intal

APPLICATION AP-32
NOTE

November 1977

00000000

RELATED INTEL PUBLICATIONS

“MCS-80™ USER’s MANUAL”
“MEMORY DESIGN HANDBOCK™

“PERIPHERALS DATA NOTEBOOK ”

The material in this Application Note is for informational purposes only and
is subject to change without notice. Intel Corporation has made an effort to
verify that the material in this document is correct. However, Intel Corpora-
tion does not assume any responsibility for errors that may appear in this
document.

The following are trademarks of Intet Corporation and may be used only to
describe Intel products:

ICE MCS

INSITE MEGACHASSIS
INTEL MICROAMP
INTELLEC PROMPT

LIBRARY MANAGER url

CRT Terminal Design Using

The Intel®

8275 and 8279

Contents

I. INTRODUCTION. 1
2. CRT SYSTEM DESIGN CONCEPTS. 1
2.1 CRTOPERATION 1
2.2 MONITOROPERATION 1
2.3 CRT TERMINAL DESCRIPTION. 2
2.4 CRT TERMINAL IMPLEMENTATION 3
3. COMPONENT DESCRIPTION 4
3 B27S 4
3.2 8279 . 9
4. CRT SYSTEM DESIGN EXAMPLE 10
4.1 SCOPEOFTHEPROJECT................ 10
4.2 SYSTEM SPECIFICATIONS. 11
4.3 SYSTEM HARDWAREDESIGN 11
4.3.1 General Considerations 11
432 Operation 12
433 SystemTiming 13
4.3.4 Dot Timing Logic 15
4.3.5 Keyboard Interface Design 17
4.3.6 System Memory Design. 17
4.4 SYSTEM SOFTWAREDESIGN.......... .. 18
4.4.1 General Considerations 18
4.4.2 Software Development i8
443 Operation 18
4.4.4 System Subroutines. 22
APPENDIX 5.1 — CRT TERMINAL SCHEMATICS
CPUSection 31
Memory Section 33
Peripherals Section 35
Dot Timing Logic Section. 37
Serial Communications Section. 39
APPENDIX 5.2 — ESCAPE/CONTROL/DISPLAY
CHARACTER SUMMARY 40
APPENDIX 5.3 — SUBROUTINE INTER-
RELATIONSHIPS., 41
APPENDIX 5.4 —- SOFTWARETIMING 42
APPENDIX 5.5 — VISUAL ATTRIBUTE
IMPLEMENTATION CONSIDERATIONS 42
APPENDIX 5.6 — SOFTWARE LISTINGS. 45

Intei Corporation assumes no responsibility for the use of any circuitry embodied in an Intel product. No ather circuit patent licenses are implied.

1. INTRODUCTION

The purpose of this application note is to provide
the reader with the conceptual and factual tools
needed to apply the 8275 Programmable CRT Con-
troller and 8279 Programmable Keyboard/Display
Interface in CRT system design. The 8275 Con-
troller is designed to interface CRT raster scan dis-
plays with Intel® Microcomputer Products. Its
primary functions include refreshing the CRT
display by buffering information from display
memory and generating horizontal and vertical
timing signals used for CRT synchronization. The
programmable features of the 8275 allow it to be
interfaced to almost any raster scan display with a
minimum of external hardware. In addition, visual
attribute features allow the implementation of
specialized graphic display functions and display
enhancement operations. The 8279 Keyboard
Interface provides key scanning, debounce, and
buffering features required for interfacing CRT
terminal keyboards to the system processor. Two
key or N-key rollover is provided. The use of these
devices in a microcomputer based CRT terminal
yields substantial savings in component count,
printed circuit board area, and power consump-
tion.

The application note is divided into five sections:

1. Introduction

2. CRT System Design Concepts
3. Component Description

4 CRT System Design Example
5. Appendix

Readers desiring an overview of CRT system design
should consider reading the first three sections of
the application note. Individuals requiring an in-
depth knowledge of CRT system design should
read the first three sections, then proceed to the
design example. The design example consists of a
description of the design of a complete CRT termi-
nal. Both hardware and software aspects of the
design are included. It will be assumed in Section 4
that the reader is familiar with the 8275, 8279, and
8257 data sheets, and the operation of the 8080A
microprocessor.

2. CRT SYSTEM DESIGN CONCEPTS

2.1 CRT OPERATION

In order to fully understand the CRT terminal
design process, it is necessary to consider the fun-
damentals of CRT operation. A typical CRT Moni-
tor is shown in Figure 2-1. The CRT consists of an

evacuated glass structure having a phosphorescent
coating on the inner surface of the rectangular
frontal region {(screen). A filament contained in
the narrow cylindrical region (neck) of the CRT
heats the cathode, causing the cathode to give off
electrons by thermionic emission. Heating is
accomplished by applying a low voltage source
across the filament leads. A high voltage source
applied between the cathode and the screen elec-
trode (anode} accelerates the electrons toward the
screen. The electron beam, upon striking the phos-
phorescent inner surface of the screen, produces
light. To control the point at which the beam
strikes the screen, two primary deflection tech-
niques are utilized. The first technique, electro-
magnetic deflection, involves applying a current
through a deflection coil placed around the neck
of the CRT. The resulting magnetic field forces the
electron beam to be deflected in proportion to the
magnitude of the applied current. Electrostatic
deflection involves placing deflection electrodes in
the neck of the CRT perpendicular to the electron
beam. An applied voltage changes the position of
the beam accordingly.

2.2 MONITOR OPERATION

A CRT monitor consists of a CRT and the elec-
tronics required for positioning the beam in the
desired manner. A block diagram of the control
electronics contained within a typical CRT moni-
tor is provided in Figure 2-2.

The horizontal oscillator is designed to move the
electron beam horizontally across the CRT screen
and then return the beam rapidly to its original
position. As the beam is moved horizontally, the
vertical oscillator causes the beam to be deflected
vertically. The net result of these operations is to
move the beam in a manner shown in Figure 2-3. If
the intensity of the electron beam is modulated in
a controiled manner as the beam sweeps across the
screen, it is possible to display pictorial informa-
tion on the CRT screen surface. It will be assumed
that the monitor in question will be used for dis-
playing alphanumeric characters or graphic sym-
bols. In this case, the electron beam will be turned
on to display a light region on the screen and
turned off to display a dark region. Display infor-
mation appearing at the video input to the CRT is
applied through the video amplifier to a control
grid located in the neck of the CRT. The magni-
tude of the video signal determines whether the
electron beam will be on or off,

hfi—

ACCELERATING -
POTENTIAL
PHOSPHOR
" GRID
- CATHODE
b DEFLECTION ‘
colL o
L4
T
SIDE VIEW _ _ _|.ELECTRON___ i C z
ELECTROMAGNETIC BEAM :
DEFLECTION \
I FILAMENT
FROM
FRom - e
HORIZONTAL
AMPLIFIER FROM VIDEO
AMPLIFIER
P
Ji|F
ACCELERATING
POTENTIAL
DEFLECTION
PLATES
k J\
SIDE VIEW — —_ |- _ELECTRON _ _ _ }
ELECTROSTATIC BEAM
DEFLECTION
FILAMENT
FROM
HORIZONTAL
AMPLIFIER FROM
VERTICAL
AMPLIFIER
SCREEN
INTEL
FRONT VIEW DELIVERS
CRT MONITOR
Figure 2-1. CRT Meonitor
Low
AC LINE - -~ VOLTAGE
FOWER oc
SUPPLY HIGH
HORIZONT,
OSCILL:Y;; - v ;2"'“55
HOAIZONTAL OSCILLATOR QU TRUT
HORIZONTAL 157 " H
oanve A A A A
INFUT L} 4 i
HORIZONTAL 4 \// \/ 4
HORIZONTAL OSCILLATOR e TO HORIZONTAL
DRAIVE SIGNAL —- ~—] mm— s e -DEFLECEHON
ISYNCHRONIZATION] LOoILs

VERTICAL OSCILLATOR OUTPUT
80 Mz

A

4 A\

VERTICAL } i
DRV

VEAT
ICAL E —

VERTICAL OSCILLATOR WNPUT VEATICAL TO VERTICAL
DRIVE SIGNAL ~ —— = ampLIFiER | = DEFLECTION
1SYNCHAONIZATION] COILS

vioro | MIBEC b . . . TOCAT
INPUT AMPLIFIER VIDEC INPUT

Figure 2-2. CRT Monitor Electronics

START SWEEP

FINISH SWEEP

Figure 2-3. CRT Monitor Raster

2.3 CRT TERMINAL DESCRIPTION

A CRT terminal consists basically of a CRT moni-
tor, monitor control electronics, memory for stor-
ing display information, logic to control informa-
tion transfer to and from external devices and
between internal devices, and a keyboard. The
fundamental operations performed by a CRT
terminal consist of the display of information con-
tained in interna] memory on the CRT screen,
communication with manual data entry devices
such as keyboards or light pens, and commaunica-
tion with external intelligent devices such as com-
puters or data communication terminals. Typical
CRT terminal communication functions are illus-
trated in Figure 2-4.

CRT TERMINAL

A
LIGHT COMPUTER
PEN
-
P
] !
EXTERNAL DATA A A
KEYBOARD LINK — COMPUTER

Figure 2-4. CRT Terminal Communications

2.4 CRT TERMINAL IMPLEMENTATION

A typical microprocessor-based CRT terminal is
presented in block diagram form in Figure 2-5. The
terminal consists of the CRT meonitor, monitor
electronics, memory for storing the information to
be displayed, a serial communication device, key-
board, keyboard interface device, CRT controller,
central processor and associated program memory,
and a DMA device. The primary function of the
CRT controller is to refresh the display. It does
this by controlling the periodic transfer of informa-
tion from display memory to the CRT screen. The
central processor unit (CPU) coordinates the trans-
fer of information to and from the terminal periph-
eral devices and external devices. When informa-
tion from an external device is received by the
terminal, the central processor performs character
recognition and handling functions, display mem-
ory management functions, and cursor control
functions. The CPU also interrogates the keyboard
interface device. If a key depression is detected by
the keyboard interface device, the CPU responds
by transmitting the ASCII character representing

the key to the terminal serial output line via the
serial communication device. A direct memory
access (DMA) device is required in the system to
effect the necessary memory to screen data trans
fer rate.

The CRT terminal control functions under consid-
eration may be implemented with LSI devices at a
considerable cost savings over earlier terminal
designs using MSI and SSI components. This cost
savings is complemented by an increase in the num-
ber of features which can be incorporated in termi-
nal designs. The additional features stem from the
programmable nature of the devices. In addition,
utilizing a microprocessor as the terminal control-
ler allows considerable intelligence to be built into
the terminal for decision making, computational,
and control functions. The design example pre-
sented in Section 4 of the application note illus-
trates the use of the 8275 Programmable CRT Con-
troller and 8279 Keyboard Controller in a typical
terminal design. In the following section, the 8275
and 8279 are considered in depth.

CHARACTER
GENERATCOR ROM

CENTRAL DMA
PROCESSOR DEVICE

<:> cRT CRT MONITOR
& MONITOR
CONTROLLER ELECTRONICS

S— G—
Sa— Y —

S— T —

SYSTEM BUS
SERIAL DISPLAY PROGRAM
COMMUNICATIONS ‘mF;AR‘E:ELE :‘NETVEBROF:F(‘:[; MEMORY MEMORY
DEVICE (USART) {RAM) (PROM]
CAT TERMINAL
SERIAL OUTPUT LINE
CRT TERMINAL CRT TERMINAL
SERIAL INPUT LINE PARALLEL INPUT/OUTPUT
LINES
POWER
KEYBOARD ULy

Figure 2-6. CRT Terminal Block Diagram

3. COMPONENT DESCRIPTION
3.1 8275

The block diagram and pin configuration for the
8275 Programmable CRT Controller are presented
in Figure 3-1. The 8275 provides the tfollowing
general capabilities:

1. CRT Display Refreshing - The 8275, having
been programmed to a specific screen format,
generates a series of DMA request signals,
resulting in the transfer of a row of charac-
ters from display memory, via the 8257 DMA
Controller, to the 8275’s row buffers. The
8275 presents the character codes to an ex-
ternal character generator ROM. The 8275
character code outputs CCO—-CC6 are used for
this purpose. External dot timing logic is then
utilized to transfer the parallel output data
from the character generator ROM. serially,
to the video input of the CRT. The character
rows are displayed on the CRT one line at a
time. Line count cutputs LCO—-LC3 are ap-
plied to the character generator ROM to per-
form the line selection function. The display
process is graphically illustrated in Figure 3-2.
The entire process is repeated for each display
row. At the beginning of the last display row,
the 8275 issues an interrupt via the INT out-
put line. The 8275 interrupt output will
normally be connected to the interrupt input
of the system central processor. The interrupt
causes the CPU to execute an interrupt service
subroutine. The service subroutine typically
re-initializes DMA controller parameters for
the next display refresh cycle, polls the sys-
tem keyboard controller, and/or executes
other appropriate functions. A block diagram
of a CRT system implemented with the 8275
CRT Controller is provided in Figure 3-3.
Proper CRT refreshing requires that certain
8275 parameters be programmed prior to the
beginning of display operation. The 8275 has
two types of programming registers, the Com-
mand Registers (CREG) and the Parameter
Registers (PREG). It also has a Status Register
(SREG). The Command Registers may only
be written to and the Status Registers may
only be read. The 8275 expects to receive a
command followed by a sequence of from 0
to 4 parameters, depending on the command.
The 8275 instruction set consists of 8 com-
mands:

NO. OF
PARAMETER
COMMAND BYTES NOTES
RESET 4 Display format pa-
rameters required
START 0 DMA operation pa-
DISPLAY rameters included
in command
STOP 0 —_
DISPLAY
READ 2 —
LIGHT
PEN
LOAD 2 Cursor XY posi-
CURSOR tion parameters re-
quired
ENABLE 0 —
INTERRUPT
DISABLE 0 .
INTERRUPT
PRESET 0 Clears all internal
COUNTERS counters

In order to establish the format of the dis-
play, the 8275 provides a number of user
programmable display format parameters. Dis-
play formats having from 1 to 80 characters
per row, | to 64 rows per screen, and from 1
to 16 horizontal lines per row are available.

In addition to transferring characters from
memory to the CRT screen, the 8275 features
cursor position control. The cursor position
may be programmed, via X and Y cursor posi-
tion registers, to any character position on the
display. The user may select from 4 cursor
formats. Blinking or non-blinking underline
and reverse video block cursors are available.

. CRT Timing — The 8275 provides two timing

outputs, HRTC and VRTC, which are utilized
in synchronizing CRT horizontal and vertical
oscillators to the 8275 refresh cycle. In addi-
tion, whenever HRTC or VRTC are active, a
third timing output, VSP (Video Suppress) is
true. providing a blanking signal to the dot
timing logic. The dot timing logic will nor-
mally inhibit the video output to the CRT
during the time when video suppress signal
is true. An additional timing output, LTEN
(Light Enable) is used to provide the ability
to force the video output high regardless of
the state of VSP. This feature is utilized by

the 8275 to place a cursor on the screen and

to control attribute functions. Attributes wi;l

be considered in the next section.

The HLGT (Highlight) output allows an attri-

bute function to increase the CRT beam

intensity to a level greater than normal. The

fifth timing signal, RVV (Reverse Video) will,

when enabled. cause the system video output

to be inverted.

3. Special Functions —

VISUAL ATTRIBUTES — Visual attributes
are special codes which, when retrieved
from display memory by the 8275, affect
the visual characteristics of a character
position or field of characters. Two types
of visual attributes exist, character attri-
butes and field attributes.

Character Attribute Codes: Character attri-
bute codes are codes that can be used to
generate graphics symbols without the use
of a character generator. This is accom-
plished by selectively activating the Line
Attribute outputs (LAO—-LAIL), the Video
Suppression output (VSP), and the Light
Enable output. The dot timing logic uses
these signals to generate the proper sym-
bols. Character attributes can be program-
med to blink or be highlighted individually.
Blinking is accomplished with the Video
Suppression output (VSP). Blink frequency
is equal to the screen refresh frequency
divided by 32. Highlighting is accomplished
by activating the Highlight output (HGLT).
Character attributes were designed to pro-
duce the graphic symbols shown in Figure
34,

Field Attribute Codes: The field attributes
are control codes which affect the visual
characteristics for a field of characters,
starting at the character following the field
attribute code up to, and including, the
character which precedes the next field
attribute code, or up to the end of the
frame.

There are six field attributes:

1. Blink — Characters following the code
are caused to blink by activating the
Video Suppression output (VSP). The
blink frequency is equal to the screen
refresh frequency divided by 32.

2. Highlight — Characters following the

code are caused to be highlighted by
activating the Highlight output
(HGLT).

3. Reverse Video — Characters following
the code are caused to appear in re-
verse video format by activating the
Reverse Video output (RVV).

4. Underline — Characters following the
code are caused to be underlined by
activating the Light Enable output
(LTEN).

5. General Purpose — There are two ad-
ditional 8275 outputs which act as
general purpose, independently pro-
grammable field attributes. These at-
tributes may be used to select colors
or perform other desired control
functions.

The 8275 can be programmed to provide
visible or invisible field attribute characters
as shown in Figure 3-5. If the 8275 is pro-
grammed in the visible field attribute
mode, all field attributes will occupy a
position on the screen. They will appear
as blanks caused by activation of the
Video Suppression output (VSP). The
chosen visual attributes are activated after
this blanked character. If the 8275 is pro-
grammed in the invisible field attribute
mode, the 8275 row buffer FIFOs are
activated. The FIFOs effectively lengthen
the row buffers by 16 characters, making
room for up to 16 field attribute charac-
ters per display row. The FIFOs are 16
characters by 7 bits in size. When a field
attribute is placed in the row buffer during
DMA, the buffer input controller recog-
nizes it and places the next character in the
proper FIFO. When a field attribute is
placed in the buffer output controller dur-
ing display, it causes the controller to im-
mediately put a character from the FIFO
on the Character Code outputs (CCO—6).
The chosen attributes are also activated.

LIGHT PEN DETECTION — A light pen
consists fundamentally of a switch and
light sensor. When the light pen is pressed
against the CRT screen, the switch enables
the light sensor. When the raster sweep
coincides with the light sensor position on
the display, the light pen output is acti-

vated. If the output of the light pen is pre-
sented to the 8275 LPEN input, the row
and character position coordinates are
stored in two 8275 internal registers. These
registers can be read on command by the
MiCTOpProcessor.

SPECIAL CODES — Four special codes
may be used to help reduce memory, soft-
ware, or DMA overhead. These codes are
placed in character positions in display
memory.

1. £nd of Row Code —

Activates VSP. VSP remains active
unti] the end of the line is reached.
While VSP is active, the screen is
blanked.

2. End of Row-Stop DMA Code —
Causes the DMA Control Logic to
stop DMA for the rest of the row
when it is written into the row buffer.

It aftects the display in the same way
as the End of Row Code.

3. End of Screen Code —

Activates VSP. VSP remains active
until the end of the frame is reached.

4. End of Screen-Stop DMA Code —
Causes the DMA Control Logic to
stop DMA for the rest of the frame
when it is written into the row buffer.
It affects the display in the same way
as the End of Screen Code.

PROGRAMMABLE DMA BURST CON-
TROL — The 8275 can be programmed to
request single byte DMA transfers or DMA
burst transfers of 2, 4, or 8 characters per
burst. The interval between bursts is also
programmable. This allows the user to
tailor his DMA overhead to fit his system
needs.

BLOCK DIAGRAM

CHARACTER

COUNTER ceLk PIN CONFIGURATION
l/iﬂ,
|
DISPLAY
i ROW COUNTERS ez O A 40 [vee
‘ (\l‘ f e 2 39 [Lag
i ¥
Lc 3 3s[] a
DATA i BUFFER BUFFER ' E g 1
DB BUS b INPUT oUTPUT Lo 4 37 LTEN
07@ BUFFER CON- CON- CCos ora O 5 w5
TROLLER | | TROLLER R AVV
! U I BAck [1 6 357 vsp
‘} t HRTC [7 34 [0 craq
FIFO vrTC [] 8 33 (] apag
Ao o 320 wer
1 wWR (] s255 3 RO
DR ! N een [11 301 cck
P LI
DACK [COUNTER o3 oeg (] 12 20 ccs
IRG —— | ‘ ‘ l o8t []13 28] ces
A i cez [14 27] ccyq
| LAQ.1
_ : DB 15 267 cc
AD READ/ | HRTC 3 [[T ccs
WRITE/ ‘ RASTER TIMING | . yRrTC oBs (] 16 [0 ccz
W DMA <:> Q AND HLGT
CONTROL cooe0 ;: RVV oes [] 17 247 cc
LOGIC l—+ LTEN
Ag ——» Y peg [18 23[J cco
GPAy 0By (] 19 20 &
r aND [] 20 21[J ag
cs
i LIGRT PEN
<j REGISTERS ~—— LPEN

Figure 3-1. 8275 Bilock Diagram/Pin Configuration

1st 2nd 3rd ath Sth 6th

7th
Character Character Character Character Character

Character Character

e e e
|.ll-DLﬁlDEEq-FCl.-I. Hejsinuislaisie]]]] juisisin | | IS Inistel 1o

First Line of a Character Row

1st 2nd 3rd 4th 5th 6th

7th
Character Character Character Character Character

Character Character

OoaesRCU . SeCCOORCOReeeecO0CcO0000eees 00

misy | | Jsls|sl Jujulsl |s]
SECOOCAcIsecCOCANNecO00000030000e0ddeddadioanoecooen
Second Line of a Character Row
1st 2nd 3rd 4th 5th 6th 7th

Character Charactar Character Character Character Character Character

mel []] mas sesal oy 1§] Isieluisiais)
DOeOC0CCECONRCCONMC CRO00Q00000000 DDDID
o (nnlaln wel siuEe [sja] jeieisininieisiaie]

o

LR

1st 2nd 3rd dth 5th

6th 7th
Character Character Character Character

Character Character Character
S ——— —— . —— ——— o———— ——. ——
mw] | [[Ta'miwl (/nne’ il T
[T Inulal Tals] I=
JENO0CRCOR0encEcOw 0
S [eeua e TawnE el 11]

onooono

Seventh Line of a Character

)

ow

Figure 3-2. 8275 Row Display

8080
MICRO-
PROCESSOR

HOLD

HACK

LCo-3 VIOEO SIGNAL
ORQ |23 N
B267

CHARACTER
DMA

V1 GENERATOR HIGH
cc
CONTROLLER| OACK 4275 i} AOM :> SPEED HORIZONTAL SYNC

CAT por

TIMING
CONTROLLER LOGIC VERTICAL SYNC
| R T .
cCLK AND
RFA
> INTERFACE INTENSITY
VIDEQ CONTROLS
SYSTEM BUS

8251 PROGRAM/ 8279
USART DISPLAY KEYBOARD
MEMORY CONTROLLER

n L

COMMUNICATIONS
CHANNEL

KEYBOARD

Figure 3-3. CRT System Block Diagram

TOCRT

Character attributes were designed to produce the fallowing graphics:

CHARACTER ATTRIBUTE

CODE “cCcce”

QUTPUTS

,_
b g

LAg | VSP | LTEN §¥MBOL

DESCRIPTION

0000

lAbove Underiine

Underline

Below Undertine

-

Top Left Corner

0001

lAbove Underlihe

Underline

Below Underiine

Top Right Corner

0010

lAbove Underline

Underline

Below Underline

Bottom Left Corner

oon

Above Underline

Underline

Below Underline

Bottom Right Corner

0100

Above Underiine

Underline

T +4-1-

Below Underiine

Top Intersect

0101

[Above Underline

Underline

Below Underline

Right Intersect

0110

Above Underline

Underline

Below Underline

Left Intersact

o111

Above Underline

Underline

Below Underline

Bottom Intersect

1000

Above Underline

Underline

Below Underline

Horizontal Line

1001

Above Underline

Underline

Below Underline

Vertica! Line

1010

Above Underline

1

-t -

Underline

Below Underline

o

1011

Above Underline
Underline

J

Below Underline

Crossed Lines

Not Recommended *

1100

Above Underline

Underline

Below Underfine

QOO0 C|O|0|0|C|0|C|00|0]|0|o|O0|O|= QIC|=O|0|c|0|o(=|O|lo|-|o|o|=|clo|=o

L]

== QOO OO0 QO=|O|=—C|eel0|olo|lo|o/oio]l— | =|lojo = o|lo|o|lo]—|ec|o] =
Qloic/o|olojol= (e o|o|o|oi—|o|lo| oo |ojo|o|lo|lo|lo|«|o olo|loje|loololo|olo|ola

OO0 |olo|o|=ofj= === |o(o/o|o|o|= = O|a|=lu|l—|- OC|C|w|=|ofO]|=|—lajo=lclo

S0 D T T S

Special Codes

1101

Above Underline

l " !

Underline

——

Undefined |

Below Underline

——

itlegal

-

1110

Above Underline

+ +

Underline

Below WUnderline

Undefined | lllegal

—
—

P

Above Underline

i
1

Underline

—

Undefined

Below Underline

1

llegal

*Character Attribute Code 1011 is not recommended for
narmal operation. Since nane of the attribute outputs are
active, the character Generator will not be disabled, and
an indeterminate character will be generated.

Hightight is active

Figure 3-4. Character Attributes

Character Attribute Codes 1101, 1110, and 1111 are illegal.

Blinking is active when B = 1.

when H = 1.

g

ABCDE FGHI JKLM
NOPQRSTUV

-
-
-

6 7819

23465

L

EXAMPLE OF THE VISIBLE FIELD ATTRIBUTE MODE
(UNDERLINE ATTRIBUTE)

123456718¢89

_

.

EXAMPLE OF THE INVISIBLE FIELD ATTRIBUTE MODE

(UNDERLINE ATTRIBUTE)

Figure 3-5, Field Attribute Examples

3.2 8279

The 8279 Programmable Keyboard/Display Inter-
face block diagram and pin configuration are
shown in Figure 3-6. The 8279 will be utilized in
the CRT design example for performing keyboard
scanning, key debounce, and data bus interface
functions. Only features associated with these

functions will be described in this section. The
reader is referred to the 8279 data sheet for infor-
mation on display control, sensor matrix mode
operation, and strobed input mode operation. A
detailed description of the 8279 keyboard scan-
ning, debounce, and data bus interface functions
follows.

8LOCK DIAGRAM

CLOCK RESET

PiN CONFIGURATION

DBO-7 FbD @R T3 g IRQ —_/
{ Rtz (s a0 vee
[ALy [} 2 39 [7 Rua
N ¢ cuk 3 38 {J RLo
DATA FiFO/SENSOR IRQ (] 4 37 [cnTLsTR
BUFFERS VOCONTROL [—| RAM aLs s 36 [1 seer
—(T RLs []6 3s] s
— P RLe (7 3a [stz
Vo
vJ\ ‘ bR RL7 8 337 sLq
; INTERNAL - DATA BUS (8) 2 l RESET []9 8279 327 sto
L_T l cf/\\ o ; (7 i | ap [f1o 310
(Lu/7 ‘{\1I: : s i ' w [300 B
peg []12 29 B2
DIsPLAY | ™| conTrOL AND 8x8 o1 (] 12 287 B3
ADDRESS 16x8 TIMING FiFossensor p] KEYBOARD
REGISTERS [/ DISPLAY REGISTERS RAM N DEB;)NUDNCE bez L] 14 2711 Ao
——] — =
RaM T CONTROL peg [] 15 26 {1 A
. pBs (] 16 25 E Ag
i T l(ﬂ]l pes [17 4[] a3
TIMING Dol oeg [] 18 23{] ep
AND DB 19 2 @
CONTROL v l 7 E
DISPLAY vss L} 20 21 Ap
I S S e e I
1 e

8 4

L .
Ap-3 Bp.a

ol

<

Slo-3

I |
P i ,
L i SHIFT
RLg_7 CNTL/STB

Figure 3-6. 8279 Pin Configuration and Block Diagram

The primary functions of the 8279 in the CRT sys-
tem application include scanning the 64 key key-
board. determining it a key has been depressed,
and. when polled by the system processor, trans-
mitting the address of the key in the keyboard
matrix to the master processor. Alternately. the in-
terrupt line from the 8279 may be used to inform
the CPU of a key depression. A block diagram of
the 8279 interface. as implemented in the CRT sys-
tem design example, is provided in Figure 3-7. The
keyboard controller initiates the keyboard scan-
ning process by transmitting keyboard scan line
selection information over output lines SLg—SL».
The data may be encoded or decoded depending
on the mode programmed. Assuming encoded
mode is selected, the SLo—-SL> lines are connected
to the input of a 3-line to &-line decoder as shown
in Figure 3-7. The decoder outputs are connected
to the keyboard row inputs. Only one decoder
output will be enabled for a given set of input con-
ditions. The keyboard column outputs are con-
nected to the 8279 return line inputs RLo—RL7.
The eight return lines are buffered and latched by
the 8279. These lines are scanned by the internal
logic of the 8279. looking for a key depression in
the selected row, If the debounce circuit detects a
key depression, it waits approximately 10 ms to
determine if the key remains down. If it does, the
address of the key in the matrix plus the status of
the shift and control lines are transferred to the
8279 FIFO. The FIFO data format is shown in Fig-
ure 3-8 The FIFO will hold up to eight data bytes;
that is, up to eight key depressions may occur prior
to a CPU initiated read operation. The number of
characters entered into the FIFQ is indicated by
the character count contained within the FIFO
status word. When a key depression is detected, the
8279 interrupt line goes high, and the FIFO status
is modified to reflect the number of characters
contained in the FIFO. The CPU may determine
the occurrence of a key depression in one of two
ways: The 8279 interrupt line may be connected
to the interrupt input line of the CPU, forcing the
CPU to call an interrupt service routine which
reads the FIFO character. An alternate approach
requires the CPU to periodically poll the 8279,
reading the FIFO status word. If the FIFO charac-
ter count is non-zero, indicating that at least one
character is present in the FIFO, the CPU then
reads the FIFO contents. This approach will be
utilized in the CRT design example. A read opera-
tion places the contents of the FIFO on the system
data bus and decrements the FIFO character

10

count, contained within the FIFO status word. by
one.

CONTROL 8US

[1]

ADDRESS BUS

L

l [
J?l
C_S<¢r

l
]

Ag DBp-7 RESET RD WR IR
8279 3 P
KEYBOARD SLp—z
CONTROLLER
CONTROL SHIFT RLg—7
? [} ﬁ’?
i 8
| f"
CONTROL SHIFT COLUMN
QUTPUTS

KEYBOARD ROW 3T08
(8 X B MATRIX} INPUTS DECCDER pb—

Figure 3-7. 8279 Interface

07 Dg Cs Oa D3 s} [+]] Do

T ROW COLUMN ADDRESS

: ADDRESS FROM RETURN LINES RLg—7

. SHIFT D - MSB D2 = MSB
CONTROL

Figure 3-8. FIFQ Data Byte Format

4. CRT SYSTEM DESIGN EXAMPLE
4.1 SCOPE OF THE PROJECT

A fully operational, microcomputer-based CRT
terminal was designed and constructed utilizing the
8275 CRT Controller and 8279 Keyboard Control-
ler as the basic system elements. The terminal
incorporates the majority of the functions found in
existing dedicated computer terminals. An Intel®
8080A microprocessor was utilized as the CPU in
the design. The recently announced Intel® 8085
microprocessor constitutes an ideal processor for
future CRT terminal designs. LSI devices were
utilized in the design whenever possible in order to
minimize component count.

-

Lo o

4.2 SYSTEM SPECIFICATIONS
The specifications for the CRT terminal design are
as follows:
Display Format
o 80 characters/display row
e 25 display rows
Character Format (Figure 4-1)

e 5X7 character contained within a 7X10
matrix, 1st and 10th lines blanked, 1st and
7th columns blanked, 9th line cursor posi-
tion, blinking underline cursor.

Characters Recognized
« Displayable characters: 64 ASCII upper-
case alphanumeric characters
o Control characters:
Line feed, ControlJ
Carriage return, Control M
Back space, Control H
s Escape Sequences:
Cursor up, ESC, A
Cursor down, ESC, B
Cursor right, ESC, C
Cursor left, ESC, D
Clear screen, ESC, E
Home, ESC, H
Erase to end of screen, ESC, J
Erase line, ESC, K
Characters Transmitted
e 64 ASCII upper-case alphanumeric charac-
ters
e ASCII Contro! Character set
s ASCII Escape Sequence set
Program Memory
s 2K bytes, 2716 EPROM
Display [Buffer/Stack Memory
+ 2K bytes, 2114 static RAM
Data Rate
s 4800 BAUD maximum using 8080A
CRT Monitor
e Ball Bros TV-12, 12 MHz B.W.
Keyboard
o Microswitch hall effect keyboard, open col-
lector outputs
Scrolling Capability

o Scroll up feature implemented with 8257
DMA Controller

"

Screen Refresh Rate

oéOHZ

coL 1 COl.7
LINE1—>e o s 0005

e 0 CCOC e

eC 0000

eo0COoOCC e

e CCOOC e

ecccCcoTe 5 X 7CHARACTER AREA

®e0DCO0O0OQe

e0cCcOCOS

eoc oo o e =+—UNDERLINE POSITION
LINE 10—>9 0 00 00 o

Figure 4-1. Character Format

4.3 SYSTEM HARDWARE DESIGN
4.3.1 General Considerations

A block diagram of the CRT terminal is presented
in Figure 4-2. The diagram includes only essential
system features. A detailed schematic of the CRT
terminal is contained in the appendix. The terminal
was constructed using an Intel® SDK-80 micro-
computer kit and an Intel® SBC 905 prototyping
board. The standard 8080 bus structure incorpo-
rated in the SDK-80 kit allowed the CRT terminal
to be implemented with minimum buffering.

In the ensuing discussion of CRT terminal opera-
tion, it will be assumed that the terminal normaily
communicates with a remote device, such as an
Intel® MDS microcomputer development system,
Communication will take place in the full duplex
mode. The CRT terminal, upon transmitting a
character to the remote device, will remain idle
until a character is received from the external
device. Transmission of a character to the remote
device is initiated by depressing a key on the key-
board. Character transmission to the CRT terminal
from the remote device is assumed to be asynchro-
nous with respect to terminal operation.

CRT

CLOCK
GENERATOR | VIDEG H.DRIVE V.DRIVE
8224 e . i 3 T
I 2 ! i
P i4 ——— — = —— —— CHARACTER ' :
T TR g CLOCK
Iy HACK

——

]

v L) L
HOLD : T HRQ AENDRQ ¥ DACK DRQ INT 13 2708 CHARACTER,
CPU iy — r 2 DMA 3 CRT ——*—r\ GENERATOR ROM
8080 ‘ | { T conTrOLLER ° CONTROLLER W AND
T Joatagus . 8257 8275 DOT TIMING LOGIC
T
T o ,
3 | : 7
¥ } - 16 [J
BUS H ‘ ¥
CONT 8228 B LAToh 4
i} ! 8212 4 4 8
BUFFER ﬂ__J
8 8212 (2) r
8
* | |
DATA BUS

LI il

i

ADDRESS BUS

g L

LI
BEEGS <

i 8212
! 13 PROGRAM XKEYBOARD
o RxROY | Ll MEMORY CONTROLLER
A o @ 2716 (2K 8) a279
! ! T '
DISPLAY/BUFFER/ 2
CRT CRT STACK MEMORY 3108
DATA DATA 2114 (2K x 8) DECGDER 8
INPUT QUTRPUT x @ 3 t
KEYBOARD

Figure 4-2. CRT Terminal Block Diagram

4.3.2 Operation

The 8080A CPU initializes each peripheral to the
appropriate mode of operation following system
reset. Upon receiving a character from a remote
device, the 8251 USART issues an interrupt to the
CPU. The CPU calls the interrupt service subrou-
tine, which polls both the 8275 and 8251 to deter-
mine the source of the interrupt. Having deter-
mined that the 8251 issued the interrupt, the CPU
calls the READ/STORE USART character subrou-
tine, reads the USART character, and stores the
character in buffer memory. The character recogni-
tion subroutine is called next, This routine deter-
mines whether the character is a displayable char-
acter. a control character, or a character in an
escape sequence. Assuming the character is a dis-
playable character, the CPU places the character in

12

display memory at the location corresponding to
the present cursor position, advances the cursor,

modifies the display memory pointers, and, if

required, performs the operations necessary for
scrolling. If the received character is a control
character or escape sequence character requiring
cursor and display memory pointer changes. these
functions are carried out. Escape sequences which
involve erasing a portion of the display are also
handled via the appropriate subroutines.

In order to place characters contained in display
memory on the CRT display screen, the 8275 CRT
Controller must first transfer the display characters,
via the 8257 DMA Controller, to the 8275°s row
buffers. It should be noted that the 8257 DMA
Controller is required to achieve the data transter

=

rate necessary for CRT refreshing. Display charac-
ters are then transferred from the 8275 row buffers
to the character code outputs CCO—-CCS. The
character code outputs are applied to the character
generator address lines A3-—-A8 (Figure 4-3). Line
count outputs LCO-LC2 from the 8275 are
applied to character generator address lines
AO—A2. It should be noted that the 8275 displays
character rows one line at a time. The line count
outputs are utilized to determine which line of the
character selected by A3—A8 will be displayed.
Following the transfer of the first line to the dot
timing logic, the line count is incremented and the
second line of the character row is selected. The
process continues until the last line of the row
under consideration is transferred to the dot timing
logic.

The dot timing logic latches the 6-bit character
code and 3-bit line count from the 8275 on
positive transitions of the character clock and
transfers this information to the character genera-
tor ROM. In systems requiring a greater number of
lines/character, the fourth line count output would
also be used. The 7-bit ROM output corresponds to
the 7 dots which make up a line segment for a
particular character. The ROM output is loaded
into a parallel input-serial output shift register. The
shift register is clocked at the dot clock rate (11.34
MHz) continuously. The shift register output con-
stitutes the video input to the CRT. The character
code outputs select the character to be displayed at
a given character position in the display row. The
character set consists of 20=64 ASCII upper case
alphanumeric characters.

The row by row transfer of character data from
display memory to the 8275 continues until the
beginning of the last display row. At this time
the 8275 issues an interrupt to the CPU. The CPU
polls both the 8275 and 8251. Having determined
that the interrupt originated with the 8275, the
CPU calls the 8275 interrupt subroutine. The 8275
interrupt subroutine re-initializes the 8257 DMA
Controller starting address and terminal count
parameters and polls the 8279 Keyboard Control-
ler to determine if a key depression has occurred.
If a key has been depressed, the CPU reads the key
position data from the 8279, performs a table
lookup, and transmits the appropriate ASCII char-
acter to the CRT data output via the 8251 USART.
It should be noted that interrupts are generated by
the 8275 every 16.67 ms for a 60 Hz screen refresh
rate.

13

CHAR CLOCK

, _ L - _
- 3 LY
LCo-LC2 J Ag - A2 | viDED
E LINE COUNT]
T 1 A 2708 7 HIGH
A P CHARACTER | SPEED
— :; GENERATOR oot TIMINGE T TORZ DR
8 M ROM LOGIC)
u 8 i
5
cco-cecs A3-—Ag |——= VEAT DR
. CHARACTER ‘
HRYC ! CODE [} |
VRTC; . |
vsp p
LTEN — _J

Figure 4-3. Character Generator/Dot Timing Logic
Block Diagram

4.3.3 System Timing

The CRT terminal display raster is shown in Figure
4-4, It can be seen from the figure that a display
row is composed of 10 lines. The Total Line Time
consists of the display pertion of the line plus the
Horizontal Blanking Time. Row Time is equal to
the number of lines per row multiplied by the
Total Line Time. The Total Screen Time (1/Re-
fresh Rate} is equal to the Row Time multiplied
by the number of display rows plus the Row Time
intervals associated with vertical blanking. Speci-
fications for the BALL BROS. monitor show that
there are constraints on the Vertical Blanking Time,
Horizontal Blanking Time, and Horizontal Oscil-
lator Repetition Rate. These constraints are sum-
marized in Table 4-1.

15t 2nd 80th
CHARCHAR

CHAR

18T

LINE (Disp,
LINE—’ LAY)

HORIZ RET

TOTAL LINE TIME
} = LINE (DiSPLAY] +]
CHAR

HORIZ RET

ROW HEIGHT

10TH
LINE

LAST
DISPLAY F—— e —m — e e
ROW |

|
L - R VERTICAL

RETRACE

Figure 4-4, CRT Display Raster

Table 4-1

PARAMETER RANGE

Vertical Blanking Time 900 usec nominal
(VRTC)

Vertical Drive Pulsewidth 300 usec < PW < 1.4 ms

Horizontal Blanking Time
(HRTC)

Horizontal Drive Pulsewidth

11 ysec nominal

25 usec < PW < 30 usec
15,750 £500 pps

Horizontal Repetition Rate

Given the constraints in Table 4-1 and the Refresh
Rate specification of 60 Hz, the Vertical Retrace
Row Count and Horizontal Retrace Character
Count parameters required by the 8275 CRT Con-
troller may be calculated:

1 1
Refreshrate ~ 60 Hz

0.01667 sec

Total Screen Time =

Also,
Total Screen Time = (Row Time) (# of Display Rows)

+ Vertical Blanking Time (VRTC)

Vertical Blanking Time (VRTC) must be an inte-
gral number of Row Times (between 1 and 4).

Therefore,
0.016667 sec = (Row Time) (25) + VRTC
= (Row Time) (25) + N (Row Time)

If N is selected to be 2, the following resuit is
obtained:

Row Time = 6.17284 X 104 sec
Therefore,

12.3457 X 104 sec
1.23457 ms

VRTC = (2} (Row Time)

Since the Vertical Blanking Time, nominally 900
usec, falls within the constraints for the Vertical
Drive Pulsewidth, the VRTC output from the 8275
may be used directly for the Vertical Drive Pulse.
The 8275 will be programmed for a Vertical Re-
trace Row Count of 2.

In order to calculate the Horizontal Retrace Char-
acter Count, it is necessary to consider the row for-

mat as defined in the specifications. Figure 4-5
shows three adjacent characters in a row. The row.

as shown, is composed of 10 Lines/Row and 7 \\
Dots/Line/Character. Given that the Row Time is
617.284 usec, the Total Line Time may be calcu-
lated as follows:

Row Time

Total Line Time _—
Lines/Row

617.284 X 10°6sec
10

61.7284 X 1076 sec
61.7284 usec

I

The Total Line Time is composed of the display
portion of the line plus the Horizontal Blanking
Time (HRTC).

[}

Total Line Time = 61.7284 X 1070 sec

80 (Chara}cter Time) + HRTC
line

Horizontal Blanking Time (HRTC) must be an

integral number of Character Times/Line.

Then

racter Time)

line
Character Time

tM (line)

61.7284 X 106 sec = g0 (<2

If M is selected to be 20, the following result is
obtained:

(Character Time) _ 61,7284 X 106
line 8G+ 20

6.1728 X 1077 sec
617.284 ns

This value defines the period of the 8275 charac-
ter clock.

|[—7 DOTS —={
LINE1——— e st os s osnssssscsssboscssan
a0 T leec S i e
oo e

t

|

i
L

(R
Ses s
r:'

UNDERLINE e ee -
POSITION w4~ -2 . . e -
LINEIG ——= s oembeorsovrsorssossee

St t— e — —

sev e
seenns
et s

CHARACTER 1 CHARACTER 2 CHARACTER 3

Figure 4-5. Row Format

The Horizontal Blanking Time (HRTC) is calcu-
lated as follows:

HRTC

20(617.284 ns)

12.3456 usec (nominal value 11 usec)

The 8275 will be programmed for a Horizontal
Retrace Character Count of 20. Since the specifica-
tions call for a Herizontal Drive Puisewidth of 25—
30 usec, an external oneshot is required. The one-
shot is triggered by the leading edge of HRTC.

Using the value for the Character Time/Line, the
Dot Clock Rate may be established. It should be
noted that the clock is used to shift data from the
parallel in-serial out shift register {contained in the
dot timing logic) to the CRT video input. The sys-
tem character clock is also derived from the Dot
Clock.

The dot clock is calculated as follows:

Character Time)
line
dots/character

6.17284 x 10°7
——‘7 sec

88183 %X 108 sec
88.183 ns

Dot Time)
line

Dot Clock Frequency = ! =11.34 MHz
Dot Time
Line

The Horizontal Oscillator Repetition Rate may be
calculated as follows:

1 _ |
Total Line Time

fHoriz = T 61.7284 X 1070 sec

= 16,200 Hz

This value falls within the system specification of
15,750 500 pps.

4.3.4 Dot Timing Logic

The primary function of the dot timing logic, illus-
trated in Figure 4-6, is to transfer the output of the
character generator ROM to the video input of the
CRT. Due to the high data transfer rate (11.34
MHz), logic external to the 8275 is required for
this function. The data transfer operation is
accomplished as follows: The character generator

15

ROM output is applied to the parallel input lines of
the 74166 shift register, the shift register is loaded
synchronously with respect to the positive-going
edge of the character clock, and data is ¢locked out
of the 74166 serial input at the dot clock fre-
quency. The 74166 output is applied, through
appropriate gating logic, to the CRT video input.
In addition to the previously described functions,
the dot timing logic provides the timing signals
required for transferring characters from the 8275
character code and line count outputs to the char-
acter generator ROM, implements the video sup-
press and light enable gating functions, and gener-
ates the system dot and character clocks.

In order to understand the dot timing logic design
process, it is necessary to refer to Figure 4-6 and
Figure 4-7.

[t can be seen from the timing waveforms of Fig-
ure 4-7 that the character code output from the
8275 will be valid 150 ns (worst case) after the
negative-going edge of the character clock. The
character generator ROM output will be wvalid.
assuming a direct connection between the 8275
and the ROM, 450 ns (worst case) after the charac-
ter code appears at the address inputs. Total delay
from the negative-going edge of the character clock
until ROM output data becomes available is then
600 ns. Given the character clock width of 617 ns
and external logic propagation delays and setup
times, it becomes difficult to latch the ROM out-
put for the first display character during the first
character clock period. In order to alleviate this
situation, a data pipelining technique is utilized.
The timing for this technique is shown in Figure
4-7. A latch, introduced between the 8275 and the
character generator ROM as shown in Figure 4-6,
samples character code and line count data from
the 8275 1/2 dot clock (45 ns) after the positive-
going edge of the character clock. Data from the
latch is applied to the character generator ROM
address lines yielding, after a 450 ns delay (worst
case), the appropriate 7-bit code at the ROM
output. ROM data is loaded into the 74166 shift
register on the next positive-going edge of the
character clock. This technique effectively delays
the video output from the shift register by 1%
character clocks, but eliminates the difficulties in
sampling the ROM data within the first character
clock period. Due to the video delay associated
with this technique, it is also necessary to delay all
signals affecting the video output and CRT timing.
These signals include HRTC, VRTC, VSP, and

LTEN. The delay is accomplished using a two-stage
shift register constructed with edge triggered D flip-
flops (74173). The system dot clock (11.34 MHz)
is obtained by dividing the 22.68 MHz output from
the 8224 clock generator by two. The dot clock is
utilized to clock the 74166 output shift register

and is divided by 7, using a 74S163 counter, to
produce the system character clock. It should be
noted that the use of a bipolar character generator D
PROM such as the Intel® 3604 or 3608 will reduce

the external dot timing logic package count due to

the reduced access time.

1) 2 3
CHARACTER
-~ 1701 -— —-
82 9ns
COUNTER -
1] 1 2 3 4 6 a 1 2 a 4 a 6 o 1 4 3 El 5

STATE] :
DoT
cLOCK .
i

COUNTER QUTPUTS
QC - CHARACTER

748167 i
|
cLock i

— b W . el
DELAYED CHARACTER (< Mhns MAX 16ns MAX
CLOCK {74874)
TO LATCH 174175) | |]
\ |
PR ISETUP 3ms MAX

LOAD SHIFT REGISTER
rSECOND CHARACTER?

I

| FSETop “Im MAK
DECODE STATE 3 . 74574

i LOAD SHIFT REGISTER (CHARACTER X|

LOADSHIFT REGISTER IFIRST CHARACTER?

LOAD SHIFT AEGISTER
SYNCHRONQUSLY

L]

CLEAR COUNTER .

CLEAR COUNTER |

L L

¢ CLEAR COUNTER

e —

=)

DECODE STATE 6
CLEAR COUNTER .
SYNCHRONOUSLY 150 ns .

MAX

L
|

8275 CHARACTER
QUTPUT {CCO-CC5)

T 1
i FIRST CHARACTER
1

t
Tn«mo CHARACTER
|

SECOND CHARACTER

i
4 LATCH FIRST CHARACTER

+ LATCH SECOND CHARACTER I‘ LATCH THIRD CHARACTER

LATCH QUTPUT
1741751 19 AOM

X

. FIASY CHARACTER

SECOND CHARACTER THIRD CHARACTER

7420

-+ +—
—— IACE MAX = 174525725 — —— — ol
ROM) ;
SS:;LSE?;::&; i x x VIDEQ QUT FIRST CHARACTER xV'DEG QUT SECOND CHARACTER
1
: '
DELAYED HATC b SAMPLE HRTC ‘NOTE 2FF DELAY: SAMPLE MRTC
7
i 11 34 MHr +W
1 looTeLock
! ' BCOEFGH 7400 ”
* CLK 74166 Qu -
22880 mn; Bl [i SHIFT LOAD > ! VIDEO QUT
! J SBIFT REGISTER
i | 14175 -2
TR sTaTEs v —

i
| i
J

LCO-LL2
CCO -CCS

|CHARACTER GENERATOR

T COUNTER

AR
] caT
MONITOR
(BALL BROS)
CHAR CLOCK ; 9 1K § HORIZONT AL
HATC [) DRIVE
82751 0
2
v

VRTC

K & VERTICAL
B275 DRIVE

Figure 4-6. Dot Timing Logic

16

\1

LHARACTER

cloex T]

' ¢ ' '

HATE {3ampLE

“B275¢ | HRTC
|

s,

ST

CHAR CODE FWST SECOND wIRD FGURTH
§275! CHARACTER RCUARACTER JNCHARACTER ACHARACTER

-
-T
1

musMAx

T BOth
CHARACTEA
ROW
: i
|

LINE COUNT
‘82751

SHIFT
HEGISTER
LDADING

VIBEQ
QUTPUT '

i
HRTC | I ‘
DELAYED i ! i

‘ !
| . l
N I

;

TR
| i : |

L3«
o
£ 0
¢
=}
7o
- B
=
- [I I
¥o
s
I3
S

Figure 4-7. CRT System Timing

4.3.5 Keyboard Interface Design

The keyboard interface, Figure 4-8, consists of the
8279 Keyboard Controller and the decoding logic
necessary for scanning the keyboard matrix. The
8279 SLg—SL2 output lines are decoded by the
745138 decoder. The eight output lines from the
decoder select 1 of 8 keyboard matrix rows for
testing by the 8279. The keyboard matrix column
output lines are connected to the 8279 return
lines, RLo—RL7. Open collector outputs presented
by individual keys within the matrix eliminate the
need for isolation diodes when two keys in a given
column are depressed. Two-key rollover was
chosen as the operating mode for the 8279.

4.3.6 System Memory Design

The system memory, illustrated in Figure 4-9, con-
sists of one 2716 EPROM used for program storage
and four 2114 RAMs used for display memory,
buffer memory, and system stack. The 2114 4K
static RAM was chosen for the design because of
its 1K X 4 organization, ease of use, and availabil-
ity. Buffering between RAM memory and the
system data bus was used to minimize bus loading.

17

DATA BUS
DBo—7
8279 3
KEYBOARD sL
CONTROLLER 0-2
CONTROL SHIET ALo-7
[}
CONTROL SHIFT COLUMN
OUTPYTS 7
8 4
KEYBOARD ROW s
BXBMATRIX INPUTS 1
3
8
OECODER

Figure 4-8. Keyboard Interface

MEMW (BUF)

2ROGRAM MEMORY

Ag - A0

Ag - Al0

PROM ADDRESS RANGE 0000H —=7FFH
RAM ADDRESS RANGE BD0OH —=87FFH |

2716
PROM

Ag — A AQ — A
g 9 214 0 9 214
T - WE RAM (3 wE AAm (S

DISPLAY, BUFFER, STACK MEMORY

MEMW (BUF)

i
LLD{ 2114 2114
WE _RAM €3 WE_RAM C3
! i -
4 '
|) ;
4 4

OATA BUS

Aty
A13
Al

Al 02
A2 03

Ao 01:3—J MEMR-—‘ OIEN
fo—
.-
L

+5y

Az —f€y

MEMF (BUF) Arp Ag
An a1
|« MEMW (BUF) Ats —— Az
8206
WEMR (BUF) Os
WEMW (BUF} ° ks o5p
RESET—— €2 Og >———— EXPANSION TO
i E, 07 fp———— 4K POSSIBLE

Figure 4-9. System Memory

4.4 SYSTEM SOFTWARE DESIGN
4.4.1 General Considerations

The approach taken in presenting the system soft-
ware design is as follows: First, the software devel-
opment process will be outlined. A discussion of
system software operation will then be undertaken.
Software operation will be followed by a detailed
presentation of system subroutines.

4.4.2 Software Development

Software development was accomplished using the
following tools:
1. Intel® MDS microcomputer development
system

2. Intel® dual floppy disc system
3. Intel® ICE-80 In-Circuit Emulator
4. Intel® ISIS II disc operating system
The MDS was utilized in conjunction with the dual

floppy disc system for program editing, assembly,
relocation, and loading functions.

18

The ICE module was used extensively for loading
assembled routines into the prototype system
RAM and debugging program errors. While in the
emulation mode, the ICE processor controlled the
operation of the CRT system. During debugging,
emulation proceeded normally until certain user
specified break conditions occurred, at which time
ICE entered the interrogation mode. During inter-
rogation mode all processor functions, including
DMA, ceased, allowing the user to access and dis-
play CPU register contents, status, and up to 44
previous machine cycles, system memory contents,
and I/O device data.

4.4.3 Operation

The fundamental operations performed by the
CRT system software are presented in Figure 4-10.
Extensive use of subroutines in implementing
major software functions resulted in readily under-
standable software. Debugging operations were also
simplified as a result of the software structure. At

N

system reset, the central processor interrupt system
is disabled. the program counter is set to zero, and
peripheral reset functions are carried out. Follow-
ing reset, the system software initializes all periph-
erals, clears buffer memory, initializes special
buffer locations, fills display memory with space
codes, and enables interrupts. The processor then
loops until an interrupt arrives from the 8275 or
8251. When the processor detects the occurrence
of an interrupt, the instruction being executed is
completed, an RST 7 vector is placed on the sys-
tem data bus, and the RST 7 call instruction is
executed, forcing a jump to the starting address of
the 8275/8251 interrupt polling routine. Once the
polling routine establishes the source of the inter-
rupt, program flow continues along one of the two
possible paths shown in Figure 4-10. An 8275
interrupt causes the 8257 DMA Controller to be re-
initialized, the 8279 Keyboard Controller to be
serviced, and, if a key depression has occurred, a
character to be transmitted to the terminal output.
An interrupt from the 8251 will first cause the
USART character to be read and stored in mem-

ory. The system software then examines the char-
acter to determine whether it is a displayable
character, a control code, or the first or second
character in an escape sequence. After determining
the nature of the character, an approprate subrou-
tine is called. Following the completion of the
routines associated with an 8275/8251 interrupt,
interrupts are re-enabled and a return instruction
executed. The CPU then loops until the receipt of
an interrupt. In order to appreciate the operation
of the system software in detail, it is necessary to
consider the foliowing items:

1. System memory organization.

2. The relationship between character position
on the screen and screen pointers Row Count,
Column Count, and memory pointer Top.

3. The relationship between memory pointers
Row Count, Column Count and the 8275
cursor X and Y position registers.

4. Scrolling concepts, including the relation
between scrolling, display memory, and the
memory pointer Top.

SYSTEM RESET

SYSTEM INITIALIZATION
ROUTINE

3
EXECUTE RST 7, [CALL} iNSTRUCTION, YES
JUMP TO INTERRUPT POLLING SUBROUTINE

I
INTERRUP
RECEIVED
?

8275/8251
INTERRUPT
POLLING
SUBROUTINE

)
]
READ/STORE
USART
CHARACTER
SUBROUTINE

|

:
8251 {USART) %\ 8275 (CAT CONTROLLER)
?

Il

CHARACTER RECOGNITION/HANDLING SUBROUTINE

by
ESCAPE CONTROL DISPLAY
SEQUENCE CODE CHARACTER
HANDLING
SUBROUTINE SUBROUTINE SURRGUTIE

[

8275 INTERRUPT SéRVICE SUBROUTINE

8257
DOMA CONTROLLER
RE-INITIALIZATION
ROUTINE

KEYBOARD
CONTROLLER
POLLING
ROUTINE

CHAR
PRESENT
?

TRANSMIT

NG CHARACTER

ENABLE INTERRUPTS,
RETURN
1

Figure 4-10. CRT Software Operations

System Memory Organization

System memory organization is shown in Figure
4-11. It should be noted that an additional 2K
block of RAM was utilized for program memory
(rather than PROM) during the software develop-
ment/debug phase of system design.

0000H PROGRAM
i MEMORY
{PROM)
07FFH
.JL G
DISPLAY MEMORY
8000H DISPLAY/BUFFER/ 8000H——»~87CFH
l STACK MEMORY
(RAM) BUFFER MEMORY
87FFH 87D2H—87E7H
i | STACK MEMORY
| PROGRAM MEMORY l B7F2H —-»~87FFH
DURING SOFTWARE
| DEVELOPMENT ONLY |
| {RAM) !
8FFFH Lo]

Figure 4-11. System Memory Organization

Character Position/Screen Pointer Relationships

To define the location of a character on the
screen, two pointers, Row Count and Column
Count, were created in memory. The relationship
between character location on the screen and the
two pointers is illustrated in Figure 4-12. Row
Count and Column Count are stored in memory
locations RCTAD and CCTAD, respectively. Row
Count represents the position of the first character
in a given row. For the first row, Row Count =
0000H. For the second row, Row Count = 0050H.
Column Count represents the specific column in
which the character is located. Character position
on the screen may be calculated by adding the
Row Count to the Column Count; e.g., the high-
lighted character in Figure 4-12 is located at
AOH+ 03H = A3H.

20

CRT DISPLAY

COLUMN 1 2 3 a 80
COLUMNCOUNT O0OH 01H Q2H 03H » ® e @ & o @ 4FH
=000 =010 =020 =030 =79D
ROW ROW COUNT -
1 Q000H =00000 | 0 | 1 ﬂ 3 4F
!
2 0050+ = 00800]’ 50 | 51| 52 | 53 aF
3 Q0ACH = 0160D FAQ Ay | Az | Aa EF |
| !
4 O0FOH ~0240D | FO | F1 | F2 | F3 13F |
. J i i

1
L]
L]

L]
b 0780H = 19200 780 | 781 782 l 733J

Figure 4-12. Character Location/Pointer Relationship

jVL?‘C F

Memory Pointer/8275 Cursor Position Register
Relationship

It was necessary to establish a relationship between
Row Count and Column Count pointers and the
8275 Cursor X and Y Position registers for the
cursor generated by the 8275 to be loaded at the
appropriate position on the screen. This relation-
ship is summarized in Table 4-2.

The value transferred to the 8275 for the Cursor X
Position is identical to the Column Count. A new
parameter, Cursor Y Position, stored at memory
location CURSY, was also established. For a given
Row Count value, a value for Cursor Y Position is
defined. This value is transferred to the 8275
Cursor Y Position register.

It is necessary to introduce an additional param-
eter, Top, which will be used in conjunction with
Row Count and Column Count to determine the
location in display memory at which an incoming
display character will be stored. The location at
which a given character will be stored (assuming no
more than 2000 characters have been entered since
initialization) is calculated by adding TOP + Row
Count + Column Count, where TOP is assumed to
be 8000H, the starting location of display memory
shown in Figure 4-11. Following system initializa-
tion, characters will be entered in display memory
starting at memory location 8000H. The 2000th
character will be entered at location 87 CFH. Upon
entering the 2001st character, a scrolling condition
exists and TOP will be modified to point to mem-
ory address 8050H. An in-depth discussion of
scrolling is presented in the next section.

3

Table 4-2
SCREEN POINTER/8275 CURSOR X,Y POSITION REGISTER RELATIONSHIP

ROW ROW COUNT CURSOR Y POSITION COLUMN COLUMN COUNT CURSOR X POSITION
VALUE REGISTER VALUE VALUE REGISTER VALUE
1 0000H 00H 1 00H 00H
2 0050H 01H 2 01H 01H
3 00AQH 02H 3 02H 02H
4 00FCH 03H 4 03H 03H
25 0780H = 1920D 18H = 24D 80 4FH =79D 4FH =79D
Scrolling ing, the terminal count value for DMA channel 2

Scrolling is implemented in the CRT system design
by shifting the entire display up by 1 row when a
scrolling condition occurs. Scrolling will occur
when certain cursor manipulation functions are
exercised or when a character is entered in the last
CRT display position, indicating a full memory
page condition exists. Character entry will be used
as the vehicle for explaining scrolling in the follow-
ing discussion.

Characters are normally entered sequentially in
display memory. When the 2000th character has
been entered, display memory capacity has been
attained; i.e., a full page condition exists. At this
point, scrolling will take place. For scrolling to
take place, DMA channel 2, the channel used to
extract characters from display memory, must be
re-initialized to the appropriate starting address
and terminal count values. The memory pointer
TOP will be used to establish the starting address
for channel 2. Prior to scrolling, TOP = 8000H, the
starting address of display memory. Each scrolling
operation causes 80D (50H) to be added to TOP,
moving the pointer, as shown in Figure 4-13b, to
the beginning of the following row in display mem-
ory. It should be recalled that TOP, in conjunction
with Row Count and Column Count determines the
insertion address for incoming display characters.
The net effect of modifying TOP is to shift the
information being displayed on the CRT up by 1
row; i.e., scrolling is accomplished. Prior to scroll-

21

is equal in magnitude to the display memory length
-1 or 87CFH - 8000H. The actual value sent to
the terminal count register is 87CFH - 8000H +
8000H. The addition of 8000H sets bit 14 in the
terminal count register to a 1, indicating a DMA
read operation. If scrolling is to be implemented,
the terminal count value must be modified to
87CFH - TOP + 8000H. Characters transferred by
channel 2 include those characters located from
the address specified by TOP to the end of display
memory. In order to transfer the characters from
the beginning of display memory through the
address immediately prior to TOP, the autoload
feature of the 8257 DMA controller is utilized.
When DMA channel 2 reaches terminal count, fol-
lowing the transfer of characters from TOP to the
end of display memory, the starting address and
terminal count parameters stored in the DMA
channel 3 registers are loaded into channel 2. DMA
operations resume in channel 2 using the channel 3
parameters. To accomplish the desired channel 3
operations, it is only necessary to re-initialize the
channel 3 starting address to the beginning address
of display memory, and the terminal count value
to 87CFH, the maximum terminal count for a
2000-byte display memory space. These processes
are performed during DMA re-initialization follow-
ing an 8275 interrupt. New text entry following
scroiling is illustrated in Figure 4-13. BOTTOM, a
parameter corresponding to the address of the first
character in the last row to be displayed, is utilized
during clear to end of screen operations.

DISPLAY MEMORY MAP

DMA STAATING ADDRESSES OMA TEAMINAL COUNT

CH2=TOP
CH 3 = BOOOH
MEMORY LOCATION
3000H
I
Y MEMORY
TP o] ¥ - - LOCATION

804FM
DURING FIRST)

~
PAGE ROW {80 CHAR)

CH2.CH3 15t PAGE
PARAMETERS
ARE EQUAL
MEMORY
BOTTOM s | LOCATION

8ICFH

MEMORY ~ a2 BEFORE SCROLLING
LOCATION

8780H

CH 3 START ADD»|

BOTTOM

TOP

CHZ START ADD
MEMORY
LOCATION
80A0H

NEW TEXT
INSERTED HERE

¢l AFTER 2nd SCROLLING OPERATION

NEW TEXT
sotrom = [INSERTED HERE
TOP

MEMORY
LOCATION e) AFTER 24th SCROLLING

97804 OPERATION

CH 2 = 87CFH-TOP+8000H
CH 3= §7CF

MEMORY LOCATICN
BOOOH

MNEW TEXT

BOTTOM —
INSERTED HERE

CH3START ADD ~

—]

TOP

CH2START ADD
MEMORY
LOCATION —ao
8050H

b} AFTER 15t SCAOLLING OPERATION

—1 NEw TEXT

BOTTOM —= [INSERTED HERE

TOP =
MEMORY
LOCATION
BOFOH

d) AFTER 3rd SCROLLING OPERATION

MEMORY LOCATION
BOOOH

TOP '

CHZ2 CH3
PARAMETERS
EQUAL

r NEW TEXT
BOTTOM I ™ INSERTED HERE

f} AFTER 25th SCROLLING OPERATION

Figure 4-13. Pointer Manipulation During Scrolling

4.4.4 System Subroutines
System Initialization Routine (CRTGO)

The system initialization routine, Figure 4-14,
establishes a starting point for system operation.
The 8251 USART is initialized to transmit to and
receive characters from an external device. The
8279 Keyboard Controller, at system reset, comes
up in the two-key rollover mode. It is therefore
only necessary to set up the Keyboard Controller
internal operating frequency during initialization.
Assuming a desired internal operating frequency of
approximately 100 kHz and a 2.048 MHz system
clock, the frequency divider chain is programmed
to divide by 21. The 8275 initialization parameters
are determined from the originai CRT system
specifications and vertical retrace Row Count/
Horizontal Retrace Character Count calculations
previously performed. The delayed line number
feature allows the use of only 3 line count outputs

22

to determine which of 10 possible lines in a charac-
ter row will be displayed. Given that the underline
placement position is set to the ninth row, the top
and bottom lines of the character are automatically
blanked, leaving, effectively, 8 unique lines for
display. The 8275 cursor position registers are
initialized to zero, forcing the cursor to the upper
left-hand corner of the display. The preset counters
command resets all 8275 counters to zero and
stops the 8275 counters until another command is
issued. The 8275 is then started by a start display
command. An interrupt will be generated from the
8275 approximately 15 ms later. Interrupts are
enabled following the 8275 start command. Inter-
rupts were disabled prior to this time to insure that
the central processor did not react to erroneous
interrupts from the 8275 generated prior to 8275
initialization. The processor, following initializa-
tion, waits in a loop until the arrival of an interrupt
from the 8275 or 8251.

?
\
I
(
»
i

CLEAR DISPLAY MEMORY
|
i 4

INITIALIZE BUFFER MEMORY J

QUTPUT MODE SET
COMMAND TQ 8251

8 BIT DATA CHARACTER
64X BAUD RATE FACTOR
PARITY DISABLED
18TOP BIT

QUTPUT COMMAND
WORD TQ 8251

RECEIVE ENABLED
TRANSMIT ENABLED

OTR FORCED TO ZERQ
RTS FORCED TO ZERQ

OUTPUT PROGRAM CLOCK }

COMMAND TO 8279
DIVIDE BY 21

QUTPUT SCREEN PARAMETERS
TO 8275 (4 BYTES)

80 HORIZONTAL CHAR/ROW
25 VERTICAL ROWS/SCREEN
2 VERTICAL RETRACE ROWS
10 VERTICAL LINES/ROW
UNDERLINE PLACEMENT

IN 9th ROW

20 HORIZONTAL RETRACE
CHARACTERS

CURSOR FORMAT
BLINKING UNDEALINE

FiFQ DISABLED
DELAYED LINE = ENABLED

. * ot * @

OQUTPUT LOAD CURSQOR
POSITION COMMAND TO 8275

QUTPUT CURSOR X POSITION
TO 8275, X =0

QUTPUT CURSOR Y POSITION
TO8275. Y=0

OUTPUT PRESET COUNTERS
COMMAND TO 8275

OUTPUT START DISPLAY
COMMAND TO B276 4

ENABLE INTERRUPTS

EXECUTE AST 7 (CALLJ INSTRUCTION

JUMP TO INTERRUPT POLLING SUBROUTINE

Figure 4-14, System |nitialization Routines

CLEAR-INITIALIZE
MEMORY

4291 INITIALIZATION

8279 INITIALIZATION

8275 INITIALIZATION

COMPLETE INSTRUCTION

23

Interrupt Polling Subroutrine (Poll)

The interrupt pelling subroutine, Figure 4-15, tests
to determine the source of the interrupt. If the
interrupt originated with the 8275, the 8275 inter-
rupt service subroutine is called. Following comple-
tion of the subroutine, interrupts are re-enabled,
and a returmn executed. An interrupt issued from
the 8251 forces subroutine calls to the read/store
USART character subroutine and the character
recognition/handling subroutine. Interrupts are
re-enabled at the completion of the character
recognition/handling routine. A return operation
follows.

- INTERRUPT ARRIVES

INPUT 8279
STATUS
|

INTERRUPT YES
FROM

8275

CALL 8275
INTERRUPT SERVICE

SUBROUTINE | RT 75
~NO

INTERRLUPT
FROM

2251 ENABLE INTERRUPTS

CALL READ STORE
USART CHARACTER RETURN

SUBROUTINE | RDFST

|
CALL CHARACTER
RECOGNITION

>
SUBROUTINE : CHREC
[SRR |

ENABLE
INTERRUPTS

RETURN

Figure 4-15. Interrupt Polling Subroutine {POLL}

8275 Interrupt Service Subroutine (RT 75)

The 8275 interrupt service subroutine, Figure 4-16,
re-initializes the 8257 DMA Controller, then tests
the 8279 FIFO status. If a character has been
transmitted from the keyboard to the Keyboard
Controller, a table lookup operation is performed
to obtain the correct ASCII code for the character,
and the character is transmitted.

i

CLEAR 8257 MDDE REG

LOAD 8257 CH 2 STARTING ADDRESS
REGWITH TOP LOCATED AT | TOPAD
i
i
|

LOAD 8257 CH 2 TERMINAL COUNT REG WITH 87CFH-TOP-8000H
|

LOAD 8257 CH 3STARTING ADDRESS REG WITH 8000H

!
LOAD 8257 CH 3 TERMINAL COUNT REG WITH 87CFH
'
|
i
1
LOAD 8257 MODE REG, CH 2 ENABLED AUTOLOAD MODE
'
H

i

INPUT 8279 FIFO STATUS

CHARACTER
PRESENT

|
CALL CHARACTER
TRANSMIT SUBROUTINE XWiT
\ —

RETURN

RETURM

Figure 4-16. 8275 Interrupt Service Subroutine (RT75)

USART Read/Store Subroutine (RDF 51)

The read/store USART character subroutine, Fig-
ure 4-17, moves a character from the USART to
the CPU, masks off the upper-most bit, and stores
the character in system buffer memory.

READ USART STATUS
READ ASCII CHARACTER

MASK OFF 8th BIT

STOAE USART CHARACTER IN
MEMORY LOCATION |USCHR

RETURN

Figure 4-17. READ/STORE USART Character
Subroutine (RDF51)

Character Recognition/Handling Subroutine
(CHREC)

The character recognition/handling subroutine,
Figure 4-18, examines the masked USART charac-

24

ter to determine whether the character is a display-
able character, control code, or the first or second
character in an escape sequence. A call to the
appropriate subroutine follows the decision-making
process. If the character is the first character in an
escape sequence, the escape sequence flag is set and
the processor loops until a second character is
received. The character immediately following the
ESC character is examined by the escape code
handling subroutine and a jump to an escape code
routine follows. If the character is a displayable
character or control code, the appropriate subrou-
tine is called.

ESCAPE
SEQUENCE
FLAG
SET

CALL ESCAPE
CODE HANDLING

f pnl
SUBRQUTINE . ESREC |
— T

i
! \

RESET ESCAPE SEQUENCE FLAG
il
LOCATED AT XFLG
L)

RETURN
YES

CHARACTER

ESCAPE
CODE

CALL DISPLAY SET ESCAPE
CHARACTER SEQUENCE FLAG -_XFLG
HANDLING

SUBROUTINE 1

CALL CONTROL
CODE HANDLING

SUBROUTINE

RETURN

RETURN

RETUAN

Figure 4-18. Character Recognition/Handling Subroutine
(CHREC}

Escape Sequerice Subroutine (ESREC)

The escape sequence subroutine, Figure 4-19, per-
forms a masking operation on the USART charac-
ter, shifts the result by one bit position, and adds
this value to the base address of the escape se-
quence lookup table, BSETIL The lookup table
contains starting addresses for each of the escape
sequence routines. This address is jammed into the
program counter and the routine executed. A sum-
mary of escape sequence functions is given in
Appendix 5.2,

E2 N

)

MOVE USART CHARACTER
FROM MEMORY LOCATION

CALCULATE ADDRESS IN
LOGKUP TABLE OF ESCAPE
SEQUENCE CHARACTER
ROUTINE ADDRESS

JUMP TO ESCAPE SEQUENCE
CHARACTER ROUTINE

]

I [T I [I

ESCH ESCB ESCC] ESCD! [Esce] [ssan | esc.:] [ESCKI
CURSOA { | cURsSOR || CURSOR | | CcURsOR CLEAR HOME ERASETO || erase
upP DOWN RIGHT LEFT scReEN | | RouTINE 5&“;?;‘25 LINE

aouTing | | RouTine | | RouTing | | rouTinE | | ROUTINE rouTine | [ROUTINE

L L [| l l I |

RETURN

Figure 4-19. Escape Sequence Subroutine {ESREC}

Control Code Subroutine (CNTRL) Display Character Handling Subroutine (DISPL)

The control code subroutine, Figure 4-20, involves, The display character handling subroutine, Figure
conceptually, the same procedures executed by the 4-21, determines if the cursor is located in the last
gscape sequence subroutine. A summary of control column of the row, the last display position, or
code functions is given in Appendix 5.2, elsewhere and calls the appropriate subroutines.

S

MOVE USART CHARACTER

FROM MEMORY LOCATION | USCHR

COLUMN
COUNT

MAX
7

YES

END OF ROW
NO
CALCULATE ADDRESS IN Aow YES
COUNT
LOOKUP TABLE OF CALL SUBROUTINE MAX
CONTROL CODE >
ROUTINE ADDRESS END OF DISPLAY

CALL SUBROUTINE NO
JUMP TO CONTROL CALL SUBROUTINE

CODE ROUTINE
RETURN

’ ‘ CALL SUBROUTINE(DISC]

CALL SUBROUTINE
e

BACK SPACE LINE FEED CARRIAGE
RETURN

‘ CALL SUBROUTINE

RETURN

RETURN

RETURN

Figure 4-21. Display Character Handling Subroutine
Figure 4-20. Contro! Code Subroutine (CNTRL) (DISPL)

25

Display Subroutine One (DIS1)

Display subroutine one, Figure 4-22. calculates the
location in memory at which the display character
is to be inserted. If the location calculation resuits
in an address outside of the display memory
hounds, appropriate compensation action is taken.
Prior to inserting the display character in memory,
the first character position in the row in which
the character will be located is examined. If an End
of Row character (EOR) is found, the row in ques-
tion will be blanked by the 8275. It is necessary to
clear the row by filling 1t with space codes (Fill
Subroutine}, then insert the display character in
the desired location. If no EOR character is found,
insertion proceeds without further software inter-
vention.

CALCULATE CHARACTER
INSERTION LOCATION IN
DISPLAY MEMORY, STORE RESULT IN |tOCAD

CALCULATE LOCATION
OF 1st CHARACTER (N
ROW, STORE RESULT

EOR
CHARACTER
1st CHAR

YES

OF ROW CALL
SUBROUTINE
NO
.4——-————J

MOVE USART CHAR
FROM MEMORY TO A REG

MASK OFF BITS 7.8
I
i
LCAD CHARACTER
IN DISPLAY MEMORY

AT ADDRESS SPECIFIED
BY LOCAD!

RETURN

Figure 4-22. Display Subroutine 1 (DI1S1)

Display Subroutines A, B, C (DISA, DISB, DISC)

Display subroutines A, B, and C, Figure 4-23, mod-
ify the appropriate display memory pointers. The
modifications are based on the present cursor loca-
tion, as determined by subroutine DISPL. The
resulting cursor position data is transferred to the
8275 Cursor X and Y Position registers. If DISC is
called, a scrolling operation occurs.

26

QISPLAY SUBROUTINE A (DISA)

| DisSPL I

SNCREMENT COLUMN COUNT

CALL LOAD CURSOR POSITION

SUBROUTINE,

RETURN

DISPLAY SUBRCOUTINE B (DISB)
SET COLUMN COUNT =0

SET ROW COUNT =
ROWCCUNT + 80

INCREMENT
CURSOR Y POSITION

CALL LOAD CURSOR POSITION
SUBROUTINE, [WP75 |

RETURN

DISPLAY SUBROUTINE C (DISC}

‘ OI5PL l

SET COLUMN COUNT =0

CALL LOAD CURSOR POSITION

SUBROUTINE | WPTS

CALL SCROLL
SUBROUTINE,

RETURN
Figure 4-23. Display Subroutines —
A (DISA), B (DISB), C (DISC)

Cursor Up Routine (ESCA)

The cursor up routine, Figure 4-24, determines if
the cursor is located in the first display row. If it is,
the Row Count and Column Count values are
modified, and the cursor is moved to the last dis-
play row with no change in X position. If the
cursor is not in the top row, the row up subroutine
is called.

(e

YES
FIRST ROW
H
SET ROWCOUNT =
NO LAST ROW {1920D = 780H}
STORE IN [RETAD
CALL |ROWUP 1
SUBROUTINE :
SET CURSOR ¥ POSITION
= LAST ROW (24D = 184}
STORE IN |CURSY
RETURN

CALL LOAD CURSOR

POSITION SUBROUTINE,| WP 75

RETURN

Figure 4-24. Cursor Up Routine (ESCA)

Cursor Down Routine (ESCB)

The cursor down routine, Figure 4-25, determines
if the cursor is located in the last display row. If it
is, the scroll subroutine is called. No modification
of cursor position is called for. If the cursoris not
located in the last display row, the row down sub-
routine is called.

CALL SCROLL
SUBROUTINE,

cALL

SUBROUTINE

RETURN

RETURN

Figure 4-25. Cursor Down Routine {ESCB)

Cursor Right Routine (ESCC)

The cursor right routine tests the cursor location
and moves the cursor as described in Figure 4-26.
If the cursor is in the last display position, a scroll-
ing operation occurs. 8275 Cursor X and Y Posi-
tion registers are updated accordingly.

Cursor Left Routine (ESCD)

The cursor left routine tests the cursor location
and moves the cursor as described in Figure 4-27.

27

LAST
CHAR POS
IN ROW

LAST
CHAR POS
IN DISPLAY,

CALL COLUMN
RIGHT SUBROUTINE,

COLRT

\ SET COLUMN COUNT

SET COLUMN COUNT
=0
\ —_—
STORE IN CCTAD |
Mt

RETURN =0 CALL LOAD
CURSOR POSITION
| SUBROUTINE,
SUBROUTINE
CALL SCROLL
SUBRQUTINE,
RETURN

RETURN

Figure 4-26. Cursor Right Routine {ESCC)

FIRST
CHAR POS
IN ROW

HOME
POSITION
?

i
CALL COLUMN LEFT

SUBRQUTINE
\

RETURN \
SET COLUMN COUNT
= LAST COLUMN VALUE (79D}
" SET ROWCOUNT

SET COLUMN
NG COUNT - LAST
COLUMN {790 4FH)

= LAST ROW
119200 = 780H)
CALL {ROWUP
SUBRQUTINE
! SET CURSOR Y
i POSITION =
RETURN LAST ROW
124D - 18H)

CALL LOAD CURSCR
POSITION SUBRCUTINE.

| WP7B

|

I
RETURN

Figure 4-27, Cursor Left Routine (ESCD)

Clear Screen Routine (ESCE)

Several possibilities existed for implementing the
clear screen function. The simplest of these tech-
niques involves filling the display memory with
space codes. This technique, although conceptually
simple, requires several milliseconds to implement.

The End-of-Row character (EOQR) recognized by
the 8275 allows the clear screen feature to be exe-
cuted in a considerably shorter time span. During
the clear screen routine, Figure 4-28, EOR charac-
ters are placed in the first character position of
each row in display memory. Since the EOR char-
acter blanks the entire display row when placed in
the first character position of the row, the use of
EOR characters in each row blanks the entire
screen. All pointers are cleared during the clear
screen operation.

MOVE EOR CHARACTER

TO FIRST CHARACTER
LOCATION OF EACH ROW

SET ROW COUNT =0
1

!
i
SET COLUMN COUNT -0

I
i

SET CURSOR Y POSITION = 0
|

RE INITIALIZE TOP TG 800GH

!

1
CALL LOAD CURSOR

POSITION SUBROUTINE.
!

t
RETURN

Figure 4-28, Clear Screen Routine (ESCE)

Home Routine (ESCH)

The home routine, Figure 4-29, resets the Row
Count, Column Count and Cursor Y Position buf-
fers to zero, but does not affect the value of TOP.

SET ROWCQUNT =0

SET COLUMN COUNT = 0

SET CURSOR Y POSITION = 0

CALL LOAD CURSOR

POSITION SUBROUTINE [WPT5]
\

RETURN

Figure 4-29. Home Routine {ESCH)

28

Erase to End of Screen Routine (ESCJ)

The erase to end of screen routine, Figure 4-30,
inserts End of Row characters (EOR) in display
memory in the same fashion as the clear screen
routine. The fundamental difference between the
routines is that the erase to end of screen routine
must insert EOR characters selectively. Only rows
from the present display row until the last display
row, pointed to by BOTTOM, receive EOR charac-
ters. It should be noted that the pointer BOTTOM
changes dynamically with scrolling operations.

7

CALCULATE LOCATION DF

FIRST CHARACTER IN PRESENT
ROW, STORE IN

CALCULATE BOTTCM, STORE IN {BOTAD

FILL LOCATION OF FIRST
CHARACTER 1N PRESENT ROW
WITH EOR CHARACTER

PRESENT ROW

= LAST AOW IN

DISPLAY

MEMORY
K

YES

BOTTOM
REACHED
>

YES

RETURN

BOTTOM
REACHED

S SET LOCATION OF

FIRST CHAR IN PRESENT ROW
= LOCATION OF FIRST CHAR OF
FIRST ROW (N DISPLAY MEMORY {B000H!
b

RETURN

SET LOCATION OF ‘
FIRST CHARACTER IN PRESENT |
ROW = LOCATION OF FIRST CHAR
iN PRESENT ROW +80D

Figure 4-30. Erase to End of Screen Routine (ESCJ)

Erase Line Routine (ESCK)

The erase line routine, Figure 4-31, calculates the
location of the first character in the current display
row, stores the location in buffer memory, and
calls the fill subroutine, which fills the row with
space codes.

Backspace Routine (CTRLH)

See cursor left routine. ’

Line Feed Routine (CTRLJ)

See cursor down routine.

CALCULATE LOCATION OF FIRST CHARACTER

tN ROW , STOAE AT [LOCXX

STORE CONTENTS OF LGCXX
IN MEMORY

w
cact

SUBROUTINE

RETURN

Figure 4-31. Erase Line Routine {ESCK)

Carriage Return Routine (CTRIM)

The carriage return routine, Figure 4-32, clears the
column count and updates the 8275 cursor posi-
tion registers.

SET COLUMN COUNT =0

CALL LOAD CURSOR POSITION

SUBRDUTINE,

AETURN

Figure 4-32. Carriage Return Routine (CTRLM)

Row Up, Row Down Subroutines (ROW UP, ROW
DOWN)

The row up subroutine, Figure 4-33, subtracts 80D
from the Row Count value, decrements the Cursor
Y Position pointer, and updates the 8275 Cursor
Position registers. The row down subroutine, Fig-
ure 4-34, differs in that 80D is added to Row
Count.

Column Right, Column Left Subroutines (COLRT,
COLLT)

The column right subroutine, Figure 4-35, incre-
ments the Column Count pointer and updates the
8275 cursor position registers. The column left
subroutine, Figure 4-36, differs in that the Column
Count is decremented.

29

ADD -80D
TGO ROW COUNT,
STORE IN LOCATION [RCTAD

DECREMENT CURSOR Y POSITION

STORE IN LOCATION |CURSY

CALL LOAD CURSOR

POSITION SUBROUTINE, | WP75

RETURN

Figure 4-33. Row Up Subroutine (ROWUP)

ADD 80D TO ROW COUNT

STORE IN [RCTAD

'
INCREMENT CURSOR ¥ POSITION

STORE IN

CALL LOAD CURSOR

POSITION SUBROUTINE, | WP75

RETURN

Figure 4-34. Row Down Subroutine (ROWDN)

(&

INCREVENT COLUMN COUNT
—
STORE IN TAD
E] cc

CALL LOAD CURSGR

POSITION SUBROUTINE. | WPT5
|

RETURN

Figure 4-35. Column Right Subroutine (COLRT)

DECREMENT COLUMN COUNT

STORE IN |[CCTAD

CALL LOAD CURSOR
POSITION SUEHOUTINE,

RETURN

Figure 4-36. Column Left Subroutine (COLLT)

Scroll Subroutine (SCROL)

The scroll subroutine. Figure 4-37, fills the row in
display memory pointed to by TOP with space
characters via the fili subroutine, then modifies the
value of TOP. TOP is utilized by the 8275 service
subroutine in re-initializing the 8257 DMA con-
troller.

MOVE TCP TO

|

CALL | FILL | SUBROUTINE

SET TOP = FIRST ROW (BODOH!

NO

i
RETURN
SET TOP = TOP+80D
= TOP+50H

RETURAN

Figure 4-37. Scroll Subroutine (SCROL)

Fill Subroutine (FILL)

The fill subroutine, Figure 4-38, calculates the
location of the last character in the current display
row, plus one character position, by adding 80D =
SO0H to the location of the first character in the
current display row. The current stack pointer
value is saved, then the stack pointer is loaded with
the location of the last character in the current dis-
play row, plus one character position. The B and C
registers of the CPU are loaded with space charac-
ters and 40 PUSH B operations performed. This
technique provides a rapid means (275 upsec) of
filling a given row with space codes.

Load Cursor Position Subroutine (WP 75)

The load cursor position subroutine, Figure 4-39,
transfers the contents of the Column Count and
cursor Y position pointers to the 8275 cursor X
position and cursor Y position registers, respec-
tively.

30

The relationship between system subroutines is
presented in Appendix 5.3. Software timing con-
siderations are covered in Appendix 5 4.

MOVE LOCATION CF FIRST
CHARACTER IN PRESENT RQW / TOP ROW

FROM BUFFER.
f

CALCULATE LOCATION OF
LAST CHARACTER N ROW +1 CHARACTER LOCATION
STORE IN LOCBO

SAVE STACK POINTER

|

SET STACK POINTER = LOCATION
OF LAST CHARACTER IN ROW - 1
|

FILL ROW LOCATIONS
WITH SPACE CHARACTERS
VIA STACK PUSH QPERATIONS

i
RESTORE STACK POINTER

RETURN

Figure 4-38. Fill Subroutine (FILL)

OUTPUT WRITE CURSOR
POSITION COMMAND TO 8275

i
I
QUTPUT CURSOR X POSITION «COLUMN COQUNT)

TO 8275 FROM [CCTAD

QUTPUT CURSOR ¥ POSITION (CURSOR ¥ POSITION)

TO 8275 FROM

|
i
RETURN

Figure 4-39. Load Cursor Position Subroutine (WP75)

)

e 2

;)
4
4

Appendix 5.1

2 T8 05,
aol . — _ [2
1z 1) 28 s
Horpo—o—o————— o1 anfs— —_— -- E ——oz
7
- e 1o
3
<5y T . . . - 2loi 212
= 20808 30 16
o . - . - Yo
cru p 1"
w® Asts _ — 1 ﬂmﬁ
J— a0 s 20
75 A - . — DIy
it INT REO s 8 N N oo
[—e My aph3 o . 2]y
B251 7 - - N
RaROY
o2 o
I ERP AR
x7aL STB D5;
18 437 MHL Abe
a8y
0 A
AB11
19F A1z
AB13
1 15 AB1g
of X2 X1 In aBy5
v ae——-H vy,) S— -
w
Vg 2 —_— R
vEIN
a 12
It GND 8224 — ——L o wor—Hwar HLDA
5 2 f
_ ———] RESIN HESE) RESET Dy
A3 3 DBy
I TSV~ ANA—— - HDYIN HEADY HEADY 0Bz
READY o ve.
= = o), 2z asiN 4
S¥NE asc vay
DK
w21 8
s
HECREl r
STATUS _ - _ P
STRGBE J=N M
. - £ GNE gypy by
ok
Ve - ———— e v Vow
v - s e ety .
— - — G RESET
FIMOSALC —
o v A - - - ,*l:- — - HEsET
v . ——— — o e ATTL
- S . os
k| awr] dzer | onr o 20 Quf |1 18 432 My
£L o ~5 §YSTEM BUS ¢ NADL {
'[T . ——— A . JUEEEE
- S N S N . P .. . S R e Guse

CRT Terminal Schematic — CPU Section

31

LYV

neg _

any

b -
ABI e

LUy p——
A -

ani

716
£ PhoM

g es |
ot R BT
L]
e
w
g s
o L“
o p—rr
P 1e
op
o
e st e)
MM (BUr o i
. e a MM
ws CLh
- Comntetr
— . O 0y
CRT Terminal Schematic — Memaory Section

33

$

4251 DECUDER

5
16
"
b
= 8205
aen — b1
€2
fﬂ
T
£y
GhY

9 S

1
ﬁ:‘” —+ TO 8251 ¢S

Y
FEHIPHERAL PECODER
sy
Ive
Yoo
ass — 1 lag Go e vo g7 &5
Aby 2{m oy b1 toeses
3 [
Aﬂr’——1 a2 0 p—"s 10827905
A 8205
At ———of t3
s
Lt
=l
$ oan
8
13 =
5y
aBg ——
Aty

8y

RESEL

"
AEN_ ADSTH

HFAOY

ver

GRD

LR

LGW

MEMR

12
—— oz T3y

"
=AW~ — by

n

" v

20

E

'
L iion

2
}— iiow

— memn

.
—— mEMw

AEN TO BUSFN, DECODER
INHIBIT
INPUTS

bV

At lu

2 ved
oi

————— —— ———{ it

LCLK FROM DOT

Yoy TIMING LOGIT

G G Y YT

n
—— FROM PERIPHERAL DECODEN

iz
o1y

ot
158 g 0217
=%
o1
oig

MO_GND.
FEE

agy

ABg

0o,
uog

CLA
D5t
1

agg
AB1p

a8y
ABLz

ARy

BERN

Alyg

11T
2

[T

AB1H

buz
o8y
g
pas

g
vy

I Schematic — Peripherals Section

0 |w o
N GNB Ueo COLK | 23
A0 €Cg |on—wcco
cey r‘-ﬁ cCy
& e Fel
2 T—- (553
. oy P —— ey
IfoR —{ D £y r——«“ CCy
- cos 0 v ecs
R Y] g 22
n
asig —— ag Yo S,
Wit
e P ey
Gy 1
2
_ Mg L
VRAIC f—— ——= VKIC
[RITY) R STTY
wl
17
’v“ Dby,
H
o
19 D:ﬁ
7
- S THG
22 31
1K
FROM bV
PERIPHERAL
DFCODER 1aca
azis
INT

ot
b Timirc
LOUIC

oy
2 40
0 Vs Voo m
HOR - B CITY
3
any o 2
"
LW WA [--7; —
Ry et =
2Tl hea fpo— -
5
Hin b Fhm
asg -2 e e’ e fMILRUSWITEN
[KOYBUARL
Ay fo -
BESET HESET
JuT - s2re e
PEHIKHERAL —d CS SHIET -
LECOLLN
43
ety Pt
OB 51y sy s
X FI B
1K
oy
rafe e
o o7 o
—q5ys wno Pt - -
iy oo ptt . - e
= ourzpd.
1o) w
PEIL s L
td ccwubspd PMUCHOSWITLH
oyt s p soe KD YROSHD

oot e _—
Ul b bt — e
/

o

out 7
Ja1H

FRUM
02

XTAL 7268 MH:

oy

e
vee 2 e]ag
5 7

175

GLRCLK

s

CLA CLK GNOD|

ag
e
0

EY

!

EE Y

2708
als EPHOM
R ,LJM
LA i 1.

ITT I Y 3 Jee
(5 1 1A
ci R Cix Guo
23 | Ay
22
vsy PGM

Vec Vea Voo
o1

oz}
03
o4
o
e
0]

iy

CHARACTER
GENERATOR
HOM

a

[
14578

L

 [Aecec Fe vl el
——ex g W . Z
] S RvY e TANs121
74166 s ’
[- CLK INWBIT - —y
HIFLILOAD sepia it |2
oo} e of,
£ v neGISTER .
3 5
[CLK CLK a SR
DELAVED
vren s o,
3
cin ‘—”Lm
4 2
HRTC [al—3o Q anﬁ
DELAYED
: 3 9|
ENABLE P
45183 10 oL -
ENABLE T,
Luaw -
DATA INPUTS
5 14 [5 16 « vare 2] e apem
=T JCOUNTER 9 4 "
CLK ek] v s
DELAYED
15K
o AN = By
.34,
DOT CLOCK
COLK (CHARACTER CLOGK)

oy
6 w1z ut
18

CRT Terminal Schematic — Dot Timing Logic Section

37

10825

™

5 S+ WIDEO OUTPUT

(10 CRT PIN 8]

- HORIZONTAL DRIVE

9602 (TOCAT PIN 6
46v
% ®
- - VLAKICAL DRIVF
ITOCAT PIN S|

ano| -

ITOLAT IR 1

b TU CRT MONITOH

OND OIS TLLAIND DIS 1D £}

B A Wl W
- - "t [CRCEET
AQL-
vLBNL T
& H ML
zzzENg e ——dn 1o oge
o L
— H 13 ¥HALL 6
Mv_ Ho LAdNI
T viva
All gz 1H
AGs
AZLe
AGe At . i THW ZED BL
250
S S s
AGe - AAA, — - . ’ . ' -
a
o
HIl o] ¢ z) . 9]] ¥] €] z|
° IW_AUI_U LIS I L I -4 W2 HID o239 ¢ AT HID
-
nz L Ll et { f94 0 1L 1 N 1) e]+
— 13 A — +— L
ot toirt e tot %_ 19ie b T
n o 0590 90 ¥ —qai
e L o 90 8p Yo 6
Indino sy [(NYr4Snny | 2%
52
v 7]
JER] 2 ez L3 XIALL*L 14D AG Qb
m ,blmuAﬂ . smoAm: -
L
WL oowmm el 74
]
eLeeNe 00E SE
= 051 9¢ 6z
T I . L. el
[}—o o o b o1 m Se0LL e
90 gy XLALL \
90vL
8
EIR
LOGENS LI 9 ‘ QAE ol el e
M < 00/ 13— — - = ————— 1383y
e A . e o "
H 57| Y ot oM Mot
e
AZL. AZLe AGH ASH 6 124 o a4 4o/l ¥300230
———— - * b =
G s 1 2 .s”m.”u
o] e
TR A L o v
o— e ppbpbP—m7 ™m—m————
ST 55 = of; tag
b
mo..m._uxe.; SIH = 1829 .mc " %90
c ulg (] [H it ry s8g
% usa - 5 # rarg a0
= [%3] 7 faa
ﬁll_q aNo Zg T e 2aq
AN 1626 =] AQU™Y tofgs—mrm - e lag
AGe - s{30A L] e —

SERIAL COMMUNICATIONS SECTION
39

Appendix 5.2
ESCAPE/CONTROL/DISPLAY CHARACTER SUMMARY

CONTROL DISPLAYABLE ESCAPE
CHARACTERS CHARACTER SEQUENCE
0 0 0 o] 1 1 1 1 0 0 1 1 1 1
BIT 0q 04 ol Oai O 0l s 19 LR 00 0, 1o 1
@ P
0000 NUL DLE SP o @ P
A IDCI Q
0001 SOH rlr |a|a ? A
B R
0010 STX DC2 " 2 B R 3
c S
0011 ETX DC3 = 31c| S .
D T
0100 | EOT DC4 s [4 |0] T -—
E u
01, ENQ NAK % 5 € 9] CLR ¢
F v
0110 ACK SYN & 6 F \
W
o1 7 G W
X
1000 { 8 H X HOME
Y
1001) 9 I Y
z
1010 o B z EOS
K
1011 vT + K { EL
L ;
1100 FF FS . < L
1101 - = M]
N \
1110 S0 RS . B N A
o]
mn S1 us - / ? 8] -
NOTE Shaded biocks functions termmal will react 1o, Others can be generated but are ynored up on recept.

40

Appendix 5.3
SUBROUTINE INTERRELATIONSHIPS

[RRIFH
INILNOHENS
AR (P
[RRIEY f
INLLnoYens (10HIS)
T4 152dM) INILNOYENS
_ INILNOY T0uds
ans
170405} NOILISOd ﬂ
INILNOYANS HOSHND
T10H08 avo1 1GLdM)
_ INILNOYANS
(524M) NOILISOd
INLNONENS HosHND
NOILISOd awon
HOSHND _
avol ———
i _)i H —
(os1a} 1asia) (vsia)) | ’ ||_
3 INILAOHANS 8 INLLACHENS v INILNOHAENS INLLNOYENS a H M t ! ﬂ
AYdSI10 AYdSIa AVdSIa 1 1400
[[| 18253) 1a353) nua Moy} INILNOYBNS INGMOY} INILAOBENS (NGMOY) dNMOY)
INILNOY INILOOH aNILNOHENS 1437 INILNOYENS LHOIY INiLnodans | INILnouEns
NMOa 1431 ANMOY NWN10D NMOOMOY NWN 0 NMOOMOY dNMOHY
INILNOYENS HOSHND HOSYN2 ros3) |+
4 (W HLY) _ _ (¥383 3INILNOYW
INLLNOY (FI81D) (HIWLDY INILNOY NIJYIS {HIS3) t3083) {10083} {0083 14953 (v2s3)
s NHNLIE INILNOM 3NILNOM EITR] 40aN3 3INILNOH INKELAOY INILNOY INILNOY INILNOY INLLNOY
IDWIHHYD G334 INFT I0vdS ¥OWE 3SyHa OL ISvHI IWOH NIIWOS HYITD 1337 HOSHMD LHDIM HOSHND NMOQ WOSHND dn HOSHNI
1 INILAOHENS i |) |
>5ﬂ_m_e + [L l l *
Hsia v anznouEns
INILNOYUENS DNITANYH NtLnovans I0N3INDIS
Y3ILOVHVHI AV 14810 3goo
10HINOD 3dvIs53
_ i . o . |
[LETT
INILNOBENS
ONITONYH
/NOILINDOSIH
HILIVHVHD
{L1u) {154QH)
INILNOYENS ANILOOHENS
I0IAHIS HILIVHYHD LEVSN
1dNYYILNI 5428 JHOLS/AVIY
1
1104
INLLNOHANS INIT10d LANHHILNI
]

SANILNOY NOILYZITVILINI W3 LSAS

41

Appendix 5.4
SOFTWARE TIMING

Subroutine execution times are summarized in the
flowchart provided in Figure 5-1. The values shown
represent the number of clock cycles required for
the execution of a given routine. The actual rou-
tine execution time is cbtained by multiplying the
number of clock cycles/routine by the time/clock
cycle. For a 2.048 MHz system clock, the time/
clock cycle is 0.4883 usec. It should be noted that
the values indicated represent worst-case execution
times. In order to appreciate the meaning of the
subroutine execution times, it is necessary to con-
sider two factors:

I. The time available for the CPU to execute
instructions between DMA operations.

2. The maximum rate at which data characters
are presented to the CPU for processing.

CPU availability during a complete display frame is
illustrated in Figure 5-2. Available CPU processing
time, per character, at 4800 baud, during the DMA
active portion of the display frame, is illustrated in
Figure 5-3. It can be seen from Figure 5-3 that
1443 psec are available for processing each charac-
ter during the DMA active portion of the frame.
Total CPU processing time during the DMA inac-
tive portion of the frame may be seen from Figure
5-2 to be 1234 usec. This value encompasses the
time to process the 8275 interrupt and perform
character handling functions.

Using the information contained in Figure 5-1,
the maximum execution time* for a given charac-
ter handling routine is 802 usec. Since this value
is less than 1.443 msec, proper timing is assured.
Using the maximum character handling routine
execution time and the time required for 8275
interrupt processing, the maximum CPU availabil-
ity requirement during the DMA inactive portion
of the frame may be calculated. This value corre-
sponds to 802 usec + 253 usec (8275 interrupt
processing) or 1055 usec. Since this value is less
than 1234 usec, proper timing is assured.

*see notes, Figure 5-1.

42

Appendix 5.5

VISUAL ATTRIBUTE IMPLEMENTATION
CONSIDERATIONS

In order to utilize the visual attribute features of
the 8275, it is necessary to modify the CRT sys-
tem hardware and software functions accordingly.

Hardware modifications necessary to implement
character attributes are illustrated in Figure 5-4.
The attribute outputs LAO—LAT1 selectively con-
trol the data transferred to the output shift regis-
ter.

The software memory management scheme pre-
sented in the Application Note must be modified
in order to accommodate attribute features. An
outline of the software considerations involved
when using the attribute features is presented as
follows:

1. Attributes, as described in the 8275 Data
Sheet, occupy character locations in display
memory. Since the number of attributes per
display row may be variable, the linear map-
ping relationship between character position
on the screen and memory pointers Top, Row
Count, and Column Count no longer exists.
It is necessary to keep track of the number of
attribute characters in each row and their
specific location when modifying pointer
values,

2. The increased number of character iocations
required will force the user to incorporate
additional display RAM.

3. Since the total number of characters in dis-
play memory may be variable when attributes
are utilized, it is necessary to modify the
starting address and terminal count values for
the DMA channels as required.

4. Character insertion and deletion operations
may be handled through block transfer oper-
ations or through the use of extended display
memory row segments.

n

¢

e T s e o

INITIALIZATION
ROUTINES

v NG
R

{_Q

COMPLETE INSTRUCTION

> 8

10
POJi;L

4/%0
Rslr 7 TIMING VALUES SHOWN REPRESENT THE NUMBER OF
CLOCK CYCLES AEQUIRED TO EXECUTE A GIVEN ROUTINE.
11
IMP POLL

Figure 5-2. CPU Availability

T T
RD‘F51 HTI75
4|0 430
CH!‘%EC
;7 1"17
ESILEC CN1|'RL 87
1([)7 83 DIlPL
>~
T T T T T 1 [T 1
ESCA EXCB ESCC ESCD ESCE ESCH ESCJ ESCK CTRLH CTRLJ CTRL M 74 134 134
’ | m|51 DES1 oI5
259 B91 958 309 1058 159 4840*" 818 319 901 120 |
. + + 4 + + ‘ Em— 1026/427 026/427 1026/427°
DI|SA DISB DISC
1[20 192 84JB
* UNDER NORMAL OPERATING CONDITIONS, 427 CLOCK CYCLES REPAESENTS
THE WORST CASE EXECUTION TIME FOR THIS ROUTINE.
** |TISNECESSARY FOR THE REMOTE DEVICE TO WAIT APPROXIMATELY 2.5 ms
FOLLOWING THE TRANSMISSION OF AN ESCJ CHARACTER BEFQRE RESUMING
TRANSMISSION.
Figure 5-1. Subroutine Execution Times Flowchart
DMA ACTIVE DMA INACTIVE DMA ACTIVE
1st ROW TIME 24th ROW TIME 25th ROW TIME 1st VERT RETRACE ROW 2nd VERT
(LAST DISPLAY ROW) RETRACE ROW
f 617 617 617 617 617
- usec USEC 1USeC usec i HSec
160 457 160 457 160 457
—
4sec usec usec usec usec usec
CPU CPU AVAILABLE CPU
3 AVAILABLE 1234 usec AVAILABLE

43

2468usec

t — Qusec 617usec 1234usec 1851usec
ROwW TIME
617 617 617 617
—_— e — —
usec Hsec usec usec
[‘160 457 160 457 160 457 160 457
 |—
usec usec Hsec 1sec usec usec USec usec
Ist 2nd
CHARACTER CHARACTER
ARRIVES ARRIVES
(2083 usec)
CPU 9 cPU CPU CPU
AILABLE #7275 AVAILABLE | AVAILABLE AVAILABLE

TIME BETWEEN CHARACTERS = 2.083 ms = 2083usec

= {457usec X 3) + (2082 - 201 1usec} = 1443usec

TOTAL CPU TIME AVAILABLE
BETWEEN CHARACTERS

BAUD RATE = 4800 BAUD
10 BITS/CHARACTER

Figure 5-3. CPU Availability/Character at 4800 Baud (DMA Active}

MORIZ RIGHT ‘
|
|
|
I

HALF

Qo !

CHAR. GEN. _ :

ENABLE L
o ———:D_:D—
o2 r:D—::DB

CHARACTER
GENERATOR SHIFT

[:‘> 03 ; ‘:_;‘ F REGISTER

= |
N R ——) S
s) i ey

‘

8275 H H

LINE 1 out
\ Q " HORIZ LEFTHALF } |
|
1
i : 1

: ‘
R

SYNCHRQ-
b JLTE
LTEN NIZATION N

HGLT

RVV

AVY

Figure 5-4. Typical Character Attribute Logic

HGLT

44

¢ ¢

Appendix 5.6
SOFTWARE LISTINGS

Loc 0BJ SEQ SOURCE STATEMENT

; :8275/8279 CRT SYSTEM SOFTWARE
: 'SYSTEM EQUATES
00FB 5 CNCTL EQU OFBH 18251 CONTROL ADDRESS
QOFA § CNIN EQU OF AH 18251 INPUT DATA ADD
D0FA g CNOUT EQU OF AH 18251 QUTPUT DATA ADD
006F KCOM EQU 6FH 18279 COMMAND ADDRESS
006E 9 KDAT EQU 6EH 18279 DATA ADDRESS
005F 10 CRCOM EQU SFH 18275 COMMAND ADDRESS
005E 11 CRDAT EQU E 8275 DATA ADDRESS
008k 12 PC2SA EQU uH '8257 CH 2 START ADD PORT
0045 13 PC2TC EQU 45H 18257 CH 2 TERM COUNT PORT
00ub 14 PC3SA EQU 4bH 18257 CH 3 STARTING ADD PORT
0047 12 PC3TC EQU 47H 18257 CH 3 TERM COUNT PORT
0000 16 MDC57 EQU 00H 18257 MODE CLEAR
0084 15 MDS57 EQU B4H 18257 MODE SET (AUTOLOAD, CH 2 ENABLED)
0048 }9 PMD57 EQU 48H 18257 MODE SET PORT
20 3SYSTEM INITIALIZATION ROUTINES
5 ;
0000 C34000 SE JMp CRTGO ;JUMP TC START OF MAIN ROUTINE
0038 gg dra 0038H
0038 C3C900 g Jmp POLL ;JUMP TO START OF INT SERVICE ROUTINE
0040 gg ORa 0040H
0040 F3 1 CRTGO: DI :DISABLE INTERRUPTS
0041 31FF87 32 LX1 SP, BTFFH {LOAD STACK POINTER
% {MEMORY CLEAR ROUTINE
0044 210080 3 LxI H,8000H ;LOAD H&L WITH START ADD OF DISPLAY MEM
0047 3E20 37 THETA: MVI A, 20H :LOAD A WITH SPACE CHAR CODE
0049 77 3 MOV M)A *LOAD SPACE CHAR IN MEM
Q048 7D 39 MOV :MOVE LOW ADD BYTE TO A
004B FECF 0 CPI olFH !COMPARE WITH OCFH
004D CA5400 41 JZ NXT1 IF COMPARRISON JMP TO NXT1
0050 23 b2 INX H ! INCREMENT H&L
0051 C34700 ua JMP THETA ‘JMP TO THETA CONT LOADING MEMORY
0054 7C Uk NXT1: MOV ALH 'MOVE UP ADD BYTE
882? ggggoo ﬁg c;z 878 {COMPARE WITH 87H
J NXT2 C
it i’Bo %‘Eﬂﬁ%ﬁ%"aﬁBDTbAﬁ}iTBIS"L“
0054 2% Y INX H I INCREMENT
005B C34700 49 JMP THETA YIMP TO THETA CONT LOADING MEMORY
50 ;
g; 'POINTER/BUFFER CLEAR ROUTINE
r
00SE 210000 53 NXT2: LXI H,0000H ; ZERQ H&L
0061 22D387 5 SHLD RETAD i ZERO ROW COUNT
0064 22E287 55 SHLD LOCBUF {ZERO BUFFER
0067 22D887 56 SHLD LOCAD ZERO CHARACTER LOCATION
006A 22DA8T 55 SHLD LOCO1 1ZERO LOC OF 1ST CHAR IN ROW
006D 22DC8T 5 SHLD LOCAQ 1ZERO LOC OF 80TH CHAR IN ROW
0070 22DEB7 59 SHLD LOCXX 1ZERO PRESENT LOC OF 1ST CHAR IN ROW
0073 22E0RT 80 SHLD LOCER {ZERO PRESENT LOC OF 15T CHAR IN ROW
0076 210080 61 LXI H,B8000H {LOAD H&L WITH 8000H
0079 22D687 62 SHLD 3P AD iSET TOP = B00OH
007C 218087 63 LXI H,8780H 'LOAD H&L WITH 8780H
Q07F 22E6B7 6 SHLD 6TAD 'SET BOT = 8780
0082 3EQ0 65 MVI 0OH *ZERO A
0084 32D287 66 STA céTAD {ZERO COLUMN COUNT
0087 32D587 6g STA CURSY 1ZERO CURSOR Y POINTER
0084 %2EN87 6 STA XFLG 1ZERO ESC SEQ F
008D 32E587 gg STA USCHR 'ZERO USART CHAH BUFFER
0 -
;; 18251 INITIALIZATION ROUTINE
0090 3E4F 73 MVI A UFH sMODE SET VALUE TO A
0092 D3FB 7 ouT CNCTL 0UPUT VALUE
po9L 3E27 75 MVI A,27H {COMMAND WORD TO A
0096 D3FB %6 ouT CNCTL *OUTPUT VALUE
Yé 18279 INITIALIZATION ROUTINE
0098 3Egs go MV I 35H ;OUTPUT PROG CLOCK, DIV BY 21
009A D3BF g; ouT Ké
ga 18275 INITIALIZATION ROUTINE

45

OQO0OOQOOO0O OOOCO
P A S O T
PNOMNMNIMNMNOMNIN b s u D
W WM = O o O~ £ —a)

3E0Q 85 MY T A,00H :RESET AND STOP DISPLAY
b3sF 36 OuT CRCOM
3IELF ag MVI A, UFH :SCREEN PARAM BYTE 1
D35E 8 QuUT chpaT
3E58 39 MvI £,58H : BYTE 2
D35E 90 ouT CADAT
3EB9 91 MV1 A,89H : BYTE 3
D35E 32 ouT cADAT
3ED9 93 MV I A,0D9H ; BYTE &
D35E 9 oUT CRDAT
3ERD 95 MVI &,80H :LOAD CURSOR PCSITION
D35F 96 ouT CRCOM
3E00 97 MVI #,00H :CURSOR X POSITION
D35E 98 oUT CRDAT
3ED0 99 MV I #,008 :CURSOR Y POSITION
D35E 100 OuT CADAT
3EED 101 MV I A,OEOH +PRESET COUNTERS
D35F 102 ouT c&CoM
3E23 103 MV A,23H :START DISPLAY
DgSF 10 QuT CACOM
F 195 EI ;ENABLE INTERRUPTS
00 106 LOOP: NOP
€3C500 107 JMP LOOP
108 H
109 :
110 18275/8251 INTERRUPT POLLING ROUTINE
m :
11 :
DBSF 113 POLL: in CRCOM sREAD 8275 STATUS, CLEARING INT
£620 1 ANI 206 'MASK STATUS, SAVE INT REQ BIT
CADS500 115 Jz AGGIF 'IF STATUS=1, SERVICE 3275
‘! .
CD7304 117 GIGEM: CGALL RT75 ;CALL 8275 INT SERVICE SUBROUTINE
FE 113 EI 'ENAELE INTERRUPTS
o 1;8 RET *RETURN
CDDDOO 121 AGGIE: CALL RDFS1 ;CALL READ USART CHAR ROUTINE
CDE500 122 CALL CHREC 'CALL CHARACTER RECOG/HANDLING ROUTINE
FB 123 EI 'ENABLE INTERRUPTS
9 }g RET *RETURN
5 H
126 'USART READ/STORE CHAR SUBROUTINE
12 :
DEFA 155 RDFS1: IN CNIN {READ ASCII CHAR FROM USART, RESETTING RXRDY
E6TF 129 ANI 7FH {MASK EIT 8,SAVE BITS 1-7
32587 130 STA USCHR 'STORE USART CHAR 1IN MEMORY
c9 }%; RET *RETURN
i
}gg CHARACTER RECOGNITION/HANDLING SUSROUTINE
JAE4BT 135 CHREC: LDA XFLG <LOAD A WITH ESC SEC FLAG
EGEF 136 ANT OFFH !SET/RESET ZERO BIT
CAF100 137 Jz NXTX \TF ONE,CHAR=2ND CHAR IN ESC SEQ
CDOFO 1 13 CALL ESREC {CALL £5C SEQ SURRQUTINE
co 139 RET " RETURN
IAE587 180 NXTX: LDA USCHR ‘LOAD USART CHAR IN A
E660 141 ANI 60H :MASK BITS 1-5,%B8,SAVING BITS 6%7
CAFDOO 142 Jz NXTY 1IF ZERO CHAR=CONTROL CHAR
1ua *IF ONE CHAR=DISPLAY CHAR
CD4RO3 14 CALL DISPL ICALL DISPLAY CHAR SUBROUTINE
9 1445 RET RETURN
JAE587 146 NXTY: LDA USCHR 'LOAD USART CHAR IN A
£610 1ug ANT 10H *MASK OFF BITS,SAVE RIT 5
20901 14 INZ NXTZ 'IF ZERO CONT EHAR=CONT CODE
143 “TF ONE CONT CHAR=ESC CODE
CD2701 159 CALL CNTAL 'CALL CONTROL CODE SUBROUTINE
9 151 RET *RETURN
21E437 152 NXTZ: LXI H,XFLG 'LOAD H&L WITH ADD OF ESC SEQ FLAG
3601 183 MV I MIO1H "SET ESC SEQ FLAG
9 15 RET "RETURN
155 ;
156 "ESCAPE SEQUENCE SURROUTINE
5 ;
3E00 155 ESREC: MVI A,00H \ZERO A
32E487 159 STA XFLG ‘RESET ESC SEQ FLAG
3AE587 180 LDA USCHR JLOAD USART CHAR IN A
E6OF 161 ANI OFH *MASK BITS 5-8
07 162 RLC !SHIFT LEFT,YIELDING OFFSET
21D004 163 LXT H,BSET1 :LOAD BASE ADC OF TABLE 1 IN H&L
110000 16 LXI D.0DOOH 'ZERG DAE
5F 165 MOV ElA ‘LGAD OFFSET IN E
19 166 DAD D ‘ADD OFFSET TO BASE, RESULT IN H&L
SE 16g MOV E,M ‘MOVE LOW BYTE OF ROUTINE ADD TO E
2 16 INY H INCREMENT COMPUTED ADDRESS
5 169 MOV D,M ‘MOVE UP BYTE OF ROUTINE ADD TO D
EB 170 XCHG :EXCHANGE D&E WTIH H&L
E9 };1 PCHL 'LOAD PC WITH ROUTINE ADD, JMP TO ROUTINE
2 H
173 *CONTROL CODE SUBROUTINE

46

oy

[elelolslslslololelele]
B I U S P Y
LA LIt R NI R Ry
QO TN = N) O

COQOOUOOOOCOOOOOO0
T S P S U
(RN TN RS L LA) D P i o g S DY TN (R[]

MOEWO O OWIN Mo OO
ad -3

CSOOOO0 COO0OOOO0O0O
J S L P OO
I =I=J~] NN
OWw o mMoODeUIWN ™

QOO OQOOQOUOCOOOO OO

e e G S S S s

> 3o X» X v o o WOANDWOND OO QOO0 QO C0COMD 0000~

OO NS|OWODDOATHLNTMID RO AN oD
=3

COO0O0oOOOOoQOoOO
b e b e ke b b 2
CQQOOOENwomoEow
OOMAN O IO oW O

174 H
3AE587 175 CNTAL: LDA USCHR ;LOAD USART CHAR IN A
E606 176 ANI 06H tMASK CHAR, SAVE BITS 2-3
21F004 177 LXI P,BSET2 ;LOAD PASE ADD OF TABLE 2 INMN BE&L
110000 178 LXI D,0000H ;CLEAR DAE
5F 79 MOV E,A ;LOAD OFFSET IN E
19 180 DAD D ADD OFFSET TO PASE, RESULT IN H&L
5E 181 MOV £,M MOVE LOW BYTE OF RCUTIPE ADD TO E
22 182 INX H INCREMEVT COMPUTED ADDRESS
5 ’53 MOV D,M ;MOVE UP RYTE OF ROUTINE ADD TO D
EB 13 XCHG ;EXCHANGE D%E WITH H&L
E9 ;gg PCHL :LOAD PC WITH ROUTINE ADD, JMP TO ROUTINE
Jgg 'CURSOR UP ROUTINE
2AD387 189 ESCA: LHLD RCTAD s LOAD ROWCOUNT IN H&L
D 190 MOV L yMOVE LOW RYTE QF ROWCQOUNT TO A
FEOQ 191 CPI 06H ; COMPARE BYTE WITH OO0OH
CAU601 192 JZ ALPHA s IF BYTE=Q CONTINUE COMPARRISON
CD0803 193 CALL ROWUP +CALL ROWUP SUBROUTINE
c9 191 RET ; RETURN
7C 195 ALPHA: MOV A,H ;MOVE Uf BYTE OF ROWCOUNT TO A
FEQO 196 crl 00H ;COMPARE BYTE WITH QOH
CAS001 19% JZ BETA ’IF RYTE=0,ROWCOUNT=FIRST ROW
CDOBO3 19 CALL ROWUP s CALL ﬁOhU# SURRCUTINE
[} 199 RET RETURN
218007 200 BETA: LXI H,0780H LOAD H&L WITH ROWCQUNT=LAST ROW VALUE {(1920D)
220887 201 SHLD RC]AD STORE 0730K IN ROWCOUNT BUFFER
E1 MVI , 18H LOAD A WITH CURSOR Y POS=LAST ROW VALUE (240)
32D587 STA CURSY \TORL 144 IN CURSOR Y POS RUFFE
883C03 EE%L WPT5 CALL LOAD CURSOR POSITION SURROUTINE
206 H
58 ;CURSOR DOWN ROUTINE
1]
2AD387 209 ESCB: LHLD RCTAD ;s LOAD ROWCOUNT IN H&L
7D 210 MOV L sMOVE LOW BYTE OF ROWCOUNT TO A
FE80 21 CPI BCH ;COMPARE BYTE WITH B80H
CABCO1 212 JZ GAMMA IF BYTE=80QH, CONTINUE COMPARRISON
CD1403 213 CALL ROWDN CALL ROWDOWN SUBROUTINE
C9 21 RET ;s RETURN
7C 215 GAMMA: MOV AH ;MOVE UP BYTE OF ROWCOUNT TO &
FEQT7 216 CPI O7H ;COMPARE BYTE WITH OTH
CAT601 217 Jz DELTA s IF BYTE=07H, ROWCOUNT=LAST ROW
CD1A0D3 218 CALL ROWDN ;CALL ROWDOWN SUBROQUTINE
C9 219 RET s RETURN
CD3C03 220 DELTA: CALL WPT5 ;CALL LOAD CURSQOR POSITION SUBROUTINE
CDOBOY 221 CALL SCROL ;CALL SCROLL SUBROUTINE
Cc9 SSZ RET s RETURN
22 ;CURSOR RIGHT ROUTINE
225 ;
3AD287 226 ESCC: CDA CCTAD ;LOAD COLUMN COUNT IN A
FE4F 22 CPI 4FH ;COMPARE BYTE WITH 4FH
CA8901 22 JZ ZETA IF BYTE=4FH, COLUMN COUNT =LAST
229 CHARACTER PéS IN ROW
CD3403 230 CALL COLRT CALL COLUMN RIGHT SUBROUTINE
C 231 RET RETU RN
2AD387 232 ZETA: LHLD RCTAD LOAD ROWCOUNT IN H&L
7D 2 R MOV A,L MOVE LOW BYTE OF ROWCOUNT TO A
FE80 23 CpPl 86H COMPARE BYTE WITH B80H
C29B01 2%2 JNZ CCTOA 'IF BYTE=80H, CONTINUE COMPARRISON
C 2 MOV AH ;MOVE UP BYTE OF ROWCOUNT TO A
FEOT 23 Crl Q7H COMPARE BYTE WITH O7H
C29B01 23 IJNZ CCTOA IF BYTE=Q7H,ROWCOUNT=LAST ROW
C3A401 239 JMP CCTOB ;JUMP TO CCTCB
3E00 240 CCTOoA: MVI A,Q0H 1ZERO A
320287 241 STA CCTAD s ZERO COLUMN COUNT
CD1Aa03 242 CALL ROWDN ; CALL ROWDOWN SUBROUTINE
c9 24 RET S RETURN
3EQQ 244 CCTOB: MVI A,00H ;ZERO A
32D287 245 STA CCTAD s ZERO COLUMN COUNT BUFFER
Cb3C0 246 CALL WBT5 sCALL LOAD CURSCR POSITION SUBRCUTINE
CDORQ 24 CALL SCROL ;CALL SCROLL SUBROUTINE
C 23 RET s RETURN
249 H
gg? ;CURSOR LEFT ROUTINE
3AD287 252 ESCD: DA CCTAD sLOAD COLUMN COUNT IN A
FEQQ 25 CPI 00H ’COMPARE BYTE WITH Q0OH
CABCO1 25 JZ NXTA 3 IF BYTE=0,COLUMN COUNT =FIRST CHAR POS IN ROW
CD2C03 25 CALL COLLT CALL COLUMN LEFT SUBROUTINE
Cq 25 RET ;RETURN
2AD387 257 NXTA: LHLD RCTAD ;LOAD ROWCQUNT IN H&L
7D 25 MOV A,L ;LOAD LOW BYTE OF ROWCOUNT IN &
FEOQ 259 CPI 00H ;COMPARE BYTE WITH 0OH
C2CEQ1 260 INZ CCTMA 3 IF BYTE=0,CONTINUE COMPARRISON
7C 261 MOV A,H ;LOAD UP BYTE OF ROWCOUNT IN A
FEOQ 262 CPI Q0B ;COMPARE BYTE WITH ZERO
C2CEO1 263 JNZ CCTMA +IF RYTE=0,HOME POS CONDITION EXISTS

47

91CB C3D701 264 JMP CCTMB ;JUMP TC CCTME
01CE 3EUF 265 CCTMA: MVI A, 4FH ‘LOAD A WITH 4FH
01D0 32D287 265 STA cérap {SET COLUMN CCUNT=UFH=79D
0103 £D0303 26g CALL ROWUP ICALL ROWUP SUBROUTINE
91D6 C 26 RET {RETURN -
01D7 218007 269 CCTME: LXI H,0780H ;LOAD R&L WITH BROWCOUNT=780H=1920D &
01DA 22D387 270 SHLD RETAD }SET ROWCOUNT =1920D)
D1DD 3E4F 271 MV A, UFH {LOAD A WITH UFH
91DF 32D287 212 STA clTAD SET COLUMN COUNT=U4FH=79D
01E2 3E13 273 MV T A, 18H iLOAD A WITH 18H
01E4 32D587 274 STA CURSY :SET CURSOR Y POINTER=18H=24D
01E7 £D3C03 275 CALL wPT75 ;CALL LOAD CURSOR POSITION SURROUTINE
O1EA C9 5%9 RET ' RETURN
578 HOME ROUTINE
01EB 210000 230 ESCH: LxI H,0000H 1 ZERO H&L
01EE 22D387 281 SHLD RETAD 'SET ROWCOUNT=0
01F1 3E0D 282 MV T A,00H YZERO A
01Fg 32D287 233 STA ctTap 'SET COLUMN COUNT=0
01F 82D587 281 STA CURSY {SET CURSOR Y POINTER=0
01F9 CD3C03 285 CALL WPT5 *CALL LOAD CURSOR POSITION SUBROUTINE
01FC €9 ggg RET 'RETURN
]
Sgg *ERASE LINE ROUTINE
01FD 2AD687 290 ESCK: LHLD TOPAD :LOAD TOP IN H&L
0200 EB 291 XCHG *STORE TOP IN D&E
0201 2AD387 292 LHLD RCTAD {LOAD ROWCOUNT IN H&L
0204 19 29 DAD D }ADD TOP+ROWCOUNT, RESULT IN H&L
0205 22DEB7 29 SHLD LOCXX *STORE RESULT IN MEM
235 ;
0208 gEB? 296 MVI A,37H +LOAD 87H IN A
0204 BC 29 CHP H 'COMPARE H WITH 87H
0208 D21402 29 JNC FRODO {IF NO CARRY, CONTINUE
020E CD2A02 299 CALL COMRX TF CARRY,CALL COMPENSATION ROUTINE
0211 C32002 300 JMP BILBO 1JuMp TO BILEO
0214 C22002 301 FRODO: JNZ BILBO 'IF NOT EQUAL END COMPARRISON
0217 3ECF 302 MVI A,0CFH 'LOAD CFH IN A
0219 BD 30 cMp L 'COMPARE L WITH CFH
0214 D22002 20 JNC BILBO *IF NO CARAY,LOCXX LESS THAN OR EQ TO 87CFF
021D CD2A02 305 CALL COMRX *IF CARRY, CALL COMPENSATION ROUTINE
0220 2ADER7 306 BILBO: LHLD LOCXX !LOAD LOC OF FIRST CHAR IN ROW IN BH&L
0223 22E287 307 SHLD LOCBUF !STORE LOCXX IN BUFFER
0225 CD320l 308 CALL FILL SCALL FILL ROW WITH SP CHAR SUBROUTINE
0229 €9 %38 RET RETURN §§\
H
%1; 'COMPENSATION SUBROUTINE COMRX ’
y
0224 2ADEB 313 comx: Lato LOCXX LOAD LOCXX IN H&L
022D 1130F 31 LX1 D,0F3 30H :LOAD COMPENSATION VALUE IN D&E
0230 19 315 DAD D {ADD DAE TO HAL
0231 22DEST 316 SHLD LOCXX *STORE RESULT IN LOCXX
0234 €9 %1g RET
t H
%;g !CLEAR SCREEN ROUTINE
0235 3EFD 321 ESCE: MvI A,0FOH :MOVE EOR CHAR TO A
0237 9619 322 MvI B, 19H !MOVE LOOP CTR START VALUE =19H=25D TO B
0239 115000 323 LXI D.50H 'MOVE 30D=50H TO D&E
023C 2106080 %Ss LXI H,B000H 'MOVE 8000H TO HaL
?
023F 77 326 LOADX: MOV M, A ;MOVE EOR CHARACTER TO MEM
02h0 19 327 DAD D {ADD 80D=50H TO ADDRESS IN H&L
0241 05 328 DCR B :DECREMENT B
0242 C23F02 %gg INZ LOADX *CONTINUE LOOPING IF B NOT ZERO
0245 210000 331 LXI H,0000H : ZERO H&L
0248 22D387 332 SHLD RGTAD *ZERO ROWCOUNT
024B 210080 EEE LXI H,B8000H
024E 22D687 33 SHLD TOPAD
0251 218087 335 LxI H,8780H
0254 22E687 336 SHLD BOTAD
0257 3E00 335 My I A,00H +ZERO A
0259 320287 33 STA ctTaD *7ERQ COLUMN COUNT
025C 32D587 339 SThA CURSY 1ZERQ CURSOR Y POS
025F 32ELB7 340 STA XFLG
0262 CD3CO3 341 CALL WP7TS sCALL LOAD CURSOR POSITION SUBROUTINE
0265 C9 332 RET
%ﬂg 'ERASE TO END OF SCREEN ROUTINE
0266 24D687 3ug ESCJ: LHLD TOPAD ;LOAD TOP IN H&L
0269 EB 3“5 XCHG 'STORE TOP IN D&E
0264 2AD387 34 LHLD RCTAD ‘LOAD ROW COUNT IN H&L
526D 19 349 DAD D :ADD TOP+ROWCOUNT, YIELDING LOC OF
350 {FIRST CHAR IN PRESENT ROW
026E 22E087 gg; SHLD LOCER {STORE LOCATION IN MEM

48

0271 3E87 5
MVI 8
she, B @ BT
0277 CDEEG2 384 JNC VAR 313’53“5 B WITH 87H
o 5505 3 CALL COMRY TENO CARRY, CONTINUE COMPARRISON
0210 Seee%? 28 van: g FIN N TO - TION ROUTINE
0280 3ECF 125 VAR JNE FIN HE NOT EGUR
028 s 360 o £, 0CFH ;1F NOT EQUAL END COMPARRISON
0283 D28902 i
3282 Cheeos 383 INC - EIN jCOMPARE L WITH CEW
d ! R LE
363 ; OMRY AL CSAPENSHRTON FopTIae T On FO TO BTCR
0289 2AD687 . j
028C 7D %gg FIN: LHLD ~ TOPAD . LOA
028D FEOD 36 MOV AL :MOVE: TOP IN H&L
928F C2A102 364 Pl O0H CONpARE YT
0292 7C 323 JNZ TROLL s COMPARE BXTE 10 Q0H
sel, B B o 0 St S auve 10 7oL
10 :
2238 S50 e Nz TROLL {77 K0 CombARRLSON, 401
OH ; UMP
S 7 COMARRLSOH S SO da0i
1 GNOME , !
32 2abo6T 3¢ TROLL: LA D, 0FFBOH i JUMP TO GNOME
0284 2f i LXI~ DyOFE ;LOAD ~80D=OFFROH IN DAE
0241 19 687 E1f DAD JLOAD TOP IN HAL
7 SHLD EOTAD 1ADD -80D TO TOP
02AB 3EFO . f
38? GNOME: tWI A,OFOH ; LOAD
02AD ZAEOST i P ; A WITH EOR CHAR (LOOP START)
02B0 77 383 vou MOEPR :LOAD LOCPR IN H&L
0281 10, 3l o . ;MOVE EOR CHAR TO MEM
FE80 A,L .
02Bi C2D502 ERE: cPI BOH SMOVE L TO A
9501 &2 3 SNz BOH o COMPARE YTE WITH 80K
0254 Co0s 389 ce1 &t LHOVE K 20 8 LoON, JMP TO WIZAR
2 ;
D502 %3? SNz WIEAR :%gMPARE BYTE WITH B7H
028D EB) {IF NO COMPARRISON, JMP 10 WIZAR
02C1 7D 3 LHLD ~ BOTAD ;STORE PRESENT LOC IN DAE
02C2 BB 32 MOV AL {LOAD BOT IN el
0563 Cacco2 33 cip g FMOVE L 70 A
02C8 7¢ 3 Nz £ s COMPARE E WITH A
gags IS 31 MOV s I N0 CONP) JUNE TO FUN
02C8 Cacco2 33 cMp D HovE 4 TO A
39 aNg ok COMPARE D WITH A
02CB €9 401 P 1E NO COMP, JMP TO FON
92¢8 90080 a1 RET { TFCOME ARRTSON, RETURY
02CF 226087 ugs U EED K 58000K R RN L WITH 800
A ;
3ABO2 s04 SMP i ISET LOCER 80008
02D5 EB 102 ;
02D6 2AE6 0 WIZAR: XCHG .
02D9 7D 87 oot LHLD BOTAD ; STORE LOCPR IN DSE
02DA BB P MoV AL ;LOAD BOT IN H&L
02DB C2EU02 159 CMP E JMOVE L TO A
02DE 7€ ek INZ NUF [QOMPARE E WITH A
02DF BA 212 MOV A,H s 1F NO COMP,JMP TO NUF
02EQ C2EH02 §13 e D FONEARE D &
413 Nz RE [COMPARE D WITH A
0283 €9 na IE NO Coup, JMp 10 NUF
0284 215000 412 NUF: LXI R ’RETS%EPARRiSON’RETUR”
: 0 ;
02ER 238037 el DAD proot ;LOAD 80D=20H TN H&k
02ER C3ABD2 519 SHLD LOCPR ;STOHEOEOEgRL?gP§E§LOCPR IN D&E)
420 . NOME FIume 16 NoME
v255 2aE087 122 {COMPENSATION SUBROUTINE COMRY
02F1 1130F% 433 COMRL: LHLD LOCER . LOA
03k 19 uzgh LxI" D,0F330K $LOAD LOCr S o
5 22E087 425 D .a H VALUE IN D&E
02F8 SHLD ;ADD COMPENSATION
& i27 SHLD - LOCPR STORE LOCER 1 Mem. o
S ;LINE FEED ROUTINE » RETURN
02F9 C35F01 430 CTRLJ:
i o JMp ESCB
432 i CARRTAGE
RETUR
ozec 3500 TEE ; N ROUTINE
02FE 32D287 ugs :o Ml A,0CH ; ZERO A
0301 £D3C03 §32 STA CATAD 'SET
0304 €9 437 CaLL weT5 13T COLUMN COUNT=0
)
el : IEALL RSOR POSITION SUEROUTINE
338 "BACK SPACE ROUTINE
0305 C3B001 441 C ;
TRLH: JMP ESCD

49

Er,x..

[slelele]

QOO0 COOQ
WL LI
OOWAN T Do

— s

OOoQOCOO0
[VEIWNIUN VS LWL PN W IUN]
PIASRO R MONY — —
DEIE O

[eleYololrlololvialololalelololelolale RN Y oY)
O L)L) LHAD LM A A L A AR A AR
PPl R R o e oAt A eate A RO T TU TN 16 RN
OO O PO OWO M B OOW Omm

OQ OLO0OOoOLOoO0oO0O
LAY L) L LA LD LA AR D)
WOWO OO 0o nCo 0o Co ool

— OO OMUIN) T

(S 18]

4y2 H
ﬁﬁé 1 ROWUP SUBROQUTINE
)
2AD387 445 ROWUP: LHLD RCTAD ;LOAD ROWCOUNT IN H&L
11BOFF Ly LXI D,0FFBOH IMOVE -80D=0FFBOH (2'S COMP) TO D&E
19 uug DAD D ;ADD ~80D TO ROWCOUNT &Y
220387 33 SHLD RCTAD {STORE, RESULT IN ROWCOUNT BUFFER > |
9
210587 450 LXI H,CURSY ;LOAD CURSOR Y POINTER ADDRESS IN H&L
35 451 DCR M ;DECREMENT CURSOR Y POINTER
kK u52 CALL WPT5 ;CALL LOAD CURSOR POSITION SUBROUTINE
c9 ﬁs RET {RETURN
5 ;
ﬁgg ; ROWDOWN SUBRCUTINE
1]
2AD387 457 ROWDN: LHLD RCTAD :LOAD RQWCOUNT IN H&L
115000 45 LXI D,50H {MOVE +B0D=50¥ TO DAE
19 459 DAD D YADD +80D TO ROWCOUNT
22D387 46% SHLD RCTAD !STORE RESULT IN ROWCOUNT
21D587 461 LXI H CURSY :LOAD CURSOR Y POINTER ADDRESS IN H&L
3y 462 INR 'INCREMENT CURSOR Y POINTER
{D3C03 463 CALL w975 YCALL LOAD CURSOR POSITION SUBROUTINE
C9 gg RET {RETURN
ﬁ%g :COLUMN LEFT SUBROUTINE
21D287 uag COLLT: ﬂXI H CCTAD 1LOAD COLUMN COUNT ADDRESS IN H&L
35 469 DCR s DECREMENT COLUMN COUNT
th3co3 470 CALL ws75 ;CALL LOAD CURSOR POSITION SURROUTINE
c9 3;; RET s RETURN
373 : COLUMN RIGHT SUBROUTINE
7 H
21D287 472 COLRT: LXI H,CCTAD :LOAD COLUMN COUNT ADDRESS IN H&L
34 47 INR M + INCREMENT COLUMN COUNT
€D3C03 u7g CALL WP75 sCALL LOAD CURSOR POSITION SUBROUTINE
c9 ﬂ? RET + RETURN
g ;
3%9 ;LOAD CURSOR POSITION SUBROUTINE
U
3E80 482 Wp7s: MVI 4,80H sLOAD A WITH B80H, LOAD CURSOR POSITION COMMAND
D35F usa ouT cﬁCOM
3AD287 ﬂg BD% CCTAD ;LOAD A WITH CURSOR X POSITION
D3ISE 5 i) CRDAT
%%2E87 ﬂgs 58% Sggi% ;LOAD A WITH CURSOR Y POSITION
nag RET s RETURN @ {
150 :
?
33; :DISPLAY CHARACTER HANDLING SUBROUTINE
EAD287 ugg DISPL: LDA CCTAD ;LOAD COLUMN COUNT IN H&L
E4F 49 CPI 4FH 'COMPARE BYTE WITH 4FH=79D
CA5803 ugg JZ CTa IIF BYTE=4FH,COLUMN COUNT=LAST CHAR-
L9 (ACTER IN ROW
CD7EO3 u9g CALL DIS1 :CALL DIS?! SUBROUTINE
883803 39 CéLL DISA ;SQ%L DISA SUBROUTINE
99 RET
2AD387 500 CTA: LHLD RCTAD :LOAD RONCOUNT IN H&L
7D 501 MOV A,L ‘LOAD LOW BYTE OF ROWCOUNT IN H$L
FE80 502 CPI 80H *COMPARE BYTE WITH BOH
CaAbAO3 503 JZ CTB *IF BYTE=80H,CONTINUE COMPARRISON
CDTEQ3 50 CALL DISY 1CALL DIS1 SUBROUTINE
CDC303 502 CALL DISB {CALL DISB SUBROUTINE
o0} 50 RET : RETURN
7¢C sog CTB: MOV A,H sMOVE UP BYTE OF ROWCOUNT TO H&L
FEOT 50 CPI 07H :COMPARE BYTE WITH OTH
CA7703 509 JZ CTC :IF BYTE=OTH,END OF DISPLAY COND EXISTS
CDTEOD3 510 CALL DIS1 :CALL DIS1 SUBROUTINE
CDC303 511 CALL DISB :CALL DISB SUBROQUTINE
c9 512 RET s RETURN
CDTEO3 513 CTC: CALL DIST :CALL DIS1 SUBROUTINE
CDDAO3 51 CALL DISC ;CALL DISC SUBROUTINE
o] 5% RET s RETURN
51 H
g}g : SUBROUTINE DISt
2AD68T 519 DIS1: LHLD TOPAD ;LOAD TOP IN H&L
EB 520 XCHG :STORE TOP IN D&E
2AD387 521 LHLD RCTAD :LOAD ROWCOUNT IN H&L
19 522 DAD D 'ADD TOP+ROWCOUNT, RESULT IN H&L
22DA87T 523 SHLD LOCO01 'STORE LOCATION OFf FIRST CHAR IN ROW
EB 52 XCHG }STORE TOP+ROWCOUNT IN D&E
210000 525 LXI H,0000H :ZERO H&L
AD287 52b LDA CCTAD ILOAD COLUMN COUNT IN A
F 527 MOV L,A 'MOVE COLUMN COUNT TO L o
19 528 DAD D 1CALCULATE LOCATION= i
529 $TOP+ROWCOUNT+COLUMN COUNT,RESULT IN HAL
22D887 530 SHLD LOCAD 'STORE LOCATION IN MEMORY
3IEBT 531 MVI A,87H 1LOAD 87H IN &

50

0397 BC 532 cMp H :COMPARE H WITH B7H
Ogg D2A103 533 JNC NXTCM ‘IF NO CARRY,CONTNUE COMPARRISON
O33R Cohn03 235 SwB" ¥STAD ;I GARAY, CILL COMPENSATION ROUTINE
j M Iy
o§A1 C2AD03 535 NXTCM: JNZ XSTAD ' IF NOT EQUAL,END COMPARRISON
2o Sl S S T 1 o
03A7 D2ADO3 ggg JNC XSTAD Eég ggUgAnag,B%ggaTION LESS THAN
: LT
03AA CDE603 541 CALL COMRT 'IF CARRY, CALL COMPENSATION ROUTINE
03AD CDFBO3 542 XSTAD: CALL EORT *CALL END'OF ROW CHAR TEST ROUTINE
0380 21E587 sug LXI H,USCHR i LOAD USART CHAR ADD IN H&L
03B3 TE 5y MOV A.M *MOVE USART CHAR TO A
03Bl E63F 545 ANI 3bH 'MASK OFF UPPER 2 BITS OF CHAR
03B6 2AD887 5ub LHLD LOCAD 1LOAD LOCATION IN H&L
0389 77 547 MOV M, A 'MOVE CHARACTER TO CHARACTER
548 sLOCATION IN DISPLAY MEMORY
03BA C9 ;51518 RET i RETURN
551 *SUBROUTINE DISA
552 :
03BB 21D287 553 pIsA: Ix1 H,CCTAD sLOAD COLUMN COUNT ADD IN H&L
03RE 3L 55 INR M INCREMENT COLUMN COUNT
03BF CD3CO3 555 CALL WpT5 *CALL LOAD CURSOR POSITION SUBROUTINE
03C2 C9 ggs RET {RETURN
ggé SUBROUTINE DISE
03C3 3E00 560 DISB: MVI A,00H i ZERQ A
03¢ 320287 561 STA ckTAD *ZERO COLUMN COUNT
03C3 24D387 562 LHLD RCTAD 'LCAD ROWCOUNT IN H&L
4G TR AR10 do0ieot i bis
[H + Y
03CF 22D387 565 SHLD RCTAD ! STORE ROWCOUNT IN MEMORY
03D2 21D587 566 LXI H,CURSY 'LOAD CURSOR Y POSITION ADDRESS IN H&L
2302 dp3co 261 SL wers FEALL LOAD CURSOR BOSTTION SUBROUTINE
; 3 N
O%DQ c9 ggg RET P RETURN
g;; :SUBROUTINE DISC
03DA 3E00 573 DISC: MV I A, 00H :ZERC A
03DC 32D287 57 STA clrap "ZERO COLUMN COUNT
gggg ggggga g;g gﬁtk EEESL ‘CALL LOAD CURSOR POSITION SUBROUTINE
03E5 €9 g;g RET - s RETURN
ggg ! ADDRESS COMPENSATION SURRQUTINE
03E6 2AD8S 531 COMRT: LHLD LOCAD :LOAD CHARACTER LOCATION
0359 1130F 532 LXI D,0F330H {LOAD COMPENSATION VALUE IN DAE
03EC 19 583 DAD D PAC) COMPENSATION TO LOCATION
03ED 220387 53& SHLD LOCAD :STORE MODIFIED LOCATION IN MEMORY
2 ;
03F0 2ADABT ggg LHLD LOCO1 ‘%SABO&O§ST£8” OF FIRST CHAR
; V L
03F3 1130F3 585 LXI D,0F830H 'LOAD COMPENSATION VALUE IN HAL
03Fh 19 589 DAD D *ADD COMPENSATION TO LOCO1
03F7 22DA87 590 SHLD Locel {STORE MODIFIED LOCO?1 IN MEMORY
03FA C9 gg; RET Y RETURN
ggg YEND OF ROW TEST ROUTINE
03FB 2ADABT ggg EORT: LHLD LOCO1 ;%gAgObO%%TﬁgE OF FIRST CHAR
H N H
03FE 7E 595 MOV AM 'MOVE FIRST CHAR IN ROW TO A REG
om0 G UATE CHUL LI O3 (o0 o ok Coun
040N 22E287 600 SHLD LOCBUF !STORE FIRST CHAR IN ROW ADD IN LOCBUF
0407 CD3204 601 CALL FILL ‘CALL FILL ROW WITH SPACE CODES SUBROUTINE
Q4O0A C9 602 XIT: RET * RETURN
60 H
28§ *SCROLL SUBROUTINE
QUOB 2AD687 605 SCROL: LHLD TOPAD ;LOAD TOP IN H&L
QUOE 228287 6og SHLD LOCRUF {STORE FIRST CHAR IN ROW ADD IN LOCBUF
ou14 Saoest 299 (AL ToekD NOVE TOP 1O Hap | SPACE CODES SUBROUTINE
0415 7D 610 MOV 0 'MOVE LOWER BYTE OF TOP TO A
0418 FEBO 511 cPl a0H {COMPARE TOP WITH MAX VALUE
OU1A C22A04 612 INZ DUCK 'IF NO COMPARRISON EXISTS, CONTINUE SCROL
041D 7€ 613 MOV ALH iMOVE UPPER BYTE OF TOP TO A
O41E FEBT 61 cPI 87H {COMPARE TOP WITH MAX VALUE
0420 C22A04 g;g INZ DUCK HIF ggMgggg%§g§SO¥ogx§§Ts,AcogTéngE SCROL
; =MAX VALUE=8780H
0328 210080 61g LXI HGSOOOH {IF COMPARRISON, MODIFY TQP TOQ TOP=8000H
gugg %30687 819 %%%D T3P AD E%E%S%NMODIFIED TOPAD IN MEMORY
0424 115000 620 DUCK: LXI D,50H iMOVE 80D=50H TO D&E

51

19
220687
c9

2AE287
115000
19

22DC87

012020
210000

EB
2ADC87
F9

o
N

Loalle Yo Yo Ve Vo Yo Yo Vo Xa i¥o Yo Vo Ve Yo Yo ¥e S¥a o Yo ¥o Vo Yo Yo Ve Ve Yo ote Ve N
VU AWNIUR NN & 2 E e 8 SO LU AR LA
=~ O EUI N — O Co~1OMN £ N — QRO Co~I TN i o - OW

(%)

o B B e e i e e e e Bpm ReALE AR = AL 0¥ (Yo Vo Vo Yo To sTo Yo To u Yo Yo Yo Ve sTe sT0 Yo (Yo Yo Yo Yo Yo Yo Yo Yo Vo Yo Yo Vo No Yo Yo Vs Ve Yo o Yo o
=~ OOO0O0O0 OO0 0 OO0 OO UON 0000000000 COC0 G0 00 o]~ =1 =3--1-1-1=2—1~1 OO OOV OVOWN
GO 0o~ AN) N =+ OO 00— O LD N —+ OO 001 OMJT 510 N~ OO Q01 O U R s OAD GO~ O L0 M) — OO 0

DAD D ;ADD 80D=50H TO TCOP
SHLD TOPAD ; STORE MODIFIED TOPAD IN MEMORY
RET s RETURN

‘FILL SUBROUTINE Q

LHLD LOCBUF iLOAD LOCATION OF FIRST CHAR IN ROW
;OR FIRST CHAR IN TOP ROW IN H&L

LXI D,50H ;LOAD 80D=50H IN DiE
DAD D ;CALCULATE LOCATION OF LAST CHAR IN ROW
SHLD LOC80 ;STORE LOCATION OF LAST CHAR IN ROW IN MEMORY
LXI B,2020H ;LOAD SPACE CHARACTERS IN B&C
LXI H,0000H 3 ZERO H&L

sh ;ADD_SP TO H&L, TRANSFERRING SP TO H&L
XCHG 1 STORE STACK POINTER IN DIE
LHLD LOC80 ;LOAD LOCATION OF LAST CHAR IN ROW IN H&L
SPHL ;LOAD LAST CHAR LOCATION IN SP

;EXECUTE THE LIST OF PUSH B COMMANDS TO
yFILL THE LINE WITH BLANK CHARACTERS

K

(=]

[72]

T
eelscluslvefechechoilochochoshochoctovhochoslochochesduclvoeRo=lNe Yo o]u Taskockosoeduelerlocho-2oekschnrhesleskszloctos)

XCHG 3+ STACK POINTER TRANSFERRED TQ H&L
SPHL ;sRESTORE STACK
RET ; RETURN

18275 INTERRUPT SERVICE SUBROUTINE
18257 REINITIALIZATION

U
MVT A,MDCST :MOVE MODE CLEAR COMMAND TO A
OUT PMD5T POUTPUT MODE CLEAR COMMAND TO 8257
LHLD TOPAD :LOAD TOP IN H&L
MOV &L :LOAD CH 2 START ADD, LOW BYTE, IN A
ouT pé2sa :OUTPUT CH 2 START ADD TO 8257
MOV A, H :LOAD CH 2 START ADD, UP BYTE, IN A
ouT pC2SA :OUTPUT CH 2 START ADD TO 8257
L .
MOV A,L ;LOAD LOW BYTE OF TOP IN A ;
CMA 'COMPLEMENT A
MOV L,A {LOAD COMPLEMENTED VALUE IN L !
MOV A H :LOAD UP BYTE OF TOP IN A !
CMA :COMPLEMENT A !
MOV H,A {LOAD COMPLEMENTED VALUE IN H
INX H ;INCREMENT H&L, YIELDING 2'S COMPLEMENT :

10F TOP IN A :
LXI D,87CFH {LOAD 87CFH IN DiE '
DAD D 1ADD HAL TO DAE, YIELDING 87CFE-TOP ‘
LXI D,8000H 'LOAD DXE WITH 8000H
DAD D 1ADD 8000H TO B7CF-TOP

52

7D 711 MOV AL :MOVE LOW BYTE OF CH 2 TC TO A
D3US 712 OUT pta1c JOUTPUT CH 2 TC TO 8257
7€ 713 MOV AH sMOVE UP BYTE QF CH 2 TC TO A
D3Us ;;5 ouT ptare '0UTPUT CH 2 TC TO 8257
210080 716 LXI H,3000H :LOAD BOOOHIN HAL
7D 717 MOV AL 'MOVE LOW BYTE OF CH 3 START ADD TO A
D3U6 718 ouT PC3SA 'OUTPUT CH 3 START ADD TO 8257
7C 719 MOV ALH ‘MOVE UP BYTE OF CH 3 START ADD TO A
D346 ;S? ouT pl3sa ‘0UTPUT CH 3 START ADD TO 8257
1
TRl e e o o e 1w
} r
72 15 Mo s Looren Fb § TC To 8es7
4 H
D347 726 OUT pE3TC ;0UTPUT CH 3 TC TO 8257
3EBY 727 MVI A,MDS57 ‘LOAD A WITH MODE SET VALUE
D348 ;gg oUT PMD5T ‘0UTPUT MODE SET TO 8257
r
730 H
;g; 'KEYBOARD POLLING ROUTINE
DB6F 733 KeoLL: in KCOM s INPUT FIFO STATUS
E607 73 ANI 97H !MASK STATUS, SAVE BITS 0-2
CABSOA 735 JZ Z1Ip 'TEST FOR CHARACTER PRESENT
CDBAOY 736 CALL XMIT :CALL CHARACTER TRANSMIT ROUTINE
€9 ;%g ZIP: RET : RETURN
$33 'CHARACTER TRANSMIT SUBROUTINE
Eggg ;3% XMIT: %gl ggég ;INPgTTF%gS CHARACTER
1INVER 2 BITS
g gm W pmm e wo e
¥ H
5F 7u5 MOV £)A SLOAD E WITH CHARACTER FROM FIFO
19 7U6 DAD D *CALCULATE ADD IN LOOKUP TABLE
TU47 *CONTAINING ASCII CHARACTERS
748 *CORRESPONDING TO KEY POSITION IN MATRIX
DBFB 749 USZ: IN CNCTL JINPUT USART STATUS
E601 750 ANI 014 ‘MASK STATUS, SAVE TRANSMITTER READY BIT
CAC204 751 Jz USz *TEST READY BIT
T Lo it o »
D3FA 753 OuT CNOUT '0UTPUT CHAR FROM USART
c9 ;gg RET RETURN
H
;gg :DUMY ROUTINE DEFINITION
C9 ggg DUMY: RET s RETURN
761 ;
762 :
763 H
76 ‘TABLE DEFINITION AREA
765 H
766 H
767 H
CFOL 768 BSET1: DW DUMY
3901 769 DW ESCA
5F0 1 770 DW ESCB
7D01 771 DW ESCC
BOO1 772 DW ESCD
3502 773 DW ESCE
CFOH 77 DW DUMY
CFOY 775 DW DUMY
EBO1 176 DW ESCH
CFOM 775 DW DUMY
6602 77 DW ESCJ
FDO1 7@9 DW ESCK
CFO4 780 DW DOMY
CFQY 781 DH DUMY
CFOY 782 DW DUMY
CFOUL 783 DW DUMY
78 ;
782 ;
0503 785 BSET2: DW CTRLH
F902 78; DW CTRLJ
FCO2 78 DW CTRLM
CFOA 789 DW DUMY
790 H
791 ;
%8 ;ge BSET3: gg %85 :DUMMY CHARACTER
30 793 DB 30H
30 795 DB 30H
30 796 DB 30H
30 79g DB 308
30 79 DB 30H
30 799 DB 30H

53

[&])

[GICTR = I

W ~0OVIA NN ED> OZ 0o 1 OuI0 = 0 o) Q1N (I < i I 3 H 6 CF G 5 54 (U (700 L r— =7 00 v 4% el Rev i Vo LY. PP/ Y T

.. - cmsmsmtmtmtmthemomenanes
HHhHHHHHHHHHHHHHHHHHHHHhHH
OOOOOOOOPACDOFEFA8D603E20DFC9AOB3“8716A8759U12592?851“76009000000000000000C00020DFC9AOBBUB
333333331020272255“53”“u32uu33535“4“&“““5““55555333333333333333333333333333333N?§u433535u4
BBBBBEBBBEBEEBEBBBBEEBBBBBBEBEBBBEBEBBEEBBBBBBBBBBBBBBBBBBBBBBEBBEBEBBBBBBBBBBBBBBBBBBBBBB
[alalalajalalafaYalafalaYaYaYeYaYalaYaYatays el [=falalalalayotataYalatatalatalae afalalatatatafatetatalslalalalatatalalaYa Y et Yo Y o Y Ya Y e la ol = A oY a T a Y =Y = Yo [afalalalalaYalaYaYnYate

O123“567890123h567890123&56789012345678901234567890123“567890123“567890123&567?ﬁ567890123u
DOQQO00OOQO0m e v ey e (OO IO VOO MMM AeACN S o 2 I S 2 7 27 21 IO DDA LD U WD \ OO ADAD D ADUDAD P b e e Pom Bm B €\ O 1 €4 O (O (o ST 0v
8888888888888888888883888888888888888888888888888888888&8888888888888888888888888888888888

OOOOOOOOBACDOFEFA80603E2ODFC9AOB3“5716A67594125923851”7600OOOOOOOOOOOOOOOOCOOO20DFC9AOE3HB
MO O 08 O O = OO O UV ONST o =F (A0y = = COCUNOIUNTT T ST ST o o SF OSSO WO O LD OO T N ononenonon cN enen nonim N oNenenen eAnnicN (NOMIenenenom. S onog = =3 [aalaa Talanllat-2 o
0123“56789ABCDEF0123“56789ABCDEFO123ﬂ56789ABCDEFO123H56789ABCDEF0123U56789ABCD739ABCDEF012
OO0 00000QOOOOO T ™ r r r—rr e e e e O OGO OV O OO O OU SO D OU O O O enenmmie e en Mmoo ST T T T T T S S T T e e e e e e e (g oy O
55
OOOOOOOOOOOOOOOOOOOOOOOO00

O = e, =3 @ E Ll O 0 2 5 Oy 0 LD r— T O v A

— [+ (] [T PO S
.. - e - b oesman ae - .
et e e e o R e e et aala oot s ol ois ois o3s ofs ohe sfe vioshs sfs nfavis ofs ol vfa b oo ols ol le sherfe rhs bt soof= oo ofa ehoshente cTo ok o¥e ofe ol pfeoke o1 ofs PYe=le so=Fe chanhe efe wfo ke oe pha ke ehe ofo 23t ohs shoole he o= rheche 232 ol che
WO SO N ONT T NN NV T N0 00000000 0000000000000 OHLRCOO000000NGCUIEOMOOMO00o00000D0 O ONMIDINT T —MD 00 000
I IF O of S LS ST WO UV WD OO 00D I 00 N 0N 0N O T N I0T (N N 0N N Y O N0 (N 0N WO (DY 0N 0N O 00) OO MO MM IO NILO O OJ (N0 OO 0NN N OO 0N T NN DY N OO O OO O [aVEa ko io log salan'salsal
10 00 0 1) €0 (0 00 £0 £ £0 00 ;0 &3 £ 00 43 £ 80 (0 20 0 60 00 A0 20 00) £ 60 65 60) () 009 00 00 £ 00 60 00 ;0 00 () 60 43 /0 63 € €60 €10 (0 (0 G (@) £ 0 €0 0 60 (0) £ £ 60 A0 A0 70 601 00 £0) £ @0 001 60 (0 (0 0 60 M 60 €0 (0 () (0 0 A3 71 0§10 (0
cooannmaoooconmMaofoanananananfannnooOnNCOaAcOnONacOaCOAcOOAALONANCOAANAAOOOONNAAOOOARRAGARNOOAN N

567890123“567890123“557890123“5678901235567890?23&5678901233567890123“567890123“5678901234
ONMNONONONST o3 o7 o3 oF o o 8o 2 DDA WO OO WD MWD WOADAD WOADAD MOMD D b B P B B B e b e PG 0000 70 010 00 OO0 0 S0 OO OO OO0 00000+ i rrmr e r e OO

Lo O LD E-NONT T NN MO U= o 00 0000 0000000000000 CO WLOOACCOODOAOUCEOMOONOOO000COCO000CANMDLIN—T OO0 000
A IS AN T WO NN L NN M eI NI 0N AN NN ANMIANEN N IIMIeN NN ot MMM ML AL G O (R0 DRI NN (e 00 6 61 6] O 04 04 O GJ 0J 04 B 0mm en
3M56789ABCDEF0123“56789ABCDEFO123H56789ABCDEF0123Q55789ABCDEF0123&56789ABCDEFO123356189ABC
IO O O O O C9 O 04 O Oy O NN KON ONMNIOICNMNONIYSY 2f P ST ST P P ST S P 3 = o I WO U D LG U D U LA LD O LU \DADAD DAD OO O D OO OAD O AD e b tmm fom e o Prs b b bme B B e
DN LAWNUO LNBLNNLON LD N DN LO LA D LA LOWN LW LD LN DL LW OO DAL WO LD WO O LA LD WO G I DD WO U0 WO LB LD LA OO U LD WD LA LA O WO O LO LA EV O S OO O ENLO LD
iSisislalaislajsliafeicitimolalninioininisislslallale lololala o otaYolofalatalo folato Ratetolo Fatotul ool o Toe Yo YaYa e Yo fo lo ot oo o to e Yo atala o taYale oo tate o= Yalatalo Yoo e

55

G O O I D DO b O s a
OO TONIWO oS e

05

(A LA LA A Lt A — ~ — 2 2 (D
OOOCOO0COCOOOVUIN .= O

0

30

AU = L) LAM A ad CAM A L) L ad A L) L
[slelslelslslelsliolslolsliololelololele

CUCDCDCZ&DCD(DCD—J*Q*J-J—4—4-4—4*4—4CnChCnChChCﬁCﬁCPChCﬂLﬂ\ﬁLﬂLﬂkﬂxﬂLﬂ\ﬂLﬂLﬁJ:J:J:I:I:JZirxrxrifhuLuLuLuLukvL» LD O PO R) D

SO DD ONOAD WO OO WO MOAD WO UAD WO OO O WD OO WD OO A OO0 \OADAD WO OO OO D WD D NGO O OAD OO OO O ND OO OO OO O DOO D
TSN o OO0 o1 OV LU0 —» OO D O EUO A = OO 001 AU 10 R~ OO GO0 O £ MY i ONO G0 O W) N s Q00 QoI W S50) — OO0 QO3 O =00 N = OO o1 OV

OO OO O OWOOODODOD O OIS
QO OO0 OWOVOODND OO COCD

1006

11H

A LAMLAS L) Uaad LA A) vk 2
DOO0OCOOOOODIIN
o 9ha 134 she it bt 530 2 384 sda offe vie nda o}

30H

d
(o)
= o)

30H

R L R P R P

SUBp
CAN

SYN
ETX
STX

56

