
8080/8085 ASSEMBLY LANGUAGE
PROGRAMMING M.ANUAL

Order Number: 9800301-04

I
Copyright © 1977,1978,1979,1981 Intel Corporation

Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

fhe information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
products:

BXP Inlclcvi,ion MlIl!ibu,
CREDIT Inlellec Mlillimodlilc

iRMX Pllig-A-BlIbblc
ICE iSBC PROMPT
iCS iSIlX Promwarc
im Library Managcr RMX/80
In,ilc MCS S~slem 2000
Imel Mcgacilassis UPI
inlc l Micromap I'SCOPC

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

Printed in USA/A364/581/25K CP

PREFACE

This manual describes programming with Intel's assembly language. It will not teach you how to program a computer.

Although this manual is designed primarily for reference, it also contains some instructional material to help the beginning

programmer. The manual is organized as follows:

Chapter 1.

Chapter 2.

Chapter 3.

Chapter 4.

Chapter 5.

Chapter 6.

Chapter 7.

ASSEMBLY LANGUAGE AND PROCESSORS

Description of the assembler
Overview of 8080 hardware and instruction set

Description of 8080/8085 differences

ASSEMBLY LANGUAGE CONCEPTS

General assembly language coding rules

INSTRUCTION SET

Descriptions of each instruction (these are listed alphabetically
for quick reference)

ASSEMBLER DIRECTIVES

Data definition

Conditional assembly

Relocation

MACROS

Macro directives

Macro examples

PROGRAMMING TECHNIQUES

Programming examples

INTERRUPTS

Description of the interrupt system.

Chapters 3 dnd 4 will fill most of the experienced programmer's reference requirements. Use the table of contents or the
index to locate information quickly.

The beginning programmer should read Chapters 'I and 2 and then skip to the examples in Chapter 6. As these examples
raise questions, refer to the appropriate information in Chapter 3 or 4. Before writing a program, you will need to read

Chapter 4. The 'Programming Tips' in Chapter 4 arc intended especially for the beginning programmer.

iii

RELATED PUBLICATIONS

iv

To usc your Intcllec development system effectively, you should be familiar with the following Intel
publications:

ISIS-II 8080/8085 MACRO ASSEMBLER OPERATOR'S MANUAL, 9800292

When you activate the assembler, you have the option of specifying a number of controls. The operator's

manudl describes the activation sequence for the assembler. The manual also describes the debugging tools

and the error messages suppl ied l?y the assembler.

ISIS-II SYSTEM USER'S GUIDE, 9800306

User programs Me commonly stored on diskette files. The ISIS-II User's Guide describes the usc of the text
editor for entering and maintaining programs. The manual also describes the procedures for linking and

locati ng relocatable program modules.

Hardware References

For additional information about processors and their related components, refer to the appropriate User's

Manual:

8080 MICROCOMPUTER SYSTEMS USER'S MANUAL, 9800153

8085 MICROCOMPUTER SYSTEMS USER'S MANUAL, 9800366

TABLE OF CONTENTS

Chapter 1. ASSEMBLY LANGUAGE AND PROCESSORS

Introduction
What Is An Assembler?

What the Assembler Does
Object Code
Program Listing

Symbol-Cross-Reference Listing

Do You Need the Assembler?

Overview of 8080/8085 Hardware
Memory

ROM
RAM

Program Counter
Work Registers

Internal Work Registers

Condition Flags

Carry Flag

Sign Flag
Zero Flag
Parity Flag
Auxiliary Carry Flag

Stack and Stack Pointer
Stack Operations
Saving Program Status

Input/Output Ports . .
I nstruction Set

Addressing Modes
I mpl ied Addressi ng
Register Addressing
Immediate Addressing
Direct Addressing
Register I ndirect Addressing

Combined Addressing Modes
Timing Effects of Addressing Modes

Instruction Naming Conventions
Data Transfer Group

Arithmetic Group
Logical Group
Branch Group

Stack, I/O, and Mach ine Control Instructions
Hardware/I nstruct ion Summary

Accumulator Instructions
Register Pair (Word) Instructions

Brz.nching Instructions

Instruction Set Guide

1-1

1-1
1 -1
1-1

1-2
1-2
1-3
1-3

1-5

1-5
1-5

1-5
1-6

1-7

1-9

1-9
1-10

1-10
1-11

1 -11
1-11

1-12

1-13
1-13

1-14
1-15

1-15

1-15

1-15
1-15

1-15

1-16

1-16
1-16

1-16

1-16

1-17

1-17

1-18

1-19
1-19

1-19
1-21
1-22

1-23

v

8085 Processor Differences

Programming for the 8085

Cond itional Instructions

Chapter 2. ASSEMBLY LANGUAGE CONCEPTS

Chapter 3.

vi

Introduction
Source Line Format

Character Set
Delimiters

Label/Name Field
Opcode Field
Operand Field
Comment Field

Coding Operand Field Information
Hexadecimal Data

Decimal Data
Octal Data
Binary Data

Location Counter

ASCII Constant
Labels Assigned Values

Labels of Instruction or Data

Expressions

Instructions as Operands

Register-Type Operands

Two's Complement Representation of Data

Symbols and Symbol Tables
Symbolic Addressing
Symbolic Characteristics

Reserved, User-Defined, and Assembler-Generated Symbols

Global and Limited Symbols

Permanent and Redefinable Symbols
Absolute and Relocatable Symbols

Assembly-Time Expression Evaluation
Operators

Arithmetic Operators
Shift Operators
Logical Operators
Compare Operators
Byte Isolation Operators

Permissible Range of Values
Precedence of Operators
Relocatable Expressions
Chaining of Symbol Definitions

INSTRUCTION SET

How to Use this Chapter
Timing Information

Instructions are listed in alphabetical order

1-24
1-24
1-25

2-1

2-1
2-1
2-1

2-2

2-3

2-4
2-4
2-4

2-4
2-5
2-5
2-5
2-5
2-6
2-6
2-6
2-6
2-6
2-7
2-7

2-7
2-9
2-9
2-9
2-9
2-10
2-11
2-11

2-11
2-11

2-12
2-12

2-13
2-13
2-14
2-15

2-15

2-16
2-18

3-1

3-1

3-1

Chapter 4. ASSEMBLER DIRECTIVES

Symb.ol Definition
EQU Directive
SET Directive

Data Definition
DB Directive
DW Directive

Memory Reservation
DS Directive
Programming Tips: Data Description and Access

Random Access Versus Read Only Memory
Data Description
Data Access
Add Symbols for Data Access

Conditional Assembly
IF, ELSE, ENDIF Directives

Assembler Termination
END Directive

Location Counter Control and Relocation
Location Counter Control (Non-Relocatable Mode)

ORG Directive
Introduction to Relocatability

Memory Management
Modular Program Development

Directives Used for Relocation . . . _ .
Location Counter Control (Relocatable Programs)

ASEG Directive
CSEG Directive
DSEG Directive
ORG Directive (Relocatable Mode)

Program Linkage Directives
PUBLIC Directive
EXTRN Directive
NAME Directive
STKLN Directive

STACK and MEMORY Reserved Words
Programming Tips: Testing Relocatable Modules

Chapter 5. MACROS

Initialization Routines
Input/Output
Remove Coding Used for Testing

I ntrod uction to Macros

Why Use Macros?
What Is A Macro?
Macros Vs. Subroutines

4-1

4-2

4-2

4-3

4-3

4-3

4-4

4-5

4-5

4-6

4-6

4-6

4-6

4-7

4-8

4-8

4-10

4-10

4-11

4-11

4-11

4-12

4-12

4-12

4-14

4-14

4-14

4-15
4-15

4--16

4-16

4-17
4-17

4-18
4-18

4-19
4-19

4-19

4-20

4-20

5-1

5-1

5-1

5-1

5·3

vii

Using Macros

Macro Definition

Macro Definition Directives

MACRO Directive

ENDM Directive

LOCAL Directive

REPT Directive

I RP Directive

I RPC Directive

EXITM Directive

Special Macro Operators

Nested Macro Definitions

Macros Calls

Macro Call Format

Nested Macro Calls

Macro Expansion

Null Macros

Sample Macros

5-3

5-3

5-4
5-4

5-5

5-5
5-6

5-8
5-8
5-9
5-10

5-12

5-12

5-12

5-14

5-15

5-16

5-16

Chapter 6. PROGRAMMING TECHNIQUES 6-1

Branch Tables Pseudo-Subroutine 6-1

Transferring Data to Subroutine 6-3

Software Multiply and Divide . 6-7

Multibyte Addition and Subtraction 6-11

Decimal Addition 6-12

Decimal Subtraction 6-14

Chapter 7.INTERRUPTS 7-1

I nterrupt Concepts 7-1

Writing Interrupt Subroutines

Appendix A

Appendix B

Appendix C

Appendix D

viii

INSTRUCTION SUMMARY

ASSEMBLER DIRECTIVE SUMMARY

ASCII CHARACTER SET

BINARY-DECIMAL-HEXADECIMAL CONVERSION TABLES·

7-4

A-1

B-1

C-1

D-1

Figure

1-1
1-2
1-3
1-4

1-5

LIST OF ILLUSTRATIONS

ASSEMBLER OUTPUTS

COMPARISON OF ASSEMBLY LANGUAGE WITH PL/M

8080/8085 INTERNAL REGISTERS . . .

INSTRUCTION FETCH

EXECUTION OF MOV M,C INSTRUCTION

1-2
1-4
1-6

1-8

1-9

ix

1. ASSEMBLY LANGUAGE AND PROCESSORS

INTRODUCTION

Almost every line of source coding in an assembly language source program translates directly into a machine.

instruction for a particular processor. Therefore, the assembly language programmer must be familiar with both

the assembly language and the processor for which he is programming.

The first part of this chapter describes the assembler. The second part describes the features of the 8080 micro

processor from a programmer's point of view. Programming differences between the 8080 and the 8085 micro

processors are relatively minor. These differences are described in a short section at the end of this chapter.

WHAT IS AN ASSEMBLER?

An assembler is a software tool - a program -- designed to simplify the task of writing computer programs. If

you have ever written a computer program directly in a machine-recognizable form such as binary or hexadecimal

code, you will appreciate the advantages of programming in a symbolic assembly language.

Assembly language operation codes (opcodes) are easily remembered (MOV for move instructions, JMP for jump).

You can also symbolically express addresses and values referenced in the operand field of instructions. Since you

assign these names, you can make them as meaningful as the mnemonics for the instructions. For example, if your

program rrust manipulate a date as data, you can assign it the symbolic name DATE. If your program contains a

set of instructions used as a timing loop (a set of instructions executed repeatedly until a specific amount of time

has passed), you can name the instruction group TIMER.

What the Assembler Does

To use the assembler, you first need a source program. The source program consists of programmer~written

assembly. language instructions. These instructions are written using mnemonic opcodes and labels as described

previously.

Assembly language source programs must be in a machine-readable form when passed to the assembler. The

Intellec development system includes a text editor that will help you maintain source programs as paper tape

files or diskette files. You can then pass the resulting source program file to the assembler. (The text editor is

described in the ISIS-II System User's Guide.)

The assembler program performs the clerical task of translating symbolic code into object code which can be

executed by the 8080 and 8085 microprocessors. Assembler output consists of three possible files: the object

file containing your program translated into object code; the list file printout of your source code, the assembler

generated object code, and the symbol table; and the symbol-crass-reference file, a listing of the symbol-cross

reference records.

1-1

Chapter 1. Assembly Language and Processors

SOURCE
PROGRAM

FILE PROGRAM

Figure ,.,. Assembler Outputs

OBJECT

FILE

PROGRAM

LISTING

CROSS
REFERENCE

LISTING

Object Code

For most microcomputer applications, you probably will eventually load the object program into some form of
read only memory. However, do not forget that the Intellec development system is an 8080 microcomputer
system with random access memory. I n most cases you can load and execute your object program on the
development system for testing and debugging. This allows you to test your program before your prototype
application system is fully developed.

A special feature of this assembler is that it allows you to request object code in a relocatable format. This frees
the programmer from worrying about the eventual mix of read only and random access memory in the application
system; individual portions of the program can be relocated as needed when the application design is final. Also,

a large program can be broken into a number of separately assembled modules. Such modules are both easier to
code and to test. See Chapter 4 of this manual for a more thorough description of the advantages of the relocation
feature.

Program Listing

1·2

The program listing provides a permanent record of both the source program and the object code. The assembler
also provides diagnostic messages for common programming errors in the program listing. For example, if you

specify a 16-bit value for an instruction that can use only an 8-bit value, the assembler tells you that the value
exceeds the permissible range.

Chapter 1. Assembly Language and Processors

Symbol-Cross-Reference Listing

The symbol-cross-reference listing is another of the diagnostic tools provided by the assembler. Assume, for

example, that your program manipulates a data field named DATE, and that testing reveals a program logic

error in the handling of this data. The symbol-cross-referenc:e listing simplifies debugging this error because it

points you to each instruction that references the symbol DATE.

Do You Need the Assembler?

The assembler is but one of several tools available for developing microprocessor programs. Typically, choosing
the most suitable tool is based on cost restraints versus the required level of performance. You or your company

must determine cost restraints; the required level of performance depends on a number of variables:

• The number of programs to be written: The greater the number of programs to be written, the more
you need development support. Also, it must be pointed out that there can be penalties for not
writing programs. When your application has access to the power of a microprocessor, you may be

able to provide customers with custom features through program changes. Also, you may be able to

add features through programming.

• The time allowed for programming: As the time allowed for programming decreases, the need for

programming support increases.

• The level of support for existing programs: Sometimes programming errors are not discovered until

the program has been in use for quite a while. Your need for programming support increases if you

agree to correct such errors for your customers. The number of supported programs in use can

mUltiply this requirement. Also, program support is frequently subject to stringent time constraints.

If none of the factors described above apply to your situation, you may be able to get along without the

assembler. Intel's PROMPT-80, for example, allows you to enter programs directly into programmable read only

memory. You enter the program manually as a string of hexadecimal digits. Such manual programming is relatively

slow and more prone to human error than computer-assisted programming. However, manual systems are one of

the least expensive tools available for microprocessor programming. Manual systems may be suitable for limited

applications, hobbyists, and those who want to explore possible applications for microprocessors.

If most of the factors listed previously apply to you, you should explore the advantages of PL/M. PL/M IS

Intel's high-level language for program development. A high-level language is directed more to problem solving

than to a particular microprocessor. This allows you to write programs much more quickly than a hardware
oriented language such as assembly language. As an example, assume that a program must move five characters
from one location in memory to another. The following example illustrates the coding differences between
assembly language and PL/M. Since instructions have not yet been described, the assembly language instructions

are represented by a flowchart.

1-3

Chapter 1. Assembly Language and Processors

ASSEMBLY LANGUAGE CODING PL/MCODING

LOAD REGISTER WITH NUMBER
OF CHARACTERS TO BE MOVED

I
LOAD REGISTER PAIR B WITH
ADDRESS OF SOURCE (FLD1)

I
LOAD REGISTER PAIR 0 WITH
ADDRESS OF DESTINATION
(FLD2)

I
- I

LOAD ACCUMULATOR WITH 1
BYTE FROM SOURCE FIELD

I
MOVE CHARACTER FROM
ACCUMULATOR TO DESTINA-
TION FIELD

I CALL MOVE(5,FLD2,FLD1);

INCREMENT SOURCE ADDRESS

I CONTINUE

INCREMENT DESTINATION

ADDRESS

I
DECREMENT CHARACTER COUNT

NO
IS

CHARACTER
COUNT

=o?
YES

C CONTINUE

Figure 1-2. Comparison of Assembly Language with PL/M

1-4

Chapter 1. Assembly language and Processors

OVERVIEW OF 8080/8085 HARDWARE

To the programmer, the computer comprises the following parts:

• Memory

• The program counter

• Work registers

• Condition flags

• The stack and stack pointer

• Input/output ports

• The instruction set

Of the components listed above, memory is not part of the processor, but is of interest to the programmer.

Memory

Since the program required to drive a microprocessor resides in memory, all microprocessor applications require
some memory. There are two general types of memory: read only memory (ROM) and random access memory

(RAM).

ROM

As the name implies, the processor can only read instructions and data from ROM; it cannot alter the contents

of ROM. By contrast, the processor can both read from and write to RAM. Instructions and unchanging data

are permanently fixed into ROM and remain intact whether or not power is applied to the system. For this
reason, ROM is typically used for program storage in single-purpose microprocessor applications. With ROM you

can be certain that the program is ready for execution when power is applied to the system. With RAM a program

must be loaded into memory each time power is applied to the processor. Notice, however, that storing programs
in RAM allows a multi-purpose system since different programs can be loaded to serve different needs.

Two special types of ROM - PROM (Programmable Read Only Memory) and EPROM (Eraseable Programmable
Read Only Memory) - are frequently used during program development. These memories are useful during
program development since they can be altered by a special PROM programmer. In high-volume commercial
applications, these special memories are usually replaced by less expensive ROM's.

RAM

Even if your program resides entirely in ROM, your application is likely to require some random access memory.
Any time your program attempts to write any data to memory, that memory must be RAM. Also, if your pro
gram uses the stack, you need RAM. If your program modifies any of its own instructions (this procedure is
discouraged), those instructions must reside in RAM.

The mix of ROM and RAM in an application is important to both the system designer and the programmer.

Normally, the programmer must know the physical addresses of the RAM in the system so that data variables

1-5

Chapter 1. Assembly Language and Processors

can be assigned within those addresses. However, the relocation feature of this assembler allows you to code a
program 'without concern for the ultimate placement of data and instructions; these program elements can be
repositioned after the program has been tested and after the system's memory layout is final. The relocation
feature is fully explained in Chapter 4 of this manual.

Program Counter

1-6

With the program counter, we reach the first of the 8080's internal registers illustrated in Figure 1-3.

NOTE

Except for the differences listed at the end of this chapter,
the information in this chapter applies equally to the 8080
and the 8085.

The program counter keeps track of the next instruction byte to be fetched from memory (which may be either
ROM or RAM). Each time it fetches an instruction byte from memory, the processor increments the program
counter by one. Therefore, the program counter always indicates the next byte to be fetched. This process
continues as long as program instructions are executed sequentially . To alter the flow of program execution as
with a jump instruction or a call to a subroutine, the processor overwrites the current contents of the program
counter with the address of the new instruction. The next instruction fetch occurs from the new address.

INSTRUCTION
DECODER

DATA BUS LATCH

8-bit
bidirectional

data bus

ROM

IACCUMULATORI

B

D

H

RAM

FLAGS

C

E

L

INPUT
PORTS

INSTRUCTIONS INSTRUCTIONS

CONSTANT
DATA

VARIABLE
DATA

STACK

Figure 1-3. 8080/8085 Internal Registers

HIGH LOW

STACK POINTER

PROGRAM COUNTER

ADDRESS BUS LATCH

16-bit
address bus

OUTPUT
PORTS

8080
8085

Chapter 1. Assembly Language and Processors

Work Registers

The 8080 provides an 8-bit accumulator and six other general purpose work registers, as shown in Figure 1-3.

Programs reference these registers by the letters A (for the accumulator), B, C, D, E, H, and L. Thus, the
instruction ADD B may be interpreted as 'add the contents of the B register to the contents of the accumu
lator.

Some instructions reference a pair of registers as shown in the following:

Symbolic Reference

B
D
H
M

PSW

Registers Referenced

Band C
D and E
Hand L
Hand L (as a memory reference)
A and condition flags (explained

later in this section)

The symbolic reference for a single register is often the same as for a register pair. The instruction to be executed
determines how the processor interprets the reference. For example, ADD B is an 8-bit operation. By contrast
PUSH B (which pushes the contents of the Band C registers onto the stack) is a 16-bit operation.

Notice that the letters Hand M both refer to the Hand L register pair. The choice of which to use depends on
the instruction. Use H when an instruction acts upon the Hand L register pair as in INX H (increment the
contents of Hand L by one). Use M when an instruction addresses memory via the Hand L registers as in ADD
M (add the contents of the memory location specified by the Hand L registers to the contents of the accumu
lator) .

The general purpose registers B, C, D, E, H, and L can provide a wide variety of functions such as storing 8-bit
data values, storing intermediate results in arithmetic operations, and storing 16-bit address pointers. Because of
the 8080's extensive instruction set, it is usually possible to achieve a common result with any of several
different instructions. A simple add to the accumulator, for example, can be accomplished by more than half a
dozen different instructions. When possible, it is generally desirable to select a register-to-register instruction
such as ADD B. These instructions typically require only one byte of program storage. Also, using data already
present in a register eliminates a memory access and thus reduces the time required for the operation.

The accumulator also acts as a general-purpose register, but it has some special capabilities not shared with the
other registers. For example, the input/output instructions IN and OUT transfer data only between the accumu
lator and external I/O devices. Also, many operations involving the accumulator affect the condition flags as ex
plained in the next section.

Example:

The following figures illustrate the execution of a move instruction. The MOV M,C moves a copy of the contents
of register C to the memory location specified by the Hand L registers. Notice that this location must be in
RAM since data is to be written to memory.

1-7

Chapter 1. Assembly language and Processors

1-8

8080
IACCUMULATORI FLAGS 8085

HIGH LOW

I I I ! I B C STACK POINTER
INSTRUCTION

DECODER
I

D I E I PROGRAM I COUNTER i

Y DATA BUS LATCH I H I L I ADDRESS I BUS LATCH

~

I •
ROM RAM

Figure 1-4. Instruction Fetch

The processor initiates the instruction fetch by latching the contents of the program counter on the address bus,
and then increments the program counter by one to indicate the address of the next instruction byte. When the
memory responds, the instruction is decoded into the series of actions shown in Figure 1-5.

NOTE

The following description of the execution of the
MOV M,C instruction is conceptually correct, but
does not account for normal bus control. For details
concerning memory interface, refer to the User's
Manual for your processor.

Chapter 1. Assembly Language and Processors

8080

8085

IACCUMULATORI FLAGS I

I B I C I HIGH LOW

[INSTRUCTION I I STACK ! POINTER I
DECODER

I D I E I I PROGRAM ! COUNTER I
L.DAT A BUS LATCH J.J I H I L ADDRESS : BUS LATCH I

f

t •
ROM RAM

Figure 1-5. Execution of MOV M,C Instruction

To execute the MOV M,C instruction, the processor latches the contents of the C register on the data bus and

the contents of the Hand L registers on the address bus. When the memory accepts the data, the processor

terminates execution of this instruction and initiates the next instruction fetch.

Internal Work Registers

Certain operations are destructive. For example, a compare is actually a subtract operation; a zero result indicates

that the opreands are equal. Since it is unacceptable to destroy either of the operands, the processor includes

several work registers reserved for its own use. The programmer cannot access these registers. These registers are

used for internal data transfers and for preserving operands in destructive operations.

Condition Flags

The 8080 provides five flip flops used as condition flags. Certain arithmetic and logical instructions alter one or

more of these flags to indicate the result of an operation. Your program can test the setting of four of these

flags {carry, sign, zero, and parity} using one of the conditional jump, call, or return instructions. This allows you

to alter the flow of program execution based on the outcome of a previous operation. The fifth flag, auxiliary

carry, is reserved for the use of the DAA instruction, as will be explained later in this section.

It is important for the programmer to know which flags are set by a particular instruction. Assume, for example,

that your program is to test the parity of an input byte and then execute one instruction sequence if parity is

even, a different instruction set if parity is odd. Coding a J PE (jump if parity is even) or J PO (jump if parity is

1-9

Chapter 1. Assembly Language and Processors

1-10

odd) instruction immediately following the IN (input) instruction produces false results since the IN instruction

does not affect the condition flags. The jump executed by your program reflects the outcome of some previous

operation unrelated to the IN instruction. For the operation to work correctly, you must include some instruc

tion that alters the parity flag after the IN instruction, but before the jump instruction. For example, you can

add zero to the accumulator. This sets the parity flag without altering the data in the accumulator.

In other cases, you will want to set a flag with one instruction, but then have a number of intervening instruc

tions before you use it. In these cases, you must be certain that the intervening instructions do not affect the

desired flag.

The flags set by each instruction are detailed in the individual instruction descriptions in Chapter 3 of this

manual.

Carry Flag

NOTE

When a flag is 'set' it is set ON (has the value one);

when a flag is 'reset' it is reset OF F (has the value

zero).

As its name implies, the carry flag is commonly used to indicate whether an addition causes a 'carry' into the

next higher order digit. The carry flag is also used as a 'borrow' flag in subtractions, as explained under 'Two's

Complement Representation of Data' in Chapter 2 of this manual. The carry flag is also affected by the logical

AND, OR, and exclusive OR instructions. These instructions set ON or OFF particular bits of the accumulator.

See the descriptions of the ANA, ANI, ORA, ORI, XRA, and XRI instructions in Chapter 3.

The rotate instructions, which move the contents of the accumulator one position to the left or right, treat the

carry bit as though it were a ninth bit of the accumulator. See the descriptions of the RAL, RAR, RLC, and RRC

instructions in Chapter 3 of this manual.

Example:

Addition of two one-byte numbers can produce a carry out of the high-order bit:

Bit Number:

AE=

+74=

7654 3210
10101110
0111 0100

0010 0010 = 22 carry flag = 1

An addition that causes a carry out of the high order bit sets the carry flag to 1; an addition that does not cause

a carry resets the flag to zero.

Sign Flag

As explained under 'Two's Complement Representation of Data' in Chapter 2, bit 7 of a result in the accumulator

can be interpreted as a sign. Instructions that affect the sign flag set the flag equal to bit 7. A zero in bit 7

Chapter 1. Assembly language and Processors

indicates a positive value; a one indicates a negative value. This value is duplicated in the sign flag so that
conditional jump, call, and return instructions can test for positive and negative values.

Zero Flag

Certain instructions set the zero flag to one to indicate that the result in the accumulator contains all zeros.
These instructions, reset the flag to zero if the result in the accumulator is other than zero. A result that has a
carry and a zero result also sets the zero bit as shown below:

Parity Flag

10100111
+01 01 1001

0000 0000 Carry Flag = 1
Zero Flag = 'I

Parity is determined by counting the number of one bits set in the result in the accumulator. Instructions that
affect the parity flag set the flag to one for even parity and reset the flag to zero to indicate odd parity.

Auxiliary Carry Flag

The auxiliary carry flag indicates a carry out of bit 3 of the accumulator. You cannot test this flag directly in
your program; it is present to enable the DAA (Decimal Adjust Accumulator) to perform its function.

The auxiliary carry flag and the DAA instruction allow you to treat the value in the accumulator as two 4-bit
binary coded decimal numbers. Thus, the value 0001 1001 is equivalent to 19. (If this value is interpreted as a
binary number, it has the value 25.) Notice, however, that adding one to this value produces a non-decimal
result:

00011001
+0000 0001

0001 1010 = 1 A

The DAA instruction converts hexadecimal values such as the A in the preceding example back into binary coded
decimal (BCD) format. The DAA instruction requires the auxiliary carry flag since the BCD format makes it
possible for arithmetic operations to generate a carry from the low-order 4-bit digit into the high-order 4-bit
digit. The DAA performs the following addition to correct the preceding example:

0001 1010
+0000 0110

0001 0000
+0001 0000 (auxiliary carry)

0010 0000 == 20

1-11

Chapter 1. Assembly Language and Processors

The auxiliary carry flag is affected by all add, subtract, increment, decrement, compare, and all logical AND,

OR, and exclusive OR instructions. (See the descriptions of these instructions in Chapter 3.) There is some
difference in the handling of the auxiliary carry flag by the logical AND instructions in the 8080 processor and
the 8085 processor. The 8085 logical AND instructions always set the auxiliary flag ON. The 8080 logical AND
instructions set the flag to reflect the logical OR of bit 3 of the values involved in the AND operation.

Stack and Stack Pointer

1-12

To understand the purpose and effectiveness of the stack, it is useful to understand the concept of a subroutine.

Assume that your program requires a multiplication routine. (Since the 8080 has no multiply instructions, this
can be performed through repetitive addition. For example, 3x4 is equivalent to 3+3+3+3.) Assume further that
your program needs this multiply routine several times. You can recode this routine inline each time it is needed,
but this can use a great deal of memory. Or, you can code a subroutine:

Inline Coding Subroutine

1 1
inline routine CALL

I I
inline routine CALL subroutine

I I
inline routine CALL

I I
The 8080 provides instructions that call and return from a subroutine. When the call instruction is executed, the
address of the next instruction (the contents of the program counter) is pushed onto the stack. The contents of
the program counter are replaced by the address of the desired subroutine. At the end of the subroutine, a
return instruction pops that previously-stored address off the stack and puts it back into the program counter.
Program execution then continues as though the subroutine had been coded inline.

The mechanism that makes this possible is, of course, the stack. The stack is simply an area of random access
memory addressed by the stack pointer. The stack pointer is a hardware register maintained by the processor.
However, your program must initialize the stack pointer. This means that your program must load the base
address of the stack into the stack pointer. The base address of the stack is commonly assigned to the highest
available address in RAM. This is because the stack expands by decrementing the stack pointer. As items are

Chapter 1. Assembly Language and Processors

added to the stack, it expands into memory locations with lower addresses. As items are removed from the
stack, the stack pointer is incremented back toward its base address. Nonetheless, the most recent item on the
stack is known as the 'top of the stack.' Stack is still a most descriptive term because you can always put
something else on top of the stack. In terms of programming, a subroutine can call a subroutine, and so on.
The only limitation to the number of items that can be added to the stack is the amount of RAM available for
the stack.

The amount of RAM allocated to the stack is important to the programmer. As you write your program, you
must be certain that the stack will not expand into areas reserved for other data. For most applications, this
means that you must assign data that requires RAM to the lowest RAM addresses available. To be more precise,
you must count up all instructions that add data to the stack. Ultimately, your program should remove from
the stack any data it places on the stack. Therefore, for any instruction that adds to the stack, you can sub
tract any intervening instruction that removes an item from the stack. The most critical factor is the maximum
size of the stack. Notice that you must be sure to remove data your program adds to the stack. Otherwise, any
left-over items on the stack may cause the stack to grow into portions of RAM you intend for other data.

Stack Operations

Stack operations transfer sixteen bits of data between memory and a pair of processor registers. The two basic
operations are PUSH, which adds data to the stack, and POP, which removes data from the stack.

A call instruction pushes the contents of the program counter (which contains the address of the next instruction)
onto the stack and then transfers control to the desired subroutine by placing its address in the program counter.
A return instruction pops sixteen bits off the stack and places them in the program counter. This requires the
programmer to keep track of what is in the stack. For example, if you call a subroutine and the subroutine
pushes data onto the stack, the subroutine must remove that data before executing a return instruction. Other
wise, the return instruction pops data from the stack and places it in the program counter. The results are
unpredictable, of course, but probably not what you want.

Saving Program Status

It is likely that a subroutine requires the use of one or more of the working registers. However, it is equally
likely that the main program has data stored in the registers that it needs when control returns to the main
program. As general rule, a subroutine should save the contents of a register before using it and then restore
the contents of that register before returning control to the main program. The subroutine can do this by
pushing the contents of the registers onto the stack and then popping the data back into the registers before
executing a return. The following instruction sequence saves and restores all the working registers. Notice that
the POP instructions must be in the opposite order of the PUSH instructions if the data is to be restored to its
original location.

1-13

Chapter 1. Assembly Language and Processors

SUBRTN: PUSH PSW
PUSH B
PUSH D
PUSH H

subroutine coding

POP H
POP D
POP B
POP PSW
RETURN

The letters B, D, and H refer to the Band C, D and E, and Hand L register pairs, respectively. PSW refers to
the program status word. The program status word is a 16-bit word comprising the contents of the accumulator
and the five conpition flags. (PUSH PSW adds three bits of filler to expand the condition flags into a full
byte; POP PSW strips out these filler bits.)

Input/Output Ports

1~14

The 256 input/output ports provide communication with the outside world of peripheral devices. The IN and
OUT instructions initiate data transfers.

The I N instruction latches the number of the desired port onto the address bus. As soon as a byte of data is
returned to the data bus latch, it is transferred into the accumulator.

The OUT instruction latches the number of the desired port onto the address bus and latches the data in the
accumulator onto the data bus.

The specified port number is duplicated on the address bus. Thus, the instruction IN 5 latches the bit configura
tion 0000 0101 0000 0101 onto the address bus.

Notice that the IN and OUT instructions simply initiate a data transfer. It is the responsibility of the peripheral
device to detect that it has been addressed. Notice also that it is possible to dedicate any number of ports to
the same peripheral device. You might use a number of ports as control signals, for example.

Because input and output are almost totally application dependent, a discussion of design techniques is beyond
the scope of this manual.

For additional hardware information, refer to the 8080 or 8085 Microcomputer Systems User's Manual.

For related programming information, see the descriptions of the IN, OUT, DI, EI, RST, and RIM and SIM
instructions in Chapter 3 of this manual. (The RIM and SIM instructions apply only to the 8085.)

Chapter 1. Assembly Language and Processors

Instruction Set

The 8080 incorporates a powerful array of instructions. This section provides a general overview of the instruc
tion set. The detailed operation of each instruction is described in Chapter 3 of this manual.

Addressing Modes

Instructions can be categorized according to their method of addressing the hardware registers and/or memory.

Implied Addressing. The addressing mode of certain instructions is implied by the instruction's function. For
example, the STC (set carry flag) instruction deals only with the carry flag; the DAA (decimal adjust accumu
Ia.tor) instruction deals with the accumulator.

Register Addressing. Quite a large set of instructions call for register addressing. With these instructions, you
must specify one of the registers A through E, H or L as well as the operation code. With these instructions,
the accumulator is implied as a second operand. For example, the instruction CMP E may be interpreted as
'compare the contents of the E register with the contents of the accumulator.'

Most of the instructions that use register addressing deal with 8-bit values. However, a few of these instructions
deal with 16-bit register pairs. For example, the PCHL instruction exchanges the contents of the program counter
with the contents of the Hand L registers.

Immediate Addressing. I nstructions that use immediate addressing have data assembled as a part of the instruction
itself. For example, the instruction CPI 'e' may be interpreted as 'compare the contents of the accumulator with
the letter C.' When assembled, this instruction has the hexadecimal value FE43. Hexadecimal 43 is the internal
representation for the letter C. When this instruction is executed, the processor fetches the first instruction byte
and determines that it must fetch one more byte. The processor fetches the next byte into one of its internal
registers and then performs the compare operation.

Notice that the names of the immediate instructions indicate that they use immediate data. Thus, the name of an
add instruction is ADD; the name of an add immediate instruction is ADI.

All but two of the immediate instructions use the accumulator as an implied operand, as in the CPI instruction
shown previously. The MVI (move immediate) instruction can move its immediate data to any of the working
registers, including the accumulator, or to memory. Thus, the instruction MVI D,OFFH moves the hexadecimal
value FF to the 0 register.

The LXI instruction (load register pair immediate) is even more unusual in that its immediate data is a 16-bit
value. This instruction is commonly used to load addresses into a register pair. As mentioned previously, your
program must initialize the stack pointer; LXI is the instruction most commonly used for this purpose. For ex
ample, the instruction LXI SP,30FFH loads the stack pointer with the hexadecimal value 30FF.

Direct Addressing. Jump instructions include a 16-bit address as part of the instruction. For example, the
instruction J MP 1000H causes a jump to the hexadecimal address 1000 by replacing the current contents of the
program counter with the new value 1000.

1-15

Chapter 1. Assembly Language and Processors

Instructions that include a direct address require three bytes of storage: one for the instruction code, and two
for the 16-bit address.

Register Indirect Addressing. Register indirect instructions reference memory via a register pair. Thus, the
instruction MOV M,C moves the contents of the C register into the memory address stored in the Hand L
register pair. The instruction LDAX B loads the accumulator with the byte of data specified by the address
in the Band C register pair.

Combined Addressing Modes. Some instructions use a combination of addressing modes. A CALL instruction,
for example, combines direct addressing and register indirect addressing. The direct address in a CALL instruction
specifies the address of the desired subroutine; the register indirect address is the stack pointer. The CALL
instruction pushes the current contents of the program counter into the memory location specified by the stack
pointer.

Timing Effects of Addressing Modes. Addressing modes affect both the amount of time required for executing
an instruction and the amount of memory required for its storage. For example, instructions that use implied or
register addressing execute very quickly since they deal directly with the processor hardware or with data already
present in hardware registers. More important, however, is that the entire instruction can be fetched with a
single memory access. The number of memory accesses required is the single greatest factor in determining
execution timing. More memory accesses require more execution time. A CALL instruction, for example, requires
five memory accesses: three to access the entire instruction, and two more to push the contents of the program
cou nter onto the stack.

The processor can access memory once during each processor cycle. Each cycle comprises a variable number of
states. (The individual instruction descriptions in Chapter 3 specify the number of cycles and states required for
each instruction.) The length of a state depends on the clock frequency specified for your system, and may
range from 480 nanoseconds to 2 microseconds. Thus, the timing of a four state instruction may range from
1.920 microseconds through 8 microseconds. (The 8085 has a maximum clock frequency of 5 MHz and therefore a
minimum state length of 200 nanoseconds.)

Instruction Naming Conventions

The mnemonics assigned to the instructions are designed to indicate the function of the instruction. The instruc
tions fall into the following functional categories:

Data Transfer Group. The data transfer instructions move data between registers or between memory and
registers.

MOV
MVI
LDA
STA
LHLD
SHLD

Move
Move Immediate
Load Accumulator Directly from Memory
Store Accumulator Directly in Memory
Load Hand L Registers Directly from Memory
Store Hand L Registers Directly in Memory

ALL MNEMONICS © 7974, 7975, 7976, 7977 INTEL CORPORA nON

1-16

Chapter 1. Assembly language and Processors

An 'X' in the name of a data transfer instruction implies that it deals with a register pair:

LXI
LDAX
STAX
XCHG
XTHL

Load Register Pair with Immediate data
Load Accumulator from Address in Register Pair
Store Accumulator in Address in Register Pair
Exchange Hand L with D and E
Exchange Top of Stack with Hand L

Arithmetic Group. The arithmetic instructions add, subtract, increment, or decrement data in registers or
memory.

ADD
ADI
ADC
ACI

SUB
SUI
SBB
SBI
INR

DCR
INX
DCX
DAD

Add to Accumulator
Add Immediate Data to Accumulator
Add to Accumulator Using Carry Flag
Add Immediate Data to Accumulator Using Carry Flag
Subtract from Accumulator
Subtract Immediate Data from Accumulator
Subtract from Accumulator Using Borrow ((:arry) Flag

Subtract I mmediate from Accumulator Using Borrow
I ncrement Specified Byte by One
Decrement Specified Byte by One
Increment Register Pair by One
Decrement Register Pair by One
Double Register Add: Add Contents of Register

Pair to Hand L Register Pair

l.ogical Group. This group performs logical (Boolean) operations on data in registers and memory and on
condition flags.

The logical AND, OR, and Exclusive OR instructions enable you to set specific bits in the accumulator ON or
OFF.

ANA
ANI
ORA
ORI
XRA
XRI

Logical AND with Accumulator
Logical AND with Accumulator Using Immediate Data
Logical OR with Accumulator
Logical OR with Accumulator Using I mmediate Data
Exclusive Logical OR with Accumulator
Exclusive OR Using Immediate Data

The compare instructions compare the contents of an 8-bit value with the contents of the accumulator:

CMP
CPI

Compare
Compare Using I mmediate Data

ALL MNEMONICS © 1974, 1975, 1976, 1977 INTEL CORPORATION

1-17

Chapter 1. Assembly Language and Processors

The rotate instructions shift the contents of the accumulator one bit position to the left or right:

RLC
RRC
RAL
RAR

Rotate Accumulator Left
Rotate Accumulator Right
Rotate Left Through Carry
Rotate Right Through Carry

Complement and carry flag instructions:

CMA
CMC
STC

Complement Accumulator
Complement Carry Flag
Set Carry Flag

Branch Group. The branching instructions alter normal sequential program flow, either unconditionally or
conditionally. The unconditional branching instructions are as follows:

JMP
CALL
RET

Jump
Call
Return

Conditional branching instructions examine the status of one of four condition flags to determine whether the
specified branch is to be executed. The conditions that may be specified are as follows:

NZ Not Zero (Z = 0)
Z Zero (Z = 1)
NC No Carry (C = 0)

C Carry (C = 1)

PO Parit y Odd (P = 0)
PE Parity Even (P = 1)
P Plus (S = 0)
M Minus (S = 1)

Thus, the conditional branching instructions are specified as follows:

jumps Calls Returns

JC CC RC (Carry)

JNC CNC RNC (No Carry)
JZ CZ RZ (Zero)
JNZ CNZ RNZ (Not Zero)

JP CP RP (Plus)

JM CM RM (Minus)
JPE CPE RPE (Parity Even)
JPO CPO RPO (Parity Odd)

Two other instructions can effect a branch by replacing the contents of the program counter:

PCHL
RST

Move Hand L to Program Counter
Special Restart Instruction Used with Interrupts

ALL MNEMONICS © 1974, 1975, 1976, 1977 INTEL CORPORA nON

<1-18

Chapter 1. Assembly Language and Processors

Stack, I/O, and Machine Control Instructions. The following instructions affect the stack and/or stack pointer:

PUSH
POP

XTHL
SPHL

The I/O instructions are as follows:

IN
OUT

Push Two Bytes of Data onto the Stack
Pop Two Bytes of Data off the Stack
Exchange Top of Stack with Hand L
Move contents of Hand L to Stack Pointer

Initiate Input Operation
Initiate Output Operation

The machine control instructions are as follows:

EI
01

HLT
NOP

Enable Interrupt System
Disable I nterrupt System
Halt
No Operation

HARDWARE/INSTRUCTION SUMMARY

The following illustrations graphically summarize the instruction set by showing the hardware acted upon by
specific instructions. The type of operand allowed for each instruction is indicated through the use of a code.
When no code is given, the instruction does not allow operands.

Code Meaning

REGM 8 The operand may specify one of the 8-bit registers A,B,C,D,E,H, or L or M
(a memory reference via the 16-bit address in the Hand L registers). The
MOV instruction, which calls for two operands, can specify M for only one
of its operands.

Accumulator Instructions

Designates 8-bit immediate operand.
Designates a 16-bit address.

Designates an 8-bit port number.
Designates a 16-bit register pair (B&C,D&E, H& L, or SP).
Designates a 16-bit immediate operand.

The following illustration shows the instructions that can affect the accumulator. The instructions listed above
the accumulator all act on the data in the accumulator, and all except CMA (complement accumulator) affect
one or more of the condition flags. The instructions listed below the accumulator move data into or out of the
accumulator, but do not affect condition flags. The STC (set carry) and CMC (complement carry) instructions
are also shown here.

ALL MNEMONICS © 1974, 1975, 1976, 1977 INTEL CORPORATION

1-19

Chapter 1. Assembly Language and Processors

ADD
AOC

SUB

SBB
ANA REGM g

XRA

ORA

CMP
RLC RAL

RAR CMA

INR)
OCR

ACCUMULATOR

B

AOI

ACI

SUI

SBI

ANI Og

XRI

ORI

CPI
RRC

OAA

REGM g

FLAGS

C

MOV REGMg., REGMg 1..-1 ___ 0 __ -----1. _____ --' E

H L

LOAX}
STAX BC,OE

MEMORY

LOA}
STA AJ6

STACK

STC CMC
HIGH LOW

STACK POINTER

I PROGRAM COUNTER I

I I
IN Pg OUT Pg

INPUT

PORTS

OUTPUT

PORTS

ALL MNEMONICS © 7974, 7975, 7976, 7977 INTEL CORPORATION

1-20

Chapter 1. Assembly Language and Processors

Register Pair (Word) Instructions

The following instructions all deal with 16-bit words. Except for DAD (which adds thecontents of the B&C or
D& E register pair to H& L), none of these instructions affect the condition flags. DAD affects only the carry
flag.

-~

IACCUMULATORI

B

D

H

LHLD
SHLD

I
MEMORY

FLAGS

C

E

L

XTHL

1---------

I INX) HIGH

I DCX REG
16 SPHL \ STACK

DAD

I~ PCHL .. I PROGRAM!
XCHG ...--

PUSH } STACK I ~--- POP B,D,H,PSW

ALL MNEMONICS © 7974, 7975, 7976, 7977 INTEL CORPORATION

LOW

POINTER

COUNTER I

1-21

Chapter 1. Assembly Language and Processors

Branching Instructions

The following instructions can alter the contents of the program counter, thereby altering the normal sequential
execution flow. Jump instructions affect only the program counter. Call and Return instructions affect the
program counter, stack pointer, and stack.

IACCUMULATORI FLAGS

B C

r----:-----,---:------,~---JI PCHL

MEMORY

1-----------
STACK

HIGH LOW

STACK POINTER

PROGRAM COUNTER RST

JMP CALL RET

~~ ~~~} A ~~ ~~~} A :~ :~~} A
J P J M 16 CP CM 16 RP RM 16

J PE J PO CPE CPO RPE RPO

CONTROL INSTRUCTIONS

RST
NOP
HLT
EI
DI

SIM\
RIM} 8085 only

ALL MNEMONICS © 1974, 1975, 1976, 1977 INTEL CORPORATION

1-22

Chapter 1. Assembly Language and Processors

I nstruction Set Guide

The following is a summary of the instruction set:

ADD

ADC

SUB

SBB

ANA

XRA

ORA

CMP

REGM 8

RLC RAL RRC
RAR CMA DAA

INR} DCR REGM 8

ADI

ACI

SUI

SBI

ANI

XRI

ORI

CPI

r--1ACCUMULATORI FLAGS

MOV REGM 8,REGM81 B I C

I I D I E
LXI REG 16,Dl 6.

H L

D8

ISTC CMC

INX} IDCX REG 16

~
XCHG

JMP

HIGH LOW

STACK

RST

CALL RET

JC

JZ
JP
JPE

~~~} A 
JM 16 

CZ CNZ A 
CC CNC} 

CP CM 16 
RZ RNZ A 
RC RNC} 

RP RM 16 

,r-- A , 
LDAX} BC,DE 
STAX 

LDA} 
STA A

16 

MVI D8 

MOV REGM8,REGM8 

CODE 

REGM 8 

LHLD} 
STHD A16 

MEMORY 
INPUT 

PORTS 

JPO 

I 
OUT P

8 

OUTPUT 

PORTS 

>---STAC"K--- I+~ ~~H } B,D,H,P5W 

MEANING 

CPE CPO RPE RPO 

CONTROL 
INSTRUCTIONS 

RST 

NOP 

HLT 

EI 

DI 

SIM} 8085 ONLY 
RIM 

The operand may specify one of the 8-bit registers A,B,C,D,E,H, or L or M (a memory 

reference via the 16-bit address in the Hand L registers). The MOV instruction, which 

calls for two operands, can specify M for only one of its operands. 

Designates 8-bit immediate operand. 

Designates a 16-bit address. 

Designates an 8-bit port number. 

Designates a 16-bit register pair (B&C,D&E,H&L,or SP). 

Designates a 16 -bit immediate operand. 

ALL MNEMONICS © 1974, 1975, 1976, 1977 INTEL CORPORA TlON 

1-23 



Chapter 1. Assembly Language and Processors 

8085 PROCESSOR DIFFERENCES 

The differences between the 8080 processor and the 8085 processor will be more obvious to the system designer 

than to the programmer. Except for two additional instructions, the 8085 instruction set is identical to and fully 

compatible with the 8080 instruction set. Most programs written for the 8080 should operate on the 8085 with

out modification. The only programs that may require changes are those with critical timing routines; the higher 

system speed of the 8085 may alter the time values of such routines. 

A partial listing of 8085 design features includes the following: 

• A single 5 volt power supply. 

• Execution speeds ap'proximately 50% faster than the 8080. 

• Incorporation in the processor of the features of the 8224 Clock Generator and Driver and the 
8228 System Controller and Bus Driver. 

• A non-maskable TRAP interrupt for handling serious problems such as power failures. 

• Three separately maskable interrupts that generate internal RST instructions. 

• Input/output lines for serial data transfer. 

Programming for the 8085 

1-24 

For the programmer, the new features of the 8085 arc summarized in the two new instructions SIM and RIM. 

These instructions differ from 'the 8080 instructions in that each has multiple functions. The SIM instruction 

sets the interrupt mask and/or writes out a bit of serial data. The programmer must place the desired interrupt 

mask and/or serial output in the accumulator prior to execution of the SIM instruction. The RIM instruction 

reads a bit of serial data if one is present dnd the interrupt mask into the accumulator. Details of these instruc

tions arc covered in Chapter 3. 

Despite the new interrupt features of the 8085, programming for interrupts is li11le changed. Notice, however, that 

8085 hardware interrupt RESTART addresses fall between the existing 8080 RESTART addresses. Therefore, 

only four bytes are available for certain RST instructions. Also, the TRAP interrupt input is non-maskable and 

cannot be disabled. If your application uses this input, be certain to provide dn interrupt routine for it. 

The interrupts have the following priority: 

TRAP 

RST7.5 

RST6.5 

RST5.5 

INTR 

highest 

lowest 

When more than one interrupt is pending, the processor always recognizes the higher priority interrupt first. 
These priorities apply only to the sequence in which interrupts arc recognized. Program routines that service 
interrupts have no special priority. Thus, an RST5.5 interrupt can interrupt the service routine for an RST7.5 
interrupt. If you want to protect a service routine from interruption, either disable the interrupt system (DI 
instruction), or mask out other potential interrupts (SIM instruction). 



Chapter 1. Assembly Language and Processors 

Conditional Instructions 

Execution of conditional instructions on the 8085 differs from the 8080. The 8080 fetches all three instruction 

bytes whether or not the condition is satisfied. The 8085 evaluates the condition while it fetches the second 

instruction byte. If the specified condition is not satisfied, the 8085 skips over the third instruction byte and 

immediately fetches the next instruction. Skipping the unnecessary byte allows for faster execution. 

1-25 





2. ASSEMBLY LANGUAGE CONCEPTS 

INTRODUCTION 

Just as the English language has its rules of grammar, assembly language has certain coding rules. The source line 
is the assembly language equivalent of a sentence. 

This assembler recognizes three types of source lines: instructions, directives, and controls. This manual describes 
instructions and directives. Controls are described in the operator's manual for your version of the assembler. 

This chapter describes the general rules for coding source lines. Specific instructions (see Chapter 3) and 
directives (see Chapters 4 and 5) may have specific coding rules. Even so, the coding of such instructions and 
directives must conform to the general rules in this chapter. 

SOURCE LINE FORMAT 

Assembly language instructions and assembler directives may consist of up to four fields, as follows: 

{
Label:} 
Name 

Opcode Operand ;Comment 

The fields may be separated by any number of blanks, but must be separated by at least one delimiter. Each 
instruction and directive must be entered on a single line terminated by a carriage return and a line feed. No 
continuation lines are possible, but you may havc lines consisting entirely of comments. 

Character Set 

The following characters are legal in assembly language source statements: 

• The letters of the alphabet, A through Z. Both upper- and lower-case letters are allowed. Internally, 
the assembler treats all lettcrs as though they were upper-case, but the characters are printed exactly 
as they were input in the assembly listing. 

• The digits 0 through 9. 

• The following special characters: 

2-1 



Chapter 2. Assembly language Concepts 

2-2 

Character 

+ 

* 

& 

$ 
@ 

< 
> 
% 

blank 

CR 
FF 
HT 

Meaning 

Plus sign 
Minus sign 
Asterisk 
Slash 
Comma 
Left parenthesis 
Right parenthesis 
Single quote 
Ampersand 
Colon 
Dollar sign 
Commercial 'at' sign 
Question mark 
Equal sign 
Less than sign 
Greater than sign 
Percent sign 

Exclamation point 
Blank or space 
Semicolon 
Period 
Carriage return 
Form feed 
Horizontal tab 

• In addition, any ASCII character may appear in a string enclosed in single quotes or in a comment. 

Delimiters 

Certain characters have special meaning to the assembler in that they function as delimiters. Delimiters define 
the end of a source statement, a field, or a component of a field. The following list defines the delimiters 
recognized by the assembler. Notice that many delimiters are related to the macro feature explained in Chapter 
5. Delimiters used for macros are shown here so that you will not accidentally use a delimiter improperly. 
Refer to Chapter 5 for a description of macros. 



Character(s) 

blank 

( ... ) 

CR 

HT 

& 

< ... > 

% 

.. 
" 

Label/Name Field 

Meaning 

one or more 

blanks 

comma 

pair of single 

quote characters 

pair of paren

theses 

carriage return 

horizontal tab 

semicolon 

colon 

ampersand 

pair of angle 

brackets 

percent sign 

exclamation 

point 

double semi

colon 

Chapter 2. Assembly Language Concepts 

Use 

field separator or symbol terminator 

separate operands in the operands field, 

including macro parameters 

delimit a character string 

delimit an expression 

statement terminator 

field separator or symbol terminator 

comment field delimiter 

delimiter for symbols used as labels 

delimit macro prototype text or formal 

parameters for concatenation 

delimit macro parameter text which 

contains commas or embedded blanks; 

also used to delimit a parameter list 

delimit a macro parameter that is to be 

evaluated prior to substi.tution 

an escape character used to pass the 

following character as part of a macro 

parameter when the character might 

otherwise be interpreted as a delimiter 

delimiter for comments in macro definitions 

when the comment is to be suppressed when 

the macro is expanded 

Labels are always optional. An instruction label is a symbol name whose value is the location where the instruc

tion is assembled. A label may contain from one to six alphanumeric characters, but the first character must be 

alphabetic or the special characters "?' or '@'. The label name must be terminated with a colon. A symbol used 

as a label can be defined only once in your program. (See 'Symbols and Symbol TabJes' later in this chapter.) 

2-3 



Chapter 2. Assembly language Concepts 

Alphanumeric characters include the letters of the alphabet, the question mark character, and the decimal 

digits 0 through 9. 

A name is required for the SET, EQU, and MACRO directives. Names follow the same coding rules as labels, 

except that they must be terminated with a blank rather than a colon. The label/name field must be empty for 

the LOCAL and ENDM directives. 

Opcode Field 

This required field contains the mnemonic operation code for the 8080/8085 instruction or assembler directive 

to be performed. 

Operand Field 

The operand field identifies the data to be operated on by the specified opcode. Some instructions require no 

operands. Others require one or two operands. As a general rule, when two operands are required (as in data 

transfer and arithmetic operations), the first operand identifies the destination (or target) of the operation's 

result, and the second operand specifies the source data. 

Examples: 

MOV A,C 

MVI A,'B' 

;MOVE CONTENTS OF REG C TO ACCUMULATOR 

;MOVE B TO ACCUMULATOR 

Comment Field 

The optional comment field may contain any information you deem useful for annotating your program. The 

only coding requirement for this field is that it be preceded by a semicolon. Because the semicolon is a delimiter, 

there is no need to separate the comment from the previous field with one or more spaces. However, spaces are 

commonly used to improve the readability of the comment. Although comments are always optional, you should 

use them liberally since it is easier to debug and maintain a well documented program. 

CODING OPERAND FIELD INFORMATION 

2-4 

There are four types of information (a through d in the following list) that may be requested as items in the 

operand field; the information may be specified in nine ways, each of which is described below. 



Chapter 2. Assembly Language Concepts 

OPERAND FIELD INFORMATION 

Information required Ways of specifying 

(a) Register (1) Hexadecimal Data 
(b) Register Pair (2) Decimal Data 
(c) I mmediate Data (3) Octal Data 
(d) 16-bit Address (4) Binary Data 

(5) Location Counter ($) 
(6) ASCII Constant 
(7) Labels assigned values 
(8) Labels of instructions or data 
(9) Expressions 

Hexadecimal Data. Each hexadecimal number must begin with a numeric digit (0 through 9) and must be 
followed by the letter H. 

Label Opcode Operand Comment 

HERE: MVI C,OBAH ;LOAD REG C WITH HEX BA 

Decimal Data. Each decimal number may be identified by the letter D immediately after its last digit or may 
stand alone. Any number not specifically identified as hexadecimal, octal, or binary is assumed to be decimal. 
Thus, the following statements are equivalent: 

Label 

ABC: 

Opcode 

MVI 
MVI 

Operand 

E,lS 
E,15D 

Comment 

;LOAD E WITH 15 DECIMAL 

Octal Data. Each octal number must be followed by the letter 0 or the letter Q. 

Label Opcode Operand 

LABEL: MVI A,72Q 

Binary Data. Each binary number must be followed by the letter B. 

Label Opcode Operand 

NOW: MVI D ,1111011 OB 

Comment 

;LOAD OCTAL 72 INTO ACCUM 

Comment 

;LOAD REGISTER D 
;WITH OF6H 

2-5 



Chapter 2. Assembly Language Concepts 

2-6 

Location Counter. The $ character refers to the current location counter. The location counter contains the 

address where the current instruction or data statement will be assembled. 

Label Opcode 

GO: JMP 

Operand 

$+6 

Comment 

;J UMP TO ADDRESS 6 BYTES BEYOND 
;THE FIRST BYTE OF THIS 
;INSTRUCTION 

ASCII Constant. One or more ASCII characters enclosed in single quotes define an ASCII constant. Two 
successive single quotes must be used to represent one single quote within an ASCII constant. 

Label Opcode 

MVI 

DATE: DB 

Operand 

E '*' , 

Comment 

;LOAD E REG WITH 8-81T ASCII 

;REPRESENT ATION OF * 
'TODAY"S DATE' 

Labels Assigned Values. The SET and EQU directives can assign values to labels. In the following example, 
assume that VALUE has been assigned the value 9FH; the two statements are equivalent: 

Label 

Al: 
A2: 

Opcode 

MVI 
MVI 

Operand 

D,9FH 
D,VALUE 

Comment 

Labels of Instruction or Data. The label assigned to an instruction or a data definition has as its value the 
address of the first byte of the instruction or data. Instructions elsewhere in the program can refer to this 
address by its symbolic label name. 

Label Opcode Operand Comments 

HERE: JMP THERE ;JUMP TO INSTRUCTION AT THERE 

THERE: MVI D,9FH 

Expressions. All of the operand types discussed previously can be combined by operators to form an expression. 
In fact, the example given for the location counter {$+6} is an expression that combines the location counter 
with the decimal number 6. 

Because the rules for coding expressions are rather extensive, further discussion of expressions is deferred until 
later in this chapter. 



Chapter 2. Assembly Language Concepts 

Instructions as Operands. One operand type was intentionally omitted from the list of operand field infor

mation: Instructions enclosed in parentheses may appear in the operands field. The operand has the value of 

the left-most byte of the assembled instruction. 

Label Opcode Operand 

INS: DB (ADD C) 

The statement above defines a byte with the value 81 H (the object code for an ADD C instruction). Such 

coding is typically used where the object program modifies itself during execution, a technique that is strongly 

discouraged. 

Register-Type Operands. Only instructions that allow registers as operands may have register-type operands. 

Expressions containing register-type operands are flagged as errors. Thus, an instruction like 

JMP A 

is flagged as an illegal use of a register. 

The only assembler directives that may contain register-type operands are EQU, SET, and actual parameters in 

macro calls. Registers can be assigned alternate names only by EQU or SET. 

TWO'S COMPLEMENT REPRESENTATION OF DATA 

Any 8-bit byte contains one of the 256 possible combinations of zeros and ones. Any particular combination may 

be interpreted in a number of ways. For example, the code 1 FH may be interpreted as an instruction (Rotate 

Accumuiator Right Through Carry), as the hexadecimal value 1 F, the decimal value 31, or simply the bit 

pattern 00011111. 

Arithmetic instructions assume that the data bytes upon which they operate are in the 'two's complement' 

format. To understand why, let us first examine two examples of decimal arithmetic: 

35 

-12 

23 

35 

+88 

123 

Notice that the results of the two examples are equal if we disregard the carry out of the high order position in 

the second example. The second example illustrates subtraction performed by adding the ten's complement of 

the subtrahend (the bottom number) to the minuend (the top number). To form the ten's complement of a 

decimal number, first subtract each digit of the subtrahend from 9 to form the nine's complement; then add one 

to the result to form the ten's complement. Thus, 99-12=87; 87+1 =88, the ten's complement of 12. 

The ability to perform subtraction with a form of addition is a great advantage in a computer since fewer cir

cuits are required. Also, arithmetic operations within the computer are binary, which simplifies matters even more. 

2-7 



Chapter 2. Assembly Language Concepts 

2-8 

The processor forms the two's complement of a binary value simply by reversing the value of each bit and then 

adding one to the result. Any carry out of the high order b~t is ignored when the complement is formed. Thus, 

the subtraction shown previously is performed as follows: 

35 = 001 0 0011 

- 1 2 = 0000 11 00 = 1111 0011 

23 + 

1111 01 00 

0010 0011 

+1111 01 00 

1 0001 0111 = 23 

Again, by disregarding the carry out of the high order position, the subtraction is performed through a form of 

addition. However, if this operation were performed by the 8080 or the 8085, the carry flag would be set OFF 

at the end of the subtraction. This is because the processors complement the carry flag at the end of a subtract 

operation so that it can be used as a 'borrow' flag in multibyte subtractions. I n the example shown, no borrow 

is required, so the carry flag is set OFF. By contrast, the carry flag is set ON if we subtract 35 from 12: 

1 2 = 0000 11 00 

-35 = 0010 0011 = 1101 1100 

+ 

11 01 1101 

0000 1100 

+11011101 

1110 1001 = 233 or --105 

In this case, the absence of a carry indicates that a borrow is required from the next higher order byte, if any. 

Therefore, the processor sets the carry flag ON. Notice also that the result is stored in a complemented form. 

If you want to interpret this result as a decimal value, you must again form its two's complement: 

111 0 1 001 = 0001 011 0 

+ 

0001 01 11 = 23 

Two's complement numbers may also be signed. When a byte is interpreted as a signed two's complement number, 

the high order bit indicates the sign. A zero in this bit indicates a positive number, a one a negative number. The 

seven low order bits provide the magnitude of the number. Thus, 0111 1111 equals + 127. 

At the beginning of this description of two's complement arithmetic, it was stated that any 8-bit byte may con

tain one of the 256 possible combinations of zeros and ones. It must also be stated that the proper interpretation 

of data is a programming responsibility. 

As an example, consider the compare instruction. The compare logic considers only the raw bit values of the 

items being compared. Therefore, a negative two's complement number always compares higher than a positive 

number, because the negative number's high order bit is always ON. As a result, the meanings of the flags set by 

the compare instruction are reversed. Your program must account for this condition. 



Chapter 2. Assembly Language Concepts 

SYMBOLS AND SYMBOL TABLES 

Symbolic Addressing 

If you have never done symbolic programming before, the following analogy may help clarify the distinction 

between a symbolic and an absolute address. 

The locations in program memory can be compared to a cluster of post office boxes. Suppose Richard Roe 

rents box 500 for two months. He can then ask for his letters by saying 'Give me the mail in box 500,' or 

'Give me the mail for Roe.' If Donald Smith later rents box 500, he too can ask for his mail by either box 

number 500 or by his name. The content of the post office box can be accessed by a fixed, absolute address 

(500) or by a symbolic, variable name. The postal clerk correlates the symbolic names and their absolute values 

in his log book. The assembler performs the same function, keeping track of symbols and their values in a 

symbol table. Note that you do not have to assign values to symbolic addresses. The assembler references its 

location counter during the assembly process to calculate these addresses for you. (The location counter does 

for the assembler what the program counter does for the microcomputer. It tells the assembler where the next 

instruction or operand is to be placed in memory.) 

Symbol Characteristics 

A symbol can contain one to six alphabetic (A-Z) or numeric (0-9) characters (with the first character alphabetic) 

or the special character '?' or '@'. A dollar sign can be used as a symbol to denote the value currently in the 

location cou nter. For example, the command 

JMP $+6 

forces a jump to the instruction residing six memory locations higher than the J MP instruction. Symbols of the 

form 'nnnn' are generated by the assembler to uniquely name symbols local to macros. 

The assembler regards symbols as having the following attributes: reserved or user-defined; global or limited; 

permanent or redefinable; and absolute or relocatablc. 

Reserved, User-Defined, and Assembler-Generated Symbols 

Reserved symbols are those that already have special meaning to the assembler and therefore cannot appear as 

user-defined symbols. The mnemonic names for machine instructions and the assembler directives are all reserved 

symbols. 

2-9 



Chapter 2. Assembly Language Concepts 

2-10 

The following instruction operand symbols are also reserved: 

Symbol 

$ 

A 

B 
C 

D 

E 

H 

L 
SP 
PSW 
M 

Meaning 

Location counter reference 
Accumulator register 
Register B or register pair Band C 
Register C 
Register D or register pair D and E 
Register E 
Register H or register pair Hand L 
Register L 
Stack pointer register 

STACK 
MEMORY 

Program status word (Contents of A and status flags) 
Memory reference code using address in Hand L 
Special relocatability feature 
Special relocatability feature 

NOTE 

The STACK and MEMORY symbols are fully discussed 
in Chapter 4. 

User-defined symbols are symbols you create to reference instruction and data addresses. These symbols are 
defined when they appear in the label field of an instruction or in the name field of EQU, SET, or MACRO 
directives (see Ch~pters 4 and 5). 

Assembler-generated symbols are created by the assembler to replace user-defined symbols whose scope is limited 
to a macro definition. 

Global and Limited Symbols 

Most symbols are global. This means that they have meaning throughout your program. Assume, for example, 
that you assign the symbolic name RTN to a routine. You may then code a jump or a call to RTN from any 
point in your program. If you assign the symbolic name RTN to a second routine, an error results since you 
have given multiple definitions to the same name. 

Certain symbols have meaning only within a macro definition or within a call to that macro; these symbols are 
'local' to the macro. Macros require local symbols because the same macro may be used many times in the 
program. If the symbolic names within macros were global, each use of the macro (except the first) would cause 
multiple definitions for those symbolic names. 

See Chapter 5 for additional information about macros. 



Chapter 2. Assembly Langtlage Concepts 

Permanent and Redefinable Symbols 

Most symbols are permanent since their val ue cannot change during the assembly operation. Only symbols 
defined with the SET and MACRO assembler directives are redefinable. 

Absolute and Relocatable Symbols 

An important attribute of symbols with this assembler is that- of relocatability. Relocatable programs are 

assembled relative to memory location zero. These programs are later relocated to some other set of memory 

locations. Symbols with addresses that change during relocation are relocatable symbols. Symbols with 
addresses that do not change during relocation are absolute symbols. This distinction becomes important when 

the symbols are used within expressions, as will be explained later. 

External and public symbols are special types of relocatable symbols. These symbols are required to establish 

program linkage when several relocatable program modules are bound together to form a single application 

program. External symbols are those used in the current program module, but defined in another module. 

Such symbols must appear in an EXTRN statement, or the assembler will flag them as undefined. 

Conversely, PUBLIC symbols are defined in the current program module, but may be accessed by other 
modules. The addresses for these symbols are resolved'when the modules are bound together. 

Absolute and relocatable symbols may both appear in a relocatable module. References to any of the assembler
defined registers A through E, Hand L, PSW, SP, and M are absolute since they refer to hardware locations. 
But these references are valid in any module. 

ASSEMBLY-TIME EXPRESSION EVALUATION 

An expression is a combination of numbers, symbols, and operators. Each element of an expression is a term. 

Expressions, like symbols, may be absolute or relocatable. For the sake of readers who do not require the 
relocation feature, absolute expressions are described first. However, users of relocation should read all the 

following. 

Operators 

The assembler includes five groups of operators which permit the following assembly-time operations: arithmetic 

operations, shift operations, logical operations, compare operations, and byte isolation operations. It is important 
to keep in mind that these are all assembly-time operations. Once the assembler has evaluated an expression, it 

becomes a permanent part of your program. Assume, for example, that your program defines a list of ten con
stants starting at the label LIST; the following instruction loads the address of the seventh item in the list into 

the Hand L registers: 

LXI H,LlST +6 

Notice that LIST addresses the first item, LIST + 1 the second, and so on. 

2-11 



Chapter 2. Assembly Language Concepts 

2-12 

Arithmetic Operators 

The arithmetic operators are as follows: 

Operator 

+ 

* 

MOD 

Examples: 

Meaning 

Unary or binary addition 
Unary or binary subtraction 
Multiplication 
Division. Any remainder is discarded (7/2=3). 
Division by zero causes an error. 
Modulo. Result is the remainder caused by a 
division operation. (7 MOD 3=1) 

The following expressions generate the bit pattern for the ASCII character A: 

5+30*2 
(25/5}+30*2 
5+(-30*-2) 

Notice that the MOD operator must be separated from its operands by spaces: 

NUMBR MOD 8 

Assuming that NUMBR has the value 25, the previous expression evaluates to the value 1. 

Shift Operators 

The shift operators are as follows: 

Operator Meaning 

y SHR x Shift operand 'y' to the right 'x' bit positions. 

y SHL x Shift operand 'y' to the left 'x' bit positions. 

The shift operators do not wraparound any bits shifted out of the byte. Bit positions vacated by the shift 
operation are zero-filled. Notice that the shift operator must be separated from its operands by spaces. 

Example: 

Assume that NUMBR has the value 0101 0101. The effects of the shift operators is as follows: 

NUMBR SHR 2 0001 01 01 

NUMBR SHL 1010 1010 



Chapter 2. Assembly Language Concepts 

Notice that, for non-negative values, a shift one bit position to the left has the effect of mUltiplying a value by two; 
a shift one bit position to the right has the effect of dividing a value by two. 

Logical Operators 

The logical operators are as follows: 

Operator Meaning 

NOT Logical one's complement 

AND Logical AND (=1 if both ANDed bits are 1) 

OR Logical OR (=1 if either ORed bit is 1 ) 

XOR Logical EXCLUSIVE OR (=1 if bits are different) 

The logical operators act only upon the least significant bit of the result of the operation. Also, these operators are 
commonly used in conditional I F directives. These directives are fully explained in Chapter 4. 

Example: 

The following I F directive tests the least significant bit of the evaluated expression. The assembly language code that 
follows the I F is assembled only if the condition is TRUE. This means that the result must have a one bit in the least 
significant bit position. 

IF FLD1 AND FLD2 AND FLD3 

Compare Operators 

The compare operators are as follows: 

Operator 

EO 
NE 
LT 
LE 
GT 
GE 

NUL 

Meaning 

Equal 
Not equal 
Less than 
Less than or equal 
Greater than 
Greater than or equal 
Special operator used to test for null (missing) macro 
parameters 

2-13 



Chapter 2. Assembly Language Concepts 

2-14 

The compare operators yield a yes-no result. Thus, if the evaluation of the relation is TRUE, the value of the 
result is all ones. If false, the value of the result is all zeros. Relational operations are based strictly on magni
tude comparisons of bit values. Thus, a two's complement negative number (which always has a one in its high 
order bit) is greater than a two's complement positive number (which always has a zero in its high order bit). 

Since the NUL operator applies only to the macro feature, NUL is described in Chapter 5. 

The compare operators are commonly used in conditional I F directives. These directives are fully explained in 
Chapter 4. 

Notice that the compare operator must be separated from its operands by spaces. 

Example: 

The following IF directive tests the values of FLOl and FL02 for equality. If the result of the comparison is 
TRUE, the assembly language coding following the I F directive is assembled. Otherwise, the code is skipped over. 

IF FLOl EQ FL02 

Byte Isolation Operators 

The byte isolation operators are as follows: 

Operator Meaning 

HIGH Isolate high-order 8 bits of 16-bit value 

LOW Isolate low-order 8 bits of 16-bit value. 

The assembler treats expressions as 16-bit addresses. In certain cases, you need to deal only with a part of an 
address, or you need to generate an 8-bit value. This is the function of the HIGH and LOW operators. 

The assembler's relocation feature treats all external and relocatable symbols as 16-bit addresses. When one of 
these symbols appears in the operand expression of an immediate instruction, it must be preceded by either the 
HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the expression. 
When neither operator is present, the assembler assumes the LOW operator and issues an error message. 

NOTE 

Any program segment containing a symbol used as the 
argument of a HIGH operator should be located only on 
a page boundary. This is done using the PAGE option 
with the CSEG or OSEG directives described in Chapter 
4. Carries are not propagated from the low-order byte 
when the assembler object code is relocated and the 
carry flag will be lost. Using PAGE ensures that this 
flag is O. 



Chapter 2. Assembly Language Concepts 

Examples: 

Assume that ADRS is an address manipulated at assembly-time for building tables or lists of items that must all 
be below address 255 in memory. The following I F directive determines whether the high-order byte of ADRS 
is zero, thus indicating that the address is still less than 256: 

IF HIGH ADRS EQ 0 

Permissible Range of Values 

Internally, the assembler treats each term of an expression as a two-byte, 16-bit value. Thus, the maximum 
range of values is OH through OFFFFH. All arithmetic operations are performed using unsigned two's comple
ment arithmetic. The assembler performs no overflow detection for two-byte values, so these values are evaluated 
modulo 64K. 

Certain instructions require that their operands be an eight-bit value. Expressions for these instructions must 
yield values in the range -256 through +255. The assembler generates an error message if an f'xpression for one 
of these instructions yields an out-of-range value. 

Precedence of Operators 

NOTE 

Only instructions that allow registers as operands may have 
register-type operands. Expressions containing register-type 
operands are flagged as errors. The only assembler directives 
that may contain register-type operands are EQU, SET, and 
actual parameters in macro calls. Registers can be assigned 
alternate names only by EQU or SET. 

Expressions are evaluated left to right. Operators with higher precedence are evaluated before other operators 
that immediately precede or follow them. When two operators have equal precedence, the left-most is evaluated 
fi rst. 

Parentheses can be used to override normal rules of precedence. The part of an expression enclosed in paren
theses is evaluated first. If parentheses are nested, the innermost are evaluated first. 

15/3 + 18/9 
15/(3 + 18/9) 

= 5 + 2 = 7 

= 15/(3 + 2) = 15/5 = 3 

2-15 



Chapter 2. Assembly Language Concepts 

The following list describes the classes of operators in order of precedence: 

• Parenthesized expressions 

• NUL 
• HIGH, LOW 
• Multiplication/Division: *, /, MOD, SHL, SHR 
• Addition/Subtraction: +, - (unary and binary) 

• Relational Operators: EQ, L T, LE, GT, GE, NE 

• Logical NOT 
• Logical AND 
• Logical OR, XOR 

The relational, logical, and HIGH/LOW operators must be separated from their operands by at least one blank. 

WARNING 

If NOT is immediately preceded by another operator, e.g.: 

Y EQU 1 + NOT X 

an error will result. To code the expression for correct assembly, parenthesize the expression to force NOT to be 
evaluated first, e.g.: 

Y EQU 1 + (NOT X) 

Relocatable Expressions 

2-16 

Determining the relocatability of an expression requires that you understand the relocatability of each term used 
in the expression. This is easier than it sounds since the number of allowable operators is substantially reduced. 
But first it is necessary to know what determines whether a symbol is absolute or relocatable. 

Absolute symbols can be defined two ways: 

• A symbol that appears in a label field when the ASEG directive is in effect is an absolute symbol. 
• A symbol defined as equivalent to an absolute expression using the SET or EQU directive is an 

absolute symbol. 

Relocatable symbols can be defined a number of ways: 

• A symbol that appears in a label field when the DSEG or CSEG directive is in effect is a relocatable 
symbol. 

• A symbol defined as equivalent to a relocatable expression using the SET or EQU directive is 
relocatable. 

• The special assembler symbols STACK and MEMORY are relocatable. 
• External symbols are considered relocatable. 
• A reference to the location counter (specified by the $ character) is relocatable when the CSEG or 

DSEG directive is in effect. 

The expressions shown in the following list are the only expressions that yield a relocatable result. Assume that 

ABS is an absolute symbol and RELOC is a relocatable symbol: 



Chapter 2. Assembly Language Concepts 

Remember that numbers are absolute terms. Thus the expression RELOC - 100 is legal, but 100 RELOC 
is not. 

When two relocatable symbols have both been defined with the same type of relocatability, they may appear in 

certain expressions that yield an absolute result. Symbols have the same type of relocatability when both are 
relative to the CSEG location counter, both are relative to the DSEG location counter, both are relative to 
MEMORY, or both are relative to STACK. The following expressions are val id and produce absolute results: 

RELOCl - RELOC2 

RELOCl 

EQ 

LT 

LE 

GT 
GE 
NE 

RELOC2 

Relocatable symbols may not appear in expressions with any other operators. 

The following list shows all possible combinations of operators with absolute and relocatable terms. An A in the 
table indicates that the resulting address is absolute; an R indicates a relocatable address; an I indicates an 
illegal combination. Notice that only one term may appear with the last five operators in the list. 

Operator 

X + Y 

X - Y 

X * Y 

X / Y 
X MOD Y 

X SHL Y 

X SHR Y 

X EQ Y 
X LT Y 
X LE Y 
X GT Y 
X GE Y 
X NE Y 

X AND Y 
X OR Y 
X XOR Y 

NOT X 
HIGH X 
LOW X 

unary+ X 
unary- X 

X absolute 
Y absolute 

A 
A 

A 
A 
A 

A 
A 

A 

A 
A 

A 
A 
A 
A 

A 
A 
A 

A 
A 
A 
A 

X ab 
Y rei 

te solu 
oca table 

R 

X relocatable X relocatable 
Y absolute Y relocatable 

R I 

R A 
I 

I 

I 
I 

I 

A 

A 
A 
A 
A 
A 
I 

I 

I 
--

R -

R -

R --

I -

2-1 i 



Chapter 2. Assembly Language Concepts 

Relocatability of Expressions Involving External Symbols 

The only permissible expressions involving external symbols (EXTRNs) are: 

• External symbol ± absolute symbol 
• Absolute symbol + external symbol 
• HIGH (external symbol) 
• LOW (external symbol) 

Chaining of Symbol Definitions 

The ISIS-II 8080/8085 Macro Assembler is essentially a 2-pass assembler. All symbol table entries must be 
resolvable in two passes. Therefore, 

X EQU Y 

Y EQU 

is legal, but in the series 

X EQU Y 

Y EQU z 
z EQU 

the first line is illegal as X cannot be resolved in two passes and remains undefined. 

2-18 



3. INSTRUCTION SET 

HOW TO USE THIS CHAPTER 

This chapter is a dictionary of 8080 and 8085 instructions. The instruction descriptions are listed alphabetically 
for quick reference. Each description is complete so that you are seldom required to look elsewhere for addition
al information. 

This reference format necessarily requires repetitive information. If you are readinr this manual to learn about 
the 8080 or the 8085, do not try to read this chapter from ACI (add immediate with Carry) to XTHL (exchange 
top of stack with Hand L registers). Instead, read the description of the processor and instruction set in 
Chapter 1 and the programming examples in Chapter 6. When you begin to have questions about particular 
instructions, look them up in this chapter. 

TIMING INFORMATION 

The instruction descriptions in this manual do not explicitly state execution timings. This is because the basic 
operating speed of your processor depends on the clock frequency used in your system. 

The estate' is the basic unit of time measurement for the processor. A state may range from 480 nanoseconds 
(320 nanoseconds on the 8085) to 2 microseconds, depending on the clock frequency. When you know the 
length of a state in your system, you can determine an instruction's basic execution time by mUltiplying that 
figure by the number of states required for the instruction. 

Notice that two sets of cycle/state specifications are given for 8085 conditional call and jump instructions. This 
is because the 8085 fetches the third instruction byte only if it is actually needed; i.e., the specified condition 
is satisfied. 

This basic timing factor can be affected by the operating speed of the memory in your system. With a fast 
clock cycle and a slow memory, the processor can outrun the memory. I n this case, the processor must wait 
for the memory to deliver the desired instruction or data. In applications with critical timing requirements, this 
wait can be significant. Refer to the appropriate manufacturer's literature for memory timing data. 

3-1 



Chapter 3. Instruction Set 

ACI 

1\ DC 

3-2 

ADD IMMEDIATE WITH CARRY 

ACI adds the contents of the second instruction byte and the carry bit to the contents of the accumulator and 
stores the result in the accumulator. 

Opcode Operand 

ACI data 

The operand specifies the actual data to be added to the accumulator except, of course, for the carry bit. Data 

may be in the form of a number, an ASCII constant, the label of a previously defined value, or an expression. 
The data may not exceed one byte. 

The assembler's relocation feature treats all external and relocatable symbols as 16-bit addresses. When one of 
> these symbols appears in the operand expression of an immediate instruction, it must be preceded by either the 

HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the expression. 
When neither operator is present, the assembler assumes the LOW operator and issues an error message. 

o 0 

data 

Cycles: 
States: 
Addressing: 
Flags: 

Example: 

o 

2 
7 
immediate 

Z,S,P,CY,AC 

Assume that the accumulator contains the value 14H and that the carry bit is set to one. The instruction ACI 66 
has the following effect: 

Accumulator = 14H 
Immediate data = 42H 

Carry 

0001 0100 

01000010 
1 

01010111 57H 

ADD WITH CARRY 

The ADC instruction adds one byte of data plus the setting of the carry flag to the contents of the accumulator. 
The result is stored in the accumulator. ADC then updates the setting of the carry flag to indicate the outcome 
of the operation. 

The ADC instruction's use of the carry bit enables the program to add multi-byte numeric strings. 



Chapter 3. Instruction Set 

Add Register to Accumulator with Carry 

Opccde Operand 

ADC reg 

The operand must specify one of the registers A through E, H or L. This instruction adds the contents of the 
specified register and the carry bit to the accumulator and stores the result in the accumulator. 

Cycles: 
States: 
Addressings: 
Flags: 

Add Memory to Accumulator with Carry 

Opcode 

ADC 

Operand 

M 

1 
4 
register 
Z,S,P,CY,AC 

This instruction adds the contents of the memory location addressed by the Hand L registers and the carry 
bit to the accumulator and stores the result in the accumulator. M is a symbolic reference to the Hand L 
registers. 

Cycles: 
States: 
Addressing: 
Flags: 

Example: 

2 
7 
register indirect 
Z,S,P,CY,AC 

Assume that register C contains 3DH, the accumulator contains 42H, and the carry bit is set to zero. The 
instruction ADC C performs the addition as follows: 

3DH 
42H 

CARRY 

The condition flags are set as follows: 

001111 01 

01000010 

o 
01111111 = 7FH 

Carry 0 
Sign 0 
Zero 0 
Parity 0 
Aux. Carry 0 

3-3 



Chapter 3. Instruction Set 

ADD 

34 

If the carry bit is set to one, the instruction has the following results: 

3DH 00111101 

42H 01000010 

CARRY 1 

10000000 80H 

Carry 0 

Sign 

Zero 0 

Parity 0 

Aux. Carry 

ADD 

The ADD instruction adds one byte of data to the contents of the accumulator. The result is stored in the 

accumulator. Notice that the ADD instruction excludes the carry flag from the addition but sets the flag to 

indicate the outcome of the operation. 

Add Register to Register 

Opcode Operand 

ADD reg 

The operand must specify one of the registers A through E, H or L. The instruction adds the contents of the 

specified register to the contents of the accumulator and stores the result in the accumulator. 

Add From Memory 

11 0 0 0 0 Is S SI 

Cycles: 

States: 

Addressing: 

Flags: 

Opcode 

ADD 

Operand 

M 

1 
4 

register 

Z,S,P,CY,AC 

This instruction adds the contents of the memory location addressed by the Hand L registers to the contents of 

the accumulator and stores the result in the accumulator. M is a symbolic reference to the Hand L registers. 

11 0 0 0 0 

Cycles: 

States: 

Addressing: 

Flags: 

2 
7 

register indirect 

Z,S,P,CY,AC 



ADI 

Chapter 3. Instruction Set 

Examples: 

Assume that the accumulator contains 6CH and register D contains 2EH. The instruction ADD D performs the 
addition as follows: 

2 E H 001 0111 0 
6CH 01101100 

9 A H 1 001 "1 01 0 

The accumulator contains the value 9AH following execution of the ADD D instruction. The contents of the D 
register remain unchanged. The condition flags are set as follows: 

Carry = 0 
Sign 1 
Zero 0 
Parity 
Aux. Carry 

The following instruction doubles the contents of the accumulator: 

ADD A 

ADD IMMEDIATE 

ADI adds the contents of the second instruction byte of the contents of the accumulator and stores the result 
in the accumulator. 

Opcode Operand 

ADI data 

The operand specifies the actual data to be added to the accumulator. This data may be in the form of a number, 
an ASCII constant, the label of a previously defined value, or an expression. The data may not exceed one byte. 

The assembler's relocation feature treats all external and relocatable symbols as 16-bit addresses. When one of 
these symbols appears in the operand expression of an immediate instruction, it must be preceded by either 
the HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the expression. 
When neither operator is present, the assembler assumes the LOW operator and issues an error message. 

000 

data 

Cycles: 
States: 
Addressing: 
Flags: 

2 
7 
immediate 
Z,S,P,CY,AC 

3-5 



Chapter 3. Instruction Set 

ANA 

3-6 

Example: 

Assume that the accumulator contains the value 14H. The illstruction ADI 66 has the following effect: 

Accumulator 
Immediate data 

14H 
42H 

00010100 
01000010 
01010110 = 56H 

Notice that the assembler converts the decimal value 66 into the hexadecimal value 42. 

LOGICAL AND WITH ACCUMULATOR 

ANA performs a logical AND operation using the contents of the specified byte and the accumulator. The result 
is placed in the accumulator. 

Summary of Logical Operations 

AND produces a one bit in the result only when the corresponding bits in the test data and the mask data are 
ones. 

OR produces a one bit in the result when the corresponding bits in either the test data or the mask data are 
ones. 

Exclusive OR produces a one bit only when the corresponding bits in the test data and the mask data are 
different; i.e., a one bit in either the test data or the mask data - but not both - produces a one bit in the 
result. 

AND 

1010 1010 
0000 1111 
0000 1010 

AND Register with Accumulator 

Opcode 

ANA 

OR 

1010 1010 
0000 1111 
10101111 

Operand 

reg 

EXCLUSIVE OR 

1010 1010 
0000 1111 
1010 0101 

The operand must specify one of the registers A through E, H or L. This instruction ANDs the contents of the 
specified register with the accumulator and stores the result in the accumulator. The carry flag is reset to zero. 

11 0 0 0 I S S sl 
Cycles: 
States: 4 
Addressing: register 
Flags: Z,S,P,CY,AC 



ANI 

Chapter 3. Instruction Set 

AND Memory with Accumulator 

Opcode Operand 

ANA M 

This instruction ANDs the contents of the specified memory location with the accumulator and stores the result 
in the accumulator. The carry flag is reset to zero. 

Example: 

~_O ____ O __ O ______ O~I 
Cycles: 
States: 
Addressing: 
Flags: 

2 
7 
register indirect 
Z,S,P,CY,AC 

Since any bit ANDed with a zero produces a zero and any bit ANDed with a one remains unchanged, AND is 

frequently used to zero particular groups of bits. The following example ensures that the high-order four bits of 
the accumulator are zero, and the low-order four bits ar~ unchanged. Assume that the C register contains OFH: 

Accumulator 
C Register 

1 1 1 1 
o 000 
000 0 

o 0 
1 

o 0 

OFCH 
OFH 
OCH 

AND IMMEDIATE WITH ACCUMULATOR 

AN I performs a logical AND operation using the contents of the second byte of the instruction and the accumu
lator. The result is placed in the accumulator. ANI also resets the carry flag to zero. 

Op co de Operand 

ANI data 

The operand must specify the data to be used in the AND operation. This data may be in the form of a number, 
an ASCII constant, the label of some previously defined value, or an expression. The data may not exceed one 
byte. 

The assembler's relocation feature treats all external and relocatable symbols as 16-bit addresses. When one of 
these symbols appears in the operand expression of an immediate instruction, it must be preceded by either the 
HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the expression. 
When neither operator is present, the assembler assumes the LOW operator and issues an error message. 

3-7 



Chapter 3. Instruction Set 

CALL 

3-8 

Cycles: 
States: 
Addressing: 
Flags: 

Summary of Logical Operations 

o 0 

data 

2 
7 

immediate 
Z,S,P,CY,AC 

AND produces a one bit in the result only when the corresponding bits in the test data and the mask data are 

ones. 

OR produces a one bit in the result when the corresponding bits in either the test data or the mask data are 
ones. 

Exclusive OR produces a one bit only when the corresponding bits in the test data and the mask data are 
different; i.e., a one bit in either the test data or the mask data - but not both - produces a one bit in the 
result. 

Example: 

AND 

1010 1010 
0000 1111 
0000 '1010 

OR 

1010 1010 
0000 1111 
10101111 

EXCLUSIVE OR 

1010 1010 
0000 1111 
10100101 

The following instruction is used to reset OFF bit six of the byte in the accumulator: 

ANI 101111118 

Since any bit ANDed with a one remains unchanged and a bit ANDed with a zero is rest to zero, the ANI 
instruction shown above sets bit six OFF and leaves the others unchanged. This technique is useful when a 
program uses individual bits as status flags. 

CALL 

The CALL instruction combines functions of the PUSH and J MP instructions. CALL pushes the contents of the 
program counter (the address of the next sequential instruction) onto the stack and then jumps to the address 
specified in the CALL instruction. 

Each CALL instruction or one of its variants implies the use of a subsequent RET (return) instruction. When a 
call has no corresponding return, excess addresses are built up in the stack. 



Chapter 3. Instruction Set 

Op co de Operand 

CALL address 

The address may be specified as a number, a label, or an expression. (The label is most common.) The assembler 
inverts the high and low address bytes when it assembles the instruction. 

1 1 0 

Cycles: 

States: 

Addressing: 
Flags: 

Example: 

0 1 1 0 1 

lowaddr 

high addr 

5 
1 7 (1 8 0 n 8085) 
immediate/register indirect 

none 

When a given coding sequence is required several times in'a program, you can usually conserve memory by coding 

the sequence as a subroutine invoked by the CALL instruction or one of its variants. For example, assume that 

an application drives a six-digit LED display; the display is updated as a result of an operator input or because 

of two different calculations that occur in the program. The coding required to drive the display can be included 
in-line at each of the three points where it is needed, or it can be coded as a subroutine. If the label DISPL Y is 
assigned to the first instruction of the display driver, the following CALL instruction is used to invoke the 
display subroutine: 

CALL DISPLY 

This CALL instruction pushes the address of the next program instruction onto the stack and then transfers 
control to the DISPL Y subroutine. The DISPL Y subroutine must execute a return instruction or one of its 
variants to resume normal program flow. The following is a graphic illustration of the effect of CALL and return 
instructions: 

CALL 

--
_ ~ DISPLY: 

CA L L ~ D ISPL Y - - - - ------- ----- ----- .... 
RET 

CALL DISPLY 

Consideration for Using Subroutines 

The larger the code segment to be repeated and the greater the number of repetitions, the greater the potential 
memory savings of using a subroutine. Thus, if the display driver in the previous example requires one hundred 

3-9 



Chapter 3. Instruction Set 

CC 

CM 

3-10 

bytes, coding it in-line would require three hundred bytes. Coded as a subroutine, it requires one hundred bytes 

plus nine bytes for the three CALL instructions. 

Notice that subroutines require the use of the stack. This requires the application to include random access 
memory for the stack. When an application has no other need for random access memory, the system designer 
might elect to avoid the use of subroutines. 

CALL IF CARRY 

The CC instruction combines functions of the JC and PUSH instructions. CC tests the setting of the carry flag. 
If the flag is set to one, CC pushes the contents of the program counter onto the stack and then jumps to the 
address specified in bytes two and three of the CC instruction. If the flag is reset to zero, program execution 
continues with the next sequential instruction. 

Opcode Operand 

CC address 

Although the use of a label is most common, the address may also be specified as a number or expression. 

1 1 0 

Cycles: 
States: 
Addressing: 
Flags: 

Example: 

1 1 1 0 0 

lowaddr 

high addr 

3 or 5 (2 or 5 on 8085) 
11 or 17 (9 or 18 on 8085) 
immediate/register indirect 
none 

For the sake of brevity, an example is given for the CALL instruction but not for each of its closely related 
variants. 

CALL IF MINUS 

The CM instruction combines functions of the J M and PUSH instructions. CM tests the setting of the sign flag. 
If the flag is set to one (indicating that the contents of the accumulator are minus), CM pushes the contents 
of the program counter onto the stack and then jumps to the address specified by the CM instruction. If the 
flag is set to zero, program execution simply continues with the next sequential instruction. 

Opcode Operand 

CM address 



CMA 

Chapter 3. Instruction Set 

Although the use of a label is most common, the address may also be specified as a number or an expression. 

1 1 1 

Cycles: 

States: 

Addressing: 

Flags: 

Example: 

1 1 1 a a 

lowaddr 

high addr 

3 or 5 (2 or 5 on 8085) 

11 or 17 (9 or 18 on 8085) 

immediate/register indirect 

none 

For the sake of brevity, an example is given for the CALL instruction but not for each of its closely related 

variants. 

COMPLEMENT ACCUMU LA TOR 

CMA complements each bit of the accumulator to produce the one's complement. All condition flags remain 

unchanged. 

Opcode Operand 

CMA 

Operands are not permitted with the CMA instruction. 

a 

Cycles: 

States: 4 
Flags: none 

To produce the two's complement, add one to the contents of the accumulator after the CMA instructions has 

been executed. 

Example: 

Assume that the accumulator contains the value 51 H; when complemented by CMA, it becomes OAEH: 

51H 

OAEH 

01 01 0001 

10101110 

3-11 



Chapter 3. Instruction Set 

CMC 

CMP 

3-12 

COMPLEMENT CARRY 

If the carry flag equals zero, CMC sets it to one. If the carry flag is one, CMC resets it to zero. All other flags 

remain unchanged. 

Opcode Operand 

CMC 

Operands are not permitted with the CMC instruction. 

10 0 
Cycles: 

States: 

Flags: 

Example: 

4 
CYonly 

Assume that a program uses bit 7 of a byte to control whether a subroutine is called. To test the bit, the pro

gram loads the byte into the accumulator, rotates bit 7 into the carry flag, and executes a CC (Call if Carry) 

instruction. Before returning to the calling program, the subroutine reinitializes the flag byte using the following 

code: 

CMC 

RAR 

RET 

;SET BIT 7 OFF 

;ROTATE BIT 7 INTO ACCUMULATOR 

;RETURN 

COMPARE WITH ACCUMULATOR 

CMP compares the specified byte with the contents of the accumulator and indicates the result by setting the 

carry and zero flags. The values being compared remain unchanged. 

The zero flag indicates equality. No carry indicates that the accumulator is greater than or equal to the specified 

byte; a carry indicates that the accumulator is less than the byte. However, the meaning of the carry flag is reversed 

when the values have different signs or one of the values is complemented. 

The program tests the condition flags using one of the conditional Jump, Call, or Return instructions. For 

example, J Z (J ump if Zero) tests for equality. 

Functional Description: 

Comparisons are performed by subtracting the specified byte from the contents of the accumulator, which 

is why the zero and carry flags indicate the result. This subtraction uses the processor's internal registers 

so that source data is preserved. Because subtraction uses two's complement addition, the CMP instruction 

recomplements the carry flag generated by the subtraction. 



Chapter 3. Instruction Set 

Compare Register with Accumulator 

Opcode Operand 

CMP reg 

The operand must name one of the registers A through E, H or L. 

o 

Cycles: 
States: 
Addressing: 
Flags: 

S S sl 

4 

register 
Z,S,P,CY,AC 

Compare Memory with Accumulator 

Opcode Operand 

CMP M 

This instruction compares the contents of the memory location addressed by the Hand L registers with the 
contents of the accumulator. M is a symbolic reference to the Hand L register pair. 

Cycles: 
States: 
Addressing: 
Flags: 

Example 1: 

2 
7 
register indirect 
Z,S,P,CY,AC 

Assume that the accumulator contains the value OAH and register E contains the value OSH. The instruction 
CMP E performs the following internal subtraction (remember that subtraction is actually two's complement 
addition) : 

Accumulator = 00001010 
+( -E Register) 11111011 

000001 01 + ( -carry) 

After the carry is complemented to account for the subtract operation, both the zero and carry bits are zero, 
thus indicating A greater than E. 

Example 2: 

Assume that the accumulator contains the value -1 BH and register E contains OSH: 

Accumulator 
+( -E Register) 

111 00101 
11111011 
11100000 +( -carry) 

3·13 



Chapter 3. Instruction Set 

CNC 

CNZ 

3-14 

After the CMP instruction recomplements the carry flag, both the carry flag and zero flag are zero. Normally 
this indicates that the accumulator is greater than register E. However, the meaning of the carry flag is reversed 

since the values have different signs. The user program is responsible for proper interpretation of the carry flag. 

CALL IF NO CARRY 

The CNC instruction combines functions of the J NC and PUSH instructions. CNC tests the setting of the carry 
flag. If the flag is set to zero, CNC pushes the contents of the program counter onto the stack and then jumps 

to the address specified by the CNC instruction. If the flag is set to one, program execution simply continues 
with the next sequential instruction. 

Opcode Operand 

CNC address 

Although the use of a label is most common, the address may also be specified as a number or an expression. 

1 1 0 

Cycles: 

States: 

Addressing: 
Flags: 

Example: 

1 0 1 0 0 

lowaddr 

high addr 

3 or 5 (2 or 5 on 8085) 
11 or "17 (9 or 18 on 8085) 

immediate/register indirect 

none 

For the sake of brevity, an example is given for the CALL instruction but not for each of its closely related 

variants. 

CALL IF NOT ZERO 

The CNZ instruction combines functions of the J NZ and PUSH instructions. CNZ tests the setting of the zero 
flag. If the flag is off (indicating that the contents of the accumulator are other than zero), CNZ pushes the 
contents of the program counter onto the stack and then jumps to the address specified in the instruction's 
second and third bytes. If the flag is set to one, program execution simply continues with the next sequential 
instruction. 

Opcode Operand 

CNZ address 

Although the use of a label is most common, the address may also be specified as a number or an expression. 



CP 

Chapter 3. Instruction Set 

1 1 0 

Cycles: 

States: 

Addressing: 

Flags: 

Example: 

0 0 1 0 0 

lowaddr 

high addr 

3 or 5 (2 or 5 on 8085) 

1"1 or 17 (9 or 18 on 8085) 

immediate/register indirect 

none 

For the sake of brevity, an example is given for the CALL instruction but not for each of its closely related 

variants. 

CALL IF POSITIVE 

The CP instruction combines features of the J P and PUSH instructions. CP tests the setting of the sign flag. If 

the flag is set to zero (indicating that the contents of the accumulator are positive), CP pushes the contents of 

the program counter onto the stack and then jumps to the address specified by the CP instruction. If the flag 

is set to one, program execution simply continues with the next sequential instruction. 

Opcode Operand 

CP address 

Although the use of a label is more common, the address may also be specified as a number or an expression. 

1 1 1 

Cycles: 

States: 

Addressing: 

Flags: 

Example: 

1 0 1 0 0 

low address 

high addr 

3 or 5 (2 or 5 on 8085) 

11 or 17 (9 or 18 on 8085) 

immediate/register indirect 

none 

For the sake of brevity, an example is given for the CALL instruction but not for each of its closely related 
variants. 

3-15 



Chapter 3. Instruction Set 

CPE 

CPI 

3-16 

CALL IF PARITY EVEN 

Parity is even if the byte in the accumulator has an even number of one bits. The parity flag is set to one to 

indicate this condition. The CPE and CPO instructions are useful for testing the parity of input data. However, 

the IN instruction does not set any of the condition flags. The flags can be set without altering the data by 

adding OOH to the contents of the accumulator. 

The CPE instruction combines functions of the J PE and PUSH instructions. CPE tests the setting of the parity 

flag. If the flag is set to one, CPE pushes the contents of the program counter onto the stack and then jumps 

to the address specified by the CPE instruction. If the flag is set to zero, program execution simply continues 

with the next sequential instruction. 

Opcode Operand 

CPE address 

Although the use of a label is more common, the address may also be specified as a number or an expression. 

1 1 1 

Cycles: 

States: 

Addressing: 

Flags: 

Example: 

0 1 1 0 0 

lowaddr 

high addr 

3 or 5 (2 or 5 on 8085) 

11 or 17 (9 or 18 on 8085) 

immediate/register indirect 

none 

For the sake of brevity, an example is given for the CALL instruction but not for each of its closely related 

variants. 

COMPARE IMMEDIATE 

CPI compares the contents of the second instruction byte with the contents of the accumulator and sets the zero 

and carry flags to indicate the result. The values being compared remain unchanged. 

The zero flag indicates equality. No carry indicates that the contents of the accumulator are greater than the 

immediate data; a carry indicates that the accumulator is less than the immediate data. However, the meaning 

of the carry flag is reversed when the values have different signs or one of the values is complemented. 

Opcode Operand 

CPI data 



CPO 

Chapter 3. I nstruction Set 

The operand must specify the data to be compared. This data may be in the form of a number, an ASCII 

constant, the label of a previously defined value, or an expression. The data may not exceed one byte. 

The assembler's relocation feature treats all external and relocatable symbols as 16-bit addresses. When one of 

these symbols appears in the operand expression of an immediate instruction, it must be preceded by either 

the HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the 

expression. When neither operator is present, the assembler assumes the LOW operator and issues an error 

message. 

Cycles: 

States: 

Addressing: 

Flags: 

Example: 

data 

2 
7 

o 

register indirect 

Z,S,P,CY,AC 

The instruction CPI IC' compares the contents of the accumulator to the letter C (43H). 

CALL IF PARITY ODD 

Parity is odd if the byte in the accumulator has an odd number of one bits. The parity flag is set to zero to 

indicate this condition. The CPO and ePE instructions are useful for testing the parity of input data. However, 

the I N instruction does not set any of the condition flags. The flags can be set without altering the data by 

adding OOH to the contents of the accumulator. 

The CPO instruction combines functions of the J PO and PUSH instructions. CPO tests the setting of the parity 

flag. If the flag is set to zero, CPO pushes the contents of the program counter onto the stack and then jumps 

to the address specified by the CPO instruction. If the flag is set to one, program execution simply continues 

with the next sequential instruction. 

Opcode Operand 

CPO address 

Although the use of a label is more common, the address may also be specified as a number or an expression. 

1 1 1 0 0 1 0 0 

lowaddr 
, 

high addr 

Cycles: 3 or 5 (2 or 5 on 8085) 

States: 11 or 17 (9 or 18 on 8085) 

Addressing: immediate/register indirect 

Flags: none 
3-17 



Chapter 3. Instruction Set 

CZ 

DAA 

3-18 

Example: 

For the sake of brevity, an example is given for the CALL instruction but not for each of its closely related 
variants. 

CALL IF ZERO 

The CZ instruction combines functions of the JZ and PUSH instructions. CZ tests the setting of the zero flag. 
If the flag is set to one (indicating that the contents of the accumulator are zero), CZ pushes the contents of 
the program counter onto the stack and then jumps to the address specified in the CZ instruction. If the flag 
is set to zero (indicating that the contents of the accumulator are other than zero), program execution simply 
continues with the next sequential instruction. 

Opcode Operand 

CZ address 

Although the usc of a label is most common, the address may also be specified as a number or an expression. 

1 I 0 

Cycles: 
States: 
Addressing: 
Flags: 

Example: 

0 1 1 0 0 

lowaddr 

high addr 

3 or 5 (2 or 5 on 8085) 
11 or "17 (9 or 18 on 8085) 
immediate/register indirect 
none 

For the sake of brevity, an example is given for the CALL instruction but not for each of its closely related 
variants. 

DECIMAL ADJ UST ACCUMULATOR 

The DAA instruction adjusts the eight-bit value in the accumulator to form two four-bit binary coded decimal 
digits. 

Opcode Operand 

DAA 

Operands are not permitted with the DAA instruction. 

DAA is used when adding decimal numbers. It is the only instruction whose function requires use of the auxiliary 
carry flag. I n multi-byte arithmetic operations, the DAA instruction typically is coded immediately after the arith
metic instruction so that the auxil iary carry flag is not altered unintentionally. 



Chapter 3. Instruction Set 

DAA operates as follows: 

1. If the least significant four bits of the accumulator have a value greater than nine, or if the auxiliary 

carry flag is ON, DAA adds six to the accumulator. 

2. If the most significant four bits of the accumulator have a value greater than nine, or if the carry 

flag is ON, DAA adds six to the most significant four bits of the accumulator. 

Cycles: 

States: 

Addressing: 

Flags: 

Example: 

a a 

4 
register 

Z,S,P,CY,AC 

Assume that the accumulator contains the value 9BH as a result of adding 08 to 93: 

CY AC 

a a 

1001 0011 

0000 1000 

1001 1011 = 9BH 

Since OBH is greater than nine, the instruction adds six to contents of the accumulator: 

CY AC 

a 
1001 1011 

0000 0110 

1 01 a 000 1 = A 1 H 

Now that the most significant bits have a value greater than nine, the instruction adds six to them: 

CY 

1010 

0110 

0000 

AC 

1 
0001 

0000 

0001 

When the DAA has finished, the accumulator contains the value 01 in a BCD format; both the carry and auxiliary 

carry flags are set ON. Since the actual result of this addition is 101, the carry flag is probably significant to the 

program. The program is responsible for recovering and using this information. Notice that the carry flag setting is 

, lost as soon as the program executes any subsequent instruction that alters the flag. 

3-19 



Chapter 3. Instruction Set 

DAD 

DCR 

3-20 

DOUBLE REGISTER ADD 

DAD adds the 16-bit value in the specified register pair to the contents of the Hand L register pair. The result 
is stored in Hand L. 

Opcode Operand 

DAD 

DAD may add only the contents of the B&C, D&E, H&L, or the SP (Stack Pointer) register pairs to the contents 
of H& L. Notice that the letter H must be used to specify that the H& L register pair is to be added to itself. 

DAD sets the carry flag ON if there is a carry out of the Hand L registers. DAD affects none of the condition 
flags other than carry. 

10 0 R P 

Cycles: 
States: 
Addressing: 
Flags: 

Examples: 

o 0 1 I 

3 
10 
register 
CY 

The DAD instruction provides a means for saving the current contents of the stack pointer. 

LXI 
DAD 
SHLD 

H,OOH 
SP 
SAVSP 

;CLEAR H& L TO ZEROS 
;GET SP INTO H&L 
;STORE SP IN MEMORY 

The instruction DAD H doubles the number in the Hand L registers except when the operation causes a carry 
ou t of the H register. 

DECREMENT 

DCR subtracts one from the contents of the specified byte. DCR affects all the condition flags except the carry 
flag. Because DCR preserves the carry flag, it can be used within multi-byte arithmetic routines for decrementing 
character counts and similar purposes. 

Decrement Register 

Opcode Operand 

DCR reg 



Chapter 3. Instruction Set 

The operand must specify one of the registers A through E, H or L. Thp- instruction subtracts one from the 

contents of the specified register. 

Decrement Memory 

EiIDDD 0 

Cycles: 

States: 

Addressing: 

Flags: 

Opcode 

DCR 

1 
5 (4 on 8085) 

register 

Z,S,P,AC 

Operand 

M 

This instruction subtracts one from the contents of the memory location addressed by the Hand L registers. 

M is a symbolic reference to the memory byte addressed by the Hand L registers. 

Cycles: 

States: 

Addressing: 

Flags: 

Example: 

o 

3 
10 

o 

register indirect 

Z,S,P,AC 

The DCR instruction is frequently used to control multi-byte operations such as moving a number of characters 

from one area of memory to another: 

MVI B,5H 

LXI H,250H 

LXI D,900H 

LOOP: MOV A,M 

STAX D 

DCX D 

DCX H 

DCR B 

XRA A 

CMP B 

JNZ LOOP 

; set control counter 

; load H & L with source address 

; load D & E with destination address 

; load byte to be moved 

; store byte 

; decrement destination address 

; decrement source address 

; decrement control counter 

; clear accumulator 

; compare control counter to zero 

; move another byte if counter not zero 

3-21 



Chapter 3. Instruction Set 

DCX 

DI 

3-22 

DECREMENT REGISTER PAIR 

OCX decrements the contents of the specified register pair by one. OCX affects none of the condition flags. 
Because OCX preserves all the flags, it can be used for address modification in any instruction sequence that 
rei ies on the passing of the flags. 

Opcode Operand 

OCX 

OCX may decrement only the B&C, O&E, H&L, or the SP (Stack Pointer) register pairs. Notice that the letter 
H must be used to specify the Hand L pair. 

Exercise care when decrementing the stack pointer as this causes a loss of synchronization between the pointer 

and the actual contents of the stack. 

10 0 R P 

Cycles: 
States: 
Addressing: 
Flags: 

Example: 

o 

5 (6 on 8085) 
register 
none 

Assume that the Hand L registers contain the address 9800H when the instruction OCX H is executed. OCX 
considers the contents of the two registers to be a single 16-bit value and therefore performs a borrow from the 
H register to produce the value 97FFH. 

DISABLE INTERRUPTS 

The interrupt system is disabled when the processor recognizes an interrupt or immediately following execution 
of a 01 instruction. 

In applications that use interrupts, the 01 instruction is commonly used only when a code sequence must not be 
interrupted. For example, time-dependent code sequences become inaccurate when interrupted. You can disable 
the interrupt system by including a 01 instruction at the beginning of the code sequence. Because you cannot 
predict the occurrence of an interrupt, include an EI instruction at the end of the time-dependent code sequence. 

Opcode Operand 

01 

Operands are not permitted with the 01 instruction. 



EI 

Cha pter 3. I nstructi on Set 

o 0 

Cycles: 
States: 4 
Flags: none 

NOTE 

The 8085 TRAP interrupt cannot be disabled. This special interrupt is 
intended for serious problems that must be serviced regardless of the 
interrupt flag such as power failure or bus error. However, no interrupt 
including TRAP can interrupt the execution of the 01 or EI instruction. 

ENABLE INTERRUPTS 

The EI instruction enables the interrupt system following execution of the next program instruction. Enabling 
the interrupt system is delayed one instruction to allow interrupt subroutines to return to the main program 
before;! subsequent interrupt is acknowledged. 

In applications that use interrupts, the interrupt system is usually disabled only when the processor accepts an 
interrupt or when a code sequence must not be interrupted. You can disable the interrupt system by including 
a 01 instruction at the beginning of the code sequence. Because you cannot predict the occurrence of an 
interrupt, incl ude an E I instruction at the end of the code sequence. 

Opcode Operand 

EI 

Operands are not permitted with the EI instruction. 

Cycles: 
States: 
Flags: 

1 
4 

o 

none 

NOTE 

The 8085 TRAP interrupt cannot be disabled. This special interrupt is 
_ intended for serious problems that must be serviced regardless of the 

interrupt flag such as power failure or bus failure. However, no interrupt 
including TRAP can interrupt the execution of the 01 or EI instruction. 

Example: 

The EI instruction is frequently used as part of a start-up sequence. When power is first applied, the processor 
begins operating at some indeterminate address. Application of a RESET signal forces the program counter to 

3·23 



Chapter 3. Instruction Set 

HLT 

IN 

3-24 

zero. A common instruction sequence at this point is EI, HL T. These instructions enable the interrupt system 

(RESET also disables the interrupt system) and halt the processor. A subsequent manual or automatic interrupt 

then determ ines the effective start-up address. 

HALT 

The HL T instruction halts the processor. The program counter contains the address of the next sequential 

instruction. Otherwise, the flags and registers remain unchanged. 

1
0 0 01 
Cycles: 1 
States: 7 (5 on 8085) 

Flags: none 

Once in the halt state, the processor can be restarted only by an external event, typically an interrupt. Therefore, 

you should be certain that interrupts are enabled before the HL T instruction is executed. See the description of 

the EI (Enable Interrupt) instruction. 

If an 8080 HL T instruction is executed while interrupts are disabled, the only way to restart the processor is 

by application of a RESET signal. This forces the program counter to zero. The same is true of the 8085, except 

for the TRAP interrupt, which is recognized even when the interrupt system is disabled. 

The processor can temporarily leave the halt state to service a direct memory access request. However, the pro

cessor reenters the halt state once the request has been serviced. 

A basic purpose for the HL T instruction is to allow the processor to pause while waiting for an interrupt from a 

peripheral device. However, a halt wastes processor resources and should be used only when there is no useful 

processing task available. 

INPUT FROM PORT 

The IN instruction reads eight bits of data from the specified port and loads it into the accumulator. 

NOTE 

This description is restricted to the exact function of the IN instruction. 

Input/output structures are described in the 8080 or 8085 Microcomputer 
Systems User's Manual. 

Opcode Operand 

IN exp 

The operand expression may be a number or any expression that yields a value in the range OOH through OFFH. 



INR 

o 

exp 

Cycles: 

States: 

Addressing: 

Flags: 

o 

3 
10 
direct 

none 

Chapter 3. Instruction Set 

INCREMENT 

INR adds one to the contents of the specified byte. INR affects all of the condition flags except the carry flag. 

Because INR preserves the carry flag, it can be used within multi-byte arithmetic routines for incrementing 

character counts and similar purposes. 

Increment Register 

Opcode Operand 

INR reg 

The operand must specify one of the registers A through E, H or L. The instruction adds one to the contents of 

the specified register. 

Increment Memory 

Eo I D D D o 0 I 

Cycles: 

States: 

Addressing: 

Flags: 

Opcode 

INR 

5 (4 on 8085) 
register 

Z,S,P,AC 

Operand 

M 

This instruction increments by one the contents of the memory location addressed by the Hand L registers. M 

is a symbolic reference to the Hand L registers. 

~_0 ______ 0 ____ 0 __ 0~1 
Cycles: 

States: 

Addressing: 

Flags: 

3 
10 

register indirect 

Z,S,P,AC 

3-25 



Chapter 3. Instruction Set 

INX 

JC 

3-26 

Example: 

If register C contains 99H, the instruction I NR C increments the contents of the register to 9AH. 

INCREMENT REGISTER PAIR 

INX adds one to the contents of the specified register pair. INX affects none of the condition flags. Because 
INX preserves all the condition flags, it can be used for address modification within multi-byte arithmetic 
routines. 

Opcode Operand 

INX 

INX may increment only the B&C, D&E, H& L, or the SP (Stack Pointer) register pairs. Notice that the letter H 
must be used to specify the Hand L register pair. 

Exercise care when incrementing the stack pointer. Assume, for example, that INX SP is executed after a number 
of items have been pushed onto the stack. A subsequent POP instruction accesses the high-order byte of the most 
recent stack entry and the low-order byte of the next older entry. Similarly, a PUSH instruction adds the two 
new bytes to the stack, but overlays the low-order byte of the most recent entry. 

Example: 

10 olR PO 0 11 

Cycles: 
States: 
Addressing: 
Flags: 

1 
5 (6 on 8085) 
register 
none 

Assume that the D and E registers contain the value 01 F FH. The instruction INX D increments the value to 
0200H. By contrast, the INR E instruction ignores the carry out of the low-order byte and produces a result of 
01 OOH. (This condition can be detected by testing the Zero condition flag.) 

If the stack pointer register contains the value OFFFFH, the instruction INX SP increments the contents of SP 
to OOOOH. The INX instruction sets no flags to indicate this condition. 

JUMP IF CARRY 

The JC instruction tests the setting of the carry flag. If the flag is set to one, program execution resumes at the 
address specified in the JC instruction. If the flag is reset to zero, execution continues with the next sequential 
instruction. 



JM 

Chapter 3. Instruction Set 

Opcode Operand 

JC address 

The address may be specified as a number, a label, or an expression. The assembler inverts the high and low 
address bytes when it assembles the instruction. 

1 1 0 

Cycles: 
States: 
Addressing: 
Flags: 

Example: 

1 1 0 1 0 

lowaddr 

high addr 

3 (2 or 3 on 8085) 
10 (7 or lOon 8085) 
immediate 
none 

Examples of the variations of the jump instruction appear in the description of the J PO instruction. 

JUMP IF MINUS 

The J M instruction tests the setting of the sign flag. If the contents of the accumulator are negative (sign flag = 1), 
program execution resumes at the address specified in the J M instruction. If the contents of the accumulator are 
positive (sign flag = 0), execution continues with the next sequential instruction. 

Opcode Operand 

JM address 

The address may be specified as a number, a label, or an expression. The assembler inverts the high and low 
address bytes when it assembles the instructions. 

1 1 1 

Cycles: 
States: 
Addressing: 
Flags: 

Example: 

1 1 0 1 0 

lowaddr 

high addr 

3 (2 or 3 on 8085) 
10 (7 or lOon 8085) 
immediate 
none 

Examples of the variations of the jump instruction appear in the description of the J PO instruction. 

3-27 



Chapter 3. Instruction Set 

jMP 

jNC 

3-28 

JUMP 

The J MP instruction alters the execution sequence by loading the address in its second and third bytes into the 
program counter. 

Opcode Operand 

JMP address 

The address may be specified as a number, a label, or an expression. The assembler inverts the high and low 
address bytes when it assembles the address. 

1 . 1 0 

Cycles: 

States: 

Addressing: 

Flags: 

Example: 

0 0 0 1 

lowaddr 

high addr 

3 
10 
immediate 

none 

1 

Examples of the variations of the jump instruction appear in the description of the JPO instruction. 

JUMP IF NO CARRY 

The JNC instruction tests the setting of the carry flag. If there is no carry (carry flag = 0), program execution 
resumes at the address specified in the J NC instruction. If there is a carry (carry flag =1), execution continues 
with the next sequential instruction. 

Opcode Operand 

JNC address 

The address may be specified as a number, a label, or an expression. The assembler inverts the high and low 
address bytes when it assembles the instruction. 

1 1 0 

Cycles: 

States: 
Addressing: 

Flags: 

1 0 0 1 0 

lowaddr 

high addr 

3 (2 or 3 on 8085) 

10 (7 or 10 on 8085) 
immediate 

none 



JNZ 

JP 

Chapter 3. Instruction Set 

Example: 

Examples of the variations of the jump instruction appear in the description of the J PO instruction. 

JUMP IF NOT ZERO 

The J NZ instruction tests the setting of the zero flag. If the contents of the accumulator are not zero (zero 

flag = 0), program execution resumes at the address specified in the J NZ instruction. If the contents of the 

accumulator are zero (zero flag = 1), execution continues with the next sequential instruction. 

Opcode Operand 

JNZ address 

The address may be specified as a number, a label, or an expression. The assembler inverts the high and low 

address bytes when it assembles the instruction. 

1 1 0 

Cycles: 

States: 

Addressing: 

Flags: 

Example: 

0 0 0 1 0 

lowaddr 

high addr 

3 (2 or 3 on 8085) 

10 (7 or 10 on 8085) 

immediate 

none 

Examples of the variations of the jump instruction appear in the description of the J PO instruction. 

JUMP IF POSITIVE 

The J P instruction tests the setting of the sign flag. If the contents of the accumulator are positive (sign flag = 0), 

program execution resumes at the address specified in the J P instruction. If the contents of the accumulator are 

minus (sign flag = 1), execution continues with the next sequential instruction. 

Opcode Operand 

JP address 

'" The address may be specified as a nu'mber, a label, or an expression. The assembler inverts the high and low order 

address bytes when it assembles the instruction. 

3-29 



Chapter 3. Instruction Set 

JPE 

3-30 

1 1 1 

Cycles: 

States: 

Addressing: 

Flags: 

Example: 

1 0 0 1 0 

lowaddr 

high addr 

3 (2 or 3 on 8085) 

10 (7 or 10 on 8085) 

immediate 

none 

Examples of the variations of the jump instruction appear in the description of the J PO instruction. 

JUMP IF PARITY EVEN 

Parity is even if the byte in the accumulator has an even number of one bits. The parity flag is set to one to 

indicate this condition. 

The J PE instruction tests the setting of the parity flag. If the parity flag is set to one, program execution resumes 

at the address specified in the J PE instruction. If the flag is reset to zero, execution continues with the next 

sequential instruction. 

Opcode Operand 

JPE address 

The address may be specified as a number, a label, or an expression. The assembler inverts the high and low 

address bytes when it assembles the instruction. 

The J PE and J PO (jump if parity odd) instructions are especially useful for testing the parity of input data. 

However, the IN instruction docs not set any of the condition flags. The flags can be set by adding OOH to the 

contents of the accumulator. 

1 I 1 

Cycles: 

States: 

Addressing: 

Flags: 

Example: 

0 1 0 1 0 

lowaddr 

high addr 

3 (2 or 3 on 8085) 

10 (7 or lOon 8085) 

immediate 

none 

Examples of the variations of the jump instruction appear in the description of the J PO instruction. 



JPO 

Chapter 3. Instruction Set 

JUMP IF PARITY ODD 

Parity is odd if the byte in the accumulator has an odd number of one bits. The parity flag is set to zero to 
indicate this condition. 

The J PO instruction tests the setting of the parity flag. If the parity flag is reset to zero, program execution 
resumes at the address specified in the J PO instruction. If the flag is set to one, execution continues with the 
next sequential instruction. 

Opcode Operand 

JPO address 

The address may be specified as a number, a label, or an expression. The assembler inverts the high and low 
address bytes when it assembles the instruction. 

The J PO and J PE (jump if parity even) instructions are especially useful for testing the parity of input data. 

However, the IN instruction does not set any of the condition flags. The flags can be set by adding OOH to the 
contents of the accumulator. 

1 1 1 

Cycles: 
States: 
Addressing: 
Flags: 

Example: 

0 0 0 -I 0 

lowaddr 

high addr 

3 (2 or 3 on 8085) 
10 (7 or 10 on 8085) 
immediate 
none 

This example shows three different but equivalent methods for jumping to one of two points in a program hased 
upon whether or not the Sign bit of a number is set. Assume that the byte to be tested is the C register. 

Label Code Operand 

ONE: MOV A,C 
ANI 80H 
jZ PLUS 
jNZ MINUS 

TWO: MOV A,C 
RLC 
jNC PLUS 

JMP MINUS 
THREE: MOV A,C 

ADI 0 

JM MINUS 
PLUS: ;SIGN BIT RESET 
MINUS: ;SIGN BIT SET 

3-31 



Chapter 3. Instruction Set 

JZ 

LDA 

3-32 

The ANO immediate instruction in block ONE zeroes all bits of the data byte except the Sign bit; which re

mains unchanged. If the Sign bit was zero, the Zero condition bit will be set, and the JZ instruction will cause 

program control .to be transferred to the instruction at PLUS. Otherwise, the J Z instruction will merely update 

the program counter by three, and the JNZ instruction will be executed, causing control to be transferred to 

the instruction at MINUS. (The Zero bit is unaffected by all jump instructions.) 

The RLC instruction in block TWO causes the Carry bit to be set equal to the Sign bit of the data byte. If the 

Sign bit was reset, the J NC instruction causes a jump to PLUS. Otherwise the J MP instruction is executed, 

unconditionally transferring control to MINUS. (Note that, in this instance, a JC instruction could be sub

stituted for the unconditional jump with identical results.) 

The add immediate instruction in block THREE causes the condition bits to be set. If the sign bit was set, the 

J M instruction causes program control to be transferred to MINUS. Otherwise, program control flows auto

matically into the PLUS routine. 

JUMP IF ZERO 

The J Z instruction tests the setting of the zero flag. If the flag is set to one, program execution resumes at the 

address specified in the J Z instruction. If the flag is reset to zero, execution continues with the next sequential 

instruction. 

Opcode Operand 

JZ address 

The address may be specified as a number, a label, or an expression. The assembler inverts the high and low 

address bytes when it assembles the instruction. 

1 I 0 

Cycles: 

States: 

Addressing: 

Flags: 

Example: 

0 1 0 I 0 

lowaddr 

high addr 

3 (2 or 3 on 8085) 

10 (7 orl 0 on 8085) 

immediate 

none 

Examples of the variations of the jump instruction appear in the description of the J PO instruction. 

LOAD ACCUMULATOR DIRECT 

LOA loads the accumulator with a copy of the byte at the location specified in bytes two and three of the 

LOA instruction. 



LDAX 

Chapter 3. Instruction Set 

Opcode Operand 

LOA address 

The address may be stated as a number, a previously defined label, or an expression. The assembler inverts the 
high and low address bytes when it builds the instruction. 

0 0 1 

Cycles: 
States: 
Addressing: 
Flags: 

Examples: 

1 1 0 

lowaddr 

high addr 

4 
13 
direct 
none 

1 0 

The following instructions are equivalent. When executed, each replaces the accumulator contents with the byte 
of data stored at memory location 300H. 

LOAD: LOA 
LOA 
LOA 

300H 
3*(16*16) 
200H+256 

LOAD ACCUMULATOR INDIRECT 

L OAX loads the accumulator with a copy of the byte stored at the memory location addressed by register pair 
B or register pair O. 

Op co de Operand 

LOA X 

The operand B specifies the Band C register pair; 0 specifies the 0 and E register pair. This instruction may 
specify only the B or 0 register pair. 

~O 0 I rio 0 I 
~ 

L_fo = register pair B 
~ = register pair 0 

Cycles: 2 
States: 7 
Addressing: 
Flags: 

register indirect 
none 

3-33 



Chapter 3. Instruction Set 

Example: 

Assume that register D contains 93H and register E contains BBH. The following instruction loads the accumulator 
with the contents of memory location 93BBH: 

LDAX D 

L.HLD LOAD HAND L DIRECT 

3·34 

LHLD loads the L register with a copy of the byte stored at the memory location specified in bytes two and 

three of the LHLD instruction. LHLD then loads the H register with a copy of the byte stored at the next 
higher memory location. 

Opcode Operand 

LHLD address 

The address may be stated as a number, a label, or an expression. 

Certain instructions use the symbolic reference M to access the memory location currently specified by the Hand 
L registers. LHLD is one of the instructions provided for loading new addresses into the Hand L registers. The 
user may also load the current top of the stack into the Hand L registers (POP instruction). Both LH LD and 
POP replace the contents of the Hand L registers. You can also exchange the contents of Hand L with the D 
and E registers (XCHG instruction) or the top of the stack (XTHL instruction) if you need to save the current 
Hand L registers for subsequent use. SHLD stores Hand L in memory. 

0 0 1 0 1 0 1 0 

lowaddr 

high addr 

Cycles: 5 
States: 16 
Addressing: direct 
Flags: none 

Example: 

Assume that locations 3000 and 3001 H contain the address 064EH stored in the format 4E06. In the following 
sequence, the MOV instruction moves a copy of the byte stored at address 064E into the accumulator: 

LHLD 
MOV 

3000H 
A,M 

;SET UP ADDRESS 
;LOAD ACCUM FROM ADDRESS 



LXI 

Chapter 3. Instruction Set 

LOAD REGISTER PAIR IMMEDIATE 

LXI is a three-byte instruction; its second and third bytes contain the source data to be loaded into a register 
pair. LXI loads a register pair by copying its second and third bytes into the specified destination register pair. 

Opcode Operand 

LXI 

The first operand must specify the register pair to be loaded. LXI can load the Band C register pair, the D and 
E register pair, the Hand L register pair, or the Stack Pointer. 

The second operand specifies the two bytes of data to be loaded~ This data may be coded in the form of a num
ber, an ASCII constant, the label of some previously defined value, or an expression. The data must not exceed 
two bytes. 

LXI is the only imnediate instruction that accepts a 16-bit value. All other immediate instructions require 8-bit 

values. 

Notice that the assembler inverts the two bytes of data to create the format of an address stored in memory. 
LXI loads its third byte into the first register of the pair and its second byte into the second register of the 
pair. This has the effect of reinverting the data into the format required for an address stored in registers. Thus, 
the instruction LXI B,'AZ' loads A into register Band Z into register C. 

Examples: 

0 0 IR pE 0 0 

low-order data 

high-order data 

Cycles: 3 
States: -10 

Addressing: immediate 
none Flags: 

1 

A common use for LXI is to establish a memory address for use in subsequent instructions. In the following 
sequence, the LXI instruction loads the address of STRNG into the Hand L registers. The MOV instruction then 
loads the data stored at that address into the accumulator. 

LXI H,STRNG ;SET ADDRESS 
MOV A,M ;LOAD STRNG INTO ACCUMULATOR 

The following LXI instruction is used to initialize the stack pointer in a relocatable module. The LOCATE pro
gram provides an address for the special reserved label STACK. 

LX I SP ,ST ACK 

3-35 



Chapter 3. Instruction Set 

MOV 

3-36 

MOVE 

The MOV instruction moves one byte of data by copying the source field into the destination field. Source data 
remains unchanged. The instruction's operands specify whether the move is from register to register, from a 
register to memory, or from memory to a register. 

Move Register to Register 

Opcode Operand 

MOV regl,reg2 

The instruction copies the contents of reg2 into regl. Each operand must specify one of the registers A, B, C, D, 
E, H, or L. 

When the same register is specified for both operands (as in MOV A,A), the MOV functions as a NOP (no opera
tion) since it has no other noticeable effect. This form of MOV requires one more machine state than NOP, and 
therefore has a slightly longer execution time than NOP. MOV M,M is not permitted. 

1
0 1 I D D DI S S 51 
Cycles: 1 
States: 5 (4 on 8085) 
Addressing: register 
Flags: none 

Move to Memory 

Opcode Operand 

MOV M,r 

This instruction copies the contents of the specified register into the memory location addressed by the Hand L 
registers. M refers to the byte addressed by the Hand L register pair. The second operand must address one of the 
registers. MOV M,M is not permitted. 

Cycles: 
States: 
Addressing: 
Flags: 

Move from Memory 

Opcode 

MOV 

o I 5 5 51 
2 
7 
register indirect 
none 

Operand 

r,M 



MVI 

Chapter 3. Instruction Set 

This instruction copies the contents of the memory location addressed by the Hand L registers into the specified 
"register. The first operand must name the destination register. The second operand must be M. M is a symbolic 
reference to the Hand L registers. 

Examples: 

Label 

LDACC: 

NULOP: 

I D D D 

Cycles: 
States: 
Addressing: 
Flags: 

Opcode 

MOV 
MOV 
MOV 

2 
7 
register indirect 
none 

Operands Comment 

A,M 
E,A 
C,C 

;LOAD ACCUM FROM MEMORY 
;COPY ACCUM INTO E REG 
;NULL OPERATION 

MOVE IMMEDIATE 

MVI is a two-byte instruction; its second byte contains the source data to be moved. MVI moves one byte of 
data by copying its second byte into the destination field. The instruction's operands specify whether the move 
is to a register or to memory. 

Move Immediate to Register 

Opcode Operand 

MVI reg,data 

The first operand must name one of the registers A through E, H or L as a destination for the move. 

The second operand specifies the actual data to be moved. This data may be in the form of a number, an ASCII 
constant, the label of some previously defined value, or an expression. The data must not exceed one byte. 

The assembler's relocation feature treats all external and relocatable symbols as 16-bit addresses. When one of 
these symbols appears in the operand expression of an immediate instruction, it must be preceded by either the 
HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the expression. 
When neither operator is present, the assembler assumes the LOW operator and issues an error message. 

1° 

0 D D D 

°1 data 

Cycles: 2 
States: 7 
Addressing: immediate 
Flags: none 

3-37 



Chapter 3. Instructhm Set 

NOP 

ORA 

3-38 

MOlle Immediate to Memory 

Opcode Operand 

MVI M,data 

This instruction copies the data stored in its second byte into the memory location addressed by Hand L. M is 
a symbolic reference to the Hand L register pair. 

o 0 

Cycles: 
States: 
Addressing: 
Flags: 

Examples: 

o 

data 

3 
10 

o 

immediate/register indirect 
none 

The following examples show a number of methods for defining immediate data in the MVI instruction. All of 
the examples generate the bit pattern for the ASCII character A. 

MVI 
MVI 
MVI 
MVI 
MVI 
MVI 

M,Ol 000001 B 
M,IA' 
M,41 H 
M,101Q 
M,65 

M,5+30*2 

NO OPERATION 

NOP performs no operation and affects none of the condition flags. NOP is useful as filler in a timing loop. 

Opcode Operand 

NOP 

Operands are not permitted with the NOP instruction. 

INCLUSIVE OR WITH ACCUMULATOR 

ORA performs an inclusive OR logical operation using the contents of the specified byte and the accumulator. The 
result is placed in the accumulator. 



Chapter 3. Instruction Set 

Summary of Logical Operations 

AND produces a one bit in the result only when the corresponding bits in the test data and the mask data are 
one. 

OR produces a one bit in the result when the corresponding bits in either the test data or the mask data are 
ones. 

Exclusive OR produces a one bit only when the corresponding bits in the test data and the mask data are 
different; i.e., a one bit in either the test data or the mask data - but not both - produces a one bit in the 
result. 

AND 

1010 1010 
0000 1111 
0000 1010 

OR Register with Accumulator 

Opcode 

ORA 

OR 

1010 1010 
0000 1111 
1010 1111 

Operand 

reg 

EXCLUSIVE OR 

1010 1010 
0000 1111 
1.010 0101 

The operand must specify one of the registers A through E, H or L. This instruction ORs the contents of the 
specified register and the accumulator and stores the result in the accumulator. The carry and auxiliary carry 
flags are reset to zero. 

o 

Cycles: 
States: 
Addressing: 
Flags: 

OR Memory with Accumulator 

Opcode 

ORA 

o s s s I 
1 
4 
register 
Z,S,P,CY,AC 

Operand 

M 

The contents of the memory location specified by the Hand L registers are inciusive-ORed with the contents of 
the accumulator. The result is stored in the accumulator. The carry and auxiliary carry flags are reset to zero. 

o 

Cycles: 
States: 
Addressing: 
Flags: 

o 

2 
7 
register indirect 
Z,S,P,CY,AC 

3·39 



Chapter 3. Instruction Set 

ORI 

3-40 

Example: 

Since any bit inclusive-ORed with a one produces a one and any bit ORed with a zero remains unchanged, ORA 

is frequently used to set ON particular bits or groups of bits. The following example ensures that bit 3 of the 

accumulator is set ON, but the remaining bits are not disturbed. This is frequently done when individual bits 

are used as status flags in a program. Assume that register D contains the value 08H: 

Accumulator 

Register D 

o 1 0 0 0 0 1 
o 0 0 0 000 

o o 0 o 

INCLUSIVE OR IMMEDIATE 

ORI performs an inclusive OR logical operation using the contents of the second byte of the instruction and the 

contents of the accumulator. The result is placed in the accumulator. ORI also resets the carry and auxiliary 

carry flags to zero. 

Opcode Operand 

ORI data 

The operand must specify the data to be used in the inclusive OR operation. This data may be in the form of a 

number, an ASCII constant, the label of some previously defined value, or an expression. The data may not 

exceed one byte. 

The assembler's relocation feature treats all external and relocatable symbols as 16-bit addresses. When one of 

these symbols appears in the operand expression of an immediate instruction, it must be preceded by either the 

HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the expression. 

When neither operator is present, the assembler assume the LOW operator and issues an error message. 

Cycles: 

States: 

Ad dressi ng: 

Flags: 

Summary of Logical Operations 

o 

data 

o 

2 
7 

immediate 

Z,S,P,SY,AC 

AND produces a one bit in the result only when the corresponding bits in both the test data and the mask data 

are ones. 

OR produces a one bit in the result when the corresponding bits in either the test data or the mask data are ones. 

Exclusive OR produces a one bit only when the corresponding bits in the test data and the mask data are 

different; i.e., a one bit in either the test data or the mask data - but not both - produces a one bit in the 

result. 



OUT 

Chapter 3. Instruction Set 

Example: 

AND 

1010 1010 
0000 1111 
0000 1010 

OR 

1010 1010 
0000 1111 
1010 1111 

EXCLUSIVE OR 

1010 1010 
0000 1111 
1010 0101 

See the description of the ORA instruction for an example of the use of the inclusive OR. The following 
examples show a number of methods for defining immediate data in the ORI instruction. All of the examples 
generate the bit pattern for the ASCII character A. 

ORI 
ORI 
ORI 
ORI 
ORI 
ORI 

01000001 B 
'A' 
41H 

101Q 
65 
5+30*2 

OUTPUT TO PORT 

The OUT instruction places the contents of the accumulator on the eight-bit data bus and the number of the 
selected port on the sixteen-bit address bus. Since the number of ports ranges from 0 through 255, the port 
number is duplicated on the address bus. 

It is the responsibility of external logic to decode the port number and to accept the output data. 

NOTE 

Because a discussion of input/output structures is beyond the scope of 
this manual, th is description is restricted to the exact function of the 
OUT instruction. Input/output structures are described in the 8080 or 
8085 Microcomputer Systems User's Manual. ' 

Opcode Operand 

OUT exp 

The operand must specify the number of the desired output port. This may be in the form of a number or an 
expression in the range OOH through OFFH. 

o 0 g exp 

Cycles: 3 
States: 10 
Addressing: direct 
Flags: none 

3-41 



Chapter 3. Instruction Set 

PCHL 

POP 

3-42 

MOVE H&L TO PROGRAM COUNTER 

PCHL loads the contents of the Hand L registers into the program counter register. Because the processor 
fetches the next instruction from the updated program counter address, PCHL has the effect of a jump instruc
tion. 

Opcode Operand 

PCHL 

Operands are not permitted with the PCHL instruction. 

PCHL moves the contents of the H register to the high-order eight bits of the program counter and the contents 
of the L register to the low-order eight bits of the program counter. 

The user program must ensure that the Hand L registers contain the address of an executable instruction when 
the PCHL instruction is executed. 

Cycles: 
States: 
Addressing: 
Flags: 

Example: 

o o 0 

1 
5 (6 on 8085) 
register 

none 

One technique for passing data to a subroutine is to place the data immediately after the subroutine call. The 
return address pushed onto the stack by the CALL instruction actually addresses the data rather than the next 
instruction after the CALL. For this example, assume that two bytes of data follow the subroutine call. The 
following coding sequence performs a return to the next instruction after the call: 

GOBACK: POP H 
INR L 
INR L 
PCHL 

;GET DATA ADDRESS 
;ADD 2 TO FORM 
;RETURN ADDRESS 
;RETURN 

POP 

The POP instruction removes two bytes of data from the stack and copies them to a register pair or copies the 
Program Status Word into the accumulator and the condition flags. 

POP Register Pair 

POP copies the contents of the memory location addressed by the stack pointer into the low-order register of the 
register pair. POP then increments the stack pointer by one and copies the contents of the resulting address into 



Chapter 3. Instruction Set 

the high-order register of the pair. POP then increments the stack pointer again so that it addresses the next 
older item on the stack. 

Opcode Operand 

POP 

The operand may specify the B&C, D&E, or the H&L register pairs. POP PSW is explained separately. 

E1 I R P E 0 0 1 I 
Cycles: 3 
States: 10 
Addressing: register indirect 
Flags: none 

POP PSW 

POP PSW uses the contents of the memory location specified by the stack pointer to restore the condition flags. 
POP PSW increments the stack pointer by one and restores the contents of that address to the accumulator. 
POP then increments the stack pointer again so that it addresses the next older item on the stack. 

Cycles: 
States: 
Addressing: 
Flags: 

Example: 

000 

3 
10 
register indirect 

Z,S,P,CY,AC 

Assume that a subroutine is called because of an external interrupt. In general, such subroutines should save and 
restore any registers it uses so that main program can continue normally when it regains control. The following 
sequence of PUSH and POP instructions save and restore the Program Status Word and all the registers: 

343 



Chapter 3. Instruction Set 

PUSH 

344 

PUSH PSW 
PUSH B 
PUSH D 
PUSH H 

subroutine coding 

POP H 
POP D 
POP B 
POP PSW 
RET 

Notice that the sequence of the POP instructions is the opposite of the PUSH instruction sequence. 

PUSH 

The PUSH instruction copies two bytes of data to the stack. This data may be the contents of a register pair or 
the Program Status Word, as explained below: 

PUSH Register Pair 

PUSH decrements the stack pointer register by one and copies the contents of the high-order register of the 
register pair to the resulting address. PUSH then decrements the pointer again and copies the low-order register 
to the resulting address. The source registers remain unchanged. 

Opcode Operand 

PUSH 

The operand may specify the B&C, D& E, or H& L register pairs. PUSH PSW is explained separately. 

1 I R P 0 

Cycles: 
States: 
Addressing: 
Flags: 

Example: 

o 

3 
11 (130n8085) 

register indirect 
none 

Assume that register B contains 2AH, the C register contains 4CH, and the stack pointer is set at 9AAF. The 
instruction PUSH B stores the B register at memory address 9AAEH and the C register at 9AADH. The stack 
pointer is set to 9AADH: 



RAL 

Chapter 3. Instruction Set 

Stack Stack 

Before PUSH Address After PUSH 

SP before .. xx 9AAF xx 
xx 9AAE 2A 
xx 9AAD 4C ... SP after 
xx 9AAC xx 

PUSH PSW 

PUSH PSW copies the Program Status Word onto the stack. The Program Status Word comprises the contents 
of the accumulator and the current settings of the condition flags. Because there are only five condition flags, 
PUSH PSW formats the flags into an eight-bit byte as follows: 

7 6 5 4 3 2 o 
S z o AC o P Icy I 

On the 8080, bits 3 and 5 are always zero; bit one is always set to one. These filler bits are undefined on the 
8085. 

PUSH PSW decrements the stack pointer by one and copies the contents of the accumulator to the resulting 
address. PUSH PSW again decrements the pointer and copies the formatted condition flag byte to the resulting 
address. The contents of the accumulator and the condition flags remain unchanged. 

Cycles: 
States: 
Addressing: 
Flags: 

Example: 

o o 

3 
11 (12 on 8085) 
register indirect 
none 

When a program calls subroutines, it is frequently necessary to preserve the current program status so the calling 
program can continue normally when it regains control. Typically, the subroutine performs a PUSH PSW prior to 
execution of any instruction that might alter the contents of the accumulator or the condition flag settings. 
The subroutine then restores the pre-call system status by executing a POP PSW instruction just before returning 
control to the calling program. 

ROTATE LEFT THROUGH CARRY 

RAL rotates the contents of the accumulator and the carry flag one bit position to the left. The carry flag, which 
is treated as though it were part of the accumulator, transfers to the low-order bit of the accumulator. The high
order bit of the accumulator transfers into the carry flag. 

Opcode Operand 

RAL 

Operands are not J=.!rmitted with the RAL instruction. 

345 



Chapter 3. Instruction Set 

RAR 

3-46 

10 0 0 

Cycles: 
States: 
Flags: 

Example: 

o 

4 

CYonly 

Assume that the accumulator contains the value OAAH and the carry flag is zero. The following diagrams illus
trate the effect of the RAL instruction: 

Before: Carry 

o ~--------------~ 

Accumulator 

o o o o 

After: Carry 

CD 
Accumulator 

1
0 0 0 0 01 

ROTATE RIGHT THROUGH CARRY 

RAR rotates the contents of the accumulator and the carry flag one bit position to the right. The carry flag, 
which is treated as though it were part of the accumulator, transfers to the high-order Qjt of the accumulator. 
The low-order bit of the accumulator transfers into the carry flag. 

Opcode Operand 

RAR 

Operands are not permitted with the RAR instruction. 

10 0 0 

Cycles: 
States: 
Flags: 

4 
CYonly 



RC 

Chapter 3. Instruction Set 

Example: 

Assume that the accumulator contains the value OAAH and the carry flag is zero. The following diagrams illus
trate the effect of the RAR instruction: 

Before: Carry 

o 

Accumulator 

o o o o 

After: Carry 

Accumulator 

[ 0 o o o 

RETURN IF CARRY 

The RC instruction tests the carry flag. If the flag is set to one to indicate a carry, the instruction pops two 
bytes off the stack and places them in the program counter. Program execution resumes at the new address in 
the program counter. If the flag is zero, program execution simply continues with the next sequential instruction. 

Opcode Operand 

RC 

Operands are not permitted with the RC instruction. 

Example: 

~1 ___ 0 _______ 0 __ 0 __ ~01 
Cycles: 
States: 

Addressing: 
Flags: 

1 or 3 
5 or 11 (6 or 12 on 8085) 
register indirect 
none 

For the sake of brevity, an example is given for the RET instruction but not for each of its closely related 
variants. 

347 



Chapter 3. Instruction Set 

RET RETURN FROM -SUBROUTINE 

The RET instruction pops two bytes of data off the stack and places them in the program counter register. 
Program execution resumes at the new address in the program counter. 

Typically, RET instructions are used in conjunction with CALL instructions. (The same is true of the variants 
of these instructions.) In this case, it is assumed that the data the RET instruction pops off the stack is a 
return address placed there by a previous CALL. This has the effect of returning control to the next instruction 
after the CALL. The user must be certain that the RET instruction finds the address of executable code on the 
stack. If the instruction finds the address of data, the processor attempts to execute the data as though it were 
code. 

Opcode Operand 

RET 

Operands are not permitted with the RET instruction. 

o 0 

Cycles: 
States: 
Addressing: 
Flags: 

Example: 

3 
10 

o 0 

register indirect 
none 

As mentioned previously, subroutines can be nested. That is, a subroutine can call a subroutine that calls 
another subroutine. The only practical limit on the number of nested calls is the amount of memory available 
for stacking return addresses. A nested subroutine can even call the subroutine that called it, as shown in the 
following example. (Notice that the program must contain logic that eventually returns control to the main 
program. Otherwise, the two subroutines will call each other indefinitely.) 

MAIN PROGRAM 1 SUBA: 1·' -- SUBB: 1 
~ ~----CALLSUBA 

CALL SUBA CNZTSUBB ~ ~ ~ ~ ~ - T 
T ~ ~ RET 

.",. 

RET ..... 

RIM (8085 PROCESSOR ONLY) READ INTERRUPT MASK 

348 

The RIM instruction loads eight bits of data into the accumulator. The resulting bit pattern indicates the current 
setting of the interrupt mask, the setting of the interrupt flag, pending interrupts, and one bit of serial input data, 
if any. 



RLC 

Chapter 3. Instruction Set 

Opcode Operand 

RIM 

Operands are not permitted with the RIM instruction. 

The RIM instruction loads the accumulator with the following information: 

7 6 5 4 3 2 1 0 

SID 17 16 15 IE 7.5 6.5 5.5 

"-V~v~ L L Interrupt Masks: 

Interrupt Enable Flag: 

1 = masked 

= enabled 

I.....---Pending Interrupts: = pending 

'-----Serial Input Data Bit, if any 

The mask and pending flags refer only to the RST5.5, RST6.5, and RST7.5 hdrdware interrupts. The IE flag 

refers to the entire interrupt system. Thus, the IE flag is identical in function and level to the INTE pin on the 

8080. A 1 bit in this flag indicates that the entire interrupt system is enabled. 

E 0 0 0 0 0 01 

Cycles: 
States: 4 

Flags: none 

ROTATE ACCUMULATOR LEFT 

RLC sets the carry flag equal to the high-order bit of the accumulator, thus overwriting its previous setting. RLC 
then rotates the contents of the accumulator one bit position to the left with the high-order bit transferring to 
the low-order position of the accumulator. 

Opcode Operand 

RLC 

Operands are not allowed with the RLC instruction. 

I 0 0 0 0 0 ___ ---11 1 

Cycles: 
States: 
Flags: 

4 
CYonly 

349 



Chapter 3. Instruction Set 

RM 

3-50 

Example: 

Assume that the accumulator contains the value OAAH and the carry flag is zero. The following diagrams illus
trate the effect of the RLC instruction. 

Before: Carry 

GJ 
Accumulator 

0 0 0 0 

After: Carry 

Accumulator 

o o 

RETURN IF MINUS 

The RM instruction tests the sign flag. If the flag is set to one to indicate negative data in the accumulator, the 
instruction pops two bytes off the stack and places them in the program counter. Program execution resumes at 

the new address in the program counter. If the flag is set to zero, program execution simply continues with the 
next sequential instruction. 

Opcode Operand 

RM 

Operands are not permitted with the RM instruction. 

Cycles: 
States: 
Addressing: 
Flags: 

Example: 

o 0 01 
or 3 

5 or 11 (6 or 12 on 8085) 
register indirect 
none 

For the sake of brevity, an example is given for the RET instruction but not for each of its closely related 
variants. 



RNC 

RNZ 

Chapter 3. Instruction Set 

RETURN IF NO CARRY 

The RNC instruction tests the carry flag. If the flag is set to zero to indicate that there has been no carry, the 

instruction pops two bytes off the ~tack and places them in the program counter. Program execution resumes at 

the new address in the program counter. If the flag is one, program execution simply continues with the next 

sequential instruction. 

Opcode Operand 

RNC 

Operands are not permitted with the RNC instruction. 

~1 0 0 0 0 01 

Cycles: or 3 

States: 5 or 11 (6 or 12 on 8085) 
Addressing: register indirect 

Flags: none 

Example: 

For the sake of brevity, an example is given for the RET instruction but not for each of its closely related 

variants. 

RETURN IF NOT ZERO 

The RNZ instruction tests the zero flag. If the flag is set to zero to indicate that the contents of the accumulator 

are other than zero, the instruction pops two bytes off the stack and places them in the program counter. Pro

gram execution resumes at the new address in the program counter. If the flag is set to one, program execution 

simply continues with the next sequential instruction. 

Opcode Operand 

RNZ 

Operands are not permitted with the RNZ instruction. 

11 0 0 0 0 0 01 

Cycles: or 3 

States: 5 or 11 (6 or 12 on 8085) 
Addressing: register indirect 

Flags: none 

Example: 

For the sake of brevity, an example is given for the RET instruction but not for each of its closely related 

variants. 

3-51 



Chapter 3. Instruction Set 

RP 

RPE 

3-52 

RETURN IF POSITIVE 

The RP instruction tests the sign flag. If the flag is reset to zero to indicate positive data in the accumulator, 

the instruction pops two bytes off the stack and places them in the program counter. Program execution 
resumes at the new address in the program counter. If the flag is set to one, program execution simply continues 
with the next sequential instruction. 

Op co de Operand 

RP 

Operands are not permitted with the RP instruction. 

11 0 0 0 01 

Cycles: or 3 
States: 5 or 11 (6 or 12 on 8085) 
Addressing: register indirect 
Flags: none 

Example: 

For the sake of brevity, an example is given for the RET instruction but not for each of its closely related 
variants. 

RETURN IF PARITY EVEN 

Parity is even if the byte in the accumulator has an even number of one bits. The parity flag is set to one to 
indicate this condition. The RPE and RPO instructions are useful for testing the parity of input data. However, 
the I N instruction does not set any of the condition flags. The flags can be set without altering the data by 
adding OOH to the contents of the accumulator. 

The RPE instruction tests the parity flag. If the flag is set to one to indicate even parity, the instruction pops 
two bytes off the stack and places them in the program counter. Program execution resumes at the new address 
in the program counter. If the flag is zero, program execution simply continues with the next sequential instruc
tion. 

Opcode Operand 

RPE 

Operands are not permitted with the RPE instruction. 

11 0 0 0 01 

Cycles: or 3 
States: 5 or 11 (6 or 12 on 8085) 
Addressing: register indirect 
Flags: none 



RPO 

RRC 

Chapter 3. Instruction Set 

Example: 

For the sake of brevity, an example is given for the RET instruction but not for each of its closely related 

variants. 

RETURN IF PARITY ODD 

Parity is odd if the byte in the accumulator has an odd number of one bits. The parity flag is reset to zero to 

indicate this condition. The RPO and RPE instructions are useful for testing the parity of input data. However, 

the IN instruction does not set any of the condition flags. The flags can be set without altering the data by 

adding OOH to the contents of the accumulator. 

The RPO instruction tests the parity flag. If the flag is reset to zero to indicate odd parity, the instruction pops 

two bytes off the stack and places them in the program counter. Program execution resumes at the new address 

in the program counter. If the flag is set to one, program execution simply continues with the next sequential 

instruction. 

Opeode Operand 

RPO 

Operands are not permitted with the RPO instruction. 

11 0 0 0 0 01 

Cycles: or 3 

States: 5 or 11 (6 or 12 on 8085) 
Addressing: register indirect 

Flags: none 

Example: 

For the sake of brevity, an example is given for the RET instruction but not for each of its closely related 

variants. 

ROTATE ACCUMULATOR RIGHT 

RRC sets the carry flag equal to the low-order bit of the accumulator, thus overwriting its previous setting. RRC 

then rotates the contents of the accumulator one bit position to the right with the low-order bit transferring to 

the high order position of the accumulator. 

Ope ode Operand 

RRC 

Operands are not permitted with the RRC instruction. 

3-53 



Chapter 3. Instruction Set 

RST 

3-54 

10 0 0 0 

Cycles: 

States: 

Flags: 

Example: 

4 
CYonly 

Assume that the accumulator contains the value OAAH and the carry flag is zero. The following diagrams illus

trate the effect of the RRC instruction: 

Before: Carry 

G 
Accumulator 

0 0 0 

After: Carry 

Accumulator 

o o 

RESTART 

RST is a special purpose CALL instruction designed primarily for use with interrupts. RST pushes the contents 

of the program counter onto the stack to provide a return address and then jumps to one of eight predetermined 

addresses. A three-bit code carried in the opcode of the RST instruction specifies the jump address. 

The restart instruction is unique because it seldom appears as source code in an applications program: More often, 

the peripheral devices seeking interrupt service pass this one-byte instruction to the processor. 

When a device requests interrupt service and interrupts are enabled, the processor acknowledges the request and 

prepares its data lines to accept anyone-byte instruction from the device. RST is generally the instruction of 

choice because its special purpose CALL establishes a return to the main program. 

The processor moves the three-bit address code from the RST instruction into bits 3, 4, and 5 of the program 

counter. In effect, this multiplies the code by eight. Program execution resumes at the new address where eight 

bytes are available for code to service the interrupt. If eight bytes are too few, the program can either jump to 

or call a subroutine. 



RZ 

8085 NOTE 

The 8085 processor includes four hardware inputs that generate internal RST 
instructions. Rather than send a RST instruction, the interrupting device need 
only apply a signal to the RST5.5, RST6.5, RST7.5, or TRAP input pin. 
The processor then generates an internal RST instruction. The execution 
depends on the input: 

INPUT 
NAME 

TRAP 
RST5.5 
RST6.5 
RST7.5 

RESTART 
ADDRESS 

24H 
2CH 
34H 
3CH 

Chapter 3. Instruction Set 

Notice that these addresses are within the same portion of memory used by the RST instruction, and therefore 
allow only four bytes - enough for a call or jump and a return - for the interrupt service routine. 

If included in the program code, the RST instruction has the following format: 

Opcode Operand 

RST code 

The address code must be a number or expression within the range OOOB through 111 B. 

Program 
Counter 

After RST 

11 I C C C I 1 
'---y-----/ - - ---

15 14 13 12 11 10 

10 0 0 0 0 0 

Cycles: 3 
States: 11 (12 on 8085) 
Addressing: register indirect 
Flags: none 

11 

~ 
9 8 7 6 5 4 3 

0 0 0 0 C C C 

2 

0 0 

0 

01 

RETURN IF ZERO 

The RZ instruction tests the zero flag. If the flag is set to one to indicate that the contents of the accumulator are 
zero, the instruction pops two bytes of data off the stack and places them in the program counter. Program 
execution resumes at the new address in the program counter. If the flag is zero, program execution simply 

continues with the next sequential instruction. 

3-55 



Chapter 3. Instruction Set 

SBB 

3-56 

Opcode Operand 

RZ 

Operands are not permitted with the RZ instruction. 

o 0 

Cycles: 

States: 

Addressing: 

Flags: 

Example: 

o 0 01 
or 3 

5 or 11 (6 or 12 on 8085) 

register indirect 

none 

For the sake of brevity, an example is given for the RET instruction but oot for each of its closely related 

variants. 

SUBTRACT WITH BORROW 

SBB subtracts one byte of data and the setting of the carry flag from the contents of the accumulator. The 

result is stored in the accumulator. SBB then updates the setting of the carry flag to indicate the outcome of 

the operation. 

SBB's use of the carry flag enables the program to subtract rrulti-byte strings. SBB incorporates the carry flag by 

adding it to the byte to be subtracted from the accumulator. It then subtracts the result "from the accumulator 

by using two's complement addition. These preliminary operations occur in the processor's internal work registel 

so that the source data remains unchanged. 

Subtract Register from A ccumulator with Borrow 

Opcode Operand 

SBB reg 

The operand must specify one of the registers A through E, H or L. This instruction subtracts the contents of 

the specified register and the carry flag from the accumulator and stores the result in the accumulator. 

Cycles: 

States: 

Addressing: 

Flags: 

S S sl 
1 
4 
register 

Z,S,P ,CY ,AC 



SBI 

Chapter 3. Instruction Set 

Subtract Memory from A ccumulator with Borrow 

Opcode Operand 

SBB M 

This instruction subtracts the carry flag and the contents of the memory location addressed by the Hand L 
registers from the accumulator and stores the result in the accumulator. 

[0 0 
Cycles: 

States: 
Addressing: 
Flags: 

Example: 

2 
7 
register indirect 

Z,S,P,CY,AC 

Assume that register B contains 2, the accumulator contains 4, and the carry flag is set to 1. The instruction 
SBB B operates as follows: 

2H + carry = 3H 
2's complement of 3H = 11111101 

Accumulator = 00000100 
11111101 
00000001 = 1 H 

Notice that this two's complement addition produces a carry. When SBB complements the carry bit generated 
by the addition, the carry flag is reset OFF. The flag settings resulting from the SBB B instruction are as 

follows: 

Carry 0 
Sign 0 
Zero 0 
Parity 0 
Aux. Carry 

SUBTRACT IMMEDIATE WITH BORROW 

SBI subtracts the contents of the second instruction byte and the setting of the carry flag from the contents of 
the accumulator. The result is stored in the accumulator. 

SBI's use of the carry flag enables the program to subtract multi-byte strings. SBI incorporates the carry flag by 
adding it to the byte to be subtracted from the accumulator. It then subtracts the result from the accumulator 
by using two's complement addition. These preliminary operations occur in the processor's internal work registers 
so that the immediate source data remains unchanged. 

3-57 



Chapter 3. Instruction Set 

SHLD 

3-58 

The assembler's relocation feature treats all external and relocatable symbols as 16-bit addresses. When one of 
these symbols appears in the operand expression of an immediate instruction, it must be preceded by either the 
HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the expression. 
When neither operator is present, the assembler assumes the LOW operator and issues an error message. 

Opcode Operand 

SBI data 

The operand must specify the data to be subtracted. This data may be in the form of a number, an ASCII 
constant, the label of some perviously defined value, or an expression. The data may not exceed one byte. 

o 

Cycles: 
States: 
Addressing: 
Flags: 

Example: 

2 
7 
immediate 

Z,S,P,CY,AC 

This sequence of instructions replaces a 20·byte array at symbolic location AXLOTL with a logical array consisting 
of zeros and ones, as follows: 

• If an element ofAXLOTL is 5 or greater in absolute value, it is replaced with 1. 
• If an element ofAXLOTL is less than 5 in absolute value, it is replaced with O. 

Note that the program flow is governed by how the carry flag is set. 

MVI B,20 
XRA A 
LXI H,AXLOTL 

LOAD: MOV A,M 
SBI 5 

JC SMALL 
MVI M,l 

JMP TEST 
SMALL: MVI M,O 
TEST: XRA A 

OCR B 
CMP B 

JZ DONE 
INX H 

JMP LOAD 
DONE: 

; initialize counter 
; clear accumulator and carry 
; (H,L) point to array AXLOTL 
; load acc. with byte pointed to by (H,L) 
; subtract 5, set carry if acc. less than 5 
; jump to SMALL if acc. was less than 5 
; store 1 where array element was 
; jump down to test count 
; store 0 where array element was 
; clear accumulator and carry 
; decrement count 
; compare B to 0 
; if accum. is zero, all done 
; bump (H,L) to point to next array element 
; go back and get another array element 
; remainder of program 

STORE HAND L DIRECT 

SHLD stores a copy of the L register in the memory location specified in bytes two and three of the SHLD 
instruction. SHLD then stores a copy of the H register in the next higher memory location. 



Chapter 3. Instruction Set 

SHLD is one of the instructions provided for saving the contents of the Hand L registers. Alternately, the H 
and L data can be placed in the D and E registers (XCHG instruction) or placed on the stack (PUSH and XTHL 
instructions). 

0 0 1 0 0 0 1 0 

low addr 

high addr 

Cycles: 5 
States: 16 
Addressing: direct 
Flags: none 

Example: 

Assume that the Hand L registers contain OAEH and 29H, respectively. The following is an illustration of the 
effect of the SH LD 10AH instruction: 

Memory Before SHLD 
Memory After SH LD 

MEMORY ADDRESS 

109 lOA lOB 

00 00 00 
00 29 AE 

10C 
00 
00 

SIM (8085 PROCESSOR ON L Y) SET INTERRUPT MASK 

SIM is a mUlti-purpose instruction that uses the current contents of the accumulator to perform the following 
functions: Set the interrupt mask for the 8085's RST5.5, RST6.5, and RST7.5 hardware interrupts; reset 
RST7.5's edge sensitive input; and output bit 7 of the accumulator to the Serial Output Data latch. 

Opcode Operand 

SIM 

Operands are not permitted with the SIM instruction. However, you must be certain to load the desired bit 
configurations into the accumulator before executing the SI M instruction. SI M interprets the bits in the accumu
lator as follows: 

3-59 



Chapter 3. Instruction Set 

3-60 

{
o = available 
1 = masked 

{
If 0, bits 0 - 2 ignored 
If 1, mask is set 

RESET RST7.S: If 1, RST7.S flip flop is reset OFF 
ignored 

If 1, bit 7 is ou tput to Serial Output Data Latch 
Serial Output Data: ignored if bit 6 = 0 

Accumulator bits 3 and 6 function as enable switches. If bit 3 is set ON (set to 1), the set mask function is 
enabled. Bits 0 through 2 then mask or leave available the corresponding RST interrupt. A 1 bit masks the 
interrupt making it unavailable; a 0 bit leaves the interrupt available. If bit 3 is set OFF (reset to 0), bits 0 
through 2 have no effect. Use this option when you want to send a serial output bit without affecting the 

interrupt mask. 

Notice that the 01 (Disable I nterrupts) instruction overrides the SI M instruction. Whether masked or not, RST S.S, 

RST6.S, and RST7.S are disabled when the 01 instruction is in effect. Use the RIM (Read Interrupt Mask) 
instruction to determine the current settings of the interrupt flag and the interrupt masks. 

If bit 6 is set to 1, the serial output data function is enabled. The processor latches accumulator bit 7 into the 
SOD output where it can be accessed by a peripheral device. If bit 6 is reset to 0, bit 7 is ignored. 

A 1 in accumulator bit 4 resets OFF the RST7.S input flip flop. Unlike RSTS.S and 6.S, RST7.S is sensed via a 
processor flip flop that is set when a peripheral device issues a pulse with a rising edge. This edge triggered input 
supports devices that cannot maintain an interrupt request until serviced. RST7.S is also useful when a device 
does not require any explicit hardware service for each interrupt. For example, the program might increment and 
test an event counter for each interrupt rather than service the device directly. 

The RST7.S flip flop remains set \Jntil reset by 1) issuing a RESET to the 808S, 2) recognizing the interrupt, or 
3) setting accumulator bit 4 and executing a SIM instruction. The Reset RST7.S feature of the SIM instruction 
allows the program to override the interrupt. 

The RST7.S input flip flop is not affected by the setting of the interrupt mask or the 01 instruction and there
fore can be set at any time. However, the interrupt cannot be serviced when RST7.S is masked or a DI instruction 
is in effect. 

1

0 0 0 0 0 01 
Cycles: 1 
States: 4 

Flags: none 

Example 1: Assume that the accumulator contains the bit pattern 00011100. The SIM instruction resets the 
RST7.S flip flop and sets the RST7.S interrupt mask. If an RST7.S interrupt is pending when this SI M instruction 
is executed, it is overridden without being serviced. Also, any subsequent RST7.S interrupt is masked and cannot 
be serviced until the interrupt mask is reset. 



SPHL 

STA 

Chapter 3. Instruction Set 

Example 2: Assume that the accumulator contains the bit pattern 11001111. The SI M instruction masks out the 

RST5.5, RST6.5, and RST7.5 level interrupts and latches a 1 bit into the SOD input. By contrast, the bit pattern 

10000111 has no effect since the enable bits 3 and 6 are not set to ones. 

MOVE H& L TO SP 

SPH L loads the contents of the Hand L registers into the SP (Stack Pointer) register. 

Opcode Operand 

SPHL 

Operands are not permitted with the SPHL instruction. 

SP is a special purpose 16-bit register used to address the stack; the stack must be in random access memory 

(RAM). Because different applications use different memory configurations, the user program must load the SP 

register with the stack's beginning address. The stack is usually assigned to the highest available location in RAM. 

The hardware decrements the stack pointer as items are added to the stack and increments the pointer as items 

are removed. 

The stack pointer must be initialized before any instruction attempts to access the stack. Typically, stack 

initialization occurs very early in the program. Once established, the stack pointer should be altered with 

caution. Arbitrary use of SPHL can cause the loss of stack data. 

Example: 

~1 __________ 0 __ 0 __ ~11 
Cycles: 

States: 

Addressing: 

Flags: 

1 
5 (6 on 8085) 

register 

none 

Assume that the Hand L registers contain 50H and OFFH, respectively. SPHL loads the stack pointer with the 

value 50FFH. 

STORE ACCUMULATOR DIRECT 

ST A stores a copy of the current accumulator contents into the memory location specified in bytes two and 

three of the ST A instruction. 

Opcode Operand 

STA address 

The address may be stated as a number, a previously defined label, or an expression. The assembler inverts the 

high and low address bytes when it builds the instruction. 

3-61 



Chapter 3. Instruction Set 

STAX 

3·62 

0 0 1 1 0 0 1 0 

lowaddr 

high addr 

Cycles: 4 
States: 13 
Addressing: direct 
Flags: none 

Example: 

The following instruction stores a copy of the contents of the accumulator at memory location 5B3H: 

STA 5B3H 

When assembled, the previous instruction has the hexadecimal value 32 B3 05. Notice that the assembler inverts 
the high and low order address bytes for proper storage in memory. 

STORE ACCUMULATOR INDIRECT 

The STAX instruction stores a copy of the contents of the accumulator into the memory location addressed 
by register pair B or register pair D. 

Opcode Operand 

STAX 

The operand B specifies the Band C register pair; D specifies the D and E register pair. This instruction may 
specify only the B or D register pair. 

Example: 

10001100 01 

Cycles: 
States: 
Addressing: 
Flags: 

'-v-/ 

l{o = register pair B 
1 = register pair D 

2 
7 
register indirect 
none 

If register B contains 3FH and register C contains 16H, the following instruction stores a copy of the contents 
of the accumulator at memory location 3F16H: 

STAX B 



STC 

SUB 

STC sets the carry flag to one. No other flags are affected. 

Opcode Operand 

STC 

Operands are not permitted with the STC instruction. 

\0 0 

Cycles: 

States: 

Flags: 

o 

4 
CY 

Chapter 3. Instruction Set 

SET CARRY 

When used in combination with the rotate accumulator through the carry flag instructions, STC allows the pro

gram to modify individual bits. 

SUBTRACT 

The SUB instruction subtracts one byte of data from the contents of the accumulator. The result is stored in the 

accumulator. SUB uses two's complement representation of data as explained in Chapter 2. Notice that the SUB 

instruction excludes the carry flag (actually a 'borrow' flag for the purposes of subtraction) but sets the flag to 

indicate the outcome of the operation. 

Subtract Register from Accumulator 

Op co de Operand 

SUB reg 

The operands must specify one of the registers A through E, H or L. The instruction subtracts the contents of 

the specified register from the contents of the accumulator using two's complement data representation. The 

result is stored in the accumulator. 

Cycles: 

States: 

Addressing: 

Flags: 

Subtract Memory from Accumulator 

Opcode 

SUB 

o S S S\ 

4 
register 

Z,S,P,CY,AC 

Operand 

M 

3-63 



Chapter 3. Instruction Set 

SUI 

3-64 

This instruction subtracts the contents of the memory location addressed by the Hand L registers from the 

contents of the accumulator and stores the result in the accumulator. M is a symbolic reference to the Hand L 

registers. 

o 0 

Cycles: 

States: 

Addressing: 

Flags: 

Example: 

o 

2 
7 

register indirect 

Z,S,P,CY,AC 

Assume that the accumulator contains 3EH. The instruction SUB A subtracts the contents of the accumulator 

from the accumulator and produces a result of zero as follows: 

3EH 

+(-3EH) 

carry out = 1 

001111"10 

11000001 

1 
00000000 

The condition flags are set as follows: 

Carry 

Sign 

Zero 

Parity 

Aux. Carry 

one's complement 

add one to produce two's complement 

result = 0 

o 
o 

Notice that the SUB instruction complements the carry generated by the two's complement addition to form a 

'borrow' flag. The auxiliary carry flag is set because the particular value used in this example causes a carry out 

of bit 3. 

SUBTRACT IMMEDIATE 

SU I subtracts the contents of the second instruction byte from the contents of the accumulator and stores the 

result in the accumulator. Notice that the SUI instruction disregards the carry ('borrow') flag during the sub

traction but sets the flag to indicate the outcome of the operation. 

Opcode Operand 

SUI data 

The operand must specify the data to be subtracted. This data may be in the form of a number, an ASCII 

constant, the label of some previously defined value, or an expression. The data must not exceed one byte. 

The assembler's relocation feature treats all external and relocatable symbols as 16-bit addresses. When one of 

these symbols appears in the operand expression of an immediate instruction, it must be preceded by either the 



XCHG 

Chapter 3. Instruction Set 

HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the expression. 

When neither operator is present, the assembler assumes the LOW operator and issues an error message. 

Example: 

cc=_1 ___ 0 _____ 0 _______ 0~ 

Cycles: 

States: 

Addressing: 

Flags: 

2 
'] 

immediate 

Z,S,P,CY,AC 

Assume that the accumulator contains the value 9 when the instruction SUI 1 is executed: 

Accumulator 

Immediate data (2's comp) 

00001001 = 9H 
11111111 = -1 H 

00001000 = 8H 

Notice that this two's complement addition results in a carry. The SUI instruction complements the carry 

generated by the addition to form a 'borrow' flag. The flag settings resulting from this operation are as follows: 

Carry a 
Sign a 
Zero a 
Parity a 
Aux. Carry 

EXCHANGE HAND L WITH D AND E 

XCHG exchanges the contents of the Hand L registers with the contents of the 0 and E registers. 

Opcode Operand 

XCHG 

Operands are not allowed with the XCHG instruction. 

XCHG both saves the current Hand L and loads a new address into the Hand L registers. Since XCHG is a 

register-to-register instruction, it provides the quickest means of saving and/or altering the Hand L registers. 

~. __ 1 ______ 0 ______ 0 ______ ~ 

Cycles: 

States: 

Addressing: 

Flags: 

1 
4 
register 

none 

3-65 



Chapter 3. Instruction Set 

XRA 

3-66 

Example: 

Assume that the Hand L registers contain 1234H, and the D and E registers contain OABCDH. Following 
execution of the XCHG instruction, Hand L contain OABCDH, and D and E contain 1234H. 

EXCLUSIVE OR WITH ACCUMULATOR 

XRA performs an excl usive OR logical operation using the contents of the specified byte and the accumulator. 
The result is placed in the accumulator. 

Summary of Logical Operations 

AND produces a one bit in the result only when the corresponding bits in the test data and the mask data are 
ones. 

OR produces a one bit in the result when the corresponding bits in either the test data or the mask data are 
ones. 

Exclusive OR produces a one bit only when the corresponding bits in the test data and the mask data are 
different; i.e., a one bit in either the test data or the mask data - but not both - produces a one bit in the 
result. 

AND 

10101010 

0000 1111 
0000 1010 

XRA Register with Accumulator 

Opcode 

XRA 

OR 

1010 1010 

0000 11 n 
10101111 

Operand 

reg 

EXCLUSIVE OR 

1010 1010 
0000 1111 

10100101 

The operand must specify one of the registers A through E, H or L. This instruction performs an exclusive OR 
using the contents of the specified register and the accumulator and stores the result in the accumulator. The 
carry and auxil iary carry flags are reset to zero. 

o 

Cycles: 
States: 
Addressing: 
Flags: 

o S S S 

4 
register 
Z,S,P,CY,AC 



XRI 

Chapter 3. Instruction Set 

X RA Memory with Accumulator 

Opcode Operand 

XRA M 

The contents of the memory location specified by the Hand L registers is exclusive-ORed with the contents of 
the accumulator. The result is stored in the accumulator. The carry and auxiliary carry flags are reset to zero. 

~_O __ O_ 

Cycles: 
States: 
Addressing: 
Flags: 

Examples: 

2 
"1 

o 

register indirect 

Z ,S ,P ,CY ,AC 

Since any bit exclusive-ORed with itself produces zero, XRA is frequently used to zero the accumulator. The 
following instructions zero the accumulator and the Band C registers. 

XRA A 
MOV B,A 
MOV C,A 

Any bit exclusive-ORed with a one bit is complemented. Thus, if the accumulator contains all ones (OFFH), 
the instruction XRA B produces the one's complement of the B register in the accumulator. 

EXCLUSIVE OR IMMEDIATE WITH ACCUMULATOR 

XRI performs an exclusive OR operation using the contents of the second instruction byte and the contents of 
the accumulator. The result is placed in the accumulator. XRI also resets the carry and auxiliary carry flags to 
zero. 

Opcode Operand 

XRI data 

The operand must specify the data to be used in the OR operation. This data may be in the form of a number, 
an ASCII constant, the label of some previously defined value, or an expression. The data may not exceed one 
byte. 

The assembler's relocation feature treats all external and relocatable symbols as 16-bit addresses. When one of 
these symbols appears in the operand expression of an immediate instruction, it must be preceded by either the 
HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the expression. 
When neither operator is present, the assembler assumes the LOW operator and issues an error message. 

3-67 



Chapter 3. Instruction Set 

3-68 

Cycles: 
States: 
Addressing: 
Flags: 

Summary of Logical Operations 

o 

data 

o 

2 

7 
immediate 

Z,S,P,CY,AC 

AND produces a one bit in the result only when the corresponding bits in the test data and the mask data are 
ones. 

OR produces a one bit in the result when the corresponding bits in either the test data or the mask data are 
ones. 

Exclusive OR produces a one bit only when the corresponding bits in the test data and the mask data are 
different; i.e., a one bit in either the test data or the mask data - but not both - produces a one bit in the 
resul t. 

AND OR EXCLUSIVE OR 

1010 1010 1010 1010 1010 1010 
0000 1111 0000 1111 0000 11 n 
0000 1010 10101111 10100101 

Example: 

Assume that a program uses bits 7 and 6 of a byte as flags that control the calling of two subroutines. The 
program tests the bits by rotating the contents of the accumulator until the desired bit is in the carry flag; a 
CC instruction (Call if Carry) tests the flag and calls the subroutine if required. 

Assume that the control flag byte is positioned normally in the accumulator, and the program must set OFF bit 
6 and set bit 7 ON. The remaining bits, which are status flags used for other purposes, must not be altered. 
Since any bit exclusive-ORed with a one is complemented, and any bit exclusive-ORed with a zero remains 
unchanged, the following instruction is used: 

XRI 

The instruction has the following results: 

Accumulator 
Immediate data 

110000008 

01 001100 
11000000 

10001100 



XTHL 

Chapter 3. Instruction Set 

EXCHANGE H&L WITH TOP OF STACK 

XTHL exchanges two bytes from the top of the stack with the two bytes stored in the Hand L registers. Thus, 
XTHL both saves the current contents of the Hand L registers and loads new values into Hand L. 

Opcode Operand 

XTHL 

Operands are not allowed with the XTH L instruction. 

XTHL exchanges the contents of the L register with the contents of the memory location specified by the SP 
(Stack Pointer) register. The contents of the H register are exchanged with the contents of SP+ 1. 

Cycles: 

States: 
Addressing: 
Flags: 

Example: 

000 

5 
18 (16on8085) 
register indirect 
none 

Assume that the stack pointer register contains 1 OADH; register H contai ns OBH and L contains 3CH; and 
memory locations 10ADH and 10AEH contain FOH and ODH, respectively. The following is an illustration of 
the effect of the XTHL instruction: 

Before XTHL 
After XTHL 

10AC 

FF 
FF 

MEMORY ADDRESS 

lOAD 10AE 

FO OD 
3C OB 

H L 
lOAF 

FF OB 3C 
FF OD FO 

The stack pointer register remains unchanged following execution of the XTH L instruction. 

3-69 





4. ASSEMBLER DIRECTIVES 

This chapter describes the assembler directives used to control the 8080/85 assembler in its generation of object 
code. This chapter excludes the macro directives, which are discussed as a separate topic in Chapter 5. 

Generally, directives have the same format as instructions and can be interspersed throughout your program. 
Assembler directives discussed in this chapter are grouped as follows: 

GENERAL DI RECTIVES: 

• Symbol Definition 

EQU 
SET 

• Data Definition 

DB 
DW 

• Memory Reservation 

DS 

• Conditional Assembly 

IF 
ELSE 
ENDIF 

• Assembler Termination 

END 

LOCATION COUNTER CONTROL AND RELOCATION: 

• Location Counter Control 

ASEG 
DSEG 
CSEG 
ORG 

• Program Linkage 

PUBLIC 
EXTRN 
NAME 
STKLN 

4-1 



Chapter 4. Assembler Directives 

Three assembler directives - EQU, SET, and MACRO - have a slightly different format from assembly 

language instructions. The EQU, SET, and MACRO directives require a name for the symbol or macro being 

defined to be present in the label field. Names differ from labels in that they must not be terminated with a 

colon (:) as labels are. Also, the LOCAL and ENDM directives prohibit the use of the label field. 

The MACRO, ENDM, and LOCAL directives are explained in Chapter 5. 

SYMBOL DEFINITION 

The assembler automatically assigns values to symbols that appear as instruction labels. This value is the current 

setting of the location counter when the instruction is assembled. (The location counters are explained under 

'Address Control and Relocation,' later in this chapter.) 

You may define other symbols and assign them values by using the EQU and SET directives. Symbols defined 

using EQU cannot be redefined during assembly; those defined by SET can be assigned new values by subsequent 

SET directives. 

The name required in the label field of an EQU or SET directive must not be terminated with a colon. 

Symbols defined by EQU and SET have meaning throughout the remainder of the program. This may cause the 

symbol to have illegal multiple definitions when the EQU or SET directive appears in a macro definition. Use 

the LOCAL directive (described in Chapter 5) to avoid this problem. 

EQU Directive 

4-2 

EQU assigns the value of 'expression' to the name specified in the label field. 

Label Opcode Operand 

name EQU expression 

The required name in the label field may not be terminated with a colon. This name cannot be redefined by a 

subsequent EQU or SET directive. The EQU expression cannot contain any external symbol. (External symbols 

are explained under 'Location Counter Control and Relocation,' later in this chapter.) 

Assembly-time evaluation of EQU expressions always generates a modulo 64K address. Thus, the expression always 

yields a value in the range 0 - 65535. 

Example: 

The following EQU directive enters the name ONES into the symbol table and assigns the binary value 

11111111 to it: 

ONES EQU OFFH 



Chapter 4. Assembler Directives 

The value assigned by the EQU directive can be recalled in subsequent source lines by referring to its assigned name 
as in the following I F directive (where TYPE has been previously defined): 

IF TYPE EQ ONES 

ENDIF 

SET Directive 

SET assigns the value of 'expression' to the name specified in the label field. 

Label Opcode Operand 

name SET expression 

The assembler enters the value of 'expression' into the symbol table. Whenever 'name' is encountered sub
sequently in the assembly, the assembler substitutes its value from the symbol table. This value remains unchanged 
until altered by a subsequent SET directive. 

The function of the SET directive is identical to EQU except that 'name' can appear in multiple SET directives 
in the same program. Therefore, you can alter the value assigned to 'name' throughout the assembly. 

Assembly-time evaluation of SET expressions always generates a modulo 64K address. Thus, the expression always 
yields a value in the range 0 - 65535. 

Examples: 

Label 

IMMED 

IMMED 

DATA DEFINITION 

Opcode 

SET 
ADI 

SET 
ADI 

Operand 

5 
IMMED 

lOH-6 
IMMED 

Assembled Code 

C605 

C60A 

The DB (define byte) and OW (define word) directives enable you to define data to be stored in your program. 
Data can be specified in the form of 8-bit or 16-bit values, or as a string of text characters. 

DB Directive 

The DB directive stores the specified data in consecutive memory locations starting with the current setting of the 
location counter. 

4-3 



Chapter 4. Assembler Directives 

Label Opcode Operands 

optional: DB expression(s) or string(s} 

Each symbol in the expression(s) must be previously defined. The operand field of the DB directive can contain a 
list of expressions and/or text strings. The list can contain up to eight total items; list items must be separated by 
commas. Because of limited workspace, the assembler may not be able to handle a total of eight items when the list 
includes a number of complex expressions. If you ever have this problem, it is easily solved: simply use two or more 
directives to shorten the list. 

Expressions must evaluate to l-byte (8-bit) numbers in the range -256 through 255. Text strings can consist of a 
maximum of 128 ASCII characters enclosed in quotes. 

The assembler's relocation feature treats all external and relocatable symbols as 16-bit addresses. When one of 
these symbols appears in an operand expression of the DB directive, it must be preceded by either the HIGH or 
LOW operator to specify which byte of the address is to be used in the evaluation of the expression. When 
neither operator is present, the assembler assumes the LOW operator and issues an error message. 

If the optional label is present, it is assigned the starting value of the location counter, and thus references 
the first byte stored by the DB directive. Therefore, the label STR in the following examples refers to the letter 
T of the string TIME. 

Examples: 

Label Opcode Operands Assembled Code 

STR: DB 'TIME' 54494D45 

HERE: DB OA3H A3 

WORDl : DB -03H,5*2 FDOA 

OW Directive 

44 

The DW directive stores each 16-bit value from the expression list as an address. The values are stored starting 
at the current setting of the location counter. 

Label Opcode Operands 

optional: DW expression list 

Each symbol in the expression list must be previously defined. The least significant eight bits of the first value in the 
expression list are stored at the current setting of the location counter; the most significant eight bits are stored at 
the next higher location. This process is repeated for each item in the expression list. 

Expressions evaluate to l--word (16-bit) numbers, typically addresses. If an expression evaluates to a single byte, 
it is assumed to be the low order byte of a 16-bit word where the high order byte is all zeros. 



Chapter 4. Assembler Directives 

List items must be separated by commas. The list can contain up to eight total items. Because of limited work
space, the assembler may not be able to handle eight complex expressions. If you ever have this problem, simply 
use two or more DW directives to shorten the list. 

The reversed order for storing the high and low order bytes is the typical format for addresses stored in memory. 
Thus, the DW directive is commonly used for storing address constants. 

Strings containing one or two ASCII characters enclosed in quotation marks may also appear in the expression 
list. When using such strings in your program, remember that the characters are stored in reversed order. 
Specifying a string longer than two characters causes an error. 

If the optional label is present, it is assigned the starting address of the location counter, and thus references the 
first byte stored by the DW directive. (This is the low order byte of the first item in the expression list.) 

Examples: 

Assume that COMP and FI LL are labels defined elsewhere in the program. COMP addresses memory location 
3B1 CH. FI LL addresses memory location 3EB4H. 

Label Op co de Operands Assembled Code 

ADDR1 : DW COMP 1C3B 

ADDR2: DW FILL B43E 

STRNG: DW 'A','AB' 41004241 

FOUR: DW 4H 0400 

MEMORY RESERVATION 

DS Directive 

The DS directive can be used to define a block of storage. 

Label Opcode Operand 

optional: DS expression 

Each symbol in the expression must be previously defined. The value of 'expression' specifies the number of bytes to 
be reserved for data storage. In theory, this value may range from OOH through OFFFFH; in practice, you will 
reserve no more storage than will fit in your available memory and still leave room for the program. 

Any symbol appearing in the operand expression must be defined before the assembler reaches the DS directive. 

Unlike the DB and DW directives, DS assembles no data into your program. The contents of the reserved storage 
are unpredictable when program execution is initiated. 

4-5 



Chapter 4. Assembler Directives 

If the optional label is present, it is assigned the current value of the location counter, and thus references the 
first byte of the reserved memory block. 

If the value of the operand expression is zero, no memory is reserved. However, if the optional label is present, 
it is assigned the current value of the location counter. 

The DS directive reserves memory by incrementing the location counter by the value of the operand expression. 

Example: 

TIVBUF: DS 72 ;RESERVE 72 BVTES FOR 
;A TERMINAL OUTPUT BUFFER 

Programming Tips: Data Description and Access 

4-6 

Random Access Versus Read Only Memory 

When coding data descriptions, keep in mind the mix of ROM and RAM in your application. 

Generally, the DB and DW directives define constants, items that can be assigned to ROM. Vou can use these 
items in your program, but you cannot modify them. If these items are assigned to RAM, they have an initial 
value that your program can modify during execution. Notice, however, that these initial values must be reloaded 
into memory prior to each execution of the program. 

Variable data in memory must be assigned to RAM. 

Data Description 

Before coding your program, you must have a thorough understanding of its input and output data. But you'll 
probably find it more convenient to postpone coding the data descriptions until the remainder of the program is 
fairly well developed. This way you will have a better idea of the constants and workareas needed in your program. 
Also, the organization of a typical program places instructions in lower memory, followed by the data, followed 
by the stack. 

Data Access 

Accessing data from memory is typically a two-step process: First you tell the processor where to find the data, 
then the processor fetches the data from memory and loads it into a register, usually the accumulator. Therefore, 
the following code sequences have the identical effect of loading the ASCII character A into the accumulator. 

AAA: DB 'A' ALPHA: DB 'ABC' 

LXI B,AAA LXI B,ALPHA 
LDAX B LDAX B 



Chapter 4. Assembler Directives 

In the examples, the LXI instructions load the address of the desired data into the Band C registers. The LDAX 
instructions then load the accumulator with one byte of data from the address specified in the Band C registers. 
The assembler neither knows nor cares that only one character from the three-character field ALPHA has been 
accessed. The program must account for the characters at ALPHA+ 1 and ALPHA+2, as in the following coding 
sequence: 

ALPHA: DB 'ABC' ;DEFINE ALPHA 

LXI B,ALPHA ;LOAD ADDRESS OF ALPHA 
LDAX B ;FETCH 1 ST ALPHA CHAR 

INX B ;SET B TO ALPHA+l 
LDAX B ;FETCH 2ND ALPHA CHAR 

INX B ;SET B TO ALPHA+2 
LDAX B ;FETCH 3RD ALPHA CHAR 

The coding above is acceptable for short data fields like ALPHA. For longer fields, you can conserve memory 
by setting up an instruction sequence that is executed repeatedly until the source data is exhausted. 

Add Symbols for Data Access 

The following example was presented earlier as an illustration of the DS directive: 

Label Opcode Operand Comment 

TTYBUF: DS 72 ;RESERVE TTY BUFFER 

To access data in this buffer using only expressions such as TTYBUF+l, TTYBUF+2, ... TTYBUF+72 can be 
a laborious and confusing chore, especially when you want only selected fields from the buffer. You can simplifY 
this task by subdivid.ing the buffer with the EQU directive: 

Label Opcode Operand Comment 

TTYBUF: DS 72 ;RESERVE TTY BUFFER 

ID EQU TTYBUF ;RECORD IDENTIFIER 

NAME EQU TTYBUF+6 ;20-CHAR NAME FIELD 

NUMBER EQU TTYBUF+26 ;10-CHAR EMPLOYEE NUMBER 

DEPT EQU TTYBUF+36 ;5-CHAR DEPARTMENT NUMBER 

SSNO EQU TTYBUF+41 ;SOCIAL SEC. NUMBER 

DOH EQU TTYBUF+50 ;DATE OF HIRE 

DESC EQU TTYBUF+56 ;JOB DESCRIPTION 

4-7 



Chapter 4. Assembler Directives 

Subdividing data as shown in the example simplifies data access and provides useful documentation throughout 
your program. Notice that these EQU directives can be inserted anywhere within the program as you need them, 
but coding them as shown in the example provides a more useful record description. 

CONDITIONAL ASSEMBLY 

The IF, ELSE, and ENOIF directives enable you to assemble portions of your program conditionally, that is, 
only if certain conditions that you specify are satisfied. 

Each symbol within an IF-ENOl F block must be previously defined. Conditional assembly is especially useful when 
your application requires custom programs for a number of common options. As an example, assume that a basic 
control program requires customizing to accept input from one of six different sensing devices and to drive one of 
five different control devices. Rather than code some thirty separate programs to account for all the possibilities, 
you can code a single program. The code for the individual sensors and drivers must be enclosed by the conditional 
directives. When you need to generate a custom program, you can insert SET directives near the beginning of the 
source program to select the desired sensor and driver routines. 

IF, ELSE, ENDIF Directives 

4-8 

Because these directives are used in conjunction, they are described together here. 

Label Opcode Operand 

optional: IF expression 

optional: ELSE 

optional: ENOIF 

Each symbol in the expression must be previously defined. The assembler evaluates the expression in the operand 
field of the I F directive. If bit 0 of the resulting value is one (TRUE), all instructions between the I F directive and 
the next ELSE or ENOl F directive are assembled. When bit 0 is zero (FALSE) these instructions are ignored. 
(A TRUE expression evaluates to OFFFFH and FALSE to OH; only bit zero need be tested.) 

All statements included between an I F directive and its required associated ENOl F directive are defined as an 
IF-ENOIF block. The ELSE directive is optional, and only one ELSE directive may appear in an IF-ENOIF 
block. When included, ELSE is the converse of IF. When bit 0 of the expression in the I F directive is zero, all 
statements between ELSE and the next ENOl F are assembled. If bit 0 is one, these statements are ignored. 

Operands are not allowed with the ELSE and ENOIF directives. 

An IF-ENOl F block may appear within another IF-ENOl F block. These blocks can be nested to eight levels. 

Macro definitions (explained in the next chapter) may appear within an IF-ENOl F block. Conversely, IF-EN 01 F 
blocks may appear within macro definitions. In either case, you must be certain to terminate the macro definition 



Chapter 4. Assembler Directives 

or I F-ENDI F block so that it can be assembled completely. For example, when a macro definition begins in an 
IF block but terminates after an ELSE directive, only a portion of the macro can be assembled. Similarly, an 
IF-ENDIF block begun within a macro definition must terminate within that same macro definition. 

Example 1. 

NOTE 

Caution is required when symbols are defined in IF -ENDI F 
blocks and referenced elsewhere within the program. These 
symbols are undefined when the evaluation of the I F ex
pression suppresses the assembly of the IF-ENDIF block. 

Simple I F-ENDI F Block (where TYPE has been previously defined): 

COND1: IF TYPE EO 0 

ENDIF 

Example 2. IF-ELSE-ENDIF Block: 

COND2: IF TYPE EO 0 

ELSE 

ENDIF 

;ASSEMBLED IF TYPE = 0' 
;15 TRUE 

;ASSEMBLED IF TYPE = 0' 
;15 TRUE 

;ASSEMBLED IF TYPE = 0' 
;15 FALSE 

4-9 



Chapter 4. Assembler Directives 

Example 3. Nested IF's: 

COND3: IF TYPE EO 0 

LEVEL 

IF MODE EO 1 

ENDIF 
ELSE 

;ASSEMBLED IF TYPE = 0' 
;15 TRUE 

;ASSEMBLED IF 'TYPE = 0' 
;AND 'MODE = l' ARE BOTH 
;TRUE 

LEVEL 

2 

;ASSEMBLED IF TYPE = 0' 
;15 FALSE 

IF MODE EO 2 

LEVEL ELSE 

ENDIF 
ENDIF 

;ASSEMBLED IF 'TYPE = 0' 
;15 FALSE AND 'MODE = 2' 
;15 TRUE 

;ASSEMBLED IF 'TYPE = 0' 
;AND 'MODE = 2' ARE BOTH 
;FALSE 

ASSEMBLER TERMINATION 

END Directive 

4-10 

The END directive identifies the end of the source program and terminates each pass of the assembler. 

Label Opcode Operand 

optional: END expression 

Only one END statement may appear in a source program, and it must be the last source statement. 

If the optional expression is present, its value is used as the starting address for program execution. If no ex
pression is given, the assembler assumes zero as the starting address. 

When a number of separate program modules are to be joined together, only one may specify a program starting 
address. The module with a starting address is the main module. When source files are combined using the IN
CLUDE control, there are no restrictions on which source file contains the END. 



Chapter 4. Assembler Directives 

END-OF-TAPE INDICATION 

The EOT directive allows you to specify the physical end of paper tape to simplify assembly of mUltiple-tape source 

programs. 

EOT Directive 

Label Opcode Operand 

optional: EOT 

When EOT is recognized by the assembler, the message 'NEXT TAPE' is sent to the console and the assembler pauses.' 

After the next tape is loaded, a 'space bar' character received at the console signals continuation of the assembly. 

Data in the operand field causes an error. 

LOCATION COUNTER CONTROL AND RELOCATION 

All the directives discussed in the remainder of this chapter relate directly to program relocation except for the 

ASEG and ORG directives. These directives are described first for the convenience of readers who do not use the 

relocation feature. 

Location Counter Control (Non-Relocatable Mode) 

When you elect not to use the relocation feature, an assembler default generates an ASEG directive for you. The 

ASEG directive specifies that the program is to be assembled in the non-relocatable mode and establishes a 

location counter for the assembly. 

The location counter performs the same function for the assembler as the program counter performs during 

execution. It tells the assembler the next memory location available for instruction or data assembly. 

Initially, the location counter is set to zero. The location counter can be altered by the ORG (origin) directive. 

ORG Directive 

The ORG directive sets the location counter to the value specified by the operand expression. 

Label Opcode Operand 

optional: ORG expression 

The location counter is set to the value of the operand expression. Assembly-time evaluation of ORG expressions 

always yields a modulo 64K address. Thus, the expression always yields an address in the range 0 through 

65,535. Any symbol in the expression must be previously defined. The next machine instruction or data item is 

assembled at the specified address. 

4-11 



Chapter 4. Assembler Directives 

If no ORG directive is included before the first instruction or data byte in your program, assembly begins at 

location zero. 

Your program can include any number of ORG directives. Multiple ORG's need not specify addresses in 
ascending sequence, but if you fail to do so, you may instruct the assembler to write over some previously 
assembled portion of the program. 

If the optional label is present, it is assigned the current value of the location counter before it is updated by the 
ORG directive. 

Example: 

Assume that the current value of the location counter is OFH (decimal 15) when the following ORG directive is 
encountered: 

PAG1: ORG OFFH ;ORG ASSEMBLER TO LOCATION 

;OFFH (decimal 225) 

The symbol PAG1 is assigned the address OFH. The next instruction or data byte is assembled at location 
OFFH. 

Introduction to Relocatability 

4-12 

A major feature of this assembler is its system for creating relocatable object code modules. Support for this new 
feature includes a number of new directives for the assembler and three new programs included in ISIS-II. The 
three new programs - LIB, LINK, and LOCATE --- are described in the ISIS-II System User's Guide. The new 

assembler directives are described later in this chapter. 

Relocatability allows the programmer to code programs or sections of programs without worrying about the 
final arrangement of the object code in memory. This offers developers of microcomputer systems major ad
vantages in two areas: memory management and modular program development. 

Memory Management 

When developing, testing, and debugging a system on your Intcllec microcomputer develof}ment system, your 
only concern with locating a program is that it doesn't overlap the resident routines of ISIS-II. Because the 

Intellec system has 32K, 48K, or 64K of random access memory, the location of your future program is not a 
great concern. However, the program you are developing will almost certainly usc some mix of random access 
memory (RAM), read-only memory (ROM), and/or programmable read-only memory (PROM). Therefore, the 
location of your program affects both cost and performance in your application. The relocatability feature allows 

you to develop, test, and debug your program on the Intellec development system and then simply relocate the 

object code to suit your application. 

The relocatability feature also has a major advantage at assembly-time: often, large programs with many symbols 
cannot be assembled because of limited work space for the symbol table. Such a program can be divided into a 

number of modules that can be assembled separately and then linked together to form a single object program. 



Chapter 4. Assembler Directives 

Modular Program Development 

Although 'relocatability' may seem to be a formidable term, what it really means is that you can subdivide a 

complex program into a number of smaller, simpler programs. This concept is best illustrated through the use of 

an example. Assume that a microcomputer program is to control the spark advance on an automobile engine. 

This requires the program to sample the ambient air temperature, engine air intake temperature, coolant tempera

ture, manifold vacuum, idle sensor, and throttle sensor. 

Let us examine the approaches two different programmers might take to solve this problem. Both programmers 

want to calculate the degree of spark advance or retardation that provides the best fuel economy with the lowest 

emissions. Programmer A codes a single program that senses all inputs and calculates the correct spark advance. 

Programmer B uses a modular approach and codes separate programs for each input plus one program to calculate 

spark advance. 

Although Programmer A avoids the need to learn to use the relocatability feature, the modular approach used 

by Programmer B has a number of advantages you should consider: 

• Simplified Program Development 

It is generally easier to code, test, and debug several simple programs than one complex program. 

• Sharing the Programming Task 

If Programmer B finds that he is falling behind schedule, he can assign one or more of his sub

programs to another programmer. Because of his single program concept, Programmer A will 

probably have to complete the program himself. 

• Ease of Testing 

Programmer B can test and debug most of his modules as soon as they are assembled; Programmer 

A must test his program as a whole. Notice that Programmer B has an extra advantage if the 

sensors are being developed at the same time as the program. If one of the sensors is behind 

schedule, Programmer B can continue developing and testing programs for the sensors that are 

ready. Because Programmer A cannot test h is program until all the sensors are developed, his 

testing schedule is dependent on events beyond his control. 

• Programming Changes 

Given the nature of automotive design, it is reasonable to expect some changes during system 

development. If a change to one of the sensors requires a programming change, Programmer A 

must search through his entire program to find and alter the coding for that sensor. Then he must 

retest the entire program to be certain that those changes do not affect any of the other sensors. 

By contrast, Programmer B need be concerned only with the module for that one sensor. This 

advantage continues throughout the life of the program. 

4-13 



Chapter 4. Assembler Directives 

DIRECTIVES USED FOR RELOCATION 

Several directives have been added to the assembler to support the relocation feature. These fall into the general 

categories of location counter control and program linkage. 

Location Counter Control (Relocatable Programs) 

4-14 

Relocatable programs or program modules may use three location counters. The ASEG, DSEG, and CSEG 

directives specify which location counter is to be used. 

The ASEG directive specifies an absolute code segment. Even in a relocatable program module, you may want 
to assign certain code segments to specific addresses. For example, restart routines invoked by the RST instruc
tion require specific addresses. 

The CSEG directive specifies a relocatable code segment. I n general, the CSEG location counter is used for por
tions of the program that are to be in some form of read-only memory, such as machine instructions and pro

gram constants. 

The DSEG location counter specifies a relocatable data segment. This location counter is used for program 
elements that must be located in random access memory. 

These directives allow you to control program segmentation at assembly time. The LOCATE program, described 
in the ISIS-II System User's Guide, gives you control over program segment location. Therefore, the guidelines 
given above are only general since they can be overridden by the LOCATE program. 

Regardless of how many times the ASEG, CSEG, and DSEG directives appear in your program, the assembler 
produces a single, contiguous module. This module comprises four segments: code, data, stack and memory. 
The LIN K and LOCATE programs are used to combine segments from individual modules and relocate them in 
memory. These programs are explained in the ISIS-II System User's Guide. 

A SEG Directive 

ASEG directs the assembler to use the location counter for the absolute program segment. 

Label Opcode Operand 

optional: ASEG 

Operands are not permitted with the ASEG directive. 

All instructions and data following the ASEG directive are assembled in the absolute mode. The ASEG directive 
remains in effect until a CSEG or DSEG directive is encountered. 

The ASEG location counter has an initial value of zero. The ORG directive can be used to assign a new value to 
the ASEG location counter. 



Chapter 4. Assembler Directives 

When assembly begins, the assembler assurr.es the ASEG directive to be in effect. Therefore, a CSEG or DSEG 
must precede the first instruction or data definition in a relocatable module. If neither of these directives 
appears in the program, the entire program is assembled in absolute mode and can be executed immediately 
after assembly without using the LINK or LOCATE programs. 

CSEG Directive 

CSEG directs the assembler to assemble subsequent instructions and data in the relocatable mode using the code 
segment location counter. 

Label Opcode Operand 

optional: CSEG 
{

blank } 
PAGE 
INPAGE 

When a program contains multiple CSEG directives, all CSEG directives throughout the program must specify 
the same operand. The operand of a CSEG directive has no effect on the current assembly, but is stored with 
·the object code to be passed to the LINK and LOCATE programs. (These programs are described in the ISIS-II 
System User's Guide.) The LOCATE program uses this information to determine relocation boundaries when it 
joins this code segment to code segments from other programs. The meaning of the operand is as follows: 

• blank - This code segment may be relocated to the /lext available byte boundary. 

• PAGE - This code segment must begin on a page boundary when relocated. Page boundaries 
occur in multiples of 256 bytes' beginning with zero (0, 256, 512, etc.). 

• INPAGE - This code segment must fit within a single page when relocated. 

The CSEG directive rema~ns in effect until an ASEG or DSEG directive is encountered. 

The code segment location counter has an initial value o,f zero. The ORG directive can be used to assign a new 
value to the CSEG location counter. 

DSEG Directive 

DSEG directs the assembler to assemble subsequent instructions and data in the relocatable mode using the data 
segment location counter. 

Label Opcode Operand 

optional: DSEG 
{

blank } 
PAGE 
INPAGE 

When multiple DSEG directives appear in a program, they must all specify the same operand throughout the 
program. The operands for the DSEG directive have the same meaning as for the CSEG directive except that 
they apply to the data segment. 

4-15 



Chapter 4. Assembler Directives 

There is no interaction between the operands specified for the DSEG and CSEG directives. Thus, a code segment 

can be byte relocatable while the data segment is page relocatable. 

The DSEG directive remains in effect until an ASEG or CSEG directive is encountered. 

The data segment location counter has an initial value of zero. The ORG directive can be used to assign a new 

value to the DSEG location counter. 

ORG Directive (Relocatable Mode) 

The ORG directive can be used to alter the value of the location counter presently in use. 

Label Opcode Operand 

optional: ORG expression 

There are three location counters, but only one location counter is in use at any given point in the program. 

Which one depends on whether the ASEG, CSEG, or DSEG directive is in effect. 

Any symbol used in the operand expression must have been previously defined. An exception causes phase 

errors for all labels that follow the ORG and a label error if the undefined error is defined later. 

When the ORG directive appears in a relocatable program segment, the value of its operand expression must be 

either absolute or relocatable within the current segment. Thus, if the ORG directive appears within a data seg

ment, the value of its expression must be relocatable within the data segment. An error occurs if the expression 

evaluates to an address in the code segment. 

If the optional label is present, it is assigned the current value of the location counter presently in use before 
the ORG directive is executed. 

Program Linkage Directives 

4-16 

Modular programming and the relocation feature enable you to assemble and test a number of separate programs 

that are to be joined together and executed as a single program. Eventually, it becomes necessary for these 

separate programs to communicate information among themselves. Establishing such communication is the 

function of the program linkage directives. 

A program may share its data addresses and instruction addresses with other programs. Only items having an 

entry in the symbol table can be shared with other programs; therefore, the item must be assigned a name or a 

label when it is defined in the program. Items to be shared with other programs must be declared in a PUBLIC 

directive. 

Your program can directly access data or instructions defined in another program if you know the actual 

address of the item, but this is unlikely when both programs use relocation. Your program can also gain access 

to data or instructions declared as PUBLIC in other programs. Notice, however, that the assembler normally 



Chapter 4. Assembler Directives 

flags as an error any reference to a name or label that has not been defined in your program. To avoid this, 
you must provide the assembler with a list of items used in your program but defined in some other program. 
These items must be declared in an EXTRN directive. 

The two remaining program linkage directives, NAME and STKLN, are individually explained later in this chapter. 

PUBLIC Directive 

The PUBLIC directive makes each of the symbols listed in the operand field available for access by other programs. 

Label Opcode Operands 

optional: PUBLIC name--list 

Each item in the operand name-list must be the name or label assigned to data or an instruction elsewhere in 
this program. When multiple names appear in the list, they must be separated by commas. Each name may be 
declared PUBLIC only once in a program module. Reserved words and external symbols (see the EXTRN 
directive below) cannot be declared to be PUBLIC symbols. 

PUBLIC directives may appear anywhere within a program.module. 

If an item in the operand name-list has no corresponding entry in the symbol table (implying that it is unde
fined), it is flagged as an error. 

Example: 

PUBLIC SIN,COS,TAN,SQRT 

EXTRN Directive 

The EXTRN directive provides the assembler with a list of symbols referenced in this program but defined in a 
different program. Because of this, the assembler establishes linkage to the other program and does not flag the 
undefi ned references as errors. 

Label Opcode Operands 

optional: EXTRN name---list 

Each item in the name- -list identifies a symbol that may be referenced in this program but is defined in another 
program. When multiple items appear in the list, they must be separated by commas. 

If a symbol in the operand name-list is also defined in this program by the user, or is a reserved symbol, the effect 
iis the same as defining the same symbol more than once in a program. The assembler flags this error. 

EXTRN directives may appear anywhere within a program module. 

A symbol may be declared to be external only once in a program module. Symbols declared to be PUBLIC cannot 
also be declared to be EXTRN symbols. 

4-17 



Chapter 4. Assembler Directives 

4-18 

If you omit a symbol from the name-list but reference it in the program, the symbol is undefined. The assembler 
flags this error. You may include symbols in the operand name-list that are not referenced in the program with
out causing an error. 

Example: 

EXTRN ENTRY ,ADDRTN,BEG IN 

NAME Directive 

The NAME directive assigns a name to the object module generated by this assembly. 

Label Opcode Operand 

optional: NAME module-name 

The NAME directive requires the presence of a module-name in the operand field. This name must conform to 
the rules for defining symbols. 

Module names are necessary so that you can refer to a module and specify the proper sequence of modules 
when a number of modules are to be bound together. 

The NAME directive must precede the first data or instruction coding in the source program, but may follow 
comments and control lines. 

If the NAME directive is missing from the program, the assembler supplies a default NAME directive with the 
module-name MODULE. This will cause an error if you attempt to bind together several object program 
modules and more than one has the name MODULE. Also, if you make an error coding the NAME directive, 
the default name MODULE is assigned. 

The module·-name assigned by the NAME directive appears as part of the page heading in the assembly listing. 

Example: 

NAME MAIN 

STK LN Directive 

Regardless of the number of object program modules you may bind together, only one stack is generated. The 
STKLN directive allows you to specify the number of bytes to be reserved for the stack for each module. 

Label Opcode Operand 

optional: STKLN expression 

The operand expression must evaluate to a number which will be used as the maximum size of the stack. 



Chapter 4. Assembler Directives 

When the 5TKLN directive is omitted, the assembler provides a default 5TKLN of zero. This is useful when 
multiple programs are bound together; only one stack will be generated, so only one program module need 
specify the stack size. However, you should provide a 5TKLN if your module is to be tested separately and 
uses the stack. 

If your program includes more than one 5TKLN directive, only the last value assigned is retained. 

Example: 

5TKLN 100 

5T ACK and MEMORY Reserved Words 

The reserved words 5T ACK and MEMORY are not directives but are of interest to programmers using the 
relocation feature. These reserved words are external references whose addresses are supplied by the LOCATE 

program. 

ST ACK is the symbolic reference to the stack origin address. You need this address to initialize the stack 
pointer register. Also, you can base data structures on this address using symbolic references such as 5T ACK + 1, 

STACK+2, etc. 

MEMORY is the symbolic reference to the first byte of unused memory past the end of your program. Again, 
you can base data structures on this address using symbolic referen~es such as MEMORY, MEMORY+l, etc. 

Programming Tips: Testing Relocatable Modules 

The ability to test individual program modules is a major advantage of modular programming. However, many 
program modules are not logically self-sufficient and require some modification before they can be tested. The 
following is a discussion of some of the more common modifications that may be required. 

Initialization Routines 

In most complete programs, a number of housekeeping or initialization procedures are performed when execution 
first begins. If the program module you are testing relies on initialization procedures assigned to a different 
module, you must duplicate those procedures in the module to be tested. (Notice, however, that you can link 
any number of modules together for testing.) 

One of the most important initialization procedures is to set the stack pointer. The LOCATE program determines 
the origin of the stack. 

Your program should include the following instruction to initialize the stack pointer: 

LXI 5P,5TACK 

4-19 



Chapter 4. Assembler Directives 

Input/Output 

When testing program modules, it is likely that some input or output procedures appear in other modules. Your 

program must simulate any of these procedures it needs to operate. Since your Intellec development system 

probably has considerably more random access memory than you need to test a program module, you may be 

able to simulate input and output data right in memory. The LOCATE program supplies an address for the 

reserved word MEMORY; this is the address of the first byte of unused memory past the end of your program. 

You can· access this memory using the symbolic reference MEMORY, MEMORY+l, and so on. This memory 

can be used for storing test data or even for a program that generates test data. 

Remove Coding Used for Testing 

4-20 

After testing your program, be certain to remove any code you inserted for testing. In particular, make certain 

that only one module in the complete program initializes the stack pointer. 



5. MACROS 

INTRODUCTION TO MACROS 

Why Use Macros? 

A macro is essentially a facility for replacing one set of parameters with another. In developing your program, 
you will frequently find that many instruction sequences are repeated several times with only certain parameters 
changed. 

As an example, suppose that you code a routine that moves five bytes of data from one memory location to 
another. A little later, you find yourself coding another routine to move four bytes from a different source 
field to a different destination field. If the two routines USE le same coding techniques, you will find that 
they are identical except for three parameters: the character count, the source field starting address, and the 
destination Held starting address. Certainly it would be handy if there were some way to regenerate that original 
routine substituting the new parameters rather than rewrite that code yourself. The macro facility provides this 
capability and offers several other advantages over writing code repetitiously: 

• The tedium of frequent rewrite {and the probability of error} is reduced. 

• Symbols used in macros can be restricted so that they have meaning only within the macro itself. 
Therefore, as you code your program, you need not worry that you will accidentally duplicate a 
symbol used in a macro. Also, a macro can be used any number of times in the same program 
without duplicating any of its own symbols. 

• An error detected in a macro need be corrected only once regardless of how many times the macro 
appears in the program. This reduces debugging time. 

• Duplication of effort between programmers can be reduced. Useful functions can be collected in a 
library to allow macros to be copied into different programs. 

In addition, macros can be used to improve program readability and to create structured programs. Using macros 
to segment code blocks provides clear program notation and simplifies tracing the flow of the program. 

What Is A Macro? 

A macro can be described a~ a routine defined in a formal sequence of prototype instructions that, when called 

within a program, results in the replacement of each such call with a code expansion consisting of the actual 
instructions represented. 

5-1 



Chapter 5. Macros 

5-2 

The concepts of macro definition, call, and expansion can be illustrated by a typical business form letter, where 
the prototype instructions consist of preset text. For example, we could define a macro CNF I RM with the text 

Air Flight welcomes you as a passenger. 
Your flight number FNO leaves at DTIME and arrives in DEST at ATIME. 

This macro has four dummy parameters to be replaced, when the macro is called, by the actual flight number, 
departure time, destination, and arrival time. Thus the macro call might look like 

CNFIRM 123, '10:45', 'Ontario', '11 :52' 

A second macro, CAR, could be called if the passenger has requested that a rental car be reserved at the desti
nation airport. This macro might have the text 

Your automobile reservation has been confirmed with MAKE rent-a-car agency. 

Finally, a macro GREET could be defined to specify the passenger name. 

Dear NAME: 

The entire text of the business letter (source file) would then look like 

GREET 'Ms. Scannel' 
CN FI RM 123, '10:45', 'Ontario', '11: 52' 
CAR 'Blotz' 
We trust you will enjoy your flight. 

Sincerely, 

When this source file is passed through a macro processor, the macro calls are expanded to produce the following 

letter. 

Dear Ms. Scannel: 

Air Flight welcomes you as a passenger. Your flight number 123 leaves at 10:45 and arrives 
in Ontario at 11: 52. Your automobile reservation has been confirmed with Blotz rent-a-car 
agency. 

We trust you will enjoy your flight. 

Sincerely, 

While this example illustrates the substitution of parameters in a macro, it overlooks the relationship of the macro 
processor and the assembler. The purpose of the macro processor is to generate source code which is then 
assembled. 



Chapter 5. Macros 

Macros Vs. Subroutines 

At this point, you may be wondering how macros differ from subroutines invoked by the CALL instruction. 
Both aid program structuring and reduce the coding of frequently executed routines. 

One distinction between the two is that subroutines necessarily branch to another part of your program while 
macros generate in-line code. Thus, a program contains only one version of a given subroutine, but contains as 
many versions of a given macro as there are calls for that macro. 

Notice the emphasis on 'versions' in the previous sentence, for this is a major difference between macros and 
subroutines. A macro does not necessarily generate the same source code each time it is called. By changing the 
parameters in a macro call, you can change the source code the macro generates. In addition, macro parameters 
can be tested at assembly-time by the conditional assembly directives. These two tools enable a general-purpose 
macro definition to generate customized source code for a particular programming situation. Notice that macro 
expansion and any code customization occur at assembly-time and at the source code level. By contrast, a 
generalized subroutine resides in your program and requires execution time. 

It is usually possible to obtain similar results using either a macro or a subroutine. Determining which of these 
facilities to use is not always an obvious decision. In some cases, using a single subroutine rather than multiple 
in-line macros can reduce the overall program size. In situations involving a large number of parameters, the use 
of macros may be more efficient. Also, notice that macros can call subroutines, and subroutines can contain 
macros. 

USING MACROS 

The assembler recognizes the following macro operations: 

• MACRO directive 

• ENDM directive 

• LOCAL directive 

• REPT directive 

• I RP directive 

• I RPC directive 

• EXITM directive 

• Macro call 

All of the directives listed above are related to macro definition. The macro call initiates the parameter sub
stitution (macro expansion) process. 

Macro Definition 

Macros must be defined in your program before they can be used. A macro definition is initiated by the MACRO 
assembler directive, which lists the name by which the macro can later be called, and the dummy parameters to 
be replaced during macro expansion. The macro definition is terminated by the ENDM directive. The prototype 
instructions bounded by the MACRO and ENDM directives are called the macro body. 

5-3 



Chapter 5. Macros 

5-4 

When label symbols used in a macro body have 'global' scope, multiply-defined symbol errors result if the macro 
is called more than once. A label can be given limited scope using the LOCAL directive. This directive assigns a 
unique value to the symbol each time the macro is called and expanded. Dummy parameters also have limited 
scope. 

Occasionally you may wish to duplicate a block of code several times, either within a macro or in line with 
other source code. This can be accomplished with minimal coding effort using the REPT (repeat block), I RP 
{indefinite repeat}, and I RPC {indefinite repeat character} directives. Like the MACRO directive, these directives 
are terminated by ENDM. 

The EXITM directive provides an alternate exit from a macro. When encountered, it terminates the current macro 
just as if ENDM had been encountered. 

Macro Definition Directives 

MA eRO Directive 

Label Opcode Operand 

name MACRO optional dummy parameter{s} 

The name in the label field specifies the name of the macro body being defined. Any valid user-defined symbol 
name can be used as a macro name. Note that this name must be present and must not be term inated by a colon. 

A dummy parameter can be any valid user-defined symbol name or can be null. When mUltiple parameters are listed, 
they must be separated by commas. The scope of a dummy parameter is limited to its specific macro definition. If a 
reserved symbol is used as a dummy parameter, its reserved value is not recognized. For example, if you code 
A,B,C as a dummy parameter list, substitutions will occur properly. However, you cannot use the accumulator 
or the Band C registers within the macro. Because of the limited scope of dummy parameters, the use of these 
registers is not affected outside the macro definition. 

Dummy parameters in a comment are not recognized. No substitution occurs for such parameters. 

Dummy parameters may appear in a character string. However, the dummy parameter must be adjacent to an 
ampersand character (&) as explained later in this chapter. 

Any machine instruction or applicable assembler directive can be included in the macro body. The distinguishing 
feature of macro prototype text is that parts of it can be made variable by placing substitutable dummy param
eters in instruction fields. These dummy parameters are the same as the symbols in the operand field of the 
MACRO directive. 

Example: 

Define macro MACl with dummy parameters Gl, G2, and G3. 



Chapter 5. Macros 

ENDM Directive 

NOTE 

The following macro definition contains a potential error 
that is clarified in the description of the LOCAL directive 
later in this chapter. 

MACl MACRO Gl,G2,G3 ;MACRO DIRECTIVE 
MOVES: LHLD Gl ;MACRO BODY 

MOV A,M 
LHLD G2 
MOV B,M 
LHLD G3 
MOV C,M 
ENDM ;ENDM DIRECTIVE 

Label Opcode Operand 

ENDM 

The ENDM directive is required to terminate a macro definition and follows the last prototype instruction. It is 
also required to terminate code repetition blocks defined by the REPT, I RP, and I RPC directives. 

Any data appearing in the label or operand fields of an ENDM directive causes an error. 

L.OCA L Directive 

NOTE 

Because nested macro calls are not expanded during macro 
definition, the ENDM directive to close an outer macro can
not be contained in the expansion of an inner, 'nested' 
macro call. (See 'Nested Macro Definitions' later in this 
chapter.) 

Label Opcode Operand 

LOCAL label name{s) 

The specified label names are defined to have meaning only within the current macro expansion. Each time the 
macro is called and expanded, the assembler assigns each local symbol a unique symbol in the form ??nnnn. 

I 

The assembler assigns ??OOOl to the first local symbol, ??0002 to the second, and so on. The most recent symbol 
name generated always indicates the total number of symbols created for all macro expansions. The assembler 
never duplicates these symbols. The user should avoid coding symbols in the form ??nnnn so that there will not 
be a conflict with these assembler-generated symbols. 

5-5 



Chapter 5. Macros 

5-6 

Dummy parameters included in a macro call cannot be operands of a LOCAL directive. The scope of a dummy 
parameter is always local to its own macro definition. 

Local symbols can be defined only within a macro definition. Any number of LOCAL directives may appear in 
a macro definition, but they must all follow the macro call and must precede the first line of prototype code. 

A LOCAL directive appearing outside a macro definition causes an error. Also, a name appearing in the label 

field of a LOCAL directive causes an error. 

Example: 

The definition of MACl (used as an example in the description of the MACRO directive) contains a potential 
error because the symbol MOVES has not been declared local. This is a potential error since no error occurs if 
MACl is called only once in the program, and the program itself does not use MOVES as a symbol. However, 
if MACl is called more than once, or if the program uses the symbol MOVES, MOVES is a multiply-defined 
symbol. This potential error is avoided by naming MOVES in the operand field of a LOCAL directive: 

MACl MACRO G-I,G2,G3 

LOCAL MOVES 
MOVES: LHLD Gl 

MOV A,M 
LHLD G2 
MOV B,M 
LHLD G3 
MOV C,M 
ENDM 

Assume that MACl is the only macro in the program and that it is called twice. The first time MACl is expanded, 
MOVES is replaced with the symbol ??OOOl; the second time, MOVES is replaced with ??0002. Because the 
assembler encounters only these special replacement symbols, the program may contain the symbol MOVES 
without causing a multiple definition. 

REPT Directive 

Label Opcode Operand 

optional: REPT expression 

The REPT directive causes a sequence of source code lines to be repeated 'expression' times. All lines appearing 
between the REPT directive and a subsequent ENDM directive constitute the block to be repeated. 

When 'expression' contains symbol ic names, the assembler must encounter the definition of the symbol prior to 
encou nteri ng the expression. 

The insertion of repeat blocks is performed in-line when the assembler encounters the REPT directive. No 
explicit call is required to cause the code insertion since the definition is an implied call for expansion. 



Example 1: 

Rotate accumulator right six times. 

ROTR6: 

Example 2: 

REPT 
RRC 
ENDM 

6 

Chapter 5. Macros 

The following REPT directive generates the source code for a routine that fills a five-byte field with the character 
stored in the accumulator: 

PROGRAM CODE GENERATED CODING 

LHLD CNTRl LHLD CNTRl 
REPT 5 MOV M,A 
MOV M,A INX H 
INX H MOV M,A 
ENDM INX H 

MOV M,A 
INX H 
MOV M,A 
INX H 
MOV M,A 
INX H 

Example 3: 

The following example illustrates the use of REPT to generate a multiplication routine. The multiplication is 
accomplished through a series of shifts. If this technique is unf';lmiliar, refer to the example of multiplication 
in Chapter 6. The example in Chapter 6 uses a program loop for the multiplication. This example replaces the 
loop with seven repetitions of the four instructions enclosed by the REPT -ENDM directives. 

Notice that the expansion specified by this REPT directive causes the label SKIPAD to be generated seven times. 
Therefore, SKIPAD must be declared local to this macro. 

FSTMUL: 

SKIPAD: 

MVI 
LXI 

REPT 
LOCAL 
RLC 

JNC 
DAD 
DAD 
ENDM 
-RLC 

RNC 

D,O 
H,O 

7 

SKIPAD 

SKIPAD 
D 

H 

DAD D 
RET 

;FAST MULTIPLY ROUTINE 
;MUL TIPL Y E*A - 16-BIT RESULT 
;IN H&L 

;;GET NEXT MULTIPLIER BIT 

;;DON'T ADD IF BIT = ° 
;;ADD MULTIPLICAND INTO ANSWER 

5-7 



Chapter 5. Macros 

5-8 

This example illustrates a classic programming trade-off: speed versus memory. Although this example executes 

more quickly than the example in Chapter 6, it requires more memory. 

IRP Directive 

Label Opcode Operand 

optional: IRP dummy param, <list> 

The operand field for the IRP (indefinite repeat) directive must contain one macro dummy parameter followed 
by a list of actual parameters enclosed in angle brackets. I RP expands its associated macro prototype code sub
stituting the first actual parameter for each occurrence of the dummy parameter. I RP then expands the proto
type code again substituting the second actual parameter from the list. This process continues until the list is 
exhausted. 

The list of actual parameters to be substituted for the dummy parameter must be enclosed in angle brackets 
« ». Individual items in the list must be separated by commas. The number of actual parameters in the list 
controls the number of times the macro body is repeated; a list of n items causes n repetitions. An empty list 
(one with no parameters coded) specifies a null operand list. IRP generates one copy of the macro body sub
stituting a null for each occurrence of the dummy parameter. Also, two commas with no intervening character 
create a null parameter within the list. (See 'Special Operators' later in this chapter for a description of null 

operands.) 

Example: 

The following code sequence gathers bytes of data from different areas of memory and then stores them in 

consecutive bytes beginning at the address of STORIT: 

PROGRAM CODE GENERA TED CODING 

LXI H,STORIT LXI H,STORIT 
IRP X,<FLO',3E20H,FL03> LOA FLOl 
LOA X MOV M,A 
MOV M,A INX H 
INX H LOA 3E20H 
EN OM MOV M,A 

INX H 
LOA FL03 

MOV M,A 
INX H 

I RPC Directive 

Label Opcode Operand 

optional: IRPC dummy param,text 



Chapter 5. Macros 

The I RPC (indefinite repeat character) directive causes a sequence of macro prototype instructions to be repeated 
for each text character of the actual parameter specified. If the text string is enclosed in optional angle brackets, 
any delimiters appearing in the text string are treated simply as text to be substituted into the prototype code. 
The assembler generates one iteration of the prototype code for each character in the text string. For each 
iteration, the assembler substitutes the next character from the string for each occurrence of the dummy param
eter. A list of n text characters generates n repetitions of the IRPC macro body. An empty string specifies a 
null actual operand. I RPC generates one copy of the macro body substituting a null for each occurrence of the 
dummy parameter. 

Example: 

MVDATE: 

PROGRAM CODE 

LHLD 
IRPC 
INX 
MVI 
ENDM 

DATE-1 
X,1977 
H 
M,X 

GENERA TED COEJING 

LHLD DATE-l 
INX H 
MVI M,l 
INX H 
MVI M,9 
INX H 
MVI M,7 
INX H 
MVI M,7 

IRPC provides the capability to treat each character of a string individually; concatenation (described later in this 
chapter) provides the capability for building text strings from individual characters. 

EXITM Directive 

Label Opcode Operand 

optional: EXITM 

EXITM provides an alternate method for terminating a macro expansion or the repetition of a REPT, IRP, or 
I RPC code sequence. When EXITM is encountered, the assembler ignores all macro prototype instructions 
located between the EXITM and ENDM directive for this macro. Notice that EXITM may be used in addition 
to ENDM, but not in place of ENDM. 

When used in nested macros, EXITM causes an exit to the previous level of macro expansion. An EXITM within 
a REPT, I RP, or I RPC terminates not only the current expansion, but all subsequent iterations as well. 

Any data appearing in the operand field of an EXITM directive causes an error. 

Example: 

EXITM is typically used to suppress unwanted macro expansion. In the following example, macro expansion is 
terminated when the EXITM directive is assembled because the condition X EO 0 is true. 

5·9 



Chapter 5. Macros 

MAC3 MACRO X,Y 

IF X EO 0 
EXITM 

ENDM 

Special Macro Operators 

5-10 

In certain special cases, the normal rules for dealing with macros do not work. Assume, for example, that you 

want to specify three actual parameters, and the second parameter happens to be the comma character. To the 

assembler, the list PARMl ",PARM3 appears to be a list of four parameters where the second and third param

eters are missing. The list can be passed correctly by enclosing the comma in angle brackets: PARM1,<,l,PARM3. 

These special operators instruct the assembler to accept the enclosed character (the comma) as an actual param

eter rather than a del im iter. 

The assembler recognizes a number of operators that allow special operations: 

& 

<> 

., 
" 

Ampersand. Used to concatenate (link) text and dummy parameters. See the further 

discussion of ampersands below. 

Angle brackets. Used to delimit text, such as lists, that contain other delimiters. 

Notice that blanks are usually treated as delimiters. Therefore, when an actual 

parameter contains blanks (passing the instruction MOY A,M, for example) the 

parameter must be enclosed in angle brackets. This is also true for any other de

limiter that is' to be passed as part of an actual parameter. To pass such text to 

nested macro calls, use one set of angle brackets for each level of nesting. (See 

'Nested Macro Definitions,' below.) 

Double semicolon. Used before a comment in a macro definition to prevent 

inclusion of the comment in expansions of the macro and reduce storage 

requirements. The comment still appears in the listing of the definition. 

Exclamation point (escape character). Placed before a character (usually a 

delimiter) to be passed as literalized text in an actual parameter. Used primarily 

to pass angle brackets as part of an actual parameter. To pass a literal ized 

exclamation point, issue!!. Carriage returns cannot be passed as actual parameters. 

The '!' is always preserved while building an actual parameter. It is not 

echoed when an actual parameter is substituted for a dummy parameter, 

except when the substitution is being used to build another actual parameter. 



Chapter 5. Macros 

NUL In certain cases it is not necessary to pass a parameter to a macro. It is 

necessary, however, to indicate the omission of the parameter. The omitted 

{or null} parameter can be represented by two consecutive delimiters as in 

the list PARMl "PARM3. A null parameter can also be represented by two 

consecutive single quotes: ",PARM2,PARM3. Notice that a null is quite 

different from a blank: a blank is an ASCII character with the hexadecimal 

representation 20H; a null has no character representation. I n the assembly 

listing a null looks the same as a blank, but that is only because no substi

tution has taken place. The programmer must decide the meaning of a null 

parameter. Although the mechanism is somewhat different, the defaults taken 

for assembler controls provide a good example of what a null parameter can 

mean. For example, coding MOD85 as an assembler control specifies that 

the assembler is to generate object code for the 8085. The absence of this 

control {which in effect is a null parameter} specifies that the assembler 

is to generate only 8080 object code. 

Assembler controls are explained in the 1515-1/ 8080/8085 Macro Assembler 
Operator's Manual, 9800292. 

Example: 

I n a macro with the dummy parameters W ,X,Y,Z it is acceptable for either 

the X or Y parameter to be null, but not both. The following I F directive 

tests for the error condition: 

IF NUL X&Y 

EXITM 

When a macro is expanded, any ampersand preceding or following a dummy parameter in a macro definition is 

removed and the substitution of the actual parameter occurs at that point. When it is not adjacent to a dummy 

parameter, the ampersand is not removed and is passed as part of the macro expansion text. 

NOTE 

The ampersand must be immediately adjacent to the text being 

concatenated; intervening blanks are not allowed. 

If nested macro definitions (described below) contain ampersands, the only ampersands removed are those adjacent 

to dummy parameters belonging to the macro definition currently being expanded. All ampersands must be re

moved by the time the expansion of the encompassing macro body is performed. Exceptions force illegal character 

errors. 

Ampersands placed inside strings are recognized as concatenation delimiters when adjacent to dummy parameters; 

similarly, dummy parameters within character strings are recognized only when they are adjacent to ampersands. 

Ampersands are not recognized as operators in comments. 

5-11 



Chapter 5. Macros 

Nested Macro Definitions 

A macro definition can be contained completely within the, body of another macro definition (that is, macro 
definitions can be nested). The body of a macro consists of all text (including nested macro definitions) 
bounded by matching MACRO and ENDM directives. The assembler allows any number of macro definitions to 
be nested. 

When a higher-level macro is called for expansion, the next lower-level macro is defined and eligible to be called 
for expansion. A lower-level macro cannot be called unless all higher-level macro definitions have already been 
called and expanded. 

A new macro may be defined or an existing macro redefined by a nested macro definition depending on whether 
the name of the nested macro is a new label or has previously been established as a dummy parameter in a 
higher-level macro definition. Therefore, each time a higher-level macro is called, a lower-level definition can be 
defined differently if the two contain common dummy parameters. Such redefinition can be costly, however, in 
terms of assembler execution speed. 

Since I RP, I RPC, and REPT blocks constitute macro definitions, they also can be nested within another definition 
created by IRP, IRPC, REPT, or MACRO directives. In addition, an element in an IRP or IRPC actual parameter 
list (enclosed in angle brackets) may itself be a list of bracketed parameters; that is, lists of parameters can contain 
elements that are also lists. 

Example: 

LISTS MACRO PARAM1,PARAM2 

ENDM 

MACRO CALLS 

Once a macro has been defined, it can be called any number of times in the program. The call consists of the 
macro name and any actual parameters that are to replace dummy parameters during macro expansion. During 
assembly, each macro call is replaced by the macro definition code; dummy parameters are replaced by actual 
parameters. 

Macro Call Format 
Label 

optional: 

5-12 

Opcode 

macro name 

Operand 

optional actual 
parameter(s) 



Chapter 5. Macros 

The assembler must encounter the macro definition before the first call for that macro. Otherwise, the macro 
call is assumed to be an illegal opcode. The assembler inserts the macro body identified by the macro name 
each time it encounters a call to a previously defined macro in your program. 

The positioning of actual parameters in a macro call is critical since the substitution of parameters is based 
solely on position. The first-listed actual parameter replaces each occurrence of the first-listed dummy param
eter; the second actual parameter replaces the second dummy parameter, and so on. When coding a macro call, 
you must be certain to list actual parameters in the appropriate sequence for the macro. 

Notice that blanks are usually treated as delimiters. Therefore, when an actual parameter contains blanks 
(passing the instruction MOV A,M, for example) the parameter must be enclosed in angle brackets. This is also 
true for any other delimiter that is to be passed as part of an actual parameter. Carriage returns cannot be passed 
as actual parameters. 

If a macro call specifies more actual parameters than are listed in the macro definition, the extra parameters 
are ignored. If fewer parameters appear in the call than in the definition, a null replaces each missing parameter. 

Example: 

The following example shows two calls for the macro LOAD. LOAD is defined as follows: 

LOAD MACRO Gl,G2,G3 
LOCAL MOVES 

MOVES: LHLD Gl 

MOV A,M 
LHLD G2 
MOV B,M 
LHLD G3 
MOV C,M 
ENDM 

LOAD simply loads the accumulator with a byte of data from the location specified by the first actual parameter, 
the B register with a byte from the second parameter, and the C register with a byte from the third parameter. 

The first time LOAD is called, it is used as part of a routine that inverts the order of three bytes in memory. 
The second time LOAD is called, it is part of a routine that adds the contents of the B register to the accumu
lator and then compares the result with the contents of the C register. 

5-13 



Chapter 5. Macros 

MAIN PROGRAM SUBSTITUTION 

JNZ NEXT JNZ NEXT 

LOAD FLD,FLD+l,FLD+2 ??OOOl: LHLD FLO 

MOV M,A ;INVERT BYTES MOV A,M 

DCX H LHLD FLD+l 

MOV M,B MOV B,M 

DCX H LHLD FLD+2 

MOV M,C MOV C,M 

LOAD 3EOH,BYTE,CHECK MOV M,A ;INVERT BYTES 

ADD B ;CHECK DIGIT DCX H 

CMP C MOV M,B 

CNZ DGTBAD DCX H 
MOV M,C 

??OOO2: LHLD 3EOH 
MOV A,M 
LHLD BYTE 
MOV B,M 
LHLD CHECK 
MOV C,M 
ADD B ;CHECK DIGIT 
CMP C 
CNZ DGTBAD 

Nested Macro Calls 

.5-14 

Macro calls (including any combination of nested IRP, IRPC, and REPT constructs) can be nested within macro 
definitions up to eight levels. The macro being called need not be defined when the enclosing macro is defined; 
however, it must be defined before the enclosing macro is called. 

A macro definition can also contain nested calls to itself (recursive macro calls) up to eight levels, as long as the 
recursive macro exp~nsions can be terminated eventually. This operation can be controlled using the conditional 
assembly directives described in Chapter 4 (I F, ELSE, ENOl F). 

Example: 

Have a macro call itself five times after it is called from elsewhere in the program. 

PARAMl 
RECALL 

PARAMl 

SET 
MACRO 

IF 
SET 
RECALL 
ENDIF 

ENDM 

5 

PARAMl NE 0 
PARAM1-l 

;RECURSIVE CALL 



Chapter 5. Macros 

Macro Expansion 

When a macro is called, the actual parameters to be substituted into the prototype code can be passed in one of 
two modes. Normally, the substitution of actual parameters for dummy parameters is simply a text substitution. 
The parameters are not evaluated until the macro is expanded. 

If a percent sign (%) precedes the actual parameter in the macro call, however, the parameter is evaluated 
immediately, before expansion occurs, and is passed as a decimal number representing the value of the param
eter. In the case of I RPC, a '%' preceding the actual parameter causes the entire text string to be treated as a 
single parameter. One I RPC iteration occurs for each digit in the decimal string passed as the result of immediate 
evaluation of the text string. 

The normal mechanism for passing actual parameters is adequate for most applications. Using the percent sign 
to pre-evaluate parameters is necessary only when the value of the parameter is different within the local con
text of the macro definition as compared to its global value outside the macro definition. 

Example: 

The macro shown in this example generates a number of rotate instructions. The parameters passed in the macro 
call determine the number of positions the accumulator is to be rotated and whether rotate right or rotate left 
instructions are to be generated. Some typical calls for "this macro are as follows: 

SHIFTR 
SHIFTR 

'R',3 

L,%COUNT -1 

The second call shows an expression used as a parameter. This expression is to be evaluated immediately rather 
than passed simply as text. 

The definition of the SHIFTR macro is shown below. This macro uses the conditional IF directive to test the 
validity of the first parameter. Also, the REPT macro directive is nested within the SHIFTR macro. 

SHIFTR MACRO X,Y 
IF X EO 'R' 

REPT Y 
RAR 

ENDM 
ENDIF 
IF X NE 'L' 

EXITM 
ELSE 

REPT Y 
RAL 

ENDM 
ENDIF 
ENDM 

The indentation shown in the definition of the SHIFTR macro graphically illustrates the relationships of the IF, 
ELSE, END I F directives and the REPT, ENDM directives. Such indentation is not required in your program, but 
may be desirable as documentation. 

5-15 



Chapter 5. Macros 

The SHI FTR macro generates nothing if the first parameter is neither R nor L. Therefore, the following calls 
produce'no code. The result in the object program is as though the SHIFTR macro does not appear in the 
source program. 

SHIFTR 5 
SHIFTR '6',2 

The following call to the SHIFTR macro generates three RAR instructions: 

SHIFTR 'R',3 

Assume that a SET directive elsewhere in the source program has given COUNT the value 6. The following call 
generates five RAL instructions: 

SHIFTR 'L',%COUNT -1 

The following is a redefinition of the SHIFTR macro. In this definition, notice that concatenation is used to 
form the RAR or RAL operation code. If a call to the SHIFTR macro specifies a character other than R or L, 
illegal operation codes are generated. The assembler flags all illegal operation codes as errors. 

SHIFTR MACRO 
REPT 
RA&X 
ENDM 
ENDM 

X,Y 
Y 

NULL MACROS 

A macro may legally comprise only the MACRO and ENDM directives. Thus, the following is a legal macro 
definition: 

NADA MACRO 
ENDM 

P1,P2,P3,P4 

A call to this macro produces no source code and therefore has no effect on the program. 

Although there is no reason to write such a macro, the null (or empty) macro body has a practical application. 
For example, all the macro prototype instructions might be enclosed with IF-END I F conditional directives. 
When none of the specified conditions is satisfied, all that remains of the macro is the MACRO directive and 
the ENDM directive. 

SAMPLE MACROS 

The following sample macros further demonstrate the use of macro directives and operators. 

5-16 



Chapter 5. Macros 

Example 1: Nested I RPC 

The following macro definition contains a nested IRPC directive. Notice that the third operand of the outer 
macro becomes the character string for the I RPC: 

MOVE MACRO 
IRPC 
LHLD 
SHLD 
ENDM 
ENDM 

X,Y,Z 
PARAM,Z 
X&&PARAM 
Y&&PARAM 

Assume that the program contains the call MOVE SRC,DST,123. The third parameter of this call is passed to 
the IRPC. This has the same effect as coding IRPC PARAM,123. When expanded, the MOVE macro generates 
the following source code: 

LHLD SRCl 
SHLD DSTl 
LHLD SRC2 
SHLD DST2 
LHLD SRC3 
SHLD DST3 

Notice the use of concatenation to form labels in this example. 

Example 2: Nested Macros Used to Generate DB Directives 

This example generates a number of DB 0 directives, each with its own label. Two macros are used for this 
purpose: INC and BLOCK. The INC macro is defined as follows: 

INC 
$ SAVE GEN 

Fl &F2: 
$ RESTORE 

MACRO 

DB 

ENDM 

Fl,F2 

o ;GENERATE LABELS & DB's 

The BLOCK macro, which accepts the number of DB's to be generated (NUMB) and a label prefix (PREFIX), is 
defined as follows: 

$ 

BLOCK MACRO 
SAVE NOGEN 
COUNT 

COUNT 

SET 
REPT 
SET 

NUMB,PREFIX 

o 
NUMB 
COUNT+l 

INC PREFIX,%COUNT ;NESTED MACRO CALL 
ENDM 

$ RESTORE 
ENDM 

5-17 



Chapter 5. Macros 

5-18 

The macro call BLOCK 3,LAB generates the following source code: 

LAB1: 
LAB2: 
LAB3: 

BLOCK 
DB 
DB 
DB 

3,LAB 
o 
o 
o 

The assembler controls specified in these two macros (the lines beginning with $) are used to clean up the 
assembly listing for easier reading. The source code shown for the call BLOCK 3,LAB is what appears in the 
assembly listing when the controls are used. Without the controls, the assembly listing appears as follows: 

BLOCK 3,LAB 
COUNT SET 0 

REPT 3 
COUNT SET COUNT+l 

INC LAB,%CQUNT 
ENDM 

COUNT SET COUNT+l 
INC LAB,%COUNT 

LAB1 : DB 0 
COUNT SET COUNT+1 

INC LAB,%CQUNT 
LAB2: DB 0 
COUNT SET CQUNT+l 

INC LAB,%COUNT 
LAB3: DB 0 

Example 3: A Macro that Converts Itself into a Subroutine 

In some cases, the in-line coding substituted for each macro call imposes an unacceptable memory requirement. 
The next three examples show three different methods for converting a macro call into a subroutine call. The 
first time the SBMAC macro is called, it generates a full in-line substitution which defines the SUBR subroutine. 
Each subsequent call to the SBMAC macro generates only a CALL instruction to the SUBR subroutine. 

Within the following examples, notice that the label SUBR must be global so that it can be called from outside 
the first expansion. This is possible only when that part of the macro definition containing the global label is 
called only once in the entire program. 

Method #1: Nested Macro Definitions 

Macros can be redefined during the course of a program. In the following example, the definition of SBMAC 
contains its own redefinition as a nested macro. The first time SBMAC is called, it is full expanded, and the 
redefinition of SBMAC replaces the original definition. The second time SBMAC is called, only its redefinition 
(a CALL instruction) is expanded. 



Chapter S. Macros 

SBMAC MACRO 
SBMAC MACRO 

CALL SUBR ;;REDEFINITION OF SBMAC 
ENDM 
CALL SUBR 

LINK: JMP DUN 
SUBR: 

RET 
DUN: 

ENDM 

Notice that both versions of SBMAC contain CALL SUBR instructions. This is necessary to provide a return 
address at the end of the SUBR routine. The jump instruction labelled LINK is required to prevent the SUBR 
subroutine from executing a return to itself. Notice that the return address for the second CALL SUBR 
instruction would be SUBR if the jump instruction were omitted. The J MP DUN instruction simply transfers 
control past the end of the subroutine. 

NOTE 

The assembler allows the use of a source line consisting 
only of a label. Such a label is assigned to the next source 
line for which code or data is generated. Notice that 
neither code nor data is generated for an ENDM directive, 
so the label DUN is assigned to whatever instruction follows 
the ENDM directive. This construct is required because the 
ENDM directive itself may not be given a label. 

Method #2: Conditional Assembly 

The second method for altering the expansion of the SBMAC macro uses conditional assembly. In this example, 
a switch (FIRST) is set TRUE just before the first call for SBMAC. SBMAC is defined as follows: 

TRUE 
FALSE 
FIRST 
SBMAC 

FIRST 
LINK: 
SUBR: 

DUN: 

EQU 
EQU 
SET 
MACRO 
CALL SUBR 
IF 
SET 
JMP 

RET 

ENDIF 
ENDM 

OFFH 
0 
TRUE 

FIRST 
FALSE 
DUN 

5·19 



Chapter s. Macros 

5-20 

The first call to SBMAC expands the full definition, including the call to and definition of SUBR: 

LINK: 
SUBR: 

DUN: 

SBMAC 
CALL 
IF 
JMP 

RET 

ENDIF 

SUBR 
FIRST 
DUN 

Because FI RST is TRUE when encountered during the first expansion of SBMAC, all the statements between 
I F and ENDI F are assembled into the program. I n subsequent calls, the conditionally-assembled code is skipped 
so that the subroutine is not regenerated. Only the following expansion is produced: 

SBMAC 
CALL 
IF 

Method #3: Conditional Ass,embly with EXITM 

SUBR 
FIRST 

The third method for altering the expansion of SBMAC also uses conditional assembly, but uses the EXITM 
directive to suppress unwanted macro expansion after the first call. EXITM is effective when FI RST is FALSE, 
which it is after the first call to SBMAC. 

TRUE 
FALSE 
FIRST 
SBMAC 

FIRST 

SUBR: 

DUN: 

EQU 
EQU 
SET 
MACRO 
CALL 
IF 
EXITM 
ENDIF 
SET 
JMP 

RET 

ENDM 

OFFH 
o 
TRUE 

SUBR 
NOT FIRST 

FALSE 
DUN 



Ch~pter S. Macros 

Example 4: Computed GOTO Macro 

This sample macro presents an implementation of a computed GOTO for the 8080 or 8085. The computed 
GOTO, a common feature of many high level languages, allows the program to jump to one of a number of 
different locations depending on the value of a variable. For example, if the variable has the value zero, the 
program jumps to the first item in the list; if the variable has the value 3, the program jumps to the fourth 
address in the list. 

In this example, the variable is placed in the accumulator. The list of addresses is defined as a series of OW 
directives starting at the symbolic address TABLE. This macro (T JUMP) also modifies itself with a nested 
definition. Therefore, only the first call to the TJ UMP macro generates the calculated GOTO routine. Subse
quent calls produce only the jump instruction JMP TJCODE. 

TJUMP 
TJCODE: 

TJUMP 

MACRO 
ADD 
MVI 
MOV 
DAD 
MOV 
INX 
MOV 
XCHG 
PCHL 
MACRO 
JMP 
ENDM 
ENDM 

;JUMP TO A-TH ADOR IN TABLE 
A ;MUL TIPL Y A BY 2 
0,0 ;CLEAR DREG 
E,A ;GET TABLE OFFSET INTO D&E 
0 ;ADD OFFSET TO TABLE ADDR IN H&L 
E,M ;GET 1 ST ADDRESS BYTE 
H 
D,M ;GET 2ND ADDRESS BYTE 

;J UMP TO ADDRESS 
;REDEFINE TJUMP TO SAVE CODE 

TJCODE ;NEXT CALL JUMPS TO ABOVE CODE 

Notice that the definition of the T JUMP macro does not account for loading the address of the address table 
into the Hand L registers; the user must load this address just before calling the T JUMP macro. The following 
shows the coding for the address table (TABLE) and a typical call sequence for the TJ UMP macro: 

TABLE: 

MVI 
LXI 
TJUMP 

OW 

A,2 
H,TABLE 

LOCO 
OW LOCl 
OW LOC2 

The call sequence shown above causes a jump to LOC2. 

5-21 



Chapter 5. Macros 

5-22 

Example 5: Using IRP to Define the Jump Table 

The TJ UMP macro becomes even more useful when a second macro (GOTO) is used to define the jump table, 
load the address of the table into the Hand L registers, and then call TJ UMP. The GOTO macro is defined as 
follows: 

GOTO 

JTABLE: 

MACRO 
LOCAL 
LDA 
LXI 
TJUMP 
IRP 
DW 
ENDM 
ENDM 

INDEX,LlST 
JTABLE 
INDEX 
H,JTABLE 

FORMAL,(LlST> 

;LOAD ACCUM WITH INDEX 
;LOAD H& L WITH TABLE ADDRESS 
;CALL TJUMP MACRO 

FORMAL ;SET UP TABLE 

A typical call to the GOTO macro would be as follows: 

GOTO CASE ,(COUNT ,TIMER,DATE ,PTDRVR> 

This call to the GOTO macro builds a table of DW directives for the labels COUNT, TIMER, DATE, and 
PTDRVR. It then loads the base address of the table into the Hand L registers and calls the T JUMP macro. 
If the value of the variable CASE is 2 when the GOTO macro is called, the GOTO and T JUMP macros 
together cause a jump to the address of the DATE routine. 

Notice that any number of addresses may be specified in the list for the GOTO routine as long as they all fit 
on a single source line. Also, the GOTO macro may be called any number of times, but only one copy of the 
coding for the TJ UMP is generated since the T JUMP macro redefines itself to generate only a J MP T JCODE 
instruction. 



6. PROGRAMMING TECHNIQUES 

This chapter describes some techniques that may be of help to the programmer. 

BRANCH TABLES PSEUDO-SUBROUTINE 

S~ppose a program consists of several separate routines, any of which may be executed depending upon some 

initial condition (such as a number passed in a register). One way to code this would be to check each condition 

s(~quentially and branch to the routines accordingly as follows: 

CONDITION = CONDITION 1? 

IF YES BRANCH TO ROUTINE 1 

CONDITION = CONDITION 2? 

IF YES BRANCH TO ROUTINE 2 

BRANCH TO ROUTINE N 

A sequence as above is inefficient, and can be improved by using a branch table. 

The logic at the beginning of the branch table program loads the starting address of the branch table into the H 

and L registers. The branch table itself consists of a list of starting addresses for the routines to be branched to. 

Using the Hand L registers as a pointer, the branch table program loads the selected routine's starting address 

into the program counter, thus effecting a jump to the desired routine. For example, consider a program that 

executes one of eight routines depending on which bit of the accumulator is set: 

Jump to routine 1 if the accumulator holds 00000001 

2" " " 0000001 0 

3 " " " 00000100 

4 " " " 00001000 

5 " " " 00010000 

6 " " " 00100000 

7 " " " 01000000 

8 " " " 10000000 

A program that provides such logic follows. The program is termed a 'pseudo-subroutine' because it is treated as a 

subroutine by the programmer (i.e., it appears just once in memory), but is entered via a regular JUMP instruction 

rather than via a CALL instruction. 

6-1 



Chapter 6. Programming Techniques 

6-2 

Main Program 

~-- --

normal subroutine return 

sequence not followed by 

branch table program 

Branch Table 

Program 

Jump 
Routines 



Chapter 6. Programming Techniques 

Label Code Operand 

START: LXI H,BTBL ;REGISTERS HAND L WILL 
;POINT TO BRANCH TABLE 

GTBIT: RAR 

JC GETAD 
INX H ;(H,L)=(H,L)+2 TO 
INX H ;POINT TO NEXT ADDRESS 

;IN BRANCH TABLE 
JMP GTBIT 

GETAD: MOV E,M ;BIT FOUND 
INX H ;LOAD JUMP ADDRESS 

;INTO D AND E REGISTERS 
MOV D,M 
XCHG ;EXCHANGE D AND E 

;WITH HAND L 
PCHL ;JUMP TO ROUTINE 

;ADDRESS 

BTBL: OW ROUTl ;BRANCH TABLE. EACH 
OW ROUT2 ;ENTRY IS A TWO-BYTE 
OW ROUT3 ;ADDRESS 
OW ROUT4 ;HELD LEAST SIGNIFICANT 
OW ROUTS ;BYTE FIRST 
OW ROUT6 
DW ROUT7 
OW ROUT8 

The control routine at START uses the Hand L registers as a pointer into the branch table (BTBL) corresponding 
to the bit of the accumulator that is set. The routine at GETAD then transfers the address held in the corres
ponding branch table entry to the Hand L registers via the D and E registers, and then uses a PCHL instruction, 
thus transferring control to the selected routine. 

TRANSFERRING DATA TO SUBROUTINES 

A subroutine typically requires data to perform its operations. I n the simplest case, this data may be transferred 
in one or more registers. 

Sometimes it is more convenient and economical to let the subroutine load its own registers. One way to do this 
is to place a list of the required data (called a parameter list) in some data area of memory, and pass the address 
of this list to the subroutine in the Hand L registers. 

6-3 



Chapter 6. Programming Techniques 

6-4 

For example, the subroutine ADSUB expects the address of a three-byte parameter list in the Hand L registers. 

It adds the first and second bytes of the list, and stores the result in the third byte of the list: 

Label Code 

LXI 

CALL 

RET1 : 

PLlST: DB 

DB 

OS 

LXI 

CALL 

RET2: 

L1ST2: DB 

DB 

OS 

ADSUB: MOV 

INX 

MOV 

ADD 

INX 

MOV 

RET 

Operand 

H,PLlST 

ADSUB 

6 
8 

H,L1ST2 

ADSUB 

10 

35 

A,M 

H 

B,M 

B 

H 

M,A 

Comment 

;LOAD HAND L WITH 

;ADDRESSES OF THE PARAM

;ETER LIST 

;CALL THE SUBROUTINE 

;FIRST NUMBER TO BE ADDED 

;SECOND NUMBER TO BE 

;ADDED 

;RESUL T WILL BE STORED HERE 

;LOAD HAND L REGISTERS 

;FOR ANOTHER CALL TO ADSUB 

;GET FIRST PARAMETER 

;INCREMENT MEMORY 

;ADDRESS 

;GET SECOND PARAMETER 

;ADD FIRST TO SECOND 

;INCREMENT MEMORY 

;ADDRESS 

;STORE RESU L T AT TH I RD 

;PARAMETER STORE 

;RETURN UNCONDITIONALLY 

The first time ADSUB is called, it loads the A and B registers from PLIST and PLIST +1 respectively, adds them, 

and stores the result in PLIST +2. Return is then made to the instruction at RET1. 



Chapter 6. Programming Techniques 

First call to ADSUB: 

H L 
ADSUB: D D 

06 PLiST 

08 PLlST+l 

OEH PLlST+2 

The second time ADSUB is called, the Hand L registers point to the parameter list LlST2. The A and B 

registers are loaded with 10 and 35 respectively, and the sum is stored at LlST2+2. Return is then made to 

the inst~uction at RET2. 

Note that the parameter lists PLiST and LlST2 could appear anywhere in memory without altering the results 

produced by ADSUB. 

This approach does have its limitations, however. As coded, ADSUB must receive a list of two and only two 

numbers to be added, and they must be contiguous in memory. Suppose we wanted a subroutine (GENAD) 

which would add an arbitrary number of bytes, located anywhere in memory, and leave the sum in the accumu

lator. 

This can be done by passing the subroutine a parameter li'st which is a list of addresses of parameters, rather 

than the parameters themselves, and signifying the end of the parameter list be a number whose first byte is 

FFH (assuming that no parameters will be stored above address FFOOH). 

Call to GENAD: 

GENAD: 

D 
H L 

DO 
~ 

l AORl 

ADR2 

ADR3 
ADR4 

FFFF 

PARMl 

PARM4 

PARM3 

PARM2 

As implemented below, GENAD saves the current sum (beginning with zero) in the C register. It then loads the 

address of the first parameter into the 0 and E registers. If this address is greater than or equal to FFOOH, it 

reloads the accumulator with the sum held in the C register and returns to the calling routine. Otherwise, it 

6-5 



Chapter 6. Programming Techniques 

loads the parameter into the accumulator and adds the sum in the C register to the accumulator. The routine 
then loops back to pick up the remaining parameters. 

Lobel 

PlIST: 

PARM1 : 
PARM4: 

PARM3: 

PARM2: 

GENAD: 
LOOP: 

BACK: 

Code 

LXI 
CALL 

HALT 
OW 

Operand 

H,PlIST 
GENAD 

PARM1 
OW PARM2 
DW PARM3 
OW PARM4 
OW 

DB 
DB 

DB 

DB 

XRA 
MOV 
MOV 

INX 
MOV 

CPI 

JZ 
MOV 
LDAX 
ADD 
INX 

JMP 
MOV 
RET 
END 

OFFFFH 

6 
16 

13 

82 

A 
C,A 
E,M 

H 
A,M 

OFFH 
BACK 
D,A 
0 
C 
H 

LOOP 
A,C 

Comment 

;LOAD ADDRESS OF 
;PARAMETER ADDRESS LIST 

;lIST OF PARAMETER ADDRESSES 

;TERMINATOR 

;CLEAR ACCUMULATOR 
;SAVE CURRENT TOTAL IN C 
;GET LOW ORDER ADDRESS BYTE 
;OF FIRST PARAMETER 

;GET HIGH ORDER ADDRESS BYTE 
;OF FIRST PARAMETER 
;COMPARE TO FFH 
;IF EQUAL, ROUTINE IS COMPLETE 
;0 AND E NOW ADDRESS PARAMETER 
;LOAD ACCUMULATOR WITH PARAMETER 
;ADD PREVIOUS TOTAL 
;INCREMENT HAND L TO POINT 
;TO NEXT PARAMETER ADDRESS 
;GET NEXT PARAMETER 
;ROUTINE DONE - RESTORE TOTAL 
;RETURN TO CALLING ROUTINE 



Chapter 6. Programming Techniques 

Note that GENAO could add any combination of the parameters with no change to the parameters themselves. 

The sequence: 

PlIST: 

lXI 
CAll 

OW 
OW 
OW 

H,PlIST 
GENAO 

PARM4 
PARMl 
OFFFFH 

would cause PARMl and PARM4 to be added, no matter where in memory they might be located (excluding 
addresses above FFOOH). 

Many variations of parameter passing are possible. For example, if it is necessary to allow parameters to be 
stored at any address, a calling program can pass the total number of parameters as the first parameter; the 
subroutine then loads this first parameter into a register and uses it as a counter to determine when all param
eters had been accepted. 

SOFTWARE MULTIPLY AND DIVIDE 

The multiplication of two unsigned 8-bit data bytes may be accomplished by one of two techniques: repetitive 

addition, or use of a register shifting operation. 

Repetitive addition provides the simplest, but slowest, form of multiplication. For example, 2AH*74H may be 
generated by adding 74H to the (initially zeroed) accumulator 2AH times. 

Shift operations provide faster multiplication. Shifting a byte left one bit is equivalent to mUltiplying by 2, and 
shifting a byte right one bit is equivalent to dividing by 2. The following process will produce the correct 2-byte 
result of multiplying a one byte mUltiplicand by a one byte multiplier: 

A. Test the least significant bit of multiplier. If zero, go to step b. If one, add the 
multiplicand to the most significant byte of the result. 

B. Shift the entire two-byte result right one bit position. 

C. Repeat steps a and b until all 8 bits of the multiplier have been tested. 

For example, consider the multiplication: 2AH*3CH=9D8H 

Step 1: 

Step 2: 

Step 3: 

Test mUltiplier O-bit; it is 0, so shift l6-bit result right one bit. 

Test multiplier l-bit; it is 0, so shift 16-bit result right one bit. 

Test multiplier 2-bit; it is 1, so add 2AH to high-order byte of result and shift 16-bit 

result right one bit. 

6·7 



Chapter 6. Programming Techniques 

6-8 

Step 4: Test multiplier 3-bit; it is 1, so add 2AH to high-order byte of result and shift 16-bit 

result right one bit. 

Step 5: Test multiplier 4-bit; it is 1, so add 2AH to high-order byte of result and shift 16-bit 
result right one bit. 

Step 6: Test multiplier 5-bit; it is 1, so add 2AH to high-order byte of result and shift 16-bit 
result right one bit. 

Step 7: Test multiplier 6-bit; it is 0, so shift 16-bit result right one bit. 

Step 8: Test multiplier 7-bit; it is 0, so shift 16-bit result right one bit. 

The result produced is 0908. 

HIGH-ORDER BYTE LOW-ORDER BYTE 
MULTIPLIER MULTIPLICAND OF RESULT OF RESULT 

Start 00111100(3C) 00101010(2A) 00000000 00000000 
Step 1 a .............................. . 

b 00000000 00000000 
Step 2 a .............................. . 

b 00000000 00000000 
Step 3 a .............................. . 00101010 00000000 

b 00010101 00000000 
Step 4 a .............................. . 00111111 00000000 

b 00011111 10000000 
Step 5 a .............................. . 01001001 10000000 

b 00100100 11000000 
Step 6 a .............................. . 01001110 11000000 

b 00100111 01100000 
Step 7 a .............................. . 

b 00010011 10110000 
Step 8 a .............................. . 

b 00001001 11011000(908) 

Since the multiplication routine described above uses a number of important programming techniques, a sample 
program is given with comments. 

The program uses the B register to hold the most significant byte of the result, and the C register to hold the 
least significant byte of the result. The 16-bit right shift of the result is performed in the accumulator by two 
rotate-right-through-carry instructions. 



Chapter 6. Programming Techniques 

Zero carry and then rotate B: 

B C 

D 
Then rotate C to complete the shift: 

B C 

D ~~------------~~ 

Register D holds the multiplicand, and register C originally holds the mUltiplier. 

MULT: MVI B,O ;INITIALIZE MOST SIGNIFICANT BYTE 
;OF RESULT 

MVI E,9 ;BIT COUNTE R 
MULTO: MOV A,C ;ROTATE LEAST SIGNIFICANT BIT OF 

RAR ;MUL TIPLIER TO CARRY AND SHIFT 
MOV C,A ;LOW-ORDER BYTE OF RESULT 
DCR E 
jZ DONE ;EXIT IF COMPLETE 
MOV A,B 
jNC MULTl 
ADD D ;ADD MULTIPLICAND TO HIGH-

;ORDER BYTE OF RESULT IF BIT 
;WAS A ONE 

MUL Tl: RAR ;CARRY=O HERE SHIFT HIGH-
;ORDER BYTE OF RESULT 

MOV B,A 
jMP MULTO 

DONE: 

An analogous procedure is used to divide an unsigned 16-bit number by an unsigned 16-bit number. Here, the 
process involves subtraction rather than addition, and rotate-left instructions instead of rotate-right instructions. 

6-9 



Chapter 6. Programming Techniques 

6-10 

The following reentrant program uses the Band C registers to hold the dividend and quotient, and the D and E 

register to hold the divisor and remainder. The Hand L registers are used to store data temporarily. 

DIV: MOV 

CMA 

MOV 

MOV 

CMA 

MOV 

INX 

LXI 

MVI 

DVO: PUSH 

DAD 

JNC 
XTHL 

DVl : POP 

PUSH 

MOV 

RAL 

MOV 

MOV 

RAL 

MOV 

MOV 

RAL 

MOV 

MOV 

RAL 

MOV 

POP 

DCR 

JNZ 

;POST-DIVIDE CLEAN UP 

A,D 

D,A 

A,E 

E,A 

D 

H,O 

A,17 

H 

D 

DVl 

H 

PSW 

A,C 

C,A 

A,B 

B,A 

A,L 

L,A 

A,H 

H,A 

PSW 

A 

DVO 

;NEGATE THE DIVISOR 

;FOR TWO'S COMPLEMENT 

;INITIAL VALUE FOR REMAINDER 

;INITIALIZE LOOP COUNTER 

;SAVE REMAINDER 

;SUBTRACT DIVISOR (ADD NEGATIVE) 

;UNDER FLOW, RESTORE HL 

;SAVE LOOP COUNTER (A) 

;4 REGISTER LEFT SHIFT 

;WITH CARRY 

;CY ->C->B->L ->H 

;RESTORE LOOP COUNTER (A) 

;DECREMENT IT 

;KEEP LOOPING 

;SHIFT REMAINDER RIGHT AND RETURN IN DE 

ORA A 

MOV A,H 

RAR 

MOV D,A 

MOV A,L 

RAR 
MOV E,A 
RET 

END 



Chapter 6. Programming Techniques 

MUL TIBYTE ADDITION AND SUBTRACTION 

The carry flag and the ADC (add with carry) instructions may be used to add unsigned data quantities of 
arbitrary length. Consider the following addition of two three-byte unsigned hexadecimal numbers: 

32AF8A 
+84BA90 

B76Al A 

To perform this addition, add to the low-order byte using an ADD instruction. ADD sets the carry flag for use 
in subsequent instructions, but does not include the carry flag in the addition. Then use ADC to add to all 
higher order bytes. 

32 AF 8A 
84 BA 90 

B7 

carry = 1 S 
6A 

carry = lS 
lA 

The following routine will perform this multibyte addition, making these assumptions: 

The E register holds the length of each number to be added (in this case, 3). 

The numbers to be added are stored from low-order byte to high-order byte beginning at memory locations 
FI RST and SECND, respectively. 

The result will be stored from low-order byte to high-order byte beginning at memory location FIRST, replacing 
the original contents of these locations. 

MEMORY 
LOCATION before after 

FIRST 8A ~+ .. lA ~ carry 

FIRST+l AF + ... 6A ~ carry 

FIRSTt2 32 + ... B7 

SECND 90 90 

SECND+l BA BA 

SECND+2 84 84 

6-11 



Chapter 6. Programming Techniques 

The following routine uses an ADC instruction to add the low-order bytes of the operands. This could cause 

the result to be high by one if the carry flag were left set by some previous instruction. This routine avoids 
the problem by clearing the carry flag with the XRA instruction just before LOOP. 

Label Code Operand Comment 

MADD: LXI B,FIRST ;B AND C ADDRESS FI RST 
LXI H,SECND ;H AND L ADDRESS SECND 
XRA A ;CLEAR CARRY FLAG 

LOOP: LDAX B ;LOAD BYTE OF FIRST 
ADC M ;ADD BYTE OF SECND 

;WITH CARRY 
STAX B ;STORE RESULT AT FIRST 
DCR E ;DONE IF E = 0 

JZ DONE 
INX B ;POINT TO NEXT BYTE OF 

;FIRST 
INX H ;POINT TO NEXT BYTE OF 

;SECND 

JMP LOOP ;ADD NEXT TWO BYTES 
DONE: 

FIRST: DB 90H 
DB OBAH 
DB 84H 

SECND: DB 8AH 
DB OAFH 
DB 32H 

Since none of the instructions in the program loop affect the carry flag except ADC, the addition with carry will 
proceed correctly. 

When location DONE is reached, bytes FIRST through FIRST+2 will contain lA6AB7, which is the sum shown 
at the beginning of this section arranged from low-order to high-order byte. 

In order to create a multibyte subtraction routine, it is necessary only to duplicate the multibyte addition routine 
of this section, changing the ADC instruction to an SBB instruction. The program will then subtract the number 
beginning at SECND from the number beginning at FIRST, placing the result at FIRST. 

DECIMAL ADDITION 

6-12 

Any 4-bit data quantity may be treated as a decimal number as long as it represents one of the decimal digits 
from 0 through 9, and does not contain any of the bit patterns representing the hexadecimal digits A through F. 
In order to preserve this decimal interpretation when performing addition, the value 6 must be added to the 
4-bit quantity whenever the addition produces a result between 10 and 15. This is because each 4-bit data 
quantity can hold 6 more combinations of bits than there are decimal digits. 



Chapter 6. Programming Techniques 

Decimal addition is performed by letting each 8-bit byte represent two 4-bit decimal digits. The bytes are 

summed in the accumulator in standard fashion, and the DAA (decimal adjust accumulator) instruction is then 

used to convert the 8-bit binary result to the correct representation of 2 decimal digits. For multibyte strings, 

you must perform the decimal adjust before adding the next higher-order bytes. This is because you need the 

carry flag setting from the DAA instruction for adding the higher-order bytes. 

To perform the decimal addition: 

the process works as follows: 

2985 

+4936 

7921 

1. Clear the Carry and add the two lowest-order digits of each number (remember that each 2 

decimal digits are represented by .one byte). 

85 = 1 00001 01 B 

36 = 0011 011 OB 

carry 0 

Q]10111011B 

Carry = 0 ~ ~ Auxiliary Carry = 0 

The accumulator now contains OBBH. 

2. Perform a DAA operation. Since the rightmost four bits are greater than 9, a 6 is added to the 

accumulator. 

Accumulator = 10111011 B 

6 = 0110B 

1'1000001 B 

Since the leftmost bits are greater than 9, a 6 is added to these bits, thus setting the carry flag. 

Accumulator = 11000001 B 

6=0110 B 

/]001000018 

Carry flag = 1 

The accumulator now contains 21 H. Store these two digits. 

6-13 



Chapter 6. Programming Techniques 

3. Add the next group of two digits: 

carry 

29 = 001 01 001 B 

49 = 01001001B 

Q] 01110011 B 

Carry: 0 /~ 'AUXiliary Carry: 1 

The accumulator now contains 73H. 

4. Perform a DAA operation. Since the auxiliary carry flag is set, 6 is added to the accumulator. 

Accumulator = 01110011 B 

6 = 0110B 

Carry flag = 0 

/QJOllll001B 

Since the leftmost 4 bits are less than 10 and the carry flag is reset, no further action occurs. 

Thus, the correct decimal result 7921 is generated in two bytes. 

A routine which adds decimal numbers, then, is exactly analogous to the multibyte addition routine MADD of 

the last section, and may be produced by inserting the instruction DAA after the ADC M instruction of that 

example. 

Each iteration of the program loop will add two decimal digits (one byte) of the numbers. 

DECIMAL SUBTRACTION 

6-14 

Decimal subtraction is considerably more complicated than decimal addition. In general, the process consists of 

generating the tens complement of the subtrahend digit, and then adding the result to the minuend digit. For 

example, to subtract 34 from 56, form the tens complement of 34 (99-34=65+1 =66). Then, 56+66=122. By 

truncating off the carry out of the high order digit, we get 22, the correct result. 

The problem of handling borrows arises in multibyte decimal subtractions. When no borrow occurs from a sub

tract, you want to use the tens complement of the subtrahend for the next operation. If a borrow does occur, 

you want to use the nines complement of the subtrahend. 

Notice that the meaning of the carry flag is inverted because you are dealing with complemented data. Thus, a 

one bit in the carry flag indicates no borrow; a zero bit in the carry flag indicates a borrow. This inverted carry 

flag setting can be used in an add operation to form either the nines or tens complement of the subtrahend. 



Chapter 6. Programming Techniques 

The detailed procedure for subtracting multi-digit decimal numbers is as follows: 

1. Set the carry flag = 1 to indicate no borrow. 

2. Load the accumulator with 99H, representing the number 99 decimal. 

3. Add zero to the accumulator with carry, producing either 99H or 9AH, and resetting the 

carry flag. 

4. Subtract the subtrahend digits from the accumulator, producing either the nines or tens 

complement. 

5. Add the minuend digits to the accumulator. 

6. Use the OAA instruction to make sure the result in the accumulator is in decimal format, and 

to indicate a borrow in the carry flag if one occurred. 

7. If there are more digits to subtract, go to step 2. Otherwise, stop. 

Example: 

Perform the decimal subtraction: 

1 . Set carry = 1. 

43580 

-13620 

29960 

2. Load accumulator with 99H. 

3. Add zero with carry to the accumulator, producing 9AH. 

Accumulator = 10011001 B 

= OOOOOOOOB 

Carry 

10011010B = 9AH 

4. Subtract the subtrahend digits 62 from the accumulator. 

Accumulator = 1001101 OB 

62 = 1001111 OB 

]] 00111 OOOB 

6-15 



Chapter 6. Programming Techniques 

6-16 

5. Add the minuend digits 58 to the accumulator. 

Accumulator = 001110008 

58 = 01 0110008 

g 100100008 = 90H 

Carry = 0 ~ 'AUXiliary Carry = 1 

6. DAA converts accumulator to 96 (since Auxiliary Carry = 1) and leaves carry flag = 0 

indicating that a borrow occurred. 

7. Load accumulator with 99H. 

8. Add zero with carry to accumulator, leaving accumulator = 99H. 

9. Subtract the subtrahend digits 13 from the accumulator. 

Accumulator = 10011001 B 

13 = 111011 01 B 

I110000110B 

10. Add the minuend digits 43 to the accumulator. 

Accumulator = 1000011 OB 

43 = 01 0000 11 B 

~:g 110010018 = C9H 

Carry = 0 'AUXiliary Carry = 0 

11. DAA converts accumulator to 29 and sets the carry flag = 1, indicating no borrow occurred. 

Therefore, the result of subtracting 1362 from 4358 is 2996. 

The following subroutine will subtract one 16-digit decimal number from another using the following assumptions: 

The minuend is stored least significant (2) digits first beginning at location MINU. 

The subtrahend is stored least significant (2) digits first beginning at location SBTRA. 

The result will be stored least significant (2) digits first, replacing the minuend. 



Chapter 6. Programming Techniques 

Label Code Operand Comment 

DSUB: LXI D,MINU ;0 AND E ADDRESS MINUEND 

LXI H,SBTRA ;H AND L ADDRESS SUBTRA-

;HEND 

MVI C,8 ;EACH LOOP SUBTRACTS 2 
;DIGITS (ONE BYTE), 

;THEREFORE PROGRAM WILL 
;SUBTRACT 16 DIGITS. 

STC ;SET CARRY INDICATING 

;NO BORROW 

LOOP: MVI A,99H ;LOAD ACCUMULATOR 
;WITH 99H. 

ACI 0 ;ADD ZERO WITH CARRY 

SUB M ;PRODUCE COMPLEMENT 

;OF SUBTRAHEND 

XCHG ;SWITCH D AND E WITH 

;H AND L 

ADD M ;ADD MINUEND 

DAA ;DECIMAL ADJ UST 

;ACCUMULATOR 

MOV M,A ;STORE RESULT 

XCHG ;RESWITCH 0 AND E 

;WITH HAND L 

OCR C ;DONE IF C = 0 

JZ DONE 

INX 0 ;ADDRESS NEXT BYTE 

;OF MINUEND 
INX H ;ADDRESS NEXT BYTE 

;OF SUBTRAHEND 

JMP LOOP ;GET NEXT 2 DECIMAL DIGITS 
DONE: NOP 

6-17 





7. INTERRUPTS 

INTERRUPT CONCEPTS 

The following is a general description of interrupt handling and applies to both the 8080 and 8085 processors. 

However, the 8085 processor has some additional hardware features for interrupt handling. For more infor

mation on these features, see the description of the 8085 processor in Chapter 1 and the descriptions of the 

RIM, SIM, and RST instructions in Chapter 3. 

Often, events occur external to the central processing unit which require immediate action by the CPU. For 

example, suppose a device is sending a string of 80 characters to the CPU, one at a time, at fixed intervals. 

There are two ways to handle such a situation: 

A. A program could be written which accepts the first character, waits until the next character is 

ready (e.g., executes a timeout by incrementing a sufficiently large counter), then accepts the 

next character, and proceeds in this fashion until the entire 80 character string has been received. 

This method is referred to as programmed Input/Output. 

B. The device controller could interrupt the CPU when a character is ready to be input, forcing a 

branch from the executing program to a special interrupt service routine. 

The interrupt sequence may be illustrated as follows: 

Normal 

Program 

Execution 

INTERRUPT 

I nterrupt Service 

Routine 

Program 

xecutlon 

Continues 

7-1 



Chapter 7. I nterru pts 

7-2 

The 8080 contains a bit named INTE w:,ich may be set or reset by the instructions E I and D I described in 
Chapter 3. Whenever I NTE is equal to 0, the entire interrupt handling system is disabled, and no interrupts 
will be accepted. 

When the 8080 recognizes an interrupt request from an external device, the following actions occur: 

1. The instruction currently being executed is completed. 

2. The interrupt enable bit, INTE, is reset = O. 

3. The interrupting device supplies, via hardware, one instruction which the CPU executes. This 
instruction does not appear anywhere in memory, and the programmer has no control over it, 
since it is a function of the interrupting device's controller design. The program counter is not 
incremented before this instruction. 

The instruction supplied by the interrupting device is normally an RST instruction (see Chapter 3), since this 
is an efficient one byte call to one of 8 eight-byte subroutines located in the first 64 words of memory. For 
instance, the device may supply the instruction: 

RST OH 

with each input interrupt. Then the subroutine which processes data transmitted from the device to the CPU 
will be called into execution via an eight-byte instruction sequence at memory locations OOOOH to 0007H. 

A digital input device may supply the instruction: 

RST 1H 

Then the subroutine that processes the digital input signals will be called via a sequence of instructions 
occupying memory locations 0008H to OOOFH. 

Device 'a' Transfers 

} control to Beginning of 

• 0000 subroutine for 
supplies RST OH 0007 device la' 

Transfers 

} Device Ib' 
control to Beginning of 

• 0008 subroutine for 
supp/ ies RST 1 H OOOF device 'b' 



Chapter 7. Interrupts 

Transfers 

} Device 'x' control to 0038 
Beginning of 

~ subroutine for 
supplies RST 7H 003F 

device 'x' 

Note that any of these 8-byte subroutines may in turn call longer subroutines to process the interrupt, if 

necessary. 

Any device may supply an RST instruction (and indeed may supply anyone-byte 8080 instruction). 

The following is an example of an Interrupt sequence: 

ARBITRARY 
MEMORY ADDRESS 

3COB 

3COC 

0000 

INSTRUCTION 

~~~ ~:! ~ {Interrupt from Device 1 

Device 1 suppl ies

Instruction 1/

RST OH

Program Counter =

3COC pushed onto

the stack.

Control transferred to

to 0000

Instruction 2

RET----------------------~,

Stack popped into

program counter

A

B

C

Device 1 signals an interrupt as the CPU is executing the instruction at 3COB. This instruction is completed.

The program counter remains set to 3COC, and the instruction RST OH supplied by device 1 is executed.

Since this is a call to location zero, 3COC is pushed onto the stack and program control is transferred to

location OOOOH. (This subroutine may perform jumps, calls, or any other operation.) When the RETURN is

executed, address 3COC is popped off the stack and replaces the contents of the program counter, causing

execution to continue at this point.

7-3

Chapter 7. Interrupts

WRITING INTERRUPT SUBROUTINES

74

In general, any registers or condition bits changed by an interrupt subroutine must be restored before returning
to the interrupted program, or errors will occur.

For example, suppose a program is interrupted just prior to the instruction:

JC LOC .

and the carry bit equals 1. If the interrupt subroutine happens to reset the carry bit before returning to the
interrupted program, the jump to LOC which should have occurred will not, causing the interrupted program
to produce erroneous results.

Like any other subroutine then, any interrupt subroutine should save at least the condition bits and restore them
before performing a RETURN operation. (The obvious and most convenient way to do this is to save the data
in the stack, using PUSH and POP operations.)

Further, the interrupt enable system is automatically disabled whenever an interrupt is acknowledged. Except in
special cases, therefore, an interrupt subroutine should include an EI instruction somewhere to permit detection
and handling of future interrupts. One instruction after an EI is executed, the interrupt subroutine may itself be
interrupted. This process may continue to any level, but as long as all pertinent data are saved and restored,
correct program execution will continue automatically.

A typical interrupt subroutine, then, could appear as follows:

Code

PUSH
EI

POP
RET

Operand

PSW

PSW

Comment

;SAVE CONDITION BITS AND ACCUMULATOR
;RE-ENABLE INTERRUPTS

;PERFORM NECESSARY ACTIONS TO SERVICE
;THE INTERRUPT

;RESTORE MACHINE STATUS
;RETURN TO INTERRUPTED PROGRAM

APPENDIX A. INSTRUCTION SUMMARY

This appendix summarizes the bit patterns and number of time states associated with every 8080 CPU

instruction. The instructions are listed in both mnemonic (alphabetical) and operation code (numerical)

sequence.

When using this summary, note the following symbology.

DDD represents a destination register. SSS represents a source register. Bot.h DDD and SSS are interpreted

as follows:

DDD or SSS

000
001
010

011

100

101

110

111

Interpretation

Register B

Register C

Register D

Register E

Register H

Register l

A memory register or stack pointer or PSW
(flags + accumulator)

The accumulator

Instruction execution time equals number of time periods multiplied by the duration of a time period.

A time period may vary from 480 nanoseconds to 2 microseconds on the 8080 or 320 nanoseconds to 2

microseconds on the 8085. Where two numbers of time periods are shown (eq.5/11), it means that the

smaller number of time periods is required if a condition is not met, and the larger number of time periods

is required if the condition is met.

NUMBER OF TIME PERIODS
MNEMONIC D7 D6 D5 D4 D3 D2 D1 DO

8080 8085

_.
CALL 1 1 0 0 1 1 0 1 17 18
CC 1 1 0 1 1 1 0 0 11/17 9/18
CNC 1 1 0 1 0 1 0 0 11/17 9/18
CZ 1 1 0 0 1 1 0 0 11/17 9/18
CNZ 1 1 0 0 0 1 0 0 11/17 9/18
CP 1 1 1 1 0 1 0 0 11/17 9/18
CM 1 1 1 1 1 1 0 0 11/17 9/18
CPE 1 1 1 0 1 1 0 0 11/17 9/17
CPO 1 1 1 0 0 1 0 0 11/17 9/18
RET 1 1 0 0 1 0 0 1 10 10
RC 1 1 0 1 1 0 0 0 5/11 6/12

i

RNC 1 1 0 1 0 0 0 0 5/11 6/12
RZ 1 1 0 0 1 0 0 0 5/11 6/12

ALL MNEMONICS© 1974, 1975, 1976, 1977 INTEL CORPORATION

A-l

Appendix A. Instruction Summary

MNEMONIC D7 D6 D5 D4 D3 D2 D1

RNZ 1 1 0 0 0 0 0

RP 1 1 1 1 0 0 0
RM 1 1 1 1 1 0 0
RPE 1 1 1 0 1 0 0
RPO 1 1 1 0 0 0 0
RST 1 1 A A A 1 1
IN 1 1 0 1 1 0 1
OUT 1 1 0 1 0 0 1
LXI B 0 0 0 0 0 0 0
LXI D 0 0 0 1 0 0 0
LXI H 0 0 1 0 0 0 0
LXI SP 0 0 1 1 0 0 0
PUSH B 1 1 0 0 0 1 0
PUSH D 1 1 0 1 0 1 0
PUSH H 1 1 1 0 0 1 0
PUSH PSW 1 1 1 1 0 1 0
POP B 1 1 0 0 0 0 0
POP D 1 1 0 1 0 0 0
POP H 1 1 1 0 0 0 0
POP PSW 1 1 1 1 0 0 0
STA 0 0 1 1 0 0 1
LDA 0 0 1 1 1 0 1
XCHG 1 1 1 0 1 0 1
XTHL 1 "I 1 0 0 0 "I

SPHL 1 1 1 1 1 0 0
PCHL 1 1 1 0 1 0 0
DAD B 0 0 0 0 1 0 0
DAD D 0 0 0 1 1 0 0
DAD H 0 0 1 0 1 0 0
DAD SP 0 0 1 1 1 0 0
STAX B 0 0 0 0 0 0 1
STAX D 0 0 0 1 0 0 1
LDAX B 0 0 0 0 1 0 1
LDAX D 0 0 0 1 1 0 1
INX B 0 0 0 0 0 0 1
INX D 0 0 0 1 0 0 1
INX H 0 0 1 0 0 0 1
INX SP 0 0 1 1 0 0 1
MOV Q,r2 0 1 D D D S S
MOV M,r 0 1 1 1 0 S S
MOV r,M 0 1 D D D 1 1
HLT 0 1 1 1 0 1 1
MVI r 0 0 D D D 1 1
MVIM 0 0 1 1 0 1 1
INR 0 0 D D D 1 0
DCR 0 0 D D D 1 0
ALL MNEMONICS© 1974,1975,1976, 1977 INTEL CORPORATION

A-2

NUMBER OF TIME PERIODS

DO 8080 8085

0 5/11 6/12
0 5/11 6/12
0 5/11 6/12
0 5/11 6/12
0 5/11 6/12
1 11 12
1 10 10
1 10 10
1 10 10

1 10 10

1 10 10

1 10 10

1 11 12

1 11 12

1 11 12

1 11 12

1 10 10

1 10 10

1 10 10
- 1 10 10

0 13 13

0 13 13

1 4 4

1 18 16

1 5 6
1 5 6
1 10 10
1 10 10
1 10 10
1 10 10
0 7 7
0 7 7
0 7 7
0 7 7
1 5 6
1 5 6
1 5 6
1 5 6

S 5 4
S 7 7
0 7 7
0 7 5

0 7 7

0 10 10

0 5 4
1 5 4

Appendix A. Instruction Summary

NUMBER OF TIME PERIODS

MNEMONIC 0 7 0 6 0 5 0 4 0 3 O2 0 1 DO
8080 8085

INR A 0 0 1 1 1 1 0 0 5 4

OCR A 0 0 1 1 1 1 0 1 5 4

INR M 0 0 1 1 0 1 0 0 10 10

OCR M 0 0 1 1 0 1 0 1 10 10

ADD r 1 0 0 0 0 S S S 4 4

ADC r 1 0 0 0 1 S S S 4 4

SUB r 1 0 0 1 0 S S S 4 4

SBB r 1 0 0 1 1 S S S 4 4

AND r 1 0 1 0 0 S S S 4 4

XRA r 1 0 1 0 1 S S S 4 4

ORA r 1 0 1 1 0 S S S 4 4

CMPr 1 0 1 1 1 S S S 4 4

ADD M 1 0 0 0 0 1 1 0 7 7

ADC M 1 0 0 0 1 1 1 0 7 7

SUB M 1 0 0 1 0 1 1 0 7 7

SBB M 1 0 0 1 1 1 1 0 7 7

AND M 1 0 1 0 0 1 1 0 7 7

XRA M 1 0 1 0 1 1 1 0 7 7

ORA M 1 0 1 1 0 1 1 0 7 7

CMP M 1 0 1 1 1 1 1 0 7 7

ADI 1 1 0 0 0 1 1 0 7 7

ACI 1 1 0 0 1 1 1 0 7 7

SUI 1 1 0 1 0 1 1 0 7 7

SBI 1 1 0 1 1 1 1 0 7 7

ANI 1 1 1 0 0 1 1 0 7 7

XRI 1 1 1 0 1 1 1 0 7 7

ORI 1 1 1 1 0 1 1 0 7 7

CPI 1 1 1 1 1 1 1 0 7 7

RLC 0 0 0 0 0 1 1 1 4 4

RRC 0 0 0 0 1 1 1 1 4 4

RAL 0 0 0 1 0 1 1 1 4 4

RAR 0 0 0 1 1 1 1 1 4 4

jMP 1 1 0 0 0 0 1 1 10 10

jC 1 1 0 1 1 0 1 0 10 7/10

JNC 1 1 0 1 0 0 1 0 10 7/10

jZ 1 1 0 0 1 0 1 0 10 7/10

JNZ 1 1 0 0 0 0 1 0 10 7/10

JP 1 1 1 1 0 0 1 0 10 7/10

JM 1 1 1 1 1 0 1 0 10 7/10

jPE 1 1 1 0 1 0 1 0 10 7/10

JPO 1 1 1 0 0 0 1 0 10 7/10

DCX B 0 0 0 0 1 0 1 1 5 6

DCX 0 0 0 0 1 1 0 1 1 5 6

DCX H 0 0 1 0 1 0 1 1 5 6

DCX SP 0 0 1 1 1 0 1 1 5 6

ALL MNEMONICS©7974, 7975, 7976, 7977 INTEL CORPORATION A-3

Appendix A. Instruction Summary

NUMBER OF TIME PERIODS

MNEMONIC 0 7 0 6 0 5 0 4 0 3 O2 0 1 DO
8080 8085

CMA 0 0 1 0 1 1 1 1 4 4
STC 0 0 1 1 0 1 1 1 4 4
CMC 0 0 1 1 1 1 1 1 4 4
DAA 0 0 1 0 0 1 1 1 4 4
SHLD 0 0 1 0 0 0 1 0 16 16

LHLD 0 0 1 0 1 0 1 0 16 16

RIM 0 0 1 0 0 0 0 0 - 4
SIM 0 0 1 1 0 0 0 0 - 4

EI 1 1 1 1 1 0 1 1 4 4

01 1 1 1 1 0 0 1 1 4 4

NOP 0 0 0 0 0 0 0 0 4 4

A LL MNEMONICS ©1974, 1975, 1976, 1977 INTEL CORPORA TION

A-4

Appendix A. Instruction Summary

The following is a summary of the instruction set:

8080/85 CPU INSTRUCTIONS IN OPERATION CODE SEQUENCE

OP OP OP OP
CODE MNEMONIC CODE MNEMONIC CODE MNEMONIC CODE

00 NOP 2B DCX H 56 MOV D,M 81

01 LXI B,DI6 2C INR L 57 MOV D,A 82

02 STAX B 2D DCR L 58 MOV E,B 83

03 INX B 2E MVI L,D8 59 MOV E,C 84

04 INR B 2F CMA SA MOV E,D 85

05 OCR B 30 SIM 5B MOV E,E 86

06 MVI B,D8 31 LXI SPD16 5C MOV E,H 87

07 RLC 32 STA Adr 5D MOV E,L 88

08 33 INX SP 5E MOV E,M 89
09 DAD B 34 INR M SF MOV E,A 8A

OA LDAXB 35 DCR M 60 MOV H,B 8B

OB DCX B 36 MVI M,D8 61 MOV H,C 8C
OC INR C 37 STC 62 MOV H,D 80

OD DCR C 38 -- --- 63 MOV H,E 8E

OE MVI C,D8 39 DAD SP 64 MOV H,H 8F

OF RRC 3A LOA Adr 65 MOV H,L 8G
10 -"- 3B DCX SP 66 MOV H,M 91
11 LXI D,D16 3C INR A 67 MOV H,A 92

12 STAX D 3D DCR A 68 MOV L,B 93

13 INX 0 3E MVI A,D8 69 MOV L,C 94

14 INR D 3F CMC 6A MOV L,D 95

15 OCR D 40 MOV B,B 6B MOV L,E 96

16 MVI D,D8 41 MOV B,C 6C MOV L,H 97

17 RAL 42 MOV B,D 6D MOV L,L 98

18 --- 43 MOV B,E 6E MOV L,M 99

19 DAD 0 44 MOV B,H 6F MOV L,A 9A

1A LDAXD 45 MOV B,L 70 MOV M,B 9B

1 B DCX D 46 MOV B,M 71 MOV M,C 9C
lC INR E 47 MOV B,A 72 MOV M,D 9D
10 DRC E 48 MOV C,B 73 MOV M,E 9E

1 E MVI E,D8 49 MOV C,C 74 MOV M,H 9F

1 F RAR 4A MOV C,D 75 MOV M,L AO

20 RIM 4B MOV C,E 76 HLT A1
21 LXI H,D16 4C MOV C,H 77 MOV M,A A2
22 SH LD Adr 4D MOV C,L 78 MOV A,B A3
23 lNX H 4E MOV C,M 79 MOV A,C A4
24 INR H 4F MOV C,A 7A MOV A,D A5
25 DCR H 50 MOV D,B 7B MOV A,E A6
26 MVI H,D8 51 MOV D,C 7C MOV A,H A7
27 DAA 52 MOV D,D 70 MOV A,L A8

liL
-- 53 MOV D,E 7E MOV A,M

29 DAD H 54 MOV D,H 7F MOV A,A

2A LHLD Adr 55 MOV D,L 80 ADD B

A9

AA

AB

D8 := constant, or logical/arithmetic expression that evaluates D"16
to an 8 bit data quantity.

Adr= 16-bit address

OP OP
MNEMONIC CODE MNEMONIC CODE MNEMONIC

ADD C AC XRA H D7 RST 2

ADD 0 AD XRA L D8 RC

ADD E AE XRA M D9 -

ADD H AF XRA A DA jC Adr

ADD L BO ORA B DB IN D8

ADD M B1 ORA C DC CC Adr

ADD A B2 ORA D DD
ADC B B3 ORA E DE SBI 08
ADC C B4 ORA H DF RST 3
ADC D B5 ORA L EO RPO

ADC E B6 ORA M E1 POP H
ADC H B7 ORA A E2 jPO Adr

ADC L B8 CMP B E3 XTHL

ADC M B9 CMP C E4 CPO Adr

ADC A BA CMP D E5 PUSH H

SUB B BB CMP E E6 ANI D8

SUB C BC CMP H E7 RST 4

SUB D BD CMP L E8 RPE

SUB E BE CMP M E9 PCHL

SUB H BF CMP A EA jPE Adr

SUB L CO RNZ EB XCHG

SUB M C1 POP B EC CPE Adr

SUB A C2 jNZ Adr ED --

SBB 8 C3 jMP Adr EE XRI D8

SBB C C4 CNZ Adr EF RST 5

SBB D C5 PUSH B FO RP

SBB E C6 ADI D8 F1 POP PSW

SBB H C7 RST 0 F2 jP Adr

SBB L C8 RZ F3 DI

SBB M C9 RET Adr F4 CP Adr

SBB A CA jZ F5 PUSH PSW

ANA B CB - --.- F6 ORI 08
ANA C CC CZ Adr F7 RST 6
ANA D CD CALL Adr F8 RM
ANA E CE ACI D8 F9 SPHL
ANA H CF- RST 1 FA jM Adr
ANA L DO RNC FB EI
ANA M D1 POP 0 FC CM Adr

ANA A D2 jNC Adr FD ---

XRA B D3 OUT D8 FE CPI D8

XRA C D4 CNC Adr FF RST 7

XRA D D5 PUSH D

XRA E D6 SUI D8

constant, or logical/arithmetic expression that evaluates

to a 16 bit data quantity

ALL MNEMONICS © 7974, 7975, 7976, 7977 INTEL CORPORA TlON
A-5

Appendix A. Instruction Summary

I nstruction Set Guide

Illl' full()wing i.., d '>Ul1ltlldry of the in..,tructioll ,>et:

ADD

ADC

SUB

SBB

ANA

XRA

ORA

CMP

REGM S

RLC RAL RRC
RAR CMA DAA

INR} DCR REGM 8

ADI

ACI

SUI

SBI

ANI

XRI

ORI

CPI

D8

~ACCUMULAT<2L FLAGS ~STC CMC HIGH LOW

MOV REGM8'REGM8~~ __ +_ c_~g~} REG 16 SPH~.j STACK : POINTER f..
I _ D _ E ~ PCHL PROGRAM I COUNTER RST

LXI REG16,D161 H L \.../XC~_~

/
A

LDAX'L
\.

STAXf
Be,DE

LOA}
STA

A
16

MVI D8

MOV REGM 8,REGM 8

CODE

REGM 8

D8

AI 6
P8
RE~-I(:;

D16

LHLDj
STHD A 16

MEMORY

~---------
STACK ..-

MEANING

JC

JZ

JP

JPE

INPUT

PORTS

,----
JMP

INC}
JNZ

JM
A-16

JPO

OUTPUT

PORTS

PUSH}
POP B,D,H,PSW

CALL RET

cc CNC} RC RNC}
CZ CNZ A RZ RNZ
CP CM 16 RP RM

CPE CPO RPE RPO

CONTROL

INSTRUCTIONS

RST

NOP

HLT

EI

DI

SIM} 8085 ONLY
RIM

The operand may specify one of the 8-bit registers A,B,C,D,E,H, or L or M (a memory

reference via the 16-bit address in the Hand L registers). The MOV instruction, which

calls for two operands, can specify M for only one of its operands.

Designates 8-bit immediate operand.

Designates a 16-bit address.

Designates at") 8-bit port number.

Designates .Ii 6-bit register pair (B&C,D& E .H& L,or SP).

Designates a 16 -bit immediate operand.

ALL MNEMONICS © 7974, 7975, 7976, 7977 INTEL CORPORA TlON

A-6

A
16

APPENDIX B. ASSEMBLER DIRECTIVE SUMMARY

Assembler directives are summarized alphabetically in this appendix. The following terms are used to describe
the contents of directive fields.

NOTATION

Term

Expression

List

Name

Null

Oplab

Parameter

String

Text

Interpretation

Numerical expression evaluated during assembly; must evaluate
to 8 or 16 bits depending on directive issued.

Series of symbolic values or expressions, separated by commas.

Symbol name terminated by a space.

Field must be empty or an error results.

Optional label; must be terminated by d colon.

Dummy parameters are symbols holding the place of actual
parameters (symbolic values or expressions) specified elsewhere

in the program.

Series of any ASCII characters, surrounded by single quote marks.
Single quote within string is shown as two consecutive single quotes.

Series of ASCII characters.

Macro definitions and calls allow the use of the special characters listed below.

Character

&

()

..
"

Function

Ampersand. Used to concatenate symbols.

Angle brackets. Used to delimit text, such as lists, that contain
other del im iters.

Double semicolon. Used before a comment in a macro definition
to prevent inclusion of the comment in each macro expansion.

Exclamation point (escape character). Placed before a delimiter
to be passed as a literal in an actual parameter. To pass a literal
exclamation point, issue '!!.'

% Percent sign. Precedes actual parameters to be evaluated immedidtely
when the macro is called.

ALL MNEMONICS © 7974, 7975, 7976, 7977 INTEL CORPORA TlON

B-1

Appendix B. Assembler Directive Summary

SUMMARY OF DIRECTIVES

FORMAT

Label Opcode Operand(s)

oplab: DB exp(s} or string(s}

oplab: OS expression

oplab: OW exp(s} or string(s}

oplab: ELSE null

oplab: END expression

oplab: ENDIF null

name EQU expression

oplab: IF expression

oplab: ORG expression

name SET expression

MACRO DIRECTIVES

FORMAT

Label Opcode Operand(s)

null ENDM null

oplab: EXITM null

oplab: IRP dummy param,<list>

FUNCTION

Define 8-bit data byte(s}. Expressions must evaluate
to one byte.

Reserve data storage area of specified length.

Define 16-bit data word(s}. Strings limited to 1-2

characters.

Conditional assembly. Code between ELSE and
ENDIF directives is assembled if expression in IF
clause is FALSE. (See IF.)

Terminate assembler pass. Must be last statement of
program. Program execution starts at 'exp,' if present;
otherwise, at location O.

Terminate conditional assembly block.

Define symbol 'name' with value 'exp.' Symbol is not
redefinable.

Assemble code between IF and following ELSE or
ENDIF directive if 'exp' is true.

Set location counter to 'expression.'

Define symbol 'name' with value 'expression.'

Symbol can be redefined.

FUNCTION

Terminate macro definition.

Alternate terminator of macro definition. (See ENDM.)

Repeat instruction sequence, substituting one character
form 'list' for 'dummy param' in each iteration.

ALL MNEMONIC5©7974, 7975, 7976, 7977 INTEL CORPORA TlON

8-2

FORMAT

Label Opcode

oplab: IRPC

null LOCAL

name MACRO

oplab: REPT

RELOCATION DIRECTIVES

FORMAT

l.abel Opcode

oplab: ASEG

oplab: CSEG

oplab: DSEG

oplab: EXTRN

oplab: NAME

oplab: PUBLIC

oplab: STKLN

Operand(s)

dummy param,text

label name{s)

dummy param{s)

expression

Operand(s)

null

boundary specification

boundary specification

name{s)

module-name

name{s)

expression

Appendix B. Assembler Directive Summary

FUNCTION

Repeat instruction sequence, substituting one

character from 'text' for 'dummy param' in each

iteration.

Specify label{s) in macro definition to have local

scope.

Define macro 'name' and dummy parameter{s) to be

used in macro definition.

Repeat REPT block 'expression' times.

FUNCTION

Assemble subsequent instructions and data in the

absolute mode.

Assemble subsequent instructions and data in the

relocatable mode using the code location counter.

Assemble subsequent instructions and data in the

relocatable mode using the data location counter.

Identify symbols used in this program module but

defined in a different module.

Assigns a name to the program module.

Identify symbols defined in this module that are to

be available to other modules.

Specify the number of bytes to be reserved for the

stack for this module.

ALL MNEMONICS©7974, 7975, 7976, 7977 INTEL CORPORATION

8-3

APPENDIX C. ASCII CHARACTER SET

ASCII CODES
The 8080 and 8085 use the seven-bit ASCII code, with the high-order eighth bit
(parity bit) always reset.

GRAPHIC OR ASCII GRAPHIC OR ASCII GRAPHIC OR ASCII
CONTROL (HEXADECIMAL) CONTROL (HEXADECIMAL) CONTROL (HEXADECIMAL)

NUL 00 + 2B V 56
SOH 01 2C W 57
STX 02 2D X 58
ETX 03 2E Y 59
EOT 04 2F Z 5A
ENO 05 0 30 [5B
ACK 06 1 31 \ 5C
BEL 07 2 32 1 5D
BS 08 3 33 /\(t) 5E
HT 09 4 34 -(~) 5F
IF OA 5 35 60
VT OB 6 36 a 61
FF OC 7 37 b 62
CR OD 8 38 c 63
SO OE 9 39 d 64
SI OF 3A e 65
DLE 10 3B 66
DC1 (X-ON) 11 < 3C 9 67
DC2 (TAPE) 12 3D h 68
DC3 (X-OFF) 13 > 3E 69
D C4 (=F-Afl8 14 ? 3F j 6A
NAK 15 @ 40 k 6B
SYN 16 A 41 6C
ETB 17 B 42 m 6D
CAN 18 C 43 n 6E
EM 19 D 44 0 6F
SUB 1A E 45 p 70
ESC 1B F 46 q 71
FS 1C G 47 72
GS 1D H 48 73
RS 1E I 49 74
US 1F J 4A u 75
SP 20 K 4B v 76

21 L 4C w 77
22 M 4D x 78

23 N 4E y 79
$ 24 0 4F z 7A
% 25 P 50 7B

L
26 0 51 7C
27 R 52 (AL T MODE) 7D
28 S 53 7E
29 T 54 DEL (RUB OUT) 7F
2A U 55

C-1

APPENDIX D.

BI NARY -DECI MAL-H EXADECIMAL CONVERSION TABLES.

0-1

Appendix D. Binary-Decimal-Hexadecimal Conversion Tables

1
2

4
9

18
36

POWERS OF TWO

1 a 1.0
2 1 0.5
4 2 0.25
8 3 0.125

16 4 0.062 5
32 5 0.031 25
64 6 0.015 625

128 7 0.007 812 5

256 8 0.003 906 25
512 9 0.001 953 125

1 024 10 0.000 976 562 5
2 048 11 0.000 488 281 25

4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125

65 536 16 0.000 015 258 789 062 5
131 072 1 7 0000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5

1 048 576 20 0000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0000 000 014 901 161 193 847 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125
268 435 456 28 0000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 a 000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 0000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36 0000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0000 000 000 001 818 989 403 545 856 475 830 078 125

1 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5
2 199 023 255 552 41 0.000 000 000 000 4~4 747 350 886 464 118 957 519 531 25
4 398 046 511 104 42 0000 000 000 000 227 373 675 443 232 059 478 759 765 625
8 796 093 022 208 43 0000 000 000 000 113 686 837 721 616 029 739 379 882 812 5

17 592 186 044 416 44 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25
35 184 372 088 832 45 0000 000 000 000 028 421 709 430 404 007 434 844 970 703 125
70 368 744 177 664 46 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5

140 737 488 355 328 47 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25

281 474 976 710 656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625
562 949 953 421 312 49 0000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5
125 899 906 842 624 50 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25
251 799 813 685 248 51 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125

503 599 627 370 496 52 0000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5
007 199 254 740 992 53 0.000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25
014 398 509 481 984 54 0.000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625
028 797 018 963 968 55 0000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5

72 057 594 037 927 936 56 0000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25
144 115 188 075 855 872 57 0000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 676 950 125
288 230 376 151 711 744 58 0000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5
576 460 752 303 423 488 59 0000 000 000 000 000 901 734 723 475 976 807 094 411 924 481 391 906 738 281 25

1 152 921 504 606 846 976 60 0000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625
2 305 843 009 213 693 952 61 0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5
4 611 686 018 427 387 904 62 0000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25
9 223 372 036 854 775 808 63 0000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125

0-2

Appendix D. Binary-Decimal-Hexadecimal Conversion Tables

POWERS OF 16 (IN BASE 10)

16n
n 16·n

1 0 0.10000 00000 00000 00000 x 10

16 1 0.62500 00000 00000 00000 X 10- 1

256 2 0.39062 50000 00000 00000 X 10-2

4 096 3 0.24414 06250 00000 00000 x 10-3

65 536 4 0.15258 78906 25000 00000 x 10-4

048 576 5 0.95367 43164 06250 00000 x 10-6

16 777 216 6 0.59604 64477 53906 25000 x 10-7

268 435 456 7 0.37252 90298 46191 40625 x 10-8

4 294 967 296 8 0.23283 06436 53869 62891 x 10-9

68 719 476 736 9 0.14551 91522 83668 51807 x 10- 10

099 511 627 776 10 0.90949 47017 72928 23792 x 10- 12

17 592 186 044 416 11 0.56843 41886 08080 14.870 x 10- 13

281 474 976 710 656 12 0.35527 13678 80050 09294 x 10- 14

4 503 599 627 370 496 13 0.22204 46049 25031 30808 x 10- 15

72 057 594 037 927 936 14 0.13877 78780 78144 56755 x 10- 16

1 152 921 504 606 846 976 15 0.86736 17379 88403 54721 x 10- 18

POWERS OF 10 (IN BASE 16)

10n
n 10·n

0 1.0000 0000 0000 0000
A 1 0.1999 9999 9999 999A

64 2 0.28F5 C28F 5C28 F5C3 x 16 -I

3E8 3 0.4189 374B C6A7 EF9E x 16 -2

2710 4 0.68DB 8BAC 710C B296 x 16 -)

1 86AO 5 0.A7C5 AC47 lB47 8423 x 16 -4

F 4240 6 0.10C6 F7AO B5ED 8D37 x 16 -4

98 9680 7 0.lAD7 F29A BCAF 4858 x 16 -s

5F5 El00 8 0.2AF3 lDC4 6118 73BF x 16 -6

3B9A CAOO 9 0.44B8 2FAO 9B5A 52CC x 16 -7

2 540B E400 10 0.6DF3 7F67 SEF6 EADF x 16 -8

17 4876 E800 11 O.AFEB FFOB CB24 AAFF x 16-9

E8 D4A5 1000 12 0.1197 9981 2DEA 1119 x 16-9

918 4E72 AOOO 13 0.lC25 C268 4976 81C2 x 16 -10

5AF3 107A 4000 14 0.2D09 370D 4257 3604 x 16 -II

3 8D7E A4C6 8000 15 0.480E BE7B 9D58 566D x 16 -12

23 8652 6FCl 0000 16 0.734A CA5F 6226 FOAE x 16 -13

163 4578 5D8A 0000 17 0.B877 AA32 36A4 B449 x 16 -14

DEO B6B3 A764 0000 18 0.1272 5DDl D243 ABAl x 16 -14

8AC7 2304 89E8 0000 19 0.1 D83 C94F B6D2 AC35 x 16 -IS

0-3

Appendix D. Binary-Decimal-Hexadecimal Conversion Tables

HEXADECIMAL-DECIMAL INTEGER CONVERSION

The table below provides for direct conversions between hexadecimal integers in the range O-FFF and decimal integers in the
range 0-4095. For conversion of larger integers, the table values may be added to the following figures:

Hexadecimal Decimal Hexadecimal Decimal

01 000 4096 20000 131 072
02000 8 192 30000 196608
03000 12288 40000 262 144
04000 16384 50000 327680
05000 20480 60000 393216
06000 24576 70000 458752
07000 28672 80000 524288
08000 32768 90000 589824
09000 36864 AD 000 655360
OAOOO 40960 BO 000 720896
DB 000 45056 CO 000 786432
DC 000 49 152 DO 000 851 968

00 000 53248 EO 000 917504

DE 000 57344 FO 000 983040

OF 000 61 440 100000 1 048576

10000 65536 200000 2097 152

11 000 69632 300000 3 145 728

12000 73728 400000 4 194304

13000 77824 500000 5242880
14000 81 920 600000 6291 456
15000 86016 700000 7 340032
16000 90 112 800000 8388608
17000 94208 900000 9437 184
18000 98304 ADO 000 10485760
19000 102400 BOO 000 11 534 336
lA 000 106496 COO 000 12582912
lB 000 110592 000000 13631 488
lC 000 114 688 EOO 000 14 680064
10000 118 784 FOO 000 15728640
lE 000 122880 1 000000 16777216
1 FOOD 126976 2000000 33554432

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

000 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
010 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
020 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
030 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063

040 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
050 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095
060 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
070 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127

080 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
090 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
OAO 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
OBO 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191

OCO 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
000 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
OEO 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OFO 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

0-4

Appendix D. Binary-Decimal-Hexadecimal Conversion Tables

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)
r--'

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

100 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
110 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
120 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
130 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319

140 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0331 0333 0334 0335
150 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
160 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
170 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383

180 0384 0385 0386 0387 038d 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
190 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
lAO 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
180 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447

lCO 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
100 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
lEO 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
1 FO 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 050"/ 0508 0509 0510 0511

200 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
210 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
220 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
230 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575

240 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
250 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
260 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
270 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639

280 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
290 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2AO 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
280 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703

2CO 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
200 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2EO 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2FO 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

300 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
320 0800 0301 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
330 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831

340 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
350 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
360 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
370 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895

380 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
390 0212 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3AO 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
380 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959

3CO 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
300 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3EO 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3FO 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

0-5

Appendix D. Binary-Decimal-Hexadecimal Conversion Tables

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cant'd)

,
0 1 2 3 4 5 6 7 8 9 A 8 C 0 E F

400 1024 1025 1026 1027 1028 102~ 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
430 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
450 1104 1105 1106 1107 1108 1109 i 110 1111 1112 1113 1114 1115 1116 1117 1118 1119
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
470 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4AO 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
480

1

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

4CO 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
400 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4EO 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4FO 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1'306 1307 1308 1309 1310 1311
520 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

540 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
560 1376 1377 1378 1379 1380 1381 1382 1383 1384 1-385 1386 1387 1388 1389 1390 1391
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
590 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
SAO 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
580 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5CO 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
500 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5EO 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5FO 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

600 1536 1537 1538 1539 1540 1541 154~ 1543 1544 1545 1546 1547 1548 1549 1550 1551
610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
630 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6AO 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
680 1712 1713 1714 1715 1716 1717 1?18 1719 1720 1721 1722 1723 1724 1725 1726 1727

6CO 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
600 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6EO 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6FO 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

D-6

Appendix D. Binary-Decimal-Hexadecimal Conversion Tables

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A 8 C 0 E F

700 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
710 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
720 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

740 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
750 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
760 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
770 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 191~ 1917 1918 1919

780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
790 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7AO 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
780 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

7CO 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
700 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7EO 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7FO 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8AO 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
880 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

8CO 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
800 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8EO 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8FO 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
920 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

980 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9AO 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
980 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

9CO 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
900 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9EO 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9FO 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

D-7

Appendix D_ Binary-Decimal-Hexadecimal Conversion Tables

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

ADO 2560 ~561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
Al0 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A30 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAO 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
ABO 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 4761 2762 2763 2764 2765 2766 2767
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

BOO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
Bl0 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
820 2848 2849 2850 3851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
830 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

B40 2880 2881 2882 2883 2884 2885 2866 2887 2888 2889 2890 2891 2892 2893 2894 2895
B50 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B60 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B70 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940, 2941 2942 2943

B80 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
890 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
8AO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BBO 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

BCO 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BOO 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BFO 3056 3057 30~;8 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

COO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
C10 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C70 3184 3185 3186 31H7 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CAO 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CBO 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

CCO 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
COO 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CEO 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CFO 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

D-8

000
010
020
030

040
050
060
070

080
090
OAO
OBO

OCO
000
DEO
DFO

EOO
El0
E20
E30

E40
E50
E60
E70

E80
E90
EAO
EBO

ECO
EDO
EEO
EFO

Foo
FlO
F20
F30

F40
F50
F60
F70

FSO
F90
FAO
FBO

FCO
FDO
FEO

I FFO

~

0

332
334
336
337

8
4
o
6

339
340
342
344

2
8
4
o

34
347

56
2

88 34
3 504

352
353
355
356

o
6
2
8

35
36

84
00

6
2

361
363

364 8
4

80
96

366
36
36

371
372
374
376

377
379
380
382

2
8
4
o

6
2
8
4

384 o
56

2
8

38
387
388

39
392

04
o
6
2

393
395

396 8
84
00

6

39
40
401

403
404
406

2
8
4

40 80

1

3329
3345
3361
3377

3393
3409
3425
3441

3457
3473
3489
3505

3521
3537
3553
3569

3585
3601
3617
3633

3649
3665
3681
3697

3713
3729
3745
3761

3777
3793
3809
3825

3841
3857
3873
3889

3905
3921
3937
3953

3969
3985
4001
4017

4033
4049
4065
4081

Appendix D. Binary-Decimal-Hexadecimal Conversion Tables

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

2 3 4 5 6 7 8 9 A B C 0 E F

3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519

3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
36'8 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903

3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

0-9

Absolute symbols
Accumulator
Accumulator Instructions
ACI Instruction
ADC Instruction
ADD Instruction
ADI Instruction
Addressing Modes
Addressing Registers
ANA (AND) Instruction
AN D Operator
ANI (AND Immediate) Instruction
Arithmetic Expression Operators
Arithmetic Instructions
ASCII Constant
ASEG (Absolute Segment) Directive
Assembler, Need for
Assembler Character Set
Assembler Compared with PL/M
Assembler Function . . .
Assembler Termination
Assembly-Time Expression Evaluation
Auxiliary Carry Flag

INDEX

Auxiliary Carry Flag Setting - 8080/8085 Differences

l3i nary Data (Coding Rules)
blank (character)
Branching Instructions
Branch Table
Byte Isolation Operations

CALL Instruction
Carry Flag

CC (Call if Carry) Instruction
eM (Call if Minus) Instruction

CMA (Complement Accumulator) Instruction
CMC (Complement Carry) Instruction
CMP (Compare) Instruction
CNC (Call if no carry) Instruction
CNZ (Call if not Zero) Instruction
Combined Addressing Modes
Comment Field
Compare Operators
Comparing Complemented Data
Comparisons in Expressions
Complement Used for Subtraction
Complemented Data
Concatenation

2-11, 2-16
1-6, 1-7

.1-79

3-2

3-2
3-4

3-5
.7 -75

1-7

· 3-6
.2-73

· 3-7
2-12
7 -77

· 2-6
.4-74

1-3
2-1
1-3
1-1

.4-70

.2-11

.7-77

.7 -7 2

· 2-6
· 2-3

7-78, 7-22

· 6-1
.2-74

· 3-8

.7 -7 0

.3-70

.3-70

.3-77

.3-72

.3-72

.3-74

.3-74

.7-16

· 2-4
.2-73

· 2-8
.2-13

· 2-7

· 2-8
5-10,5-11,5-15,5-16

1-1

1-2

Condition Flags
Conditional Assembly
CP (Call if Positive) Instruction
CPE (Call if Parity Even) Instruction
CPI (Compare I mmediate) Instruction
CPO (Call if Parity Odd) Instruction
CSEG (Code Segment) Directive
CZ (Call if Zero) Instruction ...

DAA (Decimal Adjust Accumulator) Instruction
DAD (Double Register Add) Instruction
Data Access Example . .
Data Definition
Data Description Example
Data for Subroutines . .
Data Label
Data Transfer Instructions
DB (Define Byte) Directive
DCR (Decrement) Instruction
DCX (Decrement Register Pair)
Decimal Addition Routine . .
Decimal Data (Coding Rules)
Decimal Subtraction Routine'
Delimiters
DI (Disable I nterrupts) Instruction
Direct Addressing
Divide (Software Example)
Division in Expressions
DS (Define Storage) Directive
DSEG (Data Segment) Directive
Dummy Parameters
DW (Define Word) Directive

EI (Enable Interrupts) Instruction
ELSE Directive .
EN D Directive
ENDIF Directive
ENDM {End Macro} Directive

EOT Directive

EPROM
EQ Operator
EQU Directive
EXITM (Exit Macro) Directive
Expression Evaluation
Expression Operators
Expressions
Expressions, Precedence of Operators
Expressions, Range of Val ues
EXTRN Directive

1-9

· 4-8
3-75

3-76

3-76

3-77
4-75
3-78

3-78

3-20

4-7
4-3

4-6

6-3

2-5
7 -7 6

4-3
3-20

3-22

6-12

· 2-5
6-14

· 2-2
. 3-22,3-60

7 -7 5

· 6-9

2-12

· 4-5
4-75

· 5-4
· 4-4

3-23

· 4-8
4-70

· 4-8
5-5,5-6,5-7,5-12

4-77

. 1-5
2-73

4-2

5-9
2-11
2-11

2-6
2-75

2-75

4-77

GE Operator
General Purpose Registers
GT Operator

Hardware Overview
Hexadecimal Data (Coding Rules)
HIGH Operator
HL T (Halt) Instruction

I F Directive
I rnmediate Addressing
I rnpl ied Addressi ng
IN (Input) Instruction
INPAGE Reserved Word
Input/Output Ports
INR (Increment) Instruction
Instruction Addressing Modes
Instruction Execution
Instruction Fetch
I nstruction Label
Instruction Naming Conventions
Instruction Set Guide
Instruction Summary
I nstruction Timing
Instructions as Operands
INTE Pin
I nternal Registers
I nterrupt Subroutines
Interrupts
Interrupts (8085) . .
INX (Increment Register Pair) Instructions
I RP (I ndefinite Repeat) Directive
IRPC (Indefinite Repeat Character)

JC (J ump if Carry) Instruction
J M (J ump if Minus) Instruction
JMP (jump) Instruction
J NC (J ump if no carry) Instruction
J NZ (J ump if not zero) Instruction
J P (J ump if Positive) Instruction
J PE (J ump if parity Even) . .
J PO (J ump if parity Odd)
J Z (J ump if Zero) Instruction

Label Field
Labels
LDA (Load Accumulator Direct) Instruction
LDAX (Load Accumulator Indirect)

2-73

7-7

2-73

1-5

2-5

2-74, 3-2, 3-5, 3-7, 404

........ 3-24

4-8

7-75

7-75

.7-74,3-24

.4-74,4-75

7-74

3-25

7 -75

1-9

1-8
2-6

1-16

7-23

. 1-19, 7 -23

3-7

2-7

3-49

1-6

7-4

7-1

1-24

3-26

. 5-8, 5-12, 5-22

. 5-8, 5-12, 5-17

3-26

3-27

3-28

3-28

3-29

3-29

3-30
3-37

3-32

2-3

2-6

3-32

3-33

1-3

1-4

LE Operator

LI B Program

LHLD (Load L Direct) Instruction
LIN K Program

Linkage
List File

LOCAL Directive

LOCAL Symbols
LOCATE Program

Location Counter (Coding Rules)

Location Counter Control (Absolute Mode)

Location Counter Control (Relocatable Mode)
Logical Instructions

Logical Instructions, Summary
Logical Operators
LOW Operator
L T Operator . .
LXI (Load Register Pair Immediate)

Macros
Macro Calls
Macro Definition
MACRO Directive
Macro Expansion
Macro Parameters
Macros versus Subroutines

Manual Programming. . .
Memory
Memory Management with Relocation

Memory Reservation

MEMORY Reserved Word

MOD Operator
Modular Programming

MODULE Default Name
MOV (Move) Instruction

Multibyte Addition Routines
Multibyte Subtraction Routine
Multipl ication in Expressions
Multiply (Software Example)

MVI (Move Immediate)

NAME Directive
NE Operator
Nested Macro Calls
Nested Macro Definitions
Nested Subroutines
Nine's Complement
NOP (No Operation) Instruction

2-73
4-'12

3-34

4-12,4-14,4-15

4-16

1 -1

5-5

5-6

.4-'12,4-13,4-14,4-19

2-6

4-77

4·-74
7 -77

3-6
2-73

2-74, 3-2, 3-5, 3-7, 4-4

2-73

3-35

5-1

5-72

5-4

5-4

5-15

5-5

5-3

1-3

1-5

4-72

4-5

4-79
2-12

4-72

4-17
3-36
6-11

6-11

2-12

6-7

3-37

4-78

2-13
5-'14

5-'12
3-48

2-7

3-38

NOP via MOV
NOT Operator
NUL Operator
Null Macros
Null Parameter

Object Code
Object File

Octal Data {Coding Rules}
One's Complement
Opcode
Opcode Field

Operand Field
Operand Field {Coding Rules}

Operands
Operators, Expression

OR Operator
ORG {Origin} Directive (Absolute Mode)
ORG {Origin} Directive (Relocatable Mode)
ORA (Inclusive OR) Instruction
ORI {Inclusive OR Immediate}
OUT Instruction

PAG E Reserved Word
Parity Flag
PCHL (Move H & L to Program Counter) Instruction
Permanent Symbols
PL/M
PL/M Compared with Assembler
POP Instruction
POP PSW instruction

Precedence of Expression Operators
Processor Registers
Program Counter
Program Linkage Directives
Program Listing
Program Status
Program Status Word (PSW)
Programming the 8085
PROM
PSW
PUBLIC Directive
PUSH Instruction

PUSH PSW Instruction

RAM
RAM versus ROM
RAL (Rotate Left through Carry) Instruction

3-36
2-73

.2-13,5-77
5-16
5-11

..

7 -2
1-1

2-5
2-7

1-1
2-4
2-4
2-4
2-5

2-11
2-73
4-77

4-76
3-38
3-40

1-14, 3-47

.4.-74,4-75
7 -77
3-42
2-11

1-3
1-3

3-42
3-43
2-75

1-9

1-6
4-76

1-2
1-13
7 -74
1-24

1-5
. 7 -7 4, 3-45

4-77
3-44
345

1-5
4-6
3-45

1-5

1-6

RAR (Rotate Right through Carry) Instruction
RC (Return if Carry) Instruction
Redefinable Symbols
Register Addressing
Register I ndirect Addressing
Register Pair Instructions
Register Pairs
Relocatability Defined
Relocatable Expressions
Relocatable Symbols
Relocation Feature
Reserved Symbols
RESET Signal
RET (Return) Instruction
REPT Directive
RIM (Read Interrupt Mask) 8085 Instruction
RLC (Rotate Accumulator Left) Instruction
RM (Return if Minus) Instruction
RNC (Return if no Carry) Instruction
RNZ (Return if not Zero) Instruction

ROM
RP (Return if Positive) Instruction
RPE (Return if Parity Even) Instruction
RPO (Return if Parity Odd) Instruction
RRC (Rotate Accumulator Right) Instruction
RST (Restart) Instruction
RST5.5
RST6.5
RST7.5
RZ (Return if Zero) Instruction

Savings Program Status
SBB (Subtract with Borrow) Instruction
SBI (Subtract Immediate with Borrow) Instruction
Scope of Symbols
SET Directive
Shift Expression Operators
Shift Operations in Expressions
SHL Operator
SHLD (Store H & L Direct) Instruction
SHR Operator
Sign Flag
SIM (Set Interrupt Mask) 8085 Instruction
Software Divide Routine
Software Multiply Routine
Source Code Format
Source Line Fields
Source Program File
SPHL (Move H & L to Stack Pointer) Instruction

3-46

3-47

2·11
7-75

7 -7 6
7·27

1-7
4-72

.2-76, 2-79

2-11
1-2
2-9

3-24
3-48

5-6,5-12,5-15,5-16,5-17,5-18
3-48

3-49
3-50
3-57

3-57

1-5
3-52

3-52

3-53

3-53

3-54
· 3-49, 3-55, 3-59, 3-60

· 3-49, 3-55, 3-59, 3-60
· 3-49, 3·55; 3-59, 3-60
· 3-55

7 -7 3
3-56
3-57

2-10
4-3

2-12
2-12
2-72

3-58
2-72

7 -10

3-59

6-7
6-7
2-1
2-1
1-1

3-67

SP (Stack Pointer Register)
ST A (Store Accumulator Direct) Instruction
Stack
Stack and Machine Control Instructions
Stack Operations
Stack Pointer
ST ACK Reserved Word
Start Execution Address
ST AX (Store Accumulator Indirect) Instruction
STC (Set Carry) Instruction
STKLN Directive
SUB (Subtract) Instruction
Subroutine Data
Subroutines
Subroutines versus Macros
Subtraction for Comparison
SUI (Subtract Immediate) Instruction
Symbol-Cross-Reference File
Symbol Definition
Symbol Table
Symbolic Addressing
Symbols
Symbols, Absolute
Symbols (Coding Rules)
Symbols, Global
Symbols, Limited
Symbols, Permanent
Symbols, Redefinable
Symbols, Relocatable
Symbols, Reserved

TRAP Interrupt
Ten's Complement
Testing Relocatable Modules
Timing Effects of Addressing Modes
TRAP (8085)
Two's Complement Data

Use of Macros
Using Symbols for Data Access

Value of Expressions

What is a Macro?
Word Instructions
Word Storage in Memory
Work Registers

3-35
3-61

1-12

1-19

1-13
1-12

4-19, 3-35
4-10

3-62

3-63

4-18

3-63

6-3
1 ;12, 3-9

5-3
3-12
3-64

.1-1,1-3
4-2

2-9
2-9
2-9

2-11

2-9
2-10

2-10

2-11
2-11
2-11

2-9

3-54
2-7

4-19

1-16
3-23

2-7

5-1
4-7

2-15

5-2
1-21

4-4

1-7

1-7

1-8

XCHG (Exchange H & L with D & E) Instruction
XOR Operator
XRA (Exclusive OR) Instruction
XRI (Exclusive OR Immediate) Instruction
XTHL (Exchange H & L with Top of Stack) Instruction

Zero Flag

&

<>
CR

..
"

HT

*
()
+

??nnnn

space

(ampersand)
(angle brackets)
(carriage return character)
(colon)
(comma)
(double semicolon)
(division) Operator
(exclamation point)
(horizontal tab character)
(minus) Operator
(multiplication) Operator
(parentheses)
(plus) Operator
Symbols
(semicolon)
(single quote)
(character)

8080/8085 Differences
8085 Features
8085 Processor
8085 Programming

3-65

2-73

3-66

3-67

3-69

7-77

5-10
5-10

2-2
2-2
2-2

5-10
2-12
5-10

2-2
2-12
2-12

2-2
2-12

5-5

2-2
2-2
2-2

7-24

1-24
7-24

1-24

8080/8085 Assembly Langua!

REQUEST FOR READER'S COMMENTS

Programming Manu
9800301-

The Microcomputer Division Technical Publications Department attempts to provide documents that me
the needs of all Intel product users. This form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness
this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions 1
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types
documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME __ ___ DATE ________________ _

TITLE __ _

COMPANYNAME/DEPARTMENT ___ _
ADDRESS ______ ~ __ _

CITY __ _ STATE __________________ _ ZIP CODE ______ _

Please check here if you require a written reply. 0

:'0 LIKE YOUR COMMENTS ..•

is document is one of a series describing Intel products. Your comments on the back of this form will
Ip us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
nments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

III NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080

Printed in U.S.A.

	1. ASSEMBLY LANGUAGE AND PROCESSORS
	INTRODUCTION
	WHAT IS AN ASSEMBLER?
	What the Assembler Does
	Object Code
	Program Listing
	Symbol-Cross-Reference Listing
	Do You Need the Assembler?

	OVERVIEW OF 8080/8085 HARDWARE
	Memory
	ROM
	RAM

	Program Counter
	Work Registers
	Internal Work Registers
	Condition Flags
	Carry Flag
	Sign Flag
	Zero Flag
	Parity Flag
	Auxiliary Carry Flag
	Stack and Stack Pointer
	Stack Operations
	Saving Program Status

	Input/Output Ports
	Instruction Set
	Addressing Modes
	Implied Addressing
	Register Addressing
	Immediate Addressing
	Direct Addressing
	Register Indirect Addressing
	Combined Addressing Modes
	Timing Effects of Addressing Modes

	Instruction Naming Conventions
	Data Transfer Group
	Arithmetic Group
	Logical Group
	Branch Group
	Stack, I/O, and Machine Control Instructions

	HARDWARE/INSTRUCTION SUMMARY
	Accumulator Instructions
	Register Pair (Word) Instructions
	Branching Instructions
	Instruction Set Guide

	8085 PROCESSOR DIFFERENCES
	Programming for the 8085
	Conditional Instructions

	2. ASSEMBLY LANGUAGE CONCEPTS
	INTRODUCTION
	SOURCE LINE FORMAT
	Character Set
	Delimiters

	Label/Name Field
	Opcode Field
	Operand Field
	Comment Field

	CODING OPERAND FIELD INFORMATION
	Hexadecimal Data
	Decimal Data
	Octal Data
	Binary Data
	Location Counter
	ASCII Constant
	Labels Assigned Values
	Labels of Instruction or Data
	Expressions
	Instructions as Operands
	Register-Type Operands

	TWO'S COMPLEMENT REPRESENTATION OF DATA
	SYMBOLS AND SYMBOL TABLES
	Symbolic Addressing
	Symbol Characteristics
	Reserved, User-Defined, and Assembler-Generated Symbols
	Global and Limited Symbols
	Permanent and Redefinable Symbols
	Absolute and Relocatable Symbols

	ASSEMBLY-TIME EXPRESSION EVALUATION
	Operators
	Arithmetic Operators
	Shift Operators
	Logical Operators
	Compare Operators
	Byte Isolation Operators

	Permissible Range of Values
	Precedence of Operators
	Relocatable Expressions
	Relocatability of Expressions Involving External Symbols
	Chaining of Symbol Definitions

	3. INSTRUCTION SET
	HOW TO USE THIS CHAPTER
	TIMING INFORMATION
	INSTRUCTION DETAILS
	ACI
	ADC
	ADD
	ADI
	ANA
	ANI
	CALL
	CC
	CM
	CMA
	CMC
	CMP
	CNC
	CNZ
	CP
	CPE
	CPI
	CPO
	CZ
	DAA
	DAD
	DCR
	DCX
	DI
	EI
	HLT
	IN
	INR
	INX
	JC
	JM
	JMP
	JNC
	JNZ
	JP
	JPE
	JPO
	JZ
	LDA
	LDAX
	LHLD
	LXI
	MOV
	MVI
	NOP
	ORA
	ORI
	OUT
	PCHL
	POP
	PUSH
	RAL
	RAR
	RC
	RET
	RIM
	RLC
	RM
	RNC
	RNZ
	RP
	RPE
	RPO
	RRC
	RST
	RZ
	SBB
	SBI
	SHLD
	SIM
	SPHL
	STA
	STAX
	STC
	SUB
	SUI
	XCHG
	XRA
	XRI
	XTHL

	4. ASSEMBLER DIRECTIVES
	SYMBOL DEFINITION
	EQU Directive
	SET Directive

	DATA DEFINITION
	DB Directive
	DW Directive

	MEMORY RESERVATION
	DS Directive
	Programming Tips: Data Description and Access
	Random Access Versus Read Only Memory
	Data Description
	Data Access
	Add Symbols for Data Access

	CONDITIONAL ASSEMBLY
	IF, ELSE, ENDIF Directives

	ASSEMBLER TERMINATION
	END Directive

	END-OF-TAPE INDICATION
	EOT Directive

	LOCATION COUNTER CONTROL AND RELOCATION
	Location Counter Control (Non-Relocatable Mode)
	ORG Directive

	Introduction to Relocatability
	Memory Management
	Modular Program Development

	DIRECTIVES USED FOR RELOCATION
	Location Counter Control (Relocatable Programs)
	ASEG Directive
	CSEG Directive
	DSEG Directive
	ORG Directive (Relocatable Mode)

	Program Linkage Directives
	PUBLIC Directive
	EXTRN Directive
	NAME Directive
	STKLN Directive

	STACK and MEMORY Reserved Words
	Programming Tips: Testing Relocatable Modules
	Initialization Routines
	Input/Output
	Remove Coding Used for Testing

	5. MACROS
	INTRODUCTION TO MACROS
	Why Use Macros?
	What Is A Macro?
	Macros Vs. Subroutines

	USING MACROS
	Macro Definition
	Macro Definition Directives
	MACRO Directive
	ENDM Directive
	LOCAL Directive
	REPT Directive
	IRP Directive
	IRPC Directive
	EXITM Directive

	Special Macro Operators
	Nested Macro Definitions

	MACRO CALLS
	Macro Call Format
	Nested Macro Calls
	Macro Expansion

	NULL MACROS
	SAMPLE MACROS
	Example 1: Nested I RPC
	Example 2: Nested Macros Used to Generate DB Directives
	Example 3: A Macro that Converts Itself into a Subroutine
	Example 4: Computed GOTO Macro
	Example 5: Using IRP to Define the Jump Table

	6. PROGRAMMING TECHNIQUES
	BRANCH TABLES PSEUDO-SUBROUTINE
	TRANSFERRING DATA TO SUBROUTINES
	SOFTWARE MULTIPLY AND DIVIDE
	MULTIBYTE ADDITION AND SUBTRACTION
	DECIMAL ADDITION
	DECIMAL SUBTRACTION

	7. INTERRUPTS
	INTERRUPT CONCEPTS
	WRITING INTERRUPT SUBROUTINES

	APPENDIX A. INSTRUCTION SUMMARY
	APPENDIX B. ASSEMBLER DIRECTIVE SUMMARY
	APPENDIX C. ASCII CHARACTER SET
	APPENDIX D. BINARY-DECIMAL-HEXADECIMAL CONVERSION TABLES.
	INDEX

