intel

8048/8648/8748/8035

Nation in the former of the fo SINGLE COMPONENT 8-BIT MICROCOMPUTER

- 8048 Mask Programmable ROM
- 8648 One-Time Factory Programmable EPROM
- 8748 User Programmable/Erasable EPROM
- 8035 External ROM or EPROM
- 8-Bit CPU, ROM, RAM, I/O in Single Package
- Interchangeable ROM and EPROM Versions
- Single 5V Supply
- **2.5** μ sec and 5.0 μ sec Cycle Versions: All Instructions 1 or 2 Cycles
- Over 90 Instructions: 70% Single Byte
- IK x 8 ROM/EPROM 64 x 8 RAM 27 I/O Lines
- Interval Timer/Event Counter
- Easily Expandable Memory and I/O
- Compatible with 8000 Series Peripherals
- Single Level Interrupt

The Intel® 8048/8648/8748/8035 is a totally self-sufficient 8-bit parallel computer fabricated on a single silicon chip using Intel's N-channel silicon gate MOS process.

The 8048 contains a 1K x 8 program memory, a 64 x 8 RAM data memory, 27 I/O lines, and an 8-bit timer/counter in addition to onboard oscillator and clock circuits. For systems that require extra capability, the 8048 can be expanded using standard memories and MCS-80™ (8080A) peripherals. The 8035 is the equivalent of an 8048 without program memory. The 8035L has the RAM power down mode of the 8048 while the 8035 does not.

To reduce development problems to a minimum and provide maximum flexibility, three interchangeable pin-compatible versions of this single component microcomputer exist: the 8748 with user-programmable and erasable EPROM program memory for prototype and preproduction systems, the 8048 with factory-programmed mask ROM program memory for low cost, high volume production, and the 8035 without program memory for use with external program memories.

This microprocessor is designed to be an efficient controller as well as an arithmetic processor. The 8048 has extensive bit handling capability as well as facilities for both binary and BCD arithmetic. Efficient use of program memory results from an instruction set consisting mostly of single byte instructions and no instructions over 2 bytes in length.

PIN DESCRIPTION

		0040/0040/	0140/0030		
PIN DES	CRIPT	ION			Paranerice, this is the MMM of the or
Designation	Pin #	Function	Designation	Pin #	Function Support
V _{SS} V _{DD}	20 26	Circuit GND potential Programming power supply; +25V during program, +5V during oper- ation for both ROM and PROM.	שח	0	Output strobe activated during a BUS read. Can be used to enable data onto the bus from an external device.
		Low power standby pin in 8048 ROM version.			Used as a read strobe to external data memory. (Active low)
V _{CC}	40	Main power supply; +5V during operation and programming.	RESET	4	Input which is used to initialize the processor. Also used during PROM
PROG	25	Program pulse (+25V) input pin during 8748 programming.			programming verification, and power down. (Active low)
		Output strobe for 8243 I/O			(Non TTL V _{IH})
P10-P17	27-34	expander. 8-bit quasi-bidirectional port.	WR	10	Output strobe during a bus write. (Active low)
Port 1 P20-P27 Port 2	21-24	8-bit quasi-bidirectional port.			Used as write strobe to external data memory.
	35-38	P20-P23 contain the four high order program counter bits during an external program memory fetch	ALE	11	Address latch enable. This signal occurs once during each cycle and is useful as a clock output.
DB ₀ -DB ₇	12-19	bus for 8243. True bidirectional port which can			The negative edge of ALE strobes address into external data and pro- gram memory.
BUS		be written or read synchronously using the RD, WR strobes. The port can also be statically latched.	PSEN	9	Program store enable. This output occurs only during a fetch to exter-
		Contains the 8 low order program counter bits during an external program memory fetch, and receives the addressed instruction under the control of PSEN. Also contains the	SS	5	Single step input can be used in con- junction with ALE to "single step" the processor through each in- struction. (Active low)
		address and data during an external RAM data store instruction, under control of ALE, RD, and WR.	EA	7	External access input which forces all program memory fetches to re- ference external memory. Useful
то	1	Input pin testable using the con- ditional transfer instructions JTO and JNTO. TO can be designated as			for emulation and debug, and essential for testing and program verification. (Active high)
		a clock output using ENTO CLK instruction. TO is also used during programming.	XTAL1	2	One side of crystal input for inter- nal oscillator. Also input for exter- nal source. (Non TTL V _{IH})
Т1	39	Input pin testable using the JT1, and JNT1 instructions. Can be des- ignated the timer/counter input using the STRT CNT instruction.	XTAL2	3	Other side of crystal input.
ÎNT	6	Interrupt input. Initiates an inter- rupt if interrupt is enabled. Inter- rupt is disabled after a reset. Also testable with conditional jump instruction. (Active low)			

INSTRUCTION SET

	Mnemonic	Description	Bytes	Cycle		Mnemonic	Description	Bytes	Cycles
	ADD A, R	Add register to A	1	1	ine	CALL	Jump to subroutine	2	2
	ADD A, @R	Add data memory to A	1	1	nt of the second se	RET	Return	1	2
	ADD A, #data	Add immediate to A	2	2	prd	RETR	Return and restore status	1	2
	ADDC A, R	Add register with carry	1	1	Su				
	ADDC A. @R	Add data memory with carry	1	1					
	ADDC A, #data	Add immediate with carry	2	2		CLR C	Clear carry	1	1
	ANLAR	And register to A	1	1		CPL C	Complement carry	1	1
	ANLA @B	And data memory to A	1	1	sbe	CLR F0	Clear flag 0	1	1
	ANI A #data	And immediate to A	2	2	Ĩ	CPL FO	Complement flag 0	1	1
		Or register to A	1	1		CLR F1	Clear flag 1	1	1
þ		Or data mamory to A	1	1		CPL F1	Complement flag 1	1	1
lat	OBLA #data	Or immediate to A	2	2					
Ē		Evolusive or register to A	2	2					
5		Exclusive of register to A	1	1		MOV A, R	Move register to A	1	1
ě	XRLA, WR	Exclusive or data memory to A				MOV A, @R	Move data memory to A	1	1
	ARLA, #data	Exclusive or immediate to A	2	2		MOV A, #data	Move immediate to A	2	2
		Increment A	1	1		MOV R, A	Move A to register	1	1
	DEC A	Decrement A	1	1		MOV @R, A	Move A to data memory	1	1
	CLR A	Clear A	1	1		MOV R. #data	Move immediate to register	2	2
	CPL A	Complement A	1	1	es	MOV @R. #data	Move immediate to data memory	2	2
	DA A	Decimal adjust A	1	1	é	MOV A PSW	Move PSW to A	1	1
	SWAP A	Swap nibbles of A	1	1	2	MOV PSW A	Move A to PSW	1	1
	RLA	Rotate A left	1	1	Dati	XCH A R	Exchange A and register	1	1
	RLC A	Rotate A left through carry	1	1	6		Exchange A and data memory	1	1
	RR A	Rotate A right	1	1			Exchange A and data memory	. 1	1
	RRC A	Rotate A right through carry	1	1			Exchange mobile of A and register		,
							Nove external data memory to A		2
						MUVX @R, A	wove A to external data memory	1	2
	IN A, P	Input port to A	1	2		MOVP A, @A	Move to A from current page	1	2
	OUTL P, A	Output A to port	1	2		MOVP3 A, @A	Move to A from page 3	1	2
	ANL P, #data	And immediate to port	2	2	_	·	1.0 <u>00000000000000000000000000000000000</u>		
, T	ORL P, #data	Or immediate to port	2	2			Road times / counter	1	1
Ŧ	INS A, BUS	Input BUS to A	1	2	*		Lood timer/counter	1	1
S	OUTL BUS, A	Output A to BUS	1	2	Ť		Start timer	1	1
E	ANL BUS, #data	And immediate to BUS	2	2	no	SIRII		1	1
Ē	ORL BUS, #data	Or immediate to BUS	2	2	ő	STRICNI	Start counter	1	1
	MOVD A, P	Input expander port to A	1	2	nei	STOP TONT	Stop timer/counter	1	1
	MOVD P, A	Output A to expander port	1	2	Ē	ENTONI	Enable timer/counter interrupt	1	
	ANLD P. A	And A to expander port	1	2		DISTCNTI	Disable timer/counter interrupt	1	1
	ORLD P. A	Or A to expander port	1	2	_		· · · · · · · · · · · · · · · · · · ·		
							F 11 - 11 - 11 - 1	4	
						ENT	Enable external interrupt		1
ers	INC R	Increment register	1	1	_		Disable external interrupt	1	1
ist	INC @R	Increment data memory	1	1	Ę	SEL RBO	Select register bank 0	1	1
66	DEC R	Decrement register	1	1	5	SEL RB1	Select register bank 1	1	1
					C C	SEL MBO	Select memory bank 0	1	1
						SEL MB1	Select memory bank 1	1	1
	JMP addr	Jump unconditional	2	2		ENTO CLK	Enable clock output on TO	1	1
	JMPP @A	Jump indirect	1	2	_				
	DJNZ R. addr	Decrement register and skip	2	2					
	JC addr	Jump on carry = 1	2	2		NOP	No operation	1	1
	JNC addr	lump on carry = 0	2	2	_				
	JZaddr	Jump on A zero	2	2					
	INZ addr	Jump on A not zero	2	2					
£	ITO addr	lump on T0 = 1	2	2					
Juc .	INTO addr	sump on TO = 0	2	2					
ä		$\int dt dt = 0$		2					
_	JIIaddr		2	2					
	JINI T addr	Jump on I = 0	ž	2					
	JFU addr	Jump on FU = 1	2	2					
	JF1 addr	Jump on $\vdash 1 = 1$	2	2					
	JTF addr	Jump on timer flag	2	2					
	JNI addr	Jump on INT = 0	2	2					
	JBb addr	Jump on accumulator bit	2	2					
					M	nemonics copyrig	ht Intel Corporation 1976		

ABSOLUTE MAXIMUM RATINGS*

 *COMMENT:

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

D.C. AND OPERATING CHARACTERISTICS $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = V_{DD} = +5V \pm 10\%^*$, $V_{SS} = 0V$

Cumb al	Parameter	Limits				T 0	
Symbol		Min.	Тур.	Max.	Unit	l est Conditions	
VIL	Input Low Voltage	5		.8	v		
V _{IH}	Input High Voltage (All Except XTAL1,XTAL2,RESET)	2.0		V _{cc}	v		
V _{IH1}	Input High Voltage (RESET, X1, X2)	3.8		V _{cc}	V		
V _{OL}	Output Low Voltage (BUS, RD, WR, PSEN, ALE)			.45	V	I _{OL} = 2.0mA	
V _{OL1}	Output Low Voltage (All Other Outputs Except PROG)			.45	v	I _{OL} = 1.6mA	
V _{OL2}	Output Low Voltage (PROG)			.45	V	I _{OL} = 1.0mA	
v _{он}	Output High Voltage (BUS, RD, WR, PSEN, ALE)	2.4			v	Ι _{ΟΗ} = -100μΑ	
V _{OH1}	Output High Voltage (All Other Outputs)	2.4			·V	I _{OH} = -50μA	
ι _ι	Input Leakage Current (T1, INT)			±10	μA	V _{SS} ≪V _{IN} ≪V _{CC}	
lol	Output Leakage Current (BUS, TO) (High Impedance State)			±10	μΑ	V _{SS} +.45≤V _{IN} ≤V _{CC}	
I _{DD}	V _{DD} Supply Current		10	20	mA		
IDD + ICC	Total Supply Current		65	135	mA		

WAVEFORMS

Instruction Fetch From External Program Memory

*Standard 8748 and 8035 \pm 5%, $\pm10\%$ available.

Read From External Data Memory

Write to External Data Memory

A.C. CHARACTERISTICS $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = V_{DD} = +5V \pm 10\%^*$, $V_{SS} = 0V$

Symbol	Parameter	8048 8648 (Note 2) 8748/8035/8035L		8748-8 8035-8		Unit	Conditions (Note 1)	
		Min.	Max.	Min.	Max.	1		
t _{LL}	ALE Pulse Width	400		600		ns		
t _{AL}	Address Setup to ALE	150		150		ns		
t _{LA}	Address Hold from ALE	80		80		ns		
t _{CC}	Control Pulse Width (PSEN, RD, WR)	700		1500		ns		
t _{DW}	Data Setup before WR	500		640		ns		
t _{WD}	Data Hold After WR	120		120		ns	C _L = 20pF	
t _{CY}	Cycle Time	2.5	15.0	4.17	15.0	μs	6 MHz XTAL (3.6MHz XTAL for -8)	
t _{DR}	Data Hold	0	200	0	200	ns		
t _{RD}	PSEN, RD to Data In		500		750	ns		
t _{AW}	Address Setup to WR	230		260		ns		
t _{AD}	Address Setup to Data In		950		1450	ns		
tAFC	Address Float to RD, PSEN	0		0		ns		

Note 1: Control outputs: $C_L = 80$ BUS Outputs: $C_1 = 15$

s: C_L = 80 pF C_L = 150 pF, t_{CY} = 2.5µs

*Standard 8748 and 8035 $\pm5\%$, $\pm10\%$ available.

Note 2: The 8648 is a one-time programmable (at the factory) 8748 which can be ordered as the first 25 pieces of a new 8048 ROM order. The substitution of 8648's for 8048's allows for very fast turnaround for initial code verification and evaluation units. The 8648, like the 8748, is electrically and functionally interchangeable with the 8048 with the exception of the powerdown mode which the 8648 does not support and ±5% supply tolerance instead of ±10%.

A.C. CHARACTERISTICS (PORT 2 TIMING)

 $T_A=0^\circ C$ to 70°C, $V_{CC}=5V{\pm}10\%$

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
tCP	Port Control Setup Before Falling Edge of PROG	110		ns	
tPC	Port Control Hold After Falling Edge of PROG	140		ns	
tPR	PROG to Time P2 Input Must Be Valid		810	ns	
tDP	Output Data Setup Time	220		ns	
tPD	Output Data Hold Time	65		ns	
tPF	Input Data Hold Time	0	150	ns	
tpp	PROG Pulse Width	1510		ns	
tPL	Port 2 I/O Data Setup	400		ns	
tLP	Port 2 I/O Data Hold	150	1	ns	

PORT 2 TIMING

PROGRAMMING, VERIFYING, AND ERASING THE 8748 EPROM

Programming Verification

In brief, the programming process consists of: activating the program mode, applying an address, latching the address, applying data, and applying a programming pulse. Each word is programmed completely before moving on to the next and is followed by a verification step. The following is a list of the pins used for programming and a description of their functions:

Pin	Function
XTAL 1	Clock Input (1 to 6MHz)
Reset	Initialization and Address Latching
Test O	Selection of Program of Verify Mode
EA	Activation of Program/Verify Modes
BUS	Address and Data Input Data Output During Verify
P20-1	Address Input
V _{DD}	Programming Power Supply
PROG	Program Pulse Input

WARNING:

An attempt to program a missocketed 8748 will result in severe damage to the part. An indication of a properly socketed part is the appearance of the ALE clock output. The lack of this clock may be used to disable the programmer.

Programming/Verification Sequence

The Program/Verify sequence is:

- V_{DD} = 5v, Clock applied or internal oscillator operating, RESET = 0v, TEST 0 = 5v, EA = 5v, BUS and PROG floating.
- 2. Insert 8748 in programming socket
- 3. TEST 0 = 0v (select program mode)
- 4. EA = 25v (activate program mode)
- 5. Address applied to BUS and P20-1
- 6. RESET = 5v (latch address)
- 7. Data applied to BUS
- V_{DD} = 25v (programming power)
- 9. PROG = 0v followed by one 50ms pulse to 25v
- 10. V_{DD} = 5v
- 11. TEST 0 = 5v (verify mode)
- 12, Read and verify data on BUS
- 13. TEST 0 = 0v
- 14. RESET = 0v and repeat from step 5
- 15. Programmer should be at conditions of step 1 when 8748 is removed from socket.

2

AC TIMING SPECIFICATION FOR PROGRAMMING

	8048/8648/8	8748/8035		4.	143 <u>n</u>		
AC TIMING SPECIFICATION FOR PROGRAMMING T _A = 25°C ± 5°C, V _{CC} = 5V ± 5%, V _{DD} = 25V ± 1V							
Symbol	Parameter	Min.	Max.	Unit	Test Conditions		
taw	Address Setup Time to RESET t	4tCy			Suge Some		
twa	Address Hold Time After RESET 1	4tCy					
tow	Data in Setup Time to PROG t	4tCy					
twp	Data in Hold Time After PROG I	4tCy					
tрн	RESET Hold Time to Verify	4tcy					
tvddw	VDD	4tCy					
tvddh	VDD Hold Time After PROG I	0					
tpw	Program Pulse Width	50	60	MS			
tτw	Test 0 Setup Time for Program Mode	4tCy					
twr [.]	Test 0 Hold Time After Program Mode	4tCy					
tpo	Test 0 to Data Out Delay		4tCy				
tww	RESET Pulse Width to Latch Address	4tCy	and the second second				
tr, tr	VDD and PROG Rise and Fall Times	0.5	2.0	μS			
tcy	CPU Operation Cycle Time	5.0		μS			
tRE	RESET Setup Time Before EA 1,	4tCy					

Note: If Test 0 is high too can be triggered by RESET t.

DC SPECIFICATION FOR PROGRAMMING

 T_{A} = 25° C \pm 5° C, V_{CC} = 5V \pm 5%, V_{DD} = 25V \pm 1V

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
Vdoh	VDD Program Voltage High Level	24.0	26.0	V	
VDDL	VDD Voltage Low Level	4.75	5.25	V	
Vph	PROG Program Voltage High Level	21.5	24.5	v	
VPL	PROG Voltage Low Level		0.2	V	
VEAH	EA Program or Verify Voltage High Level	21.5	24.5	V	
VEAL	EA Voltage Low Level		5.25	V	
loo	VDD High Voltage Supply Current		30.0	mA	
IPROG	PROG High Voltage Supply Current		16.0	mA	
IEA	EA High Voltage Supply Current		1.0	mA	

WAVEFORMS FOR PROGRAMMING

COMBINATION PROGRAM/VERIFY MODE (EPROM'S ONLY)

Intel products:

- 1. PROMPT-48 Microcomputer Design Aid, or
- 2. Universal PROM Programmer (UPP-101 or UPP-102) peripheral of the Intellec® Development System with a UPP-848 Personality Card.

imize turnaround time on the first 25 pieces 8648 may be specified on the ROM order.