
ICE-51'" IN-CIRCUIT EMULATOR

OPERATtNG INSTRUCTIONS

FOR ISIS-II USERS

Manual Order Number: 9801004-01 Rev. A

Copyright © 1981, Intel Corporation

J Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 L

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Intel Corporation assiunes no responsibility for any errors that may appear in this document.
Intel Corporation makes no commitment to update nor to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel
Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel's software
license, or as defined in ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without
the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel products:

Megachassis
Micromap
Multibus

Multimodule

PROMPT

Promware

RMX/80

System 2000
UPI

//Scope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

BXP Intel
CREDIT Intelevision

1 Intellec

ICE IRMX

iCS iSBC

im iSBX

Insite Library Manager
Intel MCS

ii I A302/281/5K DP I

This manual is the operating instructions for the ICE-Sl^"^ In-Circuit Emulator for
the MCS-Sl^"^ family of microcontrollers. Here is a brief guide to the contents of the
manual:

Chapter 1 includes a product overview, explanation of command format notation
used in the manual, and definitions of terms used in more than one chapter.

Chapter 2 describes utility commands used to enter, set up, and exit the emulator
system.

Chapter 3 presents the basic emulation control commands.

Chapter 4 describes an easy subset of the trace control commands. The intention of
chapters 3 and 4 is to provide easy-to-use commands that access a significant
percent of the emulator's functions, especially for assembler-level debugging.

Chapter 5 describes the various types of memory and how to access each type
through the emulator. Included are commands to disassemble code memory into
assembler mnemonics and to assemble mnemonic instructions into code memory.

Chapter 6 gives complete details on emulation and trace controls for users desiring
maximum precision (e.g., using events with durations less than one complete
instruction), including the use of the external sync lines.

Chapter 7 discusses the block commands and macro facility used to automate all or
part of the emulation and test session.

Appendix A contains installation and checkout procedures for the emulator
hardware.

Appendix B lists the error and warning messages with suggestions for corrective
action.

Appendix C gives information on obtaining service and repair assistance.

Appendix D contains specifications for the emulator hardware.

Appendix E documents known product limitations that may affect performance in
some applications.

Appendix F contains reference schematics.

This manual assumes the reader is a designer using the MCS-SF*^ family of
microcontrollers in a new product or application. The reader should be familiar
with the operation of the microcontroller, and with its assembler, as described in
the following manuals:

MCS-5P^ Family User's Manual, Manual Order No. 121517.

MCS-SP^ Macro Assembler User's Guide, Manual Order No. 9800937.

In addition, many of the examples in this manual are based on the following
Application Note:

An Introduction to the Inteb^ MCS-5P^ Single-Chip Microcomputer Family, AP-69.

The operating instructions are accompanied by the following reference and tutorial
publications:

ICE-5r^ In-Circuit Emulator Command Dictionary, Manual Order No. 9801005.

Getting Started with the ICE-5F^ In-Circuit Emulator, Manual Order No. 121595.

Ill

The output file format used by the emulator is specified in the following document:

Hexadecimal Object File Format, Manual Order No. 9800183.

The emulator system uses the ISIS-II software operating system; we assume the
user is familiar with the operating system as described in the following publication:

ISIS-II User's Guide, Manual Order No. 9800306.

IV

m

CHAPTER 1 PAGE
INTRODUCTION

Uses for the Emulator 1-1

Software Execution and

Assembler-Level Debug 1-1
Integration of Prototype Software
and Hardware 1-1

Diagnostic or Production Testing 1-2
Description of the Emulator System 1-2
Reference Diagram 1-2
Hardware Components 1-2
Software Components 1-4
Indicator Lights 1-4
Development System Resources 1-4
User Publications 1-5

Entering Commands 1-5
Prompts and Messages 1-5
Correcting Errors in Commands 1-6
Continuation Lines 1-6
Comments 1-6
Command Entry From Files 1-6
Aborting Commands With the ESC Key 1-7

Command Format Notation 1-7
Elements of Commands 1-7
Keywords and User Entries 1-7
Required and Optional Entries 1-8
Repeatable Entries 1-8
Choices of Entries 1-8
Single-Character Tokens 1-10

Definitions 1-10

Address 1-10

Numeric Constant 1-11

Symbolic Reference 1-11
Keyword Reference 1-11
Trace Reference 1-11

Calculated Addresses 1-12

Partition 1-12

Expression ' 1-12
Arithmetic Operators 1-13
Content Operators 1-13
Relational Operators 1-13
Logical Operators 1-14
How Expressions Are Evaluated 1-14

String 1-14

CHAPTER 2

UTILITY COMMANDS
ICE51 Invocation 2-1

EXIT Command 2-2

HELP Command 2-2

LOAD Command 2-3

SAVE Command 2-4

PAGE
Symbolic Reference Commands 2-5
User-Defined Symbols 2-5
Multiple Symbols 2-6
System-Defined Symbols 2-7
Symbolic Display of Addresses 2-7

LIST Command 2-8

RESET ICE Command 2-8
RESET CHIP Command 2-8

SUFFIX Command 2-9

BASE Command 2-9

EVALUATE Command 2-9

CHAPTER 3
EMULATION COMMANDS
Real-Time Emulation 3-1

Basic GO Commands 3-1
Using Breakpoints to Halt Emulation 3-2
Using a Mask as a Breakpoint 3-3

Single-Step Emulation 3-3

CHAPTER 4
TRACE COMMANDS
The Trace Buffer 4-1

Displaying Trace Information 4-1
OLDEST and NEWEST Commands 4-1

MOVE Command 4-1

PRINT Command 4-2

Displays in INSTRUCTION Mode 4-3
Reconstruction and Verification 4-4

Turning Trace On and Off 4-4

CHAPTER 5

MEMORY CONTENTS COMMANDS
Introduction 5-1

Types of Memory Space 5-1
Using Content Operators 5-1

On-Cbip Data Memory Access 5-2
Data Memory Addresses 5-2
Contents of Data Memory 5-2
Contents of Register Banks 5-4
STACK Display Command 5-5

Register Memory Access 5-6
Register Addresses 5-6
Contents of Register Memory 5-7
Reserved Keywords for Register
Memory Contents 5-7

REGISTERS Command 5-8

INTERRUPT Display Command 5-8
Bit-Addressable Memories 5-8

Bit Addresses 5-8

Contents of Bit-Addressable Memory 5-11

PAGE
Access to External Data Memory 5-11
Code Memory Access 5-12
Code Addresses 5-12

Program Counter Commands 5-12
MAP Commands 5-13

Using the EA/ Pin 5-14
Contents of Code Memory 5-15
Numeric Contents 5-15

Disassembly From Code Memory 5-15
Assembly Into Code Memory 5-16
One-Byte Mnemonic Constants 5-17

CHAPTER 6
ADVANCED EMULATION
AND TRACE COMMANDS
Emulation and Trace Controls 6-1

Reference Diagrams 6-1
Starting Real-Time Emulation 6-2
Halting Real-Time Emulation 6-2
ESC Key 6-2
GO Register 6-4
Breakpoint Registers 6-4
Sync line SYO IN 6-5

Controlling Trace Collection 6-5
Trace Register 6-5
Qualifier Registers and Trigger Modes 6-7
Sync Line SYl IN 6-8

Match Conditions 6-9

Processor Data for Matching 6-9

Instructions, Cycles, Fetches, and Frames .. 6-9
Fields Available for Matching 6-10

Formats for Match Conditions 6-12

Emulation and Trace Commands 6-13

Command Formats 6-13

Displaying the GO and Trace Registers 6-14
Disabling All Factors in the GO

and Trace Registers 6-14
Enabling Break and Qualifier Registers 6-14
Setting Match Conditions in the GO
and Trace Registers 6-15
Command Formats 6-15

Matching On Addresses 6-15
Matching On Opcode and Operand Values 6-16
Matching on Ports and External Addresses 6-17
Matching on Combinations With Ports 6-17
Using Two Match Conditions 6-17

Breakpoint and Qualifier
Register Commands 6-18
Displaying Breakpoint and

Qualifier Registers 6-18
Setting Breakpoint and

Qualifier Registers 6-18
Adjustment of Partition in
Match Conditions 6-19

Resetting Break and Qualifier Registers ... 6-19
Sync Lines Command 6-20
SYO Commands 6-20

SYl Commands 6-21

RESET SY Command 6-22

References to Sync Lines 6-22

PAGE
Other Results of Emulation and Trace 6-23

Emulation Timer 6-23

CAUSE Command 6-23

BUFFERSIZE Command 6-24

PPC and OPCODE Commands 6-24

Trace References 6-25

FRAME Mode Trace Displays 6-25
Trace Display Mode 6-25
FRAME Mode Headers 6-26

Verification of Trace in FRAME Mode 6-27

CHAPTER 7

PROGRAMMING WITH
COMMAND BLOCKS
WRITE Command 7-1

Block Commands 7-1

Entering Block Commands 7-2
Boolean Expressions in Block Commands 7-2

REPEAT Command 7-2

COUNT Command 7-3

Halting REPEAT and COUNT Loops 7-3
User Abort 7-4

WHILE and UNTIL Clauses 7-4

IF Command 7-5

Nesting Command Blocks 7-6
Macro Commands 7-6

Defining and Invoking Macros 7-6
Formal and Actual Parameters 7-8

Details on Macro Expansion 7-8
Macro Table Commands 7-10

Saving Macros 7-11
Including Commands from Files 7-11

APPENDIX A
INSTALLATION AND
CHECKOUT PROCEDURES
Required and Optional Equipment A-1
Hardware Installation Procedures A-2

Installing Crystal Power Accessory A-5

Hardware Confidence Test A-5

Connecting the Emulator to the User System .. A-8
Installing Sync Line Cables A-9

APPENDIX B

ERROR MESSAGES AND WARNINGS
Overview of Corrective Actions B-1

RESET ICE and ERROR Commands B-1

Confidence Test B-1

Service Assistance B-2

Incomplete and Undetermined Errors B-2
Error Messages and Warnings B-2

m

APPENDIX C W
SERVICE AND REPAIR ASSISTANCE

VI

APPENDIX D
HARDWARE SPECIFICATIONS
Environmental and Power Requirements D-1
User Plug Characteristics D-1
Sync Lines Characteristics D-1
Buffer Box Indicator Lights D-2

APPENDIX E

OPERATING HINTS AND LIMITATIONS

APPENDIX F
REFERENCE SCHEMATICS

Index

m

ILLUSTRATIONS

FIGURE TITLE PAGE
1-1 Emulator System Diagram 1-3
4-1 INSTRUCTION Mode Trace Display ... 4-3

5-1 On-Chip Data Memory 5-3
5-2 Code Memory Mapping 5-13
6-1 Key to Diagram Symbols 6-1
6-2 Starting Real-Time Emulation 6-2
6-3 Halting Real-Time Emulation 6-3
6-4 Controlling Trace Collection 6-6
6-5 Instruction Cycle Timing 6-10
6-6 Match Fields 6-11

FIGURE TITLE PAGE
6-7 Two-Cycle Instruction

with Frame Types 6-11

6-8 FRAME Mode Trace Display 6-27
A-1 Device Code Jumpers A-3
A-2 Emulator Boards in Dual

Auxiliary Connectors A-3
A-3 Ribbon Cable Routing Diagram A-4
A-4 User Plug, Top View A-6
A-5 User Plug Assembly, Side View A-7
A-6 CPA Socket Diagram A-7

TABLE TITLE PAGE
1-1 Single-Character Tokens 1-10
1-2 Elements of Numeric Constants 1-11

2-1 Types of Symbolic Displays 2-8
2-2 State of Emulation Processor

After RESET 2-9

5-1 Types of User Memory 5-1
5-2 Addresses and System Symbols

for Registers 5-6

TABLE TITLE PAGE
5-3 Bit Addresses in Register Memory 5-9
5-4 System Symbols for Code Addresses .. 5-12

5-5 Mapping Emulator and
User-Supplied Memory 5-14

6-1 Frame Types in Trace Information 6-12
6-2 Trace Display Modes 6-26
D-1 Sync Lines Delay Factors D-2

D-2 Buffer Box Indicator Lights D-2

vii/viii

CHAPTER 1

INTRODUCTION

The ICE-Sl^"^ In-Circuit Emulator for the MCS-51"'^'^ family of microcontrollers is a
hardware/software product that resides in the Intellec® Microcomputer Develop
ment System. The emulator boards connect to the Multibus^"^ chassis in the
development system; the software runs under ISIS-II. The user operates the
emulator by entering commands at the console of the development system.

This chapter describes the emulator and its uses, gives details on entering
commands, explains the notation used in subsequent chapters for command
syntax, and defines several basic terms.

Uses for the Emulator

The emulator aids the design effort in several ways: software execution,
hardware/software integration and debug, and diagnostic testing. The next
sections present the features of the emulator in the context of these uses.

m

Software Execution and Assembler-Level Debug

The emulation processor, a special version of the Intel 8051 microcontroller,
performs real-time and single-step execution of the user's object code. The system
provides 8K of RAM for user code. The code is loaded into RAM from diskette, using
the output file generated by the ASM51 assembler. Real-time execution can be
halted at points of interest (breakpoints) specified by the user.

The system maintains a trace buffer that can collect data on up to 1000 instructions
during emulation. Instructions from the buffer are displayed as assembler
mnemonics. Trace also includes port values.

Console entry and display can use symbols instead of absolute addresses. The
emulator offers system symbols corresponding to the predefined code addresses,
register addresses, and bit addresses in the MCS-51 assembly language. Labels and
other user-defined symbols are loaded with the user program if the output file
contains a symbol table. The user can define additional symbols for debugging
without affecting the code.

The user can assemble short programs or program patches directly into program
memory from the console, using the ASM51 instruction mnemonics, predefined
symbols, and user defined symbols. The user can copy the modified program and
symbol table to an output file on diskette.

The emulator hardware includes a Crystal Power Accessory (CPA). When installed,
the CPA provides clock and power to the emulation processor for stand-alone
operation as a software execution and debug vehicle.

Integration of Prototype Software and Hardware

The emulator system interacts with the user hardware through the user cable. The
user cable terminates in a 40-pin plug that fits the MCS-51 socket on the user
system. When the user cable is connected to the user system, the emulation
processor becomes the user system processor. In this configuration, clock and
power for the emulation processor are provided by the user system.

1-1

Introduction ICE-51

The emulator system can simulate the 4K of on-chip program memory with RAM,
and provide an additional 4K of RAM to represent a segment of external memory. ^ J
(If needed, both 4K segments can be mapped to represent external memory). The
user system may also include any amount of external program memory up to 64K.
The emulator executes from any of these memories at full speed, without wait
states.

The user can interrogate and change processor registers or memory from the
console when the system is not emulating. The new values are immediately
reflected at the pins of the emulation processor. ^

The emulator system provides external signals that can be used as inputs or
outputs to allow the user to monitor and control emulation and trace with external ^
test equipment.

Diagnostic or Production Testing

In diagnostic or production testing the goal is to exercise the product in as many
modes as necessary to prove full functionality. To facilitate testing, the emulator
permits command sequences to be entered as blocks.

A block of commands can be executed repetitively or conditionally. Blocks can be
nested. Blocks can be named as command macros. A macro block executes only
when called, and can be passed different text parameters each time it is called.
Macros can contain repeat and conditional blocks and calls to other macros. Macro
definitions can be copied to text files on diskette, then included from file into the
command sequence when desired in later test sessions.

Macro blocks can serve as a programmable diagnostic facility. With macros, the
user in effect can define new emulator commands for special purposes or to increase
generahty. Thus, the macro commands provide a way to expand the emulator
command language itself.

Not only macro definitions, but any sequence of commands can be entered from a
file on diskette, as discussed later in this chapter. The command sequence is entered
to file using a text editor. Using command files the user can automate all or part of
this phase of diagnostic testing.

The emulator can send a copy of the diagnostic session to a text file on diskette, or
to a hard-copy device such as a line printer.

Description of the Emuiator System

Reference Diagram
f

Figure 1-1 is a block diagram of the emulator system with its interfaces to the
development system, to the user hardware system and other test equipment, and to
the user's input and output controls. The shaded portion of the diagram shows the ^
emulator hardware and software. Unshaded portions are development system
resources.

Hardware Components

The hardware components of the emulator are as follows:

• Controller board.

• Trace board.

1-2

ICE-51 Introduction

dS»

• Dual auxiliary connector kit containing connectors for model 800 and Series II
development systems.

• Buffer box and user cable assembly.

• External sync lines assembly.

• Crystal power accessory.

The controller and trace boards communicate to each other through the dual
auxiliary connector, and to the development system through the Multibus
connector on each board. The controller and trace boards connect by ribbon cable to
the buffer box assembly containing the trace buffer and RAM for the user program
memory. A short user cable connects the buffer box assembly to the user plug that
connects to the user system; the emulation processor is mounted on the user plug.

The crystal power accessory can be mounted on the user plug and connected to the
buffer box for stand-alone operation (no connection to user hardware). The external
signal cable assembly contains emulation (SYO), and trace (SY1) signals. The cable
assembly uses the same buffer box connector as the crystal power accessory.

Details on installing the hardware components are given in appendix A.

EMULATION

PROCESSOR

j

::::::::: liEtUSER

CABLE «

■ ̂ HinHH:

SYNC LINES
INDICATOR

LIGHTS

ii:!:

ISIS-II

DUAL AUX

DEVELOPMENT

SYSTEM MEMORY
CONNECTOR

USER INPUT/OUTPUT CONTROLS

CONSOLE

DISPLAY

CONSOLE

KEY

BOARD

DEVELC

SYS

CONTF

BOA

>PMENT

TEM

tOLLER

lRDS

DISKETTE OTHER

DRIVES DEVICES

DEVELOPMENT

SYSTEM

PERIPHERAL

CONTROLLERS

DEVELOPMENT SYSTEM MULTIBUS" CHASSIS

Figure 1-1. Emulator System Diagram

1-3

Light Color Status When Lit

Green Emulation in progress.

Yellow Ready for command from user.

Red Hardware error detected.

Note that more than one light can be on at a given time, to indicate a combination
of conditions. (Refer to appendix D, Hardware Specifications, for details on
interpreting the buffer box lights.)

Development System Resources

Through the emulator, the user can access the hardware resources of the
development system.

• Console display and keyboard. The emulator system is controlled by
commands entered at the keyboard. The system displays prompts, messages,
and the results of user commands.

Introduetion ICE-51

Software Components

The emulator software is furnished on diskette; the package contains both single-
density and double-density versions. When the emulator in invoked, some of the
software is loaded into RAM on the ICE boards; this software is the hardware
control program to be executed by a processor on the controller board. Other
software is loaded from diskette into RAM in the development system; this software
handles console interactions, and is to be executed by the processor in the
development system. The remaining software resides on the diskette to be called in
when required; these are text files containing longer messages for display at the ^
console, and the user confidence test software.

The emulator software is contained in the following files: %

ICE51

ICE51.0VS

ICE51.0VH

ICE51.0VE V

The user confidence test is contained in the following files:

CONF

C0N51

C0N51.0V1

C0N51.0V2

C0N51.0V3

The diskettes with the emulator software are not system diskettes (they do not have
the ISIS-II utilities). You may wish to copy the emulator software to another i
diskette, either to have the system software and the emulator software on the same
diskette or to create a working diskette with the emulator software and room for
working files (user program modules, listings of diagnostic sessions, pre
programmed diagnostic command sequences).

Indicator Lights

Three LED lights on the top cover of the buffer box give a quick indication of
emulator status:

1-4

ICE-51 Introduction

• Development ̂system memory (RAM). In addition to the ISIS-II and emulator
software, development system RAM is available for the user symbol table, and
a macro expansion workspace.

• Diskette drives. Access to the diskette drives is made through the ISIS-II
diskette operating system.

• Other peripherals. The user can obtain a hard-copy listing of the diagnostic
session on a line printer. Other development system peripherals of interest are
PROM programmers and hard disk drives.

^ (Refer to appendix A, "Installation Procedures'', for details on required and
optional hardware.)

User Publications

The emulator package includes several kinds of instructional and reference
material to assist the user in operating the system. These materials include:

This Operating Instructions manual.

Getting Started With ICE-51, a brief hands-on tutorial session designed for the
less experienced user.

A Command Dictionary listing each emulator command in alphabetical order
with a summary of its syntax and usage.

A file of HELP messages (part of the emulator software) that the user can
request while the emulator is running.

The package also contains a Dear Customer letter, including a list of sub-
assemblies with part numbers.

Entering Commands

The ICE-51 system is controlled by commands typed in from the development
system console. An ICE-51 command is a sequence of one or more command words;
the words are separated by spaces. The sequence of words is terminated by a
carriage return/linefeed. With two exceptions, the carriage return/linefeed causes
the command to be interpreted, and if no syntax errors are detected the command is
executed immediately. The exceptions are block commands and continuation lines.
Continuation lines are discussed later in this section; refer to chapter 7 for details
on block commands.

NOTE
Since all commands end with a final carriage return/linefeed, this entry
is not shown explicitly in the command formats and examples. Carriage
returns other than the final one are shown by the notation "cr".

Prompts and Messages

The emulator displays an asterisk prompt (*) to show that it is ready to accept a
command. Continuation lines and block commands precede the asterisk with other
characters, as discussed later.

The emulator uses messages to inform the user about system operation, for example
when beginning and terminating emulation and when an error or warning
condition occurs. Most messages are self-explanatory, or are explained in this
manual in connection with the commands that produce them; refer to appendix B
for more information on the error and warning messages.

1-5

Introduction ICE-51

Correcting Errors in Commands

To correct errors in a command while the command is being entered, use the
following control keys:

RUBOUT Delete last character typed; repeat RUBOUT to delete more than
one character.

CTRLX Delete current line of command being entered.

ESC Delete entire command being entered. ^

CTRLR Echo command line being entered.

CR Carriage return ends command line. ^

LF line feed also ends command line.

Once a command line has been ended with CR or LF that line can no longer be
corrected. The following additional controls are used to pause and continue during
lengthy displays:

CTRL S Pause console display.

CTRLQ Continue console display.

Continuation Lines

If you want to break a long command line into two or more input lines, use the
ampersand (&) to request a continuation line. After the ampersand, the next
carriage return is treated as an intermediate carriage return; nothing is executed
until the final carriage return is encountered. Characters between the ampersand
and the intermediate carriage return are ignored. The system begins the
continuation line with a double asterisk (**) instead of the single asterisk.

Comments

You can add comments on any command line. To identify a comment, precede it
with a semicolon (;). Any characters after the semicolon are not interpreted, but
they will be "acknowledged" by the system (e.g., sent to LIST file, retained in
MACRO definition). The semicolon can be the first non-blank character on a line,
in which case no interpreting is done on that line. An ampersand within a comment i j
does not act as a continuation character.

Command Entry From Files

The two ways to have ICE commands read in from an ISIS-II file are as follows:

1. The ICE-51 INCLUDE command causes a sequence of commands to be read in ^1®
firom a file. The INCLUDE command is executed firom within the ICE system
(i.e., after the ICE software has been invoked). Refer to chapter 7 for more
details on the INCLUDE command.

2. The ISIS-II SUBMIT facility allows you to read in ICE commands from
diskette file; the commands are executed as they are read in. When building the
file to be run under SUBMIT, the first command should be the ICE51
invocation (to be executed by ISIS-II), and the last command should be EXIT
(to return to ISIS-II). Refer to the ISIS-II System User's Guide for details on
SUBMIT files.

1-6

ICE-51 Introduction

Aborting Commands With the ESC Key

Pressing the ESC key aborts any command that is executing. Pressing ESC while a
command is being entered (before the final carriage return) cancels that command.
After the ESC has been processed, the prompt is issued. Refer to chapter 3 for
details on using the ESC key to halt emulation.

Command Format Notation

Command format notation is a kind of diagram for ICE commands. The notation
shows what command words to use, indicates parts of the command that can be
omitted or included at your option, and shows the places in the command where you
have a choice among several kinds of entry.

Elements of Commands

To present the notation, we need briefly to define some basic elements of
commands.

character Valid characters are the upper and lower case letters, the numerals,
and a set of special characters.

token A command word; one or more contiguous characters delimited by
blanks or by context.

keyword A token that is defined by the system; a command literal.

clause A sequence of tokens that must be included or omitted as a unit.

entry A token or clause.

user-entry An entry whose exact form must he determined by the user; a class
of entries.

menu A choice of entries represented as a vertical list,

command A sequence of entries terminated by a final carriage return.

Keywords and User Entries

A keyword is a command word with a fixed spelling and interpretation defined by
the system. In the notation keywords are shown as ALL CAPS. All keywords may
he abbreviated to the first three characters, and several may he shortened to one or
two characters. The abbreviated forms of keywords are not shown in the format
notation, but are used in some of the examples. (Refer to the Command Dictionary
listed in the Preface for a list of keywords and their abbreviations.)

A user entry is a word or hyphenated phrase shown in lower-case italic. A user-
entry represents a class of possible entries that contains too many variations to
allow listing them all explicitly. The lower-case items themselves are not part of the

^ command language.

This command format shows the notation for keywords and user entries:

^ EVALUATE expression
In this command format, EVALUATE is a keyword; it cannot he omitted from the
command although it may be abbreviated. The term expression represents all the
possible ways of obtaining a numeric result including single tokens and longer
formulas. Here are some examples of this command:

^EVALUATE 10H

*EVAL .START + 25T

*E .TABLE + .INDEX * 10H

1-7

Introduction ICE-51

Here is another example; in this command format, the description of the user entry
is a hyphenated phrase.

Format:

HELP help-item

Examples of command:

*HELP HELP

*HELP GO ^

Required and Optional Entries *

Required entries are given in the notation without any enclosure. In the format
EVALUATE expression, both the keyword EVALUATE and an entry correspond
ing to expression are required to make a valid command.

Optional entries are enclosed in square brackets. Any entry shown in square
brackets can be omitted leaving a valid command. Here is an example of a
command format containing required and optional entries:

Format

LOAD :Fn:filename [NOCODE] [NOSYMBOLS]

Examples of Command

*LOAD :F1:PROG01

*LOAD :F1:PROG01 NOCODE

*LOAD :F1:PROG01.HEX NOSYMBOLS

W

Repeatable Entries

Entries that can be repeated at user option are enclosed in square brackets and
followed by an ellipsis (three adjacent periods). The most common use of this
notational form is to represent lists of entries separated by commas. Here is an
example of a format containing a list:

Format

REMOVE MACROS \:macro-name :macro-name^...[
Examples of Command

*REMOVE rSKIP

*REM rSKIP, :MEM, :TEST

In this command format, the list of macro names can be omitted entirely, or it can
have just one macro name, or it can be several macro names separated by commas.

Choices Of Entries

A choice of entries is indicated by a vertical list of the entries enclosed in curved
braces or square brackets; such a list is called a "menu". A menu enclosed in square
brackets means "select none or one". For example,

Format

(all)
PRINT < >

j[-] number-of-linesi

1-8

ICE-51 Introduction

Examples of Command

PRINT

*PRINT ALL

*PRI 10

*P -25

The menu shows that you can omit the entry after PRINT, or you can select the
keyword ALL, or you can enter a "number of lines" optionally with a minus sign

^ preceding it.

A menu enclosed in square brackets and followed by an ellipsis (...) means "select
0^ none, one, or more than one, in any order". For examples of commands that use this

format, see Chapter 7, "Programming With Block Commands".

A menu enclosed in curved braces means "select one and only one". In the
following example, the choice is between the keyword SYMBOLS and a list of
symbolic references; one of these two kinds of entries must be included to form a
valid command.

Format: ! SYMBOLS I
(

symbolic-reference [, symbolic-reference] —)

Examples of Command

*REMOVE SYMBOLS

*REMOVE .LOOP

*REM .LOOP, .DONE

A menu can contain entries that themselves contain menus. Here is an example of
such a command format:

TOREVER

isYI

AFTERItill J
TR =< r- -I I QRO

QR1 i

OR

match-condition

This command allows several kinds of entry after the equals sign:

1. The keyword FOREVER.

2. The keyword SYl.

3. One of the keywords QRO, QRl, or QR.

4. An entry specifying a match condition.

5. The entries described in 3 and 4 can be preceded by one of the keywords
AFTER or TILL.

Here are a few examples of this command, but they do not demonstrate all possible
"branches" of the syntax. More examples of this command are in chapters 4 and 6.

*TR= FOREVER

*TR= SYl

*TR= QRO

*TR = AFTER 0

*TR = TILL QRl

1-9

Introduction ICE-51

Single-Character Tokens

The emulator command language contains single-character tokens that serve as
delimiters, punctuation marks, operators, and other uses (table 1-1). These are
shown in bold in the command formats.

For example:

:macro-name

Example of command:

:TEST1

In this command the colon (:) identifies the name that follows as the name of a
macro to be executed.

NOTE
The one-line assembler uses several additional one-character tokens, as
discussed in chapter 5.

Table 1-1. Single-Character Tokens

Token Meaning

(Period); Identifies symbolic reference.

, (Comma); Separates items in a list.

(and) (Parentheses); Control order of evaluation in expressions.

+ (Plus sign); Unary plus and addition sign.

(Minus sign); Unary minus and subtraction.

* (Asterisk); Multiplication and in HELP command.

/ (Slash); Division.

(Equals sign); Equal relation operator and assignment operator.

> (Right angle bracket); Greater than operator.

< (Left angle bracket); Less than operator.

(Quotation marks); Encloses mnemonic constants in expressions.

(Apostrophe); Encloses string characters.

: (Colon); Identifies macro name.

% (Percent); Identifies formal parameter in macro definition.

Definitions

The terms address, partition, expression, anA string occur in several different
places in the manual. Here are brief definitions for these terms.

Address

The term address in an emulator command format can be numeric constant, a
symbolic reference, a keyword reference, a trace reference, or a calculation using
mathematical operators.

1-10

ICE-51 Introduction

Numeric Constant

A numeric constant is a number consisting of one or more digits, and (optionally) a
one-character explicit radix (suffix) to identify the number base. The elements of
numeric constants are summarized in Table 1-2.

A numeric constant entered from the console with an explicit radix is interpreted
accordingly. If you omit the explicit radix, the system uses the current default
radix; for addresses the initial default is hexadecimal (H). The digits in the number
must be valid for the radix that is applied, or an error results. In this manual, most
numeric constants are shown with explicit radixes for clarity. Numbers shown
without explicit radixes are decimal (for example, 65,535), except for the numbers 0
and 1, to which any radix can apply.

Table 1-2. Elements of Numeric Constants

Number Base Valid Digits Expiicit Radix Example

Binary (base 2) 0. 1 Y 11110011Y

Octal (base 0) 0 - 7 Q. O 363Q

Decimal (base 10) 0 - 9 T 243T

Hexadecimal (base 16) 0 - 9. A - F H 00F3H

Decimal multiple of 1024T 0 - 9 K 4K

Symbolic Reference

A system symbol or a user symbol preceded by a period (.). System symbols
correspond to the predefined sjmibols for addresses in the assembly language;
examples are .RESET for address OOOOH in code memory, .SP for address 81H in
register memory (Stack Pointer), and .CY for address 0D7H in bit-addressable
memory (Carry Flag). User symbols are labels from the user program symbol table,
and additional symbols defined during the emulation session. Refer to chapter 2 for
discussion and examples of user symbols, and to chapter 5 for details on the system
symbols.

Keyword Reference

An emulator command word for a register that contains an address. For example,
the keyword PC refers to the code memory address pointed to by the program
counter, and the keyword DPTR refers to the external address in the Data Pointer
register. Other examples of keyword references to addresses appear in chapter 5.

Trace Reference

A construct with one of the two formats FRAME ADDR or FRAME XADDR. The
address is the 16-bit Code Address field (for ADDR) or the 16-bit External Address
field (for XADDR) from the frame of trace pointed to by the trace display pointer.
(Refer to chapter 6 for details on trace references.)

Ml

Introduction ICE-51

Calculated Addresses

You can also enter an address as a formula with mathematical operators; the
system performs the calculation and uses the result as the address. In this sense, an
address is a form of expression as discussed later in this chapter. In an expression
representing an address, only arithmetic operators (+, -, *, /, MOD) can appear
outside parentheses.

Here are some examples: ^

.START + 7

TABLE + 10H * 24T %

Partition

The term partition in a command format means any of the following types of entry:

• A single address.

• A range of addresses expressed with the format:

addressi TO address2

For example:

100H TO 11 OH

.START TO .START + 10H

In this type of partition, address2 must be greater than or equal to addressi, or an
error results.

• A range of addresses expressed with the format:

address LENGTH number-of-addresses

For example:

1100H LENGTH 10H

Valid entries for number-of-addresses can have any of the forms described above
for address. However, an error results if the sum of address and number-of-
addresses exceeds the size of the memory space addressed.

Expression

The term expression in a command format means any of the following types of
entry:

• A single number, constant, or reference; for examples:

0 iNumber without explicit radix. w

0100H ;Hexadecimai numeric constant.

'RETI' ;One-byte mnemonic constant. ^
'A' iString constant (one-character string).

.START iSymbolic reference.

DPTR ;Keyword reference.

• A formula applying mathematical operators to numbers, constants, and
references as operands. The system performs a 16-bit calculation, using
operator precedence and left-to-right order to determine the sequence of
operations. The precedence of operations can also be controlled with pairs of
parentheses.

1-12

ICE-51 Introduction

There are four kinds of operator: arithmetic operators, content operators, relational
operators, and logical operators, in descending order of precedence.

Arithmetic Operators

The arithmetic operators are:

Operator Operation Precedence (1

+ Unary plus 1

- Unary minus (2's complement) 1

* Multiplication 2

/ Integer division 2

MOD Modulo reduction 2

+ Addition 3

- Subtraction 3

Content Operators

Each of the types of memory space has a corresponding content operator. A content
operator treats its operand as an address in its type of memory space; the result is
the contents of that address. The content operators are as follows:

Content

Operator Type of Memory Example Precedence

CBYTE Code memory CBYTE 0100H 4

DBYTE On-chip data memory DBYTE 10H 4

RBYTE Register memory RBYTE .SP 4

XBYTE External data memory, XBYTE .TABLE 4
Verified

PBYTE External data memory, PBYTE COOOH 4
Unverified

RBIT Bit-addressable memory RBIT .CY 4

Content operators have precedence next lower after MOD (corresponding to
precedence "4" in the numbering scheme given above). Refer to chapter 5 for more
examples of the use of content operators.

Relational Operators

The relational operators are:

Operator Relation Precedence

= Is equal to 5

> Is greater than 5

< Is less than 5

>= Is greater than or equal to 5

<= Is less than or equal to 5

<> Is not equal to 5

The relational operators have precedence "5", next lower after the content
operators. The result of any relational operation is either TRUE (FFFFH) or
FALSE (OOOOH).

1-13

If this next operator is unary, its operand must follow it and must be a number. If
so, the operator is applied to produce a number as the result; if not, an error results.

If the next operator is binary, its two operands must both be numbers; the
operations then produces a numeric result. If both operands are not numbers, an
error results.

If the next operator does not have the required number of operands, an error results.

A pair of parentheses is cleared when it contains just a single number; that is:

(number) — number

After performing any operation, the numeric result becomes an operand for the
next scan. Parentheses are cleared before the next scan begins.

NOTE
When an expression is evaluated, the result has 16 bits. If the number of
bits in the result exceeds the number of bits required, the low-order bits are
used. For example, when an expression is used to represent an 8-bit
address, only the low 8 bits of the result are used. Please refer to the
Command Dictionary for more information on expressions.

String

The term string in a command format means a sequence of one or more
alphanumeric characters enclosed in apostrophes ('); for examples:

ABCDE

'X'

THIS IS A STRING'

Introduction ICE-51

Logical Operators

The logical operators are:

Operator Operation Precedence

NOT Ts complement 6

AND Bitwise AND 7

OR Bitwise OR 8 (g

XOR Bitwise exclusive OR 8

The logical operators work on 16-bit operands and produce 16-bit results. The NOT m
operator has precedence next lower after the relational operators; AND is next
lower after NOT; OR and XOR have the lowest precedence of any operators.

How Expressions Are Evaluated

To evaluate an expression, the system scans the expression iteratively from left to ^ J
right, one iteration for each operator in the expression. The series of scans
terminates in two ways:

• When nothing remains except a single number, the result of the evaluation.

• When a sjmtax error or other error occurs.

On each iteration, the scanner identifies the operator that must be applied next.
This operator can be unary (takes one operand) or binary (takes two operands).
This next operator is always the leftmost operator with highest precedence that is
enclosed in the innermost pair of parentheses.

1-14

ICE-51 Introduction

When a string is used to set the contents of memory, the value is the one-byte ASCII
value of each character. If the string has more than one character, the system uses
consecutive addresses to store the ASCII values after the first. Examples appear in
chapter 5.

As the third example above shows, the string can contain blanks. It can also
contain apostrophes, but they must be distinguished from the ones that delimit the
string itself; use a double apostrophe (") for this purpose; for example:

'WHAT"S UP?' ;As entered — stored as WHAT'S UP?

M5/M6

i)

n

CHAPTER 2

UTILITY COMMANDS

■m

S'

The commands in this chapter are:

ICE51 Invocation: Initiate the emulator system from ISIS-II.
EXIT Command: Terminate the emulation session and return control of the
console to ISIS-II.

HELP Command: Obtain displays that briefly explain the emulator
commands.

LOAD Command: Load the user program (and symbol table if desired) into the
emulator's memory from object file on diskette.
SAVE Command: copy the contents of emulator code and symbol table memory
to diskette file.

Symbolic Reference Commands: Define, change, display, reference, and
remove user symbols.
LIST Command: Copy the output from the emulation session to a device other
than the console.

RESET ICE Command: Restore the emulator hardware to its initial state (as
after invocation).

RESET CHIP Command: Place emulation processor in its RESET condition.
SUFFIX Command: Select the implicit radix for numbers entered at the
console.

BASE Command: Select the default radix for certain kinds of numeric displays
on the console.

EVAL UATE Command: Display the result of any expression in four radixes, as
ASCII, and symbolically.

ICE51 Invocation

The emulator software driver is contained in an executable ISIS-II file named
ICE51. When this file is executed, the emulator hardware is initialized and the user
can control the emulator through the console. To invoke the emulator system follow
these steps:

• Install emulator hardware following the procedure in appendix A of this
manual.

• Turn power on to the development system and diskette drives, and "boot" the
ISIS-II system as described in your ISIS-II manual.

NOTE
Make sure your emulator software diskette has a Write-Enable tab
installed before attempting to invoke the software.

With a one drive system, copy the emulator software to a system diskette, and
place the system diskette in drive 0. Enter the command ICE51.

The emulator software files to copy are as follows: ICE51; ICE51.0VS;
ICE51.0VE; ICE51.0VH; CONF; C0N51; C0N51.0V1, C0N51.0V2,
CON51.0V3.

2-1

utility Commands ICE-51

With a larger system, place a system diskette in drive 0 and the emulator soft
ware diskette in drive n (n = 1 to 9). Enter the command :Fn:ICE51. (Refer to the
note on WORKFILES below.) w

NOTE
Drive numbers shown are for diskette-only systems. Hard disk users
refer to the ISIS-II manual for drive numbers.

• In response to the ICE51 invocation, the ISIS system loads the main emulator
software module into memory in the development system, then issues a sign-on
message: ISIS-II ICE-51 Vn.n.

• Next, the system copies the emulator's hardware control program to RAM on %
the emulator boards, then issues the asterisk prompt.

Here is an example of the emulator invocation sequence, assuming the emulator
software diskette is on drive 1.

ISIS-II Vn.n ;ISIS-II sign-on. ,
-:F1:ICE51 ;Emulator invocation.
ISIS-II ICE-51 Vn.n ;Emulator sign-on.
FOR COMMAND ENTRY ASSISTANCE, TYPE HELP

* ;Emulator prompt.

NOTE
When you are using MACRO commands (chapter 7), the emulator
system opens a file named MAC.TMP to hold the macro definitions. By
default, the drive used for this file is the one named in the invocation
command. To specify a drive for this temporary file, the format of the
invocation is:

:Fn:ICE51 WORKFILES (:Fm:)

In this format, n is the number of the diskette drive containing the
emulator software and m is the number of the drive that will be used for

file MAC.TMP. The workspace file is temporary; it is removed at the
EXIT command. However, if the workfile disk already contains a file
named MAC.TMP, that previous file will be lost.

EXIT Command

To end the emulation session and return control of the console to ISIS-II, enter the
command:

*EXIT

The EXIT command halts all emulations, resets the emulator hardware, closes all
files opened by or through the emulator, then returns control to ISIS-II. ^

HELP Command

The emulator system includes a file with brief explanations of the emulator
commands and other kinds of entries. The HELP commands display items firom
this file on the console. The HELP facility is designed to reduce the need for printed
reference material by the somewhat experienced user.

Each item in the HELP file is identified by name. To display a menu of the names
of the items in the HELP file, enter the command:

*help

2-2

ICE-51 Utility Commands

To obtain an explanation of the notation used in the HELP command, type:

*HELP HELP

To obtain general information about entering commands at the console, type:

*HELP INFO

To display the explanation of any item, type HELP followed by the name of the
item exactly as it appears in the menu. For example:

*HELP ADDRESS

To display several items, type HELP followed by the list of items separated by
commas. For example:

*HELP GO.GR.BR

To display all the HELP messages, type HELP followed by an asterisk. For
example:

^HELP *

The items are displayed in the order they appear on the file. This facility is useful
for obtaining a hard-copy of the HELP explanations (see the LIST command later
in this chapter for obtaining a hard-copy printout).

LOAD Command

The user program to be emulated typically resides in a hexadecimal object file
generated by the ASM51 assembler. If the DEBUG assembler control has been
used, the object file also contains the program's symbol table.

The LOAD command copies the hexadecimal object code from a file into code
memory, using the emulator memory map to identify the physical location of every
address (see Code Memory Access, chapter 5). When the load is complete, the
program counter (PC) is set to the load address from the file (address of first
executable instruction).

The LOAD command also copies the user symbol table (if present on the file) into
the development system memory where it can be accessed by the emulator. The
symbols are checked for duplications of the system symbols (which are not loaded if
they occur in the user symbol table), but does not check for duplications of user
symbols already in the emulator's symbol table.

The general syntax of the LOAD command is:

LOAD iFnzfilename [NOCODE] [NOSYMBOLS]
ex

In this command format, n is the number of the diskette drive (n = 0 to 9), and
filename is the name of the hexadecimal object file (including the extension, if any).
The object filename is assigned by the user; ASM51 assigns the extension .HEX to

™ the object files it generates.

For example, assume the user code is in an object file named PROG.HEX and the
diskette with the file is in drive 1. Then the command would be:

*LOAD :F1:PROG.HEX

To load only the object code and not the symbols from the file, add the modifier
NOSYMBOLS to the command; for example:

*LOAD :F1:PROG.HEX NOSYMBOLS

2-3

Utility Commands ICE-51

To load just the symbol table but not the code, use the modifier NOCODE:

*LOAD :F1:PROG.HEX NOCODE

Object programs to be loaded must be in the hexadecimal file format generated by
the ASM51 assembler (and by the SAVE command discussed below).

NOTE
Please see the Preface to this manual for references on assembler

controls, ISIS filenames, and hexadecimal file format.

SAVE Command

The SAVE command copies user code from emulator memory to a hex format object
file. The command also copies the user symbol table from memory to the object file
if desired. The format of this command is:

[partition
NOCODE

SAVE :Fn:fHename ^,7: ' [NOSYMBOLS]

In this format, n is the number of the drive containing the target diskette (n = 0 to 9).
The filename is assigned by the user, including an extension if desired. If the
diskette does not have the given filename in its directory, ISIS-II creates the file
and opens it for write. If the file does exist, it is overwritten and the previous
contents are lost. The SAVE operation does not alter the program code or symbol
table in memory. Programs are saved in hex file format, so any programs saved
with SAVE can be loaded with LOAD.

A SAVE command with no modifiers (the modifiers are shown in brackets above)
saves the user code in the ranges that were affected by the most recent LOAD or
SAVE command within the current session. If no LOADs or SAVEs have been

performed, nothing is saved by this form of the command. For example, assuming
the command LOAD :F1:PR0G.HEX from the previous section, we can save this
code in another file named PROGOl.HEX with the command:

*SAVE :F1:PROG01.HEX

To save the code in a range of your choosing, use a command with the format:

SAVE iFnifilename partition

See chapter 1 for details on partitions.

Here are some examples of this kind of SAVE command:

*SAVE :F1:PROG02.HEX 0 TO 1FFH ^
*SAVE :F1:PROG03.HEX 200H LENGTH 80H

The forms with partition also save the user symbol table, if one is present in the
emulator memory.

To save the symbol table only, use the modifier NOCODE; for example:

*SAVE :F1:PR0G.HEX NOCODE

The modifiers NOCODE and partition are mutually exclusive; if one is included,
the other may not be included.

2-4

■it' ■

ICE-51 Utility Commands

To save the program code only and not the symbol table, use the modifier
NOSYMBOLS:

*SAVE :F1:PROG.HEX NOSYMBOLS

*SAVE :F1:PROG01.HEX 0 TO 1FFH NOSYMBOLS

Refer to chapter 1 for more about addresses and partitions.

Symbolic Reference Commands
A symbol is a name for a particular memory address or for some other value. A
symbolic reference in the emulator language is the name of a symbol preceded by a
period (.). For example, if the user program contains a symbol START for code
address OlOOH, the symbolic reference .START would represent OlOOH when it is
used in a command such as PC = .START.

The emulator maintains two kinds of symbol tables, one for user-defined symbols
and another for system-defined symbols.

User^Deflned Symbols

The emulator system maintains a symbol table for user-defined symbols. The user
table contains the name of all user symbols in the order they were loaded or defined.
The user table is initially empty.

The user table can receive the symbol table generated by the assembler when the
user program is loaded into the emulator with the LOAD command. The assembler
output file contains the user symbol table in loadable format when the DEBUG
control is added to the assembler invocation. The system loads the symbol table in
the order the S3m[ibols appear in the program. The segment type (CSEG, DSEG, etc.)
for user symbols is not loaded; user symbols in the emulator system are untyped.
The system checks for and rejects system symbols in the user table.

The user can also define symbols from the console to be added to the user symbol
table. To define a symbol, use a command with the format:

DEFINE .symbol-name = expression

Examples:

*DEFINE .START = 0100H

*DEFINE .LOOP = 0200H

The name of the new symbol {symbol-name) can be defined with a maximum of 31
characters. The first character in the new symbol-name must be an alphabetic

^ character, or one of the two characters @ or ?. The remaining characters after the
first can be these characters or numeric digits.

^ The new symbol name in a DEFINE symbol cannot duplicate a symbol name
already present either in the user table or in the system symbol table.

When you define a new symbol, you also specify the value corresponding to it in the
table. You can treat the value you assign as an address or as a numeric value for
use other than addressing.

Once a symbol has been defined or loaded, any reference to that symbol is
equivalent to supplying its corresponding address or value. If the table contains
duplicate symbol-names, the one that occurs nearest the top of the table is supplied.

2-5

Utility Commands ICE-51

To display the value from the symbol table corresponding to any symbol, enter a
symbolic reference (the symbol-name preceded by a period). For example:

*.START

.START = 0100H

To display the entire user symbol table, enter the command SYMBOLS. For
example:

^SYMBOLS

.START = 0100H ^

.LOOP = 0200H

You can change the value corresponding to an existing symbol by entering a ^
command of the form:

.symbol-name - expression

Example:

*.LOOP = 0300H

To delete one or more symbols from the table, use a command of the form:

REMOVE .symbol-name [, .symbol name] ...

Example:

^REMOVE .START, .LOOP

Note that deleting a symbol from the user symbol table makes that symbol
inaccessible to the emulator, but does not affect the program code.

To delete the entire user symbol table, enter the command:

*REMOVE SYMBOLS

Multiple Symbols

When symbols are loaded with the LOAD command, the system does not check the
symbols being loaded for duplication of symbols already in the user table. By
contrast, when you define a symbol using the DEFINE command, the system
detects duplicate symbols as an error; the assembler also disallows duplicate
symbol definitions. Thus the LOAD command is the only way multiple symbols
can occur in the user table.

In normal operation, the system searches the user table from the earliest entry, and
terminates the search when the first occurrence of the desired symbol is reached.
Under this condition, access to the second or later instances of a multiple symbol
will not be possible.

The emulator system allows you to combine symbolic references to user symbols; a
multiple reference accesses a multiply-defined symbol. For example, suppose the ^
table contains two sjonbols with the name .INDEX; the first .INDEX represents
address OlOOH and the second .INDEX represents address 0200H. To display the
first symbol, the command is:

MNDEX

.INDEX=0100H

To display the second version, the command is:

MNDEX.INDEX

.INDEX=0200H

Any number of user symbols may be combined to produce a multiple reference of
this kind. System symbols may not be used in multiple references.

2-6

ICE-51 Utility Commands

System-Defined Symbols

The emulator system maintains tables of system symbols for addresses
corresponding to the predefined symbols in the assembly language. The format of a
system symbol in the emulation language is the name of the assembler symbol
preceded by a period (.). For example, the assembler symbol "SINT" refers to the
address of the serial port interrupt vector in code memory; in the emulator
language, the corresponding system sjnnbol is ".SINT".

^ The system symbols are loaded with the emulator software at invocation. Tbey are
not part of the user symbol table, and are not affected by the user symbol table
commands. The system symbols may not be changed or removed. Tbey are not
displayed with the user table (SYMBOLS command), but can be displayed

™ individually by entering the system symbol with its leading period; for example:

*.SINT

.SINT=23H

System symbols correspond to addresses in register memory, in bit-addressable
memory, or in code memory. When you refer to a system symbol in an emulator
command, the system uses the corresponding numeric address (for example, PC, =
.SINT is equivalent to PC = 23H). Complete listings and more examples of system
symbols appear in the corresponding sections of chapter 5 (see ''Register
Addresses", "Bit Addresses", and "Code Addresses").

Symbolic Displays of Addresses

To assist in symbolic debugging, the system can use a symbolic format for displays
of addresses. The symbolic display is obtained by searching the user table or the
system tables looking for a symbol whose value either matches the address or is
closest to but less than the address. Table 2-1 shows the commands that can

produce symbolic displays of addresses, and the details on bow the symboUc
display is produced in each case.

Most of the commands produce searches of the user table only. The remaining
commands search the user symbol table first, then search one of the system symbol
tables if no user symbol matches. The user sjonbol table does not preserve the
segment types from the assembler; system tables are segmented according to type
(code, register, bit). In case of a "tie" (two symbols match), the symbol occurring
first in the table will be used. Symbols occur in the user table in the order tbey were
defined or loaded. As shown in table 2-1, system symbols are used only for
addresses appearing as operands in disassembled instructions (DASM command,
INSTRUCTION mode trace displays). The system symbol table is searched only
when the user table has been searched without finding a match. Since the
disassembler "knows" what kind of operand address it is trying to match, only the
appropriate system symbol table is searched (code, bit, or register).

Symbolic display applies only to the commands in table 2-1. All other addresses are
o displayed in hexadecimal. In addition, you can disable symbolic displays and have

addresses display in hexadecimal; to disable symbolic displays enter the command:

^ DISABLE SYMBOLIC
To re-enable symbolic displays after tbey have been disabled, enter the command:

ENABLE SYMBOLIC

Sjonbolic displays are initially enabled.

NOTE
Symbolic display is always enabled in displays with the EVALUATE
command. DISABLE SYMBOLIC has no effect on these displays.

2-7

Utility Commands ICE-51

Table 2-1. Types of Symbolic Displays

Symbol Tables Default if No

Symbolic Display Format Comparison Rule Searched Symbol Found Command/Display Content Notes

.symbol-name[^nnnnH] Closest to but not User symbols only. Hexadecimal content-operator address
greater than (Address portion of display)
the address. [ch. 5]

Display of PC after
emulation breaks.

[ch. 3]

EVALUATE expression
(Right most column of
display)

[ch. 2] 5

.symbol" name Exact match. User symbols only. No symbolic content-operator partition
display (more than one address)

[ch. 5] 1,2

DASM partition
(address field of
disassembled instruction)
[ch. 5] 1.3

PRINT (LOG field in
INSTRUCTIONS mode, ADDR
field in FRAMES mode)
[ch. 4,6] 1,3

User symbols first, Hexadecimal Addresses as operands in
then system disassembled instructions

symbols if no user (DASM, PRINT in
symbol matches. INSTRUCTION mode)

[ch. 4,5] 4

NOTES:

1. Display appears on line preceding address. 4. A system symbol is displayed if it matches and is the same
type (code address, register address, or bit address) as the

2. Display line for memory contents restarts after each sym- operand.
bolic display

3. The symbol must match the first address in the instruction. 5. DISABLE SYMBOLIC has no effect on this display.

%

LIST Command

The LIST command saves a record of the emulation session, including high-volume
data such as trace data, on a hard-copy device or on a diskette file. Only one device
or file other than the console can be specified (active) at a given time.

The format of the LIST command is:

':C0:

:LP:

LIST<:TO:

:HP:

:Fn:filename J

(
.1

Examples:

*LIST

*LIST

*LIST

F1:M AY30.LOG

LP:

CO:

In this format, n is the number of the drive (n = 0 to 9), and filename is the name of
the diskette file assigned by the user.

2-8

ICE-Sl Utility Commands

The initial device is :C0:, output to the console. Other devices that can be specified
are a line printer (:LP:), high-speed paper tape punch (:HP:), and teletypewriter
printer (:T0:).

Instead of a hard-copy device, a diskette file can be specified for LIST. If the output
is to a diskette file, the file is opened when the LIST comnaand is invoked, and
output is stored from the beginning of the file, writing over any existing data.
Specifying a new file or device in a later LIST command closes any existing open
file and avoids over-writing any more data.

When LIST is in effect (with a device or file other than :C0:), all screen output from
the emulation session including system prompts, commands, and error messages,
is sent both to the device or file and to the console display. To restore output to the
console only (no other device), use the command LIST :C0:.

RESET ICE Command

The command RESET ICE causes a reset of the emulator hardware to its initial
state as after the ICE 51 invocation. RESET ICE resets the emulator map to OOOOH,
lOOOH (see MAP command, chapter 5). The reset does not affect any other
accessible emulator registers, and does not reset the emulation processor. However,
during RESET ICE the emulation processor executes a few random instructions;
these can affect on-chip registers or ports. This command is useful for attempting
recovery from a hardware error in the emulator (refer to appendix B, ''Error
Conditions'', for details).

RESET CHIP Command

The command RESET CHIP places the emulation processor in its reset state (see
Table 2-2), Among the processor flags that are reset with this command, the
Interrupt-In-Progress flag is reset. This is the only way the user can clear this flag
interactively. This is a simulated reset as far as the user system is involved; no reset
signal is sent to the user system. On-chip data memory is not affected.

Table 2-2. State of Emulation Processor After RESET

Register Value

Accumulator OOH

Multiplication Register OOH

Data Pointer OOOOH

Interrupt Enable OOH

Interrupt Priority OOH

Port 0 OFFH

Port 1 OFFH

Port 2 OFFH

Port 3 OFFH

Program Counter OOOOH

Program Status Word OOH

Serial Port Control OOH

Serial I/O Buffer undefined
Stack Pointer 07H

Timer Control OOH

Timer Mode OOH

Timer 0 Counter OOOOH

Timer 1 Counter OOOOH

2-9

m

utility Commands ICE-51

SUFFIX Command

A numeric constant entered from the console without an explicit radix is inter
preted according to the implicit radix that applies to the context. In most contexts,
the initial implicit radix is hexadecimal (H); in these contexts, you can change the
implicit input radix by entering a command with the format:

;Hexadecimal

SUFFIX. < >
;Octal

;Binary

For example, to enter a series of values in decimal radix, the commands would be:

*SUFFIX=T ;Change to decimal radix

*DBYTE 50 = 23, 67, 88, 23, 68, 45 ;Enter the decimal numbers.

*SUF = H ;Restore hexadecimal radix.

To display the current implicit radix, enter the command:

*SUFFIX

H ;One-character display, as described above.

Certain command contexts assume an implicit decimal (T) radix. The SUFFIX
command has no effect on these contexts. In addition, the MAP command (chapter
5) requires hexadecimal (or a multiple of 1024 with explicit K radix), and is not
affected by the SUFFIX command.

BASE Command

Numeric information such as addresses and memory contents is displayed in the
current console output radix. The initial output radix is hexadecimal (H). To change
to a new output radix, use a BASE command with the following format:

H \ ;Hexadecimal
IT f ;Decimal

BASE=<Q > ;Octal

' Y I ;Binary

ASCII/ ;ASCII character for each byte

Examples:

*BASE = T

*BAS = ASCII

*BASE = Y

To display the current output radix, enter the command:

*BASE

H

The display consists of a single character: H, T, Q, Y, or A for ASCII.

EVALUATE Command

The EVALUATE command performs mathematical computation and displays the
results; the format is:

EVALUATE expression

2-10

ICE-51 Utility Commands

Example:

^EVALUATE FFH = 1

100000000Y 400Q 256T 100H " .START

The system evaluates the expression and displays the result in the four bases
(binary, octal, decimal, and hexadecimal), as ASCII characters, and as an address.
For ASCII, the characters are enclosed in apostrophes C); printable characters are
displayed (ASCII codes 20H through 7H after bit 7 is masked off), while non-

^ printing characters are suppressed. As an address, the symbolic form is used if the
system can identify a user-defined symbol that is less than or equal to the address;
otherwise, the address is in hexadecimal. Refer to chapter 1 for details on expres-

^ sions, and to chapter 2 for symbolic displays.

2-11/2-12

CHAPTER 3

EMULATION COMMANDS

#

Real-Time Emulation

The ICE-51 system emulates the microcontroller in the user prototype with a
special version of the 8051 located at the end of the user cable. This special 8051 is
called the emulation processor.

During real-time emulation, the emulation processor fetches instructions from code
memory and executes them. Emulation begins at the address in the program
counter (PC) and halts ("breaks") either by user abort (ESC key) or on a condition
set by the user. Emulation breaks after completing the current instruction. An
emulation timer records execution time for display after emulation breaks. Trace
data, a picture of chip activity^ is collected under conditions set by the user.

Real-time emulation operates at the 12.0 MHz frequency from the Crystal Power
Accessory furnished with the emulator system, when this accessory is installed on
the buffer box. In this mode, the emulator does not interact with the user system.
When the user plug is inserted in the user system, the operating frequency is
derived from the user hardware.

Basic GO Commands

To start emulation at the current program counter address, enter the Command GO;
the system begins emulation with a message; for example:

*G0

EMULATION BEGUN

To halt emulation at any time, press the ESC key on the keyboard. The system
responds with two messages:

EMULATION TERMINATED. PC^address

PROCESSING ABORTED

The first message is displayed any time emulation breaks. The address; in the.
program counter is the next instruction to be executed when emulation resumes.
The second message is displayed whenever command processing is halted by
pressing the ESC key. After the second message the system displays the prompt for
the next command.

To start emulation at a particular address of your choice, use a GO command with a
PROM clause; the format is:

GO FROM address

This one command is equivalent to the sequence:

PC = address

GO

;See chapter 5 for this command.

Here are some examples of this form of GO command:

"GO FROM tOOH

"GO FROM .START

"GO FROM .COUNTER + 10H

3-1

Emulation Commands ICE-51

Using Breakpoints to Hait Emulation

A breakpoint is a halt-condition involving a particular state of the emulation
processor that is of interest to you. In simplest form, a breakpoint is specified as the
address of an instruction (more precisely, the address of the opcode or first byte of
an instruction); if the breakpoint instruction is executed, emulation breaks after
completing that instruction.

You can specify a breakpoint when you start emulation. The format of this
command is; M

GO [FROM address] TILL address

For example: ^

*GO TILL 100H

This command starts emulation at the current PC; if the instruction at code address
OlOOH is executed, emulation halts after completing that instruction. If this ^
instruction is never executed, you must press ESC to halt emulation. Here are some i j
more examples of this kind of breakpoint:

*G0 FROM 0 TILL 30H

*GO FROM .START TILL 100H

*G0 FROM .LOOP TILL .DONE

*GO TILL .SUBR - 1

You can have two breakpoints active at the same time. To specify two breakpoints,
use a command with the following format:

GO [FROM address] TILL address OR address

For example:

*GO TILL 0100H OR 0200H

During this emulation, if an opcode is fetched either from address lOOH or from
address 200H, emulation breaks after completing that instruction. Here are some
more examples using two breakpoints:

*GO FROM 0 TILL .DONE OR 200H

*GO TILL .DONE OR .SUBR - 1

Initially, no breakpoints are active. To cancel all breakpoints and restore the initial
condition, use a command with the format:

GO [FROM address] FOREVER

For example:

*G0 FOREVER

*GO FROM .START FOREVER

Following either of these commands, you must use the ESC key to halt emulation.

NOTES ON BREAKPOINTS:

1. In the format TILL address, the address must be the address of an opcode, the
first address in an instruction. Thus, if you enter GO TILL lOlH and address
101H actually contains an operand byte, emulation will not break when
address lOlH is accessed, and you must press ESC to halt emulation. (Other
command forms allow you to break on operand addresses, on opcode and
operand values, on port values, and on external signal SYO IN; refer to chapter
6 for these commands.)

3-2

ICE-51 Emulation Commands

2. Once activated, a breakpoint remains in effect until canceled. Setting a new
v breakpoint implicitly cancels any previous breakpoints.

3. If the program counter contains the breakpoint address when emulation begins
(for example, *G0 FROM lOOH TILL lOOH), emulation breaks after executing
that one instruction.

Using a Mask as a Breakpoint
m

A mask is a hexadecimal, binary, or octal numeric constant in which one or more of
the digits are "don't-cares"; a don't-care digit is represented with the character X.
(The digits that are not X can be called "care" digits.) When used as a breakpoint, a
mask represents the several addresses that share the care digits; the don't-care
digits are ignored. For example, to request a break on any opcode address in the
range of addresses from ODOOOH to ODFFFH inclusive, any of the three following
examples will serve:

^ ̂ *GOTILLODXXXH ;"H" means "hexadecimal".
*GO Tl LL 15XXXXQ ;"Q" means "octal".

*GO Tl LL 1101XXXXXXXXXXXXY ;"Y" means "binary".

In a binary mask, each X digit represents one don't-care bit. In an octal mask, each
X digit represents three don't-care bits. In a hexadecimal mask, each X represents
four don't-care bits. If the don't-care digits in a mask are the low-order digits (as in
the examples above), the mask represents a range of contiguous addresses. If the
don't-care digits are not the low-order digits, the mask represents several single
addresses distributed at intervals; for example, the mask OIXOH represents
addresses OlOOH, OllOH, 0120H, and so on up through lOFOH.

Since the mask in this form of breakpoint represents an address, the system
assumes 16 bits; if the mask you enter specifies fewer than 16 bits the value is right-
justified (placed in the low-order bits) and the leading bits not specified in the mask
are filled with zeros (not don't-cares). For example, IXH becomes OOlXH.

You can use a mask instead of a single address in any of the forms of the GO
command. Thus, the overall format of the GO command discussed in this chapter is
as follows:

GO [FROM address]
FOREVER

-p., , (address
\mask

Here are some examples with combinations of addresses and masks:

*GO FROM .START TILL .DONE OR 2XXH

*G0 TILL 1XXXY or 400H

Single-Step Emulation

Under single-step emulation the emulation processor executes the instruction
whose address is in the program counter. Emulation breaks automatically after
that instruction is completed, and the system returns control to the console. Trace
data is always collected during single-step emulation.

Single-step is useful for exercising software logic in detail.

3-3

Emulation Commands ICE-51

To begin single-step emulation enter the command STEP then press RETURN. At
this command, the following occurs:

• The message EMULATION BEGUN is displayed.

• The instruction defined by PC is emulated.

• Emulation breaks automatically after that instruction is completed.

• The message EMULATION TERMINATED, FC=address is displayed just as
for real-time emulation.

.■■•Sl-
Thus, each time you enter the STEP command, one instruction is emulated.

The full format is:

STEP [FROM address]

The FROM clause controls the address of the instruction to be executed.

Single-step emulation differs from real-time emulation in several ways. With
respect to the emulator system, trace information is always collected during single
step; the emulation timer is inoperative and is cleared; the external sync line inputs
are ignored. Signal SYO OUT, if enabled, goes momentarily high during each single
step. The on-chip timers, if running, count two times during each single step.

NOTE
To have several steps emulated as a unit, the STEP command can be
entered within a COUNT or REPEAT command block. Refer to chapter
7 for the details on block commands.

3-4

CHAPTER 4

TRACE COMMANDS

m

The Trace Buffer

The emulator system maintains a trace buffer to record information collected
during emulation. The buffer contains up to 1000 frames of information; each
instruction cycle takes four frames. Thus, depending on the mix of instructions,
1000 frames represents about 100 to 200 instructions. A technique for increasing the
maximum number of instructions to 1000 is presented later in this chapter.

The trace buffer is initially empty. The buffer is cleared whenever the program
counter is changed by a PC command, by a FROM clause in a GO or STEP
command, or by a LOAD command. Emulation can break and resume without
clearing trace if the program counter is not changed between emulations.

Frames are numbered from 000 to 999 decimal. New frames are added at the end of

the buffer, using successively higher frame numbers. After the first 1000 frames,
the buffer "overflows"; each new frame added at the end (in frame 999) causes the
oldest frame to be lost from the beginning of the buffer. Thus after overflow the
buffer retains the most recent 1000 frames.

Displaying Trace information

There are two modes of trace display, called INSTRUCTION mode and FRAME
mode. INSTRUCTION mode is the initial mode. In INSTRUCTION mode each line
of display contains the information collected during the execution of one complete
instruction (several frames). In FRAME mode each display line contains the
information for just one frame. INSTRUCTION mode displays are explained in the
present chapter. FRAME mode displays are discussed in chapter 6; chapter 6
contains details on trace collection that may be required to interpret FRAME mode
displays.

Display of information from the buffer is controlled by a "line pointer"; the pointer
indicates the place in the buffer where the display will begin or end. The pointer
always points at the beginning of a line. After emulation breaks, the pointer is just
past the frame most recently collected.

OLDEST and NEWEST Commands

To move the display pointer to the first frame in the buffer, use the command:

*OLDEST

To move the pointer to just after the last frame in the buffer, use the command:

*NEWEST

MOVE Command

The MOVE command moves the pointer forward toward NEWEST or backward
toward OLDEST. The format of this command is:

MOVE [[-] number-of-fines]

4-1

Trace Commands ICE-51

Examples:

*MOVE ;Same as "MOVE 1"

*MOVE 10

*MOVE -25

The entry number-of-lines can be a decimal constant, that is a decimal number
without an explicit radix (example: MOVE 5). It can also be a sjnnbol or kejrword
reference. Any numeric constant entered after MOVE without an explicit radix is
assumed to be decimal; if the number contains digits that are invalid in decimal
radix, an error occurs.

When number-of-lines is positive (for example, MOVE 5), movement is toward
NEWEST. The pointer cannot move past NEWEST; if the pointer is already at
NEWEST or if number-of-lines would move the pointer past NEWEST, the pointer
ends up just past the last line in the buffer.

When number-of-lines is negative (example: MOVE -5), the pointer moves toward
OLDEST. The pointer cannot move back past OLDEST; if the pointer is already at
OLDEST or if the number-of-lines would move the pointer back past OLDEST, the
pointer ends up at the first line in the buffer.

PRINT Command

The PRINT command displays one or more lines from the trace buffer, with a
header to identify the information. The PRINT command does not move the line
pointer. Details on the header and information appear later in this chapter. The
format of the command is:

PRINT
E-] number-of'lines
,LL J

Examples:

*PRINT ;Same as "PRINT 1"

*PRINT 10

*PRINT -25

*P ALL

If the pointer is at NEWEST (end of the buffer), the PRINT command displays the
header only; no lines are displayed.

The entry number-of-lines is as defined earlier for the MOVE command.

When number-of-lines is positive (no sign, for example, PRINT 5) display begins
with the line at the current pointer. If the number of lines exceeds the distance to
NEWEST, only the lines from the pointer to NEWEST are displayed; in other
words, you cannot display any lines past NEWEST.

When number-of-lines is negative (for example, PRINT -5), the display contains
that many lines up to and including the line right before the pointer (i.e., PRINT -5
is equivalent to MOVE -5, PRINT 5, MOVE 5). If the number of lines requested
exceeds the distance to OLDEST, only the number of lines from OLDEST to the
current pointer are displayed.

The command PRINT ALL displays all lines in the buffer from OLDEST to
NEWEST.

w

4-2

ICE-51 Trace Commands

Displays in INSTRUCTION Mode

In INSTRUCTION mode each line of the display contains information collected
during the execution of one complete instruction. Figure 4-1 shows an example of
an INSTRUCTION mode display. The display begins with a header to identify
each type of information. The next several paragraphs briefly explain the items as
they appear in the figure fi:om left to right.

m FRAME,

decimal.

The frame number of the first frame in each instruction from 000 to 999

LOG. The address of the opcode (first byte) of the instruction in hexadecimal.
When symbolic display is enabled, a symbol that exactly matches an address
appears on the line above that address (frame number 008 in figure 4-1).

OBJ. Opcode and operand bytes in hexadecimal, like the OBJ field in an assembly
listing.

INSTRUCTION. The assembler mnemonics for the opcode and operands as
produced by the "disassembler." The disassembly includes symbols for addresses
in the operand fields. The format is identical to that produced by the DASM
command (see chapter 5). The display of the disassembled instruction may require
more than one display line.

PI, P2, PO. The values of the three I/O ports in hexadecimal. In INSTRUCTION
mode, the values displayed are the ones from the first frame in the instruction. The
arrangement of the ports in the display allows you to read P2 and PO as the high
and low bytes (respectively) of an external address.

TOVF. Trace overflow flag (0 = no overflow, 1 = overflow). The trace buffer
overflows after the first 1000 frames have been collected. In INSTRUCTION mode,
the value of TOVF is the one from the first frame of the instruction.

FRAME LOG OBJ INSTRUCTION PI P2 PO TOVF

0000: OOOOH 802E SJMP .START - - FFH FFH FFH 0

.START

0008 0030H 439002 ORL .P1,#02H FFH FFH FFH 0

0016 0033H 7830 MOV RO,#.START FFH FFH FFH 0

0020 0035H 7A00 MOV R2,#00H FFH FFH FFH 0

0024 0037H C220 CLR .Y FFH FFH FFH 0

0028 0039H D222 SETB .Z FFH FFH FFH 0

0032 003BH 758920 MOV .TMOD,#.Y FFH FFH FFH 0

0040 003EH 75A888 MOV .IE,#.CTABL FFH FFH FFH 0

0048 0041H 758DF0 MOV .TH1,#.C0UNT
.CTABL,#OOH

FFH FFH FFH 0

0056 0044H 758800 MOV FFH FFH FFH 0

0064 0047H 758BF0 MOV .TL1,#.COUNT FFH FFH FFH 0

0072 004AH D28E SETB .TR1 FFH FFH FFH 0

0076 004CH 8002 SJMP .LOOP FFH FFH FFH 0

.LOOP

0084 0050H A2D0 MOV C,.V FFH FFH FFH 0

0088 0052H 728F ORL C,.W FFH FFH FFH 0

0096 0054H 8291 ANL C,.U FFH FFH FFH 0

0104 0056H 92D5 MOV .FO,C FFH FFH FFH 0

0112 0058H A2AB MOV C,.X FFH FFH FFH 0

0116 005AH B020 ANL C,/.Y FFH FFH FFH 0

0124 005CH 72D5 ORL G,.FO FFH FFH FFH 0

0132 005EH A022 ORL G,/.Z FFH FFH FFH 0

0140 0060H 92A3 MOV .Q,G FFH FFH FFH 0

Figure 4-1. INSTRUCTION Mode Trace Display

4-3

Turning Trace On and Off

Trace information is always collected during single-step. The following trace
controls thus apply only to real-time emulation.

Initially, no factors are enabled to control trace; every frame of every instruction is
collected in the buffer, and the buffer retains the most recent 1000 frames. To
restore this condition, the command is:

TR = FOREVER

To have trace turned off after collecting the first-frame of a particular instruction,
the format is:!address\

>

mask \

Trace Commands ICE-51

Reconstruction and Verification

The intention in INSTRUCTION mode is to facilitate debug at the assembler level
by providing a display that includes the OBJ values and disassembly for a
complete instruction on every line. However, some of the ways to collect trace do not
collect entire instructions. The system can use the contents of program memory to
fill in "gaps" in trace, as described below.

In INSTRUCTION mode the system only displays an instruction if the first frame
of the instruction has been collected in trace. The first frame of each instruction ^
contains the address of the opcode; this type of frame is called a LOCATION frame.
The address in the LOCATION frame is the one in the LOC field in ASM-51 listings
and INSTRUCTION mode displays. All of the trace qualifier commands in this ^
chapter collect the LOCATION frame of any instruction they qualify. (Refer to
chapter 6 for more details on frames and frame types.)

The system reads the opcode address, then checks to see if the opcode value is
present in trace. If it is, the one-byte opcode value is read from trace. If it is not, the
byte value is read from the corresponding address in code memory instead. The
system decodes the opcode to determine the number of bytes in the instruction, then
checks to see if all the bytes have been collected in trace. If the entire instruction is
in trace, the displays in the OBJ field and the disassembled instruction are based
on the values from trace. If any byte is missing, the corresponding display is read
from memory instead. Once the values of all bytes have been obtained, display of
the OBJ field and the disassembled instruction proceeds as described above.

If a value is present in trace it is compared to the corresponding value in code
memory. If the two values are different, a warning message UNEXPECTED
TRACE is displayed. If the two values are the same, no message is displayed. Trace
and memory can differ if the user changes code memory after emulation breaks;
program memory does not usually change during emulation.

One warning message is displayed for each frame found to be different. The
message or messages appear on the line(s) immediately preceding the instruction
that produced the warning frames. (Refer to "Frame Mode Trace Displays" in
chapter 6 for more information on this warning message.)

NOTE
Normally when trace and memory are found to differ, the value firom
trace is the one displayed in INSTRUCTION mode. However, when an
opcode or value from trace equals FFH and the corresponding memory
value is not FFH, the trace is assumed to be in error and the memory
value is the one displayed.

4-4

ICE-51 Trace Commands

Examples:

*TR = TILL 0100H ;Halt trace after opcode address 0100.

*TR = TILL .DONE ;Halt trace after opcode address given by
label .DONE.

*TR = TILL 01XXH ;Halt after any opcode address, OlOOH
through OlFFH.

^ In these forms the address must be the first (opcode) address in an instruction to
halt trace collection. Trace halts after collecting the first frame of the instruction;
the buffer retains the 1000 frames up to and including that instruction.

^ You can use a mask to specify a range of addresses. A mask is a hexadecimal, octal,
or binary numeric constant in which some of the digits are "don't-cares"; a don't-
care digit is specified with the character X. Refer to chapter 3 for more details on
masks.

You can specify two different addresses (or masks) to halt trace; the format is:

(address^
TR=TILL/ > OR

!address\ (address^
[OR) \

mask \ Imask I

Examples:

*TR = TILL .DONE OR 0100H

*TR = TILL 01XXH OR .START + 5

In these examples, trace collection halts if either of the two opcode addresses is
executed. Addresses and masks can be combined in the same command, as shown
in the second example above.

To turn trace on for one bufferful after the first frame of a particular instruction, the
format is:

I I address)
TR = AFTER V OR

addressh

\mask mask j
Examples:

*TR = AFTER 0100H

*TR = AFTER XXXXH

*TR = AFTER .START OR .TIMERO

With this form, trace collection does not start until the specified opcode address is
executed. Then, all frames of trace are collected until the buffer overflows. The
command allows you to specify one or two addresses, and to use a mask for either or
both addresses. The second example, "AFTER XXXXH", collects one bufferful of
information from the beginning of emulation (the first frame of the first instruction
is not collected). If the trace buffer is cleared before starting emulation, 1000 frames
are collected after trace turns on; if the buffer has not been cleared, only the frames
from NEWEST to 1000 are collected.

To maximize the number of instructions collected in the buffer (and displayable in
INSTRUCTION mode), the command is:

*TR = VALUE IS XXH

4-5

Trace Commands ICE-51

For reasons explained in chapter 6, this command collects the first frame of every
instruction (along with some additional types of frames). Depending on the mix of
instructions, this control allows you to capture the first frames of up to 1000
instructions. This information allows the instruction to be displayed in
INSTRUCTION mode, but data on frames other than the first may be lost.

The trace controls described in this chapter are useful for controlling trace when
the display mode is in INSTRUCTION. Refer to chapter 6 for further trace controls.

4-6

CHAPTER 5

MEMORY CONTENTS COMMANDS

#

«■

Introduction

The commands in this chapter allow you to access the various memory spaces
available to the user. Access to memory serves the following purposes:

• Displaying the contents of one or more locations.
• Changing the contents of one or more locations.
• Assembling short programs or program patches.
• Using addresses and contents as operands in assembler instructions.
• Using addresses and contents as operands in emulator commands.

Types of Memory Space

The emulator provides access to five kinds of user memory spaces, summarized in
table 5-1. Each type of memory is referenced by an address of 8 or 16 bits, and
contains a byte or bit contents, as shown in the table. The table also shows the
content operator appropriate to each kind of memory; the content operators are one
way to access the contents of memory in emulator commands.

Table 5-1. Types of User Memory

Maximum Bits Maximum Bits Content
Type of Memory in Address in Contents Operator
On-chip data memory 8 8 DBYTE
Register memory 8 8 RBYTE
Bit-addressable memory 8 1 RBIT
External data memory 16 8 XBYTE,

PBYTE
Code memory 16 8 CBYTE

Using Content Operators

Commands to display and set memory contents with the content operators
(DBYTE, KBYTE, KBIT, XBYTE, PBYTE, and CBYTE) are similar in pattern. The
format for displaying memory content is:

content-operator partition

Examples:

*DBYTE 0 TO FH

*RBYTE .SP

*RBIT .PSW+7

*PBYTE 0100H LENGTH 30H

*CBYTE 0 TO IK

The format for setting memory contents is:{expression) (expression
content-op partition^ ,< content-op partition
string J (string J In

5-1

Memory Contents Commands ICE-51

Examples:

*DBYTE 30H = 0

*RBYTE .SP = (RBYTE .SP) + 1

*RBIT .PSW+7 = 1

*XBYTE 0100H TO 0120H = DBYTE 30H, 'A', FOH

*CBYTE 50H = DBYTE 30H LENGTH 37T

More examples of these kinds of commands appear in the following sections. These ^
additional examples illustrate operations that apply to each type of memory.

NOTE

The contents shown in the examples in this chapter may be 'random' in
that they do not represent any particular program or data. The result
you obtain by entering the command examples may produce different
values in the display.

On-Chip Data Memory Access

Data Memory Addresses

Figure 5-1 diagrams the on-chip data memory. Addresses in this memory are 8-bit
quantities, but only the addresses in the range from OOH to 7FH (0 to 127 decimal) , ,
are valid. (Addresses above 7FH are in register memory, discussed later in this
chapter.) There are no system symbols for this memory area. The low 32 bytes of
data memory contain the four register banks; use of the register banks is discussed
later in this section. As shown in the figure, the stack is initially positioned to begin
at location 08H (i.e., the stack pointer is initialized at 07H). Displays of the stack
are described later in this section. The bits in data locations 20H through 2FH can
be individually addressed; bit addressing is discussed in a later section of this
chapter.

Contents of Data Memory

The content operator DBYTE is used to display and change the contents of data
memory. All addresses after DBYTE must be in the range 00 to 7FH; addresses
above this range produce an error message and no memory is displayed or changed.

To display the contents of a single address, the format is:

□BYTE address ^
Example:

*DBYTE 0 ^
DBYTE 00H=00H

To display the contents of several contiguous addresses, the format is:

DBYTE partition

Example:

*DBYTE 20H LENGTH 10H v^y
0020H=20H 9CH 92H 9AH F6H 99H BOH 7BH 08H 4CH CDH 27H ECH 8AH 07H D8H

5-2

ICE-51 Memory Contents Commands

\^~p/

RAM
BYTE

(MSB) (LSB)
7FH

2FH 7F 7E 7D 70 7B 7A 79 76

77 76 75 74 73 72 71 70

2DH 6F 6E 6D 60 6B 6A 69 66

2CH 67 66 65 64 63 62 61 60

2BH 5F 5E 5D 50 5B 5A 59 56

2AH 57 56 55 54 53 52 51 50

29H 4F 4E 4D 40 4B 4A 49 48

28H 47 46 45 44 43 42 41 40

27H 3F 3E 3D 30 3B 3A 39 38

26H 37 36 35 34 33 32 31 30

2SH 2F 2E 2D 20 2B 2A 29 28

24H 27 26 25 24 23 22 21 20

23H 1F IE ID 10 IB 1A 19 18

22H 17 16 15 14 13 12 11 10

21H OF OE OD OO OB OA 09 08

20H 07 06 OS 04 03 02 01 00

18H

BANK 3

17H

10H

BANK 2

OFH

08H

BANK 11 1
BANK 0

BIT-ADDRESSABLE
BYTES

-STACK POINTER

Figure 5-1. Data Memory

The display has a maximum of 16 bytes per line. The address of the first byte in the
line is displayed at the beginning of each hne.

To change the contents of a single data address, the format is:

DBYTE address = expression

Example:

*DB YTE 30H = 0 ;See chapter 1 for the forms of expression.

To change all bytes in a partition of data memory to a single value, the format is:

DBYTE partition = expression

Examples:

*PBYTE 0 to 7FH = 0 ;Clears data memory

To load: a string of ASCII characters into data memory, the format is:

PJBYTE address = string

5-3

Memory Contents Commands lCE-51

Example:

*DBYTE 50H = •ABCDEFGHIJKLMNOPQRSTUVWXYZ

*DBYTE 50H LENGTH 26T

0050H=41H 42H 43H 44H 45H 46H 47H 48H 49H 4AH 4BH 4CH 4DH 4EH 4FH 50H

0060H=51H 52H 53H 54H 55H 56H 57H 58H 59H 5AH

The address after DBYTE specifies where the first character in the string is to be
stored; successive bytes receive the subsequent characters. Thus, the length of the
string determines the number of bjrtes. An error occurs if the top of data memory is
reached with characters yet to be stored.

To copy bytes from one area of memory to data memory, the format is:

DBYTE address = content-operator partition

For example, to copy a table from code to data memory:

*DBYTE 50H = CBYTE TABLE LENGTH 32T

Another way to set a range of data memory is to use a list of new values; the format
for this kind of command is:{expression

string
content-op partition)

) (exp
> , \strii

ion) [con

expression |
string |
content-op partition]

Example:

*DBYTE 60H = 10H, RBYTE .PSW, 'HELLO'. CBYTE TABLE LENGTH 30T

The number of data bytes changed is determined by the number of bytes in the list
(37 bytes in the example above).

The above form can be generalized to the following:

DBYTE partition = list-of-new-values

Where list-of-new-values is any number of the entries expression, string, or content-
operator partition separated by commas.

For example, to fill a block of data memory with a repeating sequence of values:

*DBYTE 60H LENGTH 10H = 11H, 22H, 33H

*DBYTE 60H LENGTH 10H

0060H=11H 22H 33H 11H 22H 33H 11H 22H 33H 11H 22H 33H 11H 22H 33H 11H

In this form, the number of bytes in the partition after DBYTE determines the
number of data bytes changed. If the number of bytes in the list of values is less
than the length of the partition, the values are repeated as in the previous example.
If the number of values exceeds the length of the partition, data hytes will be set as
described earlier until the first excess value is reached; at this point a warning
message is. displayed.

Contents of Register Banks

The emulator system provides the keywords RO, Rl, R2, R3, R4, R5, R6, and R7 to
refer to the contents of the 8-bit working registers in data memory. The register
bank is the one currently selected. For example, to display the contents of register 0
in the current bank, the command is:

*R0

RO=OOH

5-4

ICE-51 Memory Contents Commands

To change the content of a working register, the format is:

Rn = expression ;Where n = 0 through 7.

Example:

*R5 = 21H

The emulator truncates the expression to its least significant byte, just as the
assembler does.

To display the current register bank, enter the keyword RBS (Register Bank Select):

*RBS

RBS=OOH

The value will be OOH, OlH, 02H, or 03H

To select another register bank, use a command with the format:

RBS = expression

The emulator requires the expression to contain one or two bits. Most of the time the
I expression will be a single digit, 0 through 3, for example:

RBS = 2

The Register Bank Select bits are part of the Program Status Word, a location in
register memory. Refer to the section on "Register Memory Access" later in this
chapter for more details.

Display Command

The STACK command has the following format:

STACK [expression]

The STACK command displays the stack from the top in bytes, and the contents of
the stack pointer. The expression is the number of bytes (entries) you wish to
display. The stack pointer is not affected by the STACK command.

The command STACK without expression displays the stack from the top down to
data location OOH. (In other words, you have to keep track of the initial stack
pointer location.) The display also stops at location OOH when the expression is
larger than (SP + 1).

Here are some examples;

*STACK *STACK 10T

SP STACK SP STACK

OCH OOH OCH OOH

OBH OOH OBH OOH

OAH OOH OAH OOH

09H OOH 09H OOH

08H OOH 08H OOH

07H OOH 07H OOH

06H OOH 06H OOH

05H OOH 05H OOH

04H OOH 04H OOH

03H OOH 03H OOH

02H OOH

01H OOH

OOH OOH

5-5

Memory Contents Commands ICE^Sl

The stack pointer is a byte register in register memory. To display the contents of
the stack pointer directly, use the command:

RBYTE .SP

Example:

*RBYTE .SP

RBYTE .SP=07H ;Initial default.

More information on register memory access follows in the next section.

Register Memory Access

Register Addresses

Register addresses are 8-bit quantities. In the register memory (addresses 80H
through FFH), only certain addresses are valid. Each of the valid addresses in
register memory has a predefined system symbol to represent it; table 5-2 shows the
valid register addresses (in hexadecimal) and the corresponding system symbols.

If you try to read any of the invalid register addresses (above 80H but not in table 5-
2), a byte of undefined data is returned. If you try to write to any invalid register
address, the data is lost.

Table 5-2. Addresses and System Symbols for Registers

Register System
Address (Hex) Symbol Meaning

80H .PO Port 0

81H .SP Stack Pointer

82H .DPL Data Pointer, Low Byte
83H .DPH Data Pointer, High Byte

88H .ICON Timer Control

89H .TMOD Timer Mode

8AH .TLO Timer 0, Low Byte
8BH .TL1 Timer 1, Low Byte
8CH .THO Timer 0, High Byte
8DH THI Timer 1, High Byte

90H .P1 Port 1

98H .SCON Serial Port Control

99H .SBUF Serial Port Buffer

AOH .P2 Port 2

A8H .IE Interrupt Enable

BOH .P3 Port 3

B8H .IP Interrupt Priority

DON .PSW Program Status Word

EOH .AGO Accumulator

FOH .B Multiplication Register

5-6

ICE-51 Memory Contents Commands

Contents of Register Memory

The content-operator KBYTE is used to display and change the contents of register
memory. To display the contents of any register, the format is:

RBYTE register-address

Examples:

*RBYTE .PSW

^ RBYTE OODOH=OOH
*RBYTE .P1

RBYTE 0090H=FFH

^ *RBYTE 80 TO FF

0080H=FFH 07H OOH OOH FFH FFH FFH FFH OGH OOH OOH OOH OOH OOH OOH OOH

0090H=FFH FFH FFH FFH FFH FFH FFH FFH OOH OOH FFH FFH FFH FFH FEH FFH

OOAOH=FFH FFH FFH FFH FFH FFH FFH FFH OOH FFH FFH FFH FFH FFH FFH FFH

OOBOH=FFH FFH FFH FFH FFH FFH FFH FFH EOH FFH FFH FFH FFH FFH FFH FFH

OOCOH=FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH

OODOH=OOH FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH

OOEOH=OOH FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH

OOFOH=OOH FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH

To change the contents of any register, the format is:

RBYTE register-address = expression

The expression is truncated to its low byte.

Examples:

♦RBYTE .PSW = FOH
♦RBYTE .PSW
RBYTE OODOH=FOH
♦RBYTE .ACC = F7F7H
♦RBY .ACC
RBYTE 00E0H=F7H

Reserved Keywords for Register Memory Contents

The following keywords refer to the contents of special parts of register memory:

DPTR Data Pointer (16 bits).

TMO Timer 0 (16 bits)

TM1 Timer 1 (16 bits)

RBS Register Bank Select (2 bits)

These references produce the contents of memory directly; the RBYTE operator is
not required. The keyword alone is a display command. For example:

*DPTR
DPTR=OOOOH

You can change the contents of these registers; the format is:

keyword-reference = expression

For example:

*DPTR = .TABLE + 5

*TMO = FFFOH

*RBS = 1

5-7

Memory Contents Commands ICE-51

REGISTERS Command

The command REGISTERS produces a display of the contents of the following
registers:

PC Program Counter

ACC Accumulator

B Multiplication Register

SP Stack Pointer %

DPTR Data Pointer

RO Working Register 0 ^

R1 Workmg Register 1

PSW Program Status Word

The PSW register is displayed in binary radix; all the others are displayed in
hexadecimal. For example:

^REGISTERS

PC ACC B SP DPTR RO R1 PSW

GOOGH GGH A1H G7H GGGGH GGH G1H GGGGGGGGY

The value of RO and R1 reflect the current bank selected.

INTERRUPT Display Command

The INTERRUPT command displays the Interrupt Enable (IE) and Interrupt
Priority (IP) registers, and the status of Interrupts In Progress for priority 0 (IIPO)
and priority 1 (IIPl) in tabular format. For example:

^INTERRUPT

EA SINT TIMER1 EXTI1 TIMERG EXTIG

IIPG G G G G G

IIP1 G G G G G

IE 1 G G G G 1

IP G G G G 1

For IIPO and IIPl, "1" means "in progress"; for IE, "1" means "enabled"; for IP,
"0" and "1" are the priority levels assigned.

The column headers are:

EA Enable All Interrupts (IE register only)

SINT Serial Port Interrupt

TIMER1 Timer 1 Interrupt

EXTI1 External 1 Interrupt

TIMERG Timer G Interrupt

EXTIG External G Interrupt ^

Bit-Addressable Memories

Bit Addresses

A bit address is an 8-bit quantity that indicates either a bit in the data RAM bit-
addressable space or a bit in a bit-addressable register in register memory. Bit

5-8

ICE-51 Memory Contents Commands

addresses in the range firom 0 to 7FH refer to the 128 bits in data bytes 20H through
2FH. Bit addresses between 80H and FFH refer to bits in bit-addressable registers.
The bit-addressable registers are those whose register address has either a zero or
an eight as the second hex digit (e.g., 90H, 98H). Many of the bit addresses in
register memory can be represented by system symbols; all of them can be
represented by an entry with the form

.bit-addressable-register + bit-position

For example, bit 7 of the Program Status Word would be addressed as:

.PSW+7

This form is the emulator language equivalent of the ASM-51 "bit-operator"; the
PSW example would be "PSW.7" in ASM-51.

Va-YpBl/

Table 5-3 shows all the bit addresses in register memory that are valid. The table
shows the system sjnnbols when applicable, as well as the "bit-operator" form of
address. Any bit address in the range from 80H to FFH that is not in this table is
invabd; bits read from invalid bit addresses are undefined, and bits written to
invalid addresses are lost.

Table 6-3. Bit Addresses in Register Memory

Hex System Register +
Address Symbol Bit Position Meaning

SON .PO+0 Port 0, Bit 0
81H .PO+1 Port 0, Bit 1
82H .PO+2 Port 0, Bit 2
83H .PO+3 Port 0, Bit 3
84H .PO+4 Port 0, Bit 4
85H .PO+5 Port 0, Bit 5
86H .PO+6 Port 0, Bit 6
87H .PO+7 Port 0, Bit 7

88H .ITO .TCON+0 Timer 0 interrupt, Type Control Bit
89H .lEO .TCON+I Timer 0 Interrupt, Edge Flag
8AH .IT1 .TCON-f-2 Timer 1 Interrupt, Type Control Bit
8BH .IE1 .TCON+3 Timer 1 Interrupt, Edge Flag
8CH TRO .TCON+4 Timer 0 Run Control Bit
8DH TFO .TCON+5 Timer 0 Overflow Flag
8EH TRI .TCON+6 Timer 1 Run Control Bit

8FH TFI .TCON+7 Timer 1 Overflow Flag

90H .P1+0 Port 1, Bit 0
91H •Pl+I Port 1, Bit 1
92H PI+2 Port 1, Bit 2
93H .PI+3 Port 1, Bit 3
94H .PI+4 Port 1, Bit 4
95H .PI+5 Port 1, Bit 5
96H .PI+6 Port 1, Bit 6
97H .P1+7 Port 1, Bit 7

98H .Rl .SCON+0 Receive Interrupt Flag
99H Tl SCON+I Transmit Interrupt Flag
9AH .RB8 .SCON+2 Receive Bit 8
9BH TB8 .SCON+3 Transmit Bit 8

9CH .REN .SCON+4 Receiver Enable

9DH .SM2 .SCON+5 Serial Mode Control Bit 2

9EH .SMI .SCON+6 Serial Mode Control Bit 1

9FH .SMO .SCONH-7 Serial Mode Control Bit 0

5-9

Memory Contents Commands ICE-51

Table 5-3. Bit Addresses In Register Memory (Continued)

Hex System Register -h
Address Symbol Bit Position Meaning

AOH .P2-f0 Port 2, Bit 0
A1H .P2+1 Port 2, Bit 1
A2H .P2+2 Port 2, Bit 2
A3H .P2+3 Port 2, Bit 3
A4H .P2-f4 Port 2. Bit 4
A5H .P2+5 Port 2, Bit 5
A6H .P2+6 Port 2, Bit 6
A7H .P2+7 Port 2. Bit 7

ASH .EXO .lE+O Enable External Interrupt 0
A9H .ETC .IE+1 Enable Timer 0 Interrupt
AAH .EX1 .IE+2 Enable External Interrupt 1
ABH .ET1 .IE+3 Enable Timer 1 Interrupt
AGH .ES .IE+4 Enable Serial Port Interrupt

AFH .EA .IE+7 Enable All Interrupts

BOH • RXD .P3+0 Serial Port Receive Pin

B1H TXD .P3+1 Serial Port Transmit Pin

B2H .INTO .P3-f2 Interrupt 0 Input Pin
B3H .INT1 .P3+3 Interrupt 1 Input Pin
B4H .TO .P3-i-4 Timer/Gounter 0 External Flag
B5H .T1 .P3+5 Timer/Gounter 1 External Flag
B6H .WR .P3+6 Write Data (For External Memory)
B7H .RD .P3+7 Read Data (For External Memory)

B8H .PXO .IP+0 Priority of External Interrupt 0
B9H .PTO .IP+1 Priority of Timer 0 Interrupt
BAH .PX1 .IP+2 Priority of External Interrupt 1
BBH .PT1 .IP+3 Priority of Timer 1 Interrupt
BOH .PS .IP+4 Priority of Serial Interrupt

DOH .P .PSW+O Parity Flag

D2H .OV .PSW+2 Overflow Flag
D3H .RSO .PSW+3 Register Bank Select Bit 0
D4H .RSI .PSW+4 Register Bank Select Bit 1
D5H .FO .PSW+5 Flag 0
D6H •AC .PSW+6 Auxiliary Garry Flag
D7H .GY .PSW+7 Garry Flag

EOH .AGG+0 Accumulator, Bit 0
E1H .AGG+1 Accumulator, Bit 1
E2H .AGG+2 Accumulator, Bit 2
E3H .AGG+3 Accumulator, Bit 3
E4H .AGG+4 Accumulator, Bit 4
E5H .AGG+5 Accumulator, Bit 5
E6H .AGG+6 Accumulator, Bit 6
E7H .AGG+7 Accumulator, Bit 7

FOH .B+0 Multiplication Register, Bit 0
F1H .B-f1 Multiplication Register, Bit 1
F2H .B+2 Multiplication Register, Bit 2
F3H .B+3 Multiplication Register, Bjt 3
F4H .B+4 Multiplication Register, Bit 4
F5H .B+5 Multiplication Register, Bit 5
F6H .B+6 Multiplication Register, Bit 6
F7H .B+7 Multiplication Register, Bit 7

#

5-10

ICE-51 Memory Contents Commands

Contents of Bit-Addressable Memory

The keyword RBIT is used to display and change the contents of bit-addressable
memory. To display the contents of any bit address, the format is:

RBIT bit-address

Examples:

*RBIT .PSW

RBIT 00D0H=08H

To display a range of bit-addresses, the format is:

^ RBIT partition

This format applies particularly to the bit addresses in data memory (OOH through
7FH), since the other bit addresses are somewhat discontinuous.

For example:

*RBIT 0 TO 7FH

To change the value of a bit in bit-addressable memory, the format is:SRBIT bit-address i
/

boolean-expression J

The term boolean-expression means the same kinds of entries as expression (see
chapter 1). A boolean-expression is truncated to its least significant bit.

Examples:

*RBIT .PSW = 0

*RBIT .CY = RBIT .TF1

The emulator language allows several other forms with RBIT, including the use of
strings and other byte quantities (truncated to the lowest bit), and allowing a
partition of bit addresses to be set to a single value, or to a list of values just as with
DBYTE. The general form of such commands is:

%

{boolean-expression 1
string >
content-op partitionj

1 boolean-expression
string ...
content-op partitions \

The form takes the least significant bit of each value.

Access To External Data Memory

Valid addresses in external data memory depend on what the user has installed in
the protot5q)e system. The emulator treats all external data addresses as 16-bit
values.

The content-operators XBYTE and PBYTE are used to display and change the
contents of external data memory. To display one or more locations:

jXBYTE\
Vbyte/

Examples:

*XBYTE 0

XBYTE 0000H=93H

*PBYTE 0 TO 5

OOOOH=93H ASH 52H 17H 54H 52H

5-11

Memory Contents Commands ICE-51

To change the contents of one or more addresses in external data memory, the
format is:

iXBYTE!
PBYTE(=

{expression
string
content-op partition]

)r iexp
> , htrii

ition j {con

expression
string
content-op partition0'

Examples:

*XBYTE 0100 TO 0200 = 'X'

*PBYTE 07FF = DBYTE 30, 'A'. FOH

When you display or change the contents of an external data location, the emulator
reads or writes the external memory via P2 and PO just as if a MOVX instruction
had been executed.

With XBYTE, the system performs read-after-write verification. With PBYTE, no
verification is performed.

Code Memory Access

Code Addresses

Code addresses are 16-bit quantities, representing addresses in the range from 0
through FFFFH (65,535 or 64K -1). System symbols for (interrupt) locations in code
memory are listed in table 5-4.

The emulator provides two 4K RAM segments for user code memory; the user
system can also contain external code memory. The emulator uses a memory map
to determine whether a given memory address is in emulator-supplied memory or in
user-supplied memory. (The LOAD, CBYTE, and ASM commands can write only
into emulator-supplied memory.) Controls over access to code memory include the
program counter commands, the memory map commands, and the EA/ pin on the
emulation processor.

Table 5-4. System Symbols for Code Addresses

System Symbol Address Type of interrupt

.RESET OOH Power-On Reset

.EXTIO 03H External Interrupt 0

.TIMERO OBH Timer 0 Interrupt

.EXTI1 13H External Interrupt 1

.TIMER1 IBM Timer 1 Interrupt

.SINT 23H Serial Port Interrupt

Program Counter Commands

The 16-bit program counter points to the location of the next instruction to be
emulated. The emulator uses the keyword PC to refer to the contents of the program
counter; to display the program counter, the command is:

*PC

To set the program counter to any code address, the format is:

PC = address

Examples:

*PC = 0

*PC = .START

5-12

ICE-51 Memory Contents Commands

Map Commands

The emulator map divides the 64K code memory space into sixteen blocks of 4K
addresses. Each 4K block is identified by the lowest address in the block, as
diagrammed in figure 5-2.

The MAP commands can locate the two 4K segments of emulator-supplied memory
on any two blocks in the code space, or can map all code memory as user-supplied.

MAP

IJ

The format is:

i low-address, low-address)

[user
Examples:

*MAP

*MAP=0. 1000H

*MAP=0. 20K

*MAP=5000H, EOOOH

*MAP=USER

Dispays current mapping.

Initial setting.

See table 5-5.

See table 5-5.

See table 5-5.

As shown in figure 5-2, the low address of a block can be entered as a multiple of
lOOOH, or as a multiple of 4K.

The initial map setting is 0, lOOOH; one of the two 4K segments is mapped to start at
address 0, and the other 4K segment is mapped to start at address lOOOH. With this
mapping, the emulator provides 8K of continuous memory starting with address
OOOOH; all references to addresses in this range are directed to emulator memory.
Any addresses outside this range are assumed to be user-supplied, external
memory. With this setting, the EA/ pin must be inactive (high), as discussed later
in this chapter.

FOOOH 60K

EOOOH 56K

DOOOH 52K

COOOH 48K

BOOOH 44K

AOOOH 40K

9000H 36K

8000H 32K

7000H 28K

6000H 24K

5000H 20K

4000H 16K

3000H 12K

2000H 8K

1000H 4K

OOOOH 0

XEXTERNAL
/code memory

{ ON-CHIP
i CODE MEMORY

Figure 5-2. Code Memory Mapping

5-13

Memory Contents Commands ICE-51

NOTE

The map is reset to OOOOH, lOOOH by the RESET ICE command.

The two emulator memory segments can be mapped to any two of the sixteen blocks
in the map, or the map can be set to USER (no emulator memory is accessed).
However, if the lowest block (starting with address OOOOH) is not mapped to the
emulator, the user must supply external memory for these addresses, and must set
the EA/ pin active (low) to cause references to the lowest 4K block to be treated as
external addresses rather than on-chip addresses.

Table 5-5 summarizes four combinations of emulator and user memory, showing
how to map them, what user memory is required, and what state of the EA/ pin is
required for correct operation.

Table 5-5. Mapping Emulator and User-Supplied Memory

Combination

Desired

MAP Command

(Exampie)
Emulator

Memory
User-Suppiied

Memory
EA/ Level

Required

Initial mapping.
All addresses

below 2000H are

emulator

memory.

*MAP=0, 1000H OOOOH to

1FFFH,
inclusive.

2000H or

higher,
optional.

Inactive

(high)

'On-chip'
memory is
emulator,
higher memory
is a combination.

*MAP=0, 5000H OOOOH to

OFFFH and

5000H to

5FFFH

2000H to 4FFFH

and 6000H to

FFFFH, optional.

Inactive

(high)

'On-chip'
memory is
user-supplied,
higher memory
is a combination.

*MAP=5000H,
6000H

5000H to

6FFFH

inclusive.

OOOOH to

OFFFH is

required,
1000H to 4000H

and 7000H to

FFFFH, optional.

Active

(low)

All memory is
user-supplied.

^MAP=USER None OOOOH to OFFFH

is required,
1000H to FFFFH,
optional.

Active

(low)

Using the EA/ Pin

The EA/ (External Access) pin is inactive when it is high (TTL "1") and active
when it is pulled to ground (TTL "0"). When EA/ is active, references to addresses
in the lowest 4K range are treated as external addresses by the processor. When
EA/ is inactive, references to the lowest 4K of addresses are directed to the 'on-chip'
memory. As shown in table 5-5, the EA/ pin must be inactive when either of the
emulator segments is mapped to start at address OOOOH, and must be active when
the lowest block of memory is user-supplied.

Any memory not mapped to the emulator is referred to external user-supplied
memory. Execution from this memory is handled with the external address, ALE
and PSEN/ lines in a normal manner. However, user-supplied memory is read-only
to the emulator. Reads from non-existent user memory produce undefined results.

5-14

ICE-51 Memory Contents Commands

Contents of Code Memory

The emulator system provides access to code memory in two forms: numerically
and as assembly language instructions.

Numeric Values

The keyword CBYTE is used to display and change the contents of code memory
numerically. To display one or more code bytes, the format is:

CBYTE partition

Examples:

*CBYTE 0100H

GBYTE 0100H=00H

*CBYTE .START LENGTH 20

START

0030H=43H 90H 02H 78H 30H 7AH OOH C2H 20H D2H 22H 75H 89H 20H 75H A8H

0040H=88H 75H 8DH FOH C2H 88H D2H 8EH 80H 06H OOH OOH OOH OOH OOH OOH

•CBYTE .TABLE1 TO .TABLE2 - 1

.TABLE1

OOABH=OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH

OOBBH=OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH

OOCBH=OOH OOH OOH OOH OOH

To change the contents of one or more code bytes numerically, the format is:{expression)
content-op partition >
string) _

(expression j (expression l
GBYTE partition = ^content-op partitionS , }content-op partition >

[^string)
Examples:

•CBYTE TABLEI = DBYTE .ALPHA LENGTH 26T

•CBYTE 0 TO 8K = 0

•CBY 0700 = 1,2,3,4,5, 'ABCDE', PBYTE 0700 TO 0705

Disassembly From Code Memory

The DASM command displays code memory as assembly language instructions.
The format is:

DASM partition

Examples:

•DASM 0

OOOOH=SJMP .START

•DASM .START TO .LOOP

.START

0030H=ORL .P1,#02H
0033H=MOV RO,#.START
0035H=MOV R2,#00H

0037H=CLR .Y

0039H=SETB .Z

003BH=MOV .TMOD,#.Y
V y 003EH=MOV .IE,#.CTABL

(Display continues on next page)

5-15

Memory Contents Commands ICE-51

^ j

0041 H=MOV TH1 ,#.COUNT
0044H=MOV .CTABL,#OOH
0047H=MOV .TL1,#.C0UNT

004AH=SETB TRI

004CH=SJMP .LOOP

004EH=NOP

004FH=NOP _
.LOOP ®
0050H=MOV C,.V

The display includes the opcode address of each instruction; if symbolic display is ^
enabled, any user symbol matching an opcode address is also displayed on a
separate line.

The disassembled instruction includes the opcode and operands as they would
appear in an assembly listing. Address values in operands can appear as user or
system symbols.

The display consists of complete instructions; an instruction is displayed if its first
byte is within the partition, even though some subsequent bjd^es may lie outside the
range.

Trace displays in INSTRUCTIONS mode use the same disassembly format for
displajdng instructions from the trace buffer.

Assembly into Code Memory

The ASM command assembles one instruction into one or more bytes of code
memory, at a designated starting address. The code memory accessed must be
mapped to the emulator. The system uses an "ASM pointer" to point to the starting
address for the next instruction. The pointer automatically increments after
assembling each instruction. The pointer is initially at OOOOH. To display the
location of the ASM pointer, enter the command ASM (for convenience, ASM may
be abbreviated to "A"). For example:

*A

OOOOH

To change the ASM pointer to a new start location, the format is: L

ASM ORG address

Example:

*A ORG 0100H

0100H

The system echoes the new start address. ^

To enter an instruction into code memory, the format is:

ASM 8051'instruction

Example:

*A MOV A.@RO
0101H

5-16

ICE-51 Memory Contents Commands

To verify the correct assembly, we can examine the memory location:

*CBYTE 0100H

CBYTE 0100H=E6H

*D 0100H ;DASM abbreviates to "D".

0100H=MOV A,@RO

The ASM command will assemble most of the 8051 instructions; exceptions are
noted below.

Note the following differences between the ASM command and the ASM-51
assembler:

#
• Generic JMP and CALL instruction t5rpes cannot be assembled by the ASM

command.

• References to undefined user symbols (forward references) are not allowed.

• The operand (location counter) is not a valid character to the emulator.
Display the current value of the ASM pointer to obtain the numeric equivalent.

• The only assembler directive accepted by the ASM command is the ORG
address directive; no other directives are valid.

• Where the assembler instruction has an address-type operand {code-address,
data address, bit address), the emulator will accept any expression (see chapter
1).

• Where the assembler has immediate data (Udata), the emulator will accept
expression,

• Where the assembler has relative offset, the emulator will accept address (not
expression),

• The default radix for numbers in the ASM command is hexadecimal (H); in the
assembly language, the default is decimal.

• The bit operator (.) is not valid in the ASM mmand; the addition operator has
the same effect (+). See "Bit Addresses" earlier in this chapter.

• The emulator system does not accept the SHR, SHL, HIGH or LOW operators.

• Relational operators are accepted, in the algebraic form only (=,
< >); the alphabetic forms (EQ, GT, etc.) are not recognized by the emulator.

One-Byte Mnemonic Constants

You can set a one-byte instruction into code memory by enclosing it in quotes. For
example:

*CBYTE 0100H = "RETI"

If the instruction has more than one byte, only the first hyte is set into memory.

5-17/5-18

CHAPTER 6
ADVANCED EMULATION
AND TRACE COMMANDS

♦

This chapter presents complete details on the controls over real-time emulation and
trace collection, supplementing those introduced in chapters 3 and 4. The chapter
begins with an overview of the software and hardware controls for emulation and
trace, and describes the processor information available for matching. It gives
details on the commands used to set and enable the hardware and software

controls, including the sync lines. The chapter also gives explanations of FRAMES
mode trace displays, emulation timer commands, and references to other results of
emulation.

Emulation and Trace Controls

Reference Diagrams

This section contains brief but detailed descriptions of emulator and trace controls.
The discussions are accompanied by modified logic diagrams. The diagrams show
the possible combinations of hardware events and software flags, and their effects.
Figure 6-1 explains the symbols used in the reference diagrams.

SQUARE BOX IS
HARDWARE BIT
OR EVENT

o
ANGLED BOX IS
SOFTWARE FLAG
OR CONTROL

o
CIRCLE IS
OVERALL RESULT
OR STATUS
DESCRIPTION

CONNECTING LINE IS
INPUT OR OUTPUT
CONDITION (CAN BE
TRUE OR FALSE).

BRO MATCH
LABELED LINE

SHOWS INTERPRETATION
WHEN THE LINE

IS TRUE

AND GATE

OUTPUTS TRUE ONLY
WHEN ALL INPUTS
ARE TRUE

OR GATE
OUTPUTS TRUE
WHEN ANY
INPUT IS TRUE

Figure 6-1. Key to Diagram Symbols

6-1

Advanced Emulation and Trace Commands ICE-51

Starting Real-Tlme Emulation

The GO command starts real-time emulation. This command is introduced in

simple form in chapter 3. When a GO command is executed, real-time emulation
begins, subject to the following conditions (refer to figure 6-2):

• Emulation begins at the current program counter (PC). A FROM clause in the
GO command sets PC to a new start location.

• If sync line SYO IN is not enabled, emulation begins immediately.

• If SYO IN is enabled and is high when the GO command is executed, emulation
begins immediately.

• If SYO IN is enabled and is low when the GO command is executed, emulation
does not begin until SYO IN goes high. In this way an external device can
control the start of emulation. (Commands to enable SYO IN are discussed later
in this chapter).

w

Halting Real-Time Emulation

The factors that can halt real-time emulation (once it has started) are the ESC key,
the GO register, the breakpoint registers, and the status (level/latch) of sync line
SYO IN (refer to figure 6-3). Emulation always halts after completing the
instruction that was executing when the halt condition occurred. When emulation
breaks for any reason, another GO command is required to resume real-time
emulation.

ESC Key

If no other factors are enabled, emulation runs until the user aborts emulation by
pressing the ESC key at the console. If other factors are enabled, but the halt
conditions they specify have not occurred yet, the ESC key can be used to halt
emulation. The ESC key overrides all other halt factors.

SYO IN
NOT

ENABLED

SYO IN
ENABLED

SYO
PIN
HIGH

|an^—

START
EMULA
TION

Figure 6-2. Starting Real-Time Emulation

6-2

ICE-51Advanced Emulation and Trace Commands

Figure 6-3. Halting Real-Time Emulation

6-3

Advanced Emulation and Trace Commands lCE-51

GO Register

The GO register contains flags that indicate the combination of breakpoint register
matches and sync line SYO IN that is currently enabled to halt real-time emulation.
Initially, no factors are enabled. The GO register flags are:

BRO ENABLED

BR1 ENABLED

SYO ENABLED

WITH SYO IN ENABLED

OR SYOIN ENABLED

The possible settings of the GO register flags are:

Setting Emulation Halts After:

FOREVER User abort (ESC key).

TILL BRO BRO match only.

TILL BR1 BR1 match only.

TILL BR Either BRO match or BR1 match.

TILL SYO SYO IN (going) low only; the timing of the sync signal
required depends on the latch/level setting of SYO IN,
as discussed later in this chapter.

TILL BRO OR SYO Either BRO match or SYO IN low.

TILL BR1 OR SYO Either BR1 match or SYO IN low.

TILL BR OR SYO BRO match, BR1 match, or SYO IN low.

TILL BRO WITH SYO BRO match and SYO IN low simultaneously.

TILL BR1 WITH SYO BR1 match and SYO IN low simultaneously.

TILL BR WITH SYO Either BRO match or BR1 match, and SYO IN low
simultaneously.

Breakpoint Registers

A breakpoint is a way to break emulation right after a condition of interest occurs.
A breakpoint register contains the condition of interest, called a match condition.
There are two breakpoint registers, BRO and BRl; each of them can match on up to
42 bits of processor data, as described later in this chapter.

During emulation, the emulator system compares the match conditions with the
current frame of processor data. This data is available for matching even when it is
not collected in the trace buffer. On any given frame, BRO may match, BRl may
match, both may match, or neither may match.

The setting of the GO register determines whether a breakpoint match can halt
emulation. If the breakpoint that matched is not enabled in the GO register, the
match has no effect.

When the breakpoint register that matched is enabled in the GO register, the
condition shown in figure 6-3 as BR SAYS HALT becomes true. If WITH SYO IN is
not enabled in the GO register, emulation breaks when BR SAYS HALT is true. If
WITH SYO IN is enabled, both BR SAYS HALT and SYO SAYS HALT must be true
to break emulation (see next section for SYO SAYS HALT).

Initially, both breakpoint registers are disabled; the match conditions in both
registers are set to match all frames.

6-4

ICE-51 Advanced Emulation and Trace Commands

Sync Line SYO IN

SYO is an external signal accessible at the buffer box of the emulator. This signal
can function as an input (SYO IN) and as an output (SYO OUT). This section
describes SYO IN; SYO OUT is described later in this chapter.

SYO IN is enabled or disabled according to the GO register setting. Initially, it is
disabled. When SYO IN is disabled, it has no effect on emulation. As discussed
previously, SYO IN can prevent emulation from starting if it is enabled and low

^ when the GO command is executed.

If SYO IN is enabled and is high so that emulation has started, the external device
^ on SYO IN can set SYO IN low to request a break in emulation. SYO IN can be

conditioned for one of two modes. Initially, SYO IN is level-sensitive; in this mode,
the line must be held low for a brief period to be recognized. SYO IN can also be
conditioned to latch the low-going edge of the signal; in this mode, the system can
recognize a momentary low pulse on SYO IN.

When SYO IN is enabled and the appropriate low state of the line is recognized, the
condition shown in figure 6-3 as SYO SAYS HALT becomes true. If WITH SYO is not
enabled in the GO register, SYO SAYS HALT breaks emulation immediately. If
WITH SYO is enabled, both BR SAYS HALT and SYO SAYS HALT must he true to
break emulation (see previous section for BR SAYS HALT).

Once emulation breaks for any reason, another GO command is required to resume
real-time emulation. If SYO IN caused the break, emulation cannot be restarted by
setting the line high again. Note that if SYO IN is enabled in latch mode and the
line is being held low when the GO command is executed, emulation starts when
SYO IN goes high; the initial low state is not latched.

V ; Initially, SYO IN is disabled, and is level sensitive. Commands to enable and
condition SYO IN are discussed later in this chapter.

Controlling Trace Collection

The factors that can control trace collection are the trace register, the qualifier
registers, and the status (level/latch) of sync line SYl IN. (Refer to figure 6-4).

Trace Register

The trace register contains flags that indicate the combination of qualifier register
^ matches, trigger mode, and external signal SYl IN that is currently enabled to

control trace collection. Initially, no factors are enabled; in this state, every frame is
collected and the buffer retains the most recent 1000 frames. The trace register flags

^ are:

QRO ENABLED

QR1 ENABLED

TILL MODE ENABLED

AFTER MODE ENABLED

SYl IN ENABLED

OR SY1 IN ENABLED

WITH SY1 IN ENABLED

6-5

0
5

(
O
R
O
 M
A
T
C
H
 C
O
N
D
I
T
I
O
N

C
D

0
5I

4
^

OoEl

ON
-
'

orci

(
0SOaoEl

Q
R
O
 C
O
M
P
A
R
A
T
O
R

Q
R
O
 M
A
T
C
H

4
2
-
B
I
T
 P
R
O
C
E
S
S
O
R
 S
T
A
T
U
S

(
C
U
R
R
E
N
T
 F
R
A
M
E
)

0
R
1
 C
O
M
P
A
R
A
T
O
R

O
R
1

M
A
T
C
H

1

c
0
R
1
 M
A
T
C
H
 C
O
N
D
I
T
I
O
N

O
R
 S
A
Y
S
 T
R
A
C
E

E
N
A
B
L
E
D

O
R
 S
A
Y
S
 T
R
A
C
E

S
Y
1
 S
A
Y
S
 T
R
A
C
E

S
Y
1
 I
N

A
T
 L
E
A
S
T

O
N
E

M
A
T
C
H

O
R
 S
A
Y
S
 T
R
A
C
E

8
Y
1
 S
A
Y
S
 T
R
A
C
E

S
Y
1
 I
N

L
E
V
E
L

E
N
A
B
L
E
D

8
Y
1
 S
A
Y
S
 T
R
A
C
E

S
Y
1
 I
N

H
I
O
H
-
T
O
-
L
O
W

N
O
T
 U
r
C
H
E
D
 Y
E
T

N
O
 F
A
C
T
O
R
S

S
Y
1
 I
N

■
]
 OH
)
 (
 C^MCT I

>ai0(
DEL

H1IO0sio0351Q
D

N
O
T
E
S
:

1. Stays true until the Input Is true,
then g

o
e
s
 a
n
d
 stays false.

2. Stays false until Its Input Is
true, t

h
e
n
 g
o
e
s
 a
n
d
 stays true.

0H
1

0
1

ICE-51 Advanced Emulation and Trace Commands

The possible settings of

Setting

FOREVER

QRO

QR1

QR1

TILL QRO

TILL QR1

TILL OR

AFTER QRO

AFTER QR1

AFTER QR

SY1

QRO QR SY1

QR1 QR SY1

QR QR SY1

TILL QRO QR SY1

TILL QR1 QR SY1

TILL QR QR SY1

AFTER QRO QR SY1

AFTER QR1 QR SY1

AFTER QR QR SY1

QRO WITH SY1
QR1 WITH SY1

QR WITH SY1

TILL QRO WITH SY1

TILL QR1 WITH SY1

TILL QR WITH SY1

AFTER QRO WITH SY1

AFTER QR1 WITH SY1

AFTER QR WITH SY1

the trace register flags are:

Trace Collected

Every frame.

One frame after each match by QRO.

One frame after each match by QRl.

One frame after each match by either QRO or QRl.

All frames up to and including the frame on which
QRO, QRl, or (with QR) either QRO or QRl matched.
The buffer retains the last 1000 frames.

One bufferful (1000 frames) starting with the next frame
after QRO match, QRl match, or (with QR) either
QRO or QRl match.

All frames when 8Y1 IN is high. The exact effect of SY1
IN depends on the level/latch status of SYl IN, as dis
cussed later in this section.

One frame after each qualifier match, or all
frames when SYl IN is high.

All frames until qualifier match, thereafter only when
SYl IN is high.

1000 frames following a qualifier match, otherwise
when SYl IN is high.

One frame after each qualifier match that occurs while
SYl IN is high.

Until a qualifier matches, all frames when SYl IN is
high. After a qualifier matches, no further trace is
collected.

Before a qualifier matches, no trace is collected. After a
qualifier match, the first 1000 frames that occur while
SYl IN is high.

Details on the settings using with SYl and QR SYl are given in the discussions of
quaUfier registers, trigger modes, and SYl IN that follow.

Qualifier Registers and Trigger Modes

There are two qualifier registers, QRO and QRl. Like the breakpoint registers, the
qualifier registers contain match conditions that are compared to the current frame
of processor data during real-time emulation. The qualifier registers use the same
kinds of match conditions as the breakpoint registers. Qn any given frame, QRO
may match, QRl may match, both may match, or neither may match.

The setting of the trace register determines the effect of a qualifier register match
on trace collection. If the qualifier register that matches is not enabled in the trace
register, the match has no effect.

A qualifier register can be enabled in one of three ways: using no trigger mode,
using TILL mode, or using AFTER mode. Qnly one trigger mode (TILL or AFTER)
may be in effect at a given time.

6-7

Advanced Emulation and Trace Commands ICE-51

When a qualifier register is enabled without a trigger mode and matches the
current frame, the condition shown in figure 6-4 or QR SAYS TRACE becomes true J
for a space of one frame. If WITH SYl IN is not enabled at this point, the system
collects the next frame after the one that matched. If WITH SYl IN is enabled, the
condition shown as SYl SAYS TRACE (discussed in a later section) must also be
true to collect the frame.

The TILL mode uses the qualifier registers to halt trace collection by matching
(subject to the other trace register conditions). When one or both qualifier registers
are enabled using TILL mode, the condition QR SAYS TRACE is set true when ^
emulation begins, and remains true until an enabled qualifier register matches. If
WITH SYl IN is not enabled in the trace register, trace runs continuously,
collecting every frame until an enabled qualifier matches; the buffer overflows after #
the first 1000 frames. When an enabled qualifier matches, QR SAYS TRACE
becomes false; if OR SYl IN is not enabled, trace halts unconditionally after
collecting the frame that matched. (IF OR SYl IN is enabled when the qualifier
match in TILL mode sets QR SAYS TRACE to false, trace collection can continue
as long as SYl IN remains high.) If WITH SYl IN is enabled and TILL mode has
set QR SAYS TRACE to true (waiting for a qualifier to match), the condition SYl
SAYS TRACE must also be true for trace to run.

The AFTER mode uses the qualifier registers to turn trace on for one bufferful (1000
frames); trace then turns off automatically (subject to the other trace register
conditions). When one or both qualifiers are enabled using AFTER mode, the
condition QR SAYS TRACE is set false when emulation begins, and remains false
until an enabled qualifier matches. (If OR SYl IN is enabled, the condition SYl
SAYS TRACE can cause trace to be collected while QR SAYS TRACE is being held
false.) When an enabled qualifier matches in AFTER mode, QR SAYS TRACE
becomes true and remains true until the buffer overflows. If WITH SYl IN is not
enabled in the trace register, trace begins with the next frame after the one that
matched and runs unconditionally until 1000 frames have been collected; then QR ^
SAYS TRACE becomes false. When WITH SY1 IN is enabled, trace runs when SY1
SAYS MATCH is also true; the AFTER mode still keeps QR SAYS TRACE true as
long as the buffer has not overflowed.

NOTE
The trigger modes pertain only to qualifier register matches; sync line
SYl IN may not be used to effect a trigger mode.

Sync Line SYl IN

Sync line SYl is accessible at the emulator buffer box. This signal can function as
an input (SY 1 IN) and as an output (SY 1 OUT). This section describes SYl IN; SYl
OUT is described in a later section.

SYl IN is enabled or disabled according to the trace register setting. Initially, it is
disabled and so has no effect on trace collection. When SYl IN is enabled, its
general effect is to allow trace collection when it is high and to prevent trace collec
tion when it is set low; thus an external device can use SY 1 IN to control trace. The
exact effect depends on the level/latch status of SYl IN, and on any qualifier
registers or trace modes that may also be enabled.

Initially, SYl IN is level-sensitive; in this mode, the external device must hold SYl
IN low for a brief period to be recognized. When SYl IN is enabled and level-
sensitive, a low period on the line sets the condition shown in figure 6-4 as SYl
SAYS TRACE to false. SYl SAYS TRACE remains false as long as SYl IN is low;
if the line is subsequently set high, SYl SAYS TRACE becomes true and trace
collection can resume. When SYl IN is in level-sensitive mode, trace can be toggled
off and on by switching SYl IN (assuming no other factors are in effect).

6-8

ICE-51 Advanced Emulation and Trace Commands

SYl IN can also be conditioned to latch the low-going edge of the input signal. In
this mode, the system can recognize a momentary low pulse on SYl IN. However,
when SYl IN is enabled and in latch mode, and SYl IN latches a high-to-low
transition, SY1 SAYS TRACE is set false unconditionally; it is not set to true if SY1
IN subsequently goes high again.

SYl IN can be enabled without any other factors, or it can be enabled in combina
tion with any of the qualifier registers (with or without trigger modes). The net effect
of the qualifier registers and trigger modes is shown by the condition QR SAYS
TRACE in figure 6-4. The possible combinations can be described as follows:m

SYl IN only (no other factors): trace is collected when SYl SAYS TRACE is true.

(QR SAYS TRACE) OR SY 1: Trace is collected when SY 1 SAYS TRACE is true, and
also when the combination of qualifier registers and trigger mode enabled in the
trace register has resulted in the condition QR SAYS TRACE to be true.

^ (QR SAYS TRACE) WITH SYl: Trace is collected when both QR SAYS TRACE and
SYl SAYS TRACE are true.

Match Conditions

This section gives details on match conditions. The material includes a description
of the kinds of information from the 8051 emulation processor that are available for
matching, and the formats for match conditions as entered in commands.

Processor Data for Matching

Forty-two hits of processor data are checked at frequent intervals during emulation.
The processor data are available for breakpoint register matching (to halt
emulation) and for trace qualifier register matching (to control trace collection).
This section gives details on the types of processor data available for matching.

Instructions, Cycles, Fetches, and Frames

The unit of emulation is the instruction. The emulation always interprets the first
byte it fetches as the opcode of the first instruction, and always breaks at the end of
an instruction (right before the next opcode fetch).

W

The unit of execution is the cycle (also referred to as "instruction cycle", "minimum
instruction cycle", "machine cycle", or "TOY"). The emulator decodes the first byte
and determines the number of cycles in the instruction. MCS-51 instructions can
require one, two, or four cycles to execute completely.

Each cycle produces two memory fetches (also called "memory cycles" or "ALE
cycles"). The internal bus timing of a memory fetch is such that the address and the
data read from the address are alternately valid, so they can be multiplexed. The 8-
bit data appear on the low-order bits of the address lines inside the processor and in
trace.

The unit of processor information is the frame. The emulator checks 42 bits of
processor information for a match twice during each memory fetch. Within a fetch,
the first frame is checked when the address is valid, and the second frame is
checked when the data is valid. The frame most recently checked is called the
current frame.

Figure 6-5 shows a diagram of one cycle in terms of two timing signals, ALE
(Address Latch Enable) and PSEN/ (Program Store Enable, negative true). The
diagram shows the points when frames of processor data are checked. Since there
are two fetches, one cycle produces four consecutive frames.

6-9

Advanced Emulation and Trace Commands ICE-51

PSEN/ -

CHECK_
FRAME

7^

/ /

/"

^ADDRESS\
VALID

/CONTENTS^/ADDRESsX
VALID A VALID f

Y
MEMORY FETCH

Y
MEMORY FETCH

Y
ONE CYCLE

Figure 6-5. Instruction Cycle Timing

Fields Available For Matching

Each frame of trace contains the fields of information available for matching
shown in figure 6-6. The following paragraphs give details on these fields of
information.

Address in code memory: 16 bits, valid on LOCATION and VLOCATION
frames.

Contents of code memory: 8 bits, multiplexed with the low 8 bits of code address;
valid on OPCODE and VALUE frames.

Ports: PO, PI, and P2, 8 bits each.

External address: 16-bit combination of P2 (high 8 bits) and PO (low 8 bits).

Frame Type: The emulator uses two bits of trace to identify four types of frames.
In effect, one bit distinguishes "address-valid" from "contents-valid" frames, as
discussed previously; the second bit distinguishes between the first (opcode) fetch
and all subsequent fetches (operand or other fetch). The resulting four frame types
are described in table 6-1 and diagrammed in figure 6-7 in relation to a two-cycle
instruction. Two instruction cycles represent four memory fetches and these in turn
produce eight frames of trace. The first two frames, LOCATION and OPCODE,
represent the opcode fetch (address, opcode). The remaining three pairs of frames
(VLOCATION, VALUE) represent fetches other than the opcode fetch.

(Note that for most instructions the number of fetches exceeds the number of bytes
in the instruction; the two-byte, one-cycle instructions have no extra frames. The
extra frames are suppressed in INSTRUCTIONS mode trace displays, but can be
examined in FRAMES mode as discussed later in this chapter.)

€

6-10

ICE-51 Advanced Emulation and Trace Commands

. n ? cr -paci^

r

BITS:

FRAME

TYPE

Y Y
CODE ADDRESS, CODE ADDRESS,

HIGH BYTE LOW BYTE;
^^^PCODE OR OPERAND

VALUE

ioac? eci O'A
ou

LoC

\/LOC

"V
P1

Y
P2; EXTERNAL
ADDRESS, HIGH

BYTE

Y
PO; EXTERNAL
ADDRESS.
LOW BYTE

Figure 6-6. Match Fields

A U30 V"v\ r>f~

CO.^\^Vr<d^ t^\AV XC<E •

1st CYCLE 2nd CYCLE

ALE r

r

CHECK
FRAME ~

Jl M M n

FRAME

TYPE
L, LVLOC

— OPC

LVLOC

— VAL

LVLOC

-VAL

Figure 6-7. Two-Cycle Instruction with Frame Types

6-11

Advanced Emulation and Trace Commands ICE-51

Table 6-1. Frame Types in Trace Information

Frame Type Abbreviation information Currentiy Vaiid

LOCATION LOC Address of opcode, ports, external address.

OPCODE OPC Opcode, ports.

VLOCATION VLO Address of operand, ports, external address.

VALUE VAL Operand, ports.

Formats for Match Conditions

A match condition specifies one or more (non-overlapping) fields of processor data
to use for matching, and tells the numeric value or values that are to produce a
match. There are two forms of match conditions, "limited" and "unlimited". They
differ in how they allow you to specify a range of addresses or values in a match
condition; only some commands permit the "unlimited" form, see "Setting
Breakpoint and Qualifier Registers" later in this chapter. In general, the term
match-condition in this manual means the following form:

LOCATION IS

VLOCATION IS

ADDR IS

OPCODE IS

VALUE IS

PO IS

P1 IS

P2 IS

XADDR IS

i address

mask

AND<

PO IS

P1 IS

P2 IS

XADDR IS

{address)
mask i

In this form, you must use a mask to specify a range of match addresses or values.

NOTE

The match conditions shown in chapters 3 and 4 are based on this form.

The "unlimited" match condition allows a partition of addresses or values {address
TO address or address LENGTH address) in addition to a single address or mask.
The form of an "unlimited" match condition is:

LOCATION IS

VLOCATION IS

ADDR IS

OPCODE IS

VALUE IS

PO IS

P1 IS

P2 IS

XADDR IS

! partition)
mask I

AND

PO IS

IS

P2 IS

I XADDR IS

(partition)

)mask I

The elements of these forms are as follows:

LOCATION IS. Matches the code address field on LOCATION frames only.
LOCATION is the default if no frame type is designated.

VLOCATION IS. Matches the code address field in VLOCATION fi-ames only.

ADDR IS. Matches the code address field on both LOCATION and VLOCATION
frames.

OPCODE IS. Matches the opcode field on OPCODE frames only.

VALUE IS. Matches the operand field on VALUE frames only.

6-12

ICE-51 Advanced Emulation and Trace Commands

PO IS. Matches the PO (port 0) field.

Pi IS. Matches the PI field.

P2 IS. Matches the P2 field.

XADDR IS. Matches the combination of the P2 field (upper byte) and the PO field
(lower byte).

address. A number, reference, of expression. Although this entry is not literally an
"address" when used with OPCODE, VALUE, or ports, the same kinds of entry are
permitted as for addresses.

mask. A binary, octal, or hexadecimal number with one or more digits specified as
® don't-care (X). See chapter 3 for details on masks in match conditions.

AND. Combines a match on PO, PI, or P2 with the condition specified in the
previous clause (or clauses) of the match condition. More than one port can be
ANDed to form a combination. To produce a match, the values specified must all
occur on the same frame.

partition. A range of addresses or other values. See chapter 1 for details on
partitions.

NOTE

When matching on instructions that change ports PO, PI, or P2, note
that the changed value of the port does not appear until the next
OPCODE frame following the execution of the instruction that changed
the port. This limitation applies only to the individual ports, not to ports
used as an external address, and affects trace collection only, not
breakpoints.

Emulation and Trace Commands

This section describes the GO register and Trace register commands, the
breakpoint and qualifier register commands, and the external signal lines
commands.

Command Formats

The following format describes the possible entries in the GO register command:! FOREVER / V
T"-"- j|°| [SlTH^'sY^
TILL match-condition [OR match-condition] ^
TILL SYO

0 GR

NOTE

In addition to the GR commands, the GO command can set the GO
register; the GO command also starts real-time emulation. To obtain the
format for this command, substitute "GO" (with or without a FROM
clause) for "GR =" in the above format.

6-13

Advanced Emulation and Trace Commands ICE-51

The possible entries for the Trace register command are:

^FOREVER .

TR

[AFTERj
foR SY1 n
[with syjJ

[a'i^EF^ mafch-cond/f/on [OR match-condition]
SY1

Displaying the Go and Trace Registers §

To display the Go register, enter the command GR:

*GR

GR = FOREVER

BRO = RESET

BR1 = RESET

To display the trace register, enter the command TR:

*TR

TR = FOREVER

QRO = RESET

QR1 = RESET

In both displays, the first line shows the fiags that are enabled, or the keyword
FOREVER if no fiags are enabled.

The GR command also displays the settings of both breakpoint registers. Initially,
both registers are RESET, as shown in the example; this condition matches every
frame. Similarly, TR displays the settings of both qualifier registers.

Disabling All Factors in the Go and Trace Registers
Since the breakpoint and trace qualifier flags are independent of the match
conditions, you can disable the match registers and other factors without changing
the match conditions. The formats are:

GR = FOREVER ;Also, GO FOREVER

TR = FOREVER

Enabling Break and Qualifier Registers

To enable break or qualifier registers without changing the settings, the commands
are:

GO TILL BRO TR = QRO

GO TILL BR1 TR = QR1

GO TILL BR TR = OR

GR = TILL BRO TR = TILL QRO

GR = TILL BR1 TR = TILL QR1

GR = TILL BR TR = TILL QR

TR =.AFTER QRO

TR = AFTER QR1

TR = AFTER QR

6-14

ICE-51 Advanced Emulation and Trace Commands

The forms with GO also begin real-time emulation. In these commands, the token
BR means "either BRO or BRl", and QR means "either QRO or QRl".

Setting Match Conditions in the GO and Trace Registers

This section reviews the kinds of match conditions permitted in the GO and trace
registers.

t

Command Formats

i
The general formats for the GO register commands are as follows:

GO TILL match-condition [OR match-condition]

GR = TILL match-condition [OR match-condition]

The form with GO sets the GO register, then starts real-time emulation; with GR, no
emulation is started. The first match condition sets and enables BRO; the second, if
present, sets and enables BRl. Emulation halts when an enabled breakpoint
register matches.

The formats for the trace register commands are as follows:

TR = match-condition [OR match-condition]

TR = TILL match-condition [OR match-condition]

TR = AFTER match-condition [OR match-condition]

In all three formats, the first match condition sets and enables QRO; the second, if
any, sets and enables QRl.

In the first format (no trigger mode), a match by the enabled quahfier register
collects one firame of trace, the one right after the one that matched. In the second
format (TILL mode), a match halts trace after the frame that matched. In the third
format (AFTER mode), a match turns trace on until the buffer overflows.

Matching On Addresses

To match on the address of an opcode, the format is:

[LOCATION IS] address

Examples:

*GR = TILL 0100H

*TR = TILL LOCATION IS .LOOP

As the format and examples show, LOCATION is the default when no explicit
frame type is entered. (The match conditions in chapters 3 and 4 assume this
default.)

Instead of a single address, you can use a mask to specify that some bits in the field
are to be ignored in matching; the format is:

[LOCATION IS] mask

Examples:

*GR = TILL LOCATION IS 02XXH

*TR = AFTER 02XXH

6-15

Advanced Eihulaition and Trace Commands ICE-51

In a mask, the "X" digits are ignored in the match. For hexadecimal masks such as
the examples above, each X digit represents four consecutive bits (02XXH allows a
match on any address from 0200H through 02FFH inclusively). Refer to chapter 3
for more information on masks.

To match on the address of an operand, the format is:

VL0CAT,0N,s{^tr1
#

Examples:

*GR = TILL VLOCATION IS 0101H

*TR = AFTER VLOCATION IS .LOOP + 1

*GR = TILL VLOCATION IS 02XXH

To match on any address-valid frame, the format is:

Examples:

*GR = 1 TILL ADDR IS 02XXH

*TR = TILL ADDR IS 800H

A match condition with ADDR matches frame types LOCATION (opcode address)
and VLOCATION (operand address).

Matching On Opcode and Operand Values

To match on an opcode, the format is:

OPCODE IS

Examples:

*TR = AFTER OPCODE IS 34H

*GR = TILL OPCODE IS 4XH

*TR = TILL OPCODE IS "MOVC A, @A + DPTR"

In the format definition shown above, the entry address is an 8-bit quantity;
although it is not literally an "address", the same kinds of entry are permitted as
for an address. Refer to chapter 1 for the discussion of the "data type" address.

To match on an operand value, the format is:

value

Examples:

*GR = TILL VALUE IS 50H

*TR = VALUE IS XXH

The second example (TR = VALUE IS XXH) has the effect of maximizing the
number of LOCATION frames collected (per 1000 frames). When a VALUE frame
matches (with no trigger mode) the frame following the matching frame is collected
in the buffer. Because each cycle contains a VALUE frame as the last frame (even
on one-byte instructions), the effect is to collect the first frame of every cycle after ^
the first. This collects the LOCATION frame of every instruction, so that the
instruction can be displayed in INSTRUCTION mode (see chapter 3). It also

6-16

ICE-51 Advanced Emulation and Trace Commands

collects some VLOCATION frames from two-cycle and four-cycle instructions. The
extra VLOCATION frames are suppressed during INSTRUCTION mode displays.
Frame types LOCATION, VLOCATION, and VALUE are discussed earlier in this
chapter.

0

Matching on Ports and External Addresses

To match on a port setting, the format is:

< address i

(mask j

Examples:

*GR = TILL PO IS 33H

*TR = P1 IS OFXH

*GR = TILL P2 IS 0

To match on an external address (concatenation of P2 and PO), the format is:

(address)xaddr is {^3,, }

Examples:

*GR =TILL XADDR IS 8000H

*TR = XADDR IS 4XXXH

Matching On Combinations With Ports

The following repeatahle form can be used in combination with any of the match
conditions described above:

(AND PO IS
)AND P1 IS
|AND P2 IS
(and XADDR IS)

/ address \
1 mask }

Examples:

*GR = TILL 0100H AND PO IS F7H

*TR = AFTER ADDR IS 01FXH AND P1 IS OAOH

*GR = TILL OPCODE IS OEOH AND XADDR IS 35XXH AND P1 IS FOH

The system does not check these combinations for consistency; if the combination
is such that the same port is mentioned more than once, the last setting is the one
used in the match condition and the other settings are lost. For example:

*GR = TILL PC IS OOH AND PO IS FFH

This condition is equivalent to:

*GR = TILL PO IS FFH

Using Two Match Conditions

All the forms of match condition described so far in this chapter require just one
breakpoint register or one qualifier register, since they involve no overlapping

6-17

Advanced Emulation and Trace Commands ICE-51

fields. You can enter two breakpoint match conditions or two qualifier match
conditions by using the format:

match-condition OR match condition

Examples:

*GR = TILL 0100H OR 0200H

*TR = LOCATION IS .LOOP OR OPCODE IS A3H

*GR = TILL PO IS 0 AND P1 IS 1 OR PO IS FOH AND PI IS OFH #

The first match condition is loaded into BRO (for GR) or QRO (for TR), and the
second match condition is loaded into BRl or QRl. ^

Breakpoint and Qualifier Register Commands

The commands in this section display and change the match conditions in the
breakpoint and qualifier registers directly. These commands do not change the GrO
register or trace register settings. These commands do not enable or disable the
breakpoint or qualifier registers. They allow you to use unlimited match conditions
(with partitions).

Displaying Breakpoint and Qualifier Registers

To display a breakpoint or qualifier register setting, enter the name of the register
as a display command:

*BRO

BRO = LOCATION IS 0030H

*BR1 ^
BR1 RESET

*QRO

QRO = VALUE IS XXXXXXXXY

*QR1

QR1 RESET

To display the settings of both breakpoint or both qualifier registers, enter the
command:

*BR

BRO = LOCATION IS 0030H

BR1 RESET

*QR

QRO = VALUE IS XXXXXXXXY

QR1 RESET

The GR and TR display commands discussed above also display the breakpoint
and qualifier register settings, respectively.

Setting Breakpoint and Qualifier Registers

To set a match condition into a breakpoint or qualifier register without enabling
the register, the format is:

= uniimited-match-condition

6-18

ICE-51 Advanced Emulation and Trace Commands

Examples:

*BRO = LOCATION IS 0100H

*BR = XXXXH

*QR1 = VALUE IS 10H

*QR = P1 IS FOH AND P2 IS OFH

*BRO = 0100H TO 0200H

^ *BR1 = VALUE IS 10H TO 1FH
*QRO = PO IS OOH TO 7FH AND P1 IS 80H TO FFH

These forms set match conditions into the individual registers (or into both
W registers identically, when BR or QR is used), but do not affect the enabled/disabled

status of the register.

NOTE
The breakpoint and qualifier register commands do not reset any values
previously set in the specified register; only the bits specified in the
match condition are affected. (See RESET command, next section.) By
contrast, setting a match condition with the GO, GR, or TR commands
resets any bits not mentioned to don't-care.

Adjustment of Partitions in Match Conditions

When you enter a partition in a BR or QR command, the system adjusts the
partitions you enter so that a match can be made in units of four bits ("nibbles").
Each nibble is one hex digit, so it is easier to explain how adjusting works using
hex values.

An address has at most four digits; to represent a partition of addresses the system
uses two four-digit numbers indicating the low and high addresses in the partition.
In adjusting the partition, the system first identifies the highest-order nibble for
which the two corresponding digits in the two numbers are different. As examples,
in partition 0100 TO 0102 the high and low addresses differ only in the least
significant nibble; in partition 1234 TO 56789 all digits differ; the highest-order
difference is in the most significant nibble.

After the system identifies the highest-order difference, it adjusts any lower-order
nibbles in the low bound to 0, and any lower-order nibbles in the high bound to FH
(llllY). Using the two examples just given, the partition 0100 TO 0102 differs only
in the least significant nibble; there are no lower-order nibbles and no adjustment is
made. (A message may still be displayed.) In the partition 1234 to 5678, the most
significant nibbles differ; the low bound (1234H) would be adjusted to lOOOH and
the high bound (5678H) would be adjusted to 5FFFH. The system informs you of the
adjustment:

*BRO = LOCATION IS 1234 TO 5678H

LOCATION ADJUSTED TO 1000H = 5FFFH

Resetting Break and Qualifier Registers

To reset the match conditions in the breakpoint and qualifier registers without
changing the fiags (enabled/disabled), the format is:

RESET means "both BRO and BRl".

;QR here means "both QRO and QRl".

6-19

Advanced Emulation and Trace Commands lCE-51

Examples:

*RESET BRO

PRESET BR

*RESET QR1

PRESET QR

If either breakpoint register is enabled while RESET, emulation will break after
executing one instruction. If either qualifier register is enabled while RESET, all
OPCODE and VALUE frames of every instruction will be collected.

Sync Line Commands

Sync lines SYO and SYl are accessible at the buffer box. A cable is provided for
connecting these signals to external equipment; refer to appendix A for
installation.

SYO Commands

The SYO line synchronizes the start or stop of emulation with external events. It
can be used as an input signal (SYO IN) or as an output signal (SYO OUT) or both.
The functions of SYO IN and SYl IN are discussed earlier in this chapter.

SYO IN is enabled as a halt condition in the GO register. The command formats are:

GO TILL SYO

GO TILL breakpoints OR SYO

GO TILL breakpoints WITH SYO

GR = TILL SYO

GR = TILL breakpoints OR SYO

GR = TILL breakpoints WITH SYO

In these formats, the entry breakpoints means one of the keywords BRO, BRl or
BR, or any of the forms of match-condition discussed earlier in this chapter. The
forms with GO also begin real-time emulation; the optional FROM clause is not
shown in the above formats for clarity (refer to chapter 3 for details).

Examples:

*GO TILL SYO

*G0 TILL BRO OR SYO

*GR = TILL VALUE IS 10H OR SYO

*GR = TILL PO IS 1FH WITH SYO

SYO IN is disabled by another GO or GR command that does not include a reference
to SYO IN, such as GO FOREVER. %

SYO IN can be combined with one or more breakpoints. The clause OR SYO in a GO
or GR command means either a breakpoint match or SYO IN low can halt
emulation. The clause WITH SYO means both a breakpoint match and SYO IN low
are required to halt emulation. (SYO IN has no effect on single-step emulation.)

Initially, SYO IN is level-sensitive; the external device must hold SYO IN low for a
period of time to produce a break. (See appendix D for SYO timing parameters.) You
can also specify that the system is to latch SYO IN on the high-to-low transitional
edge; thus a momentary low will cause a break in this condition. To cause latching
instead of level-sensitivity, the command is:

ENABLE SYO LATCH

6-20

ICE-51 Advanced Emulation and Trace Commands

To restore the level-sensitive condition, the command is:

DISABLE SYO LATCH

The level-sensitive or latched condition is Independent of the enabled/disabled
status of SYO IN in the GO register.

SYO OUT is enabled or disabled with the commands:

ENABLE SYO OUT

■ DISABLE SYO OUT

#

When SYO OUT is enabled, the emulator holds the line low and releases it only
when emulation is in progress. If enabled, SYO OUT is pulsed during single-step
emulation.

SYl Commands

The SYl line synchronizes the start and stop of trace collection with external
events. It can be used as an input (SYl IN), as an output (SYl OUT), or both.

SYl IN is enabled as a qualifier in the trace register. The command formats are:

TR = SYl

TR = tracepoints OR SY1

TR = tracepoints WITH SY1

TR = TILL tracepoints WITH SY1

TR = TILL tracepoints WITH SY1

TR = AFTER tracepoints OR SY1

TR = AFTER tracepoints WITH SYl

Examples:

*TR = SY1

*TR = QR WITH SY1

*TR = VALUE IS 1XH OR SY1

*TR = TILL QRO OR SY1

*TR = AFTER OPCODE IS 3CH OR SY1

In these formats, the entry tracepoints means one of the keywords QRO, QRl, or
QR, or any of the forms of match-condition discussed earlier in this chapter.

SYl IN is disabled by another TR command that does not include a reference to
SYl IN, such as TR = FOREVER.

Initially, SYl IN is level-sensitive; after it has been high (starting trace), the
external device must hold it low for a period of time to halt collection of trace. (See

0.-: appendix D for SYl timing parameters.) Under this condition, however, the
external device can toggle trace on and off repeatedly by manipulating SYl IN.
Instead of level-sensitivity, you can also specify that the system is to latch SYl IN
on the high-to-low transitional edge; thus a momentary low will cause trace to halt.
To enable or disable latching, the commands are:

ENABLE SY1 LATCH

DISABLE SY1 LATCH

The level-sensitive or latched condition is independent of the enabled/disabled
status of SYl IN in the trace register.

In the latched state, once trace has turned off by SY1 IN going low, it cannot restart
until emulation breaks and resumes, even though SYl IN may go high again.

6-21

Advanced Emulation and Trace Commands ICE-51

SYl OUT is enabled and disabled with the commands:

ENABLE SY1 OUT

DISABLE SY1 OUT

When SYl OUT is enabled, the emulator holds the line low except when trace is
being collected.

RESET SY Command

#
The command RESET SY is equivalent to the following four commands:

*DISABLE SYO LATCH ^

^DISABLE SYO OUT ^

^DISABLE SY1 LATCH

^DISABLE SY1 OUT

In other words, RESET SY restores the level-sensitive condition for both SYO IN
and SYl IN, and disables SYO OUT and SYl OUT. It does not affect the
enabled/disabled status of SYO IN or SYl IN (which require changing the GO and
trace registers, respectively).

References to Sync Lines

The commands SYO and SYl display the current levels of the two Knes (0 = low, 1 =
high); for example:

*SY1

SY1=1

*SY1

SY1=1

The command SY displays the levels of SYO and SYl, and also displays the
enabled/disabled status of SYO LATCH, SYO OUT, SYl LATCH and SYl OUT; for
example:

*SY

SYO OUT DISABLED

LATCH DISABLED

INPUT HIGH

SY1 OUT DISABLED ^
LATCH DISABLED ^
INPUT HIGH

The keywords SYO and SYl can also be used as read-only references in expressions
and other numeric contexts. SYO and SYl are 1-bit quantities (0 or 1).

For example: ^,

*EVALUATE SYO

1Y 1Q 1T 1H " 0001H

Note that the emulator languages uses context to decide whether the keywords SYO ®
or SYl refer to enabled flags in the GO and trace registers or to 1-bit numeric
quantities. One point of possible confusion is after the command word TILL.
Consider the following sequence of GO register commands:

*GR = TILL SYO ;Enahles SYO IN.

*GR ;Display GO register and
GR = TILL SYO ;breakpoint register settings.
BRO RESET -

BR1 RESET

6-22

lCE-51 Advanced Emulation and Trace Commands

In the GO register commands, TILL introduces one or more halt-factors; SYO is
interpreted as a valid halt factor, and its flag is set accordingly. Now compare the
following trace register commands:

;Enables QRO using setting of SYl as
;the address.

*TR = TILL SY1

*TR

TR = TILL QRO

QRO = LOCATION IS OOOOH

QR1 RESET

In the trace register commands, TILL is a trigger mode in combination with the
tracepoint that immediately follows it. In this context, the keyword SYl is inter
preted as a tracepoint address and, assuming SYO is 0, the value is set into QRO and
QRO is enabled as shown in the example.

other Results of Emulation and Trace

Emulation Timer

The emulation timer is a 32-bit, 500-nanosecond counter maintained by the
emulator system. The emulation timer runs during real-time emulation, providing
an approximate measure of the duration of the emulation.

To display the timer value, enter the command SECONDS. The display gives the
emulation timer value rounded to the nearest microsecond.

For example:

^SECONDS

2 MICROSECONDS

♦SECONDS
4,090,769 MICROSECONDS

To display the low and high words of the emulation timer in the current output
radix, use the commands TIMER and HTIMER.

Examples:

*TIMER
TIMER=D723H

*HTIMER
HTIMER=007CH

;Low 16 bits.

;High 16 bits.

The emulation timer is accurate to about .01%, or about 1 in 10,000 microseconds,
however, breaking emulation produces a "roundoff' error of ±1 microsecond.

The emulation timer is reset to zero when the program counter is changed by a
FC=address, GO FROM address, or LOAD filename command. The timer is also set
to zero and remains at zero during single-step emulation.

CAUSE Command

The CAUSE command displays the reason for the last break in emulation. The
CAUSE kejnvord can also be used as a read-only reference in expressions and other
numeric contexts. As a display:

*CAUSE
CAUSE = 01H
BREAK CAUSED BY: BRO

6-23

Advanced Emulation and Trace Commands ICE-51

The numeric byte displayed has the following interpretation:

Bit 0 on if BRO match caused break.*

Bit 1 on if BRl match caused break.*

Bit 2 on if SYO caused break.

Bit 3 on if single-step caused break.

Bit 4 on if user aborted emulation.

(*0n occasion both bits may be on when only one is true.) The display also includes ^
the cause of break in message format.

As a numeric entry, CAUSE is a 5-bit quantity. H

BUFFERSIZE Command

The trace buffer holds a maximum of 1000 frames, numbered from 000 to 999
decimal. A frame counter, BUFFERSIZE, points to the next frame available to
receive the current new frame of information. The buffer is initially empty
(BUFFERSIZE = 0); after overflow, BUFFERSIZE = lOOOT.

To display the number of valid frames in trace, enter the command BUFFERSIZE;
for example:

*BUFFERSIZE

BUF=0

The keyword BUFFERSIZE can also be used as a read-only reference in
expressions and other numeric contexts.

PPC and OPCODE Commands

The command PPC displays the address of the last instruction in the trace buffer,
and the command OPCODE displays the opcode of the last instruction.

For example, assuming the last instruction in trace would display as follows:

♦NEWEST
♦TRACE=INSTRUCTIONS
♦PRINT -1
FRAME LOG OBJ INSTRUCTION P1 P2 PO TOVF
.START
0008: 0030H 439002 ORL .P1,#02H FFH FFH FFH

PPC and OPCODE then produce displays as follows:

*PPC
PPC=0030H
*OPCODE
OPCODE=43H

NOTE
The values of PPC and OPCODE are updated after each break in
emulation if a LOCATION frame can be found within the last sixteen
frames of trace. When no LOCATION frame occurs, a warning message
is displayed to inform you that PPC and OPCODE have not been
updated. If you then display PPC or OPCODE, the value is incorrect but
no subsequent warning is given.

6-24

ICE-51 Advanced Emulation and Trace Commands

Trace References

A trace reference is an entry of the form:

FRAME trace-group

Where trace-group is one of the following entries:

Trace Group Meaning

ADDR 16-bit code address (on LOG and VLOC frames)

DATA 8-blt quantity (on OPC and VAL frames)

□MUX 1-bit, 0 if address frame, 1 if data frame.

CYC 1-bit, 0 if first fetch, 1 if any other fetch.

PO 8-bit, Port 0

PI 8-bit, Port 1

P2 8-bit, Port 2

XADDR 16-bit, external address (concatenation of P2 and PO)
TOVF 1-bit, trace overflow flag (1 = overflow).

The value of a trace reference in an expression is the trace data corresponding to
trace-group in the frame pointed at by the trace display pointer (see chapter 4). An
error occurs if the pointer is at NEWEST or if the buffer is empty.

Here's how a trace reference to port PI works. Suppose the buffer is at OLDEST, so
that the PRINT command displays frame 0000:

*OLDEST

*PRINT 1
FRAME LOG OBJ INSTRUCTION PI P2 PO TOVF
0000: OOOOH 2100 AJMP .START FFH FFH FFH 0

Now, to reference the value of PI from this frame, we use a trace reference, FRAME
Pi. This reference is not a command, however, so we need to use EVALUATE to see
the value:

*EVALUATE FRAME PI
1111111111111111Y 177777Q 65535T FFH " OOFFH

FRAME Mode Trace Displays

Trace Display Mode

Display of trace information is controlled by the trace display mode. There are two
0- modes, INSTRUCTIONS mode and FRAMES mode. Table 6-2 summarizes the

differences between the two modes. Note that the trace display mode does not affect
the manner in which trace is collected, only the manner of display of information

% already collected.

The trace display mode command changes the mode; the format is:

TRAPF = riNSTRUCTIONlTRACE [pRAiyyiE J
The initial mode is INSTRUCTION. INSTRUCTION mode displays are discussed

' in chapter 4. To obtain the FRAME mode displays discussed in this section, enter
the command:

*TRACE = FRAME

6-25

Advanced Emulation and Trace Commands ICE-51

To return to INSTRUCTION mode, the command is:

*TRACE = INSTRUCTION

To display the current trace display mode, the command is:

*TRACE

Example:

*TRACE

TRACE = INSTRUCTION

*TRACE

TRACE = FRAME

Table 6-2. Trace Display Modes

INSTRUCTION MODE

Each display line contains one complete
instruction (opcode, operands).

An instruction is displayed only if its first
frame was collected.

The display can include information that
was not actually collected.

The values of ports and TO VP are from
the first frame in the instruction.

Opcodes and operands are reconstructed
from program memory for comparison
with the trace values.

Opcodes and operands are disassembled.

The trace version is displayed if it exists,
otherwise the reconstruction is displayed.

All addresses can be displayed
symbolically.

The user is informed of any discrepancy
between trace and memory, with a
message.

FRAME MODE

Each display line contains one complete
frame (opcode or operand).

All frames are displayed, even if they do
not form complete instructions.

Only frames that were collected are
displayed.

Ports and TO VP are sampled on every
frame, and the display shows the value on
each frame.

Only opcodes are reconstructed from
program memory.

Only the first byte is disassembled
(opcode, some operands).

Both the reconstruction and the actual

trace information are displayed.

Oode addresses can be displayed
symbolically.

No message is displayed.

FRAME Mode Headers

Figure 6-8 shows an example of a display in FRAME mode. Each line of the display
contains one frame. The display begins with a header to identify the fields of
information. The next several paragraphs briefly describe the header items as they
appear in the figure from left to right.

FRAME: The frame number. Frames in the trace buffer are numbered from 000 to

999 decimal.

H

TYPE: The frame type identifies the type of information currently valid (see table
6-1).

ADDR: For LOCATION and VLOCATION frames, the 16-bit code address in
hexadecimal. On LOCATION frames, the system searches the user symbol table
and displays a user symbol if it matches the LOCATION address; the display is on
the line preceding the LOCATION frame.

6-26

ICE-51 Advanced Emulation and Trace Commands'

FRAME TYPE ADDR DATA INSTRUGTION PI P2 PO TOVF

0000 LOG OOOOH (80H) (SJMP --) FFH FFH FFH 0

0001 OPC 80H FFH FFH FFH 0

0002 VLO 0001H FFH FFH FFH 0

0003 VAL 2EH ffh' FFH FFH 0

0004 VLO 0001H FFH FFH FFH 0

0005 VAL 2EH FFH FFH FFH 0

0006 VLO 0002H FFH FFH FFH 0

0007 VAL OOH FFH FFH FFH 0

.START

0008 LOG 0030H (43H) (ORL FFH FFH FFH 0

0009 OPG 43H FFH FFH FFH 0

0010 VLO 0031H FFH FFH FFH 0

0011 VAL 90H FFH FFH FFH 0

0012 VLO 0032H FFH FFH FFH 0

0013 VAL 02H FFH FFH FFH 0

0014 VLO 0032H FFH FFH FFH 0

0015 VAL 02H FFH FFH FFH 0

0016 LOG 0033H (78H) (MOV RO.#—) FFH FFH FFH 0

0017 OPG 78H FFH FFH FFH 0

0018 VLO 0034H FFH FFH FFH 0

0019 VAL 30H FFH FFH FFH 0

0020 LOG 0035H (7AH) (MOV R2.#—) FFH FFH FFH 0

0021 OPG 7AH FFH FFH FFH 0

0022 VLO 0036H FFH FFH FFH 0

0023 VAL OOH FFH FFH FFH 0

Figure 6-8. FRAME Mode Trace Display

DATA: For OPCODE and VALUE frames, the 8-bit quantity read from trace. On
LOCATION frames, the display has the 8-bit quantity read from code memory, in
parentheses.

INSTRUCTION: For LOCATION frames, the disassembly for the first byte of the
instruction read from code memory, in parentheses. For OPCODE frames, the
disassembly for the first hyte of the instruction read from trace; this display
appears when the OPCODE frame is not preceded by a LOCATION frame and
when the quantities read from code memory and trace do not agree. The
disassembly shows the opcode mnemonic and any operands that can be determined
from the first byte; subsequent operands are shown as dashes (—).

PI, P2, PO: The values of the three I/O ports in hexadecimal. The arrangement of
the ports in this display allows you to read P2 and PO as the high and low bytes
(respectively) of an external address.

TOVF: Trace overflow flag (0 = no overflow, 1 = overflow). The trace buffer
overflows after the first 1000 frames have been collected.

Verification of Trace in FRAME Mode

In FRAME mode, the value of the opcode read in trace is compared to the
corresponding byte in code memory. If they differ, the value from memory is
displayed on the line with the LOCATION frame. In INSTRUCTION mode, a
warning message is displayed to inform you of the verify failure. The following
example shows the result that occurs when code memory is changed after
emulation breaks.

6-27

Advanced Emulation and Trace Commands ICE-51

OOOOH

*A INC RO

0001H

*G0 FROM 0 TILL 0

EMULATION BEGUN

EMULATION TERMINATED, PC=0001H

*CBYTE 0 = 0

*TRA = INSTRUCTIONS

*P ALL

FRAME LOG OBJ INSTRUCTION

WARN CCiUNEXPECTED TRACE

0000: OOOOH 08 INC RO

*TRA = FRAMES

*P ALL

PI P2 PO TOVF

FFH FFH FFH 0

FRAME TYPE ADDR DATA INSTRUCTION PI P2 PO TOVF

0000: LOC OOOOH (OGH) (NOP) FFH FFH FFH 0

0001: OPC (08H) (INC RO) FFH FFH FFH 0

0002: VLO 0001H FFH FFH FFH 0

0003: VAL 2EH FFH FFH FFH 0

In this example, one instruction is assembled into code memory, then executed (the
command GO FROM 0 TILL 0 executes one instruction). After emulation breaks,
the memory byte is set to 0 with a CBYTE command. In INSTRUCTION mode the
instruction is displayed as emulated, with the warning message UNEXPECTED
TRACE. The corresponding display in FRAME mode shows the byte read from
memory in parentheses after the address in the LOC frame, along with the opcode
that corresponds to this value. In the OPC frame that follows, the byte read from
trace is displayed, with its corresponding opcode.

Another reason for the UNEXPECTED TRACE warning is related to interrupts.
When an interrupt occurs, two non-executed cycles of trace can be generated while
the system puts the return address on the stack. Here is an example of this type of
occurrence, and the use of FRAME mode to obtain more detail; in this example,
address 001BH is the interrupt vector (on-chip timer 1 interrupt), and 0130H is the
return address for the interrupt.

Suppose the INSTRUCTION mode display contains the following sequence:

0127: 0134H 50FA JNC .LOOP OOH 01H FFH 0

.LOOP

0135 0130H 2401 ADD A.#01H OOH 02H FFH 0

0139 0132H F5A0 MOV .P2,A OOH 02H FFH 0

0143 0134H 50FA JNC .LOOP OOH 02H FFH 0

WARN CC:UNEXPECTED TRACE

.LOOP

0151 0130H 2424 ADD A.#24H OOH 03H FFH 0

0159: 001 BH 2140 AJMP .TIMOUT OOH 03H FFH 0

TIMOUT

0167 0140H C28E CLR .TR1 OOH 03H FFH 0

0171 0142H CODO PUSH .PSW OOH 03H FFH 0

0179 0144H 8890 MOV .PI.RO OOH 03H FFH 0

0187 0146H 08 INC RO OOH 03H FFH 0

0191 0147H B85B02 CJNE RO,#5BH,.MJDOUT 41H 03H FFH 0

.MIDOUT

0199: 014CH DODO POP .PSW 41H 03H FFH 0

0207: 014EH D28E SETB .TR1 41H 03H FFH 0

.ENDOUT

0211: 0150H 32 RETI 41H 03H FFH 0

i

(Display continues on next page.)

6-28

ICE-51 Advanced Emulation and Trace Commands

#

.LOOP

0219: 0130H 2401

0223: 0132H F5A0

ADD A,#01H

MOV .P2,A

41H 03H FFH 0

41H 03H FFH 0

Note the UNEXPECTED TRACE warning right before address 0130H appears
(frame 0151), then the interrupt vector address OIBH (frame 0159H), then the
interrupt service routine (addresses 0140H through 0150H, frames 0167 through
0211), then the return to address 0130H. To get more detail on the UNEXPECTED
TRACE warning, we use FRAME mode:

*OLDEST

* TRACE = FRAME

*MOVE 140

*PRINT 25

FRAME TYPE ADDR DATA INSTRUCTION PI P2 PO TOVF

0140 OPC F5H (MOV -.A) OOH 02H FFH 0

0141 VLO 0133H OOH 02H FFH 0

0142 VAL AOH OOH 02H FFH 0

0143 LOG 0134H (50H) (JNG —) OOH 02H FFH 0

0144 OPC 50H OOH 03H FFH 0

0145 VLO 0135H OOH 03H FFH 0

0146 VAL FAN OOH 03H FFH 0

0147 VLO 0135H OOH 03H FFH 0

0148 VAL FAN OOH 03H FFH 0

0149 VLO 0136H OOH 03H FFH 0

0150 VAL A3H OOH 03H FFH 0

.LOOP

0151 LOG 0130H (24H) (ADD A,#—) OOH 03H FFH 0

0152 OPG 24H OOH 03H FFH 0

0153 VLO 0130H OOH 03H FFH 0

0154 VAL 24H OOH 03H FFH 0

0155 VLO 0130H OOH 03H FFH 0

0156 VAL 24H OOH 03H FFH 0

0157 VLO 0130H OOH 03H FFH 0

0158 VAL 24H OOH 03H FFH 0

0159 LOG 001BH (21H) (AJMP —) OOH 03H FFH 0

0160 OPG 21H OOH 03H FFH 0

0161 VLO 001GH OOH 03H FFH 0

0162 VAL 40H OOH 03H FFH 0

0163 VLO 001 DM OOH 03H FFH 0

0164 VAL OOH OOH 03H FFH 0

The eight frames (0151 through 0158) represent the incoming interrupt. The return
address (0130H) is pushed on the stack. However, when the system compares the
trace of this event with the instruction at 0130H, they are different, resulting in the
warning message.

6-29/6-30

CHAPTER 7

^ PROGRAMMING WITH COMMAND BLOCKS

This chapter contains descriptions of commands that you can use to automate all
or part of the emulation session. The chapter begins with the WRITE command;
this command allows you to display text of your choosing on the system console.
The chapter continues with discussions of the block commands REPEAT, COUNT,
and IF. The chapter concludes with a presentation of the macro commands; the
macro commands allow you to build a library of diagnostic command suites on disk
files.

The WRITE Command

The WRITE command is included in this chapter because it is especially useful for
displaying results from within command blocks. The WRITE command allows you
to display several items, expressions or text strings, at the console.

The format of the WRITE command is:

I expression^
jstr/ng j string
\expression

WRITE

Examples:

*WRITE THE VALUE IS'. .VALUE

*WRITE THE NEW VALUE IS'. .VALUE *3/2

The WRITE command displays one or more elements on the console.

For example, if the content of the variable with address .TIME is 15, the following
command:

WRITE DBYTE .TIME.'SECONDS ELAPSED.'

produces the following display:

0015H SECONDS ELAPSED

The WRITE command can display a string, a number, the result of evaluating a
numeric expression, or a combination of any of these kinds of elements.

All the elements following WRITE are displayed on one line if possible; if the next
element doesn't fit the remaining character space on the line, the system inserts a
carriage return/line feed. No spaces are inserted between elements on the same
line; if you want spaces before or after a text message, put spaces in the string. A
string is displayed just as you enter it. A numeric constant is displayed as entered,

0 using the current SUFFIX when the WRITE command is created. An expression is
evaluated, and the result is displayed in the current BASE.

f Block Commands

Block commands allow you to enter and execute several command lines as a unit.
The block commands are:

IF....END Conditional execution of a block of commands.

REPEAT....END Rei)eat a block of commands.

COUNT....END Repeat a block of commands a definite number of
times.

(The DEFINE MACRO command in the next section is also a block command.)

7-1

Programming With Command Blocks ICE-51

Entering Block Commands

The block of command lines begins with an identifier line (for example, REPEAT or
DEFINE MACRO) and ends with a terminator line (END or EM). The identifier
line and all intermediate command lines are ended with a crriage return, but the
system interprets these as intermediate carriage returns (intermediate carriage
returns are shown as cr in the examples.) The carriage return after the END or EM
is the final carriage return that terminates the entire command.

At the beginning of intermediate command lines, the system adds a period (.) before
the asterisk to show that you are within a block. When blocks are "nested" (that is,
when one block contains one or more other blocks), the number of leading periods
shows the depth of block nesting.

Initially, the depth is "zero" (no periods preceding the asterisk prompt) this is
called the "outermost level". When the system encounters an END line, it
terminates the REPEAT, COUNT, or IF command and reverts to the next outer
level. When the END line reverts to the outermost level, the command block is
executed.

The EM terminator for MACRO definition blocks also reduces the level by one, and
this must reach the outermost level (i.e., MACRO definitions cannot be nested
within other command blocks). However, the EM terminates the definition only
and does not cause any commands to execute.

Boolean Expressions in Biock Commands

The IF, COUNT, and REPEAT commands use boolean expressions to control what
commands in the block are to be executed. A boolean expression can have the same
kinds of entries as expression (see chapter 1); however, in a boolean expression,
only the least significant bit (LSB) of the result is tested. If the LSB = 0, the value of
the boolean expression is FALSE; if the LSB = 1, the value of the boolean
expression is TRUE.

Boolean expressions in block commands frequently involve relational expressions
to form true or false conditions. A relational expression uses a relational operator
(=, >, <, >=, <=, <>) to compare two values; the result of the comparison is either
TRUE (FFFFH) or FALSE (OOOOH), giving a boolean TRUE or FALSE when the
LSB is tested. Here are some examples of relational expressions:

PC < 7FFH

RBYTE .SP = 0

.COUNTER >= 10T

More examples of boolean expressions are given in the sections on the REPEAT,
COUNT, and IF commands later in this chapter.

REPEAT Command

The REPEAT Command has the format:

REPEAT cr

command cr

WHILE boolean-expression cr

UNTIL boolean-expression cr

ENDREPEAT

7-2

ICE-51 Programming With Command Blocks

Examples:

*REPEAT

.*G0 FROM .START TILL BRO

.*ENDREPEAT

*REPEAT

.*WHILE .VAR < .TOTAL

.*STEP

^ .*PRINT -1
.*ENDR

^REPEAT

• .^.COUNTER = .COUNTER + 1

.*WRITE 'COUNTER = .COUNTER

.*UNTIL .COUNTER = .MAXIMUM

.*END

The REPEAT command consists of the REPEAT keyword, zero or more com
mands, zero or more exit conditions using WHILE or UNTIL, and the keyword
END. Enter each of these elements on its own line of the console display; terminate
each input line with an intermediate carriage return (shown as cr in the command
syntax). You can mix these elements in any order, using any number of each type of
element. If no elements are entered, the REPEAT is a "null" command.

After each intermediate carriage return, the system begins the next line with a
period (giving an indented appearance), then the asterisk prompt to signal readi
ness to accept the next element. After the END keyword, enter a final carriage
return to begin the sequence of execution. (The final carriage return after END is
not shown in the syntax, since all commands terminate with a final carriage
return.) The END keyword can be entered as ENDR or ENDREPEAT; the charac
ters after END serve as a form of "comment" to indicate which loop is being
terminated.

Each command is executed when it is encountered on each iteration. After the
command has been completely executed, the loop proceeds to the next element.

The WHILE and UNTIL keywords introduce exit clauses. More details on WHILE
and UNTIL clauses appear just after the discussion of the COUNT command.

COUNT Command

The format of the COUNT command is:

COUNT decimal-expression or

command cr

WHILE booiean-expression cr

UNTIL booiean-expression cr

ENDCOUNT

Examples:

*GOUNT 10

.^O FROM .START TILL BRO

.*ENDOOUNT

"COUNT .TESTTIMES + 50

.WVHILE .VAR < .TOTAL

."STEP

."PRINT -1

.^ENDC

7-3

Programming With Command Blocks ICE-51

*COUNT .COUNTER

.*WRITE 'COUNTER = COUNTER

.^COUNTER = .COUNTER + 1

.*END

Like REPEAT, the COUNT command sets up a loop. In addition to the WHILE and
UNTIL exit clauses (see next section), the COUNT command includes a loop
counter that terminates the loop if no exit condition is met before the counter runs
out.

The decimal-expression after COUNT controls the maximum number of iterations
to be performed. If a numeric constant is used (for example, COUNT 10 or COUNT
.START + 50), the system interprets it in implicit decimal radix; in other words, any
number entered after COUNT without an explicit radix is interpreted as a decimal
number.

If the entry after COUNT is an arithmetic expression, it is evaluated to give the
number of iterations. The COUNT expression is evaluated once, before any loop
elements are encountered. It is not evaluated again on any iteration. The COUNT
expression uses the values of any references it contains as they stand at the time of
evaluation. For example, consider the following command sequence:

*DEFINE .XX = 2

*COUNT .XX

.* .XX = .XX + 1

.* .XX

.*ENDC

This loop goes through two iterations, although .XX has value 4 when the loop
terminates.

Halting REPEAT and COUNT Loops,

USER ABORT

To halt execution of a REPEAT or COUNT loop, press the ESC key at the console.
The command currently executing halts where it happens to be; if you are
emulating, the current instruction is completed before the break.

WHILE and UNTIL Clauses

WHILE and UNTIL clauses are used to halt the execution of REPEAT and
COUNT loops. A WHILE clause halts a loop when its condition (boolean
expression) is FALSE; an UNTIL clause halts a loop when its condition is TRUE.

In both the WHILE and UNTIL clauses, the boolean-expression is evaluated each
time the clause is encountered; that is, once per iteration. Evaluation at each itera
tion involves looking up the values of any references in the expression. Thus, the
result can change with each evaluation.

The choice of WHILE or UNTIL is usually a matter of convenience — there is
always a way to convert one into the other. For example, "WHILE bool-expr" is
equivalent to "UNTIL NOT (bool-expr)".

An exit can be made only when a condition is tested, not when it occurs. To cause
an exit, the test must be placed at the point in the loop where the condition occurs.
For example, consider the following command sequence:

*PC = .START

*REPEAT

.*UNTIL PC = 1000H

.*STEP

.*ENDR

7-4

ICE-51 Programming With Command Blocks

In this command the condition PC = lOOOH is tested after every STEP. If the
sequence of STEPs reaches PC = lOOOH as the next instruction, the loop will
terminate. By contrast, consider this example:

*PC = .START

*REPEAT

.*UNTIL PC = 1000H

.*COUNT 10

..*STEP

..^ENDCOUNT

.*ENDR

In the second example, the condition PC = lOOOH is tested after every ten STEPs.
The loop exits only if PC = lOOOH occurs at the end of some group of ten instruc
tions. If PC = lOOOH occurs during one of the groups of ten STEPs, the loop does not
terminate because that condition is changed by subsequent STEPs before the test
can be made.

If the command has more than one exit clause, each exit clause is tested when it is
encountered. If the result at the moment of the test causes an exit, the loop
terminates; otherwise, the loop proceeds to the next element.

In a COUNT loop, the loop terminates when the number of iterations given by the
COUNT expression has been performed or when an exit condition is tested and
causes the loop to terminate, whichever comes first.

IF Command

The IF command has the format:

IF boolean-expression [THEN] cr

command cr]

GRIP boolean-expression cr\

[command cr] ...

ELSE cr

[command cr]

ENDIF

.]
t

Examples:

*IF PC < 0100H THEN

.*GO TILL BRO

.*ENDIF

*IF PC >=0 AND PC<1000H

.*G0 TILL BRO

.*END

*IF PC>=0 AND PC<0100H THEN

.*GO TILL BRO

.*ORIF PC<0200H

.*GO TILL BR1

.*ORIF PC < 0300H

.♦GO TILL SYO

.*ELSE

.♦GO FOREVER

.♦ENDIF

7-5

Programming With Command Blocks ICE-51

The IF command permits conditional execution of a command sequence. The
command must have the IF clause; the ORIF and ELSE clauses are optional. The
command can include as many ORIF clauses as desired. The IF and ORIF clauses
each contain a single condition (boolean expression). Any clause can contain none,
one, or more commands.

The system examines each boolean expression in turn, clause by clause, looking for
the first TRUE condition. If a TRUE condition is found, the commands in that
clause are executed and the IF command terminates. If none of the conditions is
TRUE, the commands in the ELSE clause are executed and the IF command #
terminates. If the ELSE clause is omitted and no condition is TRUE, the IF
command terminates with no commands executed.

The ENDIF keyword is required to close off the IF command; it can be abbreviated
to END.

Nesting Command Blocks

The REPEAT, COUNT, and IF commands can be nested to provide a variety of
control structures.

Each nested compound command must have its own END keyword. When entering
a nested command sequence, you may wish to use the keywords ENDR, ENDC, and
ENDIF, to help you keep straight which command you intend to close off. The sys
tem does not check nesting levels at entry, and if an END is omitted, the resulting
error makes it necessary to enter the entire command again.

Each nested REPEAT or COUNT command can contain its own exit clauses

(WHILE or UNTIL). Each such exit clause can terminate the loop that contains it,
but has no effect on any outer loops or commands.

Macro Commands

A macro is a named block of commands. When a block of commands is defined as a

macro, it is stored in a "macro table" so that it can be executed more than once
without having to enter the commands each time. The macro commands described
in this chapter allow you to perform the following functions:

• Define a macro, specifying the macro name, the command block, and any
formal parameters (points where text can be filled in at the time of the macro
call).

• Invoke (call) a macro by name, giving actual parameters to fill in the blank
fields in the macro definition, and begin the execution of the command block.

• Display the text of any macro as it was defined.

• Display the names of all macros currently defined.

• Remove one or more macros. ^

• Save one or more macro definitions on an ISIS-II file.

• Bring one or more macro definitions (or other commands) in from a file for use
in the current test sequence. #

Defining and Invoking Macros

To define a macro, the format is:

DEFINE :macro-name cr

[command cr] ...

EM

7-6

ICE-51 Programming With Command Blocks

Once a macro has been defined, you can invoke (call) the macro as often as desired.
The format is:

imacro-name actual-parameter-list

Example:

^DEFINE :LOOK ;Definition
.*WRITE 'VAR1 = DBYTE .VAR1

.*WRITE 'VAR2 = DBYTE .VAR2

^ .*EM
*

*:LOOK invocation
VAR1 = OOH

VAR2 = OOH

The macro definition command causes the macro name and the block of commands
to be stored in a table of macro definitions.

NOTE

A macro definition may not be placed within any other compound
command block.

A macro-name must begin with a letter, or with one of the characters or
The characters after the first character can be letters, or numeric digits.
The macro name must not duplicate a previously-defined macro name.

A macro definition may not appear with any other command (REPEAT, COUNT,
IF, or another macro definition). The command block in the macro definition can
include any command except another DEFINE MACRO command or a REMOVE
MACRO command.

The macro name in the macro invocation must be the name of a previously-defined
macro. The form of actual-parameter-list is discussed later in this chapter.

Here is a simple macro definition:

*DEF iGOER

.^REPEAT

..*G0 FROM .START TILL BR1

..*ENDR

.*EM

To invoke this macro and cause its command block to begin executing, enter the
macro name preceded by a colon (:). For example:

*:GOER

A macro definition can include commands that define user symbols. Macros that
include user definitions can be used for initialization purposes. You should use
some caution in placing user definitions within macro definitions, however, since
multiple definitions cause errors.

NOTE

When you are using MACRO commands, the emulator system opens a
file named MAC.TMP to hold the macro definitions. By default, the
drive used for this file is the one named in the invocation command (see
chapter 2).

7-7

Programming With Command Blocks ICE-51

A macro definition can include calls to other macros, but a macro cannot call itself
recursively. A macro that calls itself in its command block expands indefinitely
when the outer macro is called, without ever executing any commands (press ESC
to terminate such an infinite expansion). Any macros called from within a macro
must have been defined when the calling macro is invoked. Macro calls can be
nested; i.e., one macro calls another, which calls another, and so on. The level of
nesting is limited only by the memory space, as noted below.

NOTE .•Q

The emulator uses memory in the development system for its workspace.
The workspace contains symbol tables and space for processing
commands, including macro expansions. It grows dynamically to Jl
accommodate larger symbol tables and command structures. As
workspace grows, it always reflects the largest space required for
command processing during each test session; it does not "shrink"
djnnamically to accommodate smaller commands. If more macro space
is required, you must have fewer user symbols.

When a macro is called as an outer level command the following operations occur:

• The default SUFFIX is saved in case a new default is set inside the macro.

• The text of each actual parameter in the call is substituted for the
corresponding formal parameter in the definition.

• The expanded command block is executed if all commands are valid as
expanded.

• When the last command has finished, the former SUFFIX is restored.

• The macro exits. Control returns to the console (asterisk prompt).

The next several sections provide details on these operations.

Formal and Actual Parameters

A formal parameter marks a place in a macro definition where variable text can be
"filled in" when the macro is called. A formal parameter can represent part of a
token or a field of one or more tokens. A macro definition can contain up to ten
formal parameters. A formal parameter has the form:

%n

where n is a decimal digit, 0 to 9.

Formal parameters can appear in the macro definition in any order, and each one
can appear any number of times. In most cases, the formal parameters form a com
plete numeric sequence with %0 as the lowest numbered parameters (even if %0 is
not the first parameter to appear). However, one or more parameters can be omitted
from the sequence; the effect of omitting a formal parameter from the sequence is to
ignore the actual parameter in the call that corresponds to the omitted formal
parameter.

The macro call can contain as many actual parameters as desired. Enter multiple
parameters as a list, with entries separated by commas. The first actual parameter
in the list is substituted at all points that %0 appears in the macro definition; the
second parameter substitutes for %1, and so on.

An actual parameter can be "null", causing the system to substitute a null for the
formal parameter to which it corresponds. You can pass a null parameter to a
macro in two ways:

• Enter no actual parameter between consecutive commas.

• Omit one or more parameters from the end of the list.

7-8

ICE-51 Programming With Command Blocks

If too few actual parameters are entered, the system supplies nulls for the extra
formal parameters. If too many actual parameters are entered, the extra actual
parameters are ignored. However, if more than ten actual parameters are entered,
an error occurs and the call is aborted.

If any actual parameter contains a carriage return, a comma, or an apostrophe, the
entire parameter must be enclosed in apostrophes to identify it as a single actual
parameter. In other words, parameters with these characters must be entered as
strings. An apostrophe within a string is entered as (")•

Here are some examples to demonstrate the use of formal and actual parameters.:

Example 1:

*DEF :MEM

.*%OBYTE %1

.*EM

In the call to this macro, parameter %0 can become "C", "D", "R", "P", or "X".
Parameter %1 can be any valid address or partition. Examples of calls to this
macro:

Macro call Expansion

:MEM X,20H XBYTE 20H

:MEM D,20H LEN 5H DBYTE 20H LEN 5H

Example 2:

*DEF :RPT

.^REPEAT

./%0

..*T1

..*%2

..*%3

..*%4

./%5

..*%6

..*%7

..*%8

..*%9

..*END

.*EM

Macro RPT can accept up to ten commands to be repeated. For example:

:RPT GO TILL BRO, PRINT -1. REGISTERS, GO TILL BRI, PRINT -10

If fewer than ten commands are given, as in the example above, the extra formal
parameters are ignored (treated as nulls).

Details on Macro Expansion

^ The syntax and semantics of commands in a macro block are ignored at the point
of definition; they are not determined until invocation, and may be different on
each invocation through the use of formal parameters.

When a macro is called, its definition is expanded by adding the text of any actual
parameters in the call at the points indicated by formal parameters in the
definition. If the expanded macro contains any calls to other macros, the text of
any such macro is also expanded, forming in effect one overall block of commands.
Expansion continues until the last EM is reached. If the expansion results in a set
of complete, valid commands, the commands are executed. An error results if any
command is incomplete or invalid after expansion.

7-9

Programming With Command Blocks ICE-51

A macro invoked in a REPEAT, COUNT, or IF command is expanded immediately
after the macro call command is entered. Thus, a macro called in a REPEAT or
COUNT command is expanded only once, and a macro called in an IF command is
expanded whether the condition in the IF or ORIF clause that contains the macro
call is TRUE or FALSE.

Initially, macro expansion is "silent"; that is, the expansion is not displayed on the
console. To have the expansion of macros displayed before the macros are executed,
the command is:

^ENABLE EXPANSION

To have macro expansion "silent" again, the command is:

*DISABLE EXPANSION

Macro Table Commands

The macro table contains the name and text of all macros currently defined. The
text is stored as it is defined, and does not contain any expansions.

To display the name of all macros in the table, the command is:

*DIR

For example, assuming the macros in this chapter have been defined:

*DIR

LOOK

GOER

MEM

RPT

To display the name and definition of one, several, or all macros in the table, the
format is:

MACRO [imacro-name [, imacro-name] ...]

Examples:

*MACRO ;Displays all macro definitions.

*MAC :MEM ;Displays text of macro MEM only,

*MAC :GOER,:RPT ;Displays text of macros in the list.

To remove one or more macro definitions from the table, the format is: ^

(macro
REMOVE(

I :macro-name [, :macro-nam^] ...|

Examples:

*REMOVE MACRO ;Removes all macros.

*REMOVE :LOOK ;Removes LOOK only.

*REM :RPT,:LGOK -Removes all macros in the list.

The REMOVE macros command may not appear within any block command or
macro definition.

7-lt)

ICE-51 Programming With Command Blocks

Saving Macros

The PUT command causes one or more macro definitions to be copied from the
temporary file to a "permanent" file. The format is:! MACRO

:macro-name [, imacro-name]

Examples:

*PUT :F1:UTILMAC MACRO

PUT :F1:INIT1.MAC :GOER, :LOOK■
If any macro names are entered, those macro definitions are saved. If MACRO is
used, all macros in the macro table are saved. The definitions in the macro table are
not affected by the operation.

The file containing the saved macro can later be edited or brought into another
session with the INCLUDE command, discussed below.

If the named file does not exist, it is created by the PUT command. If the file does
exist on the diskette, the file is opened for input and the macros in the list are
written on the file, destroying the previous contents of that file.

Including Commands From Files
The macro definition files created with the PUT command can be read into the ICE
temporary macro table with the INCLUDE command. The format is:

INCLUDE :drive:filename

Examples:

^INCLUDE :F1:UTILMAC

^INCLUDE :F1:INIT.MAC

For example, suppose we had defined a macro INIT as follows:

*DEFINE :INIT
.*MAP = 0,2000H
.*LOAD :F1:PROG1
.*EM

Suppose further that we had saved this macro definition with a PUT command as
follows:

*PUT :F1:INIT.MAC :INIT

Then, in a subsequent session we bring this macro definition from the file with the
command:

^INCLUDE :F1:INIT.MAC

The result of the INCLUDE is to read in the definition of INIT as given earlier. The
system issues a prompt at the beginning of each input line (i.e., the prompts are not
saved on the file).

Although the PUT command can be used only to save macro definition, the
INCLUDE command can refer to a file containing any valid emulator commands.
For example, the file could contain macro invocations as well as definitions. To
have an INCLUDE file contain commands other than macro definitions, edit the
file with the ISIS text editor. Each command that you "edit in" should start at the
left margin (do not "edit in" the prompt), and should terminate with a carriage
return.
The INCLUDE command can be nested within any other command, including a
macro definition.

7-11/7-12

4^

APPENDIX A
INSTALLATION AND

CHECKOUT PROCEDURES

This appendix contains procedures for installing the emulator hardware in the
development system, for performing the hardware confidence test, for connecting
the user cable to the Crystal Power Accessory for stand-alone operation, for

^ connecting the user cable to the user hardware system, and for connecting the
external signal cable assembly to the buffer box. Refer to chapter 2 for the procedure
for invoking the emulator software from diskette.

Required and Optional Equipment

The emulator requires the following minimum equipment for installation and
operation:

Intellec Model 800 or Series II development system with 64K of RAM and avail
able slots for two adjacent circuit boards.

CRT and keyboard for console display and command entry.

One diskette drive, single-density or double density.

Although one diskette drive is sufficient, a two-drive (or more) system provides con
siderable convenience in operating the emulator, as discussed in chapter 2. In
addition, a printer may be added where hard-copy output is required by the
application.

The following items are the parts of the emulator system contained in the shipping
carton:

Controller board.

Trace board.

Dual auxiliary connector kit, containing dual auxiliary connectors for Model
800 (1000515) and Series II (1000751).

User cable and buffer box assembly.

Crystal power accessory (CPA).

Sync cable assembly.

Emulator software diskettes, one for single-density and one for double density
operation.

NOTE

Make sure your emulator software diskette has a write-enable tab
installed before attempting to invoke the software.

Literature kit, containing the following publications:

An introductory Dear Customer letter
ICE-5P^ Operating Instructions
ICE-51™ Command Dictionary
Getting Started With the ICE-5r^ Emulator

A-1

Appendix A lCE-51

Hardware Installation Procedures

This procedure is recommended for installing the emulator hardware in the chassis
of the development system. The procedure contains variations for installation in (a)
the model 800, (b) the Series II main chassis, and (c) the Series II expander chassis.

WARNING1

5. Insert Controller board in dual auxiliary connector. Refer to figure A-2.
Insert the controller board so that the component side faces toward the empty
slot on the connector. For the model 800, the connector is labeled "DUAL
AUX CONN"; for the Series II, the connector is labeled "SBC DUAL AUX
CONN".

The chassis of the development system presents electrical power on
several connectors. Installation of the emulator boards in the

development system chassis should be performed by qualified persons
only, and only with the power cords completely disconnected from the
development system.

1. Controller board device code. Figure A-1 shows the locations and
diagrams of jumpers Jl, J2, J3, and J4 on the Controller board. Device code
32H is the required device code for a single ICE-51 system. Verify that
shorting plugs are installed as follows to select device code 32H:

Jl — No shorting plugs.

J2 — Shorting plug in position 2 (connects pin labeled 2 to pin labeled C).

J3, J4 — Shorting pin installed across the two pins of each jumper.

2. Disconnect power cords. Disconnect the power cord from the development
system, and turn power off to diskette drives and other peripherals.

3. Remove access panel. Remove the chassis access panel on the development
system.

a. On the model 800, remove the top cover; it is secured by four half-turn
fasteners. A blade screwdriver is required.

b. On the Series II main chassis, remove the front panel below the screen.
It is secured by two half-turn fasteners. A blade screwdriver is required.

c. On the Series II expander chassis, remove the front panel. Like the main
chassis, it is secured by two half-turn fasteners. A blade screwdriver is
required.

4. Prepare chassis slots. Remove or rearrange peripheral controller boards in
the chassis to leave two adjacent slots.

a. On the model 800, the Controller board must reside in an odd-numbered
slot. The Trace board can reside in the adjacent even-numbered slot on
either side of the Controller board. If you follow the exact procedure
given below, the Trace board ends up in the even-numbered slot to the
left of the Controller board (next lower numbered slot).

b. On the Series II main chassis, move peripheral controller hoards to free ^
up the two central slots in the set of six slots in the chassis.

c. On the Series II expander chassis, move peripheral controller boards to
free up the two central slots in the set of four slots in the chassis.

A-2

ICE-51 Appendix A

J3
(CONNECTED)

J4

(CONNECTED)

(NOT CONNECTED)

(POSITION 2
CONNECTED)

CONTROLLER BOARD,
COMPONENT SIDE

— TWO-PIN SHORTING PLUG

Figure A-1. Device Code Jumpers

1

T V TRACE BOARD

DUAL AUXILIARY
CONNECTOR

POWER

y CONTROLLER BOARD

1

Figure A-2. Emulator Boards in Dual Auxiliary Connector

A-3

Appendix A ICE-51

6. Insert Controller board/connector assembly in chassis slot.

a. For the model 800, the Controller board must go in an odd-numbered slot.
The component side of the board faces toward the power supply on the left
end of the card cage.

b,c For the Series II main chassis and expander chassis, insert the Controller
board in the lower of the two adjacent slots, component side up.

7. Insert Trace board in chassis. The component side faces the same way as ^
the component side on the Controller board. Press firmly on both sides to seat
the board in the main backplane and in the dual auxiliary connector. Check
that the Controller board has remained firmly seated. ^

NOTE

To assist in aligning the boards with the chassis slots, you may find it
helpful to lift the boards gently in the center to relieve any flex.

8. Route cable assembly from buffer box into chassis. The assembly
contains a power cable and three ribbon cables in a protective tubing.

a. On the model 800, locate the connector panel at the top rear of the
chassis. Remove the four screws that attach the panel to the frame. Lift
the connector panel away from the frame, and insert the cable assembly
through the slot. The corrugated sides of the ribbon cables should be
facing down. Do not replace the screws until the cables have been
connected (see next step).

b,c. On the Series II main chassis and expander chassis, locate the cable
relief slot and restraint bar at the right side of the chassis. Insert the
cable assembly from the right, behind the restraint. The corrugated
sides of the ribbon cables should be facing toward the chassis.

9. Connect buffer box cables. Figure A-3 shows the suggested cable routing
and order of connection. Observe the pin 1 indicators on connectors.

• Connect the ribbon cable marked V to the connector marked V on the

Trace board. The ribbon cable descends from the connection. Fold the

cable as needed to make the turn.

• Connect the ribbon cable marked T to the connector marked T on the

Trace board.

• Connect the ribbon cable marked Y to the connector marked Y on the

Controller board. If necessary, lift cable T out of the way while inserting
cable Y; ensure T remains seated.

• Connect the power cord to the four-pin connector on the Controller
board. The flange on the front edge of the plug points up.

©

© POWER

(T) ̂ POWER ̂
CHASSIS

^ I 800: REAR OF

3 I Sil: RIGHT OF
/ CHASSIS

Figure A-3. Ribbon Cable Routing Diagram

A-4

lCE-51 Appendix A

10. Route cables out of chassis.

a. On the model 800, fold the cables to lie flat when the top cover is
replaced. Ensure the power cord is at the edge of the protective tube, not
on top of the flat cables. Remove slack in the cable assembly to the rear,
then hold the rear connector panel in place and replace the four screws.
The cable assembly should fit snugly in the slot.

b,c. On the Series II main chassis and expander chassis, fold the cables to lie
flat when the front cover is replaced. Ensure the power cord is at the
edge of the protective tube, not on top of the flat cables. Remove slack in
the cable assembly to the right.

11. Replace chassis access panel. (See step 3.)

12. Ensure proper grounding. Locate the ground access points on the user
plug (figure A-4). To enhance noise immunity, connect one or more of these to
the user system electronic ground.

For additional grounding, plug the external signal cable assembly into the
slot on the buffer box (used for CPA or external cables), then connect the
black cables to the system electronic ground. Refer to external signal
installation procedure later in this chapter.

13. Connect power cord to development system.

This completes the chassis installation.

Installing Crystal Power Accessory

To install Crystal Power Accessory (CPA):

1. Remove power firom the emulator system.

2. Leave pin protector on user plug (figure A-5).

3. Insert user plug in 40-pin socket on the CPA, aligning the pin 1 markers
(figure A-6).

NOTE

As shipped, the emulator has the crystal power accessory installed at
^ the end of the user cable. When this is the case, instead of steps 2 and 3

simply check that the pin protector is in place and that the pin 1 indi
cators on the user plug, pin protector, and CPA are aligned.

4. Insert the edge connector of the CPA in the socket on the buffer box; the CPA
may be inserted in either direction.

" Hardware Confidence Test

To perform the confidence test after installation or to check on a potential
^ hardware error:

1. Complete hardware chassis installation as described earlier in this chapter.

2. InstaU Crystal Power Accessory as described in the previous section.

3. Turn power on to developmnt syaton, diskette drives, and peripherals.

4. Ins^ a system darioeMLm andtl^ mulidMr s^ware diskette (single
or double density as aqiyopwUite fes yomr aysten)^ in drive 1. In a one-drive
system^ copy em^atcw soAwaee to a system disk (see 'Invocation",
chapter 2).

A-5

Appendix A ICE-51

GROUNDING EMULATION
PROCESSOR

TW STED

CABLE

BUFFER

PIN 1 BEVEL

ON SOCKET

Figure A-4. User Plug, Top View

6.

7.

8.

Boot the ISIS-II system, using the procedure in your development system
operating manual.

Use the ISIS command DIR 1 to verify the emulator disk has files:

CONF

C0N51

CON51.0V1

C0N51.0V2

C0N51.0V3

Enter the following ISIS call:

:F1:C0NF

One-drive system users can omit the :F1:.

In response to CONF command, ISIS-II loads and executes Confidence Test
Manager program, which displays the following message:

ISIS-II CONF, Vx.y

NOTE

In this and other system messages, Vx.y indicates software version
number.

A-6

ICE-51 Appendix A

"'III'

EMULATION
PROCESSOR

PIN 1 BEVEL

PIN
PROTECTOR
(DO NOT
REMOVE
FROM USER
PLUG)

CPA CARD EDGE

fiQ (Q

USER PLUG

PIN 1 NOTCH ON PIN PROTECTOR MATCHES
PIN 1 NOTCH ON CPA AND PIN 1 BEVEL ON
PROCESSOR SOCKET

\
(

CRYSTAL POWER ACCESSORY

Figure A-5. User Plug Assembly, Side View

CRYSTAL POWER
ACCESSORY

40-PIN SOCKET

PIN 1 NOTCH

EDGE
CONNECTOR

Figure A-6. CPA Socket Diagram

A-7

Appendix A IGE-51

Following this message, the Confidence Test Manager displays asterisk (*) as
prompt for next command.

msm
Do not remove confidence test diskette firom its drive while testing is in
progress.

9. Load confidence test routines by entering the INITIALIZE command, followed
by the appropriate disk drive designation, and the keyword C0N51. For M
example:

^INITIALIZE :F1:CON51

In response. Confidence Test Manager displays following message:

ICE-51 CONFIDENCE TEST, Vx.y
USER RETURN

This message is followed by an asterisk prompt for another command.

10. To produce an optional copy of the confidence test input/output, enter the
LIST command as follows, specifying a device such as the line printer (device
name :LP:) or a diskette file as the destination of this copy. For instance:

*LIST :LP:

11. Begin the confidence test series by entering the TEST command:

*TEST

As the Confidence Test Manager concludes each individual confidence test, it
displays a message indicating whether the emulator hardware passed or
failed the test. For example, following the first test in the series, one of the
following two messages appears:

RESET AND INVOKE ICE-51 "PASSED"

RESET AND INVOKE ICE-51 "FAILED" <= = = =

If all displayed test messages denote "PASSED," the hardware has been
installed correctly and is operating properly. But, if any displayed test
message denotes "FAILED," the hardware is not operating properly; inspect
the hardware for improper installation, reinstall it correctly, and rerun the
confidence test to verify the installation. For additional assistance in correct
ing errors, contact your Intel Service Representative (appendix C).

12. Terminate the Confidence Test Manager by entering this command:

*EXIT

Connecting the Emulator to the User System

'To connect the emulator to the user hardware: ^

1. Turn power off to the user prototype system.

I CAUTIpN {

Any wrong connection of the user plug can damage equipment. Check ^
proper orientation before applying power.

A-8

ICE-51 Appendix A

2. Remove the Crystal Power Accessory from the end of the user cable (see CPA
installation procedure earlier in this chapter). Leave the pin protector
attached (figure A-5).

3. Insert the user plug in the 8051 socket on the user system, aligning pin 1 on
the socket with the pin 1 indicator on the user plug (figure A-5).

NOTE
In its initialization phase, the emulation expects power and clock to be
present at the user plug. If power and clock are present, however, and
the emulator has not been invoked since the development system was
powered up, the emulation processor on the user plug executes 'random'
instructions until the emulator is invoked. In some applications, power
and clock should not be applied until the emulator has been invoked.
After the invocation, use RESET ICE (chapter 2) to permit the emulator
to complete its initialization.

Installing Sync Line Cables

To install the sync line cable assembly:

1. Turn power off to the system.

2. Remove CPA if installed (see CPA installation procedure earlier in this
appendix).

3. Plug edge connector of cable assembly into the same slot used by the CPA.
Align the color-coded wires with the markings on the buffer box (blue is SYO,
yellow is SYl, black is ground).

A-9/A-10

41^

APPENDIX B

ERROR MESSAGES AND WARNINGS

This appendix contains a list of error and warning messages produced by the
emulator system. An error message has the following format:

ERR XX:xxxxxxxxxxxxxxxxxxxxxxxxx

Where XX is the number of the error in hexadecimal, and the remainder is a short
description of the error.

When an error occurs, the command that was executing is terminated. In some
cases (e.g., syntax error), the command is never executed. In other cases (e.g.,
memory overflow), the command may have executed partially before the error
occurred. The discussion of each error includes suggestions for corrective action,
where possible.

Warnings have the following format:

WARN XXiXxxxxxxxxxxxxxxxxxxxxxxxx

Where XX is the number of the warning in hexadecimal, and the remainder is a
brief description of the warning. Warnings inform you of possible side effects of the
command that was just executed, but do not abort any commands.

Overview of Corrective Actions

This section briefly reviews corrective actions that apply to more than one error
condition.

-ft

RESET ICE and ERROR Commands

The command:

RESET ICE

resets the emulator hardware. The emulator map is reset to OOOOH, lOOOH. No
other emulator registers accessible to the user are affected. RESET ICE is used
to help the emulator hardware to recover from hardware errors. The
discussions of the errors refer to this command where it applies.

The command:

ERROR

causes the emulator to display additional error information. If the most recent com
mand resulted in a hardware error (errors 0 through 7FH, producing a red light
signal at the buffer box), the ERROR command displays the results so that details
on that error may be passed on to field service personnel. The version number and
date code of the executing software and firmware are displayed at the beginning of
the test.

Confidence Test

After any error, especially errors 0 through 7FH, from which the system does not
recover after RESET ICE, terminate the emulation session with the EXIT
command and run the confidence test. Appendix A describes the confidence test
procedure.

B-1

Appendix B ICE-51

Service Assistance

To obtain service assistance, refer to the service information in appendix C.

Incomplete and Undetermined Errors

In rare instances, an error number may appear without a description; for instance:

ERR 80:?

This display indicates that the error normally associated with this number was in
fact detected, but some other problem prevented the emulator from printing the
descriptive text. If this kind of display occurs, check that your emulator software
diskette contains the file ICE51.0VE.

In other instances, the system may generate an error number for which the cause
and corrective action are not predictable; in this event, the system displays:

ERR XXiUNDETERMINED ERROR

Where XX is the number of the error in hexadecimal. Substitute a fresh software

diskette, or try the confidence test.

Error Messages and Warnings

Here is a list of the error messages and warnings in hexadecimal order, including
brief discussions of each error and suggestions for corrective action.

NOTE
Corrective actions are numbered for emphasis and (in some cases) to
indicate the seriousness of the error condition they are trying to correct.
Within a given error, try corrective action 1; if it fails to correct the
problem, proceed to higher numbered actions in sequence.

ERR 12:PAR BLK DVO CODE ERROR

ERR 13:PAR BLK FORMAT ERROR

ERR 14:N0N-ZER0 COMMAND ACK

ERR 15:N0N-ZER0 DONE FLAG

ERR 16:DVC CD FORMAT ERROR

ERR 17:DVC NOT IN DVC CD TABLE

Errors 12 through 17 arise through failure of communication between the software
and hardware. (1) Use RESET ICE to attempt recovery. (2) Check to see that the
emulator hardware installation has been performed correctly. (3) Run the
confidence test. (4) Verify that the development system hardware operation is
correct.

ERR 20:ILLEGAL INPUT COMMAND

The emulator software is not giving a correct command to the hardware. (1) Use the
EXIT command to end the session, then invoke the emulator again. (2) Substitute a
fresh software diskette. (3) Run the confidence test.

ERR 21:COMMAND NOT ALLOWED NOW

ERR 22:RSLTS LENGTH INADEQUATE

ERR 23:COMMAND FORMAT ERROR

Errors 21, 22, and 23 indicate a communication problem between the software and
the hardware. A software error is the probable cause. (1) Use RESET ICE to
attempt recovery. (2) EXIT, then invoke the emulator again. (3) Substitute a fresh
software diskette. (4) Run the confidence test.

B-2

ICE-51 Appendix B

ERR 30:PGM MEMORY FAILURE

After command to change user program memory (in buffer box), the data read back
did not agree with the data written. (1) Use RESET ICE to attempt recovery. (2)
EXIT and run the confidence test.

ERR 31:DATA MEMORY FAILURE

After command that changed external data memory, data read back did not agree
^ with data written. (1) Use RESET ICE to attempt recovery. (2) Check user system

for memory operation.

• ERR 38:CONTROL MEMORY FAILURE

During hardware reset, data read back from controller memory did not agree with
data written. (1) EXIT and invoke the emulator again. (2) Run the confidence test.

ERR 39:FIRMWARE CHECKSUM ERR

During a load of downloadable firmware (at invocation of the emulator or after
RESET ICE), a checksum error was encountered. Possibly the file ICE51.0VS is
missing or damaged on the emulator software diskette. (1) EXIT and invoke the
emulator again. (2) Substitute a fresh software diskette. (3) Run the confidence test.

ERR 40:NO USER CLOCK

No clock signal is present at the emulator plug. (1) If plug is connected to the user
system, ensure that plug is installed correctly and that correct crystal is present; if
the plug is connected to the Crystal Power accessory (CPA), ensure that plug is
installed correctly. (2) Use RESET ICE to attempt recovery. (3) Check the user
hardware. (4) Run the confidence test.

ERR 41:NO USER VCC

No power is present at the emulator plug. (1) If the plug is connected to the user
system, ensure that plug is installed correctly and that power is present; if the plug
is connected to the Crystal Power Accessory (CPA), ensure that plug is installed
correctly. (2) Use RESET ICE to attempt recovery. (3) Check the user hardware. (4)
Run the confidence test.

ERR 43:PROCESSOR NOT RUNNING

The EA/ pin is inactive although no emulator program memory is mapped to the
first 4K block, or the RESET pin is being held high while a command is being
processed (i.e., not in emulation and no prompt is displayed). (1) Check the user
system operation of these two pins. (2) Use RESET ICE to attempt recovery. (3) Run
the confidence test.

ERR 51:BANK SWITCHING HUNG

The emulator has lost synchronization between the emulator hardware and the
S051 processor. (1) Use RESET ICE to attempt recovery. (2) EXIT and invoke the
emulator again. (3) Check the user system for EA or RESET changing during
command processing. (4) Run the confidence test.

ERR 52:UNWRITEABLE MEMORY

The user attempted to write to external program memory (not supported by the
8051). The emulator can write only to the 8K of emulator memory as mapped (using
ASM, CBYTE, or LOAD commands). Check the address of the code memory you
are trying to write.

B-3

Appendix B ICE-51

ERR 80:SYNTAX ERROR

The token flagged by a #-sign in the previous line is not allowed in this command
context. The command is ignored. (1) Check command syntax and enter command
again.

ERR 81:INVALID TOKEN

The token flagged by a #-sign in the previous line is not properly formed, or is
inappropriate for the command context; for example, the entry CBYTE 300 when ^
SUFFIX = Y (binary).

ERR 83:RANGE ERROR H
The value entered is not appropriate in the current context, or lies outside the range
permitted for the specified memory or register type.

ERR 84:PARTITION BOUNDS ERROR

Incorrect values have been used to define a memory partition. This error can result
when the value entered for the left bound exceeds that for the right bound, or when
either value is out of range in the current context.

ERR 85:ITEM ALREADY EXISTS

The previous DEFINE command referred either to a symbol already in the user or
system symbol table, or to a macro already in the macro definition table.

ERR 86:ITEM DOES NOT EXIST

The symbol or macro referenced in the previous command is not defined. (1) For a
symbol, check version of code loaded, or define the symbol in the current session. (2)
For a macro, define or INCLUDE the macro definition in the current session.

ERR 88:MACRO PARAMETER ERROR

A macro call contained more than ten actual parameters, or a parameter contained
too many characters. (1) Check the definition of the macro.

ERR 89:MISSING CR-LF IN FILE

The current INCLUDE file does not end with a carriage return/linefeed. (1) EXIT
and use your editor to correct the file.

ERR 8E:TRACE FRAME EMPTY

A trace reference (e.g., FRAME ADDR) has been used in an expression, but either
no trace has been collected in the buffer or the buffer pointer is at NEWEST. (1)
Check the contents of the trace buffer (PRINT command), (2) Move the pointer to
the desired frame (MOVE command).

ERR 8F:N0N-NULL STRING NEEDED

A null string (apostrophes with no enclosed characters) was used where at least one
character is required, such as DBYTE 1 = ' '.

ERR 90:MEMORY OVERFLOW

The emulator workspace exceeded the amount allocated to it. The workspace
contains the user symbol table and space for expansion of macros prior to their
execution. The command that produced the overflow is aborted, but the memory
already written remains as written. (1) To reclaim workspace, remove some user
symbols.

B-4

■

ICE-51 Appendix B

ERR 92:COMMAND TOO LONG

The command exceeds the capacity of the emulator's command buffer. Possibly
caused by too many operators. (1) Break the command or expression into several
smaller units.

ERR 94:NON-GHANGEABLE ITEM

The command attempted to change a read-only value such as PPC or BUFFER-
.SIZE.

ERR 95:INVALID OBJECT FILE

The hexadecimal object file referenced in a LOAD command is not written in the
proper format. Perhaps it is a text file rather than a hexadecimal object file. (1)
Select another file for loading. (2) EXIT and verify file type.

ERR 99:EXCESSIVE ITERATED DATA

The number of data items to be repeated in memory exceeds the buffer size for
iterated data (128 bytes). Example: CBYTE 30 TO lOOOH = KBYTE 0 TO 256T.

ERR 9D:LINE TOO LONG

The input line exceeds 120 characters. (1) Use continuation lines (ampersand at end
of input line to identify intermediate carriage return) to divide the command line
into several input lines. (2) Break command into two or more shorter commands.

ERR A4:MACRO FILE FULL

The temporary file MAC.TMP has used all the available space on the diskette
specified at invocation as the WORKFILE diskette. (1) Save and remove macro
definitions to make room for more, using the iPUT and REMOVE MACRO
commands.

ERR A9:MAP CONTENTS CHANGED

Data read back from the map does not agree with data previously written.
Something has caused the hardware version of the map to change since the last
map command from the console. (1) Set the map again, then display the setting
(MAP Command). (2) Run the confidence test.

ERR B3:0FFSET TOO LARGE

An address in an 8051 instruction (for ASM or as a mnemonic constant) results in a
relative offset that is larger than 8 bits. (1) Check the relative offset; you may need a
different instruction type.

ERR B7:PARTITION NOT ALLOWED

Command specified a range of values for a match condition in a GO command, GR
command, or TR command. Partitions for match conditions are allowed only in the
BR and QR commands.

ERR BBiASSEMBLY IMPOSSIBLE

A mnemonic instruction in an ASM command or mnemonic constant has been

specified incorrectly. (1) Check the correct instruction format and enter the
instruction again.

ERR B9:NO HELP AVAILABLE

No HELP message is available for the item requested. (1) Type HELP with no
modifier to obtain a menu of available HELP items.

B-5

Appendix B ICE-51

ERR BB:ILLEGAL MAP BOUNDARY.

The map boundary in the previous MAP command does not fall on a 4K boundary.
Map blocks must begin at multiples of lOOOH (4K).

ERR BC:SYSTEM SYMBOL ERROR

Invalid operation on system symbol table, such as attempting to change the value
of a system symbol, or using a multiple reference (e.g., .PO.Pl) involving system
symbols.

ERR BD:INVALID REG BANK NUMBER

The command attempted to set the register bank select (RBS) to a value other than
0, 1, 2, or 3.

WARN CO;EXCESSIVE DATA

The command attempted to enter data into a partition of memory too small for the
number of data items specified. For instance, a command may attempt to load 50
bytes into a partition only 40 bytes long; in this case, the first 40 bytes are loaded
correctly but the last 10 b5d;es of data are ignored.

WARN C2:HARWARE MISSING

The device with the expected device code (displayed on the line previous to this
error) did not respond to initialization. (1) Check that the controller board has been
correctly set to device code 32H and that all boards are correctly installed (refer to
appendix A for details).

WARN C3:MULTIPLE HARDWARE

Two or more emulators are installed with the same device codes. (1) Check
installation and device code setting so that only one ICE-51 emulator (device code
32H) can respond to initialization.

WARN C4:EXTRA FRAMES

During trace display in INSTRUCTION mode, the system detected extra frames
after the end of the instruction. The extra frames cannot be assigned to any
instruction. Probable cause is that the trace register setting qualified trace
collection so as to omit some LOCATION frames.

WARN C9:VERSI0NS DO NOT MATCH

Version numbers of software and downloadable firmware are not correct. (1) Verify
that files ICE51 and ICE51.0VS are present on software diskette. (2) Substitute a
fresh software diskette.

WARN CA:PPC/OPCODE NOT VALID

In updating trace information after emulation, up to 16 of the newest frames are
searched for a LOC frame to refresh the values of PPC and OPCODE. Warning CA
occurs if a LOC frame is not found in those 16 frames or if no trace was collected.

Consequently, PPC and OPCODE will contain invalid data.

WARN OBTRUNCATED TO 8 BITS

Warning CB occurs if the user specifies an OPCODE, VALUE, or port value in a
match condition, or an expression in a mnemonic instruction to be assembled, that
is greater than 8 bits. The value is truncated to the low 8 bits, the warning is issued,
and processing continues.

B-6

ICE-51 Appendix B

WARN CC:UNEXPECTED TRACE

Warn CC occurs if, during trace update after breaking emulation or during trace
display, code memory does not match the data collected in trace.

WARN CDiTRUNCATED TO 11 BITS

Warning CD occurs if the user specifies an address in an AC ALL or AJMP
instruction for assembly that is outside the current 2K block. The value is truncated
to 11 hits, the warning is displayed, and processing continues.

ERR E7:ILLEGAL FILENAME

0 The command specified a filename that does not conform to ISIS-II format
specifications. (Same as ISIS-II error 4.) (1) Check the ISIS-II User's Guide for
proper filename format.

— ERR E8:ILLEGAL DEVICE

The command contained a reference to an ISIS-II device, hut the reference is illegal
or unrecognizable. (Same as ISIS-II error 5.) (1) Check the ISIS-II User's Guide for
proper device names.

ERR E9:FILE OPEN FOR INPUT

Command attempted to write data to a file opened for input (read-only) operations.
(Same as ISIS-II error 6.) (1) Select another file for writing. (2) Close file and reopen.

ERR EFiFILE ALREADY OPEN

Command attempted to open a file that is already open. (Same as ISIS-II error 12.)

ERR FO:NO SUCH FILE

Command specified file that does not exist on the designated diskette. (Same as
ISIS-II error 13.) (1) Verify the drive number and filename. (2) Check to see that the
correct diskette is inserted in the drive.

ERR F1:WRITE-PROTECTED FILE

The command attempted to open a write-protected file for write access. (Same as
ISIS-II error 14.) (1) Select another file. (2) EXIT and remove write protection from
the target file (refer to ISIS-II manual for details).

ERR F3:CHECKSUM ERROR

A checksum error in a hexadecimal object file was encountered during loading.
(Same as ISIS-II error 16.) (1) Select another file. (2) EXIT and create a correct
object file.

ERR F6:DISKETTE FILE REQUIRED

The command specified a device other than a diskette file, but the operation
requires a diskette file. (Same as ISIS-II error 19.)

ERR F9:ILLEGAL ACCESS

Command attempted to open a read-only device for write access (e.g., :CI: as a LIST
device), or attempted to open a write-only device for read access (e.g., :LP: in LOAD
command). (Same as ISIS-II error 22.) (1) Check command syntax for list of
appropriate devices.

ERR FA:NO FILE NAME

The command references a diskette device, but omitted the filename, for example:
LOAD iLFl:. (Same as ISIS-II error 23.)

B-7

Appendix B ICE-51

ERR FD:"DONE" TIMED OUT

ERR FE:"ACKNOWLEDGE" TIMED OUT

Errors FD and FE indicate the emulator was unable to complete a requested
operation. (1) Check hardware installation. (2) Use RESET ICE to attempt
recovery. (3) EXIT and invoke emulator again. (4) Run the confidence test.

ERR FF:NULL FILE EXTENSION

The command referenced a file terminated by a period, but the implied extension is
missing. (1) Omit the period or include the exte:
Guide for details on filenames and extensions).
missing. (1) Omit the period or include the extension (refer to the ISIS-II User's ^

B-8

APPENDIX C

SERVICE AND REPAIR ASSISTANCE

United States Customers can obtain service and repair assistance by contacting
the Intel Product Service Hotline in Phoenix, Arizona. Customers outside the
United States should contact their sales source (Intel Sales Office or Authorized
Distributor) for service information and repair assistance.

Before calling the Product Service Hotline, you should have the following
information available:

a.

b.

c.

Date you received the product.

Complete part number of the product (including dash number). On boards, this
number is usually silk-screened onto the board. On other MCSD products, it is
usually stamped on a label.

Serial number of product. On boards, this number is usually stamped on the
board. On other MCSD products, the serial number is usually stamped on a
label.

d. Shipping and billing addresses.

e. If your Intel product warranty has expired, you must provide a purchase order
number for billing purposes.

f. If you have an extended warranty agreement, be sure to advise the Hotline
personnel of this agreement.

Use the following numbers for contacting the Intel Product Service Hotline:

TELEPHONE:

All U.S. locations, except Alaska, Arizona, and Hawaii:

(800) 528-0595

All other locations: (602) 869-4600

TWX NUMBER:

910 - 951 - 1330

Always contact the Product Service Hotline before returning a product to Intel for
repair. You will be given a repair authorization number, shipping instructions, and
other important information which will help Intel provide you with fast, efficient
service. If you are returning the product because of damage sustained during
shipment or if the product is out of warranty, a purchase order is required before
Intel can initiate the repair.

In preparing the product for shipment to the Repair Center, use the original factory
packing material, if possible. If this material is not available, wrap the product in a
cushioning material such as Air Cap TH - 240, manufactured by the Sealed Air
Corporation, Hawthorne, N.J. Then enclose in a heavy duty corrugated shipping
carton, and label "FRAGILE" to ensure careful handling. Ship only to the address
specified by Product Service Hotline personnel.

C-l/C-2

■#.

APPENDIX D

HARDWARE SPECIFICATIONS

This appendix contains specifications and other information regarding the
emulator hardware: environmental and power requirements, user plug character
istics, synchronization line characteristics, and buffer box indicator lights.

Environmental and Power Requirements

The power for the emulator is drawn from the development system. The amounts at
the backplane are:

5V

12V

-10V

+5%

±5%

±5%

-1%

max

13.2A

0.1A

0.05A

typical
8. OA

0.05A

0.01A

The emulator requires the following atmospheric environment:

• Buffer box and cables operating temperature 0 to 56 degrees C.

• Intellec resident boards operating temperature 0 to 55 degrees C.

• Operating humidity 0 to 85% RH.

• Storage temperature -65 to 85 degrees C.

• Storage humidity 0 to 85% RH

User Plug Characteristics

Sixteen of the user emulator plug pins are connected directly to the 8051E emulator
chip. These user emulator pins are distinguishable from the corresponding 8051
pins only by the presence of an 8pf load attributable to the connections within the
user emulator plug. Twenty four of the port pins (port 2, 1, and 0 are connected to
actual 8051E processor pins, but have additional loading contributed by the cable
to the Buffer Box and the input of the trace buffers. This ammmts to a worst case
additional load of 50 microamps and 25pf which is a three fold improvement over
most previous emulators' 150 microamp to 250 microamp trace buffer loading.

Timing is exactly that of the 8051 (the 8051E is essentially an 8051 chip) for all
pins.

Emulation does not break if user Vcc is absent or if the user clock stops; however,
an error message is presented when a break occurs afterward. Thus it is possible to
emulate the 8051 power low reset. Note however that the Vcc missing warning is
issued when emulation breaks. The Vcc missing warning may be issued without
the 8051 resetting itself or vice versa, due to the difference in threshold levels and
the particular user system configuration.

Sync Lines Characteristics

Sync lines SYO and SYl are accessible at the buffer box. SYO controls or reflects
real-time emulation; SYl controls or reflects trace collection.

SYO/SY1 output drive is a TTL open collector with an internal 3.3k pull-up resistor.
Low level sink capability is 20 mA. Do not actively drive the SYO/SY 1 lines high
when output is enabled because of possible conflicts.

D-1

Appendix D ICE-51

SYO/SYl logic level is high (TRUE or 1) when the voltage is between 2.0V and Vec.
It is low (FALSE or 0) when the voltage is between ground and 0.8V.

Critical timing delay factors for SYO and SYl input/output appear in table D-1.

Buffer Box Indicator Lights

Buffer box lights indicate emulator status as described in table D-2.

Table D-1. Sync Lines Delay Factors

Condition

Enabied Period Deiay (Max/Min)

OUTPUT From emulation termination until SYO goes low.

From emulation initiation until SYO goes high.

From GO command entry until SYO output goes
high (with SYO Input enabled).

From trace termination until SY1 goes low.

From trace Initiation until SY1 goes high.

1 cycle max.

1 cycle max.

0.5 sec min.

1 cycle max.

1 cycle max.

INPUT, LEVEL
AND LATCHED

From SYO going low until emulation terminates.

From SYO going high until emulation Inltlatles.

From SY1 going low until trace terminates.

From SY1 going high until trace initiates.

4 cycles max.

200 fjsec max.

1 cycle max.

1 cycle max.

INPUT, LEVEL
ONLY

SYO low hold time

SYO high hold time (level-sensitive)

4 cycles mIn.

200 fJsec mIn.

INPUT,
LATCHED ONLY

From SYO or SY1 Input valid until ALE signal
signal positive edge.

SYO or SY1 low hold time.

500 nsec max.

30 nsec mIn.

Table D-2. Buffer Box Indicator Lights

Lights On Emuiator Status User Action

Yellow Interrogate Mode; no com
mand In progress.

Enter any command.

None Command in progress. To abort command, press ESC
key.

Green and Yellow Emulation in progress. To abort emulation, press ESC
key.

Green GO Command entered while
SYO IN enabled and SYO has

never been high; waiting for
SYO to go high so emulation
can begin.

To abort command, press ESC
key.

Red and Yellow Hardware error, recovery has
occurred. The red-yellow
combination occurs

momentarily during
RESET ICE.

Enter any command.

Red, or Red and Green, or
All three

Hardware error, no recovery
has occurred.

Try ESC, then RESET ICE, or
reset development system.

D-2

APPENDIX E

^ ̂msm OPERATING HINTS AND LIMITATIONS

The following shortcomings do not seriously impede usage of this product but are
nonetheless worth notice:

• Port 3 is not traced.
pi'

• Symbols are not typed (RAM vs ROM). There is no provision in the absolute
hex object file format for type information, and so types are not passed from

gh.. the assembler and cannot be saved in the object file. As a result symbols from
the two memory spaces overlap, and so symbolic disassembly and evaluation
may produce inappropriate results.

• Internal data memory accesses are not available for break and trace.

• Map settings must agree with the EA/ pin or results will be unpredictable, (e.g..
If EA/ is low, then the map must not contain a block at zero and vice versa.)

• The RESET pin should only be allowed to be active while in emulation, or else
an error occurs.

• Ports are changed by the 8051 after the opcode fetch following an instruction to
change a port. Therefore, with trace displayed in INSTRUCTIONS mode the
port will appear to change on the second instruction following a port change.
Also if a break occurs between the port change instruction and its appearance
in trace, and more trace is then collected with no user change in PC the
composite trace will reflect the change earlier than on an uninterrupted trace.
This is because of the extra time spent in interrogation mode between the port
change instruction and the second series of trace.

• Qualified trace or anytime trace is starting while emulation is in progress will
start trace the frame after the qualifying event, (e.g., TR = LOC IS XXXXH will
collect opcodes.) When the 8051 speed decreases to below approximately 3 mHz,
qualified trace will capture the qualifying frame as well as the one frame after
it.

• At power up, the 8051 processor will execute random instructions until the
emulator software is invoked. In some applications this can be troublesome.
For such applications, power and clock should not be applied to the user
emulator plug from the prototype system until the emulator has been invoked.
After doing so, the RESET ICE command must be issued to permit the
emulator to complete its initialization.

• The CAUSE command or reference sometimes includes both BRO and BRl

when only one breakpoint matched and caused the break in emulation. This
situation can occur when the two breakpoints could match within five
addresses of each other, or when either is set to a location that is within the
first four addresses in a block that starts on an even multiple of 4K (e.g., 0 to 3,
2000H to 2003H, 4000H to 4003H). Trace collection and breakpoint function are
not affected.

• The XADDR field in trace can contain an incorrect external opcode (not the one
actually executed). The external address written is always valid, but the data
read back for trace collection may differ depending on user hardware. Program
execution by the emulation processor is not affected.

• During RESET ICE, the 8051 executes a few random instructions.

• If an interrupt occurs at the same time as a break, trace collection can be altered.
If trace is in AFTER or qualify mode, four additional frames may be added to
the end of the trace buffer, depending on the exact interrupt timing within the
instruction cycle. This will exclude the first four frames that should have been
collected.

E-1

Appendix E

Limitations

• Any CBYTE read in external memory (unmapped memory) will leave PO
floating and disturbs P2 as does any MOVC instruction executed by an 8051.

• On-chip timers which are running at the time of break or step will receive one
extra count for every break.

UiCaAiM/ 0'-^(h Cf^ Y~'2S€x\jSd ^
Ic^CaJl

. TXji (mIUa UMAjhu^

'^^cXl jptiw^P-<jvi (oc^—
(oV) CTV (a/^AQJ

E-2

APPENDIX F

REFERENCE SCHEMATICS

This appendix contains the following schematic drawings, for user reference:

TITLE NUMBER

Interconnect Diagram (2 sheets) 162028

B8 Controller Schematic (7 sheets) 162407

Trace Board Schematic (6 sheets) 162379

B9 Memory/Logic Schematic (6 sheets) 162000

User Plug Schematic (1 sheet) 162018

Crystal Power Accessory Schematic (1 sheet) 162009

NOTE

The documents in this appendix are for general reference only.

F-l/F-2

ICE-51 Appendix F

c > &>

^'M^OOOk-

SI

ifQLosNNOD Auvnixnv ivna

sraiivivi oaniaiNi

"1 5 f i

Interconnect Diagram (Sheet 1 of 2)

S .

I
l§

ill

K-o^S

iii
2^

B

F-3

A
p
p
e
n
d
i
x
 F

I
C
E
-
5
1

?
g
.

t
v

B

?
o
 .

a
z

s
s

1
?

i§

ii
? '
B i
f

s
-

st
-

1
 =

?

i

T

I
n
t
e
r
c
o
n
n
e
c
t
 D
i
a
g
r
a
m
 (
S
h
e
e
t
 2
 o
f
 2
)

i

B
L

r

F
-
4

ICE-51 Appendix F

■#.

Slil!!
B

Li

as

^,n<n0«}3a^ !Q
^ tor z iiiS S" S 5 —

- 10 '

+ +g- ^

Ut

r. >«

—!<

ttntn

ihfl
TTTTTTir

ttttt11 |i

g w«n

3®
dN

Q >X'

WTTTTlf

1 V T m T

B8 Controller Schematic (Sheet 1 of 7)

[11 -

::§
!n

M? -

- ̂ a|^ ^ r- <t

F-5

Appendix F ICE-51

n

59Sj<I
,n ̂

<1 4 <

aaap pRP
fO cD ̂ ̂ cQ CD 4}

a'a'a'aag

|(t|ul|l-|3|>|0| fitlxN

SsggSiSSB ^
aaaa

9 ay

|0

<n •.!• iP
< < < < <

cO in <<i <
fc J) 5 r® « ̂

(Oj3 ®

SS"' '
N 5! Q ̂ v9 i

~T i T

B8 Controller Schematic (Sheet 2 of 7)

F-6

ICE-51 Appendix F

— I
f"!

m m cvi ^ o nt
"'caaritaL

S S ^ B S B a d

i i i i

—<p

Sib

g 515. J^5g5i

tfl®
33

< <0 o ^ g 3 ig
'tYi/ffvii

^ ̂ ^
N N N

SI i li i

it

S-

Si

t^> «B^• ■^^P^^ — NO

ii

;j in o N _ pj n>

|j|>l?l fflMlil I2I
n){s4N NfJ^T: ^
yaa aaas s

g-^ ^utjo©
d<< g

s s

aa!3E]3g]gElSS
rJNHioNtO^tJ^rJ
aaaasasssa

T

ill I ?
® 8 sk iO

Islllsgs

iT

iT

SlSiSSSSSi
N M M N nI (0 ^

B8 Controller Schematic (Sheet 3 of 7)

F-7

A
p
p
e
n
d
i
x
 F

I
C
E
-
5
1

o
\
o

s

s

ai
§
 s s Sg^

g
s
S
S
S
S
S
E

^
 S
 .8 §

D
O
 U

I/)

N
 (
O

ifl
<
<
<
<
-
<

(
D
r
'
*
s
i
i
'
'
^
r
t
*
c
*
j
 —

t
O
e
J

Cvi

i
 IsWxHh|»I>I

g
g
s
S
S
a
S
S
S

E
E
E
E
E
e
1
0
M

l5|giaiaKfel9lil

I
j
S
S
I
S
i
S
S
S
f

§
5
S
a
S
2
a
s

■■<»

B
8 C

o
n

tro
lle

r S
chem

atic (S
heet 4 o

f 7)

F
-8

ICE-51 Appendix F

0999< < ̂ <

l>- IP (X)

r iD HlC -

Q N ̂ ̂
"""a

a

^ to § !- !i!

iaiH>'bl?l>l

5 < < < < <

Q. S ̂ in jp ift S

?SS2sS Si

Ss«e 9b! = f
5 <t < < < <

5 - N in
* a Of a

a 0

irt t- lO

t H} (M oQ$^ «

i '
^ <s

l<nklQ|g|

.T CO

s

V,®

§
@

10

a
Of

:rfd

0^ d

3

sS
1 ddin

8 otSia S

S S! C
'tlipiil

dM

?5

id
S S 05:8 5 3
!i m
8t» ,j)ir»5j-(rcJ-©
!<<<<<<<<
r- - CO m ■«} p. 19 in

ss

lAjf"lCO

w 2

0^0 o;
tyi

L|i. c

gCT
a!^

9

N m ^ r- ifi »p

illlllll

liiiiiisisiii^isi 3 't
a 2

"1 T =

B8 Controller Schematic (Sheet 5 of 7)

F-9

A
p
p
e
n
d
i
x
 F

I
C
E
-
5
1

O
r

K
t

^
 §
5
.
3

a
 i
o

s %

§l&

m
 eo

O

t
o

itt
o

o

o

o

f
O
v

>0 K
 9
 N

S
l
H
i
 I
S
i
 -
m

^
 M ̂

 ̂

s
o
 ̂
 o
 Cl ̂

B
8
 C
o
n
t
r
o
l
l
e
r
 S
c
h
e
m
a
t
i
c
 (
S
h
e
e
t
 6
 o
f
 7
)

F
-
1
0

ICE-51 Appendix F

i5N

H^iiiii SB
i-iQ

s 9g|iii
Jf^^rNcO^j-UlvS

UeO < U

tfl^ — Qffir^I
Cjl c !! i 0 V i~c

< <0 CJ >U

8&^S95S^o

S ̂2S 1^22^5

0^ . <0 ̂ s5 ^1 et ̂ irijid

El isiaKfeisigfeisi 1 i] i 0 0 @ lilll
M g ^ I ^

I" S < S S 5 Bg

i'"i>-bi!si m i>i?i^i'^i B
a§3a S

S sagsasga Stfk^g 5 ZSi'D^D
^ <<<< <

B8 Controller Schematic (Sheet 7 of 7)

F-11

Appendix F ICE-51

!§i

*
«

in CO
CO r

■t 00 fs

-

in
r-

> > O Q
in in z 2
-I- «a (9

:: CO

0> r-
in 5 s

h- S o; rt>

tn evi a
«n 2 - N

vt£§KL OC lC° (j

S m ! ells

m

®.s§
IP

.illU O 2g

a -

UI 0) (OUJ
iQ UJ Sj 5

i
a Sgg
i'H
" „(O J -J "
lU <t <t #

^ oi Ifl

"1 = T = r

Trace Board Schematic (Sheet 1 of 6)

w X

£-

F-12

ICE-51 Appendix F

s\

3
2

S

— Ni

aP s
S f' 3

~ U u2 uHi.
?

± lO

— IP

lO ̂

(OO
OQ oo

*!• «<l N -
1 r 11
2 2 S 2

Ss

\
H- N

2d

•55s
tWtl'W
^ ̂ -a

(0^ d

S
m

_ o

3

2 S

S

® R

^SgSsS

>55J?55a

<dOvj5S5fc^
C-Iml

25.
«HHi'

.^SiEclSEu
g jn

Si 4:^ O S

3

Ssiii-
Q SOQ _

ssss^
(0 lf> CO «

3 4
- ̂M — V

2 §§
ifi *

9

e 2

§ i Ss

s

< 4! „ -
— lf>

Q 0 -

M
p
sc

5^4
t

g

3 itn
55

3t io"^

S

-i s
2 gS S
5 s
a

5 - o

s

S Sfl
2

^^SSSo6

S:

"HHf

flti rlri^lPtri^i^lrlclCJflcjCJCJ fvlOOOoOOUUcJOUCJOOtJO ̂
2 oD o
s-s

JUUUOUU (-
• — -i tw lU rtJ »«

^ ̂ T ̂<s<8-«4^>a4a<f' ' ' -'

4

)oi

Trace Board Schematic (Sheet 2 of 6)

F-13

A
p
p
e
n
d
i
x
 F

I
C
E
-
5
1

0
 0
 0

2o
 0
0
 0

a
o
O
c

KffiSJffi
0
0
O
5

q
Q
O
D

«
•

^
 ̂

9SS a§|s
^
3
9
o
d

04-

S
 I
 §
 a
 §
i
 ?

c
S
g
S

s

K! c
j
S
o
 o
 O'f U

S
d
y
o
o
O
d
d
^

C'S'
^

~ §1

6* J
 IP ̂

-
J
S

5
o
3
S
_

O
 Q
 3

U
 U
 o
u

1
 =

T

T
r
a
c
e
 B
o
a
r
d
 S
c
h
e
m
a
t
i
c
 (
S
h
e
e
t
 3
 o
f
 6
)

F
-
1
4

ICE-51 Appendix F

« *0 «& vA «8 <e

- "C-^

o oO o ̂SSSS§S®5SSS?j5S3

isSsSSSSSSsi
SI=M13*I5|

-li a ifi O 5 ? ^

-SiilMiliili
in rr to CJ

^ ̂ ̂ ̂ ̂

3 ̂ i O ̂

^ ̂ ̂ ^

_®L

(O il 51 $
bOQO c< N e^

£ d)

cf)COf*>fOfO «o<ncn

1 V

Trace Board Schematic (Sheet 4 of 6)

F-15

A
p
p
e
n
d
i
x
 F

I
C
E
-
5
1

-
 "
A

O
o
O
O
O
Q
O
 a
P
o
o
O
o
O
;
?

ff> g
 5;

s
s
s
s
s

+
 a
y

S
S
S
!

I
 "-
v
v
N
c
:
 ■

J
U
 cj o

a
 a
c
j
 u
c
j
 a
 o
o
 u
O

a
o
o
u
o
o
y
v

■
a

>
5

>
A

<
a

-s«
<

a
>

a

6i

tfl <
 lO

 C«

S
§53!S

2S
S

iS
^

 iP o
-
 S?

IS

<

!5sSs3$S3§Sc5S'='

$ o !n #
«

n
jo

-^
(P

ip

'^
in

 —

«M c«N
 ^

lO
 lO

 d) A
M

 r«> >9 1*1
ri«fM

 K
 c; K

(O
 en cn cn

m
«

)W
w

jD

|<C

i!g
o

,n c' —
 S

iii§
,n ^lO

 in
o

o
a

q

\
 ̂

T
-

T
ra

ce
 B

o
a

rd
 S

chem
atic (S

heet 5 o
f 6)

F
-1

6

I
C
E
-
5
1

A
p
p
e
n
d
i
x
 F

|
S
s

2
0

iP.pJil

SsSSSSSfiS
a
t
S
K
S
i
i
S
X
S
S
R

IliiSlili

•eS
m

r
a

l
A
^
-
^
V
A
A
.

f
<
 I

,
 at

(
►

—
vsaH

I'

S ^ £ 1

SSS
fe

2
2

I
si[|]

|f|@
|l)

||IS
i

«o
r;

6

J
 O

S
s

a

<^

£<3

s!^

§
s

- ^ 8
d

l
<

6
^

S§s
?ij

di

^
 !DS

-a

s
F

i^
o

in iP

i
^s

g
o

c^ <c

3 I

:3l_
lif-

5
::

in (Ti
sS»p

-
Z

 <0
CVJ <

(-
iP

 IS
a

I
— iP

3
5

c^<

sJ|
lO tf}

e"
n

 C
^

3

5

d} S
§

=5
O

 cJ ^

S
S

ii
Q

Q
O

 o

g
sS

o
"♦"UJiJ! 2!
o

icn
 cn (i>

\ IK S

's$
!<

:S
sa

S
s

/y

^

-1§£

5
^5

i'-l.

5
 d>

V
"

 P

r-

4
-

■
'^

 n

t'll

^
 rt

S
-S

2

>1
3

!i
?

..i
■

-

jiliyisisisssssssSiS
ys-!8l8sS5S«.l255:j

g
A

i M
 5Ji

<vi #vi
^

^

s

s

S

W
--

s
in

d

i
^

d)

S
2

d)

IW IM
JV

M
M

N

"I
3

^
3

T
ra

ce
 B

o
a

rd
 S

chem
atic (S

heet 6 o
f 6)

F
-1

7

*1
^

0
0

W <X
)

g
;

3 o o 9C
l
M
*

o c
c
« j
r

3 p c
»
s
r

(
D
o o •
-
h

Q

L
D
A
P
C
/

P
R
A
M
/

5
C
8

S
R
W
R
/

Z
 B
8

M
e
M
W
/

3
 0
6

R
S
T
E
M
/

P
O
W
E
R
 t
 G
R
O
U
N
D

U
X
A
T
O
R

C
H
A
R
T

U
O
M
A
P
/

3
 6
8

S
Y
O
C
 /

5
D
O

U
a
B
.
3
0
.
S
f
e

U
I
9
,
K

A
U
.
 +
5
V

C
5
2

e
a
%
-
2
e
%

C
I
-
C
4

U
9
9
.
4
6
.
4
7
.
5
9
3
5
3
3

0
4
8
4
9

A
U

G
N
D

7
4
L
S
1
I
Z

7
4
t
.
S
l
f
e
l

U
5
3
.
6
6

7
4
L
S
a
4
l

U
Z
-
0
1
7
,
7
5
.
7
6

U
I
B
.
f
e
a
.
6
4

U
S
f
e
.
S
O

u
a
.
v
a
4
f
i
s
*
7

I
 I

I
I

I
0
4
8
.
4
9

7
4
L
S
a
7

U
3
f
e

m
-
p
p
9

S
C
H
E
f
e
U
k
T
I
C
-

B
9

W
E
M
O
R
y
 /
 L
O
G
I
C

I
N
D
I
C
A
T
E
S

I.

e.
 U
J
T
E
R
N
A
L

C
O
N
N
E
C
T
I
O
N
.

2
.

C
A
R
k
C
I
T
A
N
C
e

V
A
L
U
E
S

A
R
E

IN

M
I
C
R
O
F
A
R
A
D
S

.
 R
E
S
I
S
T
A
N
C
E

V
A
L
U
E
S
 A
RE

 I
N
O
H
M
S
,
 I
/4
W

IS
fm

.

M
O
T
E
S
-
U
N
L
E
S
S
 O
TH

ER
WI

SE
 S
PC
QF
ig
)

%L
Bl
,l
i4
^«
4,
«4
fe
9

H
-
T
s
a
n
O
T
r
r
m
s

t
h

D

14

1
®i

 t

\G
ZO
<2
>0

j
 H

—
J

1
e

:
1 m
i
 I

 9
 ̂

S
W
k
R
E

G
A
T
E
S

R
E
F

D
E
S
I
G
N
A
T
O
R

•
d I 0 W
1 0
1

I
C
E
-
5
1

A
p
p
e
n
d
i
x
 F

i
V

2
8
8
2
-
s

!
<
i
S
s

a||4^
a

S S
 S
 i
1
 S
 S! «

S
 S
3
S
8
S
S
8
S

tft
<
A
<
n
<
A
i
n
i
(
>

i
A
i
A
i
(
i

ij3:l"
8
^

5
S

■s-i-
n

im
s

im

m
T

•
 is.

^saaasasS^
gSSg g j j ̂

3i4—
w

O
®

-

5
*
^

X
i

J
J
W

slU
j

is5
S

5
5

m
^
A

/W
-

i'®:

S?'* , £?
l^^■

^A
A

r-

Ji
T

tiT
tf

if^l ^
g

g
fig

?
 j j

1
ttjtn

t
^§1^1

^
g g ^ g'r ^

c
e

c

J
;e

i2

gI|''^''Sl
«iiA

c

i!} lii

I 1

8
 o

5
|||

y
 a

fs

5
55

3
3

5

-5

1
 T

=
T

"

B
9 M

e
m

o
ry/L

o
g

ic S
ch

e
m

a
tic (S

heet 2 o
f 6)

F
-1

9

Appendix F ICE-51

1/

IE

nil
B iS iS S

nil

s si

S si

s si

al§5

K »?

* si

A S

35

^ S|
g g t !:

8?-

!3>

is !

tziSgggggg

nmm

S3-
DW

o X

A-

t 5S
Jt

M

iigiisii s s iiiiiiii

^ A

2 D.

SS 9

o o 5 5 u u u

iiiilHI

£ t\^

III

SSn

§ g 5UlS|:S
«L5

IIIII

5 sss

g§ s 2 i

§gs UU

?5

S S gg

bBiSS^SSoB

oaSoSS<<<g<<<< S

B9 Memory/Logic Schematic (Sheet 3 of 6)

F-20

ICE-51 Appendix F

1

JZL

8 8' 8 i i i i 8

illllliii
SS3SS888

/**N,

E1SE1^BQSE9 |gNI§|g|=k|£kl

it

H? ;:: N « <■ ^s

l^ETsSr
§« ^
K r. ^ _T_

444-1

1 = c? i2 2 hs 2 he h=

8 5

m $
5Si

Is

8 ^H''

"1 » T = ^

B9 Memory/Logic Schematic (Sheet 4 of 6)

it

F-21

Appendix F ICE-51

i 9 88S SS2S
N a w ♦ ▼ ♦ T

''\n

S ii J-

15 J®

15

JS

I III
—wv-||

if III!
iiii'

ImSt

LJ^
S^/VAA

iiWi si Ssssssiss : ;

"I » T i r <

B9 Memory/Logic Schematic (Sheet 5 of 6)

#"

F-22

ICE-51 Appendix F

8 8 3 8 S 8

10033=0 1003310 hkkkHal s|Slal«l«|s?H

TtTaTaTa-

5 i| i
^ < f V O I

i[»| »ft| «»| r-[

® ^lal^lsldakl kl-'l<»l'>lal«l

T lO «9

a S s; a

1 ii T

B9 Memory/Logic Schematic (Sheet 6 of 6)

F-23

Appendix F ICE-51

li
if

' I s S i l g Sl g
Iff j

its I
! iiiiiiiisiiiiiiilililiiiiigidsfiggggii!

Ncn4-tn.0r-«»o:;N<ns!£>^r;«£jif)(3a$$^^j9SOjRg|it!taaE;Sf;

< CH* c<? (tcp <tM> CP dp <tP dp dP
J

$lil5^!$$SSiii$isai5«S86 s

Et!fis8C?25^ = s »«>»«.* a~5 * g s;;^ Rjtgr-^r^ g g{j($ jt s| 818| Stl SI Si\ti

liRUisaa^fflSJ -N«^u»s9r.oo s8a*«a8{8 9^s*s£®

IfSSfifg IsSSiSiSE SsSSSfiSS liunu = - II
ess

■5 T 2 T

User Plug Schematic

F-24

ICE-51 Appendix F

?♦-

i I

S2 2

V
gi^s 31-9 31
ts n n

f|2|=|g|gjtjg| 211\ g|g M

j

1

M

«)
-;;V\ArH I -

I

K:;SS5?B fe K#-

- &

E -

^•-<0»S = ss±2!ecsfia<3«8XII!]it6SftXs;i!IR^ISMR89:

Crystal Power Accessory Schematic

F-25/F-26

m

INDEX

Aborting commands
On entry, 1-7
Emulation, 3-1, 6-2

Loop, 7-4

AGO, 5-8

ADDR, 6-25, 6-26, 6-27

ADDRESS, 6-12

P. Address
Bit, 5-8 thru 5-11

Code, 5-12

Data, 5-2, 5-11

Definition, 1-10, 1-11, 1-12

Matching on, 6-27, 6-28
Register, 5-6

AFTER, 4-5, 6-7, 6-8, 6-14, 6-15

ALE signal, 5-14, 6-9, 6-10, 6-11

ALL, 4-2

AND, 1-13, 6-12, 6-13, 6-17

ASCII, 2-10

ASM command, 5-16, 5-17

ASM-51, 1-1, 5-17

Assembly, 5-16, 5-17
B (register), 5-8
BASE command, 2-10

Bit-addressable memory, 5-8 thru 5-11
Block commands, 7-1 thru 7-6

Boolean expressions in, 7-2
Entering, 7-2
Nesting, 7-6

BR, BRO, BR1, 6-4, 6-13, 6-14, 6-18 thru 6-20

Breakpoint
Disabling, 6-14
Displaying, 6-18
Enabling, 6-14
In GO command, 3-2

Registers, 6-4, 6-18 thru 6-20
Resetting, 6-19, 6-20
Setting, 6-18 thru 6-19
Using a mask as, 3-3
Using partitions with, 6-19

Buffer box, 1-3

BUFFERSIZE command, 6-24

Carriage return
Final, 1-5, 7-2

Intermediate, 1-5, 1-6, 7-2

CAUSE command, 6-23, 6-24

CBYTE

Operator, 1-13, 5-1, 5-15
Commands, 5-15

CHIP, 2-9

Clause, 1-7

Code memory, 5-12 thru 5-17
Commands

Aborting, 1-7
Correcting errors in, 1-6
Elements of, 1-7

Index 1

Entering, 1-5, 1-6
Entry from files, 1-6
Notation, 1-7 thru 1-10

Comments, 1-6

Confidence test

Files, 2-1
Procedure, AS, A6, A8

Continuation lines, 1-6

Controller board, 1-2, 1-3, A-2, A-3 ^
COUNT command, 7-7 thru 7-9

Crystal power accessory, 1-1, 1-3, A-5, A-7
CTRL O, 1-6

CTRL R, 1-6 #
CTRL S, 1-6

CTRL X, 1-6

CYC, 6-25

Cycles, 6-9, 6-10
DASM command, 5-15, 5-16

DATA, 6-25, 6-27

Data memory
On-chip, 5-2 thru 5-5
External, 5-11, 5-12

DBYTE

Operator, 1-13, 5-1
Commands, 5-2 thru 5-4

DEFINE

Symbols, 2-5
Macros, 7-6 thru 7-8

Development system resources, 1-4, 1-5
DIR command, 7-10

DISABLE

EXPANSION, 7-10

SYMBOLIC, 2-7

SYO LATCH, 6-21

SYO OUT, 6-21

SY1 LATCH, 6-21

SY1 OUT, 6-22

Disassembly, 5-15, 5-16
DMUX, 6-25
DPTR, 5-7, 5-8

Dual Auxiliary connector
Kit, 1-3

Installing, A-1, A-2, A-3
EA/ pin, 5-12, 5-14
ELSE, 7-5, 7-6

EM, 7-6

Emulation

Halting, 6-2 thru 6-5 *
Processor, 1-1, 3-1
Real-time, 3-1 thru 3-3

Single-step, 3-3, 3-4 *
Starting, 6-2, 6-3
Timer, 6-23

ENABLE

EXPANSION, 7-10

SYMBOLIC, 2-7

SYO LATCH, 6-20

SYO OUT, 6-21
SY1 LATCH, 6-21

SY1 OUT, 6-22

Index 2

ENDCOUNT, 7-3
ENDIF, 7-5

ENDREPEAT, 7-2, 7-3
Entry

Choice of, 1-8

Definition, 1-7

Optional, 1-8
Repeatable, 1-8
Required, 1-8

ERROR, B-1

Error messages, B-1 thru B-8
ESC key, 1-7, 3-1, 6-2, 7-4

Ir) EVALUATE command, 2-10, 2-11
EXIT command, 2-2

EXPANSION, 7-10

0- Expression
Boolean, 7-12

Definition, 1-12 thru 1-14

Evaluation of, 1-14

Relational, 7-2

External address, 6-10, 6-13, 6-17

EXTIO, 5-8

EXTI1, 5-8

Files

Command entry from, 1-6, 7-11
Copying, 2-1
Loading code from, 2-3
Saving code on, 2-4
Saving macros on, 7-11
Software, 1-4, 2-1

Temporary, 2-2, 7-7
FOREVER, 3-2, 4-4, 6-4, 6-7, 6-13, 6-14, 6-20, 6-21
FRAME, 4-1, 4-3, 6-47, 6-48, 6-50

Frames

In processor data, 6-9
In trace, 4-1

Types, 6-10 thru 6-12
FRAME mode

Displays, 4-1, 6-25 thru 6-29
Headers, 6-26

Setting, 6-25
FROM, 3-1, 6-2

GO

Command, 3-1, 6-2, 6-13 thru 6-18

Register, 6-4, 6-5, 6-13 thru 6-18
With external signals, 6-20

GR

Commands, 6-13 thru 6-18

Displaying 6-14
Format, 6-14, 6-15

W' With external signals, 6-21
H (radix), 1-11, 2-10
Hardware

Components, 1-2, 1-3
Integration with software, 1-1, 1-2
Required, A-1
Specifications, D-1 thru D-2

HELP command, 2-2, 2-3

HTIMER. 6-23^
ICE, 2-9

Index 3

ICE51 Invocation, 2-1, 2-2 C \
IE, 5-8

IF command, 7-5, 7-6

INCLUDE command, 7-11

I IPO, 5-8

IIP1, 5-8

Instructions, 6-9

INSTRUCTION mode, 4-1, 4-3

Headers, 4-3

Reconstruction in, 4-4

Setting, 6-25
INTERRUPT command, 5-8

IP, 5-8

K (radix), 1-11
Keyword

Definition, 1-7

Notation, 1-7

Reference, 1-11, 5-7

LATCH, 6-20, 6-21

LENGTH, 1-12

LF (linefeed), 1-6
Lights, indicator, 1-4, D-2
LIST command, 2-8, 2-9

LOAD command, 2-3, 2-4

LOC, 4-3, 6-12

LOCATION, 6-12, 6-15, 6-16

LOCATION frame

Definition, 4-4

In match condition, 6-12, 6-15, 6-16

In trace, 6-24

MACRO, 7-10, 7-11

Macro commands, 7-6 thru 7-11

Defining, 7-6 thru 7-9
Expansion, 7-10, 7-11
Invoking, 7-7 thru 7-10
Loading from file, 7-11
Saving on file, 7-11

MAP commands, 5-13 thru 5-14

Mask

As a breakpoint, 3-3
In match condition, 6-15, 6-16
In TR command, 4-4, 4-5

Match condition

Format, 6-12, 6-13

In breakpoint registers. 6-4, 6-18 thru 6-19
In GO and trace registers, 6-15 thru 6-18
In qualifier registers, 6-7, 6-18 thru 6-19
Operation, 6-9 thru 6-12
Unlimited, 6-12, 6-18, 6-19

Memory
Bit-addressable, 5-8 thru 5-11

Code, 5-12 thru 5-17

Data, 5-2 thru 5-6, 5-11, 5-12

Fetches, 6-9

Register, 5-6 thru 5-8
Types of, 5-1

Menu

Definition, 1-7

In notation, 1-8, 1-9

Index 4

Messages, 1-5, B-1 thru B-8
MOD, 1-13

MOVE command, 4-1, 4-2

NEWEST command, 4-1

NOCODE, 2-3, 2-4

NOSYMBOLS, 2-3, 2-4, 2-5

NOT, 1-14

Numeric constant, 1-11

OBJ, 4-3

® O (radix), 1-11
OLDEST command, 4-1

Opcode
In processor data, 6-10, 6-11

In match condition, 6-12, 6-16

OPCODE, 6-10, 6-11, 6-12, 6-16, 6-24

Operand
In match condition, 6-12, 6-16

In processor data, 6-10
Operators

Arithmetic, 1-13

Content, 1-13, 5-1

Logical, 1-14
Relational, 1-13

OR, 1-14, 3-2, 4-5, 6-4, 6-7, 6-17, 6-18

ORG, 5-16

ORIF, 7-5, 7-6

OUT, 6-20, 6-21, 6-22

Parameters (in macros), 7-7, 7-8, 7-9
Partition

Adjustment of, 6-19
Definition, 1-13

In match condition, 6-12, 6-13, 6-19

In memory contents command, 5-1, 5-2, 5-3, 5-4, 5-11, 5-12, 5-15
In SAVE command, 2-4

PBYTE

Operator, 1-13, 5-1, 5-11, 5-12
Commands, 5-11, 5-12

PC, 5-8, 5-12

Ports

In match conditions, 6-10, 6-12, 6-17

In register memory, 5-6
In trace, 4-3, 6-27

PPC command, 6-24

PRINT command, 4-2

Program counter commands, 5-12
Prompts, 1-5

PSEN/ signal, 5-14, 6-9, 6-10, 6-11
^ PSW, 5-6, 5-8

PUT command, 7-11

PO, PI, P2, 4-3, 5-6, 6-10, 6-12, 6-13, 6-17, 6-25, 6-27
^ Q (radix), 1-11, 2-10

Qualifier register
Disabling, 6-14
Displaying, 6-18
Enabling, 6-14
In trace register, 6-5, 6-7, 6-8
Operation, 6-7, 6-8
Resetting, 6-19, 6-20
Setting, 6-18, 6-19
Using partitions with, 6-19

Index 5

QR, QRO, QR1. 6-5, 6-7^6-14, 6-18 thru 6-20
Radix

In BASE. 2-10

In numeric constants, 1-11

In SUFFIX, 2-10

RBIT

Operator, 1-13, 5-1, 5-11
Commands, 5-11

RBYTE

Operator, 1-13, 5-1, 5-7 -
Commands, 5-7

Reconstruction (of trace), 4-4
Register ♦

Banks, 5-4, 5-5

Command, 5-8

Memory, 5-6 thru 5-8
REMOVE

Symbols, 2-6
Macros, 7-19

REPEAT command, 7-2, 7-3, 7-4, 7-5

RESET

Breakpoint registers, 6-19, 6-20
CHIP. 2-9

ICE. 2-9

Oualifier registers, 6-19, 6-20
SY, 6-22

RUBCUT, 1-6

RO, R1. 5-4, 5-5, 5-8

R2, R3, R4, R5, R6, R7, 5-4, 5-5
SAVE command, 2-4, 2-5

SECONDS command, 6-23

Single-step emulation
Operation, 3-3, 3-4
Trace of, 4-4

SI NT, 5-8

Software

Components, 1-4
Copying, 2-1
Execution and debug, 1-1

Files on diskette, 1-4, 2-1

Integration with hardware, 1-1, 1-2
SP, 5-5, 5-8
STACK Command, 5-5, 5-6

Stack Pointer, 5-5, 5-8

STEP command, 3-3, 3-4

String
Definition, 1-14, 1-15

In WRITE command, 7-1 -

To change memory, 5-1, 5-3, 5-4
SUBMIT, 1-6

SUFFIX command, 2-10

SY, 6-22

Symbolic
Display of addresses, 2-7, 2-8
Reference, 1-11

Reference commands, 2-5 thru 2-8

Symbols
Multiple, 2-6
System-defined, 2-7, 5-6, 5-9, 5-12
User-Defined, 2-5

Index 6

Sync Lines

Cable assembly, 1-3, A-1, A-9
Commands, 6-20 thru 6-23

Operation, 6-5, 6-8, 6-9
References to, 6-22, 6-23

SYG

Commands, 6-20, 6-21

IN, 6-2, 6-4, 6-5, 6-13
LATCH, 6-20

m OUT, 6-21

References to, 6-22

SY1

Commands, 6-21, 6-22
IN, 6-5, 6-7, 6-8, 6-9, 6-21
LATCH, 6-21

OUT, 6-22

References to. 6-22

^ T (radix), 1-11, 2-10
Testing

Diagnostic, 1-2
Confidence, A-5, A-6, A-8

THEN, 7-15

TILL, 3-2, 4-4, 6-4, 6-5, 6-7, 6-13, 6-14 thru 6-18

Timer

During single-step, 3-4
Emulation, 6-23

TIMER command, 6-23

TIMERO, 5-8

TIMER1, 5-8

TMO, TM1, 5-8

TO (in partition), 1-12
Token

Definition, 1-7

Single-character, 1-10

TOVF, 4-3, 6-25, 6-27

TRACE, 6-25, 6-26

Trace

Board, 1-2, A-1, A-3, A-4

Buffer, 1-3, 4-1

Displaying 4-1 thru 4-4, 6-25 thru 6-29
Display mode, 6-25, 6-26
Overflow, 4-3, 6-25, 6-27

Pointer, 4-1, 6-25

Reference, 1-11, 6-25

Register, 6-5 thru 6-9, 6-13 thru 6-18, 6-21
TR commands, 4-4 thru 4-6, 6-13 thru 6-18, 6-21

Displaying TR, 6-14

• Format, 6-14, 6-15, 6-21
With external signals, 6-21

Trigger modes, 6-7, 6-8, 6-15
TYPE, 6-26

UNTIL, 7-2, 7-3, 7-4, 7-5

USER, 5-13

User-entry

Definition, 1-7

Notation, 1-8

— User publications, 1-5

VALUE, 4-5, 6-10, 6-12, 6-16, 6-17

Index 7

Verification

Of external data memory, 5-12
Of trace, 4-4, 6-27 thru 6-29

VLOCATION, 6-10, 6-12, 6-16, 6-26

WHILE, 7-2, 7-3, 7-4, 7-5

WiTH, 6-4, 6-5, 6-7, 6-8, 6-21, 6-21

WORKFILES (for macros), 2-2, 7-7
WRITE command, 7-1

XADDR, 6-12, 6-13, 6-17, 6-25 ^
XBYTE *

Operator, 1-13, 5-1
Commands, 5-11, 5-12

XOR, 1-14 •
Y (radix), 1-11, 2-10

Index 8

inW
ICE-5V" In-Circuit Emulator

Operating Instructions for ISIS-II Users
9801004-01

REQUEST FOR READER'S COMMENTS

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets
you participate directly in the documentation process.

Please restrict your comments to the usabiiity, accuracy, readability, organization, and completeness of this
document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME DATE.

TITLE

COMPANY NAME/DEPARTMENT

ADDRESS

CITY STATE ZIP CODE.

Please check here if you require a written reply. □

WE'D LIKE YOUR COMMENTS . . .

This documGfit is one of a series describing Intel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of Intel Corporation.

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON.OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 N.E. Elam Young Pkwy.
Mlllsboro, Oregon 97123

VI.C.S.O. Technical Publications

W

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080

Printed In U.S.A.

	2021_12_14_15_26_41
	2021_12_14_15_28_26
	2021_12_14_15_29_20

