intel

APPLICATION AP-24
NOTE

August 1977

© intel Corporation, 1977

98-413B

Related Intel Publications

“MCS-48™ Microcomputer User's Manual"

""Using the 8251 Universal Synchronous/Asynchronous
Receiver/Transmitter”

“8255 Programmabl e Peripheral Interface Applications™

Application Techniques
for the MCS-48™ Family

Contents

INTRODUCTION

THEMCS48™ FAMILY

ANALOG I/O
TABLE LOOKUP TECHNIQUES

RECEIVING SERIAL CODES _

BASIC APPROACHES
RECEIVING SERIAL CODE — A MOKE

SOPHISTICATED ALGORITHM
TRANSMITTING SERIALCODE
GENERATING PARITY
CONCLUSION

intel Carporation assumes no respansibility for the use of any circuitry aor software other than circuitry or software embodied n an intel product. No other patent licenses are implied.

INTRODUCTION

The INTEL® MCS-48™ family consists of aseries
of seven parts, including three processors, which take
advantage of the latest advances in silicon techno-
logy to provide the system designer with an effec-
tive solution to a wide variety of design problems.
The significant contribution of the MCS-48 family
is that instead of consisting of integrated micro-
computer components it consists of integrated
microcomputer systems. A single integrated circuit
contains the processor, RAM, ROM (or PROM), a
timer. and 1/0.

This application note suggests a variety of applica-
tion techniques which are useful with the MCS-48.
Rather than presenting the design of a complete
system it describes the implementation of "' sub-
systems”™ which are common to many micropro-

cessor based systems. The subsystems described are
analog input and output, the use of tables for
function evaluation, receiving serial code, transmit-
ting serial code, and parity generation. After an
overview of the MCS48 family these areas are dis-
cussed in a more or less independent manner.

THEMCS48™ FAMILY

The processors in the MCS-48 family all share an
identical architecture. The only significant differ-
ence is the type of on board program storage which
is provided. The 8748 (see Figure 1) includes 1024
bytes of erasable, programmable, ROM (EPROM),
the 8048 replaces the EPROM with an equivalent
amount of mask programmed ROM, and the 8035
provides the CPU function with no on board
program storage. All three of these processors

PORT 2

a

DECODE

8US BUFFER
PORT 2 LATCH HIGH RESIDENT
(LOW 4) AND JPORT 2 LATCH PROGRAM 2 EPROM/ROM
EXPANDER {HIGH 4} COUNTER 1K x 8
PORT I/0 (4)

EXPANSION TO MORE
1/0 AND MEMORY

PORT 0
8US BUFFER

PQRT O LATCH
Vo

AND LOW
PC TEMP REG

—® PROGRAM SUPPLY
POWER Vee
SUPPLY —— +5V (LOW POWER

STANDBY)
Vss
— = GND

PROGRAM
STATUS
WORD

U

1T
osc.
FREO. x480 TIMER/EVENT LOWER
COUNTER PROGRAM
COUNTER
TEST1 —————————— (8) 8
~ @

ACCUMULATOR TEMP REG

FLAGS

PORT 1
BUS

8 BUFFER
AND

LATCH

RAM ADDRESS ﬁ

REGISTER
MULTIPLEXER

ACCUMULATOR

LOGIC
LATCH UNIT

(8)
@ e INSTRUCTION
ARITHMETIC REGISTER

AND DECODER

DECIMAL
ADJUST

CONDITIONAL |-ep——

CONTROL AND TIMING
< Y _
W XTALT XTAL2 X PSEN ss RD WR

REGISTER 0
TEeT 0 REGISTER 1
TEST 1 REGISTER 2
REGISTER 3
INT REGISTER 4
B —
FLAG O REGISTER 5
uwl
- S | REGISTER 6

FLAG 1

REGISTER 7

BRANCH TIMER FLAG 8 LEVEL STACK
LoGIC (VARIABLE LENGTH)

CARRY

OPTIONAL SECOND

REGISTER BANK
ACC

-———

K ACC BIT TEST

DATA STORE

INT RESET PROG
0] [¢]
T i OSCILLATOR T
INITILLIZE
INTERRUPT PROM CPU; ADDRESS PROGRAM SINGLE READ WRITE

EXPANDER MEMORY
STROBE SEPARATE

LATCH MEMORY STEP STROBES
STROBE ENABLE

RESIDENT
RAM ARRAY
64x8

MCS-48™ [nterna Structure

INSTRUCTION SET

Mnemonic

Description

Bytes Cycle Mnemonic Description Bytes Cycles
ADD AR Add register to A 1 1 .g CALL Jump to subroutine 2 2
ADD A. @R Add data memory to A 1 1 3 RET Return 1 2
ADD A, #data Add immediate to A 2 2 5 RETR Return and restore status 1 2
ADDCA, R Add register with carry 1 1 [Z)
ADDC A, @R Add data memory with carry 1 1 CLR C Clear Carry 1 1
ADDC A, #data Add immediate with carry 2 2 CPLC Complement Carry 1 1
ANL A, R And register to A 1 1 g’ CLR FO Clear Flag 0 1 1
ANL A, @R And data memory to A 1 1 L CPLFO Complement Flag 0 1 1
ANL A. #data And immediate to A 2 2 CLR F1 Clear Flag 1 1 1
x ORLAR Or register to A 1 1 CPL F1 Complement Flag 1 1 1
= ORL A, @R Or data memory to A 1 1
LR e a5 5| MovaRm weegseros .
g ' . MOV A, @R Move data memory to A 1 1
a XRLA,@R Exclusive or data memory to A 1 1 MOV A #data Move immediate to A 2 2
XRL A. #data Exclusive or immediate to A 2 2 ' .
INC A Increment A 1 1 MOV R, A Move A to register 1 1
DEC A Decrement A 1 1 MOV @R,A Move A to data memory 1 1
> MOV R, #data Move immediate to register 2 2
CLR A Clear A 1 1] . .
CPL A Complement A 1 1 s MOV @R, #data Move immediate to data memory 2 2
DA A Decimal Adjust A 1 1 £ MOVA PSW Move PSW to A ! !
) o MOV PsSw, A Move A to PSW 1 1
SWAP A Swap nibbles of A 1 1 .
RL A Rotate A left 1 1 XCH A, R Exchange A and register 1 1
RLC A Rotate A left through carry 1 1 XCH A, @R Exchange A and data memory ! !
RR A Rotate A right 1 1 XCHD A, @R Exchange nibble of A and register 1 1
RRC A Rotate A right through carry 1 1 MOVX A, @R Move external data memory to A 1 2
MOVX @R, A Move A to external data memory 1 2
IN A,P Input port to A 1 2 MOVP A, @A Move to A from current page 1 2
OUTLP, A Output A to port 1 2 MOVP3 A, @A Move to A from Page 3 1 2
ANL P, #data And immediate to port 2 2
Y ORLP, #data Or immediate to port 2 2
‘2 INS A, BUS Input BUS to A 1 2 MOV A, T Read Timer/Counter 1 1
O OUTLBUS, A Output A to BUS 1 2 £ MOVTA Load Timer/Counter 1 1
‘é ANL BUS, #data And immediate to BUS 2 2 5 STRTT Start Timer 1 1
£ ORL BUS, #data Or immediate to BUS 2 2 T STRTCNT Start Counter 1 1
MOVD A, P Input Expander port to A 1 2 STOP TCNT Stop TimerICounter 1 1
MOVD P, A Output A to Expander port 1 2 i ENTCNTI Enable Timer/Counter Interrupt 1 1
ANLD P, A And A to Expander port 1 2 DIS TCNTI Disable Timer/Counter Interrupt 1 1
ORLD P, A Or A to Expander port 1 2
E INCR Increment register 1 1 EN I Enable external interrupt 1 1
2 INCE@R Increment data memory 1 1 DIS| Disable external interrupt 1 1
& DECR Decrement register 1 1 © SELRBO Select register bank 0 1 1
'é SEL RB1 Select register bank 1 1 1
IMP addr Jump unconditional 2 2 © SEL MBO Select memory bank 0 1 1
JVPP @A Jump indirect 1 2 SEL MB1 Select memory bank 1 1 1
DJNZ R, addr Decrement register and skip 2 2 ENTO CLK Enable Clock output on TO 1 1
JC addr Jump on Carry = 1 2 2
JNC addr Jump on Carry =0 2 2
J Z addr Jump on A Zero 2 2 NOP No Operation 1 1
JNZ addr Jump on A not Zero 2 2
< JTO addr JumponTO =1 2 2
§=E JNTO addr Jump on TO =0 2 2
@)T1 addr JumponT1=1 2 2
JNT1 addr Jumpon T1=0 2 2
JFO addr Jumpon FO=1 2 2 . . .
JF1 addr Jumpon F1=1 2 2 Mnemonics copyright Inte) Corporation 1976
JTF addr Jump on timer flag 2 2
JNI addr Jump on INT =0 2 2
JBb addr Jump on Accumulator Bit 2 2

Figure 2. 8048/8748/8035 Instruction Set

operate from a single 5-volt power supply. The
8748 requires an additional 25-volt supply only
while the on board EPROM is being programmed.
When installed in a system only the 5-volt supply is
needed. Aside from program storage, these chips
include 64 bytes of data storage (RAM), an eight
bit timer which can also be used to count external
events, 27 programmable 1/0 pinsand the processor
itself. The processor offers a wide range of instruc-
tion capability including rnany designed for bit,
nibble, and byte manipulation. The instruction set
issummarized in Figure 2.

Aside from the processors, the MCS-48 family
includes 4 devices: one pure I/O device and 3 com-
bination memory and [/O devices. The pure 1/O
device isthe 8243, adevice which is connected to a
specia 4 bit bus provided by the MCS-48 processors
and which provides 16 1/O pins which can be pro-
grammatically controlled.

The combination memory and I/O devices consist
of the 8355, the 8755, and the 8155. The 8355
and the 8755 both provide 2,048 bytes of program
storage and two eight bit data ports. The only
difference between these devices is that the 8355
contains masked program ROM and the 8755 con-
tains EPROM. The 8155 combines 256 bytes of
data storage (RAM), two eight bit data ports, asix
bit control port, and a 14 bit prograrnrnable timer.

Figure 3 shows the various system configurations
which can be achieved using the MCS-48 family of
parts. It should also be noted that eight of the pro-
cessors' 1/O lines have been configured as a bidirec-
tional bus which can be used to interface to stan-
dard Intel peripheral partssuch asthe 8251 USART
(for seria 1/0), the 8255A PPl (provides 24 1/O
lines) and the complete range of memory compo-
nents.

More detailed information concerning the MCS-48
farnily can be obtained from the “MCS-48 Micro-
computer User's Manua® which provides a com-
plete description of the MCS48 family and its
members. A general familiarity with this document
will make the application techniques which follow
easier to understand.

ANALOG I/O

If analog 1/0O is required for a MCS48™ system
there are many alternatives available from the
makers of analogI/O modules. By searching through
their catalogs it ispossible to find almost any cornbi-
nation of features which is technically feasible. Per-
haps the best example of such modules are the MP-
10 and MP-20 hybrid modules recently introduced
by Burr-Brown Research Corporation. The MP-10
provides two analog outputs and the MP-20 pro-
vides 16 analog inputs. Both of these units were

[] Number of Available Timers
() Number of Available 1/O Lines

1088
1K ’
8035 8048 8035
8048 8355 8355 2-8355
4-8155 4-8155 4-8155 4-8155
[5] (101} |[5] (116)‘[5] (116) |[B] (131)
832
768 - N
8035 8048 8035
. 8048 8355 8355 2-8355
b= 3-8155 3-81565 3-8155 3-8155
g |41 (©0) 4] (98)[14] (95) /(4] (110)
578
>
cb12 —
g 8035 8048 8035
w 8048 8355 8355 2-8355
= 2-8155 2-8155 2-8155 2-8155
S B 59|81 (74|81 (74)[[3) (39)
5320
256 (—
8035 8048 8035
8048 8355 8355 2-8354
8155 8155 8155 8165
[21 (38 |(2] (53)|[2] (53} |[2] (68)
64
8035 8048 8035
8048 8355 8355 2-835%
(11 (24) |11 (8)[[1] (28) 1] (43)
1K 2K 3K 4K

PROGRAM MEMORY (ROM)

Figure 3. The Expanded MCS-48 TM System

specifically designed to
processors.

interface with mi:ro-

A block diagram of theMP-10 isshown in Figur: 4.
It consists of two eight bit digital to analog confer-
ters, two eight bit latches which are loaded from
the data bus, and address decoding logic to deter-
rnine when the latches should be loaded. The D/A
converters each generate an analog output in the
range of 10 volts with an output impedance of £2.
Accuracy is 0.4% of full scale and the output is
stable 25usec after the eight bit binary datu is
loaded into the appropriate latch. The latches are
loaded by the write pulse (WR) whenever the
proper address is presented to the MP-10. The
lower two addresses (A(Q and A]) are used in-er-
nally by the device. Addresses A2 & A3 are com-
pared with the address determination inputs B}
and B3. If their signals are found to be equal, «nd
if addresses A4-A13 are al high, then the device
is selected and one of the latches will be loadzd.
Address hit A selects between output 1 and out-
put 2. If address bit Ag is set then the initializa-
tion channel of the DIA is selected. In order to
prepare for operation a data pattern of 80 must

o N o
< < <<
A —] — B,
Al ADDRESS — B2
A LoGic
w3 —0
LOADJ LOAD 2
DBI7 01
REG 1 oA » ANALOG OUT
) -
REG 2 oA » ANALOG OUT

Figure 4. MP-10 Block Diagram

be output to this channel following the reset of the
device.

A block diagram of the MP-20 analog to digital
converter is shown in figure 5. This unit consists
of a 16 input analog multiplexer, an instrumenta-
tion amplifier, an eight bit successive approxima-
tion analog to digital converter, and control logic.
The 16 input multiplexer can be used to input
either 16 single ended or 8 differential inputs.
The output from the multiplexer is fed into the
instrumentation amplifier which is configured so
that it can easily be strapped for single ended 0-5
volt inputs, single ended *5 volt inputs, or differen-
tial 0-5 volt signals. Provisions are made for an
external gain control resistor on the amplifier. The
gain control equation is:

G=2+%K
Rext
EXTERNAL
GAIN CONTROL
Ay RESISTER
15 r—a
A =1
14— a1
A3 gx
A Su
A &E D8,
e <5 DBg
Ag_] 2 — > DBy
A gl = ANALOG L —3 g,
A5 TO —l-ma3
A DIGITAL |—»
a g: INSTRIIMENTATION | CONVERTER ggf
24_ N L AMPLIFIER ', o8
3— 0 » i
A Aq START CONVERSION RO
A Ay
0 — Az I b4
1
ADDRESS J ADDRESS CONTROL
LATCH RDY EXTERNAL
DELAY CONTROL
[TIT t *? | CAPACITOR
.o * [
AgAgA Ag Ay Ay AD I

Figure 5. MP-20 Analog Subsystem

With no Rext (Rext = =) the gain is two and the
input is 0-5 or %5 volts full scale. Adding an exter-
nal resistor results in higher gain so that low level
(£50mV) signals from thermocouples and strain
gauges can be accommodated. The output from
the amplifier is applied to the actual A/D con-
verter which provides an eight bit output with
guaranteed monotonicity and an accuracy of +0.4%
of full scale. Note that this accuracy is specified
for the entire module, not just for the converter
itself. The control logic monitors address lines
A15 through A4 to determine when the address of
the unit has been selected. An address that the unit
will respond to is determined by 11 address control
pins, labeled A4 through A14. If one of these pins
is tied to alogic O then the corresponding address
pin must be high in order for the unit to be selected.
If the pinistied to alogic 1 then the corresponding
address pin must be low. If the address of the
module is selected when MEMR pulse occurs, the
lower four addresses (A3-AQ) are stored in alatch
which addresses the multiplexer. The coincidence
of the proper address and MEMR aso initiates a
conversion and gates the output of the converter
on to the eight bit data bus.

The control logic of the MP-20 was designed to
operate directly with an MCS-80™ system. When a
MEMR occurs and a conversion isinitiated the MP-
20 generates a READY signa which is used to
extend the cycle of the 8080A for the duration of
the conversion. READY is brought high after the
conversion is complete which alows the $080A
to initiate a conversion and read the resulting data
in a single, albeit long, memory or 1/O cycle. The
conversion time of the MP-20 depends on the gain
selected for the amplifier. With no external resistor
(R = o) the gain is two and the conversion timeis
35 psec. For R=510£2 thegainis:

S0K2 100

G=2+%Tka =

and the conversion time becomes 100usec. These
settling times are specified in the MP-20 data sheet
and range from 35 to 175 microseconds. The
READY timing is controlled by an external capa-
citor. For a gain of 2 no external capacitor is
required but if higher gains are selected a capacitor
is needed to extend the timing.

A schematic showing both the MP-10 D/A and the
NIP-20 A/D connected to the 8748 is shown in
Figure 6. This configuration, which consists of
only four major components, gives an excellent
example of what modern technology can do for

UNCOMMITTED 1/0 PINS

+6V

£y

20pF 6MHz 20pF

39

38
37
36
35
24
23
22
21

XTAL1 XTAL2

MCs-48™

P17
P16
P1g
P1a
P13
P12
P11
P10

ALE

PROG p———

MCS-48™ Based Analog Processor

>>>>> > > >
46
1
45
KD o LI
+5V OUTPUT SELECT
[f COMP IN
85 1 gro
i m
6
21 iaouT MP-20 INyg [
79 7
tl}——z- IAIN LO iz [
I = IAIN HI INgy
= 4 71
MUX OUT HI INyg
77 70
MUX OUT LO INg
14 69
MUX ENAB2 INg
15 5
SIN/DIFF LT
8 aq | IN
" o| me 5 17
INg
60 8
Do Ng b—
59 9
D, INg
58 10
D, INy
57 T
D3 INg
56 12
Dy INg
55
Dg
54
Dg bl
53 m
D7 m » » » > >
—Hl o - N w wn
T MR
s O |N ® o (o |N
3
1KQ
+5V
2 14
MD R
22 21
Dig Dog
20 19
S 101 00; |-
ol DOg
L— L1 Y DOg 19
10
o {0, 8212 oo,
7 1o, ooz |2
® loi, 002;3
3 o, DO,
1 13| oo,
25 5=
1
:- === NN NN
—“lofwIvIw|s o
©]
6 2> > > > > >
Dy mo 2 N W a0
5 @ 18
106 o ouT 1
)
31%s
D4
1o MP-10
2103
]2
Dy
10 17
Do ouT 2
10 LED Iy PrPr2r>>>
+5V +5V N W ®e =23
NN NINININ [= W |wl|w
1|2 14
5 611 =
611
9602 9602
4 12 9

+5V

ANALOG
INPUTS
(16)

ANALOG
QUTPUTS
(2)

+5V

the system designer. The four components provide:

An eight bit microprocessor

64 bytes of RAM

1024 bytes of UV erasable PROM
A timer/event counter

16 digital I/O pins

2 testable input pins

An interrupt capability

15 eight bit analog inputs

2 eight bit analog outputs

SR 0 s o

The MCS48 communicates with the D/A and A/D
converters in a memory mapped mode (i.e., it treats
the devices as if they were external RAM). By set-
ting an address in either RQ or R| and then execut-
ing a MOVX the software can transfer data between
the accumulator and the analog I/O. When the
MCS48 executes the MOVX instruction it first
sends the eight bit address out on the bus and
strobes it into the 8212 latch with the ALE (Address
Latch Enable) signal. After the address is latched,
the MCS-48 uses the same bus to transfer data to
or from the accumulator. If data is being sent out
(MOVX 0Rj, A) the WR strobe is used;if the data
is bzing moved into the accumulator (MOVX A,
3Rj» the RD strobe is used. The one shots on the
WR line are used to delay the write strobe of the
MCS-48 to meet the data set up specifications of
the MP-10.

In corder to provide reset capability for the analog
devices without dedicating an I/O pin from the
MCS-48, special addresses are used as reset channels.
Executing any MOVX with anaddressof OXXXXXXX
will reset the A/D module;a similar operation with
an address of X1XXXXXX will reset the D/A; a
MOVX with an address of 01 XXXXXX will reset
both devices. All data transfers are accomplished
with the upper two bits of the address field equal
to 10. A summary of the addressing of the analog
devices is shown in Table 1. Notice that except for
an initialization channel for the D/A (which must

Table 1. Analog Interface Addresses

INPUT OR OUTPUT

OXXX XXXX Reset A/D
X1TXX XXXX Reset D/A

INPUT
0011 nnnn

Read A/D Channelnnnn

OUTPUT
1011 0001 Initialize D/A
1011 0000 Write Channel 1
1011 0010 Write Channel 2

be written to following a reset to initialize its
internal logic) all channels involve some form of
data transfer.

As was mentioned previously, the MP-20 was
designed to use the READY line of the 8080A.
Obviously this presents a problem since the MCS-
48 does not support a READY line (with its
attendant requirement of entering WAIT state).
The necessity of a READY input can be overcome
by performing a read operation to set the channel
address, waiting the required delay (35 usec for a
gain of two) and then performing a second read to
actually obtain the data. The second read will read
in the data from the channel selected by the first
read irrespective of the channel selected for the
second read. Thus it is possible to use the second
read to set up the channel for the third read. Each
read can read in the current channel and select the
next channel for conversion.

The MP-20 is shown in Figure 6 strapped to input
16 single ended *5 volts signals. Programs which
were used to test this configuration are shown in
Figure 7. The first of these programs uses the D/A
converter to generate sawtooth waveforms by
outputting an incrementing value to the D/A
converters. The second program scans the analog
inputs and stores their digital values in a table
located in RAM.

LoCc @Bl SEQ SOURCE STATEMENT

0

1

2 ;

3 ; TEST PROGRAM FOR ANALOG OUTPUT
4 ; THIS PROGRAM OUTPUTS A SAW-
5 TOOTH WAVEFORM BY OUTPUTING
6 AN INCREMENTING PATTRERN.

7
8

9 ; —=———

10 ; EQUATES

11§ =

12
9083 13 INITCH EQU 9834 i D/A INITIALIZATION CHANNEL
0080 14 INITDT EQU 80H ; D/A INITIALIZATION DATA
0080 15 DATCH EQU 0BOH ; D/A DATA CHANNEL

17 ; ———————e

18 ; START OF TEST

19 ; —mmmmmmmm

0100 20 ORG 100H

21 ; INITIALIZE D/A
0100 2380 22 START: MOV A, #INITDT
0102 B8B3 23 MOV RO, # INITCH
0104 90 24 MOVX ©@RO,A
25 ; TEST LOOP-OUTPUT SAWTOOTH
0105 B8BO 26 LOOP: MOV RO, #DATCH
9107 17 27 INC A
4108 90 28 MOVX €RO,A
0109 2405 29 JMP LOOP
30 ; END OF PROGRAM
31 END

Figure 7a. D/A Exercise Program

LC ud Sy bUURLE STATEMENT

0

1

< Tmmmmmmmmmmmeo e

3 insl PRUGKAN FOR ANALOG INPUT

4 1015 PROGRAN SCANS 'IHE INFUT CHANNLLS

5 ANL 5Tukis ok READINGS Inv A 'TABLL

4 SLAKTING AL BUFE.

7

&)

[P ——

1d 5 LQUAILS

1l ===

le
) 13 wutk L 20 ; STARL Ob BUFFER
Vust 14 miacu Lol 15 ;N0 UE ANALOG INPUTS
vl 15 AlaCn bl WLBH ; BASL ADLheSS OF AcALUG INPUTS
1) 16 11Ck £l 5 ; EXCUTION TIME OF LJNZ

17

1% ;

19 ;

V7R
wlup 21 UKG luih

iz ; SETUP TO SCAN ANAILG INPULTS
Ulvk bylt 23 slAKL: Moy KL, $BUF F+MAXCH
wloZ buwl 24 MOV H3, BMAXCH
Wlvd BOBE 5 MOV i, § (AINCHHMAXCH)

26 ; SELECT ChANNEL 15
vlub ou 27 X A, 8RD

28 ; wAIT >49 MICROSECONDS
wle? Blio 25 My k4,440, TICK
wlv9 Lipy 30 L 4,5

31 3 N SCAI ANALOGS
Plvb it 32 Laks LEC Kt

35 ; Gel DATA
wlbl 8o 34 FUvX A, ek

35 ; MOVE INTO BUEFER
vloL Al 36 Mov wrd A

37 ; DLCREMENT BUFEEK PGINT
olul CY o Lrl ki

39 i PAD 20 MICROSEC
lvr Blud 4w MOV R4, #26/11CK
wlll till 41 CIng R4,$

4z 3 LOOP UNTIL DONE
vll3 EBuB 43 Loz k3, LLOP

44 ; KEPEAT TEST FOREVER
wllS 24vw 45 Jidke STARL

46 ;LU OF FRUGRAM

47 Ll

Figure 7b. A/D Exercise Program

TABLE LOOKUPTECHNIQUES

In the previoussection theinterface between anal og
I/0O devices and the MCS-48™ was discussed. In
many applicationsinvolving analog I/O one quickly
finds that nature is inherently nonlinear, and the
mathematics involved in 'linearizing it' can tax the
computational power of the microprocessor, partic-
ularly if it has other tasks to perform. Problems
of this nature are good candidates for the use of
tables.

As an example of how tables can be used as part of
an analog output scheme, consider asystem which
requires an MCS-48 to output avariable frequency
sinusoidal waveform. One method of performing
this function would be to use the timer to generate
an interrupt at a fixed rate of 256 times the desired
output frequency. At eachinterrupt theappropriate
value of the sine function could be calculated from
the MacLaurin series:

3 5 7

X +L_ (_l)kx2k+l
3! 5!

Sin x = x - A 0 b Sl
mx=x 70 QK+ D!

Where K is chosen to be large enough to provide
the required accuracy.

The above calculation, although conceptually
simple, would be time consuming and would
severely limit the possible output frequencies which
could be obtained. As an alternative to calculating
these valuesin real time, the values could be precal-
culated off line and stored in a table. Upon each
interrupt the MCS-48 would merely have to retrieve
the appropriate value from the table and output
it to the D/A converter. the MCS-48 provides a
special instruction which can be used to zccess
data in a table. If the tableisstored in thelast 256
bytes of the first kilobyte of MCS-48 memory
then the tablelookup can be performed by loading
the independent variable (time in this case) into
the accumulator and executing the instruction.

MOVP3 A, @ A

This instruction uses the initial contents of the
accumulator to index into page 3 of program
storage. The location pointed to is read and the
contents placed in the accumulator. If (asis often
the case) a table of fewer than 256 entries is
required, then the table can belocated in any page
of program memory and theinstruction:

MOVPA, @ A

can be used to retrieve data from the table. This
instruction operates in the same manner as does
the previous instruction except that the current
page of program storage is assumed to ccntain
the table.

If it is possible to devote slightly more of the
microprocessor's time to the table look up process,
then a much smaller table can often be utilizzd by
taking advantage of interpolation to determine
values of the function between values which are
actual entries in the table. As an example of this

-
— FLOWMETER
-
FLOW METER
—?‘ CONTROL
\ AD }_ MCS48 |— PANEL
-
— FLOW METER
L Y
A4

Figure 8. Flow Monitoring System

process consider the hypothetical system shown in
Figure 8. The purpose of thissystem isto measure
the flow through the three pipes, add them, and
display the total flow on the control panel. The
system consists of three flow meterswhich generate
a differential voltage which is some function of
flow, an A/D system with at least three differential
inputs, an MCS48, and a control panel. The
schematic shown in Figure 6 could easily become
part of this system, with the spare digital 1/O of
the MCS48 used as an interface to the control
panei. The simplicity of this system is clouded by
the flow transducers, which are assumed to be not
only nonlinear but also to require individual cali-
bration (this is not an unreasonable assumption for
aflow transducer). By usingatable look up process
and an 8748 the flow transducers can be calibrated
and the results of the calibration tests stored
directly in tables in the 8748. (The 8748 has a
PROM in place of the ROM of the 8048 and thus
makes such 'one off” programming practical.)

The results which might be obtained from calibra-
ting one of the flow meters is shown in Figure 9.
The results are plotted as gals/hour versus the
measured voltage generated by the transducer. The
voltage is shown in hexadecimal form so that it
corresponds directly to the digital output of the
analog to digital converter. The flow required to
generate seventeen evenly spaced voltages (OH-100H
in steps of 10H) has been measured and plotted.
This information is shown in tabular form in
Figure 10. It is necessary to generate a program
which will convert any measured input from OOH
to FFH into the flow in units which can be inter-
preted by a human operator. This can easily be
done by simple interpolation.

FLOW (GAL/HOUR)

) G T T S H Y B Y Y B B
00 10, 20, 30, 40, 50, 60, 70, 80, 90, AQ, 80, CO, DO, EO, FO, 100,

\

Figure 9. Flow Calibration Curve

TRAN 3DUCER
VOLTAGE (HEX)
MEASURED FLOW
{GAL HOURI

00 [10]| 20|30 40‘50 60| 70 | 80 90‘AO BO‘CU DO| EO| FO | 100

0 |1w)22(26 30|30 38|40 | 4142 (43 45|48 43 { 53| 5G [63

Figure 10. Tabulated Flow Data

The eight bits of independent variable (voltage) can
be looked on as two four bit fields. The most signi-
ficant four bits (7-4) will be used to retrieve one of
the table values. The lower four bits (3-0) will be
used to interpolate between this value and the
value retrieved from the next higher location in the
table. If the upper four bits are given the symbol |
and the lower four bits the symbol N, then the
interpolation can be expressed as:
N
F(x) = F() + 16
Where x is the measured voltage and F(x) is the
corresponding flow.

If, as an example, the transducer voltage was
measured as 48H then the flow (ref. Figure 10)
would be:

[F(I+1) - F(D]

F=30 + % (34-30) = 32

A subroutine which implements this calculation is
shown in Figure 11. Beforeit is called the indepen-
dent variable (V) is placed in the accumulator and
register R1 isset to point at the first value in the
table. Aside from simple additions and subtractions
the only arithmetic required is to multiply two
values and then divide them by 16. The multiplica-
tion is handled via a subroutine which is also
shown in Figure 11. The division by 16 can be per-
formed by a four place right shift followed by a
rounding operation. The routine shown will handle
a monotonic increasing function of a single inde-
pendent variable. Fairly simple modifications are
required for nonmonotonic functions. Functions
of two variables can be handled by interpolating on
a plane rather than along a straight line. Although
this is more time consuming, requiring an inter-
polation for each of the independent variables and
a third to interpolate the final answer, it il
provides a simple means of quickly calculating the
required function. The use of tables can offer a
powerful technique for function evaluation to the
designer.

RECEIVING SERIAL CODE—-BASIC
APPROACHES

Many microprocessor based systems require some
form of serial communication. Serial communica-
tion is extensively used because it alows two or
more pieces of equipment to exchange information
with a minimal number of interconnecting wires.
The minimization of interconnecting wires results
in simpler, cheaper, interconnects because fewer
(or smaller) cables and connectors are required.
Since the required number of drivers and receivers
required is reduced, it can become economically
feasible to provide much higher noise immunity

LC W) SEy SOURCE STALEMENT
D ; RRRRRARARE AR AR AR AR AR AR RR AR
1
2 ; APPROX
3 A1 ENTRY Rl POINTSAT TABLE
4 A HAS INCEPENDANT VARIABLE
8 0 e———
9 : EUALES
18 - ----ee-
11
veoe 12 RX¢ B R@ ; POINTER 8
bbbl 13 KXl B Rl ; POINTER 1
woB2 14 AEX ey K2 ; EXTENSION OF A REGISTER
oe03 15 COUNT B R3 : COUNTER
¢dpd 16 TEMP EQU R4 ; TEMP STORAGE
17
18 + mmmecmmccma——
19 ; APPRUXIMATIUN
2+ e
21
uldy 22 OKG 1800
23 ; POINT RX@ AT TEMP
vlow B8Y4 24 APROX: KWV RXQ 4 TEMP
25 ; TEMP=N AND @FhL
26 ; A=P AND OFH
uly2 BOBD 21 Hov uRXY, B@
vlod 30 28 XCHD A, URXD
¥1B5 47 29 SWAP A
3u ; RX1=BASE+A
vle6 69 N ADL Ay RX)
8187 A9 32 MoV RX1,A
33 ; KX1=TABLE (P)
34 ; ASTRABLE{P+1)
©198 £3 35 MOVER A,wA
vl09 29 36 XCH A, RXL
wlea 17 37 InC A
vleB £3 38 MOVP3 A,EA
39 ; ASTABLE (P+1) ~TABLE (¥)
Qlac 37 48 CPL A
016D 69 41 ADD A,RX1
016E 37 42 CPL A
43 : ASN*A/16
vl 3410 44 CALL MULY
G111 Bb82 45 MOV RAH, #ALX
vl13 3 46 XCHD A, ekxd
0114 47 47 ShAP A
8115 A 48 XCh A,REX
0116 71y 49 JB3 ADJUST
ulls 2A 52 XCh A,AEX
9119 2A 51 ALJUS1: XCH A,AEX
OllA 17 52 INC A
53 ; ASA+1ABLE(F)
yllE 69 54 ADC A RX1
55 ; RETURN

e oal SEY SOURCE STATEMENT
6llC 83 56 KET
51
58
L ———
611 ; MULTIPLY
6l + emmme-
62 ; SET UP CWNT AND ALK
¢11D BB08 63 MULT: MOV COLNT 48
U11F BABD 64 MOy AEX, (0
65 o CLEAR CARRY
vl2l 97 66 LOUPA: CIR <
61 ; |F MULIPLIER{®] <> | ThkN SmIFT PRODUCT
9122 1228 68 LOurB: JBR S5UM
vl24 2a 63 XCH A AEX
25 67 70 RRC A
08126 2A 71 XCH A AEX
v.27 67 12 REC A
73 ; LOOP UNTIL DONE
9128 £R2Z 74 Owe COUNT, LOOEB
W27 83 75 ReT
76 ; LLoE ADD MULTIPLIEK AND hIFT PROCUCT
8128 27 71 SsUbiz XCr A ALX
vl2C 64 7b ADD A, URXE
v12D 67 79 RKC A
612k 2A L XCn A AEX
pler 67 81 RKC A
82 i LLOP UNTIL DOME
013 £BZ] b3 Iz CLLNT , LLOPA
vlic b3 84 ReT
85
86
87 + —mmmmmmmmmmmmo—mem o
88 ; 1ABLE 'TU TEST PROGRAM
§9 ¢ memwmrommmomoe e
9%
PR 91 KRG 38en
92
@380 @ 94 TABLE: DB 00 ; THIS TABLE 1S FROM FIG 10
08331 @A 94 Ds 1
©8382 16 95) 22
0363 1A 96 2} 26
8384 1E 97 D8 38
D385 22 98 pB 14
8386 26 99 DB 38
@387 28 100 o} 49
8388 29 1111 e8] 41
9389 2A 102 jol:} 42
238A 28 103 e 43
@388 2D 104 a2} 45
©38C 30 105 DB 48
@380 31 1Ue6 B 49
D36E 35 187 >3} 53
@36F 38 168 DB 56
083%0 3F 109 D& 63
110
111 END

Figure 11. Table Lookup With Interpolation

with more sophisticated (and expensive) line
terminators. The final, and usually most persua-
sive, argument in favor of serial cornrnunication
is that it may be the only method available to
accomplish the job. The obvious example of
this is telecommunications where it is necessary
to encode paralel information into serial format
in order to communicate via the telephone net-
work. The intent of this section is to show how
the facilities of the MCS-48™ can be brought to
bear on the problem of serial communication.

B E 2
S @ 3
= S o
<3 - oz
w< Q RE
—_———— A
L L LA A A

- T
0 rDT D2 D3 D4 Db L6 D7 D8 J
—1 | | I I | L

Figure 12. Serial ASCII Code

Probably the most common form of serial com-
munication is that used by theobiquitousTeletype-
serial ASCII. Thisformat, shown in Figure 12, con-
sists of a START bit (0 or SPACE) followed by
eight data bits which are in turn followed by two
STOP bits (1 or MARK). In actual practice the

eighth data bit usually consists of even parity on
the remaining seven data bits; for the purposes of
this discussion the eighth bit will be considered
only as data. A minor variation of this format
deletes one of the STOP bits. An algorithm which
might be used to sample serial data under software
control using a microprocessor is shown in Figure
13. Th: basic intent of this algorithm is to mini-
mize the effects of distortion and transmission rate
variations on the reliability of the communication
by sampling each data bit as close to its center as
possible. Upon entry to this routine the software
first samples the incorning datain a tight loop until
itissensed asa MARK (logical one). As soon as a
MARK is detected, asecond loop isentered during
which the software waits until the received data
goes to a SPACE (logical zero). The purpose of this
construction is to detect as accurately as possible
the leading edge of the START bit. Thisinstant of
time will be used as a reference point for sampling
all of the following bits in the character. Aiter
sensing the leading edge of the START bit a wait
of one half the expected bit time is implemented.
The period of the incoming signal is called P for
convenience. At the end of this wail theserial line
is tested—if it is MARK then the START bit was

SERIALIN

SHIFT
FBUF ERO
BUFFER

SET
ERRCR

Figure 13. Sample Serial Input Routine

invalid and the process isreinitialized. If thelineis
still a SPACE, then the START bit is assumed to
be valid and a delay of one bit time is started. At
the completion of the delay the first data bit is
sampled and a new delay of onebittimeisinitiated.
This process is repeated until al eight data bits
have been sampled. Thelast bit sampled is checked
to determine if it isavalid STOP bit (a MARK). If
it is, the character is assumed to be valid; if itis
not, the character has a framing error and is pro-
bably invalid. A listing of a program which imple-
ments the above procedure is shown in Figure 14.

A disadvantage of the approach outlined in Figure
13 is that while the processor is inputting data
serially it must totally dedicate itself to this task.
Accurate timing can only be maintained if the
program remains in a tight wait loop without
allowing itself to be diverted to other functions.
During reception of a character from a Teletype

the processor will spend only a 100usecs or so pro-
cessing data and the rest of the 100 millisecs wait-
ing to do the processing at the right time. This lack
of efficiency (approximately 0.1%) in the utilization
of processing power is why devices such as the
8251 USART find broad application in micro-
processor systems.

Loc o8l SEQ SOURCE STATEMENT
B ; RRREEE AR AR AN PITTTIeee
I
2 SIMPLE SERIAL INPUT
3 -THIS CUDE ASSUMES RAD 1S
4 CONNECTED TO PIN T@
§ 0 kRmekknd ok AR KR KR
7
I —
9 ; EWATES
19+ ——mmmm—m
11
(T2} 12 COUNT EQU R2 ; COUNTER
2] 13 BIING B 8 ; NO OF BIIS TO RECEIVE
mm2 14 DLYHI EQU 2 i HI DLY COUNT
0UAd 15 DLYLO B PAdd ; LO DLY COUNT
16
P00 17 ORG 1epH
18 ; LOOP UNTIL RXD=MARK
vleg 26011 19 SERIN; JNT® §
20 ; NOW LOOP UNTIL RXD=SPACE
#1902 3602 21 JT8
22 ; WAIT 1/2 BIT TIME
2lpd 341C 23 CALL HBIT
24 ; 1k FALSE START REINTIALIZE
01116 3600 25 J18 SERIN
26 ; ELSE SET BIT COUNT
0108 BAKY 27 MOV COUNT, #B1TNO+1
28 ; WAIT 1 BIT TIME
#10a 341C 29 LOOP: CALL HBIT
©10C 341C kL] CALL HBIT
31 : DECREMENT COUNT
32 ; - IF 2ERO EXIT WITH CARRY SET ON
33 ; —FRAMING ERROR
010E EALS 3 WNZ COUNT,LOAD
0110 97 35 CLR c
9111 3614 36 JTd EXIT
8113 A7 37 cPL c
8114 83 38 EXIT: REl
39 ; LOAD DATA
0115 97 4@ LOAD: CLR C
0116 2619 41 JNTG LLLA
8118 A7 42 CEL c
0119 67 43 LLLA: RIC A
a4 ; AND LOOP
011A 2482 45 Jw LOOP

S R

48 ; DELAY ONE HALF BIT TIME

R ———

S1 : SET UP LOOP
911C BCB2 52 HBIT: MOV R4, ¥DLYHI
53 ; LOQP M | L TIME DONE
@11E BBA4 54 HLOOEF: MOV R3,4DLYLO
0120 EB28 35 WNZ R3,$
9122 ECLE 56 DINZ R4, HLOOP
9124 83 57 RET
58 ; END OF PRUGRAM
59 END

Figure 14. Simple Serial Input

The 8251 USART is simple to interface to the
MSC48. Figure 15 shows such an interface. The
USART requires a high speed clock (CLK), an ini-
tilization signal (RESET), data clocks (TxC and
RxC), and data in order to operate. A circuit
showing the connection of an 8748 to an 8251
USART isshown in Figure 15. In the circuit shown
the high speed clock (which is used for internal
sequencing by the USART) is provided by con-

5.9904 MHz

L

X1
35|,
—
24 P24
23
P24 . E P2
P20 2| ..}
2 20
1] 6
_ 34 P17 PP oles Vee [2——+5v
33 37 12 = o K
32 P16 P26 " o c/D G 1
P15 pos F———— RESET -
kL P [AN 557 Jo2—
3 — 3| == P 4
Py7. 0 P13 guag RO LE——Fe B TR 02—
P 29 19 8 —— LK
10 P12 Dy Dg7 CTs
28 18 7 i 23
P11 D6 Dge RTS
27 7 6 8251
» P10 Dg 5 Dgs }
ALE o, F& Dga .o l2
25 o. |8 2 |, 1488
a0 "O° 3 fa I s ‘
+5V Vee D, 3 5 Dg2
26 Voo D, 1 2 081 N E
5 ss o. J2 27 080 x D ——O{ 1489
o e |
. 9
9 PSEN 71 }ﬂ TxC
20 1 2] S ED
S Vss To
[
RESET

Ul

A P 7 15

c'D Cc B ep
+16/0R 11 ET 10
74161 2

2
88 8 3cin 8§83 écctrfq
1111213 14]1 11{12 13 14]1 1112113
+5V +5V
alsls BREE 8
w0 mlgl z Oglgl 8

75/110
1200

o0-0-0-0—————— 000

*install Jumper for.110 Baud Operation (= 11)

Figure 15. MCS-48™ to 8251 Interface

necting the CLK signal of the USART to the T(
pin of the MCS48. The TQ pin of the MCS-48
can either be used as a directly testable input pin
or it can become, under program control, an out-
put pin which oscillates at one third of the crystal
frequency. (Note that once this pin is designated
by the software to be an output it will remain so
until the system is reset.) In Figure 15 the crystal
frequency is 5.9904 MHz so the clock provided to
the 8251 is 1.9968 MHz, which conforms to its
specifications.

The initialization signal to the USART (RESET) is
provided programmatically by manipulation of bit
S of port 2. It was necessary to place the reset of
the 8251 under program control for two reasons.
The first reason is that the MCS-48 does not supply
a reset signal to other devices. The reason for this is
that it was felt to be more useful to provide another
pin of I/O function instead of a RESET OUT signal

11

from the MCS-48. Although this situation could
have been circumvented by the use of an externally
generated reset which drove both the MCS-48 and
the 8251, the second reason for program control of
the reset to the USART still stands. The USART
requires the presence of the CLK signal during
reset in order to properly initialize itself. The
ENTO CLK instruction which the MCS48 must
execute before the 8251 will receive the CLK can
obviously not be executed until after the system
reset has ended. Reset of the USART can be
accomplished by the following code segment:

ENTO CLK ; TURN ON CLOCK
ORL P2, #00100000B ; START RESET
MOV R2, #DELAY ; DELAY USART

LOOP: DINZ R2, LOOP ; RESET TIME
ANL P2, #11011111B ; END RESET

This code first enables the clock, then asserts the
reset signal of a time period determined by the

constant DELAY. The delay invoked is (10 +
5*DELAY) microseconds for DELAY >0. The
USART requires a reset of approximately 6 CLK
periods so DELAY is chosen to be 1 which ensures
adequate reset timing. Note that for delays this
short, NOP instructions could also be used to time
the pulse.

The data clocks required by the USART are pro-
vided by the modem if the USART is operated in
the synchronous mode. In the more commmon
asynchronous mode, however, these clocks must
be provided by circuitry associated with the 8251.

The 5.9904 MHz crystal was chosen because the
resulting 1.9968 MHz clock to the USART can be
evenly divided to provide transmit and receive
clocks to the USART. Assuming the USART is in
the x16 mode (i.e. it requires data clocks 16 times
the baud rate) the 1.9968 MHz signal can be divided
by 13 to generate the proper clock rate for 9600
baud operation. This 9600 baud clock can be
further divided to give 4800, 2400, 1200, 600, and
300 baud signals. The 1200 baud signal can be
divided by 11 to give a 109.1 baud signal which is
within 1% of the 110 baud required by Teletypes.

The MCS-48 communicates with the 8251 in a
memory mapped mode (i.e. as if the 8251 were
external RAM). The instructions available to do
this are MOVX 0Rj, A which stores the contents of
the accumulator at the external RAM location
addressed by Rj (j=0 or 1), and its complement,
the MOVX A, @ Rj instruction which moves data
from the external RAM into the accumulator.
Since the MCS-48 multiplexes addresses and data
on the same eight bit bus an external latch would
be required in order to address the USART with

LC SEQ SOURCE 5TATEMENT
0
1 ; SERIAL TEST
2 ; THIS CODE INTIALIZES THE USART
3 ; AND TRANSMITS AN INCREMENTING
4 ; PATTERN. HARDWARE SHOWN IF FIG 15.
5
6
[R p——
8 ; EQUATES
[P ——
10
0020 11 MCLR EQU 208 ; USART RESET ADDRESS
oenl 12 DLY EQU 0ln ; USART RESET DELAY
007F 13 uCoN EQU 7FH ; USART CONTROL ADDRESS
PBCE 14 MODE BQU BCEH ; USART MODE
0021 15 CMD BEQU 218 ; USART CMD
0O7F 16 STAT EQU TFR ; USART STATUS
2001 17 VAL BQU Rl ; TEST VALUE
90BF 18 MASK EQU @BFH ; CHANGES CMD TO DATA CHANNEL
19
9100 20 ORG 100H
21 ; TURN ON CLOCK
22 ; AND RESET USART
9108 75 23 TEST: ENT® CLK
6191 8A20 24 ORL P2, #MCLR
0193 BARL 25 MOV R2,#DLY
0185 EABS 26 LOOP: DJINZ R2, LOOP
8187 SADF 27 ANL P2, # (NOT MCLR)
28 ; SELECT USART CONTROL
9109 237F 29 MOV A, $UCON
010B 3A 38 OUTL P2,A
31 ; SEND MODE AND COMMAND
918C 23CE 32 MOV A, #MODE
010E 990 33 MOVX €RG,A ; (CONTENTS OF R@ UNIMPORTANT)
910F 2321 34 MOV A, #CMD
9111 99 35 MOVX €R2,A
36 ; DO FOREVER
37 ; SELECT USART STATUS
38 ; IF TXRDY=1 THEN
39 i DO;
40 H OUTPUT VALUE;
41 H INCREMENT VALUE;
42 H END;
43 ; END;
9112 237F 44 TLP: MOV A, #STAT
6114 3A 45 QUTL P2,A
9115 80 46 MOVX A,ERr8 ; (CONTENTS OF K@ UNIMPORTANT)
0116 67 47 RRC A
98117 E612 48 JNC TLP
0119 F9 45 MOV A,VAL
@11A 9ABF 50 ANL P2, #MASK
@11C 90 51 MOVX ©RO,A
¢11p 19 52 INC VAL
@11E 2412 53 JMP TLP
54 ; END OF PROGRAM
55 END

Figure 16. 8251 Test Program

RO or R1. In order to minimize the circuitry in
Figure 15 an approach utilizing some of the I/O
pins of the MCS-48 to address the 8251 was chosen
instead. By connecting the chip select (CS) input
of the 8251 to bit 7 of port 2 (P27) and similarly
connecting the C/D address line of the 8251 to bit
6 of port 2 (P26) it is possible to address the 8251
without using RO or R1. The instruction sequence
to access the 8251 is to first reset P27 and set P26
to the appropriate state, use a MOVX instruction to
perform the appropriate operation, and then
finally set P27 to deselect the 8251. As a concrete
example of this addressing, Figure 16 shows the
code necessary to initialize the 8251 and output an
incrementing test pattern on a status driven basis.

If more than one 8251 were to be added to the
MCS-48, or if other types of peripheral circuitry
would be required (e.g. an 8253 timer to generate
the data clocks) it would probably become desirable

12

to add the circuitry necessary to use RO or R1 to
address the peripheral devices. The circuitry which
has to be added to Figure 15 in order to make use
of RO or R1 to address the USART is shown in
Figure 17. Note that only the changes to Figure 15
are shown. The additional component required is
the 8212 eight bit latch. This latch is loaded, when-
ever a valid address is on the bus by the Address
Latch Enable (ALE) signal provided by the MCS-
48. During an external read or write cycle this
address is used to address the 8251 in a linear
select mode. In the circuit shown, the 8251 will be
selected by any address with bit 1 a logical zero
(XXXXXXO0X) and the selection of control or data
transfer (C/D) will be based on bit zero of the
address obtained from RO or R1. Figure 18 shows
the program of Figure 16 modified to utilize the
addressing inherent in the MOVX instructions.

—1 P27 WR WR
—] P26 RD RD
1=
qF__; b5,
+5V—AAA——1 MD
13 8212
ALE DS,
22
>l o' DOg |—
DIy DO; |—
18
pve 10 DOg |—
8748 5] o' DOg |— 8251
— ot DO4 b—
R D03 —
e DO, 1 cs
— oy, 00y — ¢/6
Dy DBy
Dg DBg
Ds DBy
Dy DBq
D3 D83
D, D82
Dy DBy
Dy DBg

Figure 17. Modified MCS-48 to 8251 Interface

RECEIVING SERIAL CODE—A MORE
SOPHISTICATED ALGORITHM

Although the USART does an admirable job of
performing the serial I/O function for the MCS-
48™ | there are some situations where it can not be
used. These situations may be caused by economic
factors, such as an extremely cost sensitive design,
or because the code which must be utilized cannot
be accommodated by the USART. An example of
of such a code will be discussed later. Recall that
the principal objection to the approach to serial
input shown in Figure 13 was that it consumes
much of the processor’s power by merely spinning
in loops in order to wait preset time delays.

e SEQ SOURCE STATEMENT
b ; —
1 ; SERIAL TEST
2 ; MIS CODE INTIALIZES THE USART
3 ; AND TRANSMITS AN INCREMENTING
4 ; PATTERN, HARDWARE SHOWN |F FIG 17.
5
6
7w me—
8 ; EQUATES
G . mmmm———
10
0020 11 MCLR BQU 20H ; USART RESET ADDRESS
"'’} 12 oy EQU 218 ; USART RESET DELAY
0003 13 UCON EQU w;H ; USARI CONTROL ADDRESS
@8CE 14 MOCE BU aceH ; USARI MODE
0021 15 CMp ey 2H : USART CMD
8083 16 STAT BU a3 ; USART STATUS
fedl 17 VAL EQU Rl ; TEST VALUE
8080 18 DATA j20.0) 80 ; USART DATA ADDRESS
19
a1ed 28 ORG 188K
21 5 TURN ON ALXK
22 i AND RESET USARI
blow 75 23 TEST: ENTB CLK
8101 &a28 24 ORL P2, $MCLR
8103 BAD1 25 MoV R2, $DLY
@185 EADS 26 LOoop: DINZ R2, LOOP
8107 9ADF 27 ANL P2, 4 (NOT MCLR)
28 ; SELECT USART CONTROL
8189 2303 29 MoV A, #UCON
38 ; SEND MOCE AND COMMAND
plee XL 31 wov A, #M0DE
¢1eD 99 32 MV «REB A ; (CONTENTS OF RO UNIMPORTANT)
@10E 2321 33 Moy A, #CMD
@119 90 34 MOVX 8RD,A
35 ; M FOREVER
36 : SELECT USART STATUS
37 : | F TXRDY=1 THEN
38 H DO;
39 OUTPUT VALUE;
40 INCREMENT VRUIE:
41 H END;
42 5 END;
9111 2383 43 TLP. MV A, #STAT
P113 8¢ a MOVX A,€R0 ; (CONTENTS OF RE UNIMPORTANT)
B1l4 67 45 RRC A
9115 E611 46 INC TLP
2117 F9 a7 MOV A, VAL
2118 BBOY 48 MOV RO, §DATA
B11A 90 49 MOVX €R8, A
¢11B 19 50 INC VAL
211C 2411 51 Jmp TLP
52 ; END OF PROGRAM
53 END

Figure 18. Modified 8251 Test Program

The timer resident on the MCS-48 provides a solu-
tion to this problem. Instead of spinning inaloop
the program can set the timer for a given interval,
start it, and proceed to other tasks. When the timer
overflows, an interrupt will be generated to notify
the software that the present time period has
elapsed. An extension of the algorithm of Figure
13 which uses the timer in this fashion in shown in
Figure 19. Thisalgorithm isidentical tothe preced-
ing one up until the detection of the leading edge
of thestart bit. At this point the timer is set to one
half of the bit time (P) and a return is made to the
calling program which can start additional process-
ing. At the completion of this time interval a
timer overflow interrupt is generated. When the
first interrupt is detected, the serial lineis checked
to ensure that it isin a spacing condition (valid
START bit). If it is, thetimer isset to P (to sample
the middle of the first data bit) and a return is
made to the program which was running when the

interrupt occurred. If theserial line has returned to
the MARK state, a status flag is set to indicate an
error and a return ismade. On subsequent interrupt
detection, the data is sampled, the timer is reiniti-
ated, and control isreturned to the program which
was running when the interrupt occurred. When
the last (i.e. STOP) bhit is detected a completion
flag is set and a return is made to the program
running when the timer overflow occurred. By
periodically checking the error and completion
flags the running program can determine when the
interrupt driven receive program has a character
assembled for it.

SER({AL IN

TIMER
OVERFLOW

SET X IMER
FOR P

SHIFT

RxD INTO
BUFFER
SRACE YES
. NO SET
SPACE COMPL:ZTION
- FLAG
Yo
SET SET SET
ERROR TIMER ERROR
FLAG ToP FLAG

Figure 19. Improved Serial Input Routine

Using thetimer to implement time delays as shown
in Figure 19 results in considerable savings in
processing time; two problems remain, however,
which must be solved before an adequate software
solution to the problem of receiving serial code can
be found. The first problem is that even though the
delays between bit samples are implemented via
the timer rather than program loops the loop con-
struction is still used to detect the leading edge of

the START bit. Although this results in the waste
of processing power, the second problem is even
more serious. For longer messages the required
accuracy of the clocks becomes more and more
stringent. Using the sampling technique discussed
a cumulative error of one haf a bit time in the
time at which a bit sample is taken will result in
erroneous reception. The maximum timing error
which can be tolerated and yet still allow proper
detection of an 11 bit ASCII character is then:

0.5*BIT TIME _0.5P
CHARACTER TIME 11P

Emax = = 4.5%

where P is the period of single bit. The correspond-
ing calculation for a 32 bit character yields:

0.5P _
32P

Since lhis calculation does not allow for distortion
on the signals, it is obvious that either extremely
stable clocks will be required or a more tolerant
algorithm must be devised. This problem is parti-
cularly serious at relatively high baud rates where
the resolution of the counter (80usecs witha6 MHz
crystal) becomes a significant percentage of the
period of the received signal. At the 110 baud rate
of the Teletype the 80usec resolution of the clock
allows a maximum accuracy of 0.33%; at 2400
baud thisfigureisreduced to 3.8%.

Emax = 1.6%

D
X
—
2
Z2
ma

PORT 1

> BUS

T T

Figure 20. Detecting RxD Edges

Both efficient detection of the start bit and increas-
ed timing accuracy can be obtained if the MCS48
can detect edges on the incoming received data
(RxD). A hardware construct which alows this
isshown in Figure 20.

The received data (RxD) is Exclusive NORed with
bit seven of port two and fed into the TEST (T1)
pin of the MCS-48. By manipulating P27 the_pro-
gram can now cause T1 to be either RxD or RxD.
(f P27 =1 then T1 = RxD; if P27 = 0 then T1 =
RxD.) Note that not only can T1 be tested directly
by the software but that it is the input which is
used when the MCS-48 timer isin the event counter
mode. The significance of this will be discussed
later. The relationship between T1, P27, and RxD
is given by the Boolean expression:

Tl = P27 - RxD+ P27 + RxD

Figure 21 flowcharts a means of utilizing this hard-
ware construct to avoid the necessity of wasting
time in program loops to detect the leading edge of
the start bit. The receive operation is initialized
when the program desiring to receive serial data
calls the INIT subroutine (Figure 21a). Since INIT
is going to manipulate the timer the first action it
performs is to disable the timer overflow interrupt.
Its next step is to set P27 to a logical 1. Setting
P27 in this manner causes the TEST 1 input to the
MCS48 to follow RxD. By setting up the receive
circuitry in this manner a high to low transition
will occur on TEST 1 when the RxD goes from
the MARKING to SPACING state (i.e. the START

DISABLE TOFLO

P27 =1

TIMER = 1

STRT EVENT CNT

RDF =1

SET BCOUNT

Figure 21a. Interrupt Driven Serial Receive Flowchart

TIMER
OFLO

SELECT RB1

START

DISABLE TOFLO

Y

{ e)

Figure 21b. Interrupt Driven Serial Receive Flowchart

START

| TIMER = %P

START T

| BCOUNT [6] =0
A

|

i}

y L

EXIT

A = ATEMP

Figure 21¢. Interrupt Driven Serial Receive Flowchart

bit occurs). By setting the timer to OFFH and
enabling it in the event count mode, the INIT
routine sets up the MCS48 to generate a timer
overflow interrupt on the next MARK to SPACE
transition of RxD (the TEST 1 input doubles as
the event counter input). Before returning to the
calling program the INIT routine setsaflag (RDF)
which will be cleared by the receive program when
the requested receive operation is complete. INIT
also sets a value into a register called BCOUNT.
The receive programinterprets BCOUNT as follows:

BCOUNT | 7|6 |54 | 3|2 |1| 0
N
’ [Number of bits remaining
| to receive
If set indicates that the
START bit has not yet been
detected

If set indicates that the
START bit has not yet been
verified

In order to request the reception of the 11 bit
ASCII code INIT would set BCOUNT to 11001011B.
Thestart bit has been neither verified nor detected
and 11 bits (1011B) are required.

After INIT is called the reception of theindividual
serial data bits will proceed on an interrupt driven
basis until acomplete character has been assembled.
When this occurs the interrupt driven program will
set the RDF (Receive Done Flag) to a zeroto indi-
cate that it has completed the requested operation
and then terminate itself. The procedure which is
used to accomplish this is shown in Figures 21b
and 2lc.

Since al operations of this program are the result
of the occurence of a timer overflow interrupt, it
is necessary to briefly review the interrupt structure
of the MCS48. There are two sources of interrupt;
an external interrupt whichisthe result of alogical
zero signa applied to the INT pin of the MCS-48§,
and an internal interrupt which is caused by a
timer overflow condition. The timer overflow
occurs whenever the timer is incremented from
OFF H to zero whether it be in the timer or event
count mode. When one of these events occurs the
hardware in the MCS-48 forces the execution of a
CALL. This CALL has a preset address of location
3if it is due to the external interrupt and location
7 if it isdue to a timer overflow. If both of these

events occur simultaneously the external interrupt
will take precedence. The CALL automatically
saves the contents of the program counter for the
running program and its PSW (program status
word) on astack the hardware maintains in RAM
locations 8-23. Although the hardware saves the
program counter and PSW, it remains the responsi-
bility of any interrupt driven software to make
absolutely certain that it does not modify any
memory locations or registers which are being
used by the main program. The most convenient
way of ensuring thisin the MCS-48 is to dedicate
the second bank of registers (RBI) to theinterrupt
driven program. One of these registers has to be
used to save the accumulator (which isnot part of
the register bank) but seven registers remain;
including two which can be used as pointers to the
rest of the RAM (RO and RI). Note that if this
approach is taken then these registers have to be
allocated between the program which services the
external interrupt and the one which services the
timer overflow. Thisproblemissomewhat alleviated
by a hardware lockout which prevents the timer
overflow interrupt from interrupting the external
interrupt service routine and vice versa. This is
implernented by locking out new interrupts between
the tirne an interrupt is recognized and the time a
RETR instruction is executed. The RETR instruc-
tion is like a normal RET (return from subroutine)
except that the PSW as well as the program counter
is restored. The RETR instruction can be very
much thought of as a return from interrupt instruc-
tionin the MCS48.

The receive program under discussion uses register
bank 1 in the manner described. Whenever a timer
overflow occurs (e.g. on the next MARK to SPACE
transition of RxD after INIT is called), control is
passed (by the hardware generated CALL) to the
point labled TIMER OFLO in Figure 21b. This
program segment immediately selects register bank
1 (RB1) and then saves the accumulator (A) in a
location called ATEMP which is actually R7 of
RB1. The program then tests bit seven of BCOUNT
(R6 of RB1) to find out if a START bit has been
verified (i.e. the edge of the START bit has first
been detected and then verified to still be a SPACE
one-half a bit time later. If BCOUNT [7] isazero
the START has been verified and the program pro-
ceeds to set the timer to P (the period of the serial
bit), get the current serial data into the carry bit,
and then shift the carry bit into a buffer. After
saving the data the program decrements BCOUNT
and testsit for zero. If BCOUNT is zero the receive
operation is complete so the program sets RDF to
a zero and disables timer overflow interrupts.
Whether or not BCOUNT is zero, control is passed
to EXIT where A is loaded with ATEMP and a

10

RETR is executed. Note that since the state of
the flip flop which selects RB1 is saved as part of
the PSW, the execution of RETR automatically
selects the register bank which was active when
theinterrupt occurred.

If BCOUNT [7] isstill set when it is tested, con-
trol is passed to START (Figure 21c) where bit 6
is tested to determine if the START has been
detected yet. If BCOUNT [6] is set it indicates
that this is the first occurrence of a timer overflow
since the receive process was initialized by the
INIT subroutine. If thisisso, the program assumes
that the START bit has just started and therefore
it sets the timer to one-half of a bit time (1/2 P),
starts the timer in the timer mode, and clears
BCOUNT [6] to indicate that the START bit has
been detected. The next overflow will again result
in the execution of the program in Figure 21b and
again BCOUNT [7] will be found to be set. This
time, however, BCOUNT [6] will be reset and the
program will know that it should test the START
bit to ensure that it is still a SPACE. This test is
performed and if successful the timer is set for a
bit period P and BCOUNT [7] is reset so that on
the next occurrence of a timer overflow the pro-
gram will know that it should start assembling
serial bits into a character. If the test isunsuccess-
ful, the subroutine INIT is used to reinitialize the
receive program. In either case control is passed to
EXIT where a return from interrupt mode occurs.

This receive program, listings of which appear in
Figure 22, allows the reception of serial characters
transparently to the main running software. After
INIT is called the main program has only to check
RDF periodically to find out if thereisdatain the
buffer for it. It would be fairly easy to 'double
buffer' this operation by providing a buffer which
the receive program uses to deserialize the incom-
ing code and a second buffer tostore the assembled
character. If the program would reinitialize itself
upon completion, the reception of a string of
characters could proceed in much the same way as
it would if astatus driven USART were being used.

Although this program solves the first problem of
software controlled reception (lack of efficiency)
the second problem—sensitivity to frequency
variations—remains. An example of a code which
would be susceptible to this problem is the 31,26
BCH code commonly used in supervisory control
systems. (A supervisory control system is, in
essence, a remote control system which allows a
human or computer operator the control of a
system via a serial communicationslink.) The BCH
codes are used because of their error detection
capabilities and are a class of cyclical redundancy

we @ SOURCE STATEMENT

P
e

AR

SERIAL INPUT USING M E MCS-48
‘THIS CODE ASSUMES HARDWARE
SHOWN IN FIG 20. TO USE
THIS ROUTINE CALL INIT,

WHEN RDF=Q THE ASSEMBLED
CHARACTER WILL BE IN SERBUF

LIRS NNy)

R L T P E

0007 R7 : STORAGE FOR A DURING INTERUPT
Bee6 H6 ; CONTAINS NUMBER OF BITS IN MSG
6002 R2 ; UTILITY COUNTER
00ve RO ; POINTER
vees 8 : NUMBER OF BITS
8829 41 ; SAMPLE PERIQD
0828 20H ; SERIAL BUFFER
w24 24H ; RECEIVE DONE FLAG
26 ; CONITROL PASSED HERE WEN TIMER OFW OCCURS
27 -
28
29 QRG 07H
30 o /™ENTER INTERRUPT MODE*/
©¥Bv7 DS 31 MMVEC: SEL RB1
QbU8 AF 32 My ATEMP, A
33 ; |F BCOUNT(7]=8 THEN
Vo8BS FE 34 MoV A, BOOUNT
WeBA F223 35 387 START
36 7 DO
37 : TIMER=P;
@eeC 2307 38 MoV A, 4-p
BYOE 62 39 MOy T,A
40 H START TIMER
BRBEE 55 41 sLis: STR1 T
42 ; /CARRY=RXD*/
43 : CARRY=F27 XNOR TESTI1;
o180 bA 44 IN A, P2
wBll F7 45 REC A
9812 5615 46 JT1 TISRD
2014 A7 47 (87} <
45 H /*SHIF1 CARRY INTO BUFFER*/
49 i RX@=SERBUF;
58 H RSHFT' MEM (RX9) ;
Wpl5 B820 51 TISRD: MOV RX@, #SERBUE
bol7 28 52 SLOOP: XLH A,ERX0
ol 67 53 RRC A
pv8l9 20 54 XCH A, €RX®
55 H BCOUNT=BCOUNT-1;
56 i | F BCOUNT=8 THEN
B¥lA ER3F 57 WNZ BCOUNT , SEXIT
58 H B
549 H RDF=8;
L) H DISABLE EX IW;
61 H END;
001C BB24 62 MOV RXg, $ROF
WalE 27 63 CLk A
UO1F A8 64 MV ©@RXQ,A
620 35 65 DIS TCNTI
66 : WD:
B2l B43F 61 JMP SEXIT
68 ; ELSE
69 i DO;
7% H IF BCOUNT (6] =p THEN

0923 FE 71 START: MOV A, BCOUNT
po24 D237 72 JB6 SLiC
73 H DOo;
74 ; IF TEST1=0 THEN
0826 5635 75 JTL SLLG
76 H Do;
77 ; TIMER=P;
78 ; START TIMER;
79 H P27=0;
89 N I
81 BCOUNT | 71=0;
82 END;
2028 2307 83 M A 1-P
vuzA 62 84 MoV T,A
2028 55 85 STRT T
202C 9ATF 86 ang P2,47FH
902E 95 87 En 1
OD2F FE 88 MV A,BCOUNT
#9368 537F 89 ANL A 47FH
9832 Ak 90 MOV BCOUNT, A
0833 U43F 91 Jme SUIT
92 USE
93 DO;
94 CALL INIT;
95 END:
0035 1441 96 SLLD: CALL INIT
97 : ELSE
98 H DO;
99 : TIMER=P/2;
100 ; START TIMER;
101 H BCOUNT (6] =8;
102 ; END;
8937 23EC 143 SLIC: MOV A #=(P/2)
8839 62 104 MOV T,A
903A 55 1685 STW T
8038 FE 196 MOV &, BCOUNT
203C 53BF 107 ANL A, 40BFH
083 AL 108 mv BCOUNT, A
109 ; END;
118 ; /*EXIT INTERUPT MODE™/
803F FF 111 SEXIT: MOV A, ATEMP
0048 93 12 RETR
113
114 ;
115 ; INTIALIZE ROUTINE-
116 ; STARTS RECEIVE PROCESS
117 ;
118
119 © INIT:
128 ; PROCEDURE;
121 ; m:
122 DISABLE INTERUPT:;
123 P27=1;
124 TIMER=-1;
125 START EVENT COUNZ;
126 RDF=1;
127 BCOUNT=8CPH OR BiTNO
128 END;
129 ; END INIT;
o041 35 131 INIT: DIS TCNT
2042 8ABG 131 ORL P2,486H
0044 23FF 132 MOV A, 4-1
o046 62 133 MOV T,A
447 45 134 STRT ONT
0846 B824 135 MoV RX®, §RDF
Bp4A BOO1 136 MoV ©RX0, 48 1H
984C BBIE 137 MOV RX#, #1EH ; POINT AT SCOUNT
BOAE BOCE 138 MOV @RX@, # (BCot OR BITNO)
9058 25 139 EN TCNTL
#0851 B3 148 RET
141 JEND OF PROGRAM
142
143 END

Figure 22. Interrupt Driven Serial Receive Program

codes such as those used in synchronousdata com-
munications (e.g. BISYNC or SDLC). BCH codes,
named for their originators Bose, Chaudhuri, and
Hocquenghem, are characterized by having alength
of n=2M-1, The number of redundant check bits
can be mt where t is a positive integer (clearly mt
<n). The 31,26 code fits this format with m=5 and
and t=1. The length of each messageisn=25-1=31
with 5*1 redundant bits, leaving 26 bits available
for data transmission. With an appropriate poly-

17

nominal BCH codes can detect all errorsconsisting
of 2t error bits and all burst errors of mt or fewer
bits. The 31,26 BCH code will therefore detect any
erroneous messages with 1 or 2 errors or bursts of
errors of lessthan 5 bits. The 31,26 format (shown
in Figure 23) requires the reception of a start bit
followed by 31 information bits, clearly beyond
the capability of the USART but perhaps within
reach of a program controlled approach using the
MCS438 itself.

STARTBIT
(¢ PACE)

DATA BITS

STOP BITS
CHECK BITS (MARK}

*/

Y N

T] T T T T T 1 T T T
1 0 [DI D2 L]

T
1

T T T 1 T T T T _ T 7 J ! I
D26] C1 C2 C3 C4 C5
L L1 L L1 1 |] | 1

Figure 23. 31,26 BCH Code

A concept which reduces sensitivity to frequency
deviations and thus allows the reception of longer
codes is shown pictorially in Figure 24. The first
line of this timing chart shows an alternative ones
and zeros pattern on the RxD with a period of 5
milliseconds. The second line shows that by
sampling at a period of exactly 5 milliseconds the
data can be properly interpreted. The third and
fourth lines show the effects of sampling with a
period of six and four milliseconds respectively. In
either case, an error occurs at the third sample
where both periods result in sampling on an edge
of the RxD signal. The third line of Figure 24
shows a hybrid sampling scheme which, based on
some additional information, switches sampling
periods between the two values. As can be seen in
Figure 24, the dataissampled with a4 millisecond
period until the sampling begins to fall behind the
data; st this point the sampling period isincreased
to six milliseconds and the sampling first catches
up and then passes the center point of the data. As
soon as this happens, the sampling period reverts
to the 4 millisecond period and the cycle repeats.
It can be seen that this scheme sets up a pattern
which repeats indefinitely and the data can be
successfully sampled. Note that the sampling pattern
established is alternating periods of four and six
milliseconds. The average period of this pattern, as
might be expected, is Smsec. Line 5 of Figure 24
shows the effect of a change in transmission speed
to a period of 5.5 msec with no change in the
sampling time. The sampling is again successful but
the new sampling pattern is 4-6-6-6; 4-6-6-6, etc.
Note that the average sample is again equal to the
period of the received data (5.5). While this scheme

1. 5msec PERIOD
Smsec LAMPLE

2. 5msec PERIOD
6msec SAMPLE

3. 5msec PERIOD
4msec SAMPLE L1

4. 5msec "ERIOD
HYBRID SAMPLE 4] 6 | 6 14 6 |4] 614] 6141 6

5 5 5msec PERIOD

HYBR D SAMPLE
1476 6,6 6,6, 4,6 6,64,

Figure 24. Various Sampling Alternatives

does seem to work, the question of what additional
information is needed remains.

The MSC-48 must somehow decide when it is drift-
ing out of synchronization and take corrective
action. By referring back to Figure 24 it can be
seen that if the MCS-48 could determine where the
edges of RxD occurred with respect to its sampling
times then the additional information would be
available. As can be seen in the figure the choice of
sampling period can be based on the following rule:

If an edge on the RxD line occurs during the
first half of the current sampling period, then
use the short period for the next sample. If an
edge occurs during the second half of the period,
then use the long sampling period for the next

sample.

If the data on the RxD line does not change, of
course, theMCS-48 will drift out of synchronization
just as the original algorithum did. Aslong as edges
occur on TxD, however, synchronization can be
maintained. To maximize the allowable time
between edges, the following addition could be
made to the above rule:

If no edge occurs on the RxD line during a

sample, then change sanzpling period from short
tolong or vice versa.

Note that this addition to the rule will result in
using an average of the two sampling periods when
no edge occursfor several bit times.

The edges of RxD can be easily detected by the use
of the same structure (the Exclusive — NOR gate)
which was added to the MCS-48 in Figure 20. This
gate, which is used to detect the edge on RxD
which begins the START bit, can naturally be used
to detect any edge. Since the timer is being used to
time the bit period, however, the event count input
(T1) is not useful during the receive itself. By con-
necting the output of this gate, however, to the
INT input to the MCS48 (see Figure 25) it is
possible to detect edges on RxD with the event
counter when the program is trying to detect the
START bit and by the external interrupt when the
program is using the timer to control the sampling
times.

RD
WR

P2 P1s ‘

P P

p2® . + PORT 1
24 13

o

"2 Y1

P Pig

I
L]

T

+5v

[
Yoo
o O
C oo
[RgNgtS
=]
C
=

|”—]—\ ‘

m <

>4

sl

-

%

4

i
o
o
—

Figure 25. Modified Edge Detection

Because of this edge detection it is important to
condition RxD with hardware filters to ensure that
the edges of RxD are clean. Any ringing will cause
repeated CALLs to XISR and probable erroneous
operation. The changes to the START process
(Figure 26¢) aretwo-fold; first the TIMER is set to
one half the average of the two sample periods
when the START bit is first detected (BCOUNT
16] = 1), and second the processing of the edge
information is initialized by presetting SNAP and
clearing P27.

SNAP is preset so that when the reception of data
actually begins (Figure 26b BCOUNT [7] = 0}, the
decision block which tests SNAP against LIMIT
will beinitialized. This block actually compares the
value in SNAP with a LIMIT value which is used to
determine if the sampling point is ahead or behind
the actual midpoint of the seria data. Ii the
sampling is ahead then the timer is set for TMIN;
if the sampling is behind then the timer is set for

A modification to the program of Figure 21 which
implements this new sampling algorithm is shown
in Figure 26. The first deviation from the original
program is the addition of a routine (XISR, Figure
26a which is called when an external interrupt
occurs (i.e. when an edge occurs on RxD). This
routine saves the status of the running program and
then stores the current value of the timer register
in a location called SNAP (R5 of RBI). After
doing these operations the program complements
bit 7 of port 2. Manipulating P27 in this manner
will cause the Exclusive NOR gate to turn off the
external interrupt and will set it up to generate
another interrupt when the RxD line changes again

(has another edge).

(] [(Zr]
=1]
[T.EE\ J [SNAP?T|MER]
[_aDFL:wJ [Af]TEMPJ

SET BCOUNT

RET

<

Hybrid Sampling Flowchart

TIMER
OF Lo EXT
INT

I SELECT R81

ATEMP = A
? 1

RETR,

<

YES

[TIMER = TMIN | TIMER = TMAX I

]]

(SNAP=LIM1T+| l rSNAP: LIMIT - 1 l

‘ START TIMER

| CARRY = RxD I

BUFFER - C
DFCR. BCOUNT

BCOUNT
0

N
NO
' DISABLE EI l
{'
EXIT

Hybrid Sampling Flowchart

START

?
BCOUNT
161

<>

NO
START TIMER
SNAP = LIMIT - 1

TIMER = TAVE/2

START TIMER

BCOUNT [6) =0

CHARGE iNT
BCOUNT (7] =0

EXIT

A= ATEMP

Hybrid Sampling Flowchart

TMAX. By presetting SNAP in the manner shown
in the flowcharts the second rule of the algorithm,
(if no edge appears on the RxD line during a
sample, then change the sampling periods short to
long or vice versa) is automatically met. If an edge
occurs then XISR will modify SNAP, if XISR is
not invoked between two samples then the choice
of timer periods will alternate. The only other
significant change to the algorithm is that the INIT
routine must now lock out al interrupts, not just
the timer overflow interrupt, while it is operating.
A program which uses this algorithm to receive a
32 bit message is shown in Figure 27.

20

9Bo?7
©on6
0805
boB2
LTV
onz8
wdl4
FFDS
EFD9
FFEC
B2
0024

08a3

ab83 1466
on5 93

bob6 LS
8807 AF

Bobt FL
0BL9 Fe36

08B D
boeC ©314
voWE F217

vBle z309
BB12 62

v9l3 BLL3
bBl5 B41C

©pl? 2305

SEn SOURCE STATEMENT
[
1
2
3 SERIAL INPUT USING MCS-48
4 THIS CODE ASSUMES HARDWARE
5; SHUWN IN FIG 25. PROGRAM
6 ; IS SIMULAR M PREVIOUS
7 ONE, A MORE SOPHIST]CATED
8 ; SAMPLING ALGORITHM |S USED
9
1p ; NOTE: A PL/M LIKE LANGUAGE WAS USED
11 ; TO CCMMENT 'MIS LISTING AND
12 SEVERAL QTHERS IN THIS NCTE, NO
13 ; CCMPILER EXISTS FOk THL MCS-48.
14 THE COMMENIS WERE 'HAND
15 ; COMPILED' IMO ASSEMBLY QODE
18
19+ —emmem
21 ; EGUATES
2l =
22
23 ATEMP B R7 ; STORAGE FUR A DURING INTERUPT
24 BCOUNT EQU R6 ; CONTAINS NUMBER OF BITS IN MSG
25 snap RS ; [AKES TIMER SNAP SHOT (& RXD EDGE
26 COUNT B R2 ; UTILITY COUNTER
27 Rx@ MU ; POINTER
28 BITNG B 32 ; NUMBER OF BITS
29 LIMIT ECU 21 : TEST VALUE FOR MIN/MAX SAMPLING
30 THAX £y -43 i MAX SAMPLE PERIOD
31 TMIN EQO -39 o MINIMUM SAMPLE PERIOD
32 HALF EQU -20 ; HALF NOMINAL PERIOD
33 SeREUF QU 26H ; STARI OF SERIAL BUFFER
34 RDF 12%8) 248 s RECEIVEL LONE FLAG
35
36
37 ; CONTHOUL PASSED HERE On EXT. INT.
36 -
39
46 ORG UH
41 ; CALL SERVICE HATINE
42 EIVEC: CALL XISR
43 RETK
44
45

46 ; CONTROL PASSED HERE WHEN TIMER OfLO OCCURS

47 -

48
43
56 TMVEC:
51
52
53
54
55
56
57
58
59
61
61
62
63
64
65
66
67
68
69
79
71
72
73 SLLA:

Figure 27.

; /*ENTER INTERUPT MODE*/

SEL RBl
OV ATEMP, A
i It BCOUNT (71 =9 THEN
v A, BCOUNT
JB7 STAKT
; Dor

| F SNAP<LIMIT THEN
MOV A.SNAP

ALL A, $LIMIT
JB7 SLA
Lo;
TIMER=IMING
SNAP=LIMIT+1;
H END;
MoV A WTMIN
v TA
MOV SNAP $LIMIT-1
np SLLB
LLSE
Do
TIMER-TMAX ;
SNAP=LIMIT-1;
; END;
MOV A, WIMAX

Hybrid Sampling Program

bgly
boLA

bB1C

wil
bolk
wolF
b2l

[Ty
©d24
8626
0027
0628
8029
DB2A

wp2C

b2t
bB3p
2031
0032
833

0034

0036
0037

0039

03B
983D
6a3E
BU3F
B4l
8043
0244
0045
6B47

62
BL13

55

7.
F7
4622

B820
BAY4
28
67
28
18
EA26

EES4

B824
il
ag
35
15

0454

FE
b24c

537F
AF

0848 9454

SEQ

74

76
77

79
;1%

82
83
84
85

87
68
84

91
92

Y3

95

97
98
99
les
lel
162
ib3

105
166
107
log
189
1le
111
112
113
114
115
116
117
118
113
129
121
122
123
124
125
126
127
128
129
13
131
132
133
14
135
136
137
138
13%
1l4p
141
142

TISRL:

SLOOP:

START:

SOURCE STATEMENT

MoV

OTKI

CLR

DIsS
DIS

JHP

JB6

Jrl

1,A
SNAP, #LIMIT-1
f START TIMER;
1
: /*CARRY=RXD*/
: CAKRY=P27 XOR 1ES11;
AL
A
1ISKS
[
; /*SBIFT CARRY INIO BUFFER®/
: RXB=$ERBUF ;
H COUNT=4:
: DO WHILE COUNT<B;
: KSHFT MEM{RXE) ;
; FXB=FXB+]1;
: CUUNT=COUNT-1;
; END;
RX@, $5ERBUF
COUNT, ¢4
A, RX@
A
R, eRAD
Rxd
COUNT, SLOOP
H BCOUNT=BCOUNT-1 ;
H IF BOOUNT=8 THEN
BCOUNT , SEXIT
H W
: RDF=8;
H DISABLE £x INT;
RX8 , #ROF
A
€RXO, A
TCNTI
|
; END;
SEXIT
: USE
; DO;
H IF BCOUNE[6)=0 THEN
A, BCONT
SLIC
; Doz
; IF TEST1=8 THEN
SLLD
; DO;
¥ TIMER=TMIN;
; START TIMER;
i SNAP=LIMIT+1;
; P27=¢;
; EN L
: BOOUNT (71=6;
; ;
A TMIN
T,A
T
SNAP, $LIMIT+1
P2,17FR
|
A, BCOUNT
A HTFH
BCUUNT, A
SEXIT
H BE
: 0o
CALL INIT;

BO4A 1456 143
144

145
146
147
148
149
@84C 23eC 159
@04E 62 151
BB4F 55 152
2858 FE 153
@951 53BF 154
0953 AE 155
156
157
©v#54 FF 158
0855 93 159
166

161 ;
162 ;
163 ;
le4 :

165
166
167
168
169
178
171
172
173
174
175
176
©856 15 177
8857 35 178
bS58 BABL 119
@0SA 2IFF ls¢
#85C 62 181
8850 45 182
8BSE BB24 183
2069 E9 184
a6l A8 185
0062 25 166
6063 BEE® 167
8865 83 188
189
1o
191

192 ;
193 ;

194
195
196
197
198
199
208
0066 DS 281
8867 AF 202
8068 42 283
#0869 AD 204
206x oA 285
0068 D38Y 206
846D 3A 287
0B6E FF 208
BOBGF 83 20%
216
211

Figure 27. Hybrid Sampling Program

SUURCE STATEMENT

USE

W:
TIMER= {TMIN+TMAX) /2;
START TIMER;
BCOUNT (6] =0 ;

END;

END;
/*EXIT INTERDPT MOLE*/

INIT:
PROCEDURE;
DOy
DISABLE INTERUPTS;
P27=1:
TIER=-1;
S1IART EVENT COUNT;
RCE=1;
BCOUNT=@CpH OR BITNQ
END;
END INIT;

XISR:
PROCECURE ;
js
/*ENTER INTERRUPT MOLE*/
SNAP-TIMER;
P27=NOT £27;
Em XISR;

END OF PROGRAM

SLID: CALL INIT
i
i
H
i
SLIC: MOV A, HHALF
nov T.A
STRT T
MOV A, BCOUNT
ANL A, ¥BBFH
MV BCOUNT, A
SUIT; = A, ATEMP
REIR
INTIALIZE ROUTINE-
STARTS RECEIVE PROCESS
INIT: DIS |
DIs TCMTT
CRL P2, 480H
v A=l
MoV T,A
STRT CNT
MoV KX, §KOF
MK A8l
v @RXB,A
EN TCNTL
MV
RET
INTERGPT SERVICE —INE
5
i
i
;
XISR: SEL RB1
MOV ATEMP,A
MmN A,T
MoV SNAR, A
N A,P2
XRL A, $80H
OUTL P2,A
M A, ATEMP
RET
;
D

21

TRANSMITTING SERIAL CODE

Serial transmission is conceptually far simpler than
serial reception since nosynchronizationisrequired.
All that is required is to use the timer to generate
interrupts at the bit rate and present the character
to be transmitted serialy at an I/O pin. A program
which does this is shown in Figure 28. The trans-
mission of serial data becomes much more compli-
cated if it must occur simultaneously with reception.

If both reception and transmission are to occur
simultaneously then obviously contention will
exist for the use of the timer. It is possible to allow
the simultaneous reception and transmission of
serial data using the timer asa general clock which
conti-O1ls software maintained timers. Theattainable
baud rates using such techniques are, however,
limited and the use of a 8251 USART is probably

indicated in al but the most cost sensitive applica
tions. An exception to this rule occurs when the
system, although full duplex in nature, actually
transmits the same data as it receives. An example
of thisis a microprocessor driving a terminal such
as a Teletype. Although the circuit to the terminal
isfull duplex, thedatathatistransmitted isgenerally
the same as that received. A minor modification to
the program shown in Figure 26 would implement
this mode of operation. The modification would be
to the XISR routine and it would add the code
necessary to place the TxD 1/O pin in the same
state as the RxD line. Since any change in RxD
results in a cal to XISR, this modification would
cause the retransmission of any received data.
Whenever it becomes necessary to transmit data
which is not being received, the program of Figure
28 could be used in a half duplex manner.

LoC Ui Sk SUURCL o141 EMENL

u

1.

£ 3 SLRIAL TRANSMIT O THE MCSY

35 10 uSt PUT A UHAK IN BUFF AND

a; SET CHARAV 10 FEL. WHEN 14k

5 ; QRANSMUITER 15 KEADY FOR ANOTHLR

6 ; ChAi IT WILL CLEAR CHARAY. THE

7 TRANSMISSION 1S DOUBLE BUFFEKED.

8 -

9

o} mem—nem

11 ; LUATES

12 v —mmmmem

13
poE? 14 ATEMY RQU R? : STORAGE FOR A LURING INT,
bioko 15 PIus Ewu R6 ; PARALLEL TO SERLAL CONVEKTER
LS 16 DLEE Y RS ; ChARACIER BUFFER
PrLE 17 ChARAY B 24 ; CHARACTEK AVALLABLE FLAG
o3 18 COUNT Bl K3 ; BIT COUNTER
(133 19 CBIY RO YEFH ; MASK TO CLEAR TXD IN P24
vele 21 SBI1 Leu Bliott ; MASK TO sSET 1XD IN k24
YELY 21 P B -41 o PERIOD GF IXD

22

23 - —

24 ; CONIRUL FASSEL HERL ON TIMER OVERFLOW

25 4 e T oo oo
vod7 26 OK; “7H

27 ; ENTER INTERUPT MODE
0087 DS 28 TOFLO: 3L RB1
PovY Ar 29 MOV ATEMD, A

30 : SET TIMER FOR P
vYeg 2307 11 MOV A, 4P
0065 62 32 MOV 1,A
000C 55 33 STRT T

34 ; GET BIT INTO CARRY
800D 1410 35 CALL BIT

36 ; SEX TXD 10 CARRY

e Bl SEyy SUURCE STATEMENT
DULE bA 37 IN A, P2
Yolo D38 38 KRL A, 480H
0812 3A 39 OUTL P2,A
9013 F619 46 Jc BITON
@915 9ALE 41 ANL P2, #CBI1T
0017 ¥41B 42 JMp EXIT
8019 8Al0 41 BITON: ORL P2,4SBIT
9818 FF 46 EXIT: MOV A, ATEMP
Q0lC 93 45 KETh

46
47

48 ; BIT ROUTINE
49 ; -PICKS THE NEXT BIT TG TRANSMIT

241D £B 52 811: MOV A,COUNT
0B1E C627 53 JZ IDLE
9820 FE 54 MOV A, PIOS
dw2l 67 55 ReC A
0022 4388 56 OKL A, #60H
0024 AE 51 MN PIUG A
BB2s CB 58 EC COUNT
0vB26 63 59 KT

o8
BY2? 97 61 IDLE: CLR C
8928 FC b2 MOV A, CHARAV
Bez9 Y620 63 INZ GOTONE
vewm A? 64 CPL [
¥82C 83 65 RET

66
Y020 ED 67 GUIONE: MOV A, BUFF
QuZE AE 68 MOV PICS, A
@02F BBIA 69 MOV COUNT, #18
©@31 BCoR 8 MOV CHARAV, iB
b¥33 83 71 RE1

72 i END OF DPROGFAM

73 END

Figure 28. Serial Transmission

GENERATING PARITY

Many communications schemes require the genera-
tion and checking of parity. If a USART is used
it can be programmed to automatically generate
and check parity. If the communicationsis handled
by software within theMCS-48™ then the program
must perform parity calculations. Calculating
parity is easy if one remembers what parity really
means. A character has even parity if the number
of one bits in it iseven. A character has odd parity
if it has an odd number of ones. The program seg-
ment shown in Figure 29 can be caused to calculate
parity. |t starts by setting aloop count to eight and

SOURCE STATEMENT

o PARITY
; THIS PROGRAM GENERATES PARITY
7 ON THE ACCUMULATOR
CARRY WILL BE SET IF A HAS CDD PARITY

...............

d0e2

8100 PAR: UKG leeH
0100 BAZS MoV COUNT, #8 ; SET LOOP COUNT
0102 97 CLR C ; INITIALIZE CARRY
21 ; FOR FACH ZERO BIT IN A
22 ; COMPLEMENT 1HE CARRY FWG
183 77 23 1OOP; RR A
8104 1207 24 JB8 OVER
0106 A7 25 CPL C
0107 EAB3 26 OVER: nIRg COUNT, LOOP
27 i END OF PROGRAM
28 END

Figure 29. Parity Generation

clearing the CARRY flag. After thisinitialization a
loop is executed eight times. During each execution
the accumulator is rotated and the least significant
bit is tested. If the bit is a zero the CARRY flag is
complemented, if the bit isa one no further action
is taken. Since an even number of zerosimplies an
even number of ones for an eight bit character,
after al eight loops have been accomplished the
CARRY bit will be set if an odd number of ones
were encountered; it will be reset if the number
were even. Since the RR instruction does not
involve CARRY the net result of executing this
program loop is to set CARRY if parity is odd
without effecting the character in the accumulator.

23

CONCLUSION

This Application Note has presented a very small
sampling of the application techniques possible
with the MCS48™ family. The application of this
new single chip computer system to tasks which
have not yet yielded to the power of the micro-
processor will present a fascinating challenge to the
system designer.

intal

3065 Bawers Avenue

Sanla Clara California 95051
Tel 14081 246-7501

TWX 810-338-0025

TELEX 34-6372

U.S. AND CANADIAN SALES

ALABAMA

Glen Whle Associates
7844 Horseshoe Trail
Huntssitie 35802

Tel t205) 883 9394

ARIZONA

Sales Engineering Inc
7226 Sletson Drive, Suite
Scoitsdale 85252

Ter (602 945-5781

TWX 910-950-1288

Inlel Corp.

8650 N 35lh Avenue
Phaenix 85021

Tel: (602) 242-7205

CALIFORNIA

late €orp*

990 E. Arques Ave.
Suite 112
Sunnyvale 94086
Tel: (408) 738-3870
TWX. 816-333-9279
TWX $10-338-0255
Mac I

P O Box 1420
Cupertino 95014
Tel (408) 257 9880

Earle Associates Inc
4805 Mercury Slreel
Suite L

San Diego 92111

Tel (714) 278-5441
TWX 910-335-1485
Maz-!

P O Boux 8763
Founitain valley 92708
Tel (714)839-3341
Intel Corp:

1651 £ast 4th Slreel
Suite 228

Santa Ana 02701

Tel (714) 835-9842
TWX 910-595-1114

COLORADO

Intel Corp.

12075 Last 45th Avenyc
Suite 31C

Denver 80239

Tel {303) 373-4920
TWX: 910-932-0322

MICROCOMPUTER AND MEMORY COMPONENT

SALES AND MARKETING OFFICES

OFFICES

CONNECTICUT
Intel Corp.
Pcacock Alley

1 Padanaram Road
Danbury 06810
Tel: (203 732 8366

FLORIDA

Intel Corp

2020 W. McNab Road. Suite 104
FL. Lauderdale 33309

Tel (305)971-7220

TWX §10-956-9407

Intel Corp.

5151 Adanson Slreel. Suite 105
Orlando 32804

Tel: 1305) £28-2393

TWX 810-853 9219

ILLINOIS

Intel Carp "

1000 Jorie Boulevard
Suite 224

Oa<biook 60521

Tel (312) 325-9510
TWX 910-651-5881

IOWA

Technica Representalives. inc
1703 Hitiside Drive N, W

Cedar Rapids 52405

Tel: (319) 396-5662

KANSAS

Technical Representatives In¢
801 Clairborno

Olalhe 66061

Tel (913) 782-1177

TWX. 913-749-6412

MARYLAND

Glen While Assoclates
57 West Timonium Road
Timonium 21093

Tel (301) 252-6360

Inle| Corp ©

57 Wesl Timonium Road
Suile 307

Timonium 21093

Tel: (301) 252-7742
TNX 7°0-232 1807

EUROPEAN MARKETING OFFICES

BELGIUM

Intel Internatignal *
Rue du Moulin a Papier
51-Boite 1

B 1160 Brussels

Tel (02) 660 30 10
TELEX 24814

FRANCE

Intel Ccrporation SARL *
74. Rue D'Arcuell

Silic 223

34528 Rungis Cedex

Tel: (07} 687 22 21

TELEX 270475

ORIENT MARKETING OFFICES

JAPAN

Intel Japan Corporation™

Flower Hill-Shinmacni Easl Bldg
1-23 9, Shinmachi, Setagaya-ku
Tokyo 154

Tel (03)426-9261

TELLX. 781-28426

TAIWAN

Taiwan Automalion Co ~
6th Flcor, 18-1, Lane 14
Chi-Lir Road

Taipei
Tel:{02) 551726-9
TELEX: 11942 TAIAUTO

INTERNATIONAL DISTRIBUTORS

ARGENTINA
SIESA
Av Pie. Rugue Saenz Pcna 1142 9B

1035 Buengs Ajres
Tel 356784

AUSTRALIA

A J Ferguson (Ade'aide) PTY Lid
44 Prospect Rd

Prospect 5082

Soulh Austraa 17035

Tel 269-1244

TELEX. 82635

A. J Ferguson Electronics

34 Herberl Street

West Ryde, N.S W. 2114

Tel Ace 269-1244

TELEX 82635
Warbyrton-Frankie (Sydnsyj Pty. Ltd
199 Parramatla Road

Auburn N SW 2114

Tel 648-1711 648-1381
TCLLX WARFRAN AA 22265
Warbyrton-Frankie Induslries
{Melbourne) Ply L:d

220 Park Street

South Melbeurne, Victoria 3205

AUSTRIA

Bacher Elekironische Gerate GmbH
Meidlinger Haupts!rasse 78

A 1120 Vienna

Tel: (0222) a3 63 96

TELEX: {01) 1532

BELGIUM

Inelco Belgium S A.
Avenue Val Duchesse, 3
B-1160 Brussels

Tel {02) 660 00 12
TELEX. 25441

DENMARK

Scand.navian Semiconductor
Supply A/S

Nannasgade 18

DK-2200 Copenhagen N
FeLERY) 93 50 90

TELER oo

FINLAND

Oy Fintronic AB
Loennrotinkaty 350
SF 00180

Helsirki 18

Tel: (30) 664 451
TELEX 12426

FRANCE

Tekelec Airtronic
Cite ces Bruyeres
Rue Carle Vernet
92370 Sevres

Tel {1)027 7535
TELEX: 250997

GERMANY

Altred Neye Enatachnik GmbH
Schiferstrasse 14

D-2085 Quickborn-Hamburg
Tel: (04106] 6121

TELEX 02-13590

Electronic 2000 Verlriebs GmbH
Beu arkter Strasse 75
-8000 Muenchen 80
Tel. (089) 434061
TELEX 522561
Jermyn GmbH
Postfach 1146
D-6277 Kamberg
Tel (06434) 6005
TELEX 486426

Printed in U.S.A./A226/0877//5K BL

MASSACHUSETTS

Inlel Corp'

187 Billerica Road Suite 14A
Chelmsford 01824

Tel 1617) 256-6567

TWX 710-343-6333

MICHIGAN

Inlel Corp.

26500 Northwes'ern Hwy
Suite 401

Southfield 48075

Tel: (313) 353-0920

THX 910-420-1212
TELEX 231143

MINNESOTA

Intel Corp

8200 Normanda e Avenue
Suite 422

Bloominglon 55637

Tel (612)835-6722

TWX 91C 576-2867

MISSOURI(

Technical Representatives, nc
Tradc Center Bldg

300 Brookes Drive Suile 108
Hazelwood 63042

Tel: (314) 731-5200

TWX 913-762-0618

NEW JERSEY
Intel Corp

7 Kitmer Road
Edison 08817

Tel: (201) 985-9100
TWX 710-480-6238

NEW YORK

Irtel Corp.*

350 Vanderbilt Matar Pkwy.
Suite 402

Hauppauge 11787
Tel: 1516) 231-3300
TWX 510-221-2198
Intel Gorp

474 Thurston Road
Rochesler, N.Y. 14679
Tel {716} 398-7340
TWX 510-253-3841

SCANOINAVIA

Intel Scandinavia A,/S*
Lynabyvej 32 2nd Fioot
DK-21C0 Copenhaqen Easl
Denmark

Tel: (01) 18 20 00
TELEX. 19567

Intel Sweden AB*

3ox 20092

§-16120 Bromma
3weden

Tel: {03) 98 53 90
TELEX 12261

HONG KONG
ASTEC International
Oriental Centre
141n Floar, No. 67-71
Chatham Road
Kowloon, Hong Keng
Tel: 3-694751
able: ", OMP”
TELEX: 74839 ASCOM HX

INDIA

Electronics Inlernational
128 Mahalma Gandhi Road
Secunderabad

Te! 53211

TLLCX 043 222

ISRAEL
East-onics LId *
11 Rozanis Street
P.O. Box 39300
Tel-Aviv

Tel 475151
TELEX 33638

ITALY

Eledra 3SSPA."

Viale Elvezia, 18

20154 Milan,

Tel: (02) 3493041

TEI FX: 39332
Eledra3SSPA "

V a Paolo Gaidano 141D
10137 Torino

TEL (011)3097 097 - 3397 114
Eledra3S S PA:

Via Giuseppe Va marana, 63
00139 Rome, Tlaly

Tel (06181 27 290 - 81 27 324
TELEX 65051

JAPAN

Par: Electron

No 1 Higashikata-Machi
Midori-Ku, Yokohama 226
Tel: (045)471-8811
TELEX 781-4773

NEW YORK (conl.)
T-Squared

4054 Newcourt Ave
Syracuse 1320¢€
Tel: (315; 463-8592
TWX 710 541-0554
T-Squared

640 Kreag Rd

P 3. Box W
Pittsford 14534
Tel: (716) 381-2551
TELEX. 97-828%
Intel Corp.

85 Market Street

Poughkeepsie, New York 12601

Tel: (914) 473-2303
TWX. 510-248-0060

NORTH CAROLINA

Glen While Associates

3700 Computer Dr. Suite 330
Raleigh 27609

Tel (919) 787-7016

OHio

Intel Corp *

8312 Naurth Main Street
Cayton 45415

Tef {513) 890-5350
TELEX 288-004
Intel Corp’

26250 Euclid Ave
Suite 531F

Eucid 44132

Tel: (216) 289-0101

PENNSYLVANIA

Intel Corp.”

520 Pennsylvania Ave
Fort Washingion 19034
Tel (215} 542.9444
TWX 510-661-0709

TENNESSEE

Glen White Associales
3t. =12 Noorwood §, D
Jonesboro 37659

Tei 16151926-0184
Glen While Assooiates
2523 koward Road
Germanlown 38138
Tel (901) 754-0483

ENGLAND

Intel Corporation (UK.} Ltd.”
Eroadfietd House

4 Belween Towns Road
Cawley. Oxford OX4 3NB
Tel: {0865) 77 14 31

TELEX 837203

Inlel Carporation (UK) Lid
46-50 Beam Slreel

Naniw ch, Cheshire CW5 5LJ
Tel 10270162 65 60

TELEX 36620

JAPAN fcont.)
Ryoyo Eleciric Carp
Konwa Bldg

1-12-22 Tsukiji. 1-Chome
Chuc-Ku, Tokyo 104

Tel (03)543-7711

Nippon Micrp Computer Co Ltd
Mutsumi Bldg 4-5-21 Kojimachi

Chiyoda-ku Tokyo 107
Tel {03} 230-0041

KOREA
Koram Dig tul
Sam Yung Bldg £303

71-2 Bukchang Dong Chung-Ku

Seoul 100

NETHERLANDS
Inelco Nederland
AFD Elektronic

Joan Muyskenweg 22
NL-1006 Amsterdam
Tel: (020) 934824
TELEX 14322

NORWAY

Nordisk Elekironik (Norge) A/S
Mustads Vei 1

N Oslo 2

Te! (02) 55 38 93

TELEX 16963

PORTUGAL
Dit-am

Componentes E Electronica LDA

Av Miquel Bombarda 133
Lisooa 1
Tel 119 45 313

SOUTH AFRICA

Electronic Building Elements
P O. Box 4609

Preloria

Te': 78 92 21

TELEX 30181

AUGUST 1977

TEXAS

Mycrosystems Marketing Inc
13777 N Central Expressway
Suite 405

Dallas 75231

Tel (214) 238-7157
TWX:910-867-4763
Mycrosystems Marketing In¢
6610 Ha-win Avenue, Suite '25
Houstor 77038

Tel (713) 783-2900
Nycrosyslems Marketing In:
2622 Geronimo Trail

Austin 78746

Tel: 15121 266-1750

Inlel Corp ™

2925 L.BJ Freeway

Sailas! 76234

Tel: (2141241-9521
TWX 910-860-5487

VIRGINIA

Glen While Associates
PO Bcx 1104
Lynchburg 24505

Tel (8041 384-6920

WASHINGTON

E S Chase Co

P O Box 80933
Seattle 98108

Tel (206) 762-4824
Twx 910 444 2298

CANADA

Intel Corp.

70 Chamberlain Ave
Ollawa. Onlano KiS 1V8
Tel (613) 232-8576
TELEX 053-4419
Multitek Inc *

4 Barran Slreel

Ottawa, Ontario K2y 1G2
Tel 16131825-4553
TELEX 0531585

GERMANY

Intel Semiconduclor GmbH'
Seidistrasse 77

8000 Muencnen 2

Tet 1089) 5581 41

TELEX' 573 177

Inlel Semiconductor GmbH
Abraham Lircoln Slrasse 30
0200 Wiesbaden 1

Tel (06121) 74855

TELEX 04186183

Intel Serniconduclor GmbH
D-7000 Stuttgart 83
Ernsthaldenstrasse 17

Tel (0711) 7351606

TELEX 7255346

Intel Semiconduclor GmboH
Wiesenwegq 26

D-6272 Niederhausen

Tel 106127) 2314

SPAIN

Interlace

Ronda San Pedro 22
Barcelona 10

Tel 3017851

SWEDEN
Nordisk Electronik AB

Fack

$-10380 Stockholm 7
Tel (08) 248340
TELEX 10547
SWITZERLAND
Industrade AG
Gemsenstrasse 2
Postcheck 80 21190
CH-8021 Zwich

Tel (01) 60 22 30
TLLEX 56788

UNITED KINGDOM
Rapid Recall Lid
11-15 Betierton Street
Drury Lane

London WC2H 98BS
Tel {01) 379-6741
TELEX 28752

G E C Semiconductors Lid
Easl Lane

Wembley HA9 7PP
Middlesex

Tel {(01) 904-92303
TELEX 923429
Je'myn Induslries
Vestry Eslale
Sevenpaks Ken|

Tel: 10732) 50114
TELEX 95142

*Field Applicalion Location

