
intel

iSBC[™] 80/30 (or pSBC 80/30*) SINGLE BOARD COMPUTER

- 8085A CPU used as central processing unit
- 16K bytes of dual port dynamic read/ write memory with on-board refresh
- Sockets for up to 8K bytes of read only memory
- Sockets for 8041A/8741A Universal Peripheral Interface and interchangeable line drivers and line terminators
- 24 programmable parallel II/O lines with sockets for interchangeable line drivers and terminators
- Programmable synchronous/asynchronous RS232C compatible serial interface with fully software selectable baud rate generation

- Full MULTIBUS[®] control logic allowing up to 16 masters to share the system
- 12 levels of programmable interrupt control
- Two programmable 16-bit BCD or binary counters
- Auxiliary power bus, memory protect, and power-fail interrupt control logic for RAM battery backup
- Compatible with optional iSBC 80 CPU, memory, and I/O expansion boards

The iSBC 80/30 Single Board Computer is a member of Intel's complete line of OEM computer systems which take full advantage of Intel's LSI technology to provide economical self-contained computer-based solutions for OEM applications. The iSBC 80/30 is a complete computer system on a single 6.75×12.00 -inch printed circuit card. The CPU, system clock, read/write memory, nonvolatile read only memory, universal peripheral interface capability, I/O ports and drivers, serial communications interface, priority interrupt logic, programmable timers, MULTIBUS control logic, and bus expansion drivers all reside on the board.

FUNCTIONAL DESCRIPTION

Central Processing Unit

Intel's powerful 8-bit n-channel 8085A CPU, fabricated on a single LSI chip, is the central processor for the ISBC 80/30. The 8085A CPU is directly software compatible with the Intel 8080A CPU. The 8085A contains six 8-bit general purpose registers and an accumulator. The six general purpose registers may be addressed individually or in pairs, providing both single and double precision operators. The minimum instruction execution time is 1.45 microseconds. The 8085A CPU has a 16-bit program counter. An external stack, located within any portion of iSBC 80/30 read/write memory, may be used as a last-in/first-out storage area for the contents of the program counter, flags, accumulator, and all of the six general purpose registers. A 16-bit stack pointer controls the addressing of this external stack. This stack provides subroutine nesting bounded only by memory size.

Bus Structure

The iSBC 80/30 has an internal bus for all on-board memory and I/O operations and a system bus (i.e., the MULTIBUS) for all external memory and I/O operations. Hence, local (on-board) operations do not tie up the system bus, and allow true parallel processing when several bus masters (i.e., DMA devices, other single board computers) are used in a multimaster scheme. A block diagram of the iSBC 80/30 functional components is shown in Figure 1.

RAM Capacity

The iSBC 80/30 contains 16K bytes of dynamic read/write memory using Intel 2117 RAMs. All RAM read and write operations are performed at maximum processor speed. Power for the on-board RAM may be provided on an auxiliary power bus, and memory protect logic is included for RAM battery backup requirements. The iSBC 80/30 contains a dual port controller, which provides dual port capability for the on-board RAM memory. RAM accesses may occur from either the iSBC 80/30 or from any other bus master interfaced via the

AFN-00263A

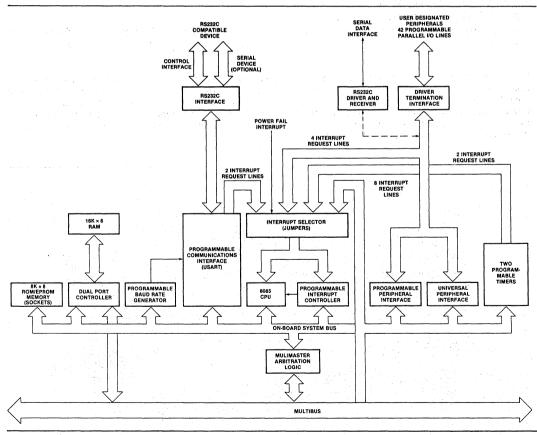


Figure 1. iSBC 80/30 Single Board Computer Block Diagram

MULTIBUS. Since on-board RAM accesses do not require the MULTIBUS, the bus is available for any other concurrent operations (e.g., DMA data transfers) requiring the use of the MULTIBUS. Dynamic RAM refresh is accomplished automatically by the iSBC 80/30 for accesses originating from either the CPU or via the MULTIBUS. Memory space assignment can be selected independently for on-board and MULTIBUS RAM accesses. The on-board RAM, as seen by the 8085A CPU, may be placed anywhere within the 0- to 64K-address space. The iSBC 80/30 provides extended addressing jumpers to allow the on-board RAM to reside within a one megabyte address space when accessed via the MULTIBUS. In addition, jumper options are provided which allow the user to reserve 8K- and 16K-byte segments of on-board RAM for use by the 8085A CPU only. This reserved RAM space is not accessible via the MULTIBUS and does not occupy any system address space.

EPROM/ROM Capacity

Sockets for up to 8K bytes of nonvolatile read only memory are provided on the iSBC 80/30 board. Read only memory may be added in 1K-byte increments up to a maximum of 2K bytes using Intel 2708 or 2758 erasable and electrically reprogrammable ROMs (EPROMs); in 2K-byte increments up to a maximum of 4K bytes using Intel 2716 EPROMs; or in 4K-byte increments up to 8K bytes maximum using Intel 2732 EPROMs. All on-board EPROM/ROM operations are performed at maximum processor speed.

Parallel I/O Interface

The iSBC 80/30 contains 24 programmable parallel I/O lines implemented using the Intel 8255A Programmable Peripheral Interface. The system software is used to configure the I/O lines in any combination of unidirectional input/output and bidirectional ports indicated in Table 1. Therefore, the I/O interface may be customized to meet specific peripheral requirements. In order to take full advantage of the large number of possible I/O configurations, sockets are provided for interchangeable I/O line drivers and terminators. Hence, the flexibility of the I/O interface is further enhanced by the capability of selecting the appropriate combination of optional line drivers and terminators to provide the required sink current, polarity, and drive/termination characteristics for each application. The 24 programmable I/O lines and signal ground lines are brought out to a 50-pin edge connector that mates with flat, woven, or round cable.

Universal Peripheral Interface (UPI)

The iSBC 80/30 provides sockets for a user supplied Intel 8041A/8741A Universal Peripheral Interface (UPI) chip and the associated line drivers and terminators for the UPI's I/O ports. The 8041A/8741A is a single chip microcomputer containing a CPU. 1K bytes of ROM (8041A) or EPROM (8741A), 64 bytes of RAM, 18 programmable I/O lines, and an 8-bit timer. Special interface registers included in the chip allow the 8041A to function as a slave processor to the iSBC 80/30's 8085A CPU. The UPI allows the user to specify algorithms for controlling user peripherals directly in the chip, thereby relieving the 8085A for other system functions. The iSBC 80/30 provides an RS232C driver and an RS232C receiver for optional connection to the 8041A/8741A in applications where the UPI is programmed to handle simple serial interfaces. For additional information, including 8041A/8741A instructions, refer to the UPI-41A User's Manual and application note AP-41.

Serial I/O

A programmable communications interface using the Intel 8251A Universal Synchronous/Asynchronous Receiver/Transmitter (USART) is contained on the ISBC 80/30. A software selectable baud rate generator provides the USART with all common communication frequencies. The USART can be programmed by the system software to select the desired asynchronous or synchronous serial data transmission technique (including IBM By-Sync). The mode of operation (i.e., synchronous or asynchronous), data format, control character format, parity, and baud rate are all under program control. The 8251A provides full duplex, double buffered transmit and receive capability. Parity, overrun, and framing error detection are all incorporated in the

Table 1	I. Input/Output	Port	Modes	of	Operation

		Mode of Operation					
			Unidirect		Control		
Port Lines (qty)	1 1	Input		Output		Bidirectional	
	(1.7)	Unlatched	Latched & Strobed	Latched	Latched & Strobed		
1	8	х	X	X	X	Х	
2	8	х	X	Х	X		
3	4	X		X			X ¹ .
	4	x	the second	Х			X ¹

Note

1. Part of port 3 must be used as a control port when either port 1 or port 2 are used as a latched and strobed input or a latched and strobed output port or port 1 is used as a bidirectional port.

USART. The RS232C compatible interface on each board, in conjunction with the USART, provides a direct interface to RS232C compatible terminals, cassettes, and asynchronous and synchronous modems. The RS232C command lines, serial data lines, and signal ground line are brought out to a 26-pin edge connector that mates with RS232C compatible flat or round cable.

Multimaster Capability

The iSBC 80/30 is a full computer on a single board with resources capable of supporting a great variety of OEM system requirements. For those applications requiring additional processing capacity and the benefits of multiprocessing (i.e., several CPUs and/or controllers logically sharing system tasks through communication over the system bus), the iSBC 80/30 provides full MULTIBUS arbitration control logic. This control logic allows up to three iSBC 80/30's or other bus masters to share the system bus in serial (daisy chain) priority fashion, and up to 16 masters to share the MULTIBUS with the addition of an external priority network. The MULTI-BUS arbitration logic operates synchronously with a MULTIBUS clock (provided by the iSBC 80/30 or optionally connected directly to the MULTIBUS clock) while data is transferred via a handshake between the master and slave modules. This allows different speed controllers to share resources on the same bus, and transfers via the bus proceed asynchronously. Thus, transfer speed is dependent on transmitting and receiving devices only. This design prevents slow master modules from being handicapped in their attempts to gain control of the bus, but does not restrict the speed at which faster modules can transfer data via the same bus. The most obvious applications for the master-slave capabilities of the bus are multiprocessor configurations, high speed direct memory access (DMA) operations, and high speed peripheral control, but are by no means limited to these three.

Programmable Timers

The iSBC 80/30 provides three independent, fully programmable 16-bit interval timers/event counters utilizing the Intel 8253 Programmable Interval Timer. Each counter is capable of operating in either BCD or binary modes. Two of these timers/counters are available to the systems designer to generate accurate time intervals under software control. Routing for the outputs and gate/trigger inputs of two of these counters is jumper selectable. The outputs may be independently routed to the 8259A Programmable Interrupt Controller, to the I/O line drivers associated with the 8255A Programmable Peripheral Interface, and to the 8041A/8741A Universal Programmable Interface, or may be routed as inputs to the 8255A and 8041A/8741A chips. The gate/trigger inputs may be routed to I/O terminators associated with the 8255A or as output connections from the 8255A. The third interval timer in the 8253 provides the programmable baud rate generator for the iSBC 80/30 RS232C USART serial port. In utilizing the iSBC 80/30, the systems designer simply configures, via software, each timer independently to meet system requirements.

Whenever a given time delay or count is needed, software commands to the programmable timers/event counters select the desired function. Seven functions are available, as shown in Table 2. The contents of each counter may be read at any time during system operation with simple read operations for event counting applications, and special commands are included so that the contents of each counter can be read "on the fly".

Table 2. Programmable Timer Functions

Function	Operation
Interrupt on terminal count	When terminal count is reached, an interrupt request is generated. This function is extremely useful for gen- eration of real-time clocks.
Programmable one-shot	Output goes low upon receipt of an external trigger edge or software command and returns high when ter- minal count is reached. This func- tion is retriggerable.
Rate generator	Divide by N counter. The output will go low for one input clock cycle, and the period from one low-going pulse to the next is N times the input clock period.
Square-wave rate generator	Output will remain high until one- half the count has been completed, and go low for the other half of the count.
Software triggered strobe	Output remains high until software loads count (N). N counts after count is loaded, output goes low for one in- put clock period.
Hardware triggered strobe	Output goes low for one clock period N counts after rising edge on counter trigger input. The counter is retriggerable.
Event counter	On a jumper selectable basis, the clock input becomes an input from the external system. CPU may read the number of events occurring after
n den sjinterdøre for Sener som	the counting "window" has been enabled or an interrupt may be gen- erated after N events occur in the system.

Interrupt Capability

The iSBC 80/30 provides vectoring for 12 interrupt levels. Four of these levels are handled directly by the interrupt processing capability of the 8085A CPU and represent the four highest priority interrupts of the iSBC 80/30. Requests are routed to the 8085A interrupt inputs, TRAP, RST 7.5, RST 6.5, and RST 5.5 (in decreasing order of priority) and each input generates a unique memory address (TRAP: 24H; RST 7.5: 3CH; RST 6.5: 34H; and RST 5.5: 2CH). An 8085A jump instruction at each of these addresses then provides linkage to interrupt service routines located independently anywhere in memory. All interrupt inputs with the exception of the trap interrupt may be masked via software. The trap interrupt should be used for conditions such as power-down sequences which require immediate attention by the 8085A CPU. The Intel 8259A Programmable Interrupt Controller (PIC) provides vectoring for the next eight interrupt levels. As shown in Table 3, a selection of four priority processing modes is available to the systems designer for use in designing request processing configurations to match system requirements. Operating mode and priority assignments may be reconfigured dynamically via software at any time during system operation. The PIC accepts interrupt requests from the programmable parallel and serial I/O interfaces, the programmable timers, the system bus, or directly from peripheral equipment. The PIC then determines which of the incoming requests is of the highest priority, determines whether this request is of higher priority than the level currently being serviced, and, if appropriate, issues an interrupt to the CPU. Any combination of interrupt levels may be masked, via software, by storing a single byte in the interrupt mask register of the PIC. The PIC generates a unique memory address for each interrupt level. These addresses are equally spaced at intervals of 4 or 8 (software selectable) bytes. This 32- or 64-byte block may be located to begin at any 32- or 64-byte boundary in the 65,536-byte memory space. A single 8085A jump instruction at each of these addresses then provides linkage to locate each interrupt service routine independently anywhere in memory.

Table 3. Programmable Interrupt Modes

Mode	Operation			
Fully nested	Interrupt request line priorities fixed at 0 as highest, 7 as lowest.			
Auto- rotating	Equal priority. Each level, after receiving service, becomes the lowest priority level until next interrupt occurs.			
Specific priority	System software assigns lowest priority level. Priority of all other levels based in sequence numerically on this assignment.			
Polled	System software examines priority- encoded system interrupt status via inter- rupt status register.			

Interrupt Request Generation — Interrupt requests may originate from 18 sources. Two jumper selectable interrupt requests can be automatically generated by the programmable peripheral interface when a byte of information is ready to be transferred to the CPU (i.e., input buffer is full) or a byte of information has been transferred to a peripheral device (i.e., output buffer is empty). Two jumper selectable interrupt requests can be automatically generated by the USART when a character is ready to be transferred to the CPU (i.e., receive channel buffer is full), or a character is ready to be transmitted (i.e., transmit channel data buffer is empty). A jumper selectable request can be generated by each of the programmable timers and by the universal peripheral interface, eight additional interrupt request lines are available to the user for direct interface to user designated peripheral devices via the system bus, and two interrupt request lines may be jumper routed directly from peripherals via the parallel I/O driver/terminator section.

Power-Fail Control

Control logic is also included to accept a power-fail interrupt in conjunction with the AC-low signal from the iSBC 635 Power Supply or equivalent.

Expansion Capabilities

Memory and I/O capacity may be expanded and additional functions added by using Intel MULTIBUS compatible expansion boards. High speed integer and floating point arithmetic capabilities may be added by using the iSBC 310A High Speed Mathematics Unit. Memory may be expanded to 65,536 bytes by adding user specified combinations of RAM boards, EPROM boards, or combination boards. Input/output capacity may be increased by adding digital I/O and analog I/O expansion boards. Mass storage capability may be achieved by adding single or double density diskette controllers as subsystems. Modular expandable backplanes and cardcages are available to support multi-board systems.

Real-Time Software

Intel's iRMX 80 Real-Time Multi-Tasking Executive software, specifically designed for Intel iSBC 80 single board computers, provides the capability to monitor and control multiple asynchronous external events. The iRMX 80 executive, which synchronizes and controls the execution of multiple tasks, is provided as a linkable and relocatable module requiring only 2K bytes of memory space. Optional linkable and relocatable modules for teletypewriter and CRT control, diskette file system, high speed math unit, and analog subsystems are also available.

System Development Capability

The development cycle of iSBC 80/30-based products may be significantly reduced using the Intellec series microcomputer development systems. The resident macroassembler, text editor, and system monitor greatly simplify the design, development, and debug of iSBC 80/30 system software. An optional diskette operating system provides a relocating macroassembler, relocating loader and linkage editor, and a library manager. A unique in-circuit emulator (ICE-85) option provides the capability of developing and debugging software directly on the iSBC 80/30.

Programming Capability

PL/M-80 — Intel's high level programming language, PL/M, is also available as a resident Intellec microcomputer development system option. PL/M provides the capability to program in a natural, algorithmic language and eliminates the need to manage register usage or allocate memory. PL/M programs can be written in a much shorter time than assembly language programs for a given application. FORTRAN-80 — For applications requiring computational and formatted I/O capabilities, the high level FORTRAN-80 programming language is also available as a resident option of the intellec system. FOR-TRAN-80 meets and exceeds the ANS FORTRAN 77 subset language specification. The FORTRAN-80 compiler produces relocatable object code that may be easily linked with other FORTRAN-80, PL/M, or assembly language program modules. This gives the user wide flexibility in developing software by using the best software tool for a particular functional module within the user's application. BASIC-80 - A high level language interpreter with extended disk capabilities which operates under the iRMX 80 Real-Time Multi-tasking Executive and translates BASIC-80 source programs into an internally executable form. This language interpreter, provided as a set of linkable object modules, is ideally suited to the OEM who requires a pass thru programming language. The BASIC-80 programs may be created, stored and interpreted on the iSBC 80-based system. The BASIC-80 language has a rich complement of statements, functions, and commands to program applications requiring a full range of 1) string manipulation and disk I/O for data processing, 2) single and double precision floating point and array handling for numeric analysis, or 3) port I/O with mask operations controlled through bit-wise Boolean logical operators.

SPECIFICATIONS

Word Size

Instruction — 8, 16, or 24 bits Data — 8 bits

Cycle Time

Basic Instruction Cycle - 1.45 µs

Note Basic instruction cycle is defined as the fastest instruction (i.e., four clock cycles).

Memory Addressing

On-Board ROM/EPROM — 0-07FF (using 2708 or 2758 EPROMs); 0-0FFF (using 2716 EPROMs); 0-1FFF (using 2716 EPROMs); 0-1FFF (using 2732 EPROMs).

On-Board RAM — 16K bytes of dual port RAM starting on a 16K boundary. One or two 8K-byte segments may be reserved for CPU use only.

Memory Capacity

On-Board Read Only Memory — 8K bytes (sockets only) On-Board RAM — 16K bytes

Off-Board Expansion — Up to 65,536 bytes in user specified combinations of RAM, ROM, and EPROM

Read only memory may be added in 1K, 2K, or 4K-byte increments.

I/O Addressing

On-Board Programmable I/O (see Table 1)	e 1)
---	------

	Port		8	255/	A .	8041A	8741A	U	SART
	1 OIL	1	2	3	Control	Data	Control	Data	Control
Į	Address	E8	E9	ΕA	EB	E4 or E6	E5 or E7	EC	ED

I/O Capacity

Parallel — 42 programmable lines using one 8255A (24 I/O lines) and an optional 8041A/8741A (18 I/O lines) Serial — 2 programmable lines using one 8251A and an optional 8041A/8741A programmed for serial operation

Note:

For additional information on the 8041A/8741A refer to the UPI-41 User's Manual (Publication 9800504).

Serial Communications Characteristics

Synchronous — 5-8 bit characters; internal or external character synchronization; automatic sync insertion. Asynchronous — 5-8 bit characters; break character

generation; 1, 1½, or 2 stop bits; false start bit detection.

Baud Rates

Frequency (kHz)	Bi	aud Rate (Hz)
(Software Selectable)	Synchronous	Asynch	ronous
en de la factoria de la factoria		÷ 16	÷ 64
153.6	l	9600	2400
76.8	-	4800	1200
38.4	38400	2400	600
19.2	19200	1200	300
9.6	9600	600	150
4.8	4800	300	75
2.4	2400	150	<u> </u>
1.76	1760	110	

Note

Frequency selected by I/O write of appropriate 16-bit frequency factor to baud rate register (8253 Timer 2).

Interrupts

Addresses for 8259A Registers (Hex notation, I/O address space)

- DA Interrupt request register
- DA In-service register
- DB Mask register
- DA Command register
- DB Block address register and each of the second second
- DA Status (polling register)

Note

Several registers have the same physical address; sequence of access and one data bit of control word determine which register will respond.

Interrupt Levels routed to 8085A CPU automatically vector the processor to unique memory locations:

	1	<u>,</u>	
Interrupt Input	Memory Address	Priority	Туре
TRAP	24	Highest	Non-maskable
RST 7.5	3C		Maskable
RST 6.5	34	. V	Maskable
RST 5.5	2C	Lowest	Maskable

Timers

Register Addresses (Hex notation, I/O address space)

- DF Control register
- DC Timer 0
- DD Timer 1
- DE Timer 2

Note

Timer counts loaded as two sequential output operations to same address, as given.

Input Frequencies

Reference: 2.46 MHz \pm 0.1% (0.041 μ s period, nominal); 1.23 MHz \pm 0.1% (0.81 μ s period, nominal); or 153.60 kHz \pm 0.1% (6.51 μ s period nominal).

Note

Above frequencies are user selectable

Event Rate: 2.46 MHz max

Note

Maximum rate for external events in event counter function.

Output Frequencies/Timing Intervals

Function	Single Tir	ner/Counter	Dual Timer/Counter (Two Timers Cascaded)		
	Min	Max	Min	Max	
Real-time interrupt	1.63 μs	427.1 ms	3.26 µs	466.50 min	
Programmable one-shot	1.63 μs	427.1 ms	3.26 µs	466.50 min	
Rate generator	2.342 Hz	613.5 kHz	0.000036 Hz	306.8 kHz	
Square-wave rate generator	2.342 Hz	613.5 kHz	0.000036 Hz	306.8 kHz	
Software triggered strobe	1.63 μs	427.1 ms	3.26 µs	466.50 min	
Hardware triggered strobe	1.63 μs	427.1 ms	3.26 µs	466.50 min	

Interfaces

MULTIBUS — All signals TTL compatible Parallel I/O — All signals TTL compatible Interrupt Requests — All TTL compatible Timer — All signals TTL compatible Serial I/O — RS232C compatible, data set configuration

System Clock (8085A CPU)

2.76 MHz ± 0.1%

Auxiliary Power

An auxiliary power bus is provided to allow separate power to RAM for systems requiring battery backup of read/write memory. Selection of this auxiliary RAM power bus is made via jumpers on the board.

Connectors

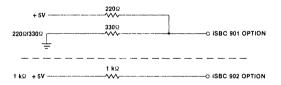
Interface	Pins (qty)	Centers (In.)	Mating Connectors
Bus	86	0.156	Viking 2KH43/9AMK12
Parallel I/O	50	0.1	3M 3415-000
Serial I/O	26	0.1	3M 3462-000

Memory Protect

An active-low TTL compatible memory protect signal is brought out on the auxiliary connector which, when asserted, disables read/write access to RAM memory on the board. This input is provided for the protection of RAM contents during system power-down sequences.

Line Drivers and Terminators

I/O Drivers— The following line drivers are all compatible with the I/O driver sockets on the iSBC 80/30.


Driver	Characteristic	Sink Current (mA)
7438	1,0C	48
7437	1	48
7432	NI NI	16
7426	I.OC	16
7409	NI.OC	16
7408	NI	16
7403	1.OC	16
7400	1	16

Note

I = inverting; NI = non-inverting; OC = open collector.

Port 1 of the 8255A has 20 mA totem-pole bidirectional drivers and 1 $k\Omega$ terminators.

I/O Terminators - 220Ω/330Ω divider or 1 kΩ pullup

Bus Drivers

F	unction	Characteristic	Sink Current (mA)
D	ata	Tri-state	50
A	ddress	Tri-state	50
0	ommands	Tri-state	32

Physical Characteristics

Width — 12.00 in. (30.48 cm) Height — 6.75 in. (17.15 cm) Depth — 0.50 in. (1.27 cm) Weight — 18 oz. (509.6 gm)

Electrical Characteristics DC Power Requirements

Configu- ration	Current Requirements			
	V _{CC} = + 5V ± 5%(max)	V _{DD} = + 12V ± 5%(max)	$V_{BB} = -5V$ ± 5% (max)	V _{AA} = - 12V ± 5%(max)
Without EPROM ¹	I _{CC} = 3.5A	I _{DD} = 220 mA	I _{BB} =-	I _{AA} = 50 mA
With 8041/8741 ²	3.6A	220 mA	-	50 mA
RAM only ³	350 mA	20 mA	2.5 mA	
With iSBC 530 ⁴	3.5A	320 mA		150 mA
With 2K EPROM ⁵ (using 8708)	4.4A	350 mA	95 mA	40 mA
With 2K EPROM ⁵ (using 2758)	4.6A	220 mA	1. 1 <u></u> 1	50 mA
With 4K EPROM ⁵ (using 2716)	4.6A	220 mA	_	50 mA
With 8K EPROM ⁵ (using 2332)	4.6A	220 mA	na an tra f an artstration	50 mA

Notes

1. Does not include power required for optional EPROM/ROM, 8041A/ 8741A I/O drivers, and I/O terminators.

2. Does not include power required for optional EPROM/ROM, I/O drivers and I/O terminators.

3. RAM chips powered via auxiliary power bus

4. Does not include power required for optional EPROM/ROM, 8041A/ 8741A I/O drivers, and I/O terminators. Power for iSBC 530 is supplied through the serial port connector.

5. Includes power required for two EPROM/ROM chips, 8041A/8741A and 2200/3300 input terminators installed for 34 I/O lines; all terminator inputs low.

ORDERING INFORMATION

SBC 80/30

Part Number ... Description and a second state of the Single Board Computer with 16K bytes RAM

Environmental Characteristics

Operating Temperature - 0°C to 55°C

Reference Manual

9800611B - iSBC 80/30 Single Board Computer Hardware Reference Manual (NOT SUPPLIED)

Reference manuals are shipped with each product only if designated SUPPLIED (see above). Manuals may be ordered from any Intel sales representative, distributor office or from Intel Literature Department, 3065 Bowers Avenue, Santa Clara, California 95051, Adapted and Store A

· "我们的你们的你们的,我们就是你的?""你们的吗?""你们的吗?" اً المرحمة المراجعة الإليان التوجيع المراجع المراجع (1.500) التراجع). المراجع (1.500) معارية المراجع المعالية:

in andre son an sin an 1945 - Austria Statistica († 1944)	1 Capital States	ast la b	an (proved)
			an an ann an
n an an Arthur an Arthur An Arthur an Arthur Arthur		ning and a second se	ang at S
			i et de ser d'anne Reference Reference
an a	i se se j		مراجع المحمد أحمد المحمد الم