
ARTICLE 
REPRINT 

AR-204 

Technical arlicles __________ _ 

Smart link comes 10 the rescue 
of software-development managers 

Resource-management hardware and software join existing development syster:ns 
into an Ethernet-based network that eases software creation and control 

by James P. Schwabe, InfeICorp .• Santa Clara. Calif. 

o A strong lifeline in a sea 
of complexity, the new NOS 
II network development sys­
tem wi1l help manage the 
writing of complex software 
for tomorrow's powerful mi­
crosystems. It builds on 
existing Intellec develop­
ment systems and the speci­
fications of the Ethernet 
protocol to create a local 
network for distributed soft­
ware development. 

Considerable intelligence 
is contained within the NOS 
II system, linking program­
mers' work stations and 
managing the interactive 
flow of software develop­
ment that results. Commu­
nications control, via 
Ethernet or an even simpler 
alternative, is split between 
the central manager and the 
work stations. 

At the heart of the system 
is the network resource 
manager,which both con­
trols the net of work stations 
and lets the user configure it 
to suit the development task 
under way. The NRM will 
also manage a powerful sys­
tem memory of Winchester­
technology disk drives. 

The manager itself is an 
example of the boons of 
well-thought-out and com­
plex software, for it contains 
powerful system tools. 
Among these features are a 
hierarchical file structure that is also distributed and a 
file-protection setup that offers the maximum flexibility 
in access to files while guaranteeing their integrity. 

Important program-man­
agement tools include a rou­
tine that oversees the rewrit- . 
ing of software during de­
velopment and another that 
automates the generation of 
a complete program from 
the most current modules. 

The NOS· II is the second 
step in the evolution of 
Intel's network; architecture, 
iLNA [Electronics, Aug. 25, 
1981, p.120]. It· connects 
Intellec development sys­
tems together so they can 
share large-capacity Win­
chester disk drives and a 
line printer located at the 
NRM. It will also serve as 
the basis for a whole new 
line of modular development 
system tools such as remote 
emulators, logic analyzers, 
and more. 

Both the NRM and each 
work station can be connect­
ed directly to the Ethernet 
coaxial cable by a transceiv­
er or by the Intellink com­
munications module (Fig. 
1). By itself, the Intellink 
module provides nine ports 
for interconnection, creating 
a local network of nine sys­
tems (eight work stations 
and one NRM). To another 
controller, the Intellink rep­
resents a segment of 
Ethernet cable that has nine 
transceivers already in place 
and working. 

For networks with a radius of 50 meters or less, 
Intellink is a simple, low-cost alternative to installing 
Ethernet cabling and transceivers. Any work station can 

2-23 



ETHERNET CABLE SEGMENT (500 METERS) 

NOS-II 
FUTURE 
WORK 

STATIONS 

10- OR 50-METER 
CABLES 

NOS-II 
OR OTHER 

WORK 
STATIONS 

1. Developing net. The NOS II brings existing Intel development systems. or work stations. into an Ethernet. A new network resource manager 

and the Intellink communications manager make management of distributed software development possible_ 

be installed by simply plugging a 50-m transceiver cable 
directly into the Intellink-a 5-second operation. 

For expansion beyond nine systems or to a distance 
greater than a 50-m radius, the Intellink provides a 
built-in port for connecting the local cluster to Ethernet 
cable by means of a transceiver. Connection to the 
Ethernet allows, communication with other work sta­
tions, NOS II networks, or other Ethernet-compatible 
devices that use the iLNA network architecture. 

No matter which physical setup is chosen, each work 
station has independent access to, and can be directly 
accessed from, the Ethernet and the NOS II network. 
Each has a unique work-station identifier, distinguishing 
it from every other terminal in the world and ensuring 
correct communication between stations on the various 
local networks. 

For multiple-net environments, each network can have 
a_ unique network identifier to allow their coexistence on 
one Ethernet. In a single net, the network identifier is 
not used, but its assignment en~ures an orderly pro­
gression to a multi-net environment. ' 

All current Intellec development systems can be 
upgraded to NOS II work stations. An upgrade consists 
of a communication-controller board set, software, and 
either 10- or 50-m cables. 

The communication controller, a two-board set that 
plugs into any Intel Multibus chassis, provides many of 
the data- and physical-link functions of the six-layer 
standard reference model for open-systems interconnec­
tion (Fig. 2). The data-link functions performed are 
framing, link management, and error detection. Physi­
cal-link functions include preamble generation and 
decoding and bit encoding and decoding. 

One board contains a 5-megahertz 8086 microproces­
sor with local random-access and read-only memory and 
interval timers, as well as direct-memory-access channels 
for sending and receiving data at 10 megabits per 
second. The second board contains bit-serial send-and­
receive logic, packet address-recognition logic, and 

error-detection logic. The boards ensure that bad packets 
resulting from a collision are ignored. 

The NRM coordinates all the work stations' activities 
and manages file access to the shared disks. Initially, it 
will support one 8-inch 35-megabyte Winchester disk 
subsystem, as well as Intel cartridge-module disks. Mul­
tiple-disk support is in the wings, -along with a larger 
84-megabyte disk. It will be possible to attach six disks 
to one NRM, providing more than enough on-line shared 
storage for large program development and archiving. In 
addition, each work station can contain 2.5 megabytes of 
floppy-disk storage as a local resource. 

Control contingent 

The NRM (Fig. 3) comprises 13 Multibus slots, power 
supply, 8086-based system-processor board, input/out­
put board based on the 8088 and 8089, 512-K-byte 
memory board with error checking and correction, two 
communication boards, and one 51/4-in~ floppy-disk drive. 
The cabinet also has space for a cartridge-tape unit, 
expected to be delivered in mid-1982, which will give full 
intelligent archival backup for the Winchester disks 
housed in the attached cabinet. 

To protect the integrity of the network, access to the 
NRM is restricted: a special supervisory terminal con­
nected to the unit's serial port provides an interface with 
its commands and utilities. These facilities include sys­
tem generation, intelligent archiving, and normal net­
work maintenance such as the creation of any necessary 
user identifications. 

The most. important utility for system configuration is 
called, Sysgen, an interactive routine designed to assist 
the supervisor, or project manager, in creating the NRM 
operating system. Sy~gen makes it possible to create, 
modify, or delete system parameters, peripheral-devices 
configuration; and network configuration. It allows the 
project manager to tailor the network configuration on 
the fly in order to fit the changing needs of microproces­
sor development projects. 

2-24 



USER INTERFACE 

t NDS II 
DEFINED 

I ETHERNET 
t DEFINED 

2. New layers. To the hardware layers of Ethernet. NOS II adds 
software layers that permit up to eight users to work together. The 

network layer need not be present if NOS II is not linked to the 
Ethernet. simplifying the operating system. 

From the work-station perspective, the NRM is a 
remote file system. Each station functions as a stand­
alone development system for all tasks not requiring 
NRM resources. 'When access to these resources is 
required, the user simply logs onto the network. The 
work station's resident operating system formats the 
appropriate file request, which the NRM processes inter­
activefy with other stations' demands. 

The NRM operating system is multitasking, allowing a 
work station to access a file on the shared disk while 
other stations concurrently access other disk files. The 
interleaving of disk accesses, as well as the high-speed 
packet transmissions on the Ethernet, enables each work 
station to share equally the large file store-its being 
accessed by one user does not prevent other work stations 
from gaining access. . 

In an eight-station environment, the performance deg­
radation due to network contention and the NRM ope rat- , 
ing system will be no more than 10%. This performance 
is one of the major reasons why distributed development 
systems provide a more cost-effective method for micro­
processor development than time-shared systems; the 
former are much less susceptible to saturation under 
concurrent loading than are the latter. 

Managing the work 

To ensure efficient software development, high per­
formance must be combined with tools to manage soft­
ware complexity. For example, large software projects 
are often broken down into small tasks, and effi,cient file 
sharing becomes essential to project coordination. The 
shared-file system on NOS II is built on the RMX-86 
volume-based hierarchy in which each user directory 
represents a node on a hierarchy of directories, common­
ly referred to as a hierarchial file system (Fig. 4). 

Hierarchical file systems can contain a multitude of 
directories and data files. At the apex is the root volume, 
a conceptual fil~ from which all directories emanate. The 
root volume contains all the volumes of the directories. 

Each volume can contain as many directories or files as 
available disk space will allow, and any directory may 
contain other directory files or 'data files. Each file 
(directory or data) can be traced through the hierarchy 
by its own path name. The NOS II hierarchical file 
system goes one step further by extending from the NRM 
to include the directories at the user's work station. 
When the user logs ofT the network, the only directories 
available are those on the work-station disks. When the 
user logs on, he or she gains access to the NRM system 
directories. 

Thus each programmer has access to a common data 
base without the confusion of sifting through one mas­
sive directory. What's more, the structure keeps other 
users' files out of the way. In addition, it permits logical­
ly separate types of software within a user's directory. A 
programmer can create subdirectories to separate source 
files from object files, from backup files, and so on. 

As a project's size increases, the number of directories 
and the complexity of path names in the system also 
increases. To simplify the task of accessing any particu­
lar directory, the user can assign a less cumbersome 
name-what amounts to a macroinstruction. Then, the 
user simply types in this macroname. Maximum flexibil­
ity is maintained, as each programmer can assign 
macronames to any directory. 

An added benefit from macroname assignment is 
device transparency: the user concerns himself only with 
directories, irrespective of physical location. Physical 
devices are fixed in size and location, as opposed to 
directories, which can be adjusted to organize the con­
tents in an optimal fashion. 

File protection 

Before accessing the network, each user must be iden­
tified to the NRM through a log-on procedure. This setup 
establishes a unique user identification that is subse­
quently used to control access to files and directories in 
the hierarchical file system. Each directory and data file 
has specific "owner" and "world" access rights, which 
protect against accidental modification or deletion. 

A file has three possible access rights for both the 
owner and the world: read, write, and delete. A directory 
also has three similar access rights for both the owner 
and the world: list a directory, add a directory entry, and 
delete a directory entry. 

The access rights in file systems improve coordination 
during software development by allowing complete mod­
ules that have been tested arid debugged in a user's work 
space to be converted into read status for the world. 
Then these modules can be integrated and tested with 
other independently developed software modules. Thus 
modules declared as read-only are guaranteed to be the 
most current debugged versions, and a common data 
base of completed modules is ensured. 

Extended to multiple-project environments, the file 
system can provide logically separate work spaces for 
each project group. Specific directories can be set aside 
for complete modules for various projects. Each user can 
develop portions of the program in a private work space 
with guaranteed file protection and can use the public 
files (or directories) for integration and testing of the 

2-25 



3. Manager. The network resource manager (NRM) in the cabinet's 

left side governs access to the 35-megabyte Winchester drive on the 
right. Access to network-managing software is gained only through a 
supervisory terminal attached directly to the NRM. 

module under development. Commo~ly. used utilities and 
compilers can be accessible in a specific directory as 
public files (read-only for world access) to eliminate the 
necessity of redundant files at each work station. As a 
result, all programmers can proceed without fear of 
inadvertent modification of private files either by others 
or by themselves. 

As well as managing communications between shared 
disks and work stations, the NRM maximizes the use of 
all network resources with distributed job control. OJC 
allows the user of any work station to export a batch job 
to the NRM for remote execution. 

To accomplish this, the NRM classifies each work 
station into one of two groups-private and public. It 
keeps track of the public work stations and uses them to 
execute the queue of batch-type jobs. A user can declare 
any work station as public: available for use by the NRM 

for remote execution. Also, a programmer can send a job 
to a specific queue at the NRM by using the export 
commano. The NRM executes the job on a public work 
station and return the results to the user directory. 

With OJC, the resources of the entire network can be 
shared to maximum advantage.' A typical project 
involves program-module editing and debugging at Intel­
Icc series II or model 800 work stations, while a 8086-
based Intellec series III unit can provide a host execution 
environment to compile completed modules quickly. OJC 
allows the user to export the compilation process to the 
high-performance series III work station, then return 
immediately to other tasks while the NRM oversees the 
compilation. At any time, the users can check on job 
status or queue status by typing a command from their 
work stations. 

New.work stations 

Currently, Intellec development systems provide a sin­
gle-task environment and therefore can be declared pub­
lic to the NRM as users finish on-line work. Later this 
year, Intel will introduce high-performance work. sta­
tions with foreground-background capability to allow a 
user to run a job in the foreground while making the 
background public so that jobs exported by other pro­
grammers can be executed through OJC. Foreground­
background capability with OJC will effectively double 
the usefulness of the work station and substantially cut 
the cost of development time. 

In-house benchmark tests indicate that the perform­
ance of each work station connected to the NRM is much 
improved. For example, a compilation executed with all 
file requests from the NRM hard disk is twice as fast as 
requesting files from the work station's floppy disk. Each 
station enjoys hard-disk performance during compila­
tion, assembly, and any file manipulation-at a fraction 
of the cost of a dedicated disk system. 

User's tools also speed program development, as well 
as make management easier. The most important pro­
grammer tools on NOS II are svcs (software-version 
control system) and MAKE, an automatic software­
generation tool. They provide a superset of the functions 

offered by the svcs and 
MAKE found in the Unix 
programmers workbench. 

svcs controls and docu­
ments changes to, software 
products, handling both 
source and object files. It 
contains facilities for storing 
and retrieving different ver­
sions of a given program 
module, for controlling up­
date privileges, and for re­
cording who made what 
changes, when, and why. 

4. Climbing an inverted tree. To find a file in the NDS II, the user first goes to the root volume of this 

Documentation of module 
status and of the levels, or 
versions, involved is the key 
factor determining the suc­
cess of program develop-hierarchical file structure. From that volume, he or she can go to the project volume assigned by the 

project manager and access other directories or files that have been declared accessible. . ment by group effort. Valu-

2-26 



MAKElng ... It easy to revise programs 

NOS-U's MAKE facility is a development tool for both 
generation and documentation of a software system. Sup­
pose, for example, a software system called PGM.86 
consists of three separate programs linked together, and, 
for simplicity, that each program consists of only one 
complied source file, rather than a subsystem of multiple 
files. This relationship forms a dependency that would be 
graphed by the user as in the figure below. 

With the MAKE facility, a user can create an automated­
generation procedure for the system PGM.86 that checks 
the currency of each subprogram. A MAKE command file 
that does so Is Illustrated in the accompanying table. 

When the command file is Invoked, the commands it 
contains are executed in top-down fashion. In step 1 of 
the table, the facility first checks if the PGM.86 is older 
(represented by the greater-than sign) than any of its. 
dependent object-code modules. The facility checks and 
compares the date and time stamp of each module with 
that of PGM.86. Date and time stamps are updated auto­
matically whenever a file is modified. 

able development time can be lost trying to work some­
one else's modified modules if documentation specifying 
what, where, when, and why changes were made is not 
available. In fact, as programs become more complicat­
ed, even the module writer may not exactly remember 
the history of the module. 

Automatic documentation 

svcs provides a tool for automatic documentation of 
these facts. When a new module is created, it is set to 
level 1. All subsequent versions of the module are main­
tained with in a single file. Changes to the module are 
stored as "deltas" to the original. svcs automatically 
records what changes were made and when they were 
made, and it requires the modifier to specify a reason for 
the change. The project manager may create a software 
checkpoint at any time by declaring the module as the 
next release level; subsequent deltas will then be applied 
to only this new release level. 

Other capabilities in svcs also increase project con­
trol. Restrictions may be placed on who is allowed to 

If any of the object modules are newer versions, then 
MAKE Is instructed to link together the latest versions of 
the object modules to form the latest version of the 
software system. Before executing the link routine, the 
MAKE facility must first check to see if. any of the object 
files are older than the ,related source files given In the 
dependency graph, as shown in steps 2, 3, and 4. 

The MAKE facility goes through each step and executes 
the specified task only if the specified condition is true. 
Once the dependency graph is created, the MAKE facility 
can quickly and automatically generate the latest version 
of a software system under development even when 
source files change frequently. 

The MAKE facility removes much of the guesswork 
surrounding software-system generation by ensuring the 
latest versions of source code is incorporated into the final 
software system. The dependency graph in its current 
form can also be printed by NOS U to document the 
software-system construction without having to keep an 
out-of-date sketch taped to the laboratory wall. 

~~"''''',",'1''"'~''' "MAKE r,ROGRAM FOR PGM.86 •.• ". '00, , 

Steps Statements 

IF PGM.86 > A.OBJ, B.OBJ. C.OBJ THEN 
RUN LlNK86 A.OBJ. B.OBJ. C.OBJ TO PGM.86 
END 

IF A.OBJ > A.SRC THEN 
RUN PLM86 A.SRC 
END 

IF B.OBJ > B.SRC THEN 
RUN PLM86 B.SRC 
END 

IF C.OBJ > C.SRC THEN 
RUN ASM86 C.SRC 
END 

make changes to which modules and at which levels. An 
identification facility is also included, allowing the sys­
tem to stamp modules containing object code with ver:­
sion information. From this information alone, a user 
can determine the level of source code used to generate 
the object module and thereby determine exactly which 
level of software is current and which level is being 
executed. To aid support groups in future maintenance 
of the program, any level of a software system can be 
regenerated from the original modules. 

The second important program management tool on 
NOS-II is called MAKE, (see "MAKEing it easy to revise 
programs," above). When MAKE is invoked, a software 
system is automatically generated from the most current 
version of specific modules delineated by a dependency 
graph. MAKE ensures that the software generation is 
current and correct, while recompiling only program 
modules that need to be updated. To coincide with the 
concept of modular program development, any compo­
nent of a MAKE could invoke another MAKE to generate 
a lower-level component such as a library. 0 

Reprinted from ELECTRONICS. March 10, 1982, copyright 1982 by McGraw·Hill, Inc., with all rights reserved. 

2-27 


