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INTRODUCTION 

The Intelm 8259 is a Programmable Interrupt Con- 
troller (PIC) designed for use in real-time, interrupt- 
driven microcomputer systems. The 8259 manages 
eight levels of interrupts and has built-in features 
allowing expandability up to 64 levels with the 
addition o f  other 8259s. A selection of program- 
mable priority rnvdes is available to reconfigure 
how the 8259 processes interrupt requests. Individ- 
ual interrupt inputs may also be masked under 
software control. These modes and masks may be 
dynamically changed by the software at any time 
during program execution. This means that the 
complete interrupt structure can be defined as 
required, based on the total system environment. 
The 8259 is part of the MCS-80185 Microcom- 
puter Family and as such, it interfaces to  the 80801 
8085 system with a niininlum of external hard- 
ware. 

This application note explains the 8259 as a com- 
ponent and shows its use in two typical applica- 
tions. These applications are an interrupt con- 
trolled power-faillauto-start scheme for a micro- 
computer system with battery back-up RAM, and 
a >G4 level interrupt-driven system. The battery 
back-up system will be described in detail and the 
conceptual software for the >64 level interrupt- 
driven system will be presented. 

The first section of this application note introduces 
the concept of interrupts and reviews how inter- 
rupts are handled by the Intel' 8080A Microproc- 
essor. It is fairly tutorial in nature, and may be 
skipped by the morc knowledgeable reader. The 
second section describes thc 8259 from a func- 
tional standpoint with explanation of the block 
diagram. Each device pin is explained in detail. The 
third section defines the various operating modes 
along with the specific software required. Short 
initialization and setup routines are given t o  illus- 
trate the programming concepts. The fourth, and 
final, section describes the applications mentioned 
earlier. 

CONCEPTS 

In microcomputer systems, there is usually a need 
for the processor to  communicate with various 
Input/Output devices such as keyboards, displays, 
sensors, and other peripherals. From the system 
viewpoint, the processor should spend as little time 
as possible servicing the peripherals since the time 
required for these 110 chores directly affects the 

amount of time available for other tasks. In other 
words, the system should be designed so that I/O 
servicing has little or no effect on the total system 
throughput. There are two basic methods of han- 
dling the I/O chores in a system: Status Polling and 
Interrupt Servicing. 

The Status Poll method of I/O servicing essentially 
involves having the processor "ask" each peripheral 
if it needs servicii~g by testing the peripheral's 
status line. If the peripheral requires service, the 
processor branches to the appropriate service rou- 
tine; if not,  the processor continues with the main 
program. Clearly, there are several problems in 
implementing such an approach. First, how often a 
peripheral is polled is an important constraint. 
Some idea of the "frequency-of-service" required 
by each peripheral must be known and any soft- 
ware written for the systern must accommodate 
this time dependence by "scheduling" when a 
device is polled. Second, there will obviously be 
times when a device is polled that is not rcady 
for service, wasting the processor time that it took 
to  do  the poll. And other times, a ready device 
would have to  wait until the processor "makes its 
rounds" before it could be serviced, slowing down 
the peripheral. 

Other problems arise when certain peripherals are 
more important than others. The only way to  
implement the "priority" of devices is to  poll the 
high priority devices more frequently than lower 
priority ones. It may even be necessary to  poll the 
high priority devices while in a low priority device 
service routine. It is easy to see that the Polled 
approach can be inefficient both time-wise and 
software-wisc. Overall, the Polled method of 110 
servicing can have a detrimental effect on system 
throughput, thus limiting the tasks that could be 
performed by the processor. 

A morc desirable approach in most systems would 
allow the processor to  be executing its main pro- 
gram and only stop to  service the 110 when told 
to  do so by the I10 itself. In effect, the device 
would asynchronously signal the processor when it 
required service. The processor would finish its 
current instruction and then jump to the service 
routine for the device requesting service. Once the 
service routine is complete, the processor would 
resunle exactly where it left off in the main pro- 
gram. 

This method of 110 servicing is called Interrupt. 
The status line of the peripheral is replaced by an 



"interrupt request" line. Asserting this line signals 
the processor that service is needed. Using inter- 
rupts, no processor time is spent testing devices, 
scheduling is not  needed, and priority schemes are 
readily implemented. It is easy to see that, using 
the Interrupt approach, system throughput would 
incrlase, allowing more tasks to  be handled by tlie 
processor. 

There arc two basic methods of  implementing the 
Interrupt approach: polled interrupts and vectored 
interrupts. Conceptually, in the polled interrupt 
method, the peripherals' "interrupt request" lines 
are combinatorially OR'd into one line that inter- 
rupts the processor if any peripheral required 
service. The processor then polls each peripheral t o  
determine the requesting device. In this scheme, 
the priority of tlie device is determined by its posi- 
tion in the polling sequence. Once the requesting 
device is found, tlie processor branches to  the 
corresponding service routine. In contrast, vectorcd 
interrupts are those in which the requesting device 
supplies information which allows the processor t o  
directly call the appropriate service routine. This 
 neth hod usually requires more hardware than the 
polled method. However. it allows much faster 
response t o  an interrupt since the polling time is 
eliminated. In simple vectored interrupt systems, 
all devices have the sarnc priority. This is some- 
times a limitation since the speed of the vectored 
method may be needed, while the prioritization of 
the polled method is also required; a flexible inter- 
rupt structure would have both. 

In order to  implement a truly flexible priority- 
vectorcd interrupt structure, a Programmable Inter- 
rupt Controller (PIC), such as the 8259, may be 
used. The 8259 functions as the overall manager of 
the interrupt-driven system and can implement 
both the polled and vectored interrupt structures. 
In the vectored structure it accepts interrupt 
requests from the peripherals, determines which 
of the incoming requests is the highest priority, 
ascertains whether the highest priority incoming 
request has higher priority than the interrupt level 
currently being serviced (if any) and then issues an 
interrupt to the processor based on the determina- 
tion. Since each peripheral usually has a unique 
service routine associated with it, the PIC, after 
interrupting the processor, provides a "vectored" 
CALL instruction to  point the processor directly 
to the servicc routine required by the interrupting 

device. In the polled structure, the same recluest 
priority determination is made, however software 

polls the 82.59 rather than the peripherals. When 
polled, the 8259 returns a data word indicating 
the highest priority peripheral reqi~esting serv!ce. 
The software then uses this data word t o  branch 
to the appropriate service routine. 

A variety of priority modes is a desirable feature 
of a PIC. Many options are conceivable; however, 
let's describe a few which are available with the 
8259 and will be mentioned later. 

Fully Nested - Each input is assigned a priority. 
Interrupt Request input IR7 receives the lowest 
priority while IRO receives the highest. A higher 
priority request will interrupt a lower priority 
service routine, but not vice versa. The lower pri- 
ority service routine will be resumed upon com- 
pletion of the higher priority routine. This is 
essentially a "general purpose" niode. 

Rotatirlg Priority - Like in the Fully Nested 
mode, each input is assigned a priority. How- 
ever, when an interrupt occurs and the appro- 
priatc service routine is executed, the priorities 
are rotated so that the most recently senriced 
input has the lowest priority. Thus, if there are 
N inputs, a serviced peripheral will have to  wait, 
in the worst case, until the other N-1 peri- 
pherals are serviced before receiving service again. 
This mode prevents "hogging" of the processor 
by a single peripheral and gives each input an 
equal chance at the processor. 

Specific Priority - This mode is similiar to the 
Rotating niode. The only difference is that the 
software can select the bottom priority lnput 
without an interrupt having t o  have occurred. 
Thus, the priority assignments may be changed 
at any time depending on the needs of the main 
program or the service routine. 

In the 8259, these modes are programnlable; 
that is, they may be changed dynamically under 
software control. Additionally, each mode may be 
modified by the use of interrupt masks. These 
masks allow individual inputs t o  be masked off; 
i.e., not  be able t o  cause an interrupt regardless of 
its priority. Each mask is under software control. 

Before we discuss how the 8259 handles interrupts, 
let's digress slightly to review how the 8080 itself 
handles interrupt requests. 

8080 INTERRUPTS 

A peripheral device can initiate an interrupt to the 
8080 by simpiy pulling the 8080's Interrupt pin 



(INT) high. The INT line is asynchronous, there- 
fore an interrupt request may be asserted at any 
time. The 8080 can, however, enable and disable 
interrupts under software control by use of the 
Enable Interrupt (EI) and Disable Interrupt (DI) 
instructions. These instructions either set (EI) or 
reset (DI) an internal interrupt enable flip-flop. 
The output  of this flip-flop is made available on 
the INTE (Interrupt Enabled) pin. Interrupts are 
disabled (INTE low) upon resetting the 8080. 

At the end of each instruction cycle, thc 8080 
exanlines the state of the INT pin and the INTE 
flip-flop. If interrupts are enabled and an interrupt 
request is being made (both pins high), the 8080 
enters an INTERRUPT machine cycle. During the 
INTERRUPT cycle, the 8080 resets the interrupt 
enable flip-flop (INTE goes low disabling response 
to further interrupts) and issues an Interrupt 
Acknowledge (INTA), by way of the System Con- 
troller 8228, t o  tell the interrupting device that it 
has the 8080's attention and nlay remove the INT 
assertion. In addition, the Program Counter (PC) 
is not incremented as it normally would be in 
normal machine cycles. This ensures that the 8080 
can return to the pre-interrupt program location if 
the PC is saved. At this point, the 8080 expects the 
interrupting device t o  place an instruction on the 
data bus. The 8080 is, in cffect, saying "Okay, 
now you have Iny attention. You are granted one 
wish. What will it be?" Any instruction nlay be 
used, but there are only two logical choices: a 
RESTART (RST) or  a CALL. The reason one of 
these two should be used is that both put the 
program counter on the  stack, allowing it t o  be 
restored after the interrupt service routine is 
complete. 

When a CALL instruction is placed on the data 
bus in response to  the Interrupt Acknowledge 
(m~), the 8080 saves the  program counter by 
pushing it on to  the stack and then issues two addi- 
tional INTAs by way of the 8228. In response, the 
interrupting device is expected to return two bytes 
which are the starting address of its service routine. 
The lower 8 bits of the address (LSB) are released at 
the first INTA and the higher 8-bits (MSB) are - 
released at the second INTA. Execution then starts 
at this destination address. Using a CALL instruc- 
tion in response t o  an interrupt is an extremely 
powerful tool in I/O servicing. However, a signifi- 

struction is provided in the 8080 instruction set. 

The RESTART (RST) instructions are actually 
special one-byte calls which have the destination 
address embedded within the 8-bit opcode. Execu- 
ting an RST causes execution to be transferred 
(vectored) t o  one of eight fixed memory locations, 
see Figure 1 .  Any of these addresses may bc used 
to  store the first instructions of an interrupt ser- 
vice routine. In simple systems, the desired RST 
instruction can be generated by a simple 8-bit 
buffer external t o  the interrupting device. Since 
the RST instructions are calls, the old program 
counter contents are placed on the stack. 

RST 

RST 0 

RST 1 

RST 2 

RST 3 

RST 4 

RST 5 

RST 6 

RST 7 

Figure 1. RST Instruction Format 

HEX DESTINATION 
OP CODE ADDRESS 

Return to the main program from an interrupt 
service routine is identical for both the CALL and 
the RST instructions. Assuming an equal number 
of pushes and pops from the stack during the 
service routine, the pre-interrupt program counter 
is on top of thc stack at the end of the routine. 
Executing a RETURN (RET) instruction pops the 
top of the stack into the program counter, causing 
the main program t o  take up whcrc it left off 
before receiving the interrupt. It is the service 
routine's responsibility t o  save and restore thc pro- 
cessor registers and status as appropriate. Remcm- 
ber that interrupts are disabled after an Interrupt 
Acknowledge so an EI instruction must be exe- 
cuted in the service routine in order for the 8080 
to  respond to  further interrupt requests. 
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cant amount of hardware is usually required in 
order t o  ensure that the correct sequence of data 8259-8080 OVERVIEW 

is placzd on the data bus. For systems not having Figure 2 shows the 8259- 8080 system bus inter- 
a large number of peripherals, a special CALL in- face. It is recommended that an 8228 (or 8238) 
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System Controller and Bus Driver be used in con- 
junction with the 8080 when an 8259 is used 
to  manage interrupts. This combination ensures 
that the 3 required INTA pulses occur in response 
to  an interrupt. Using the 82 12 I/O Port as an 8080 - 
status latch does not  provide the necessary INTA 
sequence. 

The normal sequence of events that occur when an 
interrupt request is asserted is as follows: 

1. One o r  more Interrupt Recluest lines (IRO- 
IR7) is raised high signaling the 8259 that 
peripheral service is being requested. 

2.  The 8259 accepts the requests, resolves the 
priorities, and sends an INT to  the 8080. 

3. The 8080 suspends the program flow at the 
end of the current instruction (INTE must be 

-- 

high), and issues an INTA by way of the 
8228. 

4. Upon receiving the INTA, the 8259 places a 
CALL instruction onto the data bus. 

ADDRESSBUS I161 7 

CASCADE 
LINES 

SLAVE J 
PRaG INTERRUPT 

REOUESTS 

Figure 2. 8259 Interface to 8080 Standard System Bus 

8259 BLOCK DIAGRAM 

A block diagram of the 8259 is shown in Figure 3. 
As can be seen from the figure, the 8259 consists 
of eight major blocks: the Interrupt Request 
Register (IRR), the In-Service Register (ISR). the 
Interrupt Mask Register (IMR), the Priority Re- 

5. This CALL causes the 8080 to issue two addi- solver (PR). the Cascade Buffer/Comparator, the 

tional INTAs by way of the 8228. Data Bus Buffer. and logic blocks for Control and 
Read/Write. We'll go quickly over the individual 

6. These additional W A S  allow the 8259 to  blocks directly related to  interrupt handling; the 
release the address for the service routine of IRR, ISR, IMR. PR, and the Control logic. Then. 
the interrupting peripheral onto the bus. by way of a conceptual diagram, we show how 

7. This completes the 3-byte CALL. Execution these various blocks interact. The remaining func- 
is vectored to  the peripheral's service routine. tiorial blocks are then discussed. 

PIN CONFIGURATION 
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WRITE INPUT 
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CHIP SELECT 

SLAVE PROGRAM INPUT 

INTERRUPT OUTPUT 
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BUFFER 

INTERRUPT MASK REG 
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CASZ - 
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Figure 3. Block Diagram and Pin Configuration 
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Basically, interrupt requests are handled by three 
"cascaded" registers. The Interrupt Request Regis- 
ter (IRR) is used to  store all the interrupt levels 
requesting service; the In-Service Register (ISR) 
stores all the levels which are being serviced; and 
the Interrupt Mask Register (IMR) stores the bits 
of the interrupt lines to be masked. The Priority 
Resolver (PR) looks at the IRR, ISR, and IMR and 
determines whether an INT should be issued by the 
Control logic t o  the 8080. 

structure is quite common and allows WIRE-OR'ed 
interrupt requests (the actual interrupting device 
must be determined via software as mentioned 
before). But (watch out!) the request must be 
removed shortly after acknowledgernent or  an- 
other, unwanted, interrupt could be generated. 

The edge sensitive input requires only an inactive 
t o  active transition of the request input. This tran- 
sition is saved in a flip-flop, so the active level need 
be maintained only long enough t o  serve as a clock 

Fig~lre 4 shows conceptually how the Interrupt pulse t o  the flip-flop. The level may remain active 

Request ( IR) input is handled and how the various an arbitrarily long time without danger of gener- 
ating an unwanted interrupt. It must ultimately registers interact. The figure represents one of eight 
return inactive before another active transition can 

"daisy-chained" priority cells; one for each IR 
be sensed. This structure is handy for handling input. The input circuitry is rather novel so it is 

discussed first. interrupts from transient events, however it pre- 
vents WIRE-OR'ing since this connection does not  
provide the transitions needed. Be careful of edge 

INPUT CIRCUIT inputs; noise on the request line could generate an 
erroneous interrupt. 

There are two classical ways of sensing an active - 
interrupt req~lest :  a level sensitive or  an edge sensi- The 8259 uses an edge lockoirt input which shares 
tive input. A level sensitive input requires the some characteristics with each o f  the above two 
request input go to the active state and remain techniques. The edge lockout input requires that a 
active ~ ln t i l  that interrupt is acknowledged. This request transition from the inactive t o  the active 
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state (as in edge sensitive) and then remain active 
(as in level sensitive) until the request is acknowl- 
edged. The inactive-to-active transition locks out 
all further requests on  that input until the request 
has been acknowledged and the input has returned 
to  the inactive state. Thus, the user need not worry 
about quickly removing the request after acknowl- 
edgement, in fear of generating a second interrupt. 
Figure 5 illustrates the timing required for the edge 
lockout input. 

PRIORITY CELL 

Refer back to  Figure 4 and follow an interrupt 
request thru the priority cell. First, notice that an 
inactive IR input sets the edge sense latch, arming 
that input. Then, an active IR input combinatori- 
ally propagates the request (assuming the input is 
not masked) t o  the Priority Resolver. The PR looks 
at the incoming requests and the currently in- 
service interrupts t o  ascertain whether an interrupt 
should be issued to  the 8080. Assume for clarity 
that the request is the only one incoming and no 
requests are presently in service. The  PR then 
causes the Control logic to  pull the INT line t o  the 
8080 high, interrupting the processor. When the 
8080 is finished with the instruction being exe- 

- 

cuted, it signals the 8228 t o  return an INTA. This - 
INTA causes the 8259 t o  place a CALL ilistruction 
on the data bus and to freeze the IRR (note the 
INTA-Freeze Request timing diagram). Thus. the 

requesting IR input must remain active at least - 
until after the first INTA. With the input frozen 
and latched, the priority is again resolved by the 
PR, this time to  determine the appropriate destina- 
tion address for the CALL. The CALL instruction 
causes the 8080 t o  generate two additional INTAs. 
During these I m  the destination address of the 
interrupt service routine is placed on the data bus 
by the 8259. (Don't worry for now about where 
the address comes from.) Immediately after the - 
INTA sequence, the PR then sets the correspond- 
ing bit in the ISR and simultaneously clears the 
edge sense latch, which clears the IRR bit. hot ice 
the state of the edge sense latch (don't forget that 
the IR input may still be active). With the edge 
sense latch cleared, the still active IR input can not 
propagate thru the gate at the IRR input,  thus 
further requests from this level are inhibited. The 
IR input must return t o  the inactive state, setting 
the edge sense latch and "opening" the IRR gate, 
before another request on the input can be recog- 
nized. 

While off in the interrupt service routine, don't 
forget that the ISR bit is set. This prevents subse- 
quent requests from this, and lower priority levels, 
from causing interrupts. I t  is the service routine's 
responsibility to  clear the ISR bit with an End-of- 
Interrupt (EOI) command at the end of the service 
routine, telling the 8259 that it is con~plete. (How 
this is done is explained when 8259 prograniming 
is covered.) 

- ! 
INTA 2 3 

LATCH EARLIEST wv IR SERVICE LATCH 
ARMED CAN BE ROUTINE ARMED 

REMOVED 

Figure 5. Edge Lockout Timing 



What would have happened if the input had been 
masked; i.e., the Interrupt Mask Register bit was 
set? Nothing. The active state of the 1R input 
would propagate thru the IRR but the set IMR bit 
would stop it before entering the PR. Thus, no 
interrupt could be generated. The IMR only acts 
on the output  of the IRR, however, and if the pro- 
gram being executed somehow resets the IMR bit, 
the PR would then see our active request and an 
interrupt would be generated if appropriate. 

Now that the functional blocks directly related to 
interrupt request processing have been discussed, 
let us discuss the remaining blocks. 

DATA BUS BUFFER 

This 3-state, bidirectional, 8-bit buffer is used to  
interface the 8259 to  the 8080 system data bus. 
Conlrol words, status information, and the destina- 
tion addresses are transferred through the Data Bus 
Buffzr. 

READIWRITE CONTROL LOGIC 

The function of this block is to  control the pro- 
gramming of the 8259 by accepting OUTput com- 
~nands  from the 8080. The Initialization and Oper- 
ation Command Word Registers which store the 
various control formats are located in this block. 
Status reads are also corltrolled by this block using 
8080 INput commands. 

CASCADE BUFFER/COMPARATOR 

As alluded t o  earlier, nlultiple 8259s can be com- 
bined to expand the number of interrupt levels. A 
master-with-slaves relationship of  cascaded 8259s is 
used for the expansion. The cascading of 8259s 
will be the subject of a complete section later in 
this note. 

PIN IIEFINITIONS 

Name (pin) 110 Definition 

vcc (28) I +5 volt supply 

GND ( 14) I Ground 

B ( l )  I Chip Select. A low on this pin 
enables commi~nication be- 
tween the. CPU and the PIC. 

- 

WR (2) I A low on this input when 
is low enables the PIC t o  ac- 
cept command words from the 
CPU. 

Name (pin) 110 Definition 

RD (3) I A low on this input causes the 
PIC to output  its status on the 
data bus when a is low. 

DB7-DBo 110 The DB pins form a 3-state, 
(4-1 1) bidirectional data bus which 

is connected t o  the CPU group 
(8080, 8224, 8228) data bus. 
Control and status informa- 
tion are transferred over this 
bus. 

CASo-CAS2 IjO Cascade Lines. The CAS pins 
(12,13,15) form a private 8259 bus to  

control multiple 8259s. These 
pins are outputs for a master 
8259 and are inputs for a slave 
8259. 

p ( 1 6 )  I Slave Program. The state of  
this pin defines whether the 
8259 is a master ( s = l )  or  a 
slave (@=O). 9 controls the 
110 direction of the CAS pins. 

INT (17) 0 Interrupt. This pin goes high 
whenever a valid interrupt re- 
quest is asserted. INT is con- 
nected t o  the interrupt pin of 
the CPU. 

I R ~ - I R ~  I Interrupt Request. Interrupt 
(1 8-25) requests are asserted by the 

peripherals. A request is made 
by pulling one of the IR pins 
high. 

- 
INTA (26) I Interrupt Acknowledge. This 

pin is connected to  the CPU 
group interrupt acknowledge 
output.  Three low pulses on 
this pin causes the 8259 t o  
place a CALL instruction and 
a destination address on the 
DB pins. (One byte for each 
INTA pulse.) 

AO (27) I This pin acts in corljunction 
with the CS, WR, and RD pins 
when Command Words are 
written and status is read from 
the 8259. It is typically con- 
nected to  the CPU A. address 
line. 



PROGRAMMING THE 8259 anywhere in the memory map, starting o n  an even 

As the name implies, the 8259 is programmable; 
operation is controlled via software thru command 
words. There are two types of command words 
used for the 8259:  Initialization Command Words 
(ICWs) and Operation Command Words (OCWs). 

INITIALIZATION COMMAND WORDS (ICWs) 

Before normal operation begins (i.e., after a system 
power-up), each 8259 in the system must be initial- 
ized by two or three ICWs. The ICWs tell each 
8259:  

1. If there are other 8259s in the system, and 
how they are connected. 

2. The starting address of the service routines. 

3. Whether the service routines are spaced 4 o r  8 
bytes apart. 

Issuing an ICWl starts the 8259 initialization 
sequence. Once started, the initialization sequence 
must be completed before the 8259 can process 
interrupt requests. This applies t o  each 8259 in a 
multiple 8259 system. During the initialization 
sequence, the following occur automatically: 

1 .  Each edge sense circuit is reset. Thus an IR 
input must make an inactive t o  active transi- 
tion, after initialization, t o  generate an inter- 
rupt.  

2. The Interrupt Mask Register is reset (no IR 
inputs masked). 

3. IR7 is assigned priority level 7 

4.  The Status Read and Special Mask mode flip- 
flops (explained later) are reset. 

Each IR input has an address in memory associated 
with it. It  is this address that is placed on the bus 
by the 8259 in response t o  the INTA pulses after 
the CALL is placed on the data bus. The addresses 
for all eight IR inputs are formatted in equally 
spaced intervals of either 4 or  8 bytes. If the ser- 
vice routine for a device is short, it may be possible 
to fit the entire routine within an 8-byte interval. 
Usually, however, the service routines require more 
than 8 bytes and the 4-byte interval is used to  store 
a Jump (JMP) instruction which directs the 8080 t o  
the appropriate routine. The 8-byte interval main- 
tains compatibility with current 8080 RESTART 
instructions software, while the 4-byte interval is 
best for a compact Jump table. For  each 8259, the 
starting address for this 3 2  o r  64-byte page is pro- 
grammable during initialization and can be located 

page boundary. To  form the 16 bits needed for 
each address, address bits A15-A6 are user sup- 
plied in the ICWs and bits A4-AO are inserted by 
the 8259. As's generation depends upon whether 4 
or  8-byte intervals are programmed. For 4-byte 
intervals, you program A5 in ICWl. The 8259 sup- . - 

plies A5 for the 8-byte interval selection. Figure 6 
shows how the address is developed for each IR 
input. 

REQUEST 
INPUT 

8-BYTE INTERVAL- 
A15-ABSUPPLIED IN 

ICWl AND ICW2 

A4 A3 A2 A1 A0 
- - 

0 0 0 I 1 0  

0 1 0 1 1 0  

1 0 0 0 0  

1 1 0 I l O  

0 0 0 1 1 0  

0 1 0 u o  

1 O O l 1 0  

l l O U 0  

4 BYTE INTERVAL- 
~ 1 5 - A 5  SUPPLIED IN 

ICWl AND ICW2 

A4 A3 A2 A1 A0 A5 

0 0 0 0 0 1  0 

0 0 1 0 0  0 

Figure 6. Address Development 

0 1 0 0 0  

0 1 1 0 0  

1 0 0 0 0  

1 0 1 0 0  

1 1 0 0 0  

1 1 1 0 0  

The formats for ICW 1 and ICW2 are shown in Fig- 
ure 7. The 8259 interprets any command with 
Ao=O, Do=O, and D4=1 as an ICWI. Note that 
address bit A0 is used as an additional control 
input for all command words. Bits F and S are the 
only yet undefined bits. Bit F (Format) determines 
the CALL address interval. If F = l ,  then addresses 
are in 4-byte intervals; if F=O, then the intelval is 
8 bytes. Bit S (Single) indicates if there is more 
than one 8259 in the system. If S = l ,  there is only 
a single 8259;  S=O means multiple 8259s. ICW2 
simply supplies the MSB of the address used as the 
start of the service routine page and is sent with 
A()= 1. 

0 

0 

1 

1 

1 

1 

If the system contains multiple 8259s (ICWI bit 
S=O), an additional ICW is needed: ICW3. This 
word controls the master-slave relationship t o  
ensure the correct 8259 places the service routine 
address on the bus. Multiple 8259 systems ill gen- 
eral, and ICW3 in particular, are discussed in an- 
other section. 



1 =SINGLE 
0 = NOT SINGLE 

A7-5 OF LOWER 

ROUTINE ADDRESS I 
c 

ICWZ 

"0 "7 4 4 ''a D 

CALL ADORESS INTERVAL 
1 - INTERVAL IS 4 
0 = INTERVAL IS B 

UPPER ROUTINE '-1 ADDRESS I 
ICW3 (MASTER DEVICE) 

I I 

ICW3 (SLAVE DEVICE1 

% "7 D6 4 04 D? D7 Dl Do 

- 

DON.T 
CARE 

1 = IR INPUT HAS A SLAVE 
0 = IR INPUT DOES NOT HAVE 

A SLAVE 

I I SLAVE It ' l l '  

I I 

NOTE 1. SLAVE ID IS E Q U A L T O T H E  CORRESPONDING MASTER IR INPUT. 

Figure 7. Initialization Command Word Format 

Figure 8 shows the flow required for initialization. 
ICWl is issued first, initiating the sequence. ICW2 
must follow as the next command. With a single 
8259, no ICW3 is required and the 8259 is ready to  
process interrupt requests immediately following 
ICW2. In order t o  ensure the integrity of any 
initialization or command sequence, interrupts 
must be disabled (by executing a DI instruction) 
over the initialization section of code. (Don't for- 
get that interrupts are disabled automatically after 
the 8080 is reset.) Two typical initialization se- 
quences are shown in Example 1. 

READY TO ACCEPT REDUEST 
IN FULLY NESTED MODE 

Figure 8. Initialization Flow 
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requests can generate an interrupt. However, these 
interrupts are only acknowledged if the 8080 has 
enabled interrupts, by executing an EI instruction, 
since the preceding interrupt. Figure 9 illustrates 

9 ; 
1 8  : t X P M P i . t :  I N  A l l N L L E  8:51 SYSTE+l,  TnC 8 2 5 5  ii I N I T I A L I Z E D  
1 1  ; FOR A l - ~ ~ l t  I N ' I L H ~ A L  J L M P  TABLL STARTING A T  3 9 6 B H  

this point. 
I '  ; 

; O I S R U L t  L h T E h Y L P l S  FOL ( 

A . 7 6 H  ; f = l , i = l ,  A 6  b A5:l 
Y T i 9 A  ; B l i l  PCPT A 0 - 3  I C k i  
A , i Y h  :Hbb L A L L  RDOh3a5  bilf 
P T 5 9 8  ; a 2 1 5  P O R l  & O i l  I L W 2  

. LNhBLt. LNTLHhLIPTa 

; i = O . i = l , A 7 - A S - i O  
; t i 2 5 5  POP? A # = @  I C Y 1  
;ns? L A L L  A O O ~ L ~ ~  B Y T L  
; 8 2 5 9  PORT A O = l  1CU2  
: Lh2"LE IhT>&PL>,S 

Example 1. Initialization Sequences 

Once initialized, the 8259 is controlled using Opcr- 
ation Command Words. These words control the 
changing of priority modes, interrupt masks, and 
perform the End-of-Interrupt housekeeping. 

OPERATION COMMAND WORDS (OCWs) 

After initialization, the 8259 is ready to accept 
interrupt requests on  the IR inputs. However, 
during operation, the 8259 can be commanded to 
operate in a variety of  priority modes through the 
Operation Command Words (OCWs). The various 
modes and their associated OCWs are described 
below. 

Fully Nested Mode 

The 8259 handles requests in the Fully Nested 
mode without any OCW being written. In this 
mode, the 1R inputs are assigned priorities such 
that IRO has the highest priority while 1R7 has the 
lowest. When an interrupt is acknowledged, the 
highest priority request is determined and its 
address vector is placed on the data bus. In addi- 
tion, the corresponding bit in the ISR is set. This 
bit remains set until an End-of-Interrupt command 
is received by the 8259 from the service routine. 
While the ISR bit is set, all further requests of  the 
same and lower priority are inhibited from gener- 
ating an interrupt t o  the 8080. Higher priority 

MAIN PROGRAM 

5= 
INTERRUPT lR3SERVlCE 

l R l  SERVICE 1 ''L] ROUTIN6 

Figure 9. Fully Nested Example 

During the main program, IR3 rnakes a request. 
Since interrupts are enabled, the 8080 is vectored 
to  the IR3 service routine. During the IR3 routine, 
I R l  asserts a request. Since IRI has higher priority 
than IR3, an interrupt is generated. Because the 
8080 disabled interrupts in response t o  the IR3 in- 
terrupt, the IR1 interrupt is not acknowledged 
until an EI instruction is executed. Thus the IR3 
routine has a "protected" section of code over 
which no interrupts are allowed. The IR1 routine 
has no such "protected" section since an EI instruc- 
tion is the first one in its service routine. 

What is happening to  the ISR register? While in the 
main program, no ISR bits are set since no inter- 
rupts are in-service. When the 1R3 interrupt is 
acknowledged, the ISR3 bit is set. When the 1R1 
interrupt is acknowledged, both the ISRl and the 
ISR3 bits are set, indicating that neither routine is 
complete. At  this time, only IRO could generate an 



interrupt since it  is the only higher priority input again. OCW2 contains three commands which sup- 
from those presently in-service. port rotating priority: two involve End-of-Inter- 

T o  terminate the I R l  routine, the routine must 
infonn the 8259 that it is complete by  resetting its 
ISR bit. It does this by  executing the EOI com- 
mand. The format for this command is shown in 
Figure 10. Note that the  format is independent of 
the interrupt level and is thus called a Non-Specific 
EOI. The command simply resets the highest pri- 
ority ISR bit which is set. This is necessarily the 
correct bit since, in the  Fully Nested mode, the 
highest ISR bit corresponds t o  the last level 
acknowledged; which must have been a higher 
priority than other in-service levels in order to 
generate the interrupt in the first place. 

OCWZ NON SPECIFIC EOI 

D A T A  BUS FIELD 

A O )  0 7  0 6  D 5  D4  0 3  DZ D l  DO 

0 O ~ O 1 l l O O O 1 o o  

Figure 10. Non-specific EOI Command Format 

rupt [Rotate-at-EOI (Auto) and Rotate-at-EOI 
(Specific)] and one (Set-Priority), is independent 
of EOI. OCW2 contains one additional command 
which is not  directly related t o  rotating priority 
bu t  is sometimes used in conjunction with it: 
Specific EOI. 

Set-Priority Command 

The Set-Priority Command in OCW2 allows the 
programmer t o  select the bot tom priority device 
independently of an EOI; that is, without affecting 
the ISR. Figure 1 1 shows the format for the Set- 
Priority Command. L2, L1, and LO code (in BCD) 
the IR input t o  be assigned the  lowest priority. The 
priority of the remaining inputs are assigned ac- 
cordingly. Example 2 illustrates the use of  the Set- 
Priority Command. 

OCWZ SET PRIORITY 

, DATA  BUS FIELD 

A 0  D7 D6 D5 D4  D3 D2  D l  DO IR LEVEL TO BE PUT 
0 ,  1 ,  l o o  O J L Z ' L ~ ~ L O  A T  LOWEST PRI ORITY 

Getting back t o  the example, the EOI command - - 

L O O  1 0 1 0 1 0 1 

for the I R l  routine has been executed, resetting L ~ , O  o 1 I o o 1 I 

the ISR1 bit. 1 ~ 2 0  0 0 0 1 1 1 1 

The RET instruction transfers execution back t o  
the IR3 routine. IRO-IR2 could now interrupt the 
IR3 routine again, since only the IR3 bit in the 
ISR is set. No further interrupts occur in the ex- 
ample, so the Non-Specific EOI command in the 
routine resets the ISR3 bit this time and the RET 
instruction causes the main program to  resume at  
the pre-interrupt location. One important thing t o  
remember: the non-specific EOI command should 
only be used when in the Fully Nested mode. 
Other EOI-type commands are used when in other 
modes. Let us discuss those other modes now. 

Figure 11. Set-Priority Command Format 

BOTTOM PRIORITY IR6CORRESPONDS TO IRZ BEING LEVEL 4. THUS L Z -  1. 
L 1  = 1. AND LO-0 IN THF SET PRIORITY COMMAND 

BEFORE 
PRIORITY INPUT .~~ ~ 

HIGHEST 5 

6 

7 

0 

1 

2 

3 

LOWEST 4 

AFTER 
INPUT 

7 

0 

1 

2 

3 

4 

5 

6 

Example 2. Set-Priority Example 
Rotating Priority Commallds 

The Rotating Priority Commands serve in applica- 
tions where the interrupting devices are of equal 
priority such as conlmunication channels. The 
concept underlying rotating priority is that once a 
peripheral is serviced, all other  equal priority per- 
ipherals should be given a chance t o  be serviced 
before the original peripheral is serviced again. 
This can be accomplished by assigning a peripheral 
the lowest priority after being serviced. Thus, in 
the worst case, the device would have t o  wait until 
all other devices are serviced before being serviced 

Rotate-at-EOI (Auto) Command 

This command represents the "general purpose" 
implementation of Rotating Priority. When the 
Rotate-at-EOI (Auto) command is executed, the 
highest priority ISR bit is reset and priorities are 
rotated so that the request input of the ISR bit just 
reset is assigned the lowest priority. The format for 
the Rotate-at-EOI (Auto) command is shown in 
Figure 12. Since rotating priority implies that all 
peripherals are of equal importance, the service 



routines are usually sacrosanct; that is, the EI in- 
struction is placed at the end of the routine (after 
the EOI) t o  ensure that the routine will not be 
interrupted. Example 3 shows the effect of execut- 
ing a Rotate-at-EOI (Auto) command. 

EXAMPLE: WE ARE IN  THE IR5 SERVICE ROUTINE AND WISH TO SET IR3 THE 
BOTTOM PRIORITY WHEN DONE 

IR7 
I s n  

IRO 
PRIORITY 

BEFORE ROTATE AT EOI ISPLCIFICI 0 1 0 1 1 0 1 0 1 0 1 0 HIGHEST 5 I 
LOWEST 4 

ROTATE-AT EOI (SPECIFIC1 L 2 =  0. L 1  = 1. LO-1 

I R7 
ISR 

AFTER ROTATE AT EOl (SPECIFIC) I 0 ' 0 1 1 I 0 I 0 ) 0 

OCWZ ROTATE AT EOI IAUTOI  

1 DATA  BUS F IELD  

Figure 12. Rotate-at-EOl (Auto) Command Format 

IR7 
ISR 

AFTER ROTATE AT  EOI IAUTOl  
LOWEST 4 

EXAMPLF IR4 IS PRESENTLY IN  SERVICE WE WANT TO ROTATF IR4 TO BOTTOM 
PRIORITY AT  EOI 

IR7 
ISR 

IRO 
PRIORITY 

Example 3. Rotate-at-EOl (Auto) 

BEFORE ROTATE AT  EOI (AUTO1 

Example 4. Rotate-at-EOl (Specific) 

0 ' 0 1 0 1 1 1 0 ( 0 0 1 0 

If the rotation of priorities is not desired, the 
Specific-EOI command is used. 

HIGHEST 0 
1 

LOWEST 7 

Specific-EOI Command 

The Specific-EOI command is identical to the 
Rotate-at-EOI (Specific) command except that 
priorities are not rotated after the ISR bit is reset. 
The Specific-EOI command format is shown in 
Figure 14. 

When using the commands that rotate priorities, it 
is possible that the 8259 will not be able to  deter- 
mine the last level acknowledged (especially if 
nesting is allowed). If Rotate-at-EOI (Auto) is the 
only command used to reset ISR bits, then there is 
no problem. When a number of different com- 
mands are used a problem could occur. To prevent 
the 8259 from becoming confused. two conlmands 
that reset specific ISR bits are provided: the 
Rotate-at-EOI (Specific) and the Specific EOI 
commands. 

OCWZ SPECIFIC EOl 

DATA  BUS F IELD  

A 0  D7 0 6  D 5  D4  0 3  DZ D l  DO 

ISR BIT TO BE RESET 

( 0 1 2 3 4 5 6 7  

-- i L 0 ' 0  1 0  1 0  1 0  1 

L 1 0  0 1 1  0 0 1 1  

L Z O  0 0 0 1 1  1 ,  

Rotate-at-EOI (Specific) Command 

This command ensures that the correct ISR bit is 
reset at the end of a service routine because the bit 
to  be reset is specified in the command itself. Addi- 
tionally, the priorities are rotated so that the spe- 
cified level is at the bottom. The format for the 
Rotate-at-EOI (Specific) command is shown in 
Figure 13. Example 4 illustrates this command. 

OCW2 ROTATE A T  EOI (SPECIFIC] 

DATA  BUS F IELD  

A 0  D 7  0 6  0 5  D4  D3  D2  D l  0 0  ISR BIT TO BE RESET AND IR 

0 1 1 :  1 ' 0  1 0 , L 2 1 L 1 L 0  LEVEL TO BE PUT AT  LOWEST PRIORITY 
0 1 2 3 4 5 5 7  

- 

L 0 0 1 0 1 0 1 0 1  

L 1 l o  0 1 1  0 0 1 1  

L 2 0 0 0 0 1 1 1 1  

Figure 13. Rotate-at-EOl(Specific) Command Format 

Figure 14. Specific EOI Command Format 

In summarizing the various commands which reset 
ISR bits, some words of caution are appropriate. 
If only the Fully Nested mode is used, the Non- 
Specific EOI can be used without problems. For 
any other mode, it is good practice to  use the End- 
of-Interrupt commands which specify the ISR bit 
to be reset. No additional code is required and the 
reassurance of an unconfused 8259 during system 
debug is worth the effort. The OCW2 command 
words are summarized in Figure 15. 



OCW2 COMMAND SUMMARY 

ROTATE-AT-EOI (AUTO) 1 RESET HIGHEST ISR BIT 1 O (I O O O O O AND ASSIGN LOWEST PRIORITY 1 RESET ISR SPECIFIED BY L2-LO ROTATE-AT-EOI (SPECIFIC) 0 1 1 1 0 0 L2 L1 LO AND LOWEST 

OPERATION 

RESET HIGHEST ISR BIT 

RESET ISR SPECIFIED BY L2-LO 

COMMAND 

A0 

SET-PRIORITY I 0 1 1 0 0 0 L2 L1 LO I SET L2-LO LOWEST PRIORITY 

DATA BUS FIELD 

D7 D 6  D5 D4 D 3  D2  D l  DO 

Figure 15. OCW2 Command Summary 

Interrupt Masks IOCWI ) 

OCWl controls the Interrupt Mask Register (IMR). 
Through OCWI, individual bits in the IMR may be 
set or reset by the software a t  any time. As stated 
earlier, the IMR acts only on the o u t p ~ l t  of the 
Interrupt Request Register (IRR). Even with an IR 
input masked, it is still possible to  set the IRR bit. 
However, no interrupt can be generated from the 
request since the IMR blocks the Priority Resolver 
from seeing the set IRR bit. If the IMR bit is reset 
while the IRR bit is set, the Priority Resolver can 
then see the IRR bit and an interrupt could be gen- 
erated. After initialization, any command with 
AO=l is interpreted as an OCW I ,  see Figure 16. 

NON-SPECIFIC EOI 

SPECIFIC EOI 

But resetting the ISR bit is irreversible and the 
lower priority devices remain enabled until another 
interrupt on your level occurred. The effect of the 
ISR bit can be temporarily suspended by  first 
masking the input that is in-service and then setting 
the Special Mask Mode. Once SMM is set, it re- 
mains in affect until it is reset. The format t o  set 
and reset SMM is shown in Figure 17. The only 
requirements for SMM are that the level corre- 
sponding to the routine setting SMM must be 
masked through OCWl and that interrupts are 
enabled. Example 5 shows how t o  enable inter- 
rupts over a particular section of code. 

0 0 0 1 0 0 0 0 0  

0 0 1 1 0 0 L2  L1 LO 

DCW3 SPECIAL MASK MODE 

I DATA BUS FIELD 1 

DCWl INTERRUPT MASK 

I DATA BUS FIELD 1 

( IR INPUT 

1 = MASK SET 

0 =MASK RESEl 

Figure 16. Interrupt Mask Command Format 

Special Mask Mode (OCW3 j 

The last Operation Command Word is OCW3. This 
word controls two additional modes plus the read- 
ing of the various registers. The first mode is the 
Special Mask Mode (SMM). 

Let us say that you are in a service routine that con- 
tains a section of code where you want all inter- 
rupts enabled: that is, you want t o  allow your lower 
priority devices t o  generate interrupts. You could 
accomplish this by using an EOI command t o  reset 
the ISR bit corresponding t o  the routine we are in. 

S1 S2 

care 
1 1 SET SMM 

1 0 RESETSMM 

Figure 17. Special Mask Mode Command Formats 

: L X A I P L L :  I k 4  I S  IL-SERVICE A N C  W E  WISIi TO E h A b L L  LOhLk 
DHlOilTi INPLTS OVEk A P h I T L C U L A H  b t . C l I U h  G t  C O L E .  

;Ikl S t R V I C t  R O O T I h E  W n l C H  i O h T A I h S  S F b C I h L  MASK MOLE 

1 R 4 :  L I  L Y A B L E  INTtRRLPlS 

; I 5 1  PART OF itRYlCt R v V i l N L  - 
; L O W E R  P l I n k l l Y  I N P U T S  r l i n u l t ~ .  

01 ;CISABLL I N l l h k L P T S  i ' , k  CuIIANLS 
HVI A . 1 8 "  ,hASk l k l  
0 b 1  01598 : h i 5 9  PUHT A d = I  
H V I  A . 4 8 H  ; S E T  3UU 
D C 1  P 1 5 9 A  ; b z 5 Y  Y U R T  A8.n 
i 1 ;LhA6LL I N T L H L U P I S  

; 1 H C  P A L T  d i  > t R b I C t  R O U T I N E  - 
;L(iwbk I k I c . i l l i  L'IPUTL L1SABLEI.  
; H L l i T  C L l r l A l h  ; ,rni l i 'HIA?'E t-01- 

Example 5. Special Mask Mode 



Note that SMM applies to  all masked levels when instance, the Polled mode is the only way to take 
set. If IRI interrupts the IR4 routine in the above advantage of the 8259's prioritizing features. The 
example while SMM is set, and thcn masks itself, INT pin of the 8259 is connected to  the Interrupt 
1R2 and 1R3 are enabled. Request line of the system bus while thc 8259 

INTA pin is simply held high. The 8080 card must 

Polled Mode (OCW3) 

The 8259 also supports the polled interrupt 
method of  110 cervicing n~entioned earlier. Rathcr 
than having the processor poll the peripherals in 
order to  find the actual interrupting device, the 
processor polls the 8259. This allows the use of all 
of the aforementioned priority modes. Addition- 
ally, both the polled and vectored interrupt meth- 
ods can be uscd within the same program. 

Bacically. the polling is irnplemcntcd by allowing 
the programmer to  initiate a software controlled 
interrupt acknowledge through the "P" bit in 
OCW3. This interrupt acknowledge behaves exactly 
as the first "normal" hardware acknowledge; that 
is, the ISR bit of the highest priority input is set. 
The 8259 thcn enables a special word onto  the 
data bus. This word shows whether an interrupt 
has occurred and what the highest ISR bit is. 

To  initiate a poll, interrupts must first be disabled; 
either by executing a DI instruction o r  from having 
an interrupt occur. Then an OCW3 with P= l  is sent 
to  the 8259 using an OUTput command (or a WR 
pulse). The next RD pulse (possibly frorn an INput 
command) is treated as an interrupt acknowledge, 
and the following word is placed o n  the data bus: 

POLLED WORD 

WHERE I - 1 I F  INTERRUPT OCCURHtD 
AND W2-WO CODE IN  BCD THE 
HIGHEST PRIORITY ISR BIT SET 

Service to the requesting device is achieved by the 
software decoding this word and branching to the 
appropriate service routine. Every time a poll is to  
be performed, the OCW3 must be written before 
the RD pulse. If a poll is performed without an 
interrupt having occured o r  with n o  request inputs 
in-service. the returned word is 1=0 and LO, L1, 
and L3= 1. The forrnat for OCW3 Poll Command is 
shown in Figure 18. 

To  illustrate the Polled mode, consider a system 
where t l ~ e  8259 and the 8080 are o n  different 
cards, and the system bus does not contain a - 
line for thc INTA interrupt acknowledge, al- 
though interrupt request lines are provided. In this 

contain logic t o  jam either a CALL o r  a RST in- 
struction o n  the card's data bus in response lo an 
interrupt o n  the system bus (either an 8359 o n  the 
processor card o r  an 8228 would accomplisll this). 
The RST or  the CALL vectors the 8080 t o  a 
polling routirle. The polling routine simply writes 
an OCW3 with P=l t o  the off-board 8259 port 
followed by an input at  the same port. Tht. 8259 
then releases the above word onto the system data 
bus. The polling routine then decodes the returned 
word and vectors the 8080 to the appropriate 
service routine. 

OCW3 POLLED MODE 

I DATA BUS FIELD 1 

don't 
care 

P B I T  READ HIGHEST PRIORITY ISR BIT 

Figure 18. Polled Mode Command Format 

This method can be extended to  multiple off-board 
8259s. Each 8259 is polled and the returned word 
indicates whether the selected 8259 is the one 
which generated the interrupt. Do not  forget that 
even though tlle CALL features of the off-board 
8259 are not  bcing used, each 8259 111ust receive 
an initialization sequence. In this case, the stilrting 
address specified in the ICWs could be a "fake". 

Reading the 8259 Status (OCW3) 

The contents of  the IRR, the ISR, and the IMR 
can be read to  update the user information on the 
system. The registers are read by issuing the appro- 
priate OCW3 and then reading with an INput in- 
struction or  RD pulse. The OCW3 words for read- 
ing the IRR and the ISR are shown in Figurc: 19. 

OCW3 READ STATUS 

1 DATA BUS FIELD 
A O  0 7  0 6  0 5  0 4  0 3  0 2  0 1  DO 

0 -  0 0  O 1 , O  R1 R Z  

don't 
care 1 0 READ IRR 

1 1 READ ISR 

Figure 19. Read Status Command Formats 



There is no need to write an OCW3 before every ing a master and two slaves providing a total of 22 
status read as long as the status read corresponds levels of interrupt. 
with the previous one;  i.e., the 8259 "remembers" 
whether the ISR or  the IRR has been previously Hardware-wise, the master is designated by a 

selected by the OCW3. "high" on the $% pin, while the SP pins of the 
slaves are grounded. Additionally, the INT output  

For reading the IMR, an OUTput instruction (or 
WR pulse) is not  necessary to precede the INput 
instruction (or RD pulse). The 8259 data lines con- 
tain the IMR whenever RD is active and AO=l .  
Thus an INput instruction to  the 8259 Ao=l port 
reads the IMR at any time. 

A sulnmary of OCW3 command words is shown in 
Figure 20. 

COMMAND 

- 

POLL MODE 

READ ISR 

READ IRR 

SET SMM 

RESET SMM 

OCW3 COMMAND SUMMARY 

I DATA BUS FIELD I 
A0 1 D7 D 6  D 5  D 4  D 3  D 2  D l  D A L  

0 - 0 0 0 1 1 0 0  

0 - 0 0 0 1 0 1 1  

0 - 0 0 0 1 0 1 0  

0 - 1 1 0 1 0 0 0  

0 - 1 0 0 1 0 0 0  

OPERATION 

POLL ON NEXT RD 
READ ISR O N  NEXT R D  

READ IRR ON NEXT T D  

SET SMM 

RESET SMM 

Figure 20. OCW3 Command Summary 

CASCADING THE 8259 

As mentioned earlier, more than one 8259 can be 
used to  expand the priority interrupt scheme t o  up 
to  64 levels without additional hardware. In such 
cases, one 8259 acts as a master, and the others 
serve as slaves. Figure 21 shows a system contain- 

pins of the slaves are connected to  the IR input 
pins of the master. Any IR master pin can be used 
to  support a slave. The CASO-2 pins for all 8259s 
are paralleled. These pins act as outputs when the 
8259 is a master and act as inputs for the slaves. 
The CASO-2 pins serve as a private 8259 bus to 
control which slave has control of the system data 
bus when the destination address is issued to  the 
8080. 

INTERRUPT REOUESTS 

The sequence of events for a valid interrupt request 
on a slave is covered here. The slave IR input 
makes an inactive-to-active transition. Assuming 
this request is higher priority than other requests 
and in-service levels on the slive, the slave's INT 
pin is pulled high, signaling the master of the 
request. Assuming that this request to  the master is 
higher priority than other master requests (possibly 
from other slaves) and master in-service levels, the 
master's INT pin is pulled high, interrupting the 
8080. When this interrupt is acknowledged by the 
8080, the master places the CALL instruction on 
the data bus. The master knows that the original 
request was on a slave (from ICW3 that will be 
covered shortly) and then puts the interrupted 
slave's ID on the CAS lines. This causes the slave to  

Figure 21. Cascaded System Diagram 



place on  the bus its preprogrammed address for 
the requesting input during the second and third 
INTAs. The appropriate ISR bits for both the 
master and slave are set. This completes the intzr- 
rupt request. 

Several things should become evident from the 
above sequence. First, because there are two ISR 
bits that are set by an acknowledged slave inter- 
rupt, two EOI commands must be issued; one for 
the master and one for the slave. And second, each 
8259 must have a separate initialization sequence. 
This gives each IR input a unique address plus de- 
fines how the master and slaves are interconnected. 
This interconnection is specified in ICW3. The 
master ICW3 tells the ~nas te r  which of  its IR inputs 
are connected to slaves. The slave 1CW3 tells the 
slave which IR master input it is connected to.  This 
1R input is the slave's ID. The format for ICW3 is 
shown in Figure 7. Also note that each slave could 
receive commands to operate in different modes: 
i.c., one slave could be in Rotating Priority while 
the other is in Fully Nested mode. 

An initialization sequence is illustrated in Example 
6. The master's jump table starts at OOH, slave A's 
at 20H, and slave B's at  40H; all with 4-byte inter- 
vals. The master ICW3 shows that there are slaves 
on  IK inputs 3 and 6. Slave A ICW3 shows its ID 
as 3, indicating that it is the slave connected to the 
master IR3. Slave B's ID is 6 and it is connected to  
the master IR6. The priority levels are now ar- 
ranged as shown. 

ICW 

D A T A  BUS F IELD 

-- - - - 
A0 D7 D6  D 5  D4 0 3  )2 >1 DO HEX - -  - - - - -  

MASTER lCWl 0 0 0 0 1 0 1 0 0 14 

ICW2 1 0 0 0 0 0 0 0 0  00 

ICW3 1 0 1 0 0 1 0 0 0  48  

S L A V E A  lCWl  0 0 0 1 1  0 1 0  0 32 

ICW2 1 0 0 0 0 0 0 0 0  00  

ICW3 1 0 0 0 0 0 0 1 1  03 

S L A V E 6  lCWl  0 0 1 0  1 0  1 0  0 54 

ICW2 1 0 0 0 0 0 0 0 0  00  

ICW3 1 0 0 0 0 0 1 1 0  06 

PRIORITY STRUCTURE 
LOWEST HIGHEST 

M7 SB7-SBO M5 M4 SAI-SAO M2 M1 MO 

Example 6. Cascaded Initialization 

Some special housekeeping software in the slave 
interrupt service routines is required in order t o  
preserve a truly Fully Nested structure. Why? 
Notice that if level SA5 (IR5 on slave A) is in- 
service (both the Slave A ISR5 bit and the master 

ISR3 bit are set) and level SA2 is asserted, then the 
priority structure of the slave will assert an inter- 
rupt t o  the master. But the master's ISR bit for 
that level is already set from the SA5 request. This 
will prohibit the request from being acknowledged 
until the master receives an EOI, thus losing the 
true Fully Nested structure since a request on SA2 
should interrupt a SA.5 service routine. 

To  solve this dilemma, the first task upon entering 
a service routine of a device connected to  a slave is 
to mask off the lower priority master IR inputs. 
(in this case, M7, M6, M5, and M4). Then issue an 
EOI to  thc inaster for the input the slave 1s con- 
nected to (Specific EOI M3). This enablcs the 
master to  accept higher priority interrupts from 
the slave. The masking process allows any interrupt 
request from a higher priority (higher than SA5) t o  
be acknowledged and any lower pr ior~ty  request 
(M7 thru SA6) t o  be ignored. If the lower prlority 
master inputs were not masked, the master would 
acknowledge a request on,  for instance M7. since 
the M3 ISR bit is reset by  the master EOI. 

Software must also maintain the information that 
level SA5 is the lowest priority slave in-service. 
This is because the masks on  the lower priority 
master inputs must be removed upon completing a 
service routine, but  only by the lowest in-senrice 
slave level. If SA2 is the only in-service level then it 
resets the masks. However, in the main example. 
the SA2 routine returns t o  the SA5 routine. In this 
case, SA2 should not  reset the masks, but allow 
SA5 to  reset them just before returning. This can 
be accomplished by reading and saving the master 
IMR upon entering a slave input service routine 
arid then restoring it upon leaving. Figure 2 2  is an 
example of how the SA5 service routine should 
look. This form should be followed for  all service 
routines of devices connected t o  slave IR inputs. 

APPLICATION EXAMPLES 

POWER FAILIAUTO-START WITH BATTERY 
BACKED-UP RAM 

The first application illustrates the 8259 used in 
the Fully Nested mode in supporting a battery 
back-up scheme for the RAM (Random Access 
Memory) in a microcomputer system. Such a 
scheme is important in numerical and process con- 
trol applications. Tlie entire microcomputer system 
could be supported by a battery back-up scheme, 
however, due to  the large amount of  current usu- 
ally required and the fact that most machinery is 



not  supported by an auxiliary power source, only supply was used t o  simulate the back-up battery 
the state of calculations and variables usually need supplying power to the  RAM. The SBC 635 was 
to  be saved. In t he  event of a loss o f  power, if these used since it provides an open collector ACLO 
items are no t  already stored in RAM, they can be ou tpu t  which indicates that the AC input line volt- 
transferred there and saved using a simple battery age is below 1031206 VAC (RMS). 
back-up system. 

The following is an example of a power-down and 
restart sequence that introduces t he  various power 
fail signals. 

LOC 08- S t y  b i l l ' R L  t S T R l  t K i h l  

I i 

Figure 22. Sample Slave Service Routine 

The vehicle used in this application is the Intela 
SBC 80120 Single Board Computer. The  SBC 
80120 contains an 8259  on-board along with con- 
trol lines helpful in implementing the power-down 
and <iutomatic restart sequence used in a battery 
back-up system. The  SBC 80120 also contains user- 
selectable jumpers which allow the  on-board RAM 
t o  bc  powered b y  a supply separate from the  sup- 
ply used for the non-RAM components. Also, the  
ou tpu t  of an undedicated latch is available t o  be 
connected t o  the IR inputs of the 8259 ( the latch 
is cleared via an ou tpu t  port).  In addition, an un- 
dedicated, buffered, input line is provided, along 
with an input t o  the RAM decoder that  will pro- 
tect memory when asserted. 

The additional circuitry t o  be described was con- 
structed on an SBC 905  prototyping board. An 
SBC 635 Power Supply was used t o  power the  non- 
RAM section of the 80120 while an external DC 

1. An AC power failure occurs and the ACLO 
goes high (ACLO is pulled up by  the battery 
supply). This indicates that  DC power will be 
reliable for a t  most 7.5 ms. The power fail 
circuitry - generates a Power Fail - Interrupt 
(PFI) signal. Thls signal sets the PFI latch, 
which is connected to  the  IRO input of the 
8259,  and sets the Power Fail Sense (PF-S) 
latch. The  state of this latch will indicate t o  
the processor, upon reset, whether it is com- 
ing up  from a power failure (warm start)  o r  if 
it is coming up  initially (cool start). 

2.  The processor is interrupted by the 8259  
when the PFI latch is set. This pushes the 
pre-power-down program counter on to  the 
stack and calls the service routine for the IRO 
input. The IRO service routir.. saves the proc- 
essor status and any other  needed variables. 
The routine should end with a HALT instruc- 
tion t o  minimize bus transitions. 

3 .  After a predetermined length of time (5 Ins 
in this example) the power fail circuitry gen- 
erates a Memory Protect (MPRO) signal. All 
processing for the power failure (including the 
interrupt response delays) must be completed 
within this 5 ms window. The  MPRO signal 
ensures that  spurious transitions on  the 
system control bus caused by power going 
down d o  not  alter the  contents of the the  
RAM. 

4. DC power goes down.  

5. AC power returns. The  power-on reset cir- 
cuitry on the  80120 generates a system RE- 
SET. 

- 
6. The processor reads the state of the PFS line 

t o  determine the appropriate start-up se- 
quence. Ths PFS latch is cleared, the  MPRO 
signal is removed, and the PFI latch driving 
JRO is cleared by  the  Power Fail Sense Reset 
(PFSR) signal. The  system then continues 
from the  pre-power-down location for  a warm 
start by restoring the processor status and 



popping the pre-power-down program counter 
off thc  stack. 

Figure 23  illustrates this t i~n ing .  

Figure 24 shows the block diagrarn for the system. 
Notice that  the RAM, the RAM decoder, and the 
power-down circuitry are powered by the battery 
supply. 

The schematic of the  power-down circuitry and the 
SBC 80120 interface is shown in Figure 25. The 
design is very straightforward and uses CMOS logic 
t o  minimize the battery current requirements. The 

Cold Start switch is necessary t o  ensure that  during - 
a cold start, the  PFS line is indicating "cold start" - 
sense (PFS high). Thus, for a cold start ,  the  Cold 
Start switch is depressed during power on .  After 
that,  no further action is needed. Notice that  the  
PFI signal sets the on-board PFI latch. The output  
of  this latch drives the 8259 IRO input. This latch 
is cleared during the  restart routine by executing 
an OUTput  D4 H instruction. The  state of the PFS 
line Inay be read on  the least significant data bus 
line (DBO) by executing an INput D4 H instruc- 
tion. An 8255 Port (8255 # I ,  Port C, bit 0 )  is 
used t o  control the PFSR line. 

POWER DOWN RESTART 

ACLO 

IRO i 

- 
MPRO 

DC 

t--- 7.5 ms min 

Figure 23. Power Down - Restart Timing 
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BATTERY SUPPLY 
Q 

CONTROL 
DATA 

ADDRESS 

BUS 
BUS 
BUS 

Figure 24. SBC 80120 with Power Down 

POWER DOWN CIRCUITRY SBC 80120 

PC0 PORT A3 
Figure 25. Power Down - SBC 80120 Interface 
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