APPLICATION AP-60
NOTE

November 1979

Closed Loop Control
Using the iSBC 569/941
Intelligent Digital
Processors

Contents
INTRODUCTION 3-63
Reasons for Intelligent Boards......... 3-63
The On-Board Slave Concept 3-63
II. BASIC UNIVERSAL PERIPHERAL
INTERFACE DISCUSSIONS 3-64
Hardware Features 3-64
Software Interface................... 3-64
Standard Universal Peripheral
Controllerscovvvven... 3-65
Industrial Digital Processor 3-66
III. FUNCTIONS OF THE
INTELLIGENT DIGITAL
CONTROLLERccoevvunnns 3-66
Input/Output Functions.............. 3-66
IV. APPLICATION EXAMPILE 3-67
Mechanical Specifications 3-69
Interface Requirements............... 3-70
Weightbelt Weight................. 3-70
Weightbelt Motor Control 3-71
Weightbelt Speed Measurement 3-72
Liquid Flow Control 3-72
Liquid Flow Measurement 3-73
Operator Interface................. 3-74
Interface Summary 3-74
V. HARDWARE CONFIGURATION....3-74
Controller Interface 3-75
VI. SOFTWARE CONFIGURATION..... 3-79
High Level Programming Languages . . .3-80
Fundamental Support Packages 3-80
Host/Slave Relationship.............. 3-80
RMX/80 BASIC-80 Interpreter........ 3-81
Software Taskscu... 3-81
VII. SOFTWARE DRIVERS.............. 3-81
Motor Speed Control Processor 3-81
Weight Input Processor 3-85
Stepper Motor Control Processor 3-87
VIII. APPLICATION SOFTWARE 3-90
Initialization Programs 3-90
Control Algorithm Programs. 391
Master Processoro.... 391
IX. CONCLUSION.......coivvvivnvnnnn 392

APPENDIX A.......coiiiiiiiiiiiinnnn, 3-95

I. INTRODUCTION

The utilization of computers to provide control or
monitoring functions for industrial processes
frequently results in complex computer systems.
Distributing the control and processing intelli-
gence throughout the control network reduces
significantly the complexity of the system while
increasing the reliability. The physical areas
being controlled or monitored by each portion of
the distributed system will generally consist of a
relatively small number of I/0 functions which
are related by some control algorithm.

The Intel iSBC 569 Intelligent Digital Controller
(IDC) and the iSBC 941 Industrial Digital
Processor (IDP) are a part of the expanding line of
Intel products which are oriented toward filling
the requirements of these systems. This applica-
tion note deals with the use of these devices to
provide control of a closed loop system using a
version of the PID control algorithm.

It is assumed that the reader is familiar with the
basic concepts required to generate software and
has had some experience with using a computer.
This application note will then guide the reader
through a typical application, explaining in detail
the decisions which must be made in order to
effectively utilize a microcomputer to provide a
control solution.

The application which has been chosen is
considered to be typical of the type which lends
itself to control. The mechanical aspects of the
application will be explained so that the user not
familiar with the particular machinery will be able
to understand the development. It will be seen
that the techniques used will apply to any other
specific application.

The emphasis of the note will be on the use and
implementation of the bhardware and software
features of the digital processor and controller.
The actual PID control algorithm will not be
developed in this application note.

Reasons for Intelligent Boards

The advent of microcomputers and the resulting
trend toward utilizing these devices to control
processes has resulted in many cases where the
overall system performance has deteriorated
because of the demands placed on the processor.

3-63

In these applications, the computer has become
overburdened with control algorithms, alarm
detection, communications, and the many other
tasks required of it. The processor can be inter-
rupted by time dependent tasks to the point where
other processing tasks can not be completed.

Presently, Intel provides two I/0 expansion
boards which are capable of handling portions of
the processing load which formally required
processor time. These two devices are the iSBC
544 Intelligent Communications Controller and
the iSBC 569 Intelligent Digital Controller. Tasks
which involve communications or parallel digital
170 can now be offloaded without requiring
valuable processor time. These boards can issue
interrupts to the master or host processor if
interaction with other processes or devices is
required. This technique greatly increases system
throughput by offloading the other bus master
processors and by minimizing traffic on the
Multibus system bus.

In some cases, it will be found that the intelligent
controller can function to control the process in a
stand-alone environment, providing a more
functional, low cost control system.

The concept of offloading the processor of its
input/output tasks can be developed on the iSBC
569 controller through the use of slave processors
which may be installed on the board to assist the
host. The result is the ability to provide up to four
processors on a single intelligent slave I/0 board
by using the concept of slave processors.

The On-Board Slave Concept

The utilization of the iSBC 569 controller is
enhanced through the use of On Board Slave
processors (OBS). These devices distribute the
system intelligence and offload the processor on
the intelligent controller. They can provide
custom digital interfaces with the various devices
which may be connected to the I/0 ports of the
controller. The OBS device allows a designer to
fully specify his control/interface algorithm in the
peripheral chip without relying on the master
processor. Three types of OBS compatible devices
are available from Intel. These are: 1) Industrial
Processors, 2) Standard UPI devices, and 3) UPI
8741A for custom applications. By combining the

devices in various combinations, optimum solu-
tions can be generated for different control
applications.

Before proceeding, we should cover the general
characteristics of the OBS devices available for
use in conjunction with the iSBC 569 controller. It
will be seen that careful selection of the proper I/0
controller chip can reduce significantly the design
effort required to provide a control solution.

I1. BASIC UNIVERSAL PERIPHERAL
INTERFACE DISCUSSION

With the introduction of the Universal Peripheral
Interface, Intel has expanded the intelligent
peripheral concept by providing an intelligent
controller that is fully user programmable. The
8741A is a complete single-chip microcomputer
which connects directly to a master processor data
bus. '

To fully understand the techniques used by the
UPI 8741A devices, we must have a general
knowledge of their characteristics. Only then will
we feel comfortable in implementing a design
which uses the components.

Hardware Features

Each Universal Peripheral Interface has 1K bytes
of program storage plus 64 bytes of RAM memory
for data storage. It has a powerful, 8-bit CPU with
a 2.5 usec cycle time and two interrupts. Over 90
instructions are provided in its instruction
set. Most instructions are single byte and single
cycle and none are more than two bytes long.
These instructions are optimized for bit manipula-
tion and I/0 operations. Special instructions are
included to allow binary or BCD arithmetic
operations, table lookup routines, loop counters,
and N-way branch routines.

The chip’s 8-bit interval timer/event counter can
be used to generate complex timing sequences for
control applications or it can count external events

such as switch closures and position encoder

pulses. Software timing loops can be simplified or
eliminated by the interval timer. If enabled, an
interrupt to the CPU can occur when the timer
overflows.

Two 8-bit bidirectional I/0 ports are included
which are TTL compatible. Each of the 16 port

3-64

lines can individually function as either input or
output under software control.

The UPI microcomputer is fully supported with
development tools. The combination of device
features and Intel development support make the
8741A an ideal component for low-speed periph-
eral control applications.

Software Interface

The OBS communicates with the processor on the
host board by means of data transfers between its
registers and the host board’s data bus. A
communication protocol has been defined which
provides a set of rules by which the processors may
interact with each other. Two types of software
protocol are currently defined. These are the
“simple” and the “extended’” protocol. Before
attempting to utilize the OBS devices in an
application, the concepts used for the communica-
tions must be fully understood.

When used on one of Intel’s single board compu-
ters, the communication path is by means of the
I/0 ports on the host board. This means that two
port addresses, an odd and an even location, are
assigned to each OBS device. The even numbered
port is used to transfer ‘“‘data’ between the
processors. The odd numbered portis used to write
commands into the OBS and to read its status.
Each transfer between the host and the slave
device consists of the movement of eight bits of
information.

Four of the eight bits available in the status
message have been given predefined functions.
The bit will be set (logical 1) when the correspond-
ing condition exists within the OBS device and
will be reset (logical 0) when the condition does not
exist. The functions of the four bits are:

Bit-0. Output Buffer Full (OBF).
This bit indicates that the OBS has placed
information into the transfer register and
that the information is available to the host
processor. It can be read by performing an
input operation from the even numbered port
assigned to the particular OBS. When the
data has been read, the bit will automatically
be reset to indicate that no data is available.
As we will see, this is one of the key features
enabling efficient utilization of the host/

slave relationships on single board compu-
ters.

Bit-1. Input Buffer Full (IBF).

This bit is used to indicate that data has been
placed into the input transfer register by the
host device and that it has not yet been read
by the slave. Data is transferred into the
input register by means of the host perform-
ing an output to the even numbered port of the
OBS. The bit will be reset when the device
reads the data from the input transfer
register into its accumulator. Data should
only be output to the OBS when the IBF bit is
reset!

Bit-2. FO Flag.

Unlike the IBF and the OBF bits which are
controlled by hardware, the F0 bit is control-
led by the device software. The normal
function of the flag is to provide a lockout to
prevent the host from sending more data
until the previous data has been processed or
the operation is complete.

Bit-3. F1 is the Command/Data Flag.

It is automatically set when the host sends
either a command (odd numbered port) or
data (even numbered port). A logical 1
indicates that a command has been sent and
a logical 0 indicates that data has been
sent. This bit may also be cleared or toggled
by the UPI software.

These bits will provide normal communications
between the master and slave processors.

Figure 1 shows the sequence of operations which
can be used by the host processor to establish
communications with an OBS using the simple
protocol. In Figure 1a, we see that all operations
are initiated by the host. It will first verify thatthe
IBF flag indicates that the input register is empty
and available for receiving a command. The
command is then sent to the odd numbered
port. This command will inform the OBS thatisto
perform some task. The task may involve a
requirement for more information to be sent to the
controller and it may involve the controller
returning some data to the host. Figure 1b shows
the operations required for receiving data from the
OBS. :

3-65

1

DONE DONE

HOST TO SLAVE SLAVE TO HOST

Figure 1. Simple Protocol

With these ideas in mind, we can move to a
discussion of representative versions of the
devices available for use on the IDC boards. We
will then look at a typical application to see how
they can actually be applied to solve a problem.

Standard Universal Peripheral Controllers

Intel presently manufactures three UPI control-
lers for non-industrial applications. These are:

1. 8278 Programmable Keyboard Interface
2. 8294 Data Encryption Unit
3. 8295 Dot Matrix Printer Controller

These devices offer an “off the shelf’ solution to
many applications which might be encountered.

The Intel 8278 is a general purpose programmable
keyboard and display interface device. The
keyboard portion can provide a scanned interface
to 128-key contact or capacitive-coupled key-
boards. The keys are fully debounced with N-key
rollover and programmable error generation on
multiple new key closures. Keyboard entries are
stored in an 8-character FIF0 with overrun status
indication when more than 8-characters have been
entered. Key entries set an interrupt request
output to the master CPU. The display portion of
the 8278 provides a scanned display interface for
LED, incandescent, and other popular display
technologies. Both numeric displays and simple
indicators may be used. The 8278 has a 16 x 4

display RAM which can be loaded or interrogated
by the CPU. Both right entry calculator and left
entry typewriter display formats are possible.
Read and write of the display RAM can be done
with auto-increment of the display RAM address.

The Intel 8294 Data Encryption Unitis designed to
encode and decode 64-bit blocks of data using the
algorithm specified in the Federal Information
Processing Data Encryption Standard. The DEU
operates on 64-bit test words using a 56-bit user
specified key to produce 64-bit cipher words. The
operation is reversible; if the cipher word is
operated upon, the original test word is produced.
Because the 8294 is compatible with the NBS
encryption standard, it can be used in a variety of
electronic funds transfer applications as well as
other electronic banking and data handling
applications where data must be encrypted.

Finally, the Intel 8295 Dot Matrix Printer
Controller provides an interface to the LRC 7040
Series dot matrix impact printers. It may also be
used as an interface to other similar printers. The
chipmay beused in a serial or parallel communica-
tion mode with the host processor. Furthermore, it
provides internal buffering of up to 40 characters
and contains a 7 x 7 matrix character generator
which accommodates 64 ASCII characters.

Industrial Digital Processor

Intel produces the iSBC 941 Industrial Digital
Processor (IDP) which is programmed to handle
an assortment of typical industrial digital
interfaces and transducers. The controller can
function to provide any of the following:
1.
2.
3.

Scan up to 16 inputs for a change of state.
Provide up to 8 gated one-shot outputs.
Provide eight gated outputs with program-
mable pulse widths and periods.

Provide monitoring of up to 8 input lines for
event sensing or as a programmable divider.
Provide the period measurement of up to
eight inputs.

Provide a frequency to count conversion of
one input.

Provide for the control of a stepper motor
having up to eight phases.

Provide a simplex asynchronous serial
input.

3-66

9. Provide a simplex asynchronous serial
output.

In addition to providing one of the above
functions, the IDP can also handle simple parallel
1/0 through the unused port inputs or outputs.

III. FUNCTIONS OF THE INTELLIGENT
DIGITAL CONTROLLER

The iSBC 569 Intelligent Digital Controller (IDC)
is a versatile digital I/0 processor. The IDC is
designed to operate in a system using any one of
the following three modes:

1. Intelligent Slave
2. Stand-alone System
3. Limited Bus Master

Additional power is obtained by the utilization of
three OBS’s to generate up to 48 parallel input/
output data lines.

In the intelligent slave mode, the controller’s RAM
is shared between the on-board 8085A and the
Multibus users via a dual-port controller. Thus, a
single bus master can control several intelligent
slaves using the dual-port RAM as the major
communications path. Switches are provided on
the board to allow the user to reserve 1K bytes of
RAM for use by the 569’s processor only. This
reserved memory is not accessible via the Multibus
system interface and does not occupy any bus
address space.

In the stand-alone mode, the entire system can
consist of a single IDC, with cables, power supply
and enclosure. An IDC can be installed at a
remote site as a completely autonomous system.

The IDC may also be operated as a limited bus
master when it is the only bus master in the
system. Expansion memory and I/0 boards may
be connected to the IDC via the Multibus system
bus to increase the input/output capabilities. This
mode could be used to configure one IDC as a bus
master with additional IDC’s as intelligent
slaves. This mode is not available with any other
bus masters such as iSBC single board computers,
disk controllers, or DMA devices.

Input/Output Functions

The I/0 interface between the iISBC 569 Intelligent
Digital Controller and the external devices to

L

||

Iy

| |

— |
TTL INTERFACE L TTL INTERFACE —I l l I TTL INTERFACE
I I 1 I
B8041A/8741A 8041A/8741A 8041A/8741A
upl uPI uPI
SOD sID
|—» TO J3
8253-5 8250A
PROGRAMMABLE PROGRAMMABLE 16K
INTERVAL CcLOCK INTERRUPT ROM/PROM
TIMER CIRCUITS CONTROLLER
DUAL
2K RAM <:> PORT aggssx
CONTROL

MULTIBUS SYSTEM BUS

e

Figure 2. IDC Functional Block Diagram

which it is to be connected normally consists of
various OBS devices. Each of these slaves hasthe
ability to provide sixteen individual input and/or
output lines. In addition, each provides two
specialized input lines. The IDC is designed to
accommodate up to three slave devices, so the
normal I/0 configuration of the board will consist
of 48 digital data lines. If the specialized lines are
considered, this number could be raised to
54. Sockets are provided for the insertion of
drivers or terminators for use on the 48 digital
lines. The 6 special purpose lines can only be used
as inputs and are provided with pull-up resistors to
terminate the input signals.

The driver/termination socket configuration
limits the grouping of the I/0 lines to be in groups
of four. Any slave dataline being used for an input
must have its output latch placed into a logical 1
state so as to allow the input line to be controlled
by the external signal.

3-67

IV. APPLICATION EXAMPLE

An example of the iSBC 569 controller in an
application will help to explain the techniques
used to implement a control system and to
interface between the various functional units.
The application chosen will consist of atypical use
but will be simple enough to allow the design
operations to be easily followed.

Suppose we choose to design a control system
which will be produced as a subsystem to interface
with and control a liquid applicator. As we go
through the steps required to design and imple-
ment such a control system, we will see how the
various hardware and software tools which are
available from Intel can be utilized to allow easy
implementation of the task.

Before proceeding, we will spend some time to
insure there is a clear understanding about the
definition of the liquid applicator. When this
definition is complete, the design of the control
subsystem can begin.

A liquid applicator consists of two functional
parts: a device to control the flow of a solid
material, and a device to control the flow of a liquid
onto the material. We will actually be controlling
two continuous process loops which are related by
an input parameter which specifies the percentage
of liquid to be applied to the dry material.

Figure 3 shows the components making up a
typical weighbelt feeder. The operation of the
feeder is straightforward. The vertical gate is
adjusted manually to provide a desired gap
between the conveyor belt and the lower portion of
the gate. This will result in a nearly level
distribution of material on the belt when it is
moving. The weighbelt is connected to a load cell
to provide information back to the control system
giving the amount of weight on the belt at any
instant. If we know the speed of the conveyor, itis
simple to compute the amount of material flowing
through the feeder during any time period. This

flow rate is known as the Mass Flow and is usually
expressed as pounds per minute. The control of
the feeder system can be provided by varying the
belt speed until the desired flow rate has been
obtained.

Our control system will be designed to control the
belt speed and to monitor the weighbelt weight and
any other parameters which we determine will be
necessary to control the flow of material. A typical
control process will require an optimum flow rate
be established for each material of a different
density. With a known material flow through the
feeder, we can go about the process of applying the
liquid flow to the material in order to complete our
application example.

The second loop of the example will involve adding
the liquid to the material coming from the feeder
mechanism described above. Normally, the
percentage of material to be applied is fixed by the

VERTICAL
GATE

FLEXURES

WEIGHBELT

Figure 3. A Weighbelt Feeder

3-68

formula or mix design of the product which we are
manufacturing. However, since the flow rate
through the weighbelt feeder can and does vary
(our first control loop will not always be able to
exactly control the flow due to many conditions
beyond our control), the liquid setpoint will
constantly be changing as a function of the actual
mass flow and the liquid percentage.

Figure 4 shows the liquid application piping
diagram for the liquid portion of the control
system. The items with which we will be directly
concerned are the liquid flow meter and the control
valve. The other components, while requiring
consideration in an actual implementation, will be
ignored in this aplication note for the sake of
clarity. Let us consider the details of each control
loop in more depth before we attempt to design the
control system.

Mechanical Specifications

In subsequent portions involving development of
the control system, we will be constantly referring
to data regarding the mechanical specifications of
the liquid applicator system. Therefore, we will

establish a set of theoretical technical specifica-
tions for our system. Later, we will see how close
the control system can come to providing a control
which meets or exceeds these parameters. These
specifications will be broken down into two sets of
-data, one for physical parameters over which we
have no control, and a second for the desired
control characteristics.

The physical data provides information on the
mechanical design and will be used for guidelines
in selecting interface equipment and in preparing
software algorithms. The physical data is:

Operating Belt Speed —
1.1 to 180 feet per minute. Adjusted by a
variable speed motor directly coupled to the
belt pulley mechanism.

Feed Output Rates —
Adjustable over a 10:1 range with a maxi-
mum output of 960 pounds per minute.
Feeder Belt Characteristics —
The belt will be 9 inches wide by 2 feet in
length when installed. The belt pulley rollers
will have a radius of 4.5 inches.

VALVE
THREE-WAY

>

FLOW
FLOW CONTROL
METER g VALVE

FROM
WEIGHBELT
FEEDER

MIXERS

OOk

AUXILIARY

MAIN r
STRAINER STRAINER

)

LiQuiD
SUPPLY

TANK STRAINER

PRESSURE RELIEF
VALVE

CHECK
VALVE

@_L

Figure 4. Liquid Flow Diagram

3-69

Feeder Weight Sensor —
The weighbelt feeder will incorporate a strain
gauge load cell to measure the weight on the
belt. Its linearity shall provide 0.1% of full
- scale range.

Liquid Flow Rates —
The liquid flow rates shall vary between 10.0
and 120.0 pounds per minute.

The desired operating characteristics of our
control system will provide the following general
responses:

Feeder Accuracy — -
1% of full scale over a 10:1 range. The feeder
will maintain the set feed rate within 1% of
full scale over any one minute period. The
minimum sample must be at least one pound.

Liquid Accuracy —
1% of full scale over the operating range.
Must be able to track mass flow variations
within the above limits.

These specifications will provide guidelines for
the decisions which we will later make in
providing a micro-computer control solution to the
weighbelt feeder application.

Interface Requirements

A logical place to begin the consideration of the
control system design is to examine the interface
requirements and define the characteristics of the
interfaces which will be required to implement the
control. We will consider each element of the
physical system separately.

Weighbelt Weight

The weighbelt weight will be sensed using a lever
system connected to a load cell integral to the
mechanical unit. The output of a strain gauge
load cell is a low level (approximately 20 millivolts
at full scale) analog output. Obviously, this signal
must be somehow converted into a digital level
before we can use its information to compute the
actual mass flow across our weighbelt feeder. Our
design process must define the characteristics of
the digital signal so that the appropriate analog to
digital converter system can be chosen. The
design path can take any of several equally valid
approaches, any of which will provide a func-
tional control system. For the purposes of this

application note, we will assume that the design
path will utilize the Intel iISBC 569 Intelligent
Digital Processor.

This assumption requires us to utilize only signals
which can be generated or interpreted using the
computer board and its associated OBS’s. We will
not be capable of handling an analog signal.
Since some type of signal conditioning would be
required of the low level analog voltage anyway,
this does not impose any serious restrictions on
our design. Indeed, it will cause us to consider a
technique which provides excellent noise rejection
characteristics. We will assume that a voltage to
frequency converter (V/F) will be installed near
the load cell and the frequency will then be
transmited over a pair of wires to our digital
interface. Commercially available converters
provide a frequency output which varies between 0
and 10 kilohertz. With this in mind, we can
continue with the development of the interfaces
required in the application.

The load cell transducer will incorporate a local
unit which generates a pulse train whose fre-
quency is proportional to the weight upon theload
cell. This mechanical arrangement is typical of
many gravimetric feeder systems in use today.

For purposes of this application, it will be assumed
that the system will be calibrated such that a
weight of 10.00 pounds on the weighbelt will
produce a pulse train frequency of 10 khz. No
weight on the belt will generate a frequency of less
than 30 hertz. The accuracy of the pulse output
will be guaranteed to be proportional to the weight
within 0.05%. Again, this is typical of devices
available and in general use in similar applica-
tions.

The characteristics we have described above fall
within the performance range of the iSBC 941
processor when operated in its frequency to count
mode. If we assume a sample rate of 200 msec
(this value should provide an adequate control
characteristic since it is unlikely that the
mechanical equipment can respond rapidly
enough to warrant a faster control and sample
time), the frequency count read by the iSBC 941
counter will range between 6 and 2000. System
accuracy of reading the belt weight will thus
exceed 0.1% of the full scale weight reading.

3-70

We will discuss the electrical and programming
interfaces in subsequent sections of the applica-
tion note.

Weighbelt Motor Control

The flow on the weighbelt will be controlled by
changing the speed of the belt movement. Since
the weighbelt is mechanically designed to main-
tain a constant bed level, the amount of material
flowing will thus be adjusted.

The belt speed has traditionally been adjusted
using either SCR controllers or by using variable
transmissions between the motor and the con-
veyor belt. The increased utilization and develop-
ment of stepper motors is leading toward greater
use of direct stepper motor drives. Thisis the mode
which will be utilized for this application.

The manufacturer’s specifications for the weigh-
belt indicate that the following requirements exist
for driving the device:

REQUIRED TORQUE — 149 LB-IN-IN
REQUIRED MAX SPEED — 2.54 REV/SEC.

Referring to typical manufacturer specification
sheets for stepper motors, we find the torque vs.
speed characteristics shown in Figure 5. Our
application requires 2.54 revolutions/sec which
translates to 508 steps per second when the
stepper is used in a 1.8 degree per step mode. We
can see that the requirements fall well within the
capabilities of the particular motor.

o
S
1=

@
]
=)

13
5
o

TORQUE 0Z-IN
>
o

@
15

o

100 200 300 400 500 600 700

SPEED (STEPS PER SEC)

Figure 5. Stepper Motor Torque/Speed

3-71

At this point, we have four routes which may be
pursued to actually interface with the motor. These
are:

1. Utilize the iSBC 941 stepper mode to drive
the stepper motor directly.

2. Utilize the iSBC 941 frequency generation
mode to drive a standard stepper translator.

3. Utilize parallel outputs to provide a digital
output to a stepper translater.

4. Utilize a 4-20 ma. current signal to a stepper

translator.

Three of the above modes use a translator to drive
the motor. If possible, we should strive to
eliminate the cost of this intermediate device.

Again, we will refer to the published motor
specification sheets. For our typical motor, the
data is shown in Figure 6. The requirement for
providing in excess of six amperes per winding
exceeds the capabilities of the output drivers
which can be installed on the iCS 930 termination
board. We will be forced to either design a custom
high power driver board or to use a translator
module. To keep the application as simple as
possible, we will choose the latter.

ELECTRICAL RATINGS 1.8 DEGREE STEPPING MOTOR

Motor | Time for| DC | Amperes |Resistance|Inductance
Type |One Step|Volts|Per Winding] Ohms [Millihenries
Ourtype|1.7 msec| 2.3 6.1 0.37 24

Figure 6. Stepper Electrical Ratings

We have three choices left when the decision has
been made to use a translator module. Theuseofa
current output mode will necessitate the use of an
external analog board. This is undesirable, both
from the standpoint of interboard communication
requirements, and from a cost effective basis.

The use of a parallel output would commit many of
our output data ports and would require the
installation of UPI modules or iSBC 941 modules
to get the parallel output drivers. In addition,
parallel digital input is not a common option of
commercially available translators.

This leaves us with the use of a variable frequency
output to provide stepping information to the
translator module. This is a normal operational
mode of the iSBC 941 processor and the required
508 hertz is within the normal output range of the
device.

A definite advantage of our decision to use a
stepper motor drive for the weighbelt is that we do
not have to maintain accurate feedback and
control algorithms to maintain the conveyor
speed. Only a simple check need be made to verify
that the conveyor has not stalled. The stepper
motor will inherently maintain a speed propor-
tional to the frequency rate.

The actual electrical and programming interfaces
will be discussed in subsequent sections of this
application note.

Weighbelt Speed Measurement

We have mentioned that a control system using a
stepper motor for speed control can operate
effectively in an open loop configuration. How-
ever, since a faulty component could result in
failure of the motor to run, we must verify that the
belt is indeed moving. Thisis easily accomplished
by adding a magnetic sensor to the weighbelt
rollers and counting the pulses generated as the
device operates.

Typical magnetic sensors and ring magnets for
installation on the weighbelt will provide us with
ten pulses per revolution of a belt pulley. Sincethe
pulley is operating at a maximum speed of 2.54
revolutions per second, we will receive between 0
and 25.4 counts per second. Using our sample
period of 200 milliseconds, this means that we will
count between 0 and 5 counts during each time
interval. Our decision to use a stepper control loop
rather than a conventional closed loop seems
justified as we would obtain rather poor control
with feedback having this poor of resolution.

We must make a decision to determine how the
speed will be sensed by the control board. An
obvious choice would be the use of an iSBC 941
processor operating in the period measurement
mode. This would require using our third socket
on the iSBC 569 host board and would leave us
without the ability to use an additional device to
support the liquid control loop. We should seek an
alternative solution.

The iSBC 569 controller board provides an 8253
programmable interval timer. A first approach
might be to attempt to configure one of these
counters to provide an event counting mode and
read the belt speed from the counter. However,
this is not possible since we would be required to
zero the counter after each reading and the
counter does not load the preset count until a clock
pulse is present. We would have no ability to
distinguish between no belt motion and the belt
motion which is the same as the previous reading!

An alternative approach is to create a software
counter by routing the belt movement pulse to one
of our interrupts and creating a program which
will increment a counter. Each time a count is
sensed, the software will increment a memory
location by an increment which corresponds to the
speed represented by one count.

Again, we will delay the discussion of the
electrical and programming interfaces until
subsequent sections of this application note.

Liquid Flow Control

The design of a control system to provide control
of flow through a liquid valveis an integral part of
the liquid pipe and plumbing design. To optimize
the system operation and provide a system at the
minimum cost, the integration of control and
mechanical design must be made.

Several possibilities exist when making a decision
as to which control valve to use in adjusting the
liquid flow rate. The actual selection of the
physical valve mechanism should be based upon
the characteristics of the liquid flow. This
decision is outside of the scope of this application
note and will not be pursued. However, the valve
actuator is a device which becomes an integral
part of the control system and its selection is a
function of the control system design.

Figure 7 shows the common control valve types
which are used to vary the flow rate of liquids.
The automatic control system we are designing
precludes the use of a manual valve, so we must
make our selection between the air actuated and
the motorized control valve.

Classical control design has utilized air actuated
valves almost exclusively. This type of actuator
incorporates an intermediate transducer to

3-72

PROPORTIONAL CONTROL VALVES
[1

AIR ACTUATED VALVES

AIR SUPPLY

FLOW

CONTROL
AIR

ELECTRIC
SIGNAL

P2
SUPPLY AIR

4-20 MA 0-10 KHZ

MANUAL

~ |
MOTORIZED VALVES

MOTOR

SYNCHRONOUS

STEPPER

Figure 7. Control Valve Family

convert the signal generated by the control system
into a variable air pressure. This air is used to
drive a pneumatic control actuator. Two types of
electrical to pneumatic transducers are in com-
mon use. The most prevalent converts a 4 to 20
milliampere control signal into a proportional air
signal. The second type will accept a 0 to 10 khz
pulse train and convert this to an air output.

Both of the above systems provide excellent
electrical noise immunity and give reliable
operation in industrial environments. They do,
however, have disadvantages. A supply of air
must be present at the control devices and this air
must be maintained such that it is free from water
and oil. In many cases, this presents costly
installation and maintenance considerations.
The use of computerized control systems hasled to
a recent concept of eliminating the intermediate
conversion and using instead a digitally control-
led actuator.

A stepper motor can be connected to the actuator

of the control valve to provide a simple and
economical control path. The control outputs
from the PID control loop can be sent to the iSBC
941 processor’s command queue and the controller
will handle the motor movements.

The electrical and programming interfaces of this
interface will be fully discussed in subsequent
sections.

Liquid Flow Measurement

The use of a liquid control valve to vary the liquid
flow cannot in itself provide an accurate control
loop. Because the flow rate through a fixed valve
will vary with material densities, temperatures,
and pressures, we must provide some type of
feedback into our control algorithm. Thus, a
flowmeter must be inserted into the liquid flow
and its output returned to the system.

The control system designer can choose from
several types of flow meters depending upon his
requirements. Figure 8 shows many of the more

MAGNETIC

OVAL FLOWMETER

TURBINE

WOBBLE METER

4-20 MA
0.5% ACCURACY

0-500 PPS
3% ACCURACY

30-1000 PPS PULSE
0.5 % ACCURACY

Figure 8. Flow Meter Classifications

3-73

standard classifications of flow meters. Our
selection of the meter must take into account the
type of electrical interface available from the
meters. In our attempt to maintain a digital
system which does not require additional support
boards, we will reject the use of a magnetic
flowmeter because this type of meter provides an
analog type of output which would require the
addition of another board into our control
system. The wobble meter provides a digital pulse
type output butits accuracy tends to discourage its
use in a refined control loop. We will utilize the
turbine meter for our liquid flow application.

The output of a turbine meter is a low voltage, low
current AC signal whose frequency is proportion-
al to the liquid flow rate. The manufacturers of
the meters provide pre-amplifiers which convert
the signal into 10 volt peak to peak square waves
which are equivalent in frequenacy to the AC
pulses. The operating frequency ranges typically
from 100 to 1200 pulses per second.

It is desirable to measure the flow rate using a
single iSBC 569 controller. If we consider that a
200 millisecond control interval will be used, the
flow will result in a reading of between 20 and 240
pulses per sample period. These readings could be
performed using an iSBC 941 processor, but we do
not have the socket available for a fourth module,
so we must consider utilizing another interrupt
driven software counter as was done with the belt
speed.

All control and monitoring equipment for our
liquid control application has now been defined in
such a manner as to be compatible with the
utilization of a single iSBC 569 controller
board. The actual interfaces to perform the
interconnections and to provide control instruc-
tions can soon be considered.

Operator Interface

Finally, we must define the data communications
which must take place between the controller,
other system tasks, and the operator. Let us first
consider the system control variables and the data
which, if generated by the control process, might
be useful to the remainder of the control system.

The first variable which comes to mind is the
liquid flow setpoint. If we consider the entire

3-74

control system, this parameter will be found to be
actually expressed as a percentage of the total
output material. For example, if we assume the
recipe required the final product to consist of 5%
liquid by weight, we would require that our control
system add the correct amount of liquid to perform
this task.

To allow maximum flexibility of the control
system, we should allow selection of various
density materials onto the weighbelt. A host
processor with computational capabilities can
calculate the optimum gravimetric feeder flow rate
for the materials being combined.

The control system can provide an integration
function to allow totalization of the amount of
material which has been transferred through the
system. A capability of outputting the amount of
material which has passed over the weighbelt and
the amount of liquid added will be included.

The implications of the parameter storage and
generation will be dealt with later when the
host/slave relationships of the iSBC 569 controller
are discussed.

Interface Summary

We have defined the required interfaces which will
be needed to perform our control task. These can
be grouped into external and internal interfaces.
The external interfaces are those which connect to
physical pieces of external equipment.

These are summarized in Figure 9. The internal
interface relates to the data which is to be passed
between the iSBC 569 Intelligent Slave board and
other boards which may be present on the
MULTIBUS system bus. These data areas are
shown in Figure 10.

V. HARDWARE CONFIGURATION

We have now defined the various components
which we will utilize on the controller board to
support the physical control and monitor hard-
ware. Our next task is to provide an interface
between the controllers and the equipment which
we are to control. In so doing, we will define the
hardware I/0 assignments for the iSBC 941
processors and for the counters which we will be
utilizing. The following paragraphs will deal
with the optimization of this configuration.

C e DEVIGE ***tttvtr +tes GIGNALTYPE®****** *++* BOARDELEMENT********
WEIGHBELT MOTOR 10 VDC PULSE iSBC 941
WEIGHBELT WEIGHT 10 VDC PULSE iSBC 941
WEIGHBELT SPEED 110 VAC PULSE 8259A INTERRUPT
LIQUID VALVE 5 VDC MULTIPHASE iSBC 941
LIQUID FLOW 10 VDC PULSE 8259A INTERRUPT
Figure 9. Control/Monitor Signals
“*rINPUTS »rrrrerrrsxssr st QUTPUTS **** perform some type of re-routing of data lines on

GRAVIMETRIC FLOW
LIQUID PERCENTAGE

ACCUMULATED SOLIDS
ACCUMULATED LIQUID

Figure 10. Communication Signals

Controller Interface

Good design practice dictates that we should
provide optical isolation between the controller
and the external equipment when designing for an
industrial environment. The optical isolation is
included if we utilize the Intel iCS series of signal
conditioning/termination boards. We find that
we have two types of digital termination panels
available, one for low current, low voltage
applications and second for higher current and
voltage uses. If we base our choice on the data
provided by Figure 8, we will lean toward using the
iCS 930 panel for our interface. This board can
handle a mixture of signal levels and will support
up to sixteen individual lines, providing almost
double our needs.

Even a cursory glance at the iSBC 569 controller
will provide the knowledge that three edge
connectors are utilized to bring the OBS signals
from the board. This would indicate that the
simplest (and most costly) solution is to use three
termination panels. Obviously, we should investi-
gate further before making such adecision. Three
possibilities are readily apparent. First, wemight

the board so as to use only one connector. Second,
we can use more than one connector on the ribbon
cable and perform a parallel connection of the
various lines and choose them so that no
duplication of lines results. Finally, we can use
some scheme of connecting three cables to the
board and use the optional Port C connectors on
the termination panel.

The schematic drawings of the IDC indicate that
only six of the OBS 1/0 lines of each processor
socket are broken by wire wrap jumper posts. All
of the lines so configured are on the Port 2 data
lines. Unless we decide to cut etch and add
soldered wires, we will not be able to configure our
board with this technique. Some further investi-
gation is in order before we can make a decision.
The use of a parallel output technique using
multiple connectors on a single cable seems to
present a feasible approach if we can wotrk out an
assignment of I/0 which will not cause conflicts.
We will begin by building a trial port assignment
table in which we will assign the required
functions to input/output ports. We will group the
inputs and outputs into groups of four to handle
the terminator/driver arrangement which is built
into the board. This table is shown in Figure
11. We obviously have a small problem. We have

Socket 1 Socket 2 Socket 3 Direction

Port

10 Weight In In
11 in
12 In
13 In
14

15

16

17

20 Conv. Mtr. Out
21 Out
22 Out
23 Out
24 Valve Ph. 1 Out
25 Valve Ph. 2 Out
26 Valve Ph. 3 Out
27 Valve Ph. 4 Out

Figure 11. UPI™ Socket to Terminator Initial Assignments

3-75

not yet shown the signals from the conveyor speed
and the liquid flow into the on-board interrupt
counters. The schematics show that these signals
are brought onto the board on the edge connectors
but the locations correspond to Port C lines which
do not exist on the iCS 930! We have available
input lines on the Port 1 connectors but there is no
provision to break the signal on the board to route
it to the counter interrupts.

If we move on to the third alternative, we find that
the interconnection paths caused by tieing
various lines together cause even greater prob-
lems. Either some fact must have been over-
looked, or we must consider the use of more than

one terminator board.

Figure 11 indicates that three lines are available
on the Port 2 data lines which go to jumper posts
and which could be used if they werenot part of an
output driver of Port 20. If some technique can be
found to use these “output” lines as inputs, our
problem will be solved. The use of an open
collector driver can provide us with the ability to
use the line as an input so long as the drivers are
turned off! This should be no problem as we can
force the outputs to this state either through the
appropriate jumpering of inputs or by outputting
data to the OBS 1 ports corresponding to these
bits. The resulting electrical configuration can be
seen in Figure 12.

FREQUENCY OUT
TO WEIGHBELT MOTOR

RIBBON CABLE

/ Fm————— 31 3 ——— e P2 BO
S 3 3c 1 MOTOR
SLAVE : l
0
21-&—[}:[39 1ACS
SPEED
MUST BE / 7 6 1 oc :
LOW TO ALLOW <} 7438
USE AS INPUTS \ | |
9 8 oc | o
S ! .
ey T DO
1 10 oc | . SPaRe
WP —————=(42 [S 42
P == G, S 930
USED TO GENERATE 20 LO r AT TERMINATOR
220 MSEC S T T
TIME PULSE SLAVE 29 +5—,—.—-Jw\.—-] |
1 | |
THESE SIGNALS 21 T 1 1
L I P !] !
SPEED AND LIQUID | 1UP12 oo
FLOW RATE \22 | !
s J33 .r)| ;
P10 1| isBcoo2 |
a0 o—1 |
3% 35 L a1t
| R AR] J3
20 lr__ﬂs"_H) —
stave | 58 97 1]
2 . I |
2§ O—
60 59 | jl /.
' |
|
28 b_,_ !
62 61 | | 7/
! |
28 o—1 I
64 63 [T -

Figure 12. Port Assignments 20-23

3-76

Let us examine the implications of performing
this interconnection. The physical layout of the
board and the use of the terminator/driver sockets
causes the 170 lines to be grouped into sets of four
data lines.We must choose which of the three iSBC
941 modules will be responsible for supporting
each of the lines. In Figure 12, we can see that the
belt motor is driven by OBS Socket 1, Bit 20. This
requirement has placed output drivers onto data
Bits 21, 22 and 23. Our requirement is to provide
two signals which can be routed to the counter
inputs so we must place a terminator into either
socket A10 or A16. We have arbitrarily chosen to
use socket A10. The use of the terminators in
parallel with the drivers will not create a problem
so long as those lines which are used as inputs

have the driver in the high impedence state. This
is done by requiring that the output Bits 21 and 22
of the device placed into socket 1 are driven
low. Finally, we seethattheremaining Bit 23 may
be used as a general purpose output line if it
becomes required.

The wiring configurations for the remaining
connector groupings are shown in Figures 13, 14
and 15. In Figure 13, we see the assignments
which can be used for Bits 10, 11, 12 and 13. We
have earlier defined that an iSBC 941 processor
would be used in a high speed frequency counting
mode to determine the weighbelt weight. This
device will be placed into socket 2. The use of this
mode precludes the use of any general purpose

RIBBON CABLE

INPUT

WEIGHBELT
WEIGHT

) iiiis

OUTPUT

| SPARE
L |

OUTPUT

OUTPUT

J2

A2
-y
>—1 | SPARE
L

iCs 930
TERMINATOR

FREQUENCY w
TO WEIGHT
CONVERTER

ALLOW INPUTS

<<u

MUST BE | Bttt

J3

-=2 1

LOW IF A14— o i % Al
1S USED 1S
]

1

|

|

SPARE --- |
OUTPUTS<\L12 [ot
-==’0C |

|

|

T

Figure 13. Port Assignments 10-13

3-77

input/output operations of the processor if we
desire to maintain maximum accuracy of the
frequency measurement. We will arbitrarily
choose to use Bit 10 as the location of the
frequency count input. This will necessitate
installing a terminator into the socket correspond-
ing to the processor input. If required, we can
install open collector drivers into socket A14 and
use the remaining three bits for general purpose
outputs. If this is done, care must be taken to
assure that Bit 10 of the device which is placed into
socket 3 is placed into a low state as was done in
the preceding example.

The interconnection scheme for Ports 14 through
17 can be seen in Figure 14. Note that no ports of
this group are dedicated to our defined control

functions. These four bits may be used as inputs
or outputs as required by the application. For
example, we have ignored the fact that actual
control loops incorporate solenoids for flow
control routing. The unused bits can be used to
perform these tasks.

Figure 15 shows the interconnections for the
remaining group of bits. There are several
features shown on this drawing which should be
discussed in some detail. Let us first consider the
remaining function which we must implement.
This is the control for the liquid valve stepper
motor. An iSBC 941 IDP operating in the stepper
mode will provide the necessary control functions
to drive the motor. Since all four of this group’s

RIBBON CABLE
3 —— e P2 A

4
-—tn
| SPARE
7 > teed

1
SLAVE 1
° " A2

|

A5
\ -
| SPARE
A—"

-

|

]

I
15—t 4
|

|

|
of— }
|

[}

]

[l

+

A6
————
| SPARE
b e o

17——|—

s

e d

A7
————
| SPARE
FE— |

iCS 930
TERMINATOR

15

SL:VE Ao

16

- - —— e ———

AVAILABLE 14
FOR
INPUT OR OUTPUT

16— paiven

T
|
A15 I
| AVAILABLE |
AS
}
R I
| TERMINATOR |
H

Figure 14. Port Assignments 14-17

3-78

data lines are committed to drive the four phases of
the stepper motor, there are no other functions
available.

An important feature of the iSBC 941 processor is
illustrated in Figure 12. This is the ability to
enable the processor to generate an interrupt at
some point in its operation. We have earlier
indicated that we will use the processor in socket 2
(the frequency counter) to provide us with a 200
msec time reference. When the iSBC 941 proces-
sor is enabled with an ENFLAG command and is
operating in the frequency count mode, it will
generate an interrupt on its output line, Port
25. Figure 15 shows how this interrupt can be
connected to the host board’s internal interrupt
input structures.

The hardware configuration has been defined
through Figure 14. The actual implementation
can be handled through the use of the various
wire-wrap jumpers on the IDC. Drivers and
terminators can be installed as indicated in the
preceding discussion.

VI. SOFTWARE CONFIGURATION

As with most computer controlled systems, the
actual implementation of the task is handled with
software. In older designs and in many mini-
computer systems, this task has become formid-
able and has resulted in cost over-runs and
schedule delays. Intel provides many tools for use
by the designer to prevent this type of problem and
to assist himin easily creating a workable and well

J1

RIBBON CABLE

———— e 2 Ba

—————— 1
r OUTPUT VALVE
24—3 12 I : -°°°5 PHASE 1
I
l | B5
1 ouTPUT VALVE
B0 O—4 0DCS | pHASE 2
19 18 |]
SLQVE O | A4 ! B6
" | | ouTPUT VALVE
i 1 ESEs
| |
! ! TPUT 2
bk -)
uPlo b ———— -4
r—————- - 2 iCS 930
ulo H >> TERMINATOR
38 37 |
! 1
! 1
25 O 1
SLAVE ‘8 8 |
1 2 : At H
26 i |
|
!]
! i
27 }
T T
1UPI b—---oo 3 43
uPH ===
66 65 oc |
CONTROLLER ! !
\ !
A3
T
SLvE o ! 7438 o |
cf'vo | |
oc |
| |
|
27 o1

Figure 15. Port Assignments 24-27

3-79

documented software configuration. Letuslook at
some ofthese tools in more detail and consider how
their use will help us to write our programs easily
and quickly.

High Levei Programming Languages

A valuable tool, which Intel provides the designer
of small control systems, is the ability to program
even the smallest systems using a high level
programming language, PL/M-80. Thislanguage
offers relatively efficient and structured, program-
ming capabilities. It has been determined that
PL/M-80 users can expect to use between 1.1 to
slightly more than 2 times as much program
memory as would be used for the same task written
in assembly language. At the same time, the
programmer’s time to code a task will be consider-
ably less than if he were to use assembly language.

The PL/M-80 Programming Manual indicates
that the language is highly structured and lends
itself very well to handle logical type operations.
Its weakness in handling complex mathematical
computations is compensated by the ability to
combine the user application software with
packaged Intel support software.

Fundamental Support Packages

The Intel 8080/8085 Fundamental Support Pack-
age (FSP) provides a package of application
subroutines and functions which can be called
from programs written in either assembly lan-
guage, PLL/M-80, or in FORTRAN-80. It uses a
standard set of data structures and a unified status
and error reporting scheme. Nine major groups of
operations are fully supported by this package.
These are:

1. A primitive fast string handling and integer
arithmetic capability without error report-
ing.

2. A binary integer arithmetic package which
performs operations on both signed and
unsigned integers of various lengths in
binary representation.

3. The floating-point arithmetic package
which provides operations on floating point
numbers in four formats: single precision,
single-precision extended, double precision,
and double-precision extended.

4. The decimal arithmetic routines which
perform integer and fixed point computa-
tions on numbers which are stored as
strings of ASCII characters.

5. A string handling section which contains
routines to transform strings and to extract
and insert substrings. A routine for scan-
ning of general input and one for formatting
of general output are included.

6. Routines for number conversion, for numer-
ic I/0 transformation of data from one
format to another, input scanning of
numeric strings, and formatting of numeric
strings for output are also available.

7. The floating point transcendental function
section provides trigonometric, exponential,
and other transcendental functions.

8. The statistics routines compute the mean,
variance, and standard deviation of one
group of statistical data, and the covariance
and correlation factor of two groups of data.

9. Finally, the PID procedures provide the user
with a version of the classical Proportional,
Integral, Derivative control algorithm.

Clearly, the use of the FSP support programs
enhance the logical PL/M-80 program operations.

Host/Slave Relationship

Before we proceed with our development, we
should take some time to examine therelationship
between our iSBC 569 IDC and other controllers
which may be installed in the system. The
utilization of intelligent slave boards provides the
capability to develop control concepts to an
extremely high level if certain guidelines are
followed. We will therefore assume that the
control solution which we are developing will be
but a part of an over all control concept which
utilizes multiple controllers sharing common
resources.

This concept allows us to develop control algo-
rithms for each sub-process within our overall
control system. This development can provide
independent design and implementation of each
process. A host processor can be used to provide
any required inter-process communication tasks
and to provide the operator interface. We have
previously indicated that the operator interface
will provide some means to adjust the weighbelt

3-:80

feeder setpoints and the liquid ratio. Itshould also
allow the operator to display the current status of
the process. Since these operator interface func-
tions are but a part of the overall control functions,
the interface should be programmed such that
maximum flexibility can be gained through its
use. Fortunately, such an interface is available
using Intel’s RMX/80 BASIC-80.

RMX /80 BASIC-80 Interpreter

The RMX/80 BASIC-80 Interpreter is a high level
language interpreter with extended disk capabili-
ties. It operates on iSBC 80 Single Board Compu-
ters and allows the interpretation of BASIC-80
source code into an internally executable form.
Many other features are available and many
configurations are possible depending upon the
exact system requirements (refer to the BASIC-80
Reference Manual, 9800758).

Maximum utilization of the operator interface
with a minimum of development time can be
achieved with the preconfigured version of the
software/hardware package. This will provide us
with complete disk I/0 capabilities and the ability
to easily program and maintain any programs
which may become necessary to implement the
interface. The actual implementation of the
interface will be done later, after we have defined
the control task.

Software Tasks

The task of preparing the software can be broken
down into three major groupings or tasks. These
are defined to be:

Prepare the Software Drivers.
This involves defining the relationships
between the control algorithm parameters
and the input/output hardware devices and
creating software to implement these defini-
tions.

Prepare the Control Algorithm.
This will involve developing a control
algorithm which defines the relationships
between the various system parameters. This

3-81

algorithm will draw heavily upon the re-
sources of the FSP programs and the soft-
ware drivers which relate the parameters to
the physical hardware.

Finally, the operator interface must be defined
which will relate the parameters used in the
control scheme to other controllers and to the
operator. This will allow the control task to
interact in such a manner as to provide a
meaningful element of the overall control
concept.

VII. SOFTWARE DRIVERS

Before developing the actual control algorithm, we
must create the drivers which communicate with
the three iISBC 941 processors in their assigned
operating modes. We will define two driver
sections for each processor, one to handle the
initialization, and a second to provide the ongoing
communications as required by the control
algorithm program.

Motor Speed Control Processor

The first processor which we will discuss is to be
located in slave socket number 0 and will be'used to
produce a variable frequency output. Let us
consider in some detail how this can be accom-
plished using an iSBC 941 Processor. First,
consider the task of initializing the device to the
primary function operating mode, FREQ.

Referring to the iSBC 941 Industrial Digital
Processor User’s Guide, we find that theinitializa-
tion requires the sequence of commands and data
shown in Figure 16. We will identify the meaning
of each of these terms and create a software

Description Command/Data

Request INIT
FREQ Select
Scale Factor
Qutput Enable
Initial State

P20 Delay

P20 Period
Request PAUSE

[eXviviviviviwio]

Figure 16. FREQ Initialization

program which will handle the required initializa-
tion of the processor. The purpose and use of the
various commands to the processor are well
defined in the user’s guide and will not be repeated
here.

The first byte of data, which must be sent
following the initialization command, is the data
byte signifying that the operational mode is to be
the frequency output. This is defined in the
manual as being equal to the data byte “0B5H” or
“035H” as expressed in the hexadecimal number-
ing system. The choice of values to be sent is
dependent upon our desire to utilize the internal or
external time reference period for the operations.
If we utilize the internal time reference, our
minimum increment or resolution of operations
will be 86.72 microseconds.

To determine if this speed is adequate for our
frequency generator, we must consider the impact
that this resolution has on the output. A 550 hertz
signal has a period of 1.82 milliseconds. If we
increase this period by the 86.72 microsecond time
reference, we find that the next increment in the
frequency generators output will be approximately
372 hertz. This resolution is certainly not ade-
quate to meet the motor control requirements! We
should consider using the external clock to provide
the time reference. One of the 8253 Interval
Timers on the iSBC 569 board can be used to
generate a reference time. If we arbitrarily choose
to use a 10 microsecond reference to the IDP, we
find that the worst case resolution for the 550 hertz
signal becomes about 4 hertz. This is certainly
within our requirements of motor control. The
primary function signal should then be sent as a
“0B5H”.

The second byte is used to establish a scale factor
for the processor. This scale factor is used to
generate the basic time increment which can be
used to establish the frequency output; that is, the
minimum time increment which can be used to
establish a period or pulse width will be the scale
factor times the reference time period.

In our case, because of the wide frequency output
range, we cannot specify the sca}e factor at
initialization (later data will show the need for

multiple scale factor ranges). We will then only
need to send some arbitrary value at initialization
to allow the processor to complete its initialization
sequence.

The Output Enable data byte is used to select
which of the Port 2 output bits are to be used to
generate the output signals. The hardware
configuration established earlier placed the output
onto Bit 0 of the port, so this data byte shall be
specified as a byte having only Bit 0set to alogical
one or equal to 01H.

The Initial Output parameter specifies whether
each bit selected as an output by the output enable
byte is to be initially set to a logical one or zero
when the processor is first enabled. For this
application, it really does not matter, but we will
arbitrarily pick the state to be equal to zero. The
byte will be defined as being set to 00H.

The Delay parameter is used to define the
waveform which will be generated and specifies
the number of time increments which must elapse
before the waveform will change states. Rather
than to constantly vary the delay to maintain a
square wave output, we can choose an arbitrary
value of one time increment before changing
state. The output willhave a varying duty cycle as
the frequency changes. This should cause no
problems for the translator driving the weighbelt
motor. The byte will be defined as being set to a
value of 01H.

Finally, the Period of the waveform must be
chosen. Again, this parameter will be changed
according to the desired frequency, so only an
arbitrary value need be sent. Indeed, since this is
the last parameter, the value could be omitted
entirely by sending the PAUSE command in its
place. :

The initial data definition can be defined using
PL/M-80 language conventions as a block of six
bytes as shown in Figure 17.

The actual communications between the host
processor on the iSBC 569 board and the IDP
utilizes the protocol explained in previous sections
of this note. The status register of the IDP will be
tested for the bit signifying that the input buffer

3-82

/% DECLARATION OF iSBC 941 #0 INITIALIZATION DATA */

2 1 DECLARE FREQ LITERALLY ‘0B5H’;
23 1 DECLARE SF LITERALLY ‘000H’;
24 1 DECLARE OUTPUTSENABLEOLITERALLY ‘001H";
25 1 DECLARE INITIAL$STATE LITERALLY ‘000H";
2% 1 DECLARE DELAY LITERALLY ‘001H;
27 1 DECLARE PERIOD LITERALLY ‘000H";
/* DECLARATION OF iSBC 941 PRIMARY DATA /

34 1 DECLARE INIT0TABLE(6) BYTE DATA (

FREQ,

SF,

OUTPUTS$ENABLEQ,

INITIALSSTATE,

DELAY,

PERIOD);

Figure 17. Initial FREQ Data Field

full is not set. This will indicate that the device is
ready to accept either a command or a data
byte. The command to request a primary function
will be sent. At this point, the processor will be
expecting a series of data bytes as specified by the

function being selected. A “Do Loop” can be used
to effectively transmit this data to the device. The
program to perform this function is illustrated in
Figure 18.

44
45
46

47
48
49
50
51

52
53
54

55
56
57

N wWN WwWwpHrLN N wN

nwN

/* REQUEST PRIMARY FUNCTION */
DO WHILE ((INPUT (UPI0STATUS) AND IBF) < > 0);
END;
OUTPUT (UPI$S0$COMMAND) = INITPF;

/% LOAD INITIAL PARAMETERS */
DO I=0TO 5;
DO WHILE ((INPUT (UPISOSTATUS) AND IBF) < > 0);

END;
OUTPUT (UPI0DATA)=INIT$OSTABLE(!);
END;

/* TERMINATE PARAMETER LOADING */
DO WHILE ((INPUT (UPI0STATUS) AND IBF) < > 0);
END;
OUTPUT (UPI0COMMAND)=PAUSE;

/% START FREQUENCY FUNCTION */
DO WHILE ((INPUT UPI0STATUS) AND IBF) < > 0);
END;
OUTPUT (UPI0COMMAND)=LOOP;

Figure 18. IDP Initialization

3-83

When all required data parameters have been sent,
the data portion of the initialization is terminated
by sending a PAUSE command as shown in
Figure 18. Note how, in each case before data or a
command is sent, we wait until the input buffer is
empty. Finally, the initialization is completed
when we have sent the LOOP command. The
processor will now be generating an output
frequency as specified by the parameters.

Remember that, according to our earlier discus-
sion and as we have shown in Figure 12, the
unused output ports should be set to a logical low
condition to allow the use of those lines as inputs to
carry additional data into the controller. This
should be done as a part of the initialization
process. The secondary utility command, CLRP2
is used for this purpose. This process isillustrated
in Figure 19. :

We should next direct our attention to establishing
a software interface which will take the desired

weighbelt speed term and convert it to a frequency
output suitable to drive the motor translator. We
know that this will involve selecting a particular
scale factor and period term which will generate
the correct waveform. Previously, we established
that, for a maximum frequency of 550 hertz, we
need to establish a period of 1.82 milliseconds.
Many combinations of Scale Factor and Period
parameter will generate this time interval. Ideally,
the smallest increment of change can be estab-
lished by setting a constant period and modifying
the scale factor. If we make some calculations, we
will find that the fact that the scale factor is a byte
value (giving us a range of between 0 and 255)
limits the frequency range which can be produced
using any one value for a period. It seems that we
will be forced to vary both the period and the scale
factor as a function of the desired frequency.

In Figure 20, we have plotted the frequency output
for various values of Scale Factor and Period. Our

/% SET UNUSED BITS TO ALLOW EXPANSION */

59 2 DO WHILE (-(INPUT UPIOSTATUS) AND IBF) < > 0);
59 3 END;
60 2 OUTPUT (UPI$0O$COMMAND)=CLRP2;
61 2 DO WHILE ((INPUT (UPISO$STATUS) AND IBF) < > 0);
62 3 END
63 2 OUTPUT (UPISODATA)=INITIALSOUTPUT;
Figure 19. Secondary Utility Command
220 N
lhs
210 1 || \
200 \\‘ \l \ CLOCK 10 usec
R “ 1 “
190 \\ “l‘ “
180 - X! \‘ \

SF >
2
3
T

10 - o)
\6 "

100 |-

%0

80

70 -

60 1 1

FREQ. —» (H2)

Figure 20. Frequency Vs. Parameters

3-84

intent is to maintain the highest resolution
possible for the desired output range of 50 to 550
hertz. Choosing four period base parameters will
provide us with acceptable waveform generation
characteristics. We will choose the data sets of
Figure 21 based upon the data shown in Figure 20.

The Period can be determined by examining the
desired frequency range. The scale factor can be
calculated from the equation:

SF =10,000 / ((FREQUENCY) x (PERIOD))

Again, the PL/M-80 language program to imple-
ment the interface between the host and the IDPis
easily constructed. For example, Figure 22
‘provides the code which will be required to
determine the appropriate Period parameter and
also illustrates the use of FSP programs to handle

the mathematical calculations required to deter-
mine the corresponding scale factor.

The principles above can be expanded into a
complete interface package to offload the host
processor of the need to generate the frequency
waveform to the translator of the weighbelt
motor. The complete program for the processor
can be found in Appendix A.

Weight Input Processor

The second use of an iSBC 941 Processor is to
provide the capability of converting the high
frequency inputs from the weight sensor of the
weighbelt into a digital value equivalent to the
actual weight on the belt. This frequency to digital
conversion can be easily accomplished by the use
of the Primary Function, FCOUNT.

Frequency Period Scale Factor Resolution
. 50 to 165 Hz. 9 221 to 67 3 Hz.
166 to 225 Hz 5 121 to 89 3 Hz.
226 to 285 Hz. 3 147 to 117 3 Hz.
286 to 550 Hz. 2 175 to 91 6 Hz.
Figure 21. FREQ Output Ranges
/* COMPUTATION OF FREQUENCY RANGE */
57 3 IF FREQ < 285
THEN DO;
59 4 IF FREQ < 226
THEN DO;
61 5 IF FREQ < 166
THEN RANGE = 9;
63 5 ELSE RANGE = 5;
64 5 END;
65 4 ELSE RANGE = 3;
66 4 END;
67 3 ELSE RANGE = 2;
/% LOAD MATH ACCUMULATOR WITH 100,000 */
68 3 CALL MQULD4 (.IR,.HUNDRED$K);
/* TEST FOR MOTOR SHUTDOWN =/
69 3 IF FREQ >1
THEN DO;
/% DIVIDE BY FREQUENCY =/
7 4 CALL MQUDV2 (.IR,.FREQ);
/% DIVIDE BY RANGE FACTOR */
72 4 CALL MQUDV1 (.IR,.RANGE);
/* GET TWO'S COMPLEMENT FOR iSBC 941 SCALE FACTOR */
73 4 CALL MQUST1 (.IR,.FREQA);
74 4 FREQA=NOT (FREQA + 1);
75 4 END;

Figure 22. Period and Scale Factor Computations

3-85

The FCOUNT Primary Function is selected by
sending the INITPF command followed by four
parameters. The process is identical to that which
was used in the previous example when we
established the FREQ function. In this case, the
sequence is described in the manual asisshownin
Figure 23.

Description Command/Data

Request INIT
Select FCOUNT
Input Select
Output Enable
Sampling Interval
Request PAUSE

[eleivivivio)

Figure 23. FCOUNT Initialization

Let us examine the derivation of the terms which
must make up the data table which will be
transmitted to the processor in order to initialize
it. The FCOUNT function does not allow the use
of an external clock so we have no option as to
which command will be sent to select this
function. It is defined to be equal to 33H. This
becomes the first element of the byte array used to
contain the initial data.

The Input Select parameter describes which of the
Port 1 inputs are to be measured. If we refer to
Figure 13, we can see that a hardware assignment
of Port 10 has been made for this function. This
assignment corresponds to bit 0 of the parameter
being set to a value of 1. The byte value for this
parameter then becomes 01H.

The Output Enable byteis used to enable an output
port corresponding with the input to change states
when the Sampling Interval time has elapsed. Our
system has a requirement to operate the control
algorithm once each 200 milliseconds and we have
previously indicated that the frequency counter
would be used to establish this timeinterval. Ifthe
output is enabled and connected to an interrupt
line, it will provide our system with the required
pacer clock. The output bit from Port 20 will then
be enabled to provide the interrupt. The para-
meter for this byte will be set to the same value as
the Input Select and becomes 01H.

The Sampling Interval will establish the time
interval to be used when sampling the input
frequency. This time interval should be set to 200

milliseconds for our application. The parameteris
then calculated from the equation:

INTERVAL = (SAMPLE PERIOD) / (0.02222)
OR
INTERVAL = (0.200) / (0.02222) = 9

The correct sampling interval for our control
system should be set to a value of 09H.

A similar procedure can be used to send this data
to the processor. The actual code used to imple-
ment the system can be found in Appendix
A. Note that the unused bits of the device have
been set to a predetermined value as was indicated
by our hardware design of Figure 13.

Once the processor has been initiated and is
performing its function, we need only wait until
the device signals us that the 200 millisecond time
interval has passed and that it is ready with the
belt weight. When this interrupt occurs, we will
read the data and perform our control functions.
An interface must be established between the
control algorithm and the processor which
enables it to receive a value which represents the
actual weight.

The total count received by the processor is
available as a sixteen bit count made up of two
eight bit bytes. The use of the Secondary Utility
Commands, Read FCOUNT Measurements
(RDFCO-RDFCF) allow the two bytes to be
transferred into the host processor. We are using
the first counter so we will use the corresponding
commands, RDFC0 and RDFC1. An example of
the procedure to read one of the count bytes can be
seen in Figure 24.

The counter can be commanded to begin its next
sample period by issuing a LOOP command to the
processor. The two data bytes can be combined to
form a 16-bit word and theresultant value divided
by 2 to form a weight value. Thedivision by two to
obtain weight is required since the count range
from 0to 2000 corresponds to a weight of between 0
and 10.00 pounds; thus, each count has a value of
0.005 pounds. The integer numbers used in the
control algorithm are fixed point with an implied
scale factor of 100. The division by two provides a
result which meets the criteria.

3-86

/% GET INPUT COUNT LOW BYTE */

106 2
107 3 END;
108 2
109 2
110 3 END;
111 2

DO WHILE ((INPUT (UPI1STATUS) AND IBF) < > 0);
OUTPUT (UPI1COMMAND) = RDFCO;
DO WHILE ((INPUT1STATUS) AND OBF) = 0);

LCOUNT = INPUT (UPI1DATA);

Figure 24. FCOUNT Read Procedure

Appendix A provides the complete listing of the
code which was used to interface with the
processor assigned to the primary function,
FCOUNT.

Stepper Motor Control Processor

The third example of utilizing the iSBC 941
Processor in an industrial application is provided
by the processor installed into OBS socket 2. This
device is used to drive a stepper motor which, in
turn, controls the liquid valve position. Again, we
will break the discussion into an initialization and
an interface operational mode.

We find that the User’s Guide indicates that
initialization to the STEPPER Primary Function
is performed by sending the INIT command
followed by up to 21 data bytes. Figure 25
provides the table which shows the necessary
parameters for this mode.

The technique used to place the processor into the
desired function is the same as we have seen with
the two other processors so we will not spend time
dealing with the communications sequence. In-
stead, we will examine the techniques which can
be used to determine the values of the initializa-
tion parameter bytes.

STEPPER is requested by sending a data byte of
either 17H or 97H following the INIT command.
Remember that the significance of setting bit 7 of
the data high is to request that an external clock
be used by the processor. There is noreason touse
an external clock for our application, so we can
choose a function request byte of 17H.

The remainder of the data is used to define the
waveforms which are necessary to drive the
stepper motor. We will derive the values for these
parameters by beginning with the manufacturer’s
data sheet and moving until we have determined
the correct value for each byte of data.

The motor chosen for this application utilizes four
phases to drive the shaft. The data sheet provided

3-87

Description Command/Data

Request INIT
Select STEPPER
Select Scale Factor
Output Enable
Qutput Polarity
Common Period
P20TRAN1
P20TRAN2
P21TRAN1
P21TRAN2
P22TRAN1
P22TRAN2
P23TRAN1
P23TRAN2
P24TRAN1
P24TRAN2
P25TRAN1
P25TRAN2
P26TRAN1

P26 TRAN2
P27TRAN1
P27TRAN2
Request PAUSE

[eivlNe]

Figure 25. STEPPER Function Initialization

information for both a Four-Step Input Sequence
(1.8 degrees per step) and for an Eight-Step Input
Sequence (0.9 degrees per step). We will usethe 1.8
degree step angles for our example and applica-
tion. The data provided by the manufacturer is
shown in Figure 26. The first taskisto convert the
switch state diagram into a desired waveform for
each of the four phases. This has been done in -
Figure 27.

Beginning with Scale Factor, let us determine the
required data parameters which will yield a
stepper controller compatible with our motor. The
Scale Factor will provide the minimum time
period for one step to take place. The minimum
time which we can specify is a function of both the
motor characteristics and of the TRP for the
primary function, STEPPER. The minimum TRP
is determined by referencing the IDP User’s Guide
for the desired function. In this case, it is found to
be 325 + (13 x B) where B is the number of phases

DC STEPPING CIRCUIT

EIGHT-STEP INPUT SEQUENCE

STEP SWi1 sw2 SW3 Sw4
1 ON OFF ON OFF

GREEN/WHITE
2 ON OFF OFF OFF
FOUR-STEP INPUT SEQUENCE 3 ON OFF OFF ON
STEP SW1 sw2 Sw3 Sw4 4 OFF OFF OFF ON
1 ON OFF ON OFF 5 OFF ON OFF ON
2 ON OFF OFF ON 6 OFF ON OFF OFF
3 OFF ON OFF ON 7 OFF ON ON OFF
4 OFF ON ON OFF 8 OFF OFF ON OFF
5 ON OFF ON OFF 1 ON OFF ON OFF

Figure 26. STEPPER Motor Input Sequence

STEP STEP STEP STEP STEP STEP
0 1 2 3 0 1
| | | | | I
T T T T i T
__________ - o ——————
PHASE 1 H H
L o o o e o e s -l
pomm—————— 1
PHASE 2 |)
————————— - e ——————
————n Fm—————— "
] H 1
PHASE 3 ' ' !
b e v e o o+ e -
P —————— - ————
PHASE 4 ! ! !
- o} b o o —— -

Figure 27. STEPPER Motor Waveforms

which are used. The result will be expressed in
terms of processor cycles and can be converted
into time by multiplying by 2.71 microseconds per
cycle. This works out to be:

325 + (13 x 4) = 377 PROCESSOR CYCLES
OR :
377 x 2,71 = 1.021 MILLISECONDS

Now, let’s examine the minimum time which can
be utilized I:- .he stepper motor. This is given in
the manufactuer’s data sheets as being 2.86 milli-
seconds for the motor which we have chosen to

use. This value must be used to compute the Scale
Factor for this application. The Scale Factor is
computed by dividing the minimum step time by
86.72 microseconds or:

SF=2.86 MILLISECONDS/86.72 MICROSECONDS=33

This number is entered into the processor using
two’s complement which becomes equal to 0ODFH.

The Output Enable is used to specify which of the
eight possible control outputs are to be used to
control the motor phases. The motor phase
assignments to I/0 ports was made in Figure 15
and indicates that Ports 24 through 27 will be
enabled for the primary function. Setting the
corresponding bits provides a parameter to be sent
to the processor of OFOH.

The rest of the parameters deal with providing a
definition of the waveforms generated in Figure 26
to the processor. The following paragraphs deal
with the operations required to convert the
graphic representation into data parameters.

Each phase must be initialized to an initial output
state which corresponds to the signal level shown
for Step 0 of Figure 27. A “1” will be placed into
the bit corresponding to each of the port’s output
bits which are to be in a logical one state upon

reaching step 0. We see that Bits 24 and 26 are set
corresponding to phase 1 and 3. The data byte for
Initial Output is thus defined to be 050H.

The Period parameter for a stepper motor function
corresponds to the number of steps which are
defined in the motor’s step sequence. Our example
uses a four step sequence so the Common Period
will be set to a value of 04H.

The remainder of the initialization parameters
define the transitions of each of the phases. This
involves the examination of the waveform and
noting the points at which the output level
changes. This data can be input to allow the
device to accurately produce the control wave-
forms for any stepper motor control mode. We are
not using the first four output bits so the transition
definitions for these outputs is meaningless and
will be output as zeroes. The waveform for output
Port 24 shows a transition at steps 1 and 3. The
parameter for the first transition of Port 24,
P24TRANI1 is defined to be 00H. Likewise, the
second transition, P24TRAN2 is set to a value of
02H.

The technique used above can be continued to
define the constants, P25TRAN1 and P25TRAN2
as being the same as for Port 24 or 00H and 02H
respectively.

The transitions for the phases driven from Port 26
and 27 can be seen to occur at steps 1 and 3 so the
data for those parameters can easily be seen to be
set to 01H and 03H for each port.

The initialization table can be sent to the
processor using the same techniques as were used

for the processors discussed previously. The
complete program for the initialization can be
found in Appendix A.

A driver must next be prepared which will be used
to provide the interface between the control
algorithm and the IDP processor which supports
the stepper motor. When the STEPPER primary
function is used, a queue is utilized for supporting
the step commands to the motor. Each command
to the stepper consists of a data byte signifying the
step rate to be used and a data byte which provides
the signed magnitude of the number of steps to be
moved. Using the motor to control a flow control
valve allows us to use a constant step rate, but
some type of program must be prepared which will
convert the signed two’s complement representa-
tion of the position from the control algorithm to a
signed magnitude format.

The number conversion is easily done and the
PL/M-80 programming codeto perform the format
change is shown in Figure 28.

The data queue allows up to six movement
commands to be present and waiting to be
serviced by the IDP. If the processor is behind in
its operations and cannot accept a seventh
request, the host must wait until one of the
requests in the queue has been serviced. The
queue status bits can be tested to determine if room
exists for another command and the “queue not
empty’’ bit can be tested to verify that all
requested movements have been completed.
Normal operation of our motor should be such that
the queue is not allowed to fill to its maximum
capacity.

/%* SUPPORT CONVERSION TO SIGNED MAGNITUDE NUMBER */

141 3 IF POSITION > 127
THEN DO;
/* GET MAGNITUDE OF MOVEMENT =/
143 4 POSITION = 256 - POSITION;
/* SET SIGN FOR CCW ROTATION */
144 4 POSITION = POSITION OR REVERSE;
145 4 END;

Figure 28. Number Format Conversion

3-89

The code which is required to test the queue and to
send a stepper movement request is shown in
Figure 29. The complete code can be seen in
Appendix A.

VIII. APPLICATION SOFTWARE

Having developed the software which is required
to support the Industrial Digital Processors, we
can now devote our time to the task of implement-
ing the application software and of handling any
programs which are required to support functions
unique to the host iSBC 569 board. This software
can be grouped into two general categories,
initialization programs, and control algorithm
programs.

Initialization Programs

The initialization of the iSBC 569 involves setting
up the required configuration of interrupt hand-
ling and of the devices which areinstalled into the
slave sockets. For the purposes of this applica-
tion, we will include some system diagnostic
capabilities within the process. These routines
will be executed each time a RESET or a POWER-
UP occurs. Only the highlights of the code used
will be presented in detail; however, the complete
listings of the initialization programs can be
found in Appendix A by referring to the BCKGND
Program listing.

A unique feature of using the iSBC 941 processors
is their ability to provide, upon request, an

identification code. The initiation diagnostic
program takes advantage of this fact by interro-
gating each processor and verifying that the
correct ID code is returned. If any of the proces-
sors have failed catastrophically or if the internal
data bus of the host board has failed, the program
will provide an indication of this fact.

Each of the slave processors has, associated with
it, an individual hardware reset line which is
under the control of the host. A reset or power up
condition will cause the control lines toreset to the
state which hold each slavein areset state. Before
any slave can be used, it’s associated reset line
must be de-activated. This is done by sending a
logical one to the corresponding bit of the Reset
Latch. Other bits of the Reset Latch can be used to
illuminate the on-board LED or to generate an
interrupt to another board on the Multibus data
bus.

A special PL./M-80 command is utilized to disable
the reset interrupts of the 8085A host processor.
Execution of this command will allow all servic-
able interrupts to enter via the 8259A Interrupt
Controller. The command which will mask offthe
unused interrupt structure is shown in Figure 30.

The initialization process must also initialize the
FSP Integer Record. This will allow the use of the
math support routines which will be required to
support the control algorithm.

/* VERIFY THAT QUEUE SPACE IS AVAILABLE */

146 3 DO WHILE ((INPUT (UPI2STATUS) AND QF) < > 0);
147 4 END;

/* REQUEST DESIRED STEP RATE */
148 3 DO WHILE ((INPUT (UPI2STATUS) AND IBF) < > 0);
149 4 END;
150 3 OUTPUT (UPI2DATA) = STEP$RATE;

/> REQUEST STEPPER MOVEMENT */
151 3 DO WHILE ((INPUT (UPI2STATUS) AND IBF) < > 0);
152 4 END;
1583 3 OUTPUT (UPI$DATA) = POSITION;

Figure 29. STEPPER Movement Request
/* MASK OUT THE RESET INTERRUPTS OF THE PROCESSOR */
34 1 CALL S$MASK (MASKS);

Figure 30. PL/M-80 Sim Instruction

3-90

Control Algorithm Programs

The program which actually handles the control
algorithm for the two loops can be found in
Appendix A, MAINSCONTROL. The flow of the
program is straightforward and can easily be
followed by reading the listing. The operations
are primarily handled by the use of repeated calls
to the FSP integer math routines and to the
processor interface modules which we have
previously generated.

It is beyond the scope of this application note to
dwell upon the techniques which were used to
generate the PID control routine; this aspect will
be covered in a future application note.

Limits were placed upon the control outputs so
that the signals to the processors would not exceed
the physical limits of the external devices. For
example, the frequency range is limited to range
between 0 and 550 to correspond with the
operating range of the weighbelt as we have
defined it. The limits upon theliquid control valve
have been set at plus and minus 10 steps since this
is the maximum distance which the stepper motor
can travel in any one 200 millisecond time period;
increasing the possible count could resultin filling
the queue. This could cause the 200 millisecond
time to be extended if we had to wait for the queue
to empty.

Master Processor

A complete control solution to the weighbelt feeder
and the liquid applicator has now been developed.
The process is stand alone and resides entirely
upon a single board. It can operate without
requiring any access from the MULTIBUS bus,
thus freeing the bus for other control, monitoring
or supervisory duties.

The system developed for this application note
requires a setpoint for the mass flow and a liquid
ratio be provided to the control system. This
information would normally be supplied by some
type of bus master device. We have chosen to use
the pre-configured RMX/80 BASIC-80 Interpreter
to perform this task. A simple program needs to
be prepared which will allow adjustment of the
setpoints and monitoring of the operation of the
control system.

Using BASIC will provide full disk I/O capabil-
ities to the operator. Communicating with the

system through a CRT terminal, he can write and
execute programs which use the resources of the
system disk or of any of the controllers which may
be present on the bus.

Two programs are required to perform this
task. Since they are written in BASIC, they may
easily be modified or expanded if the need should
ever arise. Indeed, other programs could be
written to perform other tasks, such as optimizing
the control parameters.

In both programs, the parameters involved with
the control operation are accessed by using the
PEEK and POKE instructions. Remember that
the iSBC 569 controller allows the on-board
memory to be made available to other devices on
the bus through the dual port mechanism. In our
application, this has been done by jumpering the
board such that the on-board memory beginning
at location 8000H can be accessed on the bus at
location 2000H. This mapping was done since the
memory locations at 2000H are not used by BASIC
unless requested to do so. A byte of data which is
at location 827EH on the controller can be read by
performing a PEEK of location 227EH. Some of
the memory assignments for the controller have
been shown in Figure 31.

MOD MAINCONTROLMODULE

829FH SYM MEMORY
8233H SYM PRLQ

825FH SYM CONSTANTS$1
00DCH SYM BOUNDS2
00E6H SYM TIMEINTERVAL
827 AH SYM LIQUIDFLOW
O00E 8H SYM DISTREV
8280H SYM MASSFLOW
828 5H SYM LIQUIDVALVE
8288H SYM DUMMY

00EFH SYM ZERO
01ADH SYM PIDRUN
81F7H SYM IR

825DH SYM LIQCOUNT

826 8H SYM CONSTANTS2
00E 4H SYM CONTROL1
8277H SYM BELTSPEED
827CH SYM MASSSETPOINT
00E9H SYM CONVLENGTH
828 2H SYM BELTCONTROL

828 7H SYM SYSTEMRUNNING
828AH SYM ICW

3FOO0H SYM JUMPTABLE
8209H SYM PRCV

825EH SYM BELTCOUNT
00D 4H SYM BOUNDS1
00E 5H SYM CONTROL2
827 8H SYM BELTWEIGHT

827EH SYM SETPOINT
00EAH SYM SIX

828 4H SYM LIQUIDRATIO
00EBH SYM ERRORFIELD
00EDH SYM THOUSAND
00F 1H SYM INITIATION

Figure 31. Selected Memory Location Assignments

391

The first program involves setting up the two
control parameters and handling the control flag
which causes the process to start and to stop. This
program can be found in Figure 32.

10 REM THIS PROGRAM IS USED TO INPUT SETPOINTS
15 REM TO THE LIQUID CONTROL SYSTEM.
20 POKE 02287H,0

25 INPUT “ENTER MASS SETPOINT-";MS

26 IF MS > 1200 THEN 25

30 MS=CINT(MSx10/60)

35 H=INT(MS/256)

40 L=CINT(MS-Hx256)

45 POKE 0227EH,L

50 POKE 0227FH,H

55 INPUT “PERCENT LIQUID-";LR

60 LR=CINT(LR)

65 IF LR > 127 THEN 55

70 POKE 02284H,LR

75 POKE 02287H,1

80 RUN “STATUS”

Figure 32. Basic Program for Parameter Initialization

Upon completion of the initialization program, a
second program provides a display of the system
operation. This program could have been an
optional program which is only called when the
operator desires to view the system operation. A
program which provides a snapshot of the system
operation is shown in Figure 33. Again, the
program is interactive with the operator and can
easily be modified at any time to reformat or
display additional information.

IX. CONCLUSION

The purpose of this application note has been to
demonstrate some of the techniques which can be
used to provide a control system design solution
using an intelligent slave concept. This has been
done and the system has been constructed and has
been found to operate as the design specified. The
Intelligent Slave Concept does provide a single
board solution to distributed control and certainly
off-loads the master processor of control duties.

PROGRAM NAME: STATUS

10 I=PEEK (0227EH)
20 H=PEEK (0227FH)

30 MS=((256xH)+L)x60/10

40 L=PEEK (02278H)

50 H=PEEK (02279H)

60 WT=((256xH)+L)/100

70 L=PEEK(022890H)

80 H=PEEK (02281H)

90 AM=((256xH)~+L)x60/10

100 MT=PEEK (02294H)

110 LR=(PEEK(02284H))/100
120 LS=AMxLR

130 L=PEEK (0227AH)

140 H=PEEK(0227BH)

150 LF=((256xH)+L)/100

160 PRINT “MASS SETPOINT",“WEIGHT","ACTUAL MASS",“MOTION"

170 PRINT MS,WT,AMMT

180 PRINT “LIQUID RATIO",“LIQUID SET",“LIQUID FLOW”

190 PRINT LR,LS,LF

200 Z=PEEK(02285H)

210 IF Z < 128 THEN 230
220 Z=256-Z

225 2=0-Z

230 L=PEEK(02282H)

231 H=PEEK(02283H)

232 BS=((256%H)+L)x60/200

239 PRINT “STEPPER”;Z, “BELT";BS

240 PRINT "~

250 PRINT "~)
260 FOR N=0 to 1000
270 NEXT N

280 GO TO 10

Figure 33. Basic Snapshot Program

3-92

This frees the master to provide supervisory
control and human interface duties.

Certainly, this concept can be expanded to
encompass a broad variety of complex control

3-93

situations. At the same time, there is no reason
why the Intelligent Slave board could not be used
to provide a single board solution to a simple
control application where no interaction with
other processes is required.

APPENDIX A

3-95

ISIS-II PL/M-80 V3.1 COMPILATION OF MODULE BACKGROUNDMODULE

OBJECT MODULE PLACED IN :F1:BCKGND.CBJ

COMPILER INVOKED BY: PLM8¢ :F1:BCKGND.PLM DEBUG PAGEWIDTH(72) TITLE('BA
—-CKGROUND PROGRAM')

JrEkkkkhkkkhkhhhhhkkhhhhkhhhhhhhhhhhhkhhkhhkk*
* THIS IS THE MAIN BACKGROUND OPERATING *

* PROGRAM FOR THE PID CONTRCL SYSTEM. *
hkhkkkhhhkhkhhhhhhhhhhhhhhhhhhhhkhkhhkkhhkk /

1 BACKGROUNDSMODULE: DC;
/* DECLARATION OF BOARD I/O ASSIGNMENTS */
2 1 DECLARE UPIS$ZSSTATUS LITERALLY '@ESH';
3 1 DECLARE UPIS$1S$STATUS LITERALLY '@E7H';
4 1 DECLARE UPI2STATUS LITERALLY 'QEQH';
5 1 DECLARE UPI$@SCOMMAND LITERALLY '@ESH';
6 1. DECLARE UPIS1COMMAND LITERALLY '@E7H';
7 1 DECLARE UPI2COMMAND LITERALLY 'CECR';
g 1 DECLARE UPI$@SDATA LITERALLY '@E4H';
9 1 DECLARE UPIS$1SDATA LITERALLY 'CEG6H';
1¢ 1 DECLARE UPI$2SDATA LITERALLY 'CE8H';
11 1 DECLARE RESETS$LATCHSADR LITERALLY 'GEAH';
/* DECLARATION OF RAM TEST PARAMETERS */
12 1 DECLARE BEGINS$RAM LITERALLY '8C@QH';
13 1 DECLARE ENDS$RAM LITERALLY '85¢¢H';
14 1 DECLARE ZEROSPATTERN LITERALLY '@C@H';
15 1 DECLARE ONESSPATTERN LITERALLY '@FFH';
/* DECLARATION OF RESET LATCH BIT ASSIGNMENTS */
16 1 DECLARE RESETSUPISO LITERALLY '¢@0¢@@gglB’';
17 1 DECLARE RESETS$UPIS] LITERALLY '0@C@@@loB';
18 1 DECLARE RESETSUPIS$2 LITERALLY '@g@0@le@B"';
19 1 DECLARE LIGHTS$LED LITERALLY 'G¢@@l0¢¢B"';
20 1 DECLARE MULTISINTR LITERALLY '0¢f@l0@00¢B"';
/* DECLARATICN OF ISBC 941 STATUS BITS */
21 1 DECLARE IBF LITERALLY '¢Q@0@@@1¢B';
22 1 DECLARE OBF LITERALLY '0@@e@¢@1B';
/* DECLARATION OF ISBC %41 COMMANDS */
23 1 DECLARE IDEN LITERALLY 'Q@¢H';
/* DECLARATION OF ISBC 941 IDENTIFICATION CCDE */
24 1 DECLARE SBC®%41 LITERALLY '41H';
/* DECLARATION OF MEMORY TEST ADDRESS REGISTER */
25 1 DECLARE I ADDRESS AT (87FEH);
26 1 DECLARE MEMLOC BASED I BYTE;

/* DECLARATION OF RESET MASKS FCR 885 PROCESSOR */

3-96

27

28

3¢

31

32

34

35
36
37
39
a0

42

43

44
45
46
47
48
49
5¢

51
52
53
54
55
56
57

w N o

N W o N

Ni—poHFE RN

N o N

/*

/*

/*

/*

/*

/*

DECLARE MASKS BYTE DATA (@@FH);

DECLARATION OF PL/M-8f¢ SIM INSTRUCTION */
SSMASK: PROCEDURE (MASK) EXTERNAL;
DECLARE MASK BYTE;
END S$MASK;

DECLARATION OF INITIATION TASK */
INITIATION:
PROCEDURE EXTERNAL;
END INITIATION;

CLEAR ISBC 941 DEVICES USING ON-BOARD RESET */

OUTPUT (RESETSLATCHSADR) = (1;

MASK OUT THE RESET INTERRUPTS CF THE PROCESSOR */

CALL S$MASK (MASKS);

TEST MEMORY RAM LOCATIONS */

DO I = BEGINSRAM TO ENDSRAM;
MEMLOC = ZEROSPATTERN;
DO WHILE MEMLOC <> ZEROSPATTERN;
END;

MEMLOC = ONESSPATTERN;
DO WBILE MEMLOC <> ONESSPATTERN;
END;

END;

RELEASE 941 LOCKOUT/RESET BITS */

OUTPUT (RESETSLATCHS$ADR) = RESETS$UPISH OR
RESETSUPIS] OR
RESETSUPIS$2 OR
MULTISINTR;

/* VERIFY THAT SBC941 PROCESSOR IS IN SOCKET @ */
DC WHILE ((INPUT (UPIS$@SSTATUS) AND IBF) <> @);

/*

END;

OUTPUT (UPI$#SCOMMAND) = IDEN;

DO WHILE ((INPUT (UPI$@ZSSTATUS) AND OBF)
END;

DO WHILE (INPUT (UPIS@SDATA) <> SBCS41);
END;

VERIFY THAT SBC941 PROCESSCR IS IN SOCKET 1

g);

*/

DO WHILE ((INPUT (UPI$1SSTATUS) AND IBF) <> £);

END;
OUTPUT (UPI1COMMAND) = IDEN;

DO WHILE ((INPUT (UPI$S1S$STATUS) AND OBF)
END;

DO WHILE (INPUT (UPIS1SDATA) <> SBC941);
END;

8);

397

/* VERIFY THAT SBC941 PROCESSOR IS IN SOCKET 2 */

58 1 DO WHILE ((INPUT (UPIS2SSTATUS) AND IBF) <> 2);
59 2 END;
60 1 OUTPUT (UPIS$2SCOMMAND) = IDEN;
61 1 DO WHILE ((INPUT (UPI2STATUS) AND OBF) = ¢);
62 2 END;
63 1 DO WHILE (INPUT (UPIS2$SDATA) <> SBCS41);
64 2 END;
/* START-UP TEST OK- TURN OFF LED */
65 1 OUTPUT (RESETSLATCHS$SADR) = RESETS$SUPISE OR
RESETSUPIS1 OR
RESETSUPIS$S2 OR
LIGHTSLED OR
MULTISINTR;
/* INITIATE THE CONTRCL DEVICES */
66 1 CALL INITIATION;
/* PERFORM BACKGROUND TASKS */
67 1 DO WHILE 1;
68 2 HALT;
69 2 END;
7¢ 1 END BACKGROUNDSMODULE;

MODULE INFORMATION:

CODE AREA SIZE = (@D4H 212D
VARIABLE AREA SIZE = @@0@H eD
MAXIMUM STACK SIZE = @0@2H 2D

128 LINES READ
@ PROGRAM ERROR(S)

END OF PL/M-8¢ COMPILATION

3-98

11
12
13
14
15
16
17

18
19

ISIS-II PL/M-80 V3.1 COMPILATION OF MODULE MAINCONTROLMODULE
OBJECT MODULE PLACED IN :F1:CNTTSK.CBJ
COMPILER INVOKED BY: PLM8¢ :F1:CNTTSK.PLM DEBUG

$INTVECTOR (4, 3FG0H)
$PAGEWIDTH (72)

$TITLE ('MAIN CONTROL')
/**
* MAINSCONTROLSTASK

* THIS TASK IS USED TO CONTROL THE TWO PID CONTROL
* LOOPS. ONE LOOP CONTROLS THE SPEED OF A CONVEYOR
* WHILE THE SECOND CONTROLS THE FLOW OF A LIQUID.

* THE TASK OPERATES EACH 2@@ MSEC.
*

kkkkkkkhk YERSION 1.1 *hhkkhkhhhhhhhdhhhhhhhhhhhhhhdhhk

NOF R ok % % ¥

MAINSCONTROLSMODULE: DO;

/* DECLARATION OF PID RECORD SET-UP TASK */
1 UQPSET:

PROCEDURE (PRSPTR, ERRORSFLDSPTR,PRIVSPTR) EXTERNAL

DECLARE (PRSPTR,ERRORSFLDSPTR,PRIVSPTR) ADDRESS;
END UQPSET;

NN

i /* DECLARATION OF PID CONTROL BITS */
1 UQPSCT:
PROCEDURE (PRS$PTR,CONTROLSPTR) EXTERNAL;

2 DECLARE (PR$PTR,CONTROLSPTR) ADDRESS;
2 END UQPSCT;
/* PROCEDURE TO SET UP PID CONSTANTS */
1 UQPSCN :
PROCEDURE (PRS$PTR,CONSTANTS$PTR) EXTERNAL;
2 DECLARE (PRSPTR,CONSTANTS$PTR) ADDRESS;
2 END UQPSCN;

/* DEFINE THE DEFAULT ERROR HANDLER */
1 UQPSBD:
PROCEDURE (PRSPTR,BOUNDSPTR) EXTERNAL;
DECLARE (PRSPTR,BOUND$PTR) ADDRESS;
END UQPSED;

NN

/* PROCEDURE TO CHANGE THE TIME INTERVAL */
1 UQPSTI:
PROCEDURE (PR$PTR,TIMESINTERVALSPTR) EXTERNAL;
DECLARE (PRS$SPTR,TIMESINTERVALSPTR) ADDRESS;
END UQPSTI;

o N

/* DECLARATION OF THE PID CONTROL PROGRAM */
1 UQPPID:
PROCEDURE (PRSPTR, IR$PTR) EXTERNAL;
DECLARE (PRSPTR,IRSPTR) ADDRESS;
END UQPPID;

NN

399

20

21

22

23

24

25

26

27
28

30

31

32

35

36

37

38

39

40

41

o N

N

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

DECLARATION CF WEIGHBELT SPEED INTERFACE */
WEIGHBELTS$SPEED:

PROCEDURE BYTE EXTERNAL;

END WEIGHBELTS$SPEED;

DECLARATION OF WEIGHBELT WEIGHT INTERFACE */
WEIGHBELTSWEIGHT :

PROCEDURE ADDRESS EXTERNAL;

END WEIGHBELTS$WEIGHT;

DECLARATION OF LIQUID FLOW RATE INTERFACE */
LIQUIDSFLOWSRATE :

PROCEDURE ADDRESS EXTERNAL;

END LIQUIDSFLOWSRATE;

DECLARATION OF WEIGHBELT MOTOR DRIVE INTERFACE */
WEIGHBELTSMOTORSDRIVE:

PROCEDURE (SPEED) EXTERNAL;

DECLARE SPEED ADDRESS;

END WEIGHBELT$MOTORSDRIVE;

DECLARATION OF LIQUID VALVE INTERFACE */
LIQUIDSVALVESPOSITION:
PROCEDURE (POSITION) EXTERNAL;
DECLARE PCSITION BYTE;
END LIQUIDS$VALVESPOSITION;

CECLARATION OF PROCESSOR § INITIALIZATION MODULE
PROCESSORS$QSINITIALIZATION:
PROCEDURE EXTERNAL;
END PROCESSOR$@SINITIALIZATION;

DECLARATION OF PROCESSOR 1 INITIALIZATION MODULE
PROCESSORS$1SINITIALIZATION:
PROCEDURE EXTERNAL;
END PROCESSOR$1S$SINITIALIZATION;

DECLARATION OF PROCESSOR 2 INITIALIZATION MCDULE
PROCESSORS$2SINITIALIZATION :
PROCEDURE EXTERNAL;
END PROCESSOR$2SINITIALIZATION;

DECLARATION OF PIT COUNTER 1 INITIALIZATION */
COUNTERS$1S$INITIALIZATION:

PROCEDURE EXTERNAL;

END COUNTERS$S1SINITIALIZATION;

DECLARATION OF PIT COUNTER 2 INITIALIZATION */
COUNTERS2INITIALIZATION:
PROCEDURE EXTERNAL;
END COUNTER$2S$SINITIALIZATION;

*/

*/

*/

3-100

42
43
44
45

46
47

48
49
50
51
52
53

54
55
56
57
58
59

66
67
68

69
70
71

72

74

75
76
77
78
7%
80

DN =N ON =N o R SIS SN NN RN

NS RN N - NN

NN =N

/*

/*

/*

/*

/*

/*

/*

/*

DECLARATION OF FSP UNSIGNED LCAD PROCEDURES */
MQULD1: PROCEDURE (IRSPTR,VALUESPTR) EXTERNAL;
DECLARE (IRS$PTR,VALUESPTR) ADDRESS;
END MQULDI1;
MQULD2: PROCEDURE (IR$PTR,VALUESPTR) EXTERNAL;

DECLARE (IR$PTR,VALUESPTR) ADDRESS;
END MQULD2;

DECLARATION OF FSP UNSIGNED MULTIPLY PROCEDURE
MQUML1: PROCEDURE (IRSPTR,VALUESPTR) EXTERNAL;
DECLARE (IRSPTR,VALUESPTR) ADDRESS;
END MQUML1;
MQUML2: PROCEDURE (IRS$PTR,VALUESPTR) EXTERNAL;
DECLARE (IRSPTR,VALUESPTR) ADDRESS;
END MQUML2;

DECLARATION OF FSP UNSIGNED DIVIDE PROCEDURE */
MQUDV1: PROCEDURE (IRS$PTR,VALUESPTR) EXTERNAL;
DECLARE (IR$PTR,VALUE$PTR) ADDRESS;
END MQUDV1;
MQUDV2: PROCEDURE (IR$PTR,VALUESPTR) EXTERNAL;
DECLARE (IRS$PTR,VALUES$PTR) ADDRESS;
END MQUDV2;

DECLARATION OF FSP SIGNED DIVIDE PROCEDURE */
MQSDV1: PROCEDURE (IRSPTR,VALUESPTR) EXTERNAL;
DECLARE (IRSPTR,VALUESPTR) ADDRESS;
END MQSDV1;
MQSDV2: PROCEDURE (IRSPTR,VALUESPTR) EXTERNAL;
DECLARE (IRSPTR,VALUESPTR) ADDRESS;
END MQSDV2;

DECLARTATION OF FSP SIGNED STORE PROCEDURE */
MQSST2: PROCEDURE (IRSPTR,VALUESPTR) EXTERNAL;
DECLARE (IR$PTR,VALUESPTR) ADDRESS;
END MQSST2;

DECLARATION OF FSP SIGNED LOAD PROCEDURE */
MQSLD2: PROCEDURE (IRS$PTR,VALUESPTR) EXTERNAL;
DECLARE (IRS$PTR,VALUES$SPTR) ADDRESS;
END MQSLD2;

DECLARATION OF FSP SIGNED SUBTRACT PROCEDURE */
MQSSB2: PRCCEDURE (IRSPTR,VALUESPTR) EXTERNAL;
DECLARE (IRS$PTR,VALUESPTR) ADDRESS;
END MQSSB2;

DECLARATION OF FSP UNSIGNED STORE PROCEDURE */
MQUST1: PROCEDURE (IRS$PTR,VALUESPTR) EXTERNAL;
DECLARE (IRSPTR,VALUES$PTR) ADDRESS;
END MQUSTI1;
MQUST2: PROCEDURE (IRS$PTR,VALUESPTR) EXTERNAL;
DECLARE (IRSPTR,VALUESPTR) ADDRESS;
END MQUSTZ2;

3-101

81
82
83

84
85
86
87

120
191
1¢2

143

104
1¢5

106

107

N o+

— = e e = e e o

=

/* DECLARATION OF FSP SIGNED MULTIPLY PROCEDURE */

MQSML1:

DECLARE

PROCEDURE

END MQOSML1;

SEJECT

/**

* DATA STORAGE AREAS FCR THE PID CONTROL *
Kkkkkkhhhhhhhhhhhhhhrkhhhhkhkhhhhkkhhkhkhkk /

/* DEFINITION OF LIMITATION CONSTANTS */

(IRSPTR, VALUESPTR) EXTERNAL;
(IRSPTR, VALUESPTR) ADDRESS;

DECLARE MAX$MOTORS$SPEED LITERALLY '55¢"';
DECLARE MINSMOTORSSPEED LITERALLY '@"';
DECLARE MAXSVALVES$MOVEMENT LITERALLY '1¢';
DECLARE MINSVALVESMOVEMENT LITERALLY '-1¢°';

/* DEFINITION OF PID PARAMETER COEFFICIENTS */

DECLARE FEEDERSCH LITERALLY '1';
DECLARE FEEDERSC1 LITERALLY '1';
DECLARE FEEDERSC2 LITERALLY '1';
DECLARE FEEDERSC3 LITERALLY '1';
DECLARE FEEDERS$TIMESINTERVAL LITERALLY '1l';
DECLARE FEEDER$SCALESFACTOR LITERALLY 'l1';
DECLARE LIQUIDSCO LITERALLY '1';
DECLARE LIQUIDSCI LITERALLY '1';
DECLARE LIQUIDSC2 LITERALLY '1';
DECLARE LIQUIDSC3 LITERALLY '1°';

DECLARE LIQUIDSTIMESINTERVAL LITERALLY 'l';
DECLARE LIQUIDS$SCALESFACTOR LITERALLY '10°';

/* DEFINITION OF RESET LATCH PARAMETERS */
DECLARE RESET$LATCHS$ADR LITERALLY 'GEAH';
DECLARE INDICATORSON LITERALLY '@7H';
DECLARE INDICATORSOFF LITERALLY '@FH';

/* RESERVE 18 BYTES FOR THE INTEGER RECORD */
DECLARE IR (18) BYTE PUBLIC;

/* RESERVE 42 BYTES FOR EACH PID RECORD */
DECLARE PRCV (42) BYTE;
DECLARE PRLQ (42) BYTE;

/* RESERVE SPACE FOR COUNTER DATA */
DECLARE (LIQSCOUNT,BELTSCOUNT) BYTE PUBLIC;

/* RESERVE 12 BYTES FOR EACH CONSTANT ARRAY */
DECLARE CONSTANTS1 STRUCTURE (
C¢ ADDRESS,
Cl ADDRESS,
C2 ADDRESS,
C3 ADDRESS,
DT ADDRESS,
S ADDRESS);

3-102

108

1¢9

11@

111
112

113

114

115

117

118

119

12¢

121

122

—

/*

/*

/*

/*

/¥

/*

/*

/*

/*

/*

/*

DECLARE

RESERVE
DECLARE

CONSTANTS2 STRUCTURE (
ADDRESS,

ADDRESS,

ADDRESS,

ADDRESS,

ADDRESS,

ADDRESS) ;

8 BYTES FOR EACH BOUNDS ARRAY */
BOUNDS1 (4) ADDRESS DATA (

PO 0H,

peen,
MAXSMOTORSSPEED,
MINS$MOTORSSPEED) ;

DECLARE

BOUNDS2 (4) ADDRESS DATA (

g¢aD,

goer,

MAXSVALVE SMOVEMENT,
MINSVALVESMOVEMENT) ;

RESERVE
DECLARE
DECLARE

DECLARE
DECLARE

RESERVE
DECLARE

RESERVE
DECLARE

RESERVE
DECLARE

RESERVE
DECLARE

RESERVE
DECLARE

RESERVE

DECLARE

1 BYTE FOR EACH CONTROL BYTE */
CONTROL1 BYTE DATA (£73H);
CONTROL2 BYTE DATA (GS53H);

TIME INTERVAL */
TIMESINTERVAL ADDRESS DATA (1);

SPACE FOR THE CURRENT BELT SPEED */
BELTS$SPEED BYTE;

SPACE FOR THE CURRENT BELT WEIGHT */
BELTSWEIGHT ADDRESS;

SPACE FOR THE LIQUID FLOW */
LIQUIDSFLOW ADDRESS;

SPACE FOR THE EFFECTIVE SETPOINT */
MASSSSETPOINT ADDRESS;

SPACE FOR THE DESIRED SETPOINT */
SETSPOINT ADDRESS;

SPACE FOR THE DISTANCE OF BELT PER REVOLUTION

DISTSREV BYTE DATA (168);

DEFINE THE CONVEYOR LENGTH */

DECLARE

CONVSLENGTH BYTE DATA (208);

DEFINE THE CONSTANT SIX */

DECLARE

RESERVE
DECLARE

SIX BYTE DATA (6);

STORAGE FOR ACTUAL CURRENT MASS FLOW */
MASSSFLOW ADDRESS;

3-103

123

124

125

126

127
128

129

13¢

131

132

133

134
135

136
137
138

139

149

= =

=

/* RESERVE SPACE FOR BELT CONTROL OUTPUT */
DECLARE BELTSCONTROL ADDRESS;

/* RESERVE SPACE FOR LIQUID RATIO */
DECLARE LIQUIDS$RATIO BYTE;

/* RESERVE SPACE FOR LIQUID CONTROL OUTPUT */
DECLARE LIQUIDSVALVE ADDRESS;

/* RESERVE SPACE FOR RUN/HALT CONTROL */
DECLARE SYSTEMSRUNNING BYTE PUBLIC;

/* RESERVE SPACE FOR ERROR FIELD */
DECLARE ERRORSFIELD ADDRESS DATA (@F8@@H);
DECLARE DUMMY ADDRESS;

/* RESERVE SPACE FOR PIC ICW BYTE */
DECLARE ICW BYTE;

/* DEFINE CONSTANT 1l¢¢g */)
DECLARE THOUSAND ADDRESS DATA (160¢);

/* DEFINE CONSTANT @ */)
DECLARE ZERO ADDRESS DATA (@);

/* DEFINE INTERRUPT JUMP TABLE */
DECLARE JUMPSTABLE BYTE AT (3F@QH);

/* DECLARATION OF PIC ADDRESSES ON ISBC 569 BOARD */
DECLARE PICSICWI1SPTR LITERALLY 'GECH';
DECLARE PICS$ICW2SPTR LITERALLY '@EDH';
DECLARE PICSINTSMASKSPTR LITERALLY '@EDH';

/* DECLARATICON OF PIC CONSTANTS */

DECLARE CLRSLOWSBITS LITERALLY '@EEH';

DECLARE INTERVALS$4 LITERALLY 'Ol6H';

DECLARE INTERRUPTS$MASK LITERALLY '@F4H';
SEJECT

/***

* INITIALIZE PROGRAM AT START-UP OF SYSTEM *

* THIS PROCEDURE IS CALLED AT START-UP *
Khkkkhhhhhhhhhhhhhhhhhhhhkhkhhdhhhhkhkhhkh ks /

INITIATION: PROCEDURE PUBLIC;

/* DISABLE THE INTERRUPTS */
DISABLE;

/* INITIALIZE PID RECORD */

CALL UQPSET (.PRCV,.ERRORSFIELD, .DUMMY) ;
CALL UQPSET (.PRLQ,.ERROR$FIELD,.DUMMY);

3-104

/* INITIALIZE THE CONTROL BITS */

143 2 CALL UQPSCT (.PRCV,.CONTROL1);
144 2 CALL UQPSCT (.PRLQ,.CONTROL2);
/* SET UP THE PID CONSTANTS */
145 2 CONSTANTS1.C# = FEEDERS$CO;
145 2 CONSTANTS1.C1 = FEEDERSCI;
147 2 CONSTANTS1.C2 = FEEDERSC2;
148 2 CONSTANTS1.C3 = FEEDER$C3;
149 2 CONSTANTS1.DT = FEEDERSTIMESINTERVAL;
158 2 CONSTANTS1.S = FEEDERSSCALESFACTOR;
151 2 CONSTANTS2.C@# = LIQUIDSCH;
152 2 CONSTANTS2.Cl = LIQUIDSCI;
153 2 CONSTANTS2.C2 = LIQUIDSC2;
154 2 CONSTANTS2.C3 = LIQUID$C3;
155 2 CONSTANTS2.DT = LIQUIDSTIMESINTERVAL;
156 2 CONSTANTS2.S = LIQUID$SCALESFACTOR;
/* CLEAR SETPOINTS */
157 2 SETPOINT = @;
158 2 LIQUIDSRATIO = §;
159 2 SYSTEMSRUNNING = @;
/* INITIALIZE THE CONSTANTS */
140 2 CALL UQPSCN (.PRCV,.CONSTANTS1);
161 2 CALL UQPSCN (.PRLQ,.CONSTANTS2);
/* INITIALIZE THE BOUNDS */
162 2 CALL UQPSBD (.PRCV,.BOUNDS1);
163 2 CALL UQPSBD (.PRLQ,.BOUNDS2);
/* SET THE TIME INTERVAL */
164 2 CALL UQPSTI (.PRCV,.TIMESINTERVAL);
165 2 CALL UQPSTI (.PRLQ,.TIMESINTERVAL);
/* INITIALIZE PROCESSOR @ */
166 2 CALL PROCESSORS$ZSINITIALIZATION;

/* INITIALIZE PROCESSOR 1 */
167 2 CALL PROCESSOR$1SINITIALIZATION;

/* INITIALIZE PROCESSOR 2 */

168 2 CALL PROCESSORS2INITIALIZATION;
/* INITIALIZE COUNTER 1 */
169 2 CALL COUNTERS1SINITIALIZATION;
/* INITIALIZE COUNTER 2 */
174 2 CALL COUNTER2INITIALIZATION;
/* INITIALIZE INTERRUPT CONTROLLER */
171 2 ICW = (LOW (.JUMPSTABLE) AND
CLRSLOWSBITS) CR
INTERVALSY ;
172 2 OUTPUT (PICSICW1S$PTR) = ICW;

3-105

ICW = HIGH (.JUMPSTARLE);

173 2
174 2 OUTPUT (PICSICW2S$PTR) = ICW;
/* SET INTERRUPT MASKS */
175 2 OUTPUT (PICSINTSMASKSPTR) = INTERRUPTSMASK;
/* ENABLE INTERRUPTS */
176 2 ENABRLE; ‘
/* RETURN TO MAIN PROGRAM */
177 2 - RETURN;
178 2 END INITIATION;
SEJECT
/***
* THIS IS THE PID CONTROL ROUTINE. IT IS ENTERED *
* EACH 2¢¢ MILLISECONDS THROUGH AN INTERRUPT GEN- *
* ERATED BY THE FREQUENCY COUNTER UPI AND SENT TO *
* INTERRUPT 3. : *
***/
179 1 PIDRUN: PROCEDURE INTERRUPT 3 PUBLIC;
/* TURN THE LED INDICATOR ON */
189 2 OUTPUT (RESETSLATCHSADR) = INDICATORSON;
/* GET WEIGHBELT WEIGHT */
181 2 BELTSWEIGHT=WEIGHBELTSWEIGHT;
/* GET LIQUID FLOW RATE */
182 2 LIQUIDSFLOW=LIQUIDSFLOWSRATE;
/* CONTROL START-STOP RAMP */
183 2 IF SYSTEMS$RUNNING
THEN MASS$SETPOINT=SETPOINT;
185 2 ELSE MASS$SETPOINT=#;
/* DETERMINE ACTUAL MASS FLOW ON WEIGHBELT */
186 2 CALL MQULD2(.IR, .BELTSCONTROL) ;
187 2 CALL MQUML2(.IR,.BELTSWEIGHT);
188 2 CALL MQUML1 (.IR,.DISTSREV);
189 2 CALL MQUDV1(.IR,.CONVSLENGTH);
19¢ 2 CALL MQSDV2(.IR,.THOUSAND) ;
191 2 CALL MQSST2(.IR,.MASSSFLOW) ;
/* COMPUTE ERROR SIGNAL ON WEIGHBELT */
192 2 CALL MQSLD2(.IR, .MASSSSETPOINT);
193 2 CALL MQSSB2(.IR,.MASSSFLOW) ;
/* HANDLE PID BELT CONTROL ALGORITHM */
194 2 CALL UQPPID(.PRCV,.IR);
/* STORE OUTPUT SIGNAL */
195 2 CALL MQUST2(.IR,.BELTSCONTROL);

3-106

196
197
198

199

201

202

203

204

205

206

207

208
209
210

/*

2
2
2

/*
2

/¥
2

/%
2

/*
2

/*
2

/*
2

/%
2

/*
2

/*
2
2
1 END;

COMPUTE LIQUID SETPOINT */
CALL MQSLD2(.IR, .MASSSFLOW) ;
CALL MQSML1 (.IR,.LIQUIDSRATIO);
CALL MQSML1(.IR,.SIX);

VERIFY THAT WEIGHBELT IS MOVING */
IF WEIGHBELTSSPEED = ¢
THEN CALL MQULD2(.IR,.ZERO);

COMPUTE LIQUID ERROR */
CALL MQSSB2(.IR,.LIQUIDSFLOW);

HANDLE PID LIQUID CONTROL */
CALL UQPPID(.PRLQ,.IR);

STORE OUTPUT SIGNAL */
CALL MQUST1(.IR,.LIQUIDSVALVE);

OUTPUT WEIGHBELT CONTROL SIGNAL */
CALL WEIGHBELTS$SMOTORSDRIVE (BELTSCONTROL) ;

OUTPUT FLOW CONTROL SIGNAL */
CALL LIQUIDSVALVESPOSITION (LIQUIDSVALVE);

SEND END OF INTERRUPT TO 825¢ CONTROLLER */
OUTPUT (EECH) =020H;

TURN THE LED INDICATOR OFF */
OUTPUT (RESETSLATCHS$ADR) = INDICATORSOFF;

RETURN FROM CONTROL TASK */
RETURN ;
END PIDRUN;

MODULE INFORMATION:

CODE AREA SIZ

VARIABLE AREA SIZE
MAXIMUM STACK SIZE

E = @1C1lH 44¢D
= @P94H 148D
= QOOAH 14D

465 LINES READ
¢ PROGRAM ERROR (S)

END OF PL/M-8¢ COMPILATION

3-107

ISIS-II PL/M-80¢ V3.1 COMPILATION OF MODULE PROCESSORINITIALIZATIONMODULE

OBJECT MODULE PLACED IN :F1:SBC941.0BJ

COMPILER INVOKED BY: PLM8¢ :F1:SBC941.PLM DEBUG PAGEWIDTH(72) TITLE('PR
—0OCESSOR INITIALIZATION')

JrEhkkkkkkhhhkhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhkkk
* THIS PROGRAM IS USED TO INITIALIZE THE ISBC *

* 941 PROCESSOR INSTALLED IN SOCKET ¢£. THE *
* DEVICE WILL OPERATE IN THE FREQUENCY OUTPUT *
* MODE. *

*****************'k****************************/

1 PROCESSORSINITIALIZATIONSMODULE: DO;

/* DECLARATION OF ADDRESSES */

2 1 DECLARE UPISfZSTATUS LITERALLY '@E5H';
3 1 DECLARE UPI$@SCOMMAND LITERALLY '@ESH';
4 1 DECLARE UPIS$@S$DATA LITERALLY '@E4H';
5 1 DECLARE UPIS1STATUS LITERALLY '@E7H';
6 1 DECLARE UPI1CCMMAND ' LITERALLY '@E7H';
7 1 DECLARE UPI$1SDATA LITERALLY '@EG6H';
8 1 DECLARE UPI$2S$SSTATUS LITERALLY '@ESH';
9 1 DECLARE UPI2COMMAND LITERALLY 'QE9H';
10 1 DECLARE UPI$2S$DATA LITERALLY '@E8H';
/* DECLARATION OF ISBC 941 COMMANDS */
11 1 DECLARE SETP1 LITERALLY '@@BH';
12 1 DECLARE CLRP1 LITERALLY '@@DH';
13 1 DECLARE CLRP2 LITERALLY '@@ER';
14 1 DECLARE PAUSE LITERALLY '@@5H';
15 1 DECLARE LOOP LITERALLY '@@4H';
16 1 DECLARE INITPF LITERALLY 'g@2H';
17 1 DECLARE PACIFY LITERALLY '@@1H';
18 1 DECLARE ENFLAG LITERALLY '@@6H';
/* DECLARATION CF ISBC 941 STATUS BITS */
19 1 DECLARE RFC LITERALLY '@8@H';
20 1 DECLARE IBF LITERALLY '@@2H';
21 1 DECLARE QF LITERALLY '@l@H';
/* DECLARATION OF ISBC 941 #@¢ INITIALIZATION DATA */
22 1 DECLARE FREQ LITERALLY '@gBSH';
23 1 DECLARE SF LITERALLY 'QQ@@H';
24 1 DECLARE OUTPUTS$ENABLE¢ LITERALLY '@@lH';
25 1 DECLARE INITIALSSTATE LITERALLY '@@@H';
26 1 DECLARE DELAY LITERALLY '0Q1H';
27 1 DECLARE PERIOD LITERALLY '@@g¢H';
28 1 N DECLARE INITIALSOUTPUT LITERALLY 'GQEH';

3-108

29

31
32

33

34

35

52
53
54

Ll el S

Wwd N SRS Wws W (SIS

DWW

/* DECLARATION OF INTERVAL TIMER PARAMETERS */
DECLARE PITS@SMODE LITERALLY '@1l6H';
DECLARE PITS$@SINTERVAL LITERALLY 'G@EH';
DECLARE PITS@WSMODESWRD LITERALLY '@E3H';

DECLARE PIT$@SCOUNT LITERALLY 'QEZH';

/* DECLARATION OF COUNTER LOCATIONS */
DECLARE (LIQS$COUNT,BELTSCOUNT) BYTE EXTERNAL;

/* DECLARATION OF ISBC 941 PRIMARY DATA */
DECLARE INIT$@STABLE (6) BYTE DATA (
FREQ,
SF,
OUTPUTSENABLER,
INITIALSSTATE,
DELAY,
PERIOD);

/* DECLARATION OF MISC PARAMETERS */
DECLARE I BYTE;

/***

* INITIALIZATION PROGRAM BODY *
KAKKKK KRR KRR R kAR K Ik Rhhhhkkhhhhhhhhhhhkhhhhkhxk /

PROCESSORS$@SINITIALIZATION: PROCEDURE PUBLIC;

/* INITIALIZE COUNTER @ FOR 1@ MICROSECONDS */
OUTPUT (PITS@SMODESWRD) =PIT$@ SMODE ;
OUTPUT (PITS@SCOUNT)=PIT$@SINTERVAL;

/* VERIFY THAT PROCESSOR IS RESET */
DO WHILE ((INPUT(UPIS@SSTATUS) AND RFC) = @);
DO WHILE ((INPUT (UPIS@SSTATUS) AND IBF) <> £);
END;
OUTPUT (UPI$@SCOMMAND)=PACIFY;
END;

/* REQUEST PRIMARY FUNCTION */
DO WHILE ((INPUT (UPISOSSTATUS) AND IBF) <> 8);
END;
OUTPUT (UPI$@SCOMMAND)= INITPF;

/% LOAD INITIAL PARAMETERS */
DO I=¢ TO 5;
DO WHILE ((INPUT(UPI$@$STATUS) AND IBF) <> @);
END;
OUTPUT (UPIS@SDATA)=INITSZSTABLE (I);
END;

/* TERMINATE PARAMETER LOADING */
DO WHILE ((INPUT(UPI$ZSSTATUS) AND IBF) <> €);
END;
OUTPUT (UPIS$@SCOMMAND)=PAUSE;

3-109

55

57

58
6@

61
62

2
)2

64
65

66
67
68
69
70

71

N W

D wN

N W

[l S S

wWwd W

/* START FREQUENCY FUNCTION */
DO WHILE ((INPUT(UPIS$@SSTATUS) AND IBF) <>@);
END;
OUTPUT (UPIS@SCOMMAND)=LOOP;

/* SET UNUSED BITS TO ALLOW EXPANSION */

DO WHILE ((INPUT (UPIS@S$STATUS) AND IBF) <> 0);
END;
OUTPUT (UPI$@SCOMMAND)=CLRP2;

DO WHILE ((INPUT(UPI$@SSTATUS) AND IBF) <> @);
END;
OUTPUT (UPISPSDATA)=INITIALSOUTPUT;

/* RETURN TO CALLING PROGRAM */
RETURN;

END PROCESSORSGSINITIALIZATION;

$EJECT

JrREkkkkkkkhhhkhhhhhhhhhhhhhkkhhhhhhhhhhhkhkhh ko k
* THIS PROCEDURE IS USED TO INITIALIZE THE ISBC *
* 941 PROCESSOR INSTALLED IN SOCKET 1. THE DE- *
* VICE WILL OPERATE IN THE FCOUNT, HIGH FRE- *

* QUENCY INPUT MODE. *
**/

/* DEFINE INITIALIZATION PARAMETERS */

DECLARE FCOUNT LITERALLY '€33H';
DECLARE INPUTS$SELECT LITERALLY '@g@lH';
DECLARE OUTPUTS$ENABLES1 LITERALLY '@@1H';
DECLARE SAMPLINGSINTERVAL LITERALLY '@@9H';
DECLARE INITIALS$STATES] LITERALLY '@EI1H';

/* DECLARE PARAMETER INITIALIZATION TARLE */
DECLARE INIT1TABLE (4) BYTE DATA (
FCOUNT,
INPUTSSELECT,

OUTPUT$ENABLES1,
SAMPLINGSINTERVAL);

/**

* INITIALIZATION BODY *
Khkhhkhkhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhkhhhkhhhkkk /

PROCESSORS1INITIALIZATION: PROCEDURE PUBLIC;

/* VERIFY THAT PROCESSOR IS RESET */

DO WHILE ((INPUT(UPI$S1S$STATUS) AND RFC) = @);
DO WHILE ((INPUT(UPI1STATUS) AND IBF) <> @)
END;
OUTPUT (UPI1COMMAND)=PACIFY;

END;

.

’

3-110

/* REQUEST PRIMARY FUNCTION */

78 2 DO WHILE ((INPUT (UPI1STATUS) AND IBF) <> 0);
79 3 END;
89 2 OUTPUT (UPIS1$COMMAND)=INITPF;
/* LOAD INITIAL PARAMETERS */
g1l 2 DO I=¢ TO 3;
82 3 DO WHILE ((INPUT(UPIS1$STATUS) AND IBF) <> 8);
83 4 END;
84 3 OUTPUT (UPI$1SDATA)=INITS$1STABLE (I);
85 3 END;
/* TERMINATE PARAMETER LOADING */
86 2 DO WHILE ((INPUT(UPIS1$STATUS) AND IBF) <> @);
87 3 END;
88 2 OUTPUT (UPI1COMMAND)=PAUSE;
/* SET UNUSED BITS HIGH FOR SPARE ENABLES */
89 2 DO WHILE ((INPUT(UPI1STATUS) AND IBF) <> 0);
9¢ 3 END;
91 2 OUTPUT (UPI1COMMAND) =SETP1;
92 2 DO WHILE ((INPUT(UPIS1$STATUS) AND IBF»«<> g);
93 3 END;) '
94 2 OUTPUT (UPI$1SDATA)=INITIALSSTATES];
/* START FREQUENCY COUNT OPERATION */
95 2 DO WHILE ((INPUT (UPI1STATUS) AND IBF) <> #);
96 3 END;
97 2 OUTPUT (UPI1COMMAND)=LOOP;
/* RETURN TO CALLING PROGRAM */
98 2 RETURN ;
929 2 END PROCESSORS1INITIALIZATION;
$EJECT
JREKARRK KKK ARKKKARIRRIR AR KRR IRk hkhkk ko kk ke hhkkk ok
* THIS PROCEDURE IS USED TO INITIALIZE THE ISBC *
* 941 INSTALLED IN SOCKET 2. THE DEVICE WILL BE *
* OPERATED AS A STEPPER MCTOR DRIVER. *
L T I I T T S 2T
/* DEFINE INITIALIZATION PARAMETERS */
100 1 DECLARE STEPPER LITERALLY '@1l7H';
1gl 1 DECLARE SCALES$SFACTOR LITERALLY '@DFH';
192 1 DECLARE OUTPUTSENABLES$2 LITERALLY '@F@H';
103 1 DECLARE OUTPUTS$POLARITY LITERALLY '@5¢H';
104 1 DECLARE COMMONSPERIOD LITERALLY '@g@4RH';
195 1 DECLARE P2@$TRAN1 LITERALLY '@@@H';
196 1 DECLARE P2@$TRAN2 LITERALLY '@@g@H';
107 1 DECLARE P21$TRAN1 LITERALLY '@@@H’';
108 1 DECLARE P21S$TRAN2 LITERALLY 'Q@6H';
109 1 DECLARE P22$TRAN1 LITERALLY '@@@H';
119 1 DECLARE P22$TRAN?2 LITERALLY '@@@H';

3111

111 1 DECLARE P23$TRAN1 LITERALLY '@@@H';
112 1 DECLARE P23$TRAN2 LITERALLY '@@0OH';
113 1 DECLARE P24 $TRAN1 LITERALLY 'G@PH';
114 1 DECLARE P24$TRAN2 LITERALLY '@@2H';
115 1 DECLARE P25$TRAN1 LITERALLY '@@@H';
116 1 DECLARE P25$TRAN2 LITERALLY '@@2H';
117 1 DECLARE P25$TRAN1 LITERALLY '@@1H';
118 1 DECLARE P26S$TRAN2 LITERALLY '@¢3H';
119 1 DECLARE P27$TRAN1 LITERALLY '@@1H';
126 1 DECLARE P27$TRAN2 LITERALLY '@@3H';
121 1 DECLARE CLR$LOWS$PORT LITERALLY 'GCFH';
/* DECLARE PARAMETER INITIALIZATION TABLE */
122 1 DECLARE INIT$2S$TABLE (21) BYTE DATA (
STEPPER,
SCALESFACTOR,
OUTPUTS$ENABLES?2,
OUTPUT$POLARITY,
COMMONS$PERIOD,
P2¢STRAN1,
P26STRAN2,
P21$TRAN1,
P21S$TRAN2,
P22$TRAN1,
P22STRAN2,
P23$TRAN1,
P23S$TRAN2,
P24$TRAN1,
P24STRAN2,
P25$TRAN1,
P25S$TRAN2,
P26 $TRAN1,
P26 $TRAN2,
P27$TRAN1,
P27$TRAN2);
/**
* INITIALIZATION BODY *
**/
123 1 PROCESSORS2INITIALIZATION: PROCEDURE PUBLIC;
/* VERIFY THAT PROCESSOR IS RESET */
124 2 DO WHILE ((INPUT(UPI2STATUS) AND RFC) = 8);
125 3 DO WHILE ((INPUT (UPI2STATUS) AND IBF) <> @);
126 4 END;
127 3 . OUTPUT (UPI2COMMAND)=PACIFY;
128 3 END;
/* REQUEST PRIMARY FUNCTION */
129 2 DO WHILE ((INPUT(UPI$2SSTATUS) AND IBF) <> 8);
136 3 END;
131 2 OUTPUT (UPI 2COMMAND)=INITPF;

3112

132
133
134
135
136

137
138
139
140

141
142

143
144
145
146
147
148
149

150

151
152

153

154

o W N w N Wwds wN

DWW

/* LOAD INITIAL PARAMETERS */
DO I=§¢ TO 20;
DO WHILE ((INPUT(UPI2STATUS) AND IBF) <> @);
END;
OUTPUT (UPI$2S$DATA)=INITS2$TABLE (I);
END;

/* TERMINATE PARAMETER LOADING */
DO WHILE ((INPUT(UPI$2S$STATUS) AND IBF) <> @);
END;
OUTPUT (UPI$2S$COMMAND)=PAUSE;

/* START STEPPER CONTROLLER OPERATION */
DO WHILE ((INPUT (UPI2STATUS) AND IBF) <> @);
END;
OUTPUT (UPI$2SCOMMAND)=L0OOP;

/* SET UNUSED BITS LOW TO ENABLE GENERAL FUNCTIONS */
DO WHILE ((INPUT(UPI2STATUS) AND IBF) <> @);
END;

OUTPUT (UPI$2SCOMMAND)=CLRP1;

DO WHILE ((INPUT(UPI$2SSTATUS) AND IBF) <> @);
END;

OUTPUT (UPI2DATA)=CLRSLOWSPORT;

/* RETURN TO CALLING PROGRAM */
RETURN ;

END PROCESSORS$2S$SINITIALIZATION;

SEJECT

/***
* THIS PROCEDURE IS USED TO INITIALIZE COUNTER *
* 1 TO PERFORM AS AN EIGHT BIT BINARY COUNTER *

* WHICH WILL BE USED TO MEASURE THE BELT SPEED.*
kkkkhhhhkkhhhkhhkhhhhhkhhhhhhhhhhkhkhhhhhhhhhhkkkk /

COUNTERS1$INITIALIZATION: PROCEDURE PUBLIC;

/* INITIALIZE COUNTER 1 FOR EIGHT BIT COUNTING */
LIQSCOUNT = &;

/* RETURN TO CALLING PROGRAM */
RETURN ;

END COUNTER1INITIALIZATION;

SEJECT

Jhhkhkhkkhhhhhkhhhhkhhhhhkhhhhkhhkhhkhhhhkhkkh k%
* THIS PROCEDURE IS USED TO INITIALIZE COUNTER *
* 2 TO PERFORM AS AN EIGHT BIT BINARY COUNTER *
* WHICH WILL BE USED TO MEASURE THE LIQUID *
* FLOW THROUGH THE METER. *
hkkhkhhkkkhkhkhhhhhhhhhhhhhhkhhhhhhhkhhhhkhkhhkkk /

3-113

155 1 COUNTERS2INITIALIZATION: PROCEDURE PUBLIC;

/* INITIALIZE COUNTER 2 FOR EIGHT BIT COUNTING */

156 2 BELTSCOUNT = @ ;
/* RETURN TO CALLING PROGRAM */

157 2 RETURN;

158 2 END COUNTERS2SINITIALIZATION;

159 1 END PROCESSORSINITIALIZATIONSMODULE;
SEJECT

MODULE INFORMATION:

CODE AREA SIZE = P2@1H 513D
VARIABLE AREA SIZE = Q0@01H 1D
MAXIMUM STACK SIZE = @¢Q@ZH @D

329 LINES READ
@ PROGRAM ERROR(S)

END OF PL/M-80 COMPILATION

3-114

ISIS-II PL/M-8¢ V3.1 COMPILATION OF MODULE PROCESSORINTERFACEMODULE
OBJECT MODULE PLACED IN :F1:0PR941.0BJ
COMPILER INVOKED BY: PLM8¢ :F1:0PR941.PLM DEBUG

SINTVECTOR (4, 3F@QH)

$PAGEWIDTH (72)

STITLE ('PROCESSCR INTERFACE')
JREdkkhkkkhkhhkhkkkkkkhkkhkkhhhhhhhhhkhhkhrkkhhhhk
* THESE PROGRAMS PROVIDE THE OPERATING INTER- *
* FACE BETWEEN THE APPLICATION PROGRAM AND *

* THE ISBC 941 PROCESSORS OR COUNTERS. *
Hhkkhkhhkdkkkhhkkhhhhhkhkhkkhhhkhhhhhhhhkhkhhhkhkkx /

1 PROCESSOR$INTERFACESMODULE: DO;

/* DECLARATION OF ADDRESSES */

2 1 DECLARE UPIS$@SSTATUS LITERALLY '@E5H';
3 1 DECLARE UPI$@#SCOMMAND LITERALLY '@ESH';
4 1 DECLARE UPIS$@SDATA LITERALLY 'GE4H';
5 1 - DECLARE UPI1STATUS LITERALLY '@E7H';
6 1 DECLARE UPI1COMMAND LITERALLY '@E7H';
7 1 DECLARE UPIS1S$DATA LITERALLY '@E6H';
8 1 DECLARE UPI2STATUS LITERALLY '@ECGH';
9 1 DECLARE UPI2COMMAND LITERALLY '!'@EOH';
10 1 DECLARE UPI2DATA LITERALLY '@E8H';
/* DECLARATION OF ISBC 941 COMMANDS */
11 1 DECLARE SETP1 LITERALLY 'O@BH';
12 1 DECLARE CLRP1 LITERALLY '@@DH';
13 1 DECLARE CLRP2 LITERALLY 'Q@EH';
14 1 DECLARE RDFCQ LITERALLY '0Q42H';
15 1 DECLARE RDfC1 LITERALLY '@43H';
16 1 DECLARE PAUSE LITERALLY '@@5H';
17 1 DECLARE LOOP LITERALLY '@@4RH';
18 1 DECLARE INITPF LITERALLY '@@2H';
19 1 DECLARE PACIFY LITERALLY '@@1H';
20 1 DECLARE ENFLAG LITERALLY '@@6H';
21 1 DECLARE SETOE LITERALLY '@71H';
/* DECLARATION OF ISBC 941 STATUS BITS */
22 1 DECLARE RFC LITERALLY '@8@H';
23 1 DECLARE IBF LITERALLY '@@2H';
24 1 DECLARE OBF LITERALLY '@@1H';
25 1 DECLARE QF LITERALLY '@l@H';
26 1 DECLARE ONE LITERALLY '@2@H‘;
/* DEFINE THE MATH ROUTINES USED BY MODULES */
27 1 MQULD4: PROCEDURE (IRSPTR,VALUES$PTR) EXTERNAL;
28 2 DECLARE (IRSPTR,VALUESPTR) ADDRESS;
29 2 END MQULD4;
30 1 MQUDV2: PROCEDURE (IRSPTR,VALUESPTR) EXTERNAL;
31 2 DECLARE (IRS$PTR,VALUESPTR) ADDRESS;
32 2 END MQUDV2;

3-115

40

41

42

43

45
46

47
48

49

51

53

DN =Ny

N

o N

w s W

MQUDV1: PROCEDURE (IRSPTR,VALUES$PTR) EXTERNAL;
DECLARE (IRS$PTR,VALUESPTR) ADDRESS;
END MQUDV1; :

MQUST1: PROCEDURE (IRS$PTR,VALUESPTR) EXTERNAL;
DECLARE (IRSPTR,VALUESPTR) ADDRESS;
END MQUSTI;

/* DEFINE THE MATH ACCUMULATOR STORAGE AREA */
DECLARE IR (18) BYTE EXTERNAL;

/* DEFINE THE COUNTER LOCATIONS */
DECLARE (LIQSCOUNT,BELTSCOUNT) BYTE EXTERNAL;

SEJECT
/** *hkkkkkkk

* THIS PROGRAM IS USED TO GENERATE A FREQUENCY *

* QUTPUT USING THE ISBC 941 MODULE INSTALLED IN *
* SOCKET NUMBER @. TO PROVIDE MAXIMUM RESOLU- *
* TION, FOUR PERIODS WILL BE USED. THE FREQUEN-*
* CY RANGES CORRESPONDING TO EACH PERIOD ARE: *
* RANGE FREQ RESOLUTION *
* 1 5¢ TO 165 HZ 2 HZ *
* 2 166 TO 225 HZ 3 HZ *
* 3 226 TO 285 HZ 3 HZ *
* o 286 TO 550 HZ 6 HZ *
* THE SCALE FACTOR IS COMPUTED BY THE FORMULA: *
* SF=1600008/((FREQ)* (RANGE FACTOR)) *
**/

WEIGHBELTSMOTORSDRIVE: PROCEDURE (FREQ) PUBLIC;

/* DECLARATION OF CONSTANT, 14¢,000 */
DECLARE HUNDREDSK (4) BYTE DATA (
PAQH,086H,AP1H,0060H);

/* DECLARATION OF ISBC941 PORT ENABLES */
DECLARE ENABLESFREQ LITERALLY 'QlH';
DECLARE DISABLESFREQ LITERALLY '@@H';

/* DECLARATION COF ISBC 941 MEMORY LOCATION COMMANDS */
DECLARE WRRMS$55 LITERALLY '@55H';
- DECLARE WRRM$74 LITERALLY '@74H';

/* DECLARATION OF VARIABLES USED IN COMPUTATIONS */
DECLARE (RANGE,FREQA) BYTE;
DECLARE FREQ ADDRESS;

/* BEGIN COMPUTATION OF OUTPUT FOR FREQ > 48 HZ. */
IF FREQ > 49
THEN DO;

/* ENABLE FREQUENCY OUTPUT */
DO WHILE ((INPUT (UPISZSSSTATUS) AND IBF) <> #);
END;
OUTPUT (UPI$@$SCOMMAND) = SETOE;

3-116

54
55

57
59
61
63

64
65

66
67

68

69

71

72

73
75
76
77

78
79

80
81
82
83

85

86

88

o W

w

ws By

WS W =W [N) [N

w S w

DO WHILE ((INPUT (UPI$@SSTATUS) AND IBF) <> @);

END;
OUTPU'T (UPTIS@SDATA) =

ENABLESFREQ;

/* COMPUTATION OF FREQUENCY RANGE */

/* LOAD MATH

IF FREQ < 285
THEN DO;
IF FREQ < 226
THEN DO;
IF FREQ < 166
THEN RANGE =
ELSE RANGE =
END;
ELSE RANGE = 3;

END;
ELSE RANGE = 2;

9;
5;

ACCUMULATOR WITH 10¢,208 */

CALL MQULD4 (.IR,.HUNDREDSK);

/* TEST FOR MOTOR SHUTDOWN */

IF FREQ > 1
THEN DO;

/* DIVIDE BY FREQUENCY */

/*

/*

/*

CALL MQUDV2 (.IR,

DIVIDE BY RNAGE FACTOR */

CALL MQUDV1 (.IR,

.FREQ) ;

.RANGE) ;

GET TWO'S COMPLEMENT FOR ISBC 941 SCALE FACTOR */
CALL MQUST1 (.IR,.FREQA);
FREQA = NOT (FREQA + 1);

END;
ADJUST FOR MOTOR STOP SIGNAL */
ELSE DO;
FREQA = @Q0H;
RANGE = @FFH;
END;

SEND

NEW SCALE FACTOR TO DEVICE */
DO WHILE ((INPUT(UPIS$@S$STATUS) AND IBF) <> 0);

END;
OUTPUT (UPIZSCOMMAND)

DO WHILE ((INPUT(UPIS$@SSTATUS) AND IBF)

END;
OUTPUT (UPI$@SDATA) =

= WRRMS55;

FREQA;

/* SEND NEW PERIOD TO DEVICE */

DO WHILE ((INPUT(UPIS$S@$STATUS) AND IBF)

END;
OUTPUT (UPI$@SCOMMAND)

= WRRM$74;

<>

<>

2)

2)

3-117

89 3 DO WHILE ((INPUT(UPIS$@SSTATUS) AND IBF) <> 8);
g 4 END;
91 3 QUTPUT (UPIS@SDATA) = RANGE;
/* END OF FREQUENCY OUTPUT MODE */
92 3 END;
/* HANDLE FREQUENCIES < 50 HZ. */
93 2 ELSE DO;
/* DISABLE FREQUENCY OUTPUT GENERATION */ :
94 3 DO WHILE ((INPUT(UPIS@SSTATUS) AND IBF) <> 0);
95 4 END;
946 3 OUTPUT (UPI$@SCOMMAND) = SETOE;
97 3 DO WHILE ((INPUT (UPIS@SSTATUS) AND IBF) <> 8);
98 4 END;
99 k! OUTPUT (UPI$@SDATA) = DISABLESFREQ;
/* END OF ALTERNATE FREQUENCY OUTPUT */
100 3 END;
/* RETURN TO CALLING PROGRAM */
191 2 RETURN ;
1e2 2 END WEIGHBELTSMOTORSDRIVE;
SEJECT
/***
* THIS PROGRAM GETS THE WEIGHBELT WEIGHT FROM THE *
* NUMBER 1 ISBC 941 PROCESSOR. THE WEIGHT WILL BE *
* RECEIVED AS A COUNT WHICH RANGES BETWEEN @ AND *
* 20(¢@, CORRESPONDING TO A WEIGHT BETWEEN @.¢ AND *
* 1¢.@¢@ POUNDS. EACH COUNT RECEIVED HAS A VALUE *
* OF ¢.005 POUNDS. *
***/
123 1 WEIGHBELTSWEIGHT: PROCEDURE ADDRESS PUBLIC;
/* DECLARATIONS OF VARIABLES USED IN THE PROCEDURE */
1¢4 2 DECLARE (LCOUNT,HCOUNT) RYTE;
105 2 DECLARE WEIGHT ADDRESS;
/* GET INPUT COUNT LOW BYTE */
106 2 DO WHILE ((INPUT(UPI1STATUS) AND IBF) <> 8);
107 3 END;
108 2 OUTPUT (UPI$1SCOMMAND) = RDFC¥;
109 2 DO WHILE ((INPUT (UPI$1SSTATUS) AND ORF) = 0);
110 3 END;
111 2

LCOUNT = INPUT(UPI$1S$DATA);

3-118

112
113
114
115
116
117

118
119
120

121
122
123

124

125

126

127

128

129

13¢

131
132

133

134

N W N wh [NESNN)

[SRLCIE Y

o N

/*

/*

/*

/*

/*

GET INPUT COUNT HIGH BYTE */

DO WHILE ((INPUT(UPIS$1SSTATUS) AND IBF) <> 8);
END;

OUTPUT (UPI1COMMAND) = RD#C1;

DO WHILE ((INPUT(UPI1STATUS) AND OBF) = @);
END;
HCOUNT = INPUT (UPI$1SDATA);

START NEXT WEIGHT SAMPLE PERIQOD */
DO WHILE ((INPUT(UPIS$1SSTATUS) AND IBF) <> @);
END;
OUTPUT (UPIS1$COMMAND) = LOOP;

CONVERT WEIGHT TO AN ADDRESS VALUE */
WEIGHT = HCOUNT;

WEIGHT SHL (WEIGHT,8) ;

WEIGHT WEIGHT + LCOUNT;

DIVIDE BY TWO TO CONVERT TO POUNDS */
WEIGHT = SHR(WEIGHT, 1);

RETURN THE WEIGHTBELT WEIGHT */
RETURN WEIGHT;

END WEIGHBELTS$WEIGHT;

$EJECT

JRERER R kA Rk kkkhhhhkhkhhhhhhhkhrhhh kA kb kA kh kX hkhk k%
* THIS PROCEDURE TRANFERS THE WEIGHBELT SPEED TO *
* THE CALLING PROGRAM AND CLEARS THE COUNTER FOR *
* THE NEXT TEST. THE SPEED RESOLUTION PROVIDES *
* ONLY FIVE SPEED RANGES. *
Kk kkkhhhhhhhhhhhAhhhhhhkhhdhhhkhhhhhhkhhkhdhkhhkhhkk /

WEIGHBELT$SPEED: PROCEDURE BYTE PUBLIC;

/*

/*

/*

/*

/*

DECLARATIONS OF VARIABLES USED BY THE PROCEDURE */
DECLARE SPEED BYTE;

LATCH COUNTER BEFORE READING SPEED */
DISABLE; :

GET COUNTER VALUE FROM COUNTER */
SPEED = BELTS$COUNT;

CLEAR COUNTER FOR NEXT OPERATION */
BELTSCOUNT = 6;
ENABLE;

RETURN DATA TO CALLING ROUTINE */
RETURN SPEED;

END WEIGHBELTS$SPEED;

3-119

135

136

137
138

139

141

143

144
145

146
147

148
149
150

151
152
153
154

155

156

NN

KGN

w bW

RERE)

SEJECT
/***
* THIS PROCEDURE PROVIDES COMMANDS TO THE STEPPER *
* MOTOR TO OPERATE THE CONTROL VALVE. IT WILL COM-*
* PUTE THE SIGNED MAGNITUDE REPRESENTATION FROM
* THE TWO'S COMPLIMENT INPUT AND WILL ISSUE THE
* APPROPRIATE STEP INCREMENT AND DIRECTION. A
*
*
*

*

FIXED STEP RATE OF 1¢0 STEPS PER SECOND WILL BE
USED BY THE CONTROL DEVICE.
Khhkkkkhhhkkhhhkhhhkhhhhdhhhhkhhhhhkhhkkhhhkkrkhkkhk /

* % % %

LIQUIDSVALVESPOSITION: PROCEDURE (POSITION) PUBLIC;

/* DECLARATIONS OF VARIABLES USED BY THE PROCEDURE */
DECLARE POSITION BYTE;

/* DEFINITIONS OF TERMS USED IN COMPUTATIONS */
DECLARE STEPSRATE LITERALLY '@@5H';
DECLARE REVERSE LITERALLY '@8@H';

/* IF NO MOVEMENT, SKIP OPERATIONS */
IF POSITION <> @
THEN DO;

/* SUPPORT CONVERSION TO SIGNED MAGNITUDE NUMBER */
IF POSITION > 127
THEN DO;

/* GET MAGNITUDE OF MOVEMENT */
POSITION = 256 - POSITION;

/* SET SIGN FOR CCW ROTATION */
POSITION = POSITION OR REVERSE;
END;

/* VERIFY THAT QUEUE SPACE IS AVAILABLE */
DO WHILE ((INPUT (UPI$2SSTATUS) AND QF) <> @);
END;

/* REQUEST DESIRED STEP RATE */
DO WHILE ((INPUT (UPIS$2S$STATUS) AND IBF) <> 0);
END;
OUTPUT (UPI$2SDATA) = STEPSRATE;

/* REQUEST STEPPER MOVEMENT */
DO WHILE ((INPUT(UPI2STATUS) AND IBF) <> 0);
END;
OUTPUT (UPIS2$DATA) = POSITION;
END; R

/* RETURN TO CALLING PROGRAM */
RETURN ;

END LIQUIDSVALVESPOSITION;

3-120

157

158
159

166

161

162
163

164
165
166
167

168

171

172

173

NN

N oD N

SEJECT
/***

* THIS PROCEDURE TRANSFERS THE LIQUID FLOW RATE FROM *
* THE FLOW COUNTER TO THE CALLING PROGRAM. AFTER

* READING, THE FLOW COUNTER WILL BE RESET TO FACILI-
* TATE THE NEXT READING. THE LIQUID FLOW COUNT WILL
* VARY BETWEEN 2¢ AND 24¢ PULSES IN EACH 24@¢ MILLI-

* SECOND SAMPLE INTERVAL. THIS WILL CORRESPOND TO

* THE ACTUAL LIQUID FLOW RATE OF 14 TO 128 POUNDS

* PER MINUTE.
hhkhkhhkkhhhhkhhhhkhhhhrhARkhhhhrkkhkhhhhkhhkhhhkkkhhkhkhh*

¥ %k % k% ¥ %

LIQUIDSFLOWSRATE: PROCEDURE ADDRESS PUBLIC;

/* DECLARATION OF VARIABLES USED BY THE PROGRAM */
DECLARE TEMP BYTE;
DECLARE (FLOW,TS$STWC,T$SXTN,T$THRTWO) ADDRESS;

/* LATCH COUNTER BEFORE READING FLOW */
DISABLE;

/* GET FLOW RATE VALUE FROM COCUNTER */
TEMP = LIQSCOUNT;

/* CLEAR COUNTER FOR NEXT OPERATION */
LIQSCOUNT = #;
ENABLE;

/* CONVERT TO POUNDS PER MINUTE */
FLOW = TEMP;
T$STWO = SHL (FLOW,1);
TSSXTN = SHL (T$TWO,3);
TSTHRTWO = SHL (TSSXTN, 1);
FLOW = TSTWO + TS$SXTN + TSTHRTWO;

/* RETURN FLOW RATE TO CALLING PROGRAM */
RETURN FLOW;

END LIQUIDSFLOWSRATE;

SEJECT
JrEkkkkkkhkhhkkhkhkkhkhhhhkkkkhkhhhhhhhhkhkdkdk
* COUNTER FOR LIQUID FLOW RATE FROM LIQUID *
* FLOW METER. COUNT PULSE WILL GENERATE AN *
*

* INTERRUPT AT LEVEL 1.
Kkkhhhhhhhrkhrkhkhhhkhhhhkhhhkhhhkhkkhkkhkhhkhhhk /

LIQSCNT: PROCEDURE INTERRUPT 1 PUBLIC;

/* INCREMENT FLOW COUNT */
LIQSCOUNT = LIQSCOUNT + 1;

/* SEND END OF INTERRUPT */
OUTPUT (QECH) = @20H;

3-121

/* RETURN */

174 2 RETURN;
175 2 END LIQSCNT;
SEJECT

/**

* THIS PROCEDURE WILL PROVIDE AN EVENT COUN-%*
* TER TO HANDLE THE BELT MOTION DETECTOR. *
* IT WILL OPERATE BY DIRECTING THE MOTION *
* PULSE TO INTERRUPT 2. *
hkkhkkkhhhhkhhhhhhhhhhhhhhhhhhkhhhkhhkhhkhhkhhhk /

176 1 BELT$CNT: PROCEDURE INTERRUPT @ PUBLIC;
/* INCREMENT BELT MOVEMENT */

177 2 BELT$COUNT = BELTSCOUNT + 1;
/* SEND END OF INTERRUPT */

178 2 OUTPUT (QECH) = G20H;
/* RETURN */

179 2 RETURN ;

180 2 END BELT$CNT;

181 1 END PROCESSORS$INTERFACES$MODULE;

MODULE INFORMATION:

CODE AREA SIZE = g251H 593D
VARIABLE AREA SIZE = @@¢13H 19D
MAXIMUM STACK SIZE = @G@8H 8D

4¢¢ LINES READ
@ PROGRAM ERROR(S)

END OF PL/M-8¢ COMPILATION

3-122

	1979_iSBC_Applications_Manual_Page_393
	1979_iSBC_Applications_Manual_Page_394
	1979_iSBC_Applications_Manual_Page_395
	1979_iSBC_Applications_Manual_Page_396
	1979_iSBC_Applications_Manual_Page_397
	1979_iSBC_Applications_Manual_Page_398
	1979_iSBC_Applications_Manual_Page_399
	1979_iSBC_Applications_Manual_Page_400
	1979_iSBC_Applications_Manual_Page_401
	1979_iSBC_Applications_Manual_Page_402
	1979_iSBC_Applications_Manual_Page_403
	1979_iSBC_Applications_Manual_Page_404
	1979_iSBC_Applications_Manual_Page_405
	1979_iSBC_Applications_Manual_Page_406
	1979_iSBC_Applications_Manual_Page_407
	1979_iSBC_Applications_Manual_Page_408
	1979_iSBC_Applications_Manual_Page_409
	1979_iSBC_Applications_Manual_Page_410
	1979_iSBC_Applications_Manual_Page_411
	1979_iSBC_Applications_Manual_Page_412
	1979_iSBC_Applications_Manual_Page_413
	1979_iSBC_Applications_Manual_Page_414
	1979_iSBC_Applications_Manual_Page_415
	1979_iSBC_Applications_Manual_Page_416
	1979_iSBC_Applications_Manual_Page_417
	1979_iSBC_Applications_Manual_Page_418
	1979_iSBC_Applications_Manual_Page_419
	1979_iSBC_Applications_Manual_Page_420
	1979_iSBC_Applications_Manual_Page_421
	1979_iSBC_Applications_Manual_Page_422
	1979_iSBC_Applications_Manual_Page_423
	1979_iSBC_Applications_Manual_Page_424
	1979_iSBC_Applications_Manual_Page_425
	1979_iSBC_Applications_Manual_Page_426
	1979_iSBC_Applications_Manual_Page_427
	1979_iSBC_Applications_Manual_Page_428
	1979_iSBC_Applications_Manual_Page_429
	1979_iSBC_Applications_Manual_Page_430
	1979_iSBC_Applications_Manual_Page_431
	1979_iSBC_Applications_Manual_Page_432
	1979_iSBC_Applications_Manual_Page_433
	1979_iSBC_Applications_Manual_Page_434
	1979_iSBC_Applications_Manual_Page_435
	1979_iSBC_Applications_Manual_Page_436
	1979_iSBC_Applications_Manual_Page_437
	1979_iSBC_Applications_Manual_Page_438
	1979_iSBC_Applications_Manual_Page_439
	1979_iSBC_Applications_Manual_Page_440
	1979_iSBC_Applications_Manual_Page_441
	1979_iSBC_Applications_Manual_Page_442
	1979_iSBC_Applications_Manual_Page_443
	1979_iSBC_Applications_Manual_Page_444
	1979_iSBC_Applications_Manual_Page_445
	1979_iSBC_Applications_Manual_Page_446
	1979_iSBC_Applications_Manual_Page_447
	1979_iSBC_Applications_Manual_Page_448
	1979_iSBC_Applications_Manual_Page_449
	1979_iSBC_Applications_Manual_Page_450
	1979_iSBC_Applications_Manual_Page_451
	1979_iSBC_Applications_Manual_Page_452
	1979_iSBC_Applications_Manual_Page_453
	1979_iSBC_Applications_Manual_Page_454

