
© Intel Corporation, 1977, 1978, 1979

APPLICATION
NOTE

2-3

Ap·33

October 1977

98005~7A

RMXl80 Real-Time
Multitasking Executive

2·4

Contents

INTRODUCTION 2·5

OVERVIEW. • 2·5

Basic Concepts .. 2-5
General Characteristics. 2-5
Nucleus Operations. .. 2-7

EXTENSIONS ..•........................ 2·10

Free Space Manager 2-10
Terminal Handler 2-11
Disk File System 2-11
Debugger. 2-11

USING THE RMX/SOTM SOFTWARE 2·11

Task and Exchange Definition 2-12
Priority Assignment. 2-13
Static Descriptions 2-13
Compilation/Assembly 2-13
Linking 2-14
Locating 2-14
Debugging 2-14

APPLICATIONS 2·14
Minimal Terminal Handler 2-14
Closed-Loop Analog Control. 2-18

APPENDIX A 2·21

APPENDIX B 2-25

APPENDIX C •.......................... 2·27

INTRODUCTION

A large number of microcomputer applications
require the ability to respond to events in real time.
RMX/80 provides the system software around
which you can build a real-time multitasking appli­
cation on Intel SBC 80 Single Board Computers.
In addition, RMX/80 increases the utilization of
a Single Board Computer by allowing its resources
to be shared among several tasks executing concur­
rently. Synchronization of these multiple real-time
tasks is handled by RMX/80, freeing you to con­
centrate your major programming efforts on your
application.

This application note begins with an overview of
RMX/80. Readers who are familiar with the mate­
rial presented in the RMX/80 User's Guide may
choose to skip to the next section, a description of
how to use RMX/80 and the steps involved in
using it by describing two applications.

• An interrupt driven minimal terminal handler
for a CRT or Teletypewriter.

• A closed-loop analog control subsystem utiliz-
ing the Intel SBC 711 analog-to-digital board.

Each example has diagrams illustrating the rela­
tionships between its tasks and exchanges. These
are useful tools in conceptualizing the activities
taking place in real time. Program listings of the
applications are interspersed with text describing
the application.

OVERVIEW

Real-time systems provide the ability to control
and respond to events occurring asynchronously
in the physical world. Later in this application
note, a process control application is described
that monitors and controls the temperature within
several chambers. The system controls the process
by simply turning on and off a heat source. The
system could also display the temperature on an
operator's console and permit entry of new set­
point temperatures and error ranges.

A single large program could have been used to
perform the functions in a sequential manner.
However, this approach may not permit an opera­
tor to enter control variables at the same time the
process is being monitored and controlled. In
contrast, real-time systems do not operate sequen­
tially. A number of events may all be happening
at the same time. This concurrence of events is a
distinguishing characteristic of real-time systems.

2·5

BASIC CONCEPTS

There are basically three concepts that the user
must master to effectively use RMX/80. The first
is the task, an independent program which com­
petes for resources within the system. The second
concept is the message. Messages convey data and
synchronization information between tasks. The
third concept is the exchange. An exchange enables
one task to send a message to another. As we will
see later, the interaction between tasks and ex­
changes enables the user to implement mutual
exclusion, communication, and synchronization.
Mutual exclusion is a technique that controls
access to a shared resource such as an I/O device
or a data structure.

Task

Under RMX/80, the user codes a separate program,
known as a task, for each event. An arbitrary num­
ber of these tasks execute concurrently and are
subject to synchronization as required by their
functions. Tasks share resources such as data struc­
tures and can communicate between themselves.

Message

A message is a unit of communication between
tasks. Together with the exchange mechanism, it
conveys information between tasks and can syn­
chronize their operations.

Exchange

RMX/80 uses message exchanges for task-to-task
communication. An exchange is a pair of queues
represented by a data structure at which messages
are left by one task to be picked up by another.
Tasks may send messages to an exchange, and may
wait for messages at an exchange. A task which
waits for a message may perform a timed or an
untimed wait. A timed wait will terminate upon
the receipt of a message or at the end of the speci­
fied period of time, even if it has not received a
message. When a task does an untimed wait for a
message it is guaranteed that the task will not exe­
cute again until a message is available for it. A
representation of the exchange data structure is
shown in Figure 1.

GENERAL CHARACTERISTICS

In addition to the basic concepts of tasks and ex­
changes, several other general characteristics of
RMX/80 are relevant in this overview.

Figure 1. Exchange Data Structure

System Time Unit

RMX/80 uses a system time unit that is the period
of time between "ticks" of the system clock. The
standard RMX/80 system time unit is 50 milli­
seconds. The system time unit provides timing and
user task scheduling. A task may wait at an ex­
change for a specified number of system time
units and then continue execution. A task could
be written to generate messages at specific time
intervals. Tasks waiting for the messages would
then be scheduled according to those time intervals.

Message Producing/Consuming Tasks

In general, tasks can be classified as message pro­
ducing or message consuming tasks. The processing
flow of these types of tasks are usually cyclic in
nature and can be shown as follows.

----_._----------------
TASK ENTRY POINT

INITIALIZE TASK

,------1 WAIT FOR ReQUEST

PERFORM FUNCTION

'-------' SEND RESPONSE

CONSUMER

TASK ENTRY POINT

INITIALIZE TASK

,---1 PERFORM FUNCTION

INITIALIZE OPERATION
(SEND MESSAGE)

'-------' WAIT FOR RESPONSE

PRODUCER

Figure 2. Message Producing/Consuming Tasks

A consumer task waits for a message to be posted
at a particular . exchange and .takes control of the
processor only when it has received a message and
no other tasks of higher priority are ready to exe­
cute. The consumer task performs some action
based upon the message and then simply resumes
waiting until the next message is received. Usually,
the consumer task acknowledges completion of
its function by sending a response message to some
other exchange associated with a task.

2-6

A producer task initiates its function by sending
a message to another exchange and then surrenders
control of the processor. The task continues to
wait until it receives a response to its message.

Notice that the distinction between these types
of tasks is relative since most tasks both produce
and consume messages. However, the producer/
consumer concept helps clarify the general struc­
ture of tasks-tasks are typically programmed
loops. A producer task performs a function, sends
a message, waits for a response, then loops back to
begin again. A .consumer task waits for a message,
performs a function, sends a response, then loops
back to wait again.

Interrupts

Hardware interrupts are treated as messages from
peripheral devices for which a task can wait, as If
the interrupt were a message from some other task.
These messages arrive at particular exchanges,
called interrupt exchanges, but are otherwise treated
as described above. The system provides the abil­
ity to mask particular interrupts so that no mes­
sages ever arrive at a particular interrupt exchange
associated with the masked interrupt. In the event
that the overhead associated with turning an inter­
rupt into a message is too high, the interrupt can
be treated by the user directly via a user supplied
interrupt service routine.

Task States

Tasks may exist in a number of states. A task is
running if it actually has the processor executing
instructions on its behalf. A ready task is one that
could be running (any wait for a message or time
period has been satisfied), but a higher priority
task is currently running. A task is waiting if it
cannot be ready or running because it is waiting
at an exchange for a message. A suspended task is
one that is not permitted to run or compete for
system resources until it is resumed. The rela­
tionships between the task states are illustrated in
Figure 3.

Priority

Each task has associated with it a priority that in­
dicates its importance relative to other tasks in
the system and relative to the interrupts of peri­
pheral devices. RMX/80 schedules a task for exe­
cution based on the task's priority. Whenever a
decision must be made on which task should be

run, the highest priority ready task is chosen. Each
of the eight hardware interrupt levels has a set of
priorities, one of which must be assigned to the
task that services the interrupt. When an interrupt
occurs that task is executed if it is the highest
priority ready task. At the time a higher priority
task preempts a lower priority task, RMX/80
saves all the relevant information about the pre­
empted task so it can eventually resume execution
as though it were never interrupted. This process
is known as a context save.

II I
RUNNING

READY

L I SUSPENDED

I

WAITING

1

Figure 3. Task States

NUCLEUS OPERATIONS

The RMX/80 nucleus provides several operations
that you can access with programmed calls. Two
basic operations are covered in this section (addi­
tional operations are described in the RMX/80
User's Guide):

• RQSEND, send a message to an exchange

• RQWAIT, wait for a message or time interval

These two operations provide the capability to
pass messages between tasks in a system running
under RMX/80.

Message Fonnat

The messages used by the send and wait operations
to convey information between tasks are variable
in length and contain the infonnation shown in
Figure 4.

2-7

o
2

4

5

7

9

LINK

LENGTH

TYPE I
HOME EXCHANGE

RESPONSE EXCHANGE

REMAINDER

+ I ndicates optional

Figure 4. Message Format

(BASE)

+
+

+

Fields

I. LINK - a 2-byte field used to enter the mes­
sage on a linked list at an exchange.

2. LENGTH - a 2-byte field containing the total
length of the message in bytes. The minimum
message length is 5 bytes (LINK, LENGTH,
and TYPE).

3. TYPE - a I-byte field indicating the type of
message.

4. HOME EXCHANGE - an optional 2-byte
field containing the address of an exchange to
which this message should be sent when it has
no further use. This field is very useful in im­
plementing and managing a pool of messages.

5. RESPONSE EXCHANGE - an optional
2-byte field containing the address of an ex­
change to which a logical response to this
message should be sent. This field is intended
to specify the exchange at which a sending
task is waiting for an acknowledgement
message if one is needed.

6. REMAINDER - an optional field of arbi­
trary length that may contain any data por­
tion of the message.

Sending a Message to an Exchange

The RQSEND operation enables a task to post a
message at an exchange. When you send a message
to an exchange, RMX/80 actually posts only the
address of the message at the exchange, not the
body of the message. RMX/80 avoids the overhead
required to move an entire message to an ex­
change. Thus it is possible to queue a number of
messages at tire same exchange with little overhead
in either execution time or memory requirements.
When a task sends a message to an exchange, sev­
eral functions are performed.

• The message is placed on the specified ex­
change.

• If there are one or more tasks waiting at the
exchange, the first task is given the message
and is made ready.

• If a higher priority task is thereby made
ready, the sending task loses control until
it once again becomes the highest priority
ready task.

After a message is sent to an exchange, it must not
be modified by the sending task. A task which then
receives the message by waiting at the exchange
where the message has been posted is free to modi­
fy the message. The format of the RQSEND opera­
tion is as follows.

RQSEND(exchange-address,message-address)

Message exchanges are defined by the user, and are
normally addressed symbolically. For example,
the exchange used to pass readings from an analog­
to-digital (A/D) task might be named ATODEX.
The reading itself could be contained in a message
with the name RDNG. Thus, a typical call for a
send in a PL/M program might be as follows:

CALL ROSEND (,ATODEX,.RDNG) ;

The call procedure in assembly language is as
follows.

LXI B,ATODEX

LXI D,RDNG

CALL ROSEND

The assembly language rules for passing parameters
to RMX/80 are the same as for passing parameters
to a PL/M procedure called from an assembly lan­
guage module. For 2-byte parameters, the first
parameter is passed in the Band C registers; the
second parameter is passed in the D and E registers.

Waiting for a Message or Time Interval

The RQWAIT operation causes a task to wait for
a message to arrive at an exchange. It is also pos­
sible to delay execution of a task when no message
is anticipated for the task. The task simply waits
for the desired time period at a message exchange
where no message is ever sent. When a task waits
for a message at an exchange several operations
are performed.

2·8

• The task is made to wait until a message is
sent to the specified exchange, or until the
time limit has expired.

• When a message is available, its address is
returned to the task.

• If the time limit expires before a message
becomes available, a system TIME$OUT mes­
sage is returned to the task.

The format of the RQWAIT operation is as follows.

RQW AIT(exchange-address, time-limit)

The time limit is eritered as some number of sys­
tem time units (50 milliseconds); a I-second wait
is equal to 20 time units. If zero is specified the
wait is not timed, producing an indefinite wait
until a message is actually sent to the exchange.
Note that a specified wait of five time units may
sometimes only produce an actual wait of four
time units. This can occur if you enter a wait
immediately before the clock "ticks." In this
case the count would be decremented immediately
after entering the wait. Only four full time unit
periods would lapse before completion of the
wait. Thus a user who wishes to ensure that at least
five time units are spent in an asynchronous wait
must specify six time units in the wait operation.
A task which waits synchronously to the system
clock, i.e., performs repetitive timed waits, does
not have this problem because a new wait is exe­
cuted following a tick that satisfied the previous
wait. The following are typical calls for the
RQWAIT operation.

PL/M

PTR = ROWAIT(.ATODEX,20) ;

The RQWAIT procedure returns an address value
which is the address of a message.

Assembly Language

LXI B,ATODEX

LXI D,20

CALL ROWAIT

The address of a message is returned in the HL
register pair.

Send - Wait Interaction

To a large extent, the power of RMX/80 as a pro­
gramming tool is derived from the interaction
between send and wait. The interaction includes
three multi-tasking operations.

• Communication

• Synchronization

• Mutual Exclusion

In describing these operations, a graphic notation
for diagramming tasks, exchanges, and their
interaction (send and wait operations) is useful.
The notation is described in the next section on
communication.

Communication. The most common interaction
between tasks is that of communication - the
transmission of data from one task to another
via an exchange (Figure 5).

TASK
A

Figure 5. Communication

TASK
B

Rectangles designate tasks while circles represent
exchanges. Arrows that are directed from tasks to
exchanges indicate send operations. Wait opera­
tions are shown by arrows directed from exchanges
to tasks.

Figure 5 shows an example of communication
between task A and task B. Task A sends a message
to exchange X and task B waits for a message at
that exchange. Task A is the message producer
and task B the message consumer.

Synchronization. At times there is a requirement
to send a synchronizing signal from one task to
another. This signal can take the form of a message
that contains only header information, that is,
LINK, LENGTH, and TYPE.

Let us consider the implementation of a task
scheduler, used for the purposes of synchronizing
another task that performs a particular function
at periodic intervals. The relationship between the
tasks and exchanges is shown in Figure 6.

2-9

Figure 6. Synchronization

Task A, the scheduler, performs a timed wait on
the X exchange. Note that the full wait period
will always occur because there is no task that
is sending messages to exchange X. In this manner,
a specific timed wait by task A precedes the pass­
ing of a synchronization message from task A to
task B via exchange Y, and then the return from
task B to task A via the Z exchange.

If task B waited on X directly, rather than using
task A for scheduling, it would be scheduled n sys­
tem time units from when it waits instead of n
units from the last time it was awakened. A com­
parison between the two methods is shown in
Figure 7.

TIME TIME

-~ oBnB non

TASK B WAITING DIRECTL Y ON X TASK A SCHEDULING TASK B

Figure 7. Scheduling Methods

Mutual Exclusion. In an environment with multi­
tasking, resources often must be shared. Examples
of shared resources include data structures and
peripherals such as the Intel SBC 310 Math Module.
Mutual exclusion can be used to ensure that only
one task has access to a shared resource at a time.
Figure 8 shows how an exchange can be used to
limit access to a resource.

TASK
A

TASK

•

TASK
N

Figure 8. Mutual Exclusion

In this example, the X exchange is sent a single
message at system initialization. Then, as tasks re­
quire the resource, they wait for a message from
the X exchange. When the message is received,
the task knows it has sole access to the resource
because there is only one message associated
with the exchange. After the task finishes with
the resource it sends the message back to the X
exchange. The next task waiting for the resource
continues, knowing it has exclusive access to the
resource.

EXTENSIONS

RMX/80 has several extensions which provide
operations commonly used in real-time applica­
tions. The nucleus of RMX/80 requires less than
two thousand bytes of memory and includes all
of the basic operations. The extensions include a
Free Space Manager, Terminal Handler, Disk File
System, and a Debugger.

FREE SPACE MANAGER

The Free Space Manager maintains a pool of free
RAM and allocates memory from that pool upon
request from a task. The Free Space Manager also
reclaims memory and returns it to the pool when
it is no longer needed.

The Free Space Manager is especially useful in two
applications. The first application arises from the
need for variable length messages. If you have a
task that produces messages of variable length,
such as a task sending text for display on a CRT,
the Free Space Manager can be used to provide
a message to meet your exact size requirements.

2·10

An alternate solution is to maintain a pool
of large fixed length messages. The pool can be
maintained without the Free Space Manager;
however, memory is wasted because of the unused
space remaining in the fixed length messages.

The second application of the Free Space Manager
relates specifically to effective use of memory.
In a typical application, the total RAM require­
ment is computed by adding up the maximum
RAM requirements for each task in a system as
shown in Figure 9.

TASKC

ROM

TASK A

RAM l MAXe

RAMTOT AL .. MAXA + MAXS + MAXC

Figure 9. RAM Requirements

The efficiency of memory utilization is a function
of the total RAM memory needed during typical
system operation. Reducing the total amount of
RAM by sharing it among the. tasks often has
little impact on total performance. However, signi­
ficant cost advantages may be gained by reducing
the total amount of memory. The memory require­
ments can be calculated as the minimum RAM for
each task plus the pool (shared memory), as shown
in Figure 10.

TASKS 's ' ROM
TASK A TASK C

ROM ROM BEl MINA RAM } MIN. BEl MINe

POOL

D
RAMrOTAL = MINA + MINs + MINe + POOL

Figure 10. RAM Requirements Using a Pool

TERMINAL HANDLER

The Terminal Handler provides real-time asyn­
chronous I/O between an operator terminal and
tasks running under the RMX/80 executive. The
Terminal Handler provides a line-edit capability
similar to that of ISIS-II and an additional type­
ahead feature. (ISIS-II is the diskette supervisor
system used on the Intellec Microcomputer Devel­
opment System.) Access to the Terminal Handler
is provided by two exchanges where messages are
sent to initiate read and write requests.

Several features of the Terminal Handler have
been incorporated specifically to facilitate interac­
tion with the debugger. Because of this interaction,
the Terminal Handler is required for operation of
the debugger.

DISK FILE SYSTEM

The Disk File System (DFS) provides users of
RMX/80 with disk file management capabilities.
This system allows user tasks to create, access, and
maintain disk files in a real-time environment. This
means that many I/O requests can be processed
concurrently, rather than one at a time.

In addition to the file handling services, DFS pro­
vides a program loading facility that allows you to
load program segments into memory from disk.

The DFS can be configured to include only those
functions which you require. For example, if
your disk accesses are sequential rather than
random, you omit the SEEK function. This philo­
sophy of minimizing memory requirements by
including only the functions your application re­
quires is found in virtually all aspects of RMX/80.

DEBUGGER

An environment that is continually changing in
response to asynchronous physical events can pre­
sent a serious debugging challenge. The Debugger
aids you in debugging tasks running under the
RMX/80 executive. The Debugger provides a
command language that can be used to passively
display information about the system, or actively
modify and interact with the system.

Passive Functions

Because RMX/80 manages a fairly complex set of
data structures, the Debugger has the capability
of displaying them in an intelligible format. The
Debugger can be used in this manner to view
tasks, exchanges, messages, and other data struc-

2-11

tures maintained within the RMX/80 environment.
The contents of all RAM and ROM memory loca­
tions may also be displayed by the Debugger.

Active Functions

The active Debugger functions include those of
modifying memory, setting breakpoints, and moni­
toring stack overflow. The memory modification
commands enable you to update the contents of
memory and to move a series of bytes from any
location to any other location.

Breakpoints can be set, allowing you to gain con­
trol when encountered by a task. Two kinds of
breakpoints are supported: execution breakpoints
and exchange breakpoints. An execution break­
point can be placed at any instruction within read/
write (RAM) memory. When the breakpoint is
reached, the task encountering the breakpoint is
stopped from further execution. The task registers
may then be examined and modified before resum­
ing execution.

Exchange breakpoints can be used to detect
RQSEND and/or RQWAIT operations performed
on specified exchanges. The exchange breakpoint
can thus enable you to monitor the activity of any
of the exchanges in your system. The task execut­
ing the appropriate RQSEND or RQWAIT to an
exchange which has a breakpoint is stopped, allow­
ing you to examine the task. This enables you to
breakpoint a ROM resident task. The breakpointed
task and the message involved in the operation
with the exchange may then be displayed and
modified before resuming execution.

The debugger can also be used to monitor stack
overflow. This function is provided by the De­
bugger SCAN command which examines the stacks
of all tasks in the system at a specified periodic
interval. The fact that each task's stack is initialized
with a unique value allows stack overflow to be
detected. When a task stack overflows, it is re­
moved from the system and a message is displayed.

USING RMX/80

This section of the application note describes the
steps involved in using RMX/80. The process
begins with the definition of the individual tasks
and exchanges in your application. It continues
with a discussion of the data structures that you
must prepare. The task coding, compilation or
assembly, linking, and locating is also described.

Finally, some comments are directed towards de­
bugging tasks within the RMX/BO envirnment.

Before the details of using RMX/BO are discussed,
some general observations are necessary to deter­
mine the suitability of RMX/BO for your applica­
tion. To effectively utilize RMX/BO, your applica­
tion must either use interrupts or require device
polling. Thus, the key element is the need to
respond to external events. If your application
satisfies this criteria, it is a likely candidate. How­
ever, you must then determine if RMX/BO is capa­
ble of supporting your application. This can be
done by examining your interrupt response time
and frequency requirements. The time required to
transform an interrupt into a message that is sent
to an interrupt exchange is approximately BOO
microseconds for an SBC BO/20. This is the
RMX/BO interrupt latency. It can be reduced to
60 microseconds by handling the interrupt directly,
using the RQSETV operation to bypass the
RMX/BO interrupt exchange mechanism. In this
latter mode, an interrupt-driven asynchronous
block transfer rate of about 10kHz can be achieved.

TASK AND EXCHANGE DEFINITION

The initial design step for an application that runs
under the RMX/BO Executive is to define your
tasks, exchanges, and the interaction between
them. This is perhaps best accomplished using the
graphic notation introduced earlier in the section
on Send - Wait Interaction. The graphic notation
provides a clear picture of the relationships be­
tween the tasks and exchanges in your system.
You can begin either in a top-down or bottom-up
fashion. That is, you can use a top-down approach
to define, at a gross level the operation of your
system and then gradually break it down to the
individual tasks. Or, you can start with the tasks
associated with the external events in your appli­
cation and then build the pieces to form the gross
structure of your system.

The bottom-up approach forces you to begin with
external events that drive your system. The num­
ber of these events, the amount of processing
required, and the relationships between them
define the tasks and exchanges in a system. For
example, consider a system that samples an analog
input with an A/D converter. Assume that the A/D
provides an interrupt at the completion of a con­
version. To use the data from the A/D converter it
may also be necessary to scale it and add an offset.

2-12

With this information the portion of the task and
exchange definition that relates to this function
can be constructed.

Begin with the external event, the interrupt from
the A/D. An 'interrupt priority level must be as­
signed to the A/D converter. This same level will
be used by the task which waits on the interrupt
exchange.

The relationship between the interrupt exchange
and the A/D task is shown in Figure II. If pro­
cessing must be performed on raw data from the
A/D, a second, lower priority, task could be used.
Another task for this function will require a syn­
chronizing signal from the ADC task to indicate
that raw A/D data has been obtained and is ready
for processing.

QO
~

Figure 11. I nterrupt Exchange and AID Task

The interaction between the ADC task and the
CONY task that processes the raw A/D data is
shown in Figure 12. Two exchanges provide
synchronization. The ADC task uses the TRGR
exchange to signal that data is ready for process­
ing by the CONY task. The CONY task uses the
RTRGR exchange to signal the completion of its
processing and thus its readiness to accept more
raw data.

Q
~~~ 

&:~ p 
Figure 12. ADC and CONV Task Interaction 



In this example two tasks and three exchanges 
have been defined. To develop an entire system, 
the tasks and exchanges associated with all of the 
external events in the system can be defined in 
the same manner. Then, proceeding bottom-up, 
the next step is to define the tasks and exchanges 
required to support the interaction between tasks 
running at the level of the real-time events. 

After defining the entire application, you can begin 
actual coding of the tasks. You may choose to 
code in either assembly language or the PL/M 80 
high-level language. Where possible, it is desirable 
to code in PL/M because PL/M lends itself to 
structured programming. Assembly language often 
encourages an ad hoc approach. Even if your appli­
cation ultimately requires assembly language coding 
because of critical time and/or space parameters, 
initial design work in PL/M followed by transla­
tion into assembly language is recommended. 

A total of IS operations are supported by the 
RMX/80 nucleus. Only two of the operations, 
RQSEND and RQWAIT, are described in any detail 
in this application note. The remaining operations 
are described in the RMX/80 User's Guide. The 
reason for presenting only the send and wait opera­
tions is because they are sufficient for the imple­
mentation of a large number of real-time applica­
tions. These two operations provide a great deal of 
power and flexibility, yet their simplicity should 
enable those who are new to real-time program­
ming to quickly develop applications. 

PRIORITY ASSIGNMENT 

The relative priority of tasks within a system run­
ning under RMX/80 determines which task is to 
be executed. Therefore, the assignment of a pri­
ority to each task is extremely crucial. For exam­
ple, consider a compute bound task placed at a 
higher priority than an interrupt-driven task 
responsible for servicing an I/O device. This im­
proper assignment of priorities could result in 
missed interrupts from the I/O device. Several 
steps can be followed in the assignment of task 
priorities. 

I. Assign hardware interrupt priority levels 
according to the requirements of your appli­
cation. 

2. Specify priorities for the tasks which service 
the interrupts. These tasks should generally 
be short and serve only to perform the data 

2-13 

transfers. A second task with a priority lower 
than those assigned to the hardware inter­
rupts should be used where further processing 
of the data is required. 

3. Priority assignment should be made for all 
other tasks in the system based on the relative 
importance and interaction among the tasks. 

Unfortunately the last step in assigning task pri­
orities is largely intuitive. In fact, you may need 
some empirical data from actually running your 
application before you settle on your final task 
priority assignment. 

STATIC DESCRIPTORS 

When a system running under RMX/80 begins 
execution, several tables of data are used to ini­
tialize the system. These tables usually reside in 
ROM. The first table is the create table (RQCRTB) 
that specifies the number of tasks and exchanges 
in the system, and the addresses of the initial 
task table and the initial exchange table. The ini­
tial exchange table contains the addresses of all 
the exchange descriptors. The initial task table 
contains the static task descriptors for each task, 
and contains the following task parameters. 

1. Name 

2. Initial PC - the location at which'to start 
task execution 

3. Initial SP - the location at which to start 
the task stack 

4. Stack length 

5. Priority 

6. Initial Exchange (described in the RMX/80 
User's Guide) 

7. TD Address - the RAM address of the task 
descriptor 

You must prepare all three of these tables to pro­
duce a configuration module for RMX/80. The 
release diskette for RMX/80 includes a set of files 
which contain assembly language macros that sim­
plify the preparation of your configuration module. 
The relationship between these tables is shown in 
Figure 13. 

COMPILATION / ASSEMBLY 

Preparing program segments for compilation and 
assembly can be simplified by use of files provided 
on the RMX/80 diskette. As described in the last 



section, a set of macros is included to assist you in 
preparing your configuration module. Other files 
are provided that are useful when coding calls to 
RMX/80 and preparing data structures in PL/M. 

ROCTAB ITT lET 

ITT POINTER I--~ ,.. EXCHANGE·ADDRESS·' 

c1AJ~T I STD2 EXCHANGE·ADDRESS·2 

JET POINTER . . 
EXcGJiuA:rGEJ STDn EXCHANGE-ADDRESS-" -

Figure 13. ROM Based Tables 

By coding in a modular fashion you can separately 
compile and maintain tasks. This is advisable since 
a single large module containing all your tasks 
would require a lengthy recompilation to change 
anyone of the tasks. Following the compilation 
and assembly of your source code modules, a 
library containing the object modules can be 
created. 

LINKING 

The process of linking prepares a single object mo­
dule from libraries containing the RMX/80 object 
modules and your own application libraries or se­
parate object modules. The order in which you 
specify the files to be linked is crucial to successful 
linking. In general, your libraries or separate object 
modules should be specified before the RMX/80 
libraries. The link command should conclude with 
the unresolved library (UNRSL V. LIB) that con­
tains miscellaneous modules for resolving PUBLICs 
not used in the application code. PUBLICs extend 
the scope of variables to allow linkage between 
separate program modules. Figure 14 illustrates 
how an application program is linked from RMX/80 
and user tasks. 

LOCATING 

It is appropriate in this section to give some guide­
lines regarding the assignment of RAM and ROM 
address space for your Single Board Computer 
environment. The SBC 80 Single Board Computers 
have ROM based at location O. Since the LOCATE 
program places all code in a contiguous block, the 
code must begin at location O. Likewise, the read/ 
write (RAM) data is also placed in a contiguous 
block. The base address of data should be placed 
at your RAM base address. Depending on the 

2-14 

amount of code space required by your applica­
tion it may be necessary to move the RAM mem­
ory base address on your SBC to a higher location. 
A ST ACKSIZE of zero should be specified because 
you allocate stack for each RMX/80 task in the 
static task descriptors. 

DEBUGGING 

As mentioned in the overview of the RMX/80 De­
bugger, the real-time environment is a complex 
one in which to debug your programs. Intel pro­
vides two tools that you can use for debugging. 
The RMX/80 Debugger and the Intel In-Circuit 
Emulator (ICE). It is desirable to have both of 
these debugging tools at your disposal. 

Figure 14. RMX!80 Linking 

ICE enables you to use Intel Microcomputer Devel­
opment System memory in place of SBC 80 mem­
ory. This allows RAM residency during your debug­
ging as opposed to programming PROMs for each 
iteration. Your system may initially fail before the 
RMX/80 Debugger can begin operation. In this 
situation ICE can be used to debug your program. 

APPLICATIONS 

RMX/80 is suitable for a wide variety of applica­
tions. Two specific examples are presented in this 
application note. Each example illustrates the 
steps involved in using RMX/80 and provides a 
detailed description of the coding itself. 

MINIMAL TERMINAL HANDLER 

The basic functions required for a terminal handler 
are well defined. The handler must respond to 



operator input, transmit output characters, and 
echo characters as they are entered. This applica­
tion note describes one implementation of a mini­
mal terminal handler. 

The terminal handler presented here is not the 
RMX/80 Terminal Handler. It does provide some 
common functions and uses the same exchanges 
and message formats. However, many features 
of the RMX/80 Terminal Handler have been left 
out. Omitted features include special hooks to run 
with the Debugger, an alarm exchange, control S, 
Q, and 0 operations. 

As described in the chapter on using RMX/80, the 
process of developing an RMX/80 application be­
gins with the definition of the tasks and exchanges. 
The graphic notation is used to prepare a diagram 
(Figure IS) showing the tasks, exchanges, and their 
interaction. 

RDMIN 
TASK 

8RQL6EX RECEIVER 

~ADV/ .... ____________ ~ 
~_ USART 

WRMIN 
TASK 

Figure 15. Minimal Terminal Handler 

As shown in Figure 15, the RDMIN task waits 
on the RQINPX exchange for input requests. The 
RDMIN task also successively waits on the RQL6EX 
andRQL 7EX exchanges. It uses the RQL6EX 
exchange to determine when a character has been 
received by the USART. The RQL 7EX exchange 
is used to indicate when the transmitter is ready 
to accept another character. RDMIN uses RQL 7EX 
for echoing input characters. 

The WRMIN task waits on the RQOUTX exchange 
for output requests. When it receives a request, it 

2-15 

waits on the RQL 7EX to determine when charac­
ters can be sent to the US ART. 

The following listing* shows the RDMIN and 
WRMIN tasks. These tasks provide a minimal ter­
minal handler. The program is written in PL/M. 
The WRMIN task is also presented in assembly 
language in Appendix B. The program listing is 
interspersed with explanatory text. The program 
begins with the program segment label "MINI­
MAUTERMINAL$HANDLER:" and a DO state­
ment. 

MIl'<l MAL:;>l'LkM I'NAL$ tIANCL!::k: 

t.0; 

Several macros are declared using the reserved 
word LITERALLY. These macros are expanded 
at compile time by textual substitution. 

DE.CLAlU. 11Wl:: LIT!:.MLLY '0FFH'; 
DI..CLARL F0fiI:;Vl;R LI'lERALLY '"HILJ:: 'l:kUE:': 

/. SI'<:CIAL ASCII CHARAC'rI:;RS */ 
Of-CLARE 

BI:.LL 
LF 

" CONTftOLSk 
CONTkOL$X 
esc 
RueOUT 

LITE.RALLY '0!7fl', 
LITERALLY '01111'. 
LI'l'ERALLY '0I)H', 
Ln'CRALLY '12H', 
LITERALLY' ISU', 
Ll1'<.1<.ALL'1 'lBH', 
LITE:RALLY '7FH'; 

Some macros are used to simplify the declaration 
of RMX/80 data structures. The structures de­
clared here are for the exchange descriptor, inter­
rupt exchange descriptor, and the messages used 
by the minimal terminal handler. 

5 1 

, 1 

t.;t.CLARE EXCHANGL$DE~CkIPT0R LITERALLY ,'STRUC'I'URE ( 
MESSAGE$III:.Au AOL;f<£SS, 
ME.SSA(;E.$'rAIL ADDRI:.,sS, 
'lASK$HE.AD ADDFt.SS, 
'lASK$TAIL ADuIU.SS. 
I:.XCHANGE$LINK ADDRESS)': 

OE.CLAIU .. IN'I'$I;.XCtlANGE$DE.SCRlI'TOR LITERALLY 'STRUCTURE ( 
ME.SSAGE$HI:.AD ADDR<'SS, 
M.l:.SSAGE$TAlL AODR!::SS, 
TA~KSHEAD ADDRESS, 
TASK$TAI L ADDRE-S5, 
EXCHANG.I:.$LII><K ADDkI:.SS, 
LINK ADDRESS, 
LENGTH ADDRf:SS, 
TYPE BYTE) • J 

DECLARE 'l'h$MSG Un-RALLY 'STIWC'IURf.( 
Llt'<K AODkf.St., 
LI:.t<GTH A[;IJIU.S5, 
TYt'£ Il'l:Tt., 
h0ME$I:.XCHAr.GI:. AuCR!;;::;S, 
RL!>I-'Or. .. E$EXCI,IINGI:. A['['RI;.SS, 
5'l'A'lU5 AOIJld:.SS, 
IJUFFI:.RSAIJDht.SS Af-uH!:.::;S, 
COUNT AOCkt.SS, 
ACt-lIAL Af-t,RI:.SS)'; 

The following macros are specifically for the SBC 
80/20. The macros require changes to run the 
minimal terminal handler on a different Single 
Board Computer. Intel 8253 timer/counter and 
8251 USART chips are used. 

'Full size listings in Appendixes A and C. 



" 11 
12 
13 

15 
16 
17 

18 

j' 
8253 PORT At:.DRi:.SSE.S. 

'j 
GlCLARf. A82S1$MODE LITERALLY '0DfH'; 
DlCLARE A6253$CTk2 Ll1l:.RALLY 'ilDE.h': 

j' 
8253 COMMANDS. 

'j 
DECLARE SELECT$2 LIT£RALLY '1~iH10ilIHIB' I 
DECLARE RL$BOTH LITERALLY • iHlIHHlil0S , : 
DECLARE MOO£$3 LITERALLY '00000110B'; 
DECLARE B24110 L!n.RALLY 'SelCH': 

/. 
8251 PORT ADDRE.SS£S. 

'j 
PECLARE USART$IN Ll'rERALL'i 'il£CH'. 

/. 

USAIiT$OUT LITI:RALL'i 'ilECh'. 
USARTSCUN'I'ROL LITERALLY 'il£Dh': 

8251 MODES. 
'/ 
DECLARE STOPSl LITf.RALLY I iIllHHHI00B' : 
DECLARE eLB LITERALLY 'IHHI011IHIB': 
DECLARE kA'I'E.$16X LITEkALLY '00111:1110111S': 

/. 
8251 COHMANPS. 

'/ 
DECLARE USAR1'$RES£.1 LITERALLY '01000000B'. 

fITS LITERALLY I IHllll\liHIi!S' , 
t.kROR$RES£.T LI1'ERALLY '0011100088'. 
RXE LI'l"f.RALI..'i '000001008', 
DTR LITERALLY '0001HlillilB', 

LITERALLY '00i10~iHIlB'; 

RDMIN and WRMIN call three RMX/80 opera­
tions. They are RQSEND, RQWAIT, and RQEL VL. 
RQSEND and RQW AIT allow tasks to send and 
receive messages from exchanges. RQEL VL enables 
a specific interrupt level. 

" 21 

" 
21 
24 

J;.,.SEt'lD: 
I'kOCEDlihE (EXCIiANGE.$POlt'lTER, ME.SSAGE$POINTER) EXTERNAL; 

DECLARE. (EXCHANGE$FOINtER,MI:,SSAGE.$FOINtER) ADDRESS; 
I:.t'lu RIJSEND/ 

R,.I<IAI1 : 
PROCEDURE. (EXCHANGI::$POIt-ITE.R,DE.LAY) ADDRESS EXTERNAL; 

DE.CLAJ;.L (LXCHANGL$POIN'IE.R,DELAY) ACORESS; 
Et.D fI ...... Al'f; 

2~ h\;I:,LVL: 
PflOCEDUKE. (Ll:.VE.L) EXTI:,RNAL; 

2& DECLARE LEVLL BYTI:.; 
27 END R .... LLVL; 

The exchange descriptors and interrupt exchange 
descriptors must be PUBLIC because they are 
referenced by the configuration module. 

2B DI:.CLARE k"lNPA EXCHANGE$DESCEi.lPTOR PUBLIC; 
29 uLCLARE RIoOLiTX EXCHAt-IGI:.$DESCRlPTOR PUBLIC; 

)IJ DECLARE R/wL6EX INT$I:;XCHANGE$DESCRIFTOR FUBLIC; 
31 Df.CLARE R .... L7f.,X INT$EXCI1At'lGE$Df.SCRlPTOR PUBLIC; 

The following procedure initializes the 8253 and 
8251 (USART). The 8253 generates the baud rate 
clock (2400 baud in this example). The program 
sends four nulls to the USART control port to 
ensure that the USART is ready for a command, 
no matter what state it was previously in. The pro­
gram then sends a reset command to the US ART, 
followed by the mode and another command. 

" 
)) 

14 

J5 

" 
J7 
J8 

" 

INITIALIZATION; 
PkOCEC.URE; 
OUTPUt(AIl2~)$MOOL) .. SELECT$2 OR RL$BOTH OR MODE$3; 
OU1'PU1'(AB2S1$CTk2) = LOI<II(6241HI); 

ou'rpU1'(A82~3$C1'R2J .. ItIGIt(B241:1Ilj; 
OUl'PU1' (U5AflT$C()Nl'ROLj , 
OUTPUT (USAfll'$CON'l'ROL) , 
OU'I'PUT (USART$CONTROL) , 
OU1'PUT (USAR1'$CONTRULj " 0; 
OUTPUT(lISAkT$C(JN1'ROLj = USART$RESET; 
UUTPUT(USAR1'$CON'I'kULj = S'l'OP$l Of{ CLB OR RATL$16X; 
OU'I"I'UT(USAkl'SCOt-l1'kGLj = RTS OR i::kROR$RLSET OR 

RXE OR OTR OR '{'XEN; 
I:,t-ID INI1'IALIZAT10N; 

2-16 

Tasks coded in PL/M take the form of parameter­
less PUBLIC procedures. The procedure declara­
tion is followed by the variables used in RDMIN. 
MSGPTR receives the address of an input request 
message. The based-variable MSG accesses the 
data in the input request message. INTMSG is a 
dummy variable which simply receives the address 
of the interrupt message. BUF$ADDRESS points 
to the buffer where the input characters are to be 
placed. The BUF array is based at the buffer 
pointed to by BUF$ADDRESS. 

41 

" 41 
44 
45 

RD$MIN: 
?ROCEDUR\:. >'UBLIC; 

I)r;CLARE (MSGP1'f{, INTMSG, BUr$ADDRESSJ ADDRESS; 
CtECLAkE (CHAR,PTk,I) BYTE; 
[)I:;CLARE MSG BASf.D MSGPTR TH$MSG; 
DECLAkE (BLiF BASE.[) BlJrSADDRESS) (1) BYTE; 

The RDMIN task echoes characters after they are 
read in. The ECHO$CHAR procedure performs this 
function. It waits for a level 7 interrupt, indicating 
that the transmitter is ready for another character. 
ECHO$CHAR then transmits the character. 

46 

47 
48 ., 
" 

\:.CIlO$CIlAf.., 
PROCEDUkf. (ChARI; 

DECLAftE CHAR BYTf.; 
INTMSG '" kQwAll (.RQLnX,0); 
OU1'PU'l'(USAkl'SOU1') = CHAR; 

f.t.D E.CHOSCI1AR; 

Execution of the RDMIN task starts with the next 
statement, a call to the initialization procedure. 
This call is followed by two calls to the procedure 
which will enable interrupt levels 6 and 7. 

51 

" 53 

CALL INITIALlZAl'HJN; 

CALL flVELVLi6J; 
CALL f<\iELVL(7); 

The basic structure of an RMX/80 task is that of 
a program with an imbedded infinite loop. This 
loop starts with the DO FOREVER statement. 
In the continuous loop, the task waits for an input 
request message. This wait is satisfied when some 
other task in the system sends an input request 
message to the RQINPX exchange. The based 
variable used to point to BUF is assigned from a 
field in the input request message, MSG.BUF­
FER$ADDRESS. An index for the BUF array, 
PTR, and the variable CHAR are initialized. 

54 
s; 
56 
57 

" 

DU rOk\:.Vl:.k; 
MSGPTR = R(jwAIT(.RUINPX,0}: 
(lUf$ADDRr:.S:' = MSG.BUff'l,R$AODRESS - 1: 
<''IR ,. 11; 
CHAR" N01' Ck; 

Task execution continues inside the next loop 
until a carriage return (CR) is input. An escape 
character (ESC) within the loop simulates a CR 



which enables an exit from the loop. The task 
simply waits on the RQL6EX exchange for a mes­
sage: This amounts to an interrupt service routine. 
When the wait is satisfied, the USART has received 
a character. 

59 

" 
DO wltILE. CHAft <> CHi 

It.'I'MSG " kl,JwAIT(.RQLf'if.X,0J; 

The next statement performs a whole series of 
operations. The character input from the USART 
is logically ANDed with 7FH to mask off the parity 
bit, assigned to the variable CHAR, and tested to 
determine if it is a RUBOUT character. If a RUB­
OUT is found, either a BELL is echoed to the ter­
minal if there are not characters to delete in the 
buffer (PTR = 0), or the last character in the 
buffer is echoed and the pointer is decremented. 

61 
62 
63 
64 

" 66 
67 
68 
69 

If (CHAI< ;" INPUT(U5Ak'l'SIN) AND 7FH) .. RUBOUT THEN 
DO; 

If' PTk " ~ 'tItI::N 
CALL ECHCi$ClJAR(BELL); 

ELSE. 
DO; 

CALL ECHG$CHAR (BUF (PTR)) ; 
P'I'R .. f'TR - 1; 

END; 
END; 

If CHAR is not a RUBOUT, it is tested for a 
CONTROL$X. The function of a CONTROL$X 
is to delete the entire line by resetting PTR to 
zero. After deleting the line, the system prompts 
the operator with a "#" character and is ready to 
accept a new line. 

" 11 
72 
73 
74 
7S 
76 

" 

ELSE 
DO; 

IF CHAR = CONTROL$X ThEN 
DO; 

CALL ECHO$CHAR ( ' •• ) I 
CALL ECHO$CIlAR(CR) I 
CALL ECHO$CHAR (LF I; 
PTR = 0; 

I::ND; 

The next test determines if CHAR is a CON­
TROL$R. CONTROL$R echoes the entire line 
that has been entered. This function is useful for 
displaying a line containing a number of RUBOUTs. 
Such lines can be difficult to interpret because 
RUBOUT echoes deleted characters. Because 
CONTROL$R echoes only the remaining data 
in the buffer, it eliminates "garbage" from the 
display. 

7b S 

B 

'" 81 
82 
83 
8' 
ss 
86 

DO; 

IF euAk " COt.'l'kOL$k ThEN 
DO; 

CALL I::CHOSCltflk(Ch); 
CALL f.CfJU$CttAR (LF); 
[10 I " 1 TO 1'1'1'1 

CALL lCIJUSChAk (btl!' (I)); 
t.M); 

It<G; 

2·17 

The character is then placed in the buffer unless 
the end of the buffer has been reached. If the 
buffer is full, a BELL is sent to the terminal. 

87 

" 89 

" 91 

" 93 

DO; 
H P'I'k ( HSG.C('Ll'<l 'lhl:.N 

lllJ~'(l"rk := l"lk+lJ = <.:Iiflk; 
!:.LSI:; 
DU; 

If (hflH <> Ck 1hl:.t'< 
CUlIK '" BUL; 

I:.r-<C; 

The last test is for an ESC character. It is echoed as 
a "$" and is treated as if a CR were entered. 

94 If' CrlAl{ = 1:.,,( 'I )11:./11 
95 Lv; 
'i6 CALL ~ChU$CHAIo. ( '$' ) ; 
97 thAIo. " tl<, 
~b ll'<[;; 
99 CALL lCHU$ChAfI(CHAr.); 

1<HI I:.I'<[); 
l~l EI'<G; 
1"2 1.1-<D; 
l~ 3 eND; 

The program places a line feed (LF) at the end of 
the buffer when an exit is forced by a CR or an 
ESC. The input request message actual character 
count (MSG.ACTUAL) and the status (MSG. 
ST ATUS) are set before sending the message to 
its response exchange. 

104 
105 
106 
l" 
m 
m 
11' 
111 

H 1'1'1< ~ MSG.CUI..Jt.T 'rh~N 
BU'(f'TH'~f'Th+l) = LF, 

MSG.AC'lUAL ~ PTR; 
MSG.S'l'A'fUS = "J 
CALL RI..IS£ND (MSG. kI:.SPONSl$EXCuAhGE, MSG!'1'RJ ; 
CALL lCIIU$CHAR(Lf); 

1:.1'<0; 
£ND kD$MIN; 

The WRMIN task begins by enabling interrupt 
level 7. Note that no other initialization is per­
formed before WRMIN waits for an output request 
message to arrive at the RQOUTX exchange. Here 
correct operation depends on the fact that RDMIN 
has a higher priority than WRMIN. Were this not 
the case, WRMIN could try to transmit a message 
before the 8253 and 8251 have been set up. 

112 1 "k$MIN: 
PROC£DURI:. PUBLIC; 

11) DlCLAHE (MSGPTH,II'<'IM!:IG,IH"'$ADDRl::;S) AOCkE::;::;; 
114 CECLARE PTR BYTE; 
115 DECLA"E MSG BASlO MSGP'1'R THSMSG; 
116 DECLARE (BUf BASI::[; BUF$ADDRtSS) (1) Bnt; 

117;;: CALL R"r:LVL(7); 

118 DO t'0REVER; 
119 MSGPTR = RQr.Al'I'(.RQOI..J'I'x,il); 
12~ BUV$ADDRt::.S = MSG.BUff£R$ADDRI:.SS - 1; 

The next loop transmits all of the characters speci­
fied by the output request message. Once again, 
the interrupt service routine is implemented by 
simply waiting on the RQL 7EX exchange for a 
transmitter ready interrupt message. When this 
message is received, the next character in the 
buffer is transmitted. 



121 
1~2 
121 
124 

DO PTR .. 1 1'0 MSG. CCut'<l; 
INTM,SG = f<1j .. All'(.RLlLnX,0); 
OD1'PUT(USAR1S0UT) = BUf(P'If<); 

END; 

The WRMIN task concludes by setting the actual 
count and status, and then sends the output re­
quest message to its response exchange. 

125 MSG.ACIUAL "' M5G.COUN1; 
126 HSG.S'I"AT1JS " tl; 
127 CALL RQSt.ND (M5G. RE5PONSI:.SEXChANG£,MSGf'Tk) I 
128 END, 
129 END IotR$HII>I; 

Using the macros provided on the RMX/80 dis­
kette, the following static task descriptors (STD) 
should be placed in your configuration module. 

STO ROMIN,64,l12,O 

STD WRMIN,64,128,O 

The entries in the STD are interpreted as follows. 

STO NAME,STKLEN,PRI,EXCH 

where: 

NAME 

STKLEN 

PRI 

EXCH 

the symbolic name assigned to the task asso­

ciated with the STO 

the number of bytes allocated to the task 
stack 

the task priority level 

an optional field, usually 0 

Priorities of 112 and 128 have been assigned to 
RDMIN and WRMIN because they correspond to 
hardware interrupt levels 6 and 7. 

The . following exchange addresses should be 
placed in your configuration module. 

XCHAOR 

XCHAOR 

XCHAOR 

XCHAOR 

ROINPX 

ROOUTX 

ROL6EX 

ROL7EX 

The XCHADR macro only requires the address of 
the exchange descriptor. 

Characters typed at the terminal are ignored unless 
an input request message has been received. Thus, 
type-ahead is not a built-in feature. However, 
if type-ahead is desired, it is sufficient to ensure 
that input requests are always queued for the 
RDMIN task and that the full input buffers are 
sent to an exchange that queues full buffers. 

2-18 

This can easily be accomplished by sending several 
input requests to the RQINPX. These input 
requests have the address of a "full-buffer" ex­
change as the response exchange and the RQINPX 
exchange as the home exchange. Then, tasks need­
ing terminal input wait on the "full-buffer" ex­
change and send the message to the home exchange 
when finished. 

CLOSED-LOOP ANALOG CONTROL 

In the next example, a closed-loop analog control 
subsystem using the Intel SBC 711 analog-to­
digital board illustrates task scheduling and syn­
chronization in a process control application. In 
general, the subsystem samples an analog input at 
specified intervals, converts the data to temperature 
in degrees centigrade, and then. - based upon pro­
grammed temperature limits - controls a heating 
element. The algorithm used provides a 2-position 
controller with neutral intermediate zone (or sim­
ply "bang-bang" control). The control algorithm 
is shown in Figure 16. 

POSITION ,OUTtJjLPUT ~SWITCHING POINTS 

(ON) \: 

I 
I 

: ~ 
PO~g;~)N 2 TEMPERATURE 

SETPOINT 

Figure 16. 2-Position Controller with Neutral Intermediate 
Zone 

The graphic notation in Figure 17 diagrams the 
tasks, exchanges, and their interaction. 

Figure 17. Analog Subsystem 



This application includes three tasks and six asso­
ciated exchanges. The TICKER task schedules 
the ADC task. TICKER has a very high priority 
because nothing else in the system should inter­
fere with its scheduling activities. It is also a very 
short task since it repetitively executes a timed 
wait and then handshakes a message. 

TICKER schedules the ADC task. The ADC task 
services the AID converter. After obtaining data 
from the AID it handshaj<es with the CONTROL 
task to signal that data is ready for processing. 
The ADC task is assigned a priority equivalent 
to the level of the hardware interrupt from the 
A/D. Clearly, calculations should not be performed 
at that priority. 

Thus, CONTROL performs the processing function 
at a lower priority. The CONTROL task used the 
T$PARAM$LOCK exchange to govern access to 
the control parameters. This avoids problems re­
sulting when some other task is updating the pa­
rameters at the same time the CONTROL task is 
using them for testing. 

As in the minimal terminal handler, the following 
listing contains the complete analog subsystem 
tasks and is interspersed with explanatory text. 
The program begins with the program segment 
label "ATOD:" and a DO statement. 

DO: 

The macros and externals used in this module 
are brought in by means of INCLUDEs from the 
RMX/80 diskette. 

10 

$INCLUDE( :Fl :COMHON.ELT) 
DECLARE 'rAUE LITERALLY' OFFH'; 
DECLARE FALSE LITERA!.t.Y 'DOH'; 
DECLARE BOOLEAN LITERALLY 'BYTE'; 
DECLARE FOREVER LITERALLY 'WHILE "; 

$INCLUDE( :Fl :EXCH. ELY) 
1 " DECLARE EXCHANGE$DESCRIPTOR I.ITEfiALLY 'STRUCTURE ( 

MESSAGESHEAD ADDRESS, 
MESSAGE$TAlL ADDRESS, 
TASK$HEAD ADDRtSS, 
TASKSTAIL ADDRESS, 
EXCHANCULINK ADDRESS)'; 

$INCLUDE(:Fl:1EO,ELT) 
1 " DECLARE INl$EXCHANGESOESCRIPTOR LITERALLY 'STRUCTURE ( 

MESSAGE'HEAD ADDRESS, 
MESSAGE,HIL ADDRESS, 
TASK.$HEAD ADDRESS. 
TASK$TAIL ADDRESS, 
EXCHANGE$l.INK ADDRESS, 
LINK ADDRESS, 
LENGTH ADDRESS, 
TYPE BYTE)': 

SINCLUDE(:Fl:MSG.ELT) 
DECLARE MSG$HDR LITERALLY' 

LINK ADDRESS, 
LENGTH ADDRESS, 
TYPE BYTE, 
HDME$£XCHANGE ADDRESS, 
RESPONSE$EXCHANGE ADORESS': 

DECLARE MSO$DESCRIPTOR LITERALLY 'S"IRUCTURE( 
MSG$HOR, 
REMAINDER( 1) BnE)': 

$INCLUDE( :Fl :IMTRPT.EXT) 
ROENDI: 

PROCEDURE EXTERNAL: 

2-19 

END ROENDI: 

ROELVL: 
PROCEDURE (LEVEL) EXTERIUL: 

DECLARE LEVEL BnE: 

END RQELVL: 

/lQOLVL: 
PROCEDURE (LEVEL) EXTERNAL: 

DECLARE LEVEL BYTE: 

ENIl RQDLVL: 

ROSETV: 
P RO CEO U REt P RO C , LEV EL ~ EXT E ~ N A L ; 

DECLARE PROC ADDRESS: 
DECLARE LEVEL BYTE: 

END ROSETV; 

$INCLUDE( :Fl :SYNCH.EXT) 
ROSEND: 

PROCEDURE (EXCIIANGESPOINTEA,MESSAOESPOINTER) EXTERNAL: 
PECLARE (EXCHANGUPOINTER,MESSAGESPOINTER) ADDRESS: 

END ROSEI'D: 

ROWAI"I: 
pROCEDURE (EXCIIANGE$POINTER,Oyi..AY) ADDRESS EXTERNAL: 

DECLARE (EXCHANGE$POINTER,I}ELAY) ADDRESS; 

END ROWAIT: 

ROACPT: 
PROCEDURE (EXCKANOESPOINTER) ADDRESS EXTERNAL: 

DECLARE EXCHANGE$POINTER ADDRESS: 

END RaACPT: 

ROISND: 
PROCEDURE (IED$PTR) EXTERNAL; 

DECLARE IEPSPTR ADDRESS: 

END RQISND: 

Additional macros are declared to aid in the use 
of the SBC 711 analog-to-digital board. 

3" 
35 

" 37 

" 39 

"' 
"' "' "3 

"" os 

"' "' 

SBC 711 ANALOG TO DIGITAL BOARD 
'/ 
DECLARE ADC$BASE ADDRESS AT (OnOOH): 
DECL"ilE COHMAND$REGISTER BYTE AT (.ADC$BASE+O): 
DECLARE STATUSSREGISTER BnE AT (,ADC$BASE+O): 
DECLARE FIRSTSCHANNHSREGISTER BITE AT (,ADC$BASE+ll: 
DECLARE LASTSCHANNELSREGISTER BITE AT (.ADC$BASE+2): 
DECLARE CLEAR$INTERRUPTSREOUEST BITE AT (.ADC$BASE+3); 
DECLARE .AOI!SDATASREGISTER ADDRESS AT (.ADC$BASE+4); 

DECLARE GOSBIT LITERALLY"': 
DECLARE AUTO$INCREMENT$EN,I,SLE LITERALLY' 2' : 
DECLARE BUSY LITERALLY 'S'l 
DECLARE EOS$INTERRUPIHNABLE LITERALLY' 10H'. 
DECLARE EOC$INTERRUPUENABLE LITERALLY '20H': 
DECLARE EMD$OFSSCAN LITERALLY '40H': 

DECLARE EMD$OF$CONVERSION LITERALLY '80H'; 

The exchange descriptors and the interrupt ex­
change descriptors are declared. 

os 

"' " 51 
52 

53 

DECLARE DUMMY EXCHANGE$DESCRIPTOR PUBLIC. 
DECLARE RETSI'ULSE EXCHANGESDESCRIPTOR PUBLIC; 
DECLARE GO$PULSE EXCHAMOE$DESCRIPTOR PUBLIC: 
OECLARE TRIGGER EXCHAMGE$DESCRIPTOR PUBLIC; 
DECLARE RETSTRIG EXCHAMGE$DESCRIPTOR PUBLIC: 

DECLARE ROL2EX INTSEXCHANGE$DESCRIPTOR: 

The CONTROL task uses an external data struc­
ture to obtain operating parameters. This data 
structure (BOX$P ARAMS) has an exchange asso­
ciated with it (T$PARAM$LOCK) that is used to 
provide mutual exclusion, ensuring that only one 
task accesses the data structure at a time. 

" 
DECLARE TSPARAM$LOCK EXCHANGE$DESCRIPTOR EXTERNAL; 

DECLARE BOX$PARAMS{S) STRUCTURE( 
CHANNEL BYTE, 
SETSPOIWT ADDRESS. 
ERROR ADDRESS, 
OFFSET ADDRESS, 
SAMPLES ADDRESS, 
COUNT ADDRESS, 
ACCUM ADDRESS, 
READING ADDRESS) EXTERNAL: 



TICKER, the scheduler task, has an initialization 
sequence in which it sets up two messages and 
sends them to the RET$PULSE exchange. Then it 
enters an infinite loop where it waits on the 
DUMMY exchange for 250 milliseconds. After 
the timed wait is complete, TICKER passes a mes­
sage from the RET$PULSE exchange to the GO$­
PULSE exchange. In effect this is a handshake, 
checking to see that the ADC task has completed 
its last operation and then signaling it to perform 
another. 

56 TICICER$TASK: 
PROCEDURE PUBLIC; 

57 DECLARE Msa ADDRESS; 
58 DEC1.ARE PULSE$MSG(2) STRUCTURE ( 

MSG$I!DR 1; 

59 PULSE$MSG(O) .LENGTH, 
PULSE$MSG(l).LENGTH = SIZE(PULSE$HSG(O»; 

liD PULSE$MSO(O) ,TYPE, 
PULSE$HSG( 1) .TYPE = 55; 

61 CALL RQSEND( .RET$PULSE, .PULSE$HSG(O»; 
62 CALL RQSEND(.RET$PULSE,.PU1.SE$MSG(l»; 

63 DO FOREVER; 
611 Msa ::: RQWAIT( ,DUMMY,S); 
65 MSO = RQWAIT( ,RET$PULSE,O); 
66 CALL RQSEND(.GO$PULSE,HSO)i 
67 END; 

66 END TICKER$TASK; 

Scheduled by TICKER, the ADC task performs the 
AID sampling. It begins by setting up TRIGGER$­
MSG and enabling the level 2 interrupt from the 
A/D. Inside the ADC task continuous loop, mes­
sages are passed from the GO$PULSE exchange to 
the RET$PULSE exchange. Then it waits for ac­
cess to the BOX$PARAMS data structure. When 
the ADC task has access, it loops through the A/D 
channels, accumulating readings in BOX$PARAMS. 
After all the A/D channels are sampled and the 
BOX$P ARAMS readings updated, the LOCK$MSG 
is returned to the T$PARAM$LOCK exchange. 
The ADC task concludes the continuous loop by 
handshaking a message with the CONTROL task. 

" 
70 

71 
72 
73 
74 

75 
76 
T7 
78 

79 
80 
81 

" " " 
" 
86 
87 
88 

" 90 

" 92 
9l 

" 

ADCUASK: 
PROCEDURE PUSl.IC; 

DECLARE TRIGOER$HSQ STRUCTURE ( 
HSG$HDR 1; 

DECLARE (T$HSG,HSG,LOCK$HSG) ADDRESS: 
DECLARE I SHE; 
DECLARE GAIN LITERALLY' 00': 
DECLARE N$CHNLS LITERALLY'S'. 

TRIGGER$HSG. LENGTH ~ SI ZE( TRIGGER$HSG) ; 
TRIGGEUHSG.TYPE ::: 65: 
CALL RQSENo(. RET$TRIG, • TRIGGER$HSG) ; 
CALL RQELVL(2): 

00 FOREVER; 
HSG " RQWAn( .GO$PULSE,O): 
CALL RQSEHD(.RET$PULSE,HSG); 
LOCK$HSO ::: ROWAIT(. T$PARAH$LOCK. 0) ; 
DO I " 0 TO N$CHNLS.1: 

FIRST$CHANNEL$REGISTER " BOX$PARAHS( I).CHANNEL 
+ ROL(OAIN,6); 

COHHAND$.fIEGISTEfI ::: GO$BIT 
OR EOC$INTERRUPT$ENABLE; 

HSO " ROWAIT( .ROL2EX,0): 
COHHAND$REGISTER ::: 0: 
BOX$PARAHS{I) .ACCUH " BOX$PARAHS(I).ACCUH 

+ ADC$DATUREGISTER; 
END; 
CALL RQSEND(. T$PARAM$LOCK, LOCK$MSG); 
T$HSG :: RQWAIT( .RET$TRIG,O); 
CALL RQSEND( .TRIGGER,T$HSO);" 

END; 

END ADC$TASK; 

2-20 

The CONTROL task waits for a message from the 
ADC task signaling that A/D readings have been 
taken and are ready for further processing. It com­
pletes the handshake by sending the message to 
the RET$TRIG exchange. Then, as in the ADC 
task, accesses the BOX$P ARAMS data structure. 

Inside the next loop, the readings are averaged, 
scaled, offset, and tested. Appropriate action is 
taken to turn the heating elements on or off. The 
loop concludes by returning the message to the 
T$PARAM$LOCK exchange. 

95 CONTROL$TASK: 
PROCEDURE PUBLIC; " 

96 DECLARE (LOCK$HSG,T,HSOl ADDRESS; 
97 DECLUE I BYTE; 
98 DECLARE NCHNLS LI'l'ERALLY '5'; 
99 DECLARE TURNHAHP$ON 

LITERALLY 'OUTPUT(OE1H)"SHL{ 1, 1)'; 
100 OECLUE TURN$LAHP$OFF 

,CO 
105 
,06 
'07 
'08 ,,, 
"0 
", 
112 

113 

". 
115 

116 

,,, ,,, 
120 

12' 

LITERALLY 'OUTPUT(OE7HhsHL(I,1l+1'; 
• DECLARE SETUP$8255 LITERALLY 'OUTPUT(OE7H),,80H; 

OUTPUT(OE6H):OFFH'; 
SETUP$8255: 

DO FOREVER; 
HSG " RQWAIT( .TRIGGER ,0); 
CALL RQSEND( .RET$TRIG ,HsO): 
LOCK$HSG= RQWAIT(,T$PARAH$LOCK,O); 
DO I" 0 TO NCHNLS.l; 

BOX$PARAMS( 1) .COUNT " BOX$PARAHS( Il .COUNT + 1: 
IF BOX$PARAMS( I).COUNT 

" BOX$PARAMS( 1) .SAMPLES THEN 
DO; 

T. 
BOX$PARAHS(I),READINO 

" (BOX$PARAHS( 1) .ACCUH 
IBOX$PARAHS( I).SAMPLES) I 38 
+ BOX$PARAMS( I) .OFFSET; 

IF T (" BOX$PARAHS( I) .SET$POINT 
• BOX$PARAHS( I). ERROR THEN 

TURN$LAHP$ON; 
ELSE 

IF T >= BOX$PARAHS( 1) .SET$POINT 
+ BOX$PARAHS(I).ERROR THEN 

TURN$LAMP$OFF; 
BOX$PARAMS(I).ACCUH, 
BOX$PARAHS{ I) .COUNT " 0; 

END; 
END; 

CALL ROSEND{ .T$PARAH$LOCK,LOCKSHSG); 
EIIDI 

END CONTROL$TASK; 

123 END nOD; 

SUMMARY/CONCLUSIONS 

The purpose of this application note is to intro­
duce you to the Intel RMX/BO, Real-Time Multi­
tasking Executive. The general framework of 
RMX/BO was discussed, including the nucleus and 
extensions. 

This application note described the steps involved 
in using RMX/BO. Key emphasis has been placed 
on the need to fully define the tasks and exchanges 
in your application using graphic notation. 

Applications have been presented to demonstrate 
task communication, synchronization, and mutual 
exclusion in a minimal terminal handler and an 
analog subsystem. The tasks responded to real­
time asynchronous events such as USART and 
A/D interrupts. 

RMX/BO represents a significant step in the sophis­
tication of microcomputer software. Its ease of 
use, flexibility, and power should enable you to 
quickly implement real-time software for your 
applications. 



1 

2 
3 

4 

5 

6 

7 

8 
9 

1 
1 

1 

1 

1 

1 

1 
1 

APPENDIX A 

MINITH PL/M LISTING 

MINIMAL$TERMINAL$hANCLER: 

GO; 

DECLARE 'lRUE LITERALLY '0FF'f-i'; 
GECLARE FOREVER LITERALLY 'WHILE TRUE'; 

/* SPECIAL ASCII ChARAC'TERS * / 
DECLARE 

BE.LL 
LF 
CR 
CONTROL$R 
COJ';TROL$X 
ESC 
RUBOU'l' 

LITERALLY 
LI'l'ERALLY 
LI'lERALLY 
LI'I'ERALLY 
LITERALLY 
LI'l'ERALLY 
LI'l'ERALLY 

'0 7h' , 
'0AH' , 
'0DB' , 
, 12H' , 
'18h' , 
'ISH' , 
'7FH' ; 

DECLARE EXCHANGE$DESCRIPTOR LITERALLY 'STRUCTURE ( 
MESSAGE$hEAD ADDRESS, 
MESSAGE$TAIL ADDRESS, 
TASK$HEAD ADDRESS, 
TASK$TAIL ADDRESS, 
EXCSANGE$LINK ADDRESS) '; 

DECLARE INT$EXCBANGE$DESCRIPTOR LITERALLY 'STRUCTURE ( 
MESSAGE$BEAD ADDRESS, 
MESSAGE$TAIL ADDRESS, 
TASK$BEAD ADDRESS, 
TASK$TAIL ADDRESS, 
EXChANGE$LINK ADDRESS, 
LINK ADLRESS, 
LENGTH ADDRESS, 
TYPE BY'IE) , ; 

DECLARE 'l'h$MSG LI'l'ERALLY 'S'l'RUCTURE ( 
LINK ADDRESS, 
LENGTH ADDRESS, 
TYPE BYT£, 
HOME$EXCBANGE ADDRESS, 
RESPONSE$EXCHANGE ADLRESS, 
S'l'ATUS ADDRESS, 
BUFFER$ADDRESS ALDRESS, 
COUN'I' ADDRESS, 
ACTUAL AGDRESS) '; 

/* 
8253 PORT ADDRESSES. 

*/ 
DECLARE AB253$MODE L'ITERALLY '0DFS'; 
DECLARE AB253$CTR2 LITERALLY '0DEB'; 

2-21 



10 
11 
12 
13 

14 

15 
16 
17 

18 

19 

20 
21 

22 

23 
24 

25 

26 
27 

28 
29 

30 
31 

32 

33 
34 

1 
1 
1 
1 

1 

1 
1 
1 

1 

1 

2 
2 

1 

2 
2 

1 

2 
2 

1 
1 

1 
1 

1 

2 
2 

/* 
8253 COMMANDS. 

*/ 
DECLARE SELECT$2 LI'I'ERALLY , h0001010108' ; 
DECLARE RL$80'l'H LI'rERALLY , 00111000108' ; 
DECLARE MODE$3 LITERALLY '10100001108'; 
DECLARE 82400 LITERALLY '001C8'; 

/* 
8251 PORT ADDRESSES. 

*/ 
DECLARE USAR'l'$IN LI'fERALLY , 0ECH' , 

USART$OUT LITERALLY '0ECh', 
USART$CON'l'ROL LITERALLY , 0EDh' ; 

/* 
8251 f'lODES. 

*/ 
DECLARE STOP$1 LITERALLY '01000000B'; 
DECLARE CL8 LITERALLY '0000110IOB'; 
DECLARE RA'l'E$16X LI'I'ERALLY , 1010000011OB' ; 

/* 
8251 COMI1ANDS. 

*/ 
DECLARE USART$RESET 

RTS 
ERROR$RESET 
RXE 
DTR 
'l'XEN 

RI.!SEND: 

LI'.rERALLY 
LITERALLY 
LI'l'ERALLY 
LI'I'ERALLY 
LITERALLY 
LITERALLY 

'10100001OIOB', 
, 0010100008' , 
'10001fijI0100B', 
'01000011008', 
'0000001108', 
'10000001018'; 

PROCEDURE (EXCHANGE$POINTER,MESSAGE$POIN'I'ER) EXTERNAL; 
DECLARE (EXCHANGE$POINTER,MESSAGE$POINTER) ADDRESS; 

END RuSEND; 

RUWAIT: 
PROCEDURE (EXCHANGE$POINTER,DELAY) ADDRESS EXTERNAL; 

DECLARE (EXCHANGE$POINTER,DELAY) ADDRESS; 
END RQWAI'I'; 

R\.iELVL: 
PROCEDURE (LEVEL) EXTERNAL; 

DECLARE LEVEL BYTE; 
END R\.iELVL; 

DECLARE RQINPX EXCHANGE$DESCRIPTOR PUBLIC; 
DECLARE RUOUTX EXCHANGE$DESCRIPTOR PUBLIC; 

DECLARE RQL6EX INT$EXChANGE$DESCRIPTOR PU8LIC; 
DECLARE RQL7EX INT$EXCHANGE$DESCRIPTOR PUBLIC; 

IN I 'I'IAL I ZA'!'ION : 
PROCEDURE; 

OUTPUT(A8253$MODE) 
OUTPUT(A8253$CTR2) 

2-22 

SELECT$2 OR RL$BOTH OR MODE$3; 
LOW(B2400); 



35 
36 

37 
38 
39 

40 

41 

42 
43 
44 
45 

46 

47 
48 
49 
50 

51 

52 
53 

54 
55 
56 
57 
58 
59 
610 
61 
62 
63 
64 

65 
66 
67 
68 
69 

70 
71 
72 
73 
74 
75 
76 
77 

78 

2 
2 

2 
2 
2 

2 

1 

2 
2 
2 
2 

2 

3 
3 
3 
3 

2 

2 
2 

2 
3 
3 
3 
3 
3 
4 

4 
4 
5 
5 

5 
6 
6 
6 
5 

4 
5 
5 
6 
6 
6 
6 
6 

5 

OUTPUT(A8253$CTR2) = hIGH(B2400); 
OUTPUT (USAkT$CONTROL) , 
OUTPUT (USAkT$CONTROL) , 

0; 
USART$RESE'!' ; 

OUTPUT(USAkT$CONTROL), 
OUTPUT (USART$CONTkOL) 
OUTPUT (USART$CONTROL) 
OUTPUT (USART$CONTkOL) 
OUTPUT (USAkT$CONTROL) 

S'I'OP$l OR CL8 OR RA'!'E$16X; 
RTS OR ERROR$RESET OR 
RXE OR DTR OR TXEN; 

END INITIALIZATION; 

RD$IHN: 
PROCEDURE PUBLIC; 

DECLARE (MSGPTR,INTMSG,BUF$ADDRESS) ADDRESS; 
DECLARE (CHAR,PTR,I) BYTE; 
DECLARE MSG BASED MSGPTR TH$MSG; 
DECLARE (BUF BAS.E,D BUF$ADDRESS) (1) BY'rE; 

ECHO$CHAR: 
PROCEDURE (CHAR); 

OECLARE CHAR BYTE; 
INTMSG = RQ~AIT(.RQL7EX,0); 
OUTPUT (USART$OUT) = CHAR; 

END EChO$ChAR; 

CALL INITIALIZATION; 

CALL RI"iELVL(6); 
CALL R(,JELVL(7); 

DO FOREVER; 
MSGPTR = RQWAIT(.RQINPX,0); 
BUF$ADDRESS = MSG.BUFFER$ADDRESS - 1; 
PTR = 0; 
CHAR = NOT CR; 
DO WHILE CHAR <> CR; 

INTMSG = R~WAIT(.RQL6EX,0); 
IF (CHAR := INPUT(USART$IN) AND 7FH) 
DO; 

IF P,!'R = 0 THEN 
CALL ECHO$CHAR(BELL); 

ELSE 
DO; 

CALL EChO$CHAR(BUF(PTR)); 
P,!'R = PTR - 1; 

END; 
END; 
ELSE 
DO; 

IF ChAR = CONTROL$X ThEN 
00; 

CALL ECHO$CHAR('#'); 
CALL ECHO$CHAR(CR); 
CALL EChO$CHAR(LF); 
P'!'R = 0; 

END; 
ELSE 
DO; 

2·23 

RUBOUT THEN 



79 6 
80 6 
81 7 
82 7 
83 7 
84 8 
85 8 
86 7 

87 6 
88 7 
89 7 

90 7 
91 8 
92 8 
93 8 
94 7 
95 7 
96 8 
97 8 
98 8 
99 7 

100 7 
101 6 
102 5 
103 4 
104 3 
105 3 
106 3 
107 3 
108 3 
109 3 
110 3 
111 2 

112 1 

113 2 
114 2 
115 2 
116 2 

117 2 

118 2 
119 3 
120 3 
121 3 
122 4 
123 4 
124 4 
125 3 
126 3 
127 3 
128 3 
129 2 
130 1 

IF CHAR = CONTROL$R THEN 
DO; 

CALL ECHO$CHAR(CR); 
CALL ECHO$CHAR(LF); 
DO I = 1 TO PTR; 

CALL ECHO$CHAR(BUF(I)); 
END; 

END; 
ELSE 
DO; 

IF PTR < MSG.COUNT THEN 
BOF(PTR := PTR+l) = CHAR; 

ELSE 
DO; 

IF CHAR <> CR THEN 
CHAR = BELL; 

END; 
IF CBAR = ESC THEN 
DO; 

CALL ECHO$CHAR('$'); 
CHAR = CR; 

END; 
CALL ECHO$CHAR(CHAR); 

END; 
END; 

END; 
END; 
IF PTR < MSG.COUNT THEN 

BUF(PTR:=PTR+l) = LF; 
MSG.ACTUAL = PTR; 
MSG. S1'A'rUS = Ii); 

CALL RQSEND(MSG.RESPONSE$EXCHANGE,MSGPTR); 
CALL ECHO$CHAR(LF); 

END; 
END RD$MIN; 

~m$MIN : 
PROCEDURE PUBLIC; 

DECLARE (MSGPTR,INTMSG,BOF$ADDRESS) ADDRESS; 
DECLARE PTR BYTE; 
DECLARE MSG BASED MSGPTR TH$MSG; 
DECLARE (BUF BASED BUF$ADDRESS) (1) BYTE; 

CALL RI,.l£LVL(7); 

DO FOREVER; 
MSGPTR = RQWAIT(.RQOOTX,0); 
BUF$ADDRESS = MSG.BUFFER$ADDRESS - 1; 
DO PTR = 1 TO MSG.COUNT; 

INTMSG = RQWAIT(.RQL7EX,0); 
OUTPUT (USART$OUT) = BUF(PTR); 

END; 
MSG.ACTUAL = MSG.COUNT; 
MSG.S'l'ATUS = 0; 
CALL RQSEND(MSG.RESPONSE$EXCHANGE,MSGPTR); 

END; 
END wR$MIN; 

END MINIMAL$TERMINAL$HANDLER; 

2·24 



APPENDIX B 

WRMIN ASSEMBLY LANGUAGE LISTING 

LOC OBJ SEQ SOU RCE STATEMENT 

1 NAME WRMIN 
2 EXTRN RQELVL,RQOUTX,RQWAIT,RQSEND 
3 PUBLIC WRMIN,RQL7EX 

OOEC 4 DATOUT EQU OECH ; USART OUTPUT PORT ADR 
5 CSEG 
6 WRMIN: 

0000 OE07 7 MVI C,7 
0002 CDOOOO E 8 CALL RQELVL ENABLE INTERRUPT LVL 7 

9 WRO: 
0005 110000 10 LXI D,O 
0008 010000 E 1 1 LXI B,RQOUTX 
OOOB CDOOOO E 12 CALL RQWAIT WAIT FOR OUTPUT RQST 
OOOE E5 13 PUSH H PUSH MESSAGE ADDRESS 
OOOF 110700 14 LXI D,7 
0012 19 15 DAD D 
0013 4E 16 MOV C,M GET RESPONSE EXCHANGE 
0014 23 17 INX H 
0015 46 18 MOV B,M 
0016 23 19 INX H 
0017 C5 20 PUSH B PUSH RESPONSE EXCHANGE 
0018 3600 21 MVI M,O STATUS = 0 
001A 23 22 INX H 
001B 3600 23 MVI M,O 
001D 23 24 INX H 
001E 5E 25 MOV E,M GET BUFFER ADR/IN DE 
001F 23 26 INX H 
0020 56 27 MOV D,M 
0021 23 28 INX H 
0022 4E 29 MOV C,M GET COUNT IN BC 
0023 23 30 INX H 
0024 46 31 MOV B,M 
0025 23 32 INX H 
0026 71 33 MOV M,C ACTUAL COUNT 
0027 23 34 INX H 
0028 70 35 MOV M,B 

36 WR 1 : 
0029 78 37 MOV A,B 
002A Bl 38 ORA C 
002B CA4300 C 39 JZ WR2 EXIT LOOP IF COUNT = 0 
002E C5 40 PUSH B 
002F D5 41 PUSH D 
0030 110000 42 LXI D,O 
0033 010000 D 43 LXI B,RQL7EX 
0036 CDOOOO E 44 CALL RQWAIT WAIT FOR TXRDY INTRPT 
0039 Dl 45 POP D 
003A Cl 46 POP B 
003B 1 A 47 LDAX D 
003C 13 48 INX D 
003D D3EC 49 OUT DATOUT TRANSMIT NEXT CHAR 
003F OB 50 DCX B 
0040 C32900 C 51 JMP WRl 

52 WR2: 

2·25 



0043 C1 53 POP B BC = RESPONSE EXCHANGE 
0044 D1 54 POP D DE = MSG ADDRESS 
0045 CDOOOO E 55 CALL RQSEND SEND MSG TO RESP, EXCH 
0048 C30500 C 56 JMP WRO 

57 
58 DSEG 
59 RQL7EX: 

OOOF 60 DS 1 5 
6 1 
62 END 

2-26 



2 = 
3 = 
4 = 
5 = 

6 
= 

= 

= 

7 = 

= 

= 
= 
= 
= 

8 = 

= 

= 
= 

9 = 
= 
= 

10 
= 

11 2 = 

12 = 
= 

13 2 = 

14 2 = 

APPENDIXC 

ATOD PL/M LISTING 

ATOD: 
DO; 

$ INCLUDE( : F 1 : COMMON, ELT) 
DECLARE TRUE LITERALLY 'OFFH'; 
DECLARE FALSE LITERALLY' OOH'; 
DECLARE BOOLEAN LITERALLY' BYTE'; 
DECLARE FOREVER LITERALLY , WHILE 1'; 

$ INCLUDE( : F 1: EXCH, ELT) 
DECLARE EXCHANGE$DESCRIPTOR LITERALLY 'STRUCTURE ( 

MESSAGE$HEAD ADDRESS, 
MESSAGE$TAIL ADDRESS, 
TASK$HEAD ADDRESS, 
TASK$TAIL ADDRESS, 
EXCHANGE$LINK ADDRESS) I ; 

$INCLUDE( :F1 :IED.ELT) 
DECLARE INT$EXCHANGE$DESCRIPTOR LITERALLY 'STRUCTURE ( 

MESSAGE$HEAD ADDRESS, 
MESSAGE$TAIL ADDRESS, 
TASK$HEAD ADDRESS, 
TASK$TAIL ADDRESS, 
EXCHANGE$LINK ADDRESS, 
LINK ADDRESS, 
LENGTH ADDRESS, 
TYPE BYTE)'; 

$INCLUDE( :F1 :MSG,ELT) 
DECLARE MSG$HDR LITERALLY , 

LINK ADDRESS, 
LENGTH ADDRESS, 
TYPE BYTE, 
HOME$EXCHANGE ADDRESS, 
RESPONSE$EXCHANGE ADDRESS'; 

DECLARE MSG$DESCRIPTOR LITERALLY 'STRUCTURE( 
MSG$HDR, 
REMAINDER( 1) BYTE)'; 

$INCLUDE( :F1 :INTRPT,EXT) 
RQENDI: 

PROCEDURE EXTERNAL; 

END RQENDI; 

RQELVL: 
PROCEDURE (LEVEL) EXTERNAL; 

DECLARE LEVEL BYTE; 

END RQELVL; 

2·27 



15 

16 

17 

18 

19 
20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 
35 
36 
37 
38 
39 
40 

41 
42 
43 
44 
45 
46 

= 
= 
= 

2 = 
= 

2 = 

= 
= 

2 = 
2 = 

= 
2 

= 
= 

2 = 
= 

2 = 
= 
= 
= 

2 = 
= 

2 = 
= 
= 
= 

2 = 
= 

2 = 

= 
= 

2 

= 
2 = 

1 
1 
1 
1 
1 
1 
1 

RQDLVL: 
PROCEDURE (LEVEL) EXTERNAL; 

DECLARE LEVEL BYTE; 

END RQDLVL; 

RQSETV: 
PROCEDURE (PROC,LEVEL) EXTERNAL; 

DECLARE PROC ADDRESS; 
DECLARE LEVEL BYTE; 

END RQSETV; 

$INCLUDE( :F1 :SYNCH.EXT) 
RQSEND: 

PROCEDURE (EXCHANGE$POINTER,MESSAGE$POINTER) EXTERNAL; 
DECLARE (EXCHANGE$POINTER,MESSAGE$POINTER) ADDRESS; 

END RQSEND; 

RQWAIT: 
PROCEDURE (EXCHANGE$POINTER,DELAY) ADDRESS EXTERNAL; 

DECLARE (EXCHANGE$POINTER,DELAY) ADDRESS; 

END RQWAIT; 

RQACPT: 
PROCEDURE (EXCHANGE$POINTER) ADDRESS EXTERNAL; 

DECLARE EXCHANGE$POINTER ADDRESS; 

END RQACPT; 

RQISND: 

/* 

PROCEDURE (IED$PTR) EXTERNAL; 
DECLARE IED$PTR ADDRESS; 

END RQISND; 

SBC 711 ANALOG TO DIGITAL BOARD 
*/ 
DECLARE ADC$BASE ADDRESS AT (OF700H); 
DECLARE COMMAND$REGISTER BYTE AT (.ADC$BASE+O); 
DECLARE STATUS$REGISTER BYTE AT (.ADC$BASE+O); 
DECLARE FIRST$CHANNEL$REGISTER BYTE AT (.ADC$BASE+1); 
DECLARE LAST$CHANNEL$REGISTER BYTE AT (.ADC$BASE+2); 
DECLARE CLEAR$INTERRUPT$REQUEST BYTE AT (.ADC$BASE+3); 
DECLARE ADC$DATA$REGISTER ADDRESS AT (.ADC$BASE+4); 

DECLARE GO$BIT LITERALLY' 1'; 
DECLARE AUTO$INCREMENT$ENABLE LITERALLY '2'; 
DECLARE BUSY LITERALLY '8'; 
DECLARE EOS$INTERRUPT$ENABLE LITERALLY '10H'; 
DECLARE EOC$INTERRUPT$ENABLE LITERALLY '20H'; 
DECLARE END$OF$SCAN LITERALLY '40H'; 

2-28 



47 

48 
49 
50 
51 
52 

53 

54 

55 

56 

57 
58 

59 

60 

61 
62 

63 
64 
65 
66 
67 

68 

69 

70 

71 
72 
73 
74 

75 
76 
77 
78 

2 
2 

2 

2 

2 
2 

2 
3 
3 
3 
3 

2 

2 

2 
2 
2 
2 

2 
2 
2 
2 

DECLARE END$OF$CONVERSION LITERALLY '80H'; 

DECLARE DUMMY EXCHANGE$DESCRIPTOR PUBLIC; 
DECLARE RET$PULSE EXCHANGE$DESCRIPTOR PUBLIC; 
DECLARE GO$PULSE EXCHANGE$DESCRIPTOR PUBLIC; 
DECLARE TRIGGER EXCHANGE$DESCRIPTOR PUBLIC; 
DECLARE RET$TRIG EXCHANGE$DESCRIPTOR PUBLIC; 

DECLARE RQL2EX INT$EXCHANGE$DESCRIPTOR; 

DECLARE T$PARAM$LOCK EXCHANGE$DESCRIPTOR EXTERNAL; 

DECLARE BOX$PARAMS(5) STRUCTURE( 
CHANNEL BYTE, 
SET$POINT ADDRESS, 
ERROR ADDRESS, 
OFFSET ADDRESS, 
SAMPLES ADDRESS, 
COUNT ADDRESS, 
ACCUM ADDRESS, 
READING ADDRESS) EXTERNAL; 

TICKER$TASK: 
PROCEDURE PUBLIC; 

DECLARE MSG ADDRESS; 
DECLARE PULSE$MSG(2) STRUCTURE ( 

MSG$HDR ); 

PULSE$MSG(O).LENGTH, 
PULSE$MSG( 1) • LENGTH = SI ZE( PULSE$MSG( 0)) ; 
PULSE$MSG(O).TYPE, 
PULSE$MSG( 1) • TYPE = 65; 
CALL RQSEND(. RET$ PULSE, • PULSE$MSG (0)) ; 
CALL RQSEND( ,RET$PULSE, .PULSE$MSG( 1)); 

DO FOREVER; 
MSG = RQWAIT(.DUMMY,5); 
MSG = RQWAIT( .RET$PULSE,O); 
CALL RQSEND(, GO$ PULSE, MSG) ; 

END; 

END TICKER$TASK; 

ADC$TASK: 
PROCEDURE PUBLIC; 

DECLARE TRIGGER$MSG STRUCTURE ( 
MSG$HDR ); 

DECLARE (T$MSG,MSG,LOCK$MSG) ADDRESS; 
DECLARE I BYTE; 
DECLARE GAIN LITERALLY '00'; 
DECLARE N$CHNLS LITERALLY' 5'; 

TRIGGER$MSG,LENGTH = SIZE(TRIGGER$MSG); 
TRIGGER$MSG.TYPE = 65; 
CALL RQSEND( .RET$TRIG, .TRIGGER$MSG); 
CALL RQELVL( 2); 

2-29 



79 
80 
81 
82 
83 
84 

85 

86 
87 
88 

89 
90 
9 1 
92 
93 

94 

95 

96 
97 
98 
99 

100 

101 

102 

104 
105 
106 
107 
108 
109 
110 

111 
112 

113 

114 

115 

2 

3 
3 
3 
3 
4 

4 

4 
4 
4 

4 
3 
3 
3 
3 

2 

2 
2 
2 
2 

2 

2 

2 

2 
3 
3 
3 
3 
4 
4 

4 
5 

5 

5 

5 

DO FOREVERj 
MSG = RQWAIT( .GO$PULSE,O) j 
CALL RQSEND(.RET$PULSE,MSG)j 
LOCK$MSG = RQWAIT(.T$PARAM$LOCK,O)j 
DO I = 0 TO N$CHNLS-1j 

FIRST$CHANNEL$REGISTER = BOX$PARAMS(I).CHANNEL 
+ ROL(GAIN,6)j 

COMMAND$REGISTER = GO$BIT 
OR EOC$INTERRUPT$ENABLEj 

MSG = RQWAIT( .RQL2EX,0) j 
COMMAND$REGISTER = OJ 
BOX$PARAMS(I).ACCUM = BOX$PARAMS(I).ACCUM 

+ ADC$DATA$REGISTERj 
ENDj 
CALL RQSEND( .T$PARAM$LOCK,LOCK$MSG)j 
T$MSG = RQWAIT(,RET$TRIG,O)j 
CALL RQSEND(.TRIGGER,T$MSG)j 

ENDj 

END ADC$TASKj 

CONTROL$TASK: 
PROCEDURE PUBLICj 

DECLARE (LOCK$MSG,T,MSG) ADDRESSj 
DECLARE I BYTEj 
DECLARE NCHNLS LITERALLY' 5' j 
DECLARE TURN$LAMP$ON 

LITERALLY 'OUTPUT( OE7H) =SHL( I, 1)' j 
DECLARE TURN$LAMP$OFF 

LITERALLY 'OUTPUT(OE7H)=SHL(I,1)+1' j 
DECLARE SETUP$8255 LITERALLY 'OUTPUT(OE7H)=80Hj 

OUTPUT(OE6H)=OFFH' j 

SETUP$8255j 

DO FOREVER j 
MSG = RQWAIT(. TRIGGER, 0) j 
CALL RQSEND( .RET$TRIG,MSG) j 
LOCK$MSG= RQWAIT( ,T$PARAM$LOCK,O) j 
DO I = 0 TO NCHNLS-1j 

BOX$PARAMS(I).COUNT = BOX$PARAMS(I) ,COUNT + 1j 
IF BOX$PARAMS(I).COUNT 

= BOX$PARAMS(I).SAMPLES THEN 
DOj 

T, 
BOX$PARAMS( I) .READING 

= (BOX$PARAMS(I).ACCUM 
IBOX$PARAMS(I).SAMPLES) I 38 
+ BOX$PARAMS( I) ,OFFSETj 

IF T <= BOX$PARAMS(I),SET$POINT 
- BOX$PARAMS(I),ERROR THEN 

TURN$LAMP$ONj 
ELSE 

IF T >= BOX$PARAMS(I),SET$POINT 
+ BOX$PARAMS(I).ERROR THEN 

2·30 



116 

118 
119 

120 
121 

122 

123 

5 

5 
4 

3 
3 

2 

TURN$LAMP$OFF; 
BOX$PARAMS(I).ACCUM, 
BOX$PARAMS(I).COUNT = 0; 

END; 
END; 
CALL RQSEND( .T$PARAM$LOCK,LOCK$MSG); 

END; 

END CONTROL$TASK; 

END ATOD; 

2·31 


