
© Intel Corporation, 1979 

· APPLICATION 
NOTE 

3-110 

Ap·46 , . 

9800752 



INTRODUCfION 

Complex electronic systems require the utmost in reli
ability. Especially when the storage and retrieval of 
critical data demands faultless operation, the system 
designer must strive for the highest reliability possible. 
Extra effort must be expended to achieve this high 
reliability. FortUliately, not all systems must operate with 
these ultra reliability requirements. 

The majority of systems operate in an area where system 
failure ranges from irritating, such as a video game 
failure, to a financial loss, such as a misprinted check. 
While these failures are not hazardous, reliability is 
important enough to be designed into the system. 

A memory system is one of the system components for 
which reliability is important. Also, it is one of the few 
system components which can be altered to greatly 
enhance its reliability. The purpose of this report is to 
examine different methods of error encoding, especially 
Error Correction Codes (ECq, to increase the reliability 
of the memory system. 

SYSTEM RELIABILITY 

Individual device reliability is the foundation of memory 
system reliability. Reliability is expressed as mean time 
between failures. The mean time between failures 
(MTBF) of a system is a function of the number of 
devices and the device failure rate. Failure rate of the 
memory device can be obtained from the reliability 
'report on the specific device. MTBF of the device is: 

where To = MTBF of the device 

). = device failure rate (070/1000 hrs) 

and MTBF of the system is approximately: 

To 
Ts =0 

where Ts = MTBF of the system 

D = number of devices in the system 

[II 

[21 

As the number of devices required to construct a system 
becomes larger, the system MTBF becomes smaller, 

A plot of system MTBF as a function of the number of 
memory devices is Shown in Figure 1 for different failure 
rates, Included for reference are the failure rates of the 
Inte\@ 2104A 4Kxl RAM and the Intel@ 211716Kxl 
RAM. Using RAMs which are organized one bit wide, 
the amount of devices required for a system is calculated 
by multiplying the number of words by the 'word length 
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and dividing by the size of the RAM. To illustrate, 
assume a 1 megaword memory system with,a word width 
of32 bits, implementedwith Intel@ 2104A4Kxl RAMs. 
The number of required devices is: 

, D - 1,048,576 x 32 _ 8 192 d . 
- '4,096 -, eVlces 

Prediction of failure for this system, shown in Figure I, is 
667 hours or 28 days - assuming continuous use and 
worst case temperature. 

Equation 2 showed that system MTBF is increased when 
fewer devices are used. A one megaword memory having 
32 bit wide words can be constructed with Intel 2117 16K 
RAMs. In this case one fourth as many devices are 
required - 2048 devices. From Equation 2, the expected 
MTBF should be four times as large - 2668 hours. It is 
not. The failure rate from Figure 1 for this system is 2000 
hours. Different device failure rates account for this 
difference. The failure rate of the 16K is not yet equal to 
that of the 4K. Memory device reliability is a function of 
time as shown in Figure 2. Reliability improvement often 
is a result of increased experience in manufacturing and 
testing. In time, the failure rate of the 16K will reach that 
of the 4K and one fourth as many devices will result in a 
system MTBF approximately four times better. 
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Figure 2. Device Failure Rate as a Function of Time. 

The failure rate of a system without error correction will 
follow a similar curve over time. Indeed, in very large 
systems built with large numbers of devices, the system 
failure rate may be intolerable, even with very reasonable 
device f;tilure rates. To increase the system reliability 
beyond the device reliability, redundancy coding tech
niques have been developed for detecting and correcting 
errors. 

REDUNDANCY CODES 

Redundancy codes add bits to the data word to provide a 
validity check on the entire. w.ord. These additional bits, 
used to detect whether or not an error has occurred, are 
called encoding bits. With M .data bits and K encoding 
bits, the encoded word width is N bits. Shown in Figure 3 
is the form of the encoded word. 

r-----~,N I 

1111· .. ·11111····11 
L--M --' '----- K-----' 

Figure 3. Encoded Word Form 

Mathematically, N is related to M and K by: 

where N 

M 

K 

N = M+K 

number of bits in the encoded word 

number of data bits 

number of encoding bits 

(3) 

Exactly how K is related to M, and the number of 
required -K bits depends on several factors which will be 
described later. 

One measure of a code is its efficiency. Efficiency is the 
ratio of the number of bits in the encoded word to the 
number of bits of data: 

Substituting N ~ M + K: 

where E = efficiency 

M+K 
E=~ (4) 

All of the data are contained in the M bits. The K bits 
contain no data, only validity checks. To maximize the 
amount of data in the encoded word, the number of K 
bits must be minimized. Examination of Equation 4 
shows that the minimum value of K is zero. With K equal 
to zero, the efficiency is unity. Efficiency is maximized, 
but the word has no encoding bits. Theref~re, it has no 
capability to\detect an error. 

As an example, consider a two bit word. It can assume 22 
or 4 states, which are: 

State 1 00 
State 2 01 

State 3 10 

State 4 II 

Figure 4. All State. of • Two-Bit Word 

All possible states have been used as data; consequently 
any error will cause the error state to be identical to a 
valid data state. 

The mechanics of the encoding bits create encoded words 
such that .every valid encoded word has a set of error 
words which differ from all valid encoded words. When 
an error dccurs, an error word is formed and this word is 
recognized as contain'ing invalid data. 

By adding one K bit to the two bit word error detectior 
becomes possible. The value of the K bit will be such that 
the encoded word has an odd number of ONES. As ~ill 
be explained later, this technique is "odd" parity. 

The sum of the ONES in a word is the weight of the 
word. Parity operates by differentiating between odd and 
even weights. The encoded word will always have a~ odd 
weight as a result of having an odd number of ONES. 

If a single bit error occurs, one bit in the encoded word 
will change state and the word will have an even weight. 
Then in this example, all encoded states with an even 
weight - an even number of ones - lare error states. 

The value of the encoding bit or parity bit is found by 
counting the number of ones - calculating the weight -
and setting the value of K to make the weight of the 
encoded word odd. Referring to Figure 4, State I was 00, 
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the weight of this word is 0, so K is set to 1 and the weight 
of the encoded word is odd. State 2 is 01, the weight is 
odd already, so K is set to O. The weight of State 3 is 
identical to that of State 2 so K is again set to O. Finally, 
State 4 has an even weight (1 + 1 = 2), thus K is 1. The 
encoded states of the two bit data word are listed in 
Figure 5. 

Dala Encoding' Bit 

State I 00 I 
Stale 2 01 0 
Stale 3 10 0 
State 4 II I 

M K 

N 

Figure 5. Code BIIs for All Possible States of a Two-Bit Word 

To illustrate the error detection, Figure 6a lists all states 
of the encoded data word and all possible single bit 
errors. Because the encoded word is 3 bits long, there are 
only 3 possible single bit errors for each encoded state. 

A B C D 

Encoded States 001 010 100 III 

Error States 000 000 000 011 
011 011 101 101 
101 110 110 110 

Figure 6a. All Possible Slngle·BIt Errors 

, Notice that every error state has an even weight, while the 
valid encoded states have odd weights. 

Converting all the values of these states to decimal 
equivalents makes the errors more obvious as shown in 
Figure 6b. 

Valid States I 2 4 7 

0 0 0 

Error States 
3 3 3 

5 5 5 

6 6 6 

Figure 6b. Decimal Representation of Errors 

No error state is the same as any valid encoded state. 
Identical error states can be found in several columns. 
The fact, that some error states are identical prevents 
identification of the bit in error, and hence correction is 
impossible. Importantly though,error detection has 
occurred. 

Figure 6a demonstrates another property of codes. Every 
error state differs from its valid encoded state by one bit, 
whereas each of the encoded states differs from the 
others by two bits. Examine the encoded states labeled B 
and D in Figure 6a and shown in Figure 7. 

Slate B (0) I (0) 
Stale D l!J I l!J 

MK 
Figure 7. Bit Dlrterence. 

These two states have two bit positions which differ. This 
difference is defined as distance and these two states have 
a distance of two. Distance, then, is the number of bits 
that differ between two words. The encoded words have 
a minimum distance of two. Longer encoded words may 
have distances greater than two but never less than two if 
error detection is desired. The error states have a 
minimum distance of one from their valid encoded state. 

A minimum distance of two between encoded states is 
required for error detection. A re-examination of a word 
with no' encoding bits shows that the states have a 
minimum distance of 1 (see Figure 8). No error detection 
is possible because any single bit error will result in a 
valid word. 

State I 
State 2 

State 3 
State 4 

00 

01::1} 10:1 Distance of I 

11::1 

Figure 8. Minimum Distance of a Two·Blt Word 

PARITY , 
A minimum distance of two code is implemented with 
Parity. Refer to previous section for an explanation. 
Parity is generated by exclusive-ORing all thc data bits in 
the word, which results in a parity bit. This parity bit is 
the K encoding bit of the word. If the word contains M 
data bits, the parity bit is: 

C bl (jJ b2 (jJ b3 (jJ ••• (jJ bm 

where C parity bit 

b value in the bit position 

The parity bit combines with the original data bits to 
form the encoded word as shown in Figure 9. Encoded 
words always have either "odd" parity, which is an odd 
number of Is ~an odd weight) or "even" parity which is 
an even number of Is (an even weight). Odd and even 
parity are never intermixed, so that the encoded words all 
have either odd or even parity - never both. 

When the encoded word is fetched, the parity bit is 
removed from the word and saved. A new parity bit is 
generated from the M bits. Comparing this new parity bit 
with the stored parity bit determines if a, single bit error 
has occurred. 

Figure 9. Encoded Word Form 
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Consider the two bit data word whose value is "01." 
Exclusive-NORing the two data bits generates a parity bit . 
which causes the encoded word to have odd parity: 

C~OElli 

C=O 

The encoded word becomes: 

M K 

o I 0 

L parity 
LSB of data 

Assume that an error occurs and the value of the word 
becomes "110." Stripping off the parity bit and 
generating a new parity bit: 

transmitted parity = 0 

transmitt~d word = II 

new parity of transmitted word = T$1 = 1 
, 

generated parity"* transmitted parity 

Note that the error could have occurred in the parity bit 
and the final result would have been the same. An error 
in the encoding bit as well as in the data. bits can be" 
detected. 

Although parity detects the error, no correction is 
possible. This is because each valid word can generate the 
same error state. Illustration of this is shown in Figure 
10. 

eorred Word 
Possible 

Single Bit 
Error wilh Parity 

001 
III 
o 1 0 

o 1 1 
01" 1 
01 1 

Figure to. Possible Errors " 

Each of the errors is identical to the others and 
reconstrudion of the original word is impossible. 

Parity fails to detect an even number of errors occurring 
in the word. If a double bit error occurs, no error is 
detected because two bits have changed state, causing the 
weight of the word to remain the same. 

Using the encoded word "010" one possible double bit 
error (DBE) is: 

I I 
~parity 

Checking parity: 

The transmitted parity and the regenerated parity agree. 
Therefore the technique of parity can detect only an odd 
number of errors. 

In summary, single bit parity will detect the majority of 
errors, but cannot be used to correct errors. Using parity 
introduces a measure of confidence in the system. Should 
a single bit error occur, it will be detected. 

ERROR CORRECTION 

Classical texts on error coding contain proofs showing 
that a minimum distance of three between encoded words 
is necessary to correct errors. While this fact does not 
describe the code, it does give an indication of the form 
of the code. 

Correcting errors is not as difficult as it first appears. As 
a result of a paper published by R. W. Hamming on error 
correction the most widely used type of code is the 
"Hamming" code. Using the same technique as parity, 
Hamming code generates K encoding bits and appends 
them to the M data bits. As shown in Figure II, this N bit 
word is stored in memory. 

111········111 DIJ 
L---------N-"--------~ 

Figure n. Encoded Word Form 

Thus far the mechanism is similar to parity. The only 
difference is the number of K bits and how they relate to 
the M data bits. 

When the word is read from memory, a new set of code 
bits (K ')" is generated from the M' data bits and 
compared to the fetched K encoding bits. Comparison is 
done by exclusive-ORing as shown in Figure 12. Like 
parity the result of the comparison - called the 
syndrome word - contains information to determine if 
an error has occurred. Unlike parity, the syndrome word 
also contains information to indicate which bit is in error. 

ITIIlJ K 

.. o:IIJ]K' 

ITIIlJ Syndrome 

Figure 12. Syndrome Generation 

The syndrome word is therefore K bits wide. The 
syndrome word has a range of 2K values between 0 and 
2K - 1. One of these values, usually zero, is used to 
indicate that no error was detected, leaving 2K - I values 
to indicate which of the N bits was in error. Each of 
these 2K - 1 values can"be used to uniquely describe.a bit 
in error. The range of K must be equal to or greater than 
N. Mathematically, the formula is: 

2K-I ~ N 

but N = M+K 

and 2K - 1 ~ M + K (5) 
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Equation 5 gives the number of K bits needed to correct a 
single bit error in a word containing M data bits. Ranges 
of M for various values of K are calculated and listed in 
Table I. 

K 

Single Correct! Single Correct/ 
Single Detect Double Detect 

<;M< 
4 II 

12 

27 
58 

121 

26 
57 

120 
245 

Table I. 

4 
II 
26 
57 

\0 
25 
56 

119 

Range of M for Single Correct/Single Detect or Double Detect Codes 
for Values of K 

To detect and correct a single bit error in a 16 bit data 
word, five encoding bits must be used. As a result, the 
total number of bits in the encoded word is 21 bits. 

Efficiencies of single detect - parity - and single 
,detect/single correct codes as a function of the number of 
data bits are shown in Figure 13. For large values of M, 
'the efficiency of single detect/correct is approximately 
equal to that of the single detect code - parity. 

10 

E=M~K 

SINGLE CORRECT 
DOUBLE DETECT 

20 30 40 50 
DATA BITS/WORD 

Figure 13. Code Efficiency vs Data Word Size 

60 70 

CODE DEVELOPMENT 

Contained in the syndrome word is sufficient informa
tion to specify which bit is in error. After decoding this 
information, error correction is accomplished by 
inverting ' the bit in error. All bits, including the encoding 
bits - called check bits -, are identified by their 
positions in the word. 

Bit N Bit l Bit 2 Bit I 

I·· .. ·1 
~------N------~ 

Figure 14. Positional Representation of Bits In the Word 

Bits in the N bit word are organized as shown in Figure 
14. Bit numbers shown in decimal form are converted to 
binary numbers. From equation 5, this binary number 
will be K bits wide. In Figure 15 is an example using a 16 
bit data word. Because there are 16 data bits, M equals 
16, K equals 5 and N equals 21. Shown in Figure 15 the 
word'is binary equivalent of the position. Notice that 
where the M and the K bits are located is not yet 
specified. 

_OO'lOOr---\OV'\~MN_O 

NN----------~_~~~.~N_ 

~~~~~~~~~~~~~~~~~~~~~ 
N 

101010101010101010101 
00 II 00 II 00 II 00 II 00 II 0 

110000111100001111000 

000000 i II I II I 10000000 

I I I I I I 0 0 0 0 0 0 0 0 0 0 0 0 00 0 

Bit 
Position 

Value 

2° LSB 
2' 
22 

2' 
2' MSB 

Figure IS. Binary Value of Bit Position. 

The syndrome word is the difference between the fetched 
check bits and the regenerated check bits. Identification 
of the bit in error by the syndrome word is provided by 
the binary value of the bit position. The, syndrome word 
is generated by exclusive-ORing the fetched check bits 
with the regenerated check bits. Any new check bits that 
differ from the old check bits will sell s in-the'syndrome 
word. To identify bit 3 as a bit in error, the syndrome 
word will be 00011, which is the binary value of the bit 
position. Weight is determined only by the I s in Ihe bit 
position chart in Figure 15, so they are replaced wilh an 
X and theOs are deleled. The resuh is shown in Figure 16. 

-OO'lOOt-\CIV'I'o:t""N ..... O NN __________ O'IOOt-\OV'I'o:tI"')N_ 

~~~~~~~~~~~~~~~~~~~~~ 

I N ~ 
X X X X X X X 'x xx x cr 

xx xx xx xx xx a 
xx xxxx 

xxxxxxxx 
xxxxxx 

xxxx C4 

C8 

CI6 

Figure 16. Relationship of Data Bits and Check Bits. 
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Check bit function is now defined by equating the check 
bits to the powers of 2 in the binary positions. Each check 
bit will operate on every bit position that has an X in the 
row shown in Figure 16. Five bit positions - 1,2,4, B, 
and 16 - have only one X in their columns. The corres

,ponding check bits are in these respective locations. 
Check bit CI is stored in Bit Position I, C2 is stored in 
Bit Position 2, and C4, CB, and CI6 are stored in 
positions 4, B, and 16 respectively. Because each of these 
positions has one X in the column, the check bits are 
independent of one another. If a check bit fails, the 
syndrome word will contain a single "1." A data bit 
failure will be identified by two or more "Is" in the 
syndrome word. 

The data bits are filled in the positions between the check 
bits. The least significant bit (LSB) of data is located in 
position 3. 

Data Bit 2 is stored in position 5 - position 4 is a check 
bit. Figure 17 shows the positions of data bits and check 
bits for sixteen bits of data. 

When the check bits are generated for storage, bits I, 2, 
4, 8, and 16 are omitted from the generation circuitry 
because they do not yet exist, being the result of 
generation. 

Parity check on the specified bits is used to generate the 
. check bits. Each check bit is the result of exclusive-ORing 

the data bits marked with an "X" in Figure lB. Check 
bits are generated by these logic equations: 

CI = MleM2eM4eMSeM7eMgeMIleMI2eMI4eMI6 

C2 = MleM3eM4eM6eM7eMlOeMII .. MI3 .. MI4 

C4 = M2 .. M3eM4 .. MS .. MgeMIO .. MII .. MI6eMI6 

CS = MSeM6eM7 .. MS .. MgeMlOeMII 

CI6 = MI2 .. MI3eMI4eMISeMI6 

How the Hamming code corrects an error is best shown 
with an example. In this example, a data word will be 
assumed, check bits will be generated, an error will be 
forced, new check bits will be generated, and, the 
syndrome word will be formed. Assuming the l6-bit data 
word 

0101 0000 001I 1001 

Check bits are generated by overlaying the data word on. 
the Hamming Chart of Figure 16 and performing an odd 
parity calculation on the bits matching the "Xs," 

16 15 14 13 12 II 10 9 8 7 

CI6 

21 20 19 18 17 16 15 14 13 12 II 

6 5 

10 9 

The simplest mechanism to calculate the check bits is 
shown in Figure lB. The data word is aligned on the 
chart. Because weight and hence parity are affected only 
by "Is," only 'columns containing" Is" are circled for 
identification. The check bits are the result of odd parity 
generated on the rows. For example, the Cl row has three 
"Xs" circled; therefore CI is 0 to keep the row parity 
odd. In this example, all other rows contain an even 
number of circled "Xs;" therefore the remaining check 
bits are" I s," These check bits' are incorporated into the 
data word, forming the encoded word. Performing this 
function, the 21 bit encoded word is: 

CI6 CB C4 C2 CI 

0101 0 I 000 0011 I 100 0 

Forcing an error with bit position 7 - data bit 4: 

CI6 CB C4 

0101 0 I 000 0011 I 000 

C2 CI 

o 

A new set of check bits is generated on the error word as 
shown in Figure IB and is: 

CI6 CB C4 C2CI 

o 0 

When the new check bits are exclusive-ORed with the old 
check bits, the syndrome wor.d is formed: 

CI6 CB C4 C2 CI 

O· 0 I New check bits 

o Old check bits 

o 0 

The result is 00111, indicating that bit position 7 - data 
bit 3 - is in error. Bit position of the error is indicated 
directly by the syndrome word. 

While this "straight" Hamming code is simple, imple
menting it in hardware does present some problems. 
First, the number of bits exclusive-ORed to generate 
parity is not equal for all chec.k bits. In the preceding 
example, the number of bits to be checked ranges from 
10 to 5. The propagation delay of a 10 input exclusive
OR is much longer than that of a 5 input exclusive-OR. 
The system must wait for the longest propagation delay 
path, which slows the system. Equalizing the number of 
bits checked will optimize the speed of the encoders. 

4 3 2 

C8 

8 7 6 5 

I 

C4 

4 3 

C2 

2 

CI 

I 

Data Bits 

Check Bits 

Position 

Figure 17. Dala and Check Bit Posillons in Ihe Encoded Word. 
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16 15 14 IJ 12 CI6 II 10 C8 C4 C2 CI 

X X X X X IX X X X X X CI 

X X X X X X X X X X C2 

X X X X X X X X X X C4 
I 

X X X X X X X ,x C8 

X X X X X X CI6 

Figure 18a. Hamming Chart. 

Bi, Position 21 20 19 18 17 16 15 14 13 12 II 10 9 
Da'a Bi' 16 15 14 13 12 CI6 II 10 9 8 7 5 C8 4' 2 C4 I C2 CI 

:~I ~~I:O 
Word as S,ored 0 Q Q ~ : ~ : : ~ ~ ~:: ~ 

CI '0 

C2 I 
C4 I 
C8 I 
CI6 I 

W.,. ,,'",." ~ ~ : ~ : ~ i ; : ~ ~ ~ , ~ ; ~ 
10 1 
~ 

o 
CI I 
C2 0 
C4 0 
C8 I 

C16 I 

Figure 18b. Check Bit Generation. 

Secondly, two bits in error can cause a correct bit to be 
indicated as being in error. For example, if check bits CI 
and C2 failed, data bit I would be flagged as a bit in 
error. 

Because of these two difficulties, the Error Correction 
Code (ECC) most commonly used is a "modified" 
Hamming code is most widely used which will detect 
double bit errors and correct single bit errors. 

SINGLE BIT CORRECT / 
DOUBLE BIT DETECT CODES 

Modern algebra can be used to prove that a minimum 
distance of four is required between encoded words to 
detect two errors or correct a single bit error. An excellent 
text on this subject is Error Correcting Codes by Peterson 
and Weldon. 

One possible double bit error is two check bits. Using 
straight Hamming code, the circuit would "correct" the 
wrong bit. Double error detection techniques - modified 
Hamming codes - prevent this by separating the 
encoded words by a minimum distance of four. As a 
result each data bit is protected by a minimum of three 
check bits, so that the syndrome word always has an odd 
weight. Therefore, even weight syndrome words cannot 
be used. When two check bits fail, the syndrome word 
has two "I s" or an even weight. Even weight is 

detectable as a double bit error by performing a parity 
: check on the syndrome word. If two data bits fail, again 

the syndrome word has an even weight - a detectable 
error. 

Adding one additional check bit to the correction check 
bits provides the capability to detect double bit errors. 
The number of encoding or check bits required to detect' 
double bit errors and correct single bit errors is: 

Substituting M + K for N: 

2K-1 ~ M+K [6] 

Equation 6 is similar to equation 5, which describes single 
bit correct and detect except for the left side of the 
inequality, which shows one additional encoding bit is 
required. For single bit detect and correct the left side of 
the inequality was 2K. Table I also list.s the ranges of M 
for valui!s-of K, for a direct comparison to single bit 
detect and single bit correct codes. 

Figure 13 includes the efficiency curve for single bit 
correct/ double bit detect (SBC/DBD) codes for values of 
M., As would be expected, because of. the additional 
encoding bit the efficiency is slightly lower. For large 
values of M, the efficiency of this code approaches' unity' 
like the two other curves. 
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Syndrome words for the SBC/DBD code are developed 
like the straight Hamming code, except that syndrome 
words do not map directly to bit positions. The syndrome 
word has an odd weight and does not increment like 
straight Hamming code. In addition, implementation 
considerations can impose constraints. For example, the 
74S280 parity generator is a nine input device. If a check 
bit is generated from ten bits, extra hardware is required. 

Empirical methods can be used to form the syndrome 
words. All possible states of the encoding bits are listed 
and those with an even weight are stricken from the list. 
Again like Hamming code, states which have a weight of 
one are used for syndrome words for check bits. For a 
sixteen bit data word, six check bits are required. Figure 
19 lists the possible states of syndrome words for a 16 bit 

, data word. 

C6 CS C4 C3 C2 CI 

o 
o 0 

o 

o 0 

I 

o 0 

o 

o 
I 

o 0 0 

o 0 
o 0 0 

o 0 

Figure 19. Possible Syndrome Words 

In Figure 19 only twenty syndrome words for data bits 
are listed, because the possible words with a weight of 5 
were eliminated so that every data bit would have' only 
three bits protecting it. This simplifies the hardware 
implementation. If there are more than 20 data bits, 
states with a weight of 5 must be used. All states listed in 
Figure 19 are valid syndrome words, so thatthe problem 
becomes one of selecting the optimum set of syndrome 

,words. ,To minimize circuit J propagation delay the 
. number of data bits checked by each encoding bit should 
be as close as possible to all the others. 

The syndrome words can be mapped to any bit position, 
providing that identical, code generations are' done at 
storage and retrieval times. Syndrome word mapping 
may be arranged to solve system design problems. For 
example, in byte oriented systems the lower order 
syndrome bits are identical, so that the circuit design may 
be simplified by using these syndromes to determine 
which bit is in error, and the higher order syndromes to 
determine which byte is in error. Double bit detect/single 
bit correct code is implemented in hardware as a straight 
Hamming code would be. 

DESIGN EXAMPLE 

To illustrate code development, the design example uses 
single bit correct/double bit detect code on a 16 bit data 
word. In addition to the memory, the ECC system has 
five components: write check bit generator, read check 
bit generator, syndrome generator, syndrome'decoder, 
and bit correction. Connected together as shown in 
Figure 20, these components comprise the basic system. 
Features can be added to the system to enhance its 
performance. Some systems include error logs as a 
feature. Because the address of the error and the errors 
are known, the address and the syndrome word are saved 
in a non-volatile memory. At maintenance time this error 
log is read and the indicated defective devices are 
replaced. Being a basic design, this example does not 
include an error log. 

Write check bits are generated when data are written into, 
the m~mory, while read check bits are generated when 
data are read from the memory. Off-tile-shelf TTL is 
used to implement the design'. Check bits are generated 
by performing parity on a set of data bits, so that this 
function is performed by 74S280 9'bit parity generators. 
One parity generator for each check bit is required. 
Because the read and write check bit generations are the 
same, the circuits are sim.ilar. One minor difference 
should be noted. In this example, the check bit will be 
formed from parity on eight data bits. The 74S280 parity 
generator has nine inputs; therefore, the write check bit 
generator will have the extra input grounded while the 
read generator has as an input the fetched check bit. 
Developed directly in the read check bit generator is the 
syndrome bit, ,which saves one level of gating. Figure 21 
shows,the identical Jesuits of generating the syndrome bit 
by exciusive-ORing the fetched check bit with the 
regenerated check bit and forming the syndrome bit in 
the' read check bit generator. 

Implementing the syndrome generator word in this way 
reduces the circuit propagation delay by approximately 
10 nanoseconds. This implementation imposes a 
restriction on the code to be used - the check bit must be 
formed from no more than eight data bits. 
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Figure 20. Block Diagram of ECl; System. 
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Figure 19 listed the possible syndrome words for a 16 bit While there are twenty possibilities for syndrome words, 
only 16 are needed. Each row contains ten "Is" and each 
column contains three "Is." Four columns are 
eliminated but in a way that each row contains eight 
"Is." When the columns are matched to data bits, the 
"Is" i,n each row define inputs to the 748280 parity 
generators' for the given check bit. Eliminating the two 
columns from each end results in sixteen columns with 
each row having eight "Is." These remaining sixteen 
columns which match the data bits are rearranged in 
Figure 23 for convenience of printed circuit board layout 
and assigned to the data bits. The syndrome words for 
check bits are also shown for complete code 
development. 

data word. T'hese are relisted in Figure 22 with the 
syndrome words for the check bits and the zeros deleted. 

II I I II I CI 
I I I I I C2 

I I I II II Cl 
I I I II I I I I C4 

I I II III II I C5 
\I \I \I I I II C6 

Figure 22. Possible Syndrome Words with Three Check Bits. 

Dala Bit 

MI6 MIS MI4 MI3 MI2 Mil MIO M9 M8 M7 M6 MS M4 

X X X X X X 

X X X X X' X 

X X X X X X 

X X X X X X X X 

X X X X X X X X 

X X X X X 

Figure 23. 
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X X X CI 

X X X C2 

X X X Cl 

X C4 

X C5 

X X X X C6 



With this information the check bit generators can be 
designed. Figure 24. depicts write check bit generators 
while Figure 25 depiCts read check bit generators. 

Double bit error detection is accomplished by generating' 
parity on the syndrome bits. Except for the syndrome 
word of 00000o - no error -even parity will be the 
result of a double bit error. Hardware implementation is 
shown in Figure 26. OR-ing the syndrome detects the 
zero state, which has even parity. and prevents flagging 
this state as a double bit error. 

Decoding the syndrome word must be done to invert the 
one bit in error. Combinational logic will decode only 
those syndrome states which select the one of sixteen bits 
for correction. Figure 28 shows the logic of the decoder. 
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Figure 27.Correction Circuit. 
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Enabling, the correction logic, the decoded B(x) signals 
become "high" to invert the output of the 74S86 exclu
sive-OR circuits. If the B(x) signals are "low" the output 
of the correction is the same level as the input. The 
correction circuit is shown in Figure 29. 

Connecting the five circuits as shown in. the block 
diagram of Figure 20 completes the error correction 
circuitry. 

SUMMARY 

An unprotected memory has a system MTBF which is 
approximately equal to the device MTBF divided by the 
.number of devices. Redundancy codes are used to protect 
memories. While parity is a redundancy code, it only 
indicates that an error has occurred. A "modified" 
Hamming code tan correct single bit· errors and detect 
double bit errors; truly enhancing the system MTBF. 

This report has laid the foundation of ECC basic 
concepts. Building on this foundation, the next report 
will address the mathematics for calculating the 
enhancement factor of ECC in a system environment. 
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