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CHAPTER 1 
INTRODUCTION

This publication describes the Intel® 8086 family 
of microcomputing components, concentrating 
on the 8086, 8088 and 8089 microprocessors. It is 
written for hardware and software engineers and 
technicians who understand microcomputer 
operating principles. The manual is intended to 
introduce the product line and to serve as a refer
ence during system design and implementation.

Recognizing that successful microcomputer-based 
products are judicious blends of hardware and 
software, the User’s Manual addresses both sub
jects, although at different levels of detail. This 
publication is the definitive source for informa
tion describing the 8086 family components. Soft
ware topics, such as programming languages, 
utilities and examples, are given moderately 
detailed, but by no means complete, coverage. 
Additional references, available from Intel’s 
Literature Department, are cited in the program
ming sections.

1.1 Manual Organization
The manual contains four chapters and three 
appendices. The remainder of this chapter 
describes the architecture of the 8086 family, and 
subsequent chapters cover the individual com
ponents in detail.

Chapter 2 describes the 8086 and 8088 Central 
Processing Units, and Chapter 3 covers the 8089 
Input/Output Processor. These two chapters are 
identically organized and focus on providing a 
functional description of the 8086, 8088 and 
8089, plus related Intel hardware and software 
products. Hardware reference information— 
electrical characteristics, timing and physical 
interfacing considerations—for all three pro
cessors is concentrated in Chapter 4.

Appendix A is a collection of 8086 family applica
tion notes; these provide design and debugging 
examples. Appendix B contains complete data 
sheets for all the 8086 family components and 
system development aids; summary data sheets 
covering compatible components from other Intel 
product lines are also reproduced in Appendix B.

1.2 8086 Family Architecture

Considered individually, the 8086, 8088 and 8089 
are advanced third-generation microprocessors. 
Moreover, these processors are elements of a 
larger design, that of the 8086 family. This 
systems architecture specifies how the processors 
and other components relate to each other, and is 
the key to the exceptional versatility of these 
products.

The components in the 8086 family have been 
designed to operate together in diverse combina
tions within the systematic framework of the 
overall family architecture. In this way a single 
family of components can be used to solve a wide 
array of microcomputing problems. A compo
nent mix can be tailored to fit the performance 
needs of an application precisely, without having 
to pay for unneeded capabilities that may be 
bundled into more monolithic, CPU-centered 
architectures. Using the same family of com
ponents across multiple systems limits the learn
ing curve problem and builds on past experience. 
Finally, the modular structure of the family 
architecture provides an orderly way for systems 
to grow and change.

The 8086 family architecture is characterized by 
three major principles:

1. System functions are distributed among 
specialized components.

2. Multiprocessing capabilities are inherent in 
the hardware.

3. A hierarchical bus organization provides for 
the complex data flows required by high- 
performance systems without burdening 
simpler systems with unneeded capabilities.

Functional Distribution

Table 1-1 lists the components that constitute the 
8086 microprocessor family. All components are 
contained in standard dual in-line packages and 
require single +5V power sources.

1-1



INTRODUCTION

Table 1-1.8086 Component Family

Microprocessor Technology Pins Description

8086 C e n tra l P ro c e s s in g  U n it (C P U ) H M O S  40 8 /1 6  b it  g e n e r a l- p u r p o s e  m ic r o 
p ro c e s s o r ;  16 -b it e x te rn a l d a ta  p a th .

8088 C e n tra l P ro c e s s in g  U n it (C PU ) H M O S  40 8 /1 6  b it  g e n e r a l- p u r p o s e  m ic r o 
p ro c e s s o r ;  8 -b it e x te rn a l d a ta  p a th .

8089 In p u t /O u tp u t  P ro c e s s o r  (IOP) H M O S  40 8 /1 6  b it  m ic ro p ro c e s s o r  o p t im iz e d  fo r  
h ig h -s p e e d  I/O  o p e ra t io n s ; 8 -b it a n d  
16 -b it e x te rn a l d a ta  p a th s .

Support Component Technology Pins Function

8259A P rog ram m ab le  In te rru p t C o n tro lle r  (PIC) N M O S  28 Id e n t if ie s  h ig h e s t-p r io r ity  in te r ru p t  
re q u e s t.

8282 O c ta l L a tch
8283 O c ta l L a tch  ( In v e r t in g )

B ip o la r  20 D e m u lt ip le x e s  a n d  in c re a s e s  d r iv e  o f 
a d d re s s  b u s .

8284 C lo c k  G e n e ra to r  a n d  D r iv e r B ip o la r  18 P ro v id e s  t im e  b a se .

8286 O c ta l B u s  T ra n s c e iv e r
8287 O c ta l B u s  T ra n s c e iv e r  ( In v e r t in g )

B ip o la r  20 In c re a s e s  d r iv e  o n  d a ta  b u s .

8288 B u s  C o n tro l le r B ip o la r  20 G e n e ra te s  b u s  c o m m a n d  s ig n a ls .

8289 B u s  A rb ite r B ip o la r  20 C o n tro ls  a c c e s s  o f  m ic ro p ro c e s s o rs  
to  m u lt im a s te r  s y s te m  b u s .

Microprocessors
At the core of the product line are three
microprocessors that share these characteristics:
• Standard operating speed is 5 MHz (200 ns 

cycle time); a selected 8 MHz version of the 
8086 CPU is also available.

• Chips are housed in reliable 40-pin packages.
• Processors operate on both 8- and 16-bit data 

types; internal data paths are at least 16 bits 
wide.

• Up to 1 megabyte of memory can be 
addressed, along with a separate 64k byte 
I/O space.

• The address/data and status interfaces of the 
processors are compatible (the address and 
data buses are time-multiplexed at the pro
cessor, i.e., an address transmission is 
followed by a data transmission over a subset 
of the same physical lines).

The 8086 and 8088 are third-generation central 
processing units (CPUs) that differ primarily in 
their external data paths. The 8088 transfers data 
between itself and other system components 8 bits 
at a time. The 8086 can transfer either 8 or 16 bits 
in one bus cycle and is therefore capable of 
greater throughput. Both processors have two 
operating modes, selectable by a strapping pin. In 
minimum mode, the CPUs emit the bus control 
signals needed by memory and I/O peripheral 
components. In maximum mode, an 8288 Bus 
Controller assumes responsibility for controlling 
devices attached to the system bus. CPU pins no 
longer needed for bus control are then redefined 
to provide signals that support multiprocessing 
systems.

The 8089 Input/Output Processor (IOP) is an 
independent microprocessor whose design has 
been optimized for transferring data. The 8089

1-2
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typically runs under the direction of a CPU, but it 
executes a separate instruction stream and can 
operate in parallel with other system processors. 
The IOP contains two independent I/O channels 
that combine attributes of both CPUs and 
advanced DMA (direct memory access) con
trollers. The channels can execute programs and 
perform programmed I/O operations similar to 
CPUs. They may also transfer data by DMA, at 
rates up to 1.25 megabytes per second (5 MHz 
version). The channels can support mixes of 8- 
and 16-bit I/O devices and memory. Combining 
speed with programmable intelligence, the 8089 
can assume the bulk of I/O processing overhead 
and thereby free a CPU to perform other tasks.

Interrupt Controller

The 8259A Programmable Interrupt Controller 
(PIC) is a new, 8086 family-compatible version 
of the familiar 8259 that has been enhanced to 
operate with the advanced interrupt facilities of 
the 8086 and 8088 CPUs. The 8259A accepts 
interrupt requests from up to eight sources; up 
to 64 sources may be accommodated by 
“ cascading” additional 8259As. Each interrupt 
source is assigned a priority number that typi
cally reflects its “ criticality” in the system. The 
8259A has several built-in, priority-resolving 
mechanisms that are selectable by software com
mands from the CPU. These modes operate 
somewhat differently, but in general the 8259A 
continuously identifies the highest-priority active 
interrupt request and generates an interrupt 
request to the CPU if this request has higher 
priority than the request currently being pro
cessed. When the CPU recognizes the interrupt 
request, the 8259A transfers a code to the CPU 
that identifies the interrupt source.

Bus Interface Components

Components may be selected from this modular 
group to implement different system bus con
figurations. Except for the 8284, all components 
are optional; their inclusion in a system is based 
on the needs of the application. All of the bus 
interface components are implemented using 
bipolar technology to provide high-quality, high- 
drive signals and very fast internal switching.

The 8284 Clock Generator and Driver provides 
the time base for the 8086 family micro
processors. It divides the frequency signal from

an external crystal or TTL signal by three and 
outputs the 5 MHz or 8 MHz processor clock 
signal. It also provides the microprocessors with 
reset and ready signals.

8282 or 8283 Octal Latches may be added to a 
system to demultiplex the combined address/data 
bus generated by the 8086 family micro
processors. A demultiplexed bus provides 
separate stable address and data lines required by 
many peripheral components. Two latches 
demultiplex 16 bits of the bus to provide an 
address space of up to 64k bytes, while three 
latches generate the full 20-bit (megabyte) address 
space. The latches also provide the high drive on 
the address lines needed in larger systems.

8286 and 8287 Octal Bus Transceivers are used to 
provide more drive on data lines than the pro
cessors themselves are capable of providing. One 
or two transceivers may be used depending on the 
width of the data bus (8 or 16 bits).

The 8288 Bus Controller decodes status signals 
output by an 8089, or a maximum mode 8086 or 
8088. When these signals indicate that the pro
cessor is to run a bus cycle, the 8288 issues a bus 
command that identifies the bus cycle as memory 
read, memory write, I/O read, I/O  write, etc. It 
also provides a signal that strobes the address into 
8282/83 latches. The 8288 provides the drive 
levels needed for the bus control lines in medium 
to large systems.

The 8289 Bus Arbiter controls the access of a pro
cessor to a multimaster system bus. A multi
master bus is a path to system resources (typically 
memory) that is shared by two or more 
microprocessors (masters). Arbiters for each 
master may use one of several priority-resolving 
techniques to ensure that only one master drives 
the shared bus.

Multiprocessing

Employing multiple processors in medium to 
large systems offers several significant advantages 
over the centralized approach that relies on a 
single CPU and extremely fast memory:
• system tasks may be allocated to 

special-purpose processors whose designs are 
optimized to perform certain types of tasks 
simply and efficiently;
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• very high levels of performance can be 
attained when multiple processors can 
execute simultaneously (parallel processing);

• robustness can be improved by isolating 
system functions so that a failure or error in 
one part of the system has a limited effect on 
the rest of the system;

• the natural partitioning of the system 
promotes parallel development of sub
systems, breaks the application into smaller, 
more manageable tasks, and helps isolate the 
effects of system modifications.

The 8086 family architecture is explicitly designed 
to simplify the development of multiple processor 
systems by providing facilities for coordinating 
the interaction of the processors.

The architecture supports two types of pro
cessors: in d ep en d en t p ro cesso rs  and 
coprocessors. An independent processor is one 
that executes its own instruction stream. The 
8086, 8088 and 8089 are examples of independent 
processors. An 8086 or 8088 typically executes a 
program in response to an interrupt. The 8089 
starts its channels in response to an interrupt-like 
signal called a channel attention; this signal is 
typically issued by a CPU.

The 8086 architecture also supports a second type 
of processor, called a coprocessor. Coprocessor 
“ hooks” have been designed into the 8086 and 
8088 so that this type of processor can be 
accommodated in the future. A coprocessor dif
fers from an independent processor in that it 
obtains its instructions from another processor, 
called a host. The coprocessor monitors instruc
tions fetched by the host and recognizes certain of 
these as its own and executes them. A 
coprocessor, in effect, extends the instruction set 
of its host processor.

The 8086 family architecture provides built-in 
solutions to two classic multiprocessing coordina
tion problems: bus arbitration and mutual exclu
sion. Bus arbitration may be performed by the 
bus request/grant logic contained in each of the 
processors, by 8289 Bus Arbiters, or by a com
bination of the two when processors have access 
to multiple shared buses. In all cases, the arbitra
tion mechanism operates invisibly to software.

For mutual exclusion, each processor has a 
LOCK (bus lock) signal which a program may 
activate to prevent other processors from obtain
ing a shared system bus. The 8089 may lock the 
bus during a DMA transfer to ensure that both 
the transfer completes in the shortest possible 
time and that another processor does not access 
the target of the transfer (e.g., a buffer) while it is 
being updated. Each of the processors has an 
instruction that examines and updates a memory 
byte with the bus locked. This instruction can be 
used to implement a semaphore mechanism for 
controlling the access of multiple processors to 
shared resources. (A semaphore is a variable that 
indicates whether a resource, such as a buffer or a 
pointer, is “ available” or “ in use” ; section 2.5 
discusses semaphores in more detail).

Bus Organization

Figure 1-1 summarizes the 8086 family bus struc
ture. There are two different types of buses: 
system and local. Both buses may be shared by 
multiple processors, i.e., both are multimaster 
buses. Microprocessors are always connected to a 
local bus, and memory and I/O components 
usually reside on a system bus. The 8086 family 
bus interface components link a local bus to a 
system bus.

Local Bus

The local bus is optimized for use by the 8086 
family microprocessors. Since standard memory 
and I/O components are not attached to the local 
bus, information can be multiplexed and encoded 
to make very efficient use of processor pins (cer
tain MCS-85™ peripheral components can be 
directly connected to the local bus). This allows 
several pins to be dedicated to coordinating the 
activity of multiple processors sharing the local 
bus. Multiple processors connected to the same 
local bus are said to be local to each other; pro
cessors on different local buses are said to be 
remote to each other, or configured remotely. 
Both independent processors and coprocessors 
may share a local bus; on-chip arbitration logic 
determines which processor drives the bus. 
Because the processors on the local bus share the 
same bus interface components, the local con
figuration of multiple processors provides a com
pact and inexpensive multiprocessing system.
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Figure 1-1. Generalized 8086 Family Bus Structure

System Bus

A full implementation of an 8086 system bus con
sists of the following five sets of signals:

1. address bus,
2. data bus,
3. control lines,
4. interrupt lines, and
5. arbitration lines.

These signals are designed to meet the needs of 
standard memory and I/O devices; the address 
and data buses are demultiplexed and traditional 
control signals (memory read/write, I/O 
read/write, etc.) are provided on the system bus.

The system bus design is modular and subsets 
may be implemented according to the needs of the 
application. For example, the arbitration lines are 
not needed in single-processor systems or in 
multiple-processor systems that perform arbitra
tion at the local-bus level.

A group of bus interface components transforms 
the signals of a local bus into a system bus. The 
number of bus interface components required to 
generate a system bus depends on the size and 
complexity of the system; reduced application 
needs translate directly into reduced component 
counts. These main variables determine the con
figuration of a bus interface group: address space 
size (number of latches), data bus width (number 
of transceivers), and arbitration needs (presence 
of a bus arbiter).
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The 8086 family system bus is functionally and 
electrically compatible with the Multibus™ 
multimaster system bus used in Intel’s iSBC™ 
line of single board computing products. This 
compatability gives system designers access to a 
wide variety of computer, memory, communica
tions and other modules that may be incorporated 
into products, used for evaluation or for test 
vehicles.

Processing Modules

The processor(s) and bus interface group(s) that 
are connected by a local bus constitute a process
ing module. A simple processing module could 
consist of a single CPU and one bus interface 
group. A more complex module would contain 
multiple processors, such as two IOPs, or a CPU 
and one or two IOPs. One bus interface group 
typically links the processors in the module to a 
public system bus. If there are multiple processing 
modules in the system, all memory or I/O con
nected to the public bus is accessible to all pro
cessing modules on the public bus. 8289 Bus 
Arbiters in each processing module control the 
access of the modules to the public bus and hence 
to the public memory and I/O.

A second bus interface group may be connected 
to a processing module’s local bus, generating a 
second bus. This bus can provide the processing 
module with a private address space that is not 
accessible to other processing modules. Distri
buting memory and I/O resources in this manner 
can improve system robustness by isolating the 
effects of failures. It can also increase system 
throughput dramatically. If processor programs 
and local data are placed in private memory, con

tention for use of the public system bus can be 
held to a minimum to ensure that shared 
resources are quickly available when they are 
needed. In addition, processors in separate 
modules can simultaneously fetch instructions 
from private memory spaces to allow multiple 
system tasks to proceed in parallel.

Bus Implementation Examples

This section summarizes the 8086 family bus 
organization by showing how components from 
the family can be combined to implement diverse 
bus configurations. The first two examples 
illustrate special cases that extend the applicabil
ity of the 8086 family to smaller systems. The 
remaining examples add and recombine the same 
basic components to form progressively more 
complex bus configurations. Note that these 
examples are intended to be illustrative rather 
than exhaustive; many different combinations of 
components can be tailored to fit the needs of 
individual applications.

In its minimum mode configuration, the 8088 
time-multiplexes its 8-bit data bus with the lower 
eight bits of its 20-bit address bus (figure 1-2). 
This multiplexed address/data bus, and the bus 
control signals emitted by the 8088, are directly 
compatible with the multiplexed bus components 
of Intel’s 8085 family. These peripherals contain 
on-chip logic that demultiplexes a combined 
address/data bus. In addition, many of these 
devices are multifunctional, combining, for 
example, RAM, I/O ports and a timer on a single 
chip. By using these components, it is possible to 
build small (as few as four chips) economical 
systems that are nonetheless capable of perform
ing significant computing tasks.

CONTROL LINES ^

8284 8088
f

ADDRESS/
DATA LINES ^GENERATOR CPU

f

8088 MULTIPLEXED 
BUS

Figure 1-2. 8088 Multiplexed Bus
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Combining 8282/83 latches with a minimum 
mode 8086 or 8088 produces a minimum mode 
system bus (figure 1-3). Two latches provide an 
address space of up to 64k bytes; adding a third 
latch provides access to the full megabyte of 
memory. An 8288 Bus Controller is not required 
for this implementation as the CPUs themselves 
emit the bus control signals when they are con
figured in the minimum mode. This demulti
plexed bus structure is compatible with the wide 
array of memory and I/O components that have

been developed for the industry-standard 8080A 
CPU. Eight-bit peripherals may be connected to 
both the upper and lower halves of the 8086’s 
16-bit data bus. 8286/87 transceivers may be 
added to provide additional drive on the data 
lines, where required. Including an 8259A gives 
the CPU the ability to respond to multiple inter
rupt sources without polling. The minimum mode 
system bus configuration is well-suited to a 
variety of systems whose computational require
ments can be met by a single 8086 or 8088 CPU.

I---------------- 1

I_______ I

MINIMUM
MODE
SYSTEM
BUS

Figure 1-3. Minimum Mode System Bus
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When an 8086 or 8088 is configured in maximum 
mode and an 8288 is added to control the system 
bus, one or two 8089s may be directly connected 
to the CPU (figure 1-4). The processors all share 
the same latches, transceivers, clock and bus con
troller, via the local bus. Arbitration logic built 
into the 8086, 8088 and 8089 coordinates use of 
the local bus, and thus of the system bus. This bus 
configuration enables the powerful I/O handling 
capabilities of the 8089 to be incorporated into 
systems of moderate size and cost.

The 8289 enables high-performance systems to be 
designed as a series of independent processing 
modules whose activities are coordinated via a 
shared system bus. Figure 1-5 shows the multi

master system bus interface; this bus structure is 
electrically compatible with the Multibus™ 
architecture used in Intel iSBC™ single-board 
computing systems.

Several different combinations of processors may 
be attached to the local bus of a multimaster com
puting module:

• a single 8086 or 8088
• a single 8089
• two 8089s
• an 8086 or 8088 and one 8089
• an 8086 or 8088 and two 8089s

V  SYSTEM 
f  BUS

Figure 1-4. Multimaster Local Bus
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INTERRUPT LINES

. MULTIMASTER 
SYSTEM BUS

Figure 1-5. Basic Multimaster Processing Module

All of the processors on the local bus obtain 
access to the system bus through a single set of 
interface components.

One or two 8089s in a multimaster processing 
module may be configured with a private I/O bus 
as shown in figure 1-6. In this configuration, 
memory access commands are directed to the 
public multimaster system bus, while I/O com
mands use the private I/O  bus. Memory, contain
ing the 8089’s programs, as well as I/O devices,

may be connected to the private I/O bus. Taking 
this approach can greatly reduce the 8089’s use of 
the system bus as most memory and I/O accesses 
can be made to the private address space. The 
system bus is thus made available for use by other 
processors, and the 8089 can execute in parallel 
with other processors for extended periods. A 
limited private I/O  bus may be implemented 
using the 8-bit multiplexed peripherals of the 8085 
family, eliminating the latches and transceivers 
shown in figure 1-6.
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MULTIMASTER 
SYSTEM BUS

Figure 1-6. Private I/O Bus

Adding a second 8288 to the local bus allows an 
8086 or 8088 in a processing module to divide its 
address space into system and resident sections 
(figure 1-7). A PROM or decoder is used to direct 
an address reference to the system bus or to the 
resident bus. The resident bus allows the CPU to 
run out of its own address space to minimize its

use of the system bus. Since no other processors 
can access the private memory on the CPU’s resi
dent bus, operating system code and data in this 
space is protected from errors in other processor 
programs. If a second 8289 is added to a resident 
bus module, the resident bus becomes a second 
multimaster system bus.
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RESIDENT 
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INTERRUPT
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Figure 1-7. Resident Bus

As an alternative to the resident bus, a private 
read-only memory space can be implemented 
using the RD (read) signal provided by the CPUs 
in lieu of an 8288 Bus Controller.

Multiprocessing systems of widely varying com
plexity can be constructed from multimaster pro
cessing modules. Each module can be designed 
and implemented separately and can be optimized 
to perform a given task. The modules can com
municate with each other by means of interrupts 
and messages placed in system memory. Addi
tional functions can be added to a system by 
incorporating the new functions into modules and 
connecting the modules to the system bus.

Figure 1-8 illustrates a hypothetical system in 
which nine processors are distributed among five

multimaster processing modules. (For clarity, bus 
interface components are not shown in figure
1-8.) A supervisor module controls the system, 
primarily responding to interrupts and dis
patching other modules to perform tasks. The 
supervisor CPU, like the other processors in the 
system, executes code from private memory that 
is inaccessible to other modules. System memory, 
which is accessible to all the processors, is used 
only for messages, common buffers, etc. This 
helps to “ protect” the processors from each other 
and to keep system bus contention at a minimum. 
The database module is responsible for maintain
ing all system files. Each of the three graphics 
modules supports a graphics CRT terminal. An 
8089 in each module performs data transfers and 
CRT refresh and calls upon an 8088 for intensive 
computational routines.
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Figure 1-8. Multimaster Design Example

1.3 Development Aids

Intel provides the sophisticated tools needed for 
timely and economical development of products 
based on the 8086 family. The 8086 family system 
development environment is focused on the 
Intellec® Series II Microcomputer Development 
System (figure 1-9). The Intellec system is a 
multiple-microprocessor system that runs 
ISIS-II, a disk-based operating system that has 
been proven in thousands of installations. The 
Intellec has built-in interfaces for a printer, 
a PROM programmer and a paper tape 
reader/punch. This same hardware and operating

system may be used to develop systems based on 
other Intel microprocessor families such as the 
8085 and the 8048.

Three language translators support 8086 family 
programming. PL/M-86 is a high-level language 
for the 8086 and 8088 that supports structured 
programming techniques. It is upward- 
compatible with PL/M-80, the most widely used 
high-level microprocessor language. ASM-86 may 
be used to write assembly language programs for 
the 8086 and the 8088 CPUs and gives the pro
grammer access to the full power of these CPUs. 
8089 programs are written in ASM-89, the 8089 
assembly language.
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The language translators produce compatible out
puts that can be manipulated by the software 
development utilities. LINK-86, for example, can 
combine programs written in ASM-86 with 
PL/M-86 programs. LIB-86 allows related pro
grams to be stored in libraries to simplify storage 
and retrival. LOC-86 assigns absolute memory 
addresses to programs. OH-86 changes the for
mat of an executable program for PROM pro
gramming or for loading into the RAM of a test 
vehicle.

The UPP-301 Universal PROM Programmer can 
burn programs into any of Intel’s PROM 
memories; the UPP plugs into the Intellect 
system and allows program data to be 
manipulated from the console before it is pro
grammed into the PROM.

The SDK-86 is an (minimum mode) 8086-based 
prototyping and evaluation kit. It includes the 
CPU, RAM, I/O ports and a breadboard area for 
interfacing customer circuits. A ROM-based 
monitor program is supplied with the kit. 
Monitor commands may be entered from an on
board keypad or from a terminal; the monitor 
returns results to the SDK-86’s on-board LED 
display or to a terminal. Monitor commands 
allow programs to be entered, run, stopped, and 
single-stepped; memory contents can be altered as 
well as displayed. The SDK-C86 Software and 
Cable Interface connects an SDK-86 to an 
Intellect system. The software supplied with the 
cable enables programs to be transferred between 
the development system and the SDK-86 to allow 
users to develop programs using the text editor, 
translators and utilities of the Intellec system and 
then download the program to the SDK-86 for 
execution.

The iSBC 86/12™ board is a high-performance 
single board computer based on a maximum 
mode 8086 CPU. The board contains 32k of dual
port RAM that is accessible to the CPU via the 
on-board bus and to other processors via the 
built-in Multibus™ interface. The board also has 
an asynchronous serial port, parallel ports with 
sockets for drivers and terminators, two timers 
and sockets for 16k of ROM.

An iSBC 86/12™ can be linked to an Intellec® 
system using the iSBC 957™ Intellec-iSBC 86/12 
Interface and Execution Package. The package 
includes a ROM-based monitor for the iSBC 
86/12 board, software for the Intellec system and 
cabling to connect the two. The package supports 
data transfers between Intellec diskettes and iSBC 
86/12 memory, full speed execution of customer 
programs on the iSBC 86/12 board, breakpoints, 
single-stepping, and data moves, replacements, 
searches and compares. All commands are 
entered from the Intellec console.

The ICE-86™ module is an in-circuit emulator 
for the 8086 microprocessor. A 40-pin probe 
replaces the 8086 in the system under test. This 
probe is connected to ICE-86 circuit boards that 
in turn plug into the Intellec5 chassis. The ICE-86 
module emulates the 8086 in the system under test 
in response to commands entered through the 
Intellec console. These commands allow the user 
to debug the system by setting breakpoints, trac
ing the flow of execution, single-stepping, 
examining and altering memory and I/O, etc. All 
references to program variables and labels are 
symbolic (i.e., their PL/M-86 or ASM-86 names). 
Software testing can also map “ system under 
test” memory into the Intellec memory to permit 
software testing to begin before prototype hard
ware has been developed.
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LANGUAGE TRANSLATORS SOFTWARE DEVELOPMENT UTILITIES

PL/M-86
OH-86

UPP
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PROGRAMMER
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SINGLE BOARD COMPUTER
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Figure 1-9. 8086 Family Development Aids
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CHAPTER 2 
THE 8086 AND 8088 

CENTRAL PROCESSING UNITS

This chapter describes the mainstays of the 8086 
microprocessor family: the 8086 and 8088 central 
processing units (CPUs). The material is divided 
into ten sections and generally proceeds from 
hardware to software topics as follows:

1. Processor Overview
2. Processor Architecture
3. Memory
4. Input/Output
5. Multiprocessing Features
6. Processor Control and Monitoring
7. Instruction Set
8. Addressing Modes
9. Programming Facilities

10. Programming Guidelines and Examples

The chapter describes the internal operation of 
the CPUs in detail. The interaction of the pro
cessors with other devices is discussed in func
tional terms; electrical characteristics, timing, and 
other information needed to actually interface 
other devices with the 8086 and 8088 are provided 
in Chapter 4.

2.1 Processor Overview

The 8086 and 8088 are closely related third- 
generation microprocessors. The 8088 is designed 
with an 8-bit external data path to memory and 
I/O, while the 8086 can transfer 16 bits at a time. 
In almost every other respect the processors are 
identical; software written for one CPU will 
execute on the other without alteration. The chips 
are contained in standard 40-pin dual in-line 
packages (figure 2-1) and operate from a single 
+5V power source.

The 8086 and 8088 are suitable for an exception
ally wide spectrum of microcomputer applica
tions, and this flexibility is one of their most 
outstanding characteristics. Systems can range 
from uniprocessor minimal-memory designs 
implemented with a handful of chips (figure 2-2), 
to multiprocessor systems with up to a megabyte 
of memory (figure 2-3).
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Figure 2-2. Small 8088-Based System

Figure 2-3. 8086/8088/8089 Multiprocessing System
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The large application domain of the 8086 and 
8088 is made possible primarily by the processors’ 
dual operating modes (minimum and maximum 
mode) and built-in multiprocessing features. 
Several of the 40 CPU pins have dual functions 
that are selected by a strapping pin. Configured 
in minimum mode, these pins transfer control 
signals directly to memory and input/output 
devices. In maximum mode these same pins take 
on different functions that are helpful in medium 
to large ystems, especially systems with multiple 
processors. The control functions assigned to 
these pins in minimum mode are assumed by a 
support chip, the 8288 Bus Controller.

The CPUs are designed to operate with the 8089 
Input/Output Processor (IOP) and other pro
cessors in multiprocessing and distributed pro
cessing systems. When used in conjunction with 
one or more 8089s, the 8086 and 8088 expand 
the applicability of microprocessors into I/O
intensive data processing systems. Built-in coor
dinating signals and instructions, and electrical 
compatibility with Intel’s Multibus™ shared bus 
architecture, simplify and reduce the cost of 
developing multiple-processor designs.

Both CPUs are substantially more powerful than 
any microprocessor previously offered by Intel. 
Actual performance, of course, varies from 
application to application, but comparisons to the 
industry standard 2-MHz 8080A are instructive. 
The 8088 is from four to six times more powerful 
than the 8080A; the 8086 provides seven to ten 
times the 8080A’s performance (see figure 2-4).

YEAR INTRODUCED

Figure 2-4. Relative Performance of the 
8086 and 8088

The 8086’s advantage over the 8088 is attributable 
to its 16-bit external data bus. In applications that 
manipulate 8-bit quantities extensively, or that 
are execution-bound, the 8088 can approach to 
within 10% of the 8086’s processing throughput.

The high performance of the 8086 and 8088 is 
realized by combining a 16-bit internal data path 
with a pipelined architecture that allows instruc
tions to be prefetched during spare bus cycles. 
Also contributing to performance is a compact 
instruction format that enables more instructions 
to be fetched in a given amount of time.

Software for high-performance 8086 and 8088 
systems need not be written in assembly language. 
The CPUs are designed to provide direct hard
ware support for programs written in high-level 
languages such as Intel’s PL/M-86. Most high- 
level languages store variables in memory; the 
8086/8088 symmetrical instruction set supports 
direct operation on memory operands, including 
operands on the stack. The hardware addressing 
modes provide efficient, straightforward 
implementations of based variables, arrays, ar
rays of structures and other high-level language 
data constructs. A powerful set of memory-to- 
memory string operations is available for efficient 
character data manipulation. Finally, routines 
with critical performance requirements that can
not be met with PL/M-86 may be written in 
ASM-86 (the 8086/8088 assembly language) and 
linked with PL/M-86 code.

While the 8086 and 8088 are totally new designs, 
they make the most of users’ existing investments 
in systems designed around the 8080/8085 
microprocessors. Many of the standard Intel 
memory, peripheral control and communication 
chips are compatible with the 8086 and the 8088. 
Software is developed in the familiar Intellec® 
Microcomputer Development System environ
ment, and most existing programs, whether writ
ten in ASM-80 or PL/M-80, can be directly con
verted to run on the 8086 and 8088.

2.2 Processor Architecture
Microprocessors generally execute a program by 
repeatedly cycling through the steps shown below 
(this description is somewhat simplified):
1. Fetch the next instruction from memory.
2. Read an operand (if required by the 

instruction).
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3. Execute the instruction.
4. Write the result (if required by the 

instruction).

In previous CPUs, most of these steps have been 
performed serially, or with only a single bus cycle 
fetch overlap. The architecture of the 8086 and 
8088 CPUs, while performing the same steps, 
allocates them to two separate processing units 
within the CPU. The execution unit (EU) executes 
instructions; the bus interface unit (BIU) fetches 
instructions, reads operands and writes results.

The two units can operate independently of one 
another and are able, under most circumstances, 
to extensively overlap instruction fetch with exe
cution. The result is that, in most cases, the time 
normally required to fetch instructions “ dis
appears” because the EU executes instructions 
that have already been fetched by the BIU. Figure
2-5 illustrates this overlap and compares it with 
traditional microprocessor operation. In the 
example, overlapping reduces the elapsed time 
required to execute three instructions, and allows 
two additional instructions to be prefetched as 
well.
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1i

l^FETCH/j rE X E C U T E ^ FETCH R E A D

BUS: |  BUSY | Ij j u s y J B U S Y  | B U S Y  |

I IIexecuteII............

f

8086/8088 V  
M IC R O PR O C E SS O R 'S

V

I! m I m I!!!!!! IM j| 
EXECUTE I 

nili.iilillliilliui

T777777777\ ITmTTnTl p « l  
BIU: |  FETCH ,! I  FETCH I fcWRITE^l

| BUSY | | B U S Y  | | B U S Y  | | B U S Y  |

Figure 2-5. Overlapped Instruction Fetch and Execution
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Execution Unit

The execution units of the 8086 and 8088 are iden
tical (figure 2-6). A 16-bit arithmetic/logic unit 
(ALU) in the EU maintains the CPU status and 
control flags, and manipulates the general 
registers and instruction operands. All registers 
and data paths in the EU are 16 bits wide for fast 
internal transfers.

The EU has no connection to the system bus, the 
“ outside world.” It obtains instructions from a 
queue maintained by the BIU. Likewise, when an 
instruction requires access to memory or to a 
peripheral device, the EU requests the BIU to 
obtain or store the data. All addresses 
manipulated by the EU are 16 bits wide. The BIU, 
however, performs an address relocation that 
gives the EU access to the full megabyte of 
memory space (see section 2.3).

Bus Interface Unit

The BIUs of the 8086 and 8088 are functionally 
identical, but are implemented differently to 
match the structure and perform ance 
characteristics of their respective buses.

The BIU performs all bus operations for the EU. 
Data is transferred between the CPU and memory 
or I/O devices upon demand from the EU. Sec
tions 2.3 and 2.4 describe the interaction of the 
BIU with memory and I/O devices.

In addition, during periods when the EU is busy 
executing instructions, the BIU “ looks ahead” 
and fetches more instructions from memory. The 
instructions are stored in an internal RAM array 
called the instruction stream queue. The 8088 
instruction queue holds up to four bytes of the 
instruction stream, while the 8086 queue can store

Figure 2-6. Execution and Bus Interface Units (EU and BIU)
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up to six instruction bytes. These queue sizes 
allow the BIU to keep the EU supplied with pre
fetched instructions under most conditions 
without monopolizing the system bus. The 8088 
BIU fetches another instruction byte whenever 
one byte in its queue is empty and there is no 
active request for bus access from the EU. The 
8086 BIU operates similarly except that it does 
not initiate a fetch until there are two empty bytes 
in its queue. The 8086 BIU normally obtains two 
instruction bytes per fetch; if a program transfer 
forces fetching from an odd address, the 8086 
BIU automatically reads one byte from the odd 
address and then resumes fetching two-byte 
words from the subsequent even addresses.

Under most circumstances the queues contain at 
least one byte of the instruction stream and the 
EU does not have to wait for instructions to be 
fetched. The instructions in the queue are those 
stored in the memory locations immediately adja
cent to and higher than the instruction currently 
being executed. That is, they are the next logical 
instructions so long as execution proceeds seri
ally. If the EU executes an instruction that 
transfers control to another location, the BIU 
resets the queue, fetches the instruction from the 
new address, passes it immediately to the EU, and 
then begins refilling the queue from the new loca
tion. In addition, the BIU suspends instruction 
fetching whenever the EU requests a memory or 
I/O read or write (except that a fetch already in 
progress is completed before executing the EU’s 
bus request).

General Registers

Both CPUs have the same complement of eight 
16-bit general registers (figure 2-7). The general 
registers are subdivided into two sets of four 
registers each: the data registers (sometimes called 
the H & L group for “ high” and “ low” ), and the 
pointer and index registers (sometimes called the 
P & I group).

The data registers are unique in that their upper 
(high) and lower halves are separately 
addressable. This means that each data register 
can be used interchangeably as a 16-bit register, 
or as two 8-bit registers. The other CPU registers 
always are accessed as 16-bit units only. The data 
registers can be used without constraint in most 
arithmetic and logic operations. In addition,

ACCUMULATOR

BASE

COUNT

DATA

STACK
POINTER

BASE
POINTER

SOURCE
INDEX

DESTINATION
INDEX

Figure 2-7. General Registers

some instructions use certain registers implicitly 
(see table 2-1) thus allowing compact yet powerful 
encoding.

Table 2-1. Implicit Use of General Registers

REGISTER OPERATIONS

AX W o rd  M u lt ip ly ,  W o rd  D iv id e , 
W o rd  I/O

A L B y te  M u lt ip ly ,  B y te  D iv id e , B y te  
I /O , T ra n s la te , D e c im a l A r ith m e t ic

AH B y te  M u lt ip ly ,  B y te  D iv id e

BX T ra n s la te

CX S tr in g  O p e ra t io n s , L o o p s

C L V a r ia b le  S h if t  and  R o ta te

DX W o rd  M u lt ip ly ,  W o rd  D iv id e , 
In d ire c t  I /O

SP S ta c k  O p e ra t io n s

SI S tr in g  O p e ra t io n s

Dl S tr in g  O p e ra t io n s

The pointer and index registers can also par
ticipate in most arithmetic and logic operations. 
In fact, all eight general registers fit the definition 
of “ accumulator” as used in first and second 
generation microprocessors. The P & I registers 
(except for BP) also are used implicitly in some 
instructions as shown in table 2-1.
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Segment Registers Flags

The megabyte of 8086 and 8088 memory space is 
divided into logical segments of up to 64k bytes 
each. (Memory segmentation is described in sec
tion 2.3.) The CPU has direct access to four 
segments at a time; their base addresses (starting 
locations) are contained in the segment registers 
(see figure 2-8), The CS register points to the cur
rent code segment; instructions are fetched from 
this segment. The SS register points to the current 
stack segment; stack operations are performed on 
locations in this segment. The DS register points 
to the current data segment; it generally contains 
program variables. The ES register points to the 
current extra segment, which also is typically used 
for data storage.

The segment registers are accessible to programs 
and can be manipulated with several instructions. 
Good programming practice and consideration of 
compatibility with future Intel hardware and soft
ware products dictate that the segment registers 
be used in a disciplined fashion. Section 2.10 pro
vides guidelines for segment register use.

CODE
SEGMENT

DATA
SEGMENT

STACK
SEGMENT

EXTRA
SEGMENT

Figure 2-8. Segment Registers

Instruction Pointer

The 8086 and 8088 have six 1-bit status flags 
(figure 2-9) that the EU posts to reflect certain 
properties of the result of an arithmetic or logic

CONTROL STATUS
FLAGS FLAGS

----A____________   A__

operation. A group of instructions is available 
that allows a program to alter its execution 
depending on the state of these flags, that is, on 
the result of a prior operation. Different instruc
tions affect the status flags differently; in general, 
however, the flags reflect the following 
conditions:

1. If AF (the auxiliary carry flag) is set, there 
has been a carry out of the low nibble into 
the high nibble or a borrow from the high 
nibble into the low nibble of an 8-bit quantity 
(low-order byte of a 16-bit quantity). This 
flag is used by decimal arithmetic 
instructions.

The 16-bit instruction pointer (IP) is analogous to 
the program counter (PC) in the 8080/8085 
CPUs. The instruction pointer is updated by the 
BIU so that it contains the offset (distance in 
bytes) of the next instruction from the beginning 
of the current code segment; i.e., IP points to the 
next instruction. During normal execution, IP 
contains the offset of the next instruction to be 
fetched by the BIU; whenever IP is saved on the 
stack, however, it first is automatically adjusted 
to point to the next instruction to be executed. 
Programs do not have direct access to the instruc
tion pointer, but instructions cause it to change 
and to be saved on and restored from the stack.

2. If CF (the carry flag) is set, there has been a 
carry out of, or a borrow into, the high-order 
bit of the result (8- or 16-bit). The flag is used 
by instructions that add and subtract 
multibyte numbers. Rotate instructions can 
also isolate a bit in memory or a register by 
placing it in the carry flag.

3. If OF (the overflow flag) is set, an arithmetic 
overflow has occurred; that is, a significant 
digit has been lost because the size of the 
result exceeded the capacity of its destination 
location. An Interrupt On Overflow instruc
tion is available that will generate an inter
rupt in this situation.
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4. If SF (the sign flag) is set, the high-order bit 
of the result is a 1. Since negative binary 
numbers are represented in the 8086 and 8088 
in standard two’s complement notation, SF 
indicates the sign of the result (0 = positive, 
1 = negative).

5. If PF (the parity flag) is set, the result has 
even parity, an even number of 1-bits. This 
flag can be used to check for data transmis
sion errors.

6. If ZF (the zero flag) is set, the result of the 
operation is 0.

Three additional control flags (figure 2-9) can be
set and cleared by programs to alter processor
operations:
1. Setting DF (the direction flag) causes string 

instructions to auto-decrement; that is, to 
process strings from high addresses to low 
addresses, or from “ right to left.” Clearing 
DF causes string instructions to auto
increment, or to process strings from “ left to 
right.”

2. Setting IF (the interrupt-enable flag) allows 
the CPU to recognize external (maskable) 
interrupt requests. Clearing IF disables these 
interrupts. IF has no affect on either non
maskable external or internally generated 
interrupts.

3. Setting TF (the trap flag) puts the processor 
into single-step mode for debugging. In this 
mode, the CPU automatically generates an 
internal interrupt after each instruction, 
allowing a program to be inspected as it exe
cutes instruction by instruction. Section 2.10 
contains an example showing the use of TF in 
a single-step and breakpoint routine.

8080/8085 Registers and Flag 
Correspondence

The registers, flags and program counter in the 
8080/8085 CPUs all have counterparts in the 8086 
and 8088 (see figure 2-10). The A register (ac
cumulator) in the 8080/8085 corresponds to the 
AL register in the 8086 and 8088. The 8080/8085 
H & L, B & C, and D & E registers correspond to 
registers BH, BL, CH, CL, DH and DL, respec
tively, in the 8086 and 8088. The 8080/8085 SP 
(stack pointer) and PC (program counter) have 
their counterparts in the 8086/8088 SP and IP.

The AF, CF, PF, SF, and ZF flags are the same in 
both CPU families. The remaining flags and 
registers are unique to the 8086 and 8088. This 
8080/8085 to 8086 mapping allows most existing 
8080/8085 program code to be directly translated 
into 8086/8088 code.

Mode Selection

Both processors have a strap pin (MN/MX) that 
defines the function of eight CPU pins in the 8086 
and nine pins in the 8088. Connecting MN/MX to 
+5V places the CPU in minimum mode. In this 
configuration, which is designed for small 
systems (roughly one or two boards), the CPU 
itself provides the bus control signals needed by 
memory and peripherals. When MN/MX is 
strapped to ground, the CPU is configured in 
maximum mode. In this configuration the CPU 
encodes control signals on three lines. An 8288 
Bus Controller is added to decode the signals 
from the CPU and to provide an expanded set of 
control signals to the rest of the system. The CPU 
uses the remaining free lines for a new set of 
signals designed to help coordinate the activities 
of other processors in the system. Sections 2.5 
and 2.6 describe the functions of these signals.

2 .3  M em o ry

The 8086 and 8088 can accommodate up to 
1,048,576 bytes of memory in both minimum and 
maximum mode. This section describes how 
memory is functionally organized and used. 
There are substantial differences in the way 
memory components are actually accessed by the 
two processors; these differences, which are in
visible to programs, are covered in section 4.2, 
External Memory Addressing.

Storage Organization

From a storage point of view, the 8086 and 8088 
memory spaces are organized as identical arrays 
of 8-bit bytes (see figure 2-11). Instructions, byte 
data and word data may be freely stored at any 
byte address without regard for alignment thereby 
saving memory space by allowing code to be 
densely packed in memory (see figure 2-12). Odd- 
addressed (unaligned) word variables, however,
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A C C U M U L A T O R

S T A C K
P O IN T E R

B A S E
P O IN T E R

S O U R C E
IN D EX

D E S T IN A T IO N
IN D EX

Figure 2-10. 8080/8085 Register Subset (Shaded)
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do not take advantage of the 8086’s ability to 
transfer 16-bits at a time. Instruction alignment 
does not materially affect the performance of 
either processor.

Following Intel convention, word data always is 
stored with the most-significant byte in the higher 
memory location (see figure 2-13). Most of the 
time this storage convention is “ invisible” to 
anyone working with the processors; exceptions 
may occur when monitoring the system bus or 
when reading memory dumps.

A special class of data is stored as doublewords;
i.e., two consecutive words. These are called 
pointers and are used to address data and code 
that are outside the currently-addressable 
segments. The lower-addressed word of a pointer 
contains an offset value, and the higher-addressed 
word contains a segment base address. Each word 
is stored conventionally with the higher-addressed 
byte containing the most-significant eight bits of 
the word (see figure 2-14).

724H 725H

0 [ 2 5 i 5 H EX

0000 [ 0010 0 10 1  ; 0 10 1 B IN A R Y

V A L U E  O F  W O R D  S T O R E D  A T  724H: 5502H

Figure 2-13. Storage of Word Variables

Segmentation

8086 and 8088 programs “ view” the megabyte of 
memory space as a group of segments that are 
defined by the application. A segment is a logical 
unit of memory that may be up to 64k bytes long. 
Each segment is made up of contiguous memory 
locations and is an independent, separately- 
addressable unit. Every segment is assigned (by 
software) a base address, which is its starting 
location in the memory space. All segments begin 
on 16-byte memory boundaries. There are no 
other restrictions on segment locations; segments 
may be adjacent, disjoint, partially overlapped, 
or fully overlapped (see figure 2-15). A physical 
memory location may be mapped into (contained 
in) one or more logical segments.

The segment registers point to (contain the base 
address values of) the four currently addressable 
segments (see figure 2-16). Programs obtain 
access to code and data in other segments by 
changing the segment registers to point to the 
desired segments.

Every application will define and use segments 
differently. The currently addressable segments 
provide a generous work space: 64k bytes for 
code, a 64k byte stack and 128k bytes of data 
storage. Many applications can be written to 
simply initialize the segment registers and then 
forget them. Larger applications should be 
designed with careful consideration given to seg
ment definition.

4H 5H  6H 7H

6 5 0 0 4 C 3 B H EX

0110 0101 0000 0000 0100 1100 0011 1011 B IN A R Y

V A L U E  O F  P O IN T E R  S T O R E D  A T  4H: 
S E G M E N T  B A S E  A D D R E S S :  3B 4C H  
O F F S E T :  65H

Figure 2-14. Storage of Pointer Variables
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LOGICAL
SEGMENTS

PHYSICAL
MEMORY

Figure 2-15. Segment Locations in Physical Memory

Figure 2-16. Currently Addressable Segments

The segmented structure of the 8086/8088 
memory space supports modular software design 
by discouraging huge, monolithic programs. The 
segments also can be used to advantage in many 
programming situations. Take, for example, the 
case of an editor for several on-line terminals. A 
64k text buffer (probably an extra segment) could 
be assigned to each terminal. A single program 
could maintain all the buffers by simply changing 
register ES to point to the buffer of the terminal 
requiring service.

Physical Address Generation

It is useful to think of every memory location as 
having two kinds of addresses, physical and 
logical. A physical address is the 20-bit value that 
uniquely identifies each byte location in the 
megabyte memory space. Physical addresses may 
range from OH through FFFFFH. All exchanges 
between the CPU and memory components use 
this physical address.

Programs deal with logical, rather than physical 
addresses and allow code to be developed without 
prior knowledge of where the code is to be located 
in memory and facilitate dynamic management of 
memory resources. A logical address consists of a 
segment base value and an offset value. For any 
given memory location, the segment base value
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locates the first byte of the containing segment 
and the offset value is the distance, in bytes, of 
the target location from the beginning of the 
segment. Segment base and offset values are 
unsigned 16-bit quantities; the lowest-addressed 
byte in a segment has an offset of 0. Many dif
ferent logical addresses can map to the same 
physical location as shown in figure 2-17. In 
figure 2-17, physical memory location 2C3H is 
contained in two different overlapping segments, 
one beginning at 2B0H and the other at 2C0H.

Whenever the BIU accesses memory—to fetch an 
instruction or to obtain or store a variable—it 
generates a physical address from a logical 
address. This is done by shifting the segment base 
value four bit positions and adding the offset as 
illustrated in figure 2-18. Note that this addition 
process provides for modulo 64k addressing 
(addresses wrap around from the end of a seg
ment to the beginning of the same segment).

The BIU obtains the logical address of a memory 
location from different sources depending on the 
type of reference that is being made (see table

2-2). Instructions always are fetched from the cur
rent code segment; IP contains the offset of the 
target instruction from the beginning of the seg
ment. Stack instructions always operate on the 
current stack segment; SP contains the offset of 
the top of the stack. Most variables (memory 
operands) are assumed to reside in the current 
data segment, although a program can instruct 
the BIU to access a variable in one of the other 
currently addressable segments. The offset of a 
memory variable is calculated by the EU. This 
calculation is based on the addressing mode 
specified in the instruction; the result is called the 
operand’s effective address (EA). Section 2.8 
covers addressing modes and effective address 
calculation in detail.

Strings are addressed differently than other 
variables. The source operand of a string instruc
tion is assumed to lie in the current data segment, 
but another currently addressable segment may be 
specified. Its offset is taken from register SI, the 
source index register. The destination operand of 
a string instruction always resides in the current

P H Y S IC A L
A D D R E S S

L O G IC A L
A D D R E S S E S

Figure 2-17. Logical and Physical Addresses
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Figure 2-18. Physical Address Generation

Table 2-2. Logical Address Sources

TYPE OF MEMORY REFERENCE
DEFAULT
SEGMENT

BASE

ALTERNATE
SEGMENT

BASE
OFFSET

In s tru c t io n  F e tch CS N O N E IP
S ta c k  O p e ra tio n ss N O N E SP
V a r ia b le  (e x c e p t fo llo w in g ) DS C S ,E S ,S S E ffe c t iv e  A d d re s s
S tr in g  S o u rc e DS C S ,E S ,S S SI
S tr in g  D e s tin a tio n ES N O N E Dl
BP U se d  A s  B a se  R e g is te r SS C S ,D S ,E S E ffe c t iv e  A d d re s s

extra segment; its offset is taken from DI, the 
destination index register. The string instructions 
automatically adjust SI and Dl as they process the 
strings one byte or word at a time.

When register BP, the base pointer register, is 
designated as a base register in an instruction, the 
variable is assumed to reside in the current stack 
segment. Register BP thus provides a convenient 
way to address data on the stack; BP can be used, 
however, to access data in any of the other cur
rently addressable segments.

In most cases, the BIU’s segment assumptions are 
a convenience to programmers. It is possible, 
however, for a programmer to explicitly direct the 
BIU to access a variable in any of the currently 
addressable segments (the only exception is the 
destination operand of a string instruction which 
must be in the extra segment). This is done by 
preceding an instruction with a segment override 
prefix. This one-byte machine instruction tells the 
BIU which segment register to use to access a 
variable referenced in the following instruction.

Dynamically Relocatable Code

The segmented memory structure of the 8086 and 
8088 makes it possible to write programs that are 
position-independent, or dynamically relocatable. 
Dynamic relocation allows a multiprogramming 
or multitasking system to make particularly effec
tive use of available memory. Inactive programs 
can be written to disk and the space they occupied 
allocated to other programs. If a disk-resident 
program is needed later, it can be read back into 
any available memory location and restarted. 
Similarly, if a program needs a large contiguous 
block of storage, and the total amount is available 
only in nonadjacent fragments, other program 
segments can be compacted to free up a con
tinuous space. This process is shown graphically 
in figure 2-19.

In order to be dynamically relocatable, a program 
must not load or alter its segment registers and 
must not transfer directly to a location outside the 
current code segment. In other words, all offsets 
in the program must be relative to fixed values
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B E F O R E  R E L O C A T IO N

C O D E
S E G M E N T

S T A C K
S E G M E N T

D A T A
S E G M E N T

E X T R A
S E G E M E N T

c s | CS

SS l SS

DS 1 DS

ES 1 ES

A F T E R  R E L O C A T IO N

C O D E
S E G M E N T

S T A C K
S E G M E N T

D A T A
S E G M E N T

E X T R A
S E G M E N T

F R E E  S P A C E

Figure 2-19. Dynamic Code Relocation

contained in the segment registers. This allows the 
program to be moved anywhere in memory as 
long as the segment registers are updated to point 
to the new base addresses. Section 2.10 contains 
an example that illustrates dynamic code 
relocation.

Stack Implementation

Stacks in the 8086 and 8088 are implemented in 
memory and are located by the stack segment 
register (SS) and the stack pointer register (SP). A 
system may have an unlimited number of stacks, 
and a stack may be up to 64k bytes long, the max
imum length of a segment. (An attempt to expand 
a stack beyond 64k bytes overwrites the beginning 
of the stack.) One stack is directly addressable at 
a time; this is the current stack, often referred to 
simply as “ the” stack. SS contains the base 
address of the current stack and SP points to the 
top of the stack (TOS). In other words, SP con
tains the offset of the top of the stack from the

stack segment’s base address. Note, however, that 
the stack’s base address (contained in SS) is not 
the “ bottom” of the stack.

8086 and 8088 stacks are 16 bits wide; instructions 
that operate on a stack add and remove stack 
items one word at a time. An item is pushed onto 
the stack (see figure 2-20) by decrementing SP by 
2 and writing the item at the new TOS. An item is 
popped off the stack by copying it from TOS and 
then incrementing SP by 2. In other words, the 
stack grows down in memory toward its base 
address. Stack operations never move items on 
the stack, nor do they erase them. The top of the 
stack changes only as a result of updating the 
stack pointer.

Dedicated and Reserved Memory 
Locations

Two areas in extreme low and high memory are 
dedicated to specific processor functions or are 
reserved by Intel Corporation for use by Intel
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PUSH AX

POP AX 
POP BX

AX |  12 [ 34 h ~ i

STACK OPERATION FOR CODE SEQUENCE 
PUSH AX 

POP AX 
POP BX

Figure 2-20. Stack Operation

hardware and software products. As shown in 
figure 2-21, the location are: OH throgh 7FH (128 
bytes) and FFFFOH through FFFFFH (16 bytes). 
These areas are used for interrupt and system 
reset processing 8086 and 8088 application 
systems should not use these areas for any other 
purpose. Doing so may make these systems 
incompatible with future Intel products.

8086/8088 Memory Access 
Differences

The 8086 can access either 8 or 16 bits of memory 
at a time. If an instruction refers to a word 
variable and that variable is located at an even- 
numbered address, the 8086 accesses the complete 
word in one bus cycle. If the word is located at an 
odd-numbered address, the 8086 accesses the 
word one byte at a time in two consecutive bus 
cycles.

To maximize throughput in 8086-based systems, 
16-bit data should be stored at even addresses 
(should be word-aligned). This is particularly true 
of stacks. Unaligned stacks can slow a system’s 
response to interrupts. Nevertheless, except for 
the performance penalty, word alignment is

totally transparent to software. This allows max
imum data packing where memory space is 
constrained.

The 8086 always fetches the instruction stream in 
words from even addresses except that the first 
fetch after a program transfer to an odd address 
obtains a byte. The instruction stream is 
disassembled inside the processor and instruction 
alignment will not materially affect the per
formance of most systems.

The 8088 always accesses memory in bytes. Word 
operands are accessed in two bus cycles regardless 
of their alignment. Instructions also are fetched 
one byte at a time. Although alignment of word 
operands does not affect the performance of the 
8088, locating 16-bit data on even addresses will 
insure maximum throughput if the system is ever 
transferred to an 8086.

2.4 Input/O utput
The 8086 and 8088 have a versatile set of in- 
put/output facilities. Both processors provide a 
large I/O space that is separate from the memory
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MEMORY I/O

Figure 2-21. Reserved and Dedicated Memory 
and I/O Locations

space, and instructions that transfer data between 
the CPU and devices located in the I/O space. 
I/O devices also may be placed in the memory 
space to bring the power of the full instruction set 
and addressing modes to input/output pro
cessing. For high-speed transfers, the CPUs may 
be used with traditional direct memory access 
controllers or the 8089 Input/Output Processor.

Input/O utput Space

The 8086/8088 I/O space can accommodate up to 
64k 8-bit ports or up to 32k 16-bit ports. The IN 
and OUT (input and output) instructions transfer 
data between the accumulator (AL for byte 
transfers, AX for word transfers) and ports 
located in the I/O space.

The I/O space is not segmented; to access a port, 
the BIU simply places the port address (0-64k) on 
the lower 16 lines of the address bus. Different 
forms of the I/O instructions allow the address to 
be specified as a fixed value in the instruction or 
as a variable taken from register DX.

Restricted I/O  Locations

Locations F8H through FFH (eight of the 64k 
locations) in the I/O space are reserved by Intel 
Corporation for use by future Intel hardware and 
software products. Using these locations for any 
other purpose may inhibit compatibility with 
future Intel products.

8086/8088 I/O  Access Differences

The 8086 can transfer either 8 or 16 bits at a time 
to a device located in the I/O space. A 16-bit 
device should be located at an even address so 
that the word will be transferred in a single bus 
cycle. An 8-bit device may be located at either an 
even or odd address; however, the internal 
registers in a given device must be assigned all
even or all-odd addresses.

The 8088 transfers one byte per bus cycle. If a 
16-bit device is used in the 8088 I/O space, it must 
be capable of transferring words in the same 
fashion, i.e., eight bits at a time in two bus cycles. 
(The 8089 Input/Output Processor can provide a 
straightforward interface between the 8088 and a 
16-bit I/O device.) An 8-bit device may be located 
at odd or even addresses in the 8088 I/O space 
and internal registers may be assigned consecutive 
addresses (e.g., 1H, 2H, 3H). Assigning all-odd 
or all-even addresses to these registers, however, 
will simplify transferring the system to an 8086 
CPU.

Memory-Mapped I/O

I/O devices also may be placed in the 8086/8088 
memory space. As long as the devices respond like 
memory components, the CPU does not know the 
difference.

Memory-mapped I/O provides additional pro
gramming flexibility. Any instruction that 
references memory may be used to access an I/O 
port located in the memory space. For example, 
the MOV (move) instruction can transfer data 
between any 8086/8088 register and a port, or the 
AND, OR and TEST instructions may be used to 
manipulate bits in I/O device registers. In addi
tion, memory-mapped I/O can take advantage of 
the 8086/8088 memory addressing modes. A 
group of terminals, for example, could be treated 
as an array in memory with an index register
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selecting a terminal in the array. Section 2.10 pro
vides examples of using the instruction set and 
addressing modes with memory-mapped I/O.

Of course, a price must be paid for the added pro
gramming flexibility that memory-mapped I/O 
provides. Dedicating part of the memory space to 
I/O devices reduces the number of addresses 
available for memory, although with a megabyte 
of memory space this should rarely be a con
straint. Memory reference instructions also take 
longer to execute and are somewhat less compact 
than the simpler IN and OUT instructions.

Direct Memory Access

When configured in minimum mode, the 8086 
and 8088 provide HOLD (hold) and HLDA (hold 
acknowledge) signals that are compatible with 
traditional DMA controllers such as the 8257 and 
8237. A DMA controller can request use of the 
bus for direct transfer of data between an I/O 
device and memory by activating HOLD. The 
CPU will complete the current bus cycle, if one is 
in progress, and then issue HLDA, granting the 
bus to the DMA controller. The CPU will not 
attempt to use the bus until HOLD goes inactive.

The 8086 addresses memory that is physically 
organized in two separate banks, one containing 
even-addressed bytes and one containing odd-ad- 
dressed bytes. An 8-bit DMA controller must 
alternately select these banks to access logically 
adjacent bytes in memory. The 8089 provides a 
simple way to interface a high-speed 8-bit device 
to an 8086-based system (see Chapter 3).

8089 Input/O utput Processor (IOP)

The 8086 and 8088 are designed to be used with 
the 8089 in high-performance I/O applications. 
The 8089 c o n c ep tu a lly  resem bles a 
microprocessor with two DMA channels and an 
instruction set specifically tailored for I/O opera
tions. Unlike simple DMA controllers, the 8089 
can service I/O devices directly, removing this 
task from the CPU. In addition, it can transfer 
data on its own bus or on the system bus, can 
match 8- or 16-bit peripherals to 8- or 16-bit 
buses, and can transfer data from memory to 
memory and from I/O device to I/O device. 
Chapter 3 describes the 8089 in detail.

2.5 Multiprocessing Features

As microprocessor prices have declined, 
multiprocessing (using two or more coordinated 
processors in a system) has become an increas
ingly attractive design alternative. Performance 
can be substantially improved by distributing 
system tasks among separate, concurrently exe
cuting processors. In addition, multiprocessing 
encourages a modular approach to design, usually 
resulting in systems that are more easily main
tained and enhanced. For example, figure 2-22 
shows a multiprocessor system in which I/O 
activities have been delegated to an 8089 IOP. 
Should an I/O device in the system be changed 
(e.g., a hard disk substituted for a floppy), the 
impact of the modification is confined to the I/O 
subsystem and is transparent to the CPU and to 
the application software.

The 8086 and 8088 are designed for the 
multiprocessing environment. They have built-in 
features that help solve the coordination prob
lems that have discouraged multiprocessing 
system development in the past.

Bus Lock

When configured in maximum mode, the 8086 
and 8088 provide the LOCK (bus lock) signal. 
The BIU activates LOCK when the EU executes 
the one-byte LOCK prefix instruction. The 
LOCK signal remains active throughout execu
tion of the instruction that follows the LOCK 
prefix. Interrupts are not affected by the LOCK 
prefix. If another processor requests use of the 
bus (via the request/grant lines, which are 
discussed shortly), the CPU records the request, 
but does not honor it until execution of the locked 
instruction has been completed.

Note that the LOCK signal remains active for the 
duration of a single instruction. If two con
secutive instructions are each preceded by a 
LOCK prefix, there will still be an unlocked 
period between these instructions. In the case of a 
locked repeated string instruction, LOCK does 
remain active for the duration of the block 
operation.

When the 8086 or 8088 is configured in minimum 
mode, the LOCK signal is not available. The 
LOCK prefix can be used, however, to delay the
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Figure 2-22. Multiprocessing System

generation of an HLDA response to a HOLD 
request until execution of the locked instruction is 
completed.

The LOCK signal provides information only. It is 
the responsibility of other processors on the 
shared bus to not attempt to obtain the bus while 
LOCK is active. If the system uses 8289 Bus 
Arbiters to control access to the shared bus, the 
8289’s accept LOCK as an input and do not relin
quish the bus while this signal is active.

LOCK may be used in multiprocessing systems to 
coordinate access to a common resource, such as 
a buffer or a pointer. If access to the resource is 
not controlled, one processor can read an 
erroneous value from the resource when another 
processor is updating it (see figure 2-23).

Access can be controlled (see figure 2-24) by using 
the LOCK prefix in conjunction with the XCHG 
(exchange register with memory) instruction. The 
basis for controlling access to a given resource is a 
semaphore, a software-settable flag or switch that 
indicates whether the resource is “ available” 
(semaphored) or “ busy” (semaphored). Pro
cessors that share the bus agree by convention not 
to use the resource unless the semaphore indicates

that it is available. They likewise agree to set the 
semaphore when they are using the resource and 
to clear it when they are finished.

The XCHG instruction can obtain the current 
value of the semaphore and set it to “ busy” in a 
single instruction. The instruction, however, 
requires two bus cycles to swap 8-bit values. It is 
possible for another processor to obtain the bus 
between these two cycles and to gain access to the 
partially-updated semaphore. This can be 
prevented by preceding the XCHG instruction 
with a LOCK prefix, as illustrated in figure 2-25. 
The bus lock establishes control over access to the 
semaphore and thus to the shared resource.

WAIT and TEST

The 8086 and 8088 (in either maximum or 
minimum mode) can be synchronized to an exter
nal event with the WAIT (wait for TEST) instruc
tion and the TEST input signal. When the EU 
executes a WAIT instruction, the result depends 
on the state of the TEST input line. If TEST is 
inactive, the processor enters an idle state and 
repeatedly retests the TEST line at five-clock 
intervals. If TEST is active, execution continues 
with the instruction following the WAIT.

M nem onics -  Intel, 1978 2-18



8086 AND 8088 CENTRAL PROCESSING UNITS

BUS CYCLE
SHARED POINTER 

IN MEMORY PROCESSOR ACTIVITIES

0 | 0 5 , 2 2  | O 03

1 |  C2 , 59 |l « C . 1 B | “ A "  UPDATES 1 WORD

2 1 C 2 , 59 II 4 C . 1 B | • B"  READS PARTIALLY
UPDATED VALUE

3 |C 2 ,  59 || 31 . 0 5 | “ A”  COMPLETES UPDATE

Escape

The ESC (escape) instruction provides a way for 
another processor to obtain an instruction and/or 
a memory operand from an 8086/8088 program. 
When used in conjunction with WAIT and TEST, 
ESC can initiate a “ subroutine” that executes 
concurrently in another processor (see figure
2-26).

Six bits in the ESC instruction may be specified by 
the programmer when the instruction is written. 
By monitoring the 8086/8088 bus and control 
lines, another processor can capture the ESC 
instruction when it is fetched by the BIU. The six 
bits may then direct the external processor to per
form some predefined activity.

If the 8086/8088 is configured in maximum 
mode, the external processor, having determined 

Figure 2-23. Uncontrolled Access to Shared that an ESC has been fetched, can monitor QS0
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Figure 2-24. Controlled Access to Shared Resource
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C EXIT )

Figure 2-25. Using XCHG and LOCK

and QS1 (the queue status lines, discussed in sec
tion 2.6) and determine when the ESC instruction 
is executed. If the instruction references memory 
the external processor can then monitor the bus 
and capture the operand’s physical address 
and/or the operand itself.

Note that fetching an ESC instruction is not tan
tamount to executing it. The ESC may be pre
ceded by a jump that causes the queue to be 
reinitialized. This event also can be determined 
from the queue status lines.

Request/G rant Lines

When the 8086 or 8088 is configured in maximum 
mode, the HOLD and HLDA lines evolve into 
two more sophisticated signals called RQ/GTO 
and RQ/GT1. These are bidirectional lines that 
can be used to share a local bus between an 8086 
or 8088 and two other processors via a handshake 
sequence.

The request/grant sequence is a three-phase cycle: 
request, grant and release. First, the processor 
desiring the bus pulses a request/grant line. The 
CPU returns a pulse on the same line indicating 
that it is entering the “ hold acknowledge” state 
and is relinquishing the bus. The BIU is logically 
disconnected from the bus during this period. The

P R O C E S S O R
“ A ”

Figure 2-26. Using ESC with WAIT and TEST
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EU, however, will continue to execute instruc
tions until an instruction requires bus access or 
the queue is emptied, whichever occurs first. 
When the other processor has finished with the 
bus, it sends a final pulse to the 8086/8088 in
dicating that the request has ended and that the 
CPU may reclaim the bus.

RQ/GTO has higher priority than RQ/GT1. If 
requests arrive simultaneously on both lines, the 
grant goes to the processor on RQ/GTO and 
RQ/GT1 is acknowledged after the bus has been 
returned to the CPU. If, however, a request 
arrives on RQ/GTO while the CPU is processing a 
prior request on RQ/GT1, the second request is 
not honored until the processor on RQ/GTl 
releases the bus.

Multibus™ Architecture

Intel has designed a general-purpose 
multiprocessing bus called the Multibus. This is 
the standard design used in iSBC™ single-board 
microcomputer products. Many other manufac
turers offer products that are compatible with the 
Multibus architecture as well. When the 8086 and 
8088 are configured in maximum mode, the 8288 
Bus Controller outputs signals that are electrically 
compatible with the Multibus protocol. Designers 
of multiprocessing systems may want to consider 
using the Multibus architecture in the design of 
their products to reduce development cost and

time, and to obtain compatibility with the wide 
variety of boards available in the iSBC product 
line.

The Multibus architecture provides a versatile 
communications channel that can be used to coor
dinate a wide variety of computing modules (see 
figure 2-27). Modules in a Multibus system are 
designated as masters or slaves. Masters may 
obtain use of the bus and initiate data transfers on 
it. Slaves are the objects of data transfers only. 
The Multibus architecture allows both 8- and 16- 
bit masters to be intermixed in a system. In addi
tion to 16 data lines, the bus design provides 20 
address lines, eight multilevel interrupt lines, and 
control and arbitration lines. An auxiliary power 
bus also is provided to route standby power to 
memories if the normal supply fails.

The Multibus architecture maintains its own 
clock, independent of the clocks of the modules it 
links together. This allows different speed masters 
to share the bus and allows masters to operate 
asynchronously with respect to each other. The 
arbitration logic of the bus permit slow-speed 
masters to compete equably for use of the bus. 
Once a module has obtained the bus, however, 
transfer speeds are dependent only on the 
capabilities of the transmitting and receiving 
modules. Finally, the Multibus standard defines 
the form factors and physical requirements of 
modules that communicate on this bus. For a 
complete description of the Multibus architec-

MULTIBUS™ INTERFACE

Figure 2-27. Multibus™-Based System
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ture, refer to the Intel Multibus Specification 
(document number 9800683) and Application 
Note 28A, “ Intel Multibus Interfacing.”

8289 Bus Arbiter

Multiprocessor systems require a means of coor
dinating the processors’ use of the shared bus. 
The 8289 Bus Arbiter works in conjunction with 
the 8288 Bus Controller to provide this control 
for 8086- and 8088-based systems. It is compati
ble with the Multibus architecture and can be used 
in other shared-bus designs as well.

The 8289 eliminates race conditions, resolves bus 
contention and matches processors operating 
asynchronously with respect to each other. Each 
processor on the bus is assigned a different pri
ority. When simultaneous requests for the bus 
arrive, the 8289 resolves the contention and grants 
the bus to the processor with the highest priority; 
three different prioritizing techniques may be 
used. Chapter 4 discusses the 8289 in more detail.

2.6 Processor Control and 
Monitoring

Interrupts

The 8086 and 8088 have a simple and versatile 
interrupt system. Every interrupt is assigned a 
type code that identifies it to the CPU. The 8086

and 8088 can handle up to 256 different interrupt 
types. Interrupts may be initiated by devices 
external to the CPU; in addition, they also may be 
triggered by software interrupt instructions and, 
under certain conditions, by the CPU itself (see 
figure 2-28). Figure 2-29 illustrates the basic 
response of the 8086 and 8088 to an interrupt. 
The next sections elaborate on the information 
presented in this drawing.

External Interrupts

The 8086 and 8088 have two lines that external 
devices may use to signal interrupts (1NTR and 
NMI). The INTR (Interrupt Request) line is 
usually driven by an Intel® 8259A Programmable 
Interrupt Controller (PIC), which is in turn con
nected to the devices that need interrupt services. 
The 8259A is a very flexible circuit that is con
trolled by software commands from the 8086 or 
8088 (the PIC appears as a set of I/O ports to the 
software). Its main job is to accept interrupt 
requests from the devices attached to it, deter
mine which requesting device has the highest 
priority, and then activate the 8086/8088 INTR 
line if the selected device has higher priority than 
the device currently being serviced (if there is 
one).

When INTR is active, the CPU takes different 
action depending on the state of the interrupt- 
enable flag (IF). No action takes place, however, 
until the currently-executing instruction has been

Figure 2-28. Interrupt Sources
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Figure 2-29. Interrupt Processing Sequence
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completed.* Then, if IF is clear (meaning that 
interrupts signaled on INTR are masked or dis
abled), the CPU ignores the interrupt request and 
processes the next instruction. The INTR signal is 
not latched by the CPU, so it must be held active 
until a response is received or the request is 
withdrawn. If interrupts on INTR are enabled (if 
IF is set), then the CPU recognizes the interrupt 
request and processes it. Interrupt requests arriv
ing on INTR can be enabled by executing an STI 
(set interrupt-enable flag) instruction, and dis
abled by executing a CLI (clear interrupt-enable 
flag) instruction. They also may be selectively 
masked (some types enabled, some disabled) by 
writing commands to the 8259A. It should be 
noted that in order to reduce the likelihood of 
excessive stack buildup, the STI and IRET 
instructions will reenable interrupts only after 
the end of the following instruction.

The CPU acknowledges the interrupt request by 
executing two consecutive interrupt acknowledge 
(INTA) bus cycles. If a bus hold request arrives 
(via the HOLD or request/grant lines) during the 
INTA cycles, it is not honored until the cycles 
have been completed. In addition, if the CPU is 
configured in maximum mode, it activates the 
LOCK signal during these cycles to indicate to 
other processors that they should not attempt to 
obtain the bus. The first cycle signals the 8259A 
that the request has been honored. During the 
second INTA cycle, the 8259A responds by plac
ing a byte on the data bus that contains the inter
rupt type (0-255) associated with the device 
requesting service. (The type assignment is made 
when the 8259A is initialized by software in the 
8086 or 8088.) The CPU reads this type code and 
uses it to call the corresponding interrupt 
procedure.

An external interrupt request also may arrive on 
another CPU line, NMI (non-maskable inter
rupt). This line is edge-triggered (INTR is level- 
triggered) and is generally used to signal the CPU 
of a “ catastrophic” event, such as the imminent 
loss of power, memory error detection or bus 
parity error. Interrupt requests arriving on NMI 
cannot be disabled, are latched by the CPU, and 
have higher priority than an interrupt request on 
INTR. If an interrupt request arrives on both 
lines during the execution of an instruction, NMI 
will be recognized first. Non-maskable interrupts 
are predefined as type 2; the processor does not 
need to be supplied with a type code to call the 
NMI procedure, and it does not run the INTA bus 
cycles in response to a request on NMI.

The time required for the CPU to recognize an 
external interrupt request (interrupt latency) 
depends on how many clock periods remain in the 
execution of the current instruction. On the 
average, the longest latency occurs when a 
multiplication, division or variable-bit shift or 
rotate instruction is executing when the interrupt 
request arrives (see section 2.7 for detailed 
instruction timing data). As mentioned pre
viously, in a few cases, worst-case latency will 
span two instructions rather than one.

Internal Interrupts

An INT (interrupt) instruction generates an inter
rupt immediately upon completion of its execu
tion. The interrupt type coded into the instruction 
supplies the CPU with the type code needed to 
call the procedure to process the interrupt. Since 
any type code may be specified, software inter
rupts may be used to test interrupt procedures 
written to service external devices.

‘There are a few cases in which an interrupt request is not recognized until after the following instruction. Repeat, LOCK 
and segment override prefixes are considered “ part o f” the instructions they prefix; no interrupt is recognized between 
execution of a prefix and an instruction. A MOV (move) to segment register instruction and a POP segment register 
instruction are treated similarly: no interrupt is recognized until after the following instruction. This mechanism protects 
a program that is changing to a new stack (by updating SS and SP). If an interrupt were recognized after SS had been 
changed, but before SP had been altered, the processor would push the flags, CS and IP into the wrong area of memory. 
It follows from this that whenever a segment register and another value must be updated together, the segment register 
should be changed first, followed immediately by the instruction that changes the other value. There are also two cases, 
WAIT and repeated string instructions, where an interrupt request is recognized in the middle of an instruction. In these 
cases, interrupts are accepted after any completed primitive operation or wait test cycle.
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If the overflow flag (OF) is set, an INTO (inter
rupt on overflow) instruction generates a type 4 
interrupt immediately upon completion of its 
execution.

The CPU itself generates a type 0 interrupt 
immediately following execution of a DIV or 
1DIV (divide, integer divide) instruction if the 
calculated quotient is larger than the specified 
destination.

If the trap flag (TF) is set, the CPU automatically 
generates a type 1 interrupt following every 
instruction. This is called single-step execution 
and is a powerful debugging tool that is discussed 
in more detail shortly.

All internal interrupts (INT, INTO, divide error, 
and single-step) share these characteristics:
1. The interrupt type code is either contained in 

the instruction or is predefined.

2. No INTA bus cycles are run.
3. Internal interrupts cannot be disabled, except 

for single-step.
4. Any internal interrupt (except single-step) 

has higher priority than any external inter
rupt (see table 2-3). If interrupt requests 
arrive on NMI and/or INTR during execu
tion of an instruction that causes an internal 
interrupt (e.g., divide error), the internal 
interrupt is processed first.

Interrupt Pointer Table

The interrupt pointer (or interrupt vector) table 
(figure 2-30) is the link between an interrupt type 
code and the procedure that has been designated 
to service interrupts associated with that code. 
The interrupt pointer table occupies up to the first 
lk bytes of low memory. There may be up to 256 
entries in the table, one for each interrupt type

AVAILABLE
INTERRUPT
POINTERS
(224)

RESERVED
INTERRUPT
POINTERS
(27|

DEDICATED
INTERRUPT
POINTERS
151

_  TYPE 255 POINTER: 
(AVAILABLE!

V  080H 
f  07FH

<

V 014Hr

TYPE 33 POINTER: 
(AVAILABLE)

TYPE 32 POINTER: 
(AVAILABLE)

TYPE 31 POINTER: 
(RESERVED)

TYPE 5 POINTER: 
(RESERVED)

TYPE 4 POINTER: 
OVERFLOW

_  TYPE 3 POINTER: _  
1-BYTE INT INSTRUCTION^

TYPE 2 POINTER 
NON-MASKABLE

TYPE 1 POINTER 
SINGLE-STEP

TYPE 0 POINTER: 
DIVIDE ERROR

CS BASE ADDRESS

ip offsI t _

Figure 2-30. Interrupt Pointer Table
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that can occur in the system. Each entry in the 
table is a doubleword pointer containing the 
address of the procedure that is to service inter
rupts of that type. The higher-addressed word of 
the pointer contains the base address of the seg
ment containing the procedure. The lower-ad
dressed word contains the procedure’s offset 
from the beginning of the segment. Since each 
entry is four bytes long, the CPU can calculate the 
location of the correct entry for a given interrupt 
type by simply multiplying (type*4).

Table 2-3. Interrupt Priorities

INTERRUPT PRIORITY

Divide error, INT n, INTO highest
NMI
INTR
Single-step lowest

Space at the high end of the table that would be 
occupied by entries for interrupt types that cannot 
occur in a given application may be used for other 
purposes. The dedicated and reserved portions of 
the interrupt pointer table (locations OH through 
7FH), however, should not be used for any other 
purpose to insure proper system operation and to 
preserve compatibility with future Intel hardware 
and software products.

After pushing the flags onto the stack, the 8086 or 
8088 activates an interrupt procedure by exe
cuting the equivalent of an intersegment indirect 
CALL instruction. The target of the “ CALL” is 
the address contained in the interrupt pointer 
table element located at (type*4). The CPU saves 
the address of the next instruction by pushing CS 
and IP onto the stack. These are then replaced by 
the second and first words of the table element, 
thus transferring control to the procedure.

If multiple interrupt requests arrive simulta
neously, the processor activates the interrupt pro
cedures in priority order. Figure 2-31 shows how 
procedures would be activated in an extreme case. 
The processor is running in single-step mode with 
external interrupts enabled. During execution of a 
divide instruction, INTR is activated. Further
more the instruction generates a divide error 
interrupt. Figure 2-31 shows that the interrupts

are recognized in turn, in the order of their 
priorities except for INTR. INTR is not recog
nized until after the following instruction because 
recognition of the earlier interrupts cleared IF. Of 
couse interrupts could be reenabled in any of the 
interrupt response routines if earlier response to 
INTR is desired.

As figure 2-31 shows, all main-line code is exe
cuted in single-step mode. Also, because of the 
order of interrupt processing, the opportunity 
exists in each occurrence of the single-step routine 
to select whether pending interrupt routines 
(divide error and INTR routines in this example) 
are executed at full speed or in single-step mode.

Interrupt Procedures

When an interrupt service procedure is entered, 
the flags, CS, and IP are pushed onto the stack 
and TF and IF are cleared. The procedure may 
reenable external interrupts with the STI (set 
interrupt-enable flag) instruction, thus allowing 
itself to be interrupted by a request on INTR. 
(Note, however, that interrupts are not actually 
enabled until the instruction following STI has 
executed.) An interrupt procedure always may be 
interrupted by a request arriving on NMI. 
Software- or processor-initiated interrupts 
occurring within the procedure also will interrupt 
the procedure. Care must be taken in interrupt 
procedures that the type of interrupt being ser
viced by the procedure does not itself inadver
tently occur within the procedure. For example, 
an attempt to divide by 0 in the divide error (type 
0) interrupt procedure may result in the procedure 
being reentered endlessly. Enough stack space 
must be available to accommodate the maximum 
depth of interrupt nesting that can occur in the 
system.

Like all procedures, interrupt procedures should 
save any registers they use before updating them, 
and restore them before terminating. It is good 
practice for an interrupt procedure to enable 
external interrupts for all but “ critical sections” 
of code (those sections that cannot be interrupted 
without risking erroneous results). If external 
interrupts are disabled for too long in a pro
cedure, interrupt requests on INTR can poten
tially be lost.
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Figure 2-31. Processing Simultaneous Interrupts
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All interrupt procedures should be terminated 
with an IRET (interrupt return) instruction. The 
1RET instruction assumes that the stack is in the 
same condition as it was when the procedure was 
entered. It pops the top three stack words into IP, 
CS and the flags, thus returning to the instruction 
that was about to be executed when the interrupt 
procedure was activated.

The actual processing done by the procedure is 
dependent upon the application. If the procedure 
is servicing an external device, it should output a 
command to the device instructing it to remove its 
interrupt request. It might then read status 
information from the device, determine the cause 
of the interrupt and then take action accordingly. 
Section 2.10 contains three typical interrupt pro
cedure examples.

Software-initiated interrupt procedures may be 
used as service routines (“ supervisor calls” ) for 
other programs in the system. In this case, the 
interrupt procedure is activated when a program, 
rather than an external device, needs attention. 
(The “ attention” might be to search a file for a 
record, send a message to another program, 
request an allocation of free memory, etc.) Soft
ware interrupt procedures can be advantageous in 
systems that dynamically relocate programs dur
ing execution. Since the interrupt pointer table is 
at a fixed storage location, procedures may 
“ call” each other through the table by issuing 
software interrupt instructions. This provides a 
stable communication “ exchange” that is 
independent of procedure addresses. The inter
rupt procedures may themselves be moved so long 
as the interrupt pointer table always is updated to 
provide the linkage from the “ calling” program 
via the interrupt type code.

Single-Step (Trap) Interrupt

When TF (the trap flag) is set, the 8086 or 8088 is 
said to be in single-step mode. In this mode, the 
processor automatically generates a type 1 inter
rupt after each instruction. Recall that as part of 
its interrupt processing, the CPU automatically 
pushes the flags onto the stack and then clears TF 
and IF. Thus the processor is not in single-step 
mode when the single-step interrupt procedure is 
entered; it runs normally. When the single-step 
procedure terminates, the old flag image is 
restored from the stack, placing the CPU back 
into single-step mode.

Single-stepping is a valuable debugging tool. It 
allows the single-step procedure to act as a “ win
dow” into the system through which operation 
can be observed instruction-by-instruction. A 
single-step interrupt procedure, for example, can 
print or display register contents, the value of the 
instruction pointer (it is on the stack), key 
memory variables, etc., as they change after each 
instruction. In this way the exact flow of a pro
gram can be traced in detail, and the point at 
which discrepancies occur can be determined. 
Other possible services that could be provided by 
a single-step routine include:
• Writing a message when a specified memory 

location or I/O port changes value (or equals 
a specified value).

• Providing diagnostics selectively (only for 
certain instruction addresses for instance).

• Letting a routine execute a number of times 
before providing diagnostics.

The 8086 and 8088 do not have instructions for 
setting or clearing TF directly. Rather, TF can be 
changed by modifying the flag-image on the 
stack. The PUSHF and POPF instructions are 
available for pushing and popping the flags 
directly (TF can be set by ORing the flag-image 
with 0100H and cleared by ANDing it with 
FEFFH). After TF is set in this manner, the first 
single-step interrupt occurs after the first 
instruction following the IRET from the single- 
step procedure.

If the processor is single-stepping, it processes an 
interrupt (either internal or external) as follows. 
Control is passed normally (flags, CS and IP are 
pushed) to the procedure designated to handle the 
type of interrupt that has occurred. However, 
before the first instruction of that procedure is 
executed, the single-step interrupt is “ recog
nized” and control is passed normally (flags, CS 
and IP are pushed) to the type 1 interrupt pro
cedure. When single-step procedure terminates, 
control returns to the previous interrupt pro
cedure. Figure 2-31 illustrates this process in a 
case where two interrupts occur when the pro
cessor is in single-step mode.

Breakpoint Interrupt

A type 3 interrupt is dedicated to the breakpoint 
interrupt. A breakpoint is generally any place in a 
program where normal execution is arrested so
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that some sort of special processing may be per
formed. Breakpoints typically are inserted into 
programs during debugging as a way of display
ing registers, memory locations, etc., at crucial 
points in the program.

The INT 3 (breakpoint) instruction is one byte 
long. This makes it easy to “ plant” a breakpoint 
anywhere in a program. Section 2.10 contains an 
example that shows how a breakpoint may be set 
and how a breakpoint procedure may be used to 
place the processor into single-step mode.

The breakpoint instruction also may be used to 
“ patch” a program (insert new instructions) 
without recompiling or reassembling it. This may 
be done by saving an instruction byte, and replac
ing it with an INT 3 (CCH) machine instruction. 
The breakpoint procedure would contain the new 
machine instructions, plus code to restore the 
saved instruction byte and decrement IP on the 
stack before returning, so that the displaced 
instruction would be executed after the patch 
instructions. The breakpoint example in section 
2.10 illustrates these principles.

Note that patching a program requires machine- 
instruction programming and should be under
taken with considerable caution; it is easy to add 
new bugs to a program in an attempt to correct 
existing ones. Note also that a patch is only a tem
porary measure to be used in exceptional condi
tions. The affected code should be updated and 
retranslated as soon as possible.

System Reset

The 8086/8088 RESET line provides an orderly 
way to start or restart an executing system. When 
the processor detects the positive-going edge of a 
pulse on RESET, it terminates all activities until 
the signal goes low, at which time it initializes the 
system as shown in table 2-4.

Since the code segment register contains FFFFH 
and the instruction pointer contains OH, the pro
cessor executes its first instruction following 
system reset from absolute memory location 
FFFF0H. This location normally contains an 
intersegment direct JMP instruction whose target 
is the actual beginning of the system program. 
The LOC-86 utility supplies this JMP instruction 
from information in the program that identifies 
its first instruction. As external (maskable) inter

rupts are disabled by system reset, the system 
software should reenable interrupts as soon as the 
system is initialized to the point where they can be 
processed.

Table 2-4. CPU State Following RESET

CPU COMPONENT CONTENT

Flags Clear
Instruction Pointer 0000H
CS Register FFFFH
DS Register 0000H
SS Register 0000H
ES Register 0000H
Queue Empty

Instruction Queue Status

When configured in maximum mode, the 8086 
and 8088 provide information about instruction 
queue operations on lines QS0 and QS1. Table 2-5 
interprets the four states that these lines can 
represent.

The queue status lines are provided for external 
processors that receive instructions and/or 
operands via the 8086/8088 ESC (escape) instruc
tion (see sections 2.5 and 2.8). Such a processor 
may monitor the bus to see when an ESC instruc
tion is fetched and then track the instruction 
through the queue to determine when (and if) the 
instruction is executed.

Table 2-5. Queue Status Signals
(Maximum Mode Only)

QS0 QS1 QUEUE OPERATION IN LAST 
CLK CYCLE

0 0 No operation; default value

0 1 First byte of an instruction was 
taken from the queue

1 0 Queue was reinitia lized

1 1 Subsequent byte of an instruction 
was taken from the queue

Processor Halt

When the HLT (halt) instruction (see section 2.7) 
is executed, the 8086 or 8088 enters the halt state. 
This condition may be interpreted as “ stop all
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operations until an external interrupt occurs or 
the system is reset.” No signals are floated during 
the halt state, and the content of the address and 
data buses is undefined. A bus hold request 
arriving on the HOLD line (minimum mode) or 
either request/grant line (maximum mode) is 
acknowledged normally while the processor is 
halted.

The halt state can be used when an event prevents 
the system from functioning correctly. An exam
ple might be a power-fail interrupt. After 
recognizing that loss of power is imminent, the 
CPU could use the remaining time to move 
registers, flags and vital variables to (for example) 
a battery-powered CMOS RAM area and then 
halt until the return of power was signaled by an 
interrupt or system reset.

Status Lines

When configured in maximum mode, the 8086 
and 8088 emit eight status signals that can be used 
by external devices. Lines 5(3, 51 and 55 identify 
the type of bus cycle that the CPU is starting to 
execute (table 2-6). These lines are typically 
decoded by the 8288 Bus Controller. S3 and S4 
indicate which segment register was used to con
struct the physical address being used in this bus 
cycle (see table 2-7). Line S5 reflects the state of 
the interrupt-enable flag. S6 is always 0. S7 is a 
spare line whose content is undefined.

Table 2-6. Bus Cycle Status Signals

s2 Si So TYPES OF BUS CYCLE

0 0 0 Interrupt Acknowledge
0 0 1 Read I/O
0 1 0 Write I/O
0 1 1 HALT
1 0 0 Instruction Fetch
1 0 1 Read Memory
1 1 0 W rite Memory
1 1 1 Passive; no bus cycle

Table 2-7. Segment Register Status Lines

s 4 S3 SEGMENT REGISTER

0 0 ES
0 1 SS
1 0 CS or none (I/O  or Interrupt Vector)
1 1 DS

2.7 Instruction Set

The 8086 and 8088 execute exactly the same
instructions. This instruction set includes
equivalents to the instructions typically found in
previous microprocessors, such as the 8080/8085.
Significant new operations include:

• multiplication and division of signed and 
unsigned binary numbers as well as unpacked 
decimal numbers,

• move, scan and compare operations for 
strings up to 64k bytes in length,

• non-destructive bit testing,
• byte translation from one code to another,
• software-generated interrupts, and
• a group of instructions that can help 

coordinate the activities of multiprocessor 
systems.

These instructions treat different types of 
operands uniformly. Nearly every instruction can 
operate on either byte or word data. Register, 
memory and immediate operands may be 
specified interchangeably in most instructions (ex
cept, of course, that immediate values may only 
serve as “ source” and not “ destination” 
operands). In particular, memory variables can be 
added to, subtracted from, shifted, compared, 
and so on, in place, without moving them in and 
out of registers. This saves instructions, registers, 
and execution time in assembly language pro
grams. In high-level languages, where most 
variables are memory based, compilers, such as 
PL/M-86, can produce faster and shorter object 
programs.

The 8086/8088 instruction set can be viewed as 
existing at two levels: the assembly level and the 
machine level. To the assembly language pro
grammer, the 8086 and 8088 appear to have a 
repertoire of about 100 instructions. One MOV 
(move) instruction, for example, transfers a byte 
or a word from a register or a memory location or 
an immediate value to either a register or a 
memory location. The 8086 and 8088 CPUs, 
however, recognize 28 different MOV machine 
instructions (“ move byte register to memory,” 
“ move word immediate to register,” etc.). The 
ASM-86 assembler translates the assembly-level 
instructions written by a programmer into the
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machine-level instructions that are actually exe
cuted by the 8086 or 8088. Compilers such as 
PL/M-86 translate high-level language statements 
directly into machine-level instructions.

The two levels of the instruction set address two 
different requirements: efficiency and simplicity. 
The numerous—there are about 300 in all—forms 
of machine-level instructions allow these instruc
tions to make very efficient use of storage. For 
example, the machine instruction that increments 
a memory operand is three or four bytes long 
because the address of the operand must be 
encoded in the instruction. To increment a 
register, however, does not require as much 
information, so the instruction can be shorter. In 
fact, the 8086 and 8088 have eight different 
machine-level instructions that increment a dif
ferent 16-bit register; these instructions are only 
one byte long.

If a programmer had to write one instruction to 
increment a register, another to increment a 
memory variable, etc., the benefit of compact 
instructions would be offset by the difficulty of 
programming. The assembly-level instructions 
simplify the programmer’s view of the instruction 
set. The programmer writes one form of the INC 
(increment) instruction and the ASM-86 
assembler examines the operand to determine 
which machine-level instruction to generate.

This section presents the 8086/8088 instruction 
set from two perspectives. First, the assembly- 
level instructions are described in functional 
terms. The assembly-level instructions are then 
presented in a reference table that breaks out all 
permissible operand combinations with execution 
times and machine instruction length, plus the 
effect that the instruction has on the CPU flags. 
Machine-level instruction encoding and decoding 
are covered in section 4.2.

Data Transfer Instructions

The 14 data transfer instructions (table 2-8) move 
single bytes and words between memory and 
registers as well as between register AL or AX and 
I/O ports. The stack manipulation instructions 
are included in this group as are instructions for 
transferring flag contents and for loading seg
ment registers.

Table 2-8. Data Transfer Instructions

GENERAL PURPOSE

MOV Move byte or word
PUSH Push word onto stack
POP Pop word off stack
XCHG Exchange byte or word
XLAT Translate byte

INPUT/OUTPUT

IN Input byte or word
OUT O utput byte or word

ADDRESS OBJECT

LEA Load effective address
LDS Load pointer using DS
LES Load pointer using ES

FLAG TRANSFER

LAHF Load AH reg ister from flags
SAHF Store AH reg ister in flags
PUSHF Push flags onto stack
POPF Pop flags off stack

General Purpose Data Transfers

MOV destination,source

MOV transfers a byte or a word from the source 
operand to the destination operand.

PUSH source

PUSH decrements SP (the stack pointer) by two 
and then transfers a word from the source 
operand to the top of stack now pointed to by SP. 
PUSH often is used to place parameters on the 
stack before calling a procedure; more generally, 
it is the basic means of storing temporary data on 
the stack.

POP destination

POP transfers the word at the current top of stack 
(pointed to by SP) to the destination operand, 
and then increments SP by two to point to the 
new top of stack. POP can be used to move tem
porary variables from the stack to registers or 
memory.
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XCHG destination,source

XCHG (exchange) switches the contents of the 
source and destination (byte or word) operands. 
When used in conjunction with the LOCK prefix, 
XCHG can test and set a semaphore that controls 
access to a resource shared by multiple processors 
(see section 2.5).

XLAT translate-table

XLAT (translate) replaces a byte in the AL 
register with a byte from a 256-byte, user-coded 
translation table. Register BX is assumed to point 
to the beginning of the table. The byte in AL is 
used as an index into the table and is replaced by 
the byte at the offset in the table corresponding to 
AL’s binary value. The first byte in the table has 
an offset of 0. For example, if AL contains 5H, 
and the sixth element of the translation table con
tains 33H, then AL will contain 33H following 
the instruction. XLAT is useful for translating 
characters from one code to another, the classic 
example being ASCII to EBCDIC or the reverse.

IN accumulator,port

IN transfers a byte or a word from an input port 
to the AL register or the AX register, respectively. 
The port number may be specified either with an 
immediate byte constant, allowing access to ports 
numbered 0 through 255, or with a number 
previously placed in the DX register, allowing 
variable access (by changing the value in DX) to 
ports numbered from 0 through 65,535.

OUT port,accumulator

OUT transfers a byte or a word from the AL 
register or the AX register, respectively, to an out
put port. The port number may be specified either 
with an immediate byte constant, allowing access 
to ports numbered 0 through 255, or with a 
number previously placed in register DX, allow
ing variable access (by changing the value in DX) 
to ports numbered from 0 through 65,535.

Address Object Transfers

These instructions manipulate the addresses of 
variables rather than the contents or values of 
variables. They are most useful for list process
ing, based variables, and string operations.

LEA destination,source

LEA (load effective address) transfers the offset 
of the source operand (rather than its value) to the 
destination operand. The source operand must be 
a memory operand, and the destination operand 
must be a 16-bit general register. LEA does not 
affect any flags. The XLAT and string instruc
tions assume that certain registers point to 
operands; LEA can be used to load these registers 
(e.g., loading BX with the address of the translate 
table used by the XLAT instruction).

LDS destination,source

LDS (load pointer using DS) transfers a 32-bit 
pointer variable from the source operand, which 
must be a memory operand, to the destination 
operand and register DS. The offset word of the 
pointer is transferred to the destination operand, 
which may be any 16-bit general register. The seg
ment word of the pointer is transferred to register 
DS. Specifying SI as the destination operand is a 
convenient way to prepare to process a source 
string that is not in the current data segment 
(string instructions assume that the source string 
is located in the current data segment and that SI 
contains the offset of the string).

LES destination,source

LES (load pointer using ES) transfers a 32-bit 
pointer variable from the source operand, which 
must be a memory operand, to the destination 
operand and register ES. The offset word of the 
pointer is transferred to the destination operand, 
which may be any 16-bit general register. The seg
ment word of the pointer is transferred to register 
ES. Specifying DI as the destination operand is a 
convenient way to prepare to process a destina
tion string that is not in the current extra segment. 
(The destination string must be located in the 
extra segment, and DI must contain the offset of 
the string.)

Flag Transfers 

LAHF

LAHF (load register AH from flags) copies SF, 
ZF, AF, PF and CF (the 8080/8085 flags) into 
bits 7, 6, 4, 2 and 0, respectively, of register AH
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(see figure 2-32). The content of bits 5, 3 and 1 is 
undefined; the flags themselves are not affected. 
LAHF is provided primarily for converting 
8080/8085 assembly language programs to run on 
an 8086 or 8088.

SAHF

SAHF (store register AH into flags) transfers bits 
7, 6, 4, 2 and 0 from register AH into SF, ZF, AF, 
PF and CF, respectively, replacing whatever 
values these flags previously had. OF, DF, IF and 
TF are not affected. This instruction is provided 
for 8080/8085 compatibility.

PUSHF

PUSHF decrements SP (the stack pointer) by two 
and then transfers all flags to the word at the top 
of stack pointed to by SP (see figure 2-32). The 
flags themselves are not affected.

POPF

POPF transfers specific bits from the word at the 
current top of stack (pointed to by register SP) 
into the 8086/8088 flags, replacing whatever 
values the flags previously contained (see figure
2-32). SP is then incremented by two to point to 
the new top of stack. PUSHF and POPF allow a 
procedure to save and restore a calling program’s 
flags. They also allow a program to change the

s a h f  | s , z , u , a , u , p , u , c |
| 7 6 5 4 3 2 1 0 |

h * ----- 8080/8085 FLAGS— ►!
I I

__________________|_________________ I
p o Sp f F ' | u , u , u . u , 0 , D |  I , t , s , z , u , a , u , p , u , c |

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

U = UNDEFINED; VALUE IS INDETERMINATE
0  = OVERFLOW FLAG 
D = DIRECTION FLAG
1 = INTERRUPT ENABLE FLAG 
T = TRAP FLAG
S = SIGN FLAG 
Z = ZERO FLAG 
A =  AUXILIARY CARRY FLAG 
P = PARITY FLAG 
C = CARRY FLAG

Figure 2-32. Flag Storage Formats

setting of TF (there is no instruction for updating 
this flag directly). The change is accomplished by 
pushing the flags, altering bit 8 of the memory- 
image and then popping the flags.

Arithmetic Instructions

Arithmetic Data Formats

8086 and 8088 arithmetic operations (table 2-9) 
may be performed on four types of numbers: 
unsigned binary, signed binary (integers), 
unsigned packed decimal and unsigned unpacked 
decimal (see table 2-10). Binary numbers may be 8 
or 16 bits long. Decimal numbers are stored in 
bytes, two digits per byte for packed decimal and 
one digit per byte for unpacked decimal. The pro
cessor always assumes that the operands specified 
in arithmetic instructions contain data that repre
sent valid numbers for the type of instruction 
being performed. Invalid data may produce 
unpredictable results.

Table 2-9. Arithmetic Instructions

ADDITION
A D D A d d  b y te  o r  w o rd
A D C A d d  b y te  o r  w o rd  w ith  c a rry
IN C In c re m e n t b y te  o r  w o rd  b y  1
A A A A S C II a d ju s t  fo r  a d d it io n
D A A D e c im a l a d ju s t  fo r  a d d it io n

SUBTRACTION
S U B S u b tra c t  b y te  o r  w o rd
S B B S u b tra c t  b y te  o r  w o rd  w ith

b o rro w
DEC D e c re m e n t b y te  o r  w o rd  b y  1
NEG N e g a te  b y te  o r  w o rd
C M P C o m p a re  b y te  o r  w o rd
A A S A S C II a d ju s t  fo r  s u b tra c t io n
DAS D e c im a l a d ju s t  fo r  s u b tra c t io n

MULTIPLICATION
M U L M u lt ip ly  b y te  o r  w o rd  u n s ig n e d
IM U L In te g e r  m u lt ip ly  b y te  o r  w o rd
A A M A S C II a d ju s t  fo r  m u lt ip ly

DIVISION
DIV D iv id e  b y te  o r  w o rd  u n s ig n e d
IDIV In te g e r d iv id e  b y te  o r  w o rd
A A D A S C II a d ju s t  fo r  d iv is io n
C B W C o n v e rt  b y te  to  w o rd
C W D C o n v e rt  w o rd  to  d o u b le w o rd
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Table 2-10. Arithmetic Interpretation of 8-Bit Numbers

HEX BIT PATTERN UNSIGNED
BINARY

SIGNED
BINARY

UNPACKED
DECIMAL

PACKED
DECIMAL

07 0 0 0 0 0 1 1 1 7 +7 7 7

89 1 0 0 0 1 0 0 1 137 -11 9 in va lid 89

C5 1 1 0 0 0 1 0 1 197 -5 9 in va lid in v a lid

Unsigned binary numbers may be either 8 or 16 
bits long; all bits are considered in determining a 
number’s magnitude. The value range of an 8-bit 
unsigned binary number is 0-255; 16 bits can 
represent values from 0 through 65,535. Addi
tion, subtraction, multiplication and division 
operations are available for unsigned binary 
numbers.

Signed binary numbers (integers) may be either 8 
or 16 bits long. The high-order (leftmost) bit is 
interpreted as the number’s sign: 0 = positive and 
1 = negative. Negative numbers are represented 
in standard two’s complement notation. Since 
the high-order bit is used for a sign, the range of 
an 8-bit integer is -128 through +127; 16-bit 
integers may range from -32,768 through 
+32,767. The value zero has a positive sign. 
Multiplication and division operations are pro
vided for signed binary numbers. Addition and 
subtraction are performed with the unsigned 
binary instructions. Conditional jump instruc
tions, as well as an “ interrupt on overflow” 
instruction, can be used following an unsigned 
operation on an integer to detect overflow into 
the sign bit.

Packed decimal numbers are stored as unsigned 
byte quantities. The byte is treated as having one 
decimal digit in each half-byte (nibble); the digit 
in the high-order half-byte is the most significant. 
Hexadecimal values 0-9 are valid in each half
byte, and the range of a packed decimal number is 
0-99. Addition and subtraction are performed in 
two steps. First an unsigned binary instruction is 
used to produce an intermediate result in register 
AL. Then an adjustment operation is performed 
which changes the intermediate value in AL to a 
final correct packed decimal result. Multiplica
tion and division adjustments are not available 
for packed decimal numbers.

Unpacked decimal numbers are stored as un
signed byte quantities. The magnitude of the 
number is determined from the low-order half
byte; hexadecimal values 0-9 are valid and are 
interpreted as decimal numbers. The high-order 
half-byte must be zero for multiplication and divi
sion; it may contain any value for addition and 
subtraction. Arithmetic on unpacked decimal 
numbers is performed in two steps. The unsigned 
binary addition, subtraction and multiplication 
operations are used to produce an intermediate 
result in register AL. An adjustment instruction 
then changes the value in AL to a final correct 
unpacked decimal number. Division is performed 
similarly, except that the adjustment is carried out 
on the numerator operand in register AL first, 
then a following unsigned binary division instruc
tion produces a correct result.

Unpacked decimal numbers are similar to the 
ASCII character representations of the digits 0-9. 
Note, however, that the high-order half-byte of 
an ASCII numeral is always 3H. Unpacked 
decimal arithmetic may be performed on ASCII 
numeric characters under the following 
conditions:
• the high-order half-byte of an ASCII 

numeral must be set to OH prior to 
multiplication or division.

• unpacked decimal arithmetic leaves the 
high-order half-byte set to OH; it must be set 
to 3H to produce a valid ASCII numeral.

Arithmetic Instructions and Flags

The 8086/8088 arithmetic instructions post cer
tain characteristics of the result of the operation 
to six flags. Most of these flags can be tested by 
following the arithmetic instruction with a condi
tional jump instruction; the INTO (interrupt on 
overflow) instruction also may be used. The
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various instructions affect the flags differently, as
explained in the instruction descriptions.
However, they follow these general rules:

• CF (carry flag): If an addition results in a 
carry out of the high-order bit of the result, 
then CF is set; otherwise CF is cleared. If a 
subtraction results in a borrow into the high- 
order bit of the result, then CF is set; other
wise CF is cleared. Note that a signed carry is 
indicated by CF # OF. CF can be used to 
detect an unsigned overflow. Two instruc
tions, ADC (add with carry) and SBB (sub
tract with borrow), incorporate the carry flag 
in their operations and can be used to per
form multibyte (e.g., 32-bit, 64-bit) addition 
and subtraction.

• AF (auxiliary carry flag): If an addition 
results in a carry out of the low-order half
byte of the result, then AF is set; otherwise 
AF is cleared. If a subtraction results in a 
borrow into the low-order half-byte of the 
result, then AF is set; otherwise AF is 
cleared. The auxiliary carry flag is provided 
for the decimal adjust instructions and 
ordinarily is not used for any other purpose.

• SF (sign flag): Arithmetic and logical 
instructions set the sign flag equal to the 
high-order bit (bit 7 or 15) of the result. For 
signed binary numbers, the sign flag will be 0 
for positive results and 1 for negative results 
(so long as overflow does not occur). A con
ditional jump instruction can be used follow
ing addition or subtraction to alter the flow 
of the program depending on the sign of the 
result. Programs performing unsigned opera
tions typically ignore SF since the high-order 
bit of the result is interpreted as a digit rather 
than a sign.

• ZF (zero flag): If the result of an arithmetic 
or logical operation is zero, then ZF is set; 
otherwise ZF is cleared. A conditional jump 
instruction can be used to alter the flow of 
the program if the result is or is not zero.

• PF (parity flag): If the low-order eight bits of 
an arithmetic or logical result contain an 
even number of 1-bits, then the parity flag is 
set; otherwise it is cleared. PF is provided for 
8080/8085 compatibility; it also can be used 
to check ASCII characters for correct parity.

• OF (overflow flag): If the result of an 
operation is too large a positive number, or 
too small a negative number to fit in the 
destination operand (excluding the sign bit), 
then OF is set; otherwise OF is cleared. OF 
thus indicates signed arithmetic overflow; it 
can be tested with a conditional jump or the 
INTO (interrupt on overflow) instruction. 
OF may be ignored when performing 
unsigned arithmetic.

Addition

ADD destination,source

The sum of the two operands, which may be bytes 
or words, replaces the destination operand. Both 
operands may be signed or unsigned binary 
numbers (see AAA and DA A). ADD updates AF, 
CF, OF, PF, SF and ZF.

ADC destination,source

ADC (Add with Carry) sums the operands, which 
may be bytes or words, adds one if CF is set and 
replaces the destination operand with the result. 
Both operands may be signed or unsigned binary 
numbers (see AAA and DAA). ADC updates AF, 
CF, OF, PF, SF and ZF. Since ADC incorporates 
a carry from a previous operation, it can be used 
to write routines to add numbers longer than 16 
bits.

INC destination

INC (Increment) adds one to the destination 
operand. The operand may be a byte or a word 
and is treated as an unsigned binary number (see 
AAA and DAA). INC updates AF, OF, PF, SF 
and ZF; it does not affect CF.

AAA

AAA (ASCII Adjust for Addition) changes the 
contents of register AL to a valid unpacked 
decimal number; the high-order half-byte is 
zeroed. AAA updates AF and CF; the content of 
OF, PF, SF and ZF is undefined following execu
tion of AAA.
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DAA

DAA (Decimal Adjust for Addition) corrects the 
result of previously adding two valid packed 
decimal operands (the destination operand must 
have been register AL). DAA changes the content 
of AL to a pair of valid packed decimal digits. It 
updates AF, CF, PF, SF and ZF; the content of 
OF is undefined following execution of DAA.

Subtraction

SUB destination,source

The source operand is subtracted from the 
destination operand, and the result replaces the 
destination operand. The operands may be bytes 
or words. Both operands may be signed or 
unsigned binary numbers (see AAS and DAS). 
SUB updates AF, CF, OF, PF, SF and ZF.

SBB destination,source

SBB (Subtract with Borrow) subtracts the source 
from the destination, subtracts one if CF is set, 
and returns the result to the destination operand. 
Both operands may be bytes or words. Both 
operands may be signed or unsigned binary 
numbers (see AAS and DAS). SBB updates AF, 
CF, OF, PF, SF and ZF. Since it incorporates a 
borrow from a previous operation, SBB may be 
used to write routines that subtract numbers 
longer than 16 bits.

DEC destination

DEC (Decrement) subtracts one from the destina
tion, which may be a byte or a word. DEC 
updates AF, OF, PF, SF, and ZF; it does not 
affect CF.

NEG destination

NEG (Negate) subtracts the destination operand, 
which may be a byte or a word, from 0 and 
returns the result to the destination. This forms 
the two’s complement of the number, effectively 
reversing the sign of an integer. If the operand is 
zero, its sign is not changed. Attempting to negate 
a byte containing -128 or a word containing

-32,768 causes no change to the operand and sets 
OF. NEG updates AF, CF, OF, PF, SF and ZF. 
CF is always set except when the operand is zero, 
in which case it is cleared.

CMP destination,source

CMP (Compare) subtracts the source from the 
destination, which may be bytes or words, but 
does not return the result. The operands are 
unchanged, but the flags are updated and can be 
tested by a subsequent conditional jump instruc
tion. CMP updates AF, CF, OF, PF, SF and ZF. 
The comparison reflected in the flags is that of the 
destination to the source. If a CMP instruction is 
followed by a JG (jump if greater) instruction, for 
example, the jump is taken if the destination 
operand is greater than the source operand.

AAS

AAS (ASCII Adjust for Subtraction) corrects the 
result of a previous subtraction of two valid 
unpacked decimal operands (the destination 
operand must have been specified as register AL). 
AAS changes the content of AL to a valid 
unpacked decimal number; the high-order half
byte is zeroed. AAS updates AF and CF; the con
tent of OF, PF, SF and ZF is undefined following 
execution of AAS.

DAS

DAS (Decimal Adjust for Subtraction) corrects 
the result of a previous subtraction of two valid 
packed decimal operands (the destination 
operand must have been specified as register AL). 
DAS changes the content of AL to a pair of valid 
packed decimal digits. DAS updates AF, CF, PF, 
SF and ZF; the content of OF is undefined 
following execution of DAS.

Multiplication

MUL source

MUL (Multiply) performs an unsigned multi
plication of the source operand and the 
accumulator. If the source is a byte, then it is 
multiplied by register AL, and the double-length
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result is returned in AH and AL. If the source 
operand is a word, then it is multiplied by register 
AX, and the double-length result is returned in 
registers DX and AX. The operands are treated as 
unsigned binary numbers (see A AM). If the upper 
half of the result (AH for byte source, DX for 
word source) is nonzero, CF and OF are set; 
otherwise they are cleared. When CF and OF are 
set, they indicate that AH or DX contains signifi
cant digits of the result. The content of AF, PF, 
SF and ZF is undefined following execution of 
MUL.

IMUL source

IMUL (Integer Multiply) performs a signed 
multiplication of the source operand and the 
accumulator. If the source is a byte, then it is 
multiplied by register AL, and the double-length 
result is returned in AH and AL. If the source is a 
word, then it is multiplied by register AX, and the 
double-length result is returned in registers DX 
and AX. If the upper half of the result (AH for 
byte source, DX for word source) is not the sign 
extension of the lower half of the result, CF and 
OF are set; otherwise they are cleared. When CF 
and OF are set, they indicate that AH or DX con
tains significant digits of the result. The content 
of AF, PF, SF and ZF is undefined following 
execution of IMUL.

AAM

AAM (ASCII Adjust for Multiply) corrects the 
result of a previous multiplication of two valid 
unpacked decimal operands. A valid 2-digit 
unpacked decimal number is derived from the 
content of AH and AL and is returned to AH and 
AL. The high-order half-bytes of the multiplied 
operands must have been OH for AAM to pro
duce a correct result. AAM updates PF, SF and 
ZF; the content of AF, CF and OF is undefined 
following execution of AAM.

Division

DIV source

DIV (divide) performs an unsigned division of the 
accumulator (and its extension) by the source 
operand. If the source operand is a byte, it is

divided into the double-length dividend assumed 
to be in registers AL and AH. The single-length 
quotient is returned in AL, and the single-length 
remainder is returned in AH. If the source 
operand is a word, it is divided into the double
length dividend in registers AX and DX. The 
single-length quotient is returned in AX, and the 
single-length remainder is returned in DX. If the 
quotient exceeds the capacity of its destination 
register (FFH for byte source, FFFFFH for word 
source), as when division by zero is attempted, a 
type 0 interrupt is generated, and the quotient and 
remainder are undefined. Nonintegral quotients 
are truncated to integers. The content of AF, CF, 
OF, PF, SF and ZF is undefined following execu
tion of DIV.

I DIV source

ID1V (Integer Divide) performs a signed division 
of the accumulator (and its extension) by the 
source operand. If the source operand is a byte, it 
is divided into the double-length dividend 
assumed to be in registers AL and AH; the single
length quotient is returned in AL, and the single
length remainder is returned in AH. For byte in
teger division, the maximum positive quotient is 
+ 127 (7FH) and the minimum negative quotient is 
-127 (81H). If the source operand is a word, it is 
divided into the double-length dividend in 
registers AX and DX; the single-length quotient is 
returned in AX, and the single-length remainder 
is returned in DX. For word integer division, the 
maximum positive quotient is +32,767 (7FFFH) 
and the minimum negative quotient is -32,767 
(8001H). If the quotient is positive and exceeds 
the maximum, or is negative and is less than the 
minimum, the quotient and remainder are 
undefined, and a type 0 interrupt is generated. In 
particular, this occurs if division by 0 is 
attempted. Nonintegral quotients are truncated 
(toward 0) to integers, and the remainder has the 
same sign as the dividend. The content of AF, 
CF, OF, PF, SF and ZF is undefined following 
IDIV.

AAD

AAD (ASCII Adjust for Division) modifies the 
numerator in AL before dividing two valid 
unpacked decimal operands so that the quotient 
produced by the division will be a valid unpacked 
decimal number. AH must be zero for the subse
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quent D1V to produce the correct result. The quo
tient is returned in AL, and the remainder is 
returned in AH; both high-order half-bytes are 
zeroed. AAD updates PF, SF and ZF; the content 
of AF, CF and OF is undefined following execu
tion of AAD.

CBW

CBW (Convert Byte to Word) extends the sign of 
the byte in register AL throughout register AH. 
CBW does not affect any flags. CBW can be used 
to produce a double-length (word) dividend from 
a byte prior to performing byte division.

CWD

CWD (Convert Word to Doubleword) extends the 
sign of the word in register AX throughout 
register DX. CWD does not affect any flags. 
CWD can be used to produce a double-length 
(doubleword) dividend from a word prior to per
forming word division.

Bit Manipulation Instructions

The 8086 and 8088 provide three groups of 
instructions (table 2-11) for manipulating bits 
within both bytes and words: logical, shifts and 
rotates.

Table 2-11. Bit Manipulation Instructions

LOGICALS
NO T “ N o t”  b y te  o r  w o rd
A N D “ A n d ”  b y te  o r  w o rd
OR “ In c lu s iv e  o r ”  b y te  o r  w o rd
XOR “ E x c lu s iv e  o r ”  b y te  o r  w o rd
TE S T “ T e s t ”  b y te  o r  w o rd

SHIFTS
S H L /S A L S h if t  lo g ic a l/a r ith m e t ic  le ft

b y te  o r  w o rd
SH R S h if t  lo g ic a l r ig h t  b y te  o r  w o rd
SAR S h if t  a r i th m e t ic  r ig h t b y te  o r

w o rd

ROTATES
RO L R o ta te  le f t  b y te  o r  w o rd
ROR R o ta te  r ig h t  b y te  o r  w o rd
RCL R o ta te  th ro u g h  c a rry  le f t  b y te

o r  w o rd
RCR R o ta te  th ro u g h  c a rry  r ig h t b y te

o r  w o rd

Logical

The logical instructions include the boolean 
operators “ not,” “ and,” “ inclusive or,” and 
“ exclusive or,” plus a TEST instruction that sets 
the flags, but does not alter either of its operands.

AND, OR, XOR and TEST affect the flags as 
follows: The overflow (OF) and carry (CF) flags 
are always cleared by logical instructions, and the 
content of the auxiliary carry (AF) flag is always 
undefined following execution of a logical 
instruction. The sign (SF), zero (ZF) and parity 
(PF) flags are always posted to reflect the result of 
the operation and can be tested by conditional 
jump instructions. The interpretation of these 
flags is the same as for arithmetic instructions. SF 
is set if the result is negative (high-order bit is 1), 
and is cleared if the result is positive (high-order 
bit is 0). ZF is set if the result is zero, cleared 
otherwise. PF is set if the result contains an even 
number of 1-bits (has even parity) and is cleared if 
the number of 1-bits is odd (the result has odd 
parity). Note that NOT has no effect on the flags.

NOT destination

NOT inverts the bits (forms the one’s comple
ment) of the byte or word operand.

AND destination,source

AND performs the logical “ and” of the two 
operands (byte or word) and returns the result to 
the destination operand. A bit in the result is set if 
both corresponding bits of the original operands 
are set; otherwise the bit is cleared.

OR destination,source

OR performs the logical “ inclusive or” of the two 
operands (byte or word) and returns the result to 
the destination operand. A bit in the result is set if 
either or both corresponding bits in the original 
operands are set; otherwise the result bit is 
cleared.

XOR destination,source

XOR (Exclusive Or) performs the logical “ exclu
sive or” of the two operands and returns the 
result to the destination operand. A bit in the
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result is set if the corresponding bits of the 
original operands contain opposite values (one is 
set, the other is cleared); otherwise the result bit is 
cleared.

TEST destination,source

TEST performs the logical “ and” of the two 
operands (byte or word), updates the flags, but 
does not return the result, i.e., neither operand is 
changed. If a TEST instruction is followed by a 
JNZ (jump if not zero) instruction, the jump will 
be taken if there are any corresponding 1-bits in 
both operands.

Shifts

The bits in bytes and words may be shifted 
arithmetically or logically. Up to 255 shifts may 
be performed, according to the value of the count 
operand coded in the instruction. The count may 
be specified as the constant 1, or as register CL, 
allowing the shift count to be a variable supplied 
at execution time. Arithmetic shifts may be used 
to multiply and divide binary numbers by powers 
of two (see note in description of SAR). Logical 
shifts can be used to isolate bits in bytes or words.

Shift instructions affect the flags as follows. AF is 
always undefined following a shift operation. PF, 
SF and ZF are updated normally, as in the logical 
instructions. CF always contains the value of the 
last bit shifted out of the destination operand. 
The content of OF is always undefined following 
a multibit shift. In a single-bit shift, OF is set if 
the value of the high-order (sign) bit was changed 
by the operation; if the sign bit retains its original 
value, OF is cleared.

SHL/SAL destination,count

SHL and SAL (Shift Logical Left and Shift 
Arithmetic Left) perform the same operation and 
are physically the same instruction. The destina
tion byte or word is shifted left by the number of 
bits specified in the count operand. Zeros are 
shifted in on the right. If the sign bit retains its 
original value, then OF is cleared.

SHR destination,source

SHR (Shift Logical Right) shifts the bits in the 
destination operand (byte or word) to the right by

the number of bits specified in the count operand. 
Zeros are shifted in on the left. If the sign bit 
retains its original value, then OF is cleared.

SAR destination,count

SAR (Shift Arithmetic Right) shifts the bits in the 
destination operand (byte or word) to the right by 
the number of bits specified in the count operand. 
Bits equal to the original high-order (sign) bit are 
shifted in on the left, preserving the sign of the 
original value. Note that SAR does not produce 
the same result as the dividend of an 
“ equivalent” IDIV instruction if the destination 
operand is negative and 1-bits are shifted out. For 
example, shifting -5  right by one bit yields -3, 
while integer division of -5  by 2 yields -2. The 
difference in the instructions is that IDIV trun
cates all numbers toward zero, while SAR trun
cates positive numbers toward zero and negative 
numbers toward negative infinity.

Rotates

Bits in bytes and words also may be rotated. Bits 
rotated out of an operand are not lost as in a 
shift, but are “ circled” back into the other “ end” 
of the operand. As in the shift instructions, the 
number of bits to be rotated is taken from the 
count operand, which may specify either a con
stant of 1, or the CL register. The carry flag may 
act as an extension of the operand in two of the 
rotate instructions, allowing a bit to be isolated in 
CF and then tested by a JC (jump if carry) or JNC 
(jump if not carry) instruction.

Rotates affect only the carry and overflow flags. 
CF always contains the value of the last bit 
rotated out. On multibit rotates, the value of OF 
is always undefined. In single-bit rotates, OF is 
set if the operation changes the high-order (sign) 
bit of the destination operand. If the sign bit 
retains its original value, OF is cleared.

ROL destination, count

ROL (Rotate Left) rotates the destination byte or 
word left by the number of bits specified in the 
count operand.
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ROR destination, count

ROR (Rotate Right) operates similar to ROL 
except that the bits in the destination byte or word 
are rotated right instead of left.

RCL destination,count

RCL (Rotate through Carry Left) rotates the bits 
in the byte or word destination operand to the left 
by the number of bits specified in the count 
operand. The carry flag (CF) is treated as “ part 
of” the destination operand; that is, its value is 
rotated into the low-order bit of the destination, 
and itself is replaced by the high-order bit of the 
destination.

RCR destination,count

RCR (Rotate through Carry Right) operates 
exactly like RCL except that the bits are rotated 
right instead of left.

String Instructions

Five basic string operations, called primitives, 
allow strings of bytes or words to be operated on, 
one element (byte or word) at a time. Strings of 
up to 64k bytes may be manipulated with these 
instructions. Instructions are available to move, 
compare and scan for a value, as well as for mov
ing string elements to and from the accumulator 
(see table 2-12). These basic operations may be 
preceded by a special one-byte prefix that causes 
the instruction to be repeated by the hardware, 
allowing long strings to be processed much faster 
than would be possible with a software loop. The 
repetitions can be terminated by a variety of con
ditions, and a repeated operation may be inter
rupted and resumed.

The string instructions operate quite similarly in 
many respects; the common characteristics are 
covered here and in table 2-13 and figure 2-33 
rather than in the descriptions of the individual 
instructions. A string instruction may have a 
source operand, a destination operand, or both. 
The hardware assumes that a source string resides 
in the current data segment; a segment prefix byte 
may be used to override this assumption. A 
destination string must be in the current extra seg
ment. The assembler checks the attributes of the

operands to determine if the elements of the 
strings are bytes or words. The assembler does 
not, however, use the operand names to address 
the strings. Rather, the content of register SI 
(source index) is used as an offset to address the 
current element of the source string, and the con
tent of register DI (destination index) is taken as 
the offset of the current destination string ele
ment. These registers must be initialized to point 
to the source/destination strings before executing 
the string instruction; the LDS, LES and LEA 
instructions are useful in this regard.

Table 2-12. String Instructions

REP R e p e a t

R E P E /R E P Z R e p e a t w h ile  e q u a l/z e ro

R E P N E /R E P N Z R e p e a t w h ile  n o t 
e q u a l /n o t  z e ro

M O VS M o ve  b y te  o r  w o rd  s tr in g

M O V S B /M O V S W M o ve  b y te  o r  w o rd  s tr in g

C M P S C o m p a re  b y te  o r  w o rd  
s tr in g

S C A S S can  b y te  o r  w o rd  s tr in g

LODS Load  b y te  o r  w o rd  s tr in g

STOS S to re  b y te  o r  w o rd  s tr in g

Table 2-13. String Instruction Register and 
Flag Use

SI In d e x  (o ffs e t)  fo r  s o u rc e  s tr in g

DI In d e x  (o ffs e t)  fo r  d e s t in a t io n  
s tr in g

CX R e p e tit io n  c o u n te r

A L /A X S can  va lu e  
D e s tin a tio n  fo r  LO D S 
S o u rc e  fo r  STO S

DF 0 =  a u to - in c re m e n t SI, DI
1 =  a u to -d e c re m e n t SI, DI

ZF S c a n /c o m p a re  te rm in a to r
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I 1 f  S I/D I, CX
I PREVIOUS |___________ J  AND DF WOULD
1 INSTRUCTIONS T TYPICALLY BE

I INITIALIZED HERE_ _ r _

r ------------- 1
I NEXT I
1 INSTRUCTION 1
L __________ J

Figure 2-33. String Operation Flow
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The string instructions automatically update SI 
and/or DI in anticipation of processing the next 
string element. The setting of DF (the direction 
flag) determines whether the index registers are 
auto-incremented (DF = 0) or auto-decremented 
(DF = 1). If byte strings are being processed, SI 
and/or DI is adjusted by 1; the adjustment is 2 for 
word strings.

If a Repeat prefix has been coded, then register 
CX (count register) is decremented by 1 after each 
repetition of the string instruction; therefore, CX 
must be initialized to the number of repetitions 
desired before the string instruction is executed. If 
CX is 0, the string instruction is not executed, and 
control goes to the following instruction.

Section 2.10 contains examples that illustrate the 
use of all the string instructions.

REP/REPE/REPZ/REPNE/REPNZ

Repeat, Repeat While Equal, Repeat While Zero, 
Repeat While Not Equal and Repeat While Not 
Zero are five mnemonics for two forms of the 
prefix byte that controls repetition of a subse
quent string instruction. The different mnemonics 
are provided to improve program clarity. The 
repeat prefixes do not affect the flags.

REP is used in conjunction with the MOVS 
(Move String) and STOS (Store String) instruc
tions and is interpreted as “ repeat while not end- 
of-string” (CX not 0). REPE and REPZ operate 
identically and are physically the same prefix byte 
as REP. These instructions are used with the 
CMPS (Compare String) and SCAS (Scan String) 
instructions and require ZF (posted by these 
instructions) to be set before initiating the next 
repetition. REPNE and REPNZ are two 
mnemonics for the same prefix byte. These 
instructions function the same as REPE and 
REPZ except that the zero flag must be cleared or 
the repetition is terminated. Note that ZF does 
not need to be initialized before executing the 
repeated string instruction.

Repeated string sequences are interruptable; the 
processor will recognize the interrupt before pro
cessing the next string element. System interrupt 
processing is not affected in any way. Upon 
return from the interrupt, the repeated operation 
is resumed from the point of interruption. Note, 
however, that execution does not resume properly

if a second or third prefix (i.e., segment override 
or LOCK) has been specified in addition to any of 
the repeat prefixes. The processor “ remembers” 
only one prefix in effect at the time of the inter
rupt, the prefix that immediately precedes the 
string instruction. After returning from the inter
rupt, processing resumes at this point, but any 
additional prefixes specified are not in effect. If 
more than one prefix must be used with a string 
instruction, interrupts may be disabled for the 
duration of the repeated execution. However, this 
will not prevent a non-maskable interrupt from 
being recognized. Also, the time that the system is 
unable to respond to interrupts may be unaccept
able if long strings are being processed.

MOVS destination-string,source-string

MOVS (Move String) transfers a byte or a word 
from the source string (addressed by SI) to the 
destination string (addressed by DI) and updates 
SI and DI to point to the next string element. 
When used in conjunction with REP, MOVS per
forms a memory-to-memory block transfer.

MOVSB/MOVSW

These are alternate mnemonics for the move 
string instruction. These mnemonics are coded 
without operands; they explicitly tell the 
assembler that a byte string (MOVSB) or a word 
string (MOVSW) is to be moved (when MOVS is 
coded, the assembler determines the string type 
from the attributes of the operands). These 
mnemonics are useful when the assembler cannot 
determine the attributes of a string, e.g., a section 
of code is being moved.

CM PS destination-string, source-string

CMPS (Compare String) subtracts the destination 
byte or word (addressed by DI) from the source 
byte or word (addressed by SI). CMPS affects the 
flags but does not alter either operand, updates SI 
and DI to point to the next string element and 
updates AF, CF, OF, PF, SF and ZF to reflect the 
relationship of the destination element to the 
source element. For example, if a JG (Jump if 
Greater) instruction follows CMPS, the jump is 
taken if the destination element is greater than the 
source element. If CMPS is prefixed with REPE
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or REPZ, the operation is interpreted as “ com
pare while not end-of-string (CX not zero) and 
strings are equal (ZF = 1).” If CMPS is preceded 
by REPNE or REPNZ, the operation is inter
preted as “ compare while not end-of-string (CX 
not zero) and strings are not equal (ZF = 0).” 
Thus, CMPS can be used to find matching or dif
fering string elements.

SCAS destination-string

SCAS (Scan String) subtracts the destination 
string element (byte or word) addressed by DI 
from the content of AL (byte string) or AX (word 
string) and updates the flags, but does not alter 
the destination string or the accumulator. SCAS 
also updates DI to point to the next string element 
and AF, CF, OF, PF, SF and ZF to reflect the 
relationship of the scan value in AL/AX to the 
string element. If SCAS is prefixed with REPE or 
REPZ, the operation is interpreted as “ scan while 
not end-of-string (CX not 0) and string-element = 
scan-value (ZF = 1).” This form may be used to 
scan for departure from a given value. If SCAS is 
prefixed with REPNE or REPNZ, the operation 
is interpreted as “ scan while not end-of-string 
(CX not 0) and string-element is not equal to 
scan-value (ZF = 0).” This form may be used to 
locate a value in a string.

LODS source-string

LODS (Load String) transfers the byte or word 
string element addressed by SI to register AL or 
AX, and updates SI to point to the next element 
in the string. This instruction is not ordinarily 
repeated since the accumulator would be over
written by each repetition, and only the last ele
ment would be retained. Flowever, LODS is very 
useful in software loops as part of a more com
plex string function built up from string 
primitives and other instructions.

STOS destination-string

STOS (Store String) transfers a byte or word from 
register AL or AX to the string element addressed 
by DI and updates DI to point to the next location 
in the string. As a repeated operation, STOS pro
vides a convenient way to initialize a string to a 
constant value (e.g., to blank out a print line).

Program Transfer Instructions

The sequence of execution of instructions in an 
8086/8088 program is determined by the content 
of the code segment register (CS) and the instruc
tion pointer (IP). The CS register contains the 
base address of the current code segment, the 64k 
portion of memory from which instructions are 
presently being fetched. The IP is used as an off
set from the beginning of the code segment; the 
combination of CS and IP points to the memory 
location from which the next instruction is to be 
fetched. (Recall that under most operating condi
tions, the next instruction to be executed has 
already been fetched from memory and is waiting 
in the CPU instruction queue.) The program 
transfer instructions operate on the instruction 
pointer and on the CS register; changing the con
tent of these causes normal sequential execution 
to be altered. When a program transfer occurs, 
the queue no longer contains the correct instruc
tion, and the BIU obtains the next instruction 
from memory using the new IP and CS values, 
passes the instruction directly to the EU, and then 
begins refilling the queue from the new location.

Four groups of program transfers are available in 
the 8086/8088 (see table 2-14): unconditional 
transfers, conditional transfers, iteration control 
instructions and interrupt-related instructions. 
Only the interrupt-related instructions affect any 
CPU flags. As will be seen, however, the execu
tion of many of the program transfer instructions 
is affected by the states of the flags.

Unconditional Transfers

The unconditional transfer instructions may 
transfer control to a target instruction within the 
current code segment (intrasegment transfer) or 
to a different code segment (intersegment 
transfer). (The ASM-86 assembler terms an 
intrasegment target NEAR and an intersegment 
target FAR.) The transfer is made uncondition
ally any time the instruction is executed.

CALL procedure-name

CALL activates an out-of-line procedure, saving 
information on the stack to permit a RET (return) 
instruction in the procedure to transfer control 
back to the instruction following the CALL. The
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Table 2-14. Program Transfer Instructions

UNCONDITIONAL TRANSFERS

C A L L C a ll p ro c e d u re
RET R e tu rn  fro m  p ro c e d u re
JM P J u m p

CONDITIONAL TRANSFERS

J A /J N B E J u m p  if a b o v e /n o t  b e lo w  
n o r  e q u a l

J A E /J N B J u m p  if a b o v e  o r 
e q u a l /n o t  b e lo w

J B /J N A E J u m p  if b e lo w /n o t  a b o ve  
n o r  e q u a l

J B E /J N A J u m p  if b e lo w  o r 
e q u a l /n o t  a b o ve

JC J u m p  if c a rry
J E /J Z J u m p  if e q u a l/z e ro
J G /J N L E J u m p  if g re a te r /n o t  le s s  

n o r  e q u a l
J G E /J N L J u m p  if g re a te r  o r 

e q u a l /n o t  le s s
J L /J N G E J u m p  if  le s s /n o t  g re a te r  

n o r  e q u a l
J L E /J N G J u m p  if le s s  o r  e q u a l /n o t  

g re a te r
JN C J u m p  if n o t c a rry
J N E /J N Z J u m p  if n o t e q u a l /n o t  

z e ro
JN O J u m p  if n o t o v e rf lo w
J N P /J P O J u m p  if n o t p a r ity /p a r ity  

o d d
JN S J u m p  if  n o t s ig n
JO J u m p  if o v e r f lo w
J P /J P E J u m p  if p a r ity /p a r ity  

e ve n
JS J u m p  if s ig n

ITERATION CONTROLS

LO O P L o o p
L O O P E /L O O P Z L o o p  if  e q u a l/z e ro
L O O P N E /L O O P N Z L o o p  if n o t e q u a l/n o t  

z e ro
JC X Z J u m p  if r e g is te r  C X  =  0

INTERRUPTS
IN T In te r ru p t
IN TO In te r ru p t  if o v e r f lo w
IRET In te r ru p t  re tu rn

assembler generates a different type of CALL 
instruction depending on whether the program
mer has defined the procedure name as NEAR or 
FAR. For control to return properly, the type of 
CALL instruction must match the type of RET 
instruction that exits from the procedure. (The 
potential for a mismatch exists if the procedure 
and the CALL are contained in separately 
assembled programs.) Different forms of the 
CALL instruction allow the address of the target 
procedure to be obtained from the instruction 
itself (direct CALL) or from a memory location 
or register referenced by the instruction (indirect 
CALL). In the following descriptions, bear in 
mind that the processor automatically adjusts IP 
to point to the next instruction to be executed 
before saving it on the stack.

For an intrasegment direct CALL, SP (the stack 
pointer) is decremented by two and IP is pushed 
onto the stack. The relative displacement (up to 
±32k) of the target procedure from the CALL 
instruction is then added to the instruction 
pointer. This form of the CALL instruction is 
“ self-relative” and is appropriate for position- in
dependent (dynamically relocatable) routines in 
which the CALL and its target are in the same 
segment and are moved together.

An intrasegment indirect CALL may be made 
through memory or through a register. SP is 
decremented by two and IP is pushed onto the 
stack. The offset of the target procedure is 
obtained from the memory word or 16-bit general 
register referenced in the instruction and replaces 
IP.

For an intersegment direct CALL, SP is 
decremented by two, and CS is pushed onto the 
stack. CS is replaced by the segment word con
tained in the instruction. SP again is decremented 
by two. IP is pushed onto the stack and is 
replaced by the offset word contained in the 
instruction.

For an intersegment indirect CALL (which only 
may be made through memory), SP is 
decremented by two, and CS is pushed onto the 
stack. CS is then replaced by the content of the 
second word of the doubleword memory pointer 
referenced by the instruction. SP again is 
decremented by two, and IP is pushed onto the 
stack and is replaced by the content of the first 
word of the doubleword pointer referenced by the 
instruction.
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RET optional-pop-value

RET (Return) transfers control from a procedure 
back to the instruction following the CALL that 
activated the procedure. The assembler generates 
an intrasegment RET if the programmer has 
defined the procedure NEAR, or an intersegment 
RET if the procedure has been defined as FAR. 
RET pops the word at the top of the stack 
(pointed to by register SP) into the instruction 
pointer and increments SP by two. If RET is 
intersegment, the word at the new top of stack is 
popped into the CS register, and SP is again 
incremented by two. If an optional pop value has 
been specified, RET adds that value to SP. This 
feature may be used to discard parameters pushed 
onto the stack before the execution of the CALL 
instruction.

JMP target

JMP unconditionally transfers control to the 
target location. Unlike a CALL instruction, JMP 
does not save any information on the stack, and 
no return to the instruction following the JMP is 
expected. Like CALL, the address of the target 
operand may be obtained from the instruction 
itself (direct JMP) or from memory or a register 
referenced by the instruction (indirect JMP).

An intrasegment direct JMP changes the instruc
tion pointer by adding the relative displacement 
of the target from the JMP instruction. If the 
assembler can determine that the target is within 
127 bytes of the JMP, it automatically generates a 
two-byte form of this instruction called a SHORT 
JMP; otherwise, it generates a NEAR JMP that 
can address a target within ±32k. Intrasegment 
direct JMPS are self-relative and are appropriate 
in position-independent (dynamically relocatable) 
routines in which the JMP and its target are in the 
same segment and are moved together.

An intrasegment indirect JMP may be made 
either through memory or through a 16-bit 
general register. In the first case, the content of 
the word referenced by the instruction replaces 
the instruction pointer. In the second case, the 
new IP value is taken from the register named in 
the instruction.

An intersegment direct JMP replaces IP and CS 
with values contained in the instruction.

An intersegment indirect JMP may be made only 
through memory. The first word of the 
doubleword pointer referenced by the instruction 
replaces IP, and the second word replaces CS.

Conditional Transfers

The conditional transfer instructions are jumps 
that may or may not transfer control depending 
on the state of the CPU flags at the time the 
instruction is executed. These 18 instructions (see 
table 2-15) each test a different combination of 
flags for a condition. If the condition is “ true,” 
then control is transferred to the target specified 
in the instruction. If the condition is “ false,” 
then control passes to the instruction that follows 
the conditional jump. All conditional jumps are 
SHORT, that is, the target must be in the current 
code segment and within -128 to +127 bytes of 
the first byte of the next instruction (JMP 00H 
jumps to the first byte of the next instruction). 
Since the jump is made by adding the relative 
displacement of the target to the instruction 
pointer, all conditional jumps are self-relative and 
are appropriate for position-independent 
routines.

Iteration Control

The iteration control instructions can be used to 
regulate the repetition of software loops. These 
instructions use the CX register as a counter. Like 
the conditional transfers, the iteration control 
instructions are self-relative and may only 
transfer to targets that are within -128 to +127 
bytes of themselves, i.e., they are SHORT 
transfers.

LOOP short-label

LOOP decrements CX by 1 and transfers control 
to the target operand if CX is not 0; otherwise the 
instruction following LOOP is executed.

LOOPE/LOOPZ short-label

LOOPE and LOOPZ (Loop While Equal and 
Loop While Zero) are different mnemonics for 
the same instruction (similar to the REPE and
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Table 2-15. Interpretation of Conditional Transfers

MNEMONIC CONDITION TESTED “JUMP IF...”

J A /J N B E (C F o r  Z F)=0 a b o v e /n o t  b e lo w  n o r e q u a l
J A E /J N B C F=0 a b o ve  o r  e q u a l / n o t b e lo w
J B /J N A E CF=1 b e lo w /n o t  a b o v e  n o r  e q u a l
J B E /J N A (C F o r  ZF)=1 b e lo w  o r  e q u a l / n o t a b o ve
JC CF=1 c a rry
J E /J Z ZF=1 e q u a l/z e ro
J G /J N L E ((SF xor O F) o r  Z F)=0 g re a te r /n o t  le s s  n o r  e q u a l
J G E /J N L (SF xor  O F)=0 g re a te r  o r  e q u a l / n o t le s s
J L /J N G E (SF xor  OF)=1 le s s /n o t  g re a te r  n o r  e q u a l
J L E /J N G ((S F  x o r  O F) o r  ZF)=1 le s s  o r  e q u a l /n o t  g re a te r
JN C C F=0 n o t c a rry
J N E /J N Z ZF=0 n o t e q u a l /n o t  z e ro
JN O O F=0 n o t o v e rf lo w
J N P /J P O PF=0 n o t p a r ity /p a r ity  o d d
JN S SF=0 n o t s ig n
JO OF=1 o v e rf lo w
J P /J P E PF=1 p a r ity /p a r ity  e q u a l
JS SF=1 s ig n

N o te : “ a b o v e ”  a n d  “ b e lo w ”  re fe r  to  th e  re la t io n s h ip  o f tw o  u n s ig n e d  va lu e s ; 
“ g re a te r ”  a n d  “ le s s ”  re fe r  to  th e  re la t io n s h ip  o f  tw o  s ig n e d  va lu e s .

REPZ repeat prefixes). CX is decremented by 1, 
and control is transferred to the target operand if 
CX is not 0 and if ZF is set; otherwise the instruc
tion following LOOPE/LOOPZ is executed.

LOOPNE/LOOPNZ short-label

LOOPNE and LOOPNZ (Loop While Not Equal 
and Loop While Not Zero) are also synonyms for 
the same instruction. CX is decremented by 1, 
and control is transferred to the target operand if 
CX is not 0 and if ZF is clear; otherwise the next 
sequential instruction is executed.

JCXZ short-label

JCXZ (Jump If CX Zero) transfers control to the 
target operand if CX is 0. This instruction is 
useful at the beginning of a loop to bypass the 
loop if CX has a zero value, i.e., to execute the 
loop zero times.

Interrupt Instructions

The interrupt instructions allow interrupt service 
routines to be activated by programs as well as by

externa! hardware devices. The effect of software 
interrupts is similar to hardware-initiated inter
rupts. However, the processor does not execute 
an interrupt acknowledge bus cycle if the inter
rupt originates in software or with an NMI. The 
effect of the interrupt instructions on the flags is 
covered in the description of each instruction.

INT interrupt-type

INT (Interrupt) activates the interrupt procedure 
specified by the interrupt-type operand. INT 
decrements the stack pointer by two, pushes the 
flags onto the stack, and clears the trap (TF) and 
interrupt-enable (IF) flags to disable single-step 
and maskable interrupts. The flags are stored in 
the format used by the PUSHF instruction. SP is 
decremented again by two, and the CS register is 
pushed onto the stack. The address of the inter
rupt pointer is calculated by multiplying 
interrupt-type by four; the second word of the in
terrupt pointer replaces CS. SP again is 
decremented by two, and IP is pushed onto the 
stack and is replaced by the first word of the inter
rupt pointer. If interrupt-type = 3, the assembler 
generates a short (1 byte) form of the instruction, 
known as the breakpoint interrupt.
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Software interrupts can be used as “ supervisor 
calls,” i.e., requests for service from an operating 
system. A different interrupt-type can be used for 
each type of service that the operating system 
could supply for an application program. Soft
ware interrupts also may be used to check out 
interrupt service procedures written for hardware- 
initiated interrupts.

INTO

INTO (Interrupt on Overflow) generates a soft
ware interrupt if the overflow flag (OF) is set; 
otherwise control proceeds to the following 
instruction without activating an interrupt pro
cedure. INTO addresses the target interrupt pro
cedure (its type is 4) through the interrupt pointer 
at location 10H; it clears the TF and IF flags and 
otherwise operates like INT. INTO may be writ
ten following an arithmetic or logical operation to 
activate an interrupt procedure if overflow 
occurs.

IRET

IRET (Interrupt Return) transfers control back to 
the point of interruption by popping IP, CS and 
the flags from the stack. IRET thus affects all 
flags by restoring them to previously saved 
values. IRET is used to exit any interrupt 
procedure, whether activated by hardware or 
software.

Processor Control Instructions

These instructions (see table 2-16) allow programs 
to control various CPU functions. One group of 
instructions updates flags, and another group is 
used primarily for synchronizing the 8086 or 8088 
with external events. A final instruction causes 
the CPU to do nothing. Except for the flag opera
tions, none of the processor control instructions 
affect the flags.

Flag Operations

CLC

CLC (Clear Carry flag) zeroes the carry flag (CF) 
and affects no other flags. It (and CMC and STC) 
is useful in conjunction with the RCL and RCR 
instructions.

Table 2-16. Processor Control Instructions

FLAG OPERATIONS

STC Set carry flag
CLC Clear carry flag
CMC Complement carry flag
STD Set direction flag
CLD Clear direction flag
STI Set interrupt enable flag
CLI Clear interrupt enable flag

EXTERNAL SYNCHRONIZATION

HLT Halt until interrupt or reset
WAIT Wait for TEST pin active
ESC Escape to external processor
LOCK Lock bus during next 

instruction

NO OPERATION

NOP No operation

CMC

CMC (Complement Carry flag) “ toggles” CF to 
its opposite state and affects no other flags.

STC

STC (Set Carry flag) sets CF to 1 and affects no 
other flags.

CLD

CLD (Clear Direction flag) zeroes DF causing the 
string instructions to auto-increment the SI 
and/or DI index registers. CLD does not affect 
any other flags.

STD

STD (Set Direction flag) sets DF to 1 causing the 
string instructions to auto-decrement the SI 
and/or DI index registers. STD does not affect 
any other flags.
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CLI

CLI (Clear Interrupt-enable flag) zeroes IF. 
When the interrupt-enable flag is cleared, the 
8086 and 8088 do not recognize an external inter
rupt request that appears on the INTR line; in 
other words maskable interrupts are disabled. A 
non-maskable interrupt appearing on the NMI 
line, however, is honored, as is a software inter
rupt. CLI does not affect any other flags.

STI

STI (Set Interrupt-enable flag) sets IF to 1, en
abling processor recognition of maskable inter
rupt requests appearing on the INTR line. Note 
however, that a pending interrupt will not actu
ally be recognized until the instruction following 
STI has executed. STI does not affect any other 
flags.

External Synchronization

HLT

HLT (Halt) causes the 8086/8088 to enter the halt 
state. The processor leaves the halt state upon 
activation of the RESET line, upon receipt of a 
non-maskable interrupt request on NMI, or, if 
interrupts are enabled, upon receipt of a 
maskable interrupt request on INTR. HLT does 
not affect any flags. It may be used as an alter
native to an endless software loop in situations 
where a program must wait for an interrupt.

WAIT

WAIT causes the CPU to enter the wait state 
while its TEST line is not active. WAIT does not 
affect any flags. This instruction is described 
more completely in section 2.5.

ESC external-opcode, source

ESC (Escape) provides a means for an external 
processor to obtain an opcode and possibly a 
memory operand from the 8086 or 8088. The 
external opcode is a 6-bit immediate constant that 
the assembler encodes in the machine instruction

it builds (see table 2-26). An external processor 
may monitor the system bus and capture this 
opcode when the ESC is fetched. If the source 
operand is a register, the processor does nothing. 
If the source operand is a memory variable, the 
processor obtains the operand from memory and 
discards it. An external processor may capture the 
memory operand when the processor reads it 
from memory.

LOCK

LOCK is a one-byte prefix that causes the 
8086/8088 (configured in maximum mode) to 
assert its bus LOCK signal while the following 
instruction executes. LOCK does not affect any 
flags. See section 2.5 for more information on 
LOCK.

No Operation

NOP

NOP (No Operation) causes the CPU to do 
nothing. NOP does not affect any flags.

Instruction Set Reference Information

Table 2-21 provides detailed operational informa
tion for the 8086/8088 instruction set. The 
information is presented from the point of view 
of utility to the assembly language programmer. 
Tables 2-17, 2-18 and 2-19 explain the symbols 
used in table 2-21. Machine language instruction 
encoding and decoding information is given in 
Chapter 4.

Instruction timings are presented as the number 
of clock periods required to execute a particular 
form (register-to-register, immediate-to-memory, 
etc.) of the instruction. If a system is running with 
a 5 MHz maximum clock, the maximum clock 
period is 200 ns; at 8 MHz, the clock period is 125 
ns. Where memory operands are used, “ +EA” 
denotes a variable number of additional clock 
periods needed to calculate the operand’s effec
tive address (discussed in section 2.8). Table 2-20 
lists all effective address calculation times.
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Table 2-17. Key to Instruction Coding Formats

IDENTIFIER USED IN EXPLANATION

d e s t in a t io n d a ta  tra n s fe r ,  
b it  m a n ip u la t io n

A re g is te r  o r  m e m o ry  lo c a tio n  th a t m ay  c o n ta in  d a ta  
o p e ra te d  o n  b y  th e  in s t ru c t io n ,  a n d  w h ic h  re c e iv e s  (is  
re p la c e d  b y) th e  re s u lt  o f th e  o p e ra tio n .

s o u rc e d a ta  t ra n s fe r ,
a r ith m e t ic ,
b it  m a n ip u la t io n

A  re g is te r ,  m e m o ry  lo c a tio n  o r  im m e d ia te  v a lu e  th a t is 
u se d  in th e  o p e ra tio n , b u t is  n o t a lte re d  b y  th e  in s t ru c 
t io n .

s o u rc e - ta b le X L  A T N a m e  o f m e m o ry  tra n s la t io n  ta b le  a d d re s s e d  by re g is te r  
BX.

ta rg e t J M P , C A L L A  la b e l to  w h ic h  c o n tro l is  to  b e  tra n s fe r re d  d ire c t ly ,  o r  a 
r e g is te r  o r  m e m o ry  lo c a tio n  w h o s e  c o n t e n t  is  th e  
a d d re s s  o f th e  lo c a tio n  to  w h ic h  c o n tro l is  to  be  t r a n s fe r 
red  in d ire c t ly .

s h o rt- la b e l c o n d . tra n s fe r ,  
ite ra t io n  c o n tro l

A  la b e l to  w h ic h  c o n tro l is  to  be  c o n d it io n a lly  
t ra n s fe r re d ; m u s t l ie  w ith in  -1 2 8  to  +127 b y te s  o f th e  f i r s t  
b y te  o f  th e  n e x t in s tru c t io n .

a c c u m u la to r IN , O U T R e g is te r  AX fo r  w o rd  t ra n s fe rs ,  A L  fo r  b y te s .

p o rt IN , O U T A n  I /O  p o rt n u m b e r ; s p e c if ie d  as an im m e d ia te  v a lu e  o f 
0-255, o r  r e g is te r  DX (w h ic h  c o n ta in s  p o r t  n u m b e r  in 
ra n g e  0-64k).

s o u rc e -s t r in g s tr in g  o p s . N a m e  o f a s tr in g  in m e m o ry  th a t is  a d d re s s e d  b y  re g is te r  
S I; u se d  o n ly  to  id e n t ify  s tr in g  as b y te  o r  w o rd  and  
s p e c ify  s e g m e n t o v e rr id e , if a n y . T h is  s tr in g  is  u s e d  in 
th e  o p e ra t io n , b u t is n o t a lte re d .

d e s t-s tr in g s tr in g  o p s . N a m e  o f s tr in g  in m e m o ry  th a t is  a d d re s s e d  b y  re g is te r  
D l; u se d  o n ly  to  id e n t ify  s tr in g  as b y te  o r  w o rd . T h is  
s tr in g  re c e iv e s  ( is  re p la c e d  by) th e  re s u lt  o f  th e  o p e ra 
t io n .

c o u n t s h if ts ,  ro ta te s S p e c if ie s  n u m b e r  o f b its  to  s h if t  o r  ro ta te ; w r it te n  as 
im m e d ia te  va lu e  1 o r  r e g is te r  C L  (w h ic h  c o n ta in s  th e  
c o u n t in  th e  ra n g e  0-255).

in te r ru p t- ty p e IN T Im m e d ia te  v a lu e  o f 0-255 id e n t ify in g  in te r ru p t  p o in te r  
n u m b e r.

o p t io n a l-p o p -v a lu e RET N u m b e r  o f b y te s  (0-64k, o rd in a r ily  an e ve n  n u m b e r)  to  
d is c a rd  fro m  s ta c k .

e x te rn a l-o p c o d e ESC Im m e d ia te  v a lu e  (0-63) th a t is  e n c o d e d  in th e  in s t ru c t io n  
fo r  u se  b y  an e x te rn a l p ro c e s s o r .
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Table 2-18. Key to Flag Effects

IDENTIFIER EXPLANATION

(b la n k ) n o t a lte re d

0 c le a re d  toO

1 s e t to  1

X s e t o r  c le a re d  a c c o rd in g  
to  re s u lt

U u n d e f in e d — c o n ta in s  no 
re l ia b le  v a lu e

Ft re s to re d  fro m  p re v io u s ly -  
sa ve d  va lu e

For control transfer instructions, the timings 
given include any additional clocks required to 
reinitialize the instruction queue as well as the 
time required to fetch the target instruction. For 
instructions executing on an 8086, four clocks 
should be added for each instruction reference to 
a word operand located at an odd memory 
address to reflect any additional operand bus 
cycles required. Similarly for instructions exe
cuting on an 8088, four clocks should be added to 
each instruction reference to a 16-bit memory 
operand; this includes all stack operations. The 
required number of data references is listed in 
table 2-21 for each instruction to aid in this 
calculation.

Several additional factors can increase actual 
execution time over the figures shown in table 
2-21. The time provided assumes that the instruc
tion has already been prefetched and that it is 
waiting in the instruction queue, an assumption 
that is valid under most, but not all, operating 
conditions. A series of fast executing (fewer than 
two clocks per opcode byte) instructions can drain 
the queue and increase execution time. Execution 
time also is slightly impacted by the interaction of 
the EU and B1U when memory operands must be 
read or written. If the EU needs access to 
memory, it may have to wait for up to one clock if 
the BIU has already started an instruction fetch 
bus cycle. (The EU can detect the need for a 
memory operand and post a bus request far 
enough in advance of its need for this operand to 
avoid waiting a full 4-clock bus cycle). Of course 
the EU does not have to wait if the queue is full, 
because the BIU is idle. (This discussion assumes

Table 2-19. Key to Operand Types

IDENTIFIER EXPLANATION
(no  o p e ra n d s ) N o  o p e ra n d s  a re  w r it te n

re g is te r A n  8- o r  1 6 -b it g e n e ra l r e g is te r

reg  16 A  1 6 -b it g e n e ra l r e g is te r

s e g -re g A s e g m e n t r e g is te r

a c c u m u la to r R e g is te r  A X  o r  A L

im m e d ia te A c o n s ta n t  in  th e  ra n g e  
0-FFFFH

im m e d 8 A  c o n s ta n t in  th e  ra n g e  0-FFH

m e m o ry A n  8 - o r  1 6 -b it  m e m o r y  
lo c a t io n 11*

m em 8 An 8 -b it m e m o ry  lo c a t io n 11*

m em 16 A  16 -b it m e m o ry  lo c a t io n 11*

s o u rc e - ta b le N a m e  o f 25 6 -b y te  tra n s la te  
ta b le

s o u rc e -s tr in g N a m e  o f s tr in g  a d d re s s e d  by 
re g is te r  SI

d e s t-s tr in g N a m e  o f  s t r in g  a d d re s s e d  by 
re g is te r  Dl

DX R e g is te r  DX

s h o rt- la b e l A  la b e l w ith in  -1 2 8  to  +127 
b y te s  o f th e  e n d  o f th e  in s t ru c 
t io n

n e a r- la b e l A  la b e l in  c u r r e n t  c o d e  
s e g m e n t

fa r- la b e l A la b e l in  a n o th e r  c o d e  
s e g m e n t

n e a r-p ro c A p ro c e d u re  in  c u r re n t  c o d e  
s e g m e n t

fa r-p ro c A p ro c e d u re  in  a n o th e r  c o d e  
s e g m e n t

m e m p tr1 6 A w o rd  c o n ta in in g  th e  o f fs e t  o f 
th e  lo c a tio n  in th e  c u r re n t  c o d e  
s e g m e n t to  w h ic h  c o n tro l is  to  
be  t ra n s fe r re d '1*

m e m p tr3 2 A d o u b le w o rd  c o n ta in in g  th e  
o f fs e t  a n d  th e  s e g m e n t b a se  
a d d re s s  o f  th e  lo c a tio n  in 
a n o th e r  c o d e  s e g m e n t to  w h ic h  
c o n tro l is  to  b e  t r a n s fe r re d 11*

re g p tr1 6 A  1 6 -b it  g e n e r a l  r e g is t e r  
c o n ta in in g  th e  o f fs e t  o f th e  
lo c a t io n  in th e  c u r re n t  c o d e  
s e g m e n t to  w h ic h  c o n tro l is  to  
b e  tra n s fe r re d

re p e a t A  s t r in g  in s t ru c t io n  re p e a t 
p re f ix

(1)A n y  a d d re s s in g  m o d e — d ire c t ,  r e g is te r  in 
d ire c t ,  b a s e d , in d e x e d , o r  b a se d  
in d e x e d — m ay b e  u s e d  (s e e  s e c t io n  2.8).
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8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-20. Effective Address Calculation 
Time

EA COMPONENTS CLOCKS*

D is p la c e m e n t O n ly 6
Base o r Index  O n ly (BX,B P,S I,D I) 5
D is p la c e m e n t

+ 9
B ase  o r  In d e x (B X ,B P ,S I,D I)
B ase BP +  DI, BX +  SI 7

+
In d e x BP +  SI, BX +  DI 8
D is p la c e m e n t BP +  DI +  D ISP

11
+ BX +  SI +  D ISP

B ase
+ BP +  SI +  D ISP

12
In d e x BX +  DI +  D ISP

'A d d  2 c lo c k s  fo r  s e g m e n t o v e rr id e

that the B1U can obtain the bus on demand, i.e., 
that no other processors are competing for the 
bus.)

With typical instruction mixes, the time actually 
required to execute a sequence of instructions will 
typically be within 5-10% of the sum of the 
individual timings given in table 2-21. Cases can 
be constructed, however, in which execution time 
may be much higher than the sum of the figures 
provided in the table. The execution time for a 
given sequence of instructions, however, is always 
repeatable, assuming comparable external condi
tions (interrupts, coprocessor activity, etc.). If the 
execution time for a given series of instructions 
must be determined exactly, the instructions 
should be run on an execution vehicle such as the 
SDK-86 or the iSBC 86/12™ board.

Table 2-21. Instruction Set Reference Data

AAA AAA (n o  o p e ra n d s )  
A S C II a d ju s t  fo r  a d d it io n

C1 O D I T S Z A P C  
F la g s  U U U X U X

O perands Clocks Transfers* Bytes Coding Example

(no  o p e ra n d s ) 4 — 1 A A A

AAD AAD (n o  o p e ra n d s )  
A S C II a d ju s t  fo r  d iv is io n

C1 O D I T S Z A P C  
F a g s  U X X U X U

O perands Clocks Transfers* Bytes Coding Example

(n o  o p e ra n d s ) 60 — 2 A A D

AAM AAM (n o  o p e ra n d s )  
A S C II a d ju s t  fo r  m u lt ip ly

C1 O D I T S Z A P C  
F la g s  U X X U X U

O perands Clocks Transfers* Bytes Coding Example

(no  o p e ra n d s ) 83 — 1 A A M

AAS A A S  (no  o p e ra n d s )
A S C II a d ju s t  fo r  s u b tra c t io n

O D I T S Z A P C  
F a g s  U U U X U X

O perands Clocks Transfers* Bytes Coding Example

(n o  o p e ra n d s ) 4 — 1 A A S

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

2-51 M nem onics ©  Intel, 1978



ADC ADC d e s t in a t io n ,s o u rc e  
A d d  w ith  c a rry

O D I T S Z A P C
Fla9S  X X X X X X

O perands Clocks Transfers* Bytes Coding Example

re g is te r ,  r e g is te r 3 — 2 A D C  A X , SI
re g is te r ,  m e m o ry 9 +  EA 1 2-4 A D C  DX, B E TA  [SI]
m e m o ry , r e g is te r 16 +  EA 2 2-4 A D C  A L P H A  [B X ] [S I], Dl
re g is te r ,  im m e d ia te 4 — 3-4 A D C  BX, 256
m e m o ry , im m e d ia te 17 +  EA 2 3-6 A D C  G A M M A , 30H
a c c u m u la to r , im m e d ia te 4 — 2-3 A D C  A L , 5

ADD ADD d e s t in a t io n ,s o u rc e  
A d d it io n

O D I T S Z A P C
F ags  X X X X X X

O perands Clocks Transfers* Bytes Coding Example

re g is te r ,  r e g is te r 3 — 2 A D D  C X, DX
re g is te r ,  m e m o ry 9 +  EA 1 2-4 A D D  D l, [B X ].A L P H A
m e m o ry , r e g is te r 16 +  EA 2 2-4 A D D  T E M P , C L
re g is te r ,  im m e d ia te 4 — 3-4 A D D  C L , 2
m e m o ry , im m e d ia te 17 +  EA 2 3-6 A D D  A L P H A ,2
a c c u m u la to r , im m e d ia te 4 — 2-3 A D D  AX , 200

AND AND d e s t in a t io n ,s o u rc e  
L o g ic a l and

O D I T S Z A P C  
F ags  0 X X U X 0

O perands Clocks Transfers* Bytes Coding Example

re g is te r ,  r e g is te r 3 — 2 A N D  A L ,B L
re g is te r ,  m e m o ry 9 +  E A 1 2-4 A N D  C X .F L A G __W O R D
m e m o ry , r e g is te r 16 +  EA 2 2-4 A N D  A S C II [D I],A L
re g is te r ,  im m e d ia te 4 — 3-4 A N D  C X.0F0H
m e m o ry , im m e d ia te 17 +  EA 2 3-6 A N D  B E T A , 01H
a c c u m u la to r , im m e d ia te 4 — 2-3 A N D  AX , 01010000B

CALL CALL ta rg e t 
C a ll a  p ro c e d u re

O D I T S Z A P CFlags

O perands Clocks Transfers* Bytes Coding Examples

n e a r-p ro c 19 1 3 C A L L  N E A R __PROC
fa r-p ro c 28 2 5 C A L L  FAR __PROC
m e m p tr1 6 21 + E A 2 2-4 C A L L  PR O C __T A B L E  [SI]
re g p tr1 6 16 1 2 C A L L  AX
m e m p tr  32 37 +  EA 4 2-4 C A L L  [B X J.TA S K  [SI]

CBW CBW (no  o p e ra n d s ) 
C o n v e rt b y te  to  w o rd

O D I T S Z A P CFlags

O perands Clocks Transfers* Bytes Coding Example

(no  o p e ra n d s ) 2 — 1 C B W

•For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
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Table 2-21. Instruction Set Reference Data (Cont’d.)

CLC CLC (no  o p e ra n d s )  
C le a r c a rry  f la g

O D I T S Z A P C  Flags Q

Operands Clocks Transfers* Bytes Coding Example
(no  o p e ra n d s ) 2 — 1 C LC

CLD CLD (n o  o p e ra n d s )  
C le a r d ire c t io n  fla g

O D I T S Z A P C  Flags Q

Operands Clocks Transfers* Bytes Coding Example
(no  o p e ra n d s ) 2 — 1 C LD

CLI CLI (n o  o p e ra n d s ) 
C le a r in te r ru p t  f la g

_. O D I T S Z A P C  Flags Q

Operands Clocks Transfers* Bytes Coding Example
(no  o p e ra n d s ) 2 — 1 CLI

CMC CMC (no  o p e ra n d s ) 
C o m p le m e n t c a rry  fla g

O D I T S Z A P C  Flags x

Operands Clocks Transfers* Bytes Coding Example
(no  o p e ra n d s ) 2 — 1 C M C

CMP CMP d e s t in a t io n ,s o u rc e  
C o m p a re  d e s t in a t io n  to  s o u rc e

O D I T S Z A P C
F la g s  X X X X X X

Operands Clocks Transfers* Bytes Coding Example
re g is te r ,  r e g is te r 3 — 2 C M P  BX, CX
re g is te r ,  m e m o ry 9 + E A 1 2-4 C M P  D H , A L P H A
m e m o ry , r e g is te r 9 +  EA 1 2-4 C M P  [B P  +  2], SI
re g is te r ,  im m e d ia te 4 — 3-4 C M P  B L , 02H
m e m o ry , im m e d ia te 10 +  EA 1 3-6 C M P  [B X ],R A D A R  [D l], 3420H
a c c u m u la to r ,  im m e d ia te 4 — 2-3 C M P  A L , 00010000B

CMPS CMPS d e s t-s t r in g ,s o u rc e -s t r in g  
C o m p a re  s tr in g

C1 O D I T S Z A P C  
F a g s  X X X X X X

Operands Clocks Transfers* Bytes Coding Example
d e s t-s tr in g , s o u rc e -s tr in g 22 2 1 C M P S  B U F F 1 , BU FF2
(re p e a t)  d e s t-s tr in g , s o u rc e -s tr in g 9 +  2 2 /re p 2 /re p 1 REPE C M P S  ID, KEY

*For the  8086, add  fou r c lo c k s  fo r  e a ch  16-bit w o rd  tran s fe r  w ith  an odd  ad d re ss . Fo r  the  8088, add fou r c lo c k s  fo r e a ch  16-bit w o rd  trans fer.
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Table 2-21. Instruction Set Reference Data (Cont’d.)

CWD C W D  (n o  o p e ra n d s )
C o n v e rt w o rd  to  d o u b le w o rd

O D I T S Z A P CFlags

Operands Clocks Transfers* Bytes Coding Example
(no  o p e ra n d s ) 5 — 1 CW D

DAA DAA (no  o p e ra n d s )  
D e c im a l a d ju s t  fo r  a d d it io n

O D I T S Z A P C
F ags  X X X X X X

Operands Clocks Transfers* Bytes Coding Example
(n o  o p e ra n d s ) 4 — 1 D A A

DAS DAS (no  o p e ra n d s )
D e c im a l a d ju s t  fo r  s u b tra c t io n

O D I T S Z A P C  
F a g s  U X X X X X

Operands Clocks Transfers* Bytes Coding Example
(no  o p e ra n d s ) 4 — 1 DAS

DEC DEC d e s t in a t io n  
D e c re m e n t by 1

O D I T S Z A P C  
F la g s  X X X X X

Operands Clocks Transfers* Bytes Coding Example
reg16 2 — 1 DEC AX
reg8 3 — 2 DEC A L
m e m o ry 15 +  EA 2 2-4 D EC  A R R A Y  [SI]

DIV DIV s o u rc e  
D iv is io n , u n s ig n e d

C1 O D I T S Z A P C  
F la g s  U U U U U U

Operands Clocks Transfers* Bytes Coding Example
reg8 80-90 — 2 DIV C L
reg16 144-162 — 2 DIV BX
m em 8 (86-96) 1 2-4 DIV A L P H A

+  EA
m em 16 (150-168) 1 2-4 DIV T A B L E  [SI]

+  EA

ESC ESC e x te rn a l-o p c o d e ,s o u rc e  
E sca p e

C1 O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
im m e d ia te , m e m o ry 8 +  EA 1 2-4 ESC 6 ,A R R A Y  [SI]
im m e d ia te , r e g is te r 2 — 2 ESC 20,A L

*For the  8086, add  fo u r  c lo c k s  fo r ea ch  16-bit w o rd  tran s fe r w ith  an odd  a d d re ss . Fo r the  8088, add  fou r c lo c k s  fo r e a ch  16-bit w o rd  trans fer.
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Table 2-21. Instruction Set Reference Data (Cont’d.)

HLT HLT (n o  o p e ra n d s )  
H a lt

... O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
(n o  o p e ra n d s ) 2 — 1 H LT

IDIV IDIV s o u rc e  
In te g e r  d iv is io n

C1 O D I T S Z A P C  
F lagS  U U U U U U

Operands Clocks Transfers* Bytes Coding Example
reg 8 101-112 — 2 ID IV BL
reg16 165-184 — 2 ID IV CX
m em 8 (107-118) 1 2-4 ID IV D IV IS O R __B Y TE  [S i]

+  E A
m em 16 (171-190) 1 2-4 ID IV [B X ],D IV IS O R __W O R D

+  EA

IMUL IMUL s o u rc e  
In te g e r  m u lt ip l ic a t io n

C1 O D I T S Z A P C  
F la g s  X U U U U X

Operands Clocks Transfers* Bytes Coding Example
reg8 80-98 — 2 IM U L  C L
reg16 128-154 — 2 IM U L  BX
m em 8 (86-104) 1 2-4 IM U L  R A T E __BY TE

+  EA
m em 16 (134-160) 1 2-4 IM U L  R A T E __W O R D  [B P ] [D l]

+  EA

IN IN a c c u m u la to r ,p o r t  
In p u t b y te  o r  w o rd

... O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
a c c u m u la to r ,  im m e d 8 10 1 2 IN A L , 0FFE A H
a c c u m u la to r ,  DX 8 1 1 IN A X , DX

INC INC d e s t in a t io n  
In c re m e n t b y  1

Flags O D I T S Z A P C
9 X X X X X

Operands Clocks Transfers* Bytes Coding Example
reg16 2 — 1 IN C  CX
reg8 3 — 2 IN C  BL
m e m o ry 15 +  EA 2 2-4 IN C  A L P H A  [D l] [B X ]

* Fo r  the 8086, add  fo u r  c lo c k s  fo r e a ch  16-bit w o rd  tran s fe r w ith  an odd  a d d re ss . Fo r  the  8088, add fou r c lo c k s  fo r each  16-bit w o rd  trans fer.
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Table 2-21. Instruction Set Reference Data (Cont’d.)

INT IN T  in te r ru p t- ty p e  
In te r ru p t

_. O D I T S Z A P C
F la 9 s  0 0

Operands Clocks Transfers* Bytes Coding Example
im m e d 8  ( ty p e  =  3) 52 5 1 IN T  3
im m e d 8 ( ty p e * 3 ) 51 5 2 IN T  67

INTRt INTR (e x te rn a l m a s k a b le  in te rru p t)  
In te r ru p t if  IN T R  a n d  IF=1

O D I T S Z A P C  
F lagS  0 0

Operands Clocks Transfers* Bytes Coding Example
(no  o p e ra n d s ) 61 7 N /A N /A

INTO INTO (no  o p e ra n d s )  
In te r ru p t if o v e r f lo w

_. O D I T S Z A P C
F la 9 S 0 0

Operands Clocks Transfers* Bytes Coding Example
(no  o p e ra n d s ) 53 o r  4 5 1 INTO

IRET IRET (no  o p e ra n d s )  
In te r ru p t R e tu rn

O D I T S Z A P C  
aQS R R R R R R R R R

Operands Clocks Transfers* Bytes Coding Example
(no  o p e ra n d s ) 24 3 1 IRET

JA/JNBE JA/JNBE s h o rt- la b e l
J u m p  if  a b o v e /J u m p  if n o t b e lo w  n o r  e q u a l

... O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
s h o rt- la b e l 1 6 o r4 — 2 J A  A B O V E

JAE/JNB JAE/JNB s h o rt- la b e l
J u m p  if a b o v e  o r  e q u a l/J u m p  if  n o t b e lo w

C1 O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
s h o rt- la b e l 1 6 o r4 — 2 J A E  A B O V E __E Q U A L

JB/JNAE JB/JNAE s h o rt- la b e l
J u m p  if b e lo w /J u m p  if  n o t a b o v e  n o r e q u a l

O D I T S Z A P CFlags

Operands Clocks Transfers* Bytes Coding Example
s h o rt- la b e l 1 6 o r4 — 2 JB  B E LO W

*For the  8086, add fou r c lo c k s  fo r ea ch  16-bit w o rd  tran s fe r w ith an odd  a d d re ss . Fo r  the  8088, add fou r c lo c k s  fo r e a ch  16-bit w o rd  trans fer. 

f lN T R  is  not an in struction ; it is  in c lu d ed  in tab le  2-21 on ly  fo r tim ing  in fo rm ation .
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Table 2-21. Instruction Set Reference Data (Cont’d.)

JBE/JNA JBE/JNA s h o rt- la b e l
J u m p  if b e lo w  o r  e q u a l/J u m p  if  n o t a b o ve

O D I T S Z A P CFlags

Operands Clocks Transfers* Bytes Coding Example
s h o rt- la b e l 1 6 o r4 — 2 J N A  N O T __A B O V E

JC JC s h o rt- la b e l 
J u m p  if  c a rry

O D I T S Z A P CFlags

Operands Clocks Transfers* Bytes Coding Example
s h o rt- la b e l 16 o r  4 — 2 JC  C A R R Y __SET

JCXZ JCXZ s h o rt- la b e l 
J u m p  if C X  is  z e ro

O D I T S Z A P CFlags

Operands Clocks Transfers* Bytes Coding Example
s h o rt- la b e l 18 o r  6 — 2 JC X Z  C O U N T __D O N E

JE/JZ JE/JZ s h o rt- la b e l 
J u m p  if e q u a l/J u m p  if z e ro

O D I T S Z A P CFlags

Operands Clocks Transfers* Bytes Coding Example
s h o rt- la b e l 1 6 o r4 — 2 JZ  Z ER O

JG/JNLE JG/JNLE s h o rt- la b e l
J u m p  if  g re a te r /J u m p  if n o t le s s  n o r  e q u a l

O D I T S Z A P CFlags

Operands Clocks Transfers* Bytes Coding Example
s h o rt- la b e l 16 o r  4 — 2 JG  G R E A TE R

JGE/JNL JGE/JNL s h o rt- la b e l
J u m p  if  g re a te r  o r  e q u a l/J u m p  if  n o t le ss

O D I T S Z A P CFlags

Operands Clocks Transfers* Bytes Coding Example
s h o rt- la b e l 16 o r  4 — 2 JG E  G R E A T E R __E Q U A L

JL/JNGE JL/JNGE s h o rt- la b e l
J u m p  if le s s /J u m p  if  n o t g re a te r  n o r  e q u a l

C1 O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
s h o rt- la b e l 16 o r4 — 2 J L  LESS

' F o r  the  8086, add fou r c lo c k s  fo r  e a ch  16-bit w ord  tran s fe r w ith  an odd  a d d re ss . F o r  the  8088, add fou r c lo c k s  for ea ch  16-bit w o rd  trans fer.
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Table 2-21. Instruction Set Reference Data (Cont’d.)

JLE/JNG JLE/JNG s h o rt- la b e l
J u m p  if  le s s  o r  e q u a l/J u m p  if  n o t g re a te r

O D I T S Z A P CFlags

Operands Clocks Transfers* Bytes Coding Example
s h o rt- la b e l 16 o r  4 — 2 JN G  N O T__G R E A T E R

JMP JMP ta rg e t 
J u m p

O D I T S Z A P CFlags

Operands Clocks Transfers* Bytes Coding Example
s h o rt- la b e l 15 — 2 JM P  S H O R T
n e a r- la b e l 15 — 3 JM P  W IT H IN __S E G M E N T
fa r- la b e l 15 — 5 JM P  F A R __L A B E L
m em p tr1 6 18 +  EA 1 2-4 JM P  [B X ].T A R G E T
re g p tr1 6 11 — 2 JM P  CX
m em p tr3 2 2 4 +  EA 2 2-4 JM P  O T H E R .S E G  [SI]

JNC JNC s h o rt- la b e l 
J u m p  if  n o t c a rry

C1 O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
s h o rt- la b e l 16 o r4 — 2 JN C  N O T __C A R R Y

JNE/JNZ JNE/JNZ s h o rt- la b e l
J u m p  if  n o t e q u a l/J u m p  if n o t z e ro

O D I T S Z A P CFlags

Operands Clocks Transfers* Bytes Coding Example
s h o rt- la b e l 1 6 o r4 — 2 JN E  N O T __E Q U A L

JNO JNO s h o rt- la b e l 
J u m p  if  n o t o v e rf lo w

C1 O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
s h o rt- la b e l 16 o r  4 — 2 JN O  N O __O V E R F LO W

JNP/JPO JNP/JPO s h o rt- la b e l
J u m p  if  n o t p a r ity /J u m p  if  p a r ity  o d d

_. O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
s h o rt- la b e l 16 o r4 — 2 JP O  O D D _ P A R IT Y

JNS JNS s h o rt- la b e l 
J u m p  if n o t s ig n

C1 O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
s h o rt- la b e l 16 o r  4 — 2 JN S  PO S ITIVE

"F o r  the  8086, add fo u r  c lo c k s  fo r e a ch  16-bit w o rd  tran s fe r  w ith an odd  ad d re ss . Fo r  the 8088, add fou r c lo c k s  fo r e a ch  16-bit w o rd  trans fer.
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8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

JO JO s h o rt- la b e l 
J u m p  if o v e r f lo w

r l  O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
s h o rt- la b e l 1 6 o r4 — 2 JO  S IG N E D __O V R F LW

JP/JPE JP/JPE s h o rt- la b e l
J u m p  if  p a r ity /J u m p  if p a r ity  even

C1 O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
s h o rt- la b e l 16 o r4 — 2 JP E  E V E N __P A R ITY

JS JS s h o rt- la b e l 
J u m p  if  s ig n

O D I T S Z A P CFlags

Operands Clocks Transfers* Bytes Coding Example
s h o rt- la b e l 1 6 o r4 — 2 JS  N E G A TIV E

LAHF LAHF (no  o p e ra n d s ) 
Load  AH fro m  fla g s

_ O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
(no  o p e ra n d s ) 4 — 1 LAHF

LDS LDS d e s t in a t io n ,s o u rc e  
Load  p o in te r  u s in g  DS

O D I T S Z A P CFlags

Operands Clocks Transfers Bytes Coding Example
reg16 , m em 32 16 +  EA 2 2-4 LD S S I,D A T A .S E G  [D l]

LEA LEA d e s t in a t io n ,s o u rc e  
Load  e f fe c t iv e  a d d re s s

C1 O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
reg16, m em 16 2 +  EA — 2-4 LE A  BX , [B P ] [D l]

LES LES d e s t in a t io n ,s o u rc e  
Load  p o in te r  u s in g  ES

O D I T S Z A P CFlags

Operands Clocks Transfers* Bytes Coding Example
reg16, m em 32 1 6 + E A 2 2-4 LES D l, [B X J.TE X T__B U F F

•Fo r the 8086, add  fo u r  c lo c k s  fo r ea ch  16-bit w o rd  tran s fe r  w ith  an odd  a d d re ss . Fo r  the  8088, add  fou r c lo c k s  fo r e a ch  16-bit w o rd  trans fer.
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Table 2-21. Instruction Set Reference Data (Cont’d.)

LOCK LOCK (no  o p e ra n d s ) 
L o c k  b u s

O D I T S Z A P CFlags

Operands Clocks Transfers* Bytes Coding Example
(no  o p e ra n d s ) 2 — 1 LO C K  X C H G  F L A G .A L

LODS LODS s o u rc e -s tr in g  
Load  s tr in g

r i  O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
s o u rc e -s tr in g 12 1 1 LO D S C U S T O M E R __N A M E
(re p e a t)  s o u rc e -s tr in g 9 -t-1 3 /rep 1 / rep 1 REP L O D S N A M E

LOOP LOOP s h o rt- la b e l 
L o o p

... O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
s h o rt- la b e l 17 /5 — 2 LO O P A G A IN

LOOPE/LOOPZ LOOPE/LOOPZ s h o rt- la b e l 
L o o p  if e q u a l/L o o p  if z e ro

C1 O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
s h o rt- la b e l 1 8 o r6 — 2 LO O P E  A G A IN

LOOPNE/LOOPNZ LOOPNE/LOOPNZ s h o rt- la b e l 
L o o p  if n o t e q u a l / L o o p  if n o t z e ro

... O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
s h o rt- la b e l 19 o r  5 — 2 LO O P N E  A G A IN

N M l t NMI (e x te rn a l n o n m a s k a b le  in te rru p t)  
In te r ru p t  if  N M I =  1

C1 O S I T S Z A P C  
F la g s  0 0

Operands Clocks Transfers* Bytes Coding Example
(no  o p e ra n d s ) 50' 5 N /A N /A

*For the  8086, add fou r c lo c k s  fo r e ach  16-bit w o rd  tran s fe r w ith  an odd  a d d re ss . Fo r  the  8088, add fou r c lo c k s  fo r ea ch  16-bit w o rd  trans fer. 

tN M I  is  not an in struction ; it is  in c lu d e d  in tab le  2-21 on ly  fo r tim ing  in fo rm ation .
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Table 2-21. Instruction Set Reference Data (Cont’d.)

MOV MOV d e s t in a t io n ,s o u rc e  
M ove

O D I T S Z A P CFlags

Operands Clocks Transfers* Bytes Coding Example
m e m o ry , a c c u m u la to r 10 1 3 M O V A R R A Y  [S I], A L
a c c u m u la to r ,  m e m o ry 10 1 3 M O V A X , T E M P __R E S U LT
re g is te r ,  r e g is te r 2 — 2 M O V A X .C X
re g is te r ,  m e m o ry 8 +  EA 1 2-4 M O V BP, S T A C K _ T O P
m e m o ry , r e g is te r 9 +  EA 1 2-4 M O V C O U N T  [D I] ,C X
re g is te r ,  im m e d ia te 4 — 2-3 M O V C L, 2
m e m o ry , im m e d ia te 10 +  EA 1 3-6 M O V  M A S K  [B X ] [S I], 2CH
s e g -re g , reg16 2 — 2 M O V  ES, CX
s e g -re g , m em 16 8 +  EA 1 2-4 M O V DS, S E G M E N T __B A S E
reg16, s e g -re g 2 — 2 M O V BP, SS
m e m o ry , s e g -re g 9 +  EA 1 2-4 M O V [B X ].S E G __S A V E , CS

MOVS MOVS d e s t-s tr in g ,s o u rc e -s tr in g  
M o ve  s tr in g

C1 O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
d e s t-s tr in g , s o u rc e -s t r in g 18 2 1 M O V S  L IN E  E D IT__D A T A
(re p e a t)  d e s t-s t r in g ,  s o u rc e -s tr in g 9 +  1 7 /re p 2 / rep 1 REP MOVS SCREEN, BUFFER

MOVSB/MOVSW MOVSB/MOVSW (no  o p e ra n d s ) 
M o ve  s tr in g  (b y te /w o rd )

O D I T S Z A P CFlags

Operands Clocks Transfers* Bytes Coding Example
(no  o p e ra n d s ) 18 2 1 M O V S B
(re p e a t)  (n o  o p e ra n d s ) 9 +  1 7 /re p 2 /re p 1 REP M O V S W

MUL MUL s o u rc e
M u lt ip l ic a t io n , u n s ig n e d

O D I T S Z A P C  
F la g s  X U U U U X

Operands Clocks Transfers* Bytes Coding Example
reg8 70-77 — 2 M U L  B L
reg16 118-133 — 2 M U L  CX
m em 8 (76-83) 1 2-4 M U L  M O N T H  [SI]

+  EA
m em 16 (124-139) 1 2-4 M U L  B A U D __R ATE

+  EA

*For the  8086, add  fo u r  c lo c k s  fo r e a ch  16-bit w o rd  tran s fe r  w ith  an odd  ad d re ss . Fo r  the  8088, add fou r c lo c k s  fo r ea ch  16-bit w o rd  trans fer.
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Table 2-21. Instruction Set Reference Data (Cont’d.)

NEG NEG d e s t in a t io n  
N e g a te

C1 O D I T S Z A P C  
F a g s  X X X X X 1*

Operands Clocks Transfers* Bytes Coding Example
r e g is te r 3 — 2 NEG A L
m e m o ry 16 +  EA 2 2-4 NEG M U LT IP L IE R

*0 if  d e s t in a t io n  =  0

NOP NOP (no  o p e ra n d s ) 
N o  O p e ra tio n

C1 O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
(n o  o p e ra n d s ) 3 — 1 NOP

NOT NOT d e s t in a t io n  
L o g ic a l n o t

C1 O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
r e g is te r 3 — 2 N O T AX
m e m o ry 16 +  EA 2 2-4 N O T C H A R A C T E R

OR OR d e s t in a t io n ,s o u rc e  
L o g ic a l in c lu s iv e  o r

... O D I T S Z A P C  
F la g s  0 X X U X O

Operands Clocks Transfers* Bytes Coding Example
re g is te r ,  re g is te r 3 — 2 OR A L , BL
re g is te r ,  m e m o ry 9 +  EA 1 2-4 OR DX, P O R T__ID [D l]
m e m o ry , r e g is te r 16 +  EA 2 2-4 OR F LA G __BY TE , CL
a c c u m u la to r , im m e d ia te 4 — 2-3 OR A L , 01101100B
re g is te r ,  im m e d ia te 4 — 3-4 OR CX.01H
m e m o ry , im m e d ia te 1 7 +  EA 2 3-6 OR [B X ].C M D __W O RD.O CFH

OUT OUT p o r t ,a c c u m u la to r  
O u tp u t b y te  o r  w o rd

... O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
im m e d 8 , a c c u m u la to r 10 1 2 O U T  44, AX
DX, a c c u m u la to r 8 1 1 O U T  DX, A L

POP POP d e s t in a t io n  
P op  w o rd  o f f  s ta c k

C1 O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
re g is te r 8 1 1 POP DX
s e g -re g  (CS il le g a l) 8 1 1 POP DS
m e m o ry 1 7 +  EA 2 2-4 POP P A R A M E T E R

*For the  8086, add fou r c lo c k s  fo r e a ch  16-bit w o rd  tran s fe r  w ith an odd  ad d re ss . Fo r the  8088, add fou r c lo c k s  fo r e a ch  16-bit w o rd  trans fer.
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Table 2-21. Instruction Set Reference Data (Cont’d.)

POPF POPF (no  o p e ra n d s ) 
P op  f la g s  o f f  s ta c k

O D I T S Z A P C  
H a 9 S  R R R R R R R R R

Operands Clocks Transfers* Bytes Coding Example
(no  o p e ra n d s ) 8 1 1 POPF

PUSH PUSH s o u rc e  
P u sh  w o rd  o n to  s ta c k

C1 O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
re g is te r 11 1 1 P U S H  SI
s e g -re g  (CS le g a l) 10 1 1 P U S H  ES
m e m o ry 16 +  EA 2 2-4 P U S H  R E T U R N __C O D E  [SI]

PUSHF PUSHF (no  o p e ra n d s )  
P u sh  f la g s  o n to  s ta c k

C1 O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
(no  o p e ra n d s ) 10 1 1 P U S H F

RCL RCL d e s t in a t io n ,c o u n t  
R o ta te  le f t  th ro u g h  c a rry

C1 O D I T S Z A P C  
F 'a g s  x  x

Operands Clocks Transfers* Bytes Coding Example
re g is te r ,  1 2 — 2 R C L C X ,1
re g is te r ,  C L 8 +  4 /b it — 2 R C L A L , C L
m e m o ry , 1 15 +  EA 2 2-4 R C L A L P H A , 1
m e m o ry , C L 20 +  EA + 2 2-4 R C L [B P J.P A R M , C L

4 /b it

RCR RCR d e s ig n a t io n ,c o u n t 
R o ta te  r ig h t  th ro u g h  c a rry

O D I T S Z A P C  F|ags x x

Operands Clocks Transfers* Bytes Coding Example
re g is te r ,  1 2 — 2 RCR BX, 1
re g is te r ,  C L 8 +  4 /b it — 2 RCR B L , C L
m e m o ry , 1 1 5 +  EA 2 2-4 RCR [B X ].S T A T U S , 1
m e m o ry , C L 20 +  EA +  

4 /b it
2 2-4 RCR A R R A Y  [D l], C L

REP REP (n o  o p e ra n d s )  
R e p e a t s tr in g  o p e ra tio n

r . O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
(no  o p e ra n d s ) 2 — 1 R E P M O V S  D ES T, SR C E

*For the 8086, add  fou r c lo c k s  fo r ea ch  16-bit w o rd  tran s fe r w ith  an odd  ad d re ss . Fo r the  8088, add fou r c lo c k s  fo r ea ch  16-bit w o rd  trans fer.
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Table 2-21. Instruction Set Reference Data (Cont’d.)

REPE/REPZ REPE/REPZ (no operands)
Repeat string operation while equal/while zero

O D I T S Z A P CFlags

Operands Clocks Transfers* Bytes Coding Example
(no operands) 2 — 1 REPE CMPS DATA, KEY

REPNE/REPNZ REPNE/REPNZ (no operands)
Repeat string operation while not equal/notzero

O D I T S Z A P CFlags

Operands Clocks Transfers* Bytes Coding Example
(no operands) 2 — 1 REPNE SCAS INPUT_LINE

RET RET o p tio n a l-p o p -v a lu e  
R e tu rn  fro m  p ro c e d u re

C1 O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
( in tra -s e g m e n t,  n o  po p ) 8 1 1 RET
( in tra -s e g m e n t,  p op ) 12 1 3 RET 4
( in te r -s e g m e n t,  n o  p op ) 18 2 1 RET
( in te r -s e g m e n t,  p op ) 17 2 3 RET 2

ROL ROL d e s t in a t io n ,c o u n t  
R o ta te  le f t

O D I T S Z A P C  F'ags x x
Operands Clocks Transfers Bytes Coding Examples

re g is te r ,  1 2 — 2 R O L BX, 1
re g is te r ,  C L 8 + 4 / b it — 2 R O L D l, C L
m e m o ry , 1 15 +  EA 2 2-4 R O L F LA G __B Y TE  [D l],1
m e m o ry , C L 20 +  EA +  

4 / b it
2 2-4 R O L A L P H A , C L

ROR ROR d e s t in a t io n ,c o u n t  
R o ta te  r ig h t

C1 O D I T S Z A P C  F'ags x x

Operand Clocks Transfers* Bytes Coding Example
re g is te r ,  1 2 — 2 ROR A L , 1
re g is te r ,  C L 8 +  4 / b it — 2 ROR BX, C L
m e m o ry , 1 15 +  EA 2 2-4 ROR P O R T__S T A T U S , 1
m e m o ry , C L 20 +  EA + 2 2-4 ROR C M D __W O R D , C L

4 /b it

SAHF SAHF (no  o p e ra n d s ) 
S to re  A H  in to  f la g s

c , O D I T S Z A P C  
F l39S  R R R R R

Operands Clocks Transfers* Bytes Coding Example
(n o  o p e ra n d s ) 4 — 1 S A H F

*For the  8086, add  fou r c lo c k s  fo r e a ch  16-bit w o rd  tran s fe r  w ith an odd  ad d re ss . Fo r  the 8088, add fou r c lo c k s  fo r e a ch  16-bit w o rd  trans fer.
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Table 2-21. Instruction Set Reference Data (Cont’d.)

SAL/SHL SAL/SHL d e s t in a t io n ,c o u n t  
S h if t  a r i th m e t ic  le f t /S h if t  lo g ic a l le ft

O D I T S Z A P CHags x x

Operands Clocks Transfers* Bytes Coding Examples
r e g is te r ,1 2 — 2 S A L  AL,1
re g is te r ,  C L 8 +  4 /b it — 2 S H L  D l, C L
m e m o ry ,1 1 5 +  EA 2 2-4 S H L  [B X ].O V E R D R A W , 1
m e m o ry , C L 20 +  EA +  

4 /b it
2 2-4 S A L  S T O R E __C O U N T , C L

SAR SAR d e s t in a t io n ,s o u rc e  
S h if t  a r ith m e t ic  r ig h t

... O D I T S Z A P C  
F ags  X X X U X X

Operands Clocks Transfers* Bytes Coding Example
re g is te r ,  1 2 — 2 S A R  DX, 1
re g is te r ,  C L 8 +  4 /b it — 2 S A R  D l, C L
m e m o ry , 1 15 +  EA 2 2-4 S A R  N__B L O C K S , 1
m e m o ry , C L 20 +  EA + 2 2-4 S A R  N__B L O C K S , C L

4 / b it

SBB SBB d e s t in a t io n ,s o u rc e  
S u b tra c t  w ith  b o rro w

O D I T S Z A P C
F ags  X X X X X X

Operands Clocks Transfers* Bytes Coding Example
re g is te r ,  re g is te r 3 — 2 S B B  BX, CX
re g is te r ,  m e m o ry 9 + EA 1 2-4 S B B  D l, [B X ],P A Y M E N T
m e m o ry , r e g is te r 16 +  EA 2 2-4 S B B  B A L A N C E , AX
a c c u m u la to r ,  im m e d ia te 4 — 2-3 S B B  A X , 2
re g is te r ,  im m e d ia te 4 — 3-4 S B B  C L, 1
m e m o ry , im m e d ia te 17 +  EA 2 3-6 S B B  C O U N T  [S I], 10

SCAS SCAS d e s t-s tr in g  
S can  s tr in g

C1 O D I T S Z A P C
F ags  X X X X X X

Operands Clocks Transfers* Bytes Coding Example
d e s t-s tr in g 15 1 1 S C A S  IN P U T __L IN E
(re p e a t)  d e s t-s tr in g 9 + 1 5 / rep 1 /re p 1 R EP N E  S C A S  B U FFE R

SEGMENT^ SEGMENT o v e rr id e  p re f ix  
O v e rr id e  to  s p e c if ie d  s e g m e n t

... O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
(no  o p e ra n d s ) 2 — 1 M O V S S :P A R A M E T E R , AX

*For the  8086, add fou r c lo c k s  fo r e a ch  16-bit w o rd  tran s fe r  w ith  an odd  ad d re ss . Fo r  the  8088, add fou r c lo c k s  fo r ea ch  16-bit w ord  trans fer.

tA S M -86  in co rp o ra te s  the  se g m e n t o ve rr id e  p re fix  in to  the  o p e ran d  sp e c if ic a t io n  and not a s  a sepa ra te  in stru ct io n . S E G M E N T  is  in c lu d e d  in tab le  

2-21 on ly  fo r tim ing  in fo rm ation .
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Table 2-21. Instruction Set Reference Data (Cont’d.)

SHR SHR d e s t in a t io n ,c o u n t  
S h if t  lo g ic a l r ig h t

_. O D I T S Z A P C  
F la g s  X X

Operands Clocks Transfers* Bytes Coding Example
re g is te r ,  1 2 — 2 S H R  SI, 1
re g is te r ,  C L 8 +  4 /b it — 2 S H R  SI, C L
m e m o ry , 1 15 +  EA 2 2-4 S H R  ID__B Y TE  [S I] [B X ], 1
m e m o ry , C L 20 +  EA + 2 2-4 S H R  IN P U T __W O R D , C L

4 /b it

SINGLE STEP + SINGLE STEP (T ra p  fla g  in te rru p t)  
In te r ru p t if T F  =  1

C1 O D I T S Z A P C  
F la g s  0 0

Operands Clocks Transfers* Bytes Coding Example
(no  o p e ra n d s ) 50 5 N /A N /A

STC STC (no  o p e ra n d s ) 
S e t c a rry  fla g

C1 O D I T S Z A P C  Flags 1

Operands Clocks Transfers* Bytes Coding Example
(n o  o p e ra n d s ) 2 — 1 STC

STD STD (n o  o p e ra n d s ) 
S e t d ire c t io n  fla g

C1 O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
(no  o p e ra n d s ) 2 — 1 STD

STI STI (no  o p e ra n d s )
S e t in te r ru p t  e n a b le  fla g

C1 O D I T S Z A P C  Flags 1

Operands Clocks Transfers* Bytes Coding Example
(no  o p e ra n d s ) 2 — 1 STI

STOS STOS d e s t-s tr in g  
S to re  b y te  o r  w o rd  s tr in g

... O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
d e s t-s tr in g 11 1 1 STO S P R IN T __L IN E
(re p e a t)  d e s t-s tr in g 9 +  1 0 /re p 1 / rep 1 REP S TO S D IS P LA Y

*For the  8086, add  fo u r  c lo c k s  fo r  e a ch  16-bit w o rd  tran s fe r  w ith  an odd  a d d re ss . Fo r  the 8088, add fou r c lo c k s  fo r e a ch  16-bit w o rd  trans fer. 

fS IN G L E  S T E P  is no t an in struction ; it is  in c lu d ed  in tab le  2-21 on ly  fo r tim ing in fo rm ation .
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Table 2-21. Instruction Set Reference Data (Cont’d.)

SUB SUB d e s t in a t io n ,s o u rc e  
S u b tra c t io n

O D I T S Z A P C
F la g s  X X X X X X

Operands Clocks Transfers* Bytes Coding Example
re g is te r ,  r e g is te r 3 — 2 S U B  C X, BX
re g is te r ,  m e m o ry 9 +  EA 1 2-4 S U B  DX, M A T H _ .T O T A L  [SI]
m e m o ry , r e g is te r 16 +  EA 2 2-4 S U B  [B P  +  2], C L
a c c u m u la to r ,  im m e d ia te 4 — 2-3 S U B  A L , 10
re g is te r ,  im m e d ia te 4 — 3-4 S U B  SI, 5280
m e m o ry , im m e d ia te 17 +  EA 2 3-6 S U B  [B P ],B A L A N C E , 1000

TEST TEST d e s t in a t io n ,s o u rc e
T e s t o r  n o n -d e s tru c t iv e  lo g ic a l and

C1 O D I T S Z A P C  
F la g s  0 X X U X 0

Operands Clocks Transfers* Bytes Coding Example
re g is te r ,  r e g is te r 3 — 2 T E S T  SI, Dl
re g is te r ,  m e m o ry 9 +  EA 1 2-4 TE S T SI, E N D __C O U N T
a c c u m u la to r , im m e d ia te 4 — 2-3 TE S T A L , 00100000B
re g is te r ,  im m e d ia te 5 — 3-4 T E S T  B X ,0 C C 4 H
m e m o ry , im m e d ia te 11 +  EA — 3-6 T E S T  R E T U R N __C O D E , 01H

WAIT WAIT (no  o p e ra n d s )
W a it w h ile  T E S T  p in  n o t a s s e rte d

C1 O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
(no  o p e ra n d s ) 3 +  5n — 1 W A IT

XCHG XCHG d e s t in a t io n ,s o u rc e  
E x c h a n g e

C1 O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
a c c u m u la to r ,  reg16 3 — 1 XC H G  A X , BX
m e m o ry , r e g is te r 1 7 +  EA 2 2-4 XC H G  S E M A P H O R E , AX
re g is te r ,  r e g is te r 4 — 2 XC H G  A L , BL

XL AT XLAT s o u rc e - ta b le  
T ra n s la te

C1 O D I T S Z A P C  Flags

Operands Clocks Transfers* Bytes Coding Example
s o u rc e - ta b le 11 1 1 X L A T  A S C IL T A B

‘ Fo r the  8086, add fou r c lo c k s  fo r e a ch  16-bit w ord  tran s fe r w ith  an odd  a d d re ss . Fo r  the 8088, add fou r c lo c k s  fo r e ach  16-bit w o rd  trans fer.
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Table 2-21. Instruction Set Reference Data (Cont’d.)

XOR XOR d e s t in a t io n ,s o u rc e  
L o g ic a l e x c lu s iv e  o r

C1 O D I T S Z A P C  
F ags  0 X X U X 0

Operands Clocks Transfers* Bytes Coding Example
re g is te r ,  r e g is te r 3 — 2 XOR C X, BX
re g is te r ,  m e m o ry 9 +  EA 1 2-4 XOR C L , M A S K __BYTE
m e m o ry , r e g is te r 1 6 +  EA 2 2-4 XO R  A L P H A  [S I], DX
a c c u m u la to r , im m e d ia te 4 — 2-3 XOR A L , 01000010B
re g is te r ,  im m e d ia te 4 — 3-4 XO R  SI, 00C2H
m e m o ry , im m e d ia te 17 +  EA 2 3-6 XO R  R E T U R N __C O D E , 0D2H

*For the  8086, add  fo u r  c lo c k s  fo r  e a ch  16-bit w o rd  tran s fe r  w ith  an odd  a d d re ss . Fo r the  8088, add fou r c lo c k s  for e a ch  16-bit w o rd  tran s fe r.

2.8 Addressing Modes

The 8086 and 8088 provide many different ways 
to access instruction operands. Operands may be 
contained in registers, within the instruction 
itself, in memory or in I/O ports. In addition, the 
addresses of memory and I/O port operands can 
be calculated in several different ways. These 
addressing modes greatly extend the flexibility 
and convenience of the instruction set. This sec
tion briefly describes register and immediate 
operands and then covers the 8086/8088 memory 
and I/O addressing modes in detail.

Register and Immediate Operands

Instructions that specify only register operands 
are generally the most compact and fastest 
executing of all instruction forms. This is because 
the register “ addresses” are encoded in instruc
tions in just a few bits, and because these opera
tions are performed entirely within the CPU (no 
bus cycles are run). Registers may serve as source 
operands, destination operands, or both.

Immediate operands are constant data contained 
in an instruction. The data may be either 8 or 16 
bits in length. Immediate operands can be 
accessed quickly because they are available 
directly from the instruction queue; like a register 
operand, no bus cycles need to be run to obtain an 
immediate operand. The limitations of immediate 
operands are that they may only serve as source 
operands and that they are constant values.

Memory Addressing Modes

Whereas the EU has direct access to register and 
immediate operands, memory operands must be 
transferred to or from the CPU over the bus. 
When the EU needs to read or write a memory 
operand, it must pass an offset value to the BIU. 
The BIU adds the offset to the (shifted) content of 
a segment register producing a 20-bit physical 
address and then executes the bus cycle(s) needed 
to access the operand.

The Effective Address

The offset that the EU calculates for a memory 
operand is called the operand’s effective address 
or EA. It is an unsigned 16-bit number that 
expresses the operand’s distance in bytes from the 
beginning of the segment in which it resides. The 
EU can calculate the effective address in several 
different ways. Information encoded in the 
second byte of the instruction tells the EU how to 
calculate the effective address of each memory 
operand. A compiler or assembler derives this 
information from the statement or instruction 
written by the programmer. Assembly language 
programmers have access to all addressing modes.

Figure 2-34 shows that the execution unit 
calculates the EA by summing a displacement, the 
content of a base register and the content of an 
index register. The fact that any combination of 
these three components may be present in a given 
instruction gives rise to the variety of 8086/8088 
memory addressing modes.
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ENCODED
INTHE
INSTRUCTION

EXPLICIT
INTH E
INSTRUCTION

ASSUMED 
UNLESS 
OVERRIDDEN 
BY PREFIX

SINGLE INDEX DOUBLE INDEX

1 BX H 1 BX H rl
OR OR

1 BP h 1 BP h H
OR

{

OR

Dl

J -

y
------- 1 DISPLACEMENT —

- {

6 J - [

c s 0000

OR

SS 0000 |

OR

DS 0000 1

OR

ES 0000 |

|p h y s i c a l a d d r |

T

OR

EFFECTIVE
'AD D R ESS

Figure 2-34. Memory Address Computation

The displacement element is an 8- or 16-bit 
number that is contained in the instruction. The 
displacement generally is derived from the posi
tion of the operand name (a variable or label) in 
the program. It also is possible for a programmer 
to modify this value or to specify the displace
ment explicitly.

A programmer may specify that either BX or BP 
is to serve as a base register whose content is to be 
used in the EA computation. Similarly, either SI 
or DI may be specified as an index register. 
Whereas the displacement value is a constant, the 
contents of the base and index registers may 
change during execution. This makes it possible 
for one instruction to access different memory 
locations as determined by the current values in 
the base and/or index registers.

It takes time for the EU to calculate a memory 
operand’s effective address. In general, the more 
elements in the calculation, the longer it takes.

Table 2-20 shows how much time is required to 
compute an effective address for any combination 
of displacement, base register and index register.

Direct Addressing

Direct addressing (see figure 2-35) is the simplest 
memory addressing mode. No registers are in
volved; the EA is taken directly from the displace
ment field of the instruction. Direct addressing 
typically is used to access simple variables 
(scalars).

Register Indirect Addressing

The effective address of a memory operand may 
be taken directly from one of the base or index 
registers as shown in figure 2-36. One instruction 
can operate on many different memory locations 
if the value in the base or index register is updated
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appropriately. The LEA (load effective address) 
and arithmetic instructions might be used to 
change the register value.

ment (unless a segment override prefix is present). 
This makes based addressing with BP a very con
venient way to access stack data (see section 2.10 
for examples).

Note that any 16-bit general register may be used 
for register indirect addressing with the JMP or 
CALL instructions.

Based addressing also provides a straightforward 
way to address structures which may be located at 
different places in memory (see figure 2-38). A 
base register can be pointed at the base of the 
structure and elements of the structure addressed 
by their displacements from the base. Different

Figure 2-36. Register Indirect Addressing
Figure 2-38. Accessing a Structure With Based 

Addressing

Based Addressing

In based addressing (figure 2-37), the effective 
address is the sum of a displacement value and the 
content of register BX or register BP. Recall that 
specifying BP as a base register directs the BIU to 
obtain the operand from the current stack seg-

Figure 2-37. Based Addressing

Indexed Addressing

In indexed addressing, the effective address is 
calculated from the sum of a displacement plus 
the content of an index register (SI or DI) as 
shown in figure 2-39. Indexed addressing often is

Figure 2-39. Indexed Addressing
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used to access elements in an array (see figure
2-40). The displacement locates the beginning of 
the array, and the value of the index register 
selects one element (the first element is selected if 
the index register contains 0). Since all array 
elements are the same length, simple arithmetic 
on the index register will select any element.

Based Indexed Addressing

Based indexed addressing generates an effective 
address that is the sum of a base register, an 
index register and a displacement (see figure
2-41). Based indexed addressing is a very flexible 
mode because two address components can be 
varied at execution time.

HIGH ADDRESS

ARRAY (8)

r H  DISPLACEMENT | ARRAY (7) | DISPLACEMENT \- n

A ARRAY (6) I
T ARRAY (5) Y

INDEX REGISTER ARRAY (4) INDEX REGISTER

1 » 1 ARRAY (3) I 2 I
! + ARRAY (2) ♦
I 1 EA 1--- ARRAY (1) ------1 EA 1L ARRAY (0) ♦  J

WORD—► 
LOW ADDRESS

Figure 2-40. Accessing an Array With Indexed 
Addressing

Based indexed addressing provides a convenient 
way for a procedure to address an array allocated 
on a stack (see figure 2-42). Register BP can con
tain the offset of a reference point on the stack, 
typically the top of the stack after the procedure 
has saved registers and allocated local storage. 
The offset of the beginning of the array from the 
reference point can be expressed by a displace
ment value, and an index register can be used to 
access individual array elements.

Arrays contained in structures and matrices (two- 
dimension arrays) also could be accessed with 
based indexed addressing.

Figure 2-41. Based Indexed Addressing

DISPLACEMENT

HIGH ADDRESS

LOWER ADDRESS

Figure 2-42. Accessing a Stack Array With Based Indexed Addressing
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String Addressing

String instructions do not use the normal memory 
addressing modes to access their operands. 
Instead, the index registers are used implicitly as 
shown in figure 2-43. When a string instruction is 
executed, SI is assumed to point to the first byte 
or word of the source string, and DI is assumed to 
point to the first byte or word of the destination 
string. In a repeated string operation, the CPUs 
automatically adjust SI and DI to obtain subse
quent bytes or words.

I/O  Port Addressing

If an I/O port is memory mapped, any of the 
memory operand addressing modes may be used 
to access the port. For example, a group of ter
minals can be accessed as an “ array.” String 
instructions also can be used to transfer data to 
memory-mapped ports with an appropriate hard
ware interface. Section 2.10 contains examples of 
addressing memory-mapped I/O ports.
Two different addressing modes can be used to 
access ports located in the I/O space; these are 
illustrated in figure 2-44. In direct port address
ing, the port number is an 8-bit immediate

I o p c o d e |

|  SI |---------» - |  SOURCE EA

|  DI |---------» - | d e s t in a t i o n E A |

Figure 2-43. String Operand Addressing

operand. This allows fixed access to ports 
numbered 0-255. Indirect port addressing is 
similar to register indirect addressing of memory 
operands. The port number is taken from register 
DX and can range from 0 to 65,535. By pre
viously adjusting the content of register DX, one 
instruction can access any port in the I/O space. 
A group of adjacent ports can be accessed using a 
simple software loop that adjusts the value in DX.

2.9 Programming Facilities

A comprehensive integrated set of tools supports 
8086/8088 software development. These tools are 
programs that run on Intellec® 800 or Series II 
Microcomputer Development Systems under the 
ISIS-II operating system, the same hardware and 
operating system used to develop software for the 
8080 and the 8085. Since the 8086 and 8088 are 
software-compatible with one another, the same 
tools are used for both processors to provide 
programmers with a uniform development 
environment.

jO P C O D E |D A T A  |

| PORT ADDRESS |  

DIRECT PORT ADDRESSING

|O P C O D E |

|  DX | -------» - |  PORT ADDRESS |

INDIRECT PORT ADDRESSING

Figure 2-44. I/O  Port Addressing
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Software Development Overview

A program that will ultimately execute on an 
8086- or 8088-based system is developed in steps 
(see figure 2-45). The overall program is com
posed of functional units called modules. For 
purposes of this discussion, a module is a section 
of code that is separately created, edited, and 
compiled or assembled. A very small program 
might consist of a single module; a large program 
could be comprised of 100 or more modules. The 
8086/8088 LINK-86 utility binds modules 
together into a single program. (The module 
structure of a program is critical to its successful 
development and maintenance; see section 2.10 
for guidelines.)

8086 and 8088 modules can be written in either 
PL/M-86 or ASM-86 (see table 2-22). PL/M-86 is 
a high-level language suitable for most 
microprocessor applications. It is easy to use, 
even by programmers who have little experience 
with microprocessors. Because it reduces software 
development time, PL/M-86 is ideal for most of 
the programming in any application, especially 
applications that must get to market quickly.

ASM-86 is the 8086/8088 assembly language. 
ASM-86 provides the programmer who is familiar 
with the CPU architecture, access to all processor 
features. For critical code segments within pro
grams that make sophisticated use of the hard
ware, have extremely demanding performance or 
memory constraints, ASM-86 is the best choice.

ISIS-II
TEXT

EDITOR

I

(
SOURCE {___ „
MODULE r

/SelocatTI ABLE /  T , 
l  OBJECT I  V MODULE \

ARIES ^

f l  OBJECT /I |  MODULE I-------
l VlibrariesI

/R E L O C A T -/
* . /  ABLE I ___

l  OBJECT t  
V  MODULE \

( ABSOLUTE, 
OBJECT 

. MODULE H
LOAD
AND

EXECUTE
EXECUTION A  
HARDWARE J

Figure 2-45. Software Development Process
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Table 2-22. PL/M-86/ASM-86 Characteristics

P L /M -8 6 A S M -86

•  F as t D e v e lo p m e n t

•  L e s s  P ro g ra m m e r T ra in in g

•  D e ta ile d  H a rd w a re  K n o w le d g e  N o t R e q u ire d

• F a s te s t E x e c u tio n  S p e e d

•  S m a lle s t M e m o ry  R e q u ire m e n ts

•  A c c e s s  T o  A ll P ro c e s s o r  F a c il it ie s

The languages are completely compatible, and a 
judicious combination of the two often makes 
good sense. Prototype software can be developed 
rapidly with PL/M-86. When the system is 
operating correctly, it can be analyzed to see 
which sections can best profit from being written 
in ASM-86. Since the logic of these sections 
already has been debugged, selective rewriting can 
be done quickly and with low risk.

Each PL/M-86 or ASM-86 module (called a 
source moduel) is keyed into the Intellec® system 
using the ISIS-II text editor and is stored as a 
diskette file. This source file is then input to the 
appropriate language translator (ASM-86 
assembler or PL/M-86 compiler). The language 
translator creates a diskette file from the source 
file, which is called a relocatable object module. 
The translator also lists the program and flags any 
errors detected during the translation. The 
relocatable object module contains the 8086/8088 
machine instructions that the translator created 
from the statements in the source module. The 
term “ relocatable” refers to the fact that all 
references to memory locations in the module are 
relative, rather than being absolute memory 
addresses. The module generally is not executable 
until the relative references are changed to the 
actual memory locations where the module will 
reside in the execution system’s memory. The pro
cess of changing the relative references to 
absolute memory locations is called locating.

There are very good reasons for not locating 
modules when they are translated. First, the exe
cution system’s physical memory configuration 
(where RAM and ROM/PROM segments are 
actually located in the megabyte memory space) 
may not be known at the time the modules are 
written. Second, it is desirable to be able to use a 
common module (e.g., a square root routine) in 
more than one system. If absolute addresses were 
assigned at translation time, the common module 
would either have to occupy the same physical

addresses in every system, or separate versions 
with different addresses would have to be main
tained for each system. When locating is deferred, 
a single version of a common routine can be used 
by any number of systems. Finally, the locations 
of modules typically change as a system is 
developed, maintained and enhanced. Separating 
the location process from the translation process 
means that as modifications are made, unchanged 
modules only need to be relocated, not 
retranslated.

Relocatable object modules may be placed into 
special files called libraries, using the LIB-86 
library manager program. Libraries provide a 
convenient means of collecting groups of related 
modules so that they can be accessed automati
cally by the LINK-86 program.

When enough relocatable object modules have 
been created to test the system, or part of it, the 
modules are linked and located. Linking com
bines all the separate modules into a single pro
gram. Locating changes the relative memory 
references in the program to the actual memory 
locations where the program will be loaded in the 
execution system. The link and locate process also 
is referred to as R & L, for relocation and linkage.

Two other programs round out the software 
development tools available for the 8086 and 
8088. OH-86 converts an absolute object file into 
a hexadecimal format used by some PROM pro
grammers and system loaders (for example, the 
SDK-86 and iSBC 957™ loaders). CONV-86 can 
do most of the conversion work required to 
translate 8080/8085 assembly language source 
modules into ASM-86 source modules.

The 8086/8088 software development facilities 
are covered in more detail in the remainder of this 
section. However, these are only introductions to
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the use of these tools. Complete documentation is 
available in the following publications available 
from Intel’s Literature Department:

ISIS-II:
ISIS-IISystem User’s Guide, Order No. 9800306 

ASM-86:
MCS-86 Assembly Language Reference Manual, 
Order No. 9800640
MCS-86 Assembler Operating Instructions for 
ISIS-II Users, Order No. 9800641

PL/M-86:
PL/M-86 Programming Manual, Order No. 
9800466
ISIS-II PL/M-86 Compiler Operator’s Manual, 
Order No. 9800478

LINK-86, LOC-86, LIB-86, OH-86:
MCS-86 Software Development Utilities 
Operating Instructions for ISIS-II Users, Order 
No. 9800639

CONV-86:
MCS-86 Assem bly Language Converter 
Operating Instructions for ISIS-II Users, Order 
No. 9800642

PL/M -86

PL/M-86 is a general-purpose, high-level 
language for programming the 8086 and 8088 
microprocessors. It is an extension of PL/M-80, 
the most widely-used, high-level programming 
language for microprocessors. (PL/M-80 source 
programs can be processed by the PL/M-86 com
piler; the resulting object program is generally 
reduced by 15-30% in size.) PL/M-86 is suitable 
for all types of microprocessor software from 
operating systems to application programs.

PL/M-86’s purpose is simple: to reduce the time 
and cost of developing and maintaining software 
for the 8086 and 8088. It accomplishes this by 
creating a programming environment that, for the 
most part, is distinct from the architecture of the 
CPUs. Registers, segments, addressing modes, 
stacks, etc., are effectively “ invisible” to the

PL/M-86 programmer. Instead, the processors 
appear to respond to simple commands and 
familiar algebraic expressions. The responsibility 
for translating these source statements into the 
machine instructions ultimately required to exe
cute on the 8086/8088 is assumed by the PL/M-86 
compiler. By “ hiding” the details of the machine 
architecture, PL/M-86 encourages programmers 
to concentrate on solving the problem at hand. 
Furthermore, because PL/M-86 is closer to 
natural language, it is easier to “ think in 
PL/M-86” than it is to “ think in assembly 
language.” This speeds up the expression of a 
program solution, and, equally important, makes 
that solution easier for someone other than the 
original programmer to understand. PL/M-86 
also contains all the constructs necessary for 
structured programming.

Statements and Comments

A programmer builds a PL/M-86 program by 
writing statements and comments (see figure
2-46). There are several different types of 
statements in PL/M-86; they always end with a 
semicolon. Blanks can be used freely before, 
within, and after statements to improve read
ability. A statement also may span more than one 
line.

The characters “ /* ” start a comment, and the 
characters “ * /” end it; any characters may be 
used in between. Comments do not affect the exe
cution of a PL/M-86 program, but all good pro
grams are thoughtfully commented. Comments 
are notes that document and clarify the program’s 
operation; they may be written virtually anywhere 
in a PL/M-86 program.

Data Definition

Most PL/M-86 programs begin by defining the 
data items (variables) with which they are going to 
work. An individual PL/M-86 data element is 
called a scalar. Every scalar variable has a 
programmer-supplied name up to 31 characters 
long, and a type. PL/M-86 supports five types of 
scalars: byte, word, integer, real, and pointer. 
Table 2-23 lists the characteristics of these 
PL/M-86 data types.
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/ 'T R A F F IC  D A T A  R E C O R D E R  C O N T R O L  P R O G R A M * 
•V E R S IO N  2 .2 , R E L E A S E  5, 2 3 A P R 7 9 .*
•T H IS  R E L E A S E  F IX E S  T H R E E  B U G S *
•D O C U M E N T E D  IN  P R O B L E M  R E P O R T  # 1 6 .* /

/ •C O M P U T E  T O T A L  P A Y M E N T  D U E * /
T O T A L  =  P R IN C IP A L  +  IN T E R E S T ;

IF T E R M IN A L $ R E A D Y
T H E N  C A L L  F IL L $ B U F F E R ;
E L S E  C A L L  W A IT  (50); / ‘ W A IT  50 M S  F O R  R E S P O N S E * /

Figure 2-46. PL/M-86 Statements and Comments

Table 2-23. PL/M-86 Data Types

T Y P E B Y TE S R A N G E U S A G E

BY TE 1 0 to  255 U n s ig n e d  In te g e r , C h a ra c te r

W O R D 2 0 to  65,535 U n s ig n e d  In te g e r

IN T E G E R 2
-3 2 ,7 6 8  to  
+  32,767

S ig n e d  In te g e r

R E A L 4 1 x l0 ~ 38to
3 .37X 10+38

F lo a tin g  P o in t

P O IN T E R 2 /4 N /A A d d re s s  M a n ip u la t io n

Variables are defined by writing a DECLARE 
statement of this form:

D E C L A R E  s c a la r - n a m e  t y p e ;

Options of the DECLARE statement can be used 
to specify an initial value for the scalar and to 
define a series of items in a shorthand form.

Besides scalar variables, scalar constants may be 
used in PL/M-86 programs (see figure 2-47). 
Constants may be written “ as is” or may be given 
names to improve program clarity.

Scalars can be aggregated into named collections 
of data such as arrays and structures. An array is 
a collection of scalars of the same type (all 
integer, all real, etc.). Arrays are useful for 
representing data that has a repetitive nature. For

example, monthly rainfall samples could be 
represented as an array of 12 elements, one for 
each month:

D E C L A R E  R A IN F A L L  (12 ) R E A L ;

Each element in an array is accessible by a 
number called a subscript which is the element’s 
relative location in the array. In PL/M-86, the 
first element in an array has a subscript of 0; it is 
considered the “ 0th” element. Thus, RAINFALL 
(11) refers to December’s sample. The subscript 
need not be a constant; variables and expressions 
also may be used as subscripts.

Strings of character data are typically defined as 
byte arrays. Characters can be accessed with 
subscripts or with powerful string-handling func
tions built into PL/M-86.
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10 / 'D E C IM A L  N U M B E R * /
OAH / 'H E X A D E C IM A L  N U M B E R '/
12Q  / 'O C T A L  N U M B E R * /

0000101 OB / 'B IN A R Y  N U M B E R * /
10.0 / 'F L O A T IN G  P O IN T  N U M B E R * /  

1.0E1 / 'F L O A T IN G  P O IN T  N U M B E R * /
‘ A ’ / 'C H A R A C T E R * /

/ 'C O N S T A N T S  M A Y  B E  G IV E N  N A M E S * /  
D E C L A R E  S T A T U S $ P O R T  L IT E R A L L Y  ‘0 F F E H ’ ; 
D E C L A R E  T H R E S H O L D  L IT E R A L L Y  ‘9 8 .6 ’ ;

Figure 2-47. PL/M-86 Constants

A structure is a collection of related data elements 
that do not necessarily have the same type. The 
elements are related by virtue of “ belonging” to 
the entity represented by the structure. Here is a 
simple structure declaration:

D E C L A R E  B R ID G E  S T R U C T U R E

( S P A N  W O R D ,

Y R $ B U IL T  B Y T E ,

A V G S T R A F F IC  R E A L ) ;

The year the bridge was built could be accessed by 
writing BRIDGE. YRSBUILT; the structure ele
ment name is “ qualified” by the dot and the 
structure name. This allows structures with the 
same element names to be distinguished from 
each other (e.g., HIGHWAY.YRSBUILT).

Arrays and structures can be combined into more 
complex data aggregates:
• array elements may be structures rather than 

scalars,
• a structure element may be an array,

• structures in arrays may themselves contain 
arrays.

Figure 2-48 provides sample PL/M-86 data 
declarations.

Assignment Statement

Data that has been defined can be operated on 
with PL/M-86 executable statements. The fun
damental executable statement is the assignment 
statement, written in this form:

variable-name = expression;

This means “ evaluate the expression and assign 
(move) the result to the variable.”

There are three basic classes of expressions in 
PL/M-86; arithmetic, relational and logical (see 
table 2-24 and figure 2-49). All expressions are 
combinations of operands and operators, 
although an expression can consist of a single 
operand. Operands are variables and constants; 
operators vary according to the type of expres
sion. Evaluation of an expression always yields a 
single result; different classes of expressions yield 
different types of results.

Table 2-24. Characteristics of PL/M-86 Expressions

EXPRESSION OPERATORS RESULT
A R IT H M E T IC + , - ,  * , / ,  M O D N U M B E R

R E L A T IO N A L > , < , = , > = , < =
“ T R U E " - FFH 
“ F A L S E ” -OH

L O G IC A L A N D , OR, X O R , N O T 8 /1 6 -B IT  ST R IN G
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/ * * * 'S C A L A R S *  * * *  /
D E C L A R E  S W IT C H  B Y T E ;
D E C L A R E  C O U N T  W O R D ,

IN D E X  IN T E G E R ;
D E C L A R E  (N E T , G R O S S , T O T A L )  R E A L ;

/ ' ' " A R R A Y S ' * * * /
D E C L A R E  M O N T H  (12) B Y T E ;
D E C L A R E  T E R M  IN A l___L IN E  (80) B Y T E ;

/ " " S T R U C T U R E " " /
D E C L A R E  E M P L O Y E E  S T R U C T U R E

(ID __N U M B E R  W O R D ,
D E P A R T M E N T  B Y T E
R A T E  R E A L );

/ " " A R R A Y  O F  S T R U C T U R E S " " /
D E C L A R E  IN V E N T O R Y __IT E M  (100) S T R U C T U R E

(P A R T __N U M B E R  W O R D ,
O N __H A N D  W O R D ,
R E __O R D E R  B Y T E );

/ " " A R R A Y  W IT H IN  S T R U C T U R E " " /
D E C L A R E  C O U N T Y __D A T A  S T R U C T U R E

(N A M E  (20) B Y T E ,
T E N __Y R __R A IN F A L L (1 0 ) B Y T E ,
P E R  C A P IT A __IN C O M E  R E A L );

/ '1  S C A L A R * /  
/ *  1 S C A L A R * /  
/ * 3  S C A L A R S * /

Figure 2-48. PL/M-86 Data Declarations

/ 'A R IT H M E T IC * /
A  =  2; B =  3;
B =  B + 1 ;
C  =  ( A * B) - 2 ;
C  =  ( ( A 'B )  +  3) M O D  3;

/ 'R E L A T IO N A L * /
A  = 2 ; B =  3 
C  =  B >  A ;
C  =  B <  >  A ;
C  =  B =  (A + 1 );

/ 'L O G IC A L * /
A  =  0011$0001B;
B =  1000S0001B;
C =  N O T  B;
C =  A  A N D  B;
C =  A  O R  B;
C =  B X O R  A ;
C =  (A  A N D  B) O R  0 F 0H ;

/ 'B C O N T A I N S 4 * /  
/ * C  C O N T A IN S  6 * /  
/ * C  C O N T A IN S  2* /

/ * C  C O N T A IN S  0 F F H * / 
/ * C  C O N T A IN S  0 F F H * / 
/ * C  C O N T A IN S  0 F F H * /

/ * $  IS FO R  R E A D A B IL IT Y * /

/ * C  C O N T A IN S  0111 $1110 B * /  
/ * C  C O N T A IN S  0000$0001 B * / 
/ * C  C O N T A IN S  1011 $0001 B * /  
/ * C  C O N T A IN S  1011$0000B* / 
/ * C  C O N T A IN S  1111$0001B */

Figure 2-49. Expressions in PL/M-86 Assignment Statements
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Program Flow Statements

Simple PL/M-86 programs can be written with 
just DECLARE and assignment statements. Such 
programs, however, execute exactly the same 
sequence of statements every time they are run 
and would not prove very useful. PL/M-86 pro
vides statements that change the flow of control 
through a program. These statements allow sec
tions of the program to be executed selectively, 
repeated, skipped entirely, etc.

The IF statement (figure 2-50) selects one or the 
other of two statements for execution depending 
on the result of a relational expression. The IF 
statement is written:

IF relational-expression

THEN statem ent-!;

ELSE statement2;

Statementl is executed if the expression is “ true” ; 
statement2 is not executed in this case. If the rela
tion is “ false,” statementl is skipped and state- 
ment2 is executed. In determining the “ truth” of 
an expression, the IF statement only examines the 
low-order bit of the result (l= “ true” ). Therefore, 
arithmetic and logical expressions also may be 
used in an IF statement.

A = 3; B = 5;
IF A <  B

THEN MINIMUM = 1; /'EXECUTED*/
ELSE MINIMUM = 2; / ‘ SKIPPED*/

A DO block begins with a DO statement and ends 
with an END statement. All intervening 
statements are part of the block. A DO block can 
appear anywhere in a program that an executable 
statement can appear. There are four kinds of DO 
statements in PL/M-86: simple DO, DO CASE, 
interative DO, and DO WHILE.

A simple DO statement (figure 2-51) causes all the 
statements in the block to be treated as though 
they were a single statement. Simple DOs enable a 
single IF statement to cause multiple statements 
to be executed (the alternative would be to repeat 
the IF statement for every statement to be 
executed).

/ ‘ SIMPLE DO*/
A=5; B=9;
IF (A + 2)< BTHEN DO;

X=X-1; /'EXECUTED*/
Y(X)=0; /'EXECUTED*/
END;
DO;
X=X+1; /'SKIPPED*/
Y(X)=1; /'SKIPPED*/
END;

/*DO CASE*/ 
A = 2;
DO CASE (A);

X = X+1; /'SKIPPED*/
X = X+2; /'SKIPPED*/
X = X+3; /'EXECUTED*/
X = X+4; /'SKIPPED*/
END;

Figure 2-51. PL/M-86 Simple DO 
and DO CASE

MORE_DATA = OFFH;
IF NOT MORE_DATA

THEN DONE = 1; /'SKIPPED*/
ELSE DONE = 0; /'EXECUTED*/

/'NESTED IF STATEMENTS*/
CLOCK_ON = 1; HOUR=24; ALARM=OFF;
IF CLOCK_ON

THEN IF HOUR = 24 
THEN IF ALARM = OFF

THEN HOUR = 0; /'EXECUTED*/

Figure 2-50. PL/M-86 IF Statements

DO CASE (figure 2-51) causes one statement in 
the DO block to be selected and executed depend
ing on the result of the expression (usually 
arithmetic) written immediately following DO 
CASE:

DO CASE arithm etic-expression;

If the expression yields 0, the first statement in the 
DO block is executed; if the expression yields 1, 
the second statement is executed, etc. A statement 
in the DO block may be null (consist of only a 
semicolon) to cause no action for selected cases. 
DO CASE provides a rapid and easily-understood 
way to respond to data like “ transaction codes”
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where a different action is required for each of 
many values a code might assume (an alternative 
would be an IF statement for every value the code 
could assume).

An iterative DO block (figures 2-52 and 2-53) is 
executed from 0 to an infinite number of times 
based on the relationship of an index variable to 
an expression that terminates execution. The 
general form is:

DO index = start-exprTO stop-expr BY step-expr;

The “ BY step-expr” is optional, and the step is 
assumed to be 1 if not supplied (the typical case). 
When control first reaches the DO statement, 
start-expr is evaluated and is assigned to index. 
Then index is compared to stop-expr; if index 
exceeds stop-expr, control goes to the statement 
following the DO block, otherwise the block is 
executed. At the end of the block, the result of 
step-expr is added to index, and it is compared to

stop-expr again, etc. (The iterative DO is quite 
flexible—this is a simplified explanation.) 
Iterative DOs are handy for “ stepping through” 
an array. For example, an array of 10 elements 
could be zeroed by:

DO I = 0 TO 9;

ARRAY(I) = 0;

END;

In a DO WHILE (figures 2-52 and 2-54), the 
statements are executed repeatedly as long as the 
expression following WHILE evaluates to 
“ true.” DO WHILE often can be applied in 
situations where an interative DO will not work, 
or is clumsy, such as where repetition must be 
controlled by a non-integer value. Like an 
iterative DO, DO WHILE may be executed from 
0 times to an infinite number of times.

/ ‘ ITERATIVE DO*/
DO I = 0 TO 5;

ARRAY (l) = l;
TOTAL = TOTAL+1;
END;

/ ‘ I = 6 ATTHIS POINT*/

/*DO WHILE*/
MORE = 0; SPACE_OK =1;
DO WHILE (MORE AND SPACE„OK);

ITEMS = ITEMS+ 1; / ‘ SKIPPED*/
N_TRACKS =
N_TRACKS + 10; / ‘ SKIPPED*/
IF N_TRACKS >= 999 / ‘ SKIPPED*/

THEN SPACE_OK = 0;
END;

/*DO WHILE*/
CODE = ‘ A ’ ;
DO WHILE (CODE = ‘A’);

TEMP = TEMP * STEP; /'EXECUTION STOPS*/ 
IF TEMP > 98.6 /'AFTER TEMP*/

THEN CODE = ‘B’ ; /'EXCEEDS 98.6*/
N_STEPS = N_STEPS + 1;

END;

/'EXECUTED 6 TIMES*/ 
/'EXECUTED 6 TIMES* /

Figure 2-52. PL/M-86 Iterative DO and DO WHILE
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Figure 2-53. PL/M-86 Iterative DO Flowchart

A GOTO written in the form 

GOTO target;

causes an unconditional transfer (branch) to 
another statement in the program. The statement 
receiving control would be written

target: statement;

where “ target” is a label identifying the 
statement.

A CALL statement written in the form 

CALL proc-name (parm-list);

Figure 2-54. PL/M-86 DO WHILE Flowchart

activates a procedure defined earlier in the pro
gram. The variables listed in “ parm-list” are 
passed to the procedure, the procedure is 
executed, and then control returns to the state
ment following the CALL. Thus, unlike a GOTO, 
a CALL brings control back to the point of 
departure.

Procedures

Procedures are “ subprograms” that make it 
possible to simplify the design of complex pro
grams and to share a single copy of a routine 
among programs. A procedure usually is designed 
to perform one function; i.e., to solve one part of 
the total problem with which the program is deal
ing. For example, a program to calculate 
paychecks could be broken down into separate 
procedures for calculating gross pay, income tax, 
Social Security and net pay. The organization of 
the “ main” program then could be understood at 
a glance:

CALL GROSS_PAY;
CALL INCOME_TAX;
CALL SOCIAL_SECURITY;
CALL NET_PAY;
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Furthermore, the income tax procedure could be 
divided into separate procedures for calculating 
state and federal taxes. Procedures, then, provide 
a mechanism by which a large, complex problem 
can be attacked with a “ divide and conquer” 
strategy.

A procedure usually is defined early in a program, 
but it is only executed when it is referred to by 
name in a later PL/M-86 statement. A procedure 
can accept a list of variables, called parameters, 
that it will use in performing its function. These 
parameters may assume different values each time 
the procedure is executed.

PL/M-86 provides two classes of procedures, 
typed and untyped. A typed procedure returns a 
value to the statement that activates it and, in 
addition, may accept parameters from that state
ment. A typed procedure is activated whenever its 
name appears in a statement; the value it returns 
effectively takes the place of the procedure name 
in the statement. Typed procedures can be used in 
all kinds of PL/M-86 expressions. Untyped pro
cedures may accept parameters, but do not return

a value. Untyped procedures are activated by 
CALL statements. Figure 2-55 shows how simple 
typed and untyped procedures may be declared 
and then activated.

The statements forming the body of a procedure 
need not exist within the module that activates the 
procedure. The activating module can declare the 
procedure EXTERNAL, and the LINK-86 utility 
will connect the two modules.

PL/M-86 procedures can be written to handle 
interrupts. Procedures also may be declared 
REENTRANT, making them concurrently usable 
by different tasks in a multitasking system. 
PL/M-86 also has about 50 procedures built into 
the language, including facilities for:

• converting variables from one type to another
• shifting and rotating bits
• performing input and output
• manipulating strings
• activating the CPU LOCK signal.

/'DECLARATION OF A TYPED PROCEDURE THAT 
ACCEPTS TWO REAL PARAMETERS AND RETURNS A REAL VALUE*/ 
AVG: PROCEDURE (X,Y) REAL;

DECLARE (X,Y) REAL;
RETURN (X+Y)/2.0;
END AVG;

/•ACTIVATING A TYPED PROCEDURE*/
LOW = 2.0;
HIGH = 3.0;
TOTAL = TOTAL + AVG (LOW,HIGH); /*2.5 IS ADDED TO TOTAL*/

/ ‘ DECLARATION OF AN UNTYPED PROCEDURE 
THAT ACCEPTS ONE PARAMETER*/

TEST: PROCEDURE (X);
DECLARE X BYTE;
IF X = OH THEN

COUNT = COUNT+ 1;
END TEST;

/•ACTIVATING AN UNTYPED PROCEDURE*/
CALL TEST (ALPHA); / ‘ COUNT IS INCREMENTED 

IF ALPHA = 0*/

Figure 2-55. PL/M-86 Procedures
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ASM-86

Programmers who are familiar with the CPU 
architecture can obtain complete access to all pro
cessor facilities with ASM-86. Since the execution 
unit on both the 8086 and the 8088 is identical, 
both processors use the same assembly language. 
Examples of processor features not accessible 
through PL/M-86 that can be utilized in ASM-86 
programs include: software interrupts, the WAIT 
and ESC instructions and explicit control of the 
segment registers.

An ASM-86 program often can be written to 
execute faster and/or to use less memory than the 
same program written in PL/M-86. This is 
because the compiler has a limited “ knowledge” 
of the entire program and must generate a 
generalized set of machine instructions that will 
work in all situations, but may not be optimal in a 
particular situation. For example, assume that the 
elements of an array are to be summed and the 
result placed in a variable in memory. The 
machine instructions generated by the PL/M-86 
compiler would move the next array element to a 
register and then add the register to the sum 
variable in memory. An ASM-86 programmer, 
knowing that a register will be “ safe” while the 
array is summed, could instead add all the array 
elements to a register and then move the register 
to the sum variable, saving one instruction execu
tion per array element.

It is easier to write assembly language programs in 
ASM-86 than it is in many assembly languages. 
ASM-86 contains powerful data structuring 
facilities that are usually found only in high-level

languages. ASM-86 also simplifies the program
mer’s “ view” of the 8086/8088 machine instruc
tion set. For example, although there are 28 dif
ferent types of MOV machine instructions, the 
programmer always writes a single form of the 
instruction:

M O V d e s t in a t io n -o p e ra n d , s o u rc e -o p e ra n d

The assembler generates the correct machine- 
instruction form based on the attributes of the 
source and destination operands (attributes are 
covered later in this section). Finally, the ASM-86 
assembler performs extensive checks on the con
sistency of operand definition versus operand use 
in instructions, catching many common types of 
clerical errors.

Statements

Compared to many assemblers, ASM-86 accepts a 
relaxed statement format (see figure 2-56). This 
helps to reduce clerical errors and allows pro
grammers to format their programs for better 
readability. Variable and label names may be up 
to 31 characters long and are not restricted to 
alphabetic and numeric characters. In particular,
the underscore (_) may be used to improve the
readability of long names. Blanks may be inserted 
freely between identifiers (there are no “ column” 
requirements), and statements also may span 
multiple lines.

All ASM-86 statements are classified as instruc
tions or directives. A clear distinction must be 
made here between ASM-86 instructions and

; T H IS  S T A T E M E N T  C O N T A IN S  A  C O M M E N T  O N L Y

M O V  A X , [B X  +  3] ; T Y P IC A L  A S M -8 6  IN S T R U C T IO N
M O V  A X , [B X  +  3] ; B L A N K S  N O T  S IG N IF IC A N T

M O V  A X ,
&  [B X  +  3] ; C O N T IN U E D  S T A T E M E N T S

Z E R O  E Q U  0 ; S IM P L E  A S M -8 6  D IR E C T IV E
C U R __P R O J E Q U  P R O J E C T  [B X ] [S I] ; M O R E  C O M P L E X  D IR E C T IV E
T H E __S T A C K __S T A R T S __H E R E  S E G M E N T  ; L O N G  ID E N T IF IE R
T IG H T __L O O P : J M P  T IG H T _ L O O P  ; L A B E L L E D  S T A T E M E N T
M O V  E S : D A T A __S T R IN G  [S I], A L  ; S E G M E N T  O V E R R ID E  P R E F IX
W A IT : L O C K  X C H G  A X ,S E M A P H O R E  ; L A B E L  & L O C K  P R E F IX

Figure 2-56. ASM-86 Statements
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8086/8088 machine instructions. The assembler 
generates machine instructions from ASM-86 
instructions written by a programmer. Each 
ASM-86 instruction produces one machine 
instruction, but the form of the generated 
machine instruction will vary according to the 
operands written in the ASM-86 instruction. For 
example, writing

M O V BL,1

produces a byte-immediate-to-register MOV, 
while writing

M O V T E R M IN A I___N O ,B X

produces a word-register-to-memory MOV. To 
the programmer, though, there is simply a MOV 
source-to-destination instruction.

ASM-86 instructions are written in the form:

(label:) (prefix) mnemonic (operand(s)) (;comment)

where parentheses denote optional fields (the 
parentheses are not actually written by program
mers). The label field names the storage location 
containing the machine instruction so that it can 
be referred to symbolically as the target of a JMP 
instruction elsewhere in the program. Writing a 
prefix causes ASM-86 to generate one of the 
special prefix bytes (segment override, bus lock or 
repeat) immediately preceding the machine 
instruction. The mnemonic identifies the type of 
instruction (MOV for move, ADD for add, etc.) 
that is to be generated. Zero, one or two operands 
may be written next, separated by commas, 
according to the requirements of the instruction. 
Finally, writing a semicolon signifies that what 
follows is a comment. Comments do not affect 
the execution of a program, but they can greatly

improve its clarity; all good ASM-86 programs 
are thoughtfully commented.

Writing a directive gives ASM-86 information to 
use in generating instructions, but does not itself 
produce a machine instruction. About 20 dif
ferent directives are available in ASM-86. Direc
tives are written like this:

(name) m nemonic (operand(s)) ((comment)

Some directives require a name to be present, 
while others prohibit a name. ASM-86 recognizes 
the directive from the mnemonic keyword written 
in the next field. Any operands required by the 
directive are written next, separated by commas. 
A comment may be written as the last field of a 
directive.

Some of the more commonly used directives 
define procedures (PROC), allocate storage for 
variables (DB, DW, DD) give a descriptive name 
to a number or an expression (EQU), define the 
bounds of segments (SEGMENT and ENDS), 
and force instructions and data to be aligned at 
word boundaries (EVEN).

Constants

Binary, decimal, octal and hexadecimal numeric 
constants (see figure 2-57) may be written in 
ASM-86 statements; the assembler can perform 
basic arithmetic operations on these as well. All 
numbers must, however, be integers and must be 
representable in 16 bits including a sign bit. 
Negative numbers are assembled in standard 
two’s complement notation.

Character constants are enclosed in single quotes 
and may be up to 255 characters long when used

M O V
M O V
A D D
O C T A L __8
O C T A L __9
A L L __O N E S
M IN U S __5
M IN U S __6

S T R IN G  [S I], 'A ' 
S T R IN G  [S I], 41H 
A X ,0 C 4 H  
E Q U  100 
E Q U  10Q 
E Q U  11111111B 
E Q U  - 5  
E Q U  - 6 D

C H A R A C T E R  
E Q U IV A L E N T  IN H E X
H E X  C O N S T A N T  M U S T  S T A R T  W IT H  N U M E R A L  
O C T A L
O C T A L  A L T E R N A T E
B IN A R Y
D E C IM A L
D E C IM A L  A L T E R N A T E

Figure 2-57. ASM-86 Constants
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to initialize storage. When used as immediate 
operands, character constants may be one or two 
bytes long to match the length of the destination 
operand.

Defining Data

Most ASM-86 programs begin by defining the 
variables with which they will work. Three direc
tives, DB, DW and DD, are used to allocate and 
name data storage locations in ASM-86 (see 
figure 2-58). The directives are used to define 
storage in three different units: DB means 
“ define byte,” DW means “ define word,” and 
DD means “ define doubleword.” The operands 
of these directives tell the assembler how many 
storage units to allocate and what initial values, if 
any, with which to fill the locations.

A _SEG SEGMENT
ALPHA DB ?
BETA DW ?
GAMMA DD ?
DELTA DB ?
EPSILON DW 5
A _SEG ENDS

B _SEG SEGMENT AT 55H ;
IOTA DB ‘HELLO’
KAPPA DW ‘AB’
LAMBDA DD B _SEG
MU DB 100 DUP 0
B_SEG ENDS

NOT INITIALIZED  
NOT INITIALIZED  
NOT INITIALIZED  
NOT INITIALIZED  
CONTAINS 05H

SPECIFYING BASE ADDRESS 
; CONTAINS 48 45 4C 4C 4F H 
; CONTAINS 42 41 H 
; CONTAINS 0000 5500 H 
; CONTAINS (100X)00H

VARIABLE

ATTRIBUTES OPERATORS

SEGMENT OFFSET TYPE LENGTH SIZE
ALPHA A SEG 0 1 1 1
BETA A SEG 1 2 1 2
GAMMA A SEG 3 4 1 4
DELTA A SEG 7 1 1 1
EPSILON A SEG 8 2 1 2
IOTA B SEG 0 1 5 5
KAPPA B SEG 5 2 1 2
LAMBDA B SEG 7 4 1 4
MU B^SEG 11 1 100 100

Figure 2-58. ASM-86 Data Definitions

For every variable in an ASM-86 program, the 
assembler keeps track of three attributes: seg
ment, offset and type. Segment identifies the seg
ment that contains the variable (segment control 
is covered shortly). Offset is the distance in bytes 
of the variable from the beginning of its contain

ing segment. Type identifies the variable’s alloca
tion unit (1 = byte, 2 = word, 4 = doubleword). 
When a variable is referenced in an instruction, 
ASM-86 uses these attributes to determine what 
form of the instruction to generate. If the 
variable’s attributes conflict with its usage in an 
instruction, ASM-86 produces an error message. 
For example, attempting to add a variable defined 
as a word to a byte register is an error. There are 
cases where the assembler must be explicitly told 
an operand’s type. For example, writing MOVE 
[BX],5 will produce an error message because the 
assembler does not know if [BX] refers to a byte, 
a word or a doubleword. The following operators 
can be used to provide this information: BYTE 
PTR, WORD PTR and DWORD PTR. In the 
previous example, a word could be moved to the 
location referenced by [BX] by writing MOVE 
WORD PTR [BX],5.

ASM-86 also provides two built-in operators, 
LENGTH and SIZE, that can be written in 
ASM-86 instructions along with attribute 
information. LENGTH causes the assembler to 
return the number of storage units (bytes, words 
or doublewords) occupied by an array. SIZE 
causes ASM-86 to return the total number of 
bytes occupied by a variable or an array. These 
operators and attributes make it possible to write 
generalized instruction sequences that need not be 
changed (only reassembled) if the attributes of the 
variables change (e.g., a byte array is changed to a 
word array). See figure 2-59 for an example of 
using the attributes and attribute operators.

Records

ASM-86 provides a means of symbolically defin
ing individual bits and strings of bits within a byte 
or a word. Such a definition is called a record, 
and each named bit string (which may consist of a 
single bit) in a record is called a field. Records 
promote efficient use of storage while at the same 
time improving the readability of the program 
and reducing the likelihood of clerical errors. 
Defining a record does not allocate storage; 
rather, a record is a template that tells the 
assembler the name and location of each bit field 
within the byte or word. When a field name is 
written later in an instruction, ASM-86 uses the 
record to generate an immediate mask for instruc
tions like TEST, AND, OR, etc., or an immediate 
count for shifts and rotates. See figure 2-60 for an 
example of using a record.
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; SUM THE CONTENTS OF TABLE INTO AX 
TABLE DW 50 DUP(?)
; NOTE SAME INSTRUCTIONS WOULD WORK FOR 
; TABLE DB 25 DUP(?)
; TABLE DW 118 DUP(?), ETC.

ADD_NEXT:

SUB AX,AX
MOV CX, LENGTH TABLE
MOV SI, SIZE TABLE

SUB SI, TYPE TABLE
ADD AX, TABLE [SI]
LOOP ADD__NEXT
; AX CONTAINS SUM

CLEAR SUM 
LOOP TERMINATOR 
POINT SUBSCRIPT 
TO ENDOFTABLE 
BACK UP ONE ELEMENT 
ADD ELEMENT 
UNTIL CX = 0

Figure 2-59. Using ASM-86 Attributes and Attribute Operators

EMP_BYTE DB ?
; BIT DEFINITIONS:

; 1 BYTE, UNINITIALIZED

; 7-2 : YEARS EMPLOYED
1 : SEX (1 = FEMALE)
0 : STATUS (1 = EXEMPT)

EMP_BITSRECORD ;RECORD DEFINED HERE
& YRS_EMP : 6,
& SEX: 1,
& STATUS : 1

; SELECT NONEXEMPT FEMALES EMPLOYED 10 + YEARS

MOV AL, EMP_BYTE KEEP ORIGINAL INTACT
TEST AL, MASK SEX FEMALE?
JZ REJECT NO, QUITE
TEST AL, MASK STATUS NONEXEMPT?
JNZ REJECT NO, QUIT
SHR AL, CL ISOLATE YEARS
CMP AL, 11 >=10 YEARS?
JL REJECT NO, QUIT
; PROCESS SELECTED EMPLOYEE

REJECT: ; PROCESS REJECTED EMPLOYEE

; RECORD USED HERE
MOV CL, YRS„EMP ; GET SHIFT COUNT

Figure 2-60. Using an ASM-86 RECORD Definition
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Structures

An ASM-86 structure is a map, or template, that 
gives names and attributes (length, type, etc.) to a 
collection of fields. Each field in a structure is 
defined using DB, DW and DD directives; 
however, no storage is allocated to the structure. 
Instead, the structure becomes associated with a 
particular area of memory when a field name is 
referenced in an instruction along with a base 
value. The base value “ locates” the structure; it 
may be a variable name or a base register (BX or 
BP). The structure may be associated with 
another area of memory by specifying a different 
base value. Figure 2-61 shows how a simple struc
ture may be defined and used. Note that a struc
ture field may itself be a structure, allowing much 
more complex organizations to be laid out.

Structures are particularly useful in situations 
where the same storage format is at multiple loca
tions, where the location of a collection of 
variables is not known at assembly-time, and 
where the location of a collection of variables 
changes during execution. Applications include 
multiple buffers for a single file, list processing 
and stack addressing.

Addressing Modes

Figure 2-62 provides sample ASM-86 coding for 
each of the 8086/8088 addressing modes. The 
assembler interprets a bracketed reference to BX, 
BP, SI or DI as a base or index register to be used 
to construct the effective address of a memory 
operand. An unbracketed reference means the 
register itself is the operand.

The following cases illustrate typical ASM-86 
coding for accessing arrays and structures, and 
show which addressing mode the assembler 
specifies in the machine instruction it generates:
• If ALPHA is an array, then ALPHA [SI] is 

the element indexed by SI, and ALPHA 
[SI + 1] is the following byte (indexed).

• If ALPHA is the base address of a structure 
and BETA is a field in the structure, then 
ALPHA.BETA selects the BETA field 
(direct).

• If register BX contains the base address of a 
structure and BETA is a field in the struc
ture, then [BX].BETA refers to the BETA 
field (based).

EMPLOYEE STRUC
SSN DB 9 DUP(?)
RATE DB 1 DUP(?)
DEPT DW 1 DUP(?)
YR_HIRED DB 1 DUP(?)
EMPLOYEE ENDS

MASTER DB 12 DUP(?)
TXN DB 12 DUP(?)

; CHANGE RATE IN MASTER TO VALUE IN TXN.
MOV AL, TXN.RATE
MOV MASTER.RATE, AL

; ASSUME BX POINTS TO AN AREA CONTAINING 
; DATA IN THE SAME FORMAT AS THE EMPLOYEE
; STRUCTURE. ZERO THE SECOND DIGIT 
; OFSSN

MOV SI, 1 ; INDEX VALUE OF 2ND DIGIT
MOV [BX].SSN[SI],0

Figure 2-61. Using an ASM-86 Structure
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ADD AX, BX
ADD AL, 5
ADD CX, ALPHA
ADD ALPHA, 6 
ADD ALPHA,DX 
ADD BL, [BX]
ADD [SI], BH
ADD [PP],ALPHA, AH
ADD CX, ALPHA [SI]
ADD ALPHA [DI+2], 10 
ADD [BX].ALPHA [SI], AL
ADD SI, [BP+4] [Dl]
IN AL, 30
OUT DX, AX

REGISTER *- REGISTER 
REGISTER «- IMMEDIATE 
REGISTER -  MEMORY (DIRECT)
MEMORY (DIRECT) -  IMMEDIATE 
MEMORY (DIRECT) -  REGISTER 
REGISTER -  MEMORY (REGISTER INDIRECT) 
MEMORY (REGISTER INDIRECT) «- IMMEDIATE 
MEMORY (BASED) -  REGISTER 
REGISTER -  MEMORY (INDEXED)
MEMORY (INDEXED) -  IMMEDIATE 
MEMORY (BASED INDEXED) -  REGISTER 
REGISTER *- MEMORY (BASED INDEXED) 
DIRECT PORT 
INDIRECT PORT

Figure 2-62. ASM-86 Addressing Mode Examples

• If register BX contains the address of an 
array, then [BX] [SI] refers to the element 
indexed by SI (based indexed).

• If register BX points to a structure whose 
ALPHA field is an array, then [BX] 
.ALPHA [SI] selects the element indexed by 
SI (based indexed).

• If register BX points to a structure whose 
ALPHA field is itself a structure, then 
[BX].ALPHA.BETA refers to the BETA 
field of the ALPHA substructure (based).

• If register BX points to a structure and the 
ALPHA field of the structure is an array and 
each element of ALPHA is a structure, then 
[BX].ALPHA[SI + 3],BETA refers to the 
field BETA in the element of ALPHA 
indexed by [SI + 3] (based indexed).

Note that DI may be used in place of SI in these 
cases and that BP may be substituted for BX. 
Without a segment override prefix, expressions 
containing BP refer to the current stack segment, 
and expressions containing BX refer to the cur
rent data segment.

Segment Control

An ASM-86 program is organized into a series of 
named segments. These are “ logical” segments; 
they are eventually mapped into 8086/8088 
memory segments, but this usually is not done 
until the program is located. A SEGMENT direc
tive starts a segment, and an ENDS directive ends 
the segment (see figure 2-63). All data and

instructions written between SEGMENT and 
ENDS are part of the named segment. In small 
programs, variables often are defined in one or 
two segment(s), stack space is allocated in another 
segment, and instructions are written in a third or 
fourth segment. It is perfectly possible, however, 
to write a complete program in one segment; if 
this is done, all the segment registers will contain 
the same base address; that is, the memory 
segments will completely overlap. Large pro
grams may be divided into dozens of segments.

The first instructions in a program usually 
establish the correspondence between segment 
names and segment registers, and then load each 
segment register with the base address of its cor
responding segment. The ASSUME directive tells 
the assembler what addresses will be in the seg
ment registers at execution time. The assembler 
checks each memory instruction operand, deter
mines which segment it is in and which segment 
register contains the address of that segment. If 
the assumed register is the register expected by the 
hardware for that instruction type, then the 
assembler generates the machine instruction nor
mally. If, however, the hardware expects one seg
ment register to be used, and the operand is not in 
the segment pointed to by that register, then the 
assembler automatically precedes the machine 
instruction with a segment override prefix byte. 
(If the segment cannot be overridden, the 
assembler produces an error message.) An exam
ple may clarify this. If register BP is used in an 
instruction, the 8086 and 8088 CPUs expect, as a 
default, that the memory operand will be located 
in the segment pointed to by SS—in the current
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DATA_SEG SEGMENT
; DATA DEFINITIONS GO HERE 

DATA_SEG ENDS

STACK_SEG SEGMENT
; ALLOCATE 100 WORDS FOR A STACK AND 
; LABEL THE INITIAL TOS FOR LOADING SP.

DW100 DUP(?)
STACK TOP LABEL WORD 
STACK_SEG ENDS

CODE_SEG SEGMENT
; GIVE ASSEMBLER INITIAL REGISTER-TO-SEGMENT 
; CORRESPONDENCE. NOTE THAT IN THIS 
; PROGRAM THE EXTRA SEGMENT INITIALLY 
; OVERLAPS THE DATA SEGMENT ENTIRELY. 

ASSUME CS: CODE_SEG,
& DS: DATA_SEG,
& ES: DATA_SEG,
& SS: STACK_SEG

START: THIS IS THE BEGINNING OF THE PROGRAM. 
LOC-86 WILL PLACE A JMP TO THIS 
LOCATION AT ADDRESS FFFF0H.

LOAD THE SEGMENT REGISTERS. CS DOES NOT 
HAVE TO BE LOADED BECAUSE SYSTEM 
RESET SETS IT TO FFFFH, AND THE 
LONG JMP INSTRUCTION AT THAT ADDRESS 
UPDATES IT TO THE ADDRESS OF CODE SEG. 
SEGMENT REGISTERS ARE LOADED FROM AX 
BECAUSE THERE IS NO IMMEDIATE-TO-
SEGMENT_REGISTER FORM OF THE MOV
INSTRUCTION.

MOV AX, DATA_SEG
MOV DS, AX 
MOV ES, AX
MOV AX, STACK_SEG
MOV SS, AX

; SET STACK POINTER TO INITIAL TOS.
MOV SP, OFFSET STACK__TOP

; SEGMENTS ARE NOW ADDRESSABLE.
; MAIN PROGRAM CODE GOES HERE.
CODE_SEG ENDS

; NEXT STATEMENT ENDS ASSEMBLY AND TELLS 
; LOC-86 THE PROGRAMS STARTING ADDRESS.

END START

Figure 2-63. Setting Up ASM-86 Segments
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stack segment. A programmer may, however, 
choose to use BP to address a variable in the cur
rent data segment—the segment pointed to by 
DS. The ASSUME directive enables the assembler 
to detect this situation and to automatically 
generate the needed override prefix.

It also is possible for a programmer to explicitly 
code segment override prefixes rather than relying 
on the assembler. This may result in a somewhat 
better-documented program since attention is 
called to the override. The disadvantage of 
explicit segment overrides is that the assembler 
does not check whether the operand is in fact 
addressable through the overriding segment 
register.

ASM-86, in conjunction with the relocation and 
linkage facilities, provides much more 
sophisticated segment handling capabilities than 
have been described in this introduction. For 
example, different logical segments may be com
bined into the same physical segment, and 
segments may be assigned the same physical loca
tions (allowing a “ common” area to be accessed 
by different programs using different variable 
and label names).

Procedures

Procedures may be written in ASM-86 as well as 
in PL/M-86. In fact, procedures written in one 
language are callable from the other, provided 
that a few simple conventions are observed in the 
ASM-86 program. The purpose of ASM-86 pro
cedures is the same as in PL/M-86: to simplify the 
design of complex programs and to make a single 
copy of a commonly-used routine accessible from 
anywhere in the program.

An ASM-86 program activates a procedure with a 
CALL instruction. The procedure terminates with 
a RET instruction, which transfers control to the 
instruction following the CALL. Parameters may 
be passed in registers or pushed onto the stack 
before calling the procedure. The RET instruction 
can discard stack parameters before returning to 
the caller.

Unlike PL/M-86 procedures, ASM-86 procedures 
are executable where they are coded, as well as by 
a CALL instruction. Therefore, ASM-86 pro
cedures often are defined following the main pro
gram logic, rather than preceding it as in

PL/M-86. Figure 2-64 shows how procedures 
may be defined and called in ASM-86. Section 
2-10 contains examples of procedures that accept 
parameters on the stack.

LINK-86

Fundamentally, LINK-86 combines separate 
relocatable object modules into a single program. 
This process consists primarily of combining 
(logical) segments of the same name into single 
segments, adjusting relative addresses when 
segments are combined, and resolving external 
references.

A programmer can use a procedure that is actual
ly contained in another module by naming the 
procedure in an ASM-86 EXTRN directive, or 
declaring the procedure to be EXTERNAL in 
PL/M-86. The procedure is defined or declared 
PUBLIC in the module where it actually resides, 
meaning that it can be used by other modules. 
When LINK-86 encounters such an external 
reference, it searches through the other modules 
in its input, trying to find the matching PUBLIC 
declaration. If it finds the referenced object, it 
links it to the reference, “ satisfying” the external 
reference. If it cannot satisfy the reference, 
LINK-86 prints a diagnostic message. LINK-86 
also checks PL/M-86 procedure calls and func
tion references to insure that the parameters 
passed to a procedure are the type expected by the 
procedure.

LINK-86 gives the programmer, particularly the 
ASM-86 programmer, great control over 
segments (segments may be combined end to end, 
renamed, assigned the same locations, etc.). 
LINK-86 also produces a map that summarizes 
the link process and lists any unusual conditions 
encountered. While the output of LINK-86 is 
generally input to LOC-86, it also may again be 
input to LINK-86 to permit modules to be linked 
in incremental groups.

LOC-86

LOC-86 accepts the single relocatable object 
module produced by LINK-86 and binds the 
memory references in the module to actual 
memory addresses. Its output is an absolute 
object module ready for loading into the memory 
of an execution vehicle. LOC-86 also inserts a
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FREQUENCY DB 256 DUP (0)

USART_DATA EQU OFFOH ; DATA PORT ADDRESS
USART_STAT EQU 0FF2H ; STATUS PORT ADDRESS

NEXT: CALL CHAR_IN
CALL COUNT_IT
JMP NEXT

CHAR_IN PROC
THIS PROCEDURE DOES NOT TAKE PARAMETERS. 

IT SAMPLES THE USART STATUS PORT 
UNTIL A CHARACTER IS READY, AND 
THEN READS THE CHARACTER INTO AL

MOV DX,USART_.STAT
AGAIN: IN AL, DX ; READ STATUS

AND AL, 2 ; CHARACTER PRESENT?
JZ AGAIN ; NO, TRY AGAIN
MOV DX,USART_ DATA
IN AL, DX ; YES, READ CHARACTER
RET

CHAR_IN ENDP

COUNT_IT PROC
THIS PROCEDURE EXPECTS A CHARACTER IN AL. 

IT INCREMENTS A COUNTER IN A FRECUENCY 
TABLE BASED ON THE BINARY VALUE OF 
THE CHARACTER.

XOR AH, AH CLEAR HIGH BYTE
MOV SI, AL INDEX INTO TABLE
INC FREQUENCY [S] BUMPTHECOUNTER
RET

COUNT_IT ENDP

Figure 2-64. ASM-86 Procedures

direct intersegment JMP instruction at location 
FFFFOH. The target of the JMP instruction is the 
logical beginning of the program. When the 8086 
or 8088 is reset, this instruction is automatically 
executed to restart the system. LOC-86 produces 
a memory map of the absolute object module and 
a table showing the address of every symbol 
defined in the program.

LIB-86

LIB-86 is a valuable adjunct to the R & L pro
grams. It is used to maintain relocatable object 
modules in special files called libraries. Libraries

are a convenient way to make collections of 
modules available to LINK-86. When a module 
being linked refers to “ external” data or instruc
tions, LINK-86 can automatically search a series 
of libraries, find the referenced module, and 
include it in the program being created.

OH-86

OH-86 converts an absolute object module into 
Intel’s standard hexadecimal format. This format 
is used by some PROM programmers and system 
loaders, such as the iSBC 957™ and SDK-86 
loaders.

2-91 M nem onics ©  Intel, 1978



8086 AND 8088 CENTRAL PROCESSING UNITS

CONV-86
Users who have developed substantial, fully- 
tested assembly language programs for the 
8080/8085 microprocessors may want to use 
CONV-86 to automatically convert large amounts 
of this code into ASM-86 source code (see figure 
2-65). CONV-86 accepts an ASM-80 source pro
gram as input and produces an ASM-86 source 
program as output, plus a print file that 
documents the conversion and lists any diagnostic 
messages.

Some programs cannot be completely converted 
by CONV-86. Exceptions include:
• self-modifying code,
• software timing loops,
• 8085 RIM and SIM instructions,
• interrupt code, and
• macros.

By using the diagnostic messages produced by 
CONV-86, the converted ASM-86 source file can 
be manually edited to clean up any sections not 
converted. A converted program is typically 
10-20% larger than the ASM-80 version and does 
not take full advantage of the 8086/8088 architec
ture. However, the development time saved by 
using CONV-86 can make it an attractive alter
native to rewriting working programs from 
scratch.

Sample Programs
Figures 2-66 and 2-67 show how a simple program 
might be written in PL/M-86 and ASM-86. The 
program simulates a pair of rolling dice and 
executes on an Intel SDK-86 System Design Kit. 
The SDK-86 is an 8086-based computer with 
memory, parallel and serial I/O ports, a keypad 
and a display. The SDK-86 is implemented on a 
single PC board which includes a large prototype 
area for system expansion and experimentation. 
A ROM-based monitor program provides a user 
interface to the system; commands are entered 
through the keypad and monitor responses are 
written on the display. With the addition of a 
cable and software interface (called SDK-C86), 
the SDK-86 may be connected to an Intellec® 
Microcomputer Development System. In this 
mode, the user enters monitor commands from 
the Intellec keyboard and receives replies on the 
Intellec CRT display.

ASM -86
A S S E M B L E R

Figure 2-65. ASM-80/ASM-86 Conversion

The dice program runs on an SDK-86 that is con
nected to an Intellec® Microcomputer Develop
ment System. The program displays two con
tinuously changing digits in the upper left corner 
of the Intellec display. The digits are random 
numbers in the range 1-6. A roll is started by 
entering a monitor GO command. Pressing the 
INTR key on the SDK-86 keypad stops the roll.

There are two procedures in the PL/M-86 version 
of the dice program. The first is called CO for 
console output. This is an untyped PUBLIC pro
cedure that is supplied on an SDK-C86 diskette. 
CO is written in PL/M-86 and outputs one 
character to the Intellec console. It is declared 
EXTERNAL in the dice program because it exists 
in another module. LINK-86 searches the 
SDK-C86 library for CO and includes it in the 
single relocatable object module it builds.

RANDOM is an internal typed procedure; it is 
contained in the dice module and returns a word 
value that is a random number between 1 and 6. 
RANDOM does not use any parameters and is 
activated in the parameter list passed to CO. 
When CO is called like this, first RANDOM is ac
tivated, then 30 is added to the number it returns 
and the sum is passed to CO.
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PL/M-86  COMPILER D IC EI S I S - I I  PL/M-86  V 1 . 2 COMPIL ATI ON  OF MODULE D ICE  O B J E C T  MODULE PLACED IN : F 1 : D I C E . O B J  CO MPILER INVOKED B Y : PLM86 : F 1 : D I C E . P 8 6  XREF1 D I C E :  DO;/ *  T H I S  PROGRAM S IM UL A TE S  THE ROLL OF A PAI R OF D IC E  *// *  G I V E  NAMES TO CONSTANTS */
2 1 DECLARE C L E A R $ C R T 1 L I T E R A L L Y ' 0 1BH ' ; /* I N T EL LE C */3 1 DECLARE CLEAR$CRT2 L I T E R A L L Y •045H ' ; / * CRT */4 1 DECLARE HOME$CURSOR1 L I T E R A L L Y ' 0 1BH ' ; /* CONTROL «/5 1 DECLARE H0ME$CURS0R2 L I T E R A L L Y ' 0 4 8 H ' ; /* CODES »/
6 1 DECLARE SPACE L I T E R A L L Y ' 020H ' ; / • A S C I I  BLANK*// *  PROGRAM VA R I A B L E S  */7 1 DECLARE ( RANDOM$NUMBER, S A V E ) WORD;/ *  CONSOLE OUTPUT PROCEDURE */
8 1 CO : PROCEDURE( X) EXTERNAL;9 2 DECLARE X BYTE ;10 2 END CO;/ *  RANDOM NUMBER GENERATOR PROCEDURE / *  ALGORITHM FOR 1 6 - B I T  RANDOM NUMBER FROM: / *  "A G UI D E TO PL/M PROGRAMMING FOR/ *  MICROCOMPUTER A P P L I C A T I O N S , "/ *  DANIEL D .  MCCRACKEN,/ *  A D D I S O N - W E S L E Y , 1978

*/*/*/
*/
*/*/

11 1 RANDOM: PROCEDURE WORD;
12 2 RANDOM$N UMBER = S AV E ; / *S T A R T  WITH OLD13 2 RANDOM$NUMBER = 2053 * RANDOM$NUMBER + 138 49;14 2 SAVE = RANDOM$NUMBER; / • S A V E  FOR NEXT ‘/• FO RC E 1 6 - B I T  NUMBER INTO RANGE 1 - 6 * /15 2 RANDOM$NUMBER = RANDOM$NUMBER MOD 6 + 1 ;16 2 RETURN RANDOM$NUMBER;17 2 END RANDOM;/«  MAIN ROUTINE *// *  CLEAR THE S CR EE N */18 1 CALL C O ( C L E A R $ C R T 1 ) ;19 1 CALL C O ( C L E A R $ C R T 2 ) ;/ *  ROLL THE D IC E  UNTI L INTERRUPTED */
20 1 DO WHILE 1; / * " D O  F O R E V E R " *//•NOTE THAT ADDING 30 TO THE D IE  VALUE *// *  CONVERTS I T  TO A S C I I . */
21 2 CALL CO ( RANDOM + 0 3 0 H ) ; / * 1ST D I E * /
22 2 CALL C O ( S P A C E ) ; / • B L A NK */23 2 CALL CO ( RANDOM + 0 3 0 H ) ; /*2N D D I E * // *  HOME THE CURSOR */24 2 CALL CO ( HOME$CURSOR1 ) ;25 2 CALL CO ( H 0M E $ C U R S 0 R 2 );26 2 END;27 1 END D I C E ;

CR O S S- R EF E R EN CE L I S T I N G
DEFN ADDR S I Z E  NAME, A T T R I B U T E S , AND REFERENCES

2 CL E A R C R T 1 L I T E R A L L Y183 CLEARCRT2 L I T E R A L L Y19
8 0000H CO PROCEDURE 18 19 EX TE RN AL ( 0 )  STACK=00 00H 21 22 23 24 25
1 0002H 71 DIC E PROCEDURE ST ACK=0004H4 HOMECURSOR1 L I T E R A L L Y245 H0MECURS0R2 L I T E R A L L Y25

11 0049H 44 RANDOM PROCEDURE WORD STACK=00 02H21 23
Figure 2-66. Sample PL/M-86 Program
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12 13 14 15 167 0002H 2 SAVE WORD
12 14

6 SPA CE L I T E R A L L Y
22

8 OOOOH 1 X BYTE PARAMETER9MODULE INFORMATION:CODE AREA S I Z E 0075H 117DCONSTANT AREA S I Z E  = OOOOH ODVARI AB LE  AREA S I Z E  = 0004H 4DMAXIMUM STACK S I Z E  = 0004H 4D51 L I N E S  READ 0 PROGRAM ERROR( S)END OF PL/M-86  COMPILATION
Figure 2-66. Sample PL/M-86 Program (Cont’d.)

MCS-86  MACRO ASSEMBLER DIC EI S I S - I I  MCS-86  MACRO ASSEMBLER V 2 . 0 ASSEMBLY OF MODULE D IC E  O B J E C T  MODULE PLACED IN : F 1 : D I C E . O B J  ASSEMBLER INVOKED BY: ASM86 : F 1 : D I C E . A 8 6  XREF
1
2345
6 7 6 9

10 
11 
1213
1415161718

; T H I S  PROGRAM S IM UL A TE S  THE ROLL OF A P A IR  OF D ICE; CONSOLE OUTPUT PROCEDURE EXTRN CO:NEAR; SEGMENT GROUP D E F I N I T I O N S  NEEDED FOR PL/M -86  C O M P A T I B I L I T Y  CGROUP GROUP CODEDGROUP GROUP DAT A, ST A CK; INFORM ASSEMBLER OF SEGMENT R E G IS T E R  CONTENTS.ASSUME C S : C G R O U P , D S : D G R O U P , S S : D G R O U P , E S : N O T H I N C; ALLOCATE DATADATA SEGMENT P U B L I C  'D AT A'NOTE THAT THE FOLLOWING ARE PASSED PROCEDURE ' C O ' .  BY CONVENTION, A THE LOW-ORDER 8- B I T S  OF A WORD ON THE STACK DEF IN ED AS WORD V A L U E S ,  THOUGH THEY OCCUPY
ON THE STACK TO THE PL/M -86 BYTE PARAMETER I S  PAS SED  IN HENCE, THESE ARE BYTE ON LY .

0000 1B00 19 CLEAR CRT 1 DW 01 BH I N T EL LE C
0002 4500 20 CLEAR CRT2 DW 045H CRT0004 1B00 21 HOME CURSOR 1 DW 0 1 BH CONTROL0006 4800 22 HOME CURS0R2 DW 048H CODES0008 2000 23 SPACE DW 020H A S C I I  BLANK
000k ???? 24 SAVE DW 7 HOLDS LA ST  16
— 25 DATA ENDS262728 ; ALLOCATE STACK SPACE
— 29 STACK SEGMENT STACK ’ STACK*
0000 ( 20 30 DW 20 DUP ( ?)

????
) 31 ; LABEL I N I T I A L T O S : FOR LATER U S E .0026 32 STACK TOP LABEL WORD

— 33 STACK ENDS343536 ; PROGRAM CODE
— 37 CODE SEGMENT P U B L I C •CODE'

0 0 0 00 0 0 0  A10A 00

383940414243
44454647

RANDOM NUMBER GENERATOR PROCEDURE ALGORITHM FOR 1 6 - B I T  RANDOM NUMBER FROM:"A GU ID E TO PL/M PROGRAMMING FOR MICROCOMPUTER A P P L I C A T I O N S , "D AN IEL D .  MCCRACKEN A D D I S O N - W E S L E Y , 1978 RANDOM PROCMOV A X , S A V E  ; NEW NUMBER
Figure 2-67. ASM-86 Sample Program
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MCS-86  MACRO ASSEMBLERLOC O B J L I N E SOURCE0003 B905 08 48 MOV C X . 2 0 5 3 OLD NUMBER * 20530006 F7E1 49 MUL CX + 138490008 051936 50 ADD A X , 13849000B A30A00 R 51 MOV S A V E ,A X SAVE FOR NEXT TIME52 ; FORCE 1 6 - B I T  NUMBER INTO RANGE 1 -  653 ; BY MODULO 6 D I V I S I O N + 1000E 2BD2 54 SUB D X .D X C L E A R 'U P P E R  D IV ID E ND
0010 B906 00 55 MOV C X , 6 SET D I V I S O R0013 F7F1 56 D IV CX D I V I D E  BY 60015 8BC2 57 MOV A X , DX REMAINDER TO AX0017 40 58 IN C AX ADD 10018 C3 59 RET RESULT IN AX60 RANDOM ENDP616263

6465
6667
68

; MAIN PROGRAMLOAD SEGMENT R E G IS T E R SNOTE PROGRAM DOES NOT USE E S ;  CS I S  I N I T I A L I Z E D  BY HARDWARE RE SE T ; DATA & STACK ARE MEMBERS OF SAME GROU P, SO ARE TREATED AS A S I N G L E  MEMORY SEGMENT POINTED TO EY BOTH DS & S S .0019 B8------- R 69 S T A R T : MOV AX,DGRO UP001C 8ED8 70 MOV D S , AX
00 1E 8ED0 71 MOV S S , AX7273 ; I N I T I A L I Z E STACK POI NTER
0020 BC280 0 R 74 MOV S P , O F F S E T  DGROUP S T A C K T O P7576 ; CLEAR THE SCREEN0023 F F 3 6 0 0 0 0 R 77 PUSH CLEAR CRT10027 E 8 0000 E 78 CALL CO002A FF 36 0 2 0 0 R 79 PUSH CLEAR CRT2002E E80000 E 80 ft 1 CALL CO

0 I 82 ; ROLL THE D IC E  UNTI L INTERRUPTED0031 E 8CCFF 83 ROL L: CALL RANDOM GET 1ST D I E  IN AL0034 0430 84 ADD A L .0 3 0 H CONVERT TO A S C I I0036 50 85 PUSH AX PAS S I T  TO0037 E 80000 E 86 CALL CO CONSOLE OUTPUT003A FF 36 0 8 0 0 R 87 PUSH SPACE OUTPUT003E E80000 E 88 CALL CO A BLANK0041 E8BCFF 89 CALL RANDOM GET 2ND D I E  IN AL0044 0430 90 ADD A L .0 3 0 H CONVERT TO A S C I I0046 50 91 PUSH AX PA S S  I T  TO0047 E 80000 E 92 CALL CO CONSOLE OUTPUT93 ; HOME THE CURSOR004A FF 3 6 0 4 0 0 R 94 PUSH HOME CURSOR 1004E E8000 0 E 95 CALL CO0051 F F 3 6 0 6 0 0 R 96 PUSH HOME CURS0R20055 E8000 0 E 97 CALL CO98 ; CONTINUE FOREVER0058 EBD7 99 JMP ROLL
100 CODE ENDS
101

XREF SYMBOL TABLE L I S T I N G
NAME TYPE VALUE A T T R I B U T E S ,  XREFS? ? S E G  . . . . SEGMENT S IZ E rO O O O H  PARA PU B LI CCGR O U P. . . . GROUP CODE 7# 11CLEAR CRT 1 . . V WORD OOOOH DATA 19// 77CLEAR C R T 2 . . V WORD 0002H DATA 20// 79C O ............................ . L NEAR OOOOH EXTRN 4// 78 80 86 88 92 95 97CODE. . . . . SEGMENT S I Z E = 00 5 A H  PARA PU B LI C  'C O D E 'DATA. . . . . SEGMENT S IZ E= OOO CH  PARA P U B L I C  'D AT A'DGROUP. . . . GROUP DATA STACK 8// 1 1 1 1 69 74HOME CURSOR 1 . V WORD 0004H DATA 21// 94HOME CURS0R2 . V WORD 0006H DATA 22// 96RAND5K. . . . L NEAR OOOOH CODE 46// 60 83 89R O LL .  . . . . L NEAR 003 1 H CODE 83// 99S A V E .  . . . . V WORD OOOAH DATA 24// 47 51SPA CE . . . . V WORD 0008H DATA 23// 87STACK . . . . SEGMENT S IZ E = 0 0 2 8 H  PARA STACK 'S T A C K 'STACK TOP . . V WORD 0028H STACK 32// 74START . . . . L NEAR 0019H CODE 69// 104

7# 37 100 
8// 14 25

ASSEMBLY COMPLETE, NO ERRORS FOUND
Figure 2-67. ASM-86 Sample Program (Cont’d.)
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The ASM-86 version of the dice program operates 
like the PL/M-86 version. Since the program uses 
the PL/M-86 CO procedure for writing data to 
the Intellec console, it adheres to certain conven
tions established by the PL/M-86 compiler. The 
program’s logical segments (called CODE, 
DATA and STACK—the program does not use 
an extra segment) are organized into two groups 
called CGROUP and DGROUP. All the members 
of a group of logical segments are located in the 
same 64k byte physical memory segment. 
Physically, the program’s DATA and STACK 
segments can be viewed as “ subsegments” of 
DGROUP.

PL/M-86 procedures expect parameters to be 
passed on the stack, so the program pushes each 
character before calling CO. Note that the stack 
will be “ cleaned up” by the PL/M-86 procedure 
before returning (i.e., the parameter will be 
removed from the stack by CO).

2.10 Programming Guidelines 
and Examples

This section addresses 8086/8088 programming 
from two different perspectives. A series of 
general guidelines is presented first. These 
guidelines apply to all types of systems and are 
intended to make software easier to write, and 
particularly, easier to maintain and enhance. The 
second part contains a number of specific pro
gramming examples. Written primarily in 
ASM-86, these examples illustrate how the 
instruction set and addressing modes may be uti
lized in various, commonly encountered program
ming situations.

Programming Guidelines

These guidelines encourage the development of 
8086/8088 software that is adaptable to change. 
Some of the guidelines refer to specific processor 
features and others suggest approaches to general 
software design issues. PL/M-86 programmers 
need not be concerned with the discussions that 
deal with specific hardware topics; they should, 
however, give careful attention to the system 
design subjects. Systems that are designed in 
accordance with these recommendations 
should be less costly to modify or extend. In 
addition, they should be better-positioned to

take advantage of new hardware and software 
products that are constantly being introduced 
by Intel.

Segments and Segment Registers

Segments should be considered as independent 
logical units whose physical locations in memory 
happen to be defined by the contents of the seg
ment registers. Programs should be independent 
of the actual contents of the segment registers and 
of the physical locations of segments in memory. 
For example, a program should not take 
advantage of the “ knowledge” that two segments 
are physically adjacent to each other in memory. 
The single exception to this fully-independent 
treatment of segments is that a program may set 
up more than one segment register to point to the 
same segment in memory, thereby obtaining 
addressability through more than one segment 
register. For example, if both DS and ES point to 
the same segment, a string located in that segment 
may be used as a source operand in one string 
instruction and as a destination string in another 
instruction (recall that a destination string must 
be located in the extra segment).

Any data aggregate or construct such as an array, 
a structure, a string or a stack should be restricted 
to 64k bytes in length and should be wholly con
tained in one segment (i.e., should not cross a seg
ment boundary).

Segment registers should only contain values sup
plied by the relocation and linkage facilities. Seg
ment register values may be moved to and from 
memory, pushed onto the stack and popped from 
the stack. Segment registers should never be used 
to hold temporary variables nor should they be 
altered in any other way.

As an additional guideline, code should not be 
written within six bytes of the end of physical 
memory (or the end of the code segment if this 
segment is dynamically relocatable). Failure to 
observe this guideline could result in an attempted 
opcode prefetch from non-existent memory, 
hanging the CPU if READY is not returned.

Self-Modifying Code

It is possible to write a program that deliberately 
changes some of its own machine instructions
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during execution. While this technique may save a 
few bytes or machine cycles, it does so at the 
expense of program clarity. This is particularly 
true if the program is being examined at the 
machine instruction level; the machine instruc
tions shown in the assembly listing may not match 
those found in memory or monitored from the 
bus. It also precludes executing the code from 
ROM. Also, because of the prefetch queue within 
the 8086 and 8088, code that is self-modified 
within six bytes of the current point of execution 
cannot be guaranteed to execute as intended. 
(This code may already have been fetched.) Fin
ally, a self-modifying program may prove 
incompatible with future Intel products that 
assume that the content of a code segment 
remains constant during execution.

A corrollary to this requirement is that variable 
data should not be placed in a code segment. Con
stant data may be written in a code segment, but 
this is not recommended for two reasons. First, 
programs are simpler to understand if they are 
uniformly subdivided into segments of code, data 
and stack. Second, placing data in a code segment 
can restrict the segment’s position independence. 
This is because, in general, the segment base 
address of a data item may be changed, but the 
offset (displacement) of the data item may not. 
This means that the entire segment must be 
moved as a unit to avoid changing the offset of 
the constant data. If the constant data were 
located in a data segment or an extra segment, 
individual procedures within the code segment 
could be moved independently.

Input/Output

Since I/O devices vary so widely in their 
capabilities and their interface designs, I/O soft
ware is inevitably device dependent. Substituting 
a hard disk for a floppy disk, for example, 
necessitates software changes even though the 
disks are functionally identical. I/O software can, 
however, be designed to minimize the effect of 
device changes on programs.

Figure 2-68 illustrates a design concept that struc
tures an I/O  system into a hierarchy of separately 
compiled/assembled modules. This approach 
isolates application modules that use the 
input/output devices from all physical 
characteristics of the hardware with which they 
ultimately communicate. An application module

that reads a disk file, for example, should have no 
knowledge of where the file is located on the disk, 
what size the disk sectors are, etc. This allows 
these characteristics to change without affecting 
the application module. To an application 
module, the I/O system appears to be a series of 
file-oriented commands (e.g., Open, Close, Read, 
Write). An application module would typically 
issue a command by calling a file system 
procedure.

The file system processes I/O  command requests, 
perhaps checking for gross errors, and calls a pro
cedure in the I/O supervisor. The I/O supervisor 
is a bridge between the functional I/O request of 
the application module and the physical I/O per
formed by the lowest-level modules in the hier
archy. There should be separate modules in the 
supervisor for different types of devices and some 
device-dependent code may be unavoidable at this 
level. The I/O supervisor would typically perform 
overhead activities such as maintaining disk 
directories.

The modules that actually communicate with the 
I/O devices (or their controllers) are at the lowest 
level in the hierarchy. These modules contain the 
bulk of the system’s device-dependent code that 
will have to be modified in the event that a device 
is changed.

The 8089 Input/Output Processor is specifically 
designed to encourage the development of 
modular, hierarchical I/O systems. The 8089 
allows knowledge of device characteristics to be 
“ hidden” from not only application programs, 
but also from the operating system that controls 
the CPU. The CPU’s I/O supervisor can simply 
prepare a message in memory that describes the 
nature of the operation to be performed, and then 
activate the 8089. The 8089 independently per
forms all physical I/O and notifies the CPU when 
the operation has been completed.

Operating Systems

Operating systems also should be organized in a 
hierarchy similar to the concept illustrated in 
figure 2-69. Application modules should “ see” 
only the upper level of the operating system. This 
level might provide services like sending messages 
between application modules, providing lime 
delays, etc. An intermediate level might consist of 
housekeeping routines that dispatch tasks, alter
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D E V IC E  C O N T R O L  
H A R D W A R E

C3 □  a  q
Figure 2-68. I/O System Hierarchy Concept

A P P L IC A T IO N  M O D U L E S

1= 1 i =  1 = 1 1 = 1
O P E R A T IN G  S Y S T E M

F ILE  S E R V IC E S  S Y S T E M  S E R V IC E S

I/O  S U P E R V IS O R  H O U S E K E E P IN G  IN V IS IB LE  T O

Figure 2-69. Operating System Hierarchy
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priorities, manage memory, etc. At the lowest 
level would be the modules that implement 
primitive operations such as adding and removing 
tasks or messages from lists, servicing timer inter
rupts, etc.

Interrupt Service Procedures

Procedures that service external interrupts should 
be considered differently than those that service 
internal interrupts. A service procedure that is 
activated by an internal interrupt, may, and often 
should, be made reentrant. External interrupt 
procedures, on the other hand, should be viewed 
as temporary tasks. In this sense, a task is a single 
sequential thread of execution; it should not be 
reentered. The processor’s response to an external 
interrupt may be viewed as the following sequence 
of events:
• the running (active) task is suspended,
• a new task, the interrupt service procedure, is 

created and becomes the running task,
• the interrupt task ends, and is deleted,
• the suspended task is reactived and 

becomes the running task from the point 
where it was suspended.

An external interrupt procedure should only be 
interruptable by a request that activates a dif

ferent interrupt procedure. When the number of 
interrupt sources is not too large, this can be 
accomplished by assigning a different type code 
and corresponding service procedure to each 
source. In systems where a large number of 
similar sources can generate closely spaced inter
rupts (e.g., 500 communication lines), an
approach similar to that illustrated in figure 2-70, 
may be used to insure that the interrupt service 
procedure is not reentered, and yet, interrupts 
arriving in bursts are not missed. The basic 
technique is to divide the code required to service 
an interrupt into two parts. The interrupt service 
procedure itself is kept as short as possible; it per
forms the absolute minimum amount of process
ing necessary to service the device. It then builds a 
message that contains enough information to per
mit another task, the interrupt message processor, 
to complete the interrupt service. It adds the 
message to a queue (which might be implemented 
as a linked list), and terminates so that it is 
available to service the next interrupt. The inter
rupt message processor, which is not reentrant, 
obtains a message from the queue, finishes pro
cessing the interrupt associated with that message, 
obtains the next message (if there is one), etc. 
When a burst of interrupts occurs, the queue will 
lengthen, but interrupts will not be missed so long 
as there is time for the interrupt service procedure 
to be activated and run between requests.

M U L T IP L E  IN T E R R U P T  S O U R C E S

I-----------1
I------------- 1
I------------- 1
I------------- 1

Q U E U E  (LIST) 
O F  IN T E R R U P T  
S E R V IC E  
M E S S A G E S

T o b t a i n  N E X T  M E S S A G E  
If r o m  Q U E U E

IN T E R R U P T
M E S S A G E

P R O C E S S O R

Figure 2-70. Interrupt Message Processor
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Stack-Based Parameters

Parameters are frequently passed to procedures 
on a stack. Results produced by the procedure, 
however, should be returned in other memory 
locations or in registers. In other words, the called 
procedure should “ clean up” the stack by dis
carding the parameters before returning. The 
RET instruction can perform this function. 
PL/M-86 procedures always follow this 
convention.

Flag-Images

Programs should make no assumptions about the 
contents of the undefined bits in the flag-images 
stored in memory by the PUSHF and SAHF 
instructions. These bits always should be masked 
out of any comparisons or tests that use these 
flag-images. The undefined bits of the word flag- 
image can be cleared by ANDing the word with 
FD5P1. The undefined bits of the byte flag-image 
can be cleared by ANDing the byte with D5H.

Programming Examples

These examples demonstrate the 8086/8088 
instruction set and addressing modes in common 
programming situations. The following topics are 
addressed:
• procedures (parameters, reentrancy)
• various forms of JMP and CALL

instructions
• bit manipulation with the ASM-86 RECORD 

facility
• dynamic code relocation
• memory mapped I/O
• breakpoints
• interrupt handling
• string operations

These examples are written primarily in ASM-86 
and will be of most interest to assembly language 
programmers. The PL/M-86 compiler generates 
code that handles many of these situations 
automatically for PL/M-86 programs. For exam
ple, the compiler takes care of the stack in 
PL/M-86 procedures, allowing the programmer 
to concentrate on solving the application prob
lem. PL/M-86 programmers, however, may want

to examine the memory mapped I/O and 
interrupt handling examples, since the concepts 
illustrated are generally applicable; one of the 
interrupt procedures is written in PL/M-86.

The examples are intended to show one way to use 
the instruction set, addressing modes and features 
of ASM-86. They do not demonstrate the “ best” 
way to solve any particular problem. The flexibil
ity of the 8086 and 8088, application differences 
plus variations in programming style usually add 
up to a number of ways to implement a program
ming solution.

Procedures

The code in figure 2-71 illustrates several tech
niques that are typically used in writing ASM-86 
procedures. In this example a calling program 
invokes a procedure (called EXAMPLE) twice, 
passing it a different byte array each time. Two 
parameters are passed on the stack; the first con
tains the number of elements in the array, and the 
second contains the address (offset in
DATA__SEG) of the first array element. This
same technique can be used to pass a variable- 
length parameter list to a procedure (the “ array” 
could be any series of parameters or parameter 
addresses). Thus, although the procedure always 
receives two parameters, these can be used to 
indirectly access any number of variables in 
memory.

Any results returned by a procedure should be 
placed in registers or in memory, but not on the 
stack. AX or AL is often used to hold a single 
word or byte result. Alternatively, the calling pro
gram can pass the address (or addresses) of a 
result area to the procedure as a parameter. It is 
good practice for ASM-86 programs to follow the 
calling conventions used by PL/M-86; these are 
documented in MCS-86 Assembler Operating 
Instructions For ISIS-II Users, Order No. 
9800641.

EXAMPLE is defined as a FAR procedure, 
meaning it is in a different segment than the call
ing program. The calling program must use an 
intersegment CALL to activate the procedure. 
Note that this type of CALL saves CS and IP on 
the stack. If EXAMPLE were defined as NEAR 
(in the same segment as the caller) then an intra
segment CALL would be used, and only IP would 
be saved on the stack. It is the responsibility of 
the calling program to know how the procedure is 
defined and to issue the correct type of CALL.
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STACK_SEG SEGMENT
DW 20 DUP (?) ; ALLOCATE 20-WORD STACK

STACK_TOP
STACK_SEG

LABEL
ENDS

WORD ; LABEL INITIAL TOS

DATA_SEG
ARRAY_1

SEGMENT
DB 10 DUP (?) ; 10-ELEMENT BYTE ARRAY

ARRAY_2 DB 5 DUP (?) ; 5-ELEMENT BYTE ARRAY

DATA_SEG ENDS

PROC_SEG SEGMENT
ASSUME CS:PROC_SEG,DS:DATA_SEG,SS :STACK_SEG.ES: NOTHING

EXAMPLE PROC FAR MUST BE ACTIVATED BY 
INTERSEGMENT CALL

; PROCEDURE PROLOG
PUSH BP SAVE BP
MOV BP, SP ESTABLISH BASE POINTER
PUSH CX SAVE CALLER’S
PUSH BX REGISTERS
PUSHF AND FLAGS
SUB SP, 6 ALLOCATE 3 WORDS LOCAL STORAGE
; END OF PROLOG

; PROCEDURE BODY
MOV CX, [BP+ 8] GET ELEMENT COUNT
MOV BX, [BP + 6] GET OFFSET OF 1ST ELEMENT
; PROCEDURE CODE GOES HERE 
; FIRST PARAMETER CAN BE ADDRESSED:
; [BX]
; LOCAL STORAGE CAN BE ADDRESSED:
; [BP-8], [BP-10], [BP-12]
; END OF PROCEDURE BODY 

; PROCEDURE EPILOG
ADD SP, 6 ; DE-ALLOCATE LOCAL STORAGE
POPF ; RESTORE CALLER’S
POP BX ; REGISTERS
POP CX ; AND
POP BP ; FLAGS
; END OF EPILOG

; PROCEDURE RETURN
RET 4 ; DISCARD 2 PARAMETERS

EXAMPLE ENDP ; END OF PROCEDURE“ EXAMPLE

PROC_SEG ENDS

Figure 2-71. Procedure Example 1

2 -1 0 1 M nem onics ,CI Intel, 1978



CALLER_SEG SEGMENT
; GIVE ASSEMBLER SEGMENT/REGISTER CORRESPONDENCE
ASSUME CS:CALLER__SEG,
& DS:DATA__SEG,
& SS'.STACK__SEG,
& ES:NOTHING ; NO EXTRA SEGMENT IN THIS PROGRAM

; INITIALIZE SEGMENT REGISTERS
START: MOV AX,DATA SEG

MOV DS,AX
MOV AX, STACK_SEG
MOV SS,AX
MOV SP,OFFSET STACK. .TOP ; POINT SP TO TOS

ASSUME ARRAY_1 IS INITIALIZED

CALL “ EXAMPLE” , PASSING ARRAY_1, THAT IS, THE NUMBER OF ELEMENTS 
IN THE ARRAY, AND THE LOCATION OF THE FIRST ELEMENT.

MOV AX,SIZE ARRAY_1
PUSH AX
MOV AX,OFFSET ARRAY_1
PUSH AX
CALL EXAMPLE

ASSUME ARRAY_2 IS INITIALIZED

CALL “ EXAMPLE” AGAIN WITH DIFFERENT SIZE ARRAY.

CALLER_SEG

MOV AX,SIZE ARRAY 2
PUSH AX
MOV AX,OFFSET ARRAY_2
PUSH AX
CALL EXAMPLE

ENDS

END START

Figure 2-71. Procedure Example 1 (Cont’d.)

Figure 2-72 shows the stack before the caller 
pushes the parameters onto it. Figure 2-73 shows 
the stack as the procedure receives it after the 
CALL has been executed.

EXAMPLE is divided into four sections. The 
“ prolog” sets up register BP so it can be used to 
address data on the stack (recall that specifying 
BP as a base register in an instruction auto
matically refers to the stack segment unless a seg
ment override prefix is coded). The next step in 
the prolog is to save the “ state of the machine” as

it existed when the procedure was activated. This 
is done by pushing any registers used by the pro
cedure (only CX and BP in this case) onto the 
stack. If the procedure changes the flags, and the 
caller expects the flags to be unchanged following 
execution of the procedure, they also may be 
saved on the stack. The last instruction in the pro- 
log allocates three words on the stack for the pro
cedure to use as local temporary storage. Figure 
2-74 shows the stack at the end of the prolog. 
Note that PL/M-86 procedures assume that all 
registers except SP and BP can be used without 
saving and restoring.
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Figure 2-72. Stack Before Pushing Parameters Figure 2-74. Stack Following Procedure Prolog

H IG H  A D D R E S S E S

S P  (TOS)

L O W  A D D R E S S E S

Figure 2-73. Stack at Procedure Entry

The procedure “ body” does the actual processing 
(none in the example). The parameters on the 
stack are addressed relative to BP. Note that if 
EXAMPLE were a NEAR procedure, CS would 
not be on the stack and the parameters would be 
two bytes “ closer” to BP. BP also is used to 
address the local variables on the stack. Local 
constants are best stored in a data or extra 
segment.

The procedure “ epilog” reverses the activities of 
the prolog, leaving the stack as it was when the 
procedure was entered (see figure 2-75).

H IG H E R  A D D R E S S E S

P A R A M E T E R  1

P A R A M E T E R  2

R E T U R N  A D D R E S S

O L D  B P - B P  & S P  (TOS)

L O W E R  A D D R E S S E S

Figure 2-75. Stack Following Procedure Epilog
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The procedure “ return” restores CS and IP from 
the stack and discards the parameters. As figure 
2-76 shows, when the calling program is resumed, 
the stack is in the same state as it was before any 
parameters were pushed onto it.

H IG H  A D D R E S S E S

S P (T O S )

L O W  A D D R E S S E S

Figure 2-76. Stack Following Procedure Return

Figure 2-77 shows a simple procedure that uses an 
ASM-86 structure to address the stack. Register 
BP is pointed to the base of the structure, which is 
the top of the stack since the stack grows toward 
lower addresses (see figure 2-78). Any structure 
element can then be addressed by specifying BP as 
a base register:

[B P ].s truc tu re_e lem ent.

Figure 2-79 shows a different approach to using 
an ASM-86 structure to define the stack layout. 
As shown in figure 2-80, register BP is pointed at
the middle of the structure (at OLD_BP) rather
than at the base of the structure. Parameters and 
the return address are thus located at positive 
displacements (high addresses) from BP, while 
local variables are at negative displacements 
(lower addresses) from BP. This means that the 
local variables will be “ closer” to the beginning 
of the stack segment and increases the likelihood 
that the assembler will be able to produce shorter 
instructions to access these variables, i.e., their 
offsets from SS may be 255 bytes or less and can 
be expressed as a 1-byte value rather than a 2-byte 
value. Exit from the subroutine also is slightly 
faster because a MOV instruction can be used to 
deallocate the local storage instead of an ADD 
(compare figure 2-71).

It is possible for a procedure to be activated a sec
ond time before it has returned from its first 
activation. For example, procedure A may call 
procedure B, and an interrupt may occur while 
procedure B is executing. If the interrupt service 
procedure calls B, then procedure B is reentered 
and must be written to handle this situation cor
rectly, i.e., the procedure must be made 
reentrant.

In PL/M-86 this can be done by simply writing:

B: PROCEDURE (PARM1, PARM2) REENTRANT;

An ASM-86 procedure will be reentrant if it uses 
the stack for storing all local variables. When the 
procedure is reentered, a new “ generation” of 
variables will be allocated on the stack. The stack 
will grow, but the sets of variables (and the 
parameters and return addresses as well) will 
automatically be kept straight. The stack must be 
large enough to accommodate the maximum 
“ depth” of procedure activation that can occur 
under actual running conditions. In addition, any 
procedure called by a reentrant procedure must 
itself be reentrant.

A related situation that also requires reentrant 
procedures is recursion. The following are 
examples of recursion:
• A calls A (direct recursion),
• A calls B, B calls A (indirect recursion),
• A calls B, B calls C, C calls A (indirect 

recursion).
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CODE SEGMENT
ASSUME CS:CODE 

MAX PROC
; THIS PROCEDURE IS CALLED BY THE FOLLOWING 
; SEQUENCE:
; PUSH PARM1
; PUSH PARM2
; CALL MAX
; IT RETURNS THE MAXIMUM OF THE TWO WORD 
; PARAMETERS IN AX.

DEFINE THE STACK LAYOUT AS A STRUCTURE.
STACK_LAYOUT STRUC
OLD_BP DW?
RETURN_ADDR DW ?
PARM_2 DW?
PARM_1 DW?
STACK_LAYOUT ENDS

SAVED BP VALUE-BASE OF STRUCTURE 
RETURN ADDRESS 
SECOND PARAMETER 
FIRST PARAMETER

; PROLOG
PUSH
MOV

; BODY
MOV
CMP
JG
MOV

; EPILOG
FIRST IS MAX: POP
; RETURN

RET
MAX ENDP

BP ; SAVE IN OLD_BP
BP, SP ; POINT TO OLD_BP

AX, [BP].PARM_1
AX, [BP].PARM_2
FIRST_IS_MAX
AX, [BP].PARM_2

; IF FIRST 
; > SECOND 
; THEN RETURN FIRST 
; ELSE RETURN SECOND

BP ; RESTORE BP (&SP)

4 ; DISCARD PARAMETERS

CODE ENDS
END

Figure 2-77. Procedure Example 2

H IG H E R  A D D R E S S E S
N' c >

P A R A M E T E R  1

P A R A M E T E R  2

R E T U R N  A D D R E S S

O LD  B P

L “1

L O W E R  A D D R E S S E S

Figure 2-78. Procedure Example 2 Stack Layout

Jumps and Calls

The 8086/8088 instruction set contains many dif
ferent types of JMP and CALL instructions (e.g., 
direct, indirect through register, indirect through 
memory, etc.). These varying types of transfer 
provide efficient use of space and execution time 
in different programming situations. Figure 2-81 
illustrates typical use of the different forms of 
these instructions. Note that the ASM-86 
assembler uses the terms “ NEAR” and “ FAR” 
to denote intrasegment and intersegment trans
fers, respectively.
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EXTRA SEGMENT
; CONTAINS STRUCTURE TEMPLATE THAT “ NEARPROC”  
; USES TO ADDRESS AN ARRAY PASSED BY ADDRESS. 
DUMMY STRUC
PARM_ARRAY DB 256 DUP?
DUMMY ENDS
EXTRA ENDS

CODE SEGMENT
ASSUME CS:CODE,ES:EXTRA

NEARPROC PROC
; LAY OUT THE STACK (THE DYNAMIC STORAGE AREA OR DSA).
DSASTRUC
1

STRUC
DW ?

LOC_ARRAY DW 10
OLD_BP DW ?
RETADDR DW ?
POINTER DD ?
COUNT DB ?

DSASTRUC
DB
ENDS

?

LOCAL VARIABLES FIRST

ORIGINAL BP VALUE 
RETURN ADDRESS
2ND PARM-POINTER TO “ PARM_ARRAY” 
1ST PARM -A BYTE OCCUPIES 

A WORD ON THE STACK

; USE AN EQU TO DEFINE THE BASE ADDRESS OF THE 
; DSA. CANNOT SIMPLY USE BP BECAUSE IT WILL 
; BE POINTING TO “ OLD_BP”  IN THE MIDDLE OF 
; THEDSA.
DSA EQU [B P - OFFSET OLD_BP]

; PROCEDURE ENTRY
PUSH 
MOV 
SUB

; PROCEDURE BODY
; ACCESS LOCAL VARIABLE I 
MOV AX,DSA.I

; ACCESS LOCAL ARRAY (3) I.E., 4TH ELEMENT
MOV SI,6 ; WORD ARRAY-INDEX IS 3*2
MOV AX.DSA.LOC__ARRAY [SI]

; LOAD POINTER TO ARRAY PASSED BY ADDRESS 
LES BX, DSA. POINTER

; ES:BX NOW POINTS TO PARM_ARRAY (0)
; ACCESS Sl’TH ELEMENT OF PARM_ARRAY
MOV AL,ES:[BX].PARM__ARRAY [SI]

; ACCESS THE BYTE PARAMETER 
MOV AL,DSA.COUNT

BP ; SAVE BP
BP, SP ; POINT BP AT OLD_BP
SP, OFFSET OLD_BP ; ALLOCATE LOC_ARRAY & I

Figure 2-79. Procedure Example 3
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; PROCEDURE EXIT
MOV SP,BP ; DE-ALLOCATE LOCALS
POP BP ; RESTORE BP
; STACK NOW AS RECEIVED FROM CALLER 
RET 6 ; DISCARD PARAMETERS

NEARPROC ENDP
CODE ENDS

END

Figure 2-79. Procedure Example 3 (Cont’d.)

The procedure in figure 2-81 illustrates how a
PL/M-86 DO CASE construction may be
implemented in ASM-86. It also shows:

• an indirect CALL through memory to a 
procedure located in another segment,

• a direct JMP to a label in another segment,

• an indirect JMP though memory to a label in 
the same segment,

• an indirect JMP through a register to a label 
in the same segment,

• a direct CALL to a procedure in another 
segment,

• a direct CALL to a procedure in the same 
segment,

Figure 2-80. Procedure Example 
3 Stack Layout

direct JMPs to labels in the same segment, 
within -128 to +127 bytes (“ SHORT” ) and 
farther than -128 to +127 bytes (“ NEAR” ).
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DATA SEGMENT
; DEFINE THE CASE TABLE (JUMP TABLE) USED BY PROCEDURE
; “ DO_CASE.”  THE OFFSET OF EACH LABEL WILL
; BE PLACED IN THE TABLE BY THE ASSEMBLER.
CASE_TABLE DW ACTIONO, ACTION1, ACTION2,
& ACTION3, ACTION4, ACTION5
DATA ENDS

; DEFINE TWO EXTERNAL (NOT PRESENT IN THIS 
; ASSEMBLY BUT SUPPLIED BY R & L FACILITY)
; PROCEDURES. ONE IS IN THIS CODE SEGMENT
; (NEAR) AND ONE IS IN ANOTHER SEGMENT (FAR).

EXTRN NEAR__PROC: NEAR, FAR_PROC: FAR

; DEFINE AN EXTERNAL LABEL (JUMP TARGET) THAT 
; IS IN ANOTHER SEGMENT.

EXTRN ERR__EXIT: FAR

CODE SEGMENT
ASSUME CS: CODE, DS: DATA

; ASSUME DS HAS BEEN SET UP 
; BY CALLER TO POINT TO “ DATA”  SEGMENT.

DO_CASE PROC NEAR
; THIS EXAMPLE PROCEDURE RECEIVES TWO 
; PARAMETERS ON THE STACK. THE FIRST 
; PARAMETER IS THE “ CASE NUMBER”  OF 
; A ROUTINE TO BE EXECUTED (0-5). THE SECOND 
; PARAMETER IS A POINTER TO AN ERROR 
; PROCEDURE THAT IS EXECUTED IF AN INVALID 
; CASE NUMBER (>5) IS RECEIVED.

LAY OUT THE STACK.
STACK_LAYOUT STRUC
OLD_BP DW ?
RETADDR DW ?
ERR_PROC ADDR DD
CASE NO DB ? 

DB ?
STACK_LAYOUT ENDS

; SET UP PARAMETER ADDRESSING 
PUSH BP
MOV BP, SP

; CODE TO SAVE CALLER’S REGISTERS COULD GO HERE.

CHECK THE CASE NUMBER
MOV BH, 0
MOV BL, [BP].CASE_NO
CMP BX, LENGTH CASE TABLE
JLE OK ; ALL CONDITIONAL JUMPS 

; ARE SHORT DIRECT

Figure 2-81. JMP and CALL Examples
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CALL THE ERROR ROUTINE WITH A FAR 
INDIRECT CALL. A FAR INDIRECT CALL 
IS INDICATED SINCE THE OPERAND HAS 
TYPE “ DOUBLEWORD.”

CALL [BP]. ERR PROC ADDR

JUMP DIRECTLY TO A LABEL IN ANOTHER SEGMENT. 
A FAR DIRECT JUMP IS INDICATED SINCE 
THE OPERAND HAS TYPE “ FAR.”

JMP ERR EXIT

OK:
; MULTIPLY CASE NUMBER BY 2 TO GET OFFSET
; INTO CASE_TABLE (EACH ENTRY IS 2 BYTES).

SHL BX, 1
; NEAR INDIRECT JUMPTHROUGH SELECTED
; ELEMENT OF CASE_TABLE. A NEAR
; INDIRECT JUMP IS INDICATED SINCE THE
; OPERAND HAS TYPE “ WORD.”

JMP CASE_TABLE [BX]

ACTIONO: ; EXECUTED IF CASE_NO = 0
; CODE TO PROCESS THE ZERO CASE GOES HERE.
; FOR ILLUSTRATION PURPOSES, USE A 
; NEAR INDIRECT JUMPTHROUGH A 
; REGISTER TO BRANCH TO THE POINT 
; WHERE ALL CASES CONVERGE.
; A DIRECT JUMP (JMP ENDCASE) IS 
; ACTUALLY MORE APPROPRIATE HERE.

MOV AX, OFFSET ENDCASE
JMP AX

ACTION1: ; EXECUTED IF CASE_NO = 1
; CALL A FAR EXTERNAL PROCEDURE. A FAR 
; DIRECT CALL IS INDICATED SINCE OPERAND 
; HAS TYPE “ FAR.”

CALL FAR PROC
; CALL A NEAR EXTERNAL PROCEDURE.

CALL NEAR PROC
; BRANCH TO CONVERGENCE POINT USING NEAR 
; DIRECT JUMP. NOTE THAT “ ENDCASE”
; IS MORE THAN 127 BYTES AWAY 
; SO A NEAR DIRECT JUMP WILL BE USED.

JMP ENDCASE

ACTION2: ; EXECUTED IF CASE_NO = 2
; CODE GOES HERE

JMP ENDCASE ; NEAR DIRECT JUMP

Figure 2-81. JMP and CALL Examples (Cont’d.)
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ACTION3: ; EXECUTED IF CASE_NO = 3
; CODE GOES HERE

JMP ENDCASE ; NEAR DIRECT JMP

; ARTIFICIALLY FORCE “ ENDCASE”  FURTHER AWAY
; SO THAT ABOVE JUMPS CANNOT BE “ SHORT.”

ORG 500

ACTION4: ; EXECUTED IF CASE__NO = 4
; CODE GOES HERE

JMP ENDCASE ; NEAR DIRECT JUMP

ACTION5: ; EXECUTED IF CASE_NO = 5
; CODE GOES HERE.
; BRANCH TO CONVERGENCE POINT USING 
; SHORT DIRECT JUMP SINCE TARGET IS 
; WITHIN 127 BYTES. MACHINE INSTRUCTION 
; HAS 1-BYTE DISPLACEMENT RATHER THAN 
; 2-BYTE DISPLACEMENT REQUIRED FOR 
; NEAR DIRECT JUMPS. “ SHORT”  IS 
; WRITTEN BECAUSE “ ENDCASE”  IS A FORWARD 
; REFERENCE, WHICH ASSEMBLER ASSUMES IS 
; “ NEAR.”  IF “ ENDCASE”  APPEARED PRIOR 
; TOTHE JUMP, THE ASSEMBLER WOULD 
; AUTOMATICALLY DETERMINE IF IT WERE REACHABLE 
; WITH A SHORT JUMP.

JMP SHORTENDCASE

ENDCASE: ; ALL CASES CONVERGE HERE.

POP CALLER'S REGISTERS HERE.
; RESTORE BP & SP, DISCARD PARAMETERS
; AND RETURN TO CALLER.

MOV SP, BP
POP BP
RET 6

DO_CASE ENDP
CODE ENDS

END ; OF ASSEMBLY

Figure 2-81. JMP and CALL Examples (Cont’d.)

Records

Figure 2-82 shows how the ASM-86 RECORD 
facility may be used to manipulate bit data. The 
example shows how to:
• right-justify a bit field,
• test for a value,

• assign a constant known at assembly time,
• assign a variable,
• set or clear a bit field.
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DATA SEGMENT
; DEFINE A WORD ARRAY 
XREF DW 3000 DUP (?)
; EACH ELEMENT OF XREF CONSISTS OF 3 FIELDS:
; A 2-BIT TYPE CODE,
; A 1-BIT FLAG,
; A 13-BIT NUMBER.
; DEFINE A RECORD TO LAY OUT THIS ORGANIZATION.
LINE_REC RECORD LINE_TYPE: 2,
& VISIBLE: 1,
& LINE NUM: 13
DATA ENDS

CODE SEGMENT
ASSUME CS: CODE, DS: DATA

; ASSUME SEGMENT REGISTERS ARE SET UP PROPERLY 
; AND THAT SI INDEXES AN ELEMENT OF XREF.

; A RECORD FIELD-NAME USED BY ITSELF RETURNS 
; THE SHIFT COUNT REQUIRED TO RIGHT-JUSTIFY
; THE FIELD. ISOLATE “ LINE_TYPE" IN THIS
; MANNER.

MOV AL, XREF [SI]
MOV CL, LINE__TYPE
SHR AX, CL

; THE “ MASK”  OPERATOR APPLIED TO A RECORD 
; FIELD-NAME RETURNS THE BIT MASK 
; REQUIRED TO ISOLATE THE FIELD WITHIN 
; THE RECORD. CLEAR ALL BITS EXCEPT
; “ LINE_NUM.’ ’

MOV DX, XREF[SI]
AND DX, MASK LINE__NUM

; DETERMINE THE VALUE OF THE “ VISIBLE" FIELD
TEST XREF[SI], MASK VISIBLE
JZ NOT__ VISIBLE

; NO JUMP IF VISIBLE = 1
NOT_VISIBLE: ; JUMP HERE IF VISIBLE = 0

; ASSIGN A CONSTANT KNOWN AT ASSEMBLY-TIME 
; TO A FIELD, BY FIRST CLEARING THE BITS 
; ANDTHENOR’ING IN THE VALUE. IN 
; THIS CASE “ LINE TYPE" IS SET TO 2 (10B).

AND XREF[SI], NOT MASK LINE_TYPE
OR XREF[SI],2 SHL LINE__ TYPE

; THE ASSEMBLER DOES THE MASKING AND SHIFTING.
; THE RESULT IS THE SAME AS:

AND XREF[SI], 3FFFH
OR XREF[SI], 8000H

; BUT IS MORE READABLE AND LESS SUBJECT 
; TO CLERICAL ERROR.

Figure 2-82. RECORD Example
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SHL AX, CL ;SHIFTTO “ LINE UP”  BITS
AND XREF[SI], NOT MASK LINE_TYPE ; CLEAR BITS
OR XREF[SI], AX ; OR IN NEW VALUE

; NO SHIFT IS REQUIRED TO ASSIGN TO THE 
; RIGHT-MOST FIELD. ASSUMING AX CONTAINS 
; A VALID NUMBER (HIGH 3 BITS ARE 0),
; ASSIGN AXTO “ LINE_NUM.”

AND XREF[SI], NOT MASK LINE_NUM
OR XREF[SI], AX

; A FIELD MAY BE SET OR CLEARED WITH 
; ONE INSTRUCTION. CLEARTHE “ VISIBLE”
; FLAG AND THEN SET IT.

AND XREF[SI], NOT MASK VISIBLE
OR XREF[SI], MASK VISIBLE

CODE ENDS
END ; OF ASSEMBLY

Figure 2-82. RECORD Example (Cont’d.)

8086 m 8088 C JN T^L ^ C ^ g ^ T S

The following considerations apply to position-
independent code sequences:
• A label that is referenced by a direct FAR 

(intersegment) transfer is not moveable.
• A label that is referenced by an indirect 

transfer (either NEAR or FAR) is moveable 
so long as the register or memory pointer to 
the label contains the label’s current address.

• A label that is referenced by a SHORT (e.g., 
conditional jump) or a direct NEAR (in
trasegment) transfer is moveable so long as 
the referencing instruction is moved with the 
label as a unit. These transfers are self
relative; that is they require only that the 
label maintain the same distance from the 
referencing instruction, and actual addresses 
are immaterial.

• Data is segment-independent, but not offset- 
independent. That is, a data item may be 
moved to a different segment, but it must 
maintain the same offset from the beginning 
of the segment. Placing constants in a unit 
of code also effectively makes the code 
offset-dependent, and therefore is not 
recommended.

• A procedure should not be moved while it is 
active or while any procedure it has called is 
active.

• A section of code that has been interrupted 
should not be moved.

The segment that is receiving a section of code 
must have “ room” for the code. If the MOVS (or 
MOVSB or MOVSW) instruction attempts to 
auto-increment DI past 64k, it wraps around to 0 
and causes the beginning of the segment to be 
overwritten. If a segment override is needed for 
the source operand, code similar to the following 
can be used to properly resume the instruction if it 
is interrupted:

R E S U M E : R E P  M O V S  D E S T IN A T IO N , E S :S O U R C E  

;IF C X  N O T  = 0 T H E N  IN T E R R U P T  H A S  O C C U R R E D  

A N D  C X .C X  ; CX=0?

JN Z  R E S U M E  ;NO , FINISH  E X E C U T IO N  

;C O N T R O L  C O M E S  H E R E  W H E N  S T R IN G  H A S  B E E N  M O V E D .

If the MOVS is interrupted, the CPU 
“ remembers” the segment override, but 
“ forgets” the presence of the REP prefix when 
execution resumes. Testing CX indicates whether 
the instruction is completed or not. Jumping back 
to the instruction resumes it where it left off. Note 
that a segment override cannot be specified with 
MOVSB or MOVSW.
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Dynamic Code Relocation

Figure 2-83 illustrates one approach to moving 
programs in memory at execution time. A “ super
visor” program (which is not moved) keeps 
a pointer variable that contains the current loca
tion (offset and segment base) of a position- 
independent procedure. The supervisor always

calls the procedure through this pointer. The 
supervisor also has access to the procedure’s 
length in bytes. The procedure is moved with the 
MOVSB instruction. After the procedure is 
moved, its pointer is updated with the new loca
tion. The ASM-86 WORD PTR operator is writ
ten to inform the assembler that one word of the 
doubleword pointer is being updated at a time.

MAIN_DATA SEGMENT
; SET UP POINTERS TO POSITION-INDEPENDENT PROCEDURE 
; AND FREE SPACE.
PIP_PTR DD EXAMPLE
FREE_PTR DD TARGET_SEG
; SET UP SIZE OF PROCEDURE IN BYTES
PIP_SIZE DW EXAMPLE_LEN
MAIN_DATA ENDS

STACK SEGMENT
DW 20 DUP (?) , ; 20 WORDS FOR STACK

STACK_TOP
STACK

LABEL
ENDS

WORD ;TOS BEGINS HERE

SOURCE_SEG SEGMENT
; THE POSITION-INDEPENDENT PROCEDURE IS INITIALLY IN THIS SEGMENT. 
; OTHER CODE MAY PRECEDE IT, I.E., ITS OFFSET NEED NOT BE ZERO.
ASSUME CS:SOURCE_SEG
EXAMPLE PROC FAR

; THIS PROCEDURE READS AN 8-BIT PORT UNTIL 
; BIT 3 OF THE VALUE READ IS FOUND SET. IT 
; THEN READS ANOTHER PORT. IF THE VALUE READ 
; IS GREATER THAN 10H IT WRITES THE VALUE TO 
; A THIRD PORT AND RETURNS; OTHERWISE IT STARTS
; OVER.

STATUS_PORT EQU 0D0H
PORT_READY EQU 008H
INPUT_PORT EQU 0D2H
THRESHOLD EQU 01 OH
OUTPUT_PORT EQU 0D4H
CHECK_AGAIN: IN AL,STATUS_PORT GET STATUS

TEST AL.PORT_READY DATA READY?
JNE CHECK_AGAIN NO, TRY AGAIN
IN AL.INPUT_PORT YES, GET DATA
CMP AL,THRESHOLD > 10H?
JLE CHECK_AGAIN NO, TRY AGAIN
OUT OUTPUT_PORT.AL YES, WRITE IT

Figure 2-83. Dynamic Code Relocation Example
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RET ; RETURN TO CALLER
; GET PROCEDURE LENGTH
EXAMPLE_LEN EQU (OFFSET THIS BYTE)-(OFFSET CHECK_AGAIN)

ENDP EXAMPLE ENDP
SOURCE_SEG ENDS

TARGET_SEG SEGMENT
; THE POSITION-INDEPENDENT PROCEDURE 
; IS MOVED TO THIS SEGMENT, WHICH IS 
; INITIALLY “ EMPTY.”
; IN TYPICAL SYSTEMS, A “ FREE SPACE MANAGER”  WOULD 
; MAINTAIN A POOL OF AVAILABLE MEMORY SPACE 
; FOR ILLUSTRATION PURPOSES, ALLOCATE ENOUGH 
; SPACE TO HOLD IT

DB EXAMPLE__LEN DUP (?)

TARGET_SEG ENDS

MAIN_CODE SEGMENT
; THIS ROUTINE CALLS THE EXAMPLE PROCEDURE 
; AT ITS INITIAL LOCATION, MOVES IT, AND 
; CALLS IT AGAIN ATTHE NEW LOCATION.

ASSUME CS:MAIN CODE,SS:STACK,
& DS:MAIN DATA,ES:NOTHING

; INITIALIZE SEGMENT REGISTERS & STACK POINTER.
START: MOV AX,MAIN_DATA

MOV DS,AX
MOV AX,STACK
MOV SS,AX
MOV SP,OFFSET STACK__TOP

; CALL EXAMPLE AT INITIAL LOCATION.
CALL PIP_PTR

; SET UP CX WITH COUNT OF BYTES TO MOV
MOV CX,PIP__SIZE

; SAVE DS, SET UP DS/SI AND ES/DI TO 
; POINT TO THE SOURCE AND DESTINATION 
; ADDRESSES.

PUSH DS
LES Dl.FREE__PTR
LDS SI,PIP__PTR

; MOVE THE PROCEDURE.
CLD
REPMOVSB

; AUTO INCREMENT

; RESTORE OLD ADDRESSABILITY.
MOV AX,DS ; HOLD TEMPORARILY
POP DS

; UPDATE POINTER TO POSITION-INDEPENDENT PROCEDURE 
MOV WORD PTR PIP_PTR+2,ES
SUB Dl,PIP__SIZE ; PRODUCES OFFSET
MOV WORD PTR PIP_PTR,DI

Figure 2-83. Dynamic Code Relocation Example (Cont’d.)
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; UPDATE POINTER TO FREE SPACE
MOV WORD PTR FREE_PTR+2.AX
SUB SI,PIP_SIZE ; PRODUCES OFFSET
MOV WORD PTR FREE__PTR,SI

; CALL POSITION-INDEPENDENT PROCEDURE AT 
; NEW LOCATION AND STOP

CALL PIP__PTR
MAIN_CODE ENDS

END START

Figure 2-83. Dynamic Code Relocation Example (Cont’d.)

Memory-Mapped I/O

Figure 2-84 shows how memory-mapped I/O can 
be used to address a group of communication 
lines as an “ array.” In the example, indexed 
addressing is used to poll the array of status ports, 
one port at a time. Any of the other 8086/8088 
memory addressing modes may be used in con
junction with memory-mapped I/O devices as 
well.

In figure 2-85 a MOVS instruction is used to per
form a high-speed transfer to a memory-mapped 
line printer. Using this technique requires the 
hardware to be set up as follows. Since the MOVS

instruction transfers characters to successive 
memory addresses, the decoding logic must select 
the line printer if any of these locations is written. 
One way of accomplishing this is to have the chip 
select logic decode only the upper 12 lines of the 
address bus (A19-A8), ignoring the contents of 
the lower eight lines (A7-A0). When data is writ
ten to any address in this 256-byte block, the 
upper 12 lines will not change, so the printer will 
be selected.

If an 8086 is being used with an 8-bit printer, the 
8086’s 16-bit data bus must be mapped into 8-bits 
by external hardware. Using an 8088 provides a 
more direct interface.

COM_LINES SEGMENT AT800H
; THE FOLLOWING IS A MEMORY MAPPED “ ARRAY”
; OF EIGHT 8-BIT COMMUNICATIONS CONTROLLERS 
; (E.G., 8251 USARTS). PORTS HAVE ALL-ODD
; OR ALL-EVEN ADDRESSES (EVERY OTHER BYTE 
; IS SKIPPED) FOR 8086-COMPATIBILITY.

COM_DATA DB ?
DB ?

COM_STATUS DB ?
DB ?
DB 28

COM_LINES ENDS

; SKIP THIS ADDRESS

; SKIP THIS ADDRESS 
(?) ; REST OF “ ARRAY”

CODE SEGMENT
; ASSUME STACK IS SET UP, AS ARE SEGMENT 
; REGISTERS (DS POINTING TO COM_LINES). 
; FOLLOWING CODE POLLS THE LINES.

CHAR_RDY EQU
START_POLL: MOV

SUB

0000001 OB
CX, 8 
S I ,  S I

CHARACTER PRESENT 
POLL 8 LINES ZERO 
ARRAY INDEX

Figure 2-84. Memory Mapped I/O “Array”
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J t READ_CHAR READ IF PRESENT
ADD SI, 4 ELSE BUMP TO NEXT LINE
LOOP POLI__NEXT CONTINUE POLLING UNTIL

ALL 8 HAVE BEEN CHECKED
JMP START_POLL START OVER

READ_CHAR: MOV AL,COM_DATA [SI] ;GETTHE DATA
; ETC.
CODE ENDS

END

Figure 2-84. Memory Mapped I/O “Array” (Cont’d.)

PRINTER SEGMENT
; THIS SEGMENT CONTAINS A “ STRING”  THAT 
; IS ACTUALLY A MEMORY-MAPPED LINE PRINTER.
; THE SEGMENT (PRINTER) MUST BE ASSIGNED (LOCATED) 
; TO A BLOCK OF THE ADDRESS SPACE SUCH 
; THAT WRITING TO ANY ADDRESS IN THE 
; BLOCK SELECTS THE PRINTER.

PRINT_SELECT DB 133 DUP (?) ; “ STRING”  REPRESENTING PRINTER
DB 123 DUP (?) ; REST OF 256-BYTE BLOCK

PRINTER ENDS

DATA SEGMENT
PRINT_BUF DB 133 DUP (?) ; LINE TO BE PRINTED
PRINT_COUNT DB 1 ? ; LINE LENGTH
; OTHER PROGRAM DATA
DATA ENDS

CODE SEGMENT
ASSUME STACK AND SEGMENT REGISTERS HAVE 

BEEN SET UP (DS POINTS TO DATA SEGMENT). 
FOLLOWING CODE TRANSFERS A LINE TO 
THE PRINTER.

ASSUME ES: PRINTER
MOV AX, PRINTER ; PREVENT SEGMENT OVERRIDE
MOV ES, AX
SUB Dl, Dl ; CLEAR SOURCE AND
SUB SI, SI ; DESTINATION POINTERS
MOV CX, PRINT_COUNT
CLD ; AUTO-INCREMENT
MOVS PRINT_SELECT, PRINT_BUF
; ETC.
ENDS
END

Figure 2-85. Memory Mapped Block Transfer Example
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Breakpoints

Figure 2-86 illustrates how a program may set a 
breakpoint. In the example, the breakpoint 
routine puts the processor into single-step mode, 
but the same general approach could be used for 
other purposes as well. A program passes the 
address where the break is to occur to a procedure

that saves the byte located at that address and 
replaces it with an 1NT 3 (breakpoint) instruction. 
When the CPU encounters the breakpoint 
instruction, it calls the type 3 interrupt procedure. 
In the example, this procedure places the pro
cessor into single-step mode starting with the 
instruction where the breakpoint was placed.

INT_PTR_TAB SEGMENT
; INTERRUPT POINTER TABLE-LOCATE AT OH
TYPE 0 DD ? ; NOT DEFINED IN EXAMPLE
TYPE 1 DD SINGLE_STEP
TYPE_2 DD ? ; NOT DEFINED IN EXAMPLE
TYPE_3 DD BREAKPOINT
INT_PTR_TAB ENDS

SAVE_SEG SEGMENT
SAVE_INSTR DB 1 DUP (?) ; INSTRUCTION REPLACED

; BY BREAKPOINT
SAVE_SEG ENDS

MAIN_CODE SEGMENT
; ASSUME STACK AND SEGMENT REGISTERS ARE SET UP.

ENABLE SINGLE-STEPPING WITH INSTRUCTION AT 
LABEL “ NEXT”  BY PASSING SEGMENT AND 
OFFSET OF “ NEXT”  TO “ SET_BREAK”  PROCEDURE

; ETC.

PUSH
LEA
PUSH
CALL

cs
AX, CS: NEXT 
AX
FAR SET_BREAK

NEXT: IN
; ETC.

AL, OFFFH ; BREAKPOINT SET HERE

MAIN_CODE ENDS

BREAK 
SET_BREAK

SEGMENT
PROC FAR

; THIS PROCEDURE SAVES AN INSTRUCTION BYTE (WHOSE 
; ADDRESS IS PASSED BY THE CALLER) AND WRITES
; AN INT 3 (BREAKPOINT) MACHINE INSTRUCTION 

ATTHE TARGET ADDRESS.

TARGET EQU DWORD PTR [BP+ 6]

Figure 2-86. Breakpoint Example
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; S E T  U P  B P  F O R  P A R M  A D D R E S S IN G  & S A V E  R E G IS T E R S  
P U S H  BP
M O V  B P , SP
P U S H  DS
P U S H  ES
P U S H  A X
P U S H  BX

; P O IN T  D S /B X  T O  T H E  T A R G E T  IN S T R U C T IO N  
L D S  B X , T A R G E T

; P O IN T  ES T O  T H E  S A V E  A R E A
M O V  A X , S A V E __S E G
M O V  ES , A X

; S W A P  T H E  T A R G E T  IN S T R U C T IO N  F O R  IN T  3 (OCCH) 
M O V  A L , OCCH
X C H G  A L , D S : [B X ]

; S A V E  T H E  T A R G E T  IN S T R U C T IO N
M O V  ES : S A V E _ IN S T R ,  A L

; R E S T O R E  A N D  R E T U R N
P O P B X
P O P A X
P O P ES
P O P DS
P O P BP
R E T 4

S E T __B R E A K E N D P

B R E A K P O IN T P R O C F A R
; T H E  C P U  W IL L  A C T IV A T E  T H IS  P R O C E D U R E  W H E N  IT 
; E X E C U T E S  T H E  IN T  3 IN S T R U C T IO N  S E T  B Y  T H E
; S E T __B R E A K  P R O C E D U R E . T H IS  P R O C E D U R E
; R E S T O R E S  T H E  S A V E D  IN S T R U C T IO N  B Y T E  T O  ITS  
; O R IG IN A L  L O C A T IO N  A N D  B A C K S  U P  T H E  
; IN S T R U C T IO N  P O IN T E R  IM A G E  O N  T H E  S T A C K  
; S O  T H A T  E X E C U T IO N  W IL L  R E S U M E  W IT H  
; T H E  R E S T O R E D  IN S T R U C T IO N . IT T H E N  S E T S  
; T F  (T H E  T R A P  F L A G ) IN T H E  F L A G -IM A G E  
: O N  T H E  S T A C K . T H IS  P U T S  T H E  P R O C E S S O R
; IN  S IN G L E -S T E P  M O D E  W H E N  E X E C U T IO N  
; R E S U M E S .

F L A G  IM A G E  E Q U  W O R D  P TR  [B P  +  6]
IP IM A G E  E Q U  W O R D  P T R  [B P  +  2]

N E X T __IN S T R  E Q U  D W O R D  P TR  [B P  +  2]
; S E T  U P  B P  T O  A D D R E S S  S T A C K  A N D  S A V E  R E G IS T E R S  

P U S H  BP
M O V  B P , S P
P U S H  DS
P U S H  ES
P U S H  A X
P U S H  BX

; P O IN T  ES A T  T H E  S A V E  A R E A
M O V  A X , S A V E ___S E G
M O V  ES , A X

; G E T  T H E  S A V E D  B Y T E
M O V  A L , E S : S A V E _ IN S T R

Figure 2-86. Breakpoint Example (Cont’d.)
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; G E T  T H E  A D D R E S S  O F  T H E  T A R G E T  +  1 
; ( IN S T R U C T IO N  F O L L O W IN G  T H E  B R E A K P O IN T )

L D S  B X ,N E X T __IN S T R
; B A C K  U P  IP -IM A G E  (IN  B X ) A N D  R E P L A C E  O N  S T A C K  

D E C  BX
M O V  IP__ IM A G E , B X

; R E S T O R E  T H E  S A V E D  IN S T R U C T IO N
M O V  D S : [B X ],  A L

; S E T  T F  O N  S T A C K
A N D  F L A G _ IM A G E , 0100H

; R E S T O R E  E V E R Y T H IN G  A N D  E X IT
P O P BX
P O P A X
P O P ES
P O P D S
P O P BP
IR E T

B R E A K P O IN T E N D P

S IN G L E  S T E P P R O C F A R
; O N C E  S IN G L E -S T E P  M O D E  H A S  B E E N  E N T E R E D ,
; T H E  C P U  “ T R A P S ”  T O  T H IS  P R O C E D U R E  
; A F T E R  E V E R Y  IN S T R U C T IO N  T H A T  IS N O T  IN 

A N  IN T E R R U P T  P R O C E D U R E . IN  T H E  C A S E  
; O F  T H IS  E X A M P L E , T H IS  P R O C E D U R E  W IL L  
; B E  E X E C U T E D  IM M E D IA T E L Y  F O L L O W IN G  T H E  
; “ IN  A L , O F F F H ”  IN S T R U C T IO N  (W H E R E  T H E  
; B R E A K P O IN T  W A S  S E T ) A N D  A F T E R  E V E R Y
; S U B S E Q U E N T  IN S T R U C T IO N . T H E  P R O C E D U R E  
; C O U L D  " T U R N  IT S E L F  O F F ”  B Y  C L E A R IN G  
; T F  O N  T H E  S T A C K .
; S IN G L E -S T E P  C O D E  G O E S  H E R E .
; S IN G L E __S T E P  E N D P

B R E A K  E N D S

E N D  ;

Figure 2-86. Breakpoint Example (Cont’d.)

Interrupt Procedures

Figure 2-87 is a block diagram of a hypothetical 
system that is used to illustrate three different 
examples of interrupt handling: an external 
(maskable) interrupt, an external non-maskable 
interrupt and a software interrupt.

In this hypothetical system, an 8253 Program
mable Interval Timer is used to generate a time 
base. One of the three timers on the 8253 is pro
grammed to repeatedly generate interrupt 
requests at 50 millisecond intervals. The output 
from this timer is tied to one of the eight interrupt 
request lines of an 8259A Programmable Inter
rupt Controller. The 8259A, in turn, is connected 
to the INTR line of an 8086 or 8088.
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Figure 2-87. Interrupt Example Block Diagram

A power-down circuit is used in the system to 
illustrate one application of the 8086/8088 NMI 
(non-maskable interrupt) line. If the ac line 
voltage drops below a certain threshold, the 
power supply activates ACLO. The power-down 
circuit then sends a power-fail interrupt (PFI) 
pulse to the CPU’s NMI input. After 5 
milliseconds, the power-down circuit activates 
MPRO (memory protect) to disable reading 
from and writing to the system’s battery-powered 
RAM. This protects the RAM from fluctuations 
that may occur when power is actually lost 7.5 
milliseconds after the power failure is detected. 
The system software must save all vital informa
tion in the battery-powered RAM segment within 
5 milliseconds of the activation of NMI.

When power returns, the power-down circuit 
activates the system RESET line. Pressing the 
“ cold start” switch also produces a system 
RESET. The PFS (power fail status) line, which is

connected to the low-order bit of port E0, iden
tifies the source of the RESET. If the bit is set, the 
software executes a “ warm start” to restore the 
information saved by the power-fail routine. If 
the PFS bit is cleared, the software executes a 
“ cold start” from the beginning of the program. 
In either case, the software writes a “ one” to the 
low-order bit of port E2. This line is connected to 
the power-down circuit’s PFSR (power fail status 
reset) signal and is used to enable the battery- 
powered RAM segment.

A software interrupt is used to update a simple 
real-time clock. This procedure is written in 
PL/M-86, while the rest of the system is written in 
ASM-86 to demonstrate the interrupt handling 
capability of both languages. The system’s main 
program simply initializes the system following 
receipt of a RESET and then waits for an 
interrupt. An example of this interrupt procedure 
is given in figure 2-88.
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8086 AND 8088 CENTRAL PROCESSING UNITS

INT_POINTERS
; INTERRUPT POINTER TABLE,
TYPE__0 DD
TYPE__1 DD
TYPE__2 DD
TYPE__3 DD
TYPE__4 DD ?
; SKIP RESERVED PART OF EXAMPLE

SEGMENT
LOCATE AT OH, ROM-BASED

?
?
POWER_
?

FAIL

DIVIDE-ERROR NOT SUPPLIED IN EXAMPLE. 
SINGLE-STEP NOT SUPPLIED IN EXAMPLE. 
NON-MASKABLE INTERRUPT 
BREAKPOINT NOT SUPPLIED IN EXAMPLE. 
OVERFLOW NOT SUPPLIED IN EXAMPLE.

ORG 32*4
TYPE 32 DD ? 8259AIR0-AVAILABLE
TYPE_33 DD ? 8259AIR1- AVAILABLE
TYPE 34 DD ? 8259AIR2-AVAILABLE
TYPE_35 DD TIMER_PULSE 8259A IR3
TYPE 36 DD ? 8259A IR4-AVAILABLE
TYPE_37 DD ? 8259AIR5-AVAILABLE
TYPE_38 DD ? 8259AIR6- AVAILABLE
TYPE_39 DD ? 8259AIR7-AVAILABLE

; POINTER FOR TYPE 40 SUPPLIED BY PL/M-86 COMPILER 

INT_POINTERS ENDS

BATTERY SEGMENT
; THIS RAM SEGMENT IS BATTERY-POWERED. IT CONTAINS VITAL DATA 
; THAT MUST BE MAINTAINED DURING POWER OUTAGES.
STACK PTR DW ? ; SP SAVE AREA
STACK SEG DW ? ; SS SAVE AREA
; SPACE FOR OTHER VARIABLES COULD BE DEFINED HERE.
BATTERY ENDS

DATA SEGMENT
; RAM SEGMENT THAT IS NOT BACKED UP BY BATTERY
N_PULSES DB 1 DUP(O) ;#TIMER PULSES

; ETC.
DATA ENDS

STACK SEGMENT
; LOCATED IN BATTERY-POWERED RAM

DW 100 DUP (?) ; THIS IS AN ARBITRARY STACKSIZE

STACK_TOP LABEL WORD ; LABELTHE INITIALTOS
STACK ENDS

INTERRUPT_HANDLERS SEGMENT
; INTERRUPT PROCEDURES EXCEPT TYPE 40 (PL/M-86)

ASSUME: CS:INTERRUPT_H AN DLERS, DS: DATA, SS:STACK,ES: BATTERY

POWER_FAIL PROC ; TYPE 2 INTERRUPT
; POWER FAIL DETECT CIRCUIT ACTIVATES NMI LINE ON CPU IF POWER IS 
; ABOUT TO BE LOST. THIS PROCEDURE SAVES THE PROCESSOR STATE IN 
; RAM (ASSUMED TO BE POWERED BY AN AUXILIARY SOURCE) SO THAT IT 
; CAN BE RESTORED BY A WARM START ROUTINE IF POWER RETURNS

Figure 2-88. Interrupt Procedures Example
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8086 AND 8088 CENTRAL PROCESSING UNITS

; IP, CS, AND FLAGS ARE ALREADY ON THE STACK. 
; SAVE THE OTHER REGISTERS.

PUSH AX
PUSH BX
PUSH CX
PUSH DX
PUSH SI
PUSH Dl
PUSH BP
PUSH DS
PUSH ES

CRITICAL MEMORY VARIABLES COULD ALSO BE SAVED ON THE STACK AT THIS 
POINT. ALTERNATIVELY, THEY COULD BE DEFINED IN THE “ BATTERY" 
SEGMENT, WHERE THEY WILL AUTOMATICALLY BE PROTECTED IF MAIN POWER 
IS LOST.

; SAVE SP AND SS IN FIXED LOCATIONS THAT ARE KNOWN BY WARM START ROUTINE.
MOV AX,BATTERY
MOV ES,AX
MOV ES:STACK_PTR.SP
MOV ES:STACK_SEG.SS

; STOP GRACEFULLY
HLT

POWER_FAIL ENDP

TIMER_PULSE PROC TYPE 35 INTERRUPT 
THIS PROCEDURE HANDLES THE 50MS INTERRUPTS GENERATED BY THE 8253. 

IT COUNTS THE INTERRUPTS AND ACTIVATES THE TYPE 40 INTERRUPT 
PROCEDURE ONCE PER SECOND.

; DS IS ASSUMED TO BE POINTING TO THE DATA SEGMENT

; THE 8253 IS RUNNING FREE, AND AUTOMATICALLY LOWERS ITS INTERRUPT 
; REQUEST. IF A DEVICE REQUIRED ACKNOWLEDGEMENT, THE CODE MIGHT GO HERE.

; NOW PERFORM PROCESSING THAT MUST NOT BE INTERRUPTED (EXCEPT FOR NMI).
INC N_PULSES

; ENABLE HIGHER-PRIORITY INTERRUPTS AND DO LESS CRITICAL PROCESSING
STI
CMP N_PULSES,200 ;1 SECOND PASSED?
JBE DONE ; NO, GO ON.
MOV N_PULSES,0 ; YES, RESET COUNT.
INT 40 ; UPDATE CLOCK

; SEND NON-SPECIFIC END-OF-INTERRUPT COMMAND TO 8259A, ENABLING EQUAL 
; OR LOWER PRIORITY INTERRUPTS.
DONE: MOV AL.020H ; EOI COMMAND

OUT OCOH.AL ; 8259A PORT
IRET

TIMER_PULSE ENDP

INTERRUPT_HANDLERS ENDS

CODE SEGMENT
; THIS SEGMENT WOULD NORMALLY RESIDE IN ROM.

ASSUME CS:CODE,DS:DATA,SS:STACK,ES: NOTHING

Figure 2-88. Interrupt Procedures Example (Cont’d.)

M nem onics ©  Intel, 1978 2 -1 2 2



8086 AND 8088 CENTRAL PROCESSING UNITS

INIT PROC NEAR
; THIS PROCEDURE IS CALLED FOR BOTH WARM AND COLD STARTS TO INITIALIZE 

THE 8253 AND THE 8259A. THIS ROUTINE DOES NOT USE STACK, DATA, OR 
; EXTRA SEGMENTS, AS THEY ARE NOT SET PREDICTABLY DURING A WARM START. 
; INTERRUPTS ARE DISABLED BY VIRTUE OF THE SYSTEM RESET.

; INITIALIZE 8253 COUNTER 1 - OTHER COUNTERS NOT USED.
; CLK INPUT TO COUNTER IS ASSUMED TO BE 1.23 MHZ.

LO50MS EQU 000 H ; COUNT VALUE IS
HI50MS EQU 0F0H ; 61440 DECIMAL.
CONTROL EQU 0D6H ; CONTROL PORT ADDRESS
COUNT 1 EQU 0D2H ; COUNTER 1 ADDRESS
MODE2 EQU 01110100B ; MODE 2, BINARY

MOV DX,CONTROL ; LOAD CONTROL BYTE
MOV AL.MODE2
OUT DX,AL
MOV DX,COUNT_1 ; LOAD 50MS DOWNCOUNT
MOV AL.LO50MS
OUT DX,AL
MOV AL.HI50MS
OUT DX.AL
; COUNTER NOW RUNNING, INTERRUPTS STILL DISABLED.

INITIALIZE 8259A TO: SINGLE INTERRUPT CONTROLLER, EDGE-TRIGGERED, 
INTERRUPT TYPES 32-40 (DECIMAL) TO BE SENT TO CPU FOR INTERRUPT 
REQUESTS 0-7 RESPECTIVELY, 8086 MODE, NON-AUTOMATIC END-OF-INTERRUPT. 
MASK OFF UNUSED INTERRUPT REQUEST LINES.

ICW1 EQU 00010011B EDGE-TRIGGERED, SINGLE 8259A. ICW4 REQUIRED
ICW2 EQU 00100000B TYPE 20H, 32 - 40D
ICW4 EQU 00000001B 8086 MODE, NORMAL EOI
OCW1 EQU 11110111B MASK ALL BUT IR3
PORT_A EQU 0C0H ICW1 WRITTEN HERE
PORT_B EQU 0C2H OTHER ICW’S WRITTEN HERE

MOV DX.PORT_A WRITE 1ST ICW
MOV AL.ICW1
OUT DX,AL
MOV DX.PORT_B WRITE 2ND ICW
MOV AL.ICW2
OUT DX,AL
MOV AL.ICW4 WRITE 4TH ICW
OUT DX,AL
MOV AL.0CW1 MASK UNUSED IR’S
OUT DX.AL

; INITIALIZATION COMPLETE, INTERRUPTS STILL DISABLED 
RET

INIT ENDP

USER_PGM:
; “ REAL" CODE WOULD GO HERE. THE EXAMPLE EXECUTES AN ENDLESS LOOP 
; UNTIL AN INTERRUPT OCCURS.

JMP USER_PGM

; EXECUTION STARTS HERE WHEN CPU IS RESET.
POWER FAIL STATUS EQU OEOH ; PORT ADDRESS
ENABLE RAM EQU 0E2H ; PORT ADDRESS

Figure 2-88. Interrupt Procedures Example (Cont’d.)
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8086 AND 8088 CENTRAX PROCESSING UNITS
; DETERMINE WARM OR COLD START

IN AL, POWER FAIL STATUS
RCR AL,1 ; ISOLATE LOW BIT
JC WARM START

COLD_START:
; INITIALIZE SEGMENT REGISTERS AND STACK POINTER.

ASSUME CS:CODE,DS:DATA,SS:STACK,ES:NOTHING 
; RESET TAKES CARE OF CS AND IP.
MOV AX,DATA
MOV DS,AX
MOV AX,STACK
MOV SS,AX
MOV SP,OFFSET STACK_TOP

; INITIALIZE 8253 AND 8259A.
CALL IN IT

; ENABLE INTERRUPTS 
STI

; START MAIN PROCESSING 
JMP USER_PGM

WARM_START:
; INITIALIZE 8253 AND 8259A.

CALL 1N IT

; RESTORE SYSTEM TO STATE AT THE TIME POWER FAILED
; MAKE BATTERY SEGMENT ADDRESSABLE 

MOV AX, BATTERY 
MOV DX,AX

; VARIABLES SAVED IN THE "BATTERY”  SEGMENT WOULD BE MOVED 
BACK TO UNPROTECTED RAM NOW. SEGMENT REGISTERS AND

; "ASSUME”  DIRECTIVES WOULD HAVE TO BE WRITTEN TO GAIN
; ADDRESSABILITY.

; RESTORE THE OLD STACK
MOV SS,DS:STACK SEG
MOV SP,DS:STACK PTR

; RESTORE THE OTHER REGISTERS 
POP ES 
POP DS 
POP BP 
POP Dl 
POP SI 
POP DX 
POP CX 
POP BX 
POP AX

; RESUME THE ROUTINE THAT WAS EXECUTING WHEN NMI WAS ACTIVATED.
; I.E., POP CS, IP, & FLAGS, EFFECTIVELY “ RETURNING” FROM THE
; NMI PROCEDURE.

IRET
CODE ENDS

; TERMINATE ASSEMBLY AND MARK BEGINNING OF THE PROGRAM.
END START

Figure 2-88. Interrupt Procedures Example (Cont’d.)
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TYPES40: DO;
DECLARE (HOUR, MIN, SEC) BYTE PUBLIC; 
UPDATESTOD: PROCEDURE INTERRUPT40;

/•THE PROCESSOR ACTIVATES THIS PROCEDURE 
*TO HANDLE THE SOFTWARE INTERRUPT 
•GENERATED EVERY SECOND BY THETYPE 35 
•EXTERNAL INTERRUPT PROCEDURE. THIS 
•PROCEDURE UPDATES A REAL-TIME CLOCK.
•IT DOES NOT PRETEND TO BE ‘ 'REALISTIC”
•AS THERE IS NO WAY TO SET THE CLOCK.*/

SEC = SEC + 1;
IF SEC = 60 THEN DO;

SEC = 0;
MIN = MIN + 1;
IF MIN =60THEN DO;

MIN = 0;
HOUR = HOUR + 1;
IF HOUR = 24 THEN DO;

HOUR = 0;
END;

END;
END;

END UPDATESTOD;
END;

Figure 2-88. Interrupt Procedures Example (Cont’d.)

String Operations

Figure 2-89 illustrates typical use of string instruc
tions and repeat prefixes. The XLAT instruction 
also is demonstrated. The first example simply 
moves 80 words of a string using MOVS. Then 
two byte strings are compared to find the 
alphabetically lower string, as might be done in a 
sort. Next a string is scanned from right to left

(the index register is auto-decremented) to find 
the last period (“ .” ) in the string. Finally a byte 
string of EBCDIC characters is translated to 
ASCII. The translation is stopped at the end of 
the string or when a carriage return character is 
encountered, whichever occurs first. This is an 
example of using the string primitives in combina
tion with other instructions to build up more com
plex string processing operations.

A L P H A  S E G M E N T
; T H IS  IS T H E  D A T A  T H E  S T R IN G  IN S T R U C T IO N S  W IL L  U S E
O U T P U T
IN P U T
N A M E __1
N A M E __2
S E N T E N C E
E B C D IC __C H A R S
A S C II__C H A R S
C O N V __T A B

D W  100 D U P  (?) 
D W  100 D U P  (?) 
D B  ‘ J O N E S , J O N A ’ 
D B  ‘ J O N E S , J O H N ’ 
D B  80 D U P  (?) 
D B  80 D U P  (?) 
D B  80 D U P  (?) 
D B  64 D U P (O H ) E B C D IC  T O  A S C II

Figure 2-89. String Examples
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: A S C II N U L L S  A R E  S U B S T IT U T E D  FO R  “ U N P R IN T A B L E ”  C H A R S  
D B  1 20 H
D B  9 D U P  (OH)
D B  7 V ,  ' < ’ , ‘ +  OH,
D B  9 D U P  (OH)
D B  8 ‘ I ’ , T ,  ‘ T
D B  8 D U P  (OH)
D B  6 ' 7 ,  ■%’ , '? ’
D B  9 D U P  (OH)
D B  17 ‘ 7 , ‘ @ \  ‘ ”

OH, ‘ a ’ , ‘ b ’ , ‘ c ’ , ‘d ’ , ‘e ’ , ‘ f ’ , ‘ g ’ , ‘ h ’ , 7  
D B  7 D U P  (OH)
D B 9  ‘j ’ . ‘ k ’ , T ,  ‘ m ’ , ‘ n ’ , ‘ o ’ , ‘ p ’ , ‘ q ', ‘ r ’
D B  7 D U P  (OH)
D B 9  ‘ s ’ , ‘ t ’ , ‘ u ’ , ‘v ’ , ‘ w ’ , ‘x ’ , ‘ y ’ , ‘z ’
D B  22 D U P  (OH)
D B  10 ‘ ’ , ‘ A ’ , ‘ B ’ , ‘C ’ , ‘ D \  ‘ E ’ , ‘ F ’ , ‘G ’ , ‘ H ’ , T
D B  6 D U P  (OH)
D B  10 ‘ ’ , ‘J ’ , ‘ K ’ , ‘ L ’ , ‘ M ’ , ‘ N ’ , ‘O ’ , ‘ P ’ , ‘ Q ’ , ‘ R ’
D B  6 D U P  (OH)
D B  10 ‘ ’ , OH, ‘S ’ , ‘T ’ , ‘ U ’ , ‘V ’ , ‘W ’ , ‘X ’ , ‘Y ’ , ‘Z ’
D B  6 D U P  (OH)
D B  10 ‘O’ , ‘ 1 ’ , ‘2 ’ , ‘3 ’ , ‘ 4 ’ , ‘5 ’ , ‘6 ’ , ‘7 ’ , ‘8 ’ , ‘9 ’
D B  6 D U P  (OH)

A L P H A  E N D S

S T A C K  S E G M E N T
DW  100 D U P  (?)

S T A C K __B A S E  L A B E L  W O R D
E N D S

S E G M E N T
; S E T  U P  S E G M E N T  R E G IS T E R S . N O T IC E  T H A T  
; E S & D S  P O IN T T O T H E S A M E S E G M E N T ,  M E A N IN G  
; T H A T  T H E  C U R R E N T  E X T R A  & D A T A  
; S E G M E N T S  F U L L Y  O V E R L A P . T H IS  A L L O W S  
; A N Y  S T R IN G  IN “ A L P H A ”  T O  B E  U S E D  
; A S  A  S O U R C E  O R  A  D E S T IN A T IO N .
A S S U M E  C S : C O D E , S S : S T A C K ,

D S : A L P H A , ES : A L P H A  
M O V  A X , S T A C K
M O V  S S , A X
M O V  S P , O F F S E T  S T A C K ___B A S E  ; IN IT IA L  T O S
M O V  A X , A L P H A
M O V  D S , A X
M O V  ES , A X

; M O V E  T H E  F IR S T  80 W O R D S  O F  “ IN P U T ”  T O  
T H E  L A S T  80 W O R D S  O F  “ O U T P U T ” .

L E A  S I, IN P U T
L E A  D l, O U T P U T  +  20

; IN IT IA L IZ E  
; IN D E X  R E G IS T E R S

S T A C K

C O D E
B E G IN :

&

T H IS  IS A N  A R B IT R A R Y  S T A C K  S IZ E  
F O R  IL L U S T R A T IO N  O N L Y .
IN IT IA L  T O S

Figure 2-89. String Examples (Cont’d.)

M nem onics S Intel, 1978
2 -126



8086 AND 8088 CENTRAL PROCESSING UNITS

M O V  C X , 80
O LD

R E P  M O V S  O U T P U T , IN P U T

; R E P E T IT IO N  C O U N T  
; A U T O - IN C R E M E N T

F IN D  T H E  A L P H A B E T IC A L L Y  L O W E R  O F 2 N A M E S .

R E P E

M O V SI, O F F S E T  N A M E _ 1 ; A L T E R N A T IV E
M O V D l, O F F S E T  N A M E _ 2 ; T O  L E A
M O V C X , S IZ E  N A M E __2 ; C H A R . C O U N T
C L D ; A U T O -IN C R E M E N T
C M P S N A M E __2, N A M E __1 “ W H IL E  E Q U A L ”
J B N A M E __2__LO W

N A M E __1__L O W :
N A M E __2__L O W :

; N O T  IN T H IS  E X A M P L E  
; C O N T R O L  C O M E S  H E R E  IN T H IS  E X A M P L E . 
; D l P O IN T S  T O  B Y T E  ( ‘ H ’ ) T H A T  
; C O M P A R E D  U N E Q U A L .

; F IN D  T H E  L A S T  P E R IO D  ( ' . ’ ) IN  A  T E X T  S T R IN G .
M O V D l, O F F S E T  S E N T E N C E  +

& L E N G T H  S E N T E N C E ; S T A R T  A T  E N D
M O V C X , S IZ E  S E N T E N C E
S T D A U T O -D E C R E M E N T
M O V A L , ; S E A R C H  A R G U M E N T

R E P N E S C A S S E N T E N C E  ; “ W H IL E  N O T  = ’ ’
J C X Z N O  P E R IO D  ; IF C X = 0 , N O  P E R IO D  F O U N D

P E R IO D : ; IF C O N T R O L  C O M E S  H E R E  T H E N
; D l P O IN T S  T O  L A S T  P E R IO D  IN S E N T E N C E .

N O __P E R IO D : ; E T C .

T R A N S L A T E  A  S T R IN G  O F  E B C D IC  C H A R A C T E R S  
T O  A S C II, S T O P P IN G  IF A  C A R R IA G E  R E T U R N  
(ODH A S C II)  IS E N C O U N T E R E D .

N E X T :

M O V
M O V
M O V
M O V
C L D
L O D S
X L  A T
S T O S
T E S T
L O O P N E
JE

B X , O F F S E T  C O N V __T A B  ; P O IN T  T O  T R A N S L A T E  T A B L E
S I, O F F S E T  E B C D IC __C H A R S  ; IN IT IA L IZ E
D l, O F F S E T  A S C I I_ C H A R S  ; IN D E X  R E G IS T E R S
C X , S IZ E  A S C II__C H A R S  ; A N D  C O U N T E R

; A U T O -IN C R E M E N T  
; N E X T  E B C D IC  C H A R  IN  A L  
; T R A N S L A T E  T O  A S C II 
; S T O R E  F R O M  A L  
; IS IT C A R R IA G E  R E T U R N ?
; N O , C O N T IN U E  W H IL E  C X  N O T  0 
; Y E S , J U M P

E B C D IC __C H A R S
C O N V __T A B
A S C IL C H A R S  
A L , ODH 
N E X T
C R __F O U N D

C O N T R O L  C O M E S  H E R E  IF A L L  C H A R A C T E R S  
H A V E  B E E N  T R A N S L A T E D  B U T  N O  
C A R R IA G E  R E T U R N  IS P R E S E N T .

E TC .

C R __F O U N D :
; DI-1 P O IN T S  T O  T H E  C A R R IA G E  R E T U R N  
; IN A S C IL C H A R S .

C O D E  E N D S
E N D

Figure 2-89. String Examples (Cont’d.)
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CHAPTER 3
THE 8089 INPUT/OUTPUT PROCESSOR

This chapter describes the 8089 Input/Output 
Processor (IOP). Its organization parallels 
Chapter 2; that is, sections generally proceed 
from hardware to software topics as follows:

1. Processor Overview
2. Processor Architecture
3. Memory
4. Input/Output
5. Multiprocessing Features
6. Processor Control and Monitoring
7. Instruction Set
8. Addressing Modes
9. Programming Facilities

10. Programming Guidelines and Examples

As in Chapter 2, the discussion is confined to 
covering the hardware in functional terms; tim
ing, electrical characteristics and other physical 
interfacing data are provided in Chapter 4.

3.1 Processor Overview

The 8089 Input/Output Processor is a high- 
performance, general-purpose I/O  system 
implemented on a single chip. Within the 8089 are 
two independent I/O channels, each of which 
combines attributes of a CPU with those of a very 
flexible DMA (direct memory access) controller. 
For example, channels can execute programs like 
CPUs; the IOP instruction set has about 50 dif
ferent types of instructions specifically designed 
for efficient input/output processing. Each chan
nel also can perform high-speed DMA transfers; a 
variety of optional operations allow the data to be 
manipulated (e.g., translated or searched) as it is 
transferred. The 8089 is contained in a 40-pin 
dual in-line package (figure 3-1) and operates 
from a single + 5V power source. An integral 
member of the 8086 family, the IOP is directly 
compatible with both the 8086 and 8088 when 
these processors are configured in maximum 
mode. The IOP also may be used in any system 
that incorporates Intel’s Multibus™ shared bus 
architecture, or a superset of the Multibus™ 
design.

V s s C 1 40 □  v c c

A 1 4 ID 1 4  C 2 39 □  A 1 5 /D 1 5

A 1 3 /D 1 3  C 3 38 □  A 1 6 /S 3

A 1 2 /D 1 2  C 4 37 □  A 1 7 /S 4

A 1 1 /D 1 1  \Z 5 36 □  A 1 8 /S S

A K W D 1 0 C 6 35 □  A 1 9 /S 6

A 9 /D S  C 7 34 D b h I

A 8 /D 8  C 8 33 □  E X T  1

A 7 /D 7  C 9 32 □  E X T  2

A 6 /0 6  C 10 31 J  D R Q  1

A 5 /D 5  C 11 8 0 8 9
30 I ]  D R Q  2

A 4 (D 4  C 12 29 □  L O C K

A 3 /D 3  C 13 28 3  S 2

A 2 /D 2  C 14 27 □  S i

A 1 /D 1  C 15 26 □  SO

A 0 /D 0  C 16 25 □  R Q /G T

S IN T R -1  C 17 24 □  S E L

S IN T R -2  C 18 23 □  C A

C L K  C 19 22 □  R E A D Y

V s s  C 20 21 □  R E S E T

Figure 3-1. 8089 Input/Output Processor 
Pin Diagram

Evolution

Figure 3-2 depicts the general trend in CPU and 
I/O device relationships in the first three genera
tions of microprocessors. First generation CPUs 
were forced to deal directly with substantial 
numbers of TTL components, often performing 
transfers at the bit level. Only a very limited 
number of relatively slow devices could be 
supported.

Single-chip interface controllers were introduced 
in the second generation. These devices removed 
the lowest level of device control from the CPU 
and let the CPU transfer whole bytes at once. 
With the introduction of DMA controllers, high
speed devices could be added to a system, and 
whole blocks of data could be transferred without 
CPU intervention. Compared to the previous 
generation, I/O device and DMA controllers 
allowed microprocessors to be applied to prob
lems that required moderate levels of I/O, both in 
terms of the numbers of devices that could be sup
ported and the transfer speeds of those devices.
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required a considerable amount of attention from 
the CPU, and in many cases the CPU had to 
respond to an interrupt with every byte read or 
written. The CPU also had to stop while DMA 
transfers were performed.

The 8089 introduces the third generation of 
input/output processing. It continues the trend of 
simplifying the CPU’s “ view” of I/O devices by 
removing another level of control from the CPU. 
The CPU performs an I/O operation by building 
a message in memory that describes the function 
to be performed; the IOP reads the message, car
ries out the operation and notifies the CPU when 
it has finished. All I/O devices appear to the CPU 
as transmitting and receiving whole blocks of 
data; the IOP can make both byte- and word-level 
transfers invisible to the CPU. The IOP assumes 
all device controller overhead, performs both pro
grammed and DMA transfers, and can recover 
from “ soft” I/O errors without CPU interven
tion; all of these activities may be performed 
while the CPU is attending to other tasks.

Since the 8089 is a new concept in microprocessor 
components, this section surveys the basic opera
tion of the IOP as background to the detailed 
descriptions provided in the rest of the chapter. 
This summary deliberately omits some operating 
details in order to provide an integrated overview 
of basic concepts.

CPU/IOP Communications

A CPU communicates with an IOP in two distinct 
modes: initialization and command. The 
initialization sequence is typically performed 
when the system is powered-up or reset. The CPU 
initializes the IOP by preparing a series of linked 
message blocks in memory. On a signal from the 
CPU, the IOP reads these blocks and determines 
from them how the data buses are configured and 
how access to the buses is to be controlled.

Figure 3-2. IOP Evolution
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Following initialization, the CPU directs all com
munications to either of the IOP’s two channels; 
indeed, during normal operation the IOP appears 
to be two separate devices—channel 1 and chan
nel 2. All CPU-to-channel communications center 
on the channel control block (CB) illustrated in 
figure 3-3. The CB is located in the CPU’s 
memory space, and its address is passed to the 
IOP during initialization. Half of the block is 
dedicated to each channel. The channel maintains 
the BUSY flag that indicates whether it is in the 
midst of an operation or is available for a new 
command. The CPU sets the CCW (channel com
mand word) to indicate what kind of operation 
the IOP is to perform. Six different commands 
allow the CPU to start and stop programs, 
remove interrupt requests, etc.

If the CPU is dispatching a channel to run a pro
gram, it directs the channel to a parameter block 
(PB) and a task block (TB); these are also shown 
in figure 3-3. The parameter block is analogous to 
a parameter list passed by a program to a 
subroutine; it contains variable data that the 
channel program is to use in carrying out its 
assignment. The parameter block also may con

tain space for variables (results) that the channel 
is to return to the CPU. Except for the first two 
words, the format and size of a parameter block 
are completely open; the PB may be set up to 
exchange any kind of information between the 
CPU and the channel program.

A task block is a channel program—a sequence of 
8089 instructions that will perform an operation. 
A typical channel program might use parameter 
block data to set up the IOP and a device con
troller for a transfer, perform the transfer, return 
the results, and then halt. However, there are no 
restrictions on what a channel program can do; its 
function may be simple or elaborate to suit the 
needs of the application.
Before the CPU starts a channel program, it links 
the program (TB) to the parameter block and the 
parameter block to the CB as shown in figure 3-3. 
The links are standard 8086/8088 doubleword 
pointer variables; the lower-addressed word con
tains an offset, and the higher-addressed word 
contains a segment base value. A system may 
have many different parameter and task blocks; 
however, only one of each is ever linked to a 
channel at any given time.

CHANNEL CONTROL BLOCK (CB)

1

Figure 3-3. Command Communication Blocks
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After the CPU has filled in the CCW and has 
linked the CB to a parameter block and a task 
block, if appropriate, it issues a channel attention 
(CA). This is done by activating the IOP’s CA 
(channel attention) and SEL (channel select) pins. 
The state of SEL at the falling edge of CA directs 
the channel attention to channel 1 or channel 2. If 
the IOP is located in the CPU’s I/O space, it 
appears to the CPU as two consecutive I/O ports 
(one for each channel), and an OUT instruction 
to the port functions as a CA. If the IOP is 
memory-mapped, the channels appear as two 
consecutive memory locations, and any memory 
reference instruction (e.g., MOV) to these loca
tions causes a channel attention.

An IOP channel attention is functionally similar 
to a CPU interrupt. When the channel recognizes 
the CA, it stops what it is doing (it will typically 
be idle) and examines the command in the CCW. 
If it is to start a program, the channel loads the 
addresses of the parameter and task blocks into 
internal registers, sets its BUSY flag and starts 
executing the channel program. After it has issued 
the CA, the CPU is free to perform other process
ing; the channel can perform its function in 
parallel, subject to limitations imposed by bus 
configurations (discussed shortly).

When the channel has completed its program, it 
notifies the CPU by clearing its BUSY flag in the 
CB. Optionally, it may issue an interrupt request 
to the CPU.

The CPU/IOP communication structure is sum
marized in figure 3-4. Most communication takes 
place via “ message areas” shared in common 
memory. The only direct hardware communica
tions between the devices are channel attentions 
and interrupt requests.

Channels

Each of the two IOP channels operates 
independently, and each has its own register set, 
channel attention, interrupt request and DMA 
control signals. At a given point in time, a chan
nel may be idle, executing a program, performing 
a DMA transfer, or responding to a channel 
attention. Although only one channel actually 
runs at a time, the channels can be active concur
rently, alternating their operations (e.g., channel 
1 may execute instructions in the periods between 
successive DMA transfer cycles run by channel 2). 
A built-in priority system allows high-priority 
activities on one channel to preempt less critical 
operations on the other channel. The CPU is able 
to further adjust priorities to handle special cases. 
The CPU starts the channel and can halt it, sus
pend it, or cause it to resume a suspended opera
tion by placing different values in the CCW.

Channel Programs (Task Blocks)

Channel programs are written in ASM-89, the 
8089 assembly language. About 50 basic instruc
tions are available. These instructions operate on 
bit, byte, word and doubleword (pointer) variable 
types; a 20-bit physical address variable type (not 
used by the 8086/8088) can also be manipulated. 
Data may be taken from registers, immediate con
stants and memory. Four memory addressing 
modes allow flexible access to both memory 
variables and I/O devices located anywhere in 
either the CPU’s megabyte memory space or in 
the 8089’s 64k I/O space.

The IOP instruction set contains general purpose 
instructions similar to those found in CPUs as 
well as instructions specifically tailored for I/O

Figure 3-4. CPU /IOP Communication
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operations. Data transfer, simple arithmetic, 
logical and address manipulation operations are 
available. Unconditional jump and call instruc
tions also are provided so that channel programs 
can link to each other. An individual bit may be 
set or cleared with a single instruction. Condi
tional jumps can test a bit and jump if it is set (or 
cleared), or can test a value and jump if it is zero 
(or non-zero). Other instructions initiate DMA 
transfers, perform a locked test-and-set 
semaphore operation, and issue an interrupt 
request to the CPU.

DMA Transfers

The 8089 XFER (transfer) instruction prepares 
the channel for a DMA transfer. It executes one 
additional instruction, then suspends program 
execution and enters the DMA transfer mode. 
The transfer is governed by channel registers 
setup by the program prior to executing the 
XFER instruction.

Data is transferred from a source to a destination. 
The source and destination may be any locations 
in the CPU’s memory space or in the IOP’s I/O 
space; the IOP makes no distinction between 
memory components and I/O devices. Thus 
transfers may be made from I/O device to 
memory, memory to I/O device, memory to 
memory and I/O device to I/O device. The IOP 
automatically matches 8- and 16-bit components 
to each other.

Individual transfer cycles (i.e., the movement of a 
byte or a word) may be synchronized by a signal 
(DMA request) from the source or from the 
destination. In the synchronized mode, the chan
nel waits for the synchronizing signal before start
ing the next transfer cycle. The transfer also may 
be unsynchronized, in which case the channel 
begins the next transfer cycle immediately upon 
completion of the previous cycle.

A transfer cycle is performed in two steps: fetch
ing a byte or word from the source into the IOP 
and then storing it from the IOP into the destina
tion. The IOP automatically optimizes the 
transfer to make best use of the available data bus 
widths. For example, if data is being transferred 
from an 8-bit device to memory that resides on a 
16-bit bus (e.g., 8086 memory), the IOP will nor
mally run two one-byte fetch cycles and then store 
the full word in a single cycle.

Between the fetch and store cycles, the IOP can 
operate on the data. A byte may be translated to 
another code (e.g., EBCDIC to ASCII), or com
pared to a search value, or both, if desired.

A transfer can be terminated by several 
programmer-specified conditions. The channel 
can stop the transfer when a specified number (up 
to 64k) of bytes has been transferred. An external 
device may stop a transfer by signaling on the 
channel’s external terminate pin. The channel can 
stop the transfer when a byte (possibly translated) 
compares equal, or unequal, to a search value. 
Single-cycle termination, which stops uncondi
tionally after one byte or word has been stored, is 
also available.

When the transfer terminates, the channel 
automatically resumes program execution. The 
channel program can determine the cause of the 
termination in situations where multiple termina
tions are possible (e.g., terminating when 80 bytes 
are transferred or a carriage return character is 
encountered, whichever occurs first). As an exam
ple of post-transfer processing, the channel pro
gram could read a result register from the I/O 
device controller to determine if the transfer was 
performed successfully. If not (e.g., a CRC error 
was detected by the controller), the channel pro
gram could retry the operation without CPU 
intervention.

A channel program typically ends by posting the 
result of the operation to a field supplied in the 
parameter block, optionally interrupting the 
CPU, and then halting. When the channel halts, 
its BUSY flag in the channel control block is 
cleared to indicate its availability for another 
operation. As an alternative to being interrupted 
by the channel, the CPU can poll this flag to 
determine when the operation has been 
completed.

Bus Configurations

As shown in figure 3-5, the IOP can access 
memory or ports (I/O devices) located in a 
1-megabyte system space and memory or ports 
located in a 64-kilobyte I/O space. Although the 
IOP only has one physical data bus, it is useful to 
think of the IOP as accessing the system space via 
a system data bus and the I/O  space over an I/O 
data bus. The distinction between the “ two” 
buses is based on the type-of-cycle signals output
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or I/O devices. Components in the I/O space 
respond to the I/O read and I/O write signals. 
Thus I/O devices located in the system space are 
memory-mapped and memory in the I/O space is 
1/O-mapped. The two basic configuration op
tions differ in the degree to which the IOP shares 
these buses with the CPU. Both configurations re
quire an 8086/8088 CPU to be strapped in max
imum mode.

In the local configuration, shown in figure 3-6, 
the IOP (or IOPs if two are used) shares both 
buses with the CPU. The system bus and the I/O 
bus are the same width (8 bits if the CPU is an

o p a v w ,  c i u < u  L iiv , 1 w  1 i /  V J t u n c s p u i l U b  LO  LiJLC

CPU I/O space. Channel programs are located in 
the system space; I/O devices may be located in 
either space. The IOP requests use of the bus for 
channel program instruction fetches as well as for 
DMA and programmed transfers. In the local 
configuration, either the IOP or the CPU may use 
the buses, but not both simultaneously. The 
advantage of the local configuration is that 
intelligent DMA may be added to a system with 
no additional components beyond the IOP. The 
disadvantage is that parallel operation of the pro
cessors is limited to cases in which the CPU has 
instruction in its queue that can be executed 
without using the bus.

Figure 3-5. IOP Data Buses
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Figure 3-6. Local Configuration

In the remote configuration (figure 3-7), the IOP 
(or IOPs) shares a common system bus with the 
CPU. Access to this bus is controlled by 8289 Bus 
Arbiters. The IOP’s I/O bus, however, is 
physically separated from the CPU in the remote 
configuration. Two IOPs can share the local I/O 
bus. Any number of remote IOPs may be con
tained in a system, configured in remote clusters 
of one or two. The local I/O bus need not be the 
same physical width as the shared system bus, 
allowing an IOP, for example, to interface 8-bit 
peripherals to an 8086. In the remote configura
tion, the IOP can access local I/O  devices and 
memory without using the shared system bus, 
thereby reducing bus contention with the CPU. 
Contention can further be reduced by locating the 
IOP’s channel programs in the local I/O space. 
The IOP can then also fetch instructions without

accessing the system bus. Parameter, channel 
control and other CPU/IOP communication 
blocks must be located in system memory, 
however, so that both processors can access them. 
The remote configuration thus increases the 
degree to which an IOP and a CPU can operate in 
parallel and thereby increases a system’s 
throughput potential. The price paid for this is 
that additional hardware must be added to 
arbitrate use of the shared bus, and to separate 
the shared and local buses (see Chapter '4 for 
details).

It is also possible to configure an IOP remote to 
one CPU, and local to another CPU (see figure
3-8). The local CPU could be used to perform 
heavy computational routines for the IOP.
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Figure 3-7. Remote Configuration
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Figure 3-9 shows how a CPU and an IOP might 
work together to read a record (sector) from a 
floppy disk. This example is not illustrative of the 
IOP’s full capabilities, but it does review its basic 
operation and its interaction with a CPU.

The CPU must first obtain exclusive use of a 
channel. This can be done by performing a “ test 
and set lock” operation on the selected channel’s 
BUSY flag. Assuming the CPU wants to use 
channel 1, this could be accomplished in 
PL/M-86 by coding similar to the following:

DO WHILE LOCKSET (@CH1 ,BUSY,0FFH); 
END;

In ASM-86 a loop containing the XCHG instruc
tion prefixed by LOCK would accomplish the 
same thing, namely testing the BUSY flag until it 
is clear (OH), and immediately setting it to FFH 
(busy) to prevent another task or processor from 
obtaining use of the channel.

Having obtained the channel, the CPU fills in a 
parameter block (see figure 3-10). In this case, the 
CPU passes the following parameters to the chan
nel: the address of the floppy disk controller, the 
address of the buffer where the data is to be 
placed, and the drive, track and sector to be read. 
It also supplies space for the IOP to return the 
result of the operation. Note that this is quite a 
“ low-level” parameter block in that it implies 
that the CPU has detailed knowledge of the I/O 
system. For a “ real” system, a higher-level 
parameter block would isolate the CPU from I/O 
device characteristics. Such a block might contain 
more general parameters such as file name and 
record key.

After setting up the parameter block, the CPU 
writes a “ start channel program” command in 
channel l ’s CCW. Then the CPU places the 
address of the desired channel program in the 
parameter block and writes the parameter block 
address in the CB. Notice that in this simple 
example, the CPU “ knows” the address of the 
channel program for reading from the disk, and 
presumably also “ knows” the address of another 
program for writing, etc. A more general solution 
would be to place a function code (read, write,

M nem onics ©  Intel, 1979
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depending on which function is requested.

After the communication blocks have been setup, 
the CPU dispatches the channel by issuing a chan
nel attention, typically by an OUT instruction for 
an I/O-mapped 8089, or a MOV or other memory 
reference instruction for a memory-mapped 8089.

The channel begins executing the channel pro
gram (task block) whose address has been placed 
in the parameter block by the CPU. In this case 
the program initializes the 8271 Floppy Disk Con
troller by sending it a “ read data” command 
followed by a parameter indicating the track to be 
read. The program initializes the channel registers 
that define and control the DMA transfer.

Having prepared the 8271 and the channel itself, 
the channel program executes a XFER instruction 
and sends a final parameter (the sector to be read) 
to the 8271. (The 8271 enters DMA transfer mode 
immediately upon receiving the last of a series of 
parameters; sending the last parameter after the 
XFER instruction gives the channel time to setup 
for the transfer.) The DMA transfer begins when 
the 8271 issues a DMA request to the channel. 
The transfer continues until the 8271 issues an 
interrupt request, indicating that the data has 
been transferred or that an error has occurred. 
The 827l ’s interrupt request line is tied to the 
IOP’s EXT1 (external terminate on channel 1) pin 
so that the channel interprets an interrupt request 
as an external terminate condition. Upon ter
mination of the transfer, the channel resumes 
executing instructions and reads the 8271 result 
register to determine if the data was read suc
cessfully. If a soft (correctable) error is indicated, 
the IOP retries the transfer. If a hard (uncorrect- 
able) error is detected, or if the transfer has been 
successful, the IOP posts the content of the result 
register to the parameter block result field, thus 
passing the result back to the CPU. The channel 
then interrupts the CPU (to inform the CPU that 
the request has been processed) and halts.

When the CPU recognizes the interrupt, it 
inspects the result field in the parameter block to 
see if the content of the buffer is valid. If so, it 
uses the data; otherwise it typically executes an 
error routine.
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of the system. I/O specialists can work on the I/O 
system without detailed knowledge of the applica
tion; conversely, the operating system and 
application teams do not need to be expert in the 
operation of I/O devices. Standard high-level I/O 
systems can be used in multiple application 
systems. Because the application and I/O systems 
are almost independent, application system 
changes can be introduced without affecting the 
I/O system. New peripherals can similarly be 
incorporated into a system without impacting 
applications or operating system software. The 
lOP’s simple CPU interface also is designed to be 
compatible with future Intel CPUs.

Figure 3-10. Sample Parameter Block

Applications

Combining the raw speed and responsiveness of a 
traditional DMA controller, an I/O-oriented 
instruction set, and a flexible bus organization, 
the 8089 IOP is a very versatile I/O system. 
Applications with demanding I/O requirements, 
previously beyond the abilities of microcomputer 
systems, can be undertaken with the IOP. These 
kinds of I/O-intensive applications include:
• systems that employ high-bandwidth, low- 

latency devices such as hard disks and 
graphics terminals;

• systems with many devices requiring 
asynchronous service; and

• systems with high-overhead peripherals such 
as intelligent CRTs and graphics terminals.

In addition, virtually every application that per
forms a moderate amount of I/O can benefit 
from the design philosophy embodied in the IOP: 
system functions should be distributed among 
special-purpose processors. An IOP channel pro
gram is likely to be both faster and smaller than 
an equivalent program implemented with a CPU. 
Programming also is more straightforward with 
the IOP’s specialized instruction set.

Removing I/O from the CPU and assigning it to 
one or more IOPs simplifies and structures a 
system’s design. The main interface to the I/O 
system can be limited to the parameter blocks. 
Once these are defined, the I/O system can be 
designed and implemented in parallel with the rest

Keeping in mind the true general-purpose nature 
of the IOP, some of the situations where it can be 
used to advantage are:
• Bus matching - The IOP can transfer data 

between virtually any combination of 8- and 
16-bit memory and I/O components. For 
example, it can interface a 16-bit peripheral 
to an 8-bit CPU bus, such as the 8088 bus. 
The IOP also provides a straightforward 
means of performing DMA between an 8-bit 
peripheral and 8086 memory that is split 
into odd- and even-addressed banks. The 
8089 can access both 8- and 16-bit 
peripherals connected to a 16-bit bus.

• String processing - The 8089 can perform a 
memory move, translate, scan-for-match or 
scan-for-nonmatch operation much faster 
than the equivalent instructions in an 8086 or 
8088. Translate and scan operations can be 
setup so that the source and destination refer 
to the same addresses to permit the string to 
be operated on in place.

• Spooling - Data from low-speed devices such 
as terminals and paper tape readers can be 
read by the 8089 and placed in memory or on 
disk until the transmission is complete. The 
IOP can then transfer the data at high speed 
when it is needed by an application program. 
Conversely, output data ultimately destined 
for a low-speed device such as a printer, can 
be temporarily spooled to disk and then 
printed later. This permits batches of data to 
be gathered or distributed by low-priority 
programs that run in the background, essen
tially using up “ spare” CPU and IOP cycles. 
Application programs that use or produce 
the data can execute faster because they are 
not bound by the low-speed devices.
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Multitasking operating systems - A 
multitasking operating system can dispatch 
I/O tasks to channels with an absolute 
minimum of overhead. Because a remote 
channel can run in parallel with the CPU, the 
operating system’s capacity for servicing 
application tasks can increase dramatically, 
as can its ability to handle more, and faster, 
I/O  devices. If both channels of an IOP are 
active concurrently, the IOP automatically 
gives preference to the higher-priority activ
ity (e.g., DMA normally preempts channel 
program execution). The operating system 
can adjust the priority mechanism and also 
can halt or suspend a channel to take care of 
a critical asynchronous event.

Disk systems - The IOP can meet the speed 
and latency requirements of hard disks. It 
can be used to implement high-level, file- 
oriented systems that appear to application 
programs as simple commands: OPEN, 
READ, WRITE, etc. The IOP can search 
and update disk directories and maintain free 
space maps. “ Hierarchical memory” systems 
that automatically transfer data among 
memory, high-speed disks and low-speed 
disks, based on frequency of use, can be built 
around IOPs. Complex database searches 
(reading data directly or following pointer 
chains) can appear to programs as simple 
commands and can execute in parallel with 
application programs if an IOP is configured 
remotely.

Display terminals - The 8089 is well suited to 
handling the DMA requirements of CRT 
controllers. The IOP’s transfer bandwidth is 
high enough to support both alphanumeric 
and graphic displays. The 8089 can assume 
responsibility for refreshing the display from 
memory data; in the remote configuration, 
the refresh overhead can be removed from 
the system bus entirely. Linked-list display 
algorithms may be programmed to perform 
sophisticated modes of display.

Each time it performs a refresh operation, 
the IOP can scan a keyboard for input and 
translate the key’s row-and-column format 
into an ASCII or EBCDIC character. The 
8089 can buffer the characters, scanning the 
stream until an end-of-message character 
(e.g., carriage return) is detected, and then 
interrupt the CPU.

A single IOP can concurrently support an 
alphanumeric CRT and keyboard on one 
channel and a floppy disk on the other chan
nel. This configuration makes use of approx
imately 30 percent of the available bus band
width. Performance can be increased within 
the available bus bandwidth by adding an 
8086 or 8088 CPU to a remote IOP con
figuration. This configuration can provide 
scaling, rotation or other sophisticated 
display transformations.

3.2 Processor Architecture

The 8089 is internally divided into the functional 
units depicted schematically in figure 3-11. The 
units are connected by a 20-bit data path to obtain 
maximum internal transfer rates.

Common Control Unit (CCU)

All IOP operations (instructions, DMA transfer 
cycles, channel attention responses, etc.) are com
posed of sequences of more basic processes called 
internal cycles. A bus cycle takes one internal 
cycle; the execution of an instruction may require 
several internal cycles. There are 23 different 
types of internal cycles each of which takes from 
two to eight clocks to execute, not including 
possible wait states and bus arbitration times.

The common control unit (CCU) coordinates the 
activities of the IOP primarily by allocating inter
nal cycles to the various processor units; i.e., it 
determines which unit will execute the next inter
nal cycle. For example, when both channels are 
active, the CCU determines which channel has 
priority and lets that channel run; if the channels 
have equal priority, the CCU “ interleaves” their 
execution (this is discussed more fully later in this 
section). The CCU also initializes the processor.

Arithm etic/Logic Unit (ALU)

The ALU can perform unsigned binary arithmetic 
on 8- and 16-bit binary numbers. Arithmetic 
results may be up to 20 bits in length. Available 
arithmetic instructions include addition, incre
ment and decrement. Logical operations (“ and,” 
“ or” and “ not” ) may be performed on either 8- 
or 16-bit quantities.
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Figure 3-11. 8089 Block Diagram

Assem bly/Disassem bly Registers

All data entering the chip flows through these 
registers. When data is being transferred between 
different width buses, the 8089 uses the 
assembly/disassembly registers to effect the 
transfer in the fewest possible bus cycles. In a 
DMA transfer from an 8-bit peripheral to 16-bit 
memory, for example, the IOP runs two bus 
cycles, picking up eight bits in each cycle, 
assembles a 16-bit word, and then transfers the 
word to memory in a single bus cycle. (The first 
and last cycles of a transfer may be performed 
differently to accommodate odd-addressed 
words; the IOP automatically adjusts for this 
condition.)

Instruction Fetch Unit

This unit controls instruction fetching for the 
executing channel (one channel actually runs at a 
time). If the bus over which the instructions are 
being fetched is eight bits wide, then the instruc
tions are obtained one byte at a time, and each 
fetch requires one bus cycle. If the instructions 
are being fetched over a 16-bit bus, then the 
instruction fetch unit automatically employs a 1- 
byte queue to reduce the number of bus cycles. 
Each channel has its own queue, and the activity 
of one channel does not affect the other’s queue.

During sequential execution, instructions are 
fetched one word at a time from even addresses; 
each fetch requires one bus cycle. This process is 
shown graphically in figure 3-12. When the last 
byte of an instruction falls on an even address, the 
odd-addressed byte (the first byte of the following 
instruction) of the fetched word is saved in the 
queue. When the channel begins execution of the 
next instruction, it fetches the first byte from the 
queue rather than from memory. The queue, 
then, keeps the processor fetching words, rather 
than bytes, thereby reducing its use of the bus and 
increasing throughput.

The processor fetches bytes rather than words in 
two cases. If a program transfer instruction (e.g., 
JMP or CALL) directs the processor to an 
instruction located at an odd address, the first 
byte of the instruction is fetched by itself as 
shown in figure 3-13. This is because the program 
transfer invalidates the content of the queue by 
changing the serial flow of execution.

The second case arises when an LPDI instruction 
is located at an odd address. In this situation, the 
six-byte LPDI instruction is fetched: byte, word, 
byte, byte, byte, and the queue is not used. The 
first byte of the following instruction is fetched in 
one bus cycle as if it had been the target of a pro
gram transfer. Word fetching resumes with this 
instruction’s second byte.
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INSTRUCTION “X” INSTRUCTION “Y”

L EVEN ODD EVEN ODD EVEN ODD
1

\ _________________ f  \ _________________ f  \ _________________ f

1 2 | 4
I

i
| | QUEUE

3

FETCH IN ST R U C T IO N  BYTES

1 FIRST TW O  BYTES OF “ X ”

2 T H IR D  BYTE O F “ X ”  PLU S 
FIRST BYTE OF “ Y ” , W H IC H  IS 
S A VE D  IN Q U E U E

3 FIRST BYTE OF “ Y "  FROM 
Q U E U E — NO B U S  C YC LE

4 LAS T TW O  BYTES OF “ Y ”

Figure 3-12. Sequential Instruction Fetching (16-Bit Bus)

INSTRUCTION “X” INSTRUCTION “Y’ 
______A,_______ ______A_____"n r~

| ODD EVEN ODD EVEN ODD 1 EVEN ODD 1
1 2 3 4 1

L _ TRANSFER TARGET

I

± 1 QUEUE

FETCH IN ST R U C T IO N  BYTES

1 FIRST (O D D -A D D R E S S E D ) BYTE OF “ X ”  
(8-BIT BU S C YC LE )

2 S E C O N D  A N D  TH IR D  BYTES OF “ X ”

3 FIRST A N D  S E C O N D  BYTES OF “ Y ” .

4 TH IR D  BYTE OF “ Y ”
P LU S  FIRST BYTE OF NEXT IN S T R U C TIO N , 
W H IC H  IS S A V E D  IN Q U E U E

Figure 3-13. Instruction Fetching Following a Program Transfer to an Odd Address (16-Bit Bus)
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Bus Interface Unit (BIU)

The BIU runs all bus cycles, transferring instruc
tions and data between the IOP and external 
memory or peripherals. Every bus access is 
associated with a register tag bit that indicates to 
the BIU whether the system or I/O space is to be 
addressed. The BIU outputs the type of bus cycle 
(instruction fetch from I/O space,_data_store into 
system space, etc.) on status lines SO, SI, and S2. 
An 8288 Bus Controller decodes these lines and 
provides signals that selectively enable one bus or 
the other (see Chapter 4 for details).

The BIU further distinguishes between the 
physical and logical widths of the system and I/O 
buses. The physical widths of the buses are fixed 
and are communicated to the BIU during 
initialization. In the local configuration, both 
buses must be the same width, either 8 or 16 bits 
(matching the width of the host CPU bus). In the 
remote configuration, the IOP system bus must 
be the same physical width as the bus it shares 
with the CPU. The width of the IOP’s I/O bus, 
which is local to the 8089, may be selected 
independently. If any 16-bit peripherals are 
located in the I/O  space, then a 16-bit I/O bus 
must be used. If only 8-bit devices reside on the 
I/O bus, then either an 8- or a 16-bit I/O bus may 
be selected. A 16-bit I/O bus has the advantage of 
easy accommodation of future 16-bit devices and 
fewer instruction fetches if channel programs are 
placed in the I/O space.

For a given DMA transfer, a channel program 
specifies the logical width of the system and the 
I/O buses; each channel specifies logical bus 
widths independently. The logical width of an 
8-bit physical bus can only be eight bits. A 16-bit 
physical bus, however, can be used as either an 8- 
or 16-bit logical bus. This allows both 8- and 
16-bit devices to be accessed over a single 16-bit 
physical bus. Table 3-1 lists the permissible 
physical and logical bus widths for both locally 
and remotely configured IOPs. Logical bus width 
pertains to DMA transfers only. Instructions are 
fetched and operands are read and written in 
bytes or words depending on physical bus width.

In addition to performing transfers, the BIU is 
responsible for local bus arbitration. In the local 
configuration, the BIU uses the RQ/GT 
(request/grant) line to obtain the bus from the 
CPU and to return it after a transfer has been per
formed. In the remote configuration, the BIU

uses RQ/GT to coordinate use of the local I/O 
bus with another IOP or a local CPU, if present. 
System bus arbitration in the remote configura
tion is performed by an 8289 Bus Arbiter that 
operates invisibly to the IOP. The BIU 
automatically asserts the LOCK (bus lock) signal 
during execution of a TSL (test and set lock) 
instruction and, if specified by the channel pro
gram, can assert the LOCK signal for the dura
tion of a DMA transfer. Section 3.5 contains a 
complete discussion of bus arbitration.

Table 3-1. Physical/Logical Bus Combinations

Configuration System Bus 
Physical:Logical

I/O Bus
Physical.Logical

8:8 88
Lo ca l 16:8/16 16:8/16

8:8 8:8
R em o te

16:8/16 16:8/16
16:8/16 8:8
8:8 16:8/16

Channels

Although the 8089 is a single processor, under 
most circumstances it is useful to think of it as 
two independent channels. A channel may per
form DMA transfers and may execute channel 
programs; it also may be idle. This section 
describes the hardware features that support these 
operations.

I/O  Control

Each channel contains its own I/O control section 
that governs the operation of the channel during 
DMA transfers. If the transfer is synchronized, 
the channel waits for a signal on its DRQ (DMA 
request) line before performing the next fetch- 
store sequence in the transfer. If the transfer is to 
be terminated by an external signal, the channel 
monitors its EXT (external terminate) line and 
stops the transfer when this line goes active. 
Between the fetch and store cycles (when the data 
is in the IOP) the channel optionally counts,
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translates, and scans the data, and may terminate 
the transfer based on the results of these opera
tions. Each channel also has a SINTR (system 
interrupt) line that can be activated by software to 
issue an interrupt request to the CPU.

Registers

Figure 3-14 illustrates the channel register set, and 
table 3-2 summarizes the uses of each register. 
Each channel has an independent set of registers; 
they are not accessible to the other channel. Most 
of the registers play different roles during channel 
program execution than in DMA transfers. Chan
nel programs must be careful to save these 
registers in memory prior to a DMA transfer if 
their values are needed following the transfer.

T A G
B IT
n
M
H
H

19 15 7 0

G E N E R A L P U R P O S E  A GA

G E N E R A L P U R P O S E  B GB

G E N E R A L P U R P O S E  C G C

TA S K  P O IN T E R TP

P A R A M E TE R  B L O C K  P O IN T E R PP

IN D E X IX

B Y TE C O U N T BC

M A S K /C O M P A R E M C

C H A N N E L  C O N T R O L C C

Figure 3-14. Channel Register Set

General Purpose A (GA). A channel program 
may use GA for a general register or a base 
register. A general register can be an operand of 
most IOP instructions; a base register is used to 
address memory operands (see section 3.8). 
Before initiating a DMA transfer, the channel 
program points GA to either the source or 
destination address of the transfer.

General Purpose B (GB). GB is functionally 
interchangeable with GA. If GA points to the 
source of a DMA transfer, then GB points to the 
destination, and vice versa.

General Purpose C (GC). GC may be used as a 
general register or a base register during channel 
program execution. If data is to be translated dur
ing a DMA transfer, then the channel program 
loads GC with the address of the first byte of a 
translation table before initiating the transfer. GC 
is not altered by a transfer operation.

Task Pointer (TP). The CCU loads TP from the 
parameter block when it starts or resumes a chan
nel program. During program execution, the 
channel automatically updates TP to point to the

Table 3-2. Channel Register Summary

Register Size Program
Access

System 
or I/O 
Pointer

Use by Channel Programs Use in DMA Transfers

G A 20 U p d a te E ith e r G e n e ra l,  base S o u rc e /d e s t in a t io n  p o in te r

G B 20 U p d a te E ith e r G e n e ra l, b a se S o u rc e y d e s t in a t io n  p o in te r

GC 20 U p d a te E ith e r G e n e ra l,  b a se T ra n s la te  ta b le  p o in te r

TP 20 U p d a te E ith e r P ro c e d u re  re tu rn , 
in s t ru c t io n  p o in te r

A d ju s te d  to  r e f le c t  c a u s e  o f 
te rm in a t io n

PP 20 R e fe re n c e S y s te m B ase N /A

IX 16 U p d a te N /A G e n e ra l,  a u to - in c re m e n t N /A

BC 16 U p d a te N /A G e n e ra l B y te  c o u n te r

MC 16 U p d a te N /A G e n e ra l,  m a s k e d  c o m p a re M a s k e d  c o m p a re

CC 16 U p d a te N /A R e s tr ic te d  u se  re c o m m e n d e d D e fin e s  t ra n s fe r  o p t io n s
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next instruction to be executed; i.e., TP is used as 
an instruction pointer or program counter. Pro
gram transfer instructions (JMP, CALL, etc.) 
update TP to cause nonsequential execution. A 
procedure (subroutine) returns to the calling pro
gram by loading TP with an address previously 
saved by the CALL instruction. The task pointer 
is fully accessible to channel programs; it can be 
used as a general register or as a base register. 
Such use is not recommended, however, as it can 
make programs very difficult to understand.

Parameter Block Pointer (PP). The CCU
loads this register with the address of the 
parameter block before it starts a channel pro
gram. The register cannot be altered by a channel 
program, but is very useful as a base register for 
accessing data in the parameter block. PP is not 
used during DMA transfers.

Index (IX). IX may be used as a general register 
during channel program execution. It also may be 
used as an index register to address memory 
operands (the address of the operand is computed 
by adding the content of IX to the content of a 
base register). When specified as an index 
register, IX may be optionally auto-incremented 
as the last step in the instruction to provide a con
venient means of “ stepping” through arrays or 
strings. IX is not used in DMA transfers.

Byte Count (BC). BC may be used as a general 
register during channel program execution. If 
DMA is to be terminated when a specific number 
of bytes has been transferred, BC should be 
loaded with the desired byte count before 
initiating the transfer. During DMA, BC is 
decremented for each byte transferred, whether 
byte count termination has been selected or not. 
If BC reaches zero, the transfer is stopped only if 
byte count termination has been specified. If byte 
count termination has not been selected, BC 
“ wraps around” from OH to FFFFH and con
tinues to be decremented.

Mask/Compare (MC). A channel program may 
use MC for a general register. This register also 
may be used in either a channel program or in a 
DMA transfer to perform a masked compare of a 
byte value. To use MC in this way, the program 
loads a compare value in the low-order eight bits 
of the register and a mask value in the upper eight 
bits (see figure 3-15). A “ 1” in a mask bit selects 
the bit in the corresponding position in the com
pare value; a “0” in a mask bit masks the cor

responding bit in the compare value. In figure
3-15, a value compared with MC will be con
sidered equal if its low-order five bits contain the 
value 00100; the upper three bits may contain any 
value since they are masked out of the 
comparison.

15 8 7 0

I  0 0 0 1 1 1 1 1 ! 1 0 1 0  0 1 0  0

MASK COMPARE
VALUE _____ I I_ VALUE

X X X 0 0 1 0 0 |

MASKED
COMPARE

VALUE

(X = IGNORE VALUE OF CORRESPONDING BIT)

Figure 3-15. Mask/Compare Register

Channel Control (CC). The content of the 
channel control register governs a DMA transfer 
(see figure 3-16). A channel program loads this 
register with appropriate values before beginning 
the transfer operation; section 3.4 covers the 
encoding of each field in detail. Bit 8 (the chain 
bit) of CC pertains to channel program execution 
rather than to a DMA transfer. When this bit is 
zero, the channel program runs at normal prior
ity; when it is one, the priority of the program is 
raised to the same level as DMA (priorities are 
covered later in this section). Although a channel 
program may use CC as a general register, such 
use is not recommended because of the side 
effects on the chain bit and thus on the priority of 
the channel program. Channel programs should 
restrict their use of CC to loading control values 
in preparation for a DMA transfer, setting and 
clearing the chain bit, and storing the register.

Program Status Word (PSW)

Each channel maintains its own program status 
word (PSW) as shown in figure 3-17. Channel 
programs do not have access to the PSW. The 
PSW records the state of the the channel so that 
channel operation may be suspended and then 
resumed later. When the CPU issues a “ suspend” 
command, the channel saves the PSW, task 
pointer, and task pointer tag bit in the first four 
bytes of the channel’s parameter block as shown 
in figure 3-18. Upon receipt of a subsequent
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15

F TR SYN s L C TS TX TBC TMC

TERMINATE ON MASKED COMPARE

TERMINATE ON BYTE COUNT

TERMINATE ON EXTERNAL SIGNAL

TERMINATE AFTER SINGLE TRANSFER

CHAINED CHANNEL PROGRAM 
EXECUTION
LOCK BUS DURING TRANSFER 

SOURCE/DESTINATION 

SYNCHRONIZATION 

TRANSLATE
FUNCTION (PORT TO PORT,
PORT TO MEMORY, ETC.)

Figure 3-16. Channel Control Register

“ resume” command, the PSW, TP, and TP tag 
bit are restored from the parameter block save 
area and execution resumes.

Two conditions override the normal channel 
priority mechanism. If one channel is performing 
DMA (priority 1) and the channel receives a chan
nel attention (priority 2), the channel attention is 
serviced at the end of the current DMA transfer 
cycle. This override prevents a synchronized 
DMA transfers from “ shutting out” a channel 
attention. DMA terminations and chained chan
nel programs postpone recognition of a CA on 
the other channel; the CA is latched, however, 
and is serviced as soon as priorities permit.

The IOP’s LOCK (bus lock) signal also 
supersedes channel switching. A running channel 
will not relinquish control of the processor while 
LOCK is active, regardless of the priorities of the 
activities on the two channels. This is consistent 
with the purpose of the LOCK signal; to 
guarantee exclusive access to a shared resource in 
a multiprocessing system. Refer to sections 3.5 
and 3.7 for futher information on the LOCK 
signal and the TSL instruction.

7 0

Figure 3-17. Program Status Word

15  8 7  0

T P  15 -8 T P  7 -0

P S W T P  1 9 -1 6 T A G 0 0  0

I
-C R E M A IN D E R  O F  P A R A M E T E R  B L O C K

I

2

Tag Bits

Registers GA, GB, GC, and TP are called pointer 
registers because they may be used to access, or Figure 3-18. Channel State Save Area
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point to, addresses in either the system space or 
the I/O space. The pointer registers may address 
either memory or I/O devices (IOP instructions 
do not distinguish between memory and I/O 
devices since the latter are memory-mapped). The 
tag bit associated with each register (figure 3-14) 
determines whether the register points to an 
address in the system space (tag=0) or the I/O 
space (tag=l).

The CCU sets or clears TP’s tag bit depending on 
whether the command it receives from the CPU is 
“ start channel program in system space,” or 
“ start channel program in I/O space.” Channel 
programs alter the tag bits of GA, GB, GC, and 
TP by using different instructions for loading the 
registers. Briefly, a “ load pointer” instruction 
clears a tag bit, a “ move” instruction sets a tag 
bit, and a “ move pointer” instruction moves a 
memory value (either 0 or 1) to a tag bit. Section 
3.9 covers these instructions in detail.

If a register points to the system space, all 20 bits 
are placed on the address lines to allow the full 
megabyte to be directly addressed. If a register 
points to the I/O space, the upper four bits of the 
address lines are undefined; the lower 16 bits are 
sufficient to access any location in the 64k byte 
I/O space.

Concurrent Channel Operation

Both channels may be active concurrently, but 
only one can actually run at a time. At the end of

each internal cycle, the CCU lets one channel or 
the other execute the next internal cycle. No extra 
overhead is incurred by this channel switching. 
The basis for making the determination is a 
priority mechanism built into the IOP. This 
mechanism recognizes that some kinds of 
activities (e.g., DMA) are more important than 
others. Each activity that a channel can perform 
has a priority that reflects its relative importance 
(see table 3-3).

Two new activities are introduced in table 3-3. 
When a DMA transfer terminates, the channel 
executes a short internal channel program. This 
DMA termination program adjusts TP so that the 
user’s program resumes at the instruction 
specified when the transfer was setup (this is 
discussed in detail in section 3.4). Similarly, when 
a channel attention is recognized, the channel 
executes an internal program that examines the 
CCW and carries out its command. Both of these 
programs consist of standard 8089 instructions 
that are fetched from internal ROM. Intel 
Application Note AP-50, Debugging Strategies 
and Considerations for 8089 Systems, lists the 
instructions in these programs. Users monitoring 
the bus during debugging may see operands read 
or written by the termination or channel attention 
programs. The instructions themselves, however, 
will not appear on the bus as they are resident in 
the chip.

Notice also that, according to table 3-3, a channel 
program may run at priority 3 or at priority 1.

Table 3-3. Channel Priorities and Interleave Boundaries

Channel Activity Priority 
(1 = highest)

Interleave Boundary
By DMA By Instruction

D M A  tra n s fe r 1 B u s  c y c le ' B u s  c y c le '

D M A  te rm in a t io n  s e q u e n c e 1 In te rn a l c y c le N o n e

C h a n n e l p ro g ra m  (c h a in e d ) 1 In te rn a l c y c le 2 In s tru c t io n

C h a n n e l a t te n t io n  s e q u e n c e 2 In te rn a l c y c le N o n e

C h a n n e l p ro g ra m  (n o t c h a in e d ) 3 In te rn a l c y c le 2 In s tru c t io n

Id le 4 T w o  c lo c k s T w o  c lo c k s

'D M A  is  n o t in te r le a v e d  w h ile  L O C K  is  a c tiv e . 
2E x c e p t T S L  in s t ru c t io n ;  s e e  s e c t io n  3.7.
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Channel program priority is determined by the 
chain bit in the channel control register. If this bit 
is cleared, the program runs at normal priority 
(3); if it is set, the program is said to be chained, 
and it runs at the same priority as DMA. Thus, 
the chain bit provides a way to raise the priority 
of a critical channel program.

The CCU lets the channel with the highest priority 
run. If both channels are running activities with 
the same priority, the CCU examines the priority 
bits in the PSWs. If the priority bits are unequal, 
the channel with the higher value (1) runs. Thus, 
the priority bit serves as a “ tie breaker” when the 
channels are otherwise at the same priority level. 
The value of the priority bit in the PSW is loaded 
from a corresponding bit in the CCW; therefore, 
the CPU can control which channel will run when 
the channels are at the same priority level. The 
priority bit has no effect when the channel 
priorities are different. If both channels are at the 
same priority level and if both priority bits are 
equal, the channels run alternately without any 
additional overhead.

The CCU switches channels only at certain points 
called interleave boundaries; these vary according 
to the type of activity running in each channel and 
are shown in table 3-3. In table 3-3 and in the 
following discussion, the terms “ channel A” and 
“ channel B” are used to identify two active chan
nels that are bidding for control of an IOP. 
“ Channel A” is the channel that last ran and will 
run again unless the CCU switches to “ channel 
B.” Where the CCU switches from one channel 
(channel A) to another (channel B) depends on 
whether channel B is performing DMA or is 
executing instructions. For this determination, 
instructions in the internal ROM are considered 
the same as instructions executed in user-written 
channel programs (chained or not chained). Table
3-3 shows that a switch from channel A to chan
nel B will occur sooner if channel B is running 
DMA. DMA, then, interleaves instruction execu
tion at internal cycle boundaries. Since instruc
tions are often composed of several internal 
cycles, instruction execution on channel A can be 
suspended by DMA on channel B (when channel 
A next runs, the instruction is resumed from the 
point of suspension). DMA on channel A is 
interleaved by DMA on channel B after any bus 
cycle (when channel A runs again, the DMA 
transfer sequence is resumed from the point of 
suspension). If both channels are executing pro
grams, the interleave boundaries are extended to

instruction boundaries: a program on channel B 
will not run until channel A reaches the end of an 
instruction. Note that a DMA termination 
sequence or channel attention sequence on chan
nel A cannot be interleaved by instructions on 
channel B, regardless of channel B’s priority. 
These internal programs are short, however, and 
will not delay channel B for long (see Chapter 4 
for timing information).

Table 3-4 summarizes the channel switching 
mechanism with several examples. It is important 
to remember that channel switching occurs only 
when both channels are ready to run. In typical 
applications, one of the channels will be idle 
much of the time, either because it is waiting to be 
dispatched by the CPU or because it is waiting for 
a DMA request in a synchronized transfer. (Dur
ing a synchronized transfer, the channel is idle 
between DMA requests; for many peripherals, the 
channel will spend much more time idling than 
executing DMA cycles.) The real potential for one 
channel “ shutting out” a priority 1 activity on the 
other channel is largely limited to unsynchronized 
DMA transfers and locked transfers (synchro
nized or unsynchronized). Long, chained channel 
programs and high-speed synchronized DMA will 
slow a priority 1 activity on the other channel, but 
will not shut it out because the channels will alter
nate (assuming their priority bits are equal). A 
chained channel program will shut out any lower 
priority activity on the other channel, including a 
channel attention. (The channel attention is 
latched by the IOP, however, so it will execute 
when the other channel drops to a lower priority.) 
Chained channel programs should therefore be 
used with discretion and should be made as short 
as possible.

3.3 Memory

The 8089 can access memory components located 
in two different address spaces. The system space, 
which coincides with the CPU’s memory space, 
may contain up to 1,048,576 bytes. The I/O 
space, which may either coincide with the CPU’s 
I/O space or be local (private) to the IOP, may 
contain up to 65,536 bytes. Memory components 
in the system space should respond to the memory 
read and write commands issued by the 8288 Bus 
Controller. Memory components in the I/O space 
must respond to 8288 I/O read and write com
mands. Memory in either space may be
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Table 3-4. Channel Switching Examples

Channel A (Ran Last) Channel B
Result

Activity Chain
Bit

Priority
Bit LOCK Activity Chain

Bit
Priority

Bit

DMA transfer X X Inactive Idle X X A runs.
DMA transfer X X Inactive Channel attention X X A runs until end of current 

transfer cycle; then B runs.
Channel program X 0 Inactive Channel program X 1 B runs.
Channel program X 0 Inactive Channel program X 0 A and B alternate by 

instruction.
Channel program 1 X Inactive Channel program 0 X A runs.
DMA transfer X 1 Inactive Channel program 1 1 B runs one bus or internal 

cycle following each bus cycle 
run by A.*

Channel attention X X Inactive Channel program 1 X A runs if it has started the 
sequence; otherwise B runs.

DMA transfer X X Active Channel attention X X A runs until DMA terminates.
Channel program 

(TSL instruction)
0 X Active DMA transfer X X A completes TSL instruction, 

LOCK goes inactive and B 
runs.

•|f transfer is synchronized. B also runs when A goes idle between transfer cycles.

implemented like 8086 memory (16-bit words split 
into even- and odd-addressed 8-bit banks) or 8088 
memory (a single 8-bit bank). See Chapter 4 for 
physical implementation considerations.

LOW MEMORY HIGH MEMORY

00000H 00001H 00002H ,- ,-FFFFEH FFFFFH
SYSTEM

SPACE I................ m i n i m i l l / - r i l l  1 1 1 1 1 1 1 1 1 11
7 07 07 07 0

1 MEGABYTE

Storage Organization

From a software point of view, both 8089 
memory spaces are organized as unsegmented 
arrays of individually addressable 8-bit bytes 
(figure 3-19). Instructions and data may be stored 
at any address without regard for alignment 
(figure 3-20).

The IOP views the system space differently from 
the 8086 or 8088 with which it typically shares the 
space. The 8086 and 8088 differentiate between a 
location’s logical (segment and offset) address 
and its physical (20-bit) address.

The 8089 does not “ see” the logically segmented 
structure of the memory space; it uses its 20-bit 
pointer registers to access all locations in the 
system space by their physical addresses. Memory 
in the 8089 I/O space is treated similarly except 
that only 16 bits are needed to address any 
location.

LOW MEMORY

OOOOH 0001H

l l l l l L
S  9

HIGH MEMORY 

FFFEH FFFFH

11111 u  $111111 Him

Figure 3-19. Storage Organization

1AH 18H 1CH 1DH 1EH 1FH 20H 21H 22H 23H

Figure 3-20. Instruction and Variable Storage
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Following Intel convention, word data is stored 
with the most-significant byte in the higher 
address (see figure 3-21). The 8089 recognizes the 
doubleword pointer variable used by the 8086 and 
8088 (figure 3-22). The lower-addressed word of 
the pointer contains an offset value, and the 
higher-addressed word contains a segment base 
address. Each word is stored conventionally, with 
the higher-addressed byte containing the most- 
significant eight bits of the word. The 8089 can 
convert a doubleword pointer into a 20-bit 
physical address when it is loaded into a pointer 
register to address system memory. A special 3- 
byte variable, called a physical address pointer 
(figure 3-23), is used to save and restore pointer 
registers and their associated tag bits.

Dedicated and Reserved Memory 
Locations

The extreme low and high addresses of the system 
space are dedicated to specific processor func
tions or are reserved for use by other Intel hard-

724H 725H

0 2 5 HEX

0000 ! 0010 0101 0101 BINARY

VALUE OF WORD STORED AT 724H: 5502H

ware and software products; the locations are OH 
through 7FH (128 bytes) and FFFF0H through 
FFFFFH (16 bytes), as shown in figure 3-24. The 
low addresses are used for part of the 8086/8088 
interrupt pointer table. Locations FFFF0H- 
FFFFBH are used for 8086, 8088 and 8089 startup 
sequences; the remaining locations are reserved 
by Intel.

If an IOP is configured locally, its I/O space coin
cides with the CPU’s I/O space, and it must 
respect the reserved addresses F8H-FFH. The 
entire I/O space of a remotely-configured IOP 
may be used without restriction.

Using any dedicated or reserved addresses may 
inhibit the compatibility of a system with current 
or future Intel hardware and software products.

Dynamic Relocation

The 8089 is very well-suited to environments in 
which programs do not occupy static memory 
locations, but are moved about during execution. 
Dynamic code relocation allows systems to make 
efficient use of limited memory resources by 
transferring programs between external storage 
and memory, and by combining scattered free 
areas of memory into larger, more useful, con
tinuous spaces.

IOP channel programs are inherently position- 
independent, the only restriction being that chan
nel programs that transfer to each other or 
share data must be moved as a unit. Since the lOP

Figure 3-21. Storage of Word Variables

4H________________ 5H 6H 7H

6 5 0 0 4 C 3 B
0110 0101 0000 0000 0100 1100 0011 1011

VALUE OF DOUBLEWORD POINTER STORED AT 4H: 
SEGMENT BASE ADDRESS: 3B4CH 
OFFSET: 65H

Figure 3-22. Storage of Doubleword Pointer Variables
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POINTER TAG 2 6 5 F 3 HEX

REGISTER 0010 0110 0101 1111 0011 BINARY

19 0

MEMORY

I 100H I 101H I 102H I

HEX

BINARY

VALUE OF PHYSICAL ADDRESS POINTER AT 100H: 
ADDRESS: 265F3H 
TAG: 0

F 3 6 5 2 1

1111 0011 0110 0101 0020 0000

Figure 3-23. Storage of Physical Address 
Pointer Variables

RESERVED

FFFFFH

FFFFCH
FFFFBH

DEDICATED
FFFF0H
FFFEFH

h

RESERVED

80H
7FH

14H
13H

FFFFH

SYSTEM SPACE I/O  SPACE
(LOCAL CONFIGURATION ONLY)

Figure 3-24. Reserved Memory Locations

receives the address of a channel program and its 
associated parameter block when it is dispatched 
by the CPU, the location of these blocks is 
immaterial and can change from one dispatch to 
the next. (Note, however, that the channel control 
block cannot be moved without reinitializing the 
IOP.) Typically, then, the CPU would direct the 
movement of IOP channel programs and 
parameter blocks. These blocks, of course, can
not be moved while they are in use.

While the CPU may be in charge of relocation, 
the IOP is an excellent vehicle for performing the 
actual transfer of channel programs, parameter 
blocks, and CPU programs as well. A very simple 
channel program can transfer code between 
memory locations by DMA much faster than the 
equivalent CPU instructions, and transfers 
between disk and memory also can be performed 
more efficiently.

Memory Access

Memory accesses are always performed using a 
pointer register and its associated tag bit. The tag 
bit indicates whether the access is to the system 
space (tag=0) or the I/O  space (tag=l). The 
pointer register contains the base address of the 
location; i.e., the pointer register is used as a base 
register. Only the low-order 16 bits of the pointer

register are used for I/O space locations; all 20 
bits are used for system space addresses. Different 
types of memory accesses use base registers as 
shown in table 3-5. The 8089 addressing modes 
allow the base address of a memory operand to be 
modified by other registers and constant values to 
yield the effective address of the operand (see sec
tion 3.8).

Notice that table 3-5 indicates that memory 
operands may be addressed using register PP in 
addition to GA, GB, and GC. PP is maintained 
by the IOP and can neither be read nor written by 
a channel program; it can be used, however, to 
access data in the parameter block. PP has no 
associated tag bit; a reference to it implies the 
system space, where a parameter block always 
resides.

Table 3-5. Base Register Use in Memory Access

Memory Access Base Register

In s tru c t io n  F e tch  
D M A  S o u rc e  
D M A  D e s tin a tio n  
D M A  T ra n s la te  T a b le  
M e m o ry  O p e ra n d

TP
G A o r G B '
G A  o r  G B '
GC
G A o r G B o r G C o r P P *

'A s  s p e c if ie d  in  C C  re g is te r  
*As s p e c if ie d  in in s t ru c t io n
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The IOP is told the physical widths of the system 
and I/O buses when it is initialized. If a bus is 
eight bits wide, the IOP accesses memory on this 
bus like an 8088. Instruction fetches and operand 
reads and writes are performed one byte at a time; 
one bus cycle is run for each memory access. 
Word operands are accessed in two cycles, com
pletely transparent to software. Instruction 
fetches are made as needed, and the instruction 
stream is not queued.

The IOP accesses memory on a 16-bit bus like an 
8086. As mentioned in the previous section, the 
instruction stream is generally fetched in words 
from even addresses with the second byte held in 
the one-byte queue. If a word operand is aligned 
(i.e., located at an even address), the 8089 will 
access it in a single 16-bit bus cycle. If a word 
operand is unaligned (i.e., located at an odd 
address), the word will be accessed in two con
secutive 8-bit bus cycles. Byte operands are 
always accessed in 8-bit bus cycles.

For memory on 16-bit buses, performance is 
improved and bus contention is reduced if word 
operands are stored at even addresses. The 
instruction queue tends to reduce the effect of 
alignment on instructions fetched on a 16-bit bus, 
In tight loops, performance can be increased by 
word-aligning transfer targets.

Notice that the correct operation of a program is 
completely independent of memory bus width. A 
channel program written for one system that uses 
an 8-bit memory bus will execute without 
modification if the bus is increased to 16 bits. It is 
good practice, though, to write all programs as 
though they are to run on 16-bit systems; i.e., to 
align word operands. Such programs will then 
make optimal use of the bus in whatever system 
they are run.

3.4 Input/O utput

The 8089 combines the programmed I/O 
capabilities of a CPU with the high-speed block 
transfer facility of a DMA controller. It also pro
vides additional features (e.g., compare and 
translate during DMA) and is more flexible than a 
typical CPU or DMA controller. The 8089 
transfers data from a source address to a destina
tion address. Whether the component mapped

into a given address is actually memory or I/O is 
immaterial. All addresses in both the system and 
I/O spaces are equally accessible, and transfers 
may be made between the two spaces as well as 
within either address space.

Programmed I/O

A channel program performs I/O similar to the 
way a CPU communicates with memory-mapped 
I/O devices. Memory reference instructions per
form the transfer rather than “ dedicated” I/O 
instructions, such as the 8086/8088 IN and OUT 
instructions. Programmed I/O is typically used to 
prepare a device controller for a DMA transfer 
and to obtain status/result information from the 
controller following termination of the transfer. 
It may be used, however, with any device whose 
transfer rate does not require DMA.

I/O  Instructions

Since the 8089 does not distinguish between 
memory components and I/O devices, any 
instruction that accepts a byte or word memory 
operand can be used to access an I/O device. 
Most memory reference instructions take a source 
operand or a destination operand, or both. The 
instructions generally obtain data from the source 
operand, operate on the data, and then place the 
result of the operation in the destination operand. 
Therefore, when a source operand refers to an 
address where an I/O device is located, data is 
input from the device. Similarly, when a destina
tion operand refers to an I/O device address, data 
is output to the device.

Most I/O device controllers have one or more 
internal registers that accept commands and 
supply status or result information. Working with 
these registers typically involves:

• reading or writing the entire register;
• setting or clearing some bits in a register while 

leaving others alone; or
• testing a single bit in a register.

Table 3-6 shows some of the 8089 instructions 
that are useful for performing these kinds of 
operations. Section 3.7 covers the 8089 instruc
tion set in detail.
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Table 3-6. Memory Reference Instructions 
Used for I/O

Instruction Effect on I/O Device

M O V /M O V B R ead  o r  w r ite  w o rd  / b y te

A N D /A N D B C le a r  m u lt ip le  b its  in  w o rd /b y te

O R /O R B S e t m u lt ip le  b its  in  w o r d /b y te

C LR C le a r s in g le  b it  ( in  b y te )

SET S e t s in g le  b it  ( in  b y te )

JB T R ead (b y te )  and  ju m p  if 
s in g le  b it  =1

J N B T R ead (b y te )  a n d  ju m p  if 
s in g le  b it  =0

Device Addressing

Since memory reference instructions are used to 
perform programmed I/O, device addressing, is 
very similar to memory addressing. An operand 
that refers to an I/O device always specifies one 
of the pointer registers GA, GB, or GC (PP is 
legal, but an I/O device would not normally be 
mapped into a parameter block). The base 
address of the device is taken from the specified 
pointer register. Any of the memory addressing 
modes (see section 3.8) may be used to modify the 
base address to produce the effective (actual) 
address of the device. The pointer register’s tag 
bit locates the device in the system space (tag=0) 
or in the I/O space (tag=l). If the device is in 
the I/O space, only the low-order 16 bits of the 
pointer register are used for the base address; all 
20 bits are used for a system space address. The 
IOP’s system and I/O spaces are fully compatible

with the corresponding address spaces of the 
other 8086 family processors.

I/O  Bus Transfers

Table 3-7 shows the number of bus cycles the IOP 
runs for all combinations of bus size, transfer size 
(byte or word), and transfer address (even or 
odd). Bus width refers to the physical bus 
implementation; the instruction mnemonic deter
mines whether a byte or a word is transferred.

Both 8- and 16-bit devices may reside on a 16-bit 
bus. All 16-bit devices should be located at even 
addresses so that transfers will be performed in 
one bus cycle. The 8-bit devices on a 16-bit bus 
may be located at odd or even addresses. The 
internal registers in an 8-bit device on a 16-bit bus 
must be assigned all-odd or all-even addresses 
that are two bytes apart (e.g., 1H, 3H, 5H, or 2H, 
4H, 6H). All 8-bit peripherals should be refer
enced with byte instructions, and 16-bit devices 
should be referenced with word instructions. 
Odd-addressed 8-bit devices must be able to 
transfer data on the upper eight bits of the 16-bit 
physical data bus.

Only 8-bit devices should be connected to an 8-bit 
bus, and these should only be referenced with 
byte instructions. An 8-bit device on an 8-bit bus 
may be located at an odd or even address, and its 
internal registers may be assigned consecutive 
addresses (e.g., 1H, 2H, 3H). Assigning all-odd 
or all-even addresses, however, will simplify con
version to a 16-bit bus at a later date.

Table 3-7. Programmed I/O Bus Transfers

B u s  W id th : 8 16

In s tru c t io n : b y te w o rd * b y te w o rd

D e v ice  A d d re s s : even o d d even o d d even o d d e ve n o d d *

B u s  C y c le s : 1 1 2 2 1 1 1 2

* n o t n o rm a lly  u se d
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DMA Transfers

In addition to byte- and word-oriented pro
grammed I/O, the 8089 can transfer blocks of 
data by direct memory access. A block may be 
transferred between any two addresses; memory- 
to-memory transfers are performed as easily as 
memory-to-port, port-to-memory or port-to-port 
exchanges. There is no limitation on the size of 
the block that can be transferred except that the 
block cannot exceed 64k bytes if byte count ter
mination is used. A channel program typically 
prepares for a DMA transfer by writing com
mands to a device controller and initializing chan
nel registers that are used during the transfer. No 
instructions are executed during the transfer, 
however, and very high throughput speeds can be 
achieved.

Preparing the Device Controller

Most controllers that can peform DMA transfers 
are quite flexible in that they can perform several 
different types of operations. For example, an 
8271 Floppy Disk Controller can read a sector, 
write a sector, seek to track 0, etc. The controller 
typically has one or more internal registers that 
are “ programmed” to perform a given operation. 
Often, certain registers will contain status 
information that can be read to determine if the 
controller is busy, if it has detected an error, etc.

An 8089 channel program views these device 
registers as a series of memory locations. The 
channel program typically places the device’s base 
address in a pointer register and uses programmed 
I/O to communicate with the registers.

Some controllers start a DMA transfer 
immediately upon receiving the last of a series of

parameters. If this type of controller is being 
used, the channel program instruction that sends 
the last parameter should follow the 8089 XFER 
instruction. (The XFER instruction places the 
channel in DMA mode after the next instruction; 
this is explained in more detail later in this 
section.)

Preparing the Channel

For a channel to perform a DMA transfer, it must 
be provided with information that describes the 
operation. The channel program provides this 
information by loading values into channel 
registers and, in one case, by executing a special 
instruction (see table 3-8).

Source and Destination Pointers. One
register is loaded to point to the transfer source; 
the other points to the destination. A bit in the 
channel control register is set to indicate which 
register is the source pointer. If a register is 
pointed at a memory location, it should contain 
the address where the transfer is to begin — i.e., 
the lowest address in the buffer. The channel 
automatically increments a memory pointer as the 
transfer proceeds. If the tag bit selects the I/O 
space, the upper four bits of the register are 
ignored; if the tag selects the system space, all 20 
bits are used. The source and destination may be 
located in the same or in different address spaces.

Translate Table Pointer. If the data is to be 
translated as it is transferred, GC should be 
pointed at the first (lowest-addressed) byte in a 
256-byte translation table. The table may be 
located in either the system or I/O space, and GC

Table 3-8. DMA Transfer Control Information

information Register or Instruction Required or Optional
S o u rc e  P o in te r G A  o r  G B R e q u ire d
D e s tin a tio n  P o in te r G A  o r  G B R e q u ire d
T ra n s la te  T a b le  P o in te r GC O p tio n a l
B y te  C o u n t BC O p tio n a l
M a s k /C o m p a re  V a lu e s M C O p tio n a l
L o g ic a l B u s  W id th W ID O p tio n a l*
C h a n n e l C o n tro l CC R e q u ire d

* M u s t b e  e x e c u te d  o n c e  fo l lo w in g  p ro c e s s o r  R ES ET.
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should be loaded by an instruction that sets or 
clears its tag bit as appropriate. The translate 
operation is only defined for byte data; source 
and destination logical bus widths must both be 
set to eight bits.

The channel translates a byte by treating it as an 
unsigned 8-bit binary number. This number is 
added to the content of register GC to form a 
memory address; GC is not altered by the opera
tion. If GC points to the I/O space, its upper four 
bits are ignored in the operation. The byte at this 
address (which is in the translate table) is then 
fetched from memory, replacing the source byte. 
Figure 3-25 illustrates the translate process.

Byte Count. If the transfer is to be terminated 
on byte count— i.e., after a specific number of 
bytes have been transferred—the desired count 
should be loaded into register BC as an unsigned 
16-bit number. The channel decrements BC as the 
transfer proceeds, whether or not byte count ter
mination has been specified. There are cases 
(discussed later in this section) where the dif

ference between BC’s value before and after the 
transfer does not accurately reflect the number of 
bytes transferred to the destination.

Mask/Compare Values. If the transfer is to be 
terminated when a byte (possibly translated) is 
found equal or unequal to a search value, MC 
should be loaded as described in section 3.2. MC 
is not altered during the transfer. Normally, the 
logical destination bus width is set to eight bits 
when transferred data is being compared. If the 
logical destination width is 16 bits, only the low- 
order byte of each word is compared.

Logical Bus Width. The 8089 WID (logical bus 
width) instruction is used to set the logical width 
of the source and destination buses for a DMA 
transfer. Any bus whose physical width is eight 
bits can only have a logical width of eight bits. A 
16-bit physical bus, however, can have a logical 
width of 8 or 16 bits; i.e., it can be used as either 
an 8-bit or 16-bit bus in any given transfer. 
Logical bus widths are set independently for each 
channel.

TRANSLATE TABLE 
IN SYSTEM OR I/O  SPACE

Figure 3-25. Translate Operation
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For a transfer to or from an I/O device on a 
16-bit physical bus, the logical bus width should 
be set equal to the peripheral’s width; i.e., 8 or 16 
bits. Transfers to or from 16-bit memory will run 
at maximum speed if the logical bus width is set to 
16 since the channel will fetch/store words. In the 
following cases, however, the logical width 
should be set to 8:
• the data is being translated,
• the data is being compared under mask, and 

the 16-bit memory is the destination of the 
transfer.

The WID instruction sets both logical widths and 
remains in effect until another WID instruction is 
executed. Following processor reset, the settings 
of the logical bus widths are unpredictable. 
Therefore, the WID instruction must be executed 
before the first DMA transfer.

Channel Control. The 16 bits of the CC register 
are divided into 10 fields that specify how the 
DMA transfer is to be executed (see figure 3-26). 
A channel program typically sets these fields by 
loading a word into the register.

The function field (bits 15-14) identifies the 
source and destination as memory or ports (I/O 
devices). During the transfer, the channel 
increments source/destination pointer registers 
that refer to memory so that the data will be 
placed in successive locations. Pointers that refer 
to I/O devices remain constant throughout the 
transfer.

The translate field (bit 13) controls data transla
tion. If it is set, each incoming byte is translated 
using the table pointed to by register GC. 
Translate is defined only for byte transfers; the 
destination bus must have a logical width of eight.

The synchronization field (bits 12-11) specifies 
how the transfer is to be synchronized. 
Unsynchronized (“ free running” ) transfers are 
typically used in memory-to-memory moves. The 
channel begins the next transfer cycle immediately 
upon completion of the current cycle (assuming it 
has the bus). Slow memories, which cannot run as 
fast as the channel, can extend bus cycles by 
signaling “ not ready” to the 8284 Clock 
Generator, which will insert wait states into the 
bus cycle. A similar technique may be used with 
peripherals whose speed exceeds the channel’s

ability to execute a synchronized transfer: in 
effect, the peripheral synchronizes the transfer 
through the use of wait states. Chapter 4 discusses 
synchronization in more detail.

Source synchronization is typically selected when 
the source is an I/O device and the destination is 
memory. The I/O device starts the next transfer 
cycle by activating the channel’s DRQ (DMA 
request) line. The channel then runs one transfer 
cycle and waits for the next DRQ.

Destination synchronization is most often used 
when the source is memory and the destination is 
an I/O device. Again, the I/O device controls the 
transfer frequency by signaling on DRQ when it is 
ready to receive the next byte or word.

The source field (bit 10) identifies register GA or 
GB as the source pointer (and the other as the 
destination pointer).

The lock field (bit 9) may be used to instruct the 
channel to assert the processor’s bus lock (LOCK) 
signal during the transfer. In a source- 
synchronized transfer, LOCK is active from the 
time the first DMA request is received until the 
channel enters the termination sequence. In a 
destination-synchronized transfer LOCK is active 
from the first fetch (which precedes the first 
DMA request) until the channel enters the ter
mination sequence.

The chain field (bit 8) is not used during the 
transfer. As discussed previously, setting this 
bit raises channel program execution to priority 
level 1.

The terminate on single transfer field (bit 7) can 
be used to cause the channel to run one complete 
transfer cycle only—i.e., to transfer one byte or 
word and immediately resume channel program 
execution. When single transfer is specified, any 
other termination conditions are ignored. Single 
transfer termination can be used with low-speed 
devices, such as keyboards and communication 
lines, to translate and/or compare one byte as it 
transferred.

The three low-order fields in register CC instruct 
the channel when to terminate the transfer, 
assuming that single transfer has not been 
selected. Three termination conditions may be 
specified singly or in combination.
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15 0

r r TR SYN S L C TS TX TBC TMC
L - i 1 1 |

_F FUNCTION
00 PORT TO PORT
01 MEMORY TO PORT
10 PORTTO MEMORY
11 MEMORYTO MEMORY
TR TRANSLATE
0 NO TRANSLATE
1 TRANSLATE
SYN SYNCHRONIZATION
00 NO SYNCHRONIZATION
01 SYNCHRONIZE ON SOURCE
10 SYNCHRONIZE ON DESTINATION
11 RESERVED BY INTEL
S SOURCE
0 GA POINTS TO SOURCE
1 GB POINTS TO SOURCE
L LOCK
0 NO LOCK
1 ACTUATE LOCK DURING TRANSFER
C CHAIN
0 NO CHAINING
1 CHAINED: RAISETB TO PRIORITY 1
TS TERMINATE ON SINGLE TRANSFER
0 NO SINGLE TRANSFER TERMINATION
1 TERMINATE AFTER SINGLE TRANSFER
TX TERMINATE ON EXTERNAL SIGNAL
00 NO EXTERNAL TERMINATION
01 TERMINATE ON EXT ACTIVE; OFFSET = 0
10 TERMINATE ON EXT ACTIVE; OFFSET = 4
11 TERMINATE ON EXT ACTIVE; OFFSET = 8
TBC TERMINATE ON BYTE COUNT
00 NO BYTE COUNT TERMINATION
01 TERMINATE ON BC = 0; OFFSET = 0
10 TERMINATE ON BC = 0; OFFSET = 4
11 TERMINATE ON BC = 0; OFFSET = 8
TMC TERMINATE ON MASKED COMPARE
000 NO MASK/COMPARE TERMINATION
001 TERMINATE ON MATCH; OFFSET = 0
010 TERMINATE ON MATCH; OFFSET = 4
011 TERMINATE ON MATCH; OFFSET = 8
100 (NO EFFECT)
101 TERMINATE ON NON-MATCH; OFFSET = 0
110 TERMINATE ON NON-MATCH; OFFSET = 4
111 TERMINATE ON NON-MATCH; OFFSET = 8

Figure 3-26. Channel Control Register Fields
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External termination allows an I/O device 
(typically, the one that is synchronizing the 
transfer) to stop the transfer by activating the 
channel’s EXT (external terminate) line. If byte 
count termination is selected, the channel will 
stop when BC=0. If masked compare termination 
is specified, the channel will stop the transfer 
when a byte is found that is equal or unequal (two 
options are available) to the low-order byte in MC 
as masked by MC’s high-order byte. The byte that 
stops the termination is transferred. If translate 
has been specified, the translated byte is 
compared.

When a DMA transfer ends, the channel adds a 
value called the termination offset to the task 
pointer and resumes channel program execution 
at that point in the program. The termination off
set may assume a value of 0, 4, or 8. Single 
transfer termination always results in a termina
tion offset of 0. Figure 3-27 shows how the ter
mination offsets can be used as indices into a 
three-element “ jump table” that identifies the 
condition that caused the termination.

As an example of using the jump table, consider a 
case in which a transfer is to terminate when 80 
bytes have been transferred or a linefeed 
character is detected, whichever occurs first. The 
program would load 80H into BC and 000AH 
into MC (ASCII line feed, no bits masked). The 
channel program could assign byte count termina
tion an offset of 0 and masked compare termina
tion an offset of 4. If the transfer is terminated by 
byte count (no linefeed is found), the instruction 
at location TP + 0 will be executed first after the 
termination. If the linefeed is found before the 
byte count expires, the instruction at T P + 4 will 
be executed first. The LJMP (long unconditional 
jump, see section 3.7) instruction is four bytes 
long and can be placed at TP + 0 and T P + 4 to 
cause the channel program to jump to a different 
routine, depending on how the transfer 
terminates.

If the transfer can only terminate in one way and 
that condition is assigned an offset of 0, there is 
no need for the jump table. Code which is to be 
unconditionally executed when the transfer ends 
can immediately follow the instruction after 
XFER. This is also the case when single transfer is 
specified (execution always resumes at TP + 0).

It is possible, however, for two, or even three, ter
mination conditions to arise at the same time. In

_ 4 _ C O D E :r"

i,El
I

£  
I

OFFSET ,8_CODE:

^ _ r

j

Figure 3-27. Termination Jump Table

the preceding example, this would occur if the 
80th character were a linefeed. When multiple ter
minations occur simultaneously, the channel 
indicates that termination resulted from the con
dition with the largest offset value. In the 
preceding example, if byte count and search ter
mination occur at the same time, the channel pro
gram resumes at TP + 4.

Beginning the Transfer

The 8089 XFER (transfer) instruction puts the 
channel into DMA transfer mode after the 
following instruction has been executed. This 
technique gives the channel time to set itself up 
when it is used with device controllers, such as the 
8271 Floppy Disk Controller, that begin transfer
ring immediately upon receipt of the last in a 
series of parameters or commands. If the transfer 
is to or from such a device, the last parameter 
should be sent to the device after the XFER 
instruction. If this type of device is not being 
used, the instruction following XFER would
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typically send a “ start” command to the con
troller. If a memory-to-memory transfer is being 
made, any instruction may follow XFER except 
one that alters GA, GB, or CC. The HLT instruc
tion should normally not be coded after the 
XFER; doing so clears the channel’s BUSY flag, 
but allows the DMA transfer to proceed.

DMA Transfer Cycle

A DMA transfer cycle is illustrated in figure 3-28; 
a complete transfer is a series of these cycles run 
until a termination condition is encountered. The 
figure is deliberately simplified to explain the 
general operation of a DMA transfer; in par
ticular, the updating of the source and destination 
pointers (GA and GB) can be more complex than 
the figure indicates. Notice that it is possible to 
start an unending transfer by not specifying a ter
mination condition in CC or by specifying a con
dition that never occurs; it is the programmer’s 
responsibility to ensure that the transfer eventu
ally stops.

If the transfer is source-synchronized, the channel 
waits until the synchronizing device activates the 
channel’s DRQ line. The other channel is free to 
run during this idle period. The channel fetches a 
byte or a word, depending on the source address 
(contained in GA or GB) and the logical bus 
width. Table 3-9 shows how a channel performs 
the fetch/store sequence for all combinations of 
addresses and bus widths. If the destination is on 
a 16-bit logical bus and the source is on an 8-bit 
logical bus, and the transfer is to an even address, 
the channel fetches a second byte and assembles a 
word internally. During each fetch, the channel 
decrements BC according to whether a byte or 
word is obtained. Thus BC always indicates the 
number of bytes fetched.

The channel samples its EXT line after every bus 
cycle in the transfer. If EXT is recognized after 
the first of two scheduled fetches, the second 
fetch is not run. After the fetch sequence has been 
completed, the channel translates the data if this 
option is specified in CC.

If a word has been fetched or assembled, and 
bytes are to be stored (destination bus is eight bits 
or transfer is to an odd address), the channel 
disassembles the word into two bytes. If the 
transfer is destination-synchronized (only one

Table 3-9. DMA Transfer
Assembly/Disassembly

Address
(Source-*

Destination)

Logical Bus Width 
Source—Destination)

8 -8 8-16 16-8 16-16

EVEN-EVEN B -B B /B -W W -B /B W -W
EVEN-ODD B -B B -B W -B /B W -B /B
ODD-EVEN B -B B /B -W B -B B /B -W
ODD-ODD B -B B -B B -B B -B

B= Byte Fetched or Stored in 1 Bus Cycle 
W= Word Fetched or Stored in 1 Bus Cycle 
B/B= 2 Bytes Fetched or Stored in 2 Bus Cycles

type of synchronization may be specified for a 
given transfer), the channel waits for DRQ before 
running a store cycle. It stores a word or the 
lower-addressed byte (which may be the only byte 
or the first of two bytes). Table 3-9 shows the 
possible combinations of even/odd addresses and 
logical bus widths that define the store cycle. 
Whenever stores are to memory on a 16-bit logical 
bus, the channel stores words, except that bytes 
may be stored on the first and last cycles.

The channel samples EXT again after the first 
store cycle and, if it is active, the channel prevents 
the second store cycle from running. If specified 
in the CC register, the low-order byte is compared 
to the value in MC. A “ hit” on the comparison 
(equal or unequal, as indicated in CC) also 
prevents the second of two scheduled store cycles 
from running. In both of these cases, one byte has 
been “ overfetched,” and this is reflected in BC’s 
value. It would be unusual, however, for a syn
chronizing device to issue EXT in the midst of a 
DMA cycle. Note also that EXT is valid only 
when DRQ is inactive. Chapter 4 covers the tim
ing requirements for these two signals in detail.

GA and GB are updated next. Only memory 
pointers are incremented; pointers to I/O  devices 
remain constant throughout the transfer.

If any termination condition has occurred during 
this cycle, the channel stops the transfer. It uses 
the content of the CC register to assign a value to 
the termination offset, to reflect the cause of the 
termination. The channel adds this offset to TP 
and resumes channel program execution at the 
location now addressed by TP. This offset will

M nem onics ©  Intel, 1979 3-3 2



8089 INPUT/OUTPUT PROCESSOR

Figure 3-28. Simplified DMA Transfer Flowchart

always be zero, four, or eight bytes past the end 
of the instruction following the XFER instruc
tion.

If no termination condition is detected and 
another byte remains to be stored, the channel 
stores this byte, waiting for DRQ if necessary, 
and updates the source and destination pointers. 
After the store, it again checks for termination.

Following the Transfer

A DMA transfer updates register BC, register GA 
(if it points to memory), and register GB (if it 
points to memory). If the original contents of 
these registers are needed following the transfer, 
the contents should be saved in memory prior to 
executing the XFER instruction.
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A program may determine the address of the last 
byte stored by a DMA transfer by inspecting the 
pointer registers as shown in table 3-10. The 
number of bytes stored is equal to:

last_byte_address — first_byte_address + 1.

For port-to-port transfers, the number of bytes 
transferred can be determined by subtracting the 
final value of BC from its original value provided 
that:
• the original BC > final BC,
• a transfer cycle is not “ chopped off” before 

it completes by a masked compare or exter
nal termination.

In general, programs should not use the contents 
of GA, GB and BC following a transfer except as 
noted above and in table 3-10. This is because the 
contents of the registers are affected by numerous 
conditions, particularly when the transfer is ter
minated by EXT. In particular, when a program 
is performing a sequence of transfers, it should 
reload these registers before each transfer.

3.5 Multiprocessing Features

The 8089 shares the multiprocessing facilities 
common to the 8086 family of processors. It has 
on-chip logic for arbitrating the use of the local 
bus with a CPU or another IOP; system bus 
arbitration is delegated to an 8289 Bus Arbiter.

The 8089’s TSL (test and set while locked) in
struction enables it to share a resource, such as a 
buffer, with other processors by means of 
semaphore (see section 2.5 for a discussion of the 
use of semaphores to control access to shared 
resources). Finally, the 8089 can lock the system 
bus for the duration of a DMA transfer to ensure 
that the transfer completes without interference 
from other processors on the bus.

In the remote configuration, the 8089 is electric
ally compatible with Intel’s Multibus™ multi
master bus design. This means that the power and 
convenience of 8089 I/O processing can be used 
in 8080- or 8085-based systems that implement the 
Multibus protocol or a superset of it. This 
includes single-board computers such as Intel’s 
iSBC 80/20™ and iSBC 80/30™ boards. In addi
tion, the IOP can access other iSBC board 
products such as memory and communications 
controllers.

Bus Arbitration

The 8089 shares its system bus with a CPU, and 
may also share its I/O bus with an IOP or another 
CPU. Only one processor at a time may drive a 
bus. When two (or more) processors want to use a 
shared bus, the system must provide an arbitra
tion mechanism that will grant the bus to one of 
the processors. This section describes the bus 
arbitration facilities that may be used with the 
8089 and covers their applicability to different 
IOP configurations.

Table 3-10. Address of Last Byte Stored

Termination Source Destination Synchronization Last Byte Stored

m e m o ry m e m o ry any d e s t in a t io n  p o in te r 1
b y te  c o u n t m e m o ry p o rt any s o u rc e  p o in te r

p o rt m e m o ry any d e s t in a t io n  p o in te r

m e m o ry m e m o ry any d e s t in a t io n  p o in te r
m a s k e d  c o m p a re m e m o ry p o rt any s o u rc e  p o in te r

p o rt m e m o ry any d e s t in a t io n  p o in te r

m e m o ry m e m o ry u n s y n c h ro n iz e d d e s t in a t io n  p o in te r
e x te rn a l m e m o ry p o rt d e s t in a t io n s o u rc e  p o in te r 2

p o rt m e m o ry s o u rc e d e s t in a t io n  p o in te r

'S o u rc e  p o in te r  m ay  a ls o  b e  u s e d .
2lf  t ra n s fe r  is  B /B —W , s o u rc e  p o in te r  m u s t b e  d e c re m e n te d  b y  1 to  p o in t  to  la s t b y te  tra n s fe r re d .
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Request/Grant Line

When an 8089 is directly connected to 
another 8089, an 8086 or an 8088, the 
RQ/GT (request/grant) lines built into all of 
these processors are used to arbitrate use of a 
local bus. In the local mode, RQ/GT is used 
to control access to both the system and the 
I/O bus.

As discussed in section__2.6, the_CPU’s
request/grant lines (RQ/GT0 and RQ/GT1) 
operate as follows:

• an external processor sends a pulse to the 
CPU to request use of the bus;

• the CPU finishes its current bus cycle, if one 
is in progress, and sends a pulse to the pro
cessor to indicate that it has been granted the 
bus; and

• when the external processor is finished with 
the bus, it sends a final pulse to the CPU, to 
indicate that it is releasing the bus.

The 8089’s request/grant circuit can operate in 
two modes; the mode is selected when the IOP is 
initialized (see section 3.6). Mode 0 is compatible 
with the 8086/8088 request/grant circuit and 
must be specified when the 8089’s RQ/GT line is 
connected to RQ/GT0 or RQ/GT1 of one of 
these CPUs. Mode 0 may be_ specified when 
RQ/GT of one 8089 is tied to RQ/GT of another 
8089. When mode 0 is used with a CPU, the CPU 
is designated the master, and the IOP is 
designated a slave. When mode 0 is used with 
another IOP, one IOP is the master, and the other 
is the slave. Master/slave designation also is made 
at initialization time as discussed in section 3.6. 
The master has the bus when the system is in
itialized and keeps the bus until it is requested by 
the slave. When the slave requests the bus, the 
master grants it if the master is idle. In this sense, 
the CPU becomes idle at the end of the current 
bus cycle. An IOP master, on the other hand, 
does not become idle until both channels have 
halted program execution or are waiting for DMA 
requests. Once granted the bus, the slave (always 
an IOP) uses it until both channels are idle, and 
then releases it to the master. In mode 0, the 
master has no way of requesting the slave to 
return the bus.

Mode 1 operation of the request/grant lines may 
only be used to arbitrate use of a private I/O bus

between two IOPs. In this case, one IOP is 
designated the master, and the other is designated 
the slave. However, the only difference between a 
master and a slave running in mode 1 is that the 
master has the bus at initialization time. Both 
processors may request the bus from each other at 
any time. The processor that has the bus will 
grant it to the requester as soon as one of the 
following occurs on either channel:

• an unchained channel program instruction is 
completed, or

• a channel goes idle due to a program halt or 
the completion of a synchronized transfer 
cycle (the channel waits for a DMA request).

Execution of a chained channel program, a DMA 
termination sequence, a channel attention 
sequence, or a synchronized DMA transfer (i.e., a 
high-priority operation) on either channel 
prevents the IOP from granting the bus to the 
requesting IOP.

The handshaking sequence in mode 1 is:
• the reguesting processor pulses once on 

RQ/GT;
• the processor with the bus grants it by 

pulsing once; and
• if the processor granting the bus wants it 

back immediately (for example, to fetch the 
next instruction), it will pulse RQ/GT again, 
two clocks after the grant pulse.

The fundamental difference between the two 
modes is the frequency with which the bus can be 
switched between the two processors vhen both 
are active. In mode 0, the processor that has the 
bus will tend to keep it for relatively long periods 
if it is executing a channel program. Mode 1 in 
effect places unchained channel programs at a 
lower priority since the processor will give up the 
bus at the end of the next instruction. Therefore, 
when both processors are running channel pro
grams or synchronized DMA, they will share the 
bus more or less equally. When a processor 
changes to what would typically be considered a 
higher-priority activity such as chained program 
execution or DMA termination, it will generally 
be able to obtain the bus quickly and keep the bus 
for the duration of the more critical activity.
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8289 Bus Arbiter

When an IOP is configured remotely, an 8289 Bus 
Arbiter is used to control its access to the shared 
system bus (the CPU also has its own 8289). In a 
remote cluster of two IOPs or an IOP and a CPU, 
one 8289 controls access to the system bus for 
both processors in the cluster. The 8289 has 
several operating modes; when used with an 8089, 
the 8289 is usually strapped in its IOB (I/O 
Peripheral Bus) mode.

The 8289 monitors the IOP’s status lines. When 
these indicate that the IOP needs a cycle on the 
system bus, and the IOP d )es not presently have 
the bus, the 8289 activates a bus request signal. 
This signal, along with the bus request lines of 
other 8289s on the same bus, can be routed to an 
external priority-resolving circuit. At the end of 
the current bus cycle, this circuit grants the bus to 
the requesting 8289 with the highest priority. 
Several different prioritizing techniques may be 
used; in a typical system, an IOP would have 
higher bus priority than a CPU. If the 8289 does 
not obtain the bus for its processor, it makes the 
bus appear “ not ready” as if a slow memory were 
being accessed. The processor’s clock generator 
responds to the “ not ready” condition by insert
ing wait states into the IOP’s bus cycle, thereby 
extending the cycle until the bus is acquired.

Bus Arbitration for IOP Configurations

When the CPU initializes an IOP, it must inform 
the IOP whether it is a master or a slave, and 
which request/grant mode is to be used. This sec
tion covers the requirements and options 
available for each IOP configuration; section 3.6 
describes how the information is communicated 
at initialization time.

Table 3-11 summarizes the bus arbitration 
requirements and options by IOP configuration. 
In the local configuration, all bus arbitration is 
performed by the request/grant lines without 
additional hardware. One IOP may be connected 
to each of the CPU’s RQ/GT lines. The IOP con
nected to RQ/GTO will obtain the bus if both pro
cessors make simultaneous requests.

Since a single_IOP in a remote configuration does 
not use RQ/GT, its mode may be set to 0 or 1 
without affect. The single remote IOP, however, 
must be initialized as a master. If two remote 
IOPs share an I/O  bus, one must be a master and 
the other a slave; both must be initialized to use 
the same request/grant mode. Normally, mode 1 
will be selected for its improved responsiveness, 
and the designation of master will be arbitrary. If 
one IOP must have the I/O  bus when the system 
comes up, it should be initialized as the master.

When a remote IOP shares its I/O bus with a 
local CPU, it must be a slave and must use 
request/grant mode 0.

Bus Load Limit

A locally configured IOP effectively has higher 
bus priority than the CPU since the CPU will 
grant the bus upon request from the IOP. One or 
two local IOPs can potentially monopolize the 
bus at the expense of the CPU. Of course, if the 
IOP activities are time-critical, this is exactly what 
should happen. On the other hand, there may be 
low-priority channel programs that have less 
demanding performance requirements.

In such cases, the CPU may set a CCW bit called 
bus load limit to constrain the channel’s use of the 
bus during normal (unchained) channel program

Table 3-11. Bus Arbitration Requirements and Options

IOP
Local Remote Remote With 

Local CPU

Master/ RQ/GT Master/ RQ/GT Master/ RQ/GT
Stave Mode Slave Mode Slave Mode

IOP1 S la ve 0 M a s te r 0 o r1 S lave 0

IOP2 S la ve 0 S lave
S am e as 
M a s te r

N /A N /A
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execution. When this bit is set, the channel 
decrements a 7-bit counter from 7F (127) to OH 
with each instruction executed. Since the counter 
is decremented once per clock period, the channel 
waits a minimum of 128 clock cycles before it exe
cutes the next instruction. By forcing the execu
tion time of all instructions to 128 clocks, the use 
of the bus is reduced to between 3 and 25 percent 
of the available bus cycles.

Setting the bus load limit effectively enables a 
CPU to slow the execution of a normal channel 
program, thus freeing up bus cycles. This is of 
most use in local configurations, but also may be 
effective in remote configurations, particularly 
when channel programs are executed from system 
memory. Bus load limit has no effect on chained 
channel programs, DMA transfers, DMA ter
mination, or channel attention sequences.

Bus Lock

Like the 8086 and 8088, the 8089 has a LOCK 
(bus lock) signal which can be activated by soft- 
ware. The LOCK output is normally connected to 
the LOCK input of an 8289 Bus Arbiter. When 
LOCK is active, the bus arbiter will not release the 
bus to another processor regardless of its priority. 
A channel automatically locks the bus during exe
cution of the TSL (test and set while locked) 
instruction and may lock the bus for the duration 
of a DMA transfer.

If bit 9 of register CC is set, the 8089 activates its 
LOCK output during a DMA transfer on that 
channel. If the transfer is synchronized, LOCK is 
active from the time that the first DRQ is 
recognized. If the transfer is unsynchronized, 
LOCK is active throughout the entire transfer 
(there are no idle periods in an unsynchronized 
transfer). LOCK goes inactive when the channel 
begins the DMA termination sequence.

A locked transfer ensures that the transfer will be 
completed in the shortest possible time and that 
the transferring channel has exclusive use of the 
bus. Once the channel obtains the bus and starts a 
locked transfer, the channel, in effect, becomes 
the highest-priority processor on that bus.

The 8089 TSL (test and set while locked) 
instruction can be used to implement a 
semaphore. (See section 2.5 for a discussion of 
how a semaphore may be used to control the

access of multiple processors to a shared 
resource.) The instruction activates LOCK and 
inspects the value of a byte in memory. If the 
value of the byte is OH, it is changed (set) to a 
value specified in the instruction and the follow
ing instruction is executed. If the byte does not 
contain OH, control is transferred to another loca
tion specified in the instruction. The bus is locked 
from the time the byte is read until it is either writ
ten or control is transferred to ensure that another 
processor does not access the variable after TSL 
has read it, but before it has updated it (i.e., 
between bus cycles). The following line of code 
will repeatedly test a semaphore pointed to by GA 
until it is found to contain zero:

T E S T__F LA G : T S L  [G A ], OFFH, T E S T _ F L A G

When the semaphore is found to be zero, it is set 
to FFH and the program continues with the next 
instruction.

3.6 Processor Control and 
Monitoring

This section focuses on IOP/CPU interaction,
i.e., how the CPU initializes the IOP and sub
sequently sends commands to channels, and how 
the channels may interrupt the CPU. It also 
covers the channels’ DMA control signals and the 
status signals that external devices can use to 
monitor IOP activities.

Initialization

Before the 8089 channels can be dispatched to 
perform I/O tasks, the IOP must be initialized. 
The initialization sequence (figure 3-29) provides 
the IOP with a definition of the system environ
ment: physical bus widths, request/grant mode, 
and the location of the channel control block.

The sequence begins when the IOP’s RESET line 
is activated. This halts any operation in progress, 
but does not affect any registers. Upon the first
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IOP CPU

Figure 3-29. Initialization Sequence

RESET after power-up, the content of all IOP 
registers is undefined. Register contents are 
preserved if the IOP is subsequently RESET, 
except that RESET always clears the chain bit in 
register CC.

The IOP initializes itself by reading information 
from initialization control blocks located in the 
system space (see figure 3-30). The three blocks 
are the SCP (system configuration pointer), SCB 
(system configuration block) and the CB (channel 
control block). The CB is normally RAM-based;

the SCP and the SCB may be in RAM or ROM. It 
is the CPU’s responsibility to properly setup the 
control blocks.

The CPU starts the initialization sequence by issu
ing a channel attention to channel 1 (SEL low) or 
to channel 2 (SEL high). The CPU typically 
accesses the channels as two consecutive addresses 
in its I/O  or memory space. An OUT instruction 
(for an I/O-mapped IOP) or a memory reference 
instruction (such as MOV) then issues the channel 
attention.

M nem onics ©  Intel, 1979
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H IG H  S Y S T E M  M E M O R Y

S Y S T E M
C O N F IG U R A T IO N

P O IN T E R
(FIXED  L O C A T IO N )

S Y S T E M
C O N F IG U R A T IO N

B L O C K
(U S E R -D E F IN E D  L O C A T IO N )

C H A N N E L
C O N T R O L

B L O C K
(U S E R -D E F IN E D  LO C A T IO N )

(R E S E R V E D )

S C B  S E G M E N T  B A S E

S C B  O F F S E T

(R E S E R V E D ) S Y S B U S

8086/8088 
R E S E T  L O C A T IO N

$

C B  S E G M E N T  B A S E

C B  O F F S E T

(R E S E R V E D ) S O C

5

(R E S E R V E D )

PB  S E G M E N T  B A S E

B U S Y C C W
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PB  S E G M E N T  B A S E

C C W

}

F F F F E H

F F F F C H

F F F F A H

F F F F 8 H

F F F F 6 H

F F F F 4 H

F F F F 2 H

F F F F O H

C H A N N E L  2 
P A R A M E T E R  B L O C K

C H A N N E L  1 
P A R A M E T E R  B L O C K

LO W  S Y S T E M  M E M O R Y

Figure 3-30. Initialization Control Blocks

If channel 1 is selected (SEL=low), the IOP con
siders itself a master (as discussed in section 3.5). 
If channel 2 is selected (SEL=high), the IOP 
operates as a slave. The IOP ignores, and does 
not latch, any subsequent channel attentions that 
occur during initialization.

If the IOP is a master, it assumes that it_has the 
bus immediately. If it is a slave, it pulses RQ/GT 
to request the bus from the CPU (local configura
tion) or the other IOP (remote configuration). 
When the IOP has obtained the bus, it assumes 
that the system bus is eight bits wide and reads the
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SYSBUS field (figure 3-31) from location 
FFFF6H in system memory. This byte tells the 
IOP the actual physical width of the system bus; 
all subsequent accesses take advantage of a 16-bit 
bus if it is available; i.e., even-addressed words 
are fetched in single bus cycles. It is therefore 
advantageous to word-align the control blocks.

7 o

|  0 0 0 0 0 0 0 w |

W  = 0  = 8 -B IT  S Y S T E M  BU S  
W  = 1 = 1 6 -B IT  S Y S T E M  B U S

Figure 3-31. SYSBUS Encoding

Next, the IOP reads the SCB address located at 
FFFF8H. This is a standard doubleword pointer, 
and the IOP constructs a 20-bit physical address 
from it by shifting the segment base left four bits 
and adding the offset word of the pointer.

Having obtained the SCB address, the IOP reads 
the SOC (system operation command). This byte 
(see figure 3-32) tells the IOP the request/grant 
mode and the width of the I/O bus.

7 o

o o o o  o o R i

R = R E O U E S T /G R A N T  M O D E  
1 = 0  = 8 -B IT  I /O  BU S  
1 = 1 = 1 6 -B IT  I /O  B U S

Figure 3-32. SOC Encoding

Then the IOP reads the doubleword pointer to the 
channel control block, converts the pointer into a 
20-bit physical address, and stores it in an internal 
register. This register is not accessible to channel

programs and is only loaded during initialization. 
The CB, therefore, cannot be moved during exe
cution except by reinitializing the IOP.

After loading the address of the CB, the IOP 
clears the channel 1 BUSY flag to OH. The other 
fields in the CB are used when a channel is dis
patched and are not read or altered in the 
initialization sequence.

After the CPU has started the initialization 
sequence, it should monitor channel l ’s BUSY 
flag in the CB to determine when the sequence has 
been completed. When the BUSY flag has been 
cleared, the CPU can dispatch either channel. It 
also can begin the initialization of another IOP. 
Since each IOP normally has a separate CB, the 
CPU must allocate the CB and update the pointer 
in the SCB before initializing the next IOP. Alter
natively, multiple SCBs could be employed, each 
pointing to a different CB area. In this case the 
CPU would update the pointer in the SCP before 
initializing the next IOP. It follows from this that 
in multi-IOP systems, either the SCB or SCP, or 
both, must be RAM-based. When all IOPs have 
been initialized, the CPU may use RAM occupied 
by the SCB for another purpose.

Channel Commands

After initialization, any channel attention is 
interpreted as a command to channel 1 
(SEL=low) or to channel 2 (SEL=high). As 
discussed in section 3.2, the channel attention, 
depending on the activities of both channels, may 
not be recognized immediately. The channel 
attention is latched, however, so that it will be 
serviced as soon as priorities allow.

When the channel recognizes the CA, it sets its 
BUSY flag in the CB to FFH. This does not pre
vent the CPU from issuing another CA, but pro
vides status information only. In its response to a 
CA, the channel reads various control fields from 
system memory. It is the responsibility of the 
CPU to ensure that the appropriate fields are 
properly initialized before issuing the CA.

After setting its BUSY flag, the channel reads its 
CCW from the CB. It examines the command 
field (see figure 3-33) and executes the command 
encoded there by the CPU.
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7 0

p 0 B ICF CF 
1 1

CF COMMAND FIELD
000 UPDATEPSW
001 START CHANNEL PROGRAM LOCATED IN I/O SPACE.
010 (RESERVED)011 START CHANNEL PROGRAM LOCATED IN SYSTEM SPACE.
100 (RESERVED)
101 RESUME SUSPENDED CHANNEL OPERATION
110 SUSPEND CHANNEL OPERATION
111 HALT CHANNEL OPERATION
ICF INTERRUPT CONTROL FIELD
00 IGNORE, NO EFFECT ON INTERRUPTS.
01 REMOVE INTERRUPT REQUEST; INTERRUPT IS ACKNOWLEDGED.
10 ENABLE INTERRUPTS.
11 DISABLE INTERRUPTS.
B BUS LOAD LIMIT
0 NO BUS LOAD LIMIT
1 BUS LOAD LIMIT
P PRIORITY BIT

Figure 3-33. Channel Command Word Encoding

Figure 3-34 illustrates the channel’s response to 
each type of command. Note that if CF contains a 
reserved value (010 or 100), the channel’s 
response is unpredictable.

The CPU can use the “ update PSW” command 
to alter the bus load limit and priority bits in the 
PSW (see figure 3-17) without otherwise affecting 
the channel. This command also allows the CPU 
to control interrupts originating in the channel; 
this topic is discussed in more detail later in this 
section.

The two “ start program” commands differ only 
in their affect on the TP tag bit. If CF=001, the 
channel sets the tag to 1 to indicate that the pro
gram resides in the I/O space. If CF=011, the tag 
is cleared to 0, and the program is assumed to be 
in the system space. The channel converts the 
doubleword parameter block pointer to a 20-bit 
physical address and loads this into PP. It loads 
the doubleword task block (channel program) 
pointer into TP, updates the PSW as specified by 
the ICF, B and P fields of the CCW and starts the 
program with the instruction pointed to by TP.

The CPU may suspend a channel operation 
(either program execution or DMA transfer) by 
setting CF to 110. The channel saves its state (TP, 
its tag bit, and PSW) in the first two words of the 
parameter block (see figure 3-18 for format) and 
clears its BUSY flag to OH. Note the following in 
regard to a suspended operation:

• The content of the doubleword pointer to the 
beginning of the channel program is replaced 
by the channel state save data. Therefore, a ,  
suspended operation may be resumed, but 
cannot be started from the beginning without 
recreating the doubleword pointer.

• TP is the only register saved by this 
operation. If another channel program is 
started on this channel, the other registers, 
including PP, are subject to being over
written. In general, suspend is used to tem
porarily halt a channel, not to “ interrupt” it 
with another program. Section 3.10 provides 
an example of a program that can be used to 
save another program’s registers.
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C O M M A N D C H A N N E L

U P D A T E  PS W
(C F  = 000)

C H A N N E L
C O N T R O L

B L O C K

(R E S E R V E D )

P A R A M E T E R  
-  B L O C K  -  

P O IN T E R

B U S Y  C C W

6

4

2

0

P A R A M E T E R
B L O C K

T B  P O IN T E R  2
----  O R  —
C H A N N E L  S T A T E  0

S T A R T  P R O G R A M
(C F  = 001/011) {

T A S K
—  B L O C K  —  

P O IN T E R

2

0

S U S P E N D  O P E R A T IO N  
(CR  = 110) { C H A N N E L

S T A T E

2

0

R E S U M E  O P E R A T IO N  
(C F  = 101)

H A L T  O P E R A T IO N  
(C F  = 111)

(R E S E R V E D ) 6

P A R A M E T E R 4

P O IN T E R 2 T B  P O IN T E R
----  O R  —
C H A N N E L  S T A T EB U S Y C C W 0

Figure 3-34. Channel Commands
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• Suspending a DMA transfer does not affect 
any I/O devices (an I/O device wilt act as 
though the transfer is proceeding). The CPU 
must provide for conditions that may arise if, 
for example, a device requests a DMA 
transfer, but the channel does not 
acknowledge the request because it has been 
suspended. Similarly, an I/O device may be 
in a different condition when the operation is 
resumed.

A suspended operation may be resumed by setting 
CF to 101. This command causes the channel to 
reload TP, its tag bit, and the PSW from the first 
two words of PB. Resuming an operation that has 
not been suspended will give unpredictable results 
since the first two words of PB will not contain 
the required channel state data. A resume com
mand does not affect any channel registers other 
than TP.

The CPU may abort a channel operation by 
issuing a “ halt” command (CF=111). The chan
nel clears its BUSY flag to OH and then idles. 
Again, the CPU must be prepared for the effect 
aborting a DMA transfer may have on an I/O 
device.

DRQ (DMA Request)

The synchronizing device in a DMA transfer uses 
the DRQ line to indicate when it is ready to send 
or receive the next byte or word. The channel 
recognizes a signal on this line only during a 
DMA transfers, i.e., after the instruction follow
ing XFER has been executed and before a ter
mination condition has occurred. The channels 
have separate DMA request lines (DRQ1 and 
DRQ2).

EXT (External Terminate)

An external device (typically the synchronizing 
device) can terminate a DMA transfer by signal
ing on this line. Each channel has its own external 
terminate line (EXT1 and EXT2). The channel 
stops the transfer as soon as the current fetch or 
store cycle is completed. An external terminate in 
an unsynchronized transfer could result in a loss 
of data, although this would not be a typical use 
of EXT. In a synchronized transfer, the syn
chronizing device will normally issue EXT instead

of DRQ following the last transfer cycle. If EXT 
is activated during a transfer cycle, a fetched byte 
may not be stored as explained in section 3.4.

A channel does not recognize EXT if it is not per
forming a DMA transfer. If EXT1 and EXT2 are 
activated simultaneously, EXT1 is recognized 
first.

Interrupts

Each channel has a separate system interrupt line 
(SINTR1 and SINTR2). A channel program may 
generate a CPU interrupt request by executing a 
SINTR instruction. Whether this instruction 
actually activates the SINTR line, however, 
depends upon the state of the interrupt control bit 
(bit 3 of the PSW; see figure 3-17). If this bit is 
set, interrupts from the channel are enabled, and 
execution of the SINTR instruction activates 
SINTR. If the interrupt control bit is cleared, the 
SINTR instruction has no effect; interrupts from 
the channel are disabled.

The CPU can alter a channel’s interrupt control 
bit by sending any command to the channel with 
the value of ICF (interrupt control field) in the 
CCW set to 10 (enable) or 11 (disable). Thus, the 
CPU can prevent interrupts from either channel.

Once activated, SINTR remains active until the 
CPU sends a channel command with ICF set to 01 
(interrupt acknowledge). When the channel 
receives this command, it clears the interrupt ser
vice bit in the PSW (figure 3-17) and removes the 
interrupt request. Disabling interrupts also clears 
the interrupt service bit and lowers SINTR.

Status Lines

The IOP emits signals on the S0-S2 status lines to 
indicate to external devices the type of bus cycle 
the processor is starting. Table 3-12 shows the 
signals that are output for each type of cycle. 
These status lines are connected to an 8288 Bus 
Controller. The bus controller decodes these lines 
and outputs the signals that control components 
attached to the bus. The IOP indicates “ instruc
tion fetch” on these lines when it is reading and 
writing memory operands as well as when it is fet-
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ched instructions. In the remote configuration, an 
8289 Bus Arbiter monitors the S0-S2 status lines 
to determine when a system bus access is required.

Table 3-12. Status Signals S0-S2

S2 S1 s o Type of Bus Cycle

0 0 0 In s tru c t io n  fe tc h  fro m  I/O  s p a c e

0 0 1 D a ta  fe tc h  fro m  I /O  s p a c e

0 1 0 D a ta  s to re  to  I /O  s p a c e

0 1 1 (n o t u s e d )

1 0 0 In s tru c t io n  fe tc h  fro m  s y s te m  
s p a c e

1 0 1 D a ta  fe tc h  fro m  s y s te m  s p a c e

1 1 0 D a ta  s to re  to  s y s te m  s p a c e

1 1 1 P a ss ive ; no  b u s  c y c le  run

Status lines S3-S6 indicate whether the bus cycle is 
DMA or non-DMA, and which channel is run
ning the cycle (see table 3-13). Note that when the 
IOP is not running a bus cycle (e.g., when it is idle 
or when it is executing an internal cycle that does 
not use the bus), the status lines reflect the last 
bus cycle run.

Table 3-13. Status Signals S3-S6

S6 S5 S4 S3 Bus Cycle

1 1 0 0 D M A  c y c le  o n  c h a n n e l 1

1 1 0 1 D M A  c y c le  o n  c h a n n e l 2

1 1 1 0 N o n -D M A  c y c le  o n  c h a n n e l 1

1 1 1 1 N o n -D M A  c y c le  o n  c h a n n e l 2

3.7 Instruction Set

This section divides the IOP’s 53 instructions into 
five functional categories:
1. data transfer,
2. arithmetic,
3. logic and bit manipulation,
4. program transfer,
5. processor control.

The description of each instruction in these 
categories explains how the instruction operates 
and how it may be used in channel programs. 
Instructions that perform essentially the same 
operation (e.g., ADD and ADDB, which add 
words and bytes respectively), are described 
together. A reference table at the end of the sec
tion lists every instruction alphabetically and pro
vides execution time, encoded length, and sample 
ASM-89 coding for each permissable operand 
combination. For information on how the 8089 
machine instructions are encoded in memory, see 
section 4.3.

In reading this section, it is important to recall 
that the instruction set does not differentiate 
between memory addresses and I/O device 
addresses. Instructions that are described as 
accepting byte and word memory operands may 
also be used to read and write I/O devices.

Data Transfer Instructions

These instructions move data between memory 
and channel registers. Traditional byte and word 
moves (including memory-to-memory) are 
available, as are special instructions that load 
addresses into pointer registers and update tag 
bits in the process.

MOV destination, source

MOV transfers a byte or word from the source to 
the destination. Four instructions are provided:

MOV Move Word Variable,
MOVB Move Byte Variable,
MOVI Move Word Immediate,
MOVBI Move Byte Immediate.

Figure 3-35 shows how these instructions affect 
register operands. Notice that when a pointer 
register is specified as the destination of a MOV, 
its tag bit is unconditionally set to 1. MOV 
instructions are therefore used to load I/O space 
addresses into pointer registers.
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R e g is te r  is  D e s tin a tio n R e g is te r  is  S o u rc e

T ag  19 15 0 T ag 19 15

B y te

W o rd

r inrs

l7 lrsL1jubjr“

T =  b it  is  t ra n s fe r re d  to  d e s t in a t io n  o p e ra n d  
R =  b it  is  re p la c e d  b y  s o u rc e  o p e ra n d  
S =  b it  is  s ig n  e x te n s io n  o f h ig h -o rd e r  b it  t ra n s fe r re d  
X = b it is  ig n o re d  
1 =  b it  is  u n c o n d it io n a lly  s e t

Figure 3-35. Register Operands in MOV Instructions

MOVP destination, source

MOVP (move pointer) transfers a physical 
address variable between a pointer register and 
memory. If the source is a pointer register, its 
content and tag bit are converted to a physical 
address pointer (see figure 3-23). If the source is a 
memory location, the three bytes are converted to 
a 20-bit physical address and a tag value, and are 
loaded into the pointer register and its tag bit. 
MOVP is typically used to save and restore 
pointer registers.

LPD destination, source

LPD (load pointer with doubleword) converts a 
doubleword pointer (see figure 3-22) to a 20-bit 
physical address and loads it into the destination, 
which must be a pointer register. The pointer 
register’s tag bit is unconditionally cleared to 0, 
indicating a system address. Two instructions are 
provided:

LPD Load Pointer With Doubleword
Variable

LPDI Load Pointer With Doubleword
Immediate

An 8086 or 8088 can pass any address in its 
megabyte memory space to a channel program in 
the form of a doubleword pointer. The channel 
program can access the location by using LPD to 
load the location address into a pointer register.

Arithmetic Instructions

The arithmetic instructions interpret all operands 
as unsigned binary numbers of 8, 16 or 20 bits. 
Signed values may be represented in standard 
two’s complement notation with the high-order 
bit representing the sign (0=positive, l=negative). 
The processor, however, has no way of detecting 
an overflow into a sign bit so this possibility must 
be provided for in the user’s software.

The 8089 performs arithmetic operations to 20 
significant bits as follows. Byte and word 
operands are sign-extended to 20 bits (e.g., bit 7 
of a byte operand is propagated through bits 8-19 
of an internal register). Sign extension does not 
affect the magnitude of the operand. The opera
tion is then performed, and the 20-bit result is
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returned to the destination operand. High-order 
bits are truncated as necessary to fit the result in 
the available space. A carry out of, or borrow 
into, the high-order bit of the result is not 
detected. However, if the destination is a register 
that is larger than the source operand, carries will 
be reflected in the upper register bits, up to the 
size of the register.

Figure 3-36 shows how the arithmetic instructions 
treat registers when they are specified as source 
and destination operands.

ADD destination, source

The sum of the two operands replaces the destina
tion operand. Four addition instructions are 
provided:

ADD Add Word Variable
ADDB Add Byte Variable
ADDI Add Word Immediate
ADDBI Add Byte Immediate

INC destination

The destination is incremented by 1. Two instruc
tions are available:

INC Increment Word
INCB Increment Byte

DEC destination

The destination is decremented by 1. Word and 
byte instructions are provided:

DEC Decrement Word
DECB Decrement Byte

Logical and Bit Manipulation 
Instructions

The logical instructions include the boolean 
operators AND, OR and NOT. Two bit manipu
lation instructions are provided for setting or

R e g is te r  is  D e s tin a tio n R e g is te r  is  S o u rc e

T ag  19 
B y te  _  _  _

15 7 0 T ag 19 15 7 0

n  r~
O p e ra tio n  J X , ,R  R R R R R R R R R R R R R R R R R R R [x[[xxxx xxxxxxxx P P P P P P P P

W o rd n r
O p e ra tio n  , X ( | R R R R R R R R R R R R R R R R R R R R

1 1 1,x|,xxxx p p p p p p p p P P P P P P P P

X =  b it  is  ig n o re d  in o p e ra tio n  
R =  b it  is  re p la c e d  b y  o p e ra t io n  re s u lt  
P =  b it  p a r t ic ip a te s  in o p e ra tio n

Figure 3-36. Register Operands in Arithmetic Instructions
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clearing a single bit in memory or in an I/O device 
register. As shown in figure 3-37, the logical 
operations always leave the upper four bits of 
20-bit destination registers undefined. These bits 
should not be assumed to contain reliable values 
or the same values from one operation to the 
next. Notice also that when a register is specified 
as the destination of a byte operation, bits 8-15 
are overwritten by bit 7 of the result. Bits 8-15 can 
be preserved in AND and OR instructions by 
using word operations in which the upper byte of 
the source operand is FFH or 00H, respectively.

AND destination, source

The two operands are logically ANDed and the 
result replaces the destination operand. A bit in 
the result is set if the bits in the corresponding 
positions of the operands are both set, otherwise 
the result bit is cleared. The following AND 
instructions are available:

AND Logical AND Word Variable
ANDB Logical AND Byte Variable
ANDI Logical AND Word Immediate
ANDB1 Logical AND Byte Immediate

AND is useful when more than one bit of a device 
register must be cleared while leaving the remain
ing bits intact. For example, ANDing an 8-bit 
register with EEH only clears bits 0 and 4.

OR destination, source

The two operands are logically ORed, and the 
result replaces the destination operand. A bit in 
the result is set if either or both of the correspond
ing bits of the operands are set; if both operand 
bits are cleared, the result bit is cleared. Four 
types of OR instructions are provided:

OR Logical OR Word Variable
ORB Logical OR Byte Variable
ORI Logical OR Word Immediate
ORBI Logical OR Byte Immediate

OR can be used to selectively set multiple bits in a 
device register. For example, ORing an 8-bit 
register with 30H sets bits 4 and 5, but does not 
affect the other bits.

R e g is te r  is  D e s tin a tio n R e g is te r  is  S o u rc e

Tag  19
B y te

15 7 0 Tag  19 15 7 0

O p e ra tio n  j xj [ U U U U S S S S S S S S R R R R R R R R j xjjx X X X xxxxxxxx P P P P P P P P

W o rd

O p e ra tio n  J x[ [u U U U R R R R R R R R R R R R R R R R J xj Jx X X X p p p p p p p p P P P P P P P P

X =  b it  is  ig n o re d  in o p e ra t io n  
U =  b it  is  u n d e f in e d  fo llo w in g  o p e ra tio n  
R =  b it  p a r t ic ip a te s  in o p e ra t io n  and  is  re p la c e d  b y  re s u lt  
S =  b it  is  s ig n -e x te n s io n  o f h ig h -o rd e r  re s u lt  b it  
P =  b it  p a r t ic ip a te s  in  o p e ra t io n , b u t is  u n c h a n g e d

Figure 3-37. Register Operands in Logical Instructions
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NOT destination /destination, source

NOT inverts the bits of an operand. If a single 
operand is coded, the inverted result replaces the 
original value. If two operands are coded, the 
inverted bits of the source replace the destination 
value (which must be a register), but the source 
retains its original value. In addition to these two 
operand forms, separate mnemonics are provided 
for word and byte values:

NOT Logical NOT Word
NOTB Logical NOT Byte

NOT followed by INC will negate (create the 
two’s complement of) a positive number.

SETB destination, bit-select

The bit-select operand specifies one bit in the 
destination, which must be a memory byte, that is 
unconditionally set to 1. A bit-select value of 0 
specifies the low-order bit of the destination while 
the high-order bit is set if bit-select is 7. SETB is 
handy for setting a single bit in an 8-bit device 
register.

CLR destination, bit-select

CLR operates exactly like SETB except that the 
selected bit is unconditionally cleared to 0.

Program Transfer Instructions

Register TP controls the sequence in which chan
nel program instructions are executed. As each 
instruction is executed, the length of the instruc
tion is added to TP so that it points to the next 
sequential instruction. The program transfer 
instructions can alter this sequential execution by 
adding a signed displacement value to TP. The 
displacement is contained in the program transfer 
instruction and may be either 8 or 16 bits long. 
The displacement is encoded in two’s complement 
notation, and the high-order bit indicates the sign 
(0=positive displacement, l=negative displace
ment). An 8-bit displacement may cause a 
transfer to a location in the range -128 through 
+127 bytes from the end of the transfer instruc
tion, while a 16-bit displacement can transfer to

any location within -32,768 through +32,767 
bytes. An instruction containing an 8-bit displace
ment is called a short transfer and an instruction 
containing a 16-bit displacement is called a long 
transfer.

The program transfer instructions have alternate 
mnemonics. If the mnemonic begins with the let
ter “ L,” the transfer is long, and the distance to 
the transfer target is expressed as a 16-bit 
displacement regardless of how far away the 
target is located. If the mnemonic does not begin 
with “ L,” the ASM-89 assembler may build a 
short or long displacement according to rules 
discussed in section 3.9.

The “ self-relative” addressing technique used by 
program transfer instructions has two important 
consequences. First, it promotes position- 
independent code, i.e., code that can be moved in 
memory and still execute correctly. The only 
restriction here is that the entire program must be 
moved as a unit so that the distance between the 
transfer instruction and its target does not 
change. Second, the limited addressing range of 
these instructions must be kept in mind when 
designing large (over 32k bytes of code) channel 
programs.

CALL/LCALL TPsave, target

CALL invokes an out-of-line routine, saving the 
value of TP so that the subroutine can transfer 
back to the instruction following the CALL. The 
instruction stores TP and its tag bit in the TPsave 
operand, which must be a physical address 
variable, and then transfers to the target address 
formed by adding the target operand’s displace
ment to TP. The subroutine can return to the 
instruction following the CALL by using a 
MOVP instruction to load TPsave back into TP.

Notice that the 8089’s facilities for implementing 
subroutines, or procedures, is less sophisticated 
than its counterparts in the 8086/8088. The prin
cipal difference is that the 8089 does not have a 
built in stack mechanism. 8089 programs can 
implement a stack using a base register as a stack 
pointer. On the other hand, since channel pro
grams are not subject to interrupts, a stack will 
not be required for most channel programs.
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JMP/LJMP target

JMP causes an unconditional transfer (jump) to 
the target location. Since the task pointer is not 
saved, no return to the instruction following the 
JMP is implied.

JZ/LJZ source, target

JZ (jump if zero) effects a transfer to the target 
location if the source operand is zero; otherwise 
the instruction following JZ is executed. Word 
and byte values may be tested by alternate 
instructions:

JZ/LJZ Jump/Long Jump if Word Zero 
JZB/LJZB Jump/Long Jump if Byte Zero

If the source operand is a register, only the low- 
order 16 bits are tested; any additional high-order 
bits in the register are ignored. To test the low- 
order byte of a register, clear bits 8-15 and then 
use the word form of the instruction.

JNZ/LJNZ source, target

JNZ operates exactly like JZ except that control is 
transferred to the target if the source operand 
does not contain all 0-bits. Word and byte sources 
may be tested using these mnemonics:

JNZ/LJNZ Jump/Long Jump if Word Not 
Zero

JNZB/LJNZB Jump/Long Jump if Byte Not 
Zero.

JMCE/LJMCE source, target

This instruction (jump if masked compare equal) 
effects a transfer to the target location if the 
source (a memory byte) is equal to the lower byte 
in register MC as masked by the upper byte in 
MC. Figure 3-15 illustrates how 0-bits in the 
upper half of MC cause the corresponding bits in 
the lower half of MC and the source operand to 
compare equal, regardless of their actual values. 
For example, if bits 8-15 of MC contain the value 
01H, then the transfer will occur if bit 0 of the 
source and register MC are equal. This instruction 
is useful for testing multiple bits in 8-bit device 
registers.

JMCNE/LJMCNE source, target

This instruction causes a jump to the target loca
tion if the source is not equal to the mask/ 
compare value in MC. It otherwise operates iden
tically to JMCE.

JBT/LJBT source, bit-select, target

JBT (jump if bit true) tests a single bit in the 
source operand and jumps to the target if the bit 
is a 1. The source must be a byte in i t  >mory or in 
an I/O device register. The bit-select value may 
range from 0 through 7, with 0 specifying the low- 
order bit. This instruction may be used to test a 
bit in an 8-bit device register. If the target is the 
JBT instruction itself, the operation effectively 
becomes “ wait until bit is 0.”

JNBT/LJNBT source, bit-select, target

This instruction operates exactly like JBT, except 
that the transfer is made if the bit is not true, i.e., 
if the bit is 0.

Processor Control Instructions

These instructions enable channel programs to 
control IOP hardware facilities such as the LOCK 
and SINTR1-2 pins, logical bus width selection, 
and the initiation of a DMA transfer.

TSL destination, set-value, target

Figure 3-38 illustrates the operation of the TSL 
(test and set while locked) instruction. TSL can be 
used to implement a semaphore variable that 
controls access to a shared resource in a 
multiprocessor system (see section 2.5). If the 
target operand specifies the address of the TSL 
instruction, the instruction is repetively executed 
until the semaphore (destination) is found to con
tain zero. Thus the channel program does not 
proceed until the resource is free.

WID source-width, dest-width

WID (set logical bus widths) alters bits 0 and 1 of 
the PSW, thus specifying logical bus widths for a 
DMA transfer. The operands may be specified as
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N EXT  SE Q U E N TIA L  IN STRU CTIO N

Figure 3-38. Operation of TSL Instruction

8 or 16 (bits), with the restriction that the logical 
width of a bus cannot exceed its physical width. 
The logical bus widths are undefined following a 
processor RESET; therefore the WID instruction 
must be executed before the first transfer. 
Thereafter the logical widths retain their values 
until the next WID instruction or processor 
RESET.

XFER (no operands)

XFER (enter DMA transfer mode after following 
instruction) prepares the channel for a DMA 
transfer operation. In a synchronized transfer,

the instruction following XFER may ready the 
synchronizing device (e.g., send a “ start” com
mand or the last of a series of parameters). Any 
instruction, including NOP and WID, may follow 
XFER, except an instruction that alters GA, GB 
or GC.

SINTR (no operands)

This instruction sets the interrupt service bit in the 
PSW and activates the channel’s SINTR line if 
the interrupt control bit in the PSW is set. If the

M nem onics ©  Intel, 1979
3-5 0



8089 INPUT/OUTPUT PROCESSOR

interrupt control bit is cleared (interrupts from 
this channel are disabled), the interrupt service bit 
is set, but SINTR1-2 is not activated. A channel 
program may use this instruction to interrupt a 
CPU.

NOP (no operands)

This instruction consumes clock cycles but per
forms no operation. As such, it is useful in timing 
loops.

HLT (no operands)

This instruction concludes a channel program. 
The channel clears its BUSY flag and then idles.

Instruction Set Reference Information

Table 3-16 lists every 8089 instruction 
alphabetically by its ASM-89 mnemonic. The 
ASM-89 coding format is shown (see table 3-14 
for an explanation of operand identifiers) along

with the instruction name. For every combination 
of operand types (see table 3-15 for key), the 
instruction’s execution time and its length in 
bytes, and a coding example are provided.

The instruction timing figures are the number of 
clock periods required to execute the instruction 
with the given combination of operands. At 
5 MHz, one clock period is 200 ns; at 8 MHz a 
clock period is 125 ns. Two timings are provided 
when an instruction operates on a memory word. 
The first (lower) figure indicates execution time 
when the word is aligned on an even address and 
is accessed over a 16-bit bus. The second figure is 
for odd-addressed words on 16-bit buses and any 
word accessed via an 8-bit bus.

Instruction fetch time is shown in table 3-17 and 
should be added to the execution times shown in 
table 3-16 to determine how long a sequence of 
instructions will take to run. (Section 3.2 explains 
the effect of the instruction queue on 16-bit 
instruction fetches.) External delays such as bus 
arbitration, wait states and activity on the other 
channel will increase the elapsed time over the 
figures shown in tables 3-16 and 3-17. These 
delays are application dependent.

Table 3-14. Key to ASM-89 Operand Identifiers

IDENTIFIER USED IN EXPLANATION

destination data transfer,
arithmetic,
bit manipulation

A register or memory location that may contain data operated on 
by the instruction, and which receives (is replaced by) the result 
of the operation.

source data transfer,
arithmetic,
bit manipulation

A register, memory location, or immediate value that is used in 
the operation, but is not alterecfby the instruction.

target program transfer Location to which control is to be transferred.

TPsave program transfer A 24-bit memory location where the address of the next sequen
tial instruction is to be saved.

bit-select bit manipulation Specification of a bit location within a byte; 0=least-significant 
(rightmost) bit, 7=most-significant (leftmost) bit.

set-value TSL Value to which destination is set if it is found 0.

source-width WID Logical width of source bus.

dest-width WID Logical width of destination bus.
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Table 3-15. Key to Operand Types

IDENTIFIER EXPLANATION

(no operands) No operands are written
register Any general register
ptr-reg A pointer register
immed8 A constant in the range 0-FFH
immed16 A constant in the range 0-FFFFH
mem8 An 8-bit memory location (byte)
mem16 A 16-bit memory location (word)
mem24 A 24-bit memory location (physical address pointer)
mem32 A 32-bit memory location (doubleword pointer)
label A label within -32,768 to +32,767 bytes of the end of the instruction
short-label A label within -128 to +127 bytes of the end of the instruction
0-7 A constant in the range: 0-7
8/16 The constant 8 or the constant 16

Table 3-16. Instruction Set Reference Data

ADD destination, source Add Word Variable

Operands Clocks Bytes Coding Example
register, mem16 11/15 2-3 ADD BC, [GA],LENGTH
mem16, register 16/26 2-3 ADD [G B], GC

ADDB destination, source Add Byte Variable

Operands Clocks Bytes Coding Example
register, mem8 11 2-3 ADDB GC, [GA].N_CHARS
mem8, register 16 2-3 ADDB [PP],ERRORS, MC

ADDBI destination, source Add Byte Immediate

Operands Clocks Bytes Coding Example
register, immed8 3 3 ADDBI MC,10
mem8, immed8 16 3-4 ADDBI [PP+IX+],RECORDS, 2CH

ADDI destination, source Add Word Immediate

Operands Clocks Bytes Coding Example
register, immed16 3 4 ADDI GB, 0C25BH
mem16, immed16 16/26 4-5 ADDI [GB].POINTER, 5899
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Table 3-16. Instruction Set Reference Data (Cont’d.)

AND destination, source Logical AND Word Variable

Operands Clocks Bytes Coding Example
register, mem16 11/15 2-3 AND MC, [GAJ.FLAG_WORD
mem16, register 16/26 2-3 AND [GC].STATUS, BC

ANDB destination, source Logical AND Byte Variable

Operands Clocks Bytes Coding Example
register, mem8 11 2-3 AND BC, [GC]
mem8, register 16 2-3 AND [GA+IX],RESULT, GA

ANDBI destination, source Logical AND Byte Immediate

Operands Clocks Bytes Coding Example
register, immed8 3 3 GA, 01100000B
mem8, immed8 16 3-4 [GC+IX], 2CH

AND I destination, source Logical AND Word Immediate

Operands Clocks Bytes Coding Example
register, immed16 3 4 IX, OH
mem16, immed16 16/26 4-5 [GB+IXJ.TAB, 40H

CALL TPsave, target Call

Operands Clocks Bytes Coding Example
mem24, label 17/23 3-5 CALL [GC+IX].SAVE, GET_NEXT

CLR destination, bit select Clear Bit To Zero

Operands Clocks Bytes Coding Example
mem8, 0-7 16 2-3 CLR [GA], 3

DEC destination Decrement Word By 1

Operands Clocks Bytes Coding Example
register 3 2
mem16 16/26 2-3 DEC [PP],RETRY
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Table 3-16. Instruction Set Reference Data (Cont’d.)

DECB d e s t in a t io n D e c re m e n t B y te  B y 1

Operands Clocks Bytes Coding Example
m em 8 16 2-3 D EC B [G A + IX + J .T A B

HLT (n o  o p e ra n d s ) H a lt C h a n n e l P ro g ra m

Operands Clocks Bytes Coding Example
(no  o p e ra n d s ) 11 2 H LT

INC d e s t in a t io n In c re m e n t W o rd  by 1

Operands Clocks Bytes Coding Example
r e g is te r 3 2 IN C  G A
m em 16 16/26 2-3 IN C  [G A ].C O U N T

INCB d e s t in a t io n In c re m e n t B y te  by 1

Operands Clocks Bytes Coding Example
m em 8 16 2-3 IN C B  [G B ],P O IN T E R

JBT s o u rc e , b it -s e le c t ,  ta rg e t J u m p  if  B itT ru e  (1)

Operands Clocks Bytes Coding Example
m em 8 , 0-7, la b e l 14 3-5 JBT [GA].RESULT_REG,3,DATA_VALID

JMCE s o u rc e , ta rg e t J u m p  if  M a s k e d  C o m p a re  E qua l

Operands Clocks Bytes Coding Example
m em 8, la b e l 14 3-5 JM C E  [G B J.F LA G , S T O P__S E A R C H

JMCNE s o u rc e , ta rg e t J u m p  if M a ske d  C o m p a re  N o t E qua l

Operands Clocks Bytes Coding Example
m em 8 , la b e l 14 3-5 JM C N E  [G B + IX ], N E X T__ITEM

JMP ta rg e t J u m p  U n c o n d it io n a lly

Operands Clocks Bytes Coding Example
la b e l 3 3-4 JM P  R E A D __SE C TO R
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Table 3-16. Instruction Set Reference Data (Cont’d.)

JNBT s o u rc e , b it -s e le c t ,  ta rg e t J u m p  if B it N o t T ru e  (0)

Operands Clocks Bytes Coding Example
m em 8, 0-7, la b e l 14 3-5 JN B T  [G C ], 3, RE__R EAD

JNZ s o u rc e , ta rg e t J u m p  if W o rd  N o t Z e ro

Operands Clocks Bytes Coding Example
re g is te r ,  la b e l 5 3-4 J N Z  BC , W R IT E __L IN E

m em 16, la b e l 12 /16 3-5 J N Z  [P P j.N U M __C H A R S , P U T _ B Y T E

JNZB s o u rc e , ta rg e t J u m p  if  B y te  N o t Z e ro

Operands Clocks Bytes Coding Example
m em 8, la b e l 12 3-5 JN Z B  [G A ], M O R E ^ D A T A

JZ s o u rc e , ta rg e t J u m p  if  W o rd  is  Z e ro

Operands Clocks Bytes Coding Example
re g is te r ,  la b e l 5 3-4 JZ  BC , N E X T __L IN E
m em 16, la b e l 12/16 3-5 JZ  [G C + IX ],IN D E X , B U F __EM P TY

JZB s o u rc e , ta rg e t J u m p  if  B y te  Z e ro

Operands Clocks Bytes Coding Example
m em 8, la b e l 12 3-5 J Z B  [P P ].L IN E S _ L E F T , R E T U R N

LCALL T P sa ve , ta rg e t L o n g  C a ll

Operands Clocks Bytes Coding Example
m em 24, la b e l 17 /23 4-5 LC ALL [G C ].R E T U R N _S A V E , IN IT_8279

LJ BT s o u rc e , b it -s e le c t ,  ta rg e t L o n g  J u m p  if B itT ru e  (1)

Operands Clocks Bytes Coding Example
m em 8, 0-7, la b e l 14 4-5 LJ BT [G A ]. R E S U LT , 1, D A T  A _ O K

LJMCE s o u rc e , ta rg e t L o n g  ju m p  if M a ske d  C o m p a re  E qua l

Operands Clocks Bytes Coding Example
m em 8, la b e l 14 4-5 L JM C E  [G B ], B Y TE __F O U N D
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Table 3-16. Instruction Set Reference Data (Cont’d.)

LJMCNE s o u rc e , ta rg e t L o n g  ju m p  if M a ske d  C o m p a re  N o t E q u a l

Operands Clocks Bytes Coding Example
m em 8, la b e l 14 4-5 L JM C N E  [G C + IX + ], S C A N __N E X T

LJMP ta rg e t L o n g  J u m p  U n c o n d it io n a l

Operands Clocks Bytes Coding Example
la b e l 3 4 L JM P  G E T__C U R S O R

LJNBT s o u rc e , b it -s e le c t ,  ta rg e t L o n g  J u m p  if  B it  N o t T ru e  (0)

Operands Clocks Bytes Coding Example
m e m 8 ,0-7, la b e l 14 4-5 L JN B T  [G C ], 6, C R C C __ER R O R

LJNZ s o u rc e , ta rg e t L o n g  J u m p  if  W o rd  N o t Z e ro

Operands Clocks Bytes Coding Example
re g is te r ,  la b e l 5 4 L JN Z  BC , P A R TIA I___X M IT
m em 16, la b e l 12/16 4-5 L JN Z  [G A + IX ].N __LE F T, P U T__D A T A

LJNZB s o u rc e , ta rg e t L o n g  J u m p  if B y te  N o t Z e ro

Operands Clocks Bytes Coding Example
m em 8, la b e l 12 4-5 LJN ZB  [G B + IX + j.lT E M , B U M P _ C O U N T

LJZ s o u rc e , ta rg e t L o n g  J u m p  if W o rd  Z e ro

Operands Clocks Bytes Coding Example
re g is te r ,  la b e l 5 4 LJZ  IX, F IR S T__E L E M E N T
m em 16, la b e l 12/16 4-5 LJZ  [G B j.X M lT __C O U N T , N O __D A T A

LJZB s o u rc e , ta rg e t L o n g  J u m p  if  B y te  Z e ro

Operands Clocks Bytes Coding Example
m em 8, la b e l 12 4-5 L JZ B  [G A ], R E T U R N __L IN E

LPD d e s t in a t io n , s o u rc e Load  P o in te r  W ith  D o u b le w o rd  V a r ia b le

Operands Clocks Bytes Coding Example
p tr- re g , m em 32 20/28* 2-3 LPD  G A , [P P j.B U F __S T A R T

*20 c lo c k s  if o p e ra n d  is  o n  e ve n  a d d re s s ; 28 if on  o d d  a d d re s s
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Table 3-16. Instruction Set Reference Data (Cont’d.)

LPDI d e s t in a t io n ,  s o u rc e L o a d  P o in te r  W ith  D o u b le w o rd  Im m e d ia te

Operands Clocks Bytes Coding Example
p tr- re g , im m e d 3 2 12 /16* 6 LPD I G B , D IS K__A D D R E S S

*12 c lo c k s  if  in s t ru c t io n  is  o n  e v e n  a d d re s s ; 16 if  o n  o d d  a d d re s s

MOV d e s t in a t io n ,  s o u rc e M o v e  W o rd

Operands Clocks Bytes Coding Example
re g is te r ,  m em 16 8 /12 2-3 M O V IX, [G C ]
m em 16, r e g is te r 10 /16 2-3 M O V [G A ],C O U N T , BC
m em 16, m em 16 18/28 4-6 M O V [G A ].R E A D IN G , [G B ]

MOVB d e s t in a t io n ,  s o u rc e M ove  B y te

Operands Clocks Bytes Coding Example
re g is te r ,  m em 8 8 2-3 M O V B  B C , [P P J.TR A N __C O U N T
m em 8, re g is te r 10 2-3 M O V B  [P P ],R E T U R N __C O D E , G C
m em 8, m em 8 18 4-6 M O V B  [G B + IX + ], [G A + IX + ]

MOVBI d e s t in a t io n ,  s o u rc e M o ve  B y te  Im m e d ia te

Operands Clocks Bytes Coding Example
re g is te r ,  im m e d 8 3 3 M O V B I M C , 'A ’
m em 8, im m e d 8 12 3-4 M O V B I [P P ].R E S U L T , 0

MOVI d e s t in a t io n ,  s o u rc e M o ve  W o rd  Im m e d ia te

Operands Clocks Bytes Coding Example
re g is te r ,  im m e d 1 6 3 4 M O VI BC , 0
m em 16, im m e d 1 6 12/18 4-5 M O VI [G B ], OFFFFH

MOVP d e s t in a t io n ,  s o u rc e M o v e  P o in te r

Operands Clocks Bytes Coding Example
p tr- re g , m em 24 19 /27* 2-3 M O VP TP , [G C + IX ]
m em 24, p tr - re g 16 /22* 2-3 M O V P  [G B ].S A V E __A D D R , GC

• F irs t  f ig u re  is  fo r  o p e ra n d  o n  e ve n  a d d re s s ; s e c o n d  is  fo r  o d d -a d d re s s e d  o p e ra n d .

NOP (n o  o p e ra n d s ) N o  O p e ra tio n

Operands Clocks Bytes Coding Example
(no  o p e ra n d s ) 4 2 N O P
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Table 3-16. Instruction Set Reference Data (Cont’d.)

NOT d e s t in a t io n /d e s t in a t io n ,  s o u rc e L o g ic a l N O T  W o rd

Operands Clocks Bytes Coding Example
re g is te r 3 2 N O T M C

m em 16 16/26 2-3 N O T [G A ].P A R M

re g is te r ,  m em 16 11 /15 2-3 N O T BC , [G A + IX ],L IN E S __LE FT

NOTB d e s t in a t io n /d e s t in a t io n ,  s o u rc e L o g ic a l N O T  B y te

Operands Clocks Bytes Coding Example
m em 8 16 2-3 N O T B  [G A ].P A R M __REG

re g is te r ,  m em 8 11 2-3 N O T B  IX, [G B ].S T A T U S

OR d e s t in a t io n ,  s o u rc e L o g ic a l OR W o rd

Operands Clocks Bytes Coding Example
re g is te r ,  m em 16 11/15 2-3 O R M C , [G O ].M A S K
m em 16 , r e g is te r 16 /26 2-3 O R [G O ], BC

ORB d e s t in a t io n ,  s o u rc e L o g ic a l O R B y te

Operands Clocks Bytes Coding Example
re g is te r ,  m em 8 11 2-3 O R B  IX, [P P ],P O IN T E R
m em 8, re g is te r 16 2-3 O R B  [G A + IX + ], G B

ORBI d e s t in a t io n , s o u rc e L o g ic a l O R B y te  Im m e d ia te

Operands Clocks Bytes Coding Example
re g is te r ,  im m e d 8 3 3 O R B I IX, 00010001B
m em 8 , im m e d 8 16 3-4 O R B I [G B ].C O M M A N D , 0CH

ORI d e s t in a t io n ,  s o u rc e L o g ic a l OR W o rd  Im m e d ia te

Operands Clocks Bytes Coding Example
re g is te r ,  im m e d 1 6 3 4 ORI M C , OFFODH
m e m 1 6 ,im m e d 1 6 16/26 4-5 ORI [G A ], 1000H

SETB d e s t in a t io n ,  b it -s e le c t S e t B it  to  1

Operands Clocks Bytes Coding Example
m em 8, 0-7 16 2-3 S E TB  [G A J.P A R M __R EG , 2

SINTR (n o  o p e ra n d s ) S e t In te r ru p t S e rv ic e  B it

Operands Clocks Bytes Coding Example
(no  o p e ra n d s ) 4 2 S IN TR
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Table 3-16. Instruction Set Reference Data (Cont’d.)

TSL d e s t in a t io n ,  s e t-v a lu e , ta rg e t T e s t and  S e t W h ile  L o c k e d

Operands Clocks Bytes Coding Example
m em 8, im m e d 8 , s h o rt- la b e l 14 /16* 4-5 T S L  [G A J.F LA G , OFFH, N O T__R E A D Y

*14 c lo c k s  if d e s t in a t io n  #  0; 16 c lo c k s  if  d e s t in a t io n  =  0

WID s o u rc e -w id th ,  d e s t-w id th S e t L o g ic a l B u s  W id th s

Operands Clocks Bytes Coding Example
8 /1 6 ,8 /1 6 4 2 W ID 8 ,8

XFER (n o  o p e ra n d s ) E n te r  D M A  T ra n s fe r  M o d e  A f te r  N e x t In s tru c t io n

Operands Clocks Bytes Coding Example
(no  o p e ra n d s ) 4 2 XFER

Table 3-17. Instruction Fetch Timings 
(Clock Periods)

INSTRUCTION
LENGTH
(BYTES)

BUS WIDTH

8 16
(D (2)

2 14 7 11
3 18 14 11
4 22 14 15
5 26 18 15

(1) F irs t b y te  o f  in s t ru c t io n  is  o n  an  e ve n  
a d d re s s .

(2) F irs t b y te  o f  in s t ru c t io n  is  o n  an  o d d  a d d re s s . 
A d d  3 c lo c k s  if  f i r s t  b y te  is  n o t in  q u e u e  (e .g ., 
f i r s t  in s t ru c t io n  fo l lo w in g  p ro g ra m  tra n s fe r ) .

3.8 Addressing Modes

8089 instruction operands may reside in registers, 
in the instruction itself or in the system or I/O 
address spaces. Operands in the system and I/O 
spaces may be either memory locations or I/O 
device registers and may be addressed in four dif
ferent ways. This section describes how the chan

nel processes different types of operands and how 
it calculates addresses using its addressing modes. 
Section 3.9 describes the ASM-89 conventions 
that programmers use to specify these operands 
and addressing modes.

Register and Imm ediate Operands

Registers may be specified as source or destina
tion operands in many instructions. Instructions 
that operate on registers are generally both 
shorter and faster than instructions that specify 
immediate or memory operands.

Immediate operands are data contained in 
instructions rather than in registers or in memory. 
The data may be either 8 or 16 bits in length. The 
limitations of immediate operands are that they 
may only serve as source operands and that they 
are constant values.

Memory Addressing Modes

Whereas the channel has direct access to register 
and immediate operands, operands in the system 
and I/O space must be transferred to or from the 
IOP over the bus. To do this, the IOP must 
calculate the address of the operand, called its
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effective address (EA). The programmer may 
specify that an operand’s address be calculated in 
any of four different ways; these are the 8089’s 
memory addressing modes.

The Effective Address

An operand in the system space has a 20-bit effec
tive address, and an operand in the I/O space has 
a 16-bit effective address. These addresses are 
unsigned numbers that represent the distance (in 
bytes) of the low-order byte of the operand from 
the beginning of the address space. Since the 8089 
does not “ see” the segmented structure of the 
system space that it may share with an 8086 or 
8088, 8089 effective addresses are equivalent to 
8086/8088 physical addresses.

All memory addressing modes use the content of 
one of the pointer registers, and the state of that 
register’s tag bit determines whether the operand 
lies in the system or the I/O space. If the operand 
is in the I/O  space (tag = 1), bits 16-19 of the 
pointer register are ignored in the effective 
address calculation. Section 4.3 describes the two 
fields (AA and MM) in the encoded machine 
instruction that specify addressing mode and base 
(pointer) register.

Based Addressing

In based addressing (figure 3-39), the effective 
address is taken directly from the content of GA, 
GB, GC or PP. Using this addressing mode, one 
instruction may access different locations if the 
register is updated before the instruction executes. 
LPD, MOV, MOVP or arithmetic instructions 
might be used to change the value of the base 
register.

Offset Addressing

In this mode (figure 3-40) an 8-bit unsigned value 
contained in the instruction is added to the con
tent of a base register to form the effective 
address. The offset mode provides a convenient 
way to address elements in structures (a 
parameter block is a typical example of a struc
ture). As shown in figure 3-41, a base register can 
be pointed at the base (first element) in the struc
ture, and then different offsets can be used to 
access the elements within the structure. By 
changing the base address, the same structure can 
be relocated elsewhere in memory.

Indexed Addressing

An indexed address is foimed by adding the con
tent of register IX (interpreted as an unsigned 
quantity) to a base register as shown in figure
3-42. Indexed addressing is often used to access

Figure 3-39. Based Addressing
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Figure 3-40. Offset Addressing

O F F S E T

^  lT
H IG H  A D D R E S S E S

E R R O R L I N E C T

B U F F _ P T R

P O S I T I O N C U R S O R

E N D __B U S

L O W  A D D R E S S E S

L J

Figure 3-41. Accessing a Structure with Offset Addressing

array elements (see figure 3-43). A base register 
locates the beginning of the array and the value in 
IX selects one element, i.e., it acts as the array 
subscript. The fth element of a byte array is 
selected when IX contains (j  -  1). To access the 
/th element of a word array, IX should contain 
(O'-l )  *2).

Indexed Auto-Increment Addressing

In this variation of indexed addressing, the effec
tive address is formed by summing IX and a base 
register, and then IX is incremented automat
ically. (See figure 3-44.) The addition takes place
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after the EA is calculated. IX is incremented by 1 
for a byte operation, by 2 for a word operation 
and by 3 for a MOVP instruction. This addressing

mode is very useful for “ stepping through” suc
cessive elements of an array (e.g., a program loop 
that sums an array).

Figure 3-42. Indexed Addressing

L O W  A D D R E S S E S

Figure 3-43. Accessing a Word Array with Indexed Addressing
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Figure 3-44. Indexed Auto-Increment Addressing

3.9 Programming Facilities

The compatibility of the 8089 with the 8086 and 
8088 extends beyond the hardware interface. 
Comparing figure 3-45, with figure 2-45, one can 
see that, except for the translate step, the software 
development process is identical for both 
8086/8088 and 8089 programs. The ASM-89 
assembler produces a relocatable object module 
that is compatible with the 8086 family software 
development utilities LIB-86, LINK-86, LOC-86 
and OH-86, described in section 2.9. All of these 
development tools run on an Intellec® 800 or 
Series II microcomputer development system.

This section surveys the facilities of the ASM-89 
assembler and discusses how LINK-86 and 
LOC-86 can be used in 8089 software develop
ment. For a complete description of the 8089 
assembly language, consult 8089 Assembly 
Language User’s Guide, Order No. 9800938, 
available from Intel’s Literature Department.

ASM-89

The ASM-89 assembler reads a disk file contain
ing 8089 assembly language statements, translates 
these statements into 8089 machine instructions, 
and writes the result into a second disk file. The 
assembly input is called a source module, and the 
principal output is a relocatable object module. 
The assembler also produces a file that lists the 
module and flags any errors detected during the 
assembly.

Statements

Statements are the building blocks of ASM-89 
programs. Figure 3-46 shows several examples of 
ASM-89 statements. The ASM-89 assembler gives 
programmers considerable flexibility in format
ting program statements. Variable names and 
labels (identifiers) may be up to 31 characters
long, the underscore (_) character may be used
to improve the readability of longer names (e.g.,
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WAIT_UNTIL__READY). The component
parts of statements (fields) need not be located at 
particular “ columns” of the statement. Any 
number of blank characters may separate fields

and multiple identifiers within the operand field. 
Long statements may be continued onto the next 
link by coding an ampersand (&) as the first 
character of the continued line.

(FROM PL/M-86 & ASM-86 TRANSLATORS)

/
\

RELOC
OBJECT

MODULES

1 “

/I
\

Figure 3-45. 8089 Software Development Process

; T H IS  S T A T E M E N T  C O N T A IN S  A  
A D D I B C ,5  

A D D I B C , 5 
M O V  [G A ] .  S T A T U S ,
& 6
S O U R C E  E Q U G A  
L I N E _ B U F F E R __A D D R E S S  D D

C O M M E N T  F IE L D  O N L Y  
; T Y P IC A L  A S M 89 IN S T R U C T IO N  
; N O  “ C O L U M N ”  R E Q U IR E M E N T S

; A  C O N T IN U E D  S T A T E M E N T  
; A  S IM P L E  A S M 89 D IR E C T IV E  
; A  L O N G  ID E N T IF IE R

Figure 3-46. ASM-89 Statements
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A statement whose first non-blank character is a 
semicolon is a comment statement. Comments 
have no affect on program execution and, in fact, 
are ignored by the ASM-89 assembler. Never
theless, carefully selected comments are included 
in alt well written ASM-89 programs. They sum
marize, annotate and clarify the logic of the pro
gram where the instructions are too 
“ microscopic” to make the operation of the pro
gram self-evident.

An ASM-89 instruction statement (figure 3-47) 
directs the assembler to build an 8089 machine 
instruction. The optional label field assigns a 
symbolic identifier to the address where the 
instruction will be stored in memory. A labelled 
instruction can be the target of a program 
transfer; the transferring instruction specifies the 
label for its target operand. In figure 3-47 the 
labelled instruction conditionally transfers to 
itself; the program will loop on this one instruc

tion as long as bit 3 of the byte addressed by 
[GA].STATUS is not true. The mnemonic field of 
an instruction statement specifies the type of 8089 
machine instruction that the assembler is to build.

The operand field may contain no operands or 
one or more operands as required by the instruc
tion. Multiple operands are separated by commas 
and, optionally, by blanks. Any instruction state
ment may contain a comment field (comment 
fields are initiated by a semicolon).

An ASM-89 directive statement (figure 3-48) does 
not produce an 8089 machine instruction. Rather, 
a directive gives the assembler information to use 
during the assembly. For example, the DS (define 
storage) directive in figure 3-48 tells the assembler 
to reserve 80 bytes of storage and to assign a sym
bolic identifier (INPUT_BUFFER) to the first
(lowest-addressed) byte of this area. The ASM-89 
assembler accepts 14 directives; the more com
monly used directives are discussed in this section.

| DEMO: | | JNBT | |  [GA].STATUS,3,DEMO| | ;WAIT UNTIL READY |

----- COMMENT (OPTIONAL)

--------------------------------------------- OPERANDS (REQUIRED/PROHIBITED)

------------------------------------------------------------------------------- MNEMONIC (REQUIRED)

---------------------------------------------------------------------------------------------------LABEL (OPTIONAL)

Figure 3-47. ASM-89 Instruction Format

| TERM INAL LINE STORED HERE |

L  COMMENT (OPTIONAL)

-------------------OPERANDS (REQUIRED/PROHIBITED)

-------------------MNEMONIC (REQUIRED)

-------------------LABEL/NAME (REQUIRED/PROHIBITED)

Figure 3-48. ASM-89 Directive Format
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The first field in a directive may be a label or a 
name; individual directives may require or pro
hibit names, while labels are optional for direc
tives that accept them. A label ends in a colon like 
an instruction statement label. However, a direc
tive label cannot be specified as the target of a 
program transfer. A name does not have a colon. 
The second field is the directive mnemonic, and 
the assembler distinguishes between instructions 
and directives by this field. Any operands 
required by the directive are written next; multiple 
operands are separated by commas and, option
ally, by blanks. A comment may be included in 
any directive by beginning the text with a 
semicolon.

Constants

Binary, decimal, octal and hexadecimal numeric 
constants (figure 3-49) may be written in ASM-89 
instructions and directives. The assembler can 
add and subtract constants at assembly time. 
Numeric constants, including the resufts of 
arithmetic operations, must be representable in 16 
bits. Positive numbers cannot exceed 65,535 
(decimal); negative numbers, which the assembler 
represents in two’s complement notation, cannot 
be “ more negative” than -32,768 (decimal).

Character constants are enclosed in single quote 
marks as shown in figure 3-49. Strings of 
characters up to 255 bytes long may be written 
when initializing storage. Instruction operands, 
however, can only be one or two characters long 
(for byte and word instructions respectively).

As an aid to program clarity, The EQU (equate) 
directive may be used to give names to constants 
(e.g., DISK_STATUS EQU 0FF20H).

Defining Data

Four ASM-89 directives reserve space for memory 
variables in the ASM-89 program (see figure
3-50). The DB, DW and DD directives allocate 
units of bytes, words and doublewords, respec
tively, initialize the locations, and optionally label 
them so that they may be referred to by name in 

. instruction statements. The label of a storage 
directive always refers to the first (lowest- 
addressed) byte of the area reserved by the 
directive.

The DB and DW directives may be used to define 
byte- and word-constant scalars (individual data 
items) and arrays (sequences of the same type of 
item). For example, a character string constant 
could be defined as a byte array:

SIGN_ON_MSG: DB ‘PLEASE ENTER PASSWORD'

The DD directive is typically used to define the 
address of a location in the system space, i.e., a 
doubleword pointer variable. The address may be 
loaded into a pointer register with the LPD 
instruction.

The DS directive reserves, and optionally names, 
storage in units of bytes, but does not initialize 
any of the reserved bytes. DS is typically used for 
RAM-based variables such as buffers. As there is 
no special directive for defining a physical address 
pointer, DS is typically used to reserve the three 
bytes used by the MOVP instruction.

MOVBI G A ,‘A ' ; CHARACTER
MOVBI GA, 41H ; HEXADECIMAL
MOVBI GA, 65 ; DECIMAL
MOVBI GA, 65D ; DECIMAL ALTERNATIVE
MOVBI GA.101Q ; OCTAL
MOVBI GA, 1010 ; OCTAL ALTERNATIVE
MOVBI GA, 01000001B ; BINARY
; NEXT TWO STATEMENTS ARE EQUIVALENT AND
; ILLUSTRATE TWO’S COMPLEMENT REPRESENTATION
; OF NEGATIVE NUMBERS
MOVBI GA, -5
MOVBI GA, 11111011B

Figure 3-49. ASM89 Constants
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; ASM89 DIRECTIVE
ALPHA: DB 1

DB -2
DB ‘A ’ , ‘B’

BETA: DW 1
DW -5
DW ‘AB ’
DW 400, 500
DW 400H,500H

gamma: DW BETA

DELTA DD GAMMA

ZETA: DS 80

MEMORY CONTENT (HEX)
01
FE (TWO’S COMPLEMENT)
4142
0100
FAFF
4241
2410F401 
0004 0005
OFFSET OF BETA ABOVE,
FROM BEGINNING OF PROGRAM 
ADDRESS (SEGMENT & OFFSET) 
OFGAMMA
80 BYTES, UNINITIALIZED

Figure 3-50. ASM-89 Storage Directives

Structures

An ASM-89 structure is a map or template that 
gives names and relative locations to a collection 
of related variables that are called structure 
elements or members. Defining a structure, 
however, does not allocate storage. The structure 
is, in effect, overlaid on a particular area of 
memory when one of its elements is used as an 
instruction operand. Figure 3-51 shows how a 
structure representing a parameter block could be 
defined and then used in a channel program. The

assembler uses the structure element name to pro
duce an offset value (structures are used with the 
offset addressing mode). Compared to “ hard 
coded” offsets, structures improve program clar
ity and simplify maintenance. If the layout of a 
memory block changes, only the structure defini
tion must be modified. When the program is 
reassembled, all symbolic references to the struc
ture are automatically adjusted. When multiple 
areas of memory are laid out identically, a single 
structure can be used to address any area by 
changing the content of the pointer (base) register 
that specifies the structure’s “ starting address.”

MEMORY MAP

T

+ 10

+ 4 

+ 2

PP------- * - + 0

HIGHER ADDRESSES

BUFFER LEN

BUFFER .START

COMMAND RESULT

TP_RESERVED

LOWER ADDRESSES

STRUCTURE DEFINITION

PARM_BLOCK STRUC
TP_RESERVED: DS 4
COMMAND: DS 1
RESULT: DS 1
BUFFER_ START: DS 4
BUFFER_LEN: DS 2

PARM_BLOCK ENDS

USING “ HARD-CODED” OFFSETS

LPD GA, [PPj.6 
MOVBI [PP].5,0

USING STRUCTURE ELEMENT NAMES

LPD GA, [PP].BUFFER_START 
MOVBI [PP].RESULT,0

Figure 3-51. ASM-89 Structure Definition and Use
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Addressing Modes

Table 3-18 summarizes the notation a program
mer uses to specify how the effective address of a 
memory operand is to be computed. Examples of 
typical ASM-89 coding for each addressing mode, 
as well as register and immediate operands, are 
provided in figure 3-52. Notice that a bracketed 
reference to a register indicates that the content of 
the register is to be used to form the effective 
address of a memory operand, while an 
unbracketed register reference specifies that the 
register itself is the operand.

The following examples summarize how the 
memory addressing modes can be used to access 
simple variables, structures and arrays.
• If GA contains the address of a memory 

operand, then [GA] refers to that operand.
• If GA contains the base address of a 

structure, then [GAj.DATA refers to the 
DATA element (field) in that structure. If 
DATA is six bytes from the beginning of the 
structure, then [GA].6 refers to the same 
location.

• If GA contains the starting address of an 
array, then [GA+1X] addresses the array ele
ment indexed by IX. For example, if IX con
tains the value 4H, the effective address 
refers to the fifth element of a byte array, or 
the third element of a word array. [GA+IX+] 
selects the same element and additionally 
auto-increments IX by 1 (byte operation), 2 
(word operation) or 3 (MOVP instruction) in 
anticipation of accessing the next array 
element.

Note that any pointer register could have been 
substituted for GA in the previous examples.

Table 3-18. ASM-89 Memory Addressing 
Mode Notation

Notation Addressing Mode

[p tr -r e g } 
\p tr - r e g ] .o f f s e t  
\p tr -re g  +  IX]
[p tr -r e g  +  IX +]

B a se d
O ffs e t
In d e x e d
In d e x e d  P o s t A u to - in c re m e n t

p tr - r e g  =  G A , G B , G C  o r  PP 
o f f s e t  =  8 -b it s ig n e d  v a lu e ; m a y  b e  s t ru c 

tu re  e le m e n t

Program Transfer Targets

As discussed in section 3.7, program transfer 
instructions operate by adding a signed byte or 
word displacement to the task pointer. Table 3-19 
shows how the ASM-89 assembler determines the 
sign and size of the displacement value it places in 
a program transfer machine instruction. In the 
table, the terms “ backward” and “ forward” 
refer to the location of a label specified as a 
transfer target relative to the transfer instruction. 
“ Backward” means the label physically precedes 
the instruction in the source module, and “ for
ward” means the label follows the instruction in 
the source text. The distances are from the end of 
the transfer instruction; the distance to the 
instruction immediately following the transfer is 
0 bytes.

A D D I G A , 5
A D D G C , [G B ]
A D D B I [P P ],1 0
A D D S IX , [G B ] .5
A D D B BC, [G C ].C O U N T
A D D [G C  +  IX ],  B C
A D D I [G A  +  IX  +  ] ,5
A D D B [P P ].E R R O R , [G A]

R E G IS T E R , IM M E D IA T E  
R E G IS T E R , M E M O R Y  (B A S E D )
M E M O R Y  (B A S E D ) ,  IM M E D IA T E  
R E G IS T E R , M E M O R Y  (O F F S E T )
R E G IS T E R , M E M O R Y  (O F F S E T )
M E M O R Y  ( IN D E X E D ) ,  R E G IS T E R
M E M O R Y  ( IN D E X E D  A U T O - IN C R E M E N T ) ,  IM M E D
M E M O R Y  (O F F S E T ),  M E M O R Y  (B A S E D )

Figure 3-52. ASM-89 Operand Coding Examples
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Two important points can be drawn from table
3-19. First, a target must lie within 32k bytes of a 
transfer instruction; this should not prove restric
tive except in very large programs. Second, one 
byte can be saved in the assembled instruction by 
writing the short mnemonic when the target is 
known to be within -128 through +127 assembled 
bytes of the transfer.

It is also important to note that a program 
transfer target must reside in the same module as 
the transferring instruction, i.e., the target 
address must be known at assembly time.

Procedures

An ASM-89 program may invoke an out-of-line 
procedure (subroutine) with the CALL/LCALL 
instruction. The first instruction operand 
specifies a memory location where the content of 
TP will be stored as a physical address pointer 
before control is transferred to the procedure. 
The procedure may return to the instruction 
following the CALL/LCALL by using the 
MOVP instruction to restore TP from the save 
area. Figure 3-53 illustrates one approach to pro
cedure linkage.

A channel program may use the first two words of 
its parameter block (pointed to by PP) as a task 
pointer save area. However, this is not recom
mended if there is any chance that the CPU will

issue a “ suspend” command to the channel; this 
command stores the current value of TP in the 
same location, possibly overwriting a return 
address.

As in any program transfer, the target of a 
CALL/LCALL instruction must be contained in 
the same module and within 32k bytes of the 
instruction.

Segment Control

The relocatable object module produced by the 
ASM-89 assembler consists of a single logical seg
ment. (A segment is a storage unit up to 64k bytes 
long; for a more complete description, refer to 
sections 2.3 and 2.7.) The ASM-89 SEGMENT 
and ENDS directives name the segment as shown 
in figure 3-54. Typically, all instructions and most 
directives are coded in between these directives. 
The END directive, which terminates the 
assembly, is an exception.

The LOC-86 utility can assign this logical segment 
to any memory address that is a physical segment 
boundary (i.e., whose low-order four bits are 
0000). In a ROM-based system, variable data 
(which must be in RAM) can be “ clustered” 
together at one “ end” of the program as shown in 
figure 3-55. The ORG directive can then be used 
to force assembly of the variables to start at a 
given offset from the beginning of the segment 
(2,000 hexadecimal bytes in figure 3-55). As the

Table 3-19. Program Transfer Displacement
Target Location

Mnemonic
Form Direction Distance Displacement 

Sign Bytes
B a c k w a rd <128 -  1
F o rw a rd <127 +  1

S h o r t B a c k w a rd <32,768 -  2
(e .g .,  JM P ) F o rw a rd <32,767 E rro r

B a ckw a rd >32,768 E rro r
F o rw a rd >32,767 E rro r

B a ckw a rd <128 -  2
F o rw a rd <127 +  2

L o n g B a c k w a rd <32,768 -  2
(e .g .,  LJM P ) F o rw a rd <32,767 +  2

B a c k w a rd >32,768 E rro r
F o rw a rd >32,767 E rro r
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CALL SAVE: DS 3 ; TP SAVE AREA

SET UP TP SAVE AREA
NOTE: EXAMPLE ASSUMES PROGRAM 

IS IN I/O SPACE. USE LPDI 
IF IN SYSTEM SPACE.

MOVI GC, CALLSAVE ; LOAD ADDRESS TO GC
CALL IT.

LCALL [GC],DEMO

HLT ; LOGICAL END OF PROGRAM

; DEFINETHE PROCEDURE.
DEMO:
; PROCEDURE INSTRUCTIONS GO HERE.
; NOTE: PROCEDURE MUST NOT UPDATE GC 
; AS IT POINTS TO THE RETURN ADDRESS.

; RETURN TO CALLER.
MOVP TP, [GC]

Figure 3-53. ASM-89 Procedure Example

CHANNEL1 SEGMENT ; START OF SEGMENT

ASM89 SOURCE STATEMENTS

CHANNEL! ENDS ; END OF SEGMENT
END ; END OF ASSEMBLY

Figure 3-54. ASM-89 SEGMENT and ENDS Directives

figure shows, the segment can then be located so 
that instructions and constants fall into the ROM 
portion of memory, while the variable part of the 
segment is located in RAM. The entire segment, 
including any “ unused” portions, of course, can
not exceed 64k bytes.

Intermodule Communication

An ASM-89 module can make some of its 
addresses available to other modules by defining 
symbols with the PUBLIC directive. At a

minimum, a channel program must make the 
address of its first instruction available to the 
CPU module that starts the channel program. 
Figure 3-56 shows an ASM-89 module that con
tains three channel programs labelled READ, 
WRITE and DELETE. The example shows how a 
PL/M -8 6  program and an ASM-8 6  program 
could define these “ entry points” as EXTER
NAL and EXTRN symbols respectively. When 
the modules are linked together, LINK-8 6  will 
match the externals with the publics, thus pro
viding the CPU programs with the addresses they 
need.
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DEMO: SEGMENT 
;CONSTANT DATA

INSTRUC TIO N S

ORG 2000H 
VARIABLE DATA

DEMO ENDS 
END

DEMO SEGMENT. 
LOCATED HERE

HIGHER ADDRESSES 

(AVAILABLE)

2000H

1000H

VARIABLES

(UNUSED) 

INSTRUCTIONS 

CONSTANTS 

(AVAILABLE) 

LOWER ADDRESSES

♦
RAM

ROM

-  \

Figure 3-55. Using the ASM-89 ORG Directive

ASM-89 MODULE DEFINES THREE PUBLIC SYMBOLS 

PUBLIC READ, WRITE, DELETE

READ: ; ASM89 INSTRUCTIONS FOR “ READ”  OPERATION

HLT
WRITE: ; ASM89 INSTRUCTIONS FOR “ WRITE”  OPERATION

HLT
DELETE: ; ASM89 INSTRUCTIONS FOR “ DELETE”  OPERATION

HLT

Figure 3-56. ASM-89 PUBLIC Directive
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PL/M-86 MODULE USES “ WRITE”  SYMBOL

DECLARE (READ,WRITE,DELETE) POINTER EXTERNAL; 
DECLARE PARM$BLOCK STRUCTURE 

(TPSSTART POINTER,
BUFFER$ADDR POINTER,
BUFFER$LEN WORD);

/ ‘ SET UP “ WRITE”  CHANNEL OPERATION*/ 
PARMSBLOCK. TPSSTART = WRITE;

ASM-86 MODULE USES “ READ”  SYMBOL

EXTRN READ,WRITE,DELETE

READ_PTR DD READ
WRITE_PTR DD WRITE
DELETE_PTR DD DELETE

; PARM_BLOCK
EVEN ; FORCE TO EVEN ADDRESS

TP_START DD ?
BUFFER_ADDRDD ?
BUFFER_LEN DW?

; SET UP “ READ”  CHANNEL OPERATION
MOV AX, WORD PTR READ_PTR ; 1ST WORD
MOV WORD PTR TP_START, AX
MOV AX, WORD PTR READ_PTR ; 2ND WORD
MOV WORD PTR TP_START + 2, AX

Figure 3-56. ASM-89 PUBLIC Directive (Cont’d.)

Conversely, an ASM-89 module can obtain the 
address of a public symbol in another module by 
defining it with the EXTRN directive. An external 
symbol, however, can only appear as the initial 
value operand of a DD directive (see figure 3-57). 
This effectively means that an ASM-89 program’s

use of external symbols is limited to obtaining the 
addresses of data located in the system space. 
Another way of doing this, which may be 
preferable in many cases, is to have the CPU pro
gram place system space addresses in the 
parameter block.

Mnemonics © Intel, 1979
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PL/M-86 PROGRAM DECLARES PUBLIC SYMBOL “ BUFFER”

DECLARE BUFFER (80) BYTE PUBLIC;

ASM-89 PROGRAM OBTAINS ADDRESS OF PUBLIC SYMBOL “ BUFFER”  

EXTRN BUFFER

BUF_ADDRESS DD BUFFER

LPD GA, BUF_ADDRESS ; POINT TO SYSTEM BUFFER

Figure 3-57. ASM-89 EXTRN Directive

Sample Program

Figure 3-58 diagrams the logic of a simple 
ASM-89 program; the code is shown in figure
3-59. The program reads one physical record (sec
tor) from a diskette drive controlled by an 8271 
Floppy Disk Controller. No particular system 
configuration is implied by the program, except 
that the 8271 resides in the IOP’s I/O space.

Hardware address decoding logic is assumed to be 
set up as follows:

• reading location FFOOH selects the 8271
status register,

• writing location FFOOH selects the 8271
command register,

• reading location FF01H selects the 8271
result register

• writing location FF01H selects the 8271
parameter register

• decoding the address FF04H provides the 
8271 DACK (DMA acknowledge) signal. Figure 3-58. ASM-89 Sample Program Flow
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The program uses structures to address the 
parameter block and the 8271 registers. Register 
PP contains the address of the parameter block, 
and the program loads GC with FF00H to point 
to the 8271 registers. The program’s entry point 
(the label START) is defined as a PUBLIC sym
bol so that the CPU program can place its address 
in the parameter block when it starts the program.

Register IX is used as a retry counter. If the 
transfer is not completed successfully (bit 3 of the 
8271 result register # 0 ), the program retries the 
transfer up to 10  times.

Since the 8271 automatically requests a DMA 
transfer upon receipt of the last parameter, this 
parameter is sent immediately following the 
XFER command.

8 0 8 9  A S S E M B L E R
I S I S - I I  8 0 8 9  A S S E M B L E R  V 1 . 0  A S S E M B L Y  OF MODULE F L O P P Y  O B J E C T  MODULE P L A C E D  IN  : F 0 : F L O P P Y . 0 B J  A S S E M B L E R  I N V O K E D  BY  A SM 89 F L O P P Y . A 8 9

1
0000 2 F L O P P Y SEGMENT3 • * « *4 ; * • »  8 0 8 9  PROGRAM TO READ S E C T O R  FROM F L O P P Y  D I S K5

6
• * « *7 : • * *  L A Y  OUT PARAMETER B L O C K .

8 PARM BL O CK S T R U C
0000 9 R E S E R V E D  T P : DS 40 0 0 4 10 BU FF P T R : DS 40 0 0 8 11 T R A C K : DS 10 0 0 9 12 S E C T O R : DS 1000A 13 RETURN CO D E: DS 1000B 14 PARM B L O C K ENDS1516 ; * * * L A Y  OUT 8271 D E V I C E  R E G I S T E R S .17 F L O P P Y  REG S S T R U C
0000 18 COMMAND S T A T : DS 1
0001 19 PARM R E S U L T : DS 1
0002 20 F L O P P Y  RE GS ENDS

21
22 . * * * 8 2 7 1  A D D R E S S E S .F F  00 23 F L O P P Y  REG ADDR EQU 0 F F 0 0 H  ; L O W - A D D R E S S E D  R E G I S T E RF F  04 24 DACK 8271 EQU O F F 0 4 H ;DMA ACKNOWLEDGE252 6 ; * * » M A K E  PROGRAM ENTRY P O I N T  A D D R E S S27 A V A I L A B L E TO OTHER M O D U L E S .28 P U B L I C S T A R T2930 • • • C L E A R  RETURN CODE IN PARAMETER B L O C K .0 0 0 0  0 A 4 F  OA 00 31 S T A R T : MOVBI [ P P ] . R E T U R N  C O D E , 03233 • • • I N I T I A L I Z E  RE TRY  C O U N T .0 0 0 4  B 130 0 A 0 0 34 MOVI I X ,  103536 • • • P O I N T  GC AT LOW-ORDER 8271 R E G I S T E R .0 0 0 8  5 1 3 0  OOFF 37 MOVI G C , F L O P P Y  RE G ADDR3839 • • • S E N D  COMMAND S E Q U E N C E  TO 8 2 7 1 ,  H O L D I N G  F I N A L  PARM.40 • • • W A I T  U N T I L  8271 I S NOT B U S Y .0 0 0 C  EABA 00 F C 41 R E T R Y : J N B T [ G C J . C O M M A N D  S T A T , 7 , R E TR Y42 • • • S E N D  " R E A D  S E C T O R , D R I V E  0 "  COMMAND.0 0 1 0  0A4 E 00 12 43 MO VB I [ G C J . C O M M A N D  S T A T , 0 1 2 H44 • • • S E N D  T R AC K A D D R E S S P A RA M ET ER .0 0 1 4  0 2 9 3  08  0 2 C E  01 45 MOVB [ G C J . P A R M  R E S U L T , [ P P ] . T R A C K9697 • • • L O A D  CHANN EL CO NTR OL R E G I S T E R  S P E C I F Y I N G :98 FROM POR T TO MEMORY99 S Y N C H R O N I Z E  ON S O U R C E ,50 GA P O I N T S  TO S O U R C E t51 TE R M I N A T E  ON E X T ,52 T E R M I N A T I O N  O F F S E T -  0 .0 0 1 A D 1 3 0  2 0 8 8 53 MOVI C C , 0 8 8 2 0 H59

Figure 3-59. ASM-89 Sample Program
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55 ; * * * S E T  S O U R C E  BUS  ’= 8 , D E S T  BU S  = 1 6 .
0 0 1E A 0 0 0 56 WID 8 , 16575 8 ; * * * P O I N T  GB AT D E S T I N A T I O N ,  GA A T S O U R C E .
0020 2 3 8 B 04 59 LPD G B , [ PP ] . B U FF  PTR0 0 2 3 1 130 0 4 F F 60 MOVI G A , D A C K 8 2 7 161b2 ; * * * I N S U R E  THAT  8271 I S RE AD Y  FOR L A S T  P A RA M ET ER .0 0 2 7 AABA 00 FC 63 WAIT 1:  J N B T [ G C  J . C O M M A N D S T A T , 5 , WA IT 16465 ; * * * P R E P A R E  FOR DMA.0 0 2 B 6 0 0 0 66 X FE R67b 8 ; * » * S T A R T  DMA BY S E N D I N G  F I N A L  PARAMETER TO 8 2 7 1 .002D 0 293 09 0 2 C E 01 69 MOVB [ G C J . P A R M _ R E S U L T , [ P P ] . S E C T O R7071 ; * * * P R O G R A M  RE SUM ES  HERE F O L L O W I N G  E X T .7273 ; * # # i f  T R A N S F E R  I S  OK THEN E X I T ,  E L S E  TR Y A G A I N .0 0 3 3 6ABE 01 05 74 J B T [ G C  J . PARM R E S U L T , 3 , E X I T7576 ; » * * D E C R E M E N T  R E T R Y  C O UN T.0 0 3 7 A 0 3 C 77 DEC I X7879 ; * « * T R Y  A G A I N  I F  COUNT NOT E X H A U S T E D .0 0 3 9 A 8 4 0 DO 80 J N Z I X , R E T R Y8182 ; * * » W A I T  U N T I L  8271 I S NOT B U S Y .0 0 3 C EABA 00 F C 83 E X I T :  J N B T [ G C J . C O M M A N D _ S T A T , 7 , E X I T8485 ; * * * S E N D  " R E A D  R E S U L T " COMMAND TO 8 2 7 1 .0 0 4 0 0A4E 00 2 C 86 MO VB I [ G C J . C O M M A N D S T A T , 0 2 C H87

88 ; * * * W A I T  FOR R E S U L T .0 0 4 4 8ABA 00 FC 89 W A I T 2 :  J N B T [ G C J . C O M M A N D S T A T , 4 , W A I T 29091 ; * * * P O S T  R E S U L T  IN PARAMETER B L O C K  FOR C P U .0 0 4 8 0 2 9 2 01 0 2 C F OA 92 MOVB [ P P ] . R E T U R N  C O D E , [ G C J . P A R M R E S U L T9394 ; * * * I N T E R R  UPT C P U .0 0 4 E 4 0 0 0 95 S I N T R9697 ; » * « S T O P  E X E C U T I O N .0 0 5 0 2 0 4 8 98 HLT990 0 5 2 100 F L O P P Y  ENDS101 END
S YM BO L T A BL E

DEFN VALUE T Y PE NAME
10 0 0 0 4 SYM B U FF  PTR18 0000 SYM COMMAND S T A T24 F F  04 SYM DACK 827183 0 0 3 C SYM E X I T

2 0000 SYM F L O P P Y17 0000 ST R F L O P P Y  RE GS23 F F  00 SYM F L O P P Y  REG  ADDR
8 0000 STR PARM B L O C K19 0001 SYM PARM R E S U L T9 0000 SYM R E S E R V E D  TP41 OOOC SYM RETRY13 OOOA SYM RETURN CODE

12 0 0 0 9 SYM SE CTO R31 0000 PUB S TA R T
1 1 0 0 0 8 SYM TRACK63 0 0 2 7 SYM WA IT 189 0 0 4 4 SYM W A IT 2

A S S E M B L Y  C O M P L E T E ;  NO E R R O R S  FOUND

Figure 3-59. ASM-89 Sample Program (Cont’d.)

M nem onics ©  Intel, 1979
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Linking and Locating ASM-89 Modules

The LINK-8 6  utility program combines multiple 
relocatable object modules into a single 
relocatable module. The input modules may con
sist of modules produced by any of the 8086 fam
ily language translators: ASM-89, ASM-8 6 , or 
PL/M-8 6 . LINK-8 6 ’s principal function is to 
satisfy external references made in the modules. 
Any symbol that is defined with the EXTRN 
directive in ASM-89 or ASM-8 6  or is declared 
EXTERNAL in PL/M -8 6  is an external 
reference, i.e., a reference to an address con
tained in another module. Whenever LINK-8 6  
encounters an external reference, it searches the 
other modules for a PUBLIC symbol of the same 
name. If it finds the matching symbol, it replaces 
the external reference with the address of the 
object.

The most common occurrence of an external 
reference in a system that employs one or more 
8089s is the channel program address. In order 
for a CPU program to start a channel program, it 
must ensure that the address of the first channel 
program instruction is contained in the first two 
words of the parameter block. Since the channel 
program is assembled separately, the translator 
that processes the CPU program will not typically 
know its address. If this address is defined as an

external symbol (see figure 3-56), LINK-8 6  will 
obtain the address from the ASM-89 channel pro
gram when the two are linked together. (The 
ASM-89 program must, of course, define the 
symbol in a PUBLIC directive.)

Other external references may arise when one 
module uses data (e.g., a buffer) that is contained 
in another module, and (in PL/M -8 6  and 
ASM-8 6  modules) when one module executes 
another module, typically by a CALL statement 
or instruction.

When an 8089 module (or modules) is to be 
located in the system space, it may be linked 
together with PL/M -8 6  or ASM-8 6  modules as 
described above and shown in figure 3-60. 
LINK-8 6  resolves external references and com
bines the input modules into a single relocatable 
object module. This module can be input to 
LOC-8 6  (LOC-8 6  assigns final absolute memory 
addresses to all of the instructions and data). This 
absolute object module may, in turn, be pro
cessed by the OH -8 6  utility to translate the 
module into the hexadecimal format. This format 
makes the module readable (the records are writ
ten in ASCII characters) and is required by some 
PROM programmers and RAM loaders. Intel’s 
Universal PROM Programmer (UPP) and iSBC 
957™ Execution Package (loader) use the hexa
decimal format.

K
abso lute/  A bsolute f TO SYSTEM 

SPACE

Figure 3-60. Creating a Single Absolute Object Module
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If the 8089 code is to reside in its I/O space, a dif
ferent technique is required since separate 
absolute object modules must be produced for the 
system and I/O spaces. Figure 3-61 shows how to 
link and locate when there are external references 
between I/O space modules and system space 
modules.

The normal link and locate sequence is followed 
and culminates in the production of an absolute 
module in hexadecimal format. Since the records 
in this file are human-readable, the file can be 
edited using the ISIS-II text editor. The editing 
task involves finding the 8089 I/O space records 
in the file, writing them to one file, and then 
writing the 8086/8088 records (destined for the 
system space) to another file. MCS-86 Absolute 
Object File Formats, Order No. 9800921, 
available from Intel’s Literature Department, 
describes the records in absolute (including hexa
decimal) object modules.

When using the previous method, it is likely that 
LOC-8 6  will issue messages warning that 
segments overlap. For example, the 8089 code 
would typically be located starting at absolute 
location OH of the I/O space. However, the 
8086/8088 interrupt pointer table occupies these 
low memory addresses in the system space. Since 
LOC-8 6  has no way to know that the segment will 
ultimately be located in different address spaces, 
it will warn of the conflict; the warning may be 
ignored.

An alternative to linking the modules together 
and then separating them is to link system space 
modules separately from I/O space modules as 
shown in figure 3-62. This approach avoids the 
manual edit of the absolute object module and the

segment conflict messages from LOC-8 6 . It 
requires, however, that modules in the two spaces 
not use the EXTRN/PUBLIC mechanism to refer 
to each other. Modules in the same space can 
define external and public symbols, however.

External references from I/O space modules to 
system space modules can be eliminated if the 
CPU programs pass all system space addresses in 
parameter blocks. In other words, a channel pro
gram can obtain any address in the system space if 
the address is in the parameter block. Using this 
approach allows the system space addresses to be 
changed during execution. If the addresses are 
constant values, they may also be altered as 
system development proceeds without relinking 
the channel programs.

External references from system space modules to 
addresses in the I/O space may be eliminated by 
assigning these addresses values that are known at 
assembly or compilation time. Figure 3-63 
illustrates how the ASM-89 ORG directive can be 
used to force the first instruction (entry point) of 
a channel program to an absolute address. In the 
case of the example, one module contains two 
entry points labelled “ READ” and “ WRITE.” 
Assuming the module is located at absolute 
address OH in the I/O  space, the channel pro
grams will begin at 200H and 600H respectively. 
In the example, these values have been chosen 
arbitrarily; in a typical application they would be 
based on the length of the programs and the loca
tion of RAM and ROM areas. By starting the pro
grams at fixed addresses that are known to the 
CPU programs that activate them, the channel 
programs can be reassembled without needing to 
relink the CPU programs.

Figure 3-61. Creating Separate Absolute Object Modules—External References in Relocatable 
Modules
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RELOC
OBJECT

MODULES

K
 r e l o c  f  / A b s o l u t e  f  exUTE f
MODULE ^ M O D U L E  \ J l O D U L E  ^

/ ^ I f i  nr. "7 f f  RELOC f  / a b s o l u t e  f  ^
^ M O D U U E s U  V ^ " ° ° ULE ^  \ J k & U LE

Figure 3-62. Creating Separate Absolute Object Modules—No External References in Relocatable 
Modules

ASM-89 ENTRY POINT DEFINITIONS 

ORG 200H
READ:

; INSTRUCTIONS FOR “ READ”  CHANNEL PROGRAM 

ORG 600H
WRITE:

; INSTRUCTIONS FOR “ WRITE”  CHANNEL PROGRAM

ASM-86 DEFINITION OF ENTRY POINT ADDRESSES

READ ADDR DD 200H
WRITE ADDR DD 600H

PL/M-86 DECLARATION OF ENTRY POINT ADDRESSES

DECLARE READ$ADDR POINTER;
DECLARE WRITESADDR POINTER;
READ$ADDR = 200H;
WRITE$ADDR = 600H;

Figure 3-63. Using Absolute Entry Point Addresses

3-78



8089 INPUT/OUTPUT PROCESSOR

3.10 Programming Guidelines 
and Examples

This section provides two types of 8089 program
ming information. A series of general guidelines, 
which apply to system and program design, is 
presented first. These guidelines are followed by 
specific coding examples that illustrate program
ming techniques that may be applied to many dif
ferent types of applications.

Programming Guidelines

The practices in this section are recommended to 
simplify system development and, particularly, 
for system maintenance and enhancement. Soft
ware that is designed in accordance with these 
guidelines will be adaptable to the changing 
environment in which most systems operate, 
and will be in the best position to take 
advantage of new Intel hardware and software 
products.

Segments

Although the lOP does not “ see” the segmented 
organization of system memory, it should respect 
this logical structure. The lOP should only 
address the system space through pointers passed 
by the CPU in the parameter block. It should not 
perform arithmetic on these addresses or other
wise manipulate them except for the automatic 
incrementing that occurs during DMA transfers. 
It is the responsibility of the CPU to pass 
addresses such that transfer operations do not 
cross segment boundaries.

Self-Modifying Code

Programs that alter their own instructions are dif
ficult to understand and modify, and preclude 
placing the code in ROM. They may also inhibit 
compatibility with future Intel hardware and soft
ware products.

Note also that when the 8089 is on a 16-bit bus, its 
instruction fetch queue can interfere with the 
attempt of one instruction to modify the next 
sequential instruction. Although the instruction 
may be changed in memory, its unmodified first 
byte will be fetched from the queue rather than

memory if it is on an odd address. The processor 
will thus execute a partially-modified instruction 
with unpredictable results.

I/O  System Design

Section 2.10 notes that I/O systems should be 
designed hierarchically. Application programs 
“ see” only the topmost level of the structure; all 
details pertaining to the physical characteristics 
and operation of I/O devices are relegated to 
lower levels. Figure 3-64 shows how this design 
approach might be employed in a system that uses 
an 8089 to perform I/O. The same concept can be 
expanded to larger systems with multiple lOPs.

The application system is clearly separated from 
the I/O system. No application programs per
form I/O; instead they send an I/O request to the 
I/O supervisor. (In systems with file-oriented 
I/O, the request might be sent to a file system that 
would then invoke the I/O supervisor.) The I/O 
request should be expressed in terms of a logical 
block of data—a record, a line, a message, etc. It 
should also be devoid of any device-dependent 
information such as device address, sector size, 
etc.

The I/O supervisor transforms the application 
program’s request for service into a parameter 
block and dispatches a channel program to carry 
out the operation. The I/O  supervisor controls 
the channels; therefore, it knows the cor
respondence between channels and I/O devices, 
the locations of CBs and channel programs, and 
the format of all of the parameter blocks. The 
I/O  supervisor also coordinates channel 
“ events,” monitoring BUSY flags and respond
ing to channel-generated interrupt requests. The 
I/O supervisor does not, however, communicate 
with I/O devices that are controlled by the chan
nels. If the CPU performs some I/O itself (this 
should be restricted to devices other than those 
run by the channels), the I/O supervisor invokes 
the equivalent of a channel program in the CPU 
to do the physical I/O. Note that although the 
I/O supervisor is drawn as a single box in figure
3-64, it is likely to be structured as a hierarchy 
itself, with separate modules performing its many 
functions.

The software interface between the CPU’s I/O 
supervisor and an IOP channel program should 
be completely and explicitly defined in the
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Figure 3-64. 8089-Based I/O System Design
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parameter block. For example, the I/O supervisor 
should pass the addresses of all system memory 
areas that the channel program will use. The 
channel program should not be written so that it 
“ knows” any of these addresses, even if they are 
constants. Concentrating the interface into one 
place like this makes the system easier to under
stand and reduces the likelihood of an undesirable 
side effect if it is modified. It also generalizes the 
design so that it may be used in other application 
systems.

Figure 3-64 shows a simple channel program run
ning on channel 1 and a more complex program 
running on channel 2. Channel l ’s program per
forms a single function and is therefore designed 
as a simple program. The program on channel 2 
performs three functions (e.g., “ read,” “ write,” 
“ delete” ) and is structured to separate its func
tions. The functions might be implemented as 
procedures called by the “ channel supervisor” 
depending on the content of the parameter block. 
Notice that to the I/O supervisor, both programs 
appear alike; in particular, both have a single 
entry point.

In some channel programs, different functions 
will need different information passed to them in 
the parameter block. Figure 3-65 shows one 
technique that accommodates different formats 
while still allowing the channel supervisor to 
determine which procedure to call from the PB. 
The parameter block is divided into fixed and 
variable portions, and a function code in the fixed 
area indicates the type of operation that is to be 
performed. Part of the fixed area has been set 
aside so that additional parameters can be added 
in the future.

Programming Examples

The first example in this section illustrates how a 
CPU can initialize a group of IOPs and then 
dispatch channel programs. This code is written 
in PL/M-8 6 .

The remaining examples, written in ASM-89, 
demonstrate the 8089 instruction set and address
ing modes in various commonly-encountered pro
gramming situations. These include:
• memory-to-memory transfers
• saving and restoring registers

FIXED
FORMAT

VARIABLE
FORMAT

TP/CHANNELSTATE 
SAVE AREA

FIXED PARM1 FUNCTION
CODE

FIXED PARM2

FIXED PARM3

RESERVED FO ' 
FUTURE USE

VARIABLE PARAMETER 
FORMAT AND SIZE 

GOVERNED BY 
FUNCTION CODE

0

2

46
8
10

12

Figure 3-65. Variable Format Parameter Block

Initialization and Dispatch

The PL/M -8 6  code in figure 3-66 initializes two 
IOPs and dispatches two channel programs on 
one of the IOPs. The same general technique can 
be used to initialize any number of IOPs. The 
hypothetical system that this code runs on is con
figured as follows:
• 8086 CPU (16-bit system bus);
• two remote IOPs share an 8 -bit local I/O bus 

via the request/grant lines operating in 
mode 1 ;

• 8089 channel attentions are mapped into four 
port addresses in the CPU’s I/O space;

• channel programs reside in the 8089 I/O 
space;

• one 8089 controls a CRT terminal, one 
channel running the display, the other scan
ning the keyboard and building input 
messages;

• the function of the second 8089 is not defined 
in the example.

3-81



8089 INPUT/OUTPUT PROCESSOR

The code declares one CB (channel control block) 
for each 8089. The CBs are declared as two- 
element arrays, each element defining the struc
ture of one channel’s portion of the CB. The SCB 
(system configuration block) and SCP (system 
configuration pointer) are also declared as struc
tures. The SCP is located at its dedicated system 
space address of FFFF6 H. The other structures 
are not located at specific addresses since they are 
all linked together by a chain of pointers 
“ anchored” at the SCP.

Two simple parameter blocks define messages to 
be transmitted between the PL/M -8 6  program 
and the CRT. Each PB contains a pointer to the 
beginning of the message area and the length of 
the message. In the case of the keyboard (input) 
message, the channel program builds the message 
in the buffer pointed to by the pointer in the PB 
and returns the length of the message in the PB.

The code initializes one IOP at a time since the 
chain of control blocks read by the IOP during 
initialization must remain static until the process 
is complete. To initialize the first IOP, the code 
fills in the SYSBUS and SOC fields and links the 
blocks to each other using the PL/M -8 6  @ 
(address) operator. It sets channel l ’s BUSY flag 
to FFH so that it can monitor the flag to deter
mine when the initialization has been completed 
(the IOP clears the flag to OF! when it has 
finished). Channel 2’s BUSY flag is cleared, 
although this could just as well have been done 
after the initialization (the IOP does not alter 
channel 2’s BUSY flag during initialization). The 
code starts the IOP by issuing a channel attention 
to channel 1 to indicate that the IOP is a bus 
master. PL/M-8 6 ’s OUT function is used to select 
the port address to which the IOP’s CA and SEL 
lines have been mapped. The data placed on the 
bus (OH) is ignored by the IOP. It then waits until 
the IOP clears the channel 1 BUSY flag.

The second IOP is initialized in the same manner, 
first changing the pointer in the SCB to point to 
the second IOP’s channel control block. If this

IOP were on a different I/O  bus, the SOC field 
would have been altered if a different 
request/grant mode were being used or if the IOP 
had a 16-bit I/O bus. The second IOP is a slave so 
its initialization is started by issuing a CA to chan
nel 2  rather than channel 1 .

After both IOPs are ready, the code dispatches 
two channel programs (not coded in the example); 
one program is dispatched to each channel of one 
of the IOPs. To avoid external references, the 
system has been set up so that the PL/M -8 6  code 
“ knows” the starting addresses of these channel 
programs (200H and 600H). The code uses the 
PL/M -8 6  LOCKSET function to:

• lock the system bus;
• read the BUSY flag;
• set the BUSY flag to FFH if it is clear;
• unlock the system bus.

This operation continues until the BUSY flag is 
found to be clear (indicating that the channel is 
available). Setting the flag immediately to FFH 
prevents another processor (or another task in 
this program activated as a result of an interrupt) 
from using the channel. The code fills in the 
parameter block with the address and length of 
the message to be displayed, sets the CCW and 
then links the channel program (task block) start 
address to the parameter block and links the 
parameter block to the CB. The channel is dis
patched with the OUT function that effects a 
channel attention for channel 1 .

A similar procedure is followed to start channel 2 
scanning the terminal keyboard. In this case, the 
code allows channel 2  to generate an interrupt 
request (which it might do to signal that a message 
has been assembled). An interrupt procedure 
would then handle the interrupt request.

/ * ASSIGN NAMES TO CONSTANTS*/ 
DECLARE CHANNEL$BUSY
DECLARE CHANNELSCLEAR
DECLARE C R / ‘ CARR. RET.*/
DECLARE LF / ‘ LINE FEED*/
DECLARE DISPLAY$TB
DECLARE KEYBDSTB

LITERALLY ‘OFFH’ ; 
LITERALLY‘OH’ ; 
LITERALLY ‘ODH’ ; 
LITERALLY ‘OAH’ ; 
LITERALLY‘200H’ ; 
LITERALLY ‘600H’ ;

Figure 3-66. Initialization and Dispatch Example
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DECLARE
IOP$A$CH1
IOP$A$CH2
IOP$B$CH1
IOP$B$CH2

/*IOP CHANNEL ATTENTION ADDRESSES*/ 
LITERALLY ‘0FFE0H’ ,
LITERALLY ‘0FFE1H’ ,
LITERALLY ‘0FFE2H’ ,
LITERALLY ‘0FFE3H’ ;

DECLARE / ‘ CHANNEL CONTROL BLOCK FOR IOP$A) 
CB$A(2) STRUCTURE
(BUSY BYTE,
CCW BYTE,
PB$PTR POINTER,
RESERVED WORD);

DECLARE /'C H A N N E L CONTROL BLOCK FOR IOP$B*/ 
CB$B(2) STRUCTURE
(BUSY BYTE,
CCW BYTE,
PB$PTR POINTER,
RESERVED WORD);

DECLARE /'SYSTEM CONFIGURATION BLOCK*/ 
SCB STRUCTURE
(SOC BYTE,
RESERVED BYTE,
CB$PTR POINTER);

DECLARE /'SYSTEM  CONFIGURATION POINTER*/
SCP STRUCTURE
(SYSBUS BYTE,
SCBSPTR POINTER) AT (0FFFF6H);

DECLARE MESSAGE$PBSTRUCTURE
(TB$PTR POINTER,
MSG$PTR POINTER,
MSGSLENGTH WORD);

DECLARE KEYBD$PB STRUCTUE
(TP$PTR POINTER,
BUFF_PTR POINTER,
MSGSSIZE WORD);

DECLARE SIGNSON BYTE (*) DATA
(CR, LF, ‘PLEASE ENTER USER ID’);

DECLARE KEYBD$BUFF BYTE (256);

/*
'INITIALIZE IOP$A, THEN IOP$B

*/

/'PREPARE CONTROL BLOCKS FOR IOP$A*/ 
SCP.SCB$PTR = @ SCB;
SCP.SYSBUS = 01H; /'16-BITSYSTEM BUS*/
SCB.SOC = 02H; /'R Q /G T  MODE1,8-BIT I/O BUS*/ 
SCB.CBSPTR = @ CB$A(0);
CB$A(0).BUSY = CHANNELSBUSY 
CB$A(1).BUSY = CHANNEL$CLEAR;

Figure 3-66. Initialization and Dispatch Example (Cont’d.)
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/ * ISSUE CA FOR CHANNEL1, INDICATING IOP IS MASTER*/ 
OUT (IOP$A$CH1) = OH;

/'W A IT  UNTIL FINISHED*/
DO WHILE CB$A(0).BUSY = CHANNELSBUSY;

END;

/'PREPARE CONTROL BLOCKS FOR IOP$B*/
SCB.CBSPTR = @CB$B(0);
CB$B(0).BUSY = CHANNELSBUSY;
CB$B(1).BUSY = CHANNELSCLEAR;

/'ISSUE CA FOR CHANNEL2, INDICATING SLAVE STATUS'/ 
OUT (IOP$B$CH2) = OH;

/'W A IT  UNTIL IOP IS READY*/
DO WHILE CB$B(0).BUSY = CHANNELSBUSY;

END;

/*
'SEND SIGN ON MESSAGE TO CRT CONTROLLED 
'B Y  CHANNEL 1 OF IOPSA
*/

/'W A IT  UNTIL CHANNEL IS CLEAR, THEN SET TO BUSY*/ 
DO WHILE LOCKSET (@CB$A(0).BUSY, CHANNELSBUSY); 

END;

/'S E T  CCW AS FOLLOWS:
* PRIORITY = 1,
* NO BUS LOAD LIMIT,
* DISABLE INTERRUPTS,
* START CHANNEL PROGRAM IN I/O  SPACE*/ 

CB$A(0).CCW = 10011001B;

/'L IN K  MESSAGE PARAMETER BLOCK TO CB*/ 
CB$A(0).PB$PTR = @ MESSAGESPB;

/'F IL L  IN PARAMETER BLOCK*/
MESSAGESPB.TBSPTR = DISPLAYSTB;
MESSAGESPB.MSGSPTR = @SIGN$ON;
MESSAGESPB. MSBSLENGTH = LENGTH (SIGNSON);

/'DISPATCH THE CHANNEL*/
OUT (IOPSASCH1) = OH;

/*
'DISPATCH CHANNEL2 OF IOPSATO 
'CONTINUOUSLY SCAN KEYBOARD, INTERRUPTING 
'W HEN A COMPLETE MESSAGE IS READY
*/

/'W A IT  UNTIL CHANNEL IS CLEAR, THEN SETTO BUSY*/ 
DO WHILE LOCKSET (@ CB$A(1).BUSY, CHANNELSBUSY); 

END;

Figure 3-66. Initialization and Dispatch Example (Cont’d.)
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/'SET CCW AS FOLLOWS:
* PRIORITY = 0
* BUS LOAD LIMIT,
‘ ENABLE INTERRUPTS,
* START CHANNEL PROGRAM IN I/O SPACE*/ 

CB$A(1).CCW = 00110001B;
/ ‘ LINK KEYBOARD PARAMETER BLOCK TO CB*/ 
CB$A(1).PB$PTR = @ KEYBD$PB;
/•FILL IN PARAMETER BLOCK*/ 
KEYBD$PB.TB$PTR = KEYBDSTB; 
KEYBD$PB.BUFF$PTR = @ KEYBD$BUFF; 
KEYBD$PB.MSG$SIZE = OH;
/•DISPATCH THE CHANNEL*/
OUT (IOP$A$CH2) = OH;

Figure 3-66. Initialization and Dispatch Example (Cont’d.)

Memory-to-Memory Transfer

Figure 3-67 shows a channel program that per
forms a memory-to-memory block transfer in 
seven instructions. The program moves up to 64k 
bytes between any two locations in the system 
space. A 16-bit system bus is assumed, and the 
CPU is assumed to be monitoring the channel’s 
BUSY flag to determine when the program has 
finished.

To attain maximum transfer speed, the program 
locks the bus during each transfer cycle. This 
ensures that another processor does not acquire 
the bus in the interval between the DMA fetch 
and store operations. By setting this channel’s 
priority bit in the CCW to 1 and the other chan
nel’s to 0, the CPU could effectively prevent the 
other channel from running during the transfer. 
Byte count termination is selected so that the 
transfer will stop when the number of bytes 
specified by the CPU has been moved. Since there 
is only a single termination condition, a termina
tion offset of 0 is specified. The transfer begins 
after the WID instruction, and the HLT instruc
tion is executed immediately upon termination.

Saving and Restoring Registers

A CPU program can “ interrupt” a channel pro
gram by issuing a “ suspend” channel command.

The channel responds to this command by saving 
the task pointer and PSW in the first two words 
of the parameter block. The suspended program 
can be restarted by issuing a “ resume” command 
that loads TP and the PSW from the save area.

If the CPU wants to execute another channel pro
gram between the suspend and resume opera
tions, the suspended program’s registers will 
usually have to be saved first. If the “ interrupt
ing” program “ knows” that the registers must be 
saved, it can perform the operation and also 
restore the registers before it halts.

A more general solution is shown in figure 3-68. 
This is a program that does nothing but save the 
contents of the channel registers. The registers are 
saved in the parameter block because PP is the 
only register that is known to point to an available 
area of memory. A similar program could be writ
ten to restore registers from the same parameter 
block.

Using this approach, the CPU would “ interrupt” 
a running program as follows:
• suspend the running program,
• run the register save program,
• run the “ interrupting” program,
• run the register restore program,
• resume the suspended program.
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MEMEXAMP SEGMENT
;**MEMORY-TO-MEMORY TRANSFER PROGRAM**
PB STRUC
TP_RESERVED: DS 4
FROM_ADDR: DS 4
TO_ADDR: DS 4
SIZE: DS 2
PB ENDS

;POINT GA AT SOURCE, GB AT DESTINATION.
LPD GA, [PP1.FROM__ ADDR
LPD GB, [PPj.TO__ ADDR

;LOAD BYTE COUNT INTO BC.
MOV BC, [PP].SIZE

;LOADCC SPECIFYING:
; MEMORY TO MEMORY,
; NO TRANSLATE,
; UNSYNCHRONIZED,
; GA POINTS TO SOURCE,
; LOCK BUS DURING TRANSFER,
; NO CHAINING,
; TERMINATING ON BYTE COUNT,OFFSET = 0.

MOV CC, 0C208H
;PREPARE CHANNEL FOR TRANSFER.

XFER

;SET LOGICAL BUS WIDTH.
WID 16,16

;STOP EXECUTION AFTER DMA.
HLT

MEMEXAMP ENDS
END

Figure 3-67. Memory-to-Memory Transfer Example

SAVEREGS SEGMENT
;SAVE ANOTHER CHANNEL’S REGISTERS
PB
TP_RESERVED:

STRUC
DS 4

GA_SAVE: DS 3
GB_SAVE: DS 3
GC_SAVE: DS 3
IX_SAVE: DS 2
BC_SAVE: DS 2
MC_SAVE: DS 2
CC SAVE: DS 2
PB ENDS

IN PB

SAVEREGS

MOVP [PP]
MOVP PP
MOVP PP
MOV PP
MOV PP
MOV PP
MOV PP
HLT
ENDS
END

.GA_SAVE, GA

.GB_SAVE, GB

.GC_SAVE, GO

.IX_SAVE, IX

.BC_SAVE, BC

.MC_SAVE, MC

.CC_SAVE, CC

Figure 3-68. Register Save Example

M n e m o n ic s  © Intel, 1979
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HARDWARE REFERENCE INFORMATION

4.1 Introduction

This chapter presents specific hardware informa
tion regarding the operation and functions of the 
8086 family processors: the 8086 and 8088 Central 
Processing Units (CPUs) and the 8089 I/O Pro
cessor (IOP). Abbreviated descriptions of the 
8086 family support circuits and their circuit 
functions appear where appropriate within the 
processor descriptions. For more specific 
information on any of the 8086 family support 
circuits, refer to the corresponding data sheets in 
Appendix B.

4.2 8086 and 8088 CPUs

The 8086 and 8088 CPUs are characterized by a 
2 0 -bit (1 megabyte) address bus and an identical 
instruction/function format, and differ essential
ly from one another by their respective data bus 
widths (the 8086 uses a 16-bit data bus, and the 
8088 uses an 8 -bit data bus). Except where 
expressly noted, the ensuing descriptions are 
applicable to both CPUs.

Both the 8086 and 8088 feature a combined or 
“ time-multiplexed” address and data bus that 
permits a number of the pins to serve dual func
tions and consequently allows the complete CPU 
to be incorporated into a single, 40-pin package. 
As explained later in this chapter, a number of the 
CPU’s control pins are defined according to the 
strapping of a single input pin (the MN/MX pin). 
In the “ minimum mode,” the CPU is configured 
for small, single-processor systems, and the CPU 
itself provides all control signals. In the “ max
imum mode,” an Intel51 8288 Bus Controller, 
rather than the CPU, provides the control signal 
outputs and allows a number of the pins pre
viously delegated to these control functions to be 
redefined in order to support multiprocessing 
applications. Figures 4-1 and 4-2 describe the pin 
assignments and signal definitions for the 8086 
and 8088, respectively.

CPU Architecture

As shown in figures 4-3 and 4-4, both CPUs 
incorporate two separate processing units: the 
Execution Unit or “ EU” and the Bus Interface

Unit or “ BIU.” The EU for each processor is 
identical. The BIU for the 8086 incorporates a 16- 
bit data bus and a 6 -byte instruction queue 
whereas the 8088 incorporates an 8 -bit data bus 
and a 4-byte instruction queue.

The EU is responsible for the execution of all 
instructions, for providing data and addresses to 
the BIU, and for manipulating the general 
registers and the flag register. Except for a few 
control pins, the EU is completely isolated from 
the “ outside world.” The BIU is responsible for 
executing all external bus cycles and consists of 
the segment and communications registers, the 
instruction pointer and the instruction object 
code queue. The BIU combines segment and off
set values in its dedicated adder to derive 2 0 -bit 
addresses, transfers data to and from the EU on 
the ALU data bus and loads or “ prefetches” 
instructions into the queue from which they are 
fetched by the EU.

The EU, when it is ready to execute an instruc
tion, fetches the instruction object code byte from 
the BIU’s instruction queue and then executes the 
instruction. If the queue is empty when the EU is 
ready to fetch an instruction byte, the EU waits 
for the instruction byte to be fetched. In the 
course of instruction execution, if a memory loca
tion or I/O port must be accessed, the EU 
requests the BIU to perform the required bus 
cycle.

The two processing sections of the CPU operate 
independently. In the 8086 CPU, when two or 
more bytes of the 6 -byte instruction queue are 
empty and the EU does not require the BIU to 
perform a bus cycle, the BIU executes instruction 
fetch cycles to refill the queue. In the 8088 CPU, 
when one byte of the 4-byte instruction queue is 
empty, the BIU executes an instruction fetch 
cycle. Note that the 8086 CPU, since it has a 16- 
bit data bus, can access two instruction object 
code bytes in a single bus cycle, while the 8088 
CPU, since it has an 8 -bit data bus, accesses one 
instruction object code byte per bus cycle. If the 
EU issues a request for bus access while the BIU is 
in the process of an instruction fetch bus cycle, 
the BIU completes the cycle before honoring the 
EU’s request.
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Common Signals
Name Function Type

A D 1 5 -A D O A d d re s s /D a ta  B us B id ire c t io n a l,
3 -S ta te

A 1 9 /S 6 -
A 1 6 /S 3 A d d re s s /S ta tu s O u tp u t,

3 -S ta te

B H E /S 7 B us H ig h  E n a b le / 
S ta tu s

O u tp u t,
3 -S ta te

M N /M X M in im u m /M a x im u m  
M o d e  C o n tro l In p u t

RD R ead C o n tro l O u tp u t,
3 -S ta te

TEST W a it O n T es t C o n tro l In p u t
R EA D Y W a it S ta te  C o n tro l In p u t
RESET S ys te m  R ese t In p u t

N M I N o n -M a s k a b le  
In te rru p t R e q u e s t In p u t

IN TR In te rru p t R e q u e s t In p u t
C LK S ys te m  C lo c k In p u t

Vcc +  5 V In p u t
G N D G ro u n d

Minimum Mode Signals (MN/MX = Vcc)
Name Function Type
H O LD H o ld  R e q u e s t In p u t
H LD A H o ld  A c k n o w le d g e O u tp u t

W R W r ite  C o n tro l O u tp u t,
3 -S ta te

Milo M e m o ry /IO  C o n tro l O u tp u t,
3 -S ta te

d t / fT D a ta  T ra n s m it/  
R ece ive

O u tp u t,
3 -S ta te

DEN D a ta  E n a b le O u tp u t,
3 -S ta te

A L E A d d re s s  L a tc h  
E n a b le O u tp u t

IN TA In te rru p t A c k n o w le d g e O u tp u t

Maximum Mode Signals (MN/MX = GND)
Name Function Type

R e q u e s t/G ra n t B us  
A c c e s s  C o n tro l

R Q /G T 1 , 0 B id ire c t io n a l

LO C K B us P r io r ity  L o c k  
C o n tro l

O u tp u t,
3 -S ta te

S 2 -S 0 B us  C y c le  S ta tu s O u tp u t,
3 -S ta te

QS1, QSO In s tru c t io n  Q u e ue  
S ta tu s O u tp u t

G N D  C  

A D 1 4  C  

A D 1 3  C  

A D 1 2  C  

A D 1 1  Q  

A D 1 0  C  

A D 9  E  

A D S  Q  

A D 7  C  

A D 6  C  

A D 5  C  

A D 4  C  

A D 3  

A C .2  C

A D 1  [ I  

A D O  C  

N M I [ 2  

IN T R  H

c l k  n

G N D  C

8086
CPU

I ]  Vcc

3  A D 1 5  

^  A 1 6 / S 3

□  A 1 7 / S 4  

3  A 1 8 / S 5  

3  A 1 9 / S 6

□  B H E / S 7

□  M N / M X  

^  R D

3  H O L D  

3  H L D A

□  W R

3  M / f i 5

□  D T / R

3  d e n  

3  A L E  

3  iN T A  

3  T E S T  

3  R E A D Y  

3  R E S E T

( R Q /G T O )

( R Q / G T 1 )

( L O C K )

(S2)

(SI)

(SO )

(O S O )

(Q S 1 )

M A X IM U M  M O D E  P IN  F U N C T IO N S  ( e . g . , L O C K )  
A R E  S H O W N  IN  P A R E N T H E S E S

Figure 4-1.8086 Pin Definitions
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Common Signals
Name Function Type

A D 7 -A D 0 A d d re s s /D a ta  B us B id ire c t io n a l,
3 -S ta te

A 1 5 -A 8 A d d re s s  B us O u tp u t,
3 -S ta te

A 1 9 /S 6 -
A 1 6 /S 3 A d d re s s /S ta tu s O u tp u t,

3 -S ta te

M N /M X M in im u m /M a x im u m  
M o d e  C o n tro l In p u t

RD R ead C o n tro l O u tp u t,
3 -S ta te

TE S T W a it O n T es t C o n tro l In p u t
R E A D Y W a it S ta te  C o n tro l In p u t
R ESET S y s te m  R ese t In p u t

N M I N o n -M a s k a b le  
In te r ru p t R e q u e s t In p u t

IN TR In te r ru p t R e q u e s t In p u t
C L K S ys te m  C lo c k In p u t

v c c +  5 V In p u t
G N D G ro u n d

Minimum Mode Signals (MN/MX = Vcc)
Name Function Type
H O LD H o ld  R e q u e s t In p u t
H L D A H o ld  A c k n o w le d g e O u tp u t

W R W r ite  C o n tro l O u tp u t,
3 -S ta te

IO /M IO /M e m o ry  C o n tro l O u tp u t,
3 -S ta te

DT/R D a ta  T ra n s m it/  
R ece ive

O u tp u t,
3 -S ta te

DEN D a ta  E n a b le O u tp u t,
3 -S ta te

A L E A d d re s s  L a tc h  
E n a b le O u tp u t

IN TA In te rru p t A c k n o w le d g e O u tp u t

SSO SO S ta tu s O u tp u t,
3 -S ta te

Maximum Mode Signals (MN/MX = GND)
Name Function Type

R Q /G T 1 , 0 R e q u e s t/G ra n t B us  
A c c e s s  C o n tro l B id ire c t io n a l

L O C K B us P r io r ity  L o c k  
C o n tro l

O u tp u t,
3 -S ta te

S 2 -S 0 B us  C y c le  S ta tu s O u tp u t,
3 -S ta te

Q S1, QSO In s tru c t io n  Q u e ue  
S ta tu s O u tp u t

g n d |3

AuC
A 1 3 C  

A12C

A11 C

A1oC 
A 9 C  

ABC
A D 7 ^

AD6 C  

A D 5 C  

A D 4 C  

AD3H
AD2 C  14 

AD1 C  15

A D o C  16

N M |£  17 

INTr Q  18 

C L K C  19

g n d Q  20

8 0 8 8
CPU

3 v cc

3  A15 

^  A16/S3 

3  A17/S4 

3  A18/S5 

3 A19/S6 

□  SSO 

]  MN/MX

3 RD 

3 HOLD 

I ]  HLDA 

3  WR 
3  IO/M  

3  DT/R 

3  DEN 

3  ALE

3  in t a  

3 TEST 

3 READY 

3 RESET

(HIGH)

(RQ/GTO)

(RQ /G TI)

(LOCK)

<S2)(SI)(SO)
(QSO)

(QS1)

MAXIMUM MODE PIN FUNCTIONS (e.g.,LOCK) 
ARE SHOWN IN PARENTHESES

Figure 4-2. 8088 Pin Definitions
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Figure 4-4. 8088 Elementary Block Diagram
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Bus Operation

To explain the operation of the time-multiplexed 
bus, the BIU’s bus cycle must be examined. 
Essentially, a bus cycle is an asynchronous event 
in which the address of an I/O peripheral or 
memory location is presented, followed by either 
a read control signal (to capture or “ read” the 
data from the addressed device) or a write control 
signal and the associated data (to transmit or 
“ write” the data to the addressed device). The 
selected device (memory or I/O peripheral) 
accepts the data on the bus during a write cycle or 
places the requested data on the bus during a read 
cycle. On termination of the cycle, the device 
latches the data written or removes the data read.

As shown in figure 4-5, all bus cycles consist of a 
minimum of four clock cycles or “ T-states” iden
tified as Tj, T2 , T3 and T4 . The CPU places the 
address of the memory location or I/O device on 
the bus during state T j . During a write bus cycle, 
the CPU places the data on the bus from state T2 
until state T4 . During a read bus cycle, the CPU 
accepts the data present on the bus in states T3

and T4 , and the multiplexed address/data bus is 
floated in state T2  to allow the CPU to change 
from the write mode (output address) to the read 
mode (input data).

It is important to note that the BIU executes a bus 
cycle only when a bus cycle is requested by the EU 
as part of instruction execution or when it must 
fill the instruction queue. Consequently, clock 
periods in which there is no BIU activity can 
occur between bus cycles. These inactive clock 
periods are referred to as idle states (Tj). While 
idle clock states result from several conditions 
(e.g., bus access granted to a coprocessor), as an 
example, consider the case of the execution of a 
“ long” instruction. In the following example, an 
8 -bit register multiply (MUL) instruction (which 
requires between 70 and 77 clock cycles) is exe
cuted by the 8086. Assuming that the multiplica
tion routine is entered as a result of a program 
jump (which causes the instruction queue to be 
reinitialized when the jump is executed) and, as 
will be explained later in this chapter, that the 
object code bytes are aligned on even-byte bound
aries, the BIU’s bus cycle sequence would appear 
as shown in figure 4-6.

^ A D D R E S S ^  BUFFER ""^A D D R i S S X  BUFFER X

Figure 4-5. Typical BIU Bus Cycles

Figure 4-6. BIU Idle States
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In addition to the idle state previously described, 
both the 8086 and 8088 CPUs include a 
mechanism for inserting additional T-states in the 
bus cycle to compensate for devices (memory or 
I/O) that cannot transfer data at the maximum 
rate. These extra T-states are called wait states 
(T^y) and, when required, are inserted between 
states T3 and T4 . During a wait state, the data on 
the bus remains unchanged. When the device can 
complete the transfer (present or accept the data), 
it signals the CPU to exit the wait state and to 
enter state T4 .

As shown in the following timing diagrams, the 
actual bus cycle timing differs between a read and 
a write bus cycle and varies between the two 
CPUs. Note that the timing diagrams illustrated 
are for the minimum mode. (Maximum mode 
timing is described later in this chapter.)

Referring to figures 4-7 and 4-8, the 8086 CPU 
places a 2 0 -bit address on the multiplexed 
address/data bus during state T j. During state 
T2 , the CPU removes the address from the bus 
and either three-states (floats) the lower 16 
address/data lines in preparation for a read cycle 
(figure 4-7) or places write data on these lines

(figure 4-8). At this time, bus cycle status is 
available on the address/status lines. During state 
T3 , bus cycle status is maintained on the 
address/status lines and either the write data is 
maintained or read data is sampled on the lower 
16 address/data lines. The bus cycle is terminated 
in state T4  (control lines are disabled and the 
addressed device deselects from the bus).

The 8088 CPU, like the 8086, places a 20-bit 
address on the multiplexed address/data bus dur
ing state Tj as shown in figures 4-9 and 4-10. 
Unlike the 8086, the 8088 maintains the address 
on the address lines (A j5 -Ag) for the entire bus 
cycle. During state T2 , the CPU removes the 
address on the address/data lines (AD7 -AD0 ) and 
either floats these lines in preparation for a read 
cycle (figure 4-9) or places write data on these 
lines (figure 4-10). At this time, bus cycle status is 
available on the address/status lines. During state 
T3 , bus cycle status is maintained on the 
address/status lines and either write data is main
tained or read data is sampled on the 
address/data lines. The bus cycle is terminated in 
state T4  (control lines are disabled and the 
addressed device deselects from the bus).

-O N E  BUS C Y C LE -  

T2____ | T3_

A 19/S6-A 16/S3  
AND B H E /S 7

J  XX  V_/ V_/ \_/ \_
ZZ>—(ADDRESS, BHE OUT X STATUS OUT

ADDRESS OUT ^

X
J  V

LOW =  I/O READ, HIGH = MEMORY READ

X

>

f

>

rxz
DEN J X f

_L____

Figure 4-7. 8086 Read Bus Cycle
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n  1 T2
CLK_____/ _/ \_r

y
AND B H E /S 7 J \  ____ i ________ A______

ONE BUS C YC LE-

ADDRESS OUT

J V rx LOW =  I/O  WRITE, HIGH =  MEMORY WRITE

\

X
f

DT/R /
______ f

DEN / X

Figure 4-8. 8086 Write Bus Cycle

A majority of system memories and peripherals 
require a stable address for the duration of the 
bus cycle (certain MCS-85™ components can 
operate with a multiplexed address/data bus). 
During state Tj of every bus cycle, the ALE 
(Address Latch Enable) control signal is output 
(either directly from the microprocessor in the 
minimum mode or indirectly through an 8288 Bus 
Controller in the maximum mode) to permit the 
address to be latched (the address is valid on the 
trailing-edge of ALE). This “ demultiplexing” of 
the address/data bus can be done remotely at 
each device in the system or locally at the CPU 
and distributed throughout the system as a 
separate address bus. For optimum system per
formance and for compatibility with multi
processor systems' or with the Intel Multibus 
architecture, the locally-demultiplexed address 
bus is recommended. To latch the address, Intel® 
8282 (non-inverting) or 8283 (inverting) Octal 
Latches are offered as part of the 8086 product 
family and are implemented as shown in figure
4-11. These circuits, in addition to providing the 
desired latch function, provide increased current 
drive capability and capacitive load immunity.

The data bus cannot be demultiplexed due to the 
timing differences between read and write cycles 
and the various read response times among 
peripherals and memories. Consequently, the 
multiplexed data bus either can be buffered or 
used directly. When memory and I/O peripherals 
are connected directly to an unbuffered bus, it is 
essential that during a read cycle, a device is 
prevented from corrupting the address present on 
the bus during state T j. To ensure that the 
address is not corrupted, a device’s output drivers 
should be enabled by an output enable function 
(rather than the device’s chip select function) con
trolled by the CPU’s read signal. (The MCS-8 6  
family processors guarantee that the read signal 
will not be valid until after the address has been 
latched by ALE.) Many Intel peripheral, 
ROM/EPROM, and RAM circuits provide an 
output enable function to allow interface to an 
unbuffered multiplexed address/data bus. The 
alternative of using a buffered data bus should be 
considered since it simplifies the interfacing 
requirements and offers both increased drive cur
rent capability and capacitive load immunity. The 
Intel* 8286 (non-inverting) and 8287 (inverting)
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-  ONE BUS CYCLE -

T1 | T2 | T3 | T4

A 19/S6- A16/S3

J V. r
LOW =  MEMORY READ, HIGH =  I/O  READ

----------------\
dt/R '

MR" i

Figure 4-9. 8088 Read Bus Cycle

T1

----------------------ONE BUS

T2
: y c l e ------------------------------

T3 T<
J l_V L_ J __________ l L_ J  \

J V. r
LOW =  MEMORY WRITE, HIGH =  I/O  WRITE

DT/R /

WIT /

Figure 4-10. 8088 Write Bus Cycle
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Octal Bus Transceivers, shown in figure 4-12, are 
expressly designed to buffer the data bus. These 
transceivers^use the CPU’s DEN (Data Enable) 
and DT/R (Data Transmit/Receive) control 
signals to enable and control the direction of data 
on the bus. These signals provide the proper tim
ing relationship to guarantee isolation of the 
address that is present on the multiplexed bus 
during state T j .

Except where noted, all subsequent discussions 
and examples in this chapter assume a locally 
demultiplexed address bus and a buffered data 
bus. The resultant address and data buses from 
the address latches and data transceivers to the 
memory and I/O devices will be referred to collec
tively as the “ system” bus.

Figure 4-11. Minimum Mode 8088 Demultiplexed Address Bus

Figure 4-12. Minimum Mode 8086 Buffered Data Bus
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Clock Circuit

To establish the bus cycle time, the CPU requires 
an external clock signal. As an integral part of the 
8086 family, Intel offers the 8284 Clock 
Generator/Driver for this purpose. In addition to 
providing the primary (system) clock signal, this 
device provides both the hardware reset interface 
and the mechanism for the insertion of wait states 
in the bus cycle.

The clock generator/driver requires an external 
series-resonant crystal input (or external frequen
cy source) at three times the required system clock 
frequency (i.e., to operate the CPU at 5 MHz, a 
15 MHz fundamental frequency source is 
required). The divided-by-three output (CLK) 
from the 8284 is routed directly to the CPU’s 
CLK input. The clock generator/driver provides a 
second clock output called PCLK (Peripheral 
Clock) at one half the frequency of the CLK out
put and a buffered TTL level OSC (oscillator) 
output at the applied crystal input frequency. 
These outputs are available for use by system 
devices.

The 8284’s hardware reset function is accom
plished with an internal Schmitt trigger circuit 
that is activated by the RES (Reset) input. When 
this input is pulled low (i.e., a contact closure to 
ground), the RESET output is activated syn
chronously with the CLK signal. This signal must 
be active for four clock cycles and causes the CPU 
to fetch and execute the instruction at location 
FFFFOH. An external RC circuit is connected to 
the RES input to provide the power-on reset func
tion (on power-on, the RES input must be active 
for 50 microseconds). The RESET output is 
coupled directly to the RESET input of the CPU 
as well as being available to system peripherals as 
the system reset signal.

The insertion of wait states in the CPU’s bus cycle 
is accomplished by deactivating one of the 8284’s 
RDY inputs (RDY1 or RDY2). Either of these 
inputs, when enabled by its corresponding AEN1 
or AEN2 input, can be deactivated directly by a 
peripheral device when it must extend the CPU’s 
bus cycle (when it is not ready to present or accept 
data) or by a “ wait state generator” circuit (a 
logic circuit that holds the RDY input inactive for 
a given number of clock cycles).

The READY output, which is synchronized to the 
CLK signal is coupled directly to the CPU’s 
READY input. As shown in figure 4-13, when the 
addressed device needs to insert one or more wait 
states in a bus cycle, it deactivates the 8284’s RDY 
input prior to the end of state T2  which causes the 
READY output to be deactivated at the end of 
state T2 . The resultant wait state (Tyy) is inserted 
between states T3 and T4. To exit the wait state, 
the device activates the 8284’s RDY input which 
causes the READY input to the CPU to go active 
at the end of the current wait state and allows the 
CPU to enter state T4.

Minim um /Maxim um  Mode

A unique feature of the 8086 and 8088 CPUs is 
the ability of a user to define a subset of the 
CPU’s control signal outputs in order to tailor the 
CPU to its intended system environment. This 
“ system tailoring” is accomplished by the strap
ping of the CPU’s MN/MX (minimum/max- 
imum) input pin. Table 4-1 defines the 8086 and 
8088 pin assignments in both the minimum and 
maximum modes.

READY OUTPUT _____________________________________ _

\ r
Figure 4-13. Wait State Timing
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Table 4-1. Minimum/Maximum Mode Pin Assignments
8086 8088

Pin
Mode

Pin
Mode

Minimum Maximum Minimum Maximum

31 H O LD R Q /G T 0 31 H O LD R Q /G TO
30 H L D A R Q /G T1 30 H LD A R Q /G T1
29 W R LO C K 29 W R LO C K
28 M /IO S2 28 IO /M S2
27 D T /R S1 27 D T /R S1
26 DEN SO 26 DEN SO
25 A L E QS0 25 A LE QSO
24 IN T A QS1 24 IN T A QS1

34 SSO H ig h  S ta te

Minimum Mode

In the minimum mode (MN/MX pin strapped to 
+5V), the CPU supports small, single-processor 
systems that consist of a few devices and that use 
the system bus rather than support the 
Multibus™ architecture. In the minimum mode, 
the CPU itself generates all bus control 
signals (DT/R, DEN, ALE and either M /IO or 
IO /M) and the command output signal (RD, WR 
or INTA), and provides a mechanism for 
requesting bus access (HOLD/HLDA) that is 
compatible with bus master type controllers (e.g., 
the Intel® 8237 and 8257 DMA Controllers).

In the minimum mode, when a bus master 
requires bus access, it activates the HOLD input 
to the CPU (through its request logic). The CPU, 
in response to the “ hold” request, activates 
HLDA as an acknowledgement to the bus master 
requesting the bus and simultaneously floats the 
system bus and control lines. Since a bus request 
is asynchronous, the CPU samples the HOLD 
input on the positive transition of each CLK 
signal and, as shown in figure 4-14, activates 
HLDA at the end of either the current bus cycle 
(if a bus cycle is in progress) or idle clock period. 
The hold state is maintained until the bus master 
inactivates the HOLD input at which time the 
CPU regains control of the system bus. Note that 
during a “ hold” state, the CPU will continue to 
execute instructions until a bus cycle is required.

Note that in the minimum mode, the I/O-memory 
control line for the 8088 CPU is the converse of 
the corresponding control line for the 8086 CPU 
(M/IO on the 8086 and IO/M on the 8088). This 
was done to provide the 8088 CPU, since it is an

8 -bit device, compatibility with existing 
MCS-85™ systems and specific MCS-85™ family 
devices (e.g., the Intel® 8155/56).

Maximum Mode

In the maximum mode (MN/MX pin strapped to 
ground), an Intel® 8288 Bus Controller is added 
to provide a sophisticated bus control function 
and compatibility with the Multibus architecture 
(combining an Intel® 8289 Arbiter with the 8288 
permits the CPU to support multiple processors 
on the system bus). As shown in figure 4-15, the 
bus controller, rather than the CPU, provides all 
bus control and command outputs, and allows the 
pins previously delegated to these functions to be 
redefined to support multiprocessing functions.

S2, STand SO

Referring to figure 4-15, the 8288 Bus Controller 
uses the S2, SI and SO status bit outputs from the 
CPU (and the 8089 IOP) to generate all bus con
trol and command output signals required for a 
bus cycle. The status bit outputs are decoded as 
outlined in table 4-2. (For a detailed description 
of the operation of the 8288 Bus Controller, refer 
to the associated data sheet in Appendix B.)

The 8088 CPU, in the minimum mode, provides 
an SS0 status output. This output is equivalent to 
SO in the _maximum mode and can be decoded 
with DT/R and IO/M (inverted), which are 
equivalent to SI and S2 respectively, to provide 
the same CPU cycle status information defined in 
table 4-2. This type of decoding could be used in a 
minimum mode 8088-based system to allow 
dynamic RAM refresh during passive CPU cycles.
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Figure 4-14. HOLD/HLDA Timing

Figure 4-15. Elementary Maximum Mode System

Table 4-2. Status Bit Decoding
Status Inputs

CPU Cycle 8288 Command
S2 S1 so

0 0 0 In te r ru p t  A c k n o w le d g e Inta
0 0 1 R ead I /O  P o rt IO RC
0 1 0 W rite  I /O  P o rt IO W C , A IO W C
0 1 1 H a lt N o n e
1 0 0 In s tru c t io n  F e tch M R D C
1 0 1 R ead M e m o ry M R D C
1 1 0 W rite  M e m o ry M W TC , A M W C
1 1 1 P a ss ive N o n e
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RQ/GT1, RQ/GTO

The Request/Grant signal lines (RQ/GTO and 
RQ/GT1) provide the CPU’s bus access 
mechanism in the maximum mode (replacing the 
HOLD/HLDA function available in the 
minimum mode) and are designed expressly for 
multiprocessor applications using the 8089 I/O 
Processor in its local mode or other processors 
that can support this function. These lines are 
unique in that the request/grant function is 
accomplished over a single line (RQ/GTO 
or RQ/GT1) rather than the two-line 
HOLD/HLDA function.

As shown in figure 4-16, the request/grant 
sequence is a three-phase cycle: request, grant and 
release. The sequence is initiated by another pro
cessor on the system bus when it outputs a pulse 
on one of the RQ/GT lines to request bus access 
(request phase). In response, the CPU outputs a 
pulse (on the same line) at the end of either the 
current bus cycle (if a bus cycle is in progress) or 
idle clock period to indicate to the requesting pro
cessor that it has floated the system bus and that it 
will logically disconnect from the bus controller 
on the next clock cycle (grant phase) and enter a

“ hold” state. Note that the CPU’s execution unit 
(EU) continues to execute the instructions in the 
queue until an instruction requiring bus access is 
encountered or until the queue is empty. In the 
third (release) phase, the requesting processor 
again outputs a pulse on the RQ/GT line. This 
pulse alerts the CPU that the processor is ready to 
release the bus. The CPU regains bus access on its 
next clock cycle. Note that the exchange of pulses 
is synchronized and, accordingly, both the CPU 
and requesting processor must be referenced to 
the same clock signal.

The request/grant lines are prioritized with 
RQ/GTO taking precedence over RQ/GT1. If a 
request arrives on both lines simultaneously, the 
processor on RQ/GTO is granted the bus (the 
request on RQ/GT 1 is granted when the bus is 
released by the first processor following a one or 
two clock channel transfer delay). Both RQ/GT 
lines (and the HOLD line in minimum mode) have 
a higher priority than a pending interrupt.

Request/grant latency (the time interval between 
the receipt of a request pulse and the return of a 
grant pulse) for several conditions is given in table
4-3.

Figure 4-16. Request/Grant Timing

Table 4-3. Request/Grant Latency

Operating Condition Request/Grant Delay
8086 8088

Normal Instruction Processing—LOCK inactive 3-6 (10*) clocks 3-10 clocks

INTA Cycle Executing—LOCK active 15 clocks 15 clocks

Locked XCHG Instruction Processing—LOCK active 24-31 (39*) clocks 24-39 clocks

*The number of clocks in parentheses applies when the instruction being executed references a word 
operand at an odd address boundary.
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Latency during normal instruction processing 
(LOCK inactive) can be as short as three clock 
cycles (e.g., during execution of an instruction 
that does not reference memory) and no more 
than ten clock cycles. Whenever the LOCK out
put is active (LOCK is activated during an inter
rupt acknowledge cycle or during execution of an 
instruction with a Lock prefix), latency is 
increased. In the case of the execution of a locked 
XCHG instruction (used during semaphore 
examination), maximum latency is limited to 39 
clock cycles. Greater latencies occur when a 
“ long” instruction is locked. This, however, is 
neither necessary nor recommended.

At the end of processor activity, the 8086 or 
8088 will not redirve its control and data buses 
until two clock cycles following receipt of the 
release pulse (or two clock cycles after HOLD 
goes inactive in the minimum mode).

A Hold request is honored immediately following 
CPU reset if the HOLD line is active when the 
RESET line goes inactive. This action facilitates 
the downloading of programs and, more 
specifically, the setting of memory location 
FFFFOH prior to CPU activation. Note that the 
same result can be effected in the maximum mode 
through the RQ/GT line by generating the request 
pulse in the first or second clock cycle after 
RESET goes inactive.

LOCK

The LOCK output is used in conjunction with an 
Intel 8289® Bus Arbiter to guarantee exclusive 
access of a shared system bus for the duration of 
an instruction. This output is software controlled 
and is effected by preceding the instruction 
requiring exclusive access with a one byte “ lock” 
prefix (see instruction set description in Chapter 
2).

When the lock prefix is decoded by the EU, the 
EU informs the BIU to activate the LOCK output 
during the next clock cycle. This signal remains 
active until one clock cycle after the execution of 
the associated instruction is concluded.

QS1, QSO

The QS1 and QSO (Queue Status) outputs permit 
external monitoring of the CPU’s internal 
instruction queue to allow instruction set exten

sion processing by a coprocessor. (The 
corresponding Intel ICE modules use these status 
bits during “ trace” operations.) The encoding of 
the QS1 and QSO bits is shown in table 4-4.

Table 4-4. Queue Status Bit Decoding

QS1 QSO Queue Status

O (low ) 0 N o  O p e ra t io n . D u r in g  th e  la s t 
c lo c k  c y c le ,  n o th in g  w a s  ta k e n  
fro m  th e  q u e u e .

0 1 F irs t  B y te . T h e  b y te  ta k e n  fro m  th e  
q u e u e  w a s  th e  f i r s t  b y te  o f th e  
in s t ru c t io n .

1 (h ig h ) 0 Q u e u e  E m p ty . T h e  q u e u e  has 
b e e n  re in i t ia l iz e d  a s  a re s u lt  o f  th e  
e x e c u tio n  o f  a  t r a n s fe r  in s t ru c t io n .

1 1 S u b s e q u e n t B y te . T h e  b y te  ta k e n  
fro m  th e  q u e u e  w a s  a s u b s e q u e n t 
b y te  o f th e  in s t ru c t io n .

The queue status is valid during the clock cycle 
after the indicated activity has occurred.

External Memory Addressing

The 8086 and 8088 CPUs have a 20-bit address 
bus and are capable of accessing one megabyte of 
memory address space.

The 8086 memory address space consists of a 
sequence of up to one million individual bytes in 
which any two consecutive bytes can be accessed 
as a 16-bit data word. As shown in figure 4-17, 
the memory address space is physically divided, 
into two banks of up to 512k bytes each.

One bank is associated with the lower half of the 
CPU’s 16-bit data bus (data bits D7-D0), and the 
other bank is associated with the upper half of the 
data bus (data bits D15-D8). Address bits A19 
through A 1 are used to simultaneously address a 
specific byte location in both the upper and lower 
banks, and the A0 address bit is not used in 
memory addressing. Instead, A0 is used in 
memory bank selection. The lower bank, which
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Figure 4-17. 8086 Memory Interface

contains even-address bytes, is selected when 
A0=0. The upper bank, containing odd address 
bytes (A0=1), is selected by a separate signal, Bus 
High Enable (BHE). Table 4-5 defines the 
BHE-AO bank selection mechanism.

Table 4-5. Memory Bank Selection

BH E A0 B y te  T ra n s fe r re d

0 ( lo w ) 0 B o th  b y te s
0 1 U p p e r  b y te  to / f r o m  o d d  a d d re s s
1 (h ig h ) 0 L o w e r  b y te  to / f r o m  e ve n  a d d re s s
1 1 N o n e

When accessing a data byte at an even address, 
the byte is transferred to or from the lower bank 
on the lower half of the data bus (D7-D0). In this 
case, the inactive level of the AO address bit 
enables the addressed byte in the lower bank, and 
the inactive level of the BHE signal disables the 
addressed byte in the upper bank. Conversely, 
when performing a byte access at an odd address, 
the data byte is transferred to or from the upper 
bank on the upper half of the data bus (D15-D8). 
The active level of the BHE signal enables the 
upper bank, and the active level of the AO address 
bit disables the lower bank.

order byte is in the lower bank), the word is said 
to be “ aligned” and can be accessed in a single 
operation (a single bus cycle). As with the byte 
transfers previously described, address bits A19 
through A 1 address both banks, except that now 
BHE is active (selecting the upper bank) and AO is 
inactive (selecting the lower bank) to access both 
bytes.

When the low-order byte of the word to be 
accessed is on an odd address boundary (when the 
low-order byte is in the upper bank), the word is 
“ not aligned” and must be accessed in two bus 
cycles. During the first cycle, the low-order byte 
of the word is transferred to or from the upper 
bank as described for a byte access at an odd 
address (AO and BHE active). The memory 
address is then incremented, which causes AO to 
shift to an inactive level (selecting the lower 
bank), and a byte access at an even address is per
formed during the next bus cycle to transfer the 
word’s high-order byte to or from the lower bank. 
The above sequence is initiated automatically by 
the 8086 whenever a word access at an odd 
address is performed. Also, the directing of the 
high- and low-order bytes of the 8086’s internal 
word registers to the appropriate halves of the 
data bus is performed automatically and, except 
for the additional four clock cycles required to 
execute the second bus cycle, the entire operation 
is transparent to the program.

The 8088 memory address space is logically 
organized as a linear array of up to one million 
bytes. Since the 8088 uses an 8 -bit-wide data bus, 
memory consists of a single bank. Address bit AO 
is used to address memory, and a BHE signal is 
not provided.

Word (16-bit) operands can be located at odd- or 
even-address boundaries. The low-order byte of 
the word is stored in the lower-valued address 
location, and the high-order byte is stored in the 
next, higher-valued address location. The 8088 
automatically executes two bus cycles when 
accessing word operands.

I /O  Interfacing

As indicated in table 4-5, the 8086 can access a 
byte in both the upper and lower banks 
simultaneously as a 16-bit word. When the low- 
order byte of the word to be accessed is on an 
even address boundary (that is, when the low-

The 8086 and 8088 CPUs support both I/O 
mapped I/O and memory mapped I/O. I/O 
mapped I/O permits an I/O device to reside in a 
separate address space (first 64k of address 
space), and the standard I/O instruction set is
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available for device communications. Memory 
mapped I/O permits an I/O device to reside 
anywhere in memory and allows the complete 
CPU instruction set to be used for I/O 
operations.

When the I/O and memory address spaces 
overlap, device selection is determined by the 
appropriate read/write command set.

Interrupts

The 8086 supports both 8 -bit and 16-bit I/O 
devices. An 8 -bit I/O device may be associated 
with either the upper or lower half of the data 
bus. (Assigning an equal number of devices to 
each half of the data bus distributes bus loading.) 
When an I/O device is assigned to the lower half 
of the bus (D7-D0), all I/O addresses must be 
even (AO equal “0” ), and when an I/O device is 
assigned to the upper half of the bus, all I/O 
addresses must be odd (AO equal “ 1” ). Note that 
since AO always will be either a “ 1” or a “0” for 
a specific device, it cannot be used as an address 
input to select registers within the I/O device. 
When an I/O device on the upper half of the bus 
and an I/O device on the lower half of the bus are 
assigned addresses that differ only by the state of 
AO (adjacent odd and even addresses), AO and 
BHE both must be conditions of device selection 
to prevent a write operation to one device from 
overwriting data in the other device.

CPU interrupts can be software or hardware 
initiated. Software interrupts originate directly 
from program execution (i.e., execution of a 
breakpointed instruction) or indirectly through 
program logic (i.e., attempting to divide by zero). 
Hardware interrupts originate from external logic 
and are classified as either non-maskable or 
maskable. All interrupts, whether software or 
hardware initiated, result in the transfer of con
trol to a new program location. A 256-entry vec
tor table, which contains address pointers to the 
interrupt routines, resides in absolute locations 0  
through 3FFH. Each entry in this table consists of 
two 16-bit address values (four bytes) that are 
loaded into the code segment (CS) and the 
instruction pointer (IP) registers as the interrupt 
routine address when an interrupt is accepted. 
Figure 4-18 illustrates the organization of the 256- 
entry vector table.

To permit data transfers to 16-bit I/O devices to 
be performed in a single bus cycle, the device is 
assigned an even address. To ensure that the I/O 
device is selected only for word transfers, AO and 
BHE both must be conditions of device selection.

The 8088, since its data bus is eight bits wide, is 
designed to support 8 -bit I/O devices and places 
no restrictions on odd or even addresses.

When the 8086 or the 8088 is operated in the 
minimum mode, the_ CPU’s read and write com
mands (RD and WR) are common for memory 
and I/O devices. If the memory and I/O address 
spaces overlap, device selection must be qualified 
by M/IO (8086) or IO/M (8088) to determine if 
the device is memory or I/O. This restriction does 
not apply to systems in which I/O and memory 
addresses do not overlap or to systems that use 
memory-mapped I/O exclusively. In the max
imum mode, the CPU generates (through the bus 
controller) separate memory read/write and_I/0 
read/write commands in place of the M/IO or 
IO/M signal. In a maximum mode system, an I/O 
device is assigned to an I/O address or to a 
memory address (memory mapped I/O) by con
necting either the memory or I/O  read/write com
mand lines to the device’s command inputs.

Memory Table Vector
Address Entry Definition

3FE

3FC

82

80

7E

7C

16

14

12

10

0E

0C

0A

08

06

04

02

00

Figure 4-18. Interrupt Vector Table

} ’

Y
}

V -  User Available

Vector 3110

CS Value — Vector 0 (CS 0)

IP Value — Vector 0 (IPO)

► Vector 4 — Overflow

► Vector 3 — Breakpoint

► Vector 2 — NMI

► Vector 1 — Single-Step

► Vector 0 — Divide Error
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As shown in figure 4-18, the first five interrupt 
vectors are associated with the software-initiated 
interrupts and the hardware non-maskable inter
rupt (NMI). The next 27 interrupt vectors are 
reserved by Intel and should not be used if com
patibility with future Intel products is to be main
tained. The remaining interrupt vectors (vectors 
32 thorugh 255) are available for user interrupt 
routines.

The non-maskable interrupt (NMI) occurs as a 
result of a positive transition at the CPU’s NMI 
input pin. This input is asynchronous and, in 
order to ensure that it is recognized, is required to 
have a minimum duration of two clock cycles. 
NMI is typically used with power fail circuitry, 
error correcting memory or bus parity detection 
logic to allow fast response to these fault condi
tions. When NMI is activated, control is trans
ferred to the interrupt service routine pointed to 
by vector 2  following execution of the current 
instruction. When a non-maskable interrupt is 
acknowledged, the current contents of the flags 
register are pushed onto the stack (the stack 
pointer is decremented by two), the interrupt 
enable and trap bits in the flags register are 
cleared (disabling maskable and single-step inter
rupts), and the vector 2 CS and IP address 
pointers are loaded into the CS and IP registers as 
the interrupt service routine address.

The CPU provides a single interrupt request input 
(INTR) that can be software masked by clearing 
the interrupt enable bit in the flags register 
through the execution of a CLI instruction. The 
INTR input is level triggered and is synchronized 
internally to the positive transition of the CLK 
signal. In order to be accepted before the next 
instruction, INTR must be active during the clock 
period preceding the end of the current instruc
tion (and the interrupt enable bit must be set).

As shown in figure 4-19, when a maskable inter
rupt is acknowledged, the CPU executes two 
interrupt acknowledge bus cycles.

During the first bus cycle, the CPU floats the 
address/data bus and activates the INTA (Inter
rupt Acknowledge) command output during 
states T2  through T4 . In the minimum mode, the 
CPU will not recognize a hold request from 
another bus master until the full interrupt 
acknowledge sequence is completed. In the max
imum mode, the CPU activates the LOCK output 
from state T2  of the first bus cycle until state T2 
of the second bus cycle to signal all 8289 Bus 
Arbiters in the system that the bus should not be 
accessed by any other processor. During the 
second bus cycle, the CPU again activates its 
INTA command output. In response to the

ale j  \___________ / \___________ r
•LOCK \ /

\ / \ /
AD7-AD0 VECTOR TYPE

•MAXIMUM MODE ONLY
••SEVERAL (3 TYPICAL) IDLE CLOCK STATES OCCUR BETWEEN THE FIRST AND SECOND 

INTERRUPT ACKNOWLEDGE BUS CYCLES IN THE 8086 CPU (DURING THIS INTERVAL THE 
BUS IS DRIVEN). INTERRUPT ACKNOWLEDGE BUS CYCLES OCCUR BACK-TO-BACK IN 
THE 8088 CPU.

Figure 4-19. Interrupt Acknowledge Sequence
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second INTA, the external interrupt system (e.g., 
an Intel® 8259A Programmable Interrupt Con
troller) places a byte on the data bus that iden
tifies the source of the interrupt (the vector 
number or vector “ type” ). This byte is read by 
the CPU and then multiplied by four with the 
resultant value used as a pointer into the interrupt 
vector table. Before calling the corresponding 
interrupt routine, the CPU saves the machine 
status by pushing the current contents of the flags 
register onto the stack. The CPU then clears the 
interrupt enable and trap bits in the flags register 
to prevent subsequent maskable and single-step 
interrupts, and establishes the interrupt routine 
return linkage by pushing the current CS and IP 
register contents onto the stack before loading the 
new CS and IP register values from the vector 
table.

The four classes of interrupts are prioritized with 
software-initiated interrupts having the highest 
priority and with maskable and single-step inter
rupts sharing the lowest priority (see section 2 .6 ). 
Since the CPU disables maskable and single-step 
interrupts when acknowledging any interrupt, if 
recognition of maskable interrupts or single-step 
operation is required as part of the interrupt 
routine, the routine first must set these bits.

The processing times for the various classes of 
interrupts are given in table 4-6. (These times also 
are included with the 8086/8088 instruction times 
cited in section 2.7.)

Table 4-6. Interrupt Processing Time

Interrupt Class Processing Time

E x te rn a l M a s k a b le  In te r ru p t  
(IN TR ) 61 c lo c k s

N o n -M a s k a b le  In te r ru p t  (N M I) 50 c lo c k s

IN T  (w ith  v e c to r) 51 c lo c k s
IN T T y p e  3 52 c lo c k s
IN TO 53 c lo c k s

S in g le  S te p 50 c lo c k s

Note that the times shown in table 4-6 represent 
only the time required to process the interrupt 
request after it has been recognized. To determine 
interrupt latency (the time interval between the 
posting of the interrupt request and the execution 
of “ useful” instructions within the interrupt

routine), additional time must be included for the 
completion on an instruction being executed when 
the interrupt is posted (interrupts are generally 
processed only at instruction boundaries), for 
saving the contents of any additional registers 
prior to interrupt processing (interrupts 
automatically save only CS, IP and Flags) and for 
any wait states that may be incurred during inter
rupt processing.

Machine Instruction Encoding and 
Decoding

Writing a MOV instruction in ASM-8 6  in the 
form:

MOV destination,source

will cause the assembler to generate 1 of 28 pos
sible forms of the MOV machine instruction. A 
programmer rarely needs to know the details of 
machine instruction formats or encoding. An 
exception may occur during debugging when it 
may be necessary to monitor instructions fetched 
on the bus, read unformatted memory dumps, 
etc. This section provides the information 
necessary to translate or decode an 8086 or 8088 
machine instruction.

To pack instructions into memory as densely as 
possible, the 8086 and 8088 CPUs utilize an effi
cient coding technique. Machine instructions vary 
from one to six bytes in length. One-byte instruc
tions, which generally operate on single registers 
or flags, are simple to identify. The keys to 
decoding longer instructions are in the first two 
bytes. The format of these bytes can vary, but 
most instructions follow the format shown in 
figure 4-20.

The first six bits of a multibyte instruction 
generally contain an opcode that identifies the 
basic instruction type: ADD, XOR, etc. The 
following bit, called the D field, generally 
specifies the “ direction” of the operation: 1 = the 
REG field in the second byte identifies the 
destination operand, 0 = the REG field identifies 
the source operand. The W field distinguishes 
between byte and word operations: 0  = byte, 1 = 
word.

One of three additional single-bit fields, S, V or 
Z, appears in some instruction formats. S is used 
in conjunction with W to indicate sign extension

M nem onics ©  Intel, 1978
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of immediate fields in arithmetic instructions. V 
distinguishes between single- and variable-bit 
shifts and rotates. Z is used as a compare bit with

the zero flag in conditional repeat and loop 
instructions. All single-bit field settings are sum
marized in table 4-7.

B Y TE 3 BYTE 4 BYTE 5 BYTE 6

I
' 1

L O W D IS P /D A T A  , H IG H  D IS P /D A T A  | LO W  D A T A  | H IG H  D A T A  |
I I I

. R E G IS T E R  O P E R A N D /R E G IS T E R S  T O  USE IN  EA C A L C U L A T IO N  
> R E G IS T E R  O P E R A N D /E X T E N S IO N  O F  O P C O D E  
. R E G IS T E R  M O D E /M E M O R Y  M O D E  W IT H  D IS P L A C E M E N T  L E N G T H  

■ W O R D /B Y T E  O P E R A T IO N
. D IR E C T IO N  IS T O  R E G IS T E R /D IR E C T IO N  IS F R O M  R E G IS TE R  
. O P E R A T IO N  (IN S T R U C T IO N ) C O D E

Figure 4-20. Typical 8086/8088 Machine Instruction Format

Table 4-7. Single-Bit Field Encoding

Field Value Function

0 N o  s ig n  e x te n s io n
1 S ig n  e x te n d  8 -b it im m e d ia te  d a ta  to  16 b its  i f  W =1

W
0 In s tru c t io n  o p e ra te s  o n  b y te  da ta
1 In s tru c t io n  o p e ra te s  o n  w o rd  d a ta

n 0 In s tru c t io n  s o u rc e  is  s p e c if ie d  in REG f ie ld
1 In s tru c t io n  d e s t in a t io n  is  s p e c if ie d  in REG f ie ld

V
0 S h if t / r o ta te  c o u n t is  o n e
1 S h if t / r o ta te  c o u n t  is  s p e c if ie d  in  C L  re g is te r

z 0 R e p e a t/ lo o p  w h ile  z e ro  f la g  is  c le a r
1 R e p e a t/ lo o p  w h ile  z e ro  f la g  is  s e t
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The second byte of the instruction usually iden
tifies the instruction’s operands. The MOD 
(mode) field indicates whether one of the 
operands is in memory or whether both operands 
are registers (see table 4-8). The REG (register) 
field identifies a register that is one of the instruc
tion operands (see table 4-9). In a number of 
instructions, chiefly the immediate-to-memory 
variety, REG is used as an extension of the 
opcode to identify the type of operation. The 
encoding of the R/M (register/memory) field (see 
table 4-10) depends on how the mode field is set. 
If MOD = 11 (register-to-register mode), then 
R/M identifies the second register operand. If 
MOD selects memory mode, then R/M indicates 
how the effective address of the memory operand 
is to be calculated. Effective address calculation 
is covered in detail in section 2 .8 .

Bytes 3 through 6  of an instruction are optional 
fields that usually contain the displacement value 
of a memory operand and/or the actual value of 
an immediate constant operand.

Table 4-8. MOD (Mode) Field Encoding

CODE EXPLANATION

00 Memory Mode, no displacement 
follows*

01 Memory Mode, 8-bit 
displacement follows

10 Memory Mode, 16-bit 
displacement follows

11 Register Mode (no 
displacement)

'Except when R/M = 110, then 16-bit 
displacement follows

Table 4-9. REG (Register) Field Encoding

REG w = o W = 1

000 AL AX
001 CL CX
010 DL DX
011 BL BX
100 AH SP
101 CH BP
110 DH SI
111 BH Dl

There may be one or two displacement bytes; the 
language translators generate one byte whenever 
possible. The MOD field indicates how many 
displacement bytes are present. Following Intel 
convention, if the displacement is two bytes, the 
most-significant byte is stored second in the 
instruction. If the displacement is only a single 
byte, the 8086 or 8088 automatically sign extends 
this quantity to 16-bits before using the informa
tion in further address calculations. Immediate 
values always follow any displacement values that 
may be present. The second byte of a two-byte 
immediate value is the most significant.

Table 4-12 lists the instruction encodings for all 
8086/8088 instructions. This table can be used to 
predict the machine encoding of any ASM-8 6  
instruction. Table 4-13 lists the 8086/8088 
machine instructions in order by the binary value 
of their first byte. This table can be used to 
decode any machine instruction from its binary 
representation. Table 4-11 is a key to the 
abbreviations used in tables 4-12 and 4-13. Table
4-14 is a more compact instruction decoding 
guide.

Table 4-10. R/M  (Register/Memory) Field Encoding

MOD = 11 EFFECTIVE ADDRESS CALCULATION

R/M Ss II o W = 1 R/M MOD = 00 MOD = 01 MOD = 10

000 AL AX 000 (BX) + (SI) (BX) + (SI) + D8 (BX) + (SI) + D16
001 CL CX 001 (BX) + (Dl) (BX) + (DI) + D8 (BX) + (Dl) + D16
010 DL DX 010 (BP) + (SI) (BP) + (SI) + D8 (BP) + (SI) + D16
011 BL BX 011 (BP) + (Dl) (BP) + (Dl) + D8 (BP) + (Dl) + D16
100 AH SP 100 (SI) (Sl) + D8 (SI) + D16
101 CH BP 101 (Dl) (Dl) + D8 (DD + D16
110 DH SI 110 DIRECT ADDRESS (BP) + D8 (BP) + D16
111 BH Dl 111 (BX) (BX) + D8 (BX) + D16
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Table 4-11. Key to Machine Instruction Encoding and Decoding

IDENTIFIER EXPLANATION

MOD Mode field; described in this chapter.

REG Register field; described in this chapter.

R/M Register/Memory field; described in this chapter.

SR Segment register code: 00=ES, 01=CS, 10=SS, 11=DS.

W, S, D, V, Z Single-bit instruction fields; described in this chapter.

DATA-8 8-bit immediate constant.

DATA-SX 8-bit immediate value that is automatically sign-extended to 16-bits 
before use.

DATA-LO Low-order byte of 16-bit immediate constant.

DATA-HI High-order byte of 16-bit immediate constant.

(DISP-LO) Low-order byte of optional 8- or 16-bit unsigned displacement; MOD 
indicates if present.

(DISP-HI) High-order byte of optional 16-bit unsigned displacement; MOD 
indicates if present.

IP-LO Low-order byte of new IP value.

IP-HI High-order byte of new IP value

CS-LO Low-order byte of new CS value.

CS-HI High-order byte of new CS value.

IP-INC8 8-bit signed increment to instruction pointer.

IP-INC-LO Low-order byte of signed 16-bit instruction pointer increment.

IP-INC-HI High-order byte of signed 16-bit instruction pointer increment.

ADDR-LO Low-order byte of direct address (offset) of memory operand; EA not 
calculated.

ADDR-HI High-order byte of direct address (offset) of memory operand; EA not 
calculated.

— Bits may contain any value.

XXX First 3 bits of ESC opcode.
YYY Second 3 bits of ESC opcode.
REG8 8-bit general register operand.
REG16 16-bit general register operand.
MEM8 8-bit memory operand (any addressing mode).
MEM16 16-bit memory operand (any addressing mode).
IMMED8 8-bit immediate operand.
IMMED16 16-bit immediate operand.
SEGREG Segment register operand.
DEST-STR8 Byte string addressed by Dl.
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Table 4-11. Key to Machine Instruction Encoding and Decoding (Cont’d.)

IDENTIFIER EXPLANATION

SRC-STR8 Byte string addressed by SI.

DEST-STR16 Word string addressed by Dl.

SRC-STR16 Word string addressed by SI.

SHORT-LABEL Label within ±127 bytes of instruction.

NEAR-PROC Procedure in current code segment.

FAR-PROC Procedure in another code segment.

NEAR-LABEL Label in current code segment but farther than -128 to +127 bytes 
from instruction.

FAR-LABEL Label in another code segment.

SOURCE-TABLE XLAT translation table addressed by BX.

OPCODE ESC opcode operand.

SOURCE ESC register or memory operand.

DATA TRANSFER

Table 4-12. 8086 Instruction Encoding

MOV = Move: 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Register/memory to/from register 1 0 0 0 1 0 d w mod reg r/m (DISP-LO) (DISP-HI)

Immediate to register/memory 1 1 0 0 0 1 1 w mod 0 0 0 r/m (DISP-LO) (DISP-HI) data data if w = 1

Immediate to register 1 0 1 1 w reg data dataifw = 1

Memory to accumulator 1 0 1 0 0 0 0 w addr-lo addr-hi

Accumulator to memory 1 0 1 0 0 0 1 w addr-lo addr-hi

Register/memory to segment register 1 0 0 0 1 1 1 0 mod 0 SR r/m (DISP-LO) (DISP-HI)

Segment register to register/memory 1 0 0 0 1 1 0 0 mod 0 SR r/m (DISP-LO) (DISP-HI)

PUSH = Push:

Register/memory 1 1 1 1 1 1 1 1 mod 1 1 0 r / m (DISP-LO) (DISP-HI)

Register 0 1 0 1 0 reg

Segment register 0 0 0 reg 1 1 0

POP = Pop:

Register/memory

Register

Segment register

1 0 0 0 1 1 1 1 mod 0 0 0 r/m (DISP-LO) (DISP-HI)

0 1 0 1 1 reg

0 0 0 reg 1 1 1

M nem onics ©  Intel, 1978
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Table 4-12. 8086 Instruction Encoding (Cont’d.)

DATA TRANSFER (Cont'd.)

XCHQ = Exchange: 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Register/memory with register 1 0 0 0 0 1 1 w mod reg r/m (DISP-LO) (DISP-HI)

Register with accumulator 1 0 0 1 0 reg

IN = Input from:

Fixed port 1 1 1 0 0 1 0 w DATA-8

Variable port 1 1 1 0 1 1 0 w

OUT = Output to:

Fixed port 1 1 1 0 0 1 1 w DATA-8

Variable port 1 1 1 0 1 1 1 w

XLAT = Translate byte to AL 1 1 0  1 0  1 1 1

LEA = Load EA to register 1 0 0 0 1 1 0 1 mod reg r/m (DISP-LO) (DISP-HI)

LDS = Load pointer to DS 1 1 0 0 0 1 0 1 mod reg r/m (DISP-LO) (DISP-HI)

LES = Load pointer to ES 1 1 0 0 0 1 0 0 mod reg r/m (DISP-LO) (DISP-HI)

LAHF = Load AH with flags 1 0  0 1 1 1 1 1

SAHF = Store AH into flags 1 0  0 1 1 1 1 0

PUSHF = Push flags 1 0  0 1 1 1 0  0

POPF = Pop flags 1 0  0 1 1 1 0  1

ARITHMETIC 

ADD = Add:

Reg/memory with register to either 

Immediate to register/memory 

Immediate to accumulator

O O O O O O d w mod reg r / m (DISP-LO) (DISP-HI)

1 0 0 0 0 0 s w mod 0 0 0 r/m (DISP-LO) (DISP-HI) data data if s: w=01

0 0 0 0 0 1 0 w data data if w=1

ADC = Add with carry:

Reg/memory with register to either 0 0 0 1 0 0 d w mod reg r/m (DISP-LO) (DISP-HI)

Immediate to register/memory 1 0 0 0 0 0 s w mod 0 1 0 r/m (DISP-LO) (DISP-HI) data data if s: w=01

Immediate to accumulator 0 0 0 1 0 1 0 w data data If w=1

INC = Increment:

Register/memory 1 1 1 1 1 1 1 w mod 0 0 0 r/m (DISP-LO) (DISP-HI)

Register 0 1 0 0 0 reg

AAA = ASCII adjust for add 0 0 1 1 0  1 1 1

DAA = Decimal adjust for add 0 0 1 0 0 1 1 1
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Table 4-12. 8086 Instruction Encoding (Cont’d.)

SUB = Subtract: 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Reg/memory and register to either 0 0 1 0 1 0 d w mod reg r/m (DISP-LO) (DISP-HI)

Immediate from register/memory 1 0 0 0 0 0 s w mod 1 0 1 r/m (DISP-LO) (DISP-HI) data data if s: w=01

Immediate from accumulator 0 0 1 0 1 1 0 w data data if w=1

SBB = Subtract with borrow:

Reg/memory and register to either 

Immediate from register/memory 

Immediate from accumulator

0 0 0 1 1 0 d w mod reg r/m (DISP-LO) (DISP-HI)

1 0 0 0 0 0 s w mod 0 1 1 r/m (DISP-LO) (DISP-HI) data data if s: w=01

0 0 0 1 1 1 0 w data data if w = 1

DEC Decrement:

Register/memory

Register

NEG Change sign

CMP = Compare:

Register/memory and register 0 0 1 1 1 0 d w mod reg r/m (DISP-LO) (DISP-HI)

Immediate with register/memory 1 0 0 0 0 0 s w mod 1 1 1 r/m (DISP-LO) (DISP-HI) data data if s: w=1

Immediate with accumulator 0 0 1 1 1 1 0 w data

AAS ASCII adjust for subtract 0 0 1 1 1 1 1 1

DAS Decimal adjust for subtract 0 0 1 0  1 1 1 1

MUL Multiply (unsigned) 1 1 1 1 0 1 1 w mod 1 0  0 r/m (DISP-LO) (DISP-HI)

IMUL Integer multiply (signed) 1 1 1 1 0 1 1 w mod 1 0 1 r/m (DISP-LO) (DISP-HI)

AAM ASCII adjust for multiply 1 1 0  1 0  1 0  0 0 0 0 0 1 0 1 0 (DISP-LO) (DISP-HI)

DIV Divide (unsigned) 1 1 1 1 0 1 1 w mod 1 1 0 r/m (DISP-LO) (DISP-HI)

IDIV Integer divide (signed) 1 1 1 1 0 1 1 w mod 1 1 1 r/m (DISP-LO) (DISP-HI)

AAD ASCII adjust for divide 1 1 0  1 0  1 0  1 0 0 0 0 1 0 1 0 (DISP-LO) (DISP-HI)

CBW Convert byte to word 1 0 0 1 1 0 0 0

CWD Convert word to double word 1 0 0 1 1 0 0 1

LOGIC

NOT Invert

SHL/SAL Shift logical/arithmetic left 

SHR Shift logical right 

SAR Shift arithmetic right 

ROL Rotate left

1 1 1 1 0 1 1 w mod 0 1 0 r/m (DISP-LO) (DISP-HI)

1 1 0 1 0 0 v w mod 1 0 0 r/m (DISP-LO) (DISP-HI)

1 1 0 1 0 0 v w mod 1 0 1 r/m (DISP-LO) (DISP-HI)

1 1 0 1 0 0 v w mod 1 1 1 r/m (DISP-LO) (DISP-HI)

1 1 0 1 0 0 v w mod 0 0 0 r/m (DISP-LO) (DISP-HI)

1 1 1 1 1 1 1 w mod 0 0 1 r/m (DISP-LO) (DISP-HI)

0 1 0  0 1 reg

1 1 1 1 0 1 1 w mod 0 1 1 r/rri (DISP-LO) (DISP-HI)
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Table 4-12. 8086 Instruction Encoding (Cont’d.)

LOGIC (Contd.) 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

ROR Rotate nght 1 1 0 1 0 0 v w mod 0 0 1 r/m (DiSP-LO) (DISP-HI)

RCL Rotate through carry flag left 1 1 0 1 0 0 v w mod 0 1 0  r/m (DISP-LO) (DISP-HI)

RCR Rotate through carry right 1 1 0 1 0 0 v w mod 0 1 1 r/m (DISP-LO) (DISP-HI)

AND = And:

Reg/memory with register to either 0 0 1 0 0 0 d w mod reg r/m (DISP-LO) (DISP-HI)

Immediate to register/memory 1 0 0 0 0 0 0 w mod 1 0 0 r/m (DISP-LO) (DISP-HI) data data if w=1

immediate to accumulator 0 0 1 0 0 1 0 w data data if w=1

TEST = And function to flags no result.

Register/memory and register 0 0 0 1 0 0 d w mod reg r/m (DISP-LO) (DISP-HI)

Immediate data and register/memory 1 1 1 1 0 1 1 w mod 0 0 0 r/m (DISP-LO) (DISP-HI) data data if w=l

Immediate data and accumulator 1 0 1 0 1 0 0 w data

OR = Or:

Reg/memory and register to either 0 0 0 0 1 0 d w mod reg r/m (DISP-LO) (DISP-HI)

Immediate to register/memory 1 0 0 0 0 0 0 w mod 0 0 1 r/m (DISP-LO) (DISP-HI) data data if w=1

Immediate to accumulator 0 0 0 0 1 1 0 w data data if w=1

XOR = Exclusive or:

Reg/memory and register to either 0 0 1 1 0 0 d w mod reg r/m (DISP-LO) (DISP-HI)

Immediate to register/memory 0 0 1 1 0 1 0 w data (DISP-LO) (DISP-HI) data data if w=1

Immediate to accumulator 0 0 1 1 0 1 0 w data data if w=1

STRING MANIPULATION

REP = Repeat 

MOVS = Move byte/word 

CMPS = Compare byte/word 

SCAS = Scan byte/word 

LODS = Load byte/wd to AL/AX 

STDS = Stor byte/wd from AL/A

1 1 1 1 0 0 1 z

1 0 1 0 0 1 0 w

1 0 1 0 0 1 1 w

1 0  1 0  1 1 1

1 0 1 0 1 1 0 \
1 0 1 0 1 0 1 w
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Table 4-12. 8086 Instruction Encoding (Cont’d.)

CONTROLTRANSFER 

CALL = Call:

Direct within segment 

Indirect within segment 

Direct intersegment

Indirect intersegment

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

1 1 1 0  1 0  0 0 IP-INC-LO IP-INC-HI

1 1 1 1 1 1 1 1 mod 0 1 0 r / m (DISP-LO) (DISP-HI)

1 0  0 1 1 0  1 0 IP-lo IP-hi

CS-lo CS-hi

1 1 1 1 1 1 1 1 mod 0 1 1 r /m (DISP-LO) (DISP-HI)

JMP = Unconditional Jump:

Direct within segment 

Direct within segment-short 

Indirect within segment 

Direct intersegment

1 1 1 0  1 0  0 1 IP-INC-LO IP-INC-HI

1 1 1 0  1 0  11 IP-INC8

1 1 1 1 1 1 1 1 mod 1 0  0 r / m (DISP-LO) (DISP-HI)

1 1 1 0  1 0  1 0 IP-lo IP-hi

CS-lo CS-hi

Indirect intersegment 1 1 1 1 1 1 1 1 mod 1 0 1 r / m (DISP-LO) (DISP-HI)

RET = Return from CALL:

Within segment 1 1 0 0 0 0 1 1

Within seg adding immed to SP 1 1 0 0 0 0 1 0 data-lo data-hi

Intersegment 1 1 0  0 1 0  11

Intersegment adding immediate to SP 1 1 0  0 1 0  1 0 data-lo data-hi

JE/JZ = Jumpon equal/zero 0 1 1 1 0  1 0  0 IP-INC8

JL/JNGE = Jump on less/not greater or equal 0 1 1 1 1 1 0  0 IP-INC8

JLE/JNG = Jump on less or equal/not greater 0 1 1 1 1 1 1 0 IP-INC8

JB/JNAE* Jump on below/not above or equal 0 1 1 1 0  0 1 0 IP-INC8

JBE/JNA = Jump on below or equal/not above 0 1 1 1 0  1 1 0 IP-INC8

JP/JPE = Jumpon parity/parity even 0 1 1 1 1 0  1 0 IP-INC8

JO * Jump on overflow 0 1 1 1 0 0 0 0 IP-INC8

JS = Jump on sign 0 1 1 1 1 0  0 0 IP-INC8

JNE/JNZ* Jump on not equal/not zero 0 1 1 1 0  1 0  1 IP-INC8

JNL/JGEsJumpon not less/greater or equal 0 1 1 1 1 1 0  1 IP-INC8

JNLE/JG *  Jump on not less or equal/greater 0 1 1 1 1 1 1 1 IP-INC8

JNB/JAE* Jump on not below/above or equal 0 1 1 1 0  0 11 IP-INC8

JNBE/JA* Jump on not below or equal/above 0 1 1 1 0  1 1 1 IP-INC8

JNP/JPO* Jump on not par/par odd 0 1 1 1 1 0  11 IP-INC8

JNO *  Jump on not overflow 0 1 1 1 0 0 0 1 IP-INC8
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Table 4-12. 8086 Instruction Encoding (Cont’d.)

CONTROLTRANSFER (Cont’d.)

RET = Return from CALL: 7 6 5 4 3 2 1 0  7 6 5 4 3 2 1 0  7 6 5 4 3 2 1 0  7 6 5 4 3 2 1 0  7 6 5 4 3 2 1 0  7 6 5 4 3 2 1 0

JNS = Jumpon not sign 0 1 1 1 1 0  0 1 IP-INC8

LOOP = Loop CX times 1 1 1 0 0 0 1 0 IP-INC8

LOOPZ/LOOPE = Loop while zero/equal 1 1 1 0 0 0 0 1 IP-INC8

LOOPNZ/LOOPNE = Loop while not zero/equal 1 1 1 0 0 0 0 0 IP-INC8

JCXZ = Jump on CX zero 1 1 1 0 0 0 1 1 IP-INC8

INT = Interrupt:

Type specified 1 1 0  0 1 1 0  1 DAT A-8

Type 3 1 1 0  0 1 1 0  0

INTO = Interrupt on overflow 1 1 0  0 1 1 1 0

IRET = Interrupt return 1 1 0  0 1 1 1 1

PROCESSOR CONTROL

CLC = Clear carry 1 1 1 1 1 0  0 0

CMC = Complement carry 1 1 1 1 0  1 0  1

STC = Set carry 1 1 1 1 1 0  0 1

CLD = Clear direction 1 1 1 1 1 1 0  0

STD = Set direction 1 1 1 1 1 1 0  1

CLI = Clear interrupt 1 1 1 1 1 0  1 0

STI = Set interrupt 1 1 1 1 1 0  11

HLT = Halt 1 1 1 1 0  1 0  0

WAIT = Wait 1 0  0 1 1 0  11

ESC = Escape (to external device) 1 1 0 1 1 X X x m o d y y y r / m (DISP-LO) (DISP-HI)

LOCK = Bus lock prefix 1 1 1 1 0 0 0 0

SEGMENT = Override prefix 0 0 1 reg 1 1 0

Table 4-13. Machine Instruction Decoding Guide

1ST BYTE 2ND BYTE BYTES 3, 4, 5, 6 ASM-86 INSTRUCTION FORMATHEX BINARY

00 0000 0000 M O D R E G R /M (D IS P -L O ),(D IS P -H I) A D D R E G 8 /M E M 8 .R E G 8
01 0000 0001 M O D R E G R /M (D IS P -LO ),(D IS P -H I) AD D R E G 16 /M E M 16 .R E G 16
02 0000 0010 M O D R E G R /M (D IS P -L O ),(D IS P -H I) A D D R E G 8 .R E G 8/M E M 8
03 0000 0011 M O D R E G R /M (D IS P -L O ),(D IS P -H I) A D D R E G 16 .R E G 16 /M E M 16
04 0000 0100 D A T A -8 AD D A L .IM M E D 8
05 0000 0101 D A T A -L O D A T A -H I A D D A X .IM M E D 1 6
06 0000 0110 P U S H ES
07 0000 0111 POP ES
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Table 4-13. Machine Instruction Decoding Guide (Cont’d.)

1ST BYTE 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMATHEX BINARY

08 0000 1000 M O D  REG R /M (D IS P -LO ).(D IS P -H I) OR R E G 8 /M E M 8 .R E G 8
09 0000 1001 M O D  REG R /M (D IS P -LO ).(D IS P -H I) OR R E G 16 /M E M 16 .R E G 16
0A 0000 1010 M O D  REG R /M (D IS P -LO ).(D IS P -H I) OR R E G 8 .R E G 8/M E M 8
OB 0000 1011 M O D  REG R /M (D IS P -L O M D IS P -H I) OR R E G 16 ,R E G 16 /M E M 16
OC 0000 1100 D A T A -8 OR A L .IM M E D 8
0D 0000 1101 D A T A -L O D A T A -H I OR A X .IM M E D 16
0E 0000 1110 PU SH CS
OF 0000 1111 (n o t u se d )
10 0001 0000 M O D  REG R /M (D IS P -LO ).(D IS P -H I) AD C R E G 8 /M E M 8 .R E G 8
11 0001 0001 M O D  REG R /M (D IS P -LO ).(D IS P -H I) A D C R E G 16 /M E M 16 .R E G 16
12 0001 0010 M O D  REG R /M (D IS P -L O ), (D IS P -H  I) A D C R E G 8 ,R E G 8/M E M 8
13 0001 0011 M O D  REG R /M (D IS P -LO ).(D IS P -H I) A D C R E G 16 .R E G 16 /M E M 16
14 0001 0100 D A T A -8 A D C A L .IM M E D 8
15 0001 0101 D A T A -L O D A T A -H I A D C A X ,IM M E D 16
16 0001 0110 PU SH SS
17 0001 0111 POP SS
18 0001 1000 M O D  REG R /M (D IS P -LO ),(D IS P -H I) S B B R E G 8 /M E M 8 .R E G 8
19 0001 1001 M O D  REG R /M (D IS P -LO ),(D IS P -H I) S B B R E G 16 /M E M 16 ,R E G 16
1A 0001 1010 M O D  REG R /M (D IS P -LO ),(D IS P -H I) S B B R E G 8 .R E G 8/M E M 8
1 B 0001 1011 M O D  REG R /M (D IS P -LO ),(D IS P -H I) S B B R E G 16 .R E G 16 /M E M 16
1C 0001 1100 D A T A -8 S B B A L ,IM M E D 8
1D 0001 1101 D A T A -L O D A T A -H I S B B A X JM M E D 1 6
1E 0001 1110 PU SH DS
1F 0001 1111 POP DS
20 0010 0000 M O D  REG R /M (D IS P -LO ),(D IS P -H I) A N D R E G 8 /M E M 8 .R E G 8
21 0010 0001 M O D  REG R /M (D IS P -LO ),(D IS P -H I) A N D R E G 16 /M E M 16 .R E G 16
22 0010 0010 M O D  REG R /M (D IS P -LO ),(D IS P -H I) A N D R E G 8 .R E G 8/M E M 8
23 0010 0011 M O D  REG R /M (D IS P -LO ),(D IS P -H I) A N D R E G 16 .R E G 16 /M E M 16
24 0010 0100 D A T A -8 A N D A L J M M E D 8
25 0010 0101 D A T A -L O D A T A -H I A N D A X .IM M E D 1 6
26 0010 0110 ES: (s e g m e n t o v e rr id e

p re fix )
27 0010 0111 D A A
28 0010 1000 M O D  REG R /M (D IS P -LO ),(D IS P -H I) S U B R E G 8 /M E M 8 .R E G 8
29 0010 1001 M O D  REG R /M (D IS P -LO ),(D IS P -H I) S U B R E G 16 /M E M 16 .R E G 16
2A 0010 1010 M O D  REG R /M (D IS P -LO ),(D IS P -H I) S U B R E G 8 .R E G 8/M E M 8
2B 0010 1011 M O D  REG R /M (D IS P -L O ,(D IS P -H I) S U B R E G 16 .R E G 16 /M E M 16
2C 0010 1100 D A T A -8 S U B A L .IM M E D 8
2D 0010 1101 D A T A -L O D A T A -H I S U B A X .IM M E D 1 6
2E 0010 1110 CS: (s e g m e n t o v e rr id e

p re fix )
2F 0010 1111 D AS
30 0011 0000 M O D  REG R /M (D IS P -LO ),(D IS P -H I) XOR R E G 8 /M E M 8 .R E G 8
31 0011 0001 M O D  REG R /M (D IS P -LO ),(D IS P -H I) XOR R E G 16 /M E M 16 .R E G 16
32 0011 0010 M O D  REG R /M (D IS P -LO ),(D IS P -H I) XOR R E G 8 .R E G 8/M E M 8
33 0011 0011 M O D  REG R /M (D IS P -LO ),(D IS P -H I) XOR R E G 16 .R E G 16 /M E M 16
34 0011 0100 D A T A -8 XOR A L .IM M E D 8
35 0011 0101 D A T A -L O D A T A -H I XOR A X .IM M E D 16
36 0011 0110 SS: (s e g m e n t o v e rr id e

p re fix )
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Table 4-13. Machine Instruction Decoding Guide (Cont’d.)

1ST BYTE 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMATHEX BINARY

37 0011 0110 A A A
38 0011 1000 M O D  REG R /M (D IS P -LO ),(D IS P -H I) C M P R E G 8 /M E M 8 .R E G 8
39 0011 1001 M O D  REG R /M (D IS P -LO ).(D IS P -H I) C M P R E G 16/M E M 16,R E G 16
3A 0011 1010 M O D  REG R /M (D IS P -LO ),(D IS P -H I) C M P R E G 8 .R E G 8/M E M 8
3B 0011 1011 M O D  REG R /M (D IS P -L O M D IS P -H I) C M P R E G 16.R E G 16/M E M 16
3C 0011 1100 D A T A-8 C M P A L .IM M E D 8
3D 0011 1101 D A T A -L O D A T A -H I C M P A X .IM M E D 16
3E 0011 1110 DS: (s e g m e n t o v e rr id e

p re fix )
3F 0011 1111 A A S
40 0100 0000 INC AX
41 0100 0001 INC CX
42 0100 0010 INC DX
43 0100 0011 INC BX
44 0100 0100 INC SP
45 0100 0101 INC BP
46 0100 0110 INC SI
47 0100 0111 INC Dl
48 0100 1000 DEC AX
49 0100 1001 DEC CX
4A 0100 1010 DEC DX
4B 0100 1011 DEC BX
4C 0100 1100 DEC SP
4D 0100 1101 DEC BP
4E 0100 1110 DEC SI
4F 0100 1111 DEC Dl
50 0101 0000 PU SH AX
51 0101 0001 PU SH CX
52 0101 0010 PU SH DX
53 0101 0011 PU SH BX
54 0101 0100 PU SH SP
55 0101 0101 PUSH BP
56 0101 0110 PU SH SI
57 0101 0111 PUSH Dl
58 0101 1000 POP AX
59 0101 1001 POP CX
5A 0101 1010 POP DX
5B 0101 1011 POP BX
5C 0101 1100 POP SP
5D 0101 1101 POP BP
5E 0101 1110 POP SI
5F 0101 1111 POP Dl
60 0110 0000 (n o t u se d )
61 0110 0001 (n o t u se d )
62 0110 0010 (n o t u se d )
63 0110 0011 (n o t u se d )
64 0110 0100 (n o t u se d )
65 0110 0101 (n o t u se d )
66 0110 0110 (n o t u se d )
67 0110 0111 (n o t u se d )
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Table 4-13. Machine Instruction Decoding Guide (Cont’d.)

1ST BYTE 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMATHEX BINARY

68 0110 1000 (n o t u se d )
69 0110 1001 (n o t u se d )
6A 0110 1010 (n o t u se d )
6B 0110 1011 (n o t u se d )
6C 0110 1100 (n o t u se d )
6D 0110 1101 (n o t u se d )
6E 0110 1110 (n o t use d )
6F 0110 1111 (n o t use d )
70 0111 0000 IP -IN C 8 JO S H O R T -L A B E L
71 0111 0001 IP -IN C 8 JN O S H O R T -L A B E L
72 0111 0010 IP -IN C 8 J B /J N A E /  S H O R T -L A B E L

JC
73 0111 0011 IP -IN C 8 J N B /J A E /  S H O R T -L A B E L

JN C
74 0111 0100 IP -IN C 8 J E /J Z S H O R T -L A B E L
75 0111 0101 IP -IN C 8 J N E /J N Z S H O R T -L A B E L
76 0111 0110 IP -IN C 8 J B E /J N A S H O R T -L A B E L
77 0111 0111 IP -IN C 8 J N B E /J A S H O R T -L A B E L
78 0111 1000 IP -IN C 8 JS S H O R T -L A B E L
79 0111 1001 IP -IN C 8 JN S S H O R T -L A B E L
7A 0111 1010 IP -IN C 8 J P /J P E S H O R T -L A B E L
7B 0111 1011 IP -IN C 8 J N P /J P O S H O R T -L A B E L
7C 0111 1100 IP -IN C 8 J L /J N G E S H O R T -L A B E L
7D 0111 1101 IP -IN C 8 J N L /J G E S H O R T -L A B E L
7E 0111 1110 IP -IN C 8 J L E /J N G S H O R T -L A B E L
7F 0111 1111 IP -IN C 8 J N L E /J G S H O R T -L A B E L
80 1000 0000 M O D  000 R /M (D IS P -LO ) .(D IS P -H  I), AD D R E G 8 /M E M 8 .IM M E D 8

D A TA -8
80 1000 0000 M O D  001 R /M (D IS P -LO ), (D IS P -H  I), OR R E G 8 /M E M 8 .IM M E D 8

D A TA -8
80 1000 0000 M O D  010 R /M (D IS P -LO ),( D ISP -H  I), A D C R E G 8 /M E M 8 .IM M E D 8

D A TA -8
80 1000 0000 M O D  011 R /M (D IS P -LO ), (D IS P -H  I), S B B R E G 8 /M E M 8 JM M E D 8

D A T A -8
80 1000 0000 M O D  100 R /M (D IS P -LO ),(D IS P -H I), A N D R E G 8 /M E M 8 .IM M E D 8

D A TA -8
80 1000 0000 M O D  101 R /M (D IS P -LO ).(D IS P -H I), S U B R E G 8 /M E M 8 .IM M E D 8

D A TA -8
80 1000 0000 M O D  110 R /M (D IS P -LO ), (D IS P -H  I), XOR R E G 8 /M E M 8 .IM M E D 8

D A TA -8
80 1000 0000 M O D  111 R /M (D IS P -LO ).(D IS P -H I), C M P R E G 8 /M E M 8 ,IM M E D 8

D A TA -8
81 1000 0001 M O D  000 R /M (D IS P -LO ), (D IS P -H  I), A D D R E G 1 6 /M E M 16 ,IM M E D 1 6

D A T A -L O .D A T A -H I
81 1000 0001 M O D  001 R /M (D IS P -LO ), (D IS P -H I), OR R E G 16 /M E M 16 .IM M E D 16

D A T A -L O ,D A T A -H I
81 1000 0001 M O D  010 R /M (D IS P -L O ),(D IS P -H I), AD C R E G 1 6 /M E M 16 JM M E D 1 6

D A T A -L O ,D A T A -H I
81 1000 0001 M O D  011 R /M (D IS P -L O ),(D IS P -H I), S B B R E G 16 /M E M 16 .IM M E D 16

D A T A -L O ,D A T A -H I
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Table 4-13. Machine Instruction Decoding Guide (Cont’d.)

1ST BYTE 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMATHEX BINARY

81 1000 0001 M O D  100 R /M (D IS P -L O ), (D IS P -H  I) , A N D R E G 1 6 /M E M 16 ,IM M E D 1 6
D A T A -L O ,D A T A -H I

81 1000 0001 M O D  101 R /M (D IS P -LO ), (D IS P -H I), S U B R E G 1 6 /M E M 16 .IM M E D 1 6
D A T A -L O .D A T A -H I

81 1000 0001 M O D  110 R /M (D IS P -LO ),(D IS P -H I), XOR R E G 16 /M E M 16 .IM M E D 16
D A T A -L O ,D A T A -H I

81 1000 0001 M O D  111 R /M (D IS P -LO ),(D IS P -H I), C M P R E G 16 /M E M 16 .IM M E D 16
D A T A -L O ,D A T A -H I

82 1000 0010 M O D  000 R /M (D IS P -LO ),(D IS P -H I), AD D R E G 8 /M E M 8 .IM M E D 8
D A TA -8

82 1000 0010 M O D  001 R /M (n o t u se d )
82 1000 0010 M O D  010 R /M (D IS P -LO ),(D IS P -H I), AD C R E G 8 /M E M 8 JM M E D 8

D A TA -8
82 1000 0010 M O D  011 R /M (D IS P -LO ),(D IS P -H I), S B B R E G 8 /M E M 8 .IM M E D 8

D A TA -8
82 1000 0010 M O D  100 R /M (n o t u se d )
82 1000 0010 M O D  101 R /M (D IS P -LO ),(D IS P -H I), S U B R E G 8 /M E M 8 .IM M E D 8

D A TA -8
82 1000 0010 M O D  110 R /M (n o t u se d )
82 1000 0010 M O D  111 R /M (D IS P -LO ),(D IS P -H I), C M P R E G 8 /M E M 8 .IM M E D 8

D A TA -8
83 1000 0011 M O D  000 R /M (D IS P -LO ),(D IS P -H I), AD D R E G 16 /M E M 16 , IM M E D 8

D A T A -S X
83 1000 0011 M O D  001 R /M (n o t u se d )
83 1000 0011 M O D  010 R /M (D IS P -LO ), (D IS P -H I), AD C R E G 1 6 /M E M 16 .IM M E D 8

D A T A -S X
83 1000 0011 M O D  011 R /M (D IS P -LO ),(D IS P -H I), S B B R E G 1 6 /M E M 16 .IM M E D 8

D A T A -S X
83 1000 0011 M O D  100 R /M (n o t use d )
83 1000 0011 M O D  101 R /M (D IS P -LO ),(D IS P -H I), S U B R E G 1 6 /M E M 16 JM M E D 8

D A T A -S X
83 1000 0011 M O D  110 R /M (n o t u se d )
83 1000 0011 M O D  111 R /M (D IS P -LO ),(D IS P -H I), C M P R E G 1 6 /M E M 16 .IM M E D 8

D A T A -S X
84 1000 0100 M O D  REG R /M (D IS P -LO ),(D IS P -H I) TEST R E G 8 /M E M 8 ,R E G 8
85 1000 0101 M O D  REG R /M (D IS P -LO ),(D IS P -H I) TE S T R E G 16/M E M 16.R E G 16
86 1000 0110 M O D  REG R /M (D IS P -LO ),(D IS P -H I) XC H G R E G 8 .R E G 8/M E M 8
87 1000 0111 M O D  REG R /M (D IS P -LO ),(D IS P -H I) XC H G R E G 16.R E G 16/M E M 16
88 1000 1000 M O D  REG R /M (D IS P -LO ),(D IS P -H I) M OV R E G 8 /M E M 8 .R E G 8
89 1000 1001 M O D  REG R /M (D IS P -LO ),(D IS P -H I) M OV R E G 1 6 /M E M 16 /R E G 16
8A 1000 1010 M O D  REG R /M (D IS P -LO ),(D IS P -H I) M OV R E G 8 .R E G 8/M E M 8
8B 1000 1011 M O D  REG R /M (D IS P -LO ),(D IS P -H I) M OV R E G 16.R E G 16/M E M 16
8C 1000 1100 M O D  0SR R /M (D IS P -LO ),(D IS P -H I) M OV R E G 16 /M E M 16 .S E G R E G
8C 1000 1100 M O D  1— R /M (n o t u se d )
8D 1000 1101 M O D  REG R /M (D IS P -LO ),(D IS P -H I) LE A R E G 16.M EM 16
8E 1000 1110 M O D  0SR R /M (D IS P -LO ),(D IS P -H I) M O V S E G R E G .R E G 1 6 /M E M 16
8E 1000 1110 M O D  1— R /M (n o t u se d )
8F 1000 1111 M O D  000 R /M (D IS P -LO ),(D IS P -H I) POP R E G 16 /M E M 16
8F 1000 1111 M O D  001 R /M (n o t u se d )
8F 1000 1111 M O D  010 R /M (n o t u se d )
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1ST BYTE 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMATHEX BINARY

8F 1000 1111 MOD 011 R/M (not used)
8F 1000 1111 MOD 100 R/M (not used)
8F 1000 1111 MOD 101 R/M (not used)
8F 1000 1111 MOD 110 R/M (not used)
8F 1000 1111 MOD 111 R/M (not used)
90 1001 0000 NOP (exchange AX,AX)
91 1001 0001 XCHG AX,CX
92 1001 0010 XCHG AX,DX
93 1001 0011 XCHG AX.BX
94 1001 0100 XCHG AX,SP
95 1001 0101 XCHG AX,BP
96 1001 0110 XCHG AX,SI
97 1001 0111 XCHG AX,DI
98 1001 1000 CBW
99 1001 1001 CWD
9A 1001 1010 DISP-LO DISP-HI,SEG-LO, CALL FAR_PROC

SEG-HI
9B 1001 1011 WAIT
9C 1001 1100 PUSHF
9D 1001 1101 POPF
9E 1001 1110 SAHF
9F 1001 1111 LAHF
AO 1010 0000 ADDR-LO ADDR-HI MOV AL.MEM8
A1 1010 0001 ADDR-LO ADDR-HI MOV AX.MEM16
A2 1010 0010 ADDR-LO ADDR-HI MOV MEM8.AL
A3 1010 0011 ADDR-LO ADDR-HI MOV MEM16.AL
A4 1010 0100 MOVS DEST-STR8.SRC-STR8
A5 1010 0101 MOVS DEST-STR16.SRC-STR16
A6 1010 0110 CMPS DEST-STR8.SRC-STR8
A7 1010 0111 CMPS DEST-STR16.SRC-STR16
A8 1010 1000 DATA-8 TEST AL.IMMED8
A9 1010 1001 DATA-LO DATA-HI TEST AX.IMMED16
AA 1010 1010 STOS DEST-STR8
AB 1010 1011 STOS DEST-STR16
AC 1010 1100 LODS SRC-STR8
AD 1010 1101 LODS SRC-STR16
AE 1010 1110 SCAS DEST-STR8
AF 1010 1111 SCAS DEST-STR16
BO 1011 0000 DATA-8 MOV AL.IMMED8
B1 1011 0001 DATA-8 MOV CL.IMMED8
B2 1011 0010 DATA-8 MOV DLJMMED8
B3 1011 1011 DATA-8 MOV BL.IMMED8
B4 1011 0100 DATA-8 MOV AH.IMMED8
B5 1011 0101 DATA-8 MOV CH.IMMED8
B6 1011 0110 DATA-8 MOV DHJMMED8
B7 1011 0111 DATA-8 MOV BH.IMMED8
B8 1011 1000 DATA-LO DATA-HI MOV AXJMMED16
B9 1011 1001 DATA-LO DATA-HI MOV CX.IMMED16
BA 1011 1010 DATA-LO DATA-HI MOV DX,IMMED16
BB 1011 1011 DATA-LO DATA-HI MOV BX.IMMED16
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Table 4-13. Machine Instruction Decoding Guide (Cont’d.)

1ST BYTE 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMATHEX BINARY

BC 1011 1100 DATA-LO DATA-HI MOV SP.IMMED16
BD 1011 1101 DATA-LO DATA-HI MOV BP.IMMED16
BE 1011 1110 DATA-LO DATA-HI MOV SIJMMED16
BF 1011 1111 DATA-LO DATA-HI MOV DI.IMMED16
CO 1100 0000 (not used)
C1 1100 0001 (not used)
C2 1100 0010 DATA-LO DATA-HI RET IMMED16 (intraseg)
C3 1100 0011 RET (intrasegment)
C4 1100 0100 M O DREG R/M (DISP-LOMDISP-HI) LES REG16.MEM16
C5 1100 0101 MOD REG R/M (DISP-LO).(DISP-HI) LDS REG16.MEM16
C6 1100 0110 MOD 000 R/M (DISP-LO).(DISP-HI), MOV MEM8.IMMED8

DATA-8
C6 1100 0110 MOD 001 R/M (not used)
C6 1100 0110 MOD 010 R/M (not used)
C6 1100 0110 MOD 011 R/M (not used)
C6 1100 0110 MOD 100 R/M (not used)
C6 1100 0110 MOD 101 R/M (not used)
C6 1100 0110 MOD 110 R/M (not used)
C6 1100 0110 MOD 111 R/M (not used)
C7 1100 0111 MOD 000 R/M (DISP-LO).(DISP-HI), MOV MEM16.IMMED16

DATA-LO,DATA-HI
C7 1100 0111 MOD 001 R/M (not used)
C7 1100 0111 MOD 010 R/M (not used)
C7 1100 0111 MOD 011 R/M (not used)
C7 1100 0111 MOD 100 R/M (not used)
C7 1100 0111 MOD 101 R/M (not used)
C7 1100 0111 MOD 110 R/M (not used)
C7 1100 0111 MOD 111 R/M (not used
C8 1100 1000 (not used)
C9 1100 1001 (not used)
CA 1100 1010 DATA-LO DATA-HI RET IMMED16 (intersegm ent)
CB 1100 1011 RET (intersegm ent)
CC 1100 1100 INT 3
CD 1100 1101 DATA-8 INT IMMED8
CE 1100 1110 INTO
CF 1100 1111 IRET
DO 1101 0000 MOD 000 R/M (DISP-LO).(DISP-HI) ROL REG8/MEM8.1
DO 1101 0000 MOD 001 R/M (DISP-LO).(DISP-HI) ROR REG8/MEM8,1
DO 1101 0000 MOD 010 R/M (DISP-LOMDISP-HI) RCL REG8/MEM8.1
DO 1101 0000 MOD 011 R/M (DISP-LO),(DISP-HI) RCR REG8/MEM8.1
DO 1101 0000 MOD 100 R/M (DISP-LOMDISP-HI) SAL/SHL REG8/MEM8.1
DO 1101 0000 MOD 101 R/M (DISP-LO),(DISP-HI) SHR REG8/MEM8.1
DO 1101 0000 MOD 110 R/M (not used)
DO 1101 0000 MOD 111 R/M (DISP-LOMDISP-HI) SAR REG8/MEM8.1
D1 1101 0001 MOD 000 R/M (DISP-LOMDISP-HI) ROL REG16/MEM16.1
D1 1101 0001 MOD 001 R/M (DISP-LOMDISP-HI) ROR REG16/MEM16.1
D1 1101 0001 MOD 010 R/M (DISP-LO),(DISP-HI) RCL REG16/MEM16.1
D1 1101 0001 MOD 011 R/M (DISP-LO),(DISP-HI) RCR REG16/MEM16.1
D1 1101 0001 MOD 100 R/M (DISP-LOMDISP-HI) SAL/SHL REG16/MEM16.1
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D1 1101 0001 MOD 101 R/M (DISP-LO),(DISP-HI) SHR REG16/MEM16.1
D1 1101 0001 MOD 110 R/M (not used)
D1 1101 0001 MOD 111 R/M (DISP-LOMDISP-HI) SAR REG16/MEM16,1
D2 1101 0010 MOD 000 R/M (DISP-LO).(DISP-HI) ROL REG8/MEM8.CL
D2 1101 0010 MOD 001 R/M (DISP-LO),(DISP-HI) ROR REG8/MEM8.CL
D2 1101 0010 MOD 010 R/M (DISP-LO).(DISP-HI) RCL REG8/MEM8,CL
D2 1101 0010 MOD 011 R/M (DISP-LO).(DISP-HI) RCR REG8/MEM8.CL
D2 1101 0010 MOD 100 R/M (DISP-LO),(DISP-HI) SAL/SHL REG8/MEM8.CL
D2 1101 0010 MOD 101 R/M (DISP-LO),(DISP-HI) SHR REG8/MEM8.CL
D2 1101 0010 MOD 110 R/M (not used)
D2 1101 0010 MOD 111 R/M (DISP-LO).(DISP-HI) SAR REG8/MEM8.CL
D3 1101 0011 MOD 000 R/M (DISP-LO),(DISP-HI) ROL REG16/MEM16,CL
D3 1101 0011 MOD 001 R/M (DISP-LO).(DISP-HI) ROR REG16/MEM16,CL
D3 1101 0011 M O D010 R/M (DISP-LO).(DISP-HI) RCL REG16/MEM16,CL
D3 1101 0011 MOD 011 R/M (DISP-LO).(DISP-HI) RCR REG16/MEM16.CL
D3 1101 0011 MOD 100 R/M (DISP-LO).(DISP-HI) SAL/SHL REG16/MEM16,CL
D3 1101 0011 MOD 101 R/M (DISP-LO).(DISP-HI) SHR REG16/MEM16,CL
D3 1101 0011 MOD 110 R/M (not used)
D3 1101 001 1 MOD 111 R/M (DISP-LO).(DISP-HI) SAR REG16/MEM16,CL
D4 1101 0100 00001010 AAM
D5 1101 0101 00001010 AAD
D6 1101 0110 (not used)
D7 1101 0111 XLAT SOURCE-TABLE
D8 1101 1000 MOD 000 R/M

1XXX MOD YYYR/M (DISP-LO), (DISP-HI) ESC OPCODE,SOURCE
DF 1101 1111 MOD 111 R/M
EO 1110 0000 IP-INC-8 LOOPNE/ SHORT-LABEL

LOOPNZ
E1 1110 0001 IP-INC-8 LOOPE / SHORT-LABEL

LOOPZ
E2 1110 0010 IP-INC-8 LOOP SHORT-LABEL
E3 1110 0011 IP-INC-8 JCXZ SHORT-LABEL
E4 1110 0100 DATA-8 IN AL.IMMED8
E5 1110 0101 DATA-8 IN AX.IMMED8
E6 1110 0110 DATA-8 OUT ALJMMED8
E7 1110 0111 DATA-8 OUT AXJMMED8
E8 1110 1000 IP-INC-LO IP-INC-HI CALL NEAR-PROC
E9 1110 1001 IP-INC-LO IP-INC-HI JMP NEAR-LABEL
EA 1110 1010 IP-LO IP-HI,CS-LO,CS-HI JMP FAR-LABEL
EB 1110 1011 IP-INC8 JMP SHORT-LABEL
EC 1110 1100 IN AL,DX
ED 1110 1101 IN AX,DX
EE 1110 1110 OUT AL,DX
EF 1110 1111 OUT AX,DX
FO 1111 0000 LOCK (prefix)
F1 1111 0001 (not used)
F2 1111 0010 REPNE/REPNZ
F3 1111 0011 REP/REPE/REPZ
F4 1111 0100 HLT
F5 1111 0101 CMC
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Table 4-13. Machine Instruction Decoding Guide (Cont’d.)

1ST BYTE 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMATHEX BINARY

F6 1111 0110 MOD 000 R/M (DISP-LO), (DIS P-H I), TEST REG8/MEM8,IMMED8
DATA-8

F6 1111 0110 MOD 001 R/M (not used)
F6 1111 0110 MOD 010 R/M (DISP-LO), (DISP-HI) NOT REG8/MEM8
F6 1111 0110 MOD 011 R/M (DISP-LO), (DISP-HI) NEG REG8/MEM8
F6 1111 0110 MOD 100 R/M (DISP-LO),(DISP-HI) MUL REG8/MEM8
F6 1111 0110 MOD 101 R/M (DISP-LO),(DISP-HI) IMUL REG8/MEM8
F6 1111 0110 MOD 110 R/M (DISP-LO),(DISP-HI) DIV REG8/MEM8
F6 1111 0110 MOD 111 R/M (DISP-LO),(DISP-HI) IDIV REG8/MEM8
F7 1111 0111 MOD 000 R/M (DISP-LO),(DISP-HI), TEST REG16/MEM16JMMED16

DATA-LO,DATA-HI
F7 1111 0111 MOD 001 R/M (not used)
F7 1111 0111 MOD 010 R/M (DISP-LO),(DISP-HI) NOT REG16/MEM16
F7 1111 0111 MOD 011 R/M (DISP-LO),(DISP-HI) NEG REG16/MEM16
F7 1111 0111 MOD 100 R/M (DISP-LO),(DISP-HI) MUL REG16/MEM16
F7 1111 0111 MOD 101 R/M (DISP-LO),(DISP-HI) IMUL REG16/MEM16
F7 1111 0111 MOD 110 R/M (DISP-LO),(DISP-HI) DIV REG16/MEM16
F7 1111 0111 MOD 111 R/M (DISP-LO),(DISP-HI) IDIV REG16/MEM16
F8 1111 1000 CLC
F9 1111 1001 STC
FA 1111 1010 CLI
FB 1111 1011 STI
FC 1111 1100 CLD
FD 1111 1101 STD
FE 1111 1110 MOD 000 R/M (DISP-LO),(DISP-HI) INC REG8/MEM8
FE 1111 1110 MOD 001 R/M (DISP-LO),(DISP-HI) DEC REG8/MEM8
FE 1111 1110 MOD 010 R/M (not used)
FE 1111 1110 MOD 011 R/M (not used)
FE 1111 1110 MOD 100 R/M (not used)
FE 1111 1110 MOD 101 R/M (not used)
FE 1111 1110 MOD 110 R/M (not used)
FE 1111 1110 MOD 111 R/M (not used)
FF 1111 1111 MOD 000 R/M (DISP-LO),(DISP-HI) INC MEM16
FF 1111 1111 MOD 001 R/M (DISP-LO),(DISP-HI) DEC MEM16
FF 1111 1111 MOD 010 R/M (DISP-LO),(DISP-HI) CALL REG16/MEM16 (intra)
FF 1111 1111 MOD 011 R/M (DISP-LO),(DISP-HI) CALL MEM16 (intersegm ent)
FF 1111 1111 MOD 100 R/M (DISP-LO),(DISP-HI) JMP REG16/MEM16 (intra)
FF 1111 1111 MOD 101 R/M (DISP-LO),(DISP-HI) JMP MEM16 (intersegm ent)
FF 1111 1111 MOD 110 R/M (DISP-LO),(DISP-HI) PUSH MEM16
FF 1111 1111 MOD 111 R/M (not used)
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Table 4-14. Machine Instruction Encoding Matrix

\Lo
Hi \  0 I 2 3  4 5 6 7 8  9 *  B C 0 E F

0 ADD ADD ADD ADD ADD ADD PUSH POP OR OR OR OR OR OR PUSH
b.f.r/m w.f.r/m b.t.r/m w,t.r/m b. ia w. ia ES ES b.f.r/m w.f.r/m b.t.r/m w.t.r/m b.i W.I CS

1 ADC ADC ADC ADC ADC ADC PUSH POP SBB SBB SBB SBB SBB SBB PUSH POP
b.f.r/m w.f.r/m b.t.r/m w.t.r/m b.i w.i SS SS b.f.r/m w.f.r/m b.t.r/m w.t.r/m b.i w.i DS DS

2 AND AND AND AND AND AND SEG DAA SUB SUB SUB SUB SUB SUB SEG DAS
b.f.r/m w.f.r/m b.t.r/m w.t.r/m b.i w.i ES b.f.r/m w.f.r/m b.t.r/m w.t.r/m b.i w 1 CS

3 XOR XOR XOR XOR XOR XOR SEG AAA CMP CMP CMP CMP CMP CMP SEG AAS
b.f.r/m w.f.r/m b.t.r/m w.t.r/m b.i W.I SS b.f.r/m w.f.r/m b.t.r/m w.t.r/m b.i W.I DS

4 INC INC INC INC INC INC INC INC DEC DEC DEC DEC DEC DEC DEC DEC
AX CX DX BX SP BP SI Dl AX CX DX BX SP BP SI Dl

5 PUSH PUSH PUSH PUSH PUSH PUSH PUSH PUSH POP POP POP POP POP POP POP POP
AX CX DX BX SP BP SI Dl AX CX DX BX SP BP SI Dl

6

7 JO JNO JB/ JNB / JE / JNE / JBE/ JNBE / JS JNS JP  / JNP / JL/ JNL/ JLE JNLE /
JNAE JAE JZ JNZ JNA JA JPE JPO JNGE JGE JNG JG

8 Immed Immed Immed Immed TEST TEST XCHG XCHG MOV MOV MOV MOV MOV LEA MOV POP
b.r/m w.r/m b.r/m is. r/m b,r/m w.r/m b.r/m w.r/m b.f.r/m w.f.r/m b.t.r/m w.t.r/m sr,f,r/m sr,t,r/m r/m

9 XCHG
AX

XCHG
CX

XCHG
DX

XCHG
BX

XCHG
SP

XCHG
BP

XCHG
SI

XCHG
Dl

CBW CWD CALL
l.d

WAIT PUSHF POPF SAHF LAHF

A MOV MOV MOV MOV MOVS MOVS CMPS CMPS TEST TEST STOS STOS LODS LODS SCAS SCAS
m -  AL m -  AX AL -  m AX -  m

B MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV
i -  AL i -  CL i -  DL i -  BL i -  AH i -  CH i -  DH i -  BH i -  AX i -  CX i -  DX i -  BX i -  SP i -  BP i -  SI i -  Dl

C RET,
(i+SP)

RET LES LDS MOV
b.i.r/m

MOV
w.i. r/m

RET,
l.(i+SP)

RET
I

INT
Type 3

INT
(Any)

INTO IRET

0 Shift
b

Shift
w

Shift
b.v

Shift
w.v

AAM AAD XLAT ESC
0

ESC
1

ESC
2

ESC
3

ESC
4

ESC
5

ESC
6

ESC
7

E LOOPNZ/ LOOPZ/ LOOP JCXZ IN IN OUT OUT CALL JMP JMP JMP IN IN OUT OUT
LOOPNE LOOPE b w b w d d l.d si.d v.b v.w v,b v ,w

F LOCK REP REP
z

HLT CMC
Grp 1
b.r/m

Grp 1
w.r/m

CLC STC CLI STI CLD STD
Grp 2 
b.r/m

Grp 2 
w.r/m

where
m odHlr/m 000 001 010 011 100 101 110 111

Immed ADD OR ADC SBB AND SUB XOR CMP
Shift ROL ROR RCL RCR SHL/SAL SHR - SAR
Grp 1 TEST - NOT NEG MUL IMUL DIV IDIV
Grp 2 INC DEC CALL

id
CALL 
I.id

JMP
id

JMP
lid

PUSH

b = byte operation
d = direct
f = from CPU reg
i = immediate
ia = immed. to accum.
id = indirect
is = immed. byte, sign ext. 
I = long ie. intersegment

m = memory 
r/m = EA is second byte 
si = short intrasegment 
sr = segment register 
t = to CPU reg 
v = variable 
w = word operation 
z = zero
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8086 Instruction Sequence

Figure 4-22 illustrates the internal operation and 
bus activity that occur as an 8086 CPU executes a 
sequence of instructions. This figure presents the 
signals and timing relationships that are impor
tant in understanding 8086 operation. The follow
ing discussion is intended to help in the interpreta
tion of the figure.

Figure 4-22 shows the repeated execution of an 
instruction loop. This loop is defined in both 
machine code and assembly language by figure
4-21. A loop was chosen both to demonstrate the 
effects of a program jump on the queue and to 
make the instruction sequence easy to follow. The 
program sequence shown was selected for several 
reasons. First, consisting of seven instructions 
and 16 bytes, the sequence is typical of the tight 
loops found in many application programs. 
Second, this particular sequence contains several 
short, fast-executing instructions that 
demonstrate both the effect of the queue on CPU 
performance and the interaction between the exe
cution unit (EU) fetching code from the queue 
and the bus interface unit (BIU) filling the queue 
and performing the requested bus cycles. Last, 
for the purpose of this discussion, code, stack, 
and memory data references were arranged to be 
aligned on even word boundaries.

ASSEMBLY LANGUAGE MACHINE CODE

MOV AX, 0F802H B802F8
PUSH AX 50
MOV CX, BX 8BCB
MOV DX, CX 8BD1
ADD AX, [SI] 0304
ADD SI, 8086H 81C68680
JMP $ -14 EBF0

Figure 4-21. Instruction Loop Sequence

Figure 4-22 can be more easily interpreted by
keeping the following guidelines in mind.
• The queue status lines (QS0, QS1) are the key 

indicators of EU activity.
• Status lines S2 through SO are the main 

indicators of 8086/8088 bus activity.
• Interaction of the BIU and EU is via the 

queue for prefetched opcodes and via the EU 
for requested bus cycles for data operands.

Keeping these guidelines in mind, the instruction 
sequence depicted in figure 4-22 can be described 
as follows. Starting the loop arbitrarily in clock 
cycle 1 with the queue reinitialization that occurs 
as part of the JMP instruction, JMP instruction 
execution is completed by the EU, while the BIU 
performs an opcode fetch to begin refilling the 
queue. (Note that a shorthand notation has been 
used in the figure to represent the two queue 
status lines and the three status lines—active 
periods on any of these lines are noted and the 
binary value of the lines is indicated above each 
active region.)

In clock cycle 8 , the queue status lines indicate 
that the first byte of the MOV immediate instruc
tion has been removed from the queue (one clock 
cycle after it was placed there by the BIU fetch) 
and that execution of this instruction has begun. 
The second byte of this instruction is taken from 
the queue in clock cycle 10  and then, in clock 
cycle 12, the EU pauses to wait one clock cycle for 
the BIU’s second opcode fetch to be completed 
and for the third byte of the MOV immediate 
instruction to be available for execution 
(remember the queue status lines indicate queue 
activity that has occurred in the previous clock 
cycle).

Clock cycle 13 begins the execution of the PUSH 
AX instruction, and in clock cycle 15, the BIU 
begins the fourth opcode fetch. The BIU finishes 
the fourth fetch in clock cycle 18 and prepares for 
another fetch when it receives a request from the 
EU for a memory write (the stack push). Instead 
of completing the opcode fetch and forcing the 
EU to wait four additional clock cycles, the BIU 
immediately aborts the fetch cycle (resulting in 
two idle clock cycles (Tj) in clock cycles 19 and 
20) and performs the required memory write. This 
interaction between the EU and BIU results in a 
single clock extension to the execution time of the 
PUSH AX instruction, the maximum delay that 
can occur in response to an EU bus cycle request.

Execution continues in clock cycle 24 with the 
execution of back-to-back, register-to-register 
MOV instructions. The first of these instructions 
takes full advantage of the prefetched opcode to 
complete this operation in two clock cycles. The 
second MOV instruction, however, depletes the 
queue and requires two additional clock cycles 
(clock cycles 28 and 29).
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—| CODt FETCH |~ J L CODE FETCH WRITE MEMORY CODE FETCH

FETCH F* SO FETCH 08 CB FETCH SB D1 FETCH 03 04

INSTRUCTION------------------------------ JMP 0 -14----------------------- J - n-----------  MOV AX. F002H ----------- ------------------------------------------ PUSH Ax-------------------------------------------MOV CX, BX --------------MOV DX.
EXECUTION I I  I I

Figure 4-22. Sample Instruction Sequence Execution

In clock cycle 30, the ADD memory indirect to 
AX instruction begins. In the time required to 
execute this instruction, the BIU completes two 
opcode fetch cycles and a memory read and 
begins a fourth opcode fetch cycle. Note that in 
the case of the memory read, the EU’s request for 
a bus cycle occurs at a point in the BIU fetch cycle 
where it can be incorporated directly (idle states 
are not required and no EU delay is imposed).

In clock cycle 44, the EU begins the ADD 
immediate instruction, taking four bytes from the 
queue and completing instruction execution in 
four clock cycles. Also during this time, the BIU 
senses a full queue in clock cycle 45 and enters a 
series of bus idle states (five or six bytes constitute 
a full queue in the 8086; the BIU waits until it can 
fetch a full word of opcode before accessing the 
bus).

At clock cycle 47, the BIU again begins a bus 
cycle sequence, one that is destined to be an 
“ overfetch” since the EU is executing a JMP 
instruction. As part of the JMP instruction, the 
queue reinitialization (which began the instruc
tion sequence) occurs.

The entire sequence of instructions has taken 55 
clock cycles. Eighteen opcode bytes were fetched, 
one word memory read occurred, and one word 
stack write was performed.

This example was, by design, partially bus limited 
and indicates the types of EU and BIU interaction 
that can occur in this situation. Most application

code sequences, however, use a higher proportion 
of more complex, longer-executing instructions 
and addressing modes, and therefore tend to be 
execution limited. In this case, less BIU-EU 
interaction is required, the queue more often is 
full, and more idle states occur on the bus.

The previous example sequence can be easily 
extended to incorporate wait states in the bus 
access cycles. In the case of a single wait state, 
each bus cycle would be lengthened to five clock 
cycles with a wait state (Tw) inserted between 
every T3 and T4  state of the bus cycle. As a first 
approximation, the instruction sequence exection 
time would appear to be lengthened by 10 clock 
cycles, one cycle for each useful read or write bus 
cycle that occurs. Actually, this approximation 
for the number of wait states inserted is incorrect 
since the queue can compensate for wait states by 
making use of previously idle bus time. For the 
example sequence, this compensation reduced the 
actual execution time by one wait state, and the 
sequence was completed in 64 clock cycles, one 
less than the approximated 65 clock cycles.

4.3 8089 I/O  Processor

The Intel® 8089 I/O Processor (IOP) combines 
the functions of a DMA controller with the pro
cessing capabilities of a microprocessor. In addi
tion to the normal DMA function of transferring 
data, the 8089 is capable of dynamically 
translating and comparing the data as it is
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Figure 4-22. Sample Instruction Sequence Execution

transferred and of supporting a number of ter
minate conditions including byte count expired, 
data compare or miscompare and the occurrence 
of an external event. The 8089 contains two 
separate DMA channels, each with its own 
register set. Depending on the established 
priorities (both inherent and program deter
mined), the two channels can alternate 
(interleave) their respective operations.

Designed expressly to relieve the 8086 or 8088 
CPU of the overhead associated with I/O opera
tions, the 8089, when configured in the remote 
mode, can perform a complete I/O task while the 
CPU is performing data processing tasks. The 
8089, when it has completed its I/O task, can then 
interrupt the CPU.

Transfer flexibility is an integral part of the 
8089’s design. In addition to routine transfers 
between an I/O peripheral and memory, transfers 
can be performed between two I/O devices or 
between two areas of memory. Transfers between 
dissimilar bus widths are automatically handled 
by the 8089. When data is transferred from an 
8 -bit peripheral bus to a 16-bit memory bus, the 
8089 reads two bytes from the peripheral, 
assembles the bytes into a 16-bit word and then 
writes the single word to the addressed memory 
location. Also, both 8 - and 16-bit peripherals can 
reside on the same (16-bit) bus; byte transfers are 
performed with the 8 -bit peripheral, and word 
transfers are performed with the 16-bit 
peripheral.

System Configuration

The 8089 can be implemented in one of two 
system configurations: a “ local” mode in which 
the 8089 shares the system bus with an 8086 or
8088 CPU and a “ remote” mode in which the
8089 has exclusive access to its own dedicated bus 
as well as access to the system bus. Note that in 
either the local or remote mode, the 8089 can 
address a full megabyte of system memory and 
64k bytes of I/O space.

Local Mode

In the local mode, the 8089 acts as a slave to an 
8086 or 8088 CPU that is operating in the max
imum mode. In this configuration, the 8089 
shares the system address latches, data 
transceivers and bus controller with the CPU as 
shown in figure 4-23.

Since the IOP and CPU share the system bus, 
either the IOP or the CPU will have access to the 
bus at any one time. When one processor is using 
the bus, the other processor floats its 
address/data and control lines. Bus access 
between the IOP and CPU is determined through 
the request/grant function. Recalling the CPU’s 
request/grant sequence, the IOP requests the bus 
from the CPU, the CPU grants the bus to the 
IOP, and the IOP relinquishes the bus to the CPU 
when its operation is complete. Remember that 
the CPU cannot request the bus from the IOP 
(the CPU is only capable of granting the bus and
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Figure 4-23. Typical 8088/8089 Local Mode Configuration

must wait for the IOP to release the bus). Also, 
since the request/grant pulse exchange must be 
synchronized, both the CPU and IOP must be 
referenced to the same clock signal.

The 8089 IOP, when used in the local mode, can 
be added to an 8086 or 8088 maximum mode con
figuration with little affect on component count 
(channel attention decoding logic as required) and 
offers the benefits of intelligent DMA 
(scan/match, translate, variable termination con
ditions), modular programming in a full 
megabyte of memory address space and a set of 
optimized I/O instructions that are unavailable to 
the 8086 and 8088 CPUs. The major disadvantage 
to the local configuration is that since the system 
bus is shared, bus contention always exists 
between the CPU and IOP. The use of the bus 
load limit field in the channel control word can 
help reduce IOP bus access during task block pro
gram execution (bus load limiting has no affect on 
DMA transfers) although, for I/O intensive 
systems, the remote mode should be considered.

Remote Mode

The 8089, when used in the remote mode, pro
vides a multiprocessor system with true parallel 
processing. In this mode, the 8089 has a separate 
(local) bus and memory for I/O peripheral com
munications, and the system bus is completely 
isolated from the I/O peripheral(s). Accordingly, 
I/O transfers between an I/O peripheral and the 
IOP’s local memory can occur simultaneously 
with CPU operations on the system bus.

As shown in figure 4-24, to interface the 8089 to 
the system bus, data transceivers and address 
latches are used to separate the IOP’s local bus 
from the system bus, an 8288 Bus Controller is 
used to generate the bus control signals for both 
the local and system buses as well as to govern the 
operation of the transceivers/latches, and an 8289 
Bus Arbiter is used to control access to the system 
bus (each processor in the system would have an 
associated 8289 Bus Arbiter). To interface the 
8089 to its local bus, another set of address
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I A15-A1 FROM CPU 

I/O WRITE COMMAND

SYSTEM RESET 
(I.E., INIT)

TRANSFER ACKNOWLEDGE 
(I.E.. XACK)

MEMORY READ COMMAND 
MEMORY WRITE COMMAND

MULTIMASTER 
ADDRESS BUS 
(A19-A0. SHE)

MULTIMASTER 
DATA BUS 
(D15-DO)

Figure 4-24. Typical 8089 Remote Mode Configuration

latches is required (unless MCS-85™ multiplexed 
address components are exclusively interfaced) 
and, depending on the bus loading demands, one 
(8 -bit bus) or two (16-bit bus) data transceivers 
would be used.

In the remote mode, the IOP’s local bus is treated 
as I/O space (up to 64k bytes), and the system bus 
is treated as memory space (1 megabyte). The
8288 Bus Controller’s I/O command outputs con
trol the local (I/O) bus, and its memory command 
outputs control the system (memory) bus. The
8289 Bus Arbiter, which is operated in its IOB 
(I/O peripheral bus) mode, also decodes the 
IOP’s S2 through SO status outputs. In this mode, 
the 8289 will not request the multimaster system 
bus when the IOP indicates an operation on its 
local bus. If the IOP’s bus arbiter currently has 
access to the system bus, the CPU’s arbiter (or 
any other arbiter in the system) can acquire use of 
the system bus at this time (a bus arbiter main
tains bus access until another arbiter requests the 
bus).

Bus Operation

The 8089 utilizes the same bus structure as an 
8086 or 8088 CPU that is configured in the max
imum mode and performs a bus cycle only on de
mand (e.g., to fetch an instruction during task 
block execution or to perform a data transfer). 
The bus cycle itself is identical to an 8086 or 8088 
CPU’s bus cycle in that all cycles consist of four 
T-states and use the same time-multiplexing 
technique of the addressdata lines. As shown in 
the following timing diagrams, the address (and 
ALE signal) is output during state Tj for either a 
read or write cycle. Depending on the type of 
cycle indicated, the address/data lines are floated 
during state T2  for a read cycle (figure 4-25) or 
data is output on these lines during a write cycle 
(figure 4-26). During state T3 , write data is main
tained or read data is sampled, and the busy cycle 
is concluded in state T4 .

Since the 8089 is capable of transferring data to or 
from both 8 -bit and 16-bit buses, when an 8 -bit 
physical bus is specified (bus width is specified
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-O N E  BUS CYCLE-

U v _ j ~

§2 -SO S2-S0 ACTIVE 7 S2-S0 INACTIVE T\

ADDRESS/STATUS

ADDRESS
(AD15-AD8)

ADDRESS-DATA
(AD7-AD0)

J V
•MDRC or 'IORC \ /

•DT/R /
____I \

•DEN

•8288 BUS CONTROLLER OUTPUTS

/ \

Figure 4-25. Read Bus Cycle (8 -Bit Bus)

-  ONE BUS CYCLE-

I S2-55 ACTIVE J" S2-S0 INACTIVE \

ADDRESS/STATUS

J V.
•AMWC OR 'AIOWC

•MWTC OR "IOWC i _____r

•8288 BUS CONTROLLER OUTPUTS

Figure 4-26. Write Bus Cycle (16-Bit Bus)
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during the initialization sequence), the address 
present on the AD 15 through AD8 address/data 
lines is maintained for the entire bus cycle as 
shown in figure 4-25 and, unless added drive 
capability is required, the associated address latch 
can be eliminated. An 8 -bit data bus is compatible 
with the 8088 CPU and with the MCS-85™ 
multiplexed address peripherals (8155, 8185, 
etc.).

The 8089 operates identically to the 8086 CPU 
with respect to the use of the low- and high-order 
halves of the data bus. Table 4-14 defines the data 
bus use for the various combinations of bus width 
and address boundary.

The S2 through SO status lines define the bus cycle 
to be performed. These lines are used by an 8288 
Bus Controller to generate all memory and I/O 
command and control signals, and are decoded 
according to table 4-15.

Table 4-14. Data Bus Usage

Logical 
Bus Width1

Address
Boundary

Physical Bus Width1

8 16
Byte Transfer Word Transfer

E ven
A D 7-A D 0 =  D A T A A D 7-A D 0 =  D A T A

N /A

8
(B H E  n o t u se d ) (B H E  h ig h )

O dd
A D 7-A D 0 =  D A T A A D 1 5 -A D 8 =  D A TA

N /A
(B H E  n o t u se d ) (B H E  low )

16

E ven Ille g a l
A D 7-A D 0 = D A T A  

(B H E  h ig h )
AD 15-A D 0 =  D A T A  

(B H E  lo w )

O dd Ille g a l
A D 1 5 -A D 8 =  D A TA  

(B H E  low )
N /A !

Notes:
1. L o g ic a l b u s  w id th  is  s p e c if ie d  b y  th e  W ID  in s t ru c t io n  p r io r  to  th e  D M A  tra n s fe r .

2. P h y s ic a l b u s  w id th  is  s p e c if ie d  w h e n  th e  8089 is  in it ia liz e d .

3. A  w o rd  t ra n s fe r  to  o r  fro m  an o d d  b o u n d a ry  is  p e r fo rm e d  a s  tw o  b y te  t ra n s fe rs .  T h e  f i r s t  b y te  t ra n s 
fe r re d  is  th e  lo w -o rd e r  b y te  o n  th e  h ig h -o rd e r  d a ta  b u s  (A D 15-A D 8), a n d  th e  s e c o n d  b y te  is  th e  h ig h -  
o rd e r  b y te  o n  th e  lo w -o rd e r  d a ta  b u s  (A D 7-A D 0). T h e  8089 a u to m a tic a lly  a s s e m b le s  th e  tw o  b y te s  in 
th e ir  p ro p e r  o rd e r .

Table 4-15. Bus Cycle Decoding

Status Output Bus Cycle Indicated Bus Controller 
Command OutputS2 S1 s o

0 0 0 In s tru c t io n  fe tc h  fro m  I /O  s p a c e iN T A
0 0 1 D ata  rea d  fro m  I /O  s p a c e IO RC
0 1 0 D ata  w r ite  to  I /O  s p a c e IO W C , A IO W C
0 1 1 N o t u se d N o n e
1 0 0 In s t ru c t io n  fe tc h  fro m  s y s te m  m e m o ry M R D C
1 0 1 D ata  re a d  fro m  s y s te m  m e m o ry M R D C
1 1 0 D ata  w r ite  to  s y s te m  m e m o ry M W TC , A M W C
1 1 1 P a ss ive N o n e
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Note that the 8089 indicates an instruction fetch 
from I/O space as a status of zero (S2, SI and SO 
equal 0). Since the 8288 Bus Controller decodes 
an input status value of zero as an interrupt 
acknowledge bus cycle, the bus controller’s INTA 
output must be OR’ed with its IORC output to 
permit fetching of task block instructions from 
local 8089 memory (remote configuration) or 
system I/O  space (local and remote 
configurations).

The S2 through SO status lines become active in 
state T4  if a subsequent bus cycle is to be per
formed. These lines are set to the passive state (all 
“ ones” ) in the state immediately prior to state T4  
of the current bus cycle (state T3 or Tw) and are 
floated when the 8089 does not have access to the 
bus.

The S6  through S3 status lines are multiplexed 
with the high-order address bits (A19-A16) and, 
accordingly, become valid in state T2  of the bus 
cycle. The S4 and S3 status lines reflect the type of 
bus cycle being performed on the corresponding 
channel as indicated in table 4-16.

Table 4-16. Type of Cycle Decoding

S ta tu s  O u tp u t
T y p e  o f  C y c le

S4 S3

0 0 D M A  o n  C h a n n e l 1
0 1 D M A  o n  C h a n n e l 2
1 0 N o n -D M A  o n  C h a n n e l 1
1 1 N o n -D M A  o n  C h a n n e l 2

The S6  and S5 status lines are always “ 1” on the 
8089. Since these lines are not both “ 1” on the 
other processors in the 8086 family (S6  is always 
“ 0” on the 8086 and 8088 CPUs), these status 
lines can be used as a “ signature” in a 
multiprocessor environment to identify the type 
of processor performing the bus cycle.

The 8089 includes the same provision as do the 
8086 and 8088 CPUs for the insertion of wait 
states (Tw) in a bus cycle when the associated 
memory or I/O device cannot respond within the 
alloted time interval or when, in the remote mode, 
the 8089 must wait for access to the system bus. 
An 8284 Clock Generator/Driver is used to con
trol the insertion of wait states which, when 
required, are inserted between states T3 and T4 . 
The actual insertion of wait states is accomplished 
by deactivating one of the 8284’s RDY inputs

(RDY1 or RDY2). Either of these inputs, when 
enabled by its corresponding AEN1 or AEN2 
input, can be deactivated directly by the memory 
or I/O device when it must extend the 8089’s bus 
cycle (when the addressed device is not ready to 
present or accept data). The 8284’s READY out
put, which is synchronized to the CLK signal, is 
directly connected to the 8089’s READY input. 
As shown in figure 4-27, when the addressed 
device requires one or more wait states to be 
inserted into a bus cycle, it deactivates the 8284’s 
RDY input prior to the end of state T2 . The 
READY output from the 8284 is subsequently 
deactivated at the end of state T2  which causes the 
8089 to insert wait states following state T3 . To 
exit the wait state, the device activates the 8284’s 
RDY input which causes the READY input to the 
8089 to go active on the next clock cycle and 
allows the 8089 to enter state T4 .

TR1VCI-— | |—  TR1VCL-— | ]---------- |  - — TCLR1X*

READY READY \  NOT READY /  READY
OUTPUT \ _______________  /

•REFER TO TH E  8284 C LO C K  G EN ERA TO R/DRIVER DATA S H E ET  IN AP PEN D IX B FOR 
TIMING INFORMATION

Figure 4-27. Wait State Timing

Periods of inactivity can occur between bus 
cycles. These inactive periods are referred to as 
idle states (Tj) and, as with the 8086 and 8088 
CPUs, can result from the execution of a “ long” 
instruction or the loss of the bus to another pro
cessor during task block instruction execution. 
Additionally, the 8089 can experience idle states 
when it is in the DMA mode and it is waiting for a 
DMA request from the addressed I/O device or 
when the bus load limit (BLL) function is enabled 
for a channel performing task block instruction 
execution and the other channel is idle.

Initialization

Initialization of the IOP is generally the respon
sibility of the host processor which, as stated in 
Chapter 3, prepares the communications data 
structure in shared memory. Initialization of the 
IOP itself begins with the activation of its RESET 
input. This input (originating typically from an
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8284 Clock Generator/Driver) must be held active 
for at least five clock cycles to allow the 8089’s 
internal reset sequence to be completed. Note that 
like the 8086 and 8088 CPUs, the RESET input 
must be held active for at least 50 microseconds 
when power is first applied. Following the reset 
interval, the host processor signals the IOP to 
begin its initialization sequence by activating the 
8089’s CA (Channel Attention) input. The 8089 
will not recognize a pulse at its CA input until one 
clock cycle after the RESET input returns to an 
inactive level. Note that the minimum width for a 
CA pulse is one clock cycle and that this pulse 
may go active prior to RESET returning to an 
inactive level provided that the negative-going, 
trailing-edge of the CA pulse does not occur prior 
to one clock cycle after RESET goes inactive. 
Figure 4-28 illustrates the timing for this portion 
of the initialization sequence.

RESET

CA

MUST BE ACTIVE 
FOR FIVE CLOCK 
CYCLES \

CA
RECOGNIZED

Figure 4-28. RESET-CA Initialization Timing

Coincident with the trailing edge of the first 
CA pulse following reset, the 8089 samples its 
SEL (Select) input from the host processor to 
determ ine m aster/slave status for its 
request/grant circuity. If the SEL input is low, 
the 8089 is designated a “ master,” and if the SEL 
input is high, the 8089 is designated a “ slave.” As 
a master, the 8089 assumes that it has the bus 
initially, and it will subsequently grant the bus to 
a requesting slave when the bus becomes available 
(i.e., th£8089 will respond to a “ request” pulse 
on its RQ/GT line with a “ grant” pulse). A single 
8089 in the remote configuration (or one of two 
8089s in a remote configuration) would be 
designated a master. As a slave, the 8089 can only 
request the bus from a master processor (i.e., the 
8089 initiates the request/grant sequence by out- 
putting a “ request” pulse on its RQ/GT line). An 
8089 that shares a bus with an 8086 or 8088 (or 
one of two 8089s in a remote configuration) 
would be designated a slave. Note that since the 
8086 and 8088 CPUs can grant the bus only in 
response to a request, whenever an 8086 or 8088

and an 8089 share a common bus, the 8089 must 
be designated the slave. Also, when the RQ/GT 
line is not used (i.e., a single 8089 in the remote 
configuration), the 8089 must be designated a 
master.

In addition to determining master/slave status, 
the CA pulse also causes the 8089 to begin execu
tion of its internal ROM initialization sequence. 
Note that since the 8089 must have access to the 
system bus in order to perform this sequence, the 
8089 immediately initiates a request/grant 
sequence (if designated a slave) and, if required, 
then requests the bus through the 8289 Arbiter. 
(If designated a master, the 8089 requests the bus 
through the 8289 Arbiter.) In the execution of the 
initialization sequence, the 8089 first fetches the 
SYSBUS byte from location FFFF6 H. The W bit 
(bit 0 ) of this byte specifies the physical bus width 
of the system bus. Depending on the bus width 
specified, the 8089 then fetches the address of the 
system configuration block (SCB) contained in 
locations FFFF8 H through FFFFBH in either two 
bus cycles (16-bit bus, W bit equal 1) or four bus 
cycles (8 -bit bus, W bit equal 0). The SCB offset 
and segment address values fetched are combined 
into a 2 0 -bit physical address that is stored in an 
internal register. Using this address, the 8089 next 
fetches the system operation command (SOC) 
byte. As explained in Chapter 3, this byte 
specifies both the request/grant operational mode 
(R bit) and the physical width of the I/O bus (I 
bit). After reading the SOC byte, the 8089 fetches 
the channel control block (CB) offset and seg
ment address values. These values are combined 
into a 2 0 -bit physical address and are stored in 
another internal register. To inform the host CPU 
that it has completed the initialization sequence, 
the 8089 clears the Channel 1 Busy flag in the 
channel control block by writing an all “ zeroes” 
byte toCB+ 1 .

After the IOP has been initialized, the system 
configuration block may be altered in order to in
itialize another IOP. Once an IOP has been in
itialized, its channel control block in system 
memory cannot be moved since the CB address, 
which is internally stored by the IOP during the 
initialization sequence, is automatically accessed 
on every subsequent CA pulse.
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of the host CPU. Typically, these signals result 
from the CPU’s execution of an I/O write 
instruction to one of two adjacent I/O ports (I/O 
port addresses that only differ by AO). Figure 4-29 
illustrates a simple decoding circuit that could be 
used to generate the CA and SEL signals. Note 
that by qualifying the CA output with IOWC, the 
SEL output, since it is latched for the entire I/O 
bus cycle, is guaranteed to be stable on the trailing 
edge of the CA pulse.

PORT FC = CHANNEL 1 CA 
PORT FD = CHANNEL 2 CA

Figure 4-29. Channel Attention Decoding Circuit

I/O  Dispatching

During normal operation, the I/O supervisory 
program running in the host CPU will receive a 
request to perform a specific I/O operation on 
one of the 8089’s channels. In response to this 
request, the supervisory program will typically 
perform the following sequence of operations:
• Check the availability of the specified 

channel by examining the channel’s busy flag 
in the Channel Control Block. If it is possible 
for another processor to access the channel, a 
semaphore operation (implemented by a 
locked XCHG instruction) is used to check 
channel availability.

• Load the variable parameters required for 
the intended operation into the channel’s 
parameter block.

• Load the channel command word (CCW) 
into the channel control block.

• Establish the necessary linkages by writing 
the starting address of the channel program 
(task block) in the first four bytes of the

— —  . . .  ___

block.
• Issue a channel attention (CA) to the 

specified channel.

In response to the CA, the 8089 interrupts any 
current activity at its first opportunity (see “ Con
current Channel Operation” in section 3.2) and 
begins execution of an internal instruction 
sequence that fetches and decodes the channel 
command word (CCW) and then performs the 
operation indicated (i.e., start, halt or continue 
channel program execution).

If the CCW specifies start channel program (start 
task block execution), the address of the 
parameter block is fetched from the channel 
control block, the address of the first channel 
program instruction (contained in the first four 
bytes of the parameter block) is fetched and then 
loaded into the TP (task pointer) register and, 
finally, task block execution is initiated from 
either system or I/O space. Task block execution 
continues, subject to the activity on the other 
channel as described in “ Concurrent Channel 
Operation,” until a XFER instruction is 
executed. Following execution of this instruction, 
the next sequential channel program instruction is 
executed before the channel enters the DMA 
transfer mode.

If the CCW specifies halt channel, the current 
operation on the specified channel is halted. If the 
channel is performing task block execution (either 
chained or not chained), channel operation is 
stopped at an instruction boundary, and if the 
channel is performing a DMA transfer, channel 
operation is stopped at a DMA transfer cycle 
boundary. Note that a channel will not stop a 
locked DMA transfer until the operation is com
pleted. There are two unique halt channel com
mands. One command simply halts the channel 
and clears the busy flag in the channel control 
block. This command is used when the halted 
operation is to be discarded. The other command 
halts the channel, saves the task pointer and pro
gram status word (PSW) byte, and clears the busy 
flag. This command is used when the halted 
operation is to be resumed. Note that this halt 
command will not affect the integrity of resumed 
task block execution or a memory-to-memory 
DMA transfer, but could affect the integrity of a 
synchronized DMA transfer (a DMA request 
occuring while the channel is halted could be 
missed).
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If the CCW specifies continue channel, an opera
tion that has been previously halted is resumed 
(and the busy flag is set). Since this command 
restores the task pointer and PSW, it should be 
used only if the task pointer and PSW have been 
saved by a previous halt command.

Table 4-17 outlines the various CCW command 
execution times. Note that the times listed in the 
table for the halt commands do not include the 
time required to complete any current channel 
activity when the channel attention is received 
(completion of the current DMA transfer cycle or 
task block instruction).

DMA Transfers

The number of bytes transferred during a single 
DMA cycle is determined by both the source and 
destination logical bus widths as well as by the

address boundary (odd or even address). The 
8089 performs DMA transfers between dissimilar 
bus widths by assembling bytes or disassembling 
words in its internal assembly register file. As 
explained in Chapter 3, the DMA source and 
destination bus widths are defined by the execu
tion of a WID instruction during task block 
(channel command) execution. Note that the bus 
widths specified remain in force until changed by 
a subsequent WID instruction. Table 4-18 defines 
the various byte (B) and word (W) 
source/destination transfer combinations based 
on address boundary and bus width specified.

The 8089 additionally optimizes bus accesses dur
ing transfers between dissimilar bus widths 
whenever possible. When either the source or 
destination is a 16-bit memory bus (auto
incrementing) that is initially aligned on an odd

Table 4-17. CCW Command Execution Times

CCW Command Minimum Time* Maximum Time**

C A  N O P 48 +  2n c lo c k s 48 +  2n c lo c k s
C A  H a lt (n o  sa ve ) 48 +  2n c lo c k s 48 +  2n c lo c k s

C A  H a lt (w ith  save ) 94 +  5n c lo c k s 100 +  6n c lo c k s
C A  S ta r t (m e m o ry ) 108 +  6n c lo c k s 124 +  10n c lo c k s

C A  S ta r t ( I /O ) 96 +  5n c lo c k s 108 +  8n c lo c k s
C A  C o n tin u e 95 +  5n c lo c k s 103 +  6n c lo c k s

N o te s :
n is  th e  n u m b e r  o f  w a it  s ta te s  p e r  b u s  c y c le .

* M in im u m  t im e  o c c u rs  w h e n  b o th  th e  c h a n n e l c o n tro l b lo c k  a n d  p a ra m e te r  b lo c k  a d d re s s e s  a re  a lig n e d  on  
an e ve n  a d d re s s  b o u n d a ry  and  a 1 6 -b it b u s  is  u se d .

**  M a x im u m  t im e  o c c u rs  w h e n  b o th  th e  c h a n n e l c o n tro l b lo c k  and  p a ra m e te r  b lo c k  a d d re s s e s  a re  a lig n e d  
on  an o d d  a d d re s s  b o u n d a ry  o n  a 1 6 -b it b u s  o r  w h e n  an 8 -b it b u s  is  u se d .

Table 4-18. DMA Assembly Register Operation

Address Boundary 
(Source - *  Destination)

Logical Bus Width 
(Source -*Destination)

8^8 8-* 16 16 -* 8 16 16

E ven  -*• Even B -► B B /B  ->• W W -  B /B W - W
E ven  -► O dd B -<■ B B -  B W  -  B /B W  -  B /B
O d d  - *  E ven B -*• B B /B  -► W B ->■ B B /B  -» W
O dd  - *  O dd B -► B B ^  B B ->■ B B ->■ B

4-47 M nem onics ©  Intel, 1979



HARDWARE REFERENCE INFORMATION

address boundary (causing the first transfer cycle 
to be byte-to-byte), following the first transfer 
cycle, the memory address will be aligned on an 
even address boundary, and word transfers will 
subsequently occur. For example, when perform
ing a memory-to-port transfer from a 16-bit bus 
to an 8 -bit bus with the source beginning on an 
odd address boundary, the first transfer cycle will 
be byte-to-byte (B -*■ B) as indicated in table 4-18, 
but subsequent transfers will be word-to- 
byte/byte (W -*• B/B).

All DMA transfer cycles consist of at least two 
bus cycles; one bus cycle to fetch (read) the data 
form the source into the IOP, and one bus cycle 
to store (write) the data previously fetched from 
the IOP into the destination. Note that in all 
transfers, the data passes through the IOP to 
allow mask/compare and translate operations to 
be optionally performed during the transfer as 
well as to allow the data to be assembled or 
disassembled.

The IOP performs DMA transfers in one of three 
modes: unsynchronized, source synchronized or 
destination synchronized (the transfer mode is 
specified in the channel control register). The un
synchronized mode is used when both the source 
and destination devices do not provide a data re
quest (DRQ) signal to the IOP as in the case of a 
memory-to-memory transfer. In the synchronized 
transfer modes, the source (source synchronized) 
or destination (destination synchronized) device 
initiates the transfer cycle by activating the IOP’s 
DRQ1 (channel 1) or DRQ2 (channel 2) input.

The DRQ input is asynchronous and usually 
originates from an I/O device controller rather 
than from a memory circuit. This input is latched 
on the positive transition of the clock (CLK) 
signal and therefore must remain active for more 
than one clock period (more than 2 0 0  
nanoseconds when using a 5 MHz clock) in order 
to guarantee that it is recognized.

During state T j of the associated fetch bus cycle 
(source synchronized) or store bus cycle (destina
tion synchronized), the IOP outputs the address 
of the I/O device (the port address). This address 
must be decoded (by external circuitry) to 
generate the DMA acknowledge (DACK) signal 
to the I/O controller as the response to the con
troller’s DMA request. An I/O controller will 
typically use DACK as a conditional input for the 
removal of DRQ. (After receipt of the DACK 
signal, most Intel peripheral controllers deac
tivate DRQ following receipt of the correspon
ding read or write signal.) Figures 4-30 and 4-31 
illustrate the DRQ/DACK timing for both source 
synchronized (i.e., port-to-memory) and destina
tion synchronized (i.e., memory-to-port) 
transfers.

Table 4-19 defines the DMA transfer cycles in 
terms of the number of bus and clock cycles re
quired. Note that the number of clocks required 
to complete a transfer cycle does not take into ac
count the effects of possible concurrent opera
tions on the other channel or wait states within 
any of the bus cycles.

-TRANSFER C YC LE -
-  FETCH BUS C YC LE -
J  T* l  T3_ |

-STORE BUS C Y C LE -
J  T2 | T3 |

W l iW W V l
DRQ HOLD J _______ J  L ___ 2 ,DLE L  4 IDLE I 5 IDLE

ICKS’ T  CLOCKS' CLOCKS''*’

m i DRQ FOR NEXT TRANSFER CYCLE

NOTES:

1. INDICATES THE NUMBER OF IDLE CLOCK CYCLES INSERTED BEFORE THE NEXT 
TRANSFER CYCLE BEGINS. IF DRQ IS RECEIVED PRIOR TO STATE T4 OF THE CURRENT 
FETCH CYCLE, THE NEXT FETCH CYCLE BEGINS IMMEDIATELY FOLLOWING THE 
CURRENT STORE CYCLE.

2. IF THE 8089 IS IDLE WHEN DRQ IS RECOGNIZED, FIVE IDLE CLOCK CYCLES OCCUR 
BEFORE THE ASSOCIATED TRANSFER CYCLE IS INITIATED.

Figure 4-30. Source Synchronized Transfer Cycle
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DA CK
(D EC O D E D  I/O  A D D R ES S )

NOTES: 1. FIRST DMA FETCH CYCLE OCCURS IMMEDIATELY AFTER THE LAST TASK BLOCK 
INSTRUCTION IS EXECUTED.

2. FETCH BUS CYCLE 2 BEGINS IMMEDIATELY FOLLOWING STORE BUS CYCLE 1.
3. INDICATES THE NUMBER OF IDLE CLOCK CYCLES INSERTED BEFORE STORE BUS 

CYCLE 2 BEGINS. IF DRQ IS RECEIVED PRIOR TO STATE T4 OF STORE BUS CYCLE 1, 
STORE BUS CYCLE 2 BEGINS IMMEDIATELY FOLLOWING FETCH BUS CYCLE 2.

4. IF THE 8089 IS IDLE WHEN DRQ IS RECOGNIZED, FIVE IDLE CLOCK CYCLES OCCUR 
BEFORE THE ASSOCIATED STORE BUS CYCLE IS INITIATED.

' VALID I/O ADDRESS PRESENT 1

Figure 4-31. Destination Synchronized Transfer Cycle

Table 4-19. DMA Transfer Cycles

Transfer Mode
Unsynchronized Source Synchronized Destination Synchronized

Source Destination Bus Cycles 
Required

Total'
Clocks

Bus Cycles 
Required

Total1
Clocks

Bus Cycles 
Required

Total'
Clocks

8 8 2 (1 fe tc h , 1 s to re ) 8 2 2 (1 fe tc h , 1 s to re ) 82 2 (1 fe tc h , 1 s to re ) 8 2
8 16> 3 (2 fe tc h , 1 s to re ) 12 3 (2 fe tc h , 1 s to re ) 164 3 (2 fe tc h , 1 s to re ) 12

161 8 3 (1 fe tc h , 2 s to re ) 12 3 (1 fe tc h , 2 s to re ) 12 3 (1 fe tc h , 2 s to re ) 16"
16’ 16J 2 (1 fe tc h , 1 s to re ) 8 2 (1 fe tc h , 1 s to re ) 8 2 (1 fe tc h , 1 s to re ) 8

N o te s :
1. T h e  “ T o ta l C lo c k s  R e q u ire d ”  d o e s  n o t in c lu d e  w a it s ta te s . O n e  c lo c k  c y c le  p e r  w a it s ta te  m u s t be  

a d d e d  to  e a c h  fe tc h  a n d /o r  s to re  b u s  c y c le  in w h ic h  a w a it s ta te  is  in s e r te d . W h e n  p e r fo rm in g  a 
m e m o ry - to -m e m o ry  t ra n s fe r ,  th re e  a d d it io n a l c lo c k s  m u s t be  a d d e d  to  th e  to ta l c lo c k s  re q u ire d  ( th e  
f ir s t  fe tc h  c y c le  o f  a n y  m e m o ry - to -m e m o ry  t ra n s fe r  re q u ire s  s e v e n  c lo c k  c y c le s ) .

2. W h e n  p e r fo rm in g  a tra n s la te  o p e ra t io n , o n e  a d d it io n a l 7 -c lo c k  b u s  c y c le  m u s t b e  a d d e d  to  th e  v a lu e s  
s p e c if ie d  in th e  ta b le .

3. W o rd  tra n s fe rs  in  th e  ta b le  a s s u m e  an e ve n  a d d re s s  w o rd  b o u n d a ry . W o rd  t ra n s fe rs  to  o r  fro m  o d d  
a d d re s s  b o u n d a r ie s  a re  p e r fo rm e d  a s  in d ic a te d  in ta b le  4-18 and  a re  s u b je c t  to  th e  b u s  c y c le /c lo c k  
re q u ire m e n ts  fo r  b y te - to -b y te  t ra n s fe rs .

4. T ra n s fe r  c y c le s  th a t in c lu d e  tw o  s y n c h ro n iz e d  b u s  c y c le s  ( i.e .,  s y n c h ro n o u s  tra n s fe rs  b e tw e e n  
d is s im ila r  lo g ic a l b u s  w id th s )  in s e r t  fo u r  id le  c lo c k  c y c le s  b e tw e e n  th e  tw o  s y n c h ro n iz e d  b u s  c y c le s  
to  a llo w  a d d it io n a l t im e  fo r  th e  s y n c h ro n z in g  d e v ic e  to  re m o v e  its  in it ia l D M A  re q u e s t.
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the 8089 to acknowledge, by outputting the 
device’s corresponding port address, a DMA 
request at its DRQ input. This response latency is 
dependent on a number of factors including the 
transfer cycle being performed, activity on the 
other channel, memory address boundaries, wait 
states present in either bus cycle and bus arbitra
tion times.

Generally, when the other channel is idle, the 
maximum DACK latency is five clock cycles (1 
microsecond at 5 MHz), excluding wait states and 
bus arbitration times. An exception occurs when 
performing a word transfer to or from an odd 
memory address boundary. This operation, since 
two store (source synchronized) or two fetch 
(destination synchronized) bus cycles are required 
to access memory, has a maximum possible laten
cy of nine clock cycles. When the other channel is 
performing DMA transfers of equal priority 
(“ P” bits equal), interleaving occurs at bus cycle 
boundaries, and the maximum latency is either 
nine clock cycles when the other channel is per
forming a normal 4-clock fetch or store bus cycle 
or twelve clock cycles when the other channel is 
performing the first fetch cycle of a memory-to- 
memory transfer. If the other channel is perform
ing “ chained” task block instruction execution of 
equal priority, maximum latency can be as high as 
12 clock cycles (channel command instruction 
execution is interrupted at machine cycle boun
daries which range from two to eight clock 
cycles).

DMA Termination

As stated in Chapter 3, a channel can exit the 
DMA transfer mode (and return to task block 
execution) on any of the following terminate 
conditions:
• Single cycle transfer
• Byte count expired
• Mask/compare match or mismatch
• External event

The terminate conditions are specified by in
dividual fields in the channel control register. 
More than one terminate condition can be 
specified for a transfer (e.g., a transfer can be ter
minated when a specific byte count is reached or 
on the occurrence of an external event). When

displacements (which are added to the task 
pointer register value) are specified to cause task 
block execution to resume at a unique entry point 
for each condition. Three reentry points are 
available: TP, TP + 4 and TP + 8 . The time inter
val between the occurrence of a terminate condi
tion and the resumption of task block execution is 
12 clock cycles for reentry point TP and 15 clock 
cycles for reentry points TP + 4 and TP + 8 .

Peripheral Interfacing

When interfacing a peripheral to an 8 -bit physical 
data bus, the 8089 uses only the lower half of the 
address/data lines (AD7-AD0) as the bidirec
tional data bus, and the upper half of the ad
dress/data lines (AD15-AD8) maintain address 
information for the entire bus cycle. Consequent
ly, with this bus configuration, only one octal 
latch (e.g., an Intel® 8282/83 Octal Latch) is re
quired since only the lower half of the ad
dress/data lines is time-multiplexed (unless the 
address bus requires the increased current drive 
capability and capacitive load immunity provided 
by the latch).

When interfacing a peripheral to a 16-bit data 
bus, both the lower and upper halves of the ad
dress/data lines are time-multipelxed, and two oc
tal latches are required. Note that unlike the 8086 
and 8088 CPUs, the 8089 does not time-multiplex 
BHE (this signal is valid for the entire bus cycle). 
Both 8 - and 16-bit peripherals can be interfaced to 
a 16-bit bus. An 8 -bit peripheral can be connected 
to either the upper or lower half of the bus. An 8 - 
bit peripheral on the lower half of the bus must 
use an even source/destination address, and an 8 - 
bit peripheral on the upper half of the bus must 
use an odd source/destination address. To take 
advantage of word transfers, a 16-bit peripheral 
must use an even source/destination address.

To prepare a peripheral device for a DMA 
transfer, command and parameter data is written 
to the device’s command/status port. This is 
usually accomplished using pointer register GC. 
Recalling that the 8089 executes one additional 
task block instruction following execution of the 
XFER instruction (the XFER instruction causes 
the 8089 to enter the DMA mode), this additional 
instruction is used to access the command port of 
an I/O device that immediately begins DMA
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operation on receipt of the last command (the 
8271 Floppy Disk Controller begins its DMA 
transfer on receipt of the last command 
parameter). Since a translate DMA operation re
quires the use of all three pointer registers (GA 
and GB specify the source and destination ad
dresses; GC specifies the base address of the 
translation table), when it is necessary to use the 
last task block instruction to start the device, 
command port access can be accomplished 
relative to one of the pointer registers or relative 
to the PP register. If the device’s data port ad
dress (GA or GB) is below the device’s command 
port address, either an offset or an indexed 
reference can be used to access the command 
port.

A peripheral’s (or peripheral controller’s) DMA 
communication protocol with the 8089 is as 
follows:
• The peripheral (when source or destination 

synchronized) initiates a DMA transfer cycle 
by activating the 8089’s DRQ (DMA request) 
input.

• The 8089 acknowledges the request by 
placing the peripheral’s assigned data port 
address on the bus during state T j of the cor
responding fetch (source synchronized) or 
store (destination synchronized) bus cycle. 
The peripheral is responsible for decoding 
this address as the DMA acknowledge 
(DACK) to its request.

• The data is transferred between the 
peripheral and the 8089 during the T2 
through T4  state interval of the bus cycle. 
The peripheral must remove its DMA request 
during this interval.

• The peripheral, when ready, requests another 
DMA transfer cycle by again activating the 
DRQ input, and the above sequence is 
repeated.

• The peripheral can, as an option, end the 
DMA transfer by activating the 8089’s EXT 
(external terminate) input.

The 8089 can support mulitple peripheral devices 
on a single channel provided that only one device 
is in the active transfer mode at any one time. To 
interface multiple devices, the DMA request 
(DRQ) lines are OR’ed together as are the exter
nal terminate (EXT) lines. Unique port addresses 
are, however, assigned to each device so that an

individual DMA acknowledge (DACK) is return
ed to only the active device. DACK decoding can 
be accomplished with an Intel ® 8205 Binary 
Decoder or a ROM circuit. Note that the 8089 can 
only determine which device has requested service 
or terminated by the context of the task block 
program.

Most peripheral devices interfaced to the 8089 will 
use the decoded DMA acknowledge signal 
(DACK) as the “ chip select” input. Peripheral 
devices that do not follow this convention must 
use DACK as a conditional input of chip select.

While most interrupts associated with the 8089 
will be DMA requests or external terminates, non- 
DMA related interrupts can additionally be 
supported.

One technique that would be used when an 8089 is 
the local configuration (or when an 8086 or 8088 
and an 8089 are locally connected as a remote 
module) is to allow the CPU to accept the inter
rupt and then direct the 8089 to the interrupt ser
vice routine. Another technique is to allow the 
8089 to “ poll” the device to determine when an 
interrupt has occurred (most peripheral con
trollers have an interrupt pending bit in a status 
word). The 8089’s bit testing instructions are 
ideally suited for polling.

When the 8089 is in a remote configuration, non- 
DMA related interrupts can be supported with the 
addition of an Intel® 8259A Programmable 
Interrupt Controller. Systems that require this 
type of interrupt structure would dedicate one of 
the 8089’s channels to interrupt servicing. In 
implementing this structure, the interrupt output 
from the 8259A is directly connected to the chan
nel’s external terminate (EXT) input, and the 
channel’s DMA request (DRQ) input is not used. 
A task block program is initially executed to per
form a source-synchronized DMA transfer (with 
an external terminate) on the “ interrupt” channel 
to “ arm” the interrupt mechanism. Since the 
DRQ input is not used, when the channel enters 
the DMA transfer mode, the channel idles while 
waiting for the first DMA request (which never 
occurs). The other channel, since the interrupt 
channel is idle, operates at maximum throughput. 
When an interrupt occurs, the “ pseudo” DMA 
transfer is immediately terminated, and task 
block instruction execution is resumed. The task 
block program would write a “ poll” command to 
the 8259A’s command port and then read the

4-51



HARDWARE REFERENCE INFORMATION

8259A’s data port to acknowledge the interrupt 
and to determine the device responsible for the 
interrupt (the device is identified by a 3-bit binary 
number in the associated data byte). The device 
number read would be used by the task block pro
gram as a vector into a jump table for the device’s 
interrupt service routine. Pertinent interrupt data 
could be written into the associated parameter 
block for subsequent examination by the host 
processor.

The interrupt mechanism previously described, 
since it uses the 8089’s external terminate func
tion, provides an extremely fast interrupt 
response time.

Note that when using dynamic RAM memory 
with the 8089, an Intel® 8202 Dynamic RAM 
Controller can be used to simplify the interface 
and to perform the RAM refresh cycle. When 
maximum transfer rates are required, the RAM 
refresh cycle can be externally initiated by the 
8089. By connecting the decoded DACK (DMA 
acknowledge) signal to the 8202’s REFRQ 
(refresh request) input, the refresh cycle will occur 
coincident with the I/O device bus cycle and 
therefore will not impose wait states in the 
memory bus cycle.

Instruction Encoding

Most 8089 programming will be performed at the 
assembly language level using ASM-89, the 8089 
assembler. During program debugging, however, 
it may be necessary to work directly with machine 
instructions when monitoring the bus, reading un
formatted memory dumps, etc. This section con
tains both a table to encode any ASM-89 instruc
tion into its corresponding machine instruction

(table 4-24) and a table to “ disassemble” any 
machine instruction back into its associated 
assembly language equivalent (table 4-26).

Figure 4-32 shows the format of a typical 8089 
machine instruction. Except for the LPD1 and 
memory-to-memory forms of the MOV and 
MOVB instructions that are six bytes long, all 
8089 machine instructions consist of from two to 
five bytes. The first two bytes are always present 
and are generally formatted as shown in figure
4-32 (table 4-24 contains the exact encoding of 
every instuction).

Bits 5 through 7 of the first byte of an instruction 
comprise the R/B/P field. This field identifies a 
register, bit select or pointer register operand as 
outlined in table 4-20.

Table 4-20. R /B /P  Field Encoding

Code Register Bit Pointer

000 G A 0 G A
001 G B 1 G B
010 G C 2 G C
011 BC 3 N /A
100 TP 4 TP
101 IX 5 N /A
110 C C 6 N /A
111 M C 7 N /A

The WB field (bits 3 and 4 of the first byte) in
dicates how many displacement/data bytes are 
present in the instruction as outlined in table 4-21. 
The displacement bytes are used in program 
transfers; one byte is present for short transfers, 
while long transfers contain a two-byte (word) 
displacement. As mentioned in Chapter 3, the

BYTE 1

I I
R / B / P W B

I I I  I

BYTE 3 B Y T E  4 B Y T E  5

l l l l i l i i l l l i l l l i l i i i i i l j
O F F S E T  I L O W  D IS P /D A T A  I H IG H  D IS P /D A T A  I

- B A S E  R E G IS T E R  F O R  M E M O R Y  O P E R A N D  

- O P E R A T IO N  (IN S T R U C T IO N ) C O D E  

- W ID TH  (B Y T E  O R  W O R D  O P E R A N D S )  

- M E M O R Y  A D D R E S S IN G  M O D E  

- N U M B E R  O F  D IS P L A C E M E N T / D A T A  B Y T E S  

-R E G IS T E R , B IT , P O IN T E R  S E L E C T

Figure 4-32. Typical 8089 Machine Instruction Format
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displacement is stored in two’s complement nota
tion with the high-order bit indicating the sign. 
Data bytes contain the value of an immediate con
stant operand. A byte immediate instruction 
(e.g., MOVBI) will have one data byte, and a 
word immediate instruction (e.g., ADDI) will 
have two bytes (a word) of immediate data. An 
instruction may contain either displacement or 
data bytes, but not both (the TSL instruction is an 
exception and contains one byte of displacement 
and one byte of data). If an offset byte is present, 
the displacement/data byte(s) always follow the 
offset byte.

Table 4-21. WB Field Encoding

Code Interpretation

00 N o d is p la c e m e n t /d a ta  b y te s
01 O n e  d is p la c e m e n t /d a ta  b y te
10 T w o  d is p la c e m e n t /d a ta  b y te s
11 T S L  in s t ru c t io n  o n ly

The AA field specifies the addressing mode that 
the processor is to use in order to construct the ef
fective address of a memory operand. Four ad
dressing modes are available as outlined in table
4-22. (Address modes are described in detail in 
section 3.8.)

Table 4-22. A A Field Encoding

Code Interpretation

00 B a se  re g is te r  o n ly
01 B a se  re g is te r  p lu s  o f fs e t
10 B a se  re g is te r  p lu s  IX
11 B a se  re g is te r  p lu s  IX,

a u to - in c re m e n t

Bit 0 of the first instruction byte indicates whether 
the instruction operates on a byte (W=0) or a 
word (W=l).

Bits 7 through 2 of the second instruction byte 
specify the instruction opcode. The opcode, in 
conjunction with the W field of the first byte, 
identifies the instruction. For example, the op
code “ 1 1 1 0 1 1 ” denotes the decrement instruc
tion; if W=0, the assembly language instruction is 
DECB, while if W =l, the instruction is DEC. 
Table 4-26 lists, in hexadecimal order, the opcode 
of every assembly language instruction.

The MM field (bits 0 and 1) indicates which 
pointer (base) register is to be used to construct 
the effective address of a memory operand. Table
4-23 defines the MM field encoding. (Memory 
operand addressing is described in section 3.8.)

Table 4-23. MM Field Encoding

Code Base Register

00 GA
01 GB
10 GC
11 PP

When the AA field value is “ 01” (base register 
+ offset addressing), the third byte of the instruc
tion contains the offset value. This unsigned value 
is added to the content of the base register 
specified by the MM field to form the effective 
address of the memory operand.

When the AA field value is “ 10,” the IX register 
value is added to the content of the base register 
specified by the MM field to provide a 64k range 
of effective addresses. (Note that the upper four 
bits of the IX register are not sign-extended.)

When the AA field value is “ 11,” the IX register 
value is added to the base register value to form 
the effective address as described for an AA field 
value of “ 10.” In this addressing mode, however, 
the IX register value is incremented by one after 
every byte accessed.

Table 4-24. 8089 Instruction Encoding
DATA TRANSFER INSTRUCTIONS

MOV » Move word variable 7 6 5 4 3 2 1 0 7 8 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Memory to register R R R 0 0 A A 1 1 0 0 0 0 0 M M offset if AA=01

Register to memory R R R 0 0 A A 1 1 0 0 0 0 1 M M offset if AA=01

Memory to memory 0 0 0 0 0 A A 1 1 0 0 1 0 0 M M offset if AA=01 0 0 0 0 0 A A 1 1 1 0 0 1 1 M M offset if AA=01
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DATA TRANSFER INSTRUCTIONS (Cont'd.)

MOVB = Move byte variable 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Memory to register R R R 0 0 A A 0 1 0 0 0 0 0 M M offset if AA=01

Register to memory R R R 0 0 A A 0 1 0 0 0 0 1 M M offset If AA=01

Memory to memory 0 0 0 0 0 A A 0 1 0 0 1 0 0 M M offset if AA=01 0 0 0 0 0 A A 0 1 1 0 0 1 1 M M offset if AA=01

MOVBI = Move byte immediate

Immediate to register R R R 0 1 0 0 0 0 0 1 1 0 0 0 0 data-8

Immediate to memory 0 0 0 0 1 A A 0 0 1 0 0 1 1 M M offset If AA=01 data-8

MOVI = Move word immediate

Immediate to register R R R 1 0 0 0 1 0 0 1 1 0 0 0 0 data-io data-hi

Immediate to memory 0 0 0 1 0 A A 1 0 1 0 0 1 1 M M offset if AA=01 data-lo data-hi

MOVP = Move pointer 

Memory to pointer register 

Pointer register to memory

P P P 0 0 A A 1 1 0 0 0 1 1 M M offset if AA=01

P P P 0 0 A A 1 1 0 0 1 1 0 M M offset if AA=01

LPD = Load pointer with doubleword variable P P P 0 0 A A 1  1 0 0 0 1 0 M M  offset if AA=01

LPDI = Load pointer with doubleword immediate P P P 1 0 0 0 1 0 0 0 0 1 0 0 0 offset-lo offset-hi segment-lo segment-hi

ARITHMETIC INSTRUCTIONS

ADD = Add word variable

Memory to register R R R 0 0 A A 1 1 0 1 0 0 0 M M offset if AA=01

Register to memory R R R 0 0 A A 1 1 1 0 1 0 0 M M offset if AA=01

ADDB = Add byte variable

Memory to register R R R 0 0 A A 0 1 0 1 0 0 0 M M offset if AA=01

Register to memory R R R 0 0 A A 0 1 1 0 1 0 0 M M offset if AA=01

ADDI = Add word immediate

Immediate to register R R R 1 0 0 0 1 0 0 1 0 0 0 0 0 data-lo data-hi

Immediate to memory 0 0 0 1 0 A A 1 1 1 0 0 0 0 M M offset if AA=01 data-lo data-hi
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Table 4-24. 8089 Instruction Encoding (Cont’d.)

ARITHMETIC INSTRUCTIONS (Cont’d.)

ADDBI = Add byte immediate 

Immedaite to register 

Immediate to memory

INC = Increment word by 1

Register

Memory

INCB = Increment byte by 1

7 6 5 4 3 2 1 0  7 6 5 4 3 2 1 0  7 6 5 4 3 2 1 0  7 6 5 4 3 2 1 0  7 6 5 4 3 2 1 0  7 6 5 4 3 2 1 0

R R R 0 1 0 0 0 0 0 1 0 0 0 0 0 data-8

0 0 0 0 1 A A 0 1 1 0 0 0 0 M M offset if AA=01 data-8

R R R 0 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 A A 1 1 1 1 0 1 0 M M offset if AA=01

O O O O O A A O  1 1 1 0 1 0 M M  offset if AA=01

DEC = Decrement word by 1

Register

Memory

R R R 0 0 0 0 0 0 0 1 1 1 1 0  0

0 0 0 0 0 A A 1 1 1 1 0 1 1 M M offset if AA=01

DECB = Decrement byte by 1 O O O O O A A O 1 1 1 0 1 1 M M offset if AA=01

LOGICAL AND BIT MANIPULATION INSTRUCTIONS

AND = AND word variable

Memory to register R R R 0 0 A A 1 1 0 1 0 1 0 M M offset if AA=01

Register to memory R R R 0 0 A A 1 1 1 0 1 1 0 M M offset if AA=01

ANDB = AND byte variable

Memory to register R R R 0 0 A A 0 1 0 1 0 1 0 M M Offset if AA=01

Register to memory R R R 0 0 A A 0 1 1 0 1 1 0 M M offset if AA=01

ANDI = AND word immediate 

Immediate to register 

Immediate to memory

ANDBI = AND byte immediate 

Immediate to register 

Immediate to memory

OR = OR word variable 

Memory to register 

Register to memory

R R R 1 0 0 0 1 0 0 1 0 1 0 0 0 data-lo data-hi

0 0 0 1 0 A A 1 1 1 0 0 1 0 M M offset if AA=01 data-lo data-hi

R R R 0 1 0 0 0 0 0 1 0 1 0 0 0 data-8

0 0 0 0 1 A A 0 1 1 0 0 1 0 M M offset if AA=01 data-8

R R R 0 0 A A 1 1 0 1 0 0 1 M M offset if AA=01

R R R 0 0 A A 1 1 1 0 1 0 1 M M offset if AA=01
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Table 4-24. 8089 Instruction Encoding (Cont’d.)

LOGICAL AND BIT MANIPULATION INSTRUCTIONS (Cont’d.l

ORB = OR byte variable 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Memory to register R R R 0 0 A A 0 1 0 1 0 0 1 M M offset if AA=01

Register to memory R R R 0 0 A A 0 1 1 0 1 0 1 M M offset if AA=01

ORI = OR word immediate

Immediate to register R R R 1 0 0 0 1 0 0 1 0 0 1 0 0 data-lo data-hi

Immediate to memory 0 0 0 1 0 A A 1 1 1 0 0 0 1 M M offset if AA=01 data-lo data-hi

ORBI = OR byte immediate

Immediate to register R R R 0 1 0 0 0 0 0 1 0 0 1 0 0 data-8

Immediate to memory 0 0 0 0 1 A A 0 1 1 0 0 0 1 M M offset if AA=01 data-8

NOT = NOT word variable

Register

Memory

Memory to register

R R R 0 0 0 0 0 0 0 1 0  1 1 0  0

0 0 0 0 0 A A 1 1 1 0 1 1 1 M M offset if AA=01

R R R 0 0 A A 1 1 0 1 0 1 1 M M offset if AA=01

NOTB = NOT byte variable 

Memory

Memory to register

O O O O O A A O 1 1 0 1 1 1 M M offset if AA=01

R R R 0 0 A A 0 1 0 1 0 1 1 M M offset if AA=01

B B B 0 0 A A 0 1 1 1 1 0 1 M M offset if AA=01

B B B 0 0 A A 0 1 1 1 1 1 0 M M offset if AA=01

PROGRAM TRANSFER INSTRUCTIONS

•CALL = Call

LCALL = Long call

•JMP = Jump unconditional

LJMP = Long jump unconditional

1 0 0 0 1 A A 1 1 0 0 1 1 1 M M offset if AA=01 disp-8

1 0 0 1 0 A A 1 1 0 0 1 1 1 M M offset if AA=01 disp-lo disp-hi

1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 disp-8

1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 disp-lo disp-hi

•The ASM-89 Assembler will automatically generate the long form of a program transfer instruction when the 

target is known to be beyond the byte-displacement range.
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Table 4-24. 8089 Instruction Encoding (Cont’d.)

PROGRAM TRANSFER INSTRUCTIONS (Cont’d.)

* JZ = Jump if word is 0 

Label to register 

Label to memory

R R R 0 1 0 0 0 0 1 0 0 0 1 0 0 disp-8

0 0 0 0 1 A A 1 1 1 1 0 0 1 M M offset if AA=01 disp-8

LJZ = Long jump if word is 0 

Label to register 

Label to memory

R R R 1 0 0 0 0 0 1 0 0 0 1 0 0 disp-lo disp-hi

0 0 0 1 0 A A 1 1 1 1 0 0 1 M M offset if AA=01 disp-lo disp-hi

*JZB = Jump if byte is 0 0 0 0 0 1 A A 0 1 1 1 0 0 1 M M offset if AA=01 disp-8

LJZB = Long jump if byte is 0 0 0 0 1 0 A A 0 1 1 1 0 0 1 M M O ffse t if AA=01 disp-lo disp-hi

* JNZ = Jump if word not 0 

Label to register 

Label to memory

R R R 0 1 0 0 0 0 1 0 0 0 0 0 0 disp-8

0 0 0 0 1 A A 1 1 1 1 0 0 0 M M offset if AA=01 disp-8

LJNZ = Long jump if word not 0 

Label to register 

Label to memory

R R R 1 0 0 0 0 0 1 0 0 0 0 0 0 disp-lo disp-hi

0 0 0 1 0 A A 1 1 1 1 0 0 0 M M offset if AA=01 disp-lo disp-hi

* JNZB = Jump if byte not 0 0 0 0 0 1 A A 0 1 1 1 0 0 0 M M offset if AA=01 disp-8

LJNZB = Long jump if byte not 0 0 0 0 1 0 A A 0 1 1 1 0 0 0 M M offset if AA=01 disp-lo disp-hi

JMCE = Jump if masked compare equal 0 0 0 0 1 A A 0  1 0 1 1 0 0 M M  offset if AA=01 disp-

0 0 0 1 0 A A 0 1 0 1 1 0 0 M- M offset if AA=01 disp-lo disp-hi

•JMCNE = Jump if masked compare not equal 0 0 0 0 1 A A 0 1 0 1 1 0 1 M M  offset if AA=01 disp-8 *

LJMCNE = Long jump if masked compare not equal 0 0 0 1 0 A A 0 1 0 1 1 0 1 M M offset if AA=01 disp-lo disp-hi

*JBT = Jump if bit is 1 B B B 0 1 A A 0 1 0 1 1 1 1 M M offset if AA=01 disp-8

•The ASM-89 Assembler will automatically generate the long form of a program transfer instruction when the 

target is known to be beyond the byte-displacement range.
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PROGRAM TRANSFER INSTRUCTIONS (Cont’d.)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

LJBT = Long jump if bit is 1 B B B 1 0 A A 0 1 0  1 1 1 1 M M offset if AA=01 disp-lo disp-hi

* JNBT = Jump if bit is not 1 B B B 0 1 A A 0 1 0 1 1 1 0 M M offset if AA=01 disp-8

LJNBT = Long jump if bit is not 1 B B B 1 0 A A 0 1 0 1 1 1 0 M M offset if AA=01 disp-lo disp-hi

PROCESSOR CONTROL INSTRUCTIONS

TSL = Test and set while locked 0 0 0 1 1 A A 0 1 0 0 1 0 1 M M offset if AA=01 data-8 disp-8

WID = Set logical bus widths 1 S D* 0 0 0 0 0 0 0 0 0 0 0 0 0

'S=source width. D=destination width; 0=8 bits, 1=16 bits

XFER = Enter DMA mode

SINTR = Set interrupt service bit

HLT = Halt channel program

NOP = No operation

0  1 1 0  0  0  0  0 0 0 0 0 0 0 0 0

0  1 0  0  0  0  0  0 0 0 0 0 0 0 0 0

0  0  1 0  0  0  0  0 0  1 0  0  1 0  0  0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

•The ASM-89 Assembler will automatically generate the long form of a program transfer instruction when the 

target is known to be beyond the byte-displacement range.

Table 4-26 lists all of the 8089 machine instruc
tions in hexadecimal/binary order by their second 
byte. This table may be used to “ decode” an

assembled machine instruction into its ASM-89 
symbolic form. The preceding table (table 4-25) 
defines the notation used in table 4-26.
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Table 4-25. Key to 8089 Machine Instruction Decoding Guide

Identifier Explanation

S L o g ic a l w id th  o f s o u rc e  b u s ; 0 = 8 ,1 = 1 6
D L o g ic a l w id th  o f d e s t in a t io n  b u s ; 0 = 8 ,1 = 1 6

PPP P o in te r  re g is te r  e n c o d e d  in R /B /P  f ie ld
RRR R e g is te r  e n c o d e d  in R /B /P  f ie ld
A A A A  (a d d re s s in g  m o d e ) f ie ld

B B B B it s e le c t  e n c o d e d  in R /B /P  f ie ld
o f fs e t- lo L o w -o rd e r  b y te  o f  o f fs e t  w o rd  in d o u b le w o rd  p o in te r
o f fs e t-h i H ig h -o rd e r  b y te  o f o f fs e t  w o rd  in d o u b le w o rd  p o in te r

s e g m e n t- lo L o w -o rd e r  b y te  o f  s e g m e n t w o rd  in  d o u b le w o rd  p o in te r
s e g m e n t-h i H ig h -o rd e r  b y te  o f s e g m e n t w o rd  in  d o u b le w o rd  p o in te r

da ta-8 8 -b it im m e d ia te  c o n s ta n t
d a ta - lo L o w -o rd e r  b y te  o f  16 -b it im m e d ia te  c o n s ta n t
d a ta -h i H ig h -o rd e r  b y te  o f 1 6 -b it im m e d ia te  c o n s ta n t
d is p -8 8 -b it s ig n e d  d is p la c e m e n t
d is p - lo L o w -o rd e r  b y te  o f 1 6 -b it s ig n e d  d is p la c e m e n t
d is p -h i H ig h -o rd e r  b y te  o f  1 6 -b it s ig n e d  d is p la c e m e n t
(o ffs e t) O p tio n a l 8 -b it o f fs e t  u se d  in o f fs e t  a d d re s s in g

Table 4-26. 8089 Machine Instruction Decoding Guide

Byte 1 Byte 2
Bytes 3, 4, 5, 6 ASM89 Instruction FormatHex Binary

00000000 00 00000000 NOP
01000000 00 00000000 S IN TR
1SD00000 00 00000000 W ID s o u rc e -w id th ,d e s t-w id th
01100000 00 00000000 XFER

01 00000001 )
i 1 > n o t u se d
07 00000111 I

PPP10001 08 00001000 o f fs e t- lo ,o f fs e t-h i,  s e g m e n t- lo , s e g m e n t-h i LPD I p tr - re g ,im m e d 3 2
09 00001001 )
1 > n o t u se d

1 F 00011111 )
RRR01000 20 00100000 da ta -8 A D D B I re g is te r , im m e d 8
RRR10001 20 00100000 d a ta - lo ,d a ta -h i A D D I re g is te r ,  im m e d 1 6
10001000 20 00100000 d is p -8 JM P  s h o rt- la b e l
10010001 20 00100000 d is p - lo ,d is p -h i L JM P  lo n g - la b e l

21 00100001 ]
+ > n o t u se d
23 00100011 )

RRR01000 24 00100100 da ta-8 O R B I re g is te r ,  im m e d 8
RRR10001 24 00100100 d a ta - lo ,d a ta -h i ORI re g is te r ,  im m e d 1 6

25 00100101 1
1 } n o t u se d

27 00100111 1
RRR01000 28 00101000 da ta -8 A N D B I re g is te r ,  im m e d 8
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Table 4-26. 8089 Machine Instruction Decoding Guide (Cont’d.

Byte 1 Byte 2 Bytes 3, 4, 5, 6 ASM89 Instruction Format
Hex Binary

RRR10001 28 00101000 d a ta - lo ,d a ta -h i A N D I re g is te r ,  im m e d 1 6
29 00101001

1 1 n o t u se d
2B 00101011

RRR00000 2C 00101100 N O T re g is te r
2D 00101101

♦ n o t u se d
2F 00101111

RRR01000 30 00110000 da ta -8 M O V B I re g is te r ,  im m e d 8
RRR10001 30 00110000 d a ta - lo ,d a ta -h i M O VI re g is te r , im m e d 1 6

31 00110001

t 1 n o t u se d
37 00110111

RRR00000 38 00111000 IN C  re g is te r
39 00111001

t 1 n o t u se d
3B 00111011

RRR00000 3C 00111100 DEC re g is te r
3D 00111101

1 1 n o t u se d
3F 00111111

RRR01000 40 01000000 d is p -8 JN Z  re g is te r ,s h o r t - la b e l
RRR10000 40 01000000 d is p - lo ,d is p -h i L JN Z  re g is te r , lo n g - la b e l

41 01000001

1 t n o t u se d
43 01000011

RRR01000 44 01000100 d is p -8 JZ  re g is te r ,s h o r t - la b e l
RRR10000 44 01000100 d is p - lo ,d is p -h i LJZ  re g is te r ,s h o r t - la b e l

45 01000101

* n o t u se d
47 01000111

00100000 48 01001000 H LT
49 01001001

n o t u se d
4B 01001011

00001A A 0 4C 010011MM )
t t i } (o ffs e t) ,d a ta -8 M O V B I m e m 8 ,im m e d 8

00001A A 0 4F 010011 MM J
00010AA1 4C 010011 MM )

t 1 i 1 (o ffs e t) ,d a ta - lo ,d a ta -h i M O VI m e m 1 6 ,im m e d 1 6
00010AA1 4F 010011 MM )

50 01010000

1 1 n o t u se d
7F 01111111

R R R 00AA 0 80 100000MM \
t t 1 (o ffs e t) M O V B  re g is te r ,  m em 8

R R R 00AA 0 83 100000MM )
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Table 4-26. 8089 Machine Instruction Decoding Guide (Cont’d.

Byte 1 Byte 2 Bytes 3, 4, 5, 6 ASM89 Instruction FormatHex Binary

RRR00AA1 80 100000MM ) I
1 t 1 f  (o ffs e t) / M O V re g is te r ,m e m 1 6

RRR00AA1 83 100000MM ) )
RRROOAAO 84 100001 MM \ )

t 1 > (o ffs e t) | M O V B  m e m 8 ,re g is te r
RRROOAAO 87 100001 MM J J
RRR00AA1 84 100001 MM 1

1 t 1 (o ffs e t) M O V m e m 1 6 ,re g is te r
RRR00AA1 87 100001 MM
PPP00AA1 88 100010MM

1 + 1 (o ffs e t) LPD  p tr- re g ,m e m 3 2
PPP00AA1 8B 100010MM
PPP00AA1 8C 100011MM

♦ (o ffs e t) M O V P  p tr - re g ,m e m 2 4
PPP00AA1 8F 100011 MM
00000AA0 90 100100MM

1 + t (o ffse t),00 0 0 0 A A 0 ,1 10011M M .(o ffs e t) M O V B  m e m 8 ,m e m 8
OOOOOAAO 93 100100MM
00000AA1 90 100100MM

t t t (o ff  s e t)  .00000A A 1 ,110011M M , (o ffs e t) M O V  m em 1 6 ,m e m 1 6
OOOOOAA1 93 100100MM
00011AAO 94 100101 MM

♦ t t (o ffs e t) ,d a ta -8 ,d is p -8 T S L  m em 8,im m ed8 , sh o rt- la b e l
00011 AAO 97 100101MM
PPP00AA1 98 100110MM

1 1 + (o ffs e t) M O V P  m e m 2 4 ,p tr - re g
PPP00AA1 9B 100110MM
10001A  A1 9C 100111MM

1 ♦ t ■ (o ffs e t) ,d is p -8 C A L L  m em 24 , s h o rt- la b e l
10001A  A1 9F 100111 MM
10010AA1 9C 100111MM )

t t t ( o f fs e t) .d is p - lo .d is p -h i > L C A L L  m e m 2 4 ,lo n g - la b e l
10010AA1 9F 100111MM )

RRROOAAO AO 101000MM \
1 ♦ t > (o ffs e t) A D D B  re g is te r ,  m em 8

RRROOAAO A3 101000MM J
RRR00AA1 AO 101000MM )

t t t } (o ffs e t) A D D  re g is te r ,m e m 1 6
RRR00AA1 A3 101000MM )
RRROOAAO A4 101001 MM

t * 1 (o ffs e t) ■ O R B  re g is te r ,  m em 8
RRROOAAO A7 101001 MM
RRROOAA1 A4 101001 MM

1 + [ (o ffs e t) OR re g is te r ,m e m 1 6
RRR00AA1 A7 101001 MM
RRROOAAO A8 101010MM

1 t I (o f fs e t) A N D B  m em 8 , r e g is te r
RRROOAAO A B 101010MM
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RRR00AA1 A8 101010MM ) I
+ 1 i } (o ffs e t) A N D  m em 16, r e g is te r

RRR00AA1 A B 101010MM )

RRROOAAO A C 101011MM )
1 1 i > (o ffs e t) N O T B  re g is te r ,m e m 8

RRROOAAO AF 101011 MM j
RRROOAA1 AC 101011 MM )

I 1 i } (o ffs e t) N O T re g is te r ,  m em 16
RRROOAA1 AF 101011 MM J
00001AAO BO 101100MM )

i 1 1 > (o ffs e t) ,d is p -8 JM C E  m e m 8 ,s h o rt- la b e l
00001 AAO B3 101100MM J
0001OAAO BO 101100MM ) I

t 1 1 } (o f fs e t) ,d is p - lo ,d is p -h i } L JM C E  m e m 8 ,lo n g - la b e l
0001 OAAO B3 101100MM ) )

00001 AAO B4 101101 MM \
i 1 I J (o ffs e t) ,d is p -8 JM C N E  m em 8 , s h o r t- la b e l

00001 AAO B7 101101 MM J
0001 OAAO B4 101101 MM

\ * t ( o f fs e t ) ,d is p - lo ,d is p -h i L JM C N E  m em 8, lo n g - la b e l
0001 OAAO B7 101101 MM J

B B B 01A A 0 B8 101110MM )
1 1 i } (o ffs e t) ,d is p -8 J N B T  mem8, bit-select, short-label

B B B 01A A 0 BB 101110MM J
B B B 10A A 0 B8 101110MM )

1 1 i } (o f fs e t ) ,d is p - lo ,d is p -h i L J N B T  mem8, bit-select, long-label
B B B 10A A 0 B B 101110MM J
B B B 01A A 0 BC 101111 MM )

1 1 1 > (o ffs e t) ,d is p -8 JB T  mem8,bit-select,short-label
B B B 01A A 0 BF 101111M M i
B B B 10A A 0 BC 101111 MM

1 i > (o f fs e t) ,d is p - lo ,d is p -h i ■ L JB T  mem8, bit-select, long-label
B B B 10A A 0 BF 101111MM I
00001 AAO CO 110000MM

i 1 } (o ffs e t) ,d a ta -8 ■ A D D B I m e m 8 ,im m e d 8
00001 AAO C3 110000MM J
00010AA1 CO 110000MM ) )

1 1 1 1 (o ffs e t) ,d a ta - lo ,d a ta -h i } AD D I m e m 1 6 ,im m e d 1 6
00010AA1 C3 110000MM 1 J
00001 AAO C4 110001 MM )

i 1 1 > (o ffs e t) ,d a ta -8 ■ O R B I m e m 8 ,im m e d 8
00001 AAO C7 110001 MM )
00010AA1 C4 110001 MM \

\ 1 t (o ffs e t) ,d a ta - lo ,d a ta -h i ■ ORI m e m 1 6 ,im m e d 1 6
00010AA1 C7 110001MM )
00001 AAO C8 110010MM \

i J (o ffs e t) ,d a ta -8 r A N D B I m e m 8 ,im m e d 8
00001 AAO C B 110010MM 1

M n e m o n ic s  © Intel, 1979
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HARDWARE REFERENCE INFORMATION

Table 4-26. 8089 Machine Instruction Decoding Guide (Cont’d.

Byte 1 Byte 2
Hex Binary

00010AA1 C8 110010MM

1 i
00010AA1 C B

CC

1
CF

110010MM
11001100

1
11001111

R R R 00AA 0 DO 110100MM

1 t 1
R R R 00AA 0 D3 110100MM
RRR00AA1 DO 110100MM

1 1 I
RRR00AA1 D3 110100MM
R R R 00AA 0 D4 110101MM

* * I
R R R 00AA 0 D7 110101MM
RRR00AA1 D4 110101MM

I t
RRR00AA1 D7 110101MM
R R R 00AA 0 D8 110110MM

1 1 t
RRR00AA0 DB 110110MM
RRR00AA1 D8 110110MM

t i
RRR00AA1 DB 110110MM
R R R 00AA 0 DC 110111 MM

i \ 1
R R R 00AA 0 DF 110111MM
RRR00AA1 DC 110111 MM

I 1 1
RRR00AA1 DF 110111 MM
00001AA 0 E0 111000MM

i 1 1
00001AA 0 E3 111000MM
00001AA1 E0 111000MM

1 \ I
00001AA1 E3 111000MM
00010A A0 E0 111000MM

1 1
00010A A0 E3 111000MM
00010AA1 E0 111000MM

1 1 1
00010AA1 E3 111000MM
00001A A 0 E4 111001 MM

t t t
00001A A 0 E7 111001 MM
00001AA1 E4 111001MM

t 1
00001AA1 E7 111001MM

Bytes 3, 4, 5, 6 ASM89 Instruction Format

(o f fs e t) ,d a ta - lo ,d a ta -h i

(o ffs e t)

(o ffs e t)

(o ffs e t)

(o ffs e t)

(o ffse t)

(o ffse t)

(o ffs e t)

(o ffs e t)

(o ffs e t) ,  d isp -8  

(o f fs e t) ,d is p -8  

(o f fs e t) ,d is p - lo ,d is p -h i 

( o f fs e t ) ,d is p - lo ,d is p -h i 

(o f fs e t) ,d is p -8  

(o f fs e t) ,d is p -8

A N D I m e m 1 6 ,im m e d 1 6

n o t u se d

A D D B  m em 8 , r e g is te r

A D D  m em 16 , r e g is te r

O R B  m em 8, r e g is te r

OR m e m 1 6 ,re g is te r

AN D B m em 8, re g is te r

AND m em16, re g is te r

N O T B  m e m 8 ,re g is te r

N O T m em 16, r e g is te r

JN Z B  m e m 8 ,s h o rt- la b e l

JN Z  m em 16 , s h o rt- la b e l

L J N Z B  m e m 8 ,lo n g - la b e l

L JN Z  m e m 1 6 ,lo n g la b e l

JZ B  m e m 8 ,s h o rt- la b e l

JZ  m e m 1 6 ,s h o rt- la b e l

4-63 M nem onics ©  Intel, 1979



HARDWARE REFERENCE INFORMATION

Table 4-26. 8089 Machine Instruction Decoding Guide (Cont’d.

Byte 1 Byte 2
Hex Binary

0001OAAO E4 111001 MM

t t
0001 OAAO E7 111001 MM
00010AA1 E4 111001 MM

t t +
00010A A1 E7 111001 MM
00000AA0 E8 111010MM

t t
00000AA0 EB 111010MM
00000AA1 E8 111010MM

t
00000AA1 EB 111010MM
00000AA0 EC 111011 MM

t +
00000AA0 EF 111011MM
00000AA1 EC 111011MM

+ t
00000AA1 EF 111011MM

FO 11110000

t t
F3 11110000

B B B 00A A 0 F4 111101MM

t t
B B B 00A A 0 F7 111101M M
B B B 00A A 0 F8 111110MM

t ♦ 1
B B B 00A A 0 FB 111110M M

FC 11111100

♦ i
FF 11111111

Bytes 3, 4, 5, 6 ASM89 Instruction Format

( o f fs e t) ,d is p - lo ,d is p -h i

( o f fs e t) ,d is p - lo ,d is p -h i

(o ffs e t)

(o ffs e t)

(o ffs e t)

(o ffs e t)

(o ffs e t)

(o ffs e t)

L J Z B  m e m 8 , lo n g - la b e l

L JZ  m e m 1 6 ,lo n g - la b e l

IN C B  m em 8

IN C  m em 16

D EC B m em 8

DEC m em 16

n o t u se d

S E TB  m em 8.0 -7

C LR  m em 8,0 -7

n o t u se d
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This appendix contains Intel application notes pertinent to the 8086 family microprocessors. The following 
application notes, in the order listed, have been included within this appendix:

AP-67
AP-61
AP-50
AP-51
AP-59
AP-28A
AP-43

8086 System Design 
Multitasking for the 8086
Debugging Strategies and Considerations for 8089 Systems
Designing 8086, 8088, 8089 Multiprocessing Systems with the 8289 Bus Arbiter
Using the 8259A Programmable Interrupt Controller
Intel'® Multibus™ Interfacing
Using the iSBC-957™ Execution Vehicle for Executing 8086 Program Code
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2. 8086 OVERVIEW AND BASIC SYSTEM 
CONCEPTS
A. Bus Cycle Definition
B. Address and Data Bus Concepts
C. System Data Bus Concepts
D. Multiprocessor Environment

3. 8086 SYSTEM DETAILS
A. Operating Modes
B. Clock Generation
C. Reset
D. Ready Implementation and Timing
E. Interrupt Structure
F. Interpreting the 8086 Bus Timing Diagrams
G. Bus Control Transfer

4. INTERFACING WITH I/O

5. INTERFACING WITH MEMORIES

6. APPENDIX
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AP-67

1. INTRODUCTION
The 8086 family, Intel’s new series of microprocessors 
and system components, offers the designer an ad
vanced system architecture which can be structured to 
satisfy a broad range of applications. The variety of 
speed, configuration and component selections avail
able within the family enables optimization of a specific 
design to both cost and performance objectives. More 
important however, the 8086 family concept allows the 
designer to develop a family of systems providing multi
ple levels of enhancement within a single design and a 
growth path for future designs.
This application note is directed toward the implemen
tation of the system hardware and will provide an in
troduction to a representative sample of the systems 
configurable with the 8086 CPU member of the family. 
Application techniques and timing analysis will be given 
to aid the designer in understanding the system require
ments, advantages and limitations. Additional Intel 
publications the reader may wish to reference are the 
8086 User’s Manual (9800722A), 8086 Assembly Lan

guage Reference Guide (9800749A), AP-28A MULTI
BUS™ Interfacing (98005876B), INTEL MULTIBUS™ 
SPECIFICATION (9800683), AP-45 Using the 8202 Dy
namic RAM Controller (9800809A), AP-51 Designing 
8086, 8088, 8089 Multiprocessor Systems with the 8289 
Bus Arbiter and AP-59 Using the 8259A Programmable 
Interrupt Controller. References to other Intel publica
tions will be made throughout this note.

2. 8086 OVERVIEW AND BASIC SYSTEM CONCEPTS 

2A. 8086 Bus Cycle Definition
The 8086 is a true 16-bit microprocessor with 16-bit in
ternal and external data paths, one megabyte of memory 
address space (2**20) and a separate 64K byte (2**16) 
I/O address space. The CPU communicates with its ex
ternal environment via a twenty-bit time multiplexed ad
dress, status and data bus and a command bus. To 
transfer data or fetch instructions, the CPU executes a 
bus cycle (Fig. 2A1). The minimum bus cycle consists of 
four CPU clock cycles called T states. During the first T 
state (T1), the CPU asserts an address on the twenty-bit

CLK a — \
rC 7 ' — ^

l 7
f- — >>C 7 ' — ^ f  7| r- -------- *

X ADDR
>

STATUS X
READY X

AD15-AD0 X  ADCRESS At -A0 \  FLOAT X A IN D15k  x FLOAT

RD

READ
CYCLE

\ /

DT/R \ /

\DEN /

AD15-AD0

X

ADDRESS X )ATA OU

"WR

WRITE
CYCLE

\ /

DEN

DT/R

\ /

_ y

F ig u r e  2 A 1 . B a s ic  8 0 8 6  B u s  C y c le
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multiplexed address/data/status bus. For the second T 
state (T2), the CPU removes the address from the bus 
and either three-states its outputs on the lower sixteen 
bus lines in preparation for a read cycle or asserts write 
data. Data bus transceivers are enabled in either T1 or 
T2 depending on the 8086 system configuration and the 
direction of the transfer (into or out of the CPU). Read, 
write or interrupt acknowledge commands are always 
enabled in T2. The maximum mode 8086 configuration 
(to be discussed later) also provides a write command 
enabled in T3 to guarantee data setup time prior to com
mand activation.

During T2, the upper four multiplexed bus lines switch 
from address (A19-A16) to bus cycle status 
(S6,S5,S4,S3). The status information (Table 2A1) is 
available primarily for diagnostic monitoring. However, 
a decode of S3 and S4 could be used to select one of 
four banks of memory, one assigned to each segment 
register. This technique allows partitioning the memory 
by segment to expand the memory addressing beyond 
one megabyte. It also provides a degree of protection by 
preventing erroneous write operations to one segment 
from overlapping into another segment and destroying 
information in that segment.
The CPU continues to provide status information on the 
upper four bus lines during T3 and will either continue 
to assert write data or sample read data on the lower six
teen bus lines. If the selected memory or I/O device is 
not capable of transferring data at the maximum CPU 
transfer rate, the device must signal the CPU “ not 
ready” and force the CPU to insert additional clock 
cycles (Wait states TW) after T3. The ‘not ready' indica
tion must be presented to the CPU by the start of T3. 
Bus activity during TW is the same as T3. When the 
selected device has had sufficient time to complete the 
transfer, it asserts “ Ready" and allows the CPU to con
tinue from the TW states. The CPU will latch the data on 
the bus during the last wait state or during T3 if no wait 
states are requested. The bus cycle is terminated in T4 
(command lines are disabled and the selected external 
device deselects from the bus). The bus cycle appears 
to devices in the system as an asynchronous event con
sisting of an address to select the device followed by a 
read strobe or data and a write strobe. The selected 
device accepts bus data during a write cycle and drives 
the desired data onto the bus during a read cycle. On ter
mination of the command, the device latches write data 
or disables its bus drivers. The only control the device 
has on the bus cycle is the insertion of wait cycles.
The 8086 CPU only executes a bus cycle when instruc
tions or operands must be transferred to or from 
memory or I/O devices. When not executing a bus cycle, 
the bus interface executes idle cycles (Tl). During the 
idle cycles, the CPU continues to drive status informa
tion from the previous bus cycle on the upper address 
lines. If the previous bus cycle was a write, the CPU con
tinues to drive the write data onto the multiplexed bus 
until the start of the next bus cycle. If the CPU executes 
idle cycles following a read cycle, the CPU will not drive 
the lower 16 bus lines until the next bus cycle is 
required.

Since the CPU prefetches up to six bytes of the instruc
tion stream for storage and execution from an internal 
instruction queue, the relationship of instruction fetch 
and associated operand transfers may be skewed in 
time and separated by additional instruction fetch bus 
cycles. In general, if an instruction is fetched into the 
8086’s internal instruction queue, several additional in
structions may be fetched before the instruction is 
removed from the queue and executed. If the instruction 
being executed from the queue is a jump or other con
trol transfer instruction, any instructions remaining in 
the queue are not executed and are discarded with no ef
fect on the CPU’s operation. The bus activity observed 
during execution of a specific instruction is dependent 
on the preceding instructions but is always deter
ministic within the specific sequence.

T ab le  2A1

S3 S4
0 0 Alternate (relative to the ES segment)
1 0 Stack (relative to the SS segment)
0 1 Code/None (relative to the CS seg

ment or a default of zero)
1 1 Data (relative to the DS segment)

S5= IF (interrupt enable flag)
S6 = 0 (indicates the 8086 is on the bus)

2B. 8086 Address and Data Bus Concepts
Since the majority of system memories and peripherals 
require a stable address for the duration of the bus 
cycle, the address on the multiplexed address/data bus 
during T1 should be latched and the latched address 
used to select the desired peripheral or memory loca
tion. Since the 8086 has a 16-bit data bus, the multi
plexed bus components of the 8085 family are not ap
plicable to the 8086 (a device on address/data bus lines 
8-15 will not be able to receive the byte selection ad
dress on lines 0-7). To demultiplex the bus (Fig. 2B1a), 
the 8086 system provides an Address Latch Enable 
signal (ALE) to capture the address in either the 8282 or 
8283 8-bit bi-stable latches (Diag. 2B1). The latches are 
either inverting (8283) or non-inverting (8282) and have 
outputs driven by three-state buffers that supply 32 mA 
drive capability and can switch a 300 pF capacitive load 
in 22 ns (inverting) or 30 ns (non-inverting). They prop
agate the address through to the outputs while ALE is 
high and latch the address on the falling edge of ALE. 
This only delays address access and chip select 
decoding by the propagation delay of the latch. The out
puts are enabled through the low active OE input. The 
demultiplexing of the multiplexed address/data bus 
(latchings of the address from the multiplexed bus), can 
be done locally at appropriate points in the system or at 
the CPU with a separate address bus distributing the ad
dress throughout the system (Fig. 2B1b). For optimum 
system performance and compatibility with multiproc
essor and MULTIBUS™ configurations, the latter tech
nique is strongly recommended over the first. The re
mainder of this note will assume the bus is demul
tiplexed at the CPU.
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ADDRESS
BUS

F ig u r e  2 B 1 a .  D e m u l t ip le x in g  t h e  8 0 8 6  B u s

ADDRESS BUS

DATA BUS

SEPARATE ADDRESS AND DATA BUSSES

ALE

ADDRESS/DATA
BUS

MULTIPLEXED BUS WITH LOCAL ADDRESS DEMULTIPLEXING

F ig u r e  2 B 1 b .

The programmer views the 8086 memory address space 
as a sequence of one million bytes in which any byte 
may contain an eight bit data element and any two con
secutive bytes may contain a 16-bit data element. There 
is no constraint on byte or word addresses (boundaries). 
The address space is physically implemented on a six
teen bit data bus by dividing the address space into two 
banks of up to 512K bytes (Fig. 2B2). One bank is con
nected to the lower half of the sixteen-bit data bus (D7-0) 
and contains even addressed bytes (AO = 0). The other 
bank is connected to the upper half of the data bus 
(D15-8) and contains odd addressed bytes (A0=1). A 
specific byte within each bank is selected by address 
lines A19-A1. To perform byte transfers to even ad
dresses (Fig. 2B3a), the information is transferred over 
the lower half of the data bus (D7-0). AO (active low) is 
used to enable the bank connected to the lower half of 
the data bus to participate in the transfer. Another 
signal provided by the 8086, Bus High Enable (BHE), is 
used to disable the bank on the upper half of the data 
bus from participating in the transfer. This is necessary 
to prevent a write operation to the lower bank from 
destroying data in the upper bank. Since BHE is a 
multiplexed signal with timing identical to the A19-A16 
address lines, it also should be latched with ALE to pro
vide a stable signal during the bus cycle. During T2 
through T4, the BHE output is multiplexed with status 
line S7 which is equal to BHE. To perform byte transfers 
to odd addresses (Fig. 2B3b), the information is trans
ferred over the upper half of the data bus (D15-D8) while 
BHE (active low) enables the upper bank and AO 
disables the lower bank. Directing the data transfer to 
the appropriate half of the data bus and activation of 
BHE and AO is performed by the 8086, transparent to the 
programmer. As an example, consider loading a byte of 
data into the CL register (lower half of the CX register) 
from an odd addressed memory location (referenced 
over the upper half of the 16-bit data bus). The data is 
transferred into the 8086 over the upper 8 bits of the 
data bus, automatically redirected to the lower half of 
the 8086 internal 16-bit data path and stored into the CL 
register. This capability also allows byte I/O transfers 
with the AL register to be directed to I/O devices con
nected to either the upper or lower half of the 16-bit data 
bus.
To access even addressed sixteen bit words (two con
secutive bytes with the least significant byte at an even
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dressed 16-bit word (Fig. 2B3d), the least significant 
byte (addressed by A19-A1) is first transferred over the 
upper half of the bus (odd addressed byte, upper bank, 
BHE low active and A0= 1). The most significant byte is 
accessed by incrementing the address (A19-A0) which 
allows A19-A1 to address the next physical word loca
tion (remember, AO was equal to one which indicated a 
word referenced from an odd byte boundary). A second 
bus cycle is then executed to perform the transfer of the 
most significant byte with the lower bank (AO is now ac
tive low and BHE is high). The sequence is automatically 
executed by the 8086 whenever a word transfer is ex
ecuted to an odd address. Directing the upper and lower 
bytes of the 8086’s internal sixteen-bit registers to the 
appropriate halves of the data bus is also performed 
automatically by the 8086 and is transparent to the pro
grammer.

(A) LOGICAL ADORESS SPACE

1 MEGABYTE

D15-D8 BHE (HIGH) D7-D 0 Ao (LOW)

Aig-Ai D15-D8 BHE (LOW) D7-D0 Ao (HIGH)

SECOND BUS CYCLE

Figure 2B3d. Odd Addressed Word Transfer

D 15-D 8 BHE (LOW ) D7-D 0 Aq (H IG H )

Figure 2B3b. Odd Addressed Byte Transfer

During a byte read, the CPU floats the entire sixteen-bit 
data bus even though data is only expected on the upper 
or lower half of the data bus. As will be demonstrated 
later, this action simplifies the chip select decoding re
quirements for read only devices (ROM, EPROM). During 
a byte write operation, the 8086 will drive the entire 
sixteen-bit data bus. The information on the half of the 
data bus not transferring data is indeterminate. These 
concepts also apply to the I/O address space. Specific 
examples of I/O and memory interfacing are considered 
in the corresponding sections.

2C. System Data Bus Concepts
When referring to the system data bus, two implemen
tation alternatives must be considered; (a) the multi
plexed address/data bus (Fig. 2C1a) and a data bus buf
fered from the multiplexed bus by transceivers (Fig. 
2C1b).
If memory or I/O devices are connected directly to the 
multiplexed bus, the designer must guarantee the 
devices do not corrupt the address on the bus during T1.
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MULTIPLEXED DATA BUS

MULTIPLEXED
ADDRESS/DATA

Figure 2C1a. Multiplexed Data Bus

BUFFERED DATA BUS

SYSTEM
BUS

To avoid this, device output drivers should not be enabl
ed by the device chip select, but should have an output 
enable controlled by the system read signal (Fig. 2C2). 
The 8086 timing guarantees that read is not valid until 
after the address is latched by ALE (Diag. 2C1). All Intel 
peripherals, EPROM products and RAM’s for microproc
essors provide output enable or read inputs to allow 
connection to the multiplexed bus.

I ADDRESS BUS

MULTIPLEXED
BUS

Figure 2C1b. Buffered Data Bus

Figure 2C2. Devices with Output Enables on the Multiplexed Bus

Several techniques are available for interfacing devices 
without output enables to the multiplexed bus but each 
introduces other restrictions or limitations. Consider 
Figure 2C3 which has chip select gated with read and 
write. Two problems exist with this technique. First, the 
chip select access time is reduced to the read access 
time, and may require a faster device if maximum 
system performance (no wait states) is to be achieved 
(Diag. 2C2). Second, the designer must verify that chip 
select to write setup and hold times for the device are 
not violated (Diag. 2C3). Alternate techniques can be ex
tracted from the bus interfacing techniques given later 
in this section but are subject to the associated restric
tions. In general, the best solution is obtained with 
devices having output enables.
A subsequent limitation on the multiplexed bus is the 
8086’s drive capability of 2.0 mA and capacitive loading 
of 100 pF to guarantee the specified A.C. character
istics. Assuming capacitive loads of 20 pF per I/O 
device, 12 pF per address latch and 5-12 pF per memory 
device, a system mix of three peripherals and two to 
four memory devices (per bus line) are close to the 
loading limit.

T1

_ / ------------------- V

T2 T3 T4

/
J ___

TO
“ A _______

Diagram 2C1. Relationship ol ALE to READ
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Figure 2C3. Devices without Output Enables on the Multiplexed Bus

2 ACCESS TIME IF CS IS GATED WITH RD/WR.

Diagram 2C2. Access Time: CS Gated with RD/WR

ADDR

1 CS IS NOT VALID PRIOR TO WRITE AND BECOMES ACTIVE ONE OR TWO GATE 
DELAYS LATER.

2 CS REMAINS VALID AFTER WRITE ONE OR TWO GATE DELAYS.

Diagram 2C3. CS to WR Set-Up and Hold

To satisfy the capacitive loading and drive requirements 
of larger systems, the data bus must be buffered. The 
8286 non-inverting and 8287 inverting octal transceivers 
are offered as part of the 8086 family to satisfy this re
quirement. They have three-state output buffers that 
drive 32 mA on the bus interface and 10 mA on the CPU 
interface and can switch capacitive loads of 300 pF at 
the bus interface and 100 pF on the CPU interface in 22 
ns (8287) or 30 ns (8286). To enable and control the direc
tion of the transceivers, the 8086 system provides Data 
ENable (DEN) and Data Transmit/Receive (DT/R) signals 
(Fig. 2C1b). These signals provide the appropriate tim
ing to guarantee isolation of the multiplexed bus from 
the system during T1 and elimination of bus contention 
with the CPU during read and write (Diag. 2C4). Although 
the memory and peripheral devices are isolated from the 
CPU (Fig. 2C4), bus contention may still exist in the 
system if the devices do not have an output enable con
trol other than chip select. As an example, bus conten
tion will exist during transition from one chip select to 
another (the newly selected device begins driving the 
bus before the previous device has disabled its drivers). 
Another, more severe case exists during a write cycle. 
From chip select to write active, a device whose outputs 
are controlled only by chip select, will drive the bus 
simultaneously with write data being driven through the 
transceivers by the CPU (Diag. 2C5). The same tech
nique given for circumventing these problems on the 
multiplexed bus can be applied here with the same limi
tations.
One last extension to the bus implementation is a sec
ond level of buffering to reduce the total load seen by 
devices on the system bus (Fig. 2C5). This is typically 
done for multiboard systems and isolation of memory 
arrays. The concerns with this configuration are the ad
ditional delay for access and more important, control of 
the second transceiver in relationship to the system bus 
and the device being interfaced to the system bus. 
Several techniques for controlling the transceiver are 
given in Figure 2C6. This first technique (Fig. 2C6a) 
simply distributes DEN and DT/R throughout the 
system. DT/R is inverted to provide proper direction con
trol for the second level transceivers. The second exam
ple (Fig. 2C6b) provides control for devices with output 
enables. RD is used to normally direct data from the 
system bus to the peripheral. The buffer is selected 
whenever a device on the local bus is chip selected. Bus 
contention is possible on the device’s local bus during a 
read as the read simultaneously enables the device out
put and changes the transceiver direction. The conten
tion may also occur as the read is terminated.

For devices without output enables, the same technique 
can be applied (Fig. 2C6c) if the chip select to the device 
is conditioned by read or write. Controlling the chip 
select with read/write prevents the device from driving 
against the transceiver prior to the command being 
received. The limitations with this technique are access 
limited to read/write time and limited CS to write setup 
and hold times.
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1 READ 
CYCLE

2 WRITE 
CYCLE

1 DEN IS ENABLED AFTER THE 8086 HAS FLOATED THE MULTIPLEXED BUS

2 DEN ENABLES THE TRANSCEIVERS EARLY IN THE CYCLE, BUT DT/R GUARANTEES 
THE TRANSCEIVERS ARE IN TRANSMIT RATHER THAN RECEIVE MODE AND WILL 
NOT DRIVE AGAINST THE CPU.

Diagram 2C4. Bus Transceiver Control

ADDR

I BUS CONTENTION \ 
BOTH DEVICES DRIVE 

V THE BUS /

Figure 2C4. Devices with Output Enables on the System Bus Diagram 2CS.
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CPU LOCAL SYSTEM MEMORY/IO
BUS BUS LOCAL BUS

Figure 2C5. Fully Buffered System

Figure 2C6a. Controlling System Transceivers with DEN and DT/R

WR
£S
RD

SYSTEM
DATA
BUS

I
t  ere

LOCAL £ 5  WR RD

A MTA N
B A

8286/7 N  BUS ]/ MEMORY/I/O
DEVICE

Figure 2C6b. Buffering Devices with OE/RD

MEMORY/I/O
DEVICE

Figure 2C6c. Buffering Devices without OE/RD and with Common 
or Separate Input/Output

An alternate technique applicable to devices with and 
without output enables is shown in Figure 2C6d. RD 
again controls the direction of the transceiver but it is 
not enabled until a command and chip select are active. 
The possibility for bus contention still exists but is 
reduced to variations in output enable vs. direction 
change time for the transceiver. Full access time from 
chip select is now available, but data will not be valid 
prior to write and will only be held valid after write by the 
delay to disable the transceiver.

MEMORY/I/O
DEVICE

Figure 2C6d. Buffering Devices without OE/RD and with Common 
or Separate Input/Output

One last technique is given for devices with separate in
puts and outputs (Fig. 2C6e). Separate bus receivers and 
drivers are provided rather than a single transceiver. The 
receiver is always enabled while the bus driver is con
trolled by RD and chip select. The only possibility for 
bus contention in this system occurs as multiple 
devices on each line of the local read bus are enabled 
and disabled during chip selection changes.
Throughout this note, the multiplexed bus will be con
sidered the local CPU bus and the demultiplexed ad
dress and buffered data bus will be the system bus. For 
additional information on bus contention and the 
system problems associated with it, refer to Appendix 1.
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Figure 2C6e. Buffering Devices without OE/RD and with Separate 
Input/Output

2D. Multiprocessor Environment
The 8086 architecture supports multiprocessor systems 
based on the concept of a shared system bus (Fig. 2D1). 
All CPU’s in the system communicate with each other 
and share resources via the system bus. The bus may be 
either the Intel Multibus™ system bus or an extension 
of the system bus defined in the previous section. The 
major addition required to the demultiplexed system 
bus is arbitration logic to control access to the system 
bus. As each CPU asynchronously requests access to 
the shared bus, the arbitration logic resolves priorities 
and grants bus access to the highest priority CPU. Hav
ing gained access to the bus, the CPU completes its 
transfer and will either relinquish the bus or wait to be 
forced to relinquish the bus. For a discussion on 
Multibus™ arbitration techniques, refer to AP-28A, Intel 
Multibus™ Interfacing.

SHARED
SYSTEM

eus

Figure 2D1. 8086 Family Multiprocessor System

To support a multimaster interface to the Multibus 
system bus for the 8086 family, the 8289 bus arbiter is 
included as part of the family. The 8289 is compatible 
with the 8086’s local bus and in conjunction with the 
8288 bus controller, implements the Multibus protocol 
for bus arbitration. The 8289 provides a variety of arbitra
tion and prioritization techniques to allow optimization 
of bus availability, throughput and utilization of shared 
resources. Additional features (implemented through

strapping options) extend the configuration options 
beyond a pure CPU interface to the multimaster system 
bus for access to shared resources to include concur
rent support of a local CPU bus for private resources. 
For specific configurations and additional information 
on the 8289, refer to application note AP-51.

3. 80S6 SYSTEM DETAILS 

3A. Operating Modes
Possibly the most unique feature of the 8086 is the abili
ty to select the base machine configuration most suited 
to the application. The MN/MX input to the 8086 is a 
strapping option which allows the designer to select 
between two functional definitions of a subset of the 
8086 outputs.

MINIMUM MODE
The minimum mode 8086 (Fig. 3A1) is optimized for 
small to medium (one or two boards), single CPU 
systems. Its system architecture is directed at satisfy
ing the requirements of the lower to middle segment of 
high performance 16-bit applications. The CPU main
tains the full megabyte memory space, 64K byte I/O 
space and 16-bit data path. The CPU directly provides all 
bus control (DT/R, DEN, ALE, M/IO), commands 
(RD,WR,INTA) and a simple CPU preemption mech
anism (HOLD, HLDA) compatible with existing DMA 
controllers.

MAXIMUM MODE
The maximum mode (Fig. 3A2) extends the system ar
chitecture to support multiprocessor configurations, 
and local instruction set extension processors (co
processors). Through addition of the 8288 bipolar bus 
controller, the 8086 outputs assigned to bus control and 
commands in the minimum mode are redefined to allow 
these extensions and enhance general system perform
ance. Specifically, (1) two prioritized levels of processor 
preemption (RQ/GT0, RQ/GT1) allow multiple proc
essors to reside on the 8086’s local bus and share its in
terface to the system bus, (2) Queue status (QS0.QS1) is 
available to allow external devices like ICE™-86 or 
special instruction set extension co-processors to track 
the CPU instruction execution, (3) access control to 
shared resources in multiprocessor systems is sup
ported by a hardware bus lock mechanism and (4) 
system command and configuration options are ex
panded via ancillary devices like the 8288 bus controller 
and 8289 bus arbiter.

The queue status indicates what information Is being 
removed from the internal queue and when the queue is 
being reset due t£a_transfer of control (Table 3A1). By 
monitoring the S0,S1,S2 status lines for instructions 
entering the 8086 (1,0,0 indicates code access while A0 
and BHE indicate word or byte) and QS0, QS1 for in
structions leaving the 8086’s internal queue, it is possi
ble to track the instruction execution. Since instruc
tions are executed from the 8086’s internal queue, the 
queue status is presented each CPU clock cycle and is 
not related to the bus cycle activity. This mechanism (1) 
allows a co-processor to detect execution of an
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ecution of a specific memory location. An example of a 
circuit used by ICE is given in Figure 3A3. The first up 
down counter tracks the depth of the queue while the 
second captures the queue depth on a match. The sec
ond counter decrements on further fetches from the 
queue until the queue is flushed or the count goes to 
zero Indicating execution of the match address. The 
first counter decrements on fetch from the queue 
(QS0=1) and increments on code fetches into the

to the counter (T201 and T301) unless a smgie oyie is 
loaded over the upper half of the bus (AO-P is high). 
Since the execution unit (EU) is not synchronized to the 
bus interface unit (Bill), a fetch from the queue can oc
cur simultaneously with a transfer into the queue. The 
exclusive-or gate driving the ENP input of the first 
counter allows these simultaneous operations to cancel 
each other and not modify the queue depth.

Figure 3A1. Minimum Mode 8086

Figure 3A2. Maximum Mode 8086
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T A B L E  3 A 1 .  Q U E U E  S T A T U S

QS, QS0

0 (LOW) 0 No Operation
0 1 First Byte of Op Code from Queue
1 (HIGH) 0 Empty the Queue
1 1 Subsequent Byte from Queue

The queue status is valid during the CLK cycle after 
which the queue operation is performed.

To address the problem of controlling access to shared 
resources, the maximum mode 8086 provides a hard
ware LOCK output. The LOCK output is activated 
through the instruction stream by execution of the 
LOCK prefix instruction. The LOCK output goes active 
in the first CPU clock cycle following execution of the 
prefix and remains active until the clock following the 
completion of the instruction following the LOCK prefix. 
To provide bus access control in multiprocessor 
systems, the LOCK signal should be incorporated into 
the system bus arbitration logic resident to the CPU.
During normal multiprocessor system operation, pri
ority of the shared system bus is determined by the ar
bitration circuitry on a cycle by cycle basis. As each 
CPU requires a transfer over the system bus, it requests 
access to the bus via its resident bus arbitration logic. 
When the CPU gains priority (determined by the system 
bus arbitration scheme and any associated logic), it 
takes control of the bus, performs its bus cycle and 
either maintains bus control, voluntarily releases the 
bus or is forced off the bus by the loss of priority. The 
lock mechanism prevents the CPU from losing bus con
trol (either voluntarily or by force) and guarantees a CPU 
the ability to execute multiple bus cycles (during execu

tion of the locked instruction) without intervention and 
possible corruption of the data by another CPU. A 
classic use of the mechanism is the TEST and SET 
semaphore’ during which a CPU must read from a 
shared memory location and return data to the location 
without allowing another CPU to reference the same 
location between the TEST operation (read) and the SET 
operation (write). In the 8086 this is accomplished with a 
locked exchange instruction.

LOCK XCHG reg, MEMORY ; reg is any register
;MEMORY is the address of the 
;semaphore

The activity of the LOCK output is shown in Diagram 
3A1. Another interesting use of the LOCK for multiproc
essor systems is a locked block move which allows high 
speed message transfer from one CPU’s message buf
fer to another.
During the lockedjnstruction, a request for processor 
preemption (RQ/GT) is recorded but not acknowledged 
until completion of the locked instruction. The LOCK 
has no direct affect on interrupts. As an example, a 
locked HALT instruction will cause HOLD (or RQ/GT) re
quests to be Ignored but will allow the CPU to exit the 
HALT state on an interrupt. In general, prefix bytes are 
considered extensions of the instructions they precede. 
Therefore, interrupts that occur during execution of a 
prefix are not acknowledged (assuming interrupts are 
enabled) until completion of the instruction following 
the prefixes (except for instructions which allow servic
ing interrupts during their execution, l.e., HALT, WAIT 
and repeated string primitives). Note that multiple prefix 
bytes may precede an instruction. As another example, 
consider a 'string primitive’ preceded by the repetition

74S04

Figure 3A3. Example Circuit to Track the 8086 Queue
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prefix (REP) which is interruptible after each execution 
of the string primitive. This holds even if the REP prefix 
is combined with the LOCK prefix and prevents inter
rupts from being locked out during a block move or 
other repeated string operation. As long as the opera
tion is not interrupted, LOCK remains active. Further in
formation on the operation of an interrupted string 
operation with multiple prefixes is presented in the sec
tion dealing with the 8086 interrupt structure.
Three additional status lines (SO, S1, S2) are defined to 
provide communications with the 8288 and 8289. The 
status lines tell the 8288 when to initiate a bus cycle, 
what type of command to issue and when to terminate 
the bus cycle. The 8288 samples the status lines at the 
beginning of each CPU clock (CLK). To initiate a bus cy
cle, the_CPU drives the status lines from the passive 
state (SO, S1, S2= 1) to one of seven possible command 
codes (Table 3A2). This occurs on the rising edge of the 
clock during T4 of the previous bus cycle or a Tl (idle cy
cle, no current bus activity). The 8288 detects the status 
change by sampling the status lines on the high to low 
transition of each clock cycle. The 8288 starts a bus cy
cle by generating ALE and appropriate buffer direction 
control in the clock cycle immediately following detec
tion of the status change (T1). The bus transceivers and 
the selected command are enabled in the next clock 
cycle (T2) (or T3 for normal write commands). When the 
status returns to the passive state, the 8288 will ter
minate the command as shown in Diagram 3A2. Since 
the CPU will not return the status to the passive state 
until the ‘ready’ indication is received, the 8288 will 
maintain active command and bus control for any 
number of wait cycles. The status lines may also be 
used by other processors on the 8086’s local bus to 
monitor bus activity and control the 8288 if they gain 
control of the local bus.

TABLE 3A2. STATUS LINE PECODES

s2 s. So
0 (LOW) 0 0 Interrupt Acknowledge
0 0 1 Read I/O Port
0 1 0 Write I/O Port
0 1 1 Halt
1 (HIGH) 0 0 Code Access
1 0 1 Read Memory
1 1 0 Write Memory
1 1 1 Passive

The 8288 provides the bus control (DEN, DT/R, ALE) and 
commands (INTA, MRDC, IORC, MWTC, AMWC, IOWC, 
AIOWC) removed from the CPU. The command structure 
has separate read and write commands for memory and 
I/O to provide compatibility with the Multibus command 
structure.
The advanced write commands are enabled one clock 
period earlier than the normal write to accommodate the 
wider write pulse widths often required by peripherals 
and static RAMs. The normal write provides data setup 
prior to write to accommodate dynamic RAM memories 
and I/O devices which strobe data on the leading edge of 
write. The advanced write commands do not guarantee 
that data is valid prior to the leading edge of the com
mand. The DEN signal in the maximum mode is inverted 
from the minimum mode to extend transceiver control 
by allowing logical conjunction of DEN with other 
signals. While not appearing to be a significant benefit 
in the basic maximum mode configuration, introduction 
of interrupt control and various system configurations 
will demonstrate the usefulness of qualifying DEN. 
Diagram 3A3 compares the timing of the minimum and 
maximum mode bus transfer commands. Although the

LOCK NOP BYTE NEXT LOCK LOCKED INSTRUCTION
PREFIX FROM THE PREFIX FROM

BYTE FROM QUEUE THE QUEUE
QUEUE (LOCKED NOP)

1 QUEUE STATUS INDICATES FIRST BYTE OF OPCODE FROM THE QUEUE.

2 THE LOCK OUTPUT WILL GO INACTIVE BETWEEN SEPARATE LOCKED INSTRUCTIONS.

3 TWO CLOCKS ARE REQUIRED FOR DECODE OF THE LOCK PREFIX AND 
ACTIVATION OF THE C55R SIGNAL.

4 SINCE QUEUE STATUS REFLECTS THE QUEUE OPERATION IN THE PREVIOUS CLOCK 
CYCLE, THE l 5C K  OUTPUT ACTUALLY GOES ACTIVE COINCIDENT WITH THE START 
OF THE NEXT INSTRUCTION AND REMAINS ACTIVE FOR ONE CLOCK CYCLE 
FOLLOWING THE INSTRUCTION.

5 IF THE INSTRUCTION FOLLOWING THE LOCK PREFIX IS NOT IN THE QUEUE. THE 
LOCK OUTPUT STILL GOES ACTIVE AS SHOWN WHILE THE INSTRUCTION IS BEING 
FETCHED.

6 THE BIU WILL STILL PERFORM INSTRUCTION FETCH CYCLES DURING EXECUTION 
OF A LOCKED INSTRUCTION. THE C5CR MERELY LOCKS THE BUS TO THIS CPU FOR 
WHATEVER BUS CYCLES THE CPU PERFORMS DURING THE LOCKED INSTRUCTION.

Diagram 3A1. 8086 Lock Activity
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maximum mode configuration is designed for multi
processor environments, large single CPU designs 
(either Multibus systems or greater than two PC boards) 
should also use the maximum mode. Since the 8288 is a 
bipolar dedicated controller device, its output drive for 
the commands (32 mA) and tolerances on AC character
istics (timing parameters and worse case delays) pro
vide better large system performance than the minimum 
mode 8086.

In addition to assuming the functions removed from the 
CPU, the 8288 provides additional strapping options and 
controls to support multiprocessor configurations and 
peripheral devices on the CPU local bus. These capa
bilities allow assigning resources (memory or I/O) as 
shared (available on the Multibus system bus) or private 
(accessible only by this CPU) to reduce contention for 
access to the Multibus system bus and improve multi- 
CPU system performance. Specific configuration possi
bilities are discussed in AP-51.

T i | T2 | T3 | T , | T, | T i | T3 | Tvm it  | T4

GOES INACTIVE IN THE STATE

WAIT

Diagram 3A2. Status Line Activation and Termination

CLK (8284 OUTPUT)

MN
MODE

MX
MODE
8086
WITH
8288

MR DC ORl^RC

AmWC or  aiOWC

MWTC OR TOWC

TCLRL 

TCVCTV-----•

V

\

—  3£

V

I

J f
TCVCTX — 

TCLMH —

f

J r

\
Diagram 3A3. 8086 Minimum and Maximum Mode Command Timing
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3B. Clock Generation
The 8086 requires a clock signal with fast rise and fall 
times (10 ns max) between low and high voltages of 
-0 .5  to +0.6 low and 3.9 to VCC+1.0 high. The max
imum clock frequency of the 8086 is 5 MHz and 8 MHz 
for the 8086-2. Since the design of the 8086 incorporates 
dynamic cells, a minimum frequency of 2 MHz is re
quired to retain the state of the machine. Due to the 
minimum frequency requirement, single stepping or 
cycling of the CPU may not be accomplished by dis
abling the clock. The timing and voltage requirements of 
the CPU clock are shown in Figure 3B1. In general, for 
frequencies below the maximum, the CPU clock need 
not satisfy the frequency dependent pulse width limi
tations stated in the 8086 data sheet. The values 
specified only reflect the minimum values which must 
be satisfied and are stated in terms of the maximum 
clock frequency. As the clock frequency approaches the 
maximum frequency of the CPU, the clock must con
form to a 33% duty cycle to satisfy the CPU minimum 
clock low and high time specifications.

Figure 3B1. 8086 Clock

An optimum 33% duty cycle clock with the required 
voltage levels and transition times can be obtained with 
the 8284 clock generator (Fig. 3B2). Either an external 
frequency source or a series resonant crystal may drive 
the 8284. The selected source must oscillate at 3X the 
desired CPU frequency. To select the crystal Inputs of 
the 8284 as the frequency source for clock generation, 
the F/C input to the 8284 must be strapped to ground. 
The strapping option allows selecting either the crystal 
or the external frequency Input as the source for clock 
generation. Although the 8284 provides an input for a 
tank circuit to accommodate overtone mode crystals, 
fundamental mode crystals are recommended for more 
accurate and stable frequency generation. When selec
ting a crystal for use with the 8284, the series resistance 
should be as low as possible. Since other circuit com
ponents will tend to shift the operating frequency from 
resonance, the operating impedance will typically be 
higher than the specified series resistance. If the at
tenuation of the oscillator’s feedback circuit reduces 
the loop gain to less than one, the oscillator will fail. 
Since the oscillator delays in the 8284 appear as induc
tive elements to the crystal, causing it to run at a fre
quency below that of the pure series resonance, a 
capacitor should be placed in series with the crystal and 
the X2 input of the 8284. This capacitor serves to cancel 
this inductive element. The value of the capacitor (CL)

must not cause the impedance of the feedback circuit to 
reduce the loop gain below one. The impedance of the 
capacitor is a function of the operating frequency and 
can be determined from the following equation:

XCL=1/2n*F*CL

Figure 3B2. 8284 Clock Generator

It is recommended that the crystal series resistance 
plus XCL be kept less than 1K ohms. This capacitor also 
serves to debias the crystal and prevent a DC voltage 
bias from straining and perhaps damaging the crystal
line structure. As the crystal frequency increases, the 
amount of capacitance should be decreased. For exam
ple, a 12 MHz crystal may require CL ~  24 pF while 22 
MHz may require C L ~ 8  pF. If very close correlation 
with the pure series resonance is not necessary, a 
nominal CL value of 12-15 pF may be used with a 15 MHz 
crystal (5 MHz 8086 operation). Board layout and compo
nent variances will affect the actual amount of induc
tance and therefore the series capacitance required to 
cancel it out (this is especially true for wire-wrapped 
layouts).
Two of the many vendors which supply crystals for Intel 
microprocessors are listed in Table 3B1 along with a list 
of crystal part numbers for various frequencies which 
may be of interest. For additional information on speci
fying crystals for Intel components refer to application 
note AP-35.

TABLE 3B1. CRYSTAL VENDORS

f Parallel/
Series

Crystek®
Corp.

CTS Knight,® 
Inc.

15.0 MHz S CY15A MP150
18.432 S CY19B* MP184*
24.0 MHz s CY24A MP240

‘ Intel a lso  supp lies a crystal numbered 8801 for th is application.

Notes: 1. Address: 1000 Crystal Drive, Fort Meyers, Florida 33901 

2. Address: 400 Reimann Ave., Sandw ich, Illinois

If a high accuracy frequency source, externally variable 
frequency source or a common source for driving mul
tiple 8284's is desired, the External Frequency Input 
(EFI) of the 8284 can be selected by strapping the F/C in
put to 5 volts through ~1 K ohms (Fig. 3B3). The external 
frequency source should be TTL compatible, have a 
50% duty cycle and oscillate at three times the desired 
CPU operating frequency. The maximum EFI frequency 
the 8284 can accept is slightly above 24 MHz with 
minimum clock low and high times of 13 ns. Although
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no minimum EFI frequency is specified, it should not 
violate the CPU minimum clock rate. If a common fre
quency source is used to drive multiple 8284's 
distributed throughout the system, each 8284 should be 
driven by its own line from the source. To minimize 
noise in the system, each line should be a twisted pair 
driven by a buffer like the 74LS04 with the ground of the 
twisted pair connecting the grounds of the source and 
receiver. To minimize clock skew, the lines to all 8284’s 
should be of equal length. A simple technique for gen
erating a master frequency source for additional 8284’s 
is shown in Figure 3B4. One 8284 with a crystal is used 
to generate the desired frequency. The oscillator output 
of the 8284 (OSC) equals the crystal frequency and is 
used to drive the external frequency to all other 8284’s 
in the system.

ETERNAL
FREQUENCY

SOURCE

+ 5

> 1K

17_
18_
13

X,

x2
F/C
EFI CLK 

8284

14 8 19

8086

Figure 3B3. 8284 with External Frequency Source

+ 5

Figure 3B4. External Frequency for Multiple 8284s

The oscillator output is inverted from the oscillator 
signal used to drive the CPU clock generator circuit. 
Therefore, the oscillator output of one 8284 should not 
drive the EFI input of a second 8284 if both are driving 
clock inputs of separate CPU’s that are to be syn
chronized. The variation on EFI to CLK delay over a 
range of 8284's may approach 35 to 45 ns. If, however, all 
8284’s are of the same package type, have the same 
relative supply voltage and operate in the same tem
perature environment, the variation will be reduced to 
between 15 and 25 ns.

There are three frequency outputs from the 8284, the 
oscillator (OSC) mentioned above, the system clock 
(CLK) which drives the CPU, and a peripheral clock 
(PCLK) that runs at one half the CPU clock frequency. 
The oscillator output is_only driven by the crystal and is 
not affected by the F/C strapping option. If a crystal is 
not connected to the 8284 when the external frequency 
input is used, the oscillator output is indeterminate. The 
CPU clock is derived from the selected frequency 
source by an internal divide by three counter. The 
counter generates the 33% duty cycle clock which is op
timum for the CPU at maximum frequency. The 
peripheral clock has a 50% duty cycle and is derived 
from the CPU clock. Diagram 3B0 shows the relation
ship of CLK to OSC and PCLK to CLK. The maximum 
skew is 20 ns between OSC and CLK, and 22 ns between 
CLK and PCLK.

Since the state of the 8284 divide by three counter is in
determinate at system initialization (power on), an exter
nal sync to the counter (CSYNC) is provided to allow 
synchronization of the CPU clock to an external event. 
When CSYNC is brought high, the CLK and PCLK out
puts are forced high. When CSYNC returns low, the next 
positive clock from the frequency source starts clock 
generation. CSYNC must be active for a minimum of two 
periods of the frequency source. If CSYNC is asynchro
nous to the frequency source, the circuit in Figure 3B5 
should be used for synchronization. The two latches 
minimize the probability of a meta-stable state in the 
latch driving CSYNC. The latches are clocked with the 
inverse of the frequency source to guarantee the 8284 
setup and hold time of CSYNC to the frequency source 
(Diag. 3B1). If a single 8284 is to be synchronized to an 
external event and an external frequency source is not 
used, the oscillator output of the 8284 may be used to

Diagram 3B0. OSC — CLK and CLK — PCLK Relationships
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source must drive all 8284’s and a single CSYNC syn
chronization circuit must drive the CSYNC input of all 
8284’s (Fig. 3B7). Since activation of CSYNC may cause 
violation of CPU minimum clock low time, it should only 
be enabled during reset or CPU clock high. CSYNC must 
also be disabled a minimum of four CPU clocks before 
the end of reset to guarantee proper CPU reset.

+ 5

Figure 3B5. Synchronizing CSYNC with EFI

-67

Figure 3B7. Synchronizing Multiple 8284s

Due to the fast transitions and high drive (5 mA) of the 
8284 CLK output, it may be necessary to put a 10 to 100 
ohm resistor in series with the clock line to eliminate 
ringing (resistor value depending on the amount of drive 
required). If multiple sources of CLK are needed with 
minimum skew, CLK can be buffered by a high drive 
device (74S241) with outputs tied to 5 volts through 100 
ohms to guarantee VOH = 3.9 min (8086 minimum clock 
input high voltage) (Fig. 3B8). A single 8284 should not 
be used to generate the CLK for multiple CPU’s that do 
not share a common local (multiplexed) bus since the 
8284 synchronizes ready to the CPU and can only ac
commodate ready for a single CPU. If multiple CPU's 
share a local bus, they should be driven with the same 
clock to optimize transfer of bus control. Under these 
circumstances, only one CPU will be using the bus for a 
particular bus cycle which allows sharing a common 
READY signal (Fig. 3B9).

Diagram 3B1. CSYNC Setup and Hold to EFI

+ 5

Figure 3B6. EFI from 8284 Oscillator Figure 3B8. Buffering the 8284 CLK Output
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Figure 3B9. 8086 and Co-Processor on the Local Bus Share a 
Common 8284

3C. Reset
The 8086 requires a high active reset with minimum 
pulse width of four CPU clocks except after power on 
which requires a 50 ps reset pulse. Since the CPU inter
nally synchronizes reset with the clock, the reset is in
ternally active for up to one clock period after the exter
nal reset. ^rvM askable Interrupts (NMI) or hold re
quests on RQ/GT which occur during the internal reset, 
are not acknowledged A minimum mode hold request 
or maximum mode RQ pulses active immediately after 
the internal reset will be honored before the first in
struction fetch.

From reset, the 8086 will condition the bus as shown in 
Table 3C1. The multiplexed bus will three-state upon 
detection of reset by the CPU. Other signals which 
three-state will be driven to the inactive state for one 
clock low interval prior to entering three-state (Fig. 3C1). 
In the minimum mode, ALE and HLDA are driven inac
tive _and are not three-stated. In the maximum mode, 
RQ/GT lines are held inactive and the queue status in
dicates no activity. The queue status will not indicate a 
reset of the queue so any user defined external circuits 
monitoring the queue should also be reset by the 
system reset. 22K ohm pull-up resistors should be con
nected to the CPU command and bus control lines to

guarantee the inactive state of these lines in systems 
where leakage currents or bus capacitance may cause 
the voltage levels to settle below the minimum high 
voltage of devices in the system. In maximum mode 
systems, the 8288 contains internal pull-ups on the 
S0-S2 inputs to maintain the inactive state for these 
lines when the CPU floats the bus. The high state of the 
status lines during reset causes the 8288 to treat the 
reset sequence as a passive state. The condition of the 
8288 outputs for the passive state are shown in Table 
3C2. If the reset occurs during a bus cycle, the return of 
the status lines to the passive state will terminate the 
bus cycle and return the command lines to the inactive 
state. Note that the 8288 does not three-state the com
mand outputs based on the passive state of the status 
lines. If the designer needs to three-state the CPU off 
the bus during reset in a single CPU system, the reset 
signal should also be connected to the 8288’s AEN input 
and the output enable of the address latches (Fig. 3C2). 
This forces the command and address bus interface to 
three-state while the inactive state of DEN from the 8288 
three-states the transceivers on the data bus.

Table 3C1. 8086 Bus During Reset

Signals Condition
ADi M Three-State
A19-16/S6-3 Three-State
BHE/S7 Three-State
S2/(M/IO) Driven to "1" then three-state
S1/(DT/R) Driven to “1" then three-state
S0/DEN Driven to “1" then three-state
LOCK/WR Driven to "1 ” then three-state
RD Driven to “1” then three-state
INTA Driven to ”1 ” then three-state
ALE 0
HLDA 0
RQ/GT0 1
RQ/GT1 1
QS0 0
QS1 0

Figure 3C1. 8086 Bus Conditioning on Reset
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TABLE 3C2. 8288 OUTPUTS DURING PASSIVE MODE

ALE 0
DEN 0
DT/R 1
MCE/PDEN 0/1
COMMANDS 1

Figure 3C2. Reset Disable for Max Mode 8086 Bus Interface

For multiple processor systems using arbitration of a 
multimaster bus, the system reset should be connected 
to the (NIT input of the 8289 bus arbiter in addition to 
the 8284 reset input (Fig. 3C3). The low active IN IT input 
forces all 8289 outputs to their inactive state. The inac
tive state of the 8289 AEN output will force the 8288 to 
three-state the command outputs and the address 
latches to three-state the address bus interface. DEN in
active from the 8288 will three-state the data bus inter
face. For the multimaster CPU configuration, the reset 
should be common to all CPU’s (8289's and 8284’s) and 
satisfy the maximum of either the CPU reset re
quirements or 3 TBLBL (3 8289 bus clock times)+ 3 
TCLCL (3 8086 clock cycle times) to satisfy 8289 reset 
requirements.

If the 8288 command outputs are three-stated during 
reset, the command lines should be pulled up to Vcc 
through 2.2K ohm resistors.

The reset signal to the 8086 can be generated by the 
8284. The 8284 has a schmitt trigger input (RES) for 
generating reset from a low active external reset. The 
hysteresis specified in the 8284 data sheet Implies that 
at least .25 volts will separate the 0 and 1 switching 
point of the 8284 reset input. Inputs without hysteresis 
will switch from low to high and high to low at approxi
mately the same voltage threshold. The inputs are 
guaranteed to switch at specified low and high voltages 
(VIL and VIH) but the actual switching point is anywhere 
in-between. Since VIL min is specified at .8 volts, the 
hysteresis guarantees that the reset will be active until 
the input reaches at least 1.05 volts. A reset will not be 
recognized until the input drops at least .25 volts below 
the reset inputs VIH of 2.6 volts.
To guarantee reset from power up, the reset Input must 
remain below 1.05 volts for 50 microseconds after Vcc 
has reached the minimum supply voltage of 4.5 volts. 
The hysteresis allows the reset input to be driven by a 
simple RC circuit as shown in Figure 3C4. The 
calculated RC value does not include time for the power 
supply to reach 4.5 volts or the charge accumulated dur
ing this interval. Without the hysteresis, the reset out
put might oscillate as the input voltage passes through 
the switching voltage of the input. The calculated RC 
value provides the minimum required reset period of 50 
microseconds for 8284’s that switch at the 1.05 volt 
level and a reset period of approximately 162 micro
seconds for 8284's that switch at the 2.6 volt level. If 
tighter tolerance between the minimum and maximum 
reset times is necessary, the reset circuit shown in 
Figure 3C5 might be used rather than the simple RC cir
cuit. This circuit provides a constant current source and 
a linear charge rate on the capacitor rather than the in
verse exponential charge rate of the RC circuit. The 
maximum reset period for this implementation is 124 
microseconds.

Vc(t) = V\1 -  e

t =  50 fzsec
V = 4.5

Vc =  1.05
RC =  188x10

Figure 3C3. Reset Disable of for Max Mode 8086 Bus Interface in 
Multi CPU System Figure 3C4. 8284 Reset Circuit
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Rt -  DETERMINES CURRENT TO CHARGE C
R2 -  VALUE NOT CRITICAL =10K

|c = CHARGE CURRENT = + p2 ~ Tl)

6V
IF ALL SEMICONDUCTORS ARE SILICON, Ic 3 ^

Figure 3C5. Constant Current Power-On Reset Circuit

The 8284 synchronizes the reset input with the CPU 
clock to generate the RESET signal to the CPU (Fig. 
3C6). The output is also available as a general reset to 
the entire system. The reset has no effect on any clock 
circuits in the 8284.

Figure 3C6. 8086 Reset and System Reset

3D. Ready Implementation and Timing
As discussed previously, the ready signal is used in the 
system to accommodate memory and I/O devices that 
cannot transfer information at the maximum CPU bus 
bandwidth. Ready is also used in multiprocessor 
systems to force the CPU to wait for access to the 
system bus or Multibus system bus. To insert a wait 
state in the bus cycle, the READY signal to the CPU 
must be inactive (low) by the end of T2. To avoid inser
tion of a wait state, READY must be active (high) within 
a specified setup time prior to the positive transition 
during T3. Depending on the size and characteristics of 
the system, ready implementation may take one of two 
approaches.

The classical ready implementation is to have the 
system ‘normally not ready.' When the selected device 
receives the command (RD/WR/INTA) and has had suffi
cient time to complete the command, it activates 
READY to the CPU, allowing the CPU to terminate the 
bus cycle. This implementation is characteristic of large 
multiprocessor, Multibus systems or systems where 
propagation delays, bus access delays and device char
acteristics inherently slow down the system. For max
imum system performance, devices that can run with no 
wait states must return ‘READY’ within the previously 
described limit. Failure to respond in time will only 
result in the insertion of one or more wait cycles.
An alternate technique is to have the system ‘normally 
ready.’ All devices are assumed to operate at the max
imum CPU bus bandwidth. Devices that do not meet the 
requirement must disable READY by the end of T2 to 
guarantee the insertion of wait cycles. This implementa
tion is typically applied to small single CPU systems 
and reduces the logic required to control the ready 
signal. Since the failure of a device requiring wait states 
to disable READY by the end of T2 will result in prema
ture termination of the bus cycle, the system timing 
must be carefully analyzed when using this approach.

The 8086 has two different timing requirements on 
READY depending on the system implementation. For a 
‘normally ready’ system to insert a wait state, the 
READY must be disabled within 8 ns (TRYLCL) after the 
end of T2 (start of T3) (Diag. 3D1). To guarantee proper

CLOCK

8086 READY

- J  U 119 ns TO GUARANTEE THE 
NEXT CYCLE IS T«

Diagram 3D1. Normally Ready System Inserting a Wait State
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operation of the 8086, the READY input must not change 
from ready to not ready during the clock low time of T3. 
For a ‘normally not ready' system to avoid wait states, 
READY must be active within 119 ns (TRYHCH) of the

positive clock transition during T3 (Diag. 3D2). For both 
cases, READY must satisfy a hold time of 30 ns 
(TCHRYX) from the T3 or TW positive clock transition.

CLOCK

1
T _r

8086 READY

- I ACTIVE READY SETUP 119 ns 

-  HOLD TIME 30 ns

Diagram 3D2. Normally Not Ready System Avoiding a Wait State

To generate a stable READY signal which satisfies the 
previous setup and hold times, the 8284 provides two 
separate system ready inputs (RDY1, RDY2) and a single 
synchronized ready output (READY) for the CPU. The 
RDY inputs are qualified with separate access enables 
(AEN1.AEN2, low active) to allow selecting one of the 
two ready signals (Fig. 3D1). The gated signals are 
logically OR’ed and sampled at the beginning of each 
CLK cycle to generate READY to the CPU (Diag. 3D3). 
The sampled READY signal is valid within 8 ns (TRYLCL) 
after CLK to satisfy the CPU timing requirements on 
‘not ready' and ready. Since READY cannot change until 
the next CLK, the hold time requirements are also satis
fied. The system ready inputs to the 8284 (RDY1.RDY2) 
must be valid 35 ns (TRIVCL) before T3 and AEN must be 
valid 60 ns before T3. For a system using only one RDY 
input, the associated AEN is tied to ground while the 
other AEN is connected to 5 volts through ~1K ohms 
(Fig. 3D2a). If the system generates a low active ready 
signal, it can be connected to the 8284 AEN input if the 
additional setup time required by the 8284 AEN input is 
satisfied. In this case, the associated RDY input would 
be tied high (Fig. 3D2b). Figure 301. Ready Inputs to the 8284 and Output to the 8086

NOTE: THE 8284 DATA SHEET SPECIFIES READY OUT DELAY (TRYLCL) AS - 8  ns 
BEFORE’ THE END OF T2 WHICH IMPLIES THE TIMING SHOWN.

Diagram 3D3. 8284 with 8086 Ready Timing
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Figure 3D2a. Using RDY1/RDY2 to Generate Ready

SYSTEM
READY «EHT 8284 

RDY1 
AEN2 

RDY2

Figure 3D2b. Using AEN1/AEN2 to Generate Ready

The majority of memory and peripheral devices which 
fail to operate at the maximum CPU frequency typically 
do not require more than one wait state. The circuit 
given in Figure 3D3 is an example of a simple wait state 
generator. The system ready line is driven low whenever 
a device requiring one wait state is selected. The flip 
flop is cleared by ALE, enabling RDY to the 8284. If no 
wait states are required, the flip flop does not change. If 
the system ready is driven low, the flip flop toggles on 
the low to high clock transition of T2 to force one wait 
state. The next low to high clock transition toggles the 
flip flop again to Indicate ready and allow completion of 
the bus cycle. Further changes in the state of the flip 
flop will not affect the bus cycle. The circuit allows 
approximately 100 ns for chip select decode and condi
tioning of the system ready (Diag. 3D4).
If the system is ‘normally not ready,’ the programmer 
should not assign executable code to the last six bytes 
of physical memory. Since the 8086 prefetches instruc
tions, the CPU may attempt to access non-existent 
memory when executing code at the end of physical

memory. If the access to non-existent memory fails to 
enable READY, the system will be caught in an in
definite wait.

3E. Interrupt Structure
The 8086 interrupt structure is based on a table of inter
rupt vectors stored in memory locations OH through 
003FFH. Each vector consists of two bytes for the in
struction pointer and two bytes for the code segment. 
These two values combine to form the address of the in
terrupt service routine. This allows the table to contain 
up to 256 interrupt vectors which specify the starting ad
dress of the service routines anywhere in the one mega
byte address space of the 8086. If fewer than 256 differ
ent interrupts are defined in the system, the user need 
only allocate enough memory for the interrupt vector 
table to provide the vectors for the defined interrupts. 
During initial system debug, however, it may be desir
able to assign all undefined interrupt types to a trap 
routine to detect erroneous interrupts.
Each vector is associated with an interrupt type number 
which points to the vector’s location in the interrupt vec
tor table. The interrupt type number multiplied by four 
gives the displacement of the first byte of the associ
ated interrupt vector from the beginning of the table. As 
an example, interrupt type numbers points to the sixth 
entry in the interrupt vector table. The contents of this 
entry in the table points to the interrupt service routine 
for type 5 (Fig. 3E1). This structure allows the user to 
specify the memory address of each service routine by 
placing the address (instruction pointer and code seg
ment values) in the table location provided for that type 
interrupt.
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Figure 3E1. Direction to Interrupt Service Routine through the 
Interrupt Vector Table

All interrupts in the 8086 must be assigned an interrupt 
type which uniquely identifies each interrupt. There are 
three classes of interrupt types in the 8086; predefined 
interrupt types which are issued by specific functions 
within the 8086 and user defined hardware and software 
interrupts. Note that any interrupt type including the 
predefined interrupts can be issued by the user’s hard
ware and/or software.

PREDEFINED INTERRUPTS
The predefined interrupt types in the 8086 are listed 
below with a brief description of how each is invoked. 
When invoked, the CPU will transfer control to the 
memory location specified by the vector associated 
with the specific type. The user must provide the inter
rupt service routine and initialize the interrupt vector 
table with the appropriate service routine address. The 
user may additionally invoke these interrupts through 
hardware or software. If the preassigned function is not 
used in the system, the user may assign some other 
function to the associated type. However, for com
patibility with future Intel hardware and software prod
ucts for the 8086 family, Interrupt types 0-31 should not 
be assigned as user defined interrupts.

TYPE 0 -  DIVIDE ERROR
This interrupt type is invoked whenever a division opera
tion is attempted during which the quotient exceeds the 
maximum value (ex. division by zero). The Interrupt is 
non-maskable and is entered as part of the execution of 
the divide instruction. If interrupts are not reenabled by 
the divide error interrupt service routine, the service 
routine execution time should be included in the worst 
case divide instruction execution time (primarily when 
considering the longest instruction execution time and 
its effect on latency to servicing hardware interrupts).

(Trap Flag) is set in the flag register. It is used to allow 
software single stepping through a sequence of code. 
Single stepping is initiated by copying the flags onto the 
stack, setting the TF bit on the stack and popping the 
flags. The interrupt routine should be the single step 
routine. The interrupt sequence saves the flags and pro
gram counter, then resets the TF flag to allow the single 
step routine to execute normally. To return to the 
routine under test, an interrupt return restores the IP, 
CS and flags with TF set. This allows the execution of 
the next instruction in the program under test before 
trapping back to the single step routine. Single Step is 
not masked by the IF (Interrupt Flag) bit in the flag 
register.

TYPE 2 — NMI (Non-Maskable Interrupt)
This is the highest priority hardware interrupt and is 
non-maskable. The input is edge triggered but is syn
chronized with the CPU clock and must be active for two 
clock cycles to guarantee recognition. The interrupt 
signal may be removed prior to entry to the service 
routine. Since the input must make a low to high transi
tion to generate an interrupt, spurious transitions on the 
input should be suppressed. If the input is normally 
high, the NMI low time to guarantee triggering is two 
CPU clock times. This input is typically reserved for 
catastrophic failures like power failure or timeout of a 
system watchdog timer.

TYPE 3 — ONE BYTE INTERRUPT
This is invoked by a special form of the software inter
rupt instruction which requires a single byte of code 
space. Its primary use is as a breakpoint interrupt for 
software debug. With full representation within a single 
byte, the instruction can map into the smallest instruc
tion for absolute resolution in setting breakpoints. The 
interrupt is not maskable.

TYPE 4 — INTERRUPT ON OVERFLOW
This interrupt occurs if the overflow flag (OF) is set in 
the flag register and the INTO instruction is executed. 
The instruction allows trapping to an overflow error ser
vice routine. The interrupt is non-maskable.
Interrupt types 0 and 2 can occur without specific action 
by the programmer (except for performing a divide for 
Type 0) while types 1,3, and 4 require a conscious act by 
the programmer to generate these interrupt types. All 
but type 2 are invoked through software activity and are 
directly associated with a specific instruction.

USER DEFINED SOFTWARE INTERRUPTS
The user can generate an Interrupt through the software 
with a two byte Interrupt instruction INT nn. The first 
byte is the INT opcode while the second byte (nn) con
tains the type number of the interrupt to be performed. 
The INT instruction is not maskable by the interrupt 
enable flag. This instruction can be used to transfer con
trol to routines that are dynamically relocatable and 
whose location In memory is not known by the calling
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program. This technique also saves the flags of the call
ing program on the stack prior to transferring control. 
The called procedure must return control with an inter
rupt return (IRET) instruction to remove the flags from 
the stack and fully restore the state of the calling pro
gram.
All interrupts invoked through software (all interrupts 
discussed thus far with the exception of NMI) are not 
maskable with the IF flag and initiate the transfer of 
control at the end of the instruction in which they occur. 
They do not initiate interrupt acknowledge bus cycles 
and will disable subsequent maskable interrupts by 
resetting the IF and TF flags. The Interrupt vector for 
these interrupt types is either implied or specified In the 
instruction. Since the NMI is an asynchronous event to 
the CPU, the point of recognition and initiation of the 
transfer of control is similar to the maskable hardware 
interrupts.

USER DEFINED HARDWARE INTERRUPTS
The maskable interrupts initiated by the system hard
ware are activated through the INTR pin of the 8086 and 
are masked by the IF bit of the status register (Interrupt 
flag). During the last clock cycle of each instruction, the 
state of the INTR pin is sampled. The 8086 deviates from 
this rule when the instruction is a MOV or POP to a seg
ment register. For this case, the interrupts are not 
sampled until completion of the following instruction. 
This allows a 32-bit pointer to be loaded to the stack 
pointer registers SS and SP without the danger of an in
terrupt occurring between the two loads. Another excep
tion is the WAIT instruction which waits for a low active 
input on the TEST pin. This instruction also continu
ously samples the interrupt request during its execution 
and allows servicing interrupts during the wait. When an 
interrupt is detected, the WAIT instruction is again 
fetched prior to servicing the interrupt to guarantee the 
interrupt routine will return to the WAIT instruction.

UNINTERRUPTABLE INSTRUCTION SEQUENCE
MOV SS, NEW$STACK$SEGMENT
MOV SP, NEW$STACK$POINTER

Also, since prefixes are considered part of the instruc
tion they precede, the 8086 will not sample the interrupt 
line until completion of the instruction the prefix(es) 
precede(s). An exception to this (other than HALT or 
WAIT) is the string primatives preceded by the repeat 
(REP) prefix. The repeated string operations will sample 
the interrupt line at the completion of each repetition. 
This includes repeat string operations which include the 
lock prefix. If multiple prefixes precede a repeated 
string operation, and the instruction is interrupted, only 
the prefix immediately preceding the string primative is 
restored. To allow correct resumption of the operation, 
the following programming technique may be used:

LOCKEDSBLOCKJMOVE: LOCk REP MOVS DEST, CS:SOURCE 
AND CX, CX 
JNZ LOCKEDSBLOCKSMOVE

The code bytes generated by the 8086 assembler for the 
MOVS instruction are (in descending order): LOCK 
prefix, REP prefix, Segment Override prefix and MOVS. 
Upon return from the interrupt, the segment override 
prefix is restored to guarantee one additional transfer is 
performed between the correct memory locations. The 
instructions following the move operation test the 
repetition count value to determine if the move was 
completed and return if not.
If the INTR pin is high when sampled and the IF bit is set 
to enable Interrupts, the 8086 executes an interrupt 
acknowledge sequence. To guarantee the interrupt will 
be acknowledged, the INTR input must be held active 
until the interrupt acknowledge is issued by the CPU. If 
the BIU is running a bus cycle when the interrupt condi
tion is detected (as would occur if the BIU is fetching an 
instruction when the current instruction completes), the

| T, | T2 | T , | T , | T| | T| | T, j  T2 | T j | T4 |

- j - \ ___________________________________

l 5 £ k

Figure 3E2. Interrupt Acknowledge Sequence
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interrupt must be valid at the 8086 2 clock cycles prior to 
T4 of the bus cycle if the next cycle is to be an interrupt 
acknowledge cycle. If the 2 clock setup is not satisfied, 
another pending bus cycle will be executed before the 
interrupt acknowledge is issued. If a hold request is also 
pending (this might occur if an interrupt and hold re
quest are made during execution of a locked instruc
tion), the interrupt is serviced after the hold request is 
serviced.

The interrupt acknowledge sequence is only generated 
in response to an interrupt on the 8086 INTR input. The 
associated bus activity is shown in Figure 3E2. The cy
cle consists of two INTA bus cycles separated by two 
idle clock cycles. During the bus cycles the INTA com
mand is issued rather than read. No address is provided 
by the 8086 during either bus cycle (BHE and status are 
valid), however, ALE is still generated and will load the 
address latches with indeterminate information. This 
condition requires that devices in the system do not 
drive their outputs without being qualified by the Read 
Command. As will be shown later, the ALE is useful in 
maximum mode systems with multiple 8259A priority irv 
terrupt controllers. During the INTA bus cycles, DT/R 
and DEN are conditioned to allow the 8086 to receive a 
one byte Interrupt type number from the Interrupt 
system. The first INTA bus cycle signals an interrupt 
acknowledge cycle is in progress and allows the system 
to prepare to present the interrupt type number on the 
next INTA bus cycle. The CPU does not capture informa
tion on the bus during the first cycle. The type number 
must be transferred to the 8086 on the lower half of the 
16-bit data bus during the second cycle. This Implies 
that devices which present interrupt type numbers to 
the 8086 must be located on the lower half of the 16-bit 
data bus. The timing of the INTA bus cycles (with excep
tion of address timing) is similar to read cycle timing. 
The 8086 interrupt acknowledge sequence deviates 
from the form used on 8080 and 8085 in that no instruc
tion is issued as part of the sequence. The 8080 and
8085 required either a restart or call instruction be 
issued to affect the transfer of control.

In the minimum mode system, the M/IO signal will be 
low indicating I/O during the INTA bus cycles. The 8086 
internal LOCK signal will be active from T2 of the first 
bus cycle until T2 of the second to prevent the BIU from 
honoring a hold request between the two INTA cycles.

In the maximum mode, the status lines S0-S2 will re
quest the 8288 to activate the INTA output for each cy
cle. The LOCK output of the 8086 will be active from T2 
of the first cycle until T2 of the second to prevent the
8086 from honoring a hold request on either RQ/GT in
put and to prevent bus arbitration logic from relinquish
ing the bus between INTA's in multi-master systems. 
The consequences of READY are identical to those for 
READ and WRITE cycles.

Once the 8086 has the interrupt type number (from the 
bus for hardware interrupts, from the instruction stream 
for software interrupts or from the predefined con
dition), the type number is multiplied by four to form the 
displacement to the corresponding interrupt vector in 
the interruDt vector table. The four bytes of the interrupt

vector are: least significant byte of the instruction 
pointer, most significant byte of the instruction pointer, 
least significant byte of the code segment register, 
most significant byte of the code segment register. Dur
ing the transfer of control, the CPU pushes the flags and 
current code segment register and instruction pointer 
onto the stack. The new code segment and instruction 
pointer values are loaded and the single step and inter
rupt flags are reset. Resetting the interrupt flag disables 
response to further hardware interrupts in the service 
routine unless the flags are specifically re-enabled by 
the service routine. The CS and IP values are read from 
the interrupt vector table with data read cycles. No seg
ment registers are used when referencing the vector 
table during the interrupt context switch. The vector 
displacement is added to zero to form the 20-bit address 
and S4, S3=10 indicating no segment register selec
tion.
The actual bus activity associated with the hardware in
terrupt acknowledge sequence is as follows: Two inter
rupt acknowledge bus cycles, read new IP from the in
terrupt vector table, read new CS from the interrupt vec
tor table, Push flags, Push old CS, Opcode fetch of the 
first instruction of the interrupt service routine, and 
Push old IP. After saving the old IP, the BIU will resume 
normal operation of prefetching instructions into the 
queue and servicing EU requests for operands. S5 (inter
rupt enable flag status) will go inactive in the second 
clock cycle following reading the new CS.
The number of clock cycles from the end of the instruc
tion during which the interrupt occurred to the start of 
interrupt routine execution is 61 clock cycles. For soft
ware generated interrupts, the sequence of bus cycles 
is the same except no interrupt acknowledge bus cycles 
are executed. This reduces the delay to service routine 
execution to 51 clocks for INT nn and single step, 52 
clocks for INT3 and 53 clocks for INTO. The same inter
rupt setup requirements with respect to the BIU that 
were stated for the hardware interrupts also apply to the 
software interrupts. If wait states are inserted by either 
the memories or the device supplying the interrupt type 
number, the given clock times will increase accordingly.

When considering the precedence of interrupts for 
multiple simultaneous interrupts, the following guide
lines apply: 1. INTR is the only maskable interrupt and if 
detected simultaneously with other interrupts, resetting 
of IF by the other interrupts will mask INTR. This causes 
INTR to be the lowest priority interrupt serviced after all 
other interrupts unless the other interrupt service 
routines reenable interrupts. 2. Of the nonmaskable in
terrupts (NMI, Single Step and software generated), in 
general, Single Step has highest priority (will be ser
viced first) followed by NMI, followed by the software in
terrupts. This implies that a simultaneous NMI and 
Single Step trap will cause the NMI service routine to 
follow single step; a simultaneous software trap and 
Single Step trap will cause the software interrupt ser
vice routine to follow single step and a simultaneous 
NMI and software trap will cause the NMI service 
routine to be executed followed by the software inter
rupt service routine. An exception to this priority struc
ture occurs if all three interrupts are pending. For this 
case, transfer of control to the software interrupt ser
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vice routine followed by the NMI trap will cause both the 
NMI and software interrupt service routines to be ex
ecuted without single stepping. Single stepping 
resumes upon execution of the instruction following the 
instruction causing the software interrupt (the next in
struction in the routine being single stepped).
If the user does not wish to single step before INTR ser
vice routines, the single step routine need only disable 
Interrupts during execution of the program being single 
stepped and reenable interrupts on entry to the single 
step routine. Disabling the interrupts during the pro
gram under test prevents entry into the interrupt service 
routine while single step (TF=1) is active. To prevent 
single stepping before NMI service routines, the single 
step routine must check the return address on the stack 
for the NMI service routine address and return control to 
that routine without single step enabled. As examples, 
consider Figures 3E3a and 3E3b. In 3E3a Single Step 
and NMI occur simultaneously while in 3E3b, NMI, INTR 
and a divide error all occur during a divide instruction 
being single stepped.

TF, IF = 1

Figure 3E3a. NMI During Single Stepping end Normal Single Stop 
Operation

TF =  1 
IF =  1

CONTINUE TO SINGLE STEF 
THE PROGRAM

Figure 3E3b. NMI, INTR, Single Step and Divide Error Simultaneous 
Interrupts

SYSTEM CONFIGURATIONS
To accommodate the INTA protocol of the maskable 
hardware interrupts, the 8259A is provided as part of the 
8086 family. This component is programmable to 
operate in both 8080/8085 systems and 8086 systems. 
The devices are cascadable In master/slave arrange
ments to allow up to 64 interrupts in the system. Figures 
3E4 and 3E5 are examples of 8259A's in minimum and 
maximum mode 8086 systems. The minimum mode con
figuration (a) shows an 8259A connected to the CPU’s
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connects are also applicable to maximum mode 
systems. The configuration given for a maximum mode 
system shows a master 8259A on the CPU’s multiplexed 
bus with additional slave 8259A’s out on the buffered 
system bus. This configuration demonstrates several 
unique features of the maximum mode system inter
face. If the master 8259A receives interrupts from a mix 
of slave 8259A’s and regular interrupting devices, the 
slaves must provide the type number for devices con
nected to them while the master provides the type 
number for devices directly attached to its interrupt in
puts. The master 8259A is programmable to determine if 
an interrupt is from a direct input or a slave 8259A and 
will use this information to enable or disable the data 
bus transceivers (via the ‘nand’ function of DEN and 
EN). If the master must provide the type number, it will 
disable the data bus transceivers. If the slave provides 
the type number, the master will enable the data bus 
transceivers. The EN output is normally high to allow

master must provide a cascade address to the slave. If 
the 8288 is not strapped in the I/O bus mode (the 8288 
IOB input connected to ground), the MCE/PDEN output 
becomes a MCE or Master Cascade Enable output. This 
signal is only active during INTA cycles as shown in 
Figure 3E6 and enables the master 8259A's cascade ad
dress onto the 8086’s local bus during ALE. This allows 
the address latches to capture the cascade address with 
ALE and allows use of the system address bus for 
selecting the proper slave 8259A. The MCE is gated with 
LOCK to minimize local bus contention between the 
8086 three-stating its bus outputs and the cascade ad
dress being enabled onto the bus. The first INTA bus cy
cle allows the master to resolve internal priorities and 
output a cascade address to be transmitted to the 
slaves on the subsequent INTA bus cycle. For additional 
information on the 8259A, reference application note 
AP-59.

HOh

ADDRESS
BUS

DATA
BUS

b.

Figure 3E4. Min Mode 8086 with Master 8259A on the Local Bus and Slave 8259As on the System Bus
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Figure 3E5. Max Mode 8086 with Master 8259A on the Local Bus and Slave 8259As on the System Bus

r \
T« I

LOCK /

~_/ \_____________/ V

Figure 3E6. MCE Timing to Gate 8259A CAS Address onto the 8086 Local Bus
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3F. Interpreting the 8086 Bus Timing Diagrams
At first glance, the 8086 bus timing diagrams (Diag. 3F1 
min mode and Diag. 3F2 max mode) appear rather com
plex. However, with a few words of explanation on how 
to interpret them, they become a powerful tool in deter
mining system requirements. The timing diagrams for 
both the minimum and maximum modes may be divided 
into six sections: (1) address and ALE timing; (2) read cy
cle timing; (3) write cycle timing; (4) interrupt acknowl- 
edge_timing; (5) ready timing; and (6) HOLD/HLDA or 
RQ/GT timing. Since the A.C. characteristics of the 
signals are specified relative to the CPU clock, the rela
tionship between the majority of signals can be de
duced by simply determining the clock cycles between 
the clock edges the signals are relative to and adding or 
subtracting the appropriate minimum or maximum 
parameter values. One aspect of system timing not com
pensated for in this approach is the worst case relation
ship between minimum and maximum parameter values 
(also known as tracking relationships). As an example, 
consider a signal which has specified minimum and 
maximum turn on and turn off delays. Depending on 
device characteristics, it may not be possible for the 
component to simultaneously demonstrate a maximum 
turn-on and minimum turn-off delay even though worst 
case analysis might imply the possibility. This argument 
is characteristic of MOS devices and is therefore ap
plicable to the 8086 A.C. characteristics. The message 
is: worst case analysis mixing minimum and maximum 
delay parameters will typically exceed the worst case 
obtainable and therefore should not be subjected to fur
ther subjective degradation to obtain worst-worst case 
values. This section will provide guidelines for specific 
areas of 8086 timing sensitive to tracking relationships.

A. MINIMUM MODE BUS TIMING
1. ADDRESS and ALE
The address/ALE timing relationship is important to 
determine the ability to capture a valid address from the 
multiplexed bus. Since the 8282 and 8283 latches cap
ture the address on the trailing edge of ALE, the critical 
timing involves the state of the address lines when ALE 
terminates. If the address valid delay is assumed to be 
maximum TCLAV and ALE terminates at its earliest 
point, TCHLLmin (assuming zero minimum delay), the 
address would be valid only TCLCHmin-TCLAVmax = 8 
ns prior to ALE termination. This result is unrealistic in 
the assumption of maximum TCLAV and minimum 
TCHLL. To provide an accurate measure of the true 
worst case, a separate parameter specifies the 
minimum time for address valid prior to the end of ALE 
(TAVAL). TAVAL = TCLCH-60 ns overrides the clock 
related timings and guarantees 58 ns of address setup 
to ALE termination for a 5 MHz 8086. The address is 
guaranteed to remain valid beyond the end of ALE by the 
TLLAX parameter. This specification overrides the rela
tionship between TCHLL and TCLAX which might seem 
to imply the address may not be valid by the end of the 
latest possible ALE. TLLAX holds for the entire address 
bus. The TCLAXmin spec on the address indicates the 
earliest the bus will go invalid if not restrained by a slow 
ALE. TLLAX and TCLAX apply to the entire multiplexed 
bus for both read and write cycles. AD15-0 is three-

stated for read cycles and immediately switched to 
write data during write cycles. AD19-16 immediately 
switch from address to status for both read and write 
cycles. The minimum ALE pulse width is guaranteed by 
TLHLLmin which takes precedence over the value ob
tained by relating TCLLHmax and TCHLLmin.

To determine the worst case delay to valid address on a 
demultiplexed address bus, two paths must be con
sidered: (1) delay of valid address and (2) delay to ALE. 
Since the 8282 and 8283 are flow through latches, a valid 
address is not transmitted to the address bus until ALE 
is active. A comparison of address valid delay TCLAV- 
max with ALE active delay TCLLHmax indicates TCLAV- 
max is the worst case. Subtracting the latch prop
agation delay gives the worst case address bus valid 
delay from the start of the bus cycle.

2. Read Cycle Timing
Read timing consists of conditioning the bus, activating 
the read command and establishing the data transceiver 
enable and direction controls. DT/R is established early 
in the bus cycle and requires no further consideration. 
During read, the DEN signal must allow the transceivers 
to propagate data to the CPU with the appropriate data 
setup time and continue to do so until the required data 
hold time. The DEN turn on delay allows TCLCL + 
TCHCLmin-TCVCTVmax-TDVCL= 127 ns transceiver 
enable time prior to valid data required by the CPU. 
Since the CPU data hold time TCLDXmin and minimum 
DEN turnoff delay TCVCTXmin are both 10 ns relative to 
the same clock edge, the hold time is guaranteed. Addi
tionally, DEN must disable the transceivers prior to the 
CPU redriving the bus with the address for the next bus 
cycle. The maximum DEN turn off delay (TCVCTXmax) 
compared with the minimum delay for addresses out of 
the 8086 (TCLCL+ TCLAVmin) indicates the trans
ceivers are disabled at least 105 ns before the CPU 
drives the address onto the multiplexed bus.
If memory or I/O devices are connected directly to the 
multiplexed address and data bus, theTAZRL parameter 
guarantees the CPU will float the bus before activating 
read and allowing the selected device to drive the bus. 
At the end of the bus cycle, the TRHAV parameter spec
ifies the bus float delay the device being deselected 
must satisfy to avoid contention with the CPU driving 
the address for the next bus cycle. The next bus cycle 
may start as soon as the cycle following T4 or any 
number of clock cycles later.
The minimum delay from read active to valid data at the 
CPU is 2TCLCL — TCLRLmax — TDVCL = 205 ns. The 
minimum pulse width is 2TCLCL-75 ns = 325 ns. This 
specification (TRLRH) overrides the result which could 
be derived from clock relative delays (2TCLCL- 
TCLRLmax + TCLRHmin).

3. Write Cycle Timing
The write cycle involves providing write data to the 
system, generating the write command and controlling 
data bus transceivers. The transceiver direction control 
signal DT/R is conditioned to transmit at the end of each 
read cycle and does not change during a write cycle.
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This allows the transceiver enable signal DEN to be ac
tive early in the cycle (while addresses are valid) without 
corrupting the address on the multiplexed bus. The 
write data and write command are both enabled from the 
leading edge of T2. Comparing minimum WR active 
delay TCVCTVmin with the maximum write data delay 
TCLDV indicates that write data may be not valid until 
100 ns after write is active. The devices in the system 
should capture data on the trailing edge of the write 
command rather than the leading edge to guarantee 
valid data. The data from the 8086 is valid a minimum of 
2TCLCL-TCLDVmax + TCVCTXmin = 300 ns before the 
trailing edge of write. The minimum write pulse width is 
TWLWH = 2TCLCL- 60 ns = 340 ns. The CPU maintains 
valid write dataTWHDX ns after write. The TWHDZ spec
ification overrides the result derived by relating 
TCLCHmin and TCHDZmin which implies write data 
may only be valid 18 ns after WR. The 8086 floats the bus 
after write only if being forced off the bus by a HOLD or

RQ input. Otherwise, the CPU simply switches the out
put drivers from data to address at the beginning of the 
next bus cycle. As with the read cycle, the next bus cy
cle may start in the clock cycle following T4 or any clock 
cycle later.
DEN is disabled a minimum of TCLCHmin + 
TCVCTXmin -  TCVCTXmax= 18 ns after write to 
guarantee data hold time to the selected device. Since 
we are again evaluating a minimum TCVCTX with a max
imum TCVCTX, the real minimum delay from the end of 
write to transceiver disable is approximately 60 ns.

4. Interrupt Acknowledge Timing
The interrupt acknowledge sequence consists of two in
terrupt acknowledge bus cycles as previously de
scribed. The detailed timing of each cycle is identical to 
the read cycle timing with two exceptions: command 
timing and address/data bus timing.

Figure 3F1. 8086 Bus Timing — Minimum Mode System
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2. RDY IS SAMPLED NEAR THE END OF T2, T3l Tw TO DETERMINE IF Tw 
MACHINES STATES ARE TO BE INSERTED.

3. BOTH INTA CYCLES RUN BACK-TO-BACK. THE 8088 LOCAL ADDR/DATA BUS IS 
FLOATING DURING THE SECOND INTA CYCLE. CONTROL SIGNALS SHOWN 
FOR SECOND INTA CYCLE.

4. SIGNALS AT 8284 ARE SHOWN FOR REFERENCE ONLY.
5. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE 

NOTED.

Figure 3F1. 8086 Bus Timing — Minimum Mode System (Con’t)
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Figure 3F2a. 8086 Bus Timing — Maximum Mode System (Using 8288)
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(OCT -  VOL;TO.»in5C.TOffC,MWTC,AMW C,R5wC.AIOWC,INTA,DT/R =  Vqh)|

AD 15 -A D 0

TCLAV----► £
INVALID ADDRESS

S2.S1.S0 \ ___________/

NOTES: 1. ALL SIGNALS SWITCH BETWEEN V0H AND V0i  UNLESS OTHERWISE 
SPECIFIED.

2. RDY IS SAMPLED NEAR THE END OF T2l T3. Tw TO DETERMINE IF Tw 
MACHINES STATES ARE TO BE INSERTED.

3. CASCADE ADDRESS IS VALID BETWEEN FIRST AND SECOND INTA CYCLES.
4. BOTH INTA CYCLES RUN BACK-TO-BACK. THE 8086 LOCAL ADDR/DATA BUS IS 

FLOATING DURING THE SECOND INTA CYCLE. CONTROL FOR POINTER ADDRESS 
IS SHOWN FOR SECOND INTA CYCLE.

5. SIGNALS AT 8284 OR 8288 ARE SHOWN FOR REFERENCE ONLY.
6. THE ISSUANCE OF THE 8288 COMMAND AND CONTROL SIGNALS (MRDC,

MWTC, CTIWe, R5E£. rowe. AIOWC, TRTA AND DEN) LAGS THE ACTIVE HIGH 
8288 CEN.

7. ALL TIMING MEASUREMENTS ARE MADE AT 1.SV UNLESS OTHERWISE 
NOTED.

8. STATUS INACTIVE IN STATE JUST PRIOR TO T4.

Figure 3F2b. 8086 Bus Timing — Maximum Mode System (Using 8288) (Con’t)
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The multiplexed address/data bus floats from the begin
ning (T1) of the INTA cycle (within TCLAZ ns). The upper 
four multiplexed address/status lines do not three-state. 
The address value on A19-A16 is indeterminate but the 
status information will be valid (S3 = 0, S4 = 0, S5=IF, 
S6 = 0, S7 = BHE = 0). The multiplexed address/data 
lines will remain in three-state until the cycle after T4 of 
the INTA cycle. This sequence occurs for each of the 
INTA bus cycles. The interrupt type number read by the 
8086 on the second INTA bus cycle must satisfy the 
same setup and hold times required for data during a 
read cycle.

The DEN and DT/R signals are enabled for each INTA cy
cle and do not remain active between the two cycles. 
Their timing for each cycle is identical to the read cycle.
The INTA command has the same timing as the write 
command. It is active within 110 ns of the start of T2 pro
viding 260 ns of access time from command to data 
valid at the 8086. The command is active a minimum of 
TCVCTXmin = 10 ns into T4 to satisfy the data hold time 
of the 8086. This provides minimum INTA pulse width of 
300 ns, however taking signal delay tracking into con
sideration gives a minimum pulse width of 340 ns. Since 
the maximum inactive delay of INTA is TCVCTXmax = 
110 ns and the CPU will not drive the bus until 15 ns 
(TCLAVmin) into the next clock cycle, 105 ns are avail
able for interrupt devices on the local bus to float their 
outputs. If the data bus is buffered, DEN provides the 
same amount of time for local bus transceivers to three- 
state their outputs.

5. Ready Timing
The detailed timing requirements of the 8086 ready 
signal and the system ready signal into the 8284 are 
described in Section 3D. The system ready signal is 
typically generated from either the address decode of 
the selected device or the address decode and the com
mand (RD, WR, INTA). For a system which is normally 
not ready, the time to generate ready from a valid ad
dress and not insert a wait state, is 2TCLCL- 
TCLAVmax -  TR1 VCLmax = 255 ns. This time is avail
able for buffer delays and address decoding to deter
mine if the selected device does not require a wait state 
and drive the RDY line high. If wait cycles are required, 
the user hardware must provide the appropriate ready 
delay. Since the address will not change until the next 
ALE, the RDY will remain valid throughout the cycle. If 
the system is normally ready, selected devices requiring 
wait states also have 255 ns to disable the RDY line. The 
user circuitry must delay re-enabling RDY by the ap
propriate number of wait states.
If the RD command is used to enable the RDY signal, 
TCLCL- TCLRLmax- TRIVCLmax= 15 ns are available 
for external logic. If the WR command is used, TCLCL- 
TCVCTVmax -  TRIVCLmax = 55 ns are available. Com
parison of RDY control by address or command in
dicates that address decoding provides the best timing. 
If the system is normally not ready, address decode 
alone could be used to provide RDY for devices not re
quiring wait states while devices requiring wait states 
may use a combination of address decode and com
mand to activate a wait state generator. If the system is

normally ready, devices not requiring wait states do 
nothing to RDY while devices needing wait states 
should disable RDY via the address decode and use a 
combination of address decode and command to ac
tivate a delay to re-enable RDY.

If the system requires no wait states for memory and a 
fixed number of_wait states for R5 and WR to all I/O 
devices, the M/IO signal can be used as an early indica
tion of the need for wait cycles. This allows a common 
circuit to control ready timing for the entire system 
without feedback of address decodes.

6. Other Considerations
Detailed HOLD/HLDA timing is covered in the next sec
tion and is not examined here. One last signal con
sideration needs to be mentioned for the minimum 
mode system. The TEST input is sampled by the 8086 
only during execution of the WAIT instruction. The TEST 
signal should be active for a minimum of 6 clock cycles 
during the WAIT instruction to guarantee detection.

B. MAXIMUM MODE BUS TIMING
The maximum mode 8086 bus operations are logically 
equivalent to the minimum mode operation. Detailed 
timing analysis now involves signals generated by the 
CPU and the 8288 bus controller. The 8288 also provides 
additional control and command signals which expand 
the flexibility of the system.

1. ADDRESS and ALE
In the maximum mode, the address information con
tinues to come from the CPU while the ALE strobe is 
generated by the 8288. To determine the worst case rela
tionships between ALE and the address, we first niust 
determine 8288 ALE activation relative to the S0-S2 
status from the CPU. The maximum mode timing 
diagram specifies two possible delay paths to generate 
ALE. The first is TCHSV + TSVLH measured from the ris
ing edge of the clock cycle preceding T1. The second 
path is TCLLH measured from the start of T1. Since the 
8288 initiates a bus cycle from the status lines leaving 
the passive state (S0-S2= 1), if the 8086 is late in issuing 
the status (TCHSVmax) while the clock high time is a 
minimum (TCHCLmin), the status will not have changed 
by the start of T1 and ALE is issued TSVLH ns after the 
status changes. If the status changes prior to the begin
ning of T1, the 8288 will not issue the ALE until TCLLH 
ns after the start of T1. The resulting worst case delay to 
enable ALE (relative to the start of T1) is TCHSVmax + 
TSVLHmax- TCHCLmin = 58 ns. Note, when calcu
lating signal relationships, be sure to use the proper 
maximum mode values rather than equivalent minimum 
mode values.

The trailing edge of ALE is triggered in the 8288 by the 
positive clock edge In T1 regardless of the delay to 
enable ALE. The resulting minimum ALE pulse width is 
TCLCHmax -  58 ns = 75 ns assuming TCHLL = 0. 
TCLCHmax must be used since TCHCLmin was as
sumed to derive the 58 ns ALE enable delay. The ad
dress is guaranteed to be valid TCLCHmin + 
TCHLLmin -  TCLAVmax = 8 ns prior to the trailing edge
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by separate devices, no tracking of A.C. characteristics 
can be assumed.
The address hold time to the latches is guaranteed by 
the address remaining valid until the end of T1 while 
ALE is disabled a maximum of 15 ns from the positive 
clock transition in T1 (TCHCLmin-TCHLLmax = 52 ns 
address hold time). The multiplexed bus transitions 
from address to status and write data or three-state (for 
read) are identical to the minimum mode timing. Also, 
since the address valid delay (TCLAV) remains the 
critical path in establishing a valid address, the address 
access times to valid data and ready are the same as the 
minimum mode system.

2. Read Cycle Timing
The maximum mode system offers read signals 
generated by both the 8086 and the 8288. The 8086 RD 
output signal timing is identical to the minimum mode 
system. Since the A.C. characteristics of the read com
mands generated by the 8288 are significantly better 
than the 8086 output, access to devices on the demul
tiplexed buffered system bus should use the 8288 com
mands. The 8086 RD signal is available for devices 
which reside directly on the multiplexed bus. The 
following evaluations for read, write and interrupt 
acknowledge only consider the 8288 command timing.
The 8288 provides separate memory and I/O read signals 
which conform to the same A.C. characteristics. The 
commands are issued TCLML ns after the start of T2 
and terminate TCLMH ns after the start of T4. The 
minimum command length is 2TCLCL-  TCLMLmax + 
TCLMLmin = 375 ns. The access time to valid data at the 
CPU is 2TCLCL -  TCLM Lmax -  TDVCLmax = 335 ns. 
Since the 8288 was designed for systems with buffered 
data busses, the commands are enabled before the CPU 
has three-stated the multiplexed bus and should not be 
used with devices which reside directly on the multi
plexed bus (to do so could result in bus contention dur
ing 8086 bus float and device turn-on).

The direction control for data bus transceivers is estab 
lished in T1 while the transceivers are not enabled by 
DEN until the positive clock transition of T2. This pro
vides TCLCH + TCVNVmin= 123 ns for 8086 bus float 
delay and TCHCLmin + TCLCL — TCVNVmax — 
TDVCLmax = 187 ns of transceiver active to data valid at 
the CPU. Since both DEN and command are valid a mini
mum of 10 ns into T4, the CPU data hold time TCLDX is 
guaranteed. A maximum DEN disable of 45 ns (TCVNX 
max) guarantees the transceivers are disabled by the 
start of the next 8086 bus cycle (215 ns minimum from 
the same clock edge). On the positive clock transition of 
T4, DT/R is returned to transmit in preparation for a 
possible write operation on the next bus cycle. Since 
the system memory and I/O devices reside on a buffered 
system bus, they must three-state their outputs before 
the device for the next bus cycle is selected (approxi
mately 2TCLCL) or the transceivers drive write data onto 
the bus (approximately 2TCLCL).

'Vanceo write commands for memory and I/O. The ad
vanced write commands are active a full clock cycle 
ahead of the normal write commands and have timing 
identical to the read commands. The advanced write 
pulse width is 2TCLCL-TCLMLmax + TCLMHmin = 375 
ns while the normal write pulse width is TCLCL- 
TCLMLmax + TCLMHmin = 175 ns. Write data setup 
time to the selected device is a function of either the 
data valid delay from the 8086 (TCLDV) or the transceiver 
enable delay TCVNV. The worst case delay to valid write 
data is TCLDV=110 ns minus transceiver propagation 
delays. This implies the data may not be valid until 100 
ns after the advanced write command but will be valid 
approximately TCLCL-TCLDVmax-t-TCLMLmin = 100 
ns prior to the leading edge of the normal write com
mand. Data will be valid 2TCLCL-TCLDVmax + 
TCLMHmin = 300 ns before the trailing edge of either 
write command. The data and command overlap for the 
advanced command is 300 ns while the overlap with the 
normal write command Is 175 ns. The transceivers are 
disabled a minimum of TCLCHmin-TCLMHmax + 
TCVNXmin = 85 ns after the write command while the 
CPU provides valid data a minimum of TCLCHmin- 
TCLMHmax + TCHDZmin = 85 ns. This guarantees write 
data hold of 85 ns after the write command. The trans
ce ivers are d isab led T C L C L -T C V N X m a x+ 
TCHDTLmin= 155 ns (assuming TCHDTL=0) prior to 
transceiver direction change for a subsequent read 
cycle.

4. Interrupt Acknowledge Timing
The maximum mode INTA sequence is logically iden
tical to the minimum mode sequence. The transceiver 
control (DEN and DT/R) and INTA command timing of 
each interrupt acknowledge cycle is identical to the 
read cycle. As in the minimum mode system, the multi
plexed address/data bus will float from the leading edge 
of T1 for each INTA bus cycle and not be driven by the 
CPU until after T4 of each INTA cycle. The setup and 
hold times on the vector number for the second cycle 
are the same as data setup and hold for the read. If the 
device providing the interrupt vector number is con
nected to the local bus, TCLCL-TCLAZmax+ 
TCLMLmin = 130 ns are available from 8086 bus float to 
INTA command active. The selected device on the local 
bus must disable the system data bus transceivers 
since DEN is still generated by the 8288.
If the 8288 is not in the IOB (I/O Bus) mode, the 8288 
MCE/PDEN output becomes the MCE output. This out
put is active during each INTA cycle and overlaps the 
ALE signal during T1. The MCE is available for gating 
cascade addresses from a master 8259A onto three of 
the upper AD15-AD8 lines and allowing ALE to latch the 
cascade address into the address latches. The address 
lines may then be used to provide CAS address selec
tion to slave 8259A’s located on the system bus (refer
ence Figure 3E5). MCE is active within 15 ns of status or 
the start of T1 for each INTA cycle. MCE should not 
enable the CAS lines onto the multiplexed bus during 
the first cycle since the CPU does not guarantee to float
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the bus until 80 ns into the first INTA cycle. The first 
MCE can be inhibited by gating MCE with LOCK. The 
8086 LOCK output is activated during T2 of the first 
cycle and disabled during T2 of the second cycle. The 
overlap of LOCK with MCE allows the first MCE to be 
masked and the second MCE to gate the cascade ad
dress onto the local bus. Since the 8259A will not pro
vide a cascade address until the second cycle, no infor
mation is lost. As with ALE, MCE is guaranteed valid 
within 58 ns of the start of T1 to allow 75 ns CAS ad
dress setup to the trailing edge of ALE. MCE remains 
active TCHCLmin-TCHLLmax + TCLMCLmin = 52 ns 
after ALE to provide data hold time to the latches.
If the 8288 is strapped in the IOB mode, the MCE output 
becomes PDEN and all I/O references are assumed to be 
devices on the local bus rather than the demultiplexed 
system bus. Since INTA cycles are considered I/O 
cycles, all interrupts are assumed to come from the 
local system and cascade addresses are not gated onto 
the system address bus. Additionally, the DEN signal is 
not enabled since no I/O transfers occur on the system 
bus. If the local I/O bus is also buffered by transceivers, 
the PDEN signal is used to enable those transceivers. 
PDEN A.C. characteristics are identical to DEN with 
PDEN enabled for I/O references and DEN enabled for 
instruction or memory data references.

5. Ready Timing
Ready timing based on address valid timing is the same 
for maximum and minimum mode systems. The delay 
from 8288 command valid to RDY valid at the 8284 is 
TCLCL- TCLMLmax- TRIVCLmin= 130 ns. This time is 
available for external circuits to determine the need to 
insert wait states and disable RDY or enable RDY to 
avoid wait states. INTA, all read commands and ad
vanced write commands provide this timing. The normal 
write command is not valid until after the RDY signal 
must be valid. Since both normal and advanced write 
commands are generated by the 8288 for all write 
cycles, the advanced write may be used to generate a 
RDY indication even though the selected device uses 
the normal write command.
Since separate commands are provided for memory and 
I/O, no M/IO signal is specifically available as in the 
minimum mode to allow an early ‘wait state required’ in
dication for I/O devices. The S2 status line, however is 
logically equivalent to the M/IO signal and can be used 
for this purpose.

6. Other Considerations
The RQ/GT timing is covered in the next section and will 
not be duplicated here. The only additional signals to be 
considered in the maximum mode are the queue status 
lines QSO, QS1. These signals are changed on the 
leading edge of each clock cycle (high to low transition) 
including idle and wait cycles (the queue status is in
dependent of the bus activity). External logic may sam
ple the lines on the low to high transition of each clock 
cycle. When sampled, the signals indicate the queue ac
tivity in the previous clock cycle and therefore lag the 
CPU's activity by one cycle. The TEST input require

ments are identical to those stated for the minimum 
mode.
To inform the 8288 of HALT status when a HALT instruc
tion is executed, the 8086 will initiate a status transition 
from passive to HALT status. The status change will 
cause the 8288 to emit an ALE pulse with an indeter
minate address. Since no bus cycle is initiated (no com
mand is issued), the results of this address will not af
fect CPU operation (i.e., no response such as READY is 
expected from the system). This allows external hard
ware to latch and decode all transitions in system 
status.

3G. Bus Control Transfer (HOLD/HLDA and RQ/GT)
The 8086 supports protocols for transferring control of 
the local bus between itself and other devices capable 
of acting as bus masters. The minimum mode config
uration offers a signal level handshake similar to the 
8080 and 8085 systems. The maximum mode provides 
an enhanced pulse sequence protocol designed to op
timize utilization of CPU pins while extending the 
system configurations to two prioritized levels of alter
nate bus masters. These protocols are simply tech
niques for arbitration of control of the CPU’s local bus 
and should not be confused with the need for arbitration 
of a system bus.

1. MINIMUM MODE
The minimum mode 8086 system uses a hold request in
put (HOLD) to the CPU and a hold acknowledge (HLDA) 
output from the CPU. To gain control of the bus, a 
device must assert HOLD to the CPU and wait for the 
HLDA before driving the bus. When the 8086 car^relin
quish the bus, it floats the RD, WR, INTA and M/IO com
mand lines, the DEN and DT/R bus control lines and the 
multiplexed address/data/status lines. The ALE signal is 
not three-stated. The CPU acknowledges the request 
with HLDA to allow the requestor to take control of the 
bus. The requestor must maintain the HOLD request ac
tive until it no longer requires the bus. The HOLD re
quest to the 8086 directly affects the bus interface unit 
and only indirectly affects the execution unit. The CPU 
will continue to execute from its internal queue until 
either more instructions are needed or an operand 
transfer is required. This allows a high degree of overlap 
between CPU and auxiliary bus master operation. When 
the requestor drops the HOLD signal, the 8086 will re
spond by dropping HLDA. The CPU will not re-drive the 
bus, command and control signals from three-state until 
it needs to perform a bus transfer. Since the 8086 may 
still be executing from its internal queue when HOLD 
drops, there may exist a period of time during which no 
device is driving the bus. To prevent the command lines 
from drifting below the minimum VIH level during the 
transition of bus control, 22K ohm pull up resistors 
should be connected to the bus command lines. The 
timing diagram in Figure 3G1 shows the handshake se
quence and 8086 timing to sample HOLD, float the bus, 
and enable/disable HLDA relative to the CPU clock.
To guarantee valid system operation, the designer must 
assure that the requesting device does not assert con
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trol of the bus prior to the 8086 relinquishing control and 
that the device relinquishes control of the bus prior to 
the 8086 driving the bus. The HOLD request into the 
8086 must be stable THVCH ns prior to the CPU’s low to 
high clock transition. Since this input is not syn
chronized by the CPU, signals driving the HOLD input 
should be synchronized with the CPU clock to 
guarantee the setup time is not violated. Either clock 
edge may be used. The maximum delay between HLDA 
and the 8086 floating the bus is TCLAZmax- 
TCLHAVmin = 70 ns. If the system cannot tolerate the 
70 ns overlap, HLDA active from the 8086 should be 
delayed to the device. The minimum delay for the CPU to 
drive the control bus from HOLD inactive is THVCHmin 
+ 3TCLCL = 635 ns and THVCHmin +3TCLCL + 
TCHCL = 701 ns to drive the multiplexed bus. If the 
device does not satisfy these requirements, HOLD inac
tive to the 8086 should be delayed. The delay from HLDA 
inactive to driving the busses is TCLCL + TCLCHmin- 
TCLHAVmax = 158 ns for the control bus and 2TCLCL- 
TCLHAVmax = 240 ns for the data bus.

1.1 Latency of HLDA to HOLD
The decision to respond to a HOLD request is made in 
the bus interface unit. The major factors that influence 
the decision are the current bus activity, the state of the 
LOCK signal internal to the CPU (activated by the soft
ware LOCK prefix) and interrupts.

If the LOCK is not active, an interrupt acknowledge cy
cle is not in progress and the BIU (Bus Interface Unit) is 
executing a T4 orTI when the HOLD request is received, 
the minimum latency to HLDA is:

35 ns THVCH min (Hold setup)
65 ns TCHCL min
200 ns TCLCL (bus float delay)
10 ns TCLHAV min (HLDA delay)
310 ns @ 5 MHz

The maximum delay under these conditions is:

34 ns Gust missed setup time)
200 ns delay to next sample
82 ns TCHCL max
200 ns TCLCL (bus float delay)
160 ns TCLHAV max (HLDA delay)
677 ns @ 5 MHz

If the BIU just initiated a bus cycle when the HOLD Re-
quest was received, the worst case response time is:

34 ns THVCH Gust missed)
82 ns TCHCL max
7*200 bus cycle execution
N*200 N wait states/bus cycle
160 ns TCLHAV max (HLDA delay)

1.676 pS @ 5 MHz, no wait states

Note, the 200 ns delay for just missing is included in the 
delay for bus cycle execution. If the operand transfer is 
a word transfer to an odd byte boundary, two bus cycles 
are executed to perform the transfer. The BIU will not 
acknowledge a HOLD request between the two bus 
cycles. This type of transfer would extend the above 
maximum latency by four additional clocks plus N addi
tional wait states. With no wait states in the bus cycle, 
the maximum would be 2.476 microseconds.
Although the minimum mode 8086 does not have a hard
ware LOCK output, the software LOCK prefix may still 
be included in the instruction stream. The CPU internal
ly reacts to the LOCK prefix as would the maximum 
mode 8086. Therefore, the LOCK does not allow a HOLD 
request to be honored until completion of the instruc
tion following the prefix. This allows an instruction 
which performs more than one memory reference (ex. 
ADD [BX], CX; which adds CX to [BX]) to execute without 
another bus master gaining control of the bus between 
memory references. Since the LOCK signal is active for 
one clock longer than the instruction execution, the 
maximum latency to HLDA is:

(SAMPLE)

Figure 3G1. HOLD/HLDA Sequence
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34 ns THVCH (just miss)
200 ns delay to next sample
82 ns TCHCL max
(M + 1)*200 ns LOCK instruction execution
200 ns set up HLDA (internal)
160 ns TCLHAV max (HLDA delay)

(M *200 ns) + 876 ns @ 5 M Hz

If the HOLD request is made at the beginning of an inter
rupt acknowledge sequence, the maximum latency to
HLDA is:

34 ns THVCH (just missed)
82 ns TCHCL max
2600 ns 13 clock cycles for INTA
160 ns TCLHAV max

2.876 Ms @ 5 MHz

1.2 Minimum Mode DMA Configuration

A typical use of the HOLD/HLDA signals in the minimum 
mode 8086 system is bus control exchange with DMA 
devices like the Intel 8257-5 or 8237 DMA controllers. 
Figure 3G2 gives a general interconnect for this type of 
configuration using the 8237-2. The DMA controller 
resides on the upper half of the 8086's local bus and 
shares the A8-A15 demultiplexing address latch of the 
8086. All registers in the 8237-2 must be assigned odd 
addresses to allow initialization and interrogation by the 
CPU over the upper half of the data bus. The 8086 
RD/WR commands must be demultiplexed to provide 
separate I/O and memory commands which are compati
ble with the 8237-2 commands. The AEN control from 
the 8237-2 must disable the 8086 commands from the 
command bus, disable the address latches from the 
lower (A0-A7) and upper (A19-A16) address bus and 
select the 8237-2 address strobe (ADSTB) to the A8-A15 
address latch. If the data bus is buffered, a pull-up 
resistor on the DEN line will keep the buffers disabled. 
The DMA controller will only transfer bytes between

V c c

BHE

COMMAND
BUS

Aie-ie

LOCAL DATA 
BUS

A15-8

A7-0

Figure 3G2. DMA Using the 8237-2
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circuit given in Section 4. Address lines A7-A0 are driven 
directly by the 8237 and BHE is generated by inverting 
AO. If A19-A16 are used, they must be provided by an ad
ditional port with either a fixed value or initialized by 
software and enabled onto the address bus by AEN.
Figure 3G3 gives an interconnection for placing the 
8257 on the system bus. By using a separate latch to 
hold the upper address from the 8257-5 and connecting 
the outputs to the address bus as shown, 16-bit DMA 
transfers are provided. In this configuration, AEN 
simultaneously enables AO and BHE to allow word 
transfers. AEN still disables the CPU interface to the 
command and address busses.

2. MAXIMUM MODE (RQ/GT)
The maximum mode 8086 configuration supports a sig
nificantly different protocol for transferring bus control. 
When viewed with respect to the HOLD/HLDA sequence 
of the minimum mode, the protocol appears difficult to 
implement externally. However, it is necessary to under
stand the intent of the protocol and its purpose within 
the system architecture.

I M G  I I I C I A I l i i U l l i  I I I U U C  nVj i fVi l  I O C ^ U C I I U C  IO  I I K C l i U O U  114

transfer control of the CPU local bus between the CPU 
and alternate bus masters which reside totally on the 
local bus and share the complete CPU interface to the 
system bus. The complete interface includes the ad
dress latches, data transceivers, 8288 bus controller and 
8289 multi master bus arbiter. If the alternate bus 
masters in the system do not reside directly on the 8086 
local bus, system bus arbitration is required rather than 
local CPU bus arbitration. To satisfy the need for multi- 
master system bus arbitration at each CPU’s system in
terface, the 8289 bus arbiter should be used rather than 
the CPU RQ/GT logic.
To allow a device with a simple HOLD/HLDA protocol to 
gain control of a single CPU system bus, the circuit in 
Figure 3G4 could be used. The design is effectively a 
simple bus arbiter which isolates the CPU from the 
system bus when an alternate bus master issues a 
HOLD request. The output of the circuit, AEN (Address 
ENable), disables the 8288_and 8284 when the 8086 in
dicates idle status (S0,S1 ,S2 = 1), LOCK is not active and 
a HOLD request is active. With AEN inactive, the 8288 
three-states the command outputs and disables DEN

CPU
BUS

INTERFACE

CONTROLS ARE SAME AS 8-BIT 
TRANSFER CONFIGURATION WITH 
MANIPULATION OF THE DATA BUS

Figure 3G3. 8006 M in System, 8257 on System Bus 16-Bit Transfers
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which three-states the data bus transceivers. AEN must 
also three-state the address latch (8282 or 8283) outputs. 
These actions remove the 8086 from the system bus and 
allow the requesting device to drive the system bus. The 
AEN signal to the 8284 disables the ready input and 
forces a bus cycle initiated by the 8086 to wait until the 
8086 regains control of the system bus. The CPU may 
actively drive its local bus during this interval.
The requesting device will not gain control of the bus 
during an 8086 initiated bus cycle, a locked instruction 
or an interrupt acknowledge cycle. The LOCK signal 
from the 8086 is active between INTA cycles to 
guarantee the CPU maintains control of the bus. Unlike 
the minimum mode 8086 HOLD response, this arbitra
tion circuit allows the requestor to gain control of the 
bus between consecutive bus cycles which transfer a 
word operand on an odd address boundary and are not 
locked. Depending on the characteristics of the re
questing device, any of the 74LS74 outputs can be used 
to generate a HLDA to the device.

Upon completion of its bus operations, the alternate bus 
master must relinquish control of the system bus and 
drop the HOLD request. After AEN goes inactive, the ad
dress latches and data transceivers are enabled but, if a 
CPU initiated bus cycle is pending, the 8288 will not 
drive the command bus until a minimum of 105 ns or 
maximum of 275 ns later. If the system is normally not 
ready, the 8284 AEN input may immediately be enabled 
with ready returning to the CPU when the selected 
device completes the transfer. If the system is normally 
ready, the 8284 AEN input must be delayed long enough 
to provide access time equivalent to a normal bus cycle. 
The 74LS74 latches in the design provide a minimum of 
TCLCHmin for the alternate device to float the system 
bus after releasing HOLD. They also provide 2TCLCL ns 
address access and 2TCLCL-TAEVCHmax ns (8288 
command enable delay) command access prior to ena
bling 8284 ready detection. If HLDA is generated as 
shown in Figure 3G4, TCLCL ns are available for the 
8086 to release the bus prior to issuing HLDA while 
HLDA is dropped almost immediately upon loss of 
HOLD.

A circuit configuration for an 8257-5 using this tech
nique to interface with a maximum mode 8086 can be 
derived from Figure 3G3. The 8257-5 has its own address 
latch for buffering the address lines A15-A8 and uses its 
AEN output to enable the latch onto the address bus. 
The maximum latency from HOLD to HLDA for this cir
cuit is dependent on the state of the system when the 
HOLD is issued. For an idle system the maximum delay 
is the propagation delay through the nand gate and R/S 
flip-flop (TD1) plus 2TCLCL plus TCLCHmax plus prop
agation delay of the 74LS74 and 74LS02 (TD2). For a 
locked instruction it becomes: TD1+TD2+(M + 2) 
*TCLCL +TCLCHmax where M is the number of clocks 
required for execution of the locked instruction. For the 
in te rrup t acknowledge cycle the la tency is 
TD1+TD2 + 9 'TCLCL + TCLCHmax.

2.2 Shared Local Bus (RQ/GT Usage)
The RQ/GT protocol was developed to allow up to two in
struction set extension processors (co-processors) or 
other special function processors (like the 8089 I/O 
processor in local mode) to reside directly on the 8086 
local bus. Each RQ/GT pin of the 8086 supports the full 
protocol for exchange of bus control (Fig. 3G5). The se
quence consists of a request from the alternate bus 
master to gain control of the system bus, a grant from 
the CPU to indicate the bus has been relinquished and a 
release pulse from the alternate master when done. The 
two RQ/GT pins (RQ/GT0 and RQ/GT1) are prioritized 
with RQ/GT0 having the highest priority. The prioritiza
tion only occurs if requests have been received on both 
pins before a response has been given to either. For ex
ample, if a request is received on RQ/GT1 followed by a 
request on RQ/GTO prior to a grant on RQ/GT 1, RQ/GTO 
will gain priority over RQ/GT1. However, if RQ/GTi had 
already received a grant, a request on RQ/GTO must wait 
until a release pulse is received on RQ/GT1.

The request/grant sequence interaction with the bus in
terface unit is similar to HOLD/HLDA. The CPU con
tinues to execute until a bus transfer for additional in
structions or data is required. If the release pulse is

-  AEN (TO 8268 & 8282/3's)

Figure 3G4. Circuit to Translate HOLD into AEN Disable for Max Mode 8086
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received before the CPU needs the bus, It will not drive 
the bus until a transfer Is required.
Upon receipt of a request pulse, the 8086 floats the 
multjplexed address, data and status bus, the SO, ST, 
and S2 status lines, the LOCK pin and RD. This action 
does not disable the 8288 command outputs from driv
ing the command bus and does not disable the address 
latches from driving the address bjj_s. The 8288_contain3 
internal pull-up resistors on the SO, S1, and S2 status 
lines to maintain the passive state while the 8086 out
puts are three-state. The passive state prevents the 8288 
from initiating any commands or activating DEN to 
enable the transceivers buffering the data bus. If the 
device issuing the RQ does not use the 8288, it must 
disable the 8288 command outputs by disabling the 
8288 AEN input. Also, address latches not used by the 
requesting device must be disabled.

GND c 1 v " 40 □  vcc
AD14 c 2 39 □  AD15

AD13 c 3 38 □  A16/S3
AD12 c 4 37 □  A1T/S4

AD11 q5 36 □  A18/S5

AD10 c 6 35 □  A19/S6
AD9 c 7 34 □  SH6S7
AD8 □ 8 33 □  m n im x

AD7 c 9 32 3 rd

AD6 c 10 31 ■  rq/gto

ADS c 11 30 ■  RQ/GT 1
AD4 c 12 29 □  LOCK

AD3 c 13 28 □  S2

AD2 c 14 27 U s i
AD1 c 15 26 □  so
ADO c 16 25 □  oso
NMI c 17 24 □  QS1

INTR q 18 23 □  TEST
CLK c 19 22 □  read y

GND c 20 21 □  RESET

Figure 3G5. 8086 RQ/GT Connections

2.3 RQ/GT Operation
Detailed timing of the RQ/GT sequence is given in 
Fjaure 3G6. To request a transfer of bus control via the 
EO/ST lines, the device must drive the line low for no 
more than one CPU clock interval to generate a request 
pulse. The pulse must be synchronized with the CPU 
clock to guarantee the appropriate setup and hold times 
to the clock edge which samples the RQ/GT lines in the 
CPU. After issuing a request pulse, the device must 
begin sampling for a grant pulse with the next low to 
high clock edge. Since the 8086 can respond with a 
grant pulse in_the_clock cycle immediately following the 
request, the RQ/GT line may not return to the positive 
level between the request and grant pulses. Therefore 
edge triggered logic is not valid for capturing a grant 
pulse. It also implies the circuitry which generates the 
request pulse must guarantee the request is removed in 
time to detect a grant from the CPU. After receiving the 
grant pulse, the requesting device may drive the local 
bus. Since the 8086 does not float the address and data 
bus, LOCK or RD until the high to low clock transition 
following the low to high clock transition the requestor 
uses to sample for the grant, the requestor should wait 
the float delay of the 8086 (TCLAZ) before driving the 
local bus. This precaution prevents bus contention dur
ing the access of bus control by the requestor.

To return control of the bus to the 8086, the alternate 
bus master relinquishes bus control and issues a 
release pulse_on the same RQ/GT line. The 8086 may 
drive the S0-S2 status lines, RD and LOCK, three clock 
cycles after detecting the release pulse and the ad- 
dress/data bus TCHCLmin ns (clock high time) after the 
status lines. The alternate bus master should be three- 
stated off the local bus and have other 8086 interface 
circuits (8288 and address latches) re-enabled within the 
8086 delay to regain control of the bus.

2.4 RQ/GT Latency

The RQ to ST latency for a single RQ/GT line is similar 
to the HOLD to HLDA latency. The cases given for the 
minimum mode 8086 also apply to the maximum mode. 
For each case the delay from RQ detection by the CPU 
to GT detection by the requestor is:

(HOLD to HLDA delay) -  (THVCH + TCHCL + TCLHAV)

1. THE MM REOKVEt THE »Ou LINES

Figure 3G6. RequeetfGrant Sequence
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This gives a clock cycle maximum delay for an idle bus 
interface. All other cases are the minimum mode result 
minus 476 ns. If the 8086 has previously issued a grant 
on one of the RQ/GT lines, a request on the other RQ/GT 
line will not receive a grant until the first^evice releases 
the interface with a release pulse on its RQ/GT line. The 
delay from release on one R5/GT line to a grant on the 
other is typically one clock period as shown in Figure 
3G7. Occasionally the delay from a release on RQ/GT1

to a grant on RQ/5T0 will take two clock cycles and is a 
function of a pending request for transfer of control 
from the execution unit. The latency from request to 
grant when the interface is under control of a bus 
master on the other RQ/GT line is a function of the other 
bus master. The protocol embodies no mechanism for 
the CPU to force an alternate bus master off the bus. A 
watchdog timer should be used to prevent an errant 
alternate bus master from ‘hanging’ the system.

CHANNEL 0 TO 1

« _ n _TL
A ___ A

\ ___ A

CHANNEL 1 TO 0

; _ n . j ~ ^

A___A
A___A

Figure 3G7. Channel Transfer Delay
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quence into a nu/vji puise sequence is given in r ig u r l ^ “^7rops ai me Deginning or me release puise to provide 
3G8. After receiving the grant pulse, the HLDA is ena- 2TCLCL + TCLCH for the requestor to relinquish control
bled TCHCLmin ns before the CPU has three-stated the of the status lines and 3TCLCL to float the remaining
bus. If the requesting circuit drives the bus within 20 ns signals.

Figure 3G8a. HOLD/HLD/tO-RQ/GT Conversion Circuit

HLDA

Figure 3G8b. HOLD/HLDA-OAQ/GT Conversion Timing
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4. INTERFACING WITH I/O
The 8086 is capable of interfacing with 8- and 16-bit I/O 
devices using either I/O instructions or memory mapped 
I/O. The I/O instructions allow the I/O devices to reside 
in a separate I/O address space while memory mapped 
I/O allows the full power of the instruction set to be 
used for I/O operations. Up to 64K bytes of I/O mapped 
I/O may be defined in an 8086 system. To the program
mer, the separate I/O address space is only accessible 
with INPUT and OUTPUT commands which transfer data 
between I/O devices and the AX (for 16-bit data trans
fers) or AL (for 8-bit data transfers) register. The first 256 
bytes of the I/O space (0 to 255) are directly addressable 
by the I/O instructions while the entire 64K is accessible 
via register indirect addressing through the DX register. 
The later technique is particularly desirable for service 
procedures that handle more than one device by allow
ing the desired device address to be passed to the pro
cedure as a parameter. I/O devices may be connected to 
the local CPU bus or the buffered system bus.

4A. Eight-Bit I/O
Eight-bit I/O devices may be connected to either the up
per or lower half of the data bus. Assigning an equal 
number of devices to the upper and lower halves of the 
bus will distribute the bus loading. If a device is con
nected to the upper half of the data bus, all I/O ad
dresses assigned to the device must be odd (A0= 1). If 
the device is on the lower half of the bus, its addresses 
must be even (A0 = 0). The address assignment directs 
the eight-bit transfer to the upper (odd byte address) or 
lower (even byte address) half of the sixteen-bit data 
bus. Since AO will always be a one or zero for a specific 
device, AO cannot be used as an address input to select 
registers within a specific device. If a device on the 
upper half of the bus and one on the lower half are 
assigned addresses that differ only in AO (adjacent odd 
and even addresses), AO and BHE must be conditions of 
chip select decode to prevent a write to one device from 
erroneously performing a write to the other. Several 
techniques for generating I/O device chip selects are 
given in Figure 4A1.
The first technique (a) uses separate 8205’s to generate 
chip selects for odd and even addressed byte periph
erals. If a word transfer is performed to an even ad
dressed device, the adjacent odd addressed I/O device 
is also selected. This allows accessing the devices in
dividually with byte transfers or simultaneously as a 
16-bit device with word transfers. Figure 4A1(b) restricts 
the chip selects to byte transfers, however a word 
transfer to an odd address will cause the 8086 to run two 
byte transfers that the decode technique will not detect. 
The third technique simply uses a single 8205 to 
generate odd and even device selects for byte transfers 
and will only select the even addressed eight-bit device 
on a word transfer to an even address.

If greater than 256 bytes of the I/O space or memory 
mapped I/O is used, additional decoding beyond what is 
shown in the examples may be necessary. This can be 
done with additional TTL, 8205’s or bipolar PROMs (In
tel’s 3605A). The bipolar PROMs are slightly slower than 
multiple levels of TTL (50 ns vs 30 to 40 ns for TTL) but

provide full decoding in a single package and allow in
serting a new PROM to reconfigure the system I/O map 
without circuit board or wiring modifications (Fig. 4A2).

EVEN ADDRESSED 
WORD OR BYTE 
PERIPHERALS

ODD ADDRESSED 
BYTE PERIPHERALS

(»)

EVEN ADDRESSED 
BYTE PERIPHERALS

ODD ADDRESSED 
BYTE PERIPHERALS

ADDRESS _ 

Ao -

Ao-1 Oo
8205

a 2
Ei
e2
E3

Or

EVEN ADDRESSED
PERIPHERALS
(WORD/BYTE)

ODD ADDRESSED
PERIPHERALS
(BYTE)

Figure 4A1. Techniques for I/O Device Chip Selects

8q 11
10q CS2 12
5

130 2
7 A1

. 3605 
A-1

O1 14
4 15
3

16__2
As As

1 17A/

Figure 4A2. Bipolar PROM Decoder

One last technique for interfacing with eight-bit periph
erals is considered in Figure 4A3. The sixteen-bit data 
bus is multiplexed onto an eight-bit bus to accom
modate byte oriented DMA or block transfers to memory 
mapped eight-bit I/O. Devices connected to this inter
face may be assigned a sequence of odd and even ad
dresses rather than all odd or even.

A-47



AP-67

74LS02 74LS368

NOTE: IF IT IS NOT NECESSARY TO THREE-STATE THE COMMAND LINES, A 
DECODER (8205 OR 74S138) COULD BE USED. THE 74LS257 IS NOT 
RECOMMENDED SINCE THE OUTPUTS MAY EXPERIENCE VOLTAGE 
SPIKES WHEN ENTERING OR LEAVING THREE-STATE.

F ig u r e  4 A 3 .  1 6 - t o  8 - B it  B u s  C o n v e r s io n

F ig u r e  4 C 1 . D e c o d in g  M e m o r y  a n d  I/O  R D  a n d  W R  C o m m a n d s  fo r  

M in im u m  M o d e  8 0 8 6  S y s te m s

4B. Sixteen-Bit I/O
For obvious reasons of efficient bus utilization and sim
plicity of device selection, sixteen-bit I/O devices should 
be assigned even addresses. To guarantee the device is 
selected only for word operations, AO and BHE should 
be conditions of chip select code (Fig. 4B1).

Linear select techniques (Fig. 4C2) for I/O devices can 
only be used with devices that either reside in the I/O ad
dress space or require more than one active chip se'ect 
(at least one low active and one high active). Devices 
with a single chip select input cannot use linear select if 
they are memory mapped. This is due to the assignment 
of memory address space FFFFFOH-FFFFFFH to reset 
startup and memory space 00000H-003FFH to interrupt 
vectors.

ADDRESS

Ad
ER E

EVEN ADDRESSED 
WORD PERIPHERALS

F ig u r e  4 B 1 .  S ix te e n - B i t  I/O  D e c o d e

4C. General Design Considerations
MIN/MAX, MEMORY I/O MAPPED AND LINEAR SELECT
Since the minimum mode 8086 has common read and 
write commands for memory and I/O, if the memory and 
I/O address spaces overlap, the chip selects must be 
qualified by M/IO to determine which address space the 
devices are assigned to. This restriction on chip select 
decoding can be removed if the I/O and memory ad
dresses in the system do not overlap and are property 
decoded; all I/O is memory mapped; or RD, WR and M/IO 
are decoded to provide separate memory and I/O 
read/write commands (Fig. 4C1). The 8288 bus controller 
in the maximum mode 8086 system generates separate 
I/O and memory commands in place of a M/IO signal. An 
I/O device is assigned to the I/O space or memory space 
(memory mapped I/O) by connection of either I/O or 
memory command lines to the command inputs of the 
device. To allow overlap of the memory and I/O address 
space, the device must not respond to chip select alone 
but must require a combination of chip select and a read 
or write command.

ADDRESS ____o C3
LINE

I0W C -------O WR

(a) SEPARATE I/O COMMA

a d d r e s s ' cs
l in e s } — o Cs

RD -----o RD

WR -----O WR

(b) MULTIPLE CHIP SELECTS

F ig u r e  4 C 2 . L in e a r  S e le c t  f o r  I/O

4D. Determining I/O Device Compatibility
This section presents a set of A.C. characteristics which 
represent the timing of the asynchronous bus interface 
of the 8086. The equations are expressed in terms of the 
CPU clock (when applicable) and are derived for 
minimum and maximum modes of the 8086. They repre
sent the bus characteristics at the CPU.
The results can be used to determine I/O device re
quirements for operation on a single CPU local bus or 
buffered system bus. These values are not applicable to
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a Multibus system bus interface. The requirements for a 
Multibus system bus are available in the Multibus inter
face specification.
A list of bus parameters, their definition and how they 
relate to the A.C. characteristics of Intel peripherals are 
given in Table 4D1. Cycle dependent values of the 
parameters are given in Table 4D2. For each equation, if 
more than one signal path is involved, the equation 
reflects the worst case path.

the relaxed device requirements for even a large com
plex configuration. The analysis assumes all com
ponents are exhibiting the specified worst case param
eter values and are under the corresponding tem
perature, voltage and capacitive load conditions. If the 
capacitive loading on the 8282/83 or 8286/87 is less than 
the maximum, graphs of delay vs. capacitive loading in 
the respective data sheets should be used to determine 
the appropriate delay values.

ex. TAVRLfaddress valid before read active) =
(1) Address from CPU to RD active

( or)
(2) ALE (to enable the address through the 

address latches) to RD active
The worst case delay path is (1).
For the maximum mode 8086 configurations, TAVWLA, 
TWLWHA and TWLCLA are relative to the advanced 
write signal while TAVWL, TWLWH and TWLCL are 
relative to the normal write signal.

T A B L E  4 D 1 .  P A R A M E T E R S  F O R  P E R IP H E R A L  C O M P A T IB IL IT Y

TAVRL — Address s tab le  before RD leading edge (TAR)
TRHAX — Address hold a fte r RD tra iling  edge (TRA)
TRLRH — Read pulse w id th  (TRR)
TRLDV — Read to  data valid delay (TRD)
TRHDZ — Read tra iling  edge to  data floating  (TDF)
TAVDV — Address to  valid data delay (TAD)
TRLRL — Read cyc le  tim e (TRCYC)
TAVW L — Address valid before w rite  leading edge (TAW)
TAVW LA — Address va lid  before advanced w rite  (TAW)
TWHAX — Address hold a fte r w rite  tra iling  edge (TWA)
TWLWH — W rite  pulse w id th  (TWW)
TW LW HA — Advanced w rite  pulse w id th  (TWW)
TDVWH — Data set up to  w rite  tra iling  edge (TDW)
TWHDX — Data hold from  w rite  tra ilin g  edge (TWD)
TW LCL — W rite  recovery tim e (TRV)
TW LCLA — Advanced w rite  recovery tim e (TRV)
TSVRL — Chip se lect stab le  before RD leading edge (TAR)
TRHSX — Chip se lect hold a fte r RD tra iling  edge (TRA)
TSLDV — Chip  se lect to  data valid delay (TRD)
TSVWL — Chip  se lect stable before WR leading edge (TAW)
TWHSX — Chip se lect hold a fte r WR tra iling  edge (TWA)
TSVWLA — Chip  se lect stable before advanced w rite  (TAW)

Sym bols in parentheses are equivalent parameters specified for 
Intel peripherals.

T A B L E  4 D 2 . C Y C L E  D E P E N D E N T  P A R A M E T E R  R E Q U IR E M E N T S  

F O R  P E R IP H E R A L S

(a ) M in im u m  M o d e

TAVR L=  TC LC L+  TCLRLm in  -  TCLAVm ax = T C L C L -  100 
TRH AX  = T C LC L  -  TCLRHm ax + TCLLH m in  = T C LC L  -  150 
TRLRH  = 2 T C L C L -  60 = 2TC LC L -  60 
TRLD V  = 2 T C L C L -  TCLRLm ax -  TDVCLm in = 2TC LC L -  195 
TRHDZ=  TRHAVm in = 155 ns
TAVDV = 3 T C L C L -  TDVCLm in -  TCLAVm ax = 3 T C L C L -  140 
TRLR L  = 4TC LC L = 4TCLCL
TAVW L = TC LC L+  T C V C TV m in -T C LA V m a x  = T C L C L -  100 
TW H AX  = T C LC L  + TCLLH m in  -  TCVCTXm ax = T C L C L -  110 
TW LW H = 2TC LC L -  40 = 2 T C L C L -  40
TDVW H = 2TC LC L+  TCVCTXm in -  TCLDVm ax = 2 T C L C L -  100 
TW HDX = TWHDZm in = 89 
TW LC L  = 4TC LC L=  4TCLCL
TWH D XB= TCLC H m in+ (-TC VC TXm ax+  TCVCTXm in)=

T C L C H m in -  50_______________________________________________

Note: Delays relative to ch ip  se lect are a function o f the ch ip  se lect 
decode technique used and are equal to: equivalent delay 
from address -  chip se lect decode delay.

(b )  M a x im u m  M o d e

TA V R L  = T C LC L  + TCLM Lm in  -  TCLAVm ax = T C LC L  -  100 
TRH AX  = T C LC L  -  TCLM H m ax + TCLLH m in  = T C LC L  -  40 
TRLRH  = 2 T C L C L -  TCLM Lm ax + TCLM H m in  = 2 T C L C L -  25 
TRLDV = 2 T C L C L -  TCLM Lm ax -  TDVCLm in = 2 T C L C L -  65 
TRHDZ=  TRHAVm in=  155
TAVDV = 3 T C L C L -  TDVCLm in -  TCLAVm ax = 3 T C L C L -  140
TR LR L  = 4TC LC L = 4TC LC L
TAVW LA  = TAVR L  = T C LC L  -  100
TAVW L = TAVR L  + T C LC L  = 2 T C L C L -  100
TW H AX  = TRH AX  = T C LC L  -  40
TW LW H A = TRLRH  = 2TC LC L -  25
TW LW H = TRLRH  -  T C LC L  = T C LC L  -  25
TDVW H = 2TCLCL+  TCLM H m in  -  TCLDVm ax = 2 T C L C L -  100
TW HDX = TCLCH m in  -  TCLM H m ax + TCHDZm in = TCLC H m in  -  30
TW LC L  = 3TCLCL=  3TCLCL
TW LC LA  = 4TC LC L = 4TCLCL

In the given list of equations, TWHDXB is the data hold 
time from the trailing edge of write for the minimum 
mode with a buffered data bus. For this equation, 
TCVCTX cannot be a minimum for data hold and a max
imum for write inactive. The maximum difference is 50 
ns giving the result TCLCH-50. If the reader wishes to 
verify the equations or derive others, refer to Section 3F 
for assistance with interpreting the 8086 bus timing 
diagrams.
Figure 4D1 shows four representative configurations 
and the compatible Intel peripherals (including wait 
states if required) for each configuration are given in 
Table 4D3. Configuration 1 and 2 are minimum mode 
demultiplexed bus 8086 systems without (1) and with (2) 
data bus transceivers. Configurations 3 and 4 are max
imum mode systems with one (3) and two (4) levels of ad
dress and data buffering. The fast configuration is 
characteristic of a multi-board system with bus buffers 
on each board. The 5 MHz parameter values for these 
configurations are given in Table 4D4 and demonstrate

T A B L E  4 D 3 .  C O M P A T IB L E  P E R IP H E R A L S  (5  M H z  8 0 8 6 )

C o n f ig u r a t io n

M in im u m  M o d e M a x im u m  M o d e

U n b u f fe r e d B u f fe r e d B u f fe r e d F u l ly  B u f fe r e d

8251A ^ 1W s’ S’
8253-5 ^ 1W s’ S’
8255A-5 ^ 1W ✓ S’
8257-5 ^ 1W s’
8259A ^ s’ p*
8271 ^ 1W s’ S’
8273 ^ 1W s’ S’
8275 ✓ 1W S’
8279-5 ✓ 1W s- >s
8041 A* ^ 1W s’
8741A  ^ 1W s-
8291 ^ V* *s
•Includes other Intel peripherals based on the 8041A  (i.e., 8292, 8294,
8295).

✓  im plies full operation w ith no wait states.

W  im plies the number of wait states required.
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Configuration
Minimum Mode Maximum Mode

Unbuffered Buffered Buffered Fully Buffered

TAVR L 70 72 70 58

TRHAX 57 27 169 141
TRLRH 340 320 375 347
TRLDV 205 150 305 261
TRHDZ 155 158 382 360
TAVDV 430 400 400 372
TRLR L 800 770 800 772
TAVW L 70 72 270 258
TAVW LA — — 70 58
TW HAX 97 67 169 141
TW LW H 360 340 175 147
TW LW H A — — 375 347
TDVW H 300 339 270 258
TW HDX 88 15 95 13
TW LC L 800 772 600 572
TW LC LA — — 800 772
TSVRL 52 54 52 40
TRHSX 50 50 171 143
TSLDV 412 382 382 354
TSVW L 52 54 252 240
TW HSX 90 90 171 143
TSVW LA - - 52 40

—  Not applicable.

iui auuiuunai ueiays irom aaaress laicnes ana aaia 
transceivers in the configuration. Once the system con
figuration is selected, the system requirements can be 
determined at the peripheral interface and used to 
evaluate compatibility of the peripheral to the system. 
During this process, two areas must be considered. 
First, can the device operate at maximum bus band
width and if not, how many wait states are required. Sec
ond, are there any problems that cannot be resolved by 
wait states.
Examples of the first are TRLRH (read pulse width) and 
TRLDV (read access or RD active to output data valid). 
Consider address access time (valid address to valid 
data) for the maximum mode fully buffered configura
tion.

TAVDV = 3TCYC- 140 ns — address latch delay — 
address buffer delay — chip select decode delay — 2 
transceiver delays

Assuming inverting latches, buffers and trans
ceivers with 22 ns max delays (8283, 8287) and a 
bipolar PROM decode with 50 ns delay, the result
is:

TAVDV = 322 ns @ 5 MHz

b. MINIMUM MODE BUFFERED DATA AND COMMAND BUSSES 

M/R5

Figure 4D1. 8086 System Configurations
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c. MAXIMUM MODE BUFFERED DATA BUS

NOTE: FOR OPTIMUM PERFORM ANCE WITH IN TEL PERIPHERALS, AIOW (ADVANCED 
WRITE) SHOULD BE USED.

d. MAXIMUM MODE DOUBLE BUFFERED SYSTEM

Figure 4D1. 8086 System Configurations (Con’t)

The result gives the address to data valid delay required 
at the peripheral (in this configuration) to satisfy zero 
wait state CPU access time. If the maximum delay 
specified for the peripheral is less than the result, this 
parameter is compatible with zero wait state CPU opera
tion. If not, wait states must be inserted until TAVDV + n 
* TCYC (n is the number of wait states) is greater than 
the peripherals maximum delay. If several parameters 
require wait states, either the largest number required 
should always be used or different transfer cycles can 
insert the maximum number required for that cycle.
The second area of concern includes TAVRL (address 
set up to read) and TWHDX (data hold after write). 
Incompatibilities in this area cannot be resolved by the 
insertion of wait states and may require either addi

tional hardware, slowing down the CPU (if the parameter 
is related to the clock) or not using the device.
As an example consider address valid prior to advanced 
write low (TAVWLA) for the maximum mode fully buf
fered system.

TAVWLA = TCYC -  100 ns — address latch delay — 
address buffer delay — chip select decode delay + 
write buffer delay (minimum)
Assuming inverting latches and buffers with 22 ns 
delay (8283, 8287) and an 8205 address decoder with 
18 ns delay
TAVWLA = 38 ns which is the time a 5 MHz 8086 
system provides
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4E. I/O Examples
1. Consider an interrupt driven procedure for handling 
multiple communication lines. On receiving an interrupt 
from one of the lines, the invoked procedure polls the 
lines (reading the status of each) to determine which 
line to service. The procedure does not enable lines but 
simply services input and output requests until the 
associated output buffer is empty (for output requests) 
or until an input line is terminated (for the example only 
EOT is considered). On detection of the terminate condi
tion, the routine will disable the line. It is assumed that 
other routines will fill a lines output buffer and enable 
the device to request output or empty the input buffer 
and enable the device to input additional characters.
The routine begins operation by loading CX with a count 
of the number of lines in the system and DX with the I/O 
address of the first line. The I/O addresses are assigned

buffers as a displacement into the data segment, the 
base + index + displacement addressing mode allows 
direct access to the appropriate memory location. 8086 
code for part of this example is shown in Figure 4E2.
2. As a second example, consider using memory 
mapped I/O and the 8086 string primative instructions to 
perform block transfers between memory and I/O. By 
assigning a block of the memory address space 
(equivalent in size to the maximum block to be trans
ferred to the I/O device) and decoding this address 
space to generate the I/O device's chip select, the block 
transfer capability is easily implemented. Figure 4E3 
gives an Interconnect for 16-bit I/O devices while Figure 
4E4 incorporates the 16-bit bus to 8-bit bus multiplexing 
scheme to support 8-bit I/O devices. A code example to 
perform such a transfer is shown in Figure 4E5.

as shown in Figure 4E1 with 8251A's as the I/O devices. 
The status of each line is read to determine if it needs 
service. If yes, the appropriate routine is called to input 
or output a character. After servicing the line or if no 
service is needed, CX is decremented and DX is in
cremented to test the next line. After all lines have been 
tested and serviced, the routine terminates. If ail inter
rupts from the lines are OR’d together, only one inter
rupt is used for all lines. If the interrupt is input to the 
CPU through an 8259A interrupt controller, the 8259A 
should be programmed in the level triggered mode to 
guarantee all line interrupts are serviced.
To service either an input or output request, the called 
routine transfers DX to BX, and shifts BX to form the off-

THIS CODE DEMONSTRATES TESTING DEVICE 
STATUS FOR SERVICE. CONSTRUCTING THE 
APPROPRIATE LINE BUFFER ADDRESS FOR INPUT 
AND OUTPUT AND SERVICING AN INPUT 
REQUEST

CHECK_STATUS:

WRITE_SERVICE:
NEXT_IO:

MASK EQU OFFFDH
INPUT AL, DX ; GET 8251A STATUS.
MOV AH, AL
TEST AH. READ_OR_WRITE_STATUS
JZ NEXT_IO
CALL ADORESS 
TEST AH. READ STATUS
JZ WRITE_SERVICE
CALL READ
TEST AH, WRITE STATUS
JZ NEXT_10
CALL WRITE
DEC CX
JNC EXIT
AND DX, MASK
ADD DX. 3
OR DX, 2
JMP CHECK_STATUS

TEST IF DONE.
YES, RESTORE A RETURN. 
REMOVE A1 AND 
INCREMENT ADDRESS. 
SELECT STATUS FOR 
NEXT INPUT.

set for this device into the table of input or output buf
fers. The first entry in the buffer is an index to the next 
character position in the buffer and is loaded into the SI 
register. By specifying the base address of the table of

AND DX, MASK ; SELECT DATA.
MOV BH, DL ; CONSTRUCT BUFFER
INC BH ; DISPLACEMENT FOR
SHR BH ; THIS DEVICE.
XOR BL, BL ; BX IS THE DISPLACEMENT.
RET

DEVICE 1 DEVICE 3
8251A 8251A

DEVICES ARE CONNECTED TO THE UPPER AND 
LOWER HALVES OF THE DATA BUS.

INPUT AL, DX
MOV SI. READ_BUFFERS (BX)
MOV READ_BUFFERS [BX -  SI], AL
INC READ_BUFFERS [BX]
CMP AL, EOT
JNZ CONT_READ
CALL DISABLE READ 
CONT_READ: RET

Figure 4E2.

; READ CHARACTER.
; GET CHARACTER POINTER.
; STORE CHARACTER.
; INCR CHARACTER POINTER. 
; END OP TRANSMISSION?

; YES, DISABLE RECEIVER.
; SEND MESSAGE THAT INPUT 
; IS READY.

ADDRESS
0 DEVICE 0 DATA
1 DEVICE 1 DATA
2 DEVICE 0 CONTROL/STATUS
3 DEVICE 1 CONTROUSTATUS
4 DEVICE 2 DATA
5 DEVICE 3 DATA
6 DEVICE 2 CONTROUSTATUS
7 DEVICE 3 CONTROUSTATUS

ETC. " ”

TRANSFER 256 BYTE BLOCKS TO THE I/O DEVICE 

THE ADDRESS SPACE ASSIGNED TO THE I/O DEVICE IS

Aib A* I A7 Ao I
FROM —  BASE ADDRESS — ► U —  0 ’ s —*4
THRU ---- BASE ADDRESS— » [■« 1*»— H

MEMORY DATA NEED NOT BE ALIGNED TO EVEN ADDRESS BOUNDARIES 
I/O TRANSFERS MUST BE WORD TRANSFERS TO EVEN ADDRESS BOUNDARIES

Figure 4E1. Device Assignment Figure 4E3. Block Transfer to 16-Bit I/O Using 8066 String Primatives
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ADDRESS ASSIGNMENT SAME AS PREVIOUS EXAMPLE. 16-BIT BUS IS 
MULTIPLEXED ONTO AN 8-BIT PERIPHERAL BUS.

Figure 4E4. Block Transfer to 8-Bit I/O Using 8086 String Primatives

; DEFINE THE I/O ADDRESS SPACE 
I/O SEGMENT
ORG BLOCK_ADDRESS

I/O_BLOCK: DW 128 DUP (?)
I/O ENDS

; ASSUME THE DATA IS FROM THE CURRENT 
; DATA SEGMENT

CLD ;DF = FORWARD
LES Dl, I/O_BLOCK__ADDRESS ; I/O BLOCK ADDRESS

; CONTAINS THE ADDRESS 
; OF I/O BLOCK

MOV CX, BLOCK_LENGTH
MOV SI, SOURCE_ADDRESS
MOVS I/O BLOCK ; PERFORM WORD TRANSFERS

; END CODE EXAMPLE

NOTE THE CODE IS CAPABLE OF PERFORMING BYTE TRANSFERS BY 
CHANGING THE I/O BLOCK DEFINITION FROM 128 WORD TO 256 BYTES

number the device can accept, leaving the remaining ad
dress lines for chip enable/select decoding. To connect 
the devices directly to the multiplexed bus, they must 
have output enables. The output enable is also 
necessary to avoid bus contention in other configura
tions. Figure 5A1 shows the bus connections for ROM 
and EPROM memories. No special decode techniques 
are required for generating chip enables/selects. Each 
valid decode selects one device on the upper and lower 
halves of bus to allow byte and word access. Byte ac
cess is achieved by reading the full word onto the bus 
with the 8086 only accepting the desired byte. For the 
minimum mode 8086, if RD, WR and M/IO are not decod
ed to form separate commands for memory and I/O, and 
the I/O space overlaps the^memory space assigned to 
the EPROM/ROM then M/IO (high active) must be a con
dition of chip enable/select decode. The output enable 
is controlled by the system memory read signal.

SELECT 
HIGH BANK (BTTC)

Figure 4E5. Code for Block Transfers Figure 5.1. 8086 Memory Array

5. INTERFACING WITH MEMORIES
Figure 5.1 is a general block diagram of an 8086 
memory. The basic characteristics of the diagram are 
the partitioning of the 16-bit word memory into high and 
low 8-bit banks on the upper and lower halves of the 
data bus and inclusion of BHE and A0 in the selection of 
the banks. Specific implementations depend on the type 
of memory and the system configuration.

5A. ROM and EPROM
The easiest devices to interface to the system are ROM 
and EPROM. Their byte format provides a simple bus in
terface and since they are read only devices, A0 and 
BHE need not be included in their chip enable/select 
decoding (chip enable is similar to chip select but addi
tionally determines if the device is in active or standby 
power mode). The address lines connected to the 
devices start with A1 and continue up to the maximum

CHIP SELECT 

Ds.,s

A-i-12 

RD -

Oo-7
2732

Ao-11

Ao.11
2732

O0-7

cl

NOTE Ao AND BHE ARE NOT USED.

Figure 5A1. EPRO M /RO M  Bus Interlace
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Static ROM’s and EPROM’s have only tour parameters 
to evaluate when determining their compatibility to the 
system. The parameters, equations and evaluation tech
niques given in the I/O section are also applicable to 
these devices. The relationship of parameters is given in 
Table 5A1. TACC and TCE are related to the same equa
tion and differ only by the delay associated with the chip 
enable/select decoder. As an example, consider a 2716 
EPROM memory residing on the multiplexed bus of a 
minimum mode configuration:

TACC = 3TCLCL -  140 -  address buffer delay = 430 ns 
(8282 = 30 ns max delay)

TCE = TACC -  decoder delay = 412 ns 
(8205 decoder delay = 18 ns)

TOE = 2TCLCL— 195 = 205 ns
TDF = = 155 ns

TABLE 5A1. EPROM/ROM PARAMETERS

TO E  —  Output Enable to Valid Data = TRLDV
TAC C  —  Address to Valid Data = TAVDV
TCE  —  Chip Enable to Valid Data s  TSLDV
TDF —  Output Enable H igh to Output Float a TRHDZ

The results are the times the system configuration re
quires of the component for full speed compatibility 
with the system. Comparing these times with 2716 
parameter limits indicates the 2716-2 will work with no 
wait states while the 2716 will require one wait state. 
Table 5A2 demonstrates EPROM/ROM compatibility for 
the configurations presented in the I/O section. Before 
designing a ROM or EPROM memory system, refer to 
AP-30 for additional information on design techniques 
that give the system an upgrade path from 16K to 32K 
and 64K devices.

TABLE 5A2. COMPATIBLE EPROM/ROM (5 MHz 8086)

Configuration
Minimum Mode Maximum Mode

Unbuffered Buffered Buffered Fully Buffered

2716-1 y* y' y
2716-2 s 1W 1W 1W
2732 1W 1W 1W 1W
2332 y y
2364 ✓ * * y'

5B. Static RAM
Interfacing static RAM to the system introduces several 
new requirements to the memory design. A0 and BHE 
must be included in the chip select/chip enable 
decoding of the devices and write timing must be con
sidered in the compatibility analysis.
For each device, the data bus connections must be 
restricted to either the upper or lower half of the data 
bus. Devices like the 2114 or 2142 must not straddle the 
upper and lower halves of the data bus (Fig. 5B1). To 
allow selecting either the upper byte, lower byte or full 
16-bit word for a write operation, BHE must be a condi
tion of decode for selecting the upper byte and A0 must 
be a condition of decode for selecting the lower byte. 
Figure 5B2 gives several selection techniques for

devices with single chip selects and no output enables 
(2114, 2141, 2147). Figure 5B3 gives selection tech
niques for devices with chip selects and output enables.

c s ---------------► c
C S'  I/O ,

c s ----------------- ► c s 2

___ K l/02
A D D R E S S \ ) A0-9

V l/03
W R ---------------►C W E

l/04
RD --------------- ► O OD

Figure 5B1. Incorrect Connection of 2142 Across Byte Boundaries

The first group requires inclusion of A0 and BHE to 
decode or enable the chip selects. Since these 
memories do not have output enables, read and write 
are used as enables for chip select generation to pre
vent bus contention. If read and write are not used to 
enable the chip selects, devices with common input/out- 
put pins (like the 2114) will be subjected to severe bus 
contention between chip select and write active. For 
devices with separate input/output lines (like 2141, 
2147), the outputs can be externally buffered with the 
buffer enable controlled by read. This solution will only 
allow bus contention between memory devices in the ar
ray during chip select transition periods. These tech
niques are considered in more detail in Section 2C.
For devices with output enables (2142), write may be 
gated with BHE and A0 to provide upper and lower bank 
write strobes. This simplifies chip select decoding by 
eliminating BHE and A0 as a condition of decode. 
Although both devices are selected during a byte write 
operation, only one will receive a write strobe. No bus 
contention will exist during the write since a read com
mand must be issued to enable the memory output 
drivers.

If multiple chip selects are available at the device, BHE 
and A0 may directly control device selection. This 
allows normal chip select decoding of the address 
space and direct connection of the read and write com
mands to the devices. Alternately, the multiple chip 
select inputs of the device could directly decode the ad
dress space (linear select) and be combined with the 
separate write strobe technique to minimize the control 
circuitry needed to generate chip selects.
As with the EPROM’s and ROM’s, if separate commands 
are not provided for memory and I/O in the mjnimum 
mode 8086 and the address spaces overlap, M/IO (high 
active) must be a condition of chip select decode. Also, 
the address lines connected to the memory devices 
must start with A1 rather than A0.
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LOW BANK 
CHIP SELECTS

HIGH BANK 
CHIP SELECTS

(a)

_Ao
WR

(a) HIGH AND LOW BANK WRITE STROBES

ADDR

Aq

BHE

LOW BANK 
" CHIP SELECT

HIGH BANK 
‘  CHIP SELECT

CHIP SELECTS 
(HIGH AND LOW FOR 
FOUR GROUPS)

LOW BANK 
CHIP SELECTS

HIGH BANK 
CHIP SELECTS

<d)

2142’s

(b) A0 AND BHE AS DIRECT CHIP SELECT INPUTS

2142 s

D7-0

D15-8

(c) LINEAR CHIP SELECT USED WITH HIGH 
AND LOW BANK WRITE STROBES

F ig u re  5B2. G e n e ra tin g  C h ip  S e le c t s  for D ev ices  w ith o u t O u tp u t 
E n a b le s F ig u re  5B3. C h ip  S e le c t io n  fo r  D ev ices  w ith  O u tp u t E n a b le s
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For analysis of RAM compatibility, the write timing 
parameters listed in Table 5B1 may also need to be con
sidered (depending on the RAM device being consid
ered). The CPU clock relative timing is given in Table 
5B2. The equations specify the device requirements at 
the CPU and provide a base for determining device re
quirements in other configurations. As an example con
sider the write timing requirements of a 2142 in a max
imum mode buffered 8086 system (Figure 5B4). The 
2142 write parameters that must be analyzed are TWA 
advanced write pulse width, TWR write release time, 
TDWA data to write time overlap and TDH data hold 
from write time.

TWA =  2TCLCL -  TCLM Lm ax +  TC LM H m ln =  375  ns.
TW R =  2TCLCL -  TCLM H m ax +  TC LLH m in +  TSH O V m ln =  170 n s.
T D W A =  2T C L C L -T C L D V m ax  +  T C L M H m ln- T IV O V m ax=  265 n s .
TDH =  TCLCH -  TCLM H m ax +  TC H D X m ln +  TIVOVmln =  95 n s .

TABLE 5B1. TYPICAL WRITE TIM ING  PARAMETERS

TW  —  W rite Pu lse  W idth
TW R — W rite Release (Address Hold From End of Write)
TDW  —  Data and W rite Pu lse Overlap
TDH —  Data Hold From End of Write
TAW  —  Address Valid to End o f Write
TCW  —  C h ip  Select to End of Write
TASW  —  Address Valid to Beginning of Write

TABLE 5B2. CYCLE DEPENDENT WRITE PARAMETERS 
FOR RAM MEMORIES

(a) Minimum Mode

TW  = TW LW H = 2 T C L C L -  60 = 340 ns 
TW R = T C L C L -  TCVCTXm ax + TCLLH m in  = 90 ns 
TDW  = 2 T C LC L -  TCLDVm ax + TCVCTXm in = 300 ns 
TDH = TW HDX = 88 ns
TAW  = 3 T C LC L -T C LA V m a x  + TCVCTXm in = 500 ns
TCW  = T A W — C hip  Select Decode
TASW  = T C L C L -T C L A V m a x  + TCVCTXm in = 100 ns

(b) Maximum Mode

TW  = T C L C L -  TCLM Lm ax + TCLM H m in  = 175 ns 
TW R = T C L C L -  TCLM H m ax + TCLLH m in  = 165 ns 
TDW  = TW  = 175 ns
TDH = TCLC H m in  -  TCLM H m ax + TCHDXm in = 93 ns 
TAW  = 3 T C L C L -  TCLAVm ax + TCLM H m in  = 500 ns 
TCW  = TAW  -  Ch ip  Select Decode 
TASW  = 2 T C L C L -  TCLAVm ax + TCLM Lm in  = 300 ns 
TWA* = TW  + T C L C L  =375 ns
TDWA* = 2 T C L C L -  TCLDVm ax + TCLM H m in  = 300 ns 
TASW  A * = TASW  -  T C LC L  = 100 ns

•Relative to Advanced Write.

Comparing these results with the 2142 family indicates 
the standard 2142 write timing is fully compatible with 
this 8086 configuration. Read timing analysis is also 
necessary to completely determine compatibility of the 
devices.

5C. Dynamic RAM
Dynamic RAM is perhaps the most complex device to 
design into a system. To relieve the engineer of most of 
this burden, Intel provides the 8202 dynamic RAM con
troller as part of the 8086 family of peripheral devices. 
This section will discuss using the 8202 with the 8086 to 
build a dynamic memory system for an 8086 system. For

additional information on the 8202, refer to the 8202 
data sheet (9800873) and application note AP-45 Using 
the 8202 Dynamic RAM Controller (9800809A).

Figure 5B4. Sample Configuration for Compatibility Analysis Example

5.C.1 Standard 8086-8202 Interconnect
Figure 5.C.1.1 shows a standard interconnection for an 
8202 into an 8086 system. The configuration accom
modates 64K words (128K bytes) of dynamic RAM ad
dressable as words or bytes. To access the RAM, the 
8086 initiates a bus cycle with an address that selects 
the 8202 (via PCS) and the appropriate transfer com
mand (MRDC or MWTC). If the 8202 is not performing a 
refresh cycle, the access starts immediately, otherwise, 
the 8086 must wait for completion of the refresh. XACK 
from the 8202 is connected to the 8284 RDY input to 
force the CPU to wait until the RAM cycle is completed 
before the CPU can terminate the bus cycle. This effec
tively synchronizes the asynchronous events of refresh 
and CPU bus cycles. The normal write command 
(MWTC) is used rather than the advanced command 
(AMWC) to guarantee the data is valid at the dynamic 
RAMS before the write command is issued. The gating 
of WE with A0 and BHE provides selective write strobes 
to the upper and lower banks of memory to allow byte 
and word write operations. The logic which generates 
the strobe for the data latches allows read data to prop
agate to the system as soon as the data is available and 
latches the data on the trailing edge of CAS.

DETAILED TIMING 
Read Cycle
For no wait state operation, the 8086 requires data to be 
valid from MRDC in:

2TCLCL -  TCLML -  TDVCL— buffer delays = 291 ns.
Since the 8202 is CAS access limited, we need only ex
amine CAS access time. The 8202/2118 guarantees data 
valid from 8202 RD low to be:
(tph + 3tp+ 100 ns) 8202 TCC delay + TCAC for the 2118
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Figure 5C1.1. 5 M Hz 8086/82027128K Byte System — Double Data, Control and Address Buffering (Note: Bus driver on 8202 is not needed if less 
than 64K bytes are used)

For a 25 MHz 8202 and 2118-3, we get 297 ns which is in
sufficient for no wait state operation. If only 64K bytes 
are accessed, the 8202 requires only (tph + 3tp + 85 ns) 
giving 282 ns access and no wait states required. Refer 
to Figure 5.C.1.2 and 5C.1.3 for timing information on 
the 8202 and 2118.

Write Cycle
An important consideration for dynamic RAM write 
cycles is to guarantee data to the RAM is valid when 
both CAS and WE are active. For the 2118, if WE is valid 
prior to CAS, the data setup is to CAS and if CAS is valid 
before WE (as would occur during a read modify write 
cycle) the data setup time is to WE. For the 8202, the WR 
to CAS delay is analyzed to determine the data setup 
time to CAS inherently provided by the 8202 command 
to RAS/CAS timing. The minimum delay from WR to' 
CAS is:

TCCmin = tph + 2tp + 25=127 ns @ 25 MHz

Subtracting buffer delays and data setup at the 2118, 
we have 83 ns to generate valid data after the write 
command is issued by the CPU (in this case the 8288). 
Since the 8086 will not guarantee valid data until 
TCLAVmax-TCLMLmin = 100 ns from the advanced

write signal, the normal write signal is used. The normal 
write MWTC guarantees data is valid 100 ns before it is 
active. The worst case write pulse width is approximate
ly 175 ns which is sufficient for all 2118’s.

Synchronization
To force the 8086 to wait during refresh the XACK or 
SACK lines must be returned to the 8284 ready input. 
The maximum delay from RD to SACK (if the 8202 is not 
performing refresh) is TAC = tp + 40 = 80 ns. To prevent 
a wait state at the 8086, RDY must be valid at the 8284 
TCLCHmin -  TCLMLmax -  TR1 VCLmax = 48 ns after 
the command is active. This implies that under worst 
case conditions, one wait state will be inserted for every 
read cycle. Since MWTC does not occur until one clock 
later, two wait states may be inserted for writes.
The XACK from command delay will assert RDY TCC + 
TCX= (tph + 3 tp + 100) + (5tp + 20) = 460 ns after the 
command. This will typically insert one or two wait 
states.
Unless 2118-3's are used in 64K byte or less memories, 
SACK must not be used since it does not guarantee a 
wait state. From the previous access time analysis we 
saw that other configuratigns required a wait state.
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Figure 5C1.2. 8202 Tim ing Information
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Measurements made with respect to RAS-i -  RAS4, CAS, 
WE, OUT0-  OUT6 are at 2.4V and 0.8V. All other pins are 
measured at 1.5V.

CL= 30 pF 
CL = 320 pF 
CL =230 pF 
CL =450 pF 
CL = 640 pF

Symbol Parameter Min Max Units

tp Clock (Internal/External) Period (See Note 1) 40 54 ns

U c Memory Cycle Time 10 tP— 30 12 tP ns

U a h Row Address Hold Time tp -1 0 ns

UsR Row Address Setup Time tpH ns

U A H Column Address Hold Time 5 tp ns

Use Column Address Setup Time tP-  35 ns

U c D RAS to CAS Delay Time 2 tp -1 0 2 tp+45 ns

*WCS WE Setup to CAS tP— 40 ns

UsH RAS Hold Time 5 tP-  30 ns

*CAS CAS Pulse Width 5 tP-  30 ns

•r p RAS Precharge Time (See Note 2) 4 tp -  30 ns

•w c h WE Hold Time to CAS 5 tp — 35 ns

U ef Internally Generated Refresh to Refresh Time
64 Cycle 548 tP 576 tP ns
128 Cycle 264 tP 288 tp ns

U r RD, WR to RAS Delay tpH + 30 tpH + tp+ 75 ns

tec RD, WR to CAS Delay tpH + 2 tp + 25 tpn + 3 tp+ 100 ns

U fr REFRQ to RAS Delay 1.5 tp+ 30 2.5 tp+100 ns

tAS A0—A15 to RD, WR Setup Time (See Note 4) 0 ns

tC A RD, WR to SACK Leading Edge tp+40 ns

*c k RD, WR to XACK, SACK Trailing Edge Delay 30 ns

tK C H RD, WR Inactive Hold to SACK Trailing Edge 10 ns

tsc RD, WR, PCS to X/CLK Setup Time (See Note 3) 15 ns

*CX CAS to XACK Time 5 tp — 40 5 tp+ 20 ns

UcK XACK Leading Edge to CAS Trailing Edge Time 10 ns

txw XACK Pulse Width 2 tp -  25 ns

t L L REFRQ Pulse Width 20 ns

*CHS RD, WR, PCS Active Hold to RAS 0 ns

*WW WR to WE Propagation Delay 8 50 ns

tA L Si to ALE Setup Time 40 ns

tl_A S-i to ALE Hold Time 2 tP+ 40 ns
tp L External Clock Low Time 15 ns

*PH External Clock High Time 22 ns

*PH External Clock High Time for Vcc = 5V± 5% 18 ns
Notes:
1. tp  m inimum determ ines maximum osc illa tor frequency.

tp  maximum determ ines m inimum frequency to maintain 2 ms refresh rate and tp p  minimum.
2. To achieve the m inimum time between the RAS o f a memory cyc le  and the RaS of a refresh cycle, such as a transparent refresh, R EFR Q  shou ld  be 

pu lsed in the previous memory cycle.
3. t s c  *9 not required for proper operation w hich is In agreement w ith the other specs, but can be used to synchronize external s igna ls w ith X/CLK if it is 

desired.
4. If t^ s '9 less than 0 then the only impact is that t^SR decreases by a corresponding amount.

A.C. CHARACTERISTICS
Ta= 0°C to 70'C, Vcc = 5V ±10%

Loading: SACK,XACK

64 Devices g g » : ° g »
WE
CAS

Figure SC1.2. 8202 Timing Information (Con’t)
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NOTES: 1,2. Vim min a n d  Vil MAX a re  REFERENCE LEVELS FOR MEASURING TIMING OF 
INPUT SIGNALS.

3,4. Voh min AND VOL max ARE REFERENCE LEVELS FOR MEASURING TIMING 
OF Dout-

5. (off IS MEASURED TO Iout < Iol - ___
8. (os AND (dm ARE REFERENCED TO CAS OR WE. WHICHEVER OCCURS LAST, 
t. Irch IS REFERENCED TO THE TRAILING EDGE OF CAS OR RAS. WHICHEVER 

OCCURS FIRST.8. (crp REQUIREMENT IS ONLY APPLICABLE FOR RAD/CAS CYCLES
PRECEDED BY A CSS-ONLY CYCLE (!.•.. FOR SYSTEMS WHERE CAS HAS 
NOT BEEN DECODED WITH RAS).

Figure 5C1.3. 2118 Fam ily Tim ing
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A.C. CHARACTERISTICS11’2'31
Ta  = 0 #C to 70°C, VDD = 5V± 10%, Vs s  = 0V, un less otherw ise noted.

READ, WRITE, READ MODIFY-WRITE AND REFRESH CYCLES

Symbol Parameter

2118-3 2118-4 2118-7

Unit NotesMin. Max. Min. Max. Min. Max.

l RAC A ccess  T im e From RAS 100 120 150 ns 4,5

*CAC A ccess  Time from CAS 55 65 80 ns 4,5,6

*ref Tim e Between Refresh 2 2 2 ms

' rp RAS Precharge Time 110 120 135 ns

<CPN CAS  Precharge Time (non-page cycles) 50 55 70 ns

l CRP CAS  to RAS Precharge Time 0 0 0 ns

l RCD RAS to CAS  Delay Time 25 45 25 55 25 70 ns 7

' rsh RAS Hold Time 70 85 105 ns

l CSH CAS  Hold Time 100 120 165 ns

•asr Row Address Set-Up T im e 0 0 0 ns

l RAH Row Address Hold  Time 15 15 15 ns

<asc Colum n Address Set-Up Time 0 0 0 ns

l CAH Colum n Address Hold  Time 15 15 20 ns

l AR Colum n Address Hold T im e to RAS 60 70 90 ns

' t Transition T im e (Rise and Fall) 3 50 3 50 3 50 ns 8

V j f f Output Buffer Turn O ff Delay 0 45 0 50 0 60 ns

READ AND REFRESH CYCLES

t RC Random Read Cycle Time 235 270 320 ns

’ ras RAS Pu lse  W idth 115 10000 140 10000 175 10000 ns

lCAS CAS  Pu lse W idth 55 10000 65 10000 95 10000 ns

lRCS Read Command Set-Up T ime 0 0 0 ns

' rch Read Command Hold Time 0 0 0 ns

WRITE CYCLE

*RC Random Write Cycle  Time 235 270 320 ns

*RAS RAS Pu lse  W idth 115 10000 140 10000 175 10000 ns

lCAS CAS  Pu lse  W idth 55 10000 65 10000 95 10000 ns

tw cs W rite Command Set-Up Time 0 0 0 ns 9

*WCH W rite Command Hold Time 25 30 45 ns

lWCR W rite Command Hold Time, to RAS 70 85 115 ns

twp W rite Command Pu lse  W idth 25 30 50 ns

l RWL W rite Command to RAS Lead Time 60 65 110 ns

*CWL Write Command to CAS  Lead Time 45 50 100 ns

tDS Data-In Set-Up Time 0 0 0 ns

lDH Data-In Hold  Time 25 30 45 ns

l DHR Data-In Hold  Time, to RAS 70 85 115 ns

READ-MODIFY-WRITE CYCLE

*RWC Read-Modify-Write Cycle  Time 285 320 410 ns

l RRW RM W  Cycle  RAS Pu lse  W idth 165 10000 190 10000 265 10000 ns

lCRW RM W  Cycle CAS  Pu lse  W idth 105 10000 120 10000 185 10000 ns

lRWD RAS to WE Delay 100 120 150 ns 9

lCWD CAS  to W E Delay 55 65 80 ns 9

NOTES:
1. All voltages referenced to Vgg. ___
2. Eight cycles are required after power-up or prolonged periods (greater than 2 ms) of RAS inactivity before proper device operation is achieved. Any 8 cycles which perform 

refresh are adequate for this purpose.
3. A.C. Characteristics assume t j  = 5 ns.
4. Assume that tpQQ < <RCD (max.). If Irqq is greater than t^Qp (max.) then tRAQ will increase by the amount that tRCD exceeds tpQp (max.).
5. Load = 2 TTL loads and 100 pF.
6. Assumes t RCD > tpQQ (max.).
7- tRCD <max-) 13 specified as a reference point only; if tp^D  is less than tRCD (max ) access time is tRAp, if tpcD is greater than tp^D  (max.) access time is tRCD+ ’CAC-
8. \ j is measured between V)H (min.) and V)L (max.).
9- <WCS' *CWD ant  ̂ *RWD are specified as reference points only. If tyyeg > tyypg (min.) the cycle is an early write cycle and the data out pin will remain high impedance 

throughout the entire cycle. If tCWD *  *CWD (min.) and tRyyp >  *RWD (min.), the cycle Is a read-modify-write cycle and the data out will contain the data read from the 
selected address. If neither of the above conditions is satisfied, the condition of the data out is indeterminate.

Figure 5C1.3. 2118 Family Timing (Con’t)
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5.C.2 Enhanced Operation
Two problems are evident from the previous investiga
tion:

1) SACK timing from command will not allow reliable 
operation while XACK is not active early enough to pre
vent wait states.

2) The normal write command required to guarantee 
data setup is not enabled until the CPU has sampled 
READY thereby forcing multiple wait states during write 
operations.
The first problem could be resolved if an early command 
could be generated that would guarantee SACK was

valid when READY was sampled and SACK to data valid 
satisfied the CPU requirements. Figure 5.C.2.1 is a cir
cuit which provides an early read command derived from 
the maximum mode status. The early command is en
abled from the trailing edge of ALE and disabled on the 
trailing edge of the normal command. The command 
provides an additional TCHCLmin-TCHLLmax + 
TCLMLmax-circuit delays = 53 ns of access time and 
time to generate RDY from the early command. If we go 
back to our previous equations, early command to valid 
data at the CPU is now:

TCHCLmin -  TCHLLmax + 2TCLCL- TDVCLmax -  buf
fer and circuit delays = 333 ns

+ 5

EARLY RD

ALE

MRDC

EARLY RD

Figure 5C2.1. Early Read and W rite Command Generation
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We can now use the slowest 2118 which gives 8202 and 
2118 access of 320 ns. Early command to RDY timing is 
TCLCL- TCHLLmax- circuit delays -  TRIVCLmax = 
115 ns and provides 35 ns of margin beyond the 8202 
command to SACK delay.
The write timing of the 8202 and write data valid timing 
of the 8086 do not allow use of an early write command. 
However, if the 8202 clock is reduced from 25 MHz to 20 
MHz and WE to the RAM's is gated with CAS, the ad
vanced write command (AMWC) may be used. At 20 MHz 
the minimum command to CAS delay is 148 ns while the 
maximum data valid delay is 144 ns.
The reduced 8202 clock frequency still satisfies no wait 
state read operation from early read and will insert no 
more than one wait state for write (assuming no conflict 
with refresh). 20 MHz 8202 operation will however re
quire using the 2118-4 to satisfy read access time.
Note that slowing the 8202 to 22.2 MHz guarantees valid 
data within 10 ns after CAS and allows using the 2118-7. 
Since this analysis is totally based on worst case 
minimum and maximum delays, the designer should 
evaluate the timing requirements of his specific im
plementation.
It should be noted that the 8202 SACK is equivalent to 
XACK timing if the cycle being executed was delayed by

refresh. Delaying SACK until XACK time causes the 
CPU to enter wait states until the cycle is completed. If 
the cycle is a read cycle, the XACK timing guarantees 
data is valid at the CPU before RDY is issued to the CPU.
The use of the early command signals also solves a 
problem not mentioned previously. The cycle rate of the 
8202 @ 20 MHz requires that commands (from leading 
edge to leading edge) be separated by a minimum of 695 
ns. The maximum mode 8086 however may issue a read 
command 600 ns after the normal write command. For 
the early read command and advanced write command, 
725 ns are guaranteed between commands.

Figure 5C2.2. Delayed Write to Dynam ic RAM s
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APPENDIX I
BUS CONTENTION AND ITS EFFECT ON SYSTEM INTEGRITY

SYSTEM ARCHITECTURE
As higher performance microprocessors have become 
available, the architecture of microprocessor systems 
has been evolving, again placing demands on memory. 
For many years, system designers have been plagued 
with the problem of bus contention when connecting 
multiple memories to a common data bus. There have 
been various schemes for avoiding the problem, but 
device manufacturers have been unable to design inter
nal circuits that would guarantee that one memory 
device would be “ off” the bus before another device 
was selected. With small memories (512x8 and 1Kx8), it 
has been traditional to connect all the system address 
lines together and utilize the difference between tAcc 
and tc o t0 perform a decode to select the correct device 
(as shown in Figure 1).

Figure 1. Single Control Line Architecture

With the 1702A, the chip select to output delay was only 
100 ns shorter than the address access time; or to state 
it another way, the tACc time was 1000 ns while the tCo 
time was 900 ns. The 1702A tACc performance of 1000 ns 
was suitable for the 4004 series microprocessors, but 
the 8080 processor required that the corresponding 
numbers be reduced to tAGc = 450 ns and tCo= 120 ns. 
This allowed a substantial improvement in performance 
over the 4004 series of microprocessors, but placed a 
substantial burden on the memory. The 2708 was 
developed to be compatible with the 8080 both in ac
cess time and power supply requirements. A portion of 
each 8080 machine cycle time had to be devoted to the 
architecture of the system decoding scheme used. This 
devoted portion of the machine cycle included the time 
required for the system controller (8224) to perform its 
function before the actual decode process could begin.
Let’s pause here and examine the actual decode 
scheme that was used so we can understand how the 
control functions that a memory device requires are 
related to system architecture.
The 2708 can be used to illustrate the problem of having 
a single control line. The 2708 has only one read control

function, chip select (CS), which is very fast (tCo= 120 
ns) with respect to the overall access time (tAcc=450 
ns) of the 2708. It is this time difference (330 ns) that is 
used to perform the decode function, as illustrated in 
Figure 2. The scheme works well and does not limit 
system performance, but it does lead to the possibility 
of bus contention.

---------------------------'ACC--------------------------- *-

ADDRESS | (______________________________________

i
CS \

____ IIIII1IIIIIII1III
DECODE

TIME

— _____

------------- tc o -------------- J

Figure 2. S ingle Line Control Architecture

BUS CONTENTION
There are actually two problems with the scheme 
described in the previous section. First, if one device in 
a multiple memory system has a relatively long deselect 
time, and a relatively fast decoder is used, it would be 
possible to have another device selected at the same 
time. If the two devices thus selected were reading op
posite data; that is, device number one reading a HIGH 
and device number two reading a LOW, the output tran
sistors of the two memory devices would effectively pro
duce a short circuit, as Figure 3 illustrates. In this case, 
the current path is from Vcc on device number one to 
GND on device number two. This current is limited only 
by the “ on” impedance of the MOS output transistors 
and can reach levels in excess of 200 mA per device. If 
the MOS transistors have a lot of “ extra” margin, the 
current is usually not destructive; however, an instan
taneous load of 400 mA can produce “ glitches” on the 
VCc supply—glitches large enough to cause standard 
TTL devices to drop bits or otherwise malfunction, thus 
causing incorrect address decode or generation.

The second problem with a single control line scheme is 
more subtle. As previously mentioned, there is only one 
control function available on the 2708 and any decoding 
scheme must use it out of necessity. In addition, any in
advertent changes in the state of the high order address 
lines that are inputs to the decoder will cause a change 
in the device that is selected. The result is the same as 
before—bus contention, only from a different source. 
The deselected device cannot get “ off” the bus before 
the selected one is "on" the bus as the addresses rapid
ly change state. One approach to solving this problem 
would be to design (and specify as a maximum) devices
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with tDF time less than tcotime, thereby assuring that if 
one device is selected while another is simultaneously 
being deselected, there would be some small (20 ns) 
margin. Even with this solution, the user would not be 
protected from devices which have very fast tco times 
(tco is specified as a maximum).

BUS

RESULTS OF IMPROPER TIMING WHEN OR TYING MULTIPLE 
MEMORIES.

Figure 3. Resu lts of Improper Tim ing when OR Tying Multip le 
Memories

generate the unique device selecting function, but a 
separate and independent Output Enable (OE) control is 
now used to gate data “ on” and "o ff” the system data 
bus. With this scheme, bus contention is completely 
eliminated as the processor determines the time during 
which data must be present on the bus and then 
releases the bus by way of the Output Enable line, thus 
freeing the bus for use by other devices, either 
memories or peripheral devices. This type of architec
ture can be easily accomplished if the memory devices 
have two control functions, and the system is im
plemented according to the block diagram shown in 
Figure 5. It differs from the previous block diagram 
(shown in Figure 1) in that the control bus, which is con
nected to all memory Output Enable pins, provides 
separate and independent control over the data bus. In 
this way, the microprocessor is always in control of the 
system; while in the previous system, the microproc
essor passed control to the particular memory device 
and then waited for data to become available. Another 
way to look at it is, with a single control line the sytem is 
always asynchronous with respect to microprocessor/ 
memory communications. By using two control lines, 
the memory is synchronized to the processor.

The only sure solution appears to be the use of an exter
nal bus driver/transceiver that has an independent 
enable function. Then that function, not the “ device 
selecting function,” or addresses, could control the 
flow of data “ on” and "o ff" the bus, and any contention 
problems would be confined to a particular card or area 
of a large card. In fact, many systems are implemented 
that way—the use of bus drivers is not at all uncommon 
in large systems where the drive requirements of long, 
highly capacitive interconnecting lines must be taken 
into consideration—it also may be the reason why more 
system designers were not aware of the bus contention 
problem until they took a previously large (multicard) 
system and, using an advanced micorprocessor and 
higher density memory devices, combined them all on 
one card, thereby eliminating the requirement for the 
bus drivers, but experiencing the problem of bus con
tention as described above.

ADDRESS

SELECTION

OUTPUT
ENABLE Y__T

DATA
OUT ----C

Figure 4. Two Control Line Architecture

THE MICROPROCESSOR/MEMORY INTERFACE
From the foregoing discussion, it becomes clear that 
some new concepts, both with regard to architecture 
and performance are required. A new generation of two 
control line devices is called for with general require
ments as listed below:
1. Capability to control the data “ on” and “ off” the 
system bus, independent of the device selecting func
tion identified above.
2. Access time compatible with the high performance 
microprocessors that are currently available..
Now let’s examine the system architecture that is re
quired to implement the two line control and prevent 
bus contention. This is shown in the form of a timing 
diagram (Figure 4). As before, addresses are used to Figure 5. Two Control Line Architecture
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INTRODUCTION

Real-time software systems differ markedly from batch 
processing systems. An external signal indicating that 
it is time for an hourly log or an interrupt caused by an 
emergency condition is an event usually not encoun
tered in batch processing. Because real-time control 
systems of all types share a number of characteristics, 
it is possible to develop flexible operating systems 
which will meet the needs of a great majority ot real
time applications. Intel Corporation has developed such 
a system, the RMX/80™ system, for the iSBC™ line of 
8080/85 based single board computers. Thus, the user is 
released from the chore of designing an operating 
system and is free to concentrate his efforts on the 
applications software for the individual tasks and 
merely integrate them into a pre-existing system.

But what if a user does not need all the capabilities of an 
RMX/80™ system or wants a different hardware con
figuration than an iSBC™ computer? This application 
note contains a set of PL/M-86 procedures designed to 
be used in medium-complexity 8086 real-time systems.

A normal control system can be broken down into a 
number of concurrently executable tasks. The CPU can 
be running only one task at any instant of time but the 
speed of the processor often makes concurrent tasks 
appear to be running simultaneously. Breaking the soft
ware functions into separate concurrent tasks is the job 
of the designer/programmer. Once this is done there re
mains the problem of integrating these tasks with a 
supervisory program which acts as a traffic cop in the 
scheduling and execution of the separate tasks. This 
note discusses a set of PL/M-86 procedures to imple
ment the supervisory program function.

A minimum operating system might (like its batch proc
essing cousin) have only a queue for ready tasks (tasks 
waiting to be executed). Any task that becomes ready is 
put on the bottom of the queue and when a running task 
is finished, the task on the top of the queue is started. 
Any interrupt causes the state of the system to be 
saved, an interrupt routine to be executed, the state of 
the system to be restored, and execution of the inter
rupted program to continue. The interrupt routine might 
(or might not) put a new task on the ready queue. This 
approach has worked well for many simple control 
systems, especially in the single-chip computer area. 
But what features are lacking in this approach that are 
necessary (or at least nice)?

1. A system of priorities is often needed. All waiting 
ready tasks must be executed sooner or later but some 
tasks need immediate attention while others can be run 
when there is nothing else to do. If a midnight monthly 
report, due for completion by 8 a.m. the next day, is in 
the process of printing at 1 a.m. and a fire alarm occurs, 
it is reasonable to assume that the fire alarm has higher 
priority since the fire could conceivably render the 
monthly report irrelevant.

There are a number of ways in which to assign priorities. 
Tasks are usually numbered and may be assigned 
priorities according to their ascending (or descending) 
numbers. They could instead be grouped into a number 
of priority levels, with tasks on the same level having 
equal priorities. The latter approach is taken in this 
application note.

Assume that a monthly report is being printed and an 
alarm occurs in the external world that, because of its 
importance, must be attended to immediately. The inter
rupt routine, executed as a result of the alarm input, 
should not automatically return to the interrupted log
ging routine but instead should call a preempt routine 
which checks to see if a higher priority task is ready for 
execution. The reason for this is that the monthly report 
routine, if returned to, has no way of "knowing” that a 
higher priority task is waiting to be executed. The alarm 
output task has been readied by the interrupt routine 
and since it is known to be higher priority than the log
ging task, it is executed first, thereby immediately 
signaling the system operator that there has been an 
alarm. It then returns to the logging task provided that 
there are no further high priority tasks waiting to be exe
cuted. The logging printer may not have even paused 
during the alarm output task. The computer appears to 
human beings to be executing concurrent tasks 
simultaneously.

Of course, the alarm output function could be performed 
inside the interrupt procedure. But sooner or later, the 
designer will encounter a worst case situation in which 
there is not enough time to execute all required tasks 
between interrupts, and the system will fall behind in 
real-time. It is much cleaner to make the interrupt pro
cedures as short as possible and stack up tasks to be 
executed than to stack up interrupt procedures.

2. Another feature that might be necessary is a capabil
ity to put a task to sleep for a known period of real time. 
Assume a relay output must remain closed for one sec
ond. Most real-time systems cannot tolerate the dedica
tion of the CPU to such a trivial task for that length of 
time so a system of programmable dynamic delays 
could be implemented. This application note imple
ments such a system.

Although the PL/M-86 procedures here have been de
bugged and tested, it is assumed that the user will want 
to change, add, or delete features as needed. This appli
cation note is intended to present ideas for a logical 
structure of procedures that, because they are written in 
PL/M-86, can be easily modified to user requirements. 
Each procedure will be discussed in detail and integra
tion and optional features will be presented.

PLIM-86

PLM-86 is a block structured high level language that 
allows direct design of software modules. Using 
PL/M-86, designers can forget their assembly level
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coding problems and design directly in a subset of the 
English language. The 8086 architecture was designed 
to accommodate highly structured languages and the 
PLM-86 compiler is quite efficient in the generation of 
machine code.

PLM-86 STRUCTURE

PL/M-86 automatically keeps track of the level of the dif
ferent software blocks. (See Chapter 10, “ PL/M-86 Pro
gramming Manual"). There are methods of writing 
PL/M-86 which contribute to the understandability of 
the source code without adding to the amount of object 
code generated. For instance, the following three 
IF/THEN/ELSE blocks generate identical object code 
but are compiled from different source statements.

Line Level Statement
3 1 IF A = B THEN C = C
7 1 IF A= B THEN
8 1 C = D; 

ELSE
9 1 E= F;

10 1 G = H;
11 1 IF A = B THEN DO;
13 2 C = D ;
14 2 END;
15 1 ELSE DO;
16 2 E = F;
17 2 END;
18 1 G = H;

It is not instantly apparent from the code on line 3 or the 
code starting at line 7 which statements will be exe
cuted. However, adding the DO; and END; statements 
(starting at line 11) remove any doubt. Either the 
statements starting at line 11 or the statements starting 
at line 15 will be executed and the statement on line 18 
will be executed in either case. Why? Because all these 
lines are at level 1 in the block structure. The other lines 
are at level 2 because of the DO;/END; combinations. 
When one refers to the relatively complex structures of 
the task multiplexer procedures, the usefulness of such 
an approach is obvious, as the procedures have been in
dented according to the level numbers generated by 
PL/M-86. In particular, if the designer is not careful, 
nested IF/THEN/ELSE statements can generate im
proper results. Using a proper number of DO;/END; com
binations avoids the possible ambiguity in nested 
IF/THEN/ELSE statements as can be seen in the ACTI- 
VATESTASK procedure listed in the PL/M-86 source 
code later in this note. The DO;/END; construct naturally 
must be used when multiple statements are required 
within the IF/THEN/ELSE blocks. Following are exam
ples of the possible primary structures of PL/M-86:

DO;
A= B;
C = D;
END;

DO WHILE A = B:
C= D;
E = F;
END;

DO I = 1 TO 5;
A = I;
C = D + I;
END;

DO CASE A;
A= B;
A = C;
A= D;
END;

IF A = B THEN DO;
C = D;
END;

ELSE DO;
E = F;
END;

IF A= B THEN DO;
C= D;
END;

ELSE IF A= C THEN DO;
D = E;
END;

ELSE IF A = D THEN DO;
E= F;
END;

ELSE DO;
F = G;
END;

A complete tutorial on structured programming is 
beyond the scope and intent of this application note and 
the reader is referred to the appropriate references ap
pearing in the bibliography.

ANATOMY OF THE TASK MULTIPLEXER

Once a decision is made on the details of the kind of 
data structure that is needed to implement the task 
multiplexer, the procedures that manipulate the struc
ture are relatively simple to write. The following char
acteristics are assumed for the task multiplexer appear
ing in this application note.

There are two levels of priority, high and low. All high 
priority tasks that are ready to run will be dispatched, 
executed, and completed, on a FIFO basis, before any 
low priority task is dispatched.

Any task can be interrupted. No task multiplexer pro
cedure can be interrupted.

If a high priority task is interrupted, it will be completed 
before any other task is dispatched. If a low priority task 
is interrupted, all ready high priority tasks will be dis
patched, executed, and completed before program con
trol is returned to the low priority task.
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There are two ready queues, one for high priority tasks 
and one for low priority tasks. Each queue has a head 
(top) pointer and a tail (bottom) pointer and tasks on any 
queue are link-listed from head to tail. Tasks are "dis
patched" (taken off the queue) at the head and “ acti
vated" (put on the queue) at the tail on a FIFO basis.

Link-listed queues are chosen for simplicity. All dis
patch and activate information is contained in the head 
and tail pointers. Tasks located in the middle of these 
link-lists are of no concern for activating and dispatch
ing. This means, of course, that tasks are executed in 
the order that they appear on the queue, i.e., first-in, 
first-out.

There is a pointer byte associated with each task. If a 
task is on either the low priority or high priority ready 
queue, its associated pointer byte will point to the next 
task number on the list. These pointer bytes enable the 
task ready lists to be linked. Note that the pointer byte is 
0 for the last task on a list.

There is a status (flag) byte associated with each task. If 
a task is on a ready list or a delay list, bit 7 will be a “ 1” 
indicating that that particular task is busy. If a task is on 
either high priority or low priority ready queues, bit 6 will 
be a "1" indicating that the task is on one of the ready 
queues. If the task is listed on the delay list, (see next 
item), bit 5 will be a “ 1” indicating that this particular 
task has a delay in progress. If a task is unlisted, bits 
5-7 will be “ 0.” Bits 0-4 are not used by the task 
multiplexer procedures and are available to the user, giv
ing 5 user defined flags per task.

There is a delay byte associated with each task. This 
feature allows tasks to be "put to sleep” for a variable 
length of time, from 1 to 255 “ ticks" of the interrupt 
clock. If a task does not need an associated delay then 
this byte is available to the user as a utility byte to be 
used for any purpose. These delays will be discussed in 
detail later in the application note.

The following diagram is a representation of the task 
multiplexer data structure:

TASK N UM BER PO INTER  BYTE STATUS BYTE DELAY BYTE

0 n n + 1 n + 2
1 n + 3 n + 4 n + 5
2 n + 6 n + 7 n + 8
3 n + 9 n +  10 n + 11
4 n +  12 n +  13 n + 14
5 n + 15 n + 16 n +  17

m - 1 n + 3m -  6 n + 3m -  5 n +  3m -  4
m n + 3m -  2 n + 3m -  1 n + 3m

3m + 3 TOTAL RAM BYTES 
n =  FIRST RAM ADDRESS OF ARRAY

Following is a chart of what a task multiplexer data 
structure might look like at a given moment in time:

HIGH$PRIORITY$HEAD =  5 
HIGH$PRIORITY$TAIL = 3  
LOW$PRIORITY$HEAD = 8  
LOWSPRIORITYJTAIL = 1 0  
DELAYSHEAD = 4

TASK NUMBER TASK(n).PNTR TASK(n).STATUS TASK(n).DELAY

0
1 3 1100 0000 0
2 0 1010 0000 3
3 0 1100 0000 0
4 7 1010 0000 4
5 1 1100 0000 0
6 0 0000 0000 0
7 2 1010 0000 6
8 10 1100 0000 0
9 0 0000 0000 0

10 0 1100 0000 0

‘ See text.

What information can one ascertain from observation of 
the above chart? The ready-to-run high priority tasks, in 
order, are 5,1,3. This can be seen by following the high 
priority ready linked list from head to tail. The ready-to- 
run low priority tasks, in order are 8, 10. The 
TASK(n).PNTR byte = 0 for the last listed task. Tasks 4, 
7, 2 are listed, in order, on the delay list and have 
associated delays of 4, 10,13 ticks respectively. Tasks 6 
and 9 are not listed and therefore idle. The * for the 
TASK (0) bytes indicate a special condition. There is no 
TASK00 allowed and a zero condition is treated as an er
ror condition. TASK(0).PNTR byte is used for the 
DELAYSFIEAD byte to minimize code in the ACTI- 
VATESDELAY procedure. TASK(0).STATUS and 
TASK(0).DELAY are unused bytes.

DEFINITIONS

NEWSTASK is the number of the task that will be in
stalled on a ready list or the delay list when ACTI- 
VATESTASK or ACTIVATESDELAY is called.

NEWSDELAY is the value of the delay that will be in
stalled on the delay list when ACTIVATESDELAY is 
called.

A task is defined as RUNNING if it is in the act of execu
tion or if an interrupt routine is executing which inter
rupted a RUNNING task.

A task is defined as PREEMPTED if it has been inter
rupted and a higher priority task is being executed.

A task is defined as READY if it is contained within one 
of the ready queues.

A task is defined as IDLE if its BUSYSBIT (bit 7) is not 
set, i.e., it is not listed anywhere else. Note that it is 
possible to completely disable an IDLE task simply by 
setting its BUSYSBIT. In that case, it is not and cannot 
be listed anywhere else. This feature is useful during 
system integration.
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STATE DIAGRAM
The state diagram indicates the relationships among 
the possible task states and the procedures involved in 
changing states.

The state diagram looks somewhat complicated and a 
discussion of the possible change of states is in order. 
Assuming a certain existing state, future possible 
states will be discussed including the procedures which 
can cause the change of state.

From the unlisted (idle) state, the ACTIVATESTASK pro
cedure will put the NEWSTASK on either the high priori
ty ready queue or the low priority ready queue at the tail 
end of the queue. The number of the task automatically 
assigns the priority and therefore the proper queue. All 
task numbers below FIRST$LOW$PRIORITY$TASK are 
assumed to be high priority tasks. Also, from the 
unlisted state the ACTIVATESDELAY procedure will put 
the NEWSTASK and NEWSDELAY at the proper position 
on the delay list.

After a task has been put on either high priority ready 
queue or low priority ready queue it eventually will go to 
the RUNNINGSTASK state. The DISPATCH procedure 
accomplishes this action.

From the delay list a task can only go to one of the ready 
queues. When a task's associated delay goes to zero the 
DECREMENTSDELAY procedure calls the ACTI
VATESTASK procedure and installs the NEWSTASK on 
the proper ready queue.

From the RUNNINGSTASK state a task may use the 
CASESTASK procedure to put itself on the ready list tail 
by setting NEWSTASK = RUNNINGSTASK. It may 
instead put itself on the delay list by setting 
NEW$TASK= RUNNINGSTASK and also setting 
NEWSDELAY equal to something other than zero. Other
wise, it will progress to the unlisted state upon comple
tion.

The CASESTASK procedure unlists tasks when they 
have completed execution. A low priority RUN
NINGSTASK will go to the preempted state if a high 
priority task is on the ready list following an interrupt 
during execution of the low priority task if the PREEMPT 
procedure is called.

And finally, a PREEMPTEDSTASK will return to a RUN
NINGSTASK state when all high priority ready tasks 
have completed execution. This is accomplished by the 
DISPATCH procedure which then returns to the PRE
EMPT procedure.

STATE DIAGRAM
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Some lockouts are necessary to avoid chaos in the task 
multiplexer. These are as follows:

The BUSYSBIT = 1 in the TASK(n).STATUS byte will 
abort the ACTIVATESTASK and the ACTIVATESDELAY 
procedures and return an indication of the aborting by 
setting the STATUS byte equal zero. A task must be 
unlisted to be able to be installed on a list.

A RUNNINGSTASK may put itself on a list after it has 
executed but it is not allowed to re-list any listed tasks 
(i.e., no task may ever be listed twice at the same time!). 
A task that tries to activate another task that is already 
busy can wait (via the delay feature) for the required task 
to complete execution, become idle, and therefore be 
available to be activated. A PREEMPTEDSTASK may not 
be listed. If the ACTIVATESTASK or ACTIVATESDELAY 
procedure is ca lled  and NEWSTASK = PRE
EMPTEDSTASK, the procedure will be aborted and 
return with STATUS = 0. Otherwise, the STATUS byte is 
returned with the new task status.

Only one task may be preempted as there are only two 
levels of priority. The user may desire to implement 
many levels of priority in which case a linked-list of 
preempted tasks could be declared in a structure which 
includes the number of the first task in each priority 
level group of tasks. This obviously complicates the 
PREEMPT and DISPATCH procedures.

The tasks themselves are made into reentrant proce
dures because of the necessary forward references of 
the CASESTASK procedure.

PL/M-86 allows structures and arrays of structures. The 
structure needed for the task multiplexer is a link-list 
pointer byte, a task status byte, and a task delay byte. 
Each task has an associated pointer byte, status byte, 
and delay byte. These are combined into an array of up 
to 255 tasks. For purposes of this discussion, the 
number of tasks is chosen as an arbitrary 10, leading to 
the following array declaration.

DECLARE TASK(10)STRUCTURE 
(PNTR BYTE,STATUS BYTE,DELAY BYTE);

Thus the delay byte associated with task number 7 can 
be accessed by using the variable TASK(7).DELAY and 
the status of task number 5 can be examined through 
the use of TASK(5).STATUS. The TASK(n).PNTR byte 
contains the task number of the next listed task on the 
same list as TASK(n), i.e., if TASK(n) is on the delay list, 
then TASK(n).PNTR will contain the number of the next 
task on the delay list or 0 indicating the end of the list.

TASK(n).STATUS is a byte with the following reserved 
flags:

BIT 7 BUSYSBIT, ' ' I ” IF TASK IS BUSY 
BIT 6 READYSBIT, “ 1" IF ON READY LIST 
BIT 5 DELAYSBIT, “ 1" IF ON DELAY LIST 
BIT 4 — BIT 0 UNUSED

The unused bits in the STATUS byte are available to the 
user.

The TASK(n).DELAY byte is a number which can put 
TASK(n) to sleep for up to 255 system clock ticks. The 
system clock tick is interrupt driven from the user's 
timer and its period is chosen for the particular applica
tion. A one millisecond timer is popular and assuming 
such a time, delays of up to 255 ms are available in the 
task multiplexer as it is written. If this delay range is not 
wide enough, the user may want to define his 
TASK(n).DELAY as a word instead of a byte in the 
PL/M-86 declare statement, giving delays of up to 65 
seconds from the basic one millisecond clock tick.

LINKED LISTS

Linked lists are useful for a number of reasons. 
However, a treatise on linked lists would defeat the pur
pose of this application note and the reader is referred 
to the references listed in the bibliography.

The linked lists used in this application note have a 
head byte associated with each list, i.e., the head byte 
contains the number of the first task on the list. The first 
task pointer byte points to the second task on the list, 
etc. The pointer of the last task on the list is set at zero 
to indicate that it is the last task. Two of the linked lists 
are ready queues and require a tail byte as well as a head 
byte. The tail byte points to the last entry on the list. 
Tasks are put on the bottom, or tail, of the ready lists 
and are taken off the top, or head, of the ready lists. The 
delay list has no tail but does have a head, called a 
DELAYSHEAD. The delay list is not a queue, as delays 
are installed on the list in order of delay magnitude for 
reasons to be explained later.

There are two ready lists, one for high priority tasks and 
one for low priority tasks. The head and tail pointers 
associated with these two lists are: HIGHSPRIORITYS 
HEAD, HIGH$PRIORITY$TAIL, LOWS PRIOR ITYSHEAD, 
and LOWSPRIORITYSTAIL. Obviously, the structure can 
be expanded to any number of priority levels by expand
ing the head and tail pointers and the historical record 
of the preempted tasks.

DELAY STRUCTURE

A task multiplexer can have a number of simultaneous 
delays active and it would be efficient if there were a 
way to keep from decrementing all delays on every clock 
tick, which is most time consuming. One way to accom
plish this feat is to move the problem from the 
DECREMENTSDELAY routine to the ACTIVATESDELAY 
routine. The delays are arranged in a linked-list of 
ascending sizes such that the value of each delay in
cludes the sum of all previous delays. This allows the 
decrementing of only one delay during each clock tick 
interrupt routine. An example will further illuminate this 
approach. Suppose the following conditions exist:
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Task 7 has a 5 millisecond delay 
Task 3 has an 8 millisecond delay 
Task 9 has a 14 millisecond delay

The delay structure is arranged so that:

DELAYSHEAD = 07 
TASK(7).PNTR = 03 
TASK(3).PNTR = 09 
TASK(9).PNTR = 00
TASK(7).DELAY = 05 (FIRST DELAY = 5)
TAS K(3). DELAY = 03 (5 + 3 = 8)
TASK(9).DELAY = 06 (5 + 3 + 6= 14)

The linked-list is arranged so that the delays are in 
ascending order and each delay is equal to the sum of 
all previous delays up through that point. Since this is 
true, all delays are effectively decremented merely by 
decrementing the first delay. Of course, something for 
nothing is impossible and the speed gained by arrang
ing the delays in the above manner is paid for by the 
complexity of the ACTIVATESDELAY routine. But since 
the ACTIVATESDELAY routine is executed less fre
quently than the DECREMENTSDELAY routine, the sav
ings in real time is worth the added complexity.

Suppose a new delay is to be activated in the above 
scheme. Task 5 with a delay of 10 milliseconds is to be 
added. A before and after chart will indicate what the 
ACTIVATESDELAY procedure must accomplish.

BEFORE
TASK NUMBER 07 03 09
POINTER 07 03 09 00
DELAY 05 03 06

AFTER
TASK NUMBER 07 03 05 09
POINTER 07 03 05* 09 @ 00
DELAY 05 03 02 @ 04

FIRST POINTER IS THE DELAYSHEAD 
CHANGES ARE MARKED WITH AN *
ADDITIONS ARE MARKED WITH AN @

Note that the pointer before the added task has changed 
and the delay after the added task has changed. The 
function of the ACTIVATESDELAY procedure is to ac
complish these changes and additions.

PROCEDURES

The following procedure explanations reference the 
PL/M-86 source code listing which follows the applica
tion note text.

ACTIVATESTASK Procedure

This procedure is initiated by a call instruction with the 
byte NEWSTASK containing the number of the task to 
be put on the proper ready queue.

Interrupts must be disabled whenever the link-lists are 
being changed. If interrupts are enabled when this 
procedure is called, they should be re-enabled upon 
returning.

The assignment of priority is a simple matter. A declare 
statement, DECLARE FIRST$LOW$PRIORITY$TASK 
LITERALLY ‘N,’ (where N is the actual number of the 
first low priority task) indicates to the procedures that 
tasks 1 to N are high priority tasks and tasks N or higher 
are low priority tasks.

This procedure checks the busy bit in the status byte to 
see if this particular task is already busy and if so, 
returns a STATUS of zero. Otherwise, it returns the new 
STATUS of the task. It then checks the priority to see if 
this particular task is a high or low priority. If it is high 
priority, then the task pointer pointed to by the HIGHS 
PRIORITYSTAIL pointer is changed from zero to the 
number of the NEWSTASK. The HIGHSPRIORITYSTAIL 
pointer is then changed to the number of the 
NEWSTASK and the pointer associated with NEWS 
TASK is made equal to zero. This completes the ACTI
VATESTASK functions. If the new task is a low priority 
task, then the same functions are performed using the 
LOWS PRIORITYSTAIL pointer.

ACTIVATESDELAY Procedure

This procedure is initiated by a call with the byte NEWS 
TASK containing the number of the task to be put on the 
delay list and the byte NEWSDELAY containing the 
value of the associated delay.

Interrupts are disabled and the busy bit of this particular 
task is checked. If the busy bit is set the STATUS byte is 
set to zero and the procedure returns without activating 
the delay. If the busy bit is not set the integer value DIF
FERENCE is set equal to the NEWSDELAY value. 
POINTERSO is set equal to the DELAYSHEAD. POINT- 
ERS1 is set to zero. The DO WHILE loop executes until 
POINTERSO equals zero or DIFFERENCE is less than 
zero. Remember that the proper place to insert the new 
delay is being searched for, and that will be either at the 
end of the list (POINTERSO = 0) or when the sum of the 
previous delays do not exceed the new delay value. The 
DO WHILE loop has POINTERSO, POINTERS1, OLDSDIF- 
FERENCE, and DIFFERENCE keeping track of where 
the procedure is in the loop, while searching for the 
proper place to insert the new delay. The existing delays 
are sequentially subtracted from the remains of NEWS 
DELAY according to the link-listed order until the end of 
the list or a negative result is encountered indicating 
that the proper delay insertion point has been reached. 
At this point POINTERSO contains the task number to be 
assigned to TASK(NEW$TASK).PNTR. POINTERSI con
tains the task number immediately preceding the 
NEWSTASK such that TASK(POINTERSI). PNTR= NEWS 
TASK and our link list is fully updated, with the actual 
delays yet to go. If POINTERSO = 0 it means that the new 
delay is larger than any of the other delays and therefore 
should go on the end of the list so TASK(NEW$ 
TASK).DELAY is set equal to the DIFFERENCE. If
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POINTERSO is not equal to zero then if POINTERSO 
equals POINTERS1 (indicating that there were not any 
delays previously listed), then TASK(POINTER$1).PNTR 
is set equal to zero. TASK(NEW$TASK).DELAY is 
set equal to the OLDSDIFFERENCE and TASK 
(POINTERSO).DELAY is set equal to the negative of DIF
FERENCE which at this point is negative, thereby 
resulting in a positive unsigned number. The reader is 
encouraged to implement an example (see Delay Struc
ture section) to prove that the above approach is valid. 
Particular attention should be paid to the contents of 
the two pointers, as they are the key to the procedure. 
The final function of this procedure is to set the 
BUSYSBIT and DELAYSBIT in the TASK(NEW$ 
TASK).STATUS byte. The byte named STATUS which is 
returned by this procedure is set equal to the status of 
the new task. If it is desired to have interrupts enabled, 
they must be enabled after the procedure return instruc
tion. The reason for such a complex method of ac
tivating a delay will become apparent in the following 
section.

DECREMENTSDELAY Procedure

The first delay on the linked-list is decremented and, if it 
is zero, the associated task is put on the appropriate 
ready queue. The next delay (if any) is checked to see if 
it is zero and if so, that task is put on the appropriate 
ready queue, etc. A loop is performed until either no 
delay or a non-zero delay is found. The procedure then 
returns.

It is assumed that this procedure is part of an interrupt 
routine and that the interrupts are disabled during its 
execution. Interrupts cannot be enabled during changes 
to any of the linked-lists or else recovery may not be 
possible.

This procedure begins by checking to see if there are 
any active delays. If DELAY$FIEAD = 0 then this pro
cedure returns immediately. Otherwise it decrements 
the first delay. If this delay goes to zero then the 
associated task number is passed to the ACTIVATES 
TASK procedure as the OFFSDELAY byte. A new 
DELAYSHEAD is chosen from the next link-listed delay 
and that delay checked for a value of zero which will 
happen if the first two or more delays are equal. This 
loop is accomplished by the DO WHILE DELAYS 
HEAD <> 0 AND TASK(DELAYSHEAD).DELAY = 0; This 
procedure is designed to require very little CPU time 
unless a delay times out. The DO WHILE loop is by
passed if the resulting delay value is not zero. A certain 
amount of care should be exercised to insure that many 
delays do not all time out at the same time. One method 
would be to modify the ACTIVATESDELAY procedure to 
insure that there are no zero entries in the delay bytes. 
The basic procedure, however, assumes that the clock 
“ tick” timing will be chosen to minimize the above 
potential problem.

CASESTASK Procedure

This procedure performs the function of calling the task 
indicated by the contents of the RUNNINGSTASK byte. 
All listed tasks are called in this manner. The 
CASESTASK procedure is called by the DISPATCH pro
cedure. When a particular task has completed execution 
it returns to the CASESTASK procedure which then 
resets the BUSYSBIT and the READYSBIT and returns to 
the DISPATCH procedure after setting RUNNINGSTASK 
equal to zero. This procedure allows a task to relist itself 
immediately upon returning from execution.

PREEMPT PROCEDURE

The PREEMPT procedure is called whenever it is pos
sible that a high priority task has been put on the ready 
queue while a low priority task was in the process of 
execution. An example will illustrate:

Assume that the control system is being interrupted by 
the 60 Hz line frequency and a register is being in
cremented each time this 16.67 ms edge occurs. When 
the register gets to 60 (indicating that one second has 
passed), the register is zeroed and the high priority time
keeping task is put on the ready queue. Assume also 
that a low priority data logging task was running when 
this interrupt occurred. The interrupt routine calls PRE
EMPT. If a high priority task is running, PREEMPT 
simply returns. But in our example, a low priority task is 
running so PREEMPT transfers RUNNINGSTASK to 
PREEMPTEDSTASK and calls DISPATCH, which calls 
CASESTASK, which calls the time-keeping task. When 
the time-keeping task has completed, it returns to 
CASESTASK which returns to DISPATCH which returns 
to the PREEMPT procedure which returns to the inter
rupt routine which returns to the interrupted low priority 
data logging task if no other high priority tasks are on 
the ready queue. If the high priority ready queue is not 
empty, any and all high priority tasks will be completed 
before the interrupted routine is returned to. PREEMPT 
refuses to return to the interrupt routine until HIGHS 
PRIORITYSHEAD is equal to zero. It is important to note 
that a low priority task will not be preempted unless the 
PREEMPT procedure is called. As noted above, it is nor
mally called from the interrupt routine which interrupted 
the low priority task, but there is nothing to prohibit 
PREEMPT from being called from inside a low priority 
task procedure.

DISPATCH PROCEDURE

This procedure calls a high priority task if HIGHS 
PRIORITYSHEAD is not equal to zero, restores a pre
empted task if PREEMPTEDSTASK is not equal to zero, 
calls a low priority task if LOWSPRIORITYSHEAD is not 
equal to zero, and simply returns if there is nothing to 
do, all in order of priority. The DISPATCH procedure is 
called from the main program loop which must enable 
interrupts as DISPATCH disables interrupts as soon as
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it is called. It is also called by the PREEMPT procedure. 
RUNNING$TASK must be 0 when this procedure is 
called.

PL/M-86 PROCEDURES

Because the block structure and levels are so important 
to the understanding of the following procedures, they 
have been indented according to level. This was a sim
ple task accomplished by no indenting for level one, 
indenting once for level two, etc. The resulting attrac
tive, easy to follow format was worth the effort to 
increase the initial level of understanding for readers of 
this application note who are not intimately familiar 
with PL/M.

Everything except the very simple main program loop 
has been made into procedures. Interrupt routines and 
tasks are also procedures. Keeping track of interrupts, 
calls, and returns is easy for PL/M and a violation of the 
block structure through such devices as GOTO targets 
outside the procedure body is the best way the author 
knows to crash and burn. Honor the power of the struc
ture, accept the limitations involved, and checkout and 
debugging will be a pleasure.

Since CASESTASK references the individual tasks, the 
task procedure structure was included in the PL/M-86 
compilation. All the user has to do is insert the par
ticular task code in place of the /’ TASKnn CODE*/ com
ment, define the interrupt procedures and the system 
should be ready to run. Obviously, the user will desire to 
change the total number of tasks and the number of the 
FIRST$LOW$PRIORITY$TASK.

INITIALIZATION AND THE MAIN LOOP

The last entry in the PL/M-86 program is the initialization 
process which essentially zeros the task multiplexer 
data and the main loop which loops until TRUE= FALSE, 
i.e. forever, with interrupts enabled. The STATUS = 
STATUS instruction simply insures that the loop can be 
interrupted as the instruction following an ENABLE in
struction is not interruptible.

These few instructions are included for information only 
and will need to be expanded considerably for use in a 
real-world system. The task multiplexer procedures 
were checked out on an iSBC 86/12™ computer running 
under random interrupt control and these instructions 
were the minimum necessary to cause the system to 
run. As was stated earlier, the following source code 
does not include any interrupt procedures and these will 
have to be generated following the format explained in 
the PL/M-86 programming manual.

ADDITIONAL IDEAS

Resource allocation is a feature that could be added to 
the task multiplexer. To keep it simple and yet avoid the 
deadlock problem (two tasks each grab a resource that 
the other needs), an extra array can be added to the 
TASK(n).XXX structure in which each bit in the byte (or 
word), represents a resource necessary for the execu
tion of a task. A RESOURCESSSTATUS byte can then 
keep the dynamic busy status of the system resources 
(printers, terminals, floating point math packages, etc.). 
When the CASESTASK procedure is called, the 
resources required by the next RUNNINGS 
TASK can be compared to the RESOURCESSSTATUS 
byte to see if the required resources are available. If they 
are, the following PL/M-86 statement will update the 
new status of the resources:

RESOURCESSSTATUS = RESOURCESSSTATUS OR 
TASK(RUNNINGSTASK).RESOURCES;

However, if the resources are not available, the CASES 
TASK procedure can return the task to the ready or delay 
list and try again later. When the task has completed, 
the following PL/M-86 statement will update the 
resources status byte:

RESOURCESSSTATUS = RESOURCESSSTATUS AN D  NOT 
TASK(RUNNINGSTASK).RESOURCES;

Message passing from task to task may also be 
necessary. Assuming that a task will have only one 
message at a time to deliver or receive, another byte 
could be added to the task structure such that 
TASK(RUNN INGSTASK). MESSAGE could represent a 
byte containing the number of the task wishing to 
deliver a message to the RUNNING$TASK. Since a task 
can call CASESTASK which in turn will call another task, 
message block parameters can be passed directly from 
one task to another. The task that calls CASESTASK 
must handle the necessary housekeeping involved in 
recovering after the message has been passed. Of 
course, the data structure would have to be expanded to 
accommodate the message parameters and blocks. For 
further ideas involving message handling refer to the 
RMX/80™ user’s guide.

Two additional relatively simple procedures could be 
added to obtain the SUSPEND and RESUME features of 
the RMX/80™ system. Remember that if the BUSYSBIT 
is set in a TASK(n).STATUS byte and the task is unlisted, 
then it cannot be listed. If it is desired to dynamically 
enable and disable a task, this bit could be set by a 
SUSPEND procedure and reset by the RESUME pro
cedure.
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SOURCE CODE

TM86:DO;
DECLARE TOTAL$TASKS LITERALLY '10';
DECLARE TRUE LITERALLY '0FFH‘;
DECLARE FALSE LITERALLY ’0’;
DECLARE BUSY?BIT LITERALLY ’10000000B’;
DECLARE RE AD Y $ 61T LITERALLY '010000003’;
DECLARE DELAY$BIT LITERALLY '00100000B';
DECLARE FIRST?LOW?PRIORITY?TASK LITERALLY '6';
DECLARE TASK(TOTAL$TASKS) STRUCTURE(PNTR BYTE, STATUS BYTE, DELAY BYTE); 
DECLARE HIGH$PRIORITY$HEAD BYTE, HIGH?PRIORITY?TAIL BYTE;
DECLARE LOW$ PRIORITY$HEAD BYTE, LOW?PRIORITY$TAIL BYTE;
DECLARE RUNNIlMG$TA3K BYTE, PREEMPT ED? TASK BYTE;
DECLARE STATUS BYTE, NEW?TASK BYTE, NEW?DELAY BYTE;
DECLARE DELAY?HEAD BYTE AT (@TASK(0),PNTR);
ACTIVATE?TASK: PROCEDURE; /* ASSUMES NEW?TA3K<>0 */

DISABLE;
IF (TASK(N£W?TASK).STATUS AND 6USY?BIT)<>0 THEN STATUS=0;
ELSE /* SINCE TASK IS NOT BUSY */ DO;

IF NEW?TASK < FIRST?LOW?PRIORITY?TASK THEN DO;
IF HIGHSPRIORITY3TAILO0 THEN DO;

TASK(HIGH?PRIORITY?TAIL).PNTR=NEW?TASK;
END;

ELSE /* SINCE HIGH?PRIORITY?TAIL=0 THEN */ DO;
HIGH? PRIORITY?HEAD=NEW?TASK;
END;

HIGH?PRIORITY?TAIL=NEW?TASK;
END;

ELSE /* SINCE TASK IS LOW PRIORITY THEN */ DO;
IF LOW? PRIORITY?TAIL<> 0 THEN DO;

TASK(LOW?PRIORITY?TAIL),PNTR=NEW?TASK;
END;

ELSE /* SINCE LOW?PRIORITY?TAIL=0 THEN */ DO;
LOW?PRIORITY?HEAD=NEW?TASK;
END;

L0W?PRI0RITY?TAIL=NEW?TA3K;
END;

TASK(NEW?TASK),PNTR=0;
TASK(NEWSTASK),STATUS=TASK(NEW?TASK),STATUS OR 

BUSY?BIT OR READYSBIT;
STATUS='TASK (NEW?TASK) .STATUS;
END;

NEW?TASK=0;
RETURN;
END ACTItfA'TESTASK;
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ACTIVATE$ DELAY: PROCEDURE;/‘ASSUMES NEWSTASK, NEW$DELAY<>0*/
DECLARE POINTER$0 BYTE, POINTER$l BYTE;
DECLARE OLD$DIFFERENCE INTEGER, DIFFERENCE INTEGER;
DISABLE;
IF (TASK(NEW$TASK).STATUS AND BUSY$BIT)<>0 THEN STATUS=0;
ELSE /* SINCE TASK IS NOT BUSY */ DO;

DIFFERENCE=INT(NEW$DELAY);
POINTERS 0 = DELAY$HEAD;
POINTERS 1=0;
DO WHILE POINTERS0<>0 AND DIFFERENCE>0;

OLD$DIFFERENCE=DIFFERENCE;
DIFFERENCE=DIFFERENCE-INT(TASK(POINTERS 0) .DELAY) ;
IF DIFFERENCE>0 THEN DO;

POINTSR$l = POINTERS 0;
POINTERS 0=TASK(POINTERS 1) .PNTR;
END;

END;
TASK(NEWSTASK) .PNTR=POINTERS 0;
TASK(POINTERS!),PNTR=NEW$TASK;
IF POINTER$0 =0 THEN TASK(NEWSTASK) . DELAY = LOW(UNSIGN(DIFFERENCE)) ; 
ELSE /* SINCE DIFFERENCES THEN */ DO;

IF POINTER$0 = POINTER$1 THEN TASK(POINTERS 1).PNTR=0;
TASK(NEWSTASK),DELAY=LOW(UNSIGN(OLD$DIFFERENCE));
TASK(POINTERS0),DELAY=LOW(UNSIGN(-DIFFERENCE));
END;

TASK(NEWSTASK),STATUS=TASK(NEWSTASK).STATUS OR 
BUSY$6IT OR DELAYSBIT;

STATUS-TASK(NEWSTASK).STATUS;
END;

NEW$TASK=0;
NEW$DELAY=0;
RETURN;
END ACTIVATE$DELAY;

DECREMENTSDELAY: PROCEDURE; /* ASSUMES INTERRUPTS DISABLED */ 
DECLARE OFFSDELAY BYTE;
IF DELAYSHEADO0 THEN DO;

TASK(DELAYSHEAD),DELAY=TASK(DELAYSHEAD).DELAY-1;
DO WHILE DELAY$HEAD<>0 AND TASK(DELAYSHEAD),DELAY=0; 

OFF$DELAY=DELAY$HEAD;
DELAY$HEAD=TASK(DELAYSHEAD).PNTR;
TASK(OFFSDELAY),STATUS=TASK(OFFSDELAY).STATUS 

AND NOT(BUSY$BIT OR DELAYSBIT);
NEW$TASK=OFF$DELAY;
CALL ACTIVATE$TASK;
END;

END;
RETURN;
END DECREMENTSDELAY;
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CASE$TASK: PROCEDURE REENTRANT;
DO CASE RUNNING$TASK;

CALL TASK00;
CALL TA3K01 
CALL TASK02 
CALL TASK03 
CALL TASK04 
CALL TASK05 
CALL 'TA5K0 6 
CALL TASK07 
CALL TASK08 
CALL TASK09;
END;

TASK(RUNNING?TASK),STATUS=TASK(RUNNINo$TASK) 
NOT (3USY?8IT OR READYSBIT);

TASK(RUNNING$TASK).PNTR=0;
IF RUNNING?TASK=NEW?TASK THEN DO;

IF NEW?D£LAY<>0 THEN DO;
CALL ACTIVATE$DELAY;
END;

ELSE /* SINCE NEW?DELAY=0 */ DO;
CALL ACTIVATE$TASK;
END;

END;
RUNNING?TASK=0; 
RETURN;
END CASE?TASK;

.STATUS AND

PREEMPT:PROCEDURE REENTRANT; /* ASSUMES INTERRUPTS DISABLED */ 
IF PREEMPTED?'TASK = 0 THEN DO;

IF (HIGH? PRIORITY SHEADO0) AND (RUNNING?TASK> = 
FIRST?LON?PRIORITY?TASK) THEN DO;

PREEMPTED?TASK=RUNNING?TASK;
RUNNING?TASK=0;
DO WHILE PREEMPTED?TASK<>0;

CALL DISPATCH;
END;

END;
END;

RETURN;
END PREEMPT;
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DISPATCH:PROCEDURE REENTRANT; /* ASSUMES RUNNING$TASK=0 */ 
DISABLE;
IF HIGH$PRIORITY$HEAD<>0 THEN DO;

RUNNI NG$TASK=HIGH$ PRIORI'! Y$HEAD;
HIGH$PRIORITY$ HEAD=TA5K(RUNNING$TASK) .PNTR;
IF HIGH?PRIORITY?HEAD = 0 THEN HIGH?PRIORITY?TAIL = 0; 
CALL CA3E?TASK;
END;

ELSE IF PREEMPTED?TASK<>0 THEN DO; 
RUNNING?TASK=PREEMPTED?TA3K;
PREEMPTED?TASK=0;
END;

ELSE IF LOH?PRIORITY?HEAD< > 0 THEN DO; 
RUNNING?TASK=LOW?PRIORITY?HEAD;
LOW?PRIORITY?HEAD=TASK(RUNNING?TASK),PNTR;
IF LOW$PRIORITY?HEAD = 0 THEN LOW?PRIORITY?TAIL = 0; 
CALL CA3E?TASK;
END;

ELSE RETURN;
RETURN;
END DISPATCH;
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TASK00: PROCEDURE REENTRANT;/*ERROR CODE*/RETURN;END TASK00;
TASK01: PROCEDURE REENTRANT;

ENABLE;
/*TASK01 CODE*/

DISABLE;
RETURN;
END TASK01;

TASK02: PROCEDURE REENTRANT;
ENABLE;

/*TASK0 2 CODE*/
DISABLE;
RETURN;
END 'TASK0 2;

TASK03: PROCEDURE REENTRANT;
ENABLE;

/*TA3K0 3 CODE*/
DISABLE;
RETURN;
END TASK03;

TASK04: PROCEDURE REENTRANT;
ENABLE;

/*TASK0 4 CODE*/
DISABLE;
RETURN;
END TASK04;

TASK05: PROCEDURE REENTRANT;
ENABLE;

/*TASK0 5 CODE*/
DISABLE;
RETURN;
END TASK05;

TASK06: PROCEDURE REENTRANT;
ENABLE;

./*TASK0 6 CODE*/
DISABLE;
RETURN;
END TASK06;

TASK07; PROCEDURE REENTRANT;
ENABLE;

/*TASK07 CODE*/
DISABLE;
RETURN;
END TASK07;
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TASK08: PROCEDaRE REENTRANT; 
ENABLE;

,/*TASK0 8 CODE*/
DISABLE;
RETURN;
END TASK08;

TASK09: PROCEDURE REENTRANT; 
ENABLE;

/*TASK0 9 CODE*/
DISABLE;
RETURN;
END TASK09;

/‘INITIALIZE*/
DISABLE;
DO STATUS=0 TO 9;

TASK(STATUS),PNTR=0;
TASK(STATUS),STATUS=0;
TASK(STATUS).DELAY=0;
NEW$TASK,NEW$DELAY=0;
HIGH$PRIORITY$HEAD,HIGH$ PRIORITY$TAI L=0 ; 
LON$ PRIORITY$HEAD,LOW$PRIORITY$TAIL=0; 
RUNNING$TASK, PREEMPTED$'TASK = 0 ;
END;

/* MAIN LOOP */
DO WHILE TRUEOFALSE;

CALL DISPATCH;
ENABLE;
STA'TUS=STATUS ;
END;

END TM86;
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INTRODUCTION
The Intel 8089 is the first integrated I/O processor 
available. This I/O processor (IOP) makes available the 
power of I/O channels, as used in mainframes and mini
computers, in a microcomputer form. Designed as part 
of the MCS-86™ family, the IOP can be interfaced with 
the MCS-80™ and MCS-85™ families as well.
An I/O channel is basically a processor remote from the 
main CPU, which independently runs I/O operations 
upon command of the CPU. To relate the 8089 to ex
isting LSI components, it is similar to a microprocessor 
that is time-multiplexed with a DMA controller, but with 
two channels available. However, since the 8089 proc
essor is optimized for I/O and multiprocessor opera
tions, and the DMA has been made much more flexible 
than existing DMA controllers, a truly general purpose 
and powerful I/O control system is available on one chip.
Due to the uniqueness of the 8089, this application note 
was written to review debugging strategies and point 
out possible pitfalls when developing an IOP system. 
Debugging an IOP system is very similar to debugging 
microprocessor/DMA controller systems, and many of 
the techniques described here are standard microproc
essor techniques. However, several factors are present 
which can complicate the debugging process:

1. Multiprocessor Operation
Although usable by itself, the IOP is designed to be 
used with other processors. All factors normally en
countered with multiprocessor operation, including bus 
arbitration, processor communication, critical code sec
tions, etc., must be addressed in the design and debug 
of an IOP system.

2. DMA Tie-in to IOP Program Execution
The relationship between IOP program execution and 
DMA transfers and termination is different from earlier 
DMA controllers and should be fully understood to prop
erly run the system.

3. Dependency of Programs on Real-Time I/O 
Operations

Requirements by I/O devices for maximum data rates 
and minimum latency times force the software program
mer to be aware of hardware timing constraints and can 
complicate program debugging.

4. Dual Channel Operation
Related to multiprocessor operation and real-time 
dependencies, the two independent channels available 
on the 8089 may have to be coordinated with each other 
to make the whole system function. Dependence of one 
channel on the other can also complicate debugging.
Due to the complexities of running in a real-time envi
ronment, as many steps as possible should be taken to 
facilitate debugging. A major help here is to make sure 
as much of the hardware and software as possible is 
working before running real-time tasks. This is a good 
practice anyway, but it should be reemphasized that a 
complex multichannel system can quickly get out of 
hand if more than a few things are not right.

An aid to debugging any system is a clean, well organ
ized system design. The 8089 lends itself to structured, 
modular software interfaces to the host CPU, via the 
linked-list initialization structure, and parameter com
munication through the parameter block (PB) area. 
Some of the aspects of structured programming that aid 
debugging are:

• T op  D o w n  P ro g ra m m in g  — The functions done by 
low-level routines are well understood, and the 
number of program fixes, which can cause more 
errors, is minimized.

• P ro g ra m  M o d u la r it y  — Small, easy to manage sub
programs can be debugged independently, increas
ing the chance that the entire system will work the 
first time.

• M o d u la r  R e m o te n e s s  — By having all program 
modules communicate only through a well-defined 
interface, one module's knowledge of the "inner 
workings" of another is minimized. System soft
ware complexity is reduced. Updates to program 
modules are more reliable, too.

Two major areas of debugging will be outlined here — 
static (or functional) debugging in which the hardware 
and software are not tested in a real-time environment, 
and real-time debugging. Applying a logic analyzer to 
IOP debugging will also be explained, and a review of 
IOP operation and potential problems will be done.

STATIC (OR FUNCTIONAL) DEBUGGING
The predominant errors in a system, when first tried out, 
are either errors in implementation (i.e., wrong hookups 
or coding errors), or an incorrect implementation (a 
wrong assumption somewhere). Most of these bugs can 
be found through static debugging techniques that are 
usually easier to work with than real-time testing.

Hardware Testing
Static hardware testing is done mainly to see if all indi
vidual parts of the system work, so the whole system 
will “ play" when run. The level of testing can run from 
checking for continuity and shorts (which finds only 
hookup errors) to trying to move data around and run
ning I/O devices from a monitor or special test programs 
(which can also find incorrect circuit design). In all but 
the simplest systems, the latter approach is recom
mended since it is a step towards software debugging.
Several approaches to hardware testing will be covered. 
Running diagnostic programs (such as a monitor) out of 
the lOP's host system, in both the LOCAL and REMOTE 
modes, will be covered. The case where the host system 
cannot support diagnostic software and must have an 
external processor to exercise the IOP and its periph
erals will also be explained.
The case where the host system can run diagnostics or 
test programs that have interactive user I/O, such as a 
CRT terminal or teletype, provides the most straightfor
ward way to test the IOP. Naturally, before these pro
grams can be run, the basic hardware must be correct 
enough to run programs. When this point is reached, a 
monitor program can be used to exercise memory and 
I/O controllers on the system bus.
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It should be mentioned that aids, other than just testing 
with software, are helpful for hardware debugging. 
While a necessity for real-time debugging, a logic 
analyzer is also a definite help for static hardware 
debugging. Its main use in hardware debugging is show
ing timing relationships between address or data paths 
and other signals. It is especially useful for functional 
software debugging, to be described shortly. The last 
debugging section outlines the use of an analyzer with 
the IOP. Of course, an oscilloscope, logic probes and 
pulsers, etc., can be used to trace out specific logic or 
timing problems.

LOCAL Mode
When the IOP is running in the LOCAL Mode, all I/O con
trollers and memory are accessible by the host or con
trolling CPU. Thus a standard monitor, such as the one 
supplied with the SDK-86 or available for the iSBC- 
86/12™ development kit, can exercise all hardware on 
the bus.* The breakpoint routines, however, will not 
work due to the different instruction set. The 8086 or 
8088 is best suited for running the IOP in the LOCAL 
mode due to identical status lines and bus timing, as 
well as the Request/Grant line, which eliminates bus ar
bitration hardware. Figure 1 shows the general LOCAL 
mode configuration.

*The SDK-86 serial monitor is a good basis for a general 8086 monitor. 
The IOP cannot be used directly with the SDK-86, s ince  the 8086 is run
ning in the m inimum mode. The SDK-86 can be converted to run in the 
maximum mode, if desired.

REMOTE Mode
From a system design standpoint, running the IOP in 
the REMOTE Mode is advantageous in that it removes 
the I/O bus cycles from the system bus. Normally, the 
remote I/O is not accessible to the host CPU. Until the 
IOP is able to run its own test programs to transfer data 
from the REMOTE bus to the system bus, I/O controllers 
and memory on the REMOTE bus will be invisible to the 
host. To get around this problem during prototyping, 
either an external processor interface can be used (see 
next section), or a temporary bypass can be made to ac
cess the REMOTE bus from the system bus.

Bypassing the normal REMOTE/SVSTEM interface is a 
handy technique for doing preliminary debugging on the 
REMOTE bus. This can be done by memory-mapping the 
lOP’s I/O space into an unused portion of the host 
CPU's system memory space. When accessing this 
space, the IOP access to its own I/O space is disabled, 
and a separate set of address buffers, transceivers and 
bus control signal buffers are enabled. Reads and writes 
can then be done to the formerly inaccessible REMOTE 
bus by the host CPU.

A simple system (Figure 2) implements this bypassing 
scheme. It was designed for just forcing or examining 
devices on the REMOTE bus and may not read or write 
correctly if the IOP is simultaneously trying to do bus 
cycles. A more sophisticated arbitration system would 
permit reliable run-time checking also.

SYSTEM BUS

8284
CLOCK GENERATOR 

READY RESET CLK

AD0-ADl5 
A 1 6 -  A19 

8086 
CPU

s -̂s;

rQ/grt

LOCAL BUS

AD0-A D 15 
A16 — A19

IOP § -̂§2

3 3 x 8282 
LATCH 5

------ * \  2 x 8286 A
I—/  TRANS- \

So~§2

8288
BUS

CONTROLLER
IOWC

o

Q SERIALI/O
(8251)

o
I/O
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Figure 1. Generalized LOCAL Configuration—8086 in Max Mode
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F ig u r e  2 . R e m o te  M o d e  B y p a s s  f o r  D e b u g g in g

Running the IOP in the REMOTE mode, particularly if 
the MULTIBUS™ protocol is adhered to, has the advan
tage that the IOP can be exercised with any MULTIBUS- 
compatible processor. If the main processor is not 
amenable to being used as a debugging tool, another 
processor could be used to debug the hardware inter
face. If the microprocessor is of the same type as the 
intended host processor, software debugging can be 
done as well. A generalized REMOTE mode configura
tion using the MULTIBUS is shown in Figure 3.

External Processor Interface

A technique that can be used if the host processor can
not run any debugging or monitor routines is to have an 
external processor tie into the host processor’s bus. 
This is useful if the main system CPU cannot run an in
teractive monitor or other debugging programs. If a 
MULTIBUS interface is being used, an 8289 bus arbiter 
and a set of address/data/control buffers can be used. A 
somewhat simpler system, similar to the remote bus ac
cess system mentioned above, could be used for static 
debugging of non-MULTIBUS systems. Again, if true bus 
arbitration is added (which brings us nearly to a MULTI
BUS interface), it could also be used for run-time 
testing. Intel processors that have the MULTIBUS 
interface include the iSBC-80/20™, iSBC-86/12™, iSBC-

80/10™, iSBC-80/05™, the Intellec® development 
systems, among others.
In the previously described systems, the external proc
essor would disable the host CPU’s access to the bus, 
either by some form of bus request or by a “ brute force" 
disabling of the CPU’s buffers. In the latter case, the ex
ternal processor could only control the bus during a 
time that the CPU is halted, without destroying the pro
gram flow. Mapping the processor's memory space into 
the external processor memory space is the simplest 
method, but can impact programs being run on the 
external processor. If the processor under test utilizes 
the MULTIBUS interface (with bus arbitration), then a 
processor like the iSBC-80/30™ or iSBC-86/12™ could 
be used as the debug vehicle with no special hardware. 
A more flexible interface that would have less impact on 
the system memory space would have the addresses for 
the system under test generated from latches loaded by 
the I/O instructions from the external processor. This 
case must have software routines to interface to the I/O 
ports and handle the desired debugging routines (see 
Figure 4).
Software Testing
It is desirable to check as much of the IOP program as 
possible statically, since various tools and techniques 
are available which may not be usable during real-time
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F ig u r e  3 . G e n e r a l iz e d  R e m o te  B u s  U s in g  M U L T IB U S  In te r fa c e

SYSTEM UNDER TEST

F ig u r e  4 . E x te r n a l  P r o c e s s o r  In te r f a c e
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testing. This “ static" software testing is not applicable 
to heavily l/O-dependent or DMA-dependent routines, 
but is best suited to longer computational or data han
dling routines. The idea is to test the correctness of 
algorithms, rather than seeing if the whole system runs.

There are two main approaches to functional software 
testing. One is to essentially run the program in real 
time and monitor program flow on a logic analyzer. The 
difference between this and real-time testing is that pro
gram subsections can be tested separately by using dif
ferent TP (Task Pointer) starting addresses. If it is 
necessary to set up certain registers or parameters in 
memory, a small “ setup” program can be run after ini
tialization, which can load up registers or memory, then 
jump to the program section desired.
Another technique is to run the programs with break
point routines so that one can step through GOde 
segments and follow program execution. Software 
breakpoints are usually implemented by inserting a 
jump or restart to a monitor routine at the breakpoint 
location. This jump or restart is machine language 
dependent so, unfortunately, the existing breakpoint 
routines within monitors for the 8080 or 8086 are not 
applicable.

New routines tailored to the 8089 can be used, and, if 
done properly, can even be used to examine programs 
running on a REMOTE bus. Using breakpoints is some
what complicated on the 8089 because the minimum in
struction length is two bytes. There is no absolute CALL 
instruction, only a relative one (which would have to 
have its displacement recalculated each time it was 
used). But, with a several-byte absolute jump inserted at 
each place a breakpoint is desired, full breakpoint 
capabilities can be obtained.
There are many ways the breakpoints can be imple
mented. When a breakpoint is reached, the 8089 itself 
could output the machine state to a console through its 
own routines. Better suited to debugging, though, is a 
system that has the 8089 place its machine state in 
memory, alert the host processor, and then halt. The 
host then picks up the 8089's state and can treat it in the 
same way it runs its own breakpoint routines. Since the 
host processor is more likely to be running a monitor or 
some other kind of debugging routine (and most likely 
has at least temporary console I/O), it is the logical sys
tem to initiate and examine 8089 breakpoints. If the IOP 
is running in the REMOTE mode, and the host processor 
has access to the I/O bus via the scheme mentioned in 
the hardware debugging section, then IOP programs 
running on the REMOTE bus can be examined.
The breakpoint itself can consist of an escape sequence 
that is used to save the TP value and jump to the save 
routine, or just a jump to the save routine. This routine 
saves all register contents for the channel the break
point is in, signals the host processor, and stops the 
IOP. All user programmable registers (GA, GB, GC, IX, 
MC, BC, TP), as well as the pointer tags, are accessible. 
The PP (Parameter Pointer) and PSW are not normally 
accessible, but if the generation of the CA is such that 
the IOP can send itself a CA, then by sending a CA 
HALT, the PSW will appear at PP+3. Remember that

since the IOP doesn’t have arithmetic or logical condi
tion codes, the PSW is not as important as in other 
machines.
The most straightforward way to pass data from the IOP 
to the host processor is through the PB (Parameter 
Block) area since the PP will normally remain relatively 
fixed throughout the IOP program. In order not to in
fringe on the PB areas used by the programs, an area 18 
bytes long should be allocated at the end of the PB 
block to hold the register contents. Using other areas to 
store the register data requires saving and reloading a 
pointer register as part of the breakpoint escape 
sequence.
The data returned from the breakpoint save routine will 
appear to the host processor as a sequential block of 
data in the PB area. Sixteen-bit data can easily be ex
tracted, but 20-bit pointer data will have to be 
reconstructed from the move pointer (MOVP) format:

HIGHEST
ADDRESS D19. ..D16 T 0 0 0 D15. . .D8 D7. . .DO

j _____
TAG BIT 

0 = SYSTEM 
1=1/0

LOWEST
ADDRESS

Several means are available to signal the host processor 
that a breakpoint has been reached. A bit could be set in 
memory or an interrupt sent to the CPU. The best way, 
though, is to use the BUSY flag (at CP+1 or CP+ 9). 
After starting the IOP, the BUSY flag is set to FF. When 
a breakpoint is reached, the IOP performs its save 
routine and does either a software or CA HALT. These 
result in clearing the BUSY flag, which then signals the 
CPU to obtain valid breakpoint data. The CPU can then 
restart the IOP by either a CA START or CA CONTINUE.
The breakpoint routine outlined above will work for a 
“ one-shot” test. However, to be more useful as a 
general purpose debugging tool, some refinements 
must be added. To keep from destroying the program 
whenever a breakpoint is placed, the supervisory pro
gram running from the host processor must save the 
IOP code that is occupied by the escape sequence. 
When the breakpoint is completed and IOP execution is 
to resume, the host program restores the IOP code, sets 
the TP in the CB area back to where the breakpoint was 
placed, and sends a CA START. Since the length of each 
instruction can be easily found from bits 1-4 of the op
code, a single stepping function can also be done.* By 
the time this is implemented, the host program is 
becoming a full-fledged debugging routine. Appendix 3 
describes a debugging program that makes use of the 
ideas presented here.
Breakpoint routines can be quite useful, but some 
restrictions and limitations should be mentioned. The 
processor examining the breakpoints must have access 
to the IOP program memory, either directly, or through 
IOP programs that simulate direct access. The program 
memory must be in RAM. The breakpoint must be

* T h e  f o r m u la  f o r  le n g th  o f  in s t r u c t io n s  is :  le n g th  ( in  b y te s )  =  2  +  1 ( i f  b i t s  

1 ,0  =  0 1 ) + 1  ( i f  b i t s  3 ,2  =  0 1 )  + 2  ( i f  b i t 3 = 1 )  +  2 ( i f  L P D I) .
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placed on an instruction boundary, and multiple break
points must not be placed so that they overlap. There 
may be some impact on the PB area. CA generation may 
have to be different than usual. But, despite these 
limitations, the breakpoints offer a useful and more con
ventional software debugging tool than analyzers.

REAL-TIME TESTING
Running an IOP program in its final environment with 
real I/O devices is the true test of dynamic operation. 
The program is no longer in a static, isolated environ
ment. The demands of DMA and multiprocessing may 
reveal unplanned timing dependencies or critical sec
tion problems. There may also be sections of hardware 
or software, which couldn’t be tested statically, that 
may have bugs. The whole purpose of static or func
tional testing is to dig these problems out while con
venient debugging tools can be used. Since there are no 
simple techniques for real-time debugging, the use of a 
logic state analyzer and techniques to fully understand 
the lOP’s real-time operation will be emphasized.

Multiprocessing operations and real-time asynchronous 
I/O requests can cause the timing complexity of the 
system as a whole to rise beyond the point of complete 
comprehension by an individual. It is then essential that 
techniques to ensure correctness are used. These in
clude good design methods, especially a clean, well- 
structured design, as well as good testing. A thorough 
test requires the attitude that the system should be 
tested for failures, rather than tested for correctness. In 
other words, one should try to make the system fail, 
tests should be chosen that will put the worst stress on 
critical timing areas.

The best way to do this is to write a diagnostic program 
that puts the CPU, IOP, and I/O devices through the 
worst conceivable timing and program combinations. 
Ideally, the program should be self-checking so that it 
can be run without supervision, printing any data or pro
gram errors that occur, much like a memory test.

The two main real-time problem areas are insufficient 
data rates or latency, and critical section problems. To

test for data rate problems, run the system clock at its 
lowest expected frequency and use memory and I/O 
with maximum expected wait states. Identify the 
tightest program timings and try to have these sections 
coincide with worst case DMA or other heavy bus utiliza
tion (see dual channel operation later). Critical section 
problems can occur when two independent processors 
communicate with each other with improper "handshak
ing.” This can result in one processor missing another's 
message, or even having both processors hang up, 
waiting for each other to go ahead. The 8089 provides 
aids to these problems, including the TSL instruction (to 
implement semaphores) and the BUSY flag. However, 
any interprocessor communication (including one chan
nel of the IOP to the other) should be checked. Beware 
of cases when one processor is running considerably 
slower than the other (due to DMA overhead or chained 
instruction sequences).

The techniques for real-time debugging evolve from 
functional testing using a logic analyzer. For all but the 
simplest systems, an analyzer is essential, since it can 
graphically show program execution and timing rela
tionships during real-time execution. Another aid is a 
delayed oscilloscope. Triggering the scope from the 
logic analyzer, the delay can be adjusted so that any 
signal in the system can be monitored.

To facilitate the use of the logic analyzer, especially if 
its memory is not very deep or when using it to trigger 
an oscilloscope, a repetitive system can be used to con
tinually update the display. Using a repetitive reset 
helps to debug the software-hardware interface, since 
oscilloscope or logic analyzer probes can be readily 
moved around the circuit to observe new signals 
without manually retriggering the display. At its 
simplest, the reset to the host processor can be strob
ed, say every 10 ms. The processor will then provide the 
two channel attentions (CAs) that are needed to in
itialize the IOP. Where this isn't feasible, the CAs can be 
externally forced by either a string of one-shots or a sim
ple processor with timing loops (such as a SDK-85 or 
SDK-86). See Figure 5 for initialization timing.
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Memory protection of the IOP and system programs is 
helpful when debugging DMA operation. It is quite easy 
for runaway DMA to wipe out memory. Another precau
tion to avoid this problem is to set an upper limit on the 
number of bytes transferred by always specifying a byte 
count termination.

Logic Analyzer Techniques

In the absence of other powerful debugging systems, 
the logic analyzer has shown to be an extremely useful 
tool. Because of its importance in debugging an IOP 
system, some basic techniques and observations that 
relate to monitoring IOP operation will be reviewed here. 
The particular brand or type of analyzer used is not too 
important, but would be desirable to have the following 
features:

• At least a 24-bit data width
• Flexible triggering and qualification control
• Display after triggering on a sequence of states
• Capability for hexadecimal data display

It is best to hook up to the address/data lines at the IOP, 
as opposed to looking at the separate address and data 
lines, since 39 lines would be required just to look at ad
dress, data and status lines. The three lower status lines 
should be monitored to show the type of bus cycle be
ing run. Other lines can be connected where needed, at 
places like the DRQ lines, the EXT lines or other lines 
related to the system.

For general purpose debugging, triggering the analyzer 
on the rising edge of the IOP clock shows the most 
useful data concerning bus cycles. Of course, using the 
falling edge may be necessary to check certain signals, 
particularly ones that are active only while the clock is 
low. The following discussion is based on sampling 
data on the clock’s rising edge.

One should be careful when setting up the triggering 
for the analyzer that the desired event is what is dis
played and not a later event with the same trigger word. 
This can happen when the logic analyzer is in the repet
itive trigger mode. It may retrigger before the system ac
tually resets. A sequence restart feature is helpful.

The basis of following program execution and DMA on a 
logic analyzer is to follow an 8089 bus cycle, which is 
identical to a 8086 and 8088 bus cycle. The following 
diagram shows a typical 8089 bus cycle.

For general purpose debugging, displaying every clock 
is useful, but for quickly finding one’s way around a pro
gram, the analyzer can be qualified so that only instruc
tion fetches (status = 100 or 000), with ALE active, are 
trapped. A much more compact display of execution 
flow results.

BUS
CYCLE A16-19 ADO-15 SO-2 PREVIOUS ADDRESS, UPPER STATUS

X X X X X ^ * 1 1  1 IDLE STATUS

T1 F F 0 1 0 1 0 1 20-BIT ADDRESS = FF010,

T2 E -► F  F F F 1 0 1 LOWER STATUS = MEMORY DATA READ

T3 E A A 5 0 1 1 1 16-BIT DATA RETURNED = AA50

T4 E F 0 1 0 1 1 1 ADDRESS REMAINS IN CHIP OUTPUT
i  LATCH AFTER END OF BUS CYCLE

T ---------  DATA NOT READY YET
L  UPPER STATUS INDICATES: NON-DMA, CH1

As mentioned earlier, on a 16-bit bus, most instructions 
starting on odd addresses won’t show the first fetch, 
since the internal queue is in use. It is a good idea in 
that case to use only even instruction boundaries as 
trigger words. When following dual channel operation, 
one should keep an eye on the upper status bits (S3-S6), 
since S3 indicates which channel is running (0 = CH1, 
1 = CH2), and S4 indicates DMA/non-DMA transfer 
(0= DMA, 1 = non-DMA).

A REVIEW OF IOP OPERATION 
(With things to look out for)
When trying to get an unfamiliar system going for the 
first time, it is too easy to stumble on apparent prob
lems that are really just unexpected operation modes or 
peculiarities of the machine. For this reason the basic 
principles of IOP operation will be reviewed here with 
special emphasis on possible problem areas or pitfalls 
that a user might encounter when debugging a 8089 sys
tem. The topics are covered generally in the order en
countered when bringing up a system. For complete 
details of operation and some design examples, see the 
8086 Family User’s Manual.

RESET
RESET must be active (HIGH) for at least four clocks in 
order to fully initialize all internal circuitry. On power up, 
RESET should be held high for at least 50 microsec
onds. The chip is only ready to accept a Channel Atten
tion (CA) one clock after RESET goes inactive.

Note that the SEL pin is sampled on the falling edge of 
the first CA after RESET to tell the 8089 whether it is a 
master (0) or a slave (1) for its request/grant circuitry. If a 
master, it will assume it has the bus from the beginning. 
If a slave, it will strobe the RQ/GT Line to request the 
bus back and will not start any bus transfers until it has 
been granted the bus. If the RQ/GT line is not being 
used, make sure the IOP comes up in the master mode.

Initialization
Upon the first CA after reset, a sequence of instructions 
is executed from an internal ROM. These instructions 
pick up parameters and load data from the linked list 
sequence (Figure 6). The instruction sequence is essen
tially:

MOVB SYSBUS from FFFF6
LPD System Configuration Block (SCB) from FFFF8
MOVB SOC from (SCB)
LPD Control Pointer (CP) from (SCB)+ 2 
MOVBI “00" to CP + 1 (clears BUSY flag)
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Remember that four bytes must be fetched during an 
LPD. If on a 16-bit bus, with even addressed boundaries, 
only two fetches are needed. Otherwise (8-bit bus or odd 
boundaries), four fetches are needed.
Even though no bus cycles are run to fetch these in
structions, the CH1 Task Pointer (TP) appears on the ad
dress latches during the short internal fetch periods. 
On power up, this value is meaningless, but if a repeti
tive RESET is used, the TP remains unchanged from the 
end of the last program run. See Figure 6 for the start of 
a typical initialization sequence as viewed on a logic 
analyzer.
Bit 0 in the SYSBUS field sets the actual (or physical) 
system bus width that the IOP expects. In the 8-bit 
mode, only byte accesses are made, and all 8-bit data 
should appear on the lower eight data lines. In the 16-bit 
mode, word accesses can be made (if the address is 
even), all data on even addresses appears on the lower 
eight data lines, and all data at odd addresses appears 
on the upper eight.
Bit 0 in the SOC field sets the physical width for the I/O 
bus. The same rules for the system bus apply here. Note 
that these bits should reflect the actual hardware imple
mentation and are not to be confused with the DMA logi
cal widths set by the WID instruction.
The R bit (bit Jl)_in_the SOC field is used to change the 
mode of the RQ/GT circuitry. When the IOP is on the 
same bus as an 8086, it is required to have the R bit be 0, 
with the 8086 as the master and the 8089 as the slave.

CA a 1 9 -* 0 S 3 - S 0 T CO M M ENTS

1 FF F F F 111 Trigger CLK t
1 FF F F F 111

FF F F F 111
FF F F F 111
E 0 0  0 0 111 Bus un-tristated
E 0 0  0 0 111
FF C 6 D 111

10 TP to  latch
CK FF C 6 D 111

FF F F 6 101 T 1 Address loaded to  latch
EF F F F 101 T2 Data not ready yet (noth ing on bus)
EF F 0 1 111 T3 SYSBUS loaded in to  ch ip  (01)
EF F F F 111 T4 Nothing on bus
EF F F 6 111 A fte r bus cycle, address remains in
EF F F 6 111 latch
FF C 6 D 111 TP is loaded to  latch, even though

14 fetches are from  in ternal ROM
CK FF C 6 D 111

FF F F 8 101 T1 Address to  latch
EF F F F 101 T2
EF F F 0 111 T3 1st 2 bytes o f LPD data fetched (FFF0)
EF F F F 111 T4
EF F F 8 111
EF F F 8 111
EF F F 8 111
EF F F 8 111
FF F F A 101
EF F F F 101
EF F F A 111 2nd 2 bytes o f LPD data fetched (FFFA)

6
CK EF F F A 111

FF C 6 D 111

F ig u re  6 . S ta r t  o f  In itia liz a tio n  S e q u e n c e  O n a  16-Bit B u s

The master (8086 or 8088) can never take the-bus away 
from the slave (8089); only the slave can give back the 
bus. In other words, during DMA transfers, the 8089 
would not have the bus taken away. This is the only 
mode compatible with the 8086 or 8088.

When_two lOPs are being used on the same bus, the 
RQ/GT circuity can be put into an equal priority mode 
by setting the R bit to one. A slave can only be granted 
the bus if the master is doing unchained instructions or 
running idle cycles. The master can request the bus 
back from the slave at any time. The slave grants it if do
ing unchained instructions or if it is idling. The master 
and slave are put on essentially the same priority.

At the end of initialization, the "BUSY" flag of CH1 is 
cleared. For systems where the 8086 is waiting for the 
initialization sequence to end before giving another CA, 
it can set the BUSY flag high prior to initialization. The 
BUSY flag going low is a sign that the IOP is ready for 
another CA. It is important to remember that the IOP will 
not respond to, nor latch, a CA during an initialization 
sequence.

Channel Attentions
The main system processor initiates communications 
with the IOP through the Channel Attention (CA) line. As 
mentioned earlier, the first CA after system RESET in
itializes the IOP. All subsequent CAs cause the IOP to 
do a two-step process. It first fetches the Channel Con
trol Word (CCW) from the appropriate channel at (PP) for 
channel 1 or (PP + 8) for channel 2. (SEL at the time of 
CA falling determines the channel for all following ac
tions.) The lower three bits of the CCW Command Field 
(CF) are examined and then cause the IOP to execute 
the desired function.

Command Field (CF)
Control of task block programs is accomplished 
through the command field. The various CF functions 
are:

CF
000 — Examine other field only and set BUSY flag
001 — Start task program in I/O space
011 — Start task program in system memory

The start command causes the following instructions 
to be executed out of the internal ROM:

LDP CP from (CP)+ 2 (CH1) or +10(CH2)
LDP TP from (PP) (for TP in system) or 
MOVB TBP from (PP) (for TBP in I/O)
MOVBI “ FF” to (CP)+1 or+9 (set BUSY flag)

111 — HALT channel. BUSY flag cleared to "00” 
110— HALT channel. Save state of machine and 

clear BUSY flag by executing:
MOVP TP to (PP)
MOVB PSW to (PP) + 3 
MOVBI “ 00” to (PP)-t-1 or+9
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The channel will HALT and the machine will con
tinue execution on the other channel or go to idle if 
the other channel is idle.

101 — Continue channel. The channel is revived 
after a HALT by executing:

MOVP TP from (PP)
MOVB PSW from (PP)+3 
MOVBI “ FF” to (CP) + 1 or +9 

(set BUSY flag)

Do not do a CONTINUE after initialization without doing 
a CA START first since the (PP) register in CH1 is used 
as a temporary register (to hold SCB) and is only correct
ly loaded by a CA START.

The upper 5 bits in the CCW will have affect if CF = 000 
or upon a CA START. Some things to note about these 
upper fields are:

•  Priority Bit — If both channels are doing tasks of 
the same overall priority, the tasks with the higher 
priority bit will run. If the priority bits are the same, 
execution will alternate between the two channels.

•  BLL Bit (Bus Load Limit) — Keeps nonchained in
structions from occurring more often than once 
every 128 clocks. However, channel attention or ter
mination cycles, even on the other channel, may 
disrupt the exact time interval to the next 
instruction.

It should be noted that the setting or clearing of the 
BUSY flag occurs after the loading or storing of 
registers, so that in a system where the main CPU uses 
the BUSY flag as a form of semaphore to tell when the 
IOP is truly finished, there is no danger that the SCB, 
CP, PP or TP could be changed before the IOP loads 
them.
Also since DMA termination cycles and chained instruc
tion execution have a higher priority than CA, it is possi
ble for CA to be “ shut-out” by these higher priorities 
running on the other channel. However, since CA is 
always latched (except during initialization), it won’t be 
forgotten.

How Can a Channel be Halted?
Sometimes a channel may stop its operation unex
pectedly. To see what could cause this, and to show the 
impact of halting a channel, the various ways of stop
ping a channel are explained:
HALTED CHANNEL — If the channel has never started 
after initialization, if it has received a CA HALT com
mand or a software HALT, channel operation is sus
pended. If the other channel can run, it will, otherwise 
idle cycles will run. Only a CA START or CONTINUE can 
resume operation.

WAITING FOR A DMA REQUEST — If the channel is in a 
source or destination synchronized DMA transfer mode, 
it will wait until DRQ is active before running its syn
chronized transfer. To minimize the impact on the 
overall throughput of the chip, the other channel can run 
during these DRQ wait periods.

WAITING TO GET THE BUS BY RQ/GT — If the IOP has 
given the bus away via RQ/GT, it won’t initiate any bus 
transfers until it has the bus back. The machine will run 
up to just before T1 of a bus clock cycle and will three- 
state its address/data and status pins until it has been 
granted the bus.

WAITING FOR READY — When running bus transfers, 
READY is sampled at T3 of a busy cycle. If inactive, the 
whole chip will wait until READY goes active.

The last two cases of waiting (or “ wait” states) stop the 
whole chip and do not permit the other channel to run. 
However, with READY inactive or with the bus not ac
quired, there is not much that can be done on the other 
channel anyway. These two cases only stop the chip 
when running bus cycles. Any internal operations can 
proceed without having the bus or with the system not 
READY.

Note the difference between when the chip is HALTed 
when using RQ/GT and an external arbiter (8289) for 
bus arbitration. Not having the bus due to RQ/GT will 
inhibit the bus cycle from even starting. Since the 8289 
stops the chip by forcing AEN inactive, which goes 
through the 8284 clock generator to force READY Inac
tive to the IOP (or 8086/8088), a bus cycle has already 
been started, with ALE asserted, and the address on the 
address/data lines. When the bus is obtained, operation 
proceeds at T3 of the bus cycle.

As will be mentioned later, many invalid opcodes will 
cause the machine to hang up. In these cases the 
address/data lines will point to where the bad opcode 
was fetched.

Task Execution

Although optimized for fast and flexible DMA operation, 
the IOP is also a full-fledged microprocessor. The 8086 
Family User’s Manual deals with programming 
strategies and other details. Some of the things to be 
noted during debugging will be mentioned here.

Instruction Fetching
Unlike the 8085 (but like the 8086), the 8089 labels all 
fetches from the instruction stream, whether OPCODE, 
offset, displacement, or literal data, as an instruction 
fetch on the status lines. In some cases, such as MOV 
R,l and ADD R,l, the instruction fetch time greatly ex
ceeds execution time because literals are treated as in
struction fetches. When following programs on a logic 
analyzer, triggering on status=100 or 000 (instruction 
fetch) and a known program address is the handiest way 
to trace the flow of the program.

When running programs on a 16-bit bus, a 1-byte queue 
register comes into play, saving the upper byte fetched 
from the last instruction fetch, if not used by the 
previous instruction. This reduces fetch time and bus 
utilization since the odd byte doesn’t need to be fetched 
again. An internal four-clock cycle fetches data from the 
queue. Like the internal ROM tetches, the task pointer is 
put out on the address/data lines, but no bus cycle is run.
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The queue can have some possible unexpected affects 
that have to be taken into account during debugging. 
These apply only to 16-bit systems and are:
1. Instructions that start on odd boundaries will not 

likely have bus cycles run to fetch the odd byte 
unless jumped to, unless preceded by LPDI (which 
clears the queue), or an instruction that modifies the 
task pointer is executed. The latter causes the queue 
to be cleared so that part of an old instruction won’t 
become part of the new one.

2. There is a queue register for each channel so loading 
or clearing the queue on one channel has no affect on 
the other channel's queue.

3. The second word of immediate data fetched by a 
LPDI is done during a pseudo-instruction fetch cycle 
that cannot make use of the queue or already fetched 
data. Thus, if on an odd boundary, fetching an LPDI 
will be byte, word, byte, byte, byte, and the queue will 
not be loaded.

When Can the Other Channel Interrupt Instruction 
Execution?
This will be explained more in the "dual channel" opera
tion section, but a few points will be mentioned here. All 
instructions are made up of internal cycles, with each 
cycle composed of two to eight clocks. Each bus cycle 
is one internal cycle, but there can be internal cycles 
with no comunications to outside the chip. Internal 
cycles will be extended by the number of wait states in 
each bus cycle. Between any of these cycles, DMA from 
the other channel can intervene if the priorities permit it. 
Instruction fetching and execution can only interrupt in
structions on the other channel when the instruction 
has been completed, not between internal cycles.

Registers
All the registers have some special purpose use in the 
Instruction Execution or DMA, but all except the CC 
register can be used as general purpose registers during 
instruction sequences. A few are loaded specially:

• C P  — Is only loaded during an initialization se
quence. There is one CP register that handles both 
channels. (All others are duplicated, one set for 
each channel.)

• P P  —  Is only properly loaded during a CA START 
command. It holds the SCB value after the initializa
tion sequence.

• T P  —  This is included as part of the registers in the 
RRR field, but cannot be operated on unless you 
plan on having your program execution jump 
around. Everytime this is operated on, the queue is 
cleared. The TP is loaded from two words (address 
and displacement) on a CA START, LPD, or LPDI, 
and loaded from 3-byte MOVP format (see illustra
tion on page 5) on a CA CONTINUE, and can be op
erated on using any register oriented instructions.

The following registers are loaded during program exe
cution, but can have special effects:

• CC — The only thing that affects instructions in the 
CC register is the chaining bit. If chaining doesn’t 
matter (if only one channel is being used without 
channel attentions, for example), then the CC reg
ister can be general purpose. However, for portabil
ity of programs, it is strongly suggested not to use 
the CC register except for altering DMA parameters 
and chaining.

• M C  — Is a general purpose 16-bit register, but is 
also used to do a masked comparison either for 
DMA search/match termination or forthe JMCE and 
JMCNE instructions.

• BC, IX  —  Both general purpose 16-bit registers. In 
instructions that reference memory using the AA 
field, if AA=11, the IX register is incremented by 
the number of bytes fetched or stored.

• P o in te r  R e g is te rs  (G A , G B , G C a n d  TP) — Are 20-bit 
registers, but can also be used as 16-bit registers. 
Adds will carry into the upper 4 bits, but other 
operations (COMP, OR, AND) are done only on the 
lower 16 bits. Note that when used as pointers to 
system memory, it is possible to add a large 16-bit 
number to the pointer and to put the pointer into 
another 64K block of memory.

Sign Extension
All program data brought into the chip, either literals or 
displacements in opcodes, or program data fetched 
from memory, is sign-extended. Offsets used for 
calculating addresses are not sign extended. Any 8-bit 
data brought in has bit 7 sign-extended up to bit 19. 
Sixteen-bit data is sign-extended from bit 15 to bit 19. It 
is important to note this, because it can affect logical 
operations. For example, if one wanted to OR 0084H 
with 1234H in register GC, you couldn't do ORBI GC, 
84H, because bit 7 would sign-extend into the upper 
byte. Instead, you should code ORI, 0084H to do this 
properly (note that this has a word for the immediate 
data). The non-ADD operations will cause the upper four 
bits of the pointer registers to be invalid since the upper 
four bits of the ALU come only from the adder.

T a g s

It should be noted that the way the IOP knows which 
bus to access (system or I/O) is via the Tag bit associ
ated with the pointer register used. The TAG can only be 
set in these ways: loading as a 16-bit register (MOV R,M, 
MOV R,l) sets TAG to I/O space, loading as a pointer 
(LPD, LPDI) sets TAG to a system space), or bringing the 
TAG in from memory by a MOVP instruction.

Effects of Invalid Opcodes
The upper 6 bits of the 2-btye opcode actually determine 
which opcode will be executed. If these bits are a valid 
opcode, but lower bits are invalid, the chances are good 
that the bad bits will be ignored. But if the upper six bits 
are invalid, there is a very good chance that the chip will 
hang up and stop execution in that channel. The only 
way to get out of this mode is to reset the chip. If this 
hang-up occurs, it can usually be traced because the 
last address of the instruction fetch will still be on the
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address/data lines, showing where the program went 
astray.

Going from Instruction Execution into DMA

The XFER instruction places the current channel into 
the DMA mode after the next instruction. This permits 
one last instruction to start up an I/O device (start CRT 
display on an 8275, for example). However, in order for 
the IOP to get setup for DMA, the GA, GB, and CC 
registers should not be altered during this last instruc
tion. Failure to observe this will probably result in an 
improper first DMA fetch. The WID instruction can be 
placed after XFER.

DMA Transfers
Incrementing/Non-Incrementing pointers
A memory or I/O pointer can be made to increment for 
each byte transferred during DMA or it can remain fixed. 
Incrementing is used primarily for memory block 
transfers, and non-incrementing is used to access I/O 
ports.

B/W Mode
Each DMA transfer is composed of separate fetch and 
store cycles so that 8/16-bit data can be assembled and 
disassembled, and translation and termination may also 
be easily handled. There are four possible transfers or 
B/W modes. They are:

B -  B — 1 byte fetched, 1 byte stored 
B /B -W  — 2 bytes fetched, 1 word stored 
W - B IB  —  1 word fetched, 2 bytes stored 
W -W  — 1 word fetched, 1 word stored 

The B/W mode used depends on the logical bus width 
(selected by the WID instruction), address boundary, 
and incrementing mode.
All systems with 8-bit physical buses will run in the B IB  
mode. On 16-bit physical buses the other modes are 
possible, depending on the logical widths selected. 
Note that the logical bus width can be different than the 
physical bus width since there are cases where an 8-bit 
peripheral may be used on a 16-bit bus. The selection of 
the logical width, and not the physical width, is what 
determines the B/W mode. Thus it is the responsibility 
of the programmer not to program an invalid combina
tion (i.e., don't specify a 16-bit logical width on an 8-bit 
physical bus).
Any transfer on an odd boundary will be B IB  but if the 
pointer is incrementing and on a 16-bit logical bus, after 
the first transfer, the pointer will be on an even bound
ary. The IOP will then try to maintain word transfers in 
order to transfer data as effeciently as possible. See the 
user’s manual for details. The change in B/W mode oc
curs only after the first transfer or, as explained in the 
termination section, upon certain byte count ter
minations.
Synchronization
In the unsynchronzied mode, transfers occur as fast as 
priorities will allow. This is the lOP’s “ block-move” 
mode. Most I/O peripherals only want a DMA transfer on 
demand; the DRQ lines, along with synchronization 
specified, will handle this need. Source synchronization

is used for I/O reads and destination synchronization is 
used for I/O writes.
If the IOP Is waiting for a DMA request, It will run pro
grams or DMA on the other channel, or execute idle 
cycles if nothing is pending. If running idle cycles when 
the DRQ comes, the transfer starts five clocks after 
DRQ is recognized. If running DMA or instructions on 
the other channel, the DRQ cannot be serviced until the 
current internal cycle is done, and may require a max
imum of 12 clocks (without bus arbitration or wait 
states).
Consecutive DRQ-synchronized DMA transfers on the 
same channel are separated by four idle clocks (assum
ing no other delays) by an internal sampling mechanism. 
This happens between the 2-byte fetches on source- 
synchronized B/B-W cycles, and between the two stores 
on destination-synchronized W-B/B cycles. This delay 
between consecutive DMA cycles allows adequate time 
for proper acknowledgement of the current DMA re
quest before the next request is processed. On 
destination-synchronized DMA, this isn't a problem, but 
on source-synchronized DMA, there will be four extra 
clocks per transfer. Unless one is running right at the 
speed limit, this won’t be a problem. Near the maximum 
data rate, unsynchronized transfers can be used, with 
synchronization done by manipulating the READY line.

Translate Mode
When the translate bit is set, the data fetched during 
DMA will be added to the GC register. This new pointer 
will in turn be used to fetch, via a seven clock extra fetch 
cycle, new data, which will then be stored. Translate is 
only defined for byte transfers. The bytes are added to 
GC as a positive offset, so a lookup table for translating 
data can be a maximum of 256 bytes long. Even if the 
data to be translated falls within a smaller range (such 
as ASCII code), a full 256-byte lookup table is recom
mended so that erroneous data can be flagged and con
trolled.
Translate can be run on any of the B IB  transfer modes, 
so It is useful for doing block translation within program 
execution as well as translation directly to or from an I/O 
port.

DMA Termination
One of the powerful features of the IOP is its varied 
DMA termination conditions and their close tie-in with 
resuming Instruction Block programs. However, be
cause of the multitude of DMA modes, care must be 
taken in predicting the exact termination parameters. 
Various things to be careful about will be outlined here.

Byte Count (BC) Termination
The BC register is decremented for every byte trans
ferred whether or not BC termination is set. If BC ter
mination is set, the last transfer done is the one that 
results in BC being zero. To avoid the problem of miss
ing BC = 0 on word transfers, if BC is odd between every 
transfer, the IOP detects when BC is 1, and forces the 
last transfer to be in the B IB  mode. Since both the fetch 
and store cycles are complete, the source and destina
tion pointers point exactly to the next byte or word that 
would have been fetched.
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Masked Compare (MC) Termination
An MC termination occurs when a pattern matches (or 
doesn’t match, depending on mode selected) the lower 
half of the MC register (the match pattern) with only the 
bits that are enabled by the upper half of MC (the mask 
pattern) contributing to a match. Thus the masked bits 
can be “ don’t cares” in both the data byte and the match 
byte.
The masked comparison is only done on store (deposit) 
cycles. Any bytes transferred (in B IB  or W-B/B mode) will 
be compared. But, since the MC comparison is done on 
only one byte, any words stored (W-W or B-B/W) have 
only their lower byte compared. This may be fine, but if 
not, make the destination logical width 8 bits.
Just like BC termination, the pointers will point to the 
next data to be transferred. The BC will also be decre
mented correctly, except if the termination occurs on 
the first byte of a W-B/B transfer. In this case the BC will 
be decremented as if the entire transfer (both bytes) had 
taken place.
The store cycle that causes an MC termination will be 
lengthened by two extra clocks (or by one extra clock if 
there are wait states), to allow time to set up the ter
mination cycle.

DATA
COMPARE PATTERN 

MASK PATTERN

Figure 7. Masked Compare Log ic for 1-Bit

External (EXT) Termination
External termination allows the I/O device or controller 
to use its own conditions to generate a termination. 
Basically, the IOP will halt DMA as soon as it recognizes 
an EXT terminate, even if a transfer is only partially com
plete. There might be concern that multibyte cycles 
(W-B/B or B/B-W) might have data lost if an EXT ter
minate stopped the store cycle. In unsynchronized DMA 
this would happen, but this mode is typically not used 
with I/O controllers that could generate external ter
minations. In synchronized DMA modes, it is assumed 
that the I/O controller will only do a DRQ for valid data 
transferred, and that it won’t give an EXT terminate with 
its DRQ active. In destination synchronization, the 
possible problem occurs in the W-B/B mode, where EXT 
terminate comes after the first store but before the sec
ond. This is fine, since even though data was over
fetched, the proper amount was actually transferred. In 
source synchronization, the B/B-W mode raises prob
lems since if an EXT terminate came after the first byte 
fetched and before the second byte fetched, normally 
no store cycles would be done at all, thus losing the first 
byte fetched. In this case (i.e., source synced, DRQ inac
tive, and 1 byte already fetched), a single byte store 
cycle is run before the termination cycle, ensuring data 
integrity.

In order to prevent an invalid signal level from becoming 
trapped from the asynchronous EXT term lines, two 
clocks of delay and signal conditioning are done on 
these lines. In addition, a termination cycle can only be 
started at certain times during DMA (or TB on the other 
channel — see dual channel operation section). The EXT 
terminate lines should be valid eight clocks before the 
start of the DMA cycle to be stopped.
EXT is sampled even when the IOP is running something 
on the other channel. Remember though, that despite 
the high priority of termination, the current instruction 
on the other channel has to finish before the termination 
cycle is run. Simultaneous EXTs on both channels result 
in CH1 termination being done first.
In order to have enough time to process a byte count ter
mination, the BC register is always decremented during 
DMA fetch cycles. Because of this, external or MC ter
minations that occur during W-B/B cycles will result in 
the byte count always being decremented by two, even 
if only one byte is stored. This also occurs in the block- 
to-block or block-to-port B/B-W modes. To find the exact 
number of bytes transferred, the source pointer address 
can be checked in the block-to-port and block-to-block 
modes during B/B-W cycles and in the block-to-port 
W-B/B mode. The destination pointer address can be 
used to find the number of bytes transferred in the port- 
to-block and block-to-block modes during W-B/B cycles.

Termination Cycles and Multiple Terminations
Upon termination, the user can run different task block 
programs, depending on which type of termination has 
occurred, by specifying an appropriate termination off
set. That is, instruction fetching will begin after a 
termination cycle starting at either the TP value before 
the DMA started, TP+ 4 or TP+ 8. These offsets permit 
long or short jumps to termination routines.

The termination cycle is an add immediate instruction 
that runs from the internal ROM and adds the proper off
set to the TP. It is 15 clocks long for TP + 4 and TP+ 8 
termination and 12 clocks long forTP + 0 termination.
As mentioned earlier, EXT terminate must come a cer
tain time before the end of a transfer to ensure that the 
next transfer doesn’t start. If it comes in time and MC 
termination also occurs on the current transfer, then the 
termination cycle with the largest offset is run. A 
simultaneous BC terminate cycle will have priority over 
MC and will result in the running the BC termination 
program.

Priorities/Dual Channel Operation
The IOP can share its internal and external hardware 
between two separate channels. The user sees two 
identical IOP channels with all registers, machine flags, 
etc., independent of the other channel. The only register 
in common is the CP register, loaded by the initializa
tion sequence. The mechanism for achieving dual chan
nel operation is time multiplexing between the two 
channels.
Since interleaving two channels affects their response 
time to external events and since interfacing to these 
events is the prime purpose of the IOP, several means of 
adjusting the priorities of the channels are provided.
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Before going into the priority algorithms in detail the 
four types of cycles that are affected by the priorities 
will be outlined:
1. D M A  C y c le s  — Any type of DMA transfer cycle, 

including single transfers and translate cycles. DMA 
can be interrupted after any bus transfer by the other 
channel.

2. In s t r u c t io n  C y c le s  — Any instructions that have 
been fetched out of I/O or system memory. Instruc
tion cycles are made up of internal cycles, each two 
to eight clocks long (assuming no wait states). Some 
cycles may not run bus transfers. Instructions can be 
interrupted by DMA after any one of the internal 
cycles, but can only be interrupted by instructions on 
the other channel (normal ones or ones from internal 
ROM) after the current instruction is completed.

3. T e rm in a t io n  C y c le  — Performed when DMA transfers 
end and instructions resume (except on single 
transfers).

4. C h a n n e l A t t e n t io n  C y c le s  — Performed when chan
nel attention is given, performs actions specified in 
the CCW field. Both termination and CA cycles can 
be interrupted by DMA after any internal cycle, but 
can only be interrupted by instruction cycles after 
the complete sequence of internal cycles is done.

Termination and channel attention cycles as well as the 
initialization cycle (which never runs concurrently with 
other operations) are sequences of instructions fetched 
from an internal ROM.
Recognizing the higher importance in doing DMA, ter
mination and (to a lesser extent) CA cycles, the follow
ing priority scheme is built into the IOP. Any channel 
that has a higher-priority operation will run continuously 
until done. If both channels are running the same priori
ty, execution will alternate between them.

H ig h e s t  P r io r i ty

1. DMA transfers, termination, chained instructions
2. Channel attention cycles
3. Instruction cycles
4. Idle cycles

L o w e s t  P r io r i ty

Two ways exist to alter the priority scheme. One way is 
to utilize the priority bits for each channel. If one is 
greater than the other, that channel will run at the ex
pense of the other if both channels are otherwise run
ning at the same priority. Thus the P bit only has effect 
on channels running at the same priority level.
If one wants to run instructions along with or in place of 
DMA on the other channel, the other technique is to set 
the chaining bit (in the CC register) which brings the 
instruction priority up to the level of DMA. Care should 
be taken with this since now CAs are at a lower priority 
than instructions and will not be serviced unless that

channel goes idle. Chaining will also lock out normal in
structions on the other channel. Chaining should thus 
be used with care.
In order to reduce the possibility of shutting out channel 
attentions, an exception is made to the above priority 
scheme. After every DMA transfer, whether synchro
nized or unsynchronized, the IOP will service any pend
ing CA. However, chained task block execution will still 
shut out CAs on the other channel.
What is the importance of priorities? Well, as an 
example, let’s say that we are running long periods of 
non-time-critical block moves (via DMA) on one channel 
and running short bursts of DMA that must be serviced 
promptly on the other channel. With the default 
priorities, the short DMA channel bursts would be in
terleaved with the longer DMA, reducing the maximum 
transfer rate for both channels. If, however, the priority 
bit was one on the burst mode DMA and zero on the 
other, the bursts would be serviced continuously at the 
fastest possible data rate.
An even more critical case would be the same low prior
ity, long DMA transfers on one channel with DMA on the 
other channel that must terminate, run a short instruc
tion sequence, and resume DMA again within a short, 
fixed time. (This might be the case in running a CRT dis
play with linked list processing between lines.) Normal
ly, the low priority, long DMA could indefinitely block 
the short TB sequence. By setting the high-priority chan
nel’s priority bit to one and putting it into the chained 
instruction mode, the low priority channel would stop 
its DMA entirely so that the termination/instruction se
quence could run.
When establishing the priorities to be run, care should 
be taken that both channels will run successfully under 
a worst case combination. This can be tricky when the 
channels are running asynchronously with fast data 
rates and/or short latencies, but must be taken into ac
count. Of course, running only one channel on the IOP is 
an easy solution, but if more than one IOP is being used 
in the system, the priorities and delays of the bus ar
bitration used (either RQ/GT or an 8289 bus arbiter) must 
be taken into account. It may be found that the on-chip 
arbitration between the two channels is faster and more 
powerful than external arbitration.

SUMMARY

It is hoped that the material presented here will aid 
those who are putting together and debugging an 8089 
IOP system, and help them in understanding the opera
tion of the IOP. Many of the debugging techniques 
should be familiar to those who have worked with micro- 
and minicomputer systems before. Other debugging 
techniques not mentioned here, which work well with 
microprocessor systems, could be just as applicable to 
the 8089. The unique nature of the IOP among LSI 
devices warrants special consideration for its I/O func
tions and multiprocessor capabilities.
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Appendix I

CHECKLIST OF POSSIBLE PROBLEMS

HARDWARE PROBLEMS
• Is RESET at least four clocks long?
• Are both Vss lines connected to ground?
• Does the first CA falling edge come at least two clocks 

after RESET goes away?

• Does the second CA come at least 150 clocks (16-bit 
system, no wait states) after the first CA?

• Is READY correctly synchronized and gated by 
local/system bus lines?

• Is SEL correct for first CA so that IOP comes up cor
rectly as master or slave?

• If two lOPs are local to each other, is a 2.7K pull-up re
sistor used on RQ/GT?

SOFTWARE PROBLEMS
• Are the initialization parameters in the initialization 

linked-list correct?
• Is BUSY flag being properly tested by host CPU soft

ware before modifying PB or providing a new com
mand?

• Has the chaining, translate, or lock bit in the CC 
register been erroneously set?

• Have DMA termination conditions been met? The IOP 
could be trying to do endless DMA.

Appendix II

BREAKPOINT ROUTINE 
AND

CONTROL PROGRAM

The debugging program described here is an example of 
the kind of software development tool that can be 
developed for the 8089 IOP. It was written to try out 
various breakpoint schemes, and has been used to 
debug an engineering application test system. The pro
gram is not meant to be the ultimate debugging tool, but 
is an example of what can be put together to utilize the 
breakpoint routine described earlier in the application 
note.

The debugging program was tested on a 8086-based 
system that emulates the SDK-86 I/O structure, and uses 
the SDK-86 serial monitor. This enables it to use the 
SDK-86 Serial Downloader to interface to an 
Intellec® development system on which the software 
was created. The 8086 system is interfaced via a 
MULTIBUS™ interface to an IOP running in the REMOTE 
mode. The remote bus access technique, mentioned 
earlier in this note, is implemented on this system, but 
was not used in the software debugging program.

The breakpoint routine uses a simple jump to a save 
routine. The PL/M-86 supervisory or control program 
handles the placement of the jump within the users pro
gram. Since it can not normally access the remote bus, 
all IOP programs to be tested must run out of system 
memory.
When the control program starts, it assumes the IOP has 
just been reset. It then prompts the user for the CP
and PP values. After this, it sends the first (initialization) 
channel attention. It then asks the user for the channel 
to be run, and the starting and stopping addresses. After 
the stopping address has been entered, a Channel At
tention Start is given. If the breakpoint is reached, a 
HALT is executed, and the control program prints the 
register contents. If the breakpoint hasn’t been reached, 
the user can type any character, and a Channel Atten
tion Halt will be sent to the IOP. If the IOP responds 
within 50 ms, the TP where it was halted is printed. 
Otherwise, the control program issues an error 
message. If, at any time, the user wants to get out of the 
program, typing an ESC will pass control back to the 
SDK-86 monitor. Figure 9 shows the flow of the control 
program.
Note that, unlike a single CPU debugging routine, hav
ing the 8086 supervise the 8089 enables a clean exit 
from crashed IOP programs. The program code where 
jumps had been placed are always restored. The control 
program is a good example of how the power of dual 
processors can be put to good advantage.
Comments within the control program indicate 
parameters that need to be changed to run on different 
systems. It should be noted that channel attentions are 
invoked by the recommended method of using an I/O 
write to a port to generate CA and using A0 for SEL.
Source and object files of this program are available 
through Intel’s INSITE™ User’s Program Library as pro
gram 8089 Break. 89 (number AD6).

MASTER DATA STORAGE LOCATIONS:

Figure 8. Breakpoint Routine to Run 8089 Program out of System 
Memory
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Figure 9. B reakpoint Routine to  Run 8089 Program out of System Memory
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P L / M - 8 6 C O M P IL E R 8 0 8 9  B R E A K P O IN T R O U T IN E P A G E  1

I S I S - I I P L / M - 8 6  X 103 C O M P IL A T IO N  OF M O DULE B R E A K P O IN T
O B JE C T M O DULE P L A C E D IN  BREA K . O B J
C O M P IL E R  IN VO KED  BY F I  P LM 8 6  B R E A K .S R C  PA G EW ID TH  (1 0 0 )

♦ T IT L E  ( '8 0 8 9  B R E A K P O IN T  R O U T I N E ')

8 0 8 9  B REA K  P O IN T  PR O C E D U R E
W R IT T E N  BY D AVE FE RG U SO N  2 / 2 / 7 9  R EV  2  8 / 1 4 / 7 9
IN T E L  C O R PO R A T IO N

.............................................................................................................  */
1 B R E A K P O I N T :

DO,
2 1 D E C LA R E I B YT E ;
3 1 D E C LA R E SA VEC O D E  ( 4 )  WORD; /^ B U F F E R  FOR S T O R A G E * /
4 1 D E C LA R E O N EPP P O IN T E R ; / *  CHAN ONE P P  * /
5 1 D E C LA R E TW OPP P O IN T E R ; / *  CHAN TWO P P  * /
6 1 D E C LA R E S T A R T B Y T E S  (4 ) B YT E ;  / *  B U FF E R  FOR S T A R T  AD D R ESS * /

7 1 D E C LA R E S T A R T P O IN T E R  P O IN T E R ;  / *  P O IN T E R  FO R  S T A R T  ADDR. * /
8 1 D E C LA R E E N D PO IN T E R  P O IN T E R ;  / *  P O IN T E R  FOR END ADDR. * /
9 1 D E C LA R E PR E S E N T  P O IN T E R A T  ( @ IN P N T R ); / *  P O IN T E R  B U FF E R * /

10 1 D E C LA R E T R U E  L I T E R A L L Y 'O F F H ' , F A L S E  L I T E R A L L Y  'O O O H ';

/ *  YOU MUST C O N F IG U R E YOUR I / O  S T R U C T U R E  AND
S Y S T E M  TO M ATCH  T H E  PROGRAM OR V IS A  V E R S A  * /

11 1 D E C LA R E  C R T S T A T U S  L I T E R A L L Y  '0 F .F F 2 H ' » / *  825 1  S T A T U S  PO R T  * /
C R T D A T A  L I T E R A L L Y  'O F F F O H ' , / *  8 25 1  D ATA  PO R TS  * /
C H A N A TTEN  L I T E R A L L Y  'O F A H ',  / *  C H A N N E L  ONE C H A N N E L  A T T E N T IO N  PO R T  * /

/ *  C H A N N EL  TWO C H A N N EL  A T T E N T IO N  PO R T  = C H A N A T T E N  + 1 * /
C H AN N ELO N E  L I T E R A L L Y  'O O H ',
CHANNELTW O  L I T E R A L L Y  '0 1 H ' ,

/ *  A S C I I  I S  A S T R IN G  O F HEX C H A R A C H TER S  IN  A S C I I  FORM * /
A S C I I  <*) B Y T E  D ATA  ( '0 1 2 3 4 5 6 7 8 9 A B C D E F ' ) ,
T I T L E * S T R I N G  <*) B Y T E  D ATA  (O A H ,O D H , '8 0 8 9  B R E A K P O IN T  VER  1 . 0 ' ,

O AH ,O D H , 'T Y P E  E S C A P E  TO R ETU R N  TO M O N ITO R . ' ,
O A H ,O D H ,0 ) ,

CHANG 1VE N  (* )  B Y T E  D ATA  ( 'C H A N N E L  A T T E N T IO N  G IV E N  T Y P E  AN Y  K E Y  TO ABO RT. '
, OAH, ODH, 0 ) .

B KR E AC H ED  <*) B Y T E  D ATA  (O A H ,O D H , 'B R E A K P O IN T  R E A C H E D ',  O A H ,O D H ,0 ) ,
G E TC P  ( * )  B Y T E  D ATA  ( ' I N P U T  CP IN  HEX ' , O A H ,O D H ,0 0 ) ,
G E T $ P P  <*) B Y T E  D ATA  ( ' I N P U T  P P  IN  HEX FO R  ' , O O H ),
G E T S !A R T  <*) B Y T E  D ATA  (O A H ,O D H , ' I N P U T  S T A R T IN G  A D D R ES S  IN  H E X ' , O A H ,O D H ,O O H ), 
STO PAD D R  (* )  B Y T E  D ATA  ( ' I N P U T  END AD D R ESS  IN  H E X ' , OAH, ODH, O O H ),
CHANNUM BER (* )  B Y T E  D ATA  (O A H ,O D H , 'C H A N N E L  ONE OR TWO? ' , O O H ),
ABO RT  (*> B Y T E  D ATA  ( '  F A T A L  ERROR  -  IO P  DOES NOT R ESPO N D  TO C H A N N E L ',
' A T T E N T IO N . R E - I N  I T I A L I Z E  S Y S T E M  ' , 0 ) ,
A B O R TA T  ( * )  B Y T E  D ATA  ( '  T P  WAS ' , 0 ) ,
ONE ( * )  B Y T E  D ATA  ( '  C H A N N E L  O N E ' , O A H ,O D H ,O O H ),
TWO (* )  B Y T E  D ATA  ( '  C H A N N EL  TW O ' , O A H ,O D H ,O O H )»
G A S T R IN G  (* )  B Y T E  D ATA  ( 'G A  = ' , O O H ),
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P L / M - 8 6  C O M P IL E R 8 0 8 9  B R E A K P O IN T R O U T IN E

G B S T R IN G (* ) B Y T E D ATA ( 'G B  = OOH ),
G C S TR IN G (* ) B Y T E D ATA ( 'G C  = ' ,  O H ),
B C S T R IN G (* ) B Y T E D ATA (OAH , ODH, 'B C  = ' , OOH >,
IX S T R IN G (* ) B Y T E D ATA (O A H ,O D H , ' I X  = ' , O O H ) ,
C C S T R IN G (* ) B Y T E D ATA (O A H ,O D H , 'C C  = ' , O O H ),
M C S TR IN G (* ) B Y T E D ATA (O A H ,O D H , 'MC = ' , OOH)

12
13

D E C LA R E  CHAR B Y T E , 
D E C L A R E  ONETWO B YT E ;

14

15

16
17

/ *  SDKMON IS  A P LM  T E C H N IQ U E  US ED  TO FO R C E  TH E  C PU  IN TO  AN 
IN T E R U P T  L E V E L  3. IN  ORDER TO U SE  T H IS  TH E  PROGRAM MUST 
B E  C O M P IL E D  ( L A R G E ) .  * /

SDKMON:
PRO CED URE;

D E C LA R E  H ER E (*> B Y T E  D ATA  (O C C H ),
/ *  T H IS  IS  AN IN T . 3  * /

W HERE WORD D A T A ( H E R E ) ;  
C A L L  WHERE;

19
20  
22 
2 3

/ *  CO SENDS A CHAR TO T H E  C O N S O LE  WHEN R EA D Y  * /  
/ *  T H IS  R O U T IN E  IS  W R IT T E N  TO RUN V I A  T H E  S E R IA L  

PO R T  OF AN SD K 86  * /
CO:
PR O C E D U R E  (C ) ;

D E C LA R E  C B YT E ;
DO W H ILE  ( IN P U T (C R T S T A T U S )  AND 0 1 H ) = 0 , END; 
O U TPU T  (C R T D A T A ) = C;

END,

/ *  C l  G ETS  A C H AR AC H TER  FROM T H E  USER  V I A  TH E  S E R I A L  PO R T  * /
/ *  C l  A U T O M A T IC A L L Y  ECHO S T H E  C H AR AC H TER  TO T H E  U SER  C O N S O LE  * /
d e c l a r e  E s c a p e  l i t e r a l l y  ' i b h ';

2 5
26  
2 8
29
3 0
32
3 3

C l:  PR O C E D U R E  B YT E ;
DO W H ILE  ( IN P U T (C R T * S T A T U S )  AND 0 2 H ) = O; END;
CHAR = IN P U T  (C R T D A T A )  AND 07FH ;
C A L L  C O ( C H A R );
I F  CHAR = E S C A P E  TH EN  C A L L  SDKMON; / *  GO TO SDK M O N ITO R  * /  
R E TU R N  CHAR;

END;

/ *  V A L ID H E X  C H EC K S  TH E  V A L I D I T Y  O F A B Y T E  AS  A HEX C H A R A C H T E R * / 
/ *  TH E  PR O C E D U R E  R E TU R N S  TR U E  I F  V A L ID  F A L S E  I F  NOT * /

35
3 6
37
39
4 0
41

V A L ID H E X :
PR O C E D U R E  (H ) B Y T E ,

D E C LA R E  H B YT E ;
DO 1=0 TO L A S T ( A S C I I );

I F  H = A S C 1 1 ( I ) TH EN  R E TU R N  TRUE; 
END;
R E TU R N  F A LS E ;

END;
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P L / M - 8 6  C O M P IL E R  8 0 8 9  B R E A K P O IN T  R O U T IN E PA G E  3

/ *  H EXCO N V  C O N V E R TS  A HEX C H A R A C TER  TO B IN A R Y  FOR M A C H IN E  USE.
I F  T H E  C H A R A C TER  IS  NOT A V A L ID  HEX CHAR , T H E  PR O C E D U R E  R ETU R N S
T H E  V A LU E  O FFH  * /

42  1 HEXCONV:
PR O C E D U R E  (D A T )  B Y T E ,

4 3  2  D E C LA R E  D AT  B Y T E ,
44  2  I F  V A L I D H E X ( D A T ) <> O FF H  TH EN  R E TU R N  TRUE;
4 6  2  DO 1=0 TO L A S T ( A S C I I ) ;
4 7  3  I F  DAT = A S C I I ( I )  TH EN  R E TU R N  I;
4 9  3  END-
50  2  END,

/ *  H EXO UT ‘W IL L  C O N V ER T  A V A LU E  OF T Y P E  B Y T E  TO AN A S C I I  S T R IN G  
AND SEND  IT  TO TH E  C O N S O LE  * /

51 1 HEXOUT:
P R O C E D U R E S  ),

52  2  D E C LA R E  C B YT E ,
53  2  C A L L  C 0 ( A S C I I ( S H R ( C ,  4 ) AND O F H ) ) ;
54  2  C A L L  C O ( A S C I I (C AND O F H ) ) ;
5 5  2  END,

/ *  WORDOUT C O N V ER TS  A V A LU E  OF T Y P E  WORD TO AN A S C I I  S T R IN G  
AND SENDS I T  TO  TH E  C O N S O LE  * /

56  1 WORDOUT
PR O C E D U R E  (W ),

5 7  2 D E C LA R E  W WORD;
58  2 C A L L  H E X O U T <H I G H ( W) ) ;
59  2  C A L L  H E X O U T ( LO W ( W) ) ;
6 0  2  END,

/ *  G E TA D D R E S S  IS  A PR O C E D U R E  TO G ET  AN A D D R ES S  FROM  T H E  CO NSOLE.
T H IS  PR O C E D U R E  W IL L  O N LY  C O N S ID ER  TH E  L A S T  5 C H A R A C H T E R S  E N T E R E D

61 1 D E C LA R E  IN PN T R  ( 4 )  B YT E ;

6 2  1 G ET  ̂ ADDRESS
PR O C E D U R E  P O IN T E R -

6 3  2  D E C LA R E  B U F F  B Y T E ,
/ * C L E A R  A L L  V A LU E S  TO ZERO * /

64 2 INPNTR(O) = 0;
6 5  2  IN P N T R (1 )  = 0 ;
6 6  2  IN P N T R ( 2 ) = 0;
6 7  2  IN P N T R ( 3 ) = 0,

6 8  2  B U F F  =- 0,
6 9  2 DO W H ILE  B U F F  O  TRU E ,

/*  T H IS  SE Q U E N CE  O F S H I F T S  ALLOW  TH E  U SER  TO T Y P E  IN  F I V E  
OR MORE C H A R A C H T E R S  TO BECOM E T H E  A C T U A L  P O IN T E R  FO R  8 0 8 9  
OR 8 0 8 6 . T H IS  PR O C E D U R E  R E TU R N S  TH E  L A S T  F I V E  IN  PR O PER  
S E Q U E N C E  STO RED  IN  IN P N T R ( 0 - 3 ) .  TH E  S TO RA G E  
IS  AS FO LLO W S

1. TH E  L A S T  C H A R A C TE R  IN P U T  G OES IN T O  
TH E  LOW FO UR  B I T S  O F IN P N T R ( 0 ) .

2. TH E  N EX T  TO L A S T  C H A R A C T E R  GOES IN TO
T H E  LOW FOUR B I T S  O F IN P N T R ( 2 ) .
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3. TH E  T H IR D  C H A R A C T E R  IN P U T  GOES IN TO
T H E  H IG H  FOUR B I T S  O F IN P N T R < 2 )

4 .  TH E  SECOND C H AR AC H TER  IN P U T  GOES IN TO  
TH E  LOW FO UR  B I T S  O F IN P N T R < 3 )

5. TH E  F I R S T  C H A R A C TE R  IN P U T  G OES IN TO  
TH E  U PP E R  FOUR B I T S  O F IN PN TR< 3> .

TH E  8 6  S H I F T S  IN PN T R  ( 2 , AN D 3 ) L E F T  FOUR B I T S  AND ADDS T H I S  TO 
IN P N T R ( 0 )  R E S U L T IN G  IN  T H E  AD D R ESS  T H E  U SER  T Y P E D  IN . * /

7 0 3 IN P N T R ( 3 )  = ( S H L ( IN P N T R ( 3 ) , 4 ) OR < SHR < IN P N T R ( 2 ) , 4 ) AND O F H ) )
71 3 IN P N T R (2 )  = ( S H L ( IN P N T R ( 2 ) , 4  > OR ( IN P N T R ( 0 )  AND O F H ) );
7 2 3 IN P N T R (0 )  = B U FF ;
7 3 3 B U F F  = C l ;
74 3 B U F F  = H E X C O N V ( B U F F );
7 5 3 END;
7 6 2 C A L L  C O ( O A H ); / * L I N E  F E E D  TO  C R T * /
7 7 2 C A L L  C O ( O D H ); /* C A R R IA G E  R E T  TO C R T * /
78 2 R ETU R N  P R E S E N T ; / *  P R E S E N T  IS  A P O IN T E R TO T H E  A R RA Y IN P N T R . * /
7 9 2 END;

/ *  S T R IN G O U T  IS  A PR O C E D U R E  TO SEND  T H E  C O N S O LE  AN A S C I I  S T R IN G  
E N D IN G  IN  TH E  V A LU E  0 0 . S T R IN G O U T  N EED S  A V A LU E  O F T Y P E  P O IN T E R

*/
8 0 1 S TR IN G * O U T :

PR O C E D U R E ( P T R );
81 2 D E C LA R E  P T R  P O IN T E R ,S T R  B ASE D  PTR  ( 1 )  B YT E ;
8 2 2 I = 0;
83 2 DO W H ILE  S T R ( I ) O  0;
84 3 C A L L  C O ( S T R ( I ) ) ;
85 3 1 = 1 + 1;
8 6 3 END;
87 2 END;

88 1 D E C LA R E  T A G IS  ( * )  B Y T E  D ATA  ( '  O P E R A T IN G  IN  ' , 0 ) ,
T A G IS O N E  (*> B Y T E  D ATA  ( ' I Q  S P A C E  ' ,  QAH, QDH, 0 ) ,
T A G IS Z E R O  (* )  B Y T E  D ATA  ( 'S Y S T E M  S P A C E  OAH, ODH, 0 );

/ *  T A G T E S T  T E S T S  T H E  TAG  B I T  AND SEND S  A M ESSAGE TO T H E  C O NSO LE 
T H E  TAG  IS  LO C A T E D  IN  B I T  T H R E E . A TAG  B I T  O F ONE MEANS THE 
P O IN T E R  IS  TO  I / O  S P A C E , AND A TAG  B I T  O F ZERO M EANS T H E  
P O IN T E R  IS  TO S Y S T E M  S P A C E  * /

/ *  TH E  C A L L E R  MUST D E C ID E  W HICH B Y T E  HAS TH E  TAG  AND PA S S  I T  TO T A G T E S T  * /

8 9 1 T A G TE S T:
P R O C E D U R E (T E S T );

9 0 2 D E C LA R E  T E S T  B YT E ;
91 2 C A L L  S T R IN G O U T ( @ T A G IS );
9 2 2 I F  ( T E S T  AND 0 1 0 0 0 B )  <> 0 

THEN
9 3 2 DO;
9 4 3 C A L L  S T R IN G O U T (S T A G IS O N E ) ;
9 5 3 END;

E L S E
9 6 2 DO;
9 7 3 C A L L  S T R IN G O U T (S T A G IS Z E R Q )
98 3 END;

P A G E  4
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QQ 2
IC O  1

END,
D E C LA R E  SA VESAD D R  L I T E R A L L Y  '2 0 0 0 H '  

S A V E S S E G  L I T E R A L L Y  'O O C O H ';

D E C LA R E  B R E A K 8 9  ( 4 )  WORD D ATA  <9 B 8 1 H , 0 8 9 1 H ,S A V E * A D D R ,S A V E tS E G >» 
/ *  B R E A K 8 9  IS  AN 4 WORD E S C A P E  S E Q U E N C E  TO AD D R ES S  2 0 0 0 H  

C O N S IS T IN G  O F AN L P D I  T P ,S A V E S A D D R  W ITH  SEGM ENT
LO C A T E D  AT  OCOOH. * /

/ *  B R KR TN  IS  3 3  B Y T E S  O F CO DE T H A T  S T O R E S  A L L  R E G IS T E R S
AS FOLLOW S

GA STO RED  A T  P P  + 2 3 9
GB STO RED  A T  P P  + 2 4 2
GC STO RED  A T  P P  + 2 4 5
BC STO RED  A T  P P  + 2 4 8
IX  STO RED  A T  P P  + 2 5 0
CC STO RED  A T  P P  + 2 5 2
MC STO RED  A T  P P  + 2 5 4

D E C LA R E  B RK R TN  ( 3 3 )  B Y T E  A T  (0 2 C 0 0 H )
* 0 2 C 0 0 H  IS  A C T U A L L Y  ( S A V E tA D D R  + ( S H L ( S A V E S S E G ) , 4 ) ) ,  AND SHOULD

M ATCH A D D R ES S  AND SEG M ENT W HERE B R EA K  R O U T IN E  IS  WANTED * /
I N I T I A L

i0 3 H ,  09B H , O E F H ,0 2 3 H ,0 9 B H ,0 F 2 H ,0 4 3 H , 0 9 B H , 0 F 5 H ,0 6 3 H ,0 8 7 H ,0 F 8 H , 0 A 3 H ,  0 87 H ,
O FAh , 0 C 3 H , 0 8 7 H ,O F C H , 0 E 3 H , 0 87 H , O F E H ,0 2 0 H ,  0 4 8 H ) ,

1 03 1 D E C LA R E PP  P O IN T E R ,
5 0 4 1 D E C LA R E P P P  B ASED  P P  ( 1 )  B YT E ;

105 1 S T A R T  $PRGM
P R O C E D U R E ( O N E S T W O ,P P P ),

106 2 D E C LA R E  ONE*TW O B Y T E , P P P  P O IN T E R ,
WHERE B ASED  P P P  <1) B Y T E ,

107 2 W H ER E(0  > = S T A R T $ B Y T E S ( 0 ) ;
108 2 W H ER E( 1 ) = 0 .
109 2 W H ER E( 2 )  -  S T A R T  K B Y T E S ( 2 );
1 10 2 WHERE 3̂ )  ~ ST  A R T K B Y T E S ( 3 ),
1 1 1 C P D A T ( (ONESTW O) * 8 )  = 3 .

/ *  I F ONETWO = 1 TH EN  O U T PU T  TO PO R T
IS 0  TH EN  O U T PU T  TO PO R T  O FAH  * /

1 12 2 O U T P U T (C H A N A T T E N  + (ONETW O )> = 0,
113 C A L L  STR IN G O U T(© C H A N G  I Y E N );
114 2 END,

/ *  T H IS P A R T  O F T H E  PROGRAM ALLO W S TH E
CP- P P OF EA CH  C H A N N EL  * /

1 1 5 D E C LA R E B REA KO U T  B ASE D  E N D P O IN T E R  ( 1 )  l

1 16 1 D E C LA R E CP P O IN T E R ,
1 17 1 D E C LA R E C PD A T  B ASED  CP ( 1 )  B YTE ;

118 1 D E C LA R E O N E PPD A T  B ASE D  O N E PP  ( 1 )  B YTE ;
1 19 1 D E C LA R E TW O PPDAT B ASE D  TW OPP ( 1 )  B YT E ;

PJ O 1 C A L L  STR  IN G O U T ( <27 I T L E S T R  ING  ) ;

I F  ONETWO

P A G E  5
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121
122
123
124
125
126
127
128  
129

130

131
132

134
135
136

137
138
139
140

141

142
143
144
145
146

147
148
149
150
151
152
153
154
155
156
157
158
159
1 60

161

•86 C O M P IL E R  8 0 8 9  B R E A K P O IN T  R O U T IN E P A G E  6

1 C A L L  S T R IN G O U T (© G E T C P ) ;
1 C P  = G ETA D D RESS ;
1 C A L L  S T R IN G O U T ( © G E T P P );
1 C A L L  S T R IN G O U T (G O N E ) ;
1 O N EPP  = G ETA D D RESS ;
1 C A L L  S T R IN G O U T (© G E T P P );
1 C A L L  S TR IN G O U T(© TW O );
1 TW OPP = G ETAD D RESS;
1 O U TPU T  (C H A N A T T E N ) = 0; / *  I N I T I A L I Z A T I O N  CA * /

1 M AIN:
C A L L  S T R IN G O U T ( © CHANNUM BER>;

1 CHAR = C l ;  / *  G ET  C H A N N EL  NUMBER */
1 I F  (C H AR  AND 0 1H ) O  0  / *  C H EC K  B I T  ZERO  TO  D E F IN E

C H A N N E L  NUMBER * /
TH EN  DO;

2 C A L L  S T R IN G O U T (© O N E );
2  ONETWO = C H AN N EL$O N E;
2  END;

E L S E
1 DO;
2  C A L L  S T R IN G O U T ( ©TWO);
2  ONETWO = CHANNEL*TW O ;
2  END;

1 C A L L  S T R IN G O U T ( @ G E T * S T A R T ); / *  G ET  S T A R T IN G  AD D R ESS
FROM  USER  * /

1 S T A R T P O IN T E R  = G ETA D D RE SS ;
1 DO I = 0  TO  3; / *  MOVE S T A R T IN G  AD D R ESS  IN T O  CP A R E A  * /
2  S T A R T B V T E S ( I ) = I N P N T R ( I ) ;
2  END;
1 C A L L  S T R IN G O U T (© S T O PA D D R );  / *  G ET  S TO P  AD D R ESS

FROM  U SER  * /

1 E N D P O IN T E R  = G ETA D D RESS ;
1 DO I = 0  TO  3; / *  MOVE CO DE TO S A F E  A R E A  * /
2  S A V E C O D E ( I ) = B R E A K O U T ( I )<
2  END;
1 DO I = 0  TO  3;
2  B R E A K O U T ( I ) = B R E A K 8 9 ( I ); / *  MOVE E S C A P E  S E Q U E N C E  IN TO  P L A C E  * /
2  END;
1 C P D A T ( l)  = O FFH ; / *  S E T  C H A N N E L  ONE B U SY  F L A G  * /
1 C PD A T  ( 9 )  = O FFH ; / *  S E T  C H A N N EL  TWO B U S Y  F L A G  ■ */
1 DO C A S E  ONETWO;
2  P P  = O N EPP;
2  P P  = TWOPP;
2  END;
1 C A L L  S T A R T * P R G M (O N E * T W O ,P P >;

/ *  W A IT  FO R  ONE O F  TH E  FO LLO W IN G
1 .  C P D A T ( 1 )  = 0  C H I  NOT BUSY
2 .  C P D A T (9 )  = 0  C H 2  NOT B U SY
3 .  TH E  8 25 1  REC . B U F F E R  IS  F U L L  B E C A U S E  U SER  H AS D E P R E S S E D  A K E Y

*/
1 DO W H ILE  ( ( C P D A T (1 )  AND C P D A T ( 9 ) )  AND (N O T  ( I N P U T ( C R T tS T A T U S ) AND 0 2 H )> )  = O FFH ;
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162 2 END;
163 1 I F  <IN P U T (C R T $ S T A T U S )  AND 0 2 H ) O  0 

TH EN
164 1 DO;
165 2 CHAR = C l ;
166 2 DO I = 0 TO  3;
167 3 B R E A K O U T ( I ) = S A V E C O D E ( I ) ;
168 3 END;

/ *  I F  ONETWO = 0  TH EN  P U T  CHA H L T  IN  C P D A T (O )  
I F  ONETWO = 1 TH EN  P U T  CHA H L T  IN  C P D A T ( S )

* /
169 2 C P D A T ( ONE*TW O * 8 )  = 06H;

/ *  I F  ONETWO = 0  T H E N  O U T PU T  TO PO R T  O FAH , I F  ONETWO 
IS  1 TH EN  O U T PU T  TO PO R T  OFBH.

* /
170 2 O U T P U T (C H A N A T T E N  + ONETW O) = 0;
171 2 DO I - 0 TO 5;
172 3 C A L L  T I M E (1 0 0 ) ;
173 3 END;

/ *  I F  BUSY  F L A G  HAS B EEN  C LE A R E D , TH EN  A CA H A LT & S A V E  
WAS EX E C U TE D . I F  SO, P R I N T  SA VED  TP ; I F  NOT, ABO RT * /

174 2 I F  C PD A T  ( S H L  ( ONETWO, 3 ) + 1) O  0 /■ * C H EC K  B U SY  F L A G  * /  
TH EN

175 2 DO,
176 3 C A L L  S T R IN G O U T ( © AB O RT)>
177 3 END;

E L S E
178 2 DO;
179 3 C A L L  S T R IN G O U T ( © A B O R T A T );
180 3 C A L L  C O ( A S C I I ( S H R ( P P P ( 2 ) , 4 ) ) ) ;  / *  U PP E R  N IB B L E  O F 

STO RED  B Y  H A LT  * /
ADDR

181 3 C A L L  H E X O U T ( P P P ( 1 ) ) ;  / *  M ID D LE  B Y T E  O F ADDR 
STO RED  B Y  H A LT  ■#■/

182 3 C A L L  H E X O U T ( P P P ( 0 ) ) ;  / *  L E A S T  S IG  B Y T E  O F  ADDR 
STO R ED  B Y  H A LT  * /

183 3 END;
184 2 C PD A T(O N ETW O  * 8 )  = 3H; / *  CA  S T A R T  IN  C P D A T (O )  OR C P D A T '
185 2 GO TO M A IN ,
186 2 END;
187 1 DO;

188 2 C A L L  S T R IN G O U T (Q B K R E A C H E D );

189 2 C A L L  S T R IN G O U T ( @ G A S T R IN G );
190 2 C A L L  C O ( A S C 1 1 ( S H R ( P P P ( 2 4 1 ), 4 ) ) ) ;
191 2 C A L L  H E X O U T ( P P P ( 2 4 0 ) ) ;
192 2 C A L L  H E X O U T ( P P P ( 2 3 9 ) ) ;
193 2 C A L L  T A G T E S T ( P P P ( 2 4 1 ) ) ;

194 2 C A L L  S T R IN G O U T ( S U B S T R IN G );
195 2 C A L L  C O ( A S C 1 1 ( S H R ( P P P ( 2 4 4 ) ,  4 ) ) ) ;
196 2 C A L L  H E X O U T ( P P P ( 2 4 3 ) ) ;
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197 C A L L H EXO UT < P P P (2 4 2 )> ;
198 2 C A L L T A G T E S T ( P P P ( 2 4 4 ) ) ;

199 2 C A L L S T R IN G O U T< @ G C S T R IN G );
2 0 0 2 C A L L C O (A S C I  I ( S H R ( P P P ( 2 4 7 ) ,  4 ) ) ) i
201 2 C A L L H E X O U T ( P P P ( 2 4 6 ) ) ;
2 0 2 2 C A L L H E X O U T ( P P P (2 4 5 )> ;
2 0 3 2 C A L L T A G T E S T ( P P P ( 2 4 7 ) ) i

2 0 4 2 C A L L S T R IN G O U T ( Q B C S T R IN G );
2 0 5 2 C A L L H E X O U T ( P P P ( 2 4 9 )),
2 0 6 2 C A L L H E X O U T ( P P P (2 4 8 )> ;

2 0 7 2 C A L L S T R IN G O U T < @1X S T R IN G );
2 0 8 2 C A L L H E X O U T ( P P P ( 2 5 1 ) >i
2 0 9 2 C A L L H E X O U T ( P P P ( 2 5 0 ) ) ;

2 1 0 2 C A L L S T R IN G O U T ( S C C S T R IN G );
21 1 2 C A L L H E X O U T ( P P P ( 2 5 3 ) ) ;
2 1 2 2 C A L L H E X O U T ( P P P ( 2 5 2 ) )  ;

2 1 3 2 C A L L S T R IN G O U T ( @ M C S T R IN G );
2 1 4 2 C A L L H E X O U T ( P P P ( 2 5 5 ) ) ;
2 15 2 C A L L H E X O U T ( P P P ( 2 5 4 ) );

2 1 6 2 END;
/*  R E S T O R E  CODE TO O R IG IN A L  LO C A T IO N

2 1 7 1 DO I "‘ 0  TO 3;
2 1 8 e. B R E A K O U T ( I ) = S A V E C O D E ( I ) ;
2 1 9 o END,

2 2 0 1 GO TO M A IN ,

2 2  1 1 END,

M O DULE IN FO R M A T IO N

CODE A R E A  S IZ E ,  
C O N S TA N T  A R E A  S IZ E  
V A R IA B L E  A R E A  S IZ E  
M AXIM UM  S T A C K  S IZ E  
4 2 7  L I N E S  R EAD  
0  PRO GRAM  E R R O R (S )

0 6 1 9 H  1 5 6 1 D 
O lE F H  4 95D  
0 0 2 0 H  32D 
0 0 1 4 H  20D

END OF P L / M - 8 6  C O M P IL A T IO N
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8089 ASSEMBLER

ISIS-II 8089 ASSEMBLER X004 ASSEMBLY OF MODULE AP50_BREAKP0INT_R0UTINE 
OBJECT MODULE PLACED IN :FO:BRKASM. OBJ 
ASSEMBLER INVOKED BY ASM89.4 BRKASM.SRC

1 NAM E A P 5 0 _ B R E A K P 0 IN T _ R 0 U T IN E  
0 0 0 0  2  B R K P N T  SEGM ENT

3 ; * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
4 i B A S IC  8 0 8 9  B R E A K P O IN T  R O U T IN E
5 i B Y  JO H N  ATWOOD R EV  3  8 / 1 3 / 7 9
6  ; I N T E L  C O R PO R A T IO N
7 ;* * ************************************
8
9  ; T H E  FO LLO W IN G  CODE IS  C O N T A IN E D  IN  T H E  P L / M - 8 6

10 ; C O N TRO L PR O G R A M (B R E A K . 8 9 )  AND IS  A S S E M B LE D  H ER E
11 ; TO I L L U S T R A T E  HOW TH E  E S C A P E  SE Q U E N C E  AND S A V E
12 i R O U T IN E  CODE WAS G EN ER A TE D . TO  U S E  T H E  8 0 8 9  B R E A K -
13 i P O IN T  PROGRAM , T H I S  AS M 89  PRO GRAM  WOULD NOT BE
14 ; N EED ED . SA VE_AD D R  IS  T H E  SAM E AS  SA VE*AD D R  IN  THE
15 ; B R E A K .8 9  PROGRAM.
16

2 0 0 0  17 SA VE_AD D R  EQU 2 0 0 0 H  ; S A V E  R O U T IN E  AD D R ESS
18

0 0 0 0  9 1 0 8  0 0 2 0 0 0 0 0  19 L P D I  T P .  SA VE_AD D R  i JU M P  TO  S A V E  R O U T IN E
20
21 i ***************************************
22
2 3  i R E G IS T E R  S A V E  L O C A T IO N S  W IT H IN  PB:
2 4
25 REGS STRUC

0000 26 PBLOCK: DS 239 PARAMETER BLOCK
OOEF 27 GASAV DS 3 GA AREA
00F2 28 GBSAV DS 3 GB AREA
OOF 5 29 GCSAV DS 3 GC AREA
00F8 30 BCSAV DS 2 BC AREA
OOFA 31 IXSAV DS 2 IX AREA
OOFC 32 CCSAV DS 2 CC AREA
OOFE 33 MCSAV DS 2 MC AREA
0100 34 REGS ENDS

35
36 i REGISTER SAVE ROUTINE:
37
38 ORG SAVE_ADDR
39

2000 039B EF 40 MOVP CPP3 . GASAV, GA SAVE GA
2003 239B F2 41 MOVP CPP3. GBSAV, GB SAVE GB
2006 439B F5 42 MOVP CPP3. GCSAV, GC SAVE GC
2009 6387 F8 43 MOV CPP3.BCSAV.BC SAVE BC
200C A387 FA 44 MOV CPP 3. IXSAV. IX SAVE IX
200F C387 FC 45 MOV CPP3.CCSAV.CC SAVE CC
2012 E387 FE 46 MOV CPP3. MCSAV, MC SAVE MC

47
2015 2048 48 HLT STOP THIS CHANNEL

49 i CLEAR BUSY FLAG.
50 i ****************************************

2017 51 BRKPNT ENDS
52
53 END
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INTRODUCTION
Over the past several years, microprocessors have been 
increasing in popularity. The performance improve
ments and cost reductions afforded by LSI technology 
have spurred on the design motivation of using multiple 
processors to meet system real-time performance 
requirements. The desire for improved system real-time 
response, system reliability and modularity has made 
multiprocessing techniques an increasingly attractive 
alternative to the system design engineer; techniques 
that are characterized as having more than one micro
processor share common resources, such as memory 
and I/O, over a common multiple processor bus.
This type of design concept allows the system designer 
to partition overall system functions into tasks that 
each of several processors can handle individually to 
increase system performance and throughput. But, how 
should a designer proceed to implement a multiproc
essing system? Should he design his own? If so, how 
are the microprocessors synchronized to avoid conten
tion problems? The designer could put them all in phase 
using one clock for all the microprocessors. This may 
work, until the physical dimensions of the system 
become large. When this occurs, the designer is faced 
with many problems, like clock skew (resulting in bus 
spec violations) and duty cycle variations.
A better approach to implementing a multiprocessor 
system is not to have a common processor clock, but 
allow each processor to work asynchronously with 
respect to each other. The microprocessor requests to 
use the multiple processor bus could then be synchro
nized to a high frequency external clock which will per
mit duty cycle and phase shift variations. This type of 
approach has the benefit of allowing modularity of hard
ware. When new system functions are desired, more 
processing power can be added without impacting 
existing processor task partitioning.
One approach to implement this asynchronous process
ing structure would be to have all the bus requests enter 
a priority encoder which samples its inputs as a func
tion of the higher frequency “ bus clock” . The inputs 
would arrive asynchronously to the priority encoder and 
would be resolved by the priority encoder structure as to 
which microprocessor would be granted the bus. An
other approach, that used by Intel, is rather than allow
ing the requests to arrive asynchronously with respect 
to one another at the priority encoder, the bus requests 
are synchronized first to an external high frequency bus 
clock and then sent to the priority encoder to be re
solved. In this way, the resolving circuitry common to all 
microprocessors is kept at a minimum. Overall system 
reliability is improved in the sense that should a circuit 
which serves to synchronize the processor’s request 
(which is now located on the same card as the micro
processor itself) fail, it is only necessary to remove that 
card from the system and the rest of the system will 
continue to function. Whereas in the other approach, 
should the synchronizing mechanism fail, the whole

system goes down, as the synchronizing mechanism is 
located at the shared resource. In addition to the im
proved system reliability, moving the synchronization 
mechanism to the processor permits processor control 
over that mechanism, thereby permitting system flexi
bility (as will be shown) which could not be reasonably 
obtained by any other approach.

This synchronizing or arbitrating function was inte
grated into the 8289, a custom arbitration unit for the 
8086, 8088, and 8089 processors. This note basically 
describes the 8289 arbitration unit, illustrates its dif
ferent modes of operation and hardware connect in a 
multiprocessor system. Related and useful documents 
are: 8086 user’s manual, 8289 data sheet, Article Reprint 
-55: Design Motivations for Multiple Processor 
Microcomputer Systems (which discusses implement
ing a semaphore with the MULTIBUS™) and Application 
Note 28A, Intel MULTIBUS™ interfacing.

BUS ARBITER OPERATING CHARACTERISTICS
The 8289 Bus Arbiter operates in conjunction with the 
8288 Bus Controller to interface an 8086, 8088, or 8089 
processor to a multi-master system bus (the 8289 is 
used as a general bus arbitration unit). The processor is 
unaware of the arbiter's existence and issues com
mands as though it has exclusive use of the system bus. 
If the processor does not have the use of the multi
master system bus, the bus arbiter prevents the bus 
controller, the data transceivers and the address latches 
from accessing the system bus (i.e., all bus driver out
puts are forced into the high impedance state). Since 
the command was not issued, a transfer acknowledge 
(XACK) will not be returned and the processor will enter 
into wait states. Transfer acknowledges are signals 
returned from the addressed resource to indicate to the 
processor that the transfer is complete. This signal is 
typically used to control the ready inputs of the clock 
generator. The processor will remain in wait until the 
bus arbiter acquires the use of the multi-master system 
bus, whereupon the bus arbiter will allow the bus con
troller, the data transceivers and the address latches to 
access the system bus. Once the command has been 
issued and a data transfer has taken place, a transfer 
acknowledge (XACK) is returned to the processor. The 
processor then completes its transfer cycle. Thus, the 
arbiter serves to multiplex a processor (or bus master) 
onto a multi-master system bus and avoid contention 
problems between bus masters.

Since there can be many bus masters on a multi-master 
system bus, some means of resolving priority between 
bus masters simultaneously requesting the bus must be 
provided. The 8289 Bus Arbiter provides for several 
resolving techniques. All the techniques are based on a 
priority concept that at a given time one bus master will 
have priority above all the rest. These techniques in
clude the parallel priority resolving techniques, serial 
priority resolving and rotating priority techniques.
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A parallel priority resolving technique has a separate 
bus request (BREQ) line for each arbiter on the multi
master bus (see Figure 1). Each BREQ line enters into a 
priority encoder which generates the binary address of 
the highest priority BREQ line which is active at the 
inputs. The output binary address is decoded by a 
decoder to select the corresponding BPRN (bus priority 
in) line to be returned to the highest priority requesting 
arbiter. The arbiter receiving priority (BPRN active low) 
then allows its associated bus master onto the multi
master system bus as soon as it becomes available (i.e., 
it is no longer busy). When one bus arbiter gains priority 
over another arbiter, it cannot immediately seize the 
bus, it must wait until the present bus occupant com

pletes its transfer cycle. Upon completing its transfer 
cycle, the present bus occupant recognizes that it no 
longer has priority and surrenders the bus, releasing 
BUSY. BUSY is an active low OR-tied signal line which 
goes to every bus arbiter on the system bus. When 
BUSY goes high, the arbiter which presently has bus 
priority (BPRN active low) then seizes the bus and pulls 
BUSY low to keep other arbiters off the bus. (See 
waveform timing diagram, Figure 2.) Note that all multi
master system bus transactions are synchronized to the 
bus clock (BCLK). This allows for the parallel priority 
resolving circuitry or, any other priority resolving 
scheme employed, time to settle and make a correct 
decision.

Figure 1. Parallel Priority Resolving Technique

0  HIGHER PRIORITY BUS ARBITER REQUESTS THE MULTI MASTER SYSTEM BUS.
( f )  ATTAINS PRIORITY.
(3) LOWER PRIORITY BUS ARBITER RELEASES BUSY.
0  HIGHER PRIORITY BUS ARBITER THEN ACQUIRES THE BUS AND PULLS BUSY DOWN.

Figure 2. Higher Priority Arbiter Obtaining The Bus From A Lower Priority Arbiter
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A serial priority resolving technique eliminates the need 
for the priority encoder-decoder arrangement by daisy- 
chaining the bus arbiters together. This is accomplished 
by connecting the higher priority bus arbiter’s BPRO 
(bus priority out) output to the BPRN of the next lower 
priority (see Figure 3). The highest priority bus arbiter 
would have its BPRN line grounded, signifying to the ar
biter that it always has highest priority when requesting 
the bus.

CBHQt tBUSY

THE NUMBER OF ARBITERS THAT MAY BE DAISY-CHAINED 
TOGETHER IN THE SERIAL PRIORITY RESOLVING TECH
NIQUE IS A FUNCTION OF BCLK AND THE PROPAGATION 
DELAY FROM ARBITER TO ARBITER. NORMALLY, AT 10 MHz 
ONLY 3 ARBITERS MAY BE DAISY-CHAINED. SEE TEXT.

Figure 3. Serial Priority Resolving

A rotating priority resolving technique arrangement is 
similar to that of the parallel priority resolving technique 
except that priority is dynamically reassigned. The pri
ority encoder is replaced by a more complex circuit 
which rotates priority between requesting arbiters, thus 
guaranteeing each arbiter equal time on the multi
master system bus.
There are advantages and disadvantages for each of the 
techniques described above. The rotating priority re
solving technique requires an extensive amount of logic 
to implement, while the serial technique can accommo
date only a limited number of bus arbiters before the 
daisy-chain propagation delay exceeds the multi-master 
system bus clock (BCLK). The parallel priority resolving 
technique is, in general, the best compromise. It allows 
for many arbiters to be present on the bus while not 
requiring much logic to implement.
Whatever resolving technique is chosen, it is the 
highest priority bus arbiter requesting use of the multi
master system bus which obtains the bus. Exceptions 
do exist with the 8289 Bus Arbiter where a lower priority 
arbiter may take away the bus from a higher priority ar
biter without the need for any additional external logic. 
This is accomplished through the use of the CBRQ pin, 
discussed in a later section.

MULTI-MASTER SYSTEM BUS SURRENDER AND 
REQUEST
The 8289 Bus Arbiter provides an intelligent interface to 
allow a processor or bus master of the 8086 family to ac
cess a multi-master system bus. The arbiter directs the 
processor onto the bus and allows both higher and 
lower priority bus masters to acquire the bus. Higher 
priority masters obtain the bus when the present bus 
master utilizing the bus completes its transfer cycle (in
cluding hold time). Lower priority bus masters obtain 
the bus when a higher priority bus master is not 
accessing the system bus and a lower priority arbiter 
has pulled CBRQ low. This signifies to the arbiter 
presently holding the multi-processor bus that a lower 
priority arbiter would like to acquire the bus when it is 
not being used. A strapping option (ANYRQST) allows 
the multi-master system bus to be surrendered to any 
bus master requesting the bus, regardless of its priority. 
If there are no other bus masters requesting the bus, the 
arbiter maintains the bus as long as its associated bus 
master has not entered the HALT state. T he  8 2 8 9  B u s  
A r b it e r  w i l l  n o t  v o lu n ta r i ly  s u r r e n d e r  th e  s y s te m  b u s  a n d  
h a s  to  b e  fo r c e d  o f f  b y  a n o th e r  b u s  m a s te r . An excep
tion to this can be obtained by strapping CBRQ low and 
ANYRQST high. In this configuration the 8289 will 
release the bus after each transfer cycle.

How the 8289 Bus Arbiter is configured determines the 
manner in which the arbiter requests and surrenders the 
system bus. If the arbiter is configured to operate with a 
processor which has access to both a multi-master 
system bus and a resident bus, the arbiter requests the 
use of the multi-master system bus only for system bus 
accesses (i.e., it is a function of the SYSB/RESB input 
pin). While the processor is accessing the resident bus, 
the arbiter permits a lower priority bus master to seize 
the system bus via CBRQ, since it is not being used. A 
processor configuration with both an I/O peripheral bus 
and a system bus behaves similarly. If the processor is 
accessing the peripheral bus, the arbiter permits the 
surrendering of the multi-master system bus to a lower 
priority bus master. To request the use of the multi
master system bus, the processor must perform a 
system memory access (as opposed to an I/O access).
The arbiter decodes the processor status lines to deter
mine what type of access is being performed and be
haves correspondingly. For simpler system config
urations, such as a processor which accesses only a 
multi-master system bus, the arbiter requests the use of 
the system bus when it detects the status lines in
itiating a transfer cycle. The decoding of these status 
lines can be referenced in the 8086, 8088 (non-I/O proc
essor) data sheets or the 8089 (I/O processor) data 
sheet.
There is one condition common to all system configura
tions where the multi-master system bus is surrendered 
to a lower priority bus master requesting the bus by pull
ing CBRQ low. This is the idle or inactive state (Tl) which 
is unique to the 8086 and 8088 processor family. This Tl 
state comes about due to the processor's ability to 
fetch instructions in advance and store them internally 
for quick access. The size of the internal queue was op
timized so that the processor would make the most ef
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fective use of its resources and be slightly execution 
bound. Since the processor can fetch code faster than it 
can execute it, it will fill to capacity its internal storage 
queue. When this occurs, the processor will enter into 
idle or inactive states (Tl) until the processor has ex
ecuted some of the code in the storage queue. Once this 
occurs, the processor will exit the Tl state and again 
start code fetching. Between entering into and exiting 
from the Tl state an indeterminate number of Tl states 
can occur during which the bus arbiter permits the sur
rendering of the multi-master system bus to a lower 
priority bus master. As noted earlier and worth 
repeating here, once the 8289 Bus Arbiter acquires the 
use of the multi-master system it will not voluntarily sur
render the bus and has to be forced off by another bus 
master. This will be discussed in more detail later.

Two other signals, LOCK and CRQLCK (Figure 4), lend 
to the flexibility of the 8289 Bus Arbiter within system 
configurations. LOCK is a signal generated by the proc
essor to prevent the bus arbiter from surrendering the 
multi-master system bus to any other bus master, either 
higher or lower priority. CRQLCK (common request lock) 
serves to prevent the bus arbiter from surrendering the 
bus to a lower priority bus master when conditions war
rant it. LOCK is used for implementing software 
semaphores for critical code sections and real time

critical events (such as refreshing or hard disk 
transfers).

8289 BUS ARBITER INTERFACING TO THE 8288 
BUS CONTROLLER
Once the 8289 Bus Arbiter determines to either allow its 
associated processor onto the multi-master system bus 
or to surrender the bus, it must guarantee that com
mand setup and hold times are not violated. This is a 
two part problem. One, guaranteeing hold time and two, 
guaranteeing setup time. The 8288 Bus Controller per
forms the actual task of establishing setup time, while 
the 8289 Bus Arbiter establishes hold time (see Figure 
5).
The 8289 Bus Arbiter communicates with the 8288 Bus 
Controller via the AEN line. When the arbiter allows its 
associated processor access to the multi-master sys
tem bus, it activates AEN. AEN immediately enables the 
address latches and data transceivers. The bus con
troller responds to AEN by bringing its command output 
buffers out of high impedance state but keeping all 
commands disqualified until command setup time is 
established. Once established, the appropriate com
mand is then issued. AEN is brought to the false state 
after the command hold time has been established by 
the arbiter when surrendering the bus.

CLK

LOCK tZl
a __ r\__r\.

L
LOCK TIMING

THE ONLY CRITICAL LOCK TIMING IS THAT SHOWN ABOVE. LOCK MUST BE 
ACTIVATED NO SOONER THAN 20 ns INTO o l AND NO LATER THAN 40 ns 
PRIOR TO THE END OF o2. LOCK INACTIVE HAS NO CRITICAL TIMING AND 
CAN BE ASYNCHRONOUS.

CRQLCK HAS NO CRITICAL TIMING AND IS CONSIDERED AS AN 
ASYNCHRONOUS INPUT SIGNAL.

Figure 4. Lock Timing

•ADDRESSES ARE ACTIVATED IMMEDIATELY WHILE COMMAND IS DELAY 
TO ESTABLISH SETUP TIME REQUIREMENTS.

••TH E 8289 ARBITER INTERNALLY TRACKS THE PROCESSOR CYCLE TO 
ESTABLISH THE PROPER AMOUNT OF HOLD TIME AFTER THE COMMAND 
HAS GONE INACTIVE.

Figure 5. Single Bus Interface Timing
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8289 BUS ARBITER INTERNAL ARCHITECTURE
A block diagram of the internal architecture of the 8289 
Bus Arbiter is shown in Figure 6. It is useful to under
stand this block diagram when discussing the different 
modes of the 8289 and their impact on processor bus 
operations; however, you may want to skip this section 
to “ 8086 family processor types and system configura
tions" and return to it afterwards, as this section ad
dresses the very involved reader. The front end state 
generator (FETG) and the back end state generator 
(BETG) allow the arbiter to track the processor cycle. An 
examination of an 8086 family processor state timings 
show that all command and control signals are issued in 
states T1 and T2 while being terminated in states T3 and 
T4, with an indeterminate number of wait states (Tw) oc
curring in between. Note further, that an indeterminate 
number of idle or inactive states can occur immediately 
proceeding and following a given transfer cycle. Since 
an indeterminate number of wait states can occur, two 
state generators are required; one to generate control 
signals (the FETG) and one to terminate control signals 
(the BETG). The FETG is triggered into operation when 
the processor activates the status lines. The FETG is 
reset and the BETG is triggered into operation by the 
status lines going to the passive condition. The BETG is 
reset when the status lines again go active.

It is necessary for the 8289 Bus Arbiter to track the proc
essor in order that it is properly able to determine where 
and when to request or surrender the use of the multi
master system bus. In system configurations which ac
cess a resident bus, the use of the multi-master system

bus is requested later in order to allow time for the 
SYSB/RESB input to become valid. For systems which 
access a peripheral bus, the arbiter issues a request for 
the system bus only for memory transfer cycles which it 
decodes from the status lines (and time must be al
lowed for the status lines to become valid and then de
coded). In a system which accesses only a multi-master 
system bus, a request is made as soon as the arbiter 
detects an active-going transition on the processor's 
status lines. Thus, when the processor initiates a 
transfer cycle, the FETG is triggered into operation and, 
depending upon what mode the arbiter is configured in, 
the STATUS & MODE DECODE circuitry initiates a re
quest forthe system bus at the appropriate time. The re
quest enters the BREQ SET circuitry where it is then 
synchronized to the multi-master system bus clock 
(BCLK) by the PROCESSOR SYNCHRONIZATION cir
cuitry.* Once synchronized, the multi-master system 
bus interface circuitry issues a BREQ. When the priority 
resolving circuitry returns a BPRN (bus priority in), the 
PROCESSOR SYNCHRONIZATION circuitry seizes the 
bus the next time it becomes available (i.e., BUSY goes 
high) by pulling BUSY low one BCLK after it goes high 
and enables AEN. (See waveform timing diagram in 
Figure 2). Once the arbiter acquires the use of the 
system bus and a data exchange has taken place (a 
transfer acknowledge, XACK, was returned to the proc
essor), the processor status lines go passive and the

‘ Due to the asynchronous nature of processor trasnsfer request to the 
multi-master system bus c lock, it is necessary to synchron ize the p roc
essor's transfer request to BCLK.

*MMS= MULTI-MASTER SYSTEM

Figure 6. 8289 Bus Arbiter Block Diagram
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BETG is triggered into operation. The BETG provides 
the timing for the bus surrender circuitries in the event 
that conditions warrant the surrender of the multi
master bus, i.e., the bus arbiter lost priority to a higher 
bus master or the processor has entered into Tl states 
and CBRQ is pulled low, etc. If such is the case, the 
BREQ RESET DECODER initiates a bus surrender re
quest. The bus surrender request is synchronized by the 
MMS BUS SYNCHRONIZATION CIRCUITRY to the proc
essor clock. The MMS BUS SYNCHRONIZATION CIR
CUITRY instructs the bus controller interface circuitry 
to make AEN go false and resets the BREQ SET cir
cuitry. Resetting the BREQ SET circuitry will cause its 
output to go false and be synchronized by the processor 
synchronization, eventually instructing the MULTI
MASTER SYSTEM BUS INTERFACE circuitry to reset 
BREQ. In the event that a lower priority arbiter has 
caused the arbiter to surrender the bus, it is necessary 
that BREQ be reset. Resetting BREQ allows the priority 
resolving circuitry to generate BPRN to the next highest 
priority bus master requesting the bus. The BREQ 
RESET WINDOW circuitry provides a ‘window’ wherein 
the arbiter allows the multi-master system bus to be sur
rendered and serves as part of the MMS bus-processor 
synchronization circuitry.

8086 FAMILY PROCESSOR TYPES AND 
SYSTEM CONFIGURATIONS
There are two types of processors in the 8086 family — 
an I/O processor (the 8089 IOP) and a non-I/O processor 
(the 8086 and 8088 CPUs). Consequently, there are two 
basic operating modes in the 8289 Bus Arbiter. One, the 
IOB (I/O peripheral bus) mode, permits the processor ac
cess to both an I/O peripheral bus and a multi-master 
system bus. The second, the RESB (resident bus) mode, 
permits the processor to communicate over both a resi
dent bus and a multi-master system bus. Even though it 
is intended for the arbiter to be configured in the IOB 
mode when interfacing to an I/O processor and for it to 
be in the RESB mode when interfacing to a non-I/O proc
essor, it is quite possible for the reverse to be true. That 
is, it is possible for a non-I/O processor to have access 
to an I/O peripheral bus or for an I/O processor to have 
access to a resident bus as well as access to a multi
master system bus. The IOB strapping option con
figures the 8289 Bus Arbiter into the IOB mode and 
RESB strapping option configures it into the resident 
bus mode. If both strapping options are strapped false, 
a third mode of operation is created, the single bus 
mode, in which the arbiter interfaces the processor to a 
multi-master system bus only. With both options strap
ped true, the arbiter interfaces the processor to a multi
master system bus, a resident bus and an I/O bus.
To better understand the 8289 Bus Arbiter, each of the 
operating modes, along with their respective timings, 
are examined by means of examples. The simplest con
figuration, the Single Bus Configuration, (both IOB and 
RESB strapped inactive) will be considered first, fol

lowed by the I/O bus Configuration and the Resident 
Bus Configuration. Finally, brief mention is made of a 
configuration that allows the processor to interface to 
two multi-master system buses. This particular con
figuration is briefly mentioned because, as will be seen, 
it is simply an extension of the resident bus configura
tion. When discussing the Single Bus Configuration, 
processor/arbiter, arbiter/system bus and internal ar
biter, considerations are made resulting in a table that il
lustrates overhead in requesting the system bus. As this 
applies to the other 8289 configurations, only additional 
considerations will be given. A summary of when to use 
the different configurations is given at the end.

8289 SINGLE BUS INTERFACE
Figure 7 shows a block diagram of a bus master which 
has to interface only to a system bus — preferably the 
MULTIBUS — where there exists more than one bus 
master. In later configurations, it will be shown how the 
processor can be made to interface with more than one 
bus. Since the processor has only to interface with one 
bus, this configuration is called “ single".
Connecting the 8289 Bus Arbiter to the processor is as 
simple as it was to connect the 8288 Bus Controller. 
Namely, the three status lines, SO, S1, and S2 are 
directly connected from the processor to the arbiter. 
The clock line from the 8284 Clock Generator is brought 
down and connected. (Note that both the 8288 Bus Con
troller and the 8289 Bus Arbiter are connected to the 
same clock, CLK and not the peripheral clock, PCLK as 
the 8086 processor.) From the arbiter, AEN is con- 
nected to the bus controller and to the clock generator. 
The IOB pin on the arbiter is strapped high and on the 
controller the IOB pin is strapped low. In addition, the 
RESB pin on the arbiter is strapped low, finishing the 
processor interface.
Some flexibility exists with the MULTIBUS or multi
master system bus interface. The system designer must 
first decide upon the type of priority resolving scheme 
to be employed, whether it is to be the serial, parallel, or 
rotating priority scheme. A rotating priority scheme 
would be employed where the system designer would 
want to guarantee that every bus master on the bus 
would be given time on the bus. In the serial and parallel 
schemes, the possibility exists that the lowest assigned 
priority bus master may not acquire the bus for long 
periods of time. This occurs because priority is perma
nently assigned and if bus demand is high by the higher 
assigned priorities, then the lower priorities must wait. 
In most cases, this situation is acceptable because the 
highest priority is assigned to the bus master that can
not wait. Highest priority is usually assigned to DMA 
type devices where service requirements occur in real 
time. CPUs are assigned the lower priorities. For the 
purpose of this discussion, the parallel priority scheme 
will be used with brief reference to the serial priority 
scheme.
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Figure T.  SincjlQ MultimdstGr Bus IntorfscG

Figure 8 shows how a typical multi-processing system 
might be configured with the 8289 in the Single Bus 
mode. In the system there are three bus masters, each 
having the assigned priority as indicated—priority 1 
being the highest and priority 3 being the lowest. Prior
ity is established using the parallel priority scheme 
(ignore the dotted signal interconnect for the moment). 
Each bus arbiter monitors its associated processor and 
issues a bus request (BREQ) whenever its processor 
wants the bus. A common clocking signal (BCLK) runs 
to each of the arbiters in the system. It is from the fall
ing edge of this clock that all bus requests are issued. 
Since all bus requests are made on the same clock 
edge, a valid priority can be established by the priority 
resolving circuitry by the next falling BCLK edge. Note 
that all multi-master system bus (MULTIBUS) input sig- 
nals are considered to be valid at the falling edge of 
BCLK. And that all multi-master system bus output 
signals are issued from the falling edge of BCLK. With 
the parallel resolving module, arbiters 2 and 3 would 
issue their respective BREQs (Figure 9) on the falling 
edge of BCLK 1, as shown. The outputs (BPRN 1, BPRN 
2, and BPRN 3) of the priority encoder-decoder arrange
ment change to reflect their new input conditions and 
need to be valid early enough in front of BCLK 2 to 
guarantee the arbiter’s setup time requirements. Since 
arbiter 2 at the time is the highest priority arbiter re
questing the bus, bus priority is given to arbiter 2 (BPRN 
2 goes low), and since the bus was not busy (BUSY is 
high) at the time priority was granted to arbiter 2, arbiter 
2 pulls BUSY inactive on BCLK 2, thereby seizing the 
bus and excluding all other arbiters access to the bus. 
Once the bus is seized, arbiter 2 activates its AEN. AEN 
going low directly enables the 8283 address latches and

wakes up the 8288 Bus Controller. The bus controller 
enables the 8287 transceivers, waits until the address to 
command setup time has been established, and then 
enables its command drivers onto the bus.

If the serial priority resolving mode was used instead, 
much of the events that happened for the parallel prior
ity resolving mode would be the same except, of course, 
there would be no parallel priority resolving module. In
stead, the system would be connected as indicated in 
Figure 8 by the dotted signal lines connecting the BPRO 
of one arbiter to BPRN of the next lower priority arbiter.

The BREQ lines would be disconnected and the priority 
encoder-decoder arrangement removed. This arrange
ment is simpler than the parallel priority arrangement 
except that the daisy-chain propagation delay of the 
highest priority bus arbiter’s BPRO to the lowest priority 
bus arbiter's BPRN, including setup t ime requirement 
(BPRN to BLCK), cannot exceed the BCLK period. In 
short, this means there are only so many arbiters that 
can be daisy-chained for a given BCLK frequency. Of 
course, the lower the BCLK frequency, the more arbiters 
can be daisy-chained. The maximum BCLK frequency is 
specified at 10 MHz, which would allow for three 8289 
arbiters to be daisy-chained. In general, the number of 
arbiters that can be connected in the serial daisy-chain 
configuration can be determined from the following 
equation:

BCLK period > TBLPOH + TPNPO (N-I) + TPNBL 

where N = # of arbiters in system
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CBRQ

1Y 1Y
•DECODING GLITCHES ARE PERMITTED

F ig u r e  9 . E x a m p le  T im in g  F o r  F ig u r e  8

Returning to Figure 9, it can be seen that K BCLKs later, 
arbiter 1 has decided to request the bus and its BREQ, 
BREQ 1, has gone low. Since arbiter 1 is of higher priori
ty than arbiter 2, which presently has the bus, bus priori
ty is reassigned by the priority module (or the daisy- 
chain approachinthe serial priority) to arbiter 1. BPRN 1 
goes low and BPRN 2 now goes high (BPRN 3 remains 
high, even though decoding can cause it to glitch 
momentarily). The loss of priority instructs arbiter 2 that 
a higher priority arbiter wants the bus and that it is to 
release the bus as soon as its present transfer cycle is 
done. Since arbiter 2 cannot immediately release the 
bus, arbiter 1 must wait. In the particular case illustrated 
in Figure 9, arbiter 2 releases the bus (allows BUSY to go 
high) on clock edge M, and on clock edge M + 1, arbiter 1 
now seizes the bus, pulling BUSY low. Arbiter 1 is the 
highest priority arbiter in the system and it now has the 
bus. Arbiters 2 and 3 still want the bus (their BREQs are 
both low).

How quickly arbiter 1 can acquire the bus is dependent 
upon the configuration and strapping options of the ar
biter it is trying to acquire it from. For example, if the 
LOCK input to arbiter 2 was active (low) at the time, then 
arbiter 1, even though it was of higher priority, would not 
have acquired the bus until after LOCK was released 
(goes high). Effectively, LOCK locks the arbiter onto the 
bus once the bus has been acquired. LOCK will not 
force another arbiter to release the bus any sooner, it 
just prevents the bus from being given away no matter 
what the priority of the other arbiter. Another factor to 
be considered is where in the transfer cycle is the proc
essor when the arbiter is instructed to give up the bus. 
Obviously, if the cycle had just started, it will take 
longer for the bus to be released than if the cycle was 
just ending. Another factor to be included in this con
sideration is the phase relationship of the processor s 
clock (CLK) to the bus clock (BCLK). This relationship is 
examined in more detail later on. Table 1 lists the time
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requirements for various arbiter actions such as bus ac
quisition and bus release (under LOCK and other 
circumstances) taking into account the phase relation
ships between CLK and BCLK.

B u s  R e q u e s t  ( B R E Q l) M o d e
D e la y

(M a x )

D e la y

( M in )

S ta tu s -B R E Q l S ingle 2 BCLKs 1 BCLK

S ta tus—BREQl IOB 2 B C LK s+ 
- 1  CLK*

1 BCLK + 
-  V i CLK*

S ta tus—BREQl RESB 2 B C LK s+ 
- 2  C LK st

1 B C L K +
— 1 V i C LK st

S ta tu s -B R E Q l IOB*RESB 2 B C LK s+ 
-2  C LK st

1 B C LK+
1V2 C LK st

* Request o rig ina tes  o ff o f <*>2 o f T1 and BREQ l occurs 1 BCLK (min) 
to  2 BCLKs (max) thereafter. Depending upon where s ta tus occurs 
w ith  respect to  c lo ck  determ ines how long a tim e ex is ts  between 
s ta tus and <t>2 o f T1, and is anywhere from  V i CLK (m in) to  1 CLK 
(max).

fR equest o rig ina tes o ff o f T2*o1 and BREQl occurs 1 BCLK (m in) to  
2 BCLKs (max) thereafter. The same reasoning as used in the IOB 
mode is valid here.-

B u s  R e le a s e  (B R E Q t) M o d e
D e la y
(M a x )

D e la y
( M in )

Higher P rio rity  (BPRNI) All 2 CLKs + 
2 BCLKs

1 CLK + 
1 BCLK

Lower P rio rity  (CBRQ1) All 2 CLKs + 
2 BCLKs

1 CLK + 
1 BCLK

Surrender occurs once the proper surrender cond itions  exist.

Table 1. Surrender and Request Time Delays

One signal which has been basically ignored to this 
point is CBRQ. CBRQ, like BUSY, is an open-collector 
signal from the arbiter which is tied to the CBRQ signals 
of the other arbiters and to a pull-up resistor (see Figure 
8). CBRQ is both an input and an output. As an output, 
CBRQ serves to instruct the arbiter presently on the bus 
that another arbiter wishes to acquire the bus. As an in
put, CBRQ serves to instruct the arbiter presently on the 
bus that another arbiter wants the bus. CBRQ is an input 
or output, dependent on whether the arbiter is on the 
bus or not (respectively), and is issued as a function of 
BREQ. Thus, a lower priority arbiter requesting the bus 
already controlled by a higher priority arbiter will pull 
CBRQ low, as well as BREQ. Even a higher priority ar
biter will pull CBRQ low until it acquires the bus. Note, 
however, that the higher priority arbiter will acquire the 
bus through the reassignment of priorities — it being 
given priority and the other arbiter presently on the bus 
losing it. In effect, CBRQ serves to notify the arbiter that 
an arbiter of lower priority wants the bus.

If t he arbiter presently on the bus is configured to react 
to CBRQ and the proper surrender conditions exist, the 
bus is released. When releasing the bus, the arbiter also 
turns off its BREQ (BREQ goes high) in order to allow 
priority to be established to the next lower arbiter re
questing the bus. Such is the case shown in Figure 9. 
Whereas it was assumed that the proper surrender con
ditions did not exist for arbiter 2 when it had the bus, it 
is assumed that the proper conditions do exist during 
the time that arbiter 1 has the bus. Arbiter 2 had to give 
up the bus because an arbiter of higher priority was re

questing it. Arbiter 1 surrenders the bus because the 
proper surrender conditions exist and a lower priority ar
biter requested the bus by pulling CBRQ low. This is an 
assumed condition which is not otherwise shown in 
Figure 9. This is not an unrealistic condition. Normally, 
a higher priority arbiter will acquire the bus through the 
reassignment of priorities, while lower priority arbiters 
acquire the bus through CBRQ.
Digressing for a moment, the 8289 Bus Arbiter will not 
voluntarily surrender the bus (except when the proc
essor halts execution). As a result, it has to be forced off 
the bus. The 8289 Bus Arbiter does not generate a BREQ 
for each cycle. It generates a BREQ once and then 
hangs onto the bus. To do otherwise would require that 
BREQ be dropped (go high) after each transfer cycle so 
that if it did need to do another transfer cycle, another 
arbiter would automatically be assigned priority. This 
approach, however, entails certain overhead. Command 
to address setup and hold time must be prefixed and ap
pended to each transfer cycle. Each transfer cycle 
would be characterized by first acquiring the bus, then 
establishing the setup time requirements, finally per
forming the transfer cycle, establishing the hold time re
quirements, and then releasing the bus (see Figure 10). 
If another transfer cycle was to immediately follow and 
if the arbiter still had priority, then the whole above pro
cedure would be repeated. The end result would be 
wasted time as hold times following setup times (see 
Figure 10A). The approach taken by the 8289 Bus Arbiter 
of having to be forced off the bus, even when it is not 
using the bus (i.e., forced off by a lower priority arbiter), 
provides for greater bus efficiency. A lower priority ar
biter having to force off another arbiter that is not using 
the bus but just hanging on to it, may not seem very effi
cient. In actuality it is a good trade-off. In many multi
master systems some bus masters occasionally de
mand the bus, while others demand the bus constantly. 
The bus master which constantly demands the bus may 
momentarily need not to access the bus. Why should 
that arbiter surrender the bus when chances are that the 
other bus masters which occasionally access the bus 
don't want it at the time? If it doesn’t give up the bus, 
then it can momentarily cease access to the bus and 
then continue, without any performance penalty of hav
ing to reestablish control of the bus. The greater bus ef
ficiency that it affords is well worth the added complexi
ty (Figure 10B).

Returning to Figure 9, the combination of the proper sur
render conditions existing and CBRQ being low, forced 
the higher priority arbiter, arbiter 1, off the bus. Arbiter 
2, being of next higher priority and wanting the bus, ac
quired the bus on clock edge N + 1. If arbiter 1 decides 
to re-access the bus, it would reacquire the bus through 
the reassignment of priorities. This is not the case 
shown in Figure 9. Arbiter 1 has decided that it does not 
need the bus and does not renew its BREQ. Arbiter 2, 
having acquired the bus through CBRQ, is now the 
highest priority arbiter requesting the bus. As can be 
seen it is not the only arbiter requesting the bus. Arbiter 
3 is still patiently waiting for the bus and CBRQ remains 
low. The same conditions that forced arbiter 1 off the
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bus for arbiter 2 now forces arbiter 2 off the bus for ar
biter 3. When the proper surrender conditions exist, ar
biter 2 releases its BREQ and surrenders the bus to ar
biter 3. Arbiter 3 acquires the bus on clock edge P+ 1 
and releases its CBRQ. Since no other arbiter wants the 
bus (i.e., there is no other arbiter holding CBRQ low), 
CBRQ goes high (inactive). This would have also been 
true when arbiter 2 acquired the bus and released its 
CBRQ if arbiter 3 didn't want the bus.
In the Single interface, the arbiter monitors the proc
essor’s status lines, which are activated whenever the 
processor performs a transfer cycle. The arbiter, on 
detecting the status lines going active, will issue a 
BREQ if the status is not the HALT status. If the proc
essor issues the HALT status, the arbiter will not re
quest the bus, and if it has the bus, will release it.
This effectively concludes how arbiters interact to one 
another on the bus. Having examined the processor-to- 
arbiter interface, and arbiter-to-MULTIBUS (arbiter-to- 
arbiter) interaction, one interface is left, the internal 
interface of processor-related signals to that of 
MULTIBUS-related signals.
An important point to remember is that the processor 
has its own clock (CLK) and the multi-master system 
bus has its own (BCLK). These two clocks are usually 
out of phase and of different frequencies. Thus, the ar
biter must synchronize events occurring on one inter
face to events occurring on another interface. As a 
result of this back and forth synchronization, ambiguity 
can arise as to when events actually do take place.
Very simply, the 8289 arbiter operation can be repre
sented as two events, requesting and surrendering. 
Figure 11 is a representation of the timing relationships 
involved. The request input is a function of the proc
essor’s clock and the surrender input is a function of 
either the bus clock or the processor's clock. To request

the bus, the processor activates its status lines which in 
turn enables the request input. Depending upon the 
phase relationship between the occurrence of status (re
quest active) and BCLK, BREQ appears one to two 
BCLKs later. As shown in Figure 12, the phase relation
ship between request and BCLK is such that the BRQ1 
flip-flop may or may not catch request on the first 
BCLK.*
If BRQ1 flip-flop does catch the request, then one BCLK 
later, BREQ goes low and one BCLK after that, BUSY 
goes low (it is assumed that priority is immediately 
granted and that the bus is available). If BRQ1 flip-flop 
does not catch the request, then request is caught on 
the next BCLK and BREQ goes low one BCLK later, fol
lowed by BUSY which also goes low one BCLK later. 
Note that BREQ and BUSY track, as BREQ is an input 
term for BUSY. During bus acquisition, the surrender 
flip-flop is false (SURNDR Q=low) and AEN follows 
BUSY.
Once the bus is acquired, the surrender circuitry is 
enabled so that when a valid surrender condition exists, 
the bus can be surrendered. The surrender circuitry syn
chronizes the surrender request to the processor’s 
clock and drives SURNDR low. Like the acquisition cir
cuitry, it takes from one to two processor clocks to gen
erate SURNDR and depends upon the phase relation
ship between the surrender request and the processor’s 
clock.

*The tw o  bus request flip -flops , BRQ1 and BRQ2, are edge-triggered, 
h igh reso lu tion  flip -flops  and serve to  reduce the  probabili ty  o f w alkout 
down to  an acceptab le  level. W alkout occurs because BCLK is asyn
chronous w ith  respect to  request. If w a lkout does occur on BRQ1 flip - 
flop, the p robability  is h igh that the BRQ1 flip -flo p  w ill resolve itse lf 
p rio r to  BRQ2 flip -flo p  being triggered. Even if  BRQ1 flip -flo p  d id  not 
qu ite  resolve itse lf, the  p robab ility  o f BRQ2 flip -flo p  walk ing  out to  an 
unacceptab le  po in t in tim e is its e lf low.

(a)

ZXEEK T R A N S F E R ^ T R A N S F E R  ^ T R A N S F E R ^  T R A N S F E R  C C D C
a) B U S  U TIL IZA TIO N  A S  A  R E S U L T  O F  H A V IN G  TO  R E Q U E S T  A N D  R E L E A S E  T H E  BU S 

FO R  E A C H  T R A N S F E R  C Y C L E . T H IS  P E R M IT S  LO W ER  P R IO R IT Y  A R B IT E R S  E A S Y  
A C C E S S  TO  T H E  B U S  S H O U L D  T H E  H IG H E R  P R IO R IT Y  A R B IT E R  NO L O N G E R  N E ED  
T H E  BU S. H O W E V E R . B U S  E F F IC IE N C Y  IS  P O O R  D U E  TO  T H E  A R B IT E R  T H R A S IN G  ON 
A N D  O F F  O F  T H E  B U S  FO R  E A C H  T R A N S F E R  C Y C L E .

b) 8289 B U S  U TIL IZA TIO N  IS  M O RE E F F IC IE N T  IN T H A T  T H E  A R B IT E R  H A S  O N L Y  TO 
A C Q U IR E  T H E  B U S  O N C E . T H E  8289 H A N G S  O N T O  T H E  B U S  U N TIL F O R C E D  O F F .
T H IS  A P P R O A C H  A D D S  A  L IT T L E  M O R E  C O M P L E X IT Y  TO  T H E  S Y S T E M  IN A S M U C H  A S 
S O M E  M E A N S  M U ST B E  P R O V ID E D  F O R  L O W E R  P R IO R IT Y  A R B IT E R S  TO  F O R C E  T H E  
H IG H E R  P R IO R IT Y  A R B IT E R  O F F  O F  T H E  B U S  W H E N  IT  IS  N O T U S IN G  IT. T H E  A D D E D  
C O M P L E X IT Y  IS  W E L L  W O R T H  T H E  B U S  E F F IC IE N C Y  A N D  S Y S T E M  F L E X IB IL IT Y  IT 
A F F O R D S . T H E  8289 A R B IT E R  C A N  B E  C O N F IG U R E D  TO  H A V E  T H E  T R A N S F E R  TIM IN G  
A S  S H O W N  IN  (a) (IM ITA T IN G  T H E  M E T H O D  8 218  A N D  8 219  U S E S , B U S  A R B IT E R S  FO R  
8080 A N D  8085 R E S P E C T IV E L Y ) BY S T R A P P IN G  A N Y R Q S T  H IG H  A N D  C B R E Q  LO W .

F ig u re  10. T w o T e c h n iq u e s  F or D o ing  M u ltib u s  T ra n sfe r  C y c le s
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AEN

Figure 11. Symbolic Representation of Internal 8289 Tim ing

1WY ® ©

AEN ®

*  WHEN THE REQUEST OCCURS SIMULTANEOUSLY WITH BCLK, BCLK MAY OR 
MAY NOT CATCH THE REQUEST. IF IT DOES. THE WAVEFORMS FOLLOW 
THOSE SHOWN DESIGNATED BY (A) .IF  NOT, THE REQUEST IS PICKED UP 
ON THE NEXT EDGE OF 5CLK AND THE WAVEFORMS FOLLOW THOSE 
SHOWN DESIGNATED BY (§) .

Figure 12. Results Of An Asynchronous Event
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Having synchronized the surrender request to the proc
essor’s clock to generate SURNDR, SURNDR is then 
synchronized to BCLK to reset the BUSY and BRQ flip- 
flops. When BUSY-Q goes low. the surrender circuitry is 
reset which in turn re-enables the request input. The tim
ing in Figure 13 shows the surrender request input 
going high on the falling edge of the clock. If the Sample 
flip-flop was able to catch the surrender request on the 
edge of clock 1, then SURNDR would be generated (go 
low) on clock edge 2. If not, SURNDR would be gener
ated on clock edge 3. SURNDR going low on clock edge 
2 will be, for ease of discussion, referred to as SURNDR 
a and SURNDR going low on clock edge 3 will be refer
red to as SURNDR b. As can be seen from Figure 13, 
SURNDR a just happens to go low on BCLK edge 2. 
Since SURNDR is used to reset the BRQ flip-flops, 
which are clocked by the falling edge of BCLK, the 
BRQ1 flip-flop may or may not catch SURNDR a on 
BCLK edge 2. If it does, then BRQ and BUSY go high on 
BCLK edge 3 which, for convenience, will be called 
BREQ a or BUSY a. If not, theh BREQ and BUSY will go 
high on BCLK edge 4, which will be referred to as BREQ 
b or BUSY b, respectively. SURNDR b occurs early 
enough to assure that BUSY and BREQ are reset on 
BCLK edge 5, which will be referred to as BUSY b1 and

BREQ b1. Depending upon when BUSY goes high, deter
mines when the surrender circuitry is reset and how 
soon the next BREQ can be generated. BUSY a1 causes 
SURNDR c to occur where shown and SURNDR c in turn 
would allow the earliest bus request to occur at BREQ 
c1. At the other extreme, BUSY b1 allows the earliest 
bus request to occur at BREQ e1.

Table 1 summarizes the maximum and minimum delays 
for bus request, once the proper request and surrender 
conditions exist. Table 2 lists the proper surrender con
ditions.

Mode Surrender Conditions

Single H ALT  state, loss of BPRN . TI*CBREQ

IOB
HALT state, lo ss  of BPRN . TI-CBREQ. 
I/O Command*CBRQ

REiSB H ALT  state, lo ss  of BPRN , TI*CBREQ. 
(SYSB/RESB = 0)*CBRQ

lO B -RESB
H ALT  state, lo ss  of BPRN . TI*CBREQ, 
(SYSB/RESB = 0)*CBREQ,
I/O Com m and*CBRQ

Table 2. Surrender Conditions

a\  b\ ____ / c h  / e

BUSY a~\J  a2!  b1j

■ L V ■ / , \%c1
BREQ/

(EARLIEST THAT BREQ COULD GO ACTIVE AFTER BUS RELEASE)

Figure 13. Asynchronous Bus Release

A-125



AP-51

IOB INTERFACE
Now that the processor-arbiter, arbiter-system bus and 
internal arbiter timings have been discussed, it is ap
propriate to consider the other interfaces that the 8289 
Bus Arbiter provides.

In the IOB mode, the processor communicates and con
trols a host of peripherals over the peripheral bus. When 
the I/O processor needs to communicate with system 
memory, it is done so over the system memory bus. Fig
ure 14 shows a possible I/O processor system con
figuration, utilizing the 8089 I/O processor in its 
REMOTE mode. Resident memory exists on the periph
eral bus in order that canned I/O routines and buffer 
storage can be provided. Resident memory is treated as 
an I/O peripheral. When a peripheral device needs ser
vicing, the I/O processor accesses resident memory for 
the proper I/O driver routine and services the device, 
transmitting or storing peripheral data in buffer storage 
area of resident memory. The resident memory's buffer 
storage area could then be emptied or replenished from 
system memory via the system bus. Using the IOB inter
face allows an I/O processor the capability of executing 
from local memory (on the peripheral bus) concurrently 
with the host processor.

Timing in this mode is no different from timing in the 
SINGLE BUS mode. The only difference lies in the re
quest and surrender conditions. The arbiter extends the 
single bus mode conditions to qualify when the system 
bus is requested and adds on additional surrender con
ditions. The system bus is only requested during sys
tem bus commands (the arbiter decodes the processor's 
status lines) and, in addition to the other surrender

terms, the arbiter permits surrender to occur during I/O 
bus (or local bus) commands, when the I/O processor is 
using its own local bus.

Like the arbiter, the bus controller must also be in
formed of the mode it is operating in. In the IOB mode, 
the 8288 bus controller issues I/O bus commands in
dependently of the state of AEN from the arbiter. It is 
assumed that all I/O bus commands are intended for the 
I/O bus and hence there is a separate I/O command bus 
from the controller. All I/O bus commands are sent 
directly to the I/O bus and are not influenced by AEN. 
System bus commands are assumed as going to the 
system bus. Since system bus commands are directed 
to the system bus, they must still be influenced by AEN 
and the arbitration mechanism provided by the 8289.
As an example, suppose the processor issues an I/O bus 
command. The 8288 Bus Controller generates the 
necessary control signal to latch the I/O address and 
configure the transceivers in the correct direction. In the 
IOB mode, the multiplexed MCE/PDEN pin of the 8288 
becomes PDEN (peripheral data enable) and serves to 
enable the I/O bus's data transceivers during I/O bus 
commands. DEN similarily serves to enable the system 
bus’s data transceivers during memory commands. 
PDEN and DEN are mutually exclusive, so it is not possi
ble for both sets of transceivers to be on, thereby 
avoiding contention between the two sets. Since the I/O 
bus commands are generated independently of AEN In 
the IOB mode, the I/O bus has no delay effects due to 
the arbiter. During this time in which the processor is 
accessing memory the arbiter, if it already has the bus, 
will permit it to be surrendered to either a higher or 
lower priority independently of where the processor is in

I/O BUS MULTI-MASTER 
SYSTEM BUS

Figure 14. 8289 Configured In I/O Bus Mode W ith 8089 I/O Processor
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its transfer cycle (i.e., independent of the machine 
state).* If the arbiter does not already have the bus, it 
will make no effort to acquire the bus.

If the processor issues a memory command instead, the 
same set of events take place, except that 1) the system 
bus’s data transceivers are enabled instead of the 
peripherals bus’s data transceivers, and 2) when the 
command is issued depends upon the state of the ar
biter. In both cases of I/O bus commands and system 
bus commands, the address generated for that com
mand is latched into both sets of address latches, the 
system bus’s address latches, and the peripherals bus’s 
address latches. For each command (regardless of com
mand type), an address is put out on the I/O bus and on 
the system bus if the arbiter has the bus at that particu
lar time. However, the bus controller only issues a com
mand to one of the buses and hence, no ill effects are 
suffered by addressing both buses.

If the arbiter already has the system bus when a system 
bus command is issued, no delays due to the arbiter will 
be noticed by the processor. If the arbiter doesn’t have 
the bus and must acquire it, then the processor will be 
delayed (via the system bus command being delayed by 
the bus controller through AEN from the arbiter) until 
the arbiter has acquired the bus. The arbiter will then 
permit the bus controller to issue the command and the 
transfer cycle continues.

RESB INTERFACE
The non-I/O processors in the 8086 family can communi
cate with both a resident bus and a multi-master system 
bus. Two bus controllers would be needed in such a con
figuration as shown in Figure 15. In such a system con
figuration the processor would have to access to 
memory and peripherals of both buses. Address map
ping techniques can be applied to select which bus is to 
be accessed. The SYSB/RESB (system bus/resident bus) 
input on the arbiter serves to instruct the arbiter as to 
whether or not the system bus is to be accessed. It also 
enables or disables commands from one of the bus con
trollers.

In such a system configuration, it is possible to issue 
both memory and I/O commands to either bus and as a 
result, two bus controllers are needed, one for each bus. 
Since the controllers have to issue both memory and I/O 
commands to their respective buses, the IOB options on 
the controllers are strapped off (IOB is low). The ar
biter, too, has to be informed of the system configura
tion in order to respond appropriately to system inputs 
and has its FIESB option strapped on (RESB is high). The 
arbiter’s IOB option is strapped inactive (IOB is high). 
Strapping the arbiter into the resident bus mode 
enables the arbiter to respond to the state of the 
SYSB/RESB input. Depending upon the state of this in
put, the arbiter either requests and acquires the system 
bus or permits the surrendering of that bus.

‘ Under other circum stances, bus surrendering would only be permitted 
during the period from where address to command hold time has been 
established just prior to where the next command would be issued.

In the system shown in Figure 15, memory mapping 
techniques are applied on the resident bus side of the 
system rather than on the multiprocessor or system 
bus side. As mentioned earlier in the IOB interface, both 
sets of address latches (the resident bus’s address 
latches and the system bus’s address latches) are 
latched with the same address; in this case, by their 
respective bus controllers.* The system bus’s address 
latches, however, may or may not be enabled depending 
upon the state of the arbiter. The resident bus’s address 
latches are always enabled, hence the address mapping 
technique is applied to the resident bus.

Address mapping techniques can range in complexity 
from a single bit of the address bus (usually the most 
significant bit of the address), to a decoder, to a PROM. 
The more elaborate mapping technique, such as PROM, 
provides segment mapping, system flexibility, and easy 
mapping modifications (simply make a new PROM).

In actual operation, both bus controllers respond to the 
processor’s status lines and both will simultaneously 
issue an address latch strobe (ALE) to their respective 
address latches. Both bus controllers will issue com
mand and control signals unless inhibited. The purpose 
of the address mapping circuitry is to inhibit one of the 
bus controllers before contention or erroneous com
mands can occur. The transceivers are enabled off the 
same clock edge the commands are issued, namely 01 
of T2 (Figure 16). The address is strobed into the ad
dress latches by ALE. ALE is activated as soon as the 
processor issues status, and is terminated on 02 of of 
T1. From when ALE is issued, plus the propagation 
delay of the address latches, determines where the ad
dress is valid. The time from which the address is valid 
to where control and commands are issued determines 
how much settling time is available for the address map
ping circuitry. The mapping circuitry must inhibit (via 
CEN) one of the bus controllers prior to where controls 
and commands are issued. Part of the settling time 
(see Figure 16) is consumed as a setup time requirement 
to the bus controllers. As it turns out, CEN (command 
enable) can be disqualified as late as on the falling edge 
of clock (the leading edge of 01 of T2) without fear of the 
bus controller issuing any commands or transceiver 
control signals. In systems (8 MHz) where less time is 
available for the address mapping circuitry, the address 
latches can be bypassed, hooking the mapping circuitry 
straight onto the processor’s multiplexed address/data 
bus (the local bus) and using ALE to strobe the mapping 
circuitry. This would avoid the propagation delay time of 
the transceivers. Besides needing to inhibit one of the 
bus controllers, the arbiter needs to be informed of the 
address mapping circuitry’s decision. Depending upon 
that decision, the arbiter acquires or permits the release 
of the system bus.

* A sim pler system with an 8086 or 8088 can exist, if it is desirable to 
only have PROM , ROM, or a read only peripheral interface on the resi
dent bus. The 8086 and 8088 add itionally generate a read signal in con 
junction with the 8288 control signals. By using th is read signal and 
memory mapping, the 8086 or 8088 cou ld  operate from local program 
store w ithout having the contention o f using the system bus.
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TO TWO MULTI MASTER BUSES

MULTI-MASTER 
SYSTEM BUS

Figure 15. 8289 Configured In Resident Bus Mode

T4 T1 T2

CLK

TCLAY + DELAY TIME__
THROUGH LATCHES

PROCESSOR
STATUS \

ALE (8288) j
~\

ADDRESS (8282,3) j [\ ADDRESS VALID

L_________
COMMAND. CONTROL (8288)

TCY [TCLAY + DELAY TIME THROUGH LATCHES] + 5 =  Ts ett uNG

J

\
AVAILABLE 

ADDRESS MAPPING 
SETTLING TIME

Figure 16. Time Available For Address Mapping Prom
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The arbiter is informed ot this decision via its 
SYSB/RESB input. It the memory mapping circuitry 
selects the resident bus, then SYSB/RESB input to the 
arbiter and CEN input of the system bus controller are 
brought low; and the CEN Input of the resident bus con
troller is brought high. The commands and control 
signals of the resident bus are now enabled and those of 
the system bus are disabled. In addition, with the arbiter 
being informed that the transfer cycle is occurring on 
the resident bus, the system bus is permitted to be sur- 
rendered. Glitching is permitted on the SYSB/RESB in
put of the arbiter up until 01 of T2. Thereafter, only clean 
transitions can occur on the input.* So, if mapping cir
cuitry can settle prior to 01 of T2, there is no need to be 
concerned over glitching. If the mapping circuitry is 
unable to settle prior to this time, then the designer 
must guarantee a clean transition on the SYSB/RESB in
put.

INTERFACE TO TWO MULTI MASTER BUSES
The interface of an 8086 family processor to two multi
system buses is simply an extension of the resident bus 
interface. The only difference is that now two arbiters 
are needed, one for each multi-master bus, and the ad
dress mapping circuitry must acquire its input straight 
off the processor’s multiplexed address/data bus (the 
local bus), using ALE as an address strobe input. Figure 
17 depicts how such a system might be configured.

Figure 17 illustrates the use of the 8289 in a system en
vironment in three of its four modes. The host 8086 CPU 
(priority 3) is using the 8289 in its single bus multi
master mode, while an 8089 I/O processor is using the 
8289 in its IOB mode. A work station based on an 8088 
processor uses the 8289 in it system/resident bus mode. 
This diagram represents a hypothetical system wherein 
there can exist more than one work station (only one 
shown). Each work station shares system resources and 
I/O. The lowest priority processor (8086) would provide 
supervisory functions and system control, i.e., allow 
operator intervention into the system resources. A work 
station would call in assemblers and compilers or ap
plication programs as needed. When compiled or 
assembled, the results are transferred to the I/O station 
for output, thus freeing up a work station for another 
user.

*ln certain memory mapping techniques, the C E N s  of the bus contro l
lers are contro lled differently from the SYSB/RESB input o f the arbiter. 
In short, C EN  is brought low  autom atically to both bus controllers, 
thereby disab ling their command and control outputs. Th is permits a 
longer settling time for the memory mapping circuitry, s ince  both con
trollers are disabled. When the mapping circu itry settles, sometime 
after 01 of T2, one o f the bus contro llers and its associated bus arbiter 
(if one exists) is enabled. A fte r 01 o f T2, the arbiter can only permit 
clean transitions on the SYSB/RESB input line.

If one work station is used, the serial priority resolving 
technique could be used between the 8289 Bus Arbiters 
(shown in dotted lines). If more than one work station is 
desired, it would be necessary to either slow down the 
system bus clock to accommodate the additional ar
biters, or resort to the parallel resolving technique (as 
shown).

WHEN TO USE THE DIFFERENT MODES

Single Bus Multi-Master Interface

This mode is the simplest and is sufficient for systems 
where a multiprocessing environment exists and the 
system bus bandwidth is sufficient to handle the peak 
concurrent requirements of a multi-master environment. 
This solution can provide an inexpensive solution for 
multi-masters to access an expensive I/O device. If, 
however, the system bus bandwidth is exceeded, the 
IOB or system/resident modes should be considered.

IOB Mode

The IOB mode is ideal when the bus can be separated in
to an I/O bus and memory or system bus. This mode is 
commonly used with the 8089 I/O processor in its 
REMOTE configuration to separate the I/O space from 
memory space. With the 8089, all instructions operate 
on either system or I/O address space. 64K bytes of I/O 
space can be accessed by the processors in the 8086 
family.
The remaining processors in the 8086 family are con
strained to using only I/O instructions when referencing 
I/O space. If this is a limitation, and it is desirable to 
remove some of the processor functions to its private 
resources, the resident bus mode should be considered.

Resident Bus Mode

The resident bus mode allows for maximum flexibility 
for a CPU device, giving it both access to its own local 
resources with full instruction set capability, and the 
system resources. The CPU can work from its own local 
resources without contention on the system bus. By 
using a PROM for memory mapping, memory space can 
be easily altered in this mode. This mode requires the 
use of a second 8288 bus controller chip.

CONCLUSION

The 8289 brings a new dimension to microcomputer ar
chitecture by allowing the advanced 8/16-bit microproc
essors to play easily in a multi-master, multiprocessing 
environment. With the flexible modes of the 8289, a user 
can define one of several bus architectures to meet his 
cost/performance needs. Modularity, improved system 
reliability and increased performance are just a few of 
the benefits that designing a multiprocessing system 
provides.
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MEMORY MAPPING DECODING IS SHOWN TAKING PLACE DIRECTLY OFF OF 
THE PROCESSOR'S LOCAL MULTIPLEXED ADDRESS/DATA BUS.

Figure 17. Using 8289s To Interface To Two Multimaster System Buses.
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Figure 18. 8289 Used In Each Of 3 Modes, Single Bus, I/O Bus, and Resident Bus M odes Implementing A  Hypothetical M u ltim aster Bus System
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INTRODUCTION
The Intel 8259A is a Programmable Interrupt Controller 
(PIC) designed for use in real-time interrupt driven 
microcomputer systems. The 8259A manages eight 
levels of interrupts and has built-in features for expan
sion up to 64 levels with additional 8259A's. Its versatile 
design allows it to be used within MCS-80, MCS-85, 
MCS-86, and MCS-88 microcomputer systems. Being 
fully programmable, the 8259A provides a wide variety of 
modes and commands to tailor 8259A interrupt process
ing for the specific needs of the user. These modes and 
commands control a number of interrupt oriented func
tions such as interrupt priority selection and masking of 
interrupts. The 8259A programming may be dynamically 
changed by the software at any time, thus allowing com
plete interrupt control throughout program execution.
The 8259A is an enhanced, fully compatible revision of 
its predecessor, the 8259. This means the 8259A can use 
all hardware and software originally designed for the 
8259 without any changes. Furthermore, it provides ad
ditional modes that increase its flexibility in MCS-80 
and MCS-85 systems and allow it to work in MCS-86 and 
MCS-88 systems. These modes are:

• MCS-86/88 Mode
• Automatic End of Interrupt Mode
• Level Triggered Mode
• Special Fully Nested Mode
• Buffered Mode

Each of these are covered in depth further in this appli
cation note.
This application note was written to explain completely 
how to use the 8259A within MCS-80, MCS-85, MCS-86, 
and MCS-88 microcomputer systems. It is divided into 
five sections. The first section, “ Concepts” , explains 
the concepts of interrupts and presents an overview of 
how the 8259A works with each microcomputer system 
mentioned above. The second section, “ Functional 
Block Diagram” , describes the internal functions of the 
8259A in block diagram form and provides a detailed 
functional description of each device pin. “ Operation of 
the 8259A” , the third section, explains in depth the 
operation and use of each of the 8259A modes and com
mands. For clarity of explanation, this section doesn’t 
make reference to the actual programming of the 8259A. 
Instead, all programming is covered in the fourth sec
tion, “ Programming the 8259A” . This section explains 
how to program the 8259A with the modes and com
mands mentioned in the previous section. These two 
sections are referenced in Appendix A. The fifth and 
final section “ Application Examples” , shows the 8259A 
in three typical applications. These applications are 
fully explained with reference to both hardware and soft
ware.
The reader should note that some of the terminology 
used throughout this application note may differ 
slightly from existing data sheets. This is done to better 
clarify and explain the operation and programming of 
the 8259A.

1. CONCEPTS
In microcomputer systems there is usually a need for 
the processor to communicate with various Input/Out

put (I/O) devices such as keyboards, displays, sensors, 
and other peripherals. From the system viewpoint, the 
processor should spend as little time as possible servic
ing the peripherals since the time required for these I/O 
chores directly affects the amount of time available for 
other tasks. In other words, the system should be 
designed so that I/O servicing has little or no effect on 
the total system throughput. There are two basic 
methods of handling the I/O chores in a system: status 
polling and interrupt servicing.

The status poll method of I/O servicing essentially in
volves having the processor “ ask” each peripheral if it 
needs servicing by testing the peripheral’s status line. If 
the peripheral requires service, the processor branches 
to the appropriate service routine; if not, the processor 
continues with the main program. Clearly, there are 
several problems in implementing such an approach. 
First, how often a peripheral is polled is an important 
constraint. Some idea of the “ frequency-of-service" 
required by each peripheral must be known and any soft
ware written for the system must accommodate this 
time dependence by “ scheduling” when a device is 
polled. Second, there will obviously be times when a 
device is polled that is not ready for service, wasting the 
processor time that it took to do the poll. And other 
times, a ready device would have to wait until the proc
essor “ makes its rounds” before it could be serviced, 
slowing down the peripheral.
Other problems arise when certain peripherals are more 
important than others. The only way to implement the 
“ priority” of devices is to poll the high priority devices 
more frequently than lower priority ones. It may even be 
necessary to poll the high priority devices while in a low 
priority device service routine. It is easy to see that the 
polled approach can be inefficient both time-wise and 
software-wise. Overall, the polled method of I/O servic
ing can have a detrimental effect on system throughput, 
thus limiting the tasks that can be performed by the 
processor.

A more desirable approach in most systems would allow 
the processor to be executing its main program and only 
stop to service the I/O when told to do so by the I/O 
itself. This is called the interrupt service method. In 
effect, the device would asynchronously signal the proc
essor when it required service. The processor would 
finish its current instruction and then vector to the 
service routine for the device requesting service. Once 
the service routine is complete, the processor would 
resume exactly where it left off. Using the interrupt ser
vice method, no processor time is spent testing devices, 
scheduling is not needed, and priority schemes are 
readily implemented. It is easy to see that, using the in
terrupt service approach, system throughput would in
crease, allowing more tasks to be handled by the 
processor.

However, to implement the interrupt service method 
between processor and peripherals, additional hardware 
is usually required. This is because, after interrupting 
the processor, the device must supply information for 
vectoring program execution. Depending on the proc
essor used, this can be accomplished by the device tak
ing control of the data bus and “ jamming” an instruc
tion^) onto it. The instruction(s) then vectors the pro-
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gram to the proper service routine. This of course re
quires additional control logic for each interrupt re
questing device. Yet the implementation so far is only in 
the most basic form. What if certain peripherals are to 
be of higher priority than others? What if certain inter
rupts must be disabled while others are to be enabled? 
The possible variations go on, but they all add up to one 
theme; to provide greater flexibility using the interrupt 
service method, hardware requirements increase.
So, we're caught in the middle. The status poll method 
is a less desirable way of servicing I/O in terms of 
throughput, but its hardware requirements are minimal. 
On the other hand, the interrupt service method is most 
desirable in terms of flexibility and throughput, but 
additional hardware is required.
The perfect situation would be to have the flexibility and 
throughput of the interrupt method in an implementa
tion with minimal hardware requirements. The 8259A 
Programmable Interrupt Controller (PIC) makes this all 
possible.
The 8259A Programmable Interrupt Controller (PIC) was 
designed to function as an overall manager of an inter
rupt driven system. No additional hardware is required. 
The 8259A alone can handle eight prioritized interrupt 
levels, controlling the complete interface between pe
ripherals and processor. Additional 8259A’s can be 
“ cascaded” to increase the number of interrupt levels 
processed. A wide variety of modes and commands for 
programming the 8259A give it enough flexibility for 
almost any interrupt controlled structure. Thus, the 
8259A is the feasible answer to handling I/O servicing in 
microcomputer systems.
Now, before explaining exactly how to use the 8259A, 
let’s go over interrupt structures of the MCS-80, MCS-85, 
MCS-86, and MCS-88 systems, and how they interact 
with the 8259A. Figure 1 shows a block diagram of the 
8259A interfacing with a standard system bus. This may 
prove useful as reference throughout the rest of the 
“ Concepts” section.

ADDRESS BUS 3

BUFFER r eq u ests

Figure 1. 8259A Interface to Standard System Bus

1.1 MCS-80™—8259A OVERVIEW
In an MCS-80—8259A interrupt configuration, as in 
Figure 2, a device may cause an interrupt by pulling one 
of the 8259A's interrupt request pins (IR0-IR7) high. If 
the 8259A accepts the interrupt request (this depends 
on its programmed condition), the 8259A’s INT (inter
rupt) pin will go high, driving the 8080A’s INT pin high.

The 8080A can receive an interrupt request any time, 
since its INT input is asynchronous. The 8080A, how
ever, doesn't always have to acknowledge an interrupt 
request immediately. It can accept or disregard re
quests under software control using the El (Enable Inter
rupt) or Dl (Disable Interrupt) instructions. These in
structions either set or reset an internal interrupt enable 
flip-flop. The output of this flip-flop controls the state of 
the INTE (Interrupt Enabled) pin. Upon reset, the 8080A 
interrupts are disabled, making INTE low.

At the end of each instruction cycle, the 8080A exam
ines the state of its INT pin. If an interrupt request is 
present and interrupts are enabled, the 8080A enters an 
interrupt machine cycle. During the interrupt machine 
cycle the 8080A resets the internal interrupt enable flip- 
flop, disabling further interrupts until an El instruction 
is executed. Unlike normal machine cycles, the interrupt 
machine cycle doesn't increment the program counter. 
This ensures that the 8080A can return to the pre
interrupt program location after the interrupt is com
pleted. The 8080A then issues an INTA (Interrupt 
Acknowledge) pulse via the 8228 System Controller Bus 
Driver. This INTA pulse signals the 8259A that the 8080A 
is honoring the request and is ready to process the inter
rupt.

The 8259A can now vector program execution to the cor
responding service routine. This is done during a se
quence of the three INTA pulses from the 8080A via the 
8228. Upon receiving the first INTA pulse the 8259A 
places the opcode for a CALL instruction on the data 
bus. This causes the contents of the program counter to 
be pushed onto the stack. In addition, the CALL instruc
tion causes two more INTA pulses to be issued, allow
ing the 8259A to place onto the data bus the starting 
address of the corresponding service routine. This 
address is called the interrupt-vector address. The lower 
8 bits (LSB) of the interrupt-vector address are released 
during the second INTA pulse and the upper 8 bits 
(MSB) during the third INTA pulse. Once this sequence 
is completed, program execution then vectors to the 
service routine at the interrupt-vector address.

If the same registers are used by both the main program 
and the interrupt service routine, their contents should 
be saved when entering the service routine. This in
cludes the Program Status Word (PSW) which consists 
of the accumulator and flags. The best way to do this is 
to “ PUSH” each register used onto the stack. The ser
vice routine can then “ POP" each register off the stack 
in the reverse order when it is completed. This prevents 
any ambiguous operation when returning to the main 
program.

Once the service routine is completed, the main 
program may be re-entered by using a normal RET 
(Return) instruction. This will “ POP” the original con-
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tents of the program counter back off the stack to 
resume program execution where it left off. Note, that 
because interrupts are disabled during the interrupt 
acknowledge sequence, the El instruction must be 
executed either during the service routine or the main 
program before further interrupts can be processed.
For additional information on the 8080A interrupt struc
ture and operation, refer to the MCS-80 User’s Manual.

1.2 MCS-85™-8259A OVERVIEW
An MCS-85—8259A configuration processes interrupts 
in much the same format as an MCS-80—8259A config

uration. When an interrupt occurs, a sequence of three 
INTA pulses causes the 8259A to release onto the data 
bus a CALL instruction and an interrupt-vector address 
for the corresponding service routine. Other events that 
occur during the 8080A interrupt machine cycle, such as 
disabling interrupts and not incrementing the program 
counter, also occur in the 8085A interrupt acknowledge 
machine cycle. Additionally, the instructions for saving 
registers, enabling or disabling of interrupts, and return
ing from service routines are literally the same.
The 8085A, however, has a different interrupt hardware 
scheme as shown in Figure 3. For one, the 8085A sup
plies its own INTA output pin rather than using an addi-

TO MEMORY AND I/O

INTERRUPT
REQUEST

INPUTS

TO SLAVE 8259AS

TO MEMORY AND I/O

Figure 2. MCS-80 8259A Basic Configuration Example

TO MULTIPLEXED 
MCS85 FAMILY

Figure 3. M CS-85™  8259A Basic Configuration Example
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tional chip, as the 8080A uses the 8228 System Con
troller Bus Driver. Another hardware difference is the 
8085A has five hardware interrupt pins: INTR, RST 7.5, 
RST 6.5, RST 5.5, and TRAP. The INTR (Interrupt Request) 
pin is the equivalent to the 8080A’s INT pin. The RST 
(Restart) pins and TRAP pin are all restart interrupts 
which vector program execution to an individual dedi
cated address when asserted. The important factor 
associating these interrupts is their relative priority, as 
shown below:

TRAP Highest Priority
RST 7.5 
RST 6.5 
RST 5.5
INTR Lowest Priority

The INTR pin has lowest priority among the other 8085A 
hardware interrupts. Thus, precautions to prevent inter
rupting 8259A service routines may be necessary. This, 
of course, depends on how the 8085A interrupts are 
being used in a particular application. Such precautions 
can be implemented, however, by masking the RST pins 
using the SIM instruction. The TRAP pin on the other 
hand is non-maskable; all interrupt pins but TRAP can 
be controlled by the El (Enable Interrupt) and Dl (Disable 
Interrupt) instructions.
For a complete description of the 8085A interrupt struc
ture, refer to the MCS-85 User’s Manual.

1.3 MCS-86/88™—8259A OVERVIEW
Operation of an MCS-86/88—8259A configuration has 
basic similarities of the MCS-80/85—8259A configura

tions. That is, a device can cause an interrupt by pulling 
one of the 8259A's interrupt request pins (IR0-IR7) high. 
If the 8259A honors the request, its INT pin will go high, 
driving the 8086/8088’s INTR pin high. Like the 8080A 
and 8085A, the INTR pin of the 8086/8088 is asynchro
nous, thus it can receive an interrupt any time. The 
8086/8088 can also accept or disregard requests on 
INTR under software control using the STI (Set Interrupt) 
or CLI (Clear Interrupt) instructions. These instructions 
set or clear the interrupt-enabled flag IF. Upon 
8086/8088 reset the IF flag is cleared, disabling external 
interrupts on INTR. Beside the INTR pin, the 8086/8088 
provides an NMI (Non-Maskable Interrupt) pin. The NMI 
functions similar to the 8085A’s TRAP; it can’t be dis
abled or masked. NMI has higher priority than INTR.

Figure 4 shows an MCS-86 MAX Mode system interfac
ing with an 8259A on the local bus. This MCS-86—8259A 
configuration is also representative of an MCS-88— 
8259A configuration except for the data bus which is 16 
bits for 8086 and 8 bits for 8088. In the MCS-86 system 
the 8259A must be on the lower 8 bits of the data bus. 
Note that the 8259A could also be interfaced on the 
system bus.

Although there are some basic similarities, the actual 
processing of interrupts with an 8086/8088 is different 
than an 8080A or 8085A. When an interrupt request is 
present and interrupts are enabled, the 8086/8088 enters 
its interrupt acknowledge machine cycle. The interrupt 
acknowledge machine cycle pushes the flag registers 
onto the stack (as in a PUSHF instruction). It then clears 
the IF flag which disables interrupts. The contents of

i— V A — 0 5

TO MEMORY 
AND I/O

TO MEMORY 
AND I/O

Figure 4. MSC-86™ 8259A Basic Configuration Example (8086 In Max. Mode)
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both the code segment and the instruction pointer are 
then also pushed onto the stack. Thus, the stack retains 
the pre-interrupt flag status and pre-interrupt program 
location which are used to return from the service 
routine. The 8086/8088 then issues the first of two INTA 
pulses which signal the 8259A that the 8086/8088 has 
honored its interrupt request. If the 8086/8088 is used in 
its "MIN Mode” the INTA signal is available from the 
8086/8088 on its INTA pin. If the 8086/8088 is used in the 
“ MAX Mode" the INTA signal is available via the 8288 
Bus Controller INTA pin. Additionally, in the “ MAX 
Mode” the 8086/8088 LOCK pin goes low during the in
terrupt acknowledge sequence. The LOCK signal can be 
used to indicate to other system bus masters not to gain 
control of the system bus during the interrupt acknowl
edge sequence. A “ HOLD” request won’t be honored 
while LOCK is low.
The 8259A is now ready to vector program execution to 
the corresponding service routine. This is done during 
the sequence of the two INTA pulses issued by the 8086/ 
8088. Unlike operation with the 8080A or 8085A, the 
8259A doesn't place a CALL instruction and the starting 
address of the service routine on the data bus. Instead, 
the first INTA pulse is used only to signal the 8259A of 
the honored request. The second INTA pulse causes the 
8259A to place a single interrupt-vector byte onto the 
data bus. Not used as a direct address, this interrupt- 
vector byte pertains to one of 256 interrupt “ types" sup
ported by the 8086/8088 memory. Program execution is 
vectored to the corresponding service routine by the 
contents of a specified interrupt type.
All 256 interrupt types are located in absolute memory 
locations 0 through 3FFH which make up the 8086/ 
8088’s interrupt-vector table. Each type in the interrupt- 
vector table requires 4 bytes of memory and stores a 
code segment address and an instruction pointer ad
dress. Figure 5 shows a block diagram of the interrupt- 
vector table. Locations 0 through 3FFH should be 
reserved for the interrupt-vector table alone. Further
more, memory locations 00 through 7FH (types 0-31) are 
reserved for use by Intel Corporation for Intel hardware 
and software products. To maintain compatibility with 
present and future Intel products, these locations 
should not be used.

3FFH

3FCH
3FBH

3F8H

BH

8H
7H

4H
3H

OH

Figure 5. 8086/8088 Interrupt Vector Table

When the 8086/8088 receives an interrupt-vector byte 
from the 8259A, it multiplies its value by four to acquire 
the address of the interrupt type. For example, if the 
interrupt-vector byte specifies type 128 (80H), the vec
tored address in 8086/8088 memory is 4x80H, which 
equals 200H. Program execution is then vectored to the 
service routine whose address is specified by the code 
segment and instruction pointer values within type 128 
located at 200H. To show how this is done, let's assume 
interrupt type 128 is to vector data to 8086/8088 memory 
location 2FF5FH. Figure 6 shows two possible ways to 
set values of the code segment and instruction pointer 
for vectoring to location 2FF5FH. Address generation 
by the code segment and instruction pointer is ac
complished by an offset (they overlap). Of the total 
20-bit address capability, the code segment can desig
nate the upper 16 bits, the instruction pointer can 
designate the lower 16 bits.

Figure 6. Two Examples of 8086/8080 Interrupt Type 128 Vectoring 
to Location 2FF5FH

When entering an interrupt service routine, those regis
ters that are mutually used between the main program 
and service routine should be saved. The best way to do 
this is to "PUSH" each register used onto the stack im
mediately. The service routine can then "POP" each 
register off the stack in the same order when it is com
pleted.
Once the service routine is completed the main program 
may be re-entered by using a IRET (Interrupt Return) in
struction. The IRET instruction will pop the pre-interrupt 
instruction pointer, code segment and flags off the 
stack. Thus the main program will resume where it was 
interrupted with the same flag status regardless of 
changes in the service routine. Note especially that this 
includes the state of the IF flag, thus interrupts are re
enabled automatically when returning from the service 
routine.
Beside external interrupt generation from the INTR pin, 
the 8086/8088 is also able to invoke interrupts by soft
ware. Three interrupt instructions are provided: INT, INT 
(Type 3), and INTO. INT is a two byte instruction, the sec
ond byte selects the interrupt type. INT (Type 3) is a one 
byte instruction which selects interrupt Type 3. INTO is 
a conditional one byte interrupt Instruction which 
selects interrupt Type 4 if the OF flag (trap on overflow) 
is set. All the software interrupts vector program execu
tion as the hardware interrupts do.
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For further information on 8086/8088 interrupt operation 
and internal interrupt structure refer to the MCS-86 
User's Manual and the 8086 System Design application 
note.

2. 82S9A FUNCTIONAL BLOCK DIAGRAM
A block diagram of the 8259A is shown in Figure 7. As 
can be seen from this figure, the 8259A consists of eight 
major blocks: the Interrupt Request Register (IRR), the 
In-Service Register (ISR), the Interrupt Mask Register 
(IMR), the Priority Resolver (PR), the cascade buffer/ 
comparator, the data bus buffer, and logic blocks for 
control and read/write. We’ll first go over the blocks 
directly related to interrupt handling, the IRR, ISR, IMR, 
PR, and the control logic. The remaining functional 
blocks are then discussed.

2.1 INTERRUPT REGISTERS AND CONTROL LOGIC
Basically, interrupt requests are handled by three “ cas
caded" registers: the Interrupt Request Register (IRR) is 
use to store all the interrupt levels requesting service; 
the In-Service Register (ISR) stores all the levels which 
are being serviced; and the Interrupt Mask Register 
(IMR) stores the bits of the interrupt lines to be masked. 
The Priority Resolver (PR) looks at the IRR, ISR and IMR, 
and determines whether an INT should be issued by the 
the control logic to the processor.

Figure 8 shows conceptually how the Interrupt Request 
(IR) input handles an interrupt request and how the 
various interrupt registers interact. The figure repre

sents one of eight “ daisy-chained" priority cells, one for 
each IR input.
The best way to explain the operation of the priority cell 
is to go through the sequence of internal events that 
happen when an interrupt request occurs. However, 
first, notice that the input circuitry of the priority cell 
allows for both level sensitive and edge sensitive IR in
puts. Deciding which method to use is dependent on the 
particular application and will be discussed in more 
detail later.
When the IR input is in an inactive state (LOW), the edge 
sense latch is set. If edge sensitive triggering is 
selected, the “ Q” output of the edge sense latch will 
arm the input gate to the request latch. This input gate 
will be disarmed after the IR input goes active (HIGH) 
and the interrupt request has been acknowledged. This 
disables the input from generating any further inter
rupts until it has returned low to re-arm the edge sense 
latch. If level sensitive triggering is selected, the “ Q" 
output of the edge sense latch is rendered useless. This 
means the level of the IR input is in complete control of 
interrupt generation; the input won’t be disarmed once 
acknowledged.
When an interrupt occurs on the IR input, it propagates 
through the request latch and to the PR (assuming the 
input isn't masked). The PR looks at the incoming re
quests and the currently in-service interrupts to ascer
tain whether an interrupt should be issued to the proc
essor. Let's assume that the request is the only one in
coming and no requests are presently in service. The PR 
then causes the control logic to pull the INT line to the 
processor high.

PIN CONFIGURATION
c s C 1 28 D v cc

WR c 2 27 I K
RD E 3 26 □  INTA

A C 4 25 □  IR7

A C 5 24 □  IR6

A C 6 23 □  IR5

A C 7 22
8 2 5 9 A

□  IR4

A  C 8 21 □  lR3

A C 9 20 □  IR2

A C 10 19 □  IR1

A C 11 18 □  IR0

CASO C 12 17 □  INT

CAS 1 C 13 16 u  SP/EN

GND C 14 15 I]  CAS 2

PIN NAMES
A~ A DATA BUS <BI DIRECTIONAL)

RD READ INPUT
WR WRITE INPUT

A0 COMMAND SELECT ADDRESS

cs CHIP SELECT
CAS1-CAS0 CASCADE LINES
SP/EN SLAVE PROGRAM/ENABLE BUFFER
INT INTERRUPT OUTPUT
INTA INTERRUPT ACKNOWLEDGE INPUT
IR0-IR7 INTERRUPT REQUEST INPUTS

BLOCK DIAGRAM
IN TA INT

Figure 7. 8259A Block Diagram and Pin Configuration
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MCS80/85
MODE

1. MASTER CLEAR ACTIVE ONLY DURING ICW1
2. FREEZE/ IS ACTIVE DURING INTA/ AND POLL SEQUENCES ONLY
3. TRUTH TABLE FOR D-LATCH

C | D I Q i OPERATION Tl Di Di FOLLOW
0 I X I Q n -1  I HOLD

Figure 8. Priority Cell

When the processor honors the INT pulse, it sends a se
quence of INTA pulses to the 8259A (three for 8080A/ 
8085A, two for 8086/8088). During this sequence the 
state of the request latch is frozen (note the INTA-freeze 
request timing diagram). Priority is again resolved by the 
PR to determine the appropriate interrupt vectoring 
which is conveyed to the processor via the data bus.
Immediately after the interrupt acknowledge sequence, 
the PR sets the corresponding bit in the ISR which 
simultaneously clears the edge sense latch, if edge sen
sitive triggering is used, clearing the edge sense latch 
also disarms the request latch. This inhibits the 
possibility of a still active IR input from propagating 
through the priority cell. The IR input must return to an 
inactive state, setting the edge sense latch, before 
another interrupt request can be recognized. If level sen
sitive triggering is used, however, clearing the edge 
sense latch has no affect on the request latch. The state 
of the request latch is entirely dependent upon the IR in
put level. Another interrupt will be generated immedi
ately if the IR level is left active after its ISR bit has been 
reset. An ISR bit gets reset with an End-of-lnterrupt (EOI) 
command issued in the service routine. End-of- 
interrupts will be covered in more detail later.

2.2 OTHER FUNCTIONAL BLOCKS 

Data Bus Buffer
This three-state, bidirectional 8-bit buffer is used to in
terface the 8259A to the processor system data bus (via

DB0-DB7). Control words, status information, and 
interrupt-vector data are transferred through the data 
bus buffer.

Read/Write Control Logic
The function of this block is to control the programming 
of the 8259A by accepting OUTput commands from the 
processor. It also controls the releasing of status onto 
the data bus by accepting INput commands from the 
processor. The initialization and operation command 
word registers which store the various control formats 
are located in this block. The RD, WR, AO, and C3 
pins are used to control access to this block by the 
processor.

Cascade Buffer/Comparator
As mentioned earlier, multiple 8259A's can be combined 
to expand the number of interrupt levels. A master-slave 
relationship of cascaded 8259A’s is used for the expan
sion. The SP/EN and the CASO-2 pins are used for oper
ation of this block. The cascading of 8259A’s is covered 
in depth in the "Operation of the 8259A” section of this 
application note.

2.3 PIN FUNCTIONS

Name Pin # I/O Function

Vcc 28 I +5V supply 
GND 14 I Ground
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Name Pin # I/O Function

CS 1 I

WR 2 I

RD 3 I

D7-D0 4-11 I/O

CASO- 12,13, I/O 
CAS2 15

SP/EN 16 I/O 

INT 17 O

IRO- 18-25 I 
IR7

INTA 26 I

AO 27 I

Chip Select: A low on this pin en
ables RD and WR communication be- 
tween the CPU and the 8259A. INTA 
functions are independent of CS.
Write: A low on this pin when CS is 
low enables the 8259A to accept 
command words from the CPU.
Read: A low on this pin when CS is 
low enables the 8259A to release 
status onto the data bus for the CPU.
Bid irectiona l Data Bus: Control, 
status and interrupt-vector informa
tion is transferred via this bus.
Cascade Lines: The CAS lines form a 
private 8259A bus to control a multi
ple 8259A structure. These pins are 
outputs for a master 8259A and in
puts for a slave 8259A.
Slave Program/Enable Buffer: This is 
a dual function pin. When in the buf
fered mode it can be used as an out
put to control buffer transceivers 
(EN). When not in the buffered mode 
it is used as an input to designate a 
master (SP= 1) or slave (SP = 0).
Interrupt: This pin goes high when
ever a valid interrupt request is as
serted. It is used to interrupt the 
CPU, thus it is connected to the 
CPU’s interrupt pin.
Interrupt Requests: Asynchronous in
puts. An interrupt request can be 
generated by raising an IR input (low 
to high) and holding it high until it is 
acknowledged (edge triggered mode), 
or just by a high level on an IR input 
(level triggered mode).
Interrupt Acknowledge: This pin is 
used to enable 8259A interrupt-vector 
data onto the data bus. This is done 
by a sequence of interrupt acknowl
edge pulses issued by the CPU.
AO Address Line: This pin acts in con
junction with the CS, WR, and RD 
pins. It is used by the 8259A to de
cipher between various command 
words the CPU writes and status the 
CPU wishes to read. It is typically 
connected to the CPU AO address 
line (A1 for 8086/8088).

3. OPERATION OF THE 8259A
Interrupt operation of the 8259A falls under five main 
categories: vectoring, priorities, triggering, status, and 
cascading. Each of these categories use various modes 
and commands. This section will explain the operation 
of these modes and commands. For clarity of explana
tion, however, the actual programming of the 8259A isn’t

covered in this section but in “ Programming the 8259A” . 
Appendix A is provided as a cross reference between 
these two sections.

3.1 INTERRUPT VECTORING
Each IR input of the 8259A has an individual interrupt- 
vector address in memory associated with it. Designa
tion of each address depends upon the initial program
ming of the 8259A. As stated earlier, the interrupt 
sequence and addressing of an MCS-80 and MCS-85 
system differs from that of an MCS-86 and MCS-88 
system. Thus, the 8259A must be initially programmed 
in either a MCS-80/85 or MCS-86/88 mode of operation to 
insure the correct interrupt vectoring.

MCS-80/85™ Mode
When programmed in the MCS-80/85 mode, the 8259A 
should only be used within an 8080A or an 8085A 
system. In this mode the 8080A/8085A will handle inter
rupts in the format described in the “ MCS-80—8259A or 
MCS-85—8259A Overviews.”
Upon interrupt request in the MCS-80/85 mode, the 
8259A will output to the data bus the opcode for a CALL 
instruction and the address of the desired routine. This 
is in response to a sequence of three INTA pulses 
issued by the 8080A/8085A after the 8259A has raised 
INT high.
The first INTA pulse to the 8259A enables the CALL 
opcode “ CDh” onto the data bus. It also resolves IR pri
orities and effects operation in the cascade mode, 
which will be covered later. Contents of the first 
interrupt-vector byte are shown in Figure 9A.
During the second and third INTA pulses, the 8259A 
conveys a 16-bit interrupt-vector address to the 8080A/ 
8085A. The interrupt-vector addresses for all eight levels 
are selected when initially programming the 8259A. 
However, only one address is needed for programming. 
Interrupt-vector addresses of IR0-IR7 are automatically 
set at equally spaced intervals based on the one pro
grammed address. Address intervals are user definable 
to 4 or 8 bytes apart. If the service routine for a device is 
short it may be possible to fit the entire routine within 
an 8-byte interval. Usually, though, the service routines 
require more than 8 bytes. So, a 4-byte interval is used to 
store a Jump (JMP) instruction which directs the 8080A/ 
8085A to the appropriate routine. The 8-byte interval 
maintains compatibility with current 8080A/8085A 
Restart (RST) instruction software, while the 4-byte in
terval is best for a compact jump table. If the 4-byte in
terval is selected, then the 8259A will automatically 
insert bits A0-A4. This leaves A5-A15 to be pro
grammed by the user. If the 8-byte interval is selected, 
the 8259A will automatically insert bits A0-A5. This 
leaves only A6-A15 to be programmed by the user.
The LSB of the interrupt-vector address is placed on the 
data bus during the second INTA pulse. Figure 9B 
shows the contents of the second interrupt-vector byte 
for both 4 and 8-byte intervals.
The MSB of the interrupt-vector address is placed on the 
data bus during the third INTA pulse. Contents of the 
third interrupt-vector byte is shown in Figure 9C.
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D7 D6 OS D4 D3 02 01 DO

CALL CODE 1 1 0  0 1 1 0 1

A. FIRST INTERRUPT VECTOR BYTE, MCS80/85 MODE

C. THIRD INTERRUPT VECTOR BYTE, MCS80/85 MODE

Figure 9. 9A-C. Interrupt-Vector Bytes for 8259A, MCS 80/85 Mode

MCS-86/88™ Mode
When programmed in the MCS-86/88 mode, the 8259A 
should only be used within an MCS-86 or MCS-88 
system. In this mode, the 8086/8088 will handle inter
rupts in the format described earlier in the “ 8259A— 
8086/8088 Overview” .
Upon interrupt in the MCS-86/88 mode, the 8259A will 
output a single interrupt-vector byte to the data bus. 
This is in response to only two INTA pulses issued by 
the 8086/8088 after the 8259A has raised INT high.
The first INTA pulse is used only for set-up purposes in
ternal to the 8259A. As in the MCS-80/85 mode, this set
up includes priority resolution and cascade mode oper
ations which will be covered later. Unlike the MCS-80/85 
mode, no CALL opcode is placed on the data bus.
The second INTA pulse is used to enable the single 
interrupt-vector byte onto the data bus. The 8086/8088 
uses this interrupt-vector byte to select one of 256 inter
rupt “ types" in 8086/8088 memory. Interrupt type selec
tion for all eight IR levels is made when initially pro
gramming the 8259A. However, reference to only one in
terrupt type is needed for programming. The upper 5 bits 
of the interrupt vector byte are user definable. The lower 
3 bits are automatically inserted by the 8259A depend
ing upon the IR level.
Contents of the interrupt-vector byte for 8086/8088 type 
selection is put on the data bus during the second INTA 
pulse and is shown in Figure 10.

IR D7 D6 D5 D4 D3 D2 D1 DO
/ I / lb lb I 4 13 1 1 1
6 T7 T6 T5 T4 T3 1 1 0
5 T7 T6 T5 T4 T3 1 0 1
4 T7 T6 T5 T4 T3 1 0 0
3 T7 T6 T5 T4 T3 0 1 1
2 T7 T6 T5 T4 T3 0 1 0
1 T7 T6 T5 T4 T3 0 0 1
0 T7 T6 T5 T4 T3 0 0 0

Flgura 10. Interrupt Vactor Byte. MCS 88/88™  Mode

3.2 INTERRUPT PRIORITIES
A variety of modes and commands are available for con
trolling interrupt priorities of the 8259A. All of them are 
programmable, that is, they may be changed dynamic
ally under software control. With these modes and com
mands, many possibilities are conceivable, giving the 
user enough versatility for almost any interrupt con
trolled application.

Fully Nested Mode
The fully nested mode of operation is a general purpose 
priority mode. This mode supports a multilevel-interrupt 
structure in which priority order of all eight IR inputs are 
arranged from highest to lowest.
Unless otherwise programmed, the fully nested mode is 
entered by default upon initialization. At this time, IR0 is 
assigned the highest priority through IR7 the lowest. 
The fully nested mode, however, is not confined to this 
IR structure alone. Once past initialization, other IR in
puts can be assigned highest priority also, keeping the 
multilevel-interrupt structure of the fully nested mode. 
Figure 11A-C shows some variations of the priority 
structures in the fully nested mode.

IR LEVELS I IR7 IR6 IR5 IR4 IR3 IR2 IR1 IR0
PRIORITY 7 6 5 4 3 2 1 o

A

IR LEVELS IR7 IR6 IR5 IR4 IR3 IR2 IR1 IR0
PRIORITY 1 4  3 2 1 0 7 6 5

B

IR LEVELS I IR7 IR6 IR5 IR4 IR3 IR2 IR1 IRQ
PRIORITY | 1 0 7 6 5 4 3 2

c

Figure 11. A-C. Some Variations of Priority Structure in the 
Fully Nested Mode

Further explanation of the fully nested mode, in this 
section, is linked with information of general 8259A in
terrupt operations. This is done to ease explanation to 
the user in both areas.
In general, when an interrupt is acknowledged, the 
highest priority request is determined from the IRR (In
terrupt Request Register). The interrupt vector is then 
placed on the data bus. In addition, the corresponding 
bit in the ISR (In-Service Register) is set to designate the 
routine in service. This ISR bit remains set until an EOI 
(End-Of-Interrupt) command is issued to the 8259A. 
EOl’s will be explained in greater detail shortly.
In the fully nested mode, while an ISR bit is set, all fur
ther requests of the same or lower priority are inhibited 
from generating an interrupt to the microprocessor. A 
higher priority request, though, can generate an inter
rupt, thus vectoring program execution to its service 
routine. Interrupts are only acknowledged, however, if 
the microprocessor has previously executed an “ Enable 
Interrupts” instruction. This is because the interrupt 
request pin on the microprocessor gets disabled auto
matically after acknowledgement of any interrupt. The 
assembly language instructions used to enable inter
rupts are “ El" for 8080A/8085A and “ STI”  for 8086/8088. 
Interrupts can be disabled by using the instruction "D l” 
for 8080A/ 8085A and “ CLI” for 8086/8088. When a 
routine is completed a “ return” instruction is executed, 
"RET” for 8080A/8085A and “ IRET” for 8086/8088.

A-145



A P-59

Figure 12 illustrates the correct usage of interrupt 
related instructions and the interaction of interrupt 
levels in the fully nested mode.
Assuming the IR priority assignment for the example in 
Figure 12 is IRO the highest through IR7 the lowest, the 
sequence is as follows. During the main program, IR3 
makes a request. Since interrupts are enabled, the 
microprocessor is vectored to the IR3 service routine. 
During the IR3 routine, IR1 asserts a request. Since IR1 
has higher priority than IR3, an interrupt is generated. 
Flowever, it is not acknowledged because the micro
processor disabled interrupts in response to the IR3 in
terrupt. The IR1 interrupt is not acknowledged until the 
“ Enable Interrupts” instruction is executed. Thus the 
IR3 routine has a “ protected” section of code over 
which no interrupts (except non-maskable) are allowed. 
The IR1 routine has no such “ protected” section since 
an “ Enable Interrupts” instruction is the first one in its 
service routine. Note that in this example the IR1 re
quest must stay high until it is acknowledged. This is 
covered in more depth in the “ Interrupt Triggering” 
section.

MAIN PROGRAM

Figure 12. Fully Nested Mode Exsmple (MCS 80/85™  or MCS 86/88™ )

What is happening to the ISR register? While in the main 
program, no ISR bits are set since there aren't any inter
rupts in service. When the IR3 interrupt is acknowl
edged, the ISR3 bit is set. When the IR1 interrupt is 
acknowledged, both the ISR1 and the ISR3 bits are set, 
indicating that neither routine is complete. At this time, 
only IRO could generate an interrupt since it is the only 
input with a higher priority than those previously in ser
vice. To terminate the IR1 routine, the routine must 
inform the 8259A that it is complete by resetting, its ISR 
bit. It does this by executing an EOI command. A 
"return" instruction then transfers execution back to

the IR3 routine. This allows IR0-IR2 to interrupt the IR3 
routine again, since ISR3 is the highest ISR bit set. No 
further interrupts occur in the example so the EOI com
mand resets ISR3 and the "return” instruction causes 
the main program to resume at its pre-interrupt location, 
ending the example.
A single 8259A is essentially always in the fully nested 
mode unless certain programming conditions disturb it. 
The following programming conditions can cause the 
8259A to go out of the high to low priority structure of 
the fully nested mode.

• The automatic EOI mode
• The special mask mode
• A slave with a master not in the special fully nested 

mode
These modes will be covered in more detail later, 
however, they are mentioned now so the user can be 
aware of them. As long as these program conditions 
aren’t inacted, the fully nested mode remains undis
turbed.

End of Interrupt
Upon completion of an interrupt service routine the 
8259A needs to be notified so its ISR can be updated. 
This is done to keep track of which interrupt levels are in 
the process of being serviced and their relative priori
ties. Three different End-Of-Interrupt (EOI) formats are 
available for the user. These are: the non-specific EOI 
command, the specific EOI command, and the auto
matic EOI Mode. Selection of which EOI to use is depen
dent upon the interrupt operations the user wishes to 
perform.

Non-Specific EOI Command
A non-specific EOI command sent from the microproc
essor lets the 8259A know when a service routine has 
been completed, without specification of its exact inter
rupt level. The 8259A automatically determines the inter
rupt level and resets the correct bit in the ISR.
To take advantage of the non-specific EOI the 8259A 
must be in a mode of operation in which it can predeter
mine in-service routine levels. For this reason the non
specific EOI command should only be used when the 
most recent level acknowledged and serviced is always 
the highest priority level. When the 8259A receives a 
non-specific EOI command, it simply resets the highest 
priority ISR bit, thus confirming to the 8259A that the 
highest priority routine of the routines in service is 
finished.
The main advantage of using the non-specific EOI com
mand is that IR level specification isn’t necessary as in 
the “ Specific EOI Command” , covered shortly. 
Flowever, special consideration should be taken when 
deciding to use the non-specific EOI. Here are two pro
gram conditions in which it is best not used:

• Using the set priority command within an interrupt 
service routine.

• Using a special mask mode.
These conditions are covered in more detail in their own 
sections, but are listed here for the users reference.
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Specific EOI Command
A specific'EOI command sent from the microprocessor 
lets the 8259A know when a service routine of a particu
lar interrupt level is completed. Unlike a non-specific 
EOI command, which automatically resets the highest 
priority ISR bit, a specific EOI command specifies an 
exact ISR bit to be reset. One of the eight IR levels of the 
8259A can be specified in the command.
The reason the specific EOI command is needed, is to 
reset the ISR bit of a completed service routine when
ever the 8259A isn’t able to automatically determine it. 
An example of this type of situation might be if the 
priorities of the interrupt levels were changed during an 
interrupt routine (“Specific Rotation” ). In this case, if 
any other routines were in service at the same time, a 
non-specific EOI might reset the wrong ISR bit. Thus the 
specific EOI command is the best bet in this case, or for 
that matter, any time in which confusion of interrupt 
priorities may exist. The specific EOI command can be 
used in all conditions of 8259A operation, including 
those that prohibit non-specific EOI command usage.

Automatic EOI Mode
When programmed in the automatic EOI mode, the 
microprocessor no longer needs to issue a command to 
notify the 8259A it has completed an interrupt routine. 
The 8259A accomplishes this by performing a non
specific EOI automatically at the trailing edge of the last 
INTA pulse (third pulse in MCS-80/85, second in 
MCS-86).
The obvious advantage of the automatic EOI mode over 
the other EOI command is no command has to be 
issued. In general, this simplifies programming and 
lowers code requirements within interrupt routines.
However, special consideration should be taken when 
deciding to use the automatic EOI mode because it 
disturbs the fully nested mode. In the automatic EOI 
mode the ISR bit of a routine in service is reset right 
after it’s acknowledged, thus leaving no designation in 
the ISR that a sevice routine is being executed. If any in
terrupt request occurs during this time (and interrupts 
are enabled) it will get serviced regardless of its priority, 
low or high. The problem of “ over nesting” may also 
happen in this situation. “ Over nesting" is when an IR 
input keeps interrupting its own routine, resulting in un
necessary stack pushes which could fill the stack in a 
worst case condition. This is not usually a desired form 
of operation!
So what good is the automatic EOI mode with problems 
like those just covered? Well, again, like the other EOls, 
selection is dependent upon the application. If inter
rupts are controlled at a predetermined rate, so as not to 
cause the problems mentioned above, the automatic 
EOI mode works perfect just the way it is. However, if in
terrupts happen sporadically at an indeterminate rate, 
the automatic EOI mode should only be used under the 
following guideline:

• When using the automatic EOI mode with an inde
terminate interrupt rate, the microprocessor should 
keep its interrupt request input disabled during 
execution of service routines.

By doing this, higher priority interrupt levels will be ser
viced only after the completion of a routine in service. 
This guideline restores the fully nested structure in 
regards to the IRR; however, a routine in-service can’t be 
interrupted.

Automatic Rotation — Equal Priority
Automatic rotation of priorities serves in applications 
where the interrupting devices are of equal priority, 
such as communications channels. The concept is that 
once a peripheral is serviced, all other equal priority 
peripherals should be given a chance to be serviced 
before the original peripheral is serviced again. This is 
accomplished by automatically assigning a peripheral 
the lowest priority after being serviced Thus, in worst 
case, the device would have to wait until all other 
devices are serviced before being serviced again.
There are two methods of accomplishing automatic 
rotation. One is used in conjunction with the non
specific EOI, “ rotate on non-specific EOI command” . 
The other is used with the automatic EOI mode, “ rotate 
in automatic EOI mode” .

Rotate on Non-Specific EOI Command
When the rotate on non-specific EOI command is 
issued, the highest ISR bit is reset as in a normal non
specific EOI command. After it’s reset though, the cor
responding IR level is assigned lowest priority. Other IR 
priorities rotate to conform to the fully nested mode 
based on the newly assigned low priority

Figures 13A and B show how the rotate on non-specific 
EOi command effects the interrupt priorities. Let’s 
assume the IR priorities were assigned with IRO the 
highest and IR7 the lowest, as in 13A. IR6 and IR4 are 
already in service but neither is completed. Being the 
higher priority routine, IR4 is necessarily the routine 
being executed. During the IR4 routine a rotate on non
specific EOI command is executed. When this happens, 
bit 4 in the ISR is reset. IR4 then becomes the lowest 
priority and IR5 becomes the highest as in 13B.

IS7 IS6 IS5 jS4 IS3 IS2 IS1 ISO
ISR STATUS 1 0  1 0  1 0 0 0 0  BEFORE

PRIORITY I 7 6 5 4 3 2 1 0  COMMAND

f

1
LOWEST PRIORITY

l
HIGHEST PRIORITY

IS7 IS6 IS5 IS4 IS3 IS2 IS1 ISO
ISR STATUS 0 1 0 0 0 0 0 0 AFTER

PRIORITY I 2 1 0 7 6 5 4 3 | COMMAND

t  t

HIGHEST PRIORITY LOWEST PRIORITY

F ig u r e  1 3 . A - B .  R o ta te  o n  N o n - s p e c i f ic  E O I C o m m a n d  E x a m p le

Rotate in Automatic EOI Mode
The rotate in automatic EOI mode works much like the 
rotate on non-specific EOI command. The main differ
ence is that priority rotation is done automatically after
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the last INTA pulse of an interrupt request. To enter or 
exit this mode a rotate-in-automatic-EOI set command 
and rotate-in-automatic-EOI clear command is provided. 
After that, no commands are needed as with the normal 
automatic EOI mode. However, it must be remembered, 
when using any form of the automatic EOI mode, spe
cial consideration should be taken. Thus, the guideline 
for the automatic EOI mode also stands for the rotate in 
automatic EOI mode.

Specific Rotation — Specific Priority
Specific rotation gives the user versatile capabilities in 
interrupt controlled operations. It serves in those ap
plications in which a specific device's interrupt priority 
must be altered. As opposed to automatic rotation 
which automatically sets priorities, specific rotation is 
completely user controlled. That is, the user selects 
which interrupt level is to receive lowest or highest 
priority. This can be done during the main program or 
within interrupt routines. Two specific rotation com
mands are available to the user, the “ set priority com
mand” and the “ rotate on specific EOI command.”

Set Priority Command
The set priority command allows the programmer to 
assign an IR level the lowest priority. All other interrupt 
levels will conform to the fully nested mode based on 
the newly assigned low priority.
An example of how the set priority command works is 
shown in Figures 14A and 14B. These figures show the 
status of the ISR and the relative priorities of the inter
rupt levels before and after the set priority command. 
Two interrupt routines are shown to be in service in 
Figure 14A. Since IR2 is the highest priority, it is 
necessarily the routine being executed. During the IR2 
routine, priorities are altered so that IR5 is the highest. 
This is done simply by issuing the set priority command 
to the 8259A. In this case, the command specifies IR4 as 
being the lowest priority. The result of this set priority 
command is shown in Figure 14B. Even though IR7 now 
has higher priority than IR2, it won’t be acknowledged 
until the IR2 routine is finished (via EOI). This is because 
priorities are only resolved upon an interrupt request or 
an interrupt acknowledge sequence. If a higher priority 
request occurs during the IR2 routine, then priorities are 
resolved and the highest will be acknowledged.

IS7 IS6 IS5 IS4 IS3 IS2 IS1 ISO 
. ISR STATUS 1 0 0 0 0 1 0 0 BEFORE

PRIORITY I 7 6 5 4 3 2 1 0 l COMMAND

LOWEST PRIORITY HIGHEST PRIORITY

IS7 IS6 IS5 IS4 IS3 IS2 IS1 ISO 
ISR STATUS 1 0 0 0 0 1 0 1T~| AFTER

PRIORITY 2 1 0 7 6 5~ 4 3 COMMAND

HIGHEST PRIORITY LOWEST PRIORITY

F ig u r e  1 4 . A - B .  S e t  P r io r i t y  C o m m a n d  E x a m p le

When completing a service routine in which the set 
priority command is used, the correct EOI must be 
issued. The non-specific EOI command shouldn’t be 
used in the same routine as a set priority command. 
This is because the non-specific EOI command resets 
the highest ISR bit, which, when using the set priority 
command, is not always the most recent routine in ser
vice. The automatic EOI mode, on the other hand, can be 
used with the set priority command. This is because it 
automatically performs a non-specific EOI before the 
set priority command can be issued. The specific EOI 
command is the best bet in most cases when using the 
set priority command within a routine. By resetting the 
specific ISR bit of a routine being completed, confusion 
is eliminated.

Rotate on Specific EOI Command
The rotate on specific EOI command is literally a com
bination of the set priority command and the specific 
EOI command. Like the set priority command, a speci
fied IR level is assigned lowest priority. Like the specific 
EOI command, a specified level will be reset in the ISR. 
Thus the rotate on specific EOI command accomplishes 
both tasks in only one command.
If it is not necessary to change IR priorities prior to the 
end of an interrupt routine, then this command is advan
tageous. For an EOI command must be executed any
way (unless in the automatic EOI mode), so why not do 
both at the same time?

Interrupt Masking
Disabling or enabling interrupts can be done by other 
means than just controlling the microprocessor's inter
rupt request pin. The 8259A has an IMR (Interrupt Mask 
Register) which enhances interrupt control capabilities. 
Rather than all interrupts being disabled or enabled at 
the same time, the IMR allows individual IR masking. 
The IMR is an 8-bit register, bits 0-7 directly correspond 
to IR0-IR7. Any IR input can be masked by writing to the 
IMR and setting the appropriate bit. Likewise, any IR in
put can be enabled by clearing the correct IMR bit.
There are various uses for masking off individual IR in
puts. One example is when a portion of a main routine 
wishes only to be interrupted by specific interrupts. 
Another might be disabling higher priority interrupts for 
a portion of a lower priority service routine. The possi
bilities are many.
When an interrupt occurs while its IMR bit is set, it isn't 
necessarily forgotten. For, as stated earlier, the IMR 
acts only on the output of the IRR. Even with an IR input 
masked it is still possible to set the IRR. Thus, when 
resetting an IMR, if its IRR bit is set it will then generate 
an interrupt. This is providing, of course, that other 
priority factors are taken into consideration and the IR 
request remains active. If the IR request is removed 
before the IMR is reset, no interrupt will be acknowl
edged.

Special Mask Mode
In various cases, it may be desirable to enable interrupts 
of a lower priority than the routine in service. Or, in other 
words, allow lower priority devices to generate inter
rupts. However, in the fully nested mode, all IR levels of
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priority below the routine in service are inhibited. So 
what can be done to enable them?
Weil, one method could be using an EOI command 
before the actual completion of a routine in service. But 
beware, doing this may cause an “ over nesting" prob
lem, similar to in the automatic EOI mode. In addition, 
resetting an ISR bit is irreversible by software control, 
so lower priority IR levels could only be later disabled by 
setting the IMR.
A much better solution is the special mask mode. Work
ing in conjunction with the IMR, the special mask mode 
enables interrupts from all levels except the level in ser
vice. This is done by masking the level that is in service 
and then issuing the special mask mode command. 
Once the special mask mode is set, it remains in effect 
until reset.

Figure 15 shows how to enable lower priority interrupts 
by using the Special Mask Mode (SMM). Assume that 
IRO has highest priority when the main program is inter
rupted by IR4. In the IR4 service routine an enable inter
rupt instruction is executed. This only allows higher 
priority interrupt requests to interrupt IR4 in the normal 
fully nested mode. Further in the IR4 routine, bit 4 of the 
IMR is masked and the special mask mode is entered. 
Priority operation is no longer in the fully nested mode. 
All interrupt levels are enabled except for IR4. To leave 
the special mask mode, the sequence is executed in 
reverse.

Precautions must be taken when exiting an interrupt 
service routine which has used the special mask mode. 
A non-specific EOI command can't be used when in the 
special mask mode. This is because a non-specific 
won't clear an ISR bit of an interrupt which is masked 
when in the special mask mode. In fact, the bit will ap
pear invisible. If the special mask mode is cleared 
before an EOI command is issued a non-specific EOI 
command can be used. This could be the case in the ex
ample shown in Figure 15, but, to avoid any confusion 
it's best to use the specific EOI whenever using the 
special mask mode.
It must be remembered that the special mask mode ap
plies to all masked levels when set. Take, for instance, 
IR1 interrupting IR4 in the previous example. If this hap
pened while in the special mask mode, and the IR1 
routine masked itself, all interrupts would be enabled 
except IR1 and IR4 which are masked.

3.3 INTERRUPT TRIGGERING
There are two classical ways of sensing an active inter
rupt request: a level sensitive input or an edge sensitive 
input. The 8259A gives the user the capability for either 
method with the edge triggered mode and the level trig
gered mode. Selection of one of these interrupt trigger
ing methods is done during the programmed initializa
tion of the 8259A.

MAIN PROGRAM

IRO-3 ENABLED 
IR4-7 DISABLED

IRO-3, 5-7 ENABLED 
IR4 DISABLED

IRO-3 ENABLED 
IR4-7 DISABLED

Figure 15. Special Mask Mode Example (MCS 80/85™or MCS 86/88™)

Level Triggered Mode
When in the level triggered mode the 8259A will recog
nize any active (high) level on an IR input as an interrupt 
request. If the IR input remains active after an EOI com
mand has been issued (resetting its ISR bit), another in
terrupt will be generated. This is providing of course, the 
processor INT pin is enabled. Unless repetitious inter
rupt generation is desired, the IR input must be brought 
to an inactive state before an EOI command is issued in 
its service routine. However, it must not go inactive so 
soon that it disobeys the necessary timing require
ments shown in Figure 16. Note that the request on the 
IR input must remain until after the falling edge of the 
first INTA pulse. If on any IR input, the request goes 
inactive before the first INTA pulse, the 8259A will 
respond as if IR7 was active. In any design in which 
there's a possibility of this happening, the IR7 default 
feature can be used as a safeguard. This can be accom
plished by using the IR7 routine as a "clean-up routine” 
which might recheck the 8259A status or merely return 
program execution to its pre-interrupt location.
Depending upon the particular design and application, 
the level triggered mode has a number of uses. For one, 
it provides for repetitious interrupt generation. This is 
useful in cases when a service routine needs to be con
tinually executed until the interrupt request goes inac
tive. Another possible advantage of the level triggered 
mode is it allows for “ wire-OR’ed" interrupt requests. 
That is, a number of interrupt requests using the same 
IR input. This can't be done in the edge triggered mode, 
for if a device makes an interrupt request while the IR in
put is high (from another request), its transition will be 
"shadowed” . Thus the 8259A won't recognize further in
terrupt requests because its IR input is already high. 
Note that when a “ wire-OR'ed" scheme is used, the ac-
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tual requesting device has to be determined by the soft- feature mentioned in the “ level triggered mode” section 
ware in the service routine. also works for the edge triggered mode.
Caution should be taken when using the automatic EOI 
mode and the level triggered mode together. Since in 
the automatic EOI mode an EOI is automatically per
formed at the end of the interrupt acknowledge se
quence, if the processor enables interrupts while an IR 
input is still high, an interrupt will occur immediately. To 
avoid this situation interrupts should be kept disabled 
until the end of the service routine or until the IR input 
returns low.

Edge Triggered Mode
When in the edge triggered mode, the 8259A will only 
recognize interrupts if generated by an inactive (low) to 
active (high) transition on an IR input. The edge trig
gered mode incorporates an edge lockout method of 
operation. This means that after the rising edge of an 
interrupt request and the acknowledgement of the re
quest, the positive level of the IR input won’t generate 
further interrupts on this level. The user needn’t worry 
about quickly removing the request after acknowledge
ment in fear of generating further interrupts as might be 
the case in the level triggered mode. Before another in
terrupt can be generated the IR input must return to the 
inactive state.
Referring back to Figure 16, the timing requirements for 
interrupt triggering is shown. Like the level triggered 
mode, in the edge triggered mode the request on the IR 
input must remain active until after the falling edge of 
the first INTA pulse for that particular interrupt. Unlike 
the level triggered mode, though, after the interrupt 
request is acknowledged its IRR latch is disarmed. Only 
after the IR input goes inactive will the IRR latch again 
become armed, making it ready to receive another inter
rupt request (in the level triggered mode, the IRR latch is 
always armed). Because of the way the edge triggered 
mode functions, it is best to use a positive level with a 
negative pulse to trigger the IR requests. With this type 
of input, the trailing edge of the pulse causes the inter
rupt and the maintained positive level meets the neces
sary timing requirements (remaining high until after the 
interrupt acknowledge occurs). Note that the IR7 default

Depending upon the particular design and application, 
the edge triggered mode has various uses. Because of 
its edge lockout operation, it is best used in those 
applications where repetitious interrupt generation isn't 
desired. It is also very useful in systems where the inter
rupt request is a pulse (this should be in the form of a 
negative pulse to the 8259A). Another possible advan
tage is that it can be used with the automatic EOI mode 
without the cautions in the level triggered mode. Over
all, in most cases, the edge triggered mode simplifies 
operation for the user, since the duration of the interrupt 
request at a positive level is not usually a factor.

3.4 INTERRUPT STATUS
By means of software control, the user can interrogate 
the status of the 8259A. This allows the reading of the 
internal interrupt registers, which may prove useful for 
interrupt control during service routines. It also pro
vides for a modified status poll method of device moni
toring, by using the poll command. This makes the 
status of the internal IR inputs available to the user via 
software control. The poll command offers an alterna
tive to the interrupt vector method, especially for those 
cases when more than 64 interrupts are needed.

Reading Interrupt Registers
The contents of each 8-bit interrupt register, IRR, ISR, 
and IMR, can be read to update the user's program on 
the present status of the 8259A. This can be a versatile 
tool in the decision making process of a service routine, 
giving the user more control over interrupt operations. 
Before delving into the actual process of reading the 
registers, let’s briefly review their general descriptions:
IRR (Interrupt Specifies all interrupt levels re-
Request Register) questing service.
ISR (In-Service Specifies all interrupt levels
Register) which are being serviced.
IMR (Interrupt Specifies all interrupt levels that
Mask Register) are masked.
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To read the contents of the IRR or ISR, the user must 
first issue the appropriate read register command (read 
IRR or read ISR) to the 8259A. Then by applying a RD 
pulse to the 8259A (an INput instruction), the contents 
of the desired register can be acquired. There is no need 
to issue a read register command every time the IRR or 
ISR is to be read. Once a read register command is 
received by the 8259A, it “ remembers" which register 
has been selected. Thus, all that is necessary to read 
the contents of the same register more than once is the 
RD pulse and the correct addressing (A0 = 0, explained 
in “ Programming the 8259A”). Upon initialization, the 
selection of registers defaults to the IRR. Some caution 
should be taken when using the read register command 
in a system that supports several levels of interrupts. If 
the higher priority routine causes an interrupt between 
the read register command and the actual input of the 
register contents, there’s no guarantee that the same 
register will be selected when it returns. Thus it is best 
in such cases to disable interrupts during the operation.
Reading the contents of the IMR is different than read
ing the IRR or ISR. A read register command is not 
necessary when reading the IMR. This is because the 
IMR can be addressed directly for both reading and 
writing. Thus all that the 8259A requires for reading the 
IMR is a M3 pulse and the correct addressing (A0 = 1, 
explained in “ Programming the 8259A").

Poll Command
As mentioned towards the beginning of this application 
note, there are two methods of servicing peripherals: 
status polling and interrupt servicing. For most applica
tions the interrupt service method is best. This is 
because it requires the least amount of CPU time, thus 
increasing system throughput. However, for certain ap
plications, the status poll method may be desirable. 
For this reason, the 8259A supports polling operations 
with the poll command. As opposed to the conventional 
method of polling, the poll command offers improved 
device servicing and increased throughput. Rather than 
having the processor poll each peripheral in order to 
find the actual device requiring service, the processor 
polls the 8259A. This allows the use of all the previously 
mentioned priority modes and commands. Additionally, 
both polled and interrupt methods can be used within 
the same program.
To use the poll command the processor must first have 
its interrupt request pin disabled. Once the pol) com- 
mand is issued, the 8259A will treat the next (CS quali
fied) RD pulse issued to it (an INput instruction) as an in
terrupt acknowledge. It will then set the appropriate bit 
in the ISR, if there was an interrupt request, and enable a 
special word onto the data bus. This word shows 
whether an interrupt request has occurred and the 
highest priority level requesting service. Figure 17 
shows the contents of the “ poll word" which is read by 
the processor. Bits W0-W2 convey the binary code of 
the highest priority level requesting service. Bit I desig
nates whether or not an interrupt request is present. If 
an interrupt request is present, bit I will equal 1. If there 
isn’t an interrupt request at all, bit I will equal 0 and bits 
W0-W2 will be set to ones. Service to the requesting 
device is achieved by software decoding the poll word 
and branching to the appropriate service routine. Each

time the 8259A is to be polled, the poll command must 
be written before reading the poll word.
The poll command is useful in various situations. For in
stance, it's a good alternative when memory is very 
limited, because an interrupt-vector table isn't needed. 
Another use for the poll command is when more than 64 
interrupt levels are needed (64 is the limit when cascad
ing 8259’s). The only limit of interrupts using the poll 
command is the number of 8259’s that can be addressed 
in a particular system. Still another application of the 
poll command might be when the INT or INTA signals 
are not available. This might be the case in a large 
system where a processor on one card needs to use an 
8259A on a different card. In this instance, the poll com
mand is the only way to monitor the interrupt devices 
and still take advantage of the 8259A’s prioritizing 
features. For those cases when the 8259A is using the 
poll command only and not the interrupt method, each 
8259A must receive an initialization sequence (interrupt 
vector). This must be done even though the interrupt 
vector features of the 8259A are not used. In this case, 
the interrupt vector specified in the initialization 
sequence could be a “ fake” .

| I | -  | -  l -  l -  [W2|W1|W0|

l  ̂ .  W0 W 2= BINARY CODE OF HIGHEST
PRIORITY LEVEL REQUESTING SERVICE

---------------------------------------------*■ 1 = 1 IF AN INTERRUPT OCCURRED

F ig u r e  1 7 . P o l l  W o r d

3.5 INTERRUPT CASCADING
As mentioned earlier, more than one 8259A can be used 
to expand the priority interrupt scheme to up to 64 levels 
without additional hardware. This method for expanded 
interrupt capability is called “ cascading” . The 8259A 
supports cascading operations with the cascade mode. 
Additionally, the special fully nested mode and the buf
fered mode are available for increased flexibility when 
cascading 8259A’s in certain applications.

Cascade Mode
When programmed in the cascade mode, basic opera
tion consists of one 8259A acting as a master to the 
others which are serving as slaves. Figure 18 shows a 
system containing a master and two slaves, providing a 
total of 22 interrupt levels.
A specific hardware set-up is required to establish 
operation in the cascade mode. With Figure 18 as a ref
erence,_note that the masteryis_designated by a high on 
the SP/EN pin, while the SP/EN pins of the slaves are 
grounded (this can also be done by software, see buf
fered mode). Additionally, the INT output pin of each 
slave is connected to an IR input pin of the master. The 
CASO-2 pins for all 8259A’s are paralleled. These pins 
act as outputs when the 8259A is a master and as inputs 
for the slaves. Serving as a private 8259A bus, they con
trol which slave has control of the system bus for inter
rupt vectoring operation with the processor. All other 
pins are connected as in normal operation (each 8259A 
receives an INTA pulse).
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Besides hardware set-up requirements, all 8259A’s must 
be software programmed to work in the cascade mode. 
Programming the cascade mode is done during the in
itialization of each 8259A. The 8259A that is selected as 
master must receive specification during its initializa
tion as to which of its IR inputs are connected to a 
slave's INT pin. Each slave 8259A, on the other hand, 
must be designated during its initialization with an ID (0 
through 7) corresponding to which of the master's IR in
puts its INT pin is connected to. This is all necessary so 
the CASO-2 pins of the masters will be able to address 
each individual slave. Note that as in normal operation, 
each 8259A must also be initialized to give its IR inputs 
a unique interrupt vector. More detail on the necessary 
programming of the cascade mode is explained in “ Pro
gramming the 8259A” .

Now, with background information on both hardware 
and software for the cascade mode, let’s go over the 
sequence of events that occur during a valid interrupt 
request from a slave. Suppose a slave IR input has 
received an interrupt request. Assuming this request is 
higher priority than other requests and in-service levels 
on the slave, the slave’s INT pin is driven high. This 
signals the master of the request by causing an inter
rupt request on a designated IR pin of the master. Again, 
assuming that this request to the master is higher priori
ty than other master requests and in-service levels 
(possibly from other slaves), the master's INT pin is 
pulled high, interrupting the processor.

The interrupt acknowledge sequence appears to the 
processor the same as the non-cascading interrupt 
acknowledge sequence; however, it’s different among 
the 8259A’s. The first INTA pulse is used by all the 
8259A's for internal set-up purposes and, if in the 
8080/8085 mode, the master will place the CALL opcode 
on the data bus. The first INTA pulse also signals the 
master to place the requesting slave’s ID code on the 
CAS lines. This turns control over to the slave for the 
rest of the interrupt acknowledge sequence, placing the

appropriate pre-programmed interrupt vector on the 
data bus, completing the interrupt request.
During the interrupt acknowledge sequence, the cor
responding ISR bit of both the master and the slave get 
set. This means two EOI commands must be issued (if 
not in the automatic EOI mode), one for the master and 
one for the slave.
Special consideration should be taken when mixed 
interrupt requests are assigned to a master 8259A; that 
is, when some of the master's IR inputs are used for 
slave interrupt requests and some are used for individ
ual interrupt requests. In this type of structure, the 
master’s IRO must not be used for a slave. This is 
because when an IR input that isn’t initialized as a slave 
receives an interrupt request, the CASO-2 lines won’t be 
activated, thus staying in the default condition address
ing for IRO (slave IRO). If a slave is connected to the 
master's IRO when a non-slave interrupt occurs on 
another master IR input, erroneous conditions may 
result. Thus IRO should be the last choice when assign
ing slaves to IR inputs.

Special Fully Nested Mode
Depending on the application, changes in the nested 
structure of the cascade mode may be desired. This is 
because the nested structure of a slave 8259A differs 
from that of the normal fully nested mode. In the cas
cade mode, if a slave receives a higher priority interrupt 
request than one which is in service (through the same 
slave), it won’t be recognized by the master. This is 
because the master’s ISR bit is set, ignoring all requests 
of equal or lower priority. Thus, in this case, the higher 
priority slave interrupt won’t be serviced until after the 
master’s ISR bit is reset by an EOI command. This is 
most likely after the completion of the lower priority 
routine.
If the user wishes to have a truly fully nested structure 
within a slave 8259A, the special fully nested mode 
should be used. The special fully nested mode is pro
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grammed in the master only. This is done during the 
master's initialization. In this mode the master will 
ignore only those interrupt requests of lower priority 
than the set ISR bit and will respond to all requests of 
equal or higher priority. Thus if a slave receives a higher 
priority request than one in service, it will be recognized. 
To insure proper interrupt operation when using the 
special fully nested mode, the software must determine 
if any other slave interrupts are still in service before 
issuing an EOI command to the master. This is done by 
resetting the appropriate slave ISR bit with an EOI and 
then reading its ISR. If the ISR contains all zeros, there 
aren’t any other interrupts from the slave in service and 
an EOI command can be sent to the master. If the ISR 
isn't all zeros, an EOI command shouldn't be sent to the 
master. Clearing the master's ISR bit with an EOI com
mand while there are still slave interrupts in service 
would allow lower priority interrupts to be recognized at 
the master. An example of this process is shown in the 
second application in the "Applications Examples” sec
tion.

Buffered Mode
The buffered mode is useful in large systems where buf
fering is required on the data bus. Although not limited 
to only 8259A cascading, it’s most pertinent in this use. 
In the buffered mode, whenever the 8259A’s data bus 
output is enabled, its SP/EN pin will go low. This signal 
can be used to enable data transfer through a buffer 
transceiver in the required direction.
Figure 19 shows a conceptual diagram of three 8259A’s 
in cascade, each slave is controlling an individual 8286 
8-bit bidirectional bus driver by means of the buffered 
mode. Note the pull-up on the SP/EN. It is used to 
enable data transfer to the 8259A for its initial program
ming. When data transfer is to go from the 8259A to the 
processor, SP/EN will go low; otherwise, it will be high. 
A question should arise, however, from the fact that the 
SP/EN pin is used to designate a master from a slave;

how can it be used for both master-slave selection and 
buffer control? The answer to this is the provision for 
software programmable master-slave selection when in 
the buffer mode. The buffered mode is selected during 
each 8259A’s initialization. At the same time, the user 
can assign each individual 8259A as a master or slave 
(see “ Programming the 8259A” ).

4. PROGRAMMING THE 8259A
Programming the 8259A is accomplished by using two 
types of command words: Initialization Command 
Words (ICWs) and Operational Command Words 
(OCWs). All the modes and commands explained in the 
previous section, "Operation of the 8259A", are pro
grammable using the ICWs and OCWs (see Appendix A 
for cross reference). The ICWs are issued from the proc
essor in a sequential format and are used to set-up the 
8259A in an initial state of operation. The OCWs are 
issued as needed to vary and control 8259A operation.
Both ICWs and OCWs are sent by the processor to the 
8259A via the data bus (8259A CS = 0, WR = 0). The 
8259A distinguishes between the different ICWs and 
OCWs by the state of its AO pin (controlled by processor 
addressing), the sequence they’re issued in (ICWs only), 
and some dedicated bits among the ICWs and OCWs. 
Those bits which are dedicated are indicated so by fixed 
values (0 or 1) in the corresponding ICW or OCW pro
gramming formats which are covered shortly. Note, 
when issuing either ICWs or OCWs, the interrupt 
request pin of the processor should be disabled.

4.1 INITIALIZATION COMMAND WORDS (ICWs)
Before normal operation can begin, each 8259A in a 
system must be initialized by a sequence of two to four 
programming bytes called ICWs (Initialization Com
mand Words). The ICWs are used to set-up the neces
sary conditions and modes for proper 8259A operation.

F ig u r e  1 9 . C a s c a d e - B u f fe r e d  M o d e  E x a m p le
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Figure 20 shows the initialization flow of the 8259A. 
Both ICW1 and ICW2 must be issued for any form of 
8259A operation. However, ICW3 and ICW4 are used 
only if designated so in ICW1. Determining the neces
sity and use of each ICW is covered shortly in individual 
groupings. Note that, once intialized, if any program
ming changes within the ICWs are to be made, the entire 
ICW sequence must be reprogrammed, not just an indi
vidual ICW.
Certain internal set-up conditions occur automatically 
within the 8259A after the first ICW has been issued. 
These are:
A. Sequencer logic is set to accept the remain ng ICWs 

as designated in ICW1.
B. The ISR (In-Service Register) and I MR (Interrupt Mask 

Register) are both cleared.
C. The special mask mode is reset.
D. The rotate in automatic EOI mode flip-flop is cleared.
E. The IRR (Interrupt Request Register) is selected for 

the read register command.
F. If the IC4 bit equals 0 in ICW1, all functions in ICW4 

are cleared; 8080/8085 mode is selected by default.
G. The fully nested mode is entered with an initial prior

ity assignment of IRO highest through IR7 lowest.
H. The edge sense latch of each IR priority cell is 

cleared, thus requiring a low to high transition to 
generate an interrupt (edge triggered mode effected 
only).

F ig u r e  2 0 . I n i t i a l i z a t io n  F lo w

The ICW programming format, Figure 21, shows bit 
designation and a short definition of each ICW. With the 
ICW format as reference, the functions of each ICW will 
now be explained individually.

ICW1
Aq D, Ds D* D4 Oj D? O, D0

10*2
A0 O , Ds D j 04 D j D j D, D„

IC*V3 (MASTER DEVICEl
0 , Ds D4 Oj  0 ,  O,

ICVK3 (SLAVE DEVICE!
Aj, O, Dj f̂  04 Oj Oj O, Oq

Aq 07 Do Of, D« D 3 D? (>i Oq

SOME OF THE TERMINOLOGY USED MAY DIFFER SLIGHTLY FROM EXISTING 8259A 
DATA SHEETS. THIS IS DONE TO BETTER CLARIFY AND EXPLAIN THE PROGRAM 
MING OF THE 8259A, THE OPERATIONAL RESULTS REMAIN THE SAME.

F ig u r e  2 1 . I n i t i a l i z a t io n  C o m m a n d  W o r d s  ( IC W S )  P r o g r a m m in g  F o r m a t
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ICW1 and ICW2
Issuing ICW1 and ICW2 is the minimum amount of pro
gramming needed for any type of 8259A operation. The 
majority of bits within these two ICWs are used to desig
nate the interrupt vector starting address. The remain
ing bits serve various purposes. Description of the ICW1 
and ICW2 bits is as follows:

I t , | T .| TS | T.~pr7] „ __ UPPER 5 BITS OF 8086/8088
INTERRUPT TYPE (USER PROGRAMMED)

n t’H „ __ REQUESTING IR LEVEL
[AUTOMATICALLY INSERTED BY 82S9A)

| t , | T, | T, | T, T. | T; T: pT~7] - —  COMPLETE 908618080 INTERRUPT TYPE

IC4: The IC4 bit is used to designate to the 8259A
whether or not ICW4 will be issued. If any of 
the ICW4 operations are to be used, ICW4 
must equal 1. If they aren't used, then ICW4 
needn’t be issued and IC4 can equal 0. Note 
that if IC4 = 0, the 8259A will assume operation 
in the MCS-80/85 mode.

SNGL: The SNGL bit is used to designate whether or 
not the 8259A is to be used alone or in the cas
cade mode. If the cascade mode is desired, 
SNGL must equal 0. In doing this, the 8259A 
will accept ICW3 for further cascade mode pro
gramming. If the 8259A is to be used as the 
single 8259A within a system, the SNGL bit 
must equal 1: ICW3 won't be accepted.

ADI: The ADI bit is used to specify the address in
terval for the MCS-80/85 mode. If a 4-byte ad
dress interval is to be used, ADI must equal 1. 
For an 8-byte address interval, ADI must equal
0. The state of ADI is ignored when the 8259A 
is in the MCS-86/88 mode.

LTIM: The LTIM bit is used to select between the two
IR input triggering modes. If LTIM = 1, the level 
triggered mode is selected. If LTIM = 0, the 
edge triggered mode is selected.

A5-A15: The A5-A15 bits are used to select the inter
rupt vector address when in the MCS-80/85 
mode. There are two programming formats 
that can be used to do this. Which one is im
plemented depends upon the selected address 
interval (ADI). If ADI is set for the 4-byte inter
val, then the 8259A will automatically insert 
A0-A4 (A0, A1 = 0 and A2, A3, A4=IR0-7). 
Thus A5-A15 must be user selected by pro
gramming the A5-A15 bits with the desired ad
dress. If ADI is set for the 8-byte interval, then 
A0-A5 are automatically inserted (A0, A1, 
A2 = 0 and A3, A4, A5=IR0-7). This leaves 
A6-A15 to be selected by programming the 
A6-A15 bits with the desired address. The 
state of bit 5 is ignored in the latter format.

T3-T7: The T3-T7 bits are used to select the interrupt 
type when the MCS-86/88 mode is used. The 
programming of T3-T7 selects the upper 5 
bits. The lower 3 bits are automatically in
serted, corresponding to the IR level causing 
the interrupt. The state of bits A5-A10 will be 
ignored when in the MCS-86/88 mode. Estab
lishing the actual memory address of the inter
rupt is shown in Figure 22.

INTERRUPT TYPE /TYPE * 4)
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ICW3
The 8259A will only accept ICW3 if programmed in the 
cascade mode (ICW1, SNGL=0). ICW3 is used for 
specific programming within the cascade mode. Bit 
definition of ICW3 differs depending on whether the 
8259A is a master or a slave. Definition of the ICW3 bits 
is as follows:
SO-7 jf_the^8259A is a master (either when the 
(Master): SP/EN pin is tied high or in the buffered 

mode when M/S= 1 in ICW4), ICW3 bit defi
nition is SO-7, corresponding to “ slave 0-7” . 
These bits are used to establish which IR in
puts have slaves connected to them. A 1 
designates a slave, a 0 no slave. For exam
ple, if a slave was connected to IR3, the S3 
bit should be set to a 1. (SO) should be last 
choice for slave designation.

ID0-ID2 If the 8259A is a slave (either when the SP/EN 
(Slave): pin is low or in the buffered mode when

M/S = 0 in ICW4), ICW3 bit definition is used 
to establish its individual identity. The ID 
code of a particular slave must correspond 
to the number of the masters IR input it is 
connected to. For example, if a slave was 
connected to IR6 of the master, the slaves 
IDO-2 bits should be set to IDO = 0, ID1 = 1, 
and ID2 = 1.

ICW4
The 8259A will only accept ICW4 if it was selected in 
ICW1 (bit IC4=1). Various modes are offered by using 
ICW4. Bit definition of ICW4 is as follows:
pPM: The pPM bit allows for selection of either the

MCS-80/85 or MCS-86/88 mode. If set as a 1 the 
MCS-86/88 mode is selected, if a 0, the 
MCS-80/85 mode is selected.

AEOI: The AEOI bit is used to select the automatic
end of interrupt mode. If AEOI = 1, the 
automatic end of interrupt mode is selected. If 
AEOI = 0, it isn’t selected; thus an EOI com
mand must be used during a service routine. 

M/S: The M/S bit is used in conjunction with the buf
fered mode. If in the buffered mode, M/S 
defines whether the 8259A is a master or a 
slave. When M/S is set to a 1, the 8259A 
operates as the master; when M/S is 0, it 
operates as a slave. If not programmed in the 
buffered mode, the state of the M/S bit is 
ignored.
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BUF: The BUF bit is used to designate operation in
the buffered mode, thus controlling the use of 
the SP/EN pin. If BUF is set_to a_t, the buffered 
mode is programmed and SP/EN is used as a 
transceiver enable output. If BUF is 0, the buf- 
fered mode isn’t programmed and SP/EN is 
used for master/slave selection. Note if ICW4 
isn’t programmed, SP/EN is used for master/ 
slave selection.

SFNM: The SFNM bit designates selection of the 
special fully nested mode which is used in 
conjunction with the cascade mode. Only the 
master should be programmed in the special 
fully nested mode to assure a truly fully nested 
structure among the slave IR inputs. If SFNM 
is set to a 1, the special fully nested mode is 
selected; if SFNM is 0, it is not selected.

4 .2  OPERATIONAL COMMAND WORD (OCWs)
Once initialized by the ICWs, the 8259A will most likely 
be operating in the fully nested mode. At this point, 
operation can be further controlled or modified by the 
use of OCWs (Operation Command Words). Three 
OCWs are available for programming various modes and 
commands. Unlike the ICWs, the OCWs needn't be in 
any type of sequential order. Rather, they are issued by 
the processor as needed within a program.
Figure 23, the OCW programming format, shows the bit 
designation and short definition of each OCW. With the 
OCW format as reference, the functions of each OCW 
will be explained individually.

OCW1
OCW1 is used solely for 8259A masking operations. It 
provides a direct link to the IMR (Interrupt Mask Regis
ter). The processor can write to or read from the IMR via 
OCW1. The OCW1 bit definition is as fqllows:
M0-M7: The M0-M7 bits are used to control the mask

ing of IR inputs. If an M bit is set to a 1, it will 
mask the corresponding IR input. A 0 clears 
the mask, thus enabling the IR input. These 
bits convey the same meaning when being 
read by the processor for status update.

OCW2
OCW2 is used for end of interrupt, automatic rotation, 
and specific rotation operations. Associated commands 
and modes of these operations (with the exception of 
AEOI initialization), are selected using the bits of OCW2 
in a combined fashion. Selection of a command or 
mode should be made with the corresponding table for 
OCW2 in the OCW programming format (Figure 20), 
rather than on a bit by bit basis. However, for com
pleteness of explanation, bit definition of OCW2 is as 
follows:
L0-L2: The L0-L2 bits are used to designate an inter

rupt level (0-7) to be acted upon for the opera
tion selected by the EOI, SL, and R bits of 
OCW2. The level designated will either be 
used to reset a specific ISR bit or to set a 
specific priority. The L0-L2 bits are enabled or 
disabled by the SL bit.

OCW I
A„ D, 06 Os 0, D, D, D, O0

\  D, Ub O, O, O, O, O0

Figure 23. Operational Command Words (OCWs) Programming Format

EOI: The EOI bit is used for all end of interrupt com
mands (not automatic end of interrupt mode). 
If set to a 1, a form of an end of interrupt com
mand will be executed depending on the state 
of the SL and R bits. If EOI is 0, an end of inter
rupt command won’t be executed.

SL: The SL bit is used to select a specific level for
a given operation. If SL is set to a 1, the L0-L2 
bits are enabled. The operation selected by the 
EOI and R bits will be executed on the 
specified interrupt level. If SL is 0, the L0-L2 
bits are disabled.

R: The R bit is used to control all 8259A rotation
operations. If the R bit is set to a 1, a form of 
priority rotation will be executed depending on 
the state of SL and EOI bits. If R is 0, rotation 
won’t be executed.
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0CW3
0CW3 is used to issue various modes and commands to 
the 8259A. There are two main categories of operation 
associated with OCW3: interrupt status and interrupt 
masking. Bit definition of OCW3 is as follows:
RIS: The RIS bit is used to select the ISR or IRR for

the read register command. If RIS is set to 1, 
ISR is selected. If RIS is 0, IRR is selected. The 
state of the RIS is only honored if the RR bit is 
a 1.

RR: The RR bit is used to execute the read register
command. If RR is set to a 1, the read register 
command is issued and the state of RIS deter
mines the register to be read. If RR is 0, the 
read register command isn't issued.

P: The P bit is used to issue the poll command. If
P is set to a 1, the poll command is issued. If it 
is 0, the poll command isn't issued. The poll 
command will override a read register com
mand if set simultaneously.

SMM: The SMM bit is used to set the special mask
mode. If SMM is set to a 1, the special mask 
mode is selected. If it is 0, it is not selected. 
The state of the SMM bit is only honored if it is 
enabled by the ESMM bit.

ESMM: The ESMM bit is used to enable or disable the 
effect of the SMM bit. If ESMM is set to a 1, 
SMM is enabled. If ESMM is 0, SMM is dis
abled. This bit is useful to prevent interference 
of mode and command selections in OCW3.

5. APPLICATION EXAMPLES
In this section, the 8259A is shown in three different ap
plication examples. The first is an actual design imple
mentation supporting an 8080A microprocessor system, 
“ Power Fail/Auto Start with Battery Back-Up RAM” . The 
second is a conceptual example of incorporating more 
than 64 interrupt levels in an 8080A or 8085A system, 
“ 78 Level Interrupt System” . The third application is a 
conceptual design using an 8086 system, “Timer Con
trolled Interrupts” . Although specific microprocessor 
systems are used in each example, these applications 
can be applied to either MCS-80, MCS-85, MCS-86, or 
MCS-88 systems, providing the necessary hardware and 
software changes are made. Overall, these applications 
should serve as a useful guide, illustrating the various 
procedures in using the 8259A.

5.1 POWER FAIL/AUTO START WITH BATTERY 
BACK-UP RAM

The first application illustrates the 8259A used in an 
8080A system, supporting a battery back-up scheme for 
the RAM (Random Access Memory) in a microcomputer 
system. Such a scheme is important in numerical and 
process control applications. The entire microcomputer 
system could be supported by a battery back-up 
scheme, however, due to the large amount of current 
usually required and the fact that most machinery is not 
supported by an auxiliary power source, only the state 
of calculations and variables usually need to be saved. 
In the event of a loss of power, if these items are not 
already stored in RAM, they can be transferred there and 
saved using a simple battery back-up system.

The vehicle used in this application is the Intel5 
SBC-80/20 Single Board Computer. An 8259A is used in 
the SBC-80/20 along with control lines helpful in imple
menting the power-down and automatic restart se
quence used in a battery back-up system. The SBC-80/20 
also contains user-selectable jumpers which allow the 
on-board RAM to be powered by a supply separate from 
the supply used for the non-RAM components. Also, the 
output of an undedicated latch is available to be con
nected to the IR inputs of the 8259A (the latch is cleared 
via an output port). In addition, an undedicated, buffered 
input line is provided, along with an input to the RAM 
decoder that will protect memory when asserted.

The additional circuitry to be described was con
structed on an SBC-905 prototyping board. An SBC-635 
power supply was used to power the non-RAM section 
of the SBC-80/20 while an external DC supply was used 
to simulate the back-up battery supplying power to the 
RAM. The SBC-635 was used since it provides an open 
collector ACLO output which indicates that the AC 
input line voltage is below 103/206 VAC (RMS).

The following is an example of a power-down and restart 
sequence that introduces the various power fail signals.

1. An AC power failure occurs and the ACLO goes high 
(ACLO is pulled up by the battery supply). This indi
cates that DC power will be reliable for at most 7.5 
ms. The power fail circutry generates a Power^Fail In
terrupt (PFI) signal. This signal sets the PFI latch, 
which is connected to the IR0 input of the 8259A, and 
sets the Power Fail Sense (PFS) latch. The state of 
this latch will indicate to the processor, upon reset, 
whether it is coming up from a power failure (warm 
start) or if it is coming up initially (cold start).

2. The processor is interrupted by the 8259A when the 
PFI latch is set. This pushes the pre-power-down pro
gram counter onto the stack and calls the service 
routine for the IR0 input. The IR0 service routine 
saves the processor status and any other needed 
variables. The routine should end with a HALT 
instruction to minimize bus transitions.

3. After a predetermined length of time (5 ms in this ex
ample) the power fail circuitry generates a Memory 
Protect (MPRO) signal. All processing for the power 
failure (including the interrupt response delays) must 
be completed within this 5 ms window. The MPRO 
signal ensures that spurious transitions on the sys
tem control bus caused by power going down do not 
alter the contents of the RAM.

4. DC power goes down.
5. AC power returns. The power-on reset circuitry on the 

SBC-80/20 generates a system RESET.
6. The processor reads the state of the PFS line to 

determine the appropriate start-up sequence. The 
PFS latch is cleared, the MPRO signal is removed, 
and the PFI latch driving IR0 is cleared by the Power 
Fail Sense Reset (PFSR) signal. The system then con
tinues from the pre-power-down location for a warm 
start by restoring the processor status and popping 
the pre-power-down program counter off the stack.

Figure 24 illustrates this timing.
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POWER DOWN RESTART

/  V

POWER FAIL 
ROUTINE

POWER UP 
ROUTINE

Figure 24. Power Down Restart Timing

Figure 25 shows the block diagram for the system. 
Notice that the RAM, the RAM decoder, and the power
down circuitry are powered by the battery supply.
The schematic of the power-down circuitry and the 
SBC-80/20 interface is shown in Figure 26. The design is 
very straightforward and uses CMOS logic to minimize 
the battery current requirements. The cold start switch 
is necessary to ensure that during a cold start, the PFS 
line is indicating "cold start” sense (PFS high). Thus, for

a cold start, the cold start switch is depressed during 
power on. After that, no further action is needed. Notice 
that the PFI signal sets the on-board PFI latch. The out
put of this latch drives the 8259A IRO input. This latch is 
cleared during the restart routine by executing an OUT- 
put D4H instruction. The state of the PFS line may be 
read on the least significant data bus line (DBO) by exe
cuting an INput D4H instruction. An 8255 port (8255 #1, 
port C, bit 0) is used to control the PFSR line.

B A T T E R Y  S U P P LY

C O N T R O L  BUS 

D A T A  BUS 

AD D R E S S  BUS

Figure 25. Block Diagram of SBC 80/20 with Power Down Circuit
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Figure 26. Power Down Circuit - SBC 80/20 Interlace

The fully nested mode for the 8259A is used in its initial 
state to ensure the IRO always has the highest priority. 
The remaining IR inputs can be used for any other pur
pose in the system. The only constraint is that the ser
vice routines must enable interrupts as early as possi
ble. Obviously, this is to ensure that the power-down in
terrupt does not have to wait for service. If a rotating 
priority scheme is desired, another 8259A could be 
added as a slave and be programmed to operate in a 
rotating mode. The master would remain in the initial 
state of the fully nested mode so that the IRO still re
mains the highest priority input.
The software to support the power-down circuitry is 
shown in Figure 27. The flow for each label will be 
discussed.

After any system reset, the processor starts execution 
at location 0000H (START). The PFS status is read and 
execution is transferred to CSTART if PFS indicates a 
cold start (i.e., someone is depressing the cold start 
switch) or WSTART if a warm start is Indicated (PFS 
LOW). CSTART is the start of the user’s program. The 
Stack Pointers (SP) and device initialization were in
cluded just to remind the reader that these must occur. 
The first El instruction must appear after the 8259A has 
received its initialization sequence. The 8259A (and 
other devices) are initialized in the INIT subroutine.
When a power failure occurs, execution is vectored by 
the 8259A to REGSAV by way of the jump table at 
JSTART. The pre-power-down program counter is placed 
on the stack. REGSAV saves the processor registers 
and flags in the usual manner by pushing them onto the 
stack. Other items, such as output port status, program

mable peripheral states, etc., are pushed onto the stack 
at this time. The Stack Pointer (SP) could be pushed on
to the stack by way of the register pair HL but the top of 
the stack can exist anywhere in memory and there is no 
way then of knowing where that is when in the power-up 
routine. Thus, the SP is saved at a dedicated location in 
RAM. It isn’t really necessary to send an EOI command 
to the 8259A in REGSAV since power will be removed 
from the 8259A, but one is included for completeness. 
The final instruction before actually losing power is a 
HALT. This minimizes somewhat spurious transitions 
on the various busses and lets the processor die 
gracefully.

On reset, when a warm start is detected, execution is 
transferred to WSTART. WSTART activates PFSR by 
way of the 8255 (all outputs go low then the 8255 is ini
tialized). In the power-down circuitry, PFSR clears the 
PFS latch and removes the MPRO signal which then 
allows access to the RAM. WSTART also clears the PFI 
latch which arms the 8259A IRO input. Then the 8259A is 
re-initialized along with any other devices. The SP is 
retrieved from RAM and the processor registers and 
flags are restored by popping them off the stack. Inter
rupts are then enabled. Now the power-down program 
counter is on top of the stack, so executing a RETurn in
struction transfers the processor to exactly where it left 
off before the power failure.
Aside from illustrating the usefulness of the 8259A (and 
the SBC-80/20) in implementing a power failure pro
tected microcomputer system, this application should 
also point out a way of preserving the processor status 
when using interrupts.
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Figure 27. Power Down and Restart Software

5.2 78 LEVEL INTERRUPT SYSTEM
The second application illustrates an interrupt structure 
with greater than 64 levels for an 8080A or 8085A sys
tem. In the cascade mode, the 8259A supports up to 64 
levels with direct vectoring to the service routine. Ex
tending the structure to greater than 64 levels requires 
polling, using the poll command. A 78 level interrupt 
structure is used as an illustration; however, the prin
ciples apply to systems with up to 512 levels.
To implement the 78 level structure, 3 tiers of 8259A's 
are used. Nine 8259A’s are cascaded in the master-slave 
scheme, giving 64 levels at tier 2. Two additional 
8259A’s are connected, by way of the I NT outputs, to 
two of the 64 inputs. The 16 inputs at tier 3, combined 
with the 62 remaining tier 2 inputs, give 78 total levels. 
The fully nested structure is preserved over all levels, 
although direct vectoring is supplied for only the tier 2 
inputs. Software is required to vector any tier 3 re
quests. Figure 28 shows the tiered structure used in this 
example. Notice that the tier 3 8259A’s are connected to 
the bottom level slave (SA7). The master-slaves are inter
connected as shown in “ Interrupt Cascading” , while the 
tier 3 8259A’s are connected as “ masters” ; that is, the 
SP/EN pins are pulled high and the CAS pins are left un
connected. Since these 8259A’s are only going to be 
used with the poll command, no INTA is required, there
fore the INTA pins are pulled high. Figure 28. 78 Level Interrupt Structure
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The concept used to implement the 78 levels is to LOCATION 8259 CODE

directly vector to all tier 2 input service routines. If a tier 
2 input contains a tier 3 8259A, the service routine for

1000 H SA0 JMP SAOO

that input will poll the tier 3 8259A and branch to the tier 101C H JMP SA07

3 input service routine based on the poll word read after 
the poll command. Figure 29 shows how the jump table

1020 H SA1 JMP SA10

is organized assuming a starting location of 1000H and 
contiguous tables for all the tier 2 8259A’s. Note that 
“ SA35" denotes the IR5 input of the slave connected to

103C H JMP SA17

the master IR3 input. Also note that for the normal tier 2 
inputs, the jump table vectors the processor directly to

10E0 H SA7 JMP SA70

the service routine for that input, while for the tier 2 in 10F8 H 
10FC H

JMP
JMP

SBO
SB1puts with 8259A’s connected to their IR inputs, the proc

essor is vectored to a service routine (i.e., SBO) which
1200 H SBO JMP SBOO

will poll to determine the actual tier 3 input requesting 121C H JMP SB07
service. The polling routine utilizes the jump table start
ing at 1200H to vector the processor to the correct tier 3

1220 H SB1 JMP SB10

service routine. 123C H JMP SB17

COMMENTS

SAOO SERVICE ROUTINE

; SA07 SERVICE ROUTINE 

SA10 SERVICE ROUTINE

S A 17 SERVICE ROUTINE 

S A 20 -S A 6 7  SERVICE ROUTINES 

, SA70 SERVICE ROUTINE

. SBO POLL ROUTINE 

. S81 POLL ROUTINE 

. SBOO SERVICE ROUTINE

. SB07 SERVICE ROUTINE 

. SB10 SERVICE ROUTINE

: SB17 SERVICE ROUTINE

Each 8259A must receive an initialization sequence 
regardless of the mode. Since the tier 1 and 2 8259A’s 
are in cascade and the special fully nested mode is used 
(covered shortly), all ICWs are required. The tier 3 
8259A's don’t require ICW3 or ICW4 since only polling 
will be used on them and they are connected as masters 
not in the cascade mode. The initialization sequence for 
each tier is shown in Figure 30. Notice that the master is 
initialized with a “ dummy” jump table starting at 00H 
since all vectoring is done by the slaves. The tier 3 
devices also receive “ dummy” tables since only polling 
is used on tier 3.

As explained in “ Interrupt Cascading", to preserve a 
truly fully nested mode within a slave, the master 8259A 
should be programmed in the special fully nested mode. 
This allows the master to acknowledge all interrupts at 
and above the level in service disregarding only those of 
lower priority. The special fully nested mode is pro
grammed in the master only, so it only affects the im
mediate slaves (tier 2 not tier 3). To implement a fully 
nested structure among tier 3 slaves some special 
housekeeping software is required in all the tier-2-with- 
tier-3-slave routines. The software should simply save 
the state of the tier 2 IMR, mask all the lower tier 2 inter
rupts, then issue a specific EOI, resetting the ISR of the 
tier 2 interrupt level. On completion of the routine the 
IMR is restored.

Figure 31 shows an example flow and program for any 
tier 2 service routine without a tier 3 8259A. Figure 32 
shows an example flow and program for any tier 2 ser
vice routine with a tier 3 8259A. Notice the reading of the 
ISR in both examples; this is done to determine whether 
or not to issue an EOI command to the master (refer to 
the section on “ Special Fully Nested Mode” for further 
details).

Figure 29. Jum p Table Organization

IN ITIALIZATION SEQUENCE FOR 78 LEVEL INTERRUPT STRUCTURE 

INITIALIZE MASTER

MINT: MVI A,15H ICWI, LTM =  0, ADI =  1, S =  0, IC 4= 1
OUT MPTA MASTER PORT A0 =  0
MVI A.00H ICW2, DUMMY ADDRESS
OUT MPTB MASTER PORT A 0= 1
MVI A.0FFH ICW3, S7-S0 =  1
OUT MPTB MASTER PORT A0 =  1
MVI A.I0H ICW4, SFNM =  1
OUT MPTB MASTER PORT A0 =  1

INITIALIZE SA SLAVES -  X DENOTES SLAVE ID (SEE KEY)

SAXINT: MVI A,'> SEE KEY FOR ICW1. LTM =  0. ADI =  1,
OUT SAXPTA SA“X” PORT A0 =  0
MVI A. 10H ICW2, ADDRESS MSB
OUT SAXPTB SA"X” PORT A0 =  1
MVI A0XH ICW3, SA ID
OUT SAXPTB SA "X" PORT A0 =  1
MVI A10H ICW4, SFNM =  1
OUT SAXPTB SA-X" PORT A0 =  1

REPEAT ABOVE FOR EACH SA SLAVE

INITIALIZE SB SLAVES -  X DENOTES 0 or 1 (DO SBO, REPEAT FOR SB1

SBXINT MVI A.I6H IC W I. LTM = 0. ADI =  1, S =  1, IC4 =  0
OUT SBXPTA SB"X" PORT A0 =  0
MVI A,00H ICW2, DUMMY ADDRESS
OUT SBXPTB SB“ X" PORT A0 =  1

SA INITIALIZATION KEY

S A ‘X" a (ICW1) JUMP TABLE START (H)
0 15 1000
1 35 1020
2 55 1040
3 75 1060
4 95 1080
5 B5 10A0
5 D5 10C0
7 F5 10E0

Figure 30. Initialization Sequence for 78 Level Interrupt Structure

*
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SA“X" ROUTINE -  GEN ERA L INTERRUPT SERVICE ROUTINE 
FOR TIER 2 INTERRUPTS WITHOUT TIER 3 8259A

SAX: PUSH D : SAVE DE
PUSH B ; SAVE BC
PUSH H : SAVE HL
PUSH PSW : SAVE A. FLA GS
El : EN ABLE INTERRUPTS

SE R VIC E  ROUTINE G O ES HERE

Dl
MVI 20h
OUT SAXPTA
MUI A.OBh

OUT SAXPTA
IN SAXPTA
ANI OFFh
JZN SAXRSR
MVI A.0Bh
OUT MASPTA

SAXRSR: POP PSW
POP H
POP B
POP 0
El 
RET

DISABLE IN TERRUPTS
OCW2. NON S P E C IF IC  EOI
SA "X” PORT AO = 0
OCW3. READ REGISTER. ISR
S A 'X "  PORT AO =  0
SA"X" PORT AO =  0. SA"X" ISR
TEST FOR ZERO
IF NOT ZERO. RESTORE STATUS 
OCW2, NON SP E C IFIC  EOI 
MASTER PORT A0 =  0 
RESTORE A. FLA GS 
RESTORE HL 
RESTORE BC 
RESTORE DE 
ENABLE IN TERRUPTS 
RETURN

Figure 31. Example Service Routine for Tier 2 Interrupt (SA“ X” ) w ithout T ier 3 8259A (SB“X ”)

MOV
MVI

PUSH D 
PUSH B 
PUSH H 
PUSH PSW

SAXPTB  
D.A 
A.XXh 
SAXPTB  

MVI A.6X h
OUT SAXPTA
LXI H,1200h
MVI B.00h
MVI A,0Ch
OUT SBXPTA
IN SBXPTA
ANI 07m
ADD A
ADD A
MOV C.A
DAD B

SA VE DE 
SA VE BC 
SA VE HL 
SA VE A. FLA GS 
READ SA "X” IMR 
SAVE
MASK S A -X "  LOWER IR 
S A -X ” PORT AO =  1 
OCW 2 SP E C IFIC  EOI S A X '  
S A -X "  PORT AO = 1 
JUMP TABLE START 
CLEAR B
OCW3. POLL COMMAND 
SB"X" PORT AO =  0 
GET POLL WORD 
LIMIT TO 3 BITS 
G ET TABLE O FFSET

O FFS ET  TO C
HL HAS TABLE ADDRESS
ENABLE INTERRUPTS

S B -X -R E T  ROUTINE -  FOR EOI AND MASK RESTORE 
AFTER S B -X "  ROUTINE

SBXRET Dl
MVI A,20h
OUT SBXPTA
MVI A.0Bh
OUT SAXPTA
IN SBXPTA
ANI 0FFh
JN Z SBXRSR
MVI A.20h
OUT MASPTA

SBXRSR: MOV A.D
OUT SAXPTB
POP PSW
POP H
POP B
POP D
El
RET

DISA BLE IN TERRUPTS 
OCW2, NON SP E C IF IC  EOI 
S A -X "  PORT AO =  0 
OCW3, READ REGISTER ISR 
SA"X" PORT AO =  0 
SA"X" PORT A0 =  0, ISR 
T EST FOR ZERO 
IF *  0 RESTORE IMR 
OCW 2. N ON -SPECIFIC EOI 
MASTER PORT A0 =  0 
RESTORE S A X '  IMR 
S A -X "  PORT AO =  1 
RESTORE A, FLA GS 
RESTORE HL 
RESTORE BC 
RESTORE BC 
RESTORE DE 
RETURN

Figure 32. Example Service Routine for T ier 2 Interrupt (SA“X ”) with T ier 3 8259A (SB“ X”)
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5.3 TIMER CONTROLLED INTERRUPTS
In a large number of controller type microprocessor 
designs, certain timing requirements must be imple
mented throughout program execution. Such time 
dependent applications include control of keyboards, 
displays, CRTs, printers, and various facets of industrial 
control. These examples, however, are just a few of 
many designs which require device servicing at specific 
rates or generation of time delays. Trying to maintain 
these timing requirements by processor control alone 
can be costly in throughput and software complexity. 
So, what can be done to alleviate this problem? The 
answer, use the 8259A Programmable Interrupt Con
troller and external timing to interrupt the processor for 
time dependent device servicing.
This application example uses the 8259A for timer con
trolled interrupts in an 8086 system. External timing is 
done by two 8253 Programmable Interval Timers. Figure 
33 shows a block diagram of the timer controlled inter
rupt circuitry which was built on the breadboard area of 
an SDK-86 (system design kit). Besides the 8259A and 
the 8253's, the necessary I/O decoding is also shown. 
The timer controlled interrupt circuitry interfaces with 
the SDK-86 which serves as the vehicle of operation for 
this design.
A short overview of how this application operates is as 
follows. The 8253’s are programmed to generate inter
rupt requests at specific rates to a number of the 8259A 
IR inputs. The 8259A processes these requests by inter
rupting the 8086 and vectoring program execution to the 
appropriate service routine. In this example, the 
routines use the SDK-86 display panel to display the 
number of the interrupt level being serviced. These 
routines are merely for demonstration purposes to show 
the necessary procedures to establish the user's own 
routines in a timer controlled interrupt scheme.
Let's go over the operation starting with the actual inter
rupt timing generation which is done by two 8253 Pro
grammable Interval Timers (8253 #1 and 8253 #2). Each 
8253 provides three individual 16-bit counters (counters

0-2) which are software programmable by the proc
essor. Each counter has a clock input (CLK), gate input 
(GATE), and an output (OUT). The output signal is based 
on divisions of the clock input signal. Just how or when 
the output occurs is determined by one of the 8253’s six 
programmable modes, a programmable 16-bit count, 
and the state of the gate input.

Figure 34 shows the 8253 timing configuration used for 
generating interrupts to the 8259A. The SDK-86's PCLK 
(peripheral clock) signal provides a 400 ns period clock 
to CLK0 of 8253 #1. Counter 0 is used in mode 3 (square 
wave rate generator), and acts as a prescaler to provide 
the clock inputs of the other counters with a 10 ms 
period square wave. This 10 ms clock period made it 
easy to calculate exact timings for the other counters. 
Counter 2 of the 8253 #1 is used in mode 2 (rate gener
ator), it is programmed to output a 10 ms pulse for every 
200 pulses it receives (every 2 sec). The output of 
counter 2 causes an interrupt on IR1 of the 8259A. All 
the 8253 #2 counters are used in mode 5 (hardware trig
gered strobe) in which the gate input initiates counter 
operations. In this case the output of 8253 #1 counter 2 
controls the gate of each 8253 #2 counter. When one of 
the 8253 #2 counters receive the 8253 #1 counter 2 out
put pulse on its gate, it will output a pulse (10 ms in 
duration) after a certain preprogrammed number of 
clock pulses have occurred. The programmed number of 
clock pulses for the 8253 #2 counters is as follows. 50 
pulses (0.5 sec) for counter 0, 100 pulses (1 sec) for 
counter 1, and 150 pulses (1.5 sec) for counter 2. The 
outputs of these counters cause interrupt requests on 
IR2 through IR4 of the 8259A. Counter 1 of 8253 #1 is 
used in mode 0 (interrupt on terminal count). Unlike the 
other modes used which initialize operation auto
matically or by gate triggering, mode 0 allows software 
controlled counter initialization. When counter 1 of 8253 
#1 is set during program execution, it will count 25 
clocks (250 ms) and then pull its output high, causing an 
interrupt request on IR0 of the 8259A. Figure 35 shows 
the timing generated by the 8253's which cause inter
rupt request on the 8259A IR inputs.

Figure 33. Timer Contro lled Interrupt C ircuit on SDK 86 Breadboard Area
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Figure 34. 8253 T im ing C onfigura tion  fo r T im er Contro lled  Interrupts

8253 #1 
COUNTER 1 IRQ

8253 #1 ' ^ “ l r
COUNTER 2 U U II

8253 #2 ' '  I I  II IICOUNTER 0 LI U u

8253 »2 '  ' H -------------------------------------------------- 1|------------------------- "
COUNTER 1 U u  u

8253 #2 ' ' ' I! I I  II "COUNTER 2 U

___ l___ I___ I___ I___ I___ I___ I------1------1------1------1------L

u  u

_ l___ I___ I___ I___ I___ I___ I___ I___ I___ I___ I___ I___ I

IR1

IR2

IR3

IR4

250 ms PER DIVISION
(EACH SMALL PULSE IS 10 ms IN DURATION)

Figure 35. 8259A IR Input S ignal From 8253S

There are basically two methods of timing generation 
that can be used in a timer controlled interrupt struc
ture: dependent timing and independent timing. Depen
dent timing uses a single timing occurrence as a refer
ence to base other timing occurrences on. On the other 
hand, independent timing has no mutual reference be
tween occurrences. Industrial controller type applica
tions are more apt to use dependent timing, whereas in
dependent timing is prone to individual device control.

Although this application uses primarily dependent tim
ing, independent timing is also incorporated as an 
example. The use of dependent timing can be seen back 
in Figure 34, where timing for IR2 through IR4 uses the 
IR1 pulse as reference. Each one of the 8253 #2 counters 
will generate an interrupt request a specific amount of 
times after the IR1 interrupt request occurs. When using 
the dependent method, as in this case, the IR2 through 
IR4 requests must occur before the next IR1 request. 
Independent timing is used to control the IRO interrupt 
request. Note that its timing isn’t controlled by any of 
the other IR requests. In this timer controlled interrupt 
configuration the dependent timing is initially set to be 
self running and the independent timing is software 
initialized. However, both methods can work either way 
by using the various 8253 modes to generate the same 
interrupt timing.

The 8259A processes the interrupts generated by the 
8253’s according to how it is programmed. In this appli
cation it is programmed to operate in the edge triggered 
mode, MCS-86/88 mode, and automatic EOI mode. In the 
edge triggered mode an interrupt request on an 8259A

IR input becomes active on the rising edge. With this in 
mind, Figure 35 shows that IRO will generate an inter
rupt every half second and IR1 through IR4 will each 
generate.an interrupt every 2 seconds spaced apart at 
half second intervals. Interrupt vectoring in the 
MCS-86/88 mode is programmed so IRO, when activated, 
will select interrupt type 72. This means IR1 will select 
interrupt type 73, IR2 interrupt type 74, and so on 
through IR4. Since IR5 through IR7 aren’t used, they are 
masked off. This prevents the possibility of any acci
dental interrupts and rids the necessity to tie the 
unused IR inputs to a steady level. Figure 36 shows the 
8259A IR levels (IR0-IR4) with their corresponding inter
rupt type in the 8086 interrupt-vector table. Type 77 in 
the table is selected by a software “ INT" instruction 
during program execution. Each type is programmed 
with the necessary code segment and instruction 
pointer values for vectoring to the appropriate service 
routine. Since the 8259A is programmed in the auto
matic EOI Mode, it doesn't require an EOI command to 
designate the completion of the service routine.

SOFTWARE INT 
R4 |

IR3
IR2 ! 8259A
IR1
IRO |

Figure 36. In te rrup t “ Type" Designation
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As mentioned earlier, the interrupt service routines in 
this application are used merely to demonstrate the 
timer controlled interrupt scheme, not to implement a 
particular design. Thus a service routine simply displays 
the number of its interrupting level on the SDK-86 dis
play panel. The display panel is controlled by the 8279 
Keyboard and Display Controller. It is initialized to 
display “ Ir" in its two left-most digits during the entire 
display sequence. When an interrupt from IR1 through 
IR4 occurs the corresponding routine will display its IR 
number via the 8279. During each IR1 through IR4 serv
ice routine a software "INT77" instruction is executed. 
This instruction vectors program execution to the serv
ice routine designated by type 77, which sets the 8253 
counter controlling IRO so it will cause an interrupt in 
250 ms. When the IRO interrupt occurs its routine will 
turn off the digit displayed by the IR1 through IR4 
routines. Thus each IR level (IR1-IR4) will be displayed 
for 250 ms followed by a 250 ms off time caused by IRO. 
Figure 37 shows the entire display sequence of the 
timer controlled interrupt application.

n n

IR1

IRO

IR 2

IRO

IR3

IRO

IR4

IRO

Figure 37. SDK D isplay Sequence for Timer Contro lled Interrupts 
Program (Each D isplay B lock Shown is 250 msec 
in Duration)

Now that we've covered the operation, let's move on to 
the program flow and structure of the timer controlled 
interrupt program. The program flow is made up of an 
initialization section and six interrupt service routines. 
The initialization program flow is shown in Figure 38. It 
starts by initializing some of the 8086’s registers for pro
gram operation; this includes the extra segment, data 
segment, stack segment, and stack pointer. Next, by 
using the extra segement as reference, interrupt types 
72 through 77 are set to vector interrupts to the appro
priate routines. This is done by moving the code seg
ment and instruction pointer values of each service 
routine into the corresponding type location. The 8253 
counters are then programmed with the proper mode 
and count to provide the interrupt timing mentioned 
earlier. All counters with the exception of the 8253 #1, 
counter 1 are fully initialized at this point and will start 
counting. Counter 1 of 8253 #1 starts counting when its 
counter is loaded during the “ INTR77" service routine, 
which will be covered shortly. Next, the 8259A is issued 
ICW1, ICW2, ICW4, and OCW1. The ICWs program the

8259A for the edge triggered mode, automatic EOI 
mode, and the proper interrupt vectoring (IRO, type 72). 
OCW1 is used to mask off the unused IR inputs 
(IR5-IR7). The 8279 is then set to display "IR” on its two 
left-most digits. After that the 8086 enables interrupts 
and a "dummy" main program is executed to wait for in
terrupt requests.

Figure 38. Initialization Program Flow  for Timer Contro lled Interrupts

There are six different interrupt service routines used in 
the program. Five of these routines, “ INTR72" through 
“ INTR76” , are vectored to via the 8259A. Figure 39A-C 
shows the program flow for all six service routines. Note 
that “ INTR73” through "INTR76” (IR1-IR4) basically use 
the same flow. These four similar routines display the 
number of its interrupting IR level on the SDK-86 display 
panel. The “ INTR77” routine is vectored to by software 
during each of the previously mentioned routines and 
sets up interrupt timing to cause the “ INTR72" (IRO) 
routine to be executed. The “ INTR72” routine turns off 
the number on the SDK-86 display panel.

A . IN T E R R U P T  ON 
8259A  IRO

B. IN T E R R U P T  ON 
B259A  IR 1 -IR 4

C . S O F T W A R E  IN V O K E D  
IN T E R R U P T

Figure 39. A -C . Interrupts Service Routine F low  for 
Timer Contro lled Interrupts.
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To best explain how these service routines work, let's 
assume an interrupt occurred on IR1 of the 8259A. The 
associated service routine for IR1 is "INTR73". Entering 
"INTR73” , the first thing done is saving the pre-interrupt 
program status. This isn't really necessary in this pro
gram since a "dummy" main program is being executed; 
however, it is done as an example to show the operation. 
Rather than having code for saving the registers in each 
separate routine, a mutual call routine, "SAVE", is used. 
This routine will save the register status by pushing it 
on the stack. The next portion of “ INTR73" will display 
the number of its IR level, "1” , in the first digit of the 
SDK-86 display panel. After that, a software INT instruc
tion is executed to vector program execution to the 
"INTR77” service routine. The "INTR77" service routine 
simply sets the 8253 #1 counter 1 to cause an interrupt 
on IRO in 250 ms and then returns to "INTR73” . Once 
back in “ INTR73", the pre-interrupt status is restored by 
a call routine, “ RESTORE” . It does the opposite of 
“ SAVE", returning the register status by popping it off 
the stack. The “ INTR73" routine then returns to the 
"dummy ” main program. The flow for the “ INTR74" 
through "INTR76” routines are the same except for the 
digit location and the IR level displayed.

After 250 ms have elapsed, counter 1 of 8253 #1 makes 
an interrupt request on IRO of the 8259A. This causes 
the "INTR72" service routine to be executed. Since this 
routine interrupts the main program, it also uses the 
"SAVE" routine to save pre-interrupt program status. It 
then turns off the digit displaying the IR level. In the 
case of the “ INTR73" routine, the “ 1" is blanked out. 
The pre-interrupt status is then restored using the 
“ RESTORE” routine and program execution returns to 
the “ dummy” main program.
The complete program for the timer controlled inter
rupts application is shown in Appendix B. The program 
was executed in SDK-86 RAM starting at location 0500H 
(code segment = 0050, instruction pointer=0).

CONCLUSION
This application note has explained the 8259A in detail 
and gives three applications illustrating the use of some 
of the numerous programmable features available. It 
should be evident from these discussions that the 
8259A is an extremely flexible and easily programmable 
member of the Intel® MCS-80, MCS-85, MCS-86, and 
MCS-88 families.
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This table is provided merely for reference information between the "Operation of the 8259A” and “ Programming the 
8259A" sections of this application note. It shouldn't be used as a programming reference guide (see “ Programming 
the 8259A").

Operational
Description

Command
Words Bits

MCS-80/85™ Mode ICW1, ICW4* IC4, mPM*
Address Interval for MCS-80/85 Mode ICW1 ADI
Interrupt Vector Address for MCS-80/85 Mode ICW1, ICW2 A5-A15
MCS-86/88 Mode ICW1, ICW4 IC4, (iPM
Interrupt Vector Byte for MCS-86/88 Mode ICW2 T3-T7
Fully Nested Mode OCW-Default —
Non-Specific EOI Command OCW2 EOI
Specific EOI Command OCW2 SEOI, EOI, 

LO-L2
Automatic EOI Mode ICW1, ICW4 IC4, AEOI
Rotate On Non-Specific EOI Command OCW2 EOI
Rotate In Automatic EOI Mode OCW2 R, SEOI, EOI
Set Priority Command OCW2 L0-L2
Rotate on Specific EOI Command OCW2 R, SEOI, EOI
Interrupt Mask Register OCW1 M0-M7
Special Mask Mode OCW3 E3MM-SMM
Level Triggered Mode ICW1 LTIM
Edge Triggered Mode ICW1 LTIM
Read Register Command, IRR OCW3 ERIS, RIS
Read Register Command, ISR OCW3 ERIS, RIS
Read IMR OCW1 M0-M7
Poll Command OCW3 P
Cascade Mode ICW1, ICW3 SNGL, SO-7, 

IDO-2
Special Fully Nested Mode ICW1, ICW4 IC4, SFNM
Buffered Mode ICW1, ICW4 IC4, BUF, 

M/S
‘ Only needed if ICW4 is used fo r purposes o ther than i<P mode set.
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MCS-86 ASSEMBLER TCI59H

ISIS-II MCS-8C ASSEMBLER Vi B ASSEMBLY OF MODULE TCI590 
OBJECT MODULE PLACED IN FI ICI59A OBJ
ASSEMBLER INVOKED BV Fi 051156 FI TCI590. SRC

LOG OBJ LINE SOURCE

1
2
3
4
j
r

.********=m#++****** TIMER
;

CONTROLLED INTERRUPTS ******************

EX100 SEGMENT DECLARATIONS

—

8
9

EXTE0 StuMENi

0120 ORG 120H
0120 0401 10 TP72IP DU I NT R 72 , TYPE 72 INSTRUCTION POINTER
0122 ???? 11 TP72CS DW -> , TYPE 72 CODE SEGMENT
0124 1801 12 TP73IP DU INTP73 ; TYPE 73 INSTRUCTION POINTER
0128 •■'•:••■ 13 TP73CS DU v ; TYPE 73 CODE SEGMENT
0128 3801 14 TP74IP DW INTP74 ■ TYPE 74 INSTRUCTION POINTER
012H ••••■'• 15 TP74CS DU , TYPE 74 CODE SEGMENT
0120 4801 18 IP75IP DU 1NTR75 ■ TYPE 75 INSTRUCTION POINTER
012E 17 TP75CS DW •-) . TYPE 75 CODE SEGMENT
0130 8001 18 TP76IP DW INTR76 TYPE 76 INSTRUCTION POINTER
0132 ???R 19 TP76CS DW ? , TYPE 76 CODE SEGMENT
0134 7801 20 TP77IP DW INTR77 ; TYPE 77 INSTRUCTION POINTER
0138 ■” ?? 21 1P77CS DU ? TYPE 77 CODE SEGMENT

22 ;
— 23 EXTRA ENDS

24 ' j
--c 
i.  J i D0T0 SEGMENT DECLARATIONS
26

— 27 DATA SEGMENT
28

0000 ???? 29 STACKi DW 7 ; VARIABLE TO SAVE CALL ADDRESS
0002 30 fiXTEMP DU ? ■VARIABLE TO SAVE AX REGISTER
0004 7> 31 DIGIT DB 7 iVARIABLE TO SAVE SELECTED DIGIT

32 .
— 33 DATA ENDS

34
35 . CODE SEGMENT DECLARATION
36 ;

— 37 CODE SEGMENT
38 .
33 ASSUME ES:EXTRA, DS-DATA, CS CODE
40 ;
41 ; INITIALISE REGISTERS
42

0000 B80000 43 START: MOV RX, 0H ; EXTRA SEGMENT AT 00
0083 8EC0 44 MOV ES, AX
0005 B87008 45 MOV AX, 70H ;DATA SEGMENT AT 708H
8008 8ED3 46 NOV DS, AX
0000 B87800 47 MOV AX, 78H jSTACK SEGMENT NT 780H
0000 8EO0 48 MOV SS, 0!!
000F BC8000 49 MOV SP.80H ; STACK POINTER AT 80H CSTRCK=880H>
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NCS-86 fiSSEdBLER TCI59A

LOC OBJ LINE SOURCE

50
51
C.i

i LORD INTERRUPT VECTOR IfiBLE

0012 BS0401
JC

573 TVPtS: MOV 0X. OFFSET (. INTR72) •LOAD rVPt 72
0015 26H32801 54 NOV 1F72IF'. HX
0013 26SC0E2201 55 NOV TP72CS.CS
001E BS1801 56 NOV HX,OFFSET (INTR73T , LORD TVPE 73
0021 26032401 57 MOV TP73IP, flX
0025 268C0E2601 58 NOV TP73CS, US
0020 683001 59 NOV HX,OFFSET (INTR74T • LORO TVPE 74
0020 26032801 60 MOV 1P74IP, HX
8031 268C0E2001 61 MOV TP74CS, CS
0036 B84801 62 MOV flX,OFFSET (INTR75) ; LOAD TVPE 75
0039 26032C01 63 MOV TP75IP.fiX
0030 263C0E2E01 64 MOV TP75CS,CS
0042 B86001 65 MOV fiX,OFFSET (INTR76) ;LORD TVPE 76
0845 26033001 66 MOV TP76IP, HX
0049 268C0E3201 67 MOV TP76CS,CS
004E B878B1 63 MOV FIX, OFFSET ( INTR77) ,LORD TVPE 77
0051 26033481 69 MOV TP77IP, HX
8055 268C8E3601 76

74
MOV l P77CS.CS

• 1
-f't i <1 8253 INITIALIZATION
73 ;

005.0 B08EFF 74 SET531: MOV DX, 8FF0EH • 3253 * 1  CONTROL WORD
0050 B036 75 MOV fit, 36H ,COUNTER 0, MODE 3, BINflRV
085F EE 76 OUT DX, HL
0060 B071 77 MOV ML,71H ; COUNTER 1, MODE 0, BCD
0062 EE 78 OUT DX, AL
0063 B0B5 79 MOV HL, 0B5H , COUNTER 2, MODE 2, BCD
0065 EE 80 OUT DX, fit
0066 6H08FF 81 MOV DX, 0FF08H i LOAD COUNTER 0 (18MS)
0069 B008 82 MOV AL,0R8H i LSB
006B EC 83 OUT DX, flL
006C B061 84 MOV flL, 61H , MSB
006E EE 85 OUT DX, flL
006F B00CFF 86 MOV DX,8FF0CH , LORD COUNTER 2 <2SEC)
0072 B000 87 MOV flL, 00H , LSB
0074 EE 88 OUT DX, AL
0075 B002 89 MOV fiL, 02H , MSB
0077 EE 90 OUT DX, AL
0078 B016Fr 91 SET532: MOV DX,0FF16H ,'8253 #2 CONTROL WORD
007B B03B 92 MOV flL, 3BH ;COUNTER 0, MODE 5, BCD
8070 EE 93 OUT DX, flL
007E B87B 94 MOV flL, 7BH .COUNTER 1, MODE 5, BCD
8080 EE 95 OUT DX, flL
0881 B08B 96 MOV flL, 068H ;COUNTER 2, MODE 5, BCD
8083 EE 97 OUT DX, AL
8084 B810FF 98 MOV DX, 0FF18H ;LOAD COUNTER 0 (. 5SEC)
0087 B050 99 MOV fiL, 50H ;LSB
0089 EE 100 OUT DX.AL
0880 B600 101 MOV flL,00H • MSB
008C EE 102 OUT DX, AL
0080 B012FF 103 MOV DX, 0FF12H ;LOAD COUNTER 1 (1SEC)
0090 B000 104 MOV HL08H , LSB
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MCS-86 ASSEMBLER TCI590

LUC OBJ LINE SOURCE

0992 EE 105 OUT dx, hl
B093 8001 106 MOV 0L.01H : MSB
0095 EE 187 OUT DX, HL
8096 BA14FF 108 NOV DX,8FF14H ■ LOAD COUNTER 2 <1 5SEC)
0099 ES050 109 MOV HL..50H • LSB
009B EE 110 OUT DX. 0L
009C: B001 111 NOV 0L. 01H , MSB
009E EE 112 OUT DX, HL

113
114 82590 INITIALIZATION
115

009F 8000FF 116 SET59B NOV DX, 0FF00H ,8259H H0=0
0002 8012 117 NOV HL, 12H ■ 1CW1-LTIM-0, S=l, IC4=1
0004 EE 113 OUT DX.0L
0005 B002FF 119 NOV DX,0FF02H ; 8259H 00=1
0008 B048 120 NOV HL, 48H , ICW2-INTERRUFT TVRE 72 (120H)
0000 EE 121 OUT DX, HL
000E B003 122 NOV HL. 830 ; ICW4-SFNN=0, BUF=0, HEOI-1, MPM=1
000D EE 123 OUT DX, HL
000E B0E0 124 NOV HL, 0E8H , OCWl-MASK IR5,6, 7 (NOT USED)
0080 EE 125

126
OUT DX. 0L

127 8279 INITIALIZATION
128

0081 B0E0FF 129 SET79: NOV DX, 0FFEHH ;8279 CONN0ND WORDS HND STHTUS
0064 B0D0 120 MOV 0L, 0D8H , CLERR DISPLRV
0086 EE 131 OUT DX, HL
0067 EC 132 WAIT79 IN HL, DX ■ READ STATUS
00B8 D0C0 123 ROL HL, 1 , "DU" BIT JO CARRY
0060 72FE 134 JB H0IT79 JUMP IF DISPLRV IS UNAVAILABLE
08BC 6087 125 MOV HL. 87H ;DIGIT 8
006E EE 136 OUT DX, HL
006F B0ESFF 137 MOV DX, 0FPE8H , 8279 DATA WORD
00C2 6006 138 MOV 0L.06H ■CHARACTER “1”
00C4 EE 139 OUT DX, HL
00C:5 B0E0FF 140 MOV DX,0PFE0H , 3279 COMMAND WORD
00C8 6086 141 MOV HL.86H ■ DIGIT 7
00C0 EE 142 OUT DX, HL
00CB B0E8FF 143 NOV DX, 0FFE3H , 8279 DATA WORD
00CE B050 144 NOV 0L, 50H ■CHARACTER "R"
00D0 EE 145 OUT DX, HL
0001 FB 146 ST I .ENABLE INTERRUPTS

147 i

148
149 i DUMMV PROGRAM
150

00D2 EBFE 151 dummy IMP DUMMV , WHIT FOR INTERRUPT
152
153

00D4 020200 154 SAVE: NOV AXTEMP, hx ; SAVE HX
0007 58 155 POP HX ; POP CALL RETURN ADDRESS
0008 020800 156 NOV STHCK1, HX ,SAVE CALL RETURN ADDRESS
0006 010286 157 NOV HX, HXTENP .■ RESTORE AX
00DE 50 158 PUSH HX •SAVE PROCESSOR STATUS
00OF 53 159 PUSH BX
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MCS-86 ASSEMBLER TCI59A

LOC OBJ LINE SOURCE

00E8 01 160 PUSH cx
80E1 51' 161 PUSH ox
00E2 55 162 PUSH BP
00E3 56 163 PUSH SI
80E4 57 164 PUSH DI
00E5 IE 165 PUSH OS
00E6 06 166 PUSH ES
00E7 H10000 167 MOV FIX, STACK1 i RESTORE CALL RETURN ADDRESS
00EH 50 168 PUSH RX ; PUSH CALL RETURN ADDRESS
00EB C3 169 RET

170
00EC 55 171 RESTOR. POP HX . POP CALL RETURN ADDRESS
00ED A30000 172 MOV STfiCKl, HX , SAVE CaL RETURN ADDRESS
00F0 07 173 POP ES ; RESTORE PROCESSOR STATUS
00F1 IF 174 POP OS
00F2 5F 175 POP 01
00F3 5E 176 POP SI
00F4 50 177 POP BP
00F5 5fl 178 POP OX
00F6 59 179 POP CX
00F7 5B 130 POP BX
00FS 58 181 POP FIX
00F9 A30200 182 MOV fiXTENP, FIX , SfiVE AX
00FC Hi0008 183 MOV flX, STACK1 .RESTORE CaL RETURN ADDRESS
88FF 58 184 PUSH fiX , PUSH CALL RETURN ADDRESS
0100 H10200 185 MOV fiX, flXTEMP ; RESTORE AX
0103 03 186 RET

187
188
189 INTERRUPT 72, CLEAR DISPLAY, IR0 3259A
190

0104 E8CDFF 191 INTR72: CALL SAVE ■ ROUTINE TO SAVE PROCESSOR STATUS
8107 BAEAFF 192 MOV OX, OFFEflH i 827S COMMAND WORD
010fl H00488 193 MOV a. DIGIT ; SELECTED LED DIGIT
8100 EE 194 OUT ox, a
010E BAE8FF 195 MOV OX, 0FFE8H ; 8279 DATA
0111 8800 196 NOV a , 00H ;afiNK OUT DIGIT
0113 EE 197 OUT ox, a
0114 E8D5FF 198 CALL RESTOR ;ROUTINE TO RESTORE PROCESSOR STATUS
8117 OF 199 IRET ;RETURN FROM INTERRUPT

200
201
202 ; INTERRUPT 73, IR1 8259A
203 1

8118 E8B9FF 204 INTR73: CALL SfiVE ; ROUTINE TO SAVE PROCESSOR STATUS
011B BdERFF 205 MOV OX, 0FFEHH ; 8279 COMMAND WORD
811E B080 206 MOV a,88H ; LED DISPLAY DIGIT 1
0120 R20408 207 MOV DIGIT,a
0123 EE 288 OUT ox, a
0124 BfiEBFF 289 MOV OX, 0FFE8H ,8279 DATA
0127 B086 210 NOV fiL, 86H , CHARai ER "l"
0129 EE 211 OUT ox, a
012H CD40 212 INT 77 iTIMER DELAY FOR LED ON TIME
0120 E8BDFF 213 caL RESTOR: ;ROUTINE TO RESTORE PROCESSOR STATUS
012F OF 214 IRET ;RETURN FROM INTERRUPT
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ICS-86 0SSEMBLEP TCI 590

LOG OBJ LINE SOURCE

215
216 ;
217 INTERRUPT 74, IR2 82590
218

0138 E801FF 219 INTR74 C0LL S0VE ,ROUTINE TO S0VE PROCESSOR S1RTUS
0133 BRERFF 220 MOV DX,0FFE0H ;8279 CUMM0ND WORD
0136 B081 221 MOV 0L.81H ; LED DISPLRV DIGIT 2
0138 020400 C.C.C. MOV DIGIT, 01
013B EE 223 OUT DX, 0L
013C BHE8FF 224 110V DX,0FFE8H ; 8279 DR1R
813F B05B 225 MOV 0L5BII ; CH0R0CTER ’'2" .
0141 EE 226 OUT DX,0L
0142 CD4D 227 INT 77 ;TIMER DEL0V FOR LED ON TIME
0144 E8R5FF C0LL RESTOR , ROUTINE TO RESTORE PROCESSOR ST0TUS
014? CF 229 IRE1 , RETURN FROM INTERRUPT

238
231
232 INTERRUPT 75, IR3 82590
233

0148 E889FF 234 INTR75: C0LL S0VE ..ROUTINE TO S0VE PROCESSOR ST0TUS
014B BHERFF 235 MOV DX» 0FFE0H ; 8279 COMMHND WORD
814E B082 236 MOV 0L, 82H .■LED DISPLRV DIGIT 3
0150 02O400 237 MOV DIGIT, 0L
8153 EE 238 OUT DX, 0L
0154 B0E8FF 239 MOV DX,0FFE8H ,8279 D0TR
0157 B04F 248 MOV 0L, 4FH ; CHRRRCTER "3"
0159 EE 241 OUT DX, 0L
0150 CD4D 242 INT 77 ;TIMER DEL0V FOR LED ON TIME
015G E88BFF 243 C0LL RESTOR ; ROUTINE TO RESTORE PROCESSOR STRTUS
015F CF 244 IRET ;RETURN FROM INTERRUPT

245 ,
246
247
jA O

' INTERRUPT 76, IR4 82590

0168 E871FF 249 INTR76: C0LL S0VE ,ROUTINE TO S0VE PROCESSOR STRTUS
0163 B0E0FF 250 MOV DX, 8FFE0H , 8279 COMM0ND WORD
0166 B083 251 MOV 0L, 83H ;LED DISPLRV DIGIT 4
0168 028400 252 MOV DIGIT, 0L
016B EE 253 OUT DX, RL
016C B0E8FF 254 MOV DX,0FFE8H ; 8279 DRTR
016F B066 255 MOV 0L, 66H ;CHARACTER "4"
0171 EE 256 OUT DX, 0L
0172 CD4D 257 INT 77 ;TIMER DELRV FOR LED ON TIME
8174 E875FF 258 C0LL RESTOR ; ROUTINE TO RESTORE PROCESSOR S10TUS
0177 CF 259 IRET ;RETURN FROM INTERRUPT

260 i

261
262 INTERRUPT 77, TIMER DEL0V, SOFTW0RE CONTROLLED
263

0178 B000FF 264 IMTR77: MOV DX, 0FF00H ;LOHD COUNTER 1 8253 #1 (258 MSEC)
017B 8025 265 MOV 0L, 25H ; LSB
0170 EE 266 OUT DX, 0L
817E B000 267 MOV RL, 00H • MSB
0188 EE 268 OUT DX, RL
0181 CF 269 IRET ; RETURN FROM INTERRUPT
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MCS-86 liSSEMBLER TCI59A

LOC OBJ

0000

LINE SOURCE

270
£71
272 CODE ENDS..
C.I -• >

274 ;
275 END

SYMBOL TABLE LISTING

NAME TYPE VALUE ATTRIBUTES

?7SEG SEGMENT Si2E=S'<d0H PARA PUBLIC
AXTEMP V WORD 0002H DATA
CODE. SEGMENT S1ZE=0182H PAPA
DATA. SEGMENT SI2E=0005H PARA
DIGIT V BYTE 0A04H DATA
DUMMY L NEAR 00D2H CODE
EXTRA SEGMENT SIZE=01C8H PARA
INTR72 L NEAR 0104H CODE
INTP7C L NEAR 0118!-! CODE
INTR74 L NEAR 01S0H CODE
INTP75 L NEAR 0148H CODE
1NTR76 L NEAR 0160H CODE
INTR77 L NEAR' 0178H CODE
RESTOR L NEAR 00ECH CODE
SAVE. L NEAR 08D4H CODE
SET531 L NEAR 005AH CODE
SET532 L NEAR 0078H CODE
SET59A L NEAR 009TH CODE
SET79 L NEAR 08B1H CODE
STACK1 V WORD 0000H DATA
STRRT L NEAR 0000H CODE
TP72CS V WORD 0122H EXTRA
TP72IP V WORD 0120H EXTRA
TP73CS V WORD 0126H EXTRA
TP73IP '■/ WORD 0124H EXTRA
TP74CS V WORD 012AH EXTRA
TP74IP V WORD 0128H EXTRA
TP75CS V WORD 012EH EXTRA
TP75IP V WORD 012CH EXTRA
TP76CS V WORD 0132H EXTRA
TP76IP V WORD 0120H EXTRA
TP77CS V WORD 0136H EXTRA
TP77IP V WORD 0134H EXTRA
TYFES L NEAR 0O12H CODE
WAIT79 L NEAR 0067H CODE

ASSEMBLY COMPLETE, NO ERRORS FOUND

START
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I. INTRODUCTION
A significant measure of the power and flexibility 
of the Intel OEM Computer Product Line can be 
attributed to the design of the Intel MULTIBUS 
system bus. The bus structure provides a common 
element for communication between a wide 
variety of system modules which include: Single 
Board Computers, memory, digital, and analog 
I/O expansion boards, and peripheral controllers.
The purpose of this application note is to help you 
develop a working knowledge of the Intel MULTI
BUS specification. This knowledge is essential for 
configuring a system containing multiple mod
ules. Another purpose is to provide you with the 
information necessary to design a bus interface for 
a slave module. One of the tools that will be used to 
achieve this goal is the complete description of a 
MULTIBUS slave design example. Other portions 
of this application note provide an in depth 
examination of the bus signals, operating charac
teristics, and bus interface circuits.
This application note was originally written in 
1977. Since 1977, the MULTIBUS specification 
has been significantly expanded to cover opera
tion with both 8 and 16-bit system modules and 
with an auxiliary power bus. This application 
note now contains information on these new 
MULTIBUS specification features.
In addition, a detailed MULTIBUS specification 
has also been published which provides the user 
with further information concerning MULTIBUS 
interfacing. The MULTIBUS specification and 
other useful documents are listed in the overleaf of 
this note under Related Intel Publications.

II. MULTIBUS™ SYSTEM BUS 
DESCRIPTION

Overview
The Intel MULTIBUS signal lines can be grouped 
in the following categories: 20 address lines, 16 
bidirectional data lines, 8 multilevel interrupt 
lines, and several bus control, timing and power 
supply lines. The address and data lines are 
driven by three-state devices, while the interrupt 
and some other control lines are open-collector 
driven.
Modules that use the MULTIBUS system bus have 
a master-slave relationship. A bus master module 
can drive the command and address lines: it can 
control the bus. A Single Board Computer is an 
example of a bus master. A bus slave cannot

control the bus. Memory and I/O expansion 
boards are examples of bus slaves. The MULTI
BUS architecture provides for both 8 and 16-bit 
bus masters and slaves.
Notice that a system may have a number of bus 
masters. Bus arbitration results when more than 
one master requests control of the bus at the same 
time. A bus clock is usually provided by one of the 
bus masters and may be derived independently 
from the processor clock. The bus clock provides a 
timing reference for resolving bus contention 
among multiple requests from bus masters. For 
example, a processor and a DMA (direct memory 
access) module may both request control of the 
bus. This feature allows different speed masters to 
share resources on the same bus. Actual transfers 
via the bus, however, proceed asynchronously 
with respect to the bus clock. Thus, the transfer 
speed is dependent on the transmitting and 
receiving devices only. The bus design prevents 
slow master modules from being handicapped in 
their attempts to gain control of the bus, but does 
not restrict the speed at which faster modules can 
transfer data via the same bus. Once a bus request 
is granted, single or multiple read/write transfers 
can proceed. The most obvious applications for the 
master-slave capabilities of the bus are multi
processor configurations and high-speed direct- 
memory-access (DMA) operations. However, the 
master-slave capabilities of the bus are by no 
means limited to these two applications.

MULTIBUS™ Signal Descriptions

This section defines the signal lines that comprise 
the Intel MULTIBUS system bus. These signals 
are contained on either the PI or P2 connector of 
boards compatible with the MULTIBUS specifi
cation. The PI signal lines contain the address, 
data, bus control, bus exchange, interrupt and 
power supply lines. The P2 signal lines contain the 
optional auxiliary signal lines. Most signals on 
the bus are active-low. For example, a low level on 
a control signal on the bus indicates active, while a 
low level on an address or data signal on the bus 
represents logic “1” value.

NOTE

In this application note, a signal will be 
designated active-low by placing a slash (/) 
after the mnemonic for the signal.

Appendix A contains a pin assignment list of the 
following signals:
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Initialization Signal Line

INIT/
Initialization signal; resets the entire system to 
a known internal state. INIT/ may be driven by 
one of the bus masters or by an external source 
such as a front panel reset switch.

Address and Inhibit Lines

ADRO/ - ADR13/
20 address lines; used to transmit the address of 
the memory location or I/O port to be accessed. 
The lines are labeled ADRO/ through ADR9/, 
ADRA/ through ADRF/ and ADR10/ through 
ADR13/. ADR13/ is the most significant bit. 
8-bit masters use 16 address lines (ADRO/ - 
ADRF/) for memory addressing and 8 address 
lines (ADRO/ - ADR7/) for I/O port selection. 
16-bit masters use all twenty address lines for 
memory addressing and 12 address lines 
(ADRO/ - ADRB/) for I/O port selection. Thus, 
8-bit masters may address 64K bytes of memory 
and 256 I/O devices while 16-bit masters may 
address 1 megabyte of memory and 4096 I/O 
devices. (The 8086 CPU actually permits 16 
address bits to be used to specify I/O devices, 
the MULTIBUS specification, however, states 
that only the low order 12 address bits can be 
used to specify I/O ports.) In a 16-bit system, 
the ADRO / line is used to indicate whether alow 
(even) byte or a high (odd) byte of memory or 
I/O space is being accessed in a word oriented 
memory or I/O device.

BHEN/
Byte High Enable; the address control line 
which is used to specify that data will be trans
ferred on the high byte (DAT8/ - DATF/) of the 
MULTIBUS data lines. With current iSBC 
boards, this signal effectively specifies that a 
word (two byte) transfer is to be performed. This 
signal is used only in systems which incorporate 
sixteen bit memory or I/O modules.

INH1/
Inhibit RAM signal; prevents RAM memory 
devices from responding to the memory address 
on the system address bus. INH1/ effectively 
allows ROM memory devices to override RAM 
devices when ROM and RAM memory are

assigned the same memory addresses. INH1/ 
may also be used to allow memory mapped I/O 
devices to override RAM memory.

INH2/
Inhibit ROM signal; prevents ROM memory 
devices from responding to the memory address 
on the system address bus. INH2/ effectively 
allows auxiliary ROM (e.g., a bootstrap pro
gram) to override ROM devices when ROM and 
auxiliary ROM memory are assigned the same 
memory addresses. INH2/ may also be used to 
allow memory mapped I/O devices to override 
ROM memory.

Data Lines 

DATO/ - DATF/
16 bidirectional data lines; used to transmit or 
receive information to or from a memory loca
tion or I/O port. DATF/ being the most signifi
cant bit. In 8-bit systems, only lines DATO/ - 
DAT7/ are used (DAT7/ being the most signi
ficant bit). In 16-bit systems, either 8 or 16 lines 
may be used for data transmission.

Bus Priority Resolution Lines 

BCLK/
Bus clock; the negative edge (high to low) of 
BCLK/ is used to synchronize bus priority re
solution circuits. BCLK/ is asynchronous to the 
CPU clock. It has a 100 ns minimum period and 
a 35% to 65% duty cycle. BCLK/ may be slowed, 
stopped, or single stepped for debugging.

CCLK/
Constant clock; a bus signal which provides a 
clock signal of constant frequency for unspeci
fied general use by modules on the system bus. 
CCLK/ has a minimum period of 100 ns and a 
35% to 65% duty cycle.

BPRN/
Bus priority in signal; indicates to a particular 
master module that no higher priority module 
is requesting use of the system bus. BPRN/ is 
synchronized with BCLK/. This signal is not 
bused on the backplane.
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unam) ous priority resolution schemes. BPRO 
is passed to the BPRN input of the master 
module with the next lower bus priority. BPRO. 
is synchronized with BCLK . This signal is not 
bused on the backplane.

BUSY/
Bus busy signal; an open collector line driven 
by the bus master currently in control to indicate 
that the bus is currently in use. BUSY, prevents 
all other master modules from gaining control 
of the bus. BUSY, is synchronized with BCLK/.

BREQ
Bus request signal; used with a parallel bus 
priority network to indicate that a particular 
master module requires use of the bus for one 
or more data transfers. BREQ/ is synchronized 
with BCLK/ . This signal is not bused on the 
backplane.

CBRQ/
Common bus request; an open-collector line 
which is driven by all potential bus masters 
and is used to inform the current bus master 
that another master wishes to use the bus. If 
CBRQ/ is high, it indicates to the bus master 
that no other master is requesting the bus, and 
therefore, the present bus master can retain the 
bus. This saves the bus exchange overhead for 
the current master.

Information Transfer Protocol Lines

A bus master provides separate read/write 
command signals for memory and I/O devices: 
MRDC/, MWTC/, IORC/ and IOWC/, as ex
plained below. When a read/write command is 
active, the address signals must be stabilized at all 
slaves on the bus. For this reason, the protocol 
requires that a bus master must issue address 
signals (and data signals for a write operation) at 
least 50 ns ahead of issuing a read/write command 
to the bus, initiating the data transfer. The bus 
master must keep address signals unchanged until 
at least 50 ns after the read/write command is 
turned off, terminating the data transfer.
A bus slave must provide an acknowledge signal to

MRDC
Memory read command; indicates that the 
address of a memory location has been placed 
on the system address lines and specifies that 
the contents (8 or 16 bits) of the addressed 
location are to be read and placed on the system 
data bus. MRDC/ is asynchronous with respect 
to BCLK/ .

MWTC/
Memory write command', indicates that the 
address of a memory location has been placed 
on the system address lines and that data (8 or 
16 bits) has been placed on the system data bus. 
MWTC/ specifies that the data is to be written 
into the addressed memory location. MWTC/ is 
asynchronous with respect to BCLK/.

IORC/
I/O read command', indicates that the address 
of an input port has been placed on the system 
address bus and that the data (8 or 16 bits) at 
that input port is to be read and placed on the 
system data bus. IORC/ is asynchronous with 
respect to BCLK/.

IOWC/
I/O write command', indicates that the address 
of an output port has been placed on the system 
address bus and that the contents of the system 
data bus (8 or 16 bits) are to be output to the 
address port. IOWC/ is asynchronous with 
respect to BCLK/.

XACK/
Transfer acknowledge signal, the required 
response of a slave board which indicates that 
the specified read/write operation has been 
completed. That is, data has been placed on, or 
accepted from, the system data bus lines. 
XACK/ is asynchronous with respect to BCLK/.

Asynchronous Interrupt Lines 

INTO/ - INT7/
8 Multi-level, parallel interrupt request lines',
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used with a parallel interrupt resolution net
work. INTO has the highest priority, while 
INT7 has lowest priority. Interrupt lines 
should be driven with open collector drivers.

INTA
Interrupt acknowledge: an interrupt acknowl
edge line (INTA ), driven by the bus master, 
requests the transfer of interrupt information 
onto the bus from slave priority interrupt con
trollers (8259s or 8259As). The specific informa
tion timed onto the bus depends upon the 
implementation of the interrupt scheme. In 
general, the leading edge of INTA indicates 
that the address bus is active while the trailing 
edge indicates that data is present on the data 
lines.

MULTIBUS P2 Signal Lines — The signals 
contained on the MULTIBUS P2 auxiliary con
nector are used primarily by optional power 
back-up circuitry for memory protection. P2 
signals are not bused on the backplane, and 
therefore, require a separate connector for each 
board using the P2 signals. Present iSBC boards 
have a slot in the card edge and should be used 
with a keyed P2 edge connector. Use of the P2 
signal lines is optional.

ACLO
A C  Low, this signal generated by the power 
supply goes high when the AC line voltage 
drops below a certain voltage (e.g., 103v AC in 
115v AC line voltage systems) indicating D.C. 
power will fail in 3 msec. ACLO goes low when 
all D.C. voltages return to approximately 95'C 
of the regulated value. This line must be pulled 
up by the optional standby power source, if one 
is used.

PFIN
Power fail interrupt', this signal interrupts the 
processor when a power failure occurs, it is 
driven by external power fail circuitry.

PFSN/
Power fail sense] this line is the output of a 
latch which indicates that a power failure has 
occurred. It is reset by PFSR . The power fail

sense latch is part of external power fail cir
cuitry and must be powered by the standby 
power source.

PFSR
Power fail sense reset: this line is used to reset 
the power fail sense latch (PFSN ).

MPRO
M emory protect: prevents memory operation 
during period of uncertain DC power, by in
hibiting memory requests. MPRO is driven 
by external power fail circuitry.

ALE
Address latch enable: generated by the CPU 
(8085 or 8086) to provide an auxiliary address 
latch.

HALT/
Halt: indicates that the master CPU is halted.

AUX RESET/
Auxiliary Reset: this externally generated sig
nal initiates a power-up sequence.

WAIT/
Bus master wait state: this signal indicates 
that the processor is in a wait state.

Reserved — Several Pi and P2 connector bus 
pins are unused. However, they should be regard
ed as reserved for dedicated use in future Intel 
products.

Power Supplies — The power supply bus pins 
are detailed in Appendix A which contains the 
pin assignment of signals on the MULTIBUS 
backplane.

It is the designer’s responsibility to provide 
adequate bulk decoupling on the board to avoid 
current surges on the power supply lines. It is also 
recommended that you provide high frequency

A-181



AP-28A

decoupling for the logic on your board. Values of 
22uF for +5v and +12v pins and lOuF for -5v and 
-12v pins are typical on iSBC boards.

Operating Characteristics

Beyond the definition of the MULTIBUS signals 
themselves, it is important to examine the 
operating characteristics of the bus. The AC 
requirements outline the timing of the bus signals 
and in particular, define the relationships between 
the various bus signals. On the other hand, the DC 
requirements specify the bus driver character
istics, maximum bus loading per board, and the 
pull-up/down resistors.

The AC requirements are best presented by a 
discussion of the relevant timing diagrams. 
Appendix B contains a list of the MULTIBUS 
timing specifications. The following sections will 
discuss data transfers, inhibit operations, inter
rupt operations, MULTIBUS multi-master opera
tion and power fail considerations.

IORC' 

MR DC '

SONS MIN |-*-tAS AH-*- |-*-S0NS MIN

V  STABLE 
^  ADORESS X

1̂ . 'XACK 
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0NS*MIN-*-| K  -H »0HR |-*-65NSMAX

_________________x _
STABLE OATA ^
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Figure 1. Read AC Timing

Write Data
The write operation AC timing diagram is shown 
in Figure 2. During a write data transfer, valid 
data must be presented simultaneously with a 
stable address. Thus, the write data setup time 
(t[jg) has the same requirement as the address 
setup time (t^ g ). The requirement for stable data 
both before and after command (IOWC/ or 
MWTC/) enables the bus interface circuitry to 
latch data on either the leading or trailing edge of 
command.

Data T ransfers — Data transfers on the MULTI
BUS system bus occur with a maximum band
width of 5 MHz for single or multiple read/write 
transfers. Due to bus arbitration and memory 
access time, a typical maximum transfer rate is 
often on the order of 2 MHz.

Read Data
Figure 1 shows the read operation AC timing 
diagram. The address must be stable (tAS) for a 
minimum of 50 ns before command (IORC/ or 
MRDC/). This time is typically used by the bus 
interface to decode the address and thus provide 
the required device selects. The device selects 
establish the data paths on the user system in 
anticipation of the strobe signal (command) 
which will follow. The minimum command pulse 
width is 100 ns. The address must remain stable 
for at least 50 ns following the command Ra h )- 
Valid data should not be driven onto the bus prior 
to command, and must not be removed until the 
command is cleared. The XACK/ signal, which is 
a response indicating the specified read/write 
operation has been completed, must coincide or 
follow both the read access and valid data (td x l '- 
XACK/ must be held until the command is cleared 
(tXAH)-

r 'CMD ___*1
10CNS MIN

MWTC/
SONS MIN-*-|

\ ____________
AS k -*-| 'AH SONS MIN

ADDRESS
LINES X STABLE ADDRESS Y TO

SLAVE

SONS MIN—► ] DS k - ^ D H w k 50NS MIN

DATA
LINES X STABLE V  

WRITE DATA ^

L*_ 'XACK 
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Figure 2. Write AC Timing

Data Byte Swapping in 16-bit Systems

A 16-bit master may transfer data on the MULTI
BUS data lines using 8-bit or 16-bit paths 
depending on whether a byte or word (2 byte) 
operation has been specified. (A word transfer 
specified with an odd I/O or memory address will 
actually be executed as two single byte transfers.) 
An 8-bit master may only perform byte transfers 
on the MULTIBUS data lines DATO/ - DAT7/.

In order to maintain compatibility with older 
8-bit masters and slaves, a byte swapping buffer 
is included in all new 16-bit masters and 16-bit 
slaves. In the iSBC product line, all byte transfers 
will take place on the low 8 data lines DATO/ - 
DAT7/. Figure 3 contains a example of 8/16-bit
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data driver logic for 16-bit master and slave 
systems. In the 8 16-bit system, there are three 
sets of buffers; the lower byte buffer which 
accesses DATO - DAT7 , the upper byte buffer 
which accesses DATS - DATF , and the swap 
byte buffer which accesses the MULTIBUS data 
lines DATO ' - DAT7/ and transfers the data 
to from the on-board data bus lines D8 - DF.
Figure 4 summarizes the 8 and 16-bit data paths 
used for three types of MULTIBUS transfers. Two 
signals control the data transfers.
Byte High Enable (BHEN/) active indicates that 
the bus is operating in sixteen bit mode, and 
Address Bit 0 (ADRO/) defines an even or odd byte 
transfer address.
On the first type of transfer, BHEN/ is inactive, 
and ADRO/' is inactive indicating the transfer of 
an even eight bit byte. The transfer takes place 
across data lines DATO/ - DAT7/.
On the second type of transfer, BHEN /  is inactive, 
and ADRO is active indicating the transfer of a 
high (odd) byte. On this type of transfer, the odd 
(high) byte is transferred through the Swap Byte 
Buffer to DATO/ - DAT7/. This makes eight bit 
and sixteen bit systems compatible.

Figure 3. 8/16-Bit Data Drivers

Figure 4. 8/16-Bit Device Transfer Operation
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transfer, the low (even) byte is transferred on 
DATO/ • DAT7/ and the high (odd) byte is 
transferred on DAT8/ ■ DATF/.
Note that the condition when both BHEN and 
ADRO, are active is not used with present iSBC 
boards. This condition could be used to transfer a 
high odd byte of data on DAT8 - DATE , thus 
eliminating the need for the swap byte buffer. 
However, this is not a recommended transfer type, 
because it eliminates the capability of communi
cating with 8-bit modules.

Inh ib it Operations — Bus inhibit operations are 
required by certain bootstrap and memory mapped 
I/O configurations. The purpose of the inhibit 
operation is to allow a combination of RAM, ROM, 
or memory mapped I/O to occupy the same 
memory address space. In the case of a bootstrap, 
it may be desirable to have both ROM and RAM 
memory occupy the same address space, selecting 
ROM instead of RAM for low order memory only 
when the system is reset. A system designed to use

space, may need to inhibit RAM or ROM memory 
to perform its functions.
There are two essential requirements for a success
ful inhibit operation. The first is that the inhibit 
signal must be asserted as soon as possible, within 
a maximum of 100 ns (tcj), after stable address. 
The second requirement for a successful inhibit 
operation is that the acknowledge must be delayed 
(txACKB) to allow the inhibited slave to ter
minate any irreversible timing operations in
itiated by detection of a valid command prior to its 
inhibit.
This situation may arise because a command can 
be asserted within 50 ns after stable address (t^S) 
and yet inhibit is not required until 100 ns (tjj-j) 
after stable address. The acknowledge delay time 
(txACKB) *s a function of the cycle time of the 
inhibited slave memory. Inhibiting the iSBC 016 
RAM board, for example, requires a minimum of
1.5 usee. Less time is typically needed to inhibit 
other memory modules. Forexample, the iSBC 104 
board requires 475 ns.
Figure 5 depicts a situation in which both RAM

I R A M  X A C K  IF  N O T  IN H IB IT E D

'XACKA

\ / ^

1
v

----  'XACKB -----H

. ) L_-----------------------------------
* id --------- H  J

Figure 5. Inhibit Timing

r
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and PROM memory have the same memory 
addresses. In this case, PROM inhibits RAM, 
producing the effect of PROM overriding RAM. 
After address is stable, local selects are generated 
for both the PROM and the RAM. The PROM local 
select produces the INHl/ signal which then 
removes the RAM local select and its driver enable. 
Because the slave RAM has been inhibited after it 
had already begun its cycle, the PROM XACK/ 
must be delayed (tXACKB) until after the latest 
possible acknowledgement from the RAM 
(tXACKA)-

Interrupt Operations — The MULTIBUS inter
rupt lines INTO/ - INT7/ are used by a MULTI
BUS master to receive interrupts from bus slaves, 
other bus masters or external logic such as power 
fail logic. A bus master may also contain internal 
interrupt sources which do not require the bus 
interrupt lines to interrupt the master. There are 
two interrupt implementation schemes used by 
bus interrupts, Non Bus Vectored Interrupts and 
Bus Vectored Interrupts. Non Bus Vectored 
Interrupts do not convey interrupt vector address 
information on the bus. Bus Vectored Interrupts 
are interrupts from slave Priority Interrupt Con
trollers (PICs) which do convey interrupt vector

address information on the bus.

Non Bus Vectored Interrupts
Non Bus Vectored Interrupts are those interrupts 
whose interrupt vector address is generated by the 
bus master and do not require the MULTIBUS 
address lines for transfer of the interrupt vector 
address. The interrupt vector address is generated 
by the interrupt controller on the master and 
transferred to the processor over the local bus. The 
source of the interrupt can be on the master module 
or on other bus modules, in which case the bus 
modules use the MULTIBUS interrupt request 
lines (INTO/ - INT7/) to generate their interrupt 
requests to the bus master. When an interrupt 
request line is activated, the bus master performs it 
own interrupt operation and processes the inter
rupt. Figure 6 shows an example of Non Bus 
Vectored Interrupt implementation.

Bus Vectored Interrupts
Bus Vectored Interrupts (Figure 7) are those inter
rupts which transfer the interrupt vector address 
along the MULTIBUS address lines from the 
slave to the bus master using the INTA/ command 
signal for synchronization.

Figure 6. Non Bus Vectored Interrupt Implementation
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M U L T IB U S T IM I N G

I N T R / ~ [

I N T A /

A D R 8 /A X IN T R  X  A D D R E S S X
D A T 0 /-7 X R E S T A R T  #

X A C K /

*
B U S  L O C K / \ *  NON MULTIBUS SIGNAL

Figure 7. Bus Vectored Interrupt Logic (With 2 INTA/ Timing Diagram)

When an interrupt request from the MULTIBUS 
interrupt lines INTO/ - INT7/ occurs, the interrupt 
control logic on the bus master interrupts its 
processor. The processor on the bus master 
generates an INTA/ command which freezes the 
state of the interrupt logic on the MULTIBUS 
slaves for priority resolution. The bus master also 
locks (retains the bus between bus cycles) the 
MULTIBUS control lines to guarantee itself 
consecutive bus cycles. After the first INTA/ 
command, the bus master’s interrupt control logic 
puts an interrupt code on to the MULTIBUS 
address lines ADR8/ - ADRA/. The interrupt code 
is the address of the highest priority active inter
rupt request line. At this point in the Bus Vectored

Interrupt procedure, two different sequences could 
take place. The difference occurs, because the 
MULTIBUS specification can support masters 
which generate one additional INTA/ (8086 
masters) or two additional INTA/s (8080A and 
8085 masters).
If the bus master generates one additional INTA/, 
this second INTA/ causes the bus slave interrupt 
control logic to transmit an interrupt vector 8-bit 
pointer on the MULTIBUS data lines. The vector 
pointer is used by the bus master to determine the 
memory address of the interrupt service routine.

If the bus master generates two additional 
INTA/s, these two INTA/ commands allow the

A-186



AP-28A

bus slave to put a  two byte in te rrup t vector address 
on to the M ULTIBUS da ta  lines (one byte foreach  
IN T A /). The in te rrup t vector address is used by 
the bus m aster to service the in terrupt.

The M ULTIBUS specification provides for only 
one type of Bus Vectored In te rrup t operation in a 
given system . S lave boards w hich have an  8259 
in terrup t controller are only capable of 3 IN T A / 
operation (2 add itional IN T A /s a fter the first 
IN TA /). S lave boards w ith the 8259A in terrup t 
controller are capable of e ither 2 IN T A / or 3 
INTA/ operation. All slave boards in a given 
system  m ust operate in the sam e w ay (2 IN T A /s or 
3 IN T A /s) if Bus Vectored In te rrup ts are to be 
used. However, the M ULTIBUS specification 
does provide for Bus Vectored In terrup ts and  Non 
Bus Vectored In terrup ts in the sam e system.

M ULTIBUS Multi-Master Operation — The
M ULTIBUS system  bus can accom m odate several 
bus m asters on the sam e system , each one tak ing  
control of the bus a s  it needs to affect d a ta  tra n s 
fers. The bus m asters request bus control th rough  
a bus exchange sequence.

Two bus exchange priority  resolution techniques 
are  discussed, a  serial technique and  a  paralle l 
technique. F igures 8 and  9 illu stra te  these two 
techniques. The bus exchange operation d is
cussed la te r is th e  sam e for both techniques.

Serial P riority  Technique

Serial priority  resolution is accom plished w ith a 
daisy  chain  technique (see Figure 8). The priority 
input (B PR N /) of the h ighest priority m aster is 
tied to ground. The priority output (BPRO /) of the

h ighest priority  m aster is then  connected to the 
priority inpu t (B PR N /) of the nex t lower priority 
m aster, and  so on. A ny m aste r genera ting  a bus 
request will set its BPRO/ signal h igh to the next 
lower priority  m aster. A ny m aste r seeing a  h igh  
signal on its B PR N / line will sets its B PR O / line 
high, th u s passing  down priority  in form ation  to 
lower priority  m asters. In  th is im plem entation, 
the bus request line (BREQ /) is no t used outside of 
the individual m asters. A lim ited num ber of 
m asters can  be accom m odated by th is technique, 
due to gate  delays th rough  the daisy  chain . U sing 
the cu rren t In tel M ULTIBUS controller chip on 
the m aster boards up to 3 m aste rs m ay be accom 
m odated if  a  B CLK / period of 100 n s is used. If 
more bus m asters are  required, e ither B C L K / m ust 
be slowed or a parallel p riority  technique used.

Para lle l P riority  Technique
In the paralle l priority  technique, the priority  is 
resolved in a priority  resolution circuit in w hich 
the h ighes t priority  B REQ / inpu t is encoded w ith 
a  priority encoder chip (74148). T h is coded value is 
then decoded w ith a  priority  decoder chip (74S138) 
to activate  the appropriate  B P R N / line. The 
B PR O / lines are no t used in  the paralle l priority  
scheme. However, since the M ULTIBUS back
plane contains a trace from the B PR N / signal of 
one card  slot to the BPRO / signal of the ad jacen t 
lower card slot, the BPRO/ m ust be disconnected 
from the bus on the board or the backplane trace 
m ust be cut. A p ractical lim it of sixteen m asters 
can  be accom m odated using the paralle l priority 
technique due to physical bus length  lim itations. 
Figure 9 con ta ins the schem atic for a typical 
parallel resolution netw ork. Note th a t  the parallel 
priority resolution netw ork m ust be externally  
supplied.

HIGHEST
PRIORITY
MASTER

LOWEST
PRIORITY
MASTER

l

Figure 8. Serial Priority Technique
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Figure 9. Parallel Priority Technique

M ULTIBUS Exchange Operation — A tim ing 
d iag ram  for the M ULTIBUS exchange operation 
is show n in Figure 10. T his im plem entation 
exam ple uses a parallel resolution scheme, how
ever, the tim ing would be basically  the sam e for 
the serial resolution scheme.

In th is exam ple, m aster A has been assigned a 
lower priority  th an  m aster B. The bus exchange 
occurs because m aster B generates a bus request 
during a tim e when m aster A h as control of the 
bus.

The exchange process begins when m aster B 
requires the bus to access some resource such as an 
I O or memory module while m aster A controls the 
bus. T his in ternal request is synchronized w ith 
the tra ilin g  edge (high to low) of BULK/' to 
generate a bus request (BREQ ). The bus priority 
resolution circuit changes the BPRN signal from 
active (low) to inactive (high) for m aster A and 
from inactive to active for m aster B. M aster A 
m ust first complete the current bus com m and if 
one is in operation. A fter m aster A completes the 
com m and, it sets BUSY inactive on the next 
tra ilin g  edge of BULK . T his allows the actual bus 
exchange to occur, because m aster A h as re lin 
quished control of the bus, and  m aster B h as been 
g ran ted  its B P R N /. D uring th is time, the drivers

for m aster A are disabled. M aster B m ust take 
control of the bus w ith the next tra iling  edge of 
BCLK/ to complete the bus exchange. M aster B 
takes control by ac tiva ting  B U SY / and  enabling  
its drivers.

I t is possible for m aster A to re ta in  control of the 
bus and prevent m aster B from getting  control. 
M aster A activa tes the Bus O verride (or Bus Lock) 
signal w hich keeps BUSY active allow ing con
trol of the bus to stay  w ith m aste r A. This 
guaran tees a m aster consecutive bus cycles for 
softw are or hardw are  functions w hich require 
exclusive, continuous access to the bus.

Note th a t in system s with only a single m aster it is 
necessary to ground the BPRN. pin of the m aster, 
if slave boards are to be accessed. In single board 
system s w hich use a CPU board capable of Bus 
Vectored In terrup t operation, the BPRN pin m ust 
also be grounded.

In a single m aster system  bus tran sfe r efficiency 
m ay be gained if the BUS OVERRIDE signal is 
kept active continuously. This perm its the m aster 
to m a in ta in  control of the bus a t  all tim es, there
fore sav ing  the overhead of the m aster reacquiring  
the bus each tim e it is needed.

The CBRO/ line m ay be used by a m aster in 
control of the bus to determ ine if ano ther m aster
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Figure 10. Bus Control Exchange Operation

requires the bus. If  a  m aster currently  in control of 
the bus sees the C BR Q / line inactive, it will 
m a in ta in  control of the bus between ad jacen t bus 
accesses. Therefore, w hen a  bus access is required, 
the m aste r saves the overhead of reacquiring  the 
bus. I f  a  cu rren t bus m aster sees the C BR Q / line 
active, it will then  relinquish  control of the bus 
after the curren t bus access and  will contend for 
the bus w ith the o ther m aster(s) requiring  the bus. 
The relative priorities of the m asters will deter
m ine w hich m aste r receives the bus.

Note th a t except for the BUS OVERRIDE state , no 
single m aster m ay keep exclusive control of the 
bus. T his is true because it  is im possible for the 
CPU on a  m aste r to require continuous access to 
the bus. O ther lower priority  m asters will alw ays 
be able to ga in  access to the bus betw een accesses 
of a  h igher priority  m aster.

Power Fa il Considerations — The M ULTIBUS 
P2 connector signals provide a  m eans of h and ling  
power failures. The circuits required for power

A-189



A P-28 A

V W V u - - V W W \ ,
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Figure 11. Power Fail Timing Sequence

failure detection and  h and ling  are  optional and 
m ust be supplied by the user. Figure 11 shows 
the tim ing of a  power fail sequence.

The power supply m onitors the AC power level. 
W hen power drops below an  acceptable value, the 
power supply raises ACLO w hich tells the power 
fail logic th a t  a  m inim um  of three m illiseconds will 
elapse before DC power will fall below regulated 
voltage levels. The power fail logic sets a  sense 
la tch  (PFSN /) and  generates an  in te rru p t(P F IN /) 
to the processor so the processor can  store its 
environm ent. A fter a  2.5 millisecond tim eout, the 
mem ory protect signal (M PRO/) is asserted  by the 
power fail logic p reventing any  m em ory activity. 
As power falls, the  mem ory goes on standby  
power. Note th a t  the  power fail logic m ust be 
powered from the s tandby  source.

As the AC line revives, the logic voltage level is 
m onitored by the power supply. A fter power h as 
been a t  its  operating  level for one m illisecond 
m inim um , the power supply sets the signal ACLO 
low, beg inn ing  the re s ta r t sequence. F irst, the 
m em ory protect line (M PRO/) then  the initialize 
line (IN IT /) become inactive. The bus m aster now 
s ta rts  running . The bus m aster checks the power 
fail la tch  (PFSN /)  and, if it finds it set, branches to

a power up routine w hich resets the la tch  (PFSR /), 
restores the environm ent, and  resum es execution.

Note th a t  IN IT / is activated  only after DC power 
h a s  risen to the regulated voltage levels and  m ust 
stay  low for five m illiseconds m inim um  before the 
system  is allowed to restart. A lternatively , IN IT / 
m ay  be held low through  an  open collector device 
by M PR O /.

How th e  power failure equipm ent is configured is 
left to the system  designer. The backup power 
source m ay  be batteries located on the m em ory 
boards or more elaborate  facilities located off- 
board . T he location  o f th e  pow er fa il logic 
determ ines w hich M ULTIBUS power fail lines are  
used. P ins on the P2 connector have been specified 
for the power failure functions for use as needed.

To fu rther clarify the location and  use of the power 
fail circuitry, an  exam ple of a  typical power fail 
system  block d iag ram  is show n in F igure 12. A 
single board com puter and  a  slave m em ory board 
are contained in  the system . I t  is desired to power 
the m em ory circuit elem ents of th e  mem ory board  
from auxiliary  power. The single board com puter 
will rem ain  on the m ain  power supply. To ac
com plish th is, user supplied power fail logic and
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* USER SUPPLIED

Figure 12. Typical Power Fail System Block Diagram

an auxiliary  power supply have been included in 
the system .

The single board com puter is powered from the P I 
power lines and  accesses the P2 signal lines 
P F IN /, P F S N / and  PFSR  (only the P2 signal 
lines used by a  particu lar functional block are 
show n on the block diagram ). The P F S R / line is 
driven from two sources: a  front panel sw itch and  
the single board computer. The fron t panel sw itch 
is used during norm al power-up to reset the power 
fail sense latch. The single board com puter uses 
the P F S R / line to reset the la tch  during  a  power-up 
sequence after a power failure. C urren t single 
board com puters m ust access the P F S N / and  
P F S R / signals e ither directly w ith dedicated 
circuitry and a P2 pin connection or through the 
parallel I /O  lines w ith a cable connection from the 
parallel I /O  connector to the P2 connector.

The slave mem ory board uses both the P I and  P2 
power lines, the P2 power lines are  used (a t all 
times) to power the mem ory circuit elem ents and  
o ther support circuits, the P I power lines power all 
o ther circuitry. In  addition, the M PR O / line is 
input and  used to sense when mem ory contents 
should be protected.

The power fail logic contains the power fail sense 
latch, and  uses the P F S R / and  ACLO lines for 
inputs and  the P F IN / P F S N / , and  M PR O / lines 
for outputs. The power fail logic m ust be powered 
by the P2 power lines.

D C  R e q u ire m e n ts  — The drive and  load ch arac
teristics of the bus signals are listed in Appendix 
C. The physical locations of the drivers and  loads, 
as well as the term inating  resistor value for each 
bus line, are also specified. Appendix D contains 
the MULTIBUS power specifications.

M U LTIBU S™  S la v e  I n te r f a c e  
C irc u i t  E le m e n ts

There are three basic elem ents of a slave bus 
interface: address decoders, bus drivers, and  
control signal logic. This section discusses each of 
these elem ents in  general term s. A description of a 
detailed im plem entation  of a  slave in terface is 
presented in a  la ter section of th is application  note.

A d d re s s  D e c o d in g  — T his logic decodes the 
appropriate M ULTIBUS address bits into.RAM  
requests, ROM requests, or I/O  selects. C are m ust 
be taken  in the design of the address decode logic 
to ensure flexibility in the selection of base address 
assignm ents. W ithout th is flexibility, restrictions 
m ay be placed upon various system  configura
tions. Ideally, sw itches and  jum per connections 
should be associated w ith the decode logic to 
perm it field m odification of base address a ss ig n 
m ents.

The in itia l step in designing the address decode 
portion of a M ULTIBUS in terface is to determ ine 
the required num ber of unique address locations. 
T h is  d ec is io n  is in f lu en ced  by th e  fa c t  th a t  
address decoding is usually  done in two stages. 
The first stage decodes the base address, pro
ducing an  enable for the second stage  w hich 
generates the actual device selects for the user 
logic. A convenient im plem entation  of th is two 
stage decoding schem e utilizes a  p a ir of decoders 
driven by the h igh  order bits of the address for the 
first stage and  a  second decoder for th e  low order 
bits of the address bus. T his technique forces the 
num ber of unique address locations to be a  power 
of two, based a t  the address decoded by the first 
stage. C onsider the schem e illustrated  in  Figure 
13.

As show n in Figure 13, the address b its A 4 - A g  are 
used to produce sw itch selected outputs of the first 
stage of decoding. The 1 out of 8 b inary  decoders
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have been used. The top decoder decodes address 
lines A 4 - A 7 , and  the bottom  decoder decodes 
address lines A g -A g . Ifon ly  address lines A 0 -A 7 
are being used for device selection, as in  the case of 
I/O  port selection in 8-bit system s, the bottom  
decoder m ay be disabled by setting  sw itch S2 to the 
ground position. A ddress lines A 7 and  A g  drive 
enable inputs E2 or E3 of the decoders. The 
address lines Ao - A 3 en ter the second stage 
address decoder to produce 8 user device selects. 
The second stage decoder m ust first be enabled by 
an  address th a t corresponds to the switch-selected 
base address.

A ddress decoding m ust be completed before the 
a rriva l of a com m and. Since the com m and m ay 
become active w ithin 50 ns after stab le  address, 
the decode logic should be kept sim ple w ith a 
m inim al num ber of layers of logic. Furtherm ore, 
the tim ing is extremely critical in system s w hich 
m ake use of the inh ib it lines.

A linear or unary  select schem e in w hich no b inary  
encoding of device address (e.g., address bit A q 
selects device 0, address b it A i selects device 1 , 
etc.) is performed is no t recom mended because the 
schem e offers no pro tec tion  in  case  m ultip le

ADDRESS DECODER

Figure 13. Two Stage Decoding Scheme

devices are sim ultaneously selected, and  because 
the addressing  w ithin such a system  is restricted 
by the extent of the address space occupied by such 
a scheme.

Data Bus Drivers — For user designed logic 
w hich simply receives d a ta  from the M ULTIBUS 
d a ta  lines, th is  portion of the bus interface logic 
m ay only consist of buffers. Buffers are  required 
to ensure th a t  m axim um  allow able bus loading is 
not exceeded by the user logic.

In  system s where the user designed logic m ust 
place d a ta  onto the M ULTIBUS d a ta  lines, three- 
sta te  drivers are required. These drivers should be 
enabled only when a memory read com m and 
(M RDC/) or an  I/O  read com m and (IO R C /) is 
present and  the module has been addressed.

W hen both the read and  write functions are  re
quired, parallel bidirectional bus drivers (e.g., Intel 
8226,8287, etc.) are used. A note of caution  m ust be 
included for the designer who uses th is  type of 
device. A problem m ay arise if d a ta  hold tim e 
requirem ents m ust be satisfied  for user logic 
following w rite operations. W hen bus com m ands 
are used to directly produce both the chip select for 
the bidirectional bus driver and  a strobe to a  la tch  
in the user logic, rem oval of th a t signal m ay  not 
provide the user’s la tch  w ith adequate d a ta  hold 
time. D epending on the specifics of the user logic, 
th is  problem  m ay be solved by p e rm an en tly  
enabling  the d a ta  buffer’s receiver circuits and  
controlling only the direction of the buffers.

Control Signal Logic — The control signal logic 
consists of the circuits th a t forw ard the I /O  and  
mem ory read /w rite  com m ands to the ir respective 
destinations, provide the bus w ith a  tran sfe r 
acknow ledge response, a n d  d rive th e  system  
in terrup t lines.

Bus C om m and Lines
The M ULTIBUS inform ation tran sfe r protocol 
lines (M RDC/, M W TC/, IO R D /. and  IOW C/) 
should be buffered by devices w ith very h igh speed 
sw itching. Because th e  bus DC requirem ents 
specify th a t  each board m ay load these lines w ith 
2.0 mA, Schottky devices are  recom m ended. LS 
devices are  no t recom m ended due to  th e ir poor 
noise im m unity. The com m ands should be gated
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w ith a  s ignal ind icating  the base address h as  been 
decoded to generate read  and  write strobes for the 
user logic.

T ransfer Acknowledge G eneration

The user interface tran sfe r acknow ledge genera
tion logic provides a tran sfe r acknowledge re
sponse, X A C K /, to notify the bus m aster th a t  write 
d a ta  provided by the bus m aster h as been accepted 
or th a t read d a ta  it  h as  requested is availab le  on 
the M ULTIBUS d a ta  lines. X ACK/ allows the bus 
m aste r to conclude its current instruction.

Since XACK/ tim ing requirem ents depend on both 
the CPU of the bus m aster and  characteristics of 
the user logic, a  circuit is needed w hich will provide 
a  range of easily  modified acknowledge responses.

The tran sfe r acknowledge signals m ust be driven 
by three-state drivers w hich are enabled w hen the 
bus in terface is addressed and a com m and is 
present.

In te rru p t S ignal Lines
The asynchronous in te rrup t lines m ust be driven 
by open collector devices w ith a  m inim um  drive of 
16 mA.

In  a  typical N on Bus Vectored In te rrup t system , 
logic m ust be provided to assert and  latch-up an 
in te rru p t s ig n a l. In  ad d ition  to  d riv in g  th e  
M ULTIBUS in te rru p t lines, the latched in terrup t 
signal would be read by an  I /O  operation such as 
read ing  the m odule’s sta tus. The in terrup t signal 
would be cleared by w riting  to the s ta tu s  register.

I I I .  M ULTIBUS™  S LA V E  DESIGN 
EXAM PLE

A M ULTIBUS slave design exam ple h a s  been 
included in  th is application note to reinforce the 
theory previously discussed. The design exam ple 
is of general purpose I /O  slave interface. T his 
design exam ple could easily  be modified to be used 
as a slave mem ory in terface by buffering the 
a d d re s s  s ig n a ls  a n d  u s in g  th e  a p p ro p r ia te  
M ULTIBUS mem ory com m ands. In  addition, to 
help the reader better understand  an  application 
for an  I/O  slave interface, two In tel 8255A Paralle l 
Peripheral In terface (PPI) devices are  show n con
nected to the slave interface.

The design exam ple is show n in both 8 / 16-bit 
version and  an  8-bit version. The 8/16-bit version

is an  I/O  interface w hich will perm it a 16-bit 
m aster to perform 8 or 16 b it d a ta  transfers. 8-bit 
m asters m ay also use the 8/16-bit version of the 
design exam ple to perform 8-bit d a ta  transfers.

The 8-bit version of the design exam ple m ay be 
used by both 8 or 16-bit m asters, bu t will only 
perform 8-bit d a ta  transfers. I t  does no t contain  
th e  c ircu itry  required  to perform  16-bit d a ta  
transfers.

Both the 8/16-bit version and  the 8-bit version of 
the design exam ple were im plem ented on an  iSBC 
905 prototype board. The schem atics for each of 
the exam ples are given in Appendices F  and  G.

F u n c t io n a l /P r o g r a m m in g  C h a r a c te r i s t ic s

T his section describes the organization  of the 
slave  in te rface  from  two p o in ts  o f view , the  
functional point of view and  the program m ing 
characteristics. F irst, the principal functions 
performed by the hardw are  are identified and  the 
general da ta  flow is illustrated . T his point of view 
is in tended as an  introduction to the detailed 
description provided in the next section; Theory of 
O peration. In  the second point of view, the 
inform ation needed by a program m er to access the 
slave is sum m arized.

F u n c tio n a l  D e s c r ip t io n  — The function of th is 
I/O  slave is to provide the bus in terface logic for 
general purpose I/O  functions and  for two In tel 
8255A P aralle l Peripheral In terface (PPI) devices. 
E igh t device selects (port addresses) are availab le  
for general purpose I/O  functions. One of these 
device select lines is used to read and  reset the s ta te  
of an  in te rrup t s ta tu s  flip-flop, the o ther seven 
device selects are unused in th is design. An 
additional eigh t I/O  device port addresses are 
used by the two 8255A devices; four I /O  port 
addresses per 8255A (three I /O  port address for 
the three parallel ports A, B, and  C and  the fourth 
I/O  port address for the device control register).

Figure 14 contains a functional block d iag ram  of 
the slave design example. T his block d iagram  
show s the fundam ental circuit elem ents of a bus 
slave: bidirectional d a ta  bus drivers/receivers, 
address decoding logic and  bus control logic. Also 
show n is th e  address decoding logic for the low 
order four bits, the in te rrup t logic w hich is selected 
by th is decoding logic, and  the two 8255A devices.
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Figure 14. MULTIBUS'" Slave Design Example 
Functional Block Diagram

Programming Characteristics — The slave 
design exam ple provides 16 I /O  port addresses 
w hich m ay  be accessed by user softw are. The 
base address of the 16 contiguous port addresses 
is selected by wire w rap connections on the proto
type board. The wire w rap connections specify 
address bits ADR4/ - A D RB/. They allow the 
se lec tio n  of a b a se  a d d re s s  on a n y  16 b y te  
boundary. Twelve address bits (ADRO/ - A D RB/) 
are used since 16-bit (8086 based) m asters use 12 
bits to specity I /O  port addresses. I f  an  8 b it (8080 
or 8085 based) m aster is used w ith th is slave board, 
the h igh  order address bits (ADR8/  - A D R B /) m ust 
not be used by the decoding circuits; a  wire w rap 
jum per position (ground position) is provided for 
this.

The 16 I /O  port addresses are divided into two 
g ro u p so f8 port addresses by decoding address line 
A DR3/. P o rt addresses XXO - XX7 are used for 
general I /O  functions (XX indicates any  hexi- 
decim al d ig it com bination). P o rt address XXO is 
used for accessing the in te rrup t s ta tu s  flip-flop and

are selected, then  ADRO/ is used to specify which 
of two P P Is  are  selected. I f  the address is even 
(XX8, XXA, XXC, or XXE) then  on eP P I is selected. 
I f  the address is odd (XX9, XXB, XXD, or XXF), 
then  the o ther P P I is selected. ADR1/ and  A D R 2/ 
are connected directly to the PPIs. T able 1 
sum m arizes the I /O  port addresses of the slave 
design example. N ote th a t if a  16-bit m aster is 
used, it is possible to access the slave in  a byte or 
word mode. If word access is used w ith port 
address XX8, XXA, XXC, or XXE, then  16 bit 
tran sfe rs  will occur between the P P Is  and  the 
m aster. These 16 bit tran sfe rs occur because an 
even address h a s  been specified and  the M U LTI
B U S B H E N / s ig n a l in d ic a te s  th a t  a 16-bit 
tran sfe r is requested.

Theory of Operation

In  the preceding section, each of the slave design 
exam ple functional blocks w as identified and  
briefly explained. T his section explains how these 
functions are im plem ented. For detailed circuit 
inform ation, refer to the schem atics in Appendices 
F  and  G. The schem atic in  A ppendix F is on a 
foldout page so th a t the following tex t m ay easily  
be related to the schem atic.

The discussion of the theory of operation is divided 
into five segm ents, each of w hich discusses a 
different function performed by the M ULTIBUS 
slave design example. The five segm ents are:

1. Bus address decoding

2. D ata  buffers

3. C ontrol signals

4. In te rru p t logic

5. PP I operation

E ach  of these topics are discussed w ith regard  to 
th e  8 /1 6 -b it v e rs io n  of th e  d e s ig n  exam p le ; 
followed by a  discussion of the circuit elem ents 
w hich are  required by the 8-bit version of the 
interface.

AP-28A

Bus Address Decoding — Bus address decoding 
is perform ed by two 82051 out of 8 b inary  decoders. 
One decoder (A3) decodes address b its ADR8/  - 
A D R B / and  the second decoder (A2) decodes 
address b its A D R 4/ - A D R 7/. T he base address
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Table 1
SLAVE DESIGN EXAMPLE PORT ADDRESSES

I/O PORT ADDRESS READ WRITE
BYTE ACCESS

XXO Bit 0 = Interrupt Status Reset Interrupt Status

XX1 - XX7 Unused Unused

XX8 Parallel Port A, Even PPi Parallel Port A, Even PPI

XX9 Parallel Port A, Odd PPI Parallel Port A, Odd PPI

XXA Parallel Port B, Even PPI Parallel Port B, Even PPI

XXB Parallel Port B. Odd PPI Parallel Port B, Odd PPI

XXC Parallel Port C, Even PPI Parallel Port C, Even PPI

XXD Parallel Port C, Odd PPI Parallel Port C, Odd PPI

XXE Illegal C ondition Control, Even PPI

XXF Illegal C ondition Control, Odd PPI

WORD ACCESS

XXO Bit 0 - Interrupt Status Reset Interrupt Status

XX2 - XX6 Unused Unused

XX8 Parallel Port A. Even and Odd PPIs Parallel Port A, Even and Odd P P I s

XXA Parallel Port B, Even and Odd PPIs Parallel Port B, Even and Odd PPIs

XXC Parallel Port C. Even and Odd PPIs Parallel Port C, Even and Odd PPIs
XXE Illegal Condition Control, Even and Odd PPIs

XX = Any hex digits, assigned by jumpers; XX defines the base address.

selected is determ ined by the position of wire w rap 
jum pers. The outputs of the two decoders are 
AN Dec! together to form the BASK ADR SELECT 
signal. T his signal specifies the base address 
for a group of 16 1 O ports. U sing the wire wrap 
jum per positions shown in the schem atic, a base 
address of E3 has been selected. Therefore, this 
M ULTIBUS slave board will respond to I O port 
addresses in the E.'JO - E3E range.

If  th is slave board is to be used w ith 6-bit M ULTI
BUS m asters, the high order address bits m ust not 
be decoded. Therefore, the wire w rap jum per 
w hich selects the output of decoder A3 m ust be 
placed in the top (ground) position (pin 10 of gate 
A9 to ground).

The low order 4 address lines (ADRO -ADR3 )are  
buffered and inverted using 74LS04 inverters. 
These address lines are input to an  8205 for 
decoding a chip select for the in terrup t logic; the 
address lines are also used directly by the PPIs. 
LS-Series logic is required for buffering to meet the 
M ULTIBUS specification for I j ( l o w  level inpu t

current). S-Series or stan d ard  series logic will not 
m eet th is specification.

Address decoder A4 is used to decode addresses 
E30 - E37. The CSO. output of this decoder is used 
to select the in terrup t logic, thus I O port address 
E30 is used to read and reset the in terrup t latch. 
The rem ain ing  outputs from decoder A4 (CS1 - 
CS7 ) are not used in th is example. They would 
norm ally be used to select other functions in a 
slave board w ith more capability . Note th a t in the 
schem atic shown in Appendix G for the 8-bit 
version of th is slave design example, the high 
order (ADR8/ - A DRB/) address decoder is not 
included and the BHEN signal is not used.

Data Buffers — Intel 8287 8-bit parallel bi
directional bus drivers are used for the M U LTI
BUS da ta  lines DAT() - DATE. . In the 8 16-bit 
version of the slave board, three 8287 drivers 
are used.

When an  8-bit d a ta  tran sfe r is requested, either 
driver A5, which is connected to on-board data
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lines DO - D7, or driver A 6, w hich is connected to 
on-board d a ta  lines D8 - DF, is used. If a byte 
tran sfe r is requested from an  even address, driver 
A5 will be selected. I f  a byte tran sfe r from an odd 
address is requested, driver A6 will be selected. All 
byte tran sfers take place on M ULTIBUS data  
lines DATO/ - D AT7/. W hen a word (16-bit) 
tran sfe r is requested from an  even address, drivers 
A5 and  A7 will be used. Note th a t if a  user program  
requests a  word tran sfe r from an  odd address, 
16-bit m a s te rs  in  th e  iSBC produc t line will 
actually  perform two byte tran sfe r requests.

The logic w hich determ ines the chip selection 
(8287 input signal OE, output enable) signals for 
the bus drivers uses the low order address bit 
(ADRO/) and  the buffered Byte H igh E nable 
signal (BH EN BL/). Note th a t the M ULTIBUS 
signal B H EN / h as been buffered w ith an  74LS04 
inverter. This is done to m eet the bus address line 
loading specification. The SWAP B Y T E / signal 
w hich is generated is qualified by the BD E N B L / 
signal and  used to select the bus drivers.

The steering  pin for the 8287 drivers is labelled T 
(transm it) and  is driven by the signal RD. W hen 
an  inpu t (read) request is active or w hen neither a 
read or write com m and is being serviced, the 
direction of d a ta  tran sfe r of the 8287 will be set for 
B to A.

The 8287 drivers are set to point IN  (direction B to 
A) w hen no M ULTIBUS I/O  tran sfe r com m and is 
being serviced for two reasons. F irst, if  the  driver 
were pointed OUT (direction A to B) and  a write 
com m and occured, it would be necessary to tu rn  
the buffers IN  and  set the OE (output enable) 
s ignal active before the d a ta  could be transferred  
to the on-board bus. A possibility  of a  “buffer- 
fig h t” could occur in  some designs if  the OE signal 
perm itted an  8287 to drive the M ULTIBUS da ta  
lines m om entarily  before the steering  signal could 
sw itch the direction of the 8287. In  th is case, both 
the M ULTIBUS m aster and  th e  slave would be 
driv ing the d a ta  lines; th is  is no t recom mended. 
(In th is p a rticu la r design, the steering  signal will 
alw ays stabilize before the OE signal becomes 
active.)

The second reason the driver is po in ting  IN  w hen 
no com m and is p resen t is due to the “d a ta  valid  
a fter W RITE” requirem ents of the 8255As. The 
8255A requires th a t d a ta  rem ain  on its  d a ta  lines 
for 30 n s a fter the W RITE com m and (WR a t the 
8255A) is removed. This requirem ent will be m et if 
th e  direction of the 8287 drivers is not sw itched

w hen th e  M ULTIBUS IO W C/ signal is removed 
(W RT/ could have been used to steer the 8287 
instead  of RD); and  if the capacitance of the on
board d a ta  bus lines is sufficient to hold the d a ta  
values on the bus after the 8287 OE signal and  the 
8255A PPI W R T/ signal go inactive. The on-board 
d a ta  bus m ay easily  be designed such th a t the 
capacitance of th e  lines is sufficient to m eet the 30 
ns d a ta  hold tim e requirem ent. In  addition, the 
current leakage of all devices connected to the on
board  bus m ust be kept sm all to m eet the 30 ns da ta  
hold tim e requirem ent.

The 8-bit version of th is design exam ple uses only 
one 8287 instead  of th e  three required by th e  8/16- 
bit version. The logic required to control the sw ap 
byte buffer is also no t necessary. The chip select 
signal used for the 8287 is the BD E N B L / signal.

Control Signals — The M ULTIBUS control 
signals used by th is slave design exam ple are 
IO R C /, IOW C/, and  X ACK/. IO R C / and  IOW C/ 
are qualified by the BASE ADR S E L E C T / signal 
to form th e  signals RD and  WRT. RD and  WRT 
are  used to drive the in te rrup t logic, the PPI logic 
and  the XACK/ (transfer acknowledge) logic.

For th e  X A CK / logic RD and  WRT are  ORed to 
form the BD E N B L / signal w hich is inverted and 
used to drive the CLEAR pin  of a  sh ift register. 
W hen th e  slave board is no t being accessed, the 
CLEAR pin of the sh ift reg ister will be low (BD 
E N B L / is high). T his causes the sh ift register to 
rem ain  cleared and  all outputs of the sh ift register 
will be low. W hen the slave board is accessed, the 
CLEAR pin will be h igh, and  the A and  B inputs 
(which are  h igh) will be clocked to the output pins 
by C C LK /. To select a delay for th e  X ACK/ signal, 
a  jum per m ust be installed  from  one of the sh ift 
register output p ins to the 8089 tri-s ta te  driver. 
E ach  of the sh ift reg ister ou tpu t p ins select an  
in teger m ultiple of C C L K / periods for the signal 
delay. Since the C C L K / signal is asynchronous, 
the actua l delay selected m ay only be specified 
w ith a to lerance of one C C L K / period. In  th is 
exam ple a  delay of 3 - 4 C CLK / periods w as 
selected; w ith a C C L K / period of 100 ns, the 
X A CK / delay would occur som ewhere w ith in  the 
range of 300 - 400 ns from the tim e w hen the 
CLEAR signal goes high.

The control s ignal logic used in  the 8-bit version of 
the slave design exam ple is identical to th e  logic 
used in  the 8/16-bit version.
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I n t e r r u p t  L o g ic  — The in terrup t logic uses a 
74S74 flip-flop to la tch  an  asynchronous in terrup t 
request from some external logic. The Q output 
of the IN TER R U PT REQ U EST LATCH is output 
th rough  an  open collector gate  to one of the 
M ULTIBUS in terrup t lines. The sta te  of the 
IN TER R U PT REQ U EST LATCH is transferred  
to the IN TER R U PT STATUS LATCH w hen a 
read  com m and is performed on I/O  port BASE 
ADDRESS+0 (E30 for the jum per configuration 
shown). The Q output of IN TER R U PT STATUS 
LATCH is used to drive d a ta  line DO of the on
board d a ta  bus by using an  8089 tri-state driver. 
I f  a  user program  perform s an  IN PU T  from I/O  
port E30, d a ta  bit 0 will be set to 1 if the IN T ER 
RUPT REQ U EST LATCH is set.

The purpose of IN TER R U PT STATUS LATCH is 
to m inim ize the possibility  of the asynchronous 
in te rrup t occuring while the in te rru p t s ta tu s  is 
being read by a bus m aster. If  the la tch  w as not 
included in  the design and  an  asynchronous in te r
rup t did occur while a bus m aster is read ing  
M ULTIBUS d a ta  line DATO/, a  d a ta  buffer on the 
m aster could go into a m eta-stable state. By 
adding  the ex tra  latch, w hich is clocked by the 
IO R D / com m and for I /O  port E30, the possibility 
of da ta  line DATO/ chang ing  during a bus m aster 
read operation is elim inated.

The IN TER R U PT REQ U EST LATCH is cleared 
w hen a user program  perform s an  O U TPU T to I/O  
port E30.

T his in te rrup t structure assum es th a t  several 
in te rrup t sources m ay  exist on the sam e M U LTI
BUS in terrup t line (for example, IN T3/). W hen the 
M ULTIBUS m aster gets in terrupted, it m ust poll 
the possible sources of the in te rrup t received and 
after determ ining the source of the in terrupt, it 
m ust clear the IN TER R U PT REQ U EST LATCH 
for th a t p articu lar in terrup t source.

The in te rru p t logic for the 8-bit version of the 
design exam ple is identical to the in te rrup t logic of 
the 8/16-bit version of the design example.

P P I  O p e ra t io n  — Two 8255A Para lle l Peripheral 
In terface (PPI) devices are show n interfaced to 
the slave design exam ple logic. One PPI is con
nected to the on-board da ta  bus lines DO - D7 and  
is addressed w ith the even I /O  port addresses 
E38, E3A, E3C, and  E3E. The second PPI is 
connected to d a ta  bus lines D8 - DF and  is address
ed w ith the odd I /O  port addresses E39, E3B,

E3D, and E3F. The even or odd I O port selection 
is controlled by using the ADRO address line in 
the chip select term  of the PPIs. In addition , the 
odd P P I (A ll)  is selected w hen the B HEN BL 
term  is high. T his occurs w hen the M ULTIBUS 
signal B H E N / is low ind ica ting  th a t a  word 
(16-bit) I/O  instruction  is being executed. W hen 
a word I/O  instruction  is executed, both P P Is  will 
perform the I/O  operation specified.

The specifications of the 8255A device s ta te  th a t 
the address lines AO and  A l and  the chip select 
lines m ust be stab le  before the RD or WR lines are 
activated. The M ULTIBUS specification address 
set-up tim e of 50 ns and the short gate  propagation  
delays in th is design assure th a t the address lines 
are stab le  before RD or WR are active.

The d a ta  hold requirem ents of the 8255A were 
discussed in  a  previous section. The 8255A speci
fication s ta tes  th a t  d a ta  will be stab le  on the da ta  
bus lines a  m axim um  of 250 ns a fter a  READ 
com m and. T his specification w as used to select 
the delay for the X ACK/ signal.

The PPI operation for the 8-bit version of the 
design exam ple is sligh tly  d ifferent th a n  th a t used 
for the 8/16-bit version. The chip select signal for 
the bottom  PPI does no t use the B H EN BL term  
since 16-bit d a ta  tran sfers are no t possible w ith an 
8-bit I /O  slave board. Also, the chip select and  
address signals have been sw apped so the top PPI 
occupies I/O  address range X8 - XB, and the 
bottom  PPI occupies I/O  address range XC - XF (X 
is the base address of the 8-bit version). T his 
sw apping of the address lines w as not necessary; 
however, it w as though t to be more convenient to 
access the P P Is in two groups of 4 contiguous I O 
port addresses.

IV . SU M M A RY

T his application  note has show n the structure  of 
the Intel M ULTIBUS system  bus. The structure 
supports a  wide range of system  modules from the 
In tel OEM M icrocomputer System s product line 
th a t  can  be extended w ith the addition  of user 
designed modules. Because the user designed 
modules are  no doubt unique to particu lar app lica
tions, a  goal of th is  application  note h as been to 
describe in detail the  s ingu la r comm on elem ent - 
th e  b u s  in te rfa c e . M a te r ia l h a s  a lso  been  
presented to ass is t the system s designer to under
stan d in g  the bus functions so th a t successful 
system s in tegration  can be achieved.
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APPENDIX A
PIN ASSIGNMENT OF BUS SIGNALS ON MULTIBUS BOARD P1 CONNECTOR

(COMPONENTSIDE) (CIRCUIT SIDE)

PIN MNEMONIC DESCRIPTION PIN MNEMONIC DESCRIPTION

1 GND Signal GND 2 GND Signal GND
3 + 5V + 5Vdc 4 + 5V + 5Vdc

POWER 5 + 5V + 5Vdc 6 + 5V + 5Vdc
SUPPLIES 7 + 12V + 12Vdc 8 + 12V + 12Vdc

9 -5V -5Vdc 10 -5V -5Vdc
11 GND Signal GND 12 GND Signal GND

13 BCLK / Bus Clock 14 IN IT/ Initialize
15 BPRN / Bus Pri. In 16 BPRO / Bus Pri. Out

BUS 17 BUSY/ Bus Busy 18 BREQ / Bus Request
CONTROLS 19 MRDC / Mem Read Cmd 20 MWTC/ Mem Write Cmd

21 IORC / I/O Read Cmd 22 IOWC / I/O Write Cmd
23 XACK/ XFER Acknowledge 24 INH1 / Inhibit 1 disable RAM

BUS
CONTROLS
AND
ADDRESS

25 Reserved 26 INH2/ Inhibit 2 disable PROM or ROM
27 BHEN / Byte High Enable 28 AD10/
29 CBRQ / Common Bus Request 30 AD11 / Address
31 CCLK/ Constant Clk 32 AD12 / Bus
33 INTA / Intr Acknowledge 34 AD13/

35 INT6 / Parallel 36 INT7 / Parallel

INTERRUPTS 37 INT4/ Interrupt 38 INT5/ Interrupt
39 INT2 / Requests 40 INT3/ Requests
41 INTO / 42 INTI /

43 ADRE / 44 ADR F I
45 ADRC/ 46 ADRD /
47 ADRA / Address 48 ADRB/ Address

ADDRESS 49
51

ADR8/
ADR6/

Bus 50
52

ADR9/
ADR7/

Bus

53 ADR4/ 54 ADR5/
55 ADR2/ 56 ADR3 /
57 ADRO / 58 ADR1 /

59 DATE / 60 DATF /
61 DATC/ 62 DATD/
63 DATA / Data 64 DATB/ Data

DATA 65 DAT8/ Bus 66 DAT9/ Bus
67 DAT6/ 68 DAT7/
69 DAT4/ 70 DAT5/
71 DAT2/ 72 DAT3/
73 DATO / 74 DAT1 /

75 GND Signal GND 76 GND Signal GND
77 Reserved 78 Reserved

POWER 79 -12V -12Vdc 80 -12 V -12Vdc
SUPPLIES 81 + 5V + 5Vdc 82 + 5V + 5Vdc

83 + 5V + 5Vdc 84 + 5V + 5Vdc
85 GND Signal GND 86 GND Signal GND

All Mnemonics ® Intel Corporation 1978
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APPENDIX A (Continued)
P2 CONNECTOR PIN ASSIGNMENT OF OPTIONAL BUS SIGNALS

P IN

( C O M P O N E N T  S ID E )

P IN

( C IR C U IT  S ID E )

M N E M O N IC D E S C R IP T IO N M N E M O N IC D E S C R IP T IO N

1 GND Signal GND 2 GND Signal GND
3 5 VB + 5V Battery 4 5 VB + 5V Battery
5 Reserved 6 VCCPP + 5V Pulsed Power
7 -5 VB -5V Battery 8 -5 VB -5V Battery
9 Reserved 10 Reserved

11 12 VB + 12V Battery 12 12 VB + 12V Battery
13 PFSR/ Power Fail Sense Reset 14 Reserved
15 -12 VB -12V Battery 16 -12 VB -12V Battery
17 PFSN/ Power Fail Sense 18 ACLO AC Low
19 PFIN/ Power Fail Interrupt 20 MPRO/ Memory Protect
21 GND Signal GND 22 GND Signal GND
23 + 15V + 15V 24 + 15V + 15V
25 -15V -15V 26 -15V -15V
27 PAR1/ Parity 1 28 HALT / Bus Master HALT
29 PAR 2/ Parity 2 30 WAIT / Bus Master WAIT STATE
31 32 ALE Bus Master ALE
33 34 Reserved
35 36 Reserved
37 38 AUX RESET/ Reset switch
39 40
40 42
43 > Reserved 44
45 46
47 48
49 50 }  Reserved
51 52
53 54
55 56
57 58
59 60

Notes:
1. PFIN, on slave modules, if possible, should have the option of connecting to INTO/ on P1.
2. All undefined pins are reserved for future use.

All Mnemonics © Intel Corporation 1978
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APPENDIX B
BUS TIMING SPECIFICATIONS SUMMARY

P a r a m e t e r D e s c r ip t io n M in im u m M a x im u m U n its

tBCY Bus Clock Period 100 D .C . ns
<BW Bus Clock Width 0.35 tgCY 0.65 tBCY

•SKEW BCLK/skew 3 ns
'PD Standard Bus 

Propagation Delay
3

lAS Address Set-Up Time 
(at Slave Board)

50 ns

>ds Write Data Set • 
Up Time

50 ns

lAH Address Hold Time 50 ns

tDHW Write Data Hold Time 50 ns
IQXL Read Data Set 

UpTimeToXACK
0 ns |

'DHR Read Data Hold Time 0 65 ns

IX AH Acknowledge Hold 
Time

0 65 ns

tXACK Acknowledge Time 0 'TOUT ns

•CMD Command Pulse 
Width

100 'TOUT ns

t|D Inhibit Delay 0 100
(Recommend < 100 ns)

ns

IXACKA Acknowledge Time of 
of an Inhibited Slave t|AD+ 50 ns 'TOUT

tXACKB Acknowledge Time of 
an Inhibiting Slave

1.5 'TOUT MS

*IAD Acknowledge Disable 
from Inhibit (An 
internal parameter on 
an inhibited slave; 
used to determine 
tXACKA Min )

0 100
(arbitrary)

ns

IAIZ Address to Inhibits 
High delay

100 ns

IlNTA INTA/ Width 250 ns
tCSEP Command Separation 100 ns
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APPENOIX B (Continued)
BUS TIMING SPECIFICATIONS SUMMARY

P a r a m e t e r D e s c r ip t io n M in im u m M a x im u m U n its

'BREQL iBCLK/ to BREQ/ 
Low Delay

0 35 ns

'BREQH iBCLK/ to BREQ/ 
High Delay

0 35 ns

IBPRNS BPRN/ to iBCLK/ 
Setup Time

22 ns

'BUSY BUSY/ delay 
from *BCLK/

0 70 ns

'BUSYS BUSY/ to *BCLK/ 
Setup Time

25 ns

'BPRO iBCLK/ to BPRO/ 
(CLK to Priority Out)

0 40 ns

'BPRNO BPRN/ to BPRO/ 
(Priority In to Out)

0 30 ns

'CBRO iBCLK/ toCBRQ/ 
(CLKto Common 
Bus Request)

0 60 ns

•CBRQS CBRQ/ to IBCLK/ 
Setup Time

35 ns

'CPM Central Priority 
Module Resolution 
Delay (Parallel 
Priority)

0 •b c y ~*breq
-2tpD
- ib p r n s
“ tSKEW

'CCY C-clock Period 100 110 ns

<CW C-clock Width 0.35 tcCY 0.65 tQCY ns

IlNIT IN IT/Width 5 ms

t|N ITS IN IT / to MPRO / 
Setup Time

100 ns

'PBD Power Backup 
Logic Delay

0 200 ns

IPFINW PFIN/ Width 2.5 ms

'MPRO MPRO/ Delay 2.0 2.5 ms

'ACLOW ACLO/ Width 3.0 ms

IPFSRW PFSR/ Width 100 ns

'TOUT Timeout Delay 5 00 ms

'DCH D C. Power Supply 
Hold from ALCO/

3.0 ms

'DCS D.C. Power Supply 
Setup to ACLO/

5 ms
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D r iv e r  1 ,3 R e c e iv e r  2 ,3 T e r m in a t io n

B u s  S ig n a ls L o c a t io n T y p e >OL
M ln m a

'O H
M ln H,

Co
M a x p f

L o c a t io n <IL

M a x m a

<IH C|
M a x p f

L o c a t io n T y p e R U n its

DATO/ — DATF/ 
(16 lines)

Masters 
and Slaves

TRI 16 -2000 300 Masters 
and Slaves

-0.8 125 18 1 place Pu llup 2.2 KQ

ADRO/-ADRB/. Masters TRI 16 -2000 300 Slaves -0.8 125 18 1 place Pullup 2.2 KQ

BHEN/ 
(21 lines)

M RDC/,M W TC/ Masters TRI 32 -2000 300 Slaves 
(Memory; 
memory- 
mapped I/O)

-2 125 18 1 place Pu llup 1 KQ

IORC/.IOW C/ Masters TRI 32 -2000 300 Slaves
(I/O)

-2 125 18 1 place Pu llup 1 KQ

XACK/ Slaves TRI 32 -2000 300 Masters -2 125 18 1 place Pu llup 510 Q

INH1 /, IN H2 / Inhibiting
Slaves

OC 16 300 Inhibited
Slaves
(RAM. PROM. 
ROM, Memory- 
Mapped I/O)

-2 50 18 1 place Pu llup 1 KQ

BCLK/ 1 place 
(Master us)

TTL 48 -3000 300 Master -2 125 18 Mother
board

To + 5V 
ToG N D

220
330

Q
Q

BREQ/ Each
Master

TTL 5 -400 60 Central
Priority
Module

2 50 18 Central 
Priority 
M odu le 
(not req)

Pu llup 1 KQ

B P R O ' Each
Master

TTL 5 -400 60 Next Master 
in Serial 
Priority 
Cham at 
its BPRN  /

-1.6 50 18 (not req)

BPRN / Parallel:
Central
Priority
Module
Se ria lP rev
Masters
BPRO  /

TTL 5 -400 300 Master -2 50 (not req)

BUSY/. CBR Q All Masters O.C. 32 - 300 All Masters -2 50 18 1 place Pu llup 1 KQ

IN IT / Master o.c. 32 - 300 All -2 50 18 1 place Pu liup 2.2 KQ

C CLK / 1 place TTL 48 -3000 300 Any -2 125 18 M other
board

To + 5V 
T oG N D

220
330

Q
Q

INTA/ Masters TRI 32 -2000 300 Slaves
(Interrupting
I/O)

-2 125 18 1 place Pu llup 1 KQ

INTO/ — INT7/ 
(8 lines)

Slaves O.C. 16 - 300 Masters -1.6 40 18 1 place Pu llup 1 KQ

PFSR/ U se r 's  Fron 
Pane l9

TTL 16 -400 300 Slaves.
Masters

-1.6 40 18 1 place Pu llup 1 KQ

PFSN / Power Back 
Up Unit

TTL 16 -400 300 Masters -1.6 40 16 1 place Pu llup 1 KQ

ACLO Power
Supply

O.C. 16 -400 300 Slaves.
Masters

-1.6 40 18 1 place Pu llup 1 KQ

PFIN / Power Back- 
Up Unit

O .C 16 -400 300 Masters -1.6 40 18 1 place Pu llup 1 KQ

M PRO/ Power Back- 
Up Unit

TTL 16 -400 300 Slaves
Masters

-1.6 40 18 1 place Pu llup 1 KQ
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APPENDIX C (Continued)
BUS DRIVERS, RECEIVERS, AND TERMINATIONS

Driver  1,3 R e c e iv e r  2,3 T e r m i n a t i o n

B u s  S i g n a ls L o c a t i o n T ype •OL 'O H C o  
Minma  MinMa Maxpf

L oc a t io n l|L IlH C, 
Maxma Max^g Maxpf

L o c a t i o n T yp e R Uni ts

Aux Reset/ U se r 's
Front
Panel?

Switch
toG N D

Masters -2  50 18 None

Notes:

1. Driver Requ irem ents

1OH = H igh Output Current Drive 
lOL = Low Output Current Drive 
C o  = Capacitance Drive Capability 
TRI = 3-State Drive 
O.C. = Open C o llecto r Driver 
TTL = Totem -pole Driver

2. Rece iver Requ irem ents

l|H = H igh Input Current Load 
l|L = Low Input Current Load 
C i = Capacitive Load

3. T T L  lo w  sta te  m ust be  > -0 .5v bu t £ 0 .8 v  at the  rece ive rs  
T T L  h igh  s ta te  m u st be.^  2.0v bu t < 5.5v at th e  re ce iv e rs

4. F o r  th e  iS B C  80/10 a n d  th e  iS B C  80/10A  u se  o n ly  a 1K p u ll- u p  re s is to r  to  +5v fo r  B C L K /  a n d  C C L K /  te rm in a tion .
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APPENDIX D
BUS POWER SPECIFICATIONS

Standard(P1) Optional (P2)

Analog Power Battery Power Backup

Ground + 5 + 12 -1 2 + 15 -1 5 + 5 + 12 -1 2 - 5

Mnemonic GND + 5V + 12V -  12V + 15V -  15V + 5B + 12B -  12B -5 B
Bus Pins P1 + 1,2. P1 +3,4, P1 + 7,8 P1 + 79, P2 + 23, P2 + 25, P2 + 3.4, P2+ 11, P2+ 15, P2-7.8

11,12, 5,6,81, 80 24 26 5,6 12 16
75,76 82,83,
85,86 84

Nominal Output Ref. + 5.0V + 12.0V -  12.0V + 15.0V -  15.0V + 5.0V + 12.0V -  12.0V -5.0V
Tolerance from 
Nominal' Ref. ±5% ±5% ±5% ±3% ±3% ±5% + 5% ±5% ±5%
Ripple
(Pk-Pk)! Ref. 50 mV 50 mV 50 mV 10 mV 10 mV 50 mV 50 mV 50 mV 50 mV
Transient
Response
Time3

500 /is 500/iS 500 /is 100 fis 100 nS 500 ns 500 p s 500 /is 500 nS

Transient
Deviation* ± 10% ± 10% ±  1 0 % ±  1 0% ±  1 0% ±  1 0 % ±  1 0% ±  1 0% ± 10%

NOTES:

1. Tolerance is w orst case, inc lud ing  in itia l voltage se tting  line and load e ffe c ts  o f power source, tem perature  d rift, and any add itiona l steady 
s ta te  in fluences.

2. As measured over any bandw idth  not to  exceed 0 to  500 kHz.

3. As measured from  the start o f a load change to  the  tim e an o utput recovers w ith in  ±  0.1%  o f fina l voltage.
4. Measured as the peak devia tion from  the in itia l voltage.
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APPENDIX E
MECHANICAL SPECIFICATIONS

0 .0 15  t 0.005 * 4 5° 
2  P L A C E S

N O TES:

[ l >  B O A R D  T H IC K N E S S : 0.062 &> E JE C T O R  T Y P E : S C A N B E  »S 20 3

M U L T IB U S  C O N N E C T O R  86-P IN . 0 .15 6  SP A C IN G 5. BUS D R IV E R S  A N D R E C E IV E R S  S H O U LD  BE L O C A T E D  A S  C L O S E  A S  P O SSIB LE TO
CO C V F B 0 1E 4 3D 0 O A 1 T H E IR  R E S P E C T IV E  M U L T IB U S  PIN  C O N N E C T IO N S
V IK IN G  2 V H 4 3 /1A N E 5

6 B O A R D  S P A C IN G : 0.6
j £ >  A U X IL IA R Y  C O N N E C T O R  60-PIN. 0 100 SP A C IN G

C O C  V P B 0 1B 30 D 0 0 A 1 7. CO M PO N EN T H E IG H T : 0.4

T l H 3 1 113 0  
AMP PE5 14559 8. C L E A R A N C E  ON C O N D U C T O R  N E A R  E D G E S : 0.050
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I. INTRODUCTION
The iSBC 957 Intellec—iSBC 86/12 Interface and 
Execution Package contains the hardware and soft
ware required to interface an iSBC 86/12 Single 
Board Computer with an Intellec Microcomputer 
Development System. The iSBC 957 package gives 
the 8086 user the capability to develop software on 
an Intellec System and then debug this software on 
an iSBC 86/12 board using a program download 
capability and an interactive system monitor. The 
8086 user has all the capabilities of the Intellec sys
tem at his disposal and has the powerful iSBC 
8 6 / 1 2  system monitor commands to use for 
debugging 8086 programs.
The iSBC 86/12 board is an Intel 8086 based proc
essor board which, in addition to the processor, 
contains 32K bytes of dual port RAM, sockets for 
up to 16K bytes of ROM /EPROM, a serial I/O  
port, 24 parallel I/O  lines, 2 programmable 
counters, 9 levels of vectored priority interrupts, 
and an interface to the MULTIBUS™ system bus. 
The iSBC 957 package consists of monitor EPROMs 
for the iSBC 86/12 board, Loader software for the 
Intellec system, four (4) cable assemblies, assorted 
line drivers and terminators, and signal adapters. 
The iSBC 957 package provides the capability of 
downloading and uploading program and data 
blocks between an iSBC 86/12 board and an Intellec 
system. In addition, monitor commands and 
displays may be input and viewed from the Intellec 
system console. The iSBC 957 package, when used 
with the iSBC 86/12 board and an Intellec Micro
computer Development System, provides the user 
with the capability to edit, compile or assemble, 
link, locate, download, and interactively debug 
programs for the 8086 processor. The iSBC 957 
package and the iSBC 86/12 board form an ex
cellent “execution vehicle” for users developing 
software for the 8086 processor regardless of 
whether the users are 8086 component users or 
iSBC 86/12 board users. Using the iSBC 957 pack
age 8086 programs may be debugged at the full 5 
MHz speed of the processor. The recommended 
hardware for the execution vehicle is an iSBC 660 
system chassis with an 8 card slot backplane and 
power supply, an iSBC 032 32K byte RAM memory 
board, the iSBC 957 package, and the iSBC 86/12 
board.
This application note will describe how the iSBC 
957 package may be used to develop and debug 
8086 programs. First a description of the iSBC 
86/12 board will be presented. Readers familiar

with the iSBC 86/12 board may want to skip this 
section. Next follows a detailed description of the 
iSBC 957 package and the iSBC 86/12 system 
monitor commands. A program example of a 
matrix multiplication routine will then be presented. 
This example will contain both assembly language 
and PL/M -86  procedures. The steps required to 
compile, assemble, link, locate and debug the 
program code will be explained in detail. A typical 
debugging session using the iSBC 86/12 system 
monitor will be presented.

II. THE iSBC™ 86/12 SINGLE BOARD 
COMPUTER

The iSBC 86/12 Single Board Computer, which is 
a member of Intel’s complete line of iSBC 80/86 
computer products, is a complete computer system 
on a single printed-circuit assembly. The iSBC 8 6 /  
12 board includes a 16-bit central processing unit 
(CPU), 32K bytes of dynamic RAM, a serial com
munications interface, three programmable parallel 
I/O  ports, programmable timers, priority interrupt 
control, MULTIBUS control logic, and bus expan
sion drivers for interface with other MULTIBUS- 
compatible expansion boards. Also included is dual 
port control logic to allow the iSBC 86/12 board 
to act as a slave RAM device to other MULTIBUS 
masters in the system. Provision is made for user 
installation of up to 16K bytes of read only mem
ory. Figure 1 contains a block diagram of the iSBC 
86/12 board and in Appendix A is a simplified 
logic diagram of the iSBC 86/12 board.

Central Processing Unit
The central processor for the iSBC 86/12 board is 
Intel’s 8086, a powerful 16-bit H-MOS device. The 
225 sq. mil chip contains 29,000 transistors and has 
a clock rate of 5MHz. The architecture includes 
four (4) 16-bit byte addressable data registers, two 
(2 ) 16-bit memory base pointer registers and two (2) 
16-bit index registers, all accessed by a total of 24 
operand addressing modes for complex data han
dling and very flexible memory addressing.
Instruction Set — The 8086 instruction repertoire 
includes variable length instruction format (in
cluding double operand instructions), 8-bit and 16- 
bit signed and unsigned arithmetic operators for 
binary, BCD and unpacked ASCII data, and iter
ative word and byte string manipulation functions. 
The instruction set of the 8086 is a functional 
superset of the 8080A/8085A family and with
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COMPATIBLE
DEVICE

available software tools, programs written for the 
8080A/8085A can be easily converted and run on 
the 8086 processor.
Architectural Features — A 6 -byte instruction queue 
provides pre-fetching of sequential instructions and 
can reduce the 1 .2  p sec minimum instruction cycle 
to 400 nsec by having the instruction already in the 
queue.
The stack oriented architecture facilitates nested 
sub-routines and co-routines, reentrant code and 
powerful interrupt handling. The memory expan
sion capabilities offer a 1 megabyte addressing 
range. The dynamic relocation scheme allows ease 
in segmentation of pure procedure and data for 
efficient memory utilization. Four segment registers 
(code, stack, data, extra) contain program loaded 
offset values which are used to map 16-bit addresses 
to 20-bit addresses. Each register maps 64K-bytes at 
a time and activation of a specific register is con
trolled explicitly by program control and is also 
selected implicitly by specific functions and 
instructions.

Bus Structure
The iSBC 86/12 board has an internal bus for 
communicating with on-board memory and I/O  
options, a system bus (the MULTIBUS) for refer
encing additional memory and I/O  options, and 
the dual-port bus which allows access to RAM 
from the on-board CPU and the MULTIBUS Sys
tem Bus. Local (on-board) accesses do not require 
MULTIBUS communication, making the system 
bus available for use by other MULTIBUS masters 
(i.e. DMA devices and other single board com
puters transferring to additional system memory). 
This feature allows true parallel processing in a 
multiprocessor environment. In addition, the MUL
TIBUS interface can be used for system expansion 
through the use of other 8 - and 16-bit iSBC com
puters, memory and I/O  expansion boards.
RAM Capabilities
The iSBC 86/12 board contains 32K-bytes of 
dynamic read/write memory. Power for the on
board RAM and refresh circuitry may be option
ally provided on an auxiliary power bus, and
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the on-board RAM from the iSBC 86/12’s CPU 
and from any other MULTIBUS master via the 
system bus. The dual port controller allows 8 - and 
16-bit accesses from the MULTIBUS System Bus 
and the on-board CPU transfers data to RAM over 
a 16-bit data path. Priorities have been established 
such that memory refresh is guaranteed by the on
board refresh logic and that the un-board CPU has 
priority over MULTIBUS requests for access to 
RAM. The dual-port controller includes independent 
addressing logic for RAM access from the on-board 
CPU and from the MULTIBUS system bus. The 
on-board CPU will always access RAM starting 
at location OOOOOh - Address jumpers allow on
board RAM to be located starting on any 8 K-byte 
boundary within a 1 megabyte address range for 
accesses from the MULTIBUS system bus. In con
junction with this feature, the iSBC 86/12 board 
has the ability to protect on-board memory from 
MULTIBUS access to any contiguous 8 K-byte 
segments. These features allow multi-processor 
systems to establish local memory for each proces
sor and shared system (MULTIBUS) memory con
figurations where the total system memory size 
(including local on-board memory) can exceed 1 
megabyte without addressing conflicts.
EPROM/ROM Capabilities
Four sockets are provided for up to 16K-bytes of 
non-volatile read only memory on the iSBC 86/12 
board. Configuration jumpers allow read only 
memory to be installed in 2K, 4K, or 8K increments. 
On-board ROM is accessed via 16 bit data paths.
System memory size is easily expanded by the 
addition of MULTIBUS compatible memory boards 
available in the iSBC 80/86 family.
Parallel I/O Interface
The iSBC 86/12 board contains 24 programmable 
parallel I/O  lines implemented using the Intel 
8255A Programmable Peripheral Interface. The 
system software is used to configure the I/O  lines 
in any combination of unidirectional input/output 
and bidirectional ports.
Therefore, the I/O  interface may be customized to 
meet specific peripheral requirements. In order to 
take full advantage of the large number of possible 
I/O  configurations, sockets are provided for inter
changeable I/O  line drivers and terminators.
Hence, the flexibility of the I/O  interface is further
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polarity, and drive/termination characteristics for 
each application. The 24 programmable I/O  lines 
and signal ground lines are brought out to a 50-pin 
edge connector that mates with flat, woven, or 
round cable.

Serial I/O
A programmable communications interface using 
the Intel 8251A Universal Synchronous /Asyn
chronous Receiver/Transmitter (USART) is con
tained on the iSBC 86/12 board. A software 
selectable baud rate generator provides the USART 
with all common communication frequencies. The 
USART can be programmed by the system soft
ware to select the desired asynchronous or syn
chronous serial data transmission technique (in
cluding IBM Bi-Sync). The mode of operation (i.e., 
synchronous or asynchronous), data format, con
trol character format, parity, and baud rate are all 
under program control. The 8251A provides full 
duplex, double buffered transmit and receive capa
bility. Parity, overrun, and framing error detection 
are all incorporated in the USART. The RS232C 
compatible interface on each board, in conjunction 
with the USART, provides a direct interface to 
RS232C compatible terminals, cassettes, and asyn
chronous and synchronous modems. The RS232C 
command lines, serial data lines, and signal ground 
line are brought out to a 26 pin edge connector that 
mates with RS232C compatible fiat or round cable. 
The iSBC 530 teletypewriter adapter provides an 
optically isolated interface for those systems re
quiring a 20 mA current loop. The iSBC 530 
adapter may be used to interface the iSBC 86/12 
board to teletypewriters or other 20 mA current 
loop equipment.

Programmable Timers
The iSBC 86/12 board provides three independent, 
fully programmable 16-bit interval timers/event 
counters utilizing the Intel 8253 Programmable In
terval Timer. Each counter is capable of operating 
in either BCD or binary modes. Two of these 
timers/counters are available to the systems de
signer to generate accurate time intervals under 
software control. Routing for the outputs and gate/ 
trigger inputs of two of these counters is jumper 
selectable. The outputs may be independently 
routed to the 8259A Programmable Interrupt Con
troller and to the I/O  line drivers associated with
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the 8255A Programmable Peripheral Interface, or 
may be routed as inputs to the 8255A chip. The 
gate/trigger inputs may be routed to I/O  termin
ators associated with the 8255A or as output con
nections from the 8255A. The third interval timer 
in the 8253 provides the programmable baud rate 
generator for the iSBC 86/12 RS232C USART 
serial port. In utilizing the iSBC 86/12, the systems 
designer simply configures, via software, each timer 
independently to meet system requirements. When
ever a given time delay or count is needed, soft
ware commands to the programmable timers/event 
counters select the desired function.
The contents of each counter may be read at any 
time during system operation with simple read 
operations for event counting applications, and 
special commands are included so that the contents 
can be ready “on the fly” .

MULTIBUS™ and Multimaster Capabilities
The MULTIBUS system bus features asynchronous 
data transfers for the accommodation of devices 
with various transfer rates while maintaining maxi
mum throughput. Twenty address lines and sixteen 
separate data lines eliminate the need for address/ 
data multiplexing/demultiplexing logic used in 
other systems, and allow for data transfer rates up 
to 5 megawords/sec. A failsafe timer is included in 
the iSBC 86/12 board which can be used to gener
ate an interrupt if an addressed device does not 
respond within 6  msec.
Multimaster Capabilities — The iSBC 86/12 board 
is a full computer on a single board with resources 
capable of supporting a great variety of OEM sys
tem requirements. For those applications requiring 
additional processing capacity and the benefits of 
multiprocessing (i.e., several CPUs and/or con
trollers logically sharing system tasks through 
communication over the system bus), the iSBC 8 6 /  
12 board provides full MULTIBUS arbitration 
control logic. This control logic allows up to three 
iSBC 86/12 boards or other bus masters, including 
iSBC 80 family MULTIBUS compatible 8 -bit single 
board computers, to share the system bus in serial 
(daisy chain) priority fashion, and up to 16 masters 
to share the MULTIBUS with the addition of an 
external priority network. The MULTIBUS arbitra
tion logic operates synchronously with a MULTI
BUS clock (provided by the iSBC 86/12 board or 
optionally provided directly from the MULTIBUS 
System Bus) while data is transferred via a hand
shake between the master and slave modules. This

allows different speed controllers to share resources 
on the same bus, and transfers via the bus proceed 
asynchronously. Thus, transfer speed is dependent 
on transmitting and receiving devices only. This 
design prevents slow master modules from being 
handicapped in their attempts to gain control of the 
bus, but does not restrict the speed at which faster 
modules can transfer data via the same bus. The 
most obvious applications for the master-slave 
capabilities of the bus are multiprocessor configur
ations, high speed direct memory access (DMA) 
operations, and high speed peripheral control, but 
are by no means limited to these three.
Interrupt Capability
The iSBC 86/12 board provides 9 vectored interrupt 
levels. The highest level is the NMI (Non-Maskable 
Interrupt) line which is directly tied to the 8086 
CPU. This interrupt cannot be inhibited by soft
ware and is typically used for signalling catastrophic 
events (e.g., power failure).
The Intel 8259A Programmable Interrupt Con
troller (PIC) provides vectoring for the next eight 
interrupt levels.
The PIC accepts interrupt requests from the pro
grammable parallel and serial I/O  interfaces, the 
programmable timers, the system bus, or directly 
from peripheral equipment. The PIC then deter
mines which of the incoming requests is of the 
highest priority, determines whether this request is 
of higher priority than the level currently being 
serviced, and, if appropriate, issues an interrupt to 
the CPU. Any combination of interrupt levels may 
be masked, via software, by storing a single byte 
in the interrupt mask register of the PIC. The PIC 
generates a unique memory address for each in
terrupt level. These addresses contain unique 
instruction pointers and code segment offset values 
(for expanded memory operation) for each interrupt 
level. In systems requiring additional interrupt 
levels, slave 8259A PIC’s may be interfaced via the 
MULTIBUS system bus, to generate additional 
vector addresses, yielding a total of 65 unique 
interrupt levels.
Interrupt Request Generation — Interrupt requests 
may originate from 16 sources. Two jumper select
able interrupt requests can be automatically gener
ated by the programmable peripheral interface.
Two jumper selectable interrupt requests can be 
automatically generated by the USART when a 
character is ready to be transferred to the CPU or a 
character is ready to be transmitted.
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A jumper selectable request can also be generated 
by each of the programmable timers. Eight addi
tional interrupt request lines are available to the 
user for direct interface to user designated peripher
al devices via the system bus, and two interrupt 
request lines may be jumper routed directly from 
peripherals via the parallel I/O  driver/terminator 
section.
Power-Fail Control
Control logic is also included to accept a power-fail 
interrupt in conjunction with the AC-low signal 
from the iSBC 635 Power Supply or equivalent.
Expansion Capabilities
Memory and I/O  capacity may be expanded and 
additional functions added using Intel MULTIBUS 
compatible expansion boards. High speed integer 
and floating point arithmetic capabilities may be 
added by using the iSBC 310 high speed mathe
matics unit. Memory may be expanded to 1 mega
byte by adding user specified combinations of 
RAM boards, EPROM boards, or combination 
boards. Input/output capacity may be increased by 
adding digital I/O  and analog I/O  expansion 
boards. Mass storage capability may be achieved 
by adding single or double density diskette con
trollers. Modular expandable backplanes and card- 
cages are available to support multiboard systems.
III. THE iSBC™ 957 PACKAGE
The iSBC 957 Intellec—iSBC 86/12 Interface and 
Execution Package extends the software develop
ment capabilities of the Intellec Microcomputer 
Development systems to the Intel 8086 CPU. Pro
grams for the 8086 may be written in PL/M -86  
and/or assembly language and compiled or as
sembled on the Intellec system. These programs 
may then be downloaded from an Intellec ISIS-II 
disk file to the iSBC 86/12 board for execution and 
debug. The programs will execute at the full 5 MHz 
clock rate of the 8086 CPU with no speed degrada
tion caused by the iSBC 957 hardware or software. 
Special communication software allows transparent 
access to the powerful interactive debug commands 
in the iSBC 86/12 monitor from the Intellec con
sole terminal. These debug commands include 
single-step instruction execution, execution with 
breakpoints, memory and register displays, memory 
searches, comparison of two memory blocks and 
several other commands. After a debugging session, 
the debugged program code may be uploaded from 
the iSBC 86/12 board to an Intellec ISIS-II disk 
file.

The iSBC 957 Intellec—iSBC 86/12 Interface and 
Execution Package consists of the following:
a. Four Intel 2716 EPROMs which contain the sys

tem monitor program for the iSBC 86/12 board.
b. An ISIS-II diskette containing loader software 

for execution in the Intellec which provides for 
communications between the user or an Intellec 
ISIS-II file and the iSBC 86/12 board. Also in
cluded on the diskette are a library of routines 
for system console I/O.

c. Four cable assemblies used for transmitting com
mands, code and data between the iSBC 86/12 
board and the Intellec system.

d. An iSBC 530 adapter assembly which converts 
serial communications signals from current loop 
to RS232C.

e. Line drivers and terminators used for the iSBC 
8 6 / 1 2  parallel ports.

f. A small printed circuit board which is plugged 
into an iSBC 86/12 receiver/terminator socket 
and is used when program code is downloaded 
or uploaded using the parallel cable.

iSBC™—Intellec™ Configurations
There are two distinct functional configurations for 
the iSBC 957 package; one configuration for the 
Intellec Series II, Models 220 or 230 development 
systems and another for the Intellec 800 series 
development systems.

Inteliec Series II System Configurations
When used with Intellec Series II Model 220 or 
230 systems, a set of cables are used to connect the 
serial I/O  port edge connector on the iSBC 86/12 
board and the SERIAL 1 output port on the Intellec 
system. This configuration is shown in Figure 2. 
How this system functions is explained in the fol
lowing paragraphs.
The SERIAL 1 port on the Intellec Series II Model 
220 or 230 system is an RS232 port which is de
signed for use with a data terminal. This port may 
be used on the Intellec system for interfacing to 
RS232 devices such as CRT terminals or printers. 
The serial ports on the iSBC 86/12 board and the 
Intellec systems are connected as shown in the 
Figure 2. The flat ribbon cable connected to the 
iSBC 86/12 board has an edge connector for con
necting to the board on one end and a standard 
RS232 connector on the other end. The second 
cable, the RS232 Up/Down Load cable, has an 
RS232 connector on each end. This cable, however,

A-214



AP-43

Figure 2. Intellec™ Series II Model 220, 230—iSBC™ 86/12 Configuration

is not a standard cable with the RS232 signals bussed 
between identically numbered pins on each of the 
connectors. The schematic for the cable is shown in 
Figure 3. Note that the TXD (transmit data) and 
the RXD (receive data) and the RTS (ready to send) 
and the CTS (clear to send) signals have been 
crossed. This is done because both the Intellec system 
and the iSBC 86/12 board are configured to act as 
data sets which are communicating with data 
terminals. Swapping these signals permits the units 
to communicate directly with no modifications to 
the Intellec or iSBC 86/12 systems themselves.

FGD (FRAME GROUND) 

TXD (TRANSM IT DATAI 

RXD (RECEIVE DATA) 

RTS (READY TO SEND) 

CTS (CLEAR TO SEND) 

SGD (SIGNAL GROUND)

Figure 3. Intellec™-iSBC™ 86/12 RS232 
UP/DOWN LOAD Cable

The software in the Intellec system accepts characters 
output from the iSBC 86/12 board through the 
Intellec SERIAL 1 port. The software then outputs 
these characters on the CRT monitor built into the 
Intellec Series II Model 220 or 230. In a similar 
fashion, characters input from the Intellec key

board are passed down the serial link to the iSBC 
86/12 monitor program. The integrated CRT 
monitor and keyboard on the Intellec system then 
becomes the “virtual terminal” of the iSBC 86/12 
monitor program. If this were the only function of 
the iSBC 957 package, there would be no real 
benefit to the user. However, when the “virtual 
terminal” capability is combined with the capa
bility to download and upload program code and 
data files between the Intellec ISIS-II file system 
and the iSBC 86/12 board, a very powerful soft
ware development tool is realized. The software in 
the Intellec system must examine the commands 
which are input from the keyboard and in the case 
of the LOAD and TRANSFER commands (see 
later sections for details on monitor commands), 
the software must open and read or write ISIS-II 
disk files.
Transfer rates using Intellec Series II Model 220 or 
230 system are 9600 baud when transferring hexa
decimal object files to or from a disk file and 600 
baud when transferring commands between the 
iSBC 86/12 board and the CRT monitor and key
board. With a 9600 baud transfer rate, it is pos
sible to load 64K bytes of memory in about four 
minutes.

Intellec 800 System Configurations
The iSBC 957 package may be used with the In
tellec 800 system in four different configurations. 
These four configurations are determined by two
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variable is whether or not a parallel cable is used 
for uploading and downloading hexadecimal object 
files. Figures 4A and 4B illustrate the four 
configurations.
In Figure 4A, the configuration shows the TTY 
port of the Intellec 800 system connected to the 
iSBC 86/12 serial port using two cables and an 
iSBC 530 teletypewriter adapter. The TTY port of 
the Intellec 800 system is designed for using a 
teletypewriter as the Intellec console device. To use 
this port for communication with the iSBC 86/12 
board, the current loop TTY signal must be con
verted to an RS232 compatible voltage signal. This 
function is performed by the iSBC 530 adapter.

AP-43_____  ____ _ i-Ajax* cauic ucsciiueu
above. A schematic for this cable and all other 
components of the iSBC 957 package are included 
with the delivered product.
The transfer rate for both commands and data 
when the TTY port is connected to the iSBC 86/12 
board is 110 baud. This means to download even 
moderately sized programs would require large 
amounts of time, several minutes or even hours. 
However, much faster times may be achieved by 
using the parallel ports of the iSBC 86/12 board 
and the Intellec system for downloading program 
files. This parallel port used on the Intellec 800 
system is the output port labeled PROM which is 
normally used with the Universal Prom Pro-

Figure 4A, 4B. Intellec™ 800—iSBC™ 86/12 Configurations
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grammer. A cable is connected between the In- 
tellec PROM port and the parallel I/O  port, J1 of 
the iSBC 86/12 board. Parallel port B of the iSBC 
8 6 / 1 2  board is used for the 8-bit byte transfers 
from the Intellec system to the iSBC 86/12 board, 
port A is used for the byte transfers from the iSBC 
86/12 board to the Intellec system and port C is 
used for controlling the byte transfers. A special 
status adapter piggyback board must be inserted 
into a receiver/terminator socket of the iSBC 86/12 
board. This status adapter circuit is required to 
provide the necessary handshaking signals from the 
iSBC 86/12 parallel ports to the Intellec PROM 
port.
The transfer rate achieved when downloading and 
uploading hexadecimal object files with the parallel 
cable is approximately 1,000 bytes per second. The 
time required to load 64K bytes of memory is 
approximately VA minutes.
Figure 4B shows a configuration with the Intellec 
800 CRT port connected to the serial port of the 
iSBC 86/12 board. The TTY port of the Intellec 
800 system is connected to a teletypewriter or some 
other current loop device to act as a system con
sole. The optional parallel load cable is also shown. 
The cables used for this configuration are the same 
as those used with the Intellec Series II Configur
ations. Command transfer rates require 110 baud 
because the TTY port of the Intellec 800 system is 
used for communicating with the console device. 
However, hexadecimal object files can be loaded at 
9600 baud since this operation uses only the Intellec 
to iSBC 86/12 RS232 link.
It is also possible to download files with the parallel 
cable, this mode being somewhat faster than the 
serial download mode (2Vi minutes versus four 
minutes for 64K bytes of memory). Table I con
tains a summary of the command and memory 
transfer rates for each of the Intellec-iSBC 86/12 
configurations.
Comparing the Intellec 800 configurations shown in 
Table 1 and in Figures 4A and 4B it should be 
noted:
1. Using the TTY port (Figure 4A) of the Intellec 

800 system for communications with the iSBC 
8 6 / 1 2  board (essentially) requires installation of 
the parallel cable and jumper modifications for 
downloading and uploading files, and thus, pre
vents the use of the parallel ports for other I/O  
functions.

2. Using the CRT port (Figure 4B) of the Intellec

800 system for communication with the iSBC 
8 6 / 1 2  board provides for a fast serial download 
capability, thus freeing the parallel ports for 
other uses. However, this configuration requires 
a teletypewriter or a CRT capable of accepting 
a current loop input signal as the Intellec system 
console.

Table 1
COMMAND AND MEMORY TRANSFER RATES FOR 

INTELLEC—iSBC™ 86/12 CONFIGURATIONS

IN T E L L E C  
S E R IE S  II  2 2 0 / 2 3 0  

S E R I A L  P O R T  

T O  iS B C  8 6 / 1 2

IN T E L L E C  8 0 0  
T T Y  P O R T  

T O  iS B C  8 6 / 1 2

IN T E L L E C  8 0 0  
C R T  P O R T  

T O  iS B C  8 6 / 1 2

Effective 
Command Rate 600 Baud 110 Baud 110 Baud*

Load/Transfer 
Rate 

Serial 
Parallel

9600 Baud 
N /A

110 Baud 
1K bytes/sec**

9600 Baud 
1K bytes/sec**

Approximate Time 
to load 64K bytes 
of memory 

Serial 
Parallel

4 minutes 
N /A

5 hours 
2.5 minutes

4 minutes 
2.5 minutes

•The actual baud rate of the Intellec —iSBC 86/12 link is 9600 baud, but the effective 
command rate is determined by the slower Intellec — console serial link.

"Transmission rate over the parallel link is determined by the speed of the two processors 
and is approximately 1K bytes per second.

IV. THE iSBC 957—iSBC 86/12 MONITOR 
PROGRAM

The iSBC 86/12 monitor program is an EPROM 
resident program which facilitates debugging of 
user written programs. The monitor program used 
in the iSBC 86/12 board with the iSBC 957 pack
age is the same monitor program written to inter
face the iSBC 86/12 directly to an RS232C data 
terminal. When interfaced directly to a terminal, 
the iSBC 86/12 board functions in a stand-alone 
environment communicating directly with the user 
via the data terminal. A user may use the monitor 
for entering small programs in hexadecimal format, 
executing a program, examining registers and 
memory contents, etc.
To use the monitor program with an Intellec system, 
the proper cables must be installed and the iSBC 
957 Loader program must be loaded into Intellec 
memory and executed. The Loader program is resi
dent on a file named SBC861, and when executed, 
the Loader outputs a sign-on message. Next, the 
iSBC 86/12 monitor program must be started and 
the baud rate of the iSBC 86/12 to Intellec serial 
communications link must be determined. This is 
done by pressing the RESET switch on the chassis
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Table 2
MONITOR COMMAND LIST

C O M M A N D FUNCTION AN D SYNTAX

L Load Hex Loads hexadecimal object file from Intellec into iSBC
Object File 86/12 memory using serial (S) or parallel (P) mode. 

l {s |p}  ,< filename>[,<bias addr>]<cr>

T Transfer Hex Transfers blocks of iSBC 86/12 memory to Intellec as
Object File a hex object file using serial (S) or parallel (P) mode. 

T(X) |s |p |  ,<start addr >< end addr>,<filename> 
[,<exec qddr>]<cr>

E Exit Exits the loader program and returns to ISIS.

E <cr>

N Single Step Executes one user program instruction. 

N (<addr >],[(< addr> ] ,[*< cr >

G Go Transfers control of the 8086 CPU to the user program 
with up to 2 optional breakpoints.

G[<start addr>] [,<break 1 addr>
|,<break 2  addr>\ l <cr>

S Substitute Displays/modifies memory locations in byte or word
Memory format.

S[W]<adt//->,[ [new contents],]'<cr>

X Examine/Modify Displays/modifies 8086 CPU registers.
Register X(<rep>] [\<new contents>],]*<cr>

D Display Memory Displays contents of a memory block in byte or word 
format.

D[W]<sfa/T addr>\<end addr>]<cr>

M Move Moves contents of a memory block.

M < start addr>, <end addr >, < destination addr> <cr>

C Compare Compares two memory blocks.

C<start addr>,<end addr>,<destination addr><cr>

F Find Searches a memory block for a byte or word constant. 

F[W)< start addr>< end addr>,<data><cr>

H Hex Arithmetic Performs hexadecimal addition and subtraction. 

H <data 1>,<data 2><cr>

1 Port Input Inputs and displays byte or word data from input 
port.

l[W]<po/T addr>,[,]'<cr>

0  Port Output Outputs byte or word data to output port. 

0[W)<po/T addr>,<data>[,<data>]*<cr>

Syntax conventions used in the command structure are as follows:

[A] indicates that "A "  is optional

[A ]* indicates one or more optional iterations o f "A "

<B> indicates that "B "  is a variable 
|A |B | indicates "A "  or "B "
<cr> indicates a carriage return is entered

Numeric arguments can be expressed as a number, the contents of a register, 
or the sum or difference of numbers and register contents. Thus, addresses 
and data can be expressed as follows:

addr : :=  /<expr>: ]<expr>

expr : :=  <number>\<register>\<expr> |+  | <number>\

< expr > {+  I < register >

register : :=  AX|BX|CX|DX|SP|BP|SI|DI|CS|DS|SS|ES|IP|FL 
number : :=  <d ig it>|<digit><number> 

digit : :=  0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F

Numeric fields within arguments are entered as hexadecimal numbers. The 
valid range of numerical values is from OOOO-FFFF. Larger numbers may be 
entered, but only the last four digits (or two in the case of byte values) are 
significant. Leading zeros may be omitted.

An address argument consists of a segment value and an offset value separ
ated by a colon (:). If a segment value is not specified, the default segment 
value is the CS register value.

containing the iSBC 86/12 board and typing two 
“U”s on the Intellec console. The ASCII uppercase 
character U has a binary pattern of alternating ones 
and zeros, the iSBC 86/12 monitor uses this pattern 
to determine the baud rate of the serial link. After 
the baud rate has been determined, the monitor 
program outputs a sign-on message to the console. 
An example of loader program execution and 
monitor program initialization is shown below (user 
entered characters are underlined).
:F1:SBC861
ISIS-II iSBC 86/12 LOADER, Vx.x
(user resets iSBC 8 6 /12 board and types two “U”s)
iSBC 86/12 MONITOR, Vy.y
The monitor prompts with a period when it is 
ready for a command. The user can then enter a 
command file, which consists of a one- or two- 
character command followed by zero, one, or more 
arguments. The command may be separated from 
the first argument by an optional single space; a 
single comma is required as a delimiter between 
arguments. The command line is terminated by a 
carriage return or a comma depending on the com
mand, and no action takes place until the command 
terminator is sensed. The user can cancel a com
mand before entering the command terminator by 
pressing any illegal key (e.g., rubout or Control-X).
Table 2 contains a summary of the loader and 
monitor commands. These commands will not be 
explained in detail; instead, the next section of the 
application note will show examples of using these 
loader and monitor commands. The iSBC 957 
User’s Guide referenced at the front of this docu
ment does, however, contain a complete description 
of each of the monitor and loader commands.
Table 3 contains a list of the 8086 hardware registers 
and abbreviations used by the monitor program.

Table 3
8086 CPU REGISTERS

REGISTER NAME ABBREVIATION

Accum ulator A X
Base BX
Count CX
Data DX
Stack Pointer SP
Base Pointer BP
Source Index SI
Destination Index Dl
Code Segm ent CS
Data Segment DS
Stack Segment SS
Extra Segment ES
Instruction Pointer IP

Flag FL
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ON-BOARD 
EPROM 

I8K bytes)

ON-BOARD
RAM

(32K bytes)

INTR 7

INTR 6

INTR 5

INTR 4

INTR 3

INTR 2

INTR 1

INTR 0

RESERVED
FOR

FUTURE 
USE BY 
INTEL

Interrupt on Overflow

One-Byte Intr Instruction

Non-Maskable Intr

Single Step

Divide by Zero

9C „

» H

*>H

8Ch

88h

» H

'<>H

CH

8H

*H

Oh

8259a  PIC 

VECTORS

Figure 5. Memory Map of iSBC™ 86/12 Memory With Monitor Program

Figure 5 contains a memory map of the iSBC 
86/12 memory with the monitor program. Note 
that the monitor uses the top 8K bytes of memory 
for its program code and the first 384 bytes of 
memory (locations 0 hex to 17F hex) for monitor 
and user stack, data and interrupt vectors. When 
the monitor program is reset, the segment registers, 
the IP and the flags are set to 0; and the SP is set 
to 01C0H allowing 64 bytes for the user’s stack. If 
64 bytes is not sufficient for the user’s application 
program, the SP should be set to some other value. 
The monitor program sets the single-step, one-byte 
instruction trap and non-maskable interrupt vectors 
to monitor entry points. The monitor also sets the 
8259A Priority Interrupt Controller to fully nested 
mode with level 0  at the highest priority and all 
interrupts unmasked. The eight interrupt vector 
addresses for the 8259A are also set to addresses in 
the monitor. User programs may change the 8259A 
interrupt vectors to interrupt service routine ad
dresses within the user programs; it is not necessary 
for users to program the 8259A chip directly. When 
an interrupt occurs, control passes to either the 
monitor or directly to user code depending on the 
address stored in the vector location. When the 
monitor responds to an interrupt, it acknowledges 
the interrupt and displays the interrupt level, CS 
and IP register values and next instruction byte on

the system console (e.g., I = 3 @ 100:230F F5). 
When a user requests a breakpoint with a “G” 
command, the monitor inserts the single byte 
instruction trap instructions (INT 3) in the location 
where the breakpoint is requested. It is also possible 
for the user to code an INT 3 instruction in his 
program. When a user coded INT 3 instruction is 
executed, the monitor will be re-entered and a line 
with the format @<CS Value>:<IP Value> i n 
struction byte>will be displayed (e.g., @ 1200:3F02 
F5).
Included on the diskette with the Loader program 
are two libraries containing I/O  routines for the 
console. The library files are named SBCIOS.LIB 
and SBCIOL.LIB; they contain similar routines. 
The routines in SBCIOS.LIB are written to be 
called with intrasegment subroutine calls, a PL/M- 
8 6  module compiled with the “small” control 
generates this type of call. The routines in 
SBCIOL.LIB are written to be called with interseg
ment subroutine calls, a PL/M -86  module com
piled with either the “medium” or “large” control 
generates this type of call.
The console input output routines, Cl and CO, 
contained in the library should be used when per
forming character input and output on the console. 
Example PL/M -8 6  calls to the two routines are:
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DECLARE X BYTE;
END CO;

DECLARE INPUTSCHAR,
OUTPUTSCHAR BYTE;

INPUTSCHAR = Cl;

CALL CO(OUTPUTSCHAR);

General Comments on Use of the iSBC 957 Package
1. If the iSBC 86/12 board is reset any time after 

the initial baud rate search, it is not necessary to 
reload the iSBC 957 Loader program or to 
download the program code a second time to the 
iSBC 86/12 board. It is only necessary to re
establish the communications link by typing two 
“U”s for the baud rate search.

2. The iSBC 86/12 board should not be plugged 
into an available card slot in an Intellec chassis; 
a separate chassis should be used. There are at 
least three reasons for this:
a. There is only one RESET signal available on 

the Intellec system bus. Thus, each processor 
may not be reset independently. This means 
that the iSBC 86/12 board cannot be reset 
without re-booting the ISIS-II operating sys
tem and restarting the iSBC 957 Loader.

b. The Intellec system uses five of the eight avail
able interrupts on the system bus. This severely 
restricts the range of interrupts available to 
the iSBC 86/12 board. Also, the iSBC 86/12 
board cannot turn-off the interrupt lamps on 
the Intellec front panel.

c. The iSBC 86/12 board may address up to 1 
Megabyte of memory using a 20 bit address. 
Many Intellec systems contain boards which 
generate and decode only the low order 16 
address bits. For example, the iSBC 016 mem
ory expansion board and the Intellec 800

systems is aitncuit since the boards which de
code only 16 bits will force “holes” in the 
address space above 64K.

3. The iSBC 86/12 board is delivered with two 
inputs to the 8259A Priority Interrupt Controller 
connected. Interrupt request 2 (IR2) is connected 
to the counter 0 output of the 8253 Program
mable Interval Timer. IR5 is connected to the 
INT5/signal of the MULTIBUS System Bus. If 
these interrupts are not desired, the wire wrap 
jumpers making the connections should be re
moved from the iSBC 86/12 board. A particular 
problem may exist with the counter 0  connection 
to IR2. If the 8253 counter 0 is not specifically 
initialized with software, a low frequency square 
wave output will exist at counter 0’s output. This 
may cause unwanted interrupts when interrupts 
are enabled by user programs.

4. If the iSBC 8 6 /12 board is used in a system with 
expansion boards, it is important that the MUL
TIBUS bus exchange pins be properly jumpered. 
For example, if the iSBC 86/12 board is used 
with an iSBC 032 expansion memory board in a 
system, the BPRN/ MULTIBUS pin for the 
iSBC 86/12 board should be grounded.
In addition, if any interrupts are used with the 
iSBC 86/12 board the BPRN/ pin must be 
grounded. This is true in both single and mul
tiple board systems.

5. Certain user systems require more than one single 
board computer in the system for performing the 
functions required by the application. The MUL
TIBUS System Bus has been specifically designed 
to permit multiple CPU boards to communicate 
and to share system resources. However, de
bugging systems with multiple CPUs has always 
posed somewhat of a problem. The iSBC 957 
package provides a solution to this problem. The 
serial cable which connects the iSBC 86/12 
board to the Intellec system may be removed 
after the program has been downloaded to the 
iSBC 86/12 board. A console CRT may then be 
connected directly to the iSBC 86/12 board and 
the monitor program may be used to debug the 
program running on the board. Other iSBC 
8 6 / 1 2  boards may also be downloaded from the 
Intellec system and then switched to their own 
local terminals. An 8-bit processor board, such 
as the iSBC 80/30 board, may also be included
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in the system and ICE-85™ may be used for 
debugging the iSBC 80/30 program concurrently 
with the iSBC 86/12 programs. Using this 
scheme, it is possible to debug a system which 
has several CPU boards by setting breakpoints 
and using other debugging features on each of 
the individual CPUs.

V. MATRIX MULTIPLICATION EXAMPLE
To illustrate how the iSBC 957 package can be used 
to assist in the writing and debugging of 8086 pro
grams on the iSBC 86/12 board, an example pro
gram of a matrix multiplication will be presented. 
The example chosen has been intentionally kept 
simple and straightforward. The emphasis of this 
section will be to document the steps required to as
semble, compile, link, locate and debug software 
using an Intellec system, the iSBC 957 package and 
the iSBC 86/12 board. Part of the example will be 
written in 8086 assembly language and part in PL/ 
M-8 6 .
The main program is written in PL/M-8 6 . The 
main program first performs some initialization 
and the matrix multiplication, then the program 
calls an assembly language procedure (subroutine), 
a PL/M -8 6  procedure and the console output pro
cedure CO supplied in the I/O  library on the iSBC 
957 diskette. A flow diagram for the example 
program is shown in Figure 6 .
Explanation of the Program Code
The program code is contained in three software 
modules EXECUTIONSVEHICLE, FIND, and 
SBCCO. EXECUTIONSVEHICLE contains the 
main program coded in PL/M -8 6  and the binary 
to ASCII conversion procedure BINSDECSASC 
also coded in PL/M-8 6 . The module FIND con
tains the assembly language procedure FINDSMX 
which searches a matrix for its maximum value. 
The module SBCCO resides in the library of con
sole I/O  routines supplied with the iSBC 957 pack
age. The procedure CO will be used from this 
library.
The program code for the EXECUTIONSVEHICLE 
and FIND modules will be explained in the follow
ing paragraphs. Appendix B contains compilation 
and assembly listings for the two modules; also 
contained in Appendix B is a memory and debug 
map for the linked modules. The listings contain 
circled reference letters (e.g., (X)) which are referred 
to by the code description below. The listings in the 
appendix have been printed on fold-out pages so 
that they may easily be seen when reading the text.

Figure 6.
Flow Diagram of Matrix Multiplication Example

Much of the description given below assumes that 
the reader is familiar with the PL/M -86  language 
and compiler, the 8086 assembler, and the link and 
locate program QRL8 6 . It is recommended that the 
reader have at least a cursory knowledge of these 
subjects. The Intel literature for these subjects is 
listed near the front of this application note.

The EXECUTIONSVEHICLE Module
(A) The first section of the module includes intro

ductory comments and then statements to de
clare the matrices, other variables, and pro
cedures used in the program. Note that the 
matrix dimensions are declared using the literals 
M, N, and P which are initially set to 6 , 5, and
3. Later in this note, other values for M, N, 
and P will be used.

(B) The next section of code contains the state
ments which initialize the two matrices that will 
be multiplied XSROW and YSROW.
As a result of this initialization, the two ma
trices will contain values as shown in Figure 7.
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0 0 0 0 0 io
l____

1 1 1 1 1 0 - 1  - 2

2 2 2 2 2 0 - 1  - 2

3 3 3 3 3 0 - 1  - 2

4 4 4 4 4

5 5 5 5 5

X$ROW (6X5)

0 -1 - 2  

Y$ROW (5X3)

Figure 7.
X$ROW and Y$ROW Matrices After Initialization

(c )  The next program section performs the matrix 
multiplication. The algorithm required to mul
tiply two matrices X and Y, storing the result in 
a third matrix Z is: 

n
^mp = 2D *m i *^>P 

i = 1

Assuming X to be 6X5 matrix and Y a 5X3 
matrix then
Z„ = X„Y„ + X12Y2I + X„Y„ + XI4X41 + X,5Ys,
Thus, the upper left term is equal to the sum of 
the products of the top row of the X matrix 
times the left column of the Y matrix. The re
sult that is obtained by multiplying the two 
matrices XSROW and YSROW after they are 
initialized as explained above, is shown in 
Figure 8 .

0 0 0

0 - 5 - 1 0

0 -  10 - 2 0

0 - 1 5 - 3 0

0 - 2 0 - 4 0

0 - 2 5 - 5 0

Z$ROW (6X3)

Figure 8. Result of Multiplying the Initialized Matrices 
XSROW and YSROW

(5) The external assembly language procedure 
FINDSMX is called to determine the maximum 
value in the matrix. The procedure is a typed 
procedure and returns the maximum value to 
the calling program which stores it in the inte
ger variable MAX.

(e ) The maximum value is then converted to a six
(6 ) digit ASCII character string by the pro
cedure BINSDECSASC. The character string is 
stored in the array MAXSASCSARRAY, which 
contains the sign of the number and five (5) 
digits for the magnitude.

(F )̂ Finally, the characters “MAX VALUE = ” are 
output on the system console followed by the 
6  ASCII characters containing the maximum 
value. The PL/M -86  built-in procedure SIZE 
returns the number of bytes of the array TEXT 
as a word value. The PL/M -8 6  built-in pro
cedure SIGNED changes the type of the value 
from WORD to INTEGER. This is required so 
that the type of the arguments in the DO state
ment agree. The console output procedure CO 
is used to output the characters on the system 
console.

(5 ) Also contained in the module MATRIX.PLM 
is the binary to ASCII conversion procedure 
BINSDECSASC. The first portion of the code 
contains the comments explaining the para
meters and the calling sequence followed by the 
declarations. Note that the address of the array 
where the characters are to be stored is passed 
to the procedure and that the characters will be 
stored in the array using based variables. The 
next section of the code stores either a + or -  
sign in the first character position of the ASCII 
array and stores the absolute value of VALUE 
in the variable TEMP. Finally, the binary value 
is converted to ASCII using the algorithm 
explained in the comments. The MOD operator 
returns the remainder of the division by 10. The 
UNSIGN built-in procedure is required to 
change the type of the expression from INTE
GER to WORD.

The FIND Module
(h) The FIND module contains the assembly lan

guage procedure FINDMX. The calling se
quence and the parameters are explained in the 
comments at the beginning of the listing. Note 
that the label FINDMX has been declared 
PUBLIC so the link program can fill in its 
address in the CALL statement in the main 
program of module EXECUTIONSVEHICLE.

@  The FIND module will contain three segments: 
a data segment, a stack segment and a code 
segment. It will be both convenient and prag
matic to append these three segments to the 
code, data and stack segments created by the
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compiler for the EXECUTIONSVEHICLE 
module. To accomplish this, the three segments 
must be given the same SEGMENT and CLASS 
names as those given these segments by the 
compiler. The SEGMENT and CLASS names 
used by the compiler are CODE, DATA, and 
STACK. The GROUP statements are used to 
place the segments DATA and STACK in the 
group DGROUP and the segment CODE in the 
group CGROUP. These group definitions con
form with the group definitions generated by 
the PL/M -86  compiler when the SMALL size 
control option is used. A group is a collection 
of segments which requires less than 64K bytes 
of memory.
The ASSUME directive informs the assembler 
that the DS and SS registers will contain the 
base address of DGROUP and the CS register 
will contain the base address of CGROUP. 
This information will be used by the assembler 
when constructing machine instructions.

(7) The first segment appearing in the module is 
the data segment. The order of the segments is 
arbitrary, although it is recommended that the 
data segment precede the code segment to mini
mize forward references to variables which may 
cause the assembler to generate longer instruc
tion codes. The data segment is declared 
PUBLIC, aligned on a WORD boundary and 
given both a segment and class name of DATA. 
Then follows the contents of the segment. In 
this particular example, only one word of stor
age is required. The ENDS directive indicates 
the end of the segment.

(k)  Next comes the stack segment which is given 
the segment name of STACK, the combine- 
type attribute of STACK and the class name of 
STACK. The combine-type attribute of STACK 
assures that the stack storage required in this 
module will be appended to the storage re
quired in the PL/M -8 6  compiled modules. Two 
bytes of stack are required by the code in this 
module, however, the monitor uses 13 words of 
stack when breakpoints and interrupts are used. 
Therefore, 14 words are reserved for the stack.

(X) Finally comes the code segment. The code seg
ment has been given a segment name and class 
name of CODE and a group name of 
CGROUP, and has been declared PUBLIC. 
The alignment attribute of BYTE is specified

since it is desired that the code from this 
module be appended directly to the code from 
other modules without gaps between the code 
modules.
The assembly language code follows next. The 
code for the procedure must be enclosed be
tween a pair of PROC, ENDP statements. The 
PROC statement is given the label FINDMX 
and specified as a NEAR procedure indicating 
it will be called with a near (intra-segment) 
CALL instruction and not a far (inter-segment) 
CALL instruction.
The comments at the beginning of the module 
and adjacent to the program statements ex
plain the function being performed by the 
assembly language code.

The SBCCO Module
(M) The console output procedure CO is contained 

in the object module SBCCO of the library file 
SBCIOS.LIB. SBCIOS.LIB is part of the iSBC 
957 package I/O  libraries. The calling sequence 
and parameters for CO may be seen in the 
external procedure declaration in the EXE
CUTIONSVEHICLE module.

Compiling the EXECUTIONSVEHICLE 
Module
The EXECUTIONSVEHICLE module is stored on 
a file named MATRIX.PLM on disk device :F1 
To compile the module, the following command 
line is used:

-  PLM86  :F1:MATRIX.PLM DEBUG 
This command line will cause the module stored in 
the file :F1:MATRIX.PLM to be compiled. The 
object code generated will be stored in a file with 
the default name :Fl:MATRIX.OBJ and the listing 
generated will be stored in a file with the default 
name :F1:MATR1X.LST. To override the default 
object and listing files, the NOOBJECT and NO
LIST compiler control switches can be used. File 
names for the listing and object files may also be 
specified in the command line. The DEBUG com
piler control switch causes the compiler to generate 
extra symbol and line number information which 
will be used during debugging of the program. A 
listing of the compiled EXECUTIONSVEHICLE 
module is contained in Appendix B.
To aid in the debugging of the program, the 
module was compiled a second time with the fol
lowing command line:

A-223



1>/C,£>LJXJ X XXX IN l  0.X X . i v i r x  x x \ i / \ . / v j u u ;

This command line specified that no object file is to 
be created and a listing file should be stored in the 
file :F1:MATRIX.XLS. The CODE compiler con
trol switch causes the compiler to list the assembly 
language statements which the compiler has gener
ated for each line of PL/M code. The listing stored 
in the file MATR1X.XLS is contained in Appendix 
C.
Assembly of the FIND Module
The assembly language module FIND is stored on a 
file named FIND.ASM, to assemble this module 
the following command line is used:
ASM86  :F1:FIND.ASM DEBUG
This command line will cause the FIND module to 
be assembled with the object code stored in the 
default file :Fl:FIND.OBJ and the listing stored in 
the default file :F1:FIND.LST. The listing of the 
assembled FIND module is contained in Appendix 
B.
Linking and Locating the Object Module
To link and locate the object modules, the QRL86  
program will be used. The QRL86 program per
forms both the linking and the locating of the 
object modules in a single step. QRL86 is primarily 
designed for the debugging stages of program devel
opment. Some applications may require the extended 
capabilities of the separate LINK and LOCATE 
programs when the final link and locate is per
formed. The command line used to invoke the 
QRL86 program is:
QRL86  :Fl:MATRIX.OBJ, :Fl:FIND.OBJ, 
SBCIOS.LIB ORIGIN (1000H)
This command line will cause QRL86 to link the 
code from the three modules and to locate the 
resultant absolute object module starting at location 
1000 hexadecimal. The iSBC 86/12 monitor uses 
the first 180H bytes of memory for the monitor 
stack, data and interrupt vectors, 1000FI was chosen 
as a convenient starting address for the program. 
The absolute object code will be stored in a default 
file :F1:MATRIX (note no file name extension is 
used). By default, the memory and debug maps 
which are generated are stored in the file :F1 MA
TRIX. MPQ and are contained in Appendix B.

(n ) The memory map contains the starting ad
dresses and sizes of the CODE, CONST, 
DATA, STACK and MEMORY segments of 
the object module. Note that the start address

U i u i v u im g ,  c* vy* y * yy-- “

value of 0002H or an absolute value of 01002H. 
The first two bytes of the code segment contain 
address values which the code generated by the 
compiler will use for setting up the DS and SS 
registers. The memory map shows the code 
segments from the three modules collected into 
the group CGROUP. The code segment from 
the EXECUTIONS VEHICLE module is given 
the segment and class names of CODE and is 
put into CGROUP by the PL/M compiler. To 
assure that the code segment from the FIND 
module is concatenated with the code segment 
from the EXECUTIONSVEHICLE module the 
identical class, segment and group names were 
specified in the SEGMENT and GROUP state
ments in the FIND module. Next, the group 
DGROUP is shown in the memory map. 
DGROUP contains 4 segments labelled 
CONST, DATA, STACK and MEMORY. 
Putting all of these segments in the same group 
tells the linker that they will all be in the same 
64K block of memory. The SMALL size con
trol option of the compiler, which was invoked 
by default, creates CGROUP, DGROUP, and 
the segments contained in them.

®  The debug map contains the memory address 
of variables, instruction labels and the ad
dresses of each code line of the PL/M -86  
module. Notice that the variable storage labels 
have their addresses specified in the format (DS 
register value, displacement). For example, the 
variable TEMP has an address of DS=012AH, 
displacement =  000CH or an absolute address 
of 0136H. Instruction labels and line numbers 
use the format (CS register value, IP register 
value). Thus, line number six (6 ) in the module 
EXECUTIONSVEHICLE has the address 
CS=0100H, IP=0B5H or 011B5H.

Object to Hex Conversion
Before downloading the program to the iSBC 86/12, 
the format of the object module must be converted 
from the absolute object module format which 
QRL86 creates to a hexadecimal/ASCII representa
tion of the object module. This is done using the pro
gram OH86 with the following command line:

OH86 :F1 :MATRIX TO :F1:MATRIX.HEX 
Downloading and Debugging the Program
The hardware configuration used for debugging the 
matrix multiplication example program code was
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an Intellec Series II Model 230 development sys
tem, the iSBC 957 package, an iSBC 86/12 board, 
and an iSBC 660 system chassis. What follows is 
the system-user dialog for a typical debugging 
session.
The first step required is to bootstrap load the 
ISIS-II operating system by hitting the RESET 
switch of the Intellec. The Intellec resident loader 
software is then loaded and executed. Throughout 
the dialog which follows operator entered charac
ters will be underlined:
ISIS-II, V3.4 
-SBC861

ISIS-II ISBC B6/12 LOADER, VI.2

To initialize the iSBC 86/12 monitor, the user must 
hit the RESET switch on the iSBC 660 chassis and 
type two “U”s on the system console. The monitor 
program will output a line on the console when it is 
properly initialized.
ISBC 86/12 MONITOR, VI.2

The monitor command “X” is typed to check that 
the monitor is properly operating and to examine 
the contents of the 8086 registers.
._X
AX=0000 BX=0 000 CX=0000 DX=0000 SP=01C0 BP = 0000 SI=0000 
01=0000 CS = 0000 DS=0000 SS = 0000 ES = 0000 IP=0000 FL=0000

To download the hex object file to the iSBC 
86/12, the “L” command is used. Because an 
Intellec Series II Model 230 is being used, a serial 
download is specified. The hex file name is 
MATRIX.HEX which is resident on disk device 
:F1:.
.LS.:El:MATRIX.HEX

The “X” command is used again to examine the 
CPU registers. Note that the monitor has changed 
the contents of the CS and IP registers to the value 
of the starting address of the program.

• X
AX=0000 9X=0000 CX=0000 DX=0000 SP = 01C0 BP = 0000 SI=0000 
DI=0000 CS = 0100 DS = 0000 SS = 0000 ES = 0000 IP=0002 FL=0000

The “ D” command is next used to display the first 
101 bytes of the program code. Unless another seg
ment register is specified, the display command 
assumes all addresses specified are relative to the CS 
register. Thus, the code displayed will be from abso
lute addresses 1000 through 1100. The program code 
displayed may be compared with program code gen
erated by the PL/M-86  compiler shown in Appendix 
C, code line 36.

.00,100
0000 2A 01 FA 2E 8 E 16 00 00 BC D0 00 8B EC FB
0010 C 7 06 8E 00 00 00 81 3E 8 E 00 05 00 7E 03 E9 3C
0020 00 C7 06 90 00 00 00 81 3E 90 00 04 00 7E 03 E9
0030 22 00 8B 06 3E 00 B9 0A 00 F7 E9 8B 36 90 00 Dl
0040 E6 89 C 3 8B 0 E 8E 00 89 88 10 00 81 06 90 00 01
0050 00 E9 D3 FF 81 06 8E 00 01 00 E9 B9 FF C7 06 8E
0060 00 00 00 81 3E 8E 00 04 00 7E 03 E9 40 00 C 7 06
0070 90 00 00 00 81 3E 90 00 02 00 7E 03 E9 26 00 8B
0080 06 90 00 F7 D8 50 8B 06 8E 00 B9 06 00 F7 E9 8B
0090 36 90 00 D1 E6 89 C3 59 89 88 4C 00 81 06 90 00
00A0 01 00 E9 CF FF 81 06 8E 00 01 00 E9 B5 FF C7 06
00B0 92 00 00 00 81 3E 92 00 02 00 7E 03 E9 8C 00 C7
00C0 06 8E 00 00 00 81 3E 8E 00 05 00 7E 03 E9 72 00
0 0D0 8B 06 8E 00 B9 06 00 F7 E9 8B 36 92 00 D1 E6 89
00E0 C3 C7 80 6A 00 00 00 C7 06 90 00 00 00 81 3E 90
0 0F0 
0100

00
E9

04 00 7E 03 E9 41 00 8B 06 8E 00 B9 0A 00 F 7

The PL/M -8 6  compiler ends the main program in 
the EXECUTIONSVEHICLE module with a halt 
instruction. After execution of the program it is 
more desirable to return to the monitor. To ac
complish this, an INT 3 instruction (code=CC) 
will be substituted for the halt instruction (code= 
F4) at the address of 1B4H relative to a CS value 
of 100H. First the “D” command is used to verify 
the address of the halt instruction, then the “S” 
command is used to change the instruction to an 
INT 3 instruction.

. D1B4
01B4 F4
■ S134 . F4- CC

To execute the PL/M -86  main program, the “G” 
command is used. After the “G” is typed, the 
current contents of the IP are output, followed by 
the contents of the byte pointed to by the IP. A 
new value for the IP or breakpoint addresses may 
be specified before a carriage return <CR> is typed. 
In this example, only a <CR> is typed.

.G 0002- FA 
MAX VALUE = -00050 
@0100:0185 55

The program executes and outputs the maximum 
value of the matrix calculated. The INT 3 instruc
tion is executed which causes a return to the 
monitor. The monitor types out an at-sign (@) 
followed by the CS and IP register values and the 
first byte of the instruction following the INT 3 
instruction.
The “X” command is typed to examine the CPU 
registers. Note that the program has set both the SS 
and DS registers to 012A. (012A0H is the address 
of the DGROUP as shown in the memory map.)
.X
AX=0030 BX=0005 CX=000A DX=0000 SP=00D0 BP=00D0 SI=0001 
DI=0006 CS=0100 DS=012A SS=012A ES=0000 IP=0lB5 FL=F202

The three matrices are displayed. Note that a word

A-225



AP-43

display has been specified by using the “DW” 
Command and that the addresses have been speci
fied relative to the DS register. The addresses of 
XSROW, YSROW, and ZSROW may be found in 
the debug map given by QRL8 6 . Note that the 
values stored in the matrices are the same as those 
shown in Figures 8 and 9.

. DW D S : 1 0 , 4A
0 0 1 0  0 0 0 0  0 0 0 0 0 0  00 0 0 0 0 0 0 0 0 0 0 0  1 0 0 0 1 0 0 0 1
0 0 2 0  0 0 0 1  0 0 0 1 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 3
0 0 3 0  0 0 0 3  0 0 0 3 0 0 0 3 0 0 0 3 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4
0 0 4 0  0 0 0 4  0 0 0 5 0 0 0 5 0 0  05 0 0 0 5 0 0 0 5
. DW D S : 4 C i 6 8  
0 0 4 C 0 0 0 0  F F F F
0 0 5 0  F F F E  0 0 0 0 F F F F F F F E 0 0 0 0 F F F F F F F E 0 0 0 0
0 0 6 0  F F F F  F F F E 0 0 0 0 F F F F F F F E
. DW D S : 6 A , 8 C
0 0 6 A 0 0 0 0  0 0 0 0  
0 0 7 0  0 0 0 0  F F F B

0 0 0 0
F F F 6 0 0 0 0 F F F 6 F F E C 0 0 0 0 F F F 1

0 0 8 0  F F E 2  0 0 0 0 F F E C F F D8 0 0 0 0 F F E 7 F F CE

The “G” Command is used to reset the IP register 
to the start address of the program (0 0 2 ) and to 
specify a breakpoint at address 0AEH, which is the 
address of statement 57 of the main program. 
Statement 57 is the point in the program after the 
XSROW and YSROW matrices have been initial
ized, but before the matrix multiplication is 
performed. After the <CR> is typed, the program 
executes until the breakpoint is encountered. At 
this point, the monitor outputs a line specifying 
the number of the breakpoint, the CS and IP 
values and the first byte of the next instruction to 
be executed.

• G 01B5- 55 002.AE 

BR1 00100:00AE C7

Next, the single-step capability is used with the 
“N” command to execute single instructions. At 
any time, CPU registers may be examined or 
changed. In this example, the “X” command is 
used. Execution of succeeding instructions is caused 
by typing a comma (,).

.N 00AE- C7 
00B4- 81 ,
00BA- 7E ,
00BF- C7 
. X
AX=0018 BX=0018 CX=FFFE DX=0000 SP = 00D0 BP = 00D0 SI=0004 
DI=0006 CS=0100 DS =012A SS=012A ES=0000 IP = 00BF FL=F293 
.N 00BF- C 7 
00C5- 81 
00CB- 7E

The contents of the XSROW and YSROW matrices 
are examined and changed with the “SW” (sub
stitute word) command. If a comma (,) is typed 
after the contents of memory are displayed, then 
the contents are left unchanged and the next word 
of memory is displayed. If a value followed by a 
comma or <CR> is entered, then the contents are 
changed. If a <CR> is entered, the substitute

sequence is terminated.

001E 0001- l i  
. SW PS; 5A■ FFFF- j  
005C FFFE- j  
005E 0000- j  
0060 FFFF- 6 i

After the matrices are modified, execution is 
resumed with the “G” command. The max value is 
output and the INT 3 instruction executed. Finally, 
the contents of the 3 matrices are displayed.

.2  00CB- 7E 
MAX VALUE » +00400 
@0100:0165 55 
■DW DS: 1 0 . BC
0010 0000 0000 0000 0000 0000 0001 0001 0010
0020 0001 0001 0002 0002 0002 00^2 0002 0003
0030 0003 0003 0003 0003 0004 0004 0004 0004
0040 0004 0005 0005 0005 0005 0005 0000 FFFF
0050 FFFE 0000 FFFF FFFE 0000 FFFF FFFE 0000
0060 0064 FFFE 0000 FFFF FFFE 0000 0000 0000
0070 0000 0051 FFD8 0000 00C0 FFEC 0000 0120
0080 FFE2 0000 0180 FFD8 0000 01E0 FFCE

Expanding the Example Program’s 
Memory Requirements
To illustrate how the iSBC 86/12 board may be 
used for executing 8086 programs which require 
large amounts of RAM, the example program will 
be modified. The matrix dimensions of the example 
will be changed from values of 6 , 5 and 3 for the 
literal symbols of M, N, and P to values of 100, 
50, 70. The three matrices will then be of size 
100X50, 50X70, and 100X70. The memory re
quired for these matrices is 15.5K words or 31K 
bytes. The data, constant, stack and memory 
segments which are contained in the group 
DGROUP will now comprise almost 32K bytes of 
memory.
The extra memory requirements will be supplied 
by using an iSBC 032 board with the iSBC 86/12 
board in the iSBC 660 chassis. The iSBC 032 board 
is a 32K byte RAM board which is compatible 
with both 8 - and 16-bit CPU boards. The base 
address of the board may be selected anywhere in 
a 0 to 1 megabyte range on any 16K byte boundary. 
8- or 16-bit data transfers may be selected. The 
iSBC 032 board will be jumpered to respond to 
addresses in the 512K or 544K address space (20 
bit hex address range to 80000H to 87FFFH). This 
will illustrate the capabilities of the 8086 to access 
a 2 0 -bit, 1 megabyte address range.
One other modification is required to the program. 
The magnitude of the numbers which would result 
from multiplying matrices of this size would great
ly exceed the capacity of the 16-bit integer storage, 
even with the two matrices initialized to the small
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values they presently contain. To keep the example 
simple, the initialization values will be changed so 
all elements of the XSROW matrix are set equal to 
2 and all elements of the YSROW matrix are set 
equal to 3. The result of the multiplication should 
make all the elements of ZSROW equal to 300.
The modified lines of program code are shown 
below.

/* MATRIX DIMENSIONS */
27 1 DECLARE M LITERALLY '100'
28 1 DECLARE N LITERALLY '50' j
29 1 DECLARE P LITERALLY •70’ ;

36 1 DO I * 0 TO (M-l)>
37 2 DO J * 0 TO (N-l);
38 3 X$R0W(I).COL(J) «
39 3 END;
40 2 END;

41 1 DO I - 0 TO (N-l);
42 2 DO J - 0 TO (P-1);
43 3 Y$ROW(I).COL(J) - 3;
44 3 END;
45 2 END;

The EXECUTIONSVEHICLE module must be re
compiled and then the three program modules must 
be linked and located using the QRL86  program. 
Specifying the SEGMENTS option of QRL8 6 , the 
origin of the CODE segment which is in the group 
CGROUP is set at 1000H, as in the first example. 
However, the origin of the CONST, DATA 
STACK and MEMORY segments which make up 
the group DGROUP is set at 80000H.

QRL86  :Fl:MATRIX.OBJ,:Fl :FIND.OBJ, 
SBCIOS.LIB SEGMENTS (CODE(IOOOH), 
CONST (80000H), DATA STACK, MEMORY)

The memory map generated by QRL86  shows the 
CGROUP having a start address of 01000H and 
the DGROUP having a start address of 80000H.

The object code is then converted to hex format 
and downloaded to the iSBC 86/12 board. When 
the program is executed, the maximum value is 
calculated and output on the console.
-S3C861
ISIS-II ISBC 86/12 LOADER, VI.2

ISBC 86/12 MONITOR,,VI.2 
.LS.iFliMATRIY.HEX
. S1AC . F4- CC 
. £  1 1 1 2 -  FA 
MAX VALUE - +80388 
30100:01AD 55

VI. CONCLUSION
This application note has described the iSBC 957 
Intellec—iSBC 86/12 Interface and Execution 
Package, and how this package may be used to 
develop and debug programs for the 8086 processor. 
First, the iSBC 86/12 single board computer was 
described, followed by a detailed description of the 
iSBC 957 package and the iSBC 86/12 system 
monitor commands. The power and versatility of 
the iSBC 957 package and monitor commands for 
developing and debugging programs for the 8086 
were illustrated by a program example. In the 
example a program which consisted of PL/M -86  
and assembly language routines was presented. The 
program code was explained, and the steps required 
to compile, assemble, link, locate, and debug the 
program were illustrated. Finally, a typical de
bugging session using the iSBC 86/12 system moni
tor which illustrates the powerful capabilities of the 
monitor was presented.

INVOKED BY:
QRL86 :Fl:MATRIY.OBJ,:Fl:FIND.OBJ,SBCIOS.LIB & 
SEGMENTS(CODE(1 0 00 H ),CONST (80000H),DATA,STACK,MEMORY)

INPUT MODULES INCLUDED:
:Fl:MATRIY.OBJ(EXECUTIONVEHICLE)
:Fl:FIND.OBJ(FIND)
SBCIOS.LIB(SBCCO)

RESULT WRITTEN TO :Fl:MATRIY(EXECUTIONVEHICLE) 
START ADDRESS IS (0100H, 0002H)

START LTH ALIGN NAME CLASS
01000H 298H G /GS/ CGROUP
010 0 0 H 21DH W CODE(EXECUTIONVEHICLE) CODE
0121DH 41H B CODE(FIND) CODE
0125EH 3AH W CODE(SBCCO) 

/GE/ CGROUP
CODE

8B000H 7970H G /GS/ DGROUP
80000H CH W CONST(EXECUTIONVEHICLE) CONST
8000CH 0H w CONST(SBCCO) CONST
8000CH 792AH w DATA(EXECUTIONVEHICLE) DATA
87936H 2H w DATA(FIND) DATA
87938H 0H w DATA(SBCCO) DATA
87940H 30H sw STACK STACK
87970H 0H w MEMORY 

/GE/ DGROUP
MEMORY

87970H 0H G ??SEG(FIND) (NULL)
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APPENDIX B
PROGRAM LISTINGS FOR EXECUTION$VEHICLE AND FIND MODULES

PL/M-86 COMPILER EXECUTIONVEHICLE

ISIS-II PL/M-86 VI.0 COMPILATION OF MODULE EXECUTIONVEHICLE
OBJECT MODULE PLACED IN :FI:MATRIX.OBJ
COMPILER INVOKED BY: PLM86 :F1:MATRIX.PLM DEBUG

/ *  MATRIX MULTIPLICATION EXAMPLE PROGRAM
PL/M-86 MAIN PROGRAM WHICH:

A) INITIALIZES TWO INTEGER MATRICES
B) MULTIPLIES THE TWO MATRICES AND STORES THE RESULT IN A 

THIRD MATRIX
C) CALLS AN ASSEMBLY LANGUAGE PROCEDURE WHICH SEARCHES THE 

THIRD MATRIX FOR THE MAXIMUM VALUE
D) CALLS A PL/M PROCEDURE WHICH CONVERTS THE MAXIMUM VALUE 

FROM INTEGER TO ASCII
E) CALLS A PROCEDURE WHICH OUTPUTS THE ASCII CHARACTERS ON 

THE SYSTEM CONSOLE
*/

1 EXECUTIONSVEHICLE:
DO;

/* FINDSMX - EXTERNAL ASSEMBLY LANGUAGE PROCEDURE WHICH SEARCHES A 
MATRIX FOR THE LARGEST ABSOLUTE MAGNITUDE.
PARAMETERS:

MATRIXSADR - ADDRESS OF THE MATRIX TO BE SEARCHED 
ROWS - NUMBER OF ROWS IN THE MATRIX 
COLS - NUMBER OF COLUMNS IN THE MATRIX

2 1 FINDSMX: PROCEDURE (MATRIXSPTR, ROWS, COLS) INTEGER EXTERNAL;
2 DECLARE (ROWS, COLS) INTEGER;

4 2 DECLARE MATRIXSPTR POINTER;
5 2 END FINDSMX;

/* BINSDECSASC - BINARY TO DFCIMAL ASCII CONVERSION PROCEDURE 
PARAMETERS:VALUE - INTEGER VALUE TO BE CONVERTED TO ASCII 

CHARSARRAYSADR - ADDRESS OF 6 BYTE ARRAY WHERE ASCII 
STRING CONTAINING THE VALUE WILL BE STORED 

V
BINSDECSASC: PROCEDURE (VALUE, CHARSARRAYSADR);

7 2 DECLARE (VALUE, TEMP, I) INTEGER;
8 2 DECLARE CHARSARRAYSADR POINTER;
9 2 DECLARE (CHARSARRAY BASED CHARSARRAYSADR) (6) BYTE;

©
I 5 
1617
18
19
20
21

22 3

IF VALUE < ?. THEN 
DO;

CHARSARRAY(0) = /* SIGN CHARACTER */
TEMP = -VALUE;

END;
ELSE
DO; «

CHARSARRAY(0) =
TEMP = VALUE;

END;
DO I = 5 TO 1 BY -1;
CHARSARRAY(I) = UNSIGN(TEMP MOD 10) + 30H;
TEMP = TEMP/10;
/ *  ASCII CHARACTERS 30 THRU 39 HEX-REPRESENT THE DIGITS 0 THRU 9. THUS 
TO CONVERT AN INTEGER TO ASCII REPEATED DIVISIONS BY 10 AND ADDING 
THE REMAINDER TO 30 HEX WILL ACCOMPLISH THE CONVERSION */

END;
23 2 END BINSDECSASC;

/* CO - EXTERNAL PROCEDURE TO OUTPUT A CHARACTER TO THE SYSTEM CONSOLE. 
THIS PROCEDURE IS PART OF THE ISBC 957 LIBRARY FOR CONSOLE I/O 
PARAMETER:
CHAR - ASCII CHARACTER TO BE OUTPUT ON THE CONSOLE*/

CO: PROCEDURE (CHAR) EXTERNAL;
DECLARE CHAR BYTE;
END CO;

/ *  MATRIX DIMENSIONS */
27 1 DECLARE M LITERALLY '6';
28 1 DECLARE N LITERALLY '5';
29 1 DECLARE P LITERALLY '3';

V

/* THE THREE MATRICES ARE DECLARED AS ARRAYS OF STRUCTURES. XSROW IS COMPOSED 
OF M STRUCTURES EACH OF WHICH IS COMPOSED OF N INTEGER ELEMENTS. THUS 
XSROW MAY BE THOUGHT OF AS A M X N MATRIX. THE MATRIX WILL BE STORED AS 
A ROW-ORDER MATRIX WITH THE ELEMENTS OF EACH ROW STORED IN ADJACENT MEMORY 
LOCATIONS. YSROW IS DECLARED AS A N X P MATRIX AND ZSROW AS A N X P MATRIX */

30 1 DECLARE XSROW(M) STRUCTURE (COL(N) INTEGER);
31 1 DECLARE YSROW(N) STRUCTURE (COL(P) INTEGER);
32 1 DECLARE Z$ROW(M) STRUCTURE (COL(P) INTEGER);
33 1 DECLARE (I,J,K,MAX) INTEGER;
34 i DECLARE MAXSASCSARRAY(6) BYTE;
35 1 DECLARE TEXT(*) BYTE DATA ('MAX VALUE = ');
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/ *  INITIALIZE XSROW SUCH THAT THE FIRST ROW IS SET EQUAL TO 0, 
ROW EQUAL TO 1, THE THIRD ROW EQUAL TO 2, ETC. */

DO I = 0 TO fM-l);
DO J = 0 TO (N-l);

X S R O W ( I ) . C O L (J ) =  I ;
END;

END;

THE SECOND

5 J 
52

/* INITIALIZE YSROW SUCH THAT THE FIRST COLUMN IS SET EQUAL TO 0, THE 
SECOND COLUMN EQUAL TO -I, AND THE THIRD COLUMN EQUAL TO -2. */

DO I = 0 TO (N-l);
DO J = 0 TO (P-1);

YSROW(I).COL (J) = -J;
END;

END;
/* PERFORM MATRIX MULTIPLICATION */
DO K = 0 TO (P-1);

DO I = 0 TO (M-l);
ZSROW(I).COL(K) = 0; / *  SET ZSROW ELEMENT TO 0 V
DO J = 0 TO (N-l); / *  SUM THE PRODUCT OF XSROW ROW TERMS AND YSROW COLUMN TERMS */ 

i S R O W m . C O M l C ,  = ZSROW(I)  .COL(K) + ( XSROW (I ) . COL (J ) * YSROW (J ). COL (K) );
END;

END;
54 1
55 1

"AX = FINDSMX (PZSROW, M, P ) ; /* FIND MAX VALUE OF ZSROW */
CALL BINSDECSASC (MAX, PMAXSASCSARRAY); /* CONVERT TO DECIMAL ASCII */

56 1 DO I = 0 TO ( S I G N B D ( S I Z E (TEXT)) - 1); / *  OUTPUT HEADER TEXT * /
57 2 CALL CO (TEXT(I));
58 2 END;

59 1 DO I = 0 TO 5; / *  OUTPUT ASCII MAX VALUE * /
60 2 CALL CO(MAXSASCSARRAY (I));
61 2 END;

62 1 END EXECUTIONSVEHICLE;

MODULE INFORMATION:
CODE AREA SIZE =0225H 549D
CONSTANT .AREA S tze = 000CH 1 2D
VARIABLE AREA SIZE = 0090H ] 44DMAXIMUM STACK SIZ E = 0008H BD
137 LINES READ
0 PROGRAM ERROR (S)

END OF PL/M-86 COMPI LATION

f  ISIS-II MCS-86 ASSEMBLER ASSEMBLY OF MODULE FIND
OBJECT MODULE PLACED IN :FI:FIND.OBJ 
ASSEMBLER INVOKED BY: ASM86 :F1:FIND.ASM DEBUG
LOC OBJ LINE SOURCE

1 NAME FIND
2 PUBLIC FINDMX
3

©

6
7
8 
9

10
11
12
13
14
15
16
17
18
19
20 
21 
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

FINDMX
ASSEMBLY LANGUAGE PROCEDURE TO FIND THE ELEMENT OF AN INTEGER 
MATRIX WITH THE LARGEST ABSOLUTE MAGNITUDE. THE VALUE OF THE 
ELEMENT IS RETURNED IN THE AX REGISTER.
PL/M CALLING SEQUENCE:

MAXSVALUE = FINDSMX(ADRSOFSMATRIX, ISOFSROWS, fSOFSCOLS); 
PARAMETERS:

ADRSOFSMATRIX - ADDRESS OF THE MATRIX WHICH WILL BE SEARCHED 
ISOFSROWS - NUMBER OF ROWS IN THE MATRIX 
#$OF$COLS - NUMBER OF COLUMNS IN THE MATRIX

PL/M WILL PASS THE THREE PARAMETERS IN THE CALL TO THIS PROCEDURE ON 
THE STACK. ON ENTRY TO THE PROCEDURE SP+6 WILL POINT TO THE FIRST 
PARAMETER(ADRSOFSMATRIX) AND SP+4 AND SP+2 WILL POINT TO THE SECOND 
AND THIRD PARAMETERS.

THE PROCEDURE IS A TYPED PROCEDURE WHICH ASSIGNS THE MAXIMUM VALUE 
IN THE MATRIX TO A VARIABLE (IN THIS CASE MAXSVALUE) IN A PL/M 
ASSIGNMENT STATEMENT. TO ACCOMPLISH THIS ASSIGNMENT THE VALUE IS 
RETURNED IN THE AX REGISTER.

THE ALGORITHM USED IS SIMILAR TO THE FOLLOWING PL/M CODE:
FOR I = 0 TO (# $OF$ROWS - 1);

FOR J = 0 TO (iSOFSCOLS - 1);
IF IABS(MATRIX(I).Y(J)) > IABS(MAX) THEN MAX = MATRIX(I).Y(J); 

END;
END;

WHERE IABS(XYZ) REPRESENTS THE ABSOLUTE VALUE OF THE INTEGER XYZ
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LOC OBJ

0e06[]
0004'1 
0008 [ ]

00 00  
0e00 55
0001 8BEC 
0003 33D2 
0005 8BFA 
0007 8BF2
0009 89160000 R
000D 8B4E04
0010 D IE 1

0012 8B5E08

©
0015 8B00 
0017 0BC0 
0019 7902 
001B F7D8 
001D 3BC?
0 01F 7C0 7 
0021 8BD0 
0023 8B00 
0025 A30000 
0028 83C602 
002B 3BF1 
002D 7 2E6 
002F 8D18 
0031 BE0000 
003‘ 47 
0035 3B7E06 
0038 72DB 
003A A10000 
003D 5D 
003E C20600

R

R

SYMBOL TABLE LISTING

LINE SOUHCE

40
41 DEFINE GROUPS TO CONFORM WITH PL/M-86 CONVENTIONS. DATA, STACK, AND
42 CODE SEGMENTS WILL BE APPENDED TO THEIR RESPECTIVE SEGMENTS IN THE
43 PL/M-86 MODULES.
44 DGROUP GROUP DATA,STACK
45 CGROUP GROUP CODE
46
47 INSTRUCT THE ASSEMBLER THAT THE D S , S S , AND CS REGISTERS WILL CONTAIN
48 THE BASE ADDRESS VALUES FOR THE DGROUP, DGROUP AND CGROUP GROUPS.
49 ASSUME DS:DGROUP,SS: DGROUP,CS:CGROUP
50
51
52
53 ;****** ******** ‘DATA SEGMENT
54
55 DATA SEGMENT WORD PUBLIC DATA '
56 MAX DW 0
57 DATA ENDS
58
59 .****** ******** ‘STACK SEGMENT
60
61 STACK SEGMENT STACK 'STACK'
62 DW 14 DUP (0) ;RESERVE 13 WORDS OF STACK FOR MONITOR

63 ;AND 1 WORD FOR FINDMX PROCEDURE
64 STACK ENDS
65

67
68 CODE SEGMENT BYTE PUBLIC 'CODE '
69
70 ;PARAMETERS ON STACK, DISPLACEMENT FROM TOS INCREASED BY TWO DUE TO INITIAL PUSH
71 NO OF ROWS EQU WORD PTR [BP+6]
72 NO OF COLS EQU WORD PTR [B P+4]
73 ADR OF 1ATRIX EQU WORD PTR [B P+8]
74
75 FINDMX PROC NEAR ;PROCEDURE DECLARATION
76 PUSH BP ;SAVE BP REGISTER
77 MOV B P , SP ;BP POINTS TO PARAMETERS ON STACK
78 XOR DX , DX ;SET DX = ABS OF CURRENT MAX = 0
79 MOV DI , DX ;DI = I (ROW INDEX) = 0
80 MOV SI, DX ;SI = J(COLUMN INDEX) = 0
81 MOV M A X ,DX ;MAX = CURRENT MAX = 0
82 MOV CX,NO OF COLS
83 SHL CX, 1 ;CX = (#$OF$COLS) * 2
84 .•TERMINATION FOR J(SI) INDEX

MOV B X ,ADR OF MATRIX ;ADRSOFSMATRIX PARAMETER
86 ;BX POINTS TO FIRST ELEMENT OF A GIVEN ROW
87 ABC : MOV AX,[BX]fSI) ;GET ELEMENT OF MATRIX
88 OR AX, AX ;SET FLAGS
89 JNS DEF ;JUMP IF SIGN = 0
90 NEG AX ;NEGATE TO FORM POSITIVE NUMBER
91 DEF: CMP A X , DX .•COMPARE TO CURRENT MAX
92 JL XYZ ;JUMP IF LESS THAN CURRENT MAX
93 MOV DX, AX ;MOVE TO ABS OF CURRENT MAX
94 MOV A X , [ BX][SI] ; MOVE MATRIX VALUE TO CURRENT MAX
95 MOV MAX,AX
96 XYZ : ADD SI , 2 .•INCREMENT J INDEX BY TWO
97 CMP SI,CX ; END OF THIS ROW ??
98 JB ABC ;IF NO, LOOP BACK FOR NEXT ELEMENT OF THIS ROW
99 LEA b x , r BX+SI] ;BX = BX + (2 * #$OF$COLS), BX POINTS TO NEXT ROW

100 MOV SI,0 ; J = 0
101 INC DI ; I = I + 1
102 CMP DI,NO OF ROWS ;LAST ROW ??
103 JB ABC ;IF NO, DO THE NEXT ROW
104 MOV AX,MAX ;RETURN MAX VALUE IN AX REGISTER
105 POP BP .•RESTORE BP REGISTER
106 RET 6 .•INCREMENT SP BY 6 AND RETURN TO CALLER
107
108 FINDMX ENDP
109
110 CODE ENDS
111
112 END

NAME TYPE VALUE ATTRIBUTES

??SEG . . . . SEGMENT SIZE=0000H PARA PUBLIC
A B C .......... L NEAR 0015H CODE
ADR OF MATRIX V WORD 0008H [BP]
CGROUP. . . . GROUP CODE
C O D E .......... SEGMENT SIZE=0041H b y t £ PUBLI
D A T A .......... SEGMENT SIZE=0002H WORD PUBLI
D E F .......... L NEAR 001DH CODE
DGROUP. . . . GROUP DATA STACK
FINDMX. . . . L NEAR 0000H CODE PUBLIC
M A X .......... V WORD 0000H DATA
NO OF COLS. . V WORD 0004H [BP]
NO OF ROWS. . V WORD 0006H [BP]
STACK . . . . SEGMENT SIZ E = 0 0 1CH PARA STACK
X Y Z .......... L NEAR 0 0 28 H CODE

'CODE'
'DATA'

ASSEMBLY COMPLETE, NO ERRORS FOUND



A P-43

*  JSIS-II 0RL-P6, VI.1

IN VO KED  B Y :
QRL86 : F ] : M ATRIX. OB J , : F ] : F IN D . OBJ, SBCIOS. L IB  ORIG IN  (.1 00RH)

TNPUT MODULES INCLUDED:
: F I : M A T R IX .O B J (E X F C U T I O N V E H IC L E )
: F 1:F IN D .O B J (F IN D )
S B C IO S .L I B (SBCCO)

RESULT WRITTEN TO : F1: MATRI X(EXECUTTONVEHICLE) 
START ADDRESS IS  (0100H, 0002H)

START LTH ALIGN NAME CLASS

01000H 2A0H G /GS/ CGROUP
0]000H 225H W CODE(EXECUTIONVEHICLE) CODE
0)225H 4 1H B CODE(FIND) CODE
01266H 3AH W CODE(SBCCO) 

/GE/ CGROUP
CODE

012A0H D0H G /GS/ DGROUP
012A0H CH W CONST(EXECUTIONVEHICLE) CONST012ACH 0H w CONST(SPCCO) CONST
012ACH 90H w DATA(EXECUTIONVEHICLE) DATA
0133CH 2H w DATA(FIND) DATA
0133EH 0H w DATA(SBCCO) DATA
0 3 340H 3 0H sw STACK STACK
01370H 0H w MEMORY 

/GE/ DGROUP
MEMORY

03 370H 0H G ??SEG(FIND) (NULL)

DEBUG MAP OF :FI:MATRIX(EXECUTIONVEHICLE)
MODULE: EXECUTIONVEHICLE 0100H,01E1H LINE »: 19 P100H,ei3?H LINE t : 5 7

012AH,0 0D0H SYMBOL: MEMORY 0100H,01FBH LINE # : 20 0100H,0142H LINE f: 53
0 1 0 0H,01B 5H SYMBOL: BINDECASC 0100H,021?H LINE #: 21 0100H,014BH LINE 1: 54
0 1 2AH,00PCH SYMBOL: TEMP 0100H,021 EH LINE #: 22 0100H,015EH LINE I: 55
0)2AH,000EH SYMBOL: I 0100H,0223H LINE # : 23 03P0H,0]69H LINE t : 56
P12AH,0010H SYMBOL; XROW 0100H,0002H LINE * : 36 0100H,017AH LINE S: 57
012AH,004CH SYMBOL: YROW 0100H,0021H LINE f : 37 0100H,0185H LINE #: 58
0I2AH,006AH SYMBOL: ZROW 0100H,0032H LINE # : 38 0 100H,018EH LINE *: 59
012AH,008EH SYMBOL: I 0100H,004BH LINE #: 30 0300H,019FH LINE *: 60
012AH,0090H SYMBOL: J 0100H,0054H LINE #: 40 0100H,01AAH LINE #: 61
012AH,0092H SYMBOL: K 010PH,005DH LINE #: 4 1 010 0H,0 IB 3H LINE #: 62
012AH,P094H SYMBOL: MAX 0100H,006EH LINE 9: 42 MODULE: FIN
03 2AH,0096H SYMBOL: MAXASCARRAY 010 0H,00 7FH LINE # : 43 0100H,02 3AH SYMBOL: ABC
012AH,0000H SYMBOL: TEXT 0100H,009CH LINE # : 44 0100H,0242H SYMBOL: DEF
0300H,01B5H LINE #: 6 0100H,00A5H LINE #: 45 0100H,0225H SYMBOL: FINDMX
0100H,01B8H LINE 9: 3 0 0100H,00AEH LINE f : 46 012AH,009CH SYMBOL: MAX
0100H,01C2H LINE t : 12 0100H,00BFH LINE #: 47 0100H,024DH SYMBOL: XYZ
0100H,01C8H LINE #: 3 3 0100H,00D0H LINE t: 48 0100H,0225H PUBLIC: FINDMX
010 0H,0 ID 3 H LINE t: 14 0100H,00E7H LINE #: 49 MODULE: SBCCO
0100H,01D4H LINE f: 16 0100H,00F8H LINE « : 50 0100H,0266H PUBLIC: CO
010 0H,01DAH LINE #: 17 0100H,0 3 30H LINE # : 51
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APPENDIX C

PROGRAM LISTING FOR EXECUTION$VEHICLE M ODULE W ITH  CODE EXPANSION

PL/M-86 COMPILE^ EXECUTIONVEHICLE

ISIS-II PL/M-86 VI.0 COMPILATION OF MODULE EXECUTIONVEHICLE 
NO OBJECT MODULE REQUESTED
COMPILER INVOKED BY: PLM86 :F):MATRIX.PLM DEBUG CODE NOOBJECT PRINT(: FI:MATRIX.XLS)

/* MATRIX MULTIPLICATION EXAMPLE PROGRAM

PL/M-86 MAIN PROGRAM WHICH:
A) INITIALIZES TWO INTEGER MATRICES
B) MULTIPLIES THE TWO MATRICES AND STORES THE RESULT IN A 

THIRD MATRIX
"J CALLS AN ASSEMBLY LANGUAGE PROCEDURE WHICH SEARCHES THE 

THIRD MATRIX FOR THE MAXIMUM VALUE
D) CALLS A PL/M PROCEDURE WHICH CONVERTS THE MAXIMUM VALUE 

FROM INTEGER TO ASCII
E) CALLS A PROCEDURE WHICH OUTPUTS THE ASCII CHARACTERS ON 

THE SYSTEM CONSOLE*/
J EXECUTIONSVEHICLE:

DO;

/ *  FTNDSMX - EXTERNAL ASSEMBLY LANCUAGE PROCEDURE WHICH SEARCHES A 
MATRIX FOR THE LARGEST ABSOLUTE MAGNITUDE.
PARAMETERS:

MATRIXSADR - ADDRESS OF THE MATRIX TO BE SEARCHED 
ROWS - NUMBER OF ROWS IN THE MATRIX 
COLS - NUMBER OF COLUMNS IN THE MATRIX*/

2 1 FINDSMX: PROCEDURE (MATRIXSPTR, ROWS, COLS) INTEGER EXTERNAL;
? 7 DECLARE (ROWS, COLS) INTEGER;
4 2 DECLARE MATRIXSPTR POINTER;
5 2 END FINDSMX;

/* riNS ECSASC - BINARY TO DECIMAL ASCII CONVERSION PROCEDURE 
PARAMETERS:

VALUE - INTEGER VALUE TO BE CONVERTED TO ASCII 
CHARSARRAYSADR - ADDRESS OF 6 BYTE ARRAY WHERE ASCII 

STRING CONTAINING THE VALUE WILL BE STORED*/
1 BINSDECSASC: PROCEDURE (VALUE, CHARSARRAYSADR);

; STATEMENT # 6
BINDECASC PROC NEAR

03B5 55 PUSH BP
01B6 8BEC MOV BP,SP

7 2 DECLARE (VALUE, TEMP, I) INTEGER;
8 2 DECLARE CHARSARRAYSADR POINTER;
9 2 DECLARE (CHARSARRAY BASED CHARSARRAYSADR) (6) BYTE;
10 7 IF VALUE < 0 THEN

; STATEMENT 9 10
01BB 817E060000 CMP (BP).VALUE,0H
P 1BD 7C0 3 JL S + 5H
01BF E91200 JMP §1

u 2 DO ;
12 7 CHARSARRAY(0) = / *  SIGN CHARACTER * /

; STATEMENT » I 2
01C2 8B5E04 MOV BX,IBP].CHARARRAYADR
01C5 C6072D MOV CHARARRAY rBX] ,2DH

13 3 TEMP = -VALUE;
; STATEMENT (I 13

01C8 8B4506 MOV AX, r BP].VALUE
0 1CB F7D8 NEG AX
P) CD 890600C0 MOV TEMP,AX14 3 END;

; STATEMENT # 14
0 1D1 E90D00 JMP @2

01:
ELSE

I 5 2 DO
IS 3 CHARSARRAY(0) = ’ +' ;

; STATEMENT 1 16
0 1D4 8B5E04 MOV BX, f BPl.CHARARRAYADR01D7 C6072B MOV CHARARRAY fBXl,?BH

I 7 ) TEMP = VALUE;
; STATEMENT * 17

0 ] DA 8B4<;p6 MOV AX,[BP].VALUE
0 1DD 89060000 MOV TEMP,AX

18 3 END;
02:

19 2 DO I = 5 TO 1 BY -1 ;
; STATEMENT I 90 1 E1 C70602000 500 MOV I, 5H

eiE7 E90600 JMP 05
03:

0 1 EA 81060200FFFF ADD I,0FFFFH
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20

21

22

3

3

3

P 5:
01F0 813E02000100 CMP 1, 1H
01F6 7D03 JGE S+5H
01F8 E92600 JMP P4

CHARSARRAY (I) = UNSIGN(TEMP MOD 10) + 30H;
; STATEMENT #

0 1FB 8B060000 MOV AX,TEMP
01 FF B90A00 MOV CX,0AH
0202 31D2 XOR DX, DX
0204 F7F9 IDIV CX
0206 81C23000 ADD DX, 3011
0 20A 8B5E04 MOV BX,[BP].CHARARRAYADR
020D 8B360200 MOV SI, I
02) 1 8810

TEMP = TEMP/10;
MOV (BX].CHARARRAY fSI],DL

; STATEMENT I 21
/ *  ASCII CHARACTERS 30 THRU 39 HEX REPRESENT THE DIGITS P 

TO CONVERT AN INTEGER TO ASCII REPEATED DIVISIONS BY 10 
THE REMAINDER TO 30 HEX WILL ACCOMPLISH THE CONVERSION *

; STATEMENT # 22

0213 8B060000 MOV AX,TEMP
0217 99 CWD
0218 F7F9 IDIV CX
0 21A 89060000 MOV TEMP,AX

END;

02 IE E9C9FF JMP 03

THRU 9. THUS 
AND ADDING/

P4 :

23 2. END BINSDECSASC;

0221 5D POP BP
0222 C2040P RET 4H

BINDECASC ENDP

STATEMENT #23

/* CO - EXTERNAL PROCEDURE TO OUTPUT A CHARACTER TO THE SYSTEM CONSOLE. 
THIS PROCEDURE IS PART OF THE ISBC 957 LIBRARY FOR CONSOLE I/O 
PARAMETER:
CHAR - ASCII CHARACTER TO BE OUTPUT ON THE CONSOLE

V24 ) CO: PROCEDURE (CHAR) EXTERNAL;
25 2 DECLARE CHAR BYTE;
26 2 END CO;

/* MATRIX DIMENSIONS */
27 1 DECLARE M LITERALLY '6';
28 1 DECLARE N LITERALLY '5';
29 1 DECLARE P LITERALLY * 3 *;

/* THE THREE MATRICES ARE DECLARED AS ARRAYS OF STRUCTURES. XSROW IS COMPOSED 
OF M STRUCTURES EACH OF WHICH IS COMPOSED OF N INTEGER ELEMENTS. THUS 
X$ROW MAY BE THOUGHT OF AS A M X N MATRIX. THE MATRIX WILL BE STORED AS 
A ROW-ORDER MATRIX WITH THE ELEMENTS OF EACH ROW STORED IN ADJACENT MEMORY 
LOCATIONS. YSROW IS DECLARED AS A N X P MATRIX AND ZSROW AS A N X P MATRIX */

30 1 DECLARE XSROW(M) STRUCTURE (OOL(N) INTEGER);
31 J DECLARE Y$ROW(N) STRUCTURE (COL(P) INTEGER);
32 1 DECLARE ZSROW(M) STRUCTURE (COL(P) INTEGER);

3? 1 DECLARE (I,J,K,MAX) INTEGER;
34 1 DECLARE MAX$ASC$ARRAY(6) BYTE;
35 1 DECLARE TEXT(*) BYTE DATA ('MAX VALUE = ');

36

38

39

2

3

/ *  INITIALIZE XSROW SUCH THAT THE FIRST ROW IS SET EQUAL TO 0, 
ROW EQUAL TO 1, THE THIRD ROW EQUAL TO 2, ETC. */

DO I = 0 TO (M-1);

0002 FA CLI
0003 2E8F160000 MOV SS,CS:PPSTACKSFRAME
0008 BC0800 MOV SP, P PSTACKSOFFSET
000B 8BEC MOV BP, SP000D 16 PUSH SS
000E IF POP DS
000F FB STI
0010 C7068 2000000 MOV I, 0H

86:
0016 813E82000500 CMP 1,5H
001C 7E0 3 JLE S + 5H
001E E93C00 JMP P7

DO J = 0 TO (N - 1 ) ;
; STATEMENT0021 C70684 00000G MOV J, 0H

08:
0027 81 3E84000400 CMP J, 4H
002D 7E03 JLE S + 5H002F E92200 JMP P9

XSROW(I).COL(J ) = I;
; STATEMENT

0032 8B 068 200 MOV AX, I0036 B90A00 MOV CX, 0AH
0039 F7E9 IMUL CX
00 3B 8B368400 MOV SI, J003F D1E6 SHL SI, 10041 8 9C3 MOV BX, AX
2043 RBPE820E MOV CX, I
0047 89880400 MOV (BX ] .XROWrSIl ,cx

END;

THE SECOND
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49

; STATEMENT (1 39
P04B 81fl684000100 ADD J, 1H
(5051 E9D3FF JMP 08

0?:
END;

; STATEMENT # 40
8 1068 2000100 ADD I, 1H

f!PI5A E9B9FF JMP 06
07:

/* INITIALIZE YSROW SUCH THAT THE FIRST COLUMN IS SE
SECOND COLUMN EQUAL TO -1, AND THE THIRD COLUMN E

DO I = 0 TO (N-l );
; STATEMENT # 41

005D C70682000000 MOV I, 0H
010:

0063 8 1 3E82000400 CMP 1,4 H
0069 7E0 3 JLE $ + 5H
006B E94000 JMP 01 1

DO J = 0 TO (P-1);
; STATEMENT t 42

006E C70684000000 MOV J, 0H
§12:

0074 8 13E84 0 00 200 CMP J, 2H
007A 7E03 JLE $+5H
007C E92600 JMP 013

Y$ROW(I).COL(J ) * -J
; STATEMENT 1 43

007F 8B068400 MOV AX,J
0083 F7D8 NEG AX
0085 50 PUSH AX ; 1
0086 8B068200 MOV AX, I
008A B90600 MOV CX,6H
0 08D F7E9 IMUL CX
008F 8B368400 MOV SI, J
0093 D1E6 SHL SI, 1
0095 89C3 MOV BX, AX
0097 59 POP CX ; 1
0098 89884000 MOV IBX1.YROWfSI],CX

END;
; STATEMENT # 44

009C 810684000100 ADD J, 1H
00A2 E9CFFF JMP 01?

013:
END;

; STATEMENT f 45
00A5 81P68200010P ADD I, 1H
0 0AB E9B5FF JMP 010

011:
/* PERFORM MATRIX: MULTIPLICATION V
no K = 0 TO (P-l);

; STATEMENT # A
P0AE C7068400000P MOV K, PH

P14:
00B4 813E860P0200 CMP K, 2H
0 0B A 7EP 3 JLE S+5H
00BC E98CPP JMP 015

DO I = 0 TO fM-•1) ;
; STATEMENT it 47

0PBF O7P6P2000000 MOV f, PH
016:

PPC5 813E«?00P50P CMP I, 5H
00CB 7E03 JLE S + SH
00CD ES720P JMP 0J7

ZSROW(I).COL(K) = 0; /* SET ZSROW ELEMENT TO 0
; STATEMENT t 48

00D0 PB068200 MOV AX, I
P 0D4 B90600 MOV CX, '"'H
0 0D7 F7E9 IMUL CX
P0D9 8B 368600 MOV SI, K
00DD D1E6 SHL SI, 1
00DF 89C3 MOV BX, AX00E1 C7805E000000 MOV rex] .ZROwrsn , p h

DO J = 0 TO ( N - l  ) ; /* SUM THE PRODUCT OF X$ROW 1
; STATEMENT # 49

00E7 C 70684 000000 MOV J,0H
018:

0 0ED 81 3E840P04P0 CMP J , 4H
00F3 7E03 JLE S + 5H
00F5 E94] 00 JMP 019

Z $ROW(I).COL(K) = Z $ROW(I ) .COL(K) + ( XSROWfl
; STATEMENT # 50

00F8 8B 068 200 MOV AX, I
P0FC B90AP0 MOV CX, PAH
00FF F7E9 IMUL CX
0101 8B36840 0 MOV SI, J
0105 D1E6 SHL SI, 1
0107 50 PUSH AX ; 1
01P8 8B068400 MOV AX, J
010C B90600 MOV CX, 6H
010F F7E9 IMUL CX
0111 8B3E860P MOV DI,K
0115 D1E7 SHL DI, 1
0117 89C 3 MOV BX, AX
0119 8B814000 MOV AX,f BX1.YROWfDIl
01 ID 5B POP BX ; 1
0 11E F7A80400 IMUL r B X J .XROWfSI]
0122 50 PUSH AX ; 1
0123 OB068200 MOV AX,I
0127 F7E9 IMUL CX
0129 89C 3 MOV BX, AX

THE
V

YSROW(J).COL (K) );
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P12B 68 POP AX 1
0] 2C 01815E00 ADD 1BX].ZROWfDI) , AX

51 i END;
; STATEMENT 1 51

0130 810684000100 ADD J, 1H
0136 E9B4FF JMP 018

019:
52 3 END;

; STATEMENT # 52
0139 810682000100 ADD 1,1H
013F E983FF JMP 016

817:
5? 2 END:

; STATEMENT f! 53
0142 810686000100 ADD K, 1H
0148 E969FF JMP 0.14

015:

54 1 MAX ■ FINDSMX (@ZCROW, M, P); /* FINDl MAX VALUE OF ZSf
STATEMENT # 54

0] 4B B85E00 MOV AX,OFFSET(ZROW)
014E 50 PUSH AX 1
01*F B8P600 MOV AX, 6H
0152 50 PUSH AX 2
0153 B803P0 MOV AX, 3H
0156 50 PUSH AX 3
0157 E8000T CALL FINDMX
01 5A 89068800 MOV MAX,AX

55 1 CALL 8IN$DEC$ASC (MAX, PMAXSASCSARRAY); /* CONVERT TO
; STATEMENT # 55

015E FF368800 PUSH MAX ; 1
0162 B88A00 MOV AX,OFFSET(MAXASCARRAY)
0165 50 PUSH AX 2
0166 E84C00 CALL BINDECASC

56 1 DO I - 0 TO (SIGNED (SIZE(TEXT)) - 1); /* OUTPUT HEADEf
1 STATEMENT # 56

0169 C70682000000 MOV I, 0H
@20:

016F P13E82O00B00 CMP 1,0BH
0175 7E03 JLE $+5H
0177 E91400 JMP @21

57 2 CALL CO(TEXT(I) ) ;
; STATEMENT # 57

01 7 A PB1E8200 MOV B X , I
017E FFB70000 PUSH TEXT rBX); 1
0182 E80000 CALL CO

58 2 END;
I STATEMENT # 58

0185 81P/6C2P00100 ADD I, 1H
01 8B E9E1FF JMP @20

@21 :
59 1 DO I = e TO 5; /♦ OUTPUT ASCII MAX VALUE */

STATEMENT # 59
018E C70682000000 MOV I, OH

@22:
0194 8 1 3E8200050O CMP 1,5H
0 19A 7E0 3 JLE $ + 5H
019C E91400 JMP @2 3

CALL CO(MAX$ASCSARRAY(I));
STATEMENT # 60

019F
01A3
P1A7

8B1E820P MOV BX, I
FFB-78A00 PUSH MAXASCARRAYfBX] ; 1
E80000 CALL CO

; STATEMENT
810682000100 ADD I, 1H
E9EIFF JMP @22

END EXECUTIONSVEHICLE;

0 IB 3 
0 1 B 4

; STATEMENT f 62

MODULE INFORMATION:
CODE AREA SIZE 0225H 549D
CONSTANT AREA SIZE = 000CH 1 2D
VARIABLE AREA SIZE = 0090H 144D
MAXIMUM STACK SIZE = 
137 LINES READ 
0 PROGRAM ERROR (S)

0008H 8D

END OF PL/M-86 COMPILATION
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Appendix B 
Device Specifications
• 8086 Family
• 8085 Peripherals*
• Standard Pe ipherals**
• RAM Memor is***
•  EPROM M em ories***
• Deveiopmen Tools

*F o r  c o m p le te  s p e c if ic a t io n s  re fe r  to  th e  
In te l M C S-85 U s e r ’ s M a n u a l.

*F o r  c o m p le te  s p e c if ic a t io n s  re fe r  to  th e  
In te l P e r ip h e ra l D e s ig n  F la n d b o o k .

•F o r  c o m p le te  s p e c if ic a t io n s  re fe r  to  th e  1979 
In te l C o m p o n e n t D a ta  C a ta lo g .





8086/8086-2/8086-4 
16-BIT H M O S  M IC R O PR O C ESSO R

Direct Addressing Capability to 1 
MByte of Memory

Assembly Language Compatible with 
8080/8085

14 Word, By 16-Bit Register Set with 
Symmetrical Operations

24 Operand Addressing Modes

■ Bit, Byte, Word, and Block Operations

■ 8-and 16-Bit Signed and Unsigned 
Arithmetic in Binary or Decimal 
Including Multiply and Divide

■ 5 MHz Clock Rate (8 MHz for 8086-2)
(4 MHz for 8086-4)

■ MULTIBUS™ System Compatible 
Interface

The Intel® 8086 is a new generation, high performance microprocessor implemented in N-channel, depletion load, 
silicon gate technology (HMOS), and packaged in a 40-pin CerDIP package. The processor has attributes of both 8- and 
16-bit microprocessors. It addresses memory as a sequence of 8-bit bytes, but has a 16-bit wide physical path to mem
ory for high performance.

EXECUTION UNIT BUS INTERFACE UNIT 
RELOCATION

REGISTER FILE REGISTER FILE

GND C 1 V “ 40 D vCc
AD14 £ 2 39 □  AD15

AD13 C 3 38 U  A16/S3

AD12 C 4 37 □  A17/S4
AD11 C 5 36 J  A18/S5
AD10 C 6 35 U A19/S6
AD9 C 34 D BHE/S7
AD8 C 8 33 H MN/MX
AD7 C 9 32 D RD
AD6 C 10 31 □  RQ/GT0 (HOLD)
AD5 C 11 30 D rq /gtT (h ld a i

AD4 C 12 29 D LOCK (Wfl)
AD3 C 13 28 D S2 (M/IO)
AD2 C 14 27 3  s i  (DT/R)
AD1 C 15 26 1  so (DEN)
ADO C 16 25 D QS0 (ALE)
NMI C 17 24 D QS1 (INTA)

INTR C 18 23 D TEST
CLK C 19 22 □  READY
GND C 20 21 D RESET

40 LEAD

Figure 1. 8086 CPU Functional Block Diagram Figure 2. 8086 Pin Diagram



(a 0 MKaH) is transferred on the D15-D 8 
processor provides two enable signals, 
selectively allow reading from or writing into either,ant- 
odd byte location, even byte location, or both. The 
instruction stream is fetched from memory as words 
and is addressed internally by the processor to the byte 
level as necessary.

-^ F F F F F H

Figure 3a. Memory Organization

In referencing word data the BIU requires one or two 
memory cycles depending on whether or not the start
ing byte of the word is on an even or odd address, 
respectively. Consequently, in referencing word oper
ands performance can be optimized by locating data on 
even address boundaries. This is an especially useful 
technique for using the stack, since odd address refer
ences to the stack may adversely affect the context 
switching time for interrupt processing or task multi
plexing.

feus lines. 
SHE afnd A,

The internal functions of the 8086 processor are parti
tioned logically into two processing units. The first is 
the Bus Interface Unit (BIU) and the second is the Exe
cution Unit (EU) as shown in the block diagram of Figure 
1.
These units can interact directly but for the most part 
perform as separate asynchronous operational proces
sors. The bus interface unit provides the functions 
related to instruction fetching and queuing, operand 
fetch and store, and address relocation. This unit also 
provides the basic bus control. The overlap of instruc
tion pre-fetching provided by this unit serves to increase 
processor performance through improved bus band
width utilization. Up to 6 bytes of the instruction stream 
can be queued while waiting for decoding and execu
tion.
The instruction stream queuing mechanism allows the 
BIU to keep the memory utilized very efficiently. When
ever there is space for at least 2 bytes in the queue, the 
BIU will attempt a word fetch memory cycle. This greatly 
reduces "dead time” on the memory bus. The queue 
acts as a First-In-First-Out (FIFO) buffer, from which the 
EU extracts instruction bytes as required. If the queue is 
empty (following a branch instruction, for example), the 
first byte into the queue immediately becomes available 
to the EU.
The execution unit receives pre-fetched instructions 
from the BIU queue and provides un-relocated operand 
addresses to the BIU. Memory operands are passed 
through the BIU for processing by the EU, which passes 
results to the BIU for storage. See the Instruction Set 
description for further register set and architectural 
descriptions.

MEMORY ORGANIZATION
The processor provides a 20-bit address to memory 
which locates the byte being referenced. The memory is 
logically organized as a linear array of 1 million bytes, 
addressed as 00000(H) to FFFFF(H). The memory can be 
further logically divided into code, data, alternate data, 
and stack segments of up to 64K bytes each, with each 
segment falling on 16-byte boundaries. (See Figure 3a.)
Word (16-bit) operands can be located on even or odd 
address boundaries and are thus not constrained to 
even boundaries as is the case in many 16-bit com
puters. For address and data operands, the least signifi
cant byte of the word is stored in the lower valued 
address location and the most significant byte in the 
next higher address location. The BIU automatically per
forms the proper number of memory accesses, one if 
the word operand is on an even byte boundary and two if 
it is on an odd byte boundary. Except for the perfor
mance penalty, this double access is transparent to the 
software. This performance penalty does not occur for 
instruction fetches, only word operands.
Physically, the memory is organized as a high bank 
(Du-Dg) and a low bank (D7-D0) of 512K 8-bit bytes 
addressed in parallel by the processor’s address lines

Certain locations in memory are reserved for specific 
CPU operations (see Figure 3b.) Locations from address 
FFFF0H through FFFFFH are reserved for operations 
including a jump to the initial program loading routine. 
Following RESET, the CPU will always begin execution 
at location FFFF0H where the jump must be. Locations 
00000H through 003FFH are reserved for interrupt 
operations. Each of the 256 possible interrupt types has 
its service routine pointed to by a 4-byte pointer element 
consisting of a 16-bit segment address and a 16-bit off
set address. The pointer elements are assumed to have 
been stored at the respective places in reserved memory 
prior to occurrence of interrupts.
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FFFFFH 

FFFFOH

3FFH 

3FCH

7H

4H
3H

OH

Figure 3b. Reserved Memory Locations

RESET BOOTSTRAP 
PROGRAM JUMP

INTERRUPT POINTER 
FOR TYPE 255

INTERRUPT POINTER 
FOR TYPE 1

INTERRUPT POINTER 
FOR TYPE 0

%
MINIMUM AND M A X IM 0m kO y ^ ^ >
The requirements for supporting min'rmyfh'^nd^i# 
imum 8086 systems are sufficiently different tha t th 
cannot be done efficiently with 40 uniquely defined 
pins. Consequently, the 8086 is equipped with a strap 
pin (MN/MX) which defines the system configuration. 
The definition of a certain subset of the pins changes 
dependent on the condition of the strap pin. When 
MN/MX pin is strapped to GND, the 8086 treats pins 24 
through 31 in maximum mode. An 8288_bus controller 
interprets status information coded into S0,S1,S2 to gen
erate bus timing and control signals compatible with 
the MULTIBUS™ architecture. When the MN/MX pin is 
strapped to VCc, the 8086 generates bus control signals 
itself on pins 24 through 31, as shown in parentheses in 
Figure 2. Examples of minimum mode and maximum 
mode systems are shown in Figure 4.

Figure 4a. Minimum Mode 8086 Typical System Configuration
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I________ I

MN/W
CLK

READY ST 

RESET

8086
CPU

AD0-<
A

COCK — N.c.

CLK MRDC

Si AMWC

8288 To r c

DEN CTRLR IOWC

DT/R AIOWC

ALE I n t a

STB

OE
8282 

LATCH 
(2 OR 3)

—
T

61
8286

TRANSCEIVER
(2) c= DATA

<->•1 o

% A

h

------- *
— - r f ’

CSOh CSOl w e OD CE OE £5 KE WE

2142 RAM (4) 2716-2 PROM (2) MCS-80
PERIPHERAL

(2) (2)
1 Kx8 1 Kx8 2K x 8 | 2K x 8

Figure 4b. Maximum Mode 8086 Typical System Configuration

BUS OPERATION
The 8086 has a combined address and data bus com
monly referred to as a time multiplexed bus. This tech
nique provides the most efficient use of pins on the 
processor while permitting the use of a standard 40-lead 
package. This “ local bus" can be buffered directly and 
used throughout the system with address latching pro
vided on memory and I/O modules. In addition, the bus 
can also be demultiplexed at the processor with a single 
set of address latches if a standard non-multiplexed bus 
is desired for the system.
Each processor bus cycle consists of at least four CLK 
cycles. These are referred to as T-i, T2, T3 and T4 (see 
Figure 5). The address is emitted from the processor 
during T, and data transfer occurs on the bus during T3 
and T4. T2 is used primarily for changing the direction of 
the bus during read operations. In the event that a “ NOT 
READY” indication is given by the addressed device, 
“ Wait" states (Tw) are inserted between T3 and T4. Each 
inserted “Wait" state is of the same duration as a CLK 
cycle. Periods can occur between 8086 bus cycles. 
These are referred to as “ Idle” states (T,) or inactive CLK 
cycles. The processor uses these cycles for internal 
housekeeping.
During T, of any bus cycle the ALE (Address Latch 
Enable) signal is emitted (by either the processor or the 
8288 bus controller, depending on the MN/MX strap). At 
the trailing edge of this pulse, a valid address and cer
tain status Information for the cycle may be latched.

Status bits S0, S-|, and S2 are used, in maximum mode, 
by the bus controller to identify the type of bus transac
tion according to the following table:

S2
0 (LOW)

Si
0

So
0 Interrupt Acknowledge

0 0 1 Read I/O
0 1 0 Write I/O
0 1 1 Halt
1 (HIGH) 0 0 Instruction Fetch
1 0 1 Read Data from Memory
1 1 0 Write Data to Memory
1 1 1 Passive (no bus cycle)

Status bits S3 through S7 are multiplexed with high- 
order address bits and the BHE signal, and are therefore 
valid during T2 through T4. S3 and S4 indicate which 
segment register (see Instruction Set description) was 
used for this bus cycle in forming the address, accord
ing to the following table:

S4 S3
0 (LOW) 0 Alternate Data (extra segment)
0 1 Stack
1 (HIGH) 0 Code or None
1 1 Data

S5 is a reflection of the PSW interrupt enable bit. S6 = 0 
and S7 is a spare status bit.
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T, [ T ,  | T ,  | Tw ai,  | 1 ,  | T ,  | T ,  [ T ,  ] T „ „  | T ,

ADDR STATUS H E X H E X

/ a > - _ /  BU S R E S E R V E D  \  A FOR D A TA  IN , ^ VALID0 y- A ’ > -A°  ^  DA TA OUT (D ,s- D 0) -̂-------------------^ ^
L _

READ Y

l
_______T

REA D YV A r y  r
WAIT W AIT“ A / \
A

A C C E S S  T IM E ---------------►

A
-----------------  M EM ORY

a  v_ _ _ _ _ r
\

Figure 5. Basic System Timing

I/O ADDRESSING
In the 8086, I/O operations can address up to a max
imum of 64K I/O byte registers or 32K I/O word registers. 
The I/O address appears in the same format as the 
memory address on bus lines A i 5-A 0. The address lines 
A19"A16 are zer°  in I/O operations. The variable I/O in
structions which use register DX as a pointer have full 
address capability while the direct I/O instructions 
directly address one or two of the 256 I/O byte locations 
in page 0 of the I/O address space.
I/O ports are addressed in the same manner as memory 
locations. Even addressed bytes are transferred on the

D7-D 0 bus lines and odd addressed bytes on D,5-DB. 
Care must be taken to assure that each register within 
an 8-bit peripheral located on the lower portion of the 
bus be addressed as even.

EXTERNAL INTERFACE

PROCESSOR RESET AND INITIALIZATION
Processor initialization or start up is accomplished with 
activation (HIGH) of the RESET pin. The 8086 RESET is 
required to be HIGH for greater than 4 CLK cycles. The
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NON-MASKABLE INTERRUPT (NMT) " ,
The processor provides a single non-maskaJq(fe'-fqtefft|(y^  
pin (NMI) which has higher priority than the m&skabte in - « f / h )  
terrupt request pin (INTR). A typical use would be (oac»'.v_ * W  
tivate a power failure routine. The NMI is edge-triggered,,. ' v ., 
on a LOW-to-HIGH transition. The. activation of this pin 
causes a type 2 interrupt. (See Instruction Set descrip
tion.)

8086 will terminate operations on the high-going edge of 
RESET and will remain dormant as long as RESET is 
HIGH. The low-going transition of RESET triggers an in
ternal reset sequence for approximately 10 CLK cycles. 
After this interval the 8086 operates normally beginning 
with the instruction in absolute location FFFF0H (see 
Figure 3b). The details of this operation are specified in 
the Instruction Set description of the MCS-86 Users’ 
Manual. The RESET input is internally synchronized to 
the processor clock. At initialization the HIGH-to-LOW 
transition of RESET must occur no sooner than 50 fis  
after power-up, to allow complete initialization of the 
8086.

If INTR is asserted sooner than 9 CLK cycles after the 
end of RESET, the processor may execute one instruc
tion before responding to the interrupt. NMI may not be 
asserted prior to the 2nd CLK cycle following the end of 
RESET.

INTERRUPT OPERATIONS
Interrupt operations fall into two classes; software or 
hardware initiated. The software initiated interrupts and 
software aspects of hardware interrupts are specified in 
the Instruction Set description. Hardware interrupts can 
be classified as non-maskable or maskable.
Interrupts result in a transfer of control to a new pro
gram location. A 256-element table containing address 
pointers to the interrupt service program locations 
resides in absolute locations 0 through 3FFH (see 
Figure 3b), which are reserved for this purpose. Each 
element in the table is 4 bytes in size and corresponds 
to an interrupt "type". An interrupting device supplies 
an 8-bit type number, during the interrupt acknowledge 
sequence, which is used to “ vector” through the ap
propriate element to the new interrupt service program 
location.

NMI is required to have a duration in the HIGH state of 
greater than two CLK cycles, but is not required to be 
synchronized to the clock. Any high-going transition of 
NMI is latched on-chip and will be serviced at the end of 
the current instruction or between whole moves of a 
block-type instruction. Worst case response to NMI 
would be for multiply, divide, and variable shift instruc
tions. There is no specification on the occurrence of the 
low-going edge; it may occur before, during, or after the 
servicing of NMI. Another high-going edge triggers 
another response if it occurs after the start of the NMI 
procedure. The signal must be free of logical spikes in 
general and be free of bounces on the low-going edge to 
avoid triggering extraneous responses.

The 8086 provides a single interrupt request input (INTR) 
which can be masked internally by software with the 
resetting of the interrupt enable FLAG status bit. The 
interrupt request signal is level triggered. It is internally 
synchronized during each clock cycle on the high-going 
edge of CLK. To be responded to, INTR must be present 
(HIGH) during the clock period preceding the end of the 
current instruction or the end of a whole move for a 
block-type instruction. During the interrupt response 
sequence further interrupts are disabled. The enable bit 
is reset as part of the response to any interrupt (INTR, 
NMI, software interrupt or single-step), although the

MASKABLE INTERRUPT (INTR)

| T, | r 2 | T, | r .  ! T, | T, | T* | T, | r ,  |

l5ck

n I

Figure 6. Interrupt Acknowledge Sequence
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FLAGS register which is automatically pushed onto the 
stack reflects the state of the processor prior to the 
interrupt. Until the old FLAGS register is restored the 
enable bit will be zero unless specifically set by an 
instruction.
During the response sequence (figure 6) the processor 
executes two successive (back-to-back) interrupt 
acknowledge cycles. The 8086 emits the LOCK signal 
from T2 of the first bus cycle until T2 of the second. A 
local bus “ hold" request will not be honored until the 
end of the second bus cycle. In the second bus cycle a 
byte is fetched from the external interrupt system (e.g., 
8259A PIC) which identifies the source (type) of the 
interrupt. This byte is multiplied by four and used as a 
pointer into the interrupt vector lookup table. An INTR 
signal left HIGH will be continually responded to within 
the limitations of the enable bit and sample period. The 
INTERRUPT RETURN instruction includes a FLAGS pop 
which returns the status of the original interrupt enable 
bit when it restores the FLAGS.

HALT
When a software “ HALT” instruction is executed the 
processor indicates that it is entering the “ HALT" state 
in one of two ways depending upon which mode is 
strapped. In minimum mode, the processor issues one 
ALE with no qualifying bus control signals. In Maximum 
Mode, the processor issues appropriate HALT status on 
S ^ S q and the 8288 bus controller issues one ALE. The 
8086 will not leave the “ HALT" state when a local bus 
"hold” is entered while in "HALT". In this case, the 
processor reissues the HALT indicator. An interrupt 
request or RESET will force the 8086 out of the “ HALT" 
state.

READ/MODIFY/WRITE (SEMAPHORE) 
OPERATIONS VIA LOCK
The LOCK status information is provided by the proc
essor when directly consecutive bus cycles are required 
during the execution of an instruction. This provides the 
processor with the capability of performing read/modify/ 
write operations on memory (via the Exchange Register 
With Memory instruction, for example) without the 
possibility of another system bus master receiving 
intervening memory cycles. This is useful in multi
processor system configurations to accomplish “ test 
and set lock" operations. The LOCK signal is activated 
(forced LOW) in the clock cycle following the one in 
which the software “ LOCK" prefix instruction is 
decoded by the EU. It is deactivated at the end of the 
last bus cycle of the instruction following the “ LOCK" 
prefix instruction. While LOCK is active all interrupts 
are masked and a request on a RQ/GT pin will be 
recorded and then honored at the end of the LOCK.

EXTERNAL SYNCHRONIZATION VIA TEST
As an alternative to the interrupts and general I/O 
capabilities, the 8086 provides a single software- 
testable input known as the TEST signal. At any time the 
program may execute a WAIT instruction. If at that time 
the TEST signal is inactive (HIGH), program execution 
becomes suspended while the processor waits for TEST

to become active. It must remain active'for at least 5 
CLK cycles. The WAIT instruction. Is , rd-exaeutgd 
repeatedly until that time. This activity does not con
sume bus cycles. The processor remains in an idle state 
while waiting. All 8086 drivers go to 3-state OFF if  tius 
“ Hold” is entered. If interrupts are enabled, they may 
occur while the processor is waiting. When this occurs 
the processor fetches the WAIT instruction one extra 
time, processes the interrupt, and then re-fetches and 
re-executes the WAIT instruction upon returning from 
the interrupt.

8086 COMPARED WITH 8080/8085
While the 8086 has new instruction coding patterns to 
allow for the greatly expanded capabilities, all functions 
of the 8080/8085 may be performed by the 8086 with 
identical program semantics to their 8080/8085 ver
sions. For every 8080/8085 instruction there is a corre
sponding 8086 instruction (or, in rare cases, a short 
sequence of instructions). Virtually all 8086 data manip
ulation instructions may be specified to operate on 
either the full set of 16-bit registers or on an 8-bit subset 
of them which corresponds to the 8080 register set. This 
relationship is shown in Figure 7 where the shaded 
registers (names in parentheses) represent the 8080 
register set.

BASIC SYSTEM TIMING
Typical system configurations for the processor 
operating in minimum mode and in maximum mode are 
shown in Figures 4a and 4b, respectively. In minimum 
mode, the MN/MX pin is strapped to Vcc and the proc
essor emits bus control signals in a manner similar to 
the 8085. In maximum mode, the MN/MX pin is strapped 
to Vss and the processor emits coded status informa
tion which the 8288 bus controller uses to generate 
MULTIBUS compatible bus control signals. Figure 5 il
lustrates the signal timing relationships.

■:.......... K

FLAGSh ;  FLAGSl \ ]  (PSW)

ACCUMULATOR

BASE
COUNT
DATA

STACK POINTER 
BASE POINTER 
SOURCE INDEX 

DESTINATION INDEX

INSTRUCTION POINTER 

STATUS FLAGS

CODE SEGMENT 
DATA SEGMENT 
STACK SEGMENT 

EXTRA SEGMENT

Figure 7. 8086 Register Model; (8080 Registers Shaded)
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SYSTEM TIMING — MINIMUM SYSTEM
The read cycle begins in T, with the assertion of the 
Address Latch Enable (ALE) signal. The trailing (low- 
going) edge of this signal is used to latch the address 
information, which is valid on the local bus at this time, 
into the 8282/8283 latch. The BHE and A0 signals 
address the low, high, or both bytes. From T, to T4 the 
M/IO signal indicates a memory or I/O operation. At T2 
the address is removed from the local bus and the bus 
goes to a high impedance state. The read control signal 
is also asserted at T2. The read (RD) signal causes the 
addressed device to enable its data bus drivers to the 
local bus. Some time later valid data will be available on 
the bus and the addressed device will drive the READY 
line HIGH. When the processor returns the read signal 
to a HIGH level, the addressed device will again 3-state 
its bus drivers. If a transceiver (8286/8287) is required to 
buffer the 8086 local bus, signals DT/R and DEN are pro
vided by the 8086.

A write cycle also begins with the assertion of ALE and 
the emission of the address. The M/IO signal is again 
asserted to indicate a memory or I/O write operation. In 
the T2 immediately following the address emission the 
processor emits the data to be written into the 
addressed location. This data remains valid until the 
middle of T4. During T2, T3, and Tw the processor asserts 
the write control signal. The write (WR) signal becomes 
active at the beginning of T2 as opposed to the read 
which is delayed somewhat into T2 to provide time for 
the bus to float.

The BHE and A0 signals are used to select the proper 
byte(s) of the memory/IO word to be read or written 
according to the following table:

BHE A0
0 0 Whole word
0 1 Upper byte from/ 

to odd address
1 0 Lower byte from/ 

to even address
1 1 None

I/O ports are addressed in the same manner as memory 
location. Even addressed bytes are transferred on the 
D7-D0 bus lines and odd addressed bytes on D15-DB.
The basic difference between the interrupt acknowl
edge cycle and a read cycle is that the interrupt 
acknowledge signal (INTA) is asserted in place of the 
read (RD) signal and the address bus is floated. (See 
Figure 6.) In the second of two successive INTA cycles, 
a byte of information is read from bus lines D7-D0 as 
supplied by the interrupt system logic (i.e., 8259A Prior
ity Interrupt Controller). This byte identifies the source 
(type) of the interrupt. It is multiplied by four and used 
as a pointer into an interrupt vector lookup table, as 
described earlier.

V

BUS TIMING — MEDIUM COMPLEXITY SYSTEMS
For medium complexity systems the MN/MX pin is con
nected to Vss and the 8288 Bus Controller is added to 
the system as well as an 8282/8283 latch for latching the 
system address, and a 8286/8287 transceiver to allow for 
bus loading greater than theJS086 is capable of handling. 
Signals ALE, DEN, and DT/R are generated by the 8288 
instead of the processor in this configuration although 
their timing remains relatively the same. The 8086 status 
outputs (S 2, S,, and S0) provide type-of-cycle information 
and become 8288 inputs. This bus cycle information 
specifies read (code, data, or I/O), write (data or I/O), 
interrupt acknowledge, or software halt. The 8288 thus 
issues control signals specifying memory read or write, 
I/O read or write, or interrupt acknowledge. The 8288 
provides two types of write strobes, normal and 
advanced, to be applied as required. The normal write 
strobes have data valid at the leading edge of write. The 
advanced write strobes have the same timing as read 
strobes, and hence data isn't valid at the leading edge of 
write. The 8286/8287 transceiver receives the usual T 
and OE Inputs from the 8288's DT/R and DEN.
The pointer into the interrupt vector table, which is 
passed during the second INTA cycle, can derive from 
an 8259A located on either the local bus or the system 
bus. If the master 8259A Priority Interrupt Controller is 
positioned on the local bus, aTTL gate is required to 
disable the 8286/8287 transceiver when reading from the 
master 8259A during the interrupt acknowledge 
sequence and software ‘‘poll” .
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8086 FUNCTIONAL PIN DEFINITION
The following pin function descriptions are for 8086 
systems in either minimum or maximum mode. The 
“Local Bus” In these descriptions Is the direct multi
plexed bus interface connection to the 8086 (without 
regard to additional bus buffers).

AD15-A D 0 (INPUT/OUTPUT 3-STATE)
These lines constitute the time multiplexed memory/IO 
address (T,) and data (T2, T3, Tw, T4) bus. A0 is analogous 
to BHE for the lower byte of the data bus, pins D7-D0. It 
is LOW during T, when a byte is to be transferred on the 
lower portion of the bus in memory or I/O operations. 
Eight-bit oriented devices tied to the lower half would 
normally use A0 to condition chip select functions. (See 
table on page 8.) These lines are active HIGH and float to 
3-state OFF during interrupt acknowledge and local bus 
“ hold acknowledge” .

A19/S6, A18/s5, A 17/S4i A16/S 3 (OUTPUT 3-STATE)
During T-, these are the four most significant address 
lines for memory operations. During I/O operations 
these lines are LOW. During memory and I/O operations, 
status information is available on these lines during T2, 
T3, Tw, and T4. The status of the interrupt enable FLAG 
bit (S5) is updated at the beginning of each CLK cycle. 
A17/S4 and A,g/S3 are encoded as follows:

A17/S4 Ai6/S3
0 (LOW) 0 Alternate Data
0 1 Stack
1 (HIGH) 0 Code or None
1 1 Data
S6 is 0 (LOW

This information indicates which relocation register is 
presently being used for data accessing.
These lines float to 3-state OFF during local bus “ hold 
acknowledge".

BHE/S/ (OUTPUT 3-STATE)
During T, the bus high enable signal (BHE) should be 
used to enable data onto the most significant half of the 
data bus, pins D15-D8. Eight-bit oriented devices tied to 
the upper half of the bus would normally use BHE to 
condition chip select functions. BHE is LOW during T, 
for read, write, and interrupt acknowledge cycles when a 
byte is to be transferred on the high portion of the bus. 
(See table on page 8.) The S7 status information is avail
able during T2, T3, and T4. The signal is active LOW, and 
floats to 3-state OFF in “ hold". It is LOW during T, for 
the first interrupt acknowledge cycle.

RD (OUTPUT 3-STATE)
Read strobe indicates that the processor is performing a 
memory or I/O read cycle, depending on the state of the 
S2 pin. This signal is used to read devices which reside

on the 8086 local bus. RD is active LOW during I 2, T3 
and Tw of any read cycle, and is guaranteed to remain 
HIGH in T2 until the 8086 local bus has floated.
This signal floats to 3-state OFF in “ hold acknowledge” .

READY (INPUT)
READY is the acknowledgement from the addressed 
memory or I/O device that it will complete the data 
transfer. The RDY signal from memory/IO is synchro
nized by the 8284 Clock Generator to form READY. This 
signal is active HIGH.

INTR (INPUT)
Interrupt request is a level triggered input which is sam
pled during the last clock cycle of each instruction to 
determine if the processor should enter into an interrupt 
acknowledge operation. A subroutine is vectored to via 
an interrupt vector lookup table located in system 
memory. It can be internally masked by software reset
ting the interrupt enable bit. INTR is internally syn
chronized. This signal is active HIGH.

TEST (INPUT)

The TEST input is examined by the “ Wait” instruction. If 
the TEST input is LOW execution continues, otherwise 
the processor waits in an "Idle” state. This input is syn
chronized internally during each clock cycle on the 
leading edge of CLK.

NM I (INPUT)
Non-maskable interrupt is an edge triggered input which 
causes a type 2 interrupt. A subroutine is vectored to via 
an interrupt vector lookup table located in system 
memory. NMI is not maskable internally by software. A 
transition from a LOW to HIGH initiates the interrupt at 
the end of the current instruction. This input is intern
ally synchronized.

RESET (INPUT)
RESET causes the processor to immediately terminate 
its present activity. The signal must be active HIGH for 
at least four clock cycles. It restarts execution, as 
described in the Instruction Set description, when 
RESET returns LOW. RESET is internally synchronized.

CLK (INPUT)
The clock provides the basic timing for the processor 
and bus controller. It is asymmetric with a 33% duty 
cycle to provide optimized internal timing.

V C C
Vcc is the + 5V ± 10% (±5%  on 8086-2, 8086-4) power 
supply pin.

GND
GND are the ground pins
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The following pin function descriptions are for the 
8086/8288 system in maximum mode (i.e., MN/MX = 
Vss). Only the pin functions which are unique to max
imum mode are described; all other pin functions are as 
described above.

S7, So (OUTPUT 3-STATE)
These status lines are encoded as follows:

s2
0 (LOW)

s,
0

So
0 Interrupt Acknowledge

0 0 1 Read I/O Port
0 1 0 Write I/O Port
0 1 1 Halt
1 (HIGH) 0 0 Code Access
1 0 1 Read Memory
1 1 0 Write Memory
1 1 1 Passive

Status is active during T4, T 1f and T2 and is returned to 
the passive state (1,1,1) during T3 or during Tw when 
READY is HIGH. This status is used by the 8288 Bus 
Controller to generate all memory and I/O access con
trol signals. Any change by S2, S,, or Sq during T4 is used 
to indicate the beginning of a bus cycle, and the return 
to the passive state in T3 or Tw is used to indicate the 
end of a bus cycle.
These signals float to 3-state OFF in “ hold acknowl
edge".

RQ/GTo. RQ/GTi (INPUT/OUTPUT)
The request/grant pins are used by other local bus 
masters to force the processor to release the local bus 
at the end of the processor's current bus cycle. Each pin 
is bidirectional with RQ/GT0 having higher priority than 
RQ/GTY RQ/ST has an internal pull-up resistor so may 
be left unconnected. The request/grant sequence is as 
follows (see Figure 14):

1. A pulse of 1 CLK wide from another local bus 
master indicates a local bus request (“ hold") to 
the 8086 (pulse 1).

During the CPU’s next T4 of®fyl5piuJij^.4RM^ide 
from the 8086 to the requesting master (pulse 2), 
indicates that the 8086 has allowed the too^l 
to float and that it will enter the "hold 
acknowledge” state at the next CLK . The CPU’s'' 
bus interface unit is disconnected logically from 
the local bus during “ hold acknowledge” .

3. A pulse 1 CLK wide from the requesting master 
indicates to the 8086 (pulse 3) that the “ hold” 
request is about to end and that the 8086 can 
reclaim the local bus at the next CLK.

Each master-master exchange of the local bus is a 
sequence of 3 pulses. There must be one dead CLK 
cycle after each bus exchange. Pulses are active LOW.

LOCK (OUTPUT 3-STATE)
The LOCK output indicates that other system bus 
masters are not to gain control of the system bus while 
LOCK is active LOW. The LOCK signal is activated by 
the “ LOCK” prefix instruction and remains active until 
the completion of the next instruction. This signal Is 
active LOW, and floats to 3-state OFF in "hold acknowl
edge".

QSi, QSg (OUTPUT)
QS, and QS0 provide status to allow external tracking of 
the internal 8086 instruction queue.

QS, QS0
0 (LOW) 0 No Operation
0 1 First Byte of Op Code from Queue
1 (HIGH) 0 Empty the Queue
1 1 Subsequent Byte from Queue

The queue status is valid during the CLK cycle after 
which the queue operation is performed.
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The following pin function descriptions are for the 8086 
minimum mode (i.e., MN/MX = Vcc)- Only the pin func
tions which are unique to minimum mode are described; 
all other pin functions are as described above.

M/IO (OUTPUT 3-STATE)
This status line is logically equivalent to S2 in the max
imum mode. It is used to distinguish a memory access 
from an I/O access. M/IO becomes valid in the T4 
preceding a bus cycle and remains vaMd until the final T4 
of the cycle (M = HIGH, 10 = LOW). M/IO floats to 3-state 
OFF in local bus “ hold acknowledge".

WR (OUTPUT 3-STATE)
Write strobe indicates that the processor is performing 
a write memory or write I/O cycle, depending on the 
state of the M/i© signal. WR is active for T2, T3 and Tw of 
any write cycle. It is active LOW, and floats to 3-state 
OFF in local bus “ hold acknowledge".

INTA (OUTPUT)
INTA is used as a read strobe for interrupt acknowledge 
cycles. It is active LOW during T2, T3 and Tw of each 
interrupt acknowledge cycle. INTA floats to 3-state OFF 
in “ hold acknowledge".

ALE (OUTPUT)
Address latch enable is provided by the processor to 
latch the address into the 8282/8283 address latch. It is 
a HIGH pulse active during T, of any bus cycle. Note 
that ALE is never floated.

DT/R (OUTPUT 3-STATE)
Data transmit/receive is needed in minimum sySteFi 
desires to use an 8286/8287 data bus transceiver. It 
used to control the direction of data flow through ffte*,s * |  U  
transceiver. Logically DT/R is equivalent to S, in the '  % r  
maximum mode, and its timing is the same as for 
M/IO.(T = HIGH, R= LOW.) This signal floats to 3-state 
OFF in local bus "hold acknowledge” .

DEN (OUTPUT 3-STATE)
Data enable is provided as an output enable for the 
8286/8287 in a minimum system which uses the 
transceiver. DEN is active LOW during each memory and 
I/O access and for INTA cycles. For a read or INTA cycle 
it is active from the middle of T2 until the middle of T4, 
while for a write cycle it is active from the beginning of 
T2 until the middle of T4. DEN floats to 3-state OFF in 
local bus "hold acknowledge” .

HOLD (INPUT), HLDA (OUTPUT)
HOLD indicates that another master is requesting a 
local bus "hold” . To be acknowledged, HOLD must be 
active HIGH. The processor receiving the "hold" 
request will issue HLDA (HIGH) as an acknowledgement 
in the middle of T4 or T(. Simultaneous with the 
issuance of HLDA the processor will float the local bus 
and control lines. After HOLD is detected as being LOW, 
the processor will LOWer HLDA, and when the proces
sor needs to run another cycle, it will again drive the 
local bus and control lines. (See Figure 15.)

HOLD is not an asynchronous input. External syn
chronization should be provided if the system cannot 
otherwise guarantee the setup time.
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ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias................0°C to 70°C
Storage Temperature....................... -65°C  to + 150°C
Voltage on Any Pin with

Respect to Ground................................. -  1.0 to + 7V
Power Dissipation.............................................2.5 Watt

*COMMENT: Stresses above those listed under ‘ 'Absolu te  M a x im a l ; 
Ratings" may cause permanent damage to the device. Th is  is  a stress 
rating only and functional operation o f the device at these or any other 
cond itions above those indicated in the operational section s of th is 
spec ifica tion  is not implied. Exposure to abso lute  maximum rating con
d itions for extended periods may affect device reliability.

D.C. CHARACTERISTICS

8086: Ta = 0°C to 70°C, Vcc= 5V ±10% 
8086-2/8086-4: TA = 0°C to 70°C, Vcc= 5V ±5%

Symbol Parameter Min. Max. Units Test Conditions

VlL Input Low Voltage -0 .5 + 0.8 V

V|H Input High Voltage 2.0 Vcc + 0.5 V

—Io>

Output Low Voltage 0.45 V I0l = 2.0 mA

Xo> Output High Voltage 2.4 V Ioh= -  400 pA

Ice Power Supply Current 
8086/8086-4 
8086-2

340
350

<
 <

 
E E TA= 25°C

'Ll Input Leakage Current ±10 pA 0V < VIN < Vcc

•lo Output Leakage Current ±10 pA 0.45V < V0UT « Vcc

VcL Clock Input Low Voltage -0 .5 + 0.6 V

VCH Clock Input High Voltage 3.9

o+oo>

V

C IN

Capacitance of Input Buffer 
(All input except 
ADo-A D 15, RQ/GT)

10 PF fc= 1 MHz

C|0
Capacitance of I/O Buffer 
(AD0-A D 15, RQ/GT) 20 pF fc = 1 MHz
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8086 MINIMUM COMPLEXITY SYSTEM (Figures 8, 9, 12, 15) 
TIMING REQUIREMENTS

8086/8086-4 8086-2

S y m b o l P a r a m e te r M in . M a x . M in . M a x . U n i t s T e s t  C o n d i t io n s

T C LC L C LK  Cycle  Period —  8086 
-  8086-4

200
250

500
500

125 500 ns

TCLC H C LK  Low Time (2/3 TCLCL) -  15 (2/j T C L C L ) - 15 ns

TC H C L C LK  H igh Time (V3 T C LC L )+ 2 (1/3 T C LC L )+ 2 ns

TCH 1CH2 C LK  R ise Time 10 10 ns From 1.0V to 3.5V

TCL2CL1 C LK  Fall T ime 10 10 ns From 3.5V to 1.0V

TD VC L Data In Setup Time 30 20 ns

TCLDX Data In Hold  Time 10 10 ns

TR1VCL RDY Setup Time into 8284 (See Notes 1, 2) 35 35 ns

TCLR1X RDY Hold T im e into 8284 (See Notes 1, 2) 0 0 ns

TRYH C H R EAD Y Setup T im e into 8086 (2/3 T C L C L ) - 15 (Vs TCLCL) -  15 ns

TCH RYX R EAD Y Hold T im e into 8086 30 20 ns

TR Y LC L READY Inactive to C LK  (See Note 3) - 8 - 8 ns

THVCH HOLD  Setup Time 35 20 ns

TINVCH INTR, NMI, TEST  Setup T im e (See Note 2) 30 15 ns

TIMING RESPONSES 8066/8086-4 8086-2

S y m b o l P a r a m e te r M in . M a x . M in . M a x . U n i t s T e s t  C o n d i t io n s

TCLAV Address Valid Delay 10 110 10 60 ns

C l  =20-100 pF for 
all 8086 Outputs 
(In add ition to 
8086 self-load)

TCLAX Address Hold Time 10 10 ns

TCLAZ Address Float Delay TCLAX 80 TCLAX 50 ns

TLH LL A LE  W idth T C L C H -2 0 T C L C H -1 0 ns

TCLLH A LE  Active Delay 80 50 ns

T C H LL A LE  Inactive Delay 85 55 ns

TLLAX Address Hold T im e to A LE  Inactive T C H C L -1 0 T C H C L -1 0 ns

TCLDV Data Valid Delay 10 110 10 60 ns

TCH DX Data Hold Time 10 10 ns

TW HDX Data Hold T im e After W R T C L C H -3 0 T C L C H -3 0 ns

TC V C TV Control Active Delay 1 10 110 10 70 ns

TCH CTV Control Active Delay 2 10 110 10 60 ns

TCVCTX Control Inactive Delay 10 110 10 70 ns

TAZRL Address Float to READ Active 0 0 ns

T C LR L RB Active Delay 10 165 10 100 ns

TCLRH RB Inactive Delay 10 150 10 80 ns

TRH AV RD Inactive to Next Address Active TCLCL-45 T C LC L  -40 ns

TC LH A V HLD A  Valid Delay 10 160 10 100 ns

TRLRH R d  W idth 2 TC LC L-75 2TCLCL-50 ns

TW LW H W R W idth 2 TC LC L-60 2TCLCL-40 ns

TAVA L Address Valid to A LE  Low TCLCH -60 TCLCH -40 ns

N O T E S : 1. Signal at 8284 shown for reference only.
2. Setup requirement for asynchronous signal only to guarantee recogn ition at next CLK.
3. App lies only to T2 state. (8 ns into T3)
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8086 MAX MODE SYSTEM (USING 8288 BUS CONTROLLER) (Figures 10-14)
'"e/rS*

8086/8066-4 8086-2

S ym bol P a ra m e te r Min. M ax. Min. Max. U nits T e s t  CcitnMIorV* *

TCLCL CLK Cycle  Period — 8086 
— 8086-4

200
250

500
500

125 500 ns

TCLCH CLK Low Time (2/3 T C L C L )-15 (2/j T C L C L ) -15 ns

TCHCL CLK H igh Time (Vs TCLCL)+  2 (Vs TC LC L)+  2 ns

TCH1CH2 CLK Rise Tim e 10 10 ns From 1.0V to  3.5V

TCL2CL1 CLK Fall Time 10 10 ns From 3.5V to  1.0V

TDVCL Data In Setup Time 30 20 ns

TCLDX Data In Hold Time 10 10 ns

TR1VCL RDY Setup Tim e in to  8284 (See Notes 1, 2) 35 35 ns

TCLR1X RDY Hold T im e in to  8284 (See Notes 1, 2) 0 0 ns

TRYHCH READY Setup Tim e in to  8086 (2/j T C L C L )-15 (2/3 T C L C L )-15 ns

TCHRYX READY Hold Tim e in to  8086 30 20 ns

TRYLCL READY Inactive to  CLK (See Note 4) -8 -8 ns

TINVCH Setup T im e fo r Recognition 
(INTR, NMI, TEST) (See Note 2)

30 15 ns

TGVCH RQ/GT Setup Tim e 30 15 ns

TCHGX RQ Hold Tim e in to  8086 40 30 ns

TIMING RESPONSES 8086/8086-4 8086-2

S ym bol P a ra m e te r Min. Max. Min. Max. U nits T e s t  C o n d itio n s

TCLML Command Active  Delay (See Note 1) 10 35 10 35 ns

CL =  20-100 pF for 
a ll 8086 O utputs 
(In a dd itio n  to  
8086 self-load)

TCLMH Command Inactive Delay (See Note 1) 10 35 10 35 ns

TRYHSH READY A ctive  to  S ta tus Passive (See Note 3) 110 65 ns

TCHSV S tatus A ctive  Delay 10 110 10 60 ns

TCLSH S tatus Inactive Delay 10 130 10 70 ns

TCLAV Address Valid Delay 10 110 10 60 ns

TCLAX Address Hold Tim e 10 10 ns

TCLAZ Address F loat Delay TCLAX 80 TCLAX 50 ns

TSVLH S tatus Valid to  ALE High (See Note 1) 15 15 ns

TSVMCH S tatus Valid to  MCE H igh (See Note 1) 15 15 ns

TCLLH CLK Low to  ALE Valid (See Note 1) 15 15 ns

TCLMCH CLK Low to  MCE H igh (See Note 1) 15 15 ns

TCHLL ALE Inactive Delay (See Note 1) 15 15 ns

TCLMCL MCE Inactive Delay (See Note 1) 15 15 ns

TCLDV Data Valid Delay 10 110 10 60 ns

TCHDX Data Hold Time 10 10 ns

TCVNV C ontro l Active  Delay (See Note 1) 5 45 5 45 ns

TCVNX Contro l Inactive Delay (See Note 1) 10 45 10 45 ns

TAZRL Address F loat to  Read Active 0 0 ns

TCLRL RD A ctive  Delay 10 165 10 100 ns

TCLRH RD Inactive Delay 10 150 10 80 ns

TRHAV RD Inactive to  Next Address Active TCLCL-45 TCLCL-40 ns

TCHDTL D irection  Contro l Active  Delay (See Note 1) 50 50 ns

TCHDTH D irection C ontro l Inactive  Delay (See Note 1) 30 30 ns

TCLGL S T  Active  Delay 0 85 0 50 ns

TCLGH GT Inactive Delay 0 85 0 50 ns

TRLRH RD W idth 2TCLCL-75 2TCLCL-50 ns

NOTES: 1. S ignal a t 8284 o r 8288 shown for reference only.
2. Setup requirem ent fo r asynchronous signa l only to  guarantee recogn ition  a t next CLK.
3. A pp lies only to  T3 and w a it states.
4. A pp lies on ly  to  T2 state  (8 ns in to  T3).
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Figure 8. 8086 Bus Timing — Minimum Mode System
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2. RDY IS SAMPLED NEAR THE END OF T2, T3, Tw TO DETERMINE IF Tw 
MACHINES STATES ARE TO BE INSERTED.

3. TWO INTA CYCLES RUN BACK-TO-BACK. THE 8086 LOCAL ADDR/DATA BUS IS 
FLOATING DURING BOTH INTA CYCLES. CONTROL SIGNALS SHOWN FOR 
SECOND INTA CYCLE.

4. SIGNALS AT 8284 ARE SHOWN FOR REFERENCE ONLY.
5. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE 

NOTED.

Figure 9. 8086 Bus Timing — Minimum Mode System (cont’d)
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T i T? T3 T4

Figure 10. 8086 Bus Timing — Maximum Mode System (Using 8288)
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(BEfi =  Vo l ;RE>.MRDC.1(SRC,MWTC,AMWC,IOWC,AIOWC.INTA,DT/R =  Vqh)

AO15-A D 0 " V_7V_ INVALID ADDRESS

S2.S1.S0 /

NOTES: 1. ALL SIGNALS SWITCH BETWEEN V0 H AND V0 l UNLESS OTHERWISE 
SPECIFIED.

2. RDY IS SAMPLED NEAR THE END OF T2. T3. Tw TO DETERMINE IF Tw 
MACHINES STATES ARE TO BE INSERTED.

3. CASCADE ADDRESS IS VALID BETWEEN FIRST AND SECOND INTA CYCLE.
4. TWO INTA CYCLES RUN BACK-TO-BACK. THE 8086 LOCAL ADDR/DATA BUS IS 

FLOATING DURING BOTH INTA CYCLES. CONTROL FOR POINTER ADDRESS 
IS SHOWN FOR SECOND INTA CYCLE.

5. SIGNALS AT 8284 OR 8288 ARE SHOWN FOR REFERENCE ONLY.
8. THE ISSUANCE OF THE 8288 COMMAND A ND CONTROL SIGNALS (NffiDC. 

M W te , AMWC, iOEC. ]CW C, AIOWC, INTA AND DEN) LAGS THE ACTIVE HIGH 
8288 CEN.

7. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE 
NOTED.

8. STATUS INACTIVE IN STATE JUST PRIOR TO T4.

Figure 11. 8086 Bus Timing — Maximum Mode System (Using 8288) (cont.)
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TEST

NOTE:
1. SETU P REQ U IREM EN TS  FO R  A S YN C H R O N O U S  SIG NALS O N LY  TO G U AR AN TEE  RECOGNITION  AT  NEXT CLK

Figure 12. Asynchronous Signal Recognition

Figure 13. Bus Lock Signal Timing (Maximum Mode Only)

NOTES: 1. THE COPROCESSOR MAY NOT DRIVE THE BUSES OUTSIDE THE REGION 
SHOWN WITHOUT RISKING CONTENTION.

Figure 14. Request/Grant Sequence Timing (Maximum Mode Only)

Figure 15. Hold/Hold Acknowledge Timing (Minimum Mode Only)
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8086
INSTRUCTION SET SUMMARY

OATA TRANSFER 
MOV = Move:

Register/memory to/trom register 

Immediate to register'memory 

Immediate to register 

Memory to accumulator 

Accumulator to memory 

Register 'memory to segment register [ 

Segment register to register/memory [

PUSH Push:

Register memory 

Register

Segment register

POP Pop:

Register/memory 

Register

Segment register

XCH6 = Exchange:

Register/memory with register 

Register with accumulator

IN=lnput from:

Fixed port 

Variable port

OUT = Output to:

Fixed port 

Variable port

XLAT=Translate byte to AL 

LEA=Load EA to register 

LDS=Load pointer to DS 

LES=load pointer to ES 

LAHF=load AH with (lags 

SAHF=Store AH into flags 

PUSHF=Push flags 

P0PF=Pop flags

7 6 5 4 3 2 1 0  7 6 5 4 3 2 1 0  7 6 5 4 3 2 1 1

| 1 0 0 0 1 0 d w mod reg r/m

| 1 1 0 0 0 1 i w mod 0 0 0 r/m data | data it w 1 |

| 1 0 1 1 w reg data data it w i |

| 1 0 1 0 0 0 0 w addr-iow addr-high |

| i 0 1 0 0 0 i w add'-fow addr-high I

| 1 0 0 0 1 1 1 0 mod 0 reg r/m

| 1 0 0 0 1 1 0 0 mod 0 reg r/m

[ 0 1 0 1 0  reg [ 

| 0 0 0 reg 1 1 0 I

1 0 0 0 1 1 1 1 mod 0 0 0 r /m | 1 t 1 1 0,1 1 w mod 1 1 1 1/m
0 1 0  11  reg AAD ASCII adjust to' divide 1 1 0  10  1 0  1 0 0 0 0 1 0 1 0
0 0 0 reg 1 1 1 CBW Convert byte to word 1 C 0 1 10  0 0

DEC Oecremenl
Regisler/memory

Register

MEG Change sign

CMP Compare:

Register memory and register 

Immediate with register/memory 

immediate with accumulator 

AAS ASCII 3d|ust for subtract 

OAS Decimal adiust tor subtract 

MUL Multiply lunsignedi 

IMUL integer multiply isigned) 

AAM ASCII adiust for multiply

7 6 5 4 3 2 1 0  7 6 5 4 3 2 1 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

10 1 0 0 1 reg

10 0 1 1 t 0 d w ' mod reg

|0 0 1
10 0 1 0 1

data if s w 01

1 0 1 0 0  0 0 0 0 1 0 1

1 w I mod 1

1 0 0 1 0 w r

1 1 1 0 1 1 0 w

CWO Convert word to double word

LOGIC
MOT Invert

SHL/SAL Shift logical arithmetic left 

SHR Shift logical right 

SAR Shift arithmetic right 

ROl Rotate left 

ROR Rotate right

RCL Rotate through carry flag left 

RCR Rotate through carry right

AND And:
Reg /memory and register to either 

Immediate to register/memory 

immediate to accumulator

1 0 0 0 0 0 0 v

TEST And function lo flags, no result:
ARITHMETIC Register/memory and register 1 0 0 0 0 1 0 w mod reg r/m

ADD = Add: Immediate data and register/memory 1 1 1 1 0 1 1 w modO 0 0 r/m data data if w 1

Reg./memory with register to either 0 0 0 0 0 0 d w mod 'eg r/m Immediate data and accumulator 1 0 1 0 1 0 0 w data data if w -1

Immediate to register/memory 1 0 0 0 0 0 s w mod 0 0 0 r/m data data if s w 01 |
Immediate to accumulator 0 0 0 0 0 1 0 w data data it w 1 | OR Or:

Reg /memory and register to either 0 0 0 0 1 0 d w mod reg r/m
ADC = Add with carry: Immediate to register/memory 1 0 0 0 0 0 0 w modO 0 1 r/m data data if w 1
Reg /memory with register to either 0 0 0 1 0 0 d w mod reg r/m Immediate to accumulator 0 0 0 0 1 1 0 w data data if w = 1
Immediate to register/memory 1 0 0 0 0 0 s w mod 0 10  r/m data data if s w=01 |

XOR Exclusive or:Immediate to accumulator 0 0 0 1 0 1 0 w data data it w ! 1
Reg /memory and register to either 0 0 1 1 0 0 d w mod reg r/m

INC = Incramant: Immediate to register/memory 1 0 0 0 0 0 0 w mod 1 1 0  r/m data data it w=l

Register/memory 1 1 1 1 1 1 1 w mod 0 0 0 r/m Immediate to accumulator 0 0 1 1 0 1 0 w data data if w 1
Register 0 1 0 0 0 reg

AAA=ASCII adjust for add 0 0 1 1 0 1 1 1

QAA=Decimal adjust for add 0 0 1 0 0 1 1 1

SUB = Subtract:
Reg /memory and register to either 0 0 1 0 1 0 d w mod reg r/m

STRING MANIPULATIONImmediate from register/memory 1 0 0 0 0 0 S w mod 1 0  1 r/m data data if s w=01 |

Immediate from accumulator 0 0 1 0 1 1 0 w data data if w=i REP=Repeat 1 1 1 1 0 0 1 2

MOVS=Move byte/word 1 0 1 0 0 1 0 w
SBB = Subtract with borrow CMPS=Compare byte/word 1 0 1 0 0 1 1 w

Reg /memory and register to either 0 0 0 1 1 0 d w mod reg r/m SCAS=Scan byte/word 1 0 1 0 1 1 1 w

Immediate from register/memory 1 0 0 0 0 0 s w mod 0 1 1 r/m data data if s w=0i | LODS=Load byte/wd to AL/AX 1 0 1 0 1 1 0 w

Immediate from accumulator | 0 0 0 1 1 1 0 w data data it w =1 STDS=Stor byte/wd from AL/A 1 0 1 0 1 0 1 w

M nem on ics © In te l, I978
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8 0 8 6 /8 0 8 6 -2 /8 0 8 6 -4

CONTROL TRANSFER
CALL = Call: 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Oirecl within segment 1 1 1 0 1 0 0 0 disp-low disp-high

Indirect within segment | 1 1 1 1 1 1 1 1 mod 0 1 0  r/m

Direct intersegment 0 0 1 1 0 1 0 offset-low offset-high

seg-low seg-high

Indirect intersegment I 1 1 1 1 1 i i i mod 0 11 r;m

JMP - Unconditional Jump:

Direct within segment 1 1 1 0 1 0 0 1 disp-low disp-high

Direct within segment-short i 1 1 1 0  10  11 disp

Indirect within segment I 1 i 1 1 1 t 1 1 mod 10  0 r/m

Direct intersegment 1 1 1 0  10  10 offset-'ow offset-high

seg-low seg-high

Indirect intersegment [ 1 1 1 1 1 1 1 1 mod 1 0  1 r /m

RET = Return from CALL:

Within segment 1 1 0 0 0 0 1 1

Within seg adding immed to SP 1 1 0 0 0 0 1 0 data-iow data-high

Intersegment 1 1 0 0 1 0 1 1

Intersegment, adding immediate to SP 1 1 1 0 0 1 0 1 0 data-low data-high

JE/JZ=Jump on equal/zero 0 1 1 1 0 1 0 0 disp

or equal 0 1 1 1 1 1 0 0 disp
JL£/Jnh=jump on less or equal/nor |n , , . . , , A 

greater 1 0 1 1 1 1 1 1 u disp
JB/JNAE=Jump cn below/not above 0 1 1 1 0 0 1 0 disp
JBE/JRA=Jump on below or equal/ I 0 1 1 1 0 1 1 0 disp

JP/JPE=Jump on parity/parity even Id  1 1 1 1 0 1 0 disp

J0=Jump on overflow 0 1 1 10  0 0 0 disp

JS=Jump on sign 0 1 1 1 1 0 0 0 disp

JKE/JNZ=Jump on not equal/not zero [ 0 1 1 1 0 1 0 i disp
JNl/JGE=Jump on not less /greater | ' *

or equal 1 u ' 1 1 ' 1 u 1 disp
JNLE/JG=Jump on not less or equal/ 0 1 1 1 1 1 1 1 disp

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
JRB/JAE Jump on not below/above 0 1 1 1 0 0 1 1 disp
JNBE/JA-Jump on not below or I 0 1 1 1 0 1 1 1 disp

JNP/JPO Jump on not par/par odd 0 1 1 1 1 0  11 disp

JNO Jump on not overflow 0 1 1 1 0 0 0 1 disp

JNS Jump on not sign 0 1 1 1 1 0 0 1 a.so

LOOP Loop CX times 1 1 1 0 0 0 1 0 disp

L00PZ/L00PE Loop while zero/equal 1 1 1 0 0 0 0 1 disp
L00PNZ/L00PNE Loop while not 1 1 1 0 0 0 0 0 disp

JCXZ Jump on CX zero 1 1 1 0 0 0 1 1 disp

INT Interrupt

Type specified 1 1 0 0 1 1 0 1 type

Type 3 1 1 0 0 1 1 0 0

INTO Interrupt on overflow 1 1 0 0 1 1 1 0

IRET Interrupt return 1 1 0 0 1 1 1 1

PROCESSOR CONTROL
CLC Clear carry 1 1 1 1 1 0 0 0

CMC Complement carry 1 1 1 1 0  10  1

STC Set carry 1 1 1 ■ 1 0 0 1

CLO Clear direction 1 1 1 1 1 1 0 0

STD Set direction 1 1 1 1 1 1 0  1

CLI Clear interrupt 1 1 1 1 1 0  10

STI Set interrupt 1 1 1 1 1 0  11

HLT Halt 1 1 1 1 0 1 0 0

WAIT Wan 1 0 0 1 1 0 1 1

ESC Escape ito external device! 1 1 0  11 x x x

LOCK Bus lock prefix 1 1 1 1 0  0 0 0

Footnotes:

AL = 8-bit accumulator
AX = 16-bit accumulator
CX = Count register
DS = Data segment
ES = Extra segment
Above/below refers to unsigned value.
Greater = more positive;
Less = less positive (more negative) signed values
if d = 1 then "to " reg; if d = 0 then "from " reg
if w = 1 then word instruction; if w = 0 then byte instruction

if s w =  01 then 16 bits of immediate data form the operand 
if s w =  11  then an immediate data byte is sign extended to 

form the 16-bit operand
if v =  0 then "c o u n t"  =  1; if v =  1 then "c o u n t"  in (CL) 
x =  don't care
z is used for string primitives for comparison with IF  FLAG 
SEGMENT OVERRIDE PREFIX 

10 0 1 reg 1 1 0 1

if mod = 11 then r/m  is treated as a REG field
if mod = 00 then DISP = 0*. disp-low and disp-high are absent
if mod = 01 then DISP = disp-low sign-extended to 16-bits, disp-high is absent
if mod = 10 then DISP = disp-high: disp-low
if r/m  = 000 then EA = (BX) *  (SI) ♦ DISP
if r/m  = 001 then EA = (BX) * (Dl) -  DISP
if r/m  = 010 then EA = (BP) -  (SI) ♦ DISP
if r/m  = 011 then EA = (BP) + (Dl) + DISP
if r/m  = 100 then EA = (SI) + DISP
if r /m  = 101 then EA = (Dl) + DISP
if r /m  = 110 then EA = (BP) + DISP*
if r/m  = 111 then EA = (BX) ♦ DISP
DISP follows 2nd byte of instruction (before data if required)

‘ except if mod = 00 and r/m  = 110 then EA = disp-high; disp-low.

REG is assigned according to the follow ing table

16-Bit (w = 1| 8-Bit (w = 0) Segment
000 AX 000 AL 00 ES001 CX 001 CL 01 cs010 DX 010 DL 10 ss011 BX 011 BL 11 DS100 SP 100 AH
101 BP 101 CH
110 SI 110 DH
111 Dl 111 BH

Instructions which reference the flag register file as a 16-bit object use the symbol FLAGS to 
represent the file:

FLAGS = X:X:X:X:(OF):(DF):(IF):(TF):(SF):(ZF):X:(AF):X:(PF):X;(CF)

Mnem onics© lnte l, 1978

B-21



in t e l
0 a r>f?h.%

- C ' ; .

M8086
16-BIT HM O S MICROPROCESSOR
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■ Direct Addressing Capability to 1 
MByte of Memory

■ Assembly Language Compatible with 
8080/8085

■ 14 Word, By 16-Bit Register Set with 
Symmetrical Operations

■ 24 Operand Addressing Modes

■ Bit, Byte, Word, and Block Operations

■ 8-and 16-Bit Signed and Unsigned 
Arithmetic in Binary or Decimal 
Including Multiply and Divide

■ 5 MHz Clock Rate

■ MULTIBUS™ System Compatible 
Interface

■ Full Military Temperature Range 
— 55°C to + 125°C

The Intel® M8086 is a new generation, high performance microprocessor implemented in N-channel, depletion load, 
silicon gate technology (HMOS), and packaged in a 40-pin CerDIP package. The processor has attributes of both 8- and 
16-bit microprocessors. It addresses memory as a sequence of 8-bit bytes, but has a 16-bit wide physical path to 
memory for high performance.

EXECUTION UNIT BUS INTERFACE UNIT

REGISTER FILE

G N D c ^  40 3 vcc
AD14 c 39 3 A D 15

AD13 c 38 D A 16/S3

AD12 c 4 3T 0 A 17/S4

AD11 c 36 3 A 18/S5

A D 10 c 6 35 3 A 19/S6

AD9 c 34 3 B H E/S7

AD8 c 8 33 3 M N /M X

AD7 c 9 32 3 RD

AD6 c 10 31 0 R Q /G T0 (H O LD )

AD5 c 11 30 3 R Q /G T i (HLD A )

AD4 c 12 29 0 LOCK (W R)

AD3 c 13 28 3 S2 (M /id )

AD2 c 14 22 3 s i (DT/R)

AD1 c 15 26 3 SO (D E N )

ADO c 16 25 3 QS0 (ALE)

N M I c 17 2 * 3 QS1 (IN TA )

IN TR c 18 23 3 TEST

CLK c 19 22 3 REA D Y

G N D c 20 2 ' 3 RESET

40 LEAD

Figure 1. M8066 CPU Functional Block Diagram Figure 2. M8086 Pin Diagram
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16-BIT HM OS MICROPROCESSOR
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■ Direct Addressing Capability to 1 
MByte of Memory

■ Assembly Language Compatible with 
8080/8085

■ 14 Word, By 16-Bit Register Set with 
Symmetrical Operations

■ 24 Operand Addressing Modes

■ Bit, Byte, Word, and Block Operations

■ 8-and 16-Bit Signed and Unsigned 
Arithmetic in Binary or Decimal 
Including Multiply and Divide

■ 5 MHz Clock Rate

■ MULTIBUS™ System Compatible 
Interface

■ Industrial Temperature Range 
-  40°C to + 85°C

The Intel® 18086 is a new generation, high performance microprocessor implemented in N-channel, depletion load, 
silicon gate technology (HMOS), and packaged in a 40-pin CerDIP package. The processor has attributes of both 8- and 
16-bit microprocessors. It addresses memory as a sequence of 8-bit bytes, but has a 16-bit wide physical path to 
memory for high performance.

EXECUTIO N UNIT BUS IN TER FA C E UNIT

GND C 1 ^  40 0 v c c
AD14 C 2 39 3  A015

AD13 C 3 38 J  A16/S3

AD12 C 4 37 D A17/S4
ADI 1 C 5 36 3 A18/S5
AD10 C 6 35 U A19/S6
AD9 C 34 U BHE/S7
ADS C 8 33 3  MN/MX
AD7 C 9 32 □ RD
AD6 C 10 31 □ RQ/GT0 (HOLD)
AD5 C i : 30 □ RQ/GT1 (HLDA)
AD4 C 12 29 J  LOCK (WH)
A03 C 13 28 J  S2 (M/IO)
AD2 C 14 27 D s i (DT/R)
AD1 C 15 26 □ SO (DEN)
ADO C 16 25 3 OSO (ALE)
NMI Q 17 24 U QS1 (INTA)

INTR C 18 23 3 TEST
CLK C 19 22 ]  READY

GND C 20 21 D RESET

40 LEAD

Figure 1. 18086 CPU Functional Block Diagram Figure 2. 18086 Pin Diagram
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8088
8-BIT H M O S M IC R O PR O C ESS O R

■ 8-Bit Data Bus Interface

■ 16-Bit Internal Architecture

■ Direct Addressing Capability to 1 Mbyte 
of Memory

■ Direct Software Compatibility with 8086

■ 14-Word by 16-Bit Register Set with 
Symmetrical Operations

■ 24 Operand Addressing Modes

■ Byte, Word, and Block Operations

■ 8-Bit and 16-Bit Signed and Unsigned 
Arithmetic in Binary or Decimal, includ
ing Multiply and Divide

■ Compatible with 8155-2, 8755A-2 and 
8185-2 Multiplexed Peripherals

The lntelA8088 is a new generation, high performance microprocessor implemented in N-channel, depletion load, 
silicon gate technology (HMOS), a'nd packaged in a 40-pin CerDIP package. The processor has attributes of both 8 and 
16-bit microprocessors. It is directly compatible with 8086 software and 8080/8085 hardware and peripherals.

8088 CPU FUNCTIONAL BLOCK DIAGRAM 8088 PIN DIAGRAM

MIN I MAX | 
MODE (MODE)

GND 
A14 
A13 
A12 
A11 

A10 
A9 
A8 

AD7 
AD6 
AD5 
AD4 

AD3 

AD2 
AD1 
ADO 

NMI 
INTR 
CLK 

GND

(HIGH)

(RQ/GTO)

(RQ/GT1)
(LOCK)
(S2)(ST)
(SO)
(QS0)

(QS1)
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FUNCTIONAL DESCRIPTION

Memory Organization
The processor provides a 20-bit address to memory 
which locates the byte being referenced. The memory is 
logically organized as a linear array of 1 million bytes, 
addressed as 00000(H) to FFFFF(H). The memory can be 
further logically divided into code, data, alternate data, 
and stack segments of up to 64K bytes each, with each 
segment falling on 16-byte boundaries. (See Figure 1.)
Word (16-bit) operands can be located on even or odd ad
dress boundaries. For address and data operands, the 
least significant byte of the word is stored in the lower 
valued address location and the most significant byte in 
the next higher address location. The BIU will auto
matically execute two fetch or write cycles for 16-bit 
operands.

SEGMENT
R EG ISTER  FILE

COD E S E G M E N T

'  STACK S E G M EN T

D ATA S E G M EN T

EXTRA D ATA S E G M EN T

Figure 1. Memory Organization

Certain locations in memory are reserved for specific 
CPU operations. (See Figure 2.) Locations from ad
dresses FFFF0H through FFFFFH are reserved for 
operations including a jump to the initial system initial
ization routine. Following RESET, the CPU will always 
begin execution at location FFFF0H where the jump 
must be located. Locations 00000H through 003FFH are 
reserved for interrupt operations. Four-byte pointers 
consisting of a 16-bit segment address and a 16-bit off
set address direct program flow to one of the 256 possi
ble interrupt service routines. The pointer elements are 
assumed to have been stored at their respective places 
in reserved memory prior to the occurrence of inter
rupts.

Minimum and Maximum Modes
The requirements for supporting minimum and maxi
mum 8088 systems are sufficiently different that they 
cannot be done efficiently with 40 uniquely defined 
pins. Consequently, the 8088 is equipped with a strap 
pin (MN/MX) which defines the system configuration. 
The definition of a certain subset of the pins changes, 
dependent on the condition of the strap pin. When the 
MN/MX pin is strapped to GND, the 8088 defines pins_24 
through 31 and 34 in maximum mode. When the MN/MX 
pin is strapped to Vcc, the 8088 generates bus control 
signals itself on pins 24 through 31 and 34.

RESET BOOTSTRAP 
PROGRAM JUMP

INTERRUPT POINTER 
FOR TYPE 255

INTERRUPT POINTER 
FOR TYPE 1 

INTERRUPT POINTER 
FOR TYPE 0

FFFFFH

FFFF0H

3FFH

3F0H

7H

4H
3H

OH

Figure 2. Reserved Memory Locations

The minimum mode 8088 can be used with either a 
multiplexed or demultiplexed bus. The multiplexed bus 
configuration is compatible with the MCS-85™ multi
plexed bus peripherals (8155, 8156, 8355, 8755A, and 
8185). This configuration (See Figure 3) provides the 
user with a minimum chip count system. This architec
ture provides the 8088 processing power in a highly in
tegrated form.

The demultiplexed mode requires one latch (for 64K ad
dressability) or two latches (for a full megabyte of ad
dressing). A third latch can be used for buffering if the 
address bus loading requires it. An 8286 or 8287 trans
ceiver can also be used if data bus buffering is required. 
(See Figure 4.) The 8088 provides DEN and DT/R to con
trol the transceiver, and ALE to latch the addresses. 
This configuration of the minimum mode provides the 
standard demultiplexed bus structure with heavy bus 
buffering and relaxed bus timing requirements.
The maximum mode employs the 8288 bus controller. 
(See^igure 5.) The 8288 decodes status lines SO, S1, 
and S2, and provides the system with all bus control 
signals. Moving the bus control to the 8288 provides 
better source and sink current capability to the control 
lines, and frees the 8088 pins for extended large system 
features. Hardware lock, queue status, and two request/ 
grant interfaces are provided by the 8088 in maximum 
mode. These features allow co-processors in local bus 
and remote bus configurations.
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eii

V H r >

Figure 3. Multiplexed Bus Configuration
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Figure 4. Demultiplexed Bus Configuration

Figure 5. Fully Buffered System Using Bus Controller
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B us O p e ra t io n
The 8088 address/data bus is broken into three parts — 
the lower eight address/data bits (AD0-AD7), the middle 
eight address bits (A8-A15), and the upper tour address 
bits (A 16—A19). The address/data bits and the highest 
four address bits are time multiplexed. This technique 
provides the most efficient use of pins on the proc
essor, permitting the use of a standard 40 lead package. 
The middle eight address bits are not multiplexed, i.e. 
they remain valid throughout each bus cycle. In addi

tion, the bus can be demultiplex! ....... .
a single address latch if a s tan da rd s  
bus is desired for the system. '"V - , F j d

Each processor bus cycle consists of at least fbur,,£t,^., *  | r j  
cycles. These are referred to as T1, T2, T3, and T4. (&fta Se ®
Figure 6). The address is emitted from the processor
during T1 and data transfer occurs on the bus during T3 
and T4. T2 is used primarily for changing the direction of 
the bus during read operations. In the event that a “ NOT 
READY” indication is given by the addressed device,

----------------------------------------------(4 +  N w a it ) =  T c y ------------------------------------------------------- - I - ------------------------------------------------------(4 +  N w a it ) =  T o y --------------------------- --------------------

T i | T 2 | T 3 | T w a it  | T4 I T, | T2 | T 3 | T w a it  | T 4

G O E S  IN A C T IV E  IN T H E  S T A T E  
JU S T  P R IO R  TO  T„

A D D R /S T A T U S  ^  ̂ A i9- A i6 S 7- S 3 A 1 9 A 16 S 7- S 3

A D DR ^y  A is -A s  ^  A 15-A8 ^

A D D R /D A TA  ^/ .  .  \ _  _ /  BU S R E S E R V E D  \  
A 7-Ao FO R  D A TA  IN 3 ( V A U D  -̂------^ 4’ A « ^  D A TA  O UT |D ,.D 0| ^  ‘ X

/ \
R D .IN TA

\ ________________________

R E A D Y R E A D Y

R E A D Y n \ . r m  r
W A IT W AIT

DT/R ^ /  \

DEN \ /  \  /
------------------ M EM O RY  A C C E S S  T IM E -----------------►

WR

Figure 6. Basic System Timing
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"wait" states (Tw) are inserted between T3 and T4. Each 
inserted "wait” state is of the same duration as a CLK 
cycle. Periods can occur between 8088 driven bus 
cycles. These are referred to as "idle" states (Ti), or inac
tive CLK cycles. The processor uses these cycles for in
ternal housekeeping.

During T1 of any bus cycle, the ALE (address latch 
enable) signal is emitted (by either the processor or the 
8288 bus controller, depending on the MN/WXstrap). At 
the trailing edge of this pulse, a valid address and cer
tain status information for the cycle may be latched.

Status bits SO, S1, and S2 are used by the bus controller, 
in maximum mode, to identify the type of bus transac
tion according to the following table:

S2 S1 so

0 (Low) 0 0 Interrupt Acknowledge
0 0 1 Read I/O
0 1 0 Write I/O
0 1 1 Halt
1 (High) 0 0 Instruction fetch
1 0 1 Read data from memory
1 1 0 Write data to memory
1 1 1 Passive (no bus cycle)

Status bits S3 through S6 are multiplexed with high
order address bits and are therefore valid during T2
through T4. S3 and S4 indicate which segment register
was used for this bus cycle in forming the address ac
cording to the following table:

S4 S3

0 (Low) 0 Alternate data (Extra Segment)
0 1 Stack
1 (High) 0 Code or none
1 1 Data

S5 is a reflection of 
always equal to 0.

the PSW interrupt enable bit. S6 is

I/O A d d re s s in g
In the 8088, I/O operations can address up to a maxi
mum of 64K I/O registers. The I/O address appears in the 
same format as the memory address on bus lines 
A15-A0. The address lines A19-A16 are zero in I/O 
operations. The variable I/O instructions, which use 
register DX as a pointer, have full address capability, 
while the direct I/O instructions directly address one or 
two of the 256 I/O byte locations in page 0 of the I/O ad
dress space. I/O ports are addressed in the same man
ner as memory locations.

Designers familiar with the 8085 or upgrading an 8085 
design should note that the 8085 addresses I/O with an 
8-bit address on both halves of the 16-bit address bus. 
The 8088 uses a full 16-bit address on its lower 16 ad
dress lines.

EXTERNAL INTERFACE
S ,P r o c e s s o r  R e s e t  an d  Initia lization V-

Processor initialization or start up is accomplished. With 
activation (HIGH) of the RESET pin. The 8088 RESET is v 
required to be HIGH for greater than four clock cycles. 
The 8088 will terminate operations on the high-going 
edge of RESET and will remain dormant as long as 
RESET is HIGH. The low-going transition of RESET trig
gers an internal reset sequence for approximately 7 
clock cycles. After this interval the 8088 operates nor
mally, beginning with the instruction in absolute loca
tion FFFF0H. (See Figure 2.) The RESET input is inter
nally synchronized to the processor clock. At initializa
tion, the HIGH to LOW transition of RESET must occur 
no sooner than 50 /rs after power up, to allow complete 
initialization of the 8088.

y

If INTR is asserted sooner than nine clock cycles after 
the end of RESET, the processor may execute one in
struction before responding to the interrupt.
All 3-state outputs float to 3-state OFF during RESET. 
Status is active in the idle state for the first clock after 
RESET becomes active and then floats to 3-state OFF.

In te rrup t O p e ra t io n s
Interrupt operations fall into two classes; software or 
hardware initiated. The software initiated interrupts and 
software aspects of hardware interrupts are specified in 
the instruction set description found in Chapter 2 of the 
8086 Family User’s Manual. Hardware interrupts can be 
classified as non-maskable or maskable.
Interrupts result in a transfer of control to a new pro
gram location. A 256 element table containing address 
pointers to the interrupt service program locations 
resides in absolute locations 0 through 3FFH (see Fig
ure 2), which are reserved for this purpose. Each ele
ment in the table is 4 bytes .in size and corresponds to 
an interrupt "type” . An interrupting device supplies an 
8-bit type number, during the interrupt acknowledge se
quence, which is used to vector through the appropriate 
element to the new interrupt service program location.

N o n -M ask ab le  In te rru p t  (NMI)
The processor provides a single non-maskable interrupt 
(NMI) pin which has higher priority than the maskable in
terrupt request (INTR) pin. A typical use would be to acti
vate a power failure routine. The NMI is edge-triggered 
on a LOW to HIGH transition. The activation of this pin 
causes a type 2 interrupt.

NMI is required to have a duration in the HIGH state of 
greater than two clock cycles, but is not required to be 
synchronized to the clock. Any higher going transition 
of NMI is latched on-chip and will be serviced at the end 
of the current instruction or between whole moves (2 
bytes in the case of word moves) of a block type instruc
tion. Worst case response to NMI would be for multiply, 
divide, and variable shift instructions. There is no 
specification on the occurrence of the low-going edge; it 
may occur before, during, or after the servicing of NMI. 
Another high-going edge triggers another response if it
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occurs after the start of the NMI procedure. The signal 
must be free of logical spikes in general and be free of 
bounces on the low-going edge to avoid triggering ex
traneous responses.

M ask ab le  In te rru p t  (INTR)
The 8088 provides a single interrupt request input (INTR) 
which can be masked internally by software with the 
resetting of the interrupt enable (IF) flag bit. The in
terrupt request signal is level triggered. It is internally 
synchronized during each clock cycle on the high-going 
edge of CLK. To be responded to, INTR must be present 
(HIGH) during the clock period preceding the end of the 
current instruction or the end of a whole move for a 
block type instruction. During interrupt response se
quence, further interrupts are disabled. The enable bit is 
reset as part of the response to any interrupt (INTR, 
NMI, software interrupt, or single step), although the 
FLAGS register which is automatically pushed onto the 
stack reflects the state of the processor prior to the in
terrupt. Until the old FLAGS register is restored, the 
enable bit will be zero unless specifically set by an in
struction.

During the response sequence (See Figure 7), the proc
essor executes two successive (back to back) interrupt 
acknowledge cycles. The 8088 emits the LOCK signal 
(maximum mode only) from T2 of the first bus cycle until 
T2 of the second. A local bus “ hold" request will not be 
honored until the end of the second bus cycle. In the 
second bus cycle, a byte is fetched from the external in
terrupt system (e.g., 8259A PIC) which identifies the 
source (type) of the interrupt. This byte is multiplied by 
four and used as a pointer into the interrupt vector 
lookup table. An INTR signal left HIGH will be continual
ly responded to within the limitations of the enable bit 
and sample period. The interrupt return instruction in
cludes a flags pop which returns the status of the 
original interrupt enable bit when it restores the flags.

When a software HALT instruction is executed, the 
processor indicates that it is entering the HALT state in 
one of two ways, depending upon which mode is 
strapped. In minimum mode, the processor issues ALE, 
delayed by one clock cycle, to allow the system_to latch 
the halt status. Halt status is available on IO/M, DT/R, 
and SSO. In maximum mode, the processor issues ap
propriate HALT status on S2, S I, and SO, and the 8288 
bus controller issues one ALE. The 8088 will not leave 
the HALT state when a local bus hold is entered while in 
HALT. In this case, the processor reissues the HALT in
dicator at the end of the local bus hold. An interrupt re
quest or RESET will force the 8088 out of the HALT 
state.

R ead/M odify/W rite  (S em ap h o re )  O p e ra t io n s  
via LOCK
The LOCK status information is provided by the proc
essor when consecutive bus cycles are required during 
the execution of an instruction. This allows the proc
essor to perform read/modify/write operations on 
memory (via the “ exchange register with memory” 
instruction), without another system bus master receiv
ing intervening memory cycles. This is useful in multi
processor system configurations to accomplish “ test 
and set lock” operations. The LOCK signal is activated 
(LOW) in the clock cycle following decoding of the 
LOCK prefix instruction. It is deactivated at the end of 
the last bus cycle of the instruction following the LOCK 
prefix. While LOCK is active, all interrupts are masked 
and a request on a RQ/GT pin will be recorded, and then 
honored at the end of the LOCK.

Externa l S y n ch ro n iza t io n  via TEST
As an alternative to interrupts, the 8088 provides a 
single software-testable input pin (TEST). This input is 
utilized by executing a WAIT instruction. The single

| T, | T2 | T j | T„ | T, j T2 | T j | T„

_________________ _ J ~ A ____________________

l5ck

Figure 7. Interrupt Acknowledge Sequence
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WAIT instruction is repeatedly executed until the TEST 
input goes active (LOW). The execution of WAIT does 
not consume bus cycles once the queue is full.
If a local bus request occurs during WAIT execution, the 
8088 3-states all output drivers. If interrupts are enabled, 
the 8088 will recognize interrupts and process them. 
The WAIT instruction is then refetched, and reexecuted.

B asic  S y s t e m  Timing
In minimum mode, the MN/MX pin is strapped to Vqc 
and the processor emits bus control signals compatible 
with the 8085 bus structure. In maximum mode, the 
MN/MX pin is strapped to GND and the processor emits 
coded status Information which the 8288 bus controller 
uses to generate MULTIBUS compatible bus control 
signals.

S y s te m  Timing — M inim um  S y s t e m
(See Figure 6.)
The read cycle begins in T1 with the assertion of the ad
dress latch enable (ALE) signal. The trailing (low going) 
edge of this signal is used to latch the address informa
tion. which is valid on the address/data bus (AD0-AD7) 
at this time, into the 8282/8283 latch. Address lines A8 
through A15 do not need to be latched because they re
main valid throughout the bus cycle. From T1 to T4 the 
IO/M signal indicates a memory or I/O operation. At T2 
the address is removed from the address/data bus and 
the bus goes to a high impedance state. The read con
trol signal is also asserted at T2. The read (RD) signal 
causes the addressed device to enable its data bus 
drivers to the local bus. Some time later, valid data will 
be available on the bus and the addressed device will 
drive the READY line HIGH. When the processor returns 
the read signal to a HIGH level, the addressed device 
will again 3-state its bus drivers. If a transceiver 
(8286/8287) _is required to buffer the 8088 local bus. 
signals DT/R and DEN are provided by the 8088.
A write cycle also begins with the assertion of ALE and 
the emission of the address. The IO/M signal is again 
asserted to indicate a memory or I/O write operation. In 
T2. immediately following the address emission, the 
processor emits the data to be written into the ad
dressed location. This data remains valid until at least 
the middle of T4. During T2, T3, and Tw, the processor 
asserts the write control signal. The write (WR) signal 
becomes active at the beginning of T2, as opposed to 
the read, which is delayed somewhat into T2 to provide 
time for the bus to float.
The basic difference between the interrupt acknowl
edge cycle and a read cycle is that the interrupt 
acknowledge (INTA) signal is asserted in place of the 
read (RD) signal and the address bus is floated. (See 
Figure 7.) In the second of two successive INTA cycles, 
a byte of information is read from the data bus, as sup
plied by the interrupt system logic (i.e. 8259A priority in
terrupt controller). This byte identifies the source (type) 
of the interrupt. It is multiplied by four and used as a 
pointer into the interrupt vector lookup table, as de
scribed earlier.

B us T im ing — M edium  C o m p lex ity  S y s t e m s
' /'f>. ̂  -Or _ '' A

(See Figure 8.)

For medium complexity systems, the MN/MX pin is con
nected to GND and the 8288 bus controller is added to 
the system, as well as an 8282/8283 latch for latching 
the system address, and an 8286/8287 transceiver to 
allow for bus loading greater than the_8088 is capable of 
handling. Signals ALE, DEN, and DT/R are generated by 
the 8288 instead of the processor in this configuration, 
although their timing remains relatively the same. The 
8088 status outputs (S2, S1, and SO) provide type of 
cycle information and become 8288 inputs. This bus 
cycle information specifies read (code, data, or I/O), 
write (data or I/O), interrupt acknowledge, or software 
halt. The 8288 thus issues control signals specifying 
memory read or write, I/O read or write, or interrupt 
acknowledge. The 8288 provides two types of write 
strobes, normal and advanced, to be applied as required. 
The normal write strobes have data valid at the leading 
edge of write. The advanced write strobes have the 
same timing as read strobes, and hence, data is not 
valid at the leading edge of write. The 8286/8287 trans
ceiver receives the usual T and OE inputs from the 
8288's DT/R and DEN outputs.

The pointer into the interrupt vector table, which is 
passed during the second INTA cycle, can derive from 
an 8259A located on either the local bus or the system 
bus. If the master 8289A priority interrupt controller is 
positioned on the local bus. a TTL gate is required to 
disable the 8286/8287 transceiver when reading from the 
master 8259A during the interrupt acknowledge se
quence and software 'poll".

T he  8088 C o m p a re d  to  th e  8086

The 8088 CPU is an 8-bit processor designed around the 
8086 internal structure. Most internal functions of the 
8088 are identical to the equivalent 8086 functions. The 
8088 handles the external bus the same way the 8086 
does with the distinction of handling only 8 bits at a 
time. Sixteen-bit operands are fetched or written in two 
consecutive bus cycles. Both processors will appear 
identical to the software engineer, with the exception of 
execution time. The internal register structure is iden
tical and all instructions have the same end result. The 
differences between the 8088 and 8086 are outlined 
below. The engineer who is unfamiliar with the 8086 is 
referred to the 8086 Family User's Manual, Chapters 2 
and 4, for function description and instruction set 
information.

Internally, there are three differences between the 8088 
and the 8086. All changes are related to the 8-bit bus in
terface.

• The queue length is 4 bytes in the 8088, whereas the 
8086 queue contains 6 bytes, or three words. The 
queue was shortened to prevent overuse of the bus by 
the BIU when prefetching instructions. This was re
quired because of the additional time necessary to 
fetch instructions 8 bits at a time.
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• To further optimize the queue, the prefetching algo
rithm was changed. The 8088 BIU will fetch a new in
struction to load into the queue each time there is a 1 
byte hole (space available) in the queue. The 8086 
waits until a 2-byte space is available.

The 8088 and 8086 are completely 'S o ftw a re * '« to ^ & U b le  

by virture of their identical execution-u n its .  Softwat© 
that is system dependent may not be completely trans
ferable, but software that is not system dependent w il l  

operate equally as well on an 8088 or an 8086.
• The internal execution time of the instruction set is 

affected by the 8-bit interface. All 16-bit fetches and 
writes from/to memory take an additional four clock 
cycles. The CPU is also limited by the speed of in
struction fetches. This latter problem only occurs 
when a series of simple operations occur. When the 
more sophisticated instructions of the 8088 are being 
used, the queue has time to fill and the execution pro
ceeds as fast as the execution unit will allow.

The hardware interface of the 8088 contains the major 
differences between the two CPUs. The pin assign
ments are nearly identical, however, with the following 
functional changes:

• A8-A15 — These pins are only address outputs on the 
8088. These address lines are latched internally and 
remain valid throughout a bus cycle in a manner 
similar to the 8085 upper address lines.

CLK /

Tt T2 t3

v

T 4

v /  \

QS1, QS0 X X X x x-
8088

S2.S1.S0 / / / / /
\
\ _  _

A 1 9 /S 6 -A 1 6 /S 3 'X A 1 9 -A 1 6 X S 6 -S 3 X
ALE

8288 RDY 8284 

READY 8088

X
X

/  . , V \  /
v .  A7 A0 ___ / /  \

8088 A 1 5 -A 8 X A 1 5 -A 8 X
RD

~ \ _y

DT/R V r ~

8288 MRDC 

DEN

A j

/ “ A _______

Figure 8. Medium Complexity System Timing
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• BHE has no meaning on the 8088 and has been elimi
nated.

• SSO provides the SO status information in the mini
mum mode. This output occurs on pin 34 in minimum 
mode only. DT/R, IO/M, and SSO provide the complete 
bus status in minimum mode.

• IO/M has been inverted to be compatible with the 
MCS-85 bus structure.

• ALE is delayed by one clock cycle in the minimum 
mode when entering HALT, to allow the status to be 
latched with ALE.

reside on the 8088 local bus. during
T2. T3 and Tw of any read cycle, anrf IS^tfaranteetj to re
main HIGH in T2 until the 8088 local bus has f lo a te d !^
This signal floats to 3-state OFF in “ hold acknowledge .

READY (Input)
READY is the acknowledgement from the addressed 
memory or I/O device that it will complete the data trans
fer. The RDY signal from memory or I/O is synchronized 
by the 8284 clock generator to form READY. This signal 
is active HIGH.

8088 FUNCTIONAL PIN DEFINITIONS

The following pin function descriptions are for 8088 
systems in either minimum or maximum mode. The 
“ local bus" in these descriptions is the direct multi
plexed bus interface connection to the 8088 (without 
regard to additional bus buffers).

AD7-AD0 (Inpu t/O utpu t ,  3-State)
These lines constitute the time multiplexed memory/IO 
address (T1) and data (T2, T3, Tw, and T4) bus. These 
lines are active HIGH and float to 3-state OFF during in
terrupt acknowledge and local bus “ hold acknowledge”

A 15-A 8 (O utpu t ,  3-State)
These lines provide address bits 8 through 15 for the 
entire bus cycle (T1-T4). These lines do not have to be 
latched by ALE to remain valid. A15-A8 are active HIGH 
and float to 3-state OFF during interrupt acknowledge 
and local bus “ hold acknowledge” .

A19/S6, A18/S5, A17/S4, A16/S3 (O utput ,  
3-State)
During T1, these are the four most significant address 
lines for memory operations. During I/O operations, 
these lines are LOW. During memory and I/O operations, 
status information is available on these lines during 
T2, T3, Tw, and T4. S6 is always low. The status of the 
interrupt enable flag bit (S5) is updated at the beginning 
of each clock cycle. S4 and S3 are encoded as follows:

S4 S3
0 (LOW) 0 Alternate Data
0 1 Stack
1 (HIGH) 0 Code or None
1 1 Data
S6 is 0 (LOW)

This information indicates which segment register is 
presently being used for data accessing.
These lines float to 3-state OFF during local bus “ hold
acknowledge"

RD (O utpu t ,  3-State)
Read strobe indicates that the processor is performing a 
memory or I/O read cycle, depending on the state of the 
IO/M pin or S2 . This signal is used to read devices which

INTR (Input)
Interrupt request is a level triggered input which is 
sampled during the last clock cycle of each instruction 
to determine if the processor should enter into an inter
rupt acknowledge operation. A subroutine is vectored to 
via an interrupt vector lookup table located in system 
memory. It can be internally masked by software reset
ting the interrupt enable bit. INTR is internally synchro
nized. This signal is active HIGH.

TEST (Input)
The TEST input is examined by the "wait for test” in
struction. If the TEST input is LOW, execution con
tinues, otherwise the processor waits in an "idle” state. 
This input is synchronized internally during each clock 
cycle on the leading edge of CLK.

NMI (Input)
Non-maskable interrupt is an edge triggered input which 
causes a type 2 interrupt. A subroutine is vectored to via 
an interrupt vector lookup table located in system mem
ory. NMI is not maskable internally by software. A trans
ition from a LOW to HIGH initiates the interrupt at the 
end of the current instruction. This input is internally 
synchronized.

RESET (Input)
RESET causes the processor to immediately terminate 
its present activity. The signal must be active HIGH for 
at least four clock cycles. It restarts execution, as 
described in the instruction set description, when 
RESET returns LOW. RESET is internally synchronized.

CLK (Input)
The clock provides the basic timing for the processor 
and bus controller. It is asymmetric with a 33% duty 
cycle to provide optimized internal timing.

Vcc
Vcc is the + 5V ± 10% power supply pin.

GND
GND are the ground pins.
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MINIMUM MODE PIN DESCRIPTIONS

The following pin function descriptions are for the 8088 
minimum mode (i.e., MN/MX = Vcc). Only the pin func
tions which are unique to minimum mode are described; 
all other pin functions are as described above.

Ill, n ' u . ' A i i .

suance of HLDA, the processoT'%(jJ fte .rW ^b u s  
and control lines. After HOLD is detected as being LOW, 
the processor lowers HLDA, and when the processor 
needs to run another cycle, it will again drive the local 
bus and control lines.

sso
IO/M (O utput,  3-State)
This status line is an inverted maximum mode S2. It is 
used to distinguish a memory access from an I/O ac
cess. IO/M becomes valid in the T4 preceding a bus 
cycle and remains valid until the final T4 of the cycle 
(1/0 = HIGH, M = LOW). IO/M floats to 3-state OFF in 
local bus "hold acknowledge".

WR (O utput,  3-State)
Write strobe indicates that the processor is performing 
a write memory or write I/O cycle, depending on the 
state of the IO/M signal. WR is active for T2, T3, and Tw 
of any write cycle. It is active LOW, and floats to 3-state 
OFF in local bus “ hold acknowledge".

INTA (O utput,  3-State)
INTA is used as a read strobe for interrupt acknowledge 
cycles. It is active LOW during T2, T3, and Tw of each in
terrupt acknowledge cycle. INTA floats to 3-state OFF in 
"hold acknowledge” .

ALE (Output)
Address latch enable (ALE) is provided by the processor 
to latch the address into the 8282/8283 address latch. It 
is a HIGH pulse active during clock low of T1 of any bus 
cycle. Note that ALE is never floated.

DT/R (O utput,  3-State)
Data transmit/receive is needed in a minimum system 
that desires to use an 8286/8287 data bus transceiver. It 
is used to control the direction of data flow through the 
transceiver. Logically, DT/R is equivalent to S1 in the 
maximum mode, and its timing is the same as for IO/M 
(T = HIGH, R = LOW). This signal floats to 3-state OFF in 
local "hold acknowledge".

DEN (O utput,  3-State)
Data enable is provided as an output enable for the 
8286/8287 in a minimum system which uses the trans
ceiver. DEN is active LOW during each memory and I/O 
access, and for INTA cycles. For a read or INTA cycle, it 
is active from the middle of T2 until the middle of T4, 
while for a write cycle, it is active from the beginning of 
T2 until the middle of T4. DEN floats to 3-state OFF dur
ing local bus "hold acknowledge".

HOLD (Input), HLDA (Output)

This status line is logically equivalent to SOjn the max
imum mode. The combination of SSO, IO/M and DT/R 
allows the system to completely decode the current bus 
cycle status.

IO/M DT/R sso

1 (HIGH) 0 0 Interrupt Acknowledge
1 0 1 Read I/O port
1 1 0 Write I/O port
1 1 1 Halt
0 (LOW) 0 0 Code access
0 0 1 Read memory
0 1 0 Write memory
0 1 1 Passive

MAXIMUM MODE PIN DESCRIPTIONS

The following pin function descriptions are for the 8088, 
8228 system in maximum mode (i.e., MN/MX = GND. 
Only the pin functions which are unique to maximum 
mode are described; all other pin functions are as 
described above.

S2, S I ,  SO (O utput,  3-State)
These status lines are encoded as follows:

S2 S1 so

0 (LOW) 0 0 Interrupt Acknowledge
0 0 1 Read I/O port
0 1 0 Write I/O port
0 1 1 Halt
1 (HIGH) 0 0 Code access
1 0 0 Read memory
1 1 0 Write memory
1 1 1 Passive

Status is active during clock high of T4, T1, and T2, and 
is returned to the passive state (1.1,1) during T3 or dur
ing Tw when READY is HIGH. This status is used by the 
8288 bus controller to generate all memory and I/O ac
cess control signals. Any change by S2, ST, or SO during 
T4 is used to indicate the beginning of a bus cycle, and 
the return to the passive state in T3 or Tm is used to in
dicate the end of a bus cycle.
These signals float to 3-state OFF during "hold 
acknowledge” . During the first clock cycle after RESET 
becomes active, these signals are active HIGH. After 
this first clock, they float to 3-state OFF.

HOLD indicates that another master is requesting a 
local bus "hold". To be acknowledged, HOLD must be 
active HIGH. The processor receiving the “ hold" re
quest will issue HLDA (HIGH) as an acknowledgement, 
in the middle of T4 or Tl. Simultaneous with the is-

RQ/GTO, RQ/GT1 (Input/O utput)
The request/grant pins are used by other local bus 
masters to force the processor to release the local bus 
at the end of the processor's current bus cycle. Each pin
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is bidirectional with RQ/GTO having higher priority than 
RQ/GT1. RQ/GT has an internal pull-up resistor, so may 
be left unconnected. The request/grant sequence is as 
fo llo w s  (See F igu re  6):

1. A pulse of one CLK wide from another local bus 
master indicates a local bus request (“ hold” ) to the 
8088 (pulse 1).

2. D uring  the  C P U 's n ex t T4 or T l, a p u lse  one c lo c k  
w id e  fro m  the  8088 to  the  re q u e s tin g  m a s te r (p u lse  2),
indicates that the 8088 has allowed the local bus to 
float and that it will enter the “ hold acknowledge" 
state at the next CLK. The CPU s bus interface unit is 
disconnected logically from the local bus during 
“ hold acknowledge".

3. A pulse one CLK wide from the requesting master in
dicates to the 8088 (pulse 3) that the "hold” request 
is about to end and that the 8088 can reclaim the 
local bus at the next CLK. The CPU then enters T4.

Each m a s te r-m a s te r e xchange  o f the  loca l bus is a se
q uence  o f th ree  pu lse s . There  m u s t be one id le  C LK 
cy c le  a fte r  each bus exchange. P u lses  are a c tive  LOW.

LOCK (O utput,  3-State)
The LOCK output indicates that other system bus 
masters are not to gain control of the system bus while 
LOCK is active (LOW). The LOCK signal is activated by 
the “ LOCK" prefix instruction and remains active until 
the completion of the next instruction. This signal is ac
tive LOW, and floats to 3-state off in “ hold acknowl
edge".

QS1, QS0 (Output)
QS1 and QS0 provide status to allow external tracking of 
the internal 8088 instruction queue.

QS1

0 (LOW)

QS0

0 No operation
0 1 First byte of opcode from queue
1 (HIGH) 0 Empty the queue
1 1 Subsequent byte from queue

The queue status is valid during the CLK cycle after 
which the queue operation is performed.

PIN 34 (Output)
Pin 34 is always high in the maximum mode.
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ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias............... 0°C to 70°C
Storage Temperature....................... -65°C  to + 150°C
Voltage on Any Pin with

Respect to Ground................................. -  0.3 to + 7V
Power Dissipation............................................ 2.5 Watt

A
— *++-

'F.

’Of % 7
*C O M M E N T : S tresses above those lis ted  under ' AbVolute^M axf! 
Ra tings" may cause permanent damage to  the device. T ftfe^s S p ires '?  
ra ting only and func tiona l opera tion  o f the device at these or any-Qtfr&r. 
co nd itio ns  above those ind icated  in the operationa l se c tion s  of 
sp ec ifica tio n  is not im plied . Exposure to  abso lu te  m axim um  rating co n 
d ition s  for extended periods may a ffec t device re liab ility .

D.C. CHARACTERISTICS
8088: TA = 0°C to 70°C, VCC=5V ±10%

Symbol Parameter Min. Max. Units Test Conditions

V,L Input Low Voltage -0.5 + 0.8 V

V|H Input High Voltage 2.0 V c c  +  0.5 V

V 0 L Output Low Voltage 0.45 V l0L = 2.0 mA

V 0 H Output High Voltage 2.4 V Iqh — 400 fu A

!cc Power Supply Current 340 mA

I LI Input Leakage Current ± 10 mA < z II < o o

•lo Output Leakage Current ± 10 p A 0.45V < V0UT < Vcc

VCL Clock Input Low Voltage - 0 . 5 + 0.6 V

V CH Clock Input High Voltage 3.9 v c c +  1-0 V

C|N
Capacitance ot Input Buffer 
(All input except 
AD0-AD7 RQ/GT)

10 PF fc = 1 MHz

Cio
Capacitance of I/O Buffer 
(AD0-AD7 RQ/GT) 20 pF fc = 1 MHz
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A.C. CHARACTERISTICS

8088: Ta = 0 °C  to  70°C . VCC = 5 V ±  10%

8088

8088 MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS
Symbol Parameter Min. Max. Units Test Conditions

TCLCL CLK Cycle  Period 200 500 ns

TCLCH CLK Low Time (2/a T C L C L )-15 ns

TCHCL CLK H igh Time (V3TCLCD + 2 ns

TCH1CH2 CLK Rise Time 10 ns From 1.0V to  3.5V

TCL2CL1 CLK Fall Time 10 ns From 3.5V to  1.0V

TDVCL Data In Setup Tim e 30 ns

TCLDX Data In Hold Time 10 ns

TR1VCL RDY Setup T im e in to  8284 (See Notes 1, 2) 35 ns

TCLR1X RDY Hold Tim e in to  8284 (See Notes 1. 2) 0 ns

TRYHCH READY Setup Tim e in to  8088 (2/3TCLCL)-15 ns

TCHRYX READY Hold Tim e in to  8088 30 ns

TRYLCL READY Inactive to  CLK (See Note 3) -8 ns

THVCH HOLD Setup Time 35 ns

TIN VCH INTR. NMI. TEST Setup Tim e (See N ote 2) 30 ns

TIMING RESPONSES
Symbol Parameter Min. Max. Units Test C ond itions

TCLAV Address Valid Delay 15 110 ns

TCLAX Address Hold Time 10 ns

C L =  20-100 pF for 
all 8088 O utputs 
in add ition  to 
in ternal loads

TCLA2 Address Float Delay TCLAX 80 ns

TLHLL ALE W idth T C L C H -2 0 ns

TCLLH ALE Active  Delay 80 ns

TCHLL ALE Inactive Delay 85 ns

TLLAX Address Hold Tim e to  ALE Inactive T C H C L - 10 ns

TCLDV Data Valid Delay 10 110 ns

TCHDX Data Hold Time 10 ns

TWHDX Data Hold Time A fte r WR T C L C H -3 0 ns

TCVCTV C ontro l Active  Delay 1 10 110 ns

TCHCTV C ontro l Active Delay 2 10 110 ns

TCVCTX C ontro l Inactive Delay 10 110 ns

TAZRL Address Float to  READ Active 0 ns

TCLRL RD Active  Delay 10 165 ns

TCLRH RD Inactive Delay 10 150 ns

TRHAV RD Inactive to Next Address A ctive TCLCL-45 ns

TCLHAV HLDA Valid Delay 10 160 ns

TRLRH RD W idth 2TC LC L-75 ns

TWLWH WR W idth 2TC LC L-60 ns

TAVAL Address Valid to  ALE Low TCLCH-60 ns

NOTES: 1. S ignal at 8284 shown fo r reference only.
2. Setup requirem ent for asynchronous signal only to  guarantee recogn ition  at next CLK.
3. A pp lies only to  T2 state  (8 ns in to  T3 state).
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Figure 9. 8088 Bus Timing — Minimum Mode System
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4. SIGNALS AT 8284 ARE SHOWN FOR REFERENCE ONLY.
5. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE 

NOTED.

Figure 10. 8088 Bus Timing — Minimum Mode System (cont.)
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8088 MAX MODE SYSTEM (USING 8288 BUS CONTROLLER) 
TIMING REQUIREMENTS H i

Symbol Parameter Min. Max. Units Test C ond itions

TCLCL CLK Cycle  Period 200 500 ns

TCLCH CLK Low Time (2/3TC LCL)-15 ns

TCHCL CLK High Tim e (1/3TC LC L)+2 ns

TCH1CH2 CLK Rise Time 10 ns From 1.0V to  3.5V

TCL2CL1 CLK Fall Time 10 ns From 3.5V to  1.0V

TDVCL Data In Setup Time 30 ns

TCLDX Data In Hold Tim e 10 ns

TR1VCL RDY Setup Tim e in to  8284 (See Notes 1, 2) 35 ns

TCLR1X RDY Hold  Time in to  8284 (See Notes 1, 2) 0 ns

TRYHCH READY Setup Time into 8088 (2/3TCLCL)-15 ns

TCHRYX READY Hold Time into 8088 30 ns

TRYLCL READY Inactive to CLK (See Note 4) -8 ns

TINVCH Setup Tim e fo r R ecognition (INTR. NMI, TEST) (See Note 2) 30 ns

TGVCH RQ/GT Setup Time 30 ns

TCHGX RQ Hold Time in to  8086 40 ns

TIMING RESPONSES
Symbol Parameter Min. Max. Units Test C ond itions

TCLML Command Active  Delay (See Note 1) 10 35 ns

C l  =  20-100 pF fo r 
a ll 8088 O utputs  
in a dd itio n  to 
in terna l loads

TCLMH Command Inactive Delay (See Note 1) 10 35 ns

TRYHSH READY A ctive  to  S ta tus Passive (See Note 3) 110 ns

TCHSV S tatus Active  Delay 10 110 ns

TCLSH S tatus Inactive Delay 10 130 ns

TCLAV Address Valid Delay 15 110 ns

TCLAX Address Hold  Tim e 10 ns

TCLAZ Address Float Delay TCLAX 80 ns

TSVLH S tatus Valid to  ALE H igh (See Note 1) 15 ns

TSVMCH S tatus Valid to  MCE H igh (See Note 1) 15 ns

TCLLH CLK Low to  ALE Valid (See Note 1) 15 ns

TCLMCH CLK Low to  MCE High (See Note 1) 15 ns

TCHLL ALE Inactive Delay (See Note 1) 15 ns

TCLMCL MCE Inactive Delay (See Note 1) 15 ns

TCLDV Data Valid Delay 15 110 ns

TCHDX Data Hold Time 10 ns

TCVNV C ontro l Active  Delay (See Note 1) 5 45 ns

TCVNX C ontro l Inactive Delay (See Note 1) 10 45 ns

TAZRL Address Float to  Read Active 0 ns

TCLRL RD Active  Delay 10 165 ns

TCLRH RD Inactive Delay 10 150 ns

TRHAV RD Inactive to  Next Address Active TCLCL-45 ns

TCHDTL D irection C ontro l Active  Delay (See Note 1) 50 ns

TCHDTH D irection  Contro l Inactive Delay (See Note 1) 30 ns

TCLGL GT A ctive  Delay 110 ns

TCLGH GT Inactive Delay 85 ns

TRLRH RD W idth 2TCLCL-75 ns

NOTES: 1. S ignal at 8284 or 8288 shown fo r reference only.
2. Setup requirem ent fo r asynchronous signa l only to  guarantee recogn ition  a t next CLK.
3. A pp lies on ly  to  T3 and w a it states.
4. App lies only to  T2 state  (8 ns in to  T3 state).
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CLK

QSq.QSi

S2.S1.S0 (EXCEPT HALT) 

A15 -  As

A 19/S6 A 16 /S3

ALE (8288 OUTPUT)

SEE NOTE 5

RDY (8284 INPUT)

READY (8088 INPUT)

READ CYCLE

AD7 -A D 0

RD

DT/R

8288 OUTPUTS 
SEE NOTES 5,6

MRDCORIORC

DEN

Figure 11. 8088 Bus Timing — Maximum Mode System (Using 8288)
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S2.Si,So /

N O T E S : 1. A L L  S IG N A L S  S W IT C H  B E T W E E N  V0H A N D  V0i U N L E S S  O T H E R W IS E  
S P E C IF IE D .

2. R D Y  IS  S A M P L E D  N E A R  T H E  E N D  O F  T 2. T 3. T w TO  D E T E R M IN E  IF  T w 
M A C H IN E S  S T A T E S  A R E  T O  B E  IN S E R T E D .

3. C A S C A D E  A D D R E S S  IS  V A L ID  B E T W E E N  F IR S T  A N D  S E C O N D  IN T A  
C Y C L E S .

4. T W O  IN T A  C Y C L E S  RU N  B A C K -T O -B A C K . T H E  8088 L O C A L  A D D R /D A TA  
B U S  IS  F L O A T IN G  D U R IN G  B O T H  IN T A  C Y C L E S . C O N T R O L  F O R  
P O IN T E R  A D D R E S S  IS  S H O W N  F O R  S E C O N D  IN T A  C Y C L E .

5. S IG N A L S  A T  8284 O R 8288 A R E  S H O W N  F O R  R E F E R E N C E  O N L Y .6 T H E IS S U A N C E O F  T H E  8288 C O M M A N D  A N D  C O N T R O L  S IG N A L S  
(M R D C , M W TC . A M W C , IO R C , IO W C . A IO W C . IN T A  A N D  DEN ) L A G S  T H E  
A C T IV E  H IG H  8288 C E N .

7. A L L  TIM IN G  M E A S U R E M E N T S  A R E  M A DE A T  1 .5 V  U N L E S S  O T H E R W IS E  
N O TE D .8. S T A T U S  IN A C T IV E  IN S T A T E  J U S T  P R IO R  TO  T4.

Figure 12. 8088 Bus Timing — Maximum Mode System (Using 8288)
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NOTE:
1 SETUP REQUIREMENTS FOR ASYNCHRONOUS SIGNALS ONLY TO GUARANTEE RECOGNITION AT NEXT CLK

Figure 13. Asynchronous Signal Recognition

Figure 14. Bus Lock Signal Timing (Maximum Mode Only)

NOTE: 1. THE COPROCESSOR MAY NOT DRIVE THE BUSSES OUTSIDE THE REGION 
SHOWN WITHOUT RISKING CONTENTION.

Figure 15. Request/Grant Sequence Timing (Maximum Mode Only)

Figure 16. Hold/Hold Acknowledge Timing (Minimum Mode Only)
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8086/8088
INSTRUCTION SET SUMMARY

MOV Movo: 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Register memory to from register t 0 0 0 1 0 d W mod 'eg • m

Immediate to register memory t t 0 0 0 t t w mod 0 0 0 ■ m data

Immediate to register 1 0 1 1 w reg data data it w 1

Memory to accumulate t 0 i 0 0 0 0 w acidi tow addi niqti

Accumulator to memory t 0 1 0 0 0 1 w addi low add' high

Register memoiy to segment ieg>ster 1 0 0 0 1 1 1 0 mod 0 reg r m

Segment register to register memory 1 0 0 0 1  t o o mod 0 'eg r m

PUSH Push:

Register memory ............. ... mod '  ' 0 ' m

Register 0 1 0 1 0  -eg

Segment register 0 0 0 reg t t 0

POP Pop

Register memory t O O O i l i t mod 0 0 0 1 m

Register 0 1 0 I 1 'eg

Segment register 0 0 0 reg t t t

XCHG Exchange

Register'memory with register ' 0 0 0 0 1 1 w mod reg i m

Register with accumulator 10 0 10 reg

1N=1 nput from

Fixed pon 1 t 1 0 0 t 0 w ......

DEC Decrement
Regisif memory 

Register

MEG Change sign

CMP Compare

Regisiei memory and reg>ste’ 

immediate with 'eqistei memory 

immediate with accumulator 

AAS ASCII adiuSI tor SuDIract 

OAS Decimal adiust tor subtract 

MUL Multiply lunsignefli 

IMUL integer multiply csignefli 

AAM ASCII adiuSI tor multiply 

01V D'vide lunsigned'

I0IV -tege’ d'v Ce signed 

AAO ASCu adiust to> divide 

CBW Convert Byte to word 

CWO Convert word to double word

7 6 5 4 3 2 1 0  7 6 5 4 3 2 1 0  7 6 5 4 3 2 1 0  7 6 5 4 3 2

1 1 1 1 0 1 t w I mod 0 1 1 ' rn

0 0 1 1 1 0 d w mod 'eg ' m

t 0 0 0 0 0 s w mod 1 1 1  r m data data it s w 0i

O 0 1 1 1 '  0 w data data it w i

0 0 1 1 1 1 1 '

0 0 1 0 < 1 1 1

’ t 1 t o 1 ’ w mod 1 C 0 r m

'  t 1 • o '  ' W mod 1 0 '  • m

t ’  0 • 0 '  0 0 1 0 0 0 0 1 C 1 0
t ’ t t u t i W jmod l i 0 i m

A | mod 1 i t r m

t ’ o t o t o t I o o o o i o t o
t o o t i q o o

Variable port 

OUT - Output to

i -i t o i t oV]

Fixed pod 1 1 i 0 0 '  ' w ; -
variable pod 1 t 1 0 1 ' i w

XLAT Translate byte to al 1 1 0  1 0  1 f t

LEA Load EA to register 1 0 C 0 1 1 0 1 mod -eg - m

LOS Load pointer to DS 1 1 0 0 0 1 0 1 mod -eg • rn

LES Load pointer to ES 1 1 0 0 0 1 0 0 mod 'eg > m

LANF Load AH with (lags 1 0 0 1 1 1 1 1

8AMF Store AH into Hags 1 0 0 1 1 1 1 0

ruSMf Push (lags 1 0 0 1 1 1 0 0

POPFPop flags 1 0 0 1 1 1 0 1

ARITHMETIC 

ADD Add
Reg 'memory with register to either 

immediate to register memory 

immediate to accumulator
X X

immediate to register memory 

immediate to accumulator

INC Incrim tn t:
Register/memofy
Register

AAA ASCII adiust tor add 

DAA = Decimal adiust for add

SUB Subtract
Reg /memory and register to either 

Immediate from register/memory 

Immediate from accumulator

SIB Subtract w ith borrow
Reg /memory and register to either

MOT inven
SHL SAL Smtt logical aninmehc 

Shr Sh‘'t  ogica' "got 

SAR Sh<»t arithmetic right 

ROl Rotate ie"

ROR Rotate "gnt

RCL Rotate through car-y hag let 

RCR Rotate through carry ngr.t

AND And
Reg memory and register to eitr

im m ed ia te  to reg is te r memory-

immediate to accumulate

TEST And function to flags, no result
Register memory ano register 

Immediate data and register memory [  

immediate data and accumulator | i 0 1 0 t 0 0 w |

OR Or
Reg memory and register to either | 0 0 0 0 t 0 d w mod reg '  m

ADC Add with c ir ry immediate to register memory | 1 0 0 0 0 0 0 w modO O ' '  m data data it w t
Reg 'memory with register to either j 0 0 0 ’ 0 0 d w moo -eg ' m | immediate to accumulator I 0 0 0 0 1 i 0 w data data it w t |

I 0 0 0 0 0 s w mod 1 0 I

immediate from register - memory 11 0 0 0 0 0 s w j moo 0 '

immediate from accumulator | 0 0 0 i 1 t 0 w |

XOR Exclusive or
Reg memory and register to erihe' 

immediate to register'memory 

Immediate to accumulator

STRING MANIPULATION

REP=Repeat 

MOVS-Move byte/word 

CMPS=Compare byte/word 

SCAS-Scan byte/word 

LOOS= Load byte/wd to AL/AX 

STOS=Stor byte/wd from AL/A

I 0 1 0 0 1 0 w

M nem on ics © In te l ,  1978
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CONTROL TRANSFER 
CALL Call 7 6 5 4 3 2 1 0 7 6 5 4 3 2 10 7 6 5 4 3 2 1 0

Direct within segment 1 1 1 0 1 0 0 0 disp-low dispnigh |

Indirect within segment 1 1 1 1 1 1 1 1 mod 0 10  r /m

Direct intersegment 10  0 1 10 10 offset-low Ottsei-high 1

seg-low seg high |

indued intersegment 1 1 1 1 1 1 1 1 mod 0 11 rrm

JMP Unconditional Jump:
Direct within segment 1 1 1 0 1 0 0 1 disp-iow disp high |

Direct withm segment snon 1 1 1 0  1 0  11 disp

Indirect withm segmeni 1 1 1 , 1 1 1 1 m
Direct intersegment 1 1 1 0  10  10 oUseMow offset high |

seg-fow seg-high |

indirect intersegment mod 1 0 1 r 'm

RET Return from CALL
Wiihm segment 1 1 0 0 0 0 , 1

Witnm seg adding immed to SP 1 1 0 0 0 0 1 0 data-iow data high |

intersegment 1 1 0 0 1 0 1 1

intersegment adding immediate to SP | t 1 0  0 i 0 i 0 data-iow data high |

JE/JZ Jump on equal/zero 0 1 1 1 0 1 0 0 d'sp

or equal 0 1 1 1 1 1 0 0 disp
JLE/JRG = Jump on less or equal/not 0 1 1 1 1 1 1 0 disp
JI/JRAE Jump on beiow/not above 0 , 1 ’ 0 0 , 0 disp
J8E/JM Jump on below or equal 0 1 1 1 0  1 1 0 disp

JP/JPE Jump on parity parity even 0 1 1 1 1 0  10 disp

JO Jump on overflow 0 1 1 1 0 0 0 0 d>sp

JS Jump on sign 0 1 1 1 1 0 0 0 disp

JNE/JNZ Jump on not equal/not zero 0 1 1 1 0  10  1 disp
JRL/JGE Jump on not less/greater 

or equal 0 1 1 1 1 1 0  1 disp
JNLE/JG = Jump on noi less or equal 0 1 1 1 1 1 1 1 disp

JMB/JAE Jump on not below above 
or equal

JR6E/JA Jump on not below Of 
equal/above

JNP/JPO Jump on not par/par odd 

JNO Jump on not overflow 

JNS Jump on not sign 

LOOP Loop CX times 

L00PZ/L00PE Loop wniie jero'equai 
L00PNZ/L00PNE Loop while not 

jero'eauat
JCXZ Jump on CX zero

7 6 5 4 3 2 1 0  7 6 5 4 3 Z I 0

0 1 1 1 0 0 1 1 disp

0 1 1 1 0  1 1 1 disp

0 1 1 1 1 0  11 disp

0 1 1 1 0 0 0 1 disp

0 1 , 1 1 0 0 1 d<sp

1 1 1 0 0 0 1 0 disp

1 1 1 0 0 0 0 1 disp

1 1 1 0 0 0 0 0 disp

1 1 1 0 0 0 1 1 disp

IN I Interrupt
Type specified 

Type 3

INTO Interrupt on overflow 

IRET Interrupt return

PROCESSOR CONTROL
CLC Clear carry 

CRC Complement carry 

STC Set carry 

CIO Ciea' direction 

STO Set direction 

CU Clear interrupt 

STI Set interrupt 

HLT Hal!

WAIT Wait

ESC Escape >lo external devicei 

LOCK BuS lock prefix

| 1 1 t I 1 0 0 0

3

Footnotes:

AL 6-bit accumulator
AX - 16-bit accumulator
CX = Count register
DS = Data segment
ES = Extra segment
Above/below refers to unsigned value
Greater = more positive.
Less = less positive (more negative) signed values
if d = 1 then " to "  reg; if d = 0 then "from" reg
if w = t then word instruction; if w = 0 then byte instruction

if s w = 01 then 16 bits of immediate data form the operand 
if s w = 1 1 then an immediate data byte is sign extended to 

form the 16-bit operand
if v =  0 then count =1  if v =  1 then count in (CL) 
x =  don't care
z is used for string primitives for comparison with ZF FLAG 
SEGMENT OVERRIDE PREFIX

| 0  0 1 H I  1 1 0 |

if mod = 11 then r/m  is treated as a REG field
if mod = 00 then DISP = 0*. disp-low and disp-high are absent
if mod = 01 then DISP -  disp-low sign-extended to 16-bits disp-high is absent
if mod = 10 then DISP -  disp-high disp-low
if r/m  = 000 then EA = (BX) ♦ (SI) * DISP
if r /m  = 001 then EA = (BX) * (Dl) * DISP
if r /m  = 010 then EA = (BP) * (SI) * DISP
if r/m  = 011 then EA = (BP) * (Dl) - DISP
if r/m  = 100 then EA = (SI) * DISP
if r/m  = 101 then EA = (Dl) * DISP
if r/m  = 110 then EA = (BP) ♦ DISP*
if r/m  = 111 then EA = (BX) ♦ DISP
DISP follows 2nd byte of instruction (before data if required)

•except if mod = 00 and r/m  = 110 then EA = disp-high disp-low

REG is assigned according to the follow ing table

16-Bit |w 1| 8-Bit |w' oi Segmeni
000 AX 000 AL 00 ES
001 CX 001 CL 01 CS
010 DX 010 DL 10 SS
011 BX 011 BL 11 DS
100 SP 100 AH
101 BP 101 CH
110 SI 110 DH
111 Dl 111 BH

Instructions which reference the flag register file as a 16-bit object use the symbol FLAGS to 
represent the file

FLAGS = X X X X (OF) (DF) (IF) (TF) (SF) (ZF) X (AF) X (PF) X (CF)

M nem on ics©  Inte l, 1978



8089
8/16-BIT H M O S I/O PROCESSOR

■ High Speed DMA capabilities including 
I/O to memory, memory to I/O, memory 
to memory and I/O to I/O

■ MCS-80™, MCS-85™, MCS-86™ and 
8088 compatible, removes I/O 
overhead

■ Allows mixed interface of 8/16-bit 
peripherals, to 8/16-bit processor busses

■ 1 Mbyte addressability

■ Memory based communication with 
CPU

■ Supports LOCAL or REMOTE I/O 
processing

■ Flexible, intelligent DMA functions 
including Translation, Search, Word 
Assembly/Disassembly

■ MULTIBUS™ compatible system 
interface

The In te l"  8089 is a re vo lu tio n a ry  c o n c e p t in m ic ro p ro c e s s o r in p u t/o u tp u t p ro c e s s in g . Packaged in a 40-p in  DIP 
package , th e  8089 is  a h ig h  p e rfo rm a n ce  p ro c e s s o r im p le m e n te d  in N -channe l, d e p le tio n  load s ilic o n  gate  te c h n o lo g y  
(HM OS). The 8089 ’s in s tru c t io n  se t and c a p a b ilit ie s  are o p tim iz e d  fo r  h ig h  speed, fle x ib le  and e ff ic ie n t I/O h a n d lin g . It 
a llo w s  easy in te rfa c e  o f In te l’s 16-b it 8086 and 8 -b it 8088 m ic ro p ro c e s s o rs  w ith  8/16 -b it p e rip h e ra ls . In th e  REMOTE 
m ode, the  8089 bus is user d e fin a b le  a llo w in g  it  to  be c o m p a tib le  w ith  any 8/16 -b it In te l m ic ro p ro c e s s o r, in te rfa c in g  
e a s ily  to  th e  In te l m u lt ip ro c e s s o r  sys te m  bus  s tandard  M U LT IB U S ™ .

The 8089 p e rfo rm s  th e  fu n c tio n  o f an in te ll ig e n t DM A c o n tro lle r  fo r  th e  In te l MCS-86 fa m ily  and w ith  its  p ro c e s s in g  
pow er, can rem ove  I/O overhead fro m  th e  8086 o r 8088. It may ope ra te  c o m p le te ly  in pa ra lle l w ith  a CPU, g iv in g  
d ra m a tic a lly  im proved  p e rfo rm a n ce  in I/O in te n s iv e  a p p lic a tio n s . The 8089 p rov id e s  tw o  I/O ch an n e ls , each s u p p o rtin g  
a tra n s fe r ra te  up to  1.25 m by te /sec  at th e  s ta n d a rd  c lo c k  fre q u e n c y  o f 5 M Hz. M em ory  based c o m m u n ic a tio n  be tw een  
th e  IOP and CPU e nhances  sys te m  f le x ib i l i ty  and e nco u ra ge s  s o ftw a re  m o d u la rity , y ie ld in g  m ore  re lia b le , e as ie r to  
deve lop  sys te m s.

DMA REQ.. 
DMA

TERMINATE.

DMA RED, 
DMA

TERMINATE

CHANNEL
CONTROL

REGISTER
FILE

CHANNEL
CONTROL

REGISTER
FILE

CPU

r  ~ i
MAIN

CONTROL

ASSEMBLY/
DISASSEMBLY

INSTRUCTION 
FETCH UNIT

BUS
CONTROL

AND
ARBITRATION

A_____KADDRESS/
S|--------/  DATA

Vss C V̂ 40 I Vcc
A14/D14 C 39 □ A15/D15
A13/D13 C 3 38 A16/S3

A12/D12 El 37 □ A17/S4

A11/D11 El S 36 □ A18/S5
A10/D10 El 6 35 □ A19/S6

A9/D9 EE 7 34 □ SHE
A8/D8 EE 8 33 □ EXT 1
A7/D7 C 9 32 EXT 2
A6/D6 [I 10 31 □ DRQ 1
A5/D5 C 11 30 □ DRQ 2
A4/D4 C 12 29 □ LOCK
A3/D3 El 13 28 □ S2
A2/D2 C 14 27 z si
A1/D1 C 15 26 z so
A0/D0 C 16 25 z RQ/GT

SINTR-1 C 24 z SEL
SINTR-2 C 18 23 z CA

CLK □ 19 22z READY
V ssC 20 21 □ RESET

Figure 1. 8089 I/O Processor Block Diagram Figure 2. 8089 Pin Diagram



8089

FUNCTIONAL DESCRIPTION
The 8089 IOP has been des ig n ed  to  rem ove I/O p ro c e s 
s ing , c o n tro l and h ig h  speed  tra n s fe rs  fro m  th e  ce n tra l 
p ro c e s s in g  u n it. Its  m a jo r c a p a b ilit ie s  in c lu d e  th a t o f in 
it ia liz in g  and m a in ta in in g  perip h e ra l c o m p o n e n ts  and 
s u p p o rtin g  v e rs a tile  DM A. T h is  DM A fu n c tio n  b oa s ts  
f le x ib le  te rm in a tio n  c o n d itio n s  (such  as e x te rn a l te rm i
nate, m ask com pare , s in g le  tra n s fe r and by te  c o u n t e x 
p ired). The DM A fu n c tio n  o f the  8089 IOP uses a tw o  c y 
c le  a pp roach  w here  the  in fo rm a tio n  a c tu a lly  f lo w s  
th ro u g h  the  8089 IOP. T h is  a pp roach  to  DM A va s tly  s im 
p lif ie s  th e  bus t im in g s  and e nhances  c o m p a tib ility  w ith  
m e m ory  and p erip h e ra ls , in a d d itio n  to  a llo w in g  ope ra 
tio n s  to  be p e rfo rm e d  on the  da ta  as it is  tra n s fe rre d . 
O p e ra tio n s  can in c lu d e  such  c o n s tru c ts  as tra n s la te , 
w he re  the  8089 a u to m a tic a lly  ve c to rs  th ro u g h  a loo ku p  
ta b le  and m ask com pare , bo th  on the  “ f ly " .

The 8089 is fu n c tio n a lly  c o m p a tib le  w ith  In te l’s 8086, 
8088 fa m ily . It s u p p o rts  any c o m b in a tio n  o f 8/16-b it 
busses. In the  REM OTE m ode  it can be used to  c o m p le 
m ent o th e r In te l p ro c e s s o r fa m ilie s . H ardw are  and c o m 
m u n ic a tio n  a rc h ite c tu re  are d es ig n ed  to  p rov ide  s im p le  
m e ch a n ism s  fo r sys te m  upgrade.

The o n ly  d ire c t c o m m u n ic a tio n  be tw een  th e  IOP and 
CPU is hand led  by the  C hanne l A tte n t io n  and In te rru p t 
lines . S ta tu s  in fo rm a tio n , pa ram e te rs  and ta sk  p ro 
g ram s are passed  v ia  b lo c k s  o f shared  m em ory , s im p li
fy in g  hardw are  in te rfa c e  and e nco u ra g in g  s tru c tu re d  
p rog ra m m in g .

The 8089 can be used in a p p lic a t io n s  such  as f i le  and 
b u ffe r  m a na g e m en t in hard d is k  or f lo p p y  d is k  c o n tro l. It 
can a lso  p rov id e  fo r  s o ft e rro r recovery  ro u tin e s  and

scan c o n tro l. CRT c o n tro l, su ch  as’ c u rs o r  boh tt'b l and 
a u to  s c ro llin g , is  s im p lif ie d  w ith  th e  8089. K eyboa rd  
c o n tro l, c o m m u n ic a tio n  c o n tro l and genera l I/O are ju s t , 
a few  o f th e  ty p ic a l a p p lic a t io n s  fo r  th e  8089. “  ,

Remote and Local Modes
S how n  in F ig u re  3 is th e  8089 c o n fig u re d  in a LO C AL 
m ode. The 8086 (o r 8088) is used in its  m a x im u m  m ode 
c o n f ig u ra tio n . The 8089 and 8086 re s id e  on th e  sam e 
loca l bus, sh a rin g  th e  sam e se t o f sys te m  b u ffe rs . 
P e rip h e ra ls  loca te d  on th e  sys te m  bus can be ad
d resse d  by e ith e r th e  8086 o r th e  8089. The 8089 
re qu e s ts  th e  use o f th e  LO C A L bus  by m eans o f the  
RQ/GT line . T h is  p e rfo rm s  a s im ila r  fu n c tio n  to  th a t o f 
HOLD and H LD A  on th e  In te l 8085A, 8080A and 8086 
m in im u m  m ode, b u t is im p le m e n te d  on one  p hys ica l 
line. W hen  th e  8086 re lin q u is h e s  th e  sys te m  bus, the  
8089 uses th e  sam e bus  c o n tro l, la tch e s  and tra n s c e iv e r 
c o m p o n e n ts  to  gen e ra te  the  sys te m  a dd ress , c o n tro l 
and data  lines . Th is  m ode  a llo w s  a m ore  e c o n o m ica l 
sys te m  c o n f ig u ra tio n  a t th e  expe n se  o f reduced  CPU 
th ru p u t due  to  IOP bus u tiliz a tio n .

A ty p ic a l REM OTE c o n f ig u ra tio n  is show n  in F ig u re  4. In 
th is  m ode, th e  lO P 's  bus  is p h y s ic a lly  sepa ra ted  from  
th e  sys te m  bus  by m eans o f s y s te m  b u ffe rs /la tc h e s . The 
IOP m a in ta in s  its  o w n  loca l bus and can o p e ra te  o u t o f 
loca l o r sys te m  m em ory . The sys te m  bus in te rfa c e  c o n 
ta in s  th e  fo llo w in g  c o m p o n e n ts :

• Up to  th re e  8282 b u ffe r/la tc h e s  to  la tch  th e  a dd re ss  to  
th e  sys te m  bus

•  Up to  tw o  8286 d ev ice s  b id ire c t io n a lly  b u ffe r  the  
sys te m  da ta  bus

NOTE: ONLY ONE LATCH IS NEEDED IF CONFIGURED WITH 8088 AND ONLY 64K 
ADDRESSING IS USED. ONLY ONE TRANSCEIVER IS NEEDED IF USING A 
PHYSICAL 8-BIT DATA BUS (8088).

Figure 3. Typical 8088, 8086/8089 Configuration with 8089 in LOCAL Mode, 8088, 8086 in MAX Mode
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• A n 8288 bus c o n tro lle r  s u p p lie s  th e  c o n tro l s ig n a ls  
necessa ry  fo r  b u ffe r  o pe ra tio n  as w e ll as MRDC 
(M em ory  Read) and M W TC (M em ory  W rite ) s ign a ls .

•  An 8289 bus a rb ite r  p e rfo rm s  a ll th e  fu n c tio n s  
necessa ry  to  a rb itra te  th e  use o f th e  sys te m  bus. Th is  
is used in p lace  o f th e  RQ/GT lo g ic  in th e  LO C AL 
m ode. T h is  a rb ite r  deco d e s  typ e  o f c y c le  in fo rm a tio n  
fro m  th e  8089 s ta tu s  lin e s  to  d e te rm in e  if th e  IOP 
d e s ire s  to  p e rfo rm  a tra n s fe r over th e  “ c o m m o n ”  or 
sys te m  bus.

The perip h era l dev ice s  P1 and P2 are s u p p o rte d  on th e ir  
ow n  da ta  and a dd ress  bus. The 8089 c o m m u n ic a te s  w ith  
the  p e rip h e ra ls  w ith o u t a ffe c tin g  sys te m  bus o p e ra tio n . 
O p tio n a l b u ffe rs  m ay be used  on the  loca l bus  w hen 
c a p a c itiv e  loa d ing  c o n d it io n s  so  d ic ta te . I/O p rog ram s 
and RAM  b u ffe rs  m ay a ls o  re s id e  on th e  loca l bus  to  fu r 
th e r reduce  sys te m  bus u tiliz a tio n .

COMMUNICATION MECHANISM
F u n d am e n ta lly , c o m m u n ic a tio n  be tw een  th e  CPU and 
IOP is p e rfo rm e d  th ro u g h  m essages p repared in shared 
m em ory . The CPU can cause  th e  8089 to  e xe cu te  a p ro 
g ram  by p la c in g  it in th e  8089 's  m em ory  space  and /or 
d ire c tin g  th e  8089 's  a tte n tio n  to  it by a s s e rt in g  a ha rd 
w are  C hanne l A tte n t io n  (CA) s ig n a l to  th e  IOP, ac 
t iv a tin g  th e  p ro p e r I/O ch an n e l. The SEL Pin in d ic a te s  to

t o ,

------------------------------------- V /  »------------
the  IOP w h ic h  ch an n e l is  be ing  add ressed , b e jtfm u flic a -  
tio n  fro m  the  IOP to  th e  p ro c e s s o r can  be p e rfo rm e d  f m  
s im ila r  m anne r via  a sys te m  in te rru p t (S INTR 1,2), i f  
CPU has ena b led  in te rru p ts  fo r  th is  p u rpose . A d d it io n - J o
a lly , th e  8089 can s to re  m essages in m em ory  re g a rd ing  *  
its  s ta tu s  and th e  s ta tu s  o f any p e rip h e ra ls . T h is  com -'-- 
m u n ic a tio n  m e ch a n ism  is s u p p o rte d  by a h ie ra rch ia l 
da ta  s tru c tu re  to  p rov ide  a m a x im u m  a m o u n t o f f le x i
b il i ty  o f m e m ory  use w ith  th e  added  c a p a b ility  o f h a n d l
ing m u lt ip le  lO P 's.

Illu s tra te d  in F ig u re  5 is an o verv iew  o f th e  c o m m u n ic a 
tio n  da ta  s tru c tu re  h ie ra rch y  th a t e x is ts  fo r  th e  8089 I/O 
p roce sso r. Upon th e  f ir s t  CA fro m  RESET, 5 b y te s  o f in 
fo rm a tio n  are read in to  th e  8089 s ta r tin g  at lo c a tio n  
FF FF6 (FFFF6, F F F F 8 -F F F F B ) w he re  th e  typ e  of 
sys te m  bus  (16-b it o r 8 -b it) and  p o in te rs  to  the  sys te m  
c o n f ig u ra tio n  are o b ta in e d . Th is  is  th e  o n ly  fix e d  lo c a 
tio n  the  8089 a ccesse s . The  re m a in in g  a d d re sse s  are 
o b ta in e d  v ia  th e  da ta  s tru c tu re  h ie ra rch y . The 8089 
d e te rm in e s  add re sse s  in th e  sam e m a nn e r as does the  
8086; i.e., a 16-b it re lo c a tio n  p o in te r is o ffs e t le f t  4 b its  
and added  to  th e  16-bit add re ss  o ffs e t, o b ta in in g  a 20-b it 
a dd ress . O nce  th e se  20-b it a d d re sse s  are fo rm e d , they 
are s to re d  as such , as a ll th e  8089 a d d re ss  re g is te rs  are 
2 0 -b its  long. A fte r  th e  sys te m  c o n f ig u ra tio n  p o in te r ad 
d ress  is fo rm e d , the  8089 IOP a cce sse s  th e  sys te m  c o n 
fig u ra t io n  b lock .

MULTIBUS
ARBITRATION
SIGNALS

CPU
SYSTEM

BUS
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Figure 5. Communication Data Structure Hierarchy

The S ys te m  C o n fig u ra tio n  B lock  (SCB), used o n ly  d u r
ing  s ta rtu p , p o in ts  to  the  C o n tro l B lock  (CB) and p rov ides 
IOP sys te m  c o n f ig u ra tio n  da ta  via  the  SOC byte. The 
SOC byte  in it ia liz e s  IOP I/O bus w id th  to  8/16, and 
d e fin e s  one  o f tw o  IOP RQ/GT o p e ra tin g  m odes. For 
RQ/GT m ode  0, th e  IOP is ty p ic a lly  in it ia liz e d  as SLAVE 
and has its  RQ/G T line  tied  to  a MASTER CPU (typ ica l 
LO C A L c o n fig u ra tio n ). In th is  m ode, the  CPU n o rm a lly  
has c o n tro l o f the  bus, g ran ts  c o n tro l to  the  IOP as need
ed, and has the  bus re s to red  to  it upon IOP ta sk  c om ple- 
tio n  (IOP re qu e s t — CPU g ra n t— IOP done). For RQ/GT 
m ode  1, u se fu l o n ly  in rem ote  m ode be tw een  tw o  lOPs, 
M ASTER /SLAVE d e s ig n a tio n  is used o n ly  to  in it ia liz e  
bus  c o n tro l: fro m  th e n  on, each IOP re qu e s ts  and g ran ts  
as the  bus is needed (IOP1 re q u e s t— IOP2 g ra n t— IOP2 
re q u e s t— IOP1 grant). Thus, each IOP re ta in s  bus c o n 
tro l u n t il th e  o th e r re qu e s ts  it. The c o m p le tio n  o f in 
it ia liz a t io n  is s ig n a lle d  by the  IOP c le a rin g  th e  BUSY 
flag  in the  CB. Th is  typ e  o f s ta rtu p  a llo w s  the  user to  
have the  s ta rtu p  p o in te rs  in ROM w ith  th e  SCB in RAM. 
A llo w in g  th e  SCB to  be in RAM g ives the  user the  f le x 
ib i l ity  o f be ing  ab le  to  in it ia liz e  m u lt ip le  lOPs.

The Control Block fu rn is h e s  bus c o n tro l In it ia liz a tio n  fo r  
the  IOP o p e ra tio n  (CCW  or C hanne l C o n tro l W ord ) and 
p rov id e s  p o in te rs  to  the  P aram eter B lock  or "d a ta "  
m em ory  fo r  bo th  c h an n e ls  1 and 2. The C CW  is re trieved  
and ana lyzed upon a ll C A 's  o th e r th a n  th e  f ir s t  a fte r  a 
reset. The CCW  byte  is decoded  to  d e te rm in e  channe l 
o p e ra tio n .

The Parameter Block c o n ta in s  the  add re ss  o f the  Task 
B lo c k  and a c ts  as a m essge  c e n te r be tw een  th e  IOP and 
CPU. P a ram eters  o r va ria b le  in fo rm a tio n  is passed  from  
the  CPU to  its  IOP in th is  b lo c k  to  c u s to m iz e  the  s o f t 
w are  in te rfa c e  to  th e  perip h era l device . It is a lso  used 
fo r  tra n s fe rr in g  da ta  and s ta tu s  in fo rm a tio n  be tw een  the  
IOP and CPU.

The Task Block c o n ta in s  the  in s tru c t io n s  fo r  th e  re sp e c 
tive  ch an n e l. T h is  b lo c k  can re s id e  on th e  loca l bus o f

th e  IOP, a llo w in g  the  IOP to  ope ra te  concurrently:»w .ith  
the  CPU, or re s id e  in sys te m  m em ory . ’  ■

The a dvan tage  o f th is  typ e  o f c o m m u n ic a tio n  be tw een  
th e  p roce sso r, IOP and p e rip h e ra l, is th a t it a llo w s  fo r a 
very c lean  m e th o d  fo r the  o p e ra tin g  sys te m  to  hand le  
I/O ro u tin e s . C anned p rog ra m s o r “ T ask B lo c k s ”  a llo w  
fo r  e x e c u tio n  o f genera l pu rp o se  I/O ro u tin e s  w ith  th e  
s ta tu s  and p e rip h e ra l co m m an d  in fo rm a tio n  be ing  
passed  v ia  th e  P a ram e ter B lo c k  (“ d a ta "  m em ory). Task 
B lo c k s  (or “ p ro g ra m " m em ory) can be te rm in a te d  or 
re s ta rte d  by the  CPU, if need be. C lea rly , the  f le x ib i l i ty  
o f th is  c o m m u n ic a tio n  lends its e lf  to  m o d u la r ity  and ap
p lic a b il i ty  to  a la rge  num b e r o f p e rip h e ra l dev ice s  and 
upw ard  c o m p a t ib ility  to  fu tu re  end u se r s y s te m s  and 
m ic ro p ro c e s s o r fa m ilie s .

Register Set

The 8089 m a in ta in s  sepa ra te  re g is te rs  fo r  its  tw o  I/O 
ch a n n e ls  as w e ll as som e co m m on  re g is te rs  (see F igu re  
6). There  are s u ff ic ie n t re g is te rs  fo r  each ch an n e l to  s u s 
ta in  its  ow n D M A tra n s fe rs , and p ro ce ss  its  o w n  in s tru c 
tio n  s tream . The b a s ic  DM A p o in te r re g is te rs  (GA, GB — 
20 b its  each), can p o in t to  e ith e r th e  sys te m  bus  o r loca l 
bus, D M A so u rce  o r d e s tin a tio n , and can be a u to in c re - 
m en ted . A th ird  re g is te r se t (GC) can be used  to  a llo w  
tra n s la t io n  d u rin g  the  DM A p ro ce ss  th ro u g h  a loo ku p  
ta b le  it p o in ts  to . A d d it io n a lly , re g is te rs  are p rov id e d  fo ra  
m asked  co m pa re  d u rin g  the  da ta  tra n s fe r and can be set 
up to  a c t as one o f the  te rm in a tio n  c o n d itio n s . O the r 
re g is te rs  are a lso  p rov ided . M any o f these  re g is te rs  can be 
used as genera l pu rp o se  re g is te rs  d u rin g  p rog ram  e x e c u 
tio n , w hen  the  IOP is n o t p e rfo rm in g  DM A cyc les .

USER PROGRAMMABLE

G.P. ADDRESS A (GA)

G.P. ADDRESS B (GB)

G.P. ADDRESS C (GC)

TASK POINTER (TP)

V ' - _ 1-BIT POINTER TO EITHER I/O OR SYSTEM MEMORY SPACE
5 | 0

INDEX (IX)

BYTE COUNT (BC)

MASK | COMPARE (MC)

CHANNEL CONTROL (CC)

NON USER PROGRAMMABLE 
(ALWAYS POINTS TO SYSTEM MEMORY)

1 9 1

PARAMETER POINTER (PP) P
CHANNEL CONTROL POINTER (CP)

(PHANTOM REGISTERS DENOTE 1 FOR EACH CHANNEL)

Figure 6. Register Model

Bus Operation
The 8089 u tiliz e s  the  sam e bus s tru c tu re  as the  
8086/8088 in th e ir  m a x im u m  m ode  c o n f ig u ra tio n s  (see 
F igu re  7). The add re ss  is t im e  m u lt ip le x e d  w ith  th e  da ta  
on th e  f ir s t  16/8 lin e s . A16 th ro u g h  A19 are t im e  m u lt i
p lexed  w ith  fo u r s ta tu s  lin e s  S3-S6. F o r 8089 c y c le s , S4 
and S3 d e te rm in e  w ha t typ e  o f c y c le  (D M A ve rsus  non- 
DM A) is be ing  p e rfo rm e d  on ch a n n e ls  1 o r 2. S5 and  S6
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are a unique code assigned to the 8089 IOP, enabling 
the user to detect which processor is performing a bus 
cycle in a multiprocessing environment.

The first three status lines, S0-S2, are used with an 8288 
bus controller to determine if an instruction fetch or 
data transfer is being performed in I/O or system 
memory space.
DMA transfers require at least two bus cycles with each 
bus cycle requiring a minimum of four clock cycles. Ad
ditional clock cycles are added if wait states are re
quired. This two cycle approach simplifies considerably 
the bus timings in burst DMA. The 8089 optimizes the 
transfer between two different bus widths by using 
three bus cycles versus four to transfer 1 word. More 
than one read (write) is performed when mapping an 
8-bit bus onto a 16-bit bus (vice versa). For example, a 
data transfer from an 8-bit peripheral to a 16-bit physical 
location in memory is performed by first doing two 
reads, with word assembly within the IOP assembly 
register file and then one write.

As can be expected, the data bandwidth of the IOP is a 
function of the physical bus width of the system and I/O 
busses. Table 1 gives the bandwidth, latency and bus 
utilization of the 8089. The system bus is assumed to be

16-bits wide with either an 8-bit peripheral (under byte 
column) or 16-bit peripheral (word column) being shown.

The latency refers to the worst case response time by 
the IOP to a DMA request, without the bus arbitration 
times. Notice that the word transfer allows 50% more 
bandwidth. This occurs since three bus cycles are re
quired to map 8-bit data into a 16-bit location, versus two 
for a 16-bit to 16-bit transfer. Note that it is possible to 
fully saturate the system bus in the LOCAL mode 
whereas in the REMOTE mode this is reduced to a max
imum of 50%.

Local Remote

Byte Word Byte Word

Bandwidth 830 KB/S 1250 KB/S 830 KB/S 1250 KB/S

Latency 1.0/2.4 ^sec* 1.0/2.4 Msec* 1.0/2.4 Msec* 1.0/2.4 Msec*

System  Bus 
U tiliza tion

2.4 Msec 
PER

TRANSFER

1.6 Msec 
PER

TRANSFER

0.8 Msec 
PER

TRANSFER

0.8 Msec 
PER

TRANSFER

Table 1. 5 MHz 8089 Operation — With 16-Bit BUS

*2.4 n s e c  if in terleaving w ith  o ther channel and no w a it states. 1/tsec if 
channel is  w a iting  fo r request.

— M*Nw*it» = Tcy —

. T V

AOOR/STATUS

\_ ym \ TZ_
S7-S3 ItGEl/C Sr-S j _IX_

ADDR/DATA 
(16-BIT 

' PHYSICAL BUS) • £
DATA OUT (O,5-O0> xxz

X_______F
H l ^ .

WAIT
r |

\ _____ u

I

r \ , r
Y_

“ \_____________ /

__________/
(l.e„ NON MULTIPLEXED) THROUGHOUT EACH TRANSFER 
ARE ALSO STABLE ON TRANSFERS TO A PHYSICAL 6-BIT

Figure 7. 8089 Bus Operation
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PIN DESCRIPTION Pin Name(s) I/O Description

Pin Name(s) I/O Description

A0-A15/ I/O Multiplexed address and data bus. The 
D0-D15 function of these lines are defined by

the state of SO, ST and §2 lines. The 
pins are floated after reset and when 
the bus is not acquired. A8-A15 are 
stable on transfers to a physical 8-bit 
data bus (same bus as 8088), and are 
multiplexed with data on transfers to a 
16-bit physical bus.

A16-A19/
S3-S6

BHE

SO, S1, S2

READY

O Multiplexed most significant address 
lines and status information. The ad
dress lines are active only when ad
dressing memory. Otherwise, the 
status lines are active and are encoded 
as shown below. The pins are floated 
after reset and when the bus is not 
acquired.
S6 S5 S4 S3
1 1 0  0 DMA cycle on CH1
1 1 0  1 DMA cycle on CH2
1 1 1 0  Non-DMA cycle on CH1
1 1 1 1  Non-DMA cycle on CH2

O The Bus High Enable signal is used to 
enable data operations on the most 
significant half of the data bus (D8- 
D15). The signal is active low when a 
byte is to be transferred on the upper 
half of the data bus. The pin is floated 
after reset and when the bus is not 
acquired. BHE does not have to be 
latched.

O These are the status pins that define 
the IOP activity during any given cycle. 
They are encoded as shown below:
S2 S1 SO
0 0 0 Instruction fetch; I/O space
0 0 1 Data fetch; I/O space
0 1 0 Data store; I/O space
0 1 1 Not used
1 0 0 Instruction fetch; System

Memory
1 0 1 Data fetch; System Memory
1 1 0 Data store; System Memory
1 1 1 Passive

The status lines are utilized by the bus 
controller and bus arbiter to generate 
all memory and I/O control signals. The 
signals change during T4 if a new 
cycle is to be entered while the return 
to passive state in T3 or Tw indicates 
the end of a cycle. The pins are floated 
after system reset and when the bus is 
not acquired.

I The ready signal received from the ad
dressed device indicates that the 
device is ready for data transfer. The 
signal is active high and is synchro
nized by the 8284 clock generator.

LOCK O The lock output signal indicates to the
bus controller that the bus is needed 
for more than one contiguous cycle. It 
is set via the channel control register, 
and during the TSL instruction. The pin 
floats after reset and when the bus is 
not acquired. This output is active low.

RESET I The receipt of a reset signal causes
the IOP to suspend all its activities and 
enter an idle state until a channel at
tention is received.

CLK I System clock which provides all timing
needed for internal IOP operation.

CA I Channel Attention. Used to get the at
tention of the IOP. Upon the falling 
edge of this signal, the SEL input pin is 
examined to determine Master/Slave or 
CH1/CH2 information. This input is ac
tive high.

SEL I The first CA received after system
reset informs the IOP via the SEL line, 
whether it is a Master or Slave (0/1 for 
Master/Slave respectively) and starts 
the initialization sequence. During any 
other CA the SEL line signifies the 
se lection of CH1/CH2. (0/1 re
spectively)

DRC1-2 I DMA request inputs which signal the 
IOP that a peripheral is ready to trans- 
fer/receive data using channels 1 or 2 
respectively. The signals are active 
high.

RO/GT I/O The ReOuest GranT pin implements 
the communication dialogue required 
to arbitrate the use of the system bus 
(between IOP and CPU. LOCAL mode) 
or I/O bus when two lOPs share the 
same bus (REMOTE mode). The RO/GT 
signal is active low. An internal pull-up 
permits RO/GT to be left floating if not 
used.

SINTR1-2 O Interrupt outputs from channels 1 and 
2 respectively. The interrupts may be 
sent directly to the CPU or through the 
8259A interrupt controller. They are 
used to indicate to the system the oc
currence of user defined events.

EXT1-2

v cc

vss

I External terminate inputs for channels 
1 and 2 respectively. The EXT signals 
will cause the termination of the cur
rent DMA transfer operation if the 
channel is so programmed by the 
channel control register. The signals 
are active high.

+ 5 volt power input.

Ground pins.
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ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias............... 0°C to 70°C
Storage Temperature....................... -  65°C to + 150°C
Voltage on Any Pin with

Respect to Ground.................................-  0.3 to + 7V
Power Dissipation............................................ 2.5 Watt

* C O M M E N T : S tresses above those lis ted  under ‘ A bso lu te  Maxirjiurrt 
R a tings" may cause permanent damage to  the device. Th is i s h  s tress 
rating only and func tiona l operation o f the device at these o r any o ther 
co nd itio ns  above those  indicated  in the operationa l sections o f th is  
sp ec ifica tio n  is not im plied . Exposure to  abso lu te  m axim um  rating  con 
d ition s  for extended periods may a ffec t device re liab ility .

D.C. CHARACTERISTICS
8089: Ta = 0°C to 70°C, VCC = 5V ±10%

Symbol Parameter Min. Max. Units Test Conditions

VlL Input Low Voltage -0 .5 + 0.8 V

V|H Input High Voltage 2.0 V c c +  1-0 V

O>

Output Low Voltage 0.45 V l0L= 2.0 mA121

Io>

Output High Voltage 2.4 V Iq h  = -  400 mA

!cc Power Supply Current 350 mA Ta = 25°C

I LI Input Leakage Current*11 ±  10 pA < z II < o o

•lo Output Leakage Current ±  10 pA 0 .4 5 V  « V 0UT < v c c

VCL Clock Input Low Voltage -0.5 +  0.6 V

Xo>

Clock Input High Voltage 3.9 V c c +  1-0 V

C IN

Capacitance of Input Buffer 
(All input except 
AD0-  AD15, RQ/GT)

10 pF fc = 1 MHz

C|Q
Capacitance of I/O Buffer 
(AD0-A D 15, RQ/GT) 20 PF fc = 1 MHz

NOTES: 1. Except RQ/GT 
2. Test C ircu its :

ALL OUTPUTS EXCEPT: RQ/GT RQ/GT

I  2 0 /1 5 0  p f -  30 p f

D E P E N D IN G  O N W H IC H  IS 
W O R S T  C A S E
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A.C. CHARACTERISTICS
8089: TA = 0°C to 70”C, VCC = 5V±10%
8089/8086 MAX MODE SYSTEM (USING 8288 BUS CONTROLLER) TIMING REQUIREMENTS ■? >■

Symbol Parameter Min. Max. Units
-

Test C ond itions

TCLCL CLK Cycle  Period 200 500 ns

TCLCH CLK Low Time (2/3T C L C L )- 15 ns

TC hC L CLK H igh Tim e (Vs TCLCL) + 2 ns

TCH1CH2 CLK Rise Time 10 ns From 1.0V to  3.5V

TCL2CL1 CLK Fall Tim e 10 ns From 3.5V to  1.0V

TDVCL Data In Setup Tim e 30 ns

TCLDX Data In Hold Time 10 ns

TR1VCL RDY Setup Tim e in to  8284 (See Notes 1, 2) 35 ns

TCLR1X RDY Hold T im e in to  8284 (See Notes 1, 2) 0 ns

TRYHCH READY Setup Tim e in to  8089 (2/3 TCLCL) -  15 ns

TCHRYX READY Hold Tim e in to  8089 30 ns

TRYLCL READY Inactive  to  CLK (See Note 4) - 8 ns

TIN VCH Setup T im e Recogn ition  (DRQ 1,2 RESET, Ext 1,2) (See Note 2) 30 ns

TGVCH RQ/GT Setup Time 30 ns

TCAHCAL CA W idth 95 ns

TSLVCAL SEL Setup Time 75 ns

TCALSLX SEL Hold Time 0 ns

TCHGX K7J Hold Tim e in to  8089 40 ns

TIMING RESPONSES
Symbol Parameter Min. Max. Units Test Cond itions

TCLML Command Active Delay (See Note 1) 10 35 ns C L = 80 pF

TCLMH Command Inactive Delay (See Note 1) 10 35 ns

C L =  150 pf

TRYHSH READY Active  to  S tatus Passive (See Note 3) 110 ns
TCHSV S tatus Active  Delay 10 110 ns

TCLSH S tatus Inactive Delay 10 130 ns

TCLAV Address Valid Delay 10 110 ns

TCLAX Address Hold Time 10 ns

TCLAZ Address Float Delay TCLAX 80 ns

TSVLH S tatus Valid to  ALE High (See Note 1) 15 ns

TCLLH CLK Low to ALE Valid (See Note 1) 15 ns

TCHLL ALE Inactive Delay (See Note 11 15 ns

TCLDV Data Valid Delay 10 110 ns

TCHDX Data Hold T im e 1 10 ns

TCVNV Contro l Active  Delay (See Note 1) 5 45 ns

TCVNX Contro l Inactive Delay (See Note 1) 10 45 ns

TCHDTL D irection Control Active  Delay (See Note 1) 50 ns

TCHDTH D irection Control Inactive Delay (See Note 1) 30 ns

TCLGL GT Active  Delay 0 85 ns C L = 30 pF

TCLGH GT Inactive Delay 85 ns C L = 30 pF

TCLSRV SINTR Valid Delay 150 ns C L = 100 pF

NOTES: 1 Signal at 8284 or 8288 shown for reference only. 3. Applies only to T3 and TW states
2 Setup requirement tor asynchronous signal only to guarantee recognition at next CLK. 4. Applies only to T2 state.
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Figure 8. 8089 Bus Timing — (Using 8288)
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NOTES:
1. SETUP REQUIREMENTS FOR ASYNCHRONOUS SIGNALS ONLY TO GUARANTEE 

RECOGNITION AT NEXT CLK.
2. ALL INPUTS EXCEPT CA ARE LATCHED ON A CLK EDGE. THE CA INPUT IS

NEGATIVE EDGE TRIGGERED.
3. DRQ BECOMING ACTIVE GREATER THAN 30 ns AFTER THE RISING EDGE OF CLK 

WILL GUARANTEE NON-RECOGNITION UNTIL THE NEXT RISING CLOCK EDGE.

Figure 9. Asynchronous Signal Recognition

-  TCLAV -  —  TCLAVi------

LOCK

CLK
<r /

SINTR 1,2

r

A

NOTES:
2. IN THE REMOTE_CONFIGURATION, THE 8089 IOP CAN EITHER ISSUE OR 

RESPOND TO RQJGVTHUS ALLOWING THE USER TO TIE 2 8089's TOGETHER. THE 
PROTOCOL OF RQ/GT IN THIS CONFIGURATION CONSISTS OF ONLY ONE PULSE 
TO TRANSFER THE BUS.

Figure 11. Request/Grant Sequence Timing

1. THE CPU MAY NOT DRIVE THE BUSES INSIOE THE REGION SHOWN WITHOUT 
RISKING CONTENTION.

Figure 13. SEL Setup and Hold Timing
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8089 INSTRUCTION SET SUMMARY 

Data Transfers

8089

LPD P.M 
LPDI P,I 
MOVP M,P 
MOVP P,M

POINTER INSTRUCTIONS
Load Pointer PPP from Addressed Location 
Load Pointer PPP Immediate 4 Bytes 
Store Contents of Pointer PPP in Addressed Location 
Restore Pointer

p p p 0 0 A A 1 1 0 0 0 1 0 M M
p p P 1 0 0 0 1 0 0 0 0 1 0 0 0
p p p 0 0 A A 1 1 0 0 1 1 0 M M
p p p 0 0 A A 1 1 0 0 0 1 1 M M

MOVE DATA

MOV M,M

MOV R,M 
MOV M.R 
MOVI R 
MOVI M

Move from Source to Destination „  .. ..Destination-
Load Register RRR from Addressed Location 
Store Contents of Register RRR in Addressed Location 
Load Register RRR Immediate (Byte) Sign Extend 
Move Immediate to Addressed Location

0 0 0 0 0 A A W 1 0 0 1 0 0 M M
0 0 0 0 0 A AW 1 1 0 0 1 1 M M
R R R 0 0 A AW 1 0 0 0 0 0 M M
R R R 0 0 A AW 1 0 0 0 0 1 M M
R R R wb 0 0 W 0 0 1 1 0 0 0 0
0 0 0 wb A AW 0 1 0 0 1 1 M M

Control Transfer
CALLS

‘ CALL Call Unconditional 

JUMP
JMP Unconditional
JZ M Jump on Zero Memory
JZ R Jump on Zero Register
JNZ M Jump on Non-Zero Memory
JNZ R Jump on Non-Zero Register
JBT Test Bit and Jump if True
JNBT Test Bit and Jump if Not True
JMCE Mask/Compare and Jump on Equal
JMCNE Mask/Compare and Jump on Non-Equal

Arithmetic and Logic Instructions
INCREMENT, DECREMENT

INC M Increment Addressed Location
INC R Increment Register
DEC M Decrement Addressed Location
DEC R Decrement Register 

ADD
ADDI M.I ADD Immediate to Memory
ADDI R, I ADD Immediate to Register
ADD M.R ADD Register to Memory
ADD R,M ADD Memory to Register 

AND
ANDI M.I AND Memory with Immediate
ANDI R,I AND Register with Immediate
AND M,R AND Memory with Register
AND R.M AND Register with Memory 

OR
ORI M,I OR Memory with Immediate
ORI R,I OR Register with Immediate
OR M.R OR Memory with Register
OR R.M OR Register with Memory

| 1 0 0 wb A A W 11 0 0 1 I 1M M
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A rithm etic  a n d  Logic In s t ru c t io n s  (cont.)

NOT
N O T R C o m p le m e n t R eg is te r 
NOT M C o m p le m e n t M em ory 
NOT R,M C om p lem e n t M em ory , P lace in R eg is te r

Bit M an ipu la t ion  an d  T e s t  I n s t ru c t io n s

7
R R R 0 0 0 0 0 0 0 1 0 1 1 0 0
0 0 0 0 0 A A W 1 1 0 1 1 1 M M
R R R 0 0 A A W 1 0 1 0 1 1 M M

BIT MANIPULATION
SET Set the  S e le c ted  B it
CLR C le a r the  S e lec ted  B it

TEST

TSL Test and S e t Lock  10 0 0 1 1 A A 0 J~1 0 0 1 Q l M M

Control

HLT H a lt C hanne l E xe cu tion
SINTR Set In te rru p t S e rv ice  F lip  F lop
NOP No O p e ra tion
XFER E n te r DM A T ra n s fe r
W ID  Set S ou rce , D e s tin a tio n  B us W id th ; S,D 0 =  8, 1 =  16

0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 s D 0 0 0 0 0 0 0 0 0 0 0 0 0

B B B 0  0 A A 0 1 1 1 1  0 1 M M
B B B 0  0 A A 0 1 1 1 1  1 0 M M

NOTES:
*11 f ie ld  in ca ll in s tru c t io n  can be 00, 01. 10 o n ly .
* ’ O PC O D E is  se con d  b y te  fe tch e d .
A ll in s tru c t io n s  c o n s is t o f a t lea s t 2 by tes , w h ile  som e 
in s tru c t io n s  m ay use up to  3 a d d itio n a l b y te s  to  s p e c ify  
lite ra ls  and d is p la c e m e n t data . The d e f in it io n  o f the  
va rio u s  fie ld s  w ith in  each in s tru c t io n  is  g iven  be low :

7 0 7 0

R R R  w b  A  A  W OPCODE

p p p e e e

MM Base Pointer Select

PPP
000 pO GA ;
001 p1 GB :
010 p2  GC :
100 p4  TP ; task  b lo c k  p o in te r 

BBB Bit Select Field
The b it s e le c t f ie ld  re p la ce s  th e  RRR fie ld  in b it m a n ip u 
la tio n  in s tru c t io n s  and is used to  s e le c t a b it to  be o p e r
a ted  on by th o s e  in s tru c t io n s . B it 0 is  th e  leas t s ig n if i 
ca n t b it.

00 GA
01 GB
10 GC
11 PP

RRR Register Field
The RRR fie ld  s p e c ifie s  a 16-b it re g is te r to  be used in 
th e  in s tru c t io n . If GA, GB, GC o r TP, are re fe renced  by 
the  RRR fie ld , th e  upp e r 4 b its  o f the  re g is te rs  are lo a d 
ed w ith  th e  s ign  b it (B it 15). PPP re g is te rs  are used as 
20 -b it add re ss  p o in te rs .

RRR
000 rO GA
001 r1 GB
010 r2 GC
011 r3 BC ; by te  co u n t
100 r4 TP ; ta sk  b lo ck
101 r5 IX ; ind e x  re g is te r
110 r6 CC ; ch a n n e l c o n tro l (m ode)
111 r7 MC ; m ask /com pare

01 1 byte  lite ra l o r  1 by te  d is p la c e m e n t
10 2 byte  (w ord) lite ra l o r 2 by te  (w ord) d is p la c e m e n t

AA Field
00 The se le c te d  p o in te r c o n ta in s  th e  ope rand  address.

01 The operand  a dd re ss  is  fo rm e d  by a dd in g  an 8 -b it, 
u ns ig n ed , o ffs e t co n ta in e d  in th e  in s tru c t io n  to  the  
se le c te d  p o in te r. The c o n te n ts  o f th e  p o in te r are u n 
changed.

10 The ope rand  add re ss  is  fo rm e d  by add in g  th e  c o n 
te n ts  o f the  Index re g is te r to  th e  se le c te d  p o in te r. 
B o th  re g is te rs  rem ain  unchanged .

11 Sam e as 10 e xcep t th e  Index re g is te r is  p o s t auto- 
in c re m e n te d  (by 1 fo r  8 -b it tra n s fe r, by 2 fo r  16-b it 
trans fe r).

W Width Field
0 The se le c te d  ope rand  is  1 b y te  long .
1 The se le c te d  ope rand  is 2 b y te s  long .

MNEMONICS ici 1979 INTEL CORP.
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Additional Bytes
O FFSET : 8 -b it uns ig n ed  o ffs e t.
SDISP : 8/16-bit s igned  d isp la ce m e n t.

L ITER AL : 8/16-bit lite ra l.

The o rde r in w h ich  th e  above o p tio n a l by tes  appear in 
IOP in s tru c t io n s  is g iven be low :

O ffs e ts  are trea ted  as uns ig n ed  num bers . L ite ra ls  and 
d is p la c e m e n ts  are s ign  e x tended  (2's com p lem ent).
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8282/8283  
OCTAL LATCH

■ Fully Parallel 8-Bit Data Register and 
Buffer

■ Transparent during Active Strobe

■ Supports 8080, 8085, 8048, and 8086 
Systems

■ High Output Drive Capability for 
Driving System Data Bus

■ 3-State Outputs

■ 20-Pin Package with 0.3” Center

■ No Output Low Noise when Entering 
or Leaving High Impedance State

The 8282 and 8283 are 8-bit bipolar latches with 3-state output buffers. They can be used to implement latches, buffers, 
or multiplexers. The 8283 inverts the input data at its outputs while the 8282 does not. Thus, all of the principal periph
eral and input/output functions of a microcomputer system can be implemented with these devices.

PIN CONFIGURATIONS LOGIC DIAGRAMS

DI0-DI7 DATA IN
DO0-DO7 DATA OUT
OE OUTPUT ENABLE
STB STROBE
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PIN DEFINITIONS
Pin Description

STB STROBE (Input). STB is an input control
pulse used to strobe data at the data input 
pins (A0-A 7) into the data latches. This 
signal is active HIGH to admit input data. 
The data is latched at the HIGH to LOW 
transition of STB.

OE OUTPUT ENABLE (Input). OE is an input
control signal which when active LOW 
enables the contents of the data latches 
onto the data output pin (B0-B 7). OE being 
inactive HIGH forces the output buffers to 
their high impedance state.

DI0-D I7 DATA INPUT PINS (Input). Data presented 
at these pins satisfying setup time re
quirements when STB is strobed and 
latched into the data input latches.

DO0-DO 7 DATA OUTPUT PINS (OutputyfWhen OE is
(8282) true, the data in the data latches is pre- 

DO0-DO 7 sented as inverted (8283) or non-inverted t
(8283) (8282) data onto the data output pins.

OPERATIONAL DESCRIPTION
The 8282 and 8283 octal latches are 8 -bit latches with 
3-state output buffers. Data having satisfied the setup 
time requirements is latched into the data latches by 
strobing the STB line HIGH to LOW. Holding the STB 
line in its active HIGH state makes the latches appear 
transparent. Data is presented to the data output pins by 
activating the OE input line. When OE is inactive HIGH 
the output buffers are in their high impedance state. 
Enabling or disabling the output buffers will not cause 
negative-going transients to appear on the data output 
bus.

D.C. AND OPERATING CHARACTERISTICS 

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias................................. 0°C to 70°C
Storage Temperature......................... -6 5 °C  to + 150°C
All Output and Supply Voltages...............-  0.5V to + 7V
All Input Voltages................................... -  1.0V to + 5.5V
Power Dissipation.................................................... 1 Watt

*COMMENT: S tresses above those listed under “ Absolute  Maximum 
Ratings” may cause permanent damage to the device. Th is is a stress 
rating only and functional operation o f the device at these or any other 
cond itions above those indicated in the operational section s o f th is 
spec ifica tion  is not implied. Exposure to absolute maximum rating con 
ditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS FOR 8282/8283
Conditions: VCC = 5V ±5% , TA = 0°C to 70°C

Symbol Parameter Min Max Units Test Conditions

vc Input Clamp Voltage -  1 V lc = — 5 mA

Ice Power Supply Current 160 mA

If Forward Input Current - 0.2 mA VF = 0.45V

!r Reverse Input Current 50 pA VR = 5.25V

V0L Output Low Voltage 0.50 V Io l  = 32 mA

V0H Output High Voltage 2.4 V Iq h  = -  5 mA

l0FF Output Off Current ± 50 mA V q f f  = 0.45 to 5.25V

V|L Input Low Voltage 0.8 V V q c =  5.0V See Note 1

V,H Input High Voltage 2.0 V VCC=5.0V See Note 1

C|N Input Capacitance 12 PF
F = 1 MHz
VBIAS = 2.5V, VCC=5V  
Ta = 25 °C

Notes: 1. Output Loading lo L  = 3 2 m A, Iq h  = -  5 m A- Ci_ = 300 pF
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A.C. CHARACTERISTICS FOR 8282/8283
Conditions: VCC= 5 V ± 5 % ,  T A =  0 °C  to  70°C

Loading: O u tp u ts  — I0 l =  32 m A, l0H =  - 5  m A, C L =  300 pF

Symbol Parameter Min Max Units Test Conditions

TIVOV In p u t to  O u tp u t Delay (See N o te  1)
— In ve rtin g 25 ns
-N o n - In v e r t in g 35 ns

TSHOV STB to  O u tp u t Delay
— Inve rting 45 ns
-N o n - In v e r t in g 55 ns

TEH O Z O u tp u t D isab le  T im e 25 ns

TELOV O u tp u t Enable  T im e 10 50 ns

TIV S L Inpu t to  STB S e tup  T im e 0 ns

TSLIX Inpu t to  STB H o ld  T im e 25 ns

TS H S L STB H igh  T im e 15 ns

NOTE: 1. See waveform s and test load c ircu it on fo llow ing  page.

8282/8283 TIMING

N O T E : 1.8283 O N LY  —  OUTPUT M AY  BE M O M EN TAR ILY  INVALID FO LLO W IN G  TH E  HIGH G OING  STB TRANSITION. 

2. A L L  TIMING M E ASU R EM E N TS  AR E  M AD E A T  1.5V UN LESS  O THERW ISE NOTED
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OUTPUT DELAY VS. CAPACITANCE

OUTPUT TEST LOAD CIRCUITS

3-STATE TO V0 L 3-STATE TO V0 H SWITCHING
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8284
CLOCK GENERATOR AND DRIVER 

FOR 8086 , 8088 , 8 089  PROCESSORS

■ Generates the System Clock for the 
8086, 8088 and 8089

■ Uses a Crystal or a TTL Signal for Fre
quency Source

■ Single +5V  Power Supply

■ 18-Pin Package

■ Generates System Reset Output from 
Schmitt Trigger Input

■ Provides Local Ready and MULTIBUS™ 
Ready Synchronization

■ Capable of Clock Synchronization with 
other 8284’s

The 8284 is a bipolar clock generator/driver designed to provide clock signals for the 8086, 8088 & 8089 and 
peripherals. It also contains READY logic for operation with two MULTIBUS™ systems and provides the processors 
required READY synchronization and timing. Reset logic with hysteresis and synchronization is also provided.

8284 PIN CONFIGURATION 8284 BLOCK DIAGRAM

CYSNCQ 1 

PCLK D  2 

AEN1 C  3 

RDY1 £  4 

READY C  5 

RDY2 C  6 

AEN2 C  7 

CLK C  8 

GND C  9

1B □  VCC 

17 □  X1 

16 □  X2 

15 □ T N K  

14 □  EFI 

13 □ F /C

12 Dose
11 [ ]  RES

10  P r e s e t

X1 i 
X2 i 
TANK 
F/C 
EFI
CSYNC
RDY1 |
RDY2 I
AEN1 |
AEN2 I
RES
RESET
OSC
CLK
PCLK
READY

VCC
GND

RDV1
AEN1

8284 PIN NAMES

CONNECTIONS FOR CRYSTAL

USED WITH OVERTONE CRYSTAL
CLOCK SOURCE SELECT
EXTERNAL CLOCK INPUT
CLOCK SYNCHRONIZATION INPUT

READY SIGNAL FROM TWO MULTIBUS™ SYSTEMS

ADDRESS ENABLED QUALIFIERS FOR RDY1.2 

RESET INPUT
SYNCHRONIZED RESET OUTPUT 
OSCILLATOR OUTPUT 
MOS CLOCK FOR THE PROCESSOR 
TTL CLOCK FOR PERIPHERALS 
SYNCHRONIZED READY OUTPUT 
+ 5 VOLTS 
0 VOLTS
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PIN DEFINITIONS
Pin

aenT,
AE N 2

RDY1,
RDY2

READY

X1, X2, 
TN K

F/C

EFI

C LK

PCLK

I/O Definition
I A D DR ESS EN ABLE. AEN is an a c tive  

LO W  s ig n a l. AEN serves to  q u a lify  its  
re sp e c tive  B us Ready S ign a l (RDY1 o r 
RDY2). AEN1 va lid a te s  RDY1 w h ile  AEN 2 
va lid a te s  RDY2. Tw o AEN s ign a l in p u ts  
are u se fu l in sys te m  c o n f ig u ra tio n s  
w h ic h  p e rm it th e  p ro c e s s o r to  access  
tw o  M u lt i-M a s te r S ys te m  B usses. In non 
M u lt i-M a s te r c o n f ig u ra tio n s  th e  AEN 
s ig n a l in p u ts  are tie d  tru e  (LOW).

I BUS READY (T ransfe r C om p le te ). RDY is 
an a c tive  H IG H  s ig n a l w h ich  is  an in d ic a 
t io n  fro m  a d ev ice  lo ca te d  on th e  sys te m  
da ta  bus th a t da ta  has been re ce ived, o r 
is a va ilab le . RDY1 is q u a lif ie d  by AEN1 
w h ile  RDY2 is q u a lif ie d  by AEN2.

0  READY. R EADY is  an a c tiv e  HIGH s ign a l 
w h ic h  is  th e  sy n c h ro n iz e d  RDY s ig n a l in 
pu t. S ince  RDY o c c u rs  a syn c h ro n o u s ly  
w ith  r e s p e c t  to  th e  c lo c k  (C L K )  it 
m ay be  n e c e s s a ry  fo r  th e m  to  be  syn 
ch ro n iz e d  b e fo re  be ing  p re s e n te d  to  th e  
8 2 8 4 .  R E A D Y  is  c le a r e d  a f t e r  th e  
g u a ra n te e d  h o ld  tim e  to  th e  p ro c e s s o r  
h as  been  m et.

1 C R YSTAL IN. X1 and X2 are th e  p in s  to  
w h ic h  a c rys ta l is a tta ch e d  w ith  TN K  
(TANK) se rv in g  as th e  ove rto ne  inp u t. 
The c ry s ta l fre q u e n cy  is 3 t im e s  the  
d es ire d  p ro c e s s o r c lo c k  fre q u en cy .

I FR EQ U EN C Y/C R YSTAL SELECT. F/C is 
a s tra p p in g  o p tio n . W hen  s tra p p e d  LOW, 
F/C p e rm its  th e  p ro c e s s o r ’s c lo c k  to  be 
gen e ra te d  by th e  c ry s ta l. W hen  F/C is 
s tra p p ed  H IG H , C LK  is  gen e ra te d  from  
th e  EFI inpu t.

I EXTER N AL FR EQ U EN CY IN. W hen F/C 
is s tra p p ed  H IG H , C LK  is gen e ra te d  from  
th e  in p u t fre q u e n c y  a p p e a rin g  on th is  
p in . The in p u t s ig n a l is a squa re  w ave 3 
tim e s  th e  fre q u e n c y  o f th e  d e s ire d  C LK  
o u tp u t.

O PROCESSOR C LO C K . C LK  is th e  c lo c k  
o u tp u t used by th e  p ro c e s s o r and a ll 
dev ice s  w h ic h  d ire c tly  c o n n e c t to  the  
p ro c e s s o r 's  loca l bus (i.e., th e  b ip o la r 
s u p p o rt c h ip s  and o th e r M OS devices). 
C LK  has an o u tp u t fre q u e n c y  w h ic h  is 
1/3 o f th e  c ry s ta l o r EFI in p u t fre q u e n c y  
and  a 1/3 d u ty  cyc le . A n o u tp u t H IG H  o f 
4.5 v o lts  (VCC =  5V) is  p rov id e d  on th is  
p in  to  d rive  M OS dev ices .

O PER IPH ER A L C LO C K . PCLK is a TTL 
level p e rip h e ra l c lo c k  s ig n a l w ho se  o u t
p u t fre q u e n c y  is  1/2 th a t o f C LK  and has 
a 50%  d u ty  cyc le .

Pin I/O Definition
OSC 0  O S C ILLA TO R  OUTPUT. O SC  is  th e  TTL 

level o u tp u t o f th e  in te rn a l o s c il la to r  c ir 
c u itry . Its  fre q u e n c y  is  equa l to  th a t o f 
th e  c ry s ta l.

RES I RESET IN. RES is  an a c tive  LO W  s ign a l 
w h ic h  is  used to  g en e ra te  RESET. The 
8284 p ro v id e s  a S c h m it t tr ig g e r  in p u t so 
th a t an RC c o n n e c tio n  can be used  to  
e s ta b lis h  th e  pow er-up  rese t o f p rop e r 
d u ra tio n .

RESET 0  RESET. R eset is an a c tiv e  H IG H  s ig n a l 
w h ic h  is used  to  rese t th e  8086 fa m ily  
p ro ce sso rs . Its  t im in g  c h a ra c te r is t ic s  
are d e te rm in e d  by RES.

C SYNC  I C LO C K  S Y N C H R O N IZA T IO N . C SYNC  is 
an a c tiv e  H IG H  s ig n a l w h ic h  a llo w s  m u l
t ip le  8284 's  to  be s y n c h ro n iz e d  to  p ro 
v ide  c lo c k s  th a t are in phase. W hen 
C SYNC  is  H IG H  th e  in te rn a l c o u n te rs  are 
reset. W hen C S Y N C  goes LO W  th e  in 
te rn a l c o u n te rs  are a llo w e d  to  resum e  
c o u n tin g . C SYNC  needs to  be e x te rn a lly  
s yn ch ro n ize d  to  EFI. W hen  u s in g  th e  in 
te rn a l o s c il la to r  C S Y N C  s h o u ld  be h a rd 
w ire d  to  g round .

G N D  G round

V c c  +  5V s u p p ly

FUNCTIONAL DESCRIPTION

GENERAL

The 8 2 8 4  is  a s in g le  c h ip  c lo c k  g e n e ra to r /d r iv e r  fo r th e  
8 08 6 , 8 0 8 8  & 8 0 8 9  p ro c e s s o rs . The ch ip  c o n ta in s  a 
c r y s ta l  c o n t r o l le d  o s c i l la t o r ,  a " d iv id e  b y  t h r e e "  
coun te r, co m p le te  M U LTIBU S™  "R e a d y ” s y n c h ro n iz a 
tion  and re s e t log ic .

OSCILLATOR

The o s c il la to r  c ir c u it  o f th e  8284 is  d e s ig n e d  p rim a rily  
fo r  use  w ith  an e x te rn a l se rie s  re son a n t, fu n d a m e n ta l 
m ode, c ry s ta l fro m  w h ic h  th e  b a s ic  o p e ra tin g  fre q u e n c y  
is de rived . H ow ever, o v e rto n e  m o de  c ry s ta ls  can be 
used w ith  a ta n k  c ir c u it  as sh ow n  in F ig u re  1.

The c ry s ta l fre q u e n c y  s h o u ld  be s e le c te d  at th re e  t im e s  
th e  re qu ire d  CPU c lo c k . and X2 are th e  tw o  c ry s ta l 
in p u t c ry s ta l c o n n e c tio n s .

The o u tp u t o f th e  o s c il la to r  is  b u ffe re d  and b ro u g h t o u t 
on  OSC so th a t o th e r sys te m  t im in g  s ig n a ls  can be 
derived  fro m  th is  s ta b le , c ry s ta l-c o n tro lle d  so u rce .
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The tank input to the osc illa tor a llows the use of overtone mode crys
tals. The tank c ircu it shunts the crysta l's fundamental and high overtone 
frequencies and a llows the third harmonic to oscillate. The external LC 
network is connected to the TAN K  input and is A C  coupled to ground.

Figure 1

CLOCK GENERATOR

Figure 2. CSYNC Synchronization

CLOCK OUTPUTS
The C LK  o u tp u t is a 33%  d u ty  c y c le  M OS c lo c k  d rive r 
d e s ig n e d  to  d rive  th e  8086 p ro c e s s o r d ire c tly . P C LK  is a 
TTL leve l p e rip h e ra l c lo c k  s ig n a l w h o se  o u tp u t f re 
q u e n cy  is  1/2 th a t o f C LK. PC LK has a 50%  d u ty  cyc le .

RESET LOGIC
The rese t lo g ic  p rov id e s  a S c h m it t tr ig g e r  in p u t (RES) 
and a s y n c h ro n iz in g  fl ip - f lo p  to  g en e ra te  th e  re se t t im 
ing . The rese t s ig n a l is  s y n c h ro n iz e d  to  th e  fa llin g  edge  
o f C LK. A s im p le  RC n e tw o rk  can  be used to  p rov ide  
p ow e r on rese t by u ti liz in g  th is  fu n c tio n  o f th e  8284.

The c lo c k  g e n e ra to r c o n s is ts  o f a s y n c h ro n o u s  d iv ide - 
by-th ree  c o u n te r w ith  a s p e c ia l c le a r in p u t th a t in h ib its  
th e  c o u n tin g . T h is  c le a r in p u t (CSYNC) a llo w s  th e  o u t
p u t c lo c k  to  be s yn ch ro n ize d  w ith  an e x te rn a l even t 
(such  as a n o th e r 8284 c lock ). It is nece ssa ry  to  s y n c h ro 
n ize th e  C S Y N C  in p u t to  th e  EFI c lo c k  e x te rn a l to  the  
8284. T h is  is a c c o m p lis h e d  w ith  tw o  S c h o ttk y  f lip - f lo p s . 
(See F ig u re  2.) The c o u n te r o u tp u t is  a 33%  d u ty  cy c le  
c lo c k  at o ne -th ird  th e  in p u t fre q u en cy .

The F/C in p u t is  a s tra p p in g  p in  th a t s e le c ts  e ith e r  the  
c ry s ta l o s c il la to r  o r th e  EFI in p u t as th e  c lo c k  fo r  th e  -  3 
c o u n te r. If th e  EFI in p u t is  se le c te d  as th e  c lo c k  source , 
th e  o s c il la to r  s e c tio n  can be used in d e p e n d e n tly  fo r  
a n o th e r c lo c k  so urce . O u tp u t is taken  fro m  OSC.

READY SYNCHRONIZATION
Tw o READY in p u ts  (RDY1, RDY2) are p rov id e d  to  
a c c o m o m o d a te  tw o  M u lt i-M a s te r sys te m  b usse s . Each 
in p u t has a q u a lif ie r  (AEN1 and  AEN 2, re spe c tive ly ). The 
AEN  s ig n a ls  v a lid a te  th e ir  re s p e c tiv e  RDY s ig na ls . If a 
M u lt i-M a s te r sys te m  is n o t b e in g  used  th e  AE N  p in  
sh o u ld  be tie d  LOW.

S yn ch ro n iza tio n  is re qu ire d  fo r a ll a sy n c h ro n o u s  a c tiv e  
go ing  e d g e s  o f e ith e r RDY inpu t to  g u a ra n te e  th a t th e  
RDY se tu p  and ho ld  tim e s  a re  m et. In a c tiv e  go ing  e d g e s  
o f RDY in n o rm a lly  re ad y  s y s te m s  do  not re qu ire  s y n 
c h ro n iz a tio n  but m ust s a tis fy  RDY s e tu p  and ho ld  a s  a 
m a tte r o f p ro p e r sys te m  d es ig n . S yn ch ro n iza tio n  m ay 
b e  a c c o m p lis h e d  b y  in se rtin g  a D f lip  f lo p  b e tw e e n  an 
a s yn ch ro n o u s  RDY so u rce  and th e  8 2 8 4  and  c lo c k in g  
th e  f lip  f lo p  on th e  ris in g  e d g e  o f C LK . The  8 2 8 4  READY 
lo g ic  g u a ra n te e s  th e  re q u ire d  8 0 8 6  READY ho ld  tim e  
b e fo re  c le a rin g  th e  READY s igna l.

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

T e m p era tu re  U nde r B ia s ...................................... 0 °C  to  7 0 °C
S to ra g e  T e m p e ra tu re .............................- 6 5 ° C  to  + 1 5 0 °C
A ll O u tp u t and  S u p p ly  V o lta g e s .................-  0.5V to  +  7V
A ll In p u t V o lta g e s ......................................... - 1 .0 V  to  + 5 .5 V
P ow er D is s ip a t io n ............................................................1 W a tt

'COMMENT: S tresses above those listed under "Abso lu te  Maximum 
Ratings” may cause permanent damage to the device. Th is is a stress 
rating only and functional operation o f the device at these or any other 
cond itions above those indicated in the operational section s o f this 
spec ifica tion  is not implied. Exposure to absolute maximum rating con
ditions for extended periods may affect device reliability.
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D.C. CHARACTERISTICS FOR 8284
C o n d itio n s : T A =  0 °C  to  7 0 °C; Vc c  =  5V ± 1 0 %

Symbol Parameter Min Max Units Test Conditions

If F orw ard  In p u t C urre n t - 0 . 5 m A V F =  0.45V

!r R everse Inpu t C u rre n t 50 f a V R=  5.25V

vc In p u t F o rw ard  C lam p  V o lta ge -  1.0 V lc =  -  5 m A

!cc P ow er S u p p ly  C urre n t 140 m A

V,L In p u t LOW  V o lta ge 0.8 V VCC =  5.0V

VlH In p u t H IG H  V o lta ge 2.0 V VCC =  5.0V

V,HR R eset In p u t H IGH V o lta ge 2.6 V V CC =  5.0V

o>

O u tp u t LOW  V o lta ge 0.45 V 5 m A

VOH O u tp u t H IGH V o lta ge  C LK 4 V -  1 m A
O the r O u tp u ts 2.4 V -  1 m A

V |H r -V ,lr RES In p u t H ys te re s is 0.25 V V CC =  5.0V

A.C. CHARACTERISTICS FOR 8284
Conditions: Ta = 0°C to 70°C; Vcc = 5V ± 10%
TIMING REQUIREMENTS

Symbol Parameter Min Max Units Test Conditions

TEH EL External Frequency H igh Time 13 ns 90% - 90% V|N

TELEH External Frequency Low Time 13 ns 10% - 10% V|N

TELEL EFI Period T E H EL+  TELEH  + d ns (Note 1)

XTAL Frequency 12 25 MHz

TR1VCL RDY1, RDY2 Set-Up to C LK 35 ns

TCLR1X RDY1, RDY2 Hold to CLK 0 ns

TA1VR1V AENT, A E N lS e t-U p  to RDY1, RDY2 15 ns

TCLA1X AEN1, AEN2 Hold to C LK 0 ns

TYHEH C SYN C  Set-Up to EFI 20 ns

TEH YL C SYN C  Hold to EFI 20 ns

TYH Y L C S Y N C  W idth 2 TELEL ns

TI1HCL RES Set-Up to C LK 65 ns (Note 2)

TCLI1H RES Hold to C LK 20 ns (Note 2)

TIMING RESPONSES
Symbol Parameter Min Max Units Test Conditions

T C LC L C LK  Cycle  Period 125 ns

TC H C L C LK  H igh Time (V3TCLCL) + 2.0 ns Fig. 3 & Fig. 4

TCLC H C LK  Low  Time (2'jTCLCL) -  15.0 ns Fig. 3 & Fig. 4

TCH1CH2
TCL2CL1

C LK  R ise  or Fa ll Time 10 ns 1.0V to 3.5V

T PH PL PC LK  H igh Time T C L C L - 2 0 ns

TPLPH PC LK  Low Time T C L C L - 20 ns

TR YLC L Ready Inactive to C LK  (See Note 4) -8 ns Fig. 5 & Fig. 6

TRYH CH Ready Active to C LK  (See Note 3) (2/3TCLCL)-15.0 ns Fig. 5 & Fig. 6

TCLIL C LK  to Reset Delay 40 ns

T C LPH C LK  to P C L K  H igh Delay 22 ns

T C L P L C LK  to P C LK  Low  Delay 22 ns

TO LC H O S C  to C LK  High Delay - 5 12 ns

T O LC L O S C  to C LK  Low  Delay 2 20 ns

N o te s :  1. 5 = EFI r ise  (5 ns max) + EFI fall (5 ns max).
2. Set up and hold only necessary to guarantee recogn ition at next clock.
3. App lies only to T3 and TW states.
4. App lies only to T2 states.
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A.C. TEST CIRCUITS

Figure 3. Clock High and Low Time Figured Clock High and Low Time



8284

Figure 5. Ready to Clock Figure 6 . Ready to Clock

FROM OUTPUT 
UNDER TEST

NOTES: 1. C L = 100 pF
2. C L = 30 pF
3. C L  INCLUDES PRO BE AND  JIG  C A PA C ITA N G E
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intel
M8284

CLOCK GENERATOR AND DRIVER 
FOR 8086, 8088 , 8 089  PROCESSORS

■ Generates the System Clock for the 
8086, 8088 and 8089

■ Uses a Crystal or a TTL Signal for Fre
quency Source

■ Single + 5V Power Supply

■ 18-Pin Package

■ Generates System Reset Output from 
Schmitt Trigger Input

■ Provides Local Ready and MULTIBUS™ 
Ready Synchronization

■ Capable of Clock Synchronization with 
other 8284’s

■ Full Military Temperature Range 
-5 5 ° to +125°C

The M8284 is a b ip o la r c lo c k  g e n e ra to r /d r iv e r  d e s ig n e d  to  p ro v id e  c lo c k  s ig n a ls  fo r  th e  8086, 8088 & 8089 and 
p e r ip h e ra ls . It a lso  c o n ta in s  READY lo g ic  fo r  o p e ra tio n  w ith  tw o  M U LT IB U S ™  s y s te m s  and p ro v id e s  th e  p ro c e s s o rs  
re q u ire d  READY s y n c h ro n iz a tio n  and t im in g . R ese t lo g ic  w ith  h y s te re s is  and s y n c h ro n iz a tio n  is a lso  p ro v id e d .

M8284 PIN CO NFIGU RATIO N

CYSNC □  1 

PCLK £  2 

AEN1 E  3 

RDY1 E  4 

READY E  5 

RDY2 E  6 

AEN2 E  7 

CLK E  8 

GND E  9

□  V cc

□  X1

D X2

□  TNK

□  efi

□  FIC
E  o s c

E  RES 

E RESET

M8284 BLOCK DIAGRAM

M8284 PIN NAMES

*2  ! CONNECTIONS FOR CRYSTAL

TANK USED WITH OVERTONE CRYSTAL
F/C CLOCK SOURCE SELECT
EFI EXTERNAL CLOCK INPUT
CSYNC CLOCK SYNCHRONIZATION INPUT

PQY2 READY SIGNAL FROM TWO MULTIBUS™ SYSTEMS

, ADDRESS ENABLED QUALIFIERS FOR RDY1.2 

RES RESET INPUT 
RESET SYNCHRONIZED RESET OUTPUT 
OSC OSCILLATOR OUTPUT 
CLK MOS CLOCK FOR THE PROCESSOR 
PCLK TTL CLOCK FOR PERIPHERALS 
READY SYNCHRONIZED READY OUTPUT 
V c c  +S  VOLTS 
GND 0 VOLTS
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18284
CLOCK GENERATOR AND DRIVER 

FOR 8086, 8088 , 8 089  PROCESSORS

■ Generates the System Clock for the ■ 
8086, 8088 and 8089

■ Uses a Crystal or a TTL Signal for Fre- ■ 
quency Source

■ Single + 5V Power Supply *

■ 18-Pin Package

Generates System Reset Output from 
Schmitt Trigger Input
Provides Local Ready and MULTIBUS™ 
Ready Synchronization
Capable of Clock Synchronization with 
other 8284’s

Industrial Temperature Range 
-4 0 ° to +85°C

The 18284 is a b ip o la r c lo c k  g e n e ra to r /d r iv e r  d e s ig n e d  to  p rov id e  c lo c k  s ig n a ls  fo r  th e  8086, 8088 & 8089 and 
p e rip h e ra ls . It a lso  c o n ta in s  READY log ic  fo r  o p e ra tio n  w ith  tw o  M U LT IB U S ™  s y s te m s  and p ro v id e s  th e  p ro c e s s o rs  
re q u ire d  READY s y n c h ro n iz a tio n  and tim in g . R ese t log ic  w ith  h y s te re s is  and s y n c h ro n iz a tio n  is a lso  p ro v id e d .

18284 PIN CONFIGURATION 18284 BLOCK DIAGRAM

18284 PIN NAMES
X1 
X2 1 
TANK 
F/C 
EFI
CSYNC
RDY1 \
RDY2
AEN1 i
AEN2 l
RES
RESET
OSC
CLK
PCLK
READY
VCC
GND

CONNECTIONS FOR CRYSTAL

USED WITH OVERTONE CRYSTAL
CLOCK SOURCE SELECT
EXTERNAL CLOCK INPUT
CLOCK SYNCHRONIZATION INPUT

READY SIGNAL FROM TWO MULTIBUS™ SYSTEMS

ADDRESS ENABLED QUALIFIERS FOR RDY1.2 

RESET INPUT
SYNCHRONIZED RESET OUTPUT 
OSCILLATOR OUTPUT 
MOS CLOCK FOR THE PROCESSOR 
TTL CLOCK FOR PERIPHERALS 
SYNCHRONIZED READY OUTPUT 
+ 5 VOLTS 
0 VOLTS
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8286/8287
OCTAL BUS TRANSCEIVER

■ Data Bus Buffer Driver for MCS-86™, 
MCS-80™, MCS-85™, and MCS-48™  
Families

■ High Output Drive Capability for 
Driving System Data Bus

■ Fully Parallel 8-Bit Transceivers

■ 3-State Outputs

■ 20-Pin Package with 0.3” Center

■ No Output Low Noise when Entering 
or Leaving High Impedance State

The 8286 and 8287 are 8 -b it b ip o la r tra n s c e iv e rs  w ith  3 -s ta te  o u tp u ts . The 8287 inve rts  th e  in p u t d a ta  at its  o u tp u ts  
w h ile  th e  8286 d oe s  not. Thus, a w id e  va rie ty  o f a p p lic a t io n s  fo r  b u ffe r in g  in m ic ro c o m p u te r sys te m s  can be m et.

PIN CONFIGURATIONS LOGIC DIAGRAMS

PIN NAMES

a 0 - a 7 LOCAL BUS DATA
B0 -B 7 SYSTEM BUS DATA
OE OUTPUT ENABLE
T TRANSMIT

8266 8287I----------------- 1 |------------------1
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8 2 8 6 /8 2 8 7

PIN DEFINITIONS
Pin ___________________Description_____________

T TR A N S M IT  (Input). T is an in p u t c o n tro l
s ig n a l used to  c o n tro l th e  d ire c tio n  o f the  
tra n sce ive rs . W hen H IG H , it c o n fig u re s  the  
tra n s c e iv e r 's  B0- B 7 as o u tp u ts  w ith  A 0- A 7 
as in p u ts . T LOW  c o n fig u re s  A 0- A 7 as the  
o u tp u ts  w ith  B0- B 7 se rv in g  as th e  inp u ts .

OE OUTPUT EN A B LE  (Input). OE is an inp u t
c o n tro l s ign a l used to  enab le  th e  a p p ro p r i
a te  o u tp u t d rive r (as se le c te d  by T) o n to  its  
re sp e c tive  bus. T h is  s ig n a l is a c tive  LOW.

A0- A 7 LO C A L BUS DATA PINS (In p u t/O u tpu t).
These  p in s  serve to  e ith e r p rese n t da ta  to  
o r a ccep t da ta  fro m  th e  p ro c e s s o r ’ s loca l 
bus  d ep e n d in g  upon  the  s ta te  o f th e  T p in .

B0-B7
J8 2 8 6 )
B0- B 7

(8287)

SYSTEM  BUS DATA PINS (In p u t/O u tp u t). 
These  p in s  serve to  e ith e r  p rese n t d a ta  to  
o r a ccep t da ta  fro m  th e  s y s te m  b u s  de
p en d ing  upon  th e  s ta te  o f th e  T p in .

OPERATIONAL DESCRIPTION
The 8286 and 8287 tra n s c e iv e rs  are 8 -b it tra n s c e iv e rs  
w ith  h ig h  im pe d a nce  o u tp u ts . W ith  T a c tiv e  H IG H  and 
OE a c tiv e  LOW , da ta  at th e  A 0- A 7  p in s  is_driven o n to  th e  
B0- B 7 p in s . W ith  T in a c tiv e  LOW  and OE a c tiv e  LOW , 
da ta  at th e  B0- B 7 p in s  is d rive n  o n to  th e  A 0- A 7 p ins . No 
o u tp u t low  g litc h in g  w ill o c c u r  w he n e ve r th e  tra n s 
ce ive rs  are e n te rin g  o r leav ing  th e  h ig h  im pe d a nce  
s ta te .

D.C. AND OPERATING CHARACTERISTICS 
ABSOLUTE MAXIMUM RATINGS*
T e m p era tu re  U nde r B ia s ...................................... 0 °C  to  7 0 °C
S to rage  T e m p e ra tu re .............................-  6 5 °C to  +  150°C
A ll O u tp u t and S u p p ly  V o lta g e s .................-  0.5V to  +  7V
A ll In p u t V o lta g e s .........................................-  1.0V to  +  5.5V
P ow er D is s ip a t io n ............................................................1 W a tt

*COMMENTStresses above those listed under “ Absolute  Maximum 
Ratings" may cause permanent damage to the device. Th is is a stress 
rating only and functional operation of the device at these or any other 
cond itions above those indicated in the operational section s of th is 
spec ifica tion  is not implied. Exposure to absolute maximum rating con
ditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS FOR 8286/8287
Conditions: Vc c  = 5V ± 5 % .  T A = 0 °C  to  70°C

Symbol Parameter Min Max Units Test Conditions

Vc Inpu t C lam p V o lta ge -1 V lc =  -5  m A

Icc P ow er S u p p ly  C u rre n t— 8287 130 m A
— 8286 160 m A

Ip F o rw ard  Inpu t C urre n t -0 .2 m A V F =  0.45V

•r Reverse Inpu t C urre n t 50 pA V R =  5.25V

VoL O u tp u t Low  V o lta ge  — B O u tp u ts 0.5 V Iol — 32 m A
— A O u tp u ts 0.5 V I0 l = 10 m A

< 0 1 
j

O u tp u t H igh  V o lta ge  — B O u tp u ts 2.4 V lOH =  -5  m A
— A O u tp u ts 2.4 V l0H =  -1  m A

loFF O u tp u t O ff C urren t If V0FF =  0.45V
l0FF O u tp u t O ff C urren t ■r V 0 ff  =  5.25V

V , L Inpu t Low  V o lta ge  — A S ide 0.8 V Vc c  = 5.0V, See N o te  1
— B S ide 0.9 V Vc c  = 5.0V, See N o te  1

V|H In p u t H igh  V o ltage 2.0 V V c c  =  5.0V, See N o te  1

F = 1 M Hz
C|N Inpu t C ap a c ita nce 12 PF V b ia s — 2.5V, V c c =  5V

T A =  25°C

Note: 1. B Outputs — Iq l  = 32 m A- lOH  = " 5 m A ’ C L = 300 P F A Outputs — Iq l  = 10 mA, Iq h  = -1 m A- 0[_ = 100 pF
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8 2 8 6 /8 2 8 7 £>.
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A.C. CHARACTERISTICS FOR 8286/8287
Conditions: Vc c  =  5V ± 5 % . T A = 0 °C  to  70°C  

Loading: B O u tp u ts  — l0L = 32 mA. I0H =  -  5 m A. C L = 300 pF 
A O u tp u ts  — l0L = 10 m A. I0H = -  1 m A. C L -  100 pF

Symbol Parameter Min Max Units Test Conditions

TIVOV Inpu t to  O u tp u t Delay 
Inve rting  
N on -Inve rting

25
35

ns
ns

(See N o te  1)

TEHTV T ra n sm it/R ece ive  H o ld  T im e TEH O Z ns

TTVEL T ra n sm it/R ece ive  S e tup 30 ns

TEHOZ O u tp u t D isab le  T im e 25 ns

TELOV O u tp u t Enable  T im e 10 50 ns

Note: 1. See waveforms and test load circu it on fo llow ing page.

8286/8287 TIMING

INPUTS V

7
/  \  

TEHOZ j—  TELOV —j-» TIVOV-*-| ►

OUTPUTS
\  Vq h -0.5V 

/ X
------ TEHTV — — TTVEL

X
NOTE: 1. A L L  TIMJNG M EASU R EM EN TS  AR E  M AD E AT 1,5V UNLESS O THERW ISE NOTED,

B-73



8 2 8 6 /8 2 8 7

TEST LOAD CIRCUITS

1.5 V

3-STATE TO V0 L

B OUTPUT

1.5V

100 pF

3-STATE TO V0 L

A OUTPUT

2.14V

SWITCHING

B OUTPUT

TjZ 300 pF : 10 0  pF

3-STATE TO V0 H

B OUTPUT

3-STATE TO Vq h

A OUTPUT A OUTPUT

B-74



5

8288
BUS CONTROLLER 

FOR 8086, 8088, 8089 PROCESSORS

Bipolar Drive Capability

Provides Advanced Commands

Provides Wide Flexibility in System 
Configurations

■ 3-State Command Output Drivers

■ Configurable for Use with an I/O Bus

■ Facilitates Interface to One or Two 
Multi-Master Busses

The Intel® 8288 Bus Controller is a 20-pin bipolar component for use with medium-to-large 8086 processing systems. 
The bus controller provides command and control timing generation as well as bipolar bus drive capability while 
optimizing system performance.
A strapping option on the bus controller configures it for use with a multi-master system bus and separate I/O bus.

PIN CONFIGURATION

BLOCK DIAGRAM

STATUS )

1 52

I CLK

CONTROL I AEN 
INPUT |  cEN 

l  IOB

- MRDC

- MWTC

- AMWC 

IORC

- IOWC

- AIOWC

MULTIBUS™
COMMAND
SIGNALS

► DT/R \

- DEN j
-  MCE/PDEN J
- ALE /

FUNCTIONAL PIN-OUT
G N D  VC C

ADDRESS LATCH. DATA 
TRANSCEIVER, AND

SIGNALS
- So A IO W C

PROCESSOR
STATU S s? A M W C

- s 2 IO W C

M W TC

M RDC

*
AEN IN T A

C O N TR O L - C LK
INPUT

* IOB DT/R

L CEN ALE

M C E /PD EN

DEN

C O M M A N D
BUS

C O N TR O L
O U TPU T
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PIN DEFINITIONS Name I /O

Name I/O Function

VCc
GND

So, 57, ST

CLK

ALE

DEN

DT/R

AEN

CEN

IOB

+ 5V supply.
Ground.

I Status Input Pins: These pins are the 
status input pins from the 8086, 8088 
or 8089 processors. The 8288 de
codes these inputs to generate com
mand and control signals at the ap
propriate time. When these pins are 
not in use (passive) they are all HIGH. 
(See chart under Command and Con
trol Logic.)

I Clock: This is a clock signal from the 
8284 clock generator and serves to 
establish when command and con
trol signals are generated.

O Address Latch Enable: This signal 
serves to strobe an address into the 
address latches. This signal is active 
HIGH and latching occurs on the fall
ing (HIGH to LOW) transition. ALE is 
intended for use with transparent D 
type latches.

0  Data Enable: This signal serves to 
enable data transceivers onto either 
the local or system data bus. This 
signal is active HIGH.

0  Data Transmit/Receive: This signal 
establishes the direction of data 
flow through the transceivers. A 
HIGH on this line indicates Transmit 
(write to I/O or memory) and a LOW 
indicates Receive (Read).

1 Address Enable: AEN enables com
mand outputs of the 8288 Bus Con
troller at least 105 ns after it be
comes active (LOW). AEN going inac
tive immediately 3-states the com
mand output drivers. AEN does not 
affect the I/O command lines if the 
8288 is in the I/O Bus mode (IOB tied 
HIGH).

I Command Enable: When this signal 
is LOW all 8288 command outputs 
and the DEN and PDEN control out
puts are forced to their inactive 
state. When this signal is HIGH, 
these same outputs are enabled.

I Input/Output Bus Mode: When the 
IOB is strapped HIGH the 8288 func
tions in the I/O Bus mode. When it is 
strapped LOW, the 8288 functions in 
the System Bus mode. (See sections 
on I/O Bus and System Bus modes).

AIOWC

Function
-  -------

Advanced I/O Write Command: 
I/O

Th
Write Com,

u
AIOWC issues an 
mand earlier in the machine cycle to 
give I/O devices an early indication 
of a write instruction. Its timing is 
the same as a read command signal. 
AIOWC is active LOW.

IOWC 0  I/O Write Command: This command
line instructs an I/O device to read 
the data on the data bus. This signal 
is active LOW.

IORC 0  I/O Read Command: This command
line instructs an I/O device to drive 
its data onto the data bus. This 
signal is active LOW.

AMWC

MWTC

MRDC

INTA

O Advanced Memory Write Command: 
The AMWC issues a memory write 
command earlier in the machine cy
cle to give memory devices an early 
indication of a write instruction. Its 
timing is the same as a read com
mand signal. AMWC is active LOW.

O Memory Write Command: This com
mand line instructs the memory to 
record the data present on the data 
bus. This signal is active LOW.

0  Memory Read Command: This com
mand line instructs the memory to 
drive its data onto the data bus. This 
signal is active LOW.

O Interrupt Acknowledge: This com
mand line tells an interrupting device 
that its interrupt has been acknowl
edged and that it should drive vector
ing information onto the data bus. 
This signal is active LOW.

MCE/PDEN O This is a dual function pin.
MCE (IOB is tied LOW): Master Cas
cade Enable occurs during an inter
rupt sequence and serves to read a 
Cascade Address from a master PIC 
(Priority Interrupt Controller) onto 
the data bus. The MCE signal is ac
tive HIGH.
PDEN (IOB is tied HIGH): Peripheral 
Data Enable enables the data bus 
transceiver for the I/O bus during I/O 
instructions. It performs the same 
function for the I/O bus that DEN per- 
forms for the system bus. PDEN is 
active LOW.
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COMMAND AND CONTROL LOGIC
The command log|£d£codes the three 8086, 8088 or 8089 
CPU status lines (Sjj, Si, S2) to determine what command 
is to be issued.
This chart shows the meaning of each status “word".

s2 S, So Processor State 8288Command
0 0 0 Interrupt Acknowledge INTA
0 0 1 Read I/O Port IORC
0 1 0 Write I/O Port IOWC,AIOWC
0 1 1 Halt None
1 0 0 Code Access MRDC
1 0 1 Read Memory MRDC
1 1 0 Write Memory MWTC,AMWC
1 1 1 Passive None

The command is issued in one of two ways dependent 
on the mode of the 8288 Bus Controller.
I/O Bus Mode — The 8288 is in the I/O Bus mode if the 
IOB pin is strapped HIGH. In the I/O Bus mode all I/O 
command lines (IORC, IOWC, AIOWC, INTA) are always 
enabled (i.e., not dependent on AEN). When an I/O com
mand is initiated by the processor, the 8288 immediately 
activates the command lines using PDEN and DT/R to 
control the I/O bus transceiver. The I/O command lines 
should not be used to control the system bus in this 
configuration because no arbitration is present. This 
mode allows one 8288 Bus Controller to handle two ex
ternal busses. No waiting is involved when the CPU 
wants to gain access to the I/O bus. Normal memory ac
cess requires a “Bus Ready” signal (AEN LOW) before it 
will proceed. It is advantageous to use the IOB mode if 
I/O or peripherals dedicated to one processor exist in a 
multi-processor system.
System Bus Mode — The 8288 is in the System Bus mode 
if the IOB pin is strapped LOW. In this mode no command 
is issued until 105 ns after the AEN Line is activated 
(LOW). This mode assumes bus arbitration logic will in
form the bus controller (on the AEN line) when the bus is 
free for use. Both memory and I/O commands wait for bus 
arbitration. This mode is used when only one bus exists. 
Here, both I/O and memory are shared by more than one 
processor.

Command Outputs
The advanced write commands are made available to in
itiate write procedures early in the machine cycle. This 
signal can be used to prevent the processor from enter
ing an unnecessary wait state.

The command outputs are:
MRDC — Memory Read Command
MWTC — Memory Write Command
IORC — I/O Read Command
IOWC — I/O Write Command
AMWC — Advanced Memory Write Command
AIOWC — Advanced I/O Write Command
INTA — Interrupt Acknowledge

INTA (Interrupt Acknowledge) acts as an I/O read during 
an interrupt cycle. Its purpose is to inform ah inter-  ̂
rupting device that its interrupt is being acknowledged 
and that it should place vectoring information onto the 
data bus.

Control Outputs
The control outputs of the 8288 are Data Enable (DEN), 
Data Transmit/Receive (DT/R) and Master Cascade 
Enable/Peripheral Data Enable (MCE/PDEN). The DEN 
signal determines when the external bus should be 
enabled onto the local bus and the DT/R determines the 
direction of data transfer. These two signals usually go 
to the chip select and direction pins of a transceiver. 
The MCE/PDEN pin changes function with the two 
modes of the 8288. When the 8288 is in the IOB mode 
(IOB HIGH) the PDEN signal serves as a dedicated data 
enable signal for the I/O or Peripheral System bus.

Interrupt Acknowledge and MCE
The MCE signal is used during an interrupt acknowl
edge cycle if the 8288 is in the System Bus mode (IOB 
LOW). During any interrupt sequence there are two inter
rupt acknowledge cycles that occur back to back. Dur
ing the first interrupt cycle no data or address transfers 
take place. Logic should be provided to mask off MCE 
during this cycle. Just before the second cycle begins 
the MCE signal gates a master Priority Interrupt Con
troller’s (PIC) cascade address onto the processor's 
local bus where ALE (Address Latch Enable) strobes it 
into the address latches. On the leading edge of the 
second interrupt cycle the addressed slave PIC gates an 
interrupt vector onto the system data bus where it is 
read by the processor.
If the system contains only one PIC, the MCE signal is 
not used. In this case the second Interrupt Acknowledge 
signal gates the interrupt vector onto the processor bus.

Address Latch Enable and Halt
Address Latch Enable (ALE) occurs during each machine 
cycle and serves to strobe the current address into the 
address latches. ALE also serves to strobe the status (Sq, 
S-i, Sj) into a latch for halt state decoding.

Command Enable
The Command Enable (CEN) input acts as a command 
qualifier for the 8288. If the CEN pin is high the 8288 
functions normally. If the CEN pin is pulled LOW, all 
command lines are held in their inactive state (not 
3-state). This feature can be used to implement memory 
partitioning and to eliminate address conflicts between 
system bus devices and resident bus devices.
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D.C. AND OPERATING CHARACTERISTICS 

ABSOLUTE MAXIMUM RATINGS*
Temperature Under B ia s ........................................................0°C to 70°C
Storage Tem perature..................................................-  65°C to + 150°C
All Output and Supply Vo ltages........................................ -  0.5V to + 7V
All Input V o ltages........................................................... -  1.0V to + 5.5V
Power D iss ipa tion .......................................................................1.5 Watt

%
*COMMENT: S tresses above those listed under "Abso lu te  Maximun}’ ’0/? 
Ratings" may cause permanent damage to the device. This is a stress-6, 
rating only and functional operation of the device at these or any other 
cond itions above those indicated in the operational sections o f th is 
specification is not implied. Exposure to absolute maximum rating con
ditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS FOR THE 8288
Conditions: Vo c =  5V ± 1 0 % , TA =  0 ° C to 7 0 ° C

Symbol Parameter Min Max Unit Test Conditions

VC Input Clam p Voltage -  1 V |0 = -  5 mA

'cc Power Supply Current 230 mA

if Forward Input Current -0 .7 mA VF = 0.45V

'R Reverse Input Current 50 fA V R = VCC

v O L Output Low Voltage— Command Outputs 0.5 V Iq l  = 32 mA
Control Outputs 0.5 V Iq l = 16 mA

v OH Output H igh Voltage— Command Outputs 2.4 V l0 H  = -  5 mA
Control Outputs 2.4 V l0 H  = -  1 mA

V|L Input Low Voltage 0.8 V

V|H Input H igh Voltage 2.0 V

'O FF Output O ff Current 100 mA V q f f  = 0.4 to 5.25V

A.C. CHARACTERISTICS FOR THE 8288
Conditions: VCC =  5V ± 1 0 % , TA =  0 ° C to 7 0 ° C  

TIMING REQUIREMENTS

Symbol Parameter Min Max Unit Loading

T C LC L C LK  Cycle  Period 125 ns

TC LC H C LK  Low Time 66 ns

T C H C L C LK  H igh Time 40 ns

TSVCH Status Active Setup Time 65 ns

TCH SV Status Active Hold Time 10 ns

TSH C L Status Inactive Setup Time 55 ns

TCLSH Status Inactive Hold  Time 10 ns

TIMING RESPONSES
Symbol Parameter Min Max Unit Loading

TCVNV Control Active Delay 5 45 ns

M RD C  '
IORC
M W TC  l0 L  = S2m A 
IOWC Io h  = -  5 mA

TCVNX Control Inactive Delay 10 45 ns

TCLLH , TCLM C H ALE  M C E  Active Delay (from CLK) 15 ns

TSVLH, TSVM CH ALE  M C E  Active Delay (from Status) 15 ns

T C H LL ALE  Inactive Delay 15 ns

T C LM L Command Active Delay 10 35 ns

TCLM H Command Inactive Delay 10 35 ns

TCH D TL Direction Control Active Delay 50 ns INTA C L =300 pF

TCHDTH Direction Control Inactive Delay 30 ns AM W C
AIOW C

| Iq l  = 16 mA 
Other 1 Iq h  = -  1 mA 

I C L = 80 pF

TAELCH Command Enable Time 40 ns

TAEHCZ Command D isable Time 40 ns

TAELC V Enable Delay Time 105 275 ns

TAEVNV AEN  to DEN 20 ns

TCEVN V C EN  to DEN, PDEN 20 ns

TCELRH CEN  to Command T C LM L ns

B-78



8288

NOTE*
1. ADDRESS/DATA BUS IS SHOWN ONLY FOR REFERENCE PURPOSES.
2. LEADING EDGE OF ALE AND MCE IS DETERMINED BY THE FALLING EDGE OF CLK OR STATUS GOING ACTIVE. WHICHEVER OCCURS LAST.
3. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS SPECIFIED OTHERWISE
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DEN, PDEN QUALIFICATION TIMING

CEN

X
x z x

X

8288 ADDRESS ENABLE (AEN) TIMING (3-STATE ENABLE/DISABLE)

TEST LOAD CIRCUITS

1-5V 1.5V

3-STATE TO HIGH 3-STATE TO LOW

2.14V

COMMAND OUTPUT 
TEST LOAD

2.28 V

CONTROL OUTPUT 
TEST LOAD

3-STATE COMMAND OUTPUT 
TEST LOAD
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BUS ARBITER

■ Provides Multi-Master System Bus 
Protocol

■ Synchronizes 8086/8088 Processors 
With Multi-Master Bus

■ Provides Simple Interface With 
8288 Bus Controller

■ Four Operating Modes For Flexible 
System Configuration

■ Compatible with Intel Bus Standard 
MULTIBUS™

■ Provides System Bus Arbitration For 
8089 IOP In Remote Mode

The In te l 8289 B us A rb ite r  is a 20-p in , 5 -vo lt-o n ly  b ip o la r co m p o n e n t fo r  use w ith  m e d iu m  to  la rge  8086/8088 m u lt i-  
m a s te r/m u lt ip ro c e s s in g  sys te m s . The 8289 p rov id e s  sys te m  bus a rb itra tio n  fo r  sys te m s  w ith  m u lt ip le  bus m aste rs , 
such  as an 8086 CPU w ith  8089 IOP in its  REM OTE m ode, w h ile  p ro v id in g  b ip o la r b u ffe r in g  and d rive  c a p a b ility .

BLOCK DIAGRAM

8086/8066/8089 I 
STATU S 1

S2

So

PROCESSOR
C O N TRO L

LO CK
CLK

C RQLCK
RESB

AN YR Q ST

IOB

IN IT

BCLK

BREQ
BPRN

BPRO

BUSY

CBRO

M U L T IB U S ™
C O M M A N D
SIG N A LS

t, SYSTEM  
( S IG N A LS

Figure 1. Block Diagram.

PIN DIAGRAM FUNCTIONAL PINOUT

PROCESSOR I 
STATUS )

CO N TRO L/
STRAPPING

OPTIO N S

GNDJ_ Vcc
_ L

-
s o - —  Fn TT

S1 - —  BC LK

- S2 —  BREQ
M ULTIBU S
IN TER FAC E

— *■ LO CK — ► BPRO

— CLK BUSY

__ CR QLC K

RESB

— —  CBRQ

— - ANYRQST ------- SYSB/RESB \  SYSTEM

— - TOB ------  AEN f S IG N A LS

Figure 2. Pin Diagram. Figure 3. Functional Pinout.
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FUNCTIONAL DESCRIPTION
The 8289 Bus A rb ite r  o pe ra tes  in c o n ju n c tio n  w ith  the  
8288 Bus C o n tro lle r  to  in te rfa ce  8086/8088/8089 p ro ce s 
so rs  to  a m u lt i-m a s te r sys te m  bus (bo th  the  8086 and 
8088 are c o n fig u re d  in th e ir  m ax m ode). The p ro c 
e s s o r is  unaw are  o f the  a rb ite r 's  e x is te n c e  and issue s  
co m m an d s  as th o u g h  it has e x c lu s ive  use o f the  sys tem  
bus. If the  p ro c e s s o r does no t have th e  use o f th e  m u lt i
m a s te r sys te m  bus, the  a rb ite r  p reven ts  the  Bus C on 
tro lle r  (8288), th e  da ta  tra n sce ive rs  and th e  add ress  la t
ches fro m  a cc e s s in g  th e  sys te m  bus (e.g. a ll bus d rive r 
o u tp u ts  are fo rce d  in to  the  h igh  im pedance  s ta te ). S ince  
the  co m m an d  sequence  w as n o t issued  by th e  8288, the  
sys te m  bus w ill appea r as “ N o t R eady”  and th e  p ro c 
e s s o r w ill e n te r w a it s ta te s . The p ro c e s s o r w ill rem ain  in 
W a it u n t il th e  B us A rb ite r  a cq u ire s  the  use o f the  m u lt i
m a s te r sys te m  bus w he reupon  the  a rb ite r  w ill a llo w  the  
bus c o n tro lle r , the  data  tra n sce ive rs , and the  add ress  
la tche s  to  a ccess  the  sys tem . T yp ica lly , once  the  c o m 
m and has been issued  and a da ta  tra n s fe r has taken 
p lace, a tra n s fe r a ckno w led g e  (XACK) is re tu rned  to  the  
p ro c e s s o r to  in d ic a te  “ R E A D Y ”  fro m  th e  accesse d  s lave 
dev ice . The p ro c e s s o r th e n  co m p le te s  its  tra n s fe r cyc le . 
T hus th e  a rb ite r  serves to  m u lt ip le x  a p ro c e s s o r (o r bus 
m aste r) o n to  a m u lt i-m a s te r sys te m  bus and avo id  c o n 
te n tio n  p ro b le m s  be tw een  bus m aste rs .

ARBITRATION BETWEEN BUS MASTERS
In genera l, h ig h e r p r io r ity  m a s te rs  o b ta in  th e  bus w hen  a 
lo w e r p r io r ity  m a s te r c o m p le te s  its  p rese n t tra n s fe r 
cyc le . Low e r p r io r ity  bus m aste rs  o b ta in  the  bus w hen  a 
h ig h e r p r io r ity  m a s te r is no t access in g  th e  sys te m  bus. 
A s tra p p in g  o p t io n  (ANYRQST) is p rov ided  to  a llo w  the  
a rb ite r  to  s u rren d e r th e  bus to  a low e r p r io r ity  m a s te r as 
th o u g h  it w ere  a m a s te r o f h ig h e r p rio r ity . If the re  are no 
o th e r bus m a s te rs  re q u e s tin g  th e  bus, th e  a rb ite r  m a in 
ta in s  th e  bus  so  long  as its  p ro c e s s o r has no t en te red  
th e  H A LT S ta te . The a rb ite r  w ill n o t v o lu n ta r ily  s u rren d e r 
th e  sys te m  bus and has to  be fo rce d  o ff  by a no the r 
m a s te r ’s bus re qu e s t, th e  H ALT S ta te  be ing  th e  o n ly  ex-

J O W

ce p tio n . A d d it io n a l s tra p p in g  o p tio n s  p ew u it o th e r 
m odes o f o pe ra tio n  w he re in  th e  m u lti-m asLer sys te m  
i—  ;-------------- ,------- . - -  re qu e s te d  unde r d if fe re n t se ts  o f  v as

” i
bus is su rren d e red  or 
c o n d itio n s

PRIORITY RESOLVING TECHNIQUES
S ince  the re  can be m any bus m as te rs  on a m u lt i-m a s te r 
sys te m  bus, som e m eans o f re so lv ing  p r io r ity  be tw een  
bus m a s te rs  s im u lta n e o u s ly  re q u e s tin g  th e  bus m u s t be 
p rov id e d . The 8289 Bus A rb ite r  p rov id e s  severa l re s o lv 
ing  te c h n iq u e s . A ll th e  te c h n iq u e s  are based on a p r io r i
ty  co n c e p t th a t a t a g iven  t im e  one  bus  m a s te r w ill have 
p r io r ity  above a ll th e  rest. There  are p ro v is io n s  fo r  u s in g  
pa ra lle l p r io r ity  re so lv ing  te c h n iq u e s , se ria l p r io r ity  
re so lv ing  te c h n iq u e s , and ro ta tin g  p r io r ity  te c h n iq u e s .

Parallel Priority Resolving
The p ara lle l p r io r ity  re so lv ing  te c h n iq u e  uses a sepa ra te  
bus  re qu e s t lin e  (6 R E 6 ) fo r  each  a rb ite r  on th e  m u lt i
m a s te r sys te m  bus, see F ig u re  4. Each BREQ lin e  en te rs  
in to  a p r io r ity  e n co d e r w h ic h g en e ra tes  the  b ina ry  ad 
d ress  o f th e  h ig h e s t p r io r ity  BREQ line  w h ic h  is  ac tive . 
The b in a ry  add ress  is  d e c oded by a d e co d e r to  s e le c t 
the  c o rre sp o n d in g  BPRN (Bus P r io r ity  In) lin e  to  be 
re tu rned  to  th e  h ig h e s t p r io r ity  re q u e s tin g  a rb ite r. The 
a rb ite r  rece iv ing  p r io r ity  (BPRN true ) then  a llo w s  its  
a s so c ia te d  bus m a s te r o n to  th e  m u lt i-m a s te r sys te m  
bus as soon  as it becom es ava ila b le  (i.e., th e  bus is no 
lo n g e r busy). W hen One bus a rb ite r  g a in s  p r io r ity  over 
a n o th e r a rb ite r  it ca n n o t im m e d ia te ly  se ize  th e  bus, it 
m u s t w a it u n til the  p rese n t bus tra n s a c tio n  is co m p le te . 
Upon c o m p le tin g  its  tra n s a c tio n  th e  p rese n t bus o c c u 
pant re cog n izes  th a t it no lo nger has p r io r ity  and s u r
rende rs  th e  bus by re leas ing  BUSY. BUSY is an a c tive  
low  “ O R ”  tie d  s ig n a l lin e  w h ich  g oes to  every bus a rb ite r 
on th e  sys te m  bus. W hen BUSY goes in a c tive  (h igh), the  
a rb ite r  w h ich  p re s e n tly  has b u s p r io r ity  (BPRN true) then  
se izes  th e  bus and p u lls  BUSY low  to  keep o th e r a rb ite rs  
o f f  o f the  bus. See w ave fo rm  t im in g  d iag ram , F ig u re  5.

Figure 4. Parallel Priority Resolving Technique.
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bclk ___A ___A
B R IO  \  ;©\\-e---------------------- 1----------------1----------------------------------------------------

©

® y  Y

©  H IG H E R  PR IO RITY BUS AR BITER  REQUESTS TH E M ULTI M ASTE R  SYSTEM  BUS.
®  A TT A IN S  PRIORITY.

©  LO W ER PR IO RITY BUS AR BITER  R ELEASES BUSY.

©  H IG H E R  PR IO RITY BU S AR BITER  TH EN  AC Q U IR ES TH E  BUS A N D  P U LLS BUSY D OW N.

Figure 5. Higher Priority Arbiter obtaining the Bus from a Lower Priority Arbiter.

N o te  th a t a ll m u lt i-m a s te r sys te m  bus tra n s a c tio n s  are 
syn ch ro n ized  to  th e  bus c lo c k  (BCLK). Th is  a llo w s  the  
para lle l p r io r ity  re so lv in g  c irc u itry  o r any o th e r p r io r ity  
re so lv ing  sch em e  e m p lo ye d  to  se ttle .

Serial Priority Resolving
The se ria l p r io r ity  re so lv ing  te c h n iq u e  e lim in a te s  the  
need fo r th e  p r io r ity  e nco d e r-de co d e r a rran g e m en t by 
d a is y -c h a in in g  the  bus a rb ite rs to g e ther, c o n n e c tin g  the  
h ig h e r p r io r ity  b us a rb ite r 's  BPRO (B us P rio r ity  O ut) o u t
p u t to  the  BPRN o f th e  next lo w e r p rio r ity . See F ig u re  6.

Rotating Priority Resolving
The ro ta tin g  p r io r ity  re so lv ing  te c h n iq u e  is s im ila r  to  
th a t o f th e  p a ra lle l p r io r ity  re so lv ing  te c h n iq u e  e xce p t 
th a t p r io r ity  is d y n a m ic a lly  re -ass igned . The p r io r ity  en 
c o d e r is rep laced  by a m ore  co m p le x  c irc u it  w h ic h  ro 
ta te s  p r io r ity  b e tw e e n  re q u e s tin g  a rb ite rs  th u s  a llo w in g  
each a rb ite r  an equa l ch an ce  to  use th e  m u lt i-m a s te r 
sys te m  bus, over tim e .

WHICH PRIORITY RESOLVING 
TECHNIQUE TO USE
There  are advan tages and d isa d va n tag e s  fo r each o f the  
te c h n iq u e s  d e sc rib e d  above. The ro ta tin g  p r io r ity  
re so lv in g  te c h n iq u e  re qu ire s  s u b s ta n tia l e x te rn a l log ic  
to  im p le m e n t w h ile  the  se ria l te c h n iq u e  uses no e x te r
nal lo g ic  b u t can a c c o m m o d a te  o n ly  a l im ite d  num b e r o f 
bus a rb ite rs  be fo re  th e  da isy -ch a in  p rop a g a tio n  de lay

e xceeds  the  m u lt i-m a s te r 's  sys te m  bus c lo c k  (BCLK). 
The pa ra lle l p r io r ity  re so lv ing  te c h n iq u e  is in genera l a 
g ood  c o m p ro m is e  betw een  th e  o th e r tw o  te c h n iq u e s . It 
a llo w s  fo r  m any a rb ite rs  to  be p rese n t on  th e  bus w h ile  
n o t re qu ir in g  to o  m uch  lo g ic  to  im p le m e n t.

THE NUMBER OF ARBITERS THAT MAY BE DAISY CH AIN ED  TOGETHER IN THE 
SERIAL PRIORITY RESOLVING SCHEM E IS A FUNCTION OF BCLK AND THE PROPA 
GATION DELAY FROM ARBITER TO ARBITER. N O R M ALLY. AT 10 MHz ONLY 3 A R BI
TER MAY BE DAISY-CHAINED.

Figure 6 . Serial Priority Resolving.
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8289 MODES OF OPERATION
There  are tw o  typ e s  o f p ro c e s s o rs  in the  8086 fa m ily . An 
In p u t/O u tp u t p ro c e s s o r (the  8089 IOP) and th e  8086/8088 
CPUs. C on se q ue n tly , the re  are tw o  bas ic  o pe ra tin g  
m odes in the  8289 bus a rb ite r. One, the  IOB (I/O P eri
phera l Bus) m ode, p e rm its  the  p ro c e s s o r a ccess  to  bo th  
an I/O P e riphera l Bus and a m u lt i-m a s te r sys te m  bus. 
The second , th e  RESB (R es iden t Bus m ode), p e rm its  the  
p ro c e s s o r to  c o m m u n ic a te  over bo th  a R es iden t Bus 
and a m u lt i-m a s te r sys te m  bus. An I/O P e riphera l B us is 
a bus w he re  a ll dev ice s  on th a t bus, in c lu d in g  m em ory, 
are tre a te d  as I/O d ev ice s  and are add ressed  by I/O c o m 
m ands. A ll m em ory  co m m an d s  are d ire c te d  to  a no the r 
bus, th e  m u lt i-m a s te r sys te m  bus. A R es id e n t Bus can 
issu e  b o th  m e m ory  and I/O co m m an d s , bu t it is  a d is 
t in c t  and sepa ra te  bus fro m  th e  m u lt i-m a s te r sys te m  
bus. The d is t in c t io n  is th a t the  R es id e n t Bus has on ly  
one m aste r, p ro v id in g  fu ll a v a ila b ility  and be ing  
d e d ica te d  to  th a t one  m aste r.

The IO B s tra p p in g  o p tio n  c o n fig u re s  th e  8289 Bus A r
b ite r  in to  the  IOB m ode  and the  s tra p p in g  o p tio n  RESB 
c o n fig u re s  it in to  the  RESB m ode. It m ig h t be n o ted  at 
th is  p o in t th a t if bo th  s tra p p in g  o p t io n s  are s trapped  
fa lse , th e  a rb ite r  in te rfa c e s  the  p ro c e s s o r to  a m u lt i
m a s te r sys te m  bus o n ly  (see F ig u re  7). W ith  b o th  o p 
tio n s  s tra p p ed  true , th e  a rb ite r  in te rfa c e s  th e  p ro c e s s o r

......... -

to  a m u lt i-m a s te r sys te m  bus. a Refetdeht BdS,.and ap I/O 
Bus.

In the  IOB m ode, th e  p ro c e s s o r c o m m u n ic a te s  and co-
tro ls  a h o s t o f p e rip h e ra ls  over th e  P e riphera l Bus. When., 
th e  I/O P ro cesso r needs to  c o m m u n ic a te  w ith  s y s te m  ’ • 
m em ory , it does so over the  sys te m  m em ory  bus. F igu re  
8 sh o w s  a p o s s ib le  I/O P ro cesso r sys te m  c o n f ig u ra tio n .

The 8086 and 8088 p ro c e s s o r can co m m u n ic a te  w ith  a 
R es iden t Bus and a m u lt i-m a s te r sys te m  bus. T w o  bus 
c o n tro lle rs  and o n ly  one  Bus A rb ite r  w o u ld  be needed in 
su ch  a c o n f ig u ra tio n  as sh ow n  in F ig u re  9. In su ch  a 
sys te m  c o n f ig u ra tio n  th e  p ro c e s s o r w o u ld  have a ccess  
to  m e m ory  and p e rip h e ra ls  o f b o th  busses . M em ory  
m app ing  te c h n iq u e s  are a p p lie d  t o s e le c t w h ic h  bus  is 
to  be accessed . The SYSB/R ESB in p u t on  th e  a rb ite r 
se rves to  in s tru c t th e  a rb ite r  as to  w h e th e r o r no t the  
s y s te m bus is  to  be accessed . The s ig n a l c o n n e c te d  to  
SYSB/RESB a lso  e nab les  o r d is a b le s  co m m a n d s  fro m  
o ne  o f th e  bus c o n tro lle rs .

A su m m ary  o f the  m odes th a t the  8289 has, a long  w ith  
its  response  to  its  s ta tu s  lin e s  in p u ts , is sum m arize d  in 
Tab le  1.

* In some system configurations it is poss ib le  for a non-I/O Processor to 
have access  to more than one Multi-Master System Bus. see 8289 
Application Note.

Single

IOB Mode RESB (Mode) Only IOB Mode RESB Mode
Bus Mode 

IOB = High 
RESB = Low8086 or 8088 or 8089 Only IOB = High RESB = High IOB = Low RESB = High

I/O

S2

°n
S1
0

SO
0

IOB = Low SYSB/RESB = High SYSB/RESB = Low SYSB/RESB = High SYSB/RESB = Low

COMMANDS ° x x x X
0 X X X X

HALT 0 1 1 X X X X X X

MEM ; 0 0 x x
COMMANDS x x

X X k'
IDLE 1 1 X x x X X X

1. X=  Multi-Master System Bus is allowed to be Surrendered.
2. ^ = Multi-Master System Bus is Requested.

M o d e
P in

S t r a p p in g

M u l t i - M a s t e r  S y s t e m  B u s

R e q u e s t e d * * S u r r e n d e r e d *

Sing le  Bus 
M u lti-M aste r Mode

IO B =  H igh 
RESB =  Low

W henever the p rocessor's  
s ta tus  lines go active HLT + TI • C B R Q + HPBRQt

RESB M ode Only iO B =  H igh 
R E S B = H igh

S Y S B /R E S B =  H igh  • 
ACTIVE STATUS

(SYSB/RESB =  L o w +  TI) • 
C B R Q +  H L T +  HPBRQ

IOB M ode Only IO B =  Low 
R E S B = Low

M em ory Com m ands (I/O S ta tu s +  TI) •  C BRQ  + 
H L T +  HPBRQ

IOB M ode RESB Mode IOB =  Low 
R E S B = H igh

(M em ory Com m and) • 
(SYSB/RESB = High)

((I/O S ta tu s  C om m a n d s) + 
SYSB/R ESB =  LOW)) •  C BRQ  
+ H P B R Q t +  HLT

NOTES:

’ LO C K  prevents surrender o f Bus to any other arbiter, C R Q LC K  prevents surrender o f Bus to any lower priority arbiter. 
" E x c e p t  for H ALT  and Pass ive or IDLE Status.

^HPBRQ, H igher priority Bus request or BPRN  = 1.

1. IOB Active Low. 4. T l=  Processor Idle Status S2 ,_s iJ$0=  111
2. RESB Active High. 5 . H LT=  Processor Halt Status S2, S1, SO = 011
3. + is read as "O R " and • as "AN D .”

Table 1. Summary of 8289 Modes, Requesting and Relinquishing the Multi-master system bus.
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Figure 7. Typical Medium Complexity CPU System.

I/O 6US MULTIMASTER 
SYSTEM BUS

Figure 8. Typical Medium Complexity IOB System.
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RESIDENT BUS

r)Dn

► RDY2 RDY1 -  

READY CLK

- XACK MULTI-MASTER SYSTEM BUS

PROM
OR

DECODER

RESIDENT AOORESS / —  
8US

RESIDENT DATA / — 
BUS V—

REAOY CLK 

S0-S2

Vi CE

CLK

dt'r:
DEN

n ,

ADDR 
LATCH 

828218283 
12 OR 3)

0- 8289
BUS

ARBITER
RESB 

LK IOB
ANYROST 

SYSB/ 
AEN RESB

if-

DT'R

DEN

V

ADDR 
LATCH 

828218283 
(2 OR 3)

R 
\̂|--------/  '

MULTI MASTER 
SYSTEM BUS

•BY ADDING ANOTHER 8289 ARBITER AND CONNECTING ITS AEN TO THE 8288 
WHOSE AEN IS PRESENTLY GROUNDED. THE PROCESSOR COULD HAVE ACCESS 
TO TWO MULTI MASTER BUSES

Figure 9. 8289 Bus Arbiter Shown in System-Resident Bus Configuration.
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PIN DEFINITIONS

Name I/O Function Name I/O

Vcc + 5V supply ±10%
GND Ground

S0.S1.S2 I

CLK

LOCK

CRQLCK I

RESB

ANYRQST I

IOB

STATUS INPUT PINS: These pins are 
the status input pins from an 8086, 
8088 or 8089 processor. The 8289 
decodes these pins to initiate bus re
quest and surrender actions. (See 
Table 1)
CLOCK: This is the clock from the 
8284 clock chip and serves to 
establish when bus arbiter actions are 
initiated.
LOCK: LOCK is a processor generated 
signal which when activated (low) 
serves to prevent the arbiter from sur
rendering the multi-master system bus 
to any other bus arbiter, regardless of 
its priority.
COMMON REQUEST LOCK: CRQLCK 
is an active low signal which serves to 
prevent the arbiter from surrendering 
the multi-master system bus to any 
other bus arbiter requesting the bus 
through the CBRQ input pin.
RESB: RESIDENT BUS is a strapping 
option to configure the arbiter to 
operate in systems having both a 
multi-master system bus and a Resi
dent Bus. When it is strapped high the 
multi-master system bus is requested 
or surrendered as a function of the 
SYSB/RESB input pin. When it is 
strapped low the SYSB/RESB input 
is ignored.
ANY REQUEST: ANYRQST is a strap
ping option which permits the multi
master system bus to be surrendered 
to a lower priority arbiter as though it 
were an arbiter of higher priority (i.e., 
when a lower priority arbiter requests 
the use of the multi-master system 
bus, the bus is surrendered as soon as 
it is possible). Strapping CBRQ low 
and ANYRQST high forces the 8289 ar
biter to surrender the multi-master 
system bus after each transfer cycle. 
Note that when surrender occurs 
BREQ is driven false (high).
IO BUS: IOB is a strapping option 
which configures the 8289 Arbiter to 
operate in systems having both an IO 
Bus (Peripheral Bus) and a multi
master system bus. The arbiter re
quests and surrenders the use of the 
multi-master system bus as a function 
of the status line, S2. The multi-master 
system bus is permitted to be sur
rendered while the processor is perfor

ming IO commands and is requested 
whenever the processor performs a 
memory command. Interrupt cycles 
are assumed as coming from the 
peripheral bus and are treated as 
would be an IO command.

AEN O ADDRESS ENABLE. AEN is the output
of the 8289 Arbiter to the processor’s 
address latches, to the 8288 Bus Con- 
troller and 8284 Clock Generator. AEN 
serves to instruct the Bus Controller 
and address latches when to tri-state 
their output drivers.

SYSB/RESB i SYSTEM BUS/RESIDENT BUS: 
SYSB/RESB is an input signal when 
the arbiter is configured in the S.R. 
Mode (RESB is strapped high) which 
serves to determine when the multi
master system bus is requested and 
when the multi-master system bus sur
rendering is permitted. The signal is in
tended to originate from some form of 
address mapping circuitry such as a 
decoder or PROM attached to the resi
dent address bus. Signal transitions 
and glitches are permitted on this pin 
from 01 of T4 to 0 1 to T2 of the pro
cessor cycle. During the period from 
01 of T2 to 01 of T4 only clean transi
tions are permitted on this pin (no 
glitches). If a glitch does occur the ar
biter may capture or miss it, and the 
multi-master system bus may be re
quested or surrendered, depending 
upon the state of the glitch. The arbiter 
requests the multi-master system bus 
in the S.R. Mode when the state of the 
SYSB/RESB pin is high and permits 
the bus to be surrendered when this 
pin is low.

CBRQ I/O COMMON BUS REQUEST: CBRQ is an
input signal which serves to instruct 
the arbiter if there are any other ar
biters of lower priority requesting the 
use of the multi-master system bus. 
The CBRQ pins (open-collector output) 
of all the 8289 Bus Arbiters which are 
to surrender the multi-master system 
bus upon request are connected 
together.
The Bus Arbiter running the current 
transfer cycle will not itself pull the 
CBRQ line low. Any other arbiter con
nected to the CBRQ line can request 
the multi-master system bus. The ar
biter presently running the current 
transfer cycle drops its BREQ signal 
and surrenders the bus whenever the
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PIN DEFINITIONS (Cont’d)

Name I/O Function

proper surrender conditions exist. 
Strapping CBREQ low and ANYRQST 
high allows the multi-master system 
bus to be surrendered after each 
transfer cycle. See the pin definition of 
ANYRQST.

IN IT 1 INITIALIZE: 1NIT is an active low multi
master system bus input signal which 
is used to reset all the bus arbiters on 
the multi-master system bus. After in
itialization, no arbiters have the use of 
the multi-master system bus.

BCLK i BUS CLOCK: BCLK is the multi-master 
system bus clock to which all multi
master system bus interface signals 
are synchronized.

BREQ 0 BUS REQUEST: BREQ is an active low 
output signal in the parallel Priority 
Resolving Scheme which the arbiter 
activates to request the use of the 
multi-master system bus.

BPRN 1 BUS PRIORITY IN: BPRN is the active 
low signal returned to the arbiter to in
struct it that it may acquire the multi
master system bus on the next falling

edge of BCLK. BPRN indicates to the 
arbiter that it is the highest priority re
questing arbiter presently on the bus. 
The loss of BPRN instructs the arbiter 
that it has loss priority to a higher 
priority arbiter.

BPRO O BUS PRIORITY OUT: BPRO is an active
low output signal which is used in the 
serial priority resolving scheme where 
BPRO is daisy chained to BPRN of the 
next lower priority arbiter.

BUSY I/O BUSY: BUSY is an active low open col
lector multi-master system bus inter
face signal which is used to instruct 
all the arbiters on the bus when the 
multi-master system bus is available. 
When the multi-master system bus is 
available the highest requesting ar
biter (determined by BPRN) seizes the 
bus and pulls BUSY low to keep other 
arbiters off of the bus. When the ar- 
biter is done with the bus it releases 
the BUSY signal permitting it to go 
high and thereby allowing another ar
biter to acquire the multi-master 
system bus.
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ABSOLUTE MAXIMUM RATINGS*
Tem p era tu re  U nder B ia s ....................................0 °C  to  70°C
S to rage  T e m p e ra tu re .............................-  65°C  to  +  150°C
A ll O u tp u t and S u p p ly  V o lta g e s .................-  0.5V to  +  7V
A ll In p u t V o lta g e s .........................................-  1.0V to  +  5.5V
P ow er D is s ip a t io n ......................................................... 1.5 W a tt

COMMENT: S tresses above those listed under • Absolute  Maximum 
Ratings" may cause permanent damage to the device. T h is  is a stress 
rating only and functional operation of the device at these o r any other 
cond itions above those indicated in the operational sections o f  This 
spec ification  is not implied. Exposure to absolute maximum rating con 
d itions for extended periods may affect device reliability.

D.C. CHARACTERISTICS FOR THE 8289 
CONDITIONS: t a =  o° to  70°c, vcc = 5V ± 10%

Symbol Parameter Min. Max. Units Test Condition

v c Inpu t C lam p  V o lta ge -  1.0 V Vc c  =  4.50V, lc  =  - 5  m A

'f Inpu t Forw ard  C urren t - 0 . 5 m A Vc c  =  5.50V, VF =  0.45V

!r Reverse In p u t Leakage C urren t 60 pA Vc c  =  5.50, V R — 5.50V OL O u tp u t Low V o lta ge
BUSY, CBRQ 0.45 V l0L = 20 m A, C L = 250 pF 1)
AEN 0.45 V l0L = 1 6  m A, C L =  100 pF  2)
BPRO, BREQ 0.45 V l0 L = 10 m A, C L =  60 pF 3)Io>

O u tp u t H ig h  V o lta ge
BUSY, CBRQ Open C o lle c to r

A ll O the r O u tp u ts 2.4 V Iqh = 400 pA

!cc P ow er S upp ly  C urren t 165 mA

V|L In p u t Low  V o lta ge .8 V

V|H Inpu t H igh  V o lta ge 2.0 V

C in  S ta tu s In p u t C ap a c ita nce 25 PF

C in (O thers) In p u t C ap a c ita nce 12 PF

TEST CIRCUITS:

1) BUSY, CBRQ 2) AEN 3) BPRO, BREQ

2.3V 2.3V 2.3V

92.5Q ; 110« 170S

”  250 pF “ -  100 pF ^ ^ 60 pF

B-89



8289

A.C. CHARACTERISTICS FOR THE 8289 
CONDITIONS: vcc = 5v ± 10%, t a =  o°c to  7o°c 
Timing Requirements

Symbol Parameter Min. Max. Unit

TC LC L C LK  C yc le  Period 125 ns

TCLCH C LK  Low  T im e 65 ns

TC H C L C LK  H igh  T im e 35 ns

TSVCH S ta tu s  A c tiv e  S e tup 65 TCLCL-10 ns

TSH C L S ta tu s  In a c tive  S e tup 50 TCLCL-10 ns

TH VC H S ta tu s  A c tiv e  H o ld 10 ns

TH V C L S ta tu s  In a c tive  H old 10 ns

TB Y S B L B U S Y U S etup to  B C L K l 20 ns

TC B S B L C B R Q U S etup  to  B C LK i 20 ns

T B LB L BC LK C yc le  T im e 100 ns

TB H C L BC LK H igh  T im e 30 .65[TBLBL] ns

TCLLL1 LO CK In a c tive  H o ld 20 ns

TC LLL2 LOCK A c tiv e  S e tup 40 ns

TP N B L B P R N itto  BC LK S e tup  T im e 15 ns

TCLSR1 SYSB/RESB Setup 0 ns

TC LSR2 S Y S B /K E 3 ! H old 20 ns

TIV IH In itia liz a tio n  Pu lse  W id th 3 T B L B L  + 
3 TC LC L

ns

Timing Responses

Symbol Parameter Min. Max. Unit Loading
TB LB R L BC LK to  BREQ D e la y it 35 ns

TBLPO H BC LK to  B P R O it (See N o te  1) 40 ns

TPNPO B P R N itto  B P R O itD e lay  
(See N ote  1)

25 ns

T B L B Y l BC LK to  BUSY Low 60 ns

TB LB Y H BC LK to  BUSY F loa t (See N o te  2) 35 ns

TC LAEH C LK to  AEN H igh 65 ns

TB LA E L BC LK to  AEN Low 40 ns

TB LC B L BC LK to  CBRQ Low 60 ns

TB LC B H BC LK to  CBRQ F lo a t (See N o te  2) 35 ns

it  Denotes that spec app lies to both transitions of the signal.

NOTE 1: B CLK  generates the first BPRO  wherein subsequent BPRO  changes lower in the chain are generated through BPRN. 
NOTE 2: Measured at .5V above GND.

INITIALIZATION: (IN IT  can be e ith e r pu lse d  o r he ld  low  th ro u g h  pow e r up)

N
, ^  ;/
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NO CRITICAL TIME AND CAN BE ASYNCHRONOUS.
-CROLCK HAS NO CRITICAL TIMING AND IS CONSIDERED AN ASYNCHRONOUS INPUT 
SIGNAL

2. GLITCHING OF SYSB/RESB PIN IS PERMITTED DURING THIS TIME. AFTER 0 2 OF T1. 
AND BEFORE 01 OF T4, ONLY CLEAN TRANSITIONS ARE ACCEPTED.

3. AER LEADING EDGE IS RELATED TO BCD?, TRAILING EDGE TO CLK. THE TRAILING 
EDGE OF AEN OCCURS AFTER BUS PRIORITY IS LOST.

ADDITIONAL NOTES:
The  s ig n a ls  related to  C L K  are typ ica l p ro ce sso r  s igna ls , and do not relate to  the  d e p ic te d  sequence  o f even ts o f the  
s ig n a ls  re fe ren ced  to B C LK . The  s ig n a ls  show n  related to the B C L K  rep resen t a hyp o the tica l s equence  o f even ts for 
illu s tra tion . A ssu m e  3 bu s a rb iters o f p r io r it ie s  1, 2 and 3 con figu red  in se ria l prio rity  reso lv ing  schem e  as show n  in 
F igu re  6. A ssu m e  arbiter 1 has the bus and is  ho ld ing  busy  low. A rb iter #2 d e te c ts its p ro ce sso r  w ants the  bus and 
p u ils  low  BREQ#2. If BPRN# 2 is h igh (as shown), arb iter #2 w ill pu ll low  C B R Q  line. C B R Q  s ig n a ls  to  the  h ighe r prio rity  
arb iter #1 that a low er priority  arb iter w ants the bus. [A h igher priority  arb iter w ou ld  be granted B P R N  w hen it m akes 
the bus request rather than having to w ait for ano ther arb iter to re lease  the bu s th rough C B R Q ].' * A rb iter #1 w ill relin- 
qu ish  the m u lti-m aster system  bus when it en te rs a sta te  not requ ir ing  it (see  Tab le  1), by low e ring  its  B P R O #1 (tied to 
BPRN#2) and re leas ing  BUSY . A rb ite r #2 now  sees that it has priority  from  BPRN# 2 be ing low  and re leases  C B R Q . A s  
so on  as B U S Y  s ig n if ie s  the  bu s is  ava ilab le  (high), arb iter #2 p u lls  B U S Y  low  on  next ta iling  edge  o f B C LK . N o te  that if 
arb iter #2 d id n ’t want the  bu s at the  tim e it rece ived  priority, it w ou ld  pa ss  prio rity  to  the next low er prio rity  a rb iter by 
low e ring  its  B P R O  #2 [TPNPO],

"N ote  that even a higher priority arbiter which is acquiring the bus through BPRN will momentarily drop CBRQ until it has acquired the bus.
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8237/8237-2  

HIG H PER FO R M A N C E  
PR O G R A M M A B LE DM A C O N TRO LLER

■ Enable/Disable Control of Individual 
DMA Requests

■ Four Independent DMA Channels

■ Independent Autoinitialization of all 
Channels

■ Memory-to-Memory Transfers

■ Memory Block Initialization

■ Address Increment or Decrement

■ High Performance: Transfers up to 1.6M 
Bytes/Second with 5 MHz 8237-2

■ Directly Expandable to any Number of 
Channels

■ End of Process Input for Terminating 
Transfers

■ Software DMA Requests

■ Independent Polarity Control for DREQ 
and DACK Signals

The 8237 Multimode Direct Memory Access (DMA) Controller is a peripheral interface circuit for microprocessor sys
tems. It is designed to improve system performance by allowing external devices to directly transfer information to or 
from the system memory. Memory-to-memory transfer capability is also provided. The 8237 offers a wide variety of pro
grammable control features to enhance data throughput and system optimization and to allow dynamic reconfigura
tion under program control.
The 8237 is designed to be used in conjunction with an external 8 -bit address register such as the 8282. it contains 
four independent channels and may be expanded to any number of channels by cascading additional controller chips.
The three basic transfer modes allow programmability of the types of DMA service by the user. Each channel can be 
individually programmed to Autoinitialize to its original condition following an End of Process (EOP).
Each channel has a full 64K address and word count capability.
The 8237-2 is a 5 MHz selected version of the standard 3 MHz 8237.

READY
CLOCK

DREQO-
DREQ3
HLDA

BLOCK DIAGRAM Figure 1. Pin Configuration
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PIN DEFINITIONS
Vcc: + 5 volt supply 

VSs: Ground 

CLK (Clock, Input)
This input controls the internal operations of the 8237 
and its rate of data transfers. The input may be driven at 
up to 3 MHz for the standard 8237 and up to 5 MHz for 
the 8237-2.

CS (Chip Select, input)
Chip Select is an active low input used to select the 
8237 as an I/O device during the Idle cycle. This allows 
CPU communication on the data bus.

RESET (Reset, Input)
Reset is an asynchronous active high input which clears 
the Command, Status, Request and Temporary regis
ters. it also clears the first/last flip/flop and sets the 
Mask register. Following a Reset the device is in the Idle
cycle.

READY (Ready, Input)
Ready is an input used to extend the memory 
read and write pulses from the 8237 to accommodate 
slow memories or I/O  peripheral devices.

HLDA (Hold Acknowledge, Input)
The active high Hold Acknowledge from the CPU Indi
cates that control of the system buses have been relin
quished.

DREQ0-DREQ3 (DMA Request, Input)
The DMA Request lines are individual asynchronous 
channel request inputs used by peripheral circuits to 
obtain DMA service. In Fixed Priority, DREQO has the 
highest priority and DREQ3 has the lowest priority. A 
request is generated by activating the DREQ line of a 
channel. DACK will acknowledge the recognition of 
DREQ signal. Polarity of DREQ is programmable. Reset 
initializes these lines to active high. DREQ must be 
maintained until the corresponding DACK goes active.

DB0-DB7 (Data Bus, Input/Output)
The Data Bus lines are bidirectional three-state signals 
connected to the system data bus. The outputs are 
enabled in the Program Condition during the I/O Read to 
output the contents of an Address register, a Status 
register, the Temporary register or a Word Count 
register to the CPU. The outputs are disabled and the in
puts are read during an I/O Write cycle when the CPU is 
programming the 8237 control registers. During DMA 
cycles the most significant 8 bits of the address are out
put onto the data bus to be strobed into an external 
latch by ADSTB. In memory-to-memory operations, data 
from the memory comes into the 8237 on the data bus 
auring the read-from-memory transfer. In the write-to- 
memory transfer, the data bus outputs place the data in
to the new memory location.

IOR (I/O Read, Input/Output)
I/O Read is a bidirectional active low three-state line. In 
the Idle cycle, it is an input control signal used by the 
CPU to read the control registers. In the Active cycle, it 
is an output control signal used by the 8237 to access 
data from a peripheral during a DMA Write transfer.

low (I/O Write, Input/Output)
I/O Write is a bidirectional active low three-state line. In 
the Idle cycle, it is an input control signal used by the 
CPU to load information into the 8237. In the Active 
cycle, it is an output control signal used by the 8237 to 
load data to the peripheral during a DMA Read transfer.

EOP (End of Process, Input/Output)
EOP is an active low bidirectional signal. Information 
concerning the completion of DMA services is available 
at the bidirectional EOP pin. The 8237 allows an external 
signal to terminate an active DMA service. This is ac
complished by pulling the EOP input low with an exter
nal EOP signal. The 8237 also generates a pulse when 
the terminal count (TC) for any channel is reached. This 
generates an EOP signal which is output through the 
EOP Line. The reception of EOP, either internal or exter
nal, will cause the 8237 to terminate the service, reset 
the request, and, if Autoinitialize is enabled, to write the 
base registers to the current registers of that channel. 
The mask bit and TC bit in the status word will be set for 
the currently active channel by EOP unless the channel 
is programmed for Autoinitialize. In that case, the mask 
bit remains clear. During memory-to-memory transfers, 
EOP will be output when the TC for channel 1 occurs. 
EOP should be tied high with a pull-up resistor if it is not 
used to prevent erroneous end of process inputs.

A0-A3 (Address, Input/Output)
The four least significant address lines are bidirectional 
three-state signals. In the Idle cycle they are inputs and 
are used by the 8237 to address the control register to 
be loaded or read. In the Active cycle they are outputs 
and provide the lower 4 bits of the output address.

A4-A7 (Address, Output)

The four most significant address lines are three-state 
outputs and provide 4 bits of address. These lines are 
enabled only during the DMA service.

HRO (Hold Request, Output)
This is the Hold Request to the CPU and is used to re
quest control of the system bus. If the corresponding 
mask bit is clear, the presence of any valid DREQ 
causes the 8237 to issue the HRQ. After HRQ goes 
active  at least one clock cycle  (TC Y ) must 
occur before HLDA goes active.

DACK0-DACK3 (DMA Acknowledge, Output)
DMA Acknowledge is used to notify the individual 
peripherals when one has been granted a DMA cycle. 
The sense of these lines is programmable. Reset initial
izes them to active low.
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AEN (Address Enable, Output)
This output enables the 8 -bit latch containing the upper 
8 address bits onto the system address bus. AEN can 
also be used to disable other system bus drivers during 
DMA transfers. AEN is active HIGH.

ADSTB (Address Strobe, Output)
The active high Address Strobe is used to strobe the up
per address byte into an external latch.

MEMR (Memory Read, Output)
The Memory Read signal is an active low three-state out
put used to access data from the selected memory loca
tion during a DMA Read or a memory-to-memory trans
fer.

MEMW (Memory Write, Output)

The Memory Write signal is an active low three-state 
output used to write data to the selected memory loca
tion during a DMA Write or a memory-to-memory trans
fer.

FUNCTIONAL DESCRIPTION
The 8237 block diagram includes the major logic blocks 
and all of the internal registers. The data interconnec
tion paths are also shown. Not shown are the various 
control signals between the blocks. The 8237 contains 
344 bits of internal memory in the form of registers. 
Figure 2 lists these registers by name and shows the 
size of each. A detailed description of the registers and 
their functions can be found under Register Descrip
tion.

Name Size Number

Base Address Registers 16 b its 4
Base Word Count Registers 16 bits 4
Current Address Registers 16 b its 4
Current Word Count Registers 16 b its 4
Temporary Address Register 16 b its 1
Temporary W ord Count Register 16 b its 1
S tatus Register 8 bits 1
Command Register 8 b its 1
Temporary Register 8 b its 1
Mode Registers 6 b its 4
Mask Register 4 b its 1
Request Register 4 b its 1

Figure 2. 8237 Internal Registers

The 8237 contains three basic blocks of control logic. 
The Timing Control block generates internal timing and 
external control signals for the 8237. The Program Com
mand Control block decodes the various commands 
given to the 8237 by the microprocessor prior to servic
ing a DMA Request. It also decodes the Mode Control 
word used to select the type of DMA during the servic
ing. The Priority Encoder block resolves priority conten
tion between DMA channels requesting service simul
taneously.
The Timing Control block derives internal timing from 
the clock input. In 8237 systems this input will usually 
be the \ 2  TTL clock from an 8224 or CLK from an 8085A. 
However, any appropriate system clock will suffice.

DMA OPERATION
The 8237 is designed to operate in two major cycles. 
These are called Idle and Active cycles. Each device 
cycle is made up of a number of states. The 8237 can 
assume seven separate states, each composed of one 
full clock period. State I (SI) is the inactive state. It is 
entered when the 8237 has no valid DMA requests pend
ing. While in SI, the DMA controller is inactive but may 
be in the Program Condition, being programmed by the 
processor. State 0  (SO) is the first state of a DMA ser
vice. The 8237 has requested a hold but the processor 
has not yet returned an acknowledge. An acknowledge 
from the CPU will signal that transfers may begin. SI, 
S2, S3 and S4 are the working states of the DMA service. 
If more time is needed to complete a transfer than is 
available with normal timing, wait states (SW) can be in
serted between S2 or S3 and S4 by the use of the Ready 
line on the 8237.
Memory-to-memory transfers require a read-from and a 
write-to-memory to complete each transfer. The states, 
which resemble the normal working states, use two 
digit numbers for identification. Eight states are re
quired for a single transfer. The first four states (S11, 
S12, S13, S14) are used for the read-from-memory half 
and the last four states (S21, S22, S23, S24) for the write- 
to-memory half of the transfer.

IDLE CYCLE
When no channel is requesting service, the 8237 will 
enter the Idle cycle and perform “SI” states. In this 
cycle the 8237 will sample the DREQ lines every clock 
cycle to determine if any channel is requesting a DMA 
service. The device will also sample CS, looking for an 
attempt by the microprocessor to write or read the inter
nal registers of the 8237. When CS is low and HRQ is 
low, the 8237 enters the Program Condition. The CPU 
can now establish, change or inspect the internal defini
tion of the part by reading from or writing to the internal 
registers. Address lines A0-A3 are inputs to the device 
and select which registers will be read or written. The 
IOR and IOW lines are used to select and time reads or 
writes. Due to the number and size of the internal regis
ters, an internal flip-flop is used to generate an addi
tional bit of address. This bit is used to determine the 
upper or lower byte of the 16-brt Address and Word 
Count registers. The flip-flop is reset by Master Clear or 
Reset. A separate software command can also reset this 
flip-flop.
Special software commands can be executed by the 
8237 in the Program Condition. These commands are 
decoded as sets of addresses with the CS and IOW. The 
commands do not make use of the data bus. Instruc
tions include Clear First/Last Flip-flop and Master Clear.

ACTIVE CYCLE
When the 8237 is in the Idle cycle and a channel re
quests a DMA service, the device will output an HRQ to 
the microprocessor and enter the Active cycle. It is in 
this cycle that the DMA service will take place, in one of 
four modes:

Single Transfer Mode — In Single Transfer mode the 
device is programmed to make one transfer only. The
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word count will be decremented and the address decre
mented or incremented following each transfer. When 
the word count goes to zero, a Terminal Count (TC) will 
cause an Autoinitialize if the channel has been program
med to do so.

DREQ must be held active until DACK becomes active in 
order to be recognized. If DREQ is held active through
out the single transfer, HRQ will go inactive and release 
the bus to the system. It will again go active and, upon 
receipt of a new HLDA, another single transfer will be 
performed. In 8080A/8085A systems this will ensure one 
full machine cycle execution between DMA transfers. 
Details of timing between the 8237 and other bus con
trol protocols will depend upon the characteristics of 
the microprocessor involved.

Block Transfer Mode — In Block Transfer mode the 
device is activated by DREQ to continue making trans
fers during the service until a TC, caused by word count 
going to zero, or an external End of Process (EOP) is en
countered. DREQ need only be held active until DACK 
becomes active. Again, an Autoinitialization will occur 
at the end of the service if the channel has been pro
grammed for it.

Demand Transfer Mode — In Demand Transfer mode the 
device is programmed to continue making transfers un
til a TC or external EOP is encountered or until DREQ 
goes inactive. Thus transfers may continue until the I/O 
device has exhausted its data capacity. After the I/O 
device has had a chance to catch up, the DMA service is 
re-established by means of a DREQ. During the time 
between services when the microprocessor is allowed 
to operate, the intermediate values of address and word 
count are stored in the 8237 Current Address and Cur
rent Word Count registers. Only an EOP can cause an 
Autoinitialize at the end of the service. EOP is generated 
either by TC or by an external signal.

Cascade Mode — This mode is used to cascade more 
than one 8237 together for simple system expansion. 
The HRQ and HLDA signals from the additional 8237 
are connected to the DREQ and DACK signals of a chan
nel of the initial 8237. This allows the DMA requests of 
the additional device to propagate through the priority 
network circuitry of the preceding device. The priority 
chain is preserved and the new device must wait for its 
turn to acknowledge requests. Since the cascade chan
nel in the initial device is used only for prioritizing the 
additional device, it does not output any address or con
trol signals of its own. These would conflict with the 
outputs of the active channel in the added device. The 
8237 will respond to DREQ and DACK but all other out
puts except HRQ will be disabled.

Figure 3 shows two additional devices cascaded into an 
initial device using two of the previous channels. This 
forms a two level DMA system. More 8237s could be 
added at the second level by using the remaining chan
nels of the first level. Additional devices can also be 
added by cascading into the channels of the second 
level devices, forming a third level.
TRANSFER TYPES

Each of the three active transfer modes can perform 
three different types of transfers. These are Read, Write

and Verify. Write transfers move data from an I/O device 
to the memory by activating MEMW and IOR. Read 
transfers move data from memory to an I/O device by ac
tivating MEMR and IOW. Verify transfers are pseudo 
transfers. The 8237 operates as in Read or Write trans
fers generating addresses, and responding to EOP, etc. 
However, the memory and I/O control lines all remain 
inactive.

2 N D  L E V E L

A D D IT IO N A L
D E V IC E S

Figure 3. Cascaded 8237s
Memory-to-Memory — To perform block moves of data 
from one memroy address space to another with a mini
mum of program effort and time, the 8237 includes a 
memory-to-memory transfer feature. Programming a bit 
in the Command register selects channels 0 and 1 to 
operate as memory-to-memory transfer channels. The 
transfer is initiated by setting the software DREQ for 
channel 0. The 8237 requests a DMA service in the nor
mal manner. After HLDA is true, the device, using eight- 
state transfers in Block Transfer mode, reads data from 
the memory. The channel 0 Current Address register is 
the source for the address used and is decremented or 
incremented in the normal manner. The data byte read 
from the memory is stored in the 8237 internal Tempo
rary register. Channel 1 then writes the data from the 
Temporary register to memory using the address in its 
Current Address register and incrementing or decre
menting it in the normal manner. The channel 1 Current 
Word Count is decremented. When the word count of 
channel 1 goes to zero, a TC is generated causing an 
EOP output, terminating the service.
Channel 0 may be programmed to retain the same ad
dress for all transfers. This allows a single word to be 
written to a block of memory.
The 8237 will respond to external EOP signals during 
memory-to-memory transfers. Data comparators in 
block search schemes may use this input to terminate 
the service when a match is found. The timing of 
memory-to-memory transfers is found in Diagram 4. 
Memory-to-memory operations can be detected as 
an active AEN with no DACK outputs.
Autoinitialize — By programming a bit in the Mode reg
ister, a channel may be set up as an Autoinitialize
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channel. During Autoinitialize initialization, the original 
values of the Current Address and Current Word Count 
registers are automatically restored from the Base Ad
dress and Base Word Count registers of that channel 
following EOP. The base registers are loaded simultane
ously with the current registers by the microprocessor 
and remain unchanged throughout the DMA service. The 
mask bit is not set when the channel Is in Autoinitialize. 
Following Autoinitialize the channel is ready to perform 
another service without CPU intervention.

Priority — The 8237 has two types of priority encoding 
available as software selectable options. The first is 
Fixed Priority which fixes the channels in priority order 
based upon the descending value of their number. The 
channel with the lowest priority is 3 followed by 2,1 and 
the highest priority channel, 0. After the recognition of 
any one channel for service, the other channels are pre
vented from interferring with that service until it is com
pleted.

The second scheme is Rotating Priority. The last chan
nel to get service becomes the lowest priority channel 
with the others rotating accordingly.

During Block and Demand Transfer mode services, 
which include multiple transfers, the addresses gener
ated will be sequential. For many transfers the data held 
in the external address latch will remain the same. This 
data need only change when a carry or borrow from A7 
to A8 takes place in the normal sequence of addresses. 
To save time and speed transfers, the 8237 executes S1 
states only when updating of A8-A15 in the latch is 
necessary. This means for long services, S1 states may 
occur only once every 256 transfers, a savings of 255 
clock cycles for each 256 transfers.

REGISTER DESCRIPTION

Current Address Register — Each channel has a 16-bit 
Current Address register. This register holds the value 
of the address used during DMA transfers. The address 
is automatically incremented or decremented after each 
transfer and the intermediate values of the address are 
stored in the Current Address register during the 
transfer. This register is written or read by the micro
processor in successive 8-bit bytes. It may also be re
initialized by an Autoinitialize back to its original value. 
Autoinitialize takes place only after an EOP.

1st 2nd 3rd
Service Service Service

h ighest 0 2 —  se rv ice  - -y 3 —  service
1 ^ ___ service — . 3 —  request \ 0
2

lowest 3 \
With Rotating Priority in a single chip DMA system, any 
device requesting service is guaranteed to be recog
nized after no more than three higher priority services 
have occurred. This prevents any one channel from 
monopolizing the system.

Compressed Timing — In order to achieve even greater 
throughput where system characteristics permit, the 
8237 can compress the transfer time to two clock 
cycles. From Timing Diagram 3 it can be seen that state 
S3 is used to extend the access time of the read pulse. 
By removing state S3, the read pulse width is made 
equal to the write pulse width and a transfer consists 
only of state S2 to change the address and state S4 to 
perform the read/write. S1 states will still occur when 
A8-A15 need updating (see Address Generation). Tim
ing for compressed transfers is found in Diagram 6 .

Address Generation — In order to reduce pin count, the 
8237 multiplexes the eight higher order address bits on 
the data lines. State S1 is used to output the higher 
order address bits to an external latch from which they 
may be placed on the address bus. The falling edge of 
Address Strobe (ADSTB) is used to load these bits from 
the data lines to the latch. Address Enable (AEN) is used 
to enable the bits onto the address bus through a three- 
state enable. The lower order address bits are output by 
the 8237 directly. Lines A0-A7 should be connected to 
the address bus. Timing Diagram 3 shows the time rela
tionships between CLK, AEN, ADSTB, DB0-DB7 and 
A0-A7.

Current Word Register — Each channel has a 16-bit Cur
rent Word Count register. This register holds the num
ber of transfers to be performed. The word count is 
decremented after each transfer. The intermediate value 
of the word count is stored in the register during the 
transfer. When the value in the register goes to zero, a 
TC will be generated. This register is loaded or read in 
successive 8 -bit bytes by the microprocessor in the Pro
gram Condition. Following the end of a DMA service it 
may also be reinitialized by an Autoinitialization back to 
its original value. Autoinitialize can occur only when an 
EOP occurs.

Base Address and Base Word Count Registers — Each 
channel has a pair of Base Address and Base Word 
Count registers. These 16-bit registers store the original 
value of their associated current registers. During Auto
initialize these values are used to restore the current 
registers to their original values. The base registers are 
written simultaneously with their corresponding current 
register in 8-bit bytes in the Program Condition by the 
microprocessor. These registers cannot be read by the 
microprocessor.

Command Register — This 8 -bit register controls the 
operation of the 8237. It is programmed by the micro
processor in the Program Condition and is cleared by 
Reset. The following table lists the function of the com
mand bits. See Figure 6 for address coding.

Mode Register — Each channel has a 6 -bit Mode regis
ter associated with it. When the register is being written 
to by the microprocessor in the Program Condition, bits 
0 and 1 determine which channel Mode register is to be 
written.

Request Register — The 8237 can respond to requests 
for DMA service which are initiated by software as well 
as by a DREQ. Each channel has a request bit associ
ated with it in the 4-bit Request register. These are non-
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maskable and subject to prioritization by the Priority En
coder network. Each register bit is set or reset sepa
rately under software control or is cleared upon genera
tion of a TC or external EOP. The entire register is 
cleared by a Reset. To set or reset a bit, the software 
loads the proper form of the data word. See Figure 4 for 
address coding.

Command Register
7 6 5 4 3 2 1 0 Bit Number

Memory-to-memory d isable 
Memory-to-memory enable

Channel 0 address hold d isable 
Channel 0 address hold enable 
If b it 0 = 0

C ontro lle r enable 
C ontro lle r d isable

Normal tim ing  
Compressed tim ing  
If b it 0 = 1

Fixed p rio rity  
Rotating prio rity

Late w rite  se lection 
Extended w rite  se lection  
If b it 3 = 1

DREQ sense active  h igh 
DREQ sense active  low

DACK sense active  low 
DACK sense active  high

Mode Register 
7 6 5 4 3 2 1

00 Channel 0 select
01 Channel 1 select
10 Channel 2 select
11 Channel 3 se lect

00 V erify transfer
01 W rite  transfer
10 Read transfer
11 Illegal
XX If b its  6 and 7 =  11

0 A u to in itia liza tio n  d isab le
1 A u to in itia liza tio n  enable

0 Address increm ent select
1 Address decrem ent select

00 Demand mode se lect
01 S ingle  m ode se lect
10 B lock mode se lect
11 Cascade m ode se lect

Request Register
7 6 5 4 3 2 1 0 -Bit Number

t j
00 S elect channel 0
01 Select channel 1 

j  10 Select channel 2 
\  11 Select channel 3

0 Reset request b it
1 Set request bit

Software requests will be serviced only if the channel is 
in Block mode. When initiating a memory-to-memory 
transfer, the software request for channel 0 should be 
set.

Mask Register — Each channel has associated with it a 
mask bit which can be set to disable the incoming 
DREQ. Each mask bit is set when its associated channel 
produces an EOP if the channel is not programmed for 
Autoinitialize. Each bit of the 4-bit Mask register may 
also be set or cleared separately under software control. 
The entire register is also set by a Reset. This disables 
all DMA requests until a clear Mask register Instruction 
allows them to occur. The instruction to separately set 
or clear the mask bits is similar in form to that used with 
the Request register. See Figure 4 for instruction ad
dressing.

7 6 5 4 3 2 1 0 -------Bit Nufflbar

00 S elect channel 0 mask bit
01 Select channel 1 m ask bit
10 Select channel 2 m ask bit
11 Select channel 3 m ask b it

0 C lear mask b it
1 Set mask bit

All four bits of the Mask register may also be written 
with a single command.

7 6 5 4 3 2 1 0 Bit Number

Clear channel 0 mask b it 
Set channel 0 mask bit

C lear channel 1 mask bit 
Set channel 1 m ask bit

C lear channel 2 mask bit 
Set channel 2 m ask bit

C lear channel 3 mask bit 
Set channel 3 m ask bit

Register Operation
Signals

CS IOR low  A3 A2 A1 A0

Command W rite 0 1 0 1 0 0 0
Mode W rite 0 1 0 1 0 1 1
Request W rite 0 1 0 1 0 0 1
Mask Set/Reset 0 1 0 1 0 1 0
Mask W rite 0 1 0 1 1 1 1
Temporary Read 0 0 1 1 1 0 1
S tatus Read 0 0 1 1 0 0 0

Figure 4. Definition of Register Codes

Status Register — The Status register is available to 
be read out of the 8237 by the microprocessor. It con
tains information about the status of the devices at this 
point. This information includes which channels have 
reached a terminal count and which channels have 
pending DMA requests. Bits 0 -3  are set every time a TC 
is reached by that channel or an external EOP 
is applied. These bits are cleared upon Reset 
and on each Status Read. Bits 4 -7  are set when
ever their corresponding channel is requesting service.
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Bit Number

Channel 0 has reached TC 
Channel 1 has reached TC 
Channel 2 has reached TC 
Channel 3 has reached TC

--------------------------------- 1 Channel 0 request
---------------------------------------- 1 Channel 1 request

---------------------------------------------- 1 Channel 2 request
-----------------------------------------------------1 Channel 3 request

Temporary Register — The Temporary register is used 
to hold data during memory-to-memory transfers. Fol
lowing the completion of the transfers, the last word 
moved can be read by the microprocessor in the Pro
gram Condition. The Temporary register always con
tains the last byte transferred in the previous memory- 
to-memory operation, unless cleared by a Reset.
Software Commands — These are additional special 
software commands which can be executed in the Pro
gram Condition. They do not depend on any specific bit 
pattern on the data bus. The two software commands 
are:

C le a r  F ir s t / L a s t  F l ip -F lo p : This command is executed 
prior to writing or reading new address or word count 
information to the 8237. This initializes the flip-flop to 
a known state so that subsequent accesses to regis
ter contents by the microprocessor will address up
per and lower bytes in the correct sequence.

7 6 5 4 3 2 1 0 M a s te r  C le a r : This software instruction has the same 
effect as the hardware Reset. The Command, Status, 
Request, Temporary, and Internal First/Last Flip-Flop 
registers are cleared and the Mask register is set. The 
8237 will enter the Idle cycle.

Figure 5 lists the address codes for the software com
mands:

Signals

OperationA3 A2 A1 AO IOR low

1 0 0 0 0 1 R e a d  S ta tu s  R e g iste r

1 0 0 0 1 0 W rite Com m and  R e g iste r

1 0 0 1 0 , Illegal

1 0 0 1 1 0 W rite R e q u e st R e g iste r

1 0 1 0 0 1 Illegal

1 0 , 0 1 0 W rite S in g le  M a sk  R e g iste r Bit

1 0 1 1 0 1 Illeg al

1 0 1 1 1 0 W rite M ode R e g iste r

1 1 0 0 0 1 Illeg al

1 1 0 0 1 0 C le a r  B yte  P ointer F lip  / F lo p

1 1 0 1 0 , R e a d  Te m p orary R e g iste r

1 1 0 1 1 0 M a ster C le a r

1 1 1 0 0 , Illeg al

t 1 1 0 1 0 Illeg al

1 1 1 1 0 1 Illeg al

1 1 1 1 1 0 W rite All M a sk R e g is te r B its

Figure 5. Software Command Codes

Channel Register Operation
Signals

Internal Flip-Flop Data Bus DB0-DB7
CS IOR low A3 A2 A1 AO

0 Base and Current Address W rite 0 1 0 0 0 0 0 0 A 0-A7
0 1 0 0 0 0 0 1 A8-A15

Current Address Read 0 0 1 0 0 0 0 0 A 0-A7
0 0 1 0 0 0 0 1 A8-A15

Base and Current W ord Count W rite 0 1 0 0 0 0 1 0 W 0-W 7
0 1 0 0 0 0 1 1 W 8-W 15

Current Word Count Read 0 0 1 0 0 0 1 0 W )0-W7
0 0 1 0 0 0 1 1 W 8-W 15

1 Base and Current Address W rite 0 1 0 0 0 1 0 0 A 0-A7
0 1 0 0 0 1 0 1 A8-A15

Current Address Read 0 0 1 0 0 1 0 0 A0-A7
0 0 1 0 0 1 0 1 A8-A15

Base and Current Word Count W rite 0 1 0 0 0 1 1 0 W 0-W 7
0 1 0 0 0 1 1 1 W 8-W 15

Current Word Count Read 0 0 1 0 0 1 1 0 W )0-W7
0 0 1 0 0 1 1 1 W 8-W 15

2 Base and Current Address W rite 0 1 0 0 1 0 0 0 A0-A7
0 1 0 0 1 0 0 1 A8-A15

Current Address Read 0 0 1 0 1 0 0 0 A 0-A7
0 0 1 0 1 0 0 1 A8-A15

Base and Current Word Count W rite 0 1 0 0 1 0 1 0 W 0-W 7
0 1 0 0 1 0 1 1 W 8-W 15

Current Word Count Read 0 0 1 0 1 0 1 0 W )0-W7
0 0 1 0 1 0 1 1 W 8-W 15

3 Base and Current Address W rite 0 1 0 0 1 1 0 0 A 0-A7
0 1 0 0 1 1 0 1 A8-A15

Current Address Read 0 0 1 0 1 1 0 0 A0-A7
0 0 1 0 1 1 0 1 A8-A15

Base and Current Word Count W rite 0 1 0 0 1 1 1 0 W 0-W 7
0 1 0 0 1 1 1 1 W 8-W 15

Current Word Count Read 0 0 1 0 1 1 1 0 W )0-W7
0 0 1 0 1 1 1 1 W 8-W 15

Figure 6. Word Count and Address Register Command Codes
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APPLICATION INFORMATION

Figure 7 shows a convenient method for configuring a 
DMA system with the 8237 controller and an 8080A/ 
8085A microprocessor system. The multimode DMA 
controller issues a HRQ to the processor whenever 
there is at least one valid DMA request from a 
peripheral device. When the processor replies with a 
HLDA signal, the 8237 takes control of the address bus, 
the data bus and the control bus. The address for the

first transfer operation comes out in two bytes — the 
least significant 8 bits on the eight address outputs and 
the most significant 8 bits on the data bus. The contents 
of the data bus are then latched into the 8282 8 -bit latch 
to complete the full 16 bits of the address bus. The 8282 
is a high speed, 8 -bit, three-state latch in a 20-pin 
package. After the initial transfer takes place, the latch 
is updated only after a carry or borrow is generated in 
the least significant address byte. Four DMA channels 
are provided when one 8237 is used.

Figure 7
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ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature under B ias................ 0°C to 70 °C
Storage Temperature.........................-S 5°C to  +150°C
Voltage on any Pin with

Respect to Ground....................................... -0 .5 to 7 V
Power Dissipation..................................................1.5 Watt

*C O M M E N T : S tresses above those fisted under "A b so lu te  Maxim um  
R atings” may cause permanent damage to  the device. Th is is a stress 
rating only and func tiona l operation o f the device a t these or any o ther 
co nd itio ns  above those indicated in the operational sec tions  o f th is  
spec ifica tion  is not im plied . Exposure to abso lu te  m axim um  rating con
d ition s  fo r extended periods may a ffec t device re liab ility .

D.C. CHARACTERISTICS
Ta = 0°C to 70°C, VCC = 5.0V ±5% , GND = 0V

Symbol Parameter Min. Typ.(1) Max. Unit Test Conditions

VOH Output HIGH Voltage
2.4 V Iqh — -  200 fuA

3.3 V l0H= -  100pA (HRQ Only)

VOL Output LOW Voltage 0.4 V l0L = 3.2 mA

V|H Input HIGH Voltage 2.0 VCC+ 0.5 V

V|L Input LOW Voltage -0 .5 0.8 V

I LI Input Load Current ± 10 pA Vss^ V|< Vcc

■lo Output Leakage Current ± 10 pA Vcc^ Vss + 0-40

!cc Vcc Supply Current
65 130 mA Ta = + 25 °C
75 150 mA t a = o°c

c0 Output Capacitance 4 8 pF

C, Input Capacitance 8 15 pF fc= 1.0 MHz, Inputs = 0V

Cio I/O Capacitance 10 18 PF
Notes:

1. Typical values are fo rT A =  25°C, nom inal supply vo ltage and nom inal processing parameters.
2. Input tim ing  parameters assum e trans ition  tim es o f 20 ns o r less. W aveform m easurement poin ts fo r both inpu t and o utput s igna ls  are 2.0V fo r HIGH 

and 0.8V fo r LOW, unless o therw ise  noted.
3. O utput load ing is 1 TTL gate p lus 50 pF capacitance, unless o therw ise  noted.

4. The net IOW or MEMW Pulse w id th  fo r normal w rite  w ill be TCY-100 ns and fo r extended w rite  w ill be 2TCY-100 ns. The net IOR or MEMR pulse 
w id th  for normal read w ill be 2TCY-50 ns and for com pressed read w ill be TCY-50 ns.

5. TDQ is specified  fo r tw o  d iffe ren t o utput HIGH levels. TDQ1 is measured at 2.0V. TDQ2 is measured at 3.3V. The value forTD Q 2 assum es an external 
3.3 kQ pull-up res is to r connected from  HRQ to Vq q .

6. DREQ should be held active  un til DACK is returned.

7. DREQ and DACK signa ls may be active  h igh o r active  low. T im ing diagram s assum e the  active  h igh mode.
8. O utput load ing on the  data bus is 1 TTL gate p lus 100 pF capacitance.

9. Successive read and/or w rite  operations by the external p rocessor to  program or exam ine the co n tro lle r m ust be tim ed to  a llow  at least 600 ns fo r the 
8237 and at least 400 ns fo r the 8237-2 as recovery tim e between active  read or w rite  pulses.

10. Parameters are lis ted  in a lphabetica l order.

11. Pin 5 is an inpu t tha t should  always be at a logic h igh level. An in ternal pull-up res is to r w ill estab lish  a logic h igh when the  pin is le ft floa ting . A lte r
natively, pin 5 may be tied to  Vc c .

A.C. TEST WAVEFORM

2.4V-

0.45V

H IG H  “ T

LO W  “ 0”
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A.C. CHARACTERISTICS: DMA (MASTER) MODE
Ta =  0 °C  to  70°C , Vc c  =  5.0V ± 5 % ,  G ND =  0V

Symbol Parameter
8237 8237-2

Unit
Min. Max. Min. Max.

TA E L AEN H IGH fro m  C LK  LOW  (S1) D elay T im e 300 200 ns

TAET AEN LOW  fro m  C LK  HIGH (S I) D elay T im e 200 130 ns

T A F A B ADR A c tiv e  to  F lo a t D elay fro m  C LK  HIGH 150 90 ns

TAFC READ o r W R ITE F lo a t from  C LK  HIGH 150 120 ns

TA FD B DB A c tiv e  to  F lo a t D elay fro m  C LK  HIGH 250 170 ns

TAH R ADR fro m  READ H IGH H old  T im e T C Y -100 T C Y -100 ns

TAH S DB fro m  AD STB LOW  H old  T im e 50 30 ns

TA H W ADR fro m  W RITE H IGH H o ld  T im e TC Y -50 TC Y -50 ns

TAK

DACK V a lid  fro m  C LK  LOW  D elay T im e 250 170 ns

EOP H IGH fro m  C LK  H IGH D elay T im e 250 170 ns

EOP LOW  to  C LK  HIGH D elay T im e 250 100 ns

TASM ADR S ta b le  fro m  C LK  HIGH 250 170 ns

TASS DB to  ADSTB LOW  S e tup  T im e 100 100 ns

TCH C lo c k  H igh  T im e  (T ra n s itio n s  < 1 0  ns) 120 70 ns

TCL C lo c k  LOW  T im e (T ra n s itio n s  < 1 0  ns) 150 50 ns

TCY C LK  C yc le  T im e 320 200 ns

TD C L C LK  H IGH to  READ o r W RITE LOW  D elay (N o te  4) 270 190 ns

TDCTR READ H IGH fro m  C LK  HIGH (S4) D elay T im e 
(N o te  4)

270 190 ns

TDCTW W RITE HIGH fro m  C LK  H IGH (S4) D elay T im e  
(N o te  4)

200 130 ns

TDQ1

TDQ2
HRQ V a lid  fro m  C LK  H IGH D elay T im e  (N o te  5)

160 120 ns

250 120 ns

TEPS EOP LOW  fro m  C LK  LOW  S e tup  T im e 60 40 ns

TEPW EOP Pu lse  W id th 300 220 ns

TF A A B ADR F lo a t to  A c tiv e  D elay fro m  C LK  HIGH 250 170 ns

TFAC READ o r W R ITE A c tiv e  fro m  C LK HIGH 200 150 ns

TFA D B DB F lo a t to  A c tiv e  D elay fro m  C LK  HIGH 300 200 ns

THS H CD A V a lid  to  C LK  H IGH S e tup  T im e 100 75 ns

TIDH In p u t Data fro m  M EM R H IGH H old  T im e 0 0 ns

TIDS In p u t Data to  M EM R H IGH S e tup  T im e 250 170 ns

TODH O u tp u t Data fro m  M E M W  HIGH H o ld  T im e 20 10 ns

TODV O u tp u t Data V a lid  to  M E M W  HIGH 200 130 ns

TQS DREQ to  C LK  LOW  (SI, S4) S e tup  T im e 0 0 ns

TRH C LK  to  READY LOW  H o ld  T im e 20 20 ns

TRS READY to  C LK  LOW  S e tup  T im e 100 75 ns

TSTL AD STB H IGH fro m  C LK  H IGH D elay T im e 200 130 ns

TSTT AD STB LOW  fro m  C LK  H IGH D elay T im e 140 90 ns
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A.C. CHARACTERISTICS: PERIPHERAL (SLAVE) MODE
T a =  0 °C  to  70°C , Vc c  =  5.0V ± 5 % ,  G ND =  0V

Symbol Parameter
8237 8237-2

Unit
Min. Max. Min. Max.

TAR ADR V a lid  o r CS LO W  to  READ LOW 50 50 ns

TA W ADR V a lid  to  W RITE H IGH S e tup  T im e 200 160 ns

TCW CS LOW  to  W R ITE H IG H  S e tu p  T im e 200 160 ns

TDW Data V a lid  to  W RITE H IGH S e tu p  T im e 200 160 ns

TRA ADR o r CS H o ld  fro m  READ H IGH 0 0 ns

TRDE D ata A cce ss  fro m  READ LO W  (N ote  8) 200 140 ns

TRDF DB F lo a t D elay fro m  READ HIGH 20 100 0 70 ns

TRSTD P ow er S u p p ly  H IGH to  RESET LOW  S e tu p  T im e 500 500 MS
TRSTS RESET to  F irs t IOWR 2TCY 2TCY ns

TRSTW RESET P u lse  W id th 300 300 ns

TRW READ W id th 300 200 ns

TW A ADR fro m  W R ITE H IGH H o ld  T im e 20 0 ns

TW C CS H IGH fro m  W R ITE H IGH H o ld  T im e 20 0 ns

TW D D ata fro m  W R ITE H IGH H o ld  T im e 30 10 ns

TW W S W rite  W id th 200 160 ns

TIMING DIAGRAM #1 -  SLAVE MODE WRITE TIMING

c -s  N

--------------------------------------------  TCW ---------------------------------------- --

- 1
/
------- TWC— -

T o w  ^

iH
---------------------------------------------------T A W ------------------------------------------------►

--------TWA

A0-A3 ^ INPUT VALID D/ ---------------------------

-------------------------------------------------TDW -----------------------------------------------
-------- TWD

DB0-DB7 ^ INPUT VALID ez
TIMING DIAGRAM #2 — SLAVE MODE READ TIMING
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TIMING DIAGRAM #3 -  DMA TRANSFER TIMING
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TIMING DIAGRAM #4 — MEMORY TO MEMORY TRANSFER TIMING

TIMING DIAGRAM #5 — READY TIMING

CLK

READ

WRITE

READY
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TIMING DIAGRAM #6 -  COMPRESSED TRANSFER TIMING

TIMING DIAGRAM #7 — RESET TIMING

Vcc

RESET

IOR OR IOW

A

/

■ih

-n—
TRSTS

■u---
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8 2 5 9 A /8 2 5 9 A -2 /8 2 5 9 A -8  
PR O G R A M M A B LE INTERRU PT C O NTRO LLER

intc

8 0 8 6 /8 0 8 8  Compatible 

MCS-80/85™ Compatible

■ Eight-Level Priority Controller

■ Expandable to 64 Levels

■ Programmable Interrupt Modes

■ Individual Request Mask Capability

■ Single + 5V Supply (No Clocks)

■ 28-Pin Dual-In-Line Package

The Intel® 8259A P rogram m ab le  In te rru p t C o n tro lle r  han d les  up to  e ig h t ve c to re d  p r io r ity  in te rru p ts  fo r  th e  CPU. It is 
ca scad a b le  fo r  up to  64 ve c to re d  p r io r ity  in te rru p ts  w ith o u t a d d itio n a l c irc u itry . It is  packaged  in a 28-pin DIP, uses 
NM OS te c h n o lo g y  and requ ires  a s in g le  +  5V su pp ly . C irc u itry  is s ta tic , re q u ir in g  no c lo c k  inp u t.

The 8259A is  d e s ig n ed  to  m in im ize  the  s o ftw a re  and real tim e  overhead in h an d lin g  m u lti- le ve l p r io r ity  in te rru p ts . It has 
severa l m odes, p e rm itt in g  o p tim iz a tio n  fo r a va rie ty  o f sys te m  re qu ire m e n ts .

The 8259A is fu lly  upw ard  c o m p a tib le  w ith  the  In te l*  8259. S o ftw a re  o r ig in a lly  w r it te n  fo r  the  8259 w ill ope ra te  the  
8259A in a ll 8259 e qu iva le n t m odes (MCS-80/85, N on -B u ffe re d , Edge T riggered).

PIN CONFIGURATION BLOCK DIAGRAM

PIN NAMES

°7  Do DATA BUS (81 DIRECTIONAL)

RD READ INPUT
WR WRITE INPUT

Ao COMMAND SELECT ADDRESS

cs CHIP SELECT

CAS2CASO CASCADE LINES
5P/CT1 SLAVE PROGRAM ENABLE BUFFER
INT INTERRUPT OUTPUT
INTA INTERRUPT ACKNOWLEDGE INPUT
IR0-IR 7 INTERRUPT REQUEST INPUTS

-  1 8 2  

- I R 3  

-  IR 4
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INTERRUPTS IN MICROCOMPUTER 
SYSTEMS
Microcomputer system design requires that I/O devices 
such as keyboards, displays, sensors and other com
ponents receive servicing in an efficient manner so that 
large amounts of the total system tasks can be assumed 
by the microcomputer with little or no effect on through
put.
The most common method of servicing such devices is 
the P o lle d  approach. This is where the processor must 
test each device in sequence and in effect “ask" each 
one if it needs servicing. It is easy to see that a large por
tion of the main program is looping through this con
tinuous polling cycle and that such a method would 
have a serious, detrimental effect on system through
put, thus limiting the tasks that could be assumed by 
the microcomputer and reducing the cost effectiveness 
of using such devices.
A more desirable method would be one that would allow 
the microprocessor to be executing its main program 
and only stop to service peripheral devices when it is 
told to do so by the device itself. In effect, the method 
would provide an external asynchronous input that 
would inform the processor that it should complete 
whatever instruction that is currently being executed 
and fetch a new routine that will service the requesting 
device. Once this servicing is complete, however, the 
processor would resume exactly where it left off.
This method is called In te r ru p t . It is easy to see that 
system throughput would drastically increase, and thus 
more tasks could be assumed by the microcomputer to 
further enhance its cost effectiveness.

The Programmable Interrupt Controller (PIC) functions 
as an overall manager in an Interrupt-Driven system 
environment. It accepts requests from the peripheral 
equipment, determines which of the incoming requests 
is of the highest importance (priority), ascertains 
whether the incoming request has a higher priority value 
than the level currently being serviced, and issues an 
interrupt to the CPU based on this determination.
Each peripheral device or structure usually has a special 
program or “routine" that is associated with its specific 
functional or operational requirements; this is referred 
to as a "service routine”. The PIC, after issuing an Inter
rupt to the CPU, must somehow input information into 
the CPU that can "point" the Program Counter to the 
service routine associated with the requesting device. 
This "pointer" is an address in a vectoring table and will 
often be referred to, in this document, as vectoring data.

8259A BASIC FUNCTIONAL DESCRIPTION
GENERAL
The 8259A is a device specifically designed for use in 
real time, interrupt driven microcomputer systems. It 
manages eight levels or requests and has built-in fea
tures for expandability to other 8259A's (up to 64 levels). 
It is programmed by the system’s software as an I/O 
peripheral. A selection of priority modes is available to 
the programmer so that the manner in which the re
quests are processed by the 8259A can be configured to

match his system requirements. The priority modes can 
be changed or reconfigured dynamically at any time dur
ing the main program. This means that the complete 
interrupt structure can be defined as required, based on 
the total system environment.

Polled Method

Interrupt Method
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INTERRUPT REQUEST REGISTER (IRR) AND 
IN-SERVICE REGISTER (ISR)
The interrupts at the IR input lines are handled by two 
registers in cascade, the Interrupt Request Register 
(IRR) and the In-Service Register (ISR). The IRR is used 
to store all the interrupt levels which are requesting ser
vice; and the ISR is used to store all the interrupt levels 
which are being serviced.

PRIORITY RESOLVER
This logic block determines the priorities of the bits set 
in the IRR. The highest priority is selected and strobed 
into the corresponding bit of the ISR during INTA pulse.

INTERRUPT MASK REGISTER (IMR)
The IMR stores the bits which mask the interrupt lines 
to be masked. The IMR operates on the IRR. Masking of 
a higher priority input will not affect the interrupt 
request lines of lower priority.

INT (INTERRUPT)
This output goes directly to the CPU interrupt input. The 
Vo h  level on this line is designed to be fully compatible 
with the 8080A, 8085A, 8086 and 8088.

INTA (INTERRUPT ACKNOWLEDGE)
INTA pulses will cause the 8259A to release vectoring 
information onto the data bus. The format of this data 
depends on the system mode (pPM) of the 8259A.

OATA BUS BUFFER
This 3-state, bidirectional 8-bit buffer is used to inter
face the 8259A to the system Data Bus. Control words 
and status information are transferred through the Data 
Bus Buffer.

READ/WRITE CONTROL LOGIC
The function of this block is to accept OUTput com
mands from the CPU. It contains the Initialization Com
mand Word (ICW) registers and Operation Command 
Word (OCW) registers which store the various control 
formats for device operation. This function block also 
allows the status of the 8259A to be transferred onto the 
Data Bus.

CS (CHIP SELECT)
A LOW on this input enables the 8259A. No reading or 
writing of the chip will occur unless the device is 
selected.

WR (WRITE)
A LOW on this input enables the CPU to write control 
words (ICWs and OCWs) to the 8259A.

RD (READ)
A LOW on this input enables the 8259A to send the 
status of the Interrupt Request Register (IRR), In Service 
Register (ISR), the Interrupt Mask Register (IMR), or the 
Interrupt level onto the Data Bus.

B259A Block Diagram

8259A Block Diagram

A„
This input signal is used in conjunction with WR and RD 
signals to write commands into the various command 
registers, as well as reading the various status registers 
of the chip. This line can be tied directly to one of the ad
dress lines.
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THE CASCADE BUFFER/COMPARATOR
This (unction block stores and compares the IDs of all 
8259A's used In the system. The associated three I/O 
pins (CASO-2) are outputs when the 8259A is used as a 
master and are inputs when the 8259A is used as a 
slave. As a master, the 8259A sends the ID of the inter- 
m pting slave device onto the CASO-2 lines. The slave 
thus selected will send its preprogrammed subroutine 
address onto the Data Bus during the next one or two 
consecutive INTA pulses. (See section "Cascading the 
8259A")

INTERRUPT SEQUENCE
The powerful features of the 8259A in a microcomputer 
system are its programmability and the interrupt routine 
addressing capability The latter allows direct or indirect 
jumping to the specific interrupt routine reguested 
without any polling of the interrupting devices. The nor
mal sequence of events during an interrupt depends on 
the type of CPU being used.
The events occur as follows in an MCS-80/85 system: 
1.0ne or more of the INTERRUPT REQUEST lines 

(IR7-0) are raised high, setting the corresponding IRR 
bit(s).

2. The 8259A evaluates these requests, and sends an 
INT to the CPU, if appropriate.

3. The CPU acknowledges the INT and responds with an 
INTA pulse.

4. Upon receiving an INTA from the CPU group, the 
highest priority ISR bit is set, and the corresponding 
IRR bit is reset. The 8259A will also release a CALL in
struction code (11001101) onto the 8-bit Data Bus 
through its D7-0 pins.

5. This CALL instruction will initiate two more INTA 
pulses to be sent to the 8259A from the CPU group.

6 . These two INTA pulses allow the 8259A to release its 
preprogrammed subroutine address onto the Data 
Bus. The lower 8 -bit address is released at the first 
INTA pulse and and the higher 8 -bit address is re
leased at the second INTA pulse.

7. This completes the 3-byte CALL instruction released 
by the 8259A. In the AEOI mode the ISR bit is reset at 
the end of the third INTA pulse. Otherwise, the ISR bit 
remains set until an appropriate EOI command is 
issued at the end of the interrupt sequence.

The events occuring in an 8 0 86 /8088  system are 
the same until step 4.
4. Upon receiving an INTA from the CPU group, the high

est priority ISR bit is set and the corresponding IRR 
bit is reset. The 8259A does not drive the Data Bus 
during this cycle.

5- The 8086  / 8088  CPU will in itia te  a second  
INTA pulse. During this pulse, the 8259A releases an 
8 -bit pointer onto the Data Bus where it is 
read by the CPU.

6 . This completes the interrupt cycle. In the AEOI mode 
the ISR bit is reset at the end of the second INTA 
pulse. Otherwise, the ISR bit remains set untit an 
appropriate EOI command is issued at the end of the 
interrupt subroutine.

If no interrupt request is present at step 4 of either 
sequence (i.e., the request was too short in duration) the 
8259A will issue an interrupt level 7. Both the vectoring 
bytes and the CAS lines will look like an interrupt level 7 
was requested.

>N’ A INT

8259A Block Diagram

A D D R E S S  B U S  116 )
>

L
C O N T R O L  B U S

l/O R l/O W IN T IN T A

D A T A  B U S  (8 )

C A S C A D E
L IN E S

C S  A q 
C A S  0

d 7 -d 0 T O W R IN T  IN T A

C A S  1 8 2 5 8 A

C A S  2  IR Q IR Q  IR Q  IR Q IR Q  IR Q  IR Q  IR Q
SP /fN  7 6 5  4 3 2  1 0

S L A V E  P R O G . L  
E N A B L E  B U F F E R IN T E R R U P T

R E Q U E S T S

8259A Interface to Standard System Bus
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INTERRUPT SEQUENCE OUTPUTS
M CS-80/85 MODE
This sequence is timed by three INTA pulses. During the 
first INTA pulse the CALL opcode is enabled onto the 
data bus.

Content of First Interrupt 
Vector Byte

0 7  D 6  D 5  D 4  D 3  D 2  0 1  0 0

CALL COPE 1 1 0  0 1 1 0  1

During the second INTA pulse the lower address of the 
appropriate service routine is enabled onto the data bus. 
When Interval = 4 bits A5-A 7 are programmed, while Ap- 

are automatically inserted by the 8259A. When Inter
val = 8 only Ag and A7 are programmed, while A0-A 5 are 
automatically inserted.

Content of Second Interrupt 
Vector Byte

IR I n t e r v a l«  4

D 7 D 6 D 5 D 4 D 3 D 2 D1 DO

7 A 7 A 6 A 5 1 1 1 0 0

6 A 7 A 6 A 5 1 1 0 0 0

5 A 7 A 6 A 5 1 0 1 0 0

4 A 7 A 6 A 5 1 0 0 0 0

3 A 7 A 6 A 5 0 1 1 0 0

2 A 7 A 6 A 5 0 1 0 0 0

1 A 7 A 6 A 5 0 0 1 0 0

0 A 7 A 6 A 5 0 0 0 0 0

IR In te r v a l  =  8

0 7 D 6 D 5 0 4 0 3 0 2 0 1 DO

7 A  7 A 6 1 1 1 0 0 0

6 A 7 A 6 1 t 0 0 0 0

5 A  7 A 6 1 0 1 0 0 0

4 A 7 A 6 1 0 0 0 0 0

3 A 7 A 6 0 1 1 o 0 0

2 A 7 A 6 0 1 0 0 0 0

1 A 7 A 6 0 0 1 0 0 0

0 A 7 A 6 0 0 0 0 0 0

During the third INTA pulse the higher address of the 
appropriate service routine, which was programmed as 
byte 2 of the initialization sequence (A8 - A 15), is 
enabled onto the bus.

Content of Third Interrupt 
Vector Byte

D 7  P S  P S  D 4  D 3  D 2  0 1  DO

I A 1 5  | A 1 4  | A 1 3  | A 1 2  | A 1 1  | A 1 0  | A 9  | A 8  |

8 0 8 6 /8 0 8 8  Mode
8 0 8 6 /8 0 8 8  mode is similar to M C S 8 0 /8 5  mode 
except that only two Interrupt Acknowledge cycles are 
issued by the processor and no CALL opcode is sent 
to the processor. The first interrupt acknowledge cycle 
is similar to that of MCS-80/85 systems in that the 
8259A uses it to internally freeze the state of the inter
rupts for priority resolution and as a master it 
issues the interrupt code on the cascade lines at the 
end of the INTA pulse. On this first cycle it does not 
issue any data to the processor and leaves its data bus 
buffers disabled. On the second interrupt acknowledge 
cycle in 8086/8088 mode the master (or slave if so 
programmed) will send a byte of data to the processor 
with the acknowledged interrupt code composed 
as follows (note the state of the ADI mode control 
is ignored and A5-A i t are unused in 8086/8088 mode):

D 7 D 6 D 5 D 4 D 3 D 2 D 1 D O

IR 7 T 7 T 6 T 5 T 4 T 3 1 1 1

IR 6 T 7 T 6 T 5 T 4 T 3 1 1 0

IR 5 T 7 T 6 T 5 T 4 T 3 1 0 1

IR 4 T 7 T 6 T 5 T 4 T 3 1 0 0

IR 3 1 7 T 6 T 5 1 4 T 3 0 1 1

IR 2 1 7 T 6 T 5 1 4 T 3 0 1 0

IR  1 1 7 T 6 T 5 1 4 T 3 0 0 1

IRO 1 7 T 6 T 5 1 4 T 3 0 0 0
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PROGRAMMING THE 8259A
The 8259A accepts two types of command words gen
erated by the CPU:

1. In i t ia l iz a t io n  C o m m a n d  W o rd s  ( IC W s ) : Before normal 
operation can begin, each 8259A in the system must 
be brought to a starting point — by a sequence of 2 
to 4 bytes timed by WR pulses. This sequence 
is described in Figure 1.

2. O p e ra t io n  C o m m a n d  W o rd s  (O C W s ) : These are the 
command words that are sent to the 8259A for var
ious forms of operation, such as:

•  Interrupt Masking
•  End of Interrupt
•  Priority Rotation
•  Interrupt Status

The OCWs can be written into the 8259A anytime after
initialization.

INITIALIZATION
GENERAL
Whenever a command is issued with A0=0 and D4= 1,
this is interpreted as Initialization Command Word 1
(ICW1). ICW1 starts the initialization sequence during
which the following automatically occur.

a. The edge sense circuit is reset, which means that 
following initialization, an interrupt request (IR) input 
must make a low-to-high transition to generate an in
terrupt.

b. The Interrupt Mask Register is cleared.
c. R7 input is assigned priority 7.
d. The slave mode address is set to 7.
e. Special Mask Mode is cleared and Status Read is 

set to IRR.
f. If IC4=0, then all functions selected in ICW4 are set 

to zero. (Non-Buffered mode', no Auto-EOI, MCS- 
80/85  system).

Note: Master/Slave in ICW4 is only used in the buffered mode.

A0 0 , °3 RD WR cs INPUT OPERATION (READ)

0 0 1 0 IRR, ISR or In te rru p tin g  L eve l—► DATA BUS (N ote  1)
1 0 1 0 IMR -► D A T A  BUS

OUTPUT OPERATION (WRITE)

0 0 0 1 0 0 DATA BUS -► OCW 2
0 0 1 1 0 0 DATA BUS -► O C W 3
0 1 X 1 0 0 DATA B U S -^ IC W 1
1 X X 1 0 0 DATA BUS -► O C W 1 , ICW2, ICW3, ICW4 (N ote  2)

DISABLE FUNCTION

X X X 1 1 0 D A TA  BUS — 3-S TA TE  NO O PER ATIO N
X X X X X 1 D A TA  BUS — 3-S TA TE  (NO O P E R A TIO N )

N o t e s :  1 Selection of IRR, ISR or Interrupting Level is based on the content of OCW3 written  before the READ operation 
2 On-chip sequencer logic queues these commands in to  proper sequence

8259A Basic Oparation
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INITIALIZATION COMMAND WORDS 1 AND 2 
(ICW1, ICW2)
A5-A 15: P a g e  s ta r l in g  a d d re s s  o f  s e rv ic e  ro u t in e s . In an 
MCS 80/85 system, the 8 request levels will generate 
CALLS to 8 locations equally spaced in memory. These 
can be programmed to be spaced at intervals of 4 or 8 
memory locations, thus the 8 routines will occupy a 
page of 32 or 64 bytes, respectively.
The address format is 2 bytes long (A0-A 15). When the 
routine interval is 4, A0-A 4 are automatically inserted by 
the 8259A, while A5-A 15 are programmed externally. 
When the routine interval is 8 , A0-A 5 are automatically 
inserted by the 8259A, while A6-A , 5 are programmed 
externally.

The 8-byte interval will maintain compatibility with cur
rent software, while the 4-byte interval is best for a com
pact jump table.
In an MCS-86  system T7-T3 are inserted in the five 
most significant bits of the vectoring byte and the 
8259A sets the three least significant bits according to 
the interrupt level. A10-A 5 are ignored and ADI (Ad
dress Interval) has no effect.

LTIM: If LTIM = 1, then the 8259A will operate in the 
level interrupt mode. Edge detect logic on the 
interrupt inputs will be disabled.

ADI: CALL address interval. ADI = 1 then interval = 4;
ADI = 0 then interval = 8 .

SNGL: Single. Means that this is the only 8259A in the 
system. If SNGL= 1 no ICW3 will be issued.

IC4: If this bit is set — ICW4 has to be read. If ICW4
is not needed, set IC4 = 0.

INITIALIZATION COMMAND WORD 3 (ICW3)
T h is  w ord  is read o n ly  w hen  the re  is m ore  than  one
8259A in the  sys te m  and c a sca d in g  is  used, in w h ich
case  S N G L =  0. It w il l load th e  8 -b it s lave  re g is te r. The
fu n c tio n s  o f th is  re g is te r are:

a. In the master mode (either when SP = 1, or in buf
fered mode when M /S  = 1 in ICW4) a “1” is set for 
each slave in the system. The master then will re
lease byte 1 of the call sequence (for MCS-80/85 
system) and will enable the corresponding slave to 
re lease  bytes 2 and 3 (for 8 0 8 6 /8 0 8 8  only 
byte 2 ) through the cascade lines.

b. In the slave mode (either when SP = 0, or if BUF = 1 
and M /S  = 0 in ICW4) bits 2 -0  identify the slave. The 
slave compares its cascade input with these bits 
and if they are equal, bytes 2 and 3 of the call 
sequence (or just byte 2 for 8 0 8 6 /8 0 8 8 )  
are released by it on the Data Bus.

INITIALIZATION COMMAND WORD 4 (ICW4)

SFNM: If SFNM=1 the special fully nested mode is 
programmed.

BUF: If BUF = 1 the buffered mode is programmed In 
buffered mode SP/EN becomes an enable output 
and the master/slave determination is by M/S.

M/S: If buffered mode is selected: M/S= 1 means the 
8259A is programmed to be a master, M/S = 0 
means the 8259A is programmed to be a slave. If 
BUF = 0, M/S has no function.

AEOI: If AEOI= 1 the automatic end of interrupt mode 
is programmed.

^PM: Microprocessor mode: (iPM = 0 sets the 8259A 
for MCS-80/85 system operation, îPM = 1 sets 
the 8259A for MCS-86 system operation.

A0 o r 0 6 D5 0 4 03 D2 01 00
0 A7 A 6 A5 1 LTIM A O I SNQL IC4 I

J
1 A15 T7 A14/T6 A13/T5 A12/T4 A 1 1 .T3 A 10 A t

---- YES—
(SNGL. m 1)

Figure 1. Initialization Sequence

icwi

ICW2

ICW3

ICW4

B-112



8259A/8259A-2/8259A-8

ICW1

A o d 6 Oj  0 4 o 3 d 7 o , o 0

ICW2

A 0 ° 7  D$  Os °4  ° 3  ° 2  O, D0

ICW3 (S L A V E  D E V IC E )

%  d 7 d 6 D4 D j  o 7 D , d 0

ICW4
Ao D 7 D 6 D 5 D 4 D 3 D 2  O i D q

NOTE 1 SLAVE ID IS EQUAL TO THE CORRESPONDING MASTER IR INPUT

Initialization Command Word Format
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OPERATION COMMAND WORDS (OCWs)
After the Initialization Command Words (ICWs) are pro
grammed into the 8259A, the chip Is ready to accept 
Interrupt requests at its input lines. However, during the 
8259A operation, a selection of algorithms can com
mand the 8259A to operate in various modes through 
the Operation Command Words (OCWs).

OPERATION CONTROL WORDS (OCWs)

OCW1
AO D7 D6 D5 D4 D3 D2 D1 DO

m 1 M7 M6 M5 M4 M3 M2 M1 MO I

OCW2

| R SL EOI 0 0 L2 L1 L0 |

B
OCW3

I 0 ESMM SMM 0 1 P RR RIS |

OPERATION CONTROL WORD 1 (OCW1)
OCW1 sets and clears the mask bits in the interrupt 
Mask Register (IMR). M7-  M0 represent the eight mask 
bits. M = 1  indicates the channel is masked 
(inhibited), M = 0 indicates the channel is enabled.

OPERATION CONTROL WORD 2 (OCW2)
R, SL, EOI — These three bits control the Rotate and 
End if Interrupt modes and combinations of the two. A 
chart of these combinations can be found on the Opera
tion Command Word Format.
L2, L-i , Lq — These bits determine the interrupt level 
acted upon when the SEOI bit is active.

OPERATION CONTROL WORD 3 (OCW3)
ESMM — Enable Special Mask Mode. When this bit is 
set to 1 it enables the SMM bit to set or reset the Special 
Mask Mode. When ESMM = 0 the SMM bit becomes a 
"don't care".
SMM — Special Mask Mode If ESMM = 1 and SMM = 1 
the 8259A will enter Special Mask Mode. If ESMM= 1 
and SMM = 0 the 8259A will revert to normal mask mode. 
When ESMM = 0, SMM has no effect.
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OCWl

ocw?

A0 °< Di  °4 ° j  D, O, D0

OCW3

Ap D, Db O,, t)4 D3 0, D, 0̂

Operation Command Word Format
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INTERRUPT MASKS
Each Interrupt Request input can be masked individu
ally by the Interrupt Mask Register (IMR) programmed 
through OCW1. Each bit in the IMR masks one interrupt 
channel if it is set (1). Bit 0 masks IRO, Bit 1 masks IR1 
and so forth. Masking an IR channel does not affect the 
other channels operation.

SPECIAL MASK MODE
Some applications may require an interrupt service 
routine to dynamically alter the system priority struc
ture during its execution under software control. For 
example, the routine may wish to inhibit lower priority 
requests for a portion of its execution but enable some 
of them for another portion.
The difficulty here is that if an Interrupt Request is 
acknowledged and an End of Interrupt command did not 
reset its IS bit (i.e., while executing a service routine), 
the 8259A would have inhibited all lower priority 
requests with no easy way for the routine to enable 
them
That is where the Special Mask Mode comes in. In the 
special Mask Mode, when a mask bit is set in OCW1, it 
inhibits further interrupts at that level a n d  e n a b le s  inter
rupts from a l l  o th e r  levels (lower as well as higher) that 
are not masked.
Thus, any interrupts may be selectively enabled by 
loading the mask register.
The special Mask Mode is set by OCW3 where: 
SMM = f, SMM = 1, and cleared where SMM = 1, 
SMM = 0.

BUFFERED MODE

When the 8259A is used in a large system where bus 
driving buffers are required on the data bus and the cas
cading mode is used, there exists the problem of enabl
ing buffers.
The buffered mode will structure the 8259A to send an 
enable signal on SP/EN to enable the buffers In this 
mode, whenever the 8259A's data bus outputs are ena
bled, the SP/EN output becomes active.
This modification forces the use of software program
ming to determine whether the 8259A is a master or a 
slave. Bit 3 in ICW4 programs the buffered mode, and bit 
2 in ICW4 determines whether it is a master or a slave.

FULLY NESTED MODE
Th is  m ode  is  en te red  a fte r  in it ia liz a tio n  u n le ss  a n o th e r 
m o de  is p rog ra m m e d . The in te rru p t re q u e s ts  are 
o rde red  in p r io r ity  fo rm  0 th ro u g h  7 (0 h ig h e s t). W hen  an 
in te rru p t is  a ckno w led g ed  th e  h ig h e s t p r io r ity  re q u e s t is 
d e te rm in e d  and its  ve c to r p laced  on the  bus. A d d it io n a l
ly, a b it o f th e  In te rru p t S erv ice  re g is te r (ISO-7) is set. 
T h is  b it re m a in s  se t u n t il the  m ic ro p ro c e s s o r issu e s  an 
End o f In te rru p t (EOI) co m m an d  im m e d ia te ly  be fo re  
re tu rn in g  from  th e  se rv ice  ro u tin e , o r if AEO I (A u to m a tic  
End o f In te rru p t) b it is set, u n t il the  tra ilin g  edge o f the  
las t INTA. W h ile  the  IS b it is  se t, a ll fu r th e r  in te r ru p ts  o f 
the  sam e o r low e r p r io r ity  are in h ib ite d , w h ile  h ig h e r 
le v e ls  w il l  g e n e ra te  an in te r ru p t (w h ic h  w il l  be 
a ckno w led g ed  o n ly  if th e  m ic ro p ro c e s s o r in te rn a l In te r
ru p t enab le  fl ip - f lo p  has been re-enab led  th ro u g h  s o f t 
ware).

After the initialization sequence, IRO has the highest 
priority and IR7 the lowest. Priorities can be changed, 
as will be explained, by priority rotation.

THE SPECIAL FULLY NESTED MODE

This mode will be used in the case of a big system 
where cascading is used, and the priority has to be con
served within each slave. In this case the special fully 
nested mode will be programmed to the master (using) 
ICW4). This mode is similar to the normal fully nested 
mode with the following exceptions:

a. When an interrupt request from a certain slave is in 
service this slave is not locked out from the master's 
priority logic and further interrupt requests from 
higher priority IR’s within the slave will be recognized 
by the master and will initiate interrupts to the proc
essor. (In the normal nested mode a slave is masked 
out when its request is in service and no higher 
requests from the same slave can be serviced.)

b. When exiting the Interrupt Service routine the soft
ware has to check whether the interrupt serviced was 
the only one from that slave. This is done by sending 
a non-specific End of Interrupt (EOI) command to the 
slave and then reading its In-Service register and 
checking for zero. If it is empty, a non-specific EOI 
can be sent to the master too. If not, no EOI should be 
sent.
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POLL
In th is  m ode  the  m ic ro p ro c e s s o r in te rn a l In te rru p t 
Enable fl ip - f lo p  is reset, d is a b lin g  its  in te rru p t inpu t. 
Serv ice  to  d ev ices  is ach ieved by p rog ra m m e r in it ia tiv e  
us ing  a P oll com m and.

The P oll com m and  is issued  by s e ttin g  P =  "1 "  in OCW3. 
The 8259A tre a ts  the  next RD pulse  to  the  8259A (i.e., 
RD = 0 C 3 = 0) as an in te rru p t a cknow ledge , se ts  the 
app ro p ria te  IS b it if the re  is a request, and reads the  
p rio r ity  level In te rru p t is frozen from  WR to RD

The w ord  enab led  o n io  the  data  bus d u rin g  RE is:

D7 P< 0$ 04 D3 D2 Dt 00
| I — — — — W 2 W1 WO ]

W 9 -W 2  B inary code  o f the  h ig h e s t p r io r ity  level 
re qu e s tin g  serv ice

1 Equal to  a “ 1" if the re  is an in te rru p t.

Th is  m ode  is usefu l if th e re  is a rou tine  com m and com m - 
mon to  se ve ra l le ve ls  so  th a t the  INTA s e qu e n ce  is not 
nee d e d  (s a v e s  ROM s p a c e ) A n o th e r a p p lic a tio n  is  to  
use th e  p o ll com m and to  e xpand  th e  num ber of p r io r ity  
le ve ls  to  m ore  than  64.

END OF INTERRUPT (EOI)
The in S e c ,: e (IS ) b it can be re s e t e ith e r a u to m a tic a lly  
fo llo w in g  the  tra ilin g  e dge  o f th e  la s t in se qu e n ce  iNTA 
p u lse  (w hen  AEOI Dit in ICW1 is  s e t) o r by a com m and 
w ord  th a t m ust be issue d  to  th e  8 25 9 A  b e fo re  re tu rn ing  
from  a s e rv ic e  rou tine  (EOI com m and). An EOI com m and 
m ust be issued  tw ic e , once  fo r th e m a s te r and once  fo r 
th e  co rre s p o n d in g  s lave  if s la ve s  a re  in use.

There are tw o  fo rm s  o f EOI com m and: S p e c ific  and Non- 
S p e c ific  W hen the  S259A Is opera ted  in m odes w h ich  
p re s e r.e  She fu lly  nested  s tru c tu re , it can de te rm in e  
w h ich  is  ’ t to  reset on EOI W hen a N on -S p e c ific  EOI 
com m and  ' issued  the  8259A w ill a u to m a tic a lly  reset 
the  h ig h i-v  IS b it o f those  tha t are set, s ince  in the 
nesteo  m ode  the  h ig h e s t IS level was n ece ssa rily  the  
las t level a cknow ledged  and serv iced 

H ow eve r w hen a m ode is used w h ich  m ay d is tu rb  the  
fu lly  n es te d  s tru c tu re  th e  8 25 9 A  m ay no lon g e r be  ab le  
to  d e te rm in e  m e Ias i leve l a ck n o w le d g e d  In th is  ca se  a 
S p e ck le  End of Ir ite r iu p t (S E C :) m ust be issue d  w h ich  
in c lu d e s  as p a rt o f th e  com m and the  IS leve l to  be re se t. 
EOI is issue d  w he n e ve r EOI =  1, in O C W 2, w he re  L 0 -L 2  
is th e  b in a ry  leve l o f the  IS b it to  be  re se t. N ote  th a t 
a ltho u g h  the  R o ta te  com m and can be issue d  to g e th e r 
w ith  an E Oi w he re  EOl = 1, it is not n e c e s s a r ily  tie d  to  it.

It shou ld  he noted th a t an IS b it tha t is m asked by an 
IMR b it wm : not be c lea rea  by a non s p e c ific  EOI if the 
8259A is  in the  S pec ia l M ask Mode,

AUTOMATIC END OF INTERRUPT (AEOI) MODE
If AEO i = 1 in ICW4, then  the  8259A w ill ope ra te  in AEOI 
m ode c o n tin u o u s ly  u n til rep rogram m ed by ICW4. In th is  
m ode trie  8259A w ill a u to m a tic a lly  p e rfo rm  a non 
s p e c ific  EOI o pe ra tio n  at the  tra ilin g  edge o f the  last 
in te rru p t ackno w led g e  p u lse  (th ird  pu lse  in MCS-80/85,

second  in MCS-86). N o te  tha t from  a sys te m  s ta n d p o in t, 
th is  m ode  sh o u ld  be used o n ly  w hen a nested  m u lt ile v e l 
in te rru p t s tru c tu re  is no t requ ired  w ith in  a s in g le  8259A.

To  a c h ie v e  a u to m a t ic  r o ta t io n  w ith in  A E O I, th e re  
is  a s p e c ia l ro ta te  f l ip - f lo p . It is  s e t by  O C W 2 w ith  
R =  1, SL =  0. EO I =  0, and  c le a re d  w ith  R =  0, 
SEOI =  0, EOI =  0.

AUTOMATIC ROTATION 
(Equal Priority Devices)
In som e a p p lic a tio n s  the re  are a num b e r of in te rru p tin g  
d ev ices  o f equa l p r io r ity . In th is  m ode  a device , a fte r 
be ing  se rv iced , rece ives the  low est p r io r ity , so  a dev ice  
re qu e s tin g  an in te rru p t w ill have to  w a it, in the  w o rs t 
case u n til each o f 7 o th e r d ev ices  are se rv iced  at m ost 
once. For exam p le , it the  p r io r ity  and " in  s e rv ic e " s ta tu s  
is:

Bator* Rotate (IR4 the  h ig h e s t p r io r ity  re qu ir in g  service)

Priority Status

IS7 ISO IS5 IS4 IS3 IS2 IS1 ISO

0 1 I °  I ’
0 0 [ 0 I 0 I

Low*
4

st Priority H ighest P riority
V

| 7 '
6 1 5 1 4

3
2 l  1 r °  I

Attar Rotate (IR4 w as se rv iced , a ll o th e r p r io r it ie s  
ro ta te d  c o rresp o n d in g ly )

IS" Status

Priority Status

IS7 ISO IS5 IS4 I S3 IS2 IS1 ISO

0 I 0 I 0 ° L° Z ]
Highest Priority Lowest Priority

Z I M 5 A

There  a re  tw o  w ays  to  a c c o m p lis h  A u to m a tic  R o ta tion  
using  O C W 2, th e  R o ta te  on N o n -S p e c ific  EOI C om m and 
(R  =  1, S L  =  0 , E O I =  1 ) a n d  th e  R o t a t e  in 
A u to m a tic  EOI M o de  w h ich  is se t by (R =  1, SL =  0, 
EOI =  0 ) and c le a re d  by (R =  0  SL =  0, EOI =  0).

SPECIFIC ROTATION 
(Specific Priority)
The p rog ra m m e r can change  p r io r it ie s  by p rog ra m m in g  
the  b o tto m  p r io r ity  and th u s  fix in g  a ll o th e r p rio r itie s ; 
i.e., if IR5 is p rog ram m ed  as the  b o tto m  p r io r ity  device, 
then  IR6 w ill have the  h ig h e s t one.

The  Set P rio r ity  com m and is  issue d  in O C W 2 w he re : 
R =  1, SEOI =  1; L 0 -L 2  is  th e  b in a ry  p r io r ity  leve l c o d e  
o f th e  b o tto m  p r io r ity  d ev ice .

O b se rve  th a t in th is  m ode in te rn a l s ta tu s  is  u p d a te d  by 
s o ftw a re  c o n tro l during  O C W 2. H ow eve r, it is  in d e p e n d 
ent o f th e  End o f In te rru p t (EO I) com m and (a ls o  e x e 
cu te d  by O C W 2). P rio r ity  ch a n g e s  can be  e x e c u te d  d u r
ing an EOI com m and b y  us ing  th e  R o ta te  on S p e c if ic  
EOI C om m and in O C W 2 (R =  1, SL =  1, EOI =  1 and 
L 0 -L 2  =  IR leve l to  re c e iv e  b o tto m  p r io r ity ) .
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MCS80 85 
MODE

8086/8088
MODE

N O TES

1. M A ST E X  C L E A R  A C T IV E  O N L Y  DU R IN G  ICWM

2 F R E E Z E / IS  A C T IV E  DU R IN G  IN T a / A N D  RO LL SE Q U EN C E S O N L Y

3 T R U T H  T A B L E  FO R D L A T C H

C  j D I 0  I O PER A TIO N  

1 0> Di FOLLOW
0 I X  I O n -1  I HO LD

Priority Cell — Simplified Logic Diagram

LEVEL TRIGGERED MODE
This mode is programmed using bit 3 in ICW1.
If LTIM = ' 1 an interrupt request will be recognized by a 
'high' level on IR Input, and there is no need for an edge 
detection. The interrupt request must be removed 
before the EOI command is issued or the CPU interrupt 
is enabled to prevent a second interrupt from occurring.
The above figure shows a conceptual circuit to give the 
reader an understanding of the level sensitive and edge 
sensitive input circuitry of the 8259A. Be sure to note 
that the request latch is a transparent D type latch.

READING THE 8259A STATUS
The input status of several internal registers can be 
read to update the user information on the system. 
The following registers can be read via OCW3 
(IRR and ISR or OCW1 (IMR).
In te r r u p t  R e q u e s t  R e g is te r  ( IR R ): 8 -bit register which 
contains the levels requesting an interrupt to be 
acknowledged. The highest request level is reset from 
the IRR when an interrupt is acknowledged. (Not 
affected by IMR).

In -S e rv ic e  R e g is te r  (ISR ): 8 -bit register which contains 
the priority levels that are being serviced. The ISR is 
updated when an End of Interrupt command is issued.

In te r r u p t  M a s k  R e g is te r : 8-bit register which contains 
the interrupt request lines which are masked 
The IRR can be read when, prior to the RD pulse, a 
Read Register Command is issued with OCW3 (RR = 1, 
RIS = 0).
The ISR can be read when, prior to the RD pulse, 
a Read Register Command is issued with OCW3 (RR = 
1, RIS = 1).
There is no need to write an OCW3 before every status 
read operation, as long as the status read corresponds 
with the previous one; i.e., the 82S9A “remembers" 
whether the IRR or ISR has been previously selected by
the OCW3. This is not true when poll is used
After initialization the 8259A is set to IRR.
For reading the IMR, no OCW3 is needed. The output 
data bus will contain the IMR whenever RD is active and 
AO = 1 (OCW1).
Polling overrides status read when P = 1, RR = 1 in 
OCW3.
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SUMMARY OF 82S9A INSTRUCTION SET
I n s t .  # M n e m o n ic AO 0 7 D 6 0 5 D 4 D 3 0 2 D1 0 0 O p e r a t io n  D e s c r ip t io n

ICW1 A 0 A 7 A 6 A 5 1 0 1 1 0 Format =  4. single, edge triggered

2 ICW1 B 0 A 7 A 6 A 5 1 1 1 1 0 Format =  4. single, level triggered

3 ICW1 C 0 A 7 A6 A 5 1 0 1 0 0 Byte 1 In itia liza tion  Format =  4. not single, edge triggered
4 ICW1 D 0 A 7 A6 A 5 1 1 1 0 0 } Format =  4, not s ingle, level triggered
5 ICW1 E 0 A 7 A6 0 1 0 0 1 0 No ICW4 Required Formal =  8. s ingle, edge triggered
6 ICW1 F 0 A 7 A6 0 1 1 0 1 0 Format =  8. single, level triggered
7 ICW1 G 0 A 7 A6 0 1 0 0 0 0 Format = 8, not single, edge triggered
8 ICW1 H 0 A 7 A6 0 1 1 0 0 0 Format = 8, not single, level triggered

9 ICW1 I 0 A 7 A 6 A 5 1 0 1 1 1 > Format = 4, single, edge triggered

10 ICW1 J 0 A 7 A6 A 5 1 1 1 1 1 Format = 4, single, level triggered

11 ICW1 K 0 A 7 A6 A 5 1 0 1 0 1 Byte 1 In itia liza tion  pormat _ 4 not 9mgie, edge triggered

12 ICW1 L 0 A 7 A6 A 5 1 1 1 0 1 Format = 4, not single, level triggered

13 ICW1 M 0 A 7 A6 0 1 0 0 1 1 ICW4 Required Format = 8, single, edge triggered
14 ICW1 N 0 A 7 A6 0 1 1 0 1 1 Format = 8, single, level triggered

15 ICW1 0 0 A 7 A6 0 1 0 0 0 1 Format = 8, not single, edge triggered

16 ICW1 P 0 A 7 A6 0 1 1 0 0 1 Format = 8. not single, level triggered

17 ICW2 1 A15 A14 A13 A12 A11 A10 A 9 A 8 B yte 2 in itia liza tion

18 ICW3 M 1 S7 S6 S5 S4 S3 S2 S1 SO B yte 3 in itia liza tion  —  m aster

19 ICW3 S 1 0 0 0 0 0 S2 S1 SO B yte 3 in itia liza tion  —  slave

20 ICW4 A 1 0 0 0 0 0 0 0 0 No action , redundant

21 ICW4 B 1 0 0 0 0 0 0 0 1 Non-buffered mode, no AEOI, 8 0 8 6 /8 0 8 8
22 ICW4 C 1 0 0 0 0 0 0 1 0 Non-buffered mode. AEOI, M C S -8 0 /8 5

23 ICW4 D 1 0 0 0 0 0 0 1 1 Non-buffered mode, AEOI, 8 0 8 6 /8 0 8 8
24 ICW4 E 1 0 0 0 0 0 1 0 0 No action , redundant

25 ICW4 F 1 0 0 0 0 0 1 0 1 Non-buffered mode, no AEOI. 8 0 8 6 /8 0 8 8
26 ICW4 G 1 0 0 0 0 0 1 1 0 Non-buffered mode, AEOI, M C S -80 /85
27 ICW4 H 1 0 0 0 0 0 1 1 1 Non-buffered mode, AEOI, 8 0 8 6 /8 0 8 8
28 ICW4 I 1 0 0 0 0 1 0 0 0 B uffered  mode, s lave, no AEOI, M C S -80 /85
29 ICW4 J 1 0 0 0 0 1 0 0 1 B uffered  mode, s lave, no AEOI, 8 0 8 6 /8 0 8 8
30 ICW4 K 1 0 0 0 0 1 0 1 0 B uffered  mode, s lave, AEOI, M C S -80 /85
31 ICW4 L 1 0 0 0 0 1 0 1 1 B uffered  mode, s lave, AEOI. 8 0 8 6 /8 0 8 8
32 ICW4 M 1 0 0 0 0 1 1 0 0 B uffered  mode, m aster, no AEOI, M C S -80 /85
33 ICW4 N 1 0 0 0 0 1 1 0 1 B uffered  mode, m aster, no AEOI, 8 0 8 6 /8 0 8 8
34 ICW4 0 1 0 0 0 0 1 1 1 0 B uffered  mode, m aster, AEOI, M C S -80 /85
35 ICW4 P 1 0 0 0 0 1 1 1 1 B uffered  mode, m aster AEOI, 8086, 8088
36 ICW4 NA 1 0 0 0 1 0 0 0 0 Fu lly nested  mode, MCS-80, non buffered , no AEOI
37 ICW4 NB 1 0 0 0 1 0 0 0 1 ICW4 NB through ICW4 ND are identica l to
38 ICW4 NC 1 0 0 0 1 0 0 1 0 ICW4 B through ICW4 D w ith  the add ition of
39 ICW4 ND 1 0 0 0 1 0 0 1 1 Fully Nested Mode

40 ICW4 NE 1 0 0 0 1 0 1 0 0 Fully Nested Mode. MCS-80/85. non-buffered. no AEOI
41 ICW4 NF 1 0 0 0 1 0 1 0 1
42 ICW4 NG 1 0 0 0 1 0 1 1 0
43 ICW4 NH 1 0 0 0 1 0 1 1 1
44 ICW4 Nl 1 0 0 0 1 1 0 0 0
45 ICW4 NJ 1 0 0 0 1 1 0 0 1
46 ICW4 NK 1 0 0 0 1 1 0 1 0 > ICW4 NF through ICW4 NP are identica l to

47 ICW4 NL 1 0 0 0 1 1 0 1 1
ICW4 F through ICW4 P w ith  the add ition of 
Fully Nested Mode

48 ICW4 NM 1 0 0 0 1 1 1 0 0
49 ICW4 NN 1 0 0 0 1 1 1 0 1
50 ICW4 NO 1 0 0 0 1 1 1 1 0
51 ICW4 NP 1 0 0 0 1 1 1 1 1

52 OCW1 1 M7 M6 M5 M4 M3 M2 M 1 MO Load m ask reg is te r, read m ask re g is te r
53 OCW2 E 0 0 0 1 0 0 0 0 0 N on-spec ific  EOI
54 OCW2 SE 0 0 1 1 0 0 L2 L1 LO S pe c ific  EOI, L 0 -L 2  code  of IS FF to  be reset
55 OCW2 RE 0 1 0 1 0 c 0 0 0 R o ta te  on N on-S pecific  EOI
56 OCW2 RSE 0 1 1 1 0 0 L2 L1 LO R ota te  on S pe c ific  EOI L 0 -L 2  code  o f line
57 OCW2 R 0 1 0 0 0 0 0 0 0 R o ta te  in Auto  EOI (se t)
58 OCW2 CR 0 0 0 0 0 0 0 0 0 R otate  in Auto EOI (c lea r)
59 OCW2 RS 0 1 1 0 0 0 L2 11 LO Set P rio rity  Command
60 OCW3 P 0 0 0 0 0 1 1 0 0 Poll mode
6 i OCW3 RIS 0 0 0 0 0 1 0 1 1 Read IS re g is te r
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SUMMARY OF 8259A INSTRUCTION SET (Cont.)

Inst, f Mnemonic AO D7 D€ D5 04 D3 02 01 DO Operation Description

46 OCW3 RR 0 0 0 0 0 1 0 1 0 Read request register

47 OCW3 SM 0 0 1 1 0  1 0 0 0 Set specia l mask mode

48 OCW3 RSM 0 0 1 0  0 1 0 0 0 Reset specia l mask mode

Not*: 1 In the master mode SP pin = 1. in slave mode SP = 0

Cascading

The 8259A can be easily interconnected in a system of 
one master with up to eight slaves to handle up to 64 
priority levels.

A typical MCS-80/85 system is shown in Figure 2. The 
master controls, through the 3 line cascade bus, which 
one of the slaves will release the corresponding 
address.

As shown in Figure 2, the slave interrupt outputs are 
connected to the master interrupt request inputs. When 
a slave request line is activated and afterwards acknowl
edged. the master will enable the corresponding slave

to release the device routine address during bytes 2 
and 3 of INTA. (Byte 2 only for 8086/8088).

The cascade bus lines are normally low and will contain 
the slave address code from the trailing edge of the first 
INTA pulse to the trailing edge of the third pulse. It is 
obvious that each 8259A in the system must follow a 
separate initialization sequence and can be pro
grammed to work in a different mode. An EOI command 
must be issued twice: once for the master and once for 
the corresponding slave. An address decoder is required 
to activate the Chip Select (C3) input of each 8259A.

The cascade lines of the Master 8259A are activated for 
any interrupt input, even if no slave is connected to that 
input.

INTER R U PT REQUESTS

Figure 2. Cascading tha 82S9A
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PIN FUNCTIONS
NAME I/O PIN# FUNCTION

< o o 1 28 + 5 v  supply

GND 14 Ground

CS : 1 Chip S elect
A low on th is  pin enab les  RD 
and  WR c o m m u n ic a tio n  b e 
tween the  CPU and the  8259A. 
INTA functions are independent 
o f CS.

WR i 2 W rite:
A low on th is  pin when CS is 
low , enables the  8259A  to  a c 
ce p t command w ords from the 
CPU.

RD 3 Read:
A low  on th is  pin when CS is low 
enables the  8259A  to  re lease  
s ta tus onto  the  da ta  bus fo r the 
CPU.

D ?-D 0 I/O 4 -11 B id irec tiona l Data Bus:
C ontro l, s ta tu s  and in te rrup t- 
v e c to r  in fo rm a t io n  is  t r a n s 
fe rred  v ia  th is  bus.

CAS0-C AS2 I/O 12,13,15 C ascade  Lines:
The CAS lines form  a p riva te  
8259A  bus to  con tro l a m ultip le 
8 25 9A  s tru c tu re . T h ese  p ins 
are  outputs  fo r a m aster 8259A  
and inputs fo r a s lave  8259A.

S P/E N I/O 16 S lave P ro gram /E n ab le  Buffer:
T h is  is  a d u a l fu n c t io n  p in . 
When in the  B uffered  M ode it 
can  be used  as an o u tp u t to  
c o n t ro l b u f fe r  t r a n s c e iv e rs  
(EN). When not in the  buffered 
m ode it is used as an input to 
d es igna te  a m aster (SP = 1 ) or 
s lave  (SP = 0 ).

INT 0 17 Interrupt:
Th is pin g oes  h igh whenever a 
v a lid  in te rru p t re q u e s t is a s 
se rte d . It is  used  to  in te rru p t 
the  CPU, thus it is  connected  to  
the  C PU 's in terrup t pin.

IR0- IR 7 I 1 8 -25  In terrupt Requests:
Asynchronous inputs. An in te r
rupt request can be generated  
by ra is ing  an IR input ( low  to  
h igh) and ho ld ing it h igh until it 
is  a c k n o w le d g e d  (E dge  T r ig 
gered M ode), or jus t by a h igh 
leve l on an IR input (Leve l T rig 
gered M ode).

INTA I 26 In terrupt A cknow ledge :
T h is  p in  is  u s e d  to  e n a b le  
8 2 5 9 A  in te r ru p t-v e c to r  d a ta  
onto  the  da ta  bus. Th is is done 
by a sequence  of in te rrup t a c 
k n o w le d g e  p u ls e s  is s u e d  by 
the  CPU.

A0 I 27  AO A dd re ss  Line:
Th is pin a c ts  in con junction  w ith  
the  CS, WR, and RD pins. It is 
used by the  8259A  to  d ec ip h e r 
b e tw e e n  v a r io u s  C o m m a n d  
W ords the  CPU w rite s  and s ta 
tus the  CPU w ishes  to  read. It 
is  ty p ic a lly  co n n e c te d  to  the  
CPU AO a d d re s s  line  (A1 fo r 
8 0 8 6 /8 0 8 8 ).

ABSOLUTE MAXIMUM RATINGS*
Ambient Temperature Under B ias........  -40 °C to 85°C
Storage Temperature....................... -6 5 °C  to + 150“C
Voltage On Any Pin

With Respect to Ground....................  -0 .5V  to + 7V
Power Dissipation................................................. 1 Watt

• c o m m e n t

Stresses above those lis ted  under "A bso lu te  Maxim um  R atings" may 
cause permanent damage to the device. This is a stress rating only and 
functiona l operation o f the device at these or any o ther c ond itions  above 
those indicated in the operational sections o f th is  spec ifica tion  is not 
im plied

D.C. CHARACTERISTICS
T a = 0 ”C lo 70-C. Vc c  =  5V ±  10%  (8259-A). VCC =  5 V ±  10%  (8259A)

Symbol Parameter Min. Max. Units Test Conditions

VlL Inpu t Low  V o ltage -.5 V

V,H In p u t H igh  V o ltage 2.0 VCC+ .5 V V

VOL O u tp u t Low  V o ltage .45 V l0L = 2.2 m A

I>
° O u tp u t H igh  V o ltage 2.4 V Iqh =  -  400 pA

In te rru p t O u tp u t H igh 3.5 c I0 h =  -  100 pA
v OH(INT) V o ltage 2.4 V I0 h = -  400 pA

'L l In p u t Load C urren t 10 hA V|N =  ^CC 0V

' l o l O u tp u t Leakage C urren t -1 0 mA VOUT = 0.45 V

icc Vcc  S upp ly  C urren t 85 mA

k lR IR Inpu t Load C urren t -3 00 MA V|N =  0

10 pA < 2 II < o o
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8259A A.C. CHARACTERISTICS
Ta = 0"C to 70*C Vcc = 5 V ± 5 % (8259A-8) VCC= 5 V ±  10% (8259A)

TIMING REQUIREMENTS

Symbol Parameter 8259A-8 8259A 8259A-2 Units Test Conditions
Min. Max. Min. Max. Min. Max.

TAHRL AO /CS Setup to  R D /IN T A j 50 0 0 ns

TRHAX A O /C S  Hold a fte r R D /IN T A j 5 0 0 ns

TRLRH RD Pulse W idth 420 235 160 ns

TAHWL A O /C S  Setup to  W Rj 50 0 0 ns

TWHAX A O /C S  Hold a fte r W Rj 20 0 0 ns

TWLWH WR Pulse W idth 400 290 190 ns

TDVWH Data Setup to  W Rj 300 240 160 ns

TWHDX Data Hold a fte r W Rj 40 0 0 ns

TJLJH Interrupt Request W idth  (Low) 100 100 100 ns See Note 1

TCVIAL
C ascade  Setup to  S econd o r Third 

INTAj (S lave Only)
55 55 40 ns

TRHRL End of RD to  Next Command 160 160 160 ns

TWHRL End of WR to  Next Command 190 190 190 ns

Note: Th is  is the  low tim e required to  c le a r the  input la tch  in the  edge  tr ig g e re d  mode.

TIMING RESPONSES

Symbol Parameter 8259A-8 8259A 8259A-2 Units Test Conditions
Min. Max. Min. Max. Min. Max.

TRLDV Data Valid  from  R D /IN TA j 300 200 120 ns C o f D a ta  B u s  = 
100 pF

C of Data Bus 
M ax te x t C =  100 pF 
Min. te s t C =  15 pF

C in t  =  100 pF

^CASCADE =  100 pF

TRHDZ Data F loa t a fte r R D /IN T A j 10 200 100 85 ns

TJHIH Interrupt O utput Delay 400 350 300 ns

TIAHCV C ascade  Valid  from  F irs t INTAj 
(M aste r Only)

565 565 360 ns

TRLEL Enable A c tive  from RDj or INTAj 160 125 100 ns

TRHEH Enable Inactive  from  RDj or INTAj 325 150 d150 ns

TAHDV Data Valid from  S tab le  A ddress 350 200 200 ns

TCVDV C ascade  Valid  to  Valid  Data 300 300 200 ns

CAPACITANCE
Ta = 25*C; Vcc = GND = 0V

Symbol Parameter Min. Typ. Max. Unit Test Conditions

C,N Input C apac itance 10 . pF fc  =  1 MHz

Ci/o I /O  C apacitance 20 pF Unm easured pins re turned  to  V ss

Input and Output Waveforms for A.C. Tests

2 4

0.45
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WRITE MODE

READ/INTA MODE

OTHER TIMING

INTA SEQUENCE
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8155/8156/8155-2/8156-2
2048 BIT STATIC MOS RAM WITH I/O PORTS AND TIMER

■  256 Word x 8 Bits
■  Single +5V Power Supply
■  Completely Static Operation
■  Internal Address Latch
■  2 Programmable 8 Bit I/O Ports

■  1 Programmable 6-Bit I/O Port
■  Programmable 14-Bit Binary Counter/ 

Timer
■  Compatible with 8085A and 8088 CPU

■  Multiplexed Address and Data Bus
■  40 Pin DIP

The 8155 and 89156 are RAM and I/O chips to be used in the 8085A and 8088 microprocessor systems. The 
RAM portion is designed with 2048 static cells organized as 256 x 8. They have a maximum access time of 400 ns 
to permit use with no wait states in 8085A CPU. The 8155-2 and 8156-2 have maximum access times of 330 ns for use 
with the 8085A-2 and the full speed 5 MHz 8088 CPU.
The I/O portion consists of three general purpose I/O ports. One of the three ports can be programmed to be status 
pins, thus allowing the other two ports to operate in handshake mode.
A 14-bit programmable counter/timer is jalso included on chip to provide either a square wave or terminal count pulse 
for the CPU system depending on timer mode.

PIN CONFIGURATION BLOCK DIAGRAM

256 X 8 

STATIC 
RAM

ytP0RTAK
v ^ V PAo?

/IportbK
V - ?- i> PBo 7

V >
t _ .Vcc (+5V) 

V$s (0V)

*: 8155/8155-2 = CE. 8156/8156-2 = CE
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8185/8185-2
1024 x 8-BIT STATIC RAM FOR MCS-85 -

■ Multiplexed Address and Data Bus

■ Directly Compatible with 8085A 
and 8088 Microprocessors

■ Low Operating Power Dissipation

■ Low Standby Power Dissipation

■ Single +5V Supply

■ High Density 18-Pin Package

The Intel® 8185 is an 8192-bit static random access memory (RAM) organized as 1024 words by 8-bits using 
N-channel Silicon-Gate MOS technology. The multiplexed address and data bus allows the 8185 to interface directly 
to the 8085A and 8088 microprocessors to provide a maximum level of system integration.
The low standby power dissipation minimizes system power requirements when the 8185 is disabled.
The 8185-2 is a high-speed selected version of the 8185 that is compatible with the 5 MHz 8085A-2 and the full speed 
5 MHz 8088.

PIN CONFIGURATION BLOCK DIAGRAM

AD0 C 
AD, Q
a d 2 c  

a d 3 L  
a d 4 c  

ad 5 z  
a d 6 c  
a d 7 c  

v ss c

□  vcc
□  RD

□  WR
□  ALE

□  CS
□  CE,
□  CE2

D Ag
□  a 8

PIN NAMES

AD0 AD7 ADDRESS/DATA LINES
ADDRESS LINES

CS CHIP SELECT
CE, CHIP ENABLE (IO/M)
ce2 CHIP ENABLE
ALE ADDRESS LATCH ENABLE
RD READ ENABLE
WR WRITE ENABLE
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8355/8355-2
16,384-BIT ROM WITH I/O

■ 2048 Words x 8 Bits

■ Single + 5V Power Supply

■ Directly compatible with 8085A 
and 8088 Microprocessors

■ 2 General Purpose 8-Bit I/O Ports

■ Each I/O Port Line Individually 
Programmable as Input or Output

■ Multiplexed Address and Data Bus

■ Internal Address Latch

■ 40-Pin DIP

The Intel® 8355 Is a ROM and I/O chip to be used in the 8085A and 8088 microprocessor systems. The ROM por
tion is organized as 2048 words by 8 bits. It has a maximum acess time of 400 ns to permit use with no wait states in 
the 8085A CPU.
The I/O portion consists of 2 general purpose I/O ports. Each I/O port has 8 port lines and each I/O port line is 
individually programmable as input or output.
The 8355-2 has a 300ns access time for compatibility with the 8085A-2 and full speed 5 MHz 8088 microprocessors.

PIN CONFIGURATION BLOCK DIAGRAM
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8755A/8755A-2 
16,384-BIT EPROM WITH I/O

■ 2048 Words x 8 Bits

■ Single + 5V Power Supply (VCc)

■ Directly Compatible with 8085A 
and 8088 Microprocessors

■ U.V. Erasable and Electrically 
Reprogrammable

■ Internal Address Latch

■ 2 General Purpose 8-Bit I/O Ports

■ Each I/O Port Line Individually 
Programmable as Input or Output

■ Multiplexed Address and,Data Bus

■ 40-Pin DIP

The Intel® 8755A is an erasable and electrically reprogrammable ROM (EPROM) and I / O chip to be used in the 8085A 
and 8088 microprocessor systems. The EPROM portion is organized as 2048 words by 8 bits. It has a maximum 
access time of 450 ns to permit use with no wait states in an 8085A CPU.
The I/O portion consists of 2 general purpose I/O ports. Each I/O port has 8 port lines, and each I/O port line is 
individually programmable as input or output.
The 8755A-2 is a high speed selected version of the 8755A compatible with the 5 MHz 8085A-2 and the full speed 5 
MHz 8088.

PIN CONFIGURATION BLOCK DIAGRAM

PROG AND CE 40 3 VCC
ce2 39 D  p b ?

CLK c 38 3 PB6
RESET z 4 37 □ P ^

VDD : 36 □ PB4
READY c 6 35 j p b 3

IO/M c 34 3 pb2

fOR c 8 33 □ PB,

RD C 9 32 □ PB0
io w C 10 8755A/ 31 □ PA?

ALE c 11 8755A-2 30 3 P*6
AD0 : 12 29 □ pa5
AD, c 13 28 D PA4
a d 2 c 14 27 3 PA3
a d 3 c 15 26 □ pA?
a d 4 c 16 25 □ pA,

a d 5 : 17 24 3 PA0
a d 6 c 18 23 I! A io
a d 7 I 19 22 0  A9

Vss : 20 21 D A8

*8-10?
ce2-

IO/M- 

ALE- 
RD- 

IOW- 

RESET- 

lOR —

i>
C i >

- V cc  (+5V) 

- v ss (0V)
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Device Specifications

• Standard Peripherals**
®  H U M  M e m e : .» +  t

if; frx> it A A
; y * ;

f  f  |  0 i i 0  0 ! a

*F o r  c o m p le te  s p e c if ic a t io n s  re fe r  to  th e  
In te l M CS-85 U s e r ’ s M a n u a l.

* * F o r  c o m p le te  s p e c if ic a t io n s  re fe r  to  th e  
In te l P e r ip h e ra l D e s ig n  H a n d b o o k .

* * * F o r  c o m p le te  s p e c if ic a t io n s  re fe r  to  th e  1979 
In te l C o m p o n e n t D a ta  C a ta lo g .



8041A/8641A/8741A
UNIVERSAL PERIPHERAL INTERFACE 

8-BIT MICROCOMPUTER
8-Bit CPU plus ROM, RAM, I/O, Timer 
and Clock in a Single Package
One 8-Bit Status and Two Data Regis
ters for Asynchronous Slave-to-Master 
Interface
DMA, Interrupt, or Polled Operation 
Supported

1024 x 8 ROM/EPROM, 64 x 8 RAM, 
8-Bit Timer/Counter, 18 Programmable 
I/O Pins

■ Fully Compatible with MCS-48™, 
MCS-80™, MCS-85™, and MCS-86™ 
Microprocessor Families

■ Interchangeable ROM and EPROM 
Versions

■ 3.6 MHz 8741A-8 Available
■ Expandable I/O
■ RAM Power-Down Capability
■ Over 90 Instructions: 70% Single Byte
■ Single 5V Supply

The Intel® 8041A/8741A is a general purpose, programmable interface device designed for use with a variety of 8-bit 
microprocessor systems. It contains a low cost microcomputer with program memory, data memory, 8-bit CPU, I/O 
ports, timer/counter, and clock in a single 40-pin package. Interface registers are included to enable the UPI device to 
function as a peripheral controller in MCS-48™, MCS-80™, MCS-85™, MCS-86™, and other 8-bit systems.
The UPI-41 A™ has 1K words of program memory and 64 words of data memory on-chip. To allow full user flexibility the 
program memory is available as ROM in the 8041A version or as UV-erasable EPROM in the 8741A version. The 8741A 
and the 8041A are fully pin compatible for easy transition from prototype to production level designs. The 8641A is a 
one-time programmable (at the factory) 8741A which can be ordered as the first 25 pieces of a new 8041A order. The 
substitution of 8641A’s for 8041A's allows for very fast turnaround for initial code verification and evaluation results. 
The device has two 8-bit, TTL compatible I/O ports and two test inputs. Individual port lines can function as either in
puts or outputs under software control. I/O can be expanded with the 8243 device which is directly compatible and has 
16 I/O lines. An 8-bit programmable timer/counter is included in the UPI device for generating timing sequences or 
counting external inputs. Additional UPI features include: single 5V supply, low power standby mode (in the 8041A), 
single-step mode for debug (in the 8741 A), and dual working register banks.
Because it’s a complete microcomputer, the UPI provides more flexibility for the designer than conventional LSI inter
face devices. It is designed to be an efficient controller as well as an arithmetic processor. Applications include key
board scanning, printer control, display multiplexing and similar functions which involve interfacing peripheral 
devices to microprocessor systems.

PIN CONFIGURATION

TEST 0 C 1 

XTAL1 C  2 
XTAL2 7  3

RESET C A
SS C  5 

C S C  6 

E A C  7 
RDL 8 
A o C  9 
WB c 10

SYNC C  11 
DoC 12 
D i d  13 

D2 d 14 
03 C  15 

Da C  16 

D5 d  17 

D flC  18 

07 C  19 

VSSC 20

8041 A/
8741A 30

□  VCC

□  TEST 1
□  P27/0ACK

□  P26/DRO

□  P25/tBF

□  P24/OBF

□  P17

□  P16

□  P15

□  P14

□  Pl3

□  P12

□  P11

□  P10

□  VDD
□  prog

□  P23

□ P22
□  P21
□  P20

BLOCK DIAGRAM
INTERNAL
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DYNAMIC RAM CONTROLLER

■ Provides All Signals Necessary to- 
Control 2104A, 2117, or 2118 Dynamic 
Memories

■ Directly Addresses and Drives Up to 
128K Bytes Without External Drivers

■ Provides Address Multiplexing 
and Strobes

■ Provides a Refresh Timer and a 
Refresh Counter

■ Refresh Cycles May be Internally or 
Externally Requested

■ Provides Transparent Refresh Capability

■ Fully Compatible with Intel® 8080A, 
8085A and 8086 Microprocessors

■ Decodes 8085A Status for Advanced 
Read Capability

■ Provides System Acknowledge and 
Transfer Acknowledge Signals

■ Internal or External Clock Capability

The 8202 is a D ynam ic  RAM S ys te m  C o n tro lle r  d e s ig n ed  to  p rov ide  a ll s ig n a ls  nece ssa ry  to  use 2104A, 2117, o r 2118 
D ynam ic  R A M s in m ic ro c o m p u te r sys te m s . The 8202 p rov id e s  m u lt ip le x e d  a d d re sse s  and a d d re ss  s tro b e s , as w e ll as 
re fre sh /a cce ss  a rb itra tio n . R efresh  c y c le s  can  be s ta rte d  in te rn a lly  o r e x te rn a lly .

PIN CONFIGURATION 8202 BLOCK DIAGRAM

X<

C 1 40 □ < O O

a h 3 C 2 39 □ a h 5

a h 2 C 3 38 □ a h 6

AH-i C 4 37 □ X 1/CLK

4H 0 C 5 36 □ x 0/o p 2

A L q a 6 35 □ TNK

OUTo q 7
8202

34 □ REFRQ/ALE

A L ! c 8 33 □ PCS

o u T i d 9 32 □ RD/S1

a l 2 c 10 31 □ WR

o u t 2 q 11 30 □ SACK

a l 3 c 12 29 □ XACK

o u t 3 c 13 28 □ W E

a l 4 c 14 27 □ CAS

OUT4 c 15 26 □ RAS3

A L 5 c 16 25 □ B^OP-i

0 U T 5 □ 17 24 □ Bo
A L6/O P 3 c 18 23 □ r a s 2

OUT6 L 19 22 □ RAS-j

Vss d 20 21 □ R A g 0

A L 0-5
A L -/O P ,

A H o-6

Bo

RD/S1
WR
PCS

R E F R Q /A LE

x 0/o p 2
X ^ C L K

TNK
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8205
HIGH SPEED 1 OUT OF 8 BINARY DECODER

■ I/O  Port or Memory Selector
■ Simple Expansion —  Enable Inputs
■ High Speed Schottky Bipolar 

Technology —  18ns Max. Delay
■ Directly Compatible with TTL Logic 

Circuits

■ Low Input Load Current —  .25 mA 
max., 1/6 Standard TTL Input Load

■ Minimum Line Reflection —  Low 
Voltage Diode Input Clamp

■ Outputs Sink 10 mA min.
■ 16-Pin Dual-ln-Line Ceramic or 

Plastic Package

The 8205 decoder can be used for expansion of systems which utilize input ports, output ports, and mem
ory components with active low chip select input. When the 8205 is enabled, one of its eight outputs goes 
"low ", thus a single row of a memory system is selected. The 3 chip enable inputs on the 8205 allow easy 
system expansion. For very large systems, 8205 decoders can be cascaded such that each decoder can drive 
eight other decoders for arbitrary memory expansions.

®
The Intel 8205 is packaged in a standard 16 pin dual-in-line package; and its performance is specified over 
the temperature range of 0°C to +75°C, ambient. The use of Schottky barrier diode clamped transistors to 
obtain fast switching speeds results in higher performance than equivalent devices made with a gold d iffu 
sion process.

PIN CONFIGURATION LOGIC SYMBOL

A0 A2 ADDRESS INPUTS
e , e3 ENABLE INPUTS

Oq- 0 7 DECODED OUTPUTS
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8251A
PROGRAMMABLE COMMUNICATION INTERFACE

Synchronous and Asynchronous 
Operation

Asynchronous Baud Rate — DC to 
19.2K Baud

■ Synchronous 5-8 Bit Characters; 
Internal or External Character Synchro
nization; Automatic Sync Insertion

■ Asynchronous 5-8 Bit Characters;
Clock Rate— 1, 16 or 64 Times Baud 
Rate; Break Character Generation; 1, 
11/2, or 2 Stop Bits; False Start Bit 
Detection; Automatic Break Detect 
and Handling.

■ Synchronous Baud Rate — DC to 64K 
Baud

■ Full Duplex, Double Buffered, Trans
mitter and Receiver

■ Error Detection — Parity, Overrun and 
Framing

■ Fully Compatible with 8080/8085 CPU

■ 28-Pin DIP Package

■ All Inputs and Outputs are TTL 
Compatible

■ Single + 5V Supply

■ Single TTL Clock
The Intel® 8251A is the enhanced version of the industry standard, Intel® 8251 Universal Synchronous/Asynchronous 
Receiver/Transmitter (USART), designed for data communications with Intel’s new high performance family of 
microprocessors such as the 8085. The 8251A is used as a peripheral device and is programmed by the CPU to operate 
using virtually any serial data transmission technique presently in use (including IBM “ bi-sync” ). The USART accepts 
data characters from the CPU in parallel format and then converts them into a continuous serial data stream for 
transmission. Simultaneously, it can receive serial data streams and convert them into parallel data characters for the 
CPU. The USART will signal the CPU whenever it can accept a new character for transmission or whenever it has 
received a character for the CPU. The CPU can read the complete status of the USART at any time. These include data 
transmission errors and control signals such as SYNDET, TxEMPTY. The chip is constructed using N-channel silicon 
gate technology.

PIN C O N F IG U R A T IO N
BLO C K D IA G R A M

l  DTR 

I RTS 

] OSR 
|  RESET 

) CLK 

3 □  T»D 

i ^  TxEMPTY 

7 □  CTS 

3 3  SYNDET/BD 

5 □  TxRDY

PIN NAMES
D , D0 Data Bus (8 bits)
C/D C ontrol or Data is to be W ritten or Read
RD Read Data Command

WR W rite Data or C ontro l Command
cs Chip Enable
CLK Clock Pulse (TTL)
RESET Reset
TxC Transmitter Clock
TxD Transmitter Data
RxC Receiver Clock
RxD Receiver Data
RxRDY Receiver Ready (has character for 80801
TxR DY Transmitter Ready (ready for char from  8080)

C D .
RD

DATA
BUS

BUFFER

READ'W RITE
CONTROL

LOGIC

T
DSR Data Set Ready

DTR Data Terminal Ready CTS

SYNDET/BD Sync Detect/ RTS - ____ o

Break Detect

RTS Request to Send Data

CTS Clear to Send Data

TxE Transmitter Empty

V CC +5 Volt Supply

GND Ground

TRANSMIT 
BUFFER 

(P ~S)

_ TxRDY 

► TkE 
_ TxC

*  *  SYNC.1t T
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8253/8253*5

PROGRAMMABLE INTERVAL TIMER
■ MCS—85™ Compatible 8253-5

■ 3 Independent 16-Bit Counters

■ DC to 2 MHz

■ Programmable Counter Modes

■ Count Binary or BCD

■ Single + 5V Supply

■ 24-Pin Dual In-Line Package

The Intel® 8253 is a programmable counter/timer chip designed for use as an Intel microcomputer peripheral. It uses 
nMOS technology with a single +5V supply and is packaged in a 24-pin plastic DIP.
It is organized as 3 independent 16-bit counters, each with a count rate of up to 2 MHz. All modes of operation are soft
ware programmable.

PIN CONFIGURATION BLOCK DIAGRAM

CLK 0 

GATE 0 

O U T 0

CLK 1 

GATE 1 

OUT 1

C LK 2 

GATE 2 

OUT 2
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8255A/8255A-5
PROGRAMMABLE PERIPHERAL INTERFACE

■ MCS-85™ Compatible 8255A-5

■ 24 Programmable I/O Pins

■ Completely TTL Compatible

■ Fully Compatible with Intel® Micro
processor Families

■ Improved Timing Characteristics

■ Direct Bit Set/Reset Capability Easing 
Control Application Interface

■ 40-Pin Dual In-Line Package

■ Reduces System Package Count

■ Improved DC Driving Capability

The Intel® 8255A is a general purpose programmable I/O device designed for use with Intel® microprocessors. It has 
24 I/O pins which may be individually programmed in 2 groups of 12 and used in 3 major modes of operation. In the first 
mode (MODE 0), each group of 12 I/O pins may be programmed in sets of 4 to be input or output. In MODE 1, the second 
mode, each group may be programmed to have 8 lines of input or output. Of the remaining 4 pins, 3 are used for hand
shaking and interrupt control signals. The third mode of operation (MODE 2) is a bidirectional bus mode which uses 8 
lines for a bidirectional bus, and 5 lines, borrowing one from the other group, for handshaking.

PIN CONFIGURATION 8255A BLOCK DIAGRAM
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In t e l

8271/8271-6/8271-8
PROGRAMMABLE FLOPPY DISK CONTROLLER

■ IBM 3740 Soft Sectored  Format Com patible

■ Program m able Record Lengths

■ M ulti-Sector Capability

■ Maintain Dual Drives with Minimum Software 
Overhead Expandable to 4 Drives

■ A utom atic Read/Write Head Positioning and 
Verification

■ Internal CRC G eneration and Checking

■ Program m able S tep  Rate, Settle-Time, Head 
Load Time, Head Unload Index Count

■ Fully MCS-80™ and MCS-85™ Com patible

■ Single 5V Supply

■ 40-Pin Package

The Intel® 8271 Programmable Floppy Disk Controller (FDC) is an LSI component designed to interface one to 4 floppy 
disk drives to an 8-bit microcomputer system. Its powerful control functions minimize both hardware and software 
overhead normally associated with floppy disk controllers.

PIN CONFIGURATION BLOCK DIAGRAM

FAULT RESET OPO £ 40 3 Vcc
SELECT 0 C 39 j LOW CURRENT

4 M H /C LK  £ 38 3 LOAD HEAD

RESET £ 4 37 3 DIRECTION
READY 1 £ 36 3 SEEK STEP

SELECT 1 C 6 3b J WR ENBLE
DACK H 7 34 3 INDEX

DRQ C 8 33 3 WR PROTECT

RD C 9 32 3 READY 0

wr"  C 10
8271 3 TRK0

INT C 11 30 3 COUNT OPI

DBO C 12 29 D WR DATA

DB1 C 13 28 : FAULT

D82 C 14 27 j UNSEP DATA

DB3 C 1b 26 3 DATA WINDOW

DB4 C 16 2b 3 PLO SS

DB5 C 17 24 J C?
DB6 Q 18 23 3 INSYNC
DB7 Q 19 22 3 A )

GND Q 20 21 3 A0

PIN NAMES

CM* ACxNOWlfDGC
DM* REQUEST

SERIAL 
INTERf ACE 

CONTROllER

WR DATA 

INSYNC

DATA WINDOW

DRIVE
INTERFACE

CONTROLLER
SELECT 0 
SELECT 1 
WR ENABLE 
LOAD HEAD 
SEEK/STEP 
DIRECTION 
LOW CURRENT 
FAULT RESET/OPO

DISK INTERFACE
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8273

PROGRAMMABLE HDLC/SDLC PROTOCOL 
CONTROLLER

■ HDLC/SDLC Compatible

■ Frame Level Commands

■ Full Duplex, Half Duplex, or Loop 
SDLC Operation

■ Up to 64K Baud Transfers

■ Two User Programmable Modem 
Control Ports

■ Automatic FCS (CRC) Generation and 
Checking

■ Programmable NRZI Encode/Decode

■ N-Bit Reception Capability

■ Digital Phase Locked Loop Clock 
Recovery

■ Minimum CPU Overhead

■ Fully Compatible with 8080/8085 CPUs

■ Single + 5V Supply

■ 40-Pin Package

The Intel® 8273 Programmable HDLC/SDLC Protocol Controller Is a dedicated device designed to support the ISO/C- 
CITT’s HDLC and IBM’s SDLC communication line protocols. It is fully compatible with Intel’s new high performance 
microcomputer systems such as the MCS-85™. A frame level command set is achieved by a unique microprogrammed 
dual processor chip architecture. The processing capability supported by the 8273 relieves the system CPU of the low 
level real-time tasks normally associated with controllers.

PIN CONFIGURATION BLOCK DIAGRAM

PIN NAMES

TxINT RESULT 

RxINT RESULT :Q

- O

TxDRQ
TxDACK

RxDRQ
RxDACK

TxINT
RxINT

READ/
WRITE
DMA/

CONTROL
LOGIC

DB0-DB7 DATA BUS (8 BITS) CS CHIP SELECT
FLAG DET FLAG DETECT 32xCLK 32 TIMES CLOCK
TxINT TRANSMITTER INTERRUPT Rx D RECEIVER DATA
CLK CLOCK INPUT Rx C RECEIVER CLOCK
RESET RESET Tx C TRANSMITTER CLOCK
Tx DACK TRANSMITTER DMA ACKNOWLEDGE Tx D TRANSMITTER DATA
TxDRQ TRANSMITTER DMA REQUEST CTS CLEAR TO SEND
RD READ INPUT CD CARRIER DETECT
MR WRITE INPUT PA2 -P A * GP INPUT PORTS
Rx DACK RECEIVER DMA ACKNOWLEDGE PB1 -P B 4 GP OUTPUT PORTS
Rx DRQ RECEIVER DMA REQUEST RTS REQUEST TO SEND
Rx INT RECEIVER INTERRUPT vcc +5 VOLT SUPPLY
AO—A1 COMMAND REGISTER SELECT ADDRESS GND GROUND
BFll DIGITAL PHASE LOCKED LOOP

IT

A -N
W

INTERNAL DATA BUS -

CPU INTERFACE MODEM INTERFACE
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8275
PROGRAMMABLE CRT CONTROLLER

■ Programmable Screen and Character 
Format

■ 6 Independent Visual Field Attributes

■ 11 Visual Character Attributes 
(Graphic Capability)

■ Cursor Control (4 Types)

■ Light Pen Detection and Registers

■ Fully MCS-80™ and MCS-85™ 
Compatible

■ Dual Row Buffers

■ Programmable DMA Burst Mode

■ Single + 5V Supply

■ 40-Pin Package

The Intel® 8275 Programmable CRT Controller is a single chip device to interface CRT raster scan displays with 
Intel® microcomputer systems. Its primary function is to refresh the display by buffering the information from main 
memory and keeping track of the display position of the screen. The flexibility designed into the 8275 will allow simple 
interface to almost any raster scan CRT display with a minimum of external hardware and software overhead.

PIN CONFIGURATION BLOCK DIAGRAM

LC3  C 

LC2  C 2 

LC 1 C 3 

LCo C 4 

DRQ C 5 
DACK C 6 

HRTC C 7 
VRTC C 8 

RD C 9 
WR C It  

LPEN C n  

DBo C is 
D B l C i :  

DB2  C 

D B 3 C  1! 

DB4  C 11 

DBS C 11 
DBg C '< 
DB7  C 1! 

GND C 2<

39 3 LAo 
38 3 LA1 
37 D LTEN 
36 3  RVV 

35 J  VSP 

34 3 GPA1 
33 3 GPAo 
32 3 HLGT 
31 3  IRQ 

30 3 CCLK 
29 3 CC6 

28 D CCS 

27 3 CC4 
26 3 CC3 

25 3 CC2  

24 3 CCl 
23 3 cco  
22 3 CS"

2i Daq

B-136



8279/8279-5
PROGRAMMABLE KEYBOARD/DISPLAY INTERFACE

■ MCS-85™ Compatible 8279-5

■ Simultaneous Keyboard Display 
Operations

■ Scanned Keyboard Mode

■ Scanned Sensor Mode

■ Strobed Input Entry Mode

■ 8-Character Keyboard FIFO

■ 2-Key Lockout or N-Key Rollover with 
Contact Debounce

■ Dual 8- or 16-Numerical Display

■ Single 16-Character Display

■ Right or Left Entry 16-Byte Display 
RAM

■ Mode Programmable from CPU

■ Programmable Scan Timing

■ Interrupt Output on Key Entry

The Intel0 8279 is a general purpose programmable keyboard and display I/O interface device designed for use with 
Intel® microprocessors. The keyboard portion can provide a scanned interface to a 64-contact key matrix. The 
keyboard portion will also interface to an array of sensors or a strobed interface keyboard, such as the hall effect and 
ferrite variety. Key depressions can be 2-key lockout or N-key rollover. Keyboard entries are debounced and strobed in 
an 8-character FIFO. If more than 8 characters are entered, overrun status is set. Key entries set the interrupt output 
line to the CPU.
The display portion provides a scanned display interface for LED, incandescent, and other popular display 
technologies. Both numeric and alphanumeric segment displays may be used as well as simple indicators. The 8279 
has 16X8 display RAM which can be organized into dual 16X4. The RAM can be loaded or interrogated by the CPU. Both 
right entry, calculator and left entry typewriter display formats are possible. Both read and write of the display RAM 
can be done with auto-increment of the display RAM address.

PIN CONFIGURATION

r l2 C 1 

Rl3 C ; 
c l k C : 
■ROC < 
R l*C  ! 

RLsC <
RL6 [  

RL7 [

RESETCj 9

rdC io

DB0 C 12 
D 8,C  13

db2C m  
DB3C 1b 

DB4C 16 
DB5C 17

db6 L  18 
DB7C 19 

VSSC 2(1

40 D v cc 

39 D RL,

38 HRlo 
37 3 C N T I/S T B  

36 3SHIFT 

35 D S L 3 

34 U S l2 

33 H S L ,

32 J SL0 

31 3 OUT B0 

30 3 OUT 8 ,

29 I ]O U T B 2 

28 UOUT 83 

27 3 OUT A0 

26 ]  OUT A i 

25 D O U T A2 

24 I ]  OUT A 3 

23 ] ]  5 5  

22 DC?
21 I K

PIN NAMES

DB<|7 1 0 OATA BUS 181 DIRECTIONAL
CLK 1 CLOCK INPUT
RESET 1 RESET INPUT
£? 1 CHIP SELECT
TO "1 1 1 READ INPUTTO 1 WRITE INPUT
*0 1 BUFFER ADORESS
IRQ 0 INTERRUPT REOUEST OUTPUT
SL03 0 SCAN l INES
R Lq 7 ' RETURN LINES
SHIFT 1 SHIFT INPUT
CNTL STB 1 CONTROL STROBE INPUT
OUT A0, 0 DISPLAY 1A • OUTPUTS
OUT B0 3 0 DISPLAY IBI OUTPUTS

0 BLANK DISPLAY OUTPUT

LOGIC SYMBOL

T

IRQ RLoJ

OATA
BUS

SHIFT

RD"

WR
CNTL'STB

SLo-3

AO

RESET

OUT A 0 3

CLK OUT B03

6D

1 1

%

KEY OATA
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i n t e l

8291
GPIB TALKER/LISTENER

■ Designed to Interface Microprocessors 
(e.g., 8080, 8085, 8086, 8048) to an 
IEEE Standard 488 Digital Interface 
Bus

■ Programmable Data Transfer Rate
■ Complete Source and Acceptor 

Handshake
■ Complete Talker and Listener 

Functions with Extended Addressing
■ Service Request, Parallel Poll, Device 

Clear, Device Trigger, Remote/Local 
Functions

■ Selectable Interrupts
■ On-Chip Primary and Secondary 

Address Recognition
■ Automatic Handling of Addressing and 

Handshake Protocol
■ Provision for Software Implementation 

of Additional Features

a 1 -  8 MHz Clock Range
■ 16 Registers (8 Read, 8 Write), 2 for 

Data Transfer, the Rest for Interface 
Function Control, Status, etc.

■ Directly Interfaces to External Non- 
Inverting Transceivers for Connection 
to the GPIB

■ Provides Three Addressing Modes, 
Allowing the Chip to be Addressed 
Either as a Major or a Minor Talker/ 
Listener with Primary or Secondary 
Addressing

a DMA Handshake Provision Allows for 
Bus Transfers without CPU Intervention

a Trigger Output Pin
a On-Chip EOS (End of Sequence) 

Message Recognition Facilitates 
Handling of Multi-Byte Transfers

The 8291 GPIB Talker/Listener is a microprocessor-controlled chip designed to interface microprocessors (e.g., 8048, 
8080, 8085, 8086) to an IEEE Standard 488 Instrumentation Interface Bus. It implements all of the Standard's interface 
functions except for the controller. * 3

PIN CONFIGURATION BLOCK DIAGRAM

DMA ACKC 7

□  VCC
□ EOI

□ NDAC
□  NRFD

□  DAV

□  D I0 8  

3 DI07
□ DT06 
3 D I0 5

□  D I04

□ DI03
3  D I02  

3Dioi
3 SRQ

□  ATN 

3  REN

3i?c 
3  RS2 

3  RSI 

3 RS0
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8292

GPIB CONTROLLER

FEATURES:
■ Complete IEEE Standard 488 Controller 

Function.
■ Interface Clear (IFC) Sending Capability 

Allows for Seizure of Control and/or 
Initialization of the Bus.

■ Responds to Service Requests (SRQ).
■ Sends (REN), Allowing Instruments to 

Switch to Remote Control.

■ Complete Implementation of Transfer 
Control Protocol.

■ Synchronous Control Seizure Prevents 
the Destruction of any Data 
Transmission in Progress.

■ Connects with the 8291 to Form a 
Complete IEEE Standard 488 Interface 
Talker/Listener/Controller.

The 8292 GPIB CONTROLLER is a m icroprocessor-controlled chip designed to connect w ith the 8291 
GPIB TALKER/LISTENER to implement the full IEEE Standard 488 contro ller function, including transfer 
contro l protocol. The 8292 is a pre-programmed UPI-41A7m

PIN CONFIGURATION

fFCR C 40 □
X1 C 2 39 □
X2 C 3 38 □

RESET □ 4 37 □
NC C 5 36 □
CS c 6 35 □

GND c 7 34 □
RD q 8 33 □
AO q 9 32 □

WR c 10 31 □
SYNC □ 11 30 b

DO L 12 29 □
D1 □ 13 28 □
□2 C 14 27 □
03 □ 15 26 □
D4 c 16 25 0
D5 c 17 24 □
□6 c 18 23 □
D7 c 19 22 □

Vss c 20 21 □

Vcc
COUNT

REN

D A V

IB F l

OBFI

EOT

SPI

TCI

CIC

NC

ATNO

NC

CLTH

NC

NC

SYC

IFC

ATNI
S R Q

8291, 8292 SYSTEM DIAGRAM

B-139



8293
GPIB TRANSCEIVER

■ Nine Open-collector or Three-state 
Line Drivers

■ 48 mA Sink Current Capability on 
Each Line Driver

■ Nine Schmitt-type Line Receivers

■ High Capacitance Load Drive 
Capability

■ Single 5V Power Supply

■ 28-Pin Package

■ Low Power HMOS Design

■ On-chip Decoder for Mode 
Configuration

■ Power Up/Power Down Protection to 
Prevent Disrupting the IEEE Bus

■ Connects with the 8291 and 8292 to 
Form an IEEE Standard 488 Interface 
Talker/Listener/Controller with no 
Additional Components

■ Only Two 8293’s Required per GPIB 
Interface

The Intel® 8293 GPIB Transceiver is a high current, non-inverting buffer chip designed to interface the 8291 GPIB 
Talker/Listener or the 8292 GPIB Controller with the 8291 to the IEEE Standard 488-1978 Instrumentation Interface 
Bus. Each GPIB interface would contain two 8293 Bus Transceivers. In addition, the 8293 can also be used as a general 
purpose bus driver.

PIN CONFIGURATION 8291, 8292, 8293 SYSTEM DIAGRAM

TR 1 c 28 □ v Cc
T R 2 c 2 27 □ O P T A

E O I2 c 3 26 O P T B

A T N 2 c 4 25 □ D A T A 1 0

D A T A 1 c 5 24 3 D A T A 9

D A T A 2 c 6 23 □ D A T A 8

D A T A 3 c 7 8 2 9 3  22 □ B U S 9

D A T A 4 c 8 21 □ B U S S

D A T A 5 c 9 20 3 G N D

D A T A 6 c 10 19 3 B U S 7

D A T A 7 c 11 18 3 B U S 6

B U S1 c 12 17 3 B U S 5

B U S 2 c 13 16 3 B U S 4

G N D c 14 15 3 B U S 3

M IC R O P R O C E S S O R  S Y S T E M  B U S

i r _ a i
D M A  b *

I  C O N T R O L L E R  |
|  (O P T IO N A L )  I

I__________ J

82 91
G P IB

T A L K E R /
L IS T E N E R

8 2 9 3  
B U S

T R A N S C E IV E R S

H
G E N E R A L  P U R P O S E  IN T E R F A C E  B U S
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8294

DATA ENCRYPTION UNIT
■ Certified by National Bureau of 

Standards

■ 80 Byte/Sec Data Conversion Rate

■ 64-Bit Data Encryption Using 56-Bit 
Key

■ DMA Interface

■ 3 Interrupt Outputs to Aid in Loading 
and Unloading Data

■ 7-Bit User Output Port

■ Single 5V ±  10% Power Supply

■ Peripheral to MCS-86™, MCS-85™, 
MCS-80™ and MCS-48™ Processors

■ Implements Federal Information 
Processing Data Encryption Standard

■ Encrypt and Decrypt Modes Available

D E S C R IP T IO N

The Intel® 8294 Data Encryption Unit (DEU) is a microprocessor peripheral device designed to encrypt and decrypt 
64-bit blocks of data using the algorithm specified in the Federal Information Processing Data Encryption Standard. 
The DEU operates on 64-bit text words using a 56-bit user-specified key to produce 64-bit cipher words. The operation 
is reversible: if the cipher word is operated upon, the original text word is produced. The algorithm itself is perma
nently contained in the 8294; however, the 56-bit key is user-defined and may be changed at any time.
The 56-bit key and 64-bit message data are transferred to and from the 8294 in 8-bit bytes by way of the system data 
bus. A DMA interface and three interrupt outputs are available to minimize software overhead associated with data 
transfer. Also, by using the DMA interface two or more DEUs may be operated in parallel to achieve effective system 
conversion rates which are virtually any multiple of 80 bytes/second. The 8294 also has a 7-bit TTL compatible output 
port for user-specified functions.
Because the 8294 implements the NBS encryption algorithm it can be used in a variety of Electronic Funds Transfer 
applications as well as other electronic banking and data handling applications where data must be encrypted.

PIN
CONFIGURATION PIN NAMES BLOCK DIAGRAM

NC L 1 
XI C 2

___ X2 C 3
RESETC 4 

N C C  5 
C SC 6 

G N D C  7 
RD C 8 
AO C 9 
W R C  It 

SYNC C 11 
D O C  
D1 C 
D 2 C  
D3 C  
D4 C 
D 5 C  
D 6 C  
D 7 C  

GND C

3 Vcc 
3 NC_ 
3 DACK
□ DRQ 
3SRQ 
30AV 
3 NC
□ P6 
3P5 
3P4 
3 P3 
3P2 
3 Pi 3po 
3VDD 
3 NC 
3CCMP 
3NC
3 NC 
3 NC

PIN NAME FUNCTION

D7-D0 DATA BUS
RD.WR READ.WRITE STROBES
CS CHIP SELECT

CONTROL/DATA SELECT
RESET RESET INPUT
Xi,X2 FREQUENCY REFERENCE INPUT
SYNC HIGH FREQUENCY OUTPUT
DRQ,DACK DMA REQUEST,DMA ACKNOWLEDGE
SRQ.OAV.CCM P INTERRUPT REQUEST OUTPUTS
P6Po OUTPUT PORT LINES
Vcc.Voo.c n  D + 5V POWER.GND
NC NO CONNECTION
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8295

DOT MATRIX PRINTER CONTROLLER

■ Interfaces Dot Matrix Printers to 
MCS-48™, MCS-80/85™, MCS-86™ 
Systems

■ 40 Character Buffer On Chip

■ Serial or Parallel Communication with 
Host

■ DMA Transfer Capability

■ Programmable Character Density (10 or 
12 Chararcters/lnch)

■ Programmable Print Intensity

■ Single or Double Width Printing

■ Programmable Multiple Line Feeds

■ 3 Tabulations

■ 2 General Purpose Outputs

The Intel® 8295 Dot Matrix Printer Controller provides an interface for microprocessors to the LRC 7040 Series dot 
matrix impact printers. It may also be used as an interface to other similar printers.
The chip may be used in a serial or parallel communication mode with the host processor. In parallel mode, data 
transfers are based on polling, interrupts, or DMA. Furthermore, it provides internal buffering of up to 40 characters 
and contains a 7 x 7 matrix character generator accommodating 64 ASCII characters.

PIN
CONFIGURATION PIN NAMES BLOCK DIAGRAM

PFEEDC ' 
XlC 7 
X2C 3

RESETC 4
N C [ 5 
CSC 6 

GND C 7 
RDC 8 

VCCC 9 
■WRC '0 

SYNC C tt 
° 0 C >7 
DlC '3 
° 2 C ’ 4 
t>3 C '5 
04 C '6 
DSC '7
o6 C >8
D?c 19 

GNDC 70

DVcc
2 HOME 
j  daCk/sin 
DDRQ/CT5 
DlROISER

Dstb

j s 7

IDS?
I5!

j5T
Z VDD
ZNC
Zgpi

PIN NAME FUNCTION

DATA BUS
RD. WR READ. WRITE STROBES
cs CHIP SELECT
RESET RESET INPUT
X1.X2 FREQUENCY REFERENCE INPUTS
SYNC HIGH FREQUENCY OUTPUT
MOT, PFM MAIN, PAPER FEED MOTOR DRIVES
DRO. DACK DMA REQUEST, ACKNOWLEDGE
SIN, CTS SERIAL INPUT, CLEAR TO-SEND
IRQ/SER INTERRUPT REQUEST, SERIAL GROUND
S1-S7 SOLENOID DRIVE OUTPUTS
PFEED PAPER FEED INPUT
HOME. TOF HOME, TOP-OF FORM INPUTS
STB SOLENOID STROBE OUTPUT
GP1. GP2 GENERAL PURPOSE OUTPUTS
Vcc.VDO.GND + 5V POWER. GNO

Rd
wR

OACK/SIN
DRO/CTS
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Appendix B 
Device Specifications
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2114A
1024 X 4 BIT STATIC RAM

2114AL-2 2114AL-3 2114AL-4 2114A-4 2114A-5
Max. Access Time (ns) 120 150 200 200 250
Max. Current (mA) 40 40 40 70 70

■ HMOS Technology

■ Low Power, High Speed

■ Identical Cycle and Access Times

■ Single +5V Supply ±10%

■ High Density 18 Pin Package

■ Completely Static Memory - No Clock 
or Timing Strobe Required

■ Directly TTL Compatible: All Inputs 
and Outputs

■ Common Data Input and Output Using 
Three-State Outputs

■ 2114 Replacement

The In te l 2114A is a 4096-b it s ta tic  R andom  Access M em ory  o rga n ized  as 1024 w ord s  by 4 -b its  us ing  H M O S, a h igh  p e rfo rm a n ce  
M OS te ch n o lo g y . It uses fu lly  DC s tab le  (s ta tic ) c irc u itry  th ro u g h o u t, in bo th  the  array and the  d eco d ing , th e re fo re  it requ ires  no 
c lo cks  o r re fresh ing  to  operate. D ata access is p a rt ic u la r ly  s im p le  s ince  address se tup  tim es are no t requ ired . The  data  is read 
ou t n o n d e s tru c tive ly  and has the  sam e p o la rity  as the  in p u t data. C om m o n  in p u t/o u tp u t p ins are p rov ided.

The  2 1 14A is designed  fo r m em ory a p p lica tio n s  w here  the  h igh  p e rfo rm a n ce  and h igh  re lia b ility  o f HM OS. low  cost, la rge  bit 
s to rage, and s im p le  in te rfa c in g  are im p o rta n t design  ob jec tives . The  2 1 14A is p laced  in an 18-p in  package fo r the  h ighest 
poss ib le  density.

It is d ire c tly  TT L  co m pa tib le  in a ll respects: inpu ts, o u tp u ts , and a s ing le  +5V supp ly . A separa te  C h ip  S e lec t (CS) lead a llow s 
easy se le c tio n  o f an ind iv id u a l package w hen o u tp u ts  are o r-tied .

PIN CONFIGURATION LOGIC SYMBOL BLOCK DIAGRAM

18 □  vcc Ao

A s C 2 17 — A, I/O,

a . L 3 16 IK — *2

a ,  I 4 15 IK — *3 I/O,

M Z 5 2114 14 I l ' O ,

M = 6 13 □  „ 0 2
A6

l/0 3

M 7 12 □  l/0 3 _ A,

c s ( 3 8 i i □  ''°4 — A8
i/o4

g n d Q 9 10 ^ ]W 1 — A9
WE CS

PIN NAMES

A 0- A g A D D R ES S  INPUTS Vc c  POW ER (+5V)

WE W R ITE  E N A B LE G N D G R O U N D

CS CH IP  S E LE C T

I/O-, —1/04 D A T A  IN PU T /O U TPU T
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2142
1024 X 4 BIT STATIC RAM

2142-2 2142-3 2142 2142L2 2142L3 2142L
Max. Access Time (ns) 200 300 450 200 300 450
Max. Power Dissipation (mw) 525 525 525 370 370 370

■ High Density 20 Pin Package
■ Access Time Selections From 200-450ns
■ Identical Cycle and Access Times
■ Low Operating Power Dissipation 

.1mW/Bit Typical
■ Single +5V Supply

■ No Clock or Timing Strobe Required
■ Completely Static Memory
■ Directly TTL Compatible: All Inputs 

and Outputs
■ Common Data Input and Output Using 

Three-State Outputs

The I ntel® 2142 is a 4096-bit static Random Access Memory organized as 1024 words by 4-bits using N-channel Silicon- 
Gate MOS technology. It uses fully DC stable (static) circuitry throughout — in both the array and the decoding — and 
therefore requires no clocks or refreshing to operate. Data access is particularly simple since address setup times are not 
required. The data is read out nondestructively and has the same polarity as the input data. Common input/output pins are 
provided.
The 2142 is designed for memory applications where high performance, low cost, large bit storage, and simple interfacing 
are important design objectives. It is directly TTL compatible in all respects: inputs, outputs, and a single +5V supply.
The 2142 is placed in a 20-pin package. Two Chip Selects (CS-| and CS2) are provided for easy and flexible selection of 
individual packages when outputs are OR-tied. An Output Disable is included for direct control of the output buffers.
The 2142 is fabricated with Intel's N-channel Silicon-Gate technology — a technology providing excellent protection 
against contamination permitting the use of low cost plastic packaging.

PIN CONFIGURATION LOGIC SYMBOL BLOCK DIAGRAM

A6 [ H 1 20 1 Vcc — AO

A S C 2 19 d « ;  - A) l/O l

AA d 3 18 1 Ab -— A2

A 3 [ Z 4 17 1 Ag ---- A3

CS2 C 5 16 
2142

1 OD ---- A4

A0 |__ 6 15 d  i 'o i  — A5

A - C 7 14 Z l " ° 2 a l/0 3 A6

A . C 8 13 d  1/03 — A7

csT d 9 12 i n  1/04 — a 8 1/O4

GND | 10 11 | WE ----- Ag
WE CS1 CS? ODTTfT

PIN NAMES
A0- A 9 ADDRESS INPUTS OD OUTPUT DISABLE
WE WRITE ENABLE V cc POWER l»5V)
c 5 i , CS2 CHIP SELECT GND GROUND
l/O l—I/O4 DATA INPUT/OUTPUT
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2148
1024 x 4 BIT STATIC RAM

2148-3 2148 2148-6

M ax . A c c e s s  T im e  (ns) 55 70 85

M ax . A c t iv e  C u rre n t (mA) 125 125 125

M ax . S ta n d b y  C u rre n t (mA) 30 30 30

■ HMOS Technology

■ Completely Static Memory
— No Clock or Timing Strobe 
Required

■ Equal Access and Cycle Times

■ Single +5V  Supply

■ Automatic Power-Down
■ High Density 18-Pin Package
■ Directly TTL Compatible 

— All Inputs and Outputs
■ Common Data Input and Output
■ Three-State Output

The Intel® 2148 is a 4096-bit static Random Access Memory organized as 1024 words by 4 bits using HMOS, a high- 
performance MOS technology. It uses a uniquely innovative design approach which provides the ease-of-use features 
associated with non-clocked static memories and the reduced standby power dissipation associated with clocked static 
memories. To the user this means low standby power dissipation without the need for clocks, address setup and hold 
times, nor reduced data rates due to cycle times that are longer than access times.
CS controls the power-down feature. In less than a cycle time after CS goes high — disabling the 2148 — the part 
automatically reduces its power requirements and remains in this low power standby mode as long as CS remains high. 
This device feature results in system power savings as great as 85% in larger systems, where the majority of devices are 
disabled.
The 2148 is assembled in an 18-pin package configured with the industry standard 1Kx4 pinout. It is directly TTL 
compatible in all respects: inputs, outputs, and a single +5V supply. The data is read out nondestructively and has the 
same polarity as the input data.

PIN CONFIGURATION LOGIC SYMBOL BLOCK DIAGRAM

*6  C i 18 □  v c c
Ao

A5 r □  a . I'O i

3 16 ^  Ae

4 15 □  a 9 l'0 2

A0 C ■■ 2148 □  »o ,

A l C 6 13 □  1702 I/O3

7 12 □  _

c s  r 8 11 □  1104 _

C N O C 9 10 □  w T  _
A9CS WE

PIN NAMES

A>-A> ADDRESS INPUTS
WE WRITE ENABLE
CS CHIP SELECT

I/O, - 1/04 DATA INPUT/OUTPUT

v c c POW ER (+5V)
GND GROUND

TRUTH TABLE
CS WE MODE I/O POW ER

H X NOT SELECTED HIGH-Z STANDBY

L L WRITE P in ACTIVE
L H READ P o u t ACTIVE
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Appendix B 
Device Specifications
* 6086 Family
* 8GA5 Periphf 'ais*
* S andard Pe ipherals**
*  R A M  M e m o i  a s * * *

* EPROM Memories***
lopmer '

* F o r c o m p le te  s p e c if ic a t io n s  re fe r  to  th e  
In te l M C S-85 U s e r ’ s M a n u a l.

" F o r  c o m p le te  s p e c if ic a t io n s  re fe r  to  th e  
In te l P e r ip h e ra l D e s ig n  H a n d b o o k .

• " F o r  c o m p le te  s p e c if ic a t io n s  re fe r  to  th e  1979 
In te l C o m p o n e n t D a ta  C a ta lo g .

P O R T

. U S  ? r 
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2716
16K (2K x 8) UV ERASABLE PROM

■ Fast Access Time
— 350 ns Max. 2716-1
— 390 ns Max. 2716-2
— 450 ns Max. 2716
— 650 ns Max. 2716-6

■ Single + 5V Power Supply

■ Low Power Dissipation
— 525 mW Max. Active Power
— 132 mW Max. Standby Power

■ Pin Compatible to Intel® 2732 EPROM

■ Simple Programming Requirements
— Single Location Programming
— Programs with One 50 ms Pulse

■ Inputs and Outputs TTL Compatible 
during Read and Program

■ Completely Static

The Intel® 2716 is a 16,384-bit ultraviolet erasable and electrically programmable read-only memory (EPROM). The 2716 
operates from a single 5-volt power supply, has a static standby mode, and features fast single address location program
ming. It makes designing with EPROMs faster, easier and more economical.

The 2716, with its single 5-volt supply and with an access time up to 350 ns, is ideal for use with the newer high performance 
+5V microprocessors such as Intel's 8085 and 8086. The 2716 is also the first EPROM with a static standby mode which 
reduces the power dissipation without increasing access time. The maximum active power dissipation is 525 mW while the 
maximum standby power dissipation is only 132 mW, a 75% savings.

The 2716 has the simplest and fastest method yet devised for programming EPROMs — single pulse TTL level programming. 
No need for high voltage pulsing because all programming controls are handled by TTL signals. Program any location at any 
time—either individually, sequentially or at random, with the 2716's single address location programming. Total programming 
time for all 16,384 bits is only 100 seconds.

PIN CONFIGURATION

2716
A? c 1 24D v c c
a6 : 2 23D A8
A5c 3 22: a 9
A4 c 4 21D vpp
A3 c 5 20D o e

A2c 6 19 D a io
A 1 c 7 16K 18 DCE
AO c 8 w D 07
Oo c 9 16 D o 6
O i c 10 15D0502c 11 14 D04

GND c 12 '3D03

2732*
A 7 c 24 D v c c
A6 c 2 23D a 8
As c 3 22D Ag
A4 c 4 21D A 1 1

A3 c 5 20D OE/Vpp
A2 c 6 19 D A10
A i c 7 32K 18 DCE
A0 c 8 17DO?
Oo c 9 16 DOg
O i c 10 15p o 502c 14 P 04

GND [I '2 '3p °3
t  Refer to 2732 
data sheet for 
specifications

PIN NAMES

A0~ A 10 ADDRESSES
CE/PGM CHIP ENABLE/PROGRAM
61 OUTPUT ENABLE

° . r ° > OUTPUTS

MODE SELECTION

PINS

MODE

CE/PGM
(18)

OE
(20)

Vpp
(21)

VCc
(24)

OUTPUTS 
(9-11. 13 17)

Read VIL VIL +5 +5 °O U T
Standby V |H Don’t Care +5 +5 High 2

Program Pulsed V |l  to V |h V ih ♦25 +5 0 |N
Program Verify V lL VlL +25 +5 °O U T
Program Inhibit V |L V |H +25 ♦5 High Z

BLOCK DIAGRAM
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2732
32K (4K x 8) UV ERASABLE PROM

■ Fast Access Time:
— 450 ns Max. 2732
— 550 ns Max. 2732-6

■ Single +5V ± 5% Power Supply

■ Output Enable for MCS-85™ and 
MCS-86™ Compatibility

■ Low Power Dissipation:
150mA Max. Active Current 
30mA Max. Standby Current

■ Pin Compatible to Intel® 2716 EPROM

■ Completely Static

■ Simple Programming Requirements
— Single Location Programming
— Programs with One 50ms Pulse

■ Three-State Output for Direct Bus 
Interface

The Intel® 2732 is a 32,768-bit ultraviolet erasable and electrically programmable read-only memory (EPROM i. The 2732 
operates from a single 5-volt power supply, has a standby mode, and features an output enable control. The total program
ming time for all bits is three and a half minutes. All these features make designing with the 2732 in microcomputer systems 
faster, easier, and more economical.

An important 2732 feature is the separate output control, Output Enable (OE), from the Chip Enable control (CE). TheOE 
control eliminates bus contention in multiple bus microprocessor systems. Intel’s Application Note AP-30 describes the 
microprocessor system implementation of the OE and CE controls on Intel's 2716 and 2732 EPROMs. AP-30 is available 
from Intel’s Literature Department.

The 2732 has a standby mode which reduces the power dissipation without increasing access time. The maximum active 
current is 150mA, while the maximum standby current is only 30mA, an 80% savings. The standby mode is achieved by 
applying a TTL-high signal to the CE input.

PIN CONFIGURATION

A j E  1 

Ae C  2 

*sC 3 
A „ C  4 

A 3C 5

A2C 6
A ,C  7 
Ao C  8 
°oC 9 
°iC 10
o2II 11 

G N D C  12

D v cc 

D fl8 
D Ag 
D An
□ OE/Vpp
D Aio
Del
D ° 7

D°6
D ° 5

D o .
D ° 3

PIN NAMES

A0-A 11 ADDRESSES

CE CHIP ENABLE

6 1 OUTPUT ENABLE

° 0 “ °7 OUTPUTS

MODE SELECTION
^ ^ \ P I N S CE O E / V p p vcc O U T P U T S

(18) (20) (24) ( 9 -1 1 ,1 3 -1 7 )

Read V lL V lL +5 DOUT

Standby V,H D o n 't Care +5 High Z

Program VlL V pp + 5 D in

Program V e rify V lL V lL +5 d o u t

Program In h ib it V|H V pp + 5 High Z

BLOCK DIAGRAM
DATA OUTPUTS

Vcc °------- O0-O7
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8K (1K x 8) UV ERASABLE LOW  POW ER PROM
2758

Single + 5V Power Supply

Simple Programming Requirements
-  Single Location Programming
-  Programs with One 50 ms Pulse

Low Power Dissipation 
525 mW Max. Active Power 
132 mW Max. Standby Power

Fast Access Time: 450 ns Max. in 
Active and Standby Power Modes

Inputs and Outputs TTL Compatible 
during Read and Program

Completely Static

Three-State Outputs for OR-Ties

The Intel® 2758 is a 8192-bit ultraviolet erasable and electrically programmable read-only memory (EPROM). The 2758 
operates from a single 5-volt power supply, has a static standby mode, and features fast single address location program
ming. It makes designing with EPROMs faster, easier and more economical. The total programming time for all 8192 bits 
is 50 seconds.
The 2758 has a static standby mode which reduces the power dissipation without increasing access time. The maximum 
active power dissipation is 525 mW, while the maximum standby power dissipation is only 132 mW, a 75% savings. Power
down is achieved by applying a TTL-high signal to the CE input.
A 2758 system may be designed for total upwards compatibility with Intel’s 16K 2716 EPROM (see Applications Note 
30). The 2758 maintains the simplest and fastest method yet devised for programming EPROMs — single pulse TTL- 
level programming. There is no need for high voltage pulsing because all programming controls are handled by TTL 
signals. Program any location at any time — either individually, sequentially, or at random, with the single address 
location programming.

PIN CONFIGURATION

A7 C 1 
A6 [ 2 
A 5 [ 3 
A4 C 4 
A3C 5 
A2 [ 6 
A1 C 7 
Ao C 8 
O0 C 9
01 C 10
02 C 11

GNDC 12

24  HVCC 
23 DA8 
22 DAg 
21 DVPP 
20 DOE 
19 D^R 
18 DCE 
17 D 07 
16 D 06 
15 DO5 
14 DO4 
13 D03

MODE SELECTION

P IN S  

M O D E  X .

C E /P G M

(1 8 )

A r

( 1 9 )

O E

(2 0 )

V p p

(2 1 )

vCC
( 2 4 )

O U T P U T S  

( 9 -1 1 ,  1 3 -1 7 )

R ea d V  IL V i l V i l + 5 + 5 °O U T

S ta n d b y V |H V |L
D o n 't

C a re
+ 5 + 5 H ig h  Z

P ro g ra m Pu ls ed  V ||_  to  V  ih V lL V  ih + 2 5 + 5 D in

P ro g ra m  V e r i f y V | L V i l V i l + 2 5 + 5 d o u t

P ro g ra m  In h ib it V , L V ,L V  |H + 2 5 + 5 H ig h  Z

PIN NAMES BLOCK DIAGRAM

Ao-Ag ADDRESSES
Ct/PGM CHIP ENABLE/PROGRAM
OE OUTPUT ENABLE
o „-o , OUTPUTS

a r
SELECT REFERENCE 
INPUT LEVEL
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Device Specifications

ifeW

#

m

O 36 Fa mil v
35 Periph ; g|S*

C i .andard Pe 5 P herais*
O ft* Aft * * + * , * :  !V i mfciluw ; ^  ,-v y  k *

.. M e - . * ofios^* *

Development Tools

“ F o r c o m p le te  s p e c if ic a t io n s  re fe r  to  th e  
In te l M C S-85 U s e r ’ s M a n u a l.

" F o r  c o m p le te  s p e c if ic a t io n s  re fe r  to  th e  
In te l P e r ip h e ra l D e s ig n  H a n d b o o k .

' " F o r  c o m p le te  s p e c if ic a t io n s  re fe r  to  th e  1979 
In te l C o m p o n e n t D a ta  C a ta lo g .





in y M O D EL 230 
IN TELLEC  SERIES II 

M IC R O C O M P U TE R  D EVE LO PM EN T SYSTEM
Complete microcomputer development 
center for Intel MCS-86, MCS-80, MCS-85 
and MCS-48 microprocessor families

LSI electronics board with CPU, RAM, 
ROM, I/O, and interrupt circuitry

64K bytes RAM memory

Self-test diagnostic capability

Powerful ISIS-II Diskette Operating 
System software with relocating 
macroassembler, linker, and locater

1 million bytes (expandable to 2.5M 
bytes) of diskette storage

Supports PL/M and FORTRAN high level 
languages

Eight-level nested, maskable priority 
interrupt system

Built-in interfaces for high speed paper 
tape reader/punch, printer, and universal 
PROM programmer

Standard MULTIBUS with multiprocessor 
and DMA capability

Compatible with standard Intellec/iSBC 
expansion modules

Integral CRT with detachable upper/
lower case typewriter-style full ASCII Software compatible with previous
keyboard Intellec systems

The Model 230 Intellec Series II Microcomputer Development System is a complete center for the development of 
microcomputer-based products. It includes a CPU, 64K bytes of RAM, 4K bytes of ROM memory, a 2000-character CRT, 
a detachable full ASCII keyboard, and dual double density diskette drives providing over 1 million bytes of on-line data 
storage. Powerful ISIS-II Diskette Operating System software allows the Model 230 to be used quickly and efficiently 
for assembling and/or compiling and debugging programs for Intel’s MCS-86, MCS-80, MCS-85, or MCS-48 microproc
essor families without the need for handling paper tape. ISIS-II performs all file handling operations, leaving the user 
free to concentrate on the details of his own application. When used in conjunction with an optional in-circuit 
emulator (ICE) module, the Model 230 provides all the hardware and software development tools necessary for the 
rapid development of a microcomputer-based product.
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MODEL 230

FUNCTIONAL DESCRIPTION 

Hardware Components

The Intellec Series II Model 230 is a packaged, highly 
integrated microcomputer development system consist
ing of a CRT chassis with a 6-slot cardcage, power sup
ply, fans, cables, and five printed circuit cards. A 
separate, full ASCII keyboard is connected with a cable. 
A second chassis contains two floppy disk drives capa
ble of double-density operation along with a separate 
power supply, fans, and cables for connection to the 
main chassis. A block diagram of the Model 230 is 
shown in Figure 1.

CPU Cards — The master CPU card contains its own 
microprocessor, memory, I/O, interrupt and bus inter
face circuitry fashioned from Intel's high technology LSI 
components. Known as the integrated processor board 
(IPB), it occupies the first slot in the cardcage. A second 
slave CPU card is responsible for all remaining I/O con
trol including the CRT and keyboard interface. This card, 
mounted on the rear panel, also contains its own micro
processor, RAM and ROM memory, and I/O interface 
logic, thus, in effect, creating a dual processor environ
ment. Known as the I/O controller (IOC), the slave CPU

card communicates with the IPB over an 8-bit bidirec
tional data bus.
Memory and Control Cards — In addition, 32K bytes of 
RAM (bringing the total to 64K bytes) is located on a 
separate card in the main cardcage. Fabricated from 
Intel’s 16K RAMs, the board also contains all necessary 
address decoding and refresh logic. Two additional 
boards in the cardcage are used to control the two 
double-density floppy disk drives.
Expansion — Two remaining slots in the cardcage are 
available for system expansion. Additional expansion of 
4 slots can be achieved through the addition of an Intel
lec Series II expansion chassis.

System Components
The heart of the IPB is an Intel NMOS 8-bit microproces
sor, the 8080A-2, running at 2.6 MHz. 32K bytes of RAM 
memory are provided on the board using Intel 16K 
RAMs. 4K of ROM is provided, preprogrammed with sys
tem bootstrap “ self-test” diagnostics and the Intellec 
Series II System Monitor. The eight-level vectored prior
ity interrupt system allows interrupts to be individually 
masked. Using Intel’s versatile 8259A interrupt con
troller, the interrupt system may be user programmed to 
respond to individual needs.

Figure 1. Intellec Series II Model 230 Microcomputer Development System Block Diagram
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MODEL 230

Input/Output
IPB Serial Channels — The I/O subsystem in the Model 
230 consists of two parts: the IOC card and two serial 
channels on the IPB itself. Each serial channel is RS232 
compatible and is capable of running asynchronously 
from 110 to 9600 baud or synchronously from 150 to 56K 
baud. Both may be connected to a user defined data set 
or terminal. One channel contains current loop 
adapters. Both channels are implemented using Intel's 
8251A USART. They can be programmatically selected 
to perform a variety of I/O functions. Baud rate selection 
is accomplished programmatically through an Intel 8253 
interval timer. The 8253 also serves as a real-time clock 
for the entire system. I/O activity through both serial 
channels is signaled to the system through a second 
8259 interrupt controller, operating in a polled mode 
nested to the primary 8259.
IOC Interface — The remainder of system I/O activity 
takes place in the IOC. The IOC provides interface for 
the CRT, keyboard, and standard Intellec peripherals 
including printer, high speed paper tape reader/punch, 
and universal PROM programmer. The IOC contains its 
own independent microprocessor, also an 8080A-2. The 
CPU controls all I/O operations as well as supervising 
communications with the IPB. 8K bytes of ROM contain 
all I/O control firmware. 8K bytes of RAM are used for 
CRT screen refresh storage. These do not occupy space 
in Intellec Series II main memory since the IOC is a 
totally independent microcomputer subsystem.

Integral CRT
Display — The CRT is a 12-inch raster scan type monitor 
with a 50/60 Hz vertical scan rate and 15.5 kHz horizontal 
scan rate. Controls are provided for brightness and con
trast adjustments. The interface to the CRT is provided 
through an Intel 8275 single chip programmable CRT 
controller. The master processor on the IPB transfers a 
character for display to the IOC, where it is stored in 
RAM. The CRT controller reads a line at a time into its 
line buffer through an Intel 8257 DMA controller and 
then feeds one character at a time to the character gen
erator to produce the video signal. Timing for the CRT 
control is provided by an Intel 8253 interval timer. The 
screen display is formatted as 25 rows of 80 characters. 
The full set of ASCII characters are displayed, including 
lower case alphas.
Keyboard — The keyboard interfaces directly to the IOC 
processor via an 8-bit data bus. The keyboard contains 
an Intel UPI-41 Universal Peripheral Interface, which 
scans the keyboard, encodes the characters, and buf
fers the characters to provide N-key rollover. The key
board itself is a high quality typewriter style keyboard 
containing the full ASCII character set. An upper/lower 
case switch allows the system to be used for document 
preparation. Cursor control keys are also provided.

Peripheral Interface
A UPI-41 Universal Peripheral Interface on the IOC board 
performs similar functions to the UPI-41 on the PIO 
board in the Model 210. It provides interface for other 
standard Intellec peripherals including a printer, high 
speed paper tape reader, high speed paper tape punch,

and universal PROM programmer. Communication 
between the IPB and IOC is maintained over a separate 
8-bit bidirectional data bus. Connectors for the four 
devices named above, as well as the two serial chan
nels, are mounted directly on the IOC itself.

Control
User control is maintained through a front panel, con
sisting of a power switch and indicator, reset/boot 
switch, run/halt light, and eight interrupt switches and 
indicators. The front panel circuit board is attached 
directly to the IPB, allowing the eight interrupt switches 
to connect to the primary 8259A, as well as to the Intellec 
Series II bus.

Diskette System
The Intellec Series II double density diskette system 
provides direct access bulk storage, intelligent control
ler, and two diskette drives. Each drive provides V i mil
lion bytes of storage with a data transfer rate of 500,000 
bits/second. The controller is implemented with Intel's 
powerful Series 3000 Bipolar Microcomputer Set. The 
controller provides an interface to the Intellec Series II 
system bus, as well as supporting up to four diskette 
drives. The diskette system records all data in soft sec
tor format. The diskette system is capable of performing 
seven different operations: recalibrate, seek, format 
track, write data, write deleted data, read data, and verify 
CRC.

Diskette Controller Boards — The diskette controller 
consists of two boards, the channel board and the inter
face board. These two PC boards reside in the Intellec 
Series II system chassis and constitute the diskette 
controller. The channel board receives, decodes and 
responds to channel commands from the 8080A-2 CPU 
in the Model 230. The interface board provides the 
diskette controller with a means of communication with 
the diskette drives and with the Intellec system bus. The 
interface board validates data during reads using a 
cyclic redundancy check (CRC) polynomial and gener
ates CRC data during write operations. When the disk
ette controller requires access to Intellec system mem
ory, the interface board requests and maintains DMA 
master control of the system bus, and generates the 
appropriate memory command. The interface board also 
acknowledges I/O commands as required by the Intellec 
bus. In addition to supporting a second set of double 
density drives, the diskette controller may co-reside 
with the Intel single density controller to allow up to 2.5 
million bytes of on-line storage.

MULTIBUS Capability
All Intellec Series II models implement the industry 
standard MULTIBUS. MULTIBUS enables several bus 
masters, such as CPU and DMA devices, to share the 
bus and memory by operating at different priority levels. 
Resolution of bus exchanges is synchronized by a bus 
clock signal derived independently from processor 
clocks. Read/write transfers may take place at rates up 
to 5 MHz. The bus structure is suitable for use with any 
Intel microcomputer family.
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MODEL 230

SPECIFICATIONS 

Host Processor (IPB)
RAM — 64K (system monitor occupies 62K through 64K) 
ROM — 4K (2K in monitor, 2K in boot/diagnostic)

Diskette System Capacity (Basic Two Drives)
Unformatted
Per Disk: 6.2 megabits 
Per Track: 82.0 kilobits 
Formatted
Per Disk: 4.1 megabits 
Per Track: 53.2 kilobits

Diskette Performance
Diskette System Transfer Rate — 500 kilobits/sec
Diskette System Access Time
Track-to-Track: 10 ms 
Head Settling Time: 10 ms 
Average Random Positioning Time — 260 ms 
Rotational Speed — 360 rpm
Average Rotational Latency — 83 ms 
Recording Mode — M2FM

Physical Characteristics
Width — 17.37 in. (44.12 cm)
Height — 15.81 in. (40.16 cm)
Depth — 19.13 in. (48.59 cm)
Weight -  73 lb (33 kg)
Keyboard
Width — 17.37 in. (44.12 cm)
Height — 3.0 in. (7.62 cm)
Depth — 9.0 in. (22.86 cm)
Weight — 6 lb (3 kg)
Dual Drive Chassis 
Width — 16.88 in. (42.88 cm)
Height — 12.08 in. (30.68 cm)
Depth — 19.0 in. (48.26 cm)
Weight — 64 lb (29 kg)

Electrical Characteristics
DC Power Supply

Volts
Supplied

Amps
Supplied

Typical
System Requirements

+ 5 ±5% 30 14.25
+ 12 ±5% 2.5 0.2
-  12 ±5% 0.3 0.05
- 1 0  ±5% 1.5 15
+ 15 ±5% 1.5 1.3

* +24 ±5% 1.7

‘ Not available on bus.

AC Requirements — 50/60 Hz, 115/230V AC

Environmental Characteristics
Operating Temperature — 0° to 35°C (95°F)

Equipment Supplied
Model 230 chassis 
Integrated processor board (IPB)
I/O controller board (IOC)
32K RAM board 
CRT and keyboard
Double density floppy disk controller (2 boards)
Dual drive floppy disk chassis and cables 
2 floppy disk drives (512K byte capacity each) 
ROM-resident system monitor 
ISIS-II system diskette with MCS-80/MCS-85 
macroassembler

Reference Manuals
9800558 — A Guide to Microcomputer Development 
Systems (SUPPLIED)

9800550 — Intellec Series II Installation and Service 
Guide (SUPPLIED)

9800306 — ISIS-II System User’s Guide (SUPPLIED)

9800556 — Intellec Series II Hardware Reference Man
ual (SUPPLIED)

9800301 — 8080/8085 Assembly Language Program
ming Manual (SUPPLIED)

9800292 — ISIS-II 8080/8085 Assembler Operator's Man
ual (SUPPLIED)

9800605 — Intellec Series II Systems Monitor Source 
Listing (SUPPLIED)

9800554 — Intellec Series II Schematic Drawings 
(SUPPLIED)

Reference manuals are shipped with each product only 
if designated SUPPLIED (see above). Manuals may be 
ordered from any Intel sales representative, distributor 
office or from Intel Literature Department, 3065 Bowers 
Avenue, Santa Clara, California 95051.

ORDERING INFORMATION
Part Number Description
MDS-230 Intellec Series II Model 230

microcomputer development system 
(110V/60 Hz)

MDS-231 Intellec Series II Model 230
microcomputer development system 
(220V/50 Hz)
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8086/8088 SO FTW A R E D EVE LO PM EN T PACKAGE

PL/M-86 high level programming lan
guage

ASM86 macro assembler for 8086/8088 
assembly language programming

LINK86 and LOC86 linkage and 
relocation utilities

CONV86 converter for conversion of 
8080/8085 assembly language source 
code to 8086/8088 assembly language- 
source code

OH86 object-to-hexadecimal converter 

LIB86 library manager

The 8086/8088 software development package provides a set of software development tools for the 8086 and the 8088 
microprocessors and iSBC 86/12 single board computer. The package operates under the ISIS-II operating system on 
Intellec Microcomputer Development Systems—Model 800 or Series II—thus minimizing requirements for additional 
hardware or training for Intel Microcomputer Development System users.
The package permits 8080/8085 users to efficiently convert existing programs into 8086/8088 object code from either 
8080/8085 assembly language source code or PL/M-80 source code.
For the new Intel Microcomputer Development System user, the package operating on an Intellec Model 230 Micro
computer Development System provides total 8086/8088 software development capability.
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PL/M -86 H IG H  LEVEL PR O G R A M M IN G  LANG UAGE

Sophisticated new compiler design 
allows user to achieve maximum benefits 
of 8086/8088 capabilities

Language is upward compatible from 
PL/M-80, assuring MCS-80/85 design 
portability

Supports 16-bit signed integer and 32-bit 
floating point arithmetic

Produces relocatable and linkable object 
code

Supports full extended addressing 
features of the 8086 and the 8088 
microprocessors

Code optimization assures efficient code 
generation and minimum application 
memory utilization

Like its counterpart for MCS-80/85 program development, PL/M-86 is an advanced structured high level programming 
language. PL/M-86 is a new compiler created specifically for performing software development for the Intel 8086 and 
8088 Microprocessors.
PL/M-86 has significant new capabilities over PL/M-80 that take advantage of the new facilities provided by the 8086 
and the 8088 microprocessors, yet the PL/M-86 language remains upward compatible from PL/M-80.
With the exception of interrupts, hardware flags, and time-critical code sequences, PL/M-80 programs may be recom
piled under PLM-86 with little or no conversion required. PL/M-86, like PL/M-80, is easy to learn, facilitates rapid pro
gram development, and reduces program maintenance costs.
PL/M is a powerful, structured high level algorithmic language in which program statements can naturally express the 
program algorithm. This frees the programmer to concentrate on the system implementation without concern for bur
densome details of assembly language programming (such as register allocation, meanings of assembler mnemonics, 
etc.).
The PL/M-86 compiler efficiently converts free-form PL/M language statements into equivalent 8086/8088 machine in
structions. Substantially fewer PL/M statements are necessary for a given application than if it were programmed at 
the assembly language or machine code level.
Since PL/M programs are implementation problem oriented and more compact, use of PL/M results in a high degree of 
engineering productivity during project development. This translates into significant reductions in initial software 
development and follow-on maintenance costs for the user.

FEATURES
Major features of the Intel PL/M-86 compiler and pro
gramming language include:
• Supports Five Data Types

— Byte: 8-bit unsigned number
— Word: 16-bit unsigned number
— Integer: 16-bit signed number
— Real: 32-bit floating point number
— Pointer: 16-bit or 32-bit memory address indicator

• Block Structured Language
— Permits use of structured programming tech

niques
• Two Data Structuring Facilities

— Array: Indexed list of same type data elements
— Structure: Named collection of same or different 

type data elements
— Combinations of Each: Arrays of structures or 

structures of arrays

• Relocatable and Linkable Object Code
— Permits PL/M-86 programs to be developed and 

debugged in small modules. These modules can 
be easily linked with other PL/M-86 or ASM86 ob
ject modules and/or library routines to form a com
plete application system.

• Built-In String Handling Facilities
— Operates on byte strings or word strings
— Six Functions: MOVE, COMPARE, TRANSLATE, 

SEARCH, SKIP, and SET
• Automatic Support for 8086 Extended Addressing

— Three compiler options offer a separate model of 
computation for programs up to 1-Megabyte in 
size

— Language transparency for extended addressing
• Support for ICE-86 Emulator and Symbolic Debugging

— Debug option for inclusion of symbol table in ob
ject modules for In-Circuit Emulation with sym
bolic debugging
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• Numerous Compiler Options
— A host of 26 compiler options including:

• Conditional compilation
• Included file or copy facility
• Two levels of optimization
• Intra-module and inter-module cross reference
• Arbitrary placement of compiler and user files 

on any available combination of disk drives
• Reentrant and Interrupt Procedures

— May be specified as user options

BENEFITS
PL/M-86 is designed to be an efficient, cost-effective
solution to the special requirements of 8086/8088
Microcomputer Software Development, as illustrated by
the following benefits of PL/M-86 use:
• Reduced Learning Effort — PL/M-86 is easy to learn 

and to use, even for the novice programmer.
• Earlier Project Completion — Critical projects are 

completed much earlier than otherwise possible 
because PL/M-86, a structured high-level language, in
creases programmer productivity.

• Lower Development Cost — Increases in programmer 
productivity translate immediately into lower soft
ware development costs because less programming 
resources are required for a given programmed func
tion.

• Increased Reliability — PL/M-86 is designed to aid in 
the development of reliable software (PL/M-86 pro
grams are simple statements of the program 
algorithm). This substantially reduces the risk of cost
ly correction of errors in systems that have already 
reached full production status, as the more simply 
stated the program is, the more likely it is to perform 
its intended function.

• Easier Enhancements and Maintenance — Programs 
written in PL/M tend to be self-documenting, thus 
easier to read and understand. This means it is easier 
to enhance and maintain PL/M programs as the 
system capabilities expand and future products are 
developed.

• Simpler Project Development — The Intellec Develop
ment Systems offer a cost-effective hardware base

for the development of 8086 and 8088 designs. 
PL/M-86 and other elements of ISIS-II and the 8086/ 
8088 Software Development Package are all that is 
needed for development of software for the 8086 and 
the 8088 microcomputers and iSBC 86/12 single board 
computer. This further reduces development time and 
costs because expensive (and remote) time sharing of 
large computers is not required. Present users of Intel 
Intellec Development Systems can begin to develop 
8086 and 8088 designs without expensive hardware 
reinvestment or costly retraining.

SAMPLE PROGRAM
STATISTICS: DO;

/ ‘ The procedure in this module computes the mean and
variance of an array of data, X, of length N + 1, according
to the method of Kahan and Parlett (University of Cali
fornia, Berkeley, Memo no. UCB/ERL M77/21.'/

STAT: PROCEDURE(X$PTR,N,MEAN$PTR, 
VARIANCEJPTR) PUBLIC;

DECLARE
(X$PTR,MEAN$PTR,VARIANCE$PTR)
POINTER,X BASED X$PTR (1) REAL,
N INTEGER,
MEAN BASED MEANSPTR REAL,
VARIANCE BASED VARIANCEJPTR REAL, 
(M,Q,DiFF) REAL,
I INTEGER-

M = X(0);
M = 0.0;

DO 1 = 1 TO N;
DIFF = X(l) — M;
M = M + DIFF/FLOAT(l + 1);
Q = Q + DIFF*DiFF*FLOAT(l)/FLOAT(l +1);
END;

MEAN = M;
VARIANCE = Q/FLOAT(N);

END STAT;

END STATISTICS;
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A SM 86 M ACRO  ASSEM B LER

Powerful and flexible text macro facility 
with three macro listing options to aid 
debugging

Highly mnemonic and compact 
language, most mnemonics represent 
several distinct machine instructions

“Strongly typed” assembler helps detect 
errors at assembly time

High-level data structuring facilities 
such as “ STRUCTURES” and 
“ RECORDS”

Over 120 detailed and fully documented 
error messages

Produces relocatable and linkable object 
code

ASM86 is the “ high-level” macro assembler for the 8086/8088 assembly language. ASM86 translates symbolic 
8086/8088 assembly language mnemonics into 8086/8088 machine code.

ASM86 should be used where maximum code efficiency and hardware control is needed. The 8086/8088 assembly 
language includes approximately 100 instruction mnemonics. From these few mnemonics the assembler can generate 
over 3,800 distinct machine instructions. Therefore, the software development task is simplified, as the programmer 
need know only 100 mnemonics to generate all possible 8086/8088 machine instructions. ASM86 will generate the 
shortest machine instruction possible given no forward referencing or given explicit information as to the 
characteristics of forward referenced symbols.

ASM86 offers many features normally found only in high-level languages. The 8086/8088 assembly language is strong
ly typed. The assembler performs extensive checks on the usage of variables and labels. The assembler uses the at
tributes which are derived explicitly when a variable or label is first defined, then makes sure that each use of the sym
bol in later instructions conforms to the usage defined for that symbol. This means that many programming errors will 
be detected when the program is assembled, long before it is being debugged on hardware.

FEATURES
Major features of the Intel 8086/8088 assembler and 
assembly language include:
• Powerful and Flexible Text Macro Facility

— Macro calls may appear anywhere
— Allows user to define the syntax of each macro
— Built-in functions

• conditional assembly (IF-THEN-ELSE, WHILE)
• repetition (REPEAT)
• string processing functions (MATCH)
• support of assembly time I/O to console (IN, 

OUT)
— Three Macro Listing Options include a GEN mode 

which provides a complete trace of all macro calls 
and expansions

• High-Level Data Structuring Capability
— STRUCTURES: Defined to be a template and then 

used to allocate storage. The familiar dot notation 
may be used to form instruction addresses with 
structure fields.

— ARRAYS: Indexed list of same type data elements.
— RECORDS: Allows bit-templates to be defined and 

used as instruction operands and/or to allocate 
storage.

• Fully Supports 8086/8088 Addressing Modes
— Provides for complex address expressions involv

ing base and indexing registers and (structure) 
field offsets.

— Powerful EQU facility allows complicated expres
sions to be named and the name can be used as a 
synonym for the expression throughout the 
module.

• Powerful STRING MANIPULATION INSTRUCTIONS
— Permit direct transfers to or from memory or the 

accumulator.
— Can be prefixed with a repeat operator for 

repetitive execution with a count-down and a con
dition test.

• Over 120 Detailed Error Messages
— Appear both in regular list file and error print file.
— User documentation fully explains the occurrence 

of each error and suggests a method to correct it.
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• Generates Relocatable and Linkable Object Code— 
Fully Compatible with LINK86, LOC86 and LIB86
— Permits ASM86 programs to be developed and 

debugged in small modules. These modules can 
be easily linked with other ASM86 or PL/M-86 ob
ject modules and/or library routines to form a com
plete application system.

• Support for ICE-86 Emulation and Symbolic Debug
ging
— Debug options for inclusion of symbol table in 

object modules for In-Circuit Emulation with sym
bolic debugging.

BENEFITS
The 8086/8088 macro assembler allows the extensive 
capabilities of the 8086/8088 to be fully exploited. In any 
application, time and space critical routines can be 
effectively written in ASM86. The 8086/8088 assembler 
outputs relocatable and linkable object modules. These 
object modules may be easily combined with object 
modules written in PL/M-86—Intel's structured, high- 
level programming language. ASM86 compliments 
PLM-86 as the programmer may choose to write each 
module in the language most appropriate to the task 
and then combine the modules into the complete appli
cations program using the 8086/8088 relocation and 
linkage utilities.

C O N V86
MCS-80/85 to M CS-86 ASSEM B LY LANG UAGE  

C O N VER TER  UTILITY PRO G RAM

Translates 8080/8085 Assembly 
Language Source Code to 8086/8088 
Assembly Language Source Code

Provides a fast and accurate means to 
convert 8080/8085 programs to the 8086 
and the 8088, facilitating program 
portability

Automatically generates proper ASM-86 
directives to set up a “virtual 8080” 
environment that is compatible with 
PLM-86

In support of Intel’s commitment to software portability, CONV86 is offered as a tool to move 8080/8085 programs to 
the 8086 and the 8088. A comprehensive manual, “ MCS-86 Assembly Language Converter Operating Instructions for 
ISIS-II Users” (9800642), covers the entire conversion process. Detailed methodology of the conversion process is fully 
described therein.

CONV86 will accept as input an error-free 8080/8085 assembly-language source file and optional controls, and produce 
as output, optional PRINT and OUTPUT files.

The PRINT file is a formatted copy of the 8080/8085 source and the 8086/8088 source file with embedded caution 
messages.

The OUTPUT file is an 8086/8088 source file.

CONV86 issues a caution message when it detects a potential problem in the converted 8086/8088 code.

A transliteration of the 8080/8085 programs occurs, with each 8080/8085 construct mapped to its exact 8086/8088 
counterpart:

— Registers 
—Condition flags
— Instructions 
—Operands 
—Assembler directives 
—Assembler control lines
— Macros
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Because CONV86 is a transliteration process, there is the possibility of as much as a 15%-20% code expansion over 
the 8080/8085 code. For compactness and efficiency it is recommended that critical portions of programs be re-coded 
in 8086/8088 assembly language.

Also, as a consequence of the transliteration, some manual editing may be required for converting instruction se
quences dependent on:

-instruction length, timing, or encoding
-interrupt processing ) mechanical editing procedures
-PL/M parameter passing conventions ) for these are suggested in the converter manual.

The accompanying diagram illustrates the flow of the conversion process. Initially, the abstract program may be repre
sented in 8080/8085 or 8086/8088 assembly language to execute on that respective target machine. The conversion 
process is porting a source destined for the 8080/8085 to the 8086 or the 8088 via CONV86.

PORTING 808018085 SOURCE CODE TO THE 808618088
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LINK86

Automatic combination of separately 
compiled or assembled 8086/8088 
programs into a relocatable module 
Automatic selection of required modules 
from specified libraries to satisfy 
symbolic references 
Extensive debug symbol manipulation, 
allowing line numbers, local symbols, 
and public symbols to be purged and 
listed selectively

Automatic generation of a summary map 
giving results of the LINK86 process
Abbreviated control syntax
Relocatable modules may be merged 
into a single module suitable for 
inclusion in a library
Supports “ incremental” linking
Supports type checking of public and 
external symbols

LINK86 combines object modules specified in the LINK86 input list into a single output module. LINK86 combines 
segments from the input modules according to the order in which the modules are listed.
Support for incremental linking is provided since an output module produced by LINK86 can be an input to another 
link. At each stage in the incremental linking process, unneeded public symbols may be purged.
LINK86 supports type checking of public and external symbols reporting an error if their types are not consistent.
LINK86 will link any valid set of input modules without any controls. However, controls are available to control the out
put of diagnostic information in the LINK86 process and to control the content of the output module.
LINK86 allows the user to create a large program as the combination of several smaller, separately compiled modules. 
After development and debugging of these component modules the user can link them together, locate them using 
LOC86, and enter final testing with much of the work accomplished.

LOC86

Automatic and independent relocation 
of segments. Segments may be 
relocated to best match users memory 
configuration

Extensive debug symbol manipulation, 
allowing line numbers, local symbols, 
and public symbols to be purged and 
listed selectively

Automatic generation of a summary map 
giving starting address, segment 
addresses and lengths, and debug 
symbols and their addresses

Extensive capability to manipulate the 
order and placement of segments in 
8086/8088 memory

Abbreviated control syntax
Relocatability allows the programmer to code programs or sections of programs without having to know the final ar
rangement of the object code in memory.
LOC86 converts relative addresses in an input module to absolute addresses. LOC86 orders the segments in the input 
module and assigns absolute addresses to the segments. The sequence in which the segments in the input module 
are assigned absolute addresses is determined by their order in the input module and the controls supplied with the 
command.

LOC86 will relocate any valid input module without any controls. However, controls are available to control the output 
of diagnostic information in the LOC86 process, to control the content of the output module, or both.
The program you are developing will almost certainly use some mix of random access memory (RAM), read-only 
memory (ROM), and/or programmable read-only memory (PROM). Therefore, the location of your program affects both 
cost and performance in your application. The relocation feature allows you to develop your program on the Intellec 
development system and then simply relocate the object code to suit your application.
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O H 86

Converts an 8086/8088 absolute object Converts an absolute module to a more 
module to symbolic hexadecimal format readable format that can be displayed

on a CRT or printed for debugging

Facilitates preparing a file for later 
loading by a symbolic hexadecimal 
loader, such as the iSBC Monitor or 
Universal PROM Mapper

The OH86 command converts an 8086/8088 absolute object module to the hexadecimal format. This conversion may 
be necessary to format a module for later loading by a hexadecimal loader such as the iSBC 86/12 monitor or Universal 
Prom Mapper. The conversion may also be made to put the module in a more readable format that can be displayed or 
printed.

The module to be converted must be in absolute format; the output from LOC86 is in absolute format.

LIB86

LIB86 is a library manager program
which allows you to:

— Create specially formatted files to 
contain libraries of object modules

— Maintain these libraries by adding or 
deleting modules

— Print a listing of the modules and 
public symbols in a library file

Libraries can be used as input to LINK86 
which will automatically link modules 
from the library that satisfy external 
references in the modules being linked

Abbreviated control syntax

Libraries aid in the job of building programs. The library manager program, LIB86, creates and maintains files contain
ing object modules. The operation of LIB86 is controlled by commands to indicate which operation LIB86 is to per
form. The commands are:

CREATE — creates an empty library file
ADD — adds object modules to a library file
DELETE — deletes modules from a library file
LIST — lists the module directory of library files
EXIT — terminates the LIB86 program and returns control to ISIS-II
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SPECIFICATIONS 
Operating Environment
Required Hardware
Intellec Microcomputer Development System
— MDS-800, MDS-888
— Series II MDS-220 or MDS-230 
64K Bytes of RAM Memory

Dual Diskette Drives
— Single or Double* Density 
System Console
— CRT or Hardcopy Interactive Device

Optional Hardware
Universal PROM Programmer 
Line Printer*
ICE-86™*

Documentation Package
PL/M-86 Programming Manual (9800466)
ISIS-II PL/M-86 Compiler Operator’s Manual (9800478) 
MCS-86 User’s Manual (9800722)
MCS-86 Software Development Utilities Operating 

Instructions for ISIS-II Users (9800639)
MCS-86 Macro Assembly Language Reference Manual 

(9800640)
MCS-86 Macro Assembler Operating Instructions for 

ISIS-II Users (9800641)
MCS-86 Assembly Language Converter Operating 

Instructions for ISIS-II Users (9800642)
Universal PROM Programmer User’s Manual 

(9800819A)

Required Software
ISIS-II Diskette Operating System Flexible Diskettes
— Single or Double* Density — Single and Double* Density

•Recom mended

ORDERING INFORMATION
Part Number Description
MDS-311 8086/8088 Software Development

Package

Also available in the following development support 
packages:

Part Number Description
SP86A-KIT SP86A Support Package (for Intellec 

Model 800)
Includes ICE-86 In-Circuit Emulator 
(MDS-86-ICE) and 8086/8088 Software 
Development Package (MDS-311)

SP86B-KIT SP86B Support Package (for Series II)
Includes ICE-86 In-Circuit Emulator 
(MDS-86-ICE), 8086/8088 Software 
Development Package (MDS-311), 
and Series II Expansion Chassis 
(MDS-201)
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8089 I/O  processor program generation 
on the Intellec Microcomputer 
Development System.

Relocatable object module compatible 
with the 8086 and 8088 Microprocessors.

Supports 8089-based addressing modes 
with a structure facility that enables easy 
access to based data.

Fully detailed set of error messages.

Includes software development utilities
to facilitate 8089 design.
—LINK86: Combines 8086 or 8088 object 

modules with 8089 object 
modules and resolves 
external references.

—LOC86: Assigns absolute memory 
addresses to 8089 object 
modules.

-O H 8 6 : Converts 8086/8088/8089
object code to symbolic 
hexadecimal format.

—UPM86: A PROM programming aid 
which has been updated to 
support PROM programming 
for 8086, 8088 and 8089 
applications.

The  8089 A s s e m b le r  S u p p o rt P ackage  e x te n d s  In te lle c  m ic ro c o m p u te r d e v e lo p m e n t s y s te m  s u p p o r t to  th e  8089 WO 
P ro c e s s o r. T h e  a s s e m b le r  tra n s la te s  8089 a s s e m b ly  lan g u ag e  so u rc e  in s tru c t io n s  in to  a p p ro p r ia te  m a c h in e  o p e ra 
tio n  co d e s . The  8089 A s s e m b le r  S u p p o rt P ackage  a llo w s  th e  p ro g ra m m e r to  fu lly  u tiliz e  th e  c a p a b ilit ie s  o f th e  8089 I/O  
P ro ce sso r.

____ —----  iM tO U * 0 6

-  g & f c & r *
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FUNCTIONAL DESCRIPTION A sa m p le  a s s e m b ly  lis t in g  is s h o w n  in ta b le  1.

The  8089 A s s e m b le r  S u p p o rt P ackage  c o n ta in s  th e  8089 
a s s e m b le r (ASM 89) as w e ll as LINK86 and LOC86— 
re lo c a tio n  and lin k a g e  u t ili t ie s , OH86— 8086/8088/8089 
o b je c t c o d e  to  h e x a d e c im a l c o n v e rte r, and UPM 86— 
PROM p ro g ra m m in g  s o ftw a re  u p d a te d  to  p ro g ra m  o b je c t 
c o d e  in th e  8086 fo rm a ts . ASM 89 tra n s la te s  s y m b o lic  
8089 a s s e m b ly  la n g u a g e  in s tru c t io n s  in to  th e  a p p ro 
p ria te  m a c h in e  o p e ra tio n  c o d e s . The  a b il ity  to  re fe r to  
p ro g ra m  a d d re s s e s  w ith  s y m b o lic  nam es e lim in a te s  the  
e rro rs  o f hand  tra n s la t io n  and  m a kes  it e a s ie r to  m o d ify  
p ro g ra m s  w h e n  a d d in g  o r d e le tin g  in s tru c t io n s .

ASM 89 p ro v id e s  re lo c a ta b le  o b je c t m o d u le  c o m p a t
ib il ity  w ith  th e  8086 and 8088 m ic ro p ro c e s s o rs . Th is  
o b je c t m o d u le  c o m p a tib ility , a lo n g  w ith  th e  8086/8088 
re lo c a tio n  and  lin k a g e  u tili t ie s , fa c ilita te s  th e  d e s ig n in g  
o f th e  8089 in to  an 8086 o r 8088 sy s te m .

ASM 89 fu lly  s u p p o r ts  th e  based  a d d re s s in g  m o d e s  o f 
th e  8089. A s tru c tu re  fa c ility  in th e  a s s e m b le r p ro v id e s  
easy a c c e s s  to  base d  da ta . The  s tru c tu re  fa c ility  a llo w s  
th e  u s e r to  d e f in e  a te m p la te  th a t e n a b le s  a c c e s s in g  o f 
based  data  s y m b o lic a lly .

fEFN VALUE TYPE HARE

COHSOLE
CONTROL

ASSEMBLY COMPLETE. NO ERRORS FOUND

T a b le  1 . S a m p le  8 0 8 9  A s s e m b ly  L is t in g

SPECIFICATIONS 

Operating Environment

Required Hardware
Intellec Microcomputer Development System

— MDS-800, M DS-888

—Series II Models 220 or 230

64K Bytes of RAM Memory

Minimum One Diskette Drive

—Single or Double* Density

System Console

—CRT or Hardcopy Interactive Device

Optional Hardware
Universal PROM Programmer*
Line Printer*

Required Software
ISIS-II Diskette Operating System 

—Single or Double* Density

Documentation Package
8089 Assembler User's Guide (9800938)
8089 Assembler Pocket Reference (9800936)
MCS-86 Software Development Utilities 
Operating Instructions for ISIS-II User’s (9800639)
MCS-86 Absolute Object File Formats (9800821) 
Universal PROM Programmer User’s Manual (9800819)

Flexible Diskettes
—Single and Double* Density -Recom m ended

ORDERING INFORMATION:
Part Number Description
MDS-312 8089 A s s e m b le r  S u p p o rt P ackage



ICE-86™
8086 IN-CIRCUIT EMULATOR

Hardware in-circuit emulation

Full symbolic debugging

Breakpoints to halt emulation on a wide 
variety of conditions

Comprehensive trace of program execu
tion, both conditional and unconditional

Disassembly of trace or memory from 
object code into assembler mnemonics

2K bytes of high speed ICE-86 mapped 
memory

Software debugging with or without user 
system

Handles full 1 megabyte addressability of 
8086

Compound commands 

Command macros

The ICE-86 module provides In-Circuit Emulation for the 8086 microprocessor and the iSBC 86/12 Single Board Com
puter. It includes three circuit boards which reside in Intellec® Microcomputer Development Systems. A cable and 
buffer box connect the Intellec system to the user system by replacing the user’s 8086. Powerful Intellec debug func
tions are thus extended into the user system. Using the ICE-86 module, the designer can execute prototype software 
in continuous or single-step mode and can substitute blocks of Intellec system memory for user equivalents. Break
points allow the user to stop emulation on user-specified conditions, and the trace capability gives a detailed history 
of the program execution prior to the break. All user access to the prototype system software may be done symbolically 
by referring to the source program variables and labels.
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INTEGRATED HARDWARE/SOFTWARE 
DEVELOPMENT
The ICE-86 emulator allows hardware and software 
development to proceed interactively. This is more ef
fective than the traditional method of independent hard
ware and software development followed by system in
tegration. With the ICE-86 module, prototype hardware 
can be added to the system as it is designed. Software 
and hardware testing occurs while the product is being 
developed.
Conceptually, the ICE-86 emulator assists three stages 
of development:
1. It can be operated without being connected to the 

user’s system, so ICE-86 debugging capabilities can 
be used to facilitate program development before any 
of the user’s hardware is available.

2. Integration of software and hardware can begin when 
any functional element of the user system hardware 
is connected to the 8086 socket. Through ICE-86 
mapping capabilities, Intellec memory, ICE memory, 
or diskette memory can be substituted for missing 
prototype memory. Time-critical program modules 
are debugged before hardware implementation by us
ing the 2K-bytes of high-speed ICE-resident memory. 
As each section of the user's hardware is completed, 
it is added to the prototype. Thus each section of the 
hardware and software is “ system” tested as it 
becomes available.

3. When the user’s prototype is complete, it is tested 
with the final version of the user system software. 
The ICE-86 module is then used for real time emula
tion of the 8086 to debug the system as a completed 
unit.

Thus the ICE-86 module provides the user with the abil
ity to debug a prototype or production system at any 
stage in its development w ithout introducing 
extraneous hardware or software test tools.

SYMBOLIC DEBUGGING
Symbols and PL/M statement numbers may be 
substituted for numeric values in any of the ICE-86 com
mands. This allows the user to make symbolic refer
ences to I/O ports, memory addresses, and data in the 
user program. Thus the user need not remember the ad
dresses of variables or program subroutines.

Symbols can be used to reference variables, proce
dures, program labels, and source statements. A vari
able can be displayed or changed by referring to it by 
name rather than by its absolute location in memory. 
Using symbols for statement labels, program labels, and 
procedure names simplifies both tracing and breakpoint 
setting. Disassembly of a section of code from either 
trace or program memory into its assembly mnemonics 
is readily accomplished.

Furthermore, each symbol may have associated with it 
one of the data types BYTE, WORD, INTEGER, 
SINTEGER (for short, 8-bit integer) or POINTER. Thus 
the user need not remember the type of a source pro
gram variable when examining or modifying it. For 
example, the command “ !VAR" displays the value in 
memory of variable VAR in a format appropriate to its 
type, while the command “ !VAR = !VAR + 1" increments 
the value of the variable.

The user symbol table generated along with the object 
file during a PL/M-86 compilation or an ASM-86 
assembly is loaded into memory along with the user pro
gram which is to be emulated. The user may add to this 
symbol table any additional symbolic values for memory 
addresses, constants, or variables that are found useful 
during system debugging.

The ICE-86 module provides access through symbolic 
definition to all of the 8086 registers and flags. The 
READY, NMI, TEST, HOLD, RESET, INTR, and MN/MX 
pins of the 8086 can also be read. Symbolic references 
to key ICE-86 emulation information are also provided.

JN TE LLE C J

Figure 1. ICE-86 Block Diagram
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A typical ICE-86 development configuration. It is based on a Model 230 Development System, which also Includes a 
Double Density Diskette Operating System and a Model 201 Expansion Chassis (which holds the ICE-86 emulator). The 
ICE-86 module Is shown connected to a user prototype system, In this case an SDK-86.

MACROS AND COMPOUND COMMANDS
The ICE-86 module provides a programmable diagnostic 
facility which allows the user to tailor its operation us
ing macro commands and compound commands.
A macro is a set of ICE-86 commands which is given a 
single name. Thus, a sequence of commands which is 
executed frequently may be invoked simply by typing in 
a single command. The user first defines the macro by 
entering the entire sequence of commands which he 
wants to execute. He then names the macro and stores 
it for future use. He executes the macro by typing its 
name and passing up to ten parameters to the com
mands in the macro. Macros may be saved on a disk file 
for use in subsequent debugging sessions.
Compound commands provide conditional execution of 
commands(IF), and execution of commands until a con
dition is met or until they have been executed a 
specified number of times (COUNT, REPEAT).
Compound commands and macros may be nested any 
number of times.

MEMORY MAPPING
Memory for the user system can be resident in the user 
system or “ borrowed” from the Intellec System through 
ICE-86’s mapping capability.
The ICE-86 emulator allows the memory which is ad
dressed by the 8086 to be mapped in 1K-byte blocks to:
1. Physical memory in the user's system,
2. Either of two 1K-byte blocks of ICE-86 high speed 

memory,
3. Intellec memory,
4. A random-access diskette file.
The user can also designate a block of memory as non
existent. The ICE-86 module issues an error message 
when any such “ guarded” memory is addressed by the 
user program.

Command Description
GO Initializes emulation and allows the 

user to specify the starting point 
and breakpoints. Example:
GO FROM .START TILL .DELAY 
EXECUTED
where START and DELAY are state
ment labels.

STEP Allows the user to single-step 
through the program.

Table 1. Summary of ICE-86 Emulation Commands

OPERATION MODES
The ICE-86 software is a RAM-based program that pro
vides the user with easy-to-use commands for initiating 
emulation, defining breakpoints, controlling trace data 
collection, and displaying and controlling system 
parameters. ICE-86 commands are configured with a 
broad range of modifiers which provide the user with 
maximum flexibility in describing the operation to be 
performed.

Emulation
Emulation commands to the ICE-86 emulator control the 
process of setting up, running and halting an emulation 
of the user’s 8086. Breakpoints and tracepoints enable 
ICE-86 to halt emulation and provide a detailed trace of 
execution in any part of the user’s program. A summary 
of the emulation commands is shown in Table 1.
Breakpoints — The ICE-86 module has two breakpoint 
registers that allow the user to halt emulation when a 
specified condition is met. The breakpoint registers may 
be set up for execution or non-execution breaking. An 
execution breakpoint consists of a single address 
which causes a break whenever the 8086 executes from 
its queue an instruction byte which was obtained from
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the address. A non-execution breakpoint causes an 
emulation break when a specified condition other than 
an instruction execution occurs. A non-execution break
point condition, using one or both breakpoint registers, 
may be specified by any one of or a combination of:
1. A s e t  o f  a d d re s s  v a lu e s . Break on a set of address 

values has three valuable features:
a. Break on a single address.
b. The ability to set any number of breakpoints within 

a limited range (1024 bytes maximum) of memory.
c. The ability to break in an unlimited range. Execu

tion is halted on any memory access to an address 
greater than (or less than) any 20-bit breakpoint ad
dress.

2. A p a r t ic u la r  s ta tu s  o f  th e  8 0 8 6  b u s  (one or more of: 
memory or I/O read or write, instruction fetch, halt, or 
interrupt acknowledge).

3. A s e t  o f  d a ta  v a lu e s  (features comparable to break on 
a set of address values, explained in point one).

4. A s e g m e n t  r e g is te r  (break occurs when the register is 
used in an effective address calculation).

An external breakpoint match output for user access is 
provided on the buffer box. This allows synchronization 
of other test equipment when a break occurs.
Tracepoints — The ICE-86 module has two tracepoint 
registers which establish match conditions to condi
tionally start and stop trace collection. The trace infor
mation is gathered at least twice per bus cycle, first 
when the address signals are valid and second when the 
data signals are valid. If the 8086 execution queue is 
otherwise active, additional frames of trace are col
lected.
Each trace frame contains the 20 address/data lines and 
detailed information on the status of the 8086. The trace 
memory can store 1,023 frames, or an average of about 
300 bus cycles, providing ample data for determining 
how the 8086 was reacting prior to emulation break. The 
trace memory contains the last 1,023 frames of trace 
data collected, even if this spans several separate 
emulations. The user has the option of displaying each 
frame of the trace data or displaying by instruction in ac
tual ASM-86 Assembler mnemonics. Unless the user 
chooses to disable trace, the trace information is 
always available after an emulation.

Interrogation and Utility
Interrogation and utility commands give the user con
venient access to detailed information about the user 
program and the state of the 8086 that is useful in 
debugging hardware and software. Changes can be 
made in both memory and the 8086 registers, flags, in
put pins, and I/O ports. Commands are also provided for 
various utility operations such as loading and saving 
program files, defining symbols and macros, displaying 
trace data, setting up the memory map, and returning 
control to ISIS-II. A summary of the basic interrogation 
and utility commands is shown in Table 2.

Memory/Register Commands

Display or change the contents of:
• Memory
• 8086 Registers
• 8086 Status flags
• 8086 Input pins
• 8086 I/O ports
• ICE-86 Pseudo-Registers (e.g. emulation timer)

Memory Mapping Commands

Display, declare, set, or reset the ICE-86 memory mapping. 

Symbol Manipu lation Commands

Display any or all symbols, program modules, and program 
line numbers and their associa ted values (locations in 
memory).

Set the domain (choose the particular program module) for 
the line numbers.

Define new sym bols as they are needed in debugging. 

Remove any or all symbols, modules, and program 
statements.

Change the value of any symbol.

TYPE

Ass ign  or change the type of any symbol in the symbol table. 

ASM

Disassem ble user program memory into ASM-86 Assem bler 
mnemonics.

PRINT

Display the specified portion of the trace memory.

LOAD

Fetch user symbol table and object code from the input file. 

SAVE

Send user symbol table and object code to the output file. 

LIST

Send a copy of all output (including prompts, input line 
echos, and error messages) to the chosen output device (e.g. 
disk, printer) as well as the console.

EVALUATE

Display the value of an expression in binary, octal, decimal, 
hexadecimal, and ASCII.

SUFFIX/BASE

Establish the default base for numeric values in input 
text/output display (binary, octal, decim al, or hexadecimal).

C LO C K

Select the internal (ICE-86 provided, for stand-alone mode 
only) or an external (user-provided) system clock.

RW TIMEOUT

A llow s the user to time out READ/WRITE command signa ls 
based on the time taken by the 8086 to access  Intellec 
memory or d iskette memory.

ENABLE/D ISABLE RDY

Enable or d isab le log ical AND  of ICE-86 Ready with the user 
Ready signal for a ccess ing  Intellec memory, ICE memory, or 
diskette memory.

Table 2. Summary of Basic ICE-86 Interrogation and 
Utility Commands
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DIFFERENCES BETWEEN ICE-86
EMULATION AND THE 8086
MICROPROCESSOR

The ICE-86 module emulates the actual operation of the
8086 microprocessor with the following exceptions:
• The ICE-86 module will not respond to a user system 

NMI or RESET signal when it is out of emulation.
• Trap is ignored in single step mode and on the first in

struction step of an emulation.

• The MIN/MAX line, which chooses the “ minimum” or 
“ maximum” configuration of the 8086, must not 
change dynamically in the user system.

DC CHARACTERISTICS OF ICE-86 
USER CABLE
1. Output Low Voltages [V0L(Max) = 0.4V]

Iql (Min)
AD0-AD15 8 mA

(24 mA @ 0.5V)
A16/S3-A19/S7, BHE/S7, RD, 8 mA
LOCK, QSO, QS1, SO, S1, S2, (16 mA @ 0.5V)
WR, M/IO, DT/R, DEN, ALE,
INTA
HLDA 7 mA
MATCH0 OR MATCH1 (on
buffer box) 16 mA

• In the “ minimum” mode, the user HOLD signal must 
remain active until HLDA is output by the ICE-86
emulator.

• The RQ/GT lines in the “ maximum" configuration are 
not supported.

The speed of run emulation by the ICE-86 module 
depends on where the user has mapped his memory. As 
the user prototype progresses to include memory, 
emulation becomes real time.

Memory 
Mapped To Estimated Speed

User System 100% of real tim e', up to 4 MHz 
clock

ICE 2 wait states per 8086-controlled 
bus cycle

Intellec Approximately 0.02% of real time 
at 4 MHz clock

Diskette **

*100% of real time is emulation at the user system c lock  rate with 
no wait states.

**The emulation speed from d iskette is comparable to Intellec 
memory, but emulation must wait when a new page is accessed 
on the diskette.

Output High Voltages [ V 0 h  (Min) = 2.4V]
l0H(Min)

AD0-AD15 -  2 mA
A16/S3-A19/S7, BHE/S7, RD, 
LOCK, QSO, QS1.S0, S1,S2, 
WR, M/IO, DT/R, DEN, ALE, 
INTA, HLDA

-  1 mA

MATCH0 OR MATCH1 (on 
buffer box) -  0.8 mA

Input Low Voltages [VIL(Max) = 0.8V]
l|L  (Max)

AD0-AD15 -  0.2 mA
NMI, CLK -  0.4 mA
READY -  0.8 mA
INTR, HOLD, TEST, RESET -  1.4 mA
MN/MX (0.1 pf to GND) -  3.3 mA

Input High Voltages [V(H(Min)= 2.0V]
Im(Max)

AD0-AD15 80 mA
NMI, CLK 20 mA
READY 40 n A
INTR, HOLD, TEST, RESET -  0.4 mA
MN/MX (0.1 to GND) -  1.1 mA

5. RQ/GT0, RQ/GT1 are pulled up to + 5V through a 5.6K 
ohm resistor. No current is taken from user circuit at 
VCc Pin-
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SPECIFICATIONS
ICE-86 Operating Environment
Required Hardware
Intellec microcomputer development system with:
1. Three adjacent slots for the ICE-86 module (Series II 

requires Model 201 Expansion Chassis.)
2. 64K bytes of Intellec memory. If user prototype pro

gram memory is desired, additional memory above 
the basic 64K is required.

System console
Intellec diskette operating system 
ICE-86 module 
Required Software
System monitor
ISIS-II, version 3.4 or subsequent 
ICE-86 software

Equipment Supplied
Printed circuit boards (3)
Interface cable and emulation buffer module
Operator's manual
ICE-86 software, diskette-based

Emulation Clock
User system clock up to 4 MHz or 2 MHz ICE-86 internal 
clock in stand-alone mode
Physical Characteristics
Printed Circuit Boards
Width: 12.00 in (30.48 cm)
Height: 6.75 in (17.15 cm)
Depth: 0.50 in (1.27 cm)
Packaged Weight: 9.00 lb (4.10 kg)

Electrical Characteristics
DC Power
Vcc = +5V +5% -1 %
lCc = 15A maximum; 11A typical
Vqd = + 12V ±5%
Ipp = 120 mA maximum; 80 mA typical 
VBB = -  10V ±5%  or -  12V ±5% (optional) 
lBB = 15 mA maximum; 12 mA typical

Environmental Characteristics 
Operating Temperature: 0° to 40°C 
Operating Humidity: Up to 95% relative humidity with
out condensation.

ORDERING INFORMATION

Part Number Description
MDS-86-ICE 8086 CPU in-circuit emulator
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iSBC 86/12A

SIN G LE  BOARD CO M PUTER

8086 16 bit HMOS microprocessor 
central processor unit
32K-bytes of dual-port read/write 
memory expandable on-board to 64K- 
bytes with on-board refresh
Sockets for up to 16K-bytes of read only 
memory expandable on-board to 32K- 
bytes
System memory expandable to 
1 megabyte
24 programmable parallel I/O lines with 
sockets for interchangeable line drivers 
and terminators
Programmable synchronous/ 
asynchronous RS232C compatible serial 
interface with software selectable baud 
rates

Two programmable 16-bit BCD or binary 
timers/event counters

9 levels of vectored interrupt control, 
expandable to 65 levels

Auxiliary power bus and power fail 
interrupt control logic for read/write 
memory battery backup

MULTIBUS interface for multimaster 
configurations and system expansion

Compatible with iSBC 80 family single 
board computers, memory, digital and 
analog I/O, and peripheral controller 
boards

The iSBC 86/12A Single Board Computer is a member of Intel's complete line of OEM microcomputer systems which take 
full advantage of Intel's LSI technology to provide economical self-contained computer based solutions for OEM 
applications. The iSBC 86/12A board is a complete computer system on a single 6.75 x 12.00-inch printed circuit 
card. The CPU, system clock, read/write memory, nonvolatile read only memory, I/O ports and drivers, serial 
communications interface, priority interrupt logic and programmable timers, all reside on the board. Full MULTIBUS 
interface logic is included to offer compatibility with the Intel OEM Microcomputer Systems family of Single Board 
Computers, expansion memory options, digital and analog I/O expansion boards and peripheral controllers.
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FUNCTIONAL DESCRIPTION
Central Processing Unit
The central processor tor the iSBC 86/12A board is Intel’s 
8086, a powerful 16-bit HMOS device. The 225 sq. mil 
chip contains 29,000 transistors and has a clock rate of 
5MHz. The architecture includes four (4) 16-bit byte 
addressable data registers, two (2) 16-bit memory base 
pointer registers and two (2) 16-bit index registers, all 
accessed by a total of 24 operand addressing modes for 
complex data handling and very flexible memory 
addressing.

Instruction Set — The 8086 instruction repertoire includes 
variable length instruction format (including double 
operand instructions), 8-bit and 16-bit signed and 
unsigned arithmetic operators for binary, BCD and 
unpacked ASCII data, and iterative word and byte string 
manipulation functions. The instruction set of the 8086 is 
a superset of the 8080A/8085A family and with available 
software tools, programs written for the 8080A/8085A can 
be easily converted and run on the 8086 processor.

Architectural Features — A 6-byte instruction queue 
provides pre-fetching of sequential instructions and can 
reduce the 1.2fiSec minimum instruction cycle to 400 nsec 
for queued instructions. The stack oriented architecture 
facilitates nested subroutines and co-routines, reentrant 
code and powerful interrupt handling. The memory

expansion capabilities offer a 1 megabyte addressing 
range. The dynamic relocation scheme allows ease in 
segmentation of pure procedure and data for efficient 
memory utilization. Four segment registers (code, stack, 
data, extra) contain program loaded offset values which 
are used to map 16-bit addresses to 20-bit addresses. 
Each register maps 64K-bytes at a time and activation of a 
specific register is controlled explicitly by program 
control and is also selected implicitly by specific functions 
and instructions.

Bus Structure
The iSBC 86/12A microcomputer has three buses: an 
internal bus for communicating with on-board memory 
and I/O options, the MULTIBUS system bus for referenc
ing additional memory and I/O options, and the dual-port 
bus which allows access to RAM from the on-board CPU 
and the MULTIBUS system bus. Local (on-board) 
accesses do not require MULTIBUS communication, 
making the system bus available for use by other 
MULTIBUS masters (i.e. DMA devices and other single 
board computers transferring to additional system 
memory). This feature allows true parallel processing in a 
multiprocessor environment. In addition, the MULTIBUS 
interface can be used for system expansion through the 
use of other 8- and 16-bit iSBC computers, memory and 
I/O expansion boards.

COMPATIBLE
DEVICE

It PROGRAMMABLE 
PARALLEL I O LINES

ON-BOARD INTERNAL BUS

: l _c
MULTIBUS

MULTIMASTER
INTERFACE

H— c
MULTIBUS SYSTEM BUS

Figure 1. ISBC 86/12A Single Board Computer Block Diagram
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RAM Capabilities
The iSBC 86/12A microcomputer contains 32K bytes of 
dynamic read/write memory using 16K-bit 2117 RAMs. In 
addition, the on-board RAM complement may be ex
panded to 64K bytes with the iSBC 300 32K-byte RAM 
expansion module. Power for the on-board RAM and 
refresh circuitry may be optionally provided on an aux
iliary power bus, and memory protect logic is included 
for RAM battery backup requirements. The iSBC 86/12A 
board contains a dual port controller which allows 
access to the on-board RAM (32K bytes or 64K bytes 
when the iSBC 300 module is included with the iSBC 
86/12A board) from the iSBC 86/12A CPU and from any 
other MULTIBUS master via the system bus. The dual 
port controller allows 8- and 16-bit accesses from the 
MULTIBUS system bus, and the on-board CPU transfers 
data to RAM over a 16-bit data path. Priorities have been 
established such that memory refresh is guaranteed by 
the on-board refresh logic and that the on-board CPU 
has priority over MULTIBUS system bus requests for 
access to RAM. The dual port controller includes in
dependent addressing logic for RAM access from the 
on-board CPU and from the MULTIBUS system bus. The 
on-board CPU will always access RAM starting at loca
tion OOOOOh- Address jumpers allow on-board RAM to be 
located starting on any 8K-byte boundary within a 1 
megabyte address range for accesses from the MULTI
BUS system bus. In conjunction with this feature, the 
iSBC 86/12A microcomputer has the ability to protect 
on-board memory from MULTIBUS access to any contig
uous 8K-byte segments (or 16K-byte segments with 
iSBC 300 module). These features allow multiprocessor 
systems to establish local memory for each processor 
and shared system (MULTIBUS) memory configurations 
where the total system memory size (including local on
board memory) can exceed 1 megabyte without address
ing conflicts.

EPROM/ROM Capabilities
Four sockets are provided for up to 16K-bytes of 
nonvolatile read only memory on the iSBC 86/12A 
board. EPROM/ROM may be added in 2K-byte incre
ments up to a maximum of 4K-bytes by using Intel 2758

electiically programmable ROMs (EPROMs); in 4K-byte 
increments up to 8K bytes by using Intel 2716 EPROMs 
or Intel 2316E masked ROMs; or in 8K-byte increments 
up to 16K bytes by using Intel 2732 EPROMs or 2332A 
ROMs. On-board EPROM/ROM is accessed via 16-bit 
data paths. On-board EPROM/ROM capacity may be ex
panded to 32K bytes with the addition of the iSBC 340 
16K-byte EPROM expansion module. It provides an addi
tional four sockets for Intel 2732 EPROMs or Intel 2332A 
ROMs. With user modification of the iSBC 86/12A's on
board memory and MULTIBUS address decode, Intel 
2758 and 2716 EPROMs or 2316E ROMs may be option
ally supported. System memory size is easily expanded 
by the addition of MULTIBUS system bus compatible 
memory boards available in the iSBC product family.

Parallel I/O Interface
The iSBC 86/12A single board computer contains 24 
programmable parallel I/O lines implemented using the 
Intel 8255A Programmable Peripheral Interface. The 
system software is used to configure the I/O lines in any 
combination of unidirectional input/output and bidirec
tional ports indicated in Table 1. Therefore, the I/O 
interface may be customized to meet specific peripheral 
requirements. In order to take full advantage of the large 
number of possible I/O configurations, sockets are 
provided for interchangeable I/O line drivers and 
terminators. Hence, the flexibility of the I/O interface is 
further enhanced by the capability of selecting the 
appropriate combination of optional line drivers and 
terminators to provide the required sink current, polarity, 
and drive/termination characteristics for each applica
tion. The 24 programmable I/O lines and signal ground 
lines are brought out to a 50-pin edge connector that 
mates with flat, woven, or round cable.

Serial I/O
A programmable communications interface using the 
Intel 8251A Universal Synchronous/Asynchronous 
Receiver/Transmitter (USART) is contained on the iSBC 
86/12A board. A software selectable baud rate generator 
provides the USART with all common communication

Port Lines
(q«y)

Mode of Operation

Control

Unidirectional

BidirectionalInput Output

Latched Latched & 
Strobed Latched Latched & 

Strobed
1 8 X X X X X
2 8 X X X X
3 4 X X X1

4 X X X1
N o te

1. Part of port 3 must be used as a control port when either port 1 or port 2 are used as a latched and strobed input or a latched and strobed output 
port or port 1 is used as a bidirectional port.

Table 1. Input/Output Port Modes of Operation
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frequencies. The USART can be programmed by the 
system software to select the desired asynchronous or 
synchronous serial data transmission technique (includ
ing IBM Bi-Sync). The mode of operation (i.e., synchro
nous or asynchronous), data format, control character 
format, parity, and baud rate are all under program 
control. The 8251A provides full duplex, double buffered 
transmit and receive capability. Parity, overrun, and 
framing error detection are all incorporated in the 
USART. The RS232C compatible interface on each 
board, in conjunction with the USART, provides a direct 
interface to RS232C compatible terminals, cassettes, and 
asynchronous and synchronous modems. The RS232C 
command lines, serial data lines, and signal ground line 
are brought out to a 26 pin edge connector that mates with 
RS232C compatible flat or round cable. The iSBC 530 
Teletypewriter Adapter provides an optically isolated 
interface for those systems requiring a 20 mA current 
loop. The iSBC 530 unit may be used to interface the iSBC 
86/12A board to teletypewriters or other 20 mA current 
loop equipment.

Programmable Timers
The iSBC 86/12A board provides three independent, fully 
programmable 16-bit interval timers/event counters 
utilizing the Intel 8253 Programmable Interval Timer. 
Each counter is capable of operating in either BCD or 
binary modes. Two of these timers/counters are available 
to the systems designer to generate accurate time 
intervals under software control. Routing for the outputs 
and gate/trigger inputs of two of these counters is jumper 
selectable. The outputs may be independently routed to 
the 8259A Programmable Interrupt Controller and to the 
I/O line drivers associated with the 8255A Programmable 
Peripheral Interface, or may be routed as inputs to the 
8255A chip. The gate/trigger inputs may be routed to I/O 
terminators associated with the 8255A or as output 
connections from the 8255A. The third interval timer in 
the 8253 provides the programmable baud rate generator 
for the iSBC 86/12A board RS232C USART serial port. In 
utilizing the iSBC 86/12A board the systems designer 
simply configures, via software, each timer independently 
to meet system requirements. Whenever a given time 
delay or count is needed, software commands to the 
programmable timers/event counters select the desired 
function. Seven functions are available, as shown in 
Table 2. The contents of each counter may be read at any 
time during system operation with simple read operations 
for event counting applications, and special commands 
are included so that the contents can be read "on the fly".

MULTIBUS System Bus and 
Multimaster Capabilities
The MULTIBUS system bus features asynchronous data 
transfers for the accommodation of devices with various 
transfer rates while maintaining maximum throughput. 
Twenty address lines and sixteen separate data lines 
eliminate the need for address/data multiplexing/demul- 
tiplexing logic used in other systems, and allow for data 
transfer rates up to 5 megawords/sec. A failsafe timer is 
included in the iSBC 86/12A board which can be used to 
generate an interrupt if an addressed device does not 
respond within 6 msec.

Function Operation
Interrupt on When terminal count is reached,
terminal count an interrupt request is generated. 

This function is extremely useful 
for generation of real-time clocks.

Programmable Output goes low upon receipt of
one-shot an external trigger edge or soft

ware command and returns high 
when terminal count is reached. 
This function is retriggerable.

Rate Divide by N counter. The output
generator will go low for one input clock 

cycle, and the period from one low 
going pulse to the next is N times 
the input clock period.

Square-wave Output will remain high until one-
rate generator half the count has been completed, 

and go low for the other half of 
the count.

Software Output remains high until soft-
triggered ware loads count (N). N counts at-
strobe ter count is loaded, output goes 

low for one input clock period.
Hardware Output goes low for one clock
triggered period N counts after rising edge
strobe counter trigger input. The counter 

is retriggerable.
Event counter On a jumper selectable basis, the 

clock input becomes an input 
from the external system. CPU 
may read the number of events 
occurring after the counting "win
dow" has been enabled or an 
interrupt may be generated after N 
events occur in the system.

Table 2. Programmable Timer Functions

Multimaster Capabilities — The iSBC 86/12A board is a 
full computer on a single board with resources capable of 
supporting a great variety of OEM system requirements. 
For those applications requiring additional processing 
capacity and the benefits of multiprocessing (i.e., several 
CPUs and/or controllers logically sharing system tasks 
through communication over the system bus), the iSBC 
86/12A board provides full MULTIBUS arbitration control 
logic. This control logic allows up to three iSBC 86/12A 
boards or other bus masters, including iSBC 80 family 
MULTIBUS compatible 8-bit single board computers, to 
share the system bus in serial (daisy chain) priority 
fashion and up to 16 masters to share the MULTIBUS 
system bus with the addition of an external priority 
network. The MULTIBUS arbitration logic operates 
synchronously with a MULTIBUS clock (provided by the 
iSBC 86/12A board or optionally provided directly from 
the MULTIBUS) while data is transferred via a handshake 
between the master and slave modules. This allows 
different speed controllers to share resources on the same 
bus, and transfers via the bus proceed asynchronously. 
Thus, transfer speed is dependent on transmitting and
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rece iv ing  devices on ly . Th is  design  prevents s low  m aster 
m odu les from  be ing -hand icapped  in th e ira t te m p ts to g a in  
c o n tro l o f the  bus, bu t does not re s tr ic t th e sp ee d  at w h ich  
faste r m odu les can tra n s fe r data  via the  same bus. The 
m ost o bv ious a p p lica tio n s  fo r  the  m aster-s lave  c a p a b ili
ties o f the  bus are m u ltip ro ce sso r co n fig u ra tio n s , h igh  
speed periphera l co n tro l, but are by no m eans lim ited  to  
these three.

Interrupt Capablity
The iSBC  86/12A  board  p rov ides 9 vec to red  in te rru p t 
leve ls . The  h ig h e s t leve l is th e  N M I (N o n -m a s k a b le  
In te rru p t) line  w h ich  is d ire c tly  tied  to  the  8086 CPU. Th is 
in te rru p t ca nn o t be in h ib ite d  by so ftw a re  and is ty p ic a lly  
used fo r  s ig n a llin g  c a ta s tro p h ic  even ts  (i.e ., p o w e r 
fa ilu re ). On se rv ic ing  th is  in te rru p t, p rog ram  c o n tro l w ill 
be im p lic it ly  trans fe rred  th ro u gh  loca tio n  00008H. The 
In te l 8259A  P ro g ra m m a b le  In te r ru p t C o n tro l le r  (P IC ) 
p rov ides ve c to rin g  fo r the  next e ig h t in te rru p t levels. As 
show n in T ab le  3, a se lec tion  o f fo u r p rio r ity  p rocessing  
m odes is ava ilab le  to  the  system s des igner fo r use in 
des ig n in g  request p rocess ing  c o n fig u ra tio n s  to  m atch  
s y s te m  re q u ire m e n ts . O p e ra t in g  m o d e  and  p r io r i t y  
a s s ig n m e n ts  m ay be re c o n f ig u re d  d y n a m ic a lly  v ia  
so ftw a re  at any tim e  d u rin g  system  o pe ra tion . The PIC 
a c c e p ts  in te r ru p t  re q u e s ts  fro m  th e  p ro g ra m m a b le  
p a ra lle l and se ria l I/O  in te rfa c e s , th e  p ro g ra m m a b le  
tim e rs , th e  sys tem  bus, o r d ire c t ly  fro m  p e r ip h e ra l 
e q u ip m e n t. T h e  PIC  th e n  d e te rm in e s  w h ic h  o f the  
inco m ing  requests is o f the  h ighest p r io r ity , dete rm ines 
w he the r th is  request is o f h ig h e r p r io r ity  than  the  level 
c u rre n tly  be ing  serviced, and. if app rop ria te , issues an 
in te rru p t to  the  CPU. A n y  co m b in a tion  o f in te rru p t levels 
may be m asked, via so ftw are , by s to rin g  a s ing le  byte  in 
the  in te rru p t mask reg is te r o f the  PIC. The PIC genera tes 
a un ique  m em ory  address fo r each in te rru p t level. These 
addresses are equ a lly  spaced at 4 byte  in terva ls . Th is  
3 2 -b y te  b lo ck  may beg in  at any 3 2 -b y te  bou n d ary  in the  
lo w e s t 1 K -b y te s  o f m e m o ry , ' a n d  c o n ta in s  u n iq u e  
in s tru c tio n  p o in te rs  and code  segm ent o ffse t va lues (fo r 
expanded  m em ory o pe ra tio n ) fo r each in te rru p t level. 
A fte r a ckno w led g in g  an in te rru p t and o b ta in in g  a device  
id e n tifie r byte  from  the  8259A PIC, the  CPU w ill s to re  its 
s ta tus flags on the  stack and execu te  an in d ire c t C A LL  
in s tru c tio n  th ro u g h  the  ve c to r loca tio n  (derived fro m  the 
d ev ice  id e n tif ie r )  to  th e  in te r ru p t se rv ic e  ro u tin e . In 
system s re qu ir in g  a d d itio na l in te rru p t levels, slave 8259A 
P IC 's m ay be in te rfaced  via the  M U LT IB U S  system  bus, 
to  genera te  a d d itio n a l ve c to r addresses, y ie ld in g  a to ta l 
o f 65 un ique  in te rru p t levels.

Interrupt Request Generation — In te rru p t requests may 
o r ig in a te  fro m  17 s o u rc e s . T w o  ju m p e r  s e le c ta b le  
in te rru p t requests can be a u to m a tica lly  genera ted  by the  
p ro g ra m m a b le  p e r ip h e ra l in te rfa c e  w he n  a b y te  o f

•Note: The firs t 32 ve c to r loca tio n s  are reserved by Intel 
fo r  d e d ic a te d  ve c to rs . U sers w h o  w ish  to  m a in ta in  
c o m p a t ib i l i ty  w ith  p re se n t and  fu tu re  In te l p ro d u c ts  
shou ld , not use these lo ca tio n s  fo r user-de fined  ve c to r 
addresses.

Mode Operation
F u lly  nested In te rru p t request lin e  p r io r it ie s  

fixe d  at 0 as h ig h e s t, 7 as low e s t.

A u to -ro ta tin g Equal p r io r ity . Each leve l, a fte r 
rece iv ing  se rv ice , becom es the  
lo w e s t p r io r ity  level u n til next in 
te rru p t o ccu rs .

S p e c if ic S ystem  s o ftw a re  a s s ig n s  low e s t
p r io r ity p r io r ity  level. P rio r ity  o f a ll o th e r 

leve ls  based in sequence  n u m e ri
c a lly  on th is  a ss ig n m e n t.

P o lled S ystem  s o ftw a re  exam in e s  p r io r i
ty-encoded system  in te rru p t s ta tus  
via in te rru p t s ta tu s  reg is te r.

Table 3. Programmable Interrupt Modes

in fo rm a tio n  is ready to  be trans fe rred  to  the  CPU (i.e.. 
inpu t bu ffe r is fu ll)  o r a byte  of in fo rm a tio n  has been 
trans fe rred  to  a periphera l device  (i.e., o u tp u t b u ffe r is 
em pty). Tw o ju m p e r se lec tab le  in te rru p t requests can be 
a u to m a tica lly  genera ted  by the  USART w hen  a charac te r 
is ready to  be tra n s fe rre d  to  the  CPU (i.e.. receive  channe l 
bu ffe r is fu ll, o r a ch ara c te r is ready to  be tra n sm itte d  (i.e , 
t ra n s m it  c h a n n e l d a ta  b u f fe r  is e m p ty ) . A ju m p e r  
s e le c ta b le  re qu e s t can be g e n e ra te d  by each  o f the  
p ro g ra m m a b le  tim e rs . A n a d d it io n a l in te r ru p t re qu e s t 
line  may be jum pered  d ire c tly  fro m  the  para lle l I/O  d rive r 
te rm in a to r  s e c tio n . E ig h t p r io r it iz e d  in te r ru p t re qu e s t 
lines a llo w  the  iSBC  86 /1 2A board  to  recogn ize  and 
s e rv ice  in te rru p ts  o r ig in a t in g  fro m  p e r ip h e ra l b oa rd s  
in te rfaced  via the  M U LT IB U S  system  bus. The M U L T I
BUS fail safe tim e r a lso can be se lected  as an in te rru p t 
source.

Power-Fail Control
C on tro l lo g ic  is a lso inc lu d ed  to  accep t a p ow e r-fa il 
in te rru p t in c o n ju n c tio n  w ith  the  A C -lo w  s igna l from  the  
iSBC 635 and iSBC  640 P ower S upp ly  o r equ iva len t.

Expansion Capabilities
M e m o ry  and  I/O  c a p a c ity  m a y  be  e x p a n d e d  and  
a d d it io n a l fu n c t io n s  a d d e d  u s in g  In te l M U L T IB U S  
co m pa tib le  expans ion  boards. M em ory  m ay bee xp a nd e d  
by add ing  user spec ifie d  c o m b in a tio n s  o f RAM boards, 
EPR O M  b oa rd s , o r c o m b in a tio n  b oa rd s . In p u t/o u tp u t 
capac ity  m ay be increased by add in g  d ig ita l I/O  and 
ana log  I/O  expans ion  boards. M ass sto rage  ca p a b ility  
may be achieved by add ing  s ing le  o r d ou b le  d ens ity  
d iske tte  co n tro lle rs , o r hard d isk  co n tro lle rs . M o du la r 
expandab le  backp lanes and ca rdcages are ava ilab le  to  
s u p p o rt m u ltib o a rd  system s.

Note: C erta in  system  re s tr ic tio n s  may be in cu rre d  by the  
inc lu s io n  o f som e o f the  iS B C  80 fa m ily  o p tio n s  in an iSBC  
86/12A system . C on su lt the  In te l OEM  M ic ro co m p u te r 
System  C o n fig u ra tio n  G u ide  fo r sp ec ific  data.
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System Development Capabilities
The development cycle of iSBC 86/12A products can be 
significantly reduced by using the Intel I ec® series 
microcomputer development systems. The Assembler, 
Locating Linker, Library Manager, Text Editor and system 
monitor are all supported by the ISIS-11 disk based 
operating system. A minimum of 64K-bytes of RAM is 
needed in the Intellec system to support program 
development for the iSBC 86/12A board. To facilitate 
conversion of 8080A/8085A assembly language programs 
to un on the iSBC 86/12A board CONV-86 is available 
under the ISIS-II operating system.

In-Circuit Emulator — ICE-86 in-circuit emulator provides 
the necessary link between the software development 
environment provided by the Intellec system and the 
“target" iSBC 86/12A execution system. In addition to 
providing the mechanism for loading executable code and 
data into the iSBC 86/12A board, ICE-86 in-circuit 
emulator provides a sophisticated command set to assist 
in debugging software and final integration of the user

hardware and software. ICE-86 in-circuit emulator 
maximizes the use of available development resources by 
allowing Intellec resident resources (e.g., memory and 
peripherals) to be accessed by software running on the 
target iSBC 86/12A system. In addition, software can be 
executed without an iSBC 86/12A execution vehicle, in 2K 
bytes of RAM resident in the ICE-86 system itself. Sym
bolic references to instruction and data locations can be 
made through ICE-86 in-circuit emulator to allow the user 
to reference memory locations with assigned names.

PL/M-86 — Intel's high level programming language, 
PL/M-86, is also available as an Intellec Microcomputer 
Development System option. PL/M-86 provides the 
capability to program in a natural, algorithmic language 
and eliminates the need to manage register usage or 
allocate memory. PL/M-86 programs can be written in a 
much shorter time than assembly language programs for a 
given application. PL/M-86 includes byte and word, 
integer, pointer and floating point (32-bit) data types and 
also includes conditional compilation and macro features.

SPECIFICATIONS  

Word Size
Instruction — 8, 16, 24, or 32 bits 
Data — 8, 16 bits

MULTIBUS Access — Jumper selectable for any 8K-byte 
boundary, but not crossing a 128K-byte boundary. Ac
cess for 8K, 16K, 24K or 32K (16K, 32K, 48K, 64K with 
iSBC 300 option) bytes may be selected for on-board 
CPU use only.

Cycle Time
Basic Instruction Cycle — 1.2psec

— 400 nsec (assumes 
instruction in the queue)

Note:
Basic instruction cyc le  is defined as the fastest instruction time (i.e., 
two c lock  cycles)

Memory Capacity
On-Board Read Only Memory — 16K bytes (sockets 
only); expandable to 32K bytes with iSBC 340 EPROM/ 
ROM expansion module.
On-Board RAM — 32K bytes; expandable to 64K bytes 
with iSBC 300 RAM expansion module.

Off-Board Expansion — Up to 1 megabyte in user 
specified combinations of RAM, ROM, and EPROM.
Note:
Read only memory may be added in 2K, 4K, or 8K-byte increments.

Memory Addressing
On-Board EPROM/ROM — FF000-FFFFFH (using 2758 
EPROMs); FEOOO-FFFFFh (using 2716 EPROMs or 2316 
ROMs); FC000-FFFFFh (using 2732 EPROMs or 2332A 
ROMs); F8000-FFFFFh (with iSBC 340 EPROM option 
and four additional 2732 EPROMs).
On-Board RAM — 32K bytes of dual port RAM. Option
ally expandable to 64K bytes with iSBC 300 RAM option.
CPU Access — 32K bytes: 00000-07FFFH; 64K bytes: 
ooooo- o ffffh.

I/O Capacity
Parallel — 24 programmable lines using one 8255A. 
Serial — 1 programmable line using one 8251A.

I/O Addressing 
On-Board Programmable I/O

Port
8255A USART

1 2 3 Control Data Control

Address C8 CA CC CE D8 or 
DC

DA or 
DE

Serial Communications Characteristics
Synchronous — 5—8 bit characters; internal or exter
nal character synchronization; automatic sync insertion. 
Asynchronous — 5—8 bit characters; break character 
generation; 1, 1V4, or 2 stop bits; false start bit 
detection.
Baud Rates

Frequency (kHz) 
(Software Selectable)

Baud Rate (Hz)

Synchronous Asynchronous

-  16 -  64

153.6 — 9600 2400
76.8 — 4800 1200
38.4 38400 2400 600
19.2 19200 1200 300
9.6 9600 600 150
4.8 4800 300 75
2.4 2400 150 —

1.76 1760 110 -
Note:
Frequency selected by I/O write of appropriate 16-bit frequency factor 
to baud rate register (8253 Timer 2).
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Interrupts
Addresses for 8259A Registers (Hex notation I/O ad
dress space)
CO or C4 Write: Initialization Command Word 1 (ICW1) 

and Operation Control Words 2 and 3 
(OCW2 and OCW3)

Read: Status and Poll Registers 
C2 or C6 Write: ICW2, ICW3, ICW4, 0CW1 (Mask 

Register)
Read: 0CW1 (Mask Register)

Note:
Several registers have the same physical address; sequence of access 
and one data bit of control word determine which register w ill respond.

Interrupt Levels — 8086 CPU includes a non-maskable 
Interrupt (NMI) and a maskable interrupt (INTR). NMI 
interrupt is provided for catastrophic events such as 
power failure. NMI vector address is 00008. INTR interrupt 
is driven by on-board 8259A PIC, which provides 8-bit 
identifier of interrupting device to CPU. CPU multiplies 
identifier by four to derive vector address. Jumpers select 
interrupts from 17 sources without necessity of external 
hardware. PIC may be programmed to accommodate 
edge-sensitive or level-sensitive inputs.

Timers
Register Addresses (Hex notation, I/O address space) 
DO Timer 0
D2 Timer 1
D4 Timer 2
D6 Control register
Note:
Timer counts are loaded as two sequential output operations to same 
address as given.

Input Frequencies
Reference: 2.46 MHz ±0.1% (0.041 ps period, nominal); 
1.23 MHz ±0.1% (0.81 ps period, nominal); or 153.60 
kHz ±0.1% (6.51 ps period nominal).
Note:
Above frequencies are user selectable.

Event Rate: 2.46 MHz max
Output Frequencies/Timing Intervals

Function
S ingle  T im er/C ounte r Dual T im er/C ounte r 

(Two Tim ers Cascaded)

Min Max Min Max

Real-time
interrupt

1.63 ms 427.1 ms 3.26 s 466.50 min

Programmable
one-shot

1.63 ms 427.1 ms 3.26 s 466.50 min

Rate generator 2.342 Hz 613.5 kHz 0.000036 Hz 306.8 kHz

Square-wave 
rate generator

2.342 Hz 613.5 kHz 0.000036 Hz 306.8 kHz

Software
triggered
strobe

1.63 ms 427.1 ms 3.26 s 466.50 min

Hardware
triggered
strobe

1.63 ms 427.1 ms 3.26 s 466.50 min

Event
counter

— 2.46 MHz - -

Interfaces
MULTIBUS — All signals TTL compatible
Parallel I/O — All signals TTL compatible
Interrupt Requests — All TTL compatible
Timer — All signals TTL compatible
Serial I/O — RS232C compatible, data set configuration

System Clock (8086 CPU)
5.00 MHz ± 0.1%

Auxiliary Power
An auxiliary power bus is provided to allow separate 
power to RAM for systems requiring battery backup of 
read/write memory. Selection of this auxiliary RAM 
power bus is made via jumpers on the board.

Connectors

Interface Pins
(qty)

Centers
(in.)

M ating Connectors

Bus 86 0.156 VIKING 3KH43/9AMK12

Parallel I/O 50 0.1 3M 3415-000

Serial I/O 26 0.1 3M 3462-000

Memory Protect
An active low TTL compatible memory protect signal is 
brought out on the auxiliary connector which, when 
asserted, disables read/write access to RAM memory 
on the board. This input is provided for the protection 
of RAM contents during system power down sequences.

Line Drivers and Terminators
I/O Drivers — The following line drivers are all compatible
with the I/O driver sockets on the iSBC 86/12A board.

Driver C haracteristic S ink Current (mA)

7438 l,OC 48
7437 I 48
7432 Nl 16
7426 I.OC 16
7409 NI.OC 16
7408 Nl 16
7403 I.OC 16
7400 I 16

Note:
l -  inverting; Nl = non-inverting; OC  = open collector.

Port 1 of the 8255A has 20 mA totem-pole bidirectional 
drivers and 1 ksterminators.

I/O Terminators — 220n/330odivider or 1 kopullup

2200/3300 (ISBC 901 OPTION)
2200

+ 5V -------------------------------V v V -----------------------------

33 00

1 K Q  (ISBC 902 OPTION)

1 kQ
+ 5 V -------------------------------- a w v -------------------------------------------------o
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Bus Drivers

Function Characteristic Sink Current (mA)

Data Tri-state 50
Address Tri-state 50
Commands Tri-state 32

Physica l  C h a ra c te r i s t ic s  
Width -  12.00 in. (30.48 cm) 
Height — 6.75 in. (17.15 cm) 
Depth — 0.70 in. (1.78 cm) 
Weight — 19 oz. (539 gm)

E nvironm enta l  C h a ra c te r i s t ic s
Operating Temperature — 0 ° C to 5 5 ° C
Relative Humidity — to  90%  (w ith o u t c o nd e n sa tio n )

R efe ren ce  Manual
9803074-01 — iSBC  896 /12A S ing le  B oard  C om p u te r 
H ardw are  R eference M anual (N O T  S U PPLIED )

R eference m anua ls are sh ipped  w ith  each p ro d u c t o n ly  if 
d e s ig n a te d  S U P P L IE D  (see abo ve ). M a n u a ls  m ay be 
o rd e re d  fro m  any  In te l L ite ra tu re  D e p a rtm e n t, 3065 
B ow ers Avenue, Santa C lara, C a lifo rn ia  95051.

Electrica l  C h a ra c te r i s t ic s
DC Power Requirements

Configu
ration

Current Requirements

VCC =  +5V
± 5% (max)

V D D = +12V 
± 5% (max)

V B B  = -5 V  
± 5% (max)

V A A  = -  12V 
± 5% (max)

Without
EPROM1

5.2A 350 mA - 40 mA

RAM Only3 390 mA 40 mA 1.0 mA -
With
iSBC 5304

5.2A 450 mA - 140 mA

With 4K 
EPROM5 
(using 2758)

5.5A 350 mA - 40 mA

With 8K 
ROM5
(using 2316E)

6.1 A 350 mA - 40 mA

With 8K 
EPROM5 
(using 2716)

5.5A 350 mA - 40 mA

With 16K 
ROM5 (using 
2732or2332A)

5.4A 350 mA - 40 mA

Notes:
1. Does not include power for optional ROM/EPROM, I/O  drivers, and 

I/O  terminators.

2. Does not include power required for optional ROM/EPROM, I/O 
drivers and I/O  terminators.

3. RAM chips powered via auxiliary power bus.
4. Does not include power for optional ROM/EPROM, I/O  drivers, and 

I/O  terminators. Power for iSBC 530 is supplied via serial port 
connector.

5. Includes power required for four ROM/EPROM chips, and I/O 
terminators installed for 16 I/O  lines; ail terminator inputs low.

O R D E R IN G  IN F O R M A T IO N  

Part  N u m b er  D escrip tion
SBC  86/12A S in g le  B oard C om p u te r 

w ith  32K by tes  RAM

Intel Corporation
3065 Bowers Avenue 
Santa Clara, California 95051 
Tel: (408) 987-8088**
TWX: 910-338-0026 
TELEX: 34-6372
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INTELLEC -  iSBC 86 /12A  IN TER FA C E  
A N D  EXECUTIO N PACKAGE

Establishes communication between the 
iSBC 86/12A and the Intellec Develop
ment Systems to aid in MCS-86™ soft
ware development

Allows full speed execution of MCS-86™ 
programs

Includes EPROM resident system monitor 
for iSBC 86/12A

Allows Intellec ISIS-II files to be trans
ferred between iSBC 86/12A and Intellec 
Microcomputer Development System

Offers “Virtual Terminal” capability which 
permits the Intellec console to access the 
iSBC 86/12A Monitor

Provides powerful console commands for 
software debug

Allows access to all iSBC 86/12A memory, 
registers, flags and I/O ports

Includes all necessary hardware, soft
ware and documentation

The iS B C  957 In te lle c - iS B C  86/12A In te rfa c e  and E xe cu tio n  P ackage c o n ta in s  a ll th e  necessa ry  hardw are , s o ftw a re  
c a b le s  and d o c u m e n ta tio n  re qu ire d  to  in te rfa c e  an iS B C  86/12A S in g le  B oard  C o m p u te r to  an In te lle c  M ic ro c o m p u te r 
D eve lo pm e n t S ys te m  fo r s o ftw a re  d eve lo pm e n t and fu ll speed  e x e cu tio n .
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F U N C T IO N A L  D E S C R IP T IO N  

Overview
The iSBC  957 In te lle c - iS B C  86/12A In te rfa ce  and E xecu 
tio n  P ackage e x te n d s  the  s o ftw a re  d eve lo pm e n t capa 
b il i t ie s  o f th e  In te lle c  M ic ro c o m p u te r D eve lopm en t S ys
te m s  to  th e  iSBC  86/12 and iSBC  86/12A S in g le  Board 
C om p u te rs . It a llo w s  s o ftw a re  m o du le s  deve loped  
und e r th e  In te lle c  re s id e n t ISIS-II O p e ra ting  S ys te m s  to  
be d ow n  loaded  to  th e  iSBC  86/12A fo r fu ll-sp e e d  e xecu 
tio n  and  debug . In a d d itio n , th e  iSBC  957 a llo w s  seg 
m e n ts  o f iSBC  86/12A m em ory  to  be saved on f lo p p y  
d is k  f ile s . S pec ia l c o m m u n ic a tio n  s o ftw a re  a llo w s  
tra n sp a re n t access  to  the  p o w e rfu l debug  co m m a n d s  in 
the  iSBC  86/12A m o n ito r fro m  the  In te lle c  c o n s o le  te r 
m ina l.

S o f tw a re  C apab il i t ie s
The s o ftw a re  in c lu d e d  in the  iS B C  957 package  c o n s is ts  
o f the  iSBC  86/12A m o n ito r  re s id in g  on  fo u r  In te l 
EPR O M s w h ic h  are in se rte d  in to  s o c k e ts  on th e  iSBC 
86/12A board. A d is k e tte  is  a lso  in c lu d e d  w h ic h  c o n ta in s  
the  In te lle c  re s id e n t c o m m u n ic a tio n s  s o ftw a re  th a t 
lin k s  th e  iSBC  86/12A w ith  th e  In te lle c  M ic ro c o m p u te r 
D eve lopm en t S ys tem . The EPROM re s id e n t so ftw a re  
c re a te s  an e x e c u tio n  e n v iro n m e n t in w h ic h  o b je c t m o d 
u les  m ay be loaded in to  the  iS B C  86/12A m em ory , exe 
c u te d  at fu ll speed, m o d ifie d  if nece ssa ry  and saved on 
th e  In te lle c  sys te m  f lo p p y  d is k . The m o n ito r p rov ides 
th e  a b il ity  to  e xecu te  se le c te d  p rog ram  s e g m e n ts  w ith  
b re a k p o in ts  o r by s in g le  s te p p in g , exam in e  and m o d ify  
re g is te rs  and m em ory , p e rfo rm  p o rt I/O, m ove a b lo c k  o f 
m em ory , com pare  b lo c k s  o f m em ory , search  fo r  a w o rd /

Figure 1a. Intellec MDS-800 Series System Using RS232-C Compatible Terminal

Note: A10, A12, A13 — Insert Terminator Pack (supplied) 
A11 — Insert Status Adapter Ass'y (supplied)

Figure 1b. Intellec MDS-800 Series System with TTY Terminal

B-180



iSBC 957™

byte  va lue, and p e rfo rm  hex a r ith m e tic . In a d d itio n , the  
m o n ito r p rov id e s  fo r the  re c o g n itio n  o f in te rru p ts  via a 
use r-d e fin ed  tab le . The p rogram  on the  d is k e tte  c o n 
ta in s  c o m m u n ic a tio n  s o ftw a re  w h ic h  passes a p p ro p ri
a te  c o n s o le  co m m an d s  to  th e  iSBC  86/12A re s iden t 
m o n ito r  and a lso  in te rfa c e s  w ith  the  ISIS-II o pe ra tin g  
sys te m  to  tra n s fe r f ile s  be tw een  the  d eve lo pm e n t sy s 
tem  d is k e tte s  and the  iSBC  86/12A.

S y s te m  In te rfac ing
The p hys ica l in te rfa c e  be tw een  the  In te lle c  M ic ro c o m 
p u te r D eve lopm en t S ys te m  and the  iSBC  86/12A is 
a c c o m p lis h e d  w ith  cab les  s u p p lie d  w ith  th e  iSBC  957 
package. The ca b lin g  a rran g e m en t varies dep e n d in g  on 
w h e th e r the  sys te m  is  a m em ber o f the  In te lle c  M DS-800 
fa m ily  o r one  o f the  In te lle c  S eries II fa m ily .

Intellec MDS-800 Interface — In the  case o f the  In te lle c  
M DS-800 fa m ily , cab les  co n n e c t th e  se ria l I/O p o rt o f the

iS B C  86/12A to  the  ava ilab le  se ria l p o rt on the  In te lle c  
sys te m  (if the  TTY p o rt is used fo r the  iSBC  86/12A in te r
face, th e  iSBC  530 TTY a d a p te r is  in se rte d  in to  th e  line). 
(See F ig u re  1.) Th is  se ria l p o rt im p le m e n ts  the  c o m m u 
n ic a tio n  lin k  fro m  th e  In te lle c  c o n s o le  te rm in a l to  the  
iSBC  86/12A re s id e n t m o n ito r v ia  th e  In te lle c  based 
c o m m u n ic a tio n  s o ftw a re  and is used to  pass c o m 
m ands to  the  iSBC  86/12A. A d d it io n a lly , a ca b le  is run 
fro m  the  U n ive rsa l PROM P rogram m er (UPP) p o rt on the  
In te lle c  sys te m  to  th e  pa ra lle l I/O p o rt on  th e  iSBC 
86/12A. The necessa ry  te rm in a to rs / lin e  d rive rs  and a 
s ta tu s  ada p te r assem b ly  are a lso  in c lu d e d  to  co m p le te  
th is  pa ra lle l in te rfa c e  on the  iSBC  86/12A. Th is  in te r 
c o n n e c tio n  is  used fo r tra n s fe rr in g  th e  ISIS-II d is k  f ile s  
be tw een  the  d eve lo pm e n t sys te m  and the  iSBC  86/12A.

Intellec Series II Interface — For In te lle c  S e ries  II D eve l
o p m e n t S ys te m s the  c o n n e c tio n  be tw een  it and the  
iSBC 86/12A is a c c o m p lis h e d  w ith  a s in g le  se ria l lin e  in-

INTELLEC  
SERIES II 

M ODEL 210

Figure 2a. Intellec Series II Model 210

Figure 2b. Intellec Series Models 220, 230
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te rc o n n e o tin g  th e  iSBC  86/12A se ria l p o rt w ith  an a va il
ab le  se ria l p o rt on the  In te lle c  sys te m . A ll c o m m u n ic a 
tio n  in c lu d in g  co m m an d  and da ta  tra n s fe r o c c u rs  over 
th is  se ria l line . D eve lopm en t sys te m s  based on  th e  In 
te lle c  M ode l 210 can use e ith e r  one  o f.th e  tw o  a va ilab le  
se ria l p o rts . (See F ig u re  2a.) On M o de ls  220 and 230, 
S e ria l P ort 1 is s p e c ifie d . (See F ig u re  2b.)

In te llec  Env ironm ent
An In te lle c  M ic ro c o m p u te r D eve lopm en t S ys te m  to  be 
used in c o n ju n c tio n  w ith  th e  iSBC  957 package  and an 
iS B C  86/12A  m u s t have th e  fo llo w in g  necessa ry  fu n c 
t io n a lity  to  s u p p o rt p rog ram  d eve lo pm e n t and s to rage:

1. In te lle c  D eve lo pm e n t S ys te m  w ith  64K b y te s  o f RAM.

2. C on so le  CRT o r TTY te rm ina l.

3. In te lle c  M DS-DDS Dual D oub le  D en s ity  D iske tte  
D rive and ISIS-II O p e ra ting  S ystem  o r In te lle c  MDS- 
2DS Dual S in g le  D en s ity  D iske tte  D rive and ISIS-II 
O p e ra tin g  S ystem .

4. U ser-se lec ted  language  tra n s la to rs .

Note: The Intellec Series II Model 230 Microcomputer Development 
System and the Intellec MDS-888 Microcomputer Development Center

contain all necessary hardware and operating system software to be 
used with the iSBC 957 package and the iSBC 86/12A.

E x ecu t io n  E nv ironm ent
A fu ll c a p a b ility  iSBC  86/12A e x e c u tio n  e nv iro n m e n t 
s h o u ld  in c lu d e  th e  fo llo w in g  c o m p o n e n ts  fo r  e ffe c tiv e  
u ti liz a tio n :

1. An iSBC  86/12A S ing le  B oard C om pu te r.

2. An iSBC  957 In te lle c - iS B C  86/12A In te rfa ce  and Exe
c u tio n  Package.

3. An iS B C  655 o r iSBC  660 S ys te m  C h a ss is  fo r  pow er 
and M U LTIBU S expa n s ion .

4. O ne o r m ore  iSBC  032, 048, o r 064 RAM  boa rds  fo r 
p rog ram s re q u ir in g  m ore  th a n  32K b y te s  o f RAM .

Note: The iSBC 86/12A cannot be mounted in the Intellec system and re
quires a separate operating environment.

A d d it io n a l m em ory  boards, ana lo g  and d ig ita l I/O 
boards, and perip h e ra l c o n tro lle rs  can  be in c lu d e d  in the  
iSBC  660 S ys te m  C h a ss is  w ith  the  iSBC  86/12A  to  a llo w  
th e  e x e c u tio n  e n v iro n m e n t to  be e q u iva le n t to  th e  ex 
pected  fin a l p ro d u c t c o n fig u ra tio n .

SPECIFICATIONS

H ardw are
Cables
(1) OEM  RS232-C cab le  — M a tes  w ith  se ria l I/O p o rt on 

iSBC  86/12A
(1) RS232-C p o rt ca b le  — M ates w ith  RS232-C p o rt on 

In te lle c  sys tem

(1) TTY p o rt ca b le  — M ates w ith  TTY p o rt on  In te lle c  
sys te m

(1) P ara lle l load cab le  — M ates w ith  UPP p o rt on In
te lle c  sys te m  and pa ra lle l I/O p o rt on  iSBC  86/12A 
(o n ly  used on In te lle c  M DS-800 se rie s  sys te m s)

A ll ca b le s  a llo w  se pa ra tio n  o f In te lle c  sys te m  and iSBC 
86/12A o f up to  6 fee t.

I/O Drivers and Terminators
(1) 7437 48 m A open  c o lle c to r  d rive rs
(4) iSBC  901 220!i/330Si te rm in a to r packs
(4) iSBC  902 1 kSt te rm in a to r packs
D rive rs  and te rm in a to rs  needed w hen  pa ra lle l load cable
is requ ired

Interface Adapters
(1) iSBC  530 TTY a d a p te r — Used w hen  se ria l I/O line  

c o n n e c ts  w ith  TTY p o rt on In te lle c  sys te m  
(1) P ara lle l p o rt s ta tu s  a da p te r — M o u n ts  on iSBC 

86/12A w hen  pa ra lle l load ca b le  is requ ired

Miscellaneous — A tta c h m e n t sc re w s  fo r In te lle c  
m o un ted  co n n e c to rs

S o f tw a re
(4) EPR O M s w ith  iS B C  86/12A sys te m  m o n ito r 
(1) S in g le  d e n s ity  flo p p y  d is k e tte  w ith  iSBC  86/12A ISIS- 

II c o m m u n ic a tio n  s o ftw a re

(1) D oub le  d e n s ity  flo p p y  d is k e tte  w ith  iSBC  86/12A 
ISIS-II c o m m u n ic a tio n  so ftw a re

System Monitor
A dd re sse s : RAM: 00000 -00180H; ROM: F E 0 0 0 -F F F F H

Commands
Basic Commands

N (Next) Single stepped program execution
G (Go) Program start with optional breakpoints
S (Substitute) Examine and modify memory
X (Examine) Examine and modify registers
D (Display) Display blocks of memory
M (Move) Moves (duplicates) blocks of memory
C (Compare) Compare two blocks of memory
F (Find) Searches for byte/word value
H (Hex Arithmetic) Performs hexadecimal add and subtract
1 (Port Input) Reads an I/O port
O (Port Output) Writes to an I/O port
R (Read Tape) Reads and loads paper tape object file
W (Write Tape) Writes memory block to paper tape

Intellec Mode Commands

L (Load File) Loads ISIS-II file  to iSBC 86/12A
T (Transfer File) Writes memory block to ISIS-II file
E (Exit) Return to ISIS (Basic Command Mode)

Transfer Rates
In te lle c  M DS-800 F am ily  
Serial transfer: 110 baud 
Parallel transfer: 1K by te s /se c  

In te lle c  S e ries  II F a m ily
Serial transfer: D e te rm ined  by sys te m  c o n s o le  (up to  
9600 baud)
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R e fe re n c e  M anuals
9800645 — iSBC  86/12 H ardw are  R e ference  M anua l

9800743 — iSBC  957 In te lle c - iS B C  86/12 In te rfa ce  and 
E xe cu tio n  P ackage U ser's  G u ide

9803074-01 — iSBC  86/12A H ardw are  R eference  M anual 9800640 — 8086 A s se m b ly  Language  M anual

O R D E R IN G  IN F O R M A T IO N

Part N u m b e r  D escrip tion
SBC 957 In te lle c - iS B C  86/12A In te rfa c in g  and 

E xe cu tio n  Package
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in y
iSBC 300 32K-BYTE RAM EXPA NSIO N M O DULE  

iSBC 340 16K-BYTE EPRO M /RO M  EXPA N SIO N  M O DULE

On-board memory expansion for iSBC 
86/12A Single Board Computer

iSBC 300 module provides 32K bytes of 
dual port dynamic RAM and plugs directly 
into the iSBC 86/12A board
iSBC 340 module provides sockets for up 
to 16K bytes of additional EPROM/ROM 
and plugs directly into the iSBC 86/12A 
board

On-board memory expansion eliminates 
MULTIBUS system bus latency and 
increases system throughput

Low power requirements

Simple, reliable mechanical and electrical 
interconnection

The iSBC  300 32K -byte  RAM e xpa n s ion  m o d u le  and the  iS B C  340 16K -byte EPROM /ROM  e xpa n s ion  m o d u le  p rov ide  
s im p le , low  c o s t e xpa n s ion  o f th e  m em ory  co m p le m e n t ava ila b le  on  th e  iSBC  86/12A s in g le  board  c o m p u te r. Each 
m o d u le  u tiliz e d  in d iv id u a lly  o r to g e th e r can d ou b le  th e  iS B C  86/12A b oa rd 's  on-board  RAM  and EPROM  m em ory  
ca p a c ity . The iSBC  300 32K -byte  RAM e xpa n s ion  m o du le  and the  iSBC  340 16K -byte EPROM /ROM  e x p a n s io n  m o d u le  
o p t io n s  fo r  th e  iS B C  86/12A board  o ffe r  sys te m  d es ig n e rs  a new  level o f f le x ib i l i ty  in d e fin in g  and im p le m e n tin g  Intel® 
s in g le  board  c o m p u te r sys te m s. These  o p t io n s  a llo w  th e  sys te m s  d e s ig n e r to  d ou b le  th e  m em ory  c o m p le m e n t o f  an 
iSBC  86/12A  board  w ith  a m in im u m  o f sys te m  im p lic a t io n s . B ecause  th e y  expand  th e  m em ory  c o n f ig u ra tio n  on-board, 
th e y  can be a ccesse d  as q u ic k ly  as th e  e x is t in g  iSBC  86/12A m em ory  by e lim in a tin g  th e  need fo r  a c c e s s in g  th e  a d d i
t io n a l m em ory  v ia  th e  M U LTIBU S sys te m  bus. W ith  th e  iSBC  86/12A board  m o u n te d  in th e  to p  s lo t o f an iS B C  604 o r 
iSBC  614 ca rdcage , s u ff ic ie n t c lea ra n ce  e x is ts  fo r  m o u n tin g  bo th  th e  iS B C  300 a nd /o r th e  iS B C  340 e x p a n s io n  m o du le  
o p tio n (s ). If th e  iS B C  86/12A board  is  in se rte d  in to  som e  o th e r s lo t , the  c o m b in a tio n  o f boa rds  w ill p h y s ic a lly  (bu t n o t 
e le c tr ic a lly )  o c c u p y  tw o  ca rdca g e  s lo ts . In c re m en ta l pow e r re qu ire d  by th e  o p t io n s  is m in im a l; fo r  in s ta n ce , o n ly  305 
m W  is  needed fo r  th e  iS B C  300 RAM  e xpa n s ion  m odu le .
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FUNCTIONAL DESCRIPTION

iSBC 300 32K-Byte E x p an s io n  M odule

The iS B C  300 board  m easures  7.75" by 2.35" and m o un ts  
above the  RAM area on  th e  iSBC  86/12A s in g le  board 
co m p u te r. It expands th e  iS B C  86/12A b o a rd 's  on-board  
dua l p o rt RAM c a p a c ity  fro m  32K b y te s  to  64K by tes . 
The iSBC  300 m o du le  c o n ta in s  s ix te e n  16K-byte d yn a m 
ic  RAM dev ices , s o c k e ts  fo r  th e  Intel® 8202 D ynam ic 
RAM C o n tro lle r  and m em ory  in te rfa c e  la tc h in g . To in 
s ta ll th e  iS B C  300 m odu le , the  la tc h e s  and c o n tro lle r  
fro m  th e  iS B C  86/12A board  are rem oved and inse rte d  
in to  th e  s o c k e ts  on th e  iSBC  300 m odu le . The add-on 
board  is  then  m o un ted  o n to  th e  iSBC  86/12A board. P ins 
e x te n d in g  fro m  th e  c o n tro lle r 's  and la tc h e s ' s o cke ts  
m a te  w ith  th e  d ev ice s ' s o c k e ts  unde rnea th  (see F igu re  
1). A d d it io n a l p in s  m ate  to  s u p p ly  pow e r and o th e r s ig 
na ls  to  co m p le te  th e  e le c tr ic a l in te rfa ce . The m o du le  is 
th e n  se cure d  at th re e  a d d itio n a l p o in ts  w ith  n y lo n  hard 
w are to  insu re  th e  m e cha n ica l s e c u r ity  o f th e  assem b ly .

To  co m p le te  the  ins ta lla tion , tw o  socke ted  PROM s are 
rep laced  on the  iSBC  86/12A board  w ith  those  supp lied  
w ith  the  iSBC  300 kit. These are the  on-b o a rd  m em ory 
and M U LT IB U S  address decode  PROM s w h ich  a llo w  the  
iSBC 86/12A board  log ic  to  recogn ize  its expanded 
o n -b o a rd  m em ory  com plem ent.

iSBC 340 16K-Byte E x p an s io n  M odule

The iSBC  340 m odu le  expands the  iSBC 86/12A  S ing le  
B oard C om p u te r's  o n -b o a rd  EPROM  ca p a c ity  fro m  16K 
bytes to  32K bytes. It m easures 3 .3" by 2 .8" and cons is ts  
o f a PC board  w ith  s ix 2 4 -p in  specia l sockets. T w o  o f the  
sockets have ex tended p ins w h ich  m ate w ith  tw o  o f the  
EPROM sockets  on the  iSBC  86 /1 2A board. T w o  o f the  
EPROM s w h ich  w ou ld  have been inserted  on the  iSBC 
86 /1 2A  b oa rd  are th e n  re in s e rte d  in th e  iS B C  340 
m o du le . A d d it io n a l p in s  a lso  m ate  fo r  b r in g in g  c h ip  
s e le c ts  fo r  th e  re m a in in g  EPROM dev ice s  (see F igu re  2). 
The m e cha n ica l in te rfa c e  is s im ila r  to  th a t used on  the  
iSBC  300 RAM m odu le  and c o n s is ts  o f tw o  a d d itio n a l 
m o u n tin g  h o le s  and the  necessa ry  m o u n tin g  hardw are.

The iSBC  340 m o d u le  s u p p o rts  Intel® 2732 EPROM  or 
2332A R O M s as s u p p lie d  by In te l. O ne s e c tio n  o f the  
iSBC  86/12A on-board  m em ory  and M U LTIBU S add ress  
d eco d e  PR O M s (the  sam e d eco d e  PROM s m e n tio n e d  
fo r th e  iSBC  300 m odu le ) Is a lready  p re p ro g ram m e d  to  
s u p p o rt th e  iSBC  340 m o d u le  w ith  Intel® 2732 
EPROM s. T h is  s e c tio n  is se le c te d  th ro u g h  th e  EPROM 
c o n f ig u ra tio n  s w itc h e s  on  th e  iS B C  86/12A board . The 
iS B C  340 board  can o p t io n a lly  be c o n fig u re d  by th e  user 
to  s u p p o rt Intel® 2758 o r 2716 EPR O M s o r 2316E ROM s 
by p ro g ra m m in g  new  iSBC  86/12A d eco d e  PROM s to  
s u p p o rt th e se  dev ices . N ecessa ry  d o c u m e n ta tio n  and 
PROM m ap l is t in g s  are in the  iSBC  86/12A H arw are  
R e ference  M anua l (o rde r num b e r 9803074-01).

M E M O R Y  L A T C H E S  
(F R O M  iS B C  86 /1 2A )

D Y N A M IC
R A M  C O N T R O L L E R  
(F R O M  iS B C  86 /1 2A )

R E P L A C E M E N T  
M E M O R Y  A D D R E S S  

D E C O D E  P R O M S  
(S U P P L IE D  W IT H  

iS B C  300 O P T IO N )

IN G  H A R D W A R E  
(3 PLA C ES]

(S U P P L IE D  W IT H  iS B C  3 0 0  O P T IO N )

Figure 1. Installation of iSBC 300 RAM Expansion Module on iSBC 86/12A Single Board Computer
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S P E C I F I C A T I O N S  

W ord Size
8 o r 16 b its  (16 -b it data paths)

M em ory  Size
iSBC 300 Module — 32,768 b y te s  o f RAM
iSBC 340 Module — 16,384 b y te s  (max) o f EPROM /ROM

A c c e s s  Time
iSBC 300 Module — Read: 1 jise c , w rite : 1.2 /isec 
iSBC 340 Module — S tandard  EPR O M s (450 nsec): 1 
nsec, fa s t EPROM s (350 o r 390 nsec): 800 nsec

In te rface
The in te rfa c e  fo r th e  iSBC  300 and iS B C  340 m o du le  o p 
tio n s  is  d e s ig n ed  o n ly  fo r  In te l's  iSBC  86/12A S ing le  
B oard  C om pu te r.

ISBC 86/12A board + iSBC 340 module (32K-bytes 
max.) — FE000-FFFFFH (us ing  2758 EPRO M s); FC000- 
FFFFFH (us ing  2316E ROM s o r 2716 EPR O M s); F8000- 
FFFFFH (us ing  2332A ROM s o r 2732 EPROM s). 

O n -b o a rd  E P R O M /R O M  is no t access ib le  via the  
M U LT IB U S  in terface.

Auxiliary P ow er/M em ory  P ro tec t io n
The low  pow e r m em ory  p ro te c tio n  o p t io n  in c lu d e d  on 
th e  iSBC  86/12A boa rds  s u p p o rts  th e  iS B C  300 RAM 
m odu le .

“Local O nly” M em ory Pro tec tion
The  iSBC  86/12A S ing le  B oard  C o m p u te r su pp o rts  
d ed ica tion  o f o n -b o a rd  RAM  fo r o n -b o a rd  CPU access 
o n ly  in 8K, 16K, 24K, o r 3 2K -byte  segem ents. In s ta lla tio n  
o f the  iS B C  300 o p tio n  a llow s p ro te c tio n  o f 16K, 32K, 48K, 
o r 64K -b y te  segm ents.

M em ory A ddress ing  
On-board RAM 

CPU Access
ISBC 86/12A board only (32K bytes) — 00000-07FFFH. 
ISBC 86/12A board + iSBC 300 module (64K bytes) —
00000-0FFFFH.
MULTIBUS Access — J u m p e r se lectab le  fo r  any 8K - 
byte  b oundary , b u t n o t c ro ss in g  a 128K -byte  boundary.

On-board EPROM/ROM

Physical C harac te r is t ic s
iSBC 300 iSBC 340

Width 5.75" 3.3"
Length 2.35" 2.8"
Height of iSBC 86/12A 
plus mounted option .718 .718*

Weight 13 oz. 5 oz.
iSBC 86/12A board only (16K-bytes max.) — FF000- 'Includes EPROM/ROM s
FFFFFH (us ing  2758 EPROM s); FE00O-FFFFFH (us ing

Figure 2. Installation of iSBC 340 EPROM/ROM Option on iSBC 86/12A Single Board Computer
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Electrical C harac te r is t ics

DC pow er requ irem en ts :

Voltage iSBC 300 iSBC 340

+ 5 ±5% 1 mA 120 m A'

+ 12 ±5% 24 mA -

-12  ±5% 1 mA -

Note:
1. Loaded w ith  Intel 2732 EPROMs

Environm ental C harac te r is t ic s
Operating Temperature — 0° to  »55°C
Relative Humidity — to 90% (w ith o u t co nd e n sa tio n )

R efe ren ce  M anuals
A ll necessa ry  d o c u m e n ta tio n  fo r the  iSBC  300 m odu le  
and iSBC 340 m o du le  is in c lu d e d  in the  iSBC 86/12A 
H ardw are  R eference  M anua l; o rd e r #9803074-01. (NOT 
SUPPLIED)

M anua ls m ay be o rdered  from  any In te l sales rep resen ta 
tive  d is tr ib u to r o ffice  o r from  Intel L ite ra tu re  D epartm en t, 
3065 B ow ers Avenue. Santa C lara, CA 95051

ORDERING INFORMATION

Part  N u m b er  D escrip tion
SBC 300 32K -byte  RAM E xpans ion  M odu le
SBC 340 16K -byte EPROM E xpans ion  M odu le
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M CS-86 SYSTEM  DESIG N KIT

Complete single board microcomputer 
system including CPU, memory, and I/O

Easy to assemble kit form

High performance 8086 16-bit CPU

Interfaces directly with TTY or CRT

Interactive LED display and keyboard

Wire wrap area for custom interfaces

Extensive system monitor software in 
ROM

Comprehensive design library included

The SDK-86 MCS-86 System Design Kit is a complete single board 8086 microcomputer system in kit form. It contains 
all necessary components to complete construction of the kit, including LED display, keyboard, resistors, caps, crys
tal, and miscellaneous hardware. Included are preprogrammed ROMs containing a system monitor for general soft
ware utilities and system diagnostics. The complete kit includes an 8 -digit LED display and a mnemonic 24-key key
board for direct insertion, examination, and execution of a user’s program. In addition, it can be directly interfaced 
with a teletype terminal, CRT terminal, or the serial port of an Intellec system. The SDK-86 is a high performance proto 
type system with designed-in flexibility for simple interface to the user's application.
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FUNCTIONAL DESCRIPTION

The SDK-86 is a complete MCS-86 microcomputer sys
tem on a single board, in kit form. It contains all neces
sary components to build a useful, functional system. 
Such items as resistors, caps, and sockets are included: 
Assembly time varies from 4 to 10 hours, depending on 
the skill of the user. The SDK-86 functional block dia
gram is shown in Figure 1.

8086 Processor
The SDK-86 is designed around Intel’s 8086 microproc
essor. The Intel 8086 is a new generation, high perform
ance microprocessor implemented in N-channel, deple
tion load, silicon gate technology (HMOS), and pack
aged in a 40-pin CerDIP package. The processor 
features attributes of both 8-bit and 16-bit micro
processors in that it addresses memory as a sequence 
of 8 -bit bytes, but has a 16-bit wide physical path to 
memory for high performance. Additional features of 
the 8086 include the following:
• Direct addressing capability to one megabyte of 

memory
• Assembly language compatibility with 8080/8085
• 14 word x 16-bit register set with symmetrical oper

ations
• 24 operand addressing modes
• Bit, byte, word, and block operations
• 8 and 16-byte signed and unsigned arithmetic in 

binary or decimal mode, including multiply and divide
• 5 MHz clock rate
• MULTIBUS compatible system interface

A block diagram of the 8086 microprocessor is shown in 
Figure 2.

System Monitor
A compact but powerful system monitor is supplied 
with the SDK-86 to provide general software utilities and 
system diagnostics. It comes in preprogrammed read 
only memories (ROMs).

Communications Interface
The SDK-86 communicates with the outside world 
through either the on-board light emitting diode (LED) 
display/keyboard combination or the user's TTY or CRT 
terminal (jumper selectable), or by means of a special 
mode in which an Intellec development system 
transports finished programs to and from the SDK-86 . 
Memory may be easily expanded by simply soldering in 
additional devices in locations provided for this pur
pose. A large area of the board (22 square inches) is laid 
out as general purpose wire-wrap for the user's custom 
interfaces.

Assembly
Only a few simple tools are required for assembly: sol
dering iron, cutters, screwdriver, etc. The SDK-86 
assembly manual contains step-by-step instructions for 
easy assembly with a minimum of mistakes. Once con
struction is complete, the user connects his kit to a 
power supply and the SDK-86 is ready to go. The monitor 
starts immediately upon power-on or reset.
Commands — Keyboard mode commands, serial port 
commands, and Intellec slave mode commands are 
summarized in Table 1, Table 2, and Table 3, respec
tively. The SDK-86 keyboard is shown in Figure 3.

C ONTROL
LINES

CONNECTOR

4]
ADDRESS 

BUS EXPAN SION  
CON N EC TOR

i _______  r: . ;
- - J - 1

KBD/DISP
CTRLR
8279-5

PROM
2316E

PROM
2316E

RAM
2142 x 2

RAM
2142 x 2

I/O PORTS I/O PORTS 
8255A 8255A

EXPANSION
SOCKET

EXPANSION
SOCKET

EXPANSION
SOCKETS

EXPANSION
SOCKETS

(-----------
[ KEYBD 1

TRANS
CEIVERS K=o

V DATA IDATA BUS 
EX PAN SIO N  

CON N EC TOR

BAUD  RATE 
G ENERATOR

USART 
8251A I/O C O NNECTORS

[D ISPLAY) 
| SC AN  1

A V
TTY o r RS232

Sip2 DRIVER DRIVER

* JfH + H
KEYBO A

14
RD BBBBBBBB

LED DISPLAY

Figure 1. SDK-86 System Design Kit Functional Block Diagram
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Documentation
In addition to detailed information on using the moni
tors, the SDK-86 user’s manual provides circuit dia
grams, a monitor listing, and a description of how the 
system works. The complete design library for the 
SDK-86 is shown in Figure 4 and listed in the specifica
tions section under Reference Manuals.

GND

Figure 2. 8086 Microprocessor Block Diagram

SYSTM
RESET

INTR C
/IP

D
/  F L

E F

+ - 8
IW/CS

9
OW/DS

A
/  IS S

B
IBS

REG 4
IB/SP

5
OB/BP

6
MV/SI

7
EW/DI

•
0

EB/AX
1

ER/BX
2

GO/CS
3

ST/DX

Figure 3. SDK-86 Keyboard

Figure 4. SDK-86 Design Library

Command Operation

Reset Starts monitor.
Go Allows user to execute user 

program, and causes it to halt 
at predetermined program 
stop. Useful for debugging.

Single step Allows user to execute user 
program one instruction at a 
time. Useful for debugging.

Substitute Allows user to examine and
memory modify memory locations in 

byte or word mode.
Examine Allows user to examine and
register modify 8086 register contents.
Block move Allows user to relocate pro

gram and data portions in 
memory.

Input or output Allows direct control of 
SDK-86 I/O facilities in byte or 
mode.

Table 1. Keyboard Mode Commands

Command Operation

Dump memory Allows user to print or display 
large blocks of memory infor
mation in hex format than 
amount visible on terminal’s 
CRT display.

Start/continue Allows user to display blocks
display of memory information larger 

than amount visible on ter
minal's CRT display.

Punch/read Allows user to transmit fin-
paper tape ished programs into and out of 

SDK-86 via TTY paper tape 
punch.

Table 2. Serial Mode Commands
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8086 INSTRUCTION SET.
Table 4 contains a summary of processor instructions 
used for the 8086 microprocessor.

Mnemonic and 
Description Instruction Code

Mnemonic and 
Description Instruction Code

Data Transfer

7 6 5 4 I  2 I 0 7 8 5 4 3 2 1 0  7 8 5 4 3 2 1 0 7 8 5 4 3 2 1
Register/memory to/lfom register | t 0 0 0 1 0 d w
Immediate to registerfmemory | 1 1 0 0 0 1 1 w
Immediate to register ] 1 0 1 1 w reg
Memory to accumulator | 1 0 I 0 0 0 0 w
Accumulator to memory
Register/memory to segment register | 1 0 0 0 t 11 0
Segment register to regisler/memory | 1 0 0 0 1 10  0

accumulator

PUSH Push:

Register/memory

Segment register

POP - Pep:

Regisler/memory 
Register
Segment register

XCH6 - Exchange.

Regisler/memory w

IN = Input
Fixed port 
Variable port

OUT - Output
Fixed port 
Variable port
XLAT-Translate byte to AL 
LEA-Load EA to register 
LOS-Load pointer lo OS 
LEI-Load pointer lo ES 
LAHF-Load AH with flags 
SAHF - Store AH into Hags 
PUSNF-Push flags 
F0PF=Pop flags

Arithmetic

A00 = Add:

I' " 1’ " 1
| 0 l 0 i 0 reg
| 0 0 0 reg 1

| t 0 0 0 1 1 1 1

’0*1
HZ

Reg./memory with register lo either OOOOOOd w mod reg r/m
Immediate to register/memory 1 0 0 0 0 0 s w mod 0 0 0 r/m data data if s:w-01
Immediate to accumulator 0 0 0 0 0 1 0 w data data if w-1

ADC -  Add with carry:
Reg /memory with register to either 0 0 0 1 0 0 d w mod reg r/m
Immediate to register/memory 1 0 0 0 0 0 s w mod 0 1 0 r/m data data if sw-01
Immediate to accumulator 0 0 0 1 0 1 0 w data data if wo

INC = Increment:
Register/memory t 1 1 1 1 1 1 w mod 0 0 0 r/m
Register 0 1 0 0 0 reg
AAA-ASCN adjust for add 0 0 1 1 0 1 1 1
DAA-Oectmal adjust tor add 0 0 1 0 0 1 1 1

S U I -  Subtract:
Reg /memory and register to either 0 0 1 0 1 0 d w mod reg r/m
Immediate Irom register/memory 1 0 0 0 0 0 s w mod 1 0 1 r/m data if s:w=01
Immediate Irom accumulator 0 0 1 0 1 1 0 w data uata it w-i

III = Subtract with berrew
Reg./memory and register to either 0 0 0 1 1 0 d w mod reg r/m
Immediate trom register/memory 1 0 0 0 0 0 s w mod 0 1 1  r/m data data if s:w=01
Immediate trom accumulator 0 0 0 1 1 1 0 w data data if w-1

DEC = Decrement:
Regisler/memory mod 0 0 1 r/m
Register O'l 0 0 1 reg
NEB-Change sign 1 1 1 1 0 1 1 w modO 1 1 r/m

CMP Campari:

Register/memory and register 
immediate with regisier/memory 
immediate wilh accumulator 

AAS-ASCII adjust for subtract 
QAS-Decimal adiust for subtract 
MUL Multiply (unsigned!
IMUl Integer multiply (signed) 
AAM-ASCH adiust for multiply 
01V-Divide (unsigned)
I0IV-integer divide (signed) 
AA0-ASCII adiusi lor divide 
CBW-Convert byte to word 
CWO-Convert word to double word

Logic
HOT Inveit
SHL/SAL Shift logical/arithmetic left 
SHR-Shiti logical right 
SAR - Shill arithmetic right 
R01 Rotate lett 
DOR-Rotate right
RCL Rotate through carry flag left 
RCR Rotate through carry right

ANO And:
Reg /memory and register to either 
Immediale to register/memory 
Immediate to accumulator

7 8 5 4 3 2 1 0  7 8 5 4 3 2 1 0  7 8 5 4 3 2 1 0  7 8 6 4 3 2 1 0

0 0 1 1 1 0 d w mod reg r/m
1 0 0 0 0 0 s w mod 1 1 1 r/m data data if s w=0l
0 0 I 1 1 i 0 w data data if w-1

0 0 1 1 1 1 1 1
0 0 1 0 1 1 1 1
1 t t t 0 1 1 w mod 1 0 0 r/m
1 1 t t 0 1 1 w mod 1 0 t '/m
1 1 0 1 0 1 0 0 0 0 0 0 1 0 1 0
1 1 1 1 0 1 l w mod 1 t 0 r/m
1 1 1 t 0 1 1 w mod 11.1 i/m
1 1 0  10 1 0 1 0 0 0 0 1 0 1 0
1 0 0 1 1 0 0 0
1 0 0 1 1 0 0 1

1 l 1 1 0 1 1 w mod 0 1 0 r/m
1 1. 0 1 0 0 V w mod 1 0 0 r/m
i l 0 1 0 0 V w mod 1 0 1 r/m
1 1 0 1 0 0 V w mod 1 1 1  r/m
l 1 0 1 0 0 V w mod 0 0 0 r/m
t 1 0 1 0 0 v w mod 0 0 1 r/m
1 t 0 1 0 0 v w mod 0 1 0 r/m
1 t 0 1 O 0 V w modO 1 1 r/m

TEST And function to (lags, no raault:
Register/memory and register 
immediate data and register/memory 
Immediale data and accumulator

0 0 0 0 1 0 w

OR = Of:
Reg /memory and register to either 
Immediate lo regisiet/memory 
Immediate to accumulator

XOR = Exclusive or:
Reg /memory and register to either 
Immediate to register/memory 
Immediate lo accumulator

String Manipulation
REP=Repeat
M0VS= Move byte/word 
CMPS = Compare byte/word 
SCAS = Scan byte/word 
LOOS = Load byte/wd to AL/AX 
ST0S = Stor byte/wd trm AL/A

Control Transfer
CALL - Call:
Direct within segment 
Indirect within segment 
Oirect intersegment

Indirect intersegment

0 1 0 0 1 0 w~|
1 0 0 1 1 w |

IZ]

disp-high |

oflselhigh | 
seg-high |
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Mnemonic and 
Description Instruction Code

Mnemonic and 
Description

J * P  * UncaMtltlinal Jump 7 1 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 8 5 4 3 2 1 0
Direct within segment 1 1 1 0 1 0 0 I 1 disp-low disp high | JUS Jump on not sign
Direct within segment-short 1 1 1 0  1 0 1 1 disp LOOP Loop CX limes
Indirect within segment 1 1 1 1 1 1 1 1 mod 10  0 r/m L00PZ/LO0PE Loop while zero/equal 

L00PNZ/LD0PNE Loop while noi 
zero/equalDirect intersegment 1 1 1 0  1 0 1 0 oltset-low offset-high |

seg low seg-high ] JCXZ Jump on CX zero

Indirect intersegment 1 1 1 1 1 1 1 1 mod 1 0 1 r/m

NET = Return from CALL:
INT Interrupt
Type specified 
Type 3
INTO-Interrupt on overflow 
IRET Interrupt return

Within segment 1 1 0 0 0 0 1 1
Within seg adding immed to SP 1 10  0 0 0 1 0 datalow ___ da'a-high [
Intersegment 1 1 0 0 1 0 1 1
intersegmeni adding immediate lo SP 1 1 0 0 1 0 1 0 daialow data-high |
JE/JZ=Jump on equal/zero 0 1 1 1 0 1 0 0 disp

or equal 0 1 1 1 1 1 0 0 disp
JLE/JM^Jump on less or equal/not 0 1 1 1 1 1 1 0 disp
J6/JRAE=Jump on below/nol above 0 1 1 1 0 0 1 0 disp
JIE/JRA=Jumji on below or equal/ 0 1 1 1 0  1 1 0 disp CIC Clear carry
JP/JPE=Jump on parity/parity even 0 1 1 1 1 0  1 0 disp

J0=Jump on overflow 0 1 1 1 0 0 0 0 disp STC Set carry
JltJump on sign 0 1 1 1 1 0 0 0 disp CLD Clear direction
JIE/JRZ=Jump on no) equal/not zero 0 1 1 1 0  1 0  1 disp ST0 Set direction

or equal 0 1 1 1 1 1 0  1 disp CLI Clear mterrupi
JRLE/J8=Jump on not less or equal/ 

greater 0 1 1 1 1 1 1 1 disp STI Set interrupt
JN6/JAE=Jump on not below/above 0 1 1 1 0 0 1 1 disp HIT Halt
JRI£/JA = Jump on not below or 0 1 1 1 0 1 1 1 disp WAIT Wan

JRP/JPO-Jump on not par/par odd 0 1 1 1 1 0  1 1 disp ESC Escape ito external device)
JNQ=Jump on not overflow 0 1 1 1 0 0 0 1 disp LOCK Bus lock prefix

Instruction Code

7 6 5 4 3 7 1 0  7 8 5 4 3 2 1 0
fo 1 1 1 1 0 0 1 | disp 
1 t 1 0 0 0 1 0 disp
t 1 1 0 0 0 0 1_______ disp
1 1 1 0 0 0 0 0_______ disp
1 1 1  0 0 0 1 1 disp

11110 0 0~1
1110 10 1

iiitoi 6 |
111110 11 I 

[ 1 1 1 1 0 1 0 0  I 
I 1 0 0 1 1 0 1 1 I
[ 1 1 0 ' 1 * x x mod xx x  f/m

Notes
AL = 8-bit accumulator
AX = 16-bit accumulator
CX = Count register
DS = Data segment
ES = Extra segment
Above/below refers to unsigned value
Greater = more positive;
Less = less positive (more negative) signed values
if d =  1 then " to "  reg; if  d = 0 then "from " reg
if w = 1 then word instruction: if  w  = 0 then byte instruction

if mod = 11 then r /m  is treated as a REG field
if mod = 00 then DISP = 0*. disp-low and disp-high are absent
if mod = 01 then OISP = disp-low sign-extended to 16-bits, disp-high is absent
it mod = 10 then OISP = disp-high: disp-low

if r /m  = 000 then EA = (BX) ♦ (SI) ♦ DISP
if r /m  = 001 then EA = (BX) * (Dl) ♦ DISP
if r /m  = 010 then EA = (BP) ♦ (SI) * DISP
if r /m  = 011 then EA = (BP) ♦ (Dl) *  DISP
if r /m  = 100 then EA = (SI) * DISP
if r /m  = 101 then EA = (Dl) ♦ DISP
if r /m  = 110 then EA = (BP) ♦ DISP*
if r /m  = 111 then EA = (BX) *  DISP
DISP follows 2nd byte of instruction (before data if required)

‘ except if mod = 00 and r /m  = 110 then EA = disp-high disp-low

if s:w =  01 then 16 bits of immediate data form the operand 
if s:w  =  11 then an immediate data byte is sign extended to 

form the 16-bit operand
if v =  0 then "c o u n t" =  1. if v =  0 then "c o u n t" in (CL) 
x -  don't care
if v =  0 then "c o u n t" =  1. il v =  1 then "c o u n t" in (CL) register 
z is used for string primitives for comparison with ZF FLAG

SEGMENT OVERRIDE PREFIX 

0  0 1 reg 1 1 0

REG is assigned according to the fo llow ing table

IB-Bit |w = 1) 6 Bit (w 0| Segmint
000 AX 000 AL 00 ES
001 CX 001 CL 01 CS
010 DX 010 DL 10 SS
011 BX 011 BL 11 DS
100 SP 100 AH
101 BP 101 CH
110 SI 110 DH
111 Dl 111 BH

Instructions which reference the flag register file as a 16-bit object use the symbol FLAGS to 
represent the file:

FLAGS = X:X:X X:(OF):(DF):(IF):(TF):(SF):(ZF):X:(AF):X (PF) X (CF)

Mnemonics c- Intel, 1978

Table 4. 8086 Instruction Set Summary

SPECIFICATIONS

Central Processor
CPU — 8086-4
Note
May be operated at 2.5 MHz or 5 MHz, jumper selectable, for use with 
8086.

Memory
ROM — 8 K bytes 2316/2716
RAM — 2K bytes (expandable to 4K bytes) 2142

Addressing
ROM — FEOOO-FFFFF
RAM — 0-7FF (800-FFF available with additional 
2142's)
Note
The wire-wrap area of the SDK-86 PC board may be used for additional 
custom memory expansion.

Input/Output
Parallel — 48 lines (two 8255A's)
Serial — RS232 or current loop (8251 A)
Baud Rate — selectable from 110 to 4800 baud
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Interfaces
Bus — All signals TTL compatible 
Parallel I/O — All signals TTL compatible 
Serial I/O — 20 mA current loop TTY or RS232 
Note
The user has access to all bus signals which enable him to design cus
tom system expansions into the kit's wire-wrap area.

Interrupts (256 vectored)
Maskable
Non-maskable
TRAP

DMA
Hold Request — Jumper selectable. TTL compatible 
input.

Software
System Monitor — Preprogrammed 2716 or 2316 ROMs 
Addresses — FE000-FFPFF
Monitor I/O — Keyboard/display or TTY or CRT (serial 
I / O )

Physical Characteristics
Width — 13.5 in. (34.3 cm)
Height — 12 in. (30.5 cm)
Depth — 1.75 in. (4.45 cm)
Weight — approx. 24 oz. (3.3 kg)

Electrical Characteristics
DC Power Requirement
(Power supply not included in kit)

Voltage Current

VCC5V ± 5% 3.5A
Vj j y  -  12V ± 10% 0.3A

(Vtty  required only if teletype is connected)

Environmental Characteristics
Operating Temperature — 0-50°C

Reference Manuals
9800697A — SDK-86 MCS-86 System Design Kit
Assembly Manual
9800722 — MCS-86 User's Manual
9800640A — 8086 Assembly Language Programming
Manual
8086 Assembly Language Reference Card

Reference manuals are shipped with each product only 
if designated SUPPLIED (see above). Manuals may be 
ordered from any Intel sales representative, distributor 
office or from Intel Literature Department, 3065 Bowers 
Avenue, Santa Clara, California 95051.

ORDERING INFORMATION

Part Number Description
SDK-86 MCS-86 system design kit
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SDK-C86

M CS-86' SYSTEM DESIGN KIT  
SOFTWARE AND CABLE INTERFACE TO  

INTELLECT DEVELOPMENT SYSTEM

■ Enhances and Extends the Power and 
Usefulness of the SDK-86

■ Allows the SDK-86 to Become an 
Execution Vehicle for ISIS-II 
Developed 8086 Object Code Using 
the MDS-311 Software Cross 
Development Package

■ All SDK-86 Serial Port Mode 
Commands Become Available at 
Console of the Intellec® System

nk for using the SDK-86  monitor in conjunction with an 
Intellec® Development System while adding features of data transfer between SDK-86  memory and Intellec® System files. 
The user may enter programs and data into the SDK-86  and then save them on a diskette. Also, programs and data may be 
created on the Intellec® System using the MDS-311 cross development software package, then loaded into the SDK-86  for 
testing and checkout. This provides a real time execution environment of the SDK-86  as a peripheral to the Intellec® 
System.

■ Provides the Software and Hardware 
Communications Link Between an 
Intellec® Development System and the 
SDK-86

■ Intellec® System Files can be Accessed 
and Down loaded to the SDK-86 
Resident Memory

■ Data in SDK-86 Memory can be 
Uploaded and Saved in Intellec®
System Files

The SDK-C86 product provides the software and hardware li
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HARDWARE
There  are tw o -se ria l po rts  on the  In te llec®  System  back 
pane l, TTY  and CRT. A ssum ing  tha t one o f the  po rts  is 
used fo r the  In te llec®  conso le , the  S D K -C 86 cable  can 
p lu g  in to  the  unused port. The S D K-86 is ju m p e r 
se lec tab le  to  a ccep t e ithe r the  CRT f RS232 o r TTY (20m A 
c u rre n t loop ) signa ls.

The edge c o n n e c to r on the  S D K -86 has the  M U LT IB U S 7" 
fo rm  fa c to r. No s igna ls  are co nn e c te d  to  the fin ge rs  
e xcep t the  pow e r s u p p ly  traces. The re fo re , the  S D K-86 
can p lug  d ire c tly  in to  the  In te llec®  m o th e rb o a rd  to  ob ta in  
pow e r w h ile  us ing  the  S D K -C 86  cab le  as the  c o m m u n i
ca tion  link.

SOFTWARE
T w o  p rog ram s m ust be invoked  to  opera te  in the  S D K-86 
slave m ode. O ne p rog ram  runs on the  SD K-86, and 
a no the r runs in any IS IS -II e nv iro n m e n t th a t inc lu d es  a 
d iske tte  drive.

The seria l I/O  m o n ito r is ins ta lled  on the  S D K-86 and 
ope ra tes  as th o u g h  it was ta lk in g  to  a te rm ina l. The 
so ftw a re  in the  In te llec®  a llo w s  the  In te llec® , w ith  a 
co nso le  device, to  behave as if it w ere a te rm ina l to  the 
SDK-86.

The  S D K -C 86  so ftw a re  p rog ram  in the  In te lle c  reads the  
co nso le  in p u t device, then passes the  ch a ra c te r to  the 
S D K -86  th ro u g h  the  seria l port. It a lso receives the 
c h a ra c te rs  fro m  the  S D K-86 and d isp lays  them  at the 
co nso le  o u tp u t device. Besides the  basic  trans fe r 
fu n c tio n , th is  p rog ram  a lso recogn izes  and perfo rm s the  
U p load  and D ow n load  fu n c tio ns .

COMMAND MODES
•  T ranspa ren t: In th is  m ode, the  S D K -C 86 so ftw a re  

passes a ll ch a ra c te rs  th ro u g h  w ith o u t any p rocess ing . 
A ll the  co m m an d s  of the  S D K -86 m o n ito r (e xcep t paper 
tape com m ands) are ava ilab le  and w ill fu n c tio n  in 
e x a c tly  the  same m anner as if the  te rm ina l were 
a ttached  d ire c tly  to  the  seria l p o rt o f the  SDK-86.

•  U p lo a d /D o w n lo a d : In th is  m ode  the  S D K -C 86  so ftw a re , 
in the  In te llec® , recogn izes  the  m nem o n ic  fo r  U p load  or 
D ow n load  fro m  the  te rm ina l. It " tra n s la te s " the 
D ow n load  com m and  to  an R (Read hexadec im a l tape ; 
co m m an d  and the  U p load  co m m an d  to  a W (W rite  
hexadec im a l tape). The R and W com m ands  are then 
passed on to  the  S D K -86 m o n ito r. U sing  these paper 
tape co m m an d s  a llo w s  fo r  a checksu m m e d  tra n s fe r of 
data be tw een the  In te llec®  and the S D K -86 m em ory.

COMMAND SUMMARY
•  Reset — sta rts  the  S D K -86 m o n ito r.

•  Execute  w ith  B re a kp o in t (G) — A llo w s  you to  exe 
cu te  a user p rog ram  and cause it to  ha lt at a p re d e te r
m ined  p rog ra m  step  — usefu l fo r  d e b u g g in g .

•  S ing le  S tep i N > — a llo w s  you to  e xecu te  a user p rog ram  
one  in s tru c tio n  at a tim e  — usefu l fo r  d e b u g g in g .

•  S u b s titu te  M em ory  (S, SW: — a llo w s  you to  exam ine 
and m o d ify  m em ory  lo ca tio n s  in byte  o r w o rd  m ode.

•  E xam ine R eg is te r (X) — a llow s you  to  exam ine  and 
m o d ify  the  8086's re g is te r con ten ts .

•  B lock  M ove (M i — a llow s you to  re loca te  p rog ram  and 
data  p o rt io n s  in m em ory.

•  In p u t o r O u tp u t (I, IW, O, OW i — a llo w s  d ire c t c o n tro l of 
the  S D K -86 's  I/O  fa c ilitie s  in byte  o r w ord  m ode.

•  D isp lay  M em ory  (D i — a llo w s  you to  p r in t o r d isp lay  
la rge  b lo cks  o f m e m ory  in fo rm a tio n  in HEX fo rm a t.

•  Load (L i — a llo w s  you to  load hex fo rm a t o b je c t files  
in to  S D K -86 m em ory  from  an In te llec .

•  T ra n s fe r (T i — a llow s you  to  save co n te n ts  o f S D K-86 
m em ory  in a hex fo rm a t o b je c t file  in the  In te llec .

SDK-86 /lntellec® Slave Mode Configuration
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