mtel‘ APPLICATION AP-51
NOTE

AP-51

Designing 8086, 8088, Contents
8089 Multiprocessor wrrooucrion
SYS‘IEITIE with the BUS ARBITER OPERATING CHARACTERISTICS

8289 Bus Arbiter MULTI-MASTER SYSTEM BUS SURRENDER
AND REQUEST

8288 BUS ARBITER INTERFACING TO THE
8288 BUS CONTROLLER

8289 BUS ARBITER INTERNAL ARCHITECTURE

8086 FAMILY PROCESSOR TYPES AND
SYSTEM CONFIGURATIONS

8289 SINGLE BUS INTERFACE
IOB INTERFACE
RESE INTERFACE
INTERFACE TO TWO MULTI-MASTER BUSES
WHEN TO USE THE DIFFERENT MODES
Single Bus Multi-master Interface
I0B Mode
Resident Bus Mode

CONCLUSION

Our thanks to Jim Nadir, the author of this application note. Jimisa
design engineer in the microprocessors and peripherals operation
division. Please direct any technical questions you may have to
your local Intel FAE (Field Application Engineer).

A-112

AP-51

INTRODUCTION

Over the past several years, microprocessors have been
increasing in popularity. The perflormance improve-
ments and cost reductions afforded by LS| technology
have spurred on the design motivation of using multiple
processors to meet system real-time performance
requirements. The desire for improved system real-time
response, system rellability and modularity has made
multiprocessing techniques an increasingly attractive
alternative to the system design engineer, techniques
that are characterized as having more than one micro-
processor share common resources, such as memory
and 11O, over a common multiple processor bus.

This type of design concept allows the system designer
to partition overall system functions into tasks that
each of several processors can handle individually to
increase system performance and throughput. But, how
should a designer proceed io implement a multiproc:
essing system? Should he design his own? If so, how
are the microprocessors synchronized to avoid conten-
tion problems? The designer could put them all in phase
using one clock for all the microprocessors. This may
work, until the physical dimensions of the system
become large. When this occurs, the designer is faced
with many problems, like clock skew (resulting n bus
spec violations) and duty cycle variations.

A better approach to implementing a multiprocessor
system is not to have a common processor clock, but
allow each processor (o work asynchronously with
reapect to each other, Tha microprocessor requests o
use the multiple processor bus could then be synchro-
nized to a high frequency external clock which will per-
mit duty cycle and phase shift variations. This type of
approach has the benafit of allowing modularity of hard-
ware. When new system functions are desired, more
processing power can bea added without impacting
axisling processor task partitioning.

One approach to implemeant this asynchronous process-
ing structure would be to have all the bus requests anler
a priority encoder which samples its inputs as a fune-
tion of the higher frequency "bus clock”. The Inpuls
would arrive asynchronously to the priority encoder and
would be resolved by the priority encoder structure as to
which microprocessor would be granted the bus. An-
other approach, that used by Inlel, is rather than allow-
ing the requests to arnive asynchronously with respect
to one another at the priority encoder, the bus requesls
are synchronized first to an exlernal high frequency bus
clock and then sent to the priority encoder to be re-
solved. In this way, the resolving circuitry commaon to all
microprocessors is kept at a minimum. Overall systam
rallabllity is improved In the sense that should a circuit
which serves to synchronize the processor's request
(which Is now located on the same card as the micro-
processor itself) fail, it is only necessary to remove that
card from the system and the resl of the system will
continue to function. Whereas in the other approach,
should the synchronizing mechanism fail, the whole

syslem goes down, as the synchronizing mechanism is
located at the shared resource. In addition to the im-
proved system reliability, moving the synchronization
mechanism to the processor parmits processor control
over that mechanism, thereby permitting system Fflexi-
bility (as will be shown) which could not be reasonably
obtained by any other approach.

This synchronizing or arbitrating function was inte-
grated into the B289, a cuslom arbitration unit for the
8086, BOB8, and BOBY procassors. This note basically
describes the 8288 arbitration unit, illustrates its dif-
ferent modes of operation and hardware connect in a
multiprocessor system. Related and useful documents
are: B0B6 user's manual, B289 data sheet, Article Reprint
-55: Design Motivations for Multiple Processor
Microcomputer Systems (which discusses implement-
ing a semaphore with the MULTIBUS™) and Application
Note 28A, Intel MULTIBUS™ interfacing.

BUS ARBITER OPERATING CHARACTERISTICS

The B289 Bus Arbiter operates in conjunction with the
8288 Bus Controller to interface an B086, B0OBS, or 8089
processor to a multi-master system bus (the 8289 is
used as a general bus arbitration unit). The processor is
unaware of the arbiter's existence and issues com-
mands as though it has exclusive use of the system bus.
it the processor does not have the use of the multi-
master system bus, the bus arbiter prevents the bus
controller, the data transcelvers and the address latches
from accessing the system bus (i.e., all bus driver out-
puts are forced into the high impedance state). Since
the command was not issued, a lransfer acknowladge
(XACK) will not be returned and the processor will enter
into walt states. Transfer acknowledges are signals
returned from the addressed resource to indicate to the
processor that the transfer is complete. This signal is
lypically used to control the ready inputs of the clock
generator. The processor will remain in wait until the
bus arbiter acquires the use ol the muiti-master system
bus, whereupon the bus arbiter will allow the bus con-
traller, the data transcelvers and the address latches to
access the system bus. Once the command has bean
issued and a data transfer has taken place, a transfer
acknowledge (XACK) is returned to the processor, The
processor then complates its transfer cycle. Thus, the
arbiter serves to multiplex a processor (or bus master)
onto a multi-master system bus and avoid contention
problems between bus masters.

Since there can be many bus masters on a multi-master
system bus, some means ol resolving priority betwean
bus masters simultaneously requasting the bus must be
provided. The 8289 Bus Arbiter provides for several
resolving technigues. All the techniques are based on a
priority concept that at a given time one bus master will
have priority above all the resl. These technigues in-
clude the parallel priority resolving techniques, serial
priority resolving and rotating priority technigques.

A-113

AP-51

A parallel priority resolving technique has a separate
bus request (BAEQ) line for each arbiter on the multi-
master bus (see Figure 1). Each BREQ line enters into a
priority encoder which generatas the binary address of
the highest priority line which is active at the
inpuls. The output binary address is decoded by a
decoder to select the corresponding BPRN (bus priority
in) line 10 be returned to the highest priority requesling
arbiter, The arbiter receiving priority (BPHN active low)
then allows i1s associated bus master onto the multl-
master system bus as soon as it becomes avallable (I.e.,
it is no longer busy). When one bus arbiter gains priority
over another arbiter, it cannot immediately seize the
bus, It must wall until the present bus occupant com-

pletes its transfer cycle. Upon completing its transfer
cycle, the present bus occupant recognizes that it no
longer has priority and surrenders the bus, releasing
Bugs_ BUSY is an active low OR-tied signal line which
goes to every bus arbiter on the system bus. When
BUSY goes high, the arbiter which presently has bus
priority (EPHN active low) then seizes the bus and pulls

low to keep other arbiters off the bus. (See
waveform timing diagram, Figure 2.) Note that all multi-
master system bus transactions are synchronized to the
bus clock (BCLR). This allows for the parallel priority
r@solving circuitry or, any othar priority resolving
scheme employed, time {0 seltle and make a correct
gdecision,

TaT48 Ta128
. PRIORITY ATON
ENCODER DECODEN

BUS
ARBITER

BUS
ARBITER

S——
e
i

\
(

L s g

“g“"

Figure 1. Paralial Priority Resolving Technigus

" o\ \ L

B @}/

1) HMGHER PRIORITY BUS ARBITEN REQUESTS THE MULTH-MASTER SYSTEM BUS.

ATTAING PRIORITY

LOWER PRIORITY BUS ARBITER RELEASES BUSY.
HIGHER PRIGAITY BUS ARBITEN THEM ACOUIRES THE BUS AMD PULLS BUSY DOWMN

Figure 2. Highes Priority Arbiter Oblaining The Bus From A Lower Priority Arbiter

A-114

AP-51

A serial priority resolving technigue eliminates the need
for the priority encoder-decoder arrangement by daisy-
chaining the bus arbiters together, This is accomplished
by connecting the higher priority bus arbiter's BPRO
(bus priority out) output to the BPRN of the next lower
priority (see Figure 3). The highest priority bus arbiter
would have its BPRN line grounded, signifying to the ar-
biter that it always has highest priority when requesting
the bus.

HIGHEST PRIORITY

BUS ...ﬂ," i
AHEqI-T ERh BFRO J_~

E; s EBRN
AABITER BERED

i

1

BUS
ARBITER
3

M
y
@
3
o

pore BPRN
/ (; ARBITER | apro

THE HUMBER OF ARBITERS THAT MAY BE DAISY-CHAINED
TOGETHER IM THE SERIAL PRIORITY RESOLVING TECH-
MIQUE IS A FUNCTION OF BCCK AMD THE PROPAGATION
DELAY FROM ARBITER TD ARBITER. NORMALLY, AT 10 MHr
OMLY 3 ARBITERS MAY BE DAISY-CHAIMED. SEE TEXT.

Figure 3. Serial Priority Resolving

A rotating priority resclving tlechnigue arrangement is
similar to that of the paraliel pricrity resclving technique
except that priority is dynamically reassigned. The pri-
ority encoder i1s replaced by a more complex circuit
which rotates priority between requesting arbiters, thus
guaranteeing each arbiter equal time on the multi-
masiter system bus.

There are advantages and disadvantages for each of the
techniques described above. The rotating priority re-
solving technique requires an extensive amount of logic
to implement, while the serial technigue can accommao-
date only a limited number of bus arbiters before the
daisy-chain propagation delay exceeds the multi-master
system bus clock (BCLK). The parallel priority resolving
technigue is, in general, the best compromise. It allows
for many arbiters to be present on the bus while not
requiring much logic to implement.

Whatever resolving technigue is chosen, it is the
highest priority bus arbiter requesting use of the multi-
master system bus which obtains the bus. Exceptions
do exist with the B289 Bus Arbiter whare a lower priority
arbiter may take away the bus from a higher priority ar-
biter without the need for any additional external logic.
This is accomplished through the use of the CBRQ pin,
discussed in a |ater section.

MULTI-MASTER SYSTEM BUS SURRENDER AND
REQUEST

The 8289 Bus Arbiter provides an intelligent interface to
allow a processor or bus master of the BO86 family to ac-
cess a multi-master system bus. The arbiter directs the
processor onto the bus and allows both higher and
lower priority bus masters to acquire the bus. Higher
priority masters obtain the bus when the present bus
master utilizing the bus completes its transfer cycle (in-
cluding hold time). Lower priority bus masters obtain
the bus when a higher priority bus master is not
accessing the system bus and a lower priority arbiter
has pulled CBRQ low. This signifies to the arbiter
presently holding the multi-processor bus that a lower
priority arbiter would like to acquire the bus when it is
not being used. A strapping option (ANYRQST) allows
the multi-master system bus to be surrenderad to any
bus master requesting the bus, regardless of its priority.
If there are no other bug masters requesting the bus, the
arbiter maintains the bus as long as its associated bus
master has not enlered the HALT state. The 8280 Bus
Arbiter will not valuntarily surrender the system bus and
has to be forced off by another bus master. An excep-
tion to this can be obtained by strapping CBRQ low and
ANYRQST high. In this configuration the B289 will
release the bus after each transfer cycle.

How the B289 Bus Arbiter is configured determines the
manner in which the arbiter requests and surrenders the
system bus. If the arbiter is configured to operate with a
processor which has access to both a multi-master
system bus and a rasident bus, the arbiter requests the
use of the multi-master system bus only for system bus
accesses (i.e., it is a function of the SYSB/RESB input
pin). While the processor is accessing the resident bus,
the arbiter permils a lower priority bus master to seize
the system bus via CBRQ, since it is not being used. A
processor configuration with both an IfO peripheral bus
and a system bus behaves similarly. If the processor is
accessing the peripheral bus, the arbiter permits the
surrendering of the multi-master system bus to a lower
priority bus master. To reguest the use of the multi-
master system bus, the processor must perform a
system memaory access (as opposed to an /O access).

The arbiter decodes the processor status lines to deter-
mine what type of access is being performed and be-
haves correspondingly. For simpler system config-
urations, such as a processor which accessas only a
multi-master system bus, the arbiter requests the use of
the system bus when it detects the status lines In-
itlating a transfer cycle. The decoding of these status
lines can be referenced in the BOB6, BOEB (non-110 proc-
essor) data sheets or the BO8B9 (/O processor) data
sheeat,

There is one condition common to all system configura-
tions where the multi-master system bus is surrendered
to a lower priority bus master reguesting the bus by pull-
ing CBRQ low. This is the idle or inactive state (T1) which
is unigue to the 8086 and 8088 processor family. This Tl
state comes aboul due to the processors ability to
fetch instructions in advance and store them intarnally
for quick access. The size of the internal queue was op-
timized so that the processor would make the most &f-

A-115

AP-51

fective use of its resources and be slightly execution
bound. Since the processor can fetch code faster than it
can execute if, it will fill to capacity its internal storage
queue. When this occurs, the processor will enter into
idle or inactive states (Tl) until the processor has ex-
ecuted some of the code in the storage queue, Once this
occurs, the processor will exit the Tl state and again
start code fetching. Between entering into and exiting
trom the Tl state an indeterminate number of Tl states
can occur during which the bus arbiter permits the sur-
rendering of the multi-master system bus to a lower
priority bus master. As noled earlier and worth
repeating here, once the 8289 Bus Arbiter acquires the
use of the multi-master system it will not voiuntarily sur-
render the bus and has o be forced off by another bus
master. This will be discussed in more detail later.

Two other signals, LOCK and CRQLCHK (Figure 4), lend
to the flexibility of the B289 Bus Arbiter within system
configurations. LOCK is a signal generated by the proc-
gss0r to prevent the bus arbiter from surrendering the
multi-master system bus to any other bus master, either
higher or lower priority. CROLCK (common request lock)
serves to prevent the bus arbiter from surrendering the
bus to a lower priority bus master when conditions war-
rant il. LOCK is used for implementing software
semaphores for critical code sections and real time

critical eventls (such as refreshing or hard disk

transfers).

8288 BUS ARBITER INTERFACING TO THE 8288
BUS CONTROLLER

Once the 8289 Bus Arbiter determines to either allow its
associated processor onto the multi-master system bus
or lo surrender the bus, it must guarantee that com-
mand setup and hold times are not violated. This is a
two part problem. One, guaranteeing hold time and two,
guaranteeing setup time. The 8288 Bus Controller per-
forms the actual task of establishing setup time, while
the 8289 Bus Arbiter establishes hold time (see Figure
5).

The B289 Bus Arbiter communicates with the 8288 Bus
Controller via the AEN line. When the arbiter allows its
associated processor access fo the multi-master sys-
tem bus, it activates AEN. AEN immediately enables the
address l|latches and data transceivers. The bus con-
troller responds to AEN by bringing its command output
buffers oul of high impedance state but kKeeping all
commands disqualified until command setup time is
established. Once established, the appropriate com-
mand is then issued. AEN is brought to the faise state
after the command hold time has been established by
the arbiter when surrendering the bus.

GLE

[\ /_

(oCw

— /‘F N
20 na—- f.,_ .
§ /

/

LOCK TIMING

THE DMLY CRITICAL LOCE TIMING |15 THAT SHOWN ABOVE. LOCE MUST BE
ACTIVATED HO SOONER THAN 20 ns INTO .4 AND KO LATER THAN 40 ns
PRIGR TO THE END OF o DOCE INACTIVE HAS MO CRFTICAL TIMING AND

CAN BE ASYHCHAONOUS

CROLEK HAS MO CRITICAL TIMING AND IS CONSIDERED A% AN

AGYHECHRGHOUS INPUT SMGNAL.

Figure 4. Lock Timing

AFH

{B2ag)

"

=

—— GETUP ———

Okl AN D
ACTIVE

LEL

FLOAT

“ADDRESS

T\ T\

HOL D
TIME

[Lrl FIr]
CONTROLLED BY
AEM FROM E260

X

"ADDRESEES ARE ACTIVATED IMMEMATELY WHILE COMMAND |5 DELAY

T ESTABLISH SETUF TIME REQUIREMEMNTS.
**THE BJ8% ARBITER INTERHALLY TRACKS THE PAOCESSON CYCLE TO

ESTABLISH THE PROPER AMOUNT OF MOLD TIME AFTER THE COMMAND

HAS GOMNE IHACTIVE

Figure 5. Single Bus Inlerface Timing

A-116

AP-51

8289 BUS ARBITER INTERNAL ARCHITECTURE bus is requested later in order to allow time for the
sYSB/AESE input to become valid. For systems which
access a peripheral bus, the arbiter issues a reques! for
the system bus only for memaory transfer cycles which it
decodes from the status lines (and time musl be al-
lowed for the status lines to become valid and then de-
coded). In a system which accesses only a multi-master
system bus, a request is made as s0on as the arbiter
detects an active-going lransition on the processor's
stalus lines. Thus, when the processor initiates a
transfer cycle, the FETG is triggered inlo operation and,
depending upon what mode the arbiter is configured in,
the STATUS & MODE DECODE circuitry initiales a re-
quest for the system bus at the appropriate time. The re-
quest enters the BREQ SET circuitry where it is then
synchronized to the multi-master system bus clock
(BCLK) by the PROCESSOR SYNCHRONIZATION cir-
cuitry.* Once synchronized, the multi-master syslem
bus interface circuitry |S5ues a BAEQ. When the priority

A block diagram of the internal architeclure of the B289
Bus Arbiter is shown in Figure 8. It is useful to under-
stand this block diagram when discussing the dilferent
modes of the 8289 and their impact on processor bus
operations; however, you may want 10 skip this section
to “'BOBE family processor types and system configura-
lions'' and return to it afterwards, as this section ad-
dresses the very involved reader. The front end state
generator (FETG) and the back end state generator
(BETG) allow the arbiter to track the processor cycle. An
axamination of an 8086 family processor state timings
show that all command and control signals are issued in
states T1and T2 while being terminated in states T3and
T4, with an indeterminate number of wait states (Tw) oc-
curring in between. Note further, that an indeterminate
number of idle or inactive states can occur immediately
proceeding and following a given transfer cycle, Since

i r i t it
an indelerminate number of wait states can occur, two resolving circuitry returns a BPRN (bus oriority In), the

state generators are required; one to generate conirol

signals (the FETG) and one to terminate control signals PROCEESOR .EWCHHGHIEAT"D” {:ircqitw_ga_izun the

(the BETG). The FETG is triggered into operation when b!.m the next time it becomeas availabie {l-eq_ BUSY goes

the processor activates the siatus lines. The FETG is high) by putlingkius? low one B ELH‘.EH.‘W ; gm high
! and the BETG is triggered into operation by the and enables AEN. (See waveform timing diagram In

: : B Figure 2). Once the arbiler acquires the use of the
status lines going to the passive condition. The BETG is
resel when the status lines again go active. system bus and a data exchange has laken place (a

transfer acknowledge, XACK, was returned to the proc-
It is necessary for the 8289 Bus Arbiter o track the proc- essor), the processor siatus lines go passive and the
essor in order that it is properly able to determine where
and when to request or surrender the use of the multi-

*Due 10 the asynchronous naluie ol processor trasnsier request 10 Iha

master system bus. In system configurations which ac- multi-master system bus clock, il is necessary to synchronize [he proc:
cess a resident bus, the use of the multi-master system essor's iransler request to BOLK,
BCLK
PROCESSOR WL T MASTER BHED
BREG SET SYMCHRONZATION SYSTEM BUS LAl
CIRCUTRY CIRCUITRAY INTERFACE FUSY
[10 s]
MMS* BUS BREG
SYNCHRONIZATION | RESET
CIRCUITAY DECODER
PROCESSOR
STATUS & MOVE]
STATUS
Papdd gl DECODE j::)
BRED
RESET
WINDOW
CONTROL 1
BUS
FETG =] CONTROLLER - KN
INTERFACE
“MMS = MULTEMASTER SYSTEM
Figure 6. 8280 Bus Arbiter Block Diagram
= ——

A-117

AP-51

BETG is triggered into operation. The BETG provides
the timing for the bus surrender circuitries In the avent
that conditions warrant the surrender of the multi-
master bus, |.e., the bus arbiter lost priority to a higher
bus master or the processor has entered into T states
and CBRQ is pulled low, etc. If such is the case, the
BREQ RESET DECODER initiates a bus surrender re-
quest. The bus surrender request is synchronized by the
MMS BUS SYNCHRONIZATION CIRCUITRY to the proc-
assor clock. The MMS BUS SYNCHRONIZATION CIR-
CUITRY Instructs the bus controller interface circuitry
to make AEN go false and resets the BREQ SET cir
cuitry, Resetting the BREQ SET circuitry will cause its
output to go false and be synchronized by the processor
synchronization, eventually instructing the MULTI-
MASTER SYSTEM BUS INTERFACE circuitry lo resel
BREQ. In the event that a lower priority arbiter has
causad the arbiter to surrender the bus, it Is neceasary
that BREQ be reset. Resetting BREQ allows the priority
rasolving circuitry to generate BPRN to the next highest
priority bus master requesting the bus. The BREQ
RESET WINDOW circuitry provides a ‘window’ wherein
the arbiter allows the multi-master system bus 1o be Sur-
rendered and serves as part of the MMS bus-processor
synchronization circuitry.

8086 FAMILY PROCESSOR TYPES AND
SYSTEM CONFIGURATIONS

Thare are two types of processors in the B0BG lamily —
an /O processor (the 8089 IOP) and a non-l/Q procassor
(the BOBG and 8088 CPUs). Consequently, there are two
basic operating modes in the 8289 Bus Arbiter. One, the
108 (WO peripheral bus) mode, permits the processor ac:
cess to both an /O peripheral bus and a multi-master
system bus. The second, the RESB (residen{ bus) mode,
permits the processor to communicate over both a resi-
dent bus and a multi-master system bus. Even though il
is intended for the arbiter to be configured in the I0B
mode when interfacing to an /O processor and for it to
be in the RESB mode when interfacing to a non-1/O proc-
essor, il is quite possible for the reverse 1o be true. Thal
is, It is possible for a non-l/O processor to have access
to an /O peripheral bus or for an IO processor to have
access to a resident bus as well as access to a multi-
masler system bus. The |IOB strapping option con-
figures the B289 Bus Arbiter into the I10B mode and
RESBE strapping option configures it into the resident
bus mode, | both strapping options are strapped lalse,
a third mode of operation is created, tha single bus
maoda, in which the arbiter interfaces tha processor to a
multi-master system bus only. With both options strap-
ped true, the arbiter interfaces the processor 10 a multi-
master system bus, a resident bus and an /O bus.

To better understand the 8289 Bus Arbiter, each of the
operating modes, along with their respective limings,
are examined by means of examples. The simplest con-
figuration, the Single Bus Configuration, (both 0B and
RESB strapped inactive) will be considered first, fol-

lowed by the /O bus Configuration and the Resident
Bus Configuration. Finally, brief mention is made of a
configuration that allows the processor to interface to
iwo muiti-master system buses. This particular con-
figuration is briefly mentioned because, as will be seen,
it is simply an extension of tha resident bus configura-
tion. When discussing the Single Bus Configuration,
processorfarbiter, arbiter/system bus and internal ar-
biter, considerations are made resulting in a table that il-
lustrates overhead in requesting the system bus. As this
applies to the other 8289 configurations, only additional
considerations will be given. A summary of when to use
the ditferent configurations is given at the end.

8289 SINGLE BUS INTERFACE

Figure 7 shows a block diagram of a bus master which
has to interface only to a system bus — preferably the
MULTIBUS — where thare axists more than one bus
master. In later configurations, it will be shown how the
processor can be made 1o interface with more than one
bus. Since the processor has only Lo interface with one
bus, this configuration is called “single”.

Connecling the 8289 Bus Arbiter 10 the processor is as
simple as it was to connect the 8288 Bus Controller.
Namely, the three status lines, S0, 51, and S2 are
directly connected from the processor to the arbiter.
The clock line from the 8284 Clock Generator is brought
down and connecled. (Note that both the 8288 Bus Con-
troller and the 8289 Bus Arbiter are connected to the
same clock, CLK and not the peripheral clock, PCLK as
lhe BOB6 processor.) From the arbiter, AEN Is con-
nected to the bus controller and to the clock generator.
The OB pin on the arbiter is strapped high and on the
controller the I0OB pin is strapped low. In addition, the
RESB pin on the arbiter is strapped low, finishing the
processor interface.

Some flexibility exists with the MULTIBUS or multi-
master system bus interface. The syslem designer must
first decide upon the type of priority resolving scheme
to be employed, whether it is to be the serial, parallel, or
rotating priority scheme. A rolating priority scheme
would be employed whera the system designer would
wan! to guarantee that every bus master on the bus
would be given time on the bus. In the serial and parallel
schames, the possibility exists that the lowes! assigned
priority bus master may not acquire the bus for long
periods of time. This occurs becausa priority is perma-
nently assigned and if bus demand ia high by the higher
assigned priorities, then the lower priorities must wait.
In most cases, this situation is acceplable because the
highest priority is assigned to the bus master that can-
not wait. Highest priority Is usually assigned to DMA
type devices where service requiraments occur in real
time. CPUs are assigned the lower priorities. For the
purpose of this discussion, the parallel priority scheme
will be used with brief reference 10 the senal priority
scheme.

A-118

AP-51

r—_---—“"——”—--d-h—--“—&_--_--__--_--j

LOCAL BUS

o

5 S

52
LoEK

I #
S *111 —]_ Ifill i

E’E 8 {3 L g Ilﬁﬂa.gg - Ei
s s | [EEEEEZsiff

r'"“i'c“'"'";

Figure 7. Single Multimasier Bus Inlerface

Figure 8 shows how a typical multi-processing system
might be configured with the 8289 in the Single Bus
mode, In the system there are three bus masters, each
having the assigned priority as indicated—priority 1
being the highest and priority 3 being the lowest. Prior-
ity is established using the parallel priority scheme
{ignore the dotted signal interconnact for the momant),
Each bus arbiter monitors its assoclaled processor and
issues a bus reques! (BREQ) whenever its processor
wants the bus. A common clocking signal (BCLK) runs
to each of the arbiters in the system. It is from the fall-
ing edge of this clock that all bus requests are issued.
Since all bus requests are made on the same clock
edge, a valld priority can be astablished by tha priority
resolving circuitry by the next falling K edge. Note
that all multi-master system bus (MULTIBUS) input sig-
nals are considered to be valid at the falling edge of
BCLK. And that all multi-master system bus output
signals are issued from the falling edge of BCLK. With
the parallel resolving module, arbiters 2 and 3 would
issue thelr respective BREQs (Figure 9) on the fallin

edge of BCLK 1, as shown. The outputs (EPRAN 1, ﬁﬁ'ﬁﬂ
2. and BPAN 3) of the priority encoder-decoder arrange-
mant change to reflact their new Input conditions and
need to be valid early enough in front of BCLK 2 to
guarantee the arbiter's setup time requirements, Since
arbiter 2 at the time is the higheast! priority arbiter re-
questing the bus, bus priority is given 1o arbiter 2 (BPAN
2 goes low), and since the bus was not busy (BUSY is
high) at the time priority was granted to arbiter 2, arbiter
2 pulls BUSY inactive on BCLK 2, thereby seizing the
bus and excluding all other arbiters access to the bus.
Once the bus is seized, arbiter 2 activates its AEN. AEN
going low directly enables the 8283 address latches and

wakes up the B288 Bus Controller. The bus controllar
enables the B287 transceivers, waits until the addrass to
command setup time has been established, and then
enables its command drivers onto the bus.

If the seria! priority resolving mode was used instead,
much of the events that happened for the parallel prior-
ity resolving mode would be the same except, of course,
there would be no parallel priority resolving module. In-
stead, the system would be connected as indicated in
Figure B by the dotted signal lines connecting the BPRO
of one arbiter to BPRN of the next lower priority arbiter.

The BREQ lines would be disconnected and the priority
encoder-decoder arrangement removed. This arrange-
mant is simpler than the parallel priority arrangement
excep! that the daisy-chain propagation delay of the
highest priority bus arbiter's BFRO to the lowest priority
bus arbiter's . Including setup time requirement
(BPRN to BLCK), cannot exceed the BCLK period. In
short, this means there are only s0 many arblters that
can be daisy-chained for a given BCLK frequency. Of
course, the lower the BCLK frequency, the more arbiters
can be daisy-chained. The maximum BCLK frequency is
specified at 10 MHz, which would allow for thraa 8289
arbiters to be daisy-chained. In general, the number of
arbiters that can be connected in the serial daisy-chain
configuration can be determined from the following
aquation:

BCLK period = TBLPOH + TPNPO (N-1) + TPNBL

whera N = ¥ of arbiters in system

A-119

AP-51

spow sng oBuis u) 6828 Y weisig Buissasosdyng g sunfg

|

]
I
|
al
{
|
|
I
sk
o e e S — - —
P
L LR
iz a .
i
=2
|
|

s
<5 l_!l
|
|
S
=] |
I
]
e o i s i . i i e . s

LS

T A
T _
_I.I..I.r e —— e — e —— — —— R e — —— o e e - e e e e e i o ey
III.I-lI.I..l-III_r....lll o —— — — e o — = —— . — ey —IIIIIIIIIL —] e e oEmm s s | e o e e | | e e e — —
P 71 =11 s :

if EIHIT ._lu]~ . LT Y =

- iy - — o e s " HE o [
mmmuunl ol T Y R i3 :mm. mmmuuu MY Epaw O | | B
v | N vitl T

:#C::
l
|
= g S]
-

-——————--—-—------—-1
L
L)

- S - S i S i —

|

i

;
i

L---_--—--dll AN N S .

A-120

AP-51

2 w1

~ILIE

m

p— g

ELL

§REG
ARBITER #3

. =
Y]
I
ARBITER #2 j L i
)

4 = ak; { 4y
BFTS
ARBITER 21 .
iMNVALID" MW ALID ' " IH'HM.IH :lﬂ:.un
—\
EFHR
ARBITER »2
INVALID® INVALID INVALID V= waLo
4 — | A% .
(L0617
ARBITER #3
IMYALID" IMYALID IMWALID INYALID
ARBITER ¥1
e \ ARBITER &3 IH hl { lt‘ ARBITER ¥3

—

P —

1

*DECODING GLITCHES ARE PERMITTED

L
a

Figure 8. Example Timing For Figure B

Returning to Figure 9, it can be seen that K BCLKs later,
arbiter 1 has decided to request the bus and its BREG,
BREQ 1, has gone low. Since arbiter 1 is of higher priori-
ly than arbiter 2, which presently has the bus, bus priori-
ty is reassigned Dy the prionity module (or the daisy-
chain approach in the serial priority) to arbiter 1. BPAN 1
goes low and BPAN 2 now goes high (BPAN 3 remains
high, even though decoding can cause it to glitch
momentarily). The loss of priority instructs arbiter 2 that
a higher priority arbiter wants the bus and that it is to
release the bus as soon as its present transfer cycle is
done. Since arbiter 2 cannot immediately release the
bus, arbiter 1 must wail. In the particular case illustrated
in Figure 9, arbiter 2 releases the bus (allows BUSY to go
high) on clock edge M, and on clock edge M + 1, arbiter 1
now seizes the bus, pulling BUSY low. Arbiter 1 is the
highest priority arbiter in the system and it now has the
bus. Arbiters 2 and 3 still want the bus (their BREQs are
both low).

How quickly arbiter 1 can acquire the bus is dependent
upon the conlfiguration and strapping options ol the ar-
biter it is trying to acquire it from, For axampla, if the

input to arbiter 2 was active (low) at the time, then
arbiter 1, even though it was of higher priority, would not
have acquired the bus until after LOCK was released
{goes high). Effectively, LOCK locks the arbiter onto the
bus once the bus has been acquired. LOCK will not
force another arbiter 10 release the bus any sooner, it
just prevents the bus from being given away no matter
what the prniority of the other arbiter. Another factor 1o
be considered is where in the transfer cycle is the proc-
@ss0r when the arbiter 18 instructed (0 give up the bus.
Obviously, it the cycle had just starled, il will take
longer for the bus to be released than if the cycle was
|ust ending. Another factor to be included in this con-
sideration is the phase relationship of the processor's
clock (CLK) to the bus clock (BCLK), This relationship is
examined in more detail later on. Table 1 lists the time

A-121

AP-51

requirements for various arbiter actions such as bus ac-
quisition and bus release (under LOCK and other
circumstancas) taking into account the phasa ralation-
ships between CLK and BCLK.

Bus Request (BREGI) | Mods m | :..," |
Sislus=BREQ| Single z 8Os 1 BETR
Status - BREC! (] -] E_m* Lﬁ: 2
Statun— BREQ! RESB z_m; ‘_ﬁfg:“"
Status—BREQI OB FESE fﬁ'ﬁ; ;m: v |

*Requast originatas off af a2 of T1 and BREG! occurs 1 BELK (min)
102 BCLKs (mas) tharaaftar. Depanding upon whare s1&1US SOCUrE
with réspact 1o clock determines how long a lima axists Dalwaen
sialus and 42 of T1, and is anywhera from Vo CLK (min) o 1 CLE
el TN

tRequeat originates off of T2.s1 and BREQ | occurs 1 BCLK iminjto
2 BCTKs (max) thersatter. The same reasoning as used in the OB
mode is valid hare.

_— I —

Delay Delsy |
Bus Rolosse ARQT) | Mode | ey Min)
. Z2CLEEs = | CLK =
qu P"ml'r -[HFHH] Al I 2 m "
i 2 CLKs < 1 CLK #
Lower Priority (CBRO !} All | 2 BLKs) BELR
Surrender oours once The proper surrender conditions axistl,

Tabla 1. Surreander and Request Time Delays

One signal which has been basically ignored to this
point |s CBRG. CBRQ, like BUSY, is an opan-collector
signal from the arbiter which Is tied to the signals
of the other arbiters and to a pull-up resistor (see Figure
8). CBRQ is both an input and an output. As an output,
CBAQ serves to instruct the arbiter presently on the bus
that another arbiter wishes to acquire the bus. As an in-
put, m servas to instruct the arbiter presantly on the
bus that another arbiter wants the bus. ﬁ%ﬁ isan input
or output, dependant on whether the arbiter |s on the
bus or not (respectively), and is issued as a function of
. Thus, a lower priority arbiter requesting the bus
already controlied by a higher priority arbiter will pull
low, as well as BREQ. Even a higher pricrity ar-
biter will pull EBRQ low until it acquires the bus. Note,
howaver, that the higher pricrity arbiter will acquire the
bus through the reassignmant of priorities — It belng
given priority and the other arbiter prasently on the bus
losing It. In effect, CBRQ serves to notify the arbiter that
an arbiter of lower priority wants the bus.

It the arbiter prasently on the bus is configured to react
to CBAQ and the proper surrender conditions exist, the
bus is releasad. When releasing tha bus, the arbiter also
turns off its BREQ (BAEG goes high) in order to allow
priority to be established to the next lower arbiter re-
questing the bus. Such is the case shown in Figure 9.
Whereas it was assumed that the proper surrender con-
ditions did not exist for arbiter 2 when it had tha bus, It
is assumed that the proper conditions do exist during
the timea that arbiter 1 has the bus. Arbiter 2 had to give
up the bus because an arbiter of higher priority was re-

guesting it. Arbiter 1 surrendara the bus bacause the
proper surrender conditions exist and a lower priority ar-
biter requested the bus by pulling ZBAG low. This is an
assumed condition which Is not otherwise shown in
Figure 9. This is not an unrealistic condition. Normally,
a higher priority arbiter will acquire the bus through the
reassignment of priorities, while lower priority arbiters
acquire the bus through CBRG.

Digressing for a moment, the B289 Bus Arbiter will not
voluntarily surrender the bus (except when the proc-
essor halts execution), As a result, it has to be forced off
the bus, The 8289 Bus Arbiter does not generate a BREQ
for each cycle. It generates a BREQ once and then
hangs onto the bus. To do otherwise would raquire that
B be dropped (go high) aftter each transfer cycle so
that if it did need to do ancther transfer cycle, another
arbiter would automatically be assigned priority, This
approach, however, entails certain overhead. Command
to address setup and hold time must be prefixed and ap-
pended to each transfer cycle. Each transfer cycle
would be characterized by lirst acquiring the bus, then
establishing the setup time requirements, finally per-
forming the transfer cycle, astablishing the hold time re-
quirements, and then releasing the bus (see Figure 10).
It another transfer cycle was o immediately follow and
If the arbiter still had priority, then the whole above pro-
cedure would be repeated. The end result would be
wasted time as hold times following setup times (see
Figure 10A). The approach taken by the B289 Bus Arbiter
of having to be forced off the bus, even when it is not
using the bus (i.e., forced off by a lower priority arbiter),
provides for greater bus efficlency. A lower priority ar-
biter having to force off ancther arbiter thal Is not using
the bus but just hanging on to It, may not seem very effi-
clent. In actuality it is a good trade-olff. In many multi-
master systems some bus masiers occasionally de-
mand the bus, while others demand tha bus constantly.
The bus master which constantly demands the bus may
momentarily need not to access the bus. Why should
that arbiter surrender the bus when chances are that the
other bus mastars which occasionally access the bus
don't want it at tha time? I it doesn't give up the bus,
then it can momentarily cease access to the bus and
then continue, without any parformance panalty of hav-
ing to reestablish control of the bus. The greater bus ef-
ficlency that it affords is well worth the added complexi-
ty (Figure 10B).

Returning to Figure 9, the combination of the proper sur-
render conditions existing and baing low, forced
the higher priority arbiter, arbiter 1, off the bus. Arbiter
2, baing of next higher priority and wanting the bus, ac-
guired the bus on clock edge N+ 1. |f arbiter 1 decides
to re-access the bus, it would reacquire the bus through
the reassignment of priorities, This is not the casa
shown in Figure 9. Arbiter 1 has decided that it does not
need the bus and doas not renew its BREQ. Arbiter 2,
having acquired the bus through CBRQ, is now the
highest priority arbiter requesting the bus. As can be
saan it is not the only arbiter reaquesting the bus. Arbiter
3 is still patiently waiting for the bus and CBRQ remains
low. The same conditions that forced arblter 1 off the

A-122

AP-51

bus for arbiter 2 now lorces arbiter 2 oft the bus for ar-
biter 3, When the proper surrender conditions exist, ar-
biter 2 releases its BREQ and surrenders the bus to ar-
biter 3. Arbiter 3 uires the bus on clock edge P+ 1
and releases its C . Since no other arbiter wants the
bus (i.e., there is no other arbiter holding CBRQ low),
C goes high (inactive). This would have also been
true when arbiter 2 acquired the bus and released |ts
CBAG if arbiter 3 didn’t want the bus.

In the Single interface, the arbiter monitors the proc-
essor's status lines, which are activated whenever the
processor performs a transfer cycle. The arbiter, on
detecting the status lines going active, will issue a
BREQG If the status is not the HALT status. If the proc-
assor issues the HALT status, the arbiter will notl re-
quest the bus, and i it has the bus, will release it.

This effectively concludes how arbiters interact to one
another on the bus, Having examined the processor-to-
arbiter interface, and arbiter-to-MULTIBUS (arbiter-to-
arbiter) interaction, one interface Is left, the intermnal
interface of processorrelated signals to that of
MULTIBUS-related signals.

An important point to remember s that the processor
has its own clock (CLK) and the multi-master system
bus has its own (BCLK). These two clocks are usually
out of phase and of dilferent frequencies. Thus, the ar-
biter must synchronize evenis occurring on oné inter-
face to evenis occurring on another interface. As a
result of this back and forth synchronization, ambiguity
can arise as to when events actually do take place.

Very simply, the 8289 arbiter operation can be repre-
sented as lwo evenls, requesting and surrendering.
Figure 11 is a representation of the timing relationships
involved. The request input is a function of the proc-
essor's clock and the surrender input is a function of
either the bus clock or the processor's clock. To request

the bus, the processor activates its status lines which in
turn enables the reguest inpul, Depending upon the
phase relationship belween the occurrence of status (re-
quest active) and BCLK, BREQ appears one 1o two
BCLKs later. As shown in Figure 12, the phase relation-
ship between request and BCLK Is such that the BRQ1
flip-flop may or may not calch request on the first

BCLK.

It BRQ1 flip-flop does catch the request, then one BCLK
later, BREQ goes low and one BCLK after that, BUSY
goes low (it is assumed that priority is immaediately
granted and that the bus is available). If BRQ1 flip-flop
does not calch the request, then request Is caught on
the next BCLK and BREQ goes low one BCLK later, fol-
lowed by BUSY which also goes low one BCLK later.
Nole that BREQ and BUSY track, as BREQ is an input
term for BUSY. During bus acquisition, the surrender
%ﬂp is false (SURNDR Q= low) and AEN follows
B .

Once the bus Is acquired, the surrander circuitry is
enabled so that when a valid surrender condition exists,
tha bus can be surrendered. The surrender circulitry syn-
chronizes the surrender request to the processor's
clock and drives SURNDRA low. Like the acquisition cir-
cuitry, it takes from one to iwo processor clocks lo gen-
egrate SURNDR and depends upon the phase relation-
ship between the surrender request and the processor's
clock.

*The two bus requist lip-flops, BRQ1Y and BRO2, are adge-Iriggerad,
high resolution flip-Nops and serve 1o reduce Lhe probability of walkoul
down io an saccepiable level, Walkou! occurs because BLLK is asyn-
chronous with respect o request. If walkoul does occur on BRO Nip-
fag, the probability s Righ that tha BROY Hip-flop will esohe itsall
prior 1o BRQ2Z flip-llep being triggerad. Even if BRO1 llip-flop did not
gulle resalve itsall, tha probability of BRGQ2 ip-flop walking aut to an
unacceplable paint in lime s itselfl low

BET UP
TimE

TAANSFER
CYCLE

HOLD
TIME

X“T'”'X'““'"X Howo Xsn MXT...;;;T“X woLo Xm u-xm.,.;.}(WoLD Xm u:x

SET-uF J TRANRFIR § TRANSFER

TRAMBEER

TRAMEFER

X

ap BUS UTILEFATION AS A RESULT OF HAVING TO BECUEST AND RELEASE THME BUSs
FOR EACH TRANSFER CYCLE THIS PERMITE LOWER PRIORITY ARBITERS FASY
ACCERS Y0 THE BUS SHOULD THE HGHER PRIOMNITY ARBITER MO LONGER HEED
THE BUS HWOWEVER, BUS EFFICEENCY IS PDOR DUE TD THE ARBITER THRASING DN
ANO OFP OF TRE BUS FOR FACH TRANSFER CYOLE

B BI8E BUS UTELITATION IS BORE EFFICIENT il THAT THE ARBITER HAS ONLY TO
ACOUME THE BUS ONCE THE 5289 MANGS ONTO THE BUS UNTIL FORCED OFF
THIS APPROACH ADDS & LITTLE MORE COMPLERITY TO THE SYSTEM IMASMUCH AS
EOME MEANS MUST BE PADVIDED FOR LOWER PRICRITY ARBITERS YO FORCE THE
HEOHEN PRIDRITY ARBITER OFF OF THE BUS WHEN 1T 158 MOT USING IT. THE ADDED
COMPLEEITY |5 WELL WORTH THE BIFS EFFICIENCY AND SYSTEM FLEXI®ILITY IT
AFFORDE THE a285 ARBITEA CAN BE CONFIGURED 7O HAVE THE TRANEFER TINING
AS BHOWN I8) OMITATERD THE SETHOD B AND B3 USES BuS ARBITERS FOR
BOBG AND BOES RESFECTIVILY) BY STRAPPING ANYROSET HIGH AND CHRET Low

Figure 10. Two Techniques For Doing Mullibus Transfer Cycles

A-123

AP-51

< BPAN
sk BROY FF BROZ EF
REQUEST
gLk : ! ’ o [5 a b- = BREC
> | >l BUSY FF
D T —
[+ L]
R
ACOUISITION < BELK
CIRCWITRY
SURRENDER
CIRCINTAY w_ e
8 -] -]] SURRE
<. REQUEST
| mces, cum
/< 4
SURNDR &
RESOLVE SAMPLE
< LK
THIS CONCEPTUAL DIAGRAM IS PROVIDED FOR AIDMNG 1N UNDERSTANDING
CLOCK AND BUS CLOCK RELATED EVENTS. IT DOES NOT AEPRESENT THE
ACTUAL SCHEMATIC OF THE B289 DEVICE, AND IS FOR CONCEPTUAL
PURPOSES ONLY.
Figure 11 Symbolic Representalion ol Internal 8289 Timing
CLK | I | | I | |
RAEGUESY

- ®
- B 1@
- ®

®

SwHEN THE AFGUTFSY OCCURS SIMULTANEDUSLY WITH BCLE, BCLN MAY OR
MAY NOT CATCH THE REQUEST. IF IT DOES. THE WAVEFORMS FOLLOW
THOSE SHOWN DESIONATED BY @ . IF WOT, THE REQUEST IS MCKED uP
ON THE NEXT EDGE OF BELK AND THE WAVEFORNMS FOLLOW THOSE

SHOWN DESIGNATED BY (§) .

Figura 12. Results Of An Asynchronous Evenl

A-124

AP-51

Having synchronized the surrender request 1o the proc-
essor's clock to generate SURNDR, SURNDR is then
synchronized to BCLK to resel the BUSY and BRQ tip-
flops. When BUSY.Q goes low, the surrender circuitry is
ragat which in turn re-anables the reques! input. The tim-
ing in Figure 13 shows the surrender request input
going high on the falling edge of the clock. If the Sample
flip-flop was able to calch the surrender request on the
edge of clock 1, then SURNDR would be generaied (go
low) on clock edge 2. It nol, SURNDR would be gener-
ated on clock edge 3. SURNDR going low on clock edge
2 will be, for ease of discussion, referred to as SURNDR
a and SURNDR going low on clock edge 3 will be refer-
red 1o as SURNDR b. As can be seen from Figure 13,
SURNDR a just happens 10 go low on BCLK edge 2.
Since SURNDR is used to resel the BRQ flip-flops,
which are clocked by the falling edge of BCLEK, the
BRQ1 flip-Hop may or may not catch SURNDR a on
BELK adge 2. If it does, then BRQ and BUSY go high on
BCLK edge 3 which, for convenience, will be called
BRAEQ a or BUSY a. If not, theh BREQ and BUSY will go
high on BCLK edge 4, which will be referred to as B'FI'EE
b or BUSY b, respectively. SURNDR b occurs early
enough to assure that BUSY and BREQ are rese! on
BCLK edge 5, which will be referred to as BUSY b1 and

BAEQC b1. Depending upon when BUSY goes high, deter-
mines when the surrender circuitry is reset and how
soon the next BREQ can be generated. BUSY a1 causes
SURNDR c to occur where shown and SURNDR ¢ in turn
would allow the earliest bus request to occur at BREQ
c1. At the other extreme, BUSY b1 allows the earliest
bus request to occur at BREQ el.

Table 1 summarizes the maximum and minimum delays
for bus request, once the proper request and surrender
conditions exisl. Table 2 lists the proper surrander con-
ditions.

Mocds Surrandar I.‘.nn:hm
Single HALT state, loss of BPAN, TI-CBREQ
HALT siate, loss of BFAN. TI-CBREC,

i IO Command-CBAQ
BESE HALT slato, loss of BPAN, TI- CBRED,
ISYSBHESE = 0)-CBRO
HALT siate, ioss of BPAN, TI-CBREQ,
I0B-RESB {EYEB/AESB = 0-CBREQ,

I Command - CRBRG

Table 2. Surrender Condilions

« L TETE T

w [T

Ne \
‘ﬂ ‘Ii

-
-

h_

T s el —— _—

) —

(EARLIEST THAT BREQ COULD GO ACTIVE AFTER BUS RELEASE

Figure 13. Asynchronous Bus Releasa

A-125

AP-51

IOB INTERFACE

Now that the processor-arbiter, arbitler-system bus and
internal arbiter timings have been discussed, il is ap-
propriate to consider the other interfaces that tha 8289
Bus Arbiter provides.

In the I0B mode, the processor communicates and con-
trols a host of peripherals over the peripheral bus. When
the /O processor needs to communicate with system
memory, it is done so over the system memory bus, Fig-
ure 14 shows a possible IO processor system con-
figuration, utilizing the B0O88 WO processor in iis
REMOTE mode. Resident memory exists on the periph-
eral bus In order that canned /O routines and buffer
storage can be provided. Resident memory s treated as
an /O peripheral. When a peripheral device neads sar-
vicing, the /O processor accesses resident memory for
the proper /O driver routine and services the device,
transmitting or storing peripheral data in buffer storage
area of resident memary. The resident memory's buffer
slorage area could then be emptied or replenished from
system memory via the system bus. Using the IOB inter-
face allows an 1/O processor the capability of executing
from local memory {(on the peripheral bus) concurrently
with the host processor.

Timing in this mode is no different from timing in the
SINGLE BUS mode. The only difference lies (n the re-
quest and surrender conditions. The arbiter extends the
single bus mode conditions to qualify when the system
bus I8 requested and adds on additional surrender con-
ditions. Tha system bus is only requested during sys-
tem bus commands (the arbiter decodes the processor's
status lines) and, in addition to the other surrender

terms, the arbiter permits surrender to occur during VO
bus [or local bus) commands, when the /O processor is
using its own local bus.

Like the arbiter, the bus controller must also be in-
formed of the mode it is operating in. In the 108 mode,
the B288 bus controller issues /O bus commands in-
dependently of the state of AEN trom the arbiter. It is
assumed that all /O bus commands are intended for the
/O bus and hence there is a separate 1/0 command bus
from the controller. All /O bus commands are sent
directly to the /0 bus and are not influenced by AEN.
System bus commands are assumed as going to the
system bus, Since system bus commands are directed
to the system bus, they must still be influenced by AEN
and the arbitration mechanism provided by the B289.

As an example, suppose the processor (asues an /0 bus
command. The 8288 Bus Conlroller generales the
necessary control signal to latch the I/O address and
conligure the transceivers in the correct direction. In the
I0B mode, the multiplexed MCE/FDEN pin of the 8288
becomes PDEN (peripheral data enable) and serves to
enable the /O bus's data transceivers during VO bus
commands. DEN similarily sarves (o anable the system
bus's data transceivers during memory commands.
PDEN and DEN are mutually exclusive, so it is not possi-
ble for both sets of transceivers to be on, thereby
avoiding contention between the two sets. Since the 110
bus commands are generated independently of AEN In
the IOB mode, the /O bus has no delay effects due to
the arbiter. During this time in which the processor is
accessing memaory the arblter, It it already has the bus,
will permit il 1o be surrendered lo either a higher or
lower priority independently of where the processor is in

(et
5 Laage
EIH il B e —— [vl B
} wEL-
: lrill.llll-l.ll_lil-
—t L
¢ A . ul I] i
COMBAMD) i 1 =
su1 N FROCESS0N I
LOTAL | ;
s
[L I 1 - F ¥ — T
T [51]
Ll ety
] A LAFCH L) »
m{
(1Y L : . | .
3.5 1 |

|
i
e
o

J| moam

e AW WL AR PR

i

W

5

]
&)
|

[T
L]
ERETEN
M i AT EAR T
CECRTREs
' —5 mun
[1N 5] o
FRCET 4.
3
]
(LB T
[E10] LT MARTER
[= p AT
COmWFAGLLER | o COMaskD
[T
Cil
iE WULTIMAYTER
OrH 37 PrETEw bud
| WL WALTER
* .", 1"t
LI ¢ LOEEENA
1 ACE [2% Y
| 1 A (=171 [0
5 UL RAPER
TERTIE
|/ pata

Figure 14, 8288 Conligured In /0 Bus Mode Wiih 8088 /O Processor

A-126

AP-51

its transfer cycle (i.e., independent of the machine
state).® If the arbiter does not already have the bus, it
wlll make no effort to acquire the bus.

If the processor issues a memory command Instead, the
same set ol evenis lake place, except that 1) the system
bus's data transceivers are enabled instead of the
periphaerals bus's data transceivers, and 2) when the
command is issued depends upon the state of the ar-
biter. In both cases of I/O bus commands and system
bus commands, the address generated for that com-
mand is latched into both sets of address latches, the
system bus's address latches, and the peripherals bus's
address lalches. For each command (regardiess of com-
mand type), an address is put out on the 1/0 bus and on
the system bus if the arbiter has the bus at that particu-
lar time. Howaver, the bus controller only issues a com-
mand to one of the buses and hence, no ill effects are
suffered by addressing both buses.

If the arbiter already has the system bus when a syslem
bus command is issued, no delays due to the arbiter will
be noticed by the processor, |f the arbiter doesn’t have
the bus and must acquire It, then the processor will be
delayed (via the system bus command being delayed by
the bus controller through AEN from the arbiter) until
the arbiter has acquired the bus. The arbiter will then
permit the bus controller to issue the command and the
transfer cycle continues,

RESB INTERFACE

The non-l/O processors in the BOB6 family can communi-
cate with both a resident bus and a multi-master system
bus. Two bus controllers would be needed in such a con-
figuration as shown in Figure 15. In such a system con-
figuration the processoar would have 1o access 1o
memory and peripherals of both buses. Address map-
ping technigues can be applied to select which bus is to
be accessed. The SYSB/RESE (system bus/resident bus)
input on the arbiter serves to instruct the arbiter as to
whether or not the system bus is to be accessad. It also
enables or disables commands from one of the bus con-
trollers,

In such a system configuration, it is possible to issue
both memory and /O commands to either bus and as a
result, two bus controllers are neaded, one lor each bus.
Since the controllers have to issue both memory and /O
commands to their respective buses, the |OB options on
the controllara are strapped off (IOB is low). The ar-
biter, too, has to be informed of the system configura-
fion in order to respond appropriately to system inputs
and has its RESB option strapped on (RESB is high). The
arbiter's I0B option is strapped inactive (IOB is high).
Strapping the arbiter into the resident bus mode
enables the arbiter to respond to the state of the
SYSB/RESH input. Depending upon the state of this in-
put, the arbiter elther requests and acquires the system
bus or parmits the surrendering of that bus.

*Under athar Circumstances, bus surrendening would only De permitied
during tha pariod from whare addresa 10 command hold time has been
@stablished |ust prior to whane (he next command would be ssued.

—_— —_—

in the system shown in Figure 15, memory mapping
techniques are applied on the resident bus side of the
system rather than on the multiprocessor or system
bus side. As mentloned earlier in the 10B intarface, both
sels of address latches (the resident bus's address
latches and the system bus's address laichas) are
latched with the same address; in this case, by their
reapective bus controllers.” The system bus's address
latches, however, may or may not ba anablad depending
upon the state of the arbiter. The resident bus's address
latches are always enabled, hence the address mapping
technigue is applied to the resident bus.

Address mapping technigues can range in complexity
from a single bit of the address bus (usually the most
significant bit of the address), to a decoder, 1o a PROM,
The more elaborate mapping technique, such as PROM,
provides segment mapping, system flexibility, and easy
mapping modifications (simply make a new PROM).

In actual operation, both bus controllers raspond to the
processor's status lines and both will simultaneously
issue an address latch strobe (ALE) to thaeir respective
address latches. Both bus controllers will issue com-
mand and control signals unless inhibited. The purpose
of the address mapping circuitry is to inhibit one of the
bus controllers before contention or @roneous com-
mands can occur. The transceivers are enabled off the
same clock edge the commands are issued, namely &1
of T2 (Figure 16), The address is strobed into the ad-
dress latches by ALE. ALE is activated as soon as the
processor issues status, and is terminated on ¢2 of of
T1. From when ALE is issued, plus the propagation
delay of the address latches, determines where the ad-
dress Is valid. The time from which the address is valid
to where control and commands are |ssuaed determines
how much settling time is available for the address map-
ping circuitry. The mapping circuitry must inhibit (via
CEN) one of the bus controllers prior to where controls
and commands are issued. Part of the settling time
(see Figure 16) is consumed as a setup time requirement
to the bus controllaers. As it turns out, CEN (command
enable) can be disqualified as late as on the falling edge
of clock (the leading edge of &1 of T2) without fear of the
bus controller issuing any commands or transceiver
control signais. In systems (8 MHz) where less time Is
available for the address mapping circuitry, the address
latches can be bypassed, hooking the mapping circultry
straight onto the processor's multiplexed addressidata
bus (the local bus) and using ALE 1o strobe the mapping
clroultry. This would avold the propagation delay time of
the transceivers. Besides needing to Inhibit one of the
bus controllers, the arbiter needs to be informed of the
address mapping circuitry’s decision. Depending upon
that decision, the arbiter acquires or permits the release
of the system bus.

*A simpler system with an BOSE or 8088 can exisl, if il is desirable 10
only hava PROM, ROM, or a read only pariphaal interface on the resl-
gent bus. Tha BOSE ena BOBE additionally gansrale & nead signal in con-
junciion with the E288 control signals. By using this read signal and
mamory mapping. the B08& or 5088 could operate from local program
storm without having tha contention of using the aystem bus.

A-127

AP-51

AEWY EENTR- - - - — =
= Aznd
CLOCK
LACE T l— .
e e - 'L F] ChIT] T E&CE MULTIMARTER BYSTEW BUS
READY CiM |
T TN i = N W
[
b
REALYT CL=
sTaTUS §
o ", mULTEMASTER SYETEW
o Ir'r Bug COMTROL
ceu
Ao antE, b wag
arenigl,
BYEMATER
r
=
RESIDERNT OO MW _;'—— - -'-.I MULTLMAETER SYETEM
(o] ——— = + CoOWMARD Bk
AESIDENT BLS LT
FROM
R
OECODER <
¥ =
5TH o
g B ACRE | &DDA
RESIDEMT SODRERS ; ——— - — LATCH A _;I LATCH — muLTmASTEE SYSTEM
Bild i 5 BTG [EIEN FTR /' AODRESS AUS
A FL " | B | J 12 0R B L
-] =
Y |
X x| ! ?
QE [EHIL | oTIn oE
REGIMENT DATA .-"i__) ..:;:E?;?-“ A L — T“‘:‘;:'i;ﬁ“ e 'L-._ MULTI HASTES SYETER
BUs - ; . - ’ RO = gy’ BATA BUE
"BV ADOIRG ANDTHER K388 ARRSTER AWD COMNECTING (TS AEN 10 THE AIRA
whoEE AN = PRESERTLY QAOUNSED, THE PROCESSOR COULD HAYE ACOESS
T Pl WL T MASTER BUrSES
Figura 15. 8288 Configured In Residant Bus Mode
T4 Ti T2
CLK - —
|
TCLAY = DELAY TIME -
THROUGH LATCHES
FROCESSOR
STATUS
ALE |azas)

ADDRESS iz |

A

ADDRESE VALID

5 el ==

COMMAND, CONTROL (5288}

TCY [TCLAY + DELAY TIME THADUGH LATCHES] + & = TgeTiumg

AVAILABLE

ADDRAESS MAPPING
SETTLING TIME

Figura 18. Time Available For Address Mappling Prom

A-128

AP-51

The arbiter is informed of this decision via its
SYSB/RESB input. If the memory mapping circuitry
selects the resident bus, then SYSB/RESE input to the
arbiter and CEN input of the system bus controller are
brought low; and the CEN Input of the resident bus con-
troller is brought high. The commands and control
signals of the resident bus are now enabled and those of
the system bus are disabled. In addition, with the arbiter
being informed that the transter cycle Is occurring on
the resident bus, the system bus is permitted to be sur-
renderad. Glitching is permitted on the SYSB/RESE in-
put of the arbiter up until ¢1 of T2. Thereatter, only clean
transitions can occur on the input.® So, if mapping cir-
cuitry can settle prior to 1 of T2, there is no need to be
concerned over glitching. If the mapping circuitry is
unable to settle prior to this time, then the designer
must guarantee a clean transition on the SYSB/RESE in-
put.

INTERFACE TO TWO MULTI-MASTER BUSES

The interface of an 8086 family processor 1o two multi-
system buses is simply an extension of the resident bus
interface. The only difference is that now two arbiters
ara needed, one for each multi-master bus, and the ad-
dress mapping circuitry must acquire its input straight
off the processor's multiplexed address/data bus (the
local bus), using ALE as an address strobe inpul. Figurae
17 depicts how such a system might be configured.

Figure 17 illustrates the use of the B28B9 in a system en-
vironment in three of its four modes. The host 8088 CPU
(priority 3) is using the B289 in its single bus multi-
master mode, while an 8089 /0 processor is using the
B2B9 in its IOB mode. A work station based on an 8088
processor uses the 8289 In it system/resident bus mode.
This diagram represents a hypothetical system wherein
there can exist more than cne work station {only one
shown). Each work station shares system resources and
110, The lowest priority processor (B086) would provide
supervisory functions and system control, l.e., allow
operator intervention into the system resources. A work
station would call in assemblers and compilers or ap-
plication programs as needed. When compiled or
assembled, the results are transferred to the /O station
for output, thus freeing up a work station for another
user,

*in certalm memory mapping techniques, the CENS of the bus contral
lars are controlled differently from the SYSB/RESB input of the arbiter.
In shart, CEN I3 brought fow automatically to both bus controllers,
{heraby disabling their command and control outputs, This permits a
longer setiling tima for the memory mapping circuitry, since both con-
trollers are disabled, Whan the mapping circuitry setiles, somelime
after &1 of T2, one of the bus cantrellers and its assodialed Dus artdler
iif one exisis) is enabled. Atter &1 of T2, tha arbiter can only pormit
clean transitiona on the SYSBRESE input line.

If one work station is used, the serial priority resolving
technigue could be used between the B289 Bus Arbiters
(shown in dotted lines). If more than one work station is
desired, It would be necessary to either slow down the
systemn bus clock to accommodate the additional ar-
biters, or resort to the parallel resolving technigue (as
shown).

WHEN TO USE THE DIFFERENT MODES

Single Bus Multi-Master Interface

This mode is the simplest and is sutficient for systems
where a multiprocessing environment exists and the
system bus bandwidth is sufficient to handle the peak
concurrent requirements of a multi-mastar environmaeant,
This solution can provide an inexpensive solution for
multi-masters to access an expensive /0 device. If,
however, the system bus bandwidth is exceeded, the
10B or systemiresident modes should be considered.

IOB Mode

The IOB mode is ideal when the bus can be separated in-
to an /O bus and memory or system bus. This mode is
commonly used with the BOB9 /O processor in its
REMOTE configuration to separate the /O space from
memory space. With the 8088, all instructions operate
on either system or /0O address space. 64K bytes of /O
space can be accessed by the processors in the BOBB
family.

The remaining processors in the B0BG family are con-
strained to using only I/Q instructions when referencing
/D space. |f this is a limitation, and it is desirable to
remove some of the processor functions to its private
resources, the resident bus mode should be considered.

Resident Bus Mode

The resident bus mode allows for maximum flexibility
for a CPU device, giving it both access to its own local
resources with full instruction set capability, and the
system rescurces. The CPU can work from its own local
resources without contention on the system bus. By
using a PROM for memory mapping, memaory space can
be easily altered in this mode. This mode reguires the
use of a second 8288 bus controller chip.

CONCLUSION

The 8289 brings a new dimension to microcomputer ar-
chitecture by allowing the advanced 8/16-bit microproc-
essors to play easily in a multi-master, multiprocessing
environmeant, With the flexible modes of the 8289, a user
can define one of several bus architectures to meet his
cost/iperformance needs. Modularity, improved system
reliability and increased performance are just a few of
the benefits that designing a multiprocessing system
provides.

A-129

AP-51

lm-:n READY P
CPU CLK CLOCK
ADDRIDATA
A ROY AEN AENRDY
b-53 1T 1 2 32
KACK1 » T < XACKZ
MULTIBUS 8ass CLK |- G mflf'r'“ MULTIBUS
COMTROL ARBITER STATUS : CONTROL
< ' &5 55-52
SY58/
AEMN RESE
A
EL] =
[
-
T
a ¥ § = L
AEN CEN LATCH CEN AEN
c [
CLK f- ={CLK G288
MULTIBUS LT ||| t CONTROLLER MULTIBUS
COMMANDS CONTROLLER 'y COMMANDS
1 BB 5-52
DEN BTiR oOTR DEN
ALE ae |
STE OE DE TR
2383
ADDRESS J?r'gﬂ ADDR/DATA LATCH ADDRESS
{2 OR 2 |2 OR 3}
E L
0E OTIR oTiR oE
DATA 8287 Baay DATA
TRAMNSCEIVER TRANSCEIVER
(1 OR 2 (1 OR 2

MEMORY MAPPING DECODING IS SHOWN TAKING PLACE DIRECTLY QFF QF
THE PROGCESSOR'S LOCAL MULTIPLEXED ADDRESS/DATA BUS.

Figura 17, Using 82895 To Interface To Two Multimaster System Buses

A-130

THIS PAGE LEFT INTENTIONALLY BLANK

A-131

AP-51

iR e e s Byy Lo e o ot g e 8 D 1
| |
| i |
| i - e et
I vikda e L] L1 el jr- I
| L Il_ mETi !
| Er |
' N
! Y= -5;I
| el
s] z
| By BEDLr
I a eh
[
I afm I:'_U'I“; _‘}'1
| I
| I
I atn :
L]
| : N L1
H in
i " B
I l.-rll. [-LE.] [N] I
| il
I . e :
|
I M, -l
[= K]
| 4 T
| I
i E
|
I
: —!ur-n :
|
.l = o
I‘ nhi®
I PREORTY 3 |
I =7 I
U e W el gl ol S o &0 - et O]
B ____-'i
e i
|
i ; [TT-1] & I
— g 5 wmam Ein eig WM I
LpCE —ed REHE =
WM R N B & EE aprs

u o B A
i
CEEHERE

|
I
B
T h_'_
G || SSSS e, e A
! “m:“b" B FRCK fope RCE LTI TTTLL R S R TT T] nACE 1 F
T e b e e ﬂd o | e e :“ .,.: ;:: ml1_|
LT Hp R - F‘E it E:LF . i
| & . ﬂ M i
- - 2y = WD BT aw : o F
=1 [|] I I |
i ﬂ.-_l_ : or L] 1[
. RILIDTHT ADINTLE BT L az A ! D pame -
T =
i ‘L }
I |
I I
o | :“ }
=N T R Y < [-
BT " h——A I WA
| |
| I
1

T — . . — — — - — — — — ="

Figure 18, 8289 Used In Eaxch O 3 Modes, Single Bus, V0 Bus, and Resident Bus Modes Implementing A Hypothetical Mullimaster Bus System

A-132

AP-51

¥
oy
LU il
i : |2 i
b il B
mm@% mwﬁn
i
i :
i
i
)
|
|
pesasesy “
| B |
Ny |
| _m “
Ll
“ | 3 Hoo[1®
. 5. 15 A Tm ﬁ RS0 § Do %
g 3
4 M T I I[3t1 =T i 1T .:,w
¢ T3 100 u_i 1T =T T

A-133/A-134

Figure 18. 8289 Used In Each Of 3 Modes, Single Bus, /0 Bus, and Residen! Bus Modes implemaenting A Hypolhetical Mullimaster Bus Sysiem

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23

