RMX/86™ NUCLEUS, TERMINAL
HANDLER, AND DEBUGGER
REFERENCE MANUAL

Manual Order Number: 9803122-01

Copyright © 1980 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation

3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Intel Corporation assumes no responsibility for any errors that may appear in this document.
Intel Corporation makes no commitment to update nor to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel
Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel’s software
license, or as defined in ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without
the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to describe Intel
products:

BXP Intellec Multibus

1 iSBC Multimodule
ICE iSBX PROMPT
iCS Library Manager Promware
Insite MCS RMX

Intel Megachassis UPI
Intelevision Micromap uScope

and the combination of ICE, iCS, iSBC, iSBX, MCS, or RMX and a numerical suffix.

ii

N

PREFACE

RMX/86 provides an operating system for Intel's 1iSBC 86/12
single boara computers. It consists of a Nucleus, a Terminal
Handler, a Debugger, and an input/output system (I0S).

The Nucleus, Terminal Handler, and Debugger Reference Manual is
one of six manuals supporting the RMX/86 Operating System. The
other manuals are:

Introduction to the RMX/86 Operating System 9803124
RMX/86 Installation Guide for ISIS-II Users 9803125
RMX/86 1/0 System Reference Manual 9803123
RMX/86 System Programmer's Reference Manual 142721
RMX/86 Configuration Guide for ISIS-II Users 9803126

This manual is intended primarily as a source of Nucleus,
Terminal Handler, and Debugger reference materials; it is only
secondarily for instruction. We recommend reading the
introductory manual prior to reading this manual.

The RMX/86 manual set 1is aimed at two classes of readers:
application programmers and system programmers. Accordingly,

reference information 1is separated by class. In particular,
this manual and the I/0 system manual are for application
programmers, while systems-oriented features in both the

Nucleus and the I/0 System are described in the System
Programmer's manual.

The following manuals provide valuable background information:

iSBC 86/12A Haraware Reference Manual 9803074
ISIS-II1 User's Guide 9800306
PL/M-86 Programming Manual 9800466
ISIS-11 PL/M-86 Compiler Operator's Manual 9800478
The 8086 Family User's Manual 9800722

iii/ iv

TABLE OF CONTENTS

PAGE

o Y S L Se e ii
CHAPTER 1

OVERVIEW

NUC LB US e o e e et esevsessosasasesasoscssssssnssssssossssssesss 1-1
Terminal HanNdleT . oo et ee i ot eneerooeoosossnsosossocnessnns 1-1
D= o U T 0 o T = 1-1
CHAPTER 2

NUCLEUS OVERVIEW

I T o oo o 0 o o 1 o 2-1
0 o T = o 2-2
TASKS s ittt it ettt iie st siesessoeeesoeeassossossoessssensseas 2-2
0 10 0 3 2-3
SEOMENE S et ittt it ie ettt eeoeeeeonseesooasssosasssssssanssss 2-4
= U T 0 0 5 T 2-4
SEMAPNOTE S et v vttt v e s seeeescseessossssosssassssssossseseas 2-4
= T T ol 2-5
EXCepLion HaNUOler S . i o it teeeeeeeeeeeoeeeneeessesoceaseenns 2-5
Interrupt HandlersS . oot ittt ittt it ieeeneesennsnsnnnnns 2-5
CHAPTER 3

JOB MANAGEMENT

Job Tree and ResSOUTCE SNACiNg....eeeeieeeeeneososeeassanas 3-1
B 1] o T O ol == T o 1 o 3-3
0] o L = o 1 o P 3-3

System Calls FOI JODS ..ttt ittt neeeeeennnnnnos 3-3
CHAPTER 4

TASK MANAGEMENT

Task STAteS . vt ittt it ittt ittt tneeeeonoseacasseasonneeess 4-1
The Asleep STalE.i ittt ittt tneeetossescsssssnsocssonasns 4-1
The Suspended State. . ittt ittt ittt eeeosnonssonsneenas 4-1
The Asleep-Suspended State..oei ittt it ocennnnss 4-1
The Ready and Running State.....iiiiii it iiiiiiinennnnns 4-2
Task State TransitionsS...v ittt eeeeteoeennnansans 4-2
Additional Task Attributes....eii ittt ittt neennnnas 4-4
TASK RESOUTCES . ittt sttt nesooenesonsessssestosnsssssanssss 4-4
System Calls fOT TASKS .ttt eeteeeeoeereeseeeoeoeeenncsaasas 4-4

CHAPTER 5

EXCHANGE MANAGEMENT

MAIllbDOXES e et it e teeerssenssosossesssssssoessssosssosssssanss 5-1
MEBIlDOX QUEBUBS e ettt eeenoessssseesesessessssesssssssansess 5-1
MailboX MECHAMICS ettt ettt i et e teieenoroneoesscocnncosns 5-1
System Calls for MailbOXES .. ee ittt eneneneeeeeennnnnn 5-2
Y =11 Y o 1 e T o =T 5-2
SEMAPNOTE QUEBUE et it ittt ittt ieeereseneseeennosonoonnnsooes 5-3
SemaphoTe MECHANICS .t ittt i ittt ittt eeeeeeeeonnasosenanans 5-3
System Calls for SempanNoresS. ...ttt nteennecnnnnns 5-4

TABLE OF CONTENTS (continued)

PAGE
CHAPTER 6
MEMORY MANAGEMENT
ST S 111 0 o 6-1
MEMOTY POOLS . ittt it ittt ittt ettt eeeneeeaeeneneessscnnnnsnsns 6-1
Controlling PoOLl Size.v.eiieiini it iiiiieieneenenannnss 6-2
Movement of Memory Between JobS. ...ttt neencnsan 6-2
MemOTy AllOCAlionN.ve i e ittt etteeeeeneeeeeeeooannncens 6-3
Memory DeadloCk ProbDlemsS..u .ttt ittt eencrenoenensonsonass 6-4
System Calls foOr Segments. . it eeieieieeeeeneeenenennannnns 6-6
CHAPTER 7
OBIECT MANAGEMENT ¢ ittt ittt i ittt stsnseecoeneeceocecennnnens 7-1
System Calls for Any Objects.u ittt ittt iieieennnns 7-2
CHAPTER 8
EXCEPTIONAL CONDITION MANAGEMENT
Types of Exceptional ConditionsS. ...ttt enennns 8-1
Exception HanNdlerS . v e i ettt eeentteneneeoeesoeeeaeaaenenns 8-1
Assigning An Exception Handler.......cciiiiiiiiieneeennnns 8-2
Invoking An Exception Handler.....ooiiiit ittt neneeennnns 8-2
Handling EXceptions IN-Lin€ ... ittt inenneeennnnnns 8-4
System Calls For Exception HandlersS....uoeeeieeeeenoeocennn 8-4
CHAPTER 9
INTERRUPT MANAGEMENT
Interrupt MEChANIsmMS it ittt ittt ittt eeneeensoeecenoenonnenns 9-1
The Interrupt Vector Table.....i ittt it enrecenonnns 9-1
InterTupt LevelsS .ttt eeosenenseansacoasns 9-1
Disabling INterTupts. .ttt ittt ittt eeneeenannns 9-2
Interrupt Handlers and Interrupt TasksS....ooieeiinienens 9-3
Using an Interrupt Handler......c.oiiiiiiiiiiinerinennnnonns 9-3
Using and INterTupt Task...iwie it iieieeonnnnoooesessnnnss 9-4
Handling Level 7 Interrupts. ... ittt iiennennnns 9-6
Examples of Interrupt Servicing......ciiiiiiiiiiieeennenns 9-6
System Calls for InterruptsS ...ttt eeeeeeneeeennans 9-9
CHAPTER 10
NUCLEUS SYSTEM CALLS . ¢ttt ittt oneeeetossesnnssseennnnans 10-1
Command DireCLOTY . ettt ineeeeeeeeenoeseoeeseennnocenos 10-2
Calls fOr JODS .ttt ittt ittt eennneossssnoeannnas 10-2
Calls fOr TASKS . ittt ittt ittt enoeeseeesecscnsennnnnas 10-2
Calls fOT MAilbDOXES et ettt eeeoeeeeoeeenseoseoeesneeneonoeees 10-2
Calls fOT SEMAPNOTES .ttt ettt ettt eeeeeeeeeenaenenneas 10-3
Calls for Segments and Memory Pools.......ciiiiiiiinnnnnn. 10-3
Calls for All ObJeCtsS . ittt ittt ittt iiiaennens 10-3
Calls for Exception HandlerS ..ottt teeeeneennnnns 10-4
Calls for Interrupt Handlers, Tasks, and Levels.......... 10-4
The System Calls.iee e eniiiiiitiitieneeeeseesoeeonennnsans 10-5
Catalog ObJeCt . ittt it i ittt i it ittt it nnaaennnns 10-5
CTeate JObD. ..ttt it ittt i it ettt teoeneeanesasnssnns .10-7
Create MallboX. .o oo oo oo oineeeeeoeeeeeeesoneeensneansans 10-13
Create Segment. ...ttt ittt eeeeeesceseeeennnennnnas 10-14
Create SEMAPhOTE. vttt i ittt it ittt nenseeacnnnnns 10-15
Create TasK. e iiweiee ot iieeeeeeeroeeeeeeoeooeanseenannns 10-17

TABLE OF CONTENTS (continued)

PAGE
CHAPTER 10 (continued) J
Delete JoD. it eeiieeeeeeeeeerosoorooeseeossosnsasnsssnas 10-21
Delete MailboX. ..o eeeeeoooeososooeonsocssosasasoasasssnees 10-22
Delete Segment ..ttt eeeereeneeessessonnoassecnosns 10-23
Delete SEMAPNOTE. ittt it eeoseseeeeossosseesnnnnassases 10-24
Delete TASK.ieetiieeeoetooeoesosnnennsonnnns e et e 10-25
Disable..e ettt eeeeesossnnnonnnnnns ettt e e 10-26
0 = o = 10-27
s T A 1 = e o 1 10-28
Get Exception Handler. ..ot iteeeeernerssnsononasosncsass 10-29
L o T 10-31
Get Pool Attributes. .. ittt it ieeeiieeeoossonoocconcocaes 10-32
0 R o o 1o s o 10-34
Get SizZE.. i ir ittt iiiieeeeeeseseeososesseansssssssnnssns 10-35
Get Task TOKENS. ittt neaocaononconsns e e 10-36
S o 1RV o = T 10-37
LOOKUP OB JBCE e e et eteeneneeeeeneneeeenenecnensneneensnans 10-38
6 =T o1 ol 1 o 10-40
RECEIVE MESSA0EB .ttt eeeeeesesosesessososcasasonssesnsennsss 10-41
Recelve Units. . it ittt itiiineeneeeeesocasononnonnes 10-43
Reset INterTUPL. ettt ittt ieeeeeeosecseonasasscsnnnnas 10-45
Resume TasSK..eeiieeeiioeeeeonesosnesososssossssssssosnossoeas 10-46
SENd MESSA0B .ttt vttt eeseesesessssossssssssssssssonasceaes 10-47
Send Units...... ettt e e s e ee ettt e et 10-48
Set Exception Handler..o.eeee it ittt oot oeeoneesoonooonoonas 10-49
Set INLerTUP L.ttt ittt ittt ittt ieiteeeoneeseocseececnnenens 10-51
Set Pool MInimuUmM. .o et iienineeereosnoseesaaosssscssnnonss 10-54
Signal Interrupt.. i e e teieeneeoreenstonenonnsonnsos 10-55
Sleep. vt iineenonnns ettt et e et ee sttt e e ec e e eneeeees 10-56
SUSPEND TASK .ttt eeeeeeesooesosoossssssossseesscoessosansess 10-57
Uncatalog Object......cvvvvn. ettt et 10-58
L= B A 1 o o o o 10-59
CHAPTER 11
TERMINAL HANDLER . ..ttt ettt eoenoaseasennososeononsssas 11-1
General Information. ..o ettt eeeeeeononoesonosaennnnns 11-1
Using A Terminal With the RMX/86 Operating System......... 11-1
How Normal Characters are Handled......ooeeiiveinneonnens 11-2
How Special Characters are Handled......oeeeeeeeeeennnnenn 11-2
Rubbing Out a Previously-Typed Character.....eeeeeveeess 11-3
Displaying the Current Line......viiiiiiiiieenecnonnonns 11-3
Deleting the Current Line....ti ittt iieeneeoesonnnnnns 11-3
Sending an Empty MESSa0E. i ittt vessesesscacscessssans 11-4
Signalling the End of a Line of Input.....ccvveeiveinnn, 11-4
OUtpUt ConErol. . i it ittt teeeeeeeeosesonssosesonsoosocess 11-4
Suspending OULPpUL . ettt ittt ittt eenennenosssscencsssn 11-4
Resuming Output .. it ei ittt ittt eteeeeeeeannannenes 11-5
Deleting or Restarting Output.....cciiieiiiiii i 11-5
Program Control. ..ottt eeeneeoersnensensnaocancees 11-5
Aborting an Appllcatlon Gt e ettt acee et 11-5
Setting A Baud Rate....civiiiiieneennnnons ettt 11-5
Programming Considerations. e e eeiiteerieeeeeneeeocossonens 11-6
6 U o o U o et a ettt 11-7
I 0 11-8

TABLE OF TABLES

PAGE

8-1 Conditions and theirl COOGES . it ettt teeeneennnennann 8-3
9-1 Interrupt Levels Disabled For Running Task........... 9-2
9-2 The Relationship between External Levels and

Internal Task Priorities.......ovvvieeevenss 9-5
9-3 An Example of Interrupt Handling Without an

InterTupt TasK.eee oo eeeeeeeneeeoneeeeaans 9-7
9-4 An Example of Interrupt Handling with an

Interrupt TasK. ..o iiieeinnenoennoonooensoans 9-8
11-1 Special CharaCier SUmMmMarIy.....cceeeteeeeeeseasoeennns 11-2

TABLE OF FIGURES

3-1 N 0 o 3-2
4-1 Task State Transition Diagram...eeeeeeeeeessronesenns 4-3
6-1 Comparison of Job and Memory Hierarchies............. 6-2
6-2 Memory Movement Diagram. ... iieiee oo nnonconnas 6-3
9-1 Flow Chart of Interrupt Handling.........iiiiivennn. 9-5
11-1 Input and Output Mailbox Interfaces.........eceeeeeuns 11-6
11-2 Request Message FOIMAL..eeeeniiieeeiieoeseneoonenanans 11-7
12-1 Syntax Diagrams for Term and Expression.............. 12-6
12-2 Syntax Diagram foT Item....cueii it inentnaneonsnas 12-6
12-3 Syntax Diagram for Establishing a Breakpoint......... 12-11
12-4 Syntax Diagram for Changing a Breakpoint............. 12-12
12-5 Syntax Diagram for Deleting a Breakpoint............. 12-13
12-6 Syntax Diagram for Examining a Breakpoint............ 12-14
12-7 Syntax Diagram for Viewing the Breakpoint List....... 12-15
12-8 Syntax Diagram for Viewing the Breakpoint

PArAME L BT S e v v it ittt ettt ettt oeeeesoenanseannes 12-16
12-9 Syntax Diagram for Removing a Task From the

Breakpoint LisT...eeiiiiiinnteitienneenacanas 12-17
12-10 Syntax Diagram for Establishing the Breakpoint

TASK ettt it ittt teeseennossssssessnsssssseans 12-18
12-11 Syntax Diagram for Inquiring as to the Breakpoint

= =1 12-18
12-12 Syntax Diagram for Viewing the Breakpoint Task's

R =0 = o = 12-20
12-13 Syntax Diagram for Altering the Breakpoint Task's

o = o = 12-21
12-14 Syntax Diagram for Examining or Modifying Memory..... 12-24
12-15 Syntax Diagram for Examining System Objects.......... 12-31
12-16 Syntax Diagram for Viewing RMX/86 System Lists....... 12-35
12-17 Syntax Diagram for Exiting the Debugger.............. 12-38
12-18 Syntax Diagram for Defining a Numeric Variable....... 12-39
12-19 Syntax Diagram for Changing a Numeric Variable....... 12-39
12-20 Syntax Diagram for Deleting a Numeric Variable....... 12-40
12-21 Syntax Diagram for Viewing Numeric Variables......... 12-40

viii

TABLE OF CONTENTS (continued)

PAGE
CHAPTER 12
DEBUGGER
General Information......iee ittt iiinnnenesnennnannss 12-1
Debugger Capabilities. ..ttt iereieeonenonssennnnas 12-1
Debugging Capabilities in the ICE-86 Emulator............ 12-2
Debugging Capabilities in the iSBC 86/12A Monitor........ 12-2
Invoking the Debugger. ... vttt enerensesnonssossasenan 12-2
Debugger Input and OQutput.....iiiiiiiiiiiiiiitiieennennns 12-3
Syntax of Debugger CommandS. ..ot eeeeoosesonesooosssas 12-3
Pictorial Representation of Syntax.....iieiiieeececcnnnns 12-4
Special Symbols for the Debugger.......iiiiiiiieeneeennns 12-5
Debugger CommandS.ce .o eeeeeeseeeeensesssesaseossssssennsas 12-7
Breakpoint Control. . veee ittt iieiteeeeeeeeonocooonncnnnns 12-7
Establishing a Breakpoint.............. et s et ..12-10
Changing a Breakpoint............. ettt e 12-12
Deleting a Breakpoint............. ettt e 12-13
Examining a Breakpoint............ ettt et 12-14
Viewing the Breakpoint List.........cc0... et 12-15
Viewing the Breakpoint Parameters........ciiieeiieeeennn. 12-16
Removing a Task from the Breakpoint List......vivuv.e... 12-17
Establishing the Breakpoint TasK......iiieeeeeeeeennanns 12-17
Inquirting as to the Breakpoint Task.....eeeeeeeeeenennnn 12-18
Viewing the Breakpoint Task's Registers.......eeeeeeeee.. 12-19
Altering the Breakpoint Task's Registers.....ceeeeeeecn. 12-21
Observation and Manipulation Commands......eeeeeeeeeenennn 12-22
Examining or Modifying MemoTIy....eeeeeennn Ce et .12-23
Examining System Objects. ...ttt neeneneeenonannn 12-31
Viewing RMX/86 System ListsS.uiiiii e eennenonenennns 12-34
Exiting the Debugger. ...ttt iieeereeeeorsnaseennnonses 12-38
Using Symbolic Names While Debugging....cciiieeeeirenanns 12-38
Defining a Numeric Variable..i..ee e e etiieeeneeeeeennnenens 12-39
Changing a Numeric Variable....iieiieriiiieennnerenennnnas 12-39
Deleting a Numeric Variable.....veveeeeennnn. et 12-40
Viewing Numeric Variables......iiieiiiiiiirennooooconnans .12-40
APPENDIX A
RMX/86 Data TypeS.eiveteeeeeeesesenssnsscesssnnsnensssnsssh=l
APPENDIX B
RMX/86 Type COOBS.:i et teeeeeoseoeosenseeessenssannnsnsnsas B-1

iX/ X

Chapter 1. OVERVIEW

The RMX/86 Nucleus, Terminal Handler, and Debugger constitute a
useful set of RMX/86 features for development purposes. The
Nucleus is required in every application system. The Terminal
Handler and Debugger are helpful during development but are
frequently omitted thereafter.

NUCLEUS

The Nucleus is the core of every RMX/86 application system.
Among the activities of the Nucleus are the following:

Supplying timing functions.

e Controlling access of tasks to system resources.
e Providing for communication between tasks.

e Enabling the system to respond to external events.

TERMINAL HANDLER

The Terminal Handler provides a real-time, asynchronous
interface between your terminal and tasks running under the
supervision of the Nucleus. It can be wused either with or
without the Debugger. The Terminal Handler ©provides the

following features:
e Line-editing.

e Control characters for suspending and resuming output at
the terminal.

e A means of awakening the Debugger.

DEBUGGER

The Debugger is designed specifically for debugging and
monitoring systems running wunder the supervision of the
Nucleus. A special debugger is very helpful in debugging such

systems, because their real-time and multi-tasking
characteristics render inadequate many ordinary debugging
techniques. The RMX/86 Debugger 1is sensitive to the data

structures used by the Nucleus, and it can give "snapshots" of
tasks at critical moments, while interfering minimally with the
activities of the system being tested. It can also be used to
alter the contents of memory.

1-1

OVERVIEW

If desired, the Debugger <can be included in a debugged
application system for troubleshooting in the field. If it is
included, the Debugger requires only the support of the Nucleus.

Chapter 2. NUCLEUS OVERVIEW

INTRODUCTION

The RMX/86 Nucleus is one of two major software components of
the RMX/86 Operating System. The other major component, the
I/0 System, 1is optional. The Nucleus, however, 1is required
because it is the heart of the system.

The Nucleus provides the building blocks from which the 1/0
System and application systems are constructed. These building
blocks are called objects and are classified into the follow1ng
five categories called object types:

e Tasks

e Jobs

e Segments

e Mailboxes
e Semaphores

The following simplistic generalizations can be made regarding
these types:

e Tasks are the active objects in a system. They do the
work of the system.

e Jobs are the environments in which tasks do their work.
An environment consists of tasks, the objects that tasks
use, and a directory where tasks can catalog objects so
as to make them available to other tasks in the job.

e Segments are pieces of memory, the medium that tasks use
for communicating.

e Mailboxes are the objects to which tasks go to send or
receive segments containing data.

e Semaphores enable tasks to send signals to other tasks.

The Nucleus does extensive record-keeping of objects. It keeps
track of each object by means of one or more 1l6-bit value
called tokens. The Nucleus provides a number of operators,

called system calls, that tasks wuse to manipulate objects.

NUCLEUS OVERVIEW

When wusing a system call, a task supplies parameter values,
such as tokens, names, or other values, depending on the
requirements of the system call. Some of the functions that
tasks can perform with system calls are the following:

e Create objects.

e Delete objects.

e Send messages to other tasks.

@ Receive messages from other tasks.

e Obtain information about objects.

e Catalog objects with descriptive names.

e Delete objects from catalogs.

OBJECTS

Each of the five object types has unique characteristics.
These characteristics are discussed in detail in the following

paragraphs.

TASKS
A task has two goals:
@ Its primary goal is to do a specific piece of work.

e Its secondary goal is to obtain exclusive control of the
processor so that it can progress toward its primary goal.

One of the main activities of the Nucleus 1s to arbitrate the
competition that results when several tasks each want exclusive
control over the processor. The Nucleus does this by
maintaining, for each task, an execution state and a priority.
The execution state for each task is, at any given time, either
running, ready, asleep, suspended, or asleep-suspended. The
running state 1is a special case of the ready state. The
priority for each task is an integer value between 0 and 255,
inclusive, with O being the highest priority.

The arbitration algorithm that the Nucleus uses 1is the
following: The running task 1s the ready task with the highest
(numerically lowest) priority. If two or more ready tasks each
have the highest priority, the running task 1is the one which
has been ready for the longest time.

As viewed by the Nucleus, a task is merely a set of values,
some of which are the following:

2-2

7~ ~,

NUCLEUS OVERVIEW

e The task's priority.
e The task's execution state.
e A token for the job that contains the task.

When a task becomes the running task, the following events
occur, in order:

@ The values of the previously running task are saved by
the Nucleus.

¢ The Nucleus sets the new running task's values.
e The new task begins executing.

The task continues to run until one of the following events
OCCUTrsS:

e The task removes 1itself from the ready state. For
example, the task can suspend or delete itself; the task
can attempt to receive an object that has not yet been
sent, in which case it might elect to wait (in the asleep
state).

e The task (task A) 1is preempted when a higher priority
task (task B) becomes ready. An example of how this
could happen 1is that task B might previously have gone
into the asleep state for a specific period of time.
When the time period has passed, task B becomes ready
again. Because it 1is then the highest priority ready
task, task B becomes the running task.

JOBS

A job consists of tasks and the resources they need.

The jobs in a system form a family tree, with each job, except
the root Jjob, obtaining its resources from its parent. The
tasks in the user jobs can create additional objects. If they

create additional jobs, this enlarges the job tree.

The job tree, right after the initializaton of a system, 1is as

follows:

| | |

USER JOB USER JOB USER JOB
#1 #2 oo e #N

NUCLEUS OVERVIEW

Associated with each job is an object directory. Objects are
known to the Nucleus by their respective tokens, but often, in
the code that is executed by tasks, the objects are known by
symbolic names. The object directory for a job is a place in
memory where a task can catalog an object under a name. Other
tasks that know the name can then use the directory to access
the object.

SEGMENTS

A fundamental resource that tasks need is memory. Memory is
allocated to tasks in the form of segments. A task needing
memory requests a segment of whatever size it requires. The
Nucleus attempts to create a segment from the memory pool given
to the task's job when the job was created.

If there is not enough memory available, the Nucleus will try
to get the needed memory from ancestors of the Jjob. In this
respect, the tree-structured hierarchy of jobs is instrumental
in resource distribution.

MAILBOXES

A mailbox is one of two types of objects that can be used for
intertask communication. When task A wants to send an object
to task B, task A must send the object to the mailbox, and task
B must visit the mailbox, where it has the option of waiting
for any desired length of time. Sending an object in this
manner can achlieve various purposes. It might be a segment
that contains data needed by the waiting task. On the other
hand, the segment might be blank, and sending it might
constitute a signal to the waiting task. Another reason to
send an object might be to point out the object to the
receiving task.

SEMAPHORES

A semaphore is a custodian of abstract "units". It dispenses
units to tasks that request them, and it accepts units from
tasks.

An example of typical semaphore wuse 1is mutual exclusion.
Suppose your application system contains one 1I/0 device which
is being wused for output by multiple tasks. To ensure that
only one of these tasks can use the device at a given time, you
can establish a semaphore which has one unit and require that
tasks obtain the unit before using the device. A task wanting
to use the device would request the unit from the semaphore.
When it gets the unit, it can use the device and then return
the unit to the semaphore. Because the semaphore has no units
while the task is using the device, other tasks are effectively

excluded from using the device.

NUCLEUS OVERVIEW

HANDLERS

Two kinds of events can be handled specially. The remainder of
this chapter describes the handlers for these events.

EXCEPTION HANDLERS

Tasks occasionally make errors. If an error occurs during an
RMX/86 system call, it causes an exceptional condition. The
occurrence of an exceptional condition can, if desired, cause a
transfer of control to the exception handler associated with
the current task. The exception handler is a procedure that
typically deals with the problem by one of the following
methods:

e Correcting the cause of the problem and trying again.
e Merely logging the error.
® Deleting the task that caused the error.

In regard to exception handlers, the designer of an
RMX/86-based system has two kinds of decisions that must be
made for each task. The first decision concerns the choice of
exception handlérs. The task can have its own custom exception
handler, it can use the exception handler for the job to which
it belongs, or it can use the Intel-provided System Exception
Handler. Second, there are two categories of exceptional
conditions, programmer errors and environmental conditions.
Each task can be set up so that control goes to an exception
handler in case of

® programmer errors only,

e environmental conditions only,
e in both cases, or

® Never.

If control 1is not directed to an exception handler, the
responsibility for handling the exception falls upon the task.

INTERRUPT HANDLERS

To function effectively as a real-time system, an RMX/86
application system must be responsive to external events. An
interrupt handler, one of which is required for each source of
external events, is a procedure that is invoked by hardware or
software for the purpose of responding to an asynchronous
event. The handler takes control immediately and services the
interrupt. When the interrupt handler is finished servicing
the interrupt, it surrenders the processor, which returns to
the interrupted procedure.

2-5

Chapter 3. JOB MANAGEMENT

A job is an environment in which RMX/86 objects such as tasks,
mailboxes, semaphores, segments, and (offspring) jobs reside.
In addition, a Jjob has an object directory and a pool of
MEMOoTYy . The Jjob's memory pool provides the raw material from
which objects can be created by the tasks in the job. Figure
3-1 illustrates the elements of a job.

Applications consist of one or more jobs. Jobs are independent
but they may share resources. Each job has its own tasks and
may have 1its own object directory. Objects may be shared
between jobs, although each object is contained in only one job.

The programmer must decide whether tasks belong in the same
job. In general, you should place tasks in the same job if:

e they have similar or related purposes
e they share many resources

e they have similar lifespans

JOB TREE AND RESOURCE SHARING

The jobs in a system are arranged in the form of a tree. The
root is a job that is provided by the Nucleus. The remaining
jobs, including Jjobs that are created dynamically while the
system runs, are descendents of the root job. A job containing
tasks that create other jobs is a parent job. A newly created
job is a child of the job whose tasks created it.

Associated with each job is a set of limits. The limits of a
job are as follows:

e the maximum allowable size of its object directory.

e the maximum and minimum allowable sizes of its memory
pool.

e the maximum allowable number of simultaneously existing
tasks that it can contain.

e the maximum allowable number of simultaneously existing
objects that it can contain.

e the highest allowable priority of any task contained in
it.

JOB MANAGEMENT

OBJECT DIRECTORY
NAME (OBJECT
TASKS:

MEMORY
POOL

OBJECTS CREATED BY THE TASKS IN THE JOB:

SEGMENTS:

MAILBOXES:

P P PP
SEMAPHORES: W%W'" %

Figure 3-1.

3-2

A Job

N

JOB MANAGEMENT

You must specify these limits whenever you create a job and the
limits apply collectively to the job and all of its descendent

jobs.

When job A creates job B:
e Sufficient memory to meet job B's minimum memory pool
requirements is transferred from job A's memory pool to
that of job B.

e The memory for job B's object directory is taken from job
A's memory pool.

e The numbers of tasks and total objects that job A can
contain are reduced by the corresponding values specified
for job B.

e The specified maximum priority for tasks in job B cannot
exceed the maximum priority for tasks in job A.

If job B is later deleted, its resources are returned to job A.

JOB CREATION

A job 1is created with one task. The functions of this task
include doing some initializing for the new job. Initializing
activities can include housekeeping and creating other objects
in the new job.

When a task creates a job, it has the option of passing a token
for a parameter object to the newly created job. The parameter
object can be of any type and it can be used for any purpose.
For example, the parameter object might be a segment containing
data - arranged in a predefined format - needed by tasks in the
new job. Tasks in the new job can obtain a token for the job's
parameter object by means of the GET$TASK$TOKENS system call,
described in Chapter 10.

JOB DELETION

Before a job can be deleted, all of its interrupt tasks (see
Chapter 9) and descendent Jjobs must be deleted. By using the
OFFSPRING system call, the deleting task can probe down the job
tree and find all of the descendents. Then it can delete them,
beginning with descendents that have no children and working up
the tree. After all of the descendents have been deleted, the

task can delete the target job.

SYSTEM CALLS FOR JOBS

The following system calls manipulate jobs:

3-3

JOB MANAGEMENT

e CREATE$J0OB --- creates a job with a task and returns a

token for the job; resources for the new job are drawn
from the resources of the job to which the invoking task
belongs.

DELETE$J0OB --- deletes a childless job that contains no
interrupt tasks and returns the Jjob's resources to its
parent.

OFFSPRING --- provides a segment containing tokens of the
child jobs of the specified job.

27T

Chapter 4. TASK MANAGEMENT

Tasks are the active objects in an RMX/86 system. Each task is
part of a job and is restricted to the resources that its job
provides. Tasks are written as PL/M-86 procedures, not as main
modules.

The RMX/86 Nucleus maintains a set of attributes for -each
task. Among these attributes are the priority and execution
state of the task. A task's priority is an integer value
between 0 and 255, inclusive. The lower the priority number,
the higher the priority of the task. A high priority task has
favored status as it competes with other tasks for the CPU.

TASK STATES

A task is always in one of five execution states. The states
are asleep, suspended, asleep-suspended, ready, and running.

THE ASLEEP STATE

A task is in the asleep state when it is waiting for a request
to be granted. Also, a task can put itself to sleep for a
specified amount of time by using the SLEEP system call.

THE SUSPENDED STATE

A task enters the suspended state when it is placed there by
another task or when it suspends itself. Associated with each
task 1is a suspension depth, which reflects the number of
"suspends" outstanding against it. FEach suspend operation must
be countered with a resume operation before the task can leave
the suspended state.

THE ASLEEP-SUSPENDED STATE

When a sleeping task is suspended, it enters the
asleep-suspended state. In effect, it is then in both the
asleep and suspended states. While asleep-suspended, the

task's sleeping time might expire, putting it in the suspended
state.

TASK MANAGEMENT

THE READY AND RUNNING STATES

A task is ready if it is not asleep, suspended, or
asleep-suspended. For a task to become the running (executing)
task, it must be the highest priority task in the ready state.
In the event that multiple tasks each have the highest
priority, the one that has been ready longest is the one that
starts running.

TASK STATE TRANSITIONS

The Nucleus does not allocate the processor to tasks in a
time-slicing manner. Instead, as an RMX/86 application system
runs, events occur which cause tasks to pass from state to
state. The RMX/86 Operating System is, therefore,
event-driven. Figure 4-1 shows the paths of transition between

states.

The following list describes, by number, the events that cause
the transitions in Figure 4-1. 1In the list, the migrating task
is called "the task":

(1) The task goes from non-existence to the ready state
when it is created.

(2) The task goes from the ready state to the running
state when one of the following occurs:

e The task has just become ready and has higher
priority than does any other ready task.

e The task 1s ready, no other ready task has higher
priority, no other task of equal priority has been
ready for a longer time, and the previously running
E?s§ has just left the running state by (4), (6), or

0).

(3) The task goes from the running state to the ready
state when the task is preempted by a higher priority
task that has just become ready.

(4) The task goes from the running state to the asleep
state when one of the following occurs:

e the task puts itself to sleep (by the SLEEP system
call.)

e The task makes a request (by the RECEIVE$MESSAGE,
RECEIVE$UNITS, or LOOKUP$OBJIECT system call) that
cannot be granted immediately and expresses, in the
request, its willingness to wait.

(5) The task goes from the asleep state to the ready state
or from the asleep-suspended state to the suspended
state when one of the following occurs:

4-2

AN

v‘//\\

TASK MANAGEMENT

e The task's designated waiting period expires without
its request being granted.

e The task's request is granted (because another task
called either the SEND$MESSAGE, SEND$UNITS, or
CATALOG$0OBIECT system call; these calls correspond
to those mentioned in (4), above.)

(6) The task goes from the running state to the suspended
state when the task suspends itself (by the SUSPEND$-
TASK system call).
(NON-EXISTANT)
(4}
READY
(5) _ 9)
(2) (3))
Y
ASLEEP | (4) RUNNING (6) » | susPENDED ‘ |
(8)
(7)
(5
©® ’
ASLEEP-SUSPENDED
@4

\\"----lll-""~\\J//—""-IIII.--———’//

(10)

(NON-EXISTANT)

Figure 4-1. Task State Transition Diagram.

4-3

TASK MANAGEMENT

(7) The task goes from the ready state to the suspended
state or from the asleep state to the asleep-suspended
when the task 1is suspended by another task (by the
SUSPEND$TASK system call).

(8) The task remains in the suspended state or the
asleep-suspended state when one of the following
OCCUTrS:

e (same as (7) or

@ The task has a suspension depth greater than one and
the task is resumed by another task (by the RESUME$-
TASK system call).

(9) The task goes from the suspended state to the ready
state or from the asleep-suspended state to the asleep
state when the task has a suspension depth of one and
the task is resumed by another task (by the RESUME$-
TASK system call).

(10) The task goes from any state to non-existence when it

is dfleted (by the DELETE$TASK or DELETE$J0B system
call).

ADDITIONAL TASK ATTRIBUTES

In addition to priority, execution state, and suspension depth,
the Nucleus maintains current values of the following
attributes for each existing task: ~containing job, its PL/M-86
register context, starting address of 1its exception handler
(see Chapter 8), and exception mode (see Chapter 8).

TASK RESOURCES

When a task is created, the Nucleus takes any resources that it
needs at that time (such as a segment) from the task's
containing job.

SYSTEM CALLS FOR TASKS

The following system calls are provided for task manipulation:

¢ CREATE$TASK --- creates a task and returns a token for it.
@ DELETE$TASK --- deletes a task from the system.
® SUSPEND$TASK --- increases a task's suspension depth by

one; suspends the task if it is not already suspended.

TASK MANAGEMENT

RESUME$TASK --- decreases a task's suspension depth by
one; if the depth becomes zero and the task was
suspended, it then becomes ready; if the depth becomes
zero and the task was asleep-suspended, then it goes into
the asleep state.

SLEEP --- places the calling task in the asleep state for
a specified amount of time.

GET$TASK$TOKENS --- returns to the calling task a token
for either itself, its Jjob, its Jjob's parameter object,
or the root job, depending on which option is specified
in the call.

GET$PRIORITY --- returns the priority of the specified
task.

AN

Chapter 5. EXCHANGE MANAGEMENT

The RMX/86 Nucleus provides exchanges to facilitate intertask
communication, synchronization, and mutual exclusion. When a
task uses an exchange, it is always acting either as a sender
or as a receiver. There are two kinds of exchanges: mailboxes
and semaphores. If the exchange is a mailbox, one task will
send an object to the mailbox; another task will go to the
mailbox to receive the object. If the exchange is a semaphore,
either a task is receiving units from the semaphore, or it is
sending units to the semaphore.

MAILBOXES

The principal function of mailboxes is to support intertask
communication. A sending task uses a mailbox to pass an object
to another task. For example, the object might be that of a
segment containing data needed by the receiving task.

MAILBOX QUEUES

Each mailbox is endowed with two queues, one for tasks that are
waiting to receive objects, the other for objects that have
been sent by tasks but have not yet been received. The Nucleus
sees that waiting tasks receive objects as soon as they are
available, so, at any given time, at least one of the mailbox's
queues is empty.

MAILBOX MECHANICS

When a task sends a token to a mailbox, using the SEND$MESSAGE
system call, one of two things happens. If no tasks are
waiting at the mailbox, the object is placed at the rear of the
object queue (which might be empty). Object queues are
processed in a first-in-first-out manner, so the object remains
in the queue until it makes its way to the front and is given
to a task.

If, on the other hand, there are tasks waiting, the receiving
task, which has been asleep, goes either from the asleep state
to the ready state or from the asleep-suspended state to the

suspended state.

5-1

EXCHANGE MANAGEMENT

NOTE

If the receiving task has a higher
priority than the sending task,
then the receiving task preempts
the sender and becomes the running
task.

When a task attempts to receive an object from a mailbox via
the RECEIVE$MESSAGE system call, and the object queue at the
mailbox is not empty, the task receives the object immediately
and remains ready. However, if there are no objects at the
mailbox there are two possibilities:

] If the task, in its request, elects to wait, it 1is
placed in the mailbox's task queue and 1is put to
sleep. If the designated waiting period elapses before
the task gets an object, the task is made ready and
receives an E$TIME exceptional condition (see Chapter

8).

] If the task is not willing to wait, it remains ready
and receives an E$TIME exceptional condition.

A task has the option, when using the SEND$MESSAGE system call,
of specifying that it wants acknowledgment from the receiving
task. Thus, any task wusing the RECEIVE$MESSAGE system call
should check to see if an acknowledgment has been requested.
For details, see the description of the RECEIVE$MESSAGE system
call in Chapter 10.

As stated earlier, the object queue for a mailbox is processed
in a first-in-first-out manner. However, the task queue of a
mailbox can be either first-in-first-out or priority-based,
with higher-priority tasks toward the front of the queue. The
queueing method to be used is specified for each mailbox at the
time of its creation.

SYSTEM CALLS FOR MAILBOXES

The following system calls manipulate mailboxes:

° CREATE$MAILBOX --- creates a mailbox and returns a
token for it.

° DELETE$MAILBOX --- deletes a mailbox from the system.

° SEND$MESSAGE --- sends an object to a mailbox.

] RECEIVE$MESSAGE --- sends the calling task to a mailbox

for an object; the task has the option of waiting if no
objects are present.

P

.

EXCHANGE MANAGEMENT

SEMAPHORES

A semaphore is a custodian of abstract units. A task uses a
semaphore either by requesting a specific number of units from
it via the RECEIVE$UNITS system call or by releasing a specific
number of units to it via the SEND$UNITS system call. Although
these operations do not support communication of data, they
facilitate mutual exclusion, synchronization, and resource
allocation.

SEMAPHORE QUEUE

Semaphores have only one queue - a task queue. As is the case
with mailboxes, the task queue is either first-in-first-out or
priority based. The queueing scheme to be used is specified

for each semaphore at the time of its creation.

SEMAPHORE MECHANICS

A semaphore might simultaneously have both tasks in its queue
and wunits in its custody. The allocation scheme wused by
semaphores 1s the reason for this. That scheme 1is best
understood by imagining that the semaphore is trying, at all
times, to satisfy the request of the task which is at the front
of the semaphore's task queue. Only when it can provide as
many units as the task requested does it award units, and then
it does so immediately.

When a task uses the CREATE$SEMAPHORE system call, it must
supply two values. One value specifies the initial number of

units to be in the new semaphore's custody. The other wvalue
sets an upper limit on the number of units that the semaphore
is allowed to keep at any given time. The lower 1limit 1is

automatically zero.

When a task requests units from a semaphore via the RECEIVE$-
UNITS system call, the request must be within the specified
maximum for that semaphore; otherwise, the request is invalid
and causes an E$LIMIT exceptional condition. If a task's
request for units is valid and both

[the size of the request 1is within the semaphore's
current supply of units and

° the task is - or would be if queued - at the front of
the semaphore's task queue,

then the request 1is granted immediately and the task remains
ready. Otherwise, one of the following applies:

EXCHANGE MANAGEMENT

o The task, in its request, elects to wait. It is placed
in the semaphore's task queue and is put to sleep. If
the designated waiting period elapses before the task
gets its requested units, the task is made ready and
receives an E$TIME exceptional condition.

° The task is not willing to wait. It remains ready and
receives an E$TIME exceptional condition.

Suppose, for example, that two tasks, A and B, are waiting at a
semaphore, with A at the front of the queue. The semaphore has
no units, A wants 3 units, and B wants 1 unit. The following
three separate cases illustrate the mechanics of the semaphore:

(] If the semaphore is sent 2 units, both A and B remain

asleep in the semaphore's queue. Note that B's modest
request 1s not satisfied because A is ahead of B in the
gueue.

° If, instead, the semaphore is sent 3 units, A receives
the units and awakens, while B remains asleep in the
gueue.

] If, instead, the semaphore is sent 4 units, A and B
both receive their requested units and are awakened.

When a task sends wunits to a semaphore, the task remains

ready. Sending units to a semaphore causes an E$LIMIT
exceptional condition if it pushes the semaphore's supply above
the designated maximum. The number of units in the custody of

the semaphore remains unchanged.
NOTE

It is possible that a task sending
units to a semaphore can be preempted
by a higher priority task becoming
ready as a result of getting its
requested units.

SYSTEM CALLS FOR SEMAPHORES

The following system calls manipulate semaphores:

(] CREATE$SEMAPHORE --- creates a semaphore and returns a
token for it.

(] DELETE$SEMAPHORE --- deletes a semaphore from the
system

° SEND$UNITS --- adds a specific number of units to the

supply of a semaphobre.

° RECEIVE$UNITS --- asks for a specific number of units
from a semaphore.

5-4

TN

Chapter 6. MEMORY MANAGEMENT

Occasionally a task needs additional memory, that 1is, memory
not yet allocated to its Jjob. By wusing Nucleus system calls
for allocating and deallocating memory, tasks can usually

satisfy their memory needs.

SEGMENTS

Allocated memory 1is treated as a collection of segments. A
segment is a contiguous sequence of 16 byte paragraphs, with
its starting (base) address evenly divisible by 16. The
Nucleus maintains, as attributes, the base address and the
length in bytes of each segment.

When a task needs a segment, it can request one of the desired
length via the CREATE$SEGMENT system call. If enough memory is
available, the Nucleus returns a token for the segment.

NOTE

The token of a segment can be used
as the base portion of a pointer to
the segment. Thus, the token can
be used as a base address (as when
writing a message in the segment)
or as an object reference (as when
sending the segment-with-message to
a mailbox).

MEMORY POOLS

A memory pool is the amount of memory available to a job and
its descendents. Each job has a memory pool. When a Jjob 1is
created, the memory for its pool is borrowed from the pool of
its parent job. Thus, there is effectively a tree-structured
hierarchy of memory pools, identical in structure to the

hierarchy of jobs. Memory that a job borrows from its parent
remains in the pool of the parent as well as being in the pool
of the child. Such memory, however, 1is available for use by

tasks in the child Jjob, but not by tasks in the parent job.
Figure 6-1 illustrates the relationship between the job and
memory hierarchies. In the figure, the pool sizes shown are
actually the maximum sizes of those pools.

MEMORY MANAGEMENT

CONTROLLING POOL SIZE

Two parameters, pool minimum and pool maximum, of the CREATE$-
JOB system call, dictate the range of sizes (in paragraphs) of
a new Jjob's memory pool. Initially, the pool size is equal to
pool minimum. Memory allocated to tasks in the Jjob is still
considered to be in the job's pool. A task needing to know

JOB A POOL A
/ \ POOL POOL
JOB B JOB C
JOB D

Figure 6-1. Comparison of Job and Memory Hierarchies

about 1its Jjob's pool may use the GET$POOLSATTRIBUTES system
call to obtain pool minimum, pool maximum, initial pool size,
number of bytes <currently available, and number of bytes
currently allocated.

A task may alter the pool minimum attribute for its job by
means of the SET$POOL$MINIMUM system call; pool minimum must
lie in the range from O to pool maximum. If a subseqguent
request for a segment increases the pool's minimum size, and
the current pool size 1s less than the new minimum, no memory
is borrowed immediately from the parent job. Rather, memory is
automatically borrowed as it 1is requested by tasks in the job,
until the new minimum is reached. At that time, the new value
of the pool minimum attribute becomes a lower bound for the
job's pool size.

MOVEMENT OF MEMORY BETWEEN JOBS

When a task requests a segment, and the unallocated part of its
job's pool 1is not sufficient to satisfy the request, the
Nucleus tries to borrow more memory from the job's parent (and

6-2

MEMORY MANAGEMENT

then, if necessary, from its parent's parent, and so on). Such
borrowing increases the pool size of the borrowing job and is
thus restricted by the pool maximum attribute of the borrowing
job.

When a Jjob is deleted, the memory in its pool becomes
unallocated, and access to it is given back to the parent job.
The smallest contiguous piece of memory that a job may borrow
from its parent is a configuration parameter. The subject of
configuration is covered in the RMX/86 Configuration Guide For
ISIS-1I1 Users.

Observe that, if a job has equal pool minimum and pool maximum
attributes, then its pool is fixed at that common value. This
means that, once it has this amount, the job may not borrow
memory from its parent. A task in the job may, however, create
a new job.

MEMORY ALLOCATIGON

The memory pool of a job consists of two classes of memory:
allocated and unallocated. Memory in a job is allocated if it
has been requested by tasks in the job or if it is on loan to a
child job. Otherwise, it is unallocated.

When a task no longer needs a segment, it can return the
segment to the unallocated part of the Jjob's pool by using the
DELETE$SEGMENT system call. Figure 6-2 shows how memory
"moves."

(PARENT POOL)

CREATES$-

CREATES$- DELETES$- SEGMENT DELETES$-
JOB JOB (OCCASIONALLY) |JOB

CREATE$SEGMENT

(NORMAL CASE)
>
UNALLOCATED ALLOCATED
MEMORY DELETE$SSEGMENT MEMORY
-€

Figure 6-2. Memory Movement Diagram

MEMORY MANAGEMENT

MEMORY DEADLOCK PROBLEMS

Users who are planning to write tasks that do dynamic memory
allocation (via the CREATE$SEGMENT system call) should be aware
that deadlock is an inherent danger in any operatng system in
which memory is allocated dynamically. Two tasks are said to
be deadlocked when each one is requesting something that is
held by the other and neither task will relinquish what the
other task needs.

Deadlock 1is unusual and unpredictable. When it occurs it is
usually in systems in which there 1is heavy wuse of the
allocation and deallocation capabilities. When deadlock
occurs, the best solution is not necessarily to add more
memory. Instead, you can take precautions in the way in which
you write tasks. The purpose of this section is to recommend
some general methods of guarding against deadlock.

The following example serves both to illustrate the concept of
deadlock and to emphasize the danger that RMX/86 tasks can face
when they are requesting segments.

Suppose that the following circumstances exist for tasks A and
B and the memory pool of their common job:

@ A has low priority and B has high priority.

e A and B each want two segments of a given size. Each
asks for the segments by <calling the CREATE$SEGMENT
system call repeatedly until both segments are acquired.

e The memory pool has only enough memory to satisfy two of
the requests.

@ B is asleep and A is running.
Now suppose that the following events occur in the order listed:
e A gets its first segment.
e B awakens and becomes the running task.
e B gets its first segment.
B remains ready and continues to ask for its second segment.
Not only is each task wunable to progress, but task B 1is

consuming a great deal, perhaps all, of the processor time.
Tasks A and B are deadlocked and the system's performance is

seriously degraded.

This kind of memory allocation deadlock problem is particularly
insidious because it probably would not occur during
debugging. Note that the key event in the preceding example is

MEMORY MANAGEMENT

the waking of task B just after A's first call to the CREATES$-
SEGMENT primitive and just before the second call. Such
critical timing probably would occur only rarely, so what is
confidently thought to be a "thoroughly debugged system" might
suddenly, inexplicably fail. Analyzing this kind of problem
can be very difficult.

Several precautions may be taken to prevent the deadlock in the
previous examples:

e If either task needed memory for its own use, rather than
needing a segment to send to another task, it might have
been able to make do with its extra segment.

@ Task B should not be asking endlessly for its second
segment. As a general rule, a task should only try a
predetermined number of times to obtain a segment.

e Each task could be stopped from preempting the other
while the other 1s in the midst of its "allocation phase".

The following are two ways of achieving the mutual exclusion
implied in the third precaution:

e Each task, instead of making multiple requests for
memory, could ask for a single, large segment instead of
asking for several small ones. This approach could be
unsatisfactory for either or both of two reasons:

- If the requesting task needs to send small segments to
other tasks, a large segment will not suffice.

- In general, requests for large segments are less apt
to be successful because the memory in the pool might
be fragmented, with no large, contiguous blocks
remaining.

e The tasks <could wuse an "allocation semaphore", which
would be created with one wunit. Each task, before
requesting memory, would request one unit from the
semaphore. When it gets the unit, the task can get all
of its needed memory and then send the unit back to the
semaphore. Doing this prevents deadlock, but it might
cause a high priority task to be kept waiting for a long
time by a low priority task that first obtained the unit
from the semaphore and then was preempted by another,
higher-priority task. There is no certain cure for this
"pblocking" of waiting tasks, but such incidents can be
made somewhat rarer if the allocation semaphore has a
priority-based task qgueue.

A fourth precaution against deadlock involves isolating tasks

and memory pools so that tasks requesting memory are not
directly or indirectly competing for the same memory. Tasks

6-5

MEMORY MANAGEMENT

compete directly when they are in the same job, so tasks that
request memory should be in different jobs. (Perhaps each job
contains a special purpose task which does all of the
requesting of memory for its job.) Tasks can also compete
(indirectly) when they are in different jobs, because their
jobs might have to borrow memory from their ancestors in the
job tree, and, in so doing, might borrow from the same job.
However, if two tasks are in separate Jjobs and at least one of
them is in a Jjob whose pool$min and pool$max attributes are
equal (and not zero), then that task's Jjob cannot borrow and
the deadlock problem is avoided. A disadvantage of isolating a
job in this way is that it might then be wunable to satisfy
requests for memory, unless it 1is created with a substantial
memory pool. In some cases, the requirement that memory pools
be large may not be acceptable.

As was mentioned earlier, deadlock is a rare phenomenon. We
recommend that you not worry excessively about it. However, it
is a real hazard, so you would be wise to develop your system
with deadlock prevention in mind.

SYSTEM CALLS FOR SEGMENTS

The following system calls manipulate segments:

e CREATE$SEGMENT --- creates a segment and returns a token
for it.

@ DELETE$SEGMENT --- returns a segment to the pool from
which it was allocated.

e GET$SIZE --- returns the size, in bytes, of a segment.

e SET$POOLSMINIMUM --- enables a task to change the pool

minimum attribute of its job's pool.

@ GET$POOLSATTRIBUTES --- returns the following memory pool
attributes of the calling task's Jjob: pool minimum, pool
maximum, initial size, number of allocated bytes, and
number of available bytes.

6-6

N

Chapter 7. OBJECT MANAGEMENT

There are a few RMX/86 Nucleus system calls that apply to all
object types. One of these, the GET$TYPE system call, enables
a task to present a token to the Nucleus and get an object's
type code in return. (Type codes are listed in Appendix B.)
This 1is wuseful, for example, when a task 1is expecting to
receive objects of several different types. With the object's
type code, the task can use the appropriate system calls for
the object.

Other type-independent system calls have to do with object
directories. Each job has its own object directory. An entry
in an object directory consists of an object with an ASCII
name. Such a feature is often needed because some tasks might
only know some objects by their associated names.

By using the LOOKUP$0OBJECT system call, a task can present the
name of an object to the Nucleus. The Nucleus consults the
object directory corresponding to the specified job and, if the
object has been cataloged there, returns the token.

I1If the object has not yet been cataloged, and the task is not
willing to wait, the task remains ready and receives an E$TIME
exceptional condition. However, if the task 1is willing to
wait, it is put to sleep; there are two possibilities:

e If the designated waiting period elapses before the task
gets 1its requested token, the task is made ready and
receives an E$TIME exceptional condition (see Chapter 8).

e If the task gets its requested token within the
designated waiting period, it 1is made ready with no
exceptional condition. This case 1is possible because
another task can, while the requesting task 1is waiting,
catalog the appropriate entry in the specified object
directory.

The tasks in a job must maintain the job's object directory.
When a task wants to share an object with the other tasks in a
job (not necessarily its own Jjob), it can use the CATALOGS$-
OBJECT system call to put the object in that Jjob's object
directory. Typically, this 1is done by the creator of the
object. Likewise, entries can be removed from a directory by
the UNCATALOG$OBJIECT system call.

OBJECT MANAGEMENT

What is required, when using an object directory, 1s the token
of the Jjob whose directory is to be wused. The rtoot Jjob's
object directory, called the root object directory, is special
in that any task can use it. Any task can call the GET$TASKS$-
TOKENS system call to obtain the token of the root job.

SYSTEM CALLS FOR ANY OBJECTS

The following system calls manipulate objects:

e CATALOG$0OBIECT --- places an object in an object
directory.

e UNCATALOG$OBJIECT --- removes an object from an object
directory.

e LOOKUP$OBJIECT --- accepts a cataloged name of an object
and returns a token for it.

@ GET$TYPE --- accepts a token for an object and returns
its type code.

Chapter 8. EXCEPTIONAL CONDITION MANAGEMENT

When a task invokes an RMX/86 system call, the results are
sometimes not what the task is trying to achieve. For example,
maybe the task requests memory that is not available, or it
might use an invalid token as a parameter. In such cases, the
system must inform the task that an error occurred. Whenever a
task makes a system call, the means of communicating the
success or failure of the call is the condition code.

TYPES OF EXCEPTIONAL CONDITIONS

Table 8-1 is a list of Nucleus conditions and their codes. The
conditions that represent failure are called exceptional and
are classified as programmer errorTs or environmental
conditions. An exceptional condition that 1is preventable by
the calling task is a programmer error. In contrast,
exceptional conditions due to environmental circumstances of
which the task could have no awareness are considered
environmental conditions.

Table 8-1 lists the possible conditions, with their associated
numeric codes and mnemonics. Values not used as numeric codes
are reserved.

EXCEPTION HANDLERS

The RMX/86 Nucleus supports exception handlers. Their purpose
is to deal with the errors that tasks make in making system
calls. How an exception handler deals with an exceptional
condition is a matter of programmer discretion. In general, a
handler performs one of the following actions:

® Logs the error.
® Deletes the task that erred.

® Simply ignores the error. If this opfion is taken, the
system continues as if no error had occurred.

An exception handler is written as a procedure with four
parameters passed in the following order:

® the condition code (WORD).
@ a code (BYTE) indicating which parameter, if any, was

faulty in the call (1 for first, 2 for second, etc., O if
none).

8-1

EXCEPTIONAL CONDITION MANAGEMENT

e a reserved (WORD) parameter.

e a reserved (WORD) parameter.

ASSIGNING AN EXCEPTION HANDLER

A task may use the SET$EXCEPTION$HANDLER system call to declare

its own exception handler. Otherwise, the task inherits the
exception handler of 1its job. A job can receive 1its own
exception handler at the time of its creation. If it doesn't,

the Jjob 1inherits the system exception handler. Thus, the
Nucleus can always find an exception handler for the running
task.

A system exception handler is provided as part of the RMX/86
Operating System and deletes any task on whose behalf it is
invoked. Users may provide their own system exception handlers.

Any task can have the Debugger as 1its exception handler; see
the description in Chapter 10 of the SET$EXCEPTION$HANDLER
system call for instructions on how to dynamically make such an
assignment. Alternatively, the Debugger or any other routine
can be made the system exception handler statically; see the
RMX/86 Configuration Guide for ISIS-II users for information on
how to do this.

INVOKING AN EXCEPTION HANDLER

When a task causes an exceptional condition, it need not have

control passed to its exception handler. The factor that
determines whether control passes to the exception handler is
the task's exception mode. This attribute has four possible

values, each of which specifies the circumstances under which
the exception handler is to get control in the event of an
exceptional condition. These circumstances are:

e Programmer errors only.

e Environmental conditions only.

e All exceptional conditions.

e No exceptional conditions.

When the Nucleus detects that a task has caused an exceptional
condition in making a system call, it compares the type of the

condition with the calling task's exception mode. If a
transfer of control is indicated, the Nucleus passes control to
the exception handler on behalf of the task. The exception

handler then deals with the problem, after which control
returns to the task, unless the exception handler deleted the
task. While the exception handler 1s executing, the errant
task 1s still regarded by the Nucleus to be the running task.

8-2

EXCEPTIONAL CONDITION MANAGEMENT

Table 8-1. Conditions and their Codes

CATEGORY/ NUMERIC CODE
MNEMONIC MEANING HEX DECIMAL
Normal
E$0K The most recent system call was

successful. OH 0
Exceptional

Environmental

Conditions

E$TIME

E$MEM

ESLIMIT

E$CONTEXT

E$EXIST

E$STATE

Programmer

Errors

E$ZEROS-
DIVIDE

E$OVERFLOW

E$TYPE

E$BOUNDS

E$PARAM

A time limit (possibly a limit of
zero time) expired without a task's
request being satisfied. 1H 1

There is not sufficient memory avail-
able to satisfy a task's request. 2H 2

A task attempted an operation which,
if it had been successful, would have
violated a Nucleus-enforced limit. 4H 4

A system call was issued out of
context. 5H 5

A token parameter has a value which
is not the token of an existing
object. 6H 6

A task attempted an operation which
would have caused an impossible
transition of a task's state. 7H 7

A task attempted to divide by zero.
8000H 32768

An overflow interrupt occurred. 8001H 32769
A token parameter referred to an

existing object that is not of the

required type. 8002H 32770

A task attempted to write beyond
the end of a segment. 8003H 32771

A parameter which is neither a token
nor an offset has an illegal value. 8004H 32772

8-3

EXCEPTIONAL CONDITION MANAGEMENT

When a task is created, its exception mode is set to its job's
default exception mode. The task can change 1its exception
handler and exception mode attributes by wusing the SET$-
EXCEPTION$HANDLER system call.

HANDLING EXCEPTIONS IN-LINE

If a task's exception mode attribute does not direct the
Nucleus to transfer control to the task's exception handler,
the responsibility for dealing with an error falls upon the
task.

Each system call has as 1its 1last parameter a pointer to a
WORD. After a system call, the Nucleus returns the resulting
condition code to this WORD. By checking this WORD after each
system «call, a task —can ascertain whether the ~call is
successful. (See Table 8-1 for condition codes.) If the call
is not successful, the task can learn which exceptional
condition it caused. This information can sometimes enable the
task to recover. In other cases more information is needed.

NOTE

if an exceptional condition is
caused by an 1invalid parameter, an
exception handler, which 1is passed
the parameter number of the first
invalid parameter, should handle the
condition.

SYSTEM CALLS FOR EXCEPTION HANDLERS

The following system calls manipulate exception handlers:

] SET$EXCEPTION$HANDLER --- sets the exception handler
and exception mode attributes of the calling task.

° GET$EXCEPTION$HANDLER --- returns to the calling task
the current values of its exception handler and
exception mode attributes.

Chapter 9. INTERRUPT MANAGEMENT

Interrupts and interrupt processing are central to real-time
computing. External events occur asynchronously with respect
to the internal workings of a RMX/86 application system. An
interrupt, signalling the occurrence of an external event,
triggers an implicit "call" to a specific location in a section
of memory known as the interrupt vector table. From there,
control is redirected to a PL/M-86 interrupt procedure called
an interrupt handler. At this point, one of two things
happens. If handling the interrupt takes 1little time and

. requires no system calls, other than certain interrupt-related

system calls, the interrupt handler processes the interrupt.
Otherwise, the interrupt handler invokes an interrupt task
which deals with the interrupt. After the interrupt has been
serviced, control returns to the application task with highest
priority.

INTERRUPT MECHANISMS

There are three major concepts in interrupt processing: the
interrupt vector table, interrupt levels, and disabling
interrupt levels.

THE INTERRUPT VECTOR TABLE

The interrupt vector table is composed of 256 vectors. The
vectors are numbered O to 255. A number of the interrupt
vectors are reserved and therefore are not available to be
defined by user tasks. The vectors are allocated as follows:

0- 55: reserved
56- 63: available for external interrupts

64-223: reserved
224-255: described in the RMX/86 System Programmer's
Reference Manual. ‘

INTERRUPT LEVELS

External interrupts are funneled through hardware which can
manage interrupts from up to eight external sources. The eight
sources are associated with eight interrupt levels.

INTERRUPT MANAGEMENT

The interrupt levels, numbered O to 7, correspond to interrupt
vectors 56 to 63, respectively. Interrupt 1levels with low
numbers have high priority. As a rule, all levels except level
2 are available for user devices. Level 2 is reserved for the
system clock.

DISABLING INTERRUPTS

Occasionally you want to prevent interrupt signals from causing

an immediate interrupt. For example, it 1is desirable to
prevent low priority interrupts from interfering with the
servicing of a high priority interrupt. In the RMX/86
Operating System, each interrupt level can be disabled. In
some circumstances, described later, the Nucleus disables
levels. Tasks can also disable and enable levels by means of
the DISABLE and ENABLE system calls. Level 2, which 1is

reserved for the system clock, should not be disabled.

If an interrupt signal arrives at a level that is enabled, the
interrupt 1s recognized by the processor and control goes
immediately to the interrupt handler for that level.
Otherwise, the 1level 1is disabled and the interrupt signal is
blocked until the level is enabled, at which time the signal 1is
recognized by the CPU. However, if the signal is no longer
emanating from its source, it 1is not recognized and the
interrupt is not handled.

There are two ways 1in which an interrupt 1level can be
disabled. A task can mask a level by using the DISABLE system
call; later the level can be wunmasked by the ENABLE system

call. The second disabling agent is the Nucleus itself. When
the running task 1is of high priority, the Nucleus disables
certain interrupt levels. The relationship between task

priorities and disabled levels is given in Table 9-1.

Table 9-1. Interrupt Levels Disabled For Running Task

Task Priority Disabled Levels

0-16 0-7

17-32 1-7

33-48 2-7

49-64 3-7

65-80 4-7

81-96 5-7

97-112 6-7

113-128 7

129-255 None

.

.

INTERRUPT MANAGEMENT

INTERRUPT HANDLERS AND INTERRUPT TASKS

Whether an interrupt level is to be serviced by an interrupt
handler alone or by having an interrupt handler invoke an
interrupt task depends on two conditions. First, interrupt
handlers cannot make most system calls. Only EXIT$INTERRUPT,
GET$LEVEL, and SIGNAL$INTERRUPT can be called from an interrupt
handler. If other system calls are required, they must be made
by an interrupt task. Second, an interrupt handler should call
an interrupt task unless it can service interrupts quickly
because an interrupt signal disables all interrupts, and
interrupts remain disabled wuntil the interrupt handler is
finished processing. Invoking an interrupt task, on the other
hand, allows higher priority interrupts to be accepted.

USING AN INTERRUPT HANDLER
Interrupt handlers are written as PL/M-86 interrupt procedures.

An interrupt handler that does not call an interrupt task must
perform the following functions in the following order:

Service the interrupt.
Make an EXIT$INTERRUPT system call.

The <call to the EXIT$INTERRUPT causes an end-of-interrupt
signal to be sent to the hardware.

The SET$INTERRUPT system call binds an interrupt handler and,
optionally, an interrupt task to an interrupt level.
SET$INTERRUPT places the starting address of an interrupt
handler in the interrupt vector table. If the interrupt$-
task$flag parameter is set to 1, then the task calling SET$-
INTERRUPT becomes the interrupt task for the specified level.
Otherwise, interrupt$task$flag is O and there is no interrupt
task for the level.

When an RMX/86 application system starts .up, all interrupt
levels are disabled. When SET$INTERRUPT binds an interrupt
handler but not an interrupt task to a 1level, the level is
enabled. If, instead, there is an interrupt task, the level is
not enabled until that task makes a WAIT$INTERRUPT system call
(described in the next section.)

The RESET$INTERRUPT system call cancels the bond between an
interrupt 1level and its interrupt handler. The ~call also
disables the specified level. If there is an interrupt task
for the 1level, RESET$INTERRUPT deletes 1it. DELETE$TASK and
DELETE$J0OB do not delete interrupt tasks.

9-3

INTERRUPT MANAGEMENT

USING AN INTERRUPT TASK

If there 1is both an interrupt handler and an interrupt task
associated with a 1level, the interrupt handler invokes the
interrupt task by making a SIGNAL$INTERRUPT system call. If a
level has only an interrupt handler, however, the handler may
not call SIGNAL$INTERRUPT.,

If an interrupt handler calls an interrupt task, the handler
must perform the following functions in the following order:

Optionally, service the interrupt without system calls.
Call SIGNAL$INTERRUPT.

The call to SIGNAL$INTERRUPT starts up the interrupt task and
enables interrupts.

An interrupt task must perform the following functions in the
following order, although the first two functions may be
interchanged:

Call SET$INTERRUPT.
Do initialization.
Do forever;
Call WAITSINTERRUPT.
Service the interrupt (system calls allowed).
End;

An interrupt handler executes in the environment of the
interrupted task. An interrupt task has its own environment.

An interrupt task, once initialized, is always in one of two
modes. Either it is servicing an interrupt or it is waiting
for notification of an interrupt.

When a task becomes an interrupt task by calling SET$INTERRUPT,
the Nucleus assigns a priority to it, according to the level
that the task is to service. Table 9-2 shows the relationship
between levels and interrupt task priorities.

NOTES

The priority that the Nucleus
assigns to an interrupt task might
exceed the max imum priority
attribute of the Jjob that contains
that task. If this occurs, you get
an exceptional condition. To
overcome this problem, recreate the
job with a higher maximum priority
attribute.

e

INTERRUPT MANAGEMENT

Because an interrupt vector is
initialized by SET$INTERRUPT, the
NOINTVECTOR control should be used
when compiling the interrupt task.

Figure 9-1 illustrates the two interrupt servicing patterns and

their relationships.
INTERRUPT OCCURS AND
INTERRUPT HANDLER
GETS CONTROL

INTERRUPT HANDLER
DOES SOME
INTERRUPT SERVICING

NEED
TO INVOKE
INTERRUPT
TASK
2

INTERRUPT INTERRUPT
HANDLER CALLS HANDLER CALLS
SIGNALSINTERRUPT EXITSINTERRUPT

INTERRUPT TASK
COMPLETES
INTERRUPT
SERVICING

[

INTERRUPT TASK
CALLS
WAITSINTERRUPT

»(CONTROL RETURNS TO AN
APPLICATION TASK

Figure 9-1.

Table 9-2. The Relationship Between External Levels
and Internal Task Priorities

LEVEL INTERRUPT TASK PRIQRITY

18
34
50
66
82
98
114
130

NOoOuEs WN O

INTERRUPT MANAGEMENT

HANDLING LEVEL 7 INTERRUPTS

Occasionally, spurious signals can trigger a level 7
interrupt. An interrupt handler for level 7 should begin by
sampling port CO. If the BYTE value obtained there does not
have a 1 in the high-order bit, then the interrupt is a false
alarm and should not be handled. In PL/M-86, the following
lines perform this check when placed at the beginning of the
interrupt handler:

QUTPUT (OCOH) = OBH;
IF ((INPUT (OCOH)) AND 80H) =0

THEN RETURN;

EXAMPLES OF INTERRUPT SERVICING

To help you understand the major points already described,
tables 9-3 and 9-4 are provided. Each table outlines the
turning points in a scenario where an interrupt handler 1is
assigned to level 4, an interrupt arrives at that level and 1is
serviced, and finally the assignment of an interrupt handler is
cancelled. Table 9-3 shows a case where the interrupt handler
deals with the interrupt. Table 9-4 treats the case where the
interrupt handler calls an interrupt task.

In the right-hand column of each of tables 9-3 and 9-4, the
phrase "interrupt levels necessarily disabled™ alludes to the
fact that the events of the example cause certain levels to be
enabled or disabled. Other events, outside the scope of the
example, might cause other levels to be disabled as well.

N

INTERRUPT MANAGEMENT

Table 9-3. An Example Of Interrupt Handling
Without An Interrupt Task
INTERRUPT
LEVELS
EVENTS EXPLANATION NECESSARILY
IN SEQUENCE DISABLED
- No interrupt handler
assigned to level 4. 4
RQ$SETHINTERRUPT A task assigns an
(LEVEL$4,0,...); interrupt handler to NONE
level 4.
Level 4 device An interrupt arrives
interrupts at level 4. 0-7
The interrupt is
serviced by the
interrupt handler. 0-7
RQ$EXITSINTERRUPT Interrupt hardware
(LEVELS$4,...); reset by the
interrupt handler. 0-7
Interrupt handler Interrupts are
returns re-enabled. NONE
RQFRESETSINTERRUPT- A task cancels the
(LEVELS$4,...); assignment of an
interrupt handler to
level 4. 4

Table 9-4.

INTERRUPT MANAGEMENT

An Example Of Interrupt Handling

With An Interrupt Task

EVENTS
IN SEQUENCE

EXPLANATION

INTERRUPT LEVELS
NECESSARILY
DISABLED

RRQ$SETSINTERRUPT
(LEVELS$L, 1, ...);

RQSWAITSINTERRUPT
(LEVELS$4,...);
Level 4 device

interrupts

RQ$SIGNALSINTERRUPT
(LEVELS$4,...);

RQSWAITSINTERRUPT
(LEVELS4,...);

No interrupt handler
assigned to level 4.

A task assigns an
interrupt handler to level
4 and it assigns itself to
be the interrupt task for
that level.

The interrupt task
begins to wait for
an interrupt.

An interrupt arrives

at level 4. The
interrupt handler gets
control and optionally,
does some servicing.

The interrupt handler
invokes the interrupt
task.

The interrupt is
serviced by the interrupt
task.

The interrupt task
finishes and begins

to wait for another
level 4 interrupt.
Control passes back to
the interrupt handler
and then back to an
application task.

NONE

NONE

INTERRUPT MANAGEMENT

SYSTEM CALLS FOR INTERRUPTS

The following system calls manipulate interrupts:

SET$INTERRUPT --- assigns an interrupt handler and, if
desired, an interrupt task to an interrupt level.
RESET$INTERRUPT --- cancels the assignment made to a

level by SET$INTERRUPT and, if applicable, deletes the
interrupt task for that level.

EXIT$INTERRUPT --- used by interrupt handlers to send an
end-of-interrupt signal to hardware.

SIGNAL$INTERRUPT =---used by interrupt handlers to invoke
interrupt tasks.

WAITSINTERRUPT --- puts the calling interrupt task to

sleep until it is called into service by an interrupt
handler.

ENABLE --- enables an external interrupt level.
DISABLE --- disables an external interrupt level.
GET$LEVEL --- returns the interrupt 1level of highest

priority for which an interrupt handler has started but
has not yet finished processing.

TN

/ >y

Chapter 10. NUCLEUS SYSTEM CALLS

This chapter contains the calling sequences and other
information about the system calls to the Nucleus. The system
calls are listed in alphabetical order. Names of the calls are
written in white on a dark background in the upper outside
corner of each page. The calling sequence for each call is
that for the PL/M-86 1interface. The information for each
system call is organized into the following categories, in the
following order:

e A brief sketch of the effects of the call.

e The format of the call.

e Definitions of the input parameters, if any.

e Definitions of the output parameters, if any.

e A complete description of the effects of the call.

e The condition codes that can result from using the call,
with a description of the possible causes of each condition.

Throughout the chapter, RMX/86 data types, such as BYTE, STRING
are used. They are always capitalized and their definitions
are found in Appendix A.

Between this introduction and the details of the system calls
is a command dictionary, in which the calls are grouped
according to type. This dictionary, which 1includes short
descriptions and page numbers of the complete descriptions 1in
this chapter, is provided as an alternate way of indexing the
system calls.

10-1

NUCLEUS SYSTEM CALLS

COMMAND DICTIONARY

CALLS FOR JOBS

CREATE$J0B -- Creates a job with a task and returns
a token for the Job ..ttt ittt ieenennnns

DELETE$JOB -- Deletes a childless job that contains
No interrTupt tasks ittt ittt eecnnnnonns

OFFSPRING -- Provides a segment containing tokens of
the child jobs of the specified jobccvvvin.n.

CALLS FOR TASKS

CREATE$TASK -- Creates a task and returns a token for it
DELETE$TASK -- Deletes @ task +.eeer et innneeneenneeeonnns
SUSPEND$TASK -- Increases a task's suspension depth by

one; suspends the task if it is not already suspended

RESUME$TASK -- Decreases a task's suspension depth by
one; resumes (unsuspends) the task if the suspension
depth DECOMES ZETO .+ttt oeeeenoeecssseesossssssosssss

SLEEP -- Places the calling task in the asleep state
for a specified amount of timecciiiiiiieeennnnns

GET$TASK$TOKENS -- Returns to the caller a token for
either itself, its job, its job's parameter object,
OorF the Toot Job it ittt ittt iiieennnn

GET$PRIORITY -- Returns the priority of a task

CALLS FOR MAILBOXES

CREATE$MAILBOX -- Creates a mailbox and returns a token
FOT 1L it it ittt ittt e eeeeeeceeossssoosssssoesssococsoescssse

DELETE$MAILBOX -- Deletes a MAllbOX eeeeeeeeeeeennennean

SEND$MESSAGE -- Sends an object to a mailbox

RECEIVE$MESSAGE -- Sends the calling task to a mailbox
for an object; the task has the option of waiting
if no objects are presentiiiiiiiiii ittt

10-2

10-7

10-20

10-40

10-17

10-25

10-57

AN

NUCLEUS SYSTEM CALLS

COMMAND DICTIONARY (continued)

CALLS FOR SEMAPHORES

CREATE$SEMAPHORE -- Creates a semaphore and returns
a token for itc... ceeeceaenas cece et et eereeneas

DELETE$SEMAPHORE -- Deletes a sSemaphoTeeeeeeeeeeoenn

SEND$UNITS -- Adds a specific number of units to the
supply of a semaphore C et st cec sttt ennne

RECEIVE$UNITS -- Asks for a specific number of units
from a semaphore ...ceceveeeannans ceseecsnan ceeesesenan

CALLS FOR SEGMENTS AND MEMORY POOLS

CREATE$SEGMENT -- Creates a segment and returns a token
for it oieeii it nnnns ces s eenenn ceeesssecnenn

DELETE$SEGMENT -- Returns a segment to the memory pool
from which it was allocatedivieeveenneneeescecnanas

GET$SIZE -- returns the size, in bytes, of a segment

SET$POOL$MINIMUM -- Changes the pool minimum attribute
of the memory pool of the caller's job Ceceeens

GET$POOLSATTRIBUTES -- Returns the following memory pool
attributes of the caller's job: pool minimum, pool
maximum, initial size, number of allocated bytes,
number of available bytesviviieieeirteinnnnns ceeeaeae

CALLS FOR ALL OBJECTS

CATALOG$0BJIECT -- Places an object in an object
directoryeece.. C et e e e eetenenan ettt .

UNCATALOG$0BJIECT -- Removes an object from an object

diTECLOTY tiviieiiernreceooescnannnns Ceeeceeeas sescses
LOOKUP$0OBJECT -- Accepts a cataloged name of an object

and returns a token for it et e et ceees
GET$TYPE -- Accepts a token for an object and returns

its type code c.iiiiiiiiii ittt ittt ittt ..

10-3

NUCLEUS SYSTEM CALLS

COMMAND DICTIONARY (continued)

CALLS FOR EXCEPTION HANDLERS

SET$EXCEPTION$HANDLER -- Sets the exception handler and

exception mode attribures of the caller 10-49
GET$EXCEPTION$HANDLER -- Returns the current values of

the caller's exception handler and exception mode

= Yo o ol o 10 o8 10-29

CALLS FOR INTERRUPT HANDLERS, TASKS, AND LEVELS

SET$INTERRUPT -- Assigns an interrupt handler and, if
desired, an interrupt task to an interrupt level 10-51

RESET$INTERRUPT -- Cancels the assignment of an
interrupt handler to a level and, if applicable,
deletes the interrupt task for that levelccc.c... 10~45

EXIT$INTERRUPT -- Used by interrupt handlers to send
an end-of-interrupt signal to hardwareceeeeeee. 10-28

SIGNAL$INTERRUPT -- Used by interrupt handlers to
invoke interrupt tasks ... 0., e ecceeeee e 10-55

WAIT$INTERRUPT -- Puts the calling interrupt task
to sleep until it is called into service by an

interrupt handlerciiiiiiinenenns et e ettt e 10-59
ENABLE -- Enables an external interrupt level ceeees 10-27
DISABLE -- Disables an internal interrupt level 10-26
GET$LEVEL -- Returns the interrupt level of highest

priority for which an interrupt handler has started

but has not yet finished processingcceeeeeennnn. 10-31

10-4

AN

NUCLEUS SYSTEM CALLS

THE SYSTEM CALLS
CATALOG OBJECT

CATALOG$0OBJIECT places an entry for an object in an object
directory.

CALL RQ$CATALOG$0BJIECT (job, object, name, except$ptr);

INPUT PARAMETERS
job A WORD which,

e if zero, indicates that the object is to
be cataloged in the object directory of
the job to which the calling task belongs.

e if not zero, contains the token for the
job in whose object directory the object
is to be cataloged.

object A WORD containing a token for the object to
be cataloged.

name A POINTER to a STRING containing the ASCII
name under which the object is to be
cataloged. The name itself must not exceed

12 ASCII characters in length.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the condition
code for the call is to be returned.

DESCRIPTION

The CATALOG$OBIECT system call places an entry for an
object in the object directory of a specific job. The
entry consists of both an ASCII name and the object. There
may be several such entries for a single object in a
directory, because the object may have several ASCII
names. (However, in a given object directory, only one
object may be cataloged under a given name.) If another
task is waiting, via the LOOKUP$0OBJECT system call, for the
object to be cataloged, that task 1is awakened when the
entry is cataloged.

CONDITION CODES
E$OK No exceptional conditions.

ESCONTEXT The entry that is being cataloged is already
in the designated object directory.

10-5

NUCLEUS SYSTEM CALLS

CATALOG OBJECT (continued)

CONDITION CODES (continued)

ESEXIST

ESLIMIT

E$PARAM

E$TYPE

Either the job parameter (which is not zero)
or the object parameter is not a token for
an existing object.

The designated object directory is full.

The first BYTE of the STRING pointed to by
the name parameter contains a value (greater
than 12 or a value of O.

The job parameter is a token for an object
which is not a job.

10-6

NUCLEUS SYSTEM CALLS

CREATE J0OB
CREATE$J0B creates a job with a single task.

job = RQ$CREATE$JIOB (directory$size, param$obj, pool$min,
poolmax, maxobjects, max$tasks, max$priority,
except$handler, job$flags, task$priority, start$-
address, data$seg, stack$ptr, stack$size, task$flags,
except$ptr);

INPUT PARAMETERS

directory$size A WORD containing the maximum allowable
: number of entries in the created Jjob's
object directory.

param$ob j A WORD which,

e if zero, indicates that the new job has
no parameter object.

e if not zero, contains a token for the
new job's parameter object.

pool$min A WORD which contains the minimum
allowable size of the new Jjob's pool, in
16 byte paragraphs. The pool$min
parameter is also the initial size of the
new job's pool. If the stack$ptr
parameter has a base value of 0, pool$min
should be at least 32. Otherwise, pool$min
should be at least 32 plus the value of
stack$size in 16 byte paragraphs. If
pool$min is less than 32, an E$PARAM
exceptional condition occurs.

pool$max A WORD which contains the maximum
allowable size of the new job's memory in
l6é Dbyte paragraphs. If pool$max is
smaller than pool$min, an E$PARAM error
OCCUTS.

max$objects A WORD which,

e if not OFFFFH, contains the maximum
number of objects, created by tasks in
the new job, that can exist
simultaneously.

e if OFFFFH, indicates that there is no

limit to the number of objects that
tasks in the new job can create.

10-7

NUCLEUS SYSTEM CALLS

CREATE JOB (continued)
INPUT PARAMETERS (continued)

max$tasks

max$priority

except$handler

A WORD which,

e if not OFFFFH, contains the maximum
number of tasks that can exist
simultaneousliy in the new job.

e if OFFFFH, indicates that there is no

limit to the number of tasks that tasks
in the new job can create.

A BYTE which,

e if not zero, contains the maximum
allowable priority of tasks in the new
job. If max$priority exceeds the

maximum priority of the parent job, an
E$LIMIT error occurs.

e if zero, indicates that the new Jjob 1is
to inherit the maximum priority
attribute of the job to which the
calling task belongs.

A POINTER to a structure of the following
form:

STRUCTURE (

EXCEPTION$HANDLER$OFFSET WORD,
EXCEPTION$HANDLER$BASE WORD,
EXCEPTION$MUDE BYTE) ;

If exception$handler$base is not zero,
then it and exception$handler$offset form
a POINTER to the first instructic: of the
new job's own exception handler. If
exception$handler$base is zero, the new
job's exception handler 1is the system
default exception handler. In both cases,
the exception handlor for the new task 1is
the default exception handler for the

job. Except®cn$mode inagicates when
control is to be passed to the new task's
exception handler. It 1is encoded as
follows:
When Control Passes
Value To Exception Handler

0 Never

1 On programmer errors only

2 On environmental conditions only

3 On all exceptional conditions

10-8

NUCLEUS SYSTEM CALLS

CREATE JOB (continued)

INPUT PARAMETERS (continued)

job$flags A WORD reserved for future use. It should
be set to O.

task$priority A BYTE which,

e if not zero, contains the priority of
the new Job's 1initial task. If the
task$priority parameter is greater
(numerically smaller) than the new
job's maximum priority attribute, an
E$PARAM error occurs.

e if zero, indicates that the new Jjob's
initial task 1is to have a priority
equal to the new job's maximum priority
attribute.

start$address A POINTER to the first instruction of the
new job's initial task.

data$seg A WORD which,
e if nct zero, contains a token for the
data segment of the new job's initial
task.

This can be set up by the following
PL/M statement:

DECLARE BEGIN WORD; /* A DUMMY
VARIABLE WHICH
IS THE FIRST
DECLARED
VARIABLE */

DECLARE DATA$PTR POINTER;
DECLART DATA$ADDRESS STRUCTURE (
OFFSET WORD,
BASE WORD) AT (@DATA$PTR);
/*¥ THIS MAKES
ACCESSIBLE THE
TWO HALVES OF

THE POINTER
DATA$PTR */

10-9

NUCLEUS SYSTEM CALLS

CREATE JOB (continued)

INPUT PARAMETERS
data$seg (continued)

DATA$PTR = @BEGIN; /* PUTS THE
WHOLE ADDRESS
OF THE DATA
SEGMENT INTO
DATAS$PTR AND
DATA$ADDRESS */

DS$BASE = DATA$ADDRESS.BASE;

CALL RQ$SETSINTERRUPT (...,DS$BASE);

e if zero, 1indicates that the new
job's initial task has no data
segment.

stack$ptr A POINTER which,

e if the base portion is not zero,
points to the base of the stack of
the new Jjob's initial task.

e if the base portion is zero,
indicates that the Nucleus should
allocate a stack segment to the new
job's initial task. The length of
the allocated segment 1is equal to
the value of the stack$size

parameter.
stack$size A WORD containing the size, in bytes,
of the stack segment of the new job's
initial task. Stack$size must
specify at least 16 bytes. The

Nucleus decreases specified values
that are not multiples of 16 up to
the next higher multiple of 16.

Stack$size should be at 1least 512
bytes if the new task 1s going to
make system calls.
task$flags A WORD reserved for future use. It
should be set to O.
OUTPUT PARAMETERS
Jjob A WORD containing a token for the new

Jjob.

10-10

NUCLEUS SYSTEM CALLS

CREATE JOB (continued)

OUTPUT PARAMETERS (continued)

except$ptr A POINTER to a WORD to which the condi-
tion code for the call is to be returned.

DESCRIPTION

The CREATE$JOB system call creates a job with an
initializing task and returns a token for the job. The new
job's parent is the calling task's job. The new job counts
as one against the parent job's object limit. The new task
counts as one against the new job's object and task
limits. If a stack segment is created for the new task, it
counts as one against the new job's object limit. The new
job's resources come from the parent job, as described in
the chapter on job management.

CONDITION CODES
E$OK No exceptional conditions.

E$CONTEXT The Jjob containing the calling task is
partially deleted.

ESEXIST Param$obj is not zero and is not a token
for an existing object.

ESLIMIT At least one of the following is true:

° pool$min is larger than the available
memory space in the memory pool of
the calling task's job.

° max$objects is larger than the unused
portion of the object allotment in
the calling task's job.

° max$tasks 1is larger than the unused
portion of the task allotment in the
calling task's job.

° max$priority is larger than the
maximum allowable task priority in
the calling task's job.

o the new job and task would exceed the

object 1limit in the <calling task's
Jjob.

10-11

CREATE JOB (continued)

CONDITION CODES
E$LIMIT (continued)

E$MEM

E$PARAM

NUCLEUS SYSTEM CALLS

the new task would exceed the task
limit in the calling task's job.

At least one of the following is true:

the memory available to the calling
task's Jjob 1is not sufficient to
create a task.

the token part of the stack$ptr
parameter is zero, and the memory
available to the calling task's job
is not sufficient to create a
segment of the size indicated by
the stack$size parameter.

At least one of the following is true:

pool$min is less than 32.

pool$min is greater than pool$max.
task$priority is greater
(numerically smaller) than
max$priority.

stack$size is less than 16.

10-12

NUCLEUS SYSTEM CALLS

CREATE MAILBOX
CREATE$MAILBOX creates a mailbox.

mailbox = RQ$CREATE$MAILBOX (mailbox$flags, except$ptr);

INPUT PARAMETERS

mailbox$flags A WORD containing information about the
new mailbox. The low-order bit determines
the queueing scheme for the new mailbox's
task queue:

Value Queueing Scheme
0 First-in-first-out
1 Priority Based

The remaining bits in mailbox$flags are
reserved for future use and should be set

to O.
OUTPUT PARAMETERS
mailbox A WORD containing a token for the new
mailbox.
except$ptr A POINTER to a WORD to which the condition

code for the call is returned.

DESCRIPTION
The CREATE$MAILBOX system <call <creates a mailbox and
returns a token for it. The new mailbox counts as one
against the object limit of the calling task's job.
CONDITION CODES

E$OK No exception conditons.

ESLIMIT The requested mailbox would exceed the job
object limit.

E$MEM The memory available to the calling task's
job is not sufficient to create a mailbox.

10-13

NUCLEUS SYSTEM CALLS

CREATE SEGMENT
CREATE$SEGMENT creates a segment.

segment = RQ$CREATE$SEGMENT (size, except$ptr);

INPUT PARAMETER
size A WORD which,

e if not zero, contains the size, 1in
bytes, of the requested segment. If
the size parameter is not a multiple of
lé, it will be rounded up to the
nearest higher multiple of 16 before
the request is processed by the Nucleus.

8 if zero, indicates that the size of the
request is 65536 (64K) bytes.

OUTPUT PARAMETERS
segment A WORD which,

¢ if not OFFFFH, contains a token for the
newly created segment.

e if OFFFFH, indicates that an
exceptional condition resulted from the
call.

except$ptr A POINTER to a WORD to which the condition

code for the call is returned.

DESCRIPTION

The CREATE$SEGMENT system call creates a segment and
returns the token for it. The memory for the segment is
taken from the free portion of the memory pool of the
calling task's job, unless borrowing from the parent _,ob is
both necessary and possible. The new segment counts as one
against the object limit of the calling task's job.

CONDITION CODES

E$OK No exceptional conditions.

ESLIMIT The requested segment would exceed the job
object limit.

E$MEM The memory available to the calling task's
job is not sufficient to create a segment.

10-14

NUCLEUS SYSTEM CALLS

CREATE SEMAPHORE

CREATE$SEMAPHORE creates a semaphore.

semaphore = RQCREATE$SEMAPHORE (initial$value, max$value,

INPUT PARAMETERS

initial$value

max$value

semaphore$flags

OUTPUT PARAMETERS

semaphore

except$ptr

DESCRIPTION

semaphore$flags, except$ptr);

A WORD containing the initial number of
units to be in the custody of the new
semaphore.

A WORD containing the maximum number of
units over which the new semaphore is to
have custody at any given time. If
max$value is zero, an E$PARAM error occurs.

A WORD containing information about the
new semaphore. The low-order bit
determines the queueing scheme for the new
semaphore's task queue:

Value Queueing Scheme
0 First-in-first-out
1 Priority based

The remaining bits in semaphore$flags are
reserved for future use and should be set
to 0.

AR WORD containing a token for the new
semaphore.

A POINTER to a WORD to which the condition
code for the call 1s to be returned.

The CREATE$SEMAPHORE system call creates a semaphore and
returns a token for it. The semaphore thus created counts
as one against the object limit of the calling task's job.

10-15

CONDITION CODES
E$OK

ESLIMIT

E$MEM

E$PARAM

CREATE SEMAPHORE (continued)

No exceptional conditions.

The requested semaphore would exceed the
job object limit.

The memory available to the calling task's
Jjob is not sufficient to create a
semaphore.

At least one of the following is true:

e the initial$value parameter is larger
than the maximum$value parameter or

e the maximum$value parameter is O.

10-16

NUCLEUS SYSTEM CALLS

CREATE TASK
CREATE$TASK creates a task.

task = RQ$CREATE$TASK (priority, start$address, data$seg,
stack$ptr, stack$size, task$flags, except$ptr);

INPUT PARAMETERS
priority A BYTE which,

e¢ if not zero, contains the priority of
the new task. The priority parameter
must not exceed the maximum allowable
priority of the calling task's job. If
it does, an E$PARAM error occurs.

@ if zero, indicates that the new task's
priority is to equal the maximum
allowable priority of the calling

task's job.
start$address A POINTER to the first instruction of the
new task.
data$seg A WORD which,

¢ if not zero, contains a token for the
new task's data segment.

This can be set up by the following
PL/M statement:

DECLARE BEGIN WORD; /* A DUMMY
VARIABLE WHICH
IS THE FIRST
DECLARED
VARIABLE */

DECLARE DATA$PTR POINTER;
DECLARE DATA$ADDRESS STRUCTURE (
OFFSET WORD,
BASE WORD) AT (@DATA$PTR);
/* THIS MAKES
ACCESSIBLE THE
TWO HALVES OF

THE POINTER
DATA$PTR */

10-17

11IVO WALSAS

CREATE TASK (continued)

INPUT PARAMETERS
data$seg (continued)

stack$ptr

stack$size

task$flags

OUTPUT PARAMETERS

task

except$ptr

NUCLEUS SYSTEM CALLS

DATA$PTR = @BEGIN; /* PUTS THE
WHOLE ADDRESS
OF THE DATA
SEGMENT INTO
DATAS$PTR AND
DATA$ADDRESS */

DS$BASE = DATA$ADDRESS.BASE;
CALL RQ$SETSINTERRUPT (...,DS$BASE);

e if =zero, indicates that the new
task has no data segment.

A POINTER which,

e if the base portion 1is not zero,
points to the base of the new
task's stack.

e if the base portion is Zero,
indicates that the Nucleus should
allocate a stack segment to the new
task. The length of the allocated
segment 1s equal to the value of
the stack$size parameter.

A WORD containing the size, in bytes,
of the new task's stack segment.
Stack$size must specify at least 16
bytes. The Nucleus decreases
specified values that are not
multiples of 16 up to the next higher
multiple of 16.

Stack$size should be at 1least 512
bytes if the new task 1is going to
make system calls.

A WORD reserved for future use. It
should be set to O.

A WORD containing a token for the new
task.

A POINTER to a WORD to which the
condition code for the call is to be
returned.

10-18

AN

NUCLEUS SYSTEM CALLS

CREATE TASK (continued)

DESCRIPTION

The CREATE$TASK system call creates a task and returns a
token for it. The new task counts as one against the
object and task 1limits of the calling task's job.
Attributes of the new task are initialized upon creation as
follows:

e priority: as specified in the call.

e execution state: ready.

® suspension depth: 0.

@ containing job: the Jjob which contains the
calling task.

® exception handler: the exception handler of
the containing job.

e exception mode: the exception mode of the
containing job.
CONDITION CODES

E$0K No exceptional conditions.

ESLIMIT The new task would exceed the system object
limit, the object 1limit of the ~calling
task's job, or the task 1limit of the calling
task's job.

E$MEM At least one of the following is the case:

(] The memory available to the calling
task's job is not sufficient to create a
task.

(] The base part of the stack$ptr parameter
is zero, and the memory available to the
calling task's job is not sufficient to
create a segment of the size indicated
by the stack$size parameter.

10-19

NUCLEUS SYSTEM CALLS

CREATE TASK (continued)

CONDITION CODES (continued)

E$PARAM At least one of the following is the case:

e The priority parameter is greater
(numerically smaller) than the maximum

allowable priority for tasks in the
calling task's job.

@ The stack$size parameter is less than
16.

10-20

NUCLEUS SYSTEM CALLS

DELETE JOB

DELETE$JOB deletes a job.

CALL RQ$DELETE$I0B (job, except$ptr);

INPUT PARAMETER

job A WORD containing a token for the job to be
deleted.

OUTPUT PARAMETERS

except$ptr A POINTER to a WORD to which the condition
code for the call is to be returned.

DESCRIPTION

The DELETE$J0B system call deletes from the system the
specified job, as well as all objects created by tasks in
it. Exceptions are that jobs, interrupt tasks, and
extension objects (see the RMX/86 System Programmer's
Reference Manual) created by tasks in the target job must
be deleted prior to the call to DELETE$JOB. Information
concerning the descendents of a Jjob is obtained via the
OFFSPRING system call. During deletion, all resources that
the target job had borrowed from its parent are returned.

Deleting a job causes a credit of one toward the object
total of the parent job.

CONDITION CODES
E$OK No exceptional conditions.

E$CONTEXT There are undeleted jobs, interrupt tasks,
or extension objects (see the RMX/86 System
Programmer's Reference Manual) which have
been created by tasks in the target job.

E$EXIST The job parameter is not a token for an
.existing object.

E$MEM The Jjob to be deleted contains undeleted
composite objects (see the RMX/86 System
Programmer's Reference Manual), and there is
not sufficient memory for the Nucleus to
send deletion messages to the appropriate
deletion mailboxes.

E$TYPE The job parameter is a token for an object
that is not a job.

10-21

NUCLEUS SYSTEM CALLS

DELETE MAILBOX

DELETE$MAILBOX deletes a mailbox.

CALL RQ$DELETE$MAILBOX (mailbox, except$ptr);

INPUT PARAMETER

mailbox A WORD containing a token for the mailbox to
be deleted.

OUTPUT PARAMETERS

except$ptr A POINTER to a WORD to which the condition
code for the call is to be returned.

DESCRIPTION

The DELETE$MAILBOX system call deletes the specified
mailbox from the system. If any tasks are queued at the
mailbox at the moment of deletion, they are awakened with
an E$EXIST exceptional condition. If there is a queue of
object tokens at the moment of deletion, the queue 1is
discarded. Deleting the mailbox counts as a credit of one
toward the object total of the containing job.

CONDITION CODES

E$OK No exceptional conditions.

ESEXIST The mailbox parameter is not a token for an
existing object.

E$TYPE The mailbox parameter 1is a token for an
object which is not a mailbox.

10-22

——

NUCLEUS SYSTEM CALLS

DELETE SEGMENT

DELETE$SEGMENT deletes a segment.

CALL RQ$DELETE$SEGMENT (segment, except$ptr);

INPUT PARAMETER
segment A WORD containing a token for the segment
that is to be deleted.
OQUTPUT PARAMETER
except$ptr A POINTER to a WORD to which the condition
code for the call is to be returned.
DESCRIPTION
The DELETE$SEGMENT system call returns the specified
segment to the memory pool from which it was allocated.
The deleted segment counts as a credit of one toward the
object total of the containing job.
CONDITION CODES

E$OK No exceptional conditions.

E$EXIST The segment parameter is not a token for an
existing object.

E$TYPE The segment parameter 1is a token for an
object that is not a segment.

10-23

ny

NUCLEUS SYSTEM CALLS

DELETE SEMAPHORE

DELETE$SEMAPHCORE deletes a semaphore.

CALL RQ$DELETE$SEMAPHORE (semaphore, except$ptr);

INPUT PARAMETER

semaphore A WORD containing a token for the semaphore
that is to be deleted.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the condition
code for the call is to be returned.

DESCRIPTION
The DELETE$SEMAPHORE system call deletes the specified
semaphore. If there are tasks in the semaphore's queue at
the moment of deletion, they are awakened with an E$EXIST

exceptional condition. The deleted semaphore counts as a
credit of one toward the object total of the containing job.

CONDITION CODES

E$O0K No exceptional conditions.

ESEXIST The semaphore parameter is not a token for
an existing object.

E$TYPE The semaphore parameter is a token for an
object that is not a semaphore.

10-24

NUCLEUS SYSTEM CALLS

DELETE TASK

DELETE$TASK deletes a task.

CALL RQ$DELETE$TASK (task, except$ptr);

INPUT PARAMETER
task A WORD which,

e if not zero, contains a token for the task
that is to be deleted.

e if zero, indicates that the calling task
is to be deleted.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the condition
code for the call is to be returned.

DESCRIPTION

The DELETE$TASK system call deletes the specified task from
the system and from any queues 1in which the task was
waiting. Deleting the task counts as a credit of one
toward the object total of the containing job. It also
counts as a credit of one toward the containing Jjob's task
total. Interrupt tasks cannot be deleted by DELETE$TASK;
instead, interrupt tasks are deleted by RESET$INTERRUPT.

CONDITION CODES
E$OK No exceptional conditions.

ESCONTEXT The task parameter is a token for an
interrupt task.

ESEXIST The task parameter is not a token for an
existing object.

E$TYPE The task parameter is a token for an object
which is not a task.

10-25

NUCLEUS SYSTEM CALLS

DISABLE

DISABLE disables an interrupt level.

CALL RQ$DISABLE (level, except$ptr);

INPUT PARAMETER

level A WORD containing an interrupt level that is
encoded as follows (bit 15 is the high-order
bit):
Bits Value
15-7 0
6-4 The interrupt level (0-7)
3 1
2-0 0

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the condition
code for the call is to be returned.
DESCRIPTION
The DISABLE system call disables the specified interrupt
level. It has no effect on other levels. Level 2, which
is reserved for the system clock, should not be disabled.
CONDITION CODES

E$OK No exceptional conditions.

E$CONTEXT The level indicated by the level parameter
is already disabled.

E$PARAM The level parameter is invalid.

10-26

NUCLEUS SYSTEM CALLS

ENABLE
ENABLE enables an interrupt level.
CALL RQ$ENABLE (level, except$ptr);
INPUT PARAMETER
level A WORD containing an interrupt level

that is encoded as follows (bit 15 1is
the high-order bit):

Bits Value
15-7 0]
6-4 the interrupt level (0-7)
3 1
2-0 0
OUTPUT PARAMETER
except$ptr A PUOINTER to a WORD to which the
condition code for the call is to be
returned.

DESCRIPTION

The ENABLE system call enables the specified interrupt
level. The level must have an interrupt handler assigned
to it.

CONDITION CODES
E$OK No exceptional conditions.

E$CONTEXT At least one of the following is true:

e The level 1indicated by the level
parameter is already unmasked.

e There 1s not an interrupt handler
assigned to the specified level.

E$PARAM The level parameter is invalid.

10-27

NUCLEUS SYSTEM CALLS

EXIT INTERRUPT

EXIT$INTERRUPT 1is wused by interrupt handlers that don't call
interrupt tasks; this call sends an end-of-interrupt signal to
hardware.

CALL RQSEXITSINTERRUPT (level, except$ptr);

INPUT PARAMETER

level A WORD containing an interrupt level
that is encoded as follows (bit 15 is
the high-order bit):

Bits Value
15-7 0
6-4 the interrupt level (0-7)
3 1
2-0 0
OUTPUT PARAMETER
except$ptr A POINTER to a WORD to which the
condition code for the call is to be
returned.

DESCRIPTION
The EXIT$INTERRUPT system call sends an end-of-interrupt
signal to hardware. This sets the stage for re-enabling
interrupts. The re-enabling actually occurs when control
passes from the interrupt handler to an application task.

The specified 1level must be disabled or an E$CONTEXT
exceptional condition results from the call.

CONDITION CODES
E$OK No exceptional conditions.

E$PARAM The level parameter is invalid.

10-28

NUCLEUS SYSTEM CALLS

GET EXCEPTION HANDLER

GET$EXCEPTION$HANDLER returns information about the calling

task's exception handler.

CALL RQPGETPEXCEPTIONSHANDLER (exception$info$ptr, except$ptr);

INPUT PARAMETER

exception$info$ptr A

POINTER to a structure of the

following form:

STRUCTURE (

EXCEPTION$HANDLER$OFFSET WORD,
EXCEPTION$HANDLER$BASE WORD),
EXCEPTION$MODE BYTE);

where, after the call,

OUTPUT PARAMETERS

except$ptr A

exception$handler$offset contains the
offset of the first instruction of
the exception handler.

exception$handler$base contains a
base for the segment containing the
first instruction of the exception
handler.

contains an encoded
calling task's
The value 1is

exception$mode
indication of the
current exception mode.
interpreted as follows:

When to Pass Control
to Exception Handler

Value

0 Never

1 On programmer errors only

2 On environmental conditions only
3 On all exceptional conditons

POINTER to a WORD to which the

condition code for the call 1is to be
returned.

10-29

(7]
-l
-
<
]
=
w
-
(%)
>
(2]

NUCLEUS SYSTEM CALLS

GET EXCEPTION HANDLER (continued)

DESCRIPTION
The GET$EXCEPTION$HANDLER system <call returns both

address of the calling task's exception handler and
current value of the task's exception mode.

CONDITION CODE

E$OK No exceptional conditions.

10-30

the
the

NUCLEUS SYSTEM CALLS

GET LEVEL

GET$LEVEL returns the number of the level of the interrupt
being serviced.

level = RQ$GETSLEVEL (except$ptr);

INPUT PARAMETERS

none

OUTPUT PARAMETERS

level A WORD whose value 1is interpreted as follows
(bit 15 is the high-order bit):

Bit Value/Interpretation

15-8 undefined

0 some level is being serviced
and bits 6-4 are significant

7 1l no level is being serviced
and bits 6-4 are not
significant

6-4 an interrupt level (0-7)
3-0 undefined
except$ptr A POINTER to a WORD to which the condition

code for the call is to be retured.
DESCRIPTION
The GET$LEVEL system call returns to the calling task the
highest (numerically lowest) level which an interrupt
hanaler has started servicing but has not yet finished. To
strip away unwanted one bits, logically AND the returned
value with OOFOH.
CUNDITION CODES

E$OK No exceptional conditions.

10-31

NUCLEUS SYSTEM CALLS

GET POOL ATTRIBUTES

GET$POOLSATTRIBUTES returns information about the memory pool
of the calling task's job.

CALL RQ$GETSPOOLSATTRIBUTES (attrib$ptr, except$ptr);

INPUT PARAMETER

attrib$ptr A POINTER to a data structure of the following

form:
STRUCTURE (
POOL $MAX WORD,
POOL$MIN WORD,
INITIAL$SIZE WORD),
ALLOCATED WORD,
AVAILABLE WORD) ;

where, after the call,

e pool%$max contains the maximum allowable size
of the memory pool of the calling task's job.

e pool%$min contains the minimum allowable size
of the memory pool of the calling task's job.

e initial$size contains the original value of
the pool$min attribute.

e allocated contains the number of bytes
currently allocated from the memory pool of
the calling task's job.

@ available —contains the number of ©Dbytes
currently available in the memory pool of
the calling task's job.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the condition code
for the call is to be returned.

DESCRIPTION

The GET$POOLSATTRIBUTES system call returns information
regarding the memory pool of the call task's job. The data
returned comprises the allocated and available portions of
the pool, as well as its initial, minimum, and maximum
sizes.

10-32

NUCLEUS SYSTEM CALLS

GET POOL ATTRIBUTES (continued)

CONDITION CODE

E$OK No exceptional conditions.

10-33

NUCLEUS SYSTEM CALLS

GET PRIORITY
GET$PRIORITY returns the priority of a task.
priority = RQGETPRIORITY (task, except$ptr);

INPUT PARAMETER
task A WORD which,

e if not zero, contains a token for the
task whose priority is being
requested.

e if zero, indicates that the calling
task is asking for its own priority.

OUTPUT PARAMETERS

priority A BYTE containing the priority of the
task indicated by the task parameter.
except$ptr A POINTER to a WORD to which the
condition code for the call is to be
returned.
DESCRIPTION

The GET$PRIORITY system call returns the priority of the
specified task.

CONDITION CODES

E$OK No exceptional conditions.

ESEXIST The task parameter is not a token for
an existing object.

E$TYPE The task parameter is a token for an
object that is not a task.

10-31%

NUCLEUS SYSTEM CALLS

GET SIZE
GET$SIZE returns the size, in bytes, of a segment.
size = RQGETSIZE (segment, except$ptr);
INPUT PARAMETER
segment A WORD containing a token for a segment.

OUTPUT PARAMETERS
size A WORD which,
e if not =zero, contains the size, in
bytes, of the segment indicated by
the segment parameter.

e if zero, indicates that the size of
the segment is 65536 (64K) bytes.

except$ptr A POINTER to a WORD to which the
condition code for the call is to be
returned.
DESCRIPTION

The GET$SIZE system call returns the size, in bytes, of a
segment.

CONDITION CODES
E$OK No exceptional conditons.

E$EXIST The segment parameter is not a token
for an existing object.

E$TYPE The segment parameter is a token for an
object that is not a segment.

10-35

NUCLEUS SYSTEM CALLS

GET TASK TOKENS
GET$TASK$TOKENS returns the token requested by the calling task.

token = RQ$GETITASKSTOKENS (selection, except$ptr);

INPUT PARAMETER

selection A BYTE containing the request, encoded
as follows:

Value Object for which a Token is

Requested
0 The calling task.
1 The calling task's job.
2 The parameter object of the
calling task's job.
3 The root job.
OUTPUT PARAMETERS
token A WORD containing the requested token.
except$ptr A POINTER to a WORD to which the
condition code for the call is to be
returned.)

DESCRIPTION

The GET$TASK$TOKENS system call returns a token for either
the calling task, the calling task's job, the ~calling
task's parameter object, or the root job, depending on the
encoded request.

CONDITION CODES

E$0K No exceptional conditions.
E$PARAM The selection parameter is greater than
3.

10-36

-

NUCLEUS SYSTEM CALLS

GET TYPE

GET$TYPE returns the encoded type of an object.

type$code = RQIGET$TYPE (object, except$ptr);

INPUT PARAMETER

object

OUTPUT PARAMETERS

type$code

except$ptr

DESCRIPTION

The GET$TYPE system

CONDITION CODES
E$OK

E$EXIST

A WORD containing the token for an
object.

A WORD which,

e if not OFFFFH, contains the encoded
type of the specified object. The
types are encoded as follows:

Value Type

job

task
mailbox
semaphore
segment

N WN -

e if OFFFFH, indicates that the object
parameter is not a valid object token
and that an ESEXIST exceptional
condition has occurred.

A POINTER to a WORD to which the
condition code for the call is returned.

call returns a type code for an object.

No exceptional conditions.

The object parameter is not a token for
an existing object.

10-37

NUCLEUS SYSTEM CALLS

LOOKUP OBJECT
LOOKUP$OBJIECT returns a token for a cataloged object.

object = RQ$LOOKUP$OBIECT (job, name, time$limit, except$ptr);

INPUT PARAMETERS
job A WORD which,

e if not zero, contains a token for the Jjob
whose object directory is to be searched.

o if zero, indicates that the object
directory to be searched 1is that of the
calling task's job.

name A POINTER to a STRING which contains the
ASCII name under which the object is
cataloged.

time$limit A WORD which,

e if zero, indicates that the calling task
is not willing to wait.

W31SAS

e if OFFFFH, indicates that the task will
wait ms long as 1s necessary.

e if between 0 and OFFFFH, indicates that
the task is willing to wait only that many
1/100 second time units.

OUTPUT PARAMETERS
object A WORD containing the requested token.

except$ptr A POINTER to a WORD to which the condition
code for the call is to be returned.

DESCRIPTION

The LOOKUP$0OBJIECT system call returns the token for the
specified object after searching for its ASCII name in the
specified object directory. Because it 1is possible that
the object is not cataloged at the time of the call, the
calling task has the option of waiting, either indefinitely
or for a specific period of time, for another task to

catalog the object.

10-38

/‘\\
CONDITION CODES
E$OK
E$CONTEXT
ESEXIST
ESLIMIT
~ E$PARAM
E$TIME
N
E$TYPE
F
N

NUCLEUS SYSTEM CALLS

LOOKUP OBJECT (continued)

No exceptional conditions.

The specified job has an object directory of
size O.

The job parameter (which is not zero) is not
a token for an existing object.

The specified object directory is full.

The first byte of the string pointed to by
the name parameter contains a value greater
than 12 or equal to zero.

Either

e the calling task indicated its willingness
to wait a certain amount of time, then
waited without satisfaction or

e the task was not willing to wait, and the
entry indicated by the name parameter is
not in the specified object directory.

The job parameter is a token for an object
that is not a job.

10-39

NUCLEUS SYSTEM CALLS

OFFSPRING
OFFSPRING returns a token for each child (job) of a job.
token$list = RQ$OFFSPRING (job, except$ptr);

INPUT PARAMETER

job A WORD containing a token for the job
whose offspring are desired.

OUTPUT PARAMETER
token$list A WORD which,

e if not zero, contains a token for a
segment. The first word in the
segment contains the number of words
in the remainder of the segment.
Subsequent words contain the tokens
for jobs which are the children of
the specified job.

e if zero, indicates that the specified
job has no children.

> except$ptr A POINTER to a WORD to which the
condition code for the call is to be
returned.
DESCRIPTION

The OFFSPRING system call returns the token for a segment.
The segment contains a token for each <c¢hild of the
specified job. By repeated use of this call, tokens can be
obtained for all descendents of a job; this information is
needed by a task which is attempting to delete a job.

CONDITION CODES

E$OK No exceptional conditions.

E$EXIST The job parameter is not a token for an
existing object.

E$LIMIT The required segment, if allocated,
would exceed the job object limit.

E$MEM There is not sufficient memory
available to create the required
segment.

E$TYPE The job parameter is not a token for an

existing object.

10-40

o

NUCLEUS SYSTEM CALLS

RECEIVE MESSAGE
RECEIVE$MESSAGE delivers the calling task to a mailbox, where
it waits for an object token to be returned.
object = RQ$RECEIVESMESSAGE (mailbox, time$limit,
response$ptr, except$ptr);
INPUT PARAMETERS
mailbox A WORD containing a token for the
mailbox at which the calling task
expects to receive an object token.
2 time$limit A WORD which,

¢ if zero, indicates that the calling
task is not willing to wait.

e if OFFFFH, indicates that the task
will wait as long as is necessary.

e if between 0 and OFFFFH, indicates
—~ that the task is willing to wait only
| that many 1/100 second time units.

OUTPUT PARAMETERS

object A WORD containing the token for the
object being received.
response$ptr A POINTER to a WORD which,
o e if not zero, contains a token for the
exchange to which a response is to be
sent.

e if zero, indicates that no response
has been requested by the sending

task.
except$ptr A POINTER to a WORD to which the
condition code for the call is to be
returned.

DESCRIPTION

The RECEIVE$MESSAGE system call causes the calling task
either to get the token for an object or to wait for the
token in the task queue of the specified mailbox. If the
object queue at the mailbox is not empty, then the calling
task immediately gets the token at the head of the queue
and remains ready. Otherwise, the calling task goes into

10-41

NUCLEUS SYSTEM CALLS

RECEIVE MESSAGE (continued)
DESCRIPTION (continued)

the task queue of the mallbox and goes to sleep, unless the
task is not willing to wait. In the latter case, or if the
task's waiting period elapses without a token arriving, the
task is awakened with an E$TIME exceptional condition.

If the sending task needs a response from the receiving
task, a token for the requested response exchange 1is
returned in the word to which the response$ptr parameter is
pointing. The nature of the response must be aggreed upon
by the writers of the two tasks.

CONDITION CODES

E$0K No exceptional conditions.

E$EXIST The mailbox parameter is not a token
for an existing object.

E$TIME Either

e the calling task was not willing to
wait and there was not a token
avallable, or

S1TIVO WALSAS

e the task wailted in the task queue and
its designated waiting period elapsed
before the task got the desired token.

E$TYPE The mailbox parameter is a token for an
object that is not a mailbox.

10-42

NUCLEUS SYSTEM CALLS

RECEIVE UNITS

RECEIVE$UNITS delivers the calling task to a semaphore, where
it waits for units.

value = RQPRECEIVESUNITS (semaphore, units, time$limit,
except$ptr);

INPUT PARAMETERS

semaphore A WORD containing a token for the
semaphore from which the calling task
hopes to receive units.

units A WORD containing the number of wunits
that the calling task is requesting.

time$limit A WORD which,

e if zero, indicates that the calling
task is not willing to wait.

e if OFFFFH, 1indicates that the task
will wait as long as is necessary.

e if between 0 and O0OFFFFH, indicates
that the task is willing to wait only
that many 1/100 second time units.

OUTPUT PARAMETERS

value A WORD containing the number of wunits
remaining in the custody of the
semaphore after the calling task's
request is satisfied.

except$ptr A POINTER to a WORD to which the
condition code for the call is to be
returned.
DESCRIPTION

The RECEIVE$UNITS system <call causes the <calling task
either to get the units that it is requesting or to wait
for them in the semaphore's task queue. If the units are
available and the task is at the front of the queue, then
the task receives them and remains ready. Otherwise, the
task 1is placed in the semaphore's task queue and goes to
sleep, unless the task 1is not willing to wait. In the
latter case, or if the task's waiting period elapses before
the requested units are available, the task 1is awakened
with an E$TIME exceptional condition.

10-43

NUCLEUS SYSTEM CALLS

RECEIVE UNITS (continued)

CONDITION CODES
E$0OK No exceptional conditions.

ESEXIST The semaphore parameter is not a token
for an existing object.

ESLIMIT The units parameter is greater than the
maximum value that had been specified
for the semaphore when it was created.

E$TIME Either

e the calling task was not willing to
wait and the requested units were not

available or

e the task waited in the task queue and
its designated waiting period elapsed
before the requested units were
avallable.

E$TYPE The semaphore pafameter is a token for
an object that is not a semaphore.

10-44

NUCLEUS SYSTEM CALLS

i

RESET INTERRUPT

RESETSINTERRUPT cancels the assignment of an interrupt handler
to a level,.

CALL RQ$RESET$INTERRUPT (level, except$ptr);

INPUT PARAMETER

level A WORD containing an interrupt level
which is encoded as follows (bit 15 1is
the high-order bit):

Bit value
15-7 0
6-4 the interrupt level (0-7)
3 1
2-0 0
OUTPUT PARAMETER g
except$ptr A POINTER to a WORD to which the e
condition code for the call is to be o
returned. »

DESCRIPTION

The RESET$INTERRUPT system call cancels the assignment of
the current interrupt handler to the specified interrupt
level. If an interrupt task had also been assigned to the
level, the interrupt task is deleted. RESET$INTERRUPT also
disables the level.

Level 2 should not be reset and is considered invalid.

CONDITION CODES
E$OK No exceptional conditions.

E$CONTEXT There is not an interrupt handler
assigned to the specified level.

E$PARAM The level parameter is invalid.

10-45

NUCLEUS SYSTEM CALLS

RESUME- TASK

RESUME$TASK decreases by one the suspension depth of a task.

CALL RQ$RESUMES$TASK (task, except$ptr);

INPUT PARAMETER

task A WORD containing a token for the task
whose suspension depth is to be
decremented.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the
condition code for the call 1is to be
returned.
DESCRIPTION

The RESUME$TASK system call decreases by one the suspension
depth of the specified non-interrupt task. The task should
be in either the suspended or asleep-suspended state, so
its suspension depth should be at least one. If the
suspension depth is still positive after being decremented,
the state of the task is not changed. If the depth becomes
zero, and the task 1is in the suspended state, then it is
placed in the ready state. If the depth becomes zero, and
the task 1is 1in the asleep-suspended state, then it is
placed in the asleep state.

STIvO W3LSAS

CONDITION CODES
E$OK No exceptional conditions.

E$EXIST The task parameter is not a token for
an existing object.

E$STATE The task indicated by the task

parameter was not suspended when the
call was made.

E$TYPE The task parameter is a token for an
object that is not a task.

10-46

NUCLEUS SYSTEM CALLS

SEND MESSAGE

SEND$MESSAGE sends an object token to a mailbox.

CALL RQ$SEND$MESSAGE (mailbox, object, response, except$ptr);

INPUT PARAMETERS

mailbox A WORD containing a token for the mailbox to
which an object token is to be sent.

object A WORD containing an object token which is
to be sent.

response A WORD which,

e if not zero, contains a token for the
desired response mailbox or semaphore.

@ if zero, indicates that no response is
requested.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the condition
code for the call is to be returned.

DESCRIPTION

The SEND$MESSAGE system call sends the specified object
token to the specified mailbox. If there are tasks in the
task queue at that mailbox, the task at the head of the
queue 1is awakened and is given the token. Otherwise, the
object token 1is placed at the tail of the object queue of
the mailbox. The sending task has the option of specifying
a mailbox or semaphore at which it will wait for a response
from the task that receives the object. The nature of the
response must be agreed upon by the writers of the two tasks.

CONDITION CODES
E$OK No exceptional conditions.

E$EXIST One or more of the input parameters is not a
token for an existing object.

E$TYPE Either

e the mailbox parameter is a token for an
object that is not a mailbox or

e the response parameter is a token for an

object that 1is neither a mailbox nor a
semaphore.

10-47

NUCLEUS SYSTEM CALLS

SEND UNITS

SEND$UNITS sends units to a semaphore.

CALL RQ$SEND$UNITS (semaphore, units, except$ptr);

INPUT PARAMETERS

semaphore A WORD containing a token for the
semaphore to which the units are to be
sent.

units A WORD containing the number of wunits

to be sent.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the
condition code for the call is to be
returned.
DESCRIPTION

The SEND$UNITS system call sends the specified number of
units to the specified semaphore. If the transmission
would cause the semaphore's supply of units to exceed its
maximum allowawble supply, then an E$LIMIT exceptional
condition occurs. Otherwise, the transmission is
successful and the Nucleus attempts to satisfy the requests
of the tasks in the semaphore's task queue, beginning at
the head of the queue.

CONDITION CODES

E$OK No exceptional conditons.

E$EXIST The semaphore parameter is not a token
for an existing object.

E$LIMIT The number of units that the calling
task is trying to send would cause the
semaphore's supply of wunits to exceed
its maximum allowable supply.

E$TYPE The semaphore parameter is a token for
an object that is not a semaphore.

10-48

SETSEXCEPTION$HANDLER

calling task.

NUCLEUS SYSTEM CALLS

SET EXCEPTION HANDLER

assigns an exception handler to the

CALL RQ$SETPEXCEPTIONSHANDLER (exception$info$ptr, except$ptr);

INPUT PARAMETER

exception$info$ptr

OUTPUT PARAMETER

except$ptr

A

POINTER to a structure of the

following form:

STRUCTURE(
EXCEPTION$HANDLERS$OFFSET WORD,
EXCEPTION$HANDLER$BASE WORD,
EXCEPTION$MODE BYTE);
where

A

exception$handler$offset contains the
offset of the first instruction of
the exception handler.

exception$handler$base contains a
token for the segment containing the
first instruction of the exception
handler.

exception$mode contains an encoded
ingication of the calling task's
intended exception mode. The value
is interpreted as follows:

When to Pass Control

Value To Exception Handler
0 Never
1 On programmer errors only
2 On environmental conditions only
3 On all exceptional conditions

POINTER to a WORD to which the

condition code for the call 1is to be
returned.

10-49

NUCLEUS SYSTEM CALLS

SET EXCEPTION HANDLER (continued)

DESCRIPTION

The SET$EXCEPTION$HANDLER system call enables a task to set
its exception handler and exception mode attributes. If
you want to designate the Debugger as the exception
handler, the following code sets up the needed structure in
PL/M-86 (except in the SMALL case):

DECLARE X STRUCTURE (OFFSET WORD,
BASE WORD,
MODE BYTE) ;

DECLARE Y POINTER;

DECLARE YSTRUCT STRUCTURE (OFFSET WORD,
BASE WORD) AT (@Y);

DECLARE EXCEPTION WORD;
DECLARE EXCEPT$PTR POINTER;
EXCEPT$PTR = @EXCEPTION;

Y = @RQDEBUGGEREX;

X.BASE = YSTRUCT.BASE;

X.0FFSET = YSTRUCT.OFFSET; ¢

X.MODE = ZEROONETWOSOR$THREE;

CALL RQ$SETHEXCEPTIONSHANDLER (@X, EXCEPT$PTR);

STIVIO W3LSAS

CONDITION CODES

E$OK No exceptional conditions.
E$SPARAM The exception$mode parameter is greater
than 3.

10-50

N

NUCLEUS SYSTEM CALLS

SET INTERRUPT

SET$INTERRUPT assigns an interrupt handler to an interrupt
level and, optionally, makes the calling task the interrupt
task for the level.

CALL RQ$SETSINTERRUPT (level, interrupt$task$flag,
interrupt$handler, interrupt$handler$ds, except$ptr);

INPUT PARAMETERS

level A WORD containing an interrupt level
that is encoded as follows (bit 15 is
the high-order bit):

Bit value
15-7 0
6-4 the interrupt level (0-7)
3 1
2-0 0

interrupt$task$flag A BYTE which,

e if one, indicates that the calling
task 1is to be the interrupt task
that will be invoked by the
interrupt handler being set. The
priority of the calling task is set
by the Nucleus. The priority is
derived from the level, according
to the following table:

Level Priority

18
34
50
66
82
98
114
130

NoOuUvMPEWNRFEO

Be certain that priorities set 1in
this manner do not violate the
max$priority attribute of the
containing job.

10-51

w
<
(2]
-
m
=
0
>
r
r
w

SET INTERRUPT (continued)

interrupt$handler

interrupt$handler$ds

NUCLEUS SYSTEM CALLS

e if zZero, indicates that no
interrupt task 1is to be associated
with the special level and that the
new interrupt handler will not call
SIGNAL INTERRUPT.

e if greater than one, causes an
E$PARAM exceptional condition.

A POINTER to the first instruction of
the interrupt handler.

A WORD which,

e if not zero, contains the address
of the interrupt handler's data
segment.

This can be set up by the following
PL/M statements:

DECLARE BEGIN WORD; /* A DUMMY
VARIABLE WHICH
IS THE FIRST
DECLARED
VARIABLE */

DECLARE DATA$PTR POINTER;
DECLARE DATA$ADDRESS STRUCTURE (
OFFSET WORD,

BASE WORD) AT (@DATA$PTR);
/* THIS MAKES
ACCESSIBLE THE
TWO HALVES OF
THE POINTER
DATA$PTR */

DATA$PTR = @BEGIN; /* PUTS THE
WHOLE ADDRESS
OF THE DATA
SEGMENT INTO
DATAS$PTR AND
DATA$ADDRESS */

DS$BASE = DATA$ADDRESS.BASE;

CALL RQ$SETSINTERRUPT (...,DS$BASE);
e if zero, indicates that the

interrupt handler does not have a

data segment.

10-52

NUCLEUS SYSTEM CALLS

4 SET INTERRUPT (continued)

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the
condition code for the call is to be
returned.
DESCRIPTION

The SET$INTERRUPT system call is used to inform the Nucleus
that the specified interrupt handler is to service inter-
rupts which come in at the specified level. In a call to
SET$INTERRUPT, a task must indicate whether the interrupt
handler will invoke an interrupt task and whether the

— interrupt handler has its own data segment. If there 1s to
} be an interrupt task, the calling task is that interrupt
task. If there is no interrupt task, SET$INTERRUPT also
enables the specified level, which must be disabled at the
time of the call.
CONDITION CODES

ESOK No exceptional conditions.

Wl
ESCONTEXT Either

e the specified level already has an
interrupt handler assigned to it or

e the job containing the calling task
is partially deleted.

E$PARAM Either

e the level parameter 1is invalid or
would cause the task to have a
priority not allowed by its job.

e the interrupt$task$flag parameter
is greater than one.

10-53

NUCLEUS SYSTEM CALLS

SET POOL MINIMUM

SET$POOL$MINIMUM sets a job's pool$min attribute.

CALL RQ$SETHPOOLSMINIMUM (new$min, except$ptr);

INPUT PARAMETER
new$min A WORD which,

e if OFFFFH, indicates that the
pool$min attribute of the calling
task's job is to be set equal to
that job's pool$max attribute.

e if less than OFFFFH, contains the
new value of the pool$min attribute
of the calling task's job. This
new value must not exceed that
job's pool$max attribute.

OUTPUT PARAMETER

2]
@ except$ptr A POINTER to ‘a WORD to which the
2 condition code for the call is to be
o returned.
>
~
~
2]
DESCRIPTION
The SET$POOLSMINIMUM system call sets the pool$min
attribute of the calling task's Jjob. The new value must
not exceed that Jjob's pool$max attribute. When the

pool$min attribute 1is made larger than the current pool
size, the pool is not enlarged until the additional memory
is needed.

CONDITION CODES
E$OK No exceptional conditions.
ESLIMIT The new$min parameter is not OFFFFH,

yet is greater than the pool$max
attribute of the calling task's job.

10-54

TN

NUCLEUS SYSTEM CALLS

SIGNAL INTERRUPT

SIGNAL$INTERRUPT is used by an interrupt handler to activate an
interrupt task.

CALL RQ$SIGNAL$INTERRUPT (level, except$ptr);

INPUT PARAMETER

level A WORD containing an interrupt level
which is encoded as follows (bit 15
is the high-order bit):

Bit value

15-7 0
6-4 the interrupt level (0-7)

3 1

2-0 0

OUTPUT PARAMETER
except$ptr A POINTER to a WORD to which the
condition code for the call is to be
returned.

DESCRIPTION
An interrupt handler uses SIGNAL$INTERRUPT to start up its
associated interrupt task. The interrupt task runs in its
own environment with interrupts enabled, whereas the

interrupt handler Tuns in the environment of the
interrupted task with all interrupts disabled.

CONDITION CODES
E$OK No exceptional conditions.

ESCONTEXT There 1s not an interrupt task
assigned to the specified level.

E$PARAM The level parameter is invalid.

10-55

NUCLEUS SYSTEM CALLS

SLEEP

SLEEP puts the calling task to sleep.

CALL RQ$SLEEP (time$limit, except$ptr);

INPUT PARAMETER
time$limit A WORD which,

e if not zero and not OFFFFH, causes
the calling task to go to sleep for
that many 1/100 second time wunits,
after which it will be awakened.

e if zero, causes the calling task to
be placed on the 1list of ready
tasks, immediately behind all tasks
of the same priority. If there are
no such tasks, there is no effect.

e if OFFFFH, is invalid.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the
condition code for the call is to be
returned.
DESCRIPTION

The SLEEP system call has two uses. One use places the
calling task in the asleep state for a specific amount of
time. The other use allows the calling task to defer to
the other ready tasks with the same priority. When a task
defers in this way it is placed on the list of ready tasks,
immediately behind those other tasks of equal priority.

CONDITION CODES
E$O0K No exceptional conditions.

E$PARAM The time$limit parameter contains the
invalid value OFFFFH.

10-56

.

¥

NUCLEUS SYSTEM CALLS

SUSPEND TASK

SUSPEND$TASK increases by one the suspension depth of a task.

CALL RQ$SUSPEND$TASK (task, except$ptr);

INPUT PARAMETER
task A WORD which,

e if not zero, contains a token for
the task whose suspension depth is
to be incremented.

e if zero, indicates that the calling
task is suspending itself.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the
condition code for the call is to be
returned.
DESCRIPTIONS

The SUSPEND$TASK system call increases by one the
suspension depth of the specified task. If the task 1is
already in either the suspended or asleep-suspended state,
its state 1is not changed. If the task is in the ready or
running state, it enters the suspended state. If the task
is 1in the asleep state, it enters the asleep-suspended
state.

SUSPEND$TASK cannot be used to suspend interrupt tasks.

CONDITION CODES
E$OK No exceptional conditions.

E$EXIST The task parameter is not a token for
an existing object.

ESLIMIT The suspension depth for the
specified task is already at the
maximum of 255.

E$TYPE The task parameter is a token for an
object that is not a task.

10-57

NUCLEUS SYSTEM CALLS

UNCATALOG OBJECT

UNCATALOG$OBJIECT removes an entry for an object from an object
directory.

CALL RQ$UNCATALOG$OBIECT (job, name, except$ptr);

INPUT PARAMETERS
job A WORD which,

e if not zero, is a token for the job
from whose object directory the
specified entry is to be deleted.

e if zero, indicates that the entry
is to be deleted from the object
directory of the calling task's job.

name A POINTER to a STRING containing the

ASCII name of the object whose entry
is to be deleted.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the
condition code for the call is to be
returned.
DESCRIPTION

The UNCATALOG$0BJIECT system call deletes an entry from the
object directory of the specified job.

CONDITION CODES
E$0K No exceptional conditions.

E$CONTEXT The specified object directory does
not contain an entry with the
designated name.

E$EXIST The job parameter is neither zero nor
a token for an existing object.

E$PARAM The first byte of the STRING pointed
to by the name parameter contains a
value greater than 12 or equal to O.

E$TYPE The job parameter is a token for an
object that is not a job.

10-58

NUCLEUS SYSTEM CALLS

WAIT INTERRUPT

WAIT$INTERRUPT is wused by an interrupt task to signal its
readiness to service an interrupt.

CALL RQ$WAITHINTERRUPT (level, except$ptr);

INPUT PARAMETER

level A WORD containing an interrupt level
which 1is encoded as follows (bit 15
is the high-order bit):

Bit Value

15-7 0
6-4 the interrupt level (0-7)

3 1
2-0 0
OUTPUT PARAMETER
except$ptr A POINTER to a WORD to which the
condition code for the call 1is to be
returned.

DESCRIPTION

The WAIT$INTERRUPT system call is used by interrupt tasks
immediately after initializing and immediately after
servicing interrupts. Such a call places an interrupt task
in the asleep state until reawakened by the interrupt
handler for the same level. Each call (except the first)
that an interrupt task makes to WAIT$INTERRUPT sends an
end-of-interrupt signal to hardware.

CONDITION CODES
E$OK No exceptional conditions.

ESCONTEXT The calling task 1s not the interrupt
task for the given level.

E$PARAM The level parameter is invalid.

10-59

~ N\

CHAPTER 11. TERMINAL HANDLER

GENERAL INFORMATION

The Terminal Handler supports real-time, asynchronous 1/0
between an operator's terminal and tasks running under the
RMX/86 Nucleus. It is intended for use in applications which
require only limited I/0 through a terminal, and it generally
is used 1in applications that do not include the RMX/86 1/0
System. The features of the Terminal Handler include the
following:

@ Line editing capabilities.

e Keystroke control over output, including output
suspension and resumption, and deletion of data being
sent by tasks to the terminal.

e Echoing of characters as they are entered into the
Terminal Handler's line buffer.

An output-only version of the Terminal Handler is available for
use in applications in which tasks send output to a terminal
but do not receive input from the terminal.

The remainder of this chapter is divided into two parts. The
first part, Using a Terminal with the RMX/86 Operating System,
provides the information that is needed by an operator of the
terminal. The second part, Programming Considerations,
contains the information that a programmer needs to write tasks
that send data to, or receive data from, the terminal. In the
first part, there are a few references to the mailboxes that
tasks use to communicate with the terminal. If you are puzzled
by such a reference, look in the second part for an explanation.

USING A TERMINAL WITH THE RMX/86 OPERATING SYSTEM

While using a terminal that is under control of the Terminal
Handler, an operator either reads an output message from the
terminal's display or enters characters by striking keys on the
terminal's keyboard. Normal input characters are destined for
input messages that are sent to tasks. Special input
characters direct the Terminal Handler to take special actions.
The special characters are RUBOUT, Carriage Return, Line Feed,
ESCape, control-C, control-D, control-0, control-Q, control-R,
control-S, control-X, and control-Z. The output-only version
of the Terminal Handler does not support any of the special

11-1

TERMINAL HANDLER

characters. In the remainder of this section, the handling of
these two types is discussed, and the significance of each of
the special characters is explained.

HOW NORMAL CHARACTERS ARE HANDLED

The destination of a normal character, when entered, depends on
whether there 1is an 1input request message at the Terminal

Handler's input request mailbox. If there is an input request
message, the character is echoed to the terminal's display and
goes into the input request message. If there is not an input

request message, the character is deleted.

HOW SPECIAL CHARACTERS ARE HANDLED

Table 11-1 1lists the special characters and summarizes the
effects of each of them. The following text comprises complete
descriptions of the effects of the special characters. In
these descriptions, there are several references to "the
current line."™ The current line 1is the contents of the MESSAGE
CONTENT field of the 1input request message currently being
processed.

Table 11-1. Special Character Summary

SPECIAL

CHARACTER EFFECT

RUBQUT Deletes previously entered character.
Carriage

Return Signals end of line.

Line Feed Signals end of line.

ESCape Signals end of line.

control-C Aborts an application program.
control-0 Kills or restarts output.

control-Q Resumes suspended output.

control-R Displays current line with editing.

control-S Suspends output.

control-X Deletes the current line.

control-Z Sends empty message.

11-2

/"

TERMINAL HANDLER

The following descriptions concern the special characters

needed when entering data at the terminal. Most of these
characters are for line-editing. Each description is divided
into two parts: internal effects and external effects. The

difference 1is that external effects are immediately shown on
the terminal's display, whereas internal effects are those that
are not directly visible.

Rubbing Out a Previously-Typed Character (RUBOUT)

Internal Effects: Causes the most recently entered but not yet
deleted character to be deleted from the current
line. If the current 1line is empty, there is no

internal effect.

External Effects: If the current line is empty, the BEL
character (07H) is sent to the terminal.
Otherwise, the character is "rubbed out" in
accordance with one of two available rubout modes.
In the copying mode, the character being deleted
from the current line is re-echoed to the display.

For example, entering "CAT" ana then striking
RUBOUT three times results in the display
"CATTAC". In the blanking mode, the deleted
character is replaced on the CRT screen with the
blanking character. For example, entering "CAT"
and then striking RUBOUT three times deletes all
three characters from the display. The copy mode

is the default mode. The default blanking
character for the blanking mode is a space (20H).
If you wish to change either of these defaults,
refer to the RMX/86 Configuration Guide for ISIS-II
Users (Manual order number 9803126) or talk to
someone who knows about configuration.

Displaying the Current Line (control-R)

Internal Effects: None.

External Effects: Sends a carriage return and line feed to the
terminal, followed by the current 1line. If the
current line is empty, the previous line is sent to
the display, where it can be 1line -edited and
submitted as a new input message.

Deleting the Current Line (control-X)

Internal Effects: Empties the current line.

External Effects: Causes the sequence (#, Carriage Return,
Line Feed) to be sent to the terminal.

11-3

TERMINAL HANDLER

Sending an Empty Message (control-Z7)

Internal Effects: Puts a zero in the ACTUAL field of the input
request message currently being processed. The
message 1is then sent to the appropriate response
mailbox.

External Effects: None.

Signalling the End of a Line of Input (Carriage Return, Line

Feed, or ESCape)

Internal Effects: Puts either the ASCII end-of-transmission
character (OAH in the case of Carriage Return or
Line Feed) or the ESCape character (1BH) in the
current line. Each of these characters signals the
end of a message, so the input request message
currently being constructed is sent to the
appropriate response mailbox.

External Effects: If the end-of-1line indicator is either
Carriage Return or Line Feed, both Carriage Return
and Line Feed are sent to the terminal. If the

indicator is ESCape, however, there is no effect on
the display.

OUTPUT CONTROL

Qutput request messages that are sent to output mailbox
RQTHNORMOUT can be processed in three ways:

e They can be output as described later under
Programming Considerations.

® They can be queued at RQTHNORMOUT where they
remain until an operator at the terminal takes
action to permit processing of the messages.

e They can be discarded.
In the descriptions that follow, these methods of dealing with
normal output requests are called the normal mode, the queueing

mode, and the suppression mode, respectively. Initially,
output is in the normal mode.

Suspending Output (control-S)

Puts normal output in the queueing mode.

11-4

\

TERMINAL HANDLER

Resuming Output (control-Q)

Deleting or

Negates the effects of control-S by allowing output
requests that are queued at RQTHNORMOUT to be
displayed.

Restarting Output (control-0)

If output is in the normal mode, control-0 puts it
in the suppression mode. If output 1is 1in the
suppression mode, control-0 restores it to the
normal mode. If output is in the queueing mode,
control-0 has no effect.

PROGRAM CONTROL

Aborting an

Application (control-C)

Control-C invokes a user-written procedure called
RQ$ABORTS$AP. This procedure can perform any
actions that suit the application. However,
control-C is normally used to abort an
application. For example, you might want to halt a
compilation if you realize that your program
contains a serious error. Control-C also causes
the effects produced by control-Z; that 1is, it
returns the current input request message with its
ACTUAL field set to zero.

SETTING A BAUD RATE

The Terminal Handler can be set to operate at any of the
following baud rates:

110
150
300
600
1200
2400
4800
9600
19200

The rate is set during software configuration, when an RMX/86
system variable, RQRATE, 1is assigned one of the previously
mentioned baud rate values.

11-5

TERMINAL HANDLER

PROVIDED PROVIDED

BY USER BY USER

USER USER

TASKS TASKS

A
Y Y
RQTH RESPONSE RQTH RESPONSE
NORMOUT, MAILBOX NORMIN MAILBOX
»I TERMINAL] | 3 | TERMINAL
HANDLER HANDLER
IN RMX/86 IN RMX/86

Figure 11-1. Input and Output Mailbox Interfaces.

PROGRAMMING CONSIDERATIONS

The RMX/86 Terminal Handler supports terminal input and output

by providing mailbox interfaces. Figure 11-1 shows the
mailboxes that are used typically. In the figure, an arrow
pointing from a task to a mailbox represents a SEND$MESSAGE
system call. An arrow pointing from a mailbox to a task

indicates a RECEIVE$MESSAGE system call.

The protocol that tasks observe is much the same for input and
output. In each case, the task initiates 1I/0 by sending a
request message to a mallbox. An input request mailbox,
RQTHNORMIN, and an output request mailbox, RQTHNORMOUT, are
provided. The Terminal Handler processes the request and then
sends a response message back to the requesting task. The task
waits at a response mailbox for the message. Thus, when a task
does either input or output, it sends and then receives. The
full details of the input and output protocols are described
later in this section.

For both input and output, the medium is the message segment
sent by a task to the Terminal Handler. The format of a

request message 1is depicted in Figure 11-2. The numbers in
that figure are offsets, in bytes, from the beginning of the
segment. The field names have different meanings for input and

for output. For both input and output, the first four fields
are WORD values. The MESSAGE CONTENT field can be up to 132
bytes in length for input and up to 65527 bytes in length for
output.

11-6

N

TERMINAL HANDLER

OFFSET REQUEST MESSAGE
0 FUNCTION
2 COUNT
!
4 EXCEPTION CODE
6 ACTUAL

MESSAGE

Figure 11-2. Request Message Format.

In the following discussions, the names F$WRITE and F$READ
literal names for the particular WORD values 5 and 1,
respectively.

OUTPUT

The first thing a task does when transmitting output is prepare
an output request message. The task must fill in the following
fields prior to sending the message:

FUNCTION --- F$WRITE.

COUNT --- the number of bytes (not to exceed 65527) in the
MESSAGE CONTENT field.

MESSAGE CONTENT --- the bytes that are to be output.

Having prepared the message segment, the task must send it to
the output request mailbox RQTHNORMOUT. Messages, sent to this
mailbox are processed in a first-in-first-out manner.
Processing a message involves sending the characters in the
MESSAGE CONTENT field to the terminal until a total of COUNT
characters have been sent. There 1is one exception; when the
Terminal Handler encounters the end-of-transmission character
(OAH), it sends a Carriage Return and a Line Feed to the
terminal.

When sending the output request message, the task specifies a
user-supplied response mailbox. If no response mailbox 1is
specified, the Terminal Handler will delete the segment that
contained the message. In addition to transmitting the message

11-7

TERMINAL HANDLER

to the terminal, the Terminal Handler fills in the remaining
fields in the output request message. The requesting task can
wait at the response mailbox (that is, it ~can call the
RECEIVE$MESSAGE system call with a time 1limit of OFFFFH)
immediately after sending the output request. By observing
this protocol, the task can learn of the success or failure of
the output attempt. The fields that provide this information
are the following:

e EXCEPTION CODE --- the encoded result of the output
operation:
- E$0OK --- the operation was successful.
- E$PARAM --- the FUNCTION field in the message did not

contain F$WRITE.

- E$BOUNDS --- the COUNT field in the message is too big
for the segment, that is, COUNT + 8 1is greater than
the length of the segment containing the message.

® ACTUAL --- the actual number of bytes output.

In summary, the protocol observed by tasks doing output is as
follows:

e Prepare the output request message segment, filling in
the FUNCTION, COUNT, and MESSAGE CONTENT fields.

e Send the segment, via the SEND$MESSAGE system call, to
RQTHNORMOUT. It is advisable, but not necessary, to
specify a response mailbox 1n the system call.

e Wait indefinitely, via the RECEIVE$MESSAGE system call,
at the response mailbox. When received, the message
contains the results of the transmission in the EXCEPTION
CODE and ACTUAL fields.

INPUT

The protocol for obtaining input is much the same as that for
outputting. A message 1s prepared and sent to a request
mailbox, then the message 1s received at a response mailbox.
There 1is a significant difference, however. The input is

contained in the message segment at the response mailbox, so
designating a response mailbox and then waiting there is
required.

CAUTION

When multiple tasks wuse the same
mailbox for input from the terminal,
there is a chance that a task will
get input that is intended for
another task.

11-8

TERMINAL HANDLER

The first thing a task needing input does 1is prepare an input
request message. It must fill in the FUNCTION and COUNT fields
prior to sending its request. The FUNCTION field must contain
F$READ. The COUNT field reflects the maximum possible number
of input characters in the input message. The value of COUNT
must not exceed 132; moreover, COUNT + 8 must not exceed the

length of the input request message segment.

When sending the input request message, the task must specify
the response mailbox in its call to the SEND$MESSAGE system
call. The Terminal Handler obtains characters from the
terminal and places them in the MESSAGE CONTENT field. The
message 1s terminated by an end of line character (Carriage
Return, Line Feed, or ESCape). The lone exception is when the
end-of-1line character has been "normalized" by being preceded
by a control-P; then the end-of-line character is treated as a
normal character.

NOTE

If more than COUNT characters are
entered prior to the end-of-line
character, the extra characters are
ignored, and the terminal beeps at
the operator.

After the message is complete, the Terminal Handler fills in
the EXCEPTION CODE and ACTUAL fields as follows:

e EXCEPTION CODE --- the -encoded result of the input
operation, which is one of the following:
- E$0K --- the operation was successful.
- E$PARAM --- either the FUNCTION field in the message
did not contain F$READ or the COUNT field was greater
than 132.
- E$BOUNDS --- COUNT + 8 is greater than the length of

the message segment.
® ACTUAL --- the number of bytes actually entered and
placed in the MESSAGE CONTENT field.

The requesting task must wait (that 1is, it must make a
RECEIVE$OBJIECT system call with a time limit of OFFFFH) at the
designated response mailbox immediately after sending the input
request.

In summary, the input protocol is as follows:

e Prepare the input request message segment, filling in the
FUNCTION and COUNT fields.

11-9

TERMINAL HANDLER

e Send the segment, via the SEND$MESSAGE system call, to
RQTHNORM$IN. In the call, specify a response mailbox.

e Wait indefinitely, via the RECEIVE$MESSAGE system call,
at the response mailbox. When received, the message
segment will contain the results of the input operation
in the MESSAGE CONTENT, EXCEPTION CODE, and ACTUAL fields.

11-10

Chapter 12. DEBUGGER

GENERAL INFORMATION

The development of almost every software application requires
debugging. To aid in the development of RMX/86 application
systems, Intel provides three debugging tools. One, the RMX/86
Debugger, 1is a powerful tool which is sensitive to the data
structures that the Nucleus maintains. The other debugging
tools are the ICE-86 In-Circuit Emulator and the monitor in the
iSBC 86/12A Single Board Computer.

The Debugger supplies its own Terminal Handler, which includes
all of the capabilities described in Chapter 11. If vyour
application includes the Debugger, then you may wuse its
Terminal Handler, rather than 1linking in the Terminal Handler
module.

" DEBUGGER CAPABILITIES

The RMX/86 Debugger enables you to do the following:

e View RMX/86 system 1lists, including the 1lists of the
jobs, the tasks, the ready tasks, the suspended tasks,
the task queues at -exchanges, the object queues at
mailboxes, and the exchanges.

e Inspect jobs, tasks, exchanges, and segments.

e Inspect absolute memory locations.

e Set, change, view, and delete breakpoints.

e View the list of tasks that have incurred breakpoints and
remove tasks from it.

@ Declare a task to be the breakpoint task.

e Find out as to which task is the breakpoint task.

e Inspect and alter the breakpoint task's register values.
e Alter the contents of absolute memory locations.

e Set, change, view, and delete special variables for
debugging.

e View the list of special debugging variables.

e Deactivate the Debugger.

12-1

DEBUGGER

DEBUGGING CAPABILITIES IN THE ICE-86 EMULATOR

The ICE-86 In-Circuit Emulator provides several debugging
capabilities. In particular, an ICE-86 emulator lets you:

e Get <closer to the hardware level by examining the
contents of input pins and input ports. You can also
change the values at output ports.

e Set breakpoints.

e Use memory in your Intel Microcomputer Development System
as if it were on your prototype board.

e Look at the most recent 80 to 150 assembly language
instructions executed.

To learn more about the ICE-86 Emulator, consult the ICE-86
In-Circuit Emulator Operating Instructions for ISIS-II Users,
manual order number 9800714.

DEBUGGING CAPABILITIES IN THE iSBC 86/12A MONITOR

The iSBC 86/12A monitor has several capabilities that can aid
you in debugging. With the monitor, you can do the following:

e View and modify the contents of 8086 registers and
absolute memory locations.

e Set breakpoints.
e Single step program execution.
¢ Do I/0 to and from ports.

e Move or compare blocks of memory.

INVOKING THE DEBUGGER

The Debugger 1is 1invoked when vyou enter control-D at the
terminal. The Debugger responds with 1its sign-on message,
"RMX/86 DEBUGGER V1.0", and its prompt character, an asterisk.

In addition to the functions the Debugger can perform when it
has been invoked, there are two services it can perform at any
time, even when not invoked. First, if a task encounters a
breakpoint, the Debugger responds as described later in this

chapter.

Second, if a task has the Debugger as its exception handler and
the task causes an exceptional condition, then the Debugger
displays a message to that effect at the terminal. A task gets

12-2

o

N

DEBUGGER

the Debugger as its exception handler either by using the
SET$EXCEPTION$SHANDLER system call or when the task is created
by means of either CREATE$TASK or CREATE$JOB. An example of
code setting up such a call is the following:

DECLARE EXCEPT$BLOCK STRUCTURE (

EXCEPT$PROC POINTER,
EXCEPT$MODE BYTE) ;

EXCEPT$BLOCK.EXCEPT$PROC = @RQ$DEBUGGERSEX;
EXCEPT$BLOCK.EXCEPT$MODE = ZERO$ONESTWOSORSTHREE ;

RQ$SYSTEM$CALL (...,@BEXCEPT$BLOCK,...);

’

DEBUGGER INPUT AND OUTPUT

The Debugger obtains input one line at a time from its Terminal
Handler. The end-of-line indicators are Carriage Return, Line
Feed, and ESCape. When either Carriage Return or Line Feed is
entered, the current input 1line is sent to the Debugger; when
ESCape is entered, the current input line 1is discarded and a
prompt is displayed.

The Debugger generates display at the terminal by sending
output messages to its Terminal Handler. To suppress output
from application tasks during a debugging session, type
control-S. If control-S is not entered, any output from tasks
is interspersed with output from the Debugger. To allow
resumption of output from tasks, type control-Q. Control-S and
control-Q have no effect on output from the Debugger.

SYNTAX OF DEBUGGER COMMANDS

When using the RMX/86 Debugger, you sit at a terminal and type
commands. This section describes the syntactical standards for
commands to the Debugger, and it introduces notational
conventions that are used throughout this chapter.

Debugger commands fall into families. The syntax for each
family is described in detail later in this chapter.

The first one or two characters of a command constitute a key
sequence for the command:

® Most Debugger commands are specified by one or two

letters. The key letters or pairs of letters are BL, BT,
p, oB, G, I, L, M, Q, R, V, and Z.

12-3

DEBUGGER

e In a few cases, a command is specified by beginning the
command with a name. A name, for the Debugger, must
consist of a period followed by a variable name of the
PL/M-86 variety.

After the key initial sequence, a command may be followed by
one or more parameters or additional specifiers. Blanks are

used as delimiters between elements of a command; they are
mandatory except

e immediately after a command key that is not a name and
e between a letter or digit and a non-letter, non-digit.
The legal —characters of the latter type are the
following: ; @ = / \ = () * + - |
PICTORIAL REPRESENTATION OF SYNTAX

In this chapter, a schematic device illustrates the syntax of

commands. The schematic consists of what looks like an aerial
view of a model railroad setup, with syntactic entities
scattered along the track. Imagine that a train enters the

system at the upper left, drives around as much as it can or
wants to (sharp turns and backing up are not allowed), and
finally departs at the lower right. The command it generates
in so doing consists, in order, of the syntactic entities that
it encounters on its journey. For example, a string of A's and
B's, in any order, would be depicted as

e

—0]
——(—— |}
——

N—/
S

If such a string has to begin with an A, the schematic could be
drawn as

1

-

Y

e

-\

_—*_4"h_+__‘~_J

12-4

DEBUGGER

In the second drawing, it is necessary to represent the letter
A twice because A is playing two roles: It is the first symbol
(necessarily) and it is a symbol that may (optionally) be used
after the first symbol. Note that a train could avoid the
second A but cannot avoid the first A. The arrows are not
necessary and henceforth are omitted.

SPECIAL SYMBOLS FOR THE DEBUGGER

The entities that will be wused in the remainder of this
chapter, as A and B were used in the previous paragraph, are
the following:

e CONSTANT. Constants are always hexadecimal. Unlike such
constants in PL/M-86, they do not require an H as the
last character. H's may be wused if desired. Leading

zeroes are not necessary unless they help to distinguish
between constants and other things. For example, AH is a
register in the 8086, but OAH is a constant.

NOTE
If more than four hexadecimal digits
compose a constant, only the low
order four digits are used. Binary,
octal, and decimal constants are not
understood by the Debugger.

e NAME. A name is a period followed by up to 31 alphabetic
or numeric characters, the first of which must be
alphabetic.

Examples:
.task
.mailbox7

8 EXPRESSION, As in algebra, an expression 1is either a
term or is the result of adding and subtracting terms.
Also as in algebra, a term is a product; each factor in
the product is either a constant, a name, a parenthetical
expression, or one of the registers AX, BX, CX, DX, DS,
Es, ss, cs, Ip, FL, SI, DI, BP, and SP. Graphically,
term and expression are shown in Figure 12-1:

NOTE

If the computed value of an
expression is too large to fit into
four hexadecimal digits, then only
the low order four digits are used.

12-5

DEBUGGER

®
J

TERM:

0
>

>@@@e

>@$é@<

0
w

510¢

béc

o

NOK

<

EXPRESSION:

~

Figure 12-1. Syntax Diagrams for Term and Expression

RS

Figure 12-2. Syntax Diagram for Item

12-6

DEBUGGER

e ITEM. An item is either an expression or one of the
segment registers of the 8086 microprocessor. The values
of items are used variously as tokens and as offsets in
Debugger commands. Graphically, an item 1is defined in
Figure 12-2.

DEBUGGER COMMANDS

This section presents the details of the Debugger commands.
The commands fall into two groups, those relating to
breakpoints and those that enable you to observe or change the
contents of memory.

BREAKPOINT CONTROL

The Debugger provides you with the ability to set, change,
view, or delete breakpoints. You set a breakpoint by defining
an act which a task can perform. When a task performs the act,
it incurs the breakpoint. The Debugger supports three kinds of
breakpoints:

e Execution Dbreakpoint. A task incurs an execution
breakpoint when it executes an instruction that is at a
previously specified location in memory.

e Exchange breakpoint. A task incurs an exchange
breakpoint when it performs a previously specified type
of operation (send or receive) at a previously specified
exchange.

® Exception breakpoint. A task incurs an exception
breakpoint if its exception handler has been declared to
be the Debugger and the task <causes an exceptional
condition of the type that invokes its exception handler.

When a task incurs a breakpoint (of any type), three things
occur automatically:

e The task 1is suspended. Moreover, depending on the
breakpoint, the tasks in the containing job might also be
suspended.

e The suspended task (or tasks) 1is (are) placed on a
Debugger-maintained list called the breakpoint list. You
can resume a task on the breakpoint 1list or you can
remove it from the list.

e At the terminal, a display informs you that a breakpoint

has been incurred. It also provides information about
the event.

12-7

DEBUGGER

Each task on the breakpoint 1list 1s assigned a breakpoint
state, which reflects the kind of breakpoint last incurred by
the task. The states are as follows:

X =--- The task incurred an execution breakpoint.

E --- The task incurred an exchange breakpoint.

Z --- The task incurred an exception breakpoint.

N --- The task was placed on the breakpoint list by the

BT command (described later), rather than by
incurring a breakpoint.

You set an execution or exchange breakpoint with the DB command
by defining a breakpoint variable and assigning it a breakpoint
request. The request specifies to the Debugger the nature of
the breakpoint, and the variable provides you with a convenient
means of talking to the Debugger about the breakpoint. Using
the breakpoint variable, you can <cancel the breakpoint or
replace it with a new one.

The Debugger displays information when a task incurs a
breakpoint. The format of the display depends on the kind of
breakpoint incurred:

e The display format for an execution breakpoint is

bp-var: E, TASK=jjjjJd/ttttg, CS=cccc, IP=1iiii

where

bp-var The name of the breakpoint variable.

JidJ A token for the task's job.

tttt A token for the task.

q Either T (for task) or * (indicating
that the task has overflowed its stack).

cccc The base of the segment in which the
breakpoint was set.

iiii The offset of the breakpoint within its

segment.
e The display format for an exchange breakpoint is

bp-var: a, EXCH=jjjjJd/xxxxe, TASK=jjjjd/ttttq, ITEM=item

12-8

DEBUGGER

where

bp-var The name of the breakpoint variable.

a Indicates which kind of operation (S
for send or R for receive) caused the
breakpoint to be incurred.

Jiij A token for the Jjob containing the
exchange or task whose token follows.

XXX X A token for the exchange.

e Indicates the type of the exchange (M
for mailbox, S for semaphore).

tttt A token for the task.

item One of the following:

A pair of tokens, jjjjJ/oooot, with
oooo being a token for the object being
sent or received, t indicating the type
of the object (J for job, T for task, M
for mailbox, S for semaphore, and G for
segment), and jjjj being a token for
the object's containing job, 1if the
exchange is a mailbox. If the kind of
operation was receive, but no object
was there to be received, item is 0000.

The number of units held by the
exchange, if it is a semaphore.

e The display format for an exception breakpoint 1is

EXCEPTION: jjjjd/ttttT, CS=cccc, IP=iiii, TYPE=wwww, PARAM=vyvy

where
J3ij A token for the job which contains the
task that caused the exception

condition.
tttt A token for the task that caused the

exceptional conditon.
cccc and iiii Respectively, the contents of the 8086

CS and IP registers when the
exceptional condition occurred.

12-9

DEBUGGER

WWWW The numerical value of the exception
code; reflects the nature of the
exceptional condition. Chapter 8

contains the mnemonic condition codes
and their numerical equivalents.

VVVV The number (0001 for first, 0002 for
second, etc.) of the parameter that
caused the exceptional condition. If
no parameter was at fault, vvvv is 0000.

Exception breakpoints differ from execution and exchange
breakpoints in several respects:

e It 1is not possible to set, change, view, or delete
exception breakpoints by wusing the commands of the
Debugger. Instead, each task can set an exception
breakpoint by declaring the Debugger to be its exception
handler. The task can subsequently delete the breakpoint
by declaring a different exception handler.

® An exception breakpoint 1is set for a particular task.
Execution and exchange breakpoints are set for no
particular task; any task can incur such a breakpoint.

e Exception breakpoints are set for a "kind" of event,
namely the occurrence of an exceptional condition when
the task that set the breakpoint makes a system call. An
execution or exchange breakpoint, on the other hand, is
set at a "place."

e An exception breakpoint is not known to the Debugger by a
breakpoint variable name.

If you want to monitor a particular task, you can designate it
to be the breakpoint task. If the task is not already on the
breakpoint 1list when you do this, it is suspended and is placed
on the breakpoint 1list with a null breakpoint state. After
designating a breakpoint task, you can examine its registers or
alter them. You can also ascertain the breakpoint state of the
task. When ready, you can easily resume the task and remove it
from the breakpoint list.

The handling of exception breakpoints is significantly
different from that of execution and exchange breakpoints. For
example, exception breakpoints cannot be viewed, but the other
breakpoints can be. Wherever this distinction applies, this
chapter points 1t out.

Establishing a Breakpoint --- The DB Command

Syntax

The syntax for the DB command is given in figure 12-3.

12-10

BREAKPOINT VARIABLE

DEBUGGER

Figure 12-3. Syntax Diagram for Establishing a Breakpoint

Explanation of Syntax

BREAKPOINT VARIABLE A Debugger name. If the Debugger's

ITEM

S and R

T and J

symbol table already contains this
name, an error message will appear on
the terminal's display.

If followed by ":" and an EXPRESSION,
you are setting an execution
breakpoint, and ITEM must contain a
token for a segment, while EXPRESSION
must contain an offset. Otherwise, you
are setting an exchange breakpoint, and
ITEM must contain a token for an
exchange.

To be used only when setting an
exchange breakpoint. S means that the
exchange breakpoint is for senders
only, while R means that it 1is for
receivers only. If you want to set an
exchange breakpoint for both senders
and receivers, omit both S and R, as
well as both ":" and EXPRESSION.

Indicate which tasks are to be put on
the breakpoint 1list when a breakpoint
is incurred. T indicates only the task
that incurred the breakpoint, while J
indicates all of the tasks in that
task's job.

12-11

DEBUGGER

C Directs the Debugger not to suspend
tasks that incur the breakpoint, and
not to put them on the breakpoint list.

D Directs the Debugger to delete the
breakpoint when it is first incurred by
a task. The D option does not suppress
the display that results when a task
incurs a breakpoint.

Effects

The DB command sets a breakpoint of the type indicated in the
remainder of the command 1line. The name designated as the

breakpoint variable can be wused to alter or delete the
breakpoint.

Changing a Breakpoint

Syntax

The syntax for this command is given in Figure 12-4.

BREAKPOINT VARIABLE

Figure 12-4. Syntax Diagram for Changing a Breakpoint

Explanation of Syntax

BREAKPOINT VARIABLE A Debugger name. If the Debugger's
symbol table already contains this
name, an error message will appear on
the terminal's display.

12-12

DEBUGGER

ITEM If followed by ":" and an EXPRESSION,
you are setting an execution
breakpoint, and ITEM must contain a
token for a segment, while EXPRESSION
must contain an offset. Otherwise, you
are setting an exchange breakpoint, and
ITEM must contain a token for an
exchange.

S and R To Dbe used only when setting an
exchange breakpoint. S means that the
exchange breakpoint is for senders
only, while R means that it 1is for
receivers only. If you want to set an
exchange breakpoint for both senders
and receivers, omit both S and R, as
well as both ":" and EXPRESSION.

T and J Indicate which tasks are to be put on
the breakpoint 1list when a breakpoint
is incurred. T indicates only the task

that incurred the breakpoint, while J
indicates all of the tasks 1in that

task's job.
C Directs the Debugger not to suspend
tasks that incur the breakpoint, and
. not to put them on the breakpoint list.
D Directs the Debugger to delete the

breakpoint when it is first incurred by
a task. The D option does not suppress
the display that results when a task
incurs a breakpoint.

Effects
This command deletes the breakpoint that was associated with
the breakpoint variable name and replaces 1t with a new

breakpoint, as specified in the command. The breakpoint
variable name can be used to delete or change the breakpoint.

Deleting a Breakpoint --- The Z Command

Syntax

The syntax for the Z command is given in Figure 12-5.

@ BREAKPOINT VARIABLE

Figure 12-5. Syntax Diagram for Deleting a Breakpoint

12-13

Explanation of Syntax

DEBUGGER

BREAKPOINT VARIABLE A Debugger name. If the Debugger's

Effects

symbol table does not contain the name,
or if it does contain the name but the
name 1s not stored as a breakpoint
variable, an error message is displayed.

The Z command deletes the specified breakpoint and removes the
breakpoint variable name from the Debugger's symbol table.

Examining a Breakpoint

Syntax

The syntax for this command is given in Figure 12-6.

BREAKPOINT VARIABLE

Figure 12-6. Syntax Diagram for Examining a Breakpoint
Explanation of Syntax

BREAKPOINT VARIABLE

Effects

The name of the breakpoint to be
examined.

If the designated breakpoint is an execution breakpoint, the
following display is sent to the terminal:

bp-var=xxxx:yyyy z op op

where
bp-var

XXXX

yyvyy

The name of the breakpoint variable.

The base of the segment containing
theinstruction at which the breakpoint
is set.

The offset of the instruction within
the segment.

Indicates whether a task (T) or all
tasks in a job (J) are to be suspended
and placed on the breakpoint list when
the breakpoint is incurred.

12-14

op

If the breakpoint

DEBUGGER

If present, is C (for Continue task) or
D (for Delete breakpoint).

an exchange breakpoint, the following

display is sent to the terminal:

where
bp var

XX XX

ops

bp-var=xxxx a ops r

The name of the breakpoint variable.

A token for the exchange at which the
breakpoint is set.

Indicated the kind of activity at the
exchange, either S (for send), R (for
receive), or SR (for both).

If any are present, can be C (for
continue task) and/or D (for delete
breakpoint).

indicates whether a task (T) or all
tasks in a job (J) are to be suspended
and placed on the breakpoint list when
the breakpoint is incurred.

You cannot examine an exception breakpoint.

Viewing the Breakpoint List --- The BL Command

Syntax

The syntax for the BL command is given in Figure 12-7.

Figure 12-7.

Effects

__qb__

Syntax Diagram for Viewing the Breakpoint List.

The Debugger responds to this command by displaying the entire
breakpoint list as follows:

BL=3jjjjI/ttttT(s) jjjja/ttttT(s) ... J333I/ttttT(s)

12-15

DEBUGGER

where
3ii; A token for the job containing the task
whose token follows.
tttt A token for a task.
s The breakpoint state of a task.
Possible values are X (for execution),
E (for exchange), Z (for exception),
and blank (for null).
Viewing the Breakpoint Parameters --- The B Command
Syntax

The syntax for the B command is given in Figure 12-8.

__"h_

Figure 12-8. Syntax Diagram for Viewing the Breakpoint
Parameters

Effects

The B command has two principal effects. The first is to
display the breakpoint list as

BL=3jjj3/ttttT(s) jjjja/ttttT(s) ... jjjj3/ttttT(s)

where
NARN A token for the job containing the task
whose token follows.
tttt AR token for a task.
s The breakpoint state of a task.

Possible values are X (for execution),
E (for exchange), Z (for exception),
and blank (for null).

The second effect of the B command is to display the breakpoint
task to be displayed as

BT=3jjjd/ttttT(s)

where

Jiji A token for the Jjob containing the
breakpoint task.

12-16

AN

op

If the breakpoint

DEBUGGER

If present, is C (for Continue task) or
D (for Delete breakpoint).

an exchange breakpoint, the following

display is sent to the terminal:

where
bp var

XXX X

ops

bp-var=xxxx a ops r

The name of the breakpoint variable.

AR token for the exchange at which the
breakpoint is set.

Indicated the kind of activity at the
exchange, either S (for send), R (for
receive), or SR (for both).

If any are present, can be C (for
continue task) and/or D (for delete
breakpoint).

indicates whether a task (T) or all
tasks in a job (J) are to be suspended
and placed on the breakpoint list when
the breakpoint is incurred.

You cannot examine an exception breakpoint.

Viewing the Breakpoint List --- The BL Command

Syntax

The syntax for the BL command is given in Figure 12-7.

Figure 12-7.

Effects

“‘D"

Syntax Diagram for Viewing the Breakpoint List.

The Debugger responds to this command by displaying the entire
breakpoint list as follows:

BL=jjjjI/ttttT(s) jjjja/ttttT(s) ... JjjjI/ttttT(s)

12-15

DEBUGGER

ITEM If followed by ":"™ and an EXPRESSION,
you are setting an execution
breakpoint, and ITEM must contain a
token for a segment, while EXPRESSION
must contain an offset. Otherwise, you
are setting an exchange breakpoint, and
ITEM must contain a token for an

exchange.
S and R To be used only when setting an
exchange breakpoint. S means that the

exchange breakpoint 1is for senders
only, while R means that it 1is for
receivers only. If you want to set an
exchange breakpoint for both senders
and receivers, omit both S and R, as
well as both ":"™ and EXPRESSION.

T and J Indicate which tasks are to be put on
the breakpoint 1list when a breakpoint
is incurred. T indicates only the task

that incurred the breakpoint, while J
indicates all of the tasks in that

task's job.
C Directs the Debugger not to suspend
tasks that incur the breakpoint, and
. not to put them on the breakpoint list.
D Directs the Debugger to delete the

breakpoint when it is first incurred by
a task. The D option does not suppress
the display that results when a task
incurs a breakpoint.

Effects

This command deletes the breakpoint that was associated with
the breakpoint variable name and replaces it with a new
breakpoint, as specified in the command. The breakpoint
variable name can be used to delete or change the breakpoint.

Deleting a Breakpoint --- The Z Command

Syntax

The syntax for the Z command is given in Figure 12-5.

@ BREAKPOINT VARIABLE

Figure 12-5. Syntax Diagram for Deleting a Breakpoint

12-13

BREAKPOINT VARIABLE

DEBUGGER

Figure 12-3. Syntax Diagram for Establishing a Breakpoint

Explanation of Syntax

BREAKPOINT VARIABLE A Debugger name. If the Debugger's

ITEM

S and R

T and J

symbol table already —contains this
name, an error message will appear on
the terminal's display.

If followed by ":" and an EXPRESSION,
you are setting an execution
breakpoint, and ITEM must contain a
token for a segment, while EXPRESSION
must contain an offset. Otherwise, you
are setting an exchange breakpoint, and
ITEM must contain a token for an
exchange.

To be used only when setting an
exchange breakpoint. S means that the
exchange breakpoint is for senders
only, while R means that it 1is for
receivers only. If you want to set an
exchange breakpoint for both senders
and receivers, omit both S and R, as
well as both ":"™ and EXPRESSION.

Indicate which tasks are to be put on
the breakpoint 1list when a breakpoint
is incurred. T indicates only the task
that incurred the breakpoint, while J
indicates all of the tasks 1in that
task's job.

12-11

N

where

bp-var

SRRN

XXXX

tttt

item

DEBUGGER

The name of the breakpoint variable.

Indicates which kind of operation (S
for send or R for receive) caused the
breakpoint to be incurred.

A token for the job containing the
exchange or task whose token follows.

A token for the exchange.

Indicates the type of the exchange (M
for mailbox, S for semaphore).

A token for the task.
One of the following:

A pair of ‘tokens, jjjjJ/ocoot, with
oooo being a token for the object being
sent or received, t indicating the type
of the object (J for job, T for task, M
for mailbox, S for semaphore, and G for
segment), and jjjj being a token for
the object's containing job, if the
exchange is a mailbox. If the kind of
cperation was receive, but no object
was there to be received, item is 0000.

The number of units held by the
exchange, if it is a semaphore.

® The display format for an exception breakpoint is

EXCEPTION: jjjjd/ttttT, CS=cccc, IP=iiii, TYPE=wwww, PARAM=vvvv

where

NRRN

tttt

cccc and iiii

AR token for the job which contains the
task that caused the exception
condition.

A token for the task that caused the
exceptional conditon.

Respectively, the contents of the 8086

CS and IP registers when the
exceptional condition occurred.

12-9

DEBUGGER

e ITEM. An item 1is either an expression or one of the
segment registers of the 8086 microprocessor. The values
of items are wused variously as tokens and as offsets in
Debugger commands. Graphically, an item is defined 1in
Figure 12-2.

DEBUGGER COMMANDS

This section presents the details of the Debugger commands.
The commands fall into two groups, those relating to
breakpoints and those that enable you to observe or change the
contents of memory.

BREAKPOINT CONTROL

The Debugger provides you with the ability to set, change,
view, or delete breakpoints. You set a breakpoint by defining
an act which a task can perform. When a task performs the act,
it incurs the breakpoint. The Debugger supports three kinds of
breakpoints:

e Execution breakpoint. A task incurs an execution
breakpoint when it executes an instruction that is at a
previously specified location in memory.

e Exchange breakpoint. A task incurs an exchange
breakpoint when it performs a previously specified type
of operation (send or receive) at a previously specified
exchange.

e Exception breakpoint. A task incurs an exception
breakpoint if its exception handler has been declared to
be the Debugger and the task causes an exceptional
condition of the type that invokes its exception handler.

When a task incurs a breakpoint (of any type), three things
occur automatically:

e The task 1is suspended. Moreover, depending on the
breakpoint, the tasks in the containing job might also be
suspended.

e The suspended task (or tasks) is (are) placed on a
Debugger-maintained list called the breakpoint list. You
can rTesume a task on the breakpoint 1list or you can
remove it from the list.

e At the terminal, a display informs you that a breakpoint

has been incurred. It also provides information about
the event.

12-7

DEBUGGER

In the second drawing, it is necessary to represent the letter
A twice because A is playing two roles: It is the first symbol
(necessarily) and it is a symbol that may (optionally) be used
after the first symbol. Note that a train could avoid the
second A but cannot avoid the first A. The arrows are not
necessary and henceforth are omitted.

SPECIAL SYMBOLS FOR THE DEBUGGER

The entities that will be wused in the remainder of this
chapter, as A and B were used in the previous paragraph, are
the following:

e CONSTANT. Constants are always hexadecimal. Unlike such
constants in PL/M-86, they do not require an H as the
last character. H's may be used if desired. Leading
zeroes are not necessary unless they help to distinguish
between constants and other things. For example, AH is a
register in the 8086, but OAH is a constant.

NOTE
If more than four hexadecimal digits
compose a constant, only the low
order four digits are used. Binary,
octal, and decimal constants are not
understood by the Debugger.

e NAME. A name is a period followed by up to 31 alphabetic
or numeric characters, the first of which must ©be
alphabetic.

Examples:
.task
.mailbox7

e EXPRESSION. As in algebra, an expression is either a
term or is the result of adding and subtracting terms.
Also as in algebra, a term is a product; each factor in
the product is either a constant, a name, a parenthetical
expression, or one of the registers AX, BX, CX, DX, DS,
ES, ss, Cs, 1P, FL, SI, DI, BP, and SP. Graphically,
term and expression are shown in Figure 12-1:

NOTE

If the computed value of an
expression is too large to fit into
four hexadecimal digits, then only
the low order four digits are used.

12-5

TN

DEBUGGER

the Debugger as 1its exception mandler either by wusing the
SET$EXCEPTION$HANDLER system call or when the task is created
by means of either CREATE$TASK or CREATE$J0B. An example of
code setting up such a call is the following:

DECLARE EXCEPT$BLOCK STRUCTURE (

EXCEPT$PROC POINTER,
EXCEPT$MODE BYTE) ;

EXCEPT$BLOCK.EXCEPT$PROC
EXCEPT$BLOCK.EXCEPT$MODE

@RQ$DEBUGGERSEX
ZERO$ONESTWOSORSTHREE ;

RQ$SYSTEM$CALL (...,@EXCEPT$BLOCK,...);
DEBUGGER INPUT AND OUTPUT

The Debugger obtains input one line at a time from its Terminal
Handler. The end-of-line indicators are Carriage Return, Line
Feed, and ESCape. When either Carriage Return or Line Feed is
entered, the current input line is sent to the Debugger; when
ESCape is entered, the current input line 1is discarded and a
prompt is displayed.

The Debugger denerates display at the terminal by sending
output messages to its Terminal Handler. To suppress output
from application tasks during a debugging session, type
control-S. If control-S is not entered, any output from tasks
is interspersed with output from the Debugger. To allow
resumption of output from tasks, type control-Q. Control-S and
control-Q have no effect on output from the Debugger.

SYNTAX OF DEBUGGER COMMANDS

When using the RMX/86 Debugger, you sit at a terminal and type
commands. This section describes the syntactical standards for
commands to the Debugger, and it introduces notational
conventions that are used throughout this chapter.

Debugger commands fall into families. The syntax for each
family is described in detail later in this chapter.

The first one or two characters of a command constitute a key
sequence for the command:

e Most Debugger commands are specified by one or two

letters. The key letters or pairs of letters are BL, BT,
o, DB, G, I, L, M, Q, R, V, and Z.

12-3

TN

Chapter 12. DEBUGGER

GENERAL INFORMATION

The development of almost every software application requires
debugging. To aid in the development of RMX/86 application
systems, Intel provides three debugging tools. One, the RMX/86
Debugger, is a powerful tool which is sensitive to the data
structures that the Nucleus maintains. The other debugging
tools are the ICE-86 In-Circuit Emulator and the monitor in the

iSBC 86/12A Single Board Computer.

The Debugger supplies its own Terminal Handler, which includes
all of the <capabilities described in Chapter 11. If your
application includes the Debugger, then you may wuse 1its
Terminal Handler, rather than 1linking in the Terminal Handler
module.

DEBUGGER CAPABILITIES

The RMX/86 Debugger enables you to do the following:

e View RMX/86 system 1lists, including the 1lists of the
jobs, the tasks, the ready tasks, the suspended tasks,
the task queues at -exchanges, the object queues at
mailboxes, and the exchanges.

e Inspect jobs, tasks, exchanges, and segments.

e Inspect absolute memory locations.

e Set, change, view, and delete breakpoints.

e View the list of tasks that have incurred breakpoints and
remove tasks from it.

® Declare a task to be the breakpoint task.

@ Find out as to which task is the breakpoint task.

e Inspect and alter the breakpoint task's register values.
e Alter the contents of absolute memory locations.

e Set, change, view, and delete special variables for
debugging.

@ View the list of special debugging variables.

e Deactivate the Debugger.

12-1

TERMINAL HANDLER

The first thing a task needing input does is prepare an input
request message. It must fill in the FUNCTION and COUNT fields
prior to sending its request. The FUNCTION field must contain
F$READ. The COUNT field reflects the maximum possible number
of input characters in the input message. The value of COUNT
must not exceed 132; moreover, COUNT + 8 must not exceed the

length of the input request message segment.

When sending the input request message, the task must specify
the response mailbox in its call to the SEND$MESSAGE system
call. The Terminal Handler obtains characters from the
terminal and places them in the MESSAGE CONTENT field. The
message 1s terminated by an end of 1line character (Carriage
Return, Line Feed, or ESCape). The lone exception is when the
end-of-1line character has been "normalized" by being preceded
by a control-P; then the end-of-line character is treated as a
normal character.

NOTE

If more than COUNT characters are
entered prior to the end-of-line
character, the extra characters are
ignored, and the terminal beeps at
the operator.

After the message is complete, the Terminal Handler fills in
the EXCEPTION CODE and ACTUAL fields as follows:

® EXCEPTION CODE --- the -encoded result of the input
operation, which is one of the following:
- E$0K --- the operation was successful.
- E$PARAM --- either the FUNCTION field in the message
did not contain F$READ or the COUNT field was greater
than 132.
- E$BOUNDS --- COUNT + 8 is greater than the length of

the message segment.
® ACTUAL --- the number of bytes actually entered and
placed in the MESSAGE CONTENT field.

The requesting task must wait (that 1is, it must make a
RECEIVE$OBJECT system call with a time limit of OFFFFH) at the
designated response mailbox immediately after sending the input
request.

In summary, the input protocol is as follows:

® Prepare the input request message segment, filling in the
FUNCTION and COUNT fields.

11-9

N

TERMINAL HANDLER

OFFSET REQUEST MESSAGE
0 FUNCTION
2 COUNT
4 EXCEPTION CODE
6 ACTUAL

MESSAGE

Figure 11-2. Request Message Format.

In the following discussions, the names F$WRITE and F$READ
literal names for the particular WORD values 5 and 1,
respectively.

OUTPUT

The first thing a task does when transmitting output is prepare
an output request message. The task must fill in the following
fields prior to sending the message:

FUNCTION --- F$WRITE.

COUNT --- the number of bytes (not to exceed 65527) in the
MESSAGE CONTENT field.

MESSAGE CONTENT --- the bytes that are to be output.

Having prepared the message segment, the task must send it to
the output request mailbox RQTHNORMOUT. Messages, sent to this
mailbox are processed in a first-in-first-out manner.
Processing a message involves sending the characters in the
MESSAGE CONTENT field to the terminal until a total of COUNT
characters have bBeen sent. There is one exception; when the
Terminal Handler encounters the end-of-transmission character
(0AH), it sends a Carriage Return and a Line Feed to the
terminal.

When sending the output request message, the task specifies a
user-supplied response mailbox. If no response mailbox 1is
specified, the Terminal Handler will delete the segment that
contained the message. In addition to transmitting the message

11-7

TERMINAL HANDLER

Resuming Output (control-Q)

Deleting or

Negates the effects of control-S by allowing output
requests that are queued at RQTHNORMOUT to be
displayed.

Restarting Output (control-0)

If output is in the normal mode, control-0 puts it
in the suppression mode. If output 1is in the
suppression mode, control-0 restores it to the
normal mode. If output is in the queueing mode,
control-0 has no effect.

PROGRAM CONTROL

Aborting an

Application (control-C)

Control-C invokes a user-written procedure called
RQ$ABORTSAP. This procedure can perform any
actions that suit the application. However,
control-C is normally used to abort an
application. For example, you might want to halt a
compilation if you realize that your program
contains a serious error. Control-C also causes
the effects produced by control-Z; that 1is, it
returns the current input request message with its
ACTUAL field set to zero.

SETTING A BAUD RATE

The Terminal Handler can be set to operate at any of the
following baud rates:

110
150
300
600
1200
2400
4800
9600
19200

The rate is set during software configuration, when an RMX/86
system variable, RQRATE, is assigned one of the previously
mentioned baud rate values.

11-5

7 N\

TERMINAL HANDLER

The following descriptions concern the special characters

needed when entering data at the terminal. Most of these
characters are for line-editing. Each description is divided
into two parts: internal effects and external effects. The

difference 1is that external effects are immediately shown on
the terminal's display, whereas internal effects are those that
are not adirectly visible.

Rubbing Out a Previously-Typed Character (RUBOUT)

Internal Effects: Causes the most recently entered but not yet
deleted character to be deleted from the current
line. If the current 1line is empty, there is no

internal effect.

External Effects: If the current 1line is empty, the BEL
character (07H) is sent to the terminal.
Otherwise, the character is "rubbed out™" in
accordance with one of two available rubout modes.
In the copying mode, the character being deleted
from the current line is re-echoed to the display.

For example, entering "CAT" and then striking
RUBOUT three times results in the display
"CATTAC". In the blanking mode, the deleted

character is replaced on the CRT screen with the
blanking character. For example, entering "CAT"
and then striking RUBOUT three times deletes all
three characters from the display. The copy mode
is the default mode. The default blanking
character for the blanking mode is a space (20H).
If you wish to change either of these defaults,
refer to the RMX/86 Configuration Guide for ISIS-II
Users (Manual order number 9803126) or talk to
someone who knows about configuration.

Displaying the Current Line (control-R)

Internal Effects: None.

External Effects: Sends a carriage return and line feed to the
terminal, followed by the current 1line. If the
current line is empty, the previous line is sent to
the display, where it can be 1line &edited and
submittea as a new input message.

Deleting the Current Line (control-X)

Internal Effects: Empties the current line.

External Effects: Causes the sequence (#, Carriage Return,
Line Feed) to be sent to the terminal.

11-3

N

CHAPTER 11. TERMINAL HANDLER

GENERAL INFORMATION

The Terminal Handler supports real-time, asynchronous 1/0
between an operator's terminal and tasks running wunder the
RMX/86 Nucleus. It is intended for use in applications which

require only limited I/0 through a terminal, and it generally
is used in applications that do not include the RMX/86 1/0
System. The features of the Terminal Handler include the
following:

e Line editing capabilities.

e Keystroke control ovVer output, including output
suspension and resumption, and deletion of data being
sent by tasks to the terminal.

e Echoing of characters as they are entered into the
Terminal Handler's line buffer.

An output-only version of the Terminal Handler is available for
use in applications in which tasks send output to a terminal
but do not receive input from the terminal.

The remainder of this chapter 1is divided into two parts. The
first part, Using a Terminal with the RMX/86 Operating System,
provides the information that is needed by an operator of the
terminal. The second part, Programming Considerations,
contains the information that a programmer needs to write tasks
that send data to, or receive data from, the terminal. In the
first part, there are a few references to the mailboxes that
tasks use to communicate with the terminal. If you are puzzled
by such a reference, look in the second part for an explanation.

USING A TERMINAL WITH THE RMX/86 OPERATING SYSTEM

While using a terminal that is wunder control of the Terminal
Handler, an operator either reads an output message from the
terminal's display or enters characters by striking keys on the
terminal's keyboard. Normal input characters are destined for
input messages that are sent to tasks. Special input
characters direct the Terminal Handler to take special actions.
The special characters are RUBOUT, Carriage Return, Line Feed,
ESCape, control-C, control-D, control-0, control-Q, control-R,
control-S, control-X, and control-Z. The output-only version
of the Terminal Handler does not support any of the special

11-1

NUCLEUS SYSTEM CALLS

WALT INTERRUPT

WAIT$INTERRUPT is used by an interrupt task to signal its
readiness to service an interrupt.

CALL RQ$WAITSINTERRUPT (level, except$ptr);

INPUT PARAMETER

level A WORD containing an interrupt level
which is encoded as follows (bit 15
is the high-order bit):

Bit Value

15-7 0

6-4 the interrupt level (0-7)

3 1
2-0 0
OUTPUT PARAMETER
except$ptr A POINTER to a WORD to which the
condition code for the call is to be
returned.

DESCRIPTION

The WAIT$INTERRUPT system call is used by interrupt tasks
immediately after initializing and immediately after
servicing interrupts. Such a call places an interrupt task
in the asleep state wuntil reawakened by the interrupt
handler for the same level. Each call (except the first)
that an interrupt task makes to WAIT$INTERRUPT sends an
end-of-interrupt signal to hardware.

CONDITION CODES

E$0K No exceptional conditions.

E$SCONTEXT The calling task is not the interrupt
task for the given level.

E$PARAM The level parameter is invalid.

10-59

NUCLEUS SYSTEM CALLS

SUSPEND TASK

SUSPEND$TASK increases by one the suspension depth of a task.

CALL RQ$SUSPEND$TASK (task, except$ptr);

INPUT PARAMETER

task A WORD which,

e if not zero, contains a token for
the task whose suspension depth is
to be incremented.

e if zero, indicates that the calling
task is suspending itself.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the
condition code for the call 1is to be
returned.
DESCRIPTIONS

The SUSPEND$TASK system call increases by one the
suspension depth of the specified task. If the task 1is
already in either the suspended or asleep-suspended state,
its state is not changed. If the task is in the ready or
running state, it enters the suspended state. If the task
is in the asleep state, it enters the asleep-suspended
state.

SUSPEND$TASK cannot be used to suspend interrupt tasks.

CONDITION CODES
E$OK No exceptional conditions.

E$EXIST The task parameter is not a token for
an existing object.

E$LIMIT The suspension depth for the
specified task is already at the
maximum of 255.

E$TYPE The task parameter is a token for an
object that is not a task.

10-57

NUCLEUS SYSTEM CALLS

SIGNAL INTERRUPT

SIGNAL$INTERRUPT is used by an interrupt handler to activate an
interrupt task.

CALL RQ$SIGNALSINTERRUPT (level, except$ptr);

INPUT PARAMETER

level A WORD containing an interrupt level
which is encoded as follows (bit 15
is the high-order bit):

Bit value

15-7 0
6-4 the interrupt level (0-7)

3 1

2-0 0]

OUTPUT PARAMETER
except$ptr A POINTER to a WORD to which the
condition code for the call is to be
returned.

DESCRIPTION
An interrupt handler uses SIGNAL$INTERRUPT to start up its
associated interrupt task. The interrupt task runs in its
own environment with interrupts enabled, whereas the
interrupt handler Tuns in the environment of the
interrupted task with all interrupts disabled.

CONDITION CODES
E$0OK No exceptional conditions.

E$CONTEXT There 1is not an interrupt task
assigned to the specified level.

E$PARAM The level parameter is invalid.

10-55

NUCLEUS SYSTEM CALLS

SET INTERRUPT (continued)

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the
condition code for the call is to be
returned.
DESCRIPTION

The SET$INTERRUPT system call is used to inform the Nucleus
that the specified interrupt handler is to service inter-
rupts which come in at the specified level. In a call to
SET$INTERRUPT, a task must indicate whether the interrupt
handler will invoke an interrupt task and whether the
interrupt handler has its own data segment. If there is to
be an interrupt task, the calling task is that interrupt
task. If there is no interrupt task, SET$INTERRUPT also
enables the specified level, which must be disabled at the
time of the call.

CONDITION CODES
ESCK No exceptional conditions.

E$CONTEXT Either

e the specified level already has an
interrupt handler assigned to it or

e the job containing the calling task
is partially deleted.

E$PARAM Either
e the level parameter is invalid or
would cause the task to have a
priority not allowed by its job.

e the interrupt$task$flag parameter
is greater than one.

10-53

NUCLEUS SYSTEM CALLS

SET INTERRUPT

interrupt
interrupt

handler to an
calling task the

SET$INTERRUPT
level and, optionally,
task for the level.

assigns an interrupt
makes the

CALL RQ$SETSINTERRUPT (level, interrupt$task$flag,
interrupt$handler, interrupt$handler$ds, except$ptr);

INPUT PARAMETERS

level A WORD containing an interrupt level
that is encoded as follows (bit 15 is
the high-order bit):
Bit value
15-7 0
6-4 the interrupt level (0-7)
3 1
2-0 0
interrupt$task$flag A BYTE which,

e if one, indicates that the calling
task 1is to be the 1interrupt task
that will be invoked by the
interrupt handler being set. The
priority of the calling task is set
by the Nucleus. The priority 1is
derived from the level, according
to the following table:

Level Priority
18
34
50
66
82
98
114
130

NOuUmesWNHO

Be certain that priorities set in
this manner do not violate the
max$priority attribute of the
containing job.

10-51

NUCLEUS SYSTEM CALLS

SET EXCEPTION HANDLER

SET$EXCEPTION$HANDLER assigns an exception handler to the
calling task.

CALL RQ$SETSEXCEPTIONSHANDLER (exception$info$ptr, except$ptr);

INPUT PARAMETER

exception$info$ptr A POINTER to a structure of the
following form:

STRUCTURE((
EXCEPTION$HANDLERSOFFSET WORD,
EXCEPTION$HANDLER$BASE WORD,
EXCEPTIONS$MODE BYTE);
where

e exception$handler$offset contains the
offset of the first instruction of
the exception handler.

e exception$handler$base contains a
token for the segment containing the
first instruction of +the exception
handler.

e exception$mode contains an encoded
inaication of the calling task's
intended exception mode. The value
is interpreted as follows:

When to Pass Control
Value To Exception Handler

0 Never

1 On programmer errors only

2 On environmental conditions only
3 On all exceptional conditions

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the
condition code for the call 1s to be
returned.

10-49

NUCLEUS SYSTEM CALLS

SEND MESSAGE

SEND$MESSAGE sends an object token to a mailbox.

CALL RQ$SEND$MESSAGE (mailbox, object, response, except$ptr);

INPUT PARAMETERS

mailbox A WORD containing a token for the mailbox to
which an object token is to be sent.

object A WORD containing an object token which is
to be sent.

response A WORD which,

¢ if not zero, contains a token for the
desired response mailbox or semaphore.

e if zero, indicates that no response is
requested.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the condition
code for the call is to be returned.

DESCRIPTION

The SEND$MESSAGE system call sends the specified object
token to the specified mailbox. If there are tasks in the
task queue at that mailbox, the task at the head of the
queue 1is awakened and is given the token. Otherwise, the
object token is placed at the tail of the object queue of
the mailbox. The sending task has the option of specifying
a mailbox or semaphore at which it will wait for a response
from the task that receives the object. The nature of the
response must be agreed upon by the writers of the two tasks.

CONDITION CODES
E$OK No exceptional conditions.

ESEXIST One or more of the input parameters is not a
token for an existing object.

E$TYPE Either

e the mailbox parameter is a token for an
object that is not a mailbox or

® the response parameter is a token for an
object that 1is neither a mailbox nor a
semaphore.

10-47

.

DEBUGGER

tttt A token for the breakpoint task.

s The breakpoint state of the breakpoint
task. Possible values are X (for
execute), E (for exchange), Z (for
exception), S (for step), and blank
(for null).

If there is no breakpoint task, the display is

BT=0

Removing a Task from the Breakpoint List --- The G Command

Syntax

The syntax for the G command is given in Figure 12-9.

—E \
Figure 12-9. Syntax Diagram for Removing a Task
from the Breakpoint List

Explanation of Syntax

ITEM A token for a task on the breakpoint
list. If the given token is not for a
task on the breakpoint 1list, an error
message will be displayed.

Effects

The G command resumes a task and removes it from the breakpoint
list. When resumed, the task continues from where it last
incurred a breakpoint. If ITEM is present, the task for which
it is a token 1s resumed. Otherwise, the breakpoint task 1is
resumed. until re-established by the BT command, the
Debugger's breakpoint task is undefined. If the G command is

used without ITEM when there 1s no breakpoint task, an error
message is displayed.

Establishing the Breakpoint Task --- The BT Command

Syntax

The syntax for this command is given in Figure 12-10.

12-17

DEBUGGER

Figure 12-10. Syntax Diagram for Establishing the
Breakpoint Task

Explanation of Syntax

ITEM A token for an existing task.

Effects
The task designated by ITEM becomes the breakpoint task. If it

is not already on the breakpoint 1list, it 1is suspended and
placed on the breakpoint list.

Inquiring as to the Breakpoint Task --- The BT Command

Syntax

The syntax for this command is given in Figure 12-10.

Figure 12-11. Syntax Diagram for Inquiring as to
the Breakpoint Task

This command causes the following to be displayed at the
terminal:

BT=3jjjd/ttttT(s)

where

ARRN A token for the job <containing the
breakpoint task.

tttt A token for the breakpoint task.

S The breakpoint state of the breakpoint
task. Possible values are X (for
execute), E (for exchange), Z (for
exception), S (for step), and blank
(for null).

12-18

DEBUGGER

If there is no breakpoint task, the display is

BT=0

Viewing the Breakpoint Task's Registers --- The R Command

Syntax

The syntax for this command is given in Figure 12-12.

Explanation of Syntax

R

Ryz

Effects

The command key letter. By itself, it
represents a request for the display of
all the breakpoint task's 8086 register
values.

Represents a request for the display of
only the breakpoint task's yz register
value.

If the command is simply "R", then all of the breakpoint task's
registers are displayed,

RAX=xXXXX
RBX=XxXxXX
RCX=xxxXx
RDX=xXXxx

If the command has

RSI=xxxX
RDI=xxxx
RBP=xxxx
RSP=xxxX

in the following format:

RCS=xxxX RIP=xxxX
RDS=xXxxX RFL=xXXX
RSS=xxxx
RES=xxxx

the form Ryz, then the contents of the

breakpoint task's register are displayed, either as

or as

Ryz=xxxX

Ryz=xx,

depending on whether yz is a byte-size register (like AH) or a
word-size register (like AX).

12-19

DEBUGGER

OOODORC

BX

J@@@@@@@

Syntax Diagram for Viewing

the Breakpoint Task's Registers

Figure 12-12.

12-20

DEBUGGER

Altering the Breakpoint Task's Registers --- The R Command

Syntax

The syntax for this command is given in Figure 12-13.

l6le

>
b3

) (

@
I

NOLE

I

HEE

) (@

!
o
»

@@@é@@@@@%@éc

Figure 12-13. Syntax Diagram for Altering
the Breakpoint Task's Registers

12-21

DEBUGGER

Explanation of Syntax

Ryz Signals a request that the contents of
the breakpoint task's yz register are
to be changed.

Effects

This command requests that the breakpoint task's register, as
specified in the command request, be updated with the value of
the EXPRESSION.

OBSERVATION AND MANIPULATION COMMANDS

The commands in this section enable you to inspect or modify
the contents of absolute memory locations, to view the RMX/86
system lists, and to inspect tasks, Jjobs, exchanges, and
segments.

In the descriptions of the commands for inspecting and
modifying memory locations, frequent mention is made of the
current display mode, the current segment base, the current
offset, the current address, and the display of memory
locations. This terminology is defined as follows:

e The current display mode determines the manner in which
memory values are interpreted for display purposes. The
possible modes are designated by the letters B, W, P, and
A, and they stand, respectively, for byte, word, pointer,
and ASCII. The effects of these modes are best explained
in the context of an example. Suppose that memory
locations 042B through O042E contain, respectively, the
values 25, F3, 67, and 4C. If you ask for the display of
the memory at location 042B, then the effects, which
depend on the current display mode, are as follows:

Current Display Mode Display
B 25
W F325
P 4C67:F325
A %

Observe that words and pointers are displayed from
high-order (high address) to low-order (low address).

If a location contains a value which does not represent a
printable ASCII character, and the current display mode
is A, then the Debugger prints a period. The initial
current display mode is B.

12-22

DEBUGGER

The value of the current segment base is always the value
of the most recently used segment base. The initial
value of the current segment base is O.

The current offset is a value the Debugger maintains and
uses when reference is made to a memory location without
explicitly citing an offset value. Except when the
current offset has been modified by certain options of
the M command, the current offset is always the value of
the most recently used offset. The initial value of the
current offset is O.

The current address is the 8086 memory address computed
from the combination of the current segment base and the
current offset.

When memory locations are displayed, the format is as
follows:

XXXX:yyyy=value

where xxxx and yyyy are the current segment base and
current offset, respectively, and value is a byte, word,
pointer, or ASCII character, depending on the current
display mode. In case several contiguous memory
locations are being requested in a single request, each
line of display is as follows:

XXxx:yyyy=value value value ... value

where xxxx, yyyy, and value are as previously described,
and xxxx:yyyy represent the address of the first value on
that line.

The first such line begins with the first address in the
request and continues to the end of that (16 byte)
paragraph. If additional 1lines are required to satisfy
the request, each of them begins at an offset which is a
multiple of 16 (10 hexadecimal).

Examining or Modifying Memory --- The M Command
Syntax
The syntax for the M command is given in Figure 12-14.
Explanation of the M Command Options
The options in the M command fall into three categories:
e If an option begins with "!", then it 1is a request to

redefine the current display mode.

12-23

DEBUGGER

EXPRESSION

EXPRESSION

O

EXPRESSION

(=Carmesson

Figure 12-14. Syntax Diagram for Examining or Modifying Memory

e If an option begins with "=", it is a request to alter memory.
e The remaining options are requests for display of memory.

In what follows, the options of the M command are described with
examples. As much as possible, effects are described separately
for each option. When combinations of options produce special
effects, these effects are described.

As the syntax diagram reveals, it is permissible to make multiple
requests in the same command line. The Debugger treats multiple
requests as if they had been submitted one at a time. For example,
M/// is treated as three M/ requests. In the following
descriptions, it 1is assumed that each command line consists of only

one request.

You must separate the elements in a command with a space. An
exception is that ITEM, colon, and EXPRESSION may be contiguous,

like 4C67:F325.
NOTE

When wusing the M command, be aware
of the following hazards:

12-24

DEBUGGER

It is possible for you to modify
memory within RMX/86 components,
such as the Nucleus and Debugger.
Doing S0 can jeopardize the
integrity of your application
system, and should therefore be
avoided.

It 1is possible to request that
non-RAM memory locations be
modified. If you attempt to
modify a location that is in ROM,
an "attempt to modify non-RAM
location" message appears on the
display. If you attempt to read

or write to a non-existent
location, nothing happens to
memory and the displays indicate
that the specified locations

contain zeros.

A memory request might Cross
segment boundaries. In processing
such a request, the Debugger
ignores such boundaries, so don't
assume that a boundary will
terminate a request.

Each description is followed by an example in which the request
and resulting display are shown exactly as they would appear at
Assume, for each example request, that the
following circumstances exist when the request is made:

the terminal.

e The following memory locations contain the 1indicated

values:

base :0300 21 47 E2 C8
offset: 2643 2644 2645 2646

base:0400 01 02 03 OF
offset: 0000 0001 0002 000E

e The current address 1is 0400:0008, that is,
segment base is 0400 and the current offset is 0008.

e The current display mode is byte.

12-25

31
2647
10 ... 16
000F OAQ9

the current

Options
M!B
M!W

MIP

MIA

None

DEBUGGER

for Setting the Current Display Mode

-- This option sets the current display mode to byte.
-- This option sets the current display mode to word.

-- This option sets the current display mode to
pointer.

-- This option sets the current display mode to ASCII.

of these requests results in an immediate display.

Options for Displaying Memory

The options in this section all enable you to ascertain the

contents

of memory without disturbing those contents. Be

aware, however, that all of these options change the current

offset,

and some of them change the current segment base. None

changes the current display mode.

M/

M\

M@

-——- This option increments the current offset
according to the current display mode: by one for
byte or ASCII, by two for word, or by four for
pointer. Then it displays the contents of the new

current address.

Example: M/
0400:0009 OA

--- This option 1is Jjust 1like M/, except that the
current offset is decremented.

Example: M\
0400:0007 08

--- When used by itself, M 1is an abbreviated way of
specifying M/ or M\ , whichever was used most
recently. If neither has been used in the current
Debugging session, M is interpreted as an M/ request.

Example: M
0400:0007 08
M
0400:0006 07

--- This option sets the current offset equal to the
value at the current address. Then the value at the
adjusted current address is displayed.

Example: M@
0400:0R09 16

12-26

DEBUGGER
N
M EXPRESSION --- This option sets the current offset
equal to the value of the EXPRESSION and displays the
value at the new current address.
Example: M 3
0400:0003 04
M ITEM:EXPRESSION --- This option is just like M EXPRESSION,
except that ITEM is used as the base in the address
calculation, and after the operation ITEM is the new
current segment base.
Example: M 300:2644
0300:2644 47
~— M EXPRESSION TO EXPRESSION --- This option displays the
' values in a series of consecutive locations. The
- expressions determine the beginning and ending
offsets, respectively. The current segment base is
used as a base. After the display 1s output, the
current offset is set to the value of the second
expression. If the specified range of 1locations is
incompatible with the current display mode --- for
example, an odd number of locations is not compatible
Py with the word or pointer modes --- then all words or
' pointers that 1lie partially or totally inside the
range are displayed.
Examples: (1) M 4 T0 6
0400:0004 05 06 07
(2) M!W
M 4 TO 6
0400:0004 0605 0807

Options for Altering Memory

The options in this section enable you to change the contents
of designated RAM locations.

CAUTION

Because the Debugger 1is generally
used during system development,
while your tasks, the Nucleus, the
Debugger, and possibly other RMX/8é6
components are in RAM, vyou should
use these M command options with
extreme care.

P Unlike the displaying options of the previous section, the
N modifying options do not affect either the current segment base

or the current offset.

12-27

DEBUGGER

When executing the options of this section, the Debugger
displays the contents of the designated locations, then updates
the contents, and finally displays the new contents. Thus, if
you inadvertently destroy some important data, the information
you need to restore it is available.

The options of this section copy data in the byte mode. The
current display mode is not affected by these copying options.

Some M command lines have the form M{destination) =M {source) ,
where both {source) and {destination) have the following syntax:

In the descriptions that follow, occasional references are made
to options of this form because, when used, they can affect the
results of the next invocation of an option for altering memory.

For convenience, we use the phrase "the previous option has a
destination field" as an abbreviation for

"The following conditions are both true:

® The previous option used was of the
M{destination)>=M{source) variety.

e (destination) specifies a range of at least two
addresses."

M=EXPRESSION --- This option can be used only if the
current display mode 1is byte or word. M=EXPRESSION
copies the value represented by EXPRESSION into the
byte or word at the current address. However, if the
previous option had a destination field, this option
instead copies the value of EXPRESSION into each byte
or word in {destination).

Examples:

(1) When the previous option did not have a
destination field:
M = 4C
0400:0008 09
0400:0008 4C

(2) When the previous option had a
destination field:
M1 TO 4 =M 5 T0 8

12-28

g
) o
b

> Owgd_‘y

DEBUGGER

0400:0001 02 03 04 G5
0400:0001 06 07 08 09
M = 4C

0400:0001 06 07 08 09
0400:0001 4C 4C 4C 4C

M=M EXPRESSION --- This option uses the current segment

base and the offset indicated by the value of
EXPRESSION to compute an address. It coples the value
at that computed address into the location specified
by the current address. However, if the previous
option had a destination field, the value at the
computed address is instead copied to the locations in
the destination field.

Examples:

(1) when the previous option did not have a
destination field:
M =M
0400:0008 09
0400:0008 05

(2) when the previous option had a

destination field:

M1 T0O 3 =MJ5 T0 7

0400:0001 02 03 04

0400:0001 06 07 08

M =M4

0400:0001 06 07 08

0400:0001 05 05 05

M=M ITEM:EXPRESSION --- This option uses ITEM and

EXPRESSION as base and offset, respectively, to
compute an address. M=M ITEM:EXPRESSION copies the
value at that computed address into the 1location
specified by the current address. However, 1if the
previous option had a destination field, the value at
the computed address is instead copied to the
locations in the destination field.

Examples:

(1) When the previous option did not have a
destination field:
M =M 300:2643
0400:0008 09
0400:0008 21

12-29

DEBUGGER

(2) When the previous option had a

destination field:
M1T04=MS5TO 8

0400:0001 02 03 04 05
0400:0001 06 07 08 09

M = M 300:2643

0400:0001 06 07 08 09
0400:0001 21 21 21 21

M=M EXPRESSION TO EXPRESSION --- This option uses the

current segment base and, in order, the offsets
indicated by the EXPRESSIONs, to compute a beginning
address and an ending address. M=M EXPRESSION TO
EXPRESSION copies the sequence of values bounded by
the computed addresses to the sequence of locations
that begin at the current address. However, if the
previous option had a destination field, the sequence
of values bounded by the computed addresses is copied
to the destination field, with the source values being
truncated or repeated as required.

Examples:
(1) when the previous option did not have a
destination field:
M =MATOC
0400:0008 09 0OA 0B
0400:0008 0B 0OC 0D
(2) When the previous option had a
destination field:
M1 T0 4 =M25T0 8
0400:0001 02 03 04 05
0400:0001 06 07 08 09
M =MATOC
0400:0001 06 07 08 09
0400:0001 0B 0OC 0D 0B (first value
repeated)
M=M ITEM:EXPRESSION TO EXPRESSION --- This option uses

ITEM as a base and the EXPRESSIONs as offsets to
compute a beginning and an ending address. The
sequence of values bounded by the computed addresses
is copied to the sequence of locations beginning at
the current address. However, if the previous option

had a destination field, the sequence of values
bounded by the computed addresses 1s copied to the
destination field, with the source values Dbeing

truncated or repeated as required.

12-30

P2 e

DEBUGGER

Examples:

(1) When the previous option did not have a
destination field:
M = M 300:2643 T0 2647
0400:0008 09 OA 0B 0OC 0D
0400:0008 21 47 E2 C8 31

(2) when the previous option has a
destination field:

M1 T0 4 =M5 to 8

0400:0001 02 03 04 05

0400:0001 06 07 08 09

M = M 300:2643 TO 2647

0400:0001 06 07 08 09

0400:0001 21 47 E2 C8 (last value
truncated)

Examining System Objects --- The I Command

Syntax

The syntax for the I command is given in Figure 12-15.

- D>
@

G

Figure 12-15. Syntax Diagram for Examining System Objects

i

Explanation of I Command Options

J --- This option lists the principal attributes of the
job whose token 1is represented by ITEM. IF the O
option is included, the object directory for the job
is listed as well. In case there is a large number of
entries in the object directory, the display might
roll off the screen. To deal with this, use
control-0, which works as described in Chapter 11.
The form of the display is as follows:

12-31

DEBUGGER

-RMX/86 JOB REPORT-----

JOB TOKEN XXXX PARENT J0B XXXX

POOL MAXIMUM XXXX POOL MINIMUM XXXX

CURRENT ALLOCATED XXXX CURRENT UNALLOCATED XXXX

CURRENT # OBJECTS XXXX CURRENT # TASKS XXXX

MAXIMUM # OBJECTS XXXX MAXIMUM # TASKS XXXX

CURRENT # CHILDREN JOBS XXXX DELETION PENDING AAA

EXCEPTION MODE XXXX EXCEPTION HANDLER XXXX s XXXX

MAXIMUM PRIQORITY XXXX

NAMES(S) AAAAAAAAAAAA AAAAAAAAAAAA AAAAAAAAAAAA AAAAAAAAAAAA

AAAAAAAAAAAA. AAAAAAAAAAAA AAAAAAAAAAAA AAAAAAAAAAAA
----- OBJECT DIRECTORY=-=-=---

MAXIMUM SIZE XXXX VALID ENTRIES XXXX

NAME TOKEN NAME TOKEN NAME TOKEN

AARAAAAAAAAARA XXXX AAAAAAAAAAAA XXXX AARAAAAAAAAAA XXXX
The X's represent hexadecimal digits. The A's
represent alphanumeric characters. Most of the
field names are self-evident to someone who is

familiar with the Nucleus portion of this manual.
The less obvious names are explained as follows:

¢ CURRENT ALLOCATED and CURRENT UNALLOCATED refer,
respectively, to the allocated and unallocated
portions of the job's memory pool. The
quantities given are numbers of paragraphs.

e DELETION PENDING tells whether a task has
attempted to delete the job but was unsuccessful
because the job has obtained protection from the

DISABLE DELETION primitive (which is described
in the RMX/86 Systems Programmer's Reference
Manual). The possible values of DELETION

PENDING are YES and NO.

e NAME(S) are the names under which the job is
cataloged in the root object directory or the
object directory of the job's parent.

T --- This option lists the principal attributes of the
task whose token is represented by ITEM. The form
of the display is as follows:

12-32

DEBUGGER

----- RMX/86 TASK REPORT-----

TASK TOKEN XXXX CONTAINING JOB XXXX
STACK SEGMENT BASE XXXX STACK SEGMENT OFFSET XXXX
STACK SEGMENT SIZE XXXX STACK SEGMENT LEFT XXXX
CODE SEGMENT BASE XXXX DATA SEGMENT BASE XXXX
INSTRUCTION POINTER XXXX TASK STATE AAAAAAAA
STATIC PRIORITY XXXX DYNAMIC PRIORITY XX XX
SUSPENSION DEPTH XXXX SLEEP UNITS REQUESTED XXXX
EXCEPTION MODE XXXX EXCEPTION HANDLER XXXX : XXXX

NAME (S) AAAAAAAAAAAA. AAAAAAAAAAAA AAAAAAAAAAAA AAAAAAAAAAAA
AAAAAAAAAAAA. AAAAAAAAAAAA AAAAAAAAAAAA AAAAAAAAAAAA

The X's represent hexadecimal digits. The A's
represent alphanumeric characters. Most of the field
names are self-evident to someone who is familiar with
the Nucleus portions of this manual. The less obvious
names are explained as follows:

(] STATIC PRIORITY is the priority of the task
as described in the chapter on task
management.

(] DYNAMIC PRIORITY 1is a temporary priority
that 1is sometimes assigned to the task by
the Nucleus. This is done to improve system
performance.

. NAME(S) are the names under which the task
is cataloged in the root object directory or
the object directory of the job that
contains the task.

E --- This option lists the principal attributes of the
exchange whose token is represented by ITEM. The form
of the display is one of the following, depending on
the type of the exchange.

————— RMX/86 MAILBOX REPORT-----

MAILBOX TOKEN XXXX CONTAINING JOB XXXX
TASKS WAITING XXXX # OBJECTS WAITING XXXX
FIRST WAITING XXXXJ/XXXX* QUEUE DISCIPLINE AAAAAA

NAME (S) AAAAAAAAAAAA AAAAAAAAAAAA AAAAAAAAAAAA AAAAAAAAAAAA
AAAAAAAAAAAA- AAAAAAAAAAAA AAAARARAAAAAA AAAAAAAAAAAA

————— RMX/86 SEMAPHORE REPORT-----

SEMAPHORE TOKEN XXXX CONTAINING J0OB XXXX

TASKS WAITING XXXX QUEUE DISCIPLINE AAAAAAA
FIRST WAITING XXXXJ/XXXXT

CURRENT VALUE XXXX MAXIMUM VALUE XXXX

NAME (S) AARAAAAAAAAAA. AAAAAAAAAAAA AAAAAAAAAAAA AAAAAAAAAAAA
AAAAAAAAAAAA. AAAAAAAAAAAA AAAAAAAAAAAA AAAAAAAAAAAA

12-33

DEBUGGER

The X's represent hexadecimal digits. The A's
represent alphanumeric characters. The * represents
egither J (for job), T (for task), M (for mailbox), S
(for semaphore), R (for region), C (for composite), or
G (for segment). Most of the field names are
self-evident to someone who 1s familiar with the
Nucleus portion of this manual. The 1less obvious

names are explained as follows:

(] FIRST WAITING 1is the token for either the
first task in the task queue or the first
object{ in the object queue. Because, at all
times, one of these queues is empty, FIRST
WAITING is not ambiguous.

° QUEUE DISCIPLINE is the queueing scheme that
is employed in the exchange's task queue.
Its value is FIFO or PRICGRITY.

] NAME(S) are the names under which the
exchange 1is cataloged in the root object
directory or the object directory of the job
that contains the exchange.

G --- This option lists the principal attributes of the

segment whose token is represented by ITEM. The form
of the display is as follows:

----- RMX/86 SEGMENT REPORT-----

SEGMENT TOKEN XXXX CONTAINING JOB XXXX
SEGMENT BASE XXXX SEGMENT LENGTH XXXX
NAME(S) AAAARAAAAAAAA AAAAAAAAAAAA AAAAAAAAAAAA AAAAAAAAAAAA

AAAAAAAAAAAA. AAAAAAAAAAAA AAAAARAAAAAA AAAARAAAAAAA

The X's represent hexadecimal digits. The A's
represent alphanumeric characters. The names of the
first four fields in the display are self-evident to
someone who 1is familiar with the Nucleus portion of
this manual. NAME(S) are the names under which the
segment is cataloged im the root object directory or
the object directory of the Jjob that contains the
segment.

Viewing RMX/86 System Lists --- The V Command

Syntax

The syntax for the V command is given in Figure 12-16.

12-34

Figure 12-16.

DEBUGGER

O

©

T

—

©

Explanation of V Command Options

where

where

J --- This option lists all jobs as
JL=ppppd/jjijd ppppId/jjijd pPPPPI/Jjijid

JJdJg A job token.

PPPP A token of 1its parent job.
optional ITEM included
command and it contains a Jjob token,
then the tokens of all of that job's
children are listed.

T --- This option lists all tasks as

TL=jjJJa/ttttT jjjjasttttr Jjjjasttttr

tttt A task token.

Jiij A token for the job that contains the
task. If the optional ITEM 1is included
in the command and it contains a job
token, then the tokens of all the tasks
in that Jjob are 1listed. An asterisk
following a task token indicates that
the task has overflowed its stack.

R --- This option lists all ready tasks as

RL=jjjja/ttttT jjjja/ttttT

12-35

Lo L

Syntax Diagram for Viewing RMX/86 System Lists

33333/ttt

where

where

where

DEBUGGER

tttt A token of a ready task.

Jiid A token for the Jjob containing the
task. If the optional ITEM is included
in the command and it contains a job
token, then the tokens of all the ready
tasks in that job are 1listed. An
asterisk following a task token
indicates that the task has overflowed
its stack.

S --- This option lists all suspended tasks as

SL=JJJja/szttetT jjjjasttttT .. jjjji/stttet

tttt A token of a suspended task.

Jiij A token for the job containing the
task. If the optional ITEM is included
in the command and it contains a job
token, then the tokens of all the
suspended tasks in that job are
listed. An asterisk following a task
token indicates that the task has
overflowed its stack.

E --- This option lists all exchanges as

EL=jJJjI/xxxxt jjjjd/xxxxt ... JjjjI/xxxxt

X X X X A token for an exchange.

t The type of the exchange (M for mailbox
or S for semaphore).

Jidg A token for the job containing the
exchange. If the optional ITEM is
included in the command and it contains
a job token, then the tokens of all the
exchanges in that job are listed.

W --- This option lists the task queues at exchanges as

12-36

DEBUGGER

WL jJjJjjd/xxxxt
WL JJjJjJd/xxxxt

JI3II/LEEET FII5I/LEEET .. F333I/ttttT
33333/LLEET 33353/ELEET ... 3553/ttttT

WL J3333/xxxxt = J3JJ3/ttttT J3JJ3/ttttT ... 33353/ttteT

where
XXX X A token for an exchange

t The type of the exchange (M for
mailbox, S for semaphore).

tttt A token for a task which 1is queued at
that exchange.

JJdg A token for the Jjob containing the
task. If the optional ITEM is included
in the command and it contains the
token for an exchange, then the tokens
for the tasks in that exchange's task
queue are listed. An asterisk
indicates that the task has overflowed
its stack.

M --- This option lists the object queues at mailboxes as

Jjjjd/oooot jjjjd/ocooot ... jjjjI/cooot
Jjjjd/oooot jjjjd/oocoot ... jjjjI/oocoot

ML jjjjJd/mmmmM
ML jjjjJ/mmmmM

ML jjJjjJ/mmmmM JJjjjd/ocooot jjjjd/oococot ... jjjjd/ococoot

where
mmmm A token for a mailbox.

0000 ' A token for an object in that
exchange's object queue.

t The type of the object (J for Jjob, T
for task, M for mailbox, S for
semaphore, and G for segment).

Jidj A token for the Jjob containing the
exchange or object. If the optional
ITEM is included in the command and it
contains the token for a mailbox, then
the tokens for the objects in that
mailbox's object queue are listed.

12-37

DEBUGGER

G --- This option lists the segments as

GL=jjjjJd/gg99g9G jjjjd/ggggG ... jjjjd/aggggG

where

gggg A token for a segment.

Jiig A token for the Jjob containing the
segment. If the optional ITEM is
included in the command and it contains
the token for a Jjob, then the tokens
for the segments in that job are listed.

Exiting the Debugger --- The Q Command
Syntax

The syntax for the Q command is given in Figure 12-17.

Figure 12-17. Syntax Diagram for Exiting the Debugger

Effects

This command deactivates the Debugger. When a debugging
session 1is terminated, the tables and 1lists the Debugger
maintains are not destroyed. @ also causes the message "EXIT
RMX/86 DEBUGGER" to be displayed.

USING SYMBOLIC NAMES WHILE DEBUGGING

For your convenience during debugging, the Debugger supports
the use of alphanumeric variable names that stand for numerical
quantities. The names and their associated values can be
accessed by the Debugger from any of the following sources:

e A Debugger-maintained symbol table. The table contains
name/value pairs that have been cataloged by the Debugger
as numeric variables. Commands for defining, changing,
listing, and deleting numeric variables are described
later in this section.

e The object directory of the current job. The current job
is defined to be the Jjob that contains the breakpoint

task. If there is no breakpoint task, the current job is
the root job.

@ The object directory of the root job.
12-38

DEBUGGER

When you wuse a symbolic name that 1is not the name of a
breakpoint variable, the Debugger searches these sources in the
order just listed.

Suppose that you want to refer to a particular task by means of
the name .TASKOOL. If the task 1is cataloged in the object
directory of either the root job or the current job, then the
Debugger will go to the appropriate directory and fetch a token
for the task whenever the name .TASKOOl is used in a Debugger
command. If the task is not so cataloged, you can use VJ (view
job), IJ (inspect Jjob), VT (view task), and IT (inspect task)
commands to deduce a token for the task. Then you can define
.TASKOOl to be a numeric variable whose value is that token.

Defining a Numeric Variable --- The D Command

Syntax

The syntax for the D command is given in Figure 12-18.

Figure 12-18. Syntax Diagram for Defining a Numeric Variable
effects
This command puts the NAME and the value of ITEM 1in the

Debugger's symbol table.

Changing a Numeric Variable

Syntax

The syntax for this command is given in Figure 12-19.

Figure 12-19. Syntax Diagram for Changing a Numeric Variable

gEffects

This command removes from the Debugger symbol table the value
originally associated with NAME, and replaces it with the value
of ITEM.

12-39

DEBUGGER

Deleting a Numeric Variable --- The Z Command

Syntax

The syntax for the Z command is given in Figu

Figure 12-20. Syntax Diagram for Deleting

Effects

re 12-20.

a Numeric Variable

This command removes the NAME and associated value from the

Debugger's symbol table.

Viewing Numeric Variables --- The L Command

Syntax

The syntax for the L command is given in Figu

Figure 12-21. Syntax Diagram for Viewing

Effects

re 12-21.

Numeric Variables

The L command causes all numeric variable names and their
associated values to be 1listed. If only NAME 1is specified,

only one pair is listed. In either case,
per line in the format

NAME =x X X X

where xxxx is the associated value.

12-40

one pair is listed

TN

v i

APPENDIX A. RMX/86 DATA TYPES

The following are the data types that are recognized by the
RMX/86 QOperating System:

BYTE -

WORD -

INTEGER-

OFFSET -

TOKEN -

POINTER-

STRING -

An unsigned, one byte, binary number.

An unsigned, two byte, binary number.

A signed, two byte, binary number that is stored
in two's complement form.

A word whose value represents the distance from
the base of a segment.

A word whose value identifies an object.

Two words containing the base of a segment and an
offset, in the reverse order.

A sequence of consecutive bytes. The first byte
cciitains the number (not to exceed 12) of bytes
that follow it in the string.

APPENDIX B. RMX/86 TYPE CODES

Each RMX/86 object type is known within RMX/86 systems by
means of a numeric code. For each code, there 1is a
mnemonic name that can be substituted for the code. The
following lists the types with their codes and associated
mnemonics.

OBJECT TYPE INTERNAL MNEMONIC NUMERIC CODE
Job T$308B 1
Task T$TASK 2
Mailbox T$MAILBOX 3
Semaphore T$SEMAPHORE 4
Segment T$SEGMENT 6

INDEX

allocation of memory 6-1, 6-2
asleep state 2-2, 4-1
asleep-suspended state 2-2, 4-1
baud rate 11-5
breakpoint 12-7

exception 12-7, 12-9

.exchange 12-7, 12-8

execution 12-7, 12-8
breakpoint list 12-7, 12-17
breakpoint request 12-8
breakpoint state 12-8
breakpoint task 12-10, 12-18, 12-19, 12-21
breakpoint variable 12-8
carriage return character 11-2, 11-4, 12-3
CATALOG$OBJECT 4-3, 7-1, 7-2, 10-5
child job 3-1, 6-3
Command Dictionary 10-2
communication between tasks 5-1
condition code 8-1, 8-3
constant in Debugger 12-5
control-C command 11-2, 11-5
control-D command 12-2
control-0 command 11-2, 11-5
control-Q command 11-2, 11-5, 12-3
control-R command 11-2, 11-3
control-S command 11-2, 11-4, 12-3
control-X command 11-2, 11-3
control-Z command 11-2, 11-4
CREATE$JOB 3-3, 3-4, 10-7
CREATE$MAILBOX 5-2, 10-13
CREATE$SEGMENT 6-1, 6-6, 10-14
CREATE$SEMAPHORE 5-4, 10-15
CREATE$TASK 4-4, 10-17
current address 12-23
current display mode 12-22
current line 11-2, 12-3
current offset 12-23
current segment base 12-23
data types A-1
deadlock 6-4
Debugger 1-1, 12-1

as exception handler 8-2, 10-49, 12-2

constant 12-5

exiting 12-38

expression 12-5

invoking 12-2

item 12-6

name 12-5

symbolic names 12-38

syntax 12-4

Index-1

DELETE$JOB 3-3, 3-4, 9-3, 10-21
DELETE$MAILBOX 5-2, 10-22
DELETE$SEGMENT 6-2, 6-6, 10-23
DELETE$SEMAPHORE 5-4, 10-24
DELETE$TASK 4-4, 9-3, 10-25
destination field 12-28
DISABLE 9-2, 9-9, 10-26
disabling interrupts 9-2, 9-9
ENABLE 9-2, 9-9, 10-27
enabling interrupts 9-2, 9-9, 10-27
environmental condition 8-1,8-3

, 10-26

escape (ESC) character 11-2, 11-4, 12-3

exception handler 2-5, 4-4, 8-1, 8-2, 10-29,

exception mode 4-4, 8-2

exceptional conditions 2-5, 8-1, 8-3
programmer error 2-5, 8-1, 8-3
environmental condition 2-5, 8-1, 8-3

exchange 5-1

mailbox 5-1

semaphore 5-3
execution state 2-2, 4-1

asleep 2-2, 4-1

asleep-suspended 2-2, 4-1

ready 2-2, 4-2

running 2-2, 4-2

suspended 2-2, 4-1

transitions between states 4-2
EXITSINTERRUPT 9-3, 9-9, 10-28
expression in Debugger 12-5
GET$EXCEPTION$HANDLER 8-4, 10-29
GET$LEVEL 9-3, 9-9, 10-31
GET$POOL$ATTRIBUTES 6-2, 6-6, 10-32
GET$PRIORITY 4-5, 10-34
GET$SIZE 6-6, 10-35
GET$TASKSTOKENS 3-3, 4-5, 7-2, 10-36
GET$TYPE 7-1,7-2, 10-37
ICE-86 In-circuit Emulator 12-1
input request mailbox 11-6

input request message 11-7, 11-8, 11-9

interrupt 9-1
handler 2-5, 9-3,
level 9-1, 9-2, 9
task 9-3, 9-4, 9-
vector 9-1
vector table 9-1

invoking the Debugger 12-2

I/0 System 2-1, 11-1

iSBC 86/12A Monitor 12-1

item in Debugger 12-6

job 2-1, 2-3, 3-1, 10-7, 10-20, 10-40
child 3-1
memory pool 3-1, 3-2,
object directory 2-4,
object limit 3-1

9.7, 9-8, 10-28,
5, 9-9, 10-26, 10
o

8, 9-9, 10-51, 10-

6-1, 6-2, 6-3
3.1, 7-1

Index-2

10-45,
-27
59

10-49

10-51,

10-55,

10-59

parameter object 3-3, 4-5
. parent 3-1
, pool size 3-3, 6-1, 6-2
~ task limit 3-1
tree 2-3, 3-1
level 9-1, 9-2, 9-5,
level 7 interrupts 9-
line feed character 1
1

9, 10-26, 10-27, 10-31

2, 11-4, 12-3

, 7-2, 10-38

, 10-13, 10-22, 10-41, 10-47

, 6-1, 10-14, 10-23, 10-32, 10-35, 10-54
3, 10-14, 10-23

9-
6
1-

LOOKUP$OBJIECT 4-2, 7-1

mailbox 2-1, 2-4, 5-

memory 2-4, 3-1, 3-3

allocating 2-4, 6-
available 6-2
borrowing 3-3, 6-2, 10-14
deadlock 6-4

maximum pool size 6-2
minimum pool size 6-2, 10-54

mutual exclusion 2-4, 5-3

name in Debugger 12-5

normal character 11-1, 11-2

normal mode 11-4

Nucleus 1-1, 2-1

object 2-1, 7-1, 10-5, 10-37, 10-38, 10-58
job 2-1, 2-3, 3-1
mailbox 2-1, 2-4, 5-1
segment 2-1, 2-4, 6-1
semaphore 2-1, 2-4, 5-3

task 2-1, 2-2
object directory 2-4, 3-1, 3-3, 7-1, 10-5, 10-37, 10-38, 10-58
object queue 5-1
object type 2-1, 7-1
OFFSPRING 3-3, 3-4, 10-40
output request mailbox 11-6
output request message 11-7
cutput-only Terminal Handler 11-1
parameter object 3-3, 10-7, 10-36
parent job 3-1
priority 2-2, 4-1, 4-2, 5-2, 5-3, 9-2, 9-5
programmer error 8-1, 8-3
queue 5-1, 5-2, 5-3
first-in-first-out 5-1, 5-2, 5-3
priority 5-1, 5-2, 5-3
queueing mode 11-4
ready state 2-2, 4-2

RECEIVE$MESSAGE 4-2, 5-2, 10-41
RECEIVE$UNITS 4-2, 5-3, 10-43
request message 11-7
RESET$INTERRUPT 9-3, 9-9, 10-45
RESUME$TASK 4-4, 4- 10-46

m 1-1

’

5,
RMX/86 Operating Syste

4-5, 7-2, 10-36

root job 2-3, 3-1,
RQNORMIN 11-6, 11-10
RQNORMOUT 11-6, 11-7
RQRATE 11-5

Index-3

RQ$ABORTSHAP 11-5
rubout 11-2, 11-3

running state 2-2, 4-2
segment 2-1, 2-4, 6-1, 10-14, 10-23, 10-32, 10-35, 10-54
semaphore 2-1, 2-4, 5-3, 10-15, 10-24, 10-43, 10-48
semaphore limit 5-3, 10-15
SEND$MESSAGE 4-3, 5-2, 10-47
SEND$UNITS 4-3, 5-3, 10-48
SET$EXCEPTION$HANDLER 8-2, 8-4, 10-49
SET$INTERRUPT 9-3, 9-4, 9-9, 10-51
SET$POOLSMINIMUM 6-2, 6-6, 10-54
SIGNAL$INTERRUPT 9-3, 9-4, 9-9, 10-55
SLEEP 4-5, 10-56
special character 11-1, 11-2
suppression mode 11-4
SUSPEND$TASK 4-3, 4-4, 10-57
suspended state 2-2, 4-1
suspension depth 4-1
symbolic names for debugging 12-38
synchronization 5-1, 5-3
syntax in Debugger commands 12-4
system call 2-1
system clock 9-2
system exception handler 8-2
task 2-1, 2-2, 4-1, 10-17, 10-25, 10-34, 10-36, 10-46, 10-56,
10-57
arbitration algorithm 2-2, 4-2
exception handler 2-5, 4-4
interrupt 9-3, 9-4, 9-8
limit 3-1
Nucleus' view 2-2
priority 2-2, 4-1, 4-2, 5-2, 5-3, 9-2, 9-5, 10-34

states 4-1, 4-2
suspension depth 4-1
task queue 5-2, 5-3
Terminal Handler 1-1, 11-1
token 2-1, 6-1
tree of jobs 2-3

type 2-1, 7-1, A-1, B-1

type code 7-1, B-1

UNCATALOG$OBJECT 7-1, 7-2, 10-58
WAIT$INTERRUPT 9-3. 9-4, 9-9, 10-59

Index-4

s

AN

* %k

/“\

RMX/86 Nucleus, Terminal Handler,
and Debugger Reference Manual
9803122-01

REQUEST FOR READER’'S COMMENTS

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets
you participate directly in the documentation process.
Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this

% d?cument.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? [s it at the right level? What other types of documents are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

~ 5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME DATE
TITLE

COMPANY NAME/DEPARTMENT

ADDRESS

CITY STATE_______ ZIP CODE

Please check here if you require a written reply. O

WE'D LIKE YOUR COMMENTS . ..

This document is one of aseries describing Intel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsnble
person. All comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL

FIRST CLASS PERMITNO.1040 SANTA CLARA,CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation

Attn: Technical Publications
3065 Bowers Avenue '
Santa Clara, CA 95051

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES |

(It

