intal

APPLICATION AP-31
NOTE

L
© Intel Corporation, 1977

Related Documents
" Intel 8080 Microcomputer Systems User's Manual™
"SBC £0/20 Single Board Computer Hardware Reference Manual"
"Intel 8080 Microcomputer Peripherals User's Manual”

“Intel Data Catalog"

The material in this Application Note is for informational purposes only and is
subject to change without notice. Intel Corporation has made an effort to verify
that the material in this document is correct. However, Intel Corporation does not
assume any responsibility for errors that may appear in this document.

The following are trademarks of Intel Corporation and may be used only to
describe Intel Products:

ICE MCs

INSITE MEGACHASSIS
INTEL MICROAMP
INTELLEC PROMPT
LIBRARY MANAGER UPI

INTEL CORPORATION ASSUMES NO RESPONSIBILITY FOR THE USE OF ANY CIRCUITRY OTHER THAN CIRCUITRY EMBOOIED IN AN INTELPRODUCI. NO OTHER CIRCUIT PATENT LICENSES ARE IMPLIED.
7 INTEL CORPORATION, 1977

Contents

INTRODUCTION . . .ttt e et e e e 1
CONCEPTS. .« ittt e ettt et 1
8080 INTERRUPTS. 2
8259—-8080 OVERVIEW 3
8259BLOCK DIAGRAM i 4
INPUT CIRCUIT. ..o e 5
. PRIORITY CELL 6
Using The DATABUSBUFFER....................... .. 7
READ/WRITE CONTROL LOGIC............... 7
8259 Programmable . scape BUFFER/COMPARATOR 7
Interrupt Controller PIN DEFINITIONS.
PROGRAMMING THE 8259 8
INITIALIZATION COMMAND WORDS (ICWs). 8
OPERATION COMMAND WORDS (OCWs) 10
Fully NestedMode 10
Rotating Priority Commands. 11
Interrupt Masks (OCW1). 13
Special Mask Mode (OCW3) 13
Polled Mode (OCW3). 14
Reading the 8259 Status (OCW3) 14
CASCADINGTHES8259. i, 15
APPLICATION EXAMPLES. 16
POWER FAIL/AUTO-START WITH BATTERY
BACK-UPRAM. 16
78 LEVEL INTERRUPT SYSTEM 21

INTRODUCTION

The Intel® 8259 is a Programmable Interrupt Con-
troller (PIC) designed for use in real-time, interrupt-
driven microcomputer systems. The 8259 manages
eight levels of interrupts and has built-in features
allowing expandability up to 64 levels with the
addition of other 8259s. A selection of program-
mable priority modes is available to reconfigure
how the 8259 processes interrupt requests. Individ-
ual interrupt inputs may aso be masked under
software control. These modes and masks may be
dynamically changed by the software at any time
during program execution. This means that the
complete interrupt structure can be defined as
required, based on the total system environment.
The 8259 is part of the MCS-80/85 Microcom-
puter Family and as such, it interfaces to the 8080/
8085 system with a minimum of external hard-
ware.

This application note explains the 8259 as a com-
ponent and shows its use in two typical applica-
tions. These applications are an interrupt con-
trolled power-faillauto-start scheme for a micro-
computer system with battery back-up RAM, and
a >04 level interrupt-driven system. The battery
back-up system will be described in detail and the
conceptual software for the >64 level interrupt-
driven system will be presented.

The first section of this application note introduces
the concept of interrupts and reviews how inter-
rupts are handled by the Intel" 8080A Microproc-
essor. It is fairly tutorial in nature, and may be
skipped by the morc knowledgeable reader. The
second section describes the 8259 from a func-
tional standpoint with explanation of the block
diagram. Each device pin isexplained in detail. The
third section defines the various operating modes
along with the specific software required. Short
initialization and setup routines are given to illus-
trate the programming concepts. The fourth, and
final, section describes the applications mentioned
earlier.

CONCEPTS

In microcomputer systems, there is usually a need
for the processor to communicate with various
Input/Output devices such as keyboards, displays,
sensors, and other peripherals. From the system
viewpoint, the processor should spend as little time
as possible servicing the peripherals since the time
required for these 1/O chores directly affects the

amount of time available for other tasks. In other
words, the system should be designed so that /0
servicing has little or no effect on the total system
throughput. There are two basic methods of han-
dling the 1/O chores in asystem: Status Polling and
Interrupt Servicing.

The Status Poll method of 1/O servicing essentially
involves having the processor "ask' each peripheral
if it needs servicing by testing the peripheral's
status line. If the peripheral requires service, the
processor branches to the appropriate service rou-
tine; if not, the processor continues with the main
program. Clearly, there are several problems in
implementing such an approach. First, how often a
peripheral is polled is an important constraint.
Some idea of the *frequency-of-service™ required
by each pcripheral must be known and any soft-
ware written for the system must accommodate
this time dependence by ' scheduling” when a
device is polled. Second, there will obviously be
times when a device is polled that is not recady
for service, wasting the processor time that it took
to do the poll. And other times, a ready device
would have to wait until the processor " makes its
rounds™ before it could be serviced, slowing down
the peripheral.

Other problems arise when certain peripherals are
more important than others. The only way to
implement the "priority” of devicesis to poll the
high priority devices more frequently than lower
priority ones. It may even be necessary to poll the
high priority devices while in a low priority device
service routine. It is easy to see that the Polled
approach can be inefficient both time-wise and
software-wisc. Overall, the Polled method of 1/O
servicing can have a detrimental effect on system
throughput, thus limiting the tasks that could be
performed by the processor.

A morc desirable approach in most systems would
allow the processor to be executing its main pro-
gram and only stop to service the I/O when told
to do so by the I/O itself. In effect, the device
would asynchronously signal the processor when it
required service. The processor would finish its
current instruction and then jump to the service
routine for the device requesting service. Once the
service routine is complete, the processor would
resume exactly where it left off in the main pro-
gram.

This method of 1/0O servicing is called Interrupt.
The status line of the peripheral is replaced by an

“interrupt request™ line. Asserting this line signals
the processor that service is needed. Using inter-
rupts, no processor time is spent testing devices,
scheduling is not needed, and priority schemes are
readily implemented. It is easy to see that, using
the Interrupt approach, system throughput would
increase, allowing more tasks to be handled by the
processor.

There arc two basic methods of implementing the
Interrupt approach: polled interrupts and vectored
interrupts. Conceptually, in the polled interrupt
method, the peripherals’ “interrupt request™ lines
are combinatorially OR’d into one line that inter-
rupts the processor if any peripheral required
service. The processor then polls each peripheral to
determine the requesting device. In this scheme,
the priority of tlie device is determined by its posi-
tion in the polling sequence. Once the requesting
device is found, the processor branches to the
corresponding service routine. In contrast, vectorcd
interrupts are those in which the requesting device
supplies information which allows the processor to
directly call the appropriate service routine. This
method usually requires more hardware than the
polled method. However. it alows much faster
response to an interrupt since the polling time is
eliminated. In simple vectored interrupt systems,
all devices have the same priority. This is some-
times a limitation since the speed of the vectored
method may be needed, while the prioritization of
the polled method is also required; a flexible inter-
rupt structure would have both.

In order to implement a truly flexible priority-
vectorcd interrupt structure, a Programmable Inter-
rupt Controller (PIC), such as the 8259, may be
used. The 8259 functions as the overall manager of
the interrupt-driven system and can implement
both the polled and vectored interrupt structures.
In the vectored structure it accepts interrupt
requests from the peripherals, determines which
of the incoming requests is the highest priority,
ascertains whether the highest priority incoming
request has higher priority than the interrupt level
currently being serviced (if any) and then issues an
interrupt to the processor based on the determina-
tion. Since each peripheral usually has a unique
service routine associated with it, the PIC, after
interrupting the processor, provides a **vectored"
CALL instruction to point the processor directly
to the servicc routine required by the interrupting

device. In the polled structure, the same request
priority determination is made, however software

polls the 8259 rather than the peripherals. When
polled, the 8259 returns a data word indicating
the highest priority peripheral requesting service.
The software then uses this data word to branch
to the appropriate service routine.

A variety of priority modes is a desirable feature
of a PIC. Many options are conceivable; however,
let's describe a few which are available with the
8259 and will be mentioned |ater.

Fully Nested — Each input is assigned a priority.
Interrupt Request input IR7 receives the lowest
priority while IRO receives the highest. A higher
priority request will interrupt a lower priority
service routine, but not vice versa. The lower pri-
ority service routine will be resumed upon com-
pletion of the higher priority routine. This is
essentially a' general purpose' mode.

Rotating Riarity — Like in the Fully Nested
mode, each input is assigned a priority. How-
ever, when an interrupt occurs and the appro-
priatc service routine is executed, the priorities
are rotated so that the most recently serviced
input has the lowest priority. Thus, if there are
N inputs, a serviced peripheral will haveto wait,
in the worst case, until the other N-1 peri-
pheralsare serviced before receiving service again.
This mode prevents ""hogging™ of the processor
by a single peripheral and gives each input an
equal chance at the processor.

Specific Priority — This mode is similiar to the
Rotating mode. The only difference is that the
software can select the bottom priority input
without an interrupt having to have occurred.
Thus, the priority assignments may be changed
at any time depending on the needsof the main
program or the service routine.

In the 8259, these modes are programmable;
that is, they may be changed dynamically under
software control. Additionally, each mode may be
modified by the use of interrupt masks. These
masks allow individual inputs to be masked off;
1.e., not be able to cause an interrupt regardless of
its priority. Each mask is under software control.

Before we discuss how the 8259 handles interrupts,
let's digress slightly to review how the 8080 itself
handles interrupt requests.

8080 INTERRUPTS

A peripheral device can initiate an interrupt to the
8080 by simply pulling the 8080's Interrupt pin

(INT) high. The INT line is asynchronous, there-
fore an interrupt request may be asserted at any
time. The 8080 can, however, enable and disabic
interrupts under software control by use of the
Enable Interrupt (El) and Disable Interrupt (DI)
instructions. These instructions either set (El) or
reset (DI) an internal interrupt enable flip-flop.
The output of this flip-flop is made available on
the INTE (Interrupt Enabled) pin. Interrupts are
disabled (INTE low) upon resetting the 8080.

At the end of each instruction cycle, thc 8080
examines the state of the INT pin and the INTE
flip-flop. If interrupts are enabled and an interrupt
request is being made (both pins high), the 8080
enters an INTERRUPT machine cycle. During the
INTERRUPT cycle, the 8080 resets the interrupt
enable flip-flop (INTE goes low disabling response
to further interrupts) and issues an Interrupt
Acknowledge (INTA), by way of the System Con-
troller 8228, to tell the interrupting device that it
has the 8080's attention and may remove the INT
assertion. In addition, the Program Counter (PC)
is not incremented as it normally would be in
normal machine cycles. This ensures that the 8080
can return to the pre-interrupt program location if
the PC issaved. At this point, the 8080 expects the
interrupting device to place an instruction on the
data bus. The 8080 is, in effect, saying ' Okay,
now you have my attention. You are granted one
wish. What will it be?" Any instruction may be
used, but there are only two logical choices: a
RESTART (RST) or a CALL. The reason one of
these two should be used is that both put the
program counter on the stack, allowing it to be
restored after the interrupt service routine is
complete.

When a CALL instruction is placed on the data
bus in response to the Interrupt Acknowledge
(INTA), the 8080 saves the program counter by
pushing it onto the stack and then issues two addi-
tional INTAs by way of the 8228. In response, the
interrupting device is expected to return two bytes
which are the starting address of its service routine.
The lower 8 bits of the address (L SB) arereleased at
the first INTA and the higher 8-bits (MSB) are
released at the second TNTA. Execution then starts
at this destination address. Using a CALL instruc-
tion in response to an interrupt is an extremely
powerful tool in I/O servicing. However, a signifi-
cant amount of hardware is usually required in
order to ensure that the correct sequence of data
is placed on the data bus. For systems not having
a large number of peripherals, a special CALL in-

struction is provided in the 8080 instruction Set.

The RESTART (RST) instructions are actually
special one-byte calls which have the destination
address embedded within the 8-bit opcode. Execu-
ting an RST causes execution to be transferred
(vectored) to one of eight fixed memory locations,
see Figure 1. Any of these addresses may be used
to store the first instructions of an interrupt ser-
vice routine. In simple systems, the desired RST
instruction can be generated by a simple 8-bit
buffer external to the interrupting device. Since
the RST instructions are calls, the old program
counter contents are placed on the stack.

RST HEX DESTINATION
OP CODE ADDRESS
RST 0 Cc7 00 H
RST 1 Cr 08 H
RST 2 D7 10H
RST 3 DF 18 H
RST 4 E7 20H
RST 5 EF 28 H
RST 6 F7 30H
RST 7 FF 38H

Figure 1. RST Instruction Format

Return to the main program from an interrupt
service routine is identical for both the CALL and
the RST instructions. Assuming an equal number
of pushes and pops from the stack during the
service routine, the pre-interrupt program counter
is on top of the stack at the end of the routine.
Executing a RETURN (RET) instruction pops the
top of the stack into the program counter, causing
the main program to take up whcrc it left off
before receiving the interrupt. It is the service
routine's responsibility to save and restore the pro-
cessor registers and status as appropriate. Remem-
ber that interrupts are disabled after an Interrupt
Acknowledge so an EIl instruction must be exe-
cuted in the service routine in order for the 8080
to respond to further interrupt requests.

8259—- 8080 OVERVIEW

Figure 2 shows the 8259— 8080 system bus inter-
face. It is recommended that an 8228 (or 8238)

System Controller and Bus Driver be used in con-
junction with the 8080 when an 8259 is used
to manage interrupts. This combination ensures
that the 3 required INTA pulses occur in response
to an interrupt. Using the 8212 1/O Port as an 8080
status latch does not provide the necessary INTA
sequence.

The normal sequence of events that occur when an
interrupt request is asserted is as follows:

1. One or more Interrupt Request lines (IRO—
IR7) is raised high signaling the 8259 that
peripheral serviceis being requested.

2. The 8259 accepts the requests, resolves the
priorities, and sends an INT to the 8080.

3. The 8080 suspends the program flow at the
end of the current instruction (INTE must be
high), and issues an INTA by way of the
8228.

4. Upon receiving the INTA, the 8259 places a
CALL instruction onto the data bus.

5. This CALL causes the 8080 to issue two addi-
tional INTAs by way of the 8228.

6. These additional INTAs allow the 8259 to
release the address for the service routine of
the interrupting peripheral onto the bus.

7. This completes the 3-byte CALL. Execution
is vectored to the peripheral's service routine.

S ADDRESS BUS (16) j

|

CONTRQL BUS

.
i7oR |ifow | Nt Jrﬁz\

{ DATA BUS (8))

gl

S A, D,0, RD WR INT INTA
«—fcas0
CASCADE cas 1 8250

LINES

«—]CAS2 IRQ IRQ IRQ IRQ IRQ IRQ (RQ IRQ
3P 7 6 5 4 3 2 1 0

RERRRNN)

SLAVE | —

PRAG INTERRUPT
REOUESTS

Figure 2. 8259 Interface to 8080 Standard System Bus

8259 BLOCK DIAGRAM

A block diagram of the 8259 isshown in Figure 3.
As can be seen from the figure, the 8259 consists
of eight major blocks: the Interrupt Request
Register (IRR), the In-Service Register (ISR). the
Interrupt Mask Register (IMR), the Priority Re-
solver (PR). the Cascade Buffer/Comparator, the
Data Bus Buffer. and logic blocks for Control and
Read/Write. Well go quickly over the individual
blocks directly related to interrupt handling; the
IRR, ISR, IMR. PR, and the Control logic. Then.
by way of a conceptual diagram, we show how
these various blocks interact. The remaining func-
tionial blocks are then discussed.

PIN CONFIGURATION

g ~ = Vee
WR [2 27 [d A
Ro[]3 26 [1INTA
0,4 25 [m7
Dg[] 5 24 []1R6
o, (s 23[1IR5
o, 7 22[1IR4
4 8259 8
o, s 21{]IR3
o, 20 [I1R2
0,0 19 [JIR1
D, [] 11 18 [JiR0
caso [12 17 [JINT
cas113 16 [Jsp
GNe [14 15 [CAS 2
PIN NAMES
D,-D, DATA BUS (BI-DIRECTIONAL|
RD READ INPUT
| WR WRITE INPUT ___
Ag COMMAND SELECT ADDRESS
cs CHIP SELECT
CAS1-CAS0 CASCADE LINES
5P SLAVE PROGRAM INPUT
INT INTERRUPT OUTPUT H
INTA INTERRWPT ACKNOWLEDGE INPUT
I1RD-IR7 INTERRUPT REQUEST INPUTS

BLOCK DIAGRAM

S

DATA CQNTROL LOGIC
o0, (T >
NV BUFFER TV
w0 v |«~—1Ro
R READ/ ‘ | P
WR ‘—q
WRITE |- IN- INTERRUPT A2
LOGIC SERVICE PRIQRITY REQUEST [+—(R3
Aq] REG RESOLVER REG |+ R4
(1SR) (IRR) RS
N D
es — ‘ j«—R7
CASO == INTERRUPT MASK REG
CASCADE {IMR)
CAS1 =—-—»] BUFFER}
COMPARATOR
CAS 2 «——>

sp

_? '\J ™ \INTERNAL BUS

Figure 3. Block Diagram and Pin Configuration

Basically, interrupt requests are handled by three
" cascaded" registers. The Interrupt Request Regis-
ter (IRR) is used to store al the interrupt levels
requesting service; the In-Service Register (ISR)
stores all the levels which are being serviced; and
the Interrupt Mask Register (IMR) stores the bits
of the interrupt lines to be masked. The Priority
Resolver (PR) looks at the IRR, ISR, and IMR and
determines whether an INT should be issued by the
Control logic to the 8080.

Figure 4 shows conceptually how the Interrupt
Request (IR) input is handled and how the various
registers interact. The figure represents one of eight
"daisy-chained” priority cells; one for each IR
input. The input circuitry is rather novel so it is
discussed first.

INPUT CIRCUIT

There are two classical ways of sensing an active
interrupt request: a level sensitive or an edge sensi-
tive input. A level sensitive input requires the
request input go to the active state and remain
active until that interrupt is acknowledged. This

structure is quite common and allows WIRE-OR’ed
interrupt requests (the actual interrupting device
must be determined via software as mentioned
before). But (watch out!) the request must be
removed shortly after acknowledgement or an-
other, unwanted, interrupt could be generated.

The edge sensitive input requires only an inactive
to active transition of the request input. This tran-
sition is saved in a flip-flop, so the active level need
be maintained only long enough to serve as a clock
pulse to the flip-flop. The level may remain active
an arbitrarily long time without danger of gener-
ating an unwanted interrupt. It must ultimately
return inactive before another active transition can
be sensed. This structure is handy for handling
interrupts from transient events, however it pre-
vents WIRE-OR’ing since this connection does not
provide the transitions needed. Be careful of edge
inputs; noise on the request line could generate an
erroneous interrupt.

The 8259 uses an edge lockout input which shares
some characteristics with each of the above two
techniques. The edge lockout input requires that a
request transition from the inactive to the active

TO OTHER PRIORTY CELLS

{ CLR 1SR

EDGE
SENSE
LATCH

CLR

|

CTLR
Q ISR BIT

SET
1 PRIORITY

SET ISR RESOLVER

CONTROL
LOGIC

iN-SERVICE
LATCH

a
SET REQUEST
LATCH
O Q —

IR
| |

NON-
MASKED
REQ

INTA 4
LI LT L ‘ ¢

READ
REQUEST
WRIT MAS<

MASTER CLR-~

INTERNAL
DATA BUS

NOTES

EAD ASK-—

1. MASTER CLEAR ACTIVE ONLY DURING ICW1
2. FREEZE/IS ACTIVE DURING INTAI AND POLL SEOUENCES ONLY

3. TRUTHTABLE FOR D-LATCH
%AAQEERAIEQN
| FOLLOW

c D a
) Di D
o | x | an-1 HOLD

Figure 4 Priority Cell

state (as in edge sensitive) and then remain active
(as in level sensitive) until the request is acknowl-
edged. The inactive-to-active transition locks out
al further requests on that input until the request
has been acknowledged and theinput hasreturned
to theinactive state. Thus, the user need not worry
about quickly removing the request after acknowl-
edgement, in fear of generating a second interrupt.
Figure 5 illustratesthe timing required for the edge
lockout input.

PRIORITY CELL

Refer back to Figure 4 and follow an interrupt
request thru the priority cell. First, notice that an
inactive IR input sets the edge sense latch, arming
that input. Then, an active IR input combinatori-
ally propagates the request (assuming the input is
not masked) to the Priority Resolver. The PR looks
at the incoming requests and the currently in-
service interrupts to ascertain whether an interrupt
should be issued to the 8080. Assume for clarity
that the request is the only one incoming and no
requests are presently in service. The PR then
causes the Control logic to pull the INT line to the
8080 high, interrupting the processor. When the
8080 is finished with the instruction being exe-
cuted, it signals the 8228 to return an INTA. This
INTA causes the 8259 to place a CALL instruction
on the data bus and to freeze the IRR (note the
INTA-Freeze Request timing diagram). Thus. the

requesting IR input must remain active at least
until after the first INTA. With the input frozen
and latched, the priority is again resolved by the
PR, this time to determine the appropriate destina-
tion address for the CALL. The CALL instruction
causes the 8080 to generate two additional INTAs.
During these INTAs the destination address of the
interrupt service routine is placed on the data bus
by the 8259. (Don't worry for now about where
the address comes from.) Immediately after the
INTA sequence, the PR then sets the correspond-
ing bit in the ISR and simultaneously clears the
edge sense latch, which clears the IRR bit. Notice
the state of the edge sense latch (don't forget that
the IR input may still be active). With the edge
sense latch cleared, the still active IR input can not
propagate thru the gate at the IRR input, thus
further requests from this level are inhibited. The
IR input must return to the inactive state, setting
the edge sense latch and " opening' the IRR gate,
before another request on the input can be recog-
nized.

While off in the interrupt service routine, don't
forget that the ISR bit is set. This prevents subse-
guent requests from this, and lower priority levels,
from causing interrupts. It is the service routine's
responsibility to clear the ISR bit with an End-of-
Interrupt (EOI) command at the end of the service
routine, telling the 8259 that it iscomplete. (How
this is done is explained when 8259 programming
iscovered.)

N/

/

INTA 1

LATCH EARLI__
ARMED CAN BE
REMOVED

2

NN\

IR

7

SERLICE LATCH

ROUTINE ARMED

Figure5. Edge Lockout Timing

What would have happened if the input had been
masked; i.e., the Interrupt Mask Register bit was
set? Nothing. The active state of the IR input
would propagate thru the IRR but the set IMR bit
would stop it before entering the PR. Thus, no
interrupt could be generated. The IMR only acts
on the output of the IRR, however, and if the pro-
gram being executed somehow resets the IMR bit,
the PR would then see our active request and an
interrupt would be generated if appropriate.

Now that the functional blocks directly related to
interrupt request processing have been discussed,
let us discuss the remaining blocks.

DATA BUSBUFFER

This 3-state, bidirectional, 8-bit buffer is used to
interface the 8259 to the 8080 system data bus.
Conlrol words, status information, and the destina-
tion addresses are transferred through the Data Bus
Buffer.

READ/WRITE CONTROL LOGIC

The function of this block is to control the pro-
gramming of the 8259 by accepting OUTput com-
mands from the 8080. The Initialization and Oper-
ation Command Word Registers which store the
various control formats are located in this block.
Status reads are also controlled by this block using
8080 INput commands.

CASCADE BUFFER/COMPARATOR

As alluded to earlier, multiple 8259s can be com-
bined to expand the number of interrupt levels. A
master-with-slaves relationship of cascaded 8259sis
used for the expansion. The cascading of 8259s
will be the subject of a complete section later in
this note.

PIN DEFINITIONS

Name (pin) I/O Definition

Vee (28) | +5volt supply

GND (14) | Ground

CS (1) | Chip Select. A low on this pin
enables communication be-
tween the. CPU and the PIC.

WR (2) | A low on this input when CS

is low enables the PIC to ac-
cept command words from the
CPU.

Name (pin)

I/0

Definition

RD (3)

DB; DBy
(4-11)

CASy-CAS»
(12,13,15)

SP (16)

INT (17)

IRp—IR7

(18— 25)

INTA (26)

Ao (27)

1/0

A low on thisinput causes the
PIC to output itsstatuson the
data bus when CS islow.

The DB pins form a 3-state,
bidirectional data bus which
is connected to the CPU group
(8080, 8224, 8228) data bus.
Control and status informa-
tion are transferred over this
bus.

[/O Cascade Lines. The CAS pins

form a private 8259 bus to
control multiple 8259s. These
pins are outputs for a master
8259 and are inputsfor aslave
8259.

Jave Program. The state of
this pin defines whether the
8259 is a master (SP=1) or a
save (SP=0). SP controls the
1/O direction of the CAS pins.

Interrupt. This pin goes high
whenever a valid interrupt re-
quest is asserted. INT is con-
nected to the interrupt pin of
the CPU.

Interrupt Request. Interrupt
requests are asserted by the
peripherals. A request is made
by pulling one of the IR pins
high.

Interrupt Acknowledge. This
pin is connected to the CPU
group interrupt acknowledge
output. Three low pulses on
this pin causes the 8259 to
place a CALL instruction and
a destination address on the
DB pins. (One byte for each
INTA pulse.)

This pin acts in conjunction
with the CS, WR, and RD pins
when Command Words are
written and status is read from
the 8259. It is typically con-
nected to the CPU Ag address
line.

PROGRAMMING THE 8259

As the name implies, the 8259 is programmable;
operation is controlled viasoftware thru command
words. There are two types of command words
used for the 8259: Initialization Command Words
(ICWs) and Operation Command Words (OCWs).

INITIALIZATION COMMAND WORDS (ICWSs)

Before normal operation begins (i.e., after a system
power-up), each 8259 in the system must be initial-
ized by two or three ICWs. The ICWs tell each
8259:

1. If there are other 8259s in the system, and
how they are connected.

2. The starting address of the service routines.

3. Whether the service routines are spaced 4 or 8
bytes apart.

Issuing an ICWI starts the 8259 initialization
sequence. Once started, the initialization sequence
must be completed before the 8259 can process
interrupt requests. This applies to each 8259 in a
multiple 8259 system. During the initialization
sequence, the following occur automatically:

1. Each edge sense circuit is reset. Thus an IR
input must make an inactive to active transi-
tion, after initialization, to generate an inter-
rupt.

2. The Interrupt Mask Register is reset (no IR
inputs masked).

3. IR7 is assigned priority level 7

4. The Status Read and Special Mask mode flip-
flops (explained later) are reset.

Each IR input has an address in memory associated
with it. It is this address that is placed on the bus
by the 8259 in response to the INTA pulses after
the CALL is placed on the data bus. The addresses
for all eight IR inputs are formatted in equally
spaced intervals of either 4 or 8 bytes. If the ser-
vice routine for adeviceisshort, it may be possible
to fit the entire routine within an 8-byte interval.
Usually, however, the service routines require more
than 8 bytes and the 4-byte interval is used to store
aJump (JMP) instruction whichdirects the8080to
the appropriate routine. The 8-byte interval main-
tains compatibility with current 8080 RESTART
instructions software, while the 4-byte interval is
best for a compact Jump table. For each 8259, the
starting address for this 32 or 64-byte page is pro-
grammable during initialization and can belocated

anywhere in the memory map, starting on an even
page boundary. To form the 16 bits needed for
each address, address bits Ajs—Ag are user sup-
plied in the ICWs and bits As—Ag are inserted by
the 8259. As’s generation depends upon whether 4
or 8-byte intervals are programmed. For 4-byte
intervals, you program As in ICWI. The 8259 sup-
plies As for the 8-byte interval selection. Figure 6
shows how the address is developed for each IR
input.

4 BYTE INTERVAL— 8-BYTE INTERVAL—

REQUEST A15—-A5 SUPPLIED IN A15—A6 SUPPLIED IN
INPUT ICWI AND ICW2 ICWI AND ICW2
A4 A3 A2 Al AD A5 A4 A3 A2 Al AD
IRO 0 0 0 —[0 0 0

IR1
IR2
IR3
R4
IR5
IR6
iR?7

b PP PR OOOO®
kP OO R P O
» or O R OR
© oo o oo o
© 0o 0o oo o g,
b kP PR OOOO
4 4 @0 = » O o

o

o

<

i

i
oo oo oooo

Figure 6. Address Development

The formats for ICW1 and ICW2 are shown in Fig-
ure 7. The 8259 interprets any command with
Ap=0, Dg=0, and Dy=1 as an ICWI. Note that
address bit Ag is used as an additional control
input for all command words. Bits F and S are the
only yet undefined bits. Bit F (Format) determines
the CALL address interval. If F=1, then addresses
are in 4-byte intervals; if F=0, then the interval is
8 bytes. Bit S (Single) indicates if there is more
than one 8259 in the system. If S=1, thereisonly
a single 8259; S=O means multiple 8259s. ICW2
simply supplies the MSB of the address used as the
start of the service routine page and is sent with
Ag=1.

If the system contains multiple 8259s (ICWI bit
S=0), an additional ICW is needed: ICW3. This
word controls the master-slave relationship to
ensure the correct 8259 places the service routine
address on the bus. Multiple 8259 systems in gen-
eral, and ICW3 in particular, are discussed in an-
other section.

1 =SINGLE
0 = NOT SINGLE

CALL ADORESS INTERVAL
1= INTERVAL IS 4
0 = INTERVAL IS 8

A; g OF LOWER
ROUTINE ADDRESS

UPPER ROUTINE
ADDRESS

1= IR INPUT HAS A SLAVE
0 = IR INPUT DOES NOT HAVE
A SLAVE

A% 0 Dg Dy D, Dy D, D D
o (A | A |a | 1] o F | s |o
Icwz
A% D O 4 DO, D0 D, D D
Tl A | Ara [A [Ag [A | Ag | A | A
ICW3 (MASTER DEVICE)
Ay Dy Dg Dy O Dy D, D D
1 S50 S | S [S| S |8 |8 So
ICW3 (SLAVE DEVICE)
A, D, D 4 ©O D, D, D D,
1ol o] o] o o |m,|m|in
- r T -
| I I I {
X X X X X
|] | [
DON'T
CARE

SLAVE IDI1!
0|1[2]|3|4]|5(|6]7
oj1jojr1]|ofr]|o]
ojofr11jof0f1|1
olojofoj1fv|1]1

NOTE 1. SLAVE ID ISEQUALTOTHE CORRESPONDING MASTER iR INPUT.

Figure 7. Initialization Command Word Format

Figure 8 shows the flow required for initialization.
ICW1 isissued first, initiating the sequence. ICW2
must follow as the next command. With a single
8259, no ICW3 isrequired and the 8259 isready to
process interrupt requests immediately following
ICW2. In order to ensure the integrity of any
initialization or command sequence, interrupts
must be disabled (by executing a DI instruction)
over the initialization section of code. (Don't for-
get that interrupts are disabled automatically after
the 8080 is reset.) Two typical initialization se-
guences are shown in Example 1.

SINGLE
82597
{S=1)

READY TO ACCEPT REQUEST
IN FULLY NESTED MODE

Figure 8. Initialization Flow

LOC GBY SkL SOURCE STATEMENT

JINITIALIZATION EXAMELES

1
3
4
5
¥OCA 6 PISSL kU aDAL
VULE 7 PTSSD EQU ouBH

8 -

9

10

JEXPMPLE: IN A 5INGLE 825% SYSTEM, THE 8259 1S INITIALIZED
; FOR A 4-BY1t INLERVAL JUMP TABLE STARTING AT 396BH

Buvo 3 14 INTSY1: 01 ;CISABLE INTERRLPTS FOR CCHMANCS
00gl 376 15 Myl A,768 ;F=1,5=1, A6 & A5=1

@¢p3 D3DA 16 olr PT59A 78259 PGRT AD=9 ICh]

VBU5 3F3Y 17 MV1 A, 390 ;M5B UALL ADDKESS BYTE

Vb7 CIDE 18 GUT PT598 ;8259 PORT AD=l IUW2

B89 Fa 19 1 JENABLE [NTERKUPTS

<d $INITIALLIZATION CUMPLLETE

28 GEXAMPLE: wk WANT T IMITATE THt RST INSTRUCTIONS

5
0UBA F3 27 INT392: L1 7DISABLE INTERKUFTS FOR COMMANDS
9vP3 3EBZ 28 MV1 A, 824 iF=1,5=1,A7-A5-=8
484U CILA 29 QUT BT59A ;8259 POP? A#=@ ICWl
bee: 3Lup 30 VL A, BOH ;M53 CALL ADDKESS BYTE
481l D3De 3 Gul PTS9B ;8259 PORT AR=1 1(W2
bl PB EN EI ;ENABLE INTERRLFTS
33 ; INITTALIZATION COMPLETE

39 END

Example 1. Initialization Sequences

Once initialized, the 8259 is controlled using Opecr-
ation Command Words. These words control the
changing of priority modes, interrupt masks, and
perform the End-of-Interrupt housekeeping.

OPERATION COMMAND WORDS (OCWSs)

After initialization, the 8259 is ready to accept
interrupt requests on the IR inputs. However,
during operation, the 8259 can be commanded to
operate in a variety of priority modes through the
Operation Command Words (OCWSs). The various
modes and their associated OCWSs are described
below.

Fully Nested Mode

The 8259 handles requests in the Fully Nested
mode without any OCW being written. In this
mode, the IR inputs are assigned priorities such
that IRO has the highest priority while 1R7 has the
lowest. When an interrupt is acknowledged, the
highest priority request is determined and its
address vector is placed on the data bus. In addi-
tion, the corresponding bit in the ISR is set. This
bit remains set until an End-of-Interrupt command
is received by the 8259 from the service routine.
While the ISR bit is set, all further requests of the
same and lower priority are inhibited from gener-
ating an interrupt to the 8080. Higher priority

requests can generate an interrupt. However, these
interrupts are only acknowledged if the 8080 has
enabled interrupts, by executing an El instruction,
since the preceding interrupt. Figure 9 illustrates
this point.

MAIN PROGRAM

-~ :

INTERRUPT IR3 SERVICE

ROUTINE

)
IR1
INTER-
RUPT

IR1SERVICE
ROUTINE

it

my

i
i

EQI

m
<)

!

E

t—r RET

Figure 9. Fully Nested Example

-

UL
i
L L

m
-

___{ R

During the main program, IR3 makes a request.
Since interrupts are enabled, the 8080 is vectored
to the IR3 service routine. During the IR3 routine,
IR! asserts a request. Since IR1 has higher priority
than 1IR3, an interrupt is generated. Because the
8080 disabled interrupts in response to the IR3in-
terrupt, the IR1 interrupt is not acknowledged
until an El instruction is executed. Thus the IR3
routine has a ' protected” section of code over
which no interrupts are allowed. The IR1 routine
has no such ** protected' section since an EI instruc-
tion is the first onein its service routine.

What is happening to the ISR register? Whilein the
main program, no ISR bits are set since no inter-
rupts are in-service. When the 1R3 interrupt is
acknowledged, the ISR3 bit is set. When the IR1
interrupt is acknowledged, both the ISR1 and the
ISR3 bits are set, indicating that neither routineis
complete. At this time, only IRO could generate an

interrupt since it is the only higher priority input
from those presently in-service.

To terminate the IR1 routine, the routine must
infonn the 8259 that it is complete by resetting its
ISR bit. It does this by executing the EOl com-
mand. The format for this command is shown in
Figure 10. Note that the format is independent of
the interrupt level and is thus called a Non-Specific
EOI. The command simply resets the highest pri-
ority ISR bit which is set. This is necessarily the
correct bit since, in the Fully Nested mode, the
highest ISR bit corresponds to the last level
acknowledged; which must have been a higher
priority than other in-service levels in order to
generate the interrupt in the first place.

OCWZ NON SPECIFIC EOI

‘ DATA BUS FIELD ‘

A0|D7 D6 D5 D4 03 D2 D1 DO
T H T T

[0 0olo7tioToJo olo]

Figure 10. Non-specific EOl Command Format

Getting back to the example, the EOl command
for the IR1 routine has been executed, resetting
the ISR1 bit.

The RET instruction transfers execution back to
the IR3 routine. IRO—1R2 could now interrupt the
IR3 routine again, since only the IR3 bit in the
ISR is set. No further interrupts occur in the ex-
ample, so the Non-Specific EOl command in the
routine resets the ISR3 bit this time and the RET
instruction causes the main program to resume at
the pre-interrupt location. One important thing to
remember: the non-specific EOl command should
only be used when in the Fully Nested mode.
Other EOI-type commands are used when in other
modes. Let us discuss those other modes now.

Rotating Priority Commands

The Rotating Priority Commands serve in applica-
tions where the interrupting devices are of equal
priority such as communication channels. The
concept underlying rotating priority is that oncea
peripheral is serviced, all other equal priority per-
ipherals should be given a chance to be serviced
before the original peripheral is serviced again.
This can be accomplished by assigning a peripheral
the lowest priority after being serviced. Thus, in
the worst case, the device would have to wait until
al other devices are serviced before being serviced

again. OCW2 contains three commands which sup-
port rotating priority: two involve End-of-Inter-
rupt [Rotate-at-EOI (Auto) and Rotate-at-EOI
(Specific)] and one (Set-Priority), is independent
of EOlI. OCW?2 contains one additional command
which is not directly related to rotating priority
but is sometimes used in conjunction with it:
Specific EOI.

Set-Priority Command

The Set-Priority Command in OCW?2 allows the
programmer to select the bottom priority device
independently of an EOI; that is, without affecting
the ISR. Figure 11 shows the format for the Set-
Priority Command. L2, L1, and LO code (in BCD)
the IR input to be assigned the lowest priority. The
priority of the remaining inputs are assigned ac-
cordingly. Example 2 illustrates the use of the Set-
Priority Command.

OCWZ SET PRIORITY
DATA BUS FIELD
A0' D7 D6 D5 D4 D3 D2 DI Do |
[o. 1,170 0] 0]zlalo]
I

N —

VR LEVEL TO BE PUT
AT LOWEST PRIORITY
2 3 4 5

~

wlo
L1 0
2le

O o 4
N
ka0 ®

0 0 1
1 10 0
0 0 1 1

(RPN

Figure 11. Set-Priority Command Format

EXAMPLE: STARTING WITH ANY PRIORITY STRUCTURE, ASSIGN IR2 PRIORITY LEVEL 4

BOTTOM PRIORITY 1R6 CORRESPONDS TO IR2 BEING LEVEL 4, THUS L2 =1,
L1=1,AND LO=0IN THF SET PRIORITY COMMAND

BEFORE AFTER
PRIORITY INPUT INPUT

HIGHEST 5 7

AWM RO NO
o s w NP O

LOWEST

Example 2. Set-Priority Example

Rotate-at-EOQI (Auto) Command

This command represents the '"general purpose™
implementation of Rotating Priority. When the
Rotate-at-EOI (Auto) command is executed, the
highest priority ISR bit is reset and priorities are
rotated so that the request input of the ISR bit just
reset is assigned the lowest priority. The format for
the Rotate-at-EOI (Auto) command is shown in
Figure 12. Since rotating priority implies that all
peripherals are of equal importance, the service

routines are usually sacrosanct; that is, the El in-
struction is placed at the end of the routine (after
the EOI) to ensure that the routine will not be
interrupted. Example 3 shows the effect of execut-
ing a Rotate-at-EOI (Auto) command.

OCWZ ROTATE AT EOI {AUTO)
/ DATA BUS FIELD
A0 D7 D6 D5 D4 D3 D2 D1 DO.

[0+ o 1o olololo]

Figure 12. Rotate-at-EOl (Auto) Command Format

EXAMPLF IR4 IS PRESENTLY IN SERVICE WE WANT TO ROTATF 'R4 TO BOTTOM
PRIORITY AT EOI

. ISR - PRIORITY
. T HIGHEST 0
BEFORE ROTATE ATEOI (AUTO) [0 0 (0] 1]0l0 g0 1
LOWEST 7
IRT - B HiGHEST 5
AFTER ROTATE ATEOI(AUTO] [0 0] o0lo]o 0 o0]0] v
LOWEST 4

Example 3. Rotate-at-EOl (Auto)

When using the commands that rotate priorities, it
is possible that the 8259 will not be able to deter-
mine the last level acknowledged (especialy if
nesting is allowed). If Rotate-at-EOI (Auto) is the
only command used to reset ISR bits, then thereis
no problem. When a number of different com-
mands are used a problem could occur. To prevent
the 8259 from becoming confused. two commands
that reset specific ISR bits are provided: the
Rotate-at-EOI (Specific) and the Specific EOI
commands.

Rorate-ar-EOI (Specific) Command

This command ensures that the correct ISR bit is
reset at the end of aservice routine because the bit
to be reset is specified in the command itself. Addi-
tionally, the priorities are rotated so that the spe-
cified level is at the bottom. The format for the
Rotate-at-EQI (Specific) command is shown in
Figure 13. Example 4 illustrates this command.

OCW2 ROTATE AT EOI (SPECIFIC]
DATA BUS FIELD ‘

A0 D? D6 D5 D4 D3 D2 D1 00 ISR BIT TO BE RESET AND IR
0 1 1.1 0 lo w2[t1]uo] LEVEL TO BE PUT AT LOWEST PRIORITY

0 1 2 3 4 5 5 7

’ LO‘O 1001 0 1 0 1

Lijo o 1 1 0 0 1 1

2o 0 0 o 1 1 1 1

Figure 13. Rotate-at-EOI{Specific} Command Format

EXAMPLE: WE ARE IN THE IR5 SERVICE ROUTINE AND WISH TO SET IR3 THE
BOTTOM PRIORITY WHEN DONE
ISR PRIORITY
IR7 1RO

BEFORE ROTATE ATEOIIsPLCIFICi[0 [0 [1 [0 1 To]o[0o] HiGHEST]
LOWEST 4

ROTATE-AT EOI (SPECIFIC} L2=0,L1=1,L0=1

ISR
IR7 IRQ

HIGHEST
AFTER ROTATE ATEQI (SPECIFIC) [0 0] 1] 0]0]0 0 0]

LOWEST

s

Example 4. Rotate-at-EQI (Specific)

If the rotation of priorities is not desired, the
Specific-EOl command is used.

Specific-EOlI Command

The SpecificcEOl command is identical to the
Rotate-at-EOI (Specific) command except that
priorities are not rotated after the ISR bit is reset.
The Specific-cEOlI command format is shown in
Figure 14.

OCW2 SPECIFIC EO!

DATA BUS FIELD
A0 D7 D6 D5 D4 D3 DZ DI O]
[0 o7 1 1T oJoitz t1 co]

[ISR BIT TO BE RESET
0

ﬁ—r 1 2 3 4 5 6 7
—l— ™ w0 1 0 1 0 1 0 1
Lo 0o 1 1 0 0 1 1
tzlo 0 0 0 1 1 1 1

Figure 14. Specific EOl Command Format

In summarizing the various commands which reset
ISR bits, some words of caution are appropriate.
If only the Fully Nested mode is used, the Non-
Specific EOI can be used without problems. For
any other mode, it isgood practice to use the End-
of-Interrupt commands which specify the ISR bit
to be reset. No additional code isrequired and the
reassurance of an unconfused 8259 during system
debug is worth the effort. The OCW2 command
words are summarized in Figure 15.

OCw2 COMMAND SUMMARY

COMMAND

DATA BUS FIELD OPERATION
A0 | D7 D6 D5 D4 D3 D2 D1 DO
NON-SPECIFIC EOI 0 0 0 1 0 0 0 O RESET HIGHEST ISR BIT
SPECIFIC EOI 0o 1 1 0 L2 L1 LO RESET ISR SPECIFIED BY L2-LO
ROTATE-AT-EOI (AUTO) ‘ 6 1 o 1 o 0 0 0 RESET HIGHEST ISR BIT

ROTATE-AT-EOI (SPECIFIC) 0 1 1 1

SET-PRIORITY | 0 1 1 O

AND ASSIGN LOWEST PRIORITY

RESET ISR SPECIFIED BY L2—-LO
AND ASSIGN LOWEST PRIORITY

SET L2-LO LOWEST PRIORITY

0 L2 L1 LO

0 L2 L1 LO

Figure 15. OCW2 Command Summary

Interrupt Masks (OCW1)

OCWI controls the Interrupt Mask Register (IMR).
Through OCWI, individual bits in the IMR may be
set or reset by the software at any time. Asstated
earlier, the IMR acts only on the output of the
Interrupt Request Register (IRR). Even with an IR
input masked, it is still possible to set the IRR bit.
However, no interrupt can be generated from the
request since the IMR blocks the Priority Resolver
from seeing the set IRR bit. If the IMR bit is reset
while the IRR bit is set, the Priority Resolver can
then see the IRR bit and an interrupt could be gen-
erated. After initialization, any command with
Ag=1 is interpreted as an OCWI, see Figure 16.

OCW1 INTERRUPT MASK
| DATA BUS FIELD |
A0| D7 D6 D5 D4 D3 D2 D1 DO
[1]s7]s6[s5[sa183T82781]s0
L ‘ T l ‘ i ‘ ‘ IR INPUT
————< 1=MASK SET
0 =MASK RESET

Figure 16. Interrupt Mask Command Format

Special Mask Mode (OCW3j

The last Operation Command Word is OCW3. This
word controls two additional modes plus the read-
ing of the various registers. The first mode is the
Special Mask Mode (SMM).

Let ussay that you are in a service routine that con-
tains a section of code where you want dl inter-
rupts enabled: that is, you want to allow your lower
priority devices to generate interrupts. You could
accomplish this by using an EOl command to reset
the ISR bit corresponding to the routine we arein.

But resetting the ISR bit is irreversible and the
lower priority devices remain enabled until another
interrupt on your level occurred. The effect of the
ISR bit can be temporarily suspended by first
masking the input that isin-service and then setting
the Special Mask Mode. Once SMM s set, it re
mains in affect until it is reset. The format to set
and reset SMM is shown in Figure 17. The only
requirements for SMM are that the level corre-
sponding to the routine setting SMM must be
masked through OCWI and that interrupts are
enabled. Example 5 shows how to enable inter-
rupts over a particular section of code.

OCW3 SPECIAL MASK MODE

DATA BUS FIELD |
A0|D?7 D6 D5 D4 D3 D2 D1 DO

[0l —[silsz]Jo i loJo]0]

a] 1 $2
on’t
care ‘ 1 1 SET SMM
1 V] RESETSMM

Figure 17. Special Mask Mode Command Formats

JEXAMPLE: IR4 IS TN-SERVICE ANL WE WISH TG ENABLE LOWER
PRIQRITY INPUTS OVER A PARTICULAR 5LCTION OF COLE

;1k4 SERVICE ROUTINE WHICH CONTAINS SPECIAL MASK MOLE
IR4: £ ; ENABLE INTERKLFTS

;18T PART OF SERVICE RUUTINE -
;LOWER PRIORITY INPUTS CISABLED.

DI JCISABLE INTERRUPTS E0k CUMMANLS
MVI A,loH MASK 1K4

ouT P1598 :8299 PUHT AB=1

MVI A, 48H iSET SMM

ouT PT59A ;8259 PURT Ad=y

Kl ;ENAELY INTERKUFTS

1ZND PAKT OF SERVICE ROLTINE-
;LOWEK PRIGFITY INTEKKLPTS ERABLED

b1 ;DISABLE InTERKUFIS EUR CUMMANLS
MV A, 6BH JRESET 5MM

oLT PTSSA 182959 FURT Ad=8

MV A, BUH ;KEMUVE MASK ON IR3

oul P1596 :8259 pPunl AB=]

El JENABLEL InTERKUPTS

13RC PAKT DF SERVICE ROUTINE -
JLOWEK PRICGRITY INPUTS LISABLEL
JMUST CONTAIN ArrRUPRIATE ROL.

KET ;RETUEN

Example 5. Special Mask Mode

Note that SMM applies to al masked levels when
set. If IR1 interrupts the IR4 routine in the above
example while SMM is set, and then masks itself,
IR2 and 1RS3 are enabled.

Polled Mode (OCW3)

The 8259 also supports the polled interrupt
method of 1/O cervicing mentioned earlier. Rather
than having the processor poll the peripherals in
order to find the actual interrupting device, the
processor polls the 8259. This allowsthe use of all
of the aforementioned priority modes. Addition-
ally, both the polled and vectored interrupt meth-
ods can be used within the same program.

Bacically. the polling is implemented by alowing
the programmer to initiate a software controlled
interrupt acknowledge through the P bit in
OCW3. Thisinterrupt acknowledge behaves exactly
as the first "normal'" hardware acknowledge; that
is, the ISR bit of the highest priority input is set.
The 8259 thcn enables a special word onto the
data bus. This word shows whether an interrupt
has occurred and what the highest ISR bit is.

To initiate a poll, interrupts must first be disabled;
either by executing a DI instruction or from having
an interrupt occur. Then an OCW3 with P=| is sent
to the 8259 using an OUTput command (or a WR
pulse). The next RD pulse (possibly frorn an INput
command) is treated as an interrupt acknowledge,
and the following word is placed on the data bus:

POLLED WORD
D7 D6 D5 D4 D3 D2 D1 DO
= b4 21 P9
o= Twelwi wo!

WHERE |- 11F INTERRUPT OCCURRED
AND W2—-W0 CODE IN BCD THE
HIGHEST PRIORITY ISR BIT SET

Service to the requesting device is achieved by the
software decoding this word and branching to the
appropriate service routine. Every time a poll isto
be performed, the OCW3 must be written before
the RD pulse. If a poll is performed without an
interrupt having occured or with no request inputs
in-service. the returned word is 1=0 and LO, LI,
and L2=1. The tormat for OCW3 Poll Command is
shown in Figure 18.

To illustrate the Polled mode, consider a system
where the 8259 and the 8080 are on different
cards, and the system bus does not contain a
line for the INTA interrupt acknowledge, al-
though interrupt request lines are provided. In this

instance, the Polled mode is the only way to take
advantage of the 8259's prioritizing features. The
INT pin of the 8259 is connected to the Interrupt
Request line of the system bus while the 8259
INTA pin is simply held high. The 8080 card must
contain logic to jam either a CALL or a RST in-
struction on the card's data busin response lo an
interrupt on the system bus (either an 8359 on the
processor card or an 8228 would accomplish this).
The RST or the CALL vectors the 8080 to a
polling routine. The polling routine simply writes
an OCW3 with P=I to the off-board 8259 port
followed by an input at the same port. The 8259
then releases the above word onto the system data
bus. The polling routine then decodes the returned
word and vectors the 8080 to the appropriate
service routine.

OCW3 POLLED MODE
\ OATA BUS FIELD
A0 |D7 D6 D5 D4 D3 D2 D1 DO
[o]-TofofeJ1T1]0 0]
T
don't
care

{4 ——-PB | T READ HIGHEST PRIORITY ISR BIT

Figure 18. Polled Mode Command Format

This method can be extended to multiple off-board
8259s. Each 8259 is polled and the returned word
indicates whether the sclected 8259 is the one
which generated the interrupt. Do not forget that
even though the CALL features of the off-board
8259 are not being used. each 8259 must receive
an initialization sequence. In this case, the starting
address specified in the ICWs could be a "fake".

Reading the 8259 Status (OCW3)

The contents of the IRR, the ISR, and the IMR
can be read to update the user information on the
system. The registers are read by issuing the appro-
priate OCW3 and then reading with an INput in-
struction or RD pulse. The OCW3 words for read-
ing the IRR and the ISR are shown in Figure 19.

OCW3 READ STATUS

| DATA BUS FIELD
A0D7 06 D5 04 03 D2 01 DO

[o]- o]0 ol1 0 R Rz j

R1 A2
don't -

care

1 0 READ IRR
l 1 1 READ ISR

Figure 19. Read Status Command Formats

There is no need to write an OCW3 before every
status read as long as the status read corresponds
with the previous one; i.e., the 8259 " remembers™
whether the ISR or the IRR has been previously
selected by the OCW3.

For reading the IMR, an OUTput instruction (or
WR pulse) is not necessary to precede the INput
instruction (or RD pulse). The 8259 data lines con-
tain the IMR whenever RD is active and Ag=1.
Thus an INput instruction to the 8259 Ag=1 port
reads the IMR at any time.

A suinmary of OCW3 command words isshown in
Figure 20.

OCW3 COMMAND SUMMARY
COMMAND | DATA BUS FIELD | OPERATION
AO‘D7 D6 D5 D4 D3 D2 D1 DO |

- 0 0 0 1 1 0 0 POLL ONNEXT RD

D;OLL MODE 0

READ ISR 0 0 0 0 1 0 1 1 READ ISR ON NEXT RD

READ iRR 0o - 0 0 0 1 0 1 0 READIRRONNEXTRD
0
0

SET SMM - 1 1 0 1 0 0 0 SETSMM
RESET SMM - 1 0 0 1 0 0 O RESETSMM

Figure 20. OCW3 Command Summary

CASCADING THE 8259

As mentioned earlier, more than one 8259 can be
used to expand the priority interrupt schemeto up
to 64 levels without additional hardware. In such
cases, one 8259 acts as a master, and the others
serve as slaves. Figure 21 shows a system contain-

ing a master and two slaves providing atotal of 22
levels of interrupt.

Hardware-wise, the master is designated by a
"high" on the SP pin, while the SP pins of the
slaves are grounded. Additionally, the INT output
pins of the slaves are connected to the IR input
pins of the master. Any IR master pin can be used
to support a slave. The CASO—2 pins for al 8259s
are paralleled. These pins act as outputs when the
8259 is a master and act as inputs for the slaves.
The CASO—2 pins serve as a private 8259 bus to
control which slave has control of the system data
bus when the destination address is issued to the
8080.

The sequence of eventsfor avalid interrupt request
on a slave is covered here. The slave IR input
makes an inactive-to-active transition. Assuming
this request is higher priority than other requests
and in-service levels on the sldve, the slave's INT
pin is pulled high, signaling the master of the
request. Assuming that thisrequest to the master is
higher priority than other master requests (possibly
from other slaves) and master in-service levels, the
master's INT pin is pulled high, interrupting the
8080. When this interrupt is acknowledged by the
8080, the master places the CALL instruction on
the data bus. The master knows that the original
request was on a dave (from ICW3 that will be
covered shortly) and then puts the interrupted
dave's ID on the CASlines. This causes the slave to

{ I o ADDRESS BUS (16} 7 {
T ' T
| \
(CONTROL BUS 1
i INTRE()
L L H
Q DATA BUS (8) ﬁ
_ . _ __ -
—_— £ — — _— | i__1 _ﬁ
8 4 2]
[INT Cs Ag INT cs Aq
CASO CASO CASO
8259
s 8A239E A cast CAS1 CAS1 MASTER
L
cAS2 CAS 2 CAS2
$ 7 68 5 4 3 2 1.0 SP 7 6 5 2 1 0 SP M7 M6 M5 M4 M3 M2 M1 MO
7 6 5 4 3 2 10 7 8 5 4 z 10 5 4 [32 10
| — N

INTERRUPT REOUESTS

Figure 21. Cascaded System Diagram

place on the bus its preprogrammed address for
the requesting input during the second and third
INTAs. The appropriate ISR bits for both the
master and slave are set. This completes the inter-
rupt request.

Several things should become evident from the
above sequence. First, because there are two ISR
bits that are set by an acknowledged slave inter-
rupt, two EOlI commands must be issued; one for
the master and one for the slave. And second, each
8259 must have a separate initialization sequence.
This gives each IR input a unique address plus de-
fines how the master and slaves are interconnected.
This interconnection is specified in ICW3. The
master ICW3 tells the master which of its IR inputs
are connected to slaves. The slave 1ICW3 tells the
slave which IR master input it is connected to. This
IR input is the dave's ID. The format for ICW3 is
shown in Figure 7. Also note that each slave could
receive commands to operate in different modes:
i.e., one dave could be in Rotating Priority while
the other isin Fully Nested mode.

An initialization sequence isillustrated in Example
6. The master's jump table starts at OOH, slave A's
at 20H, and slave B's at 40H; all with 4-byte inter-
vals. The master ICW3 shows that there are slaves
on IR inputs 3 and 6. Slave A ICW3 shows its ID
as 3, indicating that it isthe slave connected to the
master TR3. Slave B's ID is6 and it is connected to
the master IR6. The priority levels are now ar-
ranged as shown.

Icw
DATA BUS FIELD

P-d
o
o
~
o
o
o
&
o
i
o
w
=
N
o

Icw1
1cw2
1cw3
SLAVEA lcwi

icw?2

w3
SLAVEB tcwl
icw2
W3

MASTER

kB O R PR OR PP O
o o oo oo oo o
oo ~0000r OO
o o oo or oo
© 0 -0 O0r 0O
o oo o oo r O
» O a0 O s 0o
~ ODbr oo oo o

PRIORITY STRUCTURE
LOWEST HIGHEST

M7 SB7-SBO M5 M4 SA7-SA0 M2 M1 MD

Example 6. Cascaded Initialization

Some special housekeeping software in the slave
interrupt service routines is required in order to
preserve a truly Fully Nested structure. Why?
Notice that if level SA5 (IR5 on dave A) is in-
service (both the Slave A ISRS bit and the master

ISR3 bit are set) and level SA2 is asserted, then the
priority structure of the slave will assert an inter-
rupt to the master. But the master's ISR bit for
that level is already set from the SA5 request. This
will prohibit the request from being acknowledged
until the master receives an EOI, thus losing the
true Fully Nested structure since a request on SA2
should interrupt a SAS service routine.

To solve this dilemma, the first task upon entering
a service routine of adevice connected to a slaveis
to mask off the lower priority master IR inputs.
(in this case, M7, M6, M5, and M4). Then issue an
EOI to the master for the input the slave 1s con-
nected to (Specific EOl M3). This enables the
master to accept higher priority interrupts from
the slave. The masking process allows any interrupt
request from a higher priority (higher than SA5) to
be acknowledged and any lower priority request
(M7 thru SA6) to be ignored. If the lower priority
master inputs were not masked, the master would
acknowledge a request on, for instance M7. since
the M3 ISR bit is reset by the master EOI.

Software must also maintain the information that
level SAS5 is the lowest priority slave in-service.
This is because the masks on the lower priority
master inputs must be removed upon completing a
service routine, but only by the lowest in-senrice
slave level. If SA2 isthe only in-service level then it
resets the masks. However, in the main example.
the SA2 routine returns to the SA5 routine. In this
case, SA2 should not reset the masks, but allow
SAS5 to reset them just before returning. This can
be accomplished by reading and saving the master
IMR upon entering a slave input service routine
arid then restoring it upon leaving. Figure 22 isan
example of how the SAS service routine should
look. This form should be followed for al service
routines of devices connected to slave IR inputs.

APPLICATION EXAMPLES

POWER FAIL/AUTO-START WITH BATTERY
BACKED-UP RAM

The first application illustrates the 8259 used in
the Fully Nested mode in supporting a battery
back-up scheme for the RAM (Random Access
Memory) in a microcomputer system. Such a
scheme is important in numerical and process con-
trol applications. The entire microcomputer system
could be supported by a battery back-up scheme,
however, due to the large amount of current usu-
ally required and the fact that most machinery is

not supported by an auxiliary power source, only
the state of calculations and variables usually need
to be saved. In the event of aloss of power, if these
items are not already stored in RAM, they can be
transferred there and saved using a simple battery
back-up system.

Loc OBo Sby SOURCEL STATLMENT

[

3 reQUATE
4008 4 MNPTB bl BLBL JMASTER FUKT WIlh A@=1
280A 5 MSPTA kUL ULAH SMASTER PURT wITH Ad=8
BpLA 6 sLeTA EWU OEAR $SLAVE PURT wllh A¢=8

7

6

§ ;SAMPLE 5AS SEKVICE ROUTINE
08E0 D5 1o sa5: BUSH ;SAVE OE
0001 C5 11 PUSH t JEAVE BC
BPR2 5 12 PUSH H ;SAVE DL
2003 F5 13 PUSY PSW JSAVE A PLUS FLAGS
BP04 DEDB 14 N MSPTH REAL MASTER IMK
@ppé 5F 15 MOV LA 35T0UKE IN E
0007 3ErE 16 MV A,BEQH MASK LOWER MASIER M7-M4
PBY9 0I0B 17 our HMSPTB :MASTER PORT WITH AB=1
#408B 3ES3 18 My A,b3H GSEECIFIL EOL 1C M)
A88D L3DA 19 T MSETA ;MAdTEK POKT WITH AB=8
@Ber FB) BT SENABLE INTERRUPTS

<l

22 ;SUAVE CAN NOR INTEKRUPT [TSELF FOK HIGHEK PRICRITY

23 ;INTEKRUPTS. ACILAL S2RVICE ROUTINE GORS HERL.

24
0818 F3 25 DI ;UISABLE INTEKRUP1S FOK CUMMANGS
©B11 320 26 MV A,2BH ;NON-BPECIF1C FOL BUR SLAVE
@p13 DIEA 27 cuT SLPTA :SLAVE A PUKT AB=P
0015 7 28 MOV Ak JRESTOKE MASTEK TMR INTG A
8816 DIDB 29 U MSPTE ;MASTER POKT AB=1
0818 Fi 38 PUP Paw JRESTORE A PLLS FLAGH
8819 El i1 PP) ;KESTORE hL

eyla C1 32 PUP B 3 KESTORE BC

4218 DI 33 pOP) ;RLSTORE DE

@@1C Fb 34 EL S KE-ENAGLE INTEKKUPTS
8810 CY 35 KET ;LONE, 20 RETILEN

38 ENC

Figure 22. Sample Slave Service Routine

The vehicle used in this application is the Intel®
SBC 80/20 Single Board Computer. The SBC
80/20 contains an 8259 on-board along with con-
trol lines helpful in implementing the power-down
and automatic restart sequence used in a battery
back-up system. The SBC 83/20 also contains user-
selectable jumpers which allow the on-board RAM
to bc powered by a supply separate from the sup-
ply used for the non-RAM components. Also, the
output of an undedicated latch is available to be
connected to the IR inputs of the 8259 (thelatch
is cleared via an output port). In addition, an un-
dedicated, buffered, input line is provided, along
with an input to the RAM decoder that will pro-
tect memory when asserted.

The additional circuitry to be described was con-
structed on an SBC 905 prototyping board. An
SBC 635 Power Supply was used to power the non-
RAM section of the 80/20 while an external DC

supply was used to simulate the back-up battery
supplying power to the RAM. The SBC 635 was
used since it provides an open collector ACLO
output which indicates that the AC input line volt-
age is below 1031206 VAC (RMS).

The following is an example of a power-down and
restart sequence that introduces the various power
fail signals.

1. An AC power failure occurs and the ACLO
goes high (ACLO is pulled up by the battery
supply). This indicates that DC power will be
reliable for at most 7.5 ms. The power fail
circuitry generates a Power Fail _Lnterrupt
(PF1) signal. This signal sets the PFI latch,
which is connected to the IRO input of the
8259, and sets the Power Fail Sense (PES)
latch. The state of this latch will indicate to
the processor, upon reset, whether it is com-
ing up from a power failure (warm start) or if
itiscoming upinitially (cool start).

2. The processor is interrupted by the 8259
when the PFI latch is set. This pushes the
pre-power-down program counter onto the
stack and calls the service routine for the IRO
input. The IRO service routir.. saves the proc-
essor status and any other needed variables.
The routine should end witha HALT instruc-
tion to minimize bus transitions.

3. After a predetermined length of time (5 ms
in this example) the power fail circuitry gen-
erates a Memory Protect (MPRO) signal. All
processing for the power failure (including the
interrupt response delays) must be completed
within this 5 ms window. The MPRO signal
ensures that spurious transitions on the
system control bus caused by power going
down do not alter the contents of the the
RAM.

4. DC power goesdown.

5. AC power returns. The power-on reset cir-
cuitry on the 80/20 generates a system RE-
SET.

6. The processor reads the state of the PFS line
to determine the appropriate start-up se
quence. Ths PFS latch is cleared, the MPRO
signal is removed, and the PFI latch driving
JRO is cleared by the Power Fail Sense Reset
(PFSR) signal. The system then continues
from the pre-power-down location for awarm
start by restoring the processor status and

popping the pre-power-down program counter Cold Start switch is necessary to ensure that during
off the stack. a cold start, the PFS lineis indicating " cold start"
sense (PFS high). Thus, for a cold start, the Cold

Figure 23 illustrates this timing. Start switch is depressed during power on. After

Figure 24 shows the block diagram for the system. that, no further action is needed. Notice that the
Notice that the RAM, the RAM decoder, and the PFI signal sets the on-board PFI latch. The output
power-down circuitry are powered by the battery of this latch drives the 8259 IRO input. Thislatch
supply. is cleared during the restart routine by executing
an OUTput D4 Hinstruction. The state of the PFS
The schematic of the power-down circuitry and the line may be read on the least significant data bus
SBC 80/20 interface is shown in Figure 25. The line (DBO) by executing an INput D4 H instruc-
design is very straightforward and uses CMOS logic tion. An 8255 Port (8255 #1, Port C, bit 0) is
to minimize the battery current requirements. The used to control the PFSR line.
POWER DOWN RESTART

N

ACLO \

.

JI

] T\
A

P=S
G
=) T
PFSR ~ —
MPRO Jr
t———— Sms—\
—
=T
DC
|«—— 7. 5ms min —l\ /
—
=T
POWER FAIL POWER UP
ROUTINE ROUTINE

Figure 23. Power Down = Restart Timing

18

BATTERY SUPPLY

Iy ACLO
PFSR
POWER DOWN
CIRCUITRY
coLD
== =& PFS —
cS cS
ROM | RAM ‘g START
7 = = 1RO
L | 8080A | INT
¢—|DECODER ¢—|DECODER Group | 8259 8255
CONTROL BUS - —L
DATA BUS
ADDRESS BUS —
Figure 24. SBC 80120 with Power Down
POWER DOWN CIRCUITRY SBC 80120

+5 BATT.

8259

al— iro
PF1
%20'(LATCH
2 m o L
3
ACLO ‘!1>0 ‘A—’-\“‘IH’ CLK
+5 BATT. [19] CLR
—1 | PORT D4 l
20K 6 = | o PORT D4
S 4
5 o a L o 5 . PFS » . DBO
+5 BATT., +5BATT
A2 | T
5.9K |
L 3Bk +5 BATT l 5y .,
CLR !
2 2.7 | —]
HF 20K 8 = 1 sws | — rames
14 [15 - | P2 _
T2 M S P
S ——_T oy 5 of RO e
*SBATT. +5BATT. 12 | —
A3 A2 | DECODER
20K 20K
6 1 1
U g a > CLK |
Cp 9 CLR |
13 10] v
| !
coLo |
0.94F
START_‘ I g |
1l 1 | wass
PFSR ‘,LL PCO | PORT
—_16 | €5
A1 MC14049 i
A2 MC14013
A3 MC14528

Figure 25. Power Down - SBC 80/20 Interface

19

The Fully Nested mode for the 8259 is used to
ensure that IRO always has the highest priority.
The remaining [R inputs can be used for any other
purpose in the system. The only constraint is that
the service routines must enable interrupts as early
as possible. Obviously, this is to ensure that the
power-down interrupt does not have to wait for
service. If a rotating priority scheme is desired,
another 8259 could be added as a slave and be pro-

grammed to operate in a rotating mode. The
master would remain in the Fully Nested mode so
that the [RO still remains the highest priority
input.

The software to support the power-down circuitry
is shown in Figure 26. The flow for each label will
be discussed.

LoC osd SEQ SOURCE STATEMENT
1; 2925 C9 58 RET s RETURN
o D RES . 1;
§ ;PU“ER DORN AKD RESTART FOR THE SBC 80/20 52 ;POWER DOWN ROUTINE TO SAVE KEGLSLERS AND STATUS
4 ;SYSTEM EQUATES: 53 ¢
8oDA 5 PTS9A EQU ¢DAH 78259 PORT WITH Ap=@ bB26 b5 54 KLGSAV: PUSh Pow ;SAVE A FLLS FLAGS
80D8 6 PT598 EQU QDBH 18259 PORT WITH AB=1 Bu2i &5 55 PUSH 4 PSAVE HL
BRET 7 PPIICT EQU BETH 58255 #1 CONTROL POKT BoL8 DS 56 PUSH L iDAVE Db
PRE6 8 PPIIC EQU PE6H 58255 #1 PORT C vB29 C5 57 PUSH 5 ;SAVE BC
3880 9 SPSAVE EQL 3806H ;SP STORAGE IN RAM BB2A 210060 o8 LXT H,08BYU ;GET SET TO GET Sr
2881 1 JeT EQU P1H ;MSB OF 8259 JUMP TABLL 2020 39 59 DAC sp ;5P NUw IN HL
Q62 220038 68 SHLD SPSAVE ;BAVE SP IN KAM
JSTARTIING POINT AFTLR SYSTEM RESET 61 i
62 JEOI NOT REALLY NEEDED BUT INULLDED FOR CuMPLETENES:
8600 CRG 2y 63 ;
@680 DBD4 IN D4l JREAD PFS, STATUS 8031 3Ecp 64 MVI A, 206 NUN-SPECIFIL EOL
8002 1F RAR (PES; ON DB@, PUT IN CARRY 2013 DICA 65 CUT PTSSA ;8253 PORT wiTH AD=2
9083 DA20R] Jc CSTART ;PFS/=1, THEN COLC STAKT 8035 76 66 HLT SHALT ~ GU DOWN GRACEEULL
67 ;
LOCATION. PF5/=8, THEN WARM STAR1 68 ;8259 JUMP TABLE. ONLY IRP L5 DSEL, OTnERS DIRECIELD TU RAM
20 ; 69
2886 JERD 21 WSTART: MVI A,80H ;SET 8255 41 1C OUTPUT MODE 70
8888 D3L7 22 out PPILCT ;8255 CONTROL POKT Blow 71 ORG 10848
23 : 9108 C32600 72 JSIART: JMP KEGSAV ;IRE
24 ;OUTPUT COMMANL MAKES PFSR/ GO LOW WhICh REMOVES ble3 8o 73 NOY
25 $MPRO/ AND CLBARS PFS LAICH Blo4 C31v38 T4 IMP 3818h ;IR
26 ; 0lp7 08 75 NOP
BOBA 3EBI 27 MVI A,014 ;RETURN PFSR/ HIGH 8108 C32838 76 JME 3826 s IR2
BeBC D3IEG 28 ouT PPIIC :8255 #1 PORT C 0108 00 7 NOP
BBBE D34 23 out BD4H JRESET PFLl LATCH @lac C33838 78 3ne 38304 JIR3
Bgle CDlDoB 3¢ CALL INIT ;GO INITIALIZE EVERYTHING BlpF ¥@ 79 NOP
PBl3 229838 31 LHLD SPSAVE ;RETRIEVE SP FROM RAM 01llg C34¢38 66 JME 384uH ;1R
pBl6 F9 32 SPHL ;PUT BACK INTO SP #113 8o 81 NUP
#6817 Cl 33 POP 3 i KESTOKE BC vl14 C35p38 82 Jmp 3656 ;IRS
4018 ©1 34 POP D ;RESTORE DE 0117 0v 83 NOP
P819 El 35 POP H SRESTORE HL 0118 C36036 84 IME 3860H ;1R6
#81A Fl 36 POP PSW ;RESTORE A PLUS FLAGS 0118 8¢ 85 NOP
#8158 FB 37 El JENABLE INTERRUPTS ¥11C C37836 86 JHp 3878H ;IRT
981C C9 8 RET 3 PRE-PORER-DOWN PC ON TOP ®11F 90 87 NOP
39 ;OF S5TACK SO RETURN .TO IT 88 ;
48 ; 89 ;COLD START LOCATION. USEK'S PRUGKAM ENTEKs hERE.
41l ;INITIALIZATION ROUTINE. AT LEAST DO 8259..... e
42 ; 9120 318e3F 91 CSTART: LXI Sv,3F80H ;INITIALIZE SP
#B1D JE16 43 INIT: MVI A,16H ;F=1,5=1,A7-A5=@ ICWl 8123 CD1LBs 92 CALL INTT ;INITIALIZE EVERYTHING ELSL
9B1F D3DA 44 ouT PT594 ;8259 PORT WITH AB=@ 2126 D3ID4 93 ouT #D4H JRESET PFI LATCH
9621 3EQL 5 MVI A,JPT ;MSB OF JUMP TABLEL ICh2 8128 FB 94 EI JENABLE INTERRUPTS
9823 D3DB 46 ouT PTS9B ;8259 PORT wITh Ab=1 95
47 ; 96 ;USER PROGRAM STARTS HERE
48 FADD ANY OTHER INITIALL1ZATIONS HERE 97
49 ; 98 END ;DONE

Figure 26. Power-down Software

20

After any system reset, the processor starts execu-
tion at location 0000H (START). The PES status ig
read and execution is transferred to CSTART if
PES indicates a cold start (i.e., someone is depress-
ing the Cold Start switch) or WSTART if a warm
start is indicated (PFS low). CSTART is the start
of the user’s program. The Stack Pointer (SP) and
device initialization was included just to remind
the reader that these must occur. The first EI
instruction must appear after the 8259 has received
its initialization sequence. The 8259 (and other
devices) are initialized in the INIT subroutine.
Four-byte intervals are selected for the 8259 since
a jump table is being used (F=1) and S=1 since
there is only one 8259 in the system. After initial-
1zation, the user’s program is executed.

When a power failure occurs, execution is vectored
by the 8259 to REGSAV by way of the jump table
at JSTART. The pre-power-down program counter
is placed on the stack. REGSAV saves the proces-
sor registers and flags in the usual manner by push-
ing them onto the stack. Other items, such as out-
put port status, programmable peripheral states,
etc., are pushed onto the stack at this time. The
Stack Pointer (SP) could be pushed onto the stack
by way of the register pair HL but the top of the
stack can exist anywhere in memory and there is
no way then of knowing where that is when in the
power-up routine. Thus, the SP is saved at a dedi-
cated location in RAM. It is not really necessary to
include an EOI command in REGSAV since power
will be removed from the 8259, but one is included
for completeness. The final instruction before
actually losing power is a HALT. This minimizes
somewhat spurious transitions on the various
busses and lets the processor die gracefully.

On reset, when a warm start is detected, execution
is transferred to WSTART. WSTART activates
PFSR by way of the 8255 (all outputs go low
when the 8255 is initialized). In the power-down
circuitry, PESR clears the PFS latch and removes
the MPRO signal which then allows access to the
RAM. WSTART also clears the PFI latch which
arms the 8259 IR0 input. Then the 8259 is re-
initialized along with any other devices. The SP is
retricved from RAM and the processor registers
and flags are restored by popping them off the
stack. Interrupts are then enabled. Now the pre-
power-down program counter is on top of the
stack, so executing a RETurn instruction transfers
the processor to exactly where it left off before the
power failure.

21

Aside from illustrating the usefulness of the 8259
(and the SBC &0/20) in implementing a power
failure protected microcomputer system, the above
application should also point out a way of preserv-
ing the processor status when using interrupts.

78 LEVEL INTERRUPT SYSTEM

The second application illustrates the use of both
the Fully Nested and Polled modes in implement-
ing an interrupt structure with greater than 64
levels. The 8259 supports up to 64 levels with
direct vectoring to the service routine. Extending
the structure to greater than 64 levels requires the
use of polling. A 78 level structure is used as an
illustration, however the principles apply to sys-
tems with up to 512 levels.

To implement the 78 level structure, 3 tiers of
8259s are used. Nine 8259s are cascaded in the
master-slave scheme giving 64 levels at tier 2. Two
additional 8259s are connected, by way of the INT
outputs, to two of the 64 inputs. The 16 inputs at
tier 3, combined with the 62 remaining tier 2 in-
puts, give 78 total levels. The Fully Nested struc-
ture is preserved over all levels although direct
vectoring is supplied for only the tier 2 inputs.
Software is required to vector any tier 3 requests.
Figure 27 shows the tiered structure used in this
example. Notice that the tier 3 8259s are con-
nected to the bottom level slave (SA7). This simpli-
fies the housekeeping required in the service rou-
tines since the IMR of the master does not have to
be changed as discussed in the cascading section.
The master-slaves are interconnected as shown
before, while the tier 3 8259s are connected as
“masters”’; that is, the SP pins are pulled high and
the CAS pins are left unconnected. Since these
8259s are only going to be used in the polled
mode, no INTA is required, therefore the INTA
pins are pulled high.

The concept used to implement the 78 levels is to
directly vector to all tier 2 input service routines. If
a tier 2 input contains a tier 3 8259, the service
routine for that input will poll the tier 3 8259 and
branch to the tier 3 input service routine based on
the word returned during the poll. Figure 28 shows
how the jump table is organized assuming a starting
location of 1000H and contiguous tables for all the
tier 2 8259s. Note that “SA35” denotes the IRS
input of the slave connected to the master IR3
input. Also note that for the normal tier 2 inputs,
the jump table vectors the processor directly to
the service routine for that input, while for the

tier 2 inputs with 8259s, the processor is vectored
to a service routine (i.c., SBO) which will poll to
determine the actual tier 3 input requesting service.
The polling routine utilizes the jump table starting
at 1200H to vector the processor to the correct tier
3 service routine.

CAS BUS
l— sa00
SA0 ——
- INTA I
Mo t:
IR0 INT sPo7
—] iNTA |—— sato SPOINTA | sBoo
SA1
—=1 INTA SBO
. -
MASTER py |
1
IR1 R p— INT |— sa17] NT —— sBo7
I sa7o SPOINTA L 10
SA7
— |
~«~—InT iNTA — sB1 E
|
SA76
M7
IR7 INT | SATT iy | — sa17
Figure 27. 78 Level Diagram
LOCATION 8259 CODE COMMENTS
1000 H SA0 Jmp SA00 ; SAQ00 SERVICE ROUTINE
101C H JMp SA077 B Sf\O? SEﬁR\(fICEARgUT/INEr o
1020 H SA1 VP SA10 ; SA10 SERVICE ROUTINE
103C H JMP SA17 ; SA17 SERVICE ROUTINE
; SA20-SA67 SERVICE ROUTINES
10E0 H Sa7 IMP SA70 : SA70 SERVICE ROUTINE
10F8 H JMp SBO ; SBO POLL ROUTINE
10FC H o . JﬁMPﬁ EBL _ ;SEI POLL RQUTINE
1200 H $BO JmpP SB0O . SB0O0 SERVICE ROUTINE
121CH JMP $807 ; SBO7 SERVICE ROUTINE
1220 H $B1 JMP SB10 ; 8810 SERVICE ROUTINE
123C H IMP $B17 : 8B17 SERVICE ROUTINE

Figure 28, Jump Table Organization

Each 8259 must receive an initialization sequence
regardless of the mode. Since the tier 1 and 2
8259s are in cascade, they require all three ICWs.
The tier 3 823595 require only ICW1 and ICW2
since only polling will be used on them and they

are connected as masters. The initialization se-
quence for each tier is shown in Figure 29. Notice
that the master is initialized with a “dummy’ jump
table starting at OOH since all vectoring is done by
the slaves. The tier 3 devices also receive “duinmy”’
tables since only polling is used on tier 3.

; INITIALIZATION SEQUENCE

| INITIALIZE MASTER

MINT: MVI A, 14H ; F-1,8.0, A7-A5.0 ICW1
OUT MPTA ; MASTER PORT A0=0
MV A, 00H ; DUMMY ADR I1Cw2
QUT ™MpPTB . MASTER PORT AD=1
MVI A FFH ; §7-80=1 ICW3
OouT MPTB ; MASTER PORT AQ=1

: {NITIALIZE SA SLAVES — X DENOTES SLAVE ID [SEE KEY)
SAXINT: MVIE A, ; SEE KEY (Ccwi
OUT SAXPTA ; SAXPORT A0=0

MvVIE A, 10H ; ADR MSB ICw2
OUT SAXPTB ; SAXPORT A0=1
MVE A OXH ; SA D ICW3

QUT SAXPTB . SAXPQRT AQ=1
REPEAT ABOVE FOR EACH SA SLAVE

INITIALIZE SB SLAVES — INITIALIZE AS MASTERS {SINGLE)
;SBOINTa MVl A, 16H ; F=1,8=1, A7-A5=0 ICW1

QUT SBOPTA ; SBOPORT AO0=0
MVl A 00H ; DUMMY ADR ICW2

QuUT SBOPTB ; SBO PORT AD=1
SB1INT: MVl A16H . F=1,8=1, A7-A5=0 ICW1

OUT SBIPTA ; SB1 PORT A0=0

MVl A, 00H ; DUMMY ADR ICW2

OUT SBIPTB ; 8B1 PORT AO0=1

' SA INITIALIZATION KEY

' SAX o (ICW1) JUMP TABLE START (H}
0 14 1000
1 34 1020
2 54 1040
3 74 1060 |
4 94 1080
5 B4 10A0 |
6 D4 10C0 |
7 Fa 10€0

Figure 29. Initialization Sequence

As shown in the cascading section, some house-
keeping is required by the service routines to pre-
serve the Fully Nested structure. For the tier 2
inputs which do not have tier 3 8259s, the house-
keeping is similar to that shown in Figure 22. Fig-
ure 30 shows this format generalized for any tier 2
service routine without a tier 3 8259. The house-
keeping for the tier 2 service routines with tier 3
8259s is only slightly more complex. The addi-
tional complexity is due to the masking required
on the slave itself since the tier 2—tier 3 situation is
analogous to the master-slave situation described in
the cascading section. In this case, if for example,
SBOS5 is in-service, the M7 and SA76 ISR bits must
be reset and SA77 masked off to enable a higher
priority input (SB04-SB00) to generate an inter-
rupt. Figure 31 shows the form for the SA76 scr-
vice routine (labeled SBO in the jump table) which

polls tier 3 8259 SBO. Since a PCHL instruction is interrupt for all SBO inputs, thus all SBO service

used to transfer execution to the appropriate SBO routines should jump to SBORET when complete.
service routine, by way of the jump table at SBORET restores the masks, executes an EOI, and
1200H, a separate return routine is used to end the restores the processor status.

C SAX)

SAVES';'}S%ESSSOR ; GENERAL SAX SERVICE HOUSEKEEPING — USE KEY BELOW
; TO FIND VARIABLES
READ & SAVE SAX : PUSH D : SAVE DE
MASTER IMR PUSH B . SAVE BC
PUSH H : SAVE HL
L PUSH PSW . SAVE A+FLAGS
MASK LOWER IN MPTB . GET MASTER IMR
MASTER INPUTS MOV E, A : SAVEINE
MVI A« ; MASK LOWER MASTER, SEE KEY
L OUT MPTB ; MASTER PORT A0=1
SPECIFIC EOI MVI A,B ; SPECIFIC EOI MASTER, SEE KEY
MASTER OUT MPTA . MASTER PORT A0=0
L El ; ENABLE INTERRUPTS
ENABLE ; SERVICE ROUTINE GOES HERE
INTERRUPTS ;
DI ; DISABLE INTERRUPTS
L MVI A, 20H : NON-SPECIFIC EOl SAX
SERVICE OUT SAXPTA ; SAX PORT A0=0
ROUTINE MOV A, E . RESTORE IMR MASTER
j' OUT MPTB : MASTER PORT A0=1
POP PSW . RESTORE A+FLAGS
DISABLE POP H ; RESTORE HL
INTERRUPTS POP B : RESTORE BC
1 POP D : RESTORE DE
El ; RE-ENABLE INTERRUPTS
NON-SPECIFIC RET " DONE
EO! SAX
RESTORE IMR KEY: SAX «{OCW1) B {(OCW2)
MASTER
o FE 60
1 1 FC 61
RESTORE PROCESSOR 2 F8 62
STATUS 3 Fo 63
4 EO 64
L 5 co 65
ENABLE 6 80 66
INTERRUPTS 7 00 67
1
v
RETURN

Figure 30. Generalizaed Slave Service Routine

23

SBO

SAVE PROCESSOR
STATUS

1]

READ & SAVE
SA7 IMR

Bl

MASK LOWER
INPUTS ON SA7

ISBO:

SPECIFIC EOI
M7, SA76

5

POLL SBO

il

CALCULATE Jump
TABLE ADDRESS

!

GO TO SERVICE
ROUTINE

SBORET :

SBORET:

NON-SPECIFIC
EOl SBO

!

RESTORE
SA7 MASKS

RESTORE PROCESSOR
STATUS

RETURN TO
MAIN PROGRAM

Figure 31.

PUSH
PUSH
PUSH
PUSH
IN
MOV
Mvi
ouT
MV|
ouT
MVI
ouT
LXI
MVI
Mvi
ouT
IN
ANI
ADD
ADD
MOV
DAD
PUSH
El
PCHL

Di
MVI
ouT
POP
MoV
ouT
POP
POP
POP
POP
El
RET

; SBO ROUTINE — FINDS REQUESTING INPUT AND
BRANCHS TO CORRESPONDING SERVICE ROUTINE

D ; SAVE DE
B ; SAVE BC
H : SAVE HL
PSW ; SAVE A+FLAGS
SA7PTB : READ SA7 IMR
D,A ; SAVEIND
A, 80 H ; MASK SA77

SA7PTB : SA7 PORT A0=1
A, 66H ; SPECIFIC EOQI SA76
SA7PTA : SA7 PORT A0=0
A, 67H . SPECIFIC EOl M7
MPTA ; MASTER PORT AQ=0
H, 1200H ; JUMP TABLE START IN HL
B, OOH ; CLEAR B
A, OCH ; POLL SBO
SBOPTA ; SBO PORT A0=0
SBOPTA ; GET POLL WORD
07H ; LIMIT TO 3 BITS
A ; GET TABLE OFFSET
A ;
C.A ; OFFSETINC
B : HL NOW HAS TABLE ADR
D ; SAVE IMR

; ENABLE INTERRUPTS
; JUMP TO ROUTINE VIA TABLE

SBORET — DOES CLEAN UP AND EOI AFTER SBO INTERRUPT

; DISABLE INTERRUPTS

A, 20H ; NON-SPECIFIC EOI SBO
SBOPTA ; SBO PORT A0=0

D ; RESTORE IMR

AD ; SA7 IMR

SBOPTB ; SBO PORT A0=1

PSW ; RESTORE PSW

H ; RESTORE HL

B ; RESTORE BC

D ; RESTORE DE

; RE-ENABLE INTERRUPTS
; BACK TO MAIN PROGRAM

SBO Housekeeping

The SB1 service routine can be simplified some-
what since it is the bottom priority and no masks
need to be changed. Figure 32 shows the SBI1
routine. Like the SBO routine, a PCHL instruction
is used to transfer execution, therefore a separate
return routine is provided for all SB1 inputs.

The above format can be followed for any number
of inputs up to the limit of 512 although once tier
3 8259s are connected to tier 2 8259s above the

24

master 7 input, it becomes necessary to include a
section of code in the service routine to mask off
and restore the master lower priority inputs.

This application has expanded the presentation of
the cascading of 8259s and explained how to easily
increase the number of interrupt levels by simply
increasing the number of 8259s without adding
additional hardware.

SAVE PROCESSOR
STATUS

=

POLL SB1

I

CALCULATE Jump
TABLE ADDRESS

I

GO TO SERVICE
ROUTINE

SB1RET

NON-SPECIFIC
EQ! SB1

+

RESTORE PROCESSOR
STATUS

1l

RETURN

’

; SB1 ROUTINE — LOWEST PRIORITY SO NO MASKING

; SAVE DE

AVE BC

; SAVE HL

; SAVE A+FLAGS

; JUMP TABLE START IN HL
; CLEARB

; POLL SB1

; SB1PORT A0=0

; GET POLL WORD

LIMIT TO 3BITS

; CALCULATE OFFSET

; MOVEOFFSETTOC

; HLHAS TABLE ADR

; ENABLE INTERRUPTS

; GO TO SERVICE ROUTINE

; DISABLE INTERRUPTS
; NON-SPECIFIC EO! SB1
; S$B1PORT A0=0

RESTORE A+FLAGS
RESTORE HL

: RESTORE BC

RESTORE DE
RE-ENABLE INTERRUPTS

REQUIRED

$B1 : PUSH D
PUSH B
PUSH H
PUSH PSW
LX!I H,1220H
MVI B, 00H
MVI A, OCH
OUT SB1PTA
IN SB1PTA
ANl O7H
ADD A
ADD A
MOV C, A
DAD B
El
PCHL

; SB1RET — DOES CLEAN UP AND EOI FOR ALL $B1

: INTERRUPTS

SB1RET: DI
MVI A, 20H
OUT SB1PTA
POP PSW
POP H
POP B
POP D
El
RET

Figure 32. SB1 Housekeeping

RETURN

CONCLUSION

This application note has explained the 8259 in
detail and gives two applications illustrating the
use of some of the numerous programmable fea-

Intel Corporation

3065 Bowers Avenue

Santa Clara, California 95051
Tel: (408) 246-7501

TWX: 910-338-0026

TELEX: 34-6372

tures available. It should be evident from these

80/85 Family.

U.s.
REGIONAL SALES OFFICES

WESTERN MID-WESTERN
CALIFORNIA ILLINOIS
Inte! Corp.” Intel Corp.*
1651 East 4th Street 1000 Jorie Boulevard
Suite 150 Suite 224

Santa Ana 92701
Tel: (714) 835-9642
TWX: 910-595-1114

Oakbrook 60521
Tel: (312) 325-9510
TWX: 910-651-5881

EASTERN ATLANTIC
OHIO MASSACHUSETTS
Intet Corp.™ Intel Corp.*

8312 North Main Street
Dayton 45415

Tel: (513) 890-5350
TELEX: 288-004

Chelmsford 01824
Tel: (617) 256-6567
TWX: 710-343-6333

*Field Application Location

Printed in U.S.A/A253/0977/I0K BL

187 Billerica Road, Suite 14A

discussions that the 8259 is an extremely flexible
and easily programmed member of the Intel® MCS

OVERSEAS
MARKETING OFFICES

ORIENT

JAPAN

Intel Japan Corporation™
Flower Hill-Shinmachi East Bdg.
1-23-9, Shinmachi, Setagaya-ku
Tokyo 154

Tel: (03) 426-9261

TELEX: 781-28426

EUROPE

BELGIUM

Intel International™
Rue du Moulin & Papier
51-Boite 1

B-1160 Brussels

Tel: (02) 660 30 10
TELEX: 24814

