
RMXI86™ INSTALLATION GUIDE
FOR ISIS-II USERS

Manual Order Number 9803125-01

Copyright © 1980 Intel Corporation
I Intel Corporation. 3065 Bowers Avenue, Santa Clara. California 95051 I

Additional copies of this manual or other Intel literature may be obtained from :

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Intel Corporation assumes no responsibility for any errors that may appear in this document.
Intel Corporation makes no commitment to update nor to keep current the information
contained in this document. .

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel
Corpora tion. Use , duplication or disclosure is subject to restrictions stated in Intel's software
license, or as defined in ASPR 7-104 .9(a)(9).

No part of this document may be copied or reproduced in any form 01' by any means without
the prior written consent of Intel Corporation.

The following are .trademarks of Intel Corporation and may be used only to describe Intel
products:

BXP
i
ICE
iCS
Insite
Inte l
In television

InteJlec
iSBC
iSR X
Library Man ager
MCS
Megachass is
Micromap

Multibus
Multim odule
PROMPT
Promw are
RMX
UPI
pScope

and the combination of ICE, iCS , iSBC, iSBX, MCS, or RMX and a numerical suffix ,

ii

PREFACE

The RMX/86 Operating System is a software package that provides
a real-time, multitasking environment for Intel iSBC 86/12A
single board computers. This manual provides the information
that you, as a new RMX/86 user, need in order to put together
your first system. It does the following:

• Introduces the Operating System and shows how it is
packaged.

• Defines the hardware and software environment in which
application systems are developed.

• Describes the modifications to hardware needed to
support the RMX/86 Operating System and shows how to
put the various hardware pieces together.

• Explains how to
system. This is
cation system.

install
a tested

and
and

use the
debugged

demonstration
RMX/86 appli-

• Describes the Files Utility System. This system is used
to format RMX/86 disks, create and delete files, and
transfer information between ISIS-II disks and RMX/86
disks.

• Outlines the process of developing an RMX/86-based
application system.

READER LEVEL

This manual assumes that you are familiar with the following:

• The INTELLEC Microcomputer Development System and the
ISIS-II Operating System

• The MCS-86 Macro Assembly Language and/or the PL/M-86
programming language

• Either the ICE-86 In-Circuit Emulator or the iSBC 957A
Interface and Execution Package

• The individual hardware components that make up an
RMX/86 target system

It also assumes that you hav e read the Introduction to the
RMX/86 Operating System.

iii

RELATED PUBLICATIONS

The following manuals provide additional background and ref­
erence information.

Manual

Introduction to the RMX/ 86 Operating System

RMX/86 Configuration Guide for ISIS-II Users

RMX/86 Nucleus, Terminal Handler, and Debugger
Reference Manual

RMX/86 I/O System Reference Manual

RMX/86 Configuration Guide for ISIS-II Users

ISIS-II User's Guide

ICE-8 6 In-circuit Emulator Operating Instructions for
ISIS-II Users

iSBC 957A INTELLEC iSBC 86/12A Interface and
Execution Package User's Guide

iSBC 86/12A Single Board Computer Hardware Reference
Manual

iSC 80 Industrial Chassis Hardware Reference Manual

iSBC 660 System Chassis Hardware Reference Manual

iSBC 204 Fle xible Diskette Controller Hardware
Reference Manuoal

iSBC 206 Disk Controller Hardware Reference Manual

iSBC 032/04 8/0 64 Random Access Memory Boards Hardware
Reference Man ual

iv

Number

9803124

9803126

9803122

9803123

9803126

980030 6

9800714

142849

9803074

980079 9

9800505

9800568

9800567

98004 88

TABLE OF CONTENTS

PAGE

PREFACE iii
Reader Level iii
Related Publications iv

CHAPTER 1
INTRODUCTION TO THE RMX/86 PACKAGE
Inventory 1-1
Recommendations 1-2

CHAPTER 2
THE RMX/86 DEVELOPMENT ENVIRONMENT

(~ General Requirements 2-2
Application-Dependent Requirements 2-3

CHAPTER 3
HARDWARE CONSIDERATIONS
Board Modifications 3-1

iSBC 86/12A Jumper Connections 3-1
Jumper Connections for the iSBC 957A Package 3-1
Jumper Connections for the Terminal Handler & Debugger 3-2
Jumper Connections for the I/O System 3-2

iSBC 204 Jumper Connections 3-2
iSBC 206 Controller Switch Selection 3-3
Memory Board Jumper Connections 3-4

Board Arrangement in the Chassis 3-5
iSBC 86/12A Board Alone 3-5
iSBC 86/12A Board With iSBC 204 Board 3-6
iSBC 86/12A Board with iSBC 206 Boards 3-6
iSBC 86/12A Board with Both iSBC 204 & iSBC 206 Boards 3-6

Cable Connections 3-7

CHAPTER 4
THE DEMONSTRATION SYSTEM
Hardware Requirements 4-1
Loading the Demonstration System 4-2
Using the Demonstration System 4-3

Operating Modes 4-3
Storing Programs 4-3
Variables 4-3
Constants 4-4
Expressions 4-4

Statements and Functions 4-4
Statement and Function Dictionary 4-5
Basic Statements 4-6

LIST 4-6
NEW •.•..•••........•.......•..•............•....••..•••••. 4-7
RUN 4-7

v

TABLE OF CONTENTS (continued)

PAGE
CHAPTER 4
THE DEMONSTRATION SYSTEM
Basic Statements (continued)

PRINT •.........•...•.••.••....•••....•...••••...•.••••••.• 4-7
FOR.•• NEXT ..•...•••••••••••.••••••..••••••••....•.•••.•••• 4-8
GOSUB ..••••••••.......•......••••.•••.•..•••••....•..••••• 4-8
RETURN ••.•.....••••••.•••••.•••••..•...••••..••••••••••••• 4-8
LET 4-9
IF 4-9
GOTO••••••••••••••••..•••••.••..•...•••••••••••••. 4-9
REM•.••.•.•••.••......•••..•••••.•••••••.•••.••..•.• 4-9
INPUT .••••••••...•.....•.•.••••••..••••..••••.....•....••• 4-10
STOP ••••••.••...•..••..•.•.•••.••.•.•••••••••.••..•••••••• 4-10 ,~,

Basi c Funct ions •••••.••.•.•....••••.••••••.•.•••••••.•••••. 4-10
RND •••.....•••••..••••.•••.•..•••.•....••...•••••••.•.••.. 4-10
ABS ...••..••••.••.••.•....•.•••••••••...••.•.•..•....•.••• 4-11
SIZE .•••••..•..••.•••.••••••••••••••.••••••••••..•.••••••• 4-11

RMX/86 Statements and Functions ••••.......•••....•.....•••• 4-11
CRTTASK ••...••.••••••••.••••••••••••••••.•••••••••••...... 4-12
DEL TASK••.••••..•.•••.•••••...•••.•..••••••.••...•.•.• 4-12
SUSTASK .•..••••••••••...••••••.•••••••...•.•••••••••....•• 4-13
RESTASK ...•••••...•••....••••••••••••...•.••.•..•••....••• 4-13
SLEEP ••••••••••...•.•••...•.••••••••••..•.••••••..••••••.. 4-14
GETTKNS•...........•••....••••••••••••......•••••• 4-14
CATALOG•...•.•...•.•••••••••...•••••••.••••••.•••••••• 4-15
LOOKUPO•••••.•••...........•••.•...••••.••••••.....•.•.••• 4-16
UNCATLG •.••.•••.....••.••••••.......•••••••..••••••••••••• 4-17
CR TSEMA•••••........•..•.••••••....••..••••••..•....•.•••• 4-1 7
DELSEMA .•.••.•••....•••....•..••.....•••••••••••.•••.•.•.. 4-18
SNDUNIT •..•••••.•..•••...•..•...•••••••.•••.••...•......•• 4-18
RCVUNIT ...••••.•.•••.....••...•••••........••••.••....•••. 4-19
CRTMBOX.......•••••••.•••••••••••••••..••.•.••••••.••••••• 4-19
DELMBOX•••••••••....••••.••.•...•••.••••••••••..•..••••.•• 4-20
SENDMSG •••.....•......•••.•...••...••••••••..•..••...•.••• 4-20
RECVMSG•.•.•.•..••.••••..••....•••..•••.•••••••••• 4-21
CRTSEGM •......•••..•••••••••..•.....••••••••••....•••..••• 4-22
DELSEGM•••.••.•••••••••••.....••..•••••••.•.••.•.•.••..... 4-22

CHAPTER 5
FILES UTILITY SYSTEM
Funct ions Provided ...••..•••.••.•••••••.....•....•••••••••.• 5-1
Ha rdwa re Requi red••••••..••••..••••...••.•.•..••• 5-1
Execut ing the ut i 1 i ty .•..••.••••••..•.......••...•...••••••• 5- 2

Assembling the Hardware •.•••.....••.....•.•...•••..•..••••• 5-2
Sta rti ng the ut i 1 i ty ••.•••........•..•....•.•.••••••.•..•.. 5-2

Using the Uti 1 i ty Sy stem .•.•....•....••••.....•••••.....••.• 5-3
Error Messages .•••...•••.........••....••.••••••..•.•...... 5-4
Changing Disks ••••••..•••••....•••••••......••...•••.•••••. 5-5

vi

TABLE OF CONTENTS (continued)

PAGE
CHAPTER 5
FILES UTILITY SYSTEM (continued)
Cornmands 5-5

UPCOpy•............. 5-5
DOWN COPY ••• 5-6
DELETE •.................... 5-6
CREATED IR 5-6
DIR 5-7
FORMAT•..•••..................•.....••.......•............• 5-7
EXIT 5-9

CHAPTER 6
THE RMX/86 DEVELOPMENT PROCESS..•.............•..•.•....... . 6-1

APPENDIX A
ORIGINAL JUMPERING OF BOARDS A-l

APPENDIX B
RMX/86 COND I TION CODES B-1

TABLE OF FIGURES

2-1 RMX/86 Example Development Environment 2-1

TABLE OF TABLES

2-1. Memory Requirements 2-3

vii

CHAPTER 1. INTRODUCTION TO THE RMX/86 PACKAGE

f'..

The RMX/86 Operating System is a real-time, multitasking
operating system for iSBC 86/12A single board computers. It
consists of a Nucleus and several optional parts: the Terminal
Handler, the Debugger, and the I/O System. The Nucleus is the
core of the Operating System, coordinating the activities of
the rest of the system. The Terminal Handler provides a ter­
minal interface to the application system. The Dubugger
provides monitoring and debugging capabilities; and the I/O
System adds file and device access capabilities. The software
that you write runs under the supervision of the Nucleus and in
con- junction with one or more of the optional parts.

Physically, the RMX/86 Nucleus and Operating System parts
reside on diskettes in your RMX/86 package and are in the form
of libraries of relocatable code. In order to create an RMX/86
application system, you must use an INTELLEC Development System
to combine this RMX/86 code with your app lication code and
produce object code that executes on a n iSBC 86/12A single
board computer.

INVENTORY

Your shipment of RMX/86 materials includes a number of items,
among which are six manuals and ten diskettes. The manuals are:

• RMX/86 Installation Guide for ISIS-II Users This
manual which you are now reading helps you to make
specific RMX/86-required hardware modifications,
install and run the demonstration system, and use the
RMX/86 file utilities.

• Introduction to the RMX/86 Operating System This
manual introduces you to the RMX/86 product. Read this
manual before any other.

• RMX/86 Nucleus, Terminal Handler, and Debugger Reference
Manual This manual is the primary reference source
for the Nucleus, Terminal Ha ndl e r , and Debug ger.

• RMX/86 I/O System Reference Manual - This manual is the
primary reference source for the I/O System.

• RMX/86 System Programmer's Reference Manual This
manual describes selected features of the Operatinq
System, not covered in the other manuals, which are for
use by system programmers only.

1-1

• RMX/86
manua
system
cation

INTRODUCTION TO THE RMX/86 PACKAGE

Five of the ten diskettes in the RMX/86 package are double­
density diskettes. Each contains libraries, submit files, and
other associated files for the Operating System, the utilities,
or the demonstration system. They are:

• Nucleus diskette

• Terminal Handler and Debugger diskette

• I/O System diskette

• utilities diskette

• Demonstration system diskette

The other five diskettes are single-density versions of the
first five.

RECOM MENDATIO NS

Because of the ever-present possibility of accidents, ma ke at
least one backup copy of each diskette that you are planning to
use. Keep the Intel-supplied diskettes as masters. Use the
copies for system development.

1- 2

CHAPTER 2. THE RMX/86 DEVELOPMENT ENVIRONMENT

The development of an RMX/86-based application system requires
several hardware and software components. Some of these com­
ponents are always required and others are a function of the
particular application system. Figure 2-1 depicts a typical
development hardware environment.

RMX/86
RELEASE

DISKETTES

DISKETTE DRIVES

2
I KEYBOARD I

INTELLEC DEVELOPMENT
SYSTEM WITH ISIS-II
OPERATING SYSTEM

ICE-86

OR

~

iSBC 957A

\ I
\

j'L--
TARGET
SYSTEM
CHASSIS

DISK OR
DISKETTE

DRIVES

PROCESSOR BOARD
(ISBC 86/12A)

MEMORY BOARD(S)
(iSBC 032/048/064)

"y
\

-1
I
I
I
I

____J

TTY OR
CRT

Figure 2-1. RMX/86 Example Development Environment

2-1

THE RMX/86 DEVELOPMENT ENVIRONMENT

Figure 2-1 illustrates the interface between the INTELLEC
Development System, where the software is developed and the
target system, where the application system actually runs. It
also shows some typical devices attached to the target system.
Although it does not depict all of the hardware devices that
can be attached to a target system, it does show some of the
more common ones.

GENERAL REQUIREMENTS

The following items are required in the development of any
RMX/86-based application system.

Development System

• An INTELLEC Development System with CRT, keyboard, at
least two disk drives, and at least 64K of RAM.

• A diskette containing the ISIS-II Operating System.

• An MCS-86 Macro Assembler and/or PLM/-86 compiler, as
well as the MCS-86 Software Development Utili ties, on
diskette.

• Diskettes containing the required Intel-supplied RMX/86
software.

Target System

• An iSBC 86/12A processor board, which is the heart of
the application system.

• A chassis to hold and supply power to the processor
board and any other boards of the system.

• Enough memory to contain the Nucleus and any other
Operating System parts and application jobs.

You configure all of your software with the Development System
and then trans fer it to the target system for execution. You
can use either of the following to transfer code to the target
system.

• The ICE-86 In-Circuit Emulator

• The iSBC 957A Interface and Execution Package

Both of these products transfer code from diskette on the
Development System to RAM on the target system. After you have
tested the code, you can burn it into PROM, and place the PROM
on the target system, eliminating the need for the ICE-86
emulator or the iSBC 957A package to load the code.

2-2

THE RMX/86 DEVELOPMENT ENVIRONMENT

APPLICATION-DEPENDENT REQUIREMENTS

You may have to add additional hardware to your target system,
depending on the type of application you have.

• If your application includes the Terminal Handler or
the Debugger, connect an RS232 protocol terminal to the
serial I/O port of the processor board.

• If your application includes the I/O System, place at
least one controller board in the chassis with the
processor board. The iSBC 204 and 206 boards can be
used. Connect the controllers to their associated disk
drives.

If your application system includes the I/O System, you must
also use the Files utility System to format disks for use in
your target system disk drives. The Files utility System
requires the use of the iSBC 957A package.

Target system memory requirements vary depending on the type of
software included. Table 2-1 lists the memory requirements for
Intel-supplied products. These requirements are divided into
ROM and RAM requirements; however, if you test your system in
RAM first, RAM must be large enough to satisfy all memory
requirements.

Table 2-1. Memory Requirements

ROM (in bytes) RAM (in bytes)

Nucleus 28K 300H

Terminal Handler 3.3K

Debugger 24K

I/O System 50K 16K

Files utility System 192K

The figures shown
RAM requirement,
nections desired.
connections.

in Table 2-1 are estimates. The I/O System
for example, depends on the number of con­
A larger amount of available RAM permits more

2-3

CHAPTER 3. HARDWARE CONSIDERATIONS

This chapter discusses the hardware modi fications and instal­
lation procedures that apply specifically to RMX/86 systems. It
discusses:

• Mod i fy i ng the i SBC 86/12A boa rd and ot he r assoc ia ted
boards by connecting jumper posts and setting switches

• Arranging the boards in the chassis

• Installing the cables

Although this chapter contains specific instructions on how to
modi fy hardware components, it contains only that information
that applies directly to the RMX/86 Operating System. You will
have to make other hardware modifications in addition to those
described here. For the other modifications refer to the
appropriate hardware manuals for the components of your system.

BOARD MODIFICATIONS

Before you insert your processor board, controller boards, and
memory boards into the chassis, you must modify certain jumper
connections and swi tch set tings on these boards. The following
sections discuss these modifications.

iSBC 86/12A JUMPER CONNECTIONS

Each iSBC 86/12A board comes from the factory wi th certain
jumper posts already connected. Appendix A contains a list of
the jumper connections that were made at the factory. Compare
your board with Appendix A to verify that all default con­
nections are present. The iSBC 86/12A Sin gle Board Computer
Reference Manual describes these connections and the options
available in detail .

The following sections describe the modifications that you must
make to the iSBC 86/12A board in order to load and run your
RMX/86 software.

Jumper Connections for the iSBC 957A Package

If you are going to use the iSBC 957A package in conjunction
wi th the Files ut i l t ty System or to load your software into

3-1

HARDWARE CONSIDERATIONS

RAM, refer to the iSBC 957A INTELLEC--iSBC 86/12A Interface and
Execution Package User's Guide. It describes the jumper con­
nection modifications you must make to the iSBC 86/12A board in
order to use the iSBC 957A package.

Jumper Connections for the Terminal Handler and the Debugger

If you are including the Terminal Handler or the Debugger in
your application system, you must connect interrupts 6 and 7 to
the 8251A USART. To do this, connect the following jumper posts
on the iSBC 86/12A board:

E82 - E75
E90 - E74

Jumper Connections for the I/O System

In order to use the I/O System, you must ensure that the
interrupts sent by the controller boards are received by the
8251A USART and correspond to the interrupt levels of the
controller board. The released version of the I/O System
configuration file assumes that the iSBC 204 controller uses
interrupt level 5 and the iSBC 206 controller uses interrupt
level 4. If you use these controllers in your system, make the
following jumper connections on the iSBC 86/12A board to
connect the interrupt signals.

Controller

iSBC 204
board

iSBC 206
board

iSBC 86/12A
Jumper Connections

E68-E76
(default)

E69-E77

Interrupt Level

5

4

If you use both controllers in your system, make both jumper
connections. The iSBC 86/12A single Board Computer Hardware
Reference Manual describes this process in detail. To set the
interrupt levels on the controller boards, refer to the next
two sections of this manual.

iSBC 204 JUMPER CONNECTIONS

When using the iSBC 204 controller to interface to the I/O
System, make sure that the interrupt request signal of the
controller is assigned to the interrupt level specified for it
in the device information table of the I/O System configuration
file . To specify the interrupt level in the device information
table, refer to the RMX/86 Configuration Guide for ISIS-II
Users. The values in the device information table correspond to
interrupt levels as follows:

3-2

HARDWARE CONSIDERATIONS

Interrupt level
o
1
3
4
5

Device Information Table Entry
08H

018H
038H
048H
058H

To set the interrupt request signal of the controller, remove
the connector from the defaul t jumper connection (63-67) and
make one of the following connections, depending on the
interrupt level desired.

Interrupt Level

o
1
3
4
5

Jumper Connection

61-65
62-66
64-68
72-68
71-67

Do not use interrupt levels 2, 6, or 7. The clock uses level 2
and the Terminal Handler uses levels 6 and 7.

Also make the following jumper connections on the iSBC 204
board:

75-76
77-78

You must also select an I/O base address by setting swi tch S2
on the iSBC 204 board. The released I/O System configuration
file assumes an iSBC 204 base address of OAOH. Select this
value by setting switch S2 as follows:

S2 Switch Position Callout
OAOH

7 6 5 4

Position ON OFF ON OFF

Refer to the iSBC
Reference Manual
controller.

204 Flexible Diskette
for more information

Controller Hardware
on the iSBC 204

iSBC 206 CONTROLLER SWITCH SELECTION

When using the iSBC 206 controller to interface to the I/O
System, make sure that the controller interrupt signal is
assigned to the interrupt level specified for it in the device
information table of the I/O System configuration file. To
speci fy the interrupt level in the device information table,
refer to the RMX/86 Configuration Guide for ISIS-II Users. The
values in the device information table correspond to interrupt

3-3

HARDWARE CONSIDERATIONS

as shown in the "i SBC 204 Jumper Connections" section of this
c ha p t e r . To set the controller interrupt signal, place the iSBC
206 channel board rotary swi tch (S2) in the posi tion
corresponding to the interrupt level. The sW'itch positions (0
through 7) are silk-screened on the board and select the
corresponding interrupt levels. t OO not use interrupt levels 2,
6, or 7. The cloc k uses level 2, and the Terminal Handler uses
levels 6 and 7. The released I/O System configuration file
assumes that the iSBC 206 controller uses interrupt level 4.

You must also select an I/O base address by setting switch Sl
on the iSBC 206 channel board. The I/O System configuration
file assumes an iSBC 206 base address of 068H. Select this
value by setting switch Sl as follows:

Sl Switch Position Callout
68H

5 6 7 8 3 4

Position OFF ON ON OFF ON OFF

Refer to the i SBC 206 Disk Co nt r o l l e r Hardware Reference Manual
for further informatio n about t he iSBC 206 controller.

MEMORY BOARD JUMPER CONNEC TI ONS

Connec t the jump e r s o n yo u r iS BC 032/048/0 64 RAM boa r c s to
assign memory to th e c o r r e c t contiguous memory locations. Refer
tot he iSBC 032/048/064 Random Acce s s Memo ry Boa r d s Hardwa r e
Reference Manual fo r the procedure to do this.

Both the memory boards t hat you insert i n the cha ssis and the
duql port RAM on the iS BC 86/12A board can be shared with other .~

bus masters (such as controller boards) via the MULTIBUS
interface. The i SBC 86 /12A board always assumes that its dual
port RAM be gins at address ze r o . You can, however, speci fy how
this dual port RAM a ppe ars t o other bus masters by connecting
jumpers (El13 through E128) and setting switch Sl on the iSBC
86 / 12A board. The i SBC 86/ 1 2A Si ngl e Board Computer Reference
Manual contains i ns t r uc t i on s for assigning dual port RAM
addresses. When you a ssi gn t he s e addre sses, make sure that the
dual port RAM a dd r e s s e s do no t overlap other memory board
addresses, or yo u co u l d da ma ge yo u r s ys t e m. It is recommended
that you as sign du al po r t RAM to the same addresses on the
MULTIBUS as are a s su med by t he iSBC 86/12A board (that is,
starting at addr e s s ze r o) .

3- 4

HARDWARE CONSIDERATIONS

BOARD ARRANGEMENT IN THE CHASSIS

When building your hardware system, use the serial priority
scheme for resolving MULTIBUS contention. This necessitates
grounding the BPRN/ signal of the highest priority bus master.
Bus masters are boards that are capable of acquiring and
controlling the MUL TIBUS interface. Even if you have only a
single board in your system (the iSBC 86/12A board) you must
ground its BPRN/ signal.

If you place your boards in the iSBC 604 and iSBC 614
cardcage/backplanes of the iSBC 660 or iCS 80 chassis, you can
implement the serial priori ty resolution scheme by connecting
jumpers on the backplane. If you ground BPRN/ of the top slot
(J2) of the cardcage, the priority of the slots is sequential,
with J2 having the highest priority and J5 having the lowest.
This is described in the iSBC 86/12A Hardware Reference Manual
as well as in the manuals for the chassis and the controller
boards. You must alter this slot priority, depending on how you
arrange the boards in the backplane.

The order in which you arrange the boards in the backplane
depends on the type and number of bus masters in your system,
and their physical placement requirements. The iSBC 86/12A
board, the iSBC 204 board, and the iSBC 206 channel board are
all bus masters. Memory boards are not bus masters; you can
place them in any available slot. The serial priority scheme
supports a maximum of three bus masters.

Physical requirements include placing the iSBC 206 channel
board and interface board in adjacent slots, placing the iSBC
86/12A board in the top slot if using the ICE-86 In-Circuit
Emulator, and placing the iSBC 86/12A board in the slot that
physically accomodates it. (If multimodules are attached to the
iSBC 86/12A board it may not physically fit in a slot directly
below another board.)

The following sections describe arranging the boards in
cardcage and installing the proper jumper connections
various combinations of bus masters.

NOTE

Before you install jumper connections
on the chassis or insert the boards,
make sure that the power to the
chassis is off.

iSBC 86/12A BOARD ALONE

the
for

Place the iSBC 86/12A board in the top slot (J2) of the
cardcage. Place memory boards in any of the other slots.
Connect the jumper posts on the etch side of the backplane as
follows:

3-5

HARDWARE CONSIDERATIONS

B-L

This designates J2 as the highest priority slot; thus the iSBC
86/12A board is the highest priority bus master.

iSBC 86/12A BOARD WITH iSBC 204 BOARD

Place the iSBC 86/12A board in the
cardcage. Place the iSBC 204 board in
in any of the other slots. Connect the
side of the backplane as follows:

C-L
E-B

top slot (J2) of the
J3. Place memory boards
jumper posts on the etch

This designates J3 as the highest priori ty slot and J2 as the
next highest. Thus the iSBC 204 board is the highest priority
bus master and the iSBC 86/12A board is the second highest.

iSBC 86/12A BOARD WITH iSBC 206 BOARDS

Place the iSBC 86/12A board in the top slot (J2) of the
cardcage. Place the iSBC 206 channel board in J3 and the iSBC
206 interface board in J4. Place memory boards in any of the
other slots. Connect the jumper posts on the etch side of the
backplane as follows:

C-L
E-B

This designates J3 as the highest priority slot and J2 as the
next highest. Thus the iSBC channel board is the highest
prio r i t y bus mas t erand the i SBC 86/ 12Abo a rdis the sec 0 nd r>.
highest.

iSBC 86/12A BOARD WITH BOTH iSBC 204 and iSBC 206 BOARDS

Place the iSBC 204 board in the top slot (J2) of the top (614)
cardcage. Place the iSBC 206 channel board in J3, the iSBC 206
interface board in J4, and the iSBC 86/12A board in the top
slot (J2) of the bottom (604) cardcage. Place memory boards in
any of the other slots. Connect the jumper posts on the etch
side of the top backplane as follows:

B-L
E-K

This designates J2 as the highest priority slot, J3 as the
second highest, and the top slot of the bottom cardcage (J2) as
the third highest. Thus the iSBC 204 board is the highest
priority bus master, the iSBC 206 channel board is the second
highest, and the iSBC 86/12A board is the third highest.

3-6

HARDWARE CONSIDERATIONS

CABLE CONNECTIONS

After you have placed the boards in the chassis, install the
cables joining the boards to the various parts of the system.
If you are using the Terminal Handler or Debugger, connect the
terminal of your RMX/86 system to the serial I/O port of the
iSBC 86/l2A board. The iSBC 86/12A Single Board Computer
Ha rdware Reference Manual di scusses thi s proces s , I f you are
using the I/O System and have an iSBC 204 controller, connect
the drives to their associated I/O connectors (JI or J2) on the
iSBC 204 board. The iSBC 204 Flexible Diskette Controller
Hardware Reference Manual discusses this process. If you are
using the I/O System and have an iSBC 206 controller, connect
the iSBC 206 interface board to the drives as described in the
iSBC 206 Disk Controller Hardware Reference Manual.

Also connect the cables for the ICE-86 In-Circuit Emulator or
the iSBC 957A package, depending on which package you use to
load your software. If you use the ICE-86 Emulator to load your
software, install the ICE-86 boards in the Development System
chassis and connect the ICE-86 cable to the 8086 socket on the
iSBC 86/l2A board. Refer to the ICE-86 In-Circuit Emulator
Operating Instructions for ISIS-II Users for a description of
this process. If you use the iSBC 957A package to load your
software, install the PROM set on the iSBC 86/l2A board and use
the cable to connect the UPP output on the Development System
to the parallel I/O port on the iSBC 86/12A board. Refer to the
iSBC 957A INTELLEC iSBC 86/12A Interface and Execution
Package User's Guide for a description of this process.

3-7

CHAPTER 4. THE DEMONSTRATION SYSTEM

Two of the disks shipped wi t h the RMX/86 package contain the
demonstration system. One is a single-density disk and one is a
double-density disk, but both contain the same information.
Therefore, use the one that is appropriate for the disk drives
on your Development System.

The demonstration disk contains a complete configuration module
for an application system. This application system consists of
the Nucleus, the Debugger, the root job, and an application job
called TBASIC, a BASIC interpreter which allows you to write
programs that manipulate RMX/86 objects. This chapter describes
what you need in order to run the demonstration system, how to
load the system, and how to use it.

HARDWARE REQUIREMENTS

In order to run the demonstration system, your system must
contain the following equipment:

• An INTELLEC Microcomputer Development System with CRT,
keyboard, and at least 2 disk drives

• An iSBC 86/l2A board and chassis

• 96K of contiguous RAM, starting at address 0, for use
with the iSBC 86/l2A board

• A RS232 protocol terminal

• Either:

An ICE-86 In-Circuit Emulator
or

An iSBC 957A package

You need the terminal in order to communicate wi th the appli­
cation system, and either the ICE-86 emulator or the iSBC 957A
package to load the system from diskette to memory.

Since you are using the Debugger in this system, make sure that
the iSBC 86/12A board is jurnpered for Debugger use. Refer to
Chapter 3 for the jumpering information.

The demonstration system assumes that your terminal operates at
9600 baud. If it operates at a di fferent baud rate, you must
reconfigure the Debugger, specifying the correct rate. Refer to
the RMX/86 Configuration Guide for ISIS-II Users for procedures
to do this.

4-1

THE DEMONSTRATION SYSTEM

LOADING THE DEMONSTRATION SYSTEM

You can use either the ICE-86 In-Circuit Emulator
957A package to load the demonstration system from
memory. Using ei ther product, load the following
diskette to memory:

NUCLUS.DMO
DEBUGR.DMO
TBASIC.DMO
ROOTJB.DMO

or the iSBC
diskette to
files from

Load the file containing the root job, ROOTJB.DMO, last because
it contains instructions which initialize 8086 registers to
their proper values.

In order to load and start the demonstration system wi th the
ICE-86 emulator, place a system disk containing ICE-8 6 software
in drive FO of the Development System and the demonstration
system diskette in drive Fl. Enter the following commands at
the keyboard of the Development System:

ICE86
LOAD :Fl:NUCLUS.DMO
LOAD :Fl:DEBUGR.DMO
LOAD :Fl:TBASIC.DMO
LOAD :Fl:ROOTJB.DMO
GO

Refer to the ICE-86 In-Circuit Emulator Operating Instructions
for ISIS-II Users for complete instructions on the use of the
ICE-86 emulator.

In order
iSBC 957
software
stration
commands

to load and start the demonstration system with the
package, place a system disk containing the iSBC 957A
in drive FO of the Development System and the demon­
system diskette in drive Fl. Enter the following

at the keyboard of the Development System:

SBC861
L :Fl:NUCLUS.DMO
L :Fl:DEBUGR.DMO
L :Fl:TBASIC.DMO
L :Fl:ROOTJB.DMO
G

Refer to the iSBC 957A INTELLEC -- iSBC 86/l2A Interface and
Execution Package User's Guide for complete instructions on the
use of the iSB C 957A pa c ka ge .

A few seconds after you have entered the GO (or G) command at
the Development System keyboard to start execution of the
system, a message appears on the terminal connected to the iSBC
86/l2A computer, indicating that the interpreter is ready for
use.

4-2

THE DEMONSTRATION SYSTEM

USING THE DEMONSTRATION SYSTEM

After you have initiated execution of the demonstration system,
the TBASIC interpreter displays a message at the terminal to
indicate that it is ready for use. The characteristics of the
TBASIC interpreter are similar to those of most BASIC inter­
preters. It allows you to enter and run a subset of BASIC
language statements. It either interprets the statements as
they are entered, or it stores the statements in memory and
processes them as a whole. The TBASIC interpreter also contains
commands and functions which perform such RMX/86 functions as
creating tasks and sending messages. The following sections
describe the operations of the TBASIC interpreter.

OPERATING MODES

The interpreter has two operating modes, direct and inter­
pretive. In direct mode you enter individuial statements; the
interpreter processes them and displays the results at the
terminal as they are entered. Certain statements, such as LIST
and RUN, are valid only in direct mode. Direct mode is the
initial mode of the interpreter.

In interpretive
change programs
pretive mode to
entering the RUN

STORING PROGRAMS

mode, you run entire programs. You enter and
in direct mode and then transfer to inter­

run them. You transfer to interpretive mode by
statement.

You can create and store an entire program by prefacing each
statement you enter with a line number. This prevents the
interpreter from immediately processing the statement. All
statements prefaced wi th line numbers are stored in memory.
When you enter the RUN statement, the entire program is inter­
preted in line number order (not necessarily the order in which
you entered it).

You can change a line of a program by entering a new line with
the same line number. The interpreter disregards all but the
last occurrence of a line with a given line number. You can
delete a line by entering the line number alone, followed by a
carriage return. The interpreter treats a line containing only
a line number as a null operation.

If you do not preface a statement with a line number, the
interpreter processes it immediately.

VARIABLES

TBASIC supports two kinds of variables. A variable can either
be a single alphabetic character (A-Z) or an array element. The
intepreter does not distinguish between uppercase and lowercase
characters. You can use one array only, the special character
"@" followed by an index. the interpreter dynamically allocates

4-3

THE DEMONSTRATION SYSTEM

space for this array. You can determine the amount of space
available in this array by calling the SIZE function described
later in this chapter.

Examples:

The following are acceptable variable names.

A
F
@(3)
@(e xpr e s s i on) where expression is a BASIC expression

described later in this chapter

The following are not acceptable as variable names.

5
AB
2C
INTEG
F(2)

CONSTANTS

The interpreter supports integer constants in the range -32768
to +32767. It always interprets constants as decimal numbers.

EXPRESSIONS

Valid expressions can be built from the following:

• integers (from -32768 to +32767)

• variables (A-Z)

• array elements (@(expression))

• arithmetic operators (+, - I, *)

• relational operators (, - , -, -, 4F (not equal to))

STATEMENTS AND FUNCTIONS

The TBASIC interpreter contains a number of statements and
functions. Some of these are normally associated with any BASIC
interpreter and some perform RM X/86 Nucleus operations. The
following sections describe these stat ements and f unc t Lons . A
statement and function dictionary appears first, listing all of
the TBASIC statements and functions in alphabetical order.

The following conventions are used in the descriptions of all
statements and functions in this chapter.

[parameter] The brackets are used
optional parameters.

4-4

to delimit

Iparametersl

THE DEMONSTRATION SYSTEM

The vertical lines delimit a number of
parameters separated wi th commas. You
have the choice of entering anyone,
but only one, of the delimited
parameters.

STATEMENT AND FUNCTION DICTIONARY

Language
Element

ABS

CATALOG

CRTMBOX

CRTSEGM

CRTSEMA

CRTTASK

DELMBOX

DELSEGM

DELSEMA

DELTASK

FOR

GETTKNS

GOSUB

GOTO

IF

INPUT

LET

LIST

LOOKUPO

NEW

NEXT

Definition

Returns an absolute value.

Catalogs an object.

Creates a mailbox.

Creates a segment.

Creates a semaphore.

Creates a task.

Deletes a mailbox.

Deletes a segment.

Deletes a semaphore

Deletes a task.

Starts a loop.

Gets a token for an object.

Transfers control to a subroutine

Transfers control to a line.

Processes a statement conditionally

Allows variable assignment from the console.

Assigns a value to a variable.

Lists the current program.

Looks up a name in an object directory.

Clears memory of all source statements.

Ends a loop.

4-5

Page

4-11

4-15

4-19

4-22

4-17

4-12

4-20

4-22

4-18

4-12

4-8

4-14

4-8

4-9

4-9

4-10

4-9

4-6

4-16

4-7

4-8

Language

PRINT

RCVUNIT

RECVMSG

REM

REST ASK

RETURN

RND

RUN

SENDMSG

SIZE

SLEEP

SNDUNIT

STOP

SUS TASK

UNCATLG

THE DEMONSTRATION SYSTEM

Definitions

Prints a line at the console.

Receives units from a semaphore.

Receives a message from a mailbox.

Indicates a comment line.

Resumes a task.

Returns control from a subroutine.

Generates a random number.

Runs the stored program.

Sends a message to a mailbox.

Returns the size of the array storage space.

Places the interpreter in the asleep state.

Sends units to a semaphore.

stops program execution.

Suspends a task.

Deletes a name from an object directory.

Page

4-7

4-19

4-21

4-9

4-13

4-8

4-10

4-7

4-20

4-11

4-14

4-18

4-10

4-13

4-17

BASIC STATEMENTS

This section describes the statements available with the TBASIC
interpreter that are normally a part of any BASIC interpreter.

LIST

This statement lists part or all of the program currently in
memory. You can enter this statement in direct mode only. Its
format is as follows:

LIST [line-number]

where:

line-number Line number at which you want the
listing to begin. LIST lists the
remainder of the program. If you omit
this parameter, LIST lists the entire .r>

program.

4-6

THE DEMONSTRATION SYSTEM

NEW

This statement clears memory of all source statements. You can
enter this statement in direct mode only. Its format is as
follows:

NEW

RUN

This statement starts the execution of the program currently
stored in memory. You can enter this statement in direct mode
only. Its format is as follows:

RUN

PRINT

This statement prints a line at the console. Its format is as
follows:

PR INT [f i e 1d- wid t h] Iex pre s s ion , quo ted - s t r i ng I [,...]

where:

field-width

expression

Decimal value indicating the width of
the field for numeric output. Output
is right justi fied in this field. If
this value is not specified, a default
field width of six is assumed.

Any legitimate expression; the ex-
pression is evaluated before printing.

quoted-string A string of characters
double quotes (") ; the
printed exactly as entered.

enclosed
string

in
is

Indicates that a number of expressions
and quoted strings, separated with
commas, can be printed on the same
line.

If you enter the PRINT statement without any parameters, the
interpreter prints a blank line.

4-7

THE DEMONSTRATION SYSTEM

FOR ... NEXT

These statements provide looping control. Their formats are as
follows:

FOR var-name = start-val TO end-val [STEP inc-val]

NEXT var-name

where:

var-name

start-val

end-val

incr-val

Variable used as a loop counter.

starting value of the loop counter.

Ending value of the loop counter.

Amount that the loop counter incre­
ments each time a loop begins. If STEP
inc-val is not specified, the inter­
preter assumes a default value of 1.

The interpreter performs all statements delimited by the FOR
and NEXT statements until the value of var-name is greater than
end-val. You can use nested loops.

GOSUB

This statement transfers control to a subroutine. Its format is
as follows:

GOSUB line-number

where:

line-number Line number containing the
statement of the subroutine.

fi rst

Subroutines may be recursive.

RETURN

This statement returns control from a subroutine. Its format is
as follows:

RETURN

Subroutines may be recursive.

4-8

THE DEMONSTRATION SYSTEM

LET

This statement assigns a value to a variable. Its format is as
follows:

[LET] var-name = expression

where:

var-name

expression

Variable to which a value is assigned.

Expression whose value is assigned to
var-name.

The word LET is optional . .

IF

This statement provides for conditional execution of a state­
ment. Its format is as follows:

IF condition statement

where:

condition Expression containing a
operator . If condition
statement is executed.
control passes to the next

relational
is true,
Otherwise,

line.

statement

GOTO

A TBASIC statement which is executed
only if condition is true.

This statement transfers control to another statement. Its
format is as follows:

GOTO line-number

where:

line-number

REM

Line number of the statement to which
GOTO transfers control.

I~ This statement allows you to place remarks in your source code.
Its format is as follows:

4-9

THE DEMONSTRATION SYSTEM

REM comment

where:

comment

INPUT

Any comment you wish to place in your
program list.

This statement allows you to assign a value to a variable from
the console while the program is running. Its format is as
follows:

INPUT var-name

where:

var-name Variable name which is assigned a
value from the console.

During execution, the interpreter prompts the terminal with the
following message:

var-name ?

It then waits for input which it assigns to var-name.

STOP

This statement stops the execution of the program. Its format
is as follows:

STOP

BASIC FUNCTIONS

This section describes the functions available with the TBASIC
interpreter that are normally a part of any BASIC interpreter.
These functions can be used anywhere TBASIC expressions can be
used.

RND

This function returns a random number between 1 and the value
of an expression. The format of this function is as follows:

RND (expression)

4-10

THE DEMONSTRATION SYSTEM

where:

expression

ABS

Any valid TBASIC expression. RND
returns a random number between 1 and
expression.

This function returns the absolute value of an expression. The
format of this function is as follows:

ABS (expression)

where:

expression

SIZE

Any valid TBASIC expression for which
the absolute value is desired.

This function returns the current size in bytes of the avail­
able array storage space. This value is twice the number of
elements available in array @. Since the interpreter uses a
fixed amount of memory to store both programs and data, if you
have a large program you are allowed fewer array elements than
if you have a small program. The format of this function is as
follows:

SIZE

RMX/86 STATEMENTS AND FUNCTIONS

This section describes the TBASIC statements and functions that
allow you to make RMX/86 system calls. The parameters for these
statements and functions are very similar to the parameters for
the equivalent Nucleus system calls. If you are unsure about
the parameters for any of these BASIC statements and functions,
refer to the Nucleus, Terminal Handler, and Debugger Reference
Manual for a complete description of the parameters.

For many of these statements and functions, you must supply a
variable in which the interpreter returns the status of the
RMX/86 system call. The interpreter has a convention that any
variable in which it returns a value must be preceded by a
period (.) in the statement declaration. You need not include
the period when you originally define or later reference the
variable.

The functions i n this section are described as if they are part
of assignment statements. They can, however, be us e d anywhere
TBASIC expression can be used .

4-11

THE DEMONSTRATION SYSTEM

CRTTASK

This function creates a task and returns a token for that task.
The format of this function is as follows:

task$token = CRTTASK(pri, @s t a r t $a dd r , data$seg, @stack$ptr,
stack$size, 0, .stat$var)

where:

task$token

pri

Variable in which the interpreter
returns a token for the created task.

Priority of the task.

start$addr Pointer indicating the
address. The atsign (@)
this value.

task
must

starting
precede

data$seg

stack$ptr

stack$size

stat$var

Example:

Base value of the task data segment. A
zero indicates that the task ini tial­
izes the data segment register.

Pointer Lnd i c a t Lno the address of the
stack segment. A- value of 0:0 indi­
cates that the Nucleus assigns a stack
segment. An atsign (@) must precede
this parameter.

Size of the stack.

Variable in which the interpreter
returns the status of the create
operation.

The following function call creates a task with a priority of
129, start address of 14AO:343 (obtained from the locate map
for that task), and stack size of 600. The task creates the
data segment and the stack se gment. The interpreter returns a
token for the newly created task i n variable T and the status
of the operation in variable S .

LET T = CRTTASK (129, @1 4AO: 343 , 0 , @O :O , 60 0, 0, .S)

DELTASK

This statement deletes a task. Its format is as follows:

DEL TASK (task$token, .stat$var)

4-12

THE DEMONSTRATION SYSTEM

where:

task$token Token of the task to be deleted.

stat$var

Example:

Variable in
returns the
operation.

whi ch the
status of

interpreter
the delete

The following statement deletes a task and returns the status
of the delete operation in variable S. Variable T contains a
token for the task to be deleted.

DELTASK .(T, .S)

SUSTASK

This statement suspends a task. Its format is as follows:

SUS TASK (task$token, . stat$var)

where:

task$token Token of the task to be suspended.

stat$var Variable in which
returns the status
operation.

the interpreter
of the suspend

Example:

The following statement suspends a task and returns the status
of the suspend operation in variable S. Variable T contains a
token for the task to be suspended.

SUS TASK (T, . S)

RESTASK

This statement resumes a suspended task. Its format is as
follows:

RESTASK (task$token, . stat$var)

where:

task$token Token of the task to be resumed.

4-13

stat$var

Example:

THE DEMONSTRATION SYSTEM

Variable in which the interpreter
returns the status of the resume
operation.

The following statement resumes a suspended task and returns
the status of the resume operation in variable S. Variable T
contains a token for the suspended task.

REST ASK (T, . S)

SLEEP

This statement places the calling task (the TBASIC interpreter)
in the asleep state. Its format is as follows:

SLEEP (units, .stat$var)

where:

units Number of 10-millisecond units that
the calling task is willing to sleep.
A value of zero places the calling
task on the ready task queue.

stat$var

Example:

Variable in
returns the
operation.

which the interpreter
status of the sleep

The following statement places the interpreter in the asleep
state for one second and returns status of the sleep operation
in variable S.

SLEEP (l00, . S)

GETTKNS

This function returns a token for an object. The format of this
function is as follows:

obj$token = GETTK NS (select$val, .stat$var)

where:

obj$token Token for the requested object.

4-14

select$val

stat$var

Example:

THE DEMONSTRATION SYSTEM

Value indicating the object for which a
token is requested. Possible values
include:

o Token for the interpreter task.

1 Token for the interpreter task's
job.

2 Token for the interpreter job's
parameter object.

3 Token for the root job.

Variable in which the interpreter returns
the statu~ of the operation.

The followIng function call returns a token for the root job in
variable T and returns the status of the operation in variable
S.

LET T = GETTKNS (3, .S)

CATALOG

This statement catalogs a given object in a given directory.
Its format is as follows:

CATALOG (job$token, object$token, "name", .stat$var)

where:

job$token

object$token

name

stat$var

Token for the job in whose object di­
rectory the object is to be cataloged. A
zero value for this parameter indicates
that the calling task's object directory
is used.

Token for the object to be cataloged.

One to twel ve ASCI I character name under
which the object is cataloged. This value
must be enclosed in double quotes.

Variable in which the interpreter returns
the status of the catalog operation.

4-15

THE DEMONSTRATION SYSTEM

Example:

The following statement catalogs an object as MYTASK in the
object directory of the calling task's job (the interpreter's
job). Variable T contains a token for the object to be cata­
loged. The status of the catalog operation is returned in
variable S.

CATALOG (0, T, "MYTASK", .S)

LOOKUPO

This function looks up a name in an object directory and
returns a token for that object. The format of this function is
as follows:

obj$token = LOOKUPO (job$token,
.stat$var)

where:

"name" time$limit, ,

obj$token

job$token

name

time$limit

stat$var

Example:

Variable in which the interpreter returns
a token for the object.

Token for the job in whose object di­
rectory the function searches for the
name. A value of zero indicates that the
interpreter's job is searched .

Name under which the object is cataloged.
This name must be enclosed in double
quotes.

Number of 10-millisecond time units that
the function is willing to wait for the
name to become available.

Variable in which the interpreter returns
the status of the look up operation.

The following function call looks up the name MYTASK in the
interpreter's object directory, does not wait if the name is
not there, and returns a token for the object in variable T. It
returns the status of the operation in variable S.

LET T = LOOKUPO (0, "MYSTASK", 0, .S)

4-16

THE DEMONSTRATION SYSTEM

UNCATLG

This statement deletes a name from an object directory. The
format of this statement is as follows:

UNCATLG (job$token, "name", .stat$var)

where:

job$token

name

stat$var

Example:

Token for the job in whose object di­
rectory the name is to be deleted. A zero
value indicates the object directory of
the job containing the calling task.

Name to be deleted from the object
directory'. This name must be enclosed in
double quotes.

Variable in which the interpreter returns
the status of the uncatalog operation.

The following statement removes the name MYTASK from the
interpreter I s object directory and returns the status of the
operation in variable S.

UNCATLG (0, "MYTASK", .S)

CRTSEMA

This function creates a semaphore. The format of the function
is as follows:

sema$token = CRTSEMA (init$value, max$value, sema$flags,
.stat$var)

wher.e:

sema$token

init$value

max$value

sema$flags

Variable in which the interpreter returns
the token of the newly created semaphore.

Initial value of the semaphore.

Maximum value of the semaphore.

Value indicating the type of semaphore.
Possible values include:

o First-in, first-out semaphore

1 Priority semaphore

4-17

stat$var

Example:

THE DEMONSTRATION SYSTEM

Variable in which the interpreter returns
the status of the create operation.

The following function call creates a priori ty semaphore wi th
initial and maximum values of 1, and returns a token for it in
variable T. It also returns the status of the create operation
in variable S.

LET T = CRTSEMA 0,1,1, .S)

DELSEMA

This statement deletes a semaphore. The format of this state­
ment is as follows:

DELSEMA (sema$token, .stat$var)

where:

sema$token

stat$var

Example:

Token for the semaphore to be deleted.

Variable in which the interpreter returns
the status of the delete operation.

The following statement deletes a semaphore and returns the
status in variable S. Variable T contains a token for the
semaphore.

DELSEMA (T, . S)

SNDUNIT

This statement sends uni ts to a semaphore. The format of this
statement is as follows:

SNDUNIT (sema$token, num$units, .stat$var)

where:

sema$token

num$units

stat$var

Token of the semaphore to which units are
being sent.

Number of units to be sent to the sema­
phore.

Variable in which the interpreter returns
the status of the send units operation.

4-18

THE DEMONSTRATION SYSTEM

Example:

The following statement sends one unit to a semaphore and
returns the status of the operation in variable S. Variable T
contains a token for the semaphore.

SNDUNIT (T, 1, .S)

RCVUNIT

This function recei ves uni ts from a semaphore and returns the
new value of the semaphore. The format of this function is as
follows:

value = RCVUNIT (sema$token, units, time$limit, . s t a t $va r)

where:

value

sema$token

units

time$limit

stat$var

Example:

Variable in which the interpreter returns
the number of units remaining in the
custody of the semaphore after the units
have been received.

Token for the semaphore.

Number of units to receive from the
semaphore.

Number of 10-millisecond time units to
wait for the units.

Variable in which the interpreter returns
the status of the receive operation.

The following function call receives one unit from a semaphore
and does not wait for the unit to become available. It returns
the new value of the semaphore in variable V and the status of
the receive operation in variable S. Variable T contains a
token for the semaphore.

LET V = RCVUNIT (T, 1, 0, .S)

CRTMBOX

This function creates a mailbox and returns a token for it. The
format of this function is as follows:

mbox$token = CRTMBOX (mbox$flags, .stat$var)

4-19

THE DEMONSTRATION SYSTEM

where:

mbox$token

mbox$flags

stat$var

Example:

Variable in which the interpreter returns
a token for the newly created mailbox.

Value indicating the type of mailbox to
be created. Possible values include:

o First-in, first-out mailbox

1 Priority mailbox

Variable in which the interpreter returns
the status of the create operation.

The following function creates a priority mailbox and returns a
token for it in variable M. It returns the status of the create
operation in variable 5.

LET M = CRTMBOX o , .5)

DELMBOX

This statement deletes a mailbox. The format of this statement
is as follows:

DELMBOX (mbox$token, . stat$var)

where:

mbox$token

stat$var

Token of the mailbox to be deleted.

Variable in which the interpreter returns
the status of the delete operation.

Example:

The following statement deletes a mailbox and returns the
status of the delete operation in variable 5. Variable T
contains a token for the mailbox.

DELMBOX (T, .5)

SENDM5G

This statement sends a me s s age (in the form of an object)to a
mailbox. The format of this statement is as follows:

4-20

THE DEMONSTRATION SYSTEM

SENDMSG (mbox$token, obj$token, response$token, .stat$var)

where:

mbox$token

obj$token

response$token

stat$var

Example:

Token of the mailbox to which the message
is being sent.

Token of the object being sent.

Token of the desired response mailbox or
semaphore. A zero value indicates that no
response is desired.

Variable in which the interpreter returns
the status of the send operation.

The following statement sends an object to a mailbox and
specifies a response mailbox at which the receive can ack­
nowledge receiving the object. Variable M contains a mailbox
token, variable A contains an object token, and variable R
contains a response mailbox token. The interpreter returns
status in variable S.

SENDMSG (M, A, R, .S)

RECVMSG

This function waits for a message (in the form of an object) at
a mailbox and returns a token for the object if one is avail­
able. The format of this function is as follows:

mess$token = RECVMSG (mbox$token, time$limit, .resp$var,
.stat$var)

where:

mess$token

mbox$token

time$limit

resp$var

stat$var

Variable in which the interpreter returns
a token for the object.

Token for the mailbox.

Number of lO-millisecond time units to
wait for the object.

Variable in which the interpreter returns
a token for the response mailbox or
semaphore, if a response is requested.

Variable in which the interpreter returns
the status of the receive operation.

4-21

THE DEMONSTRATION SYSTEM

Example:

The following function call receives an object from a mailbox
without waiting, returns a token for the object in variable T,
returns a token for the response mailbox in variable R, and
returns the status of the receive operation in variable S.

LET T = RECVMSG (M, 0, .R, .S)

CRTSEGM

This function creates a segment and returns a token for it. The
format of this function is as follows.

seg$token = CRTSEGM (size, .stat$var)

where:

seg$token Variable in which the interpreter returns
a token for the newly created segment.

size Size in bytes of the segment.
zero indicates that a 64K
requested.

A value of
segment is

stat$var

Example:

Variable in which the interpreter returns
the status of the create operation.

The following function call creates
returns a token for it in variable T.
the create operation in variable S.

LET T = CRTSEGM (128, .S)

DELSEGM

a 128-byte segment and
It returns the status of

This statement deletes a segment. The format of this statement
is as follows:

DELSEGM (seg$token, .stat$var)

where:

seg$token

stat$var

Token for the segment being deleted.

Variable in which the interpreter returns
the status of the delete operation.

4-22

THE DEMONSTRATION SYSTEM

Example:

The following statement deletes a segment and returns the
status in variable S. Variable T contains a token for the
segment.

DELSEGM (T, . S)

4-23

CHAPTER 5. FILES UTILITY SYSTEM

The INTELLEC Microcomputer Development System does not recog­
nize RMX/86 disk files. Consequently you cannot read, write, or
format RMX/86 disks directly from the ISIS-II operating system.
You can, however, indirectly perform these operations from the
Development System by using the RMX/86 Files Utility System.

FUNCTIONS PROVIDED

The RMX/86 Files Utility System is an application system built
upon the RMX/86 Operating System which allows you to perform
the following operations:

•
•
•
•
•

Formatting an RMX/86 disk.

Copying a file from an ISIS-II disk to an RMX/86 disk.

Copying a file from an RMX/86 disk to an ISIS-II disk.

Deleting a file from an RMX/86 disk.

Creating a directory on an RMX/86 disk.

• Displaying, on the Development System terminal, the
contents of a directory of an RMX/86 disk.

HARDWARE REQUIRED

The Files Utility System requires the following hardware:

• A Microcomputer Development System having at least 64k
bytes of memory and at least one disk drive (hard or
flexible).

• An iSBC 86/12A Single Board Computer with at least 192k
bytes of memory and at least one disk drive (hard or
flexible).

• The iSBC 957A INTELLEC -- iSBC 86/12A interface and
execution package.

5-1

FILES UTILITY SYSTEM

EXECUTING THE UTILITY

Before you can enter commands to the Utility System, you must
start it up. This involves putting together some hardware and
entering some commands on the INTELLEC Microcomputer Develop­
ment System terminal.

ASSEMBLING THE HARDWARE

The first thing you must do is to put the hardware together.
This involves the following steps.

1) Use the iSBC 957A package to conect the INTELLEC
Microcomputer Development System to the iSBC 86/12A
board. The procedure for doing this is described in the
iSBC 957A INTELLEC--iSBC 86/12A Interface and Execution
Package User's Guide.

2) Connect your application system disk drives to their
controllers and connect the controllers to the MULTIBUS
interface. The procedures for doing this depend upon
which controllers you are using. You can find the
procedures in the hardware reference manuals for the
controllers. The Utility System supports up to two iSBC
204 Shugart drives, two iSBC 204 CDC drives, and two
iSBC 206 dri ves. The interrupt levels and base
addresses on the controller boards should be set as
follows:

• For the iSBC 204 controller, set the interrupt
level to 5 and the I/O base address to OAOH.

• For the iSBC 206 controller, set the interrupt
level to 4 and the I/O base address to 068H.

STARTING THE UTILITY

After you have assembled your hardware, place an ISIS-II system
diskette containing the iSBC 957A software into drive 0 of your
INTELLEC Microcomputer Development System and the Utilities
diskette into any other drive. Load the ISIS-II system.

Before going any further, examine the file FILES.CSD on the
Utilities diskette. This file is a submit file which loads the
Files Utility System from diskette i nt o RAM. As released, it
contains the following commands.

MON86
L %ONUCLUS
L %OIOS
L %OFILES
L %OFILES.RJB
E

5-2

FILES UTILITY SYSTEM

In order for this submi t file to function correctly, you must
edit this file and make the following change:

• Change the command MON86 so that it reads SBC86l.

After you have modi fied the file, enter the following ISIS-II
command:

SUBMIT :fx:FILES (:fx:)

where:

fx Identifier of the disk drive containing
the Files Utility diskette.

When you enter this command, the ISIS-II operating system reads
and processes the commands contained on the FILES.CSD file.
These commands instruct the iSBC 957A monitor to load the Files
Utility System from a diskette on the INTELLEC system into RAM
on the iSBC 86/l2A board.

After the ISIS-II
the submit file,
Respond by entering

SBC861

system finishes processing the commands in
the system prompts for another command.

This command instructs the ISIS-II system to connect you to the
iSBC 957A monitor. The monitor signals you that it is ready to
accept your next command by displaying a period (.) on the
screen of your INTELLEC system. When the period appears, enter

G

This causes the Disk Utility System to begin running. The
screen of your INTELLEC system should display the heading

RMX/86 FILES UTILITY Vx.x

The Utility System signals that it is ready to accept your next
command by displaying an asterisk (*) on the screen of the
INTELLEC system.

USING THE UTILITY SYSTEM

The Utili ty System provides seven commands: UPCOPY, DOWN COPY ,
DELETE, CREATEDIR, DIR, FORMAT, and EXIT. Each of these lS
described in detail later in this section. But before you use
any of these commands, you should know how the Utili ty System
deals with errors and whether or not you can change disks once
the processing has begun.

5-3

FILES UTILITY SYSTEM

ERROR MESSAGES

The Utility System displays all error messages on the screen of
the INTELLEC System. These messages can be in any of four
forms. If the messa ge is

*** INITIALIZATION ERROR ***
rr

the Utility System is not able to initialize correctly when
started. The hardware of your system does not match the soft­
ware configuration. You might have jumpered boards incorrectly,
set the wrong interrupt levels, or left boards unplug ged. The
rr in this message is a he xadecimal RMX/86 condi tion code. In
order to interpret this code, refer to Appendix B of this
manual. The RMX/86 Nucleus, Terminal Handler, and Debu~~er

Reference Manual and the RMX/86 I/O System Reference Manual
describe these condition codes in more detail.

If the message is

UNRECOGNIZED COMMAND

the Utility System does not recognize the spelling of your
command. The Utility System prompts for another command.

The Utility System actually uses the ISIS-II operating system
to read and write disks attached to the INTELLEC system. If the
ISIS-II system detects any errors, it returns an error code to
the Utility System. Whenever the utility System receives an
ISIS-II error, it displays the following message:

ISIS ERROR /I nn

where nn is in decimal. In order to interpret this error
message, refer to the ISIS-II User's Guide. Fatal errors
require you to restart the Utility System using the FILES.CS D
file.

When reading or writing on drives attached to the iSBC 86/12A
board, the Utility System uses the RMX/86 Nucleus and the
RMX/86 I/O System. If either of these returns an e xceptional
condition code to the Utility System, the following messaqe is
displayed:

RMX EXCEPTION /I mm

where mm is in he xadecimal. In order to interpret this error
message, refer to Appendi x B. After this message is displayed,
the Utility System prompts for the ne xt command.

5-4

FILES UTILITY SYSTEM

CHANGING DISKS

When the Utility System is running and you have already per­
formed an operation on a particular disk, with one exception
you cannot remove that disk from the drive and replace it with
another. The Utility System is not aware of disk changes, and
if you do this, the system treats the second disk as if it were
the first, possibly writing over or destroying valuable infor­
mation. In order to change disks in a drive, you must enter the
EXIT command, change the disk, and restart the Utility System
by entering the G command.

The one exception to this is the FORMAT command. As described
later in this chapter, this command writes RMX/86 formatting
information on blank disks. Since the FORMAT command always
expects a blank disk, you can replace disks in a drive any
number of times if you use only FORMAT. The FORMAT command does
not check for a blank disk, however; it destroys all infor­
mation previously contained on the disk.

COMMANDS

This section lists the commands available with the Utility
System and their parameters. Associated with each device name
and file name (or path name) parameter is a preface which is a
disk identifier. For ISIS-II files, these disk identifiers are
the same as those described in the ISIS-II User's Guide. The
disk identifiers for RMX/86 devices are similar. They are:

:FO: iSBC 204 Shugart flexible disk drives, units 0 and 1.
: F1:

:F8: iSBC 204 CDC flexible disk drives, units 0 and 1.
:F9:

:HO: iSBC 206 hard nisk drives, units 0 and 1.
: Hl :

So, for example, to copy the file JOBA from an ISIS-II disk on
unit 1 to a file of the same name on an RMX/86 disk on unit 2
of a Shugart drive, enter the following:

UPCOPY :Fl:JOBA TO :F2:JOBA

UPCOPY

This command creates an RMX/86 file and copies the specified
ISIS-II file to it. If the RMX/86 file already exists, it is
written over. The format of this command is as follows:

UPCOPY isis-filename TO rmx-pathname

5-5

FILES UTILITY SYSTEM

where:

isis-filename

rmx-pathname

DOWNCOPY

Name of the ISIS-II file to be copied.

Path name of the RMX/86 file to be
created.

This command creates an ISIS-II file and copies the specified
RMX/86 file to it. If the ISIS-II file already exists, it is
written over. The format of this command is as follows:

DOWNCOPY rmx-pathname TO isis-filename

where:

rmx-pathname

isis-filename

DELETE

Path name of the RMX/86 file to be
copied.

Name of the ISIS-II file to be created.

This command removes the speci fied RMX/86 file from storage.
The format of this command is as follows:

DELETE rmx-pathname

where:

rmx-pathname

CREATEDIR

Path name of the RMX/86 file to be
deleted.

This command creates an RMX/86 directory file. The format of
this command is as follows:

CREATEDIR rmx-pathname

where:

rmx-pathname Path name of the RMX/86 directory file
to be created.

5-6

FILES UTILITY SYSTEM

orR

This command lists an RMX/86 directory file at the Development
System console. The format of this command is as follows:

DIR rmx-pathname

where:

rm x-pathname Path name of the RMX/86 dir ectory file
to be listed.

The directory file listing includes a line listinq the size of
the directory. This line appears as:

DIR SIZE;: n

In this line, n is the total of all the entries ever contained
in the directory file. If entries have been deleted, the
directory size does not reflect this deletion.

FORMAT

This command writes RMX/86 formatting information on a dis k. It
destroys all information previously contained on the dis k. Each
disk must be formatted before it can be used by the RMX/86
Operating System.

FORMAT performs the following operations:

• It records the interleave information on the disk
sectors.

• If the named file driver is specified, it records the
volume label information on track 0 of the volume.

• If the named file driver is specified, it creates the
fnode file, the free space bi t map file, and the fre e
fnode bit map file.

The FORMAT command contains parameters which are specified in
the form " keywo r oe va l ue ". You can ab breviate each of these
ke ywor ds as shown. The abbreviations and the for mat of t his
command are as follows (brac kets [J indicate optional param­
eters) :

5 - 7

FILES UTILITY SYSTEM

FORMAT :disk-:id:vol-name [GRANULARITY=gran]
[INTERLEAVE=ileave][NUMBERFNODES=nodes] [switch]

or

FORMAT :disk-id:vol-name [GR=gran] [IL-ileave]
[NF=nodes] [switch]

where:

disk-id

vol-name

Disk identifier which denotes the
RMX/86 drive on which the disk resides.
Possible values include:

FO
Fl
F8
F9
HO
HI

These values are described earlier
in this chapter. Use colons to
delimit the disk identifiers.

A one to ten character volume name
which identifies the disk. ASCII
digits, upper and lowercase letters,
spaces, and the following special
characters can be used in the disk
identifier:

II

%

& ,
(
)

*
+

<
I >
= ?

gran The granularity, in bytes, for this
volume. The granularity is the
number of bytes obtained during each
disk access. If you omit this
parameter, the default volume
granularity is the device granu­
larity (the number of bytes in a
physical sector). Specifying any
value less than the device granu­
larity causes the default to be
used. Any non-multiple of 128 is
rounded up to the next multiple of
128.

5-8

ileave

FILES UTILITY SYSTEM

The interleave factor for the
volume, or the number of physical
sectors between logical sectors. You
can specify any integer from 1 to 13
for this value. If you omit this
parameter, a default value of 1 is
assumed.

nodes The number of
created on this
this parameter,
50 is assumed.

files that can be
volume. If you omit
a default value of

switch A switch which indicates the support
option for this volume. One value
can be entered for this switch.

NAMED The volume is created for
the named file driver.
The ROOT directory is
initialized.

r>.

EXIT

If you omit this switch, the volume
is created for the physical file
driver. In this case, FORMAT records
the interleave information on the
disk, but does not initialize any of
the data structures.

This command exits from the Utility System. The format of this
command is as follows:

EXIT

5-9

CHAPTER 6. THE RMX/86 DEVELOPMENT PROCESS

In order to produce a final RMX/86-based application system for
your users, you must go through two phases: a development phase
and a production phase. During the development phase you
design, build, and debug your system. In the production phase
you produce the final systems for your users. This chapter
outlines the steps you need to follow as you develop your
RMX/86-based application system. It is an overview of a typical
scenario, illustrating the main points of the developmp.nt
process.

1. Define your application.

2. Do the high level design. This includes:

• Identify your hardware requirements.

(\

• Determine which parts of the RMX/86 Operating
System parts you need. The configurable nature of
the RMX/86 software allows you to select the parts
that your application requires. It is recommended
that you include the Debugger in your application
system until it is fully developed. When you have
com- pleted the development process, you can remove
the Debugger from your system in order to reduce
your memory requirements.

• Divide your application into jobs and tasks. Assign
task priori ties, identi fy exchanges used for
intertask communication, and determine the methods
of interrupt handlinq and exception processing. The
Introduction to the RMX/86 Operating System and the
RMX/86 Nucleus, Terminal Handler, and Debugger
Reference Manual contain information about these
processes.

3. Write and debug the task code. As soon as you finish
writing each task, you can use either the 1CE-86
In-Circui t Emulator or the iSBC 957A oack aqe to debug
it.

4. Configure the application system. Do this by creating a
system configuration file and an individual configur­
ation file for each part of the Operating System.
Assemble and compile all of the code, link it in the
correct manner, and locate it at the prop er addresses.
The RMX/86 Configuration Guide for ISIS-II Users
describes this process in detail.

6-1

THE RMX/86 DEVELOPMENT PROCESS

5. Assemble your hardware for testing the system.

6. If you are using the 1/0 System in your application,
load the Files utility System, format your RMX/86
disks, and copy any necessary information to them.

7. Test and debug your system using the Debugger and
either the ICE-86 In-Circuit Emulator or the iSBC 957A
Interface and Execution package. Continue performing
steps 3, 4, and 7 until you are satisfied with your
system.

8. Unless you want the Debugger to be a permanent part of
your system, perform step 4 again, but omit the
Debugger.

9. Burn your debugged code into PROM, and place it on your
iSBC 86/l2A board.

6- 2

APPENDIX A. ORIGINAL JUMPERING OF BOARDS

This appendix lists the jumper connections that were made on
the iSBC 86/12A board at the factory.

ORIGINAL iSBC 86/12A JUMPERS

Pin Connections

5-6 24-35 54-55 97-98
7-8 26-27 56-57 103-104
7-10 28-29 59-60 105-106

13-14 30-31 68-76 125-126
15-16 32-33 79-83 129-130
17-18 39-40 92-93 143-144
19-20 42-43 94-96 151-152
21-25

Jumper Pad Connection

Wl A-B
W2 A-B
W3 A-B
W4 A-B
W5 A-B
W6 A-B

A-l

APPENDIX B. RMX/86 CONDITION CODES

CATEGORY/
MNEMONIC

Normal

MEANING
NUMERIC CODE
HEX DECIMAL

E$OK

Exceptional

The most recent system call was
successful. OH o

Environmental
Conditions

E$TIME

E$MEM

E$LIMIT

E$CONTEXT

E$EXIST

E$STATE

ENOT­
CONFIGURED

E$FEXIST

E$FNEXIST

E$SUPPORT

A time limit (possibly a limit of
zero time) expired without a task's
request being satisfied. lH

There is not sufficient memory avail-
able to satisfy a task's request. 2H

A task attempted an operation which,
if it had been successful, would have
violated a Nucleus-enforced limit. 4H

A system call was issued out of
proper context. 5H

A token parameter has a value which
is not the token of an existing
object. 6H

A task attempted an operation which
would have caused an impossible
transition of a task's state. 7H

The most recently issu~d system
call is not in the present config-
uration. 8H

File already exists. 20H

File does not exist. 2lH

Combination of parameters not
supported. 23H

8-1

1

2

4

5

6

7

8

32

33

35

CATEGORYI
MNEMONIC

RMX/86 CONDITION CODES

MEANING
NUMERIC CODE
HEX DECIMAL

Environmental
Conditions (continued)

E$FACCESS

E$FTYPE

E$SPACE

Programmer
Errors

File access not granted.

Incompatible file type.

No space left.

26H

27H

29H

38

39

41

E$ZERO$- A task attempted to divide by zero.
DIVIDE 8000H 32768

E$OVERFLOW An overflow interrupt occurred. 8001H 32769

E$TYPE A token parameter referred to an
existing object that is not of the
required type. 8002H 32770

E$BOUNDS A task attempted to access beyond
the end of a segment. 8003H 32771

E$PARAM A parameter which is neither a token
nor an offset has an illegal value. 8004H 32772

EBADCALL Call invoked illegally.

E$IFDR Illegal file driver request.

E$NOUSER No default user.

E$NOPREFIX No default prefix.

ENOTDEV$- Not a valid device name.
NAME

8005H 32773

8020H 32800

8021H 32801

8022H 32802

804DH 32845

ENOT­
CONN$NAME

Asynchronous
Conditions

Not a valid connection name.
804EH 32846

E$MEM There is not sufficient memory avail-
able to satisfy a task's request. 2H

B-2

2

CATEGORYI
MNEMONIC

RMX/86 CONDITION CODES

MEANING
NUMERIC CODE
HEX DECIMAL

Asynchronous
Conditions (continued)

E$LIMIT A task attempted an operation which,
if it had been successful, would have
violated a Nucleus-enforced limit. 4H 4

(,

E$CONTEXT

E$FEXIST

E$FNEXIST

E$DEVFD

E$SUPPORT

E$EMPTY$­
ENTRY

EDIREND

E$FACCESS

E$FTYPE

E$SHARE

E$SPACE

A system call was issued out of
proper context.

File already exists.

File does not exist.

Device and file driver are incom­
patible.

Combination of parameters not
supported.

Empty directory entry.

End of directory.

File access not granted.

Incompatible file type.

Improper file sharing requested.

NO space left.

5H

20H

21H

22H

23H

24H

25H

26H

27H

28H

29H

5

32

33

34

35

36

37

38

39

40

41

E$IDDR Illegal device driver request.

E$IO 1/0 Error.

E$FLUSHING Connection is flushing requests.

E$IUVOL Illegally named volume.

B-3

2AH

2BH

2CH

2DH

42

43

44

45

INDEX

ABS function 4-11
application-dependent requirements 2-3
arrays 4-3
storage space 4-11

backplane 3-4
BASIC

functions 4-10
statements 4-6

board
arrangement in the chassis 3-4
jumpering A-l
modifications 3-1

BPRNI signal 3-4

cable connections 3-6
CATALOG statement 4-15
changing disks 5-5
chassis arrangement 3-4
condition codes 5-4, B-1
constants 4-4
CREATEDIR comand 5-6

CRTMBDX function
CRTSEGM function
CRTSEMA function
CRTTASK function

4-19
4-22
4-17
4-12

DELETE command 5-6
DELMBOX statement 4-20
DELSEGM statement 4-22
DELSEMA statement 4-18
DELTASK statement 4-12
demonstration system 4-1
development

environment 2-1
process 6-1

Development System 2-2
device information table entries 3-2
dictionary of statements and functions 4-5
DIR command 5-7
direct mode 4-3
disk identifier 5-8
disks 5-5
DOWNCOPY command 5-8

I-l

Index (continued)

error messages 5-4
executing the Files utility 5-2
EXIT command 5-9
expressions 4-4

Files utility System 5-1
FILES.CSD file 5-2
FOR statement 4-8
FORMAT command 5-7
functions 4-4, 4-10

general requirements 2-2
GETTKNS function 4-14
GOSUB statement 4-8
GOTO statement 4-9
granularity 5-8

hardware
considerations 3-1
requirements 4-1, 5-1

ICE-86 In-Circuit Emulator 4-1
IF statement 4-9
initialization errors 5-4
INPUT statement 4-10
interleave factor 5-9
interpretive mode 4-3
interrupt levels 3-2
introduction to the RMX/86 package 1-1
inventory 1-1
iSBC 204

board 3-5
connections 3-2

iSBC 206
board 3-5
controller switch selection 3-3

iSBC 86/12A
board 3-4, A-I
connections 3-1

iSBC 957A package 3-2
ISIS-II errors 5-4

jumper connections 3-1

LET state ment 4-9
LIST statement 4-6
loading the demons t r a t i on system 4-2
LOOKUPO function 4-16

memory boar d jumper connections 3-3
memory requirements 2-3
messages 5-4
modes 4-3
MULTIBUS contention 3-4

1-2

Index (continued)

named file driver 5-9
NEW statement 4-7
NEXT statement 4-8

operating modes 4-3

physical file driver 5-9
priority 3-4
PRINT statement 4-7
program storage 4-3

RCVUNIT function 4-19
recommendations 1-2
RECVMSG function 4-21
REM statement 4-9
requirements 2-2, 2-3, 4-1, 5-1
RESTASK statement 4-13
RETURN statement 4-8
RMX/86

development environment 2-1
package 1-1
statements and functions 4-11

RNO function 4-10
RUN statement 4-7

SENOMSG statement 4-20
serial priority scheme 3-4
SIZE function 4-11
SLEEP statement 4-14
SNOUNIT 4-18
starting the Files Utility 5-2
statements and functions 4-4
dictionary 4-5

STOP statement 4-10
storing programs 4-3
support option 5-9
SUSTASK statement 4-13

TBASIC interpreter 4-1
target system 2-2

UNCATLG statement 4-17
UPCOpy command 5-5
using the demonstration system 4-3

variables 4-3
volume
granularity 5-8
name 5-8

1-3

AMX/86 Installation Guide
for ISIS-II Users

9803125-01

DATE _

REQUEST FOR READER'S COMMENTS

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets
you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this
document.

1. Please specify by page any errors you found in this manual.

('\2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

r>.
3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are

needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. _

NAME _

TITLE _

,~ COMPANY NAME/DEPARTMENT _

ADDRESS _

CITY - STATE ZIP CODE _

Please check here if you require a written reply . 0

WE'D LIKE YOUR COMMENTS . . .
~.

This document is one of a series describing Intel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications
3065 Bowers Avenue
Santa Clara, CA 95051

1111'1
NO POSTAG/" <,

NECESSARY
IF MAILED

IN THE
UNITED STATES

....

