
INTEL CORP. 3065 Bowers Avenue, Santa Clara, California 95051 • (408) 246-7501

mcs=a
A Guide to

PL/M programming
PL/M is a new high level programming language designed specifically for Intel's 8
bit microcomputers. The new language gives the microcomputer systems program
mer the same advantages of high level language programming currently available in
the mini and large computer fields. Designed to meet the special needs of systems
programming, the new language will drastically cut microcomputer programming
time and costs without sacrifice of program efficiency. in addition, training, docu
mentation, program maintenance and the inclusion of library subroutines will all be
made correspondingly easier. PL/M is well suited for all microcomputer program
ming applications, retaining the control and efficiency of assembly language, while
greatly reducing programming effort The PL/M compiler is written in ANSI stand
ard Fortran I V and thus will execute on most machines without alteration.

© Intel Corporation 1973

SEPTEMBER 1973
REV.1

TABLE OF CONTENTS

Section Page

1

2
2
4
4
5

I. INTRODUCTION TO PL/M

II. A TUTORIAL APPROACH TO PL/M
1. The Organization of a PL/M Program
2. Basic Constituents of a PL/M Program

2.1. PL/M Character Set
2.2. Identifiers and Reserved Words
2.3. Comments . 7

3. PL/M Statement Organization . 7
4. PL/M Data Elements . 9

4.1. Variable Declarations 9
4.2. Byte and Double Byte Constants. .. 10

5. Well-Formed Expressions and Assignments . 11
6. A Simple Example. 15
7. DO-Groups. 16

7.1. The DO-WHILE Group 16
7.2. The Iterative DO-Group 17
7.3. The DO-CASE. .. 18

8. Subscripted Variables and the INITIAL Attribute. • . . 19
8.1. Subscript Declarations and Value References 19
8.2. The INITIAL Attribute. 21

9. A Sorting Program . 22
10. Procedure Definitions and Procedure Calls 23

10.1. Procedure Declarations 23
10.2. Procedure Calls , 26

11. Based Variables ... , 28
12. Long Constants. 32
13. Scope of Variables. 35
14. Statement Labels and GO TO's . 38

14.1. Label Names 38
14.2. GO TO Statements 39
14.3. Scope of Labels .. 40

15. Compile-Time Macro Processing 43
16. Predeclared Variables and Procedures ., . 45

16.1. Condition Code Variables 45
16.2. The MEMORY Vector. 46
16.3. The TIME Procedure. 46
16.4. Type Transfer Functions. 47
16.5. Bit Manipulation Procedures. .. 47
16.6. I/O Processing . 48

III. THE FORMAL DEFINITION OF PL/M . 49

IV. COMPILING AND DEBUGGING PL/M PROGRAMS 51
1. PLM1 Operating Procedures. 51
2. PLM2 Operating Procedures. 61
3. Program Check-Out . 63
4. Implementation-Dependent Operating Procedures 80

V. PL/M RUN-TIME CONVENTIONS FOR THE 8008 CPU. 88
1. Storage Allocation . 88
2. Subroutine Linkage Conventions. 92
3. Use of Assembler Language Subroutines with PL/M 93

A GUIDE TO PL/M PROGRAMMING

I. INTRODUC~ION TO PL/M.

PL/M is a programming language designed specifically

for the INTEL MCS-8 Microcomputer. The language is

structurally similar to PL/I (in particular, PL/M closely

resembles XP~, with data types and primitive operations

which reflect the architecture of the MCS-8 cPU. Thus, the

systems designer can use PL/M to quickly and easily express

programs which execute on the MCS-8 CPU, with little or no

loss in execution efficiency when compared to assembly

language programming. In addition, programs written in PL/M

are somEwhat self-documenting, are easily altered and

maintained, and provide upward software compatibility in the

INTEL 8000 CPU series. That is, programs written in PL/M

for the 8008 CPU can be recompiled for the 8080 CPU with no

alteration of the source program. In each case, the

resulting object code takes advantage of the particular

target CPU architecture.

The discussion of PL/~ given here is 1n two main

sections. section II provides a tutorial description of

PL/M; only a minimal amount of programming experience is

assumed, and the discussion is mainly expository. section

III presents a more formal approach to PL/M, providing the

exact syntactic structure and corresponding actions of each

statement in PL/M. Section III is intended as a reference

manual, but may be used as an introduction to PL/M by

readers who are familiar with block structured languages

similar to PL/I or XPL.

The remaining sections provide system notes on the use

of PL/M, including compiler error messages, control toggles,

and execution controls and commands. Appendix A contains

sample PL/M programs; it may be useful for the reader to

refer occassionally to this appendix to find instances of

the various statements as they are discussed in sections II

and III.

II. A TUTORIAL APPROACH TO PL/M.

As mentioned above, this section describes the PL/M

programming language from a tutorial viewpoint. The various

structures of PL/M are introduced at various levels of

complexity. Examples of each of the constructs are also

given. The overall structure of a PL/M program is given

first.

A PL/M program is arranged as a sequence of

g~£1~fati2~§ and §!~!~~§g!§ separated by semicolons. The

declarations allow the programmer to control allocation of

storage, define simple macros, and define procedures.

Procedures are subroutines which are invoked through certain

statements in PL/M. These procedures may contain further

declarations which control storage allocation and define

nested procedures. The procedure definition capabilities of

PL/M allow modular programming; that is, a particular

program can be divided into a number of subtasks, such as

processing teletype input, converting from binary to decimal

forms, and printing output messages. Each of these subtasks

is written as a procedure in PL/M. These procedures are

conceptually simple, are easy to formulate and debug, are

easily incorporated into a large program, and form a basis

for library subroutine facilities when writing a number of

similar programs.

In addition to the procedure declaration facilities,

PL/M allows a number of data types to be declared and used

~n a program. The two basic data types are ~Y1g and

!QQf§§§. A Byte variable or constant is one which can be

represented in an eight-bit word, while an Address variable

2

or constant requires sixteen bits (double byte). The-

programmer can Q.g£l~£.§ var:iable names in a PL/M pr:ogr:am to

represent Byte and Addr:ess values. PL/M also allows the

vectors of Byte or Address variables to be declar:ed.

A number of ar:ithmetic, logical, and r:elational

operations are defined in PL/M on Byte and Addr:ess variables

and constants. These operators and values are combined to

form ~~EEg§si2~§ which resemble elementary algebraic

expressions. The PL/M expression

X*(Y-3)/R

represents the calculation of the value of X times the

quantity Y-3 divided by the value of R. When values in

expressions. are both Byte and Address type, PL/M

automatically converts the Byte value to an Address value.

Expressions are the major components of most PL/M

§i~i~~.§ni§. A simple statement form is the PL/M ~§§~grr~.§rri

statement which allows the programmer to compute a result

and store it in a location defined by a variable name.

Thus, the assignment

Q = X * (Y - 3) / R

first causes the computation of the expression to the right

of the equal sign. The result of this computation is then

saved in the memory location represented by the variable

name Q.

Additional sta tement s are provided in PL/M for

conditional tests and branching, iteration control, and

procedure invocation with parameter passing.

Input and output statements in PL/M allow the

programmer to read the eight-bit value latched into a

particular MCS-8 input port, or set the value of an

eight-bit output port. Proced ures can be defined which use

these basic input and output statements to perform more

3

complicated I/O functions.

A compile-time macro processing facility is also

provided in PL/M. This facility allows the programmer to

define a name in the program to represent an arbitrary

sequence of characters. Each time the name is encountered,

the corresponding character sequence is substituted into the

source program.

The section which follows provides

description of the format of a PL/M program.

a detailed

PL/M programs are written in free-form. That is, the

input lines are column independent and blanks can be freely

inserted between the elements of the program. The only

requirement is that the declarations and statements are all

terminated with a semicolon. The characters recognized by

PL/M are given below. These characters can be combined to

form ideB!itie£§ and £~§~£y~g ~Q£g§.

2.1.

by PL/M

PL/M Character Set. The character set recognized

is a subset of both the ASCII and EBCDIC character

sets. The valid PL/M characters consist of the alphanumerics

012 345 6 1 8 9

AB C D E F G H I J K L M N 0 P Q R STU V W X y Z

along with· the special characters

$=./() +_1*,< > • • . ,
all other characters are ignored by PL/M (a blank is

substituted for an unrecogniz€d character).

Special characters and combi nat ions of special

characters have particular meanings in a PL/M program, as

shown below.

4

$ dollar ..
sign

= equal

:= assign

dot

/ slash

() parens

+ plus

minus

compiler controls, number

and identifier spacer

relational test and assignments

imbedded assignments

address indicator

division symbol and comment delimiter

list and subscript delimiter

addition

subtraction

apostrophe string delimiter

*
<
>
<=

>=

<>
. .

2.2.

asterisk

less

greater

less or

equal

greater

or equal

not equal

colon

multiplication and comment delimiter

relational tests

"
"

"

"
label delimi ter

semicolon declaration and statement delimiter

Identifiers and Reserved Words. A PL/M

!g~D1if~~~ is used to represent names of variables,

procedure names, macro names, and statement label names.

Identifiers can be up to 31 characters in length; the first

character must be alphabetic, and the remaining characters

can be al~habetic or numeric. Imbedded dollar signs ($) are

ignored by PL/M, and can be used to improve readability of a

name. Thus, valid identifiers are

X

GAMMA

LONGIDENTIFIER

INPUT$COUNT

Note, however, that

~2~ds in PL/M which cannot

there are a number of ~~~£!gg

be used as names in a PL/M

5

program. These reserved words are shown below

R~~!y~g !Q!g Q§~

IF conditional tests and branching

THEN

ELSE

DO

PROCEDURE

END

DECLARE

BYTE

ADDRESS

LABEL

INITIAL

DATA

LITERALLY

BASED

GO

TO

BY

GOTO

CASE

WHILE

CALL

RETURN

HALT

OR

AND

XOR

NOT

MOD

PLUS

MINUS

statement grouping

and procedure definition

data declarations

unconditional branching

and iteration control

subroutine call

subroutine return

machine stop

logical or

logical and

logical xor

logical not

remainder after division

add with ca~ry

subtract with carry

6

EOF end-of-file

Blanks may be inserted freely around identifiers and

special characters. Blanks are not necessary, however, when

two identifiers are separated by a special character. Thus,

the expression

x* (Y-3)/R

is equivalent to

X*(Y-3)/R

in PL/M.

2.3. Comments. Explanatory remarks can be used

throughout a PL/M program to improve readability and provide

a measure of self-documentation. Comments are sequences of

symbols from the character set of PL/M bounded by the symbol

pairs /* and */. Thus, the sequence

/*THIS ISA COMMENT ABOUT COMMENTS*/

is completely ignored by the PL/M compiler, and has no

effect on the program. comments may be freely interspersed

in a PL/M program, and may appear anywhere a blank is valid.

The statements found in PL/M programs are one of three

basic types: 2i~Ele 2i~i~m~B1§, f2~£ition~1 st~1~ID~n!§, and

~QY.E§.

An example of a simple statement is th~. PL/M assignment

A = B + C * D;

Note that simple statements are always followed by a

semicolon. Other forms of simple statements are defined in

la ter sections.

Conditional statements are preceded by the reserved

word IF and contain one or more other statements as a part

7

of the statement body. A conditional statement could be

written in PL/M as

IF A > B THEN A = B;

which assigns the value of B to the variable A only if A's

value is greater than B's value.

A more complicated conditional statement involves an

alternative, denoted by the reserved word ELSE. The

condi tional

IF A > B THEN C = A; ELSE C = B;

assigns the larger of the two values A and B to the variable

C.

statements can be collected together in groups which are

delimited by the reserved words DO and END. These groups of

statements are then treated as a single statement in the

flow of centrol. The group could, for example, become a

part of a conditional statement:

IF A >B THEN

DO; A = B; B = C;

END;

which would perform the two assignments to A and B only if

A is greater then B.

Simple statements, conditional statements, and groups

can be labelled for control flow purposes. The label may be

a PL/M identifier, which precedes the statement, and is

separ~ted from the statement by a colon (:). Thus,

LAB1: A = B + C * D;

is an example of a simple statement labelled by LAB1.

The exact details of the various simple, conditional,

and statement groups are discussed in following sections.

8

PL/M data elements represent single bytes, double

byt es, and strings corresponding to 8-bi t val ues, 16-bi t

values, and ASCII character strings of length greater than

two. Data elements can be either variables or constants.

Var iables are PL/M identifiers correspondi ng to val ues which

can change during execution of a PL/M program, while

constants have a value which is fixed. The expression

X * (Y - 3) I R

involves the variables X, Y, and R, and the constant 3.

Variables must declared

are used in expressions.

compiler how to handle

involve the variable.

The

in PL/M programs before they

declaration tells the PL/M

expressions and assignments which

4.1. Variable Declarations. A declaration for a

variable or set of variables is headed by the reserved word

DECLARE and followed by either a single identifier or a list

of identifiers enclosed in parenthesis, and terminated by

one of the data types BYTE or ADDRESS. Thus, valid PL/M

declarations are:

DEC LARE X BYTE;

DECLARE (Q,R,S) BYTE;

DECLARE (U, V, W) ADDRESS;

Thus, expressions involving only the variables X, Q, R, and

S produce single byte operations, while expressions

involving U, V, or W would produce double byte operations

and results.

Additional facilities are present in PL/M for declaring

vectors, macros, and data lists. These facilities are

discussed in later sections.

9

4.2. Byte and Double Byte Constants. Constants

representing single and double byte values can be eXFressed

in several different ways in PL/M. First, PL/M accepts

constants in the binary, octal, decimal, and hexadecimal

bases. In addition, ASCII §iring2 of length one or two are

translated tc single and double byte constants.

In general, the base of a constant is represented by

one of the letters

B 0 Q D H

following a sequence of digits. The letter B represents a

binary constant, while the letters 0 and Q denote octal

constants. The letter D optionally follows decimal numbers.

Hexadecimal numbers consist of sequences of hexadecimal

digits (0,1, ••• ,9,A,B,C,D,E,F) followed by the letter H.

Note that the leading digit of a hexadecimal number must be

a decimal digit to avoid confusion with a PL/M identifier (a

leading 0 is always sufficient). Any number not followed by

one of the letters B, 0, Q, 0, or H is assumed to be

decimal. The numbers must always be capable of

representation as a single or double byte value (a maximum

of 16 bits). Thus, the following are valid constants in

PL/M

2 33Q 110B 33FH 55D 55 OBF3H 65535

The dollar sign symbol may be freely inserted within

constants to improve readability. Thus, the binary constant

111101100118

could be expressed as

111$1011$0011B

ASCII strings are represented by PL/M characters

enclosed within apostrophe symbols (I). Strings of length

one or two translate to byte and double byte values as

mentioned previously. Thus, the string

1 A'

10

is the same as 65 decimal. A pai~ of apostrophes (I ,)

within a string results in a single apostrophe in the

internal representation of the string. Thus, the string

I'IQI becomes a single apostrophe followed by the character

Q.

PL/M expressions can now be more completely defined. A

well-formed expression consists of basic data elements

combined through the various arithmetic, logical, and

relational operators, in accordance with the usual algebraic

notation. Thus, an expression consists of a simple data

element, such as a number or variable, or an expression can

be two (sub) expressions separated by an operator:

Examples are

~AE~2siQ~ Q£~~tQ£ g~E£g~~!2Q~

A + B

A + B - C

A*E+C/D

Operators in expressions have an assumed E£~£~g~~£~ which

determines the order in which the operations in the

expression are evaluated. The valid PL/M operators are

listed below from highest to lowest precedence.

listed on the same line are of equal precedence

OFerators

and are

evaluated from left- to- right when they occur in an

expression.

* I MOD

+ - PLUS MINUS

< <= <> = >= >
NOT

AND

OR xon
The expression

A + B * C

for example, results first in the computat ion of B times C

11

since the multiplication (*) has a higher precedence than

the addition (+). The result of this computation is then

added to the value of A.

Parenthesis can be used to override the assumed

precedence ty enclosing subexpressions which are to be

computed first. The expression

(A+B) *c
causes A + B to be evaluated first. The result is theQ

multiplied by CiS value. Following are a number of

well-formed PL/M expressions

A + B - C * D

A - B + C * D

A 1 B + C * D

A 1 (B + C

A OR B AND OFH

A + B > C - D

Each eXFression results in either a single or double

byte value. The number of bytes in the result is determined

by the number of bytes required by the subexpressions in the

result. Generally, if both operands in an expression are

byte values, the result is a byte value. If either operand,

however, is a double byte, the result is a double byte

value. In this case, the shorter operand is padded with

high-order zeroes.

Two exceptions to these rules occur in PL/M. The first

is in the case of the *, I, and MOD operations. These

operators always result in a double byte value. The second

exception is the case of relational operators. A relational

test results in either a true or false condition. A true

condition is represented in PL/M by a byte value equal to

255 (all bits are 1's), and a false condition is represented

by the byte value O.

12

Suppose the variables X, Y, and Z have been declared as

follows:

givEn these

resul ts 'Iii th

expression:

DECLARE X BYTE ;

DECLARE (Y,Z) ADDRESS;

declarations,

the precision

the expressions

shown to the

x + 5 single byte result

X + 300 double byte result

X + Y double byte result

Y + Z double byte result

X I 5 double byte result

X + Y > Z) single byte result

below

right

yield

af the

The NOT operator is a gn~£Y operator, and thus PL/m

expressions involving NOT take the form

NOT §!E£§§.§.iQ!l
The effect of the NOT operator is that all the bits of the

e xpressi on are in verted (1, s become 0' s, and 0' s become

1's). In particular, true conditions change to false

conditions, and false conditions revert to true. Examples

of the use of the NOT operator are

NOT A

NOT (A > B)

NOT A OR B

For convenience, a unary minus sign is also allowed in

PL/M eXfres~ions. The form of the unary minus in an

expression is

- .§!E£§§.§.iQQ
The ef~ect is exactly the same as the expression

o - §!£!:~§'§'!Qn

where the II_II in this last case is the

The expression -1, for example, is

resulting in the byte value 255.

13

subtract operator.

equivalent to 0-1,

Recall that the assignment statement is used to store

the result of an expression into a variable. The declared

precision of the assigned variable affects the resulting

store operation. If the assigned variable is a single byte

variable, and the expression is a double byte result, the

high order byte is omitted in the store. Similarly, if the

expression yields a single byte result, and the receiving

variable is declared as type ADDRESS, the high order byte is

set to zero.

It is often convenient to assign the same expression to

several variables. This is accomplished in PL/M by listing

all the variables to the left of the equal sign, separated

by commas. rhe variables A, B, and C could all be set to

the expression X + Y with the single assignment

A, B, C = X + Y

A special form of the assignment is allowed ~i!~i~

expressions in PL/M. The form of an imb~Q~~~ ~22ig~~~~! is

(Y~£i~£i~ := ~~££~~2iQg)
and may appear anywhere an expression is allowed in PL/M.

The expression to the right of the assign symbol (:=) is

evaluated and then stored into the variable on the left.

The value of the imbedded assignment is the same as the

expression on the right. The expression

A + (B := C + D) - (E := FIG)

results in exactly the same value as

A+ (C+D) - (FIG)

except that the intermediate results C+D and F/C are stored

into Band E, respectively. These intermediate computations

can then be used at a later point in the program without

recomputa tion.

Note that the form

A = (B : = (C := X + Y »
has exactly the same effect as the multiple assignment to A,

14

B, and C given previously.

It is now possible tojconstruc:t. a simple program based

upon these expressions and assignments.

The following PL/M sample program reads data from input

ports 0 and 1, and writes the larger of these two values at

output port O. Note that the tW0 pseudo-variables INPUT(O),

and INPUT(1) act like PL/M single byte variables, but have

the effect of reading the values latched into input Forts 0

and 1, respectively. Similarly, the pseudo-variable

OUTPUT(O) can be used in an assignment statement in order to

write values to output port O.

The complete PL/M program for perfoLming this simple

function is shown below

DECLARE (I,J,MAX) BYTE;

/* READ INPUT PORT 0 AND SAVE IN VARIABLE I */

lOOP:

I = INPUT (0) ;

/* NOW RBAD INPUT PORT 1 AND SAVE IN VARIABLE J */

J = I NP U T (1) ;

/* SET MAX TO THE LARGER OF THE~E TWO VALUES */

IF I > J THEN MAX = I; ELSE MAX = J;

/* WRITE THE VALUE OF MAX AT OUTPUT PORT 0 */

OUTPUT (0) = MAX;

/* GO BACK AND READ THE INPUT PORTS AGAIN */

GO TO LOOP;

EOF

The symbol EOF (end-of-file) is required in PL/M to

indicate the end of the program. Note also that the GO TO

statement causes program control to restart at the point

labelled 'LOOP:' where input values are read again.

15

In order to effectively construct more comprehensive

PL/M programs, it is necessary to consider the structure of

PL/M statement groups, in~luding the loop control groups.

As mentioned previously, statements can be grouped

together within the bracketing reserved words DO and END as

a DO-group. Recall that the simplest DO-group is of the

form

DO;

statement-1;

statement-2 ;
/ . . .

statemen t-n ;

END;

Several additional 'DO-groups are defined in PL/M which

control program flow. These groups are shown below.

7.1. The DO-WHILE Group. One form of the DO-group is

called a DO-WHILE. The DO-WHILE has the form

DO WHILE expression;

statement-1 ;

statement-2;

statement-n;

END;

In this case, the expression following the reserved word

WHILE is evaluated before the statements within the group

are executed. If the expression evaluates to true (i.e.,

the rightmost bit of the result is 1), the statements up to

the corresponding END are executed. At the end of the

group, program control is transferred to the top of the

DO-group and the expression is evaluated again. The group

is executed over and over until the expression results in a

16

false condition (the rightmost bit is 0). Consider the

following example:

A = 1;

DO WHILE A <= 3;

A = A + 1;

END;

The statement A = A + 1 will be' executed exactly three

times. The value of A at the end of execut~on of the group

is four.

7.2. The Iterative DO-group. An Iterative DO-group

allows a group of state1llents to be executed a fixed number

of times. The simplest form of the Iterative DO-group is

DO variable = expression1 TO expression2;

statement-1;

statement-2;

statement-n;

END;

The effect of this group is to first store expression1 into

the variatle following the DO. The group is executed with

this initial value once, and control returns to the top of

the DO. The value of the variable is incremented by 1 and

tested against' expression2. If the incremented value

exceeds expression2, control transfers to the statement

following the END; otherwise, the group is executed once

again. An example is

D6 I = 1'1'0 10;

A = A + I;

END;

Note that this DO-group has ~~~£!lY the same effect as the

following DO-WHILE:

I = 1 ;

DO WHILE I <= 10;

A = A + I;

I = I + 1 . •

17

END;

A slightly more complicated form of

DO-group allows a stepping value other than 1.

form is

an Iterative

This second

DO variable = expr1 TO expr2 BY expr3;

statemen t-1 ;

statement-2 ;

statemen t-n ;

END;

In this case, the variable following the DO is

the value expr3 instead of by 1.

stepped by
?1>

7.3. The DO-CASE. Another form of the DO-group is the

DO-CASE statEment. The form of a DO-CASE group is

DO CASE expression;

statemen t-1 ;

statement-2;

statement-n;

END;

The effect of this group is the following. Upon entry to

the DO-CASE, the expression following the CASE is evaluated.

The result of this expression is a value k which must be

between 0 and n-1. This value k is used to select one of

the n statements of the DO-CASE to execute. The first case

corresponds to k = 0 (statement-1), the second case

corresponds to k = 1 (statement-2), and so-forth. Control

trangfers to the selected statement, the statement is

executed, and control then passes to the statement following

the END.

An example of the DO-CASE is:

DO CASE X - 5;

X = X + 5; 1* CASE 0 *1

18

DO; 1* CASE 1 *1
X = X + 10; Y = X - 3;

END;

1* CASE 2 *1
DO I = 3 TO 1 0; A = A + I;

END;

END 1* OF CASES *1 ;

Before giving more comprehensive examples, it is useful

to define the notion of a subscripted variable and its use

in a PL/M program.

It is often useful in

locations with an "offset" fro~

PL/M

some

to reference memory

base address. This

feature is allowed in PL/M through 2~~2££iEti~g.

8.1. Subscript Declarations and Value References. A

subscripted variable is similar to a simple variable with

the addition of an expression enclosed within parentheses

following the variable name. The location referenced by the

subscripted variable is the sum of the base address of the

variable and the subscript expression. Any variable name

can be subscripted in PL/M.

Suppose a PL/M programmer declares the variables X, Y,

and Z as follows

DECLARE (X,Y,Z) BYTE;

The first memory location can be referenced simply as X or

as the subscripted variable X (0). Similar ly, X (1) refers to

the location Y, and X(2) references zis location.

PL/M also allows a fixed number of locations to be set

aside in the declaration statement. These fixed locations

start a t the variable name specified in the declare

19

statement. For example, the statement

DECLARE X(100) BYTE;

provides a memory area of 100 byte~ starting at X. In this

case, X is called a ~£i~£. Note that the size of a vector

must always be a constant.

Several vectors of the same length can be declared in

the same declare statement. The statement

DECLARE (U, V , W) (50) ADDRESS;

causes three vectors of length 50 (each) to be allocated in

contiguous memory locations. Note, however, that these

vectors are of type ADDRESS, ana thus each element reguires

two bytes; hence, U takes up the first 50 two-byte

locations, reguiring 100 bytes altogether. The storage for

the second vector starts at V and requires the next 100

bytes. similarly, W occupies the 100 byte area following V.

As mentioned previously, a subscript can be thought of

as a displacement from a base address. This displacement,

however, is affected by the declared precision of the

variable. That is, if the declared precision is BYTE, then

the displacement is measured in single bytes. If, however,

the variable is type ADDRESS, the displacement is measured

in doutle bytes. Thus, given the declaration of U, V, and W

above, the first element 0 f U is U (0), an d the last element

is U(49). The first element of V is V(O), or U(50).

Storage is always arranged so that double byte variables are

at memory addresses which are even numbers; hence, there is

sometimes one extra word allocated between contigous byte

and double byte variables.

Before continuing, it should be noted th~t the

subscripts can be complicated expressions, and not

necessarily just the simple constants shown above. Note

also that subscripted variables can occur everywhere a

simple variable is allowed, including expressions and

20

assignments. A single exception to this rule is that a

subscripted variable cannot be used as the indexing variable

in an Iterative DO group.

Two B~!11 !~ i~n£tiQn§ are provided in PL/M which are

based upon the declared size of a vector. These functions

take the forms

LENGTH (identifier) and LAST(identifier)

where the identitifers correspond to variables declared

previously. These forms can appear anywhere an expression

is allowed in PL/M, and result in the declared length and

last element number of the specified variable, respectively.

The following program, for example, uses the LAST function

to set all the ele ments of a vector v to t he constant 5.

DECLARE V(100) BYTE;

DECLARE I BYTE;

EOF

DO I = 0 TO LA ST (V)

V (I) = 5;

END;

8.2. The INITIAL Attribute. The values of variables

can be initialized in a declaration statement u~ing the

INITIAL attribute. This attribute takes the form

INITIAL (constant-1,constant-2, ••• ,constant-n);

and must directly follow the type (BYTE or ADDRESS) in the

declare statement.

The purpose of the INITIAL attribute is to preset the

values of memory locations starting at the location named in

the declarations. The constants given in the INITIAL

attribute are placed into memory before the program starts

(these constants become a part of the object code and must

be loaded into random-access memory). The following are

valid variable declarations which use the INITIAL attribute.

DECLARE X BYTE INITIAL(10);

21

DECLARE Y(10) BYTE INITIAL (1,2,3,4,5,6,7,8,9,10);

DECLARE Z (100) BYT E INIT IAL

('SHORT', 'STRING' ,OFH,33);

DECLARE U (100) ADDRESS INITIAL (3,4,333Q);

DECLARE (Q,R,S) BYTE INITIAL(0,1,2);

Note that the number of bytes required to hold the

constants given in the INITIAL attribute need not correspond

to the length declared for the variable. The constants are

placed into memory without truncation starting at the first

byte allocated in the declare statement.

The use of subscripted variables is shown in the

example which follows.

It is now possible to const.ruct a more comflicated

program, given the expressions, DO-groups, and subscripted

variables which have been presented. In the program which

follows, a vector A is initialized to a set of constants in

unsorted order. The program below sorts the values of A

into ascending order.

1* FIRST DECLARE A VECTOR TO HOLD THE

VAL UES TO SORT.

ASSUME THERE ARE NO MORE THAN 10 ELEMENTS TO BE

SORTED. EACH ELEMENT IS BETWEEN 0 AND 65535 *1

DECLARE A(10) ADDRESS INITIAL

(33,10,2000,400,410,3,3,33,500,1999) ;

1* START THE 'BUBBLE SORT' AT THIS POINT

EXAMINE ADJACENT ELEMENTS OF 'A' AND SWITCH INTO

ASCENDING SEQUENCE. RECYCLE UNTIL NO MORE

SWITCHING OCCURS *1

DECLARE (I,SWITCHED) BYTE,

TEMP ADDRESS;

SW ITCHED = 1;

DO WHILE SWITCHED; SWITCHED = 0;

/* GO
WHICH

DO

IF

THROUGH ' A' ONCE AND LOOK FOR A PAIR

NEEDS TO BE REVERSED */
I = 0 TO 8;

A (I) > A (1+1) THEN

DO; SWITCHED = 1;

TEMP = A (I); A (I) = A (1+1)

A(I+1) = TEMP;

END;

END;

END;

/* THE VALUES IN 'A' ARE NOW IN ASCENDING ORDER */

EOF

The procedure. capabilities ~of PL/M are discussed in

this section. A procedure, or subroutine, is a section of

PL/M source code which is declared, but not eXEcuted

immediately. Instead, the procedure is ~11~~ from various

parts of the program. The call amounts to a transfer of

program centrol from the calling point to the procedure.

The procedure executes, and, upon completicn. returns to the

statement following the call.

The use of procedures in PL/M allows construction of

modular programs, allows construction and use of subroutine

libraries, eases programming and documentation, and reduces

generated code when similar program segments are used at

several points in the program.

Procedures are described in two parts: how to define

them, and how to use them.

10. 1.

consists

Procedure Declarations.

of four main parts:

A procedure declaration

the procedure na~e,

specification of values which are sent to the procedure, the

23

type of the returned value (i.e., BYTE, ADDRESS, or no

returned value), and the description of the actions of the

procedure, called the procedure body. The procedure may be

invoked anywhere in the program after it is declared. The

form of a procedure declaration is

procedure-name: PROCEDURE argument-list procedure-type;

statement-1;

statement-2;

statement-n;

END procedure-name;

The frocedure-name is any valid PL/M identifier, and is

used to name the procedure so that it can be called at a

later point in the program.

The argument-list takes the form

(argument-1,argument-2, ••• ,argument-n)

where argument-1 through argument-n are valid PL/M

identifiers. These identifiers are called !g£~al E~£~~~!~£§

and are used to hold particular values which are sent to the

procedure from the point of invocation. Each of these

parameters must also appear in a declarations statement

within the procedure body (before the corresponding END).

Note that the argument-list can be omitted altogether if no

parameters are passed to the procedure.

The procedure-type is either BYTE, ADDRESS, or can be

omitted if the procedure does not return a value to the

calling point. The procedure-type defines the precisicn of

the value returned so that proper type conversion takes

place when the procedure is invoked as a part of an

expression.

The execution of a

RETURN statement in

procedure is

the procedure

24

terminated

body. The

with a

RETURN

statement takes the form

RETURN;

or

RETURN expression;

The first form is used if the procedure-type is omitted (no

value is returned to the calling point). The second form is

used if the procedure-type is BYTE or ADDRESS. The

expression following the RETURN is brought back to the

calling point in this case.

The statements within the procedure body can be any

valid PL/M statements, including nested procedure

definitions and invGcati.ons. A number of valid PL/M

procedure declarations are listed below.

NULL: PROCED UR E;

RETURN;

END NULL;

SUM:?ROCEDUHE (X, Y) ;

DEC L ARE (X , Y) ADD RE S S :

/* ASSUME U IS PREVrQUSLY DECLARED *1

U = X + Y;

RETUR N;

.~ND SUM;

ZERO: PROCEDURE BYTE;

RETURN 0;

END ZERO;

IDENTITY: PROCEDURE (X) ADDRESS;

DECLARE X ADDRESS;

RETURN X;

END IDENTITY;

PLUSXY: PROCEDURE (X,Y) BYTE;

DECLARE (I, X, Y) BYTE;

I = X - Y;

RETURN X + Y;

END PLUSXY;

25

10.2. Procedure Calls. Procedures can be invoked

anywhere after their declaration. There are two possible

forms of the call, depending upon whether the procedure-type

is present or omitted in the procedure declaration.

If the procedure-type is omitted, then the procedure

does not return a val ue to the point of in voca tion. In this

case, the form of the call is

CALL procedure-name argument-list

where the procedure-name and argument-list correspond to

those defined above. The effect in PL/M is to assign the

actual values in the argument-list at the call to ~he

identifiers given in the argument-list in the procedure

declaration. The elements of the argument-list in the call

are called ~!~~1 E~E~~~!~£~, and are not restricted to

simple PL/m identifiers. In fact, any valid PL/M expression

can be placed in the argument-list. These expressicns are

all evaluated in the actual parameter list before they are

assigned to the corresponding identifiers in the formal

parameter list. If the procedure is declared with an empty

formal parameter list then the actual parameter list is also

omitted. Control is then transferred to the beginning of

the procedure named by the procedure-name.

Thus, given the procedure definitions above, the

following are all valid procedure calls

CALL NULL;

CALL SUM (5,3)

CALL SUM(Q,R + Z);

In the last case, for example, the value of Q is first

placed into X in the procedure SUM. The value of R + Z is

then computed and stored into the formal parameter Y.

control then passes to the procedure SUM where the variable

U is set to the sum of these two values (it is assumed that

U has been declar ed ahead of the proced ure SUM). Note that

automatic type conversion occurs between BYTE and ADDRESS

26

values when the actual parameters are assigned to the formal

par ameters.

The second form of a procedure call occurs when the

procedure is declared with a procedure-type of BITE or

ADDRESS. In this case, the procedure call results in a

value which can be used in an expression. The form of the

call is

procedure-name argument-listi

and may appear anywhere a PL/M expression is allowed. The

following calls demonstrate a number of valid PL/M procedure

invocations

I =. IDENT ITI (I) i

X = PL USX Y (X, I) i

X = Q-PLUSXY(XtY,Q)/(X-Y)i

DO I=PLUSXY(Q,R) TO PLUSXY(Z+R,Q)+10i ENDi

As an exa~ple of a procedure declaration and cal~,

consider the sorting program given ea~lier. The segment of

the program which performs the sort can be redefined as a

procedure. Assume the procedure has a single formal

parameter which gives the upper bound of the sort loop. The

value returned by the procedure is the number of switches

required to sort the vector.

DECLARE A(10) ADDRESS INITIAL

(33,10,2000,400,410,3,3,33,500,1999) ;

SOFT: PROCEDURE (N) ADDRESS;

/* SORT THE VECTOR AT 'A' OF LENGTH

N + 2. RETURN THE NUMBER OF SWITCHES

REQUIRED TO PERFORM THE SORT */

DECLARE (N,I,SWITCHED) BITE,

(T1,T2,COUNT) ADDRESS;

SWITCHED = 1; COUNT = 0;

DO WHILE SWITCHED; SWITCHED=O;

DO I = 0 TO N;

T1 = A(I); T2=A(I+1);

27

IF T1 > T2 THEN

END;

DO; A(I+1) = T1;

A (I) = T 2 ; S W IT C H ED = 1;

COUNT = COUNT + 1;

END;

END;

RETURN COUNT;

END SORT;

/* THE SORT PROCEDURE IS DECLARED ABOVE.

CALL SORT WITH N -2 = 10 - 2 = 8 */

DECLAR E N SWI TC HE S ADDRE SS;

NSWITCHES = SORT (8);

EOF

The program shown above illustrates a difficulty in

parameter passing which has not yet been considered. In

particular, the SORT procedure would be much more useful as

a library subroutine if several different vectors could be

processed by the same subroutine. 1s shown, the SORT

procedure is only capable of sorting the particular vector

A.

The next section introduces the notion of based

variables which overcome this difficulty.

]~§§~ ~~~i~~l~ features of PL/M allow computation of

variable addresses during execution of a program. A based

variable is similar to the variables discussed previously,

except that no storage is allocated for the variable.

Instead, corresponding to each based variable is an address

variable, called the ~~~~, which determines the memory

address for the based variable during execution.

28

Based variables are declared using the BASED attribute

which specifies the base. The form of the BASED attribute

is

BASED identifier

where the identifier is a previously declared ADDRESS

variable name. The BASED attribute must immediately follow

the name cf the based variable in the declaration statement.

The following are examples of PL/M based variable

declarations

DECLARE X BASED A BYTE;

DECLARE (X BASED XA, Y BASED YA) ADDRESS;

DECLARE (Q BAS ED QA) (100) BYTE;

In the first case, a byte variable called X is declared.

The declaration implies that X will be found at the location

given by the address variable A (which must be declared as

an ADDRESS variable else«here).

The second declaration above defines two based

variables X and Y both of type ADDRESS which are located at

XA and YA, respectively.

The third declaration defines a vector based variable

called Q based at QA. Note that the vector size need not be

stated, however, since no storage is alloca ted to Q by the

PL/M compiler. The only use for the vector size is to

provide values for the LENGTH (Q) and LAST (Q) built-in

functions described previously.

In order to make effective use of based variables, it

is necessary to allow programmatic reference to the assigned

address of a non-based variable. The memory location

assigned to a variable is designated by preceding the

variable name with a dot symbol (.). Thus, the expressions

.A and .A(5)

yield the address of A and the address of A(5),

respectively. If A is a BYTE variable, the value of .A+5 is

29

the same as .A(5). Similarly, if A is of type ADDRESS, then

.A+10 is the same as .A(5). The address reference to a

based variable is allow and results simply in the value of

the base.

An address reference using the dot symbol can be used

anywhere an expression is valid in PL/M.

As an illustration of the use of based variables,

considEr the following loop which initializes the elements

of a vector to their respective element numbers

This

DECLARE A (100) ADD RE SS;

DECLARE I BYTE;

EOF

DO 1= 0 TO LAST (A)

A (I) = I;

END;

same function can be performed (rather

inefficiently) with the following loop using based variables

DECLARE A(100) ADDRESS,

QA ADDRESS, Q BASED QA ADDRESS;

1* SET QA TO THE BASE ADDRESS OF A*I
QA = .A;
DECLARE I BYTE;

DO I = 0 TO 99;

Q = I; QA = QA + 2 ;

END;

EOP

Note that QA starts at the base of A and moves up by

two bytes on each iteration since each element of.A occupies

two byfes.

Based. variables are, most commonly found in procedure

parameter passing. It is often necessary to return more

30

than one value fr.om a procedure. In this· case, the addr§.§§

of an actual . parameter can be passed to the procedure·

inst~ad of the value of the actual parameter. The

co~responding formal parameter is declared within the called

procedure as an address vatiable.· This formal param~ter is

then. used as abase for a based varia,ble whi thin the

procedure. Any changes to the based variable then altEr the

corresponding actual parameter.

In the case of the SORT procedure, for example, the

.. address of a vector to be sotted can be sent as an actual

parameter. The SORT procedure then Operates upon a locally

~efined. based variable. The revised SORT procedure is shown

below

SORT: PROCEDURE(Q,N) ADDRESS~ ,
DECLARE (N,l,S WITCHED) BYTE,

(Q,Tl,T2,COUNT) ADORESS;

1* AND THEN SET UP THE BASED

VARIABLE TO SORT *1
DECLARE A BASED Q ADDRESS;

SWITCHED = 1: COUNT = 0;
,.

DO WHILE SWITCHED; SWITCHED=O;

DO I = 0 TO N;

T1 = A (1); T2=A (1+1) ;

IF T1,> T2 THEN

DO; A (I + 1) = T1 i

A(I) = ~2; SWITCHED = 1;

COUNT = COUNT + 1;

END:END;END;

RETURN COUNT;

END SORT:

DEC.LARE B(10) ADDRESS INITIAL

(33,10,2000,400,410,3,3,33,500,1999),

DECLARE C(5) ADDRESS

INITIAL('A',32,OFFFH,22Q,2D) ;

1* NOW SORT THE VECTORS BAND C *1

31

DECLARE (N1,N2) ADDRESS;

N1 = SORT (.B,LAST(B) -1)-;

N2 = SORT (.C,LENGTH (C) -2) ;

EOF

The SORT procedure has two formal parameters Q and N.

Q is an ADDRESS variable which gives the base address of the

vector to be sorted. The parameter N gives the upper bound

in the sort

inside SORT as

references to

loop, as before. The variable A is declared

an ADDRESS variable based at Q. Thus,

A inside SORT are actually references to

memory locations starting a t the value of Q.

The SORT procedure is called twice. First, the vector

B is sorted by sending the base address of B. The second

call sorts C by passing the base address of C as the first

actual parameter.

The section which follows introduces the concept of a

long constant. These long constants allow manipulation of

data which exceed two bytes in length.

Recall that PL/M allows direct representation of

numeric and string constants which require a single or

double byte internal representation. It is often useful,

however, to manipulate constants of indefinite length. This

facility is provided in PL/M through the use of lQQg

£21!§.1&Q!§ •

A PL/M long constant is a set of contiguous memory

locations represented by the address of the first byte. The

memory locations for long constants are allocated in the

same area as the program storage, and are initialized to the

string and numeric v~lues specified in the constant (program

32

steps and long constants are normally a part of the Read

Only Memcry portion of storage, and thus cannot be altered

during execution). The first form of a long constant is

simply

• constant

where the constant is a string or numeric value. The re~ult

of this expression is an address value providing ·the

location of the constant. The second form allows several

constants to be gathered together and based at the same

address. This form is

(constant-1,constant-2, ••• ,constant-n)

Again, the result of this expression is an address value

giving the starting position of the constan~s in memory.

Valid Pl/M long constants are

• 335

• 'THIS .IS A LONG CONSTANT STRING' , .
• ('THREE',' STRI NG',' CONSTANTS ')

• (3, 'CONSTANTS',OFFE2H)

These long constants can appear anywhere a PL/M expression

is allowed.

Another form of a long constant allows the constant to

be named and accessed as a subscripted variable. This

second form is a particular case of the declare statement

called a DATA declaration. The form is

DECLARE identifier DATA (constant-1, ••• ,constant-n)

The following are valid PL/M DATA declarations

DECLARE X DATA ('LONG STRING');

DECLARE Y DATA (O,1,2,3,'STRINGI,4)

These two declarations have an effect similar to INITIAL

declarations except that new v~lues cannot generally be

assigned to the elements of X and Y. In addition, there is

an automatic vector size assigned to elements declared in a

DATA declaration which is the number of bytes required to

hold the constants listed in the DATA attribute. In the

33

above case, both X and Yare treated as BYTE variables with

vector size 11. As a result, the LENGTH and LAST built-in

procedures can be applied to DATA variables to determine the

length of the constant string.

Given the above DATA declaration, the expressions below

evaluatE to the result shown on the right

X (0) = 'L'

X(10) = 'G'

Y (3) = 3

LENGTH (Y) = 11

As an example, consider the following PL/M procedure,

called EQUAL, which compares two long constants for

equality. EQUAL has two formal parameters which give the
•

base addresses of two long constants. The last byte of each

constant is Offh. EQUAL returns a 1 if the constants match,

and 0 if not.

EQUAL: PROCEDURE (AS1,AS2) BYTE;

DECLARE (AS1,AS2,I) ADDRESS,

(S1 BASED AS1, S2 BASED AS2) BYTE,

(J1,J2) BYTE;

/* COMPARE UNTIL A MISMATCH OR OFFH

IS FOUND IN BOTH STRINGS */

J1, J2, I = 0;

DO WHILE J1 = J2;

IF J1 = OFFH THEN RETURN 1;

J1 = S1(I); J2 = S2(I);

I = I + 1;

END;

RE'rURN 0;

END EQUAL;

Assume that the following declarations occur in the

program

DECLARE X DATA ('WALLAWALLAWASH',OFFH)

34

DECLARE Y DATA ('WALLAWASH',OFFH);

The EQUAL procedure can be called by

I = EQUAL(.X,. ('WALLAWALLAWASH',OFFH));

As a result, I is set to 1. The value nf I in the case

1= EQUAL(.X,.Y)

is zero since the strings X and Y differ.

As a final comment, one should note that the

fundamental difference between DATA variables and BYTE

variables with the INITIAL attribute is in the allocation

of storage. DATA variables are stored in the same area as

program code, as mentioned previously, and cannot generally

be altered through a PL/M assi~nment. BYTE variables, on

the other hand, are allocated in alterable program stcrage.

The INITIAL attribute provides data which is preloaded into

these locations before the program executes (and hence is

volatile storage). In this case, these initial value~ can

always be changed with assignment statements during

execution ••

An important concept in any block-structured language,

such as PL/M, is the notion of variable sCQ£~. The scope of

a variable in PL/M is .the range of state;:nents where the

Variable can be used in expressions and assignment~. The

scope of variables is controlled by the arrangement of

DO-groups and DECLARE statements. A variable is available

for use only within the DO-END statements in which the

DECLARE statement for the variable occurs.

called the scope of the declared variable.

This range is

Consider the following PL/M program, for example:

1 DECLARE (A,B,C,D) BYTE;

2 E,C = 10;

3 A = B + C;

35

4 DO;

5 DECLARE (Q,R,S) BYTE;

6 Q, R = 20;

7 S = A + Q + R;

8 END;

9 D = 2 + Ai

10 EOF

The declaration on Line 1 defines four variables A, B,

C, and D which can be used throughout the program. The

DO-group between lines 4 and 8 contains a declaration of

three variables Q, R,and S which are defined only within

the group; that is, although A, B, C, and D can be used

anywhere in the program, the variables Q, R, and S cannot be

xeferenced outside the range of statements beginning on line

4 and ending on line 8. These lines delimit the scope of Q,

R, and S.

A more complicated structure is given by the following

skeletal PL/M program

DECLARE (A,B,C,D) BYTE; 1* BLOCK 1 *1

DOi 1* BLOCK 2 *1
DECLARE (A,E,F,G) BYTE;

DO; 1* BLOCK 3 *1
DECLARE (B,H,I,J) BYTE;

ENDi/* OF BLOCK 3 *1

END; 1* OF BLOCK 2 *1

DO; 1* BLOCK 4 *1
DECLARE (A,.E,K,L) BYTE;

. . .
END; 1* OF BLOCK 4 *1

36

1* BLOCK 1 IS COMPLETED *1
EOF

The declaration of A, B, C, and D at the top of block 1

makes these variables glQ~~l to any nested inner blocks in

the program. That is, they can be referenced anywhere in

the program where there is no conflicting declaration.

The variables A, E, F, and G at the top of block 2 are

said to be 12£~1 ~o block 2 and global to block 3. These

variables cannot be referenced outside block 2. Note that

the variable i in block 2 conflicts with the declaration of

A in block 1. In this case, any reference to A within block

2 refers to the innermost declaration of A. Similarly, the

variables B, H. I, and J declared at the top of blcck 3

cannot be accessed outside block 3. Again, the declaration

of B in block 3 overrides the outer block declaration of

this variabl~ name.

Block 4 is E~rallel,to block 2 in this program. The

variables A, E, K, and L are local to block 4. Thus, the

variables E, K, and L are undefined outside block 4, and

references to A outside block 4 affect the variable A

declared on the first line.

The notion of scope of variable names extends to

procedure names and to formal parameters declared within

procedures. A procedure declaration is treated the same as

a DO-group in defining scope of variables. As an example,

consider the following program

1* BLOCK 1 *1
DECLARE (I, J, K) BYT E;

P1: PROCEDURE (I,Q) BYTE;

1* BLOCK 2 *1
DECLARE (I,Q,J,R) ADDRESS;

37

END P1 /* AND BLOCK 2 *1;

1=2: PROCEDURE (J,Q,R) ADDRESS;

/* BLOCK 3 */

DECLARE (J,Q,R,S,T) BYTE;

END P2 1* AND ALSO BLOCK 3 */

1* BLOCK 1 IS FINISHED */

EOF

The variables I, J, and K are global to both the P1 and

P2 procEdures. The procedures P1 and P2 constitute

independent parallel blocks, each with their own local

variables. Note that the local variable I declared in

procedure P1 is used in all references to I within block 2,

instead of the global variable declared in line 1. Note

also that the variable Q defined in P1 is completely

independent of the Q declared in P2.

The principal advantage to the scope of variable

concept in PL/M is that subroutines are independent of the

program in which they are imbedded, with no problems arising

from conflicting declarations. In particular, library

subroutines can be written as completely modular subprograms

with no dependence upon the names used outside the

procedure.

PL/M allows program statements to be identified with a

21~1§ID§n! l~bel, and allows unconditional transfer of

program control to these labelled statements.

14. 1.

the form

Label Names. A PL/M labelled statement takes

38

label-1: label-2: ••• label-n: statement;

where label-1 through label-n are valid PL/M identifiers or

constants. Any number of labels may precede a PL/M

sta tement. Valid labelled statements are

L1: X = X + 1 . ,
LOOP: Y = 3 ;

L1: LOOP: X = Y + 5;

30: y = X -5 ;

LOOP: 30: L 1: Q = 5 + 'tl'.
~ ,

The function of numeric labels is to specify an .2rig.!.n

for code generation. The statement "30~ y :: X - 5;" for

example, specifies that the object code for this statement

is to begin at location 30 in memory. The identifier form

of a statement label has no effect on the origin of the

code, but does provide a destination for GO TO statements.

14.2. GO TO statements. PL/M allows three distinct

forms of an unconditional transfer. The first is

GO TO label;

In this case, the label is an identifier which appears as a

label in a labelled statement. Program control transfers

directly to the statement with thjs label.

The second form of a GO ro is

GO TO constant;

The constant is any valid PL/M single or double byte number.

program centrol transfers to the absolute location in memory

given by this number.

The last form is

GO TO variable;

where the variable contains a computed memorY address.

Control transfers directly to this computed absolute

address.

39

The following program illustrates the use of lacelled

statements and GO TO's.

DECLARE X ADDRESS;

10: GO TO KEYIN;

LOOP: Q = R + 3;

IF Q > Z GO TO LOO~;

GO TO EXIT;

1* COMPUTE AN ADDRESS AND BRANCH *1
X = .MEMORY + 13;

GO TO X;

GO TO 30;

EXIT: HALT;

EOF

14.3. Scope of Labels. It should be noted that the

identifier ferm of a label has an implied scope, similar to

variables and procedures. This implied scope can be made

explicit through the PLIM !~h~l ~~£!~~ati2~. The form of

the label declaration is

DECLARE identifier LABEL;

or

DECLARE (identifier-1, ••• ,identifier-n) LABEL;

The label declaration informs.the compiler that a label or

set of labels will occur at the same block level as the

declaration. The label declaration is only necessary,

however, when the implied declaration does not correspond to

the programmer's intention. In particular, any occurrence

of an undeclared label in either a GO TO statement, or as . a

statement label results in an immediate automatic

declaration ef the label. This implied declaration is most

40

easily seen by 2xample. The programs to the left below

contain undeclared labels. The implied declarations

resulting from these labels are shown in the corresponding

pro(r'~.~ ms to the r igh t •
• j ~

L(W P : X = X + 1;

GO TO LOOP;

EOF

LOOP: X=X+ 1;

DO;

GO TO Q 1 ;

Q1: Y=Y+1;

GO TO LOOP;

END;

.. . .
GO TO EXIT;

EXIT: HALT;

EOF

X=X+1;

DO;

GO TO L1;

11: Y=Y+1;

END;

. . .
L 1: Q=Q+3;

GO TO L 1;

EOF

PROGRAM 1

DECLARE LOOP LABEL;

LOOP: X = X + 1;

GO TO LOOP;

EOF

PROGRAM 2

DECLARE LOOP LABEL;

LOOP: X=X+1;

DO;

DECLARE Q1 LABEL;

GO TO Q1;

Q1: Y = Y+l;

GO TO LOOP;

END;

DECLARE EXIT LABEL;

GO TO EXIT;

EXIT: HALT;

EOF

PROGRAM 3

X=X+ 1;

DO;

DECLARE L1 LABEL;

GO TO L1;

L1: Y=Y+1;

END;

I DECLARE L1 LABEL;

I L 1: Q=Q+ 3;

GO TO L1;

EOF

The only instance which requires explicit declaration

of a label is when a GO TO statement in an inner nested

41

block references a label in an outer block, and the label

follows the GO TO statement. Consider the following

program, for example.

'* BLOCK 1 *'
X = X + 1;

. . .
DO; '* BLOCK 2 *1
. . .
GO TO EX IT;

END '* OF BLOCK 2 *1;

EXIT: HALT;

EOF

The implied label declaration created by the PL/M compiler

for the label EXIT results in the program

X = X + 1;

. . .
DO;

DECLARE EXIT LABEL;

GO TO EXIT;

END;

DECLARE EXIT LABEL;

EXIT: HALT;

EOF

Note that the resulting program is in error since the

implied declaration of EXIT in block 2 indicates that the

scope of EXIT is only block i, conflicting with its .
occurrence in block 1. Thus, the label declaration can be

used to remedy the situation. The programmer overrides the

implied declaration with

DECLARE EXIT LABEL;

42

x = x + 1;

DO;

GO TO EXIT;

END;

EXIT: HALT;

EOF

As a final note, the PL/M programmer is

use the IF- THE~-ELSE and DO-group construc ts

labelled statements and GO TO's whenever

encouraged to

in the place of

possi blE. The

effect in most caSES is bet~ter object code and improved

readability of the source program.

PL/M allows declaration and expansion of simple maCLOS

at compile time. The LITERALLY declaration in PL/M allows

the programmer

sequence of

automatically

occurrence of

to define

arbitrary

an identifier

characters. The

to represent a

PL/M compiler

substitutes the defining string at each

the.- defined identifier. The form of the

LITERALLY declaration is

DECLARE identifier LITERALLY string;

where the identifier is any.valid PL/M name which does not
11

conflict with previous declarations, and the string is an

arbitrary PL/M string., . not exceeding 255 characters in

length.

The following program illustrates the use of the PL/M

macro facility

DECLARE TRUE LITERALLY' 1',

FALSE LITERALLY '0';

43

CECLARE DCL LITERALLY 'DECLARE',

LIT LITERALLY 'LITERALLY';

DCL FOREVER LIT 'WHILE TRUE';

DCL (X,Y,Z) BYTE;

EOF

X = TRUE;

. . .
DO FOREVER; Y=Y+1;

IF Y > 10 THEN HALT;

END;

The declarations on lines 1 and 2 allow the programmer to

use the symbols TRUE and FALSE instead of 0 and 1, which

often makes the program more readable. The declarations for

DCL and LIT define abbreviations for DECLARE and LITERALLY,

respectively.

The DC FOREVER statement on line 8 first expands to DO

WHILE TRUE. The macro expansion of TRUE then results in a

loop headed by DO WHILE 1 (which executes indefinitely,

until the HALT statement is executed) •

The LITERALLY declaration is also useful for declaring

fixed parameters for the particular compilation, but which

may change from one c~mpila tion to the next. Consider the

program below, for example:

DECLARE ASIZE LITERALLY '300',

PBASE LITERALLY '4000',

SUPERVISOR LITERALLY '200';

DECLARE (A (ASIZE) ,I} ADDRESS;

. . .
PBASE: A (ASIZE-10) = 50;

GO TO SUPERVISOR;

EOF

44

In this case, ASIZE defines the size of the vector A. The

value of ASIZE can be altered in the LITERALLY declaration

without affecting the remainder ef the program. Similarly,

the value of PEASE defines the starting location of the

program since it expands to a numeric label. The expansion

of the PEASE macro results in the statement

4000: A(ASIZE-1} = 50;

In the case of the SUPERVISOR macro, the statement "GO TO

SUPERVISOR" is replaced by "GO TO 200" resulting in a

transfer to absolute address 200 in memory.

The LENGTH and LAST forms described previously are

called built in procedures. A number of additional

predeclared variables and procedures are described in this

section, which are intended to ease the programming task.

It should be noted that these variables and procedures

are assumed to be declared at an outer encompassing block

level which is invisible to the programmer. Thus,

declarations of variables and proce~rires with identical

names within the program override the predeclared names.

16.1. Condition Code variables. There are four

variable names in PL/M which can be used· to test the

condition codes in the MCS-8 cpu. These names are

CARRY ZERO SIGN PARITY

Any occurrence of one of these variables generates an

immediate test of the corresponding condition code flip-flop

for a true condition (value is 1). The use of these

variables is somewhat implementation-dependent, and is

described more completely in the section en PL/M system

notes. In any case, these variables cannot be used as the

destination cf an assignment.

45

16.2. The MEMORY Vector. It is often uEeful to

address the area of memory following the last variable

allocated in a particular program. PL/M provides this

facility by automatically inserting the declaration

DECLARE MEMORY (0) BYTE;

as the last declaration in every program.

As an example, consider the following program. This

program assumes it will execute on a machine with 10 pages

(2560 bytes) of memory. The program initializes all

remaining space after the pr ogra m variable storage to 1"5.

DECLARE SIZE LITERALLY '2559',

I ADDRESS;

EOF

DO I = .MEMORY TO SIZE;

MEMORY(I - .MEMOR~ = 1;

END;

16.3. The TIME Procedure. A built-in procedure,

called TIME, is provided in PL/M for waiting a fixed amount

of time at a particular point in the program. The form of

the call is

CALL' TI ME (expression) ;

where the expression evaluates to a byte quantity n between

1 and 255. The wait time is measured in increments of 100

usec; hence, the total time-out for a value n is

n (1 00 usec).

Thus, the call to TIME shown below results in a 4500 usec

(4.5 msec) , time-out

CALL TIME (45) ;

Sinc€ the maximum time-out is 255*100 usec·= 25500 usec

= 25.5 msec, longer wait periods are affected by enclosing

the call in a loop. The following loop, for example, takes

1 second to execute

DO I =1 TO 40;

46

CALL TIME(250)J

END,

16,4. Type Tran.fer Proeedures. two built-In
procedure. are provided In PLIM to convert ADDRESS valuel to
B~TE valul.. Thl procedure calli take the forml

LOW(exprelllon) and HIGH(eXpreI51on)

The LOW procedure return. the low-order byte of a double
byte value, while the HIGH procedur. returnl the high-order
byte, Either eall can be used wherever a bytl exprelslon 11
valid in PL/M.

The bUllt-1n procedure DOUBLE converts a BYTE value to
an ADDRESS value. The proeedure call takel the form

DOUBLECexpreSslon)

16.5 Bit Manipulation Procedurel, Slx procedurel
are prov1ded 1n ~L/M tor Ihlftln9 and rotating expre •• lons.
These procedure calls take the forml

SHL(expreSllon1,expres&lon2),

SHRcexpresslonl,express1on2),

SCLcexpresllonl,expresSlon2),

SCRcexpreSllonl,expresslon2),

ROLCexpresllon3,expresslon2),

~OR(expresllon3,expresslon2),

In these cases, expressionl can be elther byte or double
byte, but expresslon2 and expresslon3 must be 5in9le byte
values.

The SHL and SHR procedurel shift expressionl to the
left or r19ht by an amount given bY expresslon2,
respectively, The precislon of tne reSUlt 1s the same as
that of expresslon1, ~ote that the value Of expresslona
must be qreater than zero,

The val~e of SHL(1000S0011B,2), for example, 1. the
byte value 000011006, The call SHRC1$OOOO.1100B,1) results
1n the dOUble byte value 0$1000801108,

The SCL and SCR procedures are Identical to the SHL and
SHR procedurel wlth the exceptlon that SCL and SCR shift 1n'
the previous value of the carry flag; Where SHL· and SHR

47

~h1tt 1n ~eroes, For examp11, the statement.

HIGH.ORDER • SHR(010180101B,1),

LOW$ORDER • SCR(0101t0102B,1),

al.19n the value 00101010B to HIGHSORDER and the val~'
10101010B to LOW.ORDER,

The ROL and ROR procedures rotate the value of the byte
expression) to the r10ht or lett by an amount qlven by
expressIon2, respect1vely, Again, expre5s1on2 mUlt be
gre~ter than zero, Both procedures always return a byte
value, The value of ROL(101180000,2) 11 1100$00108, and the
v~lue of ROR(1111$OOOOB,8) 1. 1111800008,

The SHL, ShR, SCL, SCR, ROL, and ROR calli can appear
anywhere a PL/~ expreSSIon 11 allowed. -

16,6. 1/0 proceSSing, The built-ln procedure l~PUT
and buI1t-1n varlable OUTPUT were Introduced earller. In
general, the 1nput call takes the form

INPUT(constant)

Where the constant 15 1n the ranoe 0 to 7. The effect of
the call 11 to read the input port deslonated bY the
conlt~nt. The result of the call 15 the byte value latched
into the port, The ea1l to INPOT can appear al • part of
any valid PL/M expreSSion,

The pseUdo-variable OUTPUT can only be used a. the
destlnatlon of an aSSignment, The form 1s

OUTPUTCconstant) • expreSSIon,

Where the constant is 1n the ranoe 0 to 23, The value of
the expression 15 latched 1nto the output port del19nated by
the constant,

Th!s
PL/M. The
discussion
PL/M.

sectlon
sect10n
of the

completes the tutorlal Introduction to
Which follows provldes more detailed
indivIdual statements and constructs ot

48

III. A FORMAL APPROACH TO PL/M.

(Section III is currently incomplete. The BNF description of PL/M is included, however, for reference purposes.)

1 <PROGRAM) ::= <STATEMENT LIST)

2
3

4
5

6
1
8
9

10
11
12
13
14
15

16
17
18

19

20

21

22
23
24
25
26

27

28
29

30

31

32

33
34
35
36

31

38

39
40

41
42
43

44
45

46
41

48

49
50

51
52

53
54

55
56
51

58

59
60

61
62
63

<STAT~MENT LIST)

<STATEMENT> · .-
I

<BASIC STATEMENT>

<I F STATEMENT)

<IF CLAUSE>

<TRUE PART>

· .-· .-

.. - <STATEMENT)
I <STATEMENT LIST) <STATEMENT)

<BASIC STATEMENT>
<IF STATEMENT>

::= <ASSIGNMENT)
<GROUP) ;
<PROCEDURE DEFINITION>
<RETURN STATEMENT> ;
<CALL STATEMENT> ;
<GO TO STATEMENT> ;
<DECLARATION STATEMENT> ;
HALT i

~LABEL DEFINITION> <BASIC STATEMENT)

<IF CLAUSE> <STATEMENT)
<IF CLAUSE> <TRUE PART> <STATEMENT>
<LABEL DEFINITION> <IF STATEMENT>

IF <EXPRESSION> THEN

<BASIC STATEMENT) ELSE

<GROUP> .. -.. - <GROUP HEAD) <ENDING>

<GROUP HEAD> DO i
DO <STEP DEFINITION)
DO <WKILE CLAUSE> ;
DO <CASE SELECTOR) ;
<GROUP HEAD> <STATEMENT>

<STEP DEFINITIO~)

<ITERATICN ceNTROL> : : r
<VARIABLE> <REPLACE> <EXPRESSION) <ITERATION CONTROL>

<TO) <EXPRESSION>
<TO> <EXPRESSION> <BY> <EXPRESS ION>"

<WHILE CLAUSE>
<CAS E SELECTOR)

: : = <WHILE> <EXPRESSION>
CASE <EXPRESSION>

<PROCEDURE DE F It-. I TI ON> .. - < PROC EDU RE HEAD> <STATEMENT

<PROCEDURE HEAC> ::= <PROCEDURE NAME> ;

J

<PROCEDURE NAME) <TYPE> i
<PROCEDURE NAME> <PARAMETER LIST)
<PROCEDURE NAME) <PARAI'-1ETER LIST>

<PROCEDURE NAME) .. - <LABEL DEFINITION) PROCEDURE .. -
<PARAMETER LIST> .. - <PARAMETER HEAD) <IDENTIFIER> .. -
<PARAMET ER HEAD) : : T (

<PARAMETER HEAD) < 10 ENT I FIE R) ,

<ENDING) END
END <IDENTIFIER)
<LABEL DEFINITION> <ENDING>

<LABEL DEFINITION)

<RETURN STATE~ENT>

<CALL STATEMENT)

<GO TO STATEMENT>

<GO TO) GO TO
GOTD

"T

< ID E NT I FIE R) :
<NUMBER) :

RETURN
RETURN <EXPRESSION>

CALL <VARIABLE>
<GO TO) <IDENTIFIER>
<GO TO) <NUMBER>

LIST>

;
<TYPE)

<DECLARATION STATEMENT> DECLARE <DECLARATION ELEMENT)

<ENDING>

<DECLARATION STATEMENT> , <CECLARATION ELEMENT>

<DECLARATION ELEMENT) ::= <TYPE DECLARATION> "
<IDENTIFIER> LIT2RALLY <STRING>
<IDENTIFIER> <DATA LIST>.

<DATA LIST> ::= <DATA HEAD> <CONSTANT>)

<DATA HEAD> DATA (
", <DATA HEAD> <CONSTANT> ,

<TYPE DECLARATION> ::=, <IDENTIFIER SPECIFICATION> <TYPE>
<BOUND HEAD> <NUMBER>) <TYPE>
<TYPE DECLARATION> <INITIAL LIST>

49

64
65
66

67

68
69

70
71

72
73

74

75

76
71

78
79

<TVPE> :: =

\
BYTE
ADDRESS
LABEl

<BOUND HEAD> .. -.. - <IDENTIFIER SPECIFICATION> (
<IDENTIFIER SPECIFICATION> ::= <VARIABLE NAME>

I <IDENTIFIER LIST> <VARIAELE NAME>)
<IDENTIFIER LIST> .. -•• T (

<VARIABLE NAME>

<BASED VARIABLE>

<INITIAL LIST>
< INITIAL HEAD>

<A SSI GNf.1ENT>

: : T
.. -
o .-

• 0_
• 0-

<IDENTIFIER LIST> <VARIABLE NAME> t

<IDENTIFIER>
<BASED VARIABLE> <IDENTIFIER>

<IDENTIFIER> BASED
<INITIAL HEAD> <CONSTANT>
I t\ITIAL (
<INITIAL HEAD> <CONSTANT> t

<VARIABLE> <REPLACE> <EXPRESSION>
<LEFT PART> <ASSIGNMENT>

80 <REPLACE> ::= =
81 <LEFT PART> ::= <VARIABLE>,
82 <EXPRESSION> <LOGICAL EXPRESSION>
83 •• , <VARIABLE>: = <LOGICAL EXPRESSION>

84 <LOGICAL EXPRESSION> •• - <LOGICAL FACTOR>
85 • ·-1 <LOGICAL EXPRESSION> OR <LOGICAL FACTOR>
86 <LOGICAL EXPRESSION> XOR <LOGICAL FACTOR>

87
88
89
90

91
92

93
94
95
96
97
98

99
100
LOI
102
103
104

105
106
107
108

109
110
111
112
113
114

LL5
116

117
118

LL9
120

121
122

<LOGICAL FACTOR> : : j <LOGICAL SECONDARY>
<LOGICAL FACTOR> AND <LOGI~AL SECONDARY>

<LOGICAL SECONCARY> <LOGICAL PRIMARY>
NOT <LOGICAL PRIMARY>

<LOGICAL PRIMARY> <ARITHMETIC EXPRESSION>

<RELATION>

<ARITHMETIC

<TERM>
.0_ .. -
I

<PRIMARY>

"I = <
>
< >
< = > =

EXPRESSION>

<PRIMARY>

<ARI THME TI C E XPRE SS ION> <RELAT! ON> <ARITHMETIC EXPRESS ION)

:: = <T ERM>
<ARITHMETIC EXPRESSION> + <TERM>
<ARITHMETIC EXPRESSION> - <TERM)
<ARITHMETIC EXPRESSION> PLUS <TERM>
<ARITHMETIC EXPRESSION> MINUS <TERM>
- <TERM>

<TERM> * <PRIMARY>
<TERM> I <PRIMARY>
<TER~> MOD <PRIMARY>

00= <CONSTANT>
o 0.\ . <CONS T ANT> •

~~~~n~~J>HEAD> <CONSl ANT> ) 
• <VARIABLE> 
( <EXPRESSION> ) 

<COr--STANT HEAD> . ( 

<VARI ABL E> o 0, 
<SUBSCRI PT HE AC> 

<COt\ST ANT> : : = 
I 

<CONSTANT HEAD> <CONSTANT> t 

< IOENT I FI ER> 
<SUBSCRIPT HEAD> <EXPRESSION> ) 

00_ <IDENT IFIER> ( 00, <SUBSCRI PT HEAD> <E:XPRESS ION> , 

<STRING> 
<NUMBER> 

123 <TO> ::. TO 

124 <BY> ::= BY 
125 <WHILE> ::= WHILE 

50 



IV- COMPILING AND DEBUGGING PL/M PROGRAMS-

This section discusses procedures for compiling and 

debugging PL/M programs. 

program is performed in 

A complete compilation of a PL/M 

two aistinct parts: the first 

phase, referred to as PLM 1, scans the source program, and 

produces an intermediate form. The second phase, called 

PLM2, accepts this intermediate form and produces the 

machine code for the MCS-8 CPU. 

syntax are detected in PLH1. 

All errors in Frogram 

The debugging process begins following successful 

compilation of a PL/M program. This debugging phase 

~onsists of an execution of INTERP/8 which accepts the 

machine code produced by PLM2 and simulates the actions of 

the MCS-8 CPU. INTERP/8 has a number of facilities which 

allow monitoring of CPU action, allowing symbolic and 

absolute reference to machine code and variable storage 

locations (see Appendix III of the INTEL publication "MCS-8 

Micro ComFuter set 8008 Users Manual") These three phases 

are described in detail in the sections which follow. 

The first pass of t~e PL/M compiler scans the source 

program, and detects improperly formed declarations and 

sta temen ts. 

dur ing this 

the source 

produced 1:;y 

A listing of the source program 

pass. Errors are listed by Ii ne 

listing is produced or not. 

PLMl tak.es the form: 

(nnnnn) ERROR m NEAR s 

can be obtained 

number whether 

An error message 

The number nnnnn corresponds to the line where the error 

occurred, s is a symbol on the line near the error, and m 

corresponds to the particular error message as given in 

51 



Figure IV-1. 

Before discussing the files referenced by PLM1, it is 

necessary to present the file naming scheme used thrcughout 

the three programs PLM1, PLM2, and INTERP/8. These three 

programs are written in ANSI standard FORTRAN with the 

intention of being as independent from the hast comFuter as 

possible. Thus, only a few assumptions can be made about 

the physical input and output devices or FORTRAN logical 

unit numbers and corresponding file names used in any 

particular implementation. Instead, these three prog+ams 

use an internal file numbering scheme which is consistent 

between the three programs, but which may differ in terms of 

FORTRAN logical units from installation to installation. 

The machine-independent approach here is to give the file 

numbering in terms of 

particular implementation 

FORTRAN units. 

devices types, 

to assign the 

and allow any 

most convenient 

The file numbers used throug~out PLM1, PLM2, and 

INTERP/8, along with the corresponding device types, are 

shown in Figure IV-2. Two examples of FORTRAN unit number 

assignments for the PDP-10 and IBM System/ 3 60 computers are 

shown in Figure IV-3. 

A number of compiler control switches are used during 

the execution of PLM1 to control I/O based upon this file 

numbering scheme. Additional switches are provided to 

control other compile-time functions during this pass, as 

given below. compiler control switches come in two forms: 

compiler toggles, and compiler parameters. Compiler toggles 

can take on only the values 0 and 1 (generally specifying an 

"on" or "off" condition), while compiler ?arameters can be 

any non-negative value. 

A compiler switch is specified to PLM1 by typing a line 

52 



MI;:SSAGE 

THE SYM~OLS PRINTED BELOW HAVE BEEN USE~ IN THE CURREiT ~Ln~( 
BUT 00 NOT APPEAR IN A DECLARE STATEME'IIT. OR LABEL AP"'rA~$ 14 
A G(I T(I STATEMENT BUT DOES NOT APPEAR I'll THE BLOCK. 

2 PAS~-l COMPILER SyHBOL TABLE OVERFLOW. T~O M4Ny SYM~OLS I'll 
THE SOURCE PROGRAH. EiTloIER AtOUCr THt N:JMBER or HR!ARL~'i I ~ 
THE PROGRAM. OR RF-COHpILE PASS-l WITH A LARGER SYMq1L TA1L~. 

3 INVALID pL/M STATEHENT. THE PAIR OF SY~SOLS PRINTrn 3~LOA 
CANNOT APPEAR TOGETHER IN A VALlO PL/M STATEMENT (THJ~ ~pqOR 
HA' HAVE BEEN CAIISED BE A PRtVIOUS [RROR I'! Tlotr PROG-H'1). 

4 INVAlIl) PL/H SHTEMtNT. THE SHTEM[Jn IS I"IPR1P E9LY '"1-7"<:0-
THr PARSE TO THIS POINT FOLLOWS (THIS H~V ~AVE ~r~u~~cn ~r
CAUSE OF A PREVIOUS PROGR1M ERROR). 

5 PASS-l PARSE STACK OVERFLOW. THE FROGRAM STATE'4ENT~ .~~ 
REr:'JR~IVELY NESTEn TOO (1EEPLY. EITIo!ER C:!'~;>LIFY T", "'l"1~~,", 
ST'lUCTtIRE. OJ.! RE-COMPILf: PASS-l WIT4 A LA'Ir.~Q PAq,:;[ ';TA,;'. 

6 NU'1'lER CONVERS !O~, ERROA. THE NUMBER E I T4ER EXCEEO<; 65O;:~5 0" 
CONTAINS DIGITS W~ICH CONFLICT WITH THE 'l4DIX JNDI~A"~. 

7 PASC;-l TABLE OVERFLOW. PROBABLE CAU.,E IS I CC'ISTM1T -;':'1 ,r; 
WHICH IS TOO LO'llG. IF SO. THE STRING SI-I:):II.f.l Pt" W~tTT,~' '.~ t 
SE'ltJENCF 0, SHO~TER STRINGS. SEPARATED P'I OI'I'A". Oro'C~~~ISC .• 
AE-(';OMPILE PASS-1 WITH A LARGER VARe TA~I.::. 

8 MACQO TA9LE OVER'LOW. TOO HANY LITERALLY DECL~RATIO~S. 
EIT~EA RE~UCE THE NUMBER OF LITERALLY nt"CIARATIO~S. 1P R[
cnHDILE P~SS-1 WITH A LAHGE~ 'MACRaS' T4~1 E. 

9 INV~LID CONSTA~T IN INITI4L. DATA. oR !N-L!~E CO~5TA~T. 
PRECISION OF CONSTANT EXCEEDS TWO ByTES (MAY S, I~TE~~AL 
PA~C:-l C0'1PILER ERROR). 

10 I'IIVAU~ P~·OGRA'4. PROGRAM SYNTAX !'J::oRRrC: ,,)Il TEQ'~J'JH1~N 
0, PQOGRA'1. I'fAY Bt OUE TO PREVIOUS ERIl,,)qS "4ICH [)C(;'liI~t"~ 
WIT~IN THE pROGQAM. 

11 INVALID PLACEMENT or A PROC£DURE DECLARATIO~ WITHIN THE PL/H 
PROGRAM. PROCEDURES HAY ONLY BE DECLARED IN THE OUTER BLOCK 
(HAIN PART OF THE PROGAAMI OA WITHIN DO-END GROUPS (NOT 
ITERATiVE DO'S, OO-WHILE'S. OR DO-CASE'S). 

12 IMpROPEAUSE OF IOENT I F! tA FOLLOWI Nt: A~J E"'D ST HEMENT. 
IDENTIFIERS CAN ONLY BE USED IN THIS WAY T1 CLOSE A P~OCEDURE 
DEI' I N IT I 0'11 • 

13 IO"NTIFIER FOLLOWING _N END STATEMENT n.OES NOT "'ATCH T~E NAME 
or TI-IE PROCEDURE WHICH IT CL~SES. 

14 DUPLICATE ,ORMAL PARAMETER NAME IN 4 PRnCEDURE HEhDI~G. 

15 10ENTIF!EIl rOLLO~ING AN END STATEHENT r,ANNOT BE FOUN~ IN THE 
PROGRAM. 

16 rUPLICATE LABEL OEFINITION AT THE SAME BL~CK ~EVEL. 

17 NUMERIC LABEL EXCEEDS CPU ADDRESSING SPACE. 

18 INVALID CALL STATEHENT. TME NAME FOLLOWING THE CALL IS NOT 
A pROC£!,URE. 

19 INVALID DESTINATION IN A GO TO. THE VALUE MUST BE A LABEL 
OR SIMPLE VARIABLE. 

20 HACRO TABLE OVERFLOW (SEE ERROR ~ AB~Vr). 

2l DUPLICATE VARIABLE OA LABEL DEFINITION. 

22 VARIABLE WHICH APPEARS IN A DATA D£CLARATION HAS BEEN PAE
VIOUSLY DECLARED IN THIS BLOCK 

Figure IV-I. PLMI error messages issued during the first 
pass. 

53 



2J 'ASS-S SYMBOL TABLE OVERrLOw (SEE E~POR 2 AijOVE). 

2. INVALID USE OF AN IDE~TlrlER AS A V1RIA8L~ hAME, 

21 PASSeS SYMBOL TABLE OVERrLOw (SEE ERPOR 2 A~OVE). 

2' IMPROPERLY 'OR~EO BASED VARIABLE OECLlRATIGh. THE rOR~ IS 
I BASED ~, ~HERE I IS AN IOENtI'I~R HOT PkEVIOUSLY DECLARED 
IN THIS BLOCK, AND J IS AN ADDRESS VARIABLE, 

27 SY~BOL TAiLE OVERfLOW IN PASS-S (SEE ERROR ~ ABOVE). 

21 INVALID ADDRESS RErERENCE. THE DOT OPERATCR "AY ONLY 
PRECEDE SIMPLE AND SUBSCRIPTED VARIABLES IN THIS CO~TEXT. 

2' U~DECLARED VAAIABLE, THE VARIA8LE HUST AViEAR IN A DECLARE 
STATEMENT BEFORE ITS US~. 

JO SUBSCRIPTED VARllBLE OR PROCEDURE CALL REfE~[NCES AN UM
D~CLARED IDENTIfIER. THE VARIABLE OR PROCEDURE HUSI BE 
DECLARED bEFORE It IS USED. 

Jl THE ICENTIFIER IS IMPROPERLY USED AS A PPOCEDURE OR sua
SCRIPTED VARIABLE. 

32 TOO NANy SU~SCRIPtS I~ A SUBSCRIPTED VARIABLE REFERENCE. 
'LIM ALLOwS O~LV ONE SUBSC~lPt, 

JJ ITE~ATIVE DO I~DEX IS INVALID. IN THE rORM 'DO I • El TO £2· 
THE VARIA~LE I MUST BE aIMPLE (U~SUbSCRIPt[O). 

Jt ATTE~pr TO COMPLEMENt A • COhtROL TOGGLE ~H[RE THE TOGGLE 
CURRENTLY HAS A VALUE OTHER THAH 0 OR I. USE THE '. H' 
OPTION rOLLO~ING tHE tOGGLE TO AVOID tHIS (~ROR. 

)1 INPUT FILE KUM8ER STAC~ QVERFLO_. RE-CO~PILE PASS-I .ITH 
A LAFGER INSTK TABLE. 

16 TOO MANY ~LOCK LEVELS IN TME PL/N PROGRAM, EITHEP SIMPLIFY 
YOUR PROGkAM (30 8LOCK LEVELS ARE CUR~ENTL~ ALLO~lO) OR 
RE·CO~PILE PASSeS hITH A LARCLR BLOCK TABLE, 

17 THE NUMbER or ACTUAL PARAMEtERS IN TH~ CALLING SEQUENCE 
IS GIIEUER tHAt. THE HUMf,ER OF fORMAL "'RA'IETERS DECLlRED 
rOR THIS PROCEDURE. 

JI THE "U~8£R OF ACTUAL PA~AMtTERS IN T~E CALLING SEQUENCE 
IS LESS THA~ tHE NUMBER OF FORMAL PARA~£tERS OECLARED 
rCR Th16 PROCEDURE. 

4' AtT~MPT TO ASSIGN A VALUE TO AN INTRINSIC 
OR pROCEDURE hAME 

Figure IV-l (Con't) 

54 



Internal File Number 

1 
2 
3 
4 
5 
6 
7 

Internal File Number 

1 
2 
3 
4 
5 
6 
7 

Input 

Output 

Input Device 

Interactive Console 
Card Reader 
Paper Tape 

Magnetic Tape A 
Magnetic Tape B 

Sequential Disk A 
Sequential Disk B 

Output Device 

Interactive Console 
Line Printer 

Paper Tape 
Magnetic Tape C 
Magnetic Tape D 

Sequential Disk C 
Sequential Disk D 

Figure IV-2. SyrnbolicDevice Assignments for PIJ.U, PLM2, 
and INTERP/8. 

55 



PASS-l I'"!LE DEtINITIO'lS 

POP-HI 

INPUT OUTPUT 
... UM rH:VI~E UfIIIT iliUM DE-VICE UNI, 

1 TTY 5 1 TTY 5 
2 COR 2 2 PTR 3 
3 PAP 6. 3 PAP 7 

4 lUG H 4 I"AG 17 ., DEC 9 ., DEC 11: 
6 0151( U 6 DISK 22 
7 1)151( ;>1 7 DI!iK V 

IBM S/3~1Il (.CP/CMS I 

I ~JPUT OuTPUT 
~.J U~ 'lEV ICE UN IT '1UM DE V ICE UN !T 

1 TTv 60 5 1 TTY 12" b 

2 COR 80 1 III 2 PTR 133 8 

3 TAP .30 11 :I PUf; 8el 7 
4 TAP 140 9 4 TAr 133 1.2 
5 OSK ~0-U'J 13 ? DSK S~-L0 13 
6 nSK ~fb 1 6 D!,k BI1I 3 

7 DSK 90 2 7 DSK Bill 4 

PAS S-2 FILE DEr INIT IONS 

P<)P-10 

INPUT OUTPUT 
IJIJ'1 DEVICE UNIT ftlUM DEY I CE UNIT 

1 TTY 5 TTY 5 

2 CDR 2 
" 

PTR 3 
$ PAP (, ~ PAP 7 
4 MAG U ... "AG 17 
5 DFr: 9 0; DCC :to 
6 DISK 22 6 DI~K 2E 
7 DISK 23 7 I:'ISK ;>1 

113M 5/3611 <CP/C>1S) 

I ~~p U T OUTPIJT 
NU'1 DEVICE UNIT \lVM DE V I CE UNIT 

1. TTY Bill 5 1 TTY 1211 b 

2 C"R ~iI 10 2 PTR 133 8 

3 TAP 'l0 11 3 PlI" 80 7 

4 TAP 14~ 9 4 TAP 133 12 
5 DSK 9~-L0 13 5 ['51( 811J-LIll 13 
6 D!iK '!0 3 6 DSK 80 1 
7 DSK Ill' 4 7 051( 80 " 

".L INPUT RECORDS ARE Bil CHARACTERS OR LESS. ALL 
OUTPUT RECOROS ARE 1211l CHARACTERS O~ LESS. 
THE FORTRAN UNIT NUMBERS CAN BE CHANGED IN THE 
SUBROUTINES GNC AND WRITEL (THESE ARE THE D~LY OC
r.UR~ENCES 0, REFERENCES TO THESE UNITS), 

Figure IV-3. PDP-lO and IBM System/360 real device assignment. 

56 



of input with a II $" :i,n- column 1, and a swi tch name starting 

in column 2 (only the first character of the switch name is 

significant, and the remaining characters may be omitted). 

In the' case of compiler parameters (and, optionally compiler 

toggles), the switch name is followed by an equal sign (=) 

and an integer value. A compiler toggle with the equal sign 

and number omitted is complemented (a 0 becomes a 1, and a 1 

changes to a 0). Compiler switches are not printed in the 

source listing. 

The most commonly used compiler switches for PLM1 are 

listed in Figure 1V-4, along with their default values. 

Note that compiler toggles are listed in Figure 1V-4 without 

the "= nil option although it is understood that either "= 111 

or "= 0" is acceptable. Compiler parameters are listed in 

the Figure with the n= nil part following the switch name. 

The value of n is assumed to be in the proper range. 

Finally, note that the default values shown here are those 

provided by INTEL in the distribution version of the system 

and assume a batch processing environment. Any particular 

implementation may have differing default values (e.g., 

values may assume a time-sharing mode of processing), and 

thus the local installation should be consulted. 

The operation of the first pass can now be described. 

PLM1 begins by reading the input file number which is 

defaulted by the $INPUT switch. Normally, this switch 

defaults to the card reader if operating in batch mode, and 

to the terminal if operating in interactive mode. 

Subsequent switches in the primary file can be used to 

change these defa ult val ues, if necessary (e. g. , reset the 

left or right margin, or change to an alternate input file). 

The first pass normally creates a listing file on output 

file number 2, an intermediate symbol table on file 6, and 

an intermediate code file on file 7. 

57 



SW1ten Name Use Default 
-...... -_.----
SANALYZE 

.8YPASS 

.COUNT • n 

.DELETEI:I n 

U:01 

SGENERATE 

SINPUT :III n 

Control. tne PL/M syntax analys1, trae •• 

Dump the parse stack for syntax error •• 

Start l1ne number1ng at l1ne n. 

Delete all tra1llng characters ln tne 
output after pOllstlon n. 

End-of-tile on this unit, 

Inter111t the intermediate language 
produced by pass 1. 

SwitCh to fl1e n for sUbseqUent Input 
(see PL/M file numberlng). 

,LEFTMARGIN • n Ignore all character a before column n 1n 
the input lines; 

'MEMORY 

SOUTPUT = n 

Include a symbol table 1n tne Object tape 
produced by pasl 2 show1ng the memory 
address assignments for varlables, labell, 
and procedures, 

Wr1te subsequent output 11nes to file n 
(see PL/M file numbering). 

SPRINT Print output lines, 

$RIGHTMARGIN=n Ignore all characters 1n the input 11nes 
beYOnd position n. 

SSYMBOLS Print a symbol table dump at the end of 
Pass 1. 

STERMINAL Interaetlve processing mod', 

$WIOTH = n Set output 11ne width to n characters. 

NOTEI The input 11nes are a max1mum of 80 Characters, and 
tne output l1nes cannot exceed 120 characters, 

Figure lY-4. PLMl "$" compiler sWitcnes. 

58 

o 

o 
o 

120 

o 

o 

1 

1 

o 

1 

1 

72 

o 

o 

72 



It should be noted that in an interactive mode, PLM1 

starts by reading the progammer's console. At this point, 

the programmer could type the program directly at the 

console into PLM1. It is usually the case, however, that 

the programmer first composes his program using the 

time-sharing system1s text editor. When PLM1 reads the 

console for the first line of input, the programmer 

redirects the PLM1 input to the disk file containing the 

edited program using the $INPUT = n compiler switch, where n 

is one of the input file numbers correspinding externally to 

the edited p~ogram. 

The output from PLM1 can be directed to the 

programme~'s console, or to another device such as a disk 

file or line printer using the $OUTPUT compiler switch 

placed in the input stream. If the programmer selects the 

console as an output device, it is often useful to set 

$TERMINAL = 1 which automatically lists only the error 

messages at the terminal. The programmer then uses the line 

numbers, along with the time-sharing system editor to locate 

the errors and change the source program in preparation for 

recompilation. In this way, a source listing of the F~ogram 

need never be generated during the first pass. The program 

is listed as the compilation proceeds \if the $TERMINAL 

toggle is zero. 

A practical approach to development of large PL/M 

programs is to write the program in terms of a number of 

independent procedures. Each of these procedures can be 

compiled and debugged separately, and, after all procedures 

are checked-out, the entire program can be compiled. 

As an example, consider the program shown in Figure 

IV-5. In this case, a procedure is shown, called INDEX, 

which performs a comparison of two character strings to 

determine if the second string occurs as a substring in the 

59 



$MEMORY = 1 
/* THE INDEX PROCEDURE SEARCHES THE STRING STARTING AT 
'A' FOR AN OCCURRENCE OF THE STRING STABTING AT 'B'. 
INDEX RETURNS A ZERO IF THE SECOND STRIWG IS MOL A SUB
STRING OF tHE FIRST; OTHERWISE, THE POSITION Of THE 
SECOND STRING IS RETURNED. THE CHARACTER POSITIONS ARF 
COUNTED STARTING FROM 1 AND ENDING AT 255. */ 

DECLARE EOS LITERALLY 'OFFH'; 
/* THE LABELS LO ••• L5 AND Cl •.• C3 ARE PRESENT FOR nERUr~ING 

PURPOSES ONLY, AND CAN BE REMOVED WITHOUT AFFECTING THE PROGRAM 
EXECUTION */ 

INDEX: PROCEDURE (A,B) BYTE; 
LO: DECLARE (A,B) ADDRESS, 

(SA BASED A, SB BASED B, J,K,L,M) BYTE; 
J = 0; 

Ll: DO WHILE SA(J) <> EOS; 
K = 0; 

L2:. DO WHILE (L:=SA(J+K» = (M:=SB(K»; 
L3: IF L = EOS THEN RETURN J+l; 

K = K + 1; 
END; 

J = J + 1; . 
L4: IF M = EOS THEN RETURN J; 

END; 
L5: RETURN 0; 

END INDEX; 

/* TEST THE INDEX FUNCTION */ 
DECLARE Q DATA ('WALLAWALLAWASH',EOS), 

(I,J) BYTE; 

EOF 

DO WHILE 1; 
Cl: I = INDEX(.Q,.('WALLA',EOS»; 
C2: I = INDEX(.('WALLA',EOS),.Q); 
C31 I = INDEX(.Q,.(iWASH',EOS»; 
END; 

Figure IV-S. A card-image listing of the INDEX procedure. 

60 



first string, as described in the comment preceding the 

procedure declaration. The last part of the program 

(following the declaration of Q) is present only to test the 

INDEX procedure and will be removed when INDEX is imbedded 

within a larger program. Note that this test section 

includes three sample calls on INDEX which are repeated 

indefinitely. The labels LO through L 5 within INDEX are 

used only during the debugging phase, and have no effect 

upon program execution. In fact, these labels may be 

removed after the INDEX procedure is checked-out to avoid 

la ter confusion a-s to the purpose of t he labels. 

Figure IV-6 shows a sample execution of PLM1 using the 

above source program as input. The exact manner in which 

PLM1 is started on any particular computer is, of course, 

implementation dependent. A number of particular systems 

are considered, however, in section IV-4. The particular 

example shown in Figure IV-6 resulted from execution of PLM1 

on an IBM System/360 under the CP/CMS time-sharing system 

using a 2741 console. Thus, all lines shown in lower case 

in this examFle, and examples which follOW, are typed by the 

programmer, while upper case lines are output from the 

program being executed. The PLM1 output shown in this 

figure indicates that the program is syntactically correct, 

the intermediate files have been written, and the second 

pass can te initiated. 

As mentioned. previously, PLM2 performs the second pass 

of the PL/M compilation by reading the intermediate files 

pro duced through execution of PLM 1. PLM2 then generates 

machine code for the MCS-8 CPU. 

Error messages produced by PLM2 are of the form 

(nnnnn) ERROR m 

61 



PASS-l 

$ 1=2 (cou I d 
00001 2 

00002 2 

00003 2 

OOOO~ 2 

00005 2 

00006 2 

00007 2 

00008 2 
NG 
00009' 2 
RAM 
00010 2 

00011 2 

00012 3 

00013 3 

00014 3 

00015 3 

00016 3 

00017 4 

00018 ~ 

00019 5 

00020 5 

00021 4 

00022 II 

00023 " 
0002~ 3 

00025 3 

00026 2 

00027 2 

00028 2 

00029 2 

00030 2 

00031 2 

00032 3 

00033 3 

0003~ 3 

00035 2 

usc $o~2 for prInter llstln~, $t=l for no llstln~) 
/* THE INi1rX PROCEnllPr SEIIl'rtifS THE STnH'~ STIIPTlt'r, AT 

'II' FOR liN OCCURRENCE OF THE STRlt'C; STArTl~'r, AT 'P.'. 

INDEX RFTlIRt'S A HRO I r THF $FCOt'n STR I ~Ir, IS t'OT A SIIIl-

STRING OF THE FIRST; OTHERWISE, TIlE POSITION OF THF. 

SECOND STRING IS RETURNEr. THF C4ARArTEP POSITIO~S ARE 

COUNTED STARTING FROM 1 AND ENDI~G AT 255. 

rECLARE EOS LITERALLY 'OFFH'; 

*/ 

/* THE LAflELS LO ••• L5 AND C1 C3 ARE PRESENT FOR nEBUGGI 

PURPOSES ONLY, AND CAN BE REMOVED WITHOUT AFFECTING THE PROG 

EXECUTION */ 

INDEX: PROCEDURE (A,B) BYTE; 

LO: DECLARE (A,B) ADDRESS, 

(SA BASED A, SB BASED B, J,K,L,M) BYTE; 

J = 0; 

ll: 00 WIIILE SA(J) <> EOS; 

L2: 

l3: 

K = 0; 

DO WHILE (L:=SA(J+K» = (M:=SR(K»; 

IF L = EOS THEN RETURN J+1; 

K ., K + 1; 

END; 

J ., J + 1; 

L": IF M ., EOS TH[~ RETURN J; 

END; 

L5: RETURN 0; 

END INDEX; 

/* TEST THE INDEX FUNCTIO~ *, 
DECLARE Q DATA ('WALLAWALLAWASH',EOS), 

(I,J) BYTE; 

DO WHILE 1; 

Cl: INOEX(~Q,.('WALLII',EOS»; 

C2: INDFX(.('WALLA',EOS),.Q);. 

C3: INDEX( .Q,. ("~IASH', £OS»; 

END; 

EOF 

NO PROGRAM ERRORS 

Figure IV-6. Listing produced by PLMl for the INDEX procedure. 

62 



where nnnnn references the line in the source progra~ where 

the error occurs, and m is an error message number, 

corresponding to those given in Figure IV-7. 

Operation of the second pass is 

PLM2 begins by reading the card 

particularly simple. 

reader (batch mode) or 

console (time-sharing mode) and will accept any number of 

U$" sw itches as input. The se switches set the secon d pass 

compiling parameters shown in Fig ure I V-8. PLM2 continues 

to read these switches until 2g§ £l~g~ lin§ is encountered. 

At this Foint, PLM2 reads the intermediate files produced by 

PLM1 and generates the MCS-8 machine code. 

As in the case of PLM1, the exact manner in whi~h the 

PLM2 program is initiated is implementation dependent, and 

will be discussed for some particular systems in section 

IV-4. 

Figure IV-9 shows the execution of PLM2 using the 

intermediate files produced by PLM1 for the INDEX procedure 

given previously. Figure IV-10 lists the BNPF machine code 

file which results from this execution of PL~2. Note that 

the machine code file is headed by a symbol table (caused by 

the $MEMCRY=1 en try during PLM 1) which will be used by 

INTERP/8 during the debugging phase which follows. 

Program verification is accomplished through the use of 

the MCS-B CPU software simulator, called INTERP/B. The 

various commands available in INTERP/8 are described fully 

in the 

checked-out 

previously 

the source 

MCS-B Users 

is first 

described. 

program, it 

Manual. 

compiled 

In order 

is helpful 

The PL/M program being 

using PLM1 and PLM2, as 

to quickly locate errors in 

to include the $MEMORY=1 

toggle in PLM1 so that a symbol table is produced for the 

63 

• 



ERROR 
NUMBER 

HESSAGE 

101 RFFERENCE TO STCRAGE LOCATIONS OUTSIOE THE VIRTUAL MEHORY 
nF PASS-2. RE-COHPILE P4SS-2 WITH LARGER 'ME~ORY' ARRAY. 

102 " 

103 V:RTUAL MEHORY OVERFLOW. PROGRA" IS TOO LARGE TO COMPILE 
WIT~ PRESENT SllE OF 'MEMORY.' EITHFR SHO~TEN PROGRAM OR 
RECOMPILE PASS-2 WITH A LARGE~ VIRTUAL MFMORY. 

104 (SAME AS 103). 

105 STOGGLE USED IMPROPERLY IN PASS-2. ATTEMPT TO COMPLEMENT 
A TOGGLE WHICH HAS A VALUE OTHER THAN 0 OR 1. 

106 REGISTER ALLOCATION TABLE UNDERFLOW •. MAY BE QUE TO A PRE-

107 REGISTER ALLOCATION ERROR. NO ~(GIST[QS AVAILABLE. MAY 
BE CAUSED BY A PREVIOUS ERROR. DR PASS-2 COMPILE~ ERROR. 

108 PASS-2 SYMBOL TABLE OVERFLOW. P.EDUCE NUMBER or 
SYMBOLS. OR RE-COMPILE PASS-2 WITH LARGER SyM~OL TABLE. 

109 SYMBOL TABLE OVERFLOW (SEE ERROR ~0A). 

110 MEHORy ALLOCATION· ERROR. TOO MUCH STORAGE SPEClrIEO lN 
THE SOURCE PROGRAM (16K MAX ON 80~el. REOUCE SOURCE PROGRAM 
MEMORY REQUIREMENTS. 

111 INLINE DATA FORMAT ERROR. MAv eE DUE TO IHPROPER 
RECORD SllE IN SYMBOL TABLE FILE PASSED TO PASS-2. 

112 (SAHE AS ERROR 107). 

113 REGISTER ALLOCATION STACK OVERrLOW. EITHER SIHPLIry THE 
PROGRAM OR INCREASE THE SllE OF THE ALLOCATION STACKS. 

114 PASS-2 C~HPILER ERROR IN 'LITADD' -- HAY BE DUE TO A 
PREVIOUS ERROR. 

115 (SAME AS 114). 

116 (SAME AS 114l. 

117 LINE WIDTH SET TOO NARRow rOR CODE OI!MP (USE '!iWIDTH=N) 

118 (SA~[ AS 107). 

119 (SAME AS 110). 

12A ~SAME AS 110. BUT HAY BE A PASS-2 COMPILER [RRORl. 

121 (SAME AS 1081. 

122 PROGRAM REQUIRFS TOO MUCH PROGRAM AMn VA~IAgLE ST'~AGr. 
(PROeRAM AND VARIABLES ExCEED 16Kl. 

123 INITJALllED STORAGE OVERLAPS PRF:VIOUSLY .UJlTlALI·~F:;) STORAGe:. 

12~ INITIALI?ATION TABLE rORMAT ERROR. (SEE E~RnD 1111. 

125 INLI~E DATA ERROR. MAY HAVE BEEN CAUSED PY P~EVIOU5 ER~OR. 

126 9UILT-IN FUNCTION IMPROPERLY CALLED. 

t?7 INVALID INTERM[OIAT£ LA~CUAGE rORMAT. (SEE ERP.OR 11l). 

128 (SAME AS ERROR 113). 

Figure IV-7. PLM2 error messages issued during the 
second pass. 

64 



129 INVALID USE OF BUILT-IN FUNCTIO~ IN AN 'SSIGNMr~T. 

130 PAS5-2 COMPILER ERROR. INVALIO VARIABLE PRECISIO~ (~JT 
SINGLE BYTE OR DOUBLE BYTEl. MAv BE ~ur TO PREVIOUS ~RR~R. 

131 LABEL RESOLUTION ERRnR IN PASS-2 (M,y BE COMPILER E~~OR). 

132 (SAME AS 1~8). 

133 (SA~E AS 113). 

134 INVALlr PROGRAM TRANSFER (ONLY COMPUTfU JU~PS ARE ALLO~ED 
WiTH A 'GO TO'l. 

135 (SAME AS 134l. 

136 ERROR IN BUILT-IN FUNCTION CALL. 

137 (NOT USEDl 

13~ ERROR IN CHANGING VARIABLE TO ADDRESS REFERENCE. MAY 
BE A PASS-2 COMPILER ERROR, OR MAY BE CAUSED BY pRE
VOUS ERROR. 

14~ (SAME AS 107). 

141 INVALID ORIGIN. CODE HAS ALREADY BErN GENERATED I~ THE 
SPE~IFIED LOCATIONS. 

142 A SYMBOL TABLf DUMP HAS BEEN SPECIF!~D (USING THE $MEMORY 
TOGGLE IN PASS-I). BUT NO FILE HAS ~FEN SPECIFIED TO kE
CEIVE THE BNPF TAPE (USE THE S8NPF=N CONTROLl. 

143 INVALID FORMA' FoR THE SIMULATOR SY~~OL TABLE DUMP (SEE 
FRROR 111) .. 

Figure IV-7. (Con't) 

65 



Switch Name 

$ANALYZE = n 

$BNPF -- n 

$COUNT = n 

$DELETE = n 

$EOF 

Use Default 

Print a trace~f the register alloca- 0 
tion stack if n=l. Include assigned 
regis'l;.ers if n = 2. 

:. 

Do not write a BNPF tape if n=O. Other- 0 
wise, write a BNPF tape to file n {see 
PL/M file numbering}. 

(Same as Pas s I) 

(Same as Pass 1) 

(Same as Pass 1) 

$FINISH Print a decoded dump of the generated 0 
machine code at the finish of Pass 2. 

$GENERATE = n Print a cross reference of source line 0 
numbers verses machine code locations 
if n = 1. If n = 2, print a trace of 
the intermediate language as it is read, 
as well. 

$HEADER = n Start machine code generation at loca- C 
tion n when producing a code dump or 

$INPU'l' = n 

$LEFT.~fLARGIN=n 

$ Mi\P 

$OUTPu'r = n 

BNPF tape. 

(same as Pass 1) , 
(same as Pass 1) 

Print a m.(,:!mory map showing symbol num
b~rs and address assignments at the end 
of Pass 2. 

(same as Pass I) 

$PRINT {same as Pass I} 

$RIGHT~illRGIN=n (same as Pass 1) 

o 

$TERMINAL (same as Pass 1, default value suppress(~s 0 
the listing of the intermediate files as 
they are read) 

$VARIABlrES - n The first page of Random-access Memory 0 
(RAM) is page n (numbering 0, 1, ... ,63) 

$WIDTH ::: n (same as Pass I) 

Figure IV-a. PLM2 "$11 compiler switches. 

66 



PASS-2 

$generate = 1 (cross reference 1 ine numbers and locations in code) 
Sbnpf = 6 (write bnpf tape to internal file number 6) 

12=0003H 
19=0067H 
25=0089H 
3S=OOE6H 

13=OOOEH 
20=006DH 
26=008AH 

15=OOllH 
21=0071H 
29=009CH 

16=OOlEH 
22=0077H 
32=OOASH 

17=0026H 
23=0084H 
33=OOBEH 

18=0043H 
2(~=0087H 
34=OOEIH 

Figure IV-9& Sample output from PLM2 corresponding to the 
INDEX procedure. 

67 



1 CAnry 00%2 
2 nro003G3 
3 SIGN 003(;4 
4 PARITY 00365 
5 MniOPY 00400 

19 INnrx 00003 
20 II 00366 
21 B 00370 
23 LO 00016 
26 J 00372 
27 K 00373 
28 L 00374 
29 M 00315 
31 II 00021 
35 l2 00054 
38 U 00132 
41 L4 00170 
43 L5 00207 
44 ('I, 00215 
46 I 00376 
47 J 00377 
50 C1 00234 
52 C2 01)265 
53 C'3 00316 

$ 

Figure IV-lO. 

*.******************************************************** 
******** 
********************************************************** 
******** 

0 BNPNNNPNNF BPtJNtJPtJPtlF flNtlNNNNtINF BtJNPNPPN!F 
el'Nt!NIJrlNtlF rr;~rpN!rpIIF BPPPPt!PPtJF r:;rI'PPPt!NI'F 

8 ~~'NPPNmJNF ~PPI'PPrlPt!F BmIPp~'PNNF p,rprrN!p"F 
BtlNPPNNtlNF BPPPPPNINF Bt.ltlr'Ptltll'HIF IWNPPPPPtlF 

16 Bt!NNrINNNNF Ilt'tIN!PPPtlF" nt,t1NNJHltlNF nJ't'poI·!"PNI' 
BPPPPpNf'NF P,PPtJIUIPPpF nf'IJPf'flPrl-r GPrrN'pPf'F 

2 !~ ~rfWt!rlrpI'F cr'!: p r~'r't1t' r r.rN'I:rl"'NF P,Pt'tml'PPrJF 
BNNNNNNNNF P,ptltHlPPPpF fll'PPPNtINPF P, rpPtl pI'~'NF 

32 BpPNtlNPI'PF r,NllNPNPNtlF BPPPppPPpF r,t'PN!ptnlNF 
BpNNNNPPpF 'It'NNNtJNNfIF Bt'NPNPPPNF IWNt!lltttINtJF 

40 BPt!PptIPPNF BPPPPPtlPPF r.I'IIPPPPP~IF SI'I'tlt!III!NNF 
BNNPNPPPNF r. tII!tHlNNt,1 II r BNlIPPNPPNF r,PPPP"ttPNF 

48 flpPNNNPPPF BI'lJpPtHltWF BPNI!IJNPPPF BI'llrp~,pPNF 

BPPPPNPPNF BPIINNNpPpF BI!NPN1WINF IlppI!NPNII'!F 
56 BNNNNNPPNF Bt!IINNNNIJNF [lPtnINpPPpF r.prpPtIt!tII>F 

BPPPNPtlNNF flPptJlHJPPPF BNNPNPrPtlF FllJmltl~!Nm.IF 
6/j r.I'NPPNPPNF BPPPPPPt!NF'. BPPPppt'tlNF P.t'NPN'tINPF 

BPPNNPIINNF BPpNNNPPpF BI'NPPNPPt!F B PPPPpI'NNF 
72 BPNNNNPPPF B"NPPNNNNF [lPPNPNNIJNF Bf!NNt1t!pPNF 

llIlNNNNtlNNF RPIJIIIJPPPPF BPPpPI'tlPIJF p,rppI!PIINNF 
80 BPPNNNPPPF BNlJpNPpplIF B'IIINNNm~NF BtlNpPtlPpNF 

BPPPPPPNpF BPPPPPIJIWF BPIINPNNNPF Bt!PNNPNtlNF 
88 BNPPPtllJNPF flNIJNNNNNNF Bt'llPpNNIIPF BpPIHlNPPPF 

BNNNPNPNNF BPPpPPPPPF RI'pNNPtlNNF BI-1PPNNpPPF 
96 BIINNNNNt!NF BtlNPPNPPNF BPPPpPNPNF B PPNNPPPPF 

BtlNNNPNNNF BppNNNNNPF BI1NNNNPpPF BIlNPNPPPNF 
104 BNNNNNNNNF BNNPPNPPNF BPPPpPIIPpF BPPNllPPPPF 

BNNNNPNNNF BPPPPPNNPF Bt!PN~INptINF fltllJPNPPIJNF 
112 Bt'NNNNNNIIF BIINPNPPPNF BI1NNNNNNNF BI!NPPNPpNF 

BPPPPPNPNF BPpNNPPPPF BNtINNPNNtJr IlPPPPPNNPF 
120 BNNPPNPPNF BPPPPPPNPF BPpNNtlPPPF BNNNP~!N'NF 

BPPPPPPPPF BtlPNNPIINNF BptIIWNPlmF BNNlINr!NtINF 
128 BN~lprNPPNF BPPPPPNPNF BPPIlNNPPpF Bllltt'NlIPppF 

BNPNNNPNNF BNNNPNNI,IPF fHlIINlmNNNF r.PN'PNNJI'NF 
136 BNNNNIJPPpF RmlNNNPPPF Bt'pNNlIPNNF fl rllw·'.PpNlIF 

BNNNNNNNNF BI'PlrpNpPPF fWPNr!NNNPF nt'Pr!l'PpNNr 
H4 fltlPNNPPNIIF BIlplltlNNNPF P,I'PNPHPPpF Ill! I' ~11!r II!~! P I' 

BNPNNpPtINF Flt!pNNPpI't'I' P,l'Pf'lllrttl'PF P,.'NJPNPpPF 
152 BI·tpNNNNNPF StrpNpmlPPF St'pNNPt!NNF prpPPpPppF 

BNPtlNNPNNF BPNPNNPI!PF Bt!l!m!mll!NF p,nrNpIlPPPF 
160 flNPNt-INNNPF IltIN:NPPI1NF r.flpNNPpl'!~!F B~'''IJt!rn!tJPF 

BPPPpPPPPF BNtINNPppNF r,rramPNJPF r:tl~:I·'F'NrN!F 

168 B~'NNNtmNNF BtlNNPPpPtlF IlPrlNPPpPPI=" BI!NP'ltIPPNF 
BNNNNNNlINF BIIPNlJNPPtI~:., RJ'WINNNPPF BNNtIN~'NtJNF 

176 BI!NPNPPPNF B~!fINN litH! f! F Rt'NPPtlPPNF B.rppPppNIF 
BPPPPPNNNF BtlPNNNp.lmr BP'IP"pPpNF 11IImlt;NrI~!NF 

184 'lltIPNPNPPPF BIIN!rm.jNPF !WPt:NPPNNF Bt:rllNPPI!t!F 
BNPNNNNNPF,RPpPPPPPPF Sr:tIf"NpPPNF r.PIlPPPIINNF 

19.2 BNIINPNPPt!F etltHltJNNNNF RNlJIIPPPpNF BPNNNPrNPF 
~13NI!PNNPPIlF BIII!NNNNNNF f\1:PfINNPPNF r:t!NI'tltWPPF 

200 BNNNNNNNNF BrtrJpNpPpNF ["tltIIINNtINNF BI'NPN!pPNF 
BPPPPPPPNF BPpPPPNNNF [lI'pNNNpNNF BPPflPNPPtlF 

208 BtfNNNNNNNF BNPNPNPpPF GNPI'NNtHlPF BNPNpI!lIPPF 
B~IPNNPNNNF BpppPPPPpF BNNNNpPpNF r:PNNNPPNPF 

216 BNNNPNPPNF BIJIINNNNtHlF B,'tmrpPPNF flPPtlpNNNPI' 
BtlNPNNPPNF StlllNtlNNtlNF E I' pNm! pPNr fll'NNtIIWpPF 

224 BI!NNtINNNNF flt'tlPNPPPNF RtlNNt'lIIlNNF Bt'IIPpNPrt'F 
BPpPPPppIJF flpPpPPI!III!F erl"IINlIPtlNF flP~!NPPPNNF 

232 BNNN~NNNNF flpPPPPpppF' 

Symbol table and BNPF tape produced by PLM2 
for the INDEX procedure. 

68 



simu~ation. In addition, key statements in the source 

program should be labelled so that important points can be 

referenced symbolically during program check-out (seE the 

use of the labels LO, ••• L5, and C1, C2, and C3 in Figure 

I V - 6, for e x a m pI e) • 

The generated symbol table and compiled object code is 

loaded into INTERP/8. Simulated program execution can then 

be monitored, the values of memory locations can be examined 

and alteIed, and program errors are readily detected. 

Program check-out is usually more effective if debugging is 

carried-out at the symbolic rather than absolute level. 

That is, INTERP/8 allows reference to memory through both 

symtolic locations (usi ng the generated symbol table) and 

absolute addresses. As a result, it is generally much 

easier to follow the execution using the symbolic fEatures 

of INTERP/8 than it is to trace the execution using absolute 

memory addresses. Thus, it is well worth the effort to 

become familiar with INTERP/8 symbolic debugging facilities. 

A number of features have been added to the INTEBP/8 

program which enhances its use in debugging PL/M programs. 

These features augment the commands described in Appendix 

III of the MCS-8 Users Manual. These additions are given 

below. 

First, note that symbolic names can be duplicatEd in a 

PL/M program. 

with the same 

That is, a programmer could declare variables 

name in block levels which do not conflict 

with one another. Consider the two procedures below, for 

exa mple 

P1: PROCEDURE (A) BYTE; 

DECLARE (A,~ ADDRESS; 

END P 1 ; 

P2: PROCEDURE (Q) ADDRESS; 

69 



DECLARE (Q, A, B) BYTE; 

END P2; 

Recall that although there are variables in procedures P1 

and P2 which have the same names (i.e., A and B), these 

variables are all given separate storage locations. In 

order to distinguish these variables, a construct of the 

form 

S1 I 52 / ••• 5n 

is allowed as a symbolic reference in INTERP/8. The 

interpretation of this construct is as follows: INTERP/8 

first searches for the symbol S1, then looks further to 52, 

and so-foLth until 5n is found. This new construct can 

appear any where a "s ym bolic nam elf is allowed in t he current 

INTERP/8 command structure. Note that in particular, the 

definition of a "range element" is extended to include this 

new form. Thus, the command 

DISPLAY MEMORY A TO B+1. 

is the same as 

DISP MEM P1/A TO P1/B+1. 

The seccnd cccurrences of A and B can only be located by 

first searching for the name P2. Thus, these two variables 

could be disflayed using the command 

DI MEM P2/A TO P2/B. 

A second change to the INTERP/8 commands allows 

reference to a symbolic location when setting the value of 

the progLam stack (PC, PS 0, ••• P5 7) or the value of the 

memory address register (HL). With this addition, the 

following are valid commands 

5ET PC = P2, PS 5 = P1. 

SET HL = B. 

SET HL = P2 / A + 1. 

Two additional $ switches have been added to INTERP/8. 

The first is of the forB 

70 



$ M AX CY CL E = n 

When this switch has a non-zero value, the CPU simulation is 

prevented from running more than n cycles tefore returning 

to the card reader or console for more input (n is initially 

zero). The toggle 

$GENLABELS 

was added to cause INTERP/8 to print the closest symbolic 

name to the current program counter whenever a break point 

is encountered. INTERP/8 prints 

break AT n = label displacement 

where "break" is one of the break point types: CYCLE, 

ALTER, or REFER, and n is an absolute locat~on. The value 

of "label" is the closest symbolic name in the program, 

while the displacement is a positive or negative distance 

from the name to the location counter. 

The last change to INTERP/8 allows imbedded dollar 

signs within numbers and identifiers, as in Pi/Me 

These features are demonstrated in the example 

described below. Figure IV-11 gives a sample run of 

INTERP/8 using the symbol table and machine code produced by 

PLM2 corresponding to the program containing the INDEX 

procedure given previously. Again, the initiation of 

INTERF/8 is system dependent and thus is not shown here. 

The symbol table is first loaded from file 6, followed by 

the machine code, also from file 6. Note that these file 

numbers must correspond to the BNPF tape file written by 

PLM2 (see the $BNPF switch in PLM2). The listing produced 

by PLM1 is used, along with the symbolic reference features 

of INTERP/8 to follow the program execution. 

71 



INTERP/8 VERS 1.0 

/* first loao the symbol table and bnpf tape from Internal 

file numher 6 (corresponding to the $bnpf=5 tn pass2) *1 

load 5 6. 
234 lOAD OK 

/* then look at the 

display symhols. 
000362n 00242 00J:2l-j 
000363n 00243 00F3H 
0003640 00244 00F4H 
000365n 00245 00F5H 
0004000 00256 0100H 
0000030 00003 0003H 
000356n 00246 OOF6H 
0003700 00248 00F3H 
000015(1 00014 000 EH 
000372n 00250 OOFAH 
000373Q 00251 OOFBH 
000374Q 00252 OOFCH 
0003750 00253 OOFDH 
0000210 00017 OOllH 
0000540. 00044 002CH 
000132n 00090 005AH 
0001700. 00120 0078H 
0002070. 00135 0087H 
000215Q 00141 008DH 
0003760 00254 OOFEH 
0003770 00255 OOFFH 
0002340 00156 009CH 
000255Q 00181 00B5f-1 
000315n 00205 OOCEH 

symhol table */ 

CARry 
zrpn 
SIGN 
PAPITY 
l'nlORY 
I 1m EX 
A 
B 
LO 
J 
K 
L 
M 
Ll 
L2 
L3 
L4 
L5 
Q 
I 
J 

"t:'1 
C2 
C3 

/* set break points at places in the 

iobelled by 10, 11, 

refer 10,11,12,13,14,15. 
REFER OK 

,15 */ 

index procedures 

/* it will probably be useful to examine the program 

at the beginning and end of each call to Index, 50 ... */ 

ref c1,c2,c3. 
REFER OK 

/* now run the program to the first reference variable */ 

go 1000. 
GO OK 
REFER AT 155=C1 

/* we are at location 156 decimal, or equivalently, label c1 */ 

base hex. 
HEX·BASE OK 

dis p I a y s ymb * 
C1 
/* look at cpu registers ••• */ 

di cpu. 
CYZSP ABC D· [. H L HL Sf' PSC 
*0000 * OOH* C OH* OOH'" 0011* 0 rHo, OOH* 0 Oel* 0 00 OH* 0 OH* 0 09 nl 

di sym 9ch. 
C1 

Figure IV-Il. Sample execution of INTERP/8. 

72 



di memory q to q+10. 
OOSI)H 57H 41H 4CH 4CI-l 41H 57H 41H 4CfI 401 41H 57H 

/* that must he the hex representation of WALLAWALLAW */ 

dl ;;;y q. 
000215n 00141 0080H 

'* now run the program to entry of the suhroutine */ 

go 1000. 
GO OK 
flEFER AT EH=LO 

/* now at label LO, so examine the value of a */ 

di mem a. 
OOF6H 8DH 

di mem a to a+l. 
00F6H 80H DOH 

/* the first string is hased 

di mem 8dh to 90h. 
0080H 57H 41H 4CH 4CH 

at a, so look at it •• */ 

/* looks good, now examine bls value */ 

dl mem b to h+l. 
OOF8H 9FH OOH 

conv 9fh. 
100111118 2370. 159 9FH 

di mem 159 to 165. 
009FH 57H 41H 4CH 4CH 41H FFH OEH 

/* 100ks good too, so run the index procedure down to 

label 12 (also, to save t~ping go 1000, we can set maxcycle 

to 1000 so the simulation will never run more than 1000 cycles 

before stopping) */ 

$maxcycle = 1000 
go. 
REFER AT llH=L1 

go. 
REFER AT 2CH=L2 

/* examine the values of the local variables */ 

dl mem index/j to in~ex/m dec. 
OOFAH 000 000 000 Don 

di mem j to m. 
OOFAH OOH DOH OOH 0011 

dl sy Ofah. 
J 

/* run the procedure to label 13 */ 

go. 
REFER AT 5AH=L3 

/* both 1 and m should contain a I~I */ 

di mem 1 to m. 
OOFCH 57H 57H 

73 



,* we should get a match on characters W All A 

and then return with the matching positlnn 1 ~, 

y,o. dl ml to m. 
REFER AT 2CH=l2 
OOFCH 57H 57H 

go. dl m 1 to m. 
REFER AT 5AH=L3 
OOFCH 41H 41H 

go • go. dim 1 to m. 
REFER AT 2CH=L2 
REFER AT 5AH=l3 
OOFCH 4CH 4CH 

,* so far we have matched W A l *, 
go. go. dl m 1 to m. 
REFER AT 2CH=l2 
REFER AT 5AH=l3 
OOFCH 4CH 4CH 

,* turn off the break point ~t l2. since It Is gettln~ 

In the way */ 

noref 12. 
REFER OK 

go. dl m 1 to m. 
REFER AT 5AH=l3 
OOFCH 4lH 4lH 

,* this time we shoulc1 retu'tn *, 
go. 
REFEr. AT 7EH=L4 

dl mem m. 
OOFDH FH' 

'* m = eos, so we should end up at label c2 */ 

ref 12. go. 
REFER OK 
REFER AT a5H=C2 

'* the<value of 

dl mi.·· 
OOHnOll! 

should be 1 *, 

di m I dec. 
OOFEH 001 

'* ~ow try the second call *, 
go. 
REFEr. AT H!=lO 

dl mem a to b+1. 
OOFGH BgI' OOH 8D!! 0011 

base dec. 
OEe BASE OK 

dl mem a tn b+l. 
00246 184 .000141 000 

74 



dl mem 184 to 190, mem 141 to 147. 
OOltli OP.7 065 076 07.6 065 255 014 
00141 087 065 076 076 065 087 06~ 

/* strln~s are being sent properly, so we can continue. 

we should return a 0 this time since the larger string 

Is not a substring of the smaller, so set reference 

breakpoint only at 15 */ 

noref 10,11,12,13,14. go. 
REFER OK 
REFER AT 135=L5 

/* looks good, so let the subroutine return *, 
go. 
REFER AT 206=C3 

dl mem I. 
00254 000 

noref 15. /* let the subroutine run, and see If 
REFER OK 

It returns the proper value */ 

go. 
CYCLE AT 50=L2+6 

/* we Just ran over 1000 cycles, so let It continue */ 

go 5000. 
GO CK 
REFER AT 156=C1 

1* we are now back around the loop. I will be 

I f all I s well * I 

dl mem I. 
00254 011 

an 11 

1* everything looks good, so we can now do a little 

fooling around to show some of the other debugging 

features -- first we will look at the operand break 

point */ 

noref 0 to 256. 
REFER OK 

/* all reference break points are reset. we will now 

set a break point so that program execution stops when 

the variables local to Index are referenced. */ 

refer J to k. 
REFER OK 

go. 
REFER AT 15=LO+1 

/* we stopped at the first instruction in Index ••• 

look to see what I~structl~ns are there */ 

75 



dl mem * to *+10 code. 
00015 lMI,DOH lHI,OOH lll,FAH lA~ llt F6H ADM I~l 

d I hi. 
HL = 250 

dl sy 250. 
J 

1* thus program execution has stopped because there 

was an attempt to store a zero into a variable sea 

In the refer command run the program further ••• *1 

go. 
REFER AT 2l=L1+4 

dl hi. di mem * code. 
HL= 250 
00021 LM1 

dl sy 250. 
J 
1* breakpoint now occurs because of the reference to 

the variable J. reset the break points, and 

break only If the varIable is being altered *1 

noref j to m. alter J to m. 
REFER OK 
ALTER OK 

go. 
Al TER AT 4,2=l2-2 

dl hi. dl m * code. 
HL = 251 
00042 LMI 

dl sy 251. 
K 
1* now stopped because of attempt to alter varIable k*1 

go. 
ALTER AT 66=L2+22 

d I hi. 
HL = 252 

d! sy 252. 
L 
dl me * to * + 10 code. 
00066 lMA DCL lBA lAN Lll,F8H ADM jNL LCA LAI,OOH 

di a. 
A = 87 

(* we are about to store the accumulator Into the 

varlahle 1. look to see what Is currently in 1, and 

then run one cycle, examine again. *1 

dl mem 1. 
00252 255 

go 1. 
GO OK 
CYCLE AT 67=L2+23 

76 



di mem 1. 
00252 087 

/* stored ok now reset all operand breakp'oints, 

and go back and try the call over again */ 

noalter J to m. 
ALTER OK 

dl sy cl. 
000234Q 00156 009CH 

dl cpu. 
CYZSP ABC n E H L Hl SP PSO PSI 
*0101*087*141 000*159 000 000*252*00252*001*00176*00067 

set pc = c1. dl cpu. 
SET OK 
CYZSP ABC 0 E H L HL SP PSO PSI 

0101 087 141 000 159 000 000 252 00252 001 00176*00156 

/* we had better get out of the 
call, so •••• */ 

set sp = O. set pc=c1. di cpu. 
SET OK 
SET OK 
CYZSP ABC 0 E H L HL SP PSO 

0101 087 141 000 159 000 000 252 00252*000*00156 

subroutine 

/* that looks a lot better. now try the call again */ 

go. 
CYCLE AT 62=L2+18 

go. 
CYCLE AT 64=L2+20 

ref c1,c2,c3. 
REFER OK 

go. 
REFER AT 181=C2 

dl mem t. 
00254 001 

1* same as before. now try some selective 

program execution and tracing. we will set the 

values of some local variables and execute only 

the code between 12 and 13 */ 

set cpu. di cpu. 
SET OK 
CYZSP ABC 0 E H L HL SP PSO 
*0000'*000*000 000*000 000 000*000*00000 000*00000 

1* display the code between 12 and 13 */ 

di mem 12 to 13 cod. 
00044 LHI,OOH LLI,FAH LAM INL ADN LLI,F6H AO~ INL L~A lAI,OOH Ar~ LLB 
00060 LHA LAM LHI,OOH LLI,FCH L~~A orL LBA LAI~ LLI,F8H AnrA IIIl U',.. LAI 
00076,OOH AC~4 LLC LHA LAt~ LHI,OOH LLI,F()H U1A SUB JFZ,71H,OOH neL 

set mem j to m = O. dl mem j to m. 
SET OK 
00250 000 000 000 000 

77 



/~ set the address pointers for a and b up in memory 

sonewhere */ 

set mem a to b+1 = 0 1h 1'0h 1h. dl m a to b+l. 
SET OK 
00246 000 001 016 001 

/* now place data into these locations */ 

set mem 100h to 120h 1 2 3 4 5 6 7. 
SET OK 

di mem 100h to 120h. 
00256 001 002 003 004 DOS 006 007 001 002 003 004 005 006 007 001 002 
00272 003 004 DOS 006 007 001 002 003 004 005 006 007 001 002 003 004 

/* set j to 3 and k to 2 

set mem j ~3, mem k=2. dl 
SET OK 
00250 003 002 

/* now trace this section 

trace 12-3 to 13+5. 
TRACE OK 

go 5. 
GO OK 
RE!=ER AT 156=Cl 

*/ 

m j t k. 

of code */ 

/* move the program counter up to this section */ 

dl pc, sP. 
PC = 156 
SP = 0 

dl b. 
B = 0 

dl cpu. 
CYZSP ABC 0 E H l HL SP PSO 

0000 000 000 000 000 000 000 000 00000 000*00156 

set ps a = 12. /* same as set pc=12*/ 
SET OK 

go 5. 
GO OK 

0000 000 000 000 000 "000 DOC 000 00000 
lHI a 

0000 000 000 000 000 000'000 000 00000 
LLI 250 

0000 000 Don 000 000 anD 000*250*00250 
LAM 

0000*003 000 000 000 000 000 250 00250 
tNL 
*0010 003 000 000 000 000 000*251*00251 
ADt~ 

CYCLE AT 51=L2+7 

base hex. 
HEX BASE OK 

go 30 
GO OK 

78 

000*00044 

000*00046 

000*00048 

000*00049 

000*00050 



*0001*05H DOH OOH DOH DOH DOH FRH OOFRH OOH*OO33H 
LLI F6H 

0001 05H DOH DOH DOH DOH 00H*F6H*00F6H 00H*003511 
AO~' 

0001 05H OOH OOH DOH DOH DOH F6H 00F6H 00H*003611 
I NL 
*0010 05H OOH DOH DOH OOH 00H*F7H*00F7H OOH*0037H 
LBA 
CYZSP A B C O. E H L HL Sf" PSO 

0010 05H*051-1 DOH DOH DOH DOH F7H 00F7H OOH*0038H 
LAI 01-1 

0010*00H 05H OOH 0011 OOH DOH F7H 00F7H 00H*003AI-I 
AC~1 
*OOOO*OlH 05H OOH OOH OOH OOH F7H 00F7H 00H*003BH 
LLS 

0000 01H 05H DOH DOH OOH 00H*05H*0005H 00H*003CH 
LHA 

0000 OHl 05H OOH OOH OOH*OlH 05H*0105H 00H*00301-1 
LAM 

0000*06H 05H DOH OOH DOH 01H 05H 0105H 00H*003EH 
LHI OH 

0000 06H 05H OOH DOH OOH*OOH 05H*0005H OOH*0040H 
LlI FCH 
0000 06H 05H OOH DOH DOH OOH*FCH*OOFnl 00H*0042H 

LMA 
0000 06H 05H 0011 DOH OOH DOH FCH OOFCH 00H*0043H 

DCL 
'*0010 06H 05H DOH OOH DOH OOH*FBH*OOFBH 00H*0044H 
LBA 
CYZSP A B C 0 E H L HL SP PSO 

0010 06H*06H OOH DOH OOH OO~I FBH OOFBH 00H*0045H 
LAt.l 

0010*02H 06H DOH DOH OOH OOH FBH OOFBH 00H*0046H 
III F8H 

0010 02H 06H OOH OOH DOH 00H*F8H*00F8H OOH*OO48H 
ADr,; 
*0001*12H OGH OOH OOH 001·-1 OOH F8H OOF8H 00H*00491-1 
INL 
*0011 12H 06H OOH OOH DOH OOI-l*F9H*OOF9H 00H*OO4AH 
LCA 

0011 12H 06H*121-1 OOH OOH OOH F9H 00F9H OOH*004BP 
LAI OH 

0011*001-1 06H 121-1 OOH OOH OOH F9H OOF911 001-l*004D" 
Art' 
*0000*011-1 06H 121-1 0011 DOH om: F9H OOFSH 00H*004E!! 
llC 

0000 0111 06H 1211 0011 OOrt 00H*12H*0012H 00H*004FH 
LHA 
0000 011-1 061-1 12H OOH OOH*OlH 12H*0112H 0011*005011 

LAI1 
CYZSP A B C 0 E H l Al SP PSO 

0000*05H 06H 12H OOH DOH 01H 12H 0112H 00H*0051H 
LHI OH 

0000 05H 06H 121-1 OOH OOI-l*OOH 12H*001211 00H*005311 
III FDH 
0000 05H 06H 12H OOH OOH OOH* H'H* 00 FDI! 001-1*00551-1 

Lf.1A 
0000 05H 06H 12H 0011 OOH OOH FDII OOFDH 00H*0056H 

SUB 
*101l*FFH 06H 12H OOH OOH DOH FDH OOFNl 00H*OO57H 
JF7. 71H 
CYCLE AT 73H=L4-5H 

,* that should be enough of a check-out. so retire •••• ' 

$eof 

79 



As mentioned pre~iously, the exact manner in which PLM1 

and PLM2 are initiated on any particular computer is 

implementation-dependent. Several sample implementations 

are given, however, in Figures IV-12 through IV-1S. These 

figures Frovide a sample execution of both passes for the 

INTEL PDP-10 t and the commercial time-sharing services 

Tymshare, ApFlied Logic, and General Electric, respectively. 

In each case, the FORTRAN unit names are specified for each 

of the major files accessed by PLM1 and PLM2. 

When using the Tymshare version (Figure IV-13), for 

example, the programmer places the P'L/M source program into 

a file named FOR20.DAT, which corresponds to the internal 

file number 6. This file is read when the $I=6 switch is 

encountered during the PLM1 execution. PLM1 produces the 

intermediate files FOR22.DAT and POR23.DAT, along with an 

optional listing in FOR03.DAT (under control of the $C=2 and 

$T=O or $1=1 switches). 

PLM2 is then initiated and automatically reads the 

intermediate files produced by PLM1. Output can be directed 

to the disk file FOR07_DA~ using the $0=3 switch during the 

PLM2 execution. The $B=7 switch in PLM2 produces a BNPF 

machine code tape during this second pass. 

INTERP/8 can then be intiated for the debugging run, 

and the "lOAI 7 7." command can be used to read this tape. 

80 



S4~PL[ RUN ON INTEL POP-iS 

.rn~Y roR2~.DAT=~YPROG.PLM 

.!'P !'POOL LPT 

.R PI 1011 
$1=6 

PASS 1 or COMPILER IS :NVOKEO HERE 

.R PLM2 
$8=7 
(SPAr.r.,CARRIAGr RETURN) 

PAS~ 2 or COMPILER IS INVOKED HERE 

.PRINT -.LPT 

(FOR2~.DAT) 

(* .LPT) 

(F0R22. OAT) (FOR23.DAT) 

(*.LPT) 

(FOR2l. •. \T) 

Figure IV-] 2. The INTEL implementation of PLM1 and PLM2. 

81 



(FOR22.DAT) 

.r.~PV ~YPR~G.PLM,rOR20.nAT 

.fiVfIJ (IJPLI 1'1'11 
SI)=? 
Sfo!.1 
!S.,· 
II=f 

PA~~ 1 ~r COHPILFR IS INVOKED HERE 

.RUN CUPLI PLM2 
$F~. 
,.,;&\ 
til =7 
fMc\ 
SO=1I 
(SPACE.CARRIAGE RETURN) 

PASS 2 of COMPILER IS INVOKED HERE 

(FOR2,.DAT) 

(FORJ3.DAT) 

(FQR23.DAT) 

(FOR,7.DAT) 

(FOR21.DAT) 

Figure IV-13. The Tymshare implementation of PLMI and PLM2. 

82 



TYMSHARE FILE DEFINITIONS 

PASS 1 

INTERNAL 
FILE INPUT FORTRAN 

NUMBER DEVICE FILENAME UNIT 
1 TTY FORgjS.DAT 5 
2 CDR FORgj2.DAT 2 
3 PTR FORgj6.DAT 6 
4 MTAgj FOR16.DAT 16 
5 DTA1 FOR~9.DAT 9 
6 DSKgj FOR2~.DAT 2~ 
7 DSK1 FOR21.DAT 21 

INTERNAL 
FILE OUTPUT FORTRAN 

NUMBER DEVICE FILENAME UNIT 

1 TTY FORgJS.DAT 5 
2 LPT FORgj3.DAT 3 
3 PTP FORgJ7.DAT 7 
4 MTA1 FOR17.DAT 17 
5 DTA2 FOR1~.DAT 1~ 
6 DSK2 FOR22.DAT 22 
7 DSK3 FOR23.DAT 23 

PASS 2 

INTERNAL 
FILE INPUT FORTRAN 

NUMBER DEVICE FILENAME UNIT 

1 TTY FORgjS.DAT 5 
2 CDR FOR~2.DAT 2 
3 PTR FOR~6.DAT 6 
4 MTA~ FOR16.DAT 16 
5 DTA1 FOR~9.DAT 9 
6 DSK2 FOR22.DAT 22 
7 DSI<3 FOR23.DAT 23 

INTERNAL 
FILE OUTPUT FORTRAN 

NUMBER DEVICE FILENAME UNIT 
1 TTY FORgJ5.DAT 5 
2 LPT FORgJ3.DAT 3 
3 PTP FORgJ7.DAT 7 
4 MTA1 FOR17.DAT 17 
5 DTA2 FOR1~.DAT 1~ 
6 DSKgj FOR2~.DAT 2~ 

7 DSK1 FOR21.DAT 21 

83 



Figure IV-14. 

.COpy rILE11.0AT.HYPROG.PLH 
.APPLY PLHl 
10.2 
IH .. ' 
IS~I 
11-6 

PASS 1 or COHPILER IS INVOKED HERE 

.APPLY PLH2 
Srlll, 
SGa l 
18=7 
,"::1 
SO=3 
(SPACE.CARRIAGE RETU~H? 

PASS 2 or COMP ILER IS INVOK£D HEP.£ 

(FILE!l • OAT) 

(FILEI, .DAT) 

(FILE11.0ATl 

(Fl LE 14. OAr) 

The ALCOM implementation of PLMI and PLM2. 

84 



AL/COM FILE DEFINITIONS 

PASS 1 

INTERNAL 
FILE INPUT FORTRAN 

NUMBER DEVICE FILENAME UNIT 
1 TTY FILE5.DAT 5 
2 DSK FILE7.DAT 7 
3 DSK FILES.DAT S 
4 DSK FILE9.DAT 9 
5 DSK FILEl~.DAT 1~ 
6 DSK FILEll.DAT 11 
7 DSK FILEI2.DAT 12 

INTERNAL 
FILE OUTPUT FORTRAN 

NUMBER DEVICE FILENAME UNIT 
1 TTY FILE6.DAT 6 
2 DSK FILEI3.DAT 13 
3 DSK FILEI4.DAT 14 
4 DSK FILEI5.DAT 15 
5 DSK FILEI6.DAT 16 
6 DSK FILEI7.DAT 17 
7 DSK FILEIS.DAT 18 

PASS 2 

INTERNAL 
FILE INPUT FORTRAN 

NUMBER DEVICE FILENAME UNIT 
1 TTY FILE5.DAT 5 
2 DSK FILE7.DAT 7 
3 DSK FILES.DAT S 
4 DSK FILE9.DAT 9 
5 DSK FILEl~.DAT 1~ 
6 DSK FILEI7.DAT 17 
7 DSK FILEIS.DAT IS 

INTERNAL 
FILE OUTPUT FORTRAN 

NUMBER DEVICE FILENAME UNIT 
1 TTY FILE6.DAT 6 
2 DSK FILEI3.DAT 13 
3 DSK FILEI4.DAT 14 
4 DSK FILEIS.DAT 15 
5 DSK FILEI6.DAT 16 
6 DSK FILEll.DAT 11 
7 DSK FILEI2.DAT 12 

85 



SAMPLE RUN ON GENERAL ELECTRIC TIMESHARE 

OLO. MYPROG 
SAVE F'lLEIN 
OLO PLM1 
RUN 
10-2 
I" 
IS 
11-6 

OLD PLM2 
RUN 
I' 
II: 
la-7 
1M 
$0=2 

PASS 1 0' COMPILER IS INVOKED HERE 

(SPACE.CARRIAGE RETURN) 

PASS 2 0' COMPILER IS INVOKED HERE 

(FILEIN) 

(PTR1) 

(INTFIL) (SYMFIL) 

Figure IV-IS. 

(PTR2) 

The General Electric implementation of PLMl 
and PLM2. 

86 



ERRATA SHEET 
October 24, 1973 

GENERAL ELECTRIC FILE· DEFINITIONS 

PASS 1 

INTERNAL 
FILE INPUT 
NUMBER DEVICE FILENAME 

1 TERMINAL . 
2 DISK CDR 
3 DISK PAPI 
4 DISK MAGII 
5 DISK DECIl 
6 DISK FILEIN 
7 DISK LOGBIN 

INTERNAL 
FILE OUTPUT 
NUMBER DEVI~E FILENAME 

1 TERMINAL 
2 DISK PTR1 
3 DISK PAPO 
4 DISK MAGO 
5 DISK DECO 
6 DISK INTFIL 
7 DISK SYMFIL 

PASS 2 

INTERNAL 
FILE INPUT 
NUMBER DEVICE FILENAME 

1 TERMINAL 
2 DISK CDR 
3 DISK PAPI 
4 DISK MAGII 
5 DISK DECIl 
6 DISK INTFIL 
7 DISK SYMFIL 

INTERNAL 
FILE OUTPUT 
NUMBER DEVICE FILENAME 

1 TERr..nNAL 
2 DISK PTR2 
3 DISK PAPO" 
4 DISK MAGO 
5 DISK DECO 
6 DISK LOGOUT 
7 DISK LOGBIN 

All "0" in FILENAME are the letter "0", not the character 
zero ("*,"). 

87 



V. PL/M RUN-TIME CONYENTIONS FOR THE 8008 CPU. 

This section presents the run-time organization of PL/M 

programs, including storage allocation and subroutine 

linkage. The discussion below assumes an 8008 CPU 

environment, and thus programs which are intended to be 

indepEndent cf CPU architecture should not depend upon the 

conventions presented here. 

The overall organization of memory for the INTEL 8008 

CPU is shown in Figure Y-1. Memor:y is allocated in three 

main sections: the Instruction Storage Area (ISA), the 

Y ar ia tIe sto rag e A rea (YSA), a nd the Free Stor age Area 

(PSA) • The beginning of the ISA is determined J:y the 

numEric label of the first statement within the PL/M 

program. If no numeric label is specified, the origin of 

the ISA defaults to zero, and the segment marked II unu~Ed" in 

Figure Y-1 is empt y. The" square root II program gi ven in 

Appendix A contains a numeric label on the first statement 

to force the ISA to start at location 2048. 

All cede generated by the PL/M compiler is "pure." 

That is, no object code modifications are made at run-time. 

Thus, the ISA memory portion can be imFlemented in either 

RAM (Random-Access Memory) or ROM (Read-Only Memory). 

The VSA portion of memory holds values of variables 

declared within the PL/M program in address-order. The 

first variable declared in the source program is at the 

lowEst addrEss in the VSA, while the last variable declared 

is at the highest address. It should be noted that 

doutle-byte (ADDRESS) variables are always aligned on an 

88 



16383 

.MEMORY ..... 

FIRST 

VARIABLE 

DECLARED ~ 

PROGRAM 

ORIGIN 

00000 

MCS-8 MEMORY 

FREE 

STORAGE 

AREA 

(FSA) 

VARIABLE 

STORAGE 

AREA 

(VSA) 

INSTRUCTION 

STORAGE 

AREA 

(ISA) 

MEMORY 

VECTOR 

....- LAST 

VARIABLE 

DECLARED 

Figure V-1. Run-Time Storage Organization for the 8008 CPU. 

89 



even address boundary; thus, contiguous BYTE and AIDRESS 

declarations in the source program mayor may not lead to 

contiguous allocation of these variables in the VSA. In 

addition, note that declarations with the DATA attribute 

cause allocation of the corresponding value in the ISA, ~Q! 

the VSA. Hence~ DATA variables cannot be altered if the ISA 

is implemented in ROM. 

The VSA is placed after the ISA, but never tegins 

before the page indicated by the $VARIAELES compiler switch 

in PLM 2 (the defa ul t va I ue of this s wi tch is zero). 

Suppose, for example, that pages 0, 1, and 2 ci memory are 

irrplemented in unalterable ~OM (recall that there are 256 

bytes per page). The programmer would then set the switch 

$VARIABLES = 3 

during PLM2 to indicate that page number 3 is the first page 

in which variables can be alloca ted. If the ISA is 

contained within pages 0, 1, and 2 then the VSA begins in 

page 3. If the ISA extends past the first three pages into 

RAM then~ the length of the ISA determines the beginning of 

the VSA~ The end of the VSA is always at an even page 

boundary. 

Recall that there is one predeclared BYTE vEctor, 

called "MEMORY," which is automatically included in every 

PL/M program. The MEMORY vector is started after the last 

variable in the VSA, and thus represents the last area of 

memory, called the FSA, shown in Figure V-l. The length of 

the MEMORY vector is_ of course~ dependent upon the amount 

of-memory phy~ically attached to the particular 8008 CPU 

being used, and the length of the ISA and VSA. The le~gth 

of MEMORY can be effectively computed at run-time, however, 

by attempting to read and write the first location in ~ach 

page of the FSA. A subroutine for this purpose is shown in 

Figure V-2. 

90 



00001 2 

00002 2 

00003 2 

00004 2 

00005 3 

00006 3 

00007 3 

00008 3 

00009 3 

00010 3 

00011 3 

00012 3 

00013 3 

00014 4 

00015 4 

00016 4 

00017 3 

00018 3 

00019 2 

00020 2 

00021 2 

00022 2 

00023 2 

00024 2 

/* THE MEM$LENGTH PROrE~CrE RETUR~S THE NUMBER OF 

BYTES IN THE FREE STORAGE AREA (FSA) */ 

DECLARE TEST$VALUE LITERALLY '1010$10106'; 

~EM$LENGTH: PROCEDURE ADQRESS; 

LOOP: 

DECLARE (I,MAX) ADDRESS; 

I = 0; ~'1AX = 4000H - • Mn'(\RY; 

/* MAX IS THE LARGEST POSSIPlE SIZF FOP TH~ FSA 

IN A FUll. 16K 8008 SYSTEtI */ 

IF .~1n10RY <) 0 nH~N /* AT LFAST m'E FRFF pl\(':r */ 

no WHILE I < MAX; 

/ * WR I TE THE TEST VAlUE n'TO THF F I PST \"01"0 OF 

THE PAGE */ 

~E~OPY(I) = TEST$VALUE; 

I F ~1H1ORY( I) = TEST$VALUE THEN 

= I + 256; ELSE MAX = 0; 

nJn; 

RETURN I; 

END MH1$LENGTH; 

/* TEST THE ABOVE PROfEnUp[ */ 

DECLARE RESULT ADDRESS; 

START: RESULT = MEM$LENCTH; 

FINISH: co TO START; 

EOF 

~IO PROGPt\.M ERRORS 

Figure V-2. A PL/M Procedure for Determining MEMORY Length. 

91 



The methods used for activating procedures and binding 

actual parameters to formal parameters in PIIM is given 

below. Again, note that the conventions given here are 

dependent upon the 8008 CPU environment. 

Subroutine parameter passing is perform~d as follows. 

First, note that formal parameters declaced in the ~rccedure 

definiticn are treated the same as locally defined 

variables. That is, each parameter is allocated storage 

sequentially in memory as if it wece a variable local to the 

procedure. Formal parameters, however, are initialized to 

their ccrres~onding evaluated actual pacameters at the time 

the procedure is invoked. Thus, all parameters are "call by 

value" in PL/M. This initialization of formal parameters is 

performed in two different ways, depending ufon thE number 

of argu~Ents declared in the procedure. If there is only 

one parameter, the low-order byte is passed in CPU rEgister 

B, whilE the high-order byte is sent in register C. If 

there are two parameters, the first is passed as above, and 

the second is passed in CPU registers D (low-crder byte) and 

E (high-crder byte). When there are more than two 

parameters, the l~§i two are sent as described abcve, and 

the others are sent by generating implied assignment 

statements at the calling point which store the evaluated 

actual parameters into the variables representing the formal 

parameters • 

• The CPU registers are also used to hold values on 

return frcm procedures which have tne EYTE or AtDRESS 

attribute. In the case of a BYTE procedure, the value 

returned is in the A register, while an ADDRESS procedure 

returns the low-order byte in register A, and the high-order 

byte in register C. 

92 



The eight-level program counter stack mechanism cf the 

8008 CPU is used to hold return addresses when subroutines 

are called. Although this stack size is sufficient fer most 

PL/M programming applications, the user should be aware that 

the 8008 stack size limits nesting of subroutine calls to 

seven levels at run-time. 

Assembler language subroutines can be incorporated into 

PL/M programs if these subroutines account for the PL/M 

procedure conventions discussed previously. 

The assembly language subroutines are first assembled 

into absolute locations, usually starting at low addresses 

in memory, as shown in Figure V-3. Each subroutine should 

end with a RET (return) operation code. The beginning 

address of each SUbroutine is obtained aiter assembly, 

dencted by S1, S2, ••• ,Sn in Figure V-3. 

For each subroutine S1, S2, ,Sn, write dummy PL/M 

interface procedures P1, P2, ,Pn where each pi is a 

procedure containing the single statement 

GO TO Sit 

The procedure pi can have zero, one, or two parameters of 

type BYTE or ADDRESS, and can return either a BY~E or 

ADDRESS value, or simply return with no value at all. Note 

that if more than two parameters are to be sent, or if more 

than one value is to be returned, ADDRESS variables can be 

used to "point to" parameters or results. 

The subroutine Si then obtains parameters from the CPU 

registers B, C, D, and E, as given in the conventions above, 

and retu£ns values through registers A and c. 

93 



Origin: 

MCS-8 MEMORY 

v S A 

I S A 

Containing Procedures 

PI' P2 , ••. 'Pn 

SUBROUTINE n 
S -+ n ~ ____________________ ~ 

S2~ 
~------------------~ 

SUBROUTINE 2 

Sl~ 
r-------------------~ 

SUBROUTINE I 

JMP to Origin 

Figure V-3. Including Assembly Language Subroutines in 
PL/M Programs. 

94 



Suppose, for example, a programmer codes three 

subroutines in ass~mbly language for handling teletype I/O. 

The subroutine S1 sends a line-feed-carriag€-return, and is 

found at location 50 in memory. The subroutine S2 writes a 

single character at the teletype and returns. Assume S2 

assembles starting at location 75. The subroutine S3 reads 

one character from the teletype, 

addresses 12G and 150 in memory. 

and ~s located tEtween .. 
The following PL/~ program 

then provides interface procedures for these 

language ~ubroutines. 

150: DECLARE CRLFS LITERALLY '50', 

TTY OUTS LITERALLY '75', 

TTYINS LI TERALLY '120 '; 

CRLF: PROCEDURE; 

GO TO CRLFSi 

END CRLF; 

TTYOU'I: PROCEDURE (CHAR); 

DECLARE CHAR BYTE; 

GO TO TTYOUTS; 

END TTYOUT; 

TTYIN: PROCEDURE BYTE; 

GO TO TTYINS; 

END TTYIN; 

assembly 

The CRLF, 'I'IYOUT, and TTYIN procedures can then be called 

in the same manner as any internally-d~fined froceduIe. 

If the assembly language subroutines are not fully 

checked-out and thus are undergoing revisions, it may be 

worthwhile constructing a "jump vector" at the beginning of 

memory_ ThE jump vector contains jump instructions to 

addresses of the currently assembled subroutines 51 through 

Sn in lewer memory. The co.rresponding PL/M interface 

procedures then branch indirectly through this jump vector. 

If the subroutines are reassembled at different locations, 

only the jump vector need be changed, since it is not 

necessary to recompile the PL/M program. 

95 



As a final note, the programmer is reminded that 

assembly language subroutines should be used only when 

absolutely necessary. Changes to the PL/M system fOL future 

machine architecture will necessitate changes in sutroutine 

conventions, tesulting in loss of ufward software 

compatibility in all programs which depend upon these 

conventions. 

96 



PASS-,. 

1!l1!l111!l1 2 
1111111111112 2 
110111I!JJ 2 
11I1!l1!J1!J4 ::: 
1'JI!J11115 2 
I!JI!l I!ll!l 6 3 
1!J1!J1!l1!l7 3 
I!JI1I I!JI!l 8 3 
I!JI1I I!ll!l 9 3 
1!l111!l1'" 4 
1!J111!J11 3 
1!J1I1!J12 3 
I!lIiJllll ~ 2 
I1IPlI!J14 2 
I1U15 3 
flJI!ll1l6 3 
1101117 3 
flJI11118 3 
flJl!JflJ19 3 
110 112 fIJ 3 

00021 4 
001'12;> 4 
00023 4 
0011124 3 
01!J1IJ25 3 
001126 ~ 

1IJ1IJ1IJ27 3 
1IJIIJ1il2R 2 
01!J Iil 29 2 
1!J01!J311l 3 
01!J1!J31 3 
1!J11I1!J3? 3 
0OO33 3 
1!JI1l034 4 
1'\0035 3 
011J1IJ36 2 
1IJ17.037 2 
1IJ011J3B ~ 

00"'~9 3 
011J04 \1 :3 
00f1J 4 1 3 
1IJ0"'42 3 
0f1J04~ 4 
111OO44 4 
OOO45 4 
0i\046 4 
l1Iillll47 4 
fiM48 4 
Pll'l049 3 
"'01:1<;01 3 
011105<. 2 
i1I005? 2 
01110 5 3 2 
001!J54 2 
011105 0; 2 
1!J1!J1!J56 2 
I!J I!JI!J 57 2 
001:158 2 
011J (>15 'I ? 
1IJ1!JI:l6fl 2 
11I011J61 2 
1!J1!J062 2 
011J1IJ6-\ :5 
00(1164 4 
1IJ011J65 4 
1IJ1!J1!J66 3 
1IJ0067 3 
1IJ0P.16~ 3 
1:11!J1IJ69 3 
0111"7"1 ;> 
1"111071 2 
1!J00n 2 
NO PROGRAM 

Appendix A 

A Sample Program in PL/M 

2048: /. IS THE OR'GIN O' THIS PROGRAM ./ 
DECLARE lTO LITERALLY '2'. CR LITERALLY '15Q', L. LITERALLY 'I1AH', 

TRUE LITERALLY '1', 'ALSE LITERALLY '2': 

SQUARESROOT: PROCEDUREIXI BYTE: 
DECLARE IX.T,l) ADDRESS; 
Y = x; l = SHR(X+l.1)1 

DO WHILE Y <> l; 
Y = l: l = SHRIX/Y + 1 + 1. 11: 
END; 

RETURN VI 
END SQUAREROOT; 

PRINTSCHAR: PROCEDURE (CHARI; 
OECLARE BIT$CELL LITERALLY '91', 

ICHAR. I) BYTE: 
OUTPUT (TTO) • 0: 
CALL TIME IBITSCELL); 

DO I = I!J TO 7; 
O~TPUTITTO) = CHARI /* DATA PULSES ./ 

CHAR = RORICHAR,l); 
CALL TIMEIBITSCELLI; 
END: 

OUTPUT ITTOI = 1; 
CALL TIME IBITSCELL+BITCELLl: 
/* AUTOMATIC RETURN IS GENERATEO */ 
E"IO PRINTSCHAR; 

PRINTSSTRING: PROCEoUREINAME.LENGTHll 
nECL.ARE NAME ADOIoiESS. 

(LENGTH.I.CHAR BASEO NA~E) BYTE: 
DO 1 = IIJ TO LENGTH - 1: 
CALL PRINTSCHAR(CHARII)I: 
Eflo: 

END PRINTSSTRING: 

PRI~TSNUMBER: PROCEOURE(NUMBER.BASE,CH~R~.iERO$SUPPRESS): 
DECLARE NUMBER ADORE SS. (R ASE • CHA RS. ~EROS~UPPRE SS. I, J) 9 yTE : 
DECLARE TEMP (16) RYTE; 
IF CHARS> LAST (TEMP) THEN CHARS = LAST(TEMPl; 

DO I = 1 TO CHARS: 
J = NUMBER HOD BASE + '0'; 
IF J > '9' THEN J = J + 7: 
IF lEROSSUPPRESS AND I <> e AND NUHBfQ = ~ THEN 

J = , '; 
TEMPCLENGTH(TEMP)-Il = J; 
NUMBER = NUMRF~ , BASE: 
END; 

r.ALL PRI~TiSTRING(,TEMP + LENGTHCT~HP) - CHARS. CHjRS): 
ENn PRINT$NUHBER: 

DECLARE I ADDRESS. 
CRL. LITE~ALLY 'CR,L'" 
HEADING DATA (CRLF,LF,LF, 

TARLE O. SQUARE ROOTS'. r,RLF.LF. 
'VALUE ROOT VALUE ROOT VALUE ROOT VALUE ~OOT VALJE ~DOT'. 
CRL •• L'1l 

'* SILENCE TTY AND PRINT CO~PUT~C VALUES -/ 
OUTPUT(TTOI = 1: 
1)0 I = 1 TO 1 QlIIJ 0; 
IF I MOO 5 = 1 THEN 

00; I. I MOO 250 = 1 THE'" 
CALL PRINT$STRING(,H[ADlflG.LENGTHIHEADI~G)I: 

END; ELSE 
CALL PRINTSTRING(, ICR.LFl.2): 
CALL P~INT$NUMBER(I,10,6.TRU[ /- TRUf SUPPRESSES LEADING lEROE5 ./); 
CALL PRINTSNUMBER(SQUARESROOT(I). 1~.6. TRUE): 
["II): 

DrCLAwE MDNITORSUSES (10) BYTE: 
[OF 
ERRORS 

97 

Mark
Typewriter
Updated Pages



P4SS.1 SyMBOL T ABL.E 

SYMBOl 400R WOS CHRS LENGTH PR TY 
SQhHHS- "'326 3 11 R "'00010 1 1 MONITORUSES 
SI'IC"'I77 1lJ322 1 1 R "'1110006 1 6 6 
S0007!> 0319 0 '" R 111000111111 4 4 
500075 "'316 C! 0 R 0"'1111110111 4 4 
SI1I1'1074 0312 1 3 R 011111125"- 1 6 250 
511111111173 11131119 111 0 R 11111111111100 4 4 
S0iHl72 031'15 1 1 R 01'180115 1 6 5 
501'1071 0302 0 0 R 0"'000O 4 4 
S001'1Ul "298 1 4 R 00111100 2 6 1O"''' 
$"'1'1069 "'295 111 Z R '''0000O 4 4 
S0il1066 028\J 12 60 R "'1110000 :, 5 , VALIJE ROOT VALUE ROOT VALUE POOT VALUE RI 
S"''''067 0268 9 45 R 00111"'0111 3 5 , TABLE OF SQUARE ROOTS 
S0"I1I6!> 0264 1 2 R "'110010 1 6 0A 
S01'1065 026Pl 1 2 R 1110~'!l13 1 6 15 
S0"I1I64- 0255 ? 7 Il iIll1l0115 3 1 HEADING 
SA0"'6~· 0251 1 1 R 000001 2 1 I 
501'1062 0247 1 1 R 000032 1 :; , , 
SI1Ii'11l61 111244 I1l 0 R 01!J 1110 111111 4 4 
SI!I~I1I6Il 0241 III ° R ~01l"00 4 4 
S00'" 59 "'237 1 1 R 1!IP!011157 1 5 ' 9' 
S'H'I1I"i~ 0233 1 1 R ''''Hli''48 1 5 '0' 
revH157 02~0 ~ ° R 00 1110 11111 4 4 
S0000,6 02:>7 0 I1l R AI1lI1l"'1lJ1!I 4 4 
SI1l11iflJ55 0224 I1l I1l R 011l11ll'01!1 4 4 
SIlI1lf'54- 1il2?1'l 1 4 R 11l1l1l~16 1 1 TEMP 
51'0r.53* 11216 1 1 R f'0 I!! 0 ill 1 1 J 
SI'l I!I1l 52 * 0212 1 1 R l1ll'lf/llll'll 1 1 I 
S01'11'151 02"'9 '" I1l R "'''NlI1l0 4 4 
5lIH105r,_ 11I2!'l3 3 12 R l'lQlI1l"" 1 1 1 i!ERCSUPPRr.SS 
S1l11l11l49- "199 1. 5 R I1llll1l"01 1 1 CH~RS 
S'HlI'l4S- 0195 1 4 R 21 I1lI'l 011l 1 1 1 BASE 
Sl1I1'111l47* Il1911l 2 6 R "'1l11l001 2 1 NUMBf R 
S01H146_ I'llR4 3 11 R 1";'~11l04 '" 3 PIlINTNUHB[R 

5001145 111181 0 0 R 00000~ 4 4 
SI1lll11l44 1i!17A " 0 R 000000 4 4 
S'HlI'l4~* 1i!173 1 4 B o I"''! 1'1 01 1 1 CHAR VH'I11l~QlPl27H 
S"'l'l11l42* 11169 1 1 R 00iH~01 1 1 I 
SI1l0041 0166 0 '" R 0000011l 4 4 
S01l~4~* 016l. 2 6 R 000001 1 1 LENGH' 
S00039* 0157 1 4 R 000~01 2 1 NAME 
SVl"Jil38* 0151 3 11 R 000002 OJ 3 P R 1 NT S T R I ~J G 
5000:<7 111148 Il <I R 00:il00l'l 4 4 
SI'l1'l036 0144 1 1 R "'~11:11l07 1 6 
S001'35 0141 0 [3 R 0000011: 4 4 
SI'I00~'1 0137 1 2 R 000e91 1 6 91 
S0111"'3 0133 1 1 R 01?'0000 1 6 0 
500032 01?9 1 1 R 00 iHH'I 2 1 6 2 
S01!111l31~ 0125 1 1 R liH!'!!1001 1 1 1 
S000301 0122 0 0 R ,"10000 4 4 
S"'00?9~ 111118 1 4 R 00111001 1 1 CHAR 
SC'l11l0,;>f o 0113 2 9 R 1300001 '1 3 PRINTCf'AR 
S0M?7 ~lHl ~ " R 0~0000 4 

S00~26 0107 t'l 0 'l 00011100 4 
S00025 0103 1 1 R I1lPJ1l01'l1 1 6 
S11'0024" 111099 1 1 R 00011101 2 1 2 
SI1lI1l13?:,* 111095 1 1 R I'l11l0001 2 1 Y 
S0t'lPl2'" 0092 (l I1l R 01l0~00 4 4 
SIl1'l021" 1i"!l8e 1 1 R 0001'101 2 1 X 
S00020" 0P1B 3 2 111l R 00" 001 1 3 sau" REROOT 
511l0QJ19 011179 1 4 R ~"'204e 2 6 2046 
S0"1318 12111'74 2 6 R 11lJ2111!0P11 2 ;> DOUBLE 
SIill1ll'l17 0070 1, 4 R I""H!I~03 " 2 MOV,. 
S11l1'l01,6 ,!,11166 1 4 R 000001 1 2 LAST 
S"'001~ J2111l61 2 6 R 0fl0011'1 , 2 LENGTH 
S"01?~4 0"'56 ? 6 R J1II1I0011l1 1 2 OUTPUT 
Sl'le0J.3 0"'52 1. 5 R 001'1001 1 2 INPUT 
5111"''''12 0048 1 3 R 011H1011l1 1 2 LOW 
S011l11l11 "''''44 1, 4 R 0001'111l1 1 2 HIGH 
S0'Hl,1'I 004O 1 4 R IHlI' ilill 11 2 TIME 
S00004 011136 1 3 R 00 liHHl 2 1 2 SHR 
50001118 11l11l32 1 3 R 01'1001'12 1 2 SHL 
SI2"'007 00:'8 1 3 R o 1'1 I1lI/1 02 1 2 ROR 
SI1lI1ll'l1"6 1'l11l24 1 3 R ,,011l002 1 2 ROL 
S0011lQl5 01!19 '2 6 R I'lJ2111l000 1 1 MEMORY 
500004 I1lli!l14 2 6 R 0"'''''''''1 1 1 PAR !TY 
S01iH'03 0"'1"1 1 4 R 01'l11l001 1 1 SIGt'; 
S01l11l02 "006 1 4 R l1lilll1ll1l11l1 1 1 2ERD 
SI1l011l11l1 111002 1 5 R 11l0001!i1 1 1 CARRY 

98 



p'ASS~2 

LI NE NUH8ER - ADDRESS CORAESPONO£NCE 

2 =IIJ811J1IJ.H 6=8811J3H 7·118I'lAH 8·,,81DH 9-1IJ838H 1IiJ·1I89DH 
11=IIJBA9H 12="8B1H 13·1IJ8B2H 16=1IJ8B5H 17=08BAH 18·IlBBCH 
19=08C5H 211J=1IJ8C8H 21 =1lB02H 22-1IJ8D7H 23=08D8H 24 a l'l8E8H 
25=11I8EBH 26-1i18EF'H 27·1IJ8F'7H 28=1'l8F'8H 30=Il8F'BH 31·1IJ99J4H 
32=0987H 33"1iI911JDH 34 :tIJ923H 36.892DH 37=1IJ1J2EH 38d931H 
39= 1'l.938H 411J=1IJ93CH 41=1IJ93F'H 42=1IJ952H 43=1IJ96F'H 44=1'l972H 
45=1IJ999H 46=1!!99DH .. 7-11J'A F'H 48=1'l9CCH 49=11901101 51-09F'")IoI 
52=1'l9r6H 

50011164 1IJ2553 115 
~ DH I'lAH IlAH IlIA 101 211JH 20101 211JH 211JH 21lH 211101 21'lH 21'lH 20H 21lH 2£1101 21lH 21lH 

21lH 211lH 2i1JH 21'lH 211JH 211JH 211JH 211JH 211JH 211JH 2111101 54101 41H 42H "CH 45H 211JH 4rH 
461-' 211JH 53H 51H 55H 41H 52H 45H 21'lH 52H 4F'H 4F'H 54H 53H IIJDH IlAH IIlAH 20H 
56H 411l 4CIl 55H 45H 211JH 21lH 52H 4F'H 4FH 54H 211J1l 56101 41H 4CH 55H 45H 21lH 
21lH 52H 4F'H 4F'.H 54"1 211JH 56H 41H 4CH 55H 45H 211JH 21'lH 52H .4F'H 4FH 54H 20H 
56H 41H 4CIl 551l 45H 211H 21lH 52101 4FH 4F'H 54H 211lH 56H 41H 4CH 55H 45H 2I/JH 
20'1 52H 4FIl 4F'H 54H 11I0H 0AH IIlAH 

61""A6CH 61=IIA6FH 62=1U 78H 63=IlU4H 64=IlAC3H 
6'5=IIJAC6H 66=IIJACF'H 

SUIlI81 il2773 2 
1Il0H IlAH 

67=IIAD7H 68 =Il.t.F7H 69=IlB09H 70=rIJB28H 
S01l~l'!1 IlIlBCCH SIl0U2 00BCOH SliIIlI00 3 0~BCEH "1'1 IIIl 114 IlIlBCFH 
S"'I/!2I~5 110CUH SIIJ1l021 IIJIIJB08H SIIJliIIIJ23 011JB02H SIIJIl1'l24 "0B04H 
S01'l1l29 IIJ"B06H SIIJ2I1IJ31 IIJ"BD7H S011Ji1J39 ""BD8H SI'IIl"4" "0BOAH 
SililI1I42 1IJ8BDBH S"1IJ047 IlIIJBDCH SI'l01'l48 01lBDFH S81'l049 1l8!1E0H 
S0U50 SIlBF.:1H SIIJ0052 ""BE2H S01l1l53 00BE3H SI'I1l1l54 IilllBE4H 
SI1I11I063 ""Br4H SIII1J0 7 8 ""BF' 6H SIIJIIJ1IJ79 ""RCAH SIIJIIJ"811J flIIJBC8H 

1IJIIJI1IIIJH HlT HlT HlT ~lT HlT HlT Hl T Hl T Hl T III T Hl T Hl T Hl T Hl T Hl T Hl T 

GENERA TEO OBJECT CODE 

1888H JHP.B2H.88H lHI.IBH lll.OIlJH lH8 tNl lHC DCl l8" INl lCH tNl lHB 
,818H INl LHC lll.08H lAH INl lCH ADI."lH l8A lAC ACI"'H ORA AlA lCA 
18211JH LAB AAA lLl.04H l"A INl lHC lHI.1IJ8H lLl.02H lAM tNl lCM tNl SUM 

18311JH tNl lBA lAC SBM ORB JTl.A9H.1IJ8H DCl lBH INl lCM lll.D2H 1MB INl 
.8411JH lHC DCl lB" tNl lCM lll.C8H 1MB INl lMC lll.DIIJH IBM INl lCM III 
185I1H.CAH lHB INl lHC JMP.8AH.1IJ8H lEM DCl lDM lMI.llH lBI,IIJ"H lCB LAD 
.861H AAl lOA lAE RAl lEH DCE lME lEA ATl lAB RAL lBA lAC AAl LCA DCl 
1878H DCl lAB SUM lBA tNl lAC SB" lCA JF'C.83H.1IJ8H OCL lAB ADM LBA INl 
"8811JH lAC ACH lCA INl SBA SBt.8I1JH JHP.5rH,1IJ8H CAl.57H.1'l8H lAO lll,D2H 
1IJ891'lH ADM INl lOA lAE ACM lEA lAO ADI.01H lOA LAE ACI,I'lIlJH ORA RAR lEA 
18AIIJH lAD RA~ tNl lMA INl lME JHP.27H.08H lHI.09H lll.02H lAM INl lCM 
18BIIJH RET RET J~P.F'8H.18H LHI;1IJ8H LlI,06H 1MB XRA 010 LBI.5BH DCB JTl 
18CIIJH.C5N.18H JMP,BEH.18H tNl lMI.IIH lAI.17H LHI.IIJBH LLI.07H SUM JTC 
.80IH,E8H.18H DCl lAM 0111J LAM ARC lHA lBI.5BH DCB JTl,E1H.1IJ8H JMP,DAH 
'8E8H.1IJ8H INl LBH INB lH8 JHP.C8H,1IJ8H lAI.llH 0111J LAI,5BH ADI.5BH lBA 
18F0H OCB JTl,r7H,1IJ8H JHP.rIlJH.1IJ8H RET JHP.2EH,~QH lHI,~8H Lll.DSH LHB 
19'''H INl lMC INl LHD INl lMI."8H lHI,0BH LlI.DAH IBM OCB lAB INl SUM 
1911H JTC,2DH,'9H lAM lll.08H AOH INl lBA lAI.~I1IH ACM llB lHA lAM lBA 
"21H CAl.B5H,laH lHt.IIJBH lll.DBH lBH INe lHB JHP,1IJ7H.1IJ9H RET JMP,F'6H 
1IJ9311JH,1IJ9H lHI,IIJBH Lll.EI'lH LHB INl lMD LAI.lIJrH DCL SUM Jrc.41H,1'l9H lHI 
S948H.lrH lHI.IIJBH lll.E2H lHI.llH lHI,I'lBH LLI,E0H LAH lll.E2H SUM JTC 
1IJ95IH.D9H.1IJ9H lll.DF'H lBH lll.C8H lHB INl lMI.0I11H lll.DCH LBM INl LCM 
1IJ9611JH lll.r.AH lHR INl LHC CAl.57H.1IJ8H lAB Aol,30H lBA LAC Acl.r.~H III 
897(11Il.E3H l~B lAI.39H SUM JrC,7CM.1IJ9H lAM ~DI.~7H lHA lHI,~BH lll,E2H 
1IJ988H lAM SUI.~0H AOI.F'rH SBA DCL NOM lll,OCH LBA lAM INl lOM SUI •• eH 
'991H lCl lAD SBI,I'lI'lH ORC SUI.01H S~A NOB RRC JFC.A1H.09H Lll.E31l lHI 
1IJ9AIIJH.28H LAI.leH lHI.IIJBH lll,E2H SUM lll.E4H AOL lBA LAH ACI.0I'lH DCl 
~9q0~ LOH'llB lHA lHo lHI.0BH lll.DrH lB~ LlI.r.SH LHe INl lHI.~01-' lLI 
1'l9CI'lH.oCH IBM INL lCH lll.CAH l~B INl lHe CAl,57H.~8H lll.DCH l~U INl 
1IJ9D(IIH lHE lLl.E2H IBM INB ll"B J"fP.47H.1IJ9H LHI'!>'e~ lll.E4~ lCH tAL AOI 

, "9EIH .111JH leA LAC AC I. IIH leA lAB lLl, E0H SUH lB A LAC 58 I .IIJI'lH lLl. EVlH 
1'l9FIIH lDM lCA CAl,FBH.1IJ8H RET JHP.6CH,(IIAH R01 RRC RRC RRC INE INE INE 
IlAI'lIlJH INE INE IHE INE INE INE INE INE INE n'E J~!E INE INE INE INE INE 
IlIAllH INE INE IHE INE INE JHP.41H,42H JHP.45H,2rH 107 CAL,20H,531l 008 
0A211JH 0111J 1~0 r.rS.45H.2I'lH CFS.4rH.4FH JMP,53H.~~H RRe PPC INE CAl.41H 
0A31'l"l.4r.H 01~ 1(112 INE INF CFS.4F'H.4F'H JHP.?~H,56H I~r, JMP.55H.4?H I~E 
0A40H INE crS.4,H.4FH JHP.28H.56H 100 JHP.55H,45H INE INE CFS.4FH,4FH 
I'lA511JH JHP.~I'lH.561l Ie" JHP.55H,45H INE INE CFS.4FI-'.4FH JI"P.2I1JH.56H 100 
I'lAb0H JHP.55H.45H INE INE crS.4FIl,4FH JHP.00H,~AH RRC lAI'~lH 010 lHI 
8A7I1JH.9BH lll,r4H lHI.01H INl lHI.00H lAI.reH lCI.03H lHI,0RH lll.F4~ 
IIJA8eH SUM TNl lBA lAC SBM JTC.28H.~BH lll.ChH LMI.05H INl LHI,00H LlI 
IlA9i1H.F4H IBM INl lCH lLI.CAH lHB INl lHC CAL.~7H.08H LAB SUI.~lH lBA 
I'lAAIiH lAC SBI.8I'lH ORB JFl.02H,0AH LlI.C8H LMI.FAH INL lMI,0I'lH lLI.r4H 
IIJABIIH IBM INl lCH lll.CAH lMS INL lHC CAL.57H,~8H l~B SUI,01H lBA LAC 
IlACIiH SSI.IIJIIJH O~B JFl,CFH,IIJAH lBI.r9H lCI,09H LOJ.73H CAl.FBH""8H 'JMP 
IIJAD0H.EIIJH.0AH JMP.O?H.I'lAH R81 RRC lSI.05H lCI,0AH lOl.~2H CAl.FRH,88H 
IIJHI'lH lHI.0'!H lLI.F4H LBM INl lCM lll.DCH 1MB INL lMe lll.DFH lMI.0AH 
SAFSH lBI,06H LOI,1IJ1H CAL.31H,1IJ9H lHI.e8H LLI.r4H IBM INL lCM CAL,03H 
8BIIJIIJH.18H lHI •• BH Lll,DCH lHA INL lHI.I'lIlJH LLI.OF'H lHI,I'lAH LBI.86H LOI 
IS1I1JH •• 1H CAl,31H,19H lHI.IBH LLI,r4H lAH INL LCM AOI.81H l8A lAC ACI 
9S2~H.'IH DCl LMB INl lMA JMP.78H.IIJAH HLT 

99 



1 C4RRY 0571 4 
2 lE:FlO 05715 
3 SIGN 05716 
4 PARITY 1IJ5717 
5 MEMO~Y 1IJ6Cl1/111J 

2~ SQUARE ROOT 211J~17 

21 X 1Il!!72" 
?3 Y 05722 
24 l 05724 
2e PRINTCH4q 21327 
29 CH4R ClI5726 
31 I 057;:>7 
38 PRI~TSTRI~r, 21757 
39 NAME: 4'15731il 
40 LENGTH 05732 
42 I 1!J5733 
46 PRINTNUMBEq 22307 
47 '1UMBE'l 0'15754 
48 BASE ~5737 
49 CH41lS 1IJ5741il 
50 ~[1l0SUPPRESS 05741 
52 I 1115742 
53 J 1IJ5743 
'54 TE"!P "''5744 
63 I 05764 
64 HEADING 04771 
78 HONITORUSES 1115766 

................................................. * ••• -
2{'i41l BNPNNNPNl-4r BPNPPNNPNF' BNNNNPNNNF Ei~,~IPNPoP,,!, 

8 tJN ~JN P'J pp F' BNNPPNPPN, BPPNP'INNN, 8P PPPP fJ"i "F 
20156 BNfIIPPNNNIII, BPPPPPNP"'F BIIIIIIPPN~!NPF R"PN"iPPpo, 

8NNPPNNNNF BPPNPfIIPPPF !3NNPPNNNNF PPP?PPNN°, 
2064 B"mpPNNNN, BPPPPPIIIPNF RNNPPNPPNF PPPN?~'NNN' 

B PP ~IN NP PP F BNNPPNN'JNF RPPNPNPppr Bt\NNN'IIP'J~!I' 

20l? 8NIIINN'IN!IIPF I:lPPNNPIIJNNF BpD!II'IIIINPNF f"!N N~,ppr, ~J r 
BNNNNNNNNr BPNPPNNNNF BN'lJNPPNPNF [)PP'lJolII'lNN;:" 

2"80 BPPNNN"IIIIPF' BNNNPPNPNF BN'lJPPNPPNF' P.PP~DNP\"q;" 

BPI' PPPN'JNF BN'IPPNIIINNF BPPPPPNPNF BNNPNPPP"I, 
2"118 't.lNN~IP'lP?F' B:>4NPPNPPNF BPPNPNIIIP'JF P P P I. III 'IP 0 P F' 

BIIINPPNNNNF 9PPNPNDPPF' BNNPPNNNNF flPIII'JP~WPP> 

$ 
NO 

100 

2~96 BNNPPN'JNNF BPPNNPNIIINF 8PPNNNNPNF 8P'JNr opPp, 
f3P~IPPNN~PF BNPPNPNNNF RPNpNPNNP, ION NN '''P NN IIIF 

2104 BNNPPNfJNDF BPp'JNPPPPF 8 N," PP 'IN NN F' BPPNPNPPP, 
BNNPpN"oNF BPPNPNNPNF 8PPPPPNNPF 8 ~:NF' "'NNNN' 

2112 BPpoPPNPNF BNNPPNNNPF' BPPNNPPPPF 8NNPPN'J'lJNF 
BPP'J"NPPPF' BNNPPNPPNF gPP'J'JPil/NNF BpPPPPNNPI'" 

212r11 9~J NP P'J IIJN "JF 8 PP PPPNPNF 8N NP PN pp N, B PP Np NNN~ F 
BPP'.JNPppoF BIIJNPPIIJNNNF 9PPNPNPPPF 8~INP"'jPPN" 

2128 BPPNNPNPNF SPPPPPIIJIIIPF' ~NNPPNNNNF 8PPPPPi~pNF 

BNPNNNPNNF BPNNNPNPNF BNNN"PNN~F BPPPNNPPPF 
2136 BNNPPN'I'JPF BPPNPPPPP, I3NNPPPPPNF' BNNN:>NNNPF' 

B"JNNNPPP~F BtJNNNNNNNF !'lPPNPNNNPF BPPNNNr~pDF' 

:?144 eN 'IN PN NP .~, BPP'JPPNIIJNF' 8PPN:-JN PN NF 8'IN NPNN P'I F 
~PPPNIIJPPPF BNNPNNNNPF BPPPPPPNt-JF BPPP'!.'NN~F 

2152 B~JNPNPNP?F 9PPNNNNNPF 'PNNNPNNPNF BPPN'IPiJNN' 
BPPIIINNNPNF" B NN'IPr-;NPNF' Bpp"JPN NNNF" B NNPP NN NP F 

216111 BNNPPNNt>/PF B PP NN NN NP F BPNNPNPP PI'" 8 PPNNPN NN' 
8NNPPNNNIIJF" 8PPNN~NPNF gPNNpPPPP, 8PPNPNNrJNF 

2168 BNPIIINN,,'JNF gPNNNNNPPF 8N'JNNPNNN' (lNNPPNNNP, 
B PP N,., NNNP, 8P NN NN PPPF BPPNNPNNN, BNNPPNNN NF" 

2664 BNPNPNPNNF BNNNNPPNP, BllltJNNPNPNF' BNNNNPNPNF' 
8N:-JNNNPPNF BNNN"JNNNPF BNPNPNPNpF p,'NPIIIPPPNF 

2672 I3NNNNP"J PPF BNIIIPPNPPNF 8PPF'PNPNNF !3NNPPPPPNF 
BNNNNIIINNPF BNNPP~NNNF BNNF'pPPPNF 8NNN"INNNN, 

2680 9NNNNNPPNF BPPPNPNNNF 8NNNPNpPNF' BNNNNNNPPF" 
BNIIJPNPPPNF" BNNNNPNPPF BNNPPNPpN' pPPPP"JPNNF" 

2688 BPNNPIIIPPP, BNNPPN"JNNF BpPN'JP'JNNF BF'PNN"JNPN, 
BP"JNPPPPPF 8NPPNNNNNF ANNPIIIPNNN, ANNNNPNPPF" 

2696 B NN PP NP PN, BP PN NP NN N, ANNPPPPf'Nr BN NN NN PNPF' 
BNtJPPN'I~NF' BNNPPPP!> NF' 8N"JNNNNNlllr BNNPPNPPNF 

27"4 gPPPPNPIIINF" BPPNNPPPPF ANNPPNNNNF" ePPNPNPPP, 
8'1~JPPNPp'~F apPNNPNPNF BPPPPpNNP, BNNPPNNNi\r, 

2712 8PPPPPNP~F' BNPNNNPPNF BNP\jPNPPPr:- BN'INIIIPf,JNN, 
9PPI\JNNNNPF BNNNPNPNNF BN'J'IINNNNPF 8P PNNPNNNF 

2720 BPPNNNNPIIJF BNNNPPPNNF BNNNNNNNNF' BPNPPNNIIIP.F' 
B"JPNNPNNN, BF'PNPIIINPNF 8NNNNPNPNF' BNNPpNoPNF 

2728 8p PNNPNN"IF BNNPPPPPNF 9PPPPPNPNF' BNNPPNNNNI'" 
8~H,!Ppo"P~F '3NNNNNNNNF BNNPPNPPNF 3P PP P"JPN N, 

;>736 8pPNNPPPPF B'lNPPNNNNF" BPPNPIIIPPPF RNIIIPPNPPNF 
gPPNNPNP'!F BPPPPPNNPF QNNPPNNNN' 9P PPP PNPN, 

2744 BNPNNNPPNF' BNPNPNPPPF BNNNNPNNNF' BpPNNNNNPF' 
BNNNPNP"JN, BNNNNNNIIIP, BPPNNPNNNF" 8PPNNNNPNF' 

2752 '3 'J'I'!PPPNN, 8NNNNIIINNNF RPNPPNNNPF' Bt4PNNPNNNF' 
8 PP"JNPPPPF BN NNNP NPIII, B"JNNNPPPIIJF 8P PPPPNNPF 

2760 BNNNDNPPNF' BNNNNP NNPF BIIJNNPPPPNF QNPPPN'Jprr: 
B"IoNN'JPPNr >lPPPPPNPPF 8'JNNNPNNN' BNPNNNPNNI'" 

2768 9PPPI\JNNIIINF BNNNNPNPNF BNP"It,jt.lPNNF' eppNPNPPPF' 
BIIINNNPNPN, ANNNNPPNP, BNNNNPNPNF' 8NNNNF'PPNF' 

2776 BPP"JPNPNPF BNNNPr-;PPNF 'lNN"INPNPNF RNNNppPPNF 
B'JNN"JNNPNF BNPN NNPPNF 8 P PPPPNPP, 9NNN'IPNN'JF' 

2784 B"mp~JPpp'J, BNNNNPNPPF" BN",PPNPPNF BPPPPNPNIIIF 
I3P~NNPPPP, 8111NPPNNNNF BPPNPNPPP, BNNPP"JPP"Jr 

2792 BP p"J PP p,~ NF' BPPPPPNNPF 8NNPPNIIINNF BPPPPPNPNF' 
BNNPP'IPPNF BPPNPPPPPF BN'JPPPPPNF 8NNNNPNDNF 

281110 BNNNNPPPIIIF BNNNNt.lPPNF' '3NIIINPPPPNF' BNNNNNNtH'" 
BNPNNNPP,~F BIII"'PPNNNPF B!lJNNNPNNPF 8N NPN ?PPNF 

280~ BN'INNPNPPF B"JNPPNPPNF BPPPPNPNi,F Bf'PNt,;OPPP, 
8"'·JPPIIIIIINN' BppNPNPPPF 811J"NNNPPNF BNN"iNNNpoF 

2816 B~INNNPNNN, BNNPNPPPNI' BNNNNPNPPF' BNNPPNPPNF' 
BPPNPPPNNF 8PPPPPNNNF BNNPPNNNNF' BNNpPPPPNF 

28:?4 8~JIIJNNIIJIIINNF S"JNPPN?pNF' BPPNPPPPPF' BNNPPPPPNI' 
A"Jr,NNPNPIIIF BIIINNNPPPNF BNNNNNPPIII' BNNNPPPPN, 

2832 BIIWt-.JNNNNP, BNPNNNPPNF BNNPPNNNP, BNNNNPNIIIPr 
Bt'''·JPNPPPNF BNNNNPNPPF BNNPPNPPNF gPPPPNPNNF 

2840 BPPNN'JPPPF 8NNPPNNNNF BPPNPNPPPF BNNNNNPNNF 
BNNNNNNNPF BPPNNPNNNF' BPPNNNNPNF' 8NNNNPPNNF' 

2648 B'INNNNNNNF BNNPPNNNPF BPPPPPNNF'F' BNNf'PNNNNF" 
BPpppPN~mF BNPNNNPNNF' BNPPPPNNNF BNN"JNpNPNF 

2856 B"JNNNNN'INF" 

PROGRAH ERRORS 



INTEL CORPORATION 
3065 Bowers Avenue 
Santa Clara, California 95051 
(408) 246-7501 

intel 
MCS TECHNICAL MEMORANDUM 

A GUIDE TO P~/M PROGRAMMING 

15 March 19.~'" 

This MCS Tecbnical Memorandum provides replacement 
pages for the following MeS.manual: A Guide to PL/M 
Programming. 

The changed pages document the availability or PL/M 
Version 3.0. Note that prior to Version a.O some 
features of the language and the compiler are either 
not implemented in full or are not available. 

Pages to be replaced or added are: 
47 - 48 

54, 58 

65 - 67 

95 - 102 

File this memo at the back of the manual to provide 
a record of changes. 

HCS 108-0774-1 K 



~2t 

no 

UI 

ala 

U~ 

au 

us 
U' 
ai7 
IU 

U' 

ItO 

141 

INYALID USE or BUILT-IN FUNCTION I~ AN ASSIG~M'NI. 

.ASS-2 CO"PJLE_ ERROR. INYALID YARIAILt 'PECISI~ CNOl 
II~GLE ~ITE OR DOUHLE BYTE), MAl It out TO 'R£VIOU. "~'URI 

LABtL RESOLUTION ERROR IN PASS-2 C~AY ME Cu~'lLE' t'RO',. 

~Sl"E AI 101), 

~1l"'E AS 11 J). 

INYALID PROGRAM TRANsrER (ONLY CO~PUTED JUM'S lRC aLLOWED 
IlilTH A ·'0 TO'). 

~SlIiE as U4). 

ERROR IN BUILT-IN FUNCTION CALL. 

~NOT ustO) 

~SA"E AS SO'l), 

tRROR 1~ CHANGING VARIABLE TO ADDRESS RErE~E~Ct. MAY 
ME A PASS-2 COMPILER E~ROR, UR MAY 8E CAUSED BY •• ,
YOUS ERROR, 

'''AME AS 107). 

INVALID ORICIN, CODE HAS ALREAD1 BtEN GE~£P'TLD IN IH' 
sP~ClfIED LCCAtIONS. 

A SYMBOL TAeLE DUMP HAS BEEN SPECIFIED 'USIN~ IHE ,MtMORr 
IOGGLE IN PlSS-l), BUT NO FILE HAS BEEN SPLClrlED 10 RE
CEIYE IHE 8~PF TAPE 'USE THE ,BN'F_N CO~TROL). 

INVALID rORMAT rOR THE SIMULATOR IIMBOL IASLI DUMP caEC 
UROR 111), 1.. STACK NOT EMPTY At END OF COMPILATION, POSsIBLY ClUIED 
81 PRE\IOUS COMPILATIOH ERROR. 

1.41 PROCEDURES t:t;StED TOO DEEPLY OIL OPtlMlZATIOh) 
SI~PLIrl HESTIhG, OR ~E.COMPIL' ~ltN LAPGER PStACK 

'46 PROC£DU~E OPTIMIZATION aUCI( UNDEJIFLOIi. MU" A 
~EtURN l~ UUIER ~LOCK. 

1.7 RESTARt LOCAtIONS rOR sueSCPIPt A~D BASED VARIAILE 
SUBROUT!hES OVERLAP ~CHECK '1 tMROUGH ,7 PA~AMtl'JI) 

Figure IV~7. (Con't) 

~65 



SWitCh Name -------
10 • n 

11 • n 
thru 

.7 • n 

,ANALYZE • n 

'SINARY = n 

'COUNT • n 

IDELETE • n 

$EOr 

U.e _________ r ________________________ • ____________________ ---------

Control. branCh to Itartln; location it 
any restart to;;le I, Ipecitled ell thru ") 

If n I. ;reater than 1, Inl1ne COdl 1. 
generated for addre •• computation. If n 
II between 0 and 1, a reltart .ubroutlne 
Will be emitted In reltart location n, 
and Inllne code In the pro;ram will be 
replaced by re.tart Inltructlon, e.ee 
lectlon V.4). 

Print a trace of the re;l.ter alloca
tlon Itack If n • 1. InclUde alll;ned 
re;llterl 11 n • 2. 

Do not write a object tape If n • O. Other
Wile, write a Object tape to file n (lee 
PL/M tile numberln;), The Object tape format 
11 determined by the letting of SQUICKDUMP. 

(same al Pasl 1) 

(same al Pall 1) 

e same al Pasl 1) 

o 

8 

o 

o 

,FINISH Print a decoded dump of the ;enerated . 0 
maChine Code at the end of Pasl 2, 

SGENERATE = nPrlnt a cross reference of source line 0 
nU~ber' versel machine Code locations 
If n • 1, If n • 2, print a trace Of 
the Inter~edlate lan;uage al It Is read, 
ai well, 

SHEADER • n Start maChine eode generation at location 0 
n When producing code dump or Object tape. 

SINPUT = n (Same a. PaSI 1) 

8LErTMARGIN • n (Same as Pasl 1) 

,MAP Print a memory map show1n9 symbol numbers o 
and address assignments at the end of Pas. 2. 

SOUTPUT = n (Same asPasl 1) 

66 



SPRINT (Same al Pa.1 1) 

,QUICKDUMP • n If n • 0, the object tape formlt w11~ 
be BNPr. If n • 1, the object tape format 
will be hexldeclmal, w1th 16 by tel per record. 
It n II 9reater than 1, tne Object tape w111 
hexldeclmal with n by tel per record. 

IRIGHTMARGIN-n (Same II Pa •• 1) 

ITERMINAL (Same II Pasl 1) 

,VARIABLES • n Tbe first pa;e of random-acceSI memory ~RAM) 
11 pa;. n (numberin; 0, 1, •• , , 61), 

.wIDTH • n (Same II Pasl 1) 

8- • n If n • 0, code 11 produced for the BOOe 
(500KHZ clock), If n = 1, code 1. produced 
for the 8008-1 f800KHz clOCk), 

Figure Iv-e, PLM2 "t" complier switches, 

PASS-2 

$generate =1 (cross reference line numbers and locations in code) 
$bnpf = 6 (write bnpf tape to internal file number 6) 

12=0003H 
19"'0067H 
2S"'0089H 
3S"'OOE6H 

13=OOOEH 
20=006DH 
26=008AH 

15=0011H 
21"'0071H 
29=009CH 

16=OOlEH 
22=0077H 
32=OOA5H 

17=0026H 
23=0084H 
33=OOBEH 

18=0043H 
24=0087H 
34=OOEIH 

Figure IV-g. Sample output from PLM2 corresponding to the 
INDEX procedure. 



SUPPole, for example, a progr~mmer codel three 
sUbroutines 1n allembly lanqua;e for handling teletype 1/0, 
Tne lubroutlne 51 sends a llne-feed.carrla;e-return, and 11 
found at location 50 In memory. Tne subroutine S2 writel a 
sln;le character at the teletype and returns, ASlume 5i 
assembles startln; at location 75. The lubroutlne 53 readl 
one character from the teletype, and 11 located between 
addressel 120 and 150 In memory. The following PL/M program 
then proviaes Interface procedurel for these assemblY 
language sUbroutlnes. 

150lDECLARE CRLFS LITERALLY '50', 
TTYOUTS LIT~RALLY '75', 
TTYINS LITERALLY '120', 

CRLF. PROCEDURE, 
GO TO CRLFS, 
END CRLF, 

TTYOUTI PROCEDURE (CHAR), 
DECLARE CHAR BYTE, 
GO TO TTYOUTS, 
END TTYOUT, 

TTYINI PROCEDURE BYTE, 
GO TO TTYINS, 
END TTYIN, 

The CRLF, TTYOUT, and TTYIN procedures can then be called 
In the same manner al any Internally-defined procedure. 

If the assembly language subroutines are not fully 
Cheeked-out and thus are undergoing revisions, it may be 
worthwhile conltructinq a "lump vector" at the beglnnln; of 
memory. The ,ump vector contalns jump Instructions to 
addresses of the currently assembied sUbrotlnes 81 throuqh 
Sn 1n lower memory. The corresponding PL/M interface 
procedures then branCh Indirectly thrOugh this lump vector. 
If the sUbroutines are reassembled at different locations, 
onlY the jump vector need be Changed, Since It 11 not 
neceslary to recompile the PL/M program. 

As a final note, the programmer 11 reminded that 
Q~sembly language subroutines should be used only when 
absolutely necessary, ChanQes to the PL/M system for future 
machine architecture w1ll necessitate Changes 1n sUbroutine 
conventions, result in; In 105S of upward software 
compatib1lity in 811 proqrams which depend upon these 
conventions. 

4, PL/M Restart Funct10ns 
.... ---- ---. .. -------

The s1ze of PL/M proqra~s wh1ch make extensive use of 
based or sUbscripted varlable~ may be sign1flcantly reduced 
bV permitting the compiler to use the 8008 restarts, The 

95 



compiler Wll1 then emit Ihort 'subrout1nel' 1n tne selected 
reltart locationl and lubstitute restart lnstructionl for 
Inllne code in the body of the PL/M program, seven restart 
IUbroutlnes are provided to handle varloul PL/M sUblcript 
and based varlable conltructs, Any combination of these 
seven avallable reltart IUbroutinel may be speclfled prlor 
to Itartln; pasl 2, by enter in; tne corresponding control 
tog;lel and restart numbers to be used, PL/M construct. 
and the assoclated control toggles are glven ln flgure V-4. 
Tne tog;les Uled Should be selected on tne balll of 
occurence of thele construct. in the user's PL/M program. 
'igure Y-4 11stl typical code reduct1on, ln by tel, for each 
Use of each reltart, 

In general, all but the most trivial programl will 
benefIt from the us. of the restart subroutinel, The 
restartl required for tne constructs of f1gure Y-4 arel 

1) Based scalar varlables require only control 
toggle 1. 

2) Byte vectorl with byte IUbscrlpts requlre 
control to;;lel 2 and 5, 

3) Address vectors require control togglel 2 and 
6, and in addlt1on, 3 it byte SUbscripted 
and 4 lf address subscr1pted, 

4) SUbscripted based variables require control. 
toggles 2 and 7. 

The default value of all the restart toggles 11 eloht, 
Indlcatlng that neither the restart SUbroutine nor restart 
lnstructlons wlll be produced. Setting a tOggle to a vaiue 
n between 0 and 7 selects the restart option, and forces the 
restart subroutine to be emltted at locations 8*n through 
8*n+7, 

The starting location of the user program will be that 
follow1ng the hlghest restart locatlons used, for example, 

wlll reSult in a startln; location of 40 tor the user 
program (subroutlne 2 occupies locatlon. 32 (8*4) thrOUgh 
39 (8*4+7». 

A program's starting address may be altered by setting 
tne $HEADER control t09g1e, or by spec1f1ng an or1qln 
in the source code, Progam or1q1nl are not permitted which 
would or19ln the PL/M proqram at or below the lalt location 
used for the restart sUbroutines, 

96 



If any of t~e restart tog9l's are .elected, t~. 
compiler W111 includt a branc~ to t~e s,artlng location of 
the program ln location 0 t~roug~ 2. ThUI, a r.start 0 .ay 
be u.ed to Itart or restart t~e us.r program. Generation 
Of t~e branc~ at location 0 Is controlled by the control 
to;;le O. Th. default value of t~ls tog;lt IS 0, w~lc~ 
forcel t~e normal branc~ to the PL/M pro;ram~s starting 
location. If t~e to;glt Is set to 1, no branc~ .111 be 
produced. Settln9 t~t to;gle to a value n greater than 1 
will force a branch at location 0 to t~e absolute addreis n. 

Users of the Intellec 8 Should be a.are that the 
~onltor ules location' 3 t~rou;~ 15 for all commands other 
than ·READ·, If a restart tog;le Is .et to ·1·, the 
restart IUbroutlne will be occupy locations 8 t~rough IS, 
The program may be loaded using the monltor, but it may 
be started onlY by us. of the relet Iwltch to force a 
restart 0, -

Control Code PL/M 
Toggle Reduction Conltruct 
---- -----.... - -------

.1 • scalar based varlablel, 
SUbscripted based varlable. 
When ., II not selected 

e2 1 Complex expreillons Involving 
I IUbscrlpted variable and 
elther a procedure call Of another 
subscripted variable (may be called 
prior to calling restart 5, 6, or " 

83 3-. Address vectors with byte SUbscripts 

8. 3-. Addresl vectors wlt~ addres. SUbscripts 
1-2 Addres, vectors With oyte sUb.cripts 

when 83 I. not selected 

.5 3-. Byte vectors with byte IUblcrlpts 

.6 3-4 All address vectors 
1-2 All byte vectors 

e, 7-8 All baled IUb.cripted variablel 

, 
. Figure V-4, PL/M restart toggles and alsoclated constructs 

'7 



00001 1 
OOOOl 1 
0000] 1 
00004 1 
OOOO~ 1 
000011 :2 
001107 2 
00008 :2 
00009 2 
00010 1 
00011 :2 
00012 2 
0001l 1 
00014 1 
0001!! :2 
OOOU :2 
00017 :2 
00018 :2 
U0019 :2 
00020 2 
00021 l 
OOU2.l 1 
'0021 3 
00024 2 
0002!! :2 
00026 :2 
00027 2 
00028 1 
00029 1 
000]0 2 
oooll 2 
OOOll 2 
OOOll 2 
OOOH 1 
ooon 2 
000]11 1 
000]7 1 
000111 :2 
00039 2 
00040 2 
00041 :2 
0004;/ 2 
ooou 1 
00044 1 
00045 1 
OOC4/> ) 
00047 3 
00048 ] 
00049 2 
00050 2 
00051 1 
0005Z 1 
0005] 1 
00054 1 
.!)O"!!'~.~ 1 
00056 1 
00057 1 
00058 1 
00059 1 
00060 1 
00U61 1 
00062 1 
0006J 2 
00064 1 
0006~ 3 
00066 3 
001167 1 
00068 2 
00069 2 
00010 :2 
00071 1 
00072 1 
00073 1 
NO PROGRAM 

Appendix A 

A Sample Program in PL/M 

Souree Lilting 

2041, 1* IS fHE ORIGIN or THIS PROGRAM *1 
DECLARE TTO LITtRALLY "2', CR LITERALLY '15Q', Lr LITERALLY 'OlH', 

TRUE LITERALLY '1',·rALSE LITtRALLY '0', 
SQUARE.ROOTI PROCtDURE,XJ IYT~' 

DECLARE (X,Y.Z) ADORESI, 
Y • XI % • 5HR(X.l.1). 

DO WHILE Y 0 %, 
Y • Z, % • SHRlX/Y • I • 1, .), 
tHO, 

RtTURN Y, 
END SQUAFiEROOII 

PRINT.CHARI PPOCEDUNt (CHAR), 
DECLARE SIT.CELL LItERALLI 'tl', 

(CHAR,I) lIYTEI 
OUTPUT ,TTO) • 0, 
CALL TIME ,BIT.CELL)I 

DO I • a TO 7, 
OUTPUT(ITO) • CHAR' 1* DATA PULSES ., 
CHAR. ROR(CHAR,I)1 
CALL TI~E(BIT'CELL), 
thO, 

OUTPUI (TTO) • 11 
CALL TIME CBITSCELL'IITC!LL), 
1* AUTOKAIIC REIURN IS Glh£RAtED ., 
END PI"-INT5CllARI 

PRINTISTRl~GI PROCEDURLCNAME,LEHCIH), 
OECLAKE NAME AO~RlSS. 

(LEhCTH,l,CHAR 6ASEO HAMr.) IYTE, 
DO 1 • a TO LENGTH. II 
CALL PPINTSCHAP(CHAR(I)', 
Uti, 

E~O·PRlhT'STPINGI 

PR!HT'hU~eERI PPOCEOURECNU~bER,IASE,CHARS.ZtRO'SUPPRE5S)f 
OlCLA~E hUVlIER AtlORESS, (8ASE,CHAkS,ZEPOaSUPPRESS.l,J) liTE' 
DtCLARr tE~P (16) eYTEp 
If CHAPS ) LAST(TE~P) THEh CHARS. LASleTEMp), 

DO I • 1 TO CHARS, 
J • NU~BER HOD BASE. '0', 
If J ) "9' THEN J • J • " 
If ZEROaSUPPPESS AND 1 C) 1 AND NUMBER • 0 TH'" 

J • • 'I 
TE~P(LEhGTH(TE~P).I) • J. 
hU~oER • hUhBlR 1 lASE, 
END I 

CALL PRINT'STRINGt.TEMP • LENGTH(fEMP) • CHARI, CHA~a), 
END PRlhlJhUHSER, . 

DECLARE 1 ADOPESS, 
CkLr LIIEPALLY ·CR.Lr', 
HEADING DATA tCRLf,Lr,Lr, 
, TAILE or ,QUAP£ MOOTS·, CRLr,Lr • 
.. VALUE ROUT VALUE 1I00T VALUE 1I00T VALUE 1iI0DT VALliE 1I0or·. 
CRLf ,Ln, 
1* SILE~C£ TTY AND PRINT COMPutED VALUES ., 
OUTPUT(110) • 11 . 
DO I • 1 TO 10001 
If 1 MOD ~ • 1 THEN 

DO. If I HO~ 250 • 1 THEN 
CALL PRIHT$STRIHGC,HEAOING,LEHCTH(HEADING), 

ELSE . . 
CALL PRINISIPINGC,CCR,Lr,,2), 

END. 
CALL PRINTlNUHE'EIICl.10.6.1RUE /. TRUE SUPPPUS!S LUi)UIIG zuau -", 
CALL PP1NTGNUMBER(SQUAREI~00T(I). 10,6, TRUt" 
END, . 

DECLARE MONITOR$USES ~10) IYT~J 
Eor 
tRROn 

98 



--
500083 HONlTORUIEI 
6000llZ 6 
50007' 250 
50U076 5 
100074 1000 
S~0072 ' VALUE ROOt VALUE ROOt YALUE ROOT YALUI ROOf YALUE ftOII, 
500071 • tADLE or GGUARI .Olt., 
500070 OA 
5000U IS 
10UOIII HEADlfIG 
1000 .. 1 
1000115 ' • 
5000llZ '9' 
100061 '0' 
100057 Ttl'P 
100056 J 
IOU055 1 
lOUO~) ZERUIUPPREII 
1000~2 CHARS 
S00051 SASE 
500050 NUtiSER 
500049 PRIhTNUMIER 
S00046 CHAi< 
SOU045 1 
sooon LENGTH 
soo042 NAJolt. 
500041 PRINTITRING 
SOOOJ9 '7 
5000J7 91 
100016 0 
sou035 2 
SOUOH I 
500012 ChAR 
500011 PRINtCHAR 
500028 1 
S00027 Z 
5000:16 Y 
500024 X 
SOU023 SQUAPI:.ROOT 
SOOOl2 20" 
5000;,0 DOU8Lt 
500019 MUV~ 
500018 LAst 
SOOOi7 LENGf .. 
500016 OUTPut 
500015 IhPUT 
sooou LOll 
SOOOll HIGH 
$00012 Tl'" 
500011 SCR 
100010 SCI. 
500009 SHit 
500001 SHL 
S00007 ROR 
SOOo06 RUt. 
S00005 lolEJolORY 
$00004 PAPIn 
500001 SIGN 
500002 Zl::PC 
500001 CARRY 

99 



Sourcp. Lin. Nu~t.r - Cod. Location Croll ~.ftr.nc. 

---~ --- - - --~ ----
2-09~0" .-0'0)" 

II-OiA'" 12-0IA'" 
21-08CCII 22-01D1H 
i'-oa'IH 2B-Oa'2" 
)6-0922" 3'-O'2lH 
4l-o'5'H 44-09.2K 
49-09&£H 51-09~EII 

100068 0252' 115 
. ODH OAH OAK OAII 2011 
2011 20H 20H 20H 2011 2011 
4611 2011 53h 51H 5511 41H 
5611 4111 4CH 5511 4511 2011 
2011 52H 4'H 4rH 54H 2011 
5611 41" 4CII 5511 45H 20~ 
2011 52H 4FII 4fH 54H OD~ 

60z 0A5211 61-0A55H 
6l-0A8A" '5-0AA'K 

100086 ~2'4. 2 
0011 OAII 

6'-OABAII .I-OAC)II 
'O-OA'III '1-080)11 

'_OBOAII 
16-01BU 
23-0.D2H 
lO_OMfliH 
18&092AII 
.s-09U" 
52-09DFH 

2011 20" 20H 
20H 2011 2011 
!l211 .5H 2011 
201t 52H .FII 
56it 41H .CH 
2011 5211 UII 
OAH OAH 
n-OA5EII 
"aOAB5H 

.,_OADIH 

Variable Addr ••• IIIP 

a-OUDIt 
18-0',," 
2 .. otE18 
UaO,'1;1I 
.0-OUtll 
•• -O,.Cd 

,_OUIM 
1,-oorH: 
naDBRH 
U-O'04H 
.. -nUll 
.honCH 

20H 2011 2011 20/1 
:"011 10. It It II 4111 
!12M "111 "'" 54H UH 54" 2,H 56H 
55H tSH 20H 20H 
.FH 54,. aOH IIH 

to-OnDH 
20 ... C:IH 

a.-'U'" ) .. 09UII 
4;1.,94211 .... '_'" 

2011 2011 2011 2011 
.CII 45H 20M .". 
til" 'AM OAM 2011 
4tH 1511 4511 20K 
4'" .n UH 2011 
.CII 5511 4511 20,! 

soooei OO!CCH 
500005 DOC 0011 
SOOOll OIlBO.~ 
sooon 008DAii 
1000~2 008!:;C~ 
50005' CO!!!:;." 
500085 008C8H 

S00002 0014CUH 
500021 OOlltlOH 
SOOO)2 00806H 
S00045 OOSDaH 
500051 001lE1H 
500066 OOB'.H 

SOOOOl OOBCEII '00004 OOBCfH 
SOOOH OOBI)OH 100026 00llD2H 
SOOO). OOaD'" 1000.Z 00~D811 
500050 OOa~c" 'OO~51 00110'11 
500055 00~211 140056 ODIE)" 
sooon 001f.,. 1000" OO_UH 

----.--~ 

080011 JIIP,52H,OAH LIIl,OllH LLI,DOH LMS IhL LMC DCL LMM I~L LCM INL LHI 
OHtOH IhL LHC LLI,DOH LAM INL LCM AOl,Ollt LdA LAC ACI,OO" O~A ~A~ LCA 
OM20H LAB ~A~ LLI,D4H L~A INL LMC LHI,08" LLI,DaK LA~ INL LC~ IhL SUM 
083011 IHL L8A LAC SbM OR8 JTZ,A9H,0811 DCL LIM JNL LCN LLI,DZM LHI INL 
0840H LHC DCL LbH IhL LCH LLI,Calt Lila INL LItC LLl,DOM UM JIlL LCN LLI 
08~OM,CAH LMB I~L LHC JHP,8AIt,08H LL~ DCL LUM L~I,II~ LBl,OoH LCI LAD 
01l60H JIlL LOA LAE I'AL LEM DCE LME LEA lin 1.411 'AL LBA UC UL LCA DCL 
0810H DCL LAB SUM L!!A INL LAC SSM LCA JfC,'JM,OIN DCL LAB .8M LIA IHL 
oa80M LAC ACM LCA IhL S~A 581,IOH JMP,5fH,0,H CAL,5,~,oa~ LAD LLI,DZM 
O~9011 ADM IhL LUA LAE AC~ LEA LAD ADI,Ol" L~A ~AE ACI,'OM O«A PAil LEA 
081011 LAD IIAII lloL L~A INL L:4E JMP,27H,08H LLl,Il"2H LA" I"L LCtlnT LIII 
08BOII,08H LLI,D6M L~B XRA 01~ Lil,58H Dca JIZ,BfM,OiW JMP,BIH,O'M IhL 
08COII LNI,OO" LAI,07M LHl,06H LLI,e711 SUM JIC,EZH,.811 DCL LAM 010 LAM 
08DOII RRe: LilA LBl,~bH DCB Jtz,DllH,OIH JMP,D.II,t8H JilL LIM INB LMI JFZ 
OBEOH,caN,OHH LAI,OlH 010 LAI,$SH ADI,58H LtA ~. JIZ"I",OB" JM"EA" 
01l'0",08H RET Llil,oSH LLI,DIIK Lila I~ LM.C I.", "KD IIIL LMl,Otfl "HI,OI" 
0900H LLI,DAH LSI! DC8 LAB INL SUM JTC,22M,.,'1I LA" LLI,CIH aDM IlL LBA 
0910H L.I,OOH ACM LL~ LHA LAM L8A CAL,A'H,O~H ~LI,Oll" LIM INI LIIB JFZ 
092UH,FEM,08H P~T LIII,OB" LLI,EOH~lId I~L L~D ~Al,O'" peL SU~ J'C,JJH 
091uH,09H LHI,orll LLI,tlH L~l,OlM L~I,08H LLI,EVK LA~ LLI,E." aUN JtC 
QUOM,C6H.09H LLI,Dt'/I Lf>M LLI.C8H LI>lB IIiL L"I.~OM LU,DC" Lit!! IhL LeI! 
(l95(1M LU,CAIt tll.8 INL tHC CAL.57H,Olli UI AUI,)OK lit, L~ ,<:1,00" LLI 
09601i,ElI! Lt<8 LAI,UM SUI! JFC,6CM,09" LA." AD1.q'K LiliA eC:-L Lilt DCI LAl 
09101l,HII JFZ,7511,09H Xi<A DCL r;UM LLI,DeH LdA LAM l!iL LDM SUI,OOH LCA 
OV80H LAD .II,OOH ORC S~I,OIM S~A "D8 PRC JrC,901l,09H LLI,ESH LMI,2011 
0990H LAI,IOK LU,E2H SUI! LLI,U" AOL LIlA L~-=I,OOM DCL ~M LLB LItA 
OUOH LHD LKI,OBH LLI,D'M LBM LLI,Ci" LIIB INL LI!I,OOI LLI,OCM LIM UL 
0980H LCM LLI,CAH LM8 INL LMC CAL,57H,0IN LLI,RCH LMD JIlL LME S.LJ,UH 
oyeOIi L.BM IoN8 L~'B "rz,31H,09" LU,U" LCN LAL 101,IOH UA LAC lCI,OOH 
090011 I.CA LAB LU,EOH SUM L8A LAC SBl,OOH LUM LCA ColL,nll,O'" ~ET 
OliO'" UD" OAK OAH OAII 2011 20M 20H 20M 20M 2~H JOlt aOIl 20M 20K aOH 20" 
OVErH 2011 20" 20" 20M 201t 20M 20H 20" 20.)120,. 3;oH 20" 5. nH UH 4C" 
09"K ISH aOR .rH 4611 20N 53H 51H 5511 .IH 51~ t'" 20" 52" .'H .rH 5.H 
OAO,II 5l" DOH OAH OAII 2011 56M .1N 4C" 5!11i UM 2011 20" 12K UH UK 54" 
OAI'H aOH 5.11 .IH 4CH 55H .511 2011 2011 saM 4rK 4'K 54M 20M 56" .1H .CH 
OAU.H 55)! 45K 20.H 2011 5211 .FH UH 5411 20tl SoAM .," .CH UK UH 20" 20K 
OAl,H 52K .FH U" 5411 20H UK .IH 4CM 55H 4&11 aiM 20H ,lIH U" fFH 541t 
OA.rH ODH OAK OAK 

100 



OA~~H 4AI,0IH 010 LHI.OBH LLI,'4H LHI,OIH I~L LAI,OON Lal,E'N LCI,OJN 
OA6lH 4HI,C~H LLI,'4M 'UM I~L LMA LaC SDM JtC,OIH,O~H LLI,C'N LMI,05N 
OA1lH INL LMI.OOh LLI.F.N L~M INL LeM LLI,caK'LA' I_L LAC CAL,17K,O'N 
O.IZH 4AB luI. DIM LbA LAC .BI,OOH O~B JF&,CJH.OAN LLI,CII L~I"aH I.L 
OA9lH 4MI.OOM LLI,F4M LBM I~L LCY. LLJ.CAK LA, INL L~C CAL,I7M,OlM LAI 
OAA2H SUI.01N LeA LAC .BI,OOH O~B JrZ,BAH,OAH L.I,D'N LCI,Ot. LDI,,)j 
OA82H caL,F2H,0IH JMP,CIN,OlH 
GABIIK DOH DAM 
OABAN LIII,lIItH LeI,oaN LDS,UH CAL,UIt,OIN LLI,rtH Lilt IIiL LCM LLI,DCI 
OACAH L~8 lNL LMC LLl,DFH LMI,OAN L8I,O,M LUI,oaM CAL,JaN,O,N LLI,'t. 
OADAH LdM INL LeN CAL,OIN,OIM LLI,DCN LHA I~L LAI,OOIl LLI.D'" Lltl,OAI 
OA£aH L8I,0,H LDI,OIH CaL,JaM,09M LLI,F.N LAIt 'NL LeN ADI,O'" LIA LAC 
OA'AH aCI.OOH ~CL LHI IML LHA JM"SEN,OAN ILl 
NO PROC~AM ~RRO~' 

I 

B~PF otjeet Ta,. 

1 CArCfty 05114 
2 Z[POO 415715 
I IIGN 05716 
• PARITY 05717 
5 NE!'ORY.06000 

21 SQUAREROOT. 04001 
24 X 05HO 
26 Y 05722 
21 Z 05124 
II PAlhtCHAR 0.257 
12 CHA~ 0572. 
l4 I 05127 
.1 PRI~TSTRINC 0.162 
42 NU't; 05UO 
U LENCth 05132 
U 1 C57Jl 
49 PR1NTNUMBER 04441 
50 NUfI.EjoI O!!oU' 
51 BAU 05737 
52 CHAI<5 05140 
5] Z~ROIUPPRLSI 057 •• 
55 I 05742 
56 J 0574] 
57 It. ... P 05744 
66 I 05164 
68 H£ADlhC 04737 
8) MONltORUS~S 05166 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

2U48 6~'NNNPhNF aNP~p~~PNr BNNNhPhPh' IkNPNPPPN' 
~N~NNPNPPF BNNPPhPPN' e~~NPNhhh' epPPPPMN" 

2056 B~~PPNhN~F BPPPPPNPNF MNNPP~hNPF IPPNH'P'" 
BNhPPNhNNr BPP~PhPPPF BhhPPNhNN' IPPPPPNNP' 

2064 bNNP'hNhNF BPP~P'NPNF .~NPPhPPN' I.,PHPHNhh, 
~FPNN~PPPF BNNPPNNN"r BPP~PNPP" BNN~~NPNI' 

2012 IINNrINNNld'F BPP::NF'4f;rc' BPPN"'hNP"" IlItN:'NPFNNF 
BNroNNNNNhF BPNI'PhN"'" ~"'W""PhF"r BPPNp,.N,.,i, 

2010 BPPNNNh"" B"h~PP~PNF MNNPPNPPh' IPP"NPNN' 
BPPPPFNN",F B~HP"NN'''' BPPPPPhFNF Blj"PNPPP'" 

2088 tNNN~PLPpr BNNfPrcPPNF BP~NPNNPhF B"PN~NPPP' 
MNNPP"hNhF BPP~PNPPP' BNNPP"NN'" 8PN""NPP" 

2776 BNNrpf= .. p~r SPPf'hP"NF BP,,.',PfPPF IINNPP/,NNNF 
II'PN'NPPP' IIr.p~!NNPPNt· aNNNN"N"F aNNhN,N",,' 

2184 BN"PPNPPIIF BPPtI'PPNN, B"PPPr>tl!olr IrcNI'P"SN'" 
8NNPPfPPNF B/;t/hIitINNN, BNNP~"PPN' BPPltPPPP" 

2792 tlN"PPPPP/;F BNhhHPNPNF BNNN~PPPN' aloNNNhPP"'" 
MNNNPPPPNr BNNUNNNPF In'PNNNPP"' ehNPtiNhPP' 

2&00 IINN!."P"NPF B~"'~PNPpr;F B"PPPNFNNF BPPN ... NPPn 
~NNPPhNNNr BPPllPtlPPPF Bfo!lINhllPNNF 1r;r;r;t;NNhP' 

2808 8PPNN'hN"r BPPN!;NNPN' alfNhhP,rnf' BNrll.Iok"N"F 
Br;r.p,"hNPr 8PP~PPN:;PF aNNPPNNN"' IP"PP"hh, 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
2_1. StoPNNNPN"F BNPNPPP'"' BMNN"PM'"F epp,pp"" ................................................................................ 

1'01 



• 

------
1 CARRY 05714 
:I ZEPa aSH!. 
l SIGN 05716 
4 PAUTY 05'117 
5 HUIOU 06000 

23 3gUA~~~OOl 04003 
H x 05HO 
l~ Y o~n:2 
41' t 05724 
31 PRlhtCHA~ 044157 
n ChAIl 051:1b 
l4 I 05727 
41 PRINTSTAI~G 0.362 
441 NAI'E; 05730 
43 LENGTr~ 05732 
45 1 0!>7n 
.9 P~INTNUMBlA 04.43 
50-NU,,"bEH 051)4 
51 lUSt. 05737 
52 ChAAS 05HO 
53 ZEPOSUP~PESS 05741 
55 1 05142 
56 J 057U 
57 tEMP 057 .. 
U I 0571>4 
~8 H~lDING O~131 
Il MP~lrO!lUStS 05166 

••••• 4 •••• ~ •••••••••••••••••• •••••••••• 
10C80aDD44520lZEU8l6DOf9l0f131Cfl007l0t986 
10031000jOfAl~DOC7l0D7u40tC8C20cooa01AOOA5 
100e~DuCCI1136D4t8JOfA~EOR)6D2C1JOD7J097E8 
100eJOOOID:gC29f81b~A9~illCrJOD7l602f9l05D 
l0084DDOfAllCflOD7l6C8f9l0fAl600CflOD7J674 
1008~OOOCAf930fA4'8A08~7J1DfJEI10[OOD1CJLD 
1008bD0012DPC412~721fCt02BC112CiC212DO)149 
10~81000jlC197CeJOC29rD040810PllC181C810il 
100B.OOOC2&fD030981C80445rO~46"08Cl)6D2Ca 
1008~OOOij7J006C4~rtOCl040108C40cooa01Al01C 
1008AOOOC3IA3Df8l0f(442708)bD2Cl)OD'O'~E99 
10C8dOOOOBJ606f9A8~50E5B096e~rO&44B808J056 
100BC0003E0006072EoeJ6D79760l208lIC'~5C7A2 
100BDODDU)t80E5B09b@OB08440408l0CFO@t9'Sfl 
I008~OOCC2UPD60IS5065e045fca09bifI0844~~C2 
1009fO~O~S072lGb36oSf910fAJOf8l0J(OO~EUBAD 

110090000360ACf09C13097b02209C7J608~7l0C8y8 
1100910000bOD8frl~PC7C846Ar08J6D~Cfo8t949a4 
11009~OOOfEO.Ol~lOBlblOf9l0fS06Cfl19740Jlf7 
11009JOOOQ91EOF3bl2JEOllEOB)6EOC1J6t297bOE5 
110094000C~09JbDfCflbC8r9303E00360ccrl007A1 
'10095000l~Chf9JOr~'657v8Cl04JOC6'20COOl6~E 
1009bOOO~3f9abJ99740~CD9C70407f811cr090641 
10097000ff4e7509A8l1~7360CC'C7l00r1400009~ 
i009tiOOOC31COOB2140198Al0A409009l6lll£202E 
l009900C06101bE29736E4&6C8C50COOJ1CfrlE870 
1009Aoaorp2EOP36PFcrJ6C8f9l~lEOO)60CCrJOa9 
1009~oaOD7IbCAr930rA46S70836PCf~lOtClbl241 
1009COOOCF09~948J709l6E4DSC60410C8C20CU07C 
1009DOOODD:1J~1097C8C2ICOODr0046t2D80700JO 
l009~OOOOAOAO~2020~0202~2~20202C2020202049 
1009f0002a2D20202020202~102020~441424C'52f 
100A0000204r4~20~351~541524S20S2~f4r545189 
IOOA100000UAO~20~6414C55452020524r4r542074 
100A~0005~'14C~54~2020524F4r)42056414C55bD 
100AJ0004S2020524f4FS42056414C)S452020S2&E 
I00140004f4f~~2056414C~5452020524r4r540Di6 
iOOASOOOO~OAO~Ol~52EUB36r43(01)03[OOO6E82e 
100A600016012EOSlbf497)OC8C29f60010616C8AE 
IOOA7000J[05ID]EOOl6r4CflOD7l6C~t910fA465C 
100AB0005708C11401CBC21COO~148ClOA16C81E~9 
100A900CfAlOlEOOl6f4cr3CD136CAf910rA4657lE 
100AAOOOOeC114QIC8C21CQOe14&bAOAOEDf1609f9 
IODA50001E734~f20844C]OA00010Eo8160AIE02l1 
100ACOU046f208J6r4CF3001360Cf9JOrAl1>OflE5& 
100AUOOOOAOEO~lE01462l09J6f4CflOD1460)0816 
IOOAE00036UCf810lE0036DflEOAOE061EOl462195 
10CAf0000936f4C7l00704DIC8C20COOllf930f801 
D~080000445EOAfr46 

•••••••• ** •••••••••••••••••••••••••••••• 
10000000000 

• 
102 



intel' 
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 246-7501 

Printed in U.S.A. MCS280.0974.1K 


	A Guide to PL/M Programming
	TABLE OF CONTENTS
	I. INTRODUCTION TO PL/M
	II A TUTORIAL APPROACH TO PL/M
	1. The Organization of a PL/M Program
	2. Basic Constituents of a PL/M Program
	2.1. PL/M Character Set
	2.2. Identifiers and Reserved Words
	2.3. Comments

	3. PL/M Statement Organization
	4. PL/M Data Elements
	4.1. Variable Declarations
	4.2. Byte and Double Byte Constants

	5. Well-Formed Expressions and Assignments
	6. A Simple Example
	7. DO-Groups
	7.1. The DO-WHILE Group
	7.2. The Iterative DO-Group
	7.3. The DO-CASE

	8. Subscripted Variables and the INITIAL Attribute
	8.1. Subscript Declarations and Value References
	8.2. The INITIAL Attribute

	9. A Sorting Program
	10. Procedure Definitions and Procedure Calls
	10.1. Procedure Declarations
	10.2. Procedure Calls

	11. Based Variables
	12. Long Constants
	13. Scope of Variables
	14. Statement Labels and GO TO's
	14.1. Label Names
	14.2. GO TO Statements
	14.3. Scope of Labels

	15. Compile-Time Macro Processing
	16. Predeclared Variables and Procedures
	16.1. Condition Code Variables
	16.2. The MEMORY Vector
	16.3. The TIME Procedure
	16.4. Type Transfer Functions
	16.5. Bit Manipulation Procedures
	16.6. I/O Processing


	III. THE FORMAL DEFINITION OF PL/M
	IV. COMPILING AND DEBUGGING PL/M PROGRAMS
	1. PLM1 Operating Procedures
	2. PLM2 Operating Procedures
	3. Program Check-Out
	4. Implementation-Dependent Operating Procedures

	V. PL/M RUN-TIME CONVENTIONS FOR THE 8008 CPU
	1. Storage Allocation
	2. Subroutine Linkage Conventions
	3. Use of Assembler Language Subroutines with PL/M

	Appendix A. A sample Program in PL/M
	REPLACEMENT PAGES
	Additional Error codes
	Additional Switch Information
	4. PL/M Restart Functions
	Appendix A. A sample Program in PL/M




