
MCS-48 AND UPI-41
ASSEMBLY LANGUAGE MANUAL

Manual Order Number: 98002550

Copyright © 1976, 1977, 1978 Intel Corporation

] Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 [

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including,
but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. Intel Corporation assumes no responsibility for any errors that may appear in this
document. Intel Corporation makes no commitment to update nor to keep current the
information contained in this document.

The software described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license.

Intel Corporation assumes no responsibility for the use or reliability of its software on
equipment that is not supplied by Intel.

No part of this document may be copied or reproduced in any form or by any means
without the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to describe
Intel products:

ICE
INSITE
INTEL
INTELLEC
LIBRARY MANAGER
MCS

MEGACHASSIS
MICROMAP
PROMPT
RMX
UPI
piSCOPE

ii

PREFACE

Intel welcomes you as a new user of the Microcomputer-System/48 (MCS-48) and Universal-Peripheral-
lnterface/41 (UPI-41) microcomputer systems. This manual is one of a series of documents describing
these systems and their operation.

Part One of this manual describes the assembly language for programming the families of MCS-48 and
UPI-41 single-device microcomputers. Additional information needed to create a source (input) file to
the 8048/8041 assemblers, specifically the use of assembler directives, is also included in this part of
the manual.

Part Two describes procedures and controls for operating the assemblers used to translate your source
file into object code recognized by the MCS-48 and UPI-41 microcomputer systems. Paper-tape-
resident and diskette-resident versions of the assembler are available on Intel’s Intellec Microcomputer
Development System. The Intellec Series II Microcomputer Development System provides a ROM-
resident assembler on the Model 210 and a diskette-resident version on the Models 220 and 230.
If you are using the ROM-resident assembler, you will need the document:

Intellec Series // Model 210 User’s Guide 9800557

This manual provides only an overview of MCS-48 and UPI-41 hardware and assumes you are familiar
with the documents:

MCS-48 User’s Manual 9800270

UPI-41 User’s Manual 9800504

If you are not already conversant with the Intellec System and its operation, please refer to the
document:

MDS-800 Intellec Microcomputer Develop-
men t System Operator’s Man ual 9800129

If you are using the diskette-resident version of the assembler (ASM48), you will need:

ISIS-II System User’s Guide 9800306

Finally, you may find the following application notes useful in designing programs for the MCS-48
and UPI-41 microcomputer systems.

Application Techniques for The
MCS-48 Family A P-24

Printer Control Using The UPI-41 AP-27

FUNCTIONAL OVERVIEW

ASSEMBLER CONCEPTS

MCS-48 ASSEMBLY LANGUAGE INSTRUCTIONS

UPI-41 ASSEMBLY LANGUAGE INSTRUCTIONS

ASSEMBLER DIRECTIVES

MACROS

ASSEMBLER OVERVIEW

ASSEMBLER CONTROLS

ASSEMBLER OPERATION

MCS-48 AND UPI-41 INSTRUCTION SUMMARY

ASSEMBLER DIRECTIVE SUMMARY

ASSEMBLER CONTROL SUMMARY

LIST FILE FORMATS

REFERENCE TABLES

ERROR MESSAGES

2

3

4

5

6

7

8

9

A

B

C

D

E

F

V

4

CONTENTS
t

PART ONE: PROGRAMMING THE MCS-48 AND UPI-41
MICROCOMPUTER FAMILIES

1. Functional Overview

8048 Basic Features 1-1

Program Memory 1-2
Data Memory 1-3

Addressing Data Memory 1-4
Working Registers 1-5
Program Counter Stack 1-5

Programmable Controls 1-6
Carry Bit 1-7
Auxiliary Carry Bit 1-7
Flag Bits (F0,F1) 1-7
Register Bank Switch 1-8
Test Input 0 1-8
Test Input 1 1-8
Timer Flag 1-8
Interrupt Input Pin 1-8

Program Status Word 1-9
Interrupts 1-9
Input/Output 1-10

UPI-41 Microcomputers 1-11

Functional Differences 1-11
Hardware Differences 1-12

Data Bus Buffer 1-12
Status Register 1-12

8021 Microcomputer 1-13
Functional Differences 1-13
Hardware Differences 1-13

2. Assembler Concepts

Assemblers and Assembly Language 2-1

Instruction Format 2-1

vii

Contents

Label Field
Opcode Field
Operand Field
Comment Field

2-2 ___ '
2-2
2-2
2-3

Arithmetic Operations 2-3 -

Number Base Representation
Permissible Range of Numbers
Two’s Complement Arithmetic
Assembly-Time Expression Evaluation

Operators
Precedence of Operators

2-4
2-4
2-5
2-5
2-6
2-9

Symbols and Symbol Tables 2-9

Symbolic Addressing
Symbol Characteristics

Reserved, User-Defined, and Assembler-Generated Symbols
Global and Limited Symbols
Permanent and Redefinable Symbols
Duplicate Symbols

2-9
2-10
2-10
2-12
2-12
2-12

3. MCS-48 Assembly Language Instructions

Data Transfer Instructions 3-2

Data Transfer Within 8048 Memory
Register/Accumulator Moves

Move Register Contents to Accumulator
Move Accumulator Contents to Register

Data-Memory/Accumulator Moves
Move Data Memory Contents to Accumulator
Move Accumulator Contents to Data Memory
Move External-Data-Memory Contents to Accumulator
Move Accumulator Contents to External Data Memory

Immediate-Data Moves
Move Immediate Data to Register
Move Immediate Data to Data Memory
Move Immediate Data to Accumulator

PSW/Accumulator Moves
Move PSW Contents to Accumulator
Move Accumulator Contents to PSW

Timer/Accumulator Moves
Move Timer/Counter Contents to Accumulator
Move Accumulator Contents to Timer/Counter

3-2
3-2
3-2
3-2
3-3
3-3
3-3
3-4
3-4
3-4
3’5
3-5
3-5
3-6
3-6
3-6
3-7
3-7
3-7

viii

Contents

Program-Memory/Accumulator Moves 3-7
Move Current Page Data to Accumulator 3-8
Move Page 3 Data to Accumulator 3-8

Data Exchange Instructions 3-9
Exchange Accumulator-Register Contents 3-9
Exchange Accumulator and Data Memory Contents 3-9
Exchange Accumulator and Data Memory 4-Bit Data 3-10
Swap 4-Bit Data Within Accumulator 3-10

Input/Output Data Transfers 3-11
Standard I/O Transfers 3-11

Input Port 0-2 Data to Accumulator 3-11
Strobed Input of BUS Data to Accumulator 3-12
Output Accumulator Data to Port 0-2 3-12
Output Accumulator Data to BUS 3-12

Expanded I/O Transfers 3-13
Move Port 4-7 Data to Accumulator 3-13
Move Accumulator Data to Port 4, 5, 6, or 7 3-13

Data Manipulation Instructions 3-14

Logical Operations 3-14
Accumulator/Register Logical Operations 3-14

Logical AND Accumulator With Register Mask 3-14
Logical OR Accumulator With Register Mask 3-15
Logical XOR Accumulator With Register Mask 3-15

Accumulator/Data-Memory Logical Operations 3-15
Logical AND Accumulator With Memory Mask 3-16
Logical OR Accumulator With Memory Mask 3-16
Logical XOR Accumulator With Memory Mask 3-16

Accumulator/lmmediate-Data Logical Operations 3-17
Logical AND Accumulator Wth Immediate Mask 3-17
Logical OR Accumulator With Immediate Mask 3-17
Logical XOR Accumulator With Immediate Mask 3-18

Input/Output Logical Operations 3-18
Logical AND Port 1 -2 With Immediate Mask 3-18
Logical AND BUS With Immediate Mask 3-18
Logical OR Port 1-2 With Immediate Mask 3-19
Logical OR BUS With Immediate Mask 3-19
Logical AND Port 4-7 With Accumulator Mask 3-19
Logical OR Port 4-7 With Accumulator Mask 3-20

Rotate Operations 3-20
Rotate Without Carry 3-21

Rotate Right Without Carry 3-21
Rotate Left Without Carry 3-21

Rotate Through Carry 3-22
Rotate Right Through Carry 3-22
Rotate Left Through Carry 3-22

ix

Contents

Arithmetic Operations 3-22
Increment/Decrement Instructions 3-23

Increment Accumulator 3-23
Increment Register 3-23
Increment Data Memory Location 3-24
Decrement Accumulator 3-24
Decrement Register 3-24
Decrement Register and Test 3-25

Addition Instructions 3-25
Add Register Contents to Accumulator 3-26
Add Carry and Register Contents to Accumulator 3-26
Add Data Memory Contents to Accumulator 3-27
Add Carry and Data Memory Contents to Accumulator 3-27
Add Immediate Data to Accumulator 3-27
Add Carry and Immediate Data to Accumulator 3-28

Miscellaneous Accumulator Operations 3-28
Clear Accumulator 3-28
Complement Accumulator 3-28
Decimal Adjust Accumulator 3-29

Setting Program Controls 3-29

Carry and Flag Controls 3-29
Clear Carry Bit 3-29
Complement Carry Bit 3-30
Clear Flag 0 3-30
Complement Flag 0 3-30
Clear Flag 1 3-30
Complement Flag 1 3-31

Interrupt Controls 3-31
External Interrupt Control 3-31

Enable External Interrupt 3-31
Disable External Interrupt 3-31

Timer/Counter Interrupt Control 3-32
Enable Timer/Counter Interrupt 3-32
Disable Timer/Counter Interrupt 3-32

Timer/Event-Counter Controls 3-32
Start Timer 3-32
Start Event Counter 3-33
Stop Timer/Event-Counter 3-33

Clock Control 3-34
Enable Clock Output 3-34

Memory and Register Bank Controls 3-35
Memory Bank Selection 3-35

Select Memory Bank 0 3-35
Select Memory Bank 1 3-36

Register Bank Selection 3-36
Select Register Bank 0 3-36
Select Register Bank 1 3-36

x

Contents

The ‘Null’Operation 3-37
The NOP Instruction 3-37

Transferring Program Control 3-37

Subroutine Call/Return Operations 3-38
Subroutine Call 3-38
Return Without PSW Restore 3-39
Return With PSW Restore 3-39

Jump Instructions 3-40
Unconditional Jumps 3-40

Direct Jump Within 2K Block 3-40
Indirect Jump Within Page 3-40

Conditional Jumps 3-40
Jump If Carry Is Set 3-41
Jump If Carry Is Not Set 3-41
Jump If Accumulator Is Zero 3-41
Jump If Accumulator Is Not Zero 3-42
Jump If Flag 0 Is Set 3-42
Jump If Flag 1 Is Set 3-42
Jump If Test 0 Is High 3-43
Jump If Test 0 Is Low 3-43
Jump If Test 1 Is High 3-43
Jump If Test 1 Is Low 3-44
Jump If Timer Flag Is Set 3-44
Jump If Interrupt Input Is Low 3-44
Jump If Accumulator Bit Is Set 3-45

Sample Programs 3-45

Addition With 8-Bit Quantities 3-45
Addition With 16-Bit Quantities 3-45
Addition With BCD Quantities 3-45
Subtraction With 8-Bit Quantities 3-46
Subtraction With 16-Bit Quantities 3-46
Multiplication (8X8 Bits, 16-Bit Product) 3-47
Compare Memory to Accumulator 3-47
Analog/Digital Conversion 3-47
Matrix Keyboard Scan (4 x 4) 3-48

UPI-41 Assembly Language Instructions

Deleted 8048 Instructions 4-1

Reinterpreted Instructions 4-1

Added Instructions 4-2

xi

Contents

Data Transfer Instructions 4-2
Input DBB Contents to Accumulator 4-2
Output Accumulator Contents to DBB 4-2

Flag Test Instructions 4-2
Jump If IBF Is Not Set 4-3
Jump If OBF Is Set 4-3

5. Assembler Directives

Location Counter Control 5-2

ORG Directive 5-2

Symbol Definition 5-2

EQU Directive 5-3
SET Directive 5-3

Data Definition 5-3

DB Directive 5-3
DW Directive 5-4

Memory Reservation 5-4

DS Directive 5-4

Conditional Assembly 5-5

IF, ELSE, and ENDIF Directives 5-5

Assembler Termination 5-7

END Directive 5-7

End-of-Tape Indication 5-7

EOT Directive 5-7

6. Macros

Introduction to Macros 6-1

Why Use Macros? 6-1
What is a Macro? 6-1
Macros Vs. Subroutines 6-2

xii

Contents

Using Macros 6-3

Macro Definition
Macro Definition Directives

MACRO Directive
ENDM Directive
LOCAL Directive
RE PT Directive
IRP Directive
IRPC Directive
EXITM Directive
Null Macros

Special Operators
Nested Macro Definitions

Macro Calls
Macro Call Format
Nested Macro Calls

Macro Expansion

6-3
6-4
6-4
6-5
6-5
6-6
6-6
6-7
6-8
6-8
6-9
6-10
6-11
6-11
6-12
6-13

Sample Macros 6-14

Repetitive Addition (IRP)
Repetitive Add and Store (IRPC, &)
Multiplication (REPT, LOCAL)
Zero and Label Contiguous Locations (REPT, &, %)
Altering Macro Expansions (Three Approaches)

First Solution (Conditional Assembly)
Second Solution (Conditional Assembly, EXITM)
Third Solution (Nested Macro)

6-14
6-15
6-15
6-16
6-17
6-17
6-18
6-19

PART TWO: ASSEMBLER OPERATION

7. Assembler Overview

Versions of Assembler 7-1

MONITOR Assembler Environment
ISIS-II Assembler Environment

7-1
7-2

Input/Output Files 7-2

Source File
Object File
List File
Symbol-Cross-Reference File
ISIS-II Assembler Reserved File Names

7-2
7-2
7-2
7-3
7-3

xiii

Contents

8. Assembler Controls

Introduction to Assembler Controls 8-1

Primary and General Controls 8-1
Specifying Controls 8-1
Summary of Controls 8-2

ISIS-II Assembler Controls 8-2

ISIS-II Assembly-Time Command 8-2
Primary Controls 8-3
General Controls 8-5

Defaults 8-6
ISIS-II Embedded Control Lines 8-6

Intellec MONITOR Assembler Controls 8-7

MONITOR Assembly-Time Commands 8-7
Primary Controls 8-7
General Controls 8-8
Defaults 8-9

MONITOR Embedded Control Lines 8-9

9. Assembler Operation

ISIS-II Assembler Operation 9-1

Activation Sequence 9-1
Sample Assembly 9-1

Intellec MONITOR Assembler Operation 9-4

Activation Sequence 9-4
Sample Assembly 9-6

Appendix A: MCS-48 and UPI-41 Instruction Summary

Special Operators and Reserved Words A-1

MCS-48 and UPI-41 Assembly Language Notation A-3

Summary by Mnemonic Opcode A-4

Summary by Hexadecimal Opcode A-12

xiv

Contents

Appendix B: Assembler Directive Summary

Notation B-1

Summary of Directives B-2

Macro Directives B-3

Appendix C: Assembler Control Summary

Control Formats C-1

Common Controls C-l

ISIS-II Assembler Controls C-3

MONITOR Assembler Pass Options C-4

Defaults C-4

Appendix D: List File Formats

Assembly Listing Format D-1

Page Header D-1
Title Line D-2
Column Heading D-2
Assembly Output Line D-2
Symbol Table Listing D-3
Error Summary D-4

Symbol-Cross-Reference Listing D-5

Page Header D-5
Cross-Reference Output Line D-5

Appendix E: Reference Tables

ASCII Codes E-l

Powers of Two E-3

Powers of 16 (in Base 10) E-4

Powers of 10 (in Base 16) E-4

Hexadecimal-Decimal Integer Conversion E-5

XV

Content'

Appendix F: Error Messages

Error Detection and Reporting F-1

Error Codes F-1

Source-File Errors F-1
Run-Time Errors F-3
Assembler Control Errors F-3
ISIS-11 E rror M essages F-4

xvi

ILLUSTRATIONS

Figure Title Page

1-1 Program Memory Map 1-3
1-2 Resident Data Memory Layout 1-4
1-3 Stack Format 1-6
1-4 Program Status Word Format 1-9
1-5 BUS Contents During Status Polling 1-12

2-1 Number Representation 2-4

3-1 Bit Rotation 3-21

xvii

PART ONE

PROGRAMMING THE MCS-48 AND UPI-41

MICROCOMPUTER FAMILIES

1. Functional Overview

2. Assembler Concepts

3. MCS-48 Assembly Language Instructions

4. UPI-41 Assembly Language Instructions

5. Assembler Directives

6. Macros

1. FUNCTIONAL OVERVIEW

A microcomputer, until recently, could be defined as a complete computer on a single board. At the heart of the
microcomputer was the microprocessor device, or central processing unit (CPU). The board also contained con
trol circuitry, memory devices, and input/output (I/O) interfaces.

The MCS-48 and UPI-41 microcomputer systems have made this traditional distinction between microcomputers
and microprocessors obsolete. At the heart of these systems are several single-device microcomputers, each con
sisting of a CPU, separately addressable program and data memories, I/O interfaces, and timer. The systems are
completed by the addition of applicable Intel peripherals, providing an extensive assortment of family parts. The
MCS-48 microcomputer options are implemented as primary controllers of your OEM equipment. UPI-41 devices
are implemented as intelligent, programmable peripheral processors.

The MCS-48 is available in six functionally similar versions — the 8048 and 8049 microcomputers with read-only
(ROM) program memory, the 8748 microcomputer with erasable and programmable ROM (EPROM), the 8035
and 8039 microcomputers, which use no resident program memory, and the 8021 microcomputer, the lowest
cost component in the MCS-48 family. The UPI-41 is based on either the 8041 microcomputer (with ROM
program memory) or the 8741 microcomputer (with EPROM program memory). The following chart summarizes
the main hardware differences among all eight microcomputers.

Microcomputer Pins ROM EPROM RAM
External

Addressing

8048 40 1K — 64 Yes
8748 40 — 1K 64 Yes
8035 40 — — 64 Yes

8049 40 2K — 128 Yes
8039 40 — — 128 Yes

8021 28 1K — 64 No

8041 40 1K — 64 No
8741 40 — 1K 64 No

These hardware features are discussed in greater detail in the rest of this chapter.

The 8048, 8748, and 8035 are equivalent except for their program memories (ROM/EPROM). The 8035 is used
with external program memories in prototype and preproduction systems. The 8049 and 8039 are also equivalent,
except for program memory, and have the same instruction set as the 8048 group. For the purposes of this
manual, which emphasizes programming primarily, ‘8048’ refers to all five microcomputers.

1-1

Chapter 1. Functional Overview

Because of their different usage of the external bus, the 8041,8741, and 8021 have a slightly different
instruction set and functional approach from the other five. These differences are discussed at the end of this
chapter and in Chapters 3 and 4. For the purposes of this manual, '8041 ’ also refers to the 8741. Descriptions
of the 8048 apply to the 8041, 8741, and 8021 also, except for specifically stated differences.

8048 BASIC FEATURES

From the programmer's viewpoint, the following are the main 8048 device features:

I • Resident 2K or 1K by 8-bit ROM/EPROM program memory with memory

expansion capability

I • 128 or 64 by 8-bit random access (RAM) data memory, which includes the

working registers and program counter stack and is also expandable

• 12-bit program counter (PC)

• Program status word (PSW), consisting of status bits, flags, and the stack pointer

• Programmable resident interval timer, also available as an external event counter

• Resident clock and oscillator for internal timing

• External and timer overflow interrupts

• I/O ports and controls, expandable using the 8243 expander device

Program Memory

I Resident program memory consists or a 2K by 8-bit ROM (8049) or a 1K by 8-bit ROM (8048) or EPROM
(8748) divided into 256-byte ‘pages.’ In a typical development sequence, you might program the 8748 with
your prototype code, debug this code using the Intellec system and ICE-48 facilities, and then commit the
final version of your program to the 8048 ROM version for production. Or, you might prefer to use the 8748
for production, leaving yourself the option to make modifications in the field or to tailor your basic program
to customer specifications.

I Resident program memory can be expanded up to 4K using additional ROM or EPROM devices. This external
memory is directly addressable by the 8048’s 12-bit program counter. Address selection is done on a ‘bank’
basis using the MCS-48 instructions:

SELMB0 ;SELECT MEMORY BANK 0
SELMB1 SELECT MEMORY BANK 1

Memory bank 0 is the lower 2K of program memory and memory bank 1 is the upper 2K (Figure 1-1). Bits
0-10 of the program counter can address up to 2K locations; PC bit 11 is set to 1 by the SEL MB1 instruction,
permitting addressing to 4K. The SEL MB instructions do not affect PC bit 11 until a branch from the main
program sequence is executed (via a call or jump instruction).

1-2

Chapter!. Functional Overview

NOTE

Program memory expansion beyond 4K is described in the
MCS-48 user’s manual. Program memory addressing using
the EA (external address) pin is described in the same docu
ment.

MEMORY
BANK

1

MEMORY
BANK

0

Figure 1-1 Program Memory Map

Data Memory

In addition to resident program memory, the 8049/8039 microcomputers provide a resident 128 by 8-bit data
memory (expandable by 256 locations using additional RAM devices). The other MCS-48 microcomputers have
a 64 by 8-bit resident data memory.

The memory consists of eight working registers (plus an additional eight registers selectable on a ‘bank’ basis), an
eight-level program counter stack, and scratchpad memory (Figure 1-2). The amount of scratchpad memory
available can vary depending on the number of addresses nested in the stack and the number of registers selected.

NOTE

Data memory expansion beyond 256 locations is described in
the MCS-48 user’s manual.

1-3

Chapter 1. Functional Overview

REGISTERS 0-7
IF BANK 1
IS SELECTED

REGISTERS 0-7
IF BANK 0
IS SELECTED

Figure 1 -2 Resident Data Memory Layout

Addressing Data Memory

Working registers in RAM memory can be addressed ‘directly’ by specifying a register number, as in the instruction

MOV A,R4 ;MOVE THE CONTENTS OF REGISTER 4
;INTO THE ARITHMETIC AND LOGIC
;UNIT’S 8-BIT ACCUMULATOR

Other locations in resident data memory are addressed ‘indirectly’ using register 0 or register 1 to specify the
addressed location. The special symbol ‘@’ (commercial at) indicates that indirect addressing is desired.

MOV A,R1 ;MOVE THE CONTENTS OF REG 1 INTO THE
.-ACCUMULATOR

MOV A,@R1 ;MOVE THE CONTENTS OF THE LOCATION WHOSE
;ADDRESS IS SPECIFIED BY REG 1 INTO THE
;ACCUMULATOR

Because all 128/64 locations (including the eight working registers) can be addressed by 7/6 bits, the most significant
bits (6 and/or 7) of the addressing registers are ignored. However, all eight bits of register 0 or register 1 can be used
in combination with the 8048’s MOVX instructions to address up to 256 locations in external RAM data memory.

1-4

Chapter 1. Functional Overview

MOVX @R0,A ;MOVE THE CONTENTS OF THE ACCUMULATOR
jINTOTHAT LOCATION IN EXTERNAL DATA
;MEMORY WHOSE ADDRESS IS CONTAINED
;IN REGISTER 0

Working Registers

The dual bank of eight working registers is selected by the 8048’s SEL RB instruction. The initial setting is ‘bank 0,’
which refers to data memory locations 0-7. If the instruction

SEL RBI ;SELECT REGISTER BANK I

has been issued, then references to R0-R7 in MCS-48 instructions operate on locations 24-31. As was mentioned
above, registers 0 and 1 in the active bank have a special addressing function; they are used to address indirectly all
locations in scratchpad memory (including the optional 256-location expansion). These indirect RAM address
registers are especially useful for repetitive operations on adjacent data memory locations, as in the following
example:

START: ADD A,@R0 ;ADD TO THE ACCUMULATOR THE
jCONTENTS OF THE LOCATION
;WHOSE ADDRESS IS SPECIFIED
;BY REGO

INC RO INCREMENT REG 0
JNC START JUMP TO INSTRUCTION LABELED

/START’ IF NO ADDITION
;OVERFLOW (NO CARRY)

A good programming practice is to reserve locations 24-31 for interrupt servicing routines, thereby preserving the
contents of your main program registers. Simply specify SEL RB1 as one of your interrupt routine’s initialization
instructions. When you subsequently return to the main program using the instruction RETR, the previously
selected bank is automatically restored. During interrupt processing, registers in bank 0 can be accessed indirectly.

Unused registers can serve as additional scratchpad memory, if desired.

Program Counter Stack

Locations 8-23 are used as an 8-level program counter stack. When control is temporarily passed from the main
program to a subroutine or interrupt servicing routine, the 12-bit program counter and bits 4-7 of the program
status word (PSW) are stored in two stack locations (Figure 1-3). Note that the program counter is stored with
its low-order bits in the lowest available address in the stack area.

When control returns to the main program via an RETR instruction, the program counter and PSW bits 4-7 are
restored. Returning via an RET instruction does not restore the PSW bits, however. (These PSW bits are described
in detail later in this chapter.)

The program counter stack is addressed by three stack pointer (STP) bits in the PSW (bits 0-2). The current program
counter is not resident in the program counter stack and consequently is not directly accessible.

1-5

Chapter 1. Functional Overview

7 4 3 0

HIGH (ODD)
LOCATION

LOW (EVEN)
LOCATION

PSW
71 1

PSW
14

PC11
1 1

PC8
1

PC7
1 1___ 1___ ____ 1____ 1

PCO
1

Figure 1-3 Stack Format

The stack pointer bits in the PSW refer to the stack pointer locations as follows:

STP Bits Data Memory Locations

000 8-9
001 10-11
010 12-13
011 14-15
100 16-17
101 18-19
110 20-21
111 22-23

The bit setting indicates the locations to be loaded the next time the program counter is stored. The stack pointer is
incremented by one each time the program counter is stored and decremented each time the program counter is
restored. Unused stack locations can be employed as scratchpad memory.

The 8048 stack allows up to eight levels of subroutine ‘nesting;’ that is, a subroutine may call a second subroutine,
which may call a third, etc., up to eight levels. When processing interrupts, remember that the stack contains not only
information nested by the main program, but also the program counter stored by the interrupt, plus any information
required by subroutine nesting in the interrupt service routine.

Programmable Controls

The 8048 provides several condition bits, flags, and pins for testing and controlling program operation. These are
referred to as:

C Carry bit
AC Auxiliary carry bit
F0 Flag 0 •
F1 Flag 1
BS Register bank switch
TO Test 0 pin •
T1 Test 1 pin
TF Timer flag
I Interrupt input pin

1-6

Chapter 1. Functional Overview

Carry Bit

The carry bit (C) is affected by the addition and decimal adjust instructions and certain rotate operations and
generally indicates a carry out of the bit 7 position (most significant bit, or MSB) of the ‘accumulator’ (ACC — a
special register in the 8048’s arithmetic and logic unit). For example, addition of two 8-bit numbers as in the
following instructions would result in a carry out of the MSB and set the carry bit.

MOV A,#0AEH ;MOVE VALUE ‘AE’ HEX TO ACC
ADD A,#74H ;ADD VALUE *74’ HEX TO ACC

1 Carry

Bit 7 6 5 4 3 2 1 0

AE 1 0 1 0 1 1 1 0
+74 0 1 1 1 0 1 0 0

=122 r0 0 1 0 0 0 1 0

The carry bit can be complemented (changed to 0 if 1, or to 1 if 0) using the MCS-48 instruction CPL C, reset to
zero using CLR C, and tested by the conditional jump instructions JC and JNC.

Auxiliary Carry Bit

The auxiliary carry (AC) bit indicates a carry out of bit 3 in the accumulator and is only applicable when decimal
arithmetic is being performed. This bit essentially allows the Decimal Adjust Accumulator (DA A) instruction to
perform its function. The DA instruction adjusts the 8-bit accumulator value to form two 4-bit Binary-Coded-
Decimal (BCD) digits. The following instruction sequence resets the carry bit to zero and sets the auxiliary carry
bit.

MOV A,#2EH ;MOVE VALUE‘2E’HEX TO ACC
ADD A,#74H ;ADD VALUE ‘74’ HEX TO ACC

Bit 7 6 5 4 3 2 1 0

2E. 0 0 10 1110
+74 0 1 1 1 0 1 0 0
=A2 r- 1 0 1 0 <— 0 0 1 0

0 Carry 1 Auxiliary Carry

The auxiliary carry bit cannot be tested or altered directly (but see the discussion of the PSW later in this chapter).
It is affected only by addition.

Flag Bits (F0, Fl)

The 8048 provides two program control flags (F0 and Fl), both of which can be complemented with the instructions
CPL F0/F1, reset to zero using CLR F0/F1, or tested with the conditional jumps J F0 and J F1. Their initial state is
zero.

1-7

Chapter 1. Functional Overview

One important difference between these two flags is that FO is restored when control is returned from an interrupt
servicing routine (by the RETR instruction), whereas F1 is not. Therefore the latter can be used by the interrupt
servicing routine to pass an information bit to the main program.

Register Bank Switch

The register bank switch indicates which of the possible register banks (0 or 1) is active. It is toggled by the 8048
instructions SEL RBO and SEL RBI. Its initial state is zero.

Test Input 0

Test input 0 (TO) provides a multifunction capability for the design engineer and programmer. It is directly testable
using the MCS-48 conditional jump instructions JTO and JNTO.

As an input pin activated by an external source it could be used as a pseudo interrupt or other general-purpose
function.

TO can also be converted to a state clock output using the MCS-48 instruction ENTO CLK. This signal could then be
used as a general-purpose clock by the MCS-48. (See the MCS-48 user’s manual for details.)

Test Input 7

A special 8048 register can be used as an interval timer or as an external event counter. As an interval timer it is
initiated by the STRT T instruction and incremented by a prescaler having a periodic duration equivalent to 32
instruction cycles (at 2.5 microseconds per cycle). When the register is used as an event counter, the prescaler is
bypassed and the external test 1 (T1) pin is designated as the counter input. The latter mode is enabled by the STRT
CNT instruction. Both modes are disabled by the STOP TCNT instruction. The conditional jump instructions JT1
and JNT1 can be used to test this pin.

Timer Flag

fa was mentioned above, the interval timer is incremented every 32 instruction cycles. This means the 8-bit timer
register will overflow every 8192 cycles (256 x 32). When the timer overflows, the timer flag (TF) is set, whether
or not the timer overflow interrupt is enabled. The same is true of an event counter overflow (more than 255 T1
inputs).

The timer flag can be tested by the conditional jump instruction JTF. It is reset to zero each time this instruction
is executed. Its initial state is zero.

Interrupt Input Pin

If the ‘external’ interrupt is enabled and this pin is active low (zero level), an interrupt is initiated. (See the dis
cussion of interrupts below.)

The MCS-48 conditional jump instruction JNI tests for the zero level at this pin. With the interrupt disabled, this
instruction could be used as another test input.

1-8

Chapter 1. Functional Overview

Program Status Word

The program status word (PSW) consists of eight bits organized as shown in Figure 1 -4.

7 0

c AC FO BS 1 SP2 SP1 SPO

Figure 1 -4 Program Status Word Format

As this figure indicates, locations 4-7 contain the register bank switch (BS), flag 0 (FO), auxiliary carry bit (AC),
and carry bit (C). These four bits are stored in the stack with the program counter when a CALL instruction or an
interrupt is encountered. The bits are restored by an RETR return instruction (but not by RET).

Bits 0-2 of the PSW contain the stack pointer (STP) used to address the 8-level data memory stack (see the sub
section ‘Program Counter Stack’, above). Bit 3 of the PSW is unused and is always set to one.

Two MCS-48 instructions (MOV A,PSWand MOV PSW,A) allow data to be transferred between the PSW and the
accumulator. This is particularly useful for modifying the stack pointer or AC bits. Bits 4, 5, and 7 can also be
modified individually using the instructions mentioned above (for example, SEL RBI, CLR FO, CPL C).

Interrupts

The 8048 responds to two kinds of interrupts: ‘external’ and ‘timer overflow.’ An external interrupt forces a call to
location 3 in program memory; a timer overflow interrupt forces a call to location 7.

The external interrupt is enabled by the instruction EN I and disabled by the instruction DIS I. If this interrupt is
enabled and the interrupt input pin goes low (level zero), the interrupt sequence is initiated as soon as the currently
executing instruction is completed. A CALL to location 3 is forced, the return address and bits 4-7 of the PSW are
stored in the program stack, and the stack pointer bits incremented. If you wish, you can create your own 'interrupt
acknowledge’ by programming an appropriate output pin or by implying the acknowledge in ensuing I/O operations.

The RETR instruction should be used to return from an interrupt. This instruction will restore the program counter
and PSW bits 4-7, providing automatic restoration of the previously-active register bank as well. RETR also reenables
interrupts.

The timer-overflow interrupt is enabled by the EN TCNTI instruction and disabled by the DIS TCNTI instruction.
If enabled, this interrupt occurs when the timer/event-counter register overflows. A CALL to location 7 is forced
and the interrupt routine proceeds as described above.

After an overflow the timer continues to accumulate time. If you require time intervals greater than the maximum,
you can disable the interrupt, count the number of overflows using the JTF (JUMP if timer flag is one) instruction,
and accumulate the number of overflows in a software counter until the required time is reached. Note that reading
the timer flag with a JTF resets it to zero.

Chapter 1. Functional Overview

While an interrupt service routine is executing, new timer interrupt requests will be accepted, but they cannot be
serviced until the current routine is completed. New external interrupts are not saved. If an external interrupt and a
timer-overflow interrupt occur simultaneously, both are recognized but the external interrupt has highest priority.

NOTE

All routines for servicing interrupts must be located in memory
bank 0 (program memory locations 0-2K). During servicing of
an interrupt, PC bit 11 is held at zero. The SEL MB (select memory
bank) instructions should not appear in an interrupt service
routine.

Input/Output

Of the 40 pins on the 8048, 27 can be used for input, output, or both, depending on the MCS-48 configuration
established. In addition to the I/O capability provided by these pins, the 8243 expander device can be added to the
configuration to provide 16 additional I/O lines (four 4-pin ports).

NOTE

I/O expansion beyond that provided by a single 8243 expander
device is described in the MCS-48 user’s manual.

The total 43 I/O lines possible with an 8048 and 8243 expander device are divided into eight directly addressable
groups as follows:

Port Pins Comment

BUS D0-D7 Bidirectional. Strobed
input.

1 P10-P17 Quasi-bidirectional
depending on configuration.

2 P20-P27 P20-23 are used to attach
four 8243 ports. Quasi-
bidirectional.

TO, T1, INT Testable input pins; test 0,
test 1, interrupt.

4-7 0-15 Four pins each. 8243
ports

The BUS port and ports 1-2 on the 8048 and ports 4-7 on the 8243 can be read and written by 8048 I/O instructions.
The BUS and ports 1-2 can be ANDed and ORed with the second byte of ANL and ORL instructions.

For example:

ANL BUS,#data ;‘AND’ SECOND BYTE WITH DATA IN
;BUS PORT

ORL P2,#data ;‘OR’ SECOND BYTE WITH DATA IN
;PORT 2

1-10

Chapter 1. Functional Overview

Ports 4-7 can be ANDed and ORed with the low-order four bits of the accumulator.

ORLD P5,A ;‘OR’ ACC BITS 0-3 WITH DATA
;IN PORT 5

Address and control data are provided to the 8243 ports via 8048 pins P20-23. Any data existing on P20-23 before an
8243 instruction is issued is lost. Therefore, if your configuration includes an 8243 expander device, pins P20-23 should
not be used for general I/O operations.

UPI-41 MICROCOMPUTERS

The 8041 and 8741 (UPI-41) microcomputers are variations of the 8048 and 8748, respectively. The essential
difference between the 8041 and 8048 is that the 8041 includes handshaking interfaces and protocols for MCS-48,
MCS-80, and MCS-85 buses, enabling it to serve as a programmable, intelligent peripheral within a larger micro
computing system. This section focuses on the specific design and functional differences between the 8041 and the
8048 required to implement this handshaking. Differences in the assembly language instructions for these devices
are described in Chapter 4.

Functional Differences

During the transfer of data between a master computer and the 8041, the handshaking protocol requires the 8041’s
BUS port for interfacing to the master port. As a consequence, 8041 program memory cannot be expanded beyond
1K and data memory cannot be expanded beyond 64 locations. I/O can still be expanded using the 8243 expander
device, however.

The external interrupt function is also committed to the master processor interface. However, the event counter
can provide an effective external interrupt if it is preset to all ones. The T1 input can then be used in the same
manner as the interrupt input, but program control is passed to location 7 rather than location 3 in this instance.

MOV A,#0FFH ;MOVE 'ONES’ TO ACC
MOV T,A ;MOVE ACC DATA TO TIMER
EN TCNTI ;ENABLE COUNTER INTERRUPT
STRT CNT ;START EVENT COUNTER

In 8041 mode the EN I and DIS I instructions used to enable/disable external interrupts on the 8048 have a
different function. When the master processor is transferring data to the 8041 slave, it can cause an interrupt each
time it fills the 8041 ’s data bus buffer (described below) to ensure that two writes are not issued before the buffer
is cleared. EN/DIS I enable and disable this interrupt. When initiated, this interrupt passes control to location 3 as
in the normal 8048 external interrupt procedure.

When data is transferred from the 8041 to the master computer, no interrupt is possible except by dedicating I/O
lines. The master must poll special 8041 status bits (described below) to determine whether the data bus buffer is
empty.

Finally, the TO pin can be used only as a test input in 8041 mode; it cannot be used as a state clock output.

1-11

Chapter!. Functional Overview

Hardware Differences

Hardware differences (such as pin designation differences, deletion of the functions described above, and hand
shaking hardware) are described in detail in the UP 1-41 user’s manual. However, two special 8041 registers used in
these protocols should be singled out since they are referenced in 8041 instructions.

Data Bus Buffer

The 8-bit data bus buffer (DBB) serves as a temporary register for information flowing between the 8041 and a
master computer. Transfers between the master and slave processors via the data bus buffer can be implemented
with or without program interference (using EN I or DIS I).

Data is transferred between the DBB and the 8041 ’s accumulator using the UPI-41 instructions:

IN A,DBB ;PLACE DBB CONTENTS INTO 8041 ACC
OUT DBB,A ;PLACE 8041 ACC CONTENTS INTO DBB

Status Register

This 4-bit register indicates the status of flag 0 and flag 1 (F0 and Fl) and of two special 8041 flags; input buffer
(IBF) and output buffer (OBF). IBF and OBF indicate the condition of the data bus buffer and are initially cleared.

The sequence for transferring data from a master processor to the 8041 is as follows:

• Eight bits are written from the BUS port into the 8041 ’s DBB

• IBF is set

• Control/data input is placed in flag 1 (Fl)

• An interrupt is generated, if enabled

Subsequent execution of the UPI-41 instruction IN A,DBB in either the main program or the interrupt service
routine clears IBF. The master can determine that IBF has been cleared (that is, DBB is empty and ready for more
data) by polling the status register. A ‘read control status’ pulse places the 4-bit status register and 4 undefined high-
order bits on the BUS in the order shown in Figure 1-5.

D7__________________________________ DO

- - - - F1 FO IBF OBF

Figure 1-5 BUS Contents During Status Polling

1-12

Chapterl. Functional Overview

When an OUT DBB,A instruction is executed in a UPI-41 program, initiating a transfer of data from the slave to the
master computer, OBF is set. A subsequent ‘read data bus buffer’ pulse from the master reads the DBB contents
onto the BUS and clears OBF.

The slave computer cannot poll or interrupt the master, but it can check the status of the DBB using the two
UPI-41 instructions:

JNIBF addr JUMP TO ‘ADDR’ IF IBF NOT SET
JOBF addr JUMP TO‘ADDR’IF OBF SET

8021 MICROCOMPUTER

The 8021 is the low-cost, low-end product within the MCS-48 family. It’s features are a subset of the 8048
features described earlier in this chapter. Consequently, a number of instructions in the 8048 instruction set
are not applicable to the 8021 (see Chapter 3 and Appendix A).

Functional Differences

The fundamental difference between the 8048 and 8021 is in packaging (28 pins on the 8021 vs. 40 pins on
the 8048) and the absence of the BUS port.

The fewer number of pins results in fewer programmable controls and interrupts. The 8021 does contain its
own inboard oscillator, however, and provides the same timer/event-counter capability as the 8048 (using
the T1 test input pin and TF timer flag).

The absence of the BUS port means the 1K on-chip ROM memory and 64-byte RAM memory cannot be
expanded, and 8048 instructions referencing expanded memory are not applicable. Of the 28 pins on the 8021
package, 20 are available for I/O, including I/O expansion using the 8243 expander device. The 20 I/O lines
possible with an 8021 and 16 expander device lines are divided into the following directly addressable groups:

Port Pins Comment

0 P00-P07 Quasi-bidirectional with open
drain outputs; optional

1 P10-P17
puHup device deletion.
Quasi-bidirectional.

2 P2O-P23 Quasi-bidirectional. Used to

— T1
attach four 8243 ports.
Testable input pin.

4-7 0-15 Four pins each. 8243 ports.

The 8021, like the 8048, provides eight directly-addressable registers (locations 0-7 in RAM memory). All
locations (0-64) in RAM memory can be addressed indirectly through registers 0 and 1. Register bank selection
is not available on the 8021.

Hardware Differences

Hardware differences between the 8048 and 8021 are described in the MCS-48 user’s manual.

1-13

2. ASSEMBLER CONCEPTS

2

ASSEMBLERS AND ASSEMBLY LANGUAGE

If you have ever written a computer program in a machine-recognizable form such as binary code, you will be par
ticularly appreciative of the advantages of programming in a symbolic assembly language. Assembly-language
operation codes (opcodes) are easily remembered (for example, MOV for a ‘move’ instruction, J MP for a ‘jump’).
You can also express symbolically the addresses and values referenced in the operand field of assembly language
instructions. The names for these operands can be selected to suggest their purpose, making them as mnemonic as
the opcodes.

The program consisting of assembly language instructions is called a source program. This program is passed through
an assembler, which performs the clerical task of translating symbolic code \v\to object code recognizable by the
MCS-48 and UPI-41 microcomputers.

The source file passed to the assembler actually includes more than source program instructions. It also includes
assembler directives and (possibly) assembler controls. Only source program instructions are converted into
executable object code, however. The assembler directives and controls initiate various functions that assist and
direct the assembler in its translation operation.

The diskette-resident 8048/8041 assembler, in addition to allowing symbolic programming, is also a macro
assembler. Frequently repeated routines, identical except for certain parameters, need be coded only once and
thereafter can be generated by a single instruction containing the specific parameters needed. Such routines are
called macros. Macro definition is described in detail in Chapter 6.

Assembler output consists of three possible files: the object file containing your program code in machine
executable form, the list file printout of your source code, object code, and symbol table, and the symbol-cross-
reference file, a listing of symbol-cross-reterence records. These files are discussed more fully in Part Two.

In this chapter, references to the MCS-48 instruction set apply to the UPI-41 instruction set as well.

INSTRUCTION FORMAT

MCS-48 assembly-language instructions and assembler directives consist of up to four fields as follows:

Label: Opcode Operand, Operand jComment

The label and comment fields are always optional. The operand field may contain zero, one, or two operands
depending on the opcode specified. Any number of blanks can separate fields. The entire instruction must be
entered on one line, terminated by a carriage return and line feed. No continuation lines are possible, though you
may have lines consisting entirely of comments.

2-1

Chapter 2. Assembler Concepts

Label Field

An instruction label is a symbol name whose value is the specific memory location where the instruction resides. It
is optional and when present must be followed by a colon. A label can be one to six alphanumeric characters, with
the first character alphabetic. A symbol used as a label cannot be redefined elsewhere in your program. (See ‘Symbols
and Symbol Tables’ later in this chapter.)

Opcode Field

This field contains the mnemonic operation code for the MCS-48 instruction or assembler directive to be performed.
It is terminated by a blank or nonalphanumeric character, or by a carriage return and line feed if no operand or
comment field is present.

Operand Field

The operand field identifies the data to be operated on by the specified instruction opcode. Some instructions re
quire no operand. Others require one or two operands. In the latter case, the operands are separated by a comma.
As a general rule, when two operands are required (data transfer, addition, and logical operations), the first operand
specifies the destination (or target) of the operation’s result and the second operand specifies the source data.

ADD A,R3
ANL A,R3

;ADD CONTENTS OF REG 3 TO ACC
jLOGICAL ‘AND’ CONTENTS OF ACC
;WITH MASK CONTAINED IN REG 3

MOV R1,#0FFH ;MOVE ‘FF’ HEX (ONES) INTO REG 1

Operands can reference directly data contained in MCS-48 registers such as the PSW, accumulator, or data memory
working registers 0-7.

MOV A,PSW
XCH A,R4

;MOVE PSW CONTENTS TO ACC
,-EXCHANGE ACC DATA WITH
;REG 4 DATA

All data memory locations can be accessed indirectly by prefacing a reference to Register 0 or 1 with a 'commercial
at’ sign (@).

MOV @R0,A ;MOVE ACC CONTENTS TO DATA MEMORY
LOCATION WHOSE ADDRESS IS
SPECIFIED IN REG 0

The JMPP instruction allows program memory locations to be accessed indirectly by prefacing an accumulator
reference with @.

JMPP @A CONTENTS OF PROGRAM MEMORY LOCATION POINTED TO BY
,ACC ARE SUBSTITUTED FOR BITS 0-7 OF PROGRAM COUNTER

Operands can contain ‘immediate’ data. The desired value is inserted directly into the operand field. All immediate
data must be prefixed with a pound sign (#) to distinguish it from register data and must evaluate to eight bits.

2-2

Chapter 2. Assembler Concepts

Immediate data can be in the form of an ASCII constant (a character enclosed in single quotes), a number, an
expression to be evaluated at assembly time, or a symbol name. To indicate a quote as an ASCII constant, show
the quote as two consecutive single quotes (”). Any symbol appearing in the operand field must be previously
defined.

MOV A,#‘T’ ;MOVE THE VALUE OF ASCI I
;CONSTANTT (01010100)
;INTO ACC

ADD A,-#0AH ;ADD HEX ‘0A’ (00001010)
;TO ACC

ANL A,#3+(D/5) ;LOGICAL ‘AND’ CONTENTS OF
;ACC WITH MASK WHOSE VALUE
;IS THE RESULT OF ‘3+(D/5)’

Finally, the operand field of a jump instruction (that is, the address to be jumped to) can be expressed as a sym
bolic label, as an absolute 12-bit program memory address, or as an expression that can be evaluated to such an
address. In no case is this operand preceded by a pound sign.

JMP START ;J UMP TO THE LOCATION LABELED ‘START’
JMP200H J UMP TO LOCATION 200 HEX (512 DECIMAL)

Expression evaluation and symbols are discussed in more detail in the next two sections of this chapter.

Comment Field

The comment field can contain any information you deem useful for annotating your program. The only stipulation
is that this field be preceded by a semicolon. A double semicolon (;;) preceding a comment in the body of a macro
definition suppresses inclusion of the comment in the macro definition, thus reducing storage requirements.

ARITHMETIC OPERATIONS

When discussing arithmetic operations, we must distinguish between operations performed by your program when
it is executed (such as ADD A,R5) and expression evaluation performed by the assembler at assembly time (such as
MOV A,#P+3*(X/2). Numbers are represented identically in both cases, but your program has considerably more
flexibility than the assembler in determining the range of numbers, internal notation, and whether numbers are to
be considered signed or unsigned. The characteristics of both modes of arithmetic are summarized in Figure 2-1 and
discussed in more detail in the following subsections.

2-3

Chapter 2. Assembler Concepts

Number Characteristic
Assembly—Time

Expression Evaluation
Program Execution

Arithmetic

Base Representation Binary, Octal, Decimal,
or Hexadecimal

Binary, Octal, Decimal,
or Hexadecimal

Range 0-(64K-1) User Controlled

Evaluates To: 16 Bits User Interpretation

Internal Notation Two’s Complement Two’s Complement

Signed/Unsigned
Arithmetic

Unsigned Unsigned Unless
User Manipulates

Figure 2-1 Number Representation

Number Base Representation

Numbers can be expressed in decimal, hexadecimal, octal, or binary form. A hexadecimal number must begin with a
decimal digit and have the suffix ‘H’ (for example: 3AH, OFFH, 12H). Octal values must have one of the suffixes
‘O' or ‘Q’ (for example: 760,53Q). Binary numbers must have the suffix ‘B’ (for example: 1011101 OB). Decimal
numbers can be suffixed optionally by ‘D’ (for example: 512, 512D). Where no suffix is present, decimal is assumed.

Permissible Range of Numbers

In general, numbers can range between 0 and 65,535 (OFFFFH). Numbers outside this range are evaluated ‘modulo’
64K (that is, a number greater than 64K is divided by 64K and the remainder substituted for the original number).
All expressions can be evaluated to 16 bits.

Certain limitations must be applied within this general range, however. For example, most program execution arithmetic
is done using the 8-bit accumulator or 8-bit registers and most results evaluate to 8 bits. To work with larger numbers
would require manipulation of register pairs.

If you are doing signed arithmetic, the high-order bit of each number is used to indicate the sign of that number (0 if
positive, 1 if negative). Consequently, the remaining bits can only express a number in the range —32,768 to +32,767
for 16-bit arithmetic. For 8-bit arithmetic, the range is —128 to +127.

If a number is too large for its intended use, either an error results or modulo arithmetic is performed. For example:

• Program memory addresses must be in the range 0-4095 (12 bits). In some cases, an address reference
must be 'within page,'that is, within the range 0-255 (8 bits).

• Data memory addresses must be in the range 0-255 (8 bits).

2-4

Chapter 2. Assembler Concepts

Operands containing 8-bit immediate data must evaluate to an 8-bit number.

Expressions in a DB assembler directive (except strings) must evaluate to 8 bits.

2
Two’s Complement Arithmetic

Two’s complement notation allows subtraction to be performed by a series of bit complementations and additions
(thus reducing the circuitry requirements of a processor). A number is converted to two’s complement form by
complementing all its bits and adding a binary one to the result.

When a number is interpreted as a signed two’s complement number, the low-order bits supply the magnitude of
the number and the high-order bit is interpreted as the sign of the number. As was mentioned above, the range of a
signed two’s complement value is —32,768 to +32,767 (for 16 bits) and —128 to +127 (for 8 bits).

When a 16-bit value is interpreted as an unsigned two’s complement number, it is considered to be positive and in
the range 0-65,535. An 8-bit value is in the range 0-255.

The assemblers perform all expression evaluation assuming unsigned two’s complement numbers. Similarly, execution
time arithmetic normally assumes unsigned two’s complement notation, but you can perform signed arithmetic by
isolating and inspecting the high-order bit with the instruction:

JB7 MINUS ;IF ACC BIT 7=1 GO TO ‘MINUS’ ROUTINE

The MCS-48 instruction set does not include a subtraction instruction. Subtraction is done by complementing the
accumulator and proceeding as in a normal two’s complement addition operation. The CPL A (complement accumu
lator) instruction performs a straight binary one’s complement. You must perform the binary addition of one,
necessary to convert the number to two’s complement notation, yourself.

Example: Subtract 1 AH from 63H using signed two’s complement notation.

MOV A,#1 AH
CPL A
INCA

;MOVE ‘1 AH’ INTO ACC (00011010)
;ONE’S COMPLEMENT ACC (11100101)
CONVERT TO TWO’S COMPLEMENT
;(11100110)

ADD A,#63H
JB7 MINUS

;ADD ‘63’TO VALUE IN ACC (01001001)
;IF ACC BIT 7=1 GOTO ‘MINUS’ ROUTINE

The result is +49H.

Assembly—Time Expression Evaluation

An expression is a combination of numbers, symbols, and operators. The latter can be arithmetic, relational, and
logical operators or specially-defined MCS-48 operators. Any symbol appearing in an expression must have a
previously-defined absolute value.

2-5

Chapter 2. Assembler Concepts

The ASCII characters 'null' and ‘rubout’ are ignored on input, but the null string can be represented by two consecu
tive quotes or by a missing operand. The null string is illegal in any context that requires numerical evaluation.

Operators

The assembler includes five groups of operators that permit the following assembly-time operations: arithmetic, bit
shifting operations, logical evaluation, value comparison, and byte isolation. These are all assembly-time operations.
Once the assembler has evaluated an expression, it becomes a permanent part of your program.

Arithmetic Operators

The arithmetic operators are as follows:

Operator Meaning

+ Unary or binary addition
— Unary or binary subtraction
* Multiplication
/
MOD

Division. Any remainder is discarded (7/3=2)
Modulo. Result is remainder produced by a
division operation (7 MOD 3 = 1)

Examples:

The following expressions generate the bit pattern for the ASCII character A:

5+30*2
(25/5)+30*2
5 + (-30 * -2)

The MOD operator must be separated from its operands by spaces:

NUMBR MOD 8

Assuming that NUMBR has the value 25, this expression evaluates to 1.

Shift Operators

The shift operators are as follows:

Operators Meaning

ySHRx Shift operand ‘y’ to the right ‘x’ bit
positions

y SHL x Shift operand ‘y’ to the left ‘x’ bit
positions

2-6

Chapter 2. Assembler Concepts

The shift operators do not wrap around any bits shifted out of the byte. Bit positions vacated by the shift operation
are replaced with zeros. The shift operator must be separated from its operands by spaces.

Example:

2
Assume that NUMBR has the value 0101 0101. The effects of the shift operators is as follows:

NUMBRSHR2 0001 0101

NUMBR SHL1 1010 1010

Shifting one bit position to the left has the effect of doubling a value; a shift one bit position to the right has the
effect of dividing a value in half.

Logical Operators

The logical operators are as follows:

Operator Meaning

NOT Logical one’s complement

AND Logical AND (=1 if both ANDed bits are 1)

OR Logical OR (=1 if either ORed bit is 1)

XOR Logical EXCLUSIVE OR (=1 if bits are different)

The logical operators act only upon the least significant bit of values involved in the operation. Also, these
operators are commonly used in conditional IF directives. These directives are fully explained in Chapter 5.

Example:

The following IF directive tests the least significant bit of three items. The assembly language code that follows the
IF is assembled only if the condition is TRUE. This means that all three fields must have a one bit in the least
significant bit position.

IF FLD1 AND FLD2 AND FLD3

Compare Operators

The compare operators are as follows:

2-7

Chapter 2. Assembler Concepts

Operator Meaning

EQ Equal
NE Not equal
LT Less than
LE Less than or equal
GT Greater than
GE Greater than or equal
NUL Special operator used to test for null

(missing) macro parameters. (ISIS-II
assembler only.)

The compare operators yield a yes-no result. Thus, if the evaluation of the relation is TRUE, the value of the result is
all ones. If FALSE, the value of the result is all zeros. Relational operations are based strictly on magnitude com
parisons of bit values. Thus, a two’s complement negative number (which always has a one in its high order bit) is
greater than a two’s complement positive number (which always has a zero in its high order bit).

Since the NUL operator applies only to the macro feature, NUL is described in Chapter 6.

The compare operators are commonly used in conditional IF directives. These directives are fully explained in
Chapter 5.

Notice that the compare operator must be separated from its operands by spaces.

Example:

The following IF directive tests the values of FLD1 and FLD2 for equality. If the result of the comparison is TRUE,
the assembly language coding following the IF directive is assembled. Otherwise, the code is skipped.

IF FLD1 EQ FLD2

Byte Isolation Operators

The byte isolation operators are as follows:

Operator Meaning

HIGH Isolate high-order 8 bits of 16-bit value

LOW Isolate low-order 8 bits of 16-bit value

As was mentioned in the discussion of number ranges, you will sometimes need an 8-bit address or need to generate an
8-bit value. This is where the HIGH and LOW operators can be useful.

2-8

Chapter 2. Assembler Concepts

Example:

Assume ADRS is an address manipulated at assembly-time for building tables or lists of items that must all be below
address 255 in memory. The following IF directive determines whether the high-order byte of ADRS is zero, indi
cating the address is still less than 256:

IF HIGH ADRS EQ 0

Precedence of Operators

Expressions are evaluated left to right. Operators with higher precedence are evaluated before other operators that
immediately precede or follow them. When two operators have equal precedence, the leftmost is evaluated first.

Parentheses can be used to override normal rules of precedence. The part of an expression enclosed in parentheses is
evaluated first. If parentheses are nested, the innermost are evaluated first.

15/3+18/9 = 5 + 2 = 7

15/(3 + 18/9)= 15/(3 + 2) = 15/5 = 3

The following list describes the classes of operators in order of precedence:
• Parenthesized expressions
• NUL
• HIGH, LOW
• Multiplication/Division: *, /, MOD, SHL, SHR
• Addition/Subtraction: +, — (Unary and binary)
• Relational Operators: EQ, LT, LE, GT, GE, NE
• Logical NOT
• Logical AND
• Logical OR, XOR

The relational, logical, and HIGH/LOW operators must be separated from their operands by at least one blank.

SYMBOLS AND SYMBOL TABLES

Symbolic Addressing

If you have never done symbolic programming before, the following analogy may help clarify the distinction between
a ‘symbolic’ and an ‘absolute’ address.

The locations in program memory can be compared to a cluster of post office boxes. Suppose Richard Roe rents box
500 for two months. He can then ask for his letters by saying ‘Give me the mail in box 500,’ or ‘Give me the mail for
Roe.’ If Donald Doe later rents box 500, he too can ask for his mail by either box number 500 or by his name.

2-9

Chapter 2. Assembler Concepts

The content of the post office box can be accessed by a fixed, absolute address (500) or by a symbolic, variable
name. The postal clerk correlates the symbolic names and their absolute values in his log book. The MCS-48 clerk,
the assembler, performs the same function, keeping track of symbols and their values in a symbol table. Note that
you do not have to assign values to symbolic addresses. The assembler references its location counter during the
assembly process to calculate these addresses for you. (The location counter does for the assembler what the pro
gram counter does for the microcomputer. It tells the assembler where the next instruction or operand is to be
placed in memory.)

Symbol Characteristics

A symbol can contain one to six alphabetic (A-Z) or numeric (0-9) characters (with the first character alphabetic)
or the special character '?’. A dollar sign can be used as a symbol to denote the value currently in the location
counter. For example, the command

JMP $+6

forces a jump to the instruction residing six memory locations higher than the JMP instruction. Symbols of the form
*??nnnn' are generated by the assembler to uniquely name symbols local to macros.

The assemblers regard symbols as being reserved or user-defined, global or limited, permanent or redefinable. All
MCS-48 symbols are absolute, that is, fixed to some absolute memory address or fixed-value expression unaffected
by program loading.

Reserved, User-Defined, and Assembler-Generated Symbols

The *$’ symbol and following MCS-48 and UPI-41 instruction-set opcodes are reserved and cannot be specified as
user-defined symbols except in a limited context (as macro dummy parameters or as symbols defined as local to a
macro definition).

EN

ADD ENTO JNI MOVD RL
ADDC IN JNIBF MOVP RLC
ANL INC JNTO MOVP3 RR
ANLD INS JNT1 MOVX RRC
CALL JBn JNZ NOP SEL
CLR JC JOBF ORL STOP
CPL JFO JTF ORLD STRT
DA JF1 JTO OUT SWAP
DEC JMP JT1 OUTL XCH
DIS JMPP JZ RET XCHD
DJNZ JNC MOV RETR XRL

The following instruction operand symbols and symbols required by the assembler are also reserved:

2-10

Chapter 2. Assembler Concepts

Finally, the following directives cannot be used as symbols except in a limited context:

Symbol Meaning

/\ Accumulator
RO Register 0
R1 Register 1
R2 Register 2
R3 Register 3
R4 Register 4
R5 Register 5
R6 Register 6
R7 Register 7
PSW Program Status Word
BUS BUS Port
PO I/O Port 0 (8021)
P1 I/O Port 1
P2 I/O Port 2
P4 I/O Port 4
P5 I/O Port 5
P6 I/O Port 6
P7 I/O Port 7
C Carry Flag
T Timer Register
CNT Counter Register
TCNT Timer/Counter
RBO Register Bank 0
RB1 Register Bank 1
MBO Memory Bank 0
MB1 Memory Bank 1
I Interrupt
TCNTI Timer/Counter Interrupt
FO Flag 0
F1 Flag 1
DBB Data Bus Buffer (8041)
ANO Assembler reserved operands
AN1
FLAGS
RAD
STS

DB
DS
DW
ELSE

END EQU IRPC ORG
ENDIF EXITM LOCAL REPT
ENDM IF MACRO SET
EOT IRP

User-defined symbols are symbols you create to reference instruction addresses and data. These symbols are defined
when they appear in the label field of an instruction or in the name field of EQU, SET, or MACRO assembler
directives (see Chapters 5 and 6). Values for these symbols are determined modulo 64K although specific environ
ments may limit the value even further. (See the subsection ‘Permissible Range of Numbers,’ earlier in this chapter.)
Values outside these ranges cause an error.

2-11

Chapter 2. Assembler Concepts

Assembler-generated symbols are created by the assembler to replace user-defined symbols that have limited scope
(limited to a macro definition).

NOTE

Only instructions that allow registers as operands may have
register-type operands. Expressions containing register-type
operands are flagged as errors. The only assembler directives
that may contain register-type operands are EQU, SET, and
actual parameters in macro calls. Registers can be assigned
alternate names only by EQU or SET.

Global and Limited Symbols

Symbols appearing as dummy parameters in a macro definition have limited scope and may only be used within
that macro definition. Other symbols appearing in the body of a macro definition can be specified to have limited
scope using the LOCAL assembler directive.

All other symbols, including macro definition names, have global scope and can be referenced from any part of your
program. However, nested macro names cannot be called until all higher-level nested definitions have been called.

Permanent and Redefinable Symbols

Most symbols are permanent, that is, their values cannot change during the assembly operation. Only symbols
defined with the SET and MACRO assembler directives are redefinable.

Duplicate Symbols

Local symbol names can be the same as reserved symbols, or local symbol names in other macro definitions. The
assembler assigns a unique name to each local symbol.

A macro body containing a global label can be called only once. Additional calls cause ‘multiply-defined symbol’
errors. Attempts to redefine local or global symbols (other than with the SET directive) cause the same error.

2-12

3. MCS -48 ASSEMBLY LANGUAGE INSTRUCTIONS

This chapter describes the instruction set for the 8048, 8748, 8035, 8049, 8039, and 8021 (MCS-48)
microcomputers. The 8041 and 8741 (UPI-41) microcomputers use essentially the same instructions. The few
differences are described in Chapter 4.

The instructions are described here in four main functional groupings:

• Data Transfer
— Within memory
— Input/Output

• Data Manipulation
— Logical operations
— Bit rotation (shift)
— Arithmetic
— Miscellaneous accumulator operations

• Setting Program Controls
— Condition bits, flags
— Timer/event counter
— Interrupts
— Register and memory banks
- NOP

• Transferring Program Control
— Subroutine call
— Return from subroutine
— Jump operations

Most MCS-48 instructions require one machine cycle for execution (2.5 microseconds for the 8048,10 micro
seconds for the 8021). Exceptions are I/O instructions, instructions using immediate data, subroutine calls and
returns, jumps, and certain data transfers within memory, which require two cycles.

NOTE

For microcomputers having more than 1K of program
memory, the only instructions that can reside in the
last byte of a 2K block (locations 2047, 4095) are the
subroutine returns (RET, RETR) and the second byte
of a jump instruction. Exceptions cause a displacement
(D) error. See Appendix F.

3-1

Chapter 3. MCS-48 Assembly Language Instructions

DATA TRANSFER INSTRUCTIONS

Data Transfer Within 8048 Memory

This section describes those instructions used to move data within resident and external 8048 data memory and pro
gram memory. This includes the MOV, MOVX, and MOVP data move instructions and the XCH and SWAP data
exchange instructions. The move instructions overlay existing data in the target location. Data in the source location
is unchanged. The exchange instructions swap data between two locations.

Register/Accumulator Moves

Data can be transferred between 8048 data memory working registers 0-7 and the accumulator by addressing the
registers directly (R0-R7). R0-R7 can refer to data memory locations 0-7 if register bank 0 has been selected or to
locations 24-31 if register bank 1 has been selected. Register bank 0 is the initialization value.

Move Register Contents to Accumulator

Op Code Operands

MOV A,Rr r=0-7

1111 1 r r r

Eight bits of data are moved from working register *r’ into the accumulator.

Example:

MAR: MOV A,R3 ;MOVE CONTENTS OF REG
;3 TO ACC

Move Accumulator Contents to Register

Op Code Operands

MOV Rr,A r=0-7

10 10 1 r r r

The contents of the accumulator are moved to register ‘r’.

Example:

MRA: MOV R0,A ;MOVE CONTENTS OF
;ACC TO REG 0

3-2

Chapter 3. MCS-48 Assembly Language Instructions

Data-Memory/Accumulator Moves

Data moves between the accumulator and nonregister locations in data memory are accomplished by placing the
address of the memory location in either register 0 or register 1 of the currently selected register bank. This is
called indirect addressing. The assembler knows that indirect addressing is intended by the ‘commercial at’ sign
(@) preceding the register reference.

The MOV instructions reference locations 0-63 (8048) or locations 0-127 (8049) in resident data memory. The
MOVX instructions reference locations 0-255 in the optional external data memory.

Move Data Memory Contents to Accumulator

Opcode Operands

MOV A,@Rr r=0-1

1111 0 0 0 r

The contents of the data memory location addressed by bits 0-5 (8048) or bits 0-6 (8049) of register ‘r’ are

moved to the accumulator. Register ’r’ contents are unaffected.

Example: Assume R1 contains 00110110.

MADM: MOV A,@R1 ;MOVE CONTENTS OF DATA MEM
;LOCATION 54 TO ACC

Move Accumulator Contents to Data Memory

Opcode Operands

MOV @Rr,A r=0-1

10 10 0 0 0 r

The contents of the accumulator are moved to the data memory location whose address is specified by bits 0-5
(8048) or bits 0-6 (8049) of register ‘r’. Register ‘r’ contents are unaffected.

Example: Assume RO contains 00000111.

MDMA: MOV @R0,A ;MOVE CONTENTS OF ACC
;TO LOCATION 7 (REG 7)

3-3

Chapter 3. MCS-48 Assembly Language Instructions

Move Externa!-Data-Memory Contents to Accumulator

Opcode Operands

MOVX A,@Rr r=0-1

10 0 0 0 0 0 r

This is a 2-cycle instruction. The contents of the external data memory location addressed by register ‘r’ are moved
to the accumulator. Register ‘r’ contents are unaffected. This instruction is not recognized by the 8021.

Example: Assume R1 contains 01110110.

MAXDM: MOVX A,@R1 ;MOVE CONTENTS OF
LOCATION 118 TO ACC

Move Accumulator Contents to External Data Memory

Opcode

MOVX

Operands

@Rr,A r=0-1

10 0 1 0 0 0 r

This is a 2-cycle instruction. The contents of the accumulator are moved to the external data memory location
addressed by register ‘r’. Register ‘r’ contents are unaffected. This instruction is not recognized by the 8021.

Example: Assume R0 contains 11000111.

MXDMA: MOVX @R0,A ;MOVE CONTENTS OF ACC TO
;LOCATION 199 IN EXTERNAL
;DATA MEMORY

Immediate-Data Moves

Data can be inserted directly into the accumulator, a working register, or resident data memory using the move-
immediate-data instructions. Immediate data can be in the form of an ASCII constant, a number, an expression to
be evaluated at assembly time, a symbol name, or an instruction enclosed in parentheses. (See Chapter 2, the sub
section ‘Operand Field.’) The assembler recognizes immediate data by the ‘pound sign’ (#) preceding such data.

Immediate data must evaluate to a number that can be expressed in eight bits (that is, less than 256 decimal).
Larger numbers generate an error condition. Larger numbers can be placed in data memory, however, by moving
immediate data to adjoining locations.

3-4

Chapter 3. MCS-48 Assembly Language Instructions

Move Immediate Data to Register

Opcode Operands

MOV Rr,#data r=0-7

10 11 1 r r r data

This is a 2-cycle instruction. The 8-bit value specified by ‘data’ is moved to register ‘r.’

Examples:

MIR4: MOV R4,#HEXTEN ;THE VALUE OF THE SYMBOL
;‘HEXTEN’ IS MOVED INTO
;REG 4

MIR5: MOV R5,#PI*(R*R) ;THE VALUE OF THE
EXPRESSION *PI*(R*R) IS
;MOVED INTO REG 5

MIR6: MOV R6,#0ACH ;'AC’ HEX IS MOVED INTO
;REG 6

Move Immediate Data to Data Memory

Opcode Operands

MOV @Rr,#data r=0-l

10 11 0 0 0 r data

This is a 2-cycle instruction. The 8-bit value specified by ‘data’ is moved to the resident data memory location
addressed by register ‘r,’ bits 0-5 (8048) or bits 0-6 (8049).

Example: Move the hexadecimal value AC3F to locations 62-63.

MIDM: MOV
MOV
INC
MOV

RO,#62
@R0,#0ACH
RO
@R0,#3FH

;MOVE ‘62’ DEC TO ADDR REG 0
;MOVE ‘AC’ HEX TO LOCATION 62
INCREMENT REG OTO ‘63’
;MOVE ‘3F’ HEX TO LOCATION 63

Move Immediate Data to Accumulator

0 0 1 0 0 0 1 1 data

Opcode Operands

MOV A,#data

3-5

Chapter 3. MCS-48 Assembly Language Instructions

This is a 2-cycle instruction. The 8-bit value specified by ‘data’ is moved to the accumulator.

Example:

MOV A,#0A3H ;MOVE ‘A3’ HEX TO ACC

PSW/Accumulator Moves

Data can be moved back and forth between the program status word and the accumulator. This is particularly use
ful for manipulating the stack pointer (PSW bits 0-2), which cannot be altered by specific instruction (as can the
carry, flag 0, and register bank switch bits in the PSW).

Move PSW Contents to Accumulator

Opcode Operands

MOV A,PSW

110 0 0 111

The contents of the program status word are moved to the accumulator. This instruction is not recognized by
the 8021.

Example: Jump to 'RBI SET’ routine if PSW bank switch, bit 4, is set.

BSCHK: MOV A,PSW ;MOVE PSW CONTENTS TO ACC
JB4 RB1SET JUMP TO ‘RB1SET’ IF ACC

;BIT 4=1

Move Accumulator Contents to PSW

Opcode Operands

MOV PSW,A

110 1 0 111

The contents of the accumulator are moved into the program status word. All condition bits and the stack pointer
are affected by this move. This instruction is not recognized by the 8021.

Example: Move up stack pointer by two memory locations, that is, increment the pointer by one.

INCPTR: MOV A,PSW
INC A
MOV PSW,A

;MOVE PSW CONTENTS TO ACC
INCREMENT ACC BY ONE
;MOVE ACC CONTENTS TO PSW

3-6

Chapter 3. MCS-48 Assembly Language Instructions

Timer/Accumulator Moves

Data can be moved between the accumulator and the special timer/event-counter register. This allows initialization
and monitoring of this register’s contents.

Move Timer/Counter Contents to Accumulator

Opcode Operands

MOV A,T

0 1 0 0 0 0 1 0

The contents of the timer/event-counter register are moved to the accumulator.

Example: Jump to ‘EXIT’ routine when timer reaches ‘64,’ that is, when bit 6 is set — assuming initialization <64.

TIMCHK: MOV A,T ;MOVE TIMER CONTENTS TO ACC
JB6 EXIT ;J UMP TO ‘EXIT’ IF ACC BIT 6=1

Move Accumulator Contents to Timer/Counter

Opcode Operands

MOV T,A

0 1 1 0 0 0 1 0

The contents of the accumulator are moved to the timer/event-counter register.

Example: Initialize and start event counter.

INITEC: CLR A ;CLEAR ACC TO ZEROS
MOV T,A ;MOVE ZEROS TO EVENT COUNTER
STRT CNT ;START COUNTER

Program-Memory/Accumulator Moves

Data in program memory can be accessed indirectly using the accumulator as an address register. The accumulator
reference is preceded by a ‘commercial at’ sign (@) to indicate indirection. The 8-bit address in the accumulator is
used to reference a location in program memory; the contents of the memory location are then moved to the
accumulator.

The 8-bit address limits the range of a program memory reference to the current 256-location page. One special
instruction allows you to reference page 3 (locations 768-1023) from any location in program memory, however.
This convenience lets you group frequently-accessed information (such as tables or indexes) in one easily-read area.

3-7

Chapter 3. MCS-48 Assembly Language Instructions

Move Current Page Data to Accumulator

Opcode Operands

MO VP A,@A

1 0 1 0 0 0 1 1

The contents of the program memory location addressed by the accumulator are moved to the accumulator. Only
bits 0-7 of the program counter are affected, limiting the program memory reference to the current page. The pro
gram counter is restored following this operation.

NOTE

This is a 1 -byte, 2-cycle instruction. If it appears in
location 255 of a program memory page, @A addresses
a location in the following page.

Example:

MOV128: MOV
MOVP

A,#l 28 ;MOVE ‘128’ DEC TO ACC
A,@A CONTENTS OF 129TH LOCATION

;IN CURRENT PAGE ARE MOVED
;TO ACC

Move Page 3 Data to Accumulator

Opcode Operands

MOVP3 A,@A

1110 0 0 11

This is a 2-cycle instruction. The contents of the program memory location (within page 3) addressed by the
accumulator are moved to the accumulator. The program counter is restored following this operation. This
instruction is not recognized by the 8021.

Example: Look up ASCII equivalent of hexadecimal code in table contained at the beginning of page 3. Note that
ASCII characters are designated by a 7-bit code; the eighth bit is always reset (see Appendix E).

TABSCH: MOV
ANL

A,#0B8H ;MOVE ‘B8’ HEX TO ACC (10111000)
A,#7FH ;LOGICAL AND ACC TO MASK BIT 7

;(00111000)
MOVP3 A,@A ;MOVE CONTENTS OF LOCATION *38’

;HEX IN PAGE 3 TO ACC (ASCII ‘8’)

3-8

Chapter 3. MCS-48 Assembly Language Instructions

Example: Access contents of location in page 3 labeled TAB1. Assume current program location is not in page 3.
NOTE: The LOW operator is described in Chapter 2, ‘Assembly-Time Expression Evaluation.’

TABSCH: MOV A,#LOW TAB1 jISOLATE BITS 0-7 OF LABEL
jADDRESS VALUE

MOVP3 A,@A ;MOVE CONTENTS OF PAGE 3 LOCATION
jLABELED ‘TABl’TO ACC i

3
Data Exchange Instructions

Data can be exchanged between the accumulator and working registers specified directly, or between the
accumulator and data memory locations specified indirectly (preceded by @). The exchange instructions apply
only to resident data memory, and not to external memory.

The main advantage of a data exchange over a simple move is that data at the target location is not lost and can
be moved back to its original location if necessary. Binary Coded Decimal (BCD) arithmetic can be performed on
the 8048 by dividing 8-bit values into two 4-bit BCD digits. Two instructions, XCHD and SWAP, allow transfer of
such 4-bit digits.

Exchange Accumulator-Register Contents

Opcode Operands

XCH A,Rr r=0-7

0 0 .1 0 1 r r r

The contents of the accumulator and the contents of working register *r’ are exchanged.

Example:

Move PSW contents to Reg 7 without losing accumulator contents.

XCHAR7: XCH A,R7 jEXCHANGE CONTENTS OF REG 7
;AND ACC

MOV A,PSW jMOVE PSW CONTENTS TO ACC
XCH A,R7 jEXCHANGE CONTENTS OF REG 7

jAND ACC AGAIN

Exchange Accumulator and Data Memory Contents

Opcode Operands

XCH A,@Rr r=0-1

0 0 10 0 0 0 r

3-9

Chapter 3. MCS-48 Assembly Language Instructions

The contents of the accumulator and the contents of the data memory location addressed by bits 0-5 (8048) or bits
0-6 (8049) of register *r’ are exchanged. Register ‘r’ contents are unaffected.

Example: Decrement contents of location 52.

;AND LOCATION 52 AGAIN

DEC52; MOV R0,#52 ;MOVE *52’ DEC TO ADDRESS
;REG 0

XCH A,@R0 ;EXCHANGE CONTENTS OF ACC
;AND LOCATION 52

DEC A DECREMENT ACC CONTENTS
XCH A,@R0 EXCHANGE CONTENTS OF ACC

Exchange A ccumulator and Data Memory 4-Bit Data

Opcode Operands

XCHD A,@Rr r=0-1

0 0 11 0 0 0 r

This instruction exchanges bits 0-3 of the accumulator with bits 0-3 of the data memory location addressed by bits
0-5 (8048) or bits 0-6 (8049) of register ‘r.’ Bits 4-7 of the accumulator, bits 4-7 of the data memory location, and
the contents of register ‘r’ are unaffected.

Example: Assume program counter contents have been stacked in locations 22-23.

XCHNIB: MOV
CLR
XCHD

R0,#23
A
A,@R0

;MOVE ‘23’ DEC TO REG 0
;CLEAR ACC TO ZEROS
,-EXCHANGE BITS 0-3 OF ACC
;AND LOCATION 23 (BITS
;8-11 OF PC ARE ZEROED,
;ADDRESS REFERS TO PAGE 0)

Swap 4-Bit Data Within Accumulator

Opcode Operand

SWAP A

0 10 0 0 111

Bits 0-3 of the accumulator are swapped with bits 4-7 of the accumulator.

3-10

Chapter 3. MCS-48 Assembly Language Instructions

Example: Pack bits 0-3 of locations 50-51 into location 50.

PCKDIG; MOV R0,#50 ;MOVE *50’DEC TO REG 0
MOV Rl,#51 ;MOVE ‘51’DECTO REG 1
XCHD A,@R0 EXCHANGE BITS 0-3 OF ACC

;AND LOCATION 50
SWAP A ;SWAP BITS 0-3 AND 4-7 OF

;ACC
XCHD A,@R1 ;EXCHANGE BITS 0-3 OF ACC

;AND LOCATION 51
MOV @R0,A ;MOVE CONTENTS OF ACC TO

.-LOCATION 50

Input/Output Data Transfers

The MCS-48 input/output instructions allow data to be transferred between the accumulator and I/O ports. As was
described in Chapter 1 (the subsection ‘Input/Output’), the BUS port and ports 0-2 are used for standard I/O
operations. Ports 4-7 on the 8243 expander, consisting of four pins each, can be attached through port 2, pins
P20-23, to provide 16 additional I/O lines. Port 0 is used only by the 8021, as it does not have a BUS port.

All input/output data transfers are 2-cycle operations.

Standard I/O Transfers

The BUS port and ports 0-2 can be either input or output ports depending on the instruction flow. The BUS
port actually has two modes of operation. If the MCS-48 is used as a freestanding device, the BUS acts as a general
I/O port like ports 0-2. If the MCS-48 is part of a more extensive system with expanded memory and I/O, the BUS
is a bidirectional port with synchronous strobes. Bus lines are latched only for single-device (freestanding) operations.

Input Port 0-2 Data to Accumulator

Opcode Operands

IN A,Pp p=0-2

0 0 0 0 1 0 p p

Data present on port ‘p’ is transferred (read) to the accumulator. Port ‘O’ can be specified only for the 8021.

Example:

INP12: IN A,Pl
MOV R6,A
IN A.P2
MOV R7,A

;INPUT PORT 1 CONTENTS TO ACC
;MOVE ACC CONTENTS TO REG 6
;INPUT PORT 2 CONTENTS TO ACC
;MOVE ACC CONTENTS TO REG 7

3-11

Chapter 3. MCS-48 Assembly Language Instructions

OFFH (ones) should be written to ports 1 and 2 before using them as inputs (using the OUTL Pp,A instruction des

cribed below.

Strobed Input of BUS Data to Accumulator

Opcode Operands

INS A,BUS

0 0 0 0 10 0 0

Data present on the BUS port is transferred (read) to the accumulator when the RD pulse is dropped. (Refer to
timing diagrams in the MCS-48 user’s manual for details.) This instruction is not recognized by the 8021.

Example:

INPBUS: INS A,BUS ;INPUT BUS CONTENTS TO ACC

Output Accumulator Data to Port 0-2

Opcode Operands

OUTL

Opcode Operands

OUTL Pp, A p=1-2P0, A

10 0 1 0 0 0 0 0 0 11 1 0 p p

Data residing in the accumulator is transferred (written) to port *p’ and latched. Port ‘O’ can be specified only
for the 8021.

Example:

OUTLP: MOV A,R7
OUTL P2,A
MOV A,R6
OUTL Pl,A

;MOVE REG 7 CONTENTS TO ACC
OUTPUT ACC CONTENTS TO PORT 2
;MOVE REG 6 CONTENTS TO ACC
OUTPUT ACC CONTENTS TO PORT 1

Output Accumulator Data to BUS

Opcode Operands

OUTL BUS,A

0 0 0 0 0 0 10

Data residing in the accumulator is transferred (written) to the BUS port and latched. The latched data remains valid
until altered by another OUTL instruction. Any other instruction requiring use of the BUS port (except INS) des
troys the contents of the BUS latch. This includes expanded memory operation (such as the MOVX instruction).

3-12

Chapter 3. MCS-48 Assembly Language Instructions

Logical operations on BUS data (AND and OR) assume the OUTL BUS,A instruction has been issued previously.
This instruction is not recognized by the 8021.
Example:

OUTLBP: OUTL BUS,A ;OUTPUT ACC CONTENTS TO BUS

Expanded I/O Transfers

Data can be transferred between the accumulator and ports 4-7 on the 8243 expander device using the MOVD
instructions. The 8243 attaches to port 2 pins P20-23 and existing P20-23 data is destroyed by these instructions.

Ports 4-7 are four pins each. The MOVD instructions transfer data to/from bits 0-3 of the accumulator.

Move Port 4-7 Data to Accumulator

Opcode Operands

MOVD A,Pp p=4-7

0 0 0 0 1 1 P P

Data on 8243 port ‘p’ is moved (read) to accumulator bits 0-3. Accumulator bits 4-7 are zeroed.

NOTE

Bits 0-1 of the opcode are used to represent ports
4-7. If you are coding in binary rather than assem
bly language, the mapping is as follows:

Bits 1 0 Port

0 0 4
0 1 5
1 0 6
1 1 7

Example:

INPPT5: MOVD A,P5 ;MOVE PORT 5 DATA TO ACC
;BITS 0-3, ZERO ACC BITS
;4-7

Move Accumulator Data to Port 4, 5, 6, or 7

Opcode Operands

MOVD Pp,A p=4-7

0 0 11 1 1 P P

3-13

Chapter 3. MCS-48 Assembly Language Instructions

Data in accumulator bits 0-3 is moved (written) to 8243 port ‘p.’ Accumulator bits 4-7 are unaffected. (See NOTE
above regarding port mapping.)

Example: Move data in accumulator to ports 4 and 5.

OUTP45: MOVD P4,A ;MOVE ACC BITS 0-3 TO PORT 4
SWAP A EXCHANGE ACC BITS 0-3 AND

;4-7
MOVD P5,A ;MOVE ACC BITS 0-3 TO PORT 5

DATA MANIPULATION INSTRUCTIONS

The MCS-48 instruction set includes 34 instructions for manipulating data including logical operations, bit rotation,
incrementing and decrementing of data, addition, and miscellaneous accumulator operations.

Logical Operations

Operations in this category include logical AND, OR, and EXCLUSIVE OR (XOR). Assuming an initial value of
11100111, a mask of 10101010 would produce the following results following these operations.

11100111 11100111 11100111
AND 10101010 OR 10101010 XOR 10101010

10100010 11101111 01001101

(=1 if both (=1 if either
are 1) is 1)

(=1 if bits
different)

Most of the logical instructions operate on values in the accumulator. However the 8048 also allows logical AND and
OR operations on data residing in I/O ports.

Accumulator / Register Logical Operations

In the following three instructions, the specified working register contains the mask to be combined logically with an
accumulator value. The result of the operation remains in the accumulator.

Logical AND Accumulator With Register Mask

Opcode Operands

ANL A,Rr r=0-7

0 10 1 I r r r

Data in the accumulator is logically ANDed with the mask contained in working register ‘r.’

3-14

Chapter 3. MCS-48 Assembly Language Instructions

Example:

ANDREG: ANL A,R3 ;‘AND’ ACC CONTENTS WITH
;MASK IN REG 3

Logical OR Accumulator with Register Mask

Opcode Operands

ORL A,Rr r=0-7

0 10 0 1 r r r

Data in the accumulator is logically ORed with the mask contained in working register ‘r.’

Example:

ORREG: ORL A,R4 ;‘OR’ACC CONTENTS WITH
;MASK IN REG 4

Logical XOR Accumulator With Register Mask

Opcode Operands

XRL A,Rr r=0-7

110 1 1 r r r

Data in the accumulator is EXCLUSIVE ORed with the mask contained in working register ‘r.’

Example:

XORREG: XRL A,R5 ;‘XOR’ACC CONTENTS WITH MASK IN
;REG 5

Accumulator/Data-Memory Logical Operations

The mask for a logical operation can reside anywhere in resident data memory. (Logical operations cannot reference
external memory.) The address of the mask source is contained in Register 0 or Register 1. Indirect addressing is
indicated by the preceding the register reference.

The value to be masked and result reside in the accumulator.

3-15

Chapter 3. MCS-48 Assembly Language Instructions

Logical AND Accumulator With Memory Mask

Opcode Operands

ANL A,@Rr r=0-1

0 10 1 0 0 0 r

Data in the accumulator is logically ANDed with the mask contained in the data memory location referenced by
register *r,’ bits 0-5 (8048) or bits 0-6 (8049).

Example:

ANDDM: MOV R0,#0FFH ;MOVE *FF’HEX TO REG 0
ANL A,@R0 ;‘AND’ACC CONTENTS WITH MASK

;IN LOCATION 63

Logical OR Accumulator With Memory Mask

Opcode Operands

ORL A,@Rr r=0-l

0 10 0 0 0 0 r

Data in the accumulator is logically ORed with the mask contained in the data memory location referenced by
register ‘r,’ bits 0-5 (8048) or bits 0-6 (8049).

Example:

ORDM: MOV R0,#3FH ;MOVE *3F’HEX TO REG 0
ORL A,@R0 ;‘OR’ACC CONTENTS WITH MASK

;IN LOCATION 63

Logical XOR Accumulator With Memory Mask

Opcode Operands

XRL A,@Rr r=0-1

110 1 0 0 0 r

Data in the accumulator is EXCLUSIVE ORed with the mask contained in the data memory location addressed by
register ‘r,’ bits 0-5 (8048) or bits 0-6 (8049).

3-16

Chapter 3. MCS-48 Assembly Language Instructions

Example:

XORDM: MOV R1,#20H ;MOVE ‘20’ HEX TO REG 1
XRL A,@R1 ;'XOR’ACC CONTENTS WITH MASK

;IN LOCATION 32

Accumulator!Immediate-Data Logical Operations

The mask to be combined logically with the accumulator value can be specified as 'immediate’ data. This data is
recognized by the preceding pound sign (#) and must evaluate to eight bits. All instructions specifying immediate
data require two cycles for execution.

The result of the logical operation remains in the accumulator.

Logical AND Accumulator with Immediate Mask

Opcode Operands

ANL A,#data

0 10 1 0 0 11 data

Data in the accumulator is logically ANDed with an immediately-specified mask.

Examples:

ANDID:ANL A,#0AFH ;‘AND* ACC CONTENTS WITH
;MASK 10101111

ANL A,#3+X/Y ;‘AND' ACC CONTENTS WITH
;VALUE OF EXP ‘3 + X/Y’

Logical OR Accumulator With Immediate Mask

Opcode Operands

A,#dataORL

0 10 0 0 0 11 data

Data in the accumulator is logically ORed with an immediately-specified mask.

Example:

GRID: ORL A,#'X’ ;'OR’ ACC CONTENTS WITH MASK
;01011000 (ASCII VALUE OF ‘X’)

3-17

Chapter 3. MCS-48 Assembly Language Instructions

Logical XOR A ccumu/ator With Immediate Mask

Opcode Operands

XRL A,#data

110 1 0 0 11 data

Data in the accumulator is EXCLUSIVE ORed with an immediately-specified mask.

Example:

XORID: XOR A,#HEXTEN ;XOR CONTENTS OF ACC WITH
;MASK EQUAL VALUE OF
SYMBOL ‘HEXTEN’

Input/Output Logical Operations

Data residing on the BUS port or ports 1 and 2 can be logically combined with an immediately-specified mask. The
mask data must be preceded by *#’ and must evaluate to eight bits. Data on 8243 ports 4-7 can be logically com
bined with a mask contained in bits 0-3 of the accumulator. In the case of the 8021, I/O logical operations are
permitted on 8243 ports only.

Only AND and OR logical operations can be done on I/O data. XOR is not possible. The results of the logical
operation remain on the specified port. All of the instructions described in this subsection require two cycles for
execution. These instructions can be used to clear/set any specified outputs.

Logical AND Port 1-2 With Immediate Mask

Opcode Operands

ANL Pp,#data p=1 -2

10 0 1 1 0 p p data

Data on port *p’ is logically ANDed with an immediately-specified mask. This instruction is not recognized by

the 8021.

Example:

ANDP2: ANL P2,#0F0H ;‘AND'PORT 2 CONTENTS WITH
;MASK 'F0' HEX (CLEAR P20-23)

Logical AND BUS With Immediate Mask

Opcode Operands

ANL BUS,#data

10 0 1 10 0 0 data

3-18

Chapter 3. MCS-48 Assembly Language Instructions

Data on the BUS port is logically ANDed with an immediately-specified mask. This instruction assumes prior speci
fication of an 'OUTL BUS,A’ instruction. The 8021 does not recognize this instruction.

Example:

ANDBUS: ANL BUS,#MASK /AND’BUS CONTENTS WITH
;MASK EQUAL VALUE OF
;SYMBOL ‘MASK’

Logical OR Port 1-2 With Immediate Mask

Opcode Operands

ORL Pp,#data p=1 -2

10 0 0 1 0 P P data

Data on port ‘p’ is logically ORed with an immediately-specified mask. This instruction is not recognized by
the 8021.

Example:

ORP1: ORL P1,#0FFH ;‘OR’ PORT 1 CONTENTS WITH
;MASK ‘FF’HEX (SET PORT 1
;TO ALL ONES)

Logical OR BUS With Immediate Mask

Opcode Operands

ORL BUS,#data

10 0 0 10 0 0 data

Data on the BUS port is logically ORed with an immediately-specified mask. This instruction assumes prior specifi
cation of an ‘OUTL BUS,A’ instruction. The 8021 does not recognize this instruction.

Example:

ORBUS: ORL BUS,&HEXMSK ;‘OR’ BUS CONTENTS WITH
;MASK EQUAL VALUE OF
;SYMBOL ‘HEXMSK’

Logical AND Port 4-7 With Accumulator Mask

Opcode Operands

ANLD Pp,A p=4-7

10 0 1 1 1 P P

3-19

Chapter 3. MCS-48 Assembly Language Instructions

Data on port *p’ is logically ANDed with the digit mask contained in accumulator bits 0-3 and the result written to
port *p.’ The accumulator is not affected.

NOTE

The mapping of port 'p’ to opcode bits 0-1 is as
follows:

1 0 Port

0 0 4
0 1 5
1 0 6
1 1 7

Example:

ANDP4: ANLD P4,A ;‘AND’ PORT 4 CONTENTS WITH
;ACC BITS 0-3

Logical OR Port 4-7 with Accumulator Mask

Opcode Operands

ORLD Pp,A p=4-7

10 0 0 1 1 p p

Data on port ‘p’ is logically ORed with the digit mask contained in accumulator bits 0-3 and the result is written to
port ‘p.’ The accumulator is not affected. (See the NOTE accompanying the preceding instruction.)

Example:

ORP7: ORLD P7,A ;'OR’PORT 7 CONTENTS
;WITH ACC BITS 0-3

Rotate Operations

The MCS-48 instruction set includes four instructions for bit rotation of accumulator contents: right and left rota
tions that do not affect the carry bit, and rotations through the carry. All four instructions perform ‘wraparound’
rotations, as shown in Figure 3-1.

3-20

Chapter 3. MCS-48 Assembly Language Instructions

Figure 3-1 Bit Rotation

Rotate Without Carry

Rotate Right Without Carry

Opcode Operand

RR A

0 111 0 111

The contents of the accumulator are rotated right one bit. Bit 0 is rotated into the bit 7 position (Figure 3-1).

Example: Assume accumulator contains 10110001.

RRNC; RR A ;NEW ACC CONTENTS ARE 11011000

Rotate Left Without Carry

Opcode Operand

RL A

1110 0 111

3-21

Chapter 3. MCS-48 Assembly Language Instructions

The contents of the accumulator are rotated left one bit. Bit 7 is rotated into the bit 0 position (Figure 3-1).

Example: Assume accumulator contains 10110001.

RLNC: RL A ;NEW ACC CONTENTS ARE 01100011

Rotate Through Carry

Rotate Right Through Carry

Opcode Operand

RRC A

0 110 0 111

The contents of the accumulator are rotated right one bit. Bit 0 replaces the carry bit; the carry bit is rotated into
the bit 7 position (Figure 3-1).

Example: Assume carry is not set and accumulator contains 10110001.

RRTC: RRC A ;CARRY IS SET AND ACC
CONTAINS 01011000

Rotate Left Through Carry

Opcode Operand

RLC

1111 0 111

The contents of the accumulator are rotated left one bit. Bit 7 replaces the carry bit; the carry bit is rotated into the
bit 0 position (Figure 3-1).

Example: Assume accumulator contains a ‘signed’ number; isolate sign without changing value.

RLTC: CLR C
RLC A

RR A

;CLEAR CARRY TO ZERO
;ROTATE ACC LEFTjSIGN
;BIT (7) IS PLACED IN CARRY
;ROTATE ACC RIGHT - VALUE
;(BITS 0-6) IS RESTORED, CARRY
;UNCHANGED, BIT 7 IS ZERO

Arithmetic Operations

Arithmetic operations include the increment, decrement, and addition instructions.

3-22

Chapter 3. MCS-48 Assembly Language Instructions

tncremen tjDecrement Instructions

You can increment (by one) the contents of the accumulator, a working register, or resident data memory location.
The accumulator and working registers can be decremented. (External data memory contents cannot be incremented
or decremented directly, although such data can be manipulated in the accumulator.)

The DJNZ instruction allows you to decrement a register, test for zero, and transfer program control accordingly.
The register can be used as a counter, providing program loop control.

Increment Accumulator

Opcode Operand

INC A

0 0 0 1 0 111

The contents of the accumulator are incremented by one.

Example: Increment contents of location 100 in external data memory.

INCA; MOV R0,#100 ;MOVE ‘100’ DEC TO
;ADDRESS REG 0

MOVX A,@R0 ;MOVE CONTENTS OF LOCATION
;100TO ACC

INC A INCREMENT A
MOVX @R0,A ;MOVE ACC CONTENTS TO

;LOCATION 100

Increment Register

Opcode Operand

INC Rr r=0-7

0 0 0 1 1 r r r

The contents of working register ‘r’ are incremented by one.

Example:

INCRO: INC RO INCREMENT ADDRESS REG 0

3-23

Chapter 3. MCS-48 Assembly Language Instructions

Increment Data Memory Location

Opcode Operand

INC @Rr r=1-2

0 0 0 1 0 0 0 r

The contents of the resident data memory location addressed by register ‘r’ bits 0-5 (8048) or bits 0-6 (8049) are

incremented by one.

Example:

INCDM: MOV R1,#3FH ;MOVEONESTO BITS 0-5
INC @R1 INCREMENT LOCATION 63

Decrement Accumulator

Opcode Operand

DEC A

0 0 0 0 0 111

The contents of the accumulator are decremented by one.

Example: Decrement contents of external data memory location 63.

MOV R0,#3FH ;MOVE ‘3F’HEXTO REGO
MOVX A,@R0 ;MOVE CONTENTS OF LOCATION

;63 TO ACC
DEC A DECREMENT ACC
MOVX @R0,A ;MOVE CONTENTS OF ACC TO LOCATION

;63 IN EXPANDED MEMORY

Decrement Register

Opcode Operand

DEC r=0-7Rr

110 0 1 r r r

The contents of working register ‘r’ are decremented by one. This instruction is not recognized by the 8021.

Example:

DECR1: DEC R1 jDECREMENT ADDRESS REG 1

3-24

Chapter 3. MCS-48 Assembly Language Instructions

Decrement Register and Test

Opcode

DJNZ

Operand

Rr,address r=0-7

1110 1 r r r address

This is a 2-cycle instruction. Register ‘r’ is decremented and tested for zero. If the register contains all zeros, program
control falls through to the next instruction. If the register contents are not zero, control jumps to the specified
‘address.’

The address in this case must evaluate to eight bits, that is, the jump must be to a location within the current 256-
location page.

NOTE

A 12-bit address specification does not cause an error
if the DJNZ instruction and the jump target are on the
same page. If the DJNZ instruction begins in location
255 of a page, it must jump to a target address on the
following page.

Example: Increment values in data memory locations 50-54.

MOV
MOV

INCRT: INC

RO,#50 ;MOVE ‘50’ DEC TO ADDRESS REG 0
R3,#5 ;MOVE ‘5’ DEC TO COUNTER REG 3
@R0 INCREMENT CONTENTS OF LOCATION

ADDRESSED BY REG 0
INC
DJNZ

R0 INCREMENT ADDRESS IN REG 0
R3,INCRT DECREMENT REG 3 - J UMP TO

j'INCRT’ IF REG 3 NONZERO
NEXT ;‘NEXT’ ROUTINE EXECUTED IF

;R3 IS ZERO

Addition instructions

The contents of working registers or other resident data-memory locations, or immediately-specified data, can be
added to the contents of the accumulator. The result remains in the accumulator.

As described earlier, data memory locations are addressed indirectly through registers 0-1. The reference to these regis
ters is preceded by ‘@’ to indicate indirection. Immediately-specified data is preceded by and must evaluate to
eight bits. All immediate operations require two cycles for execution.

Addition can be performed ‘with carry.’ This means that the value in the carry bit is added to the accumulator at the
low-order end and the carry bit is set to zero automatically before the regular addition operation takes place. This is
necessary, for example, when adding 16-bit values, to ensure that any carry from the low-order byte addition is re
flected in the high-order byte addition.

3-25

Chapter 3. MCS-48 Assembly Language Instructions

Example: Add value 10101010 to accumulator value 10000010 with carry. Assume carry bit is currently set.

STEP1: ADD C to ACC and zero C

C 7 ACC 0
0 10 10 10 11

STEP 2: ADD 10000010 to ACC; overflow to C if necessary

C 7 ACC 0
1 0 0 10 110 1

All addition operations (with or without carry) affect the carry and auxiliary carry bits in the event of an addition
overflow.

Add Register Contents to Accumulator

Opcode Operands

ADD A,Rr r=0-7

0 110 1 r r r

The contents of register ‘r’ are added to the accumulator.

Example:

ADDREG: ADD A,R6 ;ADD REG 6 CONTENTS TO ACC

Add Carry and Register Contents to Accumulator

Opcode Operands

ADDC A,Rr r=0-7

0 111 1 r r r

The content of the carry bit is added to accumulator bit 0 and the carry bit cleared. The contents of register *r’ are
then added to the accumulator.

Example:

ADDRGC: ADDC A,R4 ;ADD CARRY AND REG 4 CONTENTS
;TO ACC

3-26

Chapter 3. MCS-48 Assembly Language Instructions

Add Data Memory Contents to Accumulator

Opcode Operands

ADD A,@Rr r=0-1

0 110 0 0 0 r

The contents of the standard data memory location addressed by register *r’ bits 0-5 (8048) or bits 0-6 (8049) are
added to the accumulator.

Example:

ADDM: MOV R0,#2FH ;MOVE *2F’ HEX TO REG 0
ADD A,@R0 ;ADD VALUE OF LOCATION 47 TO

;ACC

Add Carry and Data Memory Contents to Accumulator

Opcode Operands

ADDC A,@Rr r=0-l

0 1 1 1 0 0 0 r

The content of the carry bit is added to accumulator bit 0 and the carry bit is cleared. Then the contents of the
standard data memory location addressed by register *r’ bits 0-5 (8048) or bits 0-6 (8049) are added to the
accumulator.

Example:

ADDMC: MOV R1,#40 ;MOVE ‘40’ DECTO REG 1
ADDC A,@R1 ;ADD CARRY AND LOCATION 40

CONTENTS TO ACC

Add Immediate Data to Accumulator

Opcode Operands

ADD A,#data

0 0 0 0 0 0 1 1 data

This is a 2-cycle instruction. The specified data is added to the accumulator.

Example:

ADDID: ADD A,#ADDER ;ADD VALUE OF SYMBOL
/ADDER’ TO ACC

3-27

Chapter 3. MCS-48 Assembly Language Instructions

Add Carry and Immediate Data to Accumulator

Opcode Operands

ADDC A,#data

0 0 0 1 0 0 11 data

This is a 2-cycle instruction. The content of the carry bit is added to accumulator location 0 and the carry bit
cleared. Then the specified data is added to the accumulator.

Example:

ADDIDC: ADDC A,#225 ;ADD CARRY AND‘225’
;DEC TO ACC

Miscellaneous Accumulator Operations

Three data manipulation instructions allow the accumulator contents to be cleared, complemented, or divided into
two decimal digits.

Clear Accumulator

Opcode Operand

CLR A

0 0 1 0 0 1 1 1

The contents of the accumulator are cleared to zero.

Complement A ccumulator

Opcode Operand

CPL A

0 0 11 0 111

The contents of the accumulator are complemented. This is strictly a one’s complement. Each one is changed to zero
and vice-versa. (See the discussion of arithmetic notation in Chapter 2, the subsection ‘Two’s Complement Arithmetic.’)

Example: Assume accumulator contains 01101010.

CPLA: CPL A ;ACC CONTENTS ARE
;COMPLEMENTED TO 10010101

3-28

Chapter 3. MCS-48 Assembly Language Instructions

Decimal Adjust Accumulator

Opcode Operand

DA k

0 10 1 0 111

The 8-bit accumulator value is adjusted to form two 4-bit Binary Coded Decimal (BCD) digits (basically following an
addition operation). The carry bit is affected.

If the contents of bits 0-3 are greater than nine, or if the auxiliary carry bit is one, the accumulator is incremented
by six.

The four high-order bits are then checked. If bits 4-7 exceed nine, or if C is one, these bits are increased by six. If an
overflow occurs, C is set to one; otherwise, it is cleared to zero.

Example: Assume accumulator contains 10011011.

DA A ;ACC ADJUSTED TO 00000001 WITH C SET

C AC 7 43 0
[0[0] |1 0 0 l| 10 11

0 110
0 o] |1 0 1 0 0 0 0 1

0 110
| 1 0 0 0 0 0 0 0 0 1

ADD SIX TO BITS 0-5

ADD SIX TO BITS 4-7
OVERFLOW TOC

SETTING PROGRAM CONTROLS

Your program can be controlled by the setting of the condition bits, flags, and switches described in Chapter 1, the
section ‘Programmable Controls.’This section describes the instructions for manipulating these controls. It also des
cribes interrupt controls, timer/event-counter controls, clock control, the selection of memory and register banks,
and the NOP instruction.

Carry and Flag Controls

The carry bit (C), flag 0 (F0), and flag 1 (F1) can be cleared or complemented by the following instructions. Carry
(PSW bit 7) and flag 0 (PSW bit 5) can also be manipulated by moving the PSW to the accumulator, masking the
entire eight bits, then moving the result back to the PSW. This might be a preferable approach if several other bits in
the PSW were being altered at the same time.

Clear Carry Bit

Opcode Operand

CLR

10 0 10 111

3-29

Chapter 3. MCS-48 Assembly Language Instructions

During normal program execution, the carry bit can be set to one by the ADD, ADDC, RLC, RRC, CPL C, and DA
instructions. This instruction resets the carry bit to zero.

Complement Carry Bit

0 0 111

Opcode Operand

CPL C

The setting of the carry bit is complemented; one is changed to zero, and zero is changed to one.

Example: Set C to one; current setting is unknown.

CT01: CLR
CPL

C
C

;C IS CLEARED TO ZERO
;C IS SET TO ONE

Clear Flag 0

Opcode Operand

CLR F0

1 0 0 0 0 10 1

Flag 0 is cleared to zero. The 8021 does not recognize this instruction.

Complement Flag 0

Opcode Operand

CPL F0

10 0 1 0 10 1

The setting of flag 0 is complemented; one is changed to zero, and zero is changed to one. The 8021 does not
recognize this instruction.

Clear Flag 1

Opcode Operand

CLR F1

10 10 0 10 1

Flag 1 is cleared to zero. The 8021 does not recognize this instruction.

3-30

Chapter 3. MCS-48 Assembly Language Instructions

Complement Flag 1

Opcode Operand

CPL

10 110 10 1

The setting of flag 1 is complemented; one is changed to zero, and zero is changed to one. The 8021 does not
recognize this instruction.

Interrupt Controls

As described in Chapter 1, the 8048 responds to two kinds of interrupts: an ‘external’ interrupt initiated by a low
signal on the interrupt input pin, and an overflow in the timer/event-counter register. The following instructions
allow you to enable and disable these interrupts.

These interrupts and related instructions are not available on the 8021.

External Interrupt Control

If the external interrupt is enabled and the interrupt input pin goes to level zero, the interrupt sequence is activated.
Control passes to program memory location 3, the program counter and bits 4-7 of the PSW are stored in the program
stack, and the stack pointer (PSW bits 0-2) is incremented by one.

Enable External Interrupt

Opcode Operand

EN

0 0 0 0 0 1 0 1

External interrupts are enabled. A low signal on the interrupt input pin initiates the interrupt sequence. This
instruction is not recognized by the 8021.

Disable External Interrupt

Opcode Operand

DIS

0 0 0 1 0 1 0 1

External interrupts are disabled. A low signal on the interrupt input pin has no effect. This instruction is not
recognized by the 8021.

3-31

Chapter 3. MCS-48 Assembly Language Instructions

Timer [Counter Interrupt Control

If this interrupt is enabled and the timer/event-counter overflows, the interrupt sequence is activated. Control passes
to program memory location 7, the program counter and PSW bits 4-7 are stored in the program stack, and the stack
pointer incremented.

The timer flag (TF) is set when the timer/counter overflows, whether or not the interrupt is enabled. The timer
continues to accumulate time after an overflow occurs.

Enable Timer [Counter Interrupt

Opcode Operand

EN TCNTI

0 0 10 0 10 1

Timer/counter interrupts are enabled. An overflow of this register initiates the interrupt sequence. This
instruction is not recognized by the 8021.

Disable Timer/Counter Interrupt

Opcode Operand

DIS TCNTI

0 0 11 0 10 1

Timer/counter interrupts are disabled. Any pending timer interrupt request is cleared. The interrupt sequence is not
initiated by an overflow, but the timer flag is set and time accumulation continues. This instruction is not
recognized by the 8021.

Timer/Event-Counter Controls

The following instructions are used to start and stop time accumulation or event counting in the timer/event-counter
register.

Start Timer

Opcode Operand

STRT T

0 10 1 0 10 1

Timer accumulation is initiated in the timer register. The register is incremented every 32 instruction cycles. The pre
scaler (where the 32 cycles are counted) is cleared, but the timer register is not.

3-32

Chapter 3. MCS-48 Assembly Language Instructions

Example: Initialize and start timer.

STARTT: CLR A
MOV T,A
EN TCNTI
STRT T

;CLEAR ACC TO ZEROS
;MOVE ZEROS TO TIMER
;ENABLE TIMER INTERRUPT
;START TIMER

Start Event Counter

Opcode Operand

STRT CNT

0 10 0 0 10 1

The test 1 (T1) pin is enabled as the event-counter input and the counter is started. The event-counter register is
incremented with each high-to-low transition on the T1 pin.

Example: Initialize and start event counter. Assume overflow is desired with first T1 input.

STARTC: MOV A,#0FFH ;MOVE 'FF’HEX (ONES) TO
;ACC

MOV T.A ;MOVE ONES TO COUNTER
EN TCNTI ;ENABLE COUNTER INTERRUPT
STRT CNT ;ENABLET1 AS COUNTER

;INPUT AND START

Stop Timer/Event Counter

Opcode Operand

STOP TCNT

0 110 0 10 1

This instruction is used to stop both time accumulation and event counting.

3-33

Chapter 3. MCS-48 Assembly Language Instructions

Example: Disable interrupt, but jump to interrupt routine after eight overflows and stop timer. Count overflows in
register 7.

START: DIS TCNTI ;DISABLE TIMER INTERRUPT
CLR A ;CLEAR ACC TO ZEROS
MOV T,A ;MOVE ZEROS TO TIMER
MOV R7,A ;MOVE ZEROS TO REG 7

MAIN: STRT T ;START TIMER
JTF COUNT JUMP TO ROUTINE ‘COUNT’

;lF TF=1 AND CLEAR TIMER FLAG

;‘MAIN’

JMP MAIN ;CLOSE LOOP
COUNT; INC R7 JNCREMENT REG 7

MOV A,R7 ;MOVE REG 7 CONTENTS TO ACC
JB3 INT JMUPTO ROUTINE ‘INT* IF

;ACC BIT 3 IS SET (REG 7=8)
JMP MAIN OTHERWISE RETURN TO ROUTINE

INT: STOP TCNT ;STOP TIMER
JMP 7H JUMP TO LOCATION 7

JTIMER INTERRUPT ROUTINE)

Clock Control

The test 0 (TO) pin can be used as a state clock output and tested directly by your program. See the MCS-48 user’s
manual for details.

Enable Clock Output

Opcode Operand

ENTO CLK

0 111 0 10 1

The test 0 pin is enabled to act as the clock output. This function is disabled by a system reset. The 8021 does
not recognize this instruction.

Example:

ENTSTO: ENTO CLK ;ENABLE TO AS CLOCK OUTPUT

3-34

Chapter 3. MCS-48 Assembly Language Instructions

Memory and Register Bank Controls

The following instructions allow you to control the interpretation of program memory references and references to
data memory working registers. As noted in Chapter 1, memory and register bank selection is not possible on the
8021. It always refers to bank ‘O’.

Memory Bank Selection

3
The memory bank instructions let you specify your program memory address references to be in ‘bank 0’ (locations
0-2047) or ‘bank 1 ’ (locations 2048-4095). See Figure 1-1. These instructions toggle program counter bit 11, but not
until the next branch from the main program (via a jump or call) begins execution.

Select Bank 0

Select Bank 1

11 PROGRAM COUNTER 0

0 0 10 10 0 0 10 10

10 10 10 0 0 10 10

Location 650

Location 2698

If a SEL MB instruction is issued before a CALL, it affects only the subroutine called. The return restores PC bit 11
to its previous value (see NOTE 1). A SEL MB issued before a jump instruction modifies PC bit 11 permanently.

NOTES

1. While PC bit 11 is restored on returning from a CALL, the
‘designate bank’ internal flip-flop (DBF) is not. This means
you must reset the DBF with another SEL before issuing
another jump instruction.

2. When an interrupt service routine is executing, program
counter bit 11 is held at zero. This means any service
routine references must reside in memory bank 0. The
select-memory-bank instructions should not be issued in
an interrupt service routine.

The initial value of PC bit 11 is zero and memory bank 0 is selected.

Select Memory Bank 0

Opcode

SEL

Operand

MB0

1110 0 10 1

PC bit 11 is set to zero. All references to program memory addresses fall within the range 0-2047. This instruction
is not recognized by the 8021.

3-35

Chapter 3. .MCS-48 Assembly Language Instructions

Example: Assume program counter contains 834H (2100D).

SEL MBO jSELECT MEMORY BANK 0
J MP $+20 JUMP TO LOCATION 48H (72D)

Select Memory Bank 1

Opcode Operand

SEL MB1

1111 0 10 1

PC bit 11 is set to one. All references to program memory addresses fall within the range 2048-4095. This
instruction is not recognized by the 8021.

Register Bank Selection

The register bank instructions let you specify whether references to registers 0-7 address data memory locations in
'bank 0’ (locations 0-7) or ‘bank 1 ’ (locations 24-31). See Figure 1-2. These instructions toggle the register bank
switch (PSW bit 4). The initial setting of this bit is zero.

Select Register Bank 0

Opcode Operand

SEL RB0

110 0 0 10 1

PSW bit 4 is set to zero. References to working registers 0-7 address data memory locations 0-7. This is the recom
mended setting for normal program execution. The 8021 does not recognize this instruction.

Select Register Bank 7

Opcode Operand

SEL RBI

110 1 0 10 1

PSW bit 4 is set to one. References to working registers 0-7 address data memory locations 24-31. This is the recom
mended setting for interrupt service routines, since locations 0-7 are left intact. The RETR instruction at the end of
the interrupt service routine restores bit 4 of the PSW to the value it had at the time of the interrupt.

The 8021 does not recognize this instruction.

3-36

Chapter 3. MCS-48 Assembly Language Instructions

Example: Assume an external interrupt has occurred, control has passed to program memory location 3, and PSW
bit 4 (register bank switch) was zero before the interrupt.

LOC3: JMP INIT JUMP TO ROUTINE ‘INIT’ IF
INTERRUPT HAS OCCURRED

IN IT: MOV R7,A ;MOVE ACC CONTENTS TO
;LOCATION 7

SEL RB1 SELECT REG BANK 1
MOV R7,#0FAH ;MOVE ‘FA’ HEX TO LOCATION 31

SEL
MOV
RETR

RBO ;SELECT REG BANK 0
A,R7 RESTORE ACC FROM LOCATION 7

;RETURN - RESTORE PC AND PSW
;4-7

The ‘Null’ Operation

The null operation uses one machine cycle, but no operation is performed. Its primary function is to reserve a pro
gram location for an instruction to be inserted later. It could also be used, like the timer, to synchronize your
system.

The NOP Instruction

Opcode

NOP

0 0 0 0 0 0 0 0

No operation is performed. Execution continues with the following instruction.

TRANSFERRING PROGRAM CONTROL

Instructions in program memory are normally executed sequentially. Program control can be transferred out of the
main line of code by an external or timer interrupt, or when a jump or call instruction is encountered.

An interrupt (if enabled) automatically transfers control to location 3 (for external interrupts) or location 7 (for
timer overflows), and is essentially a call to an interrupt service subroutine. The program counter and PSW bits 4-7
are saved in the stack.

3-37

Chapter 3. MCS-48 Assembly Language Instructions

Your program can also contain other subroutines to perform frequently-executed code. Control is passed to these
subroutines by the CALL instruction, which also saves the program counter and PSW bits 4-7.

Control is returned from an interrupt service routine or other subroutine to the main program by the RET and
RETR instructions. RET restores only the program counter; RETR restores both the program counter and PSW
bits 4-7.

The jump instructions alter the contents of the program counter without saving PC or PSW information, jumps can
be specified subject to certain conditions (such as the setting of a flag), or can be made unconditional.

All conditional jumps and the JMPP instruction limit the range of a jump to the current 256-location page (that is,
alter PC bits 0-7). The J MP and CALL instructions allow program control to be transferred within a 2K memory
bank (that is, alter PC bits 0-10). This range can be extended to 4K by toggling PC bit 11 with the SEL MB instruc
tions. A SEL MB preceding a CALL instruction is valid only for the duration of the subroutine; a SEL MB preceding
a jump remains in effect until changed by your program.

jump instructions with 8-bit operands imply a destination address expressable in 12 bits. All 8-bit addresses are valid;
12-bit destination addresses are valid if the jump instruction and destination reside on the same page. If a conditional
jump or j MPP begins in location 255 of a page, it must reference a destination on the following page. Any jump
instruction beginning in location 2047 or 4095 is invalid. A CALL cannot begin in locations 2046-2047 or 4094-4095.

All control transfer and return instructions require two cycles for execution.

Subroutine Call/Return Operations

Subroutines are entered and exited using the CALL, RET, and RETR instructions.

Subroutine Call

Opcode Operand

CALL address

10 8 7 0
addr 10 10 0 addr

The program counter and PSW bits 4-7 are saved in the stack. The stack pointer (PSW bits 0-2) is updated. Program
control is then passed to the location specified by ‘address.’ PC bit 11 is determined by the most recent SEL MB
instruction. PC bits 10-11 must always be ‘0’ for the 8021 or a ‘range’ error (R) results.

Execution continues at the instruction following the CALL upon return from the subroutine.

3-38

Chapter 3. MCS-48 Assembly Language Instructions

Example: Add three groups of two numbers. Put subtotals in locations 50, 51 and total in location 52.

MOV R0,#50 ;MOVE '50’ DEC TO ADDRESS
;REG 0

BEGADD: MOV A,R1 ;MOVE CONTENTS OF REG 1 TO
;ACC

ADD A,R2 ;ADD REG 2 TO ACC
CALL SUBTOT ;CALL SUBROUTINE ’SUBTOT’
ADD A,R3 ;ADD REG 3 TO ACC
ADD A,R4 ;ADD REG 4 TO ACC
CALL SUBTOT ;CALL SUBROUTINE ‘SUBTOT’
ADD A,R5 ;ADD REG 5 TO ACC
ADD A,R6 ;ADD REG 6 TO ACC
CALL SUBTOT ;CALL SUBROUTINE ‘SUBTOT’

SUBTOT: MOV @R0,A ;MOVE CONTENTS OF ACC TO
LOCATION ADDRESSED BY REG 0

INC
RET

R0 INCREMENT REG 0
;RETURN TO MAIN PROGRAM

Return Without PSW Restore

Opcode

RET

1 0 0 0 0 0 1 1

The stack pointer (PSW bits 0-2) is decremented. The program counter is then restored from the stack. PSW bits 4-7
are not restored.

Return With PSWRestore

Opcode

RETR

10 0 1 0 0 11

The stack pointer is decremented. The program counter and bits 4-7 of the PSW are then restored from the stack.
Note that RETR should be used to return from an interrupt, but should not be used within the interrupt service
routine as it would clear the interrupt in process.

This instruction is not recognized by the 8021.

3-39

Chapter 3. MCS-48 Assembly Language Instructions

Jump Instructions

The MCS-48 instruction set includes two unconditional jumps and 13 conditional jumps (in addition to the DJNZ
instruction described earlier in this chapter). Only one jump instruction, J MP, alters PC bits 0-10. The others affect
only PC bits 0-7 and, therefore, must address a location within the current 256-location page.

Unconditional jumps

The JMP unconditional jump allows you to cross page boundaries; JMPP is limited to the current page. J MP
addresses program memory locations directly; JMPP addresses program memory locations indirectly through
the accumulator. Indirection is indicated by prefixing the accumulator reference with a 'commercial at’ (@).

Direct jump Within 2K Block

Opcode Operand

JMP address

10 8 7 0
addr 0 0 10 0 addr

Bits 0-10 of the program counter are replaced with the directly-specified address. The setting of PC bit 11 is
determined by the most recent SELECT MB instruction. PC bits 10-11 must always be ‘0’ for the 8021 or a
‘range’ error (R) results.

Examples:

JMP SUBTOT JUMP TO SUBROUTINE 'SUBTOT’
JMP $-6 JUMP TO INSTRUCTION SIX LOCATIONS

;BEFORE CURRENT LOCATION
JMP 2FH JUMP TO ADDRESS ‘2F’ HEX

Indirect Jump Within Page

Opcode Operand

JMPP @A

10 11 0 0 11

The contents of the program memory location pointed to by the accumulator are substituted for the 'page' portion
of the program counter (PC bits 0-7).

Example: Assume accumulator contains 0FH.

JMPPAG: JMPP@A ;JUMP TO ADDRESS STORED IN
;LOCATION 15 IN CURRENT PAGE

Conditional Jumps

The following jumps are executed only if a specific condition is satisfied. All jumps occur within the current page.

3-40

Chapter 3. MCS-48 Assembly Language Instructions

Jump If Carry Is Set

Opcode Operand

JC address

1111 0 110 address

Control passes to the specified address if the carry bit is set to one.

Example:

JC1: JC OVFLOW JUMP TO‘OVFLOW’ROUTINE IF C=1

jump If Carry Is Not Set

Opcode Operand

JNC address

1110 0 110 address

Control passes to the specified address if the carry bit is not set, that is, equals zero.

Example:

JCO: JNC NOVFLO J UMP TO‘NOVFLO’ROUTINE IF C=0

Jump If Accumulator Is Zero

Opcode Operand

JZ address

110 0 0 110 address

Control passes to the specified address if the accumulator contains all zeros when this instruction is executed. Accumu
lator contents are monitored continuously.

Example:

JACCO: JZ 0A3H J UMP TO LOCATION‘A3’HEX
;IF ACC VALUE IS ZERO

3-41

Chapter 3. MCS-48 Assembly Language Instructions

Jump If Accumulator Is Not Zero

Opcode Operand

JNZ address

10 0 1 0 110 address

Control passes to the specified address if the accumulator contents are nonzero when this instruction is executed.
Accumulator contents are monitored continuously.

Example:

JACCNO: JNZ OABH J UMP TO LOCATION‘AB’HEX
;IF ACC VALUE IS NONZERO

Jump If Flag 0 Is Set

Opcode Operand

JFO address

10 11 0 110 address

Control passes to the specified address if flag 0 is set to one. This instruction is not recognized by the 8021.

Example:

JF0IS1: JFO TOTAL JUMPTO ‘TOTAL' ROUTINE IF
;F0=1

Jump If Flag 1 Is Set

Opcode Operand

JF1 address

0 1110 110 address

Control passes to the specified address if flag 1 is set to one. This instruction is not recognized by the 8021.

Example:

JF1IS1: JF1 FILBUF JUMP TO‘FILBUF’ROUTINE
;IF F1=1

3-42

Chapter 3. MCS-48 Assembly Language Instructions

Jump If Test 0 Is High

Opcode Operand

JTO address

0 0 11 0 110 address

Control passes to the specified address if the test 0 signal is high (=1). This instruction is not recognized by
the 8021.

Example:

JTOHI: JTO 53 JUMP TO LOCATION 53 DEC IF
;T0=1

Jump If Test 0 Is Low

Opcode Operand

addressJNTO

0 0 10 0 110 address

Control passes to the specified address if the test 0 signal is low (=0). This instruction is not recognized by
the 8021.

Example:

JTOLOW: JNTO 60 JUMP TO LOCATION 60
;DEC IF T0=0

Jump If Test 1 Is High

Opcode Operand

JT1 address

0 10 1 0 110 address

Control passes to the specified address if the test 1 signal is high (=1).

Example:

JT1HI: JT1 COUNT JUMP TO ‘COUNT’ ROUTINE
;IF T1 =1

3-43

Chapter 3. MCS-48 Assembly Language Instructions

lump If Test 7 Is Low

Opcode Operand

JNT1 address

0 10 0 0 110 address

Control passes to the specified address if test 1 signal is low (=0).

Example:

JT1LOW: JNT1 NOCNT ;) UMP TO ‘NOCNT’ ROUTINE
;IF T1=0

jump If Timer Flag Is Set

Opcode Operand

JTF address

0 0 0 1 0 110 address

Control passes to the specified address if the timer flag is set to one, that is, the timer/counter register has over
flowed. Testing the timer flag resets it to zero. (This overflow initiates an interrupt service sequence if the timer
overflow interrupt is enabled.)

Example:

JTF1: JTF TIMER JUMP TO ‘TIMER’ ROUTINE
;IF TF=1

jump If Interrupt Input Is Low

Opcode Operand

addressJNI

10 0 0 0 110 address

Control passes to the specified address if the interrupt input signal is low (=0), that is, an external interrupt has been
signalled. (This signal initiates an interrupt service sequence if the external interrupt is enabled.) The 8021 does
not recognize this instruction.

Example: The JNI instruction is used to control a test input.

DIS I ;DISABLE EXTERNAL INTERRUPT
JNI TRUE JUMPTO ‘TRUE’ ROUTINE

;IF 1=0 (TEST IS TRUE)
JMP $-2 ;LOOPTO JNI TEST

3-44

Chapter 3. MCS-48 Assembly Language Instructions

Jump If Accumulator Bit Is Set

Opcode Operand

JBb address b=0-7

b b b 1 0 0 10 address

Control passes to the specified address if accumulator bit ‘b’ is set to one. The 8021 does not recognize
this instruction.

Example:

JB4IS1: JB4 NEXT JUMP TO ‘NEXT’ ROUTINE
;IF ACC BIT 4=1

SAMPLE PROGRAMS

The following examples demonstrate addition, subtraction, multiplication, and number comparison using 8-bit,
16-bit, and BCD quantities. Analog/digital conversion and a keyboard scan are also demonstrated.

Addition With 8-Bit Quantities

Add 8-bit symbolic values ADDEND and AUGEND and place their sum in Register 7.

ADD8: MOV A,#ADDEND
ADD A,#AUGEND
MOV R7,A

Addition With 16-Bit Quantities

Add two 16-bit numbers and store their sum in registers 6 (high-order byte) and 7 (low-order byte).

ADD16: MOV A,#ADDLOW
ADD A,#AUGLOW
MOV R7,A
MOV A,#ADDHI
ADDC A,#AUGHI jINCLUDE OVERFLOW FROM

;PREVIOUS ADD IN ADDITION
- MOV R6,A

Addition With BCD Quantities

Add the BCD number whose LSD is at location BETA to the BCD number whose LSD is at location ALPHA and
store the result in ALPHA. Length of number is ‘COUNT’ digit pairs. For this example, assume both numbers are
the same length and have an even number of digits (or the most-significant digit is zero, if odd).

3-45

Chapter 3. MCS-48 Assembly Language Instructions

ADDBCD: MOV R0,#ALPHA ;AUGEND, SUM LSD
;LOCATION IN REG 0

MOV R1,#BETA ;ADDEND LOCATION
;IN REG 1

MOV R2,#COUNT ;LOOP COUNTER IN
;REG 2

CLR C
LOOP: MOV A,@R0 ;ADD ROUTINE

ADDC A,@R1
DA A
MOV @R0,A ;STORE SUM
DEC RO DECREMENT ADDRESS

;REGS
DEC R1
DJNZ R2,LOOP ;LOOP CONTROL

Subtraction With 8-Bit Quantities

Subtract 8-bit subtrahend from 8-bit minuend using two’s complement addition and store difference in register 7.

SUB8: MOV A,#SUBHND
CPL A
INC A
ADD A,#MINEND

,ONE’S COMPLEMENT A
;TWO’S COMPLEMENT A

MOV R7,A

Subtraction With 16-Bit Quantities

Subtract two 16-bit numbers and store their difference in registers 3 (high-order byte) and 4 (low-order byte). Note
the use of ADD, rather than INC, to form the two’s complement numbers; INC does not affect the carry bit.

SUB16: MOV A,#SUBLOW
CPL A
ADD A,#1 ;FORM TWO’S COMPLEMENT
MOV R4,A ;STORE TEMP SUBLOW COMP
MOV A,#SUBHI
CPL A
ADDC A,#0 ;PICK UP OVERFLOW AND

;FORM TWO’ S COMPLEMENT
MOV R3,A ;STORE TEMP SUBHI COMP
MOV A,R4 ;BEGIN ADDITION
ADD A,#MINLOW
MOV R4,A ;STORE LOW-ORDER DIFF
MOV A,R3
ADDC A,#MINHI
MOV R3,A ;STORE HIGH-ORDER DIFF

3-46

Chapter 3. MCS-48 Assembly Language Instructions

Multiplication (8X8 Bits, 16-Bit Product)

Multiply two 8-bit numbers and store the 16-bit product in registers 2 and 3. Note than nine shifts through the
accumulator are required to justify the product correctly.

;PRODUCT

MPY8X8: MOV R5,#9 ;8 + 1 IN LOOP COUNTER
MOV R6,#MCAND MULTIPLICAND IN REG 6
MOV R3,#MPLIER MULTIPLIER, LOW PARTIAL

;PRODUCT IN REG 3
CLR A
CLR C

LOOP: RRC A ;ROTATE
XCH A,R3 ; CARRY, ACC, REG 3
RRC A ; RIGHT
XCH A,R3 ; ONE BIT
JNC NOADD ;TEST CARRY
ADD A,R6

NOADD: DJNZ R5,LOOP ;9 SHIFTS TO JUSTIFY
MOV R2,A STORE HIGH PARTIAL

Compare Memory to Accumulator

Make an unsigned comparison between the contents of a memory location and the accumulator. Save original
accumulator contents temporarily in register 5.

COMPAR: MOV R5,A
MOV R0,#MEM ;ADDRESS OF NUMBER TO BE

;COM PARED
CPL A
INC A
ADD A,@R0 ;ACC CONTENTS DESTROYED
JZ EQUAL ;ACC = MEM
JNC ACCGT ;ACC GREATER THAN MEM
JC ACCLT ;ACC LESS THAN MEM

Analog/Digital Conversion

Construct an A/D converter from a D/A converter, a comparator op-amp, and a successive-approximation software
routine.

The 8048 sends eight bits of data to the D/A converter via output port 1. The output of the D/A converter is com
pared to the ‘analog input’ being converted. The result of the comparison (0 if DAC output is lower, 1 if higher) is
sent back to the 8048 via the TO input pin for handling. This procedure lets the 8048 estimate the proper digital
representation of the analog input by testing the most significant bit, keeping it if the inppt says ‘still too low’ or
dropping it if the input says ‘too high now.’ From this point, each bit is tested in order of significance and either
kept or discarded.

3-47

Chapter 3. MCS-48 Assembly Language Instructions

ADCON: MOV R7,#8H ;COUNTER R7=8
CLR A ;CLEAR A,R5,R6
MOV R5,A
MOV R6,A
CLR C
CPL C ;SET CARRY

LOOP: MOV A,R5 ;ROTATE TEST BIT
RRC A ; RIGHT FROM MSB
MOV R5,A ; TO LSB
ORL A,R6 ;ADD TO R6 VALUE
OUTL P1,A JEST NEW VALUE
JTO DROP ;IF T0=1, DROP NEW VALUE
MOV R6,A ;IF T0=0, SAVE NEW VALUE

DROP: DJNZ R7,LOOP ;TEST NEXT BIT

Matrix Keyboard Scan (4X4)

A keyboard is arranged such that any key pressed in any of four vertical columns returns a recognizable signal to the
microprocessor. When the key is pressed, its signal goes low and a 0 is returned to the processor. (For example,
pressing key 9 returns the bit pattern 1011 when the template for vertical column 1 is operative.)

3-48

Chapter 3. MCS-48 Assembly Language Instructions

The microprocessor scans the keyboard until it detects a low signal (pressed key). This triggers a check loop to ensure
no other key has been pressed. When this check has been completed, the processor stores the value of the key. If two
keys are pressed, the routine ignores both and starts again at its entry point.

Register and port assignments are as follows:

RO Key counter
R1 Address for key storage
R2 Column template
R3 Row counter
R4 Intermediate key storage
Pl Column template output
P2 Keyboard input to processor

SCAN: CALL SCANKY ;SCAN MATRIX FOR KEY
XCH A,RO ;SAVE KEY ID
MOV R4,A
XCH A,RO
CALL CHECK ;CHECK FOR 2ND KEY
MOV A,R4 ;COMPARE NEW/OLD KEYS
XRL A,RO
JNZ SCAN RESTART IF 2 KEYS PRESSED
MOV R1,#STORKY ;ADDR FOR STORING KEY
MOV A, RO
MOV @R1,A ;STORE HOME KEY

3-49

Chapter 3. MCS-48 Assembly Language Instructions

WAIT: MOV A,R2 ;WAIT FOR KEY
OUTL P1,A ; TOBE
IN A,P2 ; RELEASED
CPL A
JNZ WAIT
JMP DONE ;DONE WHEN KEY RELEASED

SCANKY: MOV RO,#OFH ;KEY COUNTER
MOV R2,#7FH ;COLUMN TEMPLATE

NEWCOL: MOV R3,#4H ;ROW COUNTER
MOV A,R2 ;PUT TEMPLATE INTO ACC
RL A ;ROTATE TEST BIT INTO POSITION
OUTL Pl,A ;OUTPUT ROTATED TEMPLATE
MOV R2,A ;SAVE ROTATED TEMPLATE
IN A,P2 ;INPUT (KEY PRESSED)

COLUMN: RRC A ;CHECK INPUT
JC CHECK ;BRANCH IF ROW=1 (HIGH)
RET ;RETURN TO MAIN IF ROW=0 (LOW)

CHECK: DEC RO ;DECREMENT KEY COUNT
DJNZ R3, COLUMN jDECREMENT COLUMN COUNT
MOV A,RO ;IF ACC IS NOT ZERO,
JNZ NEWCOL ; SCAN NEXT COLUMN
JMP SCANKY ;START NEW SCAN

3-50

4. UPI-41 ASSEMBLY LANGUAGE INSTRUCTIONS

In Chapter 1 we described the functional and hardware differences between the 8048 and 8041 microcomputers.
This chapter lists the instruction set differences.

Most of the instructions described in Chapter 3 apply to the UPI-41 microcomputers (8041/8741) also. However,
ten MCS-48 instructions are deleted from the UPI-41 instruction set (treated as undefined), two are interpreted
differently on the UPI-41, and the UPI-41 instruction set includes four additional instructions for performing the
handshaking protocol.

4

The 8048/41 assemblers normally assume you are using the MCS-48 instruction set. If you wish to use the UPI-41
instruction set, you must first issue the assembler control ‘MOD41.' See Part Two for details.

DELETED 8048 INSTRUCTIONS

As was mentioned in Chapter 1, the 8041 ’s BUS port is required for the master-slave handshaking protocol. Instruc
tions requiring or defining the use of this port, namely the instructions used to access or define external data or
program memory, plus I/O instructions addressing the BUS, are not recognized by the 8041. These instructions are:

MOVX
MOVX

@Rr,A
A,@Rr

(Access external data memory)

SEL MB0 (Define external program memory)
SEL MB1

INS A,BUS (I/O operations using BUS)
ANL BUS,#data
ORL BUS,#data
OUTL BUS,A

The external interrupt function is also committed to the master processor interface. Therefore the following instruc
tion is also unrecognized:

JNI addr (Jump if external interrupt pin is low)

The TO pin can function only as a test input. The following instruction is unrecognized:

ENT0 CLK

Finally, a CALL or J MP to pages 4-7 (that is, beyond address 1023) causes a range error.

REINTERPRETED INSTRUCTIONS

When the master processor fills the 8041 ’s data bus buffer (DBB) with data, it can cause an interrupt (as a check
against more data being transferred before the buffer is cleared). Like the external interrupt on the 8048, this

4-1

Chapter 4. UPI-41 Assembly Language Instructions

interrupt forces a call to location 3. The data transfer interrupt is also enabled and disabled by the same instructions
used to enable and disable external interrupts on the 8048:

EN I
DIS I

ADDED INSTRUCTIONS

The UPI-41 instruction set includes two instructions for transferring data to/from the DBB and the 8041 ’s accumu
lator. It also includes two instructions for testing the input buffer (IBF) and output buffer (OBF) flags in the 8041
status register.

Data Transfer Instructions

Input DBB Contents to Accumulator

Opcode Operands

IN A,DBB

0 0 10 0 0 10

This instruction loads the 8041 ’s accumulator with the contents of the data bus buffer. It also clears the input buffer
flag (which was set when the master computer filled the DBB with input data). This flag is initially cleared.

NOTE

This instruction cannot be used to read back data
previously output to the DBB. Correct operation of
‘IN A,DBB’ is guaranteed only if IBF=1 and OBF=0.

Output Accumulator Contents to DBB

Opcode Operands

OUT DBB,A

0 0 0 0 0 0 10

Note that the encoding of this instruction is the same as for the OUTL BUS,A instruction. The contents of the
accumulator are stored in the data bus buffer and the output buffer flag is set. This flag is initially cleared.

Flag Test Instructions

These two instructions transfer program control conditionally depending on the setting of IBF and OBF. IBF is set
when the data bus buffer is filled by the master processor; OBF is set when the DBB is filled with data to be trans
ferred to the master processor.

4-2

Chapter 4. UPI-41 Assembly Language Instructions

Note that program control can only be transferred within the current 256-location page.

Jump If IBF Is Not Set

Opcode Operand

JNIBF address

110 1 0 110 address

This is a 2-cycle instruction. Control passes to the specified address if IBF is zero, that is, if the DBB is not filled with
input data.

Example:

LODBUF: JNIBF INPUT JUMP TO ‘INPUT’ ROUTINE
;IF IBF=0

Jump If OBF Is Set

Opcode Operand

addressJOBF

10 0 0 0 110 address

This is a 2-cycle instruction. Note that the encoding of this instruction is the same as for the J NI conditional jump.
Control passes to the specified address if OBF is set to one, that is, if the DBB is filled with output data.

Example:.

JOBF OUTPUT JUMP TO‘OUTPUT’ROUTINE
;IF OBF=1

4-3

5. ASSEMBLER DIRECTIVES

This chapter and Chapter 6 describe the assembler directives used to control the MCS-48/UPI-41 assemblers in their
generation of object code. These directives are written in the same format as MCS-48 instructions, in general, and can
be interspersed throughout your assembly language program.

Unlike assembly language instructions, however, they produce no executable object code.

Assembler directives can be divided functionally as follows:

• Location counter control
-ORG

Symbol definition
-EQU
-SET

Data definition
- DB
- DW

Memory reservation
-DS

Conditional assembly
- IF
- ELSE
- ENDIF

Macro operations
- MACRO
- LOCAL
- ENDM
- Macro call
- REPT
- IRP
- I RPC
- EXITM

Assembler termination
- END

End-of-tape indication
-EOT

5-1

Chapter 5. Assembler Directives

Macro operations are discussed separately in the next chapter.

One notable format difference between assembler directives and MCS-48 instructions involves the ‘label’field. This
field is always optional and is always terminated by a colon (:) in MCS-48 instructions. The same is generally true of
assembler directives, but three directives (EQU, SET, MACRO) require the name of the symbol or macro being
defined to be present in the label field, and this name cannot be terminated by a colon. The LOCAL and ENDM
assembler directives prohibit inclusion of the label field.

LOCATION COUNTER CONTROL

The location counter performs the same function for the assembler as the program counter performs during program
execution. It tells the assembler the next memory location available for instruction or data assembly.

The location counter can be set by the ORG (origin) directive. See also the discussion of the END directive in the
section ‘Assembler Termination,’ later in this chapter.

ORG Directive

Label Opcode Operand

optional: ORG expression

The location counter is set to the value of 'expression,'which must evaluate to a valid 12-bit program memory
address. If ‘expression’ is a symbol, the symbol must be previously defined. The next machine instruction or data
item is assembled at the address specified. If no ORG is included before the first instruction or data byte in your
program, assembly begins at location zero.

Your program can include any number of ORG statements. Multiple ORGs need not be listed in ascending order, but
failure to do so creates potential memory overlap problems.

Example:

PAG1: ORG OFFH ;ORG ASSEMBLER TO LOCATION
j'FF’HEX (255 DEC)

SYMBOL DEFINITION

Symbol names appearing as labels in MCS-48 instructions are assigned values automatically during the assembly pro
cess. The value in this case is the value in the location counter when the labeled instruction is assembled.

Other symbols are defined and assigned arbitrary values using the EQU and SET directives. Symbols defined using
EQU cannot be redefined during assembly; those defined by SET can be assigned new values by subsequent SET
directives.

The symbol name required in the label field of an EQU or SET directive \snot terminated by a colon.

5-2

Chapter 5. Assembler Directives

Symbols defined by EQU and SET have global scope, that is, they can be referenced from any instruction in your
program. If a symbol appears only in the body of a macro definition, however, it should be given limited scope
using the LOCAL directive. (See Chapter 6.)

EQU Directive

Label Opcode Operand

name EQU expression

The symbol ‘name’ is created and assigned the value of ‘expression.’ This ‘name’ cannot appear in the label field of
another EQU directive, that is, it is not redefinable.

Example:

ONES EQU OFFH ;CREATE SYMBOL ‘ONES’ WITH
;BINARY VALUE 11111111

SET Directive

Label Opcode Operand

name SET expression

The symbol ‘name’ is assigned the value of ‘expression.’ Wherever the symbol name is encountered in the assembly,
this value is used unless ‘name’ is assigned a new value by another SET directive.

DATA DEFINITION

The DB (define byte) and DW (define word) directives enable you to specify data in your program. Data can be
specified in the form of 8-bit or 16-bit values, or as a text string.

DB Directive

Label Opcode Operands

optional: DB expression(s) or string(s)

The operand field of the DB directive can contain a list of expressions and/or text strings with the list items separated
by commas. The list can contain up to eight total elements, but elements containing expressions can reduce this maxi
mum allowance.

Expressions must evaluate to 1-byte (8-bit) numbers. This provides a range of —256 to +255 (all ones or all zeroes in
the high-order byte of the internal representation). Strings can extend over an arbitrary number of bytes. The bytes

5-3

Chapter 5. Assembler Directives

assembled for the DB directive are stored consecutively in available memory starting at the address in the location
counter.

Example:

DATA:
QUOTE:

DB ‘STRING 1’,‘STRING 2’, 3,4
DB ‘THIS IS A QUOTE’”

DW Directive

Label Opcode Operands

optional: DW expression(s) or string constant(s)

The operand field of the DW directive can contain a list of expressions and/or 1-byte or 2-byte string constants. List
items are separated by commas. The list can contain up to eight total elements, but elements containing expressions
can reduce this maximum allowance.

Expressions must evaluate to I-word (16-bit) numbers. The high-order eight bits of the 16-bit value are assembled at
the address in the location counter; the low order eight bits are assembled at the next higher location.

Strings are limited to one or two characters. In the case of a single-character string, the high-order eight bits are
filled with zeros.

Examples:

ADDR: DW FIRST, LAST
PAGES: DW 0,01 OOH,0200H,0300H
ST RS: DW ‘AB’, ‘CD’

MEMORY RESERVATION

A block of program memory can be reserved using the DS (define storage) directive. No data is assembled into these
locations and no assumptions can be made about their initial contents when your program is loaded.

DS Directive

Label Opcode Operand

optional: DS expression

‘Expression’ specifies the number of locations to be reserved for data storage. This block of memory locations is
reserved by incrementing the location counter by the value of 'expression’. This value must be absolute. Any symbol
appearing in the operand field must be previously defined.

5-4

Chapter 5. Assembler Directives

If the optional label is present, it is assigned the starting value of the location counter (before incrementing), and
thus references the starting address of the reserved block.

If the value of 'expression' is zero, no memory is reserved, but the label is assigned the current value of the location
counter.

Example:

TTYBUF: DS 72 RESERVE 72 LOCATIONS AS A
,-TERMINAL OUTPUT BUFFER

CONDITIONAL ASSEMBLY

The IF, ELSE, and ENDIF directives enable you to assemble portions of your program conditionally, that is, only
if certain conditions that you specify are satisfied.

These directives are used in coordination, and consequently are not separated in the following description.

IF, ELSE, and ENDIF Directives

Label Opcode Operand

optional: IF expression
optional: ELSE ...

optional: ENDIF —

The assembler evaluates the ‘expression’ in the operand field of the IF directive. If bit 0 of the resulting value is one
(TRUE), all instructions between the IF directive and the next ELSE or ENDIF directive are assembled. If bit 0 is
zero (FALSE), these instructions are ignored. (A TRUE expression evaluates to OFFFFH and FALSE to OH, and
consequently only one bit need be tested.)

ELSE is the converse of IF. If bit 0 of ‘expression’ is zero, all instructions between ELSE and the next ENDIF are
assembled. If bit 0 is one, these instructions are ignored.

All statements included between an IF directive and its associated ENDIF are defined as an IF-ENDIF block. These
blocks can be nested to eight levels. The ELSE directive is optional and only one ELSE can be included in an IF-
ENDIF block.

NOTE

Data appearing in the operand field of an ELSE or ENDIF
directive causes an error. Any symbol used in ‘expression’
must be previously defined. Conditional blocks cannot be
split across macro definitions as nesting errors would result
(that is, a conditional assembly block initiated in a macro
definition must have its matching ENDIF in the same macro
definition).

5-5

Chapter 5. Assembler Directives

Examples:

C0ND1:

C0ND2:

IF TYPE EQO

ASSEMBLED IF‘TYPE = O'
;ISTRUE

ENDIF

IF TYPE EQO

ASSEMBLED IF TYPE = O’
;ISTRUE

ELSE

ASSEMBLED IF TYPE = O’
;IS FALSE

ENDIF

/C0ND3:

LEVEL
1

LEVEL <

2

LEVEL
1

IF TYPE EQO

,-ASSEMBLED IF TYPE = O’
jISTRUE

/ IF MODEL EQ 1

. ;ASSEMBLED IF TYPE = O’
,-AND‘MODEL = I’ARE BOTH
;TRUE

k ENDIF

ELSE

ASSEMBLED IF TYPE = O’
;IS FALSE

/ IF MODEL EQ 2

ASSEMBLED IF TYPE = O’
;IS FALSE AND‘MODEL = 2’
;IS TRUE

< ELSE

;ASSEMBLED IF TYPE = O’
;AND‘MODEL = 2'ARE BOTH
,FALSE

\ ENDIF
ENDIF

5-6

Chapter 5. Assembler Directives

ASSEMBLER TERMINATION

The END directive terminates assembler execution. Its interpretation can differ slightly, depending on whether you
are using the diskette-resident or paper-tape resident version of the assembler.

END Directive

Label Opcode Operand

optional: END expression

The END directive identifies the end of the source program and terminates each pass of the assembler. Only one END
directive can appear in your program and it must be the last source line of the program. When source files are com
bined using the INCLUDE control (Chapter 8), there are no restrictions on which source file contains the END.

If ‘expression’ is specified in the operand field, its value is used as the program execution starting address. If no
‘expression’ is given, the starting address is zero.

Example:

END START ;EXECUTION BEGINS AT THE
;ADDRESS LABELED ‘START’

When the paper-tape resident assembler is used, the END directive terminates each assembler pass, then causes the
assembler to prompt you for the next pass to be executed.

END-OF-TAPE INDICATION

The EOT directive allows you to specify the physical end of paper tape to simplify assembly of multiple-tape source
programs.

EOT Directive

Label Opcode Operand

optional: EOT

When EOT is recognized by the assembler, the message 'NEXT TAPE’ is sent to the console and the assembler pauses.
After the next tape is loaded, a ‘space bar’ character received at the console signals continuation of the assembly.

Data in the operand field causes an error.

5-7

6. MACROS

The paper-tape-resident and ROM-resident 8048/41 assemblers do not support macro operations. If you are using
either of these versions of the assembler, you can ignore this chapter.

Macro directives are extremely powerful tools. Properly used, they can increase program readability and efficiency.
We strongly suggest that you become familiar with these directives and use them to tailor programs to suit your
specific needs.

INTRODUCTION TO MACROS

Why Use Macros?

A macro is essentially a facility for replacing one set of parameters with another. In developing your program, you
will frequently find that many instruction sequences are repeated several times, with only certain parameters changed.
Rather than rewrite this code each place it occurs, you might prefer to code the sequence once (inserting dummy
parameters in the fields subject to change) and later call this code with a single instruction wherever it is needed
(replacing the dummy parameters with actual values at that time). The macro facility of the 8048/41 assemblers
provides this capability and offers several advantages over writing code repetitiously.

• The tedium of frequent rewrite (and increased probability of error) is reduced.

• Symbols used in macros can be given limited scope, reducing the possibility of duplicate
symbols.

• An error detected in a macro need be corrected in only one code segment, reducing de
bugging time.

• Duplication of effort between programmers can be reduced. Useful functions can be
collected in a system macro library.

In addition, macros can be used to improve program readability and especially to create structured programs. Using
macros to segment code blocks provides clear program notation and simplifies tracing the logic flow of the program.

What is A Macro?

A macro can be described as ‘a routine defined in a formal sequence of prototype instructions that, when called
within a program, results in the replacement of each such call with a code expansion consisting of the sequence of
actual instructions represented.

6-1

Chapter 6. Macros

The concepts of macro definition, call, and expansion can be illustrated by a typical business form letter, where the
‘prototype instructions’ consist of preset text (not to be confused with an actual MCS-48 macro). For example, we
could define a macro CNF I RM with the text

‘Air Flight welcomes you as a passenger.
Your flight number FNO leaves at DTIME and arrives in DEST at ATIME.’

This macro has four dummy parameters to be replaced, when the macro is called, by the actual flight number, de
parture time, destination, and arrival time. Thus the macro call might look like

CNFIRM 123, ‘10:45’, ‘Ontario’, ‘11:52’

A second macro, CAR, could be called if the passenger has requested that a rental car be reserved at the destination
airport. This macro might have the text

'Your automobile reservation has been confirmed with MAKE rental car agency.’

Finally, a macro GREET could be defined to specify the passenger name.

‘Dear NAME:’

The entire text of the business letter (source file) would then look like

GREET ‘Ms. Scanned’
CNFIRM 123, ’10:45’, ‘Ontario’, ‘11:52’
CAR ‘Blotz’
We trust you will enjoy your flight.

Sincerely,

When this source file is passed through a macro processor, the macro calls are expanded to produce the following
letter.

Dear Ms. Scannell:

Air Flight welcomes you as a passenger. Your flight number 123 leaves at 10:45 and
arrives in Ontario at 11:52. Your automobile reservation has been confirmed with
Blotz rental car agency.

We trust you will enjoy your flight.

Sincerely,

Macros Vs. Subroutines

At this point you may be wondering how macros differ from subroutines called by the 8048 CALL instruction. Both
aid program structuring and reduce coding of frequently-executed routines.

One distinction between the two is that macros generate in-line code while subroutines necessarily branch to
another part of your program. Also, macro parameters are evaluated at assembly time; the variables used in sub

6-2

Chapter 6. Macros

routines are evaluated only during program execution (that is, at run time). Macros furthermore, can operate with
data as well as program instructions.

Determining which of these facilities to use in a given programming situation is not always an obvious decision. For
example, a choice to reduce the overall program size using subroutines may cause the program to run more slowly.
Very long routines may best be handled as subroutines, while routines including many parameters are best coded
as macros. Or you may find a combination of the two (such as a macro that calls a subroutine) to be your best
solution.

Your decision might also be determined by the requirements of MCS-48 architecture (such as the restriction on
certain jump instructions crossing page boundaries — see Chapter 3). This limitation could cause problems for macros
containing such jumps, since you don’t know when you call a macro whether it will straddle a page boundary after
expansion. The command

JC ADDR1

generates an error if ‘ADDR1 ’ resides on a different page than the instruction itself. This specific problem might be
solved by coding .

JNC $+2
JMP ADDR1

since ‘JMP’ can cross boundaries. However, there may be similar situations that would warrant placing the ‘ADDR1 ’
code in a subroutine.

6

USING MACROS

The diskette-resident 8048/41 assembler recognizes the following macro operations:

• MACRO directive
• ENDM directive
• LOCAL directive
• REPT directive
• IRP directive
• I RPC directive
• EXITM directive
• Macro call

All of the directives listed above are related to macro definition. The macro call initiates the parameter substitution
(macro expansion) process.

Macro Definition

Macros must be defined in your program before they can be used. A macro definition is initiated by the MACRO
assembler directive, which lists theno/ne by which the macro can later be called, and the dummy parameters to be
replaced during macro expansion. The macro definition is terminated by the ENDM directive. The prototype instruc
tions bounded by the MACRO and ENDM directives are called the macro body.

6-3

Chapter 6. Macros

If label symbols appearing in a macro body have ‘global’ scope, multiply-defined symbol errors result if the macro
is called more than once. A label can be given limited scope using the LOCAL directive. This directive causes a unique
value to be assigned to the symbol by the assembler each time the macro is called and expanded. Dummy parameters
also have limited scope.

Occasionally you may wish to duplicate a block of code several times, either within a macro or in line with other
source code. This can be accomplished with minimal coding effort using the REPT (repeat block), IRP (indefinite
repeat), and I RPC (indefinite repeat character) directives. Like the MACRO directive, these directives are termi
nated by ENDM.

The EXITM directive provides an alternate exit from a macro. When encountered, it terminates the current macro
just as if ENDM had been encountered.

Macro Definition Directives

MA CRO Directive

Label Opcode Operand

name MACRO dummy parameter(s)

The ‘name’ in the label field specifies the name of the macro body being defined. Any valid user-defined symbol name
can be used as a macro name. Note that this name must be present and must not be terminated by a colon.

The optional dummy parameter can be any valid user-defined symbol name or may be null. If more than one
parameter is listed, they are separated by commas. Dummy parameters have limited scope. If a reserved symbol is
used as a dummy parameter, its reserved value is not recognized. It is considered strictly a dummy parameter limited
to its specific macro definition. Dummy parameters are recognized in strings only when adjacent to the
concatenation operator, '<&’ (described later). They are not recognized in comments.

Any MCS-48 or UPI-41 instruction or applicable assembler directive can be included in the macro body. The distin
guishing feature of macro prototype text is that parts of it can be made variable by placing substitutable dummy
parameters in instruction fields. These dummy parameters are the same as the symbols in the operand field of the
MACRO directive.

Example: Define macro MAC1 with dummy parameters G1, G2, G3.

MAC1 MACRO G1,G2,G3 ,MAC RO DIRECTIVE
MOVES: MOV A,#G1 ;MACRO BODY

MOV R0,#G2
MOV R1,#G3
ENDM ;ENDM DIRECTIVE

6-4

Chapter 6. Macros

ENDM Directive

Label Opcode Operand

ENDM

The ENDM directive is required to terminate a macro definition and follows the last prototype instruction. It is
also required to terminate code repetition blocks defined by the REPT, IRP, and I RPC directives. If the MACRO
or code repetition directive is followed immediately by the ENDM directive, a null macro body results.

Any data appearing in the label or operand fields of an ENDM directive causes an error.

NOTE

Because nested macro calls are not expanded during
macro definition, the ENDM directive to close an outer
macro cannot be contained in the expansion of an
inner, ‘nested’ macro call. (See ‘Nested Macro Definitions’
later in this section.)

6
LOCA L Directive

Label Opcode Operand

— LOCAL label name(s)

The specified symbolic label names are defined to have scope limited to the macro definition in which they are
specified. Each time the macro is called and expanded, unique symbols of the form ‘??nnnn’ are generated. Without
this feature, multiple macro expansions would cause ‘multiply-defined label’ errors for each label in the macro body.
The form ‘??nnnn’ should not be followed for user-defined symbols. The first symbol is ??0001, the second ??0002,
etc. The most recent symbol name generated always indicates the total number of symbols created for all macro
expansions; these symbol names are never duplicated.

Operands specified as MACRO dummy parameters cannot be LOCAL directive operands in the same macro
definition. Such operands would be recognized only as dummy parameters, and not as LOCAL operands.

Local symbols can only be defined within the macro body, and the LOCAL directive must precede the first line of
prototype code. Any number of LOCAL directives can be specified, up to the limit of 255 total local symbols per
macro.

A LOCAL directive appearing outside a macro definition causes an error. A name appearing in the label field of a
LOCAL directive also causes an error.

Example:

MAC2 MACRO G1,G2, G3
LOCAL MOVES

MOVES: MOV A,#G1
MOV R0,#G2
MOV
ENDM

R1,#G3

6-5

Chapter 6. Macros

RE PT Directive

Label Opcode Operand

optional: REPT expression

The REPT directive causes a sequence of source code lines to be repeated ‘expression’ times. ‘Expression’ may not
include a forward reference. All lines appearing between the REPT directive and a subsequent ENDM directive
constitute the block to be repeated.

The insertion of repeat blocks is performed in-line, when the assembler encounters the REPT directive. No explicit
call is required to cause the code insertion since the definition is an implied call for expansion.

Example: Rotate accumulator right (through carry) six times.

ROTR6: REPT 6
RRC A
ENDM

The source code generated would be

RRC A
RRC A
RRC A
RRC A
RRC A
RRC A

IRP Directive

Label Opcode Operand

optional: IRP dummy param, (list)

The IRP (indefinite repeat) directive creates a macro definition with one dummy parameter and is expanded once
for each actual parameter supplied by ‘list.’ The definition is terminated by ENDM.

The list of actual parameters to be substituted for the dummy is separated by commas and enclosed in angle
brackets ((>). Repetition continues until each element of the list has been substituted into the IRP macro body.
A list of ‘n’ elements cause ‘n’ repetitions of the IRP body to be produced. If a null string is specified as the actual
parameter, one iteration of the IRP body is produced with the null string substituted for each occurrence of the
dummy parameter.

Note that, unlike MACRO, IRP supplies the actual parameters to be used as part of its prototype code definition
(that is, the macro call is in-line with the macro definition). (See the discussion of ‘Macro Calls’ and ‘Macro Expan
sion’ later in this section.)

6-6

Chapter 6. Macros

Example:

N1 EQU 1
N2 EQU 5
N3 EQU 7

IRP X,<N1,N2,N3>
ADD A,#X
ENDM

This example would generate the following code sequence:

ADD A,#1
ADD A,#5
ADD A,#7

IRPC Directive

Label Opcode Operand

optional: IRPC dummy param, text

The I RPC (indefinite repeat character) directive causes a sequence of macro prototype instructions to be repeated
for each text character of the actual parameter specified, substituting the actual text character for each occurrence
of the dummy parameter. If the text string is protected by optional angle brackets, any delimiter appearing in this
text string will simply be substituted as text into the prototype code. A list of ‘n’ characters in the actual ‘text’
causes ‘n’ repetitions of the I RPC body to be produced. If a null string is specified as the actual parameter, one
iteration of the IRP body is produced with the null string substituted for each occurrence of the dummy parameter.

Like IRP, IRPC creates a macro call in-line with the macro definition. It must also be terminated by ENDM.

Example:

CALSEQ: IRPC
MOV
CALL
ENDM

X,01
A,@R&X CONCATENATES R AND X
SUBR

This IRPC definition would generate the following code sequence:

MOV A,@R0
CALL SUBR
MOV A,@R1
CALL SUBR

Note that two special operators are used in this example: double semicolons and an ampersand. These and
other operators are described in the subsection ‘Special Operators,’ below.

6-7

Chapter 6. Macros

EXITM Directive

Label opcode

optional: EXITM

Operand

EXITM provides an alternate way to terminate a macro expansion or REPT/IRP/IRPC repetition. When encountered
in a macro body, it is equivalent to ENDM. Even though a macro body includes EXITM, however, it must still be
terminated by an ENDM directive.

In the case of nested macro calls, EXITM causes an exit to the previous level of macro call expansion. In the case of
REPT/IRP/IRPC expansions, EXITM terminates not only the current repetition, but all subsequent repetitions as
well. The action following execution of EXITM is identical to that following completion of all repetitions.

Any data appearing in the operand field of an EXITM directive causes an error.

EXITM is commonly used as part of a conditional assembly as in the following example.

MAC3 MACRO E,F

IF EEQO
EXITM
ENDIF

ENDM

MAC3 0,1

The expansion of the above macro will be terminated when EXITM is assembled; that is, if ‘E EQ 0’ is TRUE.

Null Macros

A macro may legally consist of only the MACRO and ENDM directives. Thus, the following is a legal macro definition:

NADA MACRO P1,P2,P3,P4
ENDM

A call to this macro produces no source code and therefore has no effect on the program.

Although there is no reason to write such a macro, the null (or empty) macro body has a practical application. For
example, all the macro prototype instructions might be enclosed with IF-ENDIF conditional assembly directives.
When none of the specified conditions is satisfied, all that remains of the macro is the MACRO directive and the
ENDM directive.

6-8

Chapter 6. Macros

Special Operators

In certain special cases, the normal rules for dealing with macros do not work. Assume, for example, that you want
to specify three actual parameters and the second parameter happens to be the comma character. To the assembler,
the list PARM1 ,„PARM3 looks like a list of four parameters, with the second and third parameters missing. The list
can be passed correctly by enclosing the comma in angle brackets: PARM1 ,(,),PARM3. Angle brackets tell the
assembler to accept the enclosed character(s) as actual parameter(s) rather than as delimiter(s).

The assembler recognizes several special operators in evaluating macro definitions. These are:

& Ampersand. Used to concatenate (link) text and dummy
parameters. See the further discussion of ampersands below.

< > Angle brackets. Used to delimit text, such as lists, that con
tain other delimiters (including significant blanks). To pass
such text to nested macro calls, use one set of angle brackets
for each level of nesting. (See 'Nested Macro Definitions,’

6
;; Double semicolon. Used before a comment in a macro

definition to prevent inclusion of the comment in the
definition and reduce storage requirements. The comment
still appears in the listing of the definition.

! Exclamation point (escape character). Placed before a
character (usually a delimiter) to be passed as literalized
text in an actual parameter. Used primarily to pass angle
brackets as part of an actual parameter. To pass a literalized
exclamation point, issue '!!.’ Carriage returns may not be
passed as actual parameters.

NUL Logical null; returns a value of TRUE if the following
operand is a null string.

When a macro is expanded, any ampersand preceding or following a dummy parameter in a macro definition is
removed and the substitution of the actual parameter occurs at that point. When it is not adjacent to a dummy
parameter, the ampersand is not removed and is passed as part of the macro expansion text.

If nested macro definitions (described below) contain ampersands, the only ampersands removed are those adjacent
to dummy parameters belonging to the macro definition currently being expanded. All ampersands must be removed
by the time the expansion of the encompassing macro body is performed. Exceptions force 'illegal character’ errors.

Ampersands placed inside strings are recognized as concatenation delimiters when adjacent to dummy parameters;
dummy parameters are recognized in strings only when adjacent to ampersands. Ampersands are not recognized as
operators in comments.

6-9

Chapter 6. Macros

Example:

MAC4 MACRO D,E,F
D

MOV A,#E ;;LOAD ACC
ADD A,R&F ;;ADD REG CONTENTS
MOV R7,A STORE RESULT IN REG 7
ENDM

A subsequent call to macro MAC4, supplying actual parameters for dummy parameters *D,E,F’ as follows,

MAC4 <;THIS ISCALL1) ,3AH,5

would cause the following substitution:

;THIS IS CALL 1
MOV A,#3AH
ADD A,R5
MOV R7,A ;STORE RESULT IN REG 7

Example:

In a macro with the dummy parameters W, X, Y, Z it is acceptable for either X or Y to be null, but not both. The
following IF directive tests for the error condition:

IF NUL X&Y
EXITM

Nested Macro Definitions

A macro definition can be contained completely within the body of another macro definition (that is, macro defini
tions can be nested}. The body of a macro consists of all text (including nested macro definitions) bounded by
matching MACRO and ENDM directives. The assembler imposes no limit on the depth of macro definition nesting.

Example:

\
LEVEL2 MACRO HJ

MOV A,#H
ADD A,ff]
MOV R4,A

LEVEL1 MACRO K,L 'i

MOV A,#K Level
ADDC A,#L > 1

MOV R3,A
ENDM /
CLR c
CLR A
ENDM

/

Level
2

6-10

Chapter 6. Macros

When a higher-level macro (LEVEL2 in this example) is called for expansion, the next lower-level macro (in this case
LEVEL1) is defined and eligible to be called for expansion. A lower-level macro cannot be called unless all higher-
level macro definitions have already been called and expanded.

A new macro may be defined or an existing macro redefined by a nested macro definition depending on whether the
name of the nested macro is a new label or has previously been established as a dummy parameter in a higher-level
macro definition. When dummy parameters are being identified in higher-level macros, all nested macro definitions
are also scanned. Therefore, each time a higher-level macro is called, a lower-level definition can be defined differently
if the two contain common dummy parameters. Such redefinition can be costly, however, in terms of assembler
space used, particularly the availability of symbol table space, and execution speed.

Since IRP, I RPC, and REPT blocks constitute macro definitions, they also can be nested within another definition
created by IRP, I RPC, REPT, or MACRO directives. In addition, an element in an IRP or I RPC actual parameter
list (enclosed in angle brackets) may itself be a list of bracketed parameters; that is, lists of parameters can contain
elements that are also lists.

Example:

LISTS MACRO PARAM!, PARAM2 6

ENDM

LISTS (A,<B,C»

Macro Calls

Once a macro has been defined, it can be called in a program any number of times. The call consists of the macro
name and any actual parameters to replace dummy parameters during macro expansion. During assembly, each call
encountered is replaced by the macro definition code with actual parameters substituted for dummy parameters.

Macro Call Format

Label Opcode Operands

optional: macro name actual parameter(s)

A macro must be defined before its first reference by a macro call. The macro body identified by ‘macro name’ is
inserted into your program wherever the call appears. The specified actual parameters are substituted for the dummy
parameters in the macro body.

Actual parameters must be specified in the same order as they are listed in the MACRO directive. If fewer parameters
appear in the macro call than in the definition, a ‘null’ string is substituted for the remaining dummy parameters.

6-11

Chapter 6. Macros

A null parameter can also be indicated by two consecutive commas or, in the case of the first parameter, by a single
comma at the beginning of the operand field. If more actual parameters are specified than are listed in the definition,
the extra parameters are ignored.

All blanks in an actual parameter list are considered to be delimiters and are not passed as part of the actual para
meter. Angle brackets must enclose the actual parameter if blanks are to be passed literally (as in the case of any
other delimiter passed as an actual parameter). Carriage returns may not be passed as parameters.

Example: Call MAC2 (defined earlier in our example of LOCAL directive usage). MAC2 was defined as:

ENDM

MAC2 MACRO
LOCAL

G1,G2,G3
MOVES

MOVES: MOV A,#G1
MOV R0,#G2
MOV R1,#G3

Main Program | Substitution

CLR
MAC2

C
0AH,0FFH,3AH

j??0001:
CLR
MOV

C
A,#0AH

ADD A,R1 MOV R0,#0FFH
MOV R4,A 1 MOV R1,#3AH

1 ADD A,R1
MOV R4,A

MAC2 0ACH,0FFH,HEXV
ANL A,RO ??0002: MOV A,#0ACH

- MOV RO,#OFFH
' MOV R1,#HEXV

• I ANL A,RO

Nested Macro Calls

Macro calls can be nested within macro definitions up to eight levels (including any combination of nested IRP,
I RPC, and REPT constructs). The body representing the nested macro call need not be defined when the macro
containing the nested call is defined; however, it must be defined before the enclosing macro is called.

A macro definition can also contain nested calls to itself {recursive macro calls) up to eight levels, as long as the
recursive macro expansions can be terminated eventually. This operation can be controlled using the conditional
assembly directives described in Chapter 5 (IF, ELSE, ENDIF).

6-12

Chapter 6. Macros

Example: Have a macro call itself a specific number of times after it is called from elsewhere in the program.

RECALL MACRO

IF
PA RAM 1 SET

PARAMI NEO
PARAM 1-1

RECALL
ENDIF

RECURSIVE CALL

ENDM

If this macro is called with the sequence

PARAM1 SET 5
RECALL

the macro will call itself five times.

Macro Expansion

When a macro is called, the actual parameters to be substituted into the prototype code can be passed in one of two
modes. Normally, the substitution of actual parameters for dummy parameters is simply a text substitution. The
parameters are not evaluated until the macro is expanded.

If a percent sign (%) precedes the actual parameter in the macro call, however, the parameter is evaluated immediately,
before expansion occurs, and is passed as a decimal number.

Example:

X
Y

SET
SET

10
15

MAC5 MACRO
Y SET

MOV
ANL
MOV
ADD
ENDM

L,M,N
0F0H
A,#L
A,#M
R7,A
A,#N

MAC5 %3H + Y/5H,Y,X

6-13

Chapter 6. Macros

When the call to MAC5 is encountered, the text substitution is as follows:

Y SET OFOH
MOV A,#6
ANL A,#Y
MOV R7,A
ADD A,#X

‘MOV A,#6’ is the result of immediate evaluation using Y=15. ‘ANL A,#Y’ simply substitutes the text ‘Y’ for dummy
parameter ‘M.’ Similarly, ‘ADD A,#X’ is the result of a simple text substitution.

The text expansion is as shown on the left:

00100011 00000110
01010011 11110000
10101111
00000011 00001010

Y SET OFOH
MOV A,#6
ANL A,#Y
MOV R7,A
ADD A,#X

Note that when the expanion occurs, the value ‘FO’ (11110000) replaces ‘Y.’ This value is set by the first statement
of the expansion. ‘X’ is replaced by '10,’ its value by prior definition.

SAMPLE MACROS

The following samples further demonstrate the use of macro directives and operators.

Repetitive Addition (IRP)

The following example lets you add the contents of any number of data memory locations, leaving the result in the
accumulator. The defined macro

when called with

ADDMEM MACRO LIST
CLR A
IRP SCR,(LIST)
MOV R0,#SRC
ADD A,@R0
ENDM ;;END IRP BLOCK
ENDM ;;END MACRO

ADDMEM (30,32,34)

6-14

Chapter 6. Macros

produces the expansion

CLR A
MOV RO,#30
ADD A,@R0
MOV RO,#32
ADD A,@R0
MOV RO,#34
ADD A,@R0

The sum of the contents of bytes 30, 32, and 34 is left in the accumulator.

Repetitive Add and Store (IRPC, &)

In this example, a series of numbers is added to the accumulator and the subtotals stored in data memory. I RPC is
used to reduce the coding required. The macro is defined as follows:

ENDM

MOVTOT MACRO X,Y,Z
I RPC s,z
ADD A,#X&&S
MOV R0,#Y&&S
MOV @R0,A

ENDM

6

The call

MOVTOT SRC,TOTAL,123

produces the expansion

ADD A,#SRC1
MOV RO,#TOTAL1
MOV @R0,A
ADD A,#SRC2
MOV RO,#TOTAL2
MOV @R0,A
ADD A,#SRC3
MOV RO,#TOTAL3
MOV @R0,A

Multiplication (REPT,LOCAL)

This example uses REPT to perform the 8-bit multiplication shown in the example on page 3-47. As in that example,
two 8-bit numbers are multiplied and their 16-bit product stored in registers 2 and 3. REPT replaces the loop
mechanism of the earlier example, which generates more code but executes more quickly.

6-15

Chapter 6. Macros

FST8X8: MOV R6,#MCAND MULTIPLICAND IN REG 6
MOV R3,#MPLIER MULTIPLIER, LOW PARTIAL

;PRODUCT IN REG 3
CLR A
CLR C
REPT 9 "BEGIN REPEAT BLOCK
LOCAL NOADD
RRC A ;;ROTATE
XCH A,R3 ;; CARRY, ACC, REG 3
RRC A ;; RIGHT
XCH A,R3 ;; ONE BIT
JNC NOADD ;;TEST CARRY

NOADD:
ADD A,R6

ENDM "END REPEAT BLOCK
MOV R2,A ;STORE HIGH PARTIAL

; PRODUCT

Zero and Label Contiguous Locations (REPT, &, %)

In this example, the REPT directive is used to zero and label each location in a defined data block. Two macros are
defined:

• I NCR generates labels and DB directives for each location to be zeroed.

• BLOCK specifies the number of locations to be zeroed (NUMB) and supplies
the label prefix (PREFIX) and suffix (CNT) to INCR.

Note that assembler controls (lines beginning with '$’) are embedded in the macro definition code. These are dis
cussed in more detail in Chapter 8. Generally, the controls specified here reduce the size of the assembly listing;
the expansion for INCR is shown in the listing, but the expansion of BLOCK is suppressed.

;DEFINIT1ON OF INCR
INCR MACRO F1,F2
$SAVE GEN
F1&F2: DB 0
$RESTORE

ENDM

DEFINITION OF BLOCK
BLOCK MACRO NUMB,PREFIX,CNT
$SAVE NOGEN
COUNT SET CNT

RE PT NUMB

COUNT SET COUNT+1
INCR PREFIX,%COUNT
ENDM

$RESTORE
ENDM

6-16

Chapter 6. Macros

The macro call

BLOCK 3,LOC,40

produces the listing

BLOCK 3,LOC,40
LOC40: DB 0
LOC41: DB 0
LOC42: DB 0

Without the assembler controls, the listing would be

BLOCK 3,LOC,40
COUNT SET 40

RE PT 3
COUNT SET COUNT+1

INCR LOC,%COUNT
ENDM

COUNT SET COUNT+1
INCR LOC,%COUNT

LOC40: DB 0
COUNT SET COUNT+1

INCR LOC,%COUNT
LOC41: DB 0
COUNT SET COUNT+1

INCR LOC,%COUNT
LOC42: DB 0

Altering Macro Expansions (Three Approaches)

This example uses conditional assembly, the EXITM directive, and a nested macro definition to provide three
approaches to a problem. The problem is to define a macro so that identical calls produce different expansions.

Our macro (SBMAC) needs a subroutine (SUBR) to perform its function; space constraints rule against the extra
bytes generated by repetitive in-line substitution. We would like SBMAC to perform an in-line substitution the first
time it is called, then call SUBR for each subsequent macro call.

Note in these examples that the label SUBR cannot be declared LOCAL, as it must be called from outside the first
expansion (that is, it must be global). This use of a global label in a macro is possible only when that part of the
macro body containing the label is expanded only once.

First Solution (Conditional Assembly)

The first solution uses the setting of a switch (FIRST) and the conditional assembly directives. The switch is set
TRUE and the macro defined as follows.

6-17

Chapter 6. Macros

TRUE EQU OFFH
FALSE EQU 0
FIRST SET TRUE
SBMAC MACRO

CALL SUBR
$SAVE NOCOND

IF FIRST
FIRST SET FALSE

JMP NEXT
SUBR:

RET
NEXT:

ENDIF
$RESTORE

ENDM

The first call to SBMAC expands the full definition, including the call to and definition of SUBR. The assembler
control NOCOND suppresses the listing of conditional assembly directives and conditionally-assembled code.

SBMAC
CALL SUBR

FIRST SET FALSE
JMP NEXT

SUBR:

RET
NEXT:

Because FIRST is TRUE when encountered during this expansion, the statements between IF and ENDIF are
assembled into the program. The statement following IF sets FIRST to FALSE. In subsequent calls, the condi
tionally-assembled code is skipped and the subroutine is not regenerated. Only the following expansion is pro
duced.

SBMAC
CALL SUBR

Second Solution (Conditional Assembly, EXITM)

This solution closely parallels the first, except that EXITM is used to terminate the unnecessary expansion after
the first call. EXITM is assembled only when FIRST is FALSE, which it is after the first call to SBMAC.

6-18

Chapter 6. Macros

TRUE EQU OFFH
FALSE EQU 0
FIRST SET TRUE
SBMAC MACRO

CALL SUBR
$SAVE NOCOND

IF NOT FIRST
EXITM
ENDIF

FIRST SET FALSE
JMP NEXT

SUBR:

RET
NEXT:
$ RESTORE

ENDM
6

The expansion is the same as for the first solution.

Third Solution (Nested Macro)

This solution uses a nested macro to redefine a higher-level macro, so that the higher-level macro is not expanded
. after the first call.

SUBR:

SBMAC MACRO
SBMAC MACRO

CALL
ENDM

SUBR

CALL SUBR
JMP NEXT

RET
NEXT:

ENDM

The first call to SBMAC expands the higher-level definition containing the subroutine definition and call. It also
redefines the macro to be simply a subroutine call.

6-19

Chapter 6. Macros

CALL SUBR

SBMAC
SBMAC MACRO

CALL
ENDM

SUBR

JMP NEXT
SUBR:

RET
NEXT:

Subsequent calls to SBMAC expand the subroutine call only.

SBMAC
CALL SUBR

6-20

PART TWO

ASSEMBLER
OPERATION

7. Assembler Overview

8. Assembler Controls

9. Assembler Operation

7. ASSEMBLER OVERVIEW

An assembler performs the clerical function of converting your assembly language program into machine-executable
form. It accepts your source file and, depending on the output options selected, produces an executable object file,
a listing of the source and assembled code, and a symbol cross-reference listing.

VERSIONS OF ASSEMBLER

The MCS-48 and UPI-41 assemblers are available in three versions:

1. The ‘Intellec MONITOR MCS-48/UPI-41 Assembler’ runs under control of the monitor on the Intellec
Microcomputer Development System and is delivered in paper tape form.

2. The ‘Series II MCS-48/UPI-41 ROM Assembler' runs under control of the monitor on the Intellec Series II
Model 210 and resides in ROM.

3. If your Intellec configuration includes a diskette unit, you can use the ‘ISIS-ll MCS-48/UPI-41 Macro
Assembler’ (ASM48). This assembler runs under the Intel Systems Implementation Supervisor (ISIS-II).

7

Details for loading and controlling the MONITOR and ISIS-II assemblers are given in Chapters 8 and 9. Error
messages issued by the assemblers are listed in Appendix F. The hardware/software environment requirements are
summarized below. Operation of the ROM assembler is described in the document Intellec Series 11 Model 210
User's Guide (9800557).

MONITOR Assembler Environment

The paper-tape-resident assembler uses the following hardware:

• Intellec system with 16K RAM memory
• Console device (TTY or CRT)
• Paper tape reader/punch
• Line printer (if available)

The Intellec monitor package is the only required software.

7-1

Chapter 7. Assembler Overview

ISIS-11 Assembler Environment

The diskette-resident assembler uses the following hardware:

• Intellec MDS-800 or Intellec Series II system with 32K RAM memory (48K if source contains macros)
• Console device (TTY or CRT for MDS-800; built-in with Intellec Series II)
• One or more diskette drives
• Line printer (if available)

This assembler also requires the ISIS-II software package.

INPUT/OUTPUT FILES

Source File

The input to the assemblers is a source file, which can contain three elements:

• An assembly language program, composed of instructions described in Chapters 3 and 4;
• Assembler directives, described in Chapters 5 and 6;
• Assembler control lines, described in Chapter 8

Object File

The MONITOR assembler produces an object file on the paper tape punch unit. The ISIS-II assembler can output its
object file to any file or output device recognized by ISIS.

The object file contains machine language instructions and data that can be loaded into memory for execution or
interpretation. In addition, it contains control information governing the loading process (such as the starting address
for program execution). An object file can also be used to program an MCS-48 or UPI-41 ROM or EPROM device.

Both assemblers produce object files in hexadecimal format. This format and special records generated for paper
tape object files are described in the document Object File Formats, An Intel Software Standard (98-183).

List File

The list file is a formatted file designed to be output to a line printer or terminal, but it can be sent to any file or
output device under ISIS-II. It includes listings of:

• Your assembled object code;
• Your source program;
• A table of symbols and their values;
• A summary of assembly errors.

The formats of these list file components are described in Appendix D.

7-2

Chapter 7. Assembler Overview

Symbol-Cross-Reference File

During the first pass of both assemblers, a file of symbol-cross-reference records is created, if requested. This file is
punched into paper tape by the Intellec MONITOR assembler, or written to a diskette file named ASXREF.TMP by
the ISIS-II assembler.

e In general, the assemblers generate two types of symbol-cross-reference records: symbol-definition records and
symbol-reference records. If a symbol appears as a name in a label field and the symbol is being defined (by SET,
EQU, or MACRO, or as a label), a symbol-definition record is produced. If the symbol is being redefined (by SET or

s MACRO), it is considered a symbol definition. All other symbol occurrences are considered references and cause the
assembler to generate a symbol-reference record each time the symbol appears. Symbol definition records are termi
nated by a pound sign (#) in the cross-reference listing.

All symbols are cross referenced except dummy parameters and local labels appearing in macro definitions (that is,
all global user-defined symbols, macro names, and actual symbols replacing dummy parameters or local labels are
cross referenced).

A listing of the cross-reference file can be produced by reading it into the assembler cross-reference generator. In the
paper tape environment, this program is loaded after the assembly and run with the assembler-generated cross
reference file as input. In the diskette environment, the assembler calls on ISIS-II to load the generator program
(ASXREF) and cross-reference file (ASXREF.TMP) from the diskette. From the programmer’s point of view, these
ISIS-II operations are automatic (once the cross-reference file has been requested). The format of the cross-reference
listing is shown in Appendix D.

| ISIS-II Assembler Reserved File Names

The ISIS-II assembler uses several files of its own, such as the intermediate cross-reference file just mentioned. While
you don’t need to remember the names of these files, you must know where they reside to avoid diskette space con
flict.

The assembler root program (ASM48) and its overlays (ASM48.OVn, where n = 0, 1,2,...) must reside on the same
diskette, but this diskette can be on any drive. The cross-reference generator (ASXREF) must reside on this diskette
also.

The intermediate cross-reference file (ASXREF.TMP) is written to the drive containing your source file. The MACRO
FILE control determines where the intermediate macro file (ASMAC.TMP) is written; the default is the source file
drive.

7-3

8. ASSEMBLER CONTROLS

INTRODUCTION TO ASSEMBLER CONTROLS

Assembler controls allow you to specify the input/output files or devices to be used by the assembler and whether
list or object files (or portions of these files) are to be generated by the assembler.

For both the MONITOR and ISIS-II assemblers, these controls can be specified at two levels:

• In commands specified at assembly time
• As control lines embedded throughout your source file

The latter allow selective control over sections of your program. For example, you might want to suppress the
assembly listing for certain sections of your program, or to cause page ejects at specific places.

Primary and General Controls

Controls are classified as primary and general. The interpretation of these terms differs somewhat between the
ISIS-II and MONITOR assemblers because of the different ways you can interface with these two assemblers. The
ISIS-II assembler runs without interruption once it is called; the MONITOR assembler may require several passes,
with additional controls specified at the beginning of each pass.

Both classes of controls can be set when the assembler is run or in source file control lines. However, source file
control lines containing primary controls must be inserted before the first line of comments or source code. General
controls can be respecified at any time.

The ISIS-II assembler allows primary controls to be specified only once. This applies to controls specified in assembly
time command lines, to control lines embedded in your source code, or combinations of the two.

When the MONITOR assembler is run, primary controls can be specified or respecified in the command preceding
each pass. A primary setting in a source code control line cannot change a primary control set in any previous com
mand or control line. The precedence of primary controls in the MONITOR assembler is:

1. Current pass command
2. Previous pass command
3. Current control lines
4. Default settings

Specifying Controls

Controls can be specified using either upper-case or lower-case characters.

8-1

Chapter 8. Assembler Controls

If a control is specified incorrectly in an assembly-time command, the entire command is ignored and must be re
entered.

If a control is specified incorrectly in a source code control line, the incorrect control and all controls following it
in the line are ignored.

Summary of Controls

The following list shows the controls available, their basic functions, whether they are recognized by both assemblers
or ISIS-II only (B/l), and whether they are primary ox genera! (P/G). Default controls are italicized. The remainder
of this chapter describes each control in greater detail.

Control B/l P/G Function Area

OE/ECE/NOOBJECT I P Object File
DEBUG/M9DEEJE/G B P Object File
EKZ/VE/NOPRINT I P Assembly Listing
CCWD/NOCOND B G Assembly Listing
A/SE/NOLIST B G Assembly Listing
SYMEOES/NOSYMBOLS B P Assembly Listing
XREF /NOX REF B P Cross-Reference Listing
E4GWG/N0PAGING B P Listing Format
PAGE LENGTH (66) B P Listing Format
PAG EWIDTH (120) B P Listing Format
TITLE B G Listing Format
EJECT B G Listing Format
GE/V/NOGEN 1 G Macro List
MACRODEBUG//VOAL4CRODEBUG 1 G Macro List/Object Files
MKCROVXLt/NOMACROFILE 1 P Macro Operation
MOD 21 B P 8021
M0D41 B P UPI-41
SAVE 1 G Stack Controls
RESTORE 1 G Fetch Controls
INCLUDE 1 G Library Function

ISIS-II ASSEMBLER CONTROLS

ISIS-II Assembly-Time Command

The ISIS-II MCS-48/UPI-41 Macro Assembler is invoked by calling the ISIS-II file ASM48. This call includes the name
of your source file and any assembler controls you wish to specify. Items in the control list are separated by spaces.
The call is terminated by a carriage return.

—[:Fn:] ASM48 file control-list

The 'file' in this format is your source file. This file (and files enclosed in parentheses as part of a control) can be a
1-6 character file name, a file name followed by a period and 1-3 character extension, an ISIS-II device name, or an

8-2

Chapters. Assembler Controls

ISIS-II device name followed by a file name and extension. (See the ISIS-ll System Users’ Guide for details.

Examples:

FILE20
PROG .SRC
:HR:

(filename)
(filename.extension)
(:ISIS-I I device name:)

:F1 :ASSMB. SRC (:ISIS-II dev name:filename.ext)

All control items specified must be spelled out in their entirety. If no diskette file is specified preceding ‘ASM481,
*: FO:’ is assumed.

Example:

-ASM48 PROG .SRC DEBUG SYMBOLS XREF

Primary Controls

Control Effect

OB) ECT (file) An object code file is generated and is output to the specified
device. If this control is omitted, 'OBJECT (file.HEX)’is
assumed, where ‘file’ is the name of your source file.

NOOBJECT Object code generation is suppressed.

DEBUG If an object file is requested, the symbol table is output to
that file. DEBUG has no effect otherwise.

NODEBUG The symbol table is not included in the object file.

PRINT(file) An assembly list file is opened and is output to the specified
intermediate file. If this control is omitted, ‘PRINT(file.LST)’
is assumed, where ‘file’ is the name of your source code file.
See general control LIST.

NOPRINT The assembly output listing is suppressed. No file is specified
for listing; therefore, no listing output is possible.

SYMBOLS If a list file is opened by PRINT, the symbol table is output
to the list file. SYMBOLS has no effect otherwise.

NOSYMBOLS The symbol table is not included in the list file created by
PRINT.

XREF A symbol-cross-reference file is requested. An intermediate
file is output to ASXREF.TMP and the cross-reference
listing to the file created by PRINT.

8-3

Chapter 8. Assembler Controls

Control Effect

NOXREF Symbol-cross-reference file generation is suppressed.

MACROFILE(drive) All macro definition files are directed to the specified drive.
If no drive is specified, the drive where the source file
resides is used. Your Intellec system must have at least a
48K memory if MACROFILE is specified.

NOMACROFILE No macro temporary files are created. If your source file
contains macros, all definitions and calls cause errors. This
control allows the assembler to run on a 32K-memory
1 ntellec system.

PAGELENGTH(n) Each list file page is 'n’ lines long, where ‘n’ must be at
least 15 and includes 3 blank lines at the top of the page,
3 blank lines at the bottom of the page, and any page
headings specified. If‘n’ is< 14, PAGE LENGTH is set to
15. The default value is 66.

Note that 3 blank lines are issued to reach the next
‘top-of-page’ as opposed to issuing form feeds to reach
the physical ‘top-of-form.’

PAGEWIDTH(n) Each list file line can be up to 'n' characters long, where
‘n’ must be in the range 72£n<132. Lines exceeding the
page width are continued in column 25 of the following
line (but lines >132 characters are truncated to 132). The
default page width is 120.

PAGING Assembler separates listing into pages with headers at each
page break.

NOPAGING Listing is not separated into pages. Headers are printed
only once, at the beginning of the listing.

M0D21 Assembler assumes 8048 code is being assembled unless
the 8021 instruction set is specified by this control. A
warning is issued if an instruction not recognized by the
8021 is specified while this control is set, or if an
instruction unique to the 8021 is specified without
setting this control.

M0D41 Assembler assumes 8048 code is being assembled unless
the UPI-41 instruction set is specified by this control. A
warning is issued if an instruction unique to the 8041 is
specified without setting this control, or if an instruction
not recognized by the 8041 is issued while this control is set.

8-4

Chapter 8. Assembler Controls

General Controls

Control Effect

1NC LUDE (file) Subsequent source lines are input from specified file until an
end-of-file or nested INCLUDE is found. (Nesting may be four
deep.) Following the end-of-file, input resumes from the file
being processed when the INCLUDE was encountered.

LIST An assembly output listing is generated and sent to the
file specified by PRINT.

NOLIST Assembly listing is suppressed, except header, symbol table,
cross-reference table, and lines containing errors.

COND Conditionally-skipped source code is included in the
assembly listing if LIST is selected. The conditional
assembly directives are also listed.

NOCOND Listing of conditionally-skipped source code and condi
tional-assembly directives is suppressed. Listing of the
EXITM directive is suppressed also.

MACRODEBUG Assembler-generated macro symbols are output to the
the list and object files when the symbol table is output.

NOMACRODEBUG Assembler-generated macro symbols are not output to
the list and object files.

GEN Macro expansion source text generated by macro calls is
listed if LIST is selected.

NOGEN Macro expansion source text listing is suppressed.

TITLE(‘string’) The specified string is printed in character positions 1-64
of the second line of a page header. Strings longer than 64
characters are truncated. ‘String’ cannot be null. TITLE
remains in effect until another TITLE is encountered. A
blank line results if TITLE is not specified.

EJECT Spaces are skipped to the next top-of-form. The position
of the next top-of-form is determined by PAGELENGTH,
not by the physical top-of-form.

SAVE Current settings of LIST, COND, and GEN controls are
stacked (but remain valid until explicitly changed).
Controls can be stacked up to eight levels deep.

RESTORE Control settings at the top of the stack are restored.

8-5

Chapter 8. Assembler Controls

Defaults

The following defaults are assumed by the ISIS-II assembler if the corresponding controls are not selected.

OBJECT(file.HEX)
NODEBUG
PRINT(file.LST)
LIST
SYMBOLS
COND
GEN
NOXREF
NOMACRODEBUG
NOMACROFILE
PAGING
PAGELENGTH(66)
PAGEWIDTH(120)

ISIS-II Embedded Control Lines

The format for control lines embedded in source files to be processed by the ISIS-I I assembler is

$control list

where ‘$’ must appear in column 1 and items in the control list are separated by spaces.

Example:

$LIST DEBUG XREF MACRODEBUG

Control lines containing primary controls must appear before the first statement in the source file, including com
ments. Control lines containing only general controls can be interspersed throughout the source file.

A control line containing more than one control is scanned from left to right. If a control is specified incorrectly,
it is ignored, as are all remaining controls on that line.

The specific controls available and the defaults for unspecified controls are the same as described above in ‘ISIS-II
Assembly-Time Command.'

8-6

Chapter 8. Assembler Controls

INTELLEC MONITOR ASSEMBLER CONTROLS

MONITOR Assembly-Time Commands

When the MONITOR assembler is loaded and goes into execution, it prompts with

P=

At this point, the assembler is asking you to specify the ‘pass number’ and controls you want, in the format:

passno control-list

The possible ‘passno’ options are:

1 Build symbol table.

2 Generate assembly listing.

3 Punch object file on paper tape.

4 Generate both assembly listing and object file. This option should
be used only if the list and object files are assigned to different
devices via the Intellec Monitor I/O ASSIGN command.

E Exit assembler. Return control to Intellec monitor.

Pass 1 must be executed first. Any pass may then be executed in any sequence.

A new source tape can be assembled without reloading the assembler by issuing the monitor command ‘.G20’ after
the exit command (P=E). This action resets all options to their default values, thus allowing new options to be
specified for the next assembly.

Primary Controls

Control Effect

DEBUG The symbol table is output to the object code file when
pass 3 or pass 4 is executed.

NODEBUG The symbol table is not included in the object code file.

SYMBOLS The symbol table is included in the assembly listing when
pass 2 or pass 4 is executed.

NOSYMBOLS Symbol table listing is suppressed.

XREF A symbol-cross-reference file is generated and output to
paper tape during pass 1. To have any effect, XREF
must be specified in your source file or when pass 1 is
elected.

8-7

Chapter 8. Assembler Controls

Control Effect

NOXREF Symbol-cross-reference output is suppressed.

PAGELENGTH(n) Each list file page is ‘n’ lines long, where *n’ must be at
least 12 and includes 3 blank lines at the top of the
page, 3 blank lines at the bottom of the page, and any
page headings specified. If ‘n’ is < 11, PAGELENGTH is
set to 12. The default value is 66.

Note that 3 blank lines are issued to reach the next
‘top-of-page’ as opposed to issuing form feeds to reach
the physical ‘top-of-form.’

PAGEWIDTH(n) Each list file line can be up to ‘n’ characters long, where
‘n’ must be in the range 72<n<132. Lines exceeding the
page width are continued in column 25 of the following
line (but lines)132 characters are truncated to 132). The
default page width is 120.

PAGING Assembler separates listings into pages with headers at
each page break.

NOPAGING Listing is not separated into pages. Headers are printed
only once, at the beginning of the listing.

M0D21 Assembler assumes 8048 code is being assembled unless the
8021 instruction set is specified by this control. A
warning is issued if an instruction not recognized by the
8021 is specified while this control is set, or if an
instruction unique to the 8021 is issued without setting this control.

M0D41 Assembler assumes 8048 code is being assembled unless
the UPI-41 instruction set is specified by this control. A
warning is issued if an instruction unique to the 8041
is specified without setting this control, or if an instruction
not recognized by the 8041 is issued while this control is set.

Genera! Controls

Control Effect

LIST Enables the assembly listing requested by specifying
pass 2 or pass 4.

NOLIST Disables the assembly listing requested by specifying
pass 2 or pass 4, except for header, symbol table,
cross-reference table, and lines containing errors.

COND Conditionally-skipped source code is included in pass
2 or pass 4 listing if LIST is selected. The conditional
assembly directives are also listed.

8-8

Chapter 8. Assembler Controls

Control Effect

NOCOND

TITLE('string’)

Listing of conditionally-skipped source code and
conditional-assembly directives is suppressed.

The specified 'string' is printed in character positions
1-64 of the second line of the page header. Strings
longer than 64 characters are truncated. ‘String’ cannot
be null. TITLE remains in effect until another TITLE
is encountered. A blank results if TITLE is not specified.

EJ ECT Spaces are skipped to the next top-of-form. The position
of the next top-of-form is determined by PAGELENGTH,
not by the physical top-of-form.

Defaults

The following defaults are assumed by the MONITOR assembler if the corresponding controls are not selected.

NODEBUG
LIST
SYMBOLS
COND
NOXREF
PAGING
PAGELENGTH(66)
PAGEWIDTH(120) 8

MONITOR Embedded Control Lines

The format for control lines embedded in source files to be processed by the MONITOR assembler is

$control list

where must appear in column 1 and items in the control list are separated by spaces.

Example:

$LIST DEBUG SYMBOLS NOXREF

Control lines containing primary controls must appear before the first statement in the source file, including com
ments. Control lines containing only general controls can be interspersed throughout the source file.

A control line containing more than one control is scanned from left to right. If a control is specified incorrectly,
it is ignored, as are all remaining controls on that line.

The specific controls available and the defaults for unspecified controls are the same as described above in ‘MONITOR
Assembly-Time Commands.'

8-9

9. ASSEMBLER OPERATION

The ISIS-II MCS-48/UPI-41 Macro Assembler is loaded by calling ASM48 at the ISIS-II command level and specifying
your source file along with any desired assembler controls (Chapter 8). All assembler operations requested are per
formed without further intervention once the assembler begins execution.

The MONITOR MCS-48/UPI-41 Assembler must be loaded from paper tape. In addition, all peripheral device assign
ments must be made before the assembler begins execution. See the Intellec operator’s manual for details.

ISIS-II ASSEMBLER OPERATION

Activation Sequence

The following example sequence activates and completes an ISIS-II assembly.

[:Fn:]ASM48 PROG.SRC SYMBOLS NODEBUG

Following the ISIS-II command prompt (-), a command to assemble the file PROG.SRC is issued. An assembly
listing and object code file are requested and will be output by default to PROG.LST and PROG.HEX respectively.
In addition, a symbol table listing will be performed, but symbol table output to the object file will be suppressed.
Note that the same effect can be achieved with no controls specified, since the controls specified are both defaults.

ISIS-II MCS-48/UPI-4I MACRO ASSEMBLER, VI.0

The assembler sends out its sign-on message to the console device.

ASSEMBL Y COMPLETE, NO ERRORS

After executing all assembler passes and completing the requested assembly listing and object code output, the
assembler issues a sign-off message and error summary. If XREF is selected, the sign-on message

ISIS-II ASSEMBLER SYMBOL CROSS REFERENCE VI.0

is then issued on the console.

Sample Assembly

The following example illustrates normal use of the ISIS-II assembler. A short program (MADD.SRC) is taken through
all the steps needed to activate the assembler and obtain an object code file and assembly and symbol-cross-reference
listings. The source program to be assembled is shown first, followed by the assembler activation sequence. The result
ing assembly and symbol-cross-reference listings are also shown.

9-1

Chapter 9. Assembler Operation

The source code for program MADD.SRC follows:

;DECIMAL ADDITION ROUTINE. ADD BCD NUMBER
;AT LOCATION ‘BETA’ TO BCD NUMBER AT ‘ALPHA’ WITH
;RESULT IN ‘ALPHA.’ LENGTH OF NUMBER IS ‘COUNT’ DIGIT
;PAIRS. (ASSUME BOTH BETA AND ALPHA ARE SAME LENGTH
;AND HAVE EVEN NUMBEROF DIGITSOR MSD ISO IF
;ODD)
INIT MACRO AUGND, ADDND, CNT

MOV R0,#AUGND
L1; MOV R1,#ADDND

MOV
ENDM

R2,#CNT

ALPHA EQU 30
BETA EQU 40
COUNT EQU 5

ORG 100H
INIT ALPHA,BETA,COUNT
CLR C

LP: MOV A,@R0
ADDC A,@R1
DA A
MOV @R0,A
INC RO
INC R1
DJNZ R2,LP
END

The ISIS-II assembler performs its operations without further user intervention after it is loaded. In this example, both
assembly listing and object output are requested by default. The sample program is assumed to be on the system
diskette with the name MADD.SRC. The activation sequence proceeds as follows:

-ASM48 MADD.SRC SYMBOLS XREF MACROFILE

The source input file is specified as MADD.SRC. The PRINT control is selected and defaulted to file MADD.LST.
The OBJECT control is also selected and defaulted to file MADD.HEX. Symbol table output to the list file is
requested as well as a symbol-cross-reference listing. MACROFILE must be specified since the program contains
a macro.

The assembly and cross-reference listings are shown below. For a detailed explanation of each item in these listings,
see Appendix D.

9-2

Chapter 9. Assembler Operation

-ASM48 MADD.SRC SYMBOLS XREF MACROFILE

PAGE 1ISIS-II MCS-48/UPI-41 MACROASSEMBLER, VI .0

LOC ~OBJ SEQ SOURCE ST A TEMENT

1 ;DEC!MAL ADDITION ROUTINE. ADD BCD NUMBER
2 ;A T LOCA T/ON ‘BETA ’ TO BCD NUMBER A T ‘ALPHA ’ WITH
3 ;RESUL T IN 'A LPHA. ’ LENGTH OF NUMBER IS ‘COUNT’ DIGIT
4 ;PAIRS. (ASSUME BOTH BETA AND ALPHA ARE SAME LENGTH
5 ;AND HA VE E VEN NUMBER OF DIGITS OR MSD IS 0 IF
6 ;ODD)
7 IN IT MACRO AUGND,ADDND,CNT
8 MOV R0,#AUGND
9 LI: MOV R1,#ADDND

10 MOV R2,#CNT
11 ENDM
12

001E 13 ALPHA EQU 30
0028 14 BETA EQU 40
0005 15 COUNT EQU 5
0100 16 ORG 100H

17 IN IT ALPHA,BETA,COUNT
0100 B8IE 18 + MOV RO,^A LPHA
0102 B928 19 + LI: MOV R1,#BETA
0104 BA 05 20 + MOV R2,#C0UNT
0106 97 21 CLR C
0107 FO 22 LP: MOV A,@R0
0108 71 23 AD DC A,@R1
0109 57 24 DA A
01OA AO 25 MOV @R0,A
01 OB 18 26 INC RO
01OC 19 27 INC R1
01OD EA07 28 DJNZ R2,LP

END

USER SYMBOLS

ALPHA 001E BETA 0028 COUNT 0005 LP 0107

LI 0102

9

ASSEMBL Y COMPLETE, NO ERRORS

The ‘ASSEMBLY COMPLETE’ message is also issued on the console, followed by the cross-reference sign-on message
if a cross-reference listing has been requested.

9-3

Chapter 9. Assembler Operation

fSIS-ll ASSEMBLER SYMBOL CROSS REFERENCE, VI.0 PAGE 1

SYMBOL CROSS REFERENCE

ALPHA 13# 17 18
BETA 14# 17 19
COUNT 15# 17 20
/NIT 7# 17
LI 19#
LP 22# 28

Listing is complete, sign-off message is issued on the listing, followed by ISIS prompt.

CROSS REFERENCE COMPLETE

Note that the NOLIST, NOOBJECT controls could have been specified to request just the error summary on the
console, and a listing of the lines containing errors.

INTELLEC MONITOR ASSEMBLER OPERATION

Activation Sequence

The following example sequence activates and completes an assembly using the MON ITOR assembler. Note that the
paper tape assembler is delivered in two parts, either of which may be loaded first. Assembler console output is
italicized in the following sequence.

1. Load half the assembler onto the paper tape reader and issue the Intellec monitor command

.RO

This reads half the assembler into Intellec memory.

2. Load the rest of the assembler onto the paper tape reader and again issue the monitor command

.RO

The entire assembler now resides in Intellec memory.

3. Load the paper tape containing your source program onto the paper tape reader.

4. Issue the monitor command

.G20

This initiates assembler execution. The assembler responds by sending a sign-on message to the console
device.

9-4

Chapter 9. Assembler Operation

INTELLEC MONITOR MCS-48IUPI-41 ASSEMBLER VI.0

It then prompts with

P=

5. Enter the pass number. This must be ‘1 ’ the first time you respond. The assembler reissues the ‘P=’ prompt
at the end of each pass, to which you can respond with any pass option.

P=1 XREF

In this example, pass 1 is specified and a symbol-cross-reference file requested.

6. PASS 1 COMPLETE
P=2 NOCOND

After pass 1, the assembler issues a completion message on the console output device and requests the next
pass number and controls. The source program paper tape must be reloaded before specifying the next pass.
In this example, pass 2 is specified and the NOCOND control selected.

7. PA SS 2 COMPLETE. NO ERRORS
P=3 NODEBUG

Following passes 2, 3, and 4, an error summary and completion message are issued. The assembler then
prompts for the next pass number and controls. The source paper tape must be reloaded again before
specifying the next pass. In this example, pass 3 is specified and the NODEBUG control selected.

P=E

In this example, the exit command is specified and control returns to the monitor. The cross-reference
generator paper tape is now loaded on the paper tape reader (to print out the cross-reference file requested
in pass I).

9. .RO

This command to the Intcllec monitor reads the cross-reference-generator program into Intellec memory.
Next load the paper tape created during pass 1. This tape contains the cross-reference file.

10. .G20

9

This monitor command initiates cross-reference-generator execution.

11. The generator program issues a sign-on message on the console output device.

INTELLECMONITOR ASSEMBLER SYMBOL CROSS REFERENCE, VI.0

Press the carriage return key at this point. The cross-reference file is read and the listing generated. The
generator program signs off on the listing device when finished.

9-5

Chapter 9. Assembler Operation

CROSS REFERENCE COMPLETE

Control returns to the Intellec monitor, which then prompts for a new command.

Sample Assembly

The following example illustrates normal use of the MONITOR assembler. A short program is taken through all the
steps needed to activate the assembly and cross-reference listings. The source program to be assembled is shown
first, followed by the necessary passes through the assembler. The resulting assembly and symbol-cross-reference
listings are also shown.

The following is the sample source program to be assembled.

;DECIMAL ADDITION ROUTINE. ADD BCD NUMBER
;AT LOCATION ‘BETA’ TO BCD NUMBER AT ‘ALPHA’ WITH
;RESULT IN ‘ALPHA.’ LENGTH OF NUMBER IS ‘COUNT’ DIGIT
;PAIRS. (ASSUME BOTH BETA AND ALPHA ARE SAME LENGTH
;AND HAVE EVEN NUMBER OF DIGITS OR MSD IS 0 IF
;ODD)

ALPHA EQU 30
BETA EQU 40
COUNT EQU 5

ORG 100H
MOV R0,#ALPHA
MOV R1,#BETA
MOV R2,#COUNT
CLR C

L.P: MOV A,@R0
ADDC A,@R1
DA A
MOV @R0,A
INC RO
INC R1
DJNZ
END

R2,LP

The assembler may be run in two or three passes depending on available hardware. If the same device is used as both
the list and punch device, three passes are necessary. Pass 1 builds the symbol table. Pass 2 produces the assembly
listing and pass 3 produces the object code tape. Pass 4 combines passes 2 and 3 to produce both the listing and ob
ject file. Pass 1 must be run first; other passes may be run in any order and run more than once to produce multiple
listing or object files. In this example, we show passes 1,2, and 3.

P=1 XREF

Start pass 1 to build symbol table with XREF control selected. The cross-reference intermediate file is punched.
This file must be input to the cross-reference-generator utility if a cross-reference listing is desired.

9-6

Chapter 9. Assembler Operation

PASS 1 COMPLETE
P=2

Rewind source tape and start pass 2. The assembly listing is shown below. For a detailed explanation of each item
in the listing, see Appendix D.

PAGE!INTELLEC MONITOR MCS-48/UPI-41 ASSEMBLER, VI.0

LOC OBJ SEQ SOURCE STATEMENT

1 ;DEC!MA L ADDITION ROUTINE. ADD BCD NUMBER
2 ;A T LOCA TION 'BETA ’ TO BCD NUMBER AT'A LPHA ’ WITH
3 ;RESUL T IN ‘A LPHA. ’ LENGTH OF NUMBER IS 'COUNT DIGIT

4 ;PA!RS. (ASSUME BOTH BETA AND ALPHA ARE SAME LENGTH
5 ;AND HA VE EVEN NUMBER OF DIGITS OR MSD IS 0 IF
6 ;0DD)
7

001E 8 ALPHA EQU 30
0028 9 BETA EQU 40
0005 10 COUNT EQU 5
0100 11 ORG 100H
0100 B81E 12 MOV RO,#A LPHA
0102 B928 13 MOV R1,#BETA
0104 BA05 14 MOV R2,#C0UNT
0106 97 15 CLR C
0107 F0 16 LP: MOV A,@R0
0108 71 17 ADDC A,@R1 1
0109 57 18 DA A
010A AO 19 MOV @R0,A | 9
01 OB 18 20 INC RO
01OC 19 21 INC R1
010D EA07 22 DJNZ R2,LP

23 END

USER SYMBOLS

ALPHA 001E BETA 0028 COUNT 0005 LP 0107

ASSEMBL Y COMPLETE, NO ERRORS

PASS 2 COMPLETE, NO ERRORS
P=3 NODEBUG

Rewind source tape and start pass 3 with object symbol table output suppressed. The actual object code is shown
below in hexadecimal format. The assembler begins the object file by punching 120 null characters to provide 12
inches of leader and ends it with another 12 inches of blank trailer.

9-7

Chapter 9. Assembler Operation

: 0F010000B81EB928BA 0597F07157A01819EA 0 769
:00000001FF

PASS 3 COMPLETE. NO ERRORS
P=E

With assembly completed, an exit command causes the assembler to transfer control to the Intellec monitor.

(monitor prompt)

To obtain a cross-reference listing, load the paper tape reader with the cross-reference-generator.

.RO

Read the cross-reference generator into Intellec memory and load the paper tape output produced during pass 1.

.G20

Start execution by transferring control to hexadecimal address 20, the cross-reference generator’s start address.

INTELLECMONITOR ASSEMBLER SYMBOL CROSS REFERENCE, VI.0

The above sign-on message is sent to the console output device. By striking the carriage return, the paper tape is read z—
and the following cross-reference listing is generated.

INTELLEC MONITOR ASSEMBLER SYMBOL CROSS REFERENCE, VI.0 PAGE 1

ALPHA
BETA
COUNT
LP

9#
10#
16#

12
13
14
22

CROSS REFERENCE COMPLETE.

If an error is encountered during this listing, the listing is stopped immediately.

9-8

APPENDIXES

A. MCS-48 and UPI-41 Instruction Summary

B. Assembler Directive Summary

C. Assembler Control Summary

D. List File Formats

E. Reference Tables

F. Error Messages

A. MCS-48 AND UPI-41 INSTRUCTION SUMMARY

This appendix summarizes the MCS-48 and UPI-41 instruction sets. The instructions are first listed alphabetically
by opcode (including binary encoding, number of cycles, system limitations, and description of function). They
are then listed in order of hexadecimal opcode encoding.

SPECIAL OPERATORS AND RESERVED WORDS

The following special operators can be included in expressions in MCS-48 and UPI-41 instructions:

Operator Meaning

+ Unary or binary addition.
— Unary or binary subtraction.
* Multiplication.
/
MOD

Division. Any remainder is discarded (7/3=2).
Modulo. Result is remainder produced by division operation
(7 MOD 3 = 1).

SHR x
SHLx
NOT
AND
OR
XOR
EQ
NE
NUL
LT
LE
GT
GE
HIGH
LOW

Logical shift right ‘x’ bit positions. No wraparound, zero fill.
Logical shift left ‘x’ bit positions. No wraparound, zero fill.
Logical one’s complement.
Logical AND (=1 if both ANDed bits are 1).
Logical OR (=1 if either ORed bit is 1).
Logical EXCLUSIVE OR (=1 if bits are different).
Logical equality.
Logical inequality.
Logical null (ISIS-II assembler only).
‘Less than’ relational operator.
'Less than or equal’ relational operator.
'Greater than’ relational operator.
‘Greater than or equal’ relational operator.
Isolate high-order 8 bits of a 16-bit value.
Isolate low-order 8 bits of a 16-bit value.

The symbol, and the following opcodes, operands, and directives cannot be specified as user-defined symbols
except in a local context.

MNEMONICS COPYRIGHT ©INTEL CORPORATION 1976, 1977

Appendix A. MCS-48 and UPI-41 Instruction Summary

Opcodes:

ADD ENTO JNI MOVD RL
ADDC IN JNIBF MOVP RLC
ANL INC JNTO MOVP3 RR
ANLD INS JNT1 MOVX RRC
CALL J Bn JNZ NOP SEL
CLR JC JOBF ORL STOP
CPL JFO JTF ORLD STRT
DA JF1 JTO OUT SWAP
DEC JMP JT1 OUTL XCH
DIS JMPP JZ RET XCHD
DJNZ
EN

JNC MOV RETR XRL

Operands:

A FO P2 R1 RAD
ANO Fl P4 R2 RBO
AN1 FLAGS P5 R3 RB1
BUS 1 P6 R4 STS
C MBO P7 R5 T
CLK MB1 PSW F6 TCNT
CNT
DBB

PO
P1

RO R7 TCNTI

Directives:

DB END EQU IRPC ORG
DS ENDIF EXITM LOCAL RE PT
DW ENDM IF MACRO SET
ELSE EOT IRP

A-2

Appendix A. MCS-48 and UPI-41 Instruction Summary

MCS-48 AND UPI-41 ASSEMBLY LANGUAGE NOTATION

The following symbols and abbreviations are used to describe the functioning of MCS-48 and UPI-41 instructions.

A
AC
addr
Bb
BS
BUS
C
CLK
CNT
D
data
DBB
DBF
F0,F1
I

accumulator
auxiliary carry
12-bit ROM/EPROM address
bit identifier (b=0-7)
bank switch
BUS port
Carry
clock
event counter
4-bit digit
8-bit number or expression
data bus buffer
designate memory bank flip-flop
flag 0, flag 1
interrupt

IBF
OBF
P
PC
Pp
PSW
Rr
SP
T
TF

input buffer flag
output buffer flag
mnemonic for ‘in-page’ operation
program counter
port designator (p=0-2 or 4-7)
program status word
register designator (r=0,1 or 0-7)
stack pointer
timer
timer flag

In the following tables ‘8048’ also refers to the ‘8748,’ *8049/ ‘8039/ and ‘8035’ microcomputers.
‘8041' also refers to the ‘8741 ’ microcomputer.

A-3

Appendix A. MCS-48 and UPI-41 Instruction Summary

SUMMARY BY MNEMONIC OPCODE

Mnemonic
Binary
Code

I 804
8

L . -
__

-
80

41 CN
o
oo Function

ADD A,#data
(A)*-(A)+data

00000011
dddddddd

2 X X X Add immediate data to A. C and
AC are affected.

ADD A,Rr
(AHAMRr)

r=0-7

01101 rrr 1 X X X Add register data to A. C and AC
are affected.

ADD A,@Rr
(A)*-(A)+((Rr))

r=0-1

0110000r 1 X X X Add data in resident RAM location
addressed by ‘Rr’ to A. C and AC are
affected.

ADDC A,#data
(A)«-(A)+data+(C)

00010011
dddddddd

2 X X X Add C and immediate data to A. C
and AC are affected.

ADDC A,Rr
(AHA)+(Rr)+(C)

r=0-7

01111 rrr 1 X X X Add C and immediate data to A. C
and AC are affected.

ADDC A,@Rr
(AHA)+((Rr))+(C)

r=0-1

0111OOOr 1 X X X Add C and data in resident RAM
location addressed by Rr to A.
C and AC are affected

ANL A,#data
(AHA) AND data

01010011
dddddddd

2 X X X AND A data with immediate mask.

ANL A,Rr
(A)*-(A) AND (Rr)

r=0-7

01011 rrr 1 X X X AND A data with mask in Rr.

ANL A,@Rr
(A)*"(A) AND ((Rr))

r=0-1

0101 OOOr 1 X X X AND A data with mask in resident
RAM location address by Rr.

ANL BUS,#data
> BUSHBUS) AND data

10011000
dddddddd

2 X AND BUS data with immediate mask.

ANL Pp,#data
(PpHPp) AND data

p=1-2

10011 Opp
dddddddd

2 X X AND port p data with immediate
mask.

ANLD Pp,A
(Pp)«-(Pp) AND (AO-3)

p=4-7

100111pp 2 X X X AND port p data with mask in A
bits 0-3.

A-4

Appendix A. MCS-48 and UPI-41 Instruction Summary

Mnemonic
Binary
Code Cycles 80

48

80
41

80
21

 |

Function

CALL addr
((SP))<-(PC), (PSW4-7)
(spHsp)+i
(PC8-10)«~addr 8-10
(PC0-7)«-addr 0-7
(PC11)«-DBF

10 8
aaa10100
7 0
aaaaaaaa

2 X X X Store PC and PSW bits 4-7 in stack.
Increment stack pointer. Transfer
control to subroutine at location
addr. PC 10-11 must be zero for
8041 and 8021

CLR A
A*-0

00100111 1 X X X Clear A to zero.

CLR C
C^O

10010111 1 X X X Clear C to zero.

CLR F0
(F0)<-0

10000101 1 X X Clear F0 to zero.

CLR F1
(F1H)

10100101 1 X X Clear Fl to zero.

CPL A
(A)«-NOT (A)

00110111 1 X X X One’s complement A contents.

CPL C
(C)^NOT (C)

10100111 1 X X X Complement C.

CPL F0
(F0)«-NOT (FO)

10010101 1 X X Complement F0.

CPL F1
(F1)*-NOT (F1)

10110101 1 X X Complement Fl.

DA A 01010111 1 X X X A contents adjusted to form 2
BCD digits. C is affected.

DECA
(aHa)-i

00000111 1 X X X Decrement A by 1.

DEC Rr
(Rr)*-(Rr)-1

r=0-7

11001rrr 1 X X Decrement Rr by 1.

DIS I 00010101 1 X X Disable external interrupt (8048).
Disable write interrupt (8041).

DISTCNTI 00110101 1 X X Disable timer/counter interrupt.

A-5

Appendix A. MCS-48 and UPI-41 Instruction Summary

Mnemonic
Binary
Code Cycles

1

00 80
41 CN

o
00 Function

DJNZ Rr,addr
(Rr)*-(Rr)-1

r=0-7
If Rr NOT 0,
(PC 0-7)<-addr

11 lOIrrr
aaaaaaaa

2 X X X Decrement Rr by 1. If Rr NOT
0, jump to addr.

EN I 00000101 1 X X Enable external interrupt (8048).
Enable write interrupt (8041).

EN TCNTI 00100101 1 X X Enable timer/counter interrupt.

ENTO CLK 01110101 1 X Enable TO as internal oscillator
output.

IN A,DBB
(AHDBB)

00100010 1 X Input DBB data to A. Clear IBF.

IN A,Pp
(A)*-(PP)

p=0-2

00001 Opp 2 X X X Input port p data to A. P0 used for
8021 only.

INCA
iaHa)+i

00010111 1 X X X Increment A by 1.

INC Rr
(Rr)*-(Rr)+1

r=0-7

00011 rrr 1 X X X Increment Rr by 1.

INC@Rr
((Rr)H(Rr))+1

r=0-1

0001 OOOr 1 X X X Increment resident RAM location
addressed by Rr by 1.

INS A,BUS
(AHBUS)

00001000 2 X Read BUS with RD strobe and
input contents to A.

| Bb addr
b=0-7

If Bb=1
(PC 0-7)*-addr

bbb10010
aaaaaaaa

2 X X J ump to addr if bit b of A is 1.

J C addr
If C=1,
(PC 0-7)^addr

11110110
aaaaaaaa

2 X X X Jump to addr if C=1.

| FO addr
If F0=1,
(PC 0-7)<-addr

10110110
aaaaaaaa

2 X X Jump to addr if F0=1

A-6

Appendix A. MCS-48 and UPI-41 Instruction Summary

Binary OO CN
Mnemonic Code Cycles s o OO o OO Function

JF1 addr 01110110 2 X X Jump to addr if F1 =1.
If F1=1,
(PC 0-7)*addr

10 8
JMP addr aaa 00100 2 X X X J ump to addr unconditionally. PC 10-11
(PC8-10)*addr 8-10 7 0 must be zero for 8041 and 8021.
(PC0-7)*addr 0-7
(PC11)*(DBF)

aaaaaaaa

JMPP @A 10110011 2 X X X The contents of the program
(PC0-7H(A» memory location pointed to by A

are substituted for PC bits 0-7.

JNCaddr 11100110 2 X X X Jump to addr if CO.
If C=0,
(PC 0-7)*addr

aaaaaaaa

JNI addr 10000110 2 X Jump to addr if interrupt input
If IO,
(PC 0-7)*- addr

aaaaaaaa goes low (IO).

JNIBF addr 11010110 2 X J ump to addr if IBFO.
If IBFO,
(PC 0-7)*addr

aaaaaaaa

JNTO addr 00100110 2 X X J ump to addr if TOO.
If TOO,
(PC 0-7)*addr

aaaaaaaa

JNT1 addr 01000110 2 X X X Jump to addr if T1O.
IfTIO,
(PC 0-7)*addr

aaaaaaaa

JNZaddr 10010110 2 X X X J ump to addr if A contents are
If A^O,
(PC 0-7)*addr

aaaaaaaa not zero.

JOBF addr 10000110 2 X Jump to addr if OBF=1.
If OBF=1,
(PC 0-7)*addr

aaaaaaaa

JTF addr 00010110 2 X X X Jump to addr if TF=1.
If TF=1,
(PC 0-7)*addr

aaaaaaaa

A-7

Appendix A. MCS-48 and UPI-41 Instruction Summary

Mnemonic
Binary
Code Cycles 80

48
80

41
1 80

21
 1

Function

J70 addr
If 70=1,
(PC 0-7)<-addr

00110110
aaaaaaaa

2 X X Jump to addr if 70=1.

J71 addr
If 71=1,
(PC 0-7)*-addr

01010110
aaaaaaaa

2 X X X Jump to addr if 71=1.

JZaddr
If A=0,
(PC 0-7)*-addr

11000110
aaaaaaaa

2 X X X Jump to addr if A contents
are zero.

MOV A,#data
(A)*-data

00100011
dddddddd

2 X X X Move immediate data into A.

MOV A,PSW
(aHpsw)

11000111 1 X X Move PSW data into A.

MOV A,Rr
(A)-(Rr)

r=0-7

11111 rrr 1 X X X Move data in Rr into A.

MOV A,@Rr
(AH(Rr))

r=0-l

111lOOOr 1 X X X Move data in resident RAM location
addressed by Rr into A.

MOV A,T
(A)—(T)

01000010 1 X X X Move data in timer into A.

MOV PSW,A
(PSW)—(A)

11010111 1 X X Move data in A into PSW.

MOV Rr,A
(RrHA)

r=0-7

10101 rrr 1 X X X Move data in A into Rr.

MOV Rr,#data
(Rr)*-data

r=0-7

10111rrr
dddddddd

2 X X X Move immediate data into Rr.

MOV @Rr,A
((Rr)HA)

r=0-l

1010000 r 1 X X X Move data in A into resident RAM
location addressed by Rr.

MOV @Rr,#data
((Rr))*~data

r=0-1

l011000r
dddddddd

2 X X X Move immediate data into resident
RAM location addressed by Rr.

Appendix A. MCS-48 and UPI-41 Instruction Summary

Mnemonic
Binary
Code Cycles

| 80
48

]
80

41
 |

80
21

 |

Function

MOV T,A
(T)*"(A)

01100010 1 X X X Move data in A into timer.

MOV'D A,Pp
(A O-3)*-Pp
(A 4-7)*-0

p=4-7

000011pp 2 X X X Move data in 8243 port p into
A bits 0-3. Zero A bits 4-7.

MOVD Pp,A
(PpMA 0-3)

p=4-7

001111pp 2 X X X Move data in A into 8243 port p.

MOVP A,©A
(PC 0-7HA)
(AH(PC))

10100011 2 X X X Move data in program memory
location addressed by A into A.
Program counter is restored.

MOVP3 A,©A
(PC0-7HA)
(PC8-10)*-011B
(AH(PC))

11100011 2 X X Move data in program memory page
3 location addressed by A into A.
Program counter is restored.

MOVX A,@Rr
(AH(Rr))

r=0-1

1000000r 2 X Move data in external RAM location
addressed by Rr into A.

MOVX @Rr,A
((Rr)M

r=0-1

1001000r 2 X Move data in A into external RAM
location addressed by Rr.

NOP 00000000 1 X X X No operation.

ORL A,#data
(A)«-(A) OR data

01000011
dddddddd

2 X X X OR contents of A with data mask.

ORL A,Rr
(A)*-(A) OR (Rr)

r=0-7

01001 rrr 1 X X X OR data in A with Rr mask.

ORL A,@Rr
(AHA)OR((Rr))

r=0-1

0100000r 1 X X X OR data in A with mask in resident
RAM location addressed by Rr.

ORL BUS,#data
(BUSHBUS) OR data

10001000
dddddddd

2 X OR contents of BUS with data mask.

Appendix A. MCS-48and UPI-41 Instruction Summary

Mnemonic
Binary
Code

Cycles 00

o
OO

| 80
41

 I
80

21
 |

Function

ORL Pp,#data
(Pp)*-(Pp) OR data

p=1-2

10001 Opp
dddddddd

2 X X OR contents of port p with data
mask.

ORLD Pp,A
(PpHPp) OR (AO-3)

p=4-7

100011pp 2 X X X OR data in 8243 port p with mask in A
bits 0-3.

OUT DBB.A
(DBB)^(A)

00000010 1 X Output data in A to DBB. Set OBF.

OUTL BUS,A
(BUS)-(A)

00000010 2 X Output data in A to BUS and latch.

OUTL P0,A
(PO)-(A)

10010000 2 X Output data in A to port 0 and latch.

OUTL Pp,A
(PpHA)

p=l-2

00111 Opp 2 X X Output data in A to port p and latch.

RET

(sphsp)-i
(pc)H(sp))

10000011 2 X X X Restore program counter from stack
and return to main routine.

RETR
(spK(sp)-i
(pcH(sp))
(PSW4-7)«-((SP))

10010011 2 X X Restore program counter and PSW bits
4-7 from stack and return to main
routine. Reenable interrupts if the
interrupt enable flip-flop if set.

RL A
(An+1)-*-(An)
(A0)-(A7)

n=0-6

11100111 1 X X X Rotate A left. C is unaffected.

RLC A
(An+1)«-(An)
(aohc)
(CHA7)

n=0-6

11110111 1 X X X Rotate A left, through C.

RR A
(An)*-(An+1)
(A7HA0)

n=0-6

01110111 1 X X X Rotate A right. C is unaffected.

RRC A
(An)«-(An+1)
(A7HC)
(CHAO)

n=0-6

011001111 1 X X X Rotate A right, through C.

A-10

Appendix A. MCS-48 and UPI-41 Instruction Summary

Mnemonic
Binary
Code Cycles

00

o
OO 80

41

80
21

Function

SEL MBO
(DBFM

11100101 1 X Select program memory bank 0.

SEL MB1
(DBF)<-1

11110101 1 X Select program memory bank 1.

SEL RBO
(BS)«-0

11000101 1 X X Select working register bank 0.

SEL RBI
(BS)«-1

11010101 1 X X Select working register bank 1.

STOP TCNT 01100101 1 X X X Stop timer or disable event counter.

STRT CNT 01000101 1 X X X Enable T1 as event counter input
and start.

STRTT 01010101 1 X X X Clear timer prescaler and start timer.

SWAP A
(A4-7HA0-3)

01000111 1 X X X Swap A bits 0-3 with A bits 4-7.

XCH A,Rr
(A)-(Rr)

r=0-7

00101 rrr 1 X X X Exchange contents of A and Rr.

XCH A,@Rr
(AH(Rr))

r=0-1

0010000r 1 X X X Exchange contents of A and resident
RAM location addressed by Rr.

XCHD A,@Rr
(A0-3)**((Rr0-3))

r=0-1

0011000 r 1 X X X Exchange A bits 0-3 with bits 0-3 of
resident RAM location addressed by Rr.

XRL A,#data
(A)*-(A) XOR data

11010011
dddddddd

2 X X X XOR contents of A with data mask.

XRL A,Rr
(A)«-(A) XOR (Rr)

r=0-7

11011 rrr 1 X X X XOR data in A with mask in Rr.

XRL A,@Rr
(AHA) XOR ((Rr))

r=0-1

1101000 r 1 X X X XOR data in A with mask in resident
RAM location addressed by Rr.

A-11

Appendix A. MCS-48 and UPI-41 Instruction Summary

SUMMARY BY HEXADECIMAL OPCODE

Code Mnemonic 8048 8041 8021 Code Mnemonic 8048 8041 8021

00 NOP X X X 20 XCH A,@R0 X X X

01 undefined — — — 21 XCH A,@R1 X X X
02 OUTL BUS,A X — — 22 IN A,DBB — X —
02 OUT DBB,A — X —
03 ADD A,#data X X X 23 MOV A.^data X X X
04 J MP (Page 0) X X X 24 J MP (Page 1) X X X
05 EN I X X — 25 EN TCNTI X X —

06 undefined — — — 26 JNTO X X —
07 DEC A X X X 27 CLR A X X X
08 INS A, BUS X — — 28 XCH A,RO X X X
08 IN A,P0 — — X
09 IN A,P1 X X X 29 XCH A,R1 X X X
0A IN A,P2 X X X 2A XCH A,R2 X X X
0B undefined — — — 2B XCH A,R3 X X X
OC MOVD A,P4 X X X 2C XCH A,R4 X X X
0D MOVD A,P5 X X X 2D XCH A,R5 X X X
OE MOVD A,P6 X X X 2E XCH A,R6 X X X
OF MOVD A,P7 X X X 2F XCH A,R7 X X X
10 INC@R0 X X X 30 XCHD A,@R0 X X X
11 INC@R1 X X X 31 XCHD A,@R1 X X X
12 JBO X X — 32 JB1 X X —
13 ADDC A,#data X X X 33 undefined — — —
14 CALL (Page 0) X X X 34 CALL (Page 1) X X X
15 DIS I X X — 35 DIS TCNTI X X —
I6 JTF X X X 36 J TO X X —
17 INCA X X X 37 CPL A X X X
18 INC RO X X X 38 undefined — — —
19 INC Rl X X X 39 OUTL P1,A X X X
1A INC R2 X X X 3A OUTL P2,A X X X
IB INC R3 X X X 3B undefined — — —
1C INC R4 X X X 3C MOVD P4,A X X X
1D INC R5 X X X 3D MOVD P5,A X X X
IE INC R6 X X X 3E MOVD P6,A X X X
1F INC R7 X X X 3F MOVD P7,A X X X

A-12

Appendix A. MCS-48 and KPI-41 Instruction Summary

Code Mnemonic 8048 8041 8021 Code Mnemonic 8048 8041 8021

40 ORL A,@R0 X X X 60 ADD A,@R0 X X X
41 ORL A,@R1 X X X 61 ADD A,@R1 X X X
42 MOV A,T X X X 62 MOV T,A X X X
43 ORL A,#data X X X 63 undefined — — —
44 J MP (Page 2) X X X 64 J MP (Page 3) X X X
45 STRT CNT X X X 65 STOP TCNT X X X
46 JNT1 X X X 66 undefined — — —

47 SWAP A X X X 67 RRC A X X X
48 ORL A,RO X X X 68 ADD A,R0 X X X

49 ORL A,R1 X X X 69 ADD A,R1 X X X
4A ORL A,R2 X X X 6A ADD A,R2 X X X
4B ORL A,R3 X X X 6B ADD A,R3 X X X
4C ORL A,R4 X X X 6C ADD A,R4 X X X
4D ORL A,R5 X X X 6D ADD A,R5 X X X
4E ORL A,R6 X X X 6E ADD A,R6 X X X
4F ORL A,R7 X X X 6F ADD A,R7 X X X
50 ANL A,@R0 X X X 70 ADDC A,@R0 X X X
51 ANL A,@R1 X X X 71 ADDC A,@R1 X X X
52 JB2 X X — 72 JB3 X X —
53 ANL A,#data X X X 73 undefined — — —
54 CALL (Page 2) X X X 74 CALL (Page 3) X X X
55 STRTT X X X 75 ENT0CLK X — —
56 JT1 X X X 76 JF1 X X —
57 DA A X X X 77 RR A X X X
58 ANL A,RO X X X 78 ADDC A,R0 X X X
59 ANL A,R1 X X X 79 ADDC A,R1 X X X
5A ANL A,R2 X X X 7A ADDC A,R2 X X X
5B ANL A,R3 X X X 7B ADDC A,R3 X X X
5C ANL A,R4 X X X 7C ADDC A,R4 X X X
5D ANL A,R5 X X X 7D ADDC A,R5 X X X
5E ANL A,R6 X X X 7E ADDC A,R6 X X X
5F ANL A,R7 X X X 7F ADDC A,R7 X X X

A

A-13

Appendix A. MCS-48 and UPI-41 Instruction Summary

Code Mnemonic 8048 8041 8021 Code Mnemonic 8048 8041 8021

80 MOVX A,@R0 X — — A0 MOV @R0,A X X X
81 MOVX A,@R1 X — — A1 MOV @R1,A X X X
82 undefined — — — A2 undefined — — —

83 RET X X X A3 MOVP A,@A X X X
84 JMP (Page 4) X — — A4 J MP (Page 5) X — —
85 CLR F0 X X — A5 CLR F1 X X —
86 JNI X — — A6 undefined — — —
86 JOBF — X —
87 undefined — — — A7 CPLC X X X
88 ORL B(JS,#data X — — A8 MOV R0,A X X X
89 ORL P1 ,#data X X — A9 MOV R1,A X X X
8A ORL P2,#data X X — AA MOV R2,A X X X
8B undefined — — — AB MOV R3,A X X X
8C ORLD P4,A X X X AC MOV R4,A X X X
8D ORLD P5,A X X X AD MOV R5,A X X X
8E ORLD P6,A X X X AE MOV R6,A X X X
8F ORLD P7,A X X X AF MOV R7,A X X X
90 MOVX @R0,A X — — B0 MOV @RO,#data X X X
90 OUTL P0,A — — X
91 MOVX @R1,A X — — Bl MOV @R1 ,#data X X X
92 JB4 X X — B2 JB5 X X —
93 RETR X X — B3 JMPP@A X X X
94 CALL (Page 4) X — — B4 CALL (Page 5) X — —
95 CPL F0 X X — B5 CPL F1 X X —
96 JNZ X X X B6 JFO X X —
97 CLRC X X X B7 undefined — — —
98 ANL BUS,#data X — — B8 MOV R0,#data X X X
99 ANL P1 ,#data X X — B9 MOV R1,#data X X X
9A ANL P2,#data X X — BA MOV R2,#data X X X
9B undefined — — — BB MOV R3,#data X X X
9C ANLD P4,A X X X BC MOV R4,#data X X X
9D ANLD P5,A X X X BD MOV R5,#data X X X
9E ANLD P6,A X X X BE MOV R6,#data X X X
9F ANLD P7,A X X X BF MOV R7,*data X X X

A-14

Appendix A. MCS-48 and UPI-41 Instruction Summary

Code Mnemonic 8048 8041 8021 Code Mnemonic 8048 8041 8021

CO undefined — — — EO undefined — — —
C1 undefined — — — E1 undefined — — —
C2 undefined — — — E2 undefined — — —
C3 undefined — — — E3 MOVP3 A,@A X X —
C4 J MP (Page 6) X — — E4 JMP(Page7) X — —
C5 SEL RBO X X — E5 SEL MBO X — —
C6 JZ X X X E6 JNC X X X
C7 MOV A,PSW X X — E7 RL A X X X
C8 DEC RO X X — E8 DJNZ RO,addr X X X
C9 DEC R1 X X — E9 DJNZ R1,addr X X X
CA DEC R2 X X — EA DJNZ R2,addr X X X
CB DEC R3 X X — EB DJNZ R3,addr X X X
CC DEC R4 X X — EC DJNZ R4,addr X X X
CD DEC R5 X X — ED DJNZ R5,addr X X X
CE DEC R6 X X — EE DJNZ R6,addr X X X
CF DEC R7 X X — EF DJNZ R7,addr X X X
DO XRL A,@R0 X X X FO MOV A,@R0 X X X
D1 XRL A,@R1 X X X F1 MOV A,@R1 X X X
D2 JB6 X X — F2 JB7 X X —
D3 XRL A,#data X X X F3 undefined — — —
D4 CALL (Page 6) X — — F4 CALL (Page 7) X — —
D5 SEL RB1 X X — F5 SEL MB1 X — —
D6 JNIBF — X — F6 JC X X X
D7 MOV PSW, A X X — F7 RLC A X X X
D8 XRL A,RO X X X F8 MOV A,RO X X X
D9 XRL A,R1 X X X F9 MOV A,R1 X X X
DA XRL A,R2 X X X FA MOV A,R2 X X X
DB XRL A,R3 X X X FB MOV A,R3 X X X
DC XRL A,R4 X X X FC MOV A,R4 X X X
DD XRL A,R5 X X X FD MOV A,R5 X X X
DE XRL A,R6 X X X FE MOV A,R6 • X X X
DF XRL A,R7 X X X FF MOV A,R7 X X X

I

B. ASSEMBLER DIRECTIVE SUMMARY

Assembler directives are summarized alphabetically in this appendix. The following terms are used to describe the
contents of directive fields.

NOTATION

Term Interpretation

Expression Numerical expression evaluated during assembly; must
evaluate to 8 or 16 bits depending on directive issued.

List Series of symbolic values or expressions, separated by
commas.

Name Symbol name terminated by a space.

Null Field must be empty or an error results.

Oplab Optional label; must be terminated by a colon.

Parameter Dummy parameters are symbols holding the place of
actual parameters (symbolic values or expressions)
specified elsewhere in the program.

String Series of ASCII characters, surrounded by single quote
marks.

Text Series of ASCII characters.

Macro definitions and calls allow the use of the special characters listed below.

Character Function

& Ampersand. Used to concatenate symbols.

<> Angle brackets. Used to delimit text, such as lists, that
contain other delimiters.

Double semicolon. Used before a comment in a macro
definition to prevent inclusion of the comment in each
macro expansion.

Appendix B. Assembler Directive Summary

Character Function

! Exclamation point (escape character). Placed before a
delimiter to be passed as a literal in an actual parameter.
To pass a literal exclamation point, issue

% Percent sign. Precedes actual parameters to be evaluated
immediately when the macro is called.

SUMMARY OF DIRECTIVES

FORMAT FUNCTION

Label Opcode Operand(s)

oplab: DB exp(s) or string(s) Define 8-bit data byte(s). Expressions must
evaluate to one byte.

oplab: DS expression Reserve data slorage area of specified length.

oplab: DW exp(s) or string(s) Define 16-bit data word(s). Strings limited to
1-2 characters.

oplab: ELSE null Conditional assembly. Code between ELSE
and ENDIF directives is assembled if expression
in IF clause is FALSE. (See IF.)

oplab: END expression Terminate assembler pass. Must be last statement
of program. Program execution starts at ‘exp,’
if present; otherwise, at location 0.

oplab: ENDIF null Terminate conditional assembly block.

oplab: EOT null Specify end of paper tape.

name EQU expression Define symbol ‘name’ with value ‘exp.’ Symbol
is not redefinable.

oplab: IF expression Assemble code between IF and following ELSE
or ENDIF directive if ‘exp’ is true.

oplab: ORG expression Set location counter to ‘expression.’

name SET expression Define symbol ‘name’ with value ‘expression.’
Symbol can be redefined.

B-2

Appendix B. Assembler Directive Summary

MACRO DIRECTIVES

FORMAT FUNCTION

Label Opcode Operand (s)

null ENDM null Terminate macro definition.

oplab: EXITM null Alternate terminator of macro definition. (See
ENDM.)

oplab: IRP dummy param,(list) Repeat instruction sequence, substituting one
element from ‘list’ for ‘dummy param’ in
each iteration.

oplab: IRPC dummy param, text Repeat instruction sequence, substituting one
character from ‘text’ for ‘dummy param' in
each iteration.

null: LOCAL label name(s) Specify label(s) in macro definition to have
local scope.

name MACRO dummy param(s) Define macro ‘name’ and dummy parameter(s)
to be used in macro definition.

oplab: REPT expression Repeat REPT block ‘expression’ times.

B

B-3

C. ASSEMBLER CONTROL SUMMARY

CONTROL FORMATS

Assembler controls can be specified during the assembly operation, or can be embedded as control lines in the
source file.

The possible formats are:

[:Fn:] ASM48 sourcefile control-list (ISIS-II assembly-time control specification)

P=n control-list (MONITOR assembly-time control specification)

$control-list (control line)

Items in the control list are separated by blanks. For control lines, the *$’ preceding the first control must be in
column 1. All controls must be spelled out in their entirety. Primary controls must be specified before the first
source file statement.

COMMON CONTROLS

The following controls are common to both the ISIS-II and MONITOR assemblers.

Control Prim/Gen Description

COND General Include conditionally-skipped source code
and directives in assembly listing.

DEBUG Primary Include symbol table in object file.

EJECT General Skip to logical top-of-form.

V

LIST General ISIS-II: Generate assembly listing to file
specified by PRINT.
MONITOR: Enable printout of assembly
listing during pass 2 or pass 4.

MOD 21 Primary Recognize 8021 instruction set.

MOD41 Primary Recognize UPI-41 instruction set.

NOCOND General Suppress listing of conditionally-skipped
source code.

C-1

Appendix C. Assembler Control Summary

Control PrimjGen Description

NODEBUG Primary Suppress inclusion of symbol table in object
file.

NOLIST General ISIS-II: Suppress listing of PRINT file, except
header, symbol and XREF tables and errors.
MONITOR: Negate effect of pass 2 or pass
4 listing request, except header, symbol and
XREF tables, and errors.

NOPAGING Primary Assembly listing is not broken into separate
pages.

NOSYMBOLS Primary Suppress listing of symbol table.

NOXREF Primary Suppress generation of symbol-cross-reference
file.

PAGELENGTH(n) Primary Set page length to ‘n’ lines.

PAGEWIDTH(n) Primary Set page width to ‘n’ characters.

PAGING Primary Break assembly listing into pages; repeat headers
each page break.

SYMBOLS Primary Include symbol table in assembly list.

TITLE('str’) General Print string (up to 64 characters) as second line
of page header on assembly listing.

XREF Primary Create symbol-cross-reference file.

C-2

Appendix C. Assembler Control Summary

ISIS-II ASSEMBLER CONTROLS

The following controls are unique to the ISIS-II assembler.

Control Prim/Gen Description

GEN General Include macro expansion source text in
assembly listing.

INCLUDE(file) General Inculde specified source file in file being
processed.

MACRODEBUG General Include assembler-generated symbols in
assembly listing and object file.

MACROFILE(dr) Primary Run program containing macros; direct macro
temporary files to specified drive

NOGEN General Suppress listing of macro expansion source
text.

NOMACRODEBUG General Suppress output of assembler-generated
macro symbols.

NOMACROFILE Primary Do not create macro temporary files.

NOOBJECT Primary Suppress generation of object file.

NOPRINT Primary Suppress generation of assembly listing
file.

OB) ECT (f ile) Primary Create object file on specified device.

PRINT(file) Primary Create assembly listing file on specified
device.

RESTORE General Restore most recent command set from command
stack.

SAVE General Save current setting of LIST, COND, and
GEN controls in command stack.

C-3

Appendix C. Assembler Control Summary

MONITOR ASSEMBLER PASS OPTIONS

The following are valid responses to the MONITOR assembler’s 'pass number' prompt (P=). The first pass number

specified must be ‘1

Pass Description

1 Assembler builds symbol table.

2 Assembly listing is generated.

3 Object file is punched into paper tape.

4 Object file and assembly listing are
generated. (Must be on separate devices.)

E Exit to Intellec monitor.

DEFAULTS

ISIS-II Assembler

COND
GEN
LIST
NODEBUG
NOMACRODEBUG
NOMACROFILE
NOXREF
OBJECT(source.HEX)
PAGELENGTH(66)
PAGEWIDTH(120)
PAGING
PRINT(source.LST)
SYMBOLS

MONITOR Assembler

COND
LIST
NODEBUG
NOXREF
PAGELENGTH(66)
PAGEWIDTH(120)
PAGING
SYMBOLS

C-4

D. LIST FILE FORMATS

ASSEMBLY LISTING FORMAT

The assembly listing format is essentially the same for both the ISIS-II and Intellec MONITOR versions of the
assembler. The list file is designed for output to a line printer or terminal. Unless otherwise specified, an output
page consists of 66 lines, 1 20 characters wide, including three leading and three trailing blank lines, the page header,
title line, column headings, and assembly output lines. If a listing line exceeds the right margin setting, it is con
tinued in column 25 of the following line (unless the line exceeds 132 characters, in which case those >132 are
truncated).

For the ISIS-II assembler only, the first line of the first page of a listing is an echo of the ISIS-II call to the assem
bler followed by the page header.

If the NOPAGING assembler control is selected, the page header is followed by the title line and column heading,
and finally the complete assembly listing with no additional headers.

Page Header

Columns Description

1-40 The string'ISIS-II MCS-48/UPI-41 MACROASSEMBLER’
or

The string ‘INTELLEC MONITOR MCS-48/UPI-41 ASSEMBLER’

41 Blank.

42-45 The string ‘Vx.y’ where ‘x’ is the version and ‘y’ is the release number.

46-64 Blanks.

65-68 The string ‘PAGE ’

69 Blank.

70-72 Three character positions containing the page number in decimal.

Appendix D. List File Formats

Title Line

Columns Description

1-64 Program title as specified in TITLE assembler control

Column Heading

Columns Description

1-2 ’ Blanks.

3-5 The string ‘LOC

6-7 Blanks.

8-10 The string ‘OBJ ’

11-16 Blanks.

17-19 The string ‘SEQ’

31-46 The string ‘SOURCE STATEMENT’

Assembly Output Line

Columns Description

1 Assembler error code. If the assembler encountered an error in
this source line, the appropriate error code appears in this col
umn. Otherwise, this column is blank. If an error occurs in the
present line, the following line will be blank except for a deci
mal sequence number in columns 3-6 enclosed by parentheses.
This sequence number is a pointer to the previous line containing
an error. The first error encountered in a program will be followed
by a line with a pointer equal to zero. See Appendix F for error
codes.

2 Blank.

3-6 The address assigned to the first byte of the object code shown
in columns 8-9 of this line is printed in hexadecimal. In addition,
the result of the value-generating assembler directives ORG, EQU,
SET, and END will appear in this field. For END, the program
start address value will appear in this field if specified; otherwise
blank.

Appendix D. List File Formats

Columns Description

7 Blank.

8-9 The first byte of object code produced by the assembler for this
source line is printed here in hexadecimal. If the source statement
produces no object code (comments and assembler directives),
this field is blank.

10-11 Second byte of object code in hexadecimal. This field will be
blank if the source statement generates only one byte of object 1

code or no object code.

12-13 Third byte of object code in hexadecimal, if generated.

14-15 Fourth byte of object code in hexadecimal, if generated.

16-17 Blanks.

18 (ISIS assembler only.) Blank if no nested source INCLUDE
files; otherwise, the number 1-4 indicating the level of nesting.

19 (ISIS assembler only.) Blank if not listing a source INCLUDE
file; otherwise an '=’ sign.

20-23 Four character positions containing the source line number
in decimal, right-justified and left blank-filled.

24 (ISIS assembler only.) Macro expansion flag. A '+’ in this column
indicates that the source line was produced as a result of a macro
expansion. Otherwise, this column will be blank.

25-.. . Listing of assembler source text. This field terminates at column
72 for most output devices other than the line printer. For a line
printer, this field terminates at column 132.

For DB and DW assembler directives containing a list of operands, the generated code for each operand will be listed
on a separate line.

If a list line exceeds the specified page width, the source line continues starting at column 25 of the next line.

Symbol Table Listing

The listing of the assembled source code is followed by an optional symbol table listing. If the NOSYMBOLS control
is specified, the symbol table listing is suppressed.

The symbol table is preceded by the title 'USER SYMBOLS’ in columns 1 -12 of the listing. The format of a symbol
table output line is as follows:

D-3

Appendix D. List File Formats

Columns Description

16 Symbol name up to six characters, left justified.

7 Blank.

8-11 Symbol value in hexadecimal.

12-15 Blanks.

16-n Repetition of columns 1-15 format where ‘n’ is the pagewidth.

Error Summary

After listing the last line of the symbol table and spacing one line, the assembler lists an error summary line in the
following format:

Columns Description

1-19 The string ‘ASSEMBLY COMPLETE’

20-23 Number of errors. Four character positions containing the
number of errors in the source encountered during assembly.
This number is output in decimal, right-justified and left
blank-filled. If there are no errors, the string ‘NO’ is output
instead.

24 Blank.

25-30 The string ‘ERRORS’ (or ‘ERROR’ if only one error in program).

31 Blank.

32 If the number of errors is not zero, the character ‘(’; otherwise,
blank.

33-36 If the number of errors is not zero, these four character posi
tions contain the sequence number (in decimal) of the last
source line with an error; otherwise, blank.

37 If the number of errors is not zero, the character ')’; otherwise,
blank.

D-4

Appendix D. List File Format

SYMBOL-CROSS-REFERENCE LISTING

Both assemblers generate a file of symbol-cross-reference records during assembly pass 1 if the XREF assembler
control is selected. This control is described in Chapter 8. The actual symbol-cross-reference listing is generated
by running either the paper-tape-resident or disk-resident version of the XREF utility program, using the file
created during pass 1 as input. The utility sorts symbols alphabetically before producing its listing.

Page Header

Columns Description

1-49 The string (ISIS-II ASSEMBLER SYMBOL CROSS REFERENCE’
or

The string ‘INTELLEC MONITOR ASSEMBLER SYMBOL CROSS
REFERENCE'

50 Blank.

51-54 The string ‘Vx.y’ where *x’ is the version and *y' is the release number.

55-65 Blanks.

65-68 The string ‘PAGE’

69 Blank.

70-72 Three character positions containing the page number in decimal.

Cross-Reference Output Line

Columns Description

1-6 For lines that start a new entry, this field contains the symbol
itself; otherwise, blank.

7 Blank.

8-11 Sequence number of source line containing a reference to or
definition of the current symbol entry.

12 Blank if the source line contains a reference; if the source
line contains a definition.

13-14 Blanks.

15-68 Repetitions of format in columns 1 -14.

Appendix D. List File Formats

It no errors are found during the symbol-cross-reference listing, the message

CROSS REFERENCE COMPLETE

is issued. If an error is found, the listing terminates immediately.

D-6

E. REFERENCE TABLES

This appendix contains the following general reference tables:

• ASCII codes
• Powers of two
• Powers of 16 (in base 10)
• Powers of 10 (in base 16)
• Hexadecimal-decimal integer conversion

ASCII CODES

The 8048 uses the 7-bit ASCII code, with the high-order 8th bit (parity bit) always reset.

GRAPHIC OR
CONTROL

ASCII
(HEXADECIMAL)

NUL 00
SOH 01
STX 02
ETX 03
EOT 04
ENQ 05
ACK 06
BEL 07
BS 08
HT 09
LF 0A
VT 0B
FF OC
CR 0D
SO 0E
SI OF
DLE 10
DC1 (X-ON) 11
DC2 (TAPE) 12
DC3 (X-OFF) 13
DC4 (TAPE) 14
NAK 15
SYN 16
ETB 17
CAN 18
EM 19
SUB 1A
ESC 1B
FS 1C
GS 1D
RS 1E
US 1F
SP 20
I 21
ft 22

23
$ 24
% 25
& 26
/ 27
(28
) 29
* 2A

GRAPHIC OR
CONTROL

ASCII
(HEXADECIMAL)

+ 2B
2C

—— 2D
2E

/ 2F
0 30
1 31
2 32
3 33
4 34
5 35
6 36
7 37
8 38
9 39

3A
3B
3C

= 3D
3E

7 3F
@ 40
A 41
B 42
C 43
D 44
E 45
F 46
G 47
H 48
I 49
J 4A
K 4B
L 4C
M 4D
N 4E
0 4F
P 50
Q 51
R 52
S 53
T 54
U 55

GRAPHIC OR ASCII
CONTROL (HEXADECIMAL)

V 56
w 57
X 58
Y 59
z 5A
[5B
\ 5C
] 5D
A (t) 5E
-M 5F
\ 60
a 61
b 62
c 63
d 64
e 65
f 66
g 67
h 68
i 69
j 6A
k • 6B
I 6C
m 6D
n 6E
o 6F
P 70
q 71
r 72
s 73
t 74
u 75
V 76
w 77
X 78
y 79
z 7A

7B
I 7C
} (ALT MODE) 7D

7E
DEL (RUB OUT) 7F

E-1

Appendix E. Reference Tables

POWERS OF TWO

33 554 432 25 0 000 000 029 802 322 387 695 312 5

2n n 2n

1 0 1.0
2 1 0.5
4 2 0.25
8 3 0.125

16 4 0.062 5
32 5 0.031 25
64 6 0.015 625

128 7 0 007 812 5

256 8 0.003 906 25
512 9 0.001 953 125

1 024 10 0.000 976 562 5
2 048 11 0 000 488 281 25

4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5

16 384 14 0 000 061 035 156 25
32 768 15 0.000 030 517 578 125

65 536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0 000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5

1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0 000 000 476 837 158 203 125
4 194 304 22 0 000 000 238 418 579 1 01 56 2 5
8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625

67 108 864 26 0 000 000 014 901 161 193 847 656 25
134 217 728 27 0.000 000 007 450 580 596 923 828 125
268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0 000 000 000 465 661 287 307 739 257 812 5
4 294 967 296 32 0 000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0 000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 0 000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0 000 000 000 029 103 830 456 733 703 613 281 25

70 368 744 177 664 46 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5
140 737 488 355 328 4 7 0.000 000 000 000 007 1 05 4 27 357 601 001 858 711 24 2 6 75 781 25

68 719 476 736 36 0 000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0 000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0 000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

1 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5
2 199 023 255 552 41 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25
4 398 046 511 104 42 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625
8 796 093 022 208 43 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5

17 592 186 044 416 44 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25
35 184 372 088 832 45 0 000 000 000 000 028 421 709 430 404 007 434 844 970 703 125

1
2
4
9

18
36

72
144
288
576

1 152
2 305
4 611
9 223

281 474 976 710 656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625
562 949 953 421 312 49 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5
125 899 906 842 624 50 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25
251 799 813 685 248 51 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125

503 599 627 370 496 52 0 000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5
007
014
028

199 254
398 509

740 992 53 0 000 000 000 000 000 111 022 302 462 515 654 042 363
181
590

166
583
791

809 082
404 541

031
015
507

25
625
812 5

481
963

984
968

54
55

0.000 000 000 000 000 055 511
755

151
575

231
615

257
628

827
913

021
510797 018 0 000 000 000 000 000 027 702 270

057 594 037 927 936 56 0 000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25
115 188 075 855 872 57 0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 676 950 125
230 376 151 711 744 58 0 000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5
460 752 303 423 488 59 0 000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25

921 504 606 846 976 60 0 000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625
843 009 213 693 952 61 0 000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5
686 018 427 387 904 62 0 000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25
372 036 854 775 808 63 0 000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125

E-2

Appendix E. Reference Tables

POWERS OF 16 (IN BASE 10)
16n

1

n

0 0.10000

16 n

00000 00000 00000 X 10
16 1 0.62500 00000 00000 00000 X 10_|

256 2 0.39062 50000 00000 00000 X 10'2

4 096 3 0.24414 06250 00000 00000 X 10'3

65 536 4 0.15258 78906 25000 00000 X 10'4

1 048 576 5 0.95367 43164 06250 00000 X 10"6

16 777 216 6 0.59604 64477 53906 25000 X 10"7

268 435 456 7 0.37252 90298 46191 40625 X 10"8

4 294 967 296 8 0.23283 06436 53869 62891 X 10"9

68 719 476 736 9 0.14551 91522 83668 51807 X 1O"10

1 099 511 627 776 10 0.90949 47017 72928 23792 X IO-12

17 592 186 044 416 11 0.56843 41886 08080 14870 X 10“‘3

281 474 976 710 656 12 0.35527 13678 80050 09294 X 10'14

4 503 599 627 370 496 13 0.22204 46049 25031 30808 X 10"15

72 057 594 037 927 936 14 0.13877 78780 78144 56755 X 10"16

1 152 921 504 606 846 976 15 0.86736 17379 88403 54721 X 10~18

POWERS OF 10 (IN BASE 16)

10n n 1O'n

1 0 1.0000 0000 0000 0000
A 1 0.1999 9999 9999 999A

64 2 0.28F5 C28F 5C28 F5C3 X 16"1
3E8 3 0.4189 374B C6A7 EF9E X 16~2

2710 4 0.68DB 8BAC 710C B296 X 16"3
1 86 AO 5 0.A7C5 AC47 1B47 8423 X 16"4
F 4240 6 0.10C6 F7A0 B5ED 8D37 X 16"4

98 9680 7 0.1AD7 F29A BCAF 4858 X 16"s
5F5 E100 8 0.2AF3 1DC4 6118 73BF X 16“6

3B9A CAOO 9 0.44B8 2FA0 9B5A 52CC X 16"7
2 540B E400 10 0.6DF3 7F67 SEF6 EADF X 16”8

17 4876 E800 11 O.AFEB FFOB CB24 AAFF X 16"9
E8 D4A5 1000 12 0.1197 9981 2DEA 1119 X 16~9

918 4E72 AOOO 13 0.1 C25 C268 4976 81C2 X 16~10
5AF3 107A 4000 14 0.2D09 370D 4257 3604 X 16-"

3 8D7E A4C6 8000 15 0.480E BE7B 9D58 566D X 16"12
23 8652 6FC1 0000 16 0.734A CA5F 6226 FOAE X 16~13

163 4578 5D8A 0000 17 0.B877 AA32 36 A4 B449 X 16-14
DEO B6B3 A764 0000 18 0.1272 5DD1 D243 ABA1 X 16"14

8AC7 2304 89E8 0000 19 0.1D83 C94F B6D2 AC35 X 16~,s

E-3

Appendix E. Reference Tables

HEXADECIMAL-DECIMAL INTEGER CONVERSION

The table below provides for direct conversions between hexadecimal integers in the range O-FFF and decimal integers in the
range 0-4095. For conversion of larger integers, the table values may be added to the following figures:

Hexadecimal Decimal Hexadecimal Decimal
01 000 4 096 20 000 131 072
02 000 8 192 30 000 196 608
03 000 12 288 40 000 262 144
04 000 16 384 50 000 327 680
05 000 20 480 60 000 393 216
06 000 24 576 70 000 458 752
07 000 28 672 80 000 524 288
08 000 32 768 90 000 589 824
09 000 . 36 864 AO 000 655 360
0A 000 40 960 BO 000 720 896
OB 000 45 056 CO 000 786 432
OC 000 49 152 DO 000 851 968
OD 000 53 248 EOOOO 917 504
OE 000 57 344 FO 000 983 040
OF 000 61 440 100 000 1 048 576
10 000 65 536 200 000 2 097 152
11 000 69 632 300 000 3 145 728
12 000 73 728 400 000 4 194 304
13 000 77 824 500 000 5 242 880
14 000 81 920 600 000 6 291 456
15 000 86 016 700 000 7 340 032
16 000 90 112 800 000 8 388 608
17 000 94 208 900 000 9 437 184
18 000 98 304 A00 000 10 485 760
19 000 102 400 BOO 000 11 534 336
1A 000 106 496 COO 000 12 582 912
1B 000 110 592 DOO 000 13 631 488
1C000 114 688 EOO 000 14 680 064
1D000 118 784 FOO 000 15 728 640
1E 000 122 880 1 000 000 16 777 216
1F 000 126 976 2 000 000 33 554 432

0 1 2 3 4 5 6 7 8 9 A B C D E F

000 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
010 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
020 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
030 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063

040 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
050 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095
060 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
070 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127

080 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
090 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
OAO 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
OBO 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191

OCO 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
ODO 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
OEO 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OFO 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

E-4

Appendix E. Reference Tables

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Confd)

0 1 2 3 4 5 6 7 8 9 A B C D E F

100 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
110 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
120 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
130 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319

140 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0331 0333 0334 0335
150 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
160 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
170 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383

180 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
190 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
1A0 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
1B0 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447

1C0 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
1D0 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
1E0 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
1F0 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511

200 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
210 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
220 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
230 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575

240 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
250 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
260 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
270 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639

280 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
290 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2A0 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
2B0 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703

2C0 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 07.14 0715 0716 0717 0718 0719
2D0 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2E0 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2F0 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

300 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
320 0800 0301 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
330 0816 0817 0818 0819 0820 “b 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831

340 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
350 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
360 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
370 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895

380 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
390 0212 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3A0 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3B0 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959

3CG 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3D0 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3E0 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3F0 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

E-5

Appendix E. Reference Tables
HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A B C D E F
400 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
430 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
470 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4A0 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
4B0 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

4 CO 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231t
4D0 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4E0 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4F0 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
520 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

540 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
560 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
590 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
5A0 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
5B0 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5C0 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
5D0 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5E0 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5F0 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

600 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
630 1584 1585 1586 1587 1588 1589 1590 1591 1592 ^93 1594 1595 1596 1597 1598 1599

640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6A0 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
6B0 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

6C0 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6D0 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6E0 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6F0 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

E-6

Appendix E. Reference Tables

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A B C D E F

700 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807

710 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
720 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

740 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
750 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
760 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
770 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
790 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7 AO 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
7B0 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

7 CO 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
7 DO 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7E0 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7F0 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 215ff
870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 217»

880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8A0 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
880 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

8C0 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8D0 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8E0 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8F0 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
920 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

980 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9A0 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
9B0 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

9C0 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
9D0 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9E0 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9F0 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

E-7

Appendix E. Reference Tables

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A B C D E F
A00 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
A10 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A30 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAO 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
ABO 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 4761 2762 2763 2764 2765 2766 2767
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

BOO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
B1O 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B2O 2848 2849 2850 3851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B3O 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2376 2877 2878 2879

B40 2880 2881 2882 2883 2884 2885 2866 2887 2888 2889 2890 2891 2892 2893 2894 2895
B50 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911

^B60 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
;3?o 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

B80 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B90 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BAO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BBO 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

BCO 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BDO 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BFO 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

COO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
C1O 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C2O 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C7O 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

C8O 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CAO 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CBO 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

CCO 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CDO 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CEO 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CFO 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

E-8

Appendix E. Reference Tables

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A B C D E F

DOO 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343

D10 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359

D2O 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375

D30 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

D40 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407

D50 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423

D60 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439

D70 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

D80 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471

D90 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487

DAO 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DBO 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519

DCO 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
DDO 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DEO 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DFO 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

EOO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
E1O 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E20 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E30 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

E40 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E50 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E60 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E7O 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

E8O 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E90 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EAO 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EBO 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

ECO 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
EDO 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EEO 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EFO 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

FOO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
F1O 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F2O 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903

F40 3904' 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F5O 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 1967

F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FAO 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FBO 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

FCO 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FDO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FEO 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FFO 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

E-9

F. ERROR MESSAGES

ERROR DETECTION AND REPORTING

The assemblers detect and report three classes of errors: source-file errors (including control line errors), run-time

errors, and assembler control errors.

Source-file errors are indicated in the assembly listing by single-letter codes listed in column 1 of the erroneous
source statement. If multiple errors occur in the same statement, only the first detected is reported. Each error is
followed by a pointer to the previous erroneous line to ease finding errors. A summary of source-file errors is sent
to the console and list devices.

Run-time errors cause the assembly to terminate abnormally. An error message of the form

error type ERROR

is sent to the console and list device (if listing is in progress). The MONITOR assembler passes control to the
Intellec monitor. The ISIS-II assembler returns control tolSIS-ll.

Assembler control errors in the assembler command are reported on the console device with the message

error type ERROR

ISIS-II errors are shown as numerical codes. These are listed at the end of this appendix and explained in more
detail in the ISIS-II System User’s Guide.

ERROR CODES

Source-File Errors

Code Source

B Balance error. Parentheses or quote marks are unbalanced.

C Control line error. An illegal control has been specified in a
control line or a primary control appears in illegal context.
The erroneous control and following controls on the same
line are ignored.

D Displacement error. In-page jump target address is out of
range.

F-1

Appendix F. Error Messages

Code Source

E Expression error. An expression has been constructed
erroneously; usually a missing operator or delimiter.
Also caused by adjacent operands with no separating
operator.

Illegal character. A statement contains an invalid ASCII
character, or a specified number is illegal in the context
of the number base in which it occurs. Also issued if a
carriage return character is not followed by a line-feed
character.

L Location counter error. The symbol being defined has
been illegally forward referenced. The definition is made
in all cases except macro definitions. This condition can
be corrected by moving the definition to precede all
references.

M Multiple definition. A symbol is illegally defined because
of prior permanent definition. Only symbols defined by
SET and MACRO are redefinable. All occurrences of the
multiply-defined item are flagged.

N Nesting error. Conditional assembly statements or macro
body delimiters are improperly nested.

0 Opcode or operand illegal. An opcode or operand illegal
in rhis particular device’s instruction set causes a warning.

P Phase error. Value of symbol being defined has changed
between passes 1 and 2 of assembly. Caused by a forward
reference of an operand in an ORG, IF, or DS directive.
Also issued if source paper tape is changed between passes.

Q Questionable syntax. Invalid syntax, usually due to a
missing opcode.

R Range error. The location counter exceeds the maximum
memory of this processor.

U Undefined symbol. Symbol used has not been defined.

V Va ue illegal. Value exceeds permissible range for this
operation or is null.

Illegal operand. Specified operand is illegal for this opera
tion. Possible use of register-type symbol in illegal field
or jse of nonregister type in a field requiring register type.

X

F-2

Appendix F. Error Messages

Run-Time Errors

Message Explanation

EOF ERROR (ISIS-II assembler) End-of-file has been encountered
before END directive or END was not terminated by a
carriage-return, line-feed.

FILE ERROR An ISIS file name used in an assembly-time command
or control line is illegal or missing. Following this message,
ISIS-II will report its own error number (see below).

MEMORY ERROR System has insufficient memory to execute macro
assembly. If MACROFILE is set, system must have at
least 48K bytes of memory.

STACK ERROR Assembler internal stack has overflowed. Possible causes
of error:

1. Operators nested more than 16 deep;
2. More than 8 operands in DB or DW list;
3. More than 128 characters in an operand field

(probably string too long);
4. Macro call or conditional assembly nesting

greater than 8 deep;
5. INCLUDES nested more than 4 deep.

TABLE ERROR Assembler symbol or macro table has overflowed. More
memory needed, or reduce number of symbols or macro
defini tions/calls.

Assembler Control Errors

PASS ERROR Pass number specified is illegal or ‘P=1 ’ was not specified
first. Entry is ignored.

COMMAND ERROR Assembler control syntax is illegal, usually due to missing
or illegal delimiter or missing parameter. The entire con
sole command line is ignored.

F-3

Appendix F. Error Messages

ISIS-II Error Messages

Bv convention, error numbers 1-99 are reserved for errors that originate in or are detected by the resident routines
of ISIS; error numbers 101-199 are reserved for user programs; numbers 200-255 are used for errors encountered
by nonresident system routines. In the following list an asterisk precedes fatal errors. The other errors are generally
nonfatal unless they are issued by the CONSOLE system call.

0 No error detected.
*1 Insufficient space in buffer area for a required buffer.

2 AFTN does not specify an open file.
3 Attempt to open more than six files simultaneously.
4 Illegal filename specification.
5 Illegal or unrecognized device specification in filename.
6 Attempt to write to a file open for input.

*7 Operation aborted; insufficient diskette space.
8 Attempt to read from a file open for output.

*9 No more room in diskette directory.
10 Filenames do not specify the same diskette.
11 Cannot rename file; name already in use.
12 Attempt to open a file already open.
13 No such file.
14 Attempt to open for writing (output or update) or to delete or rename

a write-protected file.
*15 Attempt to load into ISIS area or buffer area.
*16 Incorrect ISIS binary format.

17 Attempt to rename or delete a file not on diskette.
18 Unrecognized system call.
19 Attempt to seek in a file not on diskette.
20 Attempt to seek backward past beginning of file.
21 Attempt to rescan a file not line edited.
22 Illegal ACCESS parameter to OPEN or access mode impossible for file

specified (input mode for :LP:, for example).
23 No filename specified for a diskette file.

*24 Input/output error on diskette (see below).
25 Incorrect specification of echo file to OPEN.
26 Incorrect SWID parameter in ATTRIB system call.
27 Incorrect MODE parameter in SEEK system call.
28 Null file extension.

*29 End of file on console input.
*30 Drive not ready.

31 Attempted seek on file open for output.
32 Can’t delete an open file.
33 Illegal system call parameter.
34 Bad RETSW parameter to LOAD.
35 Attempt to extend a file opened for input by seeking past end-of-file.

F-4

Appendix F. Error Messages

200
201
202
203
204
205
206
207
208

Unrecognized command.
Unrecognized switch.
Unrecognized delimiter character.
Invalid command syntax.
Premature end-of-file on input to HEXBIN.
Command line too long.
Illegal diskette label in FORMAT command.
No END statement in assembly language source code.
Checksum error in hexadecimal load format.

When error number 24 occurs, an additional message is output to the console

FDCC =00nn

where nn has the following meanings:

01
02
03
04
08
0A
0E
OF
10
20
40
80

Deleted record.
CRC error (data field).
Invalid address mark.
Seek error.
Address error.
CRC error (ID field).
No address mark.
Incorrect data address mark.
Data overrun or data underrun.
Write protect.
Write error.
Not ready.

F-5

INDEX

ADD Instructions
A,#data
A,Rr
A,@Rr

ADDC Instructions
A,#data
A,Rr
A,@Rr

ANL Instructions
A,#data
A,Rr
A,@Rr
BUS,#data
Pp,#data

ANLD Instruction
Arithmetic Operations

Signed
Two’s Complement

Assembler
Concepts
Controls
Directives
Operation
Termination
Versions

Auxiliary Carry Bit (AC)

3-2 7, A -4
3-26, A-4
3-2 7, A-4

3-28, A-4
3-26, A-4
3-2 7, A-4

3-17, A-4
3-14, A-4
3-16, A-4
3-18, A-4
3-18, A-4
3-79, A-4
2-3ff,3-23ff
2-4
2-5

2-lff,6-7ff
2-1,3-7ff,C-1ff
2-1,5-7ff)B-1ff
9-1ff
5-7
7-1
1-7,1-9, 3-29

CALL Instruction
Carry Bit (C)
Clock
CLR Instructions

CLR A
CLR C
CLR FO
CLR Fl

COND Control
Conditional Assembly
CPL Instructions

CPL A
CPLC
CPL FO
CPL Fl

3-38, A-5
1 -7,1-9,3-29
1-2,3-34

3-28, A-5
3-29, A-5
3-30, A-5
3-30, A-5
8-5,8-8,C-l
5-5

3-23, A-5
3-30, A-5
3-30, A-5
3-37, A-5

1-1

Index

DA Instruction
Data Bus Buffer (DBB)
Data Definition
Data Memory

Addressing
Data Transfer

Input/Output
Within 8048 Memory

DB Directive
DEBUG Control
DEC Instructions

DECA
DEC Rr

Designate Bank Flag (DBF)
DIS Instructions

DIS 1
DISTCNTI

DJNZ Instruction
DS Directive
DW Directive

3-29, A-5
1-12,4-2ff
5-3
1-1,1-3
1-4
3-2ff
3-11
3-2
5-3, B-2
8-3,8-7,C-]

3-24,A-5
3-24, A-5
3-35

3-31, A-5
3-32, A-5
3-25, A-6
5-4, B-2
5-4, B-2

EJECT Control
ELSE Directive
EN Instructions

EN 1
EN TCNTI

END Directive
ENDIF Directive
ENDM Directive
ENTO Instruction
EOT Directive
EQU Directive
Error Codes
Event Counter

Instructions
EXITM Directive
Expander Device (8243)
Expressions

8-5,8-9, C-1
5-5, B-2

3-31, A-6
3-32, A-6
5-7, B-2
5- 5, B-2
6- 5, B-3
3-34, A-6
5-7,B-2
5- 3, B-2
F-lff

1-2,1-7
3-7,3-32
6- 8, B-3
1- 2,1-9
2- 5

Flag BitO (F0)
Flag Bit 1 (F1)

1-7,1-8,3-29 ff
l-7,3-29ff

GEN Control 8-5,C-3

1-2

Index

IF Directive 5-5,B-2

INC Instructions
INC A 3-23,A-6
INC Rr 3-23,A-6
INC@Rr 3-24, A-6

INCLUDE Control S-4,C-3
IN Instruction

IN A,DBB 4-2, A-6
IN A,Pp 3-11,A-6

Input/Output 1-10,3-11
Files 2-1,7-2
Port 1-2,1-10,3-11
Logical Operations 3-18

INS Instruction 3-12,A-6
Instruction Format 2-1 ff
Intellec MONITOR Assembler

Controls 8-7
Environment 7-1
Operation 9-4

Interrupt Input Pin 1-8
Interrupts 1 -2,1-8

Controls 3-31
Interval Timer 1-2,7-7ff

Instructions 3-7,3-32
IRP Directive 6-6, B-3
IRPC Directive 6-7,B-3
ISIS-II Assembler

Controls 8-2
Environment 7-2
Operation 9-1

Jump Instructions
JBb 3-45, A-6
JC 3-41, A-6
JFO 3-42, A-6
JF1 3-42, A-7
J MP 3-40, A-7
JMPP 3-40, A-7
JNC 3-41, A-7
JNI 3-44, A-7
JNIBF 4-3, A-7
JNTO 3-43, A-7
JNT1 3-44, A-7
JNZ 3-42, A-7
JOBF 4-3, A-7
JTF 3-44, A-7
J TO 3-43, A-8
JT1 3-43, A-8
JZ 3-47, A-8

1-3

Index

MCS-48

LIST Control
List File
LOCAL Directive
Location Counter
Logical Operations

8-5,8-8,C-1
2- 1,7-2, D-1ff
6-5, B-3
5-2
3- 14

MACRODEBUG Control
MACRO Directive
MACROFILE Control
Macros

8-5, C-3
6-4, B-3
8-4, C-3
2-1,6-1 ff

Component Family
Functional Overview
Instruction Set

Memory Bank
Memory Reservation
MOD21 Control
M0D41 Control
MONITOR Assembler (see ‘Intellec’)
MOV Instructions

A,#data
A,PSW
A,Rr
A,@Rr
A,T
PSW,A
Rr,A
Rr,#data
@Rr,A
@Rr,#data
T,A

MOVD Instructions
A.Pp
Pp,A

MOVP Instruction
MOVP3 Instruction
MOVX Instructions

A,@Rr
@Rr,A

1-1
1-1ff
3-1ff,A-1ff
1-1,3-35
5-4
8-4, 8-8, C-1
8-4,8-8, C-1

3-5, A-8
3-6, A-8
3-2, A-8
3-3, A-8
3-7, A-8
3-6, A-8
3-2, A-8
3-5, A -8
3-3, A-8
3-5, A-8
3-7,A-9

3-7 3, A-9
3-13, A-9
3-8, A-9
3-8, A-9

3-4, A-9
3-4, A-9

NOCOND Control
NODEBUG Control
NOGEN Control
NOLIST Control
NOMACRODEBUG Control
NOMACROFILE Control
NOOBJECT Control
NOPAGING Control
NOP Instruction

8-5,8-8, C-1
8-3,8-7,C-2
5-5, C-3
8-5,8-8, C-2
8-5
8-4, C-3
8-3, C-3
8-4,8-8, C-2
3-37, A-9

1-4

Index

NOPRINT Control
NOSYMBOLS Control
NOXREF Control
Number Base Representation
Number Range

8-3, C-3
8-3,8-7,C-2
8-4,8-8,C-2
2-4
2-4

OBJECT Control 8-3, C-3
Object File 2-1,7-2
Operators 2-6,6-9, A-1
ORG Directive 5-2, B-2
ORL Instructions

A,#data 3-17, A-9
A,Rr 3-15, A-9
A,@Rr 3-6, A-9
BUS,#data 3-19, A-9
Pp,#data 3-19, A-10

ORLD Instruction 3-20, A-10
Oscillator 1-2
OUT Instruction 4-2, A-10
OUTL Instructions

BUS,A 3-12, A-10
Pp,A 3-12, A-10

PAGELENGTH Control 8-4,8-8, C-2
PAGEWIDTH Control 8-4,8-8,C-2
PAGING Control 8-4,8-8,C-2
PRINT Control 8-3, C-3
Program Controls 1-6,3-29
Program Counter (PC) 1-2
Program Memory }-},1-2

Pages 1-2
Program Status Word (PSW) 1-2,1 -9,3-6

Reference Tables E-1 ff
Register Bank

Selection 7-5,1-8,3-36
Switch 1-8,1-9

REPT Directive 6-6, B-3
Reserved Words 2-10,\-2
RESTORE Control 8-5, C-3
RET Instruction 3-39, A-10
RETR Instruction 3-39, A-10
Rotate Instructions

RL 3-27, A-10
RLC 3-22, A-10
RR 3-2 7, A-10
RRC 3-22, A-10

1-5

Index

Sample Macros
Sample Programs
SAVE Control
SEL Instructions

MBO
MB1
RBO
RB1

SET Directive
Single-Device Microcomputer
Source File
Source Program
Stack
Stack Pointer
Status Register
STOP Instruction
STRT Instructions

STRT CNT
STRTT

Subroutine Call
SWAP Instruction
Symbol Cross-Reference File
Symbols

Characteristics
Definition
Reserved Symbols

SYMBOLS Control
Symbol Table

6- 14
3-45
8-5, C-3

3-35, A-11
3-36, A-11
3-36, A-11
3-36, A-11
5-3, B-2
1- 1
2- 1,7-2
2- 1
1-3,1-5
7- 5,1-8
1- 12,4-2 .
3- 33, A-11

3-33, A-11
3-32, A-11
3-38
3-10, A-11
2- 1,7-3, D-5
2-9
2-1 Off :
5-2
2-10,A-2
8- 3,8-7,C-2
2-9, D-3

Test Input 0 (TO)
Test Input 1 (T1)
Timer Flag
TITLE Control

1-8,3-34
1-8
7- 5 £
8- 4,8-9, C-2

UPI-41
Component Family
Hardware Overview
Instruction Set

1-1,7-77
1-12
4-1 ff

Working Registers
XCH Instructions

A,Rr
A,@Rr

1-2,1-3

3-9,A-11
3-9.A-11

1-6

index

XCHD Instruction
XREF Control
XRL Instructions

A,#data
A,Rr
A,@Rr

3-10, A-11
8-3,8-7,C-2

3-18, A-11
3-15, A-11
3-16, A-11

1-7

intel’ MCS 48 AND UPI-41
ASSEMBLY LANGUAGE MANUAL

98-255C

REQUEST FOR READER'S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that meet the needs of all
Intel product users. This form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME DATE
TITLE___
COMPANY NAME/DEPARTMENT__ _
ADDR ESS__
CITY STATE ZIP CODE

Please check here if you require a written reply. □

WE'D LIKE YOUR COMMENTS . ..

This document is one of a series describing Intel products. Your comments on the back of this form will help
us produce better manuals. Each reply will be carefully reviewed by the responsible person. All comments and
suggestions become the property of Intel Corporation.

First Class
Permit No. 1040
Santa Clara, CA

BUSINESS REPLY MAIL
No Postage Stamp Necessary if Mailed in U.S.A.

Postage will be paid by

Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

Attention: MCD Technical Publications

iniei SOFTWARE PROBLEM REPORT

SUBMITTED BY:
Name__
Com pany___
Add ress__

Phone Date

FOR INTERNAL USE ONLY
No. Fix Date
Date Vers/System
Notes

CHECK ONE ITEM IN EACH CATEGORY Machine Line
Product Product Type □ 4004/4040
□ Software □ Monitor □ Simulator □ 8008
□ Manual □ Assembler □ Editor □ 8080

□ Compiler □ Utility □ 3000
□ ________ □_________

System
□ Intellec
□ Timeshare Co.

□ In-House Computer

Exact Product/Manual Name —-------—---
Version Number (If not known, give date of receipt)

PROBLEM:

WE'D LIKE YOUR COMMENTS . ..

This document is one of a series describing Intel software products. Your comments on the back of this
form will help us produce better software and manuals. Each reply will be carefully reviewed by the respon
sible person. All comments and suggestions become the property of Intel Corporation.

First Class
Permit No. 1040
Santa Clara, CA

BUSINESS REPLY MAIL
No Postage Stamp Necessary if Mailed in U.S.A.

Postage will be paid by:

Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 9EC51

Attention: MCS Systems Marketing

