ARTICLE AR-17

REPRINT

What can you do
with a microprocessor?

Here is how you can take $50 worth of microprocessor parts
and control a real-world electro-mechanical system.

Robert H. Cushman, Special Features Editor

By now you are probably sick and tired of hearing
all these endless, vague claims about how the
microprocessor will replace all TTL and CMOS
SSI and MSI circuits and make you, the digital
system designer, obsolete in the process. You've
had your fill of our dissertations on the architec-
tures of these uP’s and how they condense
roomfuls of 1960-vintage computers and rackfuls
of 1970-vintage mini-computers into a handful of
DIP’s.

You say, “Just give me one quick, simple and
to-the-point example of how a microprocessor
can replace TTL in the small systems | am
designing—systems where the end products sell
for no more than a thousand dollars or so. Tell me
how | can get in the pP act.”

We have a double-barreled answer for you:
Intel’s little MCS-4 P, and Matt Biewer of
Pro-Log Corp., Monterey, Calif. Together, they
are the basis for the common-sense application
example that follows—where a pP replaces the
discrete circuitry that normally operates a paper-
tape reader.

Our choice of the MCS-4 was because it's one
of the very few microprocessors whose parts are
actually on distributors” shelves. (We know be-
cause we've called them.) Further, the MCS-4 is

priced so low that it can do the example for $50,
which is roughly equivalent to the cost of
commercial TTL cards for tape readers. The
MCS-4, of course, can do much more than the
example. In the real application it comes from,
this is just a minor subroutine.

We’'ve chosen Matt Biewer because he seems
to us a sort of circuit designer’s uP ““folk hero.”
He's already gone the route you will be going as
you add microprocessors to your bag of tricks. He
has self-taught himself programming and devel-
oped a no-nonsense hexadecimal-code ap-
proach that has allowed him to detour around the
need to use assembler and compiler programs.

However, many uP systems’ planners are rush-
ing on to 8-bit machines and many P software
experts sharply disagree with Biewer’s humble
“up-from-hardware’ approach. An Intel spokes-
man who knows Biewer personally, while admit-
ting that Biewer gets results, argues that to follow
his footsteps is to ignore a decade of software
development.

Our conclusion after hearing both sides of the
story is that, for the small microprocessors like
the MCS-4 which are suitable for $50 controllers,
the Biewer manual approach makes sense for
circuit designers first getting into wP’s. We agree

Fig. 1—Matt Biewer, creator of the tape-reader design
~ example, is an ex logic-circuit designer who has switched over
to pP’s. He got started with microprocessors while with a
former employer, MSI-Data, by designing the MCS-4 into a
portable terminal instead of the custom LSI originally con-
sidered. Hundreds of units of that product are now rolling off
the production line each month. Biewer is now vice-president
with Pro-Log Corp., Monterey, Calif., a small company that
sells support products for uP’s.

42 EDN MARCH 20, 1974

whole-heartedly with Biewer that it may be too
much to ask a circuit designer to learn both pP
hardware and the concepts of higher level
language programming at the same time. Besides,
you just can’t afford that much ROM memoryina
$50 system that the programming can’t be done
manually, as Biewer does. But we think that it
might be very wise for the designer to be learning
about higher level language programming at
night school while he works on the Biewer
machine-level approach by day.

At this time we won’t get into the argument
whether Biewer is right or wrong to circumvent
the niceties of the world of software. The point to
be made here is that the program you see in the
example was created and entered into the pROM
programmer by hand, without the aid of an
assembly program, by an ex-digital circuit design-
er like yourself.

Practically no interface hardware

The hardware side of Biewer’s tape reader
control is shown in Fig. 2. The MCS-4 part is
essentially just a 4004 CPU and three 4001 ROM'’s
with their I/O ports, all driven by a 750 kHz
2-phase clock. Or at least this is what the MCS-4
part of the system would look like if the product
were in high-volume production. Biewer’s appli-
cation is in initial moderate-volume stage, and he
replaces the custom 4001 metal-masked ROM’s
shown in Fig. 2 with the easier-to-program Intel
1702A ROM'’s. He interfaces these to the MCS-4
with the 4008/4009 chips that Intel makes for this
purpose and adds TTL latches and buffers for the
I/O ports. But in Fig. 2, to keep our diagram
simple, we show the same 4001 ROM’s that we
described in our last article (Ref. 5).

Note from Fig. 2 how little external hardware is
needed to interface the tape-reader stepping
motor and hole sensors to the MCS-4 1/O ports.
The buffer amplifiers that boost the output of the
MCS-4 port 6 to the level adequate for the motor
coils can be very simple. We show them as just IC
Darlingtons with built-in protective diodes. They
would have to be there anyway—you can’t blame
them on the MCS-4.

We, likewise, show the photo-transistor hole
sensors as high-gain Darlington types to minimize
parts count. So you can see that the only
additional hardware elements to interface this
typical electro-mechanical function to the exist-
ing MCS-4 system are the three 1/O ports 4, 5 and
6. With the standard MCS-4 parts, this means you
have to have at least three 4001 ROM’s. If you
look ahead to the small number of lines in the
program, Fig. 3b, you might say your 1/O require-
ments will force you to putin more ROM than the
application needs. (Each ROM in the MCS-4

system has 256 lines, and there are only 37 lines in
the software program.) However, there are many
additional functions that you can implement with
the spare software space in a system like this. The
chances are you will find that even if your main
program doesn’t need the ROM space—which it
most likely will—there are valuable uses for the
additional ROM lines in embellishments of this
tape-reading function. Don’t worry, you'll think
of them.

What it takes to move tape

The software program, Fig. 3, has to be “the
design” because you've already seen how little
hardware there is from Fig. 2. The flow diagram,
Fig. 3a, is the programmer’s conceptual starting
point in the process of ““verbalizing a program,”
to use Matt’s words. It is the skeleton which is
clothed with the flesh of the instruction sequence
of Fig. 3b.

This flow diagram shows two entry points for
the subroutine, ROM address 67 for STEP FOR-
WARD AND READ TAPE and ROM address 60 for
STEP REVERSE AND READ TAPE. It shows one exit
point, address 7F (hexadecimal) at the bottom
where the BBL instruction at the end of this
subroutine returns the computer to the main
program. (See brief list of instructions and their
explanations in box in Fig. 3.)

The entry points, 60 and 67, would be reached
by a JMS or “jump to subroutine”” at any point in
the main program where it was desired to read in
more data from the tape. That main-line JMS
instruction would put either a 60 or 67 in the
program counter (PC), which would push the
previous main-line program address down in the
PC stack (to be available for later return at the
final BBL). This would cause the CPU to fetch the
first instruction of this subroutine. (The MCS-4’s
basic machine cycle was explained in our last
article, Ref. 5.)

The approximately seven parts to this software
program are depicted by the blocks and dia-
monds of the flow chart, Fig. 3a. We've separated
the lines of code into groups to correspond with
these blocks.

The purpose of the first seven code lines is to
take the two side-by-side ONEs in the 4-bit
pattern that will drive the four stepper-motor
coils and shift the two side-by-side ONEs right or
left to rotate the motor and move the tape for the
new reading position. This pattern has been
stored in CPU index register A (hexadecimal 10 in
decimal). It was put there after the last rotation
(using the instruction at 71 as we’ll see). Now it
has to be brought out into the accumulator,
rotated left or right according to the desired
motion of the motor, and presented to the output

43

750kHz EXT CLOCK .
- . «2“,@:@ -]
e . . - i
. . MULTIPLEXER MULTIPLEXER
O, .
&3 - E
001 0[000 0 |
. . i ROM—6] —6— | —0— My
o o i =
a MAINJLINE PROGRAM
& .
(o]
o
o—*A 4001 ROMs ‘
/ O—A
5 0—-M
O—M ADDRESSING—WHERE PC
Py o—x STEPS DOWN ROM LINES.
€]
Fo’r‘\ o——x,
255 O,
fe LINES —={ FOTTTER EVEN 0DD
m T DO OO OO O OW, REGISTERS
m N &WN=0™Tm, -
—t-eee | o/
z “~ ! L af alo[i 1o
XX =] =] (=] & &= B (=) (= S Pad B8 w
O <]| ~lol=]=]=]c]=|-=]|c|Xx x|[x 3-WAY g
2 XX\ FEFREEFFEEET Hxx MUX 2
XX (olololo[~[o[~]olox]{ K|x[X}e1X DELAY DELAY
<[] olo]=[o]o]-]o]o]o[x[} K[x]x s - 545 070
o) XY (=lel=l=I=Io]oleleolxly Klx]x i
> % ~lolo]=]o]=[o]o]o[x] [X[x]* .
gng ~lelolo|=]o]=]e]e x [x|
-— MULTIPLEXER
o[1]1]o]roRTE -
PORT 5
N
PORT 4 N

POWER
SUPPLY

Fig. 2—The hardware side of the tape reader control: MCS-4
parts are shown at the top in much the same ‘classical”
arrangement as they were in the preceding article (Ref. 5). The
tape reader peripheral is shown at the bottom. As explained in
the text, Biewer actually uses a 1702A electrically-

44

AUX REG

ADDER
CARRY]
FF Accum |

programmable, UV light-erasable pROM instead of the regular
4001 ROM that is part of the MCS-4 family. He interfaces the
1702A with the 4008 and 4009 MOS/LSI parts that Intel makes
for the purpose. But he will go to this configuration, once his
product reaches volume production.

EDN MARCH 20, 1974

ADR INSTR LABEL MNEMONIC
ISTEP FWD] |STEP REV]| HEX HEX . -
u , 6 60 20 (STEP REV) FIM PO SET OUTPUT ADDRESS &
61 60 6 0 ‘OVERFLOW CONSTANT (0+CARRY=1)
62 F1 cLC ROTATE THE STEP PATTERN
SET FWD SET REV 63 AA . LD A (REG AA—ACCUMULATOR
OFLO K=8 OFLO K=1 64 F5 RAL fROTATE LEFT
ROTATE RT ROTATE LFT 65 43 JUN ' .
66 6C . CHK OFLO
67 20 | (STEPFWD) PO . |SET OUTPUT ADDRESS &
~ 68 | 67 ‘ OVERFLOW CONSTANT (7+CARRY=8)
63 | F1 | ROTATE THE STEP PATTERN
L 6A | AA
PATTERN 68 | F6 ROTATE RIGHT
YES 6C 1A CHK OFLO JCN _Cco | TEST FOR OVERFLOW
6D 6F " NO CARRYJ
ADJUST OFLO 6E 81 ADD 1 ADJUST FOR OVERFLOW
21 ‘jf NO CARRY ADDRESS THE OUTPUT LINES
E2 SEND NEW PATTERN TO STEP MOTOR

BA SAVE THE NEW PATTERN
22 DELAY LONG ENOUGH TO ALLOW THE
STEP MOTOR MOTOR TO STEP AND STOP IN IT'S
SAVE PATTERN . 56 NEW POSITION (=10 MSEC FOR A
DELAY . 80 100 CPS READER)
76 20 FIM - PO ~ | ADDRESS INPUT LINES TO READ
77 40 4 0 lTHE LEAST SIG. BITS.
78 21 SRC PO
79 EA RDR READ THE LEAST SIG. BITS (LSB)
7A B6 XCH 6 SAVE THE LSB
78 60 INC 0 | ADDRESS INPUT LINES TO READ
7C 21 . SRC PO THE MOST SIG. BITS.
DO FUNCTION 70 EA RDR ‘ READ THE MOST SIG. BITS (MSB)
(READ TAPE) 7€ B7 XCH 7 ~ SAVE THE MSB
L . i = : , = = T . —
r _7F co . BBL . “POP” PC STACK FOR RETURN
EXlTl l 80 72 DELAY 1SZ 2 COUNT REGISTERS TO ZERO
81 80 80 0
= ' 82 73 174 3
Al FLOWDIAGRAM 83 80 8 0
‘ . 84 co BBL 0 RETURN
B) SEQUENCE OF INSTRUCTIONS (PROGRAM)
(C) List of MCS—4 instructions used in the example*

Mnemonic Description Number of Mnemonic Description Number of |
OPR OPA ROM lines OPR OPA ROM lines
FIM Reg. Pair FETCH IMMEDIATE Load the eight bits of data from the following 2 WRR WRITE ROM PORT Content of accumulator is transferred to output 1
(4 bits+4 bits) ROM line into the designated register pair. Source is next ROM line port previously selected by SRC instruction. This data is available at

and destination is two registers in CPU. the output pins until a new WRR is executed on same port.
cLC CLEAR CARRY Set the carry to zero. 1 XCH Register EXCHANGE REGISTER WITH ACCUMULATOR The 4—bit con- 1
tent of the designated CPU register is loaded into the accumulator

LD Register LOAD REGISTER TO ACCUMULATOR The 4—bit content of the 1 and the content of the accumulator is loaded into the register.

designated CPU register is loaded into the accumulator.
IMS Aj JUMP TO SUBROUTINE The address A3,Az,A, is pushed onto the 2
RAL ROTATE LEFT The content of the accumulator is rotated through 1 (Ag, Ay) stop of the program counter (PC)stack. The previous content of the
the carry to the left one bit position. PC is pushed down one level to be saved for return from subroutine.
JUN A, JUMP UNCONDITIONAL The ROM memory address A3, Az, Ay 2 RDR READ ROM PORT Data present at the port previously selected by 1
(A, Ay) is loaded into the CPU program counter (PC) so that next instruction an SRC instruction is transferred to the accumulator.
¢ is fetched from ROM location, A3, Az, A ;.
INC Register INCREMENT REGISTER The 4—bit content of the designated 1
RAR ROTATE RIGHT (See rotate left above.) 1 register is incremented by one.
JCN Condition JUMP ON CONDITION If the designated condition is true, the 2 BBL BRANCH BACK AND LOAD ACCUMULATOR The PC program 1
(A, A,) address Ay, A, is put into the CPU program counter (PC). Sixteen counter stack is popped up one level. This causes PC to return to
different tests are possible. where it left off in previous program before the JMS occurred.
ADD Register ADD REGISTER TO ACCUMULATOR The 4—bit content of desig— 1 ISZ Register INCREMENT REGISTER, SKIP IF ZERO Contents of designated 2
nated CPU register is added to the contents of the accumulator with register are incremented by one. If the result is zero, the PC con-
carry, with results stored in accumulator. (A Ay tinues down the ROM instruction lines in sequence. If the result is
not zero, the PC goes to address line Ay, A,.
SCR Reg. Pair SEND REGISTER CONTROL Send contents of designated index 1
register pair to the |/O ports as chip select. (Also for addressing RAM
locations when RAM chips present.) *Note: These are but 16 of the MCS—4's 46 total instructions.
Fig. 3—Software for the tape-reader control: this is what was he selected the sequence of MCS-4 instructions that imple-
developed to go into the MCS-4 ROM so that the uP would mented the flow diagram (b). A capsule explanation of the
perform the control actions. He first sketched out his program MCS-4 instructions used is given in the box (c).

graphically in the flow diagram (a) and with this to guide him,

45

port leading to the motor coils and then, again,
be put back into A for the next time.

How software moves an actuator

Suppose the STEP REVERSE command leg is
entered by the JMS from the main program. The
FIM instruction at 60 is a two liner taking up two
ROM lines (each having its own full machine
cycle). It says register pair No. 0 (which is index
register 0 and 1, if you look back to Fig. 2) will be
loaded with the constant in the second line—
address 61. The /6" in the left 4-bit side of this
second line will be used shortly in step 6F to
address the output port leading to the motor. The
ZERO on the right 4-bit side, is a bit tricky.
Ordinarily, it would not matter what this was
when an 1/O port was being addressed, for you
only have to address down to the chip level to
reach an 1/O port in the MCS-4 architecture. But
Biewer does not let this space go to waste. He
throws the ZERO in on the right-hand side
because he needs it as a constant for a later
operation. ““I kind of fetched two things at the
same time,” he explained. He believes you are
more likely to stumble upon these little oppor-
tunities to pack your code efficiently if you do
your coding all by hand.

CLC or “/clear carry” at line 62 is a necessary
precaution. The machine will be looking to see if
one of the two side-by-side ONEs being rotated
has spilled over into the carry FF, so it is important
that the carry start out at zero.

In step 63, the “LD-register-A”" instruction
loads the motor-drive bit pattern from A into the
accumulator where it can be shifted.

The RAL instruction, at 64, shifts or rotates the
two ONEs to the left. Since the MCS-4 circuitry
places the carry FF in the rotate path, it’s possible
for the ONEs to get caught in the carry FF and
upset the side-by-side pattern that the motor
coils want to see. This situation must be detected
and corrected.

The JUN instruction at 65, jumps the PC to line
6C where the REVERSE and FORWARD branches
of the flow chart meet. There is no need for both
branches to duplicate the common steps from
now on. The JCN instruction at 6C is used to make
the test for overflow into the carry and to direct
the program sequence to the correction instruc-
tion (at 6E) if necessary. JCN is one of the MCS-4's
two decision steps, and so is a proper candidate
for implementing the diamond-shaped decision
function on the flow diagram.

On the JCN’s OPA side the ““CO’" means that a
jump is to be made if the carry FF = 0. Thus, as the
arrow out of the left tip of the JCN diamond in the
flow diagram indicates, the PC will be jumped
around the next overflow correction step to 6F if

46

there is no carry spillover problem. But if there
has been a spillover of one of the ONEs into the
carry FF, the PC will proceed normally to the next
line which contains the ADD instruction that
makes the corrective adjustment.

Know your instruction definitions

The ADD instruction, line 6E, directs the
contents of register 1 to be added to the
accumulator. There is a subtlety here. ““You might
think that a ONE should be added,” Matt said. “I
did when I first wrote the program. But if you stop
to think about it, you'll realize there will be a ONE
already in the carry FF, so you should be adding
ONE minus ONE, or ZERO.” (That is why the
correction in rotate right at line 68 is seven rather
than eight.)

Say that your bit pattern in the accumulator was
1100 which, upon shifting left, gave 1000 plus
ONE in the carry. If you now add ZERO, you'll get
1001 with the ONE coming from the carry. By the
way, the pattern 1001 still has the two ONEs
side-by-side as far as the circle of motor coils are
concerned.

This new pattern is sent out to the motor by
lines 6F and 70. The SRC command at 6F
addresses the output port 6. As written in proper
MCS-4 coding format, it calls for the pair of index
registers, No. 0 and No. 1, to be sent out to the
ROM’s. But, as we explained awhile ago, you
really only want the 6" in register No. 0 to go
out, as that is sufficient to select the ROM chip
containing port 6. You will recall that the /6" was
loaded during line 61. The actual movement of
the pattern from the accumulator to output port 6
is effected by the WRR instruction at line 70.
There the ONEs excite the motor coils via the
drive buffers. The MCS-4’s output ports in-
corporate latches that conveniently hold the
pattern until a new one is generated in a
subsequent execution of this subroutine, so an
external actuator like the motor will be held
locked.

But while the output-port latches hold the
pattern for the motor, the computer itself will
have no way of knowing where it left off in
rotating the motor, so the new bit pattern must be
saved. This is done with the XCH instruction at
line 70. The XCH merely switches the contents of
register A and the accumulator. You don’t want
the old pattern from A in the accumulator, but
this XCH happens to be the only command in the
MCS-4's repertoire that will move data from the
accumulator to CPU index registers.

Your final operation, so far as the movement of
the motor is concerned, is to introduce a delay
that will allow the motor to settle to its new
position before you read the data off the tape.

EDN MARCH 20, 1974

ULTRA—VIOLET
ERASE LIGHT

TESTER
(CLIP ON CONTROL
PANEL)

SINGLE CARD
MICRO PROCESSOR

Fig. 4—These are some of the designer aids that Biewer has
developed for approaching the MCS-4 in his up-from-
hardware manner. The 1702A programmer in the middle is the

Matt sets up a register pair (No. P,) with certain
constants, and then jumps the program with a
JMS to some ISZ counting instructions.

As the diamond-shaped block in the flow
diagram indicates, the ISZ instruction is a deci-
sion step—the MCS-4’s other one besides the
JCN. This “increment-by-one-and-skip-if-zero”
instruction is found in one form or other in all
computers. Here it directs the CPU to keep
looping back and adding ONE to the designated
register (2 for the first ISZ) until the content of
that register becomes ZERO, then to skip over the
loop-back (line 81), and go on to the next step.

Matt must have planned to use this I1SZ delay
count routine more than once because he shows
it as a separate subroutine at a different location
(starting at line 80 in our Fig. 3b). This represents a

UNIVERSAL
UTILITY BOARD

ROM PROGRAMMER

CARD RACK

POWER
SUPPLY

EXTENDER CARD

DIP
UTILITY
CARD

key tool. It has automatic stepping for the ROM addresses and
a hexadecimal keyboard for entering the machine-language
instructions.

subroutine within a subroutine, or two levels of
“nesting.”” As the nesting stack associated with
the MCS-4's PC is three levels deep, this presents
no problem. The BBL instruction at the end of this
short subroutine automatically “pops’ the stack
and returns the PC to the desired point in the
main subroutine—line 76.

The first ISZ can produce up to 345 psec of
delay if register 2’s starting count is 0000. The
second ISZ can add to this exponentially as it
makes the PC keep going back all the way
through the first count on each of its loops.
Therefore, the total delay, if the second ISZ’s
register (No. 3) also starts at 0000, can be 5.8
msec. In his actual tape reader application, Matt
uses a somewhat more complex arrangement
variation of this to produce 10 msec delay.

47

Reading in the data

The final operation—that of reading the tape
data in—is fairly straightforward. It makes further
use of the instructions we’ve already described.
The least significant four bits of the eight bits of
paper tape data are read in first on input port 4,
and then the remaining most significant four bits
are read in on input port 5.

The only things worth commenting on during
these final steps are the way in which a new use is
made of registers 0 and 1 (pair P,) at line 76, and
the way the INC or increment instruction is used
to turn the ““4” that addressed port 4 into the 5"
that addresses port 5. Matt said the increment
instruction is an efficient one-code-line method
for stepping through either I/O addresses or RAM
data addresses.

BBL at the very end of the subroutine (line 7F)
returns the PC to where it was in the main line
program.

Just the beginning

““Our software for the tape reader doesn’t stop
with this basic subroutine,” Matt said. “We keep
adding things as we think of them, as it is so easy
to do this with software. For example, we’ve gota
little routine that steps the motor forward and
backwards and makes readings from the tape to
determine if, in fact, there is tape in the reader.
That way we can make our product alert the user
that he has forgotten to put his tape in place.”

How would software aids help?

It is very difficult for an outsider to evaluate the
various software aids. Part of the confusion
comes from the way software people seem to
imply that these aids help to create or “‘write’’ the
program. As far as we know, no machine aid can
help you select the basic sequence of instructions
(like that shown on the right-hand side of Fig. 3b),
any more than any machine could help the author
write this article. But programmers point out that
some languages are easier to “‘think” in. Just like
some multi-linguists say they like to think in
[talian rather than German, so some program-
mers feel they can create programs faster when
they are thinking in some high-level language like
FORTRAN. Once one has gone to some language
that is different from what the end user under-
stands (be it a human or a machine), then it is
quite sensible to have a computer program that
will automatically translate from the easy-to-use

48

language to the final application language.

But Biewer, being a digital circuit designer by
training, “likes’”” to think in terms close to
hardware. The MCS-4’s own 46 instructions are
fine for him because he knows this ‘“vocabulary”
intimately due to his constant hardware-level
familiarity with this machine. Matt effortlessly
visualizes which registers will be used with each
instruction, and where, when and how the data
will flow between them. He claims the pP
designer has to have such familiarity with his
microprocessor if he is to use it efficiently (as we
pointed out in Biewer’s use of the otherwise
wasted space in line 61).

The writing of the sequence of instructions,
which no machine can help you with, is 99% of
the work. How about the remaining 1%—
translating the instructions in their mnemonic
form into the ONEs and ZEROs that the pP
understands? ““What's the big deal here?” says
Biewer. /I merely run down the instructions and
write in the hexadecimal equivalents for their
4-bit code groups (see the third column from the
left in Fig. 3b). | have already numbered the ROM
addresses in sequence on my work sheet (see the
first two columns in Fig. 3b). Now all | have to do
is go to the ROM (pROM actually since he is
talking in terms of the 1702A) programmer | have
designed. It has a hexadecimal keyboard for
instruction entry and will automatically sequence
down addresses. | can enter all 256 lines of the
typical MCS-4 ROM in 15 minutes.”

Fig. 4 shows the pROM programmer he is
talking about, along with some of the other pP
design and prototyping aids that Biewer has
evolved to make his approach easier. &

References

1. “The Designers Guide to Programmed Logic (For the
PLS 400 Systems),” by Matt Biewer, Pro-Log Corp.,
852 Airport Rd., Monterey, CA 93940. The textbook
that Biewer uses to teach his up-from-hardware
approach to programming the MCS-4. It is a very
useful supplement to the Intel MCS-4 manual as it
provides a second viewpoint that helps the designer
see how it can be programmed to perform certain
widely-used common functions.

2. “Microprocessors are changing your future,” EDN,
Nov. 5, 1973, pg. 26.

3. “Understanding the microprocessor is no trivial

task,” EDN, Nov. 20, 1973, pg. 42.

4. “Understand the 8-bit wP: you'll see a lot ot it,” EDN,
Jan. 20, 1974, pg. 48.

5. “Don’t overlook the 4-bit wP: they’re here and
they’re cheap,” EDN, Feb. 20, 1974, pg. 44.

EDN MARCH 20, 1974

= I®
In@ INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 246-7501

©INTEL 1974/Printed in U.S.A./MCS-299-1174/27.5K

	What_001
	What_002
	What_003
	What_004
	What_005
	What_006
	What_007
	What_008

