8080/8085 ASSEMBLY LANGUAGE
PROGRAMMING MANUAL

Order Number: 9800301-04

Copyright © 1977,1978, 1979, 1981 Intel Corporation

I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 L

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel’s software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identily Intel
products:

BXP Intelevision Multibus
CREDIT Intellec Muliimodule

i iRMX Plug-A-Bubble
ICE iISBC PROMPT

iCS iISBX Promware

im Library Manager RMX/80
Insite MCS System 2000
Intel Megachassis uPlL

inlCI Micromap uScope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

[Printed in USA/A364/581/25K

CP |

PREFACE

This manual describes programming with Intel’s assembly language. It will not teach you how to program a computer.

Although this manual is designed primarily for reference, it also contains some instructional material to help the beginning
programmer. The manual is organized as follows:

Chapter 1. ASSEMBLY LANGUAGE AND PROCESSORS
Description of the assembler
Overview of 8080 hardware and instruction set
Description of 8080/8085 differences

Chapter 2. ASSEMBLY LANGUAGE CONCEPTS
General assembly language coding rules

Chapter 3. INSTRUCTION SET

Descriptions of each instruction (these are listed alphabetically
for quick reference)

Chapter 4. ASSEMBLER DIRECTIVES
Data definition
Conditional assembly
Relocation

Chapter 5. MACROS

Macro directives
Macro examples

Chapter 6. PROGRAMMING TECHNIQUES
Programming examples

Chapter 7. INTERRUPTS
Description of the interrupt system.

Chapters 3 and 4 will fill most of the experienced programmer’s reference requirements. Use the table of contents or the
index to locate information quickly.

The beginning programmer should read Chapters 1 and 2 and then skip to the examples in Chapter 6. As these examples

raise questions, refer to the appropriate information in Chapter 3 or 4. Before writing a program, you will need to read
Chapter 4. The ‘Programming Tips' in Chapter 4 are intended especially for the beginning programmer.

RELATED PUBLICATIONS
To use your Intellec development system effectively, you should be familiar with the following Intel
publications:
ISIS-11 8080/8085 MACRO ASSEMBLER OPERATOR'S MANUAL, 9800292
When you activate the assembler, you have the option of specifying a number of controls. The operator’s

manual describes the activation sequence for the assembler. The manual also describes the debugging tools
and the error messages supplied by the assembler.

ISIS-11 SYSTEM USER’S GUIDE, 9800306
User programs are commonly stored on diskette files. The IS1S-11 User’s Guide describes the use of the text
editor for entering and maintaining programs. The manual also describes the procedures for linking and
locating relocatable program modules.

Hardware References

For additional information about processors and their related components, refer to the appropriate User’s
Manual:

8080 MICROCOMPUTER SYSTEMS USER’S MANUAL, 9800153

8085 MICROCOMPUTER SYSTEMS USER’S MANUAL, 9800366

Chapter

1.

ASSEMBLY LANGUAGE AND PROCESSORS

Introduction
What Is An Assembler?

Overview of 8080/8085 Hardware

TABLE OF CONTENTS

What the Assembler Does
Object Code
Program Listing
Symbol-Cross-Reference Listing
Do You Need the Assembler?

Memory
ROM
RAM e
Program Counter .
Work Registers A
Internal Work Registers ..
Condition Flags
Carry Flag
Sign Flag
Zero Flag
Parity Flag ..
Auxiliary Carry Flag
Stack and Stack Pointer
Stack Operations
Saving Program Status
Input/Output Ports
Instruction Set
Addressing Modes
Implied Addressing .
Register Addressing
Immediate Addressing
Direct Addressing
Register Indirect Addressing
Combined Addressing Modes
Timing Effects of Addressing Modes
Instruction Naming Conventions
Data Transfer Group
Arithmetic Group
Logical Group
Branch Group

Stack, 1/O, and Machine Control Instructions
Hardware/Instruction Summary

Accumulator Instructions

Register Pair (Word) Instructions

Bronching Instructions

Instruction Set Guide

G US O hthobe b & = &

r_)f_)_.__n._-_a_;__a_l_a__x__a_._d_\d_;_a_x_aa.__;co
o — O O O 0~ AL Lk i Ll W W == — OO0

Chapter 2.

Chapter 3.

vi

8085 Processor Differences
Programming for the 8085
Conditional Instructions

ASSEMBLY LANGUAGE CONCEPTS

Introduction
Source Line Format
Character Set
Delimiters
Label/Name Field
Opcode Field
Operand Field
Comment Field .o
Coding Operand Field Information
Hexadecimal Data
Decimal Data
Octal Data
Binary Data
Location Counter
ASCIl Constant .
Labels Assigned Values
Labels of Instruction or Data
Expressions ..
Instructions as Operands
Register-Type Operands

Two's Complement Representation of Data

Symbols and Symbol Tables
Symbolic Addressing
Symbolic Characteristics

Reserved, User-Defined, and Assembler-Generated Symbols

Global and Limited Symbols

Permanent and Redefinable Symbols
Absolute and Relocatable Symbols

Assembly-Time Expression Evaluation

Operators . .
Arithmetic Opcrators

Shift Operators

Logical Operators

Compare Operators

Byte Isolation Operators
Permissible Range of Values
Precedence of Operators
Relocatable Expressions .
Chaining of Symbol Deflnmons

INSTRUCTION SET

How to Use this Chapter
Timing Information -
Instructions are listed in alphabetlcal

order

1-24
1-24
1-25

2-1

2-1
2-1
2-1
2-2
2-3
2-4
2-4
2-4
2-4
2-5
2-5
2-5
2-5
2-6
2-6
2-6
2-6
2-6
2-7
2-7
2-7
2-9
29
2-9
2-9
2-10
2-11
2-11
2-11
2-11
2-12
2-12
2-13
2-13
2-14
2-15
2-15
2-16
2-18

3-1

3-1
3-1

Chapter 4. ASSEMBLER DIRECTIVES 4-1

Symbol Definition e e e e s e e e 4-2
'EQU Directive o o e e e e e e e 4-2
SET Directive e e e e e e e e e e e 4-3

Data Definition e e e e e e e e 4-3
DB Directive C e e e e e e e e e e e e e e e 43
DW Directive o e e e e e e e e e e e e e e e 4-4

Memory Reservation e e e e e e e e e 4-5
DS Directive e e e e e e e e e e e 4-5
Programming Tips: Data Description and Access 4-6

Random Access Versus Read Only Memory 46
Data Description L. Lo e e e 4-6
Data ACCESS e o e e e e e e e e e e e e e 4-6
Add Symbols for Data Access e e e e e e e e 4-7

Conditional Assembly L. Lo Lo e 4-8
IF, ELSE, ENDIF Directives 48

Assembler Termination L. L L0000 4-10
END Directiveo e e e e e e e 4-10

Location Counter Control and Relocation 4-11
Location Counter Control (Non-Relocatable Mode) 4-11

ORG Directive Lo e e e e 4-11
Introduction to Relocatability e e e e e e e e e 4-12
Memory Management Lo 4-12
Modular Program Development 4-12

Directives Used for Relocation 4-14

Location Counter Contro!l (Relocatable Programs) 4-14
ASEG Directive Lo o e e e e e 4-14
CSEG Directiveo e e 4-15
DSEG Directive e e e e e e 4-15
ORG Directive (Relocatable Mode) 4-16

Program Linkage Directives 4-16
PUBLIC Directiveo 4-17
EXTRN Directiveo 4-17
NAME Directive e e e e 4-18
STKLN Directive v v v i e e e 4-18

STACK and MEMORY Reserved Words 4-19

Programming Tips: Testing Relocatable Modules 4-19
Initialization Routines L. 49
Input/Output e e e e e e 4-20
Remove Coding Used for Testing 4-20

Chapter 5. MACROS .| e 5-1

Introduction to Macros 5-1
Why Use Macros? o e e e e e e e e e 5-1
What Is A Macro? e e e e e e 5-1
Macros Vs. Subroutines e e e e e e e e e e e e e e 5-3

vii

Chapter 6.

Chapter 7.

Appendix
Appendix
Appendix
Appendix

viii

Using Macros L L o e e e e e e e 5-3

Macro Definition L ..o 5-3

Macro Definition Directives 5-4

MACRO Directiveo 5-4

ENDM Directive O

LOCAL Directiveo 5-5

REPT Directive v o e e e e 56

IRP Directiveo 5-8

IRPC Directiveo e 5-8

EXITM Directiveo 59

Special Macro Operators - -o e e e e e 5-10

Nested Macro Definitions 512

Macros Calls e R
Macro Call Formato 5-12
Nested Macro Calls 5-14
Macro Expansion L L L L 515
Null Macros e e e s 5-16
Sample Macros L. L B N 1)

PROGRAMMING TECHNIQUES e e e e e e 6-1

Branch Tables Pseudo-Subroutine e e e e e e s e e s e s e 6-1

Transferring Data to Subroutine 6-3

Software Multiply and Divide e s 6-7
Multibyte Addition and Subtraction e e e e e e e 6-11
Decimal Addition L L e e e 6-12
Decimal Subtraction e e e e e e e e e e e e e e s e e 6-14

INTERRUPTS e s 7-1

Interrupt Concepts e e e e 7-1

Writing Interrupt Subroutincs e e e e C e e e e e 7-4
A INSTRUCTION SUMMARY e e s A-1
B ASSEMBLER DIRECTIVE SUMMARY e e e e B-1
C ASCII CHARACTER SET e e e e e C-1
D BINARY-DECIMAL-HEXADECIMAL CONVERSION TABLES - - - - D1

Figure

1-1
12
13
1-4
1-5

LIST OF ILLUSTRATIONS

ASSEMBLER OUTPUTS e
COMPARISON OF ASSEMBLY LANGUAGE WITH PL/M
8080/8085 INTERNAL REGISTERS

INSTRUCTION FETCH e
EXECUTION OF MOV M,C INSTRUCTION

1-2

1-6
1-8
19

1. ASSEMBLY LANGUAGE AND PROCESSORS

INTRODUCTION

WHAT

What

Almost every line of source coding in an assembly language source program translates directly into a machine.
instruction for a particular processor. Therefore, the assembly language programmer must be familiar with both
the assembly language and the processor for which he is programming.

The first part of this chapter describes the assembler. The second part describes the features of the 8080 micro-
processor from a programmer’s point of view. Programming differences between the 8080 and the 8085 micro-
processors are relatively minor. These differences arc described in a short section at the end of this chapter.

1S AN ASSEMBLER?

An assembler is a software tool — a program — designed to simplify the task of writing computer programs. If
you have ever written a computer program directly in a machine-recognizable form such as binary or hexadecimal
code, you will appreciate the advantages of programming in a symbolic assembly language.

Assembly language operation codes (opcodes) are easily remembered (MOV for move instructions, |MP for jump).
You can also symbolically express addresses and values referenced in the operand field of instructions. Since you
assign these names, you can make them as meaningful as the mnemonics for the instructions. For example, if your
program nust manipulate a date as data, you can assign it the symbolic name DATE. If your program contains a
set of -instructions used as a timing loop (a set of instructions executed repeatedly until a specific amount of time
has passed), you can name the instruction group TIMER.

the Assembler Does

To use the assembler, you first need a source program. The source program consists of programmer-written
assembly.- language instructions. These instructions are written using mnemonic opcodes and labels as described
previously.

Assembly fanguage source programs must be in a machine-readable form when passed to the assembler. The
Intellec development system includes a text editor that will help you maintain source programs as paper tape
files or diskette files. You can then pass the resulting source program file to the assembler. (The text editor is
described in the ISIS-I1 System User’s Guide.)

The assembler program performs the clerical task of translating symbolic code into object code which can be
executed by the 8080 and 8085 microprocessors. Assembler output consists of three possible files: the object
file containing your program translated into object code; the /ist file printout of your source code, the assembler-
generated object code, and the symbol table; and the symbo/-cross-reference file, a listing of the symbol-cross-
reference records.

1-1

Chapter 1. Assembly Language and Processors

OBJECT

FILE

SOURCE ASSEMBLER PROGRAM
PROGRAM »
FILE PROGRAM LISTING

\

CROSS
REFERENCE
LISTING

Figure 1-1. Assembler Outputs

Object Code

For most microcomputer applications, you probably will eventually load the object program into some form of
read only memory. However, do not forget that the Intellec development system is an 8080 microcomputer
system with random access memory. In most cases you can load and execute your object program on the
development system for testing and debugging. This allows you to test your program before your prototype
application system is fully developed.

A special feature of this assembler is that it allows you to request object code in a relocatable format. This frees
the programmer from worrying about the eventual mix of read only and random access memory in the application
system; individual portions of the program can be relocated as needed when the application design is final. Also,

a large program can be broken into a number of separately assembled modules. Such modules are both easier to
code and to test. See Chapter 4 of this manual for a more thorough description of the advantages of the relocation
feature.

Program Listing

The program listing provides a permanent record of both the source program and the object code. The assembler
also provides diagnostic messages for common programming errors in the program listing. For example, if you
specify a 16-bit value for an instruction that can use only an 8-bit value, the assembler tells you that the value
exceeds the permissible range.

Chapter 1. Assembly Language and Processors

Symbol-Cross-Reference Listing

The symbol-cross-reference listing is another of the diagnostic tools provided by the assembler. Assume, for
example, that your program manipulates a data field named DATE, and that testing reveals a program logic
error in the handling of this data. The symbol-cross-reference listing simplifies debugging this error because it
points you to each instruction that references the symbol DATE.

Do You Need the Assembler?

The assembler is but onc of several tools available for developing microprocessor programs. Typically, choosing
the most suitable tool is based on cost restraints versus the required level of performance. You or your company
must determine cost restraints; the required level of performance depends on a number of variables:

° The number of programs to be written: The greater the number of programs to be written, the more
you need development support. Also, it must be pointed out that there can be penalties for not
writing programs. When your application has access to the power of a microprocessor, you may be
able to provide customers with custom features through program changes. Also, you may be able to
add features through programming.

° The time altowed for programming: As the time allowed for programming decreases, the need for
programming support increases.

. The level of support for existing programs: Sometimes programming errors are not discovered until
the program has been in use for quite a while. Your need for programming support increases if you
agree to correct such errors for your customers. The number of supported programs in use can
multiply this requirement. Also, program support is frequently subject to stringent time constraints.

If none of the factors described above apply to your situation, you may be able to get along without the
assembler. Intel’'s PROMPT-80, for example, allows you to enter programs directly into programmable read only
memory. You enter the program manually as a string of hexadecimal digits. Such manual programming is relatively
slow and more prone to human crror than computer-assisted programming. However, manual systems are one of
the least expensive tools available for microprocessor programming. Manual systems may be suitable for limited
applications, hobbyists, and those who want to explore possible applications for microprocessors.

If most of the factors listed previously apply to you, you should explore the advantages of PL/M. PL/M is
Intel’s high-level language for program development. A high-level language is directed more to problem solving
than to a particular microprocessor. This allows you to write programs much more quickly than a hardware-
oriented language such as assembly language. As an example, assume that a program must move five characters
from one location in memory to another. The following example illustrates the coding differences between
assembly language and PL/M. Since instructions have not yet been described, the assembly language instructions
are represented by a flowchart.

Chapter 1. Assembly Language and Processors

ASSEMBLY LANGUAGE CODING PL/MCODING

LOAD REGISTER WITH NUMBER
OF CHARACTERS TO BE MOVED

LOAD REGISTER PAIR B WITH
ADDRESS OF SOURCE (FLD1)

LOAD REGISTER PAIR D WITH
ADDRESS OF DESTINATION
(FLD2)

LOAD ACCUMULATOR WITH 1
BYTE FROM SOURCE FIELD

MOVE CHARACTER FROM
ACCUMULATOR TO DESTINA-
TION FIELD

> CALL MOVE(5,FLD2,FLD1);

INCREMENT SOURCE ADDRESS

CONTINUE

INCREMENT DESTINATION
ADDRESS

DECREMENT CHARACTER COUNT

NO

CONTINUE

Figure 1-2. Comparison of Assembly Language with PL/M

1-4

Chapter 1. Assembly Language and Processors

OVERVIEW OF 8080/8085 HARDWARE
To the programmer, the computer comprises the following parts:

Memory

The program counter

Work registers

Condition flags

The stack and stack pointer
Input/output ports

The instruction set

Of the components listed above, memory is not part of the processor, but is of interest to the programmer.

Memory

Since the program required to drive a microprocessor resides in memory, all microprocessor applications require
some memory. There are two general types of memory: read only memory (ROM) and random access memory
(RAM).

ROM

As the name implies, the processor can only read instructions and data from ROM; it cannot alter the contents
of ROM. By contrast, the processor can both read from and write to RAM. Instructions and unchanging data

are permanently fixed into ROM and remain intact whether or not power is applied to the system. For this
reason, ROM is typically used for program storage in single-purpose microprocessor applications. With ROM you
can be certain that the program is ready for execution when power is applied to the system. With RAM a program
must be loaded into memory each time power is applied to the processor. Notice, however, that storing programs
in RAM allows a multi-purpose system since different programs can be loaded to serve different needs.

Two special types of ROM — PROM (Programmable Read Only Memory) and EPROM (Eraseable Programmable
Read Only Memory) -- are frequently used during program development. These memories are useful during
program development since they can be altered by a special PROM programmer. In high-volume commercial
applications, these special memories are usually replaced by less expensive ROM'’s.

RAM

Even if your program resides entirely in ROM, your application is likely to require some random access memory.
Any time your program attempts to write any data to memory, that memory must be RAM. Also, if your pro-
gram uses the stack, you need RAM. !If your program modifies any of its own instructions (this procedure is
discouraged), those instructions must reside in RAM.

The mix of ROM and RAM in an application is important to both the system designer and the programmer.
Normally, the programmer must know the physical addresses of the RAM in the system so that data variables

Chapter 1. Assembly Language and Processors

can be assigned within those addresses. However, the relocation feature of this assembler allows you to code a
program without concern for the ultimate placement of data and instructions; these program elements can be
repositioned after the program has been tested and after the system’s memory layout is final. The relocation
feature is fully explained in Chapter 4 of this manual.

Program Counter
With the program counter, we reach the first of the 8080’s internal registers illustrated in Figure 1-3.
NOTE

Except for the differences listed at the end of this chapter,
the information in this chapter applies equally to the 8080
and the 8085.

The program counter keeps track of the next instruction byte to be fetched from memory (which may be either
ROM or RAM). Each time it fetches an instruction byte from memory, the processor increments the program
counter by one. Therefore, the program counter always indicates the next byte to be fetched. This process
continues as long as program instructions are executed sequentially. To alter the flow of program execution as
with a jump instruction or a call to a subroutine, the processor overwrites the current contents of the program
counter with the address of the new instruction. The next instruction fetch occurs from the new address.

8080
lAccuMULATOR| FLacs | 8085
HIGH LOW
T
NSTRUCTION [B | C | [stack] PoNTER |
DECODER | D [e] [PROGRAM | COUNTER |
[pATA BUS LATCH | | H l L | | ADDRESS I BuUS LATCH |
8-bit 16-bit
bidirectional address bus
data bus
ROM RAM INPUT OUTPUT
PORTS PORTS
INSTRUCTIONS INSTRUCTIONS
CONSTANT VARIABLE
DATA DATA
STACK

Figure 1-3. 8080/8085 Internal Registers

1-6

Chapter 1. Assembly Language and Processors

Work Registers

The 8080 provides an 8-bit accumulator and six other general purpose work registers, as shown in Figure 1-3.
Programs reference these registers by the letters A (for the accumulator), B, C, D, E, H, and L. Thus, the
instruction ADD B may be interpreted as ‘add the contents of the B register to the contents of the accumu-

lator.

Some instructions reference a pair of registers as shown in the following:

Symbolic Reference Registers Referenced
B Band C
D D and E
H Hand L
M H and L (as a memory reference)
PSW A and condition flags (explained

later in this section)

The symbolic réference for a single register is often the same as for a register pair. The instruction to be executed
determines how the processor interprets the reference. For example, ADD B is an 8-bit operation. By contrast
PUSH B (which pushes the contents of the B and C registers onto the stack) is a 16-bit operation.

Notice that the letters H and M both refer to the H and L register pair. The choice of which to use depends on
the instruction. Use H when an instruction acts upon the H and L register pair as in INX H (increment the
contents of H and L by one). Use M when an instruction addresses memory via the H and L registers as in ADD
M (add the contents of the memory location specified by the H and L registers to the contents of the accumu-
lator).

The general purpose registers B, C, D, E, H, and L can provide a wide variety of functions such as storing 8-bit
data values, storing intermediate results in arithmetic operations, and storing 16-bit address pointers. Because of
the 8080’s extensive instruction set, it is usually possible to achieve a common result with any of several
different instructions. A simple add to the accumulator, for example, can be accomplished by more than half a
dozen different instructions. When possible, it is generally desirable to select a register-to-register instruction
such as ADD B. These instructions typically require only one byte of program storage. Also, using data already
present in a register eliminates a memory access and thus reduces the time required for the operation.

The accumulator also acts as a general-purpose register, but it has some special capabilities not shared with the
other registers. For example, the input/output instructions IN and OUT transfer data only between the accumu-
lator and external 1/O devices. Also, many operations involving the accumulator affect the condition flags as ex-
plained in the next section.

Example:
The following figures illustrate the execution of a move instruction. The MOV M,C moves a copy of the contents

of register C to the memory location specified by the H and L registers. Notice that this location must be in
RAM since data is to be written to memory.

17

Chapter 1, Assembly Language and Processors

8080
ACCUMULATOR FLAGS 8085
——————; HIGH LOW
B C STACK POINTER
INSTRUCTION
DECODER D E PROGRAM COUNTER
——[DATA BUS LATCH H L ADDRESS | BUS LATCH
A

1

ROM RAM

Figure 1-4. Instruction Fetch

The processor initiates the instruction fetch by latching the contents of the program counter on the address bus,
and then increments the program counter by one to indicate the address of the next instruction byte. When the
memory responds, the instruction is decoded into the series of actions shown in Figure 1-5.

NOTE

The following description of the execution of the
MOV M,C instruction is conceptually correct, but
does not account for normal bus control. For details
concerning memory interface, refer to the User’s
Manual for your processor.

Chapter 1. Assembly Language and Processors

8080
8085
laccumuLATOR| FLAGs |
| B | c] HIGH LOW
INSTRUCTION] | stack | POINTER |
DECOD
HR | D | E | | PROGRAM | COUNTER |
| DATA BUS LATCH] H | L [—»={ ADDRESS | BUS LATCH]

ROM RAM

Figure 1-5. Execution of MOV M,C Instruction

To execute the MOV M ,C instruction, the processor latches the contents of the C register on the data bus and
the contents of the H and L registers on the address bus. When the memory accepts the data, the processor
terminates execution of this instruction and initiates the next instruction fetch.

Internal Work Registers

Certain operations are destructive. For example, a compare is actually a subtract operation; a zero result indicates
that the opreands are equal. Since it is unacceptable to destroy either of the operands, the processor includes
several work registers reserved for its own use. The programmer cannot access these registers. These registers are
used for internal data transfers and for preserving operands in destructive operations.

Condition Flags

The 8080 provides five flip flops used as condition flags. Certain arithmetic and logical instructions alter one or
more of these flags to indicate the result of an operation. Your program can test the setting of four of these
flags (carry, sign, zero, and parity) using one of the conditional jump, call, or return instructions. This allows you
to alter the flow of program execution based on the outcome of a previous operation. The fifth flag, auxiliary
carry, is reserved for the use of the DAA instruction, as will be explained later in this section.

It is important for the programmer to know which flags are set by a particular instruction. Assume, for example,
that your program is to test the parity of an input byte and then execute one instruction sequence il parity is

even, a different instruction set if parity is odd. Coding a JPE (jump if parity is even) or JPO (jump if parity is

19

Chapter 1. Assembly Language and Processors

odd) instruction immediately following the IN (input) instruction produces false results since the IN instruction
does not affect the condition flags. The jump executed by your program reflects the outcome of some previous
operation unrelated to the IN instruction. For the operation to work correctly, you must include some instruc-
tion that alters the parity flag after the IN instruction, but before the jump instruction. For example, you can

add zero to the accumulator. This sets the parity flag without altering the data in the accumulator.

In other cases, you will want to set a flag with one instruction, but then have a number of intervening instruc-
tions before you use it. In these cases, you must be certain that the intervening instructions do not affect the

desired flag.

The flags set by each instruction are detailed in the individual instruction descriptions in Chapter 3 of this

manual.
NOTE
When a flag is ‘set’ it is set ON (has the value one);
when a flag is ‘reset’ it is reset OFF (has the value
zero).
Carry Flag

As its name implies, the carry flag is commonly used to indicate whether an addition causes a ‘carry’ into the
next higher order digit. The carry flag is also used as a ‘borrow’ flag in subtractions, as explained under ‘Two’s
Complement Representation of Data’ in Chapter 2 of this manual. The carry flag is also affected by the logical
AND, OR, and exclusive OR instructions. These instructions set ON or OFF particular bits of the accumulator.
See the descriptions of the ANA, ANI, ORA, ORI, XRA, and XRI! instructions in Chapter 3.

The rotate instructions, which move the contents of the accumulator one position to the left or right, treat the
carry bit as though it were a ninth bit of the accumulator. See the descriptions of the RAL, RAR, RLC, and RRC
instructions in Chapter 3 of this manual.
Example:
Addition of two one-byte numbers can produce a carry out of the high-order bit:
Bit Number: 7654 3210
AE= 1010 1110
+74= 0111 0100
0010 0010 = 22 carry flag = 1

An addition that causes a carry out of the high order bit sets the carry flag to 1; an addition that does not cause
a carry resets the flag to zero.

Sign Flag

As explained under ‘Two’s Complement Representation of Data’ in Chapter 2, bit 7 of a result in the accumulator
can be interpreted as a sign. Instructions that affect the sign flag set the flag equal to bit 7. A zero in bit 7

1-10

Chapter 1. Assembly Language and Processors

indicates a positive value; a one indicates a negative value. This value is duplicated in the sign flag so that
conditional jump, call, and return instructions can test for positive and negative values.

Zero Flag

Certain instructions set the zero flag to one to indicate that the result in the accumulator contains all zeros.
These instructions, reset the flag to zero if the result in the accumulator is other than zero. A result that has a
carry and a zero result also sets the zero bit as shown below:

1010 0111
+0101 1001

|
—

0000 0000 Carry Flag =
Zero Flag

Parity Flag

Parity is determined by counting the number of one bits set in the result in the accumulator. Instructions that
affect the parity flag set the flag to one for even parity and reset the flag to zero to indicate odd parity.

Auxiliary Carry Flag

The auxiliary carry flag indicates a carry out of bit 3 of the accumulator. You cannot test this flag directly in
your program; it is present to enable the DAA (Decimal Adjust Accumulator) to perform its function.

The auxiliary carry flag and the DAA instruction allow you to treat the value in the accumulator as two 4-bit
binary coded decimal numbers. Thus, the value 0001 1001 is equivalent to 19. (If this value is interpreted as a
binary number, it has the value 25.) Notice, however, that adding one to this value produces a non-decimal
result:

0001 1001
+0000 0001

0001 1010 = 1A
The DAA instruction converts hexadecimal values such as the A in the preceding example back into binary coded
decimal (BCD) format. The DAA instruction requires the auxiliary carry flag since the BCD format makes it
possible for arithmetic operations to generate a carry from the low-order 4-bit digit into the high-order 4-bit

digit. The DAA performs the following addition to correct the preceding example:

0001 1010
+0000 0110

0001 0000
+0001 0000 (auxiliary carry)

0010 0000 = 20

Chapter 1. Assembly Language and Processors

The auxiliary carry flag is affected by all add, subtract, increment, decrement, compare, and all logical AND,
OR, and exclusive OR instructions. (See the descriptions of these instructions in Chapter 3.) There is some
difference in the handling of the auxiliary carry flag by the logical AND instructions in the 8080 processor and
the 8085 processor. The 8085 logical AND instructions always set the auxiliary flag ON. The 8080 logical AND
instructions set the flag to reflect the logical OR of bit 3 of the values involved in the AND operation.

Stack and Stack Pointer

1-12

To understand the purpose and effectiveness of the stack, it is useful to understand the concept of a subroutine.

Assume that your program requires 2 multiplication routine. (Since the 8080 has no multiply instructions, this
can be performed through repetitive addition. For example, 3x4 is equivalent to 3+3+3+3.) Assume further that
your program needs this multiply routine several times. You can recode this routine inline each time it is needed,
but this can use a great deal of memory. Or, you can code a subroutine:

Inline Coding Subroutine

in!ine_;outine CKLL
il - \\
L — \

inline routine CALL - ubroutine
—_— - -

inline routine CALL /

T -

The 8080 provides instructions that call and return from a subroutine. When the call instruction is executed, the
address of the next instruction (the contents of the program counter) is pushed onto the stack. The contents of
the program counter are replaced by the address of the desired subroutine. At the end of the subroutine, a
return instruction pops that previously-stored address off the stack and puts it back into the program counter.
Program execution then continues as though the subroutine had been coded inline.

The mechanism that makes this possible is, of course, the stack. The stack is simply an area of random access
memory addressed by the stack pointer. The stack pointer is a hardware register maintained by the processor.
However, your program must initialize the stack pointer. This means that your program must load the base
address of the stack into the stack pointer. The base address of the stack is commonly assigned to the highest
available address in RAM. This is because the stack expands by decrementing the stack pointer. As items are

Chapter 1. Assembly Language and Processors

added to the stack, it expands into memory locations with /ower addresses. As items are removed from the
stack, the stack pointer is incremented back toward its base address. Nonetheless, the most recent item on the
stack is known as the ‘top of the stack.’ Stack is still a most descriptive term because you can always put
something else on top of the stack. In terms of programming, a subroutine can call a subroutine, and so on.
The only limitation to the number of items that can be added to the stack is the amount of RAM available for
the stack.

The amount of RAM allocated to the stack is important to the programmer. As you write your program, you
must be certain that the stack will not expand into areas reserved for other data. For most applications, this
means that you must assign data that requires RAM to the lowest RAM addresses available. To be more precise,
you must count up all instructions that add data to the stack. Ultimately, your program should remove from
the stack any data it places on the stack. Therefore, for any instruction that adds to the stack, you can sub-
tract any intervening instruction that removes an item from the stack. The most critical factor is the maximum
size of the stack. Notice that you must be sure to remove data your program adds to the stack. Otherwise, any
left-over items on the stack may cause the stack to grow into portions of RAM you intend for other data.

Stack Operations

Stack operations transfer sixteen bits of data between memory and a pair of processor registers. The two basic
operations are PUSH, which adds data to the stack, and POP, which removes data from the stack.

A call instruction pushes the contents of the program counter (which contains the address of the next instruction)
onto the stack and then transfers control to the desired subroutine by placing its address in the program counter.
A return instruction pops sixteen bits off the stack and places them in the program counter. This requires the
programmer to keep track of what is in the stack. For example, if you call a subroutine and the subroutine
pushes data onto the stack, the subroutine must remove that data before executing a return instruction. Other-
wise, the return instruction pops data from the stack and places it in the program counter. The results are
unpredictable, of course, but probably not what you want.

Saving Program Status

It is likely that a subroutine requires the use of one or more of the working registers. However, it is equally
likely that the main program has data stored in the registers that it needs when control returns to the main
program. As general rule, a subroutine should save the contents of a register before using it and then restore
the contents of that register before returning control to the main program. The subroutine can do this by
pushing the contents of the registers onto the stack and then popping the data back into the registers before
executing a return. The following instruction sequence saves and restores all the working registers. Notice that
the POP instructions must be in the opposite order of the PUSH instructions if the data is to be restored to its
original location.

Chapter 1. Assembly Language and Processors

SUBRTN: PUSH PSW
PUSH B
PUSH D
PUSH H

subroutine coding

POP H
POP D
POP B
POP PSW
RETURN

The letters B, D, and H refer to the B and C, D and E, and H and L register pairs, respectively. PSW refers to
the program status word. The program status word is a 16-bit word comprising the contents of the accumulator
and the five condition flags. (PUSH PSW adds three bits of filler to expand the condition flags into a full

byte; POP PSW strips out these filler bits.)

Input/Output Ports

The 256 input/output ports provide communication with the outside world of peripheral devices. The IN and
OUT instructions initiate data transfers.

The IN instruction latches the number of the desired port onto the address bus. As soon as a byte of data is
returned to the data bus latch, it is transferred into the accumulator.

The OUT instruction latches the number of the desired port onto the address bus and latches the data in the
accumulator onto the data bus.

The specified port number is duplicated on the address bus. Thus, the instruction IN 5 latches the bit configura-
tion 0000 0101 0000 0101 onto the address bus.

Notice that the IN and OUT instructions simply initiate a data transfer. It is the responsibility of the peripheral
device to detect that it has been addressed. Notice also that it is possible to dedicate any number of ports to

the same peripheral device. You might use a number of ports as control signals, for example.

Because input and output are almost totally application dependent, a discussion of design techniques is beyond
the scope of this manual.

For additional hardware information, refer to the 8080 or 8085 Microcomputer Systems User’s Manual.

For related programming information, see the descriptions of the IN, OUT, DI, El, RST, and RIM and SIM
instructions in Chapter 3 of this manual. (The RIM and SIM instructions apply only to the 8085.)

Chapter 1. Assembly Language and Processors

Instruction Set

The 8080 incorporates a powerful array of instructions. This section provides a general overview of the instruc-
tion set. The detailed operation of each instruction is described in Chapter 3 of this manual.

Addressing Modes
Instructions can be categorized according to their method of addressing the hardware registers and/or memory.

Implied Addressing. The addressing mode of certain instructions is implied by the instruction’s function. For
example, the STC (set carry flag) instruction deals only with the carry flag; the DAA (decimal adjust accumu-
lator) instruction deals with the accumulator.

Register Addressing. Quite a large set of instructions call for register addressing. With these instructions, you
must specify one of the registers A through E, H or L as well as the operation code. With these instructions,
the accumulator is implied as a second operand. For example, the instruction CMP E may be interpreted as
‘compare the contents of the E register with the contents of the accumulator.’

Most of the instructions that use register addressing deal with 8-bit values. However, a few of these instructions
deal with 16-bit register pairs. For example, the PCHL instruction exchanges the contents of the program counter
with the contents of the H and L registers.

Immediate Addressing. Instructions that use immediate addressing have data assembled as a part of the instruction
itself. For example, the instruction CPI ‘C’ may be interpreted as ‘compare the contents of the accumulator with
the letter C.’ When assembled, this instruction has the hexadecimal value FE43. Hexadecimal 43 is the internal
representation for the letter C. When this instruction is executed, the processor fetches the first instruction byte
and determines that it must fetch one more byte. The processor fetches the next byte into one of its internal
registers and then performs the compare operation.

Notice that the names of the immediate instructions indicate that they use immediate data. Thus, the name of an
add instruction is ADD; the name of an add immediate instruction is ADI.

All but two of the immediate instructions use the accumulator as an implied operand, as in the CPI instruction
shown previously. The MVI (move immediate) instruction can move its immediate data to any of the working

registers, including the accumulator, or to memory. Thus, the instruction MVI D,0F FH moves the hexadecimal
value FF to the D register.

The LXI instruction (load register pair immediate) is even more unusual in that its immediate data is a 16-bit
value. This instruction is commonly used to load addresses into a register pair. As mentioned previously, your
program must initialize the stack pointer; LX! is the instruction most commonly used for this purpose. For ex-
ample, the instruction LX!1 SP,30FFH loads the stack pointer with the hexadecimal value 30FF.

Direct Addressing. Jump instructions include a 16-bit address as part of the instruction. For example, the
instruction JMP 1000H causes a jump to the hexadecimal address 1000 by replacing the current contents of the
program counter with the new value 1000.

Chapter 1. Assembly Language and Processors

Instructions that include a direct address require three bytes of storage: one for the instruction code, and two
for the 16-bit address.

Register Indirect Addressing. Register indirect instructions reference memory via a register pair. Thus, the

instruction MOV M,C moves the contents of the C register into the memory address stored in the H and L
register pair. The instruction LDAX B loads the accumulator with the byte of data specified by the address
in the B and C register pair.

Combined Addressing Modes. Some instructions use a combination of addressing modes. A CALL instruction,
for example, combines direct addressing and register indirect addressing. The direct address in a CALL instruction
specifies the address of the desired subroutine; the register indirect address is the stack pointer. The CALL
instruction pushes the current contents of the program counter into the memory location specified by the stack
pointer.

Timing Effects of Addressing Modes. Addressing modes affect both the amount of time required for executing
an instruction and the amount of memory required for its storage. For example, instructions that use implied or
register addressing execute very quickly since they deal directly with the processor hardware or with data already
present in hardware registers. More important, however, is that the entire instruction can be fetched with a

single memory access. The number of memory accesses required is the single greatest factor in determining
execution timing. More memory accesses require more execution time. A CALL instruction, for example, requires
five memory accesses: three to access the entire instruction, and two more to push the contents of the program
counter onto the stack.

The processor can access memory once during each processor cycle. Each cycle comprises a variable number of
states. (The individual instruction descriptions in Chapter 3 specify the number of cycles and states required for
each instruction.) The length of a state depends on the clock frequency specified for your system, and may
range from 480 nanoseconds to 2 microseconds. Thus, the timing of a four state instruction may range from
1.920 microseconds through 8 microseconds. (The 8085 has a maximum clock frequency of 5 MHz and therefore a
minimum state length of 200 nanoseconds.)

Instruction Naming Conventions

The mnemonics assigned to the instructions are designed to indicate the function of the instruction. The instruc-
tions fall into the following functional categories:

Data Transfer Group. The data transfer instructions move data between registers or between memory and
registers.

MOV Move

MVI Move Immediate

LDA Load Accumulator Directly from Memory
STA Store Accumulator Directly in Memory

LHLD Load H and L Registers Directly from Memory
SHLD Store H and L Registers Directly in Memory

ALL MNEMONICS © 1974, 1975, 1976, 1977 INTEL CORPORATION

1-16

Chapter 1, Assembly Language and Processors

An ‘X’ in the name of a data transfer instruction implies that it deals with a register pair:

LXi Load Register Pair with Immediate data

LDAX Load Accumulator from Address in Register Pair
STAX Store Accumulator in Address in Register Pair
XCHG Exchange H and L with D and E

XTHL Exchange Top of Stack with H and L

Arithmetic Group. The arithmetic instructions add, subtract, increment, or decrement data in registers or

memory.
ADD Add to Accumulator
AD! Add Immediate Data to Accumulator
ADC Add to Accumulator Using Carry Flag _
ACI Add Immecdiate Data to Accumulator Using Carry Flag
SUB Subtract from Accumulator
SuUl Subtract Immediate Data from Accumulator
SBB Subtract from Accumulator Using Borrow (Carry) Flag
SBI Subtract Immediate from Accumulator Using Borrow
INR Increment Specified Byte by One
DCR Decrement Specified Byte by One
INX Increment Register Pair by One
DCX Decrement Register Pair by One
DAD Double Register Add: Add Contents of Register

Pair to H and L Register Pair

Logical Group. This group performs logical (Boolean) operations on data in registers and memory and on
condition flags. ’

The logical AND, OR, and Exclusive OR instructions enable you to set specific bits in the accumulator ON or

OFF.
ANA Logical AND with Accumulator
ANI Logical AND with Accumulator Using Immediate Data
ORA Logical OR with Accumulator
ORI Logical OR with Accumulator Using Immediate Data
XRA Exclusive Logical OR with Accumulator
XRI Exclusive OR Using Immediate Data

The compare instructions compare the contents of an 8-bit value with the contents of the accumulator:

CMP Compare
CPI Compare Using Immediate Data

ALL MNEMONICS © 1974, 1975, 1976, 1977 INTEL CORPORATION

117

Chapter 1. Assembly Language and Processors

The rotate instructions shift the contents of the accumulator one bit position to the left or right:

RLC Rotate Accumulator Left
RRC Rotate Accumulator Right
RAL Rotate Left Through Carry
RAR Rotate Right Through Carry

Complement and carry flag instructions:

CMA Complement Accumulator
CMC Complement Carry Flag
STC Set Carry Flag

Branch Group. The branching instructions alter normal sequential program flow, either unconditionally or
conditionally. The unconditional branching instructions are as follows:

JMP Jump
CALL Call
RET Return

Conditional branching instructions examine the status of one of four condition flags to determine whether the
specified branch is to be executed. The conditions that may be specified are as follows:

NZ Not Zero (Z = 0)
VA Zero (Z=1)

NC No Carry (C = 0)
C Carry (C = 1)

PO Parity Odd (P = 0)
PE Parity Even (P = 1)
P Plus (S = 0)

M Minus (S = 1)

Thus, the conditional branching instructions are specified as follows:

Jumps Calls Returns

JC cC RC (Carry)

JNC CNC RNC (No Carry)
JZ Ccz RZ (Zero)

JNZ CNZ RNZ (Not Zero)
jp cp RP (Plus)

M CM RM (Minus)

JPE CPE RPE (Parity Even)
JPO CPO RPO (Parity Odd)

Two other instructions can effect a branch by replacing the contents of the program counter:

PCHL Move H and L to Program Counter
RST Special Restart Instruction Used with Interrupts

ALL MNEMONICS © 1974, 1975, 1976, 1977 INTEL CORPORATION

1-18

Chapter 1. Assembly Language and Processors

Stack, 1/0, and Machine Control Instructions. The following instructions affect the stack and/or stack pointer:

PUSH
POP
XTHL
SPHL

Push Two Bytes of Data onto the Stack
Pop Two Bytes of Data off the Stack
Exchange Top of Stack with H and L
Move contents of H and L to Stack Pointer

The 1/O instructions are as follows:

IN
ouT

Initiate Input Operation
Initiate Output Operation

The machine control instructions are as follows:

El
DI
HLT
NOP

Enable Interrupt System
Disable Interrupt System
Halt

No Operation

HARDWARE/INSTRUCTION SUMMARY

The following illustrations graphically summarize the instruction set by showing the hardware acted upon by
specific instructions. The type of operand allowed for each instruction is indicated through the use of a code.

When no code is given, the instruction does not allow operands.

Code

REGMg

Dg
Ale

Pg

D16

Accumulator Instructions

Meaning

The operand may specify one of the 8-bit registers A,B,C,D,E,H, or L or M

(a memory reference via the 16-bit address in the H and L registers). The

MOV instruction, which calls for two operands, can specify M for only one

of its operands.

Designates 8-bit immediate operand.
Designates a 16-bit address.
Designates an 8-bit port number.

Designates a 16-bit register pair (B&C,D&E,H&L, or SP).

Designates a 16-bit immediate operand.

The following illustration shows the instructions that can affect the accumulator. The instructions listed above

the accumulator all act on the data in the accumulator, and all except CMA (complement accumulator) affect

one or more of the condition flags. The instructions listed below the accumulator move data into or out of the
accumulator, but do not affect condition flags. The STC (set carry) and CMC (complement carry) instructions

are also shown here.

ALL MNEMONICS © 1974, 1975, 1976, 1977 INTEL CORPORATION

Chapter 1. Assembly Language and Processors

ADD ADI
ADC ACI
SUB Sul
SBB SBI
ANA { REGMg \ni) Dg
XRA XRI
ORA ORI
CMP / CPI
RLC RAL RRC
RAR CMA DAA
INR
DCR} REGMy
ACCUMULATOR FLAGS STC CMC
HIGH LOW
T
B C STACK | POINTER
|
MOV REGMg,REGMg D E PROGRAM | COUNTER
H L
I 1
IN Pg OUT Py
™~
LDAX| o MEMORY INPUT OUTPUT
STAX ' PORTS PORTS
oAl
STA 16
MVI DS STACK
MOV REGMg,REG,

ALL MNEMONICS © 1974, 1975, 1976, 1977 INTEL COCRPORATION

1-20

Chapter 1. Assembly Language and Processors

Register Pair (Word) Instructions

The following instructions all deal with 16-bit words. Except for DAD (which adds thecontents of the B&C or
D&E register pair to H&L), none of these instructions affect the condition flags. DAD affects only the carry

flag.
ACCUMULATOR| FLAGS
INX HIGH LOW
B C DCX) REG.. (SPHL | STACK | POINTER
16 .
DAD
. D E .~ PCHL »[PROGRAM | COUNTER
. 1
XCHG
H L -

I—— XTHL
]

LHLD
SHLD

LXI REG16’D16 — MEMORY

STACK |¢—— :(l;’S)H }B,D,H,PSW

ALL MNEMONICS © 1974, 1975, 1976, 1977 INTEL CORPORATION

121

Chapter 1. Assembly Language and Processors

Branching Instructions

The following instructions can alter the contents of the program counter, thereby altering the normal sequential

execution flow. Jump instructions affect only the program counter. Call and Return instructions affect the
program counter, stack pointer, and stack.

ACCUMULATOR FLAGS

HIGH LOW
B C STACK E POINTER -
D E PCHL —-~{ PROGRAM i COUNTER RST
r] ‘J
JMP CALL RET
JC JNC CC CNC RC RNC

)z INZ{ , €z CNz{ , RZ RNZ
P M 16 cp cm 16Rp RM 16
JPE JPO CPE CPO RPE RPO

MEMORY CONTROL INSTRUCTIONS
RST

NOP

HLT

El

DI

SIM
RIM} 8085 only

ALL MNEMONICS © 1974, 1975, 1976, 1977 INTEL CORPORATION

1-22

Chapter 1. Assembly Language and Processors

Instruction Set Guide

The following is a summary of the instruction set:

ADD) ADI"
ADC AC!

SUB sul

SBB SBI

ANA > REGMg ANt {08
XRA XRI

ORA ORI

cmp | cpl

RLC RAL RRC
RAR CMA DAA

INR
DCR} REGMg
ACCUMULATOR] FLAGS]fg)c(cMC HIGH LOW
MOV REGMg,REGMg| B | C |DCX 5 REG ¢ SPHL»{ STACK i POINTER |e——
DAD !
| D [E N PCHL»{ PROGRAM T COUNTER |«RST
LXI REGy4,Dq6 XCHG Y
L H L 14/
— |
JMP CALL RET
JC JNC CC CNC RC RNC
“XTHL‘j Jz INZ| , €z CNZ| , RZ RNZ
pooM (716 cp oM 16 rp RM [16
JPE }PO CPE CPO RPE RPO
LHLD} A INIP OU’}' P
’LDAX} A o >THDJ ™16 8 8 CONTROL
BC,DE INSTRUCTIONS
STAX MEMORY INPUT OUTPUT
PORTS PORTS RST
LDA A NOP
STA 16 HLT
El
MVi Dg DI
MOV REGMg,REGMg F————=—————4 PUSH
C. STACK __ [— Lon } B,D,H,PSW SIM L 8085 ONLY
RIM
CODE MEANING
REGM8 The operand may specify one of the 8-bit registers A,B,C,D,E,H, or L or M (a memory
reference via the 16-bit address in the H and L registers). The MOV instruction, which
calls for two operands, can specify M for only one of its operands.
D8 Designates 8-bit immediate operand.
At Designates a 16-bit address.
P8 Designates an 8-bit port number.
REG,¢ Designates a 16-bit register pair (B&C,D&E,H&L ,or SP).
016 Designates a 16 -bit immediate operand.

ALL MNEMONICS © 1974, 1975, 1976, 1977 INTEL CORPORATION
1-23

Chapter 1. Assembly Language and Processors

8085 PROCESSOR DIFFERENCES

The differences between the 8080 processor and the 8085 processor will be more obvious to the system designer
than to the programmer. Except for two additional instructions, the 8085 instruction set is identical to and fully
compatible with the 8080 instruction set. Most programs written for the 8080 should operate on the 8085 with-
out modification. The only programs that may require changes are those with critical timing routines; the higher
system speed of the 8085 may alter the time values of such routines.

A partial listing of 8085 design features includes the following:

. A single 5 volt power supply.

° Execution speeds approximately 50% faster than the 8080.

° Incorporation in the processor of the features of the 8224 Clock Generator and Driver and the
8228 System Controller and Bus Driver.
A non-maskable TRAP interrupt for handling serious problems such as power failures.
Three separately maskable interrupts that generate internal RST instructions.

° Input/output lines for serial data transfer.

Programming for the 8085

For the programmer, the new features of the 8085 are summarized in the two new instructions SIM and RIM.
These instructions differ from'the 8080 instructions in that cach has multiple functions. The SIM instruction
sets the interrupt mask and/or writes out a bit of serial data. The programmer must place the desired interrupt
mask and/or serial output in the accumulator prior to execution of the SIM instruction. The RIM instruction
reads a bit of serial data if one is present and the interrupt mask into the accumulator. Details of these instruc-
tions are covered in Chapter 3.

Despite the new interrupt features of the 8085, programming for interrupts is little changed. Notice, however, that
8085 hardware interrupt RESTART addresses fall between the existing 8080 RESTART addresses. Therefore,
only four bytes are available for certain RST instructions. Also, the TRAP interrupt input is non-maskable and
cannot be disabled. If your application uses this input, be certain to provide an interrupt routine for it.

The interrupts have the following priority:

TRAP highest
RST7.5
RST6.5
RSTS.5
INTR lowest

When more than one interrupt is pending, the processor always recognizes the higher priority interrupt first.
These priorities apply only to the sequence in which interrupts are recognized. Program routines that service
interrupts have no special priority. Thus, an RSTS5.5 interrupt can interrupt the service routine for an RST7.5
interrupt. If you want to protect a service routine from interruption, either disable the interrupt system (D}
instruction), or mask out other potential interrupts (SIM instruction).

1-24

Chapter 1. Assembly Language and Processors

Conditional Instructions

Execution of conditional instructions on the 8085 differs from the 8080. The 8080 fetches all three instruction
bytes whether or not the condition is satisfied. The 8085 evaluates the condition while it fetches the second
instruction byte. If the specified condition is not satisfied, the 8085 skips over the third instruction byte and
immediately fetches the next instruction. Skipping the unnecessary byte allows for faster execution.

1-25

2. ASSEMBLY LANGUAGE CONCEPTS

INTRODUCTION

just as the English language has its rules of grammar, assembly language has certain coding rules. The source line

is the assembly language equivalent of a sentence.

This assembler recognizes three types of source lines: instructions, directives, and controls. This manual describes

instructions and directives. Controls are described in the operator’s manual for your version of the assembler.
This chapter describes the general rules for coding source lines. Specific instructions (see Chapter 3) and

directives (sece Chapters 4 and 5) may have specific coding rules. Even so, the coding of such instructions and
directives must conform to the general rules in this chapter.

SOURCE LINE FORMAT

Assembly language instructions and assembler directives may consist of up to four fields, as follows:

Label: Opcode Operand ;Comment
Name

The fields may be separated by any number of blanks, but must be separated by at least one delimiter. Each
instruction and directive must be entered on a single line terminated by a carriage return and a line feed. No
continuation lines are possible, but you may have lines consisting entirely of comments.

Character Set

The following characters are legal in assembly language source statements:

° The letters of the alphabet, A through Z. Both upper- and lower-case letters are allowed. Internally,

the assembler treats all letters as though they were upper-case, but the characters are printed exactly

as they were input in the assembly listing.
. The digits O through 9.

° The following special characters:

2-1

Chapter 2. Assembly Language Concepts

Character Meaning
+ Plus sign
- Minus sign
* Asterisk
/ Slash
Comma

Left parenthesis
Right parenthesis

. — -

Single quote
& Ampersand
: Colon
$ Dollar sign
@ Commercial ‘at’ sign
? Question mark
= Equal sign
< Less than sign
> Greater than sign
% Percent sign
! Exclamation point
blank Blank or space
; Semicolon
Period
CR Carriage return
FF Form feed
HT Horizontal tab
° In addition, any ASCII character may appear in a string enclosed in single quotes or in a comment.

Delimiters

Certain characters have special meaning to the assembler in that they function as delimiters. Delimiters define
the end of a source statement, a field, or a component of a field. The following list defines the delimiters
recognized by the assembler. Notice that many delimiters are related to the macro feature explained in Chapter
5. Delimiters used for macros are shown here so that you will not accidentally use a delimiter improperly.
Refer to Chapter 5 for a description of macros.

Character(s)

blank

CR

HT

%

Label/Name Field

Meaning

one or more
blanks

comma
pair of single
quote characters

pair of paren-
theses

carriage return

horizontal tab

semicolon

colon

ampersand

pair of angle
brackets

percent sign

exclamation
point

double semi-
colon

Chapter 2. Assembly Language Concepts

Use
field separator or symbol terminator
separate operands in the operands field,
including macro parameters

delimit a character string

delimit an expression

statement terminator

field separator or symbol terminator
comment field delimiter

delimiter for symbols used as labels

delimit macro prototype text or formal

* parameters for concatenation

delimit macro parameter text which
contains commas or embedded blanks;
also used to delimit a parameter list

delimit a macro parameter that is to be
evaluated prior to substitution

an escape character used to pass the
following character as part of a macro
parameter when the character might
otherwise be interpreted as a delimiter

delimiter for comments in macro definitions
when the comment is to be suppressed when
the macro is expanded

lLabels are always optional. An instruction label is a symbol name whose value is the location where the instruc-
tion is assembled. A labe! may contain from one to six alphanumeric characters, but the first character must be
alphabetic or the special characters ‘7’ or ‘@’. The label name must be terminated with a colon. A symbol used
as a label can be defined only once in your program. (See ‘Symbols and Symbol Tables’ later in this chapter.)

23

Chapter 2. Assembly Language Concepts

Alphanumeric characters include the letters of the alphabet, the question mark character, and the decimal
digits O through 9.

A name is required for the SET, EQU, and MACRO directives. Names follow the same coding rules as labels,
except that they must be terminated with a blank rather than a colon. The label/name field must be empty for
the LOCAL and ENDM directives.

Opcode Field

This required field contains the mnemonic operation code for the 8080/8085 instruction or assembler directive
to be performed.

Operand Field

The operand field identifies the data to be operated on by the specified opcode. Some instructions require no
operands. Others require one or two operands. As a general rule, when two operands are required (as in data
transfer and arithmetic operations), the first operand identifies the destination (or target) of the operation’s
result, and the second operand specifies the source data.

Examples:
MOV AC ;MOVE CONTENTS OF REG C TO ACCUMULATOR
MVi AB’ ;MOVE B TO ACCUMULATOR

Comment Field

The optional comment field may contain any information you deem useful for annotating your program. The
only coding requirement for this field is that it be preceded by a semicolon. Because the semicolon is a delimiter,
there is no need to separate the comment from the previous field with one or more spaces. However, spaces are
commonly used to improve the readability of the comment. Although comments are always optional, you should
use them liberally since it is easier to debug and maintain a well documented program.

CODING OPERAND FIELD INFORMATION

There are four types of information (a through d in the following list} that may be requested as items in the
operand field; the information may be specified in nine ways, each of which is described below.

Chapter 2. Assembly Language Concepts

OPERAND FIELD INFORMATION

Information required Ways of specitying
{a) Register (1) Hexadecimal Data
(b) Register Pair (2) Decimal Data
(c) Immediate Data (3) Octal Data
(d) 16-bit Address (4) Binary Data
(5) Location Counter ($)
(6) ASCII Constant
(7) Labels assigned values
(8) Labels of instructions or data
(9) Expressions

Hexadecimal Data. Each hexadecimal number must begin with a numeric digit (O through 9) and must be
followed by the letter H.

Label Opcode Operand Commeﬁ,t
HERE: MVI C,0BAH ;LOAD REG C WITH HEX BA
Decimal Data. Each decimal number may be identified by the letter D immediately after its last digit or may

stand alone. Any number not specifically identified as hexadecimal, octal, or binary is assumed to be decimal.
Thus, the following statements are equivalent:

Label Opcode Operand Comment
ABC: MVI E,15 ;LOAD E WITH 15 DECIMAL
MVI E,15D

Octal Data. Each octal number must be followed by the letter O or the letter Q.
Label Opcode Operand Comment

LABEL: MVi A,72Q ;LOAD OCTAL 72 INTO ACCUM

Binary Data. Each binary number must be followed by the letter B.

Label Opcode Operand Comment
NOW: MVI D,11110110B ;LOAD REGISTER D
;WITH OF6H

25

Chapter 2. Assembly Language Concepts

2-6

Location Counter. The $ character refers to the current location counter. The location counter contains the
address where the current instruction or data statement will be assembled.

Label Opcode Operand Comment
GO: JMP $+6 ;JUMP TO ADDRESS 6 BYTES BEYOND

;THE FIRST BYTE OF THIS
;INSTRUCTION

ASCII Constant. One or more ASCII characters enclosed in single quotes define an ASCIHI constant. Two

successive single quotes must be used to represent one single quote within an ASCII constant.

Label Opcode Operand Comment
MVI E,*’ ;LOAD E REG WITH 8-BIT ASCH
;REPRESENTATION OF *
DATE: DB ‘TODAY"S DATE’

Labels Assigned Values. The SET and EQU directives can assign values to labels. In the following example,
assume that VALUE has been assigned the value 9FH; the two statements are equivalent:

Label Opcode Operand Comment
Al: MVI D,9FH
A2: MVI D,VALUE

Labels of Instruction or Data. The label assigned to an instruction or a data definition has as its value the
address of the first byte of the instruction or data. Instructions elsewhere in the program can refer to this
address by its symbolic label name.

Label Opcode Operand Comments
HERE: JMP THERE ;JJUMP TO INSTRUCTION AT THERE
THERE: MVI D,9FH

Expressions. All of the operand types discussed previously can be combined by operators to form an expression.
In fact, the example given for the location counter ($+6) is an expression that combines the location counter
with the decimal number 6.

Because the rules for coding expressions are rather extensive, further discussion of expressions is deferred until
later in this chapter.

Chapter 2. Assembly Language Concepts

Instructions as Operands. One operand type was intentionally omitted from the list of operand field infor-
mation: Instructions enclosed in parentheses may appear in the operands field. The operand has the value of
the left-most byte of the assembled instruction.

Label Opcode Operand
INS: DB (ADD C)
The statement above defines a byte with the value 81H (the object cbde for an ADD C instruction). Such

coding is typically used where the object program modifies itself during execution, a technique that is strongly
discouraged.

Register-Type Operands. Only instructions that allow registers as operands may have register-type operands.
Expressions containing register-type operands are flagged as errors. Thus, an instruction like

JMP A
is flagged as an illegal use of a register.

The only assembler directives that may contain register-type operands are EQU, SET, and actual parameters in
macro calls. Registers can be assigned alternate names only by EQU or SET.

TWO’S COMPLEMENT REPRESENTATION OF DATA

Any 8-bit byte contains one of the 256 possible combinations of zeros and ones. Any particular combination may
be interpreted in a number of ways. For example, the code 1FH may be interpreted as an instruction (Rotate
Accumuiator Right Through Carry), as the hexadecimal value 1F, the decimal value 31, or simply the bit

pattern 00011111,

Arithmetic instructions assume that the data bytes upon which they operate are in the ‘two’s complement’
format. To understand why, let us first examine two examples of decimal arithmetic:

35 35
o 88
23 123

Notice that the results of the two examples are equal if we disregard the carry out of the high order position in
the second example. The second example illustrates subtraction performed by adding the ten’s complement of
the subtrahend (the bottom number) to the minuend (the top number). To form the ten’s complement of a
decimal number, first subtract each digit of the subtrahend from 9 to form the nine’s complement; then add one
to the result to form the ten’s complement. Thus, 99—12=87; 87+1=88, the ten’s complement of 12.

The ability to perform subtraction with a form of addition is a great advantage in a computer since fewer cir-
cuits are required. Also, arithmetic operations within the computer are binary, which simplifies matters even more.

Chapter 2. Assembly Language Concepts

28

The processor forms the two'’s complement of a binary value simply by reversing the value of each bit and then
adding one to the result. Any carry out of the high order bit is ignored when the complement is formed. Thus,
the subtraction shown previously is performed as follows:

35 =0010 0011 0010 0011
—12 = 0000 1100 = 1111 0011 +1111 0100

23 + 1 1 0001 0111 = 23

1111 0100

Again, by disregarding the carry out of the high order position, the subtraction is performed through a form of
addition. However, if this operation were performed by the 8080 or the 8085, the carry flag would be set OFF
at the end of the subtraction. This is because the processors complement the carry flag at the end of a subtract
operation so that it can be used as a ‘borrow’ flag in multibyte subtractions. In the example shown, no borrow
is required, so the carry flag is set OFF. By contrast, the carry flag is set ON if we subtract 35 from 12:

12 = 0000 1100 0000 1100
—35=0010 0011 = 1101 1100 +1101 1101

+ 1 1110 1001 = 233 or —105
1101 1101

In this case, the absence of a carry indicates that a borrow is required from the next higher order byte, if any.
Therefore, the processor sets the carry flag ON. Notice also that the result is stored in a complemented form.
If you want to interpret this result as a decimal value, you must again form its two’s complement:

1110 1001 = 0001 0110
+ 1

0001 0111 =123

Two’s complement numbers may also be signed. When a byte is interpreted as a signed two’s complement number,
the high order bit indicates the sign. A zero in this bit indicates a positive number, a one a negative number. The
seven low order bits provide the magnitude of the number. Thus, 0111 1111 cquals +127.

At the beginning of this description of two’s complement arithmetic, it was stated that any 8-bit byte may con-
tain one of the 256 possible combinations of zeros and ones. It must also be stated that the proper interpretation
of data is a programming responsibility.

As an example, consider the compare instruction. The compare logic considers only the raw bit values of the
items being compared. Therefore, a negative two’s complement number always compares higher than a positive
number, because the negative number’s high order bit is always ON. As a result, the meanings of the flags set by
the compare instruction are reversed. Your program must account for this condition.

Chapter 2. Assembly Language Concepts

SYMBOLS AND SYMBOL TABLES
Symbolic Addressing

If you have never done symbolic programming before, the following analogy may help clarify the distinction
between a symbolic and an absolute address.

The locations in program memory can be compared to a cluster of post office boxes. Suppose Richard Roe
rents box 500 for two months. He can then ask for his letters by saying ‘Give me the mail in box 500," or
‘Give me the mail for Roe.” If Donald Smith later rents box 500, he too can ask for his mail by either box
number 500 or by his name. The content of the post office box can be accessed by a fixed, abso/ute address
(500) or by a symbolic, variable name. The postal clerk correlates the symbolic names and their absolute values
in his log book. The assembler performs the same function, keeping track of symbols and their values in a
symbol table. Note that you do not have to assign values to symbolic addresses. The assembler references its
location counter during the assembly process to calculate these addresses for you. (The location counter does
for the assembler what the program counter does for the microcomputer. It tells the assembler where the next
instruction or operand is to be placed in memory.)

Symbol Characteristics
A symbol can contain one to six alphabetic (A-Z) or numeric (0-9) characters (with the first character alphabetic)
or the special character ‘?’ or ‘@’. A dollar sign can be used as a symbol to denote the value currently in the
location counter. For example, the command

JMP $+6

forces a jump to the instruction residing six memory locations higher than the JMP instruction. Symbols of the
form ‘?22nnn’ are generated by the assembler to uniquely name symbols local to macros.

The assembler regards symbols as having the following attributes: reserved or user-defined; global or limited;
permanent or redefinable; and absolute or relocatable.

Reserved, User-Defined, and Assembler-Generated Symbols
Reserved symbols are those that already have special meaning to the assembler and therefore cannot appear as

user-defined symbols. The mnemonic names for machine instructions and the assembler directives are all reserved
symbols.

Chapter 2. Assembly Language Concepts

2-10

The following instruction operand symbols are also reserved:

Symbo/ Meaning

$ Location counter reference

A Accumulator register

B Register B or register pair B and C

C Register C

D Register D or register pair D and E

E Register E

H Register H or register pair H and L

L Register L

SP Stack pointer register

PSW Program status word (Contents of A and status flags)
M Memory reference code using address in H and L

STACK Special relocatability feature

MEMORY Special relocatability feature

NOTE

The STACK and MEMORY symbols are fully discussed
in Chapter 4.

User-defined symbols are symbols you create to reference instruction and data addresses. These symbols are
defined when they appear in the label field of an instruction or in the name field of EQU, SET, or MACRO
directives (see Chapters 4 and 5).

Assembler-generated symbols are created by the assembler to replace user-defined symbols whose scope is limited
to a macro definition.

Global and Limited Symbols

Most symbols are global. This means that they have meaning throughout your program. Assume, for example,
that you assign the symbolic name RTN to a routine. You may then code a jump or a call to RTN from any
point in your program. If you assign the symbolic name RTN to a second routine, an error results since you
have given multiple definitions 1o the same name.

Certain symbols have meaning only within a macro definition or within a call to that macro; these symbols are
‘local’ to the macro. Macros require local symbols because the same macro may be used many times in the

program. If the symbolic names within macros were global, each use of the macro (except the first) would cause
multiple definitions for those symbolic names.

See Chapter 5 for additional information about macros.

Chapter 2. Assembly Language Concepts

Permanent and Redefinable Symbols

Most symbols are permanent since their value cannot change during the assembly operation. Only symbols
defined with the SET and MACRO assembler directives are redefinable.

Absolute and Relocatable Symbols

An important attribute of symbols with this assembler is that-of relocatability. Relocatable programs are
assembled relative to memory location zero. These programs are later relocated to some other set of memory
locations. Symbols with addresses that change during relocation are relocatable symbols. Symbols with
addresses that do not change during relocation are absolute symbols. This distinction becomes important when
the symbols are used within expressions, as will be explained later.

External and public symbols are special types of relocatable symbols. These symbols are required to establish
program linkage when several relocatable program modules are bound together to form a single application
program. External symbols are those used in the current program module, but defined in another module.
Such symbols must appear in an EXTRN statement, or the assembler will flag them as undefined.

Converscly, PUBLIC symbols are defined in the current program module, but may be accessed by other
modules. The addresses for these symbols are resolved-when the modules are bound together.

Absolute and relocatable symbols may both appear in a relocatable module. References to any of the assembler-

defined registers A through E, H and L, PSW, SP, and M are absolute since they refer to hardware locations.
But these references are valid in any module.

ASSEMBLY-TIME EXPRESSION EVALUATION
An expression is a combination of numbers, symbols, and operators. Each element of an expression is a term.
Expressions, like symbols, may be absolute or relocatable. For the sake of readers who do not require the

relocation feature, absolute expressions are described first. However, users of relocation should read all the
following.

Operators

The assembler includes five groups of operators which permit the following assembly-time operations: arithmetic
operations, shift operations, logical operations, compare operations, and byte isolation operations. It is important
to keep in mind that these are all assembly-time operations. Once the assembler has evaluated an expression, it
becomes a permanent part of your program. Assume, for example, that your program defines a list of ten con-
stants starting at the fabel LIST; the following instruction loads the address of the seventh item in the list into
the H and L registers:

LXI H,LIST+6

Notice that LIST addresses the first item, LIST+1 the second, and so on.

2-11

Chapter 2. Assembly Language Concepts

Arithmetic Operators

The arithmetic operators are as follows:

Operator Meaning
+ Unary or binary addition
— Unary or binary subtraction
* Multiplication
/ Division. Any remainder is discarded (7/2=3).
Division by zero causes an error.
MOD Modulo. Result is the remainder causedby a

division operation. (7 MOD 3=1)
Examples:
The following expressions generate the bit pattern for the ASCII character A:
5+30%2
(25/5)+30%2
5+(-30*%-2)
Notice that the MOD operator must be separated from its operands by spaces:

NUMBR MOD 8

Assuming that NUMBR has the value 25, the previous expression evaluates to the value 1.

Shift Operators

The shift operators are as follows:

Operator Meaning
y SHR x Shift operand ‘y’ to the right ‘x’ bit positions.
y SHL x Shift operand 'y’ to the left ‘x’ bit positions.

The shift operators do not wraparound any bits shifted out of the byte. Bit positions vacated by the shift
operation are zero-filled. Notice that the shift operator must be separated from its operands by spaces.

Example:
Assume that NUMBR has the value 0101 0101. The effects of the shift operators is as follows:
NUMBR SHR 2 0001 0101

NUMBR SHL 1 1010 1010

2-12

Chapter 2, Assembly Language Concepts

Notice that, for non-negative values, a shift one bit position to the left has the effect of multiplying a value by two;
a shift one bit position to the right has the effect of dividing a value by two.

Logical Operators

The logical operators are as follows:

Operator Meaning
NOT Logical one’s complement
AND Logical AND (=1 if both ANDed bits are 1)
OR Logical OR (=1 if either ORed bit is 1)
XOR Logical EXCLUSIVE OR (=1 if bits are different)

The logical operators act only upon the least significant bit of the result of the operation. Also, these operators are
commonly used in conditional |F directives. These directives are fully explained in Chapter 4.

Example:

The following IF directive tests the least significant bit of the evaluated expression. The assembly language code that
follows the [F is assembled only if the condition is TRUE. This means that the result must have a one bit in the least
significant bit position.

IF FLDT AND FLD2 AND FLD3

Compare Operators

The compare operators are as follows:

Operator Meaning

EQ Equal

NE Not equal

LT Less than

LE Less than or equal

GT Greater than

GE Greater than or equal

NUL Special operator used to test for null (missing) macro

parameters

2-13

Chapter 2. Assembly Language Concepts

The compare operators yield a yes-no result. Thus, if the evaluation of the relation is TRUE, the value of the
result is all ones. If false, the value of the result is all zeros. Relational operations are based strictly on magni-
tude comparisons of bit values. Thus, a two’s complement negative number (which always has a one in its high
order bit) is greater than a two’s complement positive number (which always has a zero in its high order bit).

Since the NUL operator applies only to the macro feature, NUL is described in Chapter 5.

The compare operators are commonly used in conditional IF directives. These directives are fully explained in
Chapter 4.

Notice that the compare operator must be separated from its operands by spaces.
Example:

The following IF directive tests the values of FLD1 and FLD?2 for equality. If the result of the comparison is
TRUE, the assembly language coding following the IF directive is assembled. Otherwise, the code is skipped over.

IF FLD1 EQ FLD2

Byte Isolation Operators

The byte isolation operators are as follows:

Operator Meaning
HIGH Isolate high-order 8 bits of 16-bit value
LOW Isolate low-order 8 bits of 16-bit value.

The assembler treats expressions as 16-bit addresses. In certain cases, you need to deal only with a part of an
address, or you need to generate an 8-bit value. This is the function of the HIGH and LOW operators.

The assembler’s relocation feature treats all external and relocatable symbols as 16-bit addresses. When one of
these symbols appears in the operand expression of an immediate instruction, it must be preceded by either the
HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the expression.
When neither operator is present, the assembler assumes the LOW operator and issues an error message.

NOTE

Any program segment containing a symbol used as the
argument of a HIGH operator should be located only on
a page boundary. This is done using the PAGE option
with the CSEG or DSEG directives described in Chapter
4. Carries are not propagated from the low-order byte
when the assembler object code is relocated and the
carry flag will be lost. Using PAGE ensures that this

flag is 0.

2-14

Chapter 2. Assembly Language Concepts

Examples:

Assume that ADRS is an address manipulated at assembly-time for building tables or lists of items that must all
be below address 255 in memory. The following IF directive determines whether the high-order byte of ADRS
is zero, thus indicating that the address is still less than 256:

IF HIGH ADRS EQ 0

Permissible Range of Values

Internally, the assembler treats each term of an expression as a two-byte, 16-bit value. Thus, the maximum
range of values is OH through OFFFFH. All arithmetic operations are performed using unsigned two’s comple-
ment arithmetic. The assembler performs no overflow detection for two-byte values, so these values are evaluated

modulo 64K.

Certain instructions require that their operands be an eight-bit value. Expressions for these instructions must
yield values in the range —256 through +255. The assembler generates an error message if an expression for one
of these instructions yields an out-of-range value.

NOTE

Only instructions that allow registers as operands may have
register-type operands. Expressions containing register-type
operands are flagged as errors. The only assembler directives
that may contain register-type operands are EQU, SET, and
actual parameters in macro calls. Registers can be assigned
alternate names only by EQU or SET.

Precedence of Operators

Expressions are evaluated left to right. Operators with higher precedence are evaluated before other operators
that immediately precede or follow them. When two operators have equal precedence, the left-most is evaluated

first.

Parentheses can be used to override normal rules of precedence. The part of an expression enclosed in paren-
theses is evaluated first. If parentheses are nested, the innermost are evaluated first.

15/3 + 18/9 =5+2=7
15/(3 +18/9) =15/(3+2)=15/5=3

2-15

Chapter 2. Assembly Language Concepts

The following list describes the classes of operators in order of precedence:

] Parenthesized expressions

. NUL

. HIGH, LOW

. Multiplication/Division: *, /, MOD, SHL, SHR
. Addition/Subtraction: +, - (unary and binary)
U Relational Operators: EQ, LT, LE, GT, GE, NE
. Logical NOT

. Logical AND

. Logical OR, XOR

The relational, logical, and HIGH/LOW operators must be separated from their operands by at least one blank.

WARNING
If NOT is immediately preceded by another operator, e.g.:
Y EQU 1+ NOT X

an error will result. To code the expression for correct assembly, parenthesize the expression to force NOT to be
evaluated first, e.g.:

Y EQU 1 + (NOT X)

Relocatable Expressions
Determining the relocatability of an expression requires that you understand the relocatability of each term used
in the expression. This is easier than it sounds since the number of allowable operators is substantially reduced.
But first it is necessary to know what determines whether a symbol is absolute or relocatable.
Absolute symbols can be defined two ways:
° A symbol that appears in a label field when the ASEG directive is in effect is an absolute symbol.
. A symbol defined as equivalent to an absolute expression using the SET or EQU directive is an
absolute symbol.

Relocatable symbols can be defined a number of ways:

° A symbol that appears in a label field when the DSEG or CSEG directive is in effect is a relocatable

symbol.

° A symbol defined as equivalent to a relocatable expression using the SET or EQU directive is
relocatable.

° The special assembler symbols STACK and MEMORY are relocatable.

° External symbols are considered relocatable.

° A reference to the location counter (specified by the $ character) is relocatable when the CSEG or

DSEG directive is in effect.

The expressions shown in the following list arc the only expressions that yield a relocatable result. Assume that
ABS is an absolute symbol and RELOC is a relocatable symbol:

Chapter 2. Assembly Language Concepts

Remember that numbers are absolute terms. Thus the expression RELOC -- 100 is legal, but 100 - - RELOC
is not.

When two relocatable symbols have both been defined. with the same type of relocatability, they may appear in
certain expressions that yield an absolute result. Symbols have the same type of relocatability when both are

relative to the CSEG location counter, both are relative to the DSEG location counter, both are relative to
MEMORY, or both are relative to STACK. The following expressions are valid and produce absolute results:

RELOCT — RELOC2
EQ
LT
RELOC1 LE RELOC2

Relocatable symbols may not appear in expressions with any other operators.

The following list shows all possible combinations of operators with absolute and relocatable terms. An A in the
table indicates that the resulting address is absolute; an R indicates a relocatable address; an | indicates an
itlegal combination. Notice that only one term may appear with the last five operators in the list.

X absolute X absolute X relocatable X relocatable

Operator
P Y absolute Y relocatable Y absolute Y relocatable

+

R

> -

R
R

=T x|
o
O

SHL
SHR
EQ
LT
LE
GT
GE
NE
AND
OR
XOR
NOT
HIGH
LOW
unary+

XXX XX XXX XXX XX XXX
- T > rrrr - - - -

XX XXX <L L L L <L L L L <<
>> P> PP PP BB P B>>>>>> P> > > >

l
—ARAARARR
\

unary—

2-17

Chapter 2. Assembly Language Concepts

Relocatability of Expressions Involving External Symbols

The only permissible expressions involving external symbols (EXTRNs) are:

. External symbol £ absolute symbol
. Absolute symbol + external symbol
. HIGH (external symbol)
. LOW (external symbol)

Chaining of Symbol Definitions

2-18

The ISIS-11 8080/8085 Macro Assembler is essentially a 2-pass assembler. All symbol table entries must be
resolvable in two passes. Therefore,

X EQU Y
Y EQU 1

is legal, but in the series

X EQU Y
Y EQU Z
z EQU 1

the first line is illegal as X cannot be resolved in two passes and remains undefined.

3. INSTRUCTION SET

HOW TO USE THIS CHAPTER

This chapter is a dictionary of 8080 and 8085 instructions. The instruction descriptions are listed alphabetically
for quick reference. Each description is complete so that you are seldom required to look elsewhere for addition-
al information.

This reference format necessarily requires repetitive information. If you are reading this manual to learn about
the 8080 or the 8085, do not try to read this chapter from ACI (add immediate with Carry) to XTHL (exchange
top of stack with H and L registers). Instead, read the description of the processor and instruction set in

Chapter 1 and the programming examples in Chapter 6. When you begin to have questions about particular
instructions, look them up in this chapter.

TIMING INFORMATION

The instruction descriptions in this manual do not explicitly state execution timings. This is because the basic
operating speed of your processor depends on the clock frequency used in your system.

The ‘state’ is the basic unit of time measurement for the processor. A state may range from 480 nanoseconds
(320 nanoseconds on the 8085) to 2 microseconds, depending on the clock frequency. When you know the
length of a state in your system, you can determine an instruction’s basic execution time by multiplying that
figure by the number of states required for the instruction.

Notice that two sets of cycle/state specifications are given for 8085 conditional call and jump instructions. This
is because the 8085 fetches the third instruction byte only if it is actually needed; i.e., the specified condition
is satisfied.

This basic timing factor can be affected by the operating speed of the memory in your system. With a fast
clock cycle and a slow memory, the processor can outrun the memory. In this case, the processor must wait
for the memory to deliver the desired instruction or data. In applications with critical timing requirements, this
wait can be significant. Refer to the appropriate manufacturer’s literature for memory timing data.

31

Chapter 3. Instruction Set

ACI

ADC

3-2

ADD IMMEDIATE WITH CARRY

ACI adds the contents of the second instruction byte and the carry bit to the contents of the accumulator and
stores the result in the accumulator.

Opcode Operand

ACI data
The operand specifies the actual data to be added to the accumulator except, of course, for the carry bit. Data
may be in the form of a number, an ASCII constant, the label of a previously defined value, or an expression.

The data may not exceed one byte.

The assembler’s relocation feature treats all external and relocatable symbols as 16-bit addresses. When one of

. these symbols appears in the operand expression of an immediate instruction, it must be preceded by either the

HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the expression.
When neither operator is present, the assembler assumes the LOW operator and issues an error message.

i 1.0 0O 1T 1 1 O

data
Cycles: 2
States: 7
Addressing: immediate
Flags: Z,S,P,CY AC

Example:

Assume that the accumulator contains the value 14H and that the carry bit is set to one. The instruction ACI 66
has the following effect:

14H = 00010100

42H = 01000010

Carry = 1
01010111 = 57H

Accumulator
Immediate data

ADD WITH CARRY
The ADC instruction adds one byte of data plus the setting of the carry flag tc the contents of the accumulator.
The result is stored in the accumulator. ADC then updates the setting of the carry flag to indicate the outcome

of the operation.

The ADC instruction’s use of the carry bit enables the program to add multi-byte numeric strings.

Add Register to Accumulator with Carry
Opccde

ADC

Chapter 3. Instruction Set

Operand

reg

The operand must specify one of the registers A through E, H or L. This instruction adds the contents of the
specified register and the carry bit to the accumulator and stores the result in the accumulator.

1 0 0 0 1S S S
Cycles: 1
States: 4
Addressings: register
Flags: Z,5,P,CY,AC
Add Memory to Accumulator with Carry
Opcode Operand
ADC M

This instruction adds the contents of the memory location addressed by the H and L registers and the carry
bit to the accumulator and stores the result in the accumulator. M is a symbolic reference to the H and L

registers.
i1 0 0 0 1 1 1 0
Cycles: 2
States: 7
Addressing: register indirect
Flags: ZS,PCY,AC
Example:

Assume that register C contains 3DH, the accumulator contains 42H, and the carry bit is set to zero. The
instruction ADC C performs the addition as follows:

3DH
42H
CARRY

The condition flags are set as follows:

Carry

Sign

Zero

Parity

Aux. Carry

00111101
01000010

0
01111111 = 7FH

OO COo

Chapter 3. Instruction Set

ADD

34

If the carry bit is set to one, the instruction has the following results:

3DH = 00111101
42H = 01000010
CARRY = 1
10000000 = 80H
Carry =0
Sign =1
Zero =0
Parity =0
Aux. Carry =1

ADD
The ADD instruction adds one byte of data to the contents of the accumulator. The result is stored in the
accumulator. Notice that the ADD instruction excludes the carry flag from the addition but sets the flag to
indicate the outcome of the operation.
Add Register to Register
Opcode Operand

ADD reg

The operand must specify one of the registers A through E, H or L. The instruction adds the contents of the
specified register to the contents of the accumulator and stores the result in the accumulator.

1 0 0 0 O[S S S

Cycles: 1
States: 4
Addressing: register
Flags: ZS,PCY,AC
Add From Memory
Opcode Operand
ADD M

This instruction adds the contents of the memory location addressed by the H and L registers to the contents of
the accumulator and stores the result in the accumulator. M is a symbolic reference to the H and L registers.

1 0 0 O O 1T 1 O

Cycles: 2

States: 7

Addressing: register indirect
Flags: Z,S5,P,CYAC

ADI

Chapter 3. Instruction Set

Examples:

Assume that the accumulator contains 6CH and register D contains 2EH. The instruction ADD D performs the
addition as follows:

2EH = 00101110
6CH = 01101100
9AH = 10011010

The accumulator contains the value 9AH following execution of the ADD D instruction. The contents of the D
register remain unchanged. The condition flags are set as follows:

Carry =0
Sign =1
Zero =0
Parity =1
Aux. Carry =1

The following instruction doubles the contents of the accumulator:

ADD A

ADD IMMEDIATE

ADI adds the contents of the second instruction byte of the contents of the accumulator and stores the result
in the accumulator.

Opcode Operand
ADI data

The operand specifies the actual data to be added to the accumulator. This data may be in the form of a number,
an ASCII constant, the label of a previously defined value, or an expression. The data may not exceed one byte.

The assembler’s relocation feature treats all external and relocatable symbols as 16-bit addresses. When one of
these symbols appears in the operand expression of an immediate instruction, it must be preceded by either

the HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the expression.
When neither operator is present, the assembler assumes the LOW operator and issues an error message.

11 0 0 O0 1 1 O

data
Cycles: 2
States: 7
Addressing: immediate
Flags: Z,S5,PCY,AC

3-5

Chapter 3.

ANA

3-6

Instruction Set

Example:
Assume that the accumulator contains the value 14H. The ipstruction ADI 66 has the following effect:

14H
42H

00010100
01000010
01010110 = 56H

Accumulator
Immediate data

i
t

Notice that the assembler converts the decimal value 66 into the hexadecimal value 42.

LOGICAL AND WITH ACCUMULATOR

ANA performs a logical AND operation using the contents of the specified byte and the accumulator. The result
is placed in the accumulator.

Summary of Logical Operations

AND produces a one bit in the result only when the corresponding bits in the test data and the mask data are
ones.

OR produces a one bit in the resuit when the corresponding bits in either the test data or the mask data are
ones.

Exclusive OR produces a one bit only when the corresponding bits in the test data and the mask data are
different; i.e., a one bit in either the test data or the mask data — but not both — produces a one bit in the
result.

AND OR EXCLUSIVE OR
1010 1010 1010 1010 1010 1010
0000 1111 0000 1111 0000 1111
0000 1010 1010 1111 1010 0101

AND Register with Accumulator
Opcode Operand
ANA reg

The operand must specify one of the registers A through E, H or L. This instruction ANDs the contents of the
specified register with the accumulator and stores the result in the accumulator. The carry flag is reset to zero.

1 0 1 0 O0fS S S

Cycles: 1

States: 4
Addressing: register
Flags: Z,5,PCY AC

ANI

Chapter 3. Instruction Set

AND Memory with Accumulator
Opcode Operand
ANA M

This instruction ANDs the contents of the specified memory location with the accumulator and stores the result
in the accumulator. The carry flag is reset to zero.

10 1 0 0 1T 1 0

Cycles: 2

States: 7

Addressing: register indirect
Flags: Z,5,P,CY,AC

Example:

Since any bit ANDed with a zero produces a zero and any bit ANDed with a one remains unchanged, AND is

frequently used to zero particular groups of bits. The following example ensures that the high-order four bits of
the accumulator are zero, and the low-order four bits are unchanged. Assume that the C register contains OFH:

Accumulator = 1 1 1 1 1 1T 0 0 = OFCH
C Register =0000 1 111 = 0FH
0000 1100 = 0CH

AND IMMEDIATE WITH ACCUMULATOR

ANI performs a logical AND operation using the contents of the second byte of the instruction and the accumu-
lator. The result is placed in the accumulator. ANI also resets the carry flag to zero.

Opcode Operand
ANI data

The operand must specify the data to be used in the AND operation. This data may be in the form of a number,
an ASCII constant, the label of some previously defined value, or an expression. The data may not exceed one
byte.

The assembler’s relocation feature treats all external and relocatable symbols as 16-bit addresses. When one of
these symbols appears in the operand expression of an immediate instruction, it must be preceded by either the
HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the expression.
When neither operator is present, the assembler assumes the LOW operator and issues an error message.

Chapter 3. Instruction Set

data
Cycles: 2
States: 7
Addressing: immediate
Flags: Z,S,P,CY,AC

Summary of Logical Operations

AND produces a one bit in the result only when the corresponding bits in the test data and the mask data are
ones.

OR produces a one bit in the result when the corresponding bits in either the test data or the mask data are
ones.

Exclusive OR produces a one bit only when the corresponding bits in the test data and the mask data are
different; i.e., a one bit in either the test data or the mask data — but not both — produces a one bit in the

result.
AND OR EXCLUSIVE OR
1010 1010 1010 1010 1010 1010
0000 1111 0000 1111 0000 1111
0000 1010 1010 1111 1010 0101
Example:

The following instruction is used to reset OFF bit six of the byte in the accumulator:
ANI 10111111B
Since any bit ANDed with a one remains unchanged and a bit ANDed with a zero is rest to zero, the ANI

instruction shown above sets bit six OFF and leaves the others unchanged. This technique is useful when a
program uses individual bits as status flags.

CALL CALL
The CALL instruction combines functions of the PUSH and JMP instructions. CALL pushes the contents of the
program counter (the address of the next sequential instruction) onto the stack and then jumps to the address

specified in the CALL instruction.

Each CALL instruction or one of its variants implies the use of a subsequent RET (return) instruction. When a
call has no corresponding rcturn, excess addresses arc built up in the stack.

3-8

Chapter 3. Instruction Set

Opcode Operand
CALL address

The address may be specified as a number, a label, or an expression. {The label is most common.) The assembler
inverts the high and low address bytes when it assembles the instruction.

T 10 o0 1 1 0 1

low addr

high addr
Cycles: 5
States: 17 (18 on 8085)
Addressing: immediate/register indirect
Flags: none

Example:

When a given coding sequence is required several times in'a program, you can usually conserve memory by coding
the sequence as a subroutine invoked by the CALL instruction or one of its variants. For example, assume that
an application drives a six-digit LED display; the display is updated as a result of an operator input or because

of two different calculations that occur in the program. The coding required to drive the display can be included
in-line at each of the three points where it is needed, or it can be coded as a subroutine. If the label DISPLY is
assigned to the first instruction of the display driver, the following CALL instruction is used to invoke the
display subroutine:

CALL DISPLY

This CALL instruction pushes the address of the next program instruction onto the stack and then transfers
control to the DISPLY subroutine. The DISPLY subroutine must execute a return instruction or one of its
variants to resume normal program flow. The following is a graphic illustration of the effect of CALL and return
instructions:

DISPLY —_—
—3 DISPLY:

CALL _DISPLY ==~

RET
CALL DISPLY
Consideration for Using Subroutines

The larger the code segment to be repeated and the greater the number of repetitions, the greater the potential
memory savings of using a subroutine. Thus, if the display driver in the previous example requires one hundred

Chapter 3.

CcC

CM

3-10

Instruction Set

bytes, coding it in-line would require three hundred bytes. Coded as a subroutine, it requires one hundred bytes
plus nine bytes for the three CALL instructions.

Notice that subroutines require the use of the stack. This requires the application to include random access
memory for the stack. When an application has no other need for random access memory, the system designer
might elect to avoid the use of subroutines.
CALL IF CARRY

The CC instruction combines functions of the JC and PUSH instructions. CC tests the setting of the carry flag.
If the flag is set to one, CC pushes the contents of the program counter onto the stack and then jumps to the
address specified in bytes two and three of the CC instruction. If the flag is reset to zero, program execution
continues with the next sequential instruction.

Opcode Operand

CC address

Although the use of a label is most common, the address may also be specified as a number or expression.

T 1 o0 1 1 1 0 O

low addr

high addr
Cycles: 3 or 5 (2 or 5 on 8085)
States: 11 or 17 (9 or 18 on 8085)
Addressing: immediate/register indirect
Flags: none

Example:
For the sake of brevity, an example is given for the CALL instruction but not for each of its closely related
variants.

CALL IF MINUS
The CM instruction combines functions of the M and PUSH instructions. CM tests the setting of the sign flag.
If the flag is set to one (indicating that the contents of the accumulator are minus), CM pushes the contents
of the program counter onto the stack and then jumps to the address specified by the CM instruction. If the
flag is set to zero, program execution simply continues with the next sequential instruction.

Opcode Operand

CM address

CMA

Chapter 3. Instruction Set

Although the use of a label is most common, the address may also be specified as a number or an expression.

T 1 1 1 1 1 0 0

low addr
high addr
Cycles: 3 or 5 (2 or5on8085)
States: 11 or 17 (9 or 18 on 8085)
Addressing: immediate/register indirect
Flags: none

Example:

For the sake of brevity, an example is given for the CALL instruction but not for each of its closely related
variants.

COMPLEMENT ACCUMULATOR

CMA complements each bit of the accumulator to produce the one’s complement. All condition flags remain
unchanged.

Opcode Operand
CMA

Operands are not permitted with the CMA instruction.

o o 1t o 1 1 1T 1

Cycles: 1
States: 4
Flags: none

To produce the two's complement, add one to the contents of the accumulator after the CMA instructions has
been executed.

Example:
Assume that the accumulator contains the value 51H; when complemented by CMA, it becomes OAEH:

5TH
OAEH

1]

01010001
10101110

I

3-1

Chapter 3. Instruction Set

CMC COMPLEMENT CARRY

If the carry flag equals zero, CMC sets it to one. If the carry flag is one, CMC resets it to zero. All other flags
remain unchanged.

Opcode Operand
CMC

Operands are not permitted with the CMC instruction.

o o 1 1 1t 1 1 1

Cycles: 1
States: 4
Flags: CY only

Example:

Assume that a program uses bit 7 of a byte to control whether a subroutine is called. To test the bit, the pro-
gram loads the byte into the accumulator, rotates bit 7 into the carry flag, and executes a CC (Call if Carry)
instruction. Before returning to the calling program, the subroutine reinitializes the flag byte using the following

code:
CMC ;SET BIT 7 OFF
RAR ;ROTATE BIT 7 INTO ACCUMULATOR
RET ;RETURN
CMP COMPARE WITH ACCUMULATOR

CMP compares the specified byte with the contents of the accumulator and indicates the result by setting the
carry and zero flags. The values being compared remain unchanged.

The zero flag indicates equality. No carry indicates that the accumulator is greater than or equal to the specified
byte; a carry indicates that the accumulator is less than the byte. However, the meaning of the carry flag is reversed
when the values have different signs or one of the values is complemented.

The program tests the condition flags using one of the conditional Jump, Call, or Return instructions. For
example, JZ (Jump if Zero) tests for equality.

Functional Description:

Comparisons are performed by subtracting the specified byte from the contents of the accumulator, which
is why the zero and carry flags indicate the result. This subtraction uses the processor’s internal registers
so that source data is preserved. Because subtraction uses two’s complement addition, the CMP instruction
recomplements the carry flag generated by the subtraction.

Chapter 3. Instruction Set

Compare Register with Accumulator
Opcode Operand
CMP reg

The operand must name one of the registers A through E, H or L.

10 1 1 1S S S

Cycles: 1

States: 4
Addressing: register
Flags: Z,5,P,CY,AC

Compare Memory with Accumulator
Opcode Operand
CMP M

This instruction compares the contents of the memory location addressed by the H and L registers with the
contents of the accumulator. M is a symbolic reference to the H and L register pair.

T o 1t 1 1 1 1 0

Cycles: 2

States: 7

Addressing: register indirect
Flags: Z,5,P.CY,AC

Example 1:

Assume that the accumulator contains the value OAH and register E contains the value 05H. The instruction
CMP E performs the following internal subtraction (remember that subtraction is actually two’s complement
addition):

00001010
11111011
00000101 +(—carry)

Accumulator
+(—E Register)

After the carry is complemented to account for the subtract operation, both the zero and carry bits are zero,
thus indicating A greater than E.

Example 2:
Assume that the accumulator contains the value —1BH and register E contains 05H:
11100101

1o
11100000 +(—carry)

Accumulator
+(—E Register)

313

Chapter 3.

CNC

CNZ

3-14

Instruction Set

After the CMP instruction recomplements the carry flag, both the carry flag and zero flag are zero. Normally
this indicates that the accumulator is greater than register E. However, the meaning of the carry flag is reversed
since the values have different signs. The user program is responsible for proper interpretation of the carry flag.

CALL IF NO CARRY
The CNC instruction combines functions of the JNC and PUSH instructions. CNC tests the setting of the carry
flag. If the flag is set to zero, CNC pushes the contents of the program counter onto the stack and then jumps
to the address specified by the CNC instruction. If the flag is set to one, program execution simply continues
with the next sequential instruction.
Opcode Operand

CNC address

Although the use of a label is most common, the address may also be specified as a number or an expression.

1 1 0 1 0 1 0 O

low addr

high addr
Cycles: 3 or 5 (2 or 5 on 8085)
States: 11 or 17 (9 or 18 on 8085)
Addressing: immediate/register indirect
Flags: none

Example:
For the sake of brevity, an example is given for the CALL instruction but not for each of its closely related
variants.
CALL IF NOT ZERO

The CNZ instruction combines functions of the JNZ and PUSH instructions. CNZ tests the setting of the zero
flag. If the flag is off (indicating that the contents of the accumulator are other than zero), CNZ pushes the
contents of the program counter onto the stack and then jumps to the address specified in the instruction’s
second and third bytes. If the flag is set to one, program execution simply continues with the next sequential
instruction.

Opcode Operand

CNZ address

Although the use of a label is most common, the address may also be specified as a number or an expression.

CcpP

Chapter 3. Instruction Set

low addr

high addr
Cycles: 3 or 5 (2 or 5 on 8085)
States: 11 or 17 (9 or 18 on 8085)
Addressing: immediate/register indirect
Flags: none

Example:
For the sake of brevity, an example is given for the CALL instruction but not for each of its closely related

variants.

CALL IF POSITIVE

The CP instruction combines features of the JP and PUSH instructions. CP tests the setting of the sign flag. If
the flag is set to zero (indicating that the contents of the accumulator are positive), CP pushes the contents of
the program counter onto the stack and then jumps to the address specified by the CP instruction. If the flag
is set to one, program execution simply continues with the next sequential instruction.

Opcode Operand

CP address

Although the use of a label is more common, the address may also be specified as a number or an expression.

Tt 1 1 1 0 1 0 O

low address

high addr
Cycles: 3 or 5 (2or 5 on 8085)
States: 11 or 17 (9 or 18 on 8085)
Addressing: immediate/register indirect
Flags: none

Example:

For the sake of brevity, an example is given for the CALL instruction but not for each of its closely related
variants.

3-15

Chapter 3.

CPE

CpPl

3-16

Instruction Set

CALL IF PARITY EVEN

Parity is even if the byte in the accumulator has an even number of one bits. The parity flag is set to one to
indicate this condition. The CPE and CPO instructions are useful for testing the parity of input data. However,
the IN instruction does not set any of the condition flags. The flags can be set without altering the data by
adding O0OH to the contents of the accumulator.

The CPE instruction combines functions of the JPE and PUSH instructions. CPE tests the setting of the parity
flag. If the flag is set to one, CPE pushes the contents of the program counter onto the stack and then jumps
to the address specified by the CPE instruction. If the flag is set to zero, program execution simply continues
with the next sequential instruction.

Opcode Operand

CPE address

Although the use of a label is more common, the address may also be specified as 2 number or an expression.

tr 1 1 o0 1 1 0 O

low addr

high addr
Cycles: 3 0or 5 (2 or 5on 8085)
States: 11 or 17 (9 or 18 on 8085)
Addressing: immediate/register indirect
Flags: none

Example:
For the sake of brevity, an example is given for the CALL instruction but not for each of its closely related
variants.

COMPARE IMMEDIATE

CPI compares the contents of the second instruction byte with the contents of the accumulator and sets the zero
and carry flags to indicate the result. The values being compared remain unchanged.

The zero flag indicates equality. No carry indicates that the contents of the accumulator are greater than the
immediate data; a carry indicates that the accumulator is less than the immediate data. However, the meaning
of the carry flag is reversed when the values have different signs or one of the values is complemented.

Opcode Operand

CPI data

CPO

Chapter 3. Instruction Set

The operand must specify the data to be compared. This data may be in the form of a number, an ASCII
constant, the label of a previously defined value, or an expression. The data may not exceed one byte.

The assembler’s relocation feature treats all external and relocatable symbols as 16-bit addresses. When one of
these symbols appears in the operand expression of an immediate instruction, it must be preceded by either
the HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the
expression. When neither operator is present, the assembler assumes the LOW operator and issues an error
message.

data
Cycles: 2
States: 7
Addressing: register indirect
Flags: ZS,PCY,AC

Example:

The instruction CPI ‘C’ compares the contents of the accumulator to the letter C (43H).

CALL IF PARITY ODD

Parity is odd if the byte in the accumulator has an odd number of one bits. The parity flag is set to zero to
indicate this condition. The CPO and CPE instructions are useful for testing the parity of input data. However,
the IN instruction does not set any of the condition flags. The flags can be set without altering the data by
adding O0H to the contents of the accumulator.

The CPO instruction combines functions of the JPO-and PUSH instructions. CPO tests the setting of the parity
flag. If the flag is set to zero, CPO pushes the contents of the program counter onto the stack and then jumps
to the address specified by the CPO instruction. If the flag is set to one, program execution simply continues
with the next sequential instruction.

Opcode Operand

CPO address

Although the use of a label is more common, the address may also be specified as a number or an expression.

t 11 0 0 1t 0 O

low addr

high addr
Cycles: 3or 5 (2or5 on 8085)
States: 11 or 17 (9 or 18 on 8085)
Addressing: immediate/register indirect
Flags: none

Chapter 3.

(074

DAA

Instruction Set

Example:

For the sake of brevity, an example is given for the CALL instruction but not for each of its closely related
variants.

CALL IF ZERO
The CZ instruction combines functions of the JZ and PUSH instructions. CZ tests the setting of the zero flag.
If the flag is set to one (indicating that the contents of the accumulator are zero), CZ pushes the contents of
the program counter onto the stack and then jumps to the address specified in the CZ instruction. If the flag
is set to zero (indicating that the contents of the accumulator are other than zero), program execution simply
continues with the next sequential instruction.
Opcode Operand

CcZ address

Although the use of a label is most common, the address may also be specified as a number or an expression.

i1 10 O 1 1 0 O

low addr

high addr
Cycles: 3 or 5(2 or 5 on 8085)
States: 11 or 17 (9 or 18 on 8085)
Addressing: immediate/register indirect
Flags: none

Example:

For the sake of brevity, an example is given for the CALL instruction but not for each of its closely related
variants.

DECIMAL ADJUST ACCUMULATOR

The DAA instruction adjusts the eight-bit value in the accumulator to form two four-bit binary coded decimal
digits.

Opcode Operand
DAA
Operands are not permitted with the DAA instruction.
DAA is used when adding decimal numbers. It is the only instruction whose function requires use of the auxiliary

carry flag. In multi-byte arithmetic operations, the DAA instruction typically is coded immediately after the arith-
metic instruction so that the auxiliary carry flag is not altered unintentionally.

Chapter 3. Instruction Set

DAA operates as follows:

1. If the least significant four bits of the accumulator have a value greater than nine, or if the auxiliary
carry flag is ON, DAA adds six to the accumulator.

2. If the most significant four bits of the accumulator have a value greater than nine, or if the carry
flag is ON, DAA adds six to the most significant four bits of the accumulator.

o o 1 0 O 1T 1 1

Cycles: 1

States: 4
Addressing: register
Flags: Z,S,P,CY,AC

Example:

Assume that the accumulator contains the value 9BH as a result of adding 08 to 93:

CYy AC

0 0
1001 0011
0000 1000

1001 1011 = 9BH

Since OBH is greater than nine, the instruction adds six to contents of the accumulator:

CcY AC

0 1
1001 10N
0000 0110

1010 0001 = ATH

Now that the most significant bits have a value greater than nine, the instruction adds six to them:.

CY AC

1 1
1010 0001
0110 0000
0000 0001

When the DAA has finished, the accumulator contains the vatue 01 in a BCD format; both the carry and auxiliary
carry flags are set ON. Since the actual result of this addition is 101, the carry flag is probably significant to the
program. The program is responsible for recovering and using this information. Notice that the carry flag setting is
lost as soon as the program executes any subsequent instruction that alters the flag.

3-19

Chapter 3. Instruction Set

DAD DOUBLE REGISTER ADD

DAD adds the 16-bit value in the specified register pair to the contents of the H and L register pair. The result
is stored in H and L.

Opcode Operand
B
D
DAD
H
SP

DAD may add only the contents of the B&C, D&E, H&L, or the SP {Stack Pointer) register pairs to the contents
of H&L. Notice that the letter H must be used to specify that the H&L register pair is to be added to itself.

DAD sets the carry flag ON if there is a carry out of the H and L registers. DAD affects none of the condition
flags other than carry.

O O[R P|1T 0 0 1

Cycles: 3
States: 10
Addressing: register
Flags: CYy

Examples:
The DAD instruction provides a means for saving the current contents of the stack pointer.
LXI H,00H ;CLEAR H&L TO ZEROS
DAD SP ;GET SP INTO H&L
SHLD SAVSP ;STORE SP IN MEMORY
The instruction DAD H doubles the number in the H and L registers except when the operation causes a carry
out of the H register.

DCR DECREMENT
DCR subtracts one from the contents of the specified byte. DCR affects all the condition flags except the carry
flag. Because DCR preserves the carry flag, it can be used within multi-byte arithmetic routines for decrementing
character counts and similar purposes.

Decrement Register

Opcode Operand

DCR reg

3-20

Chapter 3. Instruction Set

The operand must specify one of the registers A through E, H or L. The instruction subtracts one from the
contents of the specified register.

0 0|D D DJ|1T 0 1

Cycles: 1
States: 5 (4 on 8085)
Addressing: register
Flags: ZS,P,AC
Decrement Memory
Opcode Operand
DCR M

This instruction subtracts one from the contents of the memory location addressed by the H and L registers.
M is a symbolic reference to the memory byte addressed by the H and L registers.

o o 1 1 o0 1 0 1

Cycles: 3

States: 10

Addressing: register indirect
Flags: Z,5,P,AC

Example:

The DCR instruction is frequently used to control multi-byte operations such as moving a number of characters
from one area of memory to another:

MVI B,5H ; set control counter

LXI H,250H ;load H & L with source address

LXI D,900H ; load D & E with destination address

LOOP: MOV AM ; load byte to be moved
STAX D ; store byte
DCX D ; decrement destination address
DCX H ; decrement source address
DCR B ; decrement control counter
XRA A ; clear accumulator
CMP B ; compare control counter to zero
JNZ LOOP ; move another byte if counter not zero

3-21

Chapter 3. Instruction Set

DCX DECREMENT REGISTER PAIR

DCX decrements the contents of the specified register pair by one. DCX affects none of the condition flags.
Because DCX preserves all the flags, it can be used for address modification in any instruction sequence that
relies on the passing of the flags.

Opcode Operand
B

DCX D
H
SP

DCX may decrement only the B&C, D&E, H&L, or the SP (Stack Pointer) register pairs. Notice that the letter
H must be used to specify the H and L pair.

Exercise care when decrementing the stack pointer as this causes a loss of synchronization between the pointer
and the actual contents of the stack.

Cycles: 1

States: 5 (6 on 8085)
Addressing: register

Flags: none

Example:

Assume that the H and L registers contain the address 9800H when the instruction DCX H is executed. DCX
considers the contents of the two registers to be a single 16-bit value and therefore performs a borrow from the
H register to produce the value 97FFH.

DI DISABLE INTERRUPTS

The interrupt system is disabled when the processor recognizes an interrupt or immediately following execution
of a DI instruction.

In applications that use interrupts, the DI instruction is commonly used only when a code sequence must not be
interrupted. For example, time-dependent code sequences become inaccurate when interrupted. You can disable
the interrupt system by including a DI instruction at the beginning of the code sequence. Because you cannot
predict the occurrence of an interrupt, include an El instruction at the end of the time-dependent code sequence.
Opcode Operand
DI

Operands are not permitted with the DI instruction.

3-22

El

Chapter 3. Instruction Set

Cycles: 1

States: 4

Flags: none
NOTE

The 8085 TRAP interrupt cannot be disabled. This special interrupt is
intended for serious problems that must be serviced regardless of the
interrupt flag such as power failure or bus error. However, no interrupt
including TRAP can interrupt the execution of the DI or El instruction.

ENABLE INTERRUPTS
The El instruction enables the interrupt system following execution of the next program instruction. Enabling

the interrupt system is delayed one instruction to allow interrupt subroutines to return to the main program
before a subsequent interrupt is acknowledged.

In applications that use interrupts, the interrupt system is usually disabled only when the processor accepts an
interrupt or when a code sequence must not be interrupted. You can disable the interrupt system by including
a DI instruction at the beginning of the code sequence. Because you cannot predict the occurrence of an
interrupt, include an El instruction at the end of the code sequence.

Opcode Operand
El

Operands are not permitted with the El instruction.

1 Pt 1T 1T 0 1 1
Cycles: 1
States: 4
Flags: none
) NOTE

The 8085 TRAP interrupt cannot be disabled. This special interrupt is

. intended for serious problems that must be serviced regardless of the
interrupt flag such as power failure or bus failure. However, no interrupt
including TRAP can interrupt the execution of the DI or El instruction.

Example:

The El instruction is frequently used as part of a start-up sequence. When power is first applied, the processor
begins operating at some indeterminate address. Application of a RESET signal forces the program counter to

323

Chapter 3.

HLT

IN

3-24

Instruction Set

zero. A common instruction sequence at this point is EI, HLT. These instructions enable the interrupt system
(RESET also disables the interrupt system) and halt the processor. A subsequent manual or automatic interrupt
then determines the effective start-up address.

HALT

The HLT instruction halts the processor. The program counter contains the address of the next sequential
instruction. Otherwise, the flags and registers remain unchanged.

o 1 1 1 0 1T 1 O

Cycles: 1
States: 7 (5 on 8085)
Flags: none

Once in the halt state, the processor can be restarted only by an external event, typically an interrupt. Therefore,
you should be certain that interrupts are enabled before the HLT instruction is executed. See the description of
the El (Enable Interrupt) instruction.

If an 8080 HLT instruction is executed while interrupts are disabled, the only way to restart the processor is

by application of a RESET signal. This forces the program counter to zero. The same is true of the 8085, except

for the TRAP. interrupt, which is recognized even when the interrupt system is disabled.

The processor can temporarily leave the halt state to service a direct memory access request. However, the pro-
cessor reenters the halt state once the request has been serviced.

A basic purpose for the HLT instruction is to allow the processor to pause while waiting for an interrupt from a
peripheral device. However, a halt wastes processor resources and should be used only when there is no useful
processing task available.

INPUT FROM PORT

The IN instruction reads eight bits of data from the specified port and loads it into the accumulator.

NOTE
This description is restricted to the exact function of the IN instruction.
Input/output structures are described in the 8080 or 8085 Microcomputer
Systems User’s Manual.
Opcode Operand

IN exp

The operand expression may be a number or any expression that yields a value in the range O0OH through OFFH.

INR

Chapter 3. Instruction Set

Cycles:
States:
Addressing:
Flags:

10
direct
none

INCREMENT

INR adds one to the contents of the specified byte. INR affects all of the condition flags except the carry flag.
Because INR preserves the carry flag, it can be used within multi-byte arithmetic routines for incrementing

character counts and similar purposes.

Increment Register

Opcode Operand

INR reg

The operand must specify one of the registers A through E, H or L. The instruction adds one to the contents of

the specified register.

0O o|D D D1 0 O
Cycles: 1
States: 5 (4 on 8085)
Addressing: register
Flags: Z,S,P,AC
Increment Memory
Opcode Operand
INR M

This instruction increments by one the contents of the memory location addressed by the H and L registers. M

is a symbolic reference to the H and L registers.

o o t 1 0 1 0 O
Cycles: 3

States: 10
Addressing: register indirect
Flags: ZS,P,AC

3-25

Chapter 3.

INX

JC

3-26

Instruction Set

Example:

If register C contains 99H, the instruction INR C increments the contents of the register to 9AH.
INCREMENT REGISTER PAIR

INX adds one to the contents of the specified register pair. INX affects none of the condition flags. Because
INX preserves all the condition flags, it can be used for address modification within multi-byte arithmetic
routines.

Opcode Operand
B

INX D
H
SP

INX may increment only the B&C, D&E, H&L, or the SP (Stack Pointer) register pairs. Notice that the letter H
must be used to specify the H and L register pair.

Exercise care when incrementing the stack pointer. Assume, for example, that INX SP is executed after a number
of items have been pushed onto the stack. A subsequent POP instruction accesses the high-order byte of the most
recent stack entry and the low-order byte of the next older entry. Similarly, a PUSH instruction adds the two
new bytes to the stack, but overlays the low-order byte of the most recent entry.

0 O(R PjJO O 1 1

Cycles: 1

States: 5 (6 on 8085)
Addressing: register

Flags: none

Example:

Assume that the D and E registers contain the value 01TFFH. The instruction INX D increments the value to
0200H. By contrast, the INR E instruction ignores the carry out of the low-order byte and produces a result of
0100H. (This condition can be detected by testing the Zero condition flag.)

If the stack pointer register contains the value OFFFFH, the instruction INX SP increments the contents of SP
to 0O000H. The INX instruction sets no flags to indicate this condition.

JUMP IF CARRY
The JC instruction tests the setting of the carry flag. If the flag is set to one, program execution resumes at the

address specified in the JC instruction. If the flag is reset to zero, execution continues with the next sequential
instruction.

M

Chapter 3. Instruction Set

Opcode Operand
jC address

The address may be specified as a number, a label, or an expression. The assembler inverts the high and low
address bytes when it assembles the instruction.

low addr

high addr
Cycles: 3 (2 or 3 on 8085)
States: 10 (7 or 10 on 8085)
Addressing: immediate
Flags: none

Example:

Examples of the variations of the jump instruction appear in the description of the JPO instruction.

JUMP IF MINUS
T he JM instruction tests the setting of the sign flag. If the contents of the accumulator are negative (sign flag = 1),
program execution resumes at the address specified in the JM instruction. If the contents of the accumulator are
positive (sign flag = 0), execution continues with the next sequential instruction.
Opcode Operand

M address

The address may be specified as a number, a label, or an expression. The assembler inverts the high and low
address bytes when it assembles the instructions.

low addr
high addr
Cycles: 3 (2 or 3 on 8085)
States: 10 (7 or 10 on 8085)
Addressing: immediate
Flags: none

Example:
Examples of the variations of the jump instruction appear in the description of the JPO instruction.

3-27

Chapter 3.

JMP

JNC

3-28

Instruction Set

JUMP

The JMP instruction alters the execution sequence by loading the address in its second and third bytes into the
program counter.

Opcode Operand
JMP address

The address may be specified as a number, a fabel, or an expression. The assembler inverts the high and low
address bytes when it assembles the address.

low addr

high addr
Cycles: 3
States: 10
Addressing: immediate
Flags: none

Example:

Examples of the variations of the jump instruction appear in the description of the JPO instruction.

JUMP IF NO CARRY
The JNC instruction tests the setting of the carry flag. If there is no carry (carry flag = 0), program execution
resumes at the address specified in the JNC instruction. If there is a carry (carry flag = 1), execution continues
with the next sequential instruction.
Opcode Operand

JNC address

The address may be specified as a number, a label, or an expression. The assembler inverts the high and low
address bytes when it assembles the instruction.

low addr

high addr
Cycles: 3 (2 or 3 on 8085)
States: 10 (7 or 10 on 8085)
Addressing: immediate
Flags: none

JNZ

P

Chapter 3. Instruction Set

Example:

Examples of the variations of the jump instruction appear in the description of the JPO instruction.

JUMP IF NOT ZERO
The JNZ instruction tests the setting of the zero flag. If the contents of the accumulator are not zero (zero
flag = 0), program execution resumes at the address specified in the JNZ instruction. If the contents of the
accumulator are zero (zero flag = 1), execution continues with the next sequential instruction.
Opcode Operand

JNZ address

The address may be specified as a number, a label, or an expression. The assembler inverts the high and low
address bytes when it assembles the instruction.

Tt 1t 0 0 O O 1 O

low addr

high addr
Cycles: 3 (2 or 3 on 8085)
States: 10 (7 or 10 on 8085)
Addressing: immediate
Flags: none

Example:

Examples of the variations of the jump instruction appear in the description of the JPO instruction.

JUMP IF POSITIVE

The JP instruction tests the setting of the sign flag. If the contents of the accumulator are positive (sign flag = 0),
program execution resumes at the address specified in the JP instruction. If the contents of the accumulator are
minus (sign flag = 1), execution continues with the next sequential instruction.

Opcode Operand

jP address
N
The address may be specified as a number, a label, or an expression. The assembler inverts the high and low order

address bytes when it assembles the instruction.

3-29

Chapter 3. Instruction Set

low addr

high addr
Cycles: 3 (2 or 3 on 8085)
States: 10 (7 or 10 on 8085)
Addressing: immediate
Flags: none

Example:

Examples of the variations of the jump instruction appear in the description of the JPO instruction.

JPE JUMP IF PARITY EVEN

Parity is even if the byte in the accumulator has an even number of one bits. The parity flag is set to one to
indicate this condition.

The JPE instruction tests the setting of the parity flag. If the parity flag is set to one, program execution resumes
at the address specified in the JPE instruction. If the flag is reset to zero, execution continues with the next
sequential instruction.

Opcode Operand

JPE address

The address may be specified as a number, a label, or an expression. The assembler inverts the high and low
address bytes when it assembles the instruction.

The JPE and JPO (jump if parity odd) instructions are especially useful for testing the parity of input data.
However, the IN instruction does not set any of the condition flags. The flags can be set by adding O0H to the
contents of the accumulator.

11 1 0 1 0 1 0

low addr

high addr
Cycles: 3 (2 or 3 on 8085)
States: 10 (7 or 10 on 8085)
Addressing: immediate
Flags: none

Example:

Examples of the variations of the jump instruction appear in the description of the JPO instruction.

3-30

Chapter 3. Instruction Set

jPoO JUMP IF PARITY ODD

Parity is odd if the byte in the accumulator has an odd number of one bits. The parity flag is set to zero to
indicate this condition.

The JPO instruction tests the setting of the parity flag. If the parity flag is reset to zero, program execution
resumes at the address specified in the JPO instruction. If the flag is set to one, execution continues with the
next sequential instruction.

Opcode Operand
JPO address

The address may be specified as a number, a label, or an expression. The assembler inverts the high and low
address bytes when it assembles the instruction.

The JPO and JPE (jump if parity even) instructions are especially useful for testing the parity of input data.
However, the IN instruction does not set any of the condition flags. The flags can be set by adding O0H to the
contents of the accumulator.

i1 1 0 0 0 1T O

low addr

high addr
Cycles: 3 (2 or 3 on 8085)
States: 10 (7 or 10 on 8085)
Addressing: immediate
Flags: none

Example:

This example shows three different but equivalent methods for jumping to one of two points in a program based
upon whether or not the Sign bit of a number is set. Assume that the byte to be tested is the C register.

Label Code Operand
ONE: MOV AC

ANI 80H

1Z PLUS

JNZ MINUS
TWO: MOV AC

RLC

JNC PLUS

JMP MINUS
THREE: MOV AC

ADI 0

M MINUS
PLUS: — ;SIGN BIT RESET
MINUS: - ;SIGN BIT SET

3-31

Chapter 3.

JZ

LDA

3-32

Instruction Set

The AND immediate instruction in block ONE zeroes all bits of the data byte except the Sign bit, which re-
mains unchanged. If the Sign bit was zero, the Zero condition bit will be set, and the JZ instruction will cause
program control to be transferred to the instruction at PLUS. Otherwise, the JZ instruction will merely update
the program counter by three, and the JNZ instruction will be executed, causing control to be transferred to
the instruction at MINUS. (The Zero bit is unaffected by all jump instructions.)

The RLC instruction in block TWO causes the Carry bit to be set equal to the Sign bit of the data byte. If the
Sign bit was reset, the JNC instruction causes a jump to PLUS. Otherwise the JMP instruction is executed,
unconditionally transferring control to MINUS. (Note that, in this instance, a JC instruction could be sub-
stituted for the unconditional jump with identical results.)

The add immediate instruction in block THREE causes the condition bits to be set. If the sign bit was set, the

JM instruction causes program control to be transferred to MINUS. Otherwise, program contro! flows auto-
matically into the PLUS routine.

JUMP IF ZERO
The JZ instruction tests the setting of the zero flag. If the flag is set to one, program execution resumes at the
address specified in the JZ instruction. If the flag is reset to zero, execution continues with the next sequential
instruction.
Opcode Operand

1Z address

The address may be specified as a number, a label, or an expression. The assembler inverts the high and low
address bytes when it assembles the instruction.

1 1t o o0 1 0 t 0

low addr

high addr
Cycles: 3 (2 or 3 on 8085)
States: 10 (7 or 10 on 8085)
Addressing: immediate
Flags: none

Example:

Examples of the variations of the jump instruction appear in the description of the JPO instruction.

LOAD ACCUMULATOR DIRECT

LDA loads the accumulator with a copy of the byte at the location specified in bytes two and three of the
LDA instruction.

Chapter 3. Instruction Set

Opcode Operand
LDA address

The address may be stated as a number, a previously defined label, or an expression. The assembler inverts the
high and low address bytes when it builds the instruction.

o 0o 1 1 1 0 1 O

low addr

high addr
Cycles: 4
States: 13
Addressing: direct
Flags: none

Examples:

The following instructions are equivalent. When executed, each replaces the accumulator contents with the byte
of data stored at memory location 300H.

LOAD: LDA 300H

LDA 3*(16*16)
LDA 200H+256

LDAX LOAD ACCUMULATOR INDIRECT

L. DAX loads the accumulator with a copy of the byte stored at the memory location addressed by register pair
B or register pair D.

Opcode Operand
B
LDAX D ¥
J

The operand B specifies the B and C register pair; D specifies the D and E register pair. This instruction may
specify only the B or D register pair.

0o o ofr|l 1 O 1T O

| ___JO = register pair B

register pair D

ey
H

Cycles: 2

States: 7

Addressing: register indirect
Flags: none

3-33

Chapter 3. Instruction Set

LHLD

3-34

Example:

Assume that register D contains 93H and register E contains 8BH. The following instruction loads the accumulator
with the contents of memory location 938BH:

LDAX D

LOAD H AND L DIRECT

LHLD loads the L register with a copy of the byte stored at the memory location specified in bytes two and
three of the LHLD instruction. LHLD then loads the H register with a copy of the byte stored at the next
higher memory location.

Opcode Operand
LHLD address
The address may be stated as a number, a label, or an expression.

Certain instructions use the symbolic reference M to access the memory location currently specified by the H and
L registers. LHLD is one of the instructions provided for loading new addresses into the H and L registers. The
user may also load the current top of the stack into the H and L registers (POP instruction). Both LHLD and
POP replace the contents of the H and L registers. You can also exchange the contents of H and L with the D
and E registers (XCHG instruction) or the top of the stack (XTHL instruction) if you need to save the current

H and L registers for subsequent use. SHLD stores H and L in memory.

6 o 1 o0 1 0 1 O

low addr

high addr
Cycles: 5
States: 16
Addressing: direct
Flags: none

Example:

Assume that focations 3000 and 3001H contain the address 064EH stored in the format 4E06. In the following
sequence, the MOV instruction moves a copy of the byte stored at address 064E into the accumulator:

LHLD 3000H ;SET UP ADDRESS
MOV AM ;LOAD ACCUM FROM ADDRESS

Chapter 3. Instruction Set

LXI LOAD REGISTER PAIR IMMEDIATE

LXI is a three-byte instruction; its second and third bytes contain the source data to be loaded into a register
pair. LXI loads a register pair by copying its second and third bytes into the specified destination register pair.

Opcode Operand
B
D

LXI H ,data
SP

The first operand must specify the register pair to be loaded. LXI can load the B and C register pair, the D and
E register pair, the H and L register pair, or the Stack Pointer.

The second operand specifies the two bytes of data to be loaded. This data may be coded in the form of a num-
ber, an ASCII constant, the label of some previously defined value, or an expression. The data must not exceed
two bytes.

LXI is the only immediate instruction that accepts a 16-bit value. All other immediate instructions require 8-bit
values.

Notice that the assembler inverts the two bytes of data to create the format of an address stored in memory.
LXI loads its third byte into the first register of the pair and its second byte into the second register of the
pair. This has the effect of reinverting the data into the format required for an address stored in registers. Thus,
the instruction LXI B,'AZ’ loads A into register B and Z into register C.

0O 0O|R PO O O 1

low-order data

high-order data

Cycles: 3

States: 10
Addressing: immediate
Flags: none

Examples:

A common use for LXI is to establish a memory address for use in subsequent instructions. In the following
sequence, the LXI instruction loads the address of STRNG into the H and L registers. The MOV instruction then
loads the data stored at that address into the accumulator.

LXI H,STRNG ;SET ADDRESS
MOV AM ;LOAD STRNG INTO ACCUMULATOR

The following LXI instruction is used to initialize the stack pointer in a relocatable module. The LOCATE pro-
gram provides an address for the special reserved label STACK.

LX1 SP,STACK
3-35

Chapter 3. Instruction Set

MOV

336

MOVE
The MOV instruction moves one byte of data by copying the source field into the destination field. Source data
remains unchanged. The instruction’s operands specify whether the move is from register to register, from a
register to memory, or from memory to a register.
Move Register to Register
Opcode Operand

MOV regl,reg2

The instruction copies the contents of reg2 into regl. Each operand must specify one of the registers A, B, C, D,
E, H, or L.

When the same register is specified for both operands (as in MOV A A), the MOV functions as a NOP (no opera-
tion) since it has no other noticeable effect. This form of MOV requires one more machine state than NOP, and
therefore has a slightly longer execution time than NOP. MOV M,M is not permitted.

0o 1D D D|S S S

Cycles: 1
States: 5 (4 on 8085)
Addressing: register
Flags: none
Move to Memory
Opcode Operand
MOV M,r

This instruction copies the contents of the specified register into the memory location addressed by the H and L
registers. M refers to the byte addressed by the H and L register pair. The second operand must address one of the
registers. MOV M,M is not permitted.

o 1t 1 1 0fS S S

Cycles: 2
States: 7
Addressing: register indirect
Flags: none
Move from Memory
Opcode Operand
MOV rM

MVI

Chapter 3. Instruction Set

This instruction copies the contents of the memory location addressed by the H and L registers into the specified
‘register. The first operand must name the destination register. The second operand must be M. M is a symbolic
reference to the H and L registers.

Examples:

Label

LDACC:

NULOP:

0O 1D D D1 1 0

Cycles: 2

States: 7

Addressing: register indirect

Flags: none
Opcode Operands Comment
MOV AM ;LOAD ACCUM FROM MEMORY
MOV EA ;COPY ACCUM INTO E REG
Mov C.C ;NULL OPERATION

MOVE IMMEDIATE

MVI is a two-byte instruction; its second byte contains the source data to be moved. MVI moves one byte of
data by copying its second byte into the destination field. The instruction’s operands specify whether the move
is to a register or to memory.

Move Immediate to Register

Opcode

MVI

Operand

reg,data

The first operand must name one of the registers A through E, H or L as a destination for the move.

The second operand specifies the actual data to be moved. This data may be in the form of a number, an ASCII
constant, the label of some previously defined value, or an expression. The data must not exceed one byte.

The assembler’s relocation feature treats all external and relocatable symbols as 16-bit addresses. When one of
these symbols appears in the operand expression of an immediate instruction, it must be preceded by either the
HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the expression.
When neither operator is present, the assembler assumes the LOW operator and issues an error message.

0O o|/D D D}t 1t 0
data

Cycles: 2

States: 7

Addressing: immediate

Flags: none

3-37

Chapter 3. Instructivn Set

Move Immediate to Memory
Opcode Operand
MVi M,data

This instruction copies the data stored in its second byte into the memory location addressed by H and L. M is
a symbolic reference to the H and L register pair.

o o 1 1 0 1t 1 O

data
Cycles: 3
States: 10
Addressing: immediate/register indirect
Flags: none

Examples:

The following examples show a number of methods for defining immediate data in the MVI instruction. All of
the examples generate the bit pattern for the ASCII character A.

MVI M,010000018
MVI M, ‘A’
MVI M,41H
MVI M,101Q
MVI M,65
MVI M,5+30%2
NOP NO OPERATION

NOP performs no operation and affects none of the condition flags. NOP is useful as filler in a timing loop.
Opcode Operand
NOP

Operands are not permitted with the NOP instruction.

ORA INCLUSIVE OR WITH ACCUMULATOR

ORA performs an inclusive OR logical operation using the contents of the specified byte and the accumulator. The
result is placed in the accumulator.

3-38

Chapter 3. Instruction Set

Summary of Logical Operations

AND produces a one bit in the result only when the corresponding bits in the test data and the mask data are
one.

OR produces a one bit in the result when the corresponding bits in either the test data or the mask data are
oncs.

Exclusive OR produces a one bit only when the corresponding bits in the test data and the mask data are
different; i.e., a one bit in either the test data or the mask data — but not both — produces a one bit in the
result.

AND OR EXCLUSIVE OR
1010 1010 1010 1010 1010 1010
0000 1111 0000 1111 0000 1111
0000 1010 1010 1111 1010 0101

OR Register with Accumulator
Opcode Operand
ORA reg

The operand must specify one of the registers A through E, H or L. This instruction ORs the contents of the
specified register and the accumulator and stores the result in the accumulator. The carry and auxiliary carry
flags are reset to zero.

10 1 1 01S S S

Cycles: 1
States: 4
Addressing: register
Flags: ZS5,P,CY,AC
OR Memory with Accumulator
Opcode Operand
ORA M

The contents of the memory location specified by the H and L registers are inclusive-ORed with the contents of
the accumulator. The result is stored in the accumulator. The carry and auxiliary carry flags are reset to zero.

Tt 0o v 1 0 1T 1 0

Cycles: 2

States: 7

Addressing: register indirect
Flags: ZS,P,CY,AC

3-39

Chapter 3.

ORI

3-40

Instruction Set

Example:

Since any bit inclusive-ORed with a one produces a one and any bit ORed with a zero remains unchanged, ORA
is frequently used to set ON particular bits or groups of bits. The following example ensures that bit 3 of the
accumulator is set ON, but the remaining bits are not disturbed. This is frequently done when individual bits
are used as status flags in a program. Assume that register D contains the value 08H:

Accumulator = 0 1 0 0 0 O 1 1
Register D =00001000
01001011

INCLUSIVE OR IMMEDIATE

ORI performs an inclusive OR logical operation using the contents of the second byte of the instruction and the
contents of the accumulator. The result is placed in the accumulator. ORI also resets the carry and auxiliary
carry flags to zero.

Opcode Operand
ORI data

The operand must specify the data to be used in the inclusive OR operation. This data may be in the form of a
number, an ASCI| constant, the label of some previously defined value, or an expression. The data may not
exceed one byte.

The assembler’s relocation feature treats afl external and relocatable symbols as 16-bit addresses. When one of

these symbols appears in the operand expression of an immediate instruction, it must be preceded by either the
HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the expression.
When neither operator is present, the assembler assume the LOW operator and issues an error message.

Tt 1T 1 1t 0 1T 1 0

data
Cycles: 2
States: 7
Addressing: immediate
Flags: ZS5,PSY,AC

Summary of Logical Operations

AND produces a one bit in the result only when the corresponding bits in both the test data and the mask data
are ones.

OR produces a one bit in the result when the corresponding bits in either the test data or the mask data are ones.
Exclusive OR produces a one bit only when the corresponding bits in the test data and the mask data are

different; i.e., a one bit in either the test data or the mask data — but not both — produces a one bit in the
result.

ouT

AND
1010 1010
0000 1111
0000 1010

Example:

Chapter 3. Instruction Set

OR EXCLUSIVE OR
1010 1010 1010 1010
0000 1111 0000 1111
1010 1111 1010 0101

See the description of the ORA instruction for an example of the use of the inclusive OR. The following
examples show a number of methods for defining immediate data in the ORI instruction. All of the examples
generate the bit pattern for the ASCII character A.

ORI
ORI
ORI
ORI
ORI
ORI

01000001B
A’

41H

101Q

65

5+30*2

OUTPUT TO PORT

The OUT instruction places the contents of the accumulator on the eight-bit data bus and the number of the
selected port on the sixteen-bit address bus. Since the number of ports ranges from 0 through 255, the port

number is duplicated on the address bus.

It is the responsibility of external logic to decode the port number and to accept the output data.

NOTE

Because a discussion of input/output structures is beyond the scope of
this manual, this description is restricted to the exact function of the

OUT instruction. Input/output structures are described in the 8080 or
8085 Microcomputer Systems User’s Manual.

Opcode

ouT

Operand

exp

The operand must specify the number of the desired output port. This may be in the form of a number or an
expression in the range O0OH through OFFH.

1T 1 o 1 0 0 1 1
exp

Cycles: 3

States: 10

Addressing: direct

Flags: none

3-41

Chapter 3.

PCHL

POP

342

Instruction Set

MOVE H&L TO PROGRAM COUNTER
PCHL loads the contents of the H and L registers into the program counter register. Because the processor
fetches the next instruction from the updated program counter address, PCHL has the effect of a jump instruc-
tion.
Opcode Operand
PCHL

Operands are not permitted with the PCHL instruction.

PCHL moves the contents of the H register to the high-order eight bits of the program counter and the contents
of the L register to the low-order eight bits of the program counter.

The user program must ensure that the H and L registers contain the address of an executable instruction when
the PCHL instruction is executed.

Cycles: 1

States: 5 (6 on 8085)
Addressing: register

Flags: none

Example:

One technique for passing data to a subroutine is to place the data immediately after the subroutine call. The
return address pushed onto the stack by the CALL instruction actually addresses the data rather than the next
instruction after the CALL. For this example, assume that two bytes of data follow the subroutine call. The
following coding sequence performs a return to the next instruction after the call:

GOBACK: POP H ;GET DATA ADDRESS
INR L ;ADD 2 TO FORM
INR L ;RETURN ADDRESS
PCHL ;RETURN

POP

The POP instruction removes two bytes of data from the stack and copies them to a register pair or copies the
Program Status Word into the accumulator and the condition flags.

POP Register Pair

POP copies the contents of the memory location addressed by the stack pointer into the low-order register of the
register pair. POP then increments the stack pointer by one and copies the contents of the resulting address into

Chapter 3. Instruction Set

the high-order register of the pair. POP then increments the stack pointer again so that it addresses the next
older item on the stack.

Opcode Operand
B
D

POP H
PSW

The operand méy specify the B&C, D&E, or the H&L register pairs. POP PSW is explained separately.

T 1{ R PO O 0 1

Cycles: 3

States: 10

Addressing: register indirect
Flags: none

POP PSW

POP PSW uses the contents of the memory location specified by the stack pointer to restore the condition flags.
POP PSW increments the stack pointer by one and restores the contents of that address to the accumulator.
POP then increments the stack pointer again so that it addresses the next older item on the stack.

Cycles: 3

States: 10

Addressing: register indirect
Flags: Z,S5,P,CY,AC

Example:
Assume that a subroutine is called because of an external interrupt. In general, such subroutines should save and

restore any registers it uses so that main program can continue normally when it regains control. The following
sequence of PUSH and POP instructions save and restore the Program Status Word and all the registers:

343

Chapter 3.

PUSH

Instruction Set

PUSH PSW
PUSH B
PUSH D
PUSH H

subroutine coding

POP

H
POP D
POP B
POP PSW
RET

Notice that the sequence of the POP instructions is the opposite of the PUSH instruction sequence.

PUSH

The PUSH instruction copies two bytes of data to the stack. This data may be the contents of a register pair or
the Program Status Word, as explained below:

PUSH Register Pair

‘PUSH decrements the stack pointer register by one and copies the contents of the high-order register of the

344

register pair to the resulting address. PUSH then decrements the pointer again and copies the low-order register
to the resulting address. The source registers remain unchanged.

Opcode Operand
B
D

PUSH H
PSW

The operand may specify the B&C, D&E, or H&L register pairs. PUSH PSW is explained separately.

1 TR P{O 1 0 1
Cycles: 3

States: 11 (13 on 8085)
Addressing: register indirect
Flags: none

Example:

Assume that register B contains 2AH, the C register contains 4CH, and the stack pointer is set at 9AAF. The
instruction PUSH B stores the B register at memory address 9QAAEH and the C register at 9AADH. The stack
pointer is set to 9AADH:

RAL

Chapter 3. Instruction Set

Stack Stack
Before PUSH Address After PUSH
SP before ——————— = xx 9AAF XX
XX 9AAE 2A
XX 9AAD 4C = SP after
XX 9AAC XX

PUSH PSW

PUSH PSW copies the Program Status Word onto the stack. The Program Status Word comprises the contents
of the accumulator and the current settings of the condition flags. Because there are only five condition flags,
PUSH PSW formats the flags into an eight-bit byte as follows:

7 6 5 4 3 2 1 0
(sl z]o]Jac]lo] P [1]cy]

On the 8080, bits 3 and 5 are always zero; bit one is always set to one. These filler bits are undefined on the
8085.

PUSH PSW decrements the stack pointer by one and copies the contents of the accumulator to the resulting
address. PUSH PSW again decrements the pointer and copies the formatted condition flag byte to the resulting
address. The contents of the accumulator and the condition flags remain unchanged.

1 1 1 1 0 1 0 1]

Cycles: 3

States: 11 (12 on 8085)
Addressing: register indirect
Flags: none

Example:

When a program calls subroutines, it is frequently necessary to preserve the current program status so the calling
program can continue normally when it regains control. Typically, the subroutine performs a PUSH PSW prior to
execution of any instruction that might alter the contents of the accumulator or the condition flag settings.

The subroutine then restores the pre-call system status by executing a POP PSW instruction just before returning
control to the calling program.

ROTATE LEFT THROUGH CARRY

RAL rotates the contents of the accumulator and the carry flag one bit position to the left. The carry flag, which

is treated as though it were part of the accumulator, transfers to the low-order bit of the accumulator. The high-
order bit of the accumulator transfers into the carry flag.

Opcode Operand

RAL
Operands are not permitted with the RAL instruction.

345

Chapter 3. Instruction Set

Cycles: 1
States: 4
Flags: CY only

Example:

Assume that the accumulator contains the value 0AAH and the carry flag is zero. The following diagrams illus-

trate the effect of the RAL instruction:

Before: Carry
~[o}
Accumulator
—J1 0 1 0 1 0 1 o]«
After: Carry

RAR ROTATE RIGHT THROUGH CARRY

RAR rotates the contents of the accumulator and the carry flag one bit position to the right. The carry flag,
which is treated as though it were part of the accumulator, transfers to the high-order bit of the accumulator.

The low-order bit of the accumulator transfers into the carry flag.
Opcode Operand
RAR

Operands are not permitted with the RAR instruction.

o 0 o 1t 1t 1 1 1

Cycles: 1
States: 4
Flags: CY only

346

Chapter 3. Instruction Set

Example:

Assume that the accumulator contains the value OAAH and the carry flag is zero. The following diagrams ilius-
trate the effect of the RAR instruction:

Before: Carry

E':

Accumulator

After: Carry

o]

Accumulator

RC RETURN IF CARRY
T he RC instruction tests the carry flag. If the flag is set to one to indicate a carry, the instruction pops two
bytes off the stack and places them in the program counter. Program execution resumes at the new address in
the program counter. [f the flag is zero, program execution simply continues with the next sequential instruction.

Opcode Operand

RC

Operands are not permitted with the RC instruction.

Cycles: Tor3

States: 5or 11 (6 or 12 on 8085)
Addressing: register indirect

Flags: none

Example:

For the sake of brevity, an example is given for the RET instruction but not for each of its closely related
variants.

347

Chapter 3.

RET

RIM (8

348

Instruction Set

RETURN FROM SUBROUTINE

The RET instruction pops two bytes of data off the stack and places them in the program counter register.
Program execution resumes at the new address in the program counter.

Typically, RET instructions arc used in conjunction with CALL instructions. (The same is true of the variants
of these instructions.) In this case, it is assumed that the data the RET instruction pops off the stack is a
return address placed there by a previous CALL. This has the effect of returning control to the next instruction
after the CALL. The user must be certain that the RET instruction finds the address of executable code on the
stack. If the instruction finds the address of data, the processor attempts to execute the data as though it were
code.

Opcode Operand
RET

Operands are not permitted with the RET instruction.

Cycles: 3

States: 10

Addressing: register indirect
Flags: none

Example:

As mentioned previously, subroutines can be nested. That is, a subroutine can call a subroutine that calls
another subroutine. The only practical limit on the number of nested calls is the amount of memory available
for stacking return addresses. A nested subroutine can even call the subroutine that called it, as shown in the
following example. {Notice that the program must contain logic that cventually returns control to the main
program. Otherwise, the two subroutines will cail each other indefinitely.)

MAIN PROGRAM

SUBA: |~ _ _ SUBB:
- 1L TS~ <CALL SUBA
CALL SUBA ~ CNZ SUBB Y
- RET
RET 7
085 PROCESSOR ONLY) READ INTERRUPT MASK

The RIM instruction loads eight bits of data into the accumulator. The resulting bit pattern indicates the current
setting of the interrupt mask, the setting of the interrupt flag, pending interrupts, and one bit of serial input data,
if any.

RLC

Opcode

Operand

RIM

Operands are not permitted with the RIM instruction.

The RIM instruction loads the accumulator with the following information:

5 4 3 2 1

0

SID | 17

16 | 15| IE} 7.5]6.5

5.5

I— Interrupt Masks: 1 = masked

Interrupt Enable Flag:
Pending Interrupts:

Serial Input Data Bit, if any

1 = enabled

1 = pending

Chapter 3. Instruction Set

The mask and pending flags refer only to the RST5.5, RST6.5, and RST7.5 hardware interrupts. The IE flag
refers to the entire interrupt system. Thus, the |E flag is identical in function and level to the INTE pin on the
8080. A 1 bit in this flag indicates that the entire interrupt system is enabled.

o 6 1.0 0 0 0 O

Cycles: 1
States: 4
Flags: none

ROTATE ACCUMULATOR LEFT

RLC sets the carry flag equal to the high-order bit of the accumulator, thus overwriting its previous setting. RLC

then rotates the contents of the accumulator one bit position to the left with the high-order bit transferring to
the low-order position of the accumulator.

Opcode

RLC

Operand

Operands are not allowed with the RLC instruction.

0 0 o o0 o0 1 1

Cycles: 1
States: 4
Flags: CY only

349

Chapter 3. Instruction Set

Example:

Assume that the accumulator contains the value 0AAH and the carry flag is zero. The following diagrams illus-
trate the cffect of the RLC instruction.

Before: Carry

Y

0

Accumulator

After: Carry

Accumulator

RM RETURN IF MINUS
The RM instruction tests the sign flag. If the flag is set to one to indicate negative data in the accumulator, the
instruction pops two bytes off the stack and places them in the program counter. Program execution resumes at
the new address in the program counter. If the flag is set to zero, program execution simply continues with the
next sequential instruction.

Opcode Operand

RM

Operands are not permitted with the RM instruction.

Cycles: 1or3

States: Sor 11 (6 or 12 on 8085)
Addressing: register indirect

Flags: none

Example:

For the sake of brevity, an example is given for the RET instruction but not for each of its closely related
variants.

3-50

Chapter 3. Instruction Set

RNC RETURN IF NO CARRY

The RNC instruction tests the carry flag. If the flag is set to zero to indicate that there has been no carry, the
instruction pops two bytes off the ctack and places them in the program counter. Program execution resumes at
the new address in the program counter. If the flag is one, program execution simply continues with the next
sequential instruction.

Opcode Operand
RNC

Operands are not permitted with the RNC instruction.

Cycles: 1Tor3

States: 50r 11 (6 or 12 on 8085)
Addressing: register indirect

Flags: none

Example:
For the sake of brevity, an example is given for the RET instruction but not for each of its closely related

variants.

RNZ RETURN IF NOT ZERO

The RNZ instruction tests the zero flag. If the flag is set to zero to indicate that the contents of the accumulator
are other than zero, the instruction pops two bytes off the stack and places them in the program counter. Pro-
gram execution resumes at the new address in the program counter. If the flag is set to one, program execution
simply continues with the next sequential instruction.

Opcode Operand

RNZ

Operands are not permitted with the RNZ instruction.

Cycles: lor3

States: 5or 11 (6 or 12 on 8085)
Addressing: register indirect

Flags: none

Example:

For the sake of brevity, an example is given for the RET instruction but not for each of its closely related
variants.

3-51

Chapter 3. Instruction Set

RP

RPE

3-52

RETURN IF POSITIVE

The RP instruction tests the sign flag. If the flag is reset to zero to indicate positive data in the accumulator,
the instruction pops two bytes off the stack and places them in the program counter. Program execution
resumes at the new address in the program counter. If the flag is set to one, program execution simply continues
with the next sequential instruction.

Opcode Operand
RP

Operands are not permitted with the RP instruction.

Cycles: 1or3

States: 50r 11 (6 or 12 on 8085)
Addressing: register indirect

Flags: none

Example:

For the sake of brevity, an example is given for the RET instruction but not for each of its closely related
variants.

RETURN IF PARITY EVEN

Parity is even if the byte in the accumulator has an even number of one bits. The parity flag is set to one to
indicate this condition. The RPE and RPO instructions are useful for testing the parity of input data. However,
the IN instruction does not set any of the condition flags. The flags can be set without altering the data by
adding O0H to the contents of the accumulator.

The RPE instruction tests the parity flag. If the flag is set to one to indicate even parity, the instruction pops
two bytes off the stack and places them in the program counter. Program cxecution resumes at the new address
in the program counter. If the flag is zero, program execution simply continues with the next sequential instruc-
tion.

Opcode Operand

RPE

Operands are not permitted with the RPE instruction.

Cycles: lor3

States: 5or 11 (6 or 12 on 8085)
Addressing: register indirect

Flags: none

Chapter 3. Instruction Set

Example:

For the sake of brevity, an example is given for the RET instruction but not for each of its closely related
variants.

RPO RETURN IF PARITY ODD

Parity is odd if the byte in the accumulator has an odd number of one bits. The parity flag is reset to zero to
indicate this condition. The RPO and RPE instructions are useful for testing the parity of input data. However,
the IN instruction does not set any of the condition flags. The flags can be set without altering the data by
adding O0H to the contents of the accumulator.

The RPO instruction tests the parity flag. If the flag is reset to zero to indicate odd parity, the instruction pops
two bytes off the stack and places them in the program counter. Program execution resumes at the new address

in the program counter. If the flag is set to one, program execution simply continues with the next sequential
instruction.

Opcode Operand
RPO

Operands are not permitted with the RPO instruction.

T 1 1t 0 0 0 0 O

Cycles: Tor3

States: 5o0r 11 {6 or 12 on 8085)
Addressing: register indirect

Flags: none

Example:

For the sake of brevity, an example is given for the RET instruction but not for each of its closely related
variants.

RRC ROTATE ACCUMULATOR RIGHT
RRC sets the carry flag equal to the low-order bit of the accumulator, thus overwriting its previous setting. RRC
then rotates the contents of the accumulator one bit position to the right with the low-order bit transferring to
the high order position of the accumulator.

Opcode Operand

RRC

Operands are not permitted with the RRC instruction.

3-53

Chapter 3,

RST

3.54

Instruction Set

0o oo o0 1 1 1 1

Cycles: 1
States: 4
Flags: CY only

Example:

Assume that the accumulator contains the value 0AAH and the carry flag is zero. The following diagrams illus-
trate the effect of the RRC instruction:

Before: Carry

0 |=

Accumulator

Y
=
o
=
—
=)

After: Carry

Accumulator

RESTART

RST is a special purpose CALL instruction designed primarily for use with interrupts. RST pushes the contents
of the program counter onto the stack to provide a return address and then jumps to one of eight predetermined
addresses. A three-bit code carried in the opcode of the RST instruction specifies the jump address.

The restart instruction is unique because it seldom appears as source code in an applications program:. More often,
the peripheral devices seeking interrupt service pass this one-byte instruction to the processor.

When a device requests interrupt service and interrupts are enabled, the processor acknowledges the request and
prepares its data lines to accept any one-byte instruction from the device. RST is generally the instruction of
choice because its special purpose CALL establishes a return to the main program.

The processor moves the three-bit address code from the RST instruction into bits 3, 4, and 5 of the program
counter. In effect, this multiplies the code by eight. Program execution resumes at the new address where eight
bytes are available for code to service the interrupt. If eight bytes are too few, the program can either jump to
or call a subroutine.

Chapter 3. Instruction Set

8085 NOTE

The 8085 processor includes four hardware inputs that generate internal RST
instructions. Rather than send a RST instruction, the interrupting device need
only apply a signal to the RST5.5, RST6.5, RST7.5, or TRAP input pin.

The processor then generates an internal RST instruction. The execution
depends on the input:

INPUT RESTART
NAME ADDRESS
TRAP 24H
RSTS5.5 2CH
RST6.5 34H
RST7.5 3CH

Notice that these addresses are within the same portion of memory used by the RST instruction, and therefore
allow only four bytes — enough for a call or jump and a return — for the interrupt service routine.

If included in the program code, the RST instruction has the following format:
Opcode Operand
RST code

The address code must be a number or expression within the range 000B through 111B.

i 1]c c c]1 1 1]
—

Program —=~
Counter 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
After RST o 0o 0o o o 0o o o o o]Jc ¢ clo o o
Cycles: 3
States: 11 (12 on 8085)
Addressing: register indirect
Flags: none

RETURN IF ZERO

The RZ instruction tests the zero flag. If the flag is set to one to indicate that the contents of the accumulator are
zero, the instruction pops two bytes of data off the stack and places them in the program counter. Program

execution resumes at the new address in the program counter. If the flag is zero, program execution simply
continues with the next sequential instruction.

3-55

Chapter 3.

SBB

3-56

Instruction Set

Opcode Operand
RZ

Operands are not permitted with the RZ instruction.

Cycles: Tor3

States: 50r 11 (6 or 12 on 8085)
Addressing: register indirect

Flags: none

Example:

For the sake of brevity, an example is given for the RET instruction but aot for each of its closely related
variants.

SUBTRACT WITH BORROW

SBB subtracts one byte of data and the setting of the carry flag from the contents of the accumulator. The
result is stored in the accumulator. SBB then updates the setting of the carry flag to indicate the outcome of
the operation.

SBB’s use of the carry flag enables the program to subtract nulti-byte strings. SBB incorporates the carry flag by
adding it to the byte to be subtracted from the accumulator. It then subtracts the result from the accumulator
by using two’s complement addition. These preliminary operations occur in the processor’s internal work register
so that the source data remains unchanged.
Subtract Register from Accumulator with Borrow

Opcode Operand

SBB reg

The operand must specify one of the registers A through E, H or L. This instruction subtracts the contents of
the specified register and the carry flag from the accumulator and stores the result in the accumulator.

T 0 0 1t 1S S S

Cycles: 1

States: 4
Addressing: register
Flags: ZS,P,CYAC

Chapter 3. Instruction Set

Subtract Memory from Accumulator with Borrow
Opcode Operand
SBB M

This instruction subtracts the carry flag and the contents of the memory location addressed by the H and L
registers from the accumulator and stores the result in the accumulator.

t o 0 1 1 1 1 O

Cycles: 2

States: 7

Addressing: register indirect
Flags: Z,5,P,CY,AC

Example:

Assume that register B contains 2, the accumulator contains 4, and the carry flag is set to 1. The instruction
SBB B operates as follows:

2H + carry = 3H
2’s complement of 3H = 11111101

Accumulator = 00000100
non
00000001 = 1H

Notice that this two’s complement addition produces a carry. When SBB complements the carry bit generated
by the addition, the carry flag is reset OFF. The flag settings resulting from the SBB B instruction are as

follows:
Carry = 0
Sign = 0
Zero = 0
Parity = 0
Aux. Carry = 1
SBI SUBTRACT IMMEDIATE WITH BORROW

SBI subtracts the contents of the second instruction byte and the setting of the carry flag from the contents of
the accumulator. The result is stored in the accumulator.

SBI's use of the carry flag enables the program to subtract multi-byte strings. SBI incorporates the carry flag by
adding it to the byte to be subtracted from the accumulator. It then subtracts the result from the accumulator
by using two's complement addition. These preliminary operations occur in the processor’s internal work registers
so that the immediate source data remains unchanged.

3-57

Chapter 3. Instruction Set

The assembler’s relocation feature treats all external and relocatable symbols as 16-bit addresses. When one of
these symbols appears in the operand expression of an immediate instruction, it must be preceded by either the
HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the expression.
When neither operator is present, the assembler assumes the LOW operator and issues an error message.

Opcode Operand
SBI data

The operand must specify the data to be subtracted. This data may be in the form of a number, an ASCII
constant, the label of some perviously defined value, or an expression. The data may not exceed one byte.

T 1 o 1 1 1 1 0
Cycles: 2

States: 7

Addressing: immediate
Flags: Z,5,PCY,AC

Example:

This sequence of instructions replaces a 20-byte array at symbolic location AXLOTL with a logical array consisting
of zeros and ones, as follows:

. If an element of AXLOTL is 5 or greater /n absolute value, it is replaced with 1.
. If an element of AXLOTL is less than 5 in absolute value, it is replaced with O.

Note that the program flow is governed by how the carry flag is set.

MVI B,20 ; initialize counter
XRA A ; clear accumulator and carry
LXlI HAXLOTL ;(H,L) point to array AXLOTL
LOAD: MOV AM ; load acc. with byte pointed to by (H,L)
SBlI 5 ; subtract 5, set carry if acc. less than 5
JC SMALL ; jump to SMALL if acc. was less than 5
MVI M,1 ; store 1 where array element was
JMP TEST ; jump down to test count
SMALL: MVI M0 ; store O where array element was
TEST: XRA A ; clear accumulator and carry
DCR B ; decrement count
CMP B ; compare Bto 0
JZ DONE ; if accum. is zero, all done
INX H ; bump (H,L) to point to next array element
JMP LOAD ; go back and get another array element
DONE: ; remainder of program
SHLD STORE H AND L DIRECT

SHLD stores a copy of <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>