
RBF-89 REAL-TIME
BREAKPOINT FACILITY

OPERATING INSTRUCTIONS
FOR 8CE-86™

DN^CflRCUGT EMULATOR USERS

Manual Order Number: 9801018-01 Rev. A

RBF-89 REAL-TIME
BREAKPOINT FACILITY

OPERATING INSTRUCTIONS
FOR ICE-86™

IN-CIRCUIT EMULATOR USERS

Manual Order Number: 9801018-01 Rev. A

Copyright © 1980, Intel Corporation
intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 [

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel’s software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to identify Intel products:

ICE
ics
Insite
Intel
Intelevision
Intellec

iSBC
Library Manager
MCS
Megachassis
Micromap
Multibus

Multimodule
PROMPT
Promware
RMX
UP!
pScope

and the combination of ICE, iCS, iSBC, MCS, or RMX and a numerical suffix.

ii | A171/280/15K DP I

PREFACE

This manual describes how to operate the RBF-89 Real-Time Breakpoint Facility.
RBF-89 aids in testing and troubleshooting the software for application systems
designed around the Intel 8086 Central Processing Unit (CPU) used in combination
with the Intel 8089 Input/Output Processor (IOP).

Chapter 1, General Information, defines the primary capabilities of RBF-89 and
gives a short functional description of this product. It also discusses RBF-89’s rela­
tion to the 8086 CPU, the 8089 IOP, and the ICE-86 In-Circuit Emulator. In addi­
tion, this chapter defines the assumptions and prerequisites for using RBF-89.

Chapter 2, RBF-89 Commands, defines all RBF-89 commands and the syntax and
rules for using them. The commands appear in functional groups so that you may
easily grasp their interrelationship. Examples of command entries also appear.

Chapter 3, Applications, shows how to load and use RBF-89 in an operational
environment. It illustrates, as examples, how two typical testing and debugging tasks
are actually performed.

The appendixes present error messages and recovery procedures, a list of RBF-89
keywords and their definitions, a summary of command reference specifications,
and the 8089 IOP instruction set (which is also summarized in RBF-89 Real-Time
Breakpoint Facility Pocket Reference, Order No. 9801019).

Before using this manual, you should read the following manuals for definitions of
terms and concepts not unique to RBF-89, and other prerequisite information:
• ICE-86 In-Circuit Emulator Operating Instructions for ISIS-II Users, Order

No. 9800714.
• The 8086 Family User’s Manual, Order No. 9800722. (Includes 8086, 8088, and

8089 microprocessor documentation.)

As an option, depending on your particular application, you may also wish to con­
sult some of the following manuals for helpful background information:
• Intellec MDS Operator’s Manual, Order No. 9800129
• Intellec MDS Hardware Reference Manual, Order No. 9800132
• ISIS-II User’s Guide, Order No. 9800306
• PL/M-86 Programming Manual, Order No. 9800466
• PL/M-86 Operator’s Manual, Order No. 9800478
9 Intellec Series II Hardware Reference Manual, Order No. 9800556
• MCS-86 Software Development Utilities Operating for ISIS-II Users, Order

No. 9800639
• MCS-86 Assembly Language Reference Manual, Order No. 9800640
• MCS-86 Assembler Operating Instructions for ISIS-II Users, Order No.

9800641
• 8089 Assembly Language and 8089 Assembler Operating Instructions for

ISIS-II Users, Order No. 9800938
• The 8086Family User’s Manual, Order No. 9800722

iii

CONTENTS

CHAPTER 1
GENERAL INFORMATION PAGE
Features ... 1-1

Program Loading, Execution, and Back-Up 1-1
Breakpoints .. 1-1
Data Display and Modification 1-1
Disassembly of Object Code In Memory 1-2
Multiprocessor Operation .. 1-2
Command Interface ... 1-2
Access to ICE-86 Emulator Commands 1-2

Applications ... 1-2
System Description .. 1-3
Assumptions and Prerequisites for Using RBF-89 ... 1-4
ICE-86 Emulator/RBF-89 Differences 1-4
Limitations..................................... 1-5
System Requirements ... 1-5

Hardware ... 1-5
Software ... 1-6

CHAPTER 2
RBF-89 COMMANDS
Entering Commands ... 2-1
Correcting Errors .. 2-1
Interrupting RBF-89 Command Processing 2-1
Alphabetical List of Commands 2-2
Command Elements ... 2-3

Character Set .. 2-3
Tokens ... 2-3

Command Descriptions ... 2-4
Invoking, Controlling, and Terminating RBF-89 2-5

Invoking RBF-89 .. 2-5
RBF ... 2-7

Initializing RBF-89 ... 2-9
£CH1/CH2> ... 2-10
WIDTH .. 2-12
SCP ... 2-13
SOC ... 2-14
CCP ... 2-15
RAM ... 2-16
IOP ... 2-17
RESERVE .. 2-18
RELOCATE ... 2-19
PAGE ... 2-20

Controlling RBF-89 .. 2-21
CHANNEL .. 2-22
RESET RBF .. 2-23
EXIT RBF .. 2-24

Loading and Saving Channel Programs 2-25
LOAD .. 2-26
SAVE ... 2-27

PAGE
Controlling 8089 Program Execution 2-29

Controlling Programs From the Console 2-29
Breakpoint Operation .. 2-29
Channel-Attention Command Operation 2-30

CASTART .. 2-31
CA CONTINUE ... 2-34
CAHALT .. 2-37
Setting, Enabling, and Disabling Breakpoints .. 2-38

RBR .. 2-39
RESET RBR ... 2-42

Controlling IOP Program From CPU Program 2-43
ENABLE RBR .. 2-44

Displaying and Changing 8089 Register and
Memory Contents ... 2-45

item-reference .. 2-46
RBYTE/RWORD ... 2-48
89 REGISTER ... 2-50
89 ASM ... 2-51
communication-block .. 2-52
UPDATE .. 2-54

CHAPTER 3
APPLICATIONS
8089 Configuration Designing Hints............................... 3-1
Assumptions and Prototype Verification 3-2
Sample RBF-89 Sessions ... 3-3

Example 1: Getting Started with RBF-89 3-3
Example 2: Debugging a Simple Memory-Transfer
Program ... 3-9

APPENDIX A
RBF-89 ERROR CONDITIONS AND
RECOVERY

APPENDIX B
RBF-89 KEYWORDS

APPENDIX C
RBF-89 REFERENCE SPECIFICATION
SUMMARY

APPENDIX D
8089 INPUT/OUTPUT PROCESSOR
INSTRUCTION SET

APPENDIX E
GLOSSARY OF RBF-89 TERMS

iv

ILLUSTRATIONS

FIGURE TITLE PAGE FIGURE TITLE

1- 1 RBF-89 System Block Diagram ..
2- 1 Memory Used by RBF-89
3- 1 Design for Toggling SEL/CA Pins

1- 3 3-2 UPROG Program Listing .
2- 6 3-3 COPM1N Program Listing
3- 1

PAGE

.. 3-3

. 3-10

TABLES

TABLE TITLE PAGE

2-1 Alphabetical List of RBF-89 Commands ... 2-2
2-2 Syntax Conventions ... 2-4
A-l Error Messages, Causes, and

Corrective Action .. A-2
B-l RBF-89 Keywords, Synonyms, and

Meanings ... B-l

TABLE TITLE PAGE

D-l Key to ASM-89 Operand Identifiers D-l
D-2 Key to Operand Types D-2
D-3 Instruction Set Reference Data D-3
D-4 Instruction Fetch Timings D-7

v

CHAPTER 1
GENERAL INFORMATION

The RBF-89 Real-Time Breakpoint Facility is a software extension to the ICE-86 In-
Circuit Emulator that aids in testing and troubleshooting applications designed
around the Intel 8086 Central Processing Unit (CPU) used in combination with the
Intel 8089 Input/Output Processor (IOP). During your testing sessions, RBF-89
extends the debugging power of the ICE-86 In-Circuit Emulator into the 8089 por­
tion of your system.

Because RBF-89 has no hardware of its own, it operates by preparing special control
blocks in system memory and then issuing channel-attention commands to the 8089
IOP in your application system to perform the requested functions. This technique
requires that you build your prototype application system and, using the ICE-86
emulator and/or various hardware debugging tools, debug it to a certain level of
reliability before using RBF-89. For more information about this requirement, see
Assumptions and Prerequisites for Using RBF-89 later in this chapter.

Features
RBF-89 provides the following features:

Program Loading, Execution, and Back-Up

RBF-89 allows you to load your application (channel) program from diskette into
8089 IOP memory and execute it in real time. The program can reside in either local
(system) RAM (accessible by both the 8086 and 8089 microprocessors), or remote
RAM (accessible by the 8089 IOP only). You may request execution to begin at any
location and continue until normal termination, or until a specified breakpoint is
reached or until the program is aborted. (A breakpoint is a pre-specified location
where execution is to terminate.) If you modify your program, you may request
RBF-89 to save the latest version by copying it in absolute object format from
memory to diskette.

Breakpoints

With RBF-89, prior to program execution, you can specify up to six breakpoints in
each breakpoint register. RBF-89 implements each breakpoint by inserting a HALT
instruction at the breakpoint location, and saving the overwritten instruction in tem­
porary storage. When a breakpoint is reached during program execution, the pro­
gram halts. At this point RBF displays the adress reached and you can examine
various registers and memory locations, and optionally resume program execution.
The breakpoint addresses are recorded in one of two Breakpoint Registers—one
register for each 8089 input/output channel. Through simple RBF-89 commands,
you can display or change the contents of these registers.

Data Display and Modification

Through RBF-89, you can display and change the contents of:
• Local and remote 8089 memory.
• All 8089 registers except the channel control pointer (CCP), and status flags.

1-1

General Information RBF-89

Disassembly of Object Code in Memory

RBF-89 allows you to disassemble object code in remote or local memory. This
permits you to display and examine the machine instructions in 8089 assembly­
language mnemonic form.

Multiprocessor Operation

Because the 8089 IOP is so often used with the 8086 CPU, RBF-89 permits you to
run the 8089 and emulated 8Q86 simultaneously as well as sequentially. To facilitate
this, RBF-89 lets you specify breakpoints and begin program execution in three
different operating sequences:
a. Set the breakpoints, start the 8089, continue execution until a breakpoint occurs

or the program runs to completion or is aborted, and then return control to the
console. You use this sequence when you do not need to execute your 8086 user
program and your 8089 channel program simultaneously.

b. Set the breakpoints, start the 8089, return control to the console, and start the
8086. This sequence lets you run both microprocessors simultaneously.

c. Set the breakpoints, start the 8086 program, and allow that program to drive the
8089 program in a master/slave relationship. You do this, for instance, to verify
your 8086 driver program.

Chapter 2 provides more information about the effects and limitations of these
operating sequences.

Command Interface

Because RBF-89 is a software substructure embedded within the ICE-86 In-Circuit
Emulator software, you invoke RBF-89 simply by entering the RBF command while
logged-on to the emulator. RBF-89 then accepts a series of short subcommands that
initialize the 8089 IOP and verify that it is working properly. Then, you operate
RBF-89 through a set of commands very much like the ICE-86 emulator commands.

Access to ICE-86 Emulator Commands

In addition to its own functions, RBF-89 lets you use most ICE-86 emulator com­
mands by entering the appropriate emulator command without exiting from
RBF-89.

Applications
RBF-89 can be used to debug most application systems that incorporate an 8089
IOP. Such systems must be multiprocessor configurations that also include the 8086
CPU. In these configurations, the CPU and IOP sometimes operate in a
master/slave relationship. Typical 8089 applications include:
• Scan control, file, directory, and buffer management for magnetic disks. In

these applications, code is often established for procedures that either allow
retries or handle detected cyclic redundant code (CRC) errors—all without
central processor intervention.

• Support of high-speed transfers on hard disks. These transfers are either
buffered in 8089 memory on a local bus or sent directly to 8089 system memory,

1-2

RBF-89 General Information

• Support of graphic CRT terminals. For both CRT’s and keyboards, the 8089
IOP handles linked-list data structures, maintains cursor control, performs
automatic scrolling, translates characters, and recognizes special control
characters—again, all without CPU involvement.

• Data formatting, protocol interpretation, and general-purpose input/output
control. The 8089 IOP causes the peripheral controller to appear to the CPU as
a block-oriented DMA device. A simple software interface, common to all
peripherals and user programs, is often specified. The 8089’s processing power
allows users to customize the software to the particular requirements of each
type of peripheral device.

System Description
RBF-89 is furnished as an integral part of the ICE-86 emulator software. RBF-89’s
main components, illustrated in figure 1-1, are:
• A Host Program that resides in Intellec development system RAM, where it

serves as an extension of the ICE-86 emulator’s software driver. The Host
Program is executed by the development system’s 8080 microprocessor. This
program translates your keyboard input into command directives that can be
processed by the RBF-89 MONITOR program (described below), and converts
information supplied by the MONITOR into easily-understood display output.
(The Host Program also handles input received from an ISIS-II SUBMIT file,
and output directed to a mass-storage device or line printer.) In addition, the
Host Program maintains appropriate 8086 register settings and memory alloca­
tion to allow the system to alternate between RBF-89 and 8086 application
(user) program processing.

• A Control Program, named MONITOR, that resides in ICE-86 emulator
memory. MONITOR runs on the emulator’s 8086 microprocessor and monitors
such operations as: preparing program control blocks for communication with
the 8089 microprocessor; issuing channel commands to the 8089 IOP to start,
terminate, and continue the 8089 channel program; and directing the 8089 to
start execution of the RBF-89 Utility Program (described below).

• A Utility Program that resides in the 8089 RAM in your prototype application
system. This program, running on the 8089, reads and writes data to and from
8089 memory and registers, and sets and removes breakpoints in your channel
program.

8080 PROCESSOR

ICE-86
EMULATOR

8089 PROTOTYPE
MEMORY

INTELLEC
DEVELOPMENT

SYSTEM

8086 CPU 8089 IOP

Figure 1-1. RBF-89 System Block Diagram
1018-01

1-3

General Information RBF-89

Assumptions and Prerequisites for Using RBF-89
Before using RBF-89, you must develop and debug your application system to a
certain level of reliability. Generally, you perform this debugging with the ICE-86
emulator and/or various hardware debugging tools. Specifically, the 8086/8089
microprocessor interface and the 8089 subsystem must be developed to the following
level:

• CPU/IOP Interface
a. The mechanism used by the 8086 CPU to issue a channel-attention request

must be operational.
b. The mechanism used by the 8086 CPU to toggle the SEL pin on the 8089

IOP must be operational.
c. The application system RAM area, where the RBF-89 control blocks are

stored, must be fully-installed. (The RAM area must include 200 bytes
usable by RBF-89.)

• 8089 Subsystem
a. The 8089 I/O bus must be operational.
b. The memory or input/output port accessed by the 8089 IOP must be

operational.
c. The portion of your 8089 channel program where you wish to set

breakpoints must NOT be stored in ROM.

ICE-86 Emulator/RBF-89 Differences
As someone accustomed to using the ICE-86 emulator, you should be aware of these
functional differences between the emulator and RBF-89:
a. With the ICE-86 emulator, breakpoints are implemented in the hardware and

can be triggered by a variety of events—access of a particular memory location,
processing within a range of locations, reading of a specific data value at a
particular location or port, and so forth. But in RBF-89, breakpoints are
implemented through the software and can only be triggered by execution of
one of the breakpointed instructions.

b. With the ICE-86 emulator, the address at which emulation begins can also be
used as a breakpoint; this condition halts emulation immediately after the
instruction at this address is executed. But with RBF-89, a starting address
specified as a breakpoint has no effect—RBF disables the breakpoint for the
duration of channel-program execution.

c. With the emulator, breakpoints occurring in real-time emulation are reported
immediately on your console and/or listing device. But with RBF-89, in some
cases, breakpoints cannot be reported immediately. (For more information
relating to breakpoint reporting, see Chapter 2, page 2-32.)

d. With the ICE-86 emulator, there is a dedicated 8080 microprocessor to monitor
and control the emulated 8086 microprocessor. This controller operates
independently of the 8086 system and does not share resources with your user
program. With RBF-89, the 8086 microprocessor in the emulator serves similar
purposes—but it is not a dedicated controller. Thus, when using RBF-89 to run
an 8086 user program concurrently with an 8089 channel program, you must
allow for the shared use of the 8086 microprocessor; RBF-89 commands cannot
always be processed while emulation is underway. Similarly, ICE-86 emulator
commands cannot always be processed while RBF-89 is running.

1-4

RBF-89 General Information

Limitations
In preparing to use RBF-89, you should be aware of these limitations and
restrictions:

• RBF-89 supports only 8086/8089 configuration—other configurations, such as
8085/8089 combinations, cannot be debugged with RBF-89. In a dual-8089
system, RBF-89 can communicate with only one 8089 during a particular
RBF-89 debugging session.

• RBF-89 does not provide single-step execution or trace capabilities.

• If the 8089 IOP locks up the system bus during operation, RBF-89 takes no
corrective action; the only way to free the system bus is to reset the 8089 IOP to
its initial state.

The ICE-86 In-Circuit Emulator supports 8089 configurations in the remove mode
only. The ICE-86 emulator does not employ RQ/GT (request/grant). RQ/GT is
required in the local mode to provide system bus arbitration between the 8089 and
8086. In the remove mode, system bus arbitration is provided by the 8289 Bus
Arbiter.

System Requirements
For its operation, RBF-89 requires the following supporting hardware and software:

Hardware

The minimum hardware configuration needed to support RBF-89 is:
• Intellec Microcomputer Development System:

Model 800 (with CRT console, two single-density or double-density disk
drive, 64k and RAM; or
Model 220 or 230 (with 64k RAM; or
Model 240 (with 64k RAM and hard-disk drive).

• ICE-86 (or ICE-88) Emulator Hardware, with ICE memory dedicated to the
RBF-89 Monitor Program. (During an RBF-89 session, an attempt to map your
application program into ICE memory results in an error.) RBF-89’s
requirements for ICE memory should not significantly restrict your activities,
because your prototype application system should be developed to the point
where you can map your entire channel program into application system
memory.

• Two contiguous Ik-byte segments of the 8086 memory address space mapped to
GUARDED status. RBF-89 will map this memory to the emulator’s 2k of
emulated memory. Thus, this memory need not exist physically in your pro­
totype application system.

• Application System Hardware, developed to the level described under
Assumptions and Prerequisites for Using RBF-89, with 200 bytes of RAM
available to RBF-89 as a buffer for messages between the 8089 and the emulated
8086.

1-5

General Information RBF-89

Software
The minimum software required to support RBF-89 is:
• ISIS-II Operating System (Version 3.4 or later)

For batch-processing operations, RBF-89 can be run under the ISIS-II SUBMIT
facility.

RBF-89 recognizes and uses the American Standard Code for Information
Interchange (ASCII) Character Set, X3.4, 1968, established by the American
National Standards Institute (ANSI).

IOP channel programs loaded by RBF-89 must be formatted as Intel Standard
absolute object files. Files saved by RBF-89 are always stored in this format. (For
further information about this format, see MCS-86 Absolute Object File Formats,
Order No. 9800821.)

1-6

CHAPTER 2
RBF-89 COMMANDS

To interact with RBF-89, you log-on to the ICE-86 In-Circuit Emulator, invoke and
initialize RBF-89, and enter various RBF-89 commands at the console. These com­
mands, which have a syntax very similar to that of the ICE-86 emulator commands,
allow you to request the full range of RBF-89 operations.

NOTE
RBF-89 also permits you to request any ICE-86 emulator operation by
entering the appropriate emulator command without exiting from RBF-89.
For directions on using the emulator commands, please see ICE-86 In-
Circuit Emulator Operating Instructions for IS IS-II Users.

Entering Commands
Because RBF-89 and ICE-86 emulator commands are syntactically similar, most of
the rules for entering both types of commands are identical. For example, the rules
covering command-line structure, comment entry, line continuation and termina­
tion, and ISIS-II line-editing capabilities are the same for both systems. Because
these command rules are presented and explained in ICE-86 In-Circuit Emulator
Operating Instructions for ISIS-II Users, they will not be repeated herein. Where
differences apply, however, they will be cited in this manual. For instance, although
the command prompt character for both systems is an asterisk (*), RBF-89 prompts
for special subcommands during its initialization by displaying a period followed by
an asterisk (.*).

Correcting Errors
When RBF-89 detects a fatal error during command processing, it halts this proces­
sing, displays a brief error message, and prompts you for a new command entry.
When RBF-89 detects a non-fatal error, it displays a message but allows processing
to continue. The general error message format, plus a list of all error messages, their
meaning, and recommended corrective action, appear in Appendix A.

In most cases when a fatal error occurs, RBF-89 detects the error and aborts the
command before its execution is initiated. But in other cases, such as a program­
loading or file-saving operation, RBF-89 cannot detect the error until the command
is partially executed; in such instances, the command may affect the system before
its termination. For instance, if RBF-89 detects an error during file loading, a partial
load has already taken place.

Interrupting RBF-89 Command Processing
At any time you may cancel an RBF-89 command by pressing the console ESC key.
If you press this key while entering a command, RBF-89 cancels this command and
prompts you for a new entry. If you press the ESC key while RBF-89 is executing a
command, RBF-89 aborts execution of that command and prompts you for a new
entry. Typically, you use the ESC key to halt an 8089 channel program already in
progress, interrupt program loading or saving, or abort lengthy CRT displays or
printed output.

2-1

RBF-89 Commands RBF-89

Alphabetical List of Commands
To help you understand their interrelationship, the commands discussed in this
chapter are grouped according to functional classification. As a reference aid, these
commands are also summarized in alphabetical order in table 2-1. With this table,
you may quickly locate any command discussion.

Table 2-1. Alphabetical List of RBF-89 Commands

Command Function Page

CA CONTINUE Continue interrupted 8089 channel program. 2-34

CA HALT Halt 8089 channel program. 2-37

CASTART Start 8089 channel program. 2-31

CHANNEL Display or change current 8089 channel. 2-22

communication block Display 8086/8089 communication blocks. 2-52

ENABLERBR Enable breakpoints without starting channel program
execution.

2-44

EXITRBF Terminate RBF-89. 2-24

item-reference Selectively display and change registers and remote
memory locations.

2-46

LOAD Load program code and symbol table. 2-26

RBF Invoke and prepare to initialize RBF-89. 2-7

RBR Display or change Breakpoint Register contents. 2-39

RBYTE/RWORD Display 8089 memory contents without disassembly, or
change 8089 memory contents. (Complements
BYTE/WORD command in ICE-86 emulator.)

2-48

RESET RBF Reset 8089 to initial state. 2-23

RESETRBR Reset (clear) Breakpoint Registers. 2-42

SAVE Save program code and symbol table on diskette. 2-27

UPDATE Update software copy of all 8089 registers. 2-54

89 ASM Disassemble and display local or remote memory
contents into 8089 mnemonics.

2-51

89 REGISTER Display all 8089 registers. 2-50

2-2

RBF-89 RBF-89 Commands

Command Elements
RBF-89 commands, like ICE-86 emulator commands, are made up of combinations
of characters that are grouped into tokens.

Character Set

In all commands, RBF-89 accepts the same characters accepted by the ICE-86
emulator. These characters are selected from the American Standard Code for
Information Interchange (ASCII) Character Set, X3.4, 1968, established by the
American National Standards Institute (ANSI). RBF-89 ignores all other characters.

Tokens

RBF-89 uses the same types of tokens as the ICE-86 emulator: keywords, user­
names, and special-tokens, The same rules apply in both systems for forming these
tokens, with the following specific extensions for RBF-89 keywords that access
various RBF-89 parameters:
• Register Names, which uniquely identify all 8089 registers. The 20-bit registers

for the currently selected channel are listed below. The contents of these
registers are represented internally by a 32-bit address pair that defines their
base and displacement.

Name Referenced

RGA |
RGB ?
RGC)
RTP

Meaning

General-purpose registers A, B, and u.

Task Pointer (TP).

The 16-bit registers for the currently selected channel are:

Name Referenced Meaning

RBC
RIX
RCC
RMC

Byte Counter (BC).
Index Register (IX).
Channel Control (CC).
Mask/Compare (MC).

Remote Memory References, which address the remote memory accessible only
to the 8089, are written as:

Name Referenced

R BYTE partition
RWORD partition

Meaning

Byte reference
Word reference

Local (system) memory references, which address memory accessible to both the
8086 and 8089, are made by using the ICE-86 memory-reference syntax defined
in ICE-86 In-Circuit Emulator Operating Instructions.

• 8089 System Variables, which designate specific parameters, are written as
follows:

Name Referenced Meaning

CCW
PBP

Control Word for currently selected channel.
Parameter Block Pointer for currently selected chan­
nel.

2-3

RBF-89 Commands RBF-89

• Status Flags, which designate the following 8089 flags:

Name Referenced Meaning

PS 8-bit channel program status word.
TGA1
TGB } Tag bit for 20-bit general-purpose register.
TGC J

For a complete list of all RBF-89 keywords, see Appendix B. Some keywords have
single-letter synonyms, also listed in Appendix B. As with ICE-86 emulator '
keywords, you can alternate all RBF-89 keywords by entering their first three letters
only.

Command Descriptions
The RBF-89 commands are described in functional order throughout the remainder
of this chapter. For each command, the following information appears:
• Syntax-the syntax of the command.
• Command Elements-the command name and parameter tokens that appear in

the command, and their meaning, rules, and constraints.
• Default-the action taken if you omit the command.
• -Operation-a complete description of the function and operation of the

command, including its relationship to other RBF-89 commands.
• Examples-sample entries illustrating the syntax and format of the command,

with explanatory comments where helpful.

In the syntax descriptions, the same metalinguistic notation that appears in ICE-86
In-Circuit Emulator Operating Instructions is used. This notation, summarized in
table 2-2, is based primarily upon standard Backus-Naur Form notation.

Table 2-2. Syntax Conventions

Notation Description

UPPERCASE
LETTERS

Elements in uppercase regular (Roman) type are specific
keywords that must be entered exactly as shown (or as the
abbreviations or synonyms listed in Appendix B).

lowercase
italics

Elements in lowercase italics are class names that identify
sets or classes of tokens. From each set, you select and
enter a specific identifier.

Elements followed by an ellipsis (. . .) may be repeated
indefinitely.

When elements are enclosed in braces, one (and only one)
of these elements MUST be selected.

When elements are enclosed in braces followed by an
ellipsis, AT LEAST one of these elements MUST be
selected. If more than one is selected, they may be entered
in any order.

When elements are enclosed in brackets, ALL elements are
optional but only ONE may be entered. If only one element
appears in brackets, that element is optional.

- -

When elements are enclosed in brackets followed by an
ellipsis, ALL elements are optional but MORE THAN ONE
may be entered. Those elements selected may be entered
in any order.

2-4

RBF-89 RBF-89 Commands

As an example of how this syntax notation is used, consider this RBF-89 command:

inAnr.. w, [LOCAL 1 Inocode "ILOAD [:dnue:] rename [REM0TEJ [_N0SYMB0LJ • - •

In this command, LOAD and is a required literal keyword that must be entered
exactly as shown. The -.drive: parameter is a variable class name meaning “any disk
drive”-you must specify which one; because it appears within brackets, -.drive: is
also an optional parameter that can be omitted. (The default for -.drive: is :F0:.) The
filename parameter is a class name meaning “any file name”; it is required. LOCAL
and REMOTE are optional parameters denoted by common brackets, you may
include one or the other, or neither. NOCODE and NOSYMBOL are optional
parameters denoted by common brackets followed by an ellipsis; you may include
both, one or the other, or neither. When you enter the LOAD command, it might
appear as follows:

REMOTE NOSYMBOL

After you have become generally familiar with the RBF-89 commands as described
in this chapter, you may find the condensed syntax summary in Appendix C suffi­
cient for reference while working at the console.

Invoking, Controlling, and Terminating RBF-89
To begin an RBF-89 debugging session, you must invoke RBF-89 and then initialize
various system variables as described in the following pages. These variables provide
the 8089 with a definition of the system configuration and environment to be used.

Invoking RBF-89

Before invoking RBF-89, first insert the ICE-86 emulator’s 40-pin cable terminal
into the 8086 CPU socket on your prototype system and invoke the ICE-86 emulator
as directed in ICE-86 In-Circuit Emulator Operating Instructions for ISIS-11 Users.
Then, after the emulator’s sign-on message and initial prompt appear:
a. Enter the ICE-86 emulator MAP command to map 8086 RAM and the

following 8089 control blocks to USER status:
• System Initialization Block (SIB)
• System Configuration Block (SCB)
• Channel Control Block (CCB)
The SIB resides at the fixed location FFFF:6H as shown in figure 2-1, but the
SCB, CCB, and RAM may be mapped to any locations. More information
about RBF-89’s memory requirements appears under Initializing RBF-89.

b. Enter the RBF command to invoke RBF-89, using the syntax described in the
command specification on the next page.

2-5

RBF-89 Commands RBF-89

Figure 2-1. Memory Used by RBF-89
1018-02

2-6

RBF-89 RBF-89 Commands

RBF
Invokes RBF-89.

Syntax

Command Elements
RBF Request to invoke RBF-89.

CRJ Carriage-return that delimits each RBF command token (RBF
command name and following subcommands).

NOTE
In this command format description, the notation

(CR) is used for clarity to indicate a carriage-return.
In subsequent format descriptions, however, (^R) is
omitted even though the carriage-return is always
implied at the end of each entry line.

subcommand Specific RBF subcommand, as defined below, used to initialize
one of several RBF-89 system variables.

ENDRBF Request to terminate RBF subcommand list/entry sequence.

Default
None. (This command is required.)

Operation
The RBF command is a compound command that consists of a command name
(RBF), followed by one or more subcommands that initialize RBF-89 system
variables, followed by the terminating keyword ENDRBF. When you enter RBF
followed by a carriage-return, the ICE-86 emulator invokes RBF-89 which then
displays a period followed by am asterisk (.*) as a prompt for your first
subcommand.

NOTE
The RBF subcommands are discussed after the conclusion of this descrip­
tion of the RBF command. You may enter these subcommands in any
order, but may omit only those with default values. If you omit any
required subcommand, an error message appears when you terminate the
subcommand entry sequence.

2-7

RBF-89 Commands RBF-89

At the end of the subcommand entry sequence (when you enter ENDRBF), RBF-89
transmits a channel-attention directive to initialize the 8089 input/output processor
(IOP) and verify that it is functioning properly. After this verification, RBF-89
displays the following message on your console to confirm sign-on and issues an
asterisk prompt for your next command:

ICE-86 RBF-89 Vx.y-«-----SIGN-ON MESSAGE
---PROMT FOR NEXT COMMAND

NOTE
In the sign-on message format, Nx.y denotes the software version number.

After this message, you may begin your RBF-89 debugging session by entering any
RBF-89 command desired. Because you can access the ICE-86 emulator from within
RBF-89, you can also enter any ICE-86 emulator command at this point.

If the ICE-86 emulator memory is not available for RBF-89 use when you enter the
RBF command, RBF-89 aborts this command and displays an error message. This
occurs, for instance, if you have mapped your user program to emulator memory.

If the 8089 BUSY flag is not clear within 500 milliseconds after you enter the
ENDRBF keyword, a timeout occurs and an error message appears. The timeout
results from one of these possible causes:
a. Hardware not functioning properly.
b. {CH1/CH2} subcommand entered incorrectly.
c. SCP subcommand entered incorrectly.

After you have resolved any hardware problem and checked the appropriate sub-
command syntax rules, re-enter the correct RBF command sequence.

Examples
♦ MAP 1023 = USER Maps SIB, SCB, CCB, and RAM to USER
* status .
♦RBF Invokes RBF-89.
.♦RAM = F F C 0 : 0 Specifies RAM available for
, * RBF-89.
,*CH1 = PORT 0 Denotes mechanism for
, * channel-attentions.
.♦WIDTH = 16T Indicates system bus width.
.*SCP = F F F0 : 0 Initializes System Configuration
, * Pointer.
.*SOC = 1 Initializes System Operation

Command Word.
. * c C P = FFFO: 10 Initializes Channel Control

Pointer.
.♦I0P = MASTER Specifies Master/Slave status.
. *ENDRBF Terminates RBF subcommand entry
* sequence.

I S I s- I I RBF-89 Vx . y
★ Command entry prompt, preceded by
, * sign-on message.

NOTE
In this and all other examples, command input is underlined while system
output is not. In addition, RBF-89 and ICE-86 emulator commands appear
only on lines that begin with asterisk (*) prompt.

Always terminate each line by entering a carriage-return. Otherwise, the line
is not transmitted to the system and processed.

2-8

RBF-89 RBF-89 Commands

Initializing RBF-89

Before you can use RBF-89, you must enter a group of RBF subcommands that pro­
vide information required for initializing and communicating with the 8089.
Specifically:
• To initialize the 8089, RBF-89 must know how to issue channel-attention

directives to the 8089. You provide this information by entering the
{CH1/CH2} subcommand.

• When the 8089 receives the channel-attention directive, it fetches the system bus
width (BUSWID) and the System Configuration Block (SCB) Pointer (SCP)
from the System Initialization Block (SIB). (Refer again to figure 2-1.) The SIB
always begins at fixed location FFFF:6H. You specify the BUSWID through the
WIDTH subcommand (or use the default width of 16 bits), and the SCP setting
through the SCP subcommand.

• Next, the 8089 fetches, from the SCB, the System Operation Command (SOC)
word and the Channel Control Block (CCB) Pointer (CCP). You set these items
with the SOC and CCP commands respectively.

• After RBF-89 initializes the 8089, the 8089 clears the BUSY flag in the CCB.
(There is a CCB for each channel. If a channel program is running on a
particular channel, the Parameter Block Pointer (PBP) in the CCB indicates the
beginning location of the Parameter Block (PB) for that program. The PB,
in turn, contains a Task Pointer (TP) that points to the Task Block for that
program.)

• RBF-89 also needs to know the location of the RAM in your application system
that is available for RBF-89 use. This memory block serves as a buffer for
messages between the 8086 and 8089. You specify the location of this block with
the RAM subcommand.

• Finally, as options, you may wish to specify the Master/Slave status of the 8089,
the locations in system memory reserved for use by the RBF-89 MONITOR pro­
gram, the relationship of the set of 8086 addresses to the set of 8089 addresses
used to reference the same area of physical memory (in configurations involving
the two-port memory concept of the SBC 86/12 board), and the base compo­
nent for 20-bit register references. You specify these elements by entering the
IOP, RESERVE, RELOCATE, and PAGE subcommands, respectively).

NOTE
For further information about the various elements mentioned above,
please see The 8086 Family User’s Manual.

To enter the RBF subcommands that initialize the 8089 for your debugging session,
use the subcommand specifications shown in the following pages. Enter one sub­
command after each subcommand prompt (.*), specifying the subcommands in any
order you wish.

2-9

RBF-89 Commands RBF-89

<CH1/CH2>
Specifies how RBF-89 issues channel­
attention directives to 8089.

Syntax
PORT
WPORT
BYTE
WORD

expression! [VALUEexpression?]

Subcommand Elements
CHI Request to direct channel-attention to channel 1.

CH2 Request to direct channel-attention to channel 2.

PORT Mechanism is a 1-byte value transmitted to the addressed 8-bit
input/output port.

WPORT Mechanism is a 2-byte value transmitted to the addressed 16-bit
input/output port.

BYTE' Mechanism is a 1-byte integer value written to a location in 8086
system memory.

WORD Mechanism is a 2-byte integer value written to a location in 8086
system memory.

expression! Expression whose value denotes port or memory location to which
byte or word value is written.

VALUE Request to specify value to be written to port or memory to cause
channel-attention operation.

expression? Expression whose value is to be written to port or memory. If
omitted, default value is either FF (for byte value) or FFFF (for
word value).

Default
None. (The CHI [ATTENTION] form of this command is required in all cases.)

Operation
The mechanism which RBF-89 must use to issue a channel-attention signal to the
8089 depends on the way you have designed your system. As part of this mechanism,
your application hardware delivers a pulse to the channel-attention (CA) pin of the
8089, and controls the value of the SEL pin during this pulse. The -CCH1/CH2}
subcommand tells RBF-89 how it can cause the pulse while the SEL pin is set to zero
(directing the channel-attention to channel 1) and while the SEL pin is set to one
(directing the channel-attention to channel 2).

2-10

RBF-89 RBF-89 Commands

The channel-attention mechanism involves three considerations:
a. Channel to be used for communication.
b. Physical entity (output port or 8086 system memory) used to trigger

channel-attention.
c. Value transmitted to trigger channel-attention.

RBF requires communication with channel 1. Therefore you MUST enter a CHI
command as part of the initialization procedure, if you also plan to use channel 2, a
CH2 command is necessary—otherwise no RBF commands for channel 2 are
accepted.

If the 8089 is configured so that channel-attention directives are caused by output
instructions to ports, you should specify that either:
a. A one-byte value will be transmitted to an 8-bit port (indicated by the PORT

keyword).
b. A two-byte value will be transmitted to a 16-bit port (indicated by the WPORT

keyword).

If the 8089 is memory-mapped, you should specify that either:
a. A one-byte integer value will be written to a location in 8086 system memory

(indicated by the BYTE keyword).
b. A two-byte integer value will be written to a location in 8086 system memory

(indicated by the WORD keyword).

Finally, with the VALUE expression clause, you may specify the value that causes
the channel-attention directive. If you omit this clause, the default value FF is
assigned to eight-bit ports or memory-mapped input/output, and FFFF is assigned
to sixteen-bit addresses.

Examples
.*CH1 = PORT 0
, ★
, *
. *C H2 = WPORT 1;

★
. *

Enables channel 1, where
mechanism is one-byte value
(FF) transmitted to Port 0.
Enables channel 1, where
mechanism is two-byte value
(FFFF) directed to
Port 1 .

2-11

RBF-89 Commands RBF-89

WIDTH
Specifies width of system bus.

Syntax
WIDTH = expression

Subcommand Elements
WIDTH Request to specify width of system bus.

expresion Expression whose value specifies bus width. This value must be
either 8 or 16.

Default
WIDTH = 16T T means the base is decimal.

Operation
If the CPU is an 8086 microprocessor, the system bus is 16 bits wide; if the CPU is
an 8088, however, this bus is 8 bits wide. The WIDTH subcommand specifies the
appropriate logical width of the bus to RBF-89, and also initilizes a flag in the 8089
System Initialization Block (SIB). If you omit the WIDTH subcommand, a default
width of 16 bits is assigned.

Examples
.*WIDTH = .BUSWD Assigns width denoted by the byte value

of the symbol BUSWD.
.*WID = 16T Assigns width of 16 bits.

2-12

RBF-89 RBF-89 Commands

SCP
Sets System Configuration Block Pointer
(SCP).

Syntax
SCP = expression

Subcommand Elements
SCP Request to initialize SCP.

expresion Arithmetic expression that evaluates to an address that points to
location of System Configuration Block in system memory.

Default
None. (This subcommand is always required.)

Operation
The SCP indicates the location of the System Configuration Block (SCB), which
contains master/slave status information, the input/output bus width, and the
pointer to the Channel Control Block (discussed below), used to initialize the 8089.
To set the SCP, enter the SCP subcommand, specifying the desired SCB location.
To determine the physical location of the SCB, the 8089 shifts the 16-bit relocation
value left by four bits, and adds it to the address word. For more information about
the SCP and SCB, see The 8086 Family User’s Manual.

Example
.*SCP = 8000:0 ; Sets SCB address to 80000H.

2-13

RBF-89 Commands RBF-89

soc
Sets System Operation Command Word
(SOC).

Syntax
SOC = expression

Subcommand Elements
SOC Request to Initialize SOC word.

expression Expression whose value is used to set SOC word.

Default
None. (This subcommand is required.)

Operation
Bit 1 (the R-bit) of the SOC word in the SCB controls the operation of the
request/grant arbitration circuit in the IOP; Bit 0 (the I-bit) of this word sets the
physical width of the input/output bus. The meaning of the bit settings are:

R Field

I Field

R=0 1. MASTER processor has the bus on initialization and
normally has control of the bus.

2. SLAVE processor requests the bus from the MASTER when
non-idle.

3. MASTER grants the bus to the SLAVE when idle.
4. SLAVE returns the bus to the MASTER when idle.

R=1 1. MASTER has the bus on initialization.
2. SLAVE requests the bus from MASTER when non-idle.
3. MASTER grants the bus to SLAVE only on an unchained

instruction boundary, or wait for DMA (unless LOCK is
active), or idle condition.

4. MASTER may request bus from SLAVE when non-idle.
This may occur immediately.

5. SLAVE grants the bus to MASTER only on an unchained
instruction boundary, or wait for DMA (unless LOCK is
active), or idle condition.

1=0
1=1

The I/O bus width is 8 bits wide.
The I/O bus width is 16 bits wide.

RBF-89 uses no other bits in this word.

To set the SOC word, enter the SOC command, specifying the desired value.

Example
.*SOC = 1 ; Sets SOC word to value of 1.

2-14

RBF-89 RBF-89 Commands

CCP
Sets Channel Control Pointer (CCP).

Syntax
CCP = expression

Subcommand Elements
CCP Request to Initialize CCP.

expression Arithmetic expression that points to location of Channel
Control Block (CCB).

Default
None. (This subcommand is required.)

Operation
The CCP denotes the location of the Channel Control Block (CCB) in the 8086’s
memory space, which contains the Channel Control Word (CCW), BUSY Flag,
Parameter Block (PB) pointer, and other values that permit a channel to perform its
activities. All 8086-to-8089 communications center on the CCB, half of which is
dedicated to each channel. The CCW indicates the type of operation (command)
that the 8089 is to perform. The BUSY flag indicates whether a channel program is
executing on a given channel, and is cleared when program execution terminates. To
set the CCP, enter the CCP subcommand, specifying the CCB location. For more
information about the CCP and CCB, see The 8086Family User’s Manual.

Example
. *CCP = 8000:10; Sets CCB address to location 80010H.

2-15

RBF-89 Commands RBF-89

RAM
Specifies location of RAM in application
system dedicated to RBF-89

Syntax
RAM = address

Subcommand Elements
RAM Request to specify RAM available to RBF-89.

address Starting address of RAM assigned to RBF-89.

Default
None. (This subcommand is required.)

Operation
To use RBF-89, you must reserve 200 decimal (C8 hexadecimal) bytes of application
system RAM for use by RBF-89. The RAM subcommand indicates the location of
this area. This memory block serves as a buffer for messages between the 8089 and
the emulated 8086. When you enter the RAM subcommand, RBF-89 verifies that the
map for this block of memory is set to USER status, and that the memory physically
exists.

Examples
.*RAM = 9000 ; Assigns C8H bytes of RAM to RBF-89, beginning
.* ; at Location 9000H.
.*RAM = A000 ; Assigns Locations A000H through A0C7H to
.* ; RBF-89.

2-16

RBF-89 RBF-89 Commands

IOP
Specifies 8089’s master/slave status.

Syntax

IOP =
MASTER
SLAVE

Subcommand Elements
IOP Request to specify IOP master/slave status.

MASTER 8089 serves as master.

SLAVE 8089 serves as slave.

Default
I0P = MASTER

Operation
To satisfy the request/grant feature of the 8089, you must specify the status of the
8089 as either master or slave. (The first channel-attention directive received after
system initialization or reset informs the 8089 through the SEL line whether this pro­
cessor is a master or slave unit. If channel 1 is addressed, the 8089 is a master; if
channel 2 is addressed, the 8089 is a slave.)

If you omit the IOP command from the initialization sequence, RBF-89 assigns the
8089 master status.

When the 8089 is assigned slave status, you must enter the CH2 subcommand, or an
error results.

NOTE
A discussion of how the 8089 hardware SEL bit relates to set-up and hold­
time during channel-attention operations, and a recommended circuit for
satisfying set-up and hold-time requirements, appear in Chapter 3, (page
3-1).

Examples
.*I0P = MASTER ; Assigns master status.
.*I0P = SLAVE ; Assigns slave status.

2-17

RBF-89 Commands RBF-89

RESERVE
Reserves a specific 2k bytes of memory
for RBF-89 MONITOR.

Syntax
RESERVE expression

Subcommand Elements
RESERVE Request to reserve 2k contiguous bytes of system memory for

RBF-89 MONITOR.

expression Expression whose value denotes segment number of first of two
contiguous segments devoted to MONITOR.

Default
RBF-89 dedicates the first consecutive 2k bytes of GUARDED memory available
after Location 1000H to MONITOR.

Operation
The RESERVE subcommand reserves 2k bytes of contiguous logical 8086 address
space in system memory for the RBF-89 MONITOR program.

If you omit the RESERVE subcommand, RBF-89 allocates the first consecutive 2k
bytes of GUARDED memory available after Location 1000H to MONITOR. But if
you plan to locate your 8086 program in low memory, you should enter the
RESERVE subcommand to avoid conflict with the space required by MONITOR—
otherwise, you will not be able to use the area occupied by MONITOR. Once
RBF-89 allocates the segments for MONITOR, either through the RESERVE sub­
command or by default, you cannot remap the segments to your own use.

Example
.‘RESERVE 10 ; Reserves area beginning with segment 10

; (starting at Location 2800H).

2-18

RBF-89 RBF-89 Commands

RELOCATE
Permits reference of particular area of
memory by two different sets of
addresses.

Syntax
RELOCATE partition TO address

Subcommand Elements
RELOCATE Request to permit reference to memory area by two different

address sets.

partition Expression whose value denotes range of addresses with respect
to 8089. Must denote physical size of memory to be relocated.

address Expression denoting beginning (base) of first byte or range with
respect to 8086.

Default
None.

Operation
The RELOCATE subcommand supports the two-port memory concept of the SBC
86/12 Board. With this subcommand, you can specify that a given area of physical
memory is referenced by one set of addresses from the viewpoint of the 8089, but a
different set of addresses from the viewpoint of the 8086. Typically, you would use
the RELOCATE subcommand primarily to allow RBF-89 to reference the System
Initialization Block (SIB), System Configuration Block (SCB), Channel Control
Block (CCB), and RAM buffer contents with addresses pertinent to the 8086.

Example
.♦RELOCATE F800:0 LEN 32K TO 0 ; Logically relocates 32k of
■ ;addressspaceto 8086*
• *. _______________________ __________________ ; address space starting at
■ ; address 0.*

2-19

RBF-89 Commands RBF-89

PAGE
Defines base component for 20-bit
register references.

Syntax
PAGE = expression

Subcommand Elements
PAGE Request to define base component.

expression Expression must evaluate to a simple integer.

Default
None (but this subcommand is not required—see below).

Operation
The PAGE subcommand defines the equivalent base address component for 20-bit
values, resolving any ambiguities that may arise in base-displacement conversions of
these values.

If you omit the PAGE subcommand, RBF-89 assumes the default base component
of the address to be the most significant 4 bits of the reference specified, multiplied
by 1000H. To illustrate, without the PAGE subcommand, the value 45678H is
treated as 4000:5678. But, when you specify PAGE=4500, then 45678H is converted
to 4500:0678.

NOTE
The PAGE subcommand, unlike any other RBF subcommand, can also be
entered as a regular RBF-89 command outside the subcommand entry
sequence.

Example
. *PAGE = 2000; Sets base to 2000H.

2-20

RBF-89 RBF-89 Commands

Controlling RBF-89

At any point in your RBF-89 session, you can control RBF-89 operation in the
following ways:
• Determine which input/output channel is currently selected to receive command

input, or switch command input to another channel (by using the CHANNEL
command).

• Reinitialize 8089 to its pre-execution state (by using the RESET RBF
command).

• Terminate RBF-89 operation (by using the EXIT RBF command.).

To use these commands, read the corresponding specifications on the next few
pages.

2-21

RBF-89 Commands RBF-89

CHANNEL
Displays or changes current channel.

Syntax

CHANNEL
CH1

CH2

Command Elements
CHANNEL Request to display or change currently-selected channel.

CHI Request to switch to Channel 1.

CH2 Request to switch to Channel 2.

Default
None. (Display only.)

Operation
The CHANNEL command, when entered with no subsequent parameters, displays
the currently-selected channel in the following format (where n is the channel
number):

CHANNEL=CHn

When you enter the CHANNEL command followed by an equal sign and keyword,
all subsequent RBF-89 commands are directed to the channel you select. This
CHANNEL command remains in effect until you enter another CHANNEL
command.

NOTE
If you specify CHANNEL=CH2, you must have also specified the CH2
subcommand in the RBF command.

Example
*CHANNEL; Displays current channel.
CHANNEL=CH1
♦CHANNEL = CH1 ; Sets current channel to 1.
♦CHANNEL = CH2 ; Sets current channel to 2.

2-22

RBF-89 RBF-89 Commands

RESETRBF
Resets RBF-89 and 8089 to the state
specified by the RBF command.

Syntax
RESET RBF

Command Elements
RESET RBF Request to reset RBF-89.

Default
None.

Operation
The RESET RBF command re-establishes the parameters stored in the 8086/8089
communications block to the values given by the user in the RBF command and
issues a channel-attention command to the 8089. This channel-attention command
causes the 8089 to be re-initialized with parameters from the communications
blocks. However, the breakpoint registers are unaltered and retain current break­
point addresses. This command can restore control over a runaway 8089 channel
program, but only if you first physically reset the 8086 (by pressing the reset func­
tion switch on your prototype system).

Examples
♦RESET RBF
♦RES RBF

2-23

RBF-89 Commands RBF-89

EXITRBF
Terminates RBF-89 operation.

Syntax
EXITRBF

Command Elements
EXIT Request to terminate RBF-89.

RBF Request to return control to ICE-86 emulator.

Default
None.

Operation
To terminate RBF-89 but remain logged onto the ICE-86 emulator, use the EXIT
command followed by the keyword RBF. When this command is executed,
resources such as emulator memory and application system RAM are once again
available to you. The original instructions at the breakpoints are restored.

To terminate both RBF-89 and ICE-86 emulator operation, returning control to
ISIS-II, enter the EXIT command without the RBF keyword.

Examples
*EXIT RBF ; Terminates RBF, remaining within ICE-86 emulator.
♦EXIT ; Terminates RBF and ICE-86 emulator, returning
*; control to ISIS-II.

2-24

RBF-89 RBF-89 Commands

Loading and Saving Channel Programs
Through RBF-89, you can load your channel program and its symbol table into
remote 8089 RAM, and later save these items on any disk device.

2-25

RBF-89 Commands RBF-89

LOAD
Loads 8089 channel program and/or
symbol table into local or remote 8089
RAM.

Syntax
NOCODE

LOAD [-.drive:] filename
LOCAL

_remoteJ Lnosymbol.

Command Elements
LOAD Request to load object program code and/or symbol table.

-.drive: Diskette drive (such as :F0: or Fl) where object code resides.

filename Name of file in which object program resides.

LOCAL Request to direct the program to local 8086 system RAM.

REMOTE Request to direct the program to remote 8089 memory (the
LOAD LOCAL is eqivalent to the ICE-86 LOAD command).

NOCODE Request to suppress loading of program code.

NOSYMBOL Request to suppress loading of symbol table.

Default
Default is LOCAL if LOCAL/REMOTE is omitted. If neither NOCODE or
NOSYMBOL is entered, both program code and the symbol table are loaded.

Operation
Channel programs are written in ASM-89 assembler language and assembled into
object code through the ASM-89 assembler. To load them into 8089 remote or local
memory, use the LOAD command. This command performs either or both of the
following functions:
• Loads your channel program, in object code form, from a disk device into 8086

system RAM or remote 8089 RAM.
• Appends symbols encountered in the object program file to the ICE-86

emulator symbol table (in the order they are encountered in the file).

The keywords NOCODE and NOSYMBOL direct RBF-89 to suppress loading the
object program or symbol table, respectively.

If you wish to load the channel program into local (system) memory, you may do so
with the LOAD LOCAL or the ICE-86 LOAD command. Before doing this,
however, you should first map the memory area that will contain the program to
USER status. If you wish to load the channel program into remote 8089 memory,
you must do so with the LOAD REMOTE command.

Examples
♦ LOAD :F1:I0PR0G REMOTE_____ ; Loads program IOPROG and symbol
*; table..
*L0A MYPROG REM NOSYMBOL ; Loads program MYPROG but not
*; symbol table.

2-26

RBF-89 RBF-89 Commands

SAVE
Saves 8089 channel program and symbol
table on ISIS-II file.

Syntax

SAVE [-.drive:] filename
'local
_REMOTE

"NOSYMBOL-
NOCODE

 partition

Command Elements

NOTE

SAVE Request to save program code and/or current symbol table.

-.drive: Diskette drive on which program and/or symbol table are to be
saved.

filename Name of file in which program and/or symbol table is to reside.

LOCAL Request to fetch program code from local 8086 system memory
(equivalent to SAVE in ICE-86).

REMOTE Request to fetch program code from remote 8089 memory.

NOSYMBOL Request to suppress saving symbol table.

NOCODE Request to suppress saving object code.

partition Partition denoting locations in 8089 remote memory from which
object code is to be saved.

The SAVE command cannot contain both the NOCODE and partition
parameters—these parameters are mutually-exclusive.

Default
Default is LOCAL if LOCAL/REMOTE is omitted.

Operation
The SAVE command performs either or both of these operations:
• Saves all or part of your channel program by copying it onto an ISIS-II file.
• Saves the entire ICE-86/RBF-89 symbol table in an ISIS-II file.
If you specify -.drive: in this command, but the diskette on the denoted drive does
not include the file filename in its directory, RBF-89 creates the file on this diskette.
If you omit '.drive:, RBF-89 writes this file to drive :F0:. If the file already exists,
RBF-89 overwrites the existing data.
If you specify NOSYMBOL, RBF-89 does not save the symbol table. If you specify
NOCODE, RBF-89 does not save the object code. (The NOCODE and partition
parameters are mutually exclusive; if you include one, you must omit the other.) If
you include partition, RBF-89 saves only the code stored in the address range
indicated by partition. If you omit both NOCODE and partition, RBF-89 saves all
code loaded by the last LOAD LOCAL or LOAD REMOTE command. (If no code
was loaded, none is saved.)

2-27

RBF-89 Commands RBF-89

Examples
*SAVE : F1 :PROG1 ■ SAV REMOTE NOSYMBOL .START TO .START + 50H
* __ ; Saves code in
* __; Locations .START
*; through .START + 50H.
*SAV : F1 :PRQG2■SAV REM .RESTART LEN 200H ;
* ; Saves code in 200H
* ; locations that begin
* __ ; at location PR0G2.SAV
* __ ; .RESTART, and saves
*; symboI table.

2-28

RBF-89 RBF-89 Commands

Controlling 8089 Program Execution
RBF-89 allows you to control 8089 channel program execution in these ways:
• Control channel programs from the console (through channel-attention

commands).
• Set, enable, and display breakpoints from the console (through breakpoint

commands).
• Control channel programs from 8086 user programs (through the ENABLE

RBR breakpoint command).

These capabilities are discussed in the following pages.

Controlling Programs from the Console

From your console, you can:
• Start execution of a channel program, directing the program to halt when a

breakpoint is encountered.
• Continue an interrupted channel program.
• Halt a running channel program.

Breakpoint Operation
The main device for controlling channel program execution is the breakpoint, which
specifies a location within the object code where execution is to terminate. Because
each input/output channel is associated with one Breakpoint Register that can hold
up to six addresses, you can establish up to six breakpoints in your program.

To use a breakpoint, you must both enter the breakpoint address value and enable
the breakpoint. Entering the breakpoint value (or setting the breakpoint) means
assigning the desired address value to the Breakpoint Register for the current chan­
nel. Enabling the breakpoint causes RBF-89 to write HALT instruction into the 8089
memory space at the breakpoint location, and save the overwritten instruction in
temporary storage. When your program reaches a breakpoint during execution, the
program halts. (Because the instruction at the breakpoint location is overwritten,
this instruction itself is not executed.) At this point, you can examine 8089 registers
and memory, perform various debugging analyses, and optionally continue program
execution.

There are three ways to set and enable breakpoints:
a. Specify a breaklist parameter in a CA START or CA CONTINUE

channel-attention command, as discussed below. This both sets the value of the
breakpoint and enables that breakpoint.

b. Specify a value for breaklist with the RBR breakpoint command discussed later
in this chapter, and then enable the breakpoint by using the TILL RBR clause in
the CA START or CA CONTINUE command.

c. Specify a value for breaklist with the RBR command, and then enable it
explicitly with the ENABLE RBR command discussed later in this chapter. This
allows you to set breakpoints in the 8089 channel program without actually
starting that program. Presumably in this case, your 8086 program will issue the
necessary channel-attention signal to start the 8089 program.

When channel program execution terminates, or when you enter the RBF-89
command, RBF-89 cancels the breakpoints by restoring the original instructions
that were overwritten by the HALT instruction, and saved in temporary
storage, disabling all breakpoints.

2-29

RBF-89 Commands RBF-89

NOTE
[f you request a breakpoint at the address where your program begins or
resumes execution, this breakpoint is disabled for the duration of channel
program execution and has no effect. To circumvent the problem of such
temporarily-disabled breakpoints, you may set breakpoints in contiguous
pairs so that the second breakpoint terminates execution when the first is
disabled. You might wish to do this, for instance, when you want the 8089
to continue execution from the location at which it was last halted. For an
example, see the discussion of the CA CONTINUE command.

To avoid confusion in your debugging operations, you should NOT set
breakpoints in 8089 code common to both input/output channels.

Channel-Attention Command Operation
RBF-89 channel-attention commands let you start, stop, or continue channel pro­
grams from your console. When you enter a channel-attention command, RBF-89
places the command into the command field of the CCW, prepares the task pointer
in the parameter block, sets the BUSY Flag in the CCB to OFH to indicate that a pro­
gram is about to begin, and issues a channel-attention directive to the appropriate
channel. The channel reads the CCW from the CCB, examines the CCW’s com­
mand field, sets the BUSY flag to FFH, and executes the command encoded there.
(You can diagnose a non-functional channel by its failure to change the BUSY flag
from its initial value of OFH.) RBF-89 continually monitors the BUSY Flag until it is
cleared to OOH by the channel, and then returns control to your console.

2-30

RBF-89 RBF-89 Commands

CASTART
Begins channel program, optionally
specifying one or more breakpoints.

Syntax

CASTART FROM-
LOCAL
REMOTE

expression
FOREVER
TILL breaklist

_TILLRBR
[RETURN]

Command Elements
CA Request to issue channel-attention directive.

START Request to begin 8089 channel program.

FROM Request to specify channel program starting address.

LOCAL Specification that program is stored in local memory.

REMOTE Specification that program is stored in remote memory.

expression Arithmetic expression that denotes starting location of channel
program in 8089 local or remote memory.

FOREVER Request to continue program execution indefinitely (until
normal termination or fatal error, or until ESC key is pressed).

TILL Request to terminate program when any breakpoint specified in
Breakpoint Register is encountered.

breaklist List of one to six breakpoint addresses to be loaded into
Breakpoint Register for current channel before program execu­
tion begins. Written in this format:

(local 1 r (LOCAL 1
I remote) e^reSS/OZ7|_’|REM0TE) expressi on_ ••

Execution at these breakpoint addresses will terminate program
execution.

RBR Request to use currently-loaded breakpoint addresses as
conditions for terminating program execution.

RETURN Request to return control to console after channel-attention
directive is issued to 8089, without waiting for channel program
completion.

Default
See below.

2-31

RBF-89 Commands RBF-89

Operation
The CA START command begins 8089 channel program execution at the starting
address you specify. It also allows you to specify up to six breakpoints for halting
program execution.

Before entering the CA START command, you must explicitly set the Parameter
Block Pointer (PBP) by using the RBF-89 PBP = command. For further informa­
tion about setting the PBP, see Chapter 3, page 3-6.

The channel program must reside in either local or remote 8089 memory, as
indicated by the keyword LOCAL or REMOTE respectively.

You may use the breaklist parameter to establish a breakpoint in either local or
remote memory space.

If you neither specify a breakpoint (through the TILL breaklist or TILL RBR
clause), nor indefinite execution (through the FOREVER keyword), the program­
terminating conditions will be those established by the last CA START or CA
CONTINUE command. (When you begin an RBF-89 debugging session, the initial
terminating condition is FOREVER.)

Normally, control does not return to the console until the 8089 channel program
completes execution. This, of course, prevents you from executing your 8086 user
program simultaneously with your 8089 channel program. However, you may
request immediate return of control to the console by specifying the RETURN
keyword. With this option, RBF-89 starts the 8089 channel program and then
immediately displays a prompt; this allows you to enter an ICE-86 emulator GO
command to start your 8086 user program while the channel program is still run­
ning, thus executing both programs simultaneously.

NOTE
Under the RETURN option, once control returns to the console, channel
program termination (via breakpoint or otherwise) is not reported to the
console until the next RBF-89 command is issued.

When the channel program begins execution, the following message appears on the
console:

8089 EXECUTION BEGUN

If the channel program terminates normally, this message appears:

8089 EXECUTION TERMINATED RTP = t nnnnn,

In this message, t is the tag bit of the Task Pointer (RTP) and nnnnn is the RPT
value.

If you selected the RETURN option, you may abort the channel program, by enter­
ing a CA HALT command. But if you did not specify the RETURN option, you
must use the ESC key to abort the program or else wait for normal channel program
termination.

If you halt the channel program by pressing the ESC key or entering a CA HALT
command, this message appears:

8089 EXECUTION ABORTED RPT = t nnnnn

2-32

RBF-89 RBF-89 Commands

If the channel program reaches a breakpoint, this message appears:

8089 EXECUTION BREAKPOINT REACHED RPT = t nnnnn

Examples
*CA START FROM LOCAL F800:0000 TILL LOCAL F800:0050 &
★ * Begin program at
★ location 0, break at
★ location 50.
8089 EXECUTION BEGUN
8089 EXECUTION BREAKPOINT REACHED RTP = 0 F8050H
*CA START FROM LOCAL F800:0 TILL LOCAL F800:10,LOCAL F800:20 &
** ; Break at location 10
*; or 2 0.
8089 EXECUTION BEGUN
8089 EXECUTION BREAKPOINT REACHED RTP = 0 F8010H
*RBR = LOCAL F800:10,LOCAL F800:20 ; Set Breakpoint Register.
*CA START FROM LOCAL F800:0 TILL RBR ; Same as last CA START
* ; command.
8089 EXECUTION BEGUN
8089 EXECUTION BREAKPOINT REACHED RTP = 0 F8010H
*CA START FROM LOCAL F800:0 TILL RBR RETURN ; Same as above, with

; RETURN option.
8089 EXECUTION BEGUN
♦CHANNEL = CH2 ; Redirects commands to
* ; Channel 2 .
*CA START FROM LOCAL F800:0 TILL LOCAL F800:20,LOCAL F800:40 &

** ; Starts another program
★ ; on channel 1.
8089 EXECUTION BEGUN
8089 EXECUTION BREAKPOINT REACHED RTP = -0 F8020H

2-33

RBF-89 Commands RBF-89

CA CONTINUE
Resumes execution of a halted channel
program.

Syntax

CA CONTINUE
‘FOREVER

TILL breaklist [RETURN]
-TILLRBR

Command Elements
CA Request to issue channel-attention directive.

CONTINUE Request to continue 8089 channel program.

FOREVER Request to continue program execution indefinitely (until
normal termination or fatal error, or until ESC key is pressed).

TILL Request to terminate program when any breakpoint specified in
breakpoint register is encountered.

breaklist List of one to six breakpoint addresses to be loaded into
breakpoint register for current channel before program execu­
tion resumes. Written in this format:

/local 1 . r /local 1
(remote/ exPression_’(remote) express/onJ ■ ■ •

These breakpoints will then be used as conditions for ter­
minating program execution.

RBR Request to use currently-loaded breakpoints as conditions for
terminating program execution.

RETURN Request to return control to console after channel-attention
directive is issued to 8089, without waiting for channel program
completion.

Default
See below.

2-34

RBF-89 RBF-89 Commands

Operation
When you wish to resume execution of an 8089 channel program that was halted
(prior to completion) by a breakpoint or a CA HALT command, use the CA
CONTINUE command. This command continues execution from the location
where the halt occurred. As in the CA START command, you may specify up to six
breakpoints for halting the requested execution and may also request the RETURN
option. You may NOT, however, specify a starting address. The rules for break­
point specification and the messages indicating the beginning and termination of
program execution are the same as noted in the CA START command discussion.

When you enter the CA CONTINUE command, RBF-89 copies the currently-saved
TP and PSW values into the first two words of the parameter block and issues a
channel-attention directive to continue 8089 execution.

NOTE
Do not attempt to change the content of the PSW—otherwise, unpredict­
able results may occur.

If you did not select the RETURN option, you may abort the channel program and
any RBF-89 command in process by pressing the Escape (ESC) key on the console.
But if you did specify RETURN, you must enter the CA HALT command to abort
the channel program.

As noted earlier under Breakpoint Operation, if you request a breakpoint at the
address where your program begins or resumes execution, this breakpoint is disabled
for the duration of channel program execution and has no effect. But, suppose you
want the 8089 to continue execution from the breakpoint at which it was last halted,
and expect the program to loop through this temporarily-disabled breakpoint one or
more times. To circumvent the problem of the disabled breakpoint, you may set
another breakpoint at the next instruction in your program. Thus, when the first of
these contiguous breakpoints is disabled, the second breakpoint terminates execu­
tion, and vice-versa. For instance, suppose your program contained the following
loop, and you wished to enable breakpoints of the instructions labeled BRK1 and
BRK2.

LOOP : LDP I [PP], PTR

BRK1 : MOV GA [PP], 10
BRK2 : MOV GB [PP] , 13

JNZ BC . LOOP

2-35

RBF-89 Commands RBF-89

You could set the breakpoints with the following RBR command:

*RBR = LOCAL .BRK1, LOCAL .BRK2

You could then run your program in increments, breaking alternately on .BRK1 and
.BRK2, as follows:

*CA START FROM .BEGIN TILL RBR
8089 EXECUTION BEGUN
8089 BREAKPOINT REACHED RTP = .BRK1
*CA CONTINUE
8089 EXECUTION BEGUN
8089 BREAKPOINT REACHED RTP = .BRK2
*CA CONTINUE
8089 EXECUTION BEGUN
8089 BREAKPOINT REACHED RTP = .BRK1

Examples
*CA CONTINUE ; Resumes program execution.
8089 EXECUTION BEGUN
8089 EXECUTION BREAKPOINT REACHED RTP = 0 F8040H
*CA CONTINUE TILL F800:30, LOCAL F800:40 ; Continues program until
* ; 30, 40.
8089 EXECUTION BEGUN
8089 EXECUTION TERMINATED RTP = 0 F8072H
*CA CONTINUE FOREVER RETURN ; Resumes program
* ; indefinitely with RETURN.
8089 EXECUTION BEGUN
★ ; ESC key pressed, but no

; terminating message.

*CA HALT ; Requests channel-attention

* ; h a 11.
8089 EXECUTION TERMINATED RTP = 0 F8072H

; Terminating message

; appears after CA command.

2-36

RBF-89 RBF-89 Commands

CA HALT
Halts channel program.

Syntax
CA HALT

Command Elements
CA Request to issue channel-attention directive.

HALT Request to terminate 8089 channel program.

Default
None.

Operation
When an RBF-89 command prompt is displayed, you may use the CA HALT com­
mand to abort an 8089 channel program presently in execution. The CA HALT
command also directs RBF-89 to dump the contents of TP, PSW, and all other
registers (except CP and PP) in effect when the program halts. If the channel pro­
gram has already terminated when you issue the CA HALT command, this com­
mand is ignored.

When an RBF-89 command prompt is NOT displayed, you must press the ESC key
to abort the channel program. This action causes RBF-89 to implicitly issue a CA
HALT command.

Example
* C A HALT; Halts channel program.
8089 EXECUTION ABORTED TP = 0 01020H

2-37

RBF-89 Commands RBF-89

Setting, Enabling, and Disabling Breakpoints

As you have seen, you can set and enable breakpoints in your 8089 channel program
through the CA START and CA CONTINUE channel-attention commands that
initiate program execution. Alternatively, you also can set and enable breakpoints
without requesting program execution, and display the contents of the Breakpoint
Registers, by entering the breakpoint commands RBR and RESET RBR, described
in the following pages.

When controlling the channel program from the console, you may wish to use
breakpoint commands because of their convenience in particular cases. When con­
trolling the channel program from an 8086 user program, you must use breakpoint
commands to establish breakpoint register contents. (This function is discussed later
in this chapter, under Controlling IOP Program from CPU Program.)

2-38

RBF-89 RBF-89 Commands

RBR
Displays or changes Breakpoint Register
contents.

Syntax
RBR [= breaklist]

Command Elements
RBR Request to access Breakpoint Register for currently-assigned

channel.

LOCAL
REMOTE

breaklist List of one to six breakpoints to be loaded into Breakpoint
Register for current channel. Written in this format:

expression
LOCAL
REMOTE expression

Default
None.

Operation
The RBR command displays the contents of the Breakpoint Register for the
currently-assigned channel or loads this register with the breakpoints you specify.
The breakpoints are not actually entered in your program, however, until the CA
START, CA CONTINUE, or ENABLE RBR command is issued.

To display the current contents of the Breakpoint Register, enter the RBR command
with no subsequent parameters. The display appears in this format:

RBR = break I ist

2-39

RBF-89 Commands RBF-89

To either set the contents of the Breakpoint Register initially or to alter the current
contents of this register, follow the RBR command name with an equal sign and the
breaklist parameter. (The rules for breakpoint specification via breaklist are the
same as those described for the CA START and CA CONTINUE command.)
RBF-89 clears the current contents before entering the new addresses into the
register. From this point on in your debugging session, you may start the channel
program by simply referencing START and CA CONTINUE commands rather than
explicitly setting the breakpoints with each instance of these commands. This techni­
que is particularly useful when referring to the same group of breakpoints through
several successive CA START or CA CONTINUE commands. For example, the
following sequence of commands:

*CA START FROM LOCAL 1000 TILL LOCAL 1050, LOCAL 1060, LOCAL 1070, LOCAL 1080

8089 EXECUTION BEGUN
8089 EXECUTION BREAKPOINT REACHED RTP = 0 01050H
*CA CONTINUE FOREVER

*CA START FROM LOCAL 1010 TILL LOCAL 1050, LOCAL 1060, LOCAL 1070, LOCAL 1080

8089 EXECUTION BEGUN
8089 EXECUTION BREAKPOINT REACHED RTP = 0 01050H

*CA CONTINUE FOREVER

*CA START FROM LOCAL 1020 TILL LOCAL 1050, LOCAL 1060, LOCAL 1070, LOCAL 1080

8089 EXECUTION BEGUN
8089 EXECUTION BREAKPOINT REACHED RTP = 0 01050H

could be entered more simply as:

*RBR=LOCAL 1050, LOCAL 1060, LOCAL 1070, LOCAL 1080
*CA START FROM 1000 TILL RBR
8089 EXECUTION BEGUN
8089 EXECUTION BREAKPOINT REACHED RTP = 0 01050H
*CA CONTINUE FOREVER

*CA START FROM LOCAL 1010 TILL RBR
8089 EXECUTION BEGUN
8089 EXECUTION BREAKPOINT REACHED RTP = 0 01050H
*CA CONTINUE FOREVER

*CA START FROM LOCAL 1020 TILL RBR
*8089 EXECUTION BEGUN
8089 EXECUTION BREAKPOINT REACHED RTP 0 01050H

2-40

RBF-89 RBF-89 Commands

Examples
♦CHANNEL = CH1 Selects Channel 1.
♦RBR Displays Channel 1 Breakpoint

RBR = 0 F8050H
♦CHANNEL = CH2

R e g i s t e r .

Selects Channe I 2.
*R8R ; Displays Channel 2 Breakpoint

; Register.
NO BREAK POINT(S) SET

*RBR = LOCAL 0050H ; Sets Breakpoint Register to
; local address 0050H.

♦RBR = LOC .START+1OH,LOC .START+20H,LOC .START + 30H,LOC .START+40H, &
**LOC .START+50H,LOC .START+60H Sets Breakpoint Register for 6
★ locations.
♦RBR Displays Channel 2 Breakpoint
★ Register.

2-41

RBF-89 Commands RBF-89

RESETRBR
Resets contents of Breakpoint Register
for current channel, or both Breakpoint
Registers.

Syntax
RESET[BOTH]RBR

Command Elements
RESET Request to perform reset (clearing) operation.

BOTH Request to perform this operation on both Breakpoint Registers.

RBR Request to access one or both Breakpoint Registers.

Default
None.

Operation
The RESET RBR command resets one or both Breakpoint Registers by clearing
them to zero. This command physically removes all breakpoints from your
program.

If you include the BOTH keyword, RBF-89 resets the breakpoint registers for both
input/output channels. If you omit BOTH, RBf-89 resets the register for the
currently- assigned channel.

Examples
*RESET RBR ; Resets the Breakpoint Register for

; current channel.
* RE S BOTH RBR ; Resets Register for both channels.

2-42

RBF-89 RBF-89 Commands

Controlling IOP Program from CPU Program

In certain situations, it is necessary to set breakpoints without starting an 8089 chan­
nel program from the console. This is required, in fact, when you want to control
the execution of the channel program from an 8086 program, allowing the 8086 pro­
gram to drive the 8089 program in a master/slave relationship. You may do this, for
instance, when verifying the 8086 driver program. For this type of operation, you:
a. Load breakpoint addresses into the Breakpoint Register for the selected 8089

channel (with the RBF-89 RBR command).
b. Enable the breakpoints in your 8089 program (with the RBF-89 ENABLE RBR

command).
c. Start your 8086 program (with the ICE-86 emulator GO command).

This procedure requires that you'either:
a. Establish a protocol between your 8086 and 8089 programs to differentiate

between normal, error, and breakpoint termination conditions. This is
necessary so that you can specify the ICE-86 emulator GO commands in such a
way that emulation will break when the 8086 program detects that the 8089 pro­
gram has reached a breakpoint.

b. Cause the ICE-86 emulator to break whenever the 8086 is about to issue a
channel-attention directive, and check the cause of the 8089 program’s termina­
tion. This will prevent the 8086 from issuing the channel-attention directive to
the 8089 if an 8089 breakpoint has already been reached.

2-43

RBF-89 Commands RBF-89

ENABLERBR
Enables breakpoints.

Syntax
ENABLE [BOTH] RBR

Command Elements
ENABLE Request to perform enable operation.

BOTH Request to enable both Breakpoint Registers.

RBR Request to access one or both Breakpoint Registers.

Default
None.

Operation
After you have set a breakpoint with the RBR command, you may explicitly enable
it with the ENABLE RBR command. This allows you to set breakpoints in the 8089
channel program without actually starting this program. In this case, your 8086 pro­
gram is to issue the necessary channel-attention signal to start the 8089 program.

The ENABLE RBR command places HALT instructions at the locations in your
channel program (or programs) specified by the contents of one or both Breakpoint
Registers. If you include the BOTH keyword, the breakpoints from both registers
are established in the channel programs for the respective channels. If you omit
BOTH, only the breakpoints from the register for the currently-selected channel are
enabled in the program for that channel.

NOTE
The original instructions are restored to the breakpoint locations when you
enter the next RBF-89 command. Thus, the ENABLE RBR command
should be the last RBF-89 command you enter before starting your 8086
program.

Example
♦RBR = .TASKAD + 50H .TASKAD + 100H, TASKAD + 150H

Loads 8089
★ breakpoi nts into
★ registers.
♦ENABLE RBR Enables 8089
★ breakpoints.
♦GO TILL .TASKDONE Starts 8086
* p r og r am, which
♦ENA BOTH RBR drives 8089
* program.

2-44

RBF-89 RBF-89 Commands

Displaying and Changing 8089 Register
and Memory Contents
RBF-89 recognizes unique keyword operators for all user-programmable 8089
registers (except CP and PP, as noted below), 8089 status flags, and other 8089
system variables. By using these keywords in RBF-89 data-access commands, you
can examine or alter the contents of these variables. By using ICE-86 emulator
display/change commands, you can also similarly access 8086 variables while logged
onto RBF-89.

NOTE
This register is loaded only once for the System Control Block (SCB) used
during 8089 initialization.

RBF-89 also lets you display or change the contents of remote 8089 memory and
input/output ports. The memory displays may be requested in either numeric-data
or disassembled mnemonic-code form. You may also apply ICE-86 emulator
symbol-manipulation commands to 8089 symbolic references. To display or change
8086 memory and ports, you must use ICE-86 emulator memory-reference com­
mands. Expressions and symbolic references are evaluated according to the syntactic
and semantic rules described in ICE-86 In-Circuit Emulator Operating Instructions
for ISIS-II Users.

The RBF-89 commands for displaying or changing 8089 registers and memory and
for displaying 8086/8089 communication blocks, are described in the following
pages. The displays all appear in the current output base as specified by the ICE-86
emulator BASE command.

2-45

RBF-89 Commands RBF-89

item-reference
Selectively displays or changes 8089
registers or memory locations, or 8086
registers, memory locations, or port
values.

Syntax

item-reference
[,item-reference] ...
= expression

Command Elements
item-reference Item to be displayed or changed, or selected from:

• 8089 Register: RGA, RGB, RGC, RTP, RBC, RIX, RCC,
RMC, PS, TGA, TGB, TGC.

• 8089 Memory Location, in this format:
RBYTE
RWORD addreSS

• 8086 Register, as defined in ICE-86 In-Circuit Emulator
Operating Instructions for ISIS-II Users.

• 8086 Memory Location, in this format:
BYTE
WORD
POINT address
INT
SINT

• 8086 Port, in this format:
PORT
WPORT addreSS

expression Expression whose value becomes the contents of item-reference.

Default
None.

Operation
This command displays or changes 8089 or 8086 registers, status flags, or memory
locations, or 8086 input/output ports.

Typing the item name alone displays the value of the item. Entering the item name,
followed by an equal sign, followed by a new value sets the item to that value.

In all displays, the data identifiers and their contents are presented consecutively,
separated from each other by a space. If any line of the display would contain more
than 80 characters, the references are continued on the next line.

The tag bits for the 20-bit registers appear in this format, where bit-value is either 1
or 0:

TGA = bit-value
TG B = bit-value
TGC = b71-va Iue

2-46

RBF-89 RBF-89 Commands

The 20-bit register values appear in the format shown below. The tag portion is 0
when the register is loaded with a local memory pointer, or 1 when the register con­
tains remote memory pointer. The pointer-value is a 20-bit quantity followed by an
H suffix that denotes the hexadecimal output display base.

RGA = tag pointer-value
RGB = tag pointer-value
RGC = tag pointer-value
RTP = tag pointer value

The 16-bit registers appear in this format:

RBC = uo rd-vaIue
RIX = uo rd-vaIue
RCC = uo rd-vaIue
RMC = uo rd-vaIue

The Program Status Word is displayed in this manner:

PS = byte-value

In the displays of individual 8089 memory locations, the data appears in this format:

| RBY1 . ,.
nun base :displacement = location-content

I K W U I

NOTE
For further information about 8089 registers and memory references, see
The 8086 Family User’s Manual.

For information about 8086 registers, memory references, and input/
output ports, and their display formats, see The 8086Family User’s Manual
and ICE-86 In-Circuit Emulator Operating Instructions for ISIS-II Users.

Examples
*RGA; Displays Register A.
RGA = O OOOOOH
*RGA, RGB, RGC ; Displays Registers GA, GB, and GC.
RGA=O OOOOOH RGB=O OOOOOH RGC=O OOOOOH
*RBYTE 1083H ; Displays byte 1083H in remote memory.
RBY 0000 :1 083H = 00H
*RGA=20:40 ; Sets Register RGA.
*TGA = 1________________________ ; Sets Tag Bit of Register GA.
*RGA ; Displays contents of Register GA.
RGA=1 00240H

2-47

RBF-89 Commands RBF-89

RBYTE
RWORD
Displays or changes contents of 8089
remote memory.

Syntax
RBYTE
RWORD partition [= expression [.expression] ...

Command Elements
RBYTE Request to display or change contents of one or more bytes of

remote memory.

RWORD Request to display or change contents of one or more words of
remote memory.

partition Range of locations to be displayed or changed, entered in one of
three formats:
a. address
b. address 1 LENGTH address2
c. address! TOaddress2

expression The new value to be entered in the area of remote memory
indicated by partition. May be an arithmetic expression, string,
or memory input/output reference (entered in the format
{RBYTE/RWORDl partition).

Default
None.

Operation
This command displays the contents of selected remote memory partition in numeric
data form, or changes these contents. (In the display, disassembly does not take
place.) Changes are normally made to patch-in changes to resident object code or
data.

To produce the display, enter the command in this format:

RBYTE
RWORD partition

The display appears in this format:

*RBYTE 0 LENGTH 10
RBY 0000 : 0000H = 11H 22H 33H 44H 55H 66H
*RWORD 10 TO 2E
RWO 0000 : 001 0H=1111H 2222H 3333H 4444H
RWO 0000:0020H=9999H AAAAH BBBBH CCCCH

77H 88H 99H AAH BBH CCH DDH EEH FFH OOH

5555H 6666H 7777H 8888H
DDDDH EEEEH FFFFH 0000H

2-48

RBF-89 RBF-89 Commands

To change the contents of memory, enter the command in this format:

RBYTE
RWORD partition expression [.expression] . . .

If you specify the partition to be changed in the address format, so that no upper
limit or length is defined for the partition, storage of the new data begins at address
and continues until all memory required by this data is used.

If you specify the partition to be changed in the address! TO address2 or address!
LENGTH address2 format, so that an upper limit or length is specified, then the
new data begins at address! and is repeated until the partition is filled. If the parti­
tion range is shorter than the new data entered, only the locations within the parti­
tion limits are changed and an error message is displayed.

Examples
*RBYTE 1052H________
RBY 0000:1052H=09H

; Displays one byte.

RBY 0000:1000H=0FH OOH OOH OOH

♦RWORD 1200H TO 1260H ; Displays 62H bytes
RWO 0000 :1 200H = 000FH 0000H OOOOH OOOOH OOOOH OOOOH OOOOH OOOOH
RWO 0000 : 1 21 0H = 0000H 0000H OOOOH OOOOH OOOOH OOOOH OOOOH OOOOH
RWO 0000 : 1 220H = 0000H 0000H OOOOH OOOOH OOOOH OOOOH OOOOH OOOOH
RWO 0000 : 1 230H = 0000H 0000H OOOOH OOOOH OOOOH OOOOH OOOOH OOOOH
RWO 0000 : 1 240H = 0000H OOOOH OOOOH OOOOH OOOOH OOOOH OOOOH OOOOH
RWO 0000:1250H=0000H OOOOH
RWO 0000:1260H=0Q00H
♦RBYTE 1000 LEN 4

OOOOH OOOOH OOOOH OOOOH

; Displays 4 bytes.

OOOOH OOOOH

RBYTE 1 0 83H = OOH 40H, 18H ; Patches code beginning at
; Location 1 083H .

RWORD 1 000 LEN 20 = OOH ; Fills 10H words with zeros.

2-49

RBF-89 Commands RBF-89

89 REGISTER
Collectively displays contents of all 8089
registers.

Syntax
89 REGISTER

Command Elements
89 Request to access 8089 registers.

REGISTER Request to display registers.

Default
None.

Operation
This command displays the 8089 registers in the following order: RGA, RGB, RGC,
RTP, RBC, RIX, RMC, and RCC. Where duplicate registers exist for both chan­
nels, only those for the currently-selected channel appear. In the displays, the first
line shows the pointers in hexadecimal notation, and the remaining lines show the
16-bit registers in the current output base.

Example
*89 REGISTER
RGA=1 11111H RGB=0 22222H RGC=1 33333H RTP=0 44444H
RIX=6666H RBC=5555H RMC=8888H RCC=7777H

2-50

RBF-89 RBF-89 Commands

89 ASM
Disassembles and displays memory.

Syntax
89 ASM [remote]^'-

Command Elements
89 Request to access 8089 memory.

ASM Request to display memory contents in disassembled form.

LOCAL Request to display local memory.

REMOTE Request to display remote memory.

partition Range of locations to be displayed, entered in one of these
formats:
a. address
b. addressl LENGTH address2
c. addressl TO address2

Default
Default is to LOCAL when LOCAL/REMOTE is omitted.

Operation

This command disassembles and displays object code in remote or local 8089
memory, showing the code in assembly-language mnemonic form. If you specify
REMOTE, RBF-89 displays remote memory. Otherwise, RBF-89 presents local
memory. The partition parameter must define the boundary of a single instruction,
or an address range that encompasses a discrete number of 8089 instructions.

NOTE
To aid you in interpreting this display, the complete 8089 IOP instruction
set appears in Appendix D.

Examples
*89 ASM 1000H TO 100AH ; Disassembles local memory 1000 through 100A.

ADDR PREFIX MNEMON I C OPERANDS COMMENTS
0000 : 1 000H INCB [GA]

0000:1002H J BT [GA],00H,$+12H ; SHORT
0000 : 1 005H LPDI GA,5678H ; 1234H
*89 ASM REMOTE 0021H LEN OEH ; Disassembles a OEH-byte remot e partition.
ADDR PREFIX MNEMONIC OPERANDS COMMENTS
0000:0021H MOVI [GA],1234

0000:0025H NOTB [GA]

0000:0027H TSL [GA],12H,$+12H ; SHORT
0000:002BH WI D 8,8

0000:002DH XFER

2-51

RBF-89 Commands RBF-89

communication-block
Displays contents of System Initialization
Block (SIB), System Configuration Block
(SCB), and/or Channel Control Block
(CCB)

Syntax
communication-block

Command Elements
communication-block Item to be displayed, selected from these entries:

Item ReferencedEntry

SIB System Initialization Block.
SCB System Configuration Block.
CCB Channel Control Block.

Default
None.

Operation
This command displays, in formatted output, the SIB, SCB, or CCB. The general
format is illustrated below, using a CCB display as an example:

ADDRESS OFFSET MNEMONIC DATA VALUE

8001 0 : + 00: CCW CH1 : OOH
8001 1 : + 01 : BUSY CH1 : 03H
80012: + 02: CPB1 ADR : 1 FOOH
80014: + 04: CPB1 REL: 0000H

In this format:
• Address shows the location of this byte in local memory, displayed as five

hexadecimal digits (without a suffix denoting the base).
• Offset indicates the displacement of this byte from the beginning of the block

displayed. The offset appears as a plus sign followed by two decimal digits.
• Mnemonic is an eight-character abbreviation that identifies the function of the

data value displayed in the next column.
• Data Value is the value of the data described in the preceding column. It

appears as an 8- or 16-bit quantity followed by a single-letter suffix that denotes
the current display base.

NOTE
For further information about the contents of the SIB, SCB, and CCB, see
The 8086 Family User’s Manual.

2-52

RBF-89 RBF-89 Commands

Examples
*SIB

FFFF6: + 00: SYSBUS : 01 H
FFFF8: + 02 : SCB ADDR: 8000H
FFFFA: + 04: SCB REL : OOOOH

*SCB
08000 : + 00: SYS OP C: 03H
08002: + 02: CCB ADDR: 81 OOH
08004: + 04: CCB REL : OOOOH

*CCB
08100: + 00 : CCW CH1 : 08H
08101: + 01 : BUSY CH1 : OOH
08102: + 02: CPB1 ADDR : 8200H
08104: + 04: CPB1 REL: OOOOH

2-53

RBF-89 Commands RBF-89

UPDATE
Updates software copy of all 8089
registers.

Syntax
UPDATE

Command Elements
UPDATE Request to update software copy of all 8089 registers.

Default
None.

Operation
The UPDATE command reads the current contents of all 8089 registers, including
RTP and PS, and updates the software copy of these registers used by RBF-89. You
should enter this command when you run the 8089 through a mechanism other than
RBF-89, but want to use RBF-89 to examine register contents. (You may wish to do
this, for example, in the case of an 8089 program driven by the 8086.) In such
instances, you should issue the UPDATE command immediately after the 8089 pro­
gram breaks, just before entering the RBF-89 command to display the desired
register contents; this ensures that current, valid RTP and PS register contents
appear in the display.

Example
♦UPDATE

2-54

CHAPTER 3
APPLICATIONS

This chapter explains how to load RBF-89 and use this product to perforin typical
debugging tasks on 8086/8089 microprocessor-based systems.

8089 Configuration Designing Hints
During the RBF-89 initialization sequence, the SEL pin setting (and the R bit in the
System Operation Command word, SOC) determine the MASTER/SLAVE status
of the IOP. After the initialization sequence is complete, the SEL pin setting deter­
mines which channel is being addressed. The SEL signal must be stable for 50
nanoseconds before the CA signal is transmitted. To toggle the CA and SEL pins,
you may connect one of the available address (ADDR) lines to the SEL pin and feed
the remaining ADDR lines into a combination of logic circuits to produce a signal
that is gated with the I0WC or MWTC signal to result in a CA signal. If you use the
I0WC signal, you must transmit output to an output port to produce the CA com­
mand. If you use the MTWC signal, you must write to a memory location to pro­
duce the CA command; this memory location is determined by the logic combina­
tion used in your design.

As an example, using the IOWC signal with the logic shown in figure 3-1, an OUT 0
instruction produces a CA command for Channel 1 during normal dispatching of an
input/output task. With this same logic, an OUT 1 instruction produces a CA com­
mand for Channel 2.

It is important that you design your prototype circuit to transmit an XACK signal to
the 8086 to acknowledge receipt of CA commands from the IOP. The easiest way to
do this is to invert the CA signal back to produce the XACK signal.

Figure 3-1. Design for Toggling SEL/CA Pins 1018-03

3-1

Applications RBF-89

Assumptions and Prototype Verification
Before using RBF-89, you must develop and debug your application system to the
level of readiness described under Assumptions and Prerequisites for Using RBF-89
in Chapter 1. (Generally, you perform this debugging with the ICE-86 emulator and
various hardware debugging tools.) To verify that your prototype system hardware
is functioning properly, follow these steps in the sequence shown:

a. Check all interconnections between the main components of your system to
ensure that they are not loose.

b. Check all power supplies for short circuits.

c. Plug the 8089 IOP and other components into the system, turn on the power to
all components, and check all power supply levels.

d. Try to invoke and initialize RBF-89. If you succeed, you may start your
software debugging session. Otherwise, proceed to Step e below.

e. Check to determine that there is an ALE signal from the 8288 bus controller or
that the Status signals (SO, SI, and S2) are in an active state. If there is no ALE
signal or if the Status signals are in a passive state:

1. Use an oscilloscope or other suitable tool to check the CLOCK, STATUS,
READY, and RESET signals on the IOP. Also, check the INIT and BCLK
signals into the 8289 bus arbiter, and the priority of the bus arbiter.

2. Check the CA and SEL signals to ensure that they are being issued
correctly.

3. If any CA signal (except the first CA signal after an IOP reset) is
transmitted to the IOP but the ALE signal is still not active, check to deter­
mine that the XACK signal has been generated so that the CPU can com­
plete its bus transfer cycle.

f. If the ALE and CA signals are being received but the system still does not work,
verify that the BUSY flag is cleared on CA signal receipt. If this flag is not
cleared, use the ICE-86 emulator to check the following elements in memory:

• System Initialization Block (SIB)

• System Configuration Block (SCB)

• Channel Control Block (CCB)

g. If the content of the above items is correct, use a logic state analyzer to trace
the ADDR and DATA lines to verify that all addresses and data are correct.
To do this, you may use two pulse generators—one for the RESET signal
and the other for the CA signal. You must first generate the RESET signal.
Then, you issue the CA signal and begin collecting trace data with the logic
state analyzer to verify that the 8089 is going through its initialization
sequence correctly. You may need to repeat this step several times to isolate
a problem, resetting the IOP and reissuing a channel-attention command to
the IOP each time.

3-2

RBF-89 Applications

Sample RBF-89 Sessions
To illustrate how RBF-89 is actually used in an operational environment, the follow­
ing examples are presented:

Example 1: Getting Started With RBF-89

Before using RBF-89 in an actual product debugging task, you should familiarize
yourself with the system by reading this example which illustrates some simple on­
line operations. These operations demonstrate some of the most commonly-used
RBF-89 commands. They also let you observe some of the most often-requested
displays. In this example, you will run a program named UPROG that uses local
memory on a system with a remotely-configured 8089 IOP. (A source listing of this
program appears in figure 3-2.) UPROG is an error-free sample program, run for
demonstration purposes only. It executes for a period of time determined by a value
established in the parameter block—this may indicate a finite number of seconds, or
an indefinite period. This program is given a pointer into a variable-length work
area. The first word of the work area gives the length of that area minus 7. The pro­
gram uses all of the work area but the first six bytes as a long binary number. It
initializes the number to zero, counts until all bits are set to one, and then halts.
Thus, by adjusting the work area length, you can cause the program to run over a
long or short duration.

UPROG is run on a hardware configuration that includes an SBC 86/12A Board
and an 8089-based board. (This configuration is documented in Application Note
AP89.) Attach a logic probe to the S-l pin. When UPROG is running, the S-l pin
signal causes the logic probe to flash continuously.

; File : f1 : Up nog 1 . a89;This is a test program which simulates a user 8089
;program being debugged by RBF. Through the M89
;standard pblk parameter block, it is given a ptr
;to a variable length work area. The first word
;of the work area gives its length minus 7 .
;UPR0G uses all the work area but the first 6 bytes
;as a long binary number. It initializes the number
;to 0, counts until it is all 1's, then halts.
;UPR0G can thus be made to finish in a short time or
;a long time by adjusting the area length.

UproglSegment
Public Uprogl, Len_Uprog1

$Include(:f1:typeq.a89)
$E j ect

$Include(:f1:pblk.a89)
$ E j e c t

Area Struc
Maxbi t : ds Word
T1 : ds Word
T2:ds Word
CTequ $
Area Ends

Reset:1pd GA,[PP].arg_bIk;ptr to work area
Ipd GB,[PP].arg_bIk;ptr to work area

mov BC,[GA].Maxbit;highest bit number in count

addi GA,CT;ptr to bO
addi GB,CT+1;ptr to b1

$Include(:f1:Uti lcc.a89)

wid 8,8
Xf er
movbi [GA],0;set 0 in first digit of count,
joverlapping block move will propagate it.
;Sets binary number bO........... b(maxbit) to 0's.

Figure 3-2. UPROG Program Listing 1018-04

3-3

Applications RBF-89

Ipd GA,[PP].arg_bIk;reconstruct ptr in ga to area+0.
Ipd GC,[PPJ.arg_bLk;construet in GC ptr to bO of count,
addi GC,CT

$Ej ect

;Now count the number up until it reaches 2** (maxbit + 1)-1 .

Count:movi IX,0; IX is bit number. Start with 0. Look for
;first 0 bit in number.

SeekLoop:
jzb [GC+IX], Incr;IF IX' th bit is 0, set it to 1 and set all
;lower bits to 0.

mov [GA1.T1, IX; Save IX
not IX
inc IX
add IX, IGA].Maxbit;IX := Maxbit-IX
jz IX,Done;If IX=Maxbit, b(Maxbit) is 1 and all lower
;bits are 1, so the
; f u I I count has been attained.

mov IX,[GA].T1;Restore IX. Not Done. Still looking for lowest

UP_tO:Lpd GB,[PP].Arg_BIk;Now we screw around with GB a little bit.
Movp [GA].T1,GB;Here we are testing addbi with a neg arg.
Addb i GB,-2
Movp [GAJ.T1,GB
UP_t1:Nop

Lpd GB,[PP].Arg_Blk
Addbi GB,-1
Movp [GA1.T1,GB
UP_t2:Nop

Movi GB,0F900h ; I/O space adr F900h
Movp [GA].T1,GB
UP_t3: Nop

Addbi GB,-2
Movp [GA].t1,GB
UP_T4: Nop

Addi GB,0F00h ;Enough to cause wrap-around
Movp [GA].T1,GB
UP_T5: Nop

inc IX;order 0 bit in count. Check next bit.
jmp Seek loop

Incr;Setb [GC+I X],0;Set IX'th bit to 1
jmp Incr1;Reset all lower bits

; Reset all lower-order bits to 0.

Zero; Clr [GC+IX],0
I n c r1:j z IX,Count
UP_Brk1: dec IX
UP_Brk2: jmp Zero

Done: H Lt
Len_Uprog1 equ $
Uprog 1 Ends
End

Figure 3-2. UPROG Program Listing (Cont’d.) 1018-04

As you read through this example, put yourself in the place of the user sitting at the
console and following the steps shown below:

NOTE
In these steps, you would enter only the underlined information—all other
information is output by the system.

a. To begin, you proceed as follows:
1. Connect the ICE-86 In-Circuit Emulator to the Intellec Microcomputer

Development System and to your prototype system hardware, ensuring that
all connections are tight.

3-4

RBF-89 Applications

2. Turn on the power to the development system, console, all peripheral
devices, and your prototype system.

3. Bootstrap the ISIS-II operating system.
4. Invoke the RBF-89 emulator. This initializes the ICE-86 hardware and

software configuration that contains RBF-89.

NOTE
For complete details on Steps al through a4, above, see ICE-86 In-Circuit
Emulator Operating Instructions.

b. Next, you map to USER status the portion of prototype system memory where
the following elements are to reside:
• System Intialize Block (SIB)
• System Configuration Block (SCB)
• Channel Control Block (CCB)
• RAM buffer for RBF-89 use.

In this example, you allocate 32k bytes of memory for those elements, beginning at
location 0 in user memory. To do this, you enter this ICE-86 emulator MAP
command:

*MAP 0 LENGTH 32=USER

c. Next, you invoke RBF-89 by entering the RBF command. In response, RBF-89
displays a prompt for your first RBF-89 subcommand:

*RB F
. * * (RBF-89 subcommand prompt)

d. To perform the RBF-89 initialization sequence, you provide the following
information through the RBF-89 subcommands shown:
1. To specify that the CCB begins at location FF00:0, you enter:

.*CCP = F FOO : 0

2. To indicate that the SCB starts at location FFF0:0:
,* SCP=FFFO:O

3. To denote that the physical width of the input/output bus is 16 bits:
■* SOC=1

4. To set the beginning location of the RAM area required by RBF-89 in your
prototype system to Location FD00:0:

. *RAM=FD00:0

5. To tell RBF-89 that channel-attentions to Channel 1 are issued by writing to
Output Port 0:

,* CH1=P0RT 0

6. To tell RBF-89 that channel-attentions to Channel 2 are issued by writing to
Output Port 1:

.* CH2~=P0RT 1

NOTE
The commands in Steps dl through d6, above, could be entered in
any order. For greater efficiency, you may wish to use macros to
handle the initialization sequence in repeated applications.

3-5

Applications RBF-89

7. To specify that the 8089 IOP is configured remotely, and that the logical
width of the system bus is 16 bits, no RBF subcommands are required—the
default values assigned by the system are appropriate.

8. To enable the 8086 to reference the SBC two-port memory with addresses
pertinent to the 8086, you enter:

.*RELOCATE F800:0 LEN 32K TO 0

e. Now, you terminate the initialization sequence by entering the ENDRBF
subcommand:

■♦ENDRBF

In response, the following message is displayed, followed by a prompt for an
RBF-89 (or ICE-86) command prompt.

ICE-86 RBF-89 1 .0
*(RBF-89/ICE-86 Command Prompt)

f. Before you may run any channel program, you must establish the Parameter
Block Ponter (PBP). In this case, you use the item-reference command to set
PBP for Channel 1 to FB00:0:

*PBP=FBOO:0

g. Because you plan to run programs on both channels, you must also set PBP for
Channel 2. First, you enter a CHANNEL command to switch to Channel 2.
Then, you enter an item-reference command to set the PBP for Channel 2 to
FC00:0. And finally, you enter another CHANNEL command to return to
Channel 1:

*CHANNEL=CH2
*PBP = FCOO : 0
*CHANNEL=CH1

h. Now, lyou load your IOP program, using the LOAD command. (This program
resides in a file named UPROG1, on the diskette in disc drive :F1:.)

♦LOAD :F1:UPROG1

i. To verify that the CCB is set up correctly, you decide to use the communication­
block command to examine this element:

♦CCB
FFOOO: +00: CCW CH1: 07H
FF001: +01: BUSY CH1: OOH
FF002: +02: CPB1 ADR: 0000H
FF004: +04: CPB1 REL: FBOOH

j. Now, you try to run your program by entering this CA START command:
♦CA START FROM LOCAL F910:0
8089 EXECUTION BEGUN

k. This program continues execution indefinitely. It seems to be in a loop. Thus, to
terminate its execution, you must press the ESC key. The program then halts,
and the following messages appear:

8089 EXECUTION ABORTED RTP=0 F917FH
PROCESSING ABORTED

l. Next, you decide to set and enable two breakpoints in local memory (F910:D
and F910:15) and execute your program in increments. To run the first incre­
ment, you enter this CA START command:

♦CA START FROM LOCAL F910:0 TILL LOCAL F910:D, LOCAL F910 :1 5
8089 EXECUTION BEGUN

The program begins execution, and continues until the breakpoint at location
F910:D is encountered. At this point, execution halts and this message appears:

8089 EXECUTION BREAKPOINT REACHED RTP=0 F910DH

3-6

RBF-89 Applications

m. Now, you decide to display the contents of all 8089 IOP registers for further
information. To do this, you enter the 89 REGISTER command:

*89 REGISTER
RGA=O F9206H RGB = O F9200H RGC=O F9206H RTP=0 F910DH
RIX=0003H RBC=0030H RMC=OOOOH RCC=C008H

n. Next, you decide to check the current contents of the Breakpoint Register for
Channel 1:

*RBR
RBR=O F910DH, 0 F9115H

o. Now, you continue program execution from the location at which the program
is presently halted. To do this, you enter the CA CONTINUE command:

*CA CONTINUE
8089 EXECUTION BEGUN

The program breaks at the second breakpoint, and this message appears:
8089 EXECUTION BREAKPOINT REACHED RTP=0 F9115H

p. Again, you decide to examine all 8089 IOP registers:
*89 REGISTER
RGA=0 F9206H RGB=0 F9207H RGC=0 F9206H RTP=0 F9115H
RIX=0003H RBC=0030H RMC=OOOOH RCC=C008H

q. Now, you enter another CA CONTINUE command, this time requesting a
program break at Location F910:2D.

*CA CONTINUE TILL LOCATION F910:2D
8089 EXECUTION BEGUN

When execution halts, this message appears:
8089 EXECUTION BREAKPOINT REACHED RTP=0 F912DH

r. After this break, you decide to examine the 16 bytes of local memory ranging
from Location FB00:0 through Location FB00:0EH. To do this, you enter the
following BYTE command:

♦BYTE FBOO:O LEN 10H

BYTE FBOO:0000H=2FH 91H FOR OOH OOH OOH OOH OOH OOH 20H F9H OOH FFH FFH FFH FFH

s. Next, you wish to disassemble some of the object code in local memory into
assembly-language mnemonic form. To do this, you enter the 89 ASM
command:

*89 ASM F910:0 LENGTH 60
ADDR PREFIX MNEMONIC OPERANDS
F910:0000H LPD GA, 1 PP] .07H
F91 0 : 0003H LPD GB,[PP].07H
F910:0006H MOV BC,[GA].OOH
F91 0 : 0009H ADDI GA,0006H
F 91 0 : 000DH ADD I GB,0007H
F910:0011H MOVI CC,C008H
F910:0015 H W I D 8,8
F910:0017H XFER
F910:0019H MOVBI [GA],OOH
F910:001 CH LPD GA,[PP].07H
F 91 0 : 0 01 F H LPD GC,[PP].07H
F910:0022H ADDI GC,0006H
F910:0026H MOVI IX , 0000H
F 91 0 : 0 0 2 A H J ZB [GC+I X],$+48H
F910:002DH MOV [GA] .02H, IX
F910:0030H NOT IX
F910:0032H INC IX
F910:0034H ADD IX, [GA].00H
F910:0037H JZ IX,$+4AH

3-7

Applications RBF-89

*89 ASM F910:0 LENGTH 60 (CONTINUED)

F91 0 003AH MOV IX, [GA].02H
F91 0 003DH LPD GB, [PP1.07H
F91 0 0040H MOVP [GA] . 02H , GB
F 91 0 0043H ADDBI GB,FEH
F91 0 0046H MOVP [GA].02H,GB
F91 0 0049H NOP
F91 0 004BH LPD GB, [PP] . 07H
F91 0 004EH ADDBI GB , FFH
F91 0 0051 H MOVP [GA].02H,GB
F91 0 0054H NOP
F91 0 0056H MOVI GB,F900H
F91 0 005AH MOVP [GA].02H,GB
F91 0 005DH NOP
F910 005 FH ADDBI GB,FEH

t. Finally, you wish to demonstrate the simultaneous execution of two channel
programs:
1. First, you run the program on the current channel, Channel 1, using the

RETURN parameter of the CA CONTINUE command to return control to
the console as soon as this command is entered:

*CA CONTINUE RETURN
8089 EXECUTION BEGUN

★
2. While the Channe 1 program is running, you issue a CHANNEL command

to switch channels:
♦CHANNEL CH2

3. Next, you display and check the CCB for the Channel 2 program:
*CCB

FF008: + 00: CCW CH2 : 07H
FF009: + 01 : BUSY CH2 : OOH
FFOOA: + 02: CPB2 ADR : 0000H
F F 0 0 C ; + 04 : CPB2 REL: FCOOH

4. Now, you start the Channel 2 program:
*CA START FROM LOC F910:0 FOREVER
8089 EXECUTION BEGUN

At this point, both Channel 1 and Channel 2 programs are running
simultaneously.

5. To halt the Channel 2 program, you press the ESC key. When this program
halts, the following messages appear:

8089 EXECUTION ABORTED RTP=0 F9151H
PROCESSING ABORTED
★

6. To halt the Channel 1 program, you:
a. Again switch channels:

*CHANNEL=1

b. Enter the CA HALT command:
*CA HALT
8089 EXECUTION TERMINATED RTP=0 FD002H

u. Now you are ready to terminate RBF-89 operation. To do so, returning to the
ICE-86 emulator, you enter the EXIT command as follows:

*EXIT RBF

3-8

RBF-89 Applications

Example 2; Debugging a Simple Memory-Transfer Program
For your next debugging session, you plan to test a small program named COPMIN
that copies a block of memory from system (local) memory to remote memory, or
vice-versa. This program runs on a configuration that includes an SBC 86/12A
Board, with 32k dual-port memory (mapped from Location 0 through 32k for the
8086, and from Locations F8000 through FFFFF for the remote 8089). This con­
figuration also includes an 8089 prototype board that interfaces with the system in
remote mode, and contains 6k of RAM (locations 0 through 6k). The 8089 bus is 16
bits wide; channel attentions to Channel 1 are generated by writing output to Port
80; channel attentions to Channel 2 are generated by writing output to Port 81.

Specifically, COPMIN transfers <src-len> byes of data from the partition beginning
at Location <src-adr> to the partition beginning at Location <dst-adr>. (A source
listing appears in figure 3-3.) The Parameter Block Pointer (PBP) is stored at Loca­
tion F800:2000. Within the PBP, COPMIN picks up another pointer at Location
F800:2007; this points to a block of parameters at Location F800:0000. The
parameters in this block are:

• Source address (<src-adr>), a 20-bit pointer set to local memory address
F8OO:OO5O (which translates to 50H,40H,F0H in 8089 pointer format).

• Destination address (<dst-adr>), a 20-bit pointer set to remote memory location
0 (which translates to 00H,00H,08H in 8089 pointer format).

• Byte count (<src-len>), a 2-byte counter set to 32 bytes (20H,00H).

The data stored at <src-sdr> is:

0000 : 005 0 H = 01H FFH 02H FEH 03H FDH 04H FCH 05H FBH 06H FAH 07H F9H 08H F8H
0000:0060H=09H F7H OAH F6H OBH F5H OCH F4H ODH F3H OEM F2H OFH F1H 10H FOH

In this example, you will execute the program twice: first, to move the data from the
SBC 86/12 board to prototype memory, and second, to return the data to the SBC
86/12 board. Following the transfers, you may compare the transferred data to the
source data to ensure that the transfer was successful.

a. After preparing and invoking the ICE-86 emulator (as in Example 1), you enter
the MAP command to allocate 32k bytes of memory, beginning at Location 0,
for your user program:

♦MAP 0 LENGTH 32 = USER

b. Next, you use the ICE-86 emulator’s CLOCK command to specify that the SBC
86/12A Board will use an externally-supplied clock. (This is necessary to let
your program read the memory on this board.)

*CL0CK=EXTERNAL

c. Finally, you use the ICE-86 emulator’s DISABLE command to disable the
READY pin signal, normally used to acknwledge completion of data transfer
from addresses memory.

♦DISABLE READY

3-9

Applications RBF-89

d. To initialize RBF-89 in this and subsequent sessions, you retrieve the following
macro, using the ICE-86 emulator’s INCLUDE command:

♦INCLUDE :F1:RBFMAC

♦DEFINE MACRO INIT
♦ RBF
.*SCP=F800 :1000
. *CCP = F800 : 1 01 0
,*S0C=1

. *RAM = F800 : 5000

.*CH1=P0RT 80

.♦RELOCATE F800:0 LENGTH 32K TO 0

.*ENDRBF

♦EM

; Retrieves macro on disk
; file :F1:RBFMAC.
; Begins macro definition.
; Invokes RBF-89.
; Begins SCB at F800:1000.
; Starts CCP at F800:1010.
; Sets I|0 bus width to 16

; bits.
; Allocates RAM for RBF use.
; Specifies CA mechanism for
; CH1 .
; Specifies relative
; addresses for dual-port
; memory.
; Ends RBF initialization
; sequence.
Ends macro definition.

copmi n_abIk STRUC

;How many bytes to copy.

instruction of the COPMIN channel program.is the

0124 c opmi n:

Lpd GC,IPP].arg_bIk
to the command block. The

481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

445
446
447
448
449
450
451
452
453
454

466
467
468
469
470
471
472
473
474
475
476

;This is the copy memory indirect
; channel utility program. It fit
.•corner of the RBF-buffer.

has prepared the block giving start
address, dest address, and byte count.

0124 438B 07

8089 channel utility program COPMIN. Copies memory to memory indirect

0000 477 s rc_adr: ds MVPTR
0003 478 dst_adr: ds MVPTR
0006 479 s rc_len: ds WORD
0008 480 copmi n_abIk ENDS

Figure 3-3. COPMIN Program Listing 1018-05

3-10

RBF-89 Applications

0127 D130 08C0

012B 038E 00
012E 238E 03
0131 8000

0133 6000

0135 6382 06

0138
0016

2048

496 movi CC.0C008H load Channel control register with
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511 movp GA,[GC].src_adr

fixed data from immediate field of
instruction. This bit pattern says:

F = 11 block to block
TR = 0 no t rans late

SYN = 00 no synch - ignore DRQ
S = 0 src GA... dest GB
L = 0 dont lock for duration DMA
C = 0 use low priority for Ch Pgm

TS = 0 not a single transfer DMA
TX = 00 no external terminate

TBC = 01 use byte count terminate
TSH = 000 dont termainte on match

get source address.
512 movp GB,IGC].dst_adr get dest address
513 w i d 8,8 set 8 bit logical width for DMA.
514
515
51 6
517
518
519

XFER

mov BC,[GC].src_len

This is probably safest.

Perform following instruction, then
enter DMA transfer mode.

Remember that this instruction is
520
521
522
523
524
525
526
527
528
529
530
531
532

; executed before the XFER!
; This instruction loads the byte count
; for the DMA transfer from the command
; block. It is done after the XFER in
; favor of minimizing size of copmin,
; admittedly at the expense of main-
; tainability.

hit
len_copmin equ $ - copmin

; STitleC’S E T M I M Channel Utility1)

Figure 3-3. COPMIN Program Listing (Cont’d.)
1018-05

e. Now, you invoke and initialize RBF-89 by calling the above macro:
* : I N I T_____________
*RBF
.*SCP=F800 :1000
.*CCP = F800 : 1 01 0
. * S 0 C = 1

. * R AM= F 800 : 5 0 0 0

.*CH1 PORT 80

.♦RELOCATE F800:0 LENGTH 32K TO 0

. *ENDRBF

♦EM
*

Calls macro INIT.
Invokes RBF-89.
Begins SCB at F800:1000.
Starts CCP at F800:1010.
Sets I |0 bus width to 16
bits.
Allocates RAM for RBF use.
Specifies CA mechanism for
CH1 .

Specifies relative
addresses for dual-port
memo ry.

Ends RBF initialization
sequence.
Ends macro definition.

f. Next, you use the ICE-86 emulator’s LOAD command to load the COPMIN
program into local memory.

♦LOAD :F1 : COPMIN

g. You set the Parameter Block Pointer (PBP), as follows:
* PBP = F800 : 2000

h. Now, you check the pointers at Locations F800:2000 and F800:2007 for
validity:

* P 01 2 0 0 0; Starts COPMIN program.
POI 0000 : 2000H = F800 : 0000H
* POI 2007; Starts PBP
POI 0000:2007H=F800:0040H

You see that these pointers are set to the correct addresses.

3-11

Applications RBF-89

i. Next, you check the parameters stored in the 8-byte area beginning at Location
0040:

*BYTE 0040 LENGTH 8
BYTE 0000:0040=50H A2H FOH OOH OOH 08H 20H OOH

This display shows that <src-adr> is set to 50H, A2H, FOH; <dst-adr> is set to
00H, OOH, O8H; and <src-len> is set to 20H, OOH. (In the third byte of each
pointer, the lower nibble is 0 for local memory and 8 for remote memory.)

j. Now, you use the 89 ASM command to disassemble and check the COPM1N
program:

*89 ASM 0 LEN 15
ADDR PREFIX MNENONIC OPERANDS
0000:OOOOH LPD GC,[PP] .07H
0000:0003 H MOV I CC,C008H
0000:0007H MOVP GA, [GC] -00H
0000:OOOAH MOVP GB , [GC] . 03H
0000 : 000DH MID 8,16
OOOOiOOOFH XFER
0000 : 001 1 H MOV BC,[GC].06H
0000 : 001 4H H LT

The display indicates the correct source code.

k. You run COPMIN, using the CA START command, to transfer the data from
local to remote memory.

*CA START FROM LOCAL F800:000 FOREVER
8089 EXECUTION BEGUN
8089 EXECUTION TERMINATED RPT=0 F8016H

The program runs to completion, halting as expected at Location F800:2216.

l. You now wish to run COPMIN again, transferring the data back to local
memory. Before you do this, however, you must respecify the contents of the
two pointers beginning at Location 0040.

*BYTE 0040 = 1 0 , 00,08,70,80,F0

m. Now, you run COPMIN:
*CA START FROM LOCAL F800:0000 FOREVER
8089 EXECUTION BEGUN
8089 EXECUTION TERMINATED RTP=0 F8016H

n. You attempt to verify that the data was transferred correctly by COPMIN, by
displaying this data:

*BYTE 0070 LENGTH 20
0000 : 0070 : 09H F7H OAH F6H OBH F5H OCH F4H OOH F3H OEH F2H OFH F7H 10H FOH
0 0 00 : 0080 : F F H FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH FFH

By comparing this data with that stored in the 20-byte area beginning at Loca­
tion 0050, you see that the data transfer was not completed successfully. You
suspect that you might have respecified the pointers incorrectly.

o. To verify your suspecion, you:
1. Set a breakpoint at the XFER instruction at Location OOOFH in COPMIN

that performs the data transfer:
*RBR=LOCAL F800:000F

2. Run COPMIN again:
*CA START FROM LOCAL F800:0000 TIL RBR
8089 EXECUTION BEGUN
8089 EXECUTION BREAKPOINT REACHED RTP=0 F800FH

3-12

RBF-89 Applications

3. Display the contents of all 8089 registers:
*89 REGISTER
RGA=1 00010H RGB = 0 F8070H RGC=0 F80C0H RTP=0 F800FH
RIX=0000H RBC=0000H RMC=0000H RCC=C008H

In this display, you verify your suspicion by noting an erroneous pointer to
<src-adr> in the RGA register.

4. You correct this pointer by entering:
*RGA=0

5. You verify the new RGA setting by entering:
*RGA
RGA=1 00000H

p. Next, continue the program to its conclusion by entering:
*CA CONTINUE
8089 EXECUTION BEGUN
8089 EXECUTION TERMINATE TP=0 F8016H

q. Again, you check the data beginning at Location 0070:
*BYTE 0070 LENGTH 20

This time, the display shows that the data was transferred correctly.
r. Finally, with your debugging session concluded, you terminate RBF-89

execution:
*EXIT RBF

3-13

APPENDIX A
RBF-89 ERROR CONDITIONS

AND RECOVERY

During RBF-89 command processing, three types of error may occur:

• Syntax error in command input, detected before command execution begins. In
response, RBF-89 aborts the command at once, displays an error message, and
returns control to the console (prompting you for a new command entry).

• Fatal run-time error, detected after command execution begins. RBF-89 aborts
command execution, displays an error message, and returns control to the con­
sole. If the error occurs in a compound command group such as a macro,
RBF-89 aborts all commands in the group. Some fatal run-time errors leave the
system in an uncertain state. For instance, when an error occurs during a file­
loading or memory-write operation, the information written after this error is
incorrect.

• Non-fatal run-time error, detected during command execution. RBF-89 displays
a warning message but command execution continues even though spurious
results might occur.

Because the system processes commands on a line-by-line basis, it does not report
any error until the entire line that contains the error is entered.

RBF-89 error messages contain the following elements, in the order listed:

• The notation ERR to indicate a syntax or fatal run-time error, or WARN to
denote a non-fatal run-time error.

• A hexadecimal error number that identifies the particular type of error.

• Text that describes the error.

An example of an error message is:

ERR 7F:CHANNEL BUSY
ERR NOTATION
TEXT
ERROR NUMBER

A list of error messages, their meaning, and recommended corrective action,
appears in table A-l.

NOTE
This table presents only messages unique to RBF-89. Messages generated by
both RBF-89 and the ICE-86 emulator, or by the ICE-86 emulator only,
appear in ICE-86 In-Circuit Emulator Operating Instructions for ISIS-II
Users.

A-l

RBF-89 Error Conditions and Recovery RBF-89

Table A-l. Error Messages, Causes, and Corrective Action

ERR/Warn Error Message Text Probable Cause and Recovery
Procedure

ERR 6F INVALID RELOCATION ASGN In RELOCATE subcommand, you
specified block that does not fall
within a paragraph boundary. Cor­
rection: Re-enter subcommand
with correct block specification.

ERR 70 RESERVE PAGE CONFLICT In RESERVE subcommand, you
specified for MONITOR an addres
space already allocated to your
user program. Correction: Re­
enter subcommand with new ad­
dress space specification.

ERR 71 INVALID RESERVED PAGE In RESERVE subcommand, you
specified a page that does not lie
within range bounded by Locations
0 through 1023. Correction: Re­
enter subcommand with correct
page specification.

ERR 72 RBFNOT INVOKED YET You entered an RBF-89 command,
but did not yet invoke RBF-89 in
this session. Correction: Invoke
and initialize RBF-89; then re-enter
desired command.

ERR 73 BREAKPOINT AFTER XFER You specified an RBF-89
breakpoint immediately following
an XFER instruction in your user
program. Correction: Re-specify
the breakpoint at a different loca­
tion.

ERR 74 NO ADDR SPACE AVAILABLE You entered a RESERVE
subcommand but no contiguous
2k-byte segment is available for
MONITOR. Correction: Map addi­
tional space to GUARDED status to
allow room for MONITOR, and re­
enter subcommand.

ERR 75 MONITOR ERROR RBF-89 did not operate properly.
Correction: Terminate and re­
invoke RBF-89. If this does not
work, call Intel for assistance.

ERR 76 INSUFICIENT PARAMETERS You included fewer parameters
than the number required in your
last command. Correction: Check
command syntax described in
Chapter 2 and re-enter command.

ERR 77 INVALID BUS WIDTH In WIDTH subcommand, you
specified a value other than 8 or
16T. Correction: Re-enter subcom­
mand with proper value.

ERR 79 CH2 ATTN ASSGN REQUIRED You spelcified the 8089 as a slave in
an IOP subcommand, but did not
issue CH2 subcommand. Correc­
tion: re-enter CH2 subcommand,
followed by IOP subcommand.

A-2

RBF-89 RBF-89 Error Conditions and Recovery

Table A-l. Error Messages, Causes, and Corrective Action (Cont’d.)

ERR/Warn Error
Message Text Probable Cause and Recovery

Procedure

ERR 7A INVALID SOC VALUE In an SOC subcommand, you
specified an SOC value greater
than or equal to 4. Correction: Re­
enter subcommand with correct
value.

ERR 7C CANNOT SWITCH CHANNEL You attempt to change current
input/output channel without
specifying CH2 subcommand. Cor­
rection: Enter CH2 subcommand,
then CHANNEL=2 command.

ERR 7D ICE MEM NOT AVAILABLE You attempted to map user
application program into ICE-86
emulator memory during RBF-89
session. (While RBF-89 session is
in progress, emulator memory is
dedicated to RBF-89 Control Pro­
gram.) Correction: Map your pro­
gram into application system
memory.

ERR 7F CHANNEL BUSY Channel is currently busy,
preventing acceptance of any
RBF-89 command but CA HALT.
Correction: Wait until channel not
busy or enter CA HALT, then enter
desired command.

ERR B4 POTENTIAL BUS LOCKOUT During channel-initialization BUSY
flag was not reset within 500-
millisecond time-period. Correc­
tion: Verify that correct address
and value were given in CHANNEL
subcommand. If this assignment
was correct, check hardware for
proper connection. Then re­
initialize channel.

WARN CD BREAKPOINT CHANGED RBF-89 tried to remove breakpoint
that no longer exists because it
was changed by user program.
Correction: None necessary.

WARN CE TOO MANY BREAKPOINTS You specified more than six
breakpoints in a command. Correc­
tion: None necessary; RBF-89 uses
only first six breakpoints you
specified.

WARN CF DUPLICATE BREAKPOINTS You specified two or more
breakpoints at same location. Cor­
rection: None necessary; RBF-89
uses only one of these break­
points.

A-3

APPENDIX B
RBF-89 KEYWORDS

The keywords used in RBF-89, and their single-letter synoymns (if applicable) and
meanings appear in table B-l. Because any keyword can be abbreviated by entering
its first three letters only, these letters are capitalized in this table.

Table B-l. RBF-89 Keywords, Synonyms, and Meanings

Keyword Synonym Meaning

ASM Request to display memory contents in disassembled
form.

ATTention Request to define channel-attention mechanism.

CA Channel-attention command.

CCB Channel-Control Block.

CCP Channel Control Pointer.

CCW Channel Control Word.

CH1 Channel 1.

CH2 Channel 2.

CHAnnel Command to change current channel.

CONtinue Command to resume channel program execution.

ENAble Command to enable element denoted by following
keyword.

ENDrbf Subcommand to terminate subcommand entry
sequence.

EXIt Command to terminate RBF-89 and/or ICE-86 emulator
operation.

FORever Request to continue channel-program execution
indefinitely.

FROm F Starting-address specifier for channel-program
execution.

HALT Command to halt program execution.

IOP Subcommand to specify 8089 master/slave status.

LENgth Memory-partition length specifier.

LOAd Command to load channel program.

MASter Master status specifier.

B-l

RBF-89 Keywords RBF-89

Table B-l. RBF-89 Keywords, Synonyms, and Meanings (Cont’d.)

Keyword Synonym Meaning

NOCode Request to omit loading or saving code in LOAD or
SAVE command.

NOSymbol Request to omit loading or saving symbols in LOAD or
SAVE command.

PAGe Subcommand to specify base for 20-bit register
references.

PBP Parameter Block Pointer.

PS Program Status Word.

RAM Command to indicate 200 bytes of RAM available to
RBF-89 in application system.

RBC Byte Count (BC) Register.

RBF Command to invoke RBF-89.

RBR Reference to Breakpoint Register for current channel.

RBYte Remote byte specifier.

ROC Channel-Control Register.

REGister R Command to display all 8089 Registers if preceding 89.

RELocate Command to relocate memory references.

REMote Remote configuration specifier.

REServe Command to reserve memory for RBF-89 MONITOR.

RESet Command to reset element denoted by following
keyword.

RETurn Request to return control to console immediately after
starting channel program.

RGA General-Purpose Register A.

RGB General-Purpose Register B.

RGC General-Purpose Register C.

RIX 8089 Index Register.

RMC Mask/Compare Register.

B-2

RBF-89 RBF-89 Keywords

Table B-l. RBF-89 Keywords, Synonyms, and Meanings (Cont’d.)

Keyword Synonym Meaning

RTP Task Pointer.

RWOrd Remote word specifier.

SAVe Command to save program on diskette.

SCB System Configuration Block.

SCP System Configuration Pointer.

SIB System Initialization Block.

SLAve Slave status specifier.

SOC System Operation Command Word.

STArt Channel-attention command to begin channel
program.

TGA Tag bit of GA Register.

TGB Tag bit of GB Register.

TGC Tag bit of GC Register.

TIL/ T Request to terminate program when breakpoint
encountered.

UPDate Command to update software copy of 8089 registers.

WIDth. Subcommand to specify logical width of system bus.

89 8089 register or memory specifier.

B-3

APPENDIX C
RBF-89 REFERENCE

SPECIFICATION SUMMARY

Command Syntax Notation
In the command syntax description that follow, this symbolic notation is used:

Notation Meaning

UPPERCASE LETTERS

lowercase italics

Keyword that must be entered exactly as shown (or as
three-letter abbreviation).

Class name for set or class of token for which you select
specific identifier (variable name).

Previous entry may be repeated indefinitely.

One (and only one) of the enclosed elements MUST be
selected.

AT LEAST one of the enclosed elements must be
selected.

All enclosed elements are optional, but only ONE may
be entered.

All enclosed elements are optional, but MORE THAN
ONE may be entered.

Command Syntax

ICE-86 Emulator Command to Invoke RBF-89

RBF CR
subcommand CR
[subcommand (CR)]

ENDRBF CR

Example: *rbf
. *RAM=F FCO:0
.*CH1 = BYTE FFOO:O
. *WI DTH = 16T
.*SCP = F F FO : 0
.*SOC=1
. * C C P = F F F 0 :1 0
.*IOP=MASTER
.‘ENDRBF

C-l

RBF-89 Reference Specification Summary RBF-89

RBF-89 Initialization Subcommands

CCP = expression

Example: *CCP = 8000:10

I CHl]
| CH2 j

PORT
WPORT
BYTE

.WORD .

expressionl [VALUEexpressions]

Example: *CH1 = byte.memsym+10 value 3
‘CH2 = WPORT 2

IOP =
master!
SLAVE |

Examples: *iop = master
*IOP=SLA

P AG E = expression

Example: *PAGE=2000

RAM = address

Examples: *ram = 9000
*RAM=A000

RELOCATE partition TOaddress

Example: ‘RELOCATE F800:0 LEN 32K TO 0

RESERVE expression

Examples: ‘RESERVE 10
*RES 8

SCP = expression

Example: *SCP = 8000:0

SOC = expression

Example: *soc = 1

WIDTH = expression

Examples: *wIdth=.buswd
*WID=16T

C-2

RBF-89 RBF-89 Reference Specification Summary

RBF-89 Commands

CA CONTINUE
"FOREVER

TILL breaklist
-TILL RBR

[RETURN]

F FOREVER

Examples: *CA CONTINUE
*CA CONTINUE TILL LOCAL 1030, LOCAL 1040
*CA CONTINUE FOREVER RETURN

CAHALT

Example: *CA HALT

CASTART FROM expression
LOCAL
REMOTE

T\LL breaklist
_TILLRBR

[RETURN]

Examples: *CA START FROM LOCAL 1000H
*CA START FROM LOCAL 1 000H TILL LOCAL 1010, LOCAL 1020
*CA START FROM LOCAL 1 000H TILL RBR
*CA START FROM REMOTE 1 000H TILL RBR RETURN

CHANNEL !CH11
|CH21

Examples: ‘channel
*CHANNEL=CH1
*CHA=CH2

communica tion-block

Examples: *SIB
*SCB

ENABLE[BOTH]RBR

Examples: ‘enable rbr
*ENA BOTH RBR

EXITRBF

Example: *EXIT rbf

item-reference [, item-reference]
=expression

Examples: *RGA
*RGA,RGB,RGC
*RBYTE 1 083H
*RGA=20:40
*TGA=1

LOAD ['.drive:] filename
LOCAL "I F
remoteJ L

NOCODE “I
NOSYMBOLj''

Examples: ‘LOAD :F1 :IOPROG REMOTE
*LOA MYPROG REM NOSYMBOL

C-3

RBF-89 Reference Specification Summary RBF-89

RBR [=breaklist]

Examples: *rbr
♦ RBR LOCAL 1000H

RBYTE
RWORD

partition [=expression[,expression]..

Examples: ♦RBYTE 1 052H
♦RWORD 1 200H TO 1260H
♦RBYTE 1000H LEN 4
♦RBYTE 1083H=00H,40H,18H
♦RWORD 1000H LEN 20 = OOH

RESETRBF

Examples: ♦RESET RBF
♦ RES RBF

RESET[BOTH]RBR

Examples: *reset rbr
♦ RES BOTH RBR

SAVE [-.drive:] filename
LOCAL I
REMOTEJ

NOSYMBOL
INOCODE1
I partition I

Examples: ♦SAVE MYPROG REMOTE NOSYMBOL .START TO .START+50H
♦SAVE YURPRG REM .RESTART LEN 200H

UPDATE

Example: *update

89 ASM
LOCAL
REMOTE

partition

Examples: *89 ASM 1000H TO 1050H
*89 ASM REMOTE 1200H LEN 50H

89 REGISTER

Example: *89 REGISTER

C-4

APPENDIX D
8089 INPUT/OUTPUT PROCESSOR

INSTRUCTION SET

This appendix lists the instruction set for the Intel 8089 Input/Output Processor. In
this list, all instructions appear in alphabetical order according to their names
(ASM-89 mnemonic opcodes). For every combination operand types, the list shows
the instruction’s execution time and length in bytes, plus a coding example. The
operand identifiers in the list are explained in table D-l. A key to the operand types
in the list appears in table D-2. The Instruction Set List itself appears in table D-3.

In table D-3, the instruction timing figures show the number of clock periods
required to execute the instruction with the given combination of operands. At 5
MHz, one clock period is 200 ns; at 8 MHz, a clock period is 125 ns. Two timings are
provided when an instruction operates on a memory word. The first (lower) figure
indicates execution time when the word is aligned on an even address and is accessed
over a 16-bit bus. The second figure is for odd-addressed words on 16-bit buses and
any word accessed via an 8-bit bus.

Instruction fetch time is shown in table D-4 and should be added to the execution
times shown in table D-3 to determine how long a sequence of instructions will take
to run. External delays such as bus arbitration, wait states, and activity on the other
channel will increase the elapsed time over the figures shown in tables D-3 and D-4.
These delays are application-dependent.

Table D-l. Key to ASM-89 Operand Identifiers

Identifier Used In Explanation

destination data transfer,
arithmetic,
bit manipulation

A register or memory location that may contain data
operated on by the instruction, and which receives (is
replaced by) the result of the operation.

source data transfer,
arithmetic,
bit manipulation

A register, memory localtion, or immediate value that
is used in the operation, but is not altered by the
instruction.

target program transfer Location to which control is to be transferred.

TPsave program transfer A 24-bit memory location where the address of the
next sequential instruction is to be saved.

bit-select bit manipulation Specification of a bit location within a byte;
O=least-significant (rightmost) bit, 7=most-significant
(leftmost) bit.

set-value TSL Value to which destination is set if it is found 0.

source-width WID Logical width of source bus.

dest-width WID Logical width of destination bus.

D-l

8089 Input/Output Processor Instruction Set RBF-89

Table D-2. Key to Operand Types

Identifier Explanation

(no operands)
register
ptr-reg
immed8
immed16
mem8
mem16
mem24
mem32
label
short-label
0-7
8/16

No operands are written
Any general register
A pointer register
A constant in the range 0-FFH
A constant in the range 0-FFFFH
An 8-bit memory location (byte)
A 16-bit memory location (word)
A 24-bit memory location (physical address pointer)
A 32-bit memory location (doubleword pointer)
A label within -32,768 to +32,767 bytes of the end of the instruction
A label within -128 to +127 bytes of the end of the instruction
A constant in the range: 0-7
The constant 8 or the constant 16

Table D-3. Instruction Set Reference Data

ADD destination, source Add Word Variable

Operands Clocks Bytes Coding Example

register, mem16
mem16, register

11/15
16/26

2-3
2-3

ADD BC, [GA].LENGTH
ADD |GB],GC

ADDB destination, source Add Byte Variable

Operands Clocks Bytes Coding Example

register, mem8
mem8, register

11
16

2-3
2-3

ADDB GC, [GA|.N CHARS
ADDB (PP).ERRORS, MC

ADDBI destination, source Add Byte Immediate

Operands Clocks Bytes Coding Example

register, immed8
mem8, immedS

3
16

3
3-4

ADDBI MC,10
ADDBI [PP+IX+],RECORDS, 2CH

ADDI destination, source Add Word Immediate

Operands Clocks Bytes Coding Example

register, immed16
mem16, immed16

3
16/26

4
4-5

ADDI GB.0C25BH
ADDI [GB],POINTER, 5899

AND destination, source Logical AND Word Variable

Operands Clocks Bytes Coding Example

register, mem16
mem16, register

11/15
16/26

2-3
2-3

AND MC, (GA).FLAG WORD
AND [GC].STATUS, BC

ANDB destination, source Logical AN D Byte Variable

Operands Clocks Bytes Coding Example

register, mem8
mem8, register

11
16

2-3
2-3

AND BC, [GC]
AND [GA+IX].RESULT, GA

D-2

RBF-89 8089 Input/Output Processor Instruction Set

Table D-3. Instruction Set Reference Data (Cont’d.)

ANDBI destination, source

Operands Clocks

register, immed8
mem8, immed8

3
16

ANDI destination, source

Operands Clocks

register, immed16
mem16, immed16

3
16/26

CALL TPsave, target

Operands Clocks

mem24, label 17/23

CLR destination, bit select

Operands Clocks

mem8, 0-7 16

DEC destination

Operands Clocks

register
mem16

3
16/26

DECB destination

Operands Clocks

mem8 16

HLT (no operands)

Operands Clocks

(no operands) 11

INC destination

Operands Clocks

register
mem16

3
16/26

Logical AND Byte Immediate

Bytes Coding Example

3
3-4

GA, 01100000B
[GC+IX], 2CH

Logical AND Word Immediate

Bytes Coding Example

4
4-5

IX, OH
[GB + IXJ.TAB, 40H

Call

Bytes Coding Example

3-5 CALL [GC+IX].SAVE, GET_NEXT

Clear BitToZero

Bytes Coding Example

2-3 CLR [GA], 3

Decrement Word By 1

Bytes Coding Example

2
2-3 DEC [PP],RETRY

Decrement Byte By 1

Bytes Coding Example

2-3 DECB [GA+IX+].TAB

Halt Channel Program

Bytes Coding Example

2 HLT

Increment Word by 1

Bytes Coding Example

2
2-3

INC GA
INC [GA],COUNT

INCB destination

Operands Clocks

mem8 16

JBT source, bit-select, target

Operands Clocks

mem8, 0-7, label 14

Increment Byte by 1

Bytes Coding Example

2-3 INCB [GB] POINTER

Jump if BitTrue (1)

Bytes Coding Example

3-5 JBT [GA],RESULT REG, 3, DATA VALID

D-3

8089 Input/Output Processor Instruction Set RBF-89

Table D-3. Instruction Set Reference Data (Cont’d.)

J MCE source, target Jump if Masked Compare Equal

Operands Clocks Bytes Coding Example

mem8, label 14 3-5 JMCE [GB].FLAG, STOP—SEARCH

JMCNE source, target Jump if Masked Compare Not Equal

Operands Clocks Bytes Coding Example

mem8, label 14 3-5 JMCNE [GB+IX], NEXT-ITEM

JMP target Jump Unconditionally

Operands Clocks Bytes Coding Example

label 3 3-4 JMP READ-SECTOR

JNBT source, bit-select, target Jump if Bit Not True (0)

Operands Clocks Bytes Coding Example

mem8, 0-7, label 14 3-5 JNBT [GC], 3, RE_READ

JNZ source, target Jump if Word Not Zero

Operands Clocks Bytes Coding Example

register, label
mem16, label

5
12/16

3-4
3-5

JNZ BC, WRITE-LINE
JNZ [PP],NUM_CHARS, PUT_BYTE

JNZB source, target Jump if Byte Not Zero

Operands Clocks Bytes Coding Example

mem8, label 12 3-5 JNZB [GA], MORE_DATA

JZ source, target Jump if Word is Zero

Operands Clocks Bytes Coding Example

register, label
mem16, label

5
12/16

3-4
3-5

JZ BC, NEXT-LINE
JZ [GC+IX],INDEX, BUF—EMPTY

JZB source, target Jump if Byte Zero

Operands Clocks Bytes Coding Example

mem8, label 12 3-5 JZB [PP],LINES -LEFT, RETURN

LCALL TPsave, target Long Call

Operands Clocks Bytes Coding Example

mem24, label 17/23 4-5 LCALL [GC].RETURN_SAVE, INIT—8279

LJBT source, bit-select, target Long Jump if Bit True (1)

Operands Clocks Bytes Coding Example

mem8, 0-7, label 14 4-5 LJBT [GA].RESULT, 1, DATA...OK

LJMCE source, target Long jump if Masked Compare Equal

Operands Clocks Bytes Coding Example

mem8, label 14 4-5 LJMCE [GB], BYTE-FOUND

D-4

RBF-89 8089 Input/Output Processor Instruction Set

Table D-3. Instruction Set Reference Data (Cont’d.)

LJMCNE source, target Long jump if Masked Compare Not Equal

Operands Clocks Bytes Coding Example

mem8, label 14 4-5 LJMCNE [GC+IX+], SCAN_NEXT

LJMP target Long Jump Unconditional

Operands Clocks Bytes Coding Example

label 3 4 LJMP GET-CURSOR

LJNBT source, bit-select, target Long Jump if Bit Not True (0)

Operands Clocks Bytes Coding Example

mem8, 0-7, label 14 4-5 LJNBT [GC], 6, CRCC_ERROR

LJNZ source, target Long Jump if Word Not Zero

Operands Clocks Bytes Coding Example

register, label
mem16, label

5
12/16

4
4-5

LJNZ BC, PARTIAI__ XMIT
LJNZ [GA+IXJ.N _ LEFT, PUT_DATA

LJNZB source, target Long Jump if Byte Not Zero

Operands Clocks Bytes Coding Example

mem8, label 12 ' 4-5 LJNZB [GB+IX+JJTEM, BUMP_COUNT

LJZ source, target Long Jump if Word Zero

Operands Clocks Bytes Coding Example

register, label
mem16, label

5
12/16

4
4-5

LJZ IX, FIRST ELEMENT
LJZ [GB].XMIT_COUNT, NO_DATA

LJZB source, target Long Jump if Byte Zero

Operands Clocks Bytes Coding Example

mem8, label 12 4-5 LJZB [GA], RETURN-LINE

•20 Glocks if operand is on even address; 28 if on odd address

LPD destination, source Load Pointer With Doubleword Variable

Operands Clocks Bytes Coding Example

ptr-reg, mem32 20/28* 2-3 LPD GA, |PP].BUF._START

•12 clocks if instruction is on even address; 16 if on odd address

LPDI destination, source Load Pointer With Doubleword Immediate

Operands Clocks Bytes Coding Example

ptr-reg, immed32 12/16* 6 LPDI GB, DISK. ADDRESS

MOV destination, source Move Word

Operands Clocks Bytes Coding Example

register, mem16 8/12 2-3 MOV IX, [GC]
mem16, register 10/16 2-3 MOV [GA].COUNT, BC
mem16, mem16 18/28 4-6 MOV [GA],READING, [GB]

D-5

8089 Input/Output Processor Instruction Set RBF-89

Table D-3. Instruction Set Reference Data (Cont’d.)

MOVB destination, source Move Byte

Operands Clocks Bytes Coding Example

register, mem8 8 2-3 MOVB BC, [PPJ.TRAN .COUNT
mem8, register 10 2-3 MOVB IPP).RETURN ..CODE, GC
mem8, mem8 18 4-6 MOVB [GB+IX+I, [GA+IX+]

MOVBI destination, source Move Byte Immediate

Operands Clocks Bytes Coding Example

register, immedS
mem8, immed8

3
12

3
3-4

MOVBI MO, 'A'
MOVBI [PP],RESULT, 0

MOVI destination, source Move Word Immediate

Operands Clocks Bytes Coding Example

register, immed16
mem16, immed16

3
12/18

4
4-5

MOVI BC, 0
MOVI (GBJ.OFFFFH

■ First figure is for operand on even address; second is for odd-addressed operand.

MO VP destination, source Move Pointer

Operands Clocks Bytes Coding Example

ptr-reg, mem24
mem24, ptr-reg

19/27*
16/22*

2-3
2-3

MOVP TP, [GC+IX]
MOVP [GB].SAVE_ADDR, GC

NOP (no operands) No Operation

Operands Clocks Bytes Coding Example

(no operands) 4 2 NOP

N OT destination/destination, source Logical NOT Word

Operands Clocks Bytes Coding Example

register 3 2 NOT MC
mem16 16/26 2-3 NOT [GA].PARM
register, mem16 11/15 2-3 NOT BC, [GA+IX].LINES_LEFT

NOTB destination/destination, source Logical NOT Byte

Operands Clocks Bytes Coding Example

mem8
register, mem8

16
11

2-3
2-3

NOTB [GA].PARM_REG
NOTB IX, [GBj.STATUS

OR destination, source Logical OR Word

Operands Clocks Bytes Coding Example

register, mem16 11/15 2-3 OR MC, [GC|.MASK
mem16, register 16/26 2-3 OR [GC], BC

ORB destination, source Logical OR Byte

Operands Clocks Bytes Coding Example

register, mem8
mem8, register

11
16

2-3
2-3

ORB IX, [PP].POINTER
ORB [GA+IX+], GB

ORB I destination, source Logical OR Byte Immediate

Operands Clocks Bytes Coding Example

register, immed8
mem8, immedS

3
16

3
3-4

QRBI IX, 00010001B
ORBI [GB|.COMMAND, OCH

D-6

RBF-89 8089 Input/Output Processor Instruction Set

Table D-3. Instruction Set Reference Data (Cont’d.)

ORI destination, source Logical OR Word Immediate

Operands Clocks Bytes Coding Example

register, immed16
mem16,immed16

3
16/26

4
4-5

ORI MC, 0FF0DH
ORI [GA], 1000H

SET B destination, bit-select Set Bit to 1

Operands Clocks Bytes Coding Example

mem8, 0-7 16 2-3 SETB [GA].PARM_REG, 2

SINTR (no operands) Set Interrupt Service Bit

Operands Clocks Bytes Coding Example

(no operands) 4 2- SINTR

’14 clocks if destination 0; 16 clocks if destination = 0

TSL destination, set-value, target Test and Set While Locked

Operands Clocks Bytes Coding Example

mem8, immed8, short-label 14/16* 4-5 TSL [GA].FLAG, OFFH, NOT.. READY

WID source-width, dest-width Set Logical Bus Widths

Operands Clocks Bytes Coding Example

8/16, 8/16 4 2 WID 8, 8

XFER (no operands) Enter DMA Transfer Mode After Next Instruction

Operands Clocks Bytes Coding Example

(no operands) 4 2 XFER

Table D-4. Instruction Fetch Timings
(Clock Periods)

(1) First byte of instruction is on an even
address.

Instruction
Length
(Bytes)

Bus Width

8
16

(D (2)

2 14 7 11
3 18 14 11
4 22 14 15
5 26 18 15

(2) First byte of instruction is on an odd address.
Add 3 clocks if first byte is not in queue (e.g.,
first instruction following program transfer).

D-7

APPENDIX E
GLOSSARY OF RBF-89 TERMS

The following glossary presents definitions of commonly-used RBF-89 terms:

Prespecified Location where channel program execution is to
terminate.

Breakpoint

Busy Flag Flag in IOP memory (second and tenth bytes in CCB), used
to indicate presence or absence of channel-program activity.

CA Channel-atention directive—special interrupt to 8089 IOP,
used to prepare for channel-program execution.

CA CONTINUE Channel-attention command to resume execution of
interrupted channel program.

CAHALT Channel-attention command to halt channel-program
execution.

CASTART Channel-attention command to begin channel-program
execution.

CCB Channel Control Block, part of communication data
structure. Provides pointer to parameter block, BUSY flag,
and CCW.

CCP Channel Control Pointer, which points to CCB.

CCW Channel Command Word in Channel Control Block, which
indicates type of operation IOP is to perform.

CP Channel Control Pointer (see CCP).

Host Program

IOP

Part of RBF-89 that resides in Intellec development system
RAM. Translates keyboard input into low-level directives
that can be processed by RBF-89 MONITOR program, and
converts information supplied by MONITOR into display
output. Also maintains appropriate 8086 register settings and
memory allocation to allow system to alternate between
RBF-89 and 8086 user program processing.

Intel 8089 Input/Output Processor.

Local Memory Memory on CPU/IOP system bus that is addressable by both
CPU and IOP microprocessors.

Local Mode CPU/IOP configuration where IOP is closely-coupled to
CPU. Also known as system memory.

MASTER/SLAVE SEL-pin toggle mode that determines whether CPU or IOP
has control of system bus upon system start-up.

MONITOR Program Part of RBF-89 that resides in ICE-86 memory. Monitors
such operations as: preparing program control blocks for
communication with IOP; issuing commands to start, ter­
minate, and continue channel-program; and directing IOP to
start execution of RBF-89 Utility Program.

E-l

Glossary of RBF-89 Terms RBF-89

pp Parameter Block Pointer, which points to the Parameter
Block.

PS Program Status Word that records state of channel so that
channel operation may be suspended and later resumed.

R Prefix for all 8089 register references in RBF-89 commands.

RBC Register Byte Count Register for IOP, used as a general register
during channel-program execution; contains byte count used
to terminate DMA transfer.

RBYTE Byte in IOP remote memory.

RCC Channel Control Register in IOP.

Remote Memory Memory addressable by 8089 IOP only.

Remote Mode CPU/IOP configuration where IOP is isolated from CPU.

RGA General-Purpose Register A for IOP. Includes 20-bits plus
Tag pointer. Points to source or destination of data during
DMA transfer.

RGB General-Purpose Register B for IOP. Functionally inter­
changeable with RGA.

RGC General-Purpose Register C for IOP. Functionally inter­
changeable with RGA and RGB.

RIX Index REgister (16 bits) for IOP.

RMC Mask/Compare Register for IOP. (Upper eight bits for
mask; lower eight bits for compare.)

RTP Task Pointer in IOP, a 20-bit register with tag bit. Analogous
to Program Counter (PC) in CPU.

RWORD Word in IOP memory.

SCB System Configuration Block which contains master/slave
status information, input/output bus width, and pointer to
CCB.

SCP System Configuration Pointer, which indicates location of
SCB.

SIB System Initialization Block which contains the System
Configuration Bus Pointer and system bus width.

SOC System Operation Command word, which controls operation
of request/grant arbitration circuit in IOP and sets physical
width of input/output bus.

Tag One-bit pointer to local or remote memory space, used in
RGA, RGB, RGC, and RTP register settings.

TGA Tag bit of RGA register.

E-2

RBF-89 Glossary of RBF-89 Terms

TGB Tag bit of RGB register.

TGC Tag bit of RGC register.

Utility Program Part of RBF-89 that resides in 8089 RAM in prototype
application system. Reads and writes data to and from 8089
memory and registers, and sets and removes breakpoints to
channel program.

E-3

INDEX

Address, 2-16, 2-19, 2-52
Application system hardware, 1-5
ASM, 2-51

BOTH, 2-42, 2-44
Breaklist, 2-29, 2-31,2-32, 2-34, 2-39
Breakpoint operation, 2-29, 2-35
Breakpoints, 1-1, 2-29
BUSWID, 2-9
BUSY flag, 2-15
BYTE, 2-10, 2-11,2-46

CA CONTINUE command, 2-2, 2-29,
2-34, 2-35

CA HALT command, 2-2, 2-35, 2-37
CA START command, 2-2, 2-29, 2-31,

2-32, 2-35
Carriage Return (CR), 2-7
CCB, 2-5, 2-9, 2-15, 2-52, 2-53
CCP, 2-15
CCP command, 2-15
CCW, 2-3, 2-15
Changing memory locations, 2-45
Changing 8089 registers, 2-45
CHANNEL command, 2-2, 2-21,2-22
Channel-Attention command operation,

2-30
Channel Control Block (CCB), 2-5, 2-15
Channel Control Pointer (CCP), 2-15
Character set, 2-3
CHI, 2-10, 2-22
CH2, 2-10, 2-17, 2-22
Command description, 2-4
Command elements, 2-4
Command prompt character, 2-1
Communication block, 2-2, 2-52
Communication Block command, 2-52
Configuration Block Point (SCP), 2-9, 2-13
Control Program, 1-3
Controlling 1OP Program from CPU

Program, 2-43
Controlling Programs from the Console,

2-29
Controlling RBF-89, 2-21
CPU/IOP interface, 1-4
CR, 2-7

Data Value, 2-52
Default, 2-4
Disabling breakpoints, 2-38
Displaying memory contents, 2-45
Displaying 8089 registers, 2-45
Drive, 2-26, 2-27

Enable breakpoints, 2-29, 2-38
ENABLE RBR command, 2-2, 2-44
ENDRBF, 2-7
EXIT RBF command, 2-2, 2-24
Expression, 2-15, 2-18, 2-20, 2-48

Expression 1,2-10
Expression2, 2-10

Fatal error, 2-1
Filename, 2-26, 2-27
FOREVER, 2-31,2-32, 2-34
FROM, 2-31

GUARDED status, 1-5

Host Program, 1-3

1-Field, 2-14
ICE-86 Emulator hardware, 1-5
INT, 2-46
Intellec Microcomputer Development

System, 1-5
IOP subcommand, 2-17
Item-reference, 2-2, 2-46
Item-reference command, 2-46

Limitations, 1-5
LOAD command, 2-2, 2-26
Loading and saving channel programs, 2-25
LOCAL, 2-26, 2-27, 2-31,2-32, 3-51
Local (system) memory references, 2-3

MASTER, 2-9, 2-17
Minimum hardware configuration, 1-5
Minimum software, 1-6
MNEMONIC, 2-52
MONITOR Program, 1-3, 2-9

NOCODE, 2-26, 2-27
Non-fatal error, 2-1
NOSYMBOL, 2-26, 2-27

Offset, 2-52

PAGE, 2-20
PAGE command, 2-20
Parameter Block Pointer (PBP), 2-9, 2-15
Partition, 2-19, 2-27, 2-48, 2-51
PBP, 2-3, 2-9, 2-15
POINT, 2-46
PORT, 2-10, 2-11, 2-46
Program Status Word (PS), 2-4, 2-47
PS, 2-4, 2-47

R Field, 2-14
RAM subcommand, 2-16
RBC, 2-3, 2-46, 2-47
RBF command, 2-2, 2-7
RBF-89 MONITOR, 2-9
RBF-89 prompts, 2-1
RBR, 2-31
RBR command, 2-2, 2-29, 2-38, 2-39
RBYTE, 2-3, 2-48, 2-49
RBYTE/RWORD command, 2-2, 2-48

Index-1

RBF-89

RCC, 2-3, 2-46, 2-47
Register names, 2-3
RELOCATE subcommand, 2-19
REMOTE, 2-26, 2-27, 2-31,2-32, 2-50
Remote memory references, 2-3
RESERVE subcommand, 2-18
RESET RBF command, 2-2, 2-23
RESET RBR command, 2-2, 2-38, 2-42
RETURN, 2-31,2-32, 2-34, 2-35
RGA, 2-3, 2-46, 2-47, 2-50
RGB, 2-3, 2-46, 2-47, 2-50
RGC, 2-3, 2-46, 2-47, 2-50
RIX, 2-3, 2-46, 2-47, 2-50
RMC, 2-3,2-46, 2-47,2-50
RTP, 2-3, 2-46, 2-47, 2-50
RWORD, 2-3, 2-48, 2-49

SAVE, 2-2, 2-27
Saving channel programs, 2-25
SCB, 2-5,2-9,2-13,2-52, 2-53
SCP, 2-9, 2-13
SCP subcommand, 2-9, 2-13
SEL pin, 2-11
Setting breakpoints, 2-38
SIB, 2-5; 2-9, 2-52, 2-53
Sign-on message format, 2-8
SINT, 2-46
SLAVE, 2-9, 2-17
SOC, 2-9, 2-14
START, 2-31
Status flags, 2-4
Subcommand, 2-7
Syntax, 2-4
Syntax, conventions, 2-4

System Configuration Block (SCB), 2-5,
2-9, 2-13

System Initialization Block (SIB), 2-5, 2-7
System Operation Command Word (SOC),

2-9, 2-14

Tag bits, 2-46
Task Block, 2-9
Task Pointer (TP), 2-9
TGA, 2-4, 2-46
TGB, 2-4, 2-46
TGC, 2-4, 2-46
TILL, 2-29, 2-31,2-32,2-34
Tokens, 2-3
TP, 2-9

Underlining, 2-8
UPDATE command, 2-2, 2-54
UPROG, 3-3
Utility Program, 1-3

VALUE, 2-10

WIDTH, 2-9, 2-12
WORD, 2-10, 2-11,2-46
WPORT, 2-10, 2-11,2-46

16-bit registers, 2-3,' 2-47
20-bit registers, 2-3, 2-47
8089 BUSY flag, 2-8
8089 subsystem, 1-4
8089 system variables, 2-3
89 ASM command, 2-2, 2-51
89 REGISTER command, 2-2, 2-50

lndex-2

intel* RBF-89 Real-Time Breakpoint Facility Operating
Instructions for ICE-86™ln-Circuit Emulator Users

9801018-01

REQUEST FOR READER’S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that meet
the needs of all Intel product users. This form lets you participate directly in the documentation process.
Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of
documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME DATE

TITLE _ ___

COMPANY NAME/DEPARTMENT

ADDRESS-

CITY STATE ZIP CODE

Please check here if you require a written reply.

WE’D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications M/S 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

intel
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080

Printed in U.S.A.

• t

