VR

INTRODUCTION TO THE
RMX/86™ OPERATING SYSTEM

Manual Order Number: 9803124-01

Copyright © 1980 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation

3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Intel Corporation assumes no responsibility for any errors that may appear in this document.
Intel Corporation makes no commitment to update nor to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel
Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel’s software
license, or as defined in ASPR 7-104.9(a)9).

No part of this document may be copied or reproduced in any form or lby any means without
the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to describe Intel
products:

BXP Intellec Multibus

i iSBC Multimodule
ICE iSBX PROMPT
iCS Library Manager Promware
Insite MCS RMX

Intel Megachassis UPI
Intelevision Micromap uScope

and the combination of ICE, iCS, iSBC, iSBX, MCS, or RMX and a numerical suffix.

PREFACE

If you are looking for a high level introduction to the RMX/86
Operating System, this book will satisfy you. By reading this
book, you will acquire sufficient knowledge of the RMX/86
Operating System to:

() See how the RMX/86 Operating System can help vyou

develop your application system in 1less time and at
less expense.

(] Begin reading the more detailed RMX/86 manuals.

The book, which is written for engineers and managers, 1is
designed to be read completely in one or two sittings. It
presents information starting with the most general and
familiar terms which it then uses to define specific and new
terms.

Throughout this manual, the expression 1iSBC 86 Single Board

Computer has been used to mean the iSBC 86/12A Single Board
Computer.

iii

N

TABLE OF CONTENTS

PAGE
el e T ii
CHAPTER 1
OVERVIEW OF THE RMX/86 OPERATING SYSTEM....viiennnennn ceeeee 1-1
Major Characteristics of the RMX/86 System.......ceeveuenenn. 1-1
Customers of the RMX/86 Operating System....ieee e eennn 1-2
Commonly Used RMX/86 TeTMINOlogy ceeteeeeeeeeeeeeeeeeeonnnnens 1-2
Purpose of the RMX/86 Operating System.....eeeeeineennennenn. 1-2
Organization of this ManuUal...ieeeeetieieieeeeeeeeeeooeneonnnnns 1-3
Chapter 2
CONSIDERATIONS RELATING TO REALTIME SOFTWARE ... ettt eeeeennns 2-1
Event Detection. . ittt ieeerieesenoosoonsssonnsonnsnss 2-1
Scheduling Of ProCESSINg..:ceeeeeeteneeeeeeeoeaeensscananenns 2-1
ErTOT PrOCESSINg.e e e iiit i inneessoeeoesoosasescansoessosocssssoess 2-1
Device Sensitivity..oe et iiie i iineeeeoeoeeenoeenneennnns 2-2
Device Selection. ...ttt ittt eeeneensssoasosoesssaansas 2-2
Mass Storage File Allocation Tradeoffs..iiieeeeieiieineennoennns 2-2
Unneeded FEAEULES. .t ittt ittt ttteeeeooeroeeoosscassssnasssssas 2-2
Multiple Applications. .c.ee et ittt ieeeeeeeeoeenooonnnnannnns 2-2
MemOTYy RequUirement s . iv ittt ittt eerecocesssssoosssssssoans 2-2
Files and MUlLiple USETS:iieeeeeeeeeeoeeeeseoneeas ceces e cee.2=3
DEDUGGINg e st ot ettt s i ittt enesoossassossossssossocssessssseneass 2-3
Chapter PerspeClive. ..o ittt tteeeertoosnsessssssosacsssons 2-3
Chapter 3
BENEFITS OF THE RMX/86 OPERATING SYSTEM. ...t eeeroeonsceann 3-1
Development TimME. .. oo ieeeeeeoeeeesosoeasscaosoessosossscasens 3-2
Cost of Implementation. ..t iiiiieeeetioneesssnnsccnonsns 3-2
Costs After Development ... ittt ieeeeeeeososesooscesssonsonnoass 3-2
Chapter PersSpeClivVe. vttt ittt tetieeeenossssesosssoossnsssseoe 3-2
CHAPTER 4
FEATURES OF THE RMX/86 OPERATING SYSTEM. ..t teenoeennsans 4.1
Object-Oriented Architecture......ciiiiiiiiiiiieineetennennns 4-2
Explanation of Object-Oriented Architecture.............. 4-2
Advantages of Object-Oriented Architecture............... 4-4
T o v = = T T 4-4
Explanation of Multitasking....ieieeiiiiiieeeeiienneonnns 4-4
Advantages of Multitasking.....oi it eeennoeeceococncannns 4-5
InterTupt Processing....ieeeeeeeeerenscooosnocsococnnens e eeaen 4-5
Explanation of Interrupt Processing.....ceeeeeereeececens 4-5
Advantages of Interrupt ProCessSing..c.ceceeeeectoescceeess 4-6

TABLE OF CONTENTS (continued)

PAGE

Preemptive Priority-Based Scheduling....eeee et eeeeneneeeeens 4-6
Explanation of Preemptive Priority-Based Scheduling..... 4-6
Advantage of Preemptive Priority-Based Scheduling....... 4-7
MULEIpTOgramming . v et n i et tineneeeseeeeosoeesesenesensananns 4-7
Explanation of Multiprogramming...eeeeeeeeeeeoooesonsens 4-7
Advantages of Multiprogramming......eeeeeerieeneeeeesenns 4-8
ol o o =Y o e 1 T 4-8
Explanation of Error Handling....e.e e oieineiooonnrnosenns 4-9
Advantage of Error Handling....eeeeeiieieeneeeeaooeonnns 4-11
Dynamic MemorTy AlloCation..iiee et eeeeeeeneeeeeeonaoennnnenns 4-11
Explanation of Dynamic Memory Allocation.........ccveen 4-11
Advantage of Dynamic Memory Allocation........eeeeeenn.. 4-12
Intertask Coordination. . oottt ittt ienerieeocosnannnns 4-12
Explanation of Intertask CoordinationN.....ieeieieneeeens 4-12
Advantage of Intertask Coordination........... . coviuuen 4-16
Runtime Binding. e e oo it iiie it ineeeneensennnssnonsonenns 4-17
Explanation of Runtime Binding......eeieiiiieiernernesons 4-17
Advantages of Runtime Binding.......eeeieeteinenonneenns 4-19

e o = o o B o T 4-19
Explanation of Extendibility....coviiiiiiiiinniieiennnens 4-19
Advantages of Extendibility......c.iiiiiiiiiiiiiiinnnnns 4-19
Terminal Handling. e oo e et ittt oetnoeeoesoesnssesensescoensnsnns 4-20
Explanation of the Terminal Handler.......c.ocieivivueenns 4-20
Advantages of the Terminal Handler........ooiieiiinnnnns 4-20
Device-Independent Input and Cutput......ieiiiiiiiiiiiieenns .4-20
Explanation of Device-Independent Input and Output...... 4-20
Advantages of Device-Indpendent Input and Output........ 4-21
Hierarchical Naming of Mass Storage FilesS....iviviineeeennns 4-21
Explanation of Hierarchical Naming.........ciiiiviiieenn. 4-21
Advantages of Hierarchical Naming.......ciiiiieeeeeenaens 4-24
File Access CONErOl. . vttt iiiii ittt eeennnosessansnsnnsas 4-25
Explanation of Access Control. ...t erenieenenecaneennas 4-25
Advantages of Access Control......c.viiiiiiiiiinnerennnns 4-25
Control over File Fragmentation........iiiiiiiiiiiiiiinennns 4-25
Explanation of File Fragmentation........coiiiiieennns 4-26
Advantages of Control over Fragmentation................ 4-26
Selection Of DevICe DIIVETLS ...t iieeineieoeennssosossannsaas 4-27
Explanation o0f DeviCe DIrivVET ...ttt it eeeeeeeeeneeeanns 4L-27
Advantages of Having a Selection.......ciiiiiiiiineeenns 4-27
Object-0Oriented DeEbDUGOET . vt ittt ittt i ittt e i et seesas 4-28
Explanation of an Object-Oriented Debugger.............. 4-28
Advantage of an Object-Oriented Debugger......eeeeeeeos. 4-28

(0] T e U o= o 5 0 4-29
Explanation of Configurability.......iiiiiiiiiieieennnns 4-29
Advantages of Configurabilitfy.....oiieiiiiiiiiononnnnnnss 4-31
Chapter PersSpPeCLiVE .ttt ettt ittt ittt oneeeeoeneeennnnnes 4-32

vi

TABLE OF CONTENTS (continued)

PAGE
CHAPTER 5
A HYPOTHETICAL SYSTEM.: it ittt ittt eenoeaeteeeoesssacannsaansannn 5-1
InterrTupt ProCESSINg. it iiiin ettt eeenseteeasosnssasaansns ceeess 5-3
Terminal HANALler ... i it ettt teeeeeeeeeeeseaeasasssnsosssnnneoeas 5-4
MULEIEASKING et oot eeeeeeennoeesoesssssossssssansccnaes P .
Intertask Coordination. .. e ittt eeeeencnoocnaneenssans eeeeeb=5
MULtIipTOgrammMing . e e e e eeeeesooososoossnesoonccceas e eeesaD=5
Runtime Binding.ee e ie it in et iieeeenoostesesosssssosnnanssanss 5-5
Mass Storage FillesS...eeiiieiiiiiiiiieinieneennnnnns B B
Device INJEPENOENCE . vttt teeeoeeoososeosoossccansceas ceeses.aD=6
Chapter PersSpPeClivVe. e eieeeeeeeeesoesseesssecasccsssosassonnnses 5-6
Chapter 6
RMX/86 LITERATURE ¢t e ittt teeeeteceeoseeeennneesneensnnen .o . e 6-1
Introduction to the RMX/86 Operating System......cveieeeecenn 6-3
RMX/86 Nucleus, Terminal Handler, and Debugger
Reference Manual.... oottt ienneetoesseeosecosssaasscsnnns 6-3
RMX/86 I1/0 System Reference Manual......iueiiiieeeeeneaennnsan 6-3
RMX/86 System Programmer's Reference Manual........... e e 6-4
RMX/86 Installation Guide foT ISIS-I1 USETS .t eeeeeteeennoenns 6-4
RMX/86 Configuration Guide for ISIS-II USEBIS..iieeeoeccocscenes 6-5
REAdINg TIPSt ieinneeneeeeeeeeeeeesesooesneensssanna et ..6-5
TABLE OF FIGURES
FIGURE TITLE PAGE
1-1 The RMX/86 foundation for application systems..... co1-1
3-1 The RMX/86 QOperating System provides
gconomic benefits.. i, e 3-1
4-1 Features of the RMX/86 Operating System............. 4-2
4-2 An Engineering direCtory....ooviieiiieenneeennn e 4-22
4-3 A Marketing direCtoTy .. vt ittt ittt nennennnes 4-23
4-4 Hierarchical naming of filesS..ieee i eeennnns 4-24
4-5 Configuration of a hypothetical system.............. 4-29
4-6 Dual objectives of RMX/86 configuration........ eee. s 4=30
5-1 Hardware of the dialysis application system......... 5-2
TABLE OF TABLES
VI-I Correlation of manuals and features.........c.cceceu.. 6-2

vii

CHAPTER 1 - OVERVIEW OF THE RMX/86 OPERATING SYSTEM

The RMX/86 Operating System is a software package designed for
use with Intel's iSBC 86 Single Board Computers.

MAJOR CHARACTERISTICS OF THE RMX/86 SYSTEM

The RMX/ 86 Operating System exhibits the following
characteristics:

® It can simultanecusly monitor and control unrelated
events occuring outside the single board computer.

(] It can communicate with a wide variety of input,
output, and mass storage devices.

® It provides a powerful and flexible means for an
operator to observe and modify the behavior of the
system.

These characteristics (especially when combined with features
discussed in Chapter 4) make the RMX/86 Operating System an
excellent foundation for your software-based products (Figure
1-1).

~__ APPLICATION SYSTEM

APPLICATION
‘ SOFTWARE

| RMX/86
| OPERATING |
| SYSTEM |

|

Figure 1-1. The RMX/86 foundation for application systems.

OVERVIEW OF THE RMX/86 OPERATING SYSTEM

CUSTOMERS OF THE RMX/86 OPERATING SYSTEM

The RMX/86 Operating System 1s designed for two types of
customers. Original Equipment Manufacturers, OEMs, are
companies that build products for resale. Volume End Users,
VEUs, are companies that build products for use within their
organization. Both types of customers can produce products more
gquickly and at 1less expense by using the RMX/86 Operating

System.

COMMONLY USED RMX/86 TERMINOLOGY
The following terms are used frequently in this book:
° Application

An application is the problem that you solve with your
product.

] Application System

An application system is the product that satisfies the
requirements of the application (Figure 1-1).

° Application Software

The application software is all the software you must
add to the RMX/86 Operating System in order to complete
your application system (Figure 1-1).

® User

The user 1is the indiviagual or organization who uses
your application system.

PURPOSE OF THE RMX/86 OPERATING SYSTEM

The RMX/86 Operating System 1is your shortcut to the market-
place. By supplying you with features that can be used in a
large number of application systems, the RMX/86 Operating
System allows you to focus your attention on the specialized
application software. Since you spend less time and effort
developing sophisticated system software, you can bring your
application system to market faster and at a lower price.

OVERVIEW OF THE RMX/86 OPERATING SYSTEM

ORGANIZATION OF THIS MANUAL

This manual is divided into six chapters. Some of the chapters
are designed for managers, some for engineers, and some for
both. The following paragraphs identify the audience and
purpose of each chapter.

° Chapter 1 - Overview of the RMX/86 Operating System

Chapter 1 provides managers and engineers with a very
brief introduction to the RMX/86 OQ0perating System. It
provides vocabulary needed in later —chapters and
contains a statement of purpose for each chapter "in
this manual.

° Chapter 2 - Considerations Relating to Realtime Software

Chapter 2 introduces engineers to some of the obstacles
that the RMX/86 Operating System can eliminate.
Managers who have had programming experience may want
to read this short chapter.

® Chapter 3 - Benefits of the RMX/86 Operating System

Chapter 3 provides managers with a discussion of the
economic benefits of using the RMX/86 Operating System.
Curious engineers may also want to read this short
chapter.

° Chapter 4 - Features of the RMX/86 Operating System

Chapter 4 is a tutorial for engineers. It discusses the
features of the RMX/86 Operating System and, at the
same time, it defines the vocabulary used in the other
RMX/86 manuals. Engineers who have had vyears of
realtime, multitasking programming experience need only
skim this chapter to ascertain the features of the
RMX/86 Operating System.

® Chapter 5 - A Hypothetical System

Chapter 5 1is designed primarily for engineers. It
describes a relatively simple application system. The
purpose of this chapter is to illustrate the use of
some of the features discussed in Chapter 4.

OVERVIEW OF THE RMX/86 OPERATING SYSTEM

Chapter 6 - RMX/86 Literature

Chapter 6 contains a description of the other manuals
associated with the RMX/86 Operating System. This
chapter is designed for engineers who need information
more detailed than that provided by this introductory

manual.

CHAPTER 2 - CONSIDERATIONS RELATING TO REALTIME SOFTWARE

The kinds of difficulties encountered in real-time programming
differ significantly from those found in other aspects of
programming. This chapter briefly introduces some of the
problems that face designers of real-time systems.

The purpose of this chapter is not to discourage you from
building a real-time application system. Rather, its purpose 1is
to show you the kinds of hurdles that the RMX/86 Operating
System can help you jump. Consequently, this chapter only poses
guestions -- it provides no answers. You can find the answers
in the discussion of RMX/86 features in Chapter 4 of this

manual.

EVENT DETECTION

Real-time application systems monitor events in the real world.
These events occur asynchronously, that is, at seemingly random
intervals. When an event occurs, the system could be in the
midst of processing information associated with a previous
event. Even so, the system must be able to detect and record
the occurence of the second event.

SCHEDULING OF PROCESSING

Assuming that the system can detect and record the occurrence
of an event, it still must decide in what order to process
recorded events. For that matter, when the system 1is in the
middle of processing a relatively wunimportant event and a
critical event occurs, the system must be able to respond
correctly. It must be able to postpone the processing of the
less significant event until the more important one has been
processed. Then, after the higher priority processing, the
system must resume where it left off.

ERROR PROCESSING

Suppose that during the processing of real-time events, an
error is detected. How can the error be corrected, or how can
its impact be limited, without adversely affecting the running
of the system? The whole system, for instance, should not be
shut aown merely because an error is detected.

CONSIDERATIONS RELATING TO REAL-TIME SOFTWARE

DEVICE SENSITIVITY

Many real-time applications use one or more input or output
devices. And sometimes, the devices associated with an
application system must be changed. By allowing devices to be
changea without requiring recompilation, the operating system
can save much time and effort.

DEVICE SELECTION

What kinds of devices should an operating system support?
Can it handle line printers? Disks? Bubble memories? Tapes?

MASS STORAGE FILE ALLOCATION TRADEOFFS

In any real-time system, performance is an important
consideration. One decision that relates directly to
performance must be made before formating mass storage files.
In some applications, 1large granularity (large amounts of
information located contiguously) results in much faster
retrieval. In other applications, large granularity does not
improve performance, but does waste space on the device. The
operating system must contend with the tradeoff between
performance and optimal use of space on the device.

UNNEEDED FEATURES

Some OEM and VEU applications require features that other
applications do not. An operating system should provide a means
of selecting required features and rejecting unneeded features.

MULTIPLE APPLICATIONS

Sometimes there is a need to run more than one application on
the same computer. Several applications might need to share
some resources, such as hardware and perhaps some files, while
reserving other resources for themselves.

MEMORY REQUIREMENTS

The memory requirements of some applications change according
to the events that occur in the real world. If a system can
share memory between applications, then the total amount of
memory required for the system might be less then the sum of
the maximum amounts required by each application.

p

CONSIDERATIONS RELATING TO REAL-TIME SOFTWARE

FILES AND MULTIPLE USERS

Some applications, such as key-to-disk and database management
systems, support more than one user. In such systems, two
problems relate to mass storage files.

The first problem pertains to file naming. The users must be
able to name files without concern for duplicate names. If they
cannot, each user may be forced to guess at names that have not
yet been assigned by other users.

The second problem deals with selective sharing of files.
Multiuser systems often need to be able to share and protect
files. For instance, in a key-to-disk system, one operator may
be entering data while another simultaneously verifies. This
illustrates the need for sharing a file. Now suppose that the
file contains confidential information. Once verified, the file
must be protected against unauthorized reading and writing.
This illustrates the need for restricting access. The system
must provide for both sharing and restricted access.

DEBUGGING

Virtually all software, no matter how carefully checked out by
manual inspection, contains some bugs. Usually, these bugs are
detected by wusing the system until an error occurs. Once the
error is found, an engineer begins tracing backwards from the
error to the bug that caused it. When the bug is identified,
the engineer modifies the software and eliminates the bug. This
process, called debugging, is repeated until no more errors are
found.

This debugging process 1is not always straightforward in
real-time systems. O0Often, bugs in real-time systems are
dependent upon events in the real world (outside of the
computer). In order to catch some real-time bugs, the system
must continue to run even while it 1s being debugged.

CHAPTER PERSPECTIVE

If the foregoing considerations pertain to your application,
then the RMX/86 Operating System can save you an enormous
amount of effort. To see how the RMX/86 System resolves these
and other similar problems, read Chapter 4.

CHAPTER 3 - BENEFITS OF THE RMX/86 OPERATING SYSTEM

You are reading this manual because you are planning to develop
a real-time application system. As an OEM or a VEU, you are
interested in developing your application system quickly while
still holding down the cost of development. Furthermore, you
want to minimize your costs after development. By serving as a
foundation for your application software (Figure 3-1), the
RMX/86 Operating System can help you meet your objectives.

APPLICATION SYSTEM

APPLICATION
SOFTWARE

RMX/86

OPERATING
SYSTEM

LESS COSTLY
MAINTENANCE

Figure 3-1. The RMX/86 System provides economic benefits.

3-1

BENEFITS OF THE RMX/86 OPERATING SYSTEM

DEVELOPMENT TIME

The RMX/86 Operating System helps you develop real-time
application systems quickly. Acting as the foundation for your
specialized application software, the RMX/86 Operating System
provides services that are required by many real-time
applications. Since these services are supplied by the RMX/86
Operating System, your application engineers spend no time
writing software to manage multitasking, dynamic memory
allocation, and other functions wvital to many real-time
applications. Rather, your engineers concentrate their efforts
on the software that relates specifically to the application
being solved. This greatly reduces the time needed to develop

your application system.

COST OF IMPLEMENTATION

The RMX/86 Operating System helps reduce the cost of
implementation in two ways. First, by supplying the general
services required by many realtime applications, the RMX/86
System reduces your manpower requirements. Second, the features
of the Operating System simplify the process of development.
These features, such as object-oriented architecture, device
independence, and others, are discussed in Chapter 4.

COSTS AFTER DEVELOPMENT

After your application system is developed, your major expense
becomes maintenance -- the process of removing bugs, making
changes, and adding features. The RMX/86 Operating System helps
minimize these costs.

First, a number of features of the RMX/86 Operating System
smooth the process of system design, reducing the probability
of major design errors. These features, which include
multitasking and multiprogramming, are described in Chapter 4.

Second, when errors do reveal the presence of bugs in your
application software, the RMX/86 System provides features to
help find the bugs. These features include error handlers and

an object-oriented, real-time debugger.

Third, the modularity provided by multiple jobs and tasks lets
you make changes and additions without severely affecting the
system's overall design.

BENEFITS OF THE RMX/86 OPERATING SYSTEM

CHAPTER PERSPECTIVE

The RMX/86 Operating System is your economic ally. It helps you
put your real-time application system in the hands of your
users in less time and at less expense. It also reduces your
maintenance costs after your system is developed.

CHAPTER 4 - FEATURES OF THE RMX/86 OPERATING SYSTEM

This chapter provides you with moderately detailed descriptions
of the following features (Figure 4-1) of the RMX/86 Operating

System:

Object-0Oriented Architecture
Multitasking

Interrupt Processing

Preemptive Priority-Based Scheduling
Multiprogramming

Error Handling

Dynamic Memory Allocation

Intertask Coordination

Runtime Binding

Extendibility

Terminal Handler

Device-Independent Input and Output
Hierarchical Naming of Mass Storage Files
File Access Control

Control over File Fragmentation
Selection of Device Drivers
Object-Oriented Debugger

Configurability

Each section of this chapter deals with one of these features

and, in
section
of each
feature
of each

case you are already familiar with some features, each
is organized for easy skimming. The first few sentences
section provide a summary of the feature's value. The
is then described in moderate detail and, near the end
section, the advantages of the feature are discussed.

FEATURES OF THE RMX/86 OPERATING SYSTEM

APPLICATION SYSTEM

APPLICATION
SOFTWARE

NT
DEVICE-INDEPENDE
INPUT AND OUTPUT

O

RMX/86 W’

" OPERATING
Gie SYSTEM

) RIOR
Q\\’Q,o" N TY
OO«Q‘O SCHEDUL ASED
Lo ING
C° ExTENDIBILITY.

Figure 4-1. Features of the RMX/86 Operating System.

OBJECT-ORIENTED ARCHITECTURE
The RMX/86 Operating System uses an object-oriented

architecture because it makes the Operating System easy to
learn and use.

Explanation of Object-Oriented Architecture

An operating system 1is a collection of software that is meant
to be used by software engineers. Many operating systems are so
complex that the majority of the engineers wusing them are

FEATURES OF THE RMX/86 OPERATING SYSTEM

unable to fully grasp their organization. In contrast, systems
exhibiting object-oriented architectures are easier to
understand. Their mechanisms are well defined, and they
demonstrate a consistancy that makes the operating system seem
less awesome.

In other words, an object-oriented architecture is a means of
humanizing an operating system. It uses a collection of
building blocks that are manipulated by operators. Let's look
at an object-oriented architecture that you might be familiar
with -- FORTRAN.

To a large degree, FORTRAN exhibits an object-oriented
architecture. 1Its building blocks are variables of several
types. For instance, it has integers, real numbers, double-
precision real numbers, etc. It also has operators (+, -, *, /,
** and others) that act on variables to produce understandable
results. Let's turn back to operating systems and see how
object-oriented architecture works in the RMX/86 System.

The building blocks of the RMX/86 Operating System are called
objects and, as with FORTRAN variables, objects are of several
types. There are tasks, jobs, mailboxes, semaphores, segments,
and connections. There are also other types of objects, but we
already have enough for an introduction.

Just as the variables in a FORTRAN program are acted upon by
operators, the objects in an RMX/86-based application system
are acted upon by system calls. In other words, your appli-
cation software uses system calls to manipulate the objects in
your application system. For instance, the CREATE MAILBOX and
DELETE MAILBOX system calls do precisely what their names
suggest.

How does an object-oriented architecture make a system easier
to learn and use? By taking advantage of useful classification.
To illustrate this, let's return to FORTRAN. The variables of
FORTRAN are classified into types because each type exhibits
certain characteristics. For instance, all integer variables
are somewhat similar, even though they can take on different
values. Once you learn the ~characteristics of an integer
variable, you feel comfortable with every integer variable.
This similarity makes FORTRAN easy to master.

For the same reasons, the objects of the RMX/86 Operating
System are classified into types. Each object type (such as a
semaphore) has a specific set of attributes. Once you become
familiar with the attributes of a semaphore, you are familiar
with all semaphores. There are no special cases.

FEATURES OF THE RMX/86 OPERATING SYSTEM

This useful classification also applies to RMX/86 system calls.
Each type of RMX/86 object has an associated set of system
calls. These calls cannot be used to manipulate objects of
another type without causing an error. (Our analogy breaks down
at this point. FORTRAN operators almost always work on several
types of variables.)

The beauty of the object-oriented architecture of the RMX/86
Operating System can be summed up in one statement. Once you
learn the attributes and the system calls associated with a
type of object, you have complete knowledge of the behavior of

the object type.

Advantages of Object-Oriented Architecture

The advantages of an object-oriented architecture depend upon
your point of view. If you are an engineer, the advantage is
that you can master the Operating System in a very short time.
You can also focus your learning on the objects you plan to
use. If you only need a few object types, you can ignore the
others.

If you are a manager, you reap economic benefits. Because
engineers can quickly become familiar with the RMX/86 Operating
System, you can trim large amounts of time out of your system's
development cycle. Your system reaches your users far sooner
and at far less cost than it could without object-oriented

architecture.

MULTITASKING

The RMX/86 Operating System uses multitasking to simplify the
development of applications that process real-time events.

Explanation of Multitasking

The essence of real-time application systems is the ability to
process numerous events occurring at seemingly random times.
These events are asynchronous because they can occur at any
time, and they are potentially concurrent because one event

might occur while another is being processed.

Any single program that attempts to process multiple, con-
current, asynchronous events 1s bound to be complex. The
program must perform several functions. It must process the
events. It must remember which events have occurred and the
order in which they occurred. It must remember which events
have occurred but have not been processed. The complexity
obviously grows greater as the system monitors more events.

FEATURES OF THE RMX/86 OPERATING SYSTEM

Multitasking is a technique that unwinds this confusion. Rather
than writing a single program to process N events, you can
write N programs, each of which processes a single event. This
technique eliminates the need to monitor the order in which
events occur.

Each of these N programs forms an RMX/86 task, one of the types
of objects mentioned in "Object-Oriented Architecture." Tasks
are the only active objects in the RMX/86 Operating System, as
only tasks can issue system calls.

Advantages of Multitasking

Multitasking simplifies the process of building an application
system. This allows you to build your system faster and at less
expense. Furthermore, because of the one-to-one relationship
between events and tasks, your system's code is less complex
and easier to maintain.

INTERRUPT PROCESSING

The RMX/86 Operating System is an interrupt processor. When an
interrupt occurs, the RMX/86 Operating System schedules a task
to process the interrupt. This method of event detection
improves the performance of your application system.

Explanation of Interrupt Processing

There are two ways that computer systems can schedule
processing associated with detecting and controlling events 1in
the real world -- polling and interrupt processing. Polling, 1is
implemented by having the software periodically check to see if
certain events have occurred. An example of polling from a
human perspective can be created using a class of students and
a teacher. I1f, rather than spotting raised hands, the
instructor specifically asks each student in the class if the
student has any questions, then the instructor is polling the
students.

Polling has a major shortcoming. A significant amount of the
processor's time 1is spent testing to see if events have
occurred. If events have not occurred, the processor's time has
been wasted.

The second method of —controlling processing 1is interrupt
processing. In this method, when an event occurs the processor
is literally interrupted. Rather than executing the next
sequential instruction, the processor begins to execute a task
associated specifically with the detected event.

FEATURES OF THE RMX/86 OPERATING SYSTEM

The classroom example used earlier to portray a polling sit-
uation can also be used to illustrate interrupt processing. If
a student has a question, he raises his hand and speaks the
instructor's name. The instructor, interpreting this as an
interrupt, finishes his sentence and deals immediately with the
student's question. Once the instructor has answered the
student's question, he returns to what he was doing before he
was interrupted.

Advantages of Interrupt Processing

Interrupt processing of external events provides your
application system with three benefits.

] Better Performance

Interrupt processing allows your system to spend all of
its time running the tasks that process events, rather
than executing a polling loop to see if events have
occurred.

(] More Flexibility

Because of the direct correlation between interrupts
and tasks, your system can easily be modified to
process different events. All you need to do is write
the tasks to process the new interrupts.

° Economic Benefits

Because interrupt processing allows vyour system to
respond to events by means of modularly coded tasks,
your system's code 1is more structured and easier to
understand. Modular code is less costly to develop and
maintain, and it can be developed more quickly than
unstructured code.

PREEMPTIVE PRIORITY-BASED SCHEDULING

The RMX/86 Operating System uses preemptive, priority-based
scheduling to decide which task rTuns at any instant. This
technique ensures that if a more important task becomes ready
while a less important task is running, the more important task
begins execution immediately.

Explanation of Preemptive Priority-Based Scheduling

In multitasking systems, there are two common techniques for
deciding which task 1is to be run at any given moment. Time
slicing, where tasks are run in rotation, is the technique used

FEATURES OF THE RMX/86 OPERATING SYSTEM

in time-sharing systems. The second technique, priority-based
scheduling, uses assigned priorities to decide which task is to
be run.

Within priority-based scheduling, there are two approaches.
Nonpreemptive scheduling allows a task to run until it
relinquishes the processor. Even if while running it causes a
higher priority task to become ready for execution (for
instance, by deallocating a peripheral device), the original
task continues to run wuntil it explicitly surrenders the
processor.

The second approach to priority-based scheduling is preemptive.
In systems wusing preemptive scheduling, the system always
executes the highest priority task that is ready to run. In
other words, if the running task or an interrupt causes a
higher-priority task to become ready, the operating system
switches the processor to the higher-priority task.

Advantage of Preemptive Priority-Based Scheduling

Preemptive, priority-based scheduling goes hand-in-hand with
the interrupt processing discussed earlier. The priorities of
tasks can be tied to the relative importance of the events that
they process. This enables the processing of more important
events to preempt the processing of less important events.

MULTIPROGRAMMING
Multiprogramming provides your system with the ability to run

more than one application on one iSBC 86 Single Board Computer.
This helps reduce hardware costs.

Explanation of Multiprogramming

Multiprogramming 1is a technique wused to run several appli-
cations on a single application system. By using this
technique, the hardware is used more fully. More processing is
squeezed out of each hardware dollar.

In order to take full advantage of multiprogramming, you must
provide each application with a separate environment; that is,
separate memory, files and objects. The reason for the iso-
lation is to prevent independently developed applications from
causing problems for each other.

For instance, suppose that two unrelated applications share a
scratch file on a disk. If Application 1 writes information to
the file and Application 2 writes over the file, Application 1
has problems. The only way to avoid this kind of problem with

FEATURES OF THE RMX/86 OPERATING SYSTEM

shared files is to create some form of mutual exclusion. But if

the

applications must interact even to the point of

excluding each other, they cannot be developed independently.

The two

engineers creating the applications must coordinate

with each other and spend valuable time that could be used
within, rather than between, applications. The only alternative

is to avoid sharing the file.

The RMX/86 Operating System provides a type of object that can
be used to obtain this kind of isolation. The object is called

a job, and it has the following characteristics:

(] Unlike tasks, jobs are passive. They cannot

system calls.

invoke

(] Each Jjob includes a collection of tasks and resources

needed by those tasks.

[Jobs serve as useful boundaries for dynamically

allocating memory. When two tasks of one job

request

memory, they share the memory associated with their

job. Two tasks in different Jjobs do not
compete for memory.

o An application consists of one or more jobs.

directly

] Each job serves as an error boundary. When the appli-
cation detects an error, or when the operator decides
to abort an application, a Jjob is a convenient object

to delete.

Advantages of Multiprogramming

benefits.

Multiprogramming provides your application system with two
° Multiprogramming increases the amount of work vyour
system can do. By using your hardware a larger

percentage of the time, it lets your system run several
applications rather than one. This reduces the hardware

cost of implementation.

° Because of the correspondence between Jjobs and appli-

cations, new jobs can be added to your system

(or old

jobs removed) without affecting other jobs. This makes

your system much easier and faster to modify.

ERROR HANDLING

The RMX/86 Operating System allows your application system to

specify an error handling procedure for each task.

FEATURES OF THE RMX/86 OPERATING SYSTEM

Explanation of Error Handling

Error handling is the process of detecting and reacting to
unexpected conditions. The RMX/86 Operating System supports
error handling by doing a substantial amount of wvalidity
testing and condition checking within system calls, but it
cannot detect every error.

The RMX/86 O0perating System runs on an iSBC 86 Single Board
Computer. This computer does not provide memory protection. If
one of the procedures in your application software contains
bugs, it could execute code at random locations and write over
parts of the Operating System. The RMX/86 Operating System
cannot detect this kind of errcr.

Nonetheless, the RMX/86 O0Operating System does protect your
system from some types of errors. The concepts involved in the
RMX/86 error handling scheme are condition codes, exception
handlers, and exception modes. We'll 1look at these one at a
time.

] Condition Codes

Whenever a task 1invokes a system call, the RMX/86
Operating System attempts to perform the requested
function. Whether or not the attempt 1is successful the
Operating System generates a condition code. This code
indicates two things. First, it shows whether the
system call succeeded or failed. Second, in the case of
failure, the <code shows which unexpected condition
prevented successful completion. Successful completion
is indicated by a normal condition code, while
unsuccessful completion is indicated by an exceptional
condition code.

For the sake of flexibility in processing unexpected
conditions, exceptional condition codes are divided
into two categories. The first category, environmental
condition codes, consists of errors that a task cannot
anticipate. An example of such an error is insufficient
memory. The second category, programming error codes,
consists of two subcategories:

- Errors Detected by the Processor

The processor on the iSBC 86 Single Board Computer
detects several kinds of error conditions. One of
these, for instance, 1is an attempted division by
zero. Such errors can be avoided by wusing good
programming techniques.

FEATURES OF THE RMX/86 OPERATING SYSTEM

- Incorrect System Calls

If the Operating System detects parameters or
combinations of parameters that are incorrect, the
problem 1is considered a programming error. This
kind of error can usually be avoided by good
programming techniques.

(] Exception Handlers

An exception handler 1s a procedure that the Operating
System can 1nvoke when a task receives an exceptional
condition code. As each task is created, it is assigned
an exception handler; therefore an exception handler is
an attribute of a task. The alternative to wusing
exception handlers 1s to process exceptional condition
codes in the procedure that issued the system call.

] Exception Modes

An exception mode 1is an attribute of a task. When you
create a task (using the CREATE TASK system call), you
must set the task's exception mode to one of four
values. This value governs the processing of condition
cddes received by the task. The exception mode can be
assigned any of these values:

- Any processing of exceptional conditions must be
done within the procedure that 1issued the system
call leading to the exceptional condition.

- The task's exception handler processes only
environmental condition codes. Any processing of
programming error codes must be done within the
procedure that 1issued the system call 1leading to
the programming error code.

- The task's exception handler processes only
programming error codes. Any processing of
environmental codes must be done within the
procedure that 1issued the system call leading to
the environmental condition code.

- The task's exception handler processes both
environmental condition codes and programming error
codes.

In summary, exception handling works as follows. The Operating
System generates a condition code for each system call. If the
code 1indicates successful completion, the Operating System
detected no problems. If the <code indicates an exceptional
condition, the code can be processed either of two ways: within

4-10

FEATURES OF THE RMX/86 OPERATING SYSTEM

the procedure that invoked the system call, or by the task's
error handler which 1s invoked by the Operating System. The
decision as to which technique 1is used is a function of the
task's exception mode and the category of the condition code
(programming error or environmental condition).

You can control the behavior of a task's error handler because
you can write the handler. Consequently, the handler can
recover from the error, delete the job or task containing the
error, warn the operator of the error, or ignore the error
altogether. The choice is yours.

Advantage of Error Handling

Error handling provides your application system with several
methods for reacting to unusual <conditions. One of these
methods, having the Operating System automatically invoke your
task's error handling procedure, greatly simplifies error
processing. The other method, dealing with some or all unusual
conditions within your application task, allows you to provide
special ©processing for unusual circumstances. The RMX/86
Operating System allows your application system to wuse both
methods.

DYNAMIC MEMORY ALLOCATION

The RMX/86 Operating System supports dynamic allocation of
memory. This allows you to reduce your implementation costs by
building systems in which applications share memory. It also
allows your applications to change the amount of memory they
use as their needs change.

Explanation of Dynamic Memory Allocation

Although there are numerous techniques for assigning memory to
jobs, each technique falls into one of two classes: static
allocation or dynamic allocation. Let's 1look briefly at static
allocation first.

Static memory allocation entails assigning memory to Jjobs when
the system 1is starting up. Once the memory 1is allocated, it
cannot be freed to be used by other jobs. Consequently, the
total memory requirements of the system can be calculated by
adding the memory requirements of each job.

Dynamic memory allocation, on the other hand, allows Jjobs to
share memory. Memory 1is allocated to jobs only when tasks
request it. And when a job no longer needs the memory, one of
its tasks can free the memory for use by other jobs.

FEATURES OF THE RMX/86 OPERATING SYSTEM

Dynamic allocation also is useful within a job. Some tasks can
use additional memory to improve efficiency. An example of this
is a task that allocates large buffers to speed up input and
output operations.

Advantage of Dynamic Memory Allocation

The dynamic allocation of memory provides your application
system with reduced implementation costs. If your application
system runs more than one application, chances are fair that
memory demands for various Jjobs will be out of phase. That is,
one Jjob will be freeing memory while another needs more.
Dynamic memory allocation allows Jjobs to take advantage of
this. Consequently, your application system requires 1less
memory than it would using static allocation.

INTERTASK COORDINATION
The RMX/86 OQOperating System provides simple techniques for
tasks to coordinate with one another. These techniques allow

tasks in a multitasking system to mutually exclude,
synchronize, and communicate with each other.

Explanation of Intertask Coordination

As we have already seen, multitasking is a technique used to
simplify the designing of realtime application systems that
monitor multiple, concurrent, asynchronous events. Multitasking
allows engineers to focus their attention on the processing of
a single event rather than having to contend with numerous
other events occurring in an unpredictable order.

However, the processing of several events may be related. For
instance, the task processing Event A may need to know how many
times Event B has occurred since Event A last occurred. This
kind of processing requires that tasks be able to coordinate
with each other. The RMX/86 0Operating System provides for this
coordination.

Tasks can interact with each other in three ways. They can
exchange information, mutually exclude each other, and
synchronize each other. We'll now examine each of these.

4-12

FEATURES OF THE RMX/86 OPERATING SYSTEM

Exchanging Information

Tasks exchange information for two purposes. One
purpose is to pass data from one task to another. For
instance, suppose that one task accumulates keystrokes
from a terminal until a carriage return is encountered.
It then passes the entire line of text to another task,
which is responsible for decoding commands.

The second reason for passing data 1s to draw attention
to a specific object in the application system. 1In
effect, one task says to another, "I am talking about

that object."

The RMX/86 System facilitates intertask communication
by supplying objects called mailboxes along with system
calls to manipulate mailboxes. The system calls
associated with mailboxes are CREATE MAILBOX, DELETE
MAILBOX, SEND MESSAGE, and RECEIVE MESSAGE. Tasks use
the first two system calls to build and eradicate a
particular mailbox. They use the second two calls to
communicate with each other.

Let's see how tasks can wuse a mailbox for drawing
attention and for sending information. If Task A wants
Task B to become aware of a particular object, Task A
uses the SEND MESSAGE system call to mail the object to
the mailbox. Task B wuses the RECEIVE MESSAGE system
call to get the object from the mailbox.

NOTE

The foregoing example, along with all
of the examples in this section, is
somewhat simplified in order to serve
as an introduction. If you want
detailed information, refer to the
RMX/86 NUCLEUS, TERMINAL HANDLER AND
DEBUGGER REFERENCE MANUAL.

As mentioned previously, tasks can use mailboxes to
send information to each other. This is accomplished by
putting the information into a segment (an RMX/86
object consisting of a contiguous block of memory) and
using the SEND MESSAGE system call to mail the segment.
The other task invokes the RECEIVE MESSAGE system call
to get the segment containing the message.

FEATURES OF THE RMX/86 OPERATING SYSTEM

Why don't tasks Jjust send messages directly between
each other, rather than through mallboxes? Tasks are
asynchronous =-- they run in upredictable order. If two
tasks want to communicate with each other, they need a
place to store messages and to wait for messages. If
the receiver wuses the RECEIVE MESSAGE system call
before the message has been sent, the receiver waits at
the mailbox until a message arrives. Similarly, if the
sender wuses the SEND MESSAGE system call before the
receiver 1is ready to receive, the message 1is held at
the mailbox until a task requests a message from the
mailbox. In other words, mailboxes allow tasks to
communicate with each other even though tasks are
asynchronous.

Mutual Exclusion

Occasionally, when tasks are running concurrently, the
following kind of situation arises:

- Task A 1is 1in the process of reading information
from a segment.

- An interrupt occurs and Task B, which has higher
priority than Task A, preempts Task A.

- Task B modifies the contents of the segment that
Task A was in the midst of reading.

- Task B finishes processing its event and surrenders
the processor.

- Task A resumes reading the segment.

The problem is that Task A might have information that
is completely invalid. For instance, suppose the
application is air traffic control. Task A is
responsible for detecting potential collisions, and
Task B 1is responsible for updating the Plane Location
Table with the new X- and Y-coordinates of each plane's
location. Unless Task A can obtain exclusive use of the
Plane Location Table, Task B can make Task A fail to
spot a collision.

Here's how it could happen. Task A reads the X-
coordinate of the plane's location and is preempted by
Task B. Task B wupdates the entry that Task A was
reading, changing both the X- and Y-coordinates of the
plane's location. Task B finishes 1its function and

FEATURES OF THE RMX/86 OPERATING SYSTEM

surrenders the processor. Task A resumes execution and
reads the new Y-coordinate of the plane's location. As
a direct result of Task B changing the Plane Location
Table while Task A was reading it, Task A thinks the
plane is at old X and new Y. This misinformation could
easily lead to disaster.

This problem can be avoided by mutual exclusion. If
Task A can prevent Task B from modifying the table
until after A has finished using it, A can be assured
of wvalid information. Somehow, Task A must obtain
exclusive use of the table.

The RMX/86 Operating System provides a type of object

that can be used to provide mutual exclusion -- the
semaphore. A semaphore is an integer counter that tasks
can manipulate using four system calls: CREATE

SEMAPHORE, DELETE SEMAPHORE, SEND UNITS and RECEIVE
UNITS. The creation and deletion system calls are used
to build and eradicate semaphores. The send and receive
system calls can be used to achieve mutual exclusion.

Before discussing how semaphores can provide exclusion,
we must examine their properties. As mentioned above, a
semaphore is a counter. It can take on only nonnegative
integer values. Tasks can modify a semaphore's value by
using the SEND UNITS or RECEIVE UNITS system calls.
When a task sends N units (must be zero or greater) to
a semaphore, the value of the counter is increased by
N. When a task uses the RECEIVE UNITS system call to
request M units (must be zero or greater) from a
semaphore, one of two things happens.

- If the semaphore's counter is greater than or equal
to M, the Operating System reduces the counter by M
and continues to execute the task.

- Otherwise, the O0Operating System begins running the
task having the next highest priority, and the
requesting task waits at the semaphore until the
counter reaches M or greater.

How can tasks use a semaphore to achieve mutual
exclusion? Easy! Create a semaphore with an initial
value of 1. Before any task uses the shared resource,
it must receive one unit from the semaphore. Also, as

FEATURES OF THE RMX/86 OPERATING SYSTEM

soon as a task finishes using the resource, it must
send one unit to the semaphore. This technique ensures
the following behavior. At any given moment, no more
than one task can use the resource, and any other tasks
that want to use it wait their turn at the semaphore:

Semaphores allow mutual exclusion; they don't enforce
it. All tasks (there can be more than two) sharing the
resource must receive one unit from the semaphore
before using the resource. If one task fails to do
this, mutual exclusion is not achieved. Also, each task
must send a unit to the semaphore when the resource is
no longer needed. Failure to do this can permanently
lock all tasks out of the resource.

e Synchronization

As mentioned earlier, tasks are asynchronous. None-
theless, occasionally a task must know that a certain
event has occurred before the task starts running. For
instance, suppose that a particular application system
requires that Task A cannot run until after Task B has
run. This kind of requirement calls for synchronizing
Task A with Task B.

Your application system can achieve synchronization by
using semaphores. Before executing either Task A or
Task B, create a semaphore with an initial value of
zero. Then have Task A issue RECEIVE UNITS requesting
one unit from the semaphore. Task A is forced to wait
at the semaphore until Task B sends a wunit. This
achieves the desired synchronization.

Advantage of Intertask Coordination

Every real-time multitasking system must provide for intertask
coordination, so this coordination cannot be billed as an
advantage. The true advantage arises from the flexible means
that the RMX/86 System provides for accomplishing coordination.

The 1intertask coordination supplied by the RMX/86 Operating
System is flexible and simple to use. Semaphores and mailboxes
can accommodate a wide variety of situations. And your
application system is not limited to some arbitrary number of
mailboxes or semaphores. It can create as many as it needs.

FEATURES OF THE RMX/86 OPERATING SYSTEM

RUNTIME BINDING

The RMX/86 Operating System uses runtime binding. This provides
your system with three kinds of flexibility. It allows tasks in
different Jjobs to share objects; it lets your procedures use
logical names for files and devices; and it simplifies the
process of attaching your application software to the RMX/86
Operating System.

Explanation of Runtime Binding

Before we look into runtime binding, let's consider binding as
it relates to a program. Binding is the process of letting each
program know the locations of the variables and procedures that

it uses.

Binding can be performed several times during the development
and execution of a program. Some binding takes place during the
process of compilation. As a program 1is being compiled, its
references to variables and procedures are resolved (that is,
converted into machine language) whenever the compiler has
sufficient information. Sometimes, however, a program refers to
variables or procedures that are part of a separate program.
When this happens, the compiler cannot resolve the reference,
and binding must be delayed.

Some binding also takes place during linking. Linking is the
process of combining several ©programs that are compiled
separately. The purpose of linking is to allow a program to
refer to variables and procedures defined in a different
program. (Such references are —called external references
because they refer to information outside of the program under
consideration.) When the linking process resolves an external
reference, it performs binding that cannot be completed during
compilation.

Runtime binding means binding while the system 1is actually
running. The RMX/86 Operating System provides three kinds of
runtime binding:

° Binding objects to tasks.
(] Binding files and devices to tasks.

° Binding your application software to the Operating
System.

4-17

FEATURES OF THE RMX/86 OPERATING SYSTEM

The first two kinds of runtime binding are based on the use of
object directories. An object directory is an attribute of a
job that allows tasks to provide ASCII names for objects. Tasks
use the CATALOG OBJECT, LOOKUP OBJECT, and UNCATALOG OBJECT
system calls to define, 1lookup, or delete the name of an
object. In each case, the task wusing the system call must
specify the job whose object directory is to be accessed.

Now we'll look more closely at each type of runtime binding.

Binding Objects to Tasks

When two tasks wuse a mailbox to pass information, they
obviously must both access the same mailbox. But 1if the
programs for the two tasks are compiled and linked
independently of one another (as they probably would be if they
are in separate jobs), the tasks must use runtime binding to
access the same maillbox.

The runtime binding of objects to tasks 1is accomplished as
follows. When a task creates an object that it wishes to share
with other tasks, the creator task catalogs the object in an
object directbry<\ Other tasks can then access the cataloged
object if they know its ASCII name.

Engineers can contré&\ the sharing of objects by selectively
broadcasting object names. If two engineers wish to share an
object, they must agree on both the name and the object
directory that 1is to contain the name. One task then creates
the object and the other accesses 1t through the object
directory.

Binding of Files and Devices to Tasks

Suppose you wish to code an application utility program that
takes 1input from any supported input device or from a disk
file. Runtime binding can help accomplish this. The wutility
program can be coded to look-up an input connection under a
particular name. Then any program that needs the wutility
program can create the input connection, catalog it under the
agreed-upon name, and invoke the wutility program. In effect,
the ASCII name in the object directory is the logical name of
the input file.

Binding of Application Software to Operating System

The RMX/86 Operating System wuses a third type of runtime
binding to allow your application software to communicate with

FEATURES OF THE RMX/86 OPERATING SYSTEM

the Operating System. Whenever your application software
invokes a system call, an INTEL-supplied interface routine
converts the call into a software-generated interrupt. This
interrupt causes control to be transferred to a procedure
within the RMX/86 Operating System that performs the desired
function. In other words, the software interrupts bind the
system calls of your application software to the RMX/86
procedures.

Advantages of Runtime Binding

Runtime binding provides your application system with
flexibility. By allowing your system to name objects, the
RMX/86 Operating System provides a means of sharing dynamically
created objects between jobs. By supporting logical names for
files and devices, the RMX/86 System allows tasks to work with
any combination of files and devices rather than with a single,
fixed combination. By wusing software interrupts to bind your
application software to the Operating System, you can
reconfigure the Operating System without having to recompile or
relink your application software.

EXTENDIBILITY
The RMX/86 Operating System 1is extendible. It allows vyou to

create your own object types and to add system calls to the
Operating System.

Explanation of Extendibility

Something 1is extendible if you can add to it, and the RMX/86
Operating System 1is extendible. Your system programming
engineers can build their own types of objects and the system
calls to manipulate those objects. These custom features become
a part of the Operating System. From the point of view of the
application programming engineer, there is no way to
distinguish your custom objects from those supplied by Intel.

Advantages of Extendibility

The advantage of extendibility 1is that you can add your
features to the RMX/86 O0Operating System and obtain the same
benefits as supplied by its object-oriented architecture. These
benefits include the apbility to sena your custom-made objects
to mailboxes and the ability to put them in object directories.
Additionally, your application engineers can more quickly
become familiar with your custom features. This shrinks your
development time and costs, and it allows you to bring your
application system to your users sooner.

FEATURES OF THE RMX/86 OPERATING SYSTEM

TERMINAL HANDLING

The RMX/86 Operating System includes the software to control
one terminal which can be either a teletypwriter or a keyboard
and screen.

Explanation of the Terminal Handler

The RMX/86 Terminal Handler is a job that &runs wunder the
control of the RMX/86 Operating System. This job, which serves
as the interface between the terminal and the tasks of your
application system, provides the following capabilities:

] Your tasks can communicate with the terminal
asynchronously.

° The operator using the terminal can edit lines before
they are seen by the application software.

[The operator using the terminal can suppress or slow

down the display of output generated by the application
system.

Using these features, your application system can interact with
a human operator.

Advantages of the Terminal Handler

The advantages of the Terminal Handler are economic. By
relieving you of the chore of creating an interface with a
terminal, the Terminal Handler reduces your system's cost of
implementation and time to market. Furthermore, because it has
been debugged by Intel, the Terminal Handler also reduces your
maintenance costs.

DEVICE-INDEPENDENT INPUT AND OUTPUT
The input and output capabilities of the RMX/86 Operating
System are device independent. This adds flexibility to your

system by allowing you to easily reroute input or output to
different devices.

Explanation of Device-Independent Input and Output

Device independence is a relatively simple vyet powerful
concept. A system provides device-independent I1/0 if it has one
set of system calls for communicating with all I/0 devices. The

FEATURES OF THE RMX/86 OPERATING SYSTEM

alternative to device 1independence 1is to provide different
calls for each type of device. Let's first examine the
alternative and then move on to device independence.

Consider an operating system that does not provide device
independence. The system calls controlling input and output
operations are explicitly related to the I/0 devices being
used. For instance, the system call for writing to the 1line
printer might be PRINT, while the system call for writing to
the terminal might be TYPE. Once you have written a procedure
in such a system, the procedure is locked into a particular
combination of devices. The only way you can reroute input or
output is to edit the source code and recompile.

Now consider an operating system that is device indpendent: the
RMX/86 Operating System. Because the RMX/86 System supports
device-independent 1/0, the system <calls are not device
dependent. The READ system call is always used for input, and
the WRITE system call is always used for output. The device is
specified by a parameter of the system call. Consequently, by
using a variable as the parameter that selects the device, you
can create I1/0 procedures that are completely independent of
the devices they use.

Advantages of Device Indpendent Input and Output

Device independence makes your application system vVery
flexible. If you write a procedure to log events on a line
printer, you can use the same procedure to log events on a
terminal or, for that matter, on a disk. You need not recompile
or otherwise modify your system.

HIERARCHICAL NAMING OF MASS STORAGE FILES
The RMX/86 O0Operating System supports hierarchical naming of
files on mass storage devices. This naming technique provides

your application systems with additional flexibility by
simplifying the process of organizing and naming files.

Explanation of Hierarchical Naming

Hierarchical naming is one of three common techniques used to
name files on mass storage devices such as disks, bubble
memories, or drums. The other two techniques are called simple
naming and directory naming. The advantages of hierarchical
naming become clear when that technique 1is compared to the
other two. First we'll look at simple naming.

FEATURES OF THE RMX/86 OPERATING SYSTEM

Simple naming allows you to provide files with a descriptive
name. For instance, you might decide to name files ACCOUNTS
PAYABLE, ACCOUNTS RECEIVABLE, TRANSACTIONS, and INVENTORY.
These names are certainly descriptive, but what happens when a
different application running in the same system also decides
to use one of these names? This question is avoided by using a
more powerful naming technique: directory naming.

Directory naming allows different applications (or different
application engineers, for that matter) to use the same file
name. Each application (or engineer) is given one
special-purpose file, called a directory. This directory
contains only file names; it does not contain data. Figures 4-2
and 4-3 provide examples of directories.

When application software refers to a specific file, it first
names the directory and then names the file. For instance, in
Figure 4-2, the TRANSACTIONS file associated with Engineering
would be designated ENGINEERING/TRANSACTIONS. The comparable
file for Marketing, in Figure 4-3, would be designated
MARKETING/TRANSACTIONS.

ENGINEERING
ACCOUNTS
PAYABLE
ACCOUNTS
RECEIVABLE

3
8 m
TRANSACTIONS Am 2,0 c3
b4 > Zz
INVENTORY 52 zo oo 52 -~
25 5z mg2 oM FILE
0z 2m Scm 52 NAMES
Sm 43 ® zZ2 s2
oz 02 moZ a?
DIRECTORY <z zZ0 Q =
FILE o
-

DATA
FILES

Figure 4-2. An Engineering directory.

FEATURES OF THE RMX/86 OPERATING SYSTEM

MARKETING
ACCOUNTS
PAYABLE
ACCOUNTS
RECEIVABLE
TRANSACTIONS

INVENTORY

-~
FILE
NAMES

1>
8
of
op 3 Sz
mob» 5=
o0X o,ﬂ
juliel =4
552 23
> <
4 Z N
roQ m
m> Y 2
m

3

25
Z3
L=
>m
o4
oz
20
w

AHOLN3ANI
/ONILINHYWN

DIRECTORY
FILE

DATA
NAMES

Figure 4-3. A Marketing directory.

The advantage of directory naming over simple naming is that
directory naming allows the file names to reflect the relation-
ships between files. In Figure 4-2, all the files pertaining to
Engineering are in the directory ~called Engineering. This
grouping of related files is not supported by simple naming.

What about situations in which more than one level of directory
is required? This situation 1s illustrated in Figure 4-4. This
figure differs from 4-3 only in that a second level of grouping
has been included.

Just as Figure 4-4 shows that single-level directory naming is
not sufficient for all collections of files, another figure
could be constructed to show that two-level directory naming is
not always sufficient. Consequently, the RMX/86 Operation
System supports any number of levels of directories. This
n-level directory naming is called hierarchical naming of files.

FEATURES OF THE RMX/86 OPERATING SYSTEM

MARKETING

ACCOUNTS
PAYABLE

ACCOUNTS
RECEIVABLE

TRANSACTIONS

INVENTORY

ACE
CAPITAL TRILOBITE STATIONARY

INGS
EQUIPMENT BOOKING s S
PLEISTOCENE ADVERTISING
ELECTRONICS SMUDGE
PENCILS I

DIRECTORY
FILES

NONCAPITAL

EQUIPMENT BILLINGS

-

T

FILE
NAMES

AN3IWdIND3
IVLIdVONON
/AHOLN3ANI
/ONILINHVIN

IN3WdIND3

VILdVD

/AHOLNIANI

JONILANYUVIN

-
DATA
FILES

Figure 4-4. Hierarchical naming of files.

Advantages of Hierarchical Naming

Hierarchical naming of files simplifies the process of adding
new applications to your system. One concern about expanding
your system is the naming of mass storage files associated with
a new application. Names of new files must differ from names of
existing files. If your system uses only a few mass storage
files, you can expect 1little difficulty 1in assigning unique
file names. But 1if your system uses a large number of files,
the problem of assuring uniqueness becomes more significant.
This uniqueness problem becomes particularly difficult if file
names are assigned by an operator in a system having more than
one operator.

Hierarchical file naming eliminates this problem. Whenever you
add a new application to your system, you can assign it a
directory. The new application can then use this directory to
provide wunique names to any number of files. Also, each
operator can be assigned a unique directory which can then be
used to provide unique names.

FEATURES OF THE RMX/86 OPERATING SYSTEM

FILE ACCESS CONTROL

The RMX/86 Operating System allows your application system to
control access to hierarchically named files. This facilitates
file sharing while still preventing valuable data from being
copied, modified, or destroyed by unauthorized users.

Explanation of Access Control

In the multiprogramming environment provided by the RMX/86
Operating System, the sharing of files can be very useful. But
the job that owns a file may wish to share it with only certain
other jobs rather than all other Jjobs. Furthermore, the job
owning a file may wish to restrict the nature of the shared
access. For example, the owning Jjob may wish to allow a
particular file to be read but not written. The ability to
specify how and with whom a file 1s shared 1is called file
access control.

The RMX/86 Operating System provides very powerful file access
control by allowing the owner of a file to specify who can use
the file and how they can use 1it. In fact, a file's owner can
even grant different combinations of access (reading only,
writing only, reading and writing, etc.) to each user of a file.

Advantages of File Access Control

By controlling who can access a file and how they can access
it, your system becomes more reliable and secure. There 1is less
chance for an unauthorized task to accidentally modify a
valuable file, and there is less opportunity for an
unauthorized task to read a confidential file.

Your application software can, in fact, expand file access
protection into a file security system. Suppose, for instance,
that your application involves several operators accessing
files on disk. By providing each operator with a password, so
his or her identity can be verified, your application software
can strictly control which operators have access to which files.

CONTROL OVER FILE FRAGMENTATION
The RMX/86 Operating System allows you to specify the
granularity of each mass storage file. This 1lets you trade

faster I/0 for more efficient use of space on the mass storage
device.

Explanation of File Fragmentation

When information is stored on a mass storage device, space 1is
allocated in chunks rather than one byte at a time. These

4-25

FEATURES OF THE RMX/86 OPERATING SYSTEM

chunks, called granules, can be large or small, but all
granules within one file must be the same size. This size 1is
called the file granularity, and it 1is specified by the
engineer who creates the file.

A file's granularity affects the use of a storage device in
three ways.

° Data Transfer Rate

The file granularity directly affects the speed at
which the Operating System can transfer information to
or from the storage device. The larger the granularity,
the faster the Operating System transfers data.

° Access Time

The smaller the granules, the more time is required to
access a series of random locations in the file. Larger
granules reduce access time.

(] Wasted Device Space

The file granularity directly affects the amount of
wasted space on the device. The larger the granularity,
the more device space is wasted.

Here's an example. (For the sake of simplicity, we will
ignore any<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>