NUMBER EITHER EXCEEDS 65535 (OF
CONTAINS DIGITS WHICH CONFLICT WITH THE RACIX INDICATOR,

PASS-1 TABLE OVERFLOW. PROBABLE CAUSE 1S & CCHUSTAMT 5171
WHTICH IS TOO LONG. IF SO, THE STRING SHYULD RE WRIITTIN 4S8 2
SEQUENCF OF SHORTER STRINGS, SEPARATED RY CIMMAS, QTur2u1Se,
RE-COMPILE PASS-1 WITH A LARGER VARC TARLZ,

MACRD TASLE OVERFLOW. TOO MANY LITERALLY DECLARAT(OYS.
EITHER RENUCE THE NUMBER OF LITERALLY NFCLARATIONS, 9P Ri-
CAMDTLE PASS-1 WITH A LARGER 'MACROS' TARi g,

INVALID CONSTANT [N INITIAL, DATA, 0NR 1n-L IVE CONSTANT,
PRECISION OF CONSTANT EXCEEDS TWO BYTES (MAY BF [NTEINaL
PASS-1 cCMPILER ERROR).

INVALIN PROGRAM, PROGRAM SYNTAX INCORRFCT FOR TERM[NAT[UNM
OF PROGRAM, MAY BE DUE TO PREVIOUS ERRNIRS WHICH 0CC17RED
WITHIN THE PROGRAM,

INVALID PLACEMENT OF A PROCFDURE DECLARATION WITHIN THE PL/M
PROGRAM, PROCEDURES MAY ONLY BE DECLARED IN THE OUTER BLOCK
(MAIN PART OF THE PROGRAM) OR WITHIN DO=-END GROUPS (NOT
ITERATIVE DO'S, DO-WHILE'S, OR DO-CASE'S).

IMPROPER USE OF IDENTIFIER FOLLOWING AN END STATEMENT,
IDENTIFTERS CAN ONLY BE USED IN THIS WAY Tn CLOSE A PROCEDURE
DEFINITION,

INENTIFIER FOLLOWING AN END STATEMENT NOES NOT MATCH THE NAME
OF THE PROCFDURE WHICH IT CLOSES.

DUPLICATE FORMAL PARAMETER NAME [N a PROCEDURE HEAGING,

IDENTIFTER FOLLOWING AN END STATEMENT raANNOT BE FOUND IN THE
PROGRAM,

DUPLICATE LABEL DEFINITION AT THE SAME BLOCK LEVEL.
NUMERIC LABEL EXCEEDS CPU ADDRESSING SPACE,

INVALID CALL STATEMENT. THE NAME FCLLOWING THE CALL IS NOT
A PROCFEDURE,

INVALID DESTINATION IN A GO 7O, THE VALUE MUST BE A LABEL
OR SIMPLE VARIABLE.

MACRO TABLE OVERFLOW (SEE ERROR & ABOVE).
DUPLICATE VARIABLE OR LABEL DEFINITION,

VARIABLE WHICH APPEARS IN A DATA DECLARATION HAS BEEN PRE~-
VIOUSLY DECLARED IN THIS BLOCK

PLM1 error messages issued during the
pass.

53

first

a3
24
a3
26

27
20

29

30

3

32

33

3¢

3s

36

37

9

PASS=1 SYMBOL TASLE OVERFLOw (SEE ERROR 2 ABOVE),
INVALID USE OF AN IDENTIFIER AS A VARIABLE NAME,
PASS~1 SYMBOL TABLE OVERFLOw (SEE ERRFOR 2 ABOVE),

JMPROPERLY FORMED BASED VARIABLE DECLARATICN, THE FORM 1s
1 BASED J, wHERE I I8 AN IDENTIFILR NOT PREVIOUSLY DECLARED
IN THIS BLOCK, AND J 18 AN ADDRESS VARIABLE,

SYMBOL TASLE OVERFLOW IN PASS=1 (SEE ERROR 2 ABOVE),

INVALID ADDRESS REFERENCE, THE DOT OPERATCR HAY ONLY
PRECEDE SIMPLE AND SUBSCRIPTED VARIABLES IN THIS COMTEXT,

UNDECLARED VARIABLE, THE VARIABLE MUST APPEAR IN A DECLARE
STATEMEMT BEFORE ITS USE,

SUBSCRIPTED VARIABLE OR PROCEDURE CALL REFERENCES AN UNe
DECLARED IDENTIFIER, THE VARIABLE OR PROCEDURE MUST BE
DECLARED ®WEFORE IT 18 USED,

THE ICENTIFIER 1S IMPROPERLY USED AS A PRUCEDURE OR SUBe
SCRIPTED VARIABLE,

TOO MANY SUESCRIPTS IN A SUBSCRIPTED VARIABLE REFERENCE,
PL/M ALLOWS ONLY ONE SUBSCRIPI,

ITERATIVE DO INDEX 1S INVALID, IN THE FORM D0 I = Ei§ TO E2°
THE VARIABLE I MUST BE SIMPLE (UNSUBSCRIPTIED),

ATTEMPT TO COMPLEMENT A 8 CONIROL YOGGLE WHERE THE TOGGLE
CURRENTLY HAS A VALUE OTMER THAN 0 OR 31, USE THE ’s N°
OPTION FOLLOWING THE TOGGLE TO AVOID THIS ERROR,

INPUT FILE NUMBER STACK OVERFLOw, RECOMPILE PASSe} WITH
A LAFGER INSTK TRBLE,

TO0 MANY BLOCK LEVELS IN THE PL/M PROGRAM, EITHEF SINPLIFY
YOUR PROGKAM (30 BLOCK LEVELS ARE CURRENTLY ALLOWED) OR
RE-CCHPILE PASSe) WITH A LARGER BLOCK TABLE,

THE NUMBER OF ACTUAL PARAMETERS IN THE CALLING SEQUENCE
IS GRERTER THAM THE KUMBER OF FORMAL PARAMETERS DECLARED
FOR THIS PROCEDURE,

THE NUMBER OF ACTUAL PARAMETERS IN THE CALLING SEQUENCE
IS LESS THAM THE NUMBER OF FORMAL PARAMETERS DECLARED
FCR Thlé PRCCEDURE,

ATTEMPT TO ASSIGN A VALUE TO AN INTRINSIC
OR PROCEDURE MNAME

Figure IV-1 (Con't)

54

Input

Internal File Number Input Device

Interactive Console
Card Reader
Paper Tape

Magnetic Tape A
Magnetic Tape B
Sequential Disk A
Sequential Disk B

SNoordbds Wi

Output

Internal File Number Output Device

Interactive Console
Line Printer
Paper Tape
Magnetic Tape C
Magnetic Tape D
Sequential Disk C
Sequential Disk D

SO s W

Figure IV-2. Symbolic Device Assignments for PLM1l, PLM2,
and INTERP/S8.

55

PASS-1 FILE DEFINITIONS

POP-10
INPUT
NUM NEVICE UNIT NUM
1 TTY 5 1
2 COR 2 2
3 PAP 6 3
4 MAG 1¢ 4
5 DEC 9 5
6 DISK 2¢ 6
7 NISK 21 7
1BM S/368 (CP/CMS)
INPUT
MUM nNEVICE UNTT NUM
1 TTY 88 5 1
2 chrR 8D 19 2
3 TAP 32 11 3
4 TAF 149 9 4
5 DSK 82-L2 13 5
[NSK 8% 1 [}
7 DSk 82 2 7
PASS-2 FILE DEFINITIONS
FOP=18
TNPYUT
MM NDEVICE UNTT MNUM
1 TTY 5 1
2 cOR 2 2
3 PAP 6 3
4 MAG 1e¢ 4
5 oFcC 9 5
6 DIsK 2¢ 6
7 DISK 23 7
IRM §/36m (CP/CMS)
INPUT
NU™ DEVICE UNTY NUM
1 TTY 80 S 1
2 CPR 3@ 12 2
3 TAP 80 11 3
4 TAP 140 9 4
5 DSK 82-L@ 13 5
6 DSK 80 2 6
7 0SK 8@ 4 7

AL INPUT RECORDS ARE 8@ CHARACTERS OR LESS.

ouTPUT
DEVICE umlT
TTY 5
PTR 3
PAP 7
MAG 17
Gec 13
DISK z2
D1SK 23
cuUTPUT
DEVICE UNTT
TTy 127 6
PTR 133 8
PUN 80 7
TAF 133 12
0SK 62-18 13
nok 8@ 3
DSk 80 4
ouTPUT
DEVICE UNTT
TTY 5
PTR 3
PAP 7
MAG 17
DEC 16
DiISK 22
DISK 21
ouTPYT
DEVICE UNIT
TTY 122 6
PTR 133 8
PUN 80 7
TAP 133 12
0Sx 82-Lf 13
DSK 88 1
DSk 889 l
ALL

OUTPUT RECORDS ARE 129 CHARACTERS OR LESS.

THE FORTRAN UNIT NUMBERS CAN BF CHANGED IN THE
SUBROUTINES GNC AND WRITEL
CURRENCES OF REFERENCES TO THESE UNITS).

Figure IV-3.

(THESE ARE THE ONLY OC-

56

PDP-10 and IBM System/360 real device

assignment.

of input with a "$" imr column 1, and a switch name starting
in column 2 (only the first character of the switch name is
significant, and the remaining characters may be omitted).
In the'case of compiler parameters (and, optionally compiler
toggles), the switch name is followed by an equal sign (=)
and an integer value. A compiler toggle with the equal sign
and number omitted is complemented (a 0 becomes a 1, and a 1
changes to a 0). Compiler switches are not printed in the

source listing.

The most commonly used compiler switches for PLM1 are
listed in Figure IV-4, along with their default values.
Note that compiler toggles are listed in Figure IV-4 without

the "= n" option although it is understood that either "= 1"
or "= 0" is acceptable. Compiler parameters are listed in
the Figure with the "= n" part following the switch name.

The value of n is assumed to be in the proper range.
Finally, note that the default values shown here are those
provided by INTEL in the distribution version of the system
and assume a batch processing environment. - Any particular
implementation may have differing default values (e.g.,
values may assume a time-sharing mode of processing), and

thus the local installation should be consulted.

The operation of the first pass can now be described.
PLM1 begins by reading the input file number which is
defaulted by the $INPUT switch. Normally, this switch
defaults to the card reader if operating in batch mode, and
to the terminal if operating in interactive mode.
Subsequent switches in the primary file can be used to
change these default values, if necessary (e.g., reset the
left or right margin, or change to an alternate input file).
The first pass normally creates a listing file on output
file number 2, an intermediate symbol table on file 6, and

an intermediate code file on file 7.

57

Switeh Name Use j Detault

SANALYZE Controls the PL/M syntax analysis trace, 0

8BYPASS Dump the parse stack for syntax errors, 0

$COUNT = n Start li{ne numbering at 1ine n, 0

SDELETE = n Delete all trailing characters in the 120
output after posistion n,

$EOF Ende=ofefile on this unit, 0

SGENERATE Interlist the intermediate language 0

produced by Pass i,

S$INPUT a n Switch to file n for subsequent input 1
(see PL/M file numbering),

SLEFTMARGIN = n Ignore all characters before column n (n i
the input lines,

$MEMORY Include a symbol table in the object tape 0
produced by Pass 2 showing the memory
address assignments for variables, labels,
and procedures,

$0UTPUT = n Write subsequent output lines to file n i
(see PL/M f{le numbering),

§PRINT Print output lines, !

SRIGHTMARGIN=n Ignore all characters in the input lines 72
beyond position n,

§SYMBOLS Print a symbol table dump at the end of 0
Pass 1§,

8 TERMINAL Interactive processing mode, 0

SWIDTH = n Set output 1line width to n characters, 72

NOTE: The input lines are a maximum of 80 characters, and
the output lines cannot exceed 120 characters,

Figure IVe4, PLM1 "s" compiler switches,

58

It should be noted that in an interactive mode, PLM1
starts by reading the progammer's console. At this point,
the programmer could type the program directly at the
console into PLM1. It is usually the case, however, that
the programmer first composes his program using the
time-sharing system's text editor. When PLM1 reads the
console for the first 1line of input, the programmer
redirects the PLM1 input to the disk file containing the
edited program using the $INPUT = n compiler switch, where n
is one of the input file numbers correspinding externally to
the edited program.

The output from PLM1 can be directed to the
programmer's console, or to another device such as a disk
file or line printer using the $0OUTPUT compiler switch
placed in the input stream. If the programmer selects the
console as an output device, it 1is often useful to set
$TERMINAL = 1 which automatically 1lists only the error
messages at the terminal. The programmer then uses the line
numbers, along with the time-sharing system editor to locate
the errors and change the source program in preparation for
recompilation. 1In this way, a source listing of the program
need never be generated during the first pass. The progran
is 1listed as the compilation proceeds \if the $TERMINAL
toggle is zero.

A practical approach to development of 1large PL/M
programs is to write the program in terms of a number of
independent procedures. Each of these procedures can be
compiled and debugged separately, and, after all procedures
are checked-out, the entire program can be compiled.

As an example, consider the program shown in Figure
IV-5. In this <case, a procedure is shown, called INDEX,
which performs a comparison of two character strings to

determine if the second string occurs as a substring in the

59

$MEMORY = 1

{*'THE INDEX PROCEDURE SEARCHES THE STRIMG STARTIMG AT

A’ FOR AN OCCURRENCE OF THE STRING STARTING AT 'B'.
INDEX RETURNS A ZERO IF THE SECOMD STRING IS MOT A SUB-
STRING OF THE FIRST; OTHERWISE, THE POSITION OF THE

SECOND STRING IS RETURNED., THE CHARACTER POSITIONS ARF
COUNTED STARTING FROM 1 AND ENDING AT 255, */

DECLARE EOS LITERALLY 'OFFH';

/* THE LABELS LO ,.. L5 AND C1 ... C3 ARE PRESENT FOR DEBUCCINC
PURPOSES ONLY, AND CAN BE REMOVED WITHOUT AFFECTING THE PROCRAM
EXECUTION =»/

INDEX: PROCEDURE (A,B) BYTE;

LO: DECLARE (A,B) ADDRESS,

(SA BASED A, SB BASED B, J,K,L,M) BYTE;
J =0;

L1: DO WHILE SA(J) <> EOS;
K = 0; :
L2:, DO WHILE (L:=SA(J+K)) = (M:=SB(K));
L3: IF L = EOS THEN RETURN J+1;
K =K + 1;
END;
J=J +1;
Lb: IF M = EOS THEN RETURN J;
- END;
LS: RETURN 0;
END INDEX;

/* TEST THE INDEX FUNCTION */
DECLARE 0 DATA ('WALLAWALLAWASH',EOS),
(1,J) BYTE;

DO WHILE 1;
Cl: | = INDEX(.0Q,.('"WALLA',EO0S));
C2: | = INDEX(.('WALLA',E0S),.Q);
C3: | = INDEX(.Q,.('WASH', E0S));
END;

EOF

Figure IV-5. A card-image listing of the INDEX procedure.

60

first string, as described in the comment preceding the
procedure declaration. The last part of the progranm
(following the declaration of Q) is present only to test the
INDEX procedure and will be removed when INDEX is imkedded
within a larger progran. Note that this test section
includes three sample calls on INDEX which are repeated
indefinitely. The labels LO through L5 within INDEX are
used only during the debugging phase, and have no effect
upon program execution. In fact, these 1labels may be
removed after the INDEX procedure is checked-out to avoid

later confusion as to the purpose of the labels.

Figure 1IV-6 shows a sample execution of PLM1 using the
above source program as input. The exac£ manner in which
PLM1 1is started on any particular computer is, of course,
irplementation dependent. A number of particular systems
are considered, however, in Section IV-4. The particular
example shown in Figure IV-6 resulted from execution of PLMI1
on an IBM System/360 under the CP/CMS time-sharing system
using a 2741 console. Thus, all lines shown in 1lower case
in this example, and examples which follow, are typed by the
programmer, while upper <case 1lines are output from the
program keing executed. The PLM1 output shown in this
figure indicates that the program is syntactically correct,
the intermediate files have been written, and the second

pass can Le initiated.

2. PLM2 Operating Procedures.

As mentioned previously, PLM2 performs the second pass
of the PL/M compilation by reading the intermediate files
produced through execution of PLM1. PLM2 then generates
machine code for the MCS-8 CPU.

Error messages produced by PLM2 are of the form
(nnnnn) ERROR m

61

PASS-1

$1=2 (could use $0=2 for printer listing, $t=1 for no listing)

00001
00002
00003
0000t
00005
00006
00007
00008
NG .
00009
RAM
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035

2
2
2

/* THE INDFX PROCEDURE SEARCHES THE STRINMG STAPTIMA AT
*A' FOR AN OCCURRENCE OF THE STRING STAPTING AT 'R',
INDEX RETURNS A ZFRO |F THE SECOMD STRINMG 1S MOT A SUR-
STRING OF THE FIRST; OTHERWISE, THE POSITION OF THF
SECOND STRING 1S RETURNED. THF CHARACTEP POSITIONS ARE
COUNTED STARTING FROM 1 AND EMDIMG AT 255, */

DECLARE EOS LITERALLY 'OFFH';

/* THE LABELS LO ... L5 AND C1 ... C3 ARE PRESENT FOR NERUGG!
PURPOSES ONLY, AND CAN BE REMOVED WITHOUT AFFECTING THE PROG
EXECUTION */

INDEX: PROCEDURE (A,B) BYTE;

L0: DECLARE (A,B) ADDRESS,

(SA BASED A, SB BASED B, J,K,L,M) BYTE;

J =0;
L1: DO WHILE SA(J) <> EOS;
K =0;
L2: DO WHILE (L:=SA(J+K)) = (M:=SR(K));
L3: IF L = EOS THEN RETURN J+1;
K=K+ 1;
END;
J=Jd +1;
Li: IF M = EOS THEN RETURN J;
END;

LS: RETURN 0;
END INDEX;

/+ TEST THE INDEX FUNMCTIOM =/
DECLARE Q DATA ('WALLAWALLAWASH',EOS),

(1,J) BYTE;

DO WHILE 1;

Cl: | = INDEX(.Q,.('WALLA',E0S));
C2: | = INDFX(.('WALLA',EOS),.Q) ;s
€3: 1 = INDEX(.0,.("*WASH',EO0S));
END;

EOF

NO PROGRAM ERRORS

Figure IV-6.

Listing produced by PLM1 for the INDEX procedure.

62

where nnnnn references the line in the source prograr where
the error occurs, and m 1is an error message nunber,

corresponding to those given in Fiqure IV-7.

Operation of the second pass is particularly simple.
PLM2 begins by reading the card reader (batch mode) or
console (time-sharing mode) and will accept any numker of
gn switches as input. These switches set the second pass
compiling parameters shown in Figure IV=8. PLM2 continues
to read these switches until one blank line is encountered.

At this fpoint, PLM2 reads the intermediate files produced by

PLM1 and generates the MCS-8 machine code.

As in the case of PLM1, the exact manner in which the
PLM2 program is initiated is implementation dependent, and
will be discussed for some particular systems in Section
IV-4.

Figure IV-9 shows the execution of PLM2 wusing the
intermediate files produced by PLM1 for the INDEX procedure
given previously. Figure IV-10 lists the BNPF machine code
file which results from this execution of PLM2. Note that
the machine code file is headed by a symbol table (caused by
the $MEMCRY=1 entry during PLM1) which will be used by
INTERP/8 during the debugging phase which follows.

3. Program Check-Out.

Program verification is accomplished through the use of
the MCS-8 CPU software simulator, <called INTERP/8. The
various commands available in INTERP/8 are described fully
in the MCS-8 Users Manual. The PL/M program being
checked-out is first compiled wusing PLM1 and PLM2, as
previously described. 1In order to quickly locate errors in
the source program, it is helpful to include the $MEMORY=1
toggle in PLM1 so that a symbol table is produced fcr the

63

ERROR MESSAGE
NUMBER . "

101 - REFERENCE TO STCRAGE LOCATIONS OUTSIDE THE VIRTUAL MEMORY
NF PASS-2. RE~COMPILE PA4SS-2 WITH LARGER 'MEMORY' ARRAY.

102 "

103 VIRTUAL MEMORY OVERFLOW, PROGRA~ IS TOO LARGE TO COMPILE
WITH PRESENT SIZE OF 'MEMORY,' EITHER SHORTEN PROGRAM OR
RECOMPILE PASS-2 WITH A LARGER VIRTUAL MEMORY,

104 (SAME AS 183).

105 $TOGGLE USED IMPROPERLY IN PASS-2. ATTEMPT TO COMPLEMENT
A TOGGLE WHICH HAS A VALUE OTHER THAN B OR 1,

106 REGISTER ALLOCATION TABLE UNDERFLOW, .MAY BE DUE TO A PRE-

197 REGISTER ALLOCATION ERROR. NO REGISTERS AVAILABLE. MAY
BE CAUSED BY A PREVIOUS ERROR, OR PASS~-2 COMPILER ERROR.

108 PASS-2 SYMBOL TABLE OVERFLOW. PREDUCE NUMBER OF
SYMBOLS, OR RE-COMPILE PASS-2 WITH LARGER SYMBOL TABLE,

199 SYMBOL TABLE OVERFLOW (SEE ERROR 103).

110 MEMORY ALLOCATION ERROR, TOO MUCH STORAGE SPECIFIED IN
THE SOURCE PROGRAM (16K MAX ON 88¥8). REDUCE SOURCE PROGRAM
MEMORY REQUIREMENTS,

111 INLINE DATA FORMAT ERROR, MAY BE DYE TO IMPROPER
RECORD SIZE IN SYMBOL TABLE FILE PASSED TO PASS-2.

112 (SAME AS ERROR 107).

113 REGISTER ALLOCATION STACK OVERFLOW, EITHER SIMPLIFY THE
PROGRAM OR INCREASE THE SIZE OF THE ALLOCATION STACKS,

114 PASS-2 COMPILER ERROR IN 'LITADD' -~ MAY BE DYE TO A
PREVIOUS ERROR.

115 (SAME AS 114),

116 (SAME AS 114),

117 LINE WIDTH SET T0OO NARROW FOR CODE D!!MP (USE SWIDTH=N)

118 (SAME AS 1087).

119 (SAME AS 110).

12n “(SAME AS 118, BUT MAY BE A PASS-2 COMPILER ERROR).

121 (SAME AS 108). _

122 PROGRAM REQUIRES TOO MUCH PROGRAM AMD VARIABLE STIRAGE,
(PROGRAM AND VARIABLES EXCEED 16K).

123 INITIALIZED STORAGE OVERLAPS PRFVIOUSLY JINITIALTZED STGRAGE.

124 INITIALIZATION TABLE FORMAT ERROR., (SEE ERROF 111),

125 INLINE DATA ERROR. MAY HAVE BEEN CAUSED BY PREVIQUS ERROF,

126 BUILT-IN FUNCTION IMPROPERLY CALLED.

127 INVALID INTERMENIATE LANGUAGE FORMAT. (SEE ERRUR 111).

126 (SAME AS ERROR 113).

Figure IV-7.

PLM2 error messages issued during the
second pass.

64

135
136
137
138
139

140

142

143

INVALID USE OF BUILT-IN FUNCTIOM IN AM ASSIGMMENT,

PASS-2 COMPILER ERROR, INVALID VARTABLE PRECISION (w7
SINGLE BYTE OR DOUBLE BYTE), MAY BE {UE YO PREVICLS YRROK.

LABEL RESOLUTION ERROR IN PASS-Z (MpY BC COMPILER ERARQR).
(SAME AS 108).
(SAME AS 113) .,

INVALIC PROGRAM TRANSFER (ONLY COMPUTEL JUMPS ARE ALLOWED
WITH A 'GO TO').

(SAME AS 134),

ERROR IN BUILT-IN FUNCTION CALL,

(NOT USED)

(SAME AS 107),

ERROR IN CHANGING VARIABLE TO ADDRESS REFERENCE. MAY
BE A PASS-2 COMPILER ERROR, DR MAY BE CAUSED BY PRE~-
VOUS ERROR.

(SAME AS 1087).

INVALID ORIGIN. CODE HAS ALREADY BEFN GENERATED IN THE
SPECIFIED LOCATIONS.

A SYMBOL TABLE DUMP HAS BEEN SPECIFIED (USING THE §MEMCRY
TCGGLE IN PASS-1), BUT NO FILE HAS BFEN SPECIFIED TC kE-
CEIVE THE BNPF TAPE (USE THE SBNPF=M CONTROL).

INVALID FORMAT FOR THE SIMULATOR SYMBOL TABLE DUMP (SEE
FRROR 111).

Figure IV-7. (Con't)

65

Switch Name

Default

SANALYZE = n
$BNPF = n

SCOUNT = n
$DELETE = n
$EOF
$SFINISH

SGENERATE = n

SHEADER = n

$INPUT = n
SLEFTMARGIN=n
SMAP '

SOUTPUT = n
SPRINT

SRIGHTMARGIN=n

STERMINAL

Use

Print a trace ’of the register allcca-
tion stack if n=1l. Include assigned
regisfers if n = 2.

Do not write a BNPF tape if n=0. Other-
wise, write a BNPF tape to file n (see
PL/M file numbering).

(Same as Pass 1)

(Same as Pass 1)

(Same as Pass 1)

Print a decoded dump of the:generated
machine code at the finish of Pass 2.

Print a cross reference of source line
numbers verses machine code locations
if n= 1. £ n= 2, print a trace of
the intermediate language as it is read,
as well.

Start machine code generation at loca-
tion n when producing a code dump or
BNPF tape.

(same as Pass 1)
(same as Pass 1)

Print a memory map showing symbol num-
bers and address assignments at the end
of Pass 2.

Pass 1)
Pass lf
Pass 1)

(same as Pass
the listing of the intermediate filesg as
they are read)

(same as
(same as

(same as

SVARIABLES = n The first prage of Random-access Memory

SWIDTH = n

Figure IV-8.

(RAM) is page n (numbering 0, 1,...,63)

(same as Pass 1)

PLM2 "$" compiler. switches.

66

1, default value suppresses

0

PASS-2

$generate =
Sbnpf = 6

12=0003H
19=0067H
25=0089H
35=00E6H

Figure IV-9.

1

(cross reference line numbers and locations in code)
(write bnpf tape to internal file number 6)

13=000EH 15=0011H 16=001EH 17=0026H 18=00L3H

20=006DH 21=0071H 22=0077H 23=008LH 24=0087H
26=008AH 29=009CH 32=00A5H 33=00BFEH 34=00E1H

Sample output from PLM2 corresponding to the
INDEX procedure.

67

1 CARPY 00362
2 ZERO 00363
3 SIGN 00364
L PARITY 00365
5 MECMOPY 00400
19 INDFX 00003
20 A 00366

21 B 00370

23 L0 00016

26 J 00372

27 K 00373

28 L 00374

29 M 00375

31 L1 00021
35 L2 0005
38 L3 00132
L1 L& 00170
43 L5 00207
Lb 0 00215

46 | 00376

47 J 00377

50 C1 00234
52 €2 00265
53 €3 00318

Figure IV-10.

I R AR 22222 A Y R R A R SRS R R E RS2 R 2 R

kRKhkR kKK

I R X I S L XSS RS SRR

hhkkhhkh®

0

8

16
24
32
40
48
56
64
72
80
88
96
104
112
120
128
136
144
152
160
168
176
184
192
200
208
216
224

232

BMPNMNPNNF
BIHNHNNNNNE
RNMPPNNNNF
BHNPPNNNNF
BMNNNNNNNF
BPPPPPMPNF
RPMMMNPPPE
BNNNNNNNNF
BPPNNNPPPF
BPNNNNPPPF
EMNPPNPPNF
BNNPNPPPNF
BPPNNNPPPF
BPPPPNPPNF
BNNNNNPPNF
BPPPNPNNNF
BINNPPNPPNE
BPPNNPHNNF
BPNNNNPPPF
BNNMNNNNNE
BPPNNNPPPF
BPPPPPPNPF
BNPPPNNNPF
BNNNPNPNNF
BHNNNNNRNF
BNNNNPNNNF
BNNNNNNNNF
BNNNNPNNNF
BMNNNNNNNF
BPPPPPNPNF
BMNPPNPPNF
BPPPPPPPPF
RNMPPNPPNF
BNPNNNPNNF
BNNNNNPPPF
BNNNMNNNNF
BNPNNPPNMF
BNPNNPPHNF
BNPNNNNNPF
BNPMNNPNNF
RNPNHNNNPF
BPPPPPPPPF
BMNNNMNNNF
BNNNNNNNNF
BNNPNPPPNF
BPPPPPNNNF

BMPNPNPPPF

BNPRNNNNPF,
BNHUNPNPPNF

"BNMPNNPPNF

BNNNNNNMNF
BPPPPPPPNF
BMNNNNNNNF
BMPNNPNNNF
BMNNPNPPNF
BMNPNNPPNF
BMNNMNNMNNF
BPPPPPPPNF
ENNNNNNNNF

BPNNNPNPNF
RHMPPNPPNF
RPPPPPHPMF
BPPPPPIPMNNF
REMPMPPPNF
RPPNINPPPF
RMEPPNENLT
PRPMNMPPPPF
ENNNPNPMNF
BMNNNMNMME
BPPPPPMPPF
EMMNNNNNNE
BMMNPPMMNNF
BPMNNNPPPE
BMMNNNNNNF
RPPNNNPPPF
BPPPPPPNNF
BPPNNNPPPF
BMNPPNNNNF
RPNNNPPPPF
BMNPNPPPNF
BPPPPPNNNF
RMMNNNNNNF
BPPPPPPPPF
BMNPPNPPNF
BPPNNNNNPF
ENNPPNPPNF
BPPPPPNNPF
BMNPNPPPMF
BPPNNPPPPF
BPPPPPPMNPF
BMPMNPMNNF
BPPPPPNPNF
BNNNPNNMPF
BRMHNNNPPPE
BMPMPNPPPF
BMPMMNNNNPF
ENPMMPPMME
BMPNPNMPPF
BPNPNNPNPF
BMPNMPPMNF
BNMNNPPPNF
BMNNPPPPHF
BMPMNNPPNZ
BMHNNMNNNE
BMPNNNPMNF
BMPMNNNNPF
BPPPPPPPPF
BMNMNNNKNNF
BMMNNNNNMF
BMNPMPPPNF
BPPPPPNNNF
BMPNPNPPPF
BPPPPPPPPF
BNMNNNNNNF
BMNMHNNNNF
EMNPNPPPNF
BPPPPPMNME
RPPPPPPPPF

BNNNNNNMNF
BPPPPNPPNF
BMHMPPMMNNF
BMMPPMMHIMNF
BNHNNNMMNF
BHNPPHPPHE
RPPNEPHMNE
EPPPPNMMPF
BPPPPPPPPF
BMNPNPPPNF
EMNPPPPPMF
BMNPPMPPNF
EPNMNNPPPF
BMNPPNNNNF
BPMHNNPPPPF
BNNPNPPPNF
BPPPPPNNMF
BMNPPNPPNF
BPPMPNNNNF
BPPPPMNPNF
BNMNNNMINE
BPNNPNMNPF
BMMPPNNMNPF
BMPNNPNNNF
BPPPPPNPNF
BMNNNNPPPF
BPPPPPNPPF
BMPMMNPNNF
BMNMNNNNNMF
BMMNMNPMNMF
EPPNMNNPPPF
BPNNNNPNMF
BPPMHNPPPE
BMNNMNMNNF
BMPNNMPNNE
BNPNMNNNPF
RIPNPMPPPF
BNPHMMMMPF
BMPNNPMNNF
BHHNMNMMNE
EMPNMPPHMF
BPENNPPNPE
RPMNPPPPPF
BMINNMNPPF
RMNPPNPPMF
BPMPEPPPNF
SHPLNNPPNNE
BMHNMNPPPNF
BEMNMPPPPNF
ENPMNNPPNF
EMNMNNNNNF
BMPMMNPNNF
LNPMNMNMPF
BNNNNPPPNF
BMNNFPPPMF
EYPNMNPPNF
RENNMMMNNF
RHPMNNPMMF

BHNPNPPPNF
5ppPPPPMNPF
BPPPPPNPOF
BINPPPPPMF
RENPONDPNE
BPPPPMPPIF
RMMNMPPPNE
EPPPHPHNNF
BHPRMPNNNF
RMMMHMNNNE
BIPMMHMNNE
RPPPPPHPNF
BMNPPMPPNF
BPPNNPNNMF
RPPPPMMMPF
EMNNNMNNNE
RMNPPMHMPF
BPPPPPNNNF
BNNNNMPPNE
EPPPMPHNNF
BMMPPHPPNF
BMPNNPNHNF
BPPNNNPPPF
BMPPNNPPPF
BPPNNPPPPF
BHNPMPPPNF
BPPNNPPPPF
BMNNPNPPHNF
BNHPPNPPNF
BPPPPFNMPF
BNNNPMPNNF
EMNHNHNNNE
BMMNNMPPPF
EPNPNPNNNF
BPNNT-DPNNE
EHPHNPPHNE
RMPNNHNNPE
EMPNPMPPPE
EFPPPPPPPF
PHNPNPNMPOPE
BMPHMMENPF
BHNMPNPPME
BMNPNMPPNF
BHMNHNNNNNE
BPPPPRPPNF
PHHNHNHNNE
BIPHNPPNNE
RPNPPPHMNF
BPHNNPPNPF
DNNNHNNPPF
BHNPPMPPNF
RPPHPNPPNF
BNPNPHNPPF
RPNNNPPNPF
RPPMPNNNPFE
BMNNNNMPPE
BFNPPMPPNE
BPNNPPPNNF

Symbol table and BNPF tape produced by PLM2
for the INDEX procedure.

68

simulation. In addition, key statements in the source
program should be labelled so that important points can be
referenced symbolically during program check-out (see the
use of the labels LO, ... L5, and C1, C2, and C3 in Figure
1v-6, for example) .

The generated symbol table and compiled object ccde is
loaded into INTERP/8. Simulated program execution can then
be monitored, the values of memory locations can be examined
and altered, and program errors are readily detected.
Program check-out is usually more effective if debugging is
carried-out at the symbolic rather than absolute level.
That is, INTERP/8 allows reference to memory through both
symkolic locations (using the generated symbol table) and
absolute addresses. As a result, it 1is generally much
easier to follow the execution using the symbolic features
of INTERP/8 than it is to trace the execution using absolute
memory addresses. Thus, it is well worth the effort to
beccme familiar with INTERP/8 symbolic debugging facilities.

A numker of features have been added +to the INTERP/8
program which enhances its use in debugging PL/M progranms.
These features augment the commands described in Appendix
IIT of the MCS-8 Users Manual. These additions are given

below.

- First, note that symbolic names can be duplicated in a
PL/M program. That is, a programmer could declare variables
with the same name 1in block levels which do not ccnflict
with one another. Consider the two procedures below, for
example

P1: PROCEDURE (A) BYTE;
DECLARE (A,B) ADDRESS;
END P1;

P2: PROCEDURE (Q) ADDRESS;

62

DECLARE (Q,A,B) BYTE;

END P2;
Recall that although there are variables in procedures P1
and P2 which have the same names (i.e., A and B), these
variables are all given separate storage locations. In
order to distinguish these variables, a construct cf the
form

S1/ S2/ «.. Sn

is allowed as a symbolic reference in INTERP/S8. The
interpretation of this construct is as follows: INTERP/8
first searches for the symbol S1, then looks further to S2,
and so-forth until Sn is found. This new construct can
appear anywhere a "symbolic name" is allowed in the current
INTERP/8 command structure. Note that in ©particular, the
definition of a "range element" is extended to include this
new form. Thus, the command

DISPLAY MEMORY A TO B+1.
is the same as

DISP MEM P1/A TO P1/B+1.

The seccnd cccurrences of A and B can only be 1located by
first searching for the name P2. Thus, these two variables
could be displayed using the command

DI MEM P2/A TO P2/B.

A second change to the INTERP/8 commands allows
reference to a symbolic location when setting the value of
the program stack (PC, PS 0, ... PS 7) or the value of the
memory address register (HL). With this addition, the
following are valid commands

SET PC = P2, BS 5 = P1.
SET HL = B.
SET HL = P2 / A + 1.

Two additional $ switches have been added to INTERP/S.
The first is of the form

70

$MAXCYCLE = n
When this switch has a non-zero value, the CPU simulation is
prevented from running more than n cycles Lkefore returning
to the card reader or console for more input (n is initially
zero) . The toggle
$GENLABELS
was added to cause INTERP/8 to print the closest symbolic
name to the current program counter whenever a break point
is encountered. INTERP/8 prints
break AT n = label displacement

where "break" is o¢ne of the break point types: CYCLE,
ALTER, or REFER, and n is an absolute location. The value
of "label" is the closest symbolic name in the progranm,
while the displacement is a positive or negative distance

from the name to the location counter.

The last change to INTERP/8 allows imbedded dollar
signs within numbers and identifiers, as in PL/M.

These features are demonstrated in the example
described below. Figure 1IV-11 gives a sample run of
INTERP/8 using the symbol table and machine code produced by
PLM2 corresponding to the program containing the INDEX
procedure given previously. Again, the initiation of
INTERP/8 1is system dependent and thus is not shown here.
The symbol table is first loaded from file 6, followed by
the machine code, also from file 6. Note that these file
numbers must correspond to the BNPF tape file written by
PLM2 (see the $BNPF switch in PLM2). The listing produced
by PLM1 is used, along with the symbolic reference features
of INTERP/8 to follow the program execution.

71

INTERP/8 VERS 1,0
/* first load the symbol table and bnpf tape from internal
file number 6 (corresponding to the $bnpf=6 in pass2) */

load 6 6.
234 10AD OK

/* then look at the symbol table */

display symhols.

0003620 00242 00F24 CARRY
0003630 00243 00F3H ZFPO
0003640 00244 OOFLH SIGN
0003650 00245 00F5H PAPITY
0004000 00256 0100H MEMORY
0000030 00003 00034 IMDEX
0003660 00246 00FEH A
0003700 00248 OOF3H B
0000150 00014 000FH LO
0003720 00250 00FAH J
0003730 00251 00FBH K
0003740 00252 00FCH L
0003750 00253 0OFDH M
0000210 00017 0011H L1
0000540 00044 002CH L2
0001320 00090 005AH L3
0001700 00120 0078H Lk
0002070 00135 0087H L5
0002150 00141 O008DH Q
0003760 0025k OOFEH |
0003770 00255 OCFFH J
0002340 00156 009CH T1
0002650 00181 00BSH C2
0003160 00206 OOCEH (3

/* set break points at places

iabelled by 10, 11, vee ,15 %/

refer 10,11,12,13,14,15.

REFER OK

in the index procedures

/* it will probably be useful to examine the program

at the beginning and end of each call to index, so...*/

ref cl,c2,c3.

REFER OK

/* now run the program to the first reference variable */

go 1000,
GO OK

REFER AT 156=C1
/* we are at location 156 decimal, or equivalentiy, label cl */

base hex.
HEX.BASE 0K

display symb *,
Ccl

/* look at cpu registers .
di cpu.

cyzse A B c D £ H L HL SP PSC
*OOOC*OOH*GOH*OOH*OGH*OCH*ODH*OOH*OOOOH*OOH*OOQCH

di sym 9ch.
cl

Figure IV-11. of INTERP/S8.

Sample execution

72

di memory q to q+10.
008DH S57H 414 4CH 4CH L41H S57H L1IH 4LCH 4CH L4LIH S7H

/* that must be the hex representation of WALLAWALLAV =/

di sy q.
0002150 00141 OO8DH

/* now run the program to entry of the subroutine */
go 1000.

GO OK

NEFER AT EH=LO

/* now at label L0, so examine the value of a */

di mem a.
00F6H 8DH

di mem a to a+l.
O0OF6H 8DH O0O0H

/* the first string is based at a, so look at it..*/

di mem 8dh to 90h,
008DH S57H 41H 4CH 4CH

/* looks good, now examine b's value =/

di mem b to b+l,
00F8H 9FH O0O0H

conv 9fh.
100111118 2370 159 9FH

di mem 159 to 165,
009FH S7H 41H 4LCH 4CH 41H FFH OEH

/* 1ooks good too, so run the index procedure down to

label 12 (also, to save tYping go 1000, we can set maxcycle

to 1000 so the simulation will never run more than 1000 cycles
before stopping) */

$maxcycle = 1000

go.

REFER AT 11H=L1

go.
REFER AT 2CH=L2 .
/* examine the values of the local variables =/

di mem index/j to index/m dec.
00FAH 000 000 000 000

di mem j to m.
O0OFAH O0OH OCH O0O0H OOH

di sy Ofah.

J

/* run the procedure to label 13 */°
go.

REFER AT SAH=L3

/* both 1 and m should contain a 'w' */

di mem 1 to m.
OO0FCH 57H S7H

73

/* we should get a match on characters W/ A L L A

and then return with the matching position 1 =/

go. di m 1 to m.

REFER AT 2CH=L2

O00FCH S57H S7H

go. di m 1 to m,

REFER AT S5AH=L3

O0FCH 41H 41H

go . go. di m 1 to m.

REFER AT 2CH=L2

REFER AT S5AH=L3

O00FCH LCH A4CH

/* so far we have matched W A L */

go. go, di m 1 to m.

REFER AT 2CH=L2

REFER AT SAH=L3

O0FCH L4CH u4CH

/* turn off the break point at L2 since it is getting
in the way */

noref 12,
REFER 0K

go. di m 1 to m,
REFER AT SAH=L3Y
O0FCH L1H 41H

/* this time we should return */

g0.
REFER AT 78H=LL

di mem m,
00FDH FFH

/* m = eos, so we should end up at label c2 */
ref 12. go.

REFER OK

REFER AT B5H=C2

/* thecValue of i should be 1 */

di m i,
OOFEH 01H

di m i dec.
00FEH 001

/* now try the second call #/

£O.
REFER AT EH=LO

di mem a to b+l.
OOFGH R3! O0Y 8D 0O0H

bhase dec.
DEC BASE OK

di mem a to b+l,
00246 184 000 141 000

74

di mem 184 to 190, mem 141 to 147,
00184 087 065 076 076 065 255 Ol
00141 087 065 076 076 065 087 0CS

/* strings are being sent properly, so we can continue.
we should return a 0 this time since the larger string
is not a substring of the smaller, so set reference
breakpoint only at 15 =/

noref 10,11,12,13,14, go.

REFER OK

REFER AT 135=LS

/* looks good, so let the subroutine return */

00
ﬁEFER AT 206=C3

di mem 1.
00254 000

noref 15, /+ let the subroutine run, and see if
REFER OK

it returns the proper value */

g0.

CYCLE AT 50=L2+6

/* we just ran over 1000 cycles, so let it continue */
go 5000,

GO CTK

REFER AT 156=Cl

/* we are now back around the loop. 1{ will be an 11

if all is well */

di mem i,
0025t 011

/*t everything looks good, so we can now do a little
fooling around to show some of the other debugging
features -- first we will l1ook at the operand break

point */

noref 0 to 256.
REFER 0K

/* all reference break points are reset. we will now
set a byeak point so that program execution stops when
the variables local to index are referenced. */

refer j to k.
REFER OK

go.
REFER AT 15=L0+1
/* we stopped at the first instruction in index...

look to see what instructions are there */

75

di mem * to +«+10 code.
00015 LMI,00H LHI,00H LLI,FAH LAM LLI F6H ADM INL

di hl,
HL = 250

di sy 250,
J

/* thus program execution has stoppéd because there
was an attempt to store a zero into a variable set
in the refer command run the program further...*/

£0.
REFER AT 21=L1+4

di hl1. di mem * code.

HL = 250

00021 LAM

di sy 250.

J

/* breakpoint now occurs because of the reference to
the variable j. reset the break points, and
break only if the variable is being altered #*/
noref j to m, alter j to m.

REFER 0K

ALTER OK

go.
ALTER AT 42=12-2

di hl. di m * code.
HL = 251

00042 LMI

di sy 251.

K

/* now stopped because of attempt to alter variable k#/

g0.
ALTER AT 66=L2+22

di h1,
HL = 252

d? sy 252,
L

di me * to * + 10 code. \
00066 LMA DCL LBA LAM LL!,F8H ADM INL LCA LAI,O0H

di a.
A = 87

/* we are about to store the accumulator into the

variable 1. look to see what is currently in 1, and

then run one cycle, examine again. */

di mem 1.
00252 255
go 1.
GO 0K

CYCLE AT 67=L2+23

76

di mem 1.
00252 087

/* stored ok now reset all operand breakpoints,
and go back and try the call over again */

noalter j to m.
ALTER OK

di sy cl.
0002340 00156 009CH

di cpu.
CYZSP A B c)] E H L HL. SP PSO PS1
«0101+087+141 000+159 000 000*252+00252*001+00176*00067

set pc = cl. di cpu.
SET 0K
CYZSP A B o D E H L HL S°P PSO PS1

0101 087 141 000 159 000 000 252 00252 001 00176+00156

/* we had better get out of the subroutine
call, sO ... */

set sp = 0. set pc=cl. di cpu.
SET OK
SET OK

CYZSP A B c D E H L HL
0101 087 141 000 159 000 000 252 00252+

/* that looks a lot better. now try the call again */

gO.
CYCLE AT 62=L2+18

g0.
CYCLE AT 6L4=L2+20

ref cl,c2,c3.
REFER OK

g0.
REFER AT 181=C2

di mem 1.,
00254 001

/* same as before. now try some selective
program execution and tracing. we will set the

values of some local variables and execute only

the code between 12 and 13 #/

set cpu. di cpu.

SET 0K

CYZSP A B c D E H L HL SP PSO
*0000*000%x000 000+000 000 000*000*00000 000+00000

/* display the code between 12 and 13 */

di mem 12 to 13 cod.

00044 LHI,00H4 LLI,FAH LAM INL ADM LLI!,F6H ADM INL LRA LAI,00H ACM™ LLR
00060 LHA LAM LH!,00H4 LLI,FCH LMA DCL LBA LAM LLI,F8H ADM IML LCA LAI
00076, 00H ACM LLC LHA LAM LHI!,00H LLI,FDH LMA SUB JFZ,71H,00H DCL

set mem j tom = 0, di mem j to m.
SET 0K
00250 000 000 000 000

77

/* set the address pointers for a and b up in memory
somnewhere =*/

set mem a3 to b+l = 0 1h 10h lh. di m a to b+l,
SET 0K
00246 000 001 016 001

/* now place data into these locations */

set mem 100h to 120h =1 2 3 4 5 6 7.
SET 0K

di mem 100h to 120h.
00256 001 002 003 OO4L 005 006 007 001 002 003 OO4 005 006 007 001 002
00272 003 004 005 006 007 0D1 O0C2 003 OOC4 005 006 007 001 002 003 OOL4

/* set j to 3 and k to 2 %/

set mem j=3, mem k=2, di m j t k.
SET OK ’
00250 003 002

/* now trace this section of code %/

trace 12-3 to 1345,
TRACE OK

go 5.

GO 0K

REFER AT 156=C1

/* move the program counter up to this section */
PC 156

SP 0

di b.
B =20

di pc, sp.

di cpu.

CYZSP A B C D E H L HL SP PSO
0000 000 000 000 000 000 000 OOODO 00000 000+00156

set ps 0 = 12, /* same as set pc=12%/

SET 0K

go 5.
GO OK

0000 000 000 000 000-000 OOC ODO 00000 0O0O*OOOLY
LH! O . f

0000 000 000 000 000 000000 000 00000 000*00QL6
LLI 250

0000 COO 000 000 000 000 0O00%250+«00250 000+00048
LAM

0000+003 000 000 000 000 000 250 00250 00000049
INL
+0010 003 000 OO0 000 000 000+251+00251 000x00050
ADM :
CYCLE AT 51=L2+7

base hex.
HEX BASE 0K

go 30
GO OK

78

«0001+05H OOH
LLI F6H

0001 O5H OOH
ADM

0001 O5H OOH
INL
+0010 O5H OOH
LRA
CYZSP A B
0010 OS5H*O5H
LAt OH
0010+00H O5H
ACM
+0000+01H
LLB

0000 O1H
LHA

0000 O1H
LAM
0000+06H

00H
00H
O0H
00H

c
00H

00H

05H OOH

05H OOH

05H OOH

05H 0OH
LHI OH

0000 06H
LLI FCH

0000 06H
LMA

0000 06H
DCcL
+0010 06H O5H
LBA
CYZISP A B
0010 06H*06H
LAM

0010+02H 06H
LLI F8H
0010 02H
AD;
*0001%12!!
INL

*0011 12H
LCA

0011 12H
LAT OH

0011%00H
ACH
*0000+01H
LLC

6000 O01H
LHA

0000 O1H
LAM

CYZSP A

0000+05H
LH! OH

0000 05H
LLI FDH
0000 OSH
LMA

0000 O5H
SUB
*1011+FFH
JFZ 71H
CYCLE AT 73H=LL-5H

O05H OOH

05H 00H

05H 00H

00H

c
00H

00H
06H OOH
0GH 00H
06H O0O0H
06H*12H
06H 124
06H 12H
0eH 124
06H 12H

c
124

B
06H
06H 12H
06H 12H
06H 12H

06H 12H

/* that should be enough of a check-out,

§eof

00H
00H
00H
00H

00H
00H
0OH
00H
00H
00H
00H
00H
00H

00H

00H
00H
0CH
00H
00H
ooH
0OH
ool
CnH

00H

00H
O0H

O0H
00H

00OH

00H O00H FBRH OOFBH
00H OOH*FEH*00F6H
00H OOH F6H OOF6H
00H OOH*F7H*O0O0F7H

E H L HL
00H 00H F7H OOF7H

00H 00H F7H OOF7H
00H 0OH F7H OOF7H
00H OOH*05H*0005H
00H*01H OSH*0105H
00H 01H O5H 0105H
0OH+00H O5H*0005H
00H OOH*FCH*0O0FCH
00H OOH FCH OOFCH
00H OOH*FBH*0O0FBH

H L HL
00H FBH OOFRH

E
00H

00H O00H FBH OOFBH
00H O0OH*F8H*0OOF8H
004 OOH FE8H OGF8H
00H OOH*FI9H*00F9H
004 OOH F9H OOF9H
0CH OCH FSH COF9H
00H 00t F9H OOFSH
00+ OOH*12H*0012H
00H+*01H 12H*0112H

E H L AL
00H O1H 12H 0112H

00H*00H 12H*0012H

00H OOH*FDH+QOFDH
00H OOH FD!l OOFDH

O0OH O0H FDH OOFDH

79

00H*0033H
00H*0035H
00H*0036H
00H*0037H

sp PSO
00H*0038H

0NH*003AH
00H*003BH
00H*003CH
O00H*003DH
00H*003EH
00H*0040H
00H*00L2H
O0H*00L3H
O00H*00LLH

SP PSO
OO0H*00LSH

00H*00L6H
00H*0CL8H
00H*00LIH
O0H=0O0LA!
0NH*0OLBY!
OOH=+0OLD"!
OOH*COLE!!
OOH*0O0LFH
0CH*0050H

Sp PSO
00H*0051H

00H*0053H

00H*0055H
OO0H*0056H

00H*0057H

so retire...*/

4. Implementation-Dependent Operating Procedures.

As mentioned previously, the exact manner in which PLM1
and PLM2 are initiated on any particular computer 1is
implementation-dependent. Several sample implementations
are given, howevef, in Figures IV-12 through 1IV-15. These
figures [provide a sample execution of both passes for the
INTEL PDP-10, and the commercial time-sharing =services
Tymshare, Applied Logic, and General Electric, respectively.
In each case, the FORTRAN unit names are specified for each
of the major files accessed by PLM1 and PLM2.

When using the Tymshare version (Figure 1IV-13), for
example, the programmer places the PL/M source program into
a file named FOR20.DAT, which corresponds to the internal
file number 6. This file is read when the $I=6 switch is
enccuntered during the PLM1 execution. PLM1 produces the
intermediate files FOR22.DAT and FOR23.DAT, along with an
optional listing in FOR03.DAT (under control of the $C=2 and
$T=0 or $T=1 switches).

PLM2 is then initiated and automatically reads the
intermediate files produced by PLM1. Output can be directed
to the disk file FOR0O7.DAT using the $0=3 switch during the
PLM2 execution. The $B=7 switch in PLM2 produces a BNPF

machine code tape during this second pass.

INTERP/8 can then be intiated for the debugging run,
and the "IOAL 7 7." command can be used to read this tape.

80

SAMPLE RUN ON INTEL POP-10

.COPY FOR22 ,0AT=MYPROG.PLM
.SET SPOOL LPY
R PiM1
$I=¢

PASS 1 OF COMPILER IS INVOKED WERE
R PLM2
$8=7
(SPACE ,CARRIAGF RETURN)

PASS 2 nF COMPILER 1S INVOKED HERE

LPRINT e,LPT

INPUT
FILE (FOR2@ .DAT)
y
OPTIONAL
PLM1 LISTING (*.LPT)
r
NTER-
. - SYMBOL
(FOR22.DAT) "EDéS:EE TABLE (FOR23.DAT)
FILE FILE
/
OPTIONAL
PLM2 LISTING | (*-LPT)

(FOR21.. AT)

Figure IV-]2. The INTEL implementation of PLM1l and PLM2.

81

SAMPLE RUN ON TYMSHARE PDP~10

SCTPY MYPROG.PLM,FOR22.NAT
JRUN (UPL) PL MY

$0=2

SMal

fS =)

$1=¢

PASS 1 OF COMPILFR IS INVCKED HERE

«RUN (UPL) PLM2

$F =)

§6zy

R =7

FMzy

£0=3

(SPACE+CARRIAGE RETURN)

PASS 2 oF COMPILER 1S INVOKED HERE

INPUT
FILE (FOR2@ . DAT)
y
OPTIONAL
PLM1 LISTING (FOR@ 3.DAT)
/
MEDIATE syisor,
(FOR22.DAT) . TABLE (FOR23.DAT)
LANGUAGE PILE
FILE
|
-
OPTIONAL (FOR@7 .DAT)

LISTING

(FOR21.DAT)

Figure IV-13. The Tymshare implementation of PLM1l and PLM2.

82

INTERNAL
FILE
NUMBER

NO VM AL -

INTERNAL
FILE
NUMBER

No iAW+

INTERNAL
FILE
NUMBER

NOUVTARWND

INTERNAL
FILE
NUMBER

N OO PRI

TYMSHARE FILE DEFINITIONS

INPUT
DEVICE

TTY
CDR
PTR
MTAf
DTA1l
DSKp@
DSK1

OUTPUT
DEVICE

TTY
LPT
PTP
MTA1l
DTA2
DSK?2
DSK3

INPUT
DEVICE

TTY
CDR
PTR
MTAQ
DTA1l
DSK2
DSK3

OUTPUT
DEVICE

TTY
LPT
PTP
MTA1l
DTA2
DSK@

DSK1

PASS 1

PASS 2

83

FILENAME

FOR@S5.DAT
FOR@2 .DAT
FOR@6 .DAT
FOR16 .DAT
FOR@9 .DAT
FOR2§ .DAT
FORZ21.DAT

FILENAME

FOR@S5 .DAT
FOR@3.DAT
FOR@7 .DAT
FOR17 .DAT
FOR1@.DAT
FOR22.DAT
FOR23.DAT

FILENAME

FORPS5.DAT
FOR@2 .DAT
FOR@6 .DAT
FOR16 .DAT
FOR@9.DAT
FOR22.DAT
FOR23.DAT

FILENAME

FOR@S5 .DAT
FORP3.DAT
FOR@7 .DAT
FOR17.DAT
FOR1@.DAT
FOR2@.DAT

FORZ1.DAT

FORTRAN
UNIT

5
2
6

16
9

20

21

FORTRAN
UNIT

5
3
7

17

1p

22

23

FORTRAN
UNIT

5
2
6
16
9
22
23

FORTRAN
UNIT

5
3
7

17

1p

20

21

SAMPLE RUN ON AL/COM PDP=-18

.COPY FILE12,DAT=MYPROG,PLM
JAPPLY PLM1

$0s2

$M3)

$Sz/

$1=6

PASS 1 OF COMPILER IS INVOKED HERE

+APPLY PLM2

$Fa)

$Gst

$8=7

M=t

$0=3

(SPACE,CARRIAGE RETURM¥)

PASS 2 OF COMPILER IS INVOKED HERE

INPUT
FILE (FILE|l .DAT)
|
[—_—
OPTIONAL
PLM1 LISTING (ALE|3-0T)

i

L NTER- :
=T amE SYMBOL
(rxLzlllngfy:;iégng TABLE (FILEI$.DAT)
L FiLe

i

i
H

OPTIONAL

LISTING

FILE
PLM2 (lmqw)

A

1
OPTIONA
BNPF

FILE f

(FILE12.DAT)

Figure IV-14. The ALCOM implementation of PLM1 and PLM2.

84

INTERNAL
FILE
NUMBER

NOUVTPA LI

INTERNAL
FILE
NUMBER

NONULMT AL

INTERNAL
FILE
NUMBER

NOoO nm AN -

INTERNAL
FILE
NUMBER

NoOuvTeA N =

AL/COM FILE DEFINITIONS

INPUT
DEVICE

TTY
DSK
DSK
DSK
DSK
DSK
DSK

OUTPUT
DEVICE

TTY
DSK
DSK
DSK
DSK
DSK
DSK

INPUT
DEVICE

TTY
DSK
DSK
DSK
DSK
DSK
DSK

OUTPUT
DEVICE

TTY
DSK
DSK
DSK
DSK
DSK
DSK

PASS 1

PASS 2

85

FILENAME

FILES.DAT
FILE7.DAT
FILE8.DAT
FILE9.DAT
FILE1§.DAT
FILE11.DAT
FILE12.DAT

FILENAME

FILE6.DAT
FILE13.DAT
FILE14 .DAT
FILE15.DAT
FILE16.DAT
FILE17.DAT
FILE18.DAT

FILENAME

FILES.DAT
FILE7 .DAT
FILES.DAT
FILE9.DAT
FILE1§.DAT
FILE17.DAT
FILE18.DAT

FILENAME

FILE6.DAT
FILE13.DAT
FILE14 .DAT
FILE1S5.DAT
FILE16.DAT
FILE11.DAT
FILE12.DAT

FORTRAN
UNIT

5
7
8

9
19
11
12

FORTRAN
UNIT

6
13
14
15
16
17
18

FORTRAN
UNIT

5
7
8
9

19

17

18

FORTRAN
UNIT

6
13
14
15
16
11
12

SAMPLE RUN ON GENERAL ELECTRIC TIMESHARE
OLD MYPROG

SAVE FILEIN
OLD PLM1

$1=6)
PASS 1 OF COMPILER IS INVOKED HERE

OLD PLM2
RUN

$0=2
(SPACE,CARRIAGE RETURN)

PASS 2 OF COMPILER IS INVOKED HERE

INPUT
FILE (FILEIN)

OPTIONAL (PTR 1)
PLM1 LISTING ‘
y
N |
MEDIATE s¥mBoL
(INTFIL) LANGUAGE TABLE (SYMFIL)

FILE FILE

y

OPTIONAL
PLM2 LISTING (PTR 2)

(LOGBIN)

Figure IV-15. The General Electric implementation of PLM1
and PLM2. '

86

ERRATA SHEET
October 24, 1973 v
GENERAL ELECTRIC FILE-DEFINITIONS

PASS 1
INTERNAL
FILE INPUT
NUMBER DEVICE FILENAME
1 TERMINAL --c
2 DISK CDR
3 DISK PAPI
4 DISK MAGI1
5 DISK DECI1
6 DISK FILEIN
7 DISK LOGBIN
INTERNAL
FILE OUTPUT
NUMBER DEVICE FILENAME
1 TERMINAL ---
2 DISK PTR1
3 DISK PAPO
4 DISK MAGO
5 DISK DECO
6 DISK INTFIL
7 DISK SYMFIL
PASS 2
INTERNAL
FILE INPUT
NUMBER DEVICE FILENAME
1 TERMINAL ---
2 DISK CDR
3 DISK PAPI
4 DISK MAGI1
5 DISK DECI1
6 DISK INTFIL
7 DISK SYMFIL
INTERNAL
FILE OUTPUT
NUMBER DEVICE FILENAME
1 TERMINAL ---
2 DISK PTR2
3 DISK PAPO~
4 DISK MAGO
5 DISK DECO
6 DISK LOGOUT
7 DISK LOGBIN

All "O0" in FILENAME are the letter "O', not the character
zero ("g").

87

V. PL/M RUN-TIME CONVENTIONS FOR THE 8C08 CEPU.

This section presents the run-time organization cf PL/M
progranms, including storage allocation and subroutine
linkage. The discussion below assumes an 8008 CPU
environment, and thus programs which are intended to be
independent cf CPU architecture should not depend wupon the

conventions presented here.

1. Storage Allocation,

The overall organization of memory for the INTEL 8008
CPU 1is shown in Figure V-1. Memory is allocated in three
main sections: the Instruction Storage Area (ISA), the
Variaktle Storage Area (VSA), and the Free Storage Area
(FSa) . The beginning of the ISA 1is determined ty the
numeric label of the first statement within +the PL/M
progran. If no numeric label is specified, the origin of
the ISA defaults to zero, and the segmert marked "unused" in
Figure V-1 1is empty. The "square rcot!" program given in
Appendix A contains a numeric label on the first‘ statement
to force the ISA to Start at location 2048.

All ccde generated by the PL/M compiler is ‘'pure."
That 1is, no object code modifications are made at run-time.
Thus, the ISA memory portion can be implemented 1in either

RAM (Random-Access Memory) or ROM (Read-Only lemory).

The VSA portion of memory holds values of variables
declared within the PL/M program in address-order. The
first variable declared in the source program is at the
lowest address in the VSA, while the last variable declared
is at the highest address. It should Lke noted that
doukle-byte (ADDRESS) variables are always aligned on an

88

MCS-8 MEMORY

16383)
FREE MEMORY
STORAGE e VECTOR
AREA
(FSA)
+MEMORY —*= J
«— LAST
VARIABLE VARIABLE
STORAGE DECLARED
AREA
FIRST (Vsa)
VARIABLE

DECLARED —»-

INSTRUCTION
STORAGE
AREA
PROGRAM (ISA)
ORIGIN —>

% @(V
00000 // "/ //

Figure V-1. Run-Time Storage Organization for the 8008 CPU.

89

even address boundary; thus, contiguous BYTE and ALDRESS
declarations in the source program may or may not lead to
contiquous allocation of these variables in the VSA. In
addition, note that declarations with the DATA attribute
cause allocation of the corresponding value in the ISA, not
the VSA. Hence, DATA variables cannot be altered if the ISA
is implemented in ROM.

The VSA 1is placed after the ISA, but never kegins
befcre the page indicated by the $VARIABLES compiler switch
in PLM2 (the default value of this switch 1is zero).
Suppose, for example, that pages 0, 1, and 2 ci memory are
irplemented in unalterable ROMN (recall that there are 256
bytes per page). The programmer would then set the switch

' $VARIABLES = 3

during PLM2 to indicate that page number 3 is the first page
in which variables can be allocated. If the ISA is
contained within pages 0, 1, and 2 then the VSA begins in
page 3. If the ISA extends past the first three pages into
RAM then, the length of the ISA determines the begirning of
the VSA. The end of the VSA is always at an even page
boundary.

Recall that there 1is one predeclared BYTE vector,
called "MEMORY," which is automatically included in every
PL/M program. The MEMORY vector is started after the 1last
variable in the VSA, and thus represents the last area of
memory, called the FSA, shown in Figure V-1. The length of
the MEMORY vector is, of course, dependent upon the amount
of smemory physiéally attached to the particular 8008 CPU
being used, and the length of the ISA and VSA. The length
of MEMORY can be effectively computed at run-time, however,
by attempting to read and write the first location in each
page of the FSA. A subroutine for this purpose is shown 1in
Figure V-2.

90

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
0001
00015
00016
00017

00018
00019

00020
00021
00022
00023
00024

MO PROGRAM

W W W

2
2

/* THE MEM$LENGTH PROCEDPURE RETURMS THE NUMRER OF
BYTES IN THE FREE STORAGE AREA (FSA) »/
DECLARE TEST$VALUE LITERALLY '1010$1010B';
MEM$LENGTH: PROCEDURE ADDRESS;
DECLARE (1,MAX) ADDRESS;
I = 0; MAX = 4OOOH - _MEMORY;
/* MAX 1S THE LARGEST POSSIPLE SIZF FOR THF FSA
IM A FULL 1€EK 8008 SYSTEM =/
IF ,MFMORY <> 0 THEM /% AT LFAST OME FRFE PAGF «/
LOOP: PO WHILE | < MAX;
/* WRITE THE TEST VALUE IMTO THE FIPST ¥OPD OF
THE PAGE */
MEMOPY(1) = TEST$VALUE;
IF MEMORY(1) = TEST$VALUE THEN
Il =1 + 256; ELSE MAX = 0;
END;
RETURN 1I;

END MEMS$LENGTH;

/* TEST THE APOVE PROCEDUFRE =*/
PECLARE RESULT ADDRESS;
START: RESULT = MEM$LENCTH;
FIMISH: GO TO STAPT;

EOF

ERRORS

Figure V-2. A PL/M Procedure for Determining MEMORY Length.

91

2. Subroutine Linkage Conventions.

The methods used for activating procedures'and binding
actual parameters to formal parameters in PL/M 1is given
below. Again, note that the conventions given here are
dependent upon the 8008 CPU environment.

Subroutine parameter passing is pesrformed as follows.
First, note that formal parameters declared in the fprccedure
definiticn are treated the same as locally defined
variables. That is, each parameter 1is allocated storage
sequentially in memory as if it were a variable local to the
procedure. Formal parameters, however, are initialized to
their «ccrresronding evaluated actual parameters at the time
the procedure is invoked. Thus, all parameters are "call by
value" in PL/M. This initialization of formal parameters is
performed in two different ways, depending ugon the number
of arquments declared in the procedurs. If there is only
one parameter, the low-order byte is passed in CPU register
B, while +the high-order byte is sent in register C. If
there are two parameters, the first is passed as abcve, and
the second is passed in CPU registers D (low-crder byte) and
E (high-crder byte). When there are more than two
parameters, the last two are sent as described abcve, and
the oc¢thers are sent by dgenerating implied assignment
statements at the calling point which store the evaluated
actual parameters into the variables representing the formal
parameters.

<The CPU registers are also used to hold values on
return frcm procedures which have tne BYTE or ALDRESS
attribute. In the case of a BYTE procedure, the value
returned is in the A register, while an ADDRESS procedure
returns the low-order byte in register A, and the high-order
byte in register C.

92

The eight-level program counter stack mechanism cf the
800& CPU is used to hold return addresses when subroutines
are called. Although this stack size is sufficient fcr most
PL/M programming applications, the user should be aware that
the 8008 stack size limits nesting of subroutine calls to

seven levels at run-time.

3. Use of Assembler Lanquage Subroutines with PL/M.

Assembler language subroutines can be incorporated into
PL/M programs if these subroutines account for the PL/M

procedure conventions discussed previously.

The assembly language subroutines are first assembled
into absolute locations, usually starting at low addresses
in memory, as shown in Figure V-3. Each subroutine should
end with a RET (return) operation code.. The beginning
address of e€ach subroutine is obtained after assenmtly,
dencted by S1, S2, ... ,Sn in Figure V-3.

For each subroutine s1, S2, ... ,Sn, write dummy PL/M
interface [procedures P1, P2, ... ,Pn where each Pi is a
procedure containing the single statement

GO TO Si;
The rprocedure Pi can have zero, one, or two parameters of
type BYTE or ADDRESS, and can return either a BYITE or
ADDRESS value, or simply return with no value at all. Note
that if more than two parameters are to be sent, or if more
than one value is to be returned, ADDRESS variables can be

used toc "rcint to" parameters or results.

The subroutine Si then obtains parameters from the CPU
registers B, C, D, and E, as given in the conventions abcve,

and retucrns values through registers A and C.

MCS-8 MEMORY

FSA

VSA

ISA

Containing Procedures

Pl’ Pz, o ,Pn

SUBROUTINE n

SUBROUTINE 2

SUBROUTINE 1

JMP to Origin

Figure V-3. Including Assembly Language Subroutines in
PL/M Programs.

94

Suppose, for example, a programmer codes three
subroutines in assembly language for handling teletype I/0.
The subroutine S1 sends a line-feed~-carriage-return, and is
found at location 50 in memory. The subroutine S2 writes a
single character at the teletype and returns. Assume S2
assembles starting at location 75. The subroutine S3 reads
one character from the teletype, and 1s located Letween
addresses 120 and 150 in memory. The foilowing PL/M program
then provides interface procedures for these assembly
language subroutines.

150: DECLARE CRLFS LITERALLY '50°',

TTYOUTS LITERALLY '75°¢,
TTYINS LITERALLY '120 ';

CRLF: PROCEDURE;
GO TO CRLFS;
END CRLF;

TTYOUT: PROCEDURE (CHAR);
DECLARE CHAR BYTE;
GO TO TTYOUTS;
END TTYOUT;

TTYIN: PROCEDURE BYTE;
GO TO TTYINS;
END TTYIN;

The CRLF, TIYOUT, and TTYIN procedures can then be called

in the same manner as any internally-defined fprocedure.

If the assembly language subroutines are naot fully
checked-ocut and thus are undergoing revisions, it may be
worthwhile constructing a "jump vector" at the beginning of
mEmCIry. The Jjump vector contains Jjump instructions to
addresses of the currently assembled subroutines S1 through
Sn in 1lcwer memory. The corresponding PL/M interface
procedures then branch indirectly through this jump vector,
If the subroutines are reassembled at different 1lccaticns,
only the jump vector need be <changed, since it 1is not
necessary to recompile the PL/M progran.

95

As a final note, the programmer 1is reminded that

assembly 1language subroutines should be used
absolutely necessary. Changes to the PL/M systen
machine architecture will necessitate changes in
conﬁentions, Lésulting in loss of upward
compatibility in all programs which depend
conventions.

96

only when
for future
sukroutine

scftuare

upon these

Appendix A Updated Pages

A Sample Program in PL/M

PASS-1

00081 2 2048: /® 1S THE ORIGIN OF THIS PROGRAM #/

82082 2 DECLARE TTO LITERALLY '2', CR LITERALLY '15Q', LF LITERALLY '@AM',
83a83 2 TRUE LITERALLY *1', FALSE LITERALLY '2°';

909004 2

00885 2 SQUARESROOT: PROCEDURE(X) BYTES

20006 3 DECLARE (X,Y,2) ADDRESS:

poRe7 3 Y = Xi 2 = SHR(X+1,1);

00008 3 DO WHILE Y <> 2;

8ded9 3 Y = Z; 2 = SHR(X/Y « Y + 1, 1)

goo1e 4 END:

200611 3 RETURN Y3

23012 3 END SQUAREROOT:

29013 2

AN014 2 PRINTSCHAR: PROCEDURE (CHAR);

28015 3 NECLARE BITSCELL LITERALLY '91',

20816 3 (CHAR, 1) BYTE;

20017 3 OUTPUT (TT0) = @3

20818 3 CALL TIME (BITSCELL);

08019 3 DO 1 =9 70 7;

20028 3 OJUTPUT(TTO) = CHARs /s DATA PULSES s/

ov@21 4 CHAR = ROR(CHAR,1):

82A22 4 CALL TIME(BITSCELL);

20023 4 END3

20024 3 QUTPUT (TTO) = 13

08825 3 CALL TIME (BITSCELL+BITCELL)S

peA26 3 /% AUTOMATIC RETURN IS GENERATED #/

28027 3 END PRINTSCHAR;

28M28 2

ABA29 2 PRINTSSTRING: PROCEDURE (NAME,LENGTH);

80832 3 DECLARE NAME ADDRESS,

89031 3 (LENGTH,1,CHAR BASED NAME) BYTE;

2832 3 D0 I = @ TO LENGTH - 13

20233 3 CALL PRINTSCHAR(CHAR(I));

20034 4 END:

n2835 3 END PRINTSSTRING:

29036 2

0¢@37 2 PRINTSNUMBER: PROCEDURE (NUMBER,HBASE,CHARS,2EROSSUPPRESS)
00038 3 DECLARE NUMBER ADDRESS, (BASE,CHARS,ZEROSSUPPRESS,1,J) 8YTE;
poA39 3 DECLARE TEMP (16) RYTE:

0804y 3 IF CHARS > LAST(TEMP) THEN CHARS = LAST(TEMP);

pogs1 3 DO I = 1 TO CHARS:

Pen42 3 J = NUMBER MOD BASE + '0';

00043 4 IF J > '9' THEN J = J + 73

00044 4 IF ZEROSSUPPRESS AND I <> & AND NUMBFR = 2 THEN
pOB4s 4 J= '

BpB4e 4 TEMP(LENGTH(TEMP)-1) = ;

pRA47 4 NUMBER = NUMBFR / BASE;

oan4g 4 END:

nee49 3 CALL PRINTSSTRING(.TEMP + LENGTH(TEMP) - CHARS, CHARS);
veesa 3 END PRINTSNUMBER;

2905+ 2

7eM5> 2 DECLARE | ADDRESS,

9253 2 CRLF LITERALLY °'CR,LF',

3854 2 HEADING DATA (CRLF,LF,LF,

o0psSs 2 ' TABLE OF SQUARE ROQTS', CRLF,LF,
20056 2 * VALUE ROOT VALUE ROOT VALUE ROOT VALUE RONT VALUE ROOT',
88057 2 CRLF,LF);

20058 2

2eA5¢ 2 /% SILENCE TTY AMD PRINT COMPUTES VALUES #/

20c6h 2 QUTPUT(TTO) = 13

aep61 2 N0 I =1 TO 1p@0;

200862 2 IF I MOD 5 = 1 THEN

#0863 3 DO; IF 1 MOD 25M = 1 THEN

2on64 4 CALL PRINTSSTRING(.HEADING, LENGTH(HEADING))
29065 4 END; ELSE

20066 3 CALL PRINTSTRING(,(CR,LF),2);

80967 3 CALL PRINTSNUMBER(1,18,6,TRUE /e TRUE SUPPRESSES LEADING ZEROES #/);
868 3 CALL PRINTSNUMBER(SQUARESROOT(I), 17,6, TRUE):

20069 3 END;

rae7s 2

#8071 2 DECLARE MONTGRSUSES (19) BYTE:

88072 2 EOF

NO PROGRAM ERRORS

97

Mark
Typewriter
Updated Pages

SYMBOL
SA2378s
Sp0a77
S08074
Seeo7s
SARR74
S0ea73
SP0d72
SpMp71
SPRA7A
SAAA69
SPNA6S6
Sere67
Senass
SOvR65
SOrA64w
SAON63
SpaAge?2
SA¢Bh1
SPaBe6n
SPAAS9
Sevess
cenps?
SPBB%56
S8E655
SeorsS4as
SAIRS3I e
SApPs2a
S@nPs1
SpNgsne
SPPP 4G«
S0AA48«
S@NB47 e
SORNase

Seaeas
SeAR44
SpAraze
Songa2e
S@0oR41
SpPAC4ag s
SPBA39=
S07338+«
SRy
SeA036
Sene3s
SARR 34
Spaez3
SA2032
SpPA3Le
Se0e3n
S@e029+=
SO0 pa
Sgeno7
Se0R26
SpRe2s
SePP24+s
Seap2e
Senp2~
SenR21e
S0RA2ns
S@a2219
SorA18
SoR@17
S00216
Se2n1s
spee-4
SpeZ13
S@rR12
SPAR11
SQe2z10
SPAen9y
Sondps
Sgenn7
Sepne6
Spoeas
S@pde4
S20003
So00p2
SP0001

ADDR WDS CHRS
8326 11
A322
8319
2316
0312
2309
e3m5
8332
8298
0295
0289
0268
8264
02690
8255
0251
8247
8244
0241
0237
0233
2239
n227
n224
22232
0216
9212
a2e9
6293
2199
8195
2190
#184

%Y

ANHBRB WIS IVIRFAQAHRH VAL OO DR Q0
o o

[y
HOAVNRHHASRRAIH HEIAFRF YNV DR H B WE & -

-

0181
2178
2173
2169
2166
2161
0157
2151
0148
2144
2141
2137
2133
2129
2125
122
2118
2113
7110
0107
2123
9099
2095
0092
egss
AR3
2079
2274
2070
2066
2061
2256
2052
2048
2044
2240
2036
0032
2028
p024
oe19
8014
ge1g
2006
2002

el N L R T e T S PN RS I S S I S T i I B I W e i Rl KN VR S e S S
MBEDOOUUWNDDBDWVIOODLLAN AR, HAKBOARRRRLENIF O L0 AR ®

VDV DVDVVIDDVDIVDVIVVYDVD DDV DDVDVDDDVVIDDIOODD

DVVVDDV VDDV VVIIVDIVDIDDVDDODDVOIVDOVDVDVIVDDDVDVDODDTDVDOMU D

PASS-1 SYMBOL TABLE

LENGTH PR Ty
2000180
220006
poopcop
220000
oge2se
200000
onevR5
2n0R 00
PP10800
200000
Aeonee
po2pep
200010
P02813
2090115
200001
28R032
pepP0020
2e0000
eeeas7
ep0oras8
epopo@
aoeepe
200000
oeac16
Poeool
eapgen1
oeeaRR
agpeel
eppeo1
egognol
2eenol
roeon4

QN HER ARHPHRABAHRHALHNGWGHRPWANAN AN B A DR
NWHRPHEBARMHERAAANVNABUHRHOOVVNACAODLOSDACK

voeoee
peoeee
200201
reeeel
p20000
opeael
200201
pesee2
202000
peeoo7
nopgeoe
noRE91
arpece
e0en02
Pr0001
goeoee
200001
novoo1
PORAROA
220000
2ngpRl
P00P01
000201
zZeoeeo
200001
eeece1
nr2e4s
pecoal
PAR2e3
BAeeo1
gagoel
200001
p0001
00001
(Ad7'XBY
nepenl
gpeeo2
poeR02
2pe0e2
poPRB2
(4411
pepNe1
200001
220001
poeRo1

D e e e T R e e e e I I N e NI N e N el S S N NS B N e e
R EPARE DOV NOWNE AR HOABDLIUWUR,r DR O ODLODE WP ADN

MONITORUSES
6

250
S
1000

' VALUE
'

24

15
HEADING
1

L

ROOT VALUE

191
‘P

TEMP
J
1

ZERCSUPPRESS
CHARS

BASE

NUMBER
PRINTNUMBER

CHAR
I

APBRAR2T7H

LENGTH
NAME
PRINTSTRING

~

91
[
2
!

CHAR
PRINTCHAR

< M

X
SQUAREROOT
2048
DOUBLE
MOVE.
LAST
LENGTH
ouUTPUT
INPUT
LOW
HIGH
TIME
SHR
SHL
ROR
RoOL
MEMORY
PARITY
SIGN
ZERO
CARRY

98

ROOT VALUE ROOT VALUE Rt
TABLE OF SQUARE ROOTS

pASS~2

LINE NUMBER - ADDRESS CORRESPONDENCE

2=08004 6=B803H 7=08BAH 8309810H 9=@838H 10=A890H
11=08A9H 12=08B1H 13s08B2H 16=228B5H 17=p8BAH 18%08BCH
19:=08C5H 20=08C8H 21=0802H 22=08D7H 23=880D8H 24=08E8H
25=08EBH 26=@8EFH 27388F7H 28=208F 8H 30=@8FBH 31=0994H
32:=0987H 33=0980H 34:=0923H 3638920H 37=092EH 38s8931H
39=8938H 4p=B93CH 41=093FH 42209524 43=096FH 4480972H
45=0999H 46=@990H 47209AFH 48=99CCH 49:=99D1H S51%09FSH
52=0B9F6H
SP0d64 82553 115
ADH PAH BAH DAH 28H 20H 2@0H 20H 20H 20H 2@H 20H 20H 20H 20H 28H 20H
2BH 28H 20H 20H 20H 208H 2PH 20H 2@H 28H 20H 54H 41H 42H 4CH 45H 20H 4FH
46H 208H 534 S1H S55H 41H 52H 45H 20H 52H 4FH 4FH 54H 53H DDH @AH QAH 20H
56H 41H 4CH S55H 45H 2B8H 2@8H 52H 4FH 4FH S54H 20H 56H 41H 4CH 55H 45H 2pH
20H S2H 4FH 4FH 544 20H 56H 41H 4CH 55H 45H 20H 2BH 52H 4FH 4FH S54H 20H
S56H 41H 4CH 55H 45H 20H 20H 52H 4FH 4FH S54H 20H 56H 41H 4CH 55H 45H 2¢H

204 52H 4FH 4FH 54H ODH BAH BAH :
60=0A6CH 61=0BA6FH 62=BA78H 63=@AA4H 64=BAC3H
65=BAC6H 66=BACFH

Sepnsl1 #2773 2

9DH BAH .
67=BAD7H 68=0AF7H 69=0BO9H 78=0B28H

Senam1 P@BCCH SOQP@B2 PGBCDOH SAAPB3 EABCEH SMAABB4 COBCFH

Seen95 pOBCABH SO@B21 APBDOH SPAE23 2@BD2H SE0B24 0VBDIH

SAPP29 20BN6H SO2P31 APBD7H SPAGA39 0BBDBH SAGH49 @BBOAH

S@@m4a2 PGBDBH SOBA47 @PBDCH SAPP48 BOBDFH SBP049 COBEAH

SP0350 PARELM SOMPS2 @OBE2H SO0PS3 @ABE3W SADBS54 POBE4H

SPPBc3 OPBF4H SUGB78 APBF6H SPGB79 BBBCAH SBAABD POBCBH

POABH HLT HLT HLT HLT HLT HLT HLT HLT HLT HLT HLT HLT HLT HLT HLT HLY

GENERATED OBJECT CODE

P8OOH JMP,B2H,B8H LH1,88H LL1,D8H LMB INL LMC OCL LBM INL LCM INL LMB
@81PH INL LMC LLI.DBH LAM INL LCM ADI1,B81H LBA LAC ACI,88H ORA RAR LCA
8820H LAB RAR LLI,D4H LMA INL LMC LH1,@BH LLI,D2H LAM INL LCM INL SUM

@838H INL LBA LAC SBM ORB JTZ,A9H,@8H DCL LBM INL LCM LLI.D2H LMB INL
@848H LMC DCL LBM INL LCM LLI,C8H LMB INL LMC LLI,DBH LBM INL LCM LLI
P85AH,CAH LMB INL LMC JMP,8AH,@8H LEM DCL LOM LMI,11H LBI,0AH LCB LAD
08684 RAL LOA LAE RAL LEM DCE LME LEA RTZ LAB RAL LBA LAC RAL LCA DCL
P87@H DCL LAB SUM LBA INL LAC SBM LCA JFC,83H,88H DCL LAB ADM LBA INL
86804 LAC ACM LCA INL SBA SBI1,88H UMP,SFH,@8H CAL,57H,@8H LAD LL1,D2H
P890H ADM INL (DA LAE ACM LEA LAD ADI,@1H LDA LAE ACl.@8H ORA RAR LEA
PBABH LAD RAR INL LMA INL LME JMP,27H,@8H LHI,@3H LLI,D2H LAM INL LCM
98BAH RET RET JUMP,FB8H,@8M LHI,@BH LLI,D6H LMB XRA 010 LBI,S5BH DCB JT2
B8CHH,C5H,88H JUMP.BEH,B8H INL LMI,@88H LAI,B7H LHI,@BH LLI,D7H SUM JTC
P8DBH,EB8H,08H DCL LAM 018 LAM RRC LMA LBI,58BH DCB JTZ,E1H,88H JUMP,DAH
PBEGH,38H INL LBM INB LMB JMP,C8H,B8H LAIl,01H 018 LAl,5BH AD!,5BH LBA
P8FAH DCB JTZ,F7H,@8H JUMP,FBH,P8H RET JMP,2EH,@9H LHI,@BH LL1,D8H LMB
0988KH INL LMC INL LMO INL LMI,@@H LHI,®BH LLI,DAH LBM DCB LAB INL SUM
B8918H JTC,20H,@9H LAM LLI,D8H ADM INL LBA LAL.ABH ACM LLB LHA LAM LBA
9920H CAL,B85H,B8H LHI,@BH LLI,DBH LBM INB LMB JUMP,B7H,B9H RET JMP,F6H
B938H,89H LHI,@BH LLI.EBH LMB INL LMD LAI,BFH DCL SUM JFC,41K,09H LM
P940H,BFH LHI,BBH LLI,E2H LKMI,@1H LHI,8BH LLI1,EBH LAM LLI,E2H SUM JTC
0950H,D9H, B9H LLI,DFH LBM LLI,C8H LMB INL LM1.@@H LLI,DCH LBM INL LCM
P960H LLI,CAH LMB INL LMC CAL,57H,08H LAB AD!,30H LBA LAC ACl,f@H LL!
B97AH,E3H LMB LAI,39H SUM JUFC,7CH,@9H LAM aDI,#7H LMA LHI,@BK LLI,E2H
2980H LAM SUl,a@H ADI,FFN SBA DCL NDM LLI,DCH LBA LAM INL LDM SUJ,28@W
8992H LCA LAD SBI,@0H ORC SUI,@1H SRA NDB RRC JFC,A1H,Z9H LLI,E3H LMI!
B9ADH,20H LAL,1@6H LHI,@BH LLI,E2H SUM LLI,E4H ADL LBA LAH ACI,@8H DCL
#9RAH LOM LLB LHA LMD LHI,gBH LLI.DFH LBM LLI,CAH LMB INL LMI,GOKH LLI
B9COBH,DCH LBM INL LCM LLI,CAH LMB INL LMC CAL,S57H,08H LLI,DCH LMD INL
@90AH LME LLI,E2H LBM INB LMB JMP,47H,Q9H LHI,?BH LLI,E4H LCH LAL AD!

“ @9EDH,18H LBA LAC ACI,B@W LCA LAB LLI,E@H SUM LBA LAC SBI,@@H LLI,EPH
@9FAH LDM LCA CAL.FBH,@8H RET JUMP,6CH,AAH R@1 RRC RRC RRC INE INE INE
BAPBH INE INE INE INME INE INE INE INE INE INE INE INE INE INE INE INE
PALZH INE INE INE INE INE JUMP,41H,424 JUMP,45H,2CH 107 CAL,27H,53H 0P8
AA20H 010 100 CFS,45H,2@H CFS,4FH,4FH JUMP,53H,@0H RRC RRC INE CAL,41H
@A3DPH,4CH 01C 12 INE INF CFS,4FH,4FH UMP,?20BH,56H 14@ UMP,55H,45H INE
PA4PH INE CFS,4FH,4FH JUMP,28H,56H 180 JMP,55H,45H INE INE CFS,4FH,4FH
DASOH JUMP,2BH,568H 182 JMP,55H,45H INE INE CFS,4FH,4FH UMP,2@BH,56H 180
BA6OH JUMP,55H, 45H INE INE CFS,4FH,4FH UMP,@LH,AaH RRC LAL,@1H 019 LHI
OA70H,@BH LLI.F4H LMI,P1H INL LMI,P@H LAT,ERH LCT,03H LHI,2BH LLI,FaK
PABAH SUM INL LBA LAC SBM JTC,28H,@BH LLI,CeH LMI,25H INL LMI,@9H LLI
GA9PH,F4H LBM INL LCM LLI,CAH LMB INL LMC CAL,57H,@28H LAB SUIl,21H LBA
BAABH LAC SB!,@0H ORB JF2,D2H,BAH LLI,C8H LMI,FAR INL LMI,08H LLI,F4H
PABOAH LBM INL LCM LLI,CAH LMB INL LMC CAL,S7H,M8H LAB SUl,@1H LBA LAC
PACAH SB1,80H ORB JUFZ,CFH,@AH LB1,F9H LCI1,89H LDI,73H CAL.FBH,EBH "UMP
@ADPAH,EBH, pAH JUMP,D7H,@AH R@G1 RRC LBI,05H LCIl,2AH LDI1.,@2H CAL.FRH,B8H,
BAECH LHI,08H LLI,F4H LBM INL LCM LLI,OCH LMB INL LMC LLI,DFH LML, BAH
@AFAH LB1,0B6H LDI,@1H CAL,31H,B9H LHI,@8H LLI,F4H LB™ INL LCM CAL,23H
PBOBH,B8H LHI,@8H LLI,DCH LMA INL LMI,28H LLI,DFH LML, BAH LBI,06H LOI
@B1PH, 1M CAL,31H,89H LHI,88BH LLI,F4H LAM INL LCM ADI.@1H LBA LAC ACI
#820H, 8K DCL LMB INL LMA JUMP,78H,8AH HLT

99

V& wh~

2@
21
23
24
28
29
31
28
39
49
42
46
47
48
49
50
52
53
54
63
64
78

CARRY 05714
ZERO 05715

SIGN 85716

PARITY 85717
MEMORY 25020
SQUAREROOT 28217
X 2%720

Y 85722

2 85724

PRINTCHAR 21327
CHAR 05726

1 85727
PRINTSTRING 21757
NAME #5738

LENGTH P5732

1 #5733
PRINTNUMBER 22387
NUMBER 25734

BASE 35737

CHARS 05740
ZEROSUPPRESS 25741
1 85742

J 85743

TEMP (15744

1 25764

HEADING Q04771
MONITORUSES 05766

AN BB ARV BORNABEBTBRRNBNRVRVBRRRBID BRIV BRGO BB BEND DY

2048
2056
2064
2072
2880

2mn88

ENNPNPOPNE
RPPPPPNNOF
QFPNNPPPOF
RPPPPPANPF
RPPNPNNNNE
BNNNNNPNNF
BNNNMPPINF
BPPNPNNNNF
RPPNPNPNNF
BNNF NP PPNF
PPPNNNP2PF
BPNNPNPPPF

BNPNNNPNNF
BNNNNPNPPF
BNNPPNNNNF
BNNPPNNNNF
BNNPPNNNNF
BPPNNNPPPF
BNNNNNNNPF
BNMNNNNNNF
BPPNNNNNPF
BPPPPPNNNF
BNNNNPNPPF
BNNPPNNNNF

BPNPPNNPNF
BNNPPNPPNF
BPPPPPNPNF
BPPNPNPPPF
BPPPPPNPNF
BNNP PNNNNF
BPPNNPNMNNF
BPNPPNNNNF
BNNNPPNPNF
BNNPPNNNNF
BNNPPNPPNF
BPPNPNOPPF

BNNNNPNNNF
BPPNPMNNNF
BNNPPNNNPF
BNNPPNNNNF
BNNPPNPPNF
RPPNPNPPPF
BPPNNNNPNF
BNNNPPNPNF
BNNPPNPPNF
BPPPPPNPNF
BPPNPNNPNF
BNNPPNNNNF

BNNPPNNNNF
BPNPPNNNPF
BNNPPNNNPF
BNNPPNPONF
BPPPPPNPNF
BPPN2NPPPF
SN NP PNNNNF
BPPNNPPPOF
BPPNNPNPNF
BNPNNNPNNF
BNNPPNNNPF
BNNNNPPPNF
BNMNPNNPNF
gPPPNNPPPF
BNNPNPNPPF
BPPNNNNPNF
BNNPPNNNPF
BNNPPNNNNF
BNPNNNNNNF
BPPNNNNNPF

BNPNPNPNNF
BNNNNNPPNF
BNNNNPNPPF
BNNNNNNNPF
SNNNNNPPNF
RNNPNPPPNF
BPNNPNPPPF
BPNNPPPPPF
BMNPPNPPNF
BNNPPNNANF
BPPPPNPNNF
BNNPPNPPNF
BPPPPPNPNF
BPPNNNNNPF
BPPNNNNPNF
BNPNNPNNNF
BPPNNPNANNF
RNNPPPEPNF
BPPNNPPPPF
BPPNNPNPNF
BNPNNNPPNF
BNNNPNPNNF
3NMNPPONNF
RPPNNPPPPF
" BNNNPNPPNF
BNPNNNPPNF
BPPPNNNNNF
BNNNNPNPNF
BPPNPNPNPF
BNNNNNNPNF
BNNPNPPPNF
BPPNNPPPPF
BPPNPPPINNF
BNNPPNPPNF
BNNNNPPPNF
BNPNNNPPNF
BNNNNPNPPF
BNMPPNNNNF
BMNNHPNNNF
BPPNPPPNNF
BNNNNNNNNF
BNNNNPNPNF
BNNNNNNNPF
BNMPNPPPNF
BPPNNNPPPF
BNNNNNNNPF
BNNNNNNNNF
BPPPPPNMNF
2856 BNNNNNNANF
$
NO PROGRAM ERRORS

100

BPPNNPNNNF
BNPPNPNNNF
BPPNNPPPPF
BPPNPNNPNF
BNNPPNNNPF
BNNPPNPPNF
8PPPPPNPNF
BNNPPNNNNF
BPPPPONNPF
BPNNNPNPNF
BPPNPPPPPF
BNNNNNNNNF
BPPNPPNNNF
BNNPNNNNPF
BPPNNNNNPF
BNNNPNNPNF
BPPNNNNNPF
BPPNNNNPNF
BPNNNNNPPF
8P NNNNPPPF

BNNNNPPNPF
BNNNNNNNPF
BNNPPNPPNF
BNNPPNNNNF
BPPPNPNNNF
BNNNNPNPPF
BNNPPNNNNF
BNPPNNNNNF
BP PN NP NN NF

BNNPPPPPNF

BPPNNPPPPF
3PPNNPNPNF
BNPNNNPPNF
BNNNPNPNNF
BNNNPPPNNF
BPPNPNNPNF
BNNPPPPPNF
BNNNNNNNNF
BNNPPNNNNF
BPPPPPNNPF
BNPNPNPPPF
BNNNNNNNPF
BNNNNNNNNF
BNNNNPNPNF
BNNNNPNNPF
RPPPPPNPPF
BNNNNPNPNF
BNNNNPPNPF
BNNNPNPPNF
BNPNNNPPNF
BNNNNPNPPF
BNNPPNNNNF
BPPPPPNNPF
BPPNPPPPPF
BNNNNNPPNF
BNNPPNNNPF
BNNPPNPPNF
BPPNPNPPPF
BNNPNPPPNF
BPPPPPNNNF
BNNPPNPPNF
BNNNNPPPNF
BNPNNNPPNF
BNNNNPNPPF
BNNPPNNNNF
BPPNNPNNNF
BNNPPNNNPF
BNPNNNPNNF

BPPNNNNPNF
RPNPNPNNPF
BNNPPNNNNF
BPPPPPNNPF
BPPNNPPPPF
BPPNNPNNNF
RN NP PN PP NF
3PPNPNPPPF
ANNPPNNNNF
BNNNNPNNNF
BNNPPPPPNF
IPPNPNNNPF
RP PN NNPNNF
BPPPPPPNNF
'RNNNPNNPNF
BPPNPNNNNF
BP NNPNPPPF
gPNNPPPPRF
BNNNNPNNNF
BPPNNPNNNF

BNNNNPNPNF
BNPNPNPNPF
BPPPPNPNNF
BNNPPPPPNF
RNNNPNPPNF
BNNPPNPPNF
BPPNNPNNNF
BNNPNPNNNF
BNNPPPPPNF
BNNNNNNNNF
BNNPPNNNNF
BPPPPPNNPF
BNPNPNPPPF
BNNNNNNNPF
BNNNNNNNNF
BNNNNPNPNF
SPPPPPNPNF
BNNPPNPPNF
BPPNPNPPPF
RNNPPNNNNF
BNNNNPNNNF
BPPNNPNNNF
RPNPPNNNPF
BNNNNPPPNF
BNNNPPPPNF
BNNNNPNNNF
BNPNNNPNNF
BNNNNPNPNF
INNNNPNPNF
BRPPPPPNPPF
BNNPPNPPNF
BPPNPNPPPF
BNNPPNNNNF
BNNPPPPPNF
SNNNPPPPNF
BNNNNPNNPF
BPPPPNPNNF
BNPNNNPPNF
BNNNNPNPPF
BNNPPNNNNF
BPPNPPPPPF
BNNNNNPPNF
BNNPPNNKNPF
BNNPPNPPNF
BPPNPNPPPF
BPPNNNNPNF
BPPPPPNNPF
BNPPPPNNNF

RPNNPPPPPF
BNNNMPNNNF
RPPNPNPPPF
BMNPPNNNNF
BNNPPNNNNF
BPPPPPNNPF
RPPNPNNNNF
BNNP2NPPNFE
RPPPPPNPNF
BPPPNNPPPF
BNNNPNNNPF
BPPNNNNPOF
BNNNPNNPNF
BPPPNNNNNF
BPPNNPIINNT
BNNPPNNNPF
BPPNNPNNNF
BPPNPNNNNF
BNNPPNNNPF
BN NP PNNNNF

BNNNNPNPNF
RNNPNPPPNF
SNNPPPPPNF
BNNNNNNNNF
BNNNNNNPPF
RPPPPNPNNF
BPPNNNNPNF
BNNNNPNPPF
BN NN NN PN PF
BNNPPNPPNF
BPPNPNPPPF
BNNPPNNNNF
BNNNNPNNNF
BPPNNPNNNF
BPNPPNNNPF
BNNPPNPPNF
BNNPPNNNNF
3PPPPNPNNF
BNNPPNPPNF
BPPPPPNPNF
BPPNNNNNPF
BPPNNNNPNF
BNPNNPNNNF
RPPPPPNNPF
RNPPPNNPFF
BNPNNNPNNF
BPPNPNPPPF
BNNNNPPPNF
BNNNPPPPNF
BNMNNNPNNNF
BPPPPNPNNF
BNNPPNPPNF
BPPPPPNPNF
BENNNNPNPNF
BNNNNNNNPF
BNNPNPPPNF
BPPNNOPPPF
BNNNNNNPPF
BNNPPNPPNF
BNNPPPPPNF
BNNPPPPPNF
BNNNPPPPNF
BNNNNPNNPF
BPPPPNPNNF
BNNNNNPNNF
BNNNNPPNNF
BNNPPNNNNF
BNNNNPNPNF

INTEL CORPORATION
3065 Bowers Avenue
Santa Clara, California 95051

(408) 246-7501
- u

MCS TECHNICAL MEMORANDUM 15 March 1974

A GUIDE TO PL/M PROGRAMMING

This MCS Technical Memorandum provides replacement
pages for the following MCS .manual: A Guide to PL/M
Programming. '

The changed pages document the availability of PL/M
Version 3.0. Note that prior to Version 3.0 some
features of the language and the compiler are either
not implemented in full or are not available.

Pages to be replaced or added are:

47 - u8
54, 58

65 - 67
95 - 102

File this memo at the back of the manual to provide
a record of changes.

MCS108-0774-1K

129
130

133
132
133
134

138
136
i
138
139
140
14

142

143
144
148
146

147

INVALID USE OF BUILT<IN FUNCTION IM AN ASSIGMMENT,
PASS®2 CUMPILER ERROR, INVALID VARIABLE PRECISION (NOT

SINGLE BYTE OR DOUBLE BYTE), MAY BE DUE T0 PREVIOUS ERRUR,

LABEL RESOLUTION ERROR IN PASSe2 (MAY BE CUMPILER ERROR),
(SAPE AS 108),
(SAKE AS 11)),

INVALID PROGRAM TRANSFER (ONLY COMPUTED JUMPS ARE ALLOWED
WITH A °GO TO*),

(SANE AS 134),

ERROR IN BUILT<IN FUNCTION CALL,

(NOT USED)

(SAME AS 107),

ERROR IN CHANGING VARIABLE TO ADDRESS REFEKEMCE, MAY
BE A PASS=2 COMPILER EKROR, UR MAY BE CAUSED BY PREe
VOUS ERROR,

(SAME AS 107),

INVALID ORIGIN, CODE HAS ALREADY BEEN GEMERATED IN THE
SPECIFIED LCCATIONS,

A SYMBOL TABLE DUMP HAS BEEN SPECIFIED (USING THE SMEMORY
JOGGLE IN PASSel), BUT NO FILZ HAS BEEN SPECIF1ED Y0 REe
CEIVE THE BNPF TAPE "USE THE $BNPFsN CONTROL),

INVALID FORMAT FOR THE SIMULATOR SYMBOL TASLE DUMP (SEE
ERROR 111),

STACK NOT EMPTY AT END OF COMPILATION, POSSIBLY CAUSED
BY PREVIOUS COMPILATION ERROR,

PROCEDURES NESTED TOO DEEPLY (dlL OPTIMIZATION)
SIMPLIFY NESTING, OR RE«COMPILE WITH LARGER PSTACK

PROCEDURE OPTIMIZATION STACK UNDERFLOW, MAY BE A
RETURN IM OUIER BLOCK,

RESTART LCCATIONS FOR SURBSCRIPT AND BASED VARIABLE
SUBROUTINES OVERLAP (CHECK 81 THROUGH 87 PARAMETERS)

Figure IV-7. (Con't)

65

Switch Name Use Default

80 3 n Controls branch to starting location ¢ 40

any restart toggle is speciftied (81 thru 87)
$i = n It n is greater than 7, inline code is 8
thru generated for address computation, If n
$7 = n is between 0 and 7, a restart subroutine

will be emitted in restart location n,
and inline code {n the program will be
replaced by restart instructions (see

section V,4),

S$ANALYZE = n Print a trace of the register allocas 0
tion stack {if n = {, Include assigned
registers is n = 2,

SBINARY = n Do not write a object tape i¢ n = 0, Others 0
wise, write a object tape to file n (see
PL/M t{le numbering), The object tape format
i{s determined by the setting of SQUICKDUMP,
SCOUNT = n (Same as Pass 1)
$DELETE = n (Same as Pass 1)
S$EOF (Same as Pasg 1)
SFINISH Print a decoded dump of the generated . 0
' machine code at the end of Pass 2,
SGENERATE = n Print a cross reference of source line 0
numbers verses machine code locations
ifn=1, Ifns 2, print a trace of
the intermediate language as it is read,
as well,
SHEADER = n Start machine code generation at location 0
n when producing code dump or object tape,
S$INPUT = n (Same as Pass 1)
SLEFTMARGIN = n (Same ap Pass 1)
SMAP " Print a memory maﬁ showing symbol numbers 0

and address assignments at the end of Pass 2,

SOUTPUT = n (same as Pass {)

66

SPRINT

$QUICKDUMP

SRIGHTMARG
S$TERMINAL
$VARIABLES

SWIDTH 3 n

§= an

(Same as Pass 1)

=n Ifns 0, the object tape format will
be BNPF, It n = 1, the object tape format
will be hexidecimal, with 16 bytes per record,
It n is greater than i, the object tape will
hexidecimal with n bytes per record,

INan (Same as Pass {)
(Same as Pass {)

2 n The first page of randomw=access memory (RAM)
i{s page n (numbering O, 1/, se0 ¢ 63),

(Same as Pass)
If n = 0, code is produced for the 8008

(SO0KHZ clock), If n = 1, code is produced
for the 8008=1 (BOOKHZ tlock),

Figure IVv=8, PLM2 %“g" compiler switches,

PASS-2

$generate =1
$bnpf = 6

12=0003H
19=0067H
25=0089H
35=00E6H

Figure IV-9.

(cross reference line numbers and locations in code)
(write bnpf tape to internal file number 6)

13=000EH 15=0011H 16=001EH 17=0026H 18=0043H

20=006DH 21=0071H 22=0077H 23=008LH 24=0087H
26=008AH 29=009CH 32=00A5H 33=00BEH 34=00E1H

Sample output from PLM2 corresponding to the
INDEX procedure.

67

suppose, for example, a programmer codes three
subroutines in assembly language for handling teletype I1/0,
The subroutine 51 sends a line-feedecarriageereturn, and {s
tound at location 50 in memory, The subroutine S2 writes a
single character at the teletype and returns, Assume 52
assembles starting at location 75, The subroutine 53 reads
one character from the teletype, and s 1located between
addresses 120 and {50 in memory, The following PL/M program
then proviaes {interface procedures £for these assembly
language subroutines,

1503 DECLARE CRLFS LITERALLY *50°,
TTYOUTS LITERALLY *78°¢,
TTYINS LITERALLY "120°)

CRLF§ PROCEDURE}
GO TO CRLFS)
END CRLF}
TTYOUTs PROCEDURE (CHAR))
DECLARE CHAR BYTE}
GO TO TTYOUTS)
END TTYOUT;
TTYIN; PROCEDURE BYTEj
GO TO TTYINS}
END TTYIN)

The CRLF, TTYOUT, and TTYIN procedures can then be called
in the same manner as any internally=defined procedure,

1f the assembly language subroutines are not £fully
checked=out and thus are undergoing revisions, it may be
worthwhile constructing a "jump vector" at the beginning of
memory, The 3Jump vector contains Jjump instructions to
addresses of the currently assembied subrotines Si through
Sn in lower memory, The corresponding PL/M interface
procedures then branch {ndirectly through this jump vector,
If the subroutines are reassembled at different locations,
only the jump vector need be changed, since 4§t s not
necessary to recompile the PL/M progranm,

As a final note, the programmer {8 vreminded that
assembly languagé subroutines should be used only when
absolutely necessary, Changes tc the PL/M system for future
machine architecture will necessitate changes in subroutine
conventions, resulting in loss ot upward software
compatibility in all programs vhich depend upon these
conventions,

4, PL/M Restart Functions

The size of PL/M programs which make extensive wuse of
based or subscripted variables may be significantly reduced
by permitting the compiler to use the 8008 restarts, The

95

compiler w{ll then emit short “subroutines’ in the selected
regtart locations and substitute restart instructions for
inline code in the body of the PL/M program, Seven restart
subroutines are provided te handle various PL/M subscript
and based variable constructs, Any combination of these
seven available restart subroutines may be specitied prior
to starting pass 2, by entering the corresponding control
toggles and restart numbers to be used, PL/M constructs
and the associated control toggles are given in figure V=4,
The toggles used should be selected on the basis of
occurence of these constructs in the user’s PL/M program,
Figure Veq4 1ists typical code reduction, in bytes, for each
use of each restart,

In general, all but the most trivial programs will
benefit from the use of the restart subroutines, The
restarts required for the constructs of ¢gtigure Ve4 aret

1) Based scalar varjiables require only control
toggle 1§,

2) Byte vectors with byte subscripts require
control toggles 2 and S,

3) Address vectors require control toggles 2 and
6y and {n addition, 3 if byte subscripted
and 4 {f address subscripted,

4) Supscripted based variables require control
toggles 2 and 7,

The default value of all the restart toggles is eight,
indicating that neither the restart subroutine nor restart
instructions will be produced, Setting a toggle to a value
n between 0 and 7 selects the restart option, and forces the
restart subroutine to be emitted at locations B8#n through
gene?,

The starting location of the user program will be that
following the highest restart locations used, for example,

§2=4 §4=2 56=)

will result in a starting location of 40 ¢for the user
program (subroutine 2 occupies locations 32 (8#4) through
39 (8%4+7))., N

A program’s starting address may be altered by setting
the SHEADER control toggle, or by specifing an origin
in the source code, Progam origins are not permitted which
would origin the PL/M program at or below the last location
used for the restart subroutines,

96

I1f any of the restart toggles are selected, the
compiler will 4include a branch to the svarting location ot
the program {n location 0 through 2, Thus, a restart 0 may
be used to start or restart the user program, Generation
ot the branch at location 0 {s controlled by the control
toggle 0, The default value of this toggle is 0, which
forces the normal branch te the PL/M program’s starting
location, It the toggle is set to i, no branch will be
produced, Setting the toggle to a value n greater than 1
will force a branch at location 0 to the absolute address n,

Users of the Intellec 8 should be aware that the
monitor uses Jlocations 3 through 15 for all commands other
than "READ’, If a restart toggle 4{s set to ‘’1°, the
restart subroutine will be occupy locations 8 through 15,
The program may be loaded using the monitor, but §{t may
be started only by use of the reset switch to force a
restart 0,

control Code PL/M
Toggle Reduction Construct
3 4 Scalar based variables)

subscripted based variables
wvhen 87 is not selected

82 | Complex expressions involving
a subscripted variable and
either a procedure call ot another .
subscripted variable (may be called
prior to calling restart S, 6, or 7)

83 3=4 Address vectors with byte subscripts
54 3=4 Address vectors with address subscripts
1=2 Address vectors with pyte subscripts
when 83 {s not selected
$5 3=4¢ Byte vectors with byte subscripts
$6 3=4 All address vectors
i=2 All byte vectors

87 . 7=8 - All based subscripted variables

~Figure ve4, PL/M restirt toggles and assoclated constructs

97

Appendix A

A Sample Program in PL/M

Source Listing

00001 1 20403 /o 1S [HE ORIGIN OF THIS PROGRAM &/

00002 1 DECLARE TTO LITERALLY “2°, CR LITERALLY °15Q°, LF LITERALLY "OAK®,
00003 1 TRUE LITERALLY °1°, FALSE LITERALLY °0°s

00004 1

00005 1 S8QUARESROOT: PROCEDURE(X) BYTEY

00006 2 DECLARE (X,Y,Z) ADDRESS}

oovor 2 Y 8 X3 Z = SHR(Xel,1)}

00008 2 DO WHILE Y <> 23

00009 2 Y s 2) 2 = SHR(X/Y ¢ X ¢ &, 1)}

00010 3 ENDy

0001y 2 RETURN Yy

00012 2 END SQUAREROQOI)

00013

00014 1 PRINTSCHARt PROCEDURE (CHAR)$

00015 2 DECLARE BITSsCELL LITERALLY °93°,

00016 2 (CHAR,1) BYTE}

00017 2 OUTPUT (TT0) = 0y

00018 2 CALL TIME (BITSCELL)y

00019 2 DO I 5 0 T0 7y

00020 2 OUTPUT(TITO) = CHARy /¢ DATA PULSES o/

00023 3 CHAR = ROR(CHAR,1)1

00022 3 CALL TIME(BITSCELL)}

¢0023 3 " END)

00024 2 OUTPUT (TTI0) = 1y

0002y 2 CALL TIME (BITSCELLBITCELL)Y

00026 2 /% AUTOMATIC RETURN I8 GEMERATED o/

00027 2 END PRINTSCHARY

00028 1

00029 1 PRINTSSTRINGS PRCCEDURE(NAME,LENGIH))

00030 2 DECLARE NAME ADURESS,

00031 2 (LENGTH,1,CHAR BASED NANFE) BYTE)

00032 2 DO I & 0 TO LEMGTH = 13}

00033 2 CALL PRINTSCHAR(CHAR(1))}

00034 3 ENDj

00035 2 END PRINTSSTIPING)

00036 1

00037 1 PRINTSNUMEERS PROCEDURE(NUMBER,BASE,CHARS,2LROSSUPPRESS)
00038 2 DECLARE NUMBER ADDRESS, (BASE,CHAKS,ZEROSSUPPRESS,1,J) BYTEp
00039 2 DECLARE TEMP (16) BYTEj

00040 2 IF CHARS > LAST(TEMP) THEN CHARS ® LAST(IEMP))

00041 2 DO I = § IO CHARS}

00042 2 J = NUMBER MOD BASE ¢ 0%

00043 3 IFJ > °9° THEN J 8 J ¢ 7}

00044 3 IF ZEROSSUPPRESS AND 1 <> § AND NUMBER 3 0 THEN
Q0045 3 J s ® 9

00C46 3 TEMP(LENGIH(TEKP)=1) = J3

00047 3 MNUMBER = NUMBER / BASES

00048 3 END}

00049 2 CALL PRINTSSTRING(,TEMP ¢ LENGTH(TEMP) = CHAR3, CHMARB)j
00050 2 END PRINTSKUMBER)

00083

00052 1§ DECLARE I ADDPRESS,

00053 1 CKLF LITEPALLY °"CR,LF®,

00054 12 EEADING DATA (CRLF,LF,LF,

00085 1 ° TABLE OF SQUARE ROOTS®, CRLF,LF,
000S6 1 * VALUE ROUT VALUE ROOT VALUE ROOT VALUE ROOT VALUEZ ROOZ?,
00087 ¢ CRLFoLF)s

00058 3

00059 1 /¢ SILEMCE TITY AND PRINT COMPUTED VALUES o/

00060 § OUTPUI(ITIC) = 13

00061 1 DO I = § TO 10003

00062 1 IF 1 MOD 5 = § THEN

00063 2 DOs IF I MOD 250 8 1 THEN

00064 3 CALL PRINI'STRING(.HtkolNG.LtuGtH;HElDKﬁG))9
00065 3 ELSE

00066 3 CALL PRINISTRING(4(CR,LF),2)}

00us7 3 END3)
00068 2 CALL PRIKTSNUMBER(1,10,6,TRUL /o TRUL SUPPPESSES LEADING ZEROZS a/)j
00069 2 CALL PPINTSNUMBER(SQUARESROOI(I). 10,6, TRUE)S

00070 2 END)

00073 1§

00072 1 DECLARE MONITORSUSES (10) BYTEs

00073 1 EOF

NO PROGRAM ERRORS

98

Syrool lable

500083 MONITORUSES
500082 6

500078 250

500076 S

$00074 1000

570072 * VALUEZ ROQOT VALUE ROOT VALUZ ROOT VALUZ ROOT VALUE ROOT*
sQoo?! * TABLE OF GSQUARE ROQIS‘
500070 OA

500069 13

500068 HEADING
300066 I

80006S ° °

500082 °9°

800061 °0°

500087 TEMP

S00056 J

S000SS I

§00053 ZERUSUPPRESS
500052 CHARS
500051 BASE

S00050 NUMBER
500049 PRINTNUMBER
500046 CHAR

S0U04S I

S00043 LENGTH
$00042 NAML

S0C041 PRINTSTRING
$00039 7

§00037 91

§00036 0

500035 2

S00034 I

$00032 CHAR

500031 PRINTCHAR
$00028 1

$00027 2

§00026 Y

500024 X

500023 SQUAREROOT
500022 204s

S00020 DOUBLE
500019 MOVE

500018 LAST

00017 LENGTH
500016 OUTPUT
S000315 IMPUT
S00014 LOW

S00013 HIGH

$00012 TIME

$00013 SCR

500010 SCL

500009 SHR

500068 SHL

$000G7 ROR

S00006 RUL

500005 MEMORY
$000G4 PARITY
S00003 SIGN

500002 ZERC

500001 CARRY

99

Source Line Nuymber = Code Location ctq’s Reterence

280800H
11504A9H
21208CCH
27208F1H
3650922
432095FH
49=09BEH
500068 02527
ODH OAH
20H 20H
204 S3n
411 4CH
S2H 4FH
S6H 41N ACH
20H 32H 4FK
60=0AS2H
6330ABAH
500086 02744
ODH OAH
67Z0ABAH
7020AF1H

20H
46N
S6HM
20H

500001
50000%
$00047
500043
500052
$00057
500085

00BCC
0ecoo0
00BD¢
00BDA
00BLC
coBL4
00BCS

6=0803H
12808AFH
22308D1H
28308F2H
37869234
4420962H
515090EH
119
[1Y]
20H
SSH
4SH
S4H
SSH 45H 20m
4FH 54H ODM
61%0ASSH

6SBOAAGH

2

68x0ACIH
71=0B03H

OAH
20H
SiH
SSH
4FH

20N
20H
A1H
20H
20H

Variable

73080AH 8=08
16808B4H
23=08D2H
30s08FBH
3B=092AN
452z0988h

$2=09DFH

204
20N
4SH
52H
41K

24308

4009
46809

20H
20H
0H
4FH
4CH
4FH

20H
20H
S2H
4FH
SSH
arn

20H
20K
S2H
204
Sén
20H 52H
OAH OAH
6280ASEH
6630ABSH

69s0ADSH

Address Map

R
H
H
h
o
h
H

$00002
§00021
§00032
500045
§00053
800066

00
00
00
00
o
00

$00003
300024
S00034
500050
500058
500083

BCOLH
BDOH
BD6H
8DBH
BEIH
BF4H

008

18500B6M4
3230QFEH

O00BCEM
00BVOMH
00BOM

00BE2H
ooBren

0800H
OB{0H

Generated Opject Code

10n
EQn

a8
o

20M
41
S4H
S6H
20H
36K

204
20
ry
SN 20H
ASH 20H
s4n 30K

Z:N
sS4
o

§00004
§00026
800042
§00052
$000%6
$0009¢

oCH

9808)38H
1950abFH
29803ESH
3)=0904H
43180933 H
473099CH

20H
2n
LR 1
AR
SaH
(31]

1080890M
208008C2H
26808EMH
343093AH
42309424
4ARs0%b9H

20M
arn
20M
20M
204
20M

20K
20H
OAN
4SH
S4H
4SH

20M
4CH
ODH
acH
4FH
acH

20
45H
OAH
SSH
AFH
L1

00BCHFH
00BD2H
00BDEN
QOBDFH
OOBEIH
00BCAN

JMP,52KH,0AH LHI,OBH LLI,D0H LMB IML

INL

LuC

LLI,DOH

LAM INL LCM ADI,01H

LMC DCL LeM INL LCM
LA LAC ACI,00H ORA

INL
RAR

LB
LCA

0820H
0830H INL
0840H LMC
0850H,CAH
O860H RAL
0370H DCL
08804 LAC
0690H ADM
08AQH LAD RAR
08BOH,08H LLI
08COH LMI,00H
08DOH RRC LMA
OBEOH,C2H,08H
O&FQH,08H RET
0900H LLI,DAH
0910H LAI,00MH
0920H,FEH,08H
0930H,09H LMY
0940H,C6H,O9H
0950H LLI,CAR
0960H,E3K LMB
0S70H,FFH JFZ
0980H
0990H

LAB RAR
LBA
DCL
LMB
LOA
LAB
ACM
INL

LuA
ORB
LcH
JMP
LEM
INL
SBA
ACM
INL
XRA

LLI,D4R
LAC SbM
LEM INL
INL LMC
LAE RAL
SUM LBA
LCA INL
LUA LAE
INL LMA
sD6H LMB
LaI,07H
LBl,SBH
LAI,01H
Lh1,0B8H
LBM DCB LAR
ACM LLB LKA
RET LHI,OBH
»OFH LLI,E2H
LLI,DFR LBM
LM3 INL LMC
LAI,39H SUM
»75H,09H XKA

INL LMC LHKI,O0BH
JTZ,A9H,08H DCL
LLI,C8H LMB INL
+8AH,08H LEM DCL
DCE LME LEA RIZ
LAC 88M LCA JFC

§81,80H JMP,SFH,00H CAL,STH,08H LAD
LEA LAD ADI,01H LOA LAE ACI,00H ORA
LME JMP,27H,08H LLI,D2H LAM IML LCM

LLI,D2H L&V
L8M INL LCM
LMC LLI,DOH
LOM LMI, 11
LAR BAL LBA
133H,08% DCL

INL
Lve
LCM
LCB

SuM
INL
LLl
LAD
LCA DCL
LBA INL
LLI,D2K
RAR LEA
RET LHI

INL LCHM
LLI,D2H
LM INL
LB1,00H
LAC RAL
LAB ADM

010 LBI,5BH DCB J1Z,BFH,06H JMP,BBH,08H INL

LHI,06H LLI,C7H SUM JIC,E2H,088 DCL LAM 010 LAM
DCB JTZ,DBH,08H JMP,DaH,QeH INL LBM INB LMB JFI
010 LAI,SBH ADI,SBH LaA BCB JIZ,F1H,00H JMP,EAR
LLI,D8H LMB INL LNC INL LMD INL L®I,00H LHI,OBH

INL SUM JTC,22H,09H LAM LLI,CGH ADM INL LBA
LAM LBA CAL,AFH,0uH LLI,DbH LBM INB LMB JF1

LL1,EOH ‘LM IKL
Lr1,01H LhI,OBH
LLI,C8H LMB INL
CAL,5TH,08H LAB
JFC,6CH,09H LAM
DCL NUM LLI,DCH

LAD SBI1,00H ORC SUI,01H SBA NUB FRC
LAL,10H LLI,E2H SUM LLI,E4H ADL LBA

09A0H
09B0H
09CoH
09DOH
O0YDFH
O9EFH
O09FFH
OAOFH
OALFH
OA2FH
0A3FH
OA4FH

LMD
LCHM
LBM
Ll

ODH
20H
4SH
S3H
20H
SSH
S2H
ODH

LHI,0BH LLI,DFH LBM
LLI,CAH LMB INL LMC
INB LMB JFZ,37H,09H
LAB LLI,EQH SUM LBA
OAH OAH OAH 20H 20H
20H 20H 20H 20H 20H
20K 4FH 46H 20H S3H
ODH OAH OAH 20H Sb&H
S6H 41H 4CH SSH 4SH
45H 20H 20H S2H 4FH
4FK 4FR S4H 20H S6H
OAR OAHM

LLI,C8H LMB
CAL,S7H,08H
LLI,E4H LCH
LAC S81,00H
20K 20H 20H
20H 20H 20H
SIH SSH 43N
41H 4CH SSH
20H 20H S2H
4FH S&H 200
41H 4CH SSH

100

LMD BAL,O0FH
LLI,EUH LAM

LMI, 008 LLY,

ADI, JOH LA
ADI,QTH LMa
LBA LAM INL
JFC,90H,09H
LAH ACI,00H
INL LMI,00H
LLI,DCH LMD
LAL ADI,10H
LOM LCA
20H 20H
20W 20H
S2H 45H
45H 20H
AFH 4FH
S6H 41N
45H 28H

20K
20H
20H
20H
S4H
4CH
20h

PCL SUM JFC,33H
LLI,E2K SuM JIC
DCH LBM INL LCM
LAC ACI,00H LLI
CCL LBM DCB LAI
LO¥ SUI,00H LCA
LLI,E3H LMI,20H
DCL LDM LLB LhA

LLI,DCH
INL LME
LBA LAC

CaL,F2H,00H

20H
41K
4FH
AFNH
S6H
45H
AFH

208
S &k
s2H
$2H
20H
SSH
LY

L8M INL
LLI,E2H
ACI,00H
RET
20H
42H
4FN
(14}
41K
20H4
(14)]

20K
4CH
S4H
S4H
4CH
208
S4H

OASZH LAI,0LH O340 LNMI,0BH LLI,FAN LMI,01H INL LMI,00K LAJ,EO0N LCI,03N
0A6ZH LMI,CBH LLI,F4N SUM INL LBA LAC SoM JIC,03H,08N LLI,COH LMI,08M
OA?7ZH INL LMI,00h LLI,F4H LBM INL LCM LLI,CAH LMB INL LMC CAL,S7H,08H
OA42H LAB SUI,O01H LbA LAC SBI,00H ORB JFZ,C3IH,0AH LLI,COH LNI,FAN IML
0A92H LMI,00H LLI,F4H LBM INL LC™ LLI,CAH LMB INL LYC CAL,37M,00H LAD
OAA2H SUI,O01H LEA LAC SBI,00H ORB JFZ,BAH,0AN Lul,DFH LC1,094 LOZI,73R
O0AB2H CAL,F2H,08H JMP,C3H,0AH

0ABEH ODM OAH

OABAH LUJ,BeH LCI,0AH LDI,02H CAL,F2H,08H LLI,F4H LBM INL LCHM LL1,0CH
OACAH LMB INL LMC LLI,DFH LMI,0AH LBI,06H LUI,01N CAL,2)H,09H LLI,VeN
0ADAH LBM INL LCM CAL,03H,08H LLI,DCH LMA INL LMI,00M LLI,OFH LMI,0AN
OAEAH LBI,06H LDI,03H CAL,23H,09H LLI,F4H LAM INL LCM ADI,01M LBA LAC
OAFAH ACI,00H DCL LMB INL LMA JMP,SEM,0AH WLT

NO PROGRAM ERRORS

BNPF QObject Tape

1 CARKY 05734
2 ZEPRO 05715
) SIGN 05736¢
4 PARITY 05717
S MEMORY 06000
23 SQUARERGOT. 04003
24 X 05720
26 Y 05722
27 7 05724
31 PRINTCHAR 04257
32 CHAR 05720
34 1 65727
41 PRINTSTRING 04362
42 NANME 05730
43 LENGTh 05732
45 1 5733
49 PRINTNUMBER 0444)
S0 NUMBER 0%734
S1 BASE 05737
52 CHAKS 05740
$3 ZEROSUPPRLSS 05741
55 1 05742
56 J 05743
57 TLMP 05744
66 1 05764
68 HEADING 04737
8) MONITORUSES 05766
]
L Yy Yy Y Y Yy Y Y Y Y Y Y Y Y Y YYYYYYRYYYYYYYYYRYYYYYY YL LAY LYY Y 2L LT L e L adad
BB E I NGRS BBV BUNCIISNNG LN DEOBIOOREBROOD000000300200000000000000008000080080000000
2V48 BNPNNNPNNF BNPPNNPNF BNNNNPNPIF BLNPNPPPNF
BNNNNPNPPF BNNPPNPPNF BPPNPNNNNF BPPPPPNNPF
2056 BNNPPNNNMNF BPPPPPNPNF BNNPPMNNPF BPPNNPPPPF
BNNPPNAMNNE BPPNPAPPPF BNNPPNNNNF BPPPPPNNPF
2064 bBNNPPNNNNF BPPPPPNPNF BNNPPNPPNF BPPNPNNNMNF
BFPNNNPPPF BNNPPNNNNF BPPLPNPPPF BNNNNNPNNF
2072 BNNNNNNNFF BPPNNFNNNF BPPNNNNPNF BANNNPENNF
BNNNNNNNNF BPNEPANNNF BNNNPPNENE BPPNPNNNNF
2080 BPPNNNNNPF BNNNPPNPNF BNNPPNPPMF BPPVPNPNNF
BPPPPFNNAF BNMNEPNNNNE BPPPPPNFNF BIUNPNPPPMF
2088 ENNNNPLPPF BNNFPNPPNF BPENPNNPNF BPPNENPPPF
BNNPPNNNNF BPPMPNPPPF BANPPNNNNF BPNLPNPPERF

2776 BRNPPEPPNF BPPEPNPMNF BPPNLPEPPF BNNPPLNNKEF

BPPNPNPPPF BLPMNNPPNF BNNNNKNPPF BNNNNPNNNF

2784 BNNPPNPPNF BPPNPPPNNF BPPPPPNNNF BNNPPNNKNEF

BNNPPFPPNF BINMNNNNNF BNNPPNPPNF BPPNPPPPPF

2792 BNNPPPPPKF BNNANPNPNF BNNNKNPPPNF BNNNNNPPNE

BNNNPPPPNF BNNLNNNNPF BNPNNNPPNF BNNPNNNPPF

2500 BNNNNPMNNPF BNNPPNPPNF BPPPPNFNNF BPPNANPPRF

BNNPPNMNNNNF BPPHNPNPPPF BNNNMNNPNNF BNKNKNNAPE

2608 BPPNNPNNNF BPPNNNNPNF BNNNNPPNNF BNNNNNNNNF

BENPPNANNPF BPPPPPNNPF BNNPFNNNNF BPPPPPNNAF
BEBERPEEISHLBEOROBBRGROUDIUNICRNOPSIVGEGROODOVDINNCA000EBOOIDD0E0300000008000800

2816 BNPNNNPNNF BNPNPPPPNF BNNMNPNPNF BPPPPPPPPF
BHBGBPORE PRI LRI PDPAREBRERSIGRNGRONBNIBBOSEEO300000000008000000000000000808083408

101

Hexidecimal Object Tape

1 CARRY 05716
2 ZEPO 0571%
3 SIGN 08736
4 PARITY 05717
% MEMORY 06000
23 30UAREROOT 04003
24 % 05720
28 ¥ 05722
27 2 05724
31 PRINTCHAR 04257
32 ChAR 08726
34 1 05727
41 PRINTSTRING 04362
42 NAME 05730
43 LENGTH 05732
as 1 05732
49 PRINTNUMBER 04443
50-NUMBER 05734
51 BASL 05737
$2 CHARS 05740
53 ZEROSUPPRESS 05741
55 1 05742
56 J 05743
57 TEMP 05744
66 I 05764
68 HEADING 04737
83 MONITORUSES 05766
s
GERERBRRBVBBIPDENOEODEIBVIBEBOREPOR0000
11008005044526A2E0BI6DOF930FA3IICF30D730F 986
$10081060030FA35DOCT300D70401C8C20CO00BOIADCAS
$10082000C13A3604k 830FAZEQBI6D2CTI0DTI09IED
1100830003056C29FB169496331CFI0DTI6D2F930SD
110084000 A31CF30DT36CBF930FAISVOCF 30073674
110065000CAF230FAG48AUBET310F 3E110E00DICIED
11008600012PAC412E721FCEOZBCI12C6C212003149
$10087000331C157C830C29FD040830F31C187CHI06A
110088000C26FD030981C80445F08463708C33602Ca
1100890008730DECABFEOC30401DBC40CO0BOIALOTC
13008A000C31A30F830FC44270836D2C730D7072E99
$110CB82000GBI6DEFIABSS0ESBO968EF0644BB0B3056
11008C0003E0006072E0B36D79760£20831C755CTA2
$1008BD0OCOUAFBOESBO96BDBGB44D40BIOCFORE94BFY
$1008£000C208G50155065B04SFCB0966F10844LAC2
$1008FO0000E072ECE36DEF930FAIOFB303E002EURAD
11009000036DACFUSC13097602209C73608£730C858
$1009100006006FF1EECT7CB46AF08I6DECFCEBF 94824
110092000FECE072E0B36L0F930FB06GF31974033F7
$10093000093E0F 36£23E03ZE0B3GEOCTI6E29760ES
$10094000C60936DFCF36C8F9303EJ0360CCFI0DTA?
$1009500036CAF930FAG65798C10430CE6C20C0036IE
$10096000£3F9063997406C09CT0407FB31CF090647
$10097000FF487509A831A7360CCRCTIODF 1400D0FE
$10096000C31C0082140198A10A40900936E33E202E
110099000061036E29736E466C8C30C0031CFFIESTO
$1005A000FR2E0836DFCF36C8F9303E0036DCCF3089
11009400007 36CAF930FA46570836DCFRIOFCILERAT
$1009C000CFOBF94B370936E4DSC60410C8C20C0070C
1100900000001 36E097CBC21C00LFDO4SE 208070D30
$£1009£0000A0CA0R20202020202020202C€2020202049
$1009¥00020202020202020202020205441424C4S2F
$100A0000204F462053515541524520524F 4F545389
$100A10000DUA0A2056414C55452020524F 4F542074
$1100A200056414C55452020524F4F542056414C556D
310GA3000452020524F4F542056414C55452020525E
1100A30004F4F542056414C55452020524F4FS40D36
$100A50000A0A0E01552EUB36F43E01303EQ0006EB28E
1100A600016032ECE36F49730C8C29F60030836CBAE
$100A70003E05303E0036F4CF30DT36CAE 930FA465C
$100AB000S5708C114031CBC21COOBI48C3I0A36CEIEDY
$100A00GFA303E0036F4CFICDTI6CAFSIOFA465T2E
1100AA00008C11401CBC21CO0BI465A0A0EDF16G9F9
$100AB0001E7346F20844C30A0DCA0EBE180A1E0237
$1100ACOU046F20836F4CF30DT36DCF930FA36DFIESE
$10GADOOOOROEQEIE01 462309 36F4CF30D746030816
1100AE00036UCF8303E00360F IEOADEO61E01462395
110GAFO0000936F4C730D70401C8C20C0031F930F808
$040B0000645E0AFF46
CHEVBBIVIRPEBBIRBIDBCHIBLBBBDITIRBTVONEG
100000000200
s

102

intal

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 246-7501

Printed in U.S.A. MCS280-0974-1K

	A Guide to PL/M Programming
	TABLE OF CONTENTS
	I. INTRODUCTION TO PL/M
	II A TUTORIAL APPROACH TO PL/M
	1. The Organization of a PL/M Program
	2. Basic Constituents of a PL/M Program
	2.1. PL/M Character Set
	2.2. Identifiers and Reserved Words
	2.3. Comments

	3. PL/M Statement Organization
	4. PL/M Data Elements
	4.1. Variable Declarations
	4.2. Byte and Double Byte Constants

	5. Well-Formed Expressions and Assignments
	6. A Simple Example
	7. DO-Groups
	7.1. The DO-WHILE Group
	7.2. The Iterative DO-Group
	7.3. The DO-CASE

	8. Subscripted Variables and the INITIAL Attribute
	8.1. Subscript Declarations and Value References
	8.2. The INITIAL Attribute

	9. A Sorting Program
	10. Procedure Definitions and Procedure Calls
	10.1. Procedure Declarations
	10.2. Procedure Calls

	11. Based Variables
	12. Long Constants
	13. Scope of Variables
	14. Statement Labels and GO TO's
	14.1. Label Names
	14.2. GO TO Statements
	14.3. Scope of Labels

	15. Compile-Time Macro Processing
	16. Predeclared Variables and Procedures
	16.1. Condition Code Variables
	16.2. The MEMORY Vector
	16.3. The TIME Procedure
	16.4. Type Transfer Functions
	16.5. Bit Manipulation Procedures
	16.6. I/O Processing

	III. THE FORMAL DEFINITION OF PL/M
	IV. COMPILING AND DEBUGGING PL/M PROGRAMS
	1. PLM1 Operating Procedures
	2. PLM2 Operating Procedures
	3. Program Check-Out
	4. Implementation-Dependent Operating Procedures

	V. PL/M RUN-TIME CONVENTIONS FOR THE 8008 CPU
	1. Storage Allocation
	2. Subroutine Linkage Conventions
	3. Use of Assembler Language Subroutines with PL/M

	Appendix A. A sample Program in PL/M
	REPLACEMENT PAGES
	Additional Error codes
	Additional Switch Information
	4. PL/M Restart Functions
	Appendix A. A sample Program in PL/M

