
The MULTIBUS@ Interface 

operations begin). The second reason is that interac­
tions with high-speed 110 devices are provided by 
means of controller chips that perform many of the 
tasks (including temporary data storage) that would 
otherwise be performed by interrupt service routines. 
The master program is never concerned with multi­
tasking or with close synchronization of 110 device 
operations. Note that while some input (e.g., 
keyboard entry), is not program controlled, its data 
entry rate is slow enough to allow temporary data 
storage by hardware while the processor is occupied. 

In place of hardware interrupts, the hardware 
elements of the Intellec Series II development system 
use service requests (specified bits within status bytes) 
to determine when a device requires attention. The 
status bytes are returned to the master processor of 
the IPB/IPC on demand. The transfer of status bytes 
from the IOC or the PIO to the IPB/IPC constitutes 
a major segment of the interprocessor traffic. 
Although hardware interrupts are not widely used by 
Intel-supplied resident master programs, interrupt 
handling circuits exist within the Intellec Series II 
development system. These circuits establish 
priorities for the interrupt switches, for interrupts 
from the Multibus interface and for interrupts from 
internal hardware elements of the IPB/IPC, IOC, 
and PIO. The interrupt circuits also apply interrupt 
switch and internal hardware interrupts to the 
M ultibus interface. Interrupt masking by resident 
programs inhibits sensing of interrupts by the 
IPB/IPC master processor. All interrupts generated 
by internal hardware elements are handled by a local 
interrupt controller that operates in the polled mode 
as a slave to the system interrupt controller. All inter­
nal interrupts are processed by the local interrupt 
controller and generate a level 7 interrupt to the 
system controller. Resident master programs must 
then poll the local interrupt controller to determine 
the source of the internal interrupt. An example of an 
interrupt routine used to service an interrupt 
originating from a device associated with the local 
interrupt controller is shown in Appendix A. Inter­
rupt level assignments for the local interrupt con­
troller are as follows (level 0 has the highest priority): 

Level Function 

0 Serial 110 Channel 0 Input Data Ready 
I Serial 110 Channel 0 Output Data Ready 
2 Serial 110 Channell Input Data Ready 
3 Serial 110 Channel I Output Data Ready 
4 lms Real Time Clock Interrupt 
5 PIO Subsystem Interrupt 
6 IOC Interrupt 
7 Not Used 

The system interrupt controller operates in the fully­
nested mode and is initialized with a call address 
interval of eight and a base address of OH to establish 

2-6 

lntellec® Series II 

the location of the vector address block. The vector 
addresses reserved for system interrupts are as 
follows: 

Interrupt Vector Vector 
Level Address Usage 

0 OOH Monitor 
I 08H ISIS-II 
2 IOH Disk Controller 
3 I8H 
4 20H ICE-80 Module 
5 28H 
6 30H ICE Modules 
7 38H Local Interrupt Controller 

Reprogramming the 8259's call address 
interval from eight to four will cause 
undefined system operation. 

The local and system interrupt controllers of the IPB 
and the system interrupt controller of the IPC cannot 
be programmed or polled by a non-resident master 
program (the local interrupt controller of the IPC 
can be accessed by another bus master). When 
another bus master assumes control of the bus, both 
the local and system interrupt controllers maintain 
any current interrupt request and latch any subse­
quent interrupt request (when the IPBIIPC regains 
bus access, any pending interrupt request is serviced). 
Since all system interrupts can be sensed by another 
bus master via the Multibus interface, all IPBIIPC 
local interrupts can also be sensed (any local inter­
rupt causes a level 7 system interrupt). 

2.4 MUL TIBUS® PRIORITY LOGIC 

To avoid conflicts that may arise when two or more 
bus masters simultaneously require bus access, the 
IPB/IPC includes parallel priority resolution logic. 
This logic accepts individual bus request inputs from 
up to nine bus masters that may be installed in the 
backplane (five available slots in the development 
system chassis and four slots in the expansion 
chassis) and returns an individual bus priority input 
to all but the bottom slot of the expansion chassis 
(the bottom slot has the highest priority and its bus 
priority input is permanently enabled). The parallel 
priority logic samples all of the bus request (BREQ) 
inputs and generates an individual bus priority in 
(BPRN) output to the highest priority bus master 
requesting the bus. Following Multibus interface pro­
tocol, when the requesting master receives its bus 
priority in signal, it examines the common bus busy 
(BUSY) bidirectional line to determine when the bus 
becomes available and, when the bus is available, 
activates bus busy to indicate to all other bus masters 

• 

• 

• 

• 

• 




