|nte| ARTICLE AR-41

REPRINT

99999999

Single-board microcomputers offer hardware cost-effectiveness for
implementing many real-time systems. A compatible, resident, real-
time executive program provides savings in software development

An Integral Real-Time Executive
For Microcomputers

Kenneth Burgett and Edward F. O'Neil

Intel Corporation
Santa Clara, California

Single-board computers, or microcomputers, that contain
central processor, read-write and programmable read-
only memory, real-time clock, interrupts, and serial and
parallel input/output all on one printed circuit board,
have made feasible a whole spectrum of applications
which previously could not be economically justified.
These microcomputers have also opened up a range of
applications where the high functional density of large-
scale integration provides advantages over previous solu-
tions such as hardwired logic or relatively expensive
minicomputers. While microcomputers readily solve hard-
ware requirements, software for single-board computer
applications with real-time characteristics (which are
in the majority) has until now been generated individu-
ally for each application.

The Intel RMX/80* Real-Time Multi-Tasking Execu-
tive simplifies real-time application software development,
and at the same time furnishes capabilities optimized for
the microcomputer environment. It provides the means to
concurrently monitor and control multiple external events
that occur asynchronously in real-time. The program
framework allows system builders to immediately imple-
ment software for their particular applications, and to
avoid specific details of system interaction.

Major functions of the executive include system re-
source access based on task priority, intertask communi-
cation, interrupt driven device control, real-time clock
control, and interrupt handling. In combination, these
functions eliminate the need to implement detailed real-
time coordination for specific applications.

Previously, two alternative software approaches were
used to solve microcomputer applications. First, many

designers created their own operating executive, indi-
vidually tailored for each application. Obviously, this
approach was expensive and time-consuming. The second
approach was to use a minicomputer executive which had
been adapted to a microcomputer. Since this software
was designed for a different processing environment and
then “stripped down,” it suffered from major inad-
equacies when executed on microcomputers. The alterna-
tive, RMX/80, has been designed specifically to provide
a general-purpose real-time executive tailored to Intel
SBC 80 and System 80 microcomputers.

Real-Time System Requirements

All software design approaches for use in real-time ap-
plications include capability for concurrence, priority,
and synchronization/communication.

Concurrence—Real-time systems monitor and control
events which are occurring asynchronously in the physi-
cal world. Microcomputer software does not know ex-
actly when external events will occur; however, it must
be prepared to perform the necessary processing upon
demand, whenever the events actually do occur. Typical-
ly, interrupts are used to inform the microcomputer that
an event has occurred. At interrupt time, system control
software determines what processing to perform, as well
as the relative sequence in which processing must take
place.

*RMX/80™ is a registered trademark of the Intel Corp, Santa
Clara. Calif.

Reprinted from COMPUTER DESIGN, July 1977. Copyright Cahners Publishing Co.,Inc. 1977. All rights reserved. ,

2-74

Programs related to external events are processed in
an interleaved manner based on interrupt occurrence
and priority. For instance, one routine is executing when
an interrupt activates, signaling that a higher priority
event has occurred. At this point, the routine related to
the priority interrupt is started, while execution of the
less important routine is discontinued temporarily. When
the more important routine is completed, or temporarily
halted for some other reason, execution of the less im-
portant routine is resumed. In this manner, multiple pro-
grams execute concurrently in an interleaved fashion.
Priority—In a real-time environment, certain events re-
quire more immediate attention than others because of
their significance within the physical world. Immediacy
is relative to other processing, and is determined by ap-
plication requirements. The concept of immediacy or pri-
ority, however, is common throughout all real-time micro-
computer applications. In priority-based systems, the most
important program (one that is not waiting for some
physical or logical reason) is the one executing.

A classic illustration of program priority in real-time

systems is found in the area of plant control. When the
plant begins to fail in a nonrecoverable manner, it is
imperative that the plant be shut down as quickly as
possible. For this reason, shutdown processing takes
priority over all other system demands. Software pri-
ority enforces this hardware concept of physical opera-
tional events.
Synchronization/Communication—Another common sim-
ilarity in most real-time systems is the need for synchro-
nization between various events in the physical world
which are under microcomputer control. Synchroniza-
tion is defined as the process whereby one event may
cause one or more other events to occur. Communication
is the process through which data are sent between in-
put/output (I/0) devices or programs and other pro-
grams within the microcomputer system.

An example of the need for synchronization and com-
munication is a microcomputer system for weighing and
stamping packages. One part of the system weighs the
package, calculates pricing, and releases the package
onto a conveyor belt. Price and weight data are com-
municated to another part of thé system which stamps
the data onto the package after it arrives at a sensor
station. Synchronization is demonstrated by the occur-
rence of one event—package arrival<—causing another
event—package stamping—to occur.

Compatible Benefits

To satisfy real-time microcomputer software require-
ments, the RMX/80 Real-Time Executive software (Fig
1) was designed. This program differs from existing
software systems by offering capabilities directly re-
lated to the single-board microcomputer environment
in which it operates. These capabilities have two major
bottom-line benefits compared with equivalent minicom-
puter systems. First, the executive code is compact
enough to allow a large number of real-time applications
to be processed on a single microcomputer board. To
accomplish this capability, its nucleus is optimized to
reside in less than 2k bytes [ie, in a single 16k program-
mable read-only memory (p/ROM)], thereby allowing up
to 10K of onboard memory for application-related soft-
ware and storage.

OTHER. USER
IS

/ usertask.)
w2 :.‘

Fig 1 A typical RMX/80 system. Mul-
tiple tasks control a given application.
Nucleus controls execution of both
user and executive tasks through
task-to-task communication, real-time
clock, priority resolution, and inter-
rupt handling facilities. All tasks with-
in an RMX/80-based application use
at least some of these capabilities;
other optional executive tasks include
debugger, free-space manager, and
device control for operator’s console,
diskette file system, analog subsys-
tems, and high speed mathematics
unit

Second, the executive may be p/ROM-resident. When
the microcomputer system is powered on, the software
system (executive plus application programs) is auto-
matically initialized and begins execution of the highest
priority application task. Typical major real-time execu-
tives, however, are totally random-access read-write semi-
conductor memory (RAM)-resident, which means they
must be initialized (booted) from a peripheral device,
such as diskette, cassette, or communications line, into
microcomputer memory. The need for peripheral devices
significantly increases the total cost of traditional real-
time executive-based solutions.)

Sample Application

Functioning as a real-time executive for microcomputers,
this software system provides facilities for orderly con-
trol and monitoring of asynchronously occurring ex-
ternal events. Although these events may differ widely
from application to application, facilities are adaptable
to nearly all processes where the microcomputers are
used, including process and machine control, test and
measurement, data communications, and specialized on-
line data processing applications (where one or more
terminals access diskette-based data). The executive is
particularly useful in dedicated low cost applications
which were not economically feasible before the advent
of microcomputers. For example, consider the require-
ment of gas pump control in a service station (Fig 2).

In this station, a microcomputer system operating
with RMX/80 concurrently monitors and controls mul-
tiple gas pumps, and sends price and volume informa-

COMPUTER DESIGN/JULY 1977

tion to one central location. At the same time, informa-
tion about station operation is being transmitted over a
communications line to a regional computer.

Individual tasks are developed independently to mea-
sure gas flow, calculate and display price information,
transfer data to the central computer, and monitor levels
of gasoline in underground storage. All this processing
takes place concurrently under program control. (Credit
verification, charge slip printing, and billing can also
be controlled by additional software tasks.)

Efficient gas station operation demands that the hard-
ware/software system be highly reliable. The compatible
benefits of compact code, p/ROM residency, and self-
initialization on a single-board microcomputer system all
combine to ensure functional integrity.

Software Structure

RMX/80 simplifies the effort for developing a real-time
system, first, by providing many commonly required
software functions. Second, its software structure pro-
motes efficient program development. Programmers who
are familiar with structured programming will find task
orientation both natural and easy to use.

Tasking means that a larger program is divided into
a number of smaller, logically independent programs or
tasks. The key is to identify functions that may occur
concurrently. For example, consider ‘the tasks required
for a terminal handler—real-time asynchronous I/0 be-
tween an operator’s CRT terminal and the executive.

Input Handler Task—One task must be ready to accept
a data character from the terminal at any time. This is
done by responding to an interrupt signal from the
terminal and then accepting the data character. The task
immediately passes the input character to' a subsequent
task ‘automatically and then" goes back to wait for an-
other interrupt. :

Line Buffer Task—As characters are received from the
input handler they must be placed into a buffer to form
a line. Eventually, the buffer will be filled or the logical
end-of-line will be signaled by a carriage return char-
acter. At this point, the line buffer must be sent to some
other task for processing.

Echo Driver Task—For a full-duplex terminal, it is
necessary to return each input character to the terminal
for display on the CRT screen. This task waits for a
character, which could be sent by either the line buffer
or input handler task, and then sends the character to
the terminal. It then waits for the next character. -

Note that input handler and echo driver are described
as waiting for an event. Within the RMX/80, that is
literally the case. While they wait, however, system re-
sources are available for other tasks, such as that of the
line buffer. Thus, effective processing may occur con-
currently with necessary waiting periods. Notice also
that a number of other tasks may also be active within
the system. In fact, the greater the number of tasks run-
ning concurrently, the more effectively system resources
are used. Concurrent operation eliminates many time
wasting procedures from a real-time system.. For ex-
ample, the executive can eliminate the need for many
timing loops where the processor simply executes a no-
operation instruction repeatedly while waiting for an
event to occur.

2.76

TO REGIONAL
COMPUTER VIA
TELEPHONE LINES

DISPLAY
TERMINAL

GAS PUMP|
&
CAR

GAS PUMP

CAR

Fig 2 Microcomputer control for gas pump automa-
tion. In this example, executive-based system: simul-
taneously controls two pumps, displays information on
operator's console, and communicates with regional
computer. At a given time, more or fewer functions
could be operating concurrently. System expansion
can be easily accomplished by adding tasks and
modular hardware

Within the executive, tasks not only are logically in-
dependent, they are also physically independent, actually
contending with each other for the use of the processor
and other system resources. The executive resolves this
contention based on the priority of each task.

In the terminal handler example, it is clear that the
input handler must have highest priority, since accept-
able performance cannot tolerate the loss of data. Second
highest priority is given to the echo driver, so that data
appearing on the screen remain coordinated with the
input. Lowest priority goes to the line buffer, since that
function does not depend directly on an external asyn-
chronous event. There are no particular realtime con-
straints on the line buffer as long as the input char-
acters are éventually processed.

It is possible to write the entire terminal handler as
a single large task instead of as several smaller tasks.
However, consideration must be given other high priority
tasks operating within the system which may not be
able to gain control while a low priority portion of the
terminal handler, such as the line buffer task, is execut-
ing. Therefore, tasks assigned as high priority are gen-
erally kept as short as possible. If the terminal handler
were written as one large task, it could tie up the entire
processing system for a relatively trivial function.

Task States

Two task states have been implied—running and wait-
ing. A running task is always the task which currently
has the highest priority and is not suspended or waiting.
A waiting task remains in the wait state until it receives
a message or an interrupt for which it is waiting or until
a specified time period has passed. The wait period can
be timed using the system clock.

A running task may suspend itself on some other task
in the system. A suspended task cannot begin execution
again until some running task orders it to resume. As
an example, a password routine might temporarily sus-
pend the echo driver of the terminal handler so that the
password is not displayed. (The password routine must

RMX/80 RMX /80
SEND ~CEXCHANGE > ACCEPT SEND WAIT
Fig 3 System message exchanges.
In intertask communication (a) task
1 sends a message to an exchange,
where it is held until task 2 requests
message via accept. In intertask
(a) (b) communication with delay (b), task
INTERTASK COMMUNICATION INTERTASK COMMUNICATION WITH DELAY 2 waits for a message from task 1

until data are available or until a

RMX/80 RMX/80 certain time period has passed,

1/0. @ whichever occurs first. In task con-

DEVICE trol (c), any task may suspend or

resume any other task. In interrupt

SUSPEND SUSPEND mreunupr WAIT processing (d), an 1/0 interrupt is
OR SEND transformed into a message that task

RESUME RESUME 1 receives via a wait command.
Task 1 then performs appropriate
interrupt processing

(c)
TASK CONTROL INTERRUPT PROCESSING
remove the password from the line buffer, or it will be
displayed as soon as execution of the echo driver is
resumed.)

A task may also be in the ready state. A ready task is
one that would be running except that a task with higher
priority temporarily controls the system resources. The

P/ROM-BASED SEGMENTS RAM-BASED SEGMENTS executive maintains a list of all tasks that are ready to

; c TSYSTEM STORAGE run. The next task to be run is always the task with

T A TS A SoReE] th?r :1ghest Prlontykm 1t?\e rtaa}qliy]}st Lot th

- TTASKS " EREE SPACE - e running task relinquishes its control o e sys-
s : tem by

. FREE SPACE .

Doty MANAGRR. - - (1) Putting itself into a wait state

"7 USER TASK 1]

USER TASK 2 (2) Suspending itself
. - ; _ i}
"USER TASK N (3) Sending a message to a higher priority task, which

Fig 4 Memory utilization. RMX/80 nucleus, de-
vice control task, and free-space ailocation mod-
ules are linked with user tasks to form a real-time
system. Although executive may be RAM-resident,
it is designed to reside in p/ROM and uses RAM
only for temporary storage and free space. User
tasks are provided by user at generation time.
RAM may be used by RMX/80 and all associated
tasks for temporary storage, including stack.

277

if it has the highest current priority, becomes the run-
ning task
(4) Being preempted by an interrupt to a higher pri-
ority task

In the case of an interrupt, the executive saves the
status (contents of registers, etc) of the interrupted task
so that it will be restarted correctly.

Message Exchanges
Tasks communicate with each other by sending messages

(Fig 3). The sending task constructs the message to be
sent in RAM or uses a previously assembled message.

COMPUTER DESIGN/JULY 1977

; TASK ENTRY POINT

i
|
I
v
: INITIALIZE TASK
1
|
I
1
oo .: WAIT FOR REQUEST
] I
1 |
|)
1]
: | PERFORM FUNCTION
|
! |
1 !
I |
| U — - SEND RESPONSE

Fig 5 Consumer task flow.
Consumer task performs ini-
tialization and then drops into
cyclic loop, alternately waiting
for messages, performing func-
tions requested by message,
and sending an acknowledge-
ment in form of a response
message

TASK ENTRY POINT

INITIALIZE TASK

PERFORM FUNCTION

INITIALIZE OPERATION
(SEND MESSAGE)

WAIT FOR RESPONSE

Fig 6 Producer . task flow.
Producer processing flow is
opposit¢ to that of consumer
task. Instead of passively re-
acting to requests from other
tasks, producer task issues re-
quests to which other tasks
must respond

The sending task then issues a SEND command that posts
the address of the message at an exchange.

An exchange is simply a set of lists maintained by the
executive. The first list contains the addresses of messages
available at that exchange. The second list consists of a
list of tasks that are waiting for messages at that ex-
change. When a task enters a wait state, it specifies the
exchange where it expects eventually to find a message.
The task may wait indefinitely, or it may specify that it
will only wait a specific period of time before resuming
execution.

Messages, together with the exchange mechanism, pro-
vide for automatic intertask communication and also for
task synchronization. For example, a message to a par-
ticular task may specify that the task is to send a re-
sponse to a certain exchange. Thus, the original task
may request an acknowledgement response to its mes-
sage, or it may specify that a message is to be sent to
a third task. RMX/80 treats interrupts like messages,
the only difference being that interrupts have their own
set of exchanges.

Note that the sending and receiving of messages classi-
fies tasks into two types—message consumers and mes-
sage producers. A consumer task waits for a message,
performs an action based on the message, and then
returns to the wait state until another message is re-
ceived. A producer task initiates its function by sending
a message to another task, waits for a response, and then
sends another message. Figs 5 and 6 graphically illustrate
the processing within these two tasks. The distinction be-

tween consumer and producer tasks is relative since many
tasks act as both consumer and producer.

Executive Modules

RMX/80 is supplied as a library of relocatable and link-
able modules. These modules are added selectively as
required when the user-supplied tasks are passed through
the link program. Only modules actually requested by
the application are linked in. For example, if the appli-
cation program does not specify use of the free-space
manager, that module is not linked into the system.
One module, the nucleus, provides basic capabilities
(concurrence, priority, and synchronization/communi-
cation) found in all real-time systems. Additional, op-
tional modules may be configured with user programs
(tasks) to form a complete application software system.
These modules include:
Terminal handler—Providing realtime asynchronous
I/0 between an operator’s terminal and tasks running
under the RMX/80 executive, the handler offers a line-
edit feature similar to that of 1sis-11 and an additional
type-ahead facility. (1s1s-11 is the supervisory system
used on the Intellec Development System.)
Free-space manager—This module maintains a pool of
free RAM and allocates memory out of the pool upon
request from a task. In addition, the manager reclaims
memory and returns it to the pool when it is no longer
needed.

81

CONFIGURATION

PARAMETERS - Ulg}xgl;km

PROGRAMMER| ™

B - "~ e
‘IIEIONC!(AFtRﬂ/z - . sBcso Fig 7 Target microcomputer system.
N o SYSTEM . Configuration parameters are linked
RMX/80 MODULES T - together with appropriate RMX/80 and
iN-ciRCUIT | -
EMULATOR user task modules. Resulting program
is then transferred to its target SBC
80 system via programmed p/ROMs
S or is debugged using in-circuit emula-

USER APPLICATION TASKS tion and then transferred
Debugger—Designed specifically for debugging soft- duces recurring costs because it requires a minimum of
ware running under the RMX /80 executive, the debugger memory and does not require peripheral bootstrap load-
is used by linking it to an application program or task. ing devices. RMX /80 results in economical, shorter, and
Thus, it can be run directly from the single-board com- more flexible software development efforts when design-
puter’s memory. In addition, an in-circuit emulator, ing, building, and verifying real-time user applications.

such as ICE-80, can be used to load and execute the
debugger, providing all resources of the Intellec de-

velopment system to simplify debugging effort. Bibliography

Analog interface handlers—Consisting of RMX/80 tasks, C. G. Bell, A. Newell, Computer Structures: Readings and Ex-

these handlers provide real-time control for SBC 711, amples, McGraw-Hill, New York, 1971

724, and 732 systems. P. Brinch-Hansen, Operating Systems Principles, Prentice Hall,

1973

Diskette file systems—Giving RMX/80 users diskette E. W. Dijkstra, “The Structure of the THE Multiprogramming

file management capabilities, the diskette driver allows Systems,” Communications of the ACM, May 1968, pp 341-
ks into th 346

us?lrsdtcl‘ loag] tas. s 1o le. syStem.and to Crea.ti, acc:;%s’ E. I Organick, The Multics Systern: An Examination of Its

an) elete hles 1n a r?a -time environment without ¢ 1s- Structure, MIT Press, Cambridge, Mass, 1972

rupting normal processing. All file formats are compatible D. M. Richie, K. Thompson, “The unix Time Sharing System,”

with 1s1s-11 for both single and double density systems. Communications of the ACM, July 1974, pp 135-143

In addition to application program module or task
requirements, the user also supplies a set of generation
parameters. These parameters are a set of tables that
inform the executive of the number of tasks and ex-
changes in the system. Fig 7 illustrates the system gener-
ation process.

Summary

The significance of RMX/80 to software design parallels
the significance of the single-board computer to hard-
ware design. Microcomputers allow designers without ex-
tensive experience in digital systems to bring computer
processing power into their applications. Similarly, the
executive relieves the hardware designer of much soft-
ware design required for real-time applications. Designed
to facilitate growth, since new software needed to support
hardware expansions can be supported easily by the ad-
dition of new tasks, this executive also substantially re-

2.79 COMPUTER DESIGN/JuLy 1977

PROCEEDINGS OF THE IEEE, VOL. 66, NO. 2, FEBRUARY 1978

A Small-Scale Operating System Foundation for
Microprocesor Applications

KEVIN C. KAHN

Abstract—Sound engineering methodology, which has long been val-
ued in hardware design, has been slower to develop in software design.
This paper uses a case study of a small real-time system to discuss soft-
ware design philosophies, with particuar emphasis on the abstract ma-
chine view of systems. It demonstrates how the currently popular soft-
ware design axioms of generality and modularity can be used to produce
a software system that meets severe space constraints while remaining
relatively portable across a family of microcomputers. These sorts of
constraints have often been used to justify.ad hoc design approaches in
the past. The results of the project suggest that the use of such tech-
niques actually make the meeting of many constraints easier than would
a less organized approach. In addition, the reliability and maintainability

of the resultant product is likely to be better.
A cally not an adequate base upon which to build applica-
tions software. Broad classes of applications can be ex-
amined and found to share more than the hardware defined
instruction set. To avoid the reengineering of this common func-
tionality, we would prefer to build such common parts once and
thereafter treat this base software as though it were part of the
machine. For example, a software system sometimes called an
operating system, an executive, a nucleus, a kernel, or some
similar term, is often supplied with a hardware product and can
be viewed in exactly this way. In this paper, we examine a small-
scale system to demonstrate this approach to bridging the gap
between the hardware and the application. That is, we will view
the software as a direct extension of the hardware—a view which
may indicate future directions in microprocessor integration of
function.

This paper is meant as both a case study of a particular system
design and as a suggestion of the proper approach to such design
situations in general. We will first discuss the abstract machine
view of computer systems and attempt to demonstrate that this is
a useful philosophical approach for building systems. We will
then apply this approach to the discussion of a system to coor-
dinate programs performing real-time control functions— RMX-
80™ [18]. The emphasis of the paper will be on techniques and
methodology rather than on the particular functionality of RMX.
Special attention will be given to such issues as the use of
modularity to enhance the adaptability of the system and the use

of design generality to achieve global rather than local optimiza-
tions.

1. INTRODUCTION
PROCESSOR, as defined only by its hardware, is typi-

II. THE CONCEPT OF ABSTRACT MACHINE

What is a computing ‘‘machine” or processing unit? We gen-
erally identify a processing unit as a particular collection of hard-

M q T

ipt p 1, 1977; revised October 11, 1977,
The author is with the Intel Corporation, Aloha, OR 97005.

TMlntel Corporation, Santa Clara, CA.

ware components that implement the instruction set of the
machine. This very physical definition of a computer dates from
mechanical processors. Even with ‘modern computers, before
large-scale integration, it was easy to physically point at the proc-
essing elements as distinct from memories, peripherals, and pro-
grams. Continued integration of function has at least made this
physical distinction more difficult with single chips subsuming
processing, memory, and peripheral interface functions. Micro-
programming (i.e., replacing hardwired instruction logic with a
more elementary programmed processor) as an implementation
strategy has logically blurred this distinction as well. That is,
when the basic visible instruction set of a processor is itself imple-
mented in terms of more primitive instructions it is more difficult
to identify ““the machine.” It is clear that this narrow physical
definition of a processor is not adequate for current technology
levels and is likely to become even less viable as the technology
continues to develop.

Actually we have been using alternative definitions of a proces-
sor for some time. All of the theoretical work in finite state
machines, for example, deals with conceptual processors. Like-
wise applications programmers seldom really regard the machine
they program as much more than collection of instructions found
in a reference manual—the physical implementation of the
machine is of little concern to them. Indeed, they may never come
physically near the hardware if they deal with a typical time-
sharing system—rather, the terminal is the only physical manifes-
tation of the computer such users may see.

More to point, perhaps, are the numerous interpreters that
have been written for languages such as Basic. Each such inter-
preter actually produces a conceptual machine with one instruc-
tion set targetted to a specific application. With standard com-
piled languages such as Fortran, Algol, or Pascal, a higher level
source statement is translated into the instruction set of the
physical hardware. In contrast, interpreted language systems
translate the source into the instruction set of some conceptual
machine that is better suited to the running of programs written in
the language. For example, the hardware may not provide
floating-point instructions or define a floating-point data repre-
sentation. In such a case it may be easier to define a machine that
recognizes a particular floating-point data format with an instruc-
tion set that includes floating operations. These interpreters are
high-level machines that have usually been implemented in soft-
ware. Likewise, it should be readily apparent that, just as these in-
terpreters provide high-level machines to their associated trans-
lators, any programming language, compiled or interpreted, pro-
vides one to its users.

Interpreters of this sort typically may examine and decode a
stream of instruction values in a manner analogous to the hard-
ware. Alternately, the new instructions may all be executed as
subroutine calls using the appropriate hardware instruction. That
is, the entire bit pattern for CALL X (where X is the address of a

0018-9219/78/0200-0209$00.75 © 1978 IEEE

Reprinted with permission.

2-81

USER

APPLICATION
SYSTEM
cosoL BASIC FORTRAN
DATA FLOATING
BASE POINT
SYSTEM PACKAGE
OPERATING SYSTEM I
BASE HARDWARE

Fig. 1. Typical collection of abstract machines.

routine that implements a part of the new instruction set) can be
regarded as a new operation code rather than as the hardware
operation CALL. In either case the programmer using these exten-
sions can view the harware-software combination as though it
were a new machine with a more useful instruction set. Micropro-
grammed machines such as the IBM 5100 or Burrough’s 1700
have simply optimized the performance of such interpreters or
subroutine packages by committing them- to a faster storage
medium.

Viewed in this light we can identify any collection of hardware
and software that provide some well defined set of functions as
defining an abstract machine [10],[12]. This machine has an in-
struction set that consists of the functions provided by the hard-
ware-software combination. For a particular application it may
be possible to view multiple such abstract machines by taking
various pieces of the whole. For example, the physical machine
provided by a set of components is just one abstract machine. It is
of particular interest since it is the greatest common abstract
machine that can be identified as being used by any application
running on that computer system. A Basic interpreter running on
this machine might then constitute a second virtual machine. A
Basic program running on this interpreter that-accepted high level
commands and performed according to them might be a third

"level machine usable by people with no knowledge of either the
hardware or Basic. Whenever we can identify functions of suffi-
cient commonality among a number of applications, it may be
worth viewing the software which provides these functions as ex-
tensions of the base hardware machine which define some aug-
mented or even-different machines. Users progiamming such an
application can then view this abstract machine, rather than the
base machine as the vehicle that they are programming, and in
doing so avoid reengineering the functions that it provides. Fig. 1
illustrates an example of such machines. It is important to remem-
ber that at any time, many abstract machines may be thought of
as existing on the same base hardware.)

III. OPERATING SYSTEMS AS ABSTRACT MACHINES

The terms operating system or executive have been used to
describe software systems of widely different functionality. These
machines generally provide for the management of some machine
resources such as input, output, memory space, memory access,
or processor execution time. We might then attempt to define an
operating system as some collection of software modules which
defines an abstract machine that includes resource management
functions as well as the hardware supplied computational func-

PROCEEDINGS OF THE IEEE, VOL. 66, NO. 2, FEBRUARY 1978

tions [2],[6],[8],[11]. With such a broad definition, however,
large-scale multi-user time-sharing systems and small single user

‘microprocessor development systems both may claim to have

operating systems. Clearly, the range of software systems covered
by this definition is large, encompassing products which differ by
orders of magnitude in complexity. Rather than become involved
in trying to resolve this disparity, we will qualify our use of the
term and refer to an operating system ‘‘foundation.’’ That is, we
will describe a software system which provides a minimal base for
the construction of real-time applications. We will avoid the
somewhat irrelevant question of whether the system comprises a
complete ‘‘operating system.’’

The important item to realize from the above discussion is that
any operating system functionally enlarges the processor seen by
the programmer. The functions that it provides become as much a
part of the machine’s functionality as jump instructions. Indeed,
it is functionally unimportant to the user desiring to read from a
file whether it requires a single hardware instruction or a large
software. routine to accomplish it. In terms of the abstract
machine discussion above, we will examine a software package
which defines an abstract machine that includes functions re-
quired to coordinate programs performing real-time control ap-
plications [1],[9],[12].

The key overall requirement of the operating sytem foundation
that we discuss in this paper will be that it supply a minimal cover-
ing set of functions to permit coordination of asynchronous
tasks. To determine this set we will need to further examine the
needs of its users and environment of its use. In describing this
foundation, we are deﬁning an abstract machine that must be
programmed to be of use; that is, like the instruction set of the
base machine the foundation by itself performs no work but
rather provides an environment within which useful tasks can be
run.

We should note, here, some of the limitations of the system
which differentiate it from large-scale operating systems. First, it
is not primarily intended for a multi-user environment, particu-
larly because the underlying hardware does not provide the neces-
sary support to protect users from one another. Also, it will often
be used to control functions of specialized devices and therefore is
“‘close’” to the I/0 devices. That is, it does not supply the sort of
high level I/0 control system which is often present in larger sys-
tems for controlling more conventional 1/0 devices. Finally, it
does not assume a backing store from which program overlays
can be loaded (but it cafi'easily support such an extension).

IV. DESIGN CONSIDERATIONS
A. Use Environment

The foundation system we will describe is RMX-80 [5] which
was designed to be used with members of Intel’s Single Board
Computer (SBC) family of products. This family includes a wide
range of bus compatible processor, memory, and peripheral
boards. Of most interest to this discussion are the processor
boards which are based on the Intel 8080 or 8085 microprocessors
and include varying amounts of on-board ROM and RAM mem-
ory and 170 interfaces. In addition, the boards vary in the sophis-
tication of their interrupt structures and timing facilities. In terms
of abstract machines we might characterize these computers as
essentially the same machine at the processor level but different
machines at the computer system level. It was desired that the
abstract machines defined by adding RMX to the underlying com-
puters be as much the same as possible.

During the design of RMX, we expected that its users would
span the entire broad range of applications across which the SBC

2-82 .

KAHN: SMALL-SCALE OPERATING SYSTEM FOUNDATION

hardware was being put to use. This implied that it might see uses
ranging from minimal single board systems that functioned as
single device controllers to complex multiboard applications im-
plementing involved real-time process or industrial control func-
tions. In particular we expected that many user-built I/0 boards
and peripherals would be used with the system. It was important
for us to allow full use of these unknown devices with RMX while
still providing as much assistance as possible in the building of the
controlling software systems.

As is the case with most processors, the concrete (i.e., physical)
machines represented by the SBC family do not themselves in-
clude any facilities to permit multiple asynchronous functions to
be programmed, to provide for the coordination of such func-
tions, or to provide time information needed for real-time ap-
plications. Typically, users of these products have directly pro-
grammed these functions in an ad hoc manner within their ap-
plications. An examination of the sorts of functions necessary to
such applications reveals that at the very least this reengineering is
a waste of resources. Worse is the high probability of error in pro-
gramming such critical functions.

The SBC hardware products were designed to eliminate the
complexities of board engineering, particularly for those users
without the necessary expertise to handle the task, by functionally
integrating individual components into complete boards. The
programming of functions to coordinate parallel software activi-
ties is, likewise, an area which should be carefully engineered in
order to avoid subtle errors. The development of RMX was there-
fore viewed as a process of functional integration analogous to
the integration of LSI components into boards. That is, just as a
well designed board relieves the user of component level hardware
engineering, RMX relieves the users of low-level software engi-
neering.

B. System Requirements

The hardware environments and anticipated uses of RMX de-
fined a stringent set of requirements for it. Foremost among these
were its memory constraints; indeed, for the anticipated uses,
memory size considerations dominated execution speed ones over
a considerable range. Since we expected applications that would
reside entirely on a single board with 4K bytes of PROM, the
maximum size of the RMX foundation code was set at half of this
or 2K bytes. Further, unlike larger minicomputer systems, many,
if not most, applications of the SBC boards would not have avail-
able any mass storage or other program loading device. It was
thus important that RMX be designed to be ROM (or PROM)
resident and capable of automatically initializing the system when
powered on.

We also anticipated that the expertise of many RMX users
would be in areas other than programming systems. We therefore
felt that the RMX machine needed to provide a fairly simple set of
concepts, avoiding where possible those constructs most likely to
cause errors. For example, we felt that a very frequent source of
programming difficulty lay in dealing with interrupts. Many
latent errors in programming systems stem from the occurrence of
an interrupt at an unexpected time. We therefore decided to at-
tempt to minimize the need for users to deal with hardware inter-
rupts or with the interrupt-like occurrences found in many mini-
computer operating systems. At the same time we had to accom-
modate the needs of the sophisticated user who still desired to
take advantage of RMX but had a specific need to directly control
the hardware via the interrupt facility.

Finally, to define the general functionality of RMX we exam-
ined its anticipated applications. Real-time applications com-
monly need to perform a number of tasks of differing importance

logically in parallel, with preference always being given to execut-
ing the most critical ones first. While these tasks may be relatively
independent, they may need to periodically synchronize them-
selves with one or another distinct task or with the outside world.
For the latter, interrupts are the usual hardware supplied mecha-
nism. Some tasks may also need to communicate data with one
another. For example, a task servicing a sensing device may take
readings from the device which need to be communicated to two
tasks: one task which reacts to the reading by controlling some
other device, and another task which logs or tabulates the read-
ings. Ranked in order of importance these might be control, sens-
ing, and logging. Finally, the tasks must have the ability to con-
trol themselves relative to real-time, either by delaying their exe-
cution for certain periods or by guaranteeing that they are not in-
definitely delayed by, for example, a faulty device.

Requirements on the system design were also generated by con-
siderations internal to the design project. One of these was the
need to provide a single RMX abstract machine on a variety of
underlying SBC boards. While separate versions of RMX for each
board could have been designed with the same external appear-
ance, this approach would have led to an unnecessary amount of
internal engineering. Additionally, without careful initial design,
the differences in the base hardware would have had visible ef-
fects on the RMX abstract machine for each of the boards. This
requirement demanded that we partition the structure of RMX
into two parts. One part would implement those aspects which
were independent of the particular hardware. The second part
would interface the first part to the underlying hardware of the
specific boards [7].

We also wished to minimize the software development costs by
applying the best available software engineering techniques. His-
torically, tight space constraints have often led to a very ad hoc
approach to software design in the belief that more generally
designed external features or more modularly built internal
designs would lead to inherently larger systems. As a result of this
philosophy, each needed function is designed to be as small as
possible. Unfortunately, while each function may be locally opti-
mized, it is possible that the overall design suffers from duplica-
tion or overlap between such individual elements. Current work
in programming methodology stresses modularity, generality, and
structure (most often for their side effects in producing more
maintainable, less error prone systems).

We felt that there was more to gain, both in development cost
and space performance, by avoiding optimized specialization of
function in favor of more general designs [17]. This reduced the
number of separate functions that RMX had to supply. The re-
sulting external design therefore has a single mechanism that pro-
vides task communication, synchronization, time references, and
standard interrupt-like control. To do so it incorporates the
operating system design approaches favored in much of the mod-
ern computing literature. Likewise, the internal structures are
highly modular and designed to be as uniform as possible so as to
avoid replicating similar, but nonidentical internal management
routines.

V. THE RMX MACHINE
B. General Concepts

The abstract machine defined by RMX augments the base
microprocessor by introducing some additional computational
concepts. We define a fask to be an independently executable pro-
gram segment. That is, a task embodies the concept of a program
in execution on the processor. RMX permits multiple tasks to be
defined which can run in a parallel, or multiprogrammed,

2-83

fashion. That is, RMX makes individual tasks running on one
processor appear to be running on separate processors by manag-
ing the dispatching of the processor to particular tasks. The reg-
isters on the processor reflect the activity or state of the running
task. Other tasks may be ready to execute but for some reason
have not been selected to run yet and so have their processor
states saved elsewhere in the system. From the point of view of the
program that is a task, execution proceeds as though it were the
only one being run by the processor. Only the apparent speed of
execution is affected by the multiprogramming. From the point of
view of the system, every task is always in one of three states: run-
ning, ready, or waiting. The task actually in execution is running.
Any other task which could be running but for the fact that the
system has selected some other task to actually use the processor,
is ready. Tasks which are delayed or stopped for some reason are
waiting, as will be discussed below.

Each task is assigned a priority which determines its relative im-
portance within the system. Whenever a decision must be made as
to which task of those that are ready should be run next, the one
with the highest priority is given preference. Furthermore, in the
spirit of unifying mechanisms, the same priority scheme replaces a
separate mechanism for disabling interrupts. Interrupts from ex-
ternal devices are logically given software priorities. If the ap-
plications system designer deems a particular task as of more im-
portance than responding to certain interrupts, he can specify this
by simply setting the RMX priority of that task to be higher than
the RMX priority associated with those given hardware inter-
rupts. It is thus possible to maintain a high degree of control over
the responsiveness required for various functions.

As mentioned above, tasks may desire to communicate infor-
mation to one another. To this end the RMX machine defines a
message to be some arbitrary data to be sent between tasks. To
mediate the communication of messages it defines an exchange to
be the conceptual link between tasks. An exchange functions
somewhat like a mailbox in that messages are deposited there by
one task and collected by another. Its function is complicated by
the fact that a task may attempt to collect a message at an ex-
change that is empty. In such a case the execution of that task
must be delayed until a message arrives. Tasks that are so delayed
are in the waiting state. We chose this indirect communication
mechanism over one which directly addresses tasks because it per-
mits greater flexibility in the arrangement of receiver and sender
tasks. The anonymity of the receiving task implies that the sender
need know only the interface specification for a function to be
performed via a message to a particular exchange. The task or
tasks which implement that function need not be known and
hence may be conviently changed if desired.

The conventional mechanism used by programs to communi-
cate with external devices is the interrupt. Unfortunately, inter-
rupts are by nature unexpected events and programming with
them tends to be error prone. The essential characteristic of an in-
terrupt is that a parallel, asynchronous activity (the device) wishes
to communicate with another activity (a program). Since this
communication is essentially the same as that desired between
separate software tasks it seems conceptually simpler to use the
same message and exchange mechanism for it. The unification of
all communications functions is analogous to the idea of stand-
ardized 1/0 found in systems such as UNIX [17]. The RMX
machine eliminates interrupts by translating them into messages
which indicate that an interrupt has occurred. These messages are
sent to specific exchanges associated with particular interrupts.
Tasks which “‘service interrupts’’ do so in RMX by attempting to
receive a message at the appropriate exchange. Thus, prioritized
nested interrupts are easily handled. An advantage of this unfied

PROCEEDINGS OF THE IEEE, VOL. 66, NO. 2, FEBRUARY 1978

treatment of internal and external communication is that hard-
ware interrupts can be completely simulated via another software
task. This facilitates debugging and permits easy modification of
a system by allowing rather arbitrary insertion of tasks into a net-
work of communicating tasks and devices.

Note that with this scheme unexpected interrupts do not cause
particular difficulty. For example, if the servicing task is still busy
with some previous message, the interrupt message will be left at
the exchange and will not affect the task until it is ready for an-
other interrupt; i.e., until it waits at the exchange. In an applica-
tion designed to properly handle the actual interrupt rate, the task
will service interrupts quickly enough to always be waiting when
the next one occurs. In this case, response to an interrupt is im-
mediate. Thus this mechanism provides no loss of facility relative
to the usual interrupt scheme but it does make the proper con-
trolling of such events simpler. Multiple occurrences of the same
interrupt which indicate the processor has fallen behind in its ser-
vicing are logged as such by a message which indicates that inter-
rupts may have been lost. These interrupts do not, however, dis-
rupt the running task or complicate programming.

The last concept embodied in the RMX abstract machine is that
of time. The RMX machine defines time in terms of system time
units. It then permits tasks to delay themselves for given periods
of time so that they can synchronize themselves with the outside
world. It also permits tasks to guard against unduly long delays
caused by attempting to collect a message at an empty exchange
by limiting the length of time that they are willing to spend
waiting for some message to arrive.

B. Data Objects and Functions

These concepts are realized in RMX by introducing some new
data objects and instructions. Just as the base processor can deal
directly with such data objects as 8 bit bytes or unsigned integers,
the RMX abstract machine can deal directly with the more com-
plex data objects: task, message, and exchange. Each of these
data objects consists of a series of bytes with a well defined struc-
ture and may be operated upon only by certain instructions. This
is completely analogous, for example, to a machine that permits
direct operations on floating-point data objects which consist of
four bytes with a particular internal structure to represent the
fraction, exponent, and signs. In each case there are only certain
instructions that can be used correctly with the object and the in-
ternal structure of the object is not of particular interest to the
programmer.

The new instructions provided by RMX are: SEND, WAIT, AC-
CEPT, CREATE TASK, DELETE TASK, CREATE EXCHANGE, and
DELETE EXCHANGE. The create instructions accept blocks of free
memory and some creation information to format and initialize
the blocks with the appropriate structure. Each corresponding
delete instruction accepts one of the objects and logically removes
it from the system. The remaining operations are of more direct
interest to the operation of the RMX machine.

The WAIT instruction has two operands: the address of an ex-
change from which a message is to be collected and the maximum
time (in system units) for which the task is to await the arrival of a
message. The result of the operation is the address of the message
which was received. A special message from the system indicates
that the specified amount of time elapsed without the arrival of a
normal message. From the programmer’s point of view this in-
struction simply executes and returns the specified result. Actual
execution of the instruction will involve the delaying of task exe-
cution if no message is available, by queueing it in a first-come-
first-served manner at the exchange. Any such delay is not visible

2-84

KAHN: SMALL-SCALE OPERATING SYSTEM FOUNDATION

to the programmer, however. This approach unifies the commun-
ication and timing aspects of the design. It directly provides reli-
ability in the face of lost events due to hardware or software fail-
ure. Tasks can be guaranteed not to be indeterminately delayed
due to such failures and can thus attempt recovery from them. It
also permits tasks to use the same mechanism to delay themselves
for given time intervals by waiting at an exchange at which no
message will ever arrive.

The ACCEPT instruction is an alternate way to receive a mes-
sage. It has a single operand specifying the exchange from which
the message is to be received and immediately returns either the
next message at the exchange or a flag indicating that no message
was available. The task is never delayed to await a message in the
ACCEPT operation.

SEND also has two operands: the address of a message and the
address of an exchange to which the message is to be sent. The in-
struction queues the message in a first-come-first-served manner
at the exchange if there is no task already waiting there. If a task is
waiting at the exchange then the instruction binds the message to
the task and makes the task eligible to execute on the processor.
When the receiving task resumes actual execution the address of
the message will be returned to it as the result of its WAIT instruc-
tion.

VI. THE RMX IMPLEMENTATION
A. Methodology

In this section and the next, we consider some (but certainly not
all) details of the actual implementation of the system as illustra-
tions of the design of such software products. We turn first to the
methodology applied to the effort and then to some samples of
the mechanisms.

To provide the abstract machine just described and meet the
other requirements for the system, RMX was implemented as a
combination of ROM resident code and some RAM resident
tables. Just as a hardware designer uses LSI devices in preference
to more elementary TTL components, we chose to use the
leverage of a high level programming language rather than
elementary assembly code. The system was, therefore, designed
using PLM [14], Intel’s high-level implementation language. The
operations described above appear as procedure calls using the
standard PLM calling sequence. The space constraints and a good
level of internal maintainability were achieved by maximizing the
modularity of the design. The broad independent functions of
multiprogramming, communications and control were completely
isolated from the board dependent timing and interrupt handling
functions. As a result, movement of the system to a new member
of the SBC family requires only the reimplementation of these
board dependent functions. In addition, data structure of internal
and user visible objects were generalized so that single algorithms
could deal with any of them. Individual optimizations could have
been made in the local design of many parts of the data structures
to improve their space or time costs slightly. Such optimizations,
however, would have cost considerably more in code space and
code complexity [3].

The module feature of PLM was used to simulate the abstract
data type concept [4],[13] and enforce information hiding [15],
[16]. That is, every data structure used by RMX is under the ex-
clusive control of a single module. The modules supply to each
other restricted sets of public procedures and variables. It is only
through these paths that agents outside a module may access the
data structures maintained by the module. The only assumptions
that such outside agents may make about a module and its data
structures are those specified by the definition of the public paths.

SEND. WAIT. ACCEPT

QUEUES
AT
EXCHANGES

C ATIONS
MODULE

1 |
READY TASK MANAGING
MODULE

LOGICAL TIME
MODULE

HARDWARE LEVEL HARDWARE LEVEL
INTERRUPT TIME
MODULE MODULE

0BJECT
MANAGER

UTILITY ROUTINES
MODULE

LIST
OF ALL
EXCHANGES

CREATE, DELETE INTERNAL COMMANDS

Fig. 2. Major modules (boxes) and data structures (circles) of RMX.

As a result, so long as these interface specifications are main-
tained, any given data structure may be reorganized by redesign-
ing its controlling module without affecting other parts of the sys-
tem. This approach improves the understandability of the imple-
mentation and facilitates the debugging and maintenance of the
system. Fig. 2 illustrates the general structure of the RMX imple-
mentation.

Finally, the original version of RMX was completely coded in
PLM using the resident PLM compiler of the Intellec® Micro-
computer Development System. This version was functionally
complete but slightly exceeded the space constraints, occupying
about 2.5K bytes of program space. There were a couple of cases
where the language structure of PLM did not permit the direct ex-
pression of the best way to compile the code. For these modules,
it was sufficient to hand optimize the code output by the com-
piler. The original structure of the PLM program was maintained
and the majority of its generated code was used intact. The final
RMX system occupies less than 2K bytes of program space. This
high level language approach coupled with selective manual opti-
mization permitted far quicker and more error free development
than could have been achieved using assembly language.

The approach to handling interrupts did introduce additional
software overhead. For a typical configuration of the hardware,
the realistic minimum interrupt latency would be about 200 us.
Using the message mechanism it is about 800 us. For the targetted
process control applications, this is entirely acceptable. RMX
does make provision, however, for direct handling of selective in-
terrupts which require better response time without disturbing the
use of the message mechanism for the others. For normal task
communication, the performance is relatively better. For the typ-
ical hardware configuration, the transmission of a message takes
about 800 us, which is comparable to the time that would be re-

2-85

quired for any synchronization primitive (e.g., P and V or en-
queue and dequeue) on such hardware.

B. Engineering for Hardware Dependencies

The two functions which vary most significantly across the SBC
product line are the timing and interrupt facilities. To accom-
modate these variations, the implementation separates the logical
and physical parts of these functions.

The interrupt facilities are split between the module which im-
plements the communications operations and a hardware inter-
rupt handler module. The communications module provides a
special ‘‘interrupt send’’ operation which performs the logical
translation of the interrupt event into a message. This facility is
independent of the interrupt structure of the processor board and
remains the same in any version of RMX. The hardware depend-
ent interrupt module deals directly with the hardware interrupt
structure and invokes the send operation at the logical level. Only
this module need be redesigned when generating an RMX version
for a different SBC board. With this approach we take full advan-
tage of the hardware vectored priority interrupt structure on high
performance products and can simulate this desirable structure at
slightly higher software cost on low performance products.

The same sorts of variations are faced in providing a source for
the system time unit. Again, one module provides all of the
logical time functions associated with providing time delays and
time limits to the user system. This module is independent of the
type, frequency, or location of the physical time source. A sep-
arate module is responsible for clocking the logical level by invok-
ing it once every system time unit. Once again, this permits a con-
sistent definition of time in RMX systems regardless of the sophis-
tication of the available time source, and it limits the amount of
reimplementation that is needed to support new SBC products.

C. Example Data Objects

As an example of the complex data objects defined in the sys-
tem we will consider the task and exchange objects illustrated in
Fig. 3. The task object is 20 bytes long and embodies the execu-
tion state and status of a task. It consists of pointers used to link it
onto various lists of tasks in the system. These lists are used to
queue a task at an exchange, link it to other ready tasks, or keep
track of its maximum delay when waiting. It also contains the
stack pointer of non-running tasks which is sufficient to supply
the remaining task register values when the task next executes.
Finally, the object contains the task priority, some status infor-
mation describing the state of the task, and a pointer to auxiliary
information about the task.

The exchange object is 10 bytes long and implements the mail-
box concept described earlier, primarily by serving as the source
of header information for lists of messages and tasks. Each of
these singly linked lists is addressed with head and tail pointers
located in the exchange object. All exchanges in the system are
also linked together.

The exchange objects are operated upon by the SEND, WAIT,
and ACCEPT instructions of the RMX abstract machine. These in-
structions generally alter the ‘‘value” or contents of these com-
plex data objects. The task object is not the direct operand of any
'RMX instruction described above. Rather it is indirectly altered as
a side effect of various instructions. Just as the user of floating-
point objects on most machines needs to know the length and ex-
istence of instances of the object, but not its internal structure, so
the internal structure of these objects is generally unimportant to
the users.

PROCEEDINGS OF THE IEEE, VOL. 66, NO. 2, FEBRUARY 1978

TASK OBJECT

DELAY LINK FORWARD
DELAY LINK BACKWARD
THREAD
DELAY MESSAGE
EXCHANGE ADDRESS
STACK POINTER
prIRTY | sTatus
NAME POINTER
MARKER
TASK LINK

EXCHANGE OBJECT

MESSAGE HEAD
MESSAGE TAIL
TASK HEAD
TASK TAIL
EXCHANGE LINK

2 BYTES
Fig. 3. Example data objects in RMX.

D. Global Versus Local Optimizations

We have already discussed some aspects of global versus local
optimizations at the overall design level in terms of avoidance of
redundant features. A good example of this tradeoff in the imple-
mentation is provided by the linked list data structures within
RMX. Like many such systems there are a number of singly
linked lists which must be maintained to reflect the status of the
system. Local optimizations on the placement of links within data
structures or in the form of the headers used for the lists would be
guaranteed to save a few bytes of data space across the various
lists. Further, the list insertion, scanning, and deletion algorithms
could be specially tailored to the individual list structures to save
microseconds of execution time for some operations on some
lists. Indeed, any one such tailored algorithm might well use less
code space than a single more general one.

On the other hand, many of the list operations are in no sense
time critical. Generalizing all the list structures to use a single
form replaces multiple algorithms with one, thus saving code
space. The particular form can be chosen to favor those opera-
tions that are frequent, thus limiting the impact of the generaliza-
tion on the execution speed of the system. Perhaps most impor-
tant, however, is that, by reducing the number of algorithms and
structures used, we decrease the potential number of errors and
improve the maintainability of the resultant product. Since there
are, for example, at least six distinct singly linked structures in the
system, we reduce overall code size and engineering cost by sup-
porting only a single mechanism. We improve product reliability
at the price of a small increase in fixed data space and a small exe-
cution speed penalty of infrequent and nontime-critical opera-
tions.

It is interesting to note as an aside that this is really an example
of software engineering: that is, applying engineering discipline to
software development. Such discipline is highly valued and under-
stood in other engineering fields. Standardized mechanical or
electrical components are virtually always preferred to special
designs; PLA’s often replace random logic. Unfortunately, an ap-
preciation of the overall benefits of such structure has been slow
to develop in software engineering. Too often, we have seen
special purpose designs and overly complex structure used in pro-

2-86

KAHN: SMALL-SCALE OPERATING SYSTEM FOUNDATION

grams supposedly to save space or improve speed. The true costs
in development time and reliability of such approaches have often
been underestimated; the true time savings attributed to them
often overestimated. The high percentage of end product cost due
to software is finally forcing a general awareness of these issues.

VII. LSI AND ABSTRACT MACHINES

It seems natural at this point to ask how the abstract machine
view of systems in general and our experience with RMX might be
affected by the continuing development of LSI technology. Once
we view any complex software system as defining a collection of
abstract machines, it becomes obvious that it is simply an engi-
neering decision as to which machines should be committed to
hardware. We are constrained in this choice by the densities of
our solid-state technology, the performance we desire, the ap-
plications that we are attacking, and perhaps most severely, by
our understanding of software systems and of the machine struc-
tures that they require.

We might build an entire final application (e.g., a cash register)
as a very-high-level single-chip machine. The specialization of
such a design would, however, severely limit its application
beyond the one for which it was specifically meant. On the other
hand, we could build exclusively bit slice microprogrammable
machines with utmost generality but which, due to their very low
level of functional integration, would have no technological lever-
age for attacking complex problems. Actually, both these ex-
tremes have their well developed roles and will continue to be
reasonable approaches for high-volume low-cost, and special-
purpose tailored systems, respectively. It is in the middle ground
—the area of the traditional computer—that directions are less
clear.

If the 8080 type processors are generally somewhat less power-
ful than we actually need and as a result we always build operating
systems of some level to support them, perhaps some of these
functions can be integrated into the hardware. That is, if we can
identify a broad range of systems which include essentially the
same abstract machine implemented in software, then that
abstract machine is a good candidate for hardware integration.
The engineering difficulty is in understanding these software
structures well enough to confidently and correctly commit them
to hardware.

Attempting to build all of some very large and complex operat-
ing system onto one or two chips is, no doubt, out of the question
with current technology. On the other hand, the final RMX sys-
tem which we described resides in a small amount of ROM within
the 65K address space of the 8080 processor. Once we view RMX
as an abstract machine, the placement of the code which imple-
ments its functionality becomes immaterial. In particular, we
could build an augmented 8080 type processor directly by defining
the additional instruction codes of RMX as hardware operations
and moving the RMX implementation into microcode on the
chip. The resultant component would indeed be an “RMX ma-
chine’’ which dealt directly with the complex data objects and
tables described above. It would have the advantage of not using
any of the address space for operating system code. More impor-
tantly, it would not waste bus cycles and memory access time
fetching operating system instructions. Such a machine would
have the same advantages over a conventional one that a machine
with floating-point hardware has over one without it.

Should we then try to build the RMX machine—ignoring for
the moment whether our hardware technology is capable of it
quite yet? Is the simple task model of RMX sufficiently general to
be of use over a wide class of applications? Is the RMX machine
the complete tool that we would like? Clearly, the answer is not a

wholehearted yes. For one example, RMX provides no isolation
or protection of one task from another. Indeed, no solely soft-
ware system can provide such protection at any reasonable cost.
Such isolation would be desirable at the least because it would
limit the damage that one task could do to another due to errors.
The conclusion to be drawn, therefore, is not that this particular
abstract machine should be built in hardware, but rather that
some such machine would provide more of the facilities needed
for building microprocessor applications than do current proces-
sors. Further, the design principles discussed above are the ones
that appear most likely to be fruitful in creating such a machine.

VIII. CONCLUSIONS

In this paper, we have attempted to use a case study of a partic-

“ular small operating system to illustrate both a philosophical ap-

proach to viewing computer systems and some important aspects
of software development methodology. Many of the subtle as-
pects of desiging software to control quasi-parallel activities have
not been discussed in detail, nor have we fully described the im-
plementation. Nevertheless, we hope that this description suggests
the practicality and necessity of disciplined approaches to soft-
ware system design. Until software implementation reaches a level
of engineering commensurate with that applied to other aspects of
computer system design, our products will be very much bound
by software costs. Only discipline and structure within our soft-
ware efforts will ultimately permit microprocessor applications to
reach their full potential.

ACKNOWLEDGMENT

The author acknowledges the effort of codesigner K. Burgett in
the original development of the system. In addition, thanks are
due for the detailed suggestions received from J. Rattner, S.
Fuller, R. Swanson, G. Cox, and J. Crawford, which greatly im-
proved the content and clarity of the paper. The author also
thanks his other colleagues at Intel and the reviewers who con-
tributed to the final form of the paper.

REFERENCES
{1] P. Brinch Hansen, ‘‘The nucleus of a 1ti|
ACM, vol. 13, no. 4, pp. 238-241, Apr. 1970
[2]1 =, Operating System Principles. Englewood Cliffs, NJ: Prentice-Hall, 1973.
(3] F. P. Brooks, Jr., The Mythical Man-Month. Reading, MA: Addison-Wesley,
1975.
[4] W. L. Brown, ‘‘Modular programming in PL/M,”" in. Proc. IEEE Conf. Com-
puter Software and Applications, Nov. 1977.
(5] K. Burgett and E. F. O’Neil, “An i | real-time executive for microproces
sors,”’ Computer Design, vol. 16, no. 7, pp. 77-82, July 1977.
[6] E. G. Coffman, Jr., and P. J. Denning, Operating Systems Theory. Englewood
Cliffs, NJ: Prentice-Hall, 1973.
[71 G. W. Cox, “‘Portability and adaptability in operating system design,”’ Ph.D.
dissertation, Purdue Univ., Lafayette, IN, Dec. 1975.
[8] P.J. Denning, ““Third generation systems,”’ C
3, no. 4, pp. 175-216, Dec. 1971.
(9] E. W. Dijkstra, “The structure of the ‘THE’-multiprogramming system,’’
Commun. ACM, vol. 11, no. 5, pp. 341-346, May 1968.
[10] J. H. Fasel, ‘‘Abstract machine hierarchies for programming language imple-
mentation,”’Ph.D. dissertation, Purdue Univ., Lafayette, IN, Dec. 1977.
[11] A. N. Habermann, Introduction to Operating System Design. Chicago, IL:
SRA, 1976.

system,”’ Cq

g Surveys, vol

[12] A. N. Habermann, L. Flon, and L. Cooprider, ‘M i and hi h
in a family of operating systems,’’ Commun. ACM, vol. 19, no. 5, pp. 266-272,
May 1976.

[13] B. Liskov and S. Zilles, ‘‘Programming with abstract data types,”” SIGPLAN
Notices, vol. 9, no. 4, pp. 50-59, Apr. 1974,
[14] D. D. McCracken, A Guide to PL/M Prog
cations. New York: Wiley, 1977.
{15] D. Parnas, “‘A technique for software module specification,”” Commun. ACM,
vol. 15, no. 5, pp. 330-336, May 1972
, *‘On the criteria to be used in d.
mun. ACM, vol. 15, no. 12, pp. 1053-1058, Dec 1972,
[17] D. M. Ritchie and K. Thompson, ‘‘The UNIX time-sharing system,’’
mun. ACM, vol. 17, no. 7, pp. 365-375, July 1974.
[18] RMX/80 System Users Guide. Santa Clara, CA: Intel Corp., 1977.

for Micr p Apph-

(16 — into modules,” Com-

Com-

2-87

	1979_iSBC_Applications_Manual_Page_277
	1979_iSBC_Applications_Manual_Page_278
	1979_iSBC_Applications_Manual_Page_279
	1979_iSBC_Applications_Manual_Page_280
	1979_iSBC_Applications_Manual_Page_281
	1979_iSBC_Applications_Manual_Page_282
	1979_iSBC_Applications_Manual_Page_283
	1979_iSBC_Applications_Manual_Page_284
	1979_iSBC_Applications_Manual_Page_285
	1979_iSBC_Applications_Manual_Page_286
	1979_iSBC_Applications_Manual_Page_287
	1979_iSBC_Applications_Manual_Page_288
	1979_iSBC_Applications_Manual_Page_289
	1979_iSBC_Applications_Manual_Page_290
	1979_iSBC_Applications_Manual_Page_291
	1979_iSBC_Applications_Manual_Page_292
	1979_iSBC_Applications_Manual_Page_293
	1979_iSBC_Applications_Manual_Page_294
	1979_iSBC_Applications_Manual_Page_295
	1979_iSBC_Applications_Manual_Page_296
	1979_iSBC_Applications_Manual_Page_297
	1979_iSBC_Applications_Manual_Page_298
	1979_iSBC_Applications_Manual_Page_299
	1979_iSBC_Applications_Manual_Page_300
	1979_iSBC_Applications_Manual_Page_301
	1979_iSBC_Applications_Manual_Page_302
	1979_iSBC_Applications_Manual_Page_303
	1979_iSBC_Applications_Manual_Page_304
	1979_iSBC_Applications_Manual_Page_305
	1979_iSBC_Applications_Manual_Page_306
	1979_iSBC_Applications_Manual_Page_307
	1979_iSBC_Applications_Manual_Page_308
	1979_iSBC_Applications_Manual_Page_309
	1979_iSBC_Applications_Manual_Page_310
	1979_iSBC_Applications_Manual_Page_311
	1979_iSBC_Applications_Manual_Page_312
	1979_iSBC_Applications_Manual_Page_313
	1979_iSBC_Applications_Manual_Page_314
	1979_iSBC_Applications_Manual_Page_315
	1979_iSBC_Applications_Manual_Page_316
	1979_iSBC_Applications_Manual_Page_317
	1979_iSBC_Applications_Manual_Page_318
	1979_iSBC_Applications_Manual_Page_319
	1979_iSBC_Applications_Manual_Page_320
	1979_iSBC_Applications_Manual_Page_321
	1979_iSBC_Applications_Manual_Page_322
	1979_iSBC_Applications_Manual_Page_323
	1979_iSBC_Applications_Manual_Page_324
	1979_iSBC_Applications_Manual_Page_325
	1979_iSBC_Applications_Manual_Page_326
	1979_iSBC_Applications_Manual_Page_327
	1979_iSBC_Applications_Manual_Page_328
	1979_iSBC_Applications_Manual_Page_329
	1979_iSBC_Applications_Manual_Page_330
	1979_iSBC_Applications_Manual_Page_331
	1979_iSBC_Applications_Manual_Page_332
	1979_iSBC_Applications_Manual_Page_333
	1979_iSBC_Applications_Manual_Page_334

