Intel | APPLICATION AP-50
NOTE

September 1979

A-B5

AP-50

Debugging Stragegies
and Considerations for
8089 Systems

Contents

INTRODUCTION
STATIC (OR FUNCTIONAL) DEBUGGING

Hardware Testing
External Processor Inlerface
Software Testing

REAL-TIME TESTING
Logic Analyzer Techniques
A REVIEW OF IOP OPERATION

Task Execulion

Going from Instruction Execution into DMA
DMA Termination

Priorities/Dual Channel Operation

SUMMARY

Appendix |. CHECKLIST OF
POSSIBLE PROBLEMS

Appendix ll. BREAKPOINT ROUTINE
AND CONTROL PROGRAM

Cur thanks to John Atwood and Dave Faerguson, the authors of this
note. Both John and Dave are members of Intel's BOBY design
engineering group. Please direct any questions you may have to
your local Intel FAE (field application engineer) or to MPO

Marketing at Intel, Santa Clara.

A-86

AP-50

INTRODUCTION

The Intel B0BY is the first integrated VO processor
available, This /O procesasor (IOP) makes available the
power of /O channels, as used in mainframes and mini-
computers, In a microcomputer form. Designed as part
of the MCS-86™ tamily, the IOP can be Interfaced with
the MCS-80™ and MCS-85™ families as well.

An 1/O channel |s basically a processor remote from the
main CPU, which independently runs /O operations
upon command of the CPU, To relate the BO89 1o ex-
isting LS| components, It is similar to a microprocassor
that is time-multiplexed with a DMA controller, but with
two channels avallable. However, since the B0BS8 proc-
essor s optimized for /O and multiprocessor opera-
tions, and the DMA has baen made much more flexible
than existing DMA controllers, a truly general purpose
and powerful /O control aystem is available on one chip.

Due to the uniqueness of the BOBY, this application note
was written to review debugging strategies and point
out possible pitfalls when developing an IOP system.
Debugging an IOP system |8 very similar to debugging
microprocessor/DMA controller systems, and many of
the lechnigues described here are standard microproc-
essor technigues. However, several factors are present
which can complicate the debugging process:

1. Multiprocessor Operation

Although usable by itself, the |IOP is designed to be
used with other processors. All factors normally en:
countered with multiprocessor operation, including bus
arbltration, processor communication, critical code sec:
tlona, etc., must be addressed In the design and debug
of an IOP system.

2. DMA Tie-in to IOP Program Executlon

The relationship between IOP program execution and
DMA transfers and termination Is different from earller
DMA controllers and should be fully understood to prop-
erly run the system.

3. Dependency of Programs on Real-Time 1/O
Operations

Requirements by I/O devices for maximum data rates
and minimum latency times force the software program.
mer to be aware of hardware timing constrainis and can
complicate program debugging.

4. Dual Channel Operation

Related to multiprocessor operation and real-time
dependencies, the two Independent channels available
on the B0BY may have 1o be coordinated with each other
to make the whole system function. Dependence of one
channel on the other can also complicate dabugging.

Due to the complexities of running in a real-time envi-
ronment, as many steps as possible should be taken 1o
facilitate debugging. A major help here is 10 make sure
as much of the hardware and software as possible Is
working before running real-time tasks. This is a good
practice anyway, but it should be reemphasized that a
complex multichannel system can guickly get out of
hand If more than a few things are not right.

An ald to debugging any system Is a clean, wall organ-
ized system design. The B088 lends itself to structured,
modular software interfaces lo the host CPU, via the
linked-list initialization structure, and parameter com-
munication through the parameter biock (PB) area.
Some of the aspacts of structurad programming that aid
dabugging are:

* Top Down Programming — The functions done by
low-level routines are well understood, and the
number of program fixes, which can cause more
arrors, is minimized.

* Program Modularity — Small, easy to manage sub-
programs can be debugged independently, increas-
ing the chance that the entire system will work the
first tima.

* Modular Remoteness — By having all program
modules communicate only through a wall-defined
interface, one module's knowledge of the “innar
workings" of another |18 minimized. System soft-
ware complexity |s reduced. Updates to program
modules are more reliable, too.

Two major areas of debugging will be outlined here —
static (or functional) debugging In which the hardware
and software are not tested in a real-time environmant,
and real-time debugging. Applying a logic analyzer to
IOP debugging will also be explained, and a review of
IOP operation and potential problems will be done.

STATIC (OR FUNCTIONAL) DEBUGGING

The predominant arrors In a ayatam, when first triad out,
are elther errors In Implementation (i.e., wrong hookups
or coding errors), or an Incorract Implementation (a
wrong assumption somewhere). Most of these bugs can
be found through static debugging techniques that are
usually easier to work with than real-time testing.

Hardware Testing

Static hardware testing |s done mainly to see if all indi-
vidual parts of the system work. 5o the whole system
will "play” when run, The level of testing can run from
checking for continuity and shorts (which finds only
hookup errors) to trylng to move data around and run-
ning I/0 devices from a monitor or special test programs
(which can also find incorrect circuit design). in all bul
the simplest systems, the latter approach is recom-
mended since il is a step towards software debugging.

Several approaches 10 hardware testing will be covered.
Running diagnostic programs (such as a monitor) out of
the IOP's host system, in both the LOCAL and REMOTE
modes, will be covered. The case where the host system
cannot support diagnostic software and must have an
axlernal processor to exercise the IOP and its periph-
erals will also be explained.

The case where the host system can run diagnostics or
test programs that have interactive user /O, such as a
CRT terminal or teletype, provides the most straightfor-
ward way to test the |10P. Naturally, before these pro-
grams can be run, the basic hardware must be correct
anough to run programs. When this point is reached, a
monitor program can be used to exercise memaory and
IO controliers on the syatem bDus.

A-87

AP-50

it should be mentioned that alds, other than just testing
with software, are helpful for hardware debugging.
While a neceasity for real-time debugging, a logic
analyzer is also a definite help for staltic hardware
debugging. Its main use in hardware debugging Is show-
ing timing relationships between address or data paths
and other signals. It is especially useful for functional
software debugging, o be described shortly. The last
debugging section outlines the use of an analyzer with
the 10P. Of course, an oscilloscope, logic probes and
pulsers, atc., can be used to trace oul specific logic or
timing problems.

LOCAL Mode

When the IOP is running in the LOCAL Mode, all 1/O con-
trollers and memory are accessible by the host or con-
trolling CPU. Thus a standard monitor, such as the one
supplied with the SDK-86 or available for the ISBC-
86/12™ development kit, can exercise all hardware on
the bus.* The breakpoint routines, however, will not
work due to the different instruction sel. The BOBG or
BOBS is best suited for running the IOP in the LOCAL
mode due to identical status lines and bus timing, as
well as the Request/Grant line, which eliminates bus ar-
bitration hardware. Figure 1 shows the general LOCAL
mode configuration.

*The SOK-B6 serial monitor is a good basis for a genaral B0BG monilor,
The IOP gannct be used direcily with the SDK-BB, sinca t1ha 8086 is run-
ning in tha minimum mode. The SDK-88 can be converted 1o run in the
maximum moda, i desired

REMOTE Mode

From a system design standpoint, running the IOP in
the REMOTE Mode is advantageous in that it removes
the /O bus cycles from the system bus. Normally, the
remote IO is not accessible to the host CPU. Until the
IOP is able to run its own test programs to transfer data
from the REMOTE bus to the system bus, /O controllers
and memory on the REMOTE bus will be invisible to the
host. To get around this problem during prototyping,
elther an external processor interface can be used (see
next section), or a temporary bypass can be made to ac-
cess the REMOTE bus from the system bus.

Bypassing the normal REMOTE/SYSTEM Interface is a
handy technique for doing preliminary debugging on the
REMOTE bus. This can be done by memory-mapping the
IOP's /O space into an unused portion of the host
CPU's system memory space. When accessing this
space, the IOP access o its own /O space is disabled,
and a separale set of address buflers, transceivars and
bus control signal buffers are enabled. Reads and writes
can then be done to the formerly Inaccessaible REMOTE
bus by the host CPU.

A simple system (Flgure 2) implements this bypassing
scheme. It was designed for just forcing or examining
devices on the REMOTE bus and may not read or write
correctly if the IOP is simultaneocusly trying to do bus
cycles. A more sophisticated arbitration system would
permit reliable run-time checking also.

BYSTEM BUS
| |
=l |
= . i ; A0~ 18
=F= | ctock aenenaton ADu-AD1s <~ oG0S 12 8282 <: o
READY RESET CLE BOBE | |
! LK cPU ’ .
READY |
AGanT Db = 15
' 1n K286
il = R =<
|
- ADy
l CLK u-.ll"rl-ll: MRDT i
RESET BO8Y |
l veesed 0P -5 &5 L <:> $ShaL
¥ E] .—.-.-'Im (B281}
BUS BRDE
2 COMTAOLLER F——= ,
2 E LWt
| ALK Kiowe

ing
PERIPHERAL

CONSOLE I
TO RUN TEST
PROGRAME

Figure 1. Generallzed LOCAL Configuration —8088 in Max Mods

A-88

AP-50

BlEE OR 8088
(HOST CPLU)

8289 AMD 3388 ?

SYSTEM | M :
ADDRESS | "J
BUS | | | | l
sYsTEM | = o II
DATA BUS |) —rj
SYSTEM | 2 | | | .
CONTROL | ||
Bus | — |
r—————1-
IOP DISABLE | | SYSTEM TO
AEN | DECODE [= ,.-*:ﬂﬂTE
| e l I access
I LOGIC
| L& | |
5288 8289 | E é 37 | ;F 4 % EE I
i | 1 L
IoP '] | (Ui
ADDRESS
|
o
—_— : — 110 DATA
| | - SR 1T
i
L o . - CONTROL

BUS

Figure 2. Aemote Mode Bypass for Debugging

Running the I0OP in the REMOTE mode, particularly if
the MULTIBUS™ protocol Is adhered to, has the advan-
tage that the |IOP can be exercised with any MULTIBUS-
compatible processor. If the main processor is not
amenable to being used as a debugging tool, another
processor could be used to debug the hardware inter.
face, If the microprocessor is of the same type as the
intended host processor, software debugging can be
done as well, A generalized REMOTE mode configura-
tion using the MULTIBUS is shown in Figure 3.

Exiernal Processor Interface

A technigue that can be used if the host processor can-
not run any debugging or monitor routines is to have an
external processor tie into the host processor's bus.
This is useful if the main system CPU cannot run an in-
teractive monitor or other debugging programs. If a
MULTIBUS interface is being used, an B289 bus arbiter
and a set of addressi/data/control buffers can be used. A
somewhat simpler system, similar to the remote bus ac-
cess system mentioned above, could be used for static
debugging of non-MULTIBUS systems. Again, if true bus
arbitration is added (which brings us nearly to a MULTI-
BUS Interface), it could also be used for run-time
testing. Intel processors that have the MULTIBUS
interface include the iISBC-80/20™, iISBC-86/12™, iSBG-

80/10™ iSBC-80/05™ the Intellec® development
systems, among others.

In the previously described systems, the external proc-
essor would disable the host CPU's access to the bus,
either by some form of bus request or by a "brute force”
disabling of the CPU's buffers. In the latter case, the ex-
ternal processor could only control the bus during a
time that the CPU Is halted, without destroying the pro-
gram flow. Mapping the processor's memory space into
the external processor memory space i the simplest
method, but can impact programs being run on the
external processor. If the processor under test utilizes
the MULTIBUS interface (with bus arbitration), then a
processor like the iISBC-80/30™ or iSBC-86/12™ could
be used as the debug vehicle with no special hardware.
A more flexible interface that would have less impact on
the system memory space would have the addresses for
the system under test generated from latches loaded by
the 1/Q instructions from the external processor. This
case must have software routings to interface to the 11O
ports and handle the desired debugging routines (sae
Figure 4).

Software Testing

It is desirable to check as much of the |OP program as
possible statically, since various tools and technigues
are available which may not be usable during real-time

A-89

AP-50

ERERHERAL
CowTROLLEN ™

=
T I

FAANE

1
e E-L‘t'.? Lo Lo
cigen 1 cun
GEEEEATON
anmg

|
|
f
|
I
I
|
|
|
|
|
|
|
|
|
i
I'
|
|
I.
|
i

or <;_ u:‘-tl__a..m " R |
s (5 00 v P T | ' 7
L | ‘ | e
e d 3t 0 30 JEEE]
MULTIRUS @ i

I
|
|
|
|

Figure 3. Generalized Aemocie Bus Using MULTIBUS Interface

HIGH ORDER
ADDRESS LINES

ADDRESS DATA CNTL
Bus BUS BMIMALS

LOW ORDEN
VHONESS 18-20 BITS
LINES :

il

THESE BUFFERS ENABLED WHEM SYSTEM
UNDER TEST'S BUFFERSE DISABLED

ADDRESS -

5 OR 18 BITS

i
!

DATA

vlayl [y [:]

V&S

MULTIBUS CONTROL LINES S

CNTL 7

- d

|
EXTERMAL PROCESSOR

SYSTEM UNDER TEST S MEMORY 15 MAPPED
UPPER ADDRESS BITS CAN BE SUPPLIED BUS ARBITER

F
SYSTEM UNDER TEST

AP-50

testing. This "static” software testing is not applicable
to heavily /O-dependent or DMA-dependent routines,
but is best suited to longer computational or data han-
dling routines. The idea is to test the correctness of
algorithms, rather than seeing if the whole system runs.

There are two main approaches to functional software
testing. One is to essentially run the program in real
time and monitor program flow on a logic analyzer. The
difference between this and real-time testing is that pro-
gram subsections can be tested separately by using dif-
ferent TP (Task Pointer) starting addresses. If It Is
necessary to set up certain registers or parameters in
memory, a small “'setup” program can be run after ini-
ttalization, which can load up registers or memaory, then
jump to the program section desired.

Another technique is to run the programs with break-
point routines so that one can step through code
segments and follow program execution. Software
breakpoints are usually implemanted by inserting a
jump or restart to a monitor routine at the breakpoint
location. This jump or restart is machine language
dependent so, unfortunately, the existing breakpoint
routines within monitors for the B0OB0 or B0BE are not
applicable.

New routines tailored to the B0O8B9 can be used, and, if
done properly, can even be used to examine programs
running on a REMOTE bus. Using breakpoints Is some-
what complicated on the 8089 because the minimum in-
struction length is two bytes. There is no absolute CALL
instruction, only a relative one (which would have to
have its displacement recalculated each time it was
used). But, with a several-byte absolute jump inserted at
gach place a breakpoint iz desired, full breakpoint
capabilities can be obtained.

There are many ways the breakpeoints can be imple-
mented., When a breakpoint is reached, the 8089 itself
could output the machine state to a console through its
own routines. Better suited to debugging, though, is a
system that has the BOB9 place its machine state in
memaory, alert the host processor, and then halt. The
host then picks up tha B0B9's state and can treat it in the
same way It runs Its own breakpoint routines. Since the
host processor is more likely to be running a monitor or
some other kind of debugging routing (and most likely
has at least temporary console I/O), it s the logical sys-
tem to initiate and examine 8089 breakpoints. If the IOP
is running in the REMOTE mode, and the host processor
has access to the /O bus via the scheme mentioned in
the hardware debugging section, then IOP programs
running on the REMOTE bus can be examined,

The breakpoint itself can consist of an escape sequence
that is used to save the TP value and jump to the save
routine, or just a jJump to the save routine. This routine
saves all register contents for the channel the break-
point is in, signals the host processor, and stops the
IQP, All user programmable registers (GA, GB, GC, IX,
MC, BC, TP), as well as the pointer tags, are accessible.
The PP (Parameter Pointer) and PSW are not normally
accessible, but if the generation of the CA is such that
the IOP can send itself a CA, then by sending a CA
HALT, the PSW will appear at PP+ 3. Remamber that

since the |OP doesn't have arithmetic or logical condi-
tion codes, the PSW is not as important as in other
machines,

The most straightforward way to pass data from the |[OP
to the host processor is through the PB (Parameter
Block) area since the PP will normally remain relatively
tixed throughout the I0P program. In order not to in-
fringe on the PB areas used by the programs, an area 18
bytes long should be allocated at the end of the PB
block to hold the register contents. Using other areas to
store the register data requires saving and reloading a
pointer register as part of the breakpoint escape
sequence,

The data returned from the breakpoint save routine will
appear to the host processor as a sequential block of
data in the PB area. Sixteen-bit data can easily be ex-
tracted, but 20-bit pointer data will have to be
reconstructed from the move pointer (MOVP) format:

) o7 ar]
HIGHEST]
pRess [D19...D18[T000 D%, . D8 or...Do ADDRESS
TAG BIT
DmEYSTEM
1= N0

Several means are available to signal the host processor
that a breakpoint has been reached. A bit could be set in
memory or an interrupt sent to the CPU. The best way,
though, is to use the BUSY flag (at CP+1 or CP+9).
After starting the IOP, the BUSY flag is set to FF. When
a breakpoint is reached, the IOP performs its save
routine and does either a software or CA HALT. These
result in clearing the BUSY flag, which than signals the
CPU to obtain valid breakpoint data. The CPU can then
rastart the |OP by either a CA START or CA CONTINUE.

The breakpoint routine cutlined above will work for a
“one-shot” test. However, to be more useful as a
general purpose debugging toel, some refinements
must be added. To keep from destroying the program
whenever a breakpoint is placed, the supervisory pro-
gram running from the host processor must save the
IOP code that is occupied by the escape sequence.
When the breakpoint is completed and |IOP execution is
to resuma, the host program restores the IOP code, sets
the TP in the CB area back to where the breakpoint was
placed, and sends a CA START. Since the length of each
instruction can be easily found from bits 1-4 of the op-
code, a single stepping function can also be done.” By
the time this is implemented, the host program is
becoming a full-fledged debugging routine. Appendix 3
describes a debugging program that makes use of the
ideas presented here.

Breakpoint routines can be quite useful, but some
restrictions and limitations should be mentioned. The
processor examining the breakpoints must have access
le the |IOP program memory, either directly, or through
IOP programs that simulate direct access. The program
memory must be in RAM. The breakpoint must be

*The formula for length of instructions is; length {in bytes) =2+ 1 (if bils
1,0=01)+ 1 {if bits 3.2=01) + 2 (if Dit 3= 1)+ 2 (if LPDI}

A-91

AP-50

placed on an instruction boundary, and multiple break-
points must not be placed so that they overlap. There
may be some impact on the PB area. CA generation may
have to be different than usual, Bu!, despite these
limitations, the breakpoints offer a useful and more con-
vantional software debugging tool than analyzers.

REAL-TIME TESTING

Running an IOP program in its final environment with
real 'O devices Is the true test of dynamic operation,
The program is no longer in a static, isolated environ-
ment. The demands of DMA and multiprocessing may
reveal unplanned timing dependencies or critical sec-
tion problems. There may also be sections of hardware
or software, which couldn't be tested statically, that
may have bugs. The whole purpose of static or fune-
tional tesling is to dig these problems out while con-
venient debugging tools can be used. Since there are no
simple techniques for real-time debugging, the use of a
logic state analyzer and techniques to fully understand
the IOP's real-time operation will be emphasized.

Multiprocesasing operations and real-time asynchronous
WO reguests can cause the timing complexity of the
syalem as a whole Lo rise beyond the point of complate
comprehension by an individual. It is then essential that
techniques 1o ensure correctness are used. These in-
clude good design methods, eapecially a clean, wall-
structured design, as well as good testing. A thorough
test requires the attitude that the system should be
tested for failures, rather than tested for correctness. In
other words, one should try to make the system fail,
tests should be chosen that will put the worst stress on
critical timing areas.

The best way to do this is to wrile a diagnostic program
that puts the CPU, IOP, and I/O devices through the
worst conceivable timing and program combinations.
Ideally, the program should be self-checking so that it
can be run without supervision, printing any data or pro-
gram ermors that occur, much like a memory test.

The two main real-time problem areas are insufficient
data rates or latency, and critical section problems. To

test for data rate problems, run the system clock at its
loweast expected frequency and use memory and VO
with maximum expected wait states. Identify the
tightest program timings and try to have these sections
coincide with worst case DMA or other haavy bus utiliza-
tion {(see dual channel operation later). Critical section
problems can occur when two independent processors
communicate with each other with improper '"handshak-
ing." This can result in one processor missing another's
message, or even having both processors hang up,
waiting tor each other to go ahead. The B089 provides
aids to these problems, including the TSL instruction (to
implement semaphores) and the BUSY flag. However,
any interprocessor communication (including one chan-
nel of the IOP to the other) should be checked. Beware
of cases when one processor is running considerably
slower than the other (due to DMA overhead or chained
instruction sequences).

The techniques for real-time debugging evoive from
functional testing using a logic analyzer. For all but the
simplest systems, an analyzer is essential, since it can
graphically show program execution and timing rela-
tionships during real-lime execution, Another aid Is a
delayed oscilloscope. Triggering the scope from the
logic analyzer, the delay can be adjusted so that any
signal in the system can be monitored.

To facilitate the use of the logic analyzer, especially if
its memory is not very deep or when using it to trigger
an oscilloscope, a repatitive system can be used to con-
tinually update the display. Using a repalitive reset
halps lo debug the software-hardware interface, since
oscilloscope or logic analyzer probes can be readily
moved around the circuit to observe new signals
without manually retriggering the display. At its
simplest, the reset to the host processor can be strob-
ad, say every 10 ms. The processor will then provide the
two channel attentions (CAs) that are needed to in-
itialize the IOP, Where this isn't feasible, the CAs can be
externally forced by either a string of one-shots or a sim-
ple processor with timing loops (such as a SDK-85 or
SDK-86). See Figure 5 for initialization timing.

i
! ‘-— 2l CR —=|=- 21 cn-—|

REGET
- =

|I — 21 CE |[=——
i |
' I
1 1

ca y
H .
T L1
I
’; SLAVE —
L]

s, .l'f
: —— I-r s —
i MASTER .~
i FOWER ROAGRT WODE
j DN
(]

& IWITIALIZE

TN/

S .
v W FIRST (¥ R P S T —
IRESET AFTER) | ' I
| POWER-UP |] |

“u START CH1 ~ START CHZ

*LOMGER IF WAIT STATES

Figures 5. Inliislization Input Seguence

A-92

AP-50

Memory protection of the IOP and system programs is
helpful when debugging DMA operation. It is quite easy
for runaway DMA to wipe out memaory. Another precau-
tion to avoid this problem is to set an upper limit on the
number of bytes transferred by always specifying a byte
count termination.

Logic Analyzer Techniques

in the absence of other powerful debugging systems,
the logic analyzer has shown to be an extremely useful
tool. Because of its importance in debugging an I10P
system, some basic technigques and observations that
relate to monitoring |OP operation will be reviewed heare.
The particular brand or type of analyzer used is not too
important, but would be desirable to have the following
features:

At least a 24-bit data width

Flexible triggering and gualification control
Display after triggering on a sequence of slates
Capability for hexadecimal data display

It is best to hook up to the addressidata lines at the IOP,
as opposed to looking at the separate address and data
lines, since 39 lines would be required just to look at ad-
dress, data and status lines. The three lower status lines
should be monitored to show the type of bus cycle be-
ing run. Other lines can be connected where needed, at
places like the DRQ lines, the EXT lines or other lines
ralated to the system.

For general purpose debugging, triggering the analyzer
on the rising edge of the |IOP clock shows the most
useful data conceming bus cycles. Of course, using the
falling edge may be necessary to check certain signals,
particularly ones that are active only while the clock Is
low. The following discussion is based on sampling
data on the clock's rising edge.

One should be careful when setting up the triggering
for the analyzer that the desired event is what is dis-
played and not a later event with the same trigger word.
This can happen when the logic analyzer is in the repat-
itive trigger mode, It may retrigger before the system ac-
tually resets. A sequence restart feature is helpful.

The basis of following program execution and DMA on a
logic analyzer is to follow an BD&9 bus cycle, which is
identical to a BDOBE and 8088 bus cycle, The following
diagram shows a typical B0B9 bus cycle.

For general purpose debugging, displaying every clock
is usetul, but for quickly finding one's way around a pro-
gram, the analyzer can be qualified so that only Instruc-
tion fetches (status =100 or 000), with ALE active, are
trapped. A much more compact display of execution
flow rasulits.

J:EﬁE A&16-19 ADD-18 S0-2 PREVIOUS ADDRESS, UPPER STATUS
4 EENNT111 IDLE STATUS
T F Foi1g 101 Z0-B1T ADDRESS = FFOIQ,
T2 E ~»=FFFF 101 LOWER STATUS = MEMORY DATA READ

T3 | MAASD 111 16-8IT DATA RETURMNED = AASD
1

FO10 ®1 ADDRESS REMAING IN CHIF DUTPUT

E
T4 E
t LATCH AFTER END OF BUS CYCLE

DATA MOT READY YET
UPPER STATUS INDICATES: NON-DMA, CH1

As mentioned earlier, on a 16-bit bus, most instructions
starting on odd addresses won't show the first fetch,
since the internal queue is in use. It is a good idea in
that case to use only even instruction boundaries as
trigger words. When following dual channel operation,
ane should keep an eye on the upper status bits (S3-58),
since 53 indicates which channel is running (0= GH1,
1=CH2), and S4 Iindicates DMAMmon-DMA transfer
(0= DMA, 1=non-DMA).

A REVIEW OF IOP OPERATION
{With things to look out for)

When trying to get an unfamiliar system going for the
first time, it is too easy to stumble on apparent prob-
lems that are really just unexpectéd oparation modes or
peculiarities of the machine. For this reason the basic
principles of 10P operation will be reviewed here with
special emphasis on possible problem areas or pitfalls
that a user might encounter when debugging a BO89 sys-
tem. The topics are covered generally in the order en-
countered when bringing up a system. For complete
details of operation and some design examples, see the
8086 Family User's Manual.

RESET

RESET must be active (HIGH) for at least four clocks in
order to fully initialize all internal circultry. On power up,
RESET should be held high for at least 50 microsec-
onds. The chip is only ready to accept a Channel Atten-
tion (CA) one clock after RESET goes inactive.

Mate that the SEL pin is sampled on the falling edge of
the first CA after RESET to tell the B089 whether it is a
mastar (0) or a slave (1) for its request/grant circuitry. If a
master, it will assume it has the bus from the beginning.
If a slave, it will strobe the RQ/GT Line to request the
bus back and will not start any bus transfers until it has
been granted the bus. If the RQ/GT line is not being
used, make sure the |OF comes up in the master mode,

Initialization

Upon the first CA after resei, a sequence of instructions
is executed from an internal ROM. These instructions
pick up parameters and load data from the linked list
sequance (Figure 8). The instruction sequence is essen-
tially:

MOVEB SYSBUS trom FFFFB

LPD System Configuration Block (SCB) from FFFFA
MOVB S0C from (SCB)

LPD Control Pointer (CP) from (SCB) + 2

MOWVEI "00" to CP+ 1 (clears BUSY flag)

A-93

AP-50

Remember that four bytes must be fetched during an
LPD. If on a 16-bit bus, with even addreasad boundaries,
only two fatches are neaded. Otherwlsa (B-bit bus or odd
boundaries), four fetches are needed.

Even though no bus cycles aré run to fetch these in-
structions, the CH1 Task Pointer (TF) appears on the ad-
dress lalches during the short internal fetch periods.
On power up, this value is meaningless, but if a repeti-
tive RESET is used, the TP remains unchanged from the
and of the last program run. See Figure 6 for the start of
a typical Initialization saquence as viewed on a logic
analyzer.

Bit 0 in the SYSBUS fleld sets the actual (or physical)
system bus width thal the IOP expects. In the B-bit
mode, only byte accesses are made, and all B-bit data
should appear on the lower aight data lines. In the 18-bit
mode, word accesses can be made (if the address is
even), all data on even addresses appears on the lower
elght dala lines, and all data at odd addresses appears
an the upper eight.

Bit 0 in the SOC fleld sets the physical width for the 10
bus. The same rules for the system bus apply here. Note
that these bits should reflect the actual hardware imple-
mentation and are not to be conlused with the DMA logi-
cal widths set by the WID instruction.

The R bit {bit 1) in the SOC field is used to change the
mode of the RQ/GT circuitry. When the I0OP is on the
same bus as an 8086, it |s required to have the A bit ba 0,
with the B086 as the master and the B0B3 as the slave.

- e ——— e

By-8g T COMMENTS

-—n =

Trigger GLK |

CA Ap-Ag

i FFFFF 1
1 FFFFF 1n

FEFFF 111
FEFFFF 111
EQODD 111 Bus un-iristaled
EQODD LR R
FFC&D 111
0 | TP 10 latch

CK FFCED 111
FFFFB 1017 T1| Address ioaded to laich
EFFFF 101 T2| Data not ready yel inothing on bus)
EFFO1 111 T3| SYSBUS loaded into chip (01)
EFFFF 111 T4 | Nothing an bus
EFFF& 111 After bus cycle, address remains in
EFFFE 1" tatch
FFCaD 1m TP is loaded 1o latch, evan though
14 { fatchas are from intemal ROM
CKE FFCBED 111
FFFFE 1 T1| Addrasa 1o lateh
EFFFF 11 T2
EFFFO 111 T3| 1st 2 bytes of LPD data feichad (FFFD)
EFFFF 11 Ta
EFFF# 111
EFFFB 111
EFFFBA 111
EFFFB 111
FFFFA 11
EFFFF 101
EFFF A 111

{ 2nd 2 bytes of LPD data fetched (FFFA)
]

CK EFFFA 111
FFC&D M

—— - = —

Figurs 6. Start ol Initialleation Seguence On a 15-Bli Bus

The master (B0B6 or B0B8) can never take the bus away
from the siave (8088); only the slave can give back the
bus. In other words, during DMA transfers, the 8089
would not have the bus taken away. This Is the only
moda compatible with the B0B6 or BOBS.

When two I0Ps are being used on the same bus, the
RQ/BT circuity can be put into an agual priority mode
by setting the R bit to one. A slave can only be granted
the bus if the master |8 doing unchalned instructions or
running idle cycles. The master can request the bus
back from the slave at any time. The slave grants it if do-
ing unchained Instructions or if it is idling. The master
and slave are put on essentially the same priority.

At the end ol initialization, the “"BUSY" flag of CH1 is
cleared. For systems where the BOBE is waiting for the
initialization sequence to end before giving another CA,
it can set the BUSY flag high prior to initiallzation. The
BUSY llag going low s a sign that the IOP is ready for
another CA. It is important to remember that the I0P will
not respond to, nor latch, a CA during an initialization
sequence.

Channel Attentions

The main system processor initiates communications
with the IOP through the Channel Attention (CA) line. As
mentioned earlier, the first CA after system RESET in-
itializes the IOP. All subsequent CAs cause the IOP to
do a two-step process. It first fetches the Channel Con-
trol Word (CCW) from the appropriate channel at (PP) for
channel 1 or (PP + 8) for channel 2. (SEL at the time of
CA falling determines the channel for all following ac-
tions.) The lower three bits of the CCW Command Field
(CF) area examined and then cause the IOP to execute
the desired function.

Command Field (CF)

Control of task block programs is accomplished
through the command field. The various CF funclions
are:

CF

000 — Examine other fieid only and set BUSY flag

001 — Start task program in WO space

011 — Start task program in system memory

The start command causes the following instructions
to be executed out of the internal ROM:

LDP CP from (CP)+ 2 (CH1) or + 10 (CH2)

LDP TP from (PP) (for TP in system) or

MOVEB TBP from (PP) (for TBP In 1O}

MOVEBI "FF” to (CP)+ 1 or+ 9 (set BUSY flag)
111 — HALT channel. BUSY fiag cleared to 00"

110 — HALT channel. Save state of machine and
clear BUSY flag by axecuting:

MOVP TP to (PP)
MOVE PSW to (PP}+ 3
MOVBI “00" to (PP)+ 1 or+ 8

A-94

AP-50

The channel will HALT and the machine will con-
tinue execution on the other channel or go to idle if
the other channel is Idle.

101 — Continue channel. The channel is revived
after a HALT by executing:

MOVP TP from (PP)
MOVE PSW from (PP)+ 3

MOVBI “FF” to (CP)+ 1 or +9
(set BUSY flag)

Do not do a CONTINUE after initlalization without doing
a CA START first since the (PP) register in CH1 is used
as a temporary register (to hold SCB) and s only correct-
ly loaded by a CA START.

The upper 5 bits in the CCW will have affect if CF =000
or upon a CA START. Some things to note about these
upper flalds are:

* Priority Bit — If both channels are doing tasks of
the same overall priority, the tasks with the higher
priority bit will run. If the priority blts are the same,
execution will alternate between the two channals.

* BLL Bit (Bus Load Limit] — Keeps nonchalned In-
structions from occurring more often than once
every 128 clocks. However, channel attention or ter-
mination cycles, even on the other channel, may
disrupt the axact time Iinterval to the next
Instruction.

It should be noted that the setting or clearing of the
BUSY flag occurs after the loading or storing of
registers, so that in a system where the main CPU usas
the BUSY flag as a form of semaphore to tell when the
IOP is truly finished, there is no danger that the SCB,
CP, PP or TP could be changed before the IOP |oads
them.

Also since DMA termination cycles and chained instruc-
tion execution have a higher priority than CA_ it is possi-
ble for CA to be "shut-out” by these higher priorities
running on the other channel. However, since CA is
always latched (except during initialization), it won't be
forgotten.

How Can a Channel be Halted?

Sometimes a channel may stop its operation unex-
pectedly. To see what could cause this, and to show the
impact of halting a channel, the various ways of stop-
ping a channel are explained:

HALTED CHAMNMEL — If the channel has never started
after initialization, if it has received a CA HALT com-
mand or a software HALT, channel operation is sus-
pended. If the other channel can run, it will, otherwise
idle cycles will run. Only a CA START or CONTINUE can
resume operation.

WAITING FOR A DMA REQUEST — If the channelisina
source or destination synchronized DMA transter mode,
it will wait until DRQ is active before running its syn-
chronized transfer. To minimize the impact on the
overall throughput of the chip, the other channel can run
during these DRQ wait periods.

WAITING TO GET THE BUS BY RQ/GT — If the IOP has
given the bus away via RGQ/GT, it won't initiate any bus
transfers until it has the bus back. The machina will run
up to just before T1 of a bus clock cycle and will three-
state its addressidata and status pins until it has been
granted the bus.

WAITING FOR READY — When running bus transfers,
READY |2 sampled at T3 of a busy cycle. If Inactive, the
whole chip will walt until READY goes active.

The last two cases of waiting (or “wait" states) stop the
whole chip and do not permit the other channel to run.
However, with READY inactive or with the bus not ac-
quired, there is not much that can be done on the other
channel anyway. Thasa two cases only stop the chip
when running bus cycles. Any internal operations can
procead without having the bus or with the systam not
READY.

Note the difference between when the chip is HALTed
when using RQ/GT and an external arbiter (8289) for
bus arbitration. Not having the bus due to RQIGT will
inhibit the bus cycle from even starting. Since the 8289
stops the chip by forcing AEN inactive, which goes
through the 8284 clock generator to force READY inac-
tive to the |IOP (or BOBG/B0BE), a bus cycle has already
been started, with ALE asseried, and the addreas on the
address/data lines. When the bus is obtained, operation
proceads at T3 of the bus cycle,

As will be mentioned later, many invalid opcodes will
cause the machine to hang up. In these cases the
address/data lines will point to where the bad opcode
was fetched.

Task Execution

Although optimized for fast and flexible DMA operation,
the IOP Is also a full-fledged microprocessor, The 8086
Family User's Manual deals with programming
strategles and other details. Some of the things to be
noted during debugging will be mentioned here.

Instruction Fetching

Unlike the B0BS (but like the BOE6), the BOBY labels all
fetches from the instruction stream, whether OPCODE,
offset, displacement, or literal data, as an instruction
fetch on the status lines. In some cases, such as MOV
R,! and ADD R, the instruction fetch time greatly ex-
ceeds execution time because literals are treated as in-
struction fetches. When following programs on a logic
analyzer, triggering on status =100 or 000 (instruction
fetch) and a known program address is the handiest way
to trace the flow of the program.

When running programs on a 16-bit bus, a 1-byte queue
register comes into play, saving the upper byte fetched
from the last instruction fetch, if not used by the
previous instruction. This reduces fetch time and bus
utilization since the odd byte doesn't need to ba fetched
again. An internal four-clock cycle fatches data from the
gueue. Like the internal ROM fetches, the task pointer is
put out on the address/data lines, but no bus cycle is run.

A-95

AP-50

The gueue can have some possible unexpectad affects
that have to be taken into account during debugging.
These apply only to 16-bit systems and are:

1. Instructions that start on odd boundaries will not
likely have bus cycles run to fetch the odd byte
unless jumped to, unless preceded by LPDI {(which
clears the queue), or an instruction that modifies the
task pointer is execuled. The latter causes the queue
to be cleared so that part of an old instruction won't
become part of the naw one.

2. There is a queue register for each channel so loading
or clearing the quaue on one channal has no affect on
the other channeal's queue.

3. The second word of immediate data fetched by a
LPDI is done during a pseudo-instruction fetch cycle
that cannot make use of the queue or already fetched
data. Thus, If on an odd boundary, fetching an LPDI
will be byte, word, byte, byte, byte, and tha queue will
not be loaded.

When Can the Other Channel Interrupt Instruction
Execution?

This will be explained more in thé "dual channel” opéra-
tion section, bul a few points will bé mentionad here. All
instructions are made up of internal cycles, with aach
cycle composed of two 1o eight clocks. Each bus cycle
is one internal cycle, but there can be internal cycles
with no comunications to outside the chip. Internal
cycles will be extended by the number of wait states in
each bus cycle. Between any of these cycles, DMA from
the other channel can intervene if the priorities permit it.
Instruction tetching and execution can only interrupt in-
structions on the other channel when the instruction
has been compileted, not betweaen internal cycles.

Regislers

All the registers have some special purpose use in the
Instruction Execution or DMA, but all except the CC
register can be used as general purposa registers during
instruction sequences. A few are locaded specially:

« CP — |8 only loaded during an Initialization se-
quence. There is one CP ragister that handlaes both
channels. (All others are duplicated, one set for
each channel.)

* PP — Is only properly loaded during a CA START
command. It holds the SCB value after the initializa-
tion sequence.

* TP — This is included as part of the registers n the
RRR field, but cannot be operated on unlass you
plan on having your program execulion jump
around. Everytime this is operated on, the queue is
cleared. The TP Is loaded from two words (address
and displacement) on a CA START, LPD, or LPDI,
and loaded from 3-byte MOVP format (see illustra-
tion on page 5) on a CA CONTINUE, and can be op-
erated on using any register oriented instructions.

The tollowing registers are loaded during program exe-
cution, but can have special effects:

= CC — The only thing that affects instructions in the
CC register is the chaining bit. If chaining doesn't
matter (if only one channel is being used without
channel attentions, for example), then the CC reg-
ister can be general purpose. However, for portabil-
ity of programs, It |s strongly suggested not to use
the CC register except for altering DMA parameters
and chaining.

* MC — Is a general purpose 16-bit register, but is
also used to do a masked comparison either for
DMA search/imatch termination or for the JMCE and
JMCNE instructions.

* BC, /X — Both general purpose 16-bit registers. In
instructions that reference memory using the AA
fieid, it AA =11, the IX register is incremented by
the number of bytes felchad or stored.

* Popinter Registers (GA, GB, GC and TP) — Are 20-bit
registers, but can also be used as 16-bit registers.
Adds will carry into the upper 4 bits, but other
operations (COMP, OR, AND) are done only on the
lower 16 bits. Nole that when used as pointers to
system memaory, It is poasible to add a large 16-bit
number to the pointer and to put the pointer into
another 64K block of mamory.

Sign Extension

All program data brought into the chip, either literals or
displacemenis in opcodes, or program data fetched
from memaory, is sign-extended. Offsets used for
calculating addresses are not sign extended. Any B-bit
data brought in has bit 7 sign-extended up to bit 19.
Sixteen-bit data is sign-extended from bit 15 to bit 18. It
is important to note this, because it can affect logical
oparations. For example, if one wanted to OR 0084H
with 1234H in register GC, you couldn’t do ORBI GC,
B4H, because bit 7 would sign-extend into the upper
byle. Instead, you should code ORI, 0084H to do this
properly (note that this has a word for the immediate
data). The non-ADD operations wlll cause the upper four
bits of the pointer registers to be invalid since the upper
four bits of the ALU come only from the adder.

Tags

It should be noled thal the way the IOP knows which
bus to access (system or VO) is via the Tag bit associ-
ated with the pointer register used. Tha TAG can only be
set in these ways: loading as a 16-bit register (MOV R,M,
MOV R)) sets TAG 1o VO space, loading as a pointer
(LPD, LPDI) sets TAG to a sysiem space), or bringing the
TAG in from memory by a MOVP instruction,

Effects of Invalid Opcodes

The upper 6 bits of the 2-btye opcode actually determine
which opcode will be executed. If thase bits are a valid
opcode, but lower bits are invalld, the chances are good
that the bad bits will ba ignored, But if the upper six bits
are invalid, there is a very good chance that tha chip will
hang up and stop exacution in that channel. The only
way to get out of this mode is to reset the chip. If this
hang-up occurs, it can usually be traced because the
last address of the inatruction fetch will still be on the

A-96

AP-50

addrass/data lines, showing where the program went
astray.

Golng from Instruction Execution into DMA

The XFER instruction places the current channel into
the DMA mode after the next instruction. This permits
one last instruction to start up an /O device (start CAT
display on an B275, for example). However, in order for
the IOP 1o get setup for DMA, the GA, GB, and CC
registars should not be altered during this lasi instruc-
tion. Fallure to observe this will probably result In an
improper {irat DMA fetch. The WID instruction can be
placed aftar XFER.

DMA Transfers
incremanting/Non-Incramenting pointers

A memory or VO pointer can be made to Increment for
sach byte transterred during DMA or it can remain fixed.
Incrementing is used primarily for memory block
transfers, and non-incrementing is used to access /O

poris.

B/W Mode

Each DMA transfer is composed of separate fetch and
slore cycles so that 8/16-bit data can be assembled and
disassambled, and transiation and termination may also
be easily handled. There are four possible transfers or
B/W modes. They are:

B-B — 1 byte fetched, 1 byte stored

B/B - W — 2 bytes fetched, 1 word stored
W - B/IB — 1 word fetched, 2 bytes storad
W-=W — 1 word fetched, 1 word stored

The B/W mode used depends on the logical bus width
[selected by the WID Instruction), address boundary,
and incrementing mode.

All systems with B-bit physical buses will run in the B/B
mode. On 16-bit physical buses the other modes are
possible, depending on the logical widihs selected.
Nole that the logical bus width can be different than the
physical bus width since there are cases where an 8-bit
peripheral may be used on a 16-bit bus. The selection of
the logical width, and not the physical width, is what
determines the B'W mode. Thus it is the responsibility
of the programmaear not to program an invalld combina-
tion (l.e., don't specify a 16-bit logical width on an 8-bit
physical bus).

Any transfer on an odd boundary will be B/B but If the
pointer is incramenting and on a 16-bit logical bus, after
the first transfer, the pointer will be on an even bound-
ary. The IOP will then try to maintain word transfers in
order to transfer data as effeciently as possible. Sea the
user's manual for detalls. The change in B'W mode oc-
curs only after the first transfer or, as explained in the
termination section, upon certain byte count ter-
minations.

Synchronization

in the unsynchronzied mode, transfers occur as fast as
priorities will allow. This is the IOP's “block-move"
mode. Most /O peripherals only want a DMA transfar on
demand; the DRQ lines, along with synchronization
specified, will handle this need. Source synchronization

is used for /O reads and destination synchronization is
used for /O writes.

If the IOP is waiting for a DMA request, it will run pro-
grams or DMA on the other channel, or execute idle
cycles if nothing is pending. If running idie cycles when
the DRQ comes, the transfer starts five clocks after
DRQ is recognized. If running DMA or instructions on
the other channel, the DRQ cannot be serviced until the
current internal cycle is done, and may require a max-
imum of 12 clocks (without bus arbitration or wait
states).

Consecutive DRQ-synchronized DMA transfers on the
same channel are separated by four idle clocks (assum-
ing no other delays) by an internal sampling mechanism.
This happens between the 2-byte tetches on source-
synchronized B/B-W cycles, and between the two stores
on destination-synchronized W-B/B cycles. This delay
between consecutive DMA cycles allows adequate time
for proper acknowledgement of the current DMA re-
quest before the next request is processed. On
destination-synchronized DMA, this isn't a problem, but
on source-synchronized DMA, there will be four extra
clocks per transfer. Unless one is running right at the
speed limit, this won't be a problem. Near the maximum
data rate, unsynchronized transfers can be used, with
synchronization done by manipulating the READY line.

Translate Mode

When the transiate bit is set, the data fetched during
DMA will be added to the GC register. This new pointer
will in turn be used to felch, via a seven clock extra fetch
cycle, new data, which will than be stored. Translate Is
only defined for byte transfers. The byles are added to
GC as a positive offset, so a lookup table for translating
data can be a maximum of 256 bytes long. Even If the
data to be translated falls within a smaller range (such
as ASCII code), a full 256-byte lookup table is recom-
mended so that erroneous data can be flagged and con-
trollad.

Translate can be run on any of the B/B transier modes,
s0 it is useful for doing block transiation within program
execution as well as translation directly to or from an /O
port.

DMA Termination

Cne of the powerful teatures of the I0OP is its varied
DMA termination conditions and their close tie-in with
resuming Instruction Block programs. However, be-
cause of the multitude of DMA modes, care must be
taken in predicting the exact termination parameters.
Various things to be careful about will be outlined here.

Byts Count (BC) Termination

The BC register is decremented for every byte trans-
ferrad whether or not BC termination is set. If BC ter-
mination is set, the last transfer done is the one that
results in BC being zero. To avoid the problem of miss-
ing BC =0 on word transfers, if BC is odd between avery
transfer, the IOP detects when BC is 1, and forces the
last transfer to ba in the B/B mode. Since both the fetch
and store cycles are complete, the source and destina-
tion pointers point exactly 1o the next byte or word that
would have bean fetched.

A-97

AP-50

e —

Masked Compare (MC) Termination

An MC termination occurs when a pattern matches (or
doean't match, depending on mode selected) the lower
half of the MC register (tha match pattern) with only the
bits that are enabled by the upper half of MC (the mask
pattern) contributing to a match. Thus the masked bits
can be “don't cares” in both the data byte and the match

byte.

The masked comparison is only done on store (deposil)
cycles. Any bytes transferred (in B/B or W-B/B moda) will
ba compared. But, since the MC comparison Is done on
only one byte, any words stored (W-W or B-B/W) have
only their lower byte comparad. This may be fine, but If
not, make the destination logical width B bits.

Just |Ike BC termination, the pointers will point to the
next data to be transferred. The BC will also be decre-
mented correctly, except if the termination occurs on
the first byte of a W-B/B transfer. In this case the BC will
be decremented as if the entire tranafer (both bytes) had
taken placa.

The store cycle that causes an MC termination will be
lengthened by two extra clocks (or by one extra clock If
there are wait atates), to allow time to set up the ter-
mination cycle.

DATA :)
COMPARE PATTERN

MASK FATTERMN

FROM =D— MATEH
OTHER | —

=

Figure 7. Masksd Compans Logle for 1-811

External (EXT) Tarmination

External termination allows the /O device or controller
tc use iis own conditions to generate a termination.
Basically, the IOP will halt DMA as soon as it recognizes
an EXT terminate, even il a transfer is only partially com-
plete. There might be concern that multibyte cycles
(W-B/B or B/B-W) might have data lost if an EXT ter-
minate stopped the store cycle. In unsynchronlzed ODMA
this would happen, but this mode is typically not used
with /O controllers that could generate external ter-
minations, In synchronized DMA modes, it is assumed
that the /O controller will only do a DRQ for valid data
transferred, and that it won't give an EXT terminate with
its DRQ active. In destination synchronization, the
possible problem occurs in the W-B/B mode, where EXT
tarminate comes after the first store but bafore the sec-
ond. This is fine, since even though data was over-
fetched, the proper amount was actually transferred. In
source synchronization, the B/B-W mode raises prob-
lems since if an EXT terminate came after the first byte
fetched and before the second byte fetched, normally
no store cycles would ba done at all, thus losing the first
byte fetched. In this case (|.e., source synced, DRQ inac-
tive, and 1 byte already fetched), a single byte store
cycle is run before the termination cycle, ensuring data
intagrity.

In order to prevent an Invalid signal level from becoming
trapped from the asynchronous EXT term lines, two
clocks of delay and signal conditioning are done on
these lines. In addition, a termination cycle can only be
started at certain times during DMA (or TB on tha othear
channel — see dual channel operation section). The EXT
terminate lines should be valid eight clocks before the
start of the DMA cycle to be stopped.

EXT is sampled aven when the IOP is running something
on the other channel. Remember though, that deapite
the high prierity of tarmination, the current instruction
on tha other channel has to finish before the termination
cycle is run. Simultaneous EXTs on both channels result
in CH1 termination being dona first.

In order to have enough time to process a byte count ter-
mination, the BC register is always decremented during
DMA fetch cycles. Because of this, external or MC ter-
minations that occur during W-B/B cycles will result in
the byte count always being decremented by two, even
it only one byte |s stored. This also occurs in the block-
to-block or block-to-port B/B-W modes. To find the axact
number of bytes transferred, the source polnter addresas
can be checked in the block-to-port and block-to-block
modes during B/B-W cycles and In the block-to-port
W-B/B mode. The destination pointer address can be
used fo find the number of bytes transtferred in the port-
to-block and block-to-block modes during W-B/B cycles.

Termination Cycles and Multiple Terminations

Upon termination, the user can run different task block
programs, depending on which type of termination has
occurred, by specifying an appropriate termination off-
sat. That is, instruction fetching will begin after a
termination cycle starting at elther the TP value before
the DMA started, TP + 4 or TP + B. These offsets permit
long or short jumps to termination routines.

The termination cycle Is an add Immediate Instruction
that runs from the internal ROM and adds the proper off-
set to tha TP. It is 15 clocks long for TP+ 4 and TP+ 8
termination and 12 clocks long for TP+ 0 termination.

As mentioned earliar, EXT terminate must come a cer-
tain time before the end of a transler to ensure that the
next transfar doesn't start. If it comes in lime and MC
termination also occurs on the current tranafer, then the
termination cycle with the largest offset is run. A
simultaneous BC terminate cycle will have priority over
MC and will result in the running the BC termination
program.

Prioritles/Dual Channel Operation

The |IOP can share i1s internal and external hardware
between two separate channels. The user sees two
identical I0P channels with all registers, machine flags,
elc., independent of the other channel. The only register
in common s the CP register, loaded by the initializa-
tion sequence. The mechanism for achieving dual chan-
nel operation is time multiplexing between the two
channais.

Since interleaving two channels affects their response
time to external events and since interfacing to these
avents is tha prime purpose of the I0P, saveral means of
adjusting the pricrities of the channels are providad.

A-98

AP-50

Before going into the priority algorithms in detail the
four types of cycles that are affected by the priorities
will be outlined:

1. DMA Cycies — Any type of DMA transfer cycle,
including single transfers and transiate cycles. DMA
can be interrupted after any bus transfer by the other
channal.

2. Instruction Cycles — Any Iinstructions that have
been fetched out of VO or sysitem memaory. Instruc-
tion cycles are made up of internal cycles, each two
to eight clocks long (assuming no walt states). Some
cycles may not run bus transfers. Instructions can be
interrupted by DMA after any one of the Internal
cycles, but can only be interrupted by instructions on
the othar channel (normal ones or ones from internal
ROM) after the current instruction is completed.

3. Termination Cycle — Performed when DMA transfers
end and instructions resume (except on single
transiars).

4. Channel Attention Cycies — Performad when chan-
nel attention is given, performs actions specified in
the CCW field. Both termination and CA cycles can
be interrupted by DMA after any internal cycle, but
can only ba interrupted by instruction cycles alter
the complete sequence ol internal cycles Is done.

Termination and channel attention cycles as wall as the
initiallzation cycle (which never runs concurrantly with
other operations) are sequences of instructions fetched
from an intarnal ROM.

Recognizing the higher importance In doing DMA, ter-
mination and {to a lesser extent) CA cycles, the follow-
ing priority scheme is built into the IOP. Any channel
that has a higher-priority operation will run continuously
until done. If both channels are running the same priori-
ty, axecution will alternate between tham.

Highest Priority

1. DMA transfers, termination, chained instructions
2. Channel attention cycles

3. Instruction cycles

4, |dla cycles

Lowas! Priority

Two ways exist to alter the priority scheme. One way is
to utilize the pricrity bits for each channel. Il one is
greater than the other, that channel will run at the ax.
panaa of the other if both channels are otharwise run-
ning at the same priority. Thus the P bit only has effect
on channals running at the same priority level,

If one wants to run instructions along with or in place of
DMA on the other channel, the other technique is 1o sat
the chaining bit (in the CC register) which brings the
instruction priority up 1o the level of DMA, Care should
be taken with this since now CAs are at a lower priority
than instructions and will not be serviced unlass that

channel goes idie. Chaining will also lock out normal in-
structions on the other channel. Chaining should thus
be used with care.

In order to reduce the poasibility of shutting out channel
attentions, an exception is made to the above priority
scheme. After every DMA transfer, whether synchro-
nized or unsynchronized, the IOP will service any pend-
ing CA. However, chained task block execution will still
shut out CAs on the other channal.

What is the importance of priorities? Well, as an
axample, let's say that we aré running long periods of
non-time-critical block moves (via DMA) on one channel
and running short bursts of DMA that must be serviced
promptly on the other channel. With the default
priorities, the short DMA channel bursts would be in-
terleaved with the longer DMA, reducing the maximum
transfer rate for both channels. If, however, the priority
bit was one on the burst modeé DMA and zero on the
other, the bursts would be serviced continuously at the
fastest possible data rate.

An even more critical case would be {he same low prior-
ity. long DMA transfers on one channel with DMA on the
other channel that must terminate, run a short instruc-
tion sequence, and resume DMA agaln within a short,
fixed time. (This might be the case in running a CRT dis-
play with linked list processing batween lines.) Normal-
ly, the low priority, long DMA could indefinitely block
the short TB sequence. By setting the high-priority chan-
nel's priority bit to one and putting It into the chained
Instruction mode, the low priority channel would stop
Its DMA entirely so that the tarmination/instruction se-
quence could run.

When establishing the priorities to bé run, care should
be taken that both channels will run successfully under
a worst case combination. This can be tricky when the
channels are running asynchronously with fast data
rates and/or short latencies, but must be taken into ac-
count. Of course, running only one channel on the IOP is
an easy solution, but it more than one IOP is being used
in the system, the priorities and delays of the bus ar-
bitration used (either RG/GT or an 8289 bus arbiter) must
be taken into account. It may be found that the on-chip
arbitration between the two channels is faster and more
powerful than external arbitration,

SUMMARY

It is hoped that the material presented here will aid
those who are putting together and debugging an 8089
IOP sysiem, and help them in understanding the opera-
tion of the |IOP. Many of the debugging technigques
should be familiar to those who have worked with micro-
and minicomputer systems before. Other debugging
technigues not mentioned here, which work well with
microprocessor systems, could be just as applicable to
the 8089. The unique nature of the IOP among LSI
devices warrants special consideration for its VO func-
tions and multiprocessor capabilities.

A-99

AP-50

Appendix |
CHECKLIST OF POSSIBLE PROBLEMS

HARDWARE PROBLEMS
* |s RESET at least four clocks long?

= Are both Vgs lines connected to ground?

* Does the first CA falling edge come al least two clocks
after RESET goes away?

* Does the second CA come at least 150 clocks (16-bit
system, no wait states) after the first CA?

» |s READY correctly synchronized and gated by
localisystem bus lines?

* |5 SEL correct for first CA so that IOP comeas up cor-
rectly as master or slava?

« |f two IOPs are local to each other, is a 2.7K pull-up re-
gsistor used on RQIGT?

SOFTWARE PROBLEMS

= Are the initialization parameters in the (nitialization
linked-list correct?

» Is BUSY flag being properly tested by host CPU soft-
ware belore modifying PB or providing a new com-
mand?

« Has the chaining, translate, or lock bit in the CC
register been erronegusly seat?

* Have DMA termination conditions been met? The IOP
could be trying to do endless DMA.

Appendix Il

BREAKPOINT ROUTINE
AND

CONTROL PROGRAM

The debugging program described hera is an example of
the kind of software development tool that can be
developed for the 8089 I10P. It was written to try out
various breakpoint schemes, and has been used to
debug an engineering application test system. The pro-
gram is not meant to be the ultimate debugging tool, but
Is an example of what can be put together to utilize the
breakpoint routine described earlier in the application
note.

The debugging program was tested on a B0BB-based
system that emulates the SDK-86 |/O structure, and uses
the SDK-B86 serial monitor. This enables it to use the
SDK-868 Serial Downloader to interface to an
Intellec® development system on which the software
was created. The BOBE system is interfaced via a
MULTIBUS™ interface to an IOP running in the REMOTE
mode. The remote bus access technique, mentioned
earlier in this note, is implemented on this system, but
was not used in the software debugging program.

The breakpoint routine uses a simple jump to a save
routine. The PL/M-B6 supervisory or control program
handles the placement of the jump within tha users pro-
gram. Since it can not normally access the remote bus,
all I1OP programs to be tested must run out of system
memory.

When the control program starts, it assumes the IOP has
just been reset. It then prompts the user for the CP
and PP values. After this, it sends the first (initialization)
channel attention. It then asks the user for the channal
to be run, and the starting and stopping addresses. After
the stopping address has been entered, a Channel At-
tention Start is given. |f the breakpoint is reached, a
HALT is executed, and the control program prints the
register contents. If the breakpoint hasn't been reached,
the user can type any character, and a Channel Atten-
tion Halt will be sent to the |IOP. If the IOP responds
within 50 ms, the TP where it was halted is printed.
Otherwise, the control program issues an error
message. If, at any time, the user wants to get out of the
program, typing an ESC will pass control back to the
SDK-86 monitor. Figure 9 shows the flow of the control
program.

Note that, unlike a single CPU debugging routine, hav-
ing the BOBE supervise the BOBY enables a clean exit
from crashed |OP programs. The program code where
jumps had been placed are always restored. The control
program is a good example of how the power of dual
processors can be put to good advantage.

Comments within the control program indicate
parameters that need io be changed to run on different
systems. It shouid be noted that channel attentions are
invoked by the recommended method of using an VO
write to a port to generate CA and using AD for SEL.

Source and object files of this program are available
through Intel's INSITE™ User's Program Library as pro-
gram 8089 Break. 89 (number ADB).

MASTER DATA STORAGE LOCATIOMNS:

INCREASING
ADDRESS
T x —]

TR

— PP 4208
GA il
GA
Ge - PP+ 242
GC F— as
~ @C - PP+ 245
BE - PP+ 248
Ix ra—— PP + 35
cC — PP + 252
MC — PP+ 254

Figura 8. Breakpoint Rouling to Run 8083 Program out of System
Memory

A-100

AP-50

(

STAAT

)

GET CP
AND FPs
EOR CHY AND CHZ

EEND
INIT.
Ca

M N

LEAVE TIME
FOR IQP
TO RESPOND

BUSY

GET CHANNEL
HUMBER,
START AND
ETOP ADDRESSES

L

SAVE FROGAAM
CODE, MOVE
BEREAKFDINT
INTO PLACE

LOAD PR
WITH STARTING
POINT,

BUSY FLAG
WITH OFFH

LOAD CP
WITH
ETART ADDRESS
SEND CA
START

BUSY FLAG
CLEARED OR
CHAR.
ENTERED?

YES

RESTORE
PROGRAM

COOE, PUT
CA HALT IN CP,
SEND CA

L

FLAG CLEARED

7

PRINT PHRINT
TP ERROR
ADDRESS MESSAGE

l

FRIMT

REGISTER
COMNTENTS

RESTORE
PROG RAM
CORE

Figure 8. Breakpoint Routine to Aun 8088 Program out of System Memory

A-101

AP-50

PL/M=-B& COMP ILER B0OBY DREAKPOINT ROUTIME PAQE

I1215-1] PL/M-B& 7103 COMPILATION OF MODULE BREAMPOINT
HEJECT MODULE PLACED IN BREAK OOJ
COMPILER INVOKED BY F1 PLMES BREAW, SRC PAQEWIDTH (100)

ATITLE ¢ ‘28087 DREAKPOINT ROUTINE ‘3

A a

BOEF BREAK POINT PROCEDURE
HRITTEM BY DAVE FERGUSOM /72779 REV &2 B714/79
INTEL CDRPORATLOM

LI

| DREAKSPOINT

DO

DECLARE [BYTE.

DECLARE SAVECODE (4) WORD: /=BUFFER FOR STORAGES®/S

DECLARE OMEPF POINTER: /% CHAM ONE PP =/

CECLARE TWOPF POIMTER; /e CHAM TWO PP =/

DECLARE STARTEYTES (41 BYTE: /# BUFFER FOR START ADDRESS »/

oo B LR
— s e e

DECLARE STARTPOINTER PODINTER: /% POINTER FOR START ADDR, &/
DECLARE ENDPOINTER FOINTER, ¢« POINTER FOR END ADDR, +#/
DECLARE PRESENT POINTER AT (RINPNTRI: /+ PDINTER BUFFER =/
DECLARE TRUE LITEAALLY 'OFFM’, FALBE LITERALLY “QOO0OH‘:

D -0 D~

/% ¥OU MUST CONFIGURE YOUR [/0 STRUCTURE AND
SYSTEM TO MATCH THE PROGCRAM DR VISA VERSA #/

11 1 DECLARE CRTSTATUS LITERALLY "OFFF2M’. 7+ B251 STATUS PORT «/
CRTDATA LITERALLY "OFFFOM‘, fe B231 DATA PDRTS &/
CHANMATTEMN LITERALLY "OFAH", /& CHANNEL ONE CHANNEL ATTENTION PORT =/
fo CHANMNEL THWO CHANMEL ATTENTION PORT = CHAMNATTEN + 1 =/
CHAMMELDOME LITERALLY “OOH -,
CHAMMNEL TWD LITERALLY "OLH".

7= ASCI1 IS A STRING OF HEX CHARACHTERS IN ASCII FORH »7
ASCII (#) BYTE DATA ('O1234347B9ABCDEF "),
TITLESSTRING i#) BYTE DATA (DaM. ODH. 'B08Y BREAMPDIMT VER 1 0°,
OaM,: O0OH, "TYPE ESCAPE TO RETURN TO MOMITOR. *
QaH, OOH. 01,
CHANGIVEN (=) BYTE DATA ("CHANMEL ATTENTION CIVEM TYPE ANY KEY TO ABORT, *
« OaH, DOH: O,
BUREACHED (=) BYTE DaATA (D&M, ODH, 'BREAKPOINT REACHED ‘. OAH. ODH, O).
GETCP (#) BYTE DATA ("INPUT CP IN HEX ', O0AH. ODH. 00),
GETSPF (=) BYTE DATA {('INPUT PP IM HEX FOR -, O0H),
GETSTART (#} BYTE DATA (QAM, ODM: 'INPUT STARTING ADDRESS IN HEX ‘', OAH. ODH, OOH),
STOPALDR (#} BYTE DATA ¢ "INPUT END ADDRESS IMN HEX ', OAH, ODH. O0H),
CHAMNMNUMBER () BYTE DATA (DAH, ODH, 'CHANNEL ONE OR TWO? *., 00H).
ABORT (+) BYTE DATA (° FATAL ERROR - I10P DOES NOT RESBPONMD TO CHAMNEL ‘.
* ATTENTION. RE-INITIALIZE SYSTEM ‘.0,

ABORTAT (#) BYTE DATA (* TP WAE *.01.
ONE (=) BYTE DATA (° CHAMNMNEL ONE ‘, OAM, ODH. O0OH).
TWd =) BYTE DATA §° CHANNEL TWO-®; DAH. ODH, OOH).

GASTRING (=} BYTE DATA ("GA = °,00M},

A-102

AP-50

PL/M-86 COMPILER B0OBT BREAMPOINT ROUTINE FAGE

12
13

14
13

18

19
=0
2
<3

24

33
A&
a7

40
4|

M RY RN R e P na

na A RSP R R e

i

LA VR A K]

CGOSETRING (®) BYTE DATA ('GE = *,Q00H),
GCETRING i®) BYTE DATA ("GC = .0},

BCETRING (#) BYTE DATA (OAH. ODH. "BC = . OOH},
IXSTRING iw} BYTE DATA (ODAH. ODH. "'IK = *. O0H),
CCBTRING (w] BYTE DATA (OAH: ODH. *CC = *, Q0H),
MCETRING i(#]) BYTE DATA (OaH. ODH. "MC = . QOH)

DECLARE CHAR BYTE.
DECLARE OMETWO BYTE.

Ffo SDHMON IS A PLM TECHMNIGUE WSED TO FORCE THE CPU INTO AN
INTERUPT LEVEL 23 IM DRDER TD WUSE TWIE THE PROGRAM MUST
BE COMPILED (LARGE) =/

E0KMON:

PROCEDMUJRE

DECLARE HERE (=) QOYTE DATA (OCCH:.

Ffo THIS I8 aAaM INT 3 =y
HWHERE WOAD DAT&(HERE).
CALL WHERE

END|

Ffea CO SENMDE A CHAR TO THE COMEBOLE WHEW BEADY =/
/& THIS ROUTIME I8 WRITTEW TO RUN VIA THE BERIAL
o FORT OF AM SDHB& =/

FROCEDURE i(C).

DECLARE C BYTE.

DO WHILE (INPUT(CATSTATUS) AND QOlH) = O, ENDJ
OUTPUT LCRTDATA) = C;

EMD.

/8 C] GETS A CHARACHTER FROM THE USER V1A THE SERIAL PORT e/
/% C1 AUTOMATICALLY ECHDS THE CHARACHTER TO THE USER CONSOLE #/
DECLARE #SCAPE LITERALLY ‘1BH’.

C1 PROCEDURE BYTE.
DO WHILE (IMPUTICRATSETATUE) AND 02H! = 0, END:
CHAR = [MPUT (CRTDATA) AND O7FH:
CaLL CO{CHAR b
IF CHAR = ESCAPE THEN CALL SDMMOM: 7+ Q0 TO SDM HMOMITOR =/
RETURN CHAR;
ENDu

f% VALIDHEX CHECHE THE VALIDITY OF A BYTE A8 A HEX CHARACHTER#/
/8 THE PROCEDURE RETURNE TRUE IF VALID FALSE IF NOT e/

VAL IDHEX
PROCEDURE (H) BYTE!
DECLARE H BYTE.
DO I=0 TO LASTIASCIT)
IF H=ASCI1(1) THEN RETURN TRUE:
EmD:
RETURN FALBE.
END:

A-103

AP-50

Pi./M-B& COMPILER

a3
an
45
47
4%
=1*)

21

I
23
=4

35

57
=8
b
&0

51

&3

54
5%
b
457

=B
1)

raey

P Ca L Ny B DY

(LN N LN

—

P P &g P

ni =

na A3 P2 pa

L N]

B08% DREAKPOINT ROUTINE PAGE

Ja HEXCONY COMVERTS A HEX CHARACTER TO BIMARY FOR MACHINE USE.
IF THE CHARACTER IS5 MOT & VALID HEX CHAR. THE PROCEDURE RETURNS
THE YVALUE OFFH =7

HE X CONY

PROCEDURE (DAT) BYTE.

CECLARE DaT BYTE.
[F VALIDHEX(DAT) < OFFH THEM RETURMN TRUE:
DO IT=0 TO LASTIASCIL)
IF DAT = ASCIIc1) THEN RETURN I:
E M
EnND;

J# HEXOUT 'WILL CONVERT & VaLUWE OF TYPE BYTE TO AN ASCII STRING
AMD SEMD IT TO THE COMSOLE =/

HE 3 0OUT

PROCEDURE{CY,
CECLARE C BYTE,
CALL COtASCII(SHR.C. 41 AMD OQFH)
calLl COVASCIIC(C AMD OFH))

ERD:

J# WORDOUT CONVERTS & VaALWE OF TYPE WORD TO AN ASCII STRING
AMG SENDS 1T TO THE COMSOLE #/
WORDOUT
PROCEDURE (Wb
CECLARE W WORD:
CaALL HEXOUTIHIGH WY b,
Call. HEXDUTILOW{ W 1,
ENLD.

/o GETADDRESS IS5 & PROCEDURE TO GET aW ADDRESE FROM THE CONSOLE.
THIS PROCEDURE WILL OMLY CONSIDER THE LAST 5 CHARACHTERS ENTERED
=

DECLAAE INPMTR (43 BYTE.

GET®ADORESS
FROCEDURE POINTER,
DECLARE RUFF BYTE.
f+CLEAR ALL WALUES TO IERO #¢
IMNPMTRIOD] = O
INPNTRILY = O
IRPHNTRIZ) = O
INPNTRt3Y = O

BUFF = 0
0O WHILE BUFF < TRUE;
f+ THIS SEQUEMNCE OF SHIFTS ALLOW THE USER TO TYPE IN FIVE
Of MORE CHARACHTERS TO BECOME THE aACTuaL POINTER FOR BOBY
CR BOB&, THIS FROCEDURE RETURNE THE LAST FIVE INM PROPER
SEGUENCE STORED IN IMPHTR{O-=3}) THE STORAGE
IS A5 FOLLOWS
1 THE LAST CHARACTER INPUT GIES INTO
THE LOW FOUR BITS OF INPNTRULO)
2 THE MEXT TO LAST CHARACTER GDES INTO
THE LOW FOUR BITS OF INPNTRIZ}

A-104

AP-50

PL/M-B& COMPILER 8089 BREAKPOINT ROUTINE FAGE

3. THE THIRD CHARACTER INPUT QOES INTO
THE HIGH FOUR BITE OF IMNPNTRIZ)
4 THE SECOND CHARACHTER INPUT QOES INTO
THE LOW FOUR BITB OF INPNTR{(3)
5 THE FIRST CHARACTER INPUT GDEE INTO
THE UPPER FOUR BITE OF INPNTR(3}.
THE B& EHIFTE INPNTR (@ AND3I) LEFT FOUR BITS AaND ADDS THIS TO
INPNTR(O) RESULTING IN THE ADDRESS THE USER TYPED IN e/

70 3 INPNTR(3) = (SHL(INPNTRI(3).4) DR (SHR{ I[NPNTR(2).4) AND OFH) 1.
71 a INPNTR(2) = (SHLI{INPNTR(2).4) DR (INPNTRI(O) AND OFH)),
72 3 INPNTR(O) = BUFF;
T3 i | BUFF = CI;
T4 e | BUFF = HEXCOMNVIBUFF).
7S 3 END.
76 2 CALL CO(OAM). /oLINE FEED TO CRT#/
77 2 CALL CO(ODHYI;: /#CARRIAGE RET TO CRTw/
™| 2 RETURN PRESENT. /% PRESENT IS A POINTER TO THE ARRAY INPNTR &/
7 - EMD:
/% STRINGOUT IS5 A PROCEDURE TO SEND THE CONSOLE AN ASCII STRING
ENDING IN THE VALUE OO0 STRINGOUT NEEDS A VALUE OF TYPE POINTER
w/
8o 1 SETRINGSOUT:
PROCEDURE(RTR
H1 2 DECLARE PTR POINTER. 8TR BASED PTR (1) BYTE:
a2 =] I = 0.
a3 2 DO WHILE STR(I) <> 0O
a4 3 CALL CO(STR(I))q
B8 3 I =1+ 1;
Ba | EMD:
ar 2 END:
a8 1 DECLARE TACIS (#) BYTE DATA (' OPERATING IN .0,
TAGISOME (=) DYTE DATA (10 SPACE ", OAM. ODH. Q1.
TAGISZERD (#) BYTE DATA ('SYSTEM SPACE ‘. OAM. 0DH. 0).
/o TAQTEST TESTE THE TAG BIT AMD BENDE A MESSAGE TOD THE CONSOLE
THE Tag IS LOCATED IN BIT THREE A Tag BIT OF OME MEANE THE
FOINTER IS TD 170 SPACE. AND A TAG BIT OF IERD MEAMS THE
POINTER IS TOD SYSTEM GPACE =/
/% THE CALLER MUST DECIDE WHICH BYTE HAS THE TAC AND PASS IT TO TAGTEST =/
g5 i TAGTEST
PROCEDURELTEST ¥
70 2 DECLARE TEST BYTE.
71 2 CALL STRINGOUT(®TAGIE)
2 2 IF (TEST AND 0O1000B) <> O
THEN
f3 b=/ D0
T4 a CaLL STRINGODUTI(ETAGIBONE).
958 b END;
ELSE
94 2 DO:
97 | CALL STRINGOUTI@TAGISIERD
98 3 END:
e ————— E—

A-105

AP-50

PL/H=-B5 COMPILER

102

b g

808% BREAKPOINT ROUTINE

END.
DECLARE SAVESADDR LITERALLY “2000H°,

BAVESSEG LITERALLY 'OO0COH"

DECLARE BREAMBY (4) WORD DATA (9BE8LM, 0BF1H. SAVESADDAR, BAVESSER)
/+« DREAKBT? IS AN 4 WORD ESCAPE SEQUENCE TO ADDRESS I000H
CONSISTING OF AN LPDI TP. SAVESADDR WITH SECGMENT

LOCATED AT OCOOH -
/e BRERTN IS 33 DYTES OF CODE THAT STORES ALL REGIBTERS

AS FOLLOWS

GA STORED AT PP = 239

@R STDRED AT PP + Z242

- STORED AT PP + 243

BC STORED AT PP + 248

1% STORED AT PP + 230

CC STORED AT PP + 252

ML STORED AT PP + 254

-/

DECLARE BRMRTN (33) BYTE AT (02C00M)
s 02C00H IS ACTUALLY (SAVESADDR +« (BHLISAVESSEG).4A)), AND SHOULD
MATCH ADDRESS AND SECMENT WHERE BREAK ROUTINE IS WANTED LT

I

RITIAL

vdaM, OF0M, QEFH, 023H, OFBH, OF2H, 043H, OF0H, OF 3H, O&3H, 0BTH, OFBH: QA3H; DBTH.
-,:'fn'lH.. {JE.]H. ':'B?H D'FI:H‘J DEJ‘HJ 'ﬂE?H‘i 'D'FEH! ﬂiﬂH. n"EH: [

| 1 DECLARE PF FPOINTER.
1 b 1 CECLARE PPFP BASED PP (1) BYTE.
R k- 1 CTARTSPRGM
FROCEDUSC IONESTWD. PPP).
10s Z DECLARE ONEaT™WD BYTE. PPP POINTER.
WHERE BASED PFP 111 BYTE:
§ 7 i WHEREIC) = STARTEBYTESIOM
108 -, WHERE (1) = [,
i d i WHERE! 2} = STaRTeBYTES(2]
110 b WEEREi3) = STARTSBEYTES(31,
111 - CEDATUIONESTWE) = 8) = 3,
IF ONETWO = § THEN OUTPUT TO PORT OFBH. IF ONETWO
IS O THEN QUTPUT TD PORT OFAH =/
is = OUTPUTICHANATTEN = (DNETWO 1) = 0.
113 - CaLL STRINGOUTI @CHANGIVEND.
ita 2 END.
/"% THIS PART OF THE PROGRA™M ALLOWE THE WSER TDO DEFINE THE
CP. PP OF EACH CHANNEL =/
115 1 DECL.AFE EPEAKDUT AABED ENDPOINTER (1) WORDH
e i DECLARE CP POINTER,
17 i DECLARE CPDAT BASED CP (1) BYTE.
118 | CECLARE ONEPPDAT BASED OMEPP (1) BYTE:
11% | DECLARE TWOFPDAT BASED TWOFP 1) BYTE:
120 i CALL STRINGOUT (#TITLESTRINGI:
——

PAGE

A-106

AP-50

PL/M—-B8& COMPILER

121
122
123
124
123
126
127
128
129

130

131
132

134
13%
136

137
138
139
140

14}

142
143
144
143
14é&

147
148
14%
150
131
192
133
194
159
136
137
138
139
1460

&1

(VE.SQ V] - e R S

LYN AN P

- =

O TETE L T TR T

B0B? BREAKPODINT ROUTINE

CALL STRINGOUT (RGETCF

CP = QETADDRESS.

CALL STRINGOUT (RGETPP 1:

CALL STRINGOUT (@ONE) .

ONEPP = QETADDRESS:

CALL STRINGOUT (RRGETPP .

CALL STRINGDUT (@TWD} .

TWOPP = GETADDRESS.

OUTPUT (CHAMATTEN) = O; /e« INITIALIZIATION CA #/

MATM:

CaLlL STRIHGOUT { BCHANMNUHBER § ;
CHAR = CI, /% GET CHANNEL NUMBER #/
IF (CHAR AMD QOiH} <> O /= CHECK BIT IERD TO DEFINE
CHANMNEL NUMBER #/
THEN DD
CaLL STRINGDUT { BOME).
ONETHWO = CHANMELSONE:
EMND:
ELSE
(1 1n]t
CALL STRINGDUT (@TWOb,
OMETWO = CHANMEL$TWO
E ML

CALL STRINGOUT(BGETSSTARTY, /% GET STARTING ADDRESS
FROM USER +f

STARTPOINTER = GETADDRESS.
DO 1 =0 TO 3. /= MOVE STARTING ADDRESS [INTQO CP AREA e/
STARTRYTES(I) = INPNTRII).:
END.
CALL STRINCOUTI@STOPADDR): /7« QET STODP ADDRESS
FRORM USER =/

ENDPOINTER = GETADDRESS:
Do 1 = 0 TO 3: /% WOVE CODE TO SAFE AREA =/
SAVECODE (I} = BREAMOUTII N
END.
DO I =0 TO 3,
BREAMOUTII) = BREAKES([): +# MOVE ESCAPE SEGUENCE INTD PLACE =/
EMND:
CPDATI(1) = OFFH, J7® SET CHAMNEL ONE BUSY FLAG #=/
CPDATI(9) = OFFH: J/# SET CHANMEL TWl BUSY FLAG =/
DO CASE ONETwWO:
PP = DNEPP.
PP = TwOPE,
END:
CalLl STARATEPRGHI(OMNESTHWO. PP
Fo WAIT FOR ONE OF THE FOLLOWING
1. CPDATI(1) = ©&© CH1 NOT BUSY
2 CPDATI(®) = O CHZ NOT BUSY
9. THE B2%1 REC. BUFFER IS FULL BECAUSE USER HAS DEPRESSED A KEY
LT

PAGE

=]

DO WHILE ¢ (CPDAT(1) AND CPDAT(9)} AND INOT (INPUT(CATSSTATUS) AND O2H))) = OFFH,

A-107

AP-50

PLSsM-B& COMPILER

162
1&3

164
1465
164
167
158

16%

170
171
17
173

174

175
17&
177

i78
175
180

181

188

187
190
171
ig2
1%3

194
195
194

%] Ll G P ORE = =

Gl) R A

LA WAy Ll

= I NI R L

MR RNRIMNR B

BO8Y OREAWPOINT ROUTINE

EMD;
IF {INPUTICRTSSTATUS) AND O2H) <o O
THEN
Do;
CHAR = (1.

A

Do r =0 70O 3
DREAKOUT{I) = SAVECODE(I),
EMDi
IF OMETWO = O THEM PUT CHA HLT IN CPDATIO}
IF OMETWO = 1 THEM PUT CHA HLT IN CPDATIE)

CPDATI{ONESTHO =81 = D&H,
IF ONETWO = 0 THEN OUTPUT TO PORT OFAH., IF ONMETWO
IS 1 THEN QUTPUT TO PORT OFHEM

OUTPUT{CHAMATTEN + ONETWO) = 0.
O I =~ 0 TO S5

CALL TIME(1001),

EMD

IF BUSY FLAG HAS BEEN CLEARED. THEM & CA HALTALSAVE
WAS EXECUTED. IF 50, PRINT SAVED TP:; IF MNOT, ABORT #/

IF CPDATI(SHL(ONETWO. 3} + 13} I Q £= CHECK BUGSY FLAG =/
THEN
oo
CALL STRINGOWUT (B&BORT 14
EMDH
El.SE
o0:
CaLL STRINGOUT (BABORTAT:
CALL CO(ASCII(SHR{PPP{2}.411);, s+ UPPER NIBELE OF aDDR
STORED BY HALT =/

Call HEXOUTIPPP(1M)., /# MIDDLE BYTE OF ADDR
STORED BY HALT =/

CALL HEXOUTIPPP(O»y: J= LEAST SIC BYTE OF ADDR
STORED BY H&4LT =/

END:

CPOATIONETWO # B) = 3H: s+ CA START 1IN CPDAT(GQ) OR CPDATI{B} =/

GO TO HAIN

EnD

D0;

CALL STRIMGDOUT (BBRREACHED),

CalLlL STRIMGOUT(RGASTARIMG!.

CALL COCASCITISHRIPPP(ZAL), 40D)i
CaLL HEXDUTIPPP {2401},

CALL HEXOUTIPPRIZITF1 1,

CALL TAGTESTI(PPP(24111).

CalLL STRIMGOUT{EGBETRIMG),
CaLL COASCII{SHRIPPP (248, b)),
Call HEXDUT{PPP{24311):

FaGE

-

A-108

AF-50

PL/A-Ba COMPILER 8089 DREAXPOINT RDUTIMNE
i87r = CaLL HEXOUTIPPPLI2420).
198 = CaLL TAGQTEST(PPP(244)),
15 z CaLL STRINGOUTIRQCETRIMG
=0 = CaALL COASCII(SHRI(PPP(IATH, &))
£l = CaALL HENDUT(PPPIZ4&) 1.,
e - CalLL HEXDUTI(PPPI245)),
T | e CALL TACTESTI(PPP(247)).
wud 2 CaLL STRINGDUT(EBBCSTRING:
203 = CALL HEXOUT(FPPIZ24%)).
a0 2 CaALL HEXOUTIFFPIZ248 13
P) . CaLL STRINGDUTI@IXETRING).
<08 - CaLL HEXDUTI{PPPi231 0,
L] = CaLlL HEXOUT(PPPi250)).
210 P CAaLL STRINGOUTIBCCSTRING) :
211 2 CaLlL HEXOUTI(PPE({293)),
212 pu CalLl HEXDUTIiPPPI252)),
213 2 CALL STRINGOUT (BMCETRING .,
=14 2 CaLL HEXDUTI(PPRI{ZSS5)).
213 = CALL HEXDUTiIPPPIZ254)),
el = c il
= RAESTORE CODE TO ORIGINAL LOCATION
2l 7 L Do I = O TO 3
218 s OREAKOUTIT) = SAVECODECL),
219 a END,
aal 1 G0 TD HMALMN.
axl] EnNC.
MOCULE INFORmM&T FOM
LODE &RE& 5] IE. = O&l9H 15610
CONSTANT AREA SITE = QIEFH 4950
VaR |ABLE AREA SIZE = QO0OZ20H a20
FMarimyM ETaCh SIZE = QO14H =00

END OF

427 LINES READ
N PROGAAM ERROR(S)

FL/M=B& COMPILATION

L1

FAQE

A-109

AF-00

8089 AS5EMBLER

ISIS-11 80BF ASSEMBLER X004 ASSEMBLY OF
OBJECT MODULE PLACED IN :FO: BRHKASHM. OBJ

ASSEMBLER INVOKED BY ASHMBY?. 4 HRMASM. S5RC
|

OO0 £
b |

&

3

&

7

8

q

10

11

12

13

14

15

14

2000 17
18

[alsleln] 2108 CO20000:0 19
20

21

22

23

24

25

0000 246
COEF 27
QOF2 =28
QOF 3 29
o0F 8 30
O0OF & a1
OOF C 2
CDFE a3
0100 34
a5

3&

a7

38

a5

2000 0398 EF 40
=003 =398 F2 41
2006 4398 F3 a2
2009 &387 FB 43
2000 A38T7 FA 44
200F C387 FC 45
2012 E387 FE iy
47

=013 =048 A8
40

S0

2017 51
=)

=3

MODULE APS0_BREAKFDINT _ROUT IME

MAME APS0_BREAKPOINT _ROUTINE

BRKFNT SEGMENT

e P R R R Ly
i BASIC BOBY BREAMPOINT ROUTINE

i BY JOHN ATWOOD REW 3 B/13/79

} INTEL CORPORATION
P EEERERSERERR RN R AR R R

THE FOLLOWIMNG CODE IS CONTAINED IN THE PL/M-B&
CONTROL PROGRAM(BREAK. B} AND I8 ASSEMBLED HERE

TO ILLUSTRATE HOW THE ESCAPE SEGUENCE AND SAVE
ROUTINE CODE WAS GEMNERATED TO USBE THE BOBY DREAK-
POINT PROGRAM, THIS ASMBEY PROGRAM WOULD NOT BE
MEEDED. SaAVE_ADDR IS THE SAME AS SAVESADDR IN THE
BREAK, 89 PROGRAM

L THRE SR S A

SAVE_ADDR EGU 2000H i SAVE ROUTINE ADDRESS

LPFDI TP.SaWE_aADDR P JUMP TO SAVE ROUTINE

EIII LR e R R kot st b8t g s bt b b2 L8 o 8 8

i REGIBTER SAVE LOCATIONS WITHIN PBH:

REGS STRUC

PELOCK: DS 239 s PARAMETER BLOCK

@ASAY: DS 3 i @A AREA

GESAV: DS 3 :GB AREA

GCSAV: DS 3 i GC AREA

BCSAV: DS 2 i BC AREA

I%SAV: DS 2 ; 1N AREA

cCSav: DS 2 iCC AREA

MCSAY: DS 2 iMC AREA

REGS ENDS

i REGISTER SAVE ROUTINE:

oRG SAVE_ADDR
HMOVP [PP1. GASAV. GA i BAVE OA
MOVFP C[PP]. GESAV. CB i GAVE GB
MOVP [PPI. GCSAV. GC i SAVE GC
MOV [PP1. BCSAV, BC i SAVE BC
MOV CPP1. IXSAV, IX SAVE TX
MOV CPP1. CCSAV, CC | BAVE CC
MOV [PP1. HCSAV. MC ; SAVE MC
HLT i STOP THIS CHANNEL.

i CLEAR BUBY FLAG.
| EEEE AR AR ASR RS RS ERS B

BREFNT ENDS

A-110

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26

