intal .
te| ﬁl;l:_ll_EICATION AP-52
AN
& ?\6‘\6
P
0
SR
%", v
o
N
29 00 &
g
\(\ ’QQ %@"’@
. &
. Q \0 & 8
9\ 0& ‘>°°:;° i
Q 6 Q%ﬁ

3-3

Using Intel’s Industrial
Control Series In
Control Applications

Contents
'I. INTRODUCTION 35
System Description 3-5
Control Algorithm 3-5
Basic System Configuration............ 3-6
II. WIRING INTERFACES.............. 3-7
Analog Terminal Panels............... 3-8
Low Voltage Digital Termination
Panels.............. ..o iiitl 3-10
High Voltage Digital Termination
Panels.................oooiiviet, 3-13
Final Channel Assignments 3-16
III. SELECTING THE COMPUTER
BOARDSc.coiiiiiiiiiiinnnnn 3-16
The Industrial Chassis 3-19
IV. DETERMINATION OF SOFTWARE
APPROACH...............ccvunnn. 3-21
Assemblerl 3-22
PL/M .. 3-22
FORTRAN, 3-23
BASIC ... 3-23
Final Selection of Language 3-23
Y. DEFINING SOFTWARETASKS 3-23
Oven Control Task e 3-24
CRT Update Task Development 3-27
Parameter Update Task 3-28
Support Programs. 3-29
VI. FINALIMPLEMENTATION......... 3-29
VII. CONCLUSION.........cciviiinnnn., 3-29

34

APPENDIX A — SELECTED DATA
SHEETS ...ttt 3-31

APPENDIX B — LADDER DIAGRAM
OFSYSTEM ..., 3-38

APPENDIX C — PROGRAM SOURCE
LISTINGS ...ttt 3-39

I. INTRODUCTION

The introduction of the single board computer as a
tool for the system designer has opened the way for
many varied application areas to benefit from the
advantages of computer utilization. A problem still
exists, however, because the available /O con-
figurations have been largely incompatible with the
wiring and packaging techniques required in indus-
trial environments. This problem is overcome by
the utilization of the Intel® iCS™ product family.
The purpose of this application note is to provide a
representative approach to the implementation of a
computerized solution to an industrial control
system,

System Description

This application note will deal with a control
system which will regulate the temperature in each
of four ovens. Each oven will be defined as utiliz-
ing a light bulb for heating. Normal convection will
be used to provide cooling. The internal tempera-
ture will be measured by means of a thermistor in-
stalled in each oven. We will assume that we will be
required to implement some type of operator panel
near the ovens which will allow the status of each
oven to be monitored. This approach is similar to
many common industrial applications which re-
quire a supervisory control station in one area and
a separate operator interaction panel near the

equipment being controlled. The setpoint and tol-
erances should be input from an external location.

With these facts about our system defined, we can
begin a step by step solution to providing a com-
puterized control system to.operate the ovens. We
will discuss the various equipment trade-offs and
the decisions which will be used to define the hard-
ware/software designs.

Control Algorithm

Before we can begin the design of our system, we
must have a clear idea of the technique we will use
to control the system. Our control system must
maintain the oven temperature within a predefined
and fairly narrow range of the setpoint. Let us
make an assumption that the light bulb will be con-
trolled digitally, meaning that the bulb must either
be turned fully on or it must be turned fully off.
The obvious control technique then becomes turn-
ing the bulb on when the temperature of the oven is
below our lower limit and turning the bulb off
when the temperature is above the higher limit. It
seems reasonable to assume that this technique will
provide a temperature in the oven which varies
sinusoidally with time. This is true because even
though the lamp is turned off, it will continue to
generate heat for a short period of time. Likewise,
when the bulb is turned on, it will not instantly be
able to provide heat to raise the temperature of the

chamber. We would expect to have a system re-
sponse such as is shown in Figure 1. A better
method of control can be devised if we provide
some type of temperature prediction into our con-
trol algorithm. Since this utilizes the rate of
temperature increase or decrease, it will involve a
type of derivative control system. This derivative
control action will tend to dampen the temperature
oscillations which might be encountered if only an
instantaneous on-off control system were utilized.
Figure 2 shows the response with time that we
might expect with this type of control system.

ON-OFF CONTROL

TEMPERATURE

TIME

Figure 1. Maximum Effort Current Temperature

DERIVATIVE CONTROL

TEMPERATURE

TIME

Figure 2. Maximum Effort Projected Temperature

The second approach is superior to the first
because the control will provide a much smaller
oscillation of the oven temperature. Other solu-
tions are possible, such as providing a modulated
output to the lamp. However, in an attempt to pro-
vide a simple model upon which to expand our
system solution, we will assume that the second ap-
proach will provide us with an accurate enough
control of the oven temperature.

Having made the decision as to the control tech-
nique, we can proceed with the task of determining
the general system configuration. That is, we can
define the physical system characteristics and the

- components to which we must interface the com-

3-6

puter system. This approach is identical to that
which would be used in a conventional control
system design.

Basic System Configuration

Based upon the data which we have provided so
far, it is possible to build a block diagram of the
system’s major components. The system consists
of four ovens, an operator’s panel, a data entry
panel, and the actual control logic. A block dia-
gram for the system is shown in Figure 3. We must
now further define the elements which make up
each of these blocks.

OPERATOR
PANEL

—»-1 CONTROL |-=—

CRT

OVEN 4

Figure 3. Application Block Diagram

Each oven must consist of a heating element, which
we have already defined as being a light bulb, and a
temperature sensing element which we have said
will be a thermistor. Each heating element will be
switched on or off by applying or removing a
source of 115 VAC. The thermistor temperature
can be sensed by using the thermistor in a voltage

divider circuit. We can then measure the voltage
across a fixed resistor to obtain an analog signal
which is proportional to the oven temperature. We
will determine the required value of the fixed
resistor at a later time.

The operator’s panel should be designed to provide
the workfloor operator with basic information as
to the status of each oven. It should also allow
some method by which he can inhibit the operation
of any oven should it become necessary for charg-
ing or servicing the oven. We can then define the
basic elements which should make up the opera-
tor’s control panel. Each oven should have associ-
ated with it the following controls and indicators:

1. Oven ON/OFF Switch — This switch will allow
the operator to inhibit the oven operation by
turning the appropriate oven switch to OFF.

2. Oven RUNNING Indicator — This indicator
will provide a visual indication that the oven is
activated and that the temperature is being con-
trolled.

3. Oven IN TOLERANCE Indicator — This indi-
cator will turn on when the oven temperature
falls within the allowable bandwidth around the
setpoint for that oven.

4. Oven ALARM Indicator — This indicator is the
complement of the in tolerance lamp. It will be
turned on when the oven is activated and the
temperature does not lie within the desired
bandwidth.

5. Oven CAUTION Indicator — It may be neces-
sary to alert the operator to a potential oven
temperature control problem before it actually
occurs and sets off the alarm indicator. Since we
have defined our control algorithm as utilizing a
type of derivative control, we can project the
oven temperature ahead in time. We will turn
the oven caution indicator on when we predict
‘that the oven temperature will lie outside of the
desired bandwidth in a predetermined future
time period.

We have now defined the operator interface which
we will utilize to control and monitor the oven
processes.

At this point, we will make a decision that the in-
terface used to input the setpoints will utilize a
CRT terminal. Though the decision may seem to be
completely arbitrary, we will see later that CRT ter-
minals provide an extremely useful device for
allowing an operator to communicate with the sys-
tem. Once the decision has been made, we have no

3-7

further requirements to consider hardware design
for this terminal, as the entire operation can be
handled in the software development which will be
considered later.

A common technique for documenting a system is
the ladder diagram. At this time, we can construct
a ladder for our control system. Unlike conven-
tional design techniques, our ladder diagram need
only be concerned with the actual drive and sensing
circuits since the logic required to drive the various
outputs will be defined using software. This results
in a considerable simplification of the design pro-
cess. A ladder diagram for a typical oven is shown
in Figure 4. We can defer the implementation of
the control algorithm until we begin to develop the
software portion of our control system. It is now
possible to complete the external hardware design
and to implement the system wiring package.

-
(]
-
=l
z

L 6 o €« @ EAO]
Poyed
ON1 X
-G {22
“IN TOL”
TOL1 X
=@ &
o “CAUTION”
e (]
“ALARM”
ALR1 ¥~
1L E90 D
1 L
OVN1
- HEATER
— %
1 1
5 10— WiRE LABELS) '
eV com
30 kn ‘
—AAMAA—— YW
T] ANALOG
T0
THERMISTOR DIGITAL
CONVERTER

Figure 4. Ladder Diagram of One Oven

II. WIRING INTERFACES

A major pitfall in utilizing a computer for control
systems has traditionally been the requirement for
the design engineer to expend a considerable
amount of his time in designing interfaces to con-
nect the physical wiring to the computer system.
The introduction of Intel’s product line of termina-
tion panels has essentially eliminated the require-

ment of designing interfaces and allows more engi-
neering time to be spent providing a solution to the
application. Before we continue with the specific
design, we should spend some time discussing the
various types of termination panels available and
the general characteristics of each panel.

Analog Termination Panels

The Intel® iCS 910™ Analog Termination Panel
has been designed to provide a simple means of ter-
minating the analog wiring and of providing an
interface to the control system input/output. All
wiring is terminated utilizing pressure ‘type screw
barrier blocks. Termination blocks have been pro-
vided to allow the termination of up to 32 single-
ended or 16 differential channels of analog input.
For use in a differential input environment, such as
we will be using, the terminator blocks provide wir-
ing terminations compatible with shielded cable in-
puts in that provision has been made to accept the
shield of each input signal. The shield is then car-
ried through the on-board circuits to the analog-to-
digital converter. Provision has been made on the
board for the mounting of commonly used circuits
for signal conditioning. The available signal condi-

tioning circuits provide for installation of current
termination resistors and the installation of a single
pole low pass filter network. The basic barrier
assignments for the iCS 910 termination panel are
shown in Figure 5. The possible circuit networks
for this panel are illustrated in Figure 6. A com-
plete description of the analog termination panel
can be found in the iCS 910 Analog Signal Condi-
tioning/Termination Panel Hardware Reference
Manual (manual order number 9800800A).

The functions of the analog termination panel will
become more clear as we develop the actual config-
uration required to support our oven application.
Referring to the ladder diagram (Figure 4) we see
that a fixed resistor is necessary to provide the volt-
age divider network to sense the oven temperature.
The current termination resistor (Rc) on the
iCS 910 board can be used to provide a convenient
mounting location for this component (refer to
iCS 910 circuit schematic, Figure 6). At this point,
we must make a design decision regarding the uti-
lization of a low pass filter for our analog circuits.
Since the oven temperatures are not expected to ex-
hibit rapid fluctuations with time, the use of a low
pass filter will not adversely effect the temperature

- s = - - = -
{y tu i i I I I &
CTooarroaonraronr caesfcwlcedan~?®

- - - - - - - -
w w w W © ~ woaol.u WNoW
c2J3cr-8cRP&actl &8« {8

. J@@@@i@@@@@@@@l I@@ll@l@@i@ﬁ@i@l@@@

l@l@@il@@i@[@@@@@l@ﬂ [@1@1 @@@@@@J@@!@I

[1 3 5
(= [

+ 1+ 1 +1 + 122k

>>>>>>>>0x0¢C

MONNTT OO0 r~r OO0

QOO O00VOUOOOOGCO

I e R R R R R

oooo0o0ooo0o0oooo00

(il el & 5 g B 7 == 0 |
Figure 5. iCS 910™ Analog Terminator Panel Assignments
+V
Ra Wa
E;Rc Ws =<Ca e
DIFFERENTIAL
v et | iy s
B. | XA Re
:F Cs
RET r:&}
:iRs

Figure 6. Typical Circuit on Analog Terminator

3-8

sensing. Indeed, the use of a low pass filter should
contribute to spurious signal rejection should the
analog cables pick up external noise signals. Calcu-
lations will show that the use of a filter network
consisting of 11K ohm series resistors and a 2.2 uF
capacitor will provide the filter characteristics
shown in Figure 7.

0.8
6 dB/OCTAVE

06 -

VADMN)

02 -

10
FREQUENCY (Hz2)

100 1000

Figure 7. Single Pole Filter Characteristics

Based upon our requirements and using the circuit
schematic of Figure 6, we can provide the circuit
interfaces required by our ladder diagram (Figure
4) by configuring the channels of the iCS 910 ter-
minator as shown in Figure 8. This results in a sim-
ple two-wire per oven analog interface. The termi-
nator board is designed to connect to the various
analog I/0 boards by means of a standard ribbon

cable which is supplied with the terminator panel.
The actual selection of the appropriate analog
board will be deferred until later. We will define
that oven number 1 will correspond to the differen-
tial analog channel 0; oven 2 will correspond with
channel 1; oven 3 will correspond with channel 2;
and oven 4 will use channel 3. This leaves 12 analog
differential channels available for future expan-
sion. The channel selection just made was a purely
arbitrary choice.

+5V

v+
Ra
— 11 kQ
[(/‘] AN)
=N
Re ==
30k 224F
TO AID
THERMISTOR ["7‘1 . BOARD
A Re
11 kQ
=] 1

Figure 8. Analog Circuit for Oven Application

The wiring to the iCS 910 terminator panel can
then be made essentially as shown in Figure 9.
Clearly, the use of the terminator panel greatly
simplified the connection between the control sys-

TO THERMISTOR #1
TO THERMISTOR #2
TO THERMISTOR #3
TO THERMISTOR #4

I] 5] I In]]
Cowa@roarneadomr c:v?—‘n:-n?moﬁxn

w0
2

] o &
w ©o
eIE-/ERELER

o I Lo
INc

RET

]
& &

HET

l@@@@@@@@@@@@H@@@@@@@@@@@@

iJ@@@@@@@@@@@WH@@ﬂ@@@@@@@@@

] 1 3
ECR

15

IIS[| pac110UT
ITS[| pAC1 IRET
ITSL| bACO 10UT
[TS[| pACO IRET
[TT]

I’S[| pAC3 v+
|IST| pacav-
[S]| pac2 v+
[I5[] pac2v-
] pac1 v+
IIN[] pac1v-
II[| paco v+
IIS[] paco v

J1

J2 J3

gB

Figure 9. Analog Terminator Wiring

tem and the physical devices which are to be moni-
tored or controlled. Figure 10 shows the placement
of the components onto the board.

/\/

<

TOWa

D C> o Lute

w3 Lo
o{mto

I B

&
/\r /

Figure 10. Analog Terminator Component Locations

Low Voltage Digital Termination Panels

Looking again at our ladder diagram for an oven
control system (Figure 4), we see the need to pro-
vide a second type of interface signal. This is to
provide the switching for the various indicator
lamps used on the operator’s control panel. Tradi-
tionally, this interface has been handled by using
electromechanical relays. The coils would be driven
by the low voltage control system and the relay
contacts were used to drive the external indicators.
Modern technology provides us with a solid state
device to perform the same function, the optical
isolator. We can use these devices to provide a
highly reliably and low cost alternative to the relay
interface. The Intel® iCS 920™ Digital Signal Con-
ditioning/Terminator Panel provides us with a
convenient vehicle for mounting the optical
isolator circuits and for terminating the wiring
associated with the indicator devices.

The iCS 920 panel is designed to be used by those
interface circuits which incorporate operating volt-
ages less than 50 volts and which generally use cur-
rents which are smaller than 300 mA. These limits
are given only for a general guideline since a wide
variety of optical isolators and drivers are available
for use on the board. Some of the devices are
capable of handling greater voltages or currents. A
representative list of available devices and com-
plete details of the termination panel are available
in the iCS 920 Digital Signal Conditioning/Termi-
nation Panel Hardware Reference Manual (manual
order number 9800801A).

3-10

The digital panel provides terminations for up to
24 digital channels, each of which can be con-
figured as either an input or an output channel ac-
cording to the specific application requirements.
As with the analog termination panel, all wire ter-
minations are made using pressure type barrier
strips which will accept up to 16 gauge wire. The 24
digital channels correspond with those input/out-
put channels assigned to the standard Intel I/0
configurations used on the single board computers
and I/0 expansion boards. We will dwell more on
this subject later when we define the addresses
associated with each circuit which we desire to in-
corporate into the termination panel.

Since the digital channels can be configured into
either an input or an output mode, it is wise to dis-
cuss each configuration so that a clear understand-
ing of the board can be obtained, even though our
application example will only use the output mode
with this board.

Figure 11 provides a schematic of the panel when it
is configured for a digital input mode. To set up a
channel to operate as an input, it is necessary to
add at least two jumpers to the wire-wrap jumper
posts. As can be seen, pins 6 and 4 must be con-
nected together as well as pins 3 and 5. If the board
is to provide a visual LED indication of the channel
status, an additional jumper should be installed
between pins 1 and 2 of the jumper posts. If this is
done, be certain to take into account the additional
current requirements when calculating the required
input resistors. Two resistor mounting locations
are provided to allow installation of selected com-
ponents to handle the current limit through the
optical isolator (Rx) and the threshold voltage for
turn-on of the device (Ry). A complete and de-
tailed procedure for selecting these resistors based
upon the input voltages is provided in the iCS 920
hardware reference manual mentioned earlier. Pro-
vision has also been made on the termination panel
for the installation of a diode (CR) to protect

against reverse bias application.

The components have been placed on the board ar-
ranged in groups of two channels. This eases the
task of finding various components or of locating
the holes for installing the required components.
This layout is illustrated in Figure 12. It is impor-
tant to take note of the physical placement of the
optical isolator chips in the 20-pin socket. This in-
stallation location must be followed rigorously
when using a channel in an input mode. Also take
note that provisions are provided for mounting two
sizes of resistors in location (Rx). This will accom-

modate the power dissipation requirements which
will be encountered in various application situa-
tions. Referring again to Figure 12, note that the
upper half of the layout represents odd channels
and the lower portion of the layout is used for even
channel component mounting.

+5V
1100
=
1 2
+5V
1K
¥~ [P p— TIL117 6 4 CPU
+ ‘%1 =" o INPUT
A 754 PORT
Ry Cr
_ t/} 3 5
L o
L
S s60ka

Figure 11. iCS 920™ Digital Terminator Input
Configuration

When the iCS 920 panel is used in this input mode,
it corresponds to the utilization of a relay coil to
sense some external contact closure. The resistors
can be thought of as selecting the coil’s operating
voltage and the diode provides the same transient

protection function as when installed on an electro-
mechanical relay. Finally, the optical isolator out-
put corresponds to the contacts associated with the
relay coil. As we will see later, this approach pro-
vides us with an unlimited number of contacts per
relay coil.

The oven application requires a contact for driving
the indicator lamps associated with each oven. If
we define the driving voltage to be 24 volts DC, we
will find that the voltage and current requirements
fall within the limits specified for using the iCS 920
Digital Signal Conditioning/Termination Panel.
Let us examine in more detail how this can be ac-
complished.

We will select an industrial indicator assembly
which utilizes a full voltage 24-volt lamp. Typical
lamps would be type 387. This will require a drive
of 40 mA at 28 volts. Our switching device must be
capable of driving this load. The analogy used
earlier to compare the optical isolator with a relay
in an input mode holds true when we utilize the
devices in an output configuration. If we examine
the data sheet for the current switching character-
istics of a typical optical isolator, say the TIL 113
(Appendix A), we can see that the current and volt-
age requirements fall well within the allowable
ratings of the device. We have selected the relay
contact characteristics! We need not concern our-
selves with the selection of current limitation
resistors (coil voltage ratings) since this circuitry is
provided on the terminator panel when a circuit is

/\ﬁ

/\/

Figure 12. Digital Terminator Input Parts Layout

C— O
1C o GEIED L0 o) ©) o)

- o - . | O-C=)-O
emal. — [w}-o
on» q p
—— oL[mlo [o0 ol ~ }o]
o oo L xx}1© |[° °

o o O @)
SN Cay BT o0 -9 '
o of o TR C—1_ & O
)) %ﬁ L\ N Lo -
o o padQ ©
[[e]
O—{ ssox O +

31

configured in an output mode. If we refer to Figure
13, we can see the on-board schematic for the out-
put drive mode of operation. Two jumpers must be
installed for each output channel. The first, be-
tween pins 1 and 2, is used to enable the LED chan-
nel status indicator. The second, between pins 3
and 4, actually connects the computer generated
drive signal to the input of the optical isolator
(analogous to connecting the relay coil to the driv-
ing line). Provision has been made on the circuit
board for only one optional component in the out-
put mode; this is the resistor (Rz). This component
has the effect of increasing the response time of the
switching device. Because our indicator lamps are
not time critical, we will choose to omit the instal-
lation of this component.

2200

TH 113

CPU OUTPUT,
PORT

Figure 13. iCS 920™ Digital Terminator Output Circuit

Figure 14 provides a drawing showing the location
-of the components on the iCS 920 panel when it is
utilized as an output switch. Again note the place-

ment of the optical isolators in the 20-pin sockets.
Also note the jumper arrangement used to provide
the required output circuitry.

Again referring to Figure 13, we see that an alter-
native to using the optical isolator for a switch
exists. Provision has been made on the panel for
the installation of high power buffer/driver chips
such as the TI 75462. This device provides the same
coil/contact characteristics as our optical isolator;
however, no isolation between the input and out-
put is provided. In certain applications, this con-
figuration may be desirable and can be imple-
mented by connecting jumpers 1 and 3 together,
then placing a jumper block in the isolator socket
location. The oven application will not use this
mode because of the many advantages which isola-
tion can provide.

Prior to actually installing the components onto
the iCS 920 panel, it is necessary to assign the
lamps to definite channel addresses. This involves
making some additional assumptions and design
configuration decisions. If we consider the total
number of digital inputs and outputs which are re-
quired to handle all four ovens (including the as yet
unconsidered switch and heater signals), we see
that a total of 24 channels will be required. These
will be broken out as shown below:

No. of :
Channels Type Function
16 DC Oven indicator lamps
4 AC Oven heaters
4 AC Oven RUN switches

0
o O 0@_
W +

o) 0
O 0 o) B

Figure 14. Digital Terminator Output Configuration

3-12

We have indicated that the 16 indicator lamps can
be handled using the iCS 920 panel. An examina-
tion of the data sheets for the various Intel single
board computers and expansion boards provides us
with the fact that a common characteristic of most
boards is the use of at least one Intel 8255 Pro-
grammable Peripheral Interface. This provides us
with at least 24 1/0 lines with which to work on
each single board computer. We can then assume
that we will not require an I/0 expansion board to
implement our application. Ideally, we can handle
our total requirements with one parallel interface.

The various Intel parallel ports are brought off of
the computer and expansion boards using edge
connectors. These edge connectors are then con-
nected to the termination panels using a standrd
ribbon cable assembly, effectively providing an ex-
tension of the I/O ports out to the termination
panels. The 24 channels are grouped into three I/0O
ports (each consisting of 8 channels or bits) which
are then called port A, port B, and port C. When
connected to the iCS 920 panel, these ports and
their bit assignments will be as shown in Figure 15.

At this point, we seem to be in a dilemma since we
would like to use all 24 channels and we have used
only 16 of them on our panel while we have utilized
the edge connector of the interface. It would be
desirable to have some technique to extend the
other 8 channels to a high voltage terminator
panel. It might be well to interrupt our channel
assignments at this time to jump ahead and con-
sider the features of the iCS product line which will
enable us to accomplish our interface desires. We
will then consider the interface of the high voltage
signals to our control system before returning to
the problem of assigning port locations to our
lines.

High Voltage Digital Termination Panels

The Intel® iCS 930™ AC Signal Conditioning/
Termination Panel is designed to interface up to 16
AC signals (up to 280 volts at 3 amps) or high cur-
rent DC signals (up to 50 volts at 3 amps) to the
parallel ports of the Intel single board computers
or /0 expansion modules. The barrier strip termi-
nations on this panel are designed to easily handle
the 14 gauge wire commonly found in applications
requiring the use of the AC terminator.

Solid state relays are used to provide the interface
between the computer 1/0 ports and the physical
plant devices. These devices make the utilization of
the panel a simple task once a ladder diagram of
the required circuits has been drawn. As we have
previously mentioned and as is clear from looking
at Figure 4, we shall need to utilize eight of the
available circuits, four for input and four for out-
put. The implementation of each signal type re-
quires only that we insert the correct type of solid
state relay into the appropriate socket.

First, consider the input configuration which is
required to sense the position of the oven RUN
switches. Figure 16 shows the circuit schematic
when used in the input mode. We can see that the
output signal will turn on when the input power is
applied. Like the digital termination panel, each
circuit’s status is indicated by means of an LED in-
dicator installed on the board. The input circuit is
protected by a socketed 3-amp fuse which may be
replaced without the need to solder any compo-
nents. The solid state relay used for this configura-
tion should be a type IACS which is available from
either Opto-22 or Motorola. Complete details of
available relays and their uses on the board are
available in the iCS 930 AC Signal Conditioning/

Figure 15. iCS 920™ Digital Terminator Port Assignment

313

Termination Panel Hardware Reference Manual
(manual order number 9800802A). Keep in mind
the fact that although this application note repre-
sents the solid state relays as being actual relays and
contacts, they in fact are solid state and contain no
moving parts.

SOLID STATE
RELAY

b3 3.3K
p:
>

3 AMP

&

=N

r

K -

T

+

(=

AN

=

1

Figure 16. iCS 930™ AC Terminator Input Circuit

The output configuration is utilized to turn the
heater elements (the light bulbs) on and off. Figure
17 provides us with a schematic of the output cir-
cuitry. In this case, we will insert a solid state relay
of type OACS which will handle up to 140 volts
RMS at 3 amps. In some cases, it might be desir-
able to add certain components to the terminator
panel when using it in the output mode. Two possi-
ble circuit configurations are possible. The first
and perhaps the most common will consist of in-
stalling a MOV (metal oxide varistor) across the
solid state relay contacts. This will be required
when the load being driven is inductive in order to
prevent the transients generated by the load from
damaging the triac in the SSR (solid state relay).
Since the SSRs utilize zero voltage switching and
the load in our ovens is resistive rather than induc-
tive, our application will not necessitate the instal-
lation of this device. The second possibility for ad-
ditional circuitry also involves driving inductive
loads. When the load is highly inductive, a possi-
bility exists that reliable operation of the SSR may
not occur because of incorrect values for the dv/dt
(a complete description of this phenomenon is
available in various publications available from the
manufacturers of the solid state relay devices).
Provision has been made for installation of an ex-
ternal snubber network should this be required.
Again, our oven control system will not require this
type of circuitry. Figure 18 is provided for refer-
ence should the reader desire to see the location of
the additional components on the panel. It should
be noted that the component placement does not

3-14

allow the installation of the MOV and the snubber
simultaneously.

+5V TRANSIENT
///’ SOLID STATE 3amp PROTECTION
RELAY E _
3.3K X _J:_
T . = |+
S’NUBQER ['J
Figure 17. iCS 930™ AC Terminator Output Circuit

+
1

S|

;

E

;

\
mov—1 é ™ Rs
SOLID
STATE
RELAY
FUSE 3A
®
2 . 2
QO ¢

Figure 18. AC Terminator Component Locations

We can now get back to the task of assigning ad-
dresses to the various digital channels. The iCS 930
panel has three connector options for connecting it
to the computer’s I/0O ports. The standard con-
figuration utilizes connector J2 to attach the rib-
bon cable assembly. When this is done, the com-
puter ports A and B will correspond to the 16 chan-
nels on the terminator panel (Figure 19). If we look
at the termination panel, we will see that there is a
provision for the user installation of two additional
ribbon connector sockets onto the board. These
are used in order to utilize the computer port C. If
connector J3 is installed and utilized instead of J2,
the channel assignments will be as shown in Figure
20. In a similar manner, connector J1 can be in-
stalled and utilized to provide connections between
the computer port C and the other eight SSR posi-
tions. If we choose the 16 lines required for driving

the indicator lamps from the iCS 920 panel to be
ports A and B, then it seems reasonable to assign
the eight remaining lines required on the iCS 930 to
port C. A feature of utilizing standard ribbon cable
assemblies is the ability to easily add ribbon plug
connectors to the cable. This will result in an
assembly transferring ports A, B and C to the iCS
920 panel (however, port C is not used) and which
continues the port C signals to the iCS 930 panel.

Individual channel assignments can now be made,
grouping the inputs and outputs together in groups
of four (this is done because of a requirement of
the single board computers to share terminator and
driver component packages in groups of four). Fig-
ure 21 provides a drawing showing the channel
assignments and the physical wiring locations
which will be used to connect the oven heaters and
switches. '

EE R M EEE B]

e EE e N EEE EEEEE

4 L 6 5 4 D
PORT B PORT A
] -
(] n cC B) O O 43 __C}: [I]] +
[E——
EXT 5V
POWER
Figure 19. iCS 930™ AC Terminator Port Assignments
+ +
dopzezdd Zededeed |geeeenge |deeekge
7 6 5 4 3 2 1 0
AVAILABLE FOR — PORT C —
J1 CONNECTOR
] -
B T c O) C B 33 d] +
EXT 5V
POWER
Figure 20. iCS 930™ AC Terminator Port Assignments
EEREEERE
N::;lgx:;;ﬁ\ AN AN A \4' L + +
1 O O 2 5 o O e R
* : : = . PORTC - - - - AVAILABLE FOR ?
J3 CONNECTOR
= -
] " g o 52 o O 58 O [N +
[——;
EXT 5V
POWER

Figure 21. iCS 930™ AC Terminator Application Configuration

3-15

Final Channel Assignments

The only task remaining before we have completed
our task of assigning channel numbers and physical
wire and component locations is to assign these
channels on the iCS 920 digital termination panel.
Since we have already determined that we will uti-
lize ports A and B, this becomes a simple matter,
requiring only an arbitrary assignment of lamp
locations using these port bits. The assignments
made for one oven can be seen in Figure 22. The
entire ladder diagram of the system can now be
completed along with port assignments for all sig-
nals used. The completed diagram can be found in
Appendix B. Note how the port assignments have
been shown to the side of the ladder element repre-
senting that interface device.

The method used to define a port assignments
needs to be clarified since it may not be apparent
why a channel. of port A was given the address of
E80. To begin, we have already indicated that each
port consisted of eight channels or bits. We will
number these bits from 0 to 7. Since it is possible to
have many input/output devices connected to the
computer, the possibility exists of having multiple
devices which incorporate internally ports A, B,
and C. The computer has been designed to support
up to 256 of these ports so we have numbered them
using the hexidecimal numbering system. The pos-
sible port numbers can then range from 00 to FF. It
will be found that a common characteristic of most
single board computers is the use of assigning the
port addresses of E8, E9, and EA to the on-board
8255 parallel peripheral interface. Therefore, the

first channel of port A would be defined as having
an address of E80; the second channel of port B
would be E91, and so forth.

III. SELECTING THE COMPUTER BOARDS

To this point we have delayed the selection of the
boards which will be required to provide the com-
puterized control system. The Intel OEM Micro-
computer Systems Configuration Guide has been
designed to simplify the task of selecting the re-
quired system. Our first task is to enter all known
information describing our desired system into the
project configuration worksheets. These work-
sheets can then be used to actually select a board
configuration which meets our particular require-
ments. The effort required to accomplish the entry
of data is reduced to a minimum through the use of
predefined digital and analog configuration work-
sheets. Our requirement of having a total of 24
parallel data lines, consisting of a mix of high and
low level interfaces, can be met by the 24-bit
AC/DC combination. Our assignments of re-
quirements for the terminator panels can be made
and is shown in Figure 23. It can clearly be seen
from the worksheets, that our required interface
with the computer digital data will consist of one
24-bit wide connector (had we not used port C
assignments, the use of 16-bit wide connectors
would have sufficed). This means that our selected
single board computer or I/O expansion board
must provide at least one edge connector having 24
170 bits on it.

S
-5
< o
Z 3 :
e — z <
= = o -
< = pul
s « 5 o
< 2 2
z - < 2
o < o E
e 15 e e
E94 E90 E84 E80
WIRE #15 + ¥ 4 +
. 3L 1
k 1 + " i 1 I | B | 1 i 1 1 1 _— I 1 1 1 L rn | S —— 1 I 1
OGSO NN RN NN @m@m@z’ (BT ALY (BB
E-L D } 1 11 . | — 11 i I BN R | — |

Figure 22. Digitsl Panel Application Configuration

7 6 5 4 3 2 1 o 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
PORT B PORTC PORTA
=] = A
-
-+
==
EXT 5V
POWER

3-16

DIGITAL CONFIGURATION WORKSHEET
PROJECT

This worksheet will provide the required digital interface configuration
data which is required to complete the Project Configuration Worksheet.

Enter Number of Channels

Enter # of Discrete AC Outputs (115-230 VAC)oiiiiiiiiiiiiiiiiineinannnns
Enter # of Discrete AC Inputs (115-230VAC)

Enter # of Discrete DC Outputs (Current > 300 MA)
Enter # of Discrete DC Outputs (Current < 300 MA)
Enter # of Discrete DC INpuUtsc..oiiiineneenennan.n,

Compute the Number of iCS 920™ and iCS 930™ Termination Panels

First compute the number of Parallel 1/0 ports (8-bits each port) required
on your iSBC™ board. Round all computations up to the nearest whole
integer unless instructed otherwise!

Compute # of iCS 930 Interface Output Ports ((A+C)/8)
Compute # of iCS 930 Interface Input Ports (B/8)............

Compute # of iCS 930 Termination Panels ((F+G)/2)

Compute # of iCS 920 Interface Output Ports (D/8)

Compute # of iCS 920 Interface Input Ports (E/8)

Compute # of iCS 920 Termination Panels ((J+K)/3)cviveiiineinreninnnn.

Optimization of Digital I/0 Port Usage for Minimum 1I/O Configuration
Compute # of iCS 930 Output “Overflow Channels" DO NOT ROUND OFF)

(A+CIB it QUOTIENTevnenn. 0
(Overflow Channels) REMAINDER _'i_ (N)

Compute # of ICS 930 Input Overflow Channels (DO NOT ROUND OFF)

(B/B) . ittt e e QUOTIENTouee... 0 (p
REMAINDER H)

Compute # of iCS 920 Output Overflow Channels (DO NOT ROUND OFF)

(D/B) e QUOTIENT)
REMAINDER 0 (M

Compute # of iCS 920 Input Overflow Channels (DO NOT ROUND OFF)

[(=Z:) P P QUOTIENT ...oovvnvnnnn _0 (V)
REMAINDER ~Q _(w

Compute 8-Bit Input Ports Required (P+V)ouuuneeeeaee i 0O (x)

Compute 8-Bit Output Ports Required (M+S).......cciiiiiiiiiiii i, 2 (Y)

Compute 4-Bit Output Ports Required ((N+T)/4) (ROUND UP)c.onvnn.. 1 (2)

Compute 4-Bit Input Ports Required ((R+W)/4) (ROUND UP)cccvvvnnenn. 1 (AA)

Compute 8-Bit Port C Requirements ((Z+AA)/2) (ROUND UP) ... ceeeeee. —(BB)

Total I/O Parallel Ports Required (X+Y+BB)tiiiiiiiiiiieiinneennans __J__ (CC)

Total # of 24 Channel Parallel 1/0 iSBC Board Edge Connectors

(CC/3) (ROUND UP TO INTEGER) ...\t iiet it iiii i ei i aiianeneanas _.L_ (DD)

Compute Power Requirements for the Termination Boards
(DO NOT ROUND OFF)

Compute +5V for iCS 920 Board Outputs (.061xD)ocevuiieiiiiiinnennes
Compute +5V for iCS 920 Board Inputs (.023%E)ocviiieniiennneanns

Compute +5V for iCS 930 Board Outputs ((.020x (A+C))
Compute +5V for iCS 930 Board Inputs (.D12xB)ovniiiiiiiiiinianns C
Compute iCS 920 Power Requirements (EE+FF).......ovitiiiiiinieeninennneains B
Compute iCS 930 Power Requirements (GG+HH)coiiiiiiiineiineenn .

Enter the appropriate data into the Project Configuration Worksheet as shown

below:
St mSTICHOn sattt PROJECT CONFIGURATION WORKSHEET
EQUIPMENT PARAMETERS:
[s o B R
eicsazo0. [T @@ TV

o T

Figure 23. Digital Configuration Worksheet

3-17

The required power requirements of the termina-
tion panels can be calculated using the data pro-
vided in the digital configuration worksheet. The
information regarding the necessary connectors
and the power requirements should then be
transferred to the project configuration worksheet
(Figure 24).

e st PROJECT CONFIGURATION WORKSHEET
EQUIPMENT PARAMETERS:

onto the worksheet and the system requirements
are totaled as shown in Figure 26.

Figure 26.

Figure 24.

A similar technique is used to configure the analog
signals using the standard analog configuration
worksheet as shown in Figure 25. It can be seen
that our application will require a single cable con-
nection to a differential input edge connector of an
analog input board. The power requirements can
be calculated from the current requirements to
drive the thermistors and the sensing resistors. The
data is entered into the appropriate columns of the
configuration tables and then transferred to the
project configuration worksheet.

ANALOG CONFIGURATION WORKSHEET
PROJECT OUEN CONTROLLER: _

This worksheet will provide the required analog interface configuration
data which is required to complete the Project Configuration Worksheet.

Enter Number of Channels

Enter # of Single Ended High Level Analog Channels
Enter # of Differential High Level Analog Channels ..
Enter # of Differential Low Level Analog Char
Enter # of Analog Output Voltage Channels
Enter # of Analog Output Current Channels ...

Compute the Number of ISBC™ Board Edge Conneclors
. round i

Compute # of High Level Single Ended Analog Connectors
Compute # of High Levet Dilferentiat Connectors (8/8)
Compute # of Low Level Diferential Connectors (C/8)
Compute # of Analog Interface tnput Connectors (F+G +H) ...

Compute the Number of ICS-910" Termination Panels
Enter Analog Out Connectors (/4 +E/2)
Enter ¥ of Analog In Connectors (J/2) .
Enter Larger of (K) or (L)

:l:':e the appropriate data into the Project Configuration Worksheet as shown
w:

PROJECT CONFIGURATION WORKSHEET

Sk o

Figure 25.

The only remaining physical element of our control
system which we have not defined is the CRT ter-
minal which will be used for setpoint entry and
modification. Communications with a terminal re-
quires that we provide a serial RS232C port in our
control system. This port requirement is entered

We must now choose the Intel iSBC boards which
will provide a solution to our system requirements.
This is done by referencing the summary of key
iSBC configuration parameters to find boards
which provide the necessary characteristics. Our
first task is to choose a single board computer
which meets as many of our needs as is practical,
while providing performance characteristics ade-
quate to our needs.

Our first requirement for having support for a
single RS232C serial communications channel can
be seen to be met by a variety of possible boards.
Among the possible boards meeting this require-
ment are:

iSBC 86/12™
iSBC 80/20™
iSBC 80/30™

We must look further before a final choice can be
made. Again, it can be seen that all candidates also
meet the requirement of providing a minimum of
one 24-bit wide digital I/0 connector. Our decision
must be based upon parameters which are not
necessarily related to the input or output capabili-
ties. Even though we have not yet developed our
software package for our control system, we can
safely make some assumptions regarding the com-
pleted software package and thus define additional
requirements which will enable us to select our
desired computer board. The software,task will be
considerably simplified if we write our programs in
a high level language and if we use available drivers
for our input and output where they are available.
As we will see, the utilization of PL/M and
RMX/80™ real-time executive and drivers will
make this programming task much less demanding
of our time. The trade-off is that these software
tools take larger amounts of memory than if we
were to write our entire application program in
assembly language. Let us make an initial estimate
that our system will require about 8K of EPROM
and in the neighborhood of 2K of RAM.

iSBC 80/10A™
iSBC 80/20-4™

3-18

Entering this data on the configuration worksheet
(Figure 27) enables us to narrow our choice by
eliminating the iSBC 80/10A since it does not have
sufficient RAM on board.

Figure 27.

Since our application is not likely to require exten-
sive math handling capabilities or high speed capa-
bilities, we probably do not need the power found
in the iSBC 86/12; so we will remove this product
from consideration.

We are now faced with selecting either the iSBC
80/20 board or the 80/30 board for our processor.
Each has certain advantages and disadvantages for
use in our application. Let’s compare these two
boards, considering first the iSBC 80/20, then the
iSBC 80/30.

iSBC 80/20 board advantages — Slightly lower
cost, greater number of 1/0 lines available.

iSBC 80/30 board advantages — Faster proces-
sor, dual ported memory, able to utilize UPI
modules.

If the system were to operate in a stand-alone en-
vironment and we could be certain that significant
expansion would not take place, we would prob-
ably choose the iSBC 80/20 computer for our ap-
plication. If we consider that the system might
become a part of a much larger system by future
expansions and additions, we should remember
that the use of the UPI modules on the iSBC 80/30
computer provides considerable power through
multiprocessing capabilities. The dual ported
memory can also provide us with the ability to use
more sophisticated inter-board communication
protocol should the need arise. For the purposes of
this application note, we will assume the system is
being designed for expansion and we will select the
iSBC 80/30 computer.

A good design practice is to provide an extra mar-
gin of available memory in the hardware design.
Our anticipated RAM memory will use about 2K
bytes. The computer will provide us with 4K bytes
so we have a considerable margin. This is not true
when we look at the amount of EPROM available
on the board. Our 8K requirement is identical to

3-19

the amount of memory available to us on the
board. We should consider the use of an expansion
EPROM board or the prospect of having to spend
a considerable amount of time reworking our pro-
gram to get it to fit if we find that we have exceeded
our estimates. We will select the option of adding a
memory expansion board (it can be deleted if we
find that our software requirements are less than
estimated).

The computer selection and the memory expansion
board data can now be entered onto the configura-
tion worksheet as shown in Figure 28. If needed,
the addition of the memory expansion board will
allow our EPROM requirements to grow up to 16K
bytes.

PROJECT CONFIGURATION WORKSHEET

Figure 28.

The only requirement which we have not met is to
assign a board to handle the analog input needs of
our temperature sensing circuit. The analog voltage
can be calculated and will be found to lie in the
neighborhood of 4.6 volts at room temperature.
This value will increase toward 5 volts as the
temperature of the oven increases. Since we have
no requirement for any analog output capapbilities,
we will choose the Intel® iSBC 711™ Analog Input
Board to sense the voltage level. This board can be
configured to handle a 5-volt full scale input and
will provide a resolution of 12 bits. (If an oven re-
quiring a wide range of temperatures and greater
resolution were required, we would have to recon-
figure our temperature sensor to provide a wider
voltage spread over operating temperatures. For
purposes of simplicity and clarity we will assume
that our temperature resolution is adequate.)

The configuration worksheet can be filled in to
reflect the selection of the analog converter and the
total power requirements for the system can be
computed as has been done in Figure 29. We now
need to select a chassis and power supply in order
to complete the application hardware design phase.

The Industrial Chassis

Before the boards can be operated together to form
a control system, a means of allowing communica-

SEE INSTRUCTION SHEET

PROJECT CONFIGURATION WORKSHEET

EQUIPMENT PARAMETERS:
SERIAL 170 PARALLEL INPUT/QUTPUT ANALDG INPUT/OUTPUT
e Mooyt - - POWER REQUINEMENTS | cost
[HrouRENENTS ‘4‘-'11'.‘;1‘ [T [l’::| W [v nﬁ‘nu‘v‘[CCTIN I A N Z TN NN (T (g T jp— T p—

INTEL
SOLUTION

o

swre 18BC 7N

oo T

Sutes

SLOT %6

stor o7

SL0T %8

stor v

sLT #19

stor w1

ill"’l?)
ROM/EPROM 1 .l .0%
[V T []ao
G L[]
C o T T T T T T TT [[[[| [etoeofooes[ose] [[[)
SYSTEM SLOTS POWER AVAILABLE
Tt “"(I:HGI"IUI AVAILABLE 5V 1 2 |] L»l” o
a%a?ﬁiﬂm CARD CAGE W St 20 LI
LPOWER SUPPLY iy
I svaTew cost |
Figure 29.

tion between the boards and of distributing power
among the boards must be found. This require-
ment is met by specifying a chassis into which the
boards will be mounted. The Intel® iCS 80™ In-
dustrial Chassis provides an environment for oper-
ating the boards which is specifically designed to
operate in an industrial area. '

The chassis has been designed to facilitate mount-
ing into either a standard 19-inch RETMA cabinet
or it may be rear-panel mounted into an enclosure
such as may be found in applications requiring the
use of a NEMA electrical enclosure. The card chas-
sis has been mounted in such a manner as to hold
the single board computers and expansion modules
vertically, facilitating maximum cooling of the
boards. Fans are provided to aid the normal con-
vection cooling process. Card racks may be in-
stalled into the iCS 80 chassis to expand the card
support capability to a maximum of 12 card slots in
groups of four. Either an iSBC 635 or 640 power
supply can be mounted into the industrial chassis
to provide power up to 4 or 12 boards capability,
respectively. ;

Our application design requires the installation of a
three board solution, so we will choose the iCS 80
chassis with one iSBC 635™ power supply. We will
choose to mount our control system in a standard
NEMA 12 enclosure to protect the unit from the
industrial environment. We should refer to the iCS
80 Industrial System Site Planning and Installation
Guide (manual order number 9800798) for com-
plete details for selecting appropriate enclosures
and installation instructions. ‘

The + 5 volt power needed to support the various
termination panels and to supply a reference volt-
age for the thermistors is available from a barrier
strip located on the lower front of the iCS 80
chassis (Figure 30). Our wiring can be routed to
this barrier strip for those circuits requiring either
5-volt DC or the system logic common. A fuse
holder is provided and a fuse should be installed
for system protection. We will install a 2-amp fuse
into the holder (our maximum power requirement
for external circuitry .should be 1.22 amps accord-
ing to Figure 26).

3-20

CUT JUMPER TO ENABLE FUSE

OPTIONAL FUSE |

L

Figure 30. Industrial Chassis DC Power Strip

The remaining terms required in our ladder dia-
gram (Appendix B) consist of a high voltage

neutral and a source of switched high voltage

power for the heater lamps. Both of these terms are
available from the iCS 80 industrial chassis. It is
desirable to utilize the same switched power for
both the computer system and our external signals,
so that we can provide protection to operators
when one portion of the system is shut down. A
common source will insure that all portions of the
system are inactivated if repair is being done. The
iCS 80 chassis incorporates a heavy duty industrial
key-lock switch for its power switching. The out-
puts of this switch are available to the user at a ter-
minal barrier strip located on a fold-out panel on
the rear of the chassis assembly (refer to Figure 31).
We can see that our neutral wire should be con-
nected to terminal 5 (filtered AC low) and the wire
for the AC high, wire #10 on the ladder diagram,
should be connected to terminal 9. This will pro-
vide us with a switched, fused, and filtered power
source for our external wiring.

As we will be installing the chassis into a NEMA
enclosure, we will not want to use a standard power
cord since this would involve the additional ex-
pense of installing a duplex outlet in the cabinet.
The power wiring can be installed directly onto the
power barrier strip by placing the AC hot wire on
barrier number 1, the neutral wire onto barrier
number 4, and the ground onto barrier number 3.

The hardware implementation of the system can
now be considered to be complete. Before the sys-
tem can function as a control for the oven temper-
atures, we must define the relationships between
the various pieces of the oven system and we must
also define the operator interface with the CRT ter-
minal. Thus, we begin the software phase of our
design.

IV. DETERMINATION OF SOFTWARE
APPROACH

The task of providing the relationships between the
various system components falls into the category
of writing the software. Before we actually begin to
develop this software, we will define certain guide-
lines which can be used to organize and simplify
the task.

Let us consider the general environment under
which our programs will operate. We find that we
have essentially two choices in this area. First, we
can consider the entire process as a sequential set of
predefined operations in which we must perform
each operation before moving to the next until
finally we complete the sequence and begin again.
(This is analogous to using a single stepper switch
to design our control system.) Since each oven is in-
dependent of the others, we can not afford to use

-

c

|D

2
s .0
[} a Saw
r = @ = &z 255
]] a o w9 EUET
] [=Eed =73
b S < > 2o 2530
-4 2 (I, -3 w<g Luong
L. - -
njnjojnjvjvieloelo 0
1 2 3 4 5 6 7 8 9 10 11 12
= < ———
FILTERED AC FILTERED, FUSED, FILTERED, FUSED,
LowW & SWITCHED & SWITCHED
110 VAC AC HIGH

|

iCS-80 AC POWER PICKUPS
{115 VAC CONFIGURATION)
(230 VAC CONFIGURATION)

Figure 31. Industrial Chassis AC Power Strip

3-21

this approach since we could get tied up.waiting for
something to happen in a particular oven and
would have to ignore the other ovens. The designer
familiar with relay design will probably be think-
ing, at this point, that we should use a separate
sequential operation for each oven or device to be
controlled. Indeed, this is exactly what we can do
with our software by using what is known as a real-
time executive. This tool will allocate the com-
puter’s resources in such a manner as to provide us
with the capability of having independent software
programs or tasks operating at what appears to be
the same time. We will make our first assumption
that our software will be written using such a tool
and we will specify that we will operate under
Intel’s RMX/80 Real-Time Multi-Tasking Execu-
tive. We will discuss more detail of this software
tool as we develop our programs.

Next, we must consider the language which we will
use to actually define our required operation. We
have many alternatives from which to choose. Let
us look at several of the alternatives in some detail.

Assembler

Assembler language is probably the most basic tool
with which we can program a computer. It is con-
sidered to be the most efficient user of program
memory and processor time. These features are
made possible because each assembler instruction
line is converted directly into a corresponding
machine instruction. From a programming stand-
point, assembler language is the most difficult to
use since any task must be defined by subdividing
that task into a multitude of smaller operations
compatible with the available instructions of the
computer. To use this language, we must be famil-
iar with the architecture of each computer with
which we desire to operate. The use of the language
is somewhat simplified through the use of an Intel
supplied assembler which converts the assembler
code into machine instructions and provides list-
ings of the operations which have been entered. A
complete description of the Intel 8080/8085 As-
sembler Language is available in the 8080/8085
Assembly Language Programming Manual (man-
ual order number 9800301B).

The user should consider this programming tool
when his application requires the minimum
amount of memory (such as might be required for
very large volume designs where memory cost is a
factor) or where a highly time dependent routine

3-22

must be defined. Our oven application does not fall
into either of these categories, so we will choose
not to use this language in our instance.

PL/M

Intel’s PL/M language offers an efficient, struc-
tured, high level systems programming language.
Before proceeding, let us be clear on the benefits of
using a high level language. First, the use of high
level languages results in reduced development time
and cost. High level languages provide the ability
to program in a natural algorithmic language. In
addition, they eliminate the need to manage regis-
ter usage or to allocate memory. Second, high level
languages provide improved product reliability
because programs tend to be written in structured
formats and result in a minimum of extraneous
branches which might cause testing problems.
Finally, their use produces programs which are bet-
ter documented and are easier to maintain.

On the other hand, high level languages do not op-
timize the code segments as well as can be done by
an experienced assembly language programmer. As
a result, most compilers (routines which convert
the high level languages into machine executable
code) use more program storage than those written
by the assembly language programmer. Different
languages and compilers require different amounts
of memory for the same task.

PL/M-80 is probably one of the most efficient high
level languages for use on microcomputers. It has
been determined that PL/M-80 users can expect to
use between 1.1 to slightly more than 2 times as
much program memory as would be used for the
same task written in assembly language. For this
reason, we must place the use of this language high
upon our list of possible languages in this applica-
tion.

A glance at the PL/M-80 Programming Manual
(manual order number 98-268B) indicates that the
language is highly structured and seems to lend
itself very well to handle logical type operations. It
seems to have the greatest weakness in its math
handling capabilities in that it does not support
negative numbers or fractions. It is reasonable to
assume that the oven application can be handled
entirely with positive integer numbers so this
limitation will not unduly hamper our use of this
language. We will keep these features in mind when
making a final decision.

FORTRAN

Intel’s FORTRAN-80 provides the full subset of
ANSI FORTRAN 77. In many cases FORTRAN-
80 has features that exceed the specifications for
both the subset and the full versions of FORTRAN
77. Most of the power of this language lies in its
ability to easily handle complex mathematical ex-
pressions. Obviously, it does not have any limita-
tions regarding fractions or sign of the numbers in-
volved. It should be used when the application re-
quires the use of mathematical computations. The
power of the language, however, means that the
use of the language will take a heavy toll of mem-
ory allocation. A complete description of the FOR-
TRAN version supported by Intel and its use on the
iSBC computers can be found in the FORTRAN-
80 Programming Manual (order number 9800481A)
and in the ISIS-II FORTRAN-80 Compiler Opera-
tor’s Manual (order number 9800480).

It is unlikely that the magnitude of mathematical
routines required to control the temperature of our
ovens will be complex enough to justify the use of
FORTRAN. Keep in mind that, if such a situation
were encountered, it is feasible to use a combina-
tion of programming languages to create our final
module.

BASIC
Certaintly the most well known high level program-

ming language today is BASIC. It offers a quick |,

way of applying the computational capabilities of
the computer to a wide range of applications. The
Intel RMX/80 BASIC-80 is an interpreter designed
to operate with Intel’s single board computers and
contains extended disk handling capabilities. As an
interpreter, it differs from other high level lan-
guages in that it results in a relatively slower oper-
ating solution to an application. It is also not possi-
ble to use BASIC to generate multiple independent
tasks which can compete for computer resources.

For these reasons, we cannot consider the use of
BASIC for a solution to our application.

Final Selection of Language

From the above discussion, it seems clear that our
choice for the application being demonstrated is to
use PL/M-80 as our programming language.

With this in mind, we can begin the task of actually
generating the code which will complte our applica-
tion and provide an operating control system.

3-23

V. DEFINING SOFTWARE TASKS

The software implementation can begin as soon as
we have broken our control functions into inde-
pendent ‘‘tasks’’. We can then handle each task
separately as though it were the only thing which
had to be done by the control system. In the event
that we find that one of our tasks must communi-
cate with or be interlocked with another, we will
handle this need through the use of ‘‘exchanges’’.
The ‘‘exchange’’ can be thought of as a mailbox in-
to which messages are deposited and picked up by
the various tasks. These messages convey the neces-
sary information between the otherwise independ-
ent programs. When all tasks have been coded, we
will combine them using the facilities of RMX/80.

Our oven application can be broken down into
three functional areas or tasks. These are:

1. The Control Task which will be used to actually
sense the oven temperature and to provide the
required responses to the heaters and the indi-
cator lamps.

. The CRT Update Task will be used to provide a
‘‘snapshot”” of the system operations to a per-
son viewing the CRT terminal.

. The Parameter Update Task will be used to ex-
amine and update the oven setpoints and toler-
ances.

The choice of these three tasks has been essentially
arbitrary in nature. Certainly, other choices and
groupings of functions could easily have been
made. We will use these choices for our example
and will proceed with our development accord-
ingly.

We have two other supporting tasks which must be
included in our system. Fortunately, these tasks are
predefined and fully supported within RMX/80’s
libraries; thus we need not write these functions.
The two supporting tasks are:

4. A Terminal Handler Task to support the actual
interface to the CRT terminal. It provides echo
of input characters and signals when data is
ready to be read. It will output messages to the
terminal and signal when all characters re-
quested have been sent.

. An Analog I/0 Driver Task to request and han-
dle the handshaking which is required to
communicate with the analog input board. It
will signal us when data has been input and is
available for use by our user written tasks.

We can proceed with the implementation of each
of our three tasks which we have defined. The first
step with each will be to develop a flowchart which
shows the required operations to implement that
task. This flowchart will show any intertask com-
munications or exchanges that may be required
with other tasks. The flowchart can then be coded
using the facilities provided by our programming
language.

Oven Control Task

The sequence of operations required to perform
the control task can be defined using the flowchart
shown in Figure 32. Let us examine the required
steps in more detail. ‘

An arbitrary decision has been made to only sam-
ple and control the ovens once each second. This
will allow some time for the system to respond once
a heater output has been set. The first step in our
control task is to waijt for one second to elapse.

Our next subtask should be to read the status of the
various oven control switches on the operator’s
control panel. This item could wait until a later
time, but there is no harm in handling it at:this
time. ' ,

Next, we see a block indicating the input of data
regarding the current oven temperatures. This oven
temperature data will certainly be used by the task
handling the snapshot display on the CRT so-we
must give some consideration to the validity of the
data. While we are in the process of getting the
data and converting it to engineering units (next
step), there will be periods during which the stored
temperature data does not reflect the actual oven
temperature. An example might be when we are ac-
tually moving the 16 bits of the temperature since
we can only move data 8 bits at a time. During this
period, we would not want another task to use the
data and since each task is going to operate inde-
pendent of others, we must provide some type of
lockout of the data while we are operating on the
temperatures (an alternative would be to have each
task get its own temperature from the A/D con-
verter and convert it to engineering units, but this
would seem to waste memory and computer time).
We can provide this lockout by creating an ex-
change to communicate with other tasks. If we
make a message available in this exchange when the
data is valid and cause no messages to be available
when the data is nonvalid, we can effectively lock
out tasks from using the data when it is in the pro-
cess of being updated. This is done by requiring

those tasks to test for the presence of a message at
the exchange before they get the temperature data.
If no message is present, they must wait until one is
placed into the exchange before proceeding. Just
before we update the temperatures we will fetch the
message from the exchange, leaving it empty while
we work on the data. later we will again restore the
message when the update is complete.

CONTROL
TASK

WAIT FOR ONE
SECOND

READ CONTROL .
PANEL
SWITCHES

GET
TEMPERATURES

CONVERT TO
ENGINEERING

3TIMES

AVERAGE

COMPUTE
T10, T30

YES
‘INTOL'
OPERATIONS
‘CAUTION’
OPERATIONS
ALARMS

‘HEATER’
OPERATIONS

DO 3 MORE TIMES

SHUTALL
OFF

QUTPUT
DIGITAL
DATA

S

Figure 32. Control Task Flowchart

The number obtained from the analog converter
provides us with a value which is proportional to
the temperature of the oven. Our next step is to
convert this number into engineering units. Unfor-
tunately, the voltage and temperature are not
related in a linear fashion since the thermistor is a
nonlinear device. We will have to develop a tech-
nique to obtain a corrected value. For the purposes
of this application note and in an attempt to keep
the application as simple as possible, we have
chosen to utilize a single table look-up to perform
this conversion. Alternatives might have been to
utilize FORTRAN routines to mathematically per-
form the conversion or to have separate tables for
each oven. Once the conversion has been made, we
must return a message to the data lockout exchange
to allow other tasks access to the data.

Because we must deal with four ovens, the opera-
tions related to each individual oven must be per-
formed four times, once for each. This is easily
handled as we will see, since PL/M is a block struc-
tured language. Our flowchart.need only remind us
that the operations need be done four times.

The next step has been defined as performing some
digital filtering of the temperature by averaging the
current temperature with the temperature of one
second ago. This filtered value will be:used to per-
form subsequent computations and to make future
decisions.

We have defined earlier in our definition of the
control algorithm that we would use a derivative
control. We have chosen to project the tempera-
ture ahead for a period of 10 and 30 seconds. We
must calculate the rate of change and the
temperatures in 10 and 30 seconds so that this data
will be available when needed.

Now that the calculations have been made to deter-
mine numeric values required for the decision mak-
ing process, we must begin the process of determin-
ing the status of each indicator and oven heater. A
test will be made of the oven run switch and if it is
found to be turned off, we will turn off all indi-
cators and the oven heater associated with that
oven, If the switch is found to be turned on, we will
set the status of the ‘‘in tolerance’’, ‘‘caution’’,
and ‘‘alarm’’ indicators according to our oven con-
trol algorithm. The oven heater will be turned on
or off according to the projected temperature in 30
seconds.

Rather than output the individual oven indicator
and heater data four times (once for each oven), we

3-25

will perform the computations associated with
making the decision four times (this saves code
since we can use the same program steps with only
pointers being exchanged). At the end of this time,
a single operation will output the data to all ovens
and indicators at the same time. Outputting to a
computer port will actually cause the device to turn
on or off according to whether the output bit is a
one or zero. '

We will then return to the beginning of our task to
wait until another second elapses before we again
perform the indicated functions.

Control Task Source Coding — The coding of our
tasks is a straightforward procedure once we have
prepared a flowchart. Since we are using PL/M-80
and RMX/80, the coding sequence for a task will
be as follows:

1. Define any variables or structures which will be
used in the module. This involves providing in-
formation defining variables as being either an 8
or 16-bit variable and declaring if that variable
is to be a part of the task being coded or is to be
found in some other task. If any arrays or struc-
tures are to be used, they must also be defined.
Finally, if any program locations are to be used,
they must be declared. ‘

. The task must be initialized. That is to say that
any assumptions which will be made as to initial
data values in subsequent instructions must be
initially forced to this initial value.

The actual task must be coded to match the
operations called out in the flowchart.

We will look at some examples of this coding pro-
cess using the control task flowchart. The complete
listing of this module and all modules actually used
to provide the oven control system can be found in
Appendix C.

At first glance, it would seem that the listing is ex-
tremely complex, but as we will see it is made up of
straightforward pieces. The listing is made up of
three parts as we have mentioned above when de-
fining the steps required to generate a program.
The first part (line numbers 1 through 50) is used to
define parameters, variables, and external ele-
ments. The general types of elements making up
this portion fall into typical categories. The first
general category consists of DECLARE state-
ments. Examples of typical lines will help explain
their meanings (when actually developing the pro-
gram, this first section was created piecemeal by

making an entry when it was found that a need for
that term existed as the execution code in sections
two and three were written).

Examples of the ‘‘declare’ statement are shown
below. For example, on line 11 we find:

11 1 Declare (n,k) byte;

This means that the variables ‘‘n’’ and “‘k’’ are be-
ing defined as terms which represent numbers or
data which is one byte or 8 bits wide. The ‘11"’ is
the program line number, and the ‘‘1’’ indicates
that we are in the first level of nesting.

We can also see the use of the ‘literal’’ expressions
such as used in line 4. The expression:

4 1 DECLARE FALSE LITERALLY ‘00H’;

means that we are creating a new instruction called
““false’” and that its meaning is to be interpreted by
the compiler as being equivalent to the value of
Z€ro.

Rather than dwell on the declaration, let us move
on to the coding process which was used to gener-
ate the actual program. Keep in mind that the use
of PL/M-80 requires that all terms used be de-
clared in the program module. Refer to the PL/M-
80 Programming Manual (order number 9800268B)
for a full description of the PL/M language.

Program Initialization — The initialization portion
of the program can be found on lines 51 through 59
of the control task program listing. This section is
used to initialize data and to provide known entry
conditions before we enter the repetitive program
loop. This code is only executed when the system is
reset or when the power is turned on. The control
task requires two types of initializations; one to in-
itialize the computer’s output port and the other to
set up the A/D converter. The requirements for
each can be found in the RMX/80 User’s Guide
and the iSBC 80/30 Single Board Computer Hard-
ware Reference Manual (order number 9800611A).
Actual instruction examples are given in these
manuals for the initialization operations.

Program Body — The program which actually pro-
vides the control operations can be found on lines
.60 through 126 of the program listing for the con-
trol task. It has been divided into sections which
correspond . directly to the flowchart that was
prepared earlier. Most instructions in PL/M-80
language follow closely the English structure which
describes what is being done. The exceptions gener-
ally follow definite predefined formats. The for-

3-26

mat such as used on line 61 to wait for one second
to elapse is an example of one such exception. Any
time we desire to wait for a definite time period, we
use an instruction of the form:

MSG$PTR =RQWAIT (.DUMMYS$EXCH, TIME DELAY);

Whatever time delay we wish to use is expressed in
increments of 50 msec time periods. Our example
requires a time delay of one second so we will use
the delay notation of 1.0/0.050 = 20 time units (this
command is actually calling upon the RMX/80 ex-
ecutive to handle the delay).

The oven enable switch data has been defined by us
to be routed by the hardware to the computer port
‘““EA” which converts to a decimal number, 234. If
we define an internal memory location for this data
and call it BLOCKO, then we can get the oven
switch data by using an input statement. Since the
data sense is inverted through the hardware, we can
provide meaningful internal data if the signal is re-
inverted as it is loaded into memory. The instruc-
tion on line 62 of the control task listing performs
this task.

We are now ready to get the analog data from the
A/D converter. Our flowchart shows that we must
lock out the other tasks from access to the tempera-
ture data during this time period, so we must first
remove the enable message from the exchange in
which it is stored. Messages are removed from an
exchange by using an instruction of the form:

STORAGE = RQWAIT (EXCHANGE NAME,0)

Line 63 of the program listing means that we will
get a message from our storage exchange which is
called ““Temp$lockout$exch’® and store it in a
memory storage area called ‘‘Lockout’’. Now, no
other task can get a message from this exchange
since it is empty, so it is permissible to operate on
the temperature data. (Note how similar this com-
mand is to the one used to wait for a delay. Indeed,
this is the same request for RMX/80, but it re-
quests a time delay of zero.)

During the initialization, we built a message defin-
ing the characteristics of the analog signals and of
the analog conversion board which we are using.
Remember that we have indicated that the task of
getting this data from the board is provided to us by
one of RMX/80’s predefined drivers. All that is
necessary at this time is to inform that driver of our
desire to get data, then wait until it has done its job
and the data is available for us. The actual com-
munication between our applications task and the
analog driver is done using the idea of an exchange
similar to that we have used to lockout the data.

We will send a message to the analog driver telling
it what we want it to do, then we will wait until it
sends a message back to one of our exchanges tell-
ing us that it is done. The format for sending a
message to an exchange always follows the form:

CALL RQSEND (EXCHANGE NAME, MESSAGE NAME);

Line 64 of the listing shows that we have requested
the input of the analog data since we have sent our
message, Convert, to the analog driver’s exchange
which is called RQAIEX. We will wait until the
operation is complete by using the line of code
shown on the listing line 65. This is the same opera-
tion type that we used to get our message back pro-
viding a lockout earlier. The program will wait un-
til a message is available before continuing.

The data must now be converted into engineering
units. We earlier indicated that we would use a
table lookup to perform the linearization, so we
have included this table as a part of our program at
line 50. The offset into the table corresponding to
our temperature must be determined so that the
correct value can be stored. Because we have four
ovens, we will perform the operation four times
with the data each time corresponding to the ap-
propriate oven. These operations can be followed
on lines 77 through 81 of the listing.

Lines 67 through 76 are used to establish an offset
to be applied to the analog temperature data when
the system is running. This program is only de-
signed to be used during the start-up operations
and is activated when a message containing a cali-
bration request and current temperature is sent to
its exchange.

The temperature lockout must be remaoved to
enable other tasks to use this data. This is done on
line 82 by sending the message back to the ex-
change used for intertask lockout communications.

The remainder of the program follows the flow-
chart and the operations can be followed using a
flowchart and the listing. Each element of the flow-
chart corresponds to a block of code on the listing,.

CRT Update Task Development

Earlier, we stated that the CRT update task would
be used to allow the operator to view a ‘‘snapshot”’
of the four ovens. Let us turn our attention to
developing the software which is required to ac-
complish this. We can begin by defining the ele-
ments which we feel should be displayed, then
defining the format to actually be used with the
CRT terminal.

Obviously, we need to provide the current tempera-
ture of each oven on our display screen. If we dis-
play the actual temperature, it seems reasonable to
assume that we should also show the setpoint so
that a determination can be made as to how well
the system is performing. The control algorithm
has been defined to use an allowable range to deter-
mine system outputs, so it would seen wise to also
show this parameter. Finally, we should inform the
viewer of the status of the oven so that he will real-
ize that the reason an oven temperature is low is
because the oven is off rather than an oven mal-
function. Other items could be added if desired by
the system designer, depending upon the total sys-
tem requirements or the characteristics of the
users.

We can now prepare a drawing of the CRT display
to generate a layout of our desired characters and
to generate an aesthetic display for viewing during
operation. This drawing can be found in Figure 33.

Several techniques are available to output the re-
quired displays to the terminal. A decision must be
made as to the frequency of screen updates; will we
constantly refresh the data or do it only at certain
intervals of time? If the terminal has the ability to
disable the cursor, it makes sense to update data
continuously. If the cursor cannot be disabled, its
movement tends to be distracting, so the updates
should be kept to a minimum. The terminal used
for the application note did not have a disable
feature, so we will make the decision to only up-
date the screen once each second.

(-)

OVEN STATUS DISPLAY

OVEN-1 OVEN-2 OVEN-3 OVEN-4
TEMPERATURE XXX.X XXX.X XXX.X XXX.X DEGREES
SETPOINT XXX.X XXX.X XXX.X XXX.X DEGREES
TOLERANCE XXX.X XXX.X XXX.X XXX.X DEGREES
STATUS XXXXXXX XXXXXXX ~XXXXXXX ~ XXXXXXX

L TYPE ESCAPE TO ADJUST SETPOINTS.

Figure 33. CRT Status Display Layout

The decision to delay updates leads us to make
another decision regarding the screen updates. If
we only update a line which has data which has
changed since the last update, the cursor move-
ments will be kept at a minimum since it is unlikely
that all parameters will ever change each second.

3-27

A flowchart can now be prepared showing the steps
required to implement the CRT update task. This
flowchart is shown in Figure 34. The coding of the
program to support this task can be found in Ap-
pendix C. The development is identical with that
which we described in the sections regarding the
control task. Again, the software is divided into
three parts, the declaration statements from lines 1
to 81, the initialization on lines 82 to 87, and the
actual task code on lines 88 to 207.

‘ CRT UPDATE ’

WAIT FOR 1 SEC
AND FOR
REQUEST

1

UPDATE
HEADING
IF NEW

!

UPDATE
TEMPERATURE
IF CHANGED
OR NEW

!

UPDATE
SETPOINTS
IF CHANGED
OR NEW

v

UPDATE
TOLERANCE
IF CHANGED

OR NEW

REQUEST *
UPDATE

UPDATE
STATUS
IF CHANGED

ACTIVATE
PARAMETER

Figure 34. CRT Status Flowchart

A technique to exit from the CRT update mode
and to get into a mode which will allow modifica-
tion of the parameters has been introduced into the
program and the display format. This is in the
form of a message on the botton of the screen re-
questing the entry of an escape character to adjust
setpoints. The software has been written in such a

manner as to test for a character inut from the key-
board and if one is found corresponding to that
character, the update task will allow the parameter

update task to take control of the terminal (lines

190 to 204 of the listing).

Parameter Update Task

The parameter update task is used to actually allow
the modification of the setpoints and the tolerances
associated with each oven. A second use of the task
is to provide a tool for establishing the zero offset
associated with each analog channel so that an off-
set into the temperature linearization table can be
computed by the control task.

Figure 35 shows the flowchart which describes the
steps required to perform these operations. When
the task has been completed, we will return to the
CRT update task.

PARAMETER
UPDATE
TASK

GET OVEN
NUMBER

GET
SETPOINT

GET
TOLERANCE

SEND
CALIBRATE
MESSAGE

ENABLE

CRT
DISPLAY

Figure 35. Parameter Update Flowchart

The program code for this task can be found in Ap-
pendix C and again follows the formats which we
have discussed earlier. No attempt will be made in
this document to provide a narrative of the listing
since it follows the flowchart in development.

Support Programs

Three subprograms (procedures) have been written
which provide functions which are common to the
three tasks. This has been done to minimize repeat-
ing code segments thus saving as much memory as
possible. These three subprograms support:

1. Conversion of a decimal string from the termi-
nal into a binary number. This program is called
ASC2BINARY and can be found in Appen-
dix C.

Storage for common variables used by more
than one task. These variables could easily have
been included in other tasks but a purely arbi-
trary decision was made to include them in a
separate module.

. Conversion of binary numbers into a decimal
string suitable for output to the terminal. This
program is called DEC$REP and is found in
Appendix C.

We now have completed the coding of the software
to support our oven application. We must finish by
combining all the software together to form a
single loadable module.

3-29

VI. FINAL IMPLEMENTATION

When all code was linked and loaded to form an
executable program module, it was found that the
system required 9,041 bytes of EPROM and 1,735
bytes of RAM. These values fall within our hard-
ware capabilities and will rquire that we program
and insert nine EPROMs into the EPROM expan-
sion card.

The system can now be tested and installed to con-
trol the ovens of our application. The actual system
described in this application note has been con-
structed and tested. It has been found to control
the oven temperatures of four ovens and performs
as we anticipated when we developed our control
strategy earlier in this application note.

VII. CONCLUSION

We have shown how Intel’s single board com-
puters, industrial chassis, termination panels, and
software can be configured to provide a solution to
a typical control application. We have seen how the
development of a solution to a control problem can
proceed along a predeterminéd and logical path.
Truly, the utilization of the microprocessors can
lead to optimum and cost effective solutions to
control applications.

APPENDIX A
SELECTED DATA SHEETS

3-31

TYPES TILN3, TIL19
OPTO-COUPLERS

BULLETIN NO. DL-S 7312032, NOVEMBER 1973

e Gallium Arsenide Diode Infrared Source Optically Coupled
to a Silicon N-P-N Darlington-Connected Phototransistor

e High Direct-Current Transfer Ratio . . . 300% Minimum at 10 mA
e Base Lead Provided for Conventional Transistor Biasing

e High-Voltage Electrical Isolation . . . 1500-Volt Rating

e Plastic Dual-In-Line Package

e Typical Applications Include Remote Terminal Isolation,
SCR and Triac Triggers, Mechanical Relays, and
Pulse Transformers

mechanical data

The package consists of a gallium arsenide infrared-emitting diode and an n-p-n silicon darlington-connected
phototransistor mounted on a 6-lead frame encapsulated within an electrically nonconductive plastic compound. The
~case will withstand soldering temperature with no deformation and device performance characteristics remain stable

when operated in high humidity conditions. Unit weight is approximately 0.52 grams.

0% NOTES:
[oJoJo} a. Leads are within 0,005 radius of true position
S s (TP) at the gauge plane with maximum material
- AR condition and unit installed,
(Saw Mot 21 TToTOT b. All dimensions are in inches unless otherwise
noted.

. Pin 1 ldentified by index dot.

o

EFT T d. Terminal connections:
oroMAx 1. Anode Infrared-emitting
— SearinG puane - 5
oM ot | 2. Cathode diode
.“« e =L F-g’:r“ vy 3. No internal connection
e e g 4. Emitter
A .:.':'.'.'..4-4*"-1«"&“ 5 Cotlocror
< < . i
6. Base (For TIL119, make g ' NOtotransistor

no external connection)

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Input-to-Output Voltage
Collector-Base Voltage (TIL113) .
Collector-Emitter Voltage (See Note 1)
Emitter-Collector Voltage
Emitter-Base Voltage (TIL113) .
Input-Diode Reverse Voltage
Input-Diode Continuous Forward Current at (or below) 25 C Free Aar Temperature (See Note 2)
Continuous Power Dissipation at (or below) 25°C Free-Air Temperature:
Infrared-Emitting Diode (See Note 3) .
Phototransistor (See Note 4) .
Total (Infrared-Emitting Diode plus Phototransnstor See Note 5)
Storage Temperature Range

Lead Temperature 1/16 Inch from Case for 10 Seconds
NOTES: 1. This value applies when the base-emitter diode is open-circuited.
2. Derate linearly to 100°C free-air temperature at the rate of 1.33 mA/ C.
3. Derate linearly to 100°C free-air temperature at the rate of 2 mw/°c.
4. Derate linesarly to 100°C free-air temperature at the rate of 2 mW/°C.
5. Derate linearly to 100°C free-air temperature at the rate of 3.33 mw/°C.

£1.5kV
k1Y)
30V
7V
7V
. 3V
100 mA

150 mW
150 mW
250 mW

—~55°C to 150°C

260°C

TEXAS INSTRUMENTS

INCORPORATED
POST OFFICE BOX 5012 « DALLAS, TEXAS 75222

Reprinted with permission from Texas Instruments, March, 1979. All rights reserved.

3-32

TYPES TILN3, TILNY
OPTO-COUPLERS

electrical characteristics at 25°C free-air temperature

TIL1
PARAMETER TEST CONDITIONS? 3 TiL11s UNIT
MIN TYP MAX {MIN TYP MAX

v Collector-Base le= 10 gA e =0 =0 30 \%
(BRICBO Breakdown Voltage ¢ A E ' F

Collector-Emitter

v Ic=1mA, Ig=0, Ig=0 30 30 v
(BRICEO Breakdown Voitage ¢ m B F
Emitter-Base
\Y g = 10 uA, Ic=0, lg=0 7 \
(BR)EBO Breakdown Voltage E . ¢ F
v Emitter-Collector Ie = 10 uA e =0 7 v
(BRIECO g cakdown Voltage E A F
| On-State Veg =1V, g =0, IF = 10mA 30 100 R
m,
Clon) Collector Current Vee=2V, IF=10mA 30 160
Off-State
1C(off) Vcg =10V, ig=0, Ig=0 100 100 | nA

Collector Current

Transistor Static
hFge Forward Current Vcg=1V, Ic=10mA, 1Ig=0 15,000
Transfer Ratio

Input Diode Static

\ Ig=10mA 1.5 15 \Y
F Forward Voltage F
Collector-Emitter Ic=125mA, Ig=0, IF =50 mA 1
VCE(sat) . v
Saturation Voltage Ic=10mA, g =10mA 1
Input-to-Output
Vin-out =*1.5kV, See Note 6 1011 1011 Q
"o Internal Resistance in-out ee o
Input-to-Output
Cio P P Vin-out = 0, f=1MHz, SeeNote6 113 1 13| pF

Capacitance

NOTE 6: These parameters are measured between both input-diode leads shorted together and all the phototransistor leads shorted together,
T References to the base are not applicable to the TIL119.

switching characteristics at 25° C free-air temperature

PARAMETER TEST CONDITIONS T3 TS UNIT
MIN TYP MAX [MIN TYP MAX
tr Rise Time Ve =15V, IC(on) = 125 mA, 50
tf Fall Time R =100 £, See Figure 1 ' 50 K
tr Rise Time Vec=10V, IC(on) = 2.5 mA, 50
Iy Fall Time RL =100 9, See Figure 1 50 us

PARAMETER MEASUREMENT INFORMATION

I_— _] 47 Adjust amplitude of input pulse for:
i AM—O INPUT IC(on) = 125 mA (TIL113)
l IC(on) = 25 MA (TIL119).

L I
I i | eut [T L
|

R __I RL =100 0 OuUTPUT

TEST CIRCUIT = VOLTAGE WAVEFORMS

NOTES: a. The input waveform is supplied by a generator with the following characteristics: Zg,¢ = 50 2, t, € 156 ns, duty cycle = 1%,
ty = 100 us.
b. The output waveform is monitored on an oscilloscope with the following characteristics: t, S 12 ns, Rjn = 1 M2, C;, < 20 pF.

FIGURE 1-SWITCHING TIMES

TEXAS INSTRUDM ENTS

INCORPORATE
POST OFFICE BOX 5012 « DALLAS, TEXAS 75222

3-33

TYPES TIL13, TILNY
OPTO-COUPLERS

TYPICAL CHARACTERISTICS

TIL113

COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE

120 T ” 7
|B=0 ‘ \0'@ s
\s A
Ta-2c | SN N\t
100 | See Note 7 —,> NS,
\y RG>

£ 1 ‘V\ Sk,
E //'\‘ AN /'° OO
[80 « ST
3 \>\o .~
g
3 e /,»:,ﬂ\”‘ L1
ot e
o
g
2
S 40
g
o \g= 25 mA I

20 ==

0 %

0 04 08 12 16 .20 24
VcEe—Collector-Emitter Voltage—V

FIGURE 2

TIL113 .

COLLECTOR CURRENT
vs

INPUT-DIODE FORWARD CURRENT

400]
| Vce=1V
Ig=0
200 -TA=25°C
< P
E L]
& /
c
g 100
3
© 70
2
2
(? 40
©
20
10 /

1 2 4 7 10 20 40 70100

|F—Forward Current—mA

FIGURE 4

Ic(off)—Off-State Collector Current—pA

200
180
160
140
120
100
80
60
40
20

Ic—Collector Current—mA

0

TIL119

COLLECTOR CURRENT
vs

COLLECTOR-EMITTER VOLTAGE

I [7 ."::'_—[(,{:XP

I

I ’/I!F=Z!0mA l,\"’o'/?,

II,:=4IOmA NN
§

IF =50 mA

St
N
-+

\
A

\ 5

— —
™.
7
/
/
7

Ig=0
Ta = 25°C |
SeeINotIe 7

0 02040608 1 1214 1618 2

1000

100

10

VcE—Collector-Emitter Voltage—V

FIGURE 3

OFF-STATE COLLECTOR CURRENT
vs .
FREE-AIR TEMPERATURE

[Ig=0

I
Vcg=10V

1g=0 /

0.1

0.01

/

0.001

0

25 50 75 100 125

Ta—Free-Air Temperature—°C

FIGURE §

NOTE 7: Pulse operation of input diode is required for operation beyond limits shown by dotted line.

TEXAS, INSTRUMENTS

NCORPORATED
POST OFFICE BOX S012 « DALLAS, TEXAS 75222

3-34

TYPES TIL13, TIL19
OPTO-COUPLERS

£ 1.6
P

2 1.4
5

28 12
5

3

3 10
SR

Ze 08
§3
$2 o6
22

=

SE o4
L

5

3 0.2
w

O

> 0

TYPICAL CHARACTERISTICS

TIL113
RELATIVE COLLECTOR-EMITTER

SATURATION VOLTAGE
vs

TIL113

TRANSISTOR STATIC FORWARD
CURRENT TRANSFER RATIO
vs

FREE-AIR TEMPERATURE COLLECTGR CURRENT
T T 25, 000 T T 7T
Ic =125 mA o VCE=1V
—lg=0] T Ig=0 i

IF =50 mA 20,000 |- TA=25°C \\
= 20,

— g

\ P
= 15,000
e /
S A
»
T 10,000 A
: /|
o
w LA
O
S 5,000
&
|
w
w
< 0
-75 =50 -25 O 25 50 75 100 125 0.1 04 1 4 10 40 100 400 1000

Ta—Free-Air Temperature—°C

Ic—Collector Current—mA

FIGURE 7

FIGURE 6
INPUT DIODE FORWARD
CONDUCTION CHARACTERISTICS
160 T T
See Note 8
140 I

Ta=25°C —-H /
120

40 /
20

<
; |
= 100 /{
@

3 80

E |

$ 60

[o]

T

v

0 /

Ta = -565°C
|

0 0204060810 1214 16 18 20

Vg—Forward Voltage—V

FIGURE 8

NOTE 8: This parameter was measured using pulse techniques. ty, = 1 ms, duty cycle € 2%.

TEXAS' INSTRUMENTS

NCORPORATED
POST OFFICE BOX 5012 « DALLAS, TEXAS 75222

3-35

PRINTED IN USA
T! connot assume any responsibility for any circuits shown
or represent that they ore free from patent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE (HANGES AT ANY 1
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSI

OPTO 22

1/0 Module Detail
Electrical Spe

cifications

AC INPUT MODEL MODEL MODEL MODEL MODEL MODEL DC INPUT MODEL MODEL MODEL
MODULES 1AC5 IAC15 IAC24 IAC5-A IAC15-A IAC24-A MODULES IDC5 IDC15 IDC24
ACINPUTLINE 9510 180 to INPUT LINE 10-32 VOO
VOLTAGE 130VACT > 280VACT VOLTAGE -~
INPUT CURRENT
AT RATED LINE 10 ma INPUT CURRENT 32 ma at 32V — 0
ISOLATION . ISOLATION INPUT .
INPUT TO QUTPUT 2500 Volt RMS 70 OUTPUT 2500 Volt RMS ——————»
INPUT ALLOWED | CAPACITANCE .
FORNO OUTPUT INPUT TO OUTPUT
C) INPUT ALLOWED
TURN ON TIME 20 Millisecond Maximum FOR NO OUTPUT 2ma
TURN OFF TIME 20 Millisecond Maximum TURNONTIME 5 Millisecond Max —————»
D RANST: 30 voits DC TURNOFF TIME 5 Millisecond Max ———»
OUTPUT TRANST.
OUTPUT CURRENT 25 ma SREAKDOWN 30 Volts DC ———— »
%{ggug;‘m&f 100 Microamp Maximum OUTPUT CURRENT 25 ma
OUTPUT VOLTAGE OUTPUT LEAKAGE -
DROP .4 Volts at 25 ma Load 30 VDC NO INPUT 100 Microamps Max ————»
LOGICSUPPLY 45t0 12to 20to 45t0 12to 20to OUTPUT VOLTAGE 4 you 2t oe ma
VOLTAGE DC 6V 18V 30V 6V 18V 30V DROP ’ -
LOGIC SUPPLY LOGICSUPPLY 45t 12to 20to
CURRENT 12ma 15 ma 18 ma 12 ma 15 ma 18 ma VOLTAGE 6V 18V 30V
LOGIC SUPPLY
AC OUTPUT MODEL MODEL' MODEL MODEL MODEL MODEL CURRENT 12ma 15ma 18ma
. MODULES OACS OAC15 OAC24 OACS5-A OAC15-A OAC24-A
12to 24 to
LINE VOLTAGE — DC OUTPUT MODEL MODEL _ MODEL
140 VAC 280 VAC i MODULES ODC5 ODC15 0DC24
CURRENT RATING 3 Amps® [OAD VOLTAGE 60V
RATING DC
1-CYCLE SURGE 55 Amps Peak SX%E%T CURRENT 5 Ampso
SIGNAL INPUT 220 1K 2.2K 220 1K 22K OFF STATE
RESISTANCE Ohm Ohm Ohm Ohm Ohm Ohm LEAKAGE 1 ma Max ——
SIGNAL PICKUP 3V 9V 18V 3V 9V 18V ISOLATION
VOLTS DC 8V Ald* 16V Ald> 32V Ald* 8V Ald* 16V Ald’ 32V Ald: INPUT TO ouTPUT 2500V RMS —— -
SIGNAL DROPOUT | SIGNAL PICKUP 3V 9V 18V
VOLTS DC VOLTAGE 8V Ald* 18V Ald: 28V Ald®
PEAK REPETITIVE ‘ SIGNAL DROP
400V —m—4m8M ——————— —_—_——
VOLTAGE 00 500 Volts ouUTVOLTAGE Vot
MAXIMUM 1.6V SIGNAL INPUT 220 1K 2.2K
CONTACT DROP RESISTANCE Ohm Chm Ohm
OFF STATE
LEAKAGE 5maRMS 1 SECOND SURGE 5Amps————»
MINIMUM _
Loh/lao CURRENT 20ma TURNONTIME 500 Microsecond
i I
.ﬁ?ﬁﬁ%uwm 2500 Volts RMS > TURN OFF TIME 2.5 Millisecond ——————
CAPACITANCE 8Pt +Allowed
INPUT TO OUTPUT @Derate .033 Amps per degree C from 20° C
gl\;?g.‘rc 200 Volts/Microsecond Min
COMMUTATING Built in snubber (will commutate
DV/DT .5 power factor loads)
*Allowed =
- me = =
t——_ - — MY &4
A F = -_— ==

¥
5842 Research Drive, Huntington Beach, California 92649 (714) 892-3313

Reprinted with permission from OPTO 22, March, 1979. All rights reserved.

3-36

e —————————————— — — e ——————————ee—eee———e—
—_——

High Voltage DC Output Modules

Fast Switching DC Input Modules

DC OUTPUT MODEL MODEL MODEL DC INPUT MODEL MODEL MODEL
MODULES ODC5-A ODC15-A 0ODC24-A MODULES IDC5-B IDC15-B IDC24-B
LOAD VOLTAGE 200V INPUT LINE 4-16 VDG
RATING DC VOLTAGE
OUTPUT CURRENT
RATING 1 Amps INPUT CURRENT 14 ma at 5V
OFF STATE ISOLATION INPUT
LEAKAGE 2 ma Max TO OUTPUT 2500 Volt RMS ——————————»
ISOLATION CAPACITANCE
INPUT TO OUTPUT 2500 VAMS INPUT TO OUTPUT 8P
SIGNAL PICK UP 3v 9V 18V INPUT ALLOWED 1 Volt
VOLTAGE 8V Ald! 18V Ald”* 28V Ald* FOR NO OUTPUT
g‘gp ng’;g; 1Volt TURN ON TIME 50 Microsecond Max ————
SIGNAL INPUT 220 1K 2.2K :
RESISTANCE ohm ohm Ohm TURN OFF TIME 100 Microsecond Max ——————»
OUT TRANSISTOR
1 SECOND SURGE 5 Amps BREAKDOWN 30 Volts DC
TURN ON TIME 500 Microsecond ———M———— OUTPUT CURRENT 25 ma
- OUTPUT LEAKAGE .
TURN OFF TIME 2.5 Millisecond —— ————— 30 VDG NO INPUT 100 Microamps Max —
*Allowed OUTPUT VOLTAGE
- .
DROP .4 Volt at 25 ma
LOGIC SUPPLY 4.5t0 12to 20to
VOLTAGE 6V 18V 30V
LOGIC SUPPLY
CURRENT 12ma

ey

3-37

Data Sheet 778

8¢e-¢

THIS DRAWING CONTAINS INFORMATION REVISIONS
T e SRty
OF INTEL CORPORATION. THIS DRAWING 20NE | REV | OESCRIPTION [oFr T i [oate | arproveo
AL ETSRAITNS SRS
SRECENES 1y COMFIOENCE D TS
ORTETS M
OF INTEL CORPORATION.
045 C 24 oM
€3 J31E 32t TONC
+o- Fo—>—>>——T5
————————————— 1I5 VAC /230 VAC ——— z
J\ €35 I3k 2K on”
73-0 >—>——
3
E% IR 12K oN*
= to-f Fo—>———H
I 4 Mg 5 C M ADCH.O
I3-d €97 I3w 32w ~on~ I T4-A TR
B T > 0. oK e ;e
v ! >
i €80 I3F J2F wToL T4-8 J8C
: o Fo—>>—> >
: : 2
: -2 css0 | €8 T3 3L WIS AoH L
L Ml 5 Fo—> > —— 1] T5p I%A
24 unC 3 20K L et
Power Supply Egz . T3-S J2S oL D
+-0-] Fo—>>—, 35-8 J98
0—>—>
8
EB3 T3X Jex “mTOL" AID CH.2.
13C Jep Jie-A
1 J‘VVV'LD'?W
€84 3G 326 CAUTION] 30K oL Tidc
3 >
JoB JID
2 bad
€85 I3M J2M "CAUTION]
o Fo—>— >— AID CH.3
3 1 J7A J-A
€8 I3T J2T “CAviion-
o o> 30K 7.C Jie
a 378 JII-C;;7
€87 I3Y J2X "CAUTION® 0—>—>
OVEN
EAY J4-D J8-D HEATER 1 I8E JYE Fo—>—
ofo—or—

1
£90 J3-H TJ2-H “ALARM "

€A 150 ToD MEATER 2 19€ Tse Fo—>—, 045 C 24
O Fo— >—— > —\,——<—<—4 N
OVEN €31 I3N J2N “ALARM"
EA6 T6-D JIO-D HEATER 3 JI0€ JeE o Fo—>>—
o fFo—>—> < R
OUEN €92 J3U JoU ALARMC
EA7 I7-0 JU-D HEATERY JuE JT-E +o- Fo—>—,
o Fo—>—> y
138 €93 I3-Z J22 CAARM:
L o -o—=>—
Y SRATH o] co0E DWG NO. REV
Mo cou N e s C 2 N 1SSUED SCALE. 1 | sHeeT
9300020 4 I 3 f |]

WHISAS 40 WVHIVIA J4dd VT

4 XIANAddV

APPENDIX C
PROGRAM SOURCE LISTINGS

USING INTEL'S INDUSTRIAL CONTROL SERIES IN CONTROL APPLICATIONS

STITLE ('CONTROL TASK')
JRAREIRKRRRRAR KRR NAKF AR IR R IR R AR Ak Ak hkhkh kA Rk kR A A Ak

* This task handles the control and monitoring of *
* four oven chambers. *
KARAKRA AR R AR I IR E AR KRR KA AR AR A AR AR IR AR AR A AR KA Rk kA Nk Rk /
1 CONTROLSTASKSMODULE :
Do; .
2 1 DE(’ZLARE EXCHANGESDESCRIPTOR LITERALLY 'STRUCTURE (

MESSAGESHEAD ADDRESS,
MESSAGESTAIL ADDRESS,
TASKS$HEAD ADDRESS,
TASKSTAIL ADDRESS,
EXCHANGESLINK ADDRESS)';

DECLARE TRUE LITERALLY 'OFFH';

DECLARE FALSE LITERALLY '@@H';

DECLARE BOOLEAN LITERALLY 'BYTE';

DECLARE FOREVER LITERALLY 'WHILE 1°';

DECLARE MSGSHDR L]TERALLY °
LINK ADDRESS,

LENGTH ADDRESS,
TYPE BYTE,
HOMESEX ADDRESS,
RESPSEX ADDRESS';

g 1 DECLARE MSGSDESCRIPTOR LITERALLY 'STRUCTURE (
MSGSHDR, '
REMAINDER (1) BYTE)';

/* AIMSG.ELT - ANALOG INPUT REQUEST MESSAGE FORMAT */

DECLARE ATMSG LITERALLY 'STRUCTURE (

MSG$HDR,
STATUS ADDRESS,
BASESPTR ADDRESS,
CHANNELS$GAIN ADDRESS,
ARRAYS$PTR ADDRESS,
COUNT ADDRESS,
ACTUALS$COUNT ADDRESS)';
/* ATTYP.ELT - ANALOG INPUT MESSAGE TYPES */
17 1 DECLARE AIREP LITERALLY '3¢°',
AISQS LITERALLY '31°',
AISQV LITERALLY '32',
ATRAN LITERALLY '33';

N s w
= bt e e

D
—

11 1 Declare (n,k) byte;

12 1 De¢clare (MSGSPTR, LOCKOUT) &ddress;

12 1 Declare (BLOCKE,BLOCK1,BLOCK2,BLOCK3) byte external;
14 1 Declare TOLERANCE (4) address external;

18 1 Declare TEMP(4) address external;

16 1 Declare SETPOINT (4) address external;

17 1 Declare TSAVERAGE (4) address;

18 1 NDeclare TSLAST(4) address;

19 1 Declare TSLASTSAVERAGE (4) address;

26 1 Declare TSt5(4) eddress;

21 1 Declare TS$tl¢(2) address;.

22 1 Declare STATUS (4) byte external;

23 1 Declare CRTSDISPLAYSLOCK (5) address external;

3-39

24 1 Declare TEMP$CALIBRATE(5) address external;
25 1 Declare DUMMYSEXCH(5) address external;
26 1 Declare TEMPSLCCKOUTSEXCH(S5) address external;
27 1 Declare RQAIEX(5) address external;
29 1 Declare ASDSEXCH(5) address external;
29 1 Declare CONSTANTSLOCKOUTSEXCH(5) address external;
30 1 Declare CRTSSTATUSSEXCH(5) address external;
31 1 Declare ALARMSMSG structure (MSGS$SHDR);
32 1 Declare CONVERT ai$msqg;
/* This term is used to convey initial temperatures */

33 1 Declare CALSTEMP based MSGSPTR structure (

MSGSHDR,

CAL address);
34 1 RQWAIT:

Procedure (EXCH,MESSAGE) address external;
35 2 Declare (EXCH,MESSAGE) address;
35 2 end ROWAIT;
37 1 RQSEND:

Procedure (EXCH,MESSAGE) external;
28 2 Declare (EXCH,MESSAGE) address;
39 2 end RQSEND;

w1 ROACPT :
Procedure (EXCH) address external;

41 2 Declare EXCH address;

-] 2 end RQACPT;

42 1 Declare OVENSINSTOL (4) byte data (
#1H,¢2H, G40, 08H);

44 1 Declare OVEN$CAUTION(4) byte data (
10H, 2fH, 40H,80H);

45 1 Declare OVENSDANGER (4) byte data (
@lH,C2H,74H,08H);

46 1 Declare OVENSONSMASK(4) byte date (
M1H,B2H, C4H, BEH) ;

47 1 Declare OVENSHEATER(4) byte data (
10H, 20H, 4PH, 8CH) ; _

48 1 Declare OVENSRUN(4) byte date (
12H,20H,4¢H, 8CH) ;

49 1 Declare OFFSET (4) address;

5@ 1 Declare TABLE(256) address data (
200,2@1,262,2¢3,284,235,206,207,208,2089,
2n9,219,211,212,213,214,215,216,217,218,
219,22¢,221,222,223,224,225,226,227,228,
229,23¢,231,232,233,235,236,237,238,229,
24¢,241,243,244,245,247,248,249,25¢,251,
252,254,256,257,258,259,260,261,263,265,
266,267,268,269,27¢,271,273,274,276,278,
27¢,28¢,282,284,285,287,2882,28¢,29¢,291,
262,295,286,298,299, 36@,302,3%4,3%5,3@7,
3ee,36%,21a, 31?,“14 315,218,3206,222,224,
326,328,23¢,332,234,336,238,34€¢,342,344,
345,3A8,35ﬂ,352,354,356,358,368,362,364,
366,368,37¢,372,374,276,278,380,382, 385,
388,?90,392,JJ5,¢9 L0, 402,405,407 ,416,
2412,415,418,42¢, 4?3,426,ﬁ28,43ﬁ,433,436,
439,441,444,ﬁ47,451,454,457,466,463,465,

3-40

NN ONDDYNDNNNDN [

F8) 3

[VS IR RS w

(YRR]

o D

DUTs Ut

oot

D

A47¢,473,476,468C,400,488,4€2,495, 500,504,
5¢7,511,515,515,522,527,521,535, %4¢,545,
55¢,555,560,565,57¢,575,5680,585,506,505,
600,665,610,515,426,625,630,635,64¢,645,
AS@,555,66¢,6565,570,675,680,685,696,595,
760,765, 71¢,715,72¢,725,73¢,735, 746,745,
75€, 0060, 600,00C, 000,300, FE0, 000, 066,00,
AGe, 000, 060, 000, GO0, 000, GEE, 000, AGE, 0FR,
0re,000,000,060,000,000,000¢,00¢,000,000,
BeG,COR, 0R, 0H0, CE0, P00)i

/* Tnitialization of control task */
CONTROLSTASK:
Procedure public;
Output (235)=81H;
CONVERT.BASESPIR=0F70¢FH;
CONVERT.LENGTH=21];
CONVERT.TYPE=AT1SGS;
CCNVERT.RESPSEX=,ASDSEXCH;
CONVERT .CHANNELSGAIN={i;
CONVERT.ARR2YSPTR=.TEMP;
CONVERT.COUNT=4;
Do forever;
/* Wait for one second to elapse */
MSGSPTR=RQWAIT (.DUMMYSEXCH, 2();
/* Bring in deta from switches */
BLOCK(=NQOT INPUT(224);
/* Lockout temperature storage areas for update */
LOCKOUT=RQWZAIT (.TEMPSLCCKOQUTSEXCH,); '
/* Get raw data from analoyg converter */
Call RQSEND (.RQAIEX,.CONVERT);
MSGSPTR=RCWAIT (. ASDSEXCH, %) ;
/* Temperature calibrete procedure */
MSG$PTR=RQACPT (. TEMPSCALIBRATE) ;
If MSGSPTR <> 0
then do;
k=¢;
Do while (TABLE (k)<>CALTEMP.CAL AND
k<255) ;
k=k+1;
end;
Do n=0 to 3;
OFFSET (n)=(TEMP (n) /15)-k;
end;
enc;
/* Convert date into engineering units */
Do n=@ to 3;
If ((TEMP(n)/16)-0FFSET(n))>255
then TEMP(n)=¢;
else TEMP(n)=TABLE((TEMP(n)/16)-0FFSET(n));
end;
/* Releasce lockout of temperatures */
Call RQSEND (.TEMPSLQCKOUTSEXCH,LGCKOUT);
/* Compute average temperature */

3-41

a2 3 Do n=@ to 3;
84 4 T¢AVERAGE (n) = (TSLAST (n)+TEMP (n)) /2;
/* Project temperatures into thz future */
es 4 If TSAVERAGE (n) >=TSLASTSAVERAGE (n)
then do;
87 5 TEtS (n)=((TSAVERAGE (n)-TSLASTSAVERAGE (n)) *5)
+TSLASTSAVERAGE (n) ;
88 5 TS$t168(n)=((TSAVERAGE (n) -TSLAST$AVERAGE (n))*17)
+TSLASTSAVERAGE (n) ;
89 5 end;
on 4 else do;
91 5 TS$t5 (n)=TSLASTSAVERAGE (n) - ((TSLASTSAVERAGE (n)
—TSAVERAGE (n)) *5);
92 5 T$t16(n)=TSLASTSAVERAGE (n)- ((T $SLASTSAVERAGE (n)
-TSAVERAGE (n)) *10); /
93 5 end;
/* Update stored data */
92 4 TSLASTSAVERAGE (n)=T¢AVERAGE (n);
g5 4 TSLAST (n)=TEMP (n);
/* Test for active oven */
96 4 MSGSPTR=RQWAIT (.CONSTANTS$LOCKOUTSEXCH,®);
o7 4 If (((BLCCKE AND OVENSONSMASK (n))<>@)
AND (TEMP(n)<>@))
then do;
cc 5 STATUS (n)=7;
100 5 BLOCK2=BLOCK2 CR OVENSRUN (n);
/* Test for an intolerance condition */
171 5 If SETPOINT (n)-TOLERANCE (n) < TEMP(n) AND
SETPOINT (n)+TOLERANCE (n) > TEMP(n)
then do;
13 6 STATUS(n)=7;
1¢4 [BLOCK1=BLOCK] OR OVENSINSTOL(n);
105 6 end;
1e6 5 else BLOCKI=BLOCK1l AND NOT OVENS$SINSTOL (n);
/* Test for & caution condition */
107 5 If SETPOINT(n)-TOLERANCE(n) > T$t5(n) OR
SETPOINT (n)+TOLERANCE (n) < T$t5(n)
then do;
109 [STATUS (n)=14;
11e 3 BLOCK1=BLOCK] OR OVENSCAUTION (n);
111 6 end; ;
112 5 else BLOCKI1=BLOCK1l AND NOT QVENS$CAUTION(n);
/* Test for a fanger condition */
113 s If SETPOINT(n)-TOLERANCE(n) > TEMP(n) OR
SETPOINT (n)+TOLERANCE (n) < TEMP(n)
then do;
115 6 STATUS(n)=21;
1167 5] BLOCK2=BELOCK2 OR QVENS$DANGER (n) ;
117 6 end;
118 S else BLOCK2=FLOCK? AND NOT OVENS$DANGER(n};
/* Bandle control of heater elements */
110 5 If SETPCINT(n) > TStl@(n)
then BLOCK3=BLOCK2 OR OVENSHEATER(n);
121 5 else ELOCK2=BLOCK2 AND NOT OVENSHEATER(n};
122 5 _end;
122 4 else do;
/* Turn everything off when operator shuts off oven */
124 5 BLOCK1=BLOCK1l AND NOT CVENINTOL(n);
125 5 BLOCK1=BLOCK1 AND NOT OVENSCAUTION (n);
126 5 BLOCK3=BLOCK3 AND NOT OVENSHEATER(n);

3-42

127 5 BLOCK2=BLOCK2 AND NOT OVENS$SDANGER(n);
128 5 BLOCK2=BLOCK2 AND NOT OVENSRUN (n);
129 5 STATUS (n) =¢;
13¢ 5 end;
131 4 Call RQSEND(.CONSTANTSLOCKOUTSEXCH,MSGS$PTR) ;
132 4 end;
/* Output data to real world */
1233 3 OUTPUT (232)=BLOCK]1;
134 2 QUTPUT(233)=BLOCK2;
135 2 OUTPUT (234)=RLOCK?2;
126 3 end;
137 2 end CONTROLSTASK;
128 1 end CONTROLSTASKSMODULE;

MODULE INFORMATION:

#946H 2374D
fe54H 24D
eoe6H 6D

CODE AREA SIZE
VARIABLE AREA SIZE
MAXTMUM STACK STZE
235 LINES READ
¢ PRCOGRAM ERROR(S)

END OF PL/M-8¢ COMPILATION

STITLE ('CRT PARAMETER TASK')
/**
* This task is used to examine and update the *
* temperature setpoints and tolerances for *
* each of the four ovens. *
Kkrhkkkh Ak AR AR ARRK AR AR AR R KRR KA KRR Ik kd kb hkk* /
1 UPDATESTASK:
Do;

$Include (:F¢:COMMON.ELT)

2 1 = DECLARE TRUE LITERALLY '@FFH';

2 1 = DECLARE FALSE LITERALLY '(@H';

4 1 = DECLARE BOOLEAN LITERALLY 'BYTE';

) 1 = DECLARE FCREVER L1TERALLY 'WHILE 1';
¢€Include (:F@#:MSGTYP.ELT)

A 1 DECLARE DATASTYPE LITERALLY '€',

INTSTYPE LITERALLY '1',
MISSEDSINTSTYPE LITERALLY '2°',
TIMESOUTSTYPE LITERALLY '3°',
FSSREQSTYPE LITERALLY '4'
UCSREQSTYPE LITERALLY '5'
FSSNAKSTYPE LITERALLY '6°'
CNTRL$CSTYPE LITERALLY '7',
READSTYPE LTTERALLY '8',
CLR$RDSTYPE LITERALLY '9°',
LASTSRDSTYPE LITERALLY '1¢',
ALARMSTYPE LITERALLY '11°',
WRITESTYPE LITERALLY '12';
$Include (:F¢:MSG.ELT)

~ = =

oo onnnowwnnn

nou

343

Wowan wmuwnonnn

W nnwnunn

DECLARE MSGSHDR LITERALLY '
LINK ADDRESS,

LENGTH ADDRESS,

TYPE BYTE,

HOMESEX ADDRESS,

RESPSEX ADDRESS';

DECLARE MSGS$DESCRIPTOR LITERALLY 'STRUCTURE (
MSG$HDR,
REMATNDER (1) BYTE)';
$Tnclude (:F@:THMSG.ELT)
DECLARE TH$MSG LITEKRALLY 'STRUCTURE (
MSGHDR,
STATUS ADDRESS,
BUFFER$ADR ADDRESS,
COUNT ADDRESS,
ACTUAL ADDRESS,
REMAINDER (128) BYTE)';
DECLARE MINSTHSMSGSLENGTH LITERALLY '17';
$Include (:FMA:CHAR.ELT)

/* SPECIAL ASCII CHARACTERS */

11

12
13
14
15

16

O | (| (| 1 ({1 (A 1 O |

wonowonwwonwonn

DECLARE
NULL LITERALLY '@¢€¢H’',
CONTROLSC LITERALLY '@3H',
CONTROLYSE LITERALLY '@5H',
BELL LITERALLY '¢7H',
TAB LITERALLY '@9H',
LF LITERALLY '@¢AH',
vT LITERALLY '¢BH',
FF LITERALLY '@CH',
CR LITERALLY '¢DR',
CONTROLSP LITERALLY '1#RH',
CONTRCLSQ LITERALLY '11H',
CONTROLSR LITERALLY '124°',
CONTROLSS LITERALLY '13H°',
CONTROLSX LITERALLY '18H',
CONTROLS? LITERALLY 'lAH',
ESC LITERALLY '1RBRH',
QUOTE LITERALLY '22H',
LCA LITERALLY '51H',
LCZ LITERALLY '7AH',
RUBOUT LITERALLY '7FH';

$Include (:FP:SYNCH.EXT)

RQSEND:

PRCCEDURE (EXCHANGESPCINTER,MESSAGESPOINTER) EXTERNAL;

DECLARE (FEXCHANGESPOINTER,MESSAGESPOINTER) ADDRESS;

END RQSEND;

RQWATIT:

PRCCEDURE

(EXCHANGESPOINTER,DELAY) ADDRESS EXTERNAL;
DECLARE (EXCHANGES$POINTER,DELAY) ADDRESS;

3-44

17
18
19
2n

21

23
24
25
24
27

29
3n
31
32
33
34
35
36

40

4l
42
A3

44
45

45

47
a8
49
5¢

bt b b bt b b b b e e b b S R

- NN L o

=N NN

[| | T | O 1 T B

END RCWAIT;

RQACPT:
PROCEDURE (EXCHANGESPOINTRR) ADDRESS EXTERNAL;
DECLARE EXCHANGESPOINTER ADDRESS;

END RQACPT;

RQISND:
PROCEDURE (IED$PTR) EXTERNAL;
DECLARE IED$PTR ADDRESS;

END RCISND;
Declare TEMPSCALIBRATE(S) address external;
Declare UPDATESEXCH(5) address external;
Declare CRTSSTATUSSEXCH(5) address external;
Declare COMPSEXCH (5) address external;
Declare CONSTANTSLOCKQUITSEXCH(5) address external;
Declare RQOUTX (5) address external;
Declare RQINPX(5) address external;
Declare WORDSSEXCH (5) address external;
Declare SETPOINT(4) address external;
Declare TOLERANCE(4) address external;
Declare BUFFER2 address;
Declare MSGSPTR address;
Declare MSG structure (
MSGSHDR,
STATUS address,
BUFFERSPTR address,
COUNT address,
ACTUAL address);
Declare CALSTEMP structure (
MSGSHDR,
CAL address);
Declare UPDSMSG &address;
Declare ENERGIZE hased UPD$MSG structure (
MSGSHDR,
STATUS address,
BUFFERS$PTR address,
COUNT address,
ACTUAL address);
Declare ENABLES$MSG structure (
MSGSHDR) ;
Declace BUFFER(8€) byte;
Declare OVEN byte;
DECSREP:
Procedure (SOURCE,TARGET) external;
Declare (SOURCE,TARGET) address;
end DECSREP;
ASCS2$BINARY:

Procecure (SOURCE,TARGET,S1ZE) byte external;
Declare (SOURCE,TARGET) address;
Declare SIZE byte;

end ASC2BINARY;
Declare MSGS$1(28) byte data (
ESC,'E','ENTER CVEN NUMBER-');

3-45

51

53
54

55
56
57
58
59

6
61

652
63
64

66
57

68
60

71
72
73
74

76

77
78
79
80
81

82
23
24
€5

87

ge
90

g1

74

bt b B

w w w N

98] WWwWww ww W W W

W o Wi

w W W w'w

P

up
Proc

/*

/*
/*

/*

/*

/*

Declare MSGS$2(28) byte data (
CR,LF,
'ENTER NEW SETPOINT-',
TXXXX.X=')
Declare MSG$2(29) byte data (
CR,LF,
'"ENTER NEW TOLERANCE-',
TXXXX.X=')3
Declare CALMSC(12) byte data (
'TEMPERATURE-"');
Declare MS5G$4(62) byte data (
CR,LF,
' (STATUS-(S), PARAMETERS-(P), CALIBRATE-(C))',
CR,LF,
'ENTER REQUEST~');
Declare WAIT literally 'MSG$PTR=';
Declare FOR literally 'RCWAIT';
Declare START literally 'CALL';
Declare TASK literally 'RQSEND’';
DATE:
edure public;
Initialize task at start-up time */
Do forever;
MSG.RESPSEX=,COMPSEXCH;

Wait for request to enter task */
UPD$MSG=RQWAIT (.UPDATESEXCH,®);

Get desired oven number from operator */
RQSTSOVEN:

MSG.BUFFERSPTR=.MSCS$1;
MSG.TYPE=WRITESTYPE;
MSG.COUNT=2@;

Start task (.RQOUTX,.MSG);
Wait for (.COMPSEXCH,@);

...Input new number */
MSG.BUFFERSPTR=.BUFFER;
MSG.COUNT=255;

MSG. TYPE=CLRSRDS$STYPE;

Start task (.RQINPX,.MSG);

Wait for (.COMPSEXCH,®);

OVEN= (BUFFER (@) AND @7H)-1;

If OVEN >3 then go$to ROSTSOVEN;

Display request and curvent setpoint */
GETSTEMP:

Call move (28,.MSG$2,.BUFFER);

Call DECSREP (.SETPOINT(oven),.BUFFER+21);
MSG.TYPE=WRITESTYPE;

MSG.COUNT=28;

Start task (.RQOUTX,.MSG);

Wait for (.COMPSEXCH,);

... Input new setpoint */

MSG.TYPE=CLRSRDSTYPE;
Start task (.RQINPX,.MSG);
Woit for (.COMPSEXCH,6);
If ASCS2BINARY (.BUFFER, .BUFFER2,1)=¢ OR BUFFER2 > 70¢
then goSto GETSTEMP;
If BUFFER2 <> ¢
then do;
Weit for (.CONSTANTSLOCKOUTSEXCH,?);
SETPOINT (oven)=BUFFER2;
Start task (.CONSTANTSLOCKOUT$EXCH,MSG$PTR);

3-46

92

94

946
97
oe

29
12¢
1¢1
142

g4

1r5
e
148
109

1
112
113
114

115
116
117
118
119

121
122
125

126
127
128
128
130
131
132
133
134

=N

w

[FS RSV RN ON IV U)

(98] SN DS (93] [SNIVE RN JR 9N)

W W

wWwww'w

(98]

B R N -~

PN

end;

/% Display request and current tolerance */
GETS$TOL:
Call move (29, .MSGS$3,.BUFFER);
Call DECSREP (.TOLERANCE(oven), .BUFFER+22)};

MSG.
MSG.

TYPE=WRITES$TYPE;
COUNT=29;

Start task (.RQOUTX,.MSG);
Wait for (.COMPSEXCH,@);

/* ...Input new tolerence */
MSG.TYPE=CLRSRDSTYPE;
Start task (.RQINPX,.MSG);
wWait for (.COMPSEXCH,@);

If ASC$2SBINARY(.BUFFER,.BUFFER2,1)=8 OR BUFFER2 >

then go$to GETSTOL;
If BUFFER2 <> @
then do;

Weit for (.CONSTANTSLOCKOUTSEXCH,®);

TOLERANCE (oven)=BUFFER2;
Start task (.CONSTANTSLOCKCUTSEXCH,MSGSPTR);

end;

/* Ask operator if he is finished */
REQSNEXT :
MSG.TYPE=WRITESTYPE;

MSG.COUNT=62;

MSG.

BUFFERSPTR=.MSG$4;

Start task (.RQOUTX,.MSG);
Wait for (.COMPSEXCH,®);

/* ...Get

MSG.
MSG.

his response */
TYPE=CLRSRDSTYPE;
BUFFERSPTR=.BUFFER;

Start task (.RQINPX, .MSG);
Wait for (.COMPSEXCH,2);
If (BUFFER(@) <>'S' AND BUFFER(¢) <>'P"'
AND BUFFER (@) <> 'C'")
then goS$to REQSNEXT;
If BUFFER(@)="'P'
then go$to RQSTSOVEN;
If BUFFER(&)="'C"'
then do;

end;

GETS$CAL:

MSG.TYPE=WRITESTYPE;

MSG.COUNT=12;

MSG.BUFFERSPTR=.CALMSG;

Stert task (.RQOUTX,.MSG);

Wait for (.COMPSEXCH,@);

MSG.TYPE=CLRSRDSTYPE;

MSG.BUFFER$PTR=.BUFFER;

Start task (.RQINPX,.MSG);

Wait for (.COMPSEXCH,();

If ASC2BINARY (.BUFFER,.BUFFER2,1) =0
OR BUFFER2>250 OR BUFFER2<2(@

then go$to GET$CAL;

CALSTEMP.CAL=BUFFER2;

Call RQSEND (.TEMPSCALIBRATE,.CALSTEMP);

7¢0

3-47

139
l4¢

141

142
142

[94]

9N

11

12

13

14

)W

N W

MODULE INFCRMATION:

CODE AREA SIZE = £3C3H 963D
VARIABLE AREA SIZE = @C¢7CH 124D
MAXIMUM STACK SIZE = 0@@#4H 4D

264 LINES READ
¢ PROGRAM ERROR(S)
END OF PL/M-8¢ COMPILATION

ENERGIZE.TYPE=106;
Start task (.CRTSSTATUSSEXCH,UPDSMSG);

end;

end UPDATE;

end UPDATESTASK;

LT T (T I | IOV 1 A

STITLE ('CRT UPDATE TASK')
/**********************************'k*************
* This task is utilized to update the CRT ter- *
minal display with the current operating par- *
ameters. It will be entered upon sytem start- *
up, upon operator request, or when a problem *
*
/

* * *

* exists with any of the activated ovens.
Ak khkhhhk kR kA kR h Ak h Ak kA hhkh kAR A dh AR AR R h Ak hhdk
CRTSDATASMODULE:
Do;
SINCLUDE (: F@:SYNCH. EXT)
RQSEND:
PROCEDURE (EXCHANGESPOINTER,MESSAGESPOINTER) EXTERNAL;
DECLARE (EXCHANGESPOINTFR,MESSAGESPOINTER) ADDRESS;

END RQSEND;

ROWAIT:
PROCEDURE (EXCHANGESPOINTER,DELAY) ADDRESS EXTERNAL;
DECLARE (EXCHANGESPOINTER,DELAY) ADDRESS;

END ROWAIT;

RQACPT :
PROCEDURE (EXCHANGES$PCINTER) ADDRESS EXTERNAL;
DECLARE EXCHANGES$POINTER ADDRESS;

END RQACPT;

RQISND:
PROCEDURE (IEDSPTR) EXTERNAL;
DECLARE IED$PTR ADDRESS;

END RCIEND;
SINCLUDE (:F@:MSGTYP.ELT)
DECLARE DPATASTYPE LITERALLY '@',

3-48

15

16
17

19

20

22

s

L 1 | 1 1 T 1N [I

W

wouwonou

nwonununonan

| L (T O 1 1 1} (LI [[

wonu

INTSTYPE LITERALLY
MISSEDSINTSTYPE LITERALLY '2°',
TIMESOUTSTYPE LITERALLY '3°',
FSSREQSTYPE LITERALLY '4°',
UCSREQSTYPE LITERALLY '5',
FSSNAKSTYPE LITERALLY '6',
CNTRLSCSTYPE LITERALLY '7°',
READSTYPE LITERALLY '8°',
CLR$RDSTYPE LITERALLY '9°',
LASTSRDSTYPE LITERALLY '1¢',
14

'll'

ALARMSTYPE LITERALLY '11°
WRITESTYPE LITERALLY '12'
$INCLUDE (:Fg:EXCH.ELT)

DECLARE EXCHANGESDESCRIPTOR LITERALLY
MESSAGESHEAD ADDRESS,
MESSAGESTAIL ADDRESS,

TASKSHEAD ADDRESS,

TASKSTAIL ADDRESS,

EXCHANGESLINK ADDRESS)';
$INCLUDE (:Fg:COMMON.ELT) ‘
DECLARE TRUE LITERALLY '0FFH';
DECLARE FALSE LITERALLY '@@H';
DECLARE BOOLEAN LITERALLY 'BYTE';
DECLARE FOREVER LITERALLY 'WHILE 1';
$INCLUDE (:F@:MSG.ELT)

DECLARE MSG¢HDR LITERALLY '

LINK ADDRESS,

LENGTH ADDRESS,

TYPE BYTE,

HOMES$EX ADDRESS,

RESPSEX ADDRESS';

DECLARE MSGSDESCRIPTOR LITERALLY
MSGS$HDR,

REMAINDER (1) BYTE)';

$INCLUDE (:F@:CHAR.ELT)

/* SPECIAL ASCII CHARACTERS */

DECLARE v
NULL LITERALLY '@@H',
CONTROLSC LITERALLY '#2H',
CONTROLSE LITERALLY '@5H',
BELL LITERALLY '@7H',
TAR LITERALLY '¢SH',
LF LITERALLY 'PAH',
VT LITERALLY '@BH',
FF LITERALLY '¢CH',
CR LITERALLY '@DH',
CONTROLSP LITERALLY '1¢H',
CONTROLSQ LITERALLY '11H',
CONTROL¢R LITERALLY ‘'12H',
CONTROLSS LITERALLY 'i13H',
CONTROLSX: LITERALLY '18H',
CONTROLSZ LTTERALLY 'lAH',
ESC LITERALLY '1BH',
QUOTE LITERALLY '22H°,

'STRUCTURE (

'STRUCTURE (

3-49.

23

24

25
26

27

28

29

39

wn

onwowonoun

Lca
LCZ
RUBOUT

LITERALLY

LITERALLY
LITERALLY

'514°',
'7ARH',
'7FH';

$INCLUDE (:F@:THMSG.ELT)

DECLARE THS$MSG LITERALLY

MSGHDR,
STATUS ADDRESS,

'STRUCTURE

BUFFERSADR ADDRESS,

COUNT ADDRESS,
ACTUAL ADDRESS,

REMAINDER(128) BYTE)';
DECLARE MINSTHSMSGSLENGTH LITERALLY
Déclare HOME literally '1BH,48H';
Declare L1SIMAGE (9#) byte data (

Home,Lf,Lf,Lf,Lf,

'"TEMPERATURE

1 L]

1]

L} 1

)

'DEGREES C.');
Declare L2$SIMAGE (92)

Home,Lf,Lf,Lf,Lf,

'bETPOINT

L] 1

1 1

L - 1

1

'DEGREES C.');
Declare L3$SIMAGE (924)

Home,Lf,Lf,Lf,Lf,

'TOLFRANCE

L] 1]

1] 1]

1]

'DEGREES C.');
Declare L4SIMAGE(75)

LE,

)
4

byte data (
Lf LE,LE,

byte data (
Lf Lf,Lf,LE,LE,

byte data (

117';

Home, Lf,Lf,Lf,Lf, Lf Lf,Lf,LE,LE,LE,LE,

byte date (

STATUS
' QFF ',
' OFF ',
' OFF ',
' OFF ');
Declare CRTSHDR (168)
1BH, 45H, "
'OVEN STATUS DISPLAY',
Cr,Lf,Lf,"
'OVEN-1
'OVEN-2 ',
'OVEN-2 ',
"OVEN-4"',

3-50

16

37
38

39

—

¢r,Lf,Lf,Lf,Lf,Lf,Lf,LE,Lf,Lf,LE,Lf,LE,LE,LF,LE,LE ,LE,LE,LF,

Lf,
'"TYPE ESCAPE TO ADJUST SETPOINTS!');

Declare BELLS(4) byte data (
Bell,Bell,Bell,Bell);

Declare MESSAGES (35) byte date (
' OFF ',
) 0K "
'CAUTION',
' ALARM ',
! ')

Declere DISPLAYSPTRI (4) address data (

.WORKSBUFF+23,
.WORKSBUFF+36,
.WORKSBUFF+4¢9,
.WORKSBUFF+62);

Declare DISPLAYSPTR2(4) address data (
.WORKSBUFF+25,
.WORKS$SBUFF+38,
.WORKS$BUFF+51,
.WORKSBUFF+64) ;

Declare DISPLAYSPTR3(4) address data (
.WORKSBUFF+27,
.WORKSBUFF+44,
.WORKSBUFF+53,
WORKSBUFF+66);

Declare DISPLAYSPTR4 (4) address data (
.WORKBUFF+3¢,
.WORKBUFF+43,
.WORKBUFF+56,
WCRKBUFF+59);

Declare MSGS$PTR address;

Declare MSC based MSGSPTR structure (
MSGSHDR,
COUNT address);

Declare STARTER(3) structure (
MSGSHDR) ;

Declare READ structure (
MSGSHDR,
STATUS address,
BUFFERS$SPTR address,
COUNT address,
ACTUAL address);

Declare DISPLAYSTEMP (4) structure (
UPPER address,
LOWER address);

Declare DISPLAYSSET (4) structure (
LCWER address,
UPPER address);

Declare DISPLAYSTOL (4) structure (
LOWER address,
UPPER address);

3-51

44 1 Declare OVENSON(4) byte data (
¢1H,@2H,P4H,08H);

45 1 Declare OVENSCAUTION (4) byte data (
1PH,2CH,40H,80H);

26 1 Declare CRT structure (
MSG$HDR,

STATUS eoddress,
BUFFERSPTR address,
COUNT address,
ACTUAL address);

47 1 Declare CRTLOCK structure (MSGSHDR);
48 1 Declare CRTSDISPLAYSLOCK (5) address external;
40 1 Declare TEMPSLOCKOUTSEXCH(S5) address external;
5¢ 1 Declare CONSTANTSLCCKOUTSEXCH (5) address external;
51 1 Declare CRTSEXCH(5) address external;
52 1 Declare CRTSSTATUSSEXCH(S5) address external;
53 1 Declare DUMMYSEXCH(5) address external;
54 1 Declare READSBUFFERSEXCH (5) address external;
55 1 Declare UPDATESEXCH(5) address external;
56 1 Declare RQINPX(5) address external:
57 1 Declare RQOUTX(5) &ddress external;
58 1 Declare RQWAKE (5) address external;
59 1 Declare RQL7EX(5) address external;
60 1 Declare RQLAEX (5) address external;
61 1 Declare RQDBUG (5) address external;
62 1 Declare RQALRM(5) address externel;
63 1 Declare TEMP(4) address external;
64 1 Declare DISPSTEMP (2) azddress;
65 1 Declare SETPOINT(4) address external;
66 1 Declare DISPSSETPNT (4) address;
67 1 Declare TOLERANCE(4) address external;
68 1 Declare DISPSTOL (4) address;
8¢ 1 Declare STATUS(4) bhyte external;
70 1 Declare DISPSSTAT(4) byte;
71 1 Declare (BLOCK1,BLOCK2) byte external;
72 1 Declare WORKSBUFF(17@) byte;
73 1 Declare BUFFERSA(7¢) byte;
74 1 Declare (CHANGE,n,ALARM,NEW,BLANKER) byte;
75 1 Declere START literally 'call';
76 1 Declare TASK literally 'rgsend';
77 1 Declare WAIT literally 'msg$ptr=';
78 1 Declare For literally 'rgwait';
7¢ 1 DECSREP:
Procedure (SOURCE, TARGET) external;
8¢ 2 Declare (SOURCE,TARGET) address;
21 2 end DECSREP;

3-52

82 1 CRTSDATASTASK:
Procedure public;
/* Initialize system at start-up time */

83 2 Start task (.TEMPSLOCKOUTSEXCH,.STARTER(%));
84 2 Start task (.CONSTANTSLOCKQUTSEXCH,.STARTER(1));
25 2 STARTER(2) .TYPE=10¢;
86 2 Start task (.CRTSSTATUSSEXCH, .STARTER(2)):;
87 2 CRT.RESPSEX=.CRTSEXCH;
/* Perform main CRT wait */
288 2 Do forever;
89 3 Writ for (.DUMMYSEXCH,10);
ag 3 Wait for (.CRTSSTATUSSEXCH,®);
91 3 If MSG.TYPE=255
then ALARM=1;
93 3 else ALARM=;
/* Output heading */
94 3 If (MSG.TYPE=1f¢ OR MSG.TYPE=255)
then do;
96 4 If ALARM=#
then call RQSEND(.CRT$DISPLAYSLOCX, .CRTLOCK) ;
98 4 CRT.TYPE=WRITESTYPE;
9¢ 4 CRT.COUNT=167;
1e¢ 4 CRT.BUFFERSPTR=.WORKSBUFF;
191 4 READ.TYPE=CLRSRDSTYPE;
122 4 READ.COUNT=255;
103 4 READ.RESPSEX=.READSBUFFERSEXCH;
174 4 READ.BUFFERSPTR=.BUFFERA;
185 4 If ALARM=@ '
then start task (.RQINPX,.READ);
1e7 4 call move (82,.CRTS$HDR, .WORKSBUFF);
1¢8 4 Call move (86, .CRTSHDR+R2, .WORKSBUFF+82) ;
189 4 Start task (.RQOUTX,.CRT);
11¢ 4 Wait for (.CRTSEXCH,#);
111 4 NEW=1;
112 4 end;
/* Test for change in temperature of any oven */
113 3 CHANGE=0;
114 3 Wait for (.TEMPSLOCKOUTSEXCH,®);
115 3 Do n=# to 3;
116 4 If TEMP(n)<>DISPSTEMP (n)
then CHANGE=1;
118 4 end;
119 3 Call move (8,.TEMP,.DISPSTEMP);
129 3 Start task (.TEMPSLOCKOUTSEXCH,MSGSPTR);
/* When a change exists build new line */
121 3 If CHANGE OR NEW
then do;
123 4 Call move (9¢,.L1SIMAGE,.WORKSBUFF) ;
124 4 Do n=¢ to 3;
125 5 Call DECSREP(.DISPS$TEMP (n) ,DISPLAYSPTR1(n));
126 5 end;
' /* Output new temperature line to CRT */
127 4 CRT.TYPE=WRITESTYPE;
128 4 CRT.COUNT=87;

3-63

129 4 Start task (.RQOUTX,.CRT);
130 4 Wait for (.CRTSEXCH,®);
131 4 end;
/* Test for change in oven setpoints */
122 3 CHANGE=¢;
133 2 Wait for (.CONSTANTSLOCKOUTSEXCH,B);
134 3 Do n=¢# to 3;
135 4 If SETPOINT(n)<>DISPSSETENT (n)
then CHANGE=1;
137 4 end;
138 3 Call move (8, .SETPOINT,.DISPSSETPNT);
139 3 Start task (.CONSTANTSLOCKOUTSEXCH,MSGSPTR);
/* Build new line when a change was detected */
14¢ 3 If CHANGE OR NEW
then do;
142 4 Call move (92,.L2$IMAGE, .WORKBUFF);
142 4 Do n=@ to 2;
144 5 Ca211 DECSREP (.DISPSSETPNT(n),DISPLAYSPTR2(n));
145 5 end;
/* Output setpoint line */
144 4 CRT.TYPE=WRITESTYPE;
147 4 CRT.COUNT=8¢;
148 4 CRT.BUFFERSPTR=.WCRKBUFF;
140 4 Start tesk (.RQOUTX,.CRT);
15¢ 4 Wait for (.CRTSEXCH,);
151 4 end;
/* Test for change in tolerance line */
152 2 CHANGE=#;
152 3 Wait for (.CONSTANTSLOCKOUTSEXCH,@);
154 3 Do n=¢ to 3;
155 a4 If TOLERANCE (n)<>DISP$TOL (n)
then CHANGE=1;
157 A end;
158 3 Call move (8,.TOLERANCE,.DISPSTOL);
159 3 Start task (.CONSTANTSLCCKOUTSEXCH,MSGSPTR);
/* When change is found, build new line */
16¢ 3 If CHANGE OR NEW
then do;
152 4 Call move (94,.L2SIMAGE, .WORKSBUFF) ;
163 4 Do n=# to 2;
154 5 Call DECSREP(.DISPS$TCL(n) ,DISPLAYSPTR2(n));
155 5 end;
/* Output tolerance line */
156 4 CRT.TYPE=WRITESTYPE;
157 4 CRT.COUNT=91;
168 4 CRT.BUFFER$PTR=.WORKBUFTF;
169 4 Start task (.RQOUTX,.CR7T);
17¢ 4 Wait for (.CRTSEXCH,8);
171 4 end;
/* Build status message */
172 3 CHANGE=0;
173 2 Weit for (.CONSTANTSLOCKOUTSEXCH,Z);
174 3 Do n=¢ to 3;
175 4 If STATUS(n)<>DISPSSTAT(n)

then CHANGE=l;

3-54

177 4 end;
178 3 Call move (4,.STATUS,.DISPSSTAT);
179 2 Start task (.CONSTANTSLOCKOUTSEXCH,MSGSPTIR);
/* Output to display */
186 3 If CHANGE OR NEW
then do;
182 | Call move (75,.L4IMAGE, .WORKSBUFF);
183 4 Do n=¢ to 2;
184 5 Call move (7, .MESSAGES+DISPSSTAT (n) ,DISPLAYSPTRA4 (
n));
185 5 end;
186 4 CRT.COUNT=764;
187 4 Start task (.RQOUTX,.CRT);
188 4 Wait for (.CRTSEXCH,®);
189 4 end;
/* test for request to exit this mode */
190 3 MSG$PTR=RQACPT (.READSBUFFERSEXCH);
191 3 If ALARM=#
then do;
193 4 If (MSGS$PTR <> @ and BUFFERA(@) = 1BH)
then do;
195 5 MSCSPTR=RQWAIT (.CRTS$SDISPLAYSLOCK, ¢);
196 5 start task (.UPDATESEXCH,MSGSPTR);
197 5 end;
198 4 else do;
199 5 If MSGSPTR=@
then STARTER(2).TYPE=20¢;
2¢1 5 else GSTARTER(2).TYPE=1#0;
202 5 Start task (.CRTSSTATUSSEXCH,.STARTER(2));
242 5 NEW=@;
2¢4 5 end;
2¢5 4 end;
205 3 end;
2007 2 end CRTSDATASTASK;
208 1 end CRTSDATASMODULE;

MODULE INFCRMATION:
CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
378 LINES READ
PROGRAM ERROR (S)

272CH 1824D
#189H 303D
ganan 4D

o n

END OF PL/M-8¢ CCMPILATION

3-55

$TITLE('ASCII STRING TO FIXED BINARY')
JREhhkkhkhhhkhkkhhhkhhkhhhhbhhhhhhhhhhhhhhAhdhhhhhhhhds

* This program converts an ASCII string into a fix- *
* ed point binary number. The fixed decimel point *
* is determined by the parameter passed in SIZE. *
khkhkkhkhhkhkhkhhhhhkkhkhk ********************************/
ASC2BINARYSMODULE :

Do;

/* SPECIAL ASCII CHARACTERS */

w

DECLARE
NULL LITERALLY '@@H’,
CONTROLSC LITERALLY '@3mn',
CONTROLSE LITERALLY '@SH',
BELL LITERALLY '@#7RH',
TAB LITERALLY '@9H',
LF LITERALLY '@ABH',
VT LITERALLY '¢BH',
FF LITERALLY 'gCH',
CR LITERALLY '¢DH',
CONTROLSP LITERALLY '1¢H',
CONTROLSQ LITERALLY '11H',
CONTROLSR LITERALLY '12m’',
CONTRCLSS LITERALLY '12H',
CONTROLSX LITERALLY 'l18H',
CONTROLSZ LITERALLY 'lAH',
ESC LITERALLY '1BH',
QUOTE LITERALLY '22RH’,
LCA LITERALLY 'A1H',
LCZ LITERALLY '7AH',
RUBOUT LITERALLY '7FH';
ASC$2SBINARY:

Procedure (SRCSPTR, TRGTSPTR,SIZE) byte public;
Declare (SRCSPTR,TRGTSPTR) address;
Declare (SCURCE based SRC$PTR) (8#) byte;
Declare RESULT based TRGTSPTR address;
Declare (N,SIZE,K,DP,DIGITS,VALID) byte;

O D

W W N N W w NN NN N DN

I

Decleare

POWER (6) address date (

9,1,1¢,1€0, 16006, 100660);
/* Find location of decimal point */

n=g;

Do while SOURCE(n)<>'.' AND SOURCE (n)<>CR

end;
DP=n;

AND SOURCE (n)<>LF;
n=n+1;

/* Provide correct number of digits to right of
Do n= to SIZE;
SOURCE (DP+n)=SOURCE (DP+n+1) ;
If SOURCE (DP+n)>39H OR SOURCE (DP+n) <3¢H
then do k=n to SIZE;

end;

SOURCE (DP+k)="'¢";

decimal */

3-56

20 3 end;

/* Mark end of string */

SOURCE (n) AND {FH)

If SOURCE(n)>23¢H OR SOURCE (n)<3¢H

* POWER (DIGITS));

21 2 DIGITS=DP+SIZE;
/* Test for all valid characters */
22 2 VALID=1;
23 2 Do n=f to DIGITS;
24 3
then VALID=@;

26 3 end;
27 2 If DIGITS>S

then VALID=¢;

/* Convert data to binary and store */

29 2 n=g;
3 2 If VALID=1

then do;
32 3 RESULT=#;
33 3 Do while DIGITS > ¢;
34 4 RESULT=RESULT+ ((
35 4 n=n+1;
36 4 DIGITS=DIGITS-1;
27 4 end;
38 3 end;

/* Return to calling program */

39 2 Return VALID;
a0 2 end ASCS$S2SBINARY;
41 1 end ASCS2BINARYSMODULE;

MCDULE INFORMATION:

CODE AREA SIZE = f#1178H
VARIABLE AREA SIZE = #@(AH
MAXIMUM STACK SIZE = 0@R4H

8¢ LINES READ
PROGRAM ERROR (S)

END OF PL/M-8¢ COMPILATION

376D

1¢D
4D

3-57

STITLE (*COMMON VARIARLE STORAGE')
/**
* This mocdule contains those veriables common to *
* multiple tasks in the oven control application. *
**/
VARIARLES$STORAGE :

Do;

Deélare SETPOINT (4) address public;

Declare TOLERANCE (4) address public;

Declare TEMP(4) address public;

Declare STATUS(4) byte public;

Declare BLOCK{ byte public;

Declare BLOCK1l byte public;

Declare ELOCK2 byte public;

Declare BLOCK3 byte public;

end VARIAELES$STORAGE;

-

DO OI NN D WN
[I S SV Ry SV SR

fu—

MCDULE INFORMATION:

CODE AREA SIZE = GQ0FR 7D
VARIABLE AREA SIZE = ¢¢20H 32D
MAXIMUM STACK SIZE = 20¢FH D

16 LINES READ
PROGRAM ERRCR(S)

END OF PL/M-8¢ COMPILATION

3-58

STITLE ('"WORD TO ASCII CONVERSION')

/**
* This routine converts a fixed point word in mem- *
* ory into a 4 digit plus 1 decimal ASCII display- *
* able number. Zero blanking is included. *
*************************'k**************************/

1 DECSREPSMCDULE:
Do;
2 1 DECSREP:

Procedure (SOURCE,TARGET) public ;

3 2 Declare (SCURCE,TARGET) address;
4 2 Declare ANSWR(5) byte;
5 2 Declare (DISPLAY based TARGET) (5) byte;
6 2 Declare NUMBER based SOURCE structure (
ELEMENT acddress);
7 2 Declare N byte;
8 2 Declare CALC(5) address;
/* Initialize */
9 2 Do n=@ to 4;
1l¢ 3 ANSWR(n)='@";
11 3 end;
12 2 CALC(@)=NUMBER.ELEMENT;
/* Convert to ASCII */
12 2 Do n=1 to 5;
14 3 CALC(n)=CALC(n-1)/1@;
15 3 ANSWR (5-n)=(CALC(n-1) mod 1@) + 23¢H;
16 K end;
/* Perform zero blanking */
17 2 Do n=¢ to 3;
18 2 If ANSWR(n)<>'¢?
then n=4;
20 3 else ANSWR(n)=' "';
21 3 end;
/* Format with decimal point */
22 2 Call move (4, .ANSWR,TARGET);
23 2 DISPLAY (4)="'.";
24 2 DISPLAY (5)=ANSWR(4);
25 2 end DECSREP;
26 1 end DECSREPSMODULE;

MODULE INFORMATION:

CODE AREA SIZE = (¢EEH 238D
VARIABLE AREA SIZE = £@14H 20D
MAXIMUM STACK SIZE = @@¢4H 4D

4@ LINES READ
¢ PROGRAM ERROR (S)
END OF PL/M-20 COMPILATION

3-59

	1979_iSBC_Applications_Manual_Page_335
	1979_iSBC_Applications_Manual_Page_336
	1979_iSBC_Applications_Manual_Page_337
	1979_iSBC_Applications_Manual_Page_338
	1979_iSBC_Applications_Manual_Page_339
	1979_iSBC_Applications_Manual_Page_340
	1979_iSBC_Applications_Manual_Page_341
	1979_iSBC_Applications_Manual_Page_342
	1979_iSBC_Applications_Manual_Page_343
	1979_iSBC_Applications_Manual_Page_344
	1979_iSBC_Applications_Manual_Page_345
	1979_iSBC_Applications_Manual_Page_346
	1979_iSBC_Applications_Manual_Page_347
	1979_iSBC_Applications_Manual_Page_348
	1979_iSBC_Applications_Manual_Page_349
	1979_iSBC_Applications_Manual_Page_350
	1979_iSBC_Applications_Manual_Page_351
	1979_iSBC_Applications_Manual_Page_352
	1979_iSBC_Applications_Manual_Page_353
	1979_iSBC_Applications_Manual_Page_354
	1979_iSBC_Applications_Manual_Page_355
	1979_iSBC_Applications_Manual_Page_356
	1979_iSBC_Applications_Manual_Page_357
	1979_iSBC_Applications_Manual_Page_358
	1979_iSBC_Applications_Manual_Page_359
	1979_iSBC_Applications_Manual_Page_360
	1979_iSBC_Applications_Manual_Page_361
	1979_iSBC_Applications_Manual_Page_362
	1979_iSBC_Applications_Manual_Page_363
	1979_iSBC_Applications_Manual_Page_364
	1979_iSBC_Applications_Manual_Page_365
	1979_iSBC_Applications_Manual_Page_366
	1979_iSBC_Applications_Manual_Page_367
	1979_iSBC_Applications_Manual_Page_368
	1979_iSBC_Applications_Manual_Page_369
	1979_iSBC_Applications_Manual_Page_370
	1979_iSBC_Applications_Manual_Page_371
	1979_iSBC_Applications_Manual_Page_372
	1979_iSBC_Applications_Manual_Page_373
	1979_iSBC_Applications_Manual_Page_374
	1979_iSBC_Applications_Manual_Page_375
	1979_iSBC_Applications_Manual_Page_376
	1979_iSBC_Applications_Manual_Page_377
	1979_iSBC_Applications_Manual_Page_378
	1979_iSBC_Applications_Manual_Page_379
	1979_iSBC_Applications_Manual_Page_380
	1979_iSBC_Applications_Manual_Page_381
	1979_iSBC_Applications_Manual_Page_382
	1979_iSBC_Applications_Manual_Page_383
	1979_iSBC_Applications_Manual_Page_384
	1979_iSBC_Applications_Manual_Page_385
	1979_iSBC_Applications_Manual_Page_386
	1979_iSBC_Applications_Manual_Page_387
	1979_iSBC_Applications_Manual_Page_388
	1979_iSBC_Applications_Manual_Page_389
	1979_iSBC_Applications_Manual_Page_390
	1979_iSBC_Applications_Manual_Page_391
	1979_iSBC_Applications_Manual_Page_392

