
APPLICATION
NOTE

L I

Q Intel Corporation, 1977 $1 .oo

Related Documents

"Intel8080 Microcomputer Systems User's Manual"

"SBC 80120 Single Board Computer Hardware Reference Manual"

"Intel 8080 ,VIicrocomputer Periplzeruls User's n/lanuul"

"Irz tel Du tu Catalog"

The material in this Application Note i s for informational purposes only and i s
subject to change without notice. lntel Corporation has made an effort to verify
that the material in this document is correct. However, lntel Corporation does not
assume any responsibility for errors that may appear i n this document.

The following are trademarks o f lntel Corporation and may be used only to
describe lntel Products:

ICE MCS
INSITE MEGACHASSIS
INTEL MICROAMP
INTELLEC PROMPT
LIBRARY MANAGER UP1

INTEL CORPORATION ASSUMES NO RESPONSIBILITY FOR THE USE OF ANY CIRCUITRY OTHER THAN CIRCUITRY EMBOOIEO I N A N I N T E L P R O O U C I NO OTHER CIRCUIT PATENT LICENSES ARE IMPLIEO.
. , INTEL CORPORATION, 1977

Contents

. INTRODUCTION 1

. CONCEPTS 1
8080 INTERRUPTS . 2

. 8259-8080 OVERVIEW 3

8259 BLOCK DIAGRAM . 4
. INPUT CIRCUIT 5

PRIORITY CELL . 6
Using The DATABUSBUFFER . 7

READIWRITE CONTROL LOGIC 7
8259 CASCADE BUFFER/COMPARATOR 7

Interrupt Controller PIN DEFINITIONS

PROGRAMMING THE 8259 . 8
. INITIALIZATION COMMAND WORDS (ICWs) 8

OPERATION COMMAND WORDS (OCWs) 10
Fully Nested Mode . 10
Rotating Priority Commands 11
Interrupt Masks (OCWI) . 13
Special Mask Mode (OCW3) 13
Polled Mode (OCW3) . 14
Reading the 8259 Status (OCW3) 14

CASCADING THE 8259 . 15

APPLICATION EXAMPLES . 16
POWER FAILIAUTO-START WITH BATTERY
BACK-UP RAM . 16
7 8 LEVEL INTERRUPT SYSTEM 21

CONCLUSION . 25

INTRODUCTION

The Intelm 8259 is a Programmable Interrupt Con-
troller (PIC) designed for use in real-time, interrupt-
driven microcomputer systems. The 8259 manages
eight levels of interrupts and has built-in features
allowing expandability up to 64 levels with the
addition o f other 8259s. A selection of program-
mable priority rnvdes is available to reconfigure
how the 8259 processes interrupt requests. Individ-
ual interrupt inputs may also be masked under
software control. These modes and masks may be
dynamically changed by the software at any time
during program execution. This means that the
complete interrupt structure can be defined as
required, based on the total system environment.
The 8259 is part of the MCS-80185 Microcom-
puter Family and as such, it interfaces to the 80801
8085 system with a niininlum of external hard-
ware.

This application note explains the 8259 as a com-
ponent and shows its use in two typical applica-
tions. These applications are an interrupt con-
trolled power-faillauto-start scheme for a micro-
computer system with battery back-up RAM, and
a >G4 level interrupt-driven system. The battery
back-up system will be described in detail and the
conceptual software for the >64 level interrupt-
driven system will be presented.

The first section of this application note introduces
the concept of interrupts and reviews how inter-
rupts are handled by the Intel' 8080A Microproc-
essor. It is fairly tutorial in nature, and may be
skipped by the morc knowledgeable reader. The
second section describes thc 8259 from a func-
tional standpoint with explanation of the block
diagram. Each device pin is explained in detail. The
third section defines the various operating modes
along with the specific software required. Short
initialization and setup routines are given t o illus-
trate the programming concepts. The fourth, and
final, section describes the applications mentioned
earlier.

CONCEPTS

In microcomputer systems, there is usually a need
for the processor to communicate with various
Input/Output devices such as keyboards, displays,
sensors, and other peripherals. From the system
viewpoint, the processor should spend as little time
as possible servicing the peripherals since the time
required for these 110 chores directly affects the

amount of time available for other tasks. In other
words, the system should be designed so that I/O
servicing has little or no effect on the total system
throughput. There are two basic methods of han-
dling the I/O chores in a system: Status Polling and
Interrupt Servicing.

The Status Poll method of I/O servicing essentially
involves having the processor "ask" each peripheral
if it needs servicii~g by testing the peripheral's
status line. If the peripheral requires service, the
processor branches to the appropriate service rou-
tine; if not, the processor continues with the main
program. Clearly, there are several problems in
implementing such an approach. First, how often a
peripheral is polled is an important constraint.
Some idea of the "frequency-of-service" required
by each peripheral must be known and any soft-
ware written for the systern must accommodate
this time dependence by "scheduling" when a
device is polled. Second, there will obviously be
times when a device is polled that is not rcady
for service, wasting the processor time that it took
to do the poll. And other times, a ready device
would have to wait until the processor "makes its
rounds" before it could be serviced, slowing down
the peripheral.

Other problems arise when certain peripherals are
more important than others. The only way to
implement the "priority" of devices is to poll the
high priority devices more frequently than lower
priority ones. It may even be necessary to poll the
high priority devices while in a low priority device
service routine. It is easy to see that the Polled
approach can be inefficient both time-wise and
software-wisc. Overall, the Polled method of 110
servicing can have a detrimental effect on system
throughput, thus limiting the tasks that could be
performed by the processor.

A morc desirable approach in most systems would
allow the processor to be executing its main pro-
gram and only stop to service the 110 when told
to do so by the I10 itself. In effect, the device
would asynchronously signal the processor when it
required service. The processor would finish its
current instruction and then jump to the service
routine for the device requesting service. Once the
service routine is complete, the processor would
resunle exactly where it left off in the main pro-
gram.

This method of 110 servicing is called Interrupt.
The status line of the peripheral is replaced by an

"interrupt request" line. Asserting this line signals
the processor that service is needed. Using inter-
rupts, no processor time is spent testing devices,
scheduling is not needed, and priority schemes are
readily implemented. It is easy to see that, using
the Interrupt approach, system throughput would
incrlase, allowing more tasks to be handled by tlie
processor.

There arc two basic methods of implementing the
Interrupt approach: polled interrupts and vectored
interrupts. Conceptually, in the polled interrupt
method, the peripherals' "interrupt request" lines
are combinatorially OR'd into one line that inter-
rupts the processor if any peripheral required
service. The processor then polls each peripheral t o
determine the requesting device. In this scheme,
the priority of tlie device is determined by its posi-
tion in the polling sequence. Once the requesting
device is found, tlie processor branches to the
corresponding service routine. In contrast, vectorcd
interrupts are those in which the requesting device
supplies information which allows the processor t o
directly call the appropriate service routine. This
 neth hod usually requires more hardware than the
polled method. However. it allows much faster
response t o an interrupt since the polling time is
eliminated. In simple vectored interrupt systems,
all devices have the sarnc priority. This is some-
times a limitation since the speed of the vectored
method may be needed, while the prioritization of
the polled method is also required; a flexible inter-
rupt structure would have both.

In order to implement a truly flexible priority-
vectorcd interrupt structure, a Programmable Inter-
rupt Controller (PIC), such as the 8259, may be
used. The 8259 functions as the overall manager of
the interrupt-driven system and can implement
both the polled and vectored interrupt structures.
In the vectored structure it accepts interrupt
requests from the peripherals, determines which
of the incoming requests is the highest priority,
ascertains whether the highest priority incoming
request has higher priority than the interrupt level
currently being serviced (if any) and then issues an
interrupt to the processor based on the determina-
tion. Since each peripheral usually has a unique
service routine associated with it, the PIC, after
interrupting the processor, provides a "vectored"
CALL instruction to point the processor directly
to the servicc routine required by the interrupting

device. In the polled structure, the same recluest
priority determination is made, however software

polls the 82.59 rather than the peripherals. When
polled, the 8259 returns a data word indicating
the highest priority peripheral reqi~esting serv!ce.
The software then uses this data word t o branch
to the appropriate service routine.

A variety of priority modes is a desirable feature
of a PIC. Many options are conceivable; however,
let's describe a few which are available with the
8259 and will be mentioned later.

Fully Nested - Each input is assigned a priority.
Interrupt Request input IR7 receives the lowest
priority while IRO receives the highest. A higher
priority request will interrupt a lower priority
service routine, but not vice versa. The lower pri-
ority service routine will be resumed upon com-
pletion of the higher priority routine. This is
essentially a "general purpose" niode.

Rotatirlg Priority - Like in the Fully Nested
mode, each input is assigned a priority. How-
ever, when an interrupt occurs and the appro-
priatc service routine is executed, the priorities
are rotated so that the most recently senriced
input has the lowest priority. Thus, if there are
N inputs, a serviced peripheral will have to wait,
in the worst case, until the other N-1 peri-
pherals are serviced before receiving service again.
This mode prevents "hogging" of the processor
by a single peripheral and gives each input an
equal chance at the processor.

Specific Priority - This mode is similiar to the
Rotating niode. The only difference is that the
software can select the bottom priority lnput
without an interrupt having t o have occurred.
Thus, the priority assignments may be changed
at any time depending on the needs of the main
program or the service routine.

In the 8259, these modes are programnlable;
that is, they may be changed dynamically under
software control. Additionally, each mode may be
modified by the use of interrupt masks. These
masks allow individual inputs t o be masked off;
i.e., not be able t o cause an interrupt regardless of
its priority. Each mask is under software control.

Before we discuss how the 8259 handles interrupts,
let's digress slightly to review how the 8080 itself
handles interrupt requests.

8080 INTERRUPTS

A peripheral device can initiate an interrupt to the
8080 by simpiy pulling the 8080's Interrupt pin

(INT) high. The INT line is asynchronous, there-
fore an interrupt request may be asserted at any
time. The 8080 can, however, enable and disable
interrupts under software control by use of the
Enable Interrupt (EI) and Disable Interrupt (DI)
instructions. These instructions either set (EI) or
reset (DI) an internal interrupt enable flip-flop.
The output of this flip-flop is made available on
the INTE (Interrupt Enabled) pin. Interrupts are
disabled (INTE low) upon resetting the 8080.

At the end of each instruction cycle, thc 8080
exanlines the state of the INT pin and the INTE
flip-flop. If interrupts are enabled and an interrupt
request is being made (both pins high), the 8080
enters an INTERRUPT machine cycle. During the
INTERRUPT cycle, the 8080 resets the interrupt
enable flip-flop (INTE goes low disabling response
to further interrupts) and issues an Interrupt
Acknowledge (INTA), by way of the System Con-
troller 8228, t o tell the interrupting device that it
has the 8080's attention and nlay remove the INT
assertion. In addition, the Program Counter (PC)
is not incremented as it normally would be in
normal machine cycles. This ensures that the 8080
can return to the pre-interrupt program location if
the PC is saved. At this point, the 8080 expects the
interrupting device t o place an instruction on the
data bus. The 8080 is, in cffect, saying "Okay,
now you have Iny attention. You are granted one
wish. What will it be?" Any instruction nlay be
used, but there are only two logical choices: a
RESTART (RST) or a CALL. The reason one of
these two should be used is that both put the
program counter on the stack, allowing it t o be
restored after the interrupt service routine is
complete.

When a CALL instruction is placed on the data
bus in response to the Interrupt Acknowledge
(m~), the 8080 saves the program counter by
pushing it on to the stack and then issues two addi-
tional INTAs by way of the 8228. In response, the
interrupting device is expected to return two bytes
which are the starting address of its service routine.
The lower 8 bits of the address (LSB) are released at
the first INTA and the higher 8-bits (MSB) are -
released at the second INTA. Execution then starts
at this destination address. Using a CALL instruc-
tion in response t o an interrupt is an extremely
powerful tool in I/O servicing. However, a signifi-

struction is provided in the 8080 instruction set.

The RESTART (RST) instructions are actually
special one-byte calls which have the destination
address embedded within the 8-bit opcode. Execu-
ting an RST causes execution to be transferred
(vectored) t o one of eight fixed memory locations,
see Figure 1 . Any of these addresses may bc used
to store the first instructions of an interrupt ser-
vice routine. In simple systems, the desired RST
instruction can be generated by a simple 8-bit
buffer external t o the interrupting device. Since
the RST instructions are calls, the old program
counter contents are placed on the stack.

RST

RST 0

RST 1

RST 2

RST 3

RST 4

RST 5

RST 6

RST 7

Figure 1. RST Instruction Format

HEX DESTINATION
OP CODE ADDRESS

Return to the main program from an interrupt
service routine is identical for both the CALL and
the RST instructions. Assuming an equal number
of pushes and pops from the stack during the
service routine, the pre-interrupt program counter
is on top of thc stack at the end of the routine.
Executing a RETURN (RET) instruction pops the
top of the stack into the program counter, causing
the main program t o take up whcrc it left off
before receiving the interrupt. It is the service
routine's responsibility t o save and restore thc pro-
cessor registers and status as appropriate. Remcm-
ber that interrupts are disabled after an Interrupt
Acknowledge so an EI instruction must be exe-
cuted in the service routine in order for the 8080
to respond to further interrupt requests.

C7

C F

D7

DF

E 7

E F

F7

F F

cant amount of hardware is usually required in
order t o ensure that the correct sequence of data 8259-8080 OVERVIEW

is placzd on the data bus. For systems not having Figure 2 shows the 8259- 8080 system bus inter-
a large number of peripherals, a special CALL in- face. It is recommended that an 8228 (or 8238)

00 H

08 H

10 H

18 H

20 H

28 H

30 H

38 H

System Controller and Bus Driver be used in con-
junction with the 8080 when an 8259 is used
to manage interrupts. This combination ensures
that the 3 required INTA pulses occur in response
to an interrupt. Using the 82 12 I/O Port as an 8080 -
status latch does not provide the necessary INTA
sequence.

The normal sequence of events that occur when an
interrupt request is asserted is as follows:

1. One o r more Interrupt Recluest lines (IRO-
IR7) is raised high signaling the 8259 that
peripheral service is being requested.

2. The 8259 accepts the requests, resolves the
priorities, and sends an INT to the 8080.

3. The 8080 suspends the program flow at the
end of the current instruction (INTE must be

--

high), and issues an INTA by way of the
8228.

4. Upon receiving the INTA, the 8259 places a
CALL instruction onto the data bus.

ADDRESSBUS I161 7

CASCADE
LINES

SLAVE J
PRaG INTERRUPT

REOUESTS

Figure 2. 8259 Interface to 8080 Standard System Bus

8259 BLOCK DIAGRAM

A block diagram of the 8259 is shown in Figure 3.
As can be seen from the figure, the 8259 consists
of eight major blocks: the Interrupt Request
Register (IRR), the In-Service Register (ISR). the
Interrupt Mask Register (IMR), the Priority Re-

5. This CALL causes the 8080 to issue two addi- solver (PR). the Cascade Buffer/Comparator, the

tional INTAs by way of the 8228. Data Bus Buffer. and logic blocks for Control and
Read/Write. We'll go quickly over the individual

6. These additional W A S allow the 8259 to blocks directly related to interrupt handling; the
release the address for the service routine of IRR, ISR, IMR. PR, and the Control logic. Then.
the interrupting peripheral onto the bus. by way of a conceptual diagram, we show how

7. This completes the 3-byte CALL. Execution these various blocks interact. The remaining func-
is vectored to the peripheral's service routine. tiorial blocks are then discussed.

PIN CONFIGURATION

WR

R D INTA

CAS 0

C A " ~ ; ; ;;$:s2

G N P

PIN NAMES
D,-DO D A T A BUS IBI -DIRECTIONALI

~p

R E A D l N p U T

WRITE INPUT
- - --- - ---

-I
C O M M A N D SELECT ADDRESS

CHIP SELECT

SLAVE PROGRAM INPUT

INTERRUPT OUTPUT

INTERRUPT ACKNOWLEDGE INPUT
IRD-IR7 INTERRUPT REQUEST INPUTS

BLOCK DIAGRAM
i t i l ~ INT

P- I
D 7 - 0 ~

BUFFER

INTERRUPT MASK REG

CAS 1 - -- BUFFER1
COMPARATOR

CASZ -
SP --I u \INTERNAL Bus

Figure 3. Block Diagram and Pin Configuration

4

Basically, interrupt requests are handled by three
"cascaded" registers. The Interrupt Request Regis-
ter (IRR) is used to store all the interrupt levels
requesting service; the In-Service Register (ISR)
stores all the levels which are being serviced; and
the Interrupt Mask Register (IMR) stores the bits
of the interrupt lines to be masked. The Priority
Resolver (PR) looks at the IRR, ISR, and IMR and
determines whether an INT should be issued by the
Control logic t o the 8080.

structure is quite common and allows WIRE-OR'ed
interrupt requests (the actual interrupting device
must be determined via software as mentioned
before). But (watch out!) the request must be
removed shortly after acknowledgernent or an-
other, unwanted, interrupt could be generated.

The edge sensitive input requires only an inactive
t o active transition of the request input. This tran-
sition is saved in a flip-flop, so the active level need
be maintained only long enough t o serve as a clock

Fig~lre 4 shows conceptually how the Interrupt pulse t o the flip-flop. The level may remain active

Request (IR) input is handled and how the various an arbitrarily long time without danger of gener-
ating an unwanted interrupt. It must ultimately registers interact. The figure represents one of eight
return inactive before another active transition can

"daisy-chained" priority cells; one for each IR
be sensed. This structure is handy for handling input. The input circuitry is rather novel so it is

discussed first. interrupts from transient events, however it pre-
vents WIRE-OR'ing since this connection does not
provide the transitions needed. Be careful of edge

INPUT CIRCUIT inputs; noise on the request line could generate an
erroneous interrupt.

There are two classical ways of sensing an active -
interrupt req~lest : a level sensitive or an edge sensi- The 8259 uses an edge lockoirt input which shares
tive input. A level sensitive input requires the some characteristics with each o f the above two
request input go to the active state and remain techniques. The edge lockout input requires that a
active ~ ln t i l that interrupt is acknowledged. This request transition from the inactive t o the active

TOOTHER PRIORTY CELLS
! CLR ISR

Y
, ,
u Y 5 2

03 E
~ 2

aa u

gg t
"J n
5 5 NOTES

$ 2 1. MASTER CLEAR ACTIVE ONLY DURING lCWl
2. FREEZE1 IS ACTIVE DURING INTAI AND POLL SEOUENCES ONLY

CLR 0 - ISR BIT

SET lSR
PRIORITY
RESOLVER

CLR

CONTROL
LOGIC

REQUEST

I R

*-C 0 - D 0 o -

3. TRUTH TABLE FOR D-LATCH

I T A --wu-w

o 1 X 0 1 HOLD

Figure 4. Priority Cell

4 --
FREEZE

CLR

8

+is INTERNAL
DATA BUS

8

state (as in edge sensitive) and then remain active
(as in level sensitive) until the request is acknowl-
edged. The inactive-to-active transition locks out
all further requests on that input until the request
has been acknowledged and the input has returned
to the inactive state. Thus, the user need not worry
about quickly removing the request after acknowl-
edgement, in fear of generating a second interrupt.
Figure 5 illustrates the timing required for the edge
lockout input.

PRIORITY CELL

Refer back to Figure 4 and follow an interrupt
request thru the priority cell. First, notice that an
inactive IR input sets the edge sense latch, arming
that input. Then, an active IR input combinatori-
ally propagates the request (assuming the input is
not masked) t o the Priority Resolver. The PR looks
at the incoming requests and the currently in-
service interrupts t o ascertain whether an interrupt
should be issued to the 8080. Assume for clarity
that the request is the only one incoming and no
requests are presently in service. The PR then
causes the Control logic to pull the INT line t o the
8080 high, interrupting the processor. When the
8080 is finished with the instruction being exe-

-

cuted, it signals the 8228 t o return an INTA. This -
INTA causes the 8259 t o place a CALL ilistruction
on the data bus and to freeze the IRR (note the
INTA-Freeze Request timing diagram). Thus. the

requesting IR input must remain active at least -
until after the first INTA. With the input frozen
and latched, the priority is again resolved by the
PR, this time to determine the appropriate destina-
tion address for the CALL. The CALL instruction
causes the 8080 t o generate two additional INTAs.
During these I m the destination address of the
interrupt service routine is placed on the data bus
by the 8259. (Don't worry for now about where
the address comes from.) Immediately after the -
INTA sequence, the PR then sets the correspond-
ing bit in the ISR and simultaneously clears the
edge sense latch, which clears the IRR bit. hot ice
the state of the edge sense latch (don't forget that
the IR input may still be active). With the edge
sense latch cleared, the still active IR input can not
propagate thru the gate at the IRR input, thus
further requests from this level are inhibited. The
IR input must return t o the inactive state, setting
the edge sense latch and "opening" the IRR gate,
before another request on the input can be recog-
nized.

While off in the interrupt service routine, don't
forget that the ISR bit is set. This prevents subse-
quent requests from this, and lower priority levels,
from causing interrupts. I t is the service routine's
responsibility to clear the ISR bit with an End-of-
Interrupt (EOI) command at the end of the service
routine, telling the 8259 that it is con~plete. (How
this is done is explained when 8259 prograniming
is covered.)

- !
INTA 2 3

LATCH EARLIEST wv IR SERVICE LATCH
ARMED CAN BE ROUTINE ARMED

REMOVED

Figure 5. Edge Lockout Timing

What would have happened if the input had been
masked; i.e., the Interrupt Mask Register bit was
set? Nothing. The active state of the 1R input
would propagate thru the IRR but the set IMR bit
would stop it before entering the PR. Thus, no
interrupt could be generated. The IMR only acts
on the output of the IRR, however, and if the pro-
gram being executed somehow resets the IMR bit,
the PR would then see our active request and an
interrupt would be generated if appropriate.

Now that the functional blocks directly related to
interrupt request processing have been discussed,
let us discuss the remaining blocks.

DATA BUS BUFFER

This 3-state, bidirectional, 8-bit buffer is used to
interface the 8259 to the 8080 system data bus.
Conlrol words, status information, and the destina-
tion addresses are transferred through the Data Bus
Buffzr.

READIWRITE CONTROL LOGIC

The function of this block is to control the pro-
gramming of the 8259 by accepting OUTput com-
~nands from the 8080. The Initialization and Oper-
ation Command Word Registers which store the
various control formats are located in this block.
Status reads are also corltrolled by this block using
8080 INput commands.

CASCADE BUFFER/COMPARATOR

As alluded t o earlier, nlultiple 8259s can be com-
bined to expand the number of interrupt levels. A
master-with-slaves relationship of cascaded 8259s is
used for the expansion. The cascading of 8259s
will be the subject of a complete section later in
this note.

PIN IIEFINITIONS

Name (pin) 110 Definition

vcc (28) I +5 volt supply

GND (14) I Ground

B (l) I Chip Select. A low on this pin
enables commi~nication be-
tween the. CPU and the PIC.

-

WR (2) I A low on this input when
is low enables the PIC t o ac-
cept command words from the
CPU.

Name (pin) 110 Definition

RD (3) I A low on this input causes the
PIC to output its status on the
data bus when a is low.

DB7-DBo 110 The DB pins form a 3-state,
(4-1 1) bidirectional data bus which

is connected t o the CPU group
(8080, 8224, 8228) data bus.
Control and status informa-
tion are transferred over this
bus.

CASo-CAS2 IjO Cascade Lines. The CAS pins
(12,13,15) form a private 8259 bus to

control multiple 8259s. These
pins are outputs for a master
8259 and are inputs for a slave
8259.

p (1 6) I Slave Program. The state of
this pin defines whether the
8259 is a master (s = l) or a
slave (@=O). 9 controls the
110 direction of the CAS pins.

INT (17) 0 Interrupt. This pin goes high
whenever a valid interrupt re-
quest is asserted. INT is con-
nected t o the interrupt pin of
the CPU.

I R ~ - I R ~ I Interrupt Request. Interrupt
(1 8-25) requests are asserted by the

peripherals. A request is made
by pulling one of the IR pins
high.

-
INTA (26) I Interrupt Acknowledge. This

pin is connected to the CPU
group interrupt acknowledge
output. Three low pulses on
this pin causes the 8259 t o
place a CALL instruction and
a destination address on the
DB pins. (One byte for each
INTA pulse.)

AO (27) I This pin acts in corljunction
with the CS, WR, and RD pins
when Command Words are
written and status is read from
the 8259. It is typically con-
nected to the CPU A. address
line.

PROGRAMMING THE 8259 anywhere in the memory map, starting o n an even

As the name implies, the 8259 is programmable;
operation is controlled via software thru command
words. There are two types of command words
used for the 8259: Initialization Command Words
(ICWs) and Operation Command Words (OCWs).

INITIALIZATION COMMAND WORDS (ICWs)

Before normal operation begins (i.e., after a system
power-up), each 8259 in the system must be initial-
ized by two or three ICWs. The ICWs tell each
8259:

1. If there are other 8259s in the system, and
how they are connected.

2. The starting address of the service routines.

3. Whether the service routines are spaced 4 o r 8
bytes apart.

Issuing an ICWl starts the 8259 initialization
sequence. Once started, the initialization sequence
must be completed before the 8259 can process
interrupt requests. This applies t o each 8259 in a
multiple 8259 system. During the initialization
sequence, the following occur automatically:

1 . Each edge sense circuit is reset. Thus an IR
input must make an inactive t o active transi-
tion, after initialization, t o generate an inter-
rupt.

2. The Interrupt Mask Register is reset (no IR
inputs masked).

3. IR7 is assigned priority level 7

4. The Status Read and Special Mask mode flip-
flops (explained later) are reset.

Each IR input has an address in memory associated
with it. It is this address that is placed on the bus
by the 8259 in response t o the INTA pulses after
the CALL is placed on the data bus. The addresses
for all eight IR inputs are formatted in equally
spaced intervals of either 4 or 8 bytes. If the ser-
vice routine for a device is short, it may be possible
to fit the entire routine within an 8-byte interval.
Usually, however, the service routines require more
than 8 bytes and the 4-byte interval is used to store
a Jump (JMP) instruction which directs the 8080 t o
the appropriate routine. The 8-byte interval main-
tains compatibility with current 8080 RESTART
instructions software, while the 4-byte interval is
best for a compact Jump table. For each 8259, the
starting address for this 3 2 o r 64-byte page is pro-
grammable during initialization and can be located

page boundary. To form the 16 bits needed for
each address, address bits A15-A6 are user sup-
plied in the ICWs and bits A4-AO are inserted by
the 8259. As's generation depends upon whether 4
or 8-byte intervals are programmed. For 4-byte
intervals, you program A5 in ICWl. The 8259 sup- . -

plies A5 for the 8-byte interval selection. Figure 6
shows how the address is developed for each IR
input.

REQUEST
INPUT

8-BYTE INTERVAL-
A15-ABSUPPLIED IN

ICWl AND ICW2

A4 A3 A2 A1 A0
- -

0 0 0 I 1 0

0 1 0 1 1 0

1 0 0 0 0

1 1 0 I l O

0 0 0 1 1 0

0 1 0 u o

1 O O l 1 0

l l O U 0

4 BYTE INTERVAL-
~ 1 5 - A 5 SUPPLIED IN

ICWl AND ICW2

A4 A3 A2 A1 A0 A5

0 0 0 0 0 1 0

0 0 1 0 0 0

Figure 6. Address Development

0 1 0 0 0

0 1 1 0 0

1 0 0 0 0

1 0 1 0 0

1 1 0 0 0

1 1 1 0 0

The formats for ICW 1 and ICW2 are shown in Fig-
ure 7. The 8259 interprets any command with
Ao=O, Do=O, and D4=1 as an ICWI. Note that
address bit A0 is used as an additional control
input for all command words. Bits F and S are the
only yet undefined bits. Bit F (Format) determines
the CALL address interval. If F = l , then addresses
are in 4-byte intervals; if F=O, then the intelval is
8 bytes. Bit S (Single) indicates if there is more
than one 8259 in the system. If S = l , there is only
a single 8259; S=O means multiple 8259s. ICW2
simply supplies the MSB of the address used as the
start of the service routine page and is sent with
A()= 1.

0

0

1

1

1

1

If the system contains multiple 8259s (ICWI bit
S=O), an additional ICW is needed: ICW3. This
word controls the master-slave relationship t o
ensure the correct 8259 places the service routine
address on the bus. Multiple 8259 systems ill gen-
eral, and ICW3 in particular, are discussed in an-
other section.

1 =SINGLE
0 = NOT SINGLE

A7-5 OF LOWER

ROUTINE ADDRESS I
c

ICWZ

"0 "7 4 4 ''a D

CALL ADORESS INTERVAL
1 - INTERVAL IS 4
0 = INTERVAL IS B

UPPER ROUTINE '-1 ADDRESS I
ICW3 (MASTER DEVICE)

I I

ICW3 (SLAVE DEVICE1

% "7 D6 4 04 D? D7 Dl Do

-

DON.T
CARE

1 = IR INPUT HAS A SLAVE
0 = IR INPUT DOES NOT HAVE

A SLAVE

I I SLAVE It ' l l '

I I

NOTE 1. SLAVE ID IS E Q U A L T O T H E CORRESPONDING MASTER IR INPUT.

Figure 7. Initialization Command Word Format

Figure 8 shows the flow required for initialization.
ICWl is issued first, initiating the sequence. ICW2
must follow as the next command. With a single
8259, no ICW3 is required and the 8259 is ready to
process interrupt requests immediately following
ICW2. In order t o ensure the integrity of any
initialization or command sequence, interrupts
must be disabled (by executing a DI instruction)
over the initialization section of code. (Don't for-
get that interrupts are disabled automatically after
the 8080 is reset.) Two typical initialization se-
quences are shown in Example 1.

READY TO ACCEPT REDUEST
IN FULLY NESTED MODE

Figure 8. Initialization Flow

dB f 3
B e l l 3 t ? t
n i l 8 3 0 3 D L
l l b S J i l l
B U 1 7 C I D L
UBBU ih

requests can generate an interrupt. However, these
interrupts are only acknowledged if the 8080 has
enabled interrupts, by executing an EI instruction,
since the preceding interrupt. Figure 9 illustrates

9 ;
1 8 : t X P M P i . t : I N A l l N L L E 8:51 SYSTE+l, TnC 8 2 5 5 ii I N I T I A L I Z E D
1 1 ; FOR A l - ~ ~ l t I N ' I L H ~ A L J L M P TABLL STARTING A T 3 9 6 B H

this point.
I ' ;

; O I S R U L t L h T E h Y L P l S FOL (

A . 7 6 H ; f = l , i = l , A 6 b A5:l
Y T i 9 A ; B l i l PCPT A 0 - 3 I C k i
A , i Y h :Hbb L A L L RDOh3a5 bilf
P T 5 9 8 ; a 2 1 5 P O R l & O i l I L W 2

. LNhBLt. LNTLHhLIPTa

; i = O . i = l , A 7 - A S - i O
; t i 2 5 5 POP? A # = @ I C Y 1
;ns? L A L L A O O ~ L ~ ~ B Y T L
; 8 2 5 9 PORT A O = l 1CU2
: Lh2"LE IhT>&PL>,S

Example 1. Initialization Sequences

Once initialized, the 8259 is controlled using Opcr-
ation Command Words. These words control the
changing of priority modes, interrupt masks, and
perform the End-of-Interrupt housekeeping.

OPERATION COMMAND WORDS (OCWs)

After initialization, the 8259 is ready to accept
interrupt requests on the IR inputs. However,
during operation, the 8259 can be commanded to
operate in a variety of priority modes through the
Operation Command Words (OCWs). The various
modes and their associated OCWs are described
below.

Fully Nested Mode

The 8259 handles requests in the Fully Nested
mode without any OCW being written. In this
mode, the 1R inputs are assigned priorities such
that IRO has the highest priority while 1R7 has the
lowest. When an interrupt is acknowledged, the
highest priority request is determined and its
address vector is placed on the data bus. In addi-
tion, the corresponding bit in the ISR is set. This
bit remains set until an End-of-Interrupt command
is received by the 8259 from the service routine.
While the ISR bit is set, all further requests of the
same and lower priority are inhibited from gener-
ating an interrupt t o the 8080. Higher priority

MAIN PROGRAM

5=
INTERRUPT lR3SERVlCE

l R l SERVICE 1 ''L] ROUTIN6

Figure 9. Fully Nested Example

During the main program, IR3 rnakes a request.
Since interrupts are enabled, the 8080 is vectored
to the IR3 service routine. During the IR3 routine,
I R l asserts a request. Since IRI has higher priority
than IR3, an interrupt is generated. Because the
8080 disabled interrupts in response t o the IR3 in-
terrupt, the IR1 interrupt is not acknowledged
until an EI instruction is executed. Thus the IR3
routine has a "protected" section of code over
which no interrupts are allowed. The IR1 routine
has no such "protected" section since an EI instruc-
tion is the first one in its service routine.

What is happening to the ISR register? While in the
main program, no ISR bits are set since no inter-
rupts are in-service. When the 1R3 interrupt is
acknowledged, the ISR3 bit is set. When the 1R1
interrupt is acknowledged, both the ISRl and the
ISR3 bits are set, indicating that neither routine is
complete. At this time, only IRO could generate an

interrupt since it is the only higher priority input again. OCW2 contains three commands which sup-
from those presently in-service. port rotating priority: two involve End-of-Inter-

T o terminate the I R l routine, the routine must
infonn the 8259 that it is complete by resetting its
ISR bit. It does this by executing the EOI com-
mand. The format for this command is shown in
Figure 10. Note that the format is independent of
the interrupt level and is thus called a Non-Specific
EOI. The command simply resets the highest pri-
ority ISR bit which is set. This is necessarily the
correct bit since, in the Fully Nested mode, the
highest ISR bit corresponds t o the last level
acknowledged; which must have been a higher
priority than other in-service levels in order to
generate the interrupt in the first place.

OCWZ NON SPECIFIC EOI

D A T A BUS FIELD

A O) 0 7 0 6 D 5 D4 0 3 DZ D l DO

0 O ~ O 1 l l O O O 1 o o

Figure 10. Non-specific EOI Command Format

rupt [Rotate-at-EOI (Auto) and Rotate-at-EOI
(Specific)] and one (Set-Priority), is independent
of EOI. OCW2 contains one additional command
which is not directly related t o rotating priority
bu t is sometimes used in conjunction with it:
Specific EOI.

Set-Priority Command

The Set-Priority Command in OCW2 allows the
programmer t o select the bot tom priority device
independently of an EOI; that is, without affecting
the ISR. Figure 1 1 shows the format for the Set-
Priority Command. L2, L1, and LO code (in BCD)
the IR input t o be assigned the lowest priority. The
priority of the remaining inputs are assigned ac-
cordingly. Example 2 illustrates the use of the Set-
Priority Command.

OCWZ SET PRIORITY

, DATA BUS FIELD

A 0 D7 D6 D5 D4 D3 D2 D l DO IR LEVEL TO BE PUT
0 , 1 , l o o O J L Z ' L ~ ~ L O A T LOWEST PRI ORITY

Getting back t o the example, the EOI command - -

L O O 1 0 1 0 1 0 1

for the I R l routine has been executed, resetting L ~ , O o 1 I o o 1 I

the ISR1 bit. 1 ~ 2 0 0 0 0 1 1 1 1

The RET instruction transfers execution back t o
the IR3 routine. IRO-IR2 could now interrupt the
IR3 routine again, since only the IR3 bit in the
ISR is set. No further interrupts occur in the ex-
ample, so the Non-Specific EOI command in the
routine resets the ISR3 bit this time and the RET
instruction causes the main program to resume at
the pre-interrupt location. One important thing t o
remember: the non-specific EOI command should
only be used when in the Fully Nested mode.
Other EOI-type commands are used when in other
modes. Let us discuss those other modes now.

Figure 11. Set-Priority Command Format

BOTTOM PRIORITY IR6CORRESPONDS TO IRZ BEING LEVEL 4. THUS L Z - 1.
L 1 = 1. AND LO-0 IN THF SET PRIORITY COMMAND

BEFORE
PRIORITY INPUT .~~ ~

HIGHEST 5

6

7

0

1

2

3

LOWEST 4

AFTER
INPUT

7

0

1

2

3

4

5

6

Example 2. Set-Priority Example
Rotating Priority Commallds

The Rotating Priority Commands serve in applica-
tions where the interrupting devices are of equal
priority such as conlmunication channels. The
concept underlying rotating priority is that once a
peripheral is serviced, all other equal priority per-
ipherals should be given a chance t o be serviced
before the original peripheral is serviced again.
This can be accomplished by assigning a peripheral
the lowest priority after being serviced. Thus, in
the worst case, the device would have t o wait until
all other devices are serviced before being serviced

Rotate-at-EOI (Auto) Command

This command represents the "general purpose"
implementation of Rotating Priority. When the
Rotate-at-EOI (Auto) command is executed, the
highest priority ISR bit is reset and priorities are
rotated so that the request input of the ISR bit just
reset is assigned the lowest priority. The format for
the Rotate-at-EOI (Auto) command is shown in
Figure 12. Since rotating priority implies that all
peripherals are of equal importance, the service

routines are usually sacrosanct; that is, the EI in-
struction is placed at the end of the routine (after
the EOI) t o ensure that the routine will not be
interrupted. Example 3 shows the effect of execut-
ing a Rotate-at-EOI (Auto) command.

EXAMPLE: WE ARE IN THE IR5 SERVICE ROUTINE AND WISH TO SET IR3 THE
BOTTOM PRIORITY WHEN DONE

IR7
I s n

IRO
PRIORITY

BEFORE ROTATE AT EOI ISPLCIFICI 0 1 0 1 1 0 1 0 1 0 1 0 HIGHEST 5 I
LOWEST 4

ROTATE-AT EOI (SPECIFIC1 L 2 = 0. L 1 = 1. LO-1

I R7
ISR

AFTER ROTATE AT EOl (SPECIFIC) I 0 ' 0 1 1 I 0 I 0) 0

OCWZ ROTATE AT EOI IAUTOI

1 DATA BUS F IELD

Figure 12. Rotate-at-EOl (Auto) Command Format

IR7
ISR

AFTER ROTATE AT EOI IAUTOl
LOWEST 4

EXAMPLF IR4 IS PRESENTLY IN SERVICE WE WANT TO ROTATF IR4 TO BOTTOM
PRIORITY AT EOI

IR7
ISR

IRO
PRIORITY

Example 3. Rotate-at-EOl (Auto)

BEFORE ROTATE AT EOI (AUTO1

Example 4. Rotate-at-EOl (Specific)

0 ' 0 1 0 1 1 1 0 (0 0 1 0

If the rotation of priorities is not desired, the
Specific-EOI command is used.

HIGHEST 0
1

LOWEST 7

Specific-EOI Command

The Specific-EOI command is identical to the
Rotate-at-EOI (Specific) command except that
priorities are not rotated after the ISR bit is reset.
The Specific-EOI command format is shown in
Figure 14.

When using the commands that rotate priorities, it
is possible that the 8259 will not be able to deter-
mine the last level acknowledged (especially if
nesting is allowed). If Rotate-at-EOI (Auto) is the
only command used to reset ISR bits, then there is
no problem. When a number of different com-
mands are used a problem could occur. To prevent
the 8259 from becoming confused. two conlmands
that reset specific ISR bits are provided: the
Rotate-at-EOI (Specific) and the Specific EOI
commands.

OCWZ SPECIFIC EOl

DATA BUS F IELD

A 0 D7 0 6 D 5 D4 0 3 DZ D l DO

ISR BIT TO BE RESET

(0 1 2 3 4 5 6 7

-- i L 0 ' 0 1 0 1 0 1 0 1

L 1 0 0 1 1 0 0 1 1

L Z O 0 0 0 1 1 1 ,

Rotate-at-EOI (Specific) Command

This command ensures that the correct ISR bit is
reset at the end of a service routine because the bit
to be reset is specified in the command itself. Addi-
tionally, the priorities are rotated so that the spe-
cified level is at the bottom. The format for the
Rotate-at-EOI (Specific) command is shown in
Figure 13. Example 4 illustrates this command.

OCW2 ROTATE A T EOI (SPECIFIC]

DATA BUS F IELD

A 0 D 7 0 6 0 5 D4 D3 D2 D l 0 0 ISR BIT TO BE RESET AND IR

0 1 1 : 1 ' 0 1 0 , L 2 1 L 1 L 0 LEVEL TO BE PUT AT LOWEST PRIORITY
0 1 2 3 4 5 5 7

-

L 0 0 1 0 1 0 1 0 1

L 1 l o 0 1 1 0 0 1 1

L 2 0 0 0 0 1 1 1 1

Figure 13. Rotate-at-EOl(Specific) Command Format

Figure 14. Specific EOI Command Format

In summarizing the various commands which reset
ISR bits, some words of caution are appropriate.
If only the Fully Nested mode is used, the Non-
Specific EOI can be used without problems. For
any other mode, it is good practice to use the End-
of-Interrupt commands which specify the ISR bit
to be reset. No additional code is required and the
reassurance of an unconfused 8259 during system
debug is worth the effort. The OCW2 command
words are summarized in Figure 15.

OCW2 COMMAND SUMMARY

ROTATE-AT-EOI (AUTO) 1 RESET HIGHEST ISR BIT 1 O (I O O O O O AND ASSIGN LOWEST PRIORITY 1 RESET ISR SPECIFIED BY L2-LO ROTATE-AT-EOI (SPECIFIC) 0 1 1 1 0 0 L2 L1 LO AND LOWEST

OPERATION

RESET HIGHEST ISR BIT

RESET ISR SPECIFIED BY L2-LO

COMMAND

A0

SET-PRIORITY I 0 1 1 0 0 0 L2 L1 LO I SET L2-LO LOWEST PRIORITY

DATA BUS FIELD

D7 D 6 D5 D4 D 3 D2 D l DO

Figure 15. OCW2 Command Summary

Interrupt Masks IOCWI)

OCWl controls the Interrupt Mask Register (IMR).
Through OCWI, individual bits in the IMR may be
set or reset by the software a t any time. As stated
earlier, the IMR acts only on the o u t p ~ l t of the
Interrupt Request Register (IRR). Even with an IR
input masked, it is still possible to set the IRR bit.
However, no interrupt can be generated from the
request since the IMR blocks the Priority Resolver
from seeing the set IRR bit. If the IMR bit is reset
while the IRR bit is set, the Priority Resolver can
then see the IRR bit and an interrupt could be gen-
erated. After initialization, any command with
AO=l is interpreted as an OCW I , see Figure 16.

NON-SPECIFIC EOI

SPECIFIC EOI

But resetting the ISR bit is irreversible and the
lower priority devices remain enabled until another
interrupt on your level occurred. The effect of the
ISR bit can be temporarily suspended by first
masking the input that is in-service and then setting
the Special Mask Mode. Once SMM is set, it re-
mains in affect until it is reset. The format t o set
and reset SMM is shown in Figure 17. The only
requirements for SMM are that the level corre-
sponding to the routine setting SMM must be
masked through OCWl and that interrupts are
enabled. Example 5 shows how t o enable inter-
rupts over a particular section of code.

0 0 0 1 0 0 0 0 0

0 0 1 1 0 0 L2 L1 LO

DCW3 SPECIAL MASK MODE

I DATA BUS FIELD 1

DCWl INTERRUPT MASK

I DATA BUS FIELD 1

(IR INPUT

1 = MASK SET

0 =MASK RESEl

Figure 16. Interrupt Mask Command Format

Special Mask Mode (OCW3 j

The last Operation Command Word is OCW3. This
word controls two additional modes plus the read-
ing of the various registers. The first mode is the
Special Mask Mode (SMM).

Let us say that you are in a service routine that con-
tains a section of code where you want all inter-
rupts enabled: that is, you want t o allow your lower
priority devices t o generate interrupts. You could
accomplish this by using an EOI command t o reset
the ISR bit corresponding t o the routine we are in.

S1 S2

care
1 1 SET SMM

1 0 RESETSMM

Figure 17. Special Mask Mode Command Formats

: L X A I P L L : I k 4 I S IL-SERVICE A N C W E WISIi TO E h A b L L LOhLk
DHlOilTi INPLTS OVEk A P h I T L C U L A H b t . C l I U h G t C O L E .

;Ikl S t R V I C t R O O T I h E W n l C H i O h T A I h S S F b C I h L MASK MOLE

1 R 4 : L I L Y A B L E INTtRRLPlS

; I 5 1 PART OF itRYlCt R v V i l N L -
; L O W E R P l I n k l l Y I N P U T S r l i n u l t ~ .

01 ;CISABLL I N l l h k L P T S i ' , k CuIIANLS
HVI A . 1 8 " ,hASk l k l
0 b 1 01598 : h i 5 9 PUHT A d = I
H V I A . 4 8 H ; S E T 3UU
D C 1 P 1 5 9 A ; b z 5 Y Y U R T A8.n
i 1 ;LhA6LL I N T L H L U P I S

; 1 H C P A L T d i > t R b I C t R O U T I N E -
;L(iwbk I k I c . i l l i L'IPUTL L1SABLEI.
; H L l i T C L l r l A l h ; ,rni l i 'HIA?'E t-01-

Example 5. Special Mask Mode

Note that SMM applies to all masked levels when instance, the Polled mode is the only way to take
set. If IRI interrupts the IR4 routine in the above advantage of the 8259's prioritizing features. The
example while SMM is set, and thcn masks itself, INT pin of the 8259 is connected to the Interrupt
1R2 and 1R3 are enabled. Request line of the system bus while thc 8259

INTA pin is simply held high. The 8080 card must

Polled Mode (OCW3)

The 8259 also supports the polled interrupt
method of 110 cervicing n~entioned earlier. Rathcr
than having the processor poll the peripherals in
order to find the actual interrupting device, the
processor polls the 8259. This allows the use of all
of the aforementioned priority modes. Addition-
ally, both the polled and vectored interrupt meth-
ods can be uscd within the same program.

Bacically. the polling is irnplemcntcd by allowing
the programmer to initiate a software controlled
interrupt acknowledge through the "P" bit in
OCW3. This interrupt acknowledge behaves exactly
as the first "normal" hardware acknowledge; that
is, the ISR bit of the highest priority input is set.
The 8259 thcn enables a special word onto the
data bus. This word shows whether an interrupt
has occurred and what the highest ISR bit is.

To initiate a poll, interrupts must first be disabled;
either by executing a DI instruction o r from having
an interrupt occur. Then an OCW3 with P= l is sent
to the 8259 using an OUTput command (or a WR
pulse). The next RD pulse (possibly frorn an INput
command) is treated as an interrupt acknowledge,
and the following word is placed o n the data bus:

POLLED WORD

WHERE I - 1 I F INTERRUPT OCCURHtD
AND W2-WO CODE IN BCD THE
HIGHEST PRIORITY ISR BIT SET

Service to the requesting device is achieved by the
software decoding this word and branching to the
appropriate service routine. Every time a poll is to
be performed, the OCW3 must be written before
the RD pulse. If a poll is performed without an
interrupt having occured o r with n o request inputs
in-service. the returned word is 1=0 and LO, L1,
and L3= 1. The forrnat for OCW3 Poll Command is
shown in Figure 18.

To illustrate the Polled mode, consider a system
where t l ~ e 8259 and the 8080 are o n different
cards, and the system bus does not contain a -
line for thc INTA interrupt acknowledge, al-
though interrupt request lines are provided. In this

contain logic t o jam either a CALL o r a RST in-
struction o n the card's data bus in response lo an
interrupt o n the system bus (either an 8359 o n the
processor card o r an 8228 would accomplisll this).
The RST or the CALL vectors the 8080 t o a
polling routirle. The polling routine simply writes
an OCW3 with P=l t o the off-board 8259 port
followed by an input at the same port. Tht. 8259
then releases the above word onto the system data
bus. The polling routine then decodes the returned
word and vectors the 8080 to the appropriate
service routine.

OCW3 POLLED MODE

I DATA BUS FIELD 1

don't
care

P B I T READ HIGHEST PRIORITY ISR BIT

Figure 18. Polled Mode Command Format

This method can be extended to multiple off-board
8259s. Each 8259 is polled and the returned word
indicates whether the selected 8259 is the one
which generated the interrupt. Do not forget that
even though tlle CALL features of the off-board
8259 are not bcing used, each 8259 111ust receive
an initialization sequence. In this case, the stilrting
address specified in the ICWs could be a "fake".

Reading the 8259 Status (OCW3)

The contents of the IRR, the ISR, and the IMR
can be read to update the user information on the
system. The registers are read by issuing the appro-
priate OCW3 and then reading with an INput in-
struction or RD pulse. The OCW3 words for read-
ing the IRR and the ISR are shown in Figurc: 19.

OCW3 READ STATUS

1 DATA BUS FIELD
A O 0 7 0 6 0 5 0 4 0 3 0 2 0 1 DO

0 - 0 0 O 1 , O R1 R Z

don't
care 1 0 READ IRR

1 1 READ ISR

Figure 19. Read Status Command Formats

There is no need to write an OCW3 before every ing a master and two slaves providing a total of 22
status read as long as the status read corresponds levels of interrupt.
with the previous one; i.e., the 8259 "remembers"
whether the ISR or the IRR has been previously Hardware-wise, the master is designated by a

selected by the OCW3. "high" on the $% pin, while the SP pins of the
slaves are grounded. Additionally, the INT output

For reading the IMR, an OUTput instruction (or
WR pulse) is not necessary to precede the INput
instruction (or RD pulse). The 8259 data lines con-
tain the IMR whenever RD is active and AO=l .
Thus an INput instruction to the 8259 Ao=l port
reads the IMR at any time.

A sulnmary of OCW3 command words is shown in
Figure 20.

COMMAND

-

POLL MODE

READ ISR

READ IRR

SET SMM

RESET SMM

OCW3 COMMAND SUMMARY

I DATA BUS FIELD I
A0 1 D7 D 6 D 5 D 4 D 3 D 2 D l D A L

0 - 0 0 0 1 1 0 0

0 - 0 0 0 1 0 1 1

0 - 0 0 0 1 0 1 0

0 - 1 1 0 1 0 0 0

0 - 1 0 0 1 0 0 0

OPERATION

POLL ON NEXT RD
READ ISR O N NEXT R D

READ IRR ON NEXT T D

SET SMM

RESET SMM

Figure 20. OCW3 Command Summary

CASCADING THE 8259

As mentioned earlier, more than one 8259 can be
used to expand the priority interrupt scheme t o up
to 64 levels without additional hardware. In such
cases, one 8259 acts as a master, and the others
serve as slaves. Figure 21 shows a system contain-

pins of the slaves are connected to the IR input
pins of the master. Any IR master pin can be used
to support a slave. The CASO-2 pins for all 8259s
are paralleled. These pins act as outputs when the
8259 is a master and act as inputs for the slaves.
The CASO-2 pins serve as a private 8259 bus to
control which slave has control of the system data
bus when the destination address is issued to the
8080.

INTERRUPT REOUESTS

The sequence of events for a valid interrupt request
on a slave is covered here. The slave IR input
makes an inactive-to-active transition. Assuming
this request is higher priority than other requests
and in-service levels on the slive, the slave's INT
pin is pulled high, signaling the master of the
request. Assuming that this request to the master is
higher priority than other master requests (possibly
from other slaves) and master in-service levels, the
master's INT pin is pulled high, interrupting the
8080. When this interrupt is acknowledged by the
8080, the master places the CALL instruction on
the data bus. The master knows that the original
request was on a slave (from ICW3 that will be
covered shortly) and then puts the interrupted
slave's ID on the CAS lines. This causes the slave to

Figure 21. Cascaded System Diagram

place on the bus its preprogrammed address for
the requesting input during the second and third
INTAs. The appropriate ISR bits for both the
master and slave are set. This completes the intzr-
rupt request.

Several things should become evident from the
above sequence. First, because there are two ISR
bits that are set by an acknowledged slave inter-
rupt, two EOI commands must be issued; one for
the master and one for the slave. And second, each
8259 must have a separate initialization sequence.
This gives each IR input a unique address plus de-
fines how the master and slaves are interconnected.
This interconnection is specified in ICW3. The
master ICW3 tells the ~nas te r which of its IR inputs
are connected to slaves. The slave 1CW3 tells the
slave which IR master input it is connected to. This
1R input is the slave's ID. The format for ICW3 is
shown in Figure 7. Also note that each slave could
receive commands to operate in different modes:
i.c., one slave could be in Rotating Priority while
the other is in Fully Nested mode.

An initialization sequence is illustrated in Example
6. The master's jump table starts at OOH, slave A's
at 20H, and slave B's at 40H; all with 4-byte inter-
vals. The master ICW3 shows that there are slaves
on IK inputs 3 and 6. Slave A ICW3 shows its ID
as 3, indicating that it is the slave connected to the
master IR3. Slave B's ID is 6 and it is connected to
the master IR6. The priority levels are now ar-
ranged as shown.

ICW

D A T A BUS F IELD

-- - - -
A0 D7 D6 D 5 D4 0 3)2 >1 DO HEX - - - - - - -

MASTER lCWl 0 0 0 0 1 0 1 0 0 14

ICW2 1 0 0 0 0 0 0 0 0 00

ICW3 1 0 1 0 0 1 0 0 0 48

S L A V E A lCWl 0 0 0 1 1 0 1 0 0 32

ICW2 1 0 0 0 0 0 0 0 0 00

ICW3 1 0 0 0 0 0 0 1 1 03

S L A V E 6 lCWl 0 0 1 0 1 0 1 0 0 54

ICW2 1 0 0 0 0 0 0 0 0 00

ICW3 1 0 0 0 0 0 1 1 0 06

PRIORITY STRUCTURE
LOWEST HIGHEST

M7 SB7-SBO M5 M4 SAI-SAO M2 M1 MO

Example 6. Cascaded Initialization

Some special housekeeping software in the slave
interrupt service routines is required in order t o
preserve a truly Fully Nested structure. Why?
Notice that if level SA5 (IR5 on slave A) is in-
service (both the Slave A ISR5 bit and the master

ISR3 bit are set) and level SA2 is asserted, then the
priority structure of the slave will assert an inter-
rupt t o the master. But the master's ISR bit for
that level is already set from the SA5 request. This
will prohibit the request from being acknowledged
until the master receives an EOI, thus losing the
true Fully Nested structure since a request on SA2
should interrupt a SA.5 service routine.

To solve this dilemma, the first task upon entering
a service routine of a device connected to a slave is
to mask off the lower priority master IR inputs.
(in this case, M7, M6, M5, and M4). Then issue an
EOI to thc inaster for the input the slave 1s con-
nected to (Specific EOI M3). This enablcs the
master to accept higher priority interrupts from
the slave. The masking process allows any interrupt
request from a higher priority (higher than SA5) t o
be acknowledged and any lower pr ior~ty request
(M7 thru SA6) t o be ignored. If the lower prlority
master inputs were not masked, the master would
acknowledge a request on, for instance M7. since
the M3 ISR bit is reset by the master EOI.

Software must also maintain the information that
level SA5 is the lowest priority slave in-service.
This is because the masks on the lower priority
master inputs must be removed upon completing a
service routine, but only by the lowest in-senrice
slave level. If SA2 is the only in-service level then it
resets the masks. However, in the main example.
the SA2 routine returns t o the SA5 routine. In this
case, SA2 should not reset the masks, but allow
SA5 to reset them just before returning. This can
be accomplished by reading and saving the master
IMR upon entering a slave input service routine
arid then restoring it upon leaving. Figure 2 2 is an
example of how the SA5 service routine should
look. This form should be followed for all service
routines of devices connected t o slave IR inputs.

APPLICATION EXAMPLES

POWER FAILIAUTO-START WITH BATTERY
BACKED-UP RAM

The first application illustrates the 8259 used in
the Fully Nested mode in supporting a battery
back-up scheme for the RAM (Random Access
Memory) in a microcomputer system. Such a
scheme is important in numerical and process con-
trol applications. Tlie entire microcomputer system
could be supported by a battery back-up scheme,
however, due to the large amount of current usu-
ally required and the fact that most machinery is

not supported by an auxiliary power source, only supply was used t o simulate the back-up battery
the state of calculations and variables usually need supplying power to the RAM. The SBC 635 was
to be saved. In t he event of a loss o f power, if these used since it provides an open collector ACLO
items are no t already stored in RAM, they can be ou tpu t which indicates that the AC input line volt-
transferred there and saved using a simple battery age is below 1031206 VAC (RMS).
back-up system.

The following is an example of a power-down and
restart sequence that introduces t he various power
fail signals.

LOC 08- S t y b i l l ' R L t S T R l t K i h l

I i

Figure 22. Sample Slave Service Routine

The vehicle used in this application is the Intela
SBC 80120 Single Board Computer. The SBC
80120 contains an 8259 on-board along with con-
trol lines helpful in implementing the power-down
and <iutomatic restart sequence used in a battery
back-up system. The SBC 80120 also contains user-
selectable jumpers which allow the on-board RAM
t o bc powered b y a supply separate from the sup-
ply used for the non-RAM components. Also, the
ou tpu t of an undedicated latch is available t o be
connected t o the IR inputs of the 8259 (the latch
is cleared via an ou tpu t port). In addition, an un-
dedicated, buffered, input line is provided, along
with an input t o the RAM decoder that will pro-
tect memory when asserted.

The additional circuitry t o be described was con-
structed on an SBC 905 prototyping board. An
SBC 635 Power Supply was used t o power the non-
RAM section of the 80120 while an external DC

1. An AC power failure occurs and the ACLO
goes high (ACLO is pulled up by the battery
supply). This indicates that DC power will be
reliable for a t most 7.5 ms. The power fail
circuitry - generates a Power Fail - Interrupt
(PFI) signal. Thls signal sets the PFI latch,
which is connected to the IRO input of the
8259, and sets the Power Fail Sense (PF-S)
latch. The state of this latch will indicate t o
the processor, upon reset, whether it is com-
ing up from a power failure (warm start) o r if
it is coming up initially (cool start).

2. The processor is interrupted by the 8259
when the PFI latch is set. This pushes the
pre-power-down program counter on to the
stack and calls the service routine for the IRO
input. The IRO service routir.. saves the proc-
essor status and any other needed variables.
The routine should end with a HALT instruc-
tion t o minimize bus transitions.

3 . After a predetermined length of time (5 Ins
in this example) the power fail circuitry gen-
erates a Memory Protect (MPRO) signal. All
processing for the power failure (including the
interrupt response delays) must be completed
within this 5 ms window. The MPRO signal
ensures that spurious transitions on the
system control bus caused by power going
down d o not alter the contents of the the
RAM.

4. DC power goes down.

5. AC power returns. The power-on reset cir-
cuitry on the 80120 generates a system RE-
SET.

-
6. The processor reads the state of the PFS line

t o determine the appropriate start-up se-
quence. Ths PFS latch is cleared, the MPRO
signal is removed, and the PFI latch driving
JRO is cleared by the Power Fail Sense Reset
(PFSR) signal. The system then continues
from the pre-power-down location for a warm
start by restoring the processor status and

popping the pre-power-down program counter
off thc stack.

Figure 23 illustrates this t i~n ing .

Figure 24 shows the block diagrarn for the system.
Notice that the RAM, the RAM decoder, and the
power-down circuitry are powered by the battery
supply.

The schematic of the power-down circuitry and the
SBC 80120 interface is shown in Figure 25. The
design is very straightforward and uses CMOS logic
t o minimize the battery current requirements. The

Cold Start switch is necessary t o ensure that during -
a cold start, the PFS line is indicating "cold start" -
sense (PFS high). Thus, for a cold start , the Cold
Start switch is depressed during power on . After
that, no further action is needed. Notice that the
PFI signal sets the on-board PFI latch. The output
of this latch drives the 8259 IRO input. This latch
is cleared during the restart routine by executing
an OUTput D4 H instruction. The state of the PFS
line Inay be read on the least significant data bus
line (DBO) by executing an INput D4 H instruc-
tion. An 8255 Port (8255 # I , Port C, bit 0) is
used t o control the PFSR line.

POWER DOWN RESTART

ACLO

IRO i

-
MPRO

DC

t--- 7.5 ms min

Figure 23. Power Down - Restart Timing

18

BATTERY SUPPLY
Q

CONTROL
DATA

ADDRESS

BUS
BUS
BUS

Figure 24. SBC 80120 with Power Down

POWER DOWN CIRCUITRY SBC 80120

PC0 PORT A3
Figure 25. Power Down - SBC 80120 Interface

19

