in

98-368A

ISIS;II ICE-80mSUPPLEMENT
to ICE-80 Operator's Manual (98-185C)

Copyright (C) 1976 by Intel Corporation. All
rights reserved. No part of this program or
publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or
translated into any 1language or computer
language, in any form or by any means,
electronic, mechanical, magnetic, optiecal,
chemical, manual or otherwise, without the
prior written permission of Intel
Corporation, 3065 Bowers Avenue, Santa Clara,
California 95051.

DISCLAIMER

Intel makes no representations or warranties
with respect to the contents hereof and
specifically disclaims any implied warranties
of merchantability or fitness for any
particular purpose. Further, Intel reserves
the right to revise this publication and to
make changes from time to time in the content
hereof without obligation of Intel to notify
any person of such revision or changes.

PREFACE

This document is a supplement to the ICE-80 Operator's Manual, Intel®
document number 98-185C. It describes the changes to the ICE-80%#

software driver (ICE80SD) that adapt it to the ISIS-II environment.
Throughout this document, the term ICE80SD refers to the ISIS-II
ICE-80 software driver unless otherwise noted.

It is assumed that you have read and understood the Operator's Manual

mentioned above and the ISIS-II System User's Guide, Intel document
number 98-306.

"INTEL" IS A REGISTERED TRADEMARK OF INTEL CORPORATION.
%#% WTCE" IS A TRADEMARK OF INTEL CORPORATION.

CONTENTS

PREFACE.OO..A..“"0.000..‘.‘..000.‘.0"000C.‘0.0.‘0.000000000000..1

1. INTRODUCTION . eeeeoaoeaaeoasccasssosscosssscoassosascassscnscosassl
ISIS<II OBJECT FILES::ceeeecaasaceeceosssocceassscsecsaascscanal
SUMMARY OF NEW FEATURES IN ISIS-II ICE80SDusescescescoasaaaeae?

Effects on LOAD and SAVE....ceeeeeecsseascnsscesssosnsosensl
Use of Module NameS....ieeeeeeeescacssnscscscacsanananaeal
The Default Interval...cccecececccecscecccoscocsscacocsasasecsl
Statement Numbers......iieeeteeeceeessccecosasssscsosssaeel
Other New FeatureS...ccceveeecsscccccesscssosasssssnsaneel
NEW DEFINITIONS.:euesecacacacaesesesssssscssscasascssscssosnscesh

2. CHANGES IN THE LOAD COMMAND.::eeoesacoscccsacsasssaassssssssasasl

3. CHANGES IN THE SAVE COMMAND.::ecceosssacocccssscacasssscsaaassaed

4, STATEMENT NUMBERS.:uceaceceeacesccacesssssescassccscassssasasanasll

5. MODULE NAMES .. ceeteetacecesceosssccsssosasassssssscsssasssccsaell

6. THE DEFAULT COMMAND.:¢¢ceaetaovscsscesscsaessesssssssessasssasell

7. CHANGES IN THE EQUATE COMMAND...:ceeoseeasccesccascsescssascessld

8. THE REMOVE COMMAND..::eceoeeaccescacaasoassasasasacsssassassonaell

9. CHANGES IN THE DISPLAY COMMAND...:ecoseessvcssoasscssscoasseesell

10. CHANGES IN EFFECT OF BASE COMMAND....vcesccocccanssosscscsssaseell

Appendix A: REDUCING THE SIZE OF INPUT FILES..:eueceeveccsovsossoeesll

ii

Page 1

1. INTRODUCTION

This document explains the differences between ISIS-II TICES80SD and
older versions of ICE80SD. You will find that these differences are
simple, and if you are already an ICE80SD user, you should be able to
make the transition easily.

Most of the differences are new features that allow the ICE80SD user
to deal efficiently with files containing multiple program modules.
Such files are a major feature of the ISIS-II environment, as

described in the ISIS-I1 System User's Guide and in the following

section.

=11 CT FI

Under ISIS-II, program files that are ready to load and run are

absolute binary-coded OBJECT files. These files differ from the HEX
files of older implementations. The following is a 1list of the
differences that affect the operation of ISIS-II ICE80SD.

e The file may contain more than one module of code, if it was
created by using LINK to combine two or more modules. These
modules are loaded by ICE80SD in the same order in which they are

found in the input file (which is the same order in which they
were specified to LINK).

e For each module created from PL/M source code, the file may
contain statement numbers. These numbers correspond to the

original PL/M statements, and each number is associated with the
first instruction compiled from the corresponding PL/M statement.
e The file may contain a module name for each module.

e The file may contain a separate symbol table for each module.
An absolute OBJECT file can be created in two ways:
e The ASM-80 assembler produces an absolute OBJECT file if the
appropriate control is used to produce absolute code.

e LOCATE produces an absolute OBJECT file.

The module names, statement numbers, and symbol tables are
collectively referred to as "debugging information." The module names

Section 1 -- INTRODUCTION

Page 2
(ISIS-II OBJECT Files)

and symbol tables will be present in files assembled with the ASM-80
assembler, unless suppressed with the NODEBUG control. The debugging
information will be present in files compiled with the PLM-80 compiler
only if the DEBUG control is used.

The ISIS-II ICE80SD commands provide features for making use of this
information in examining and debugging the code portion of the file.

SUMMARY OF NEW FEATURES IN ISIS-II ICE80SD

The following sections summarize the new features of ICE80SD. These
features are described in more detail in Sections 2 through 10.

EFFECTS ON LOAD AND SAVE

The LOAD command of ISIS-II ICE80SD can only load an absolute OBJECT
file. In loading a large file, it may be necessary to save memory
space. Accordingly, it is possible to eliminate the code, the symbol
tables, or the statement numbers (see below) from the load by using
the new controls NOCODE, NOSYMBOLS, or NOLINES respectively. See
Section 2 and Appendix A.

The SAVE command of ISIS-II ICE80SD creates an absolute OBJECT file.
See Section 3.

USE OF MODULE NAMES
In earlier versions of ICE80SD, there was only one symbol table, and
any reference to a symbol was looked up in this table. In ISIS-II

ICE80SD, there is a separate symbol table for each module loaded.

In referring to a symbol, you may prefix it with a module name; the
symbol will then be looked up in that module's symbol table.

Similarly, a module name may be prefixed to a statement number. Any
module name c¢an also be prefixed with another module name. See
Section 5.

Also, module names are used by themselves in the new commands DEFAULT
and REMOVE. See Sections 6 and 8.

THE DEFAULT INTERVAL

If a symbol reference is not prefixed with a module name, it is looked
up in the symbol tables that lie within the default interval.

The default interval is initially the set of all modules in ICE80SD's

Section 1 -~ INTRODUCTION Page 3
(Summary of New Features)

STATEMENT

OTHER NEW

"module table" -~ that is, all modules that have been loaded, except
those that have been deleted with the REMOVE command (see Section 8).
In this situation, a symbol reference without a module name causes all
of the symbol tables to be searched in sequence until the symbol is
found.

At any given time during an ICE80SD session, you will probably be
working with one particular module, and it is cumbersome to have to
prefix every symbol reference with the module name. To avoid this,
simply change the default interval to include only the module that you

are working on. This can be done by means of the DEFAULT command (see
Section 6).

NUMBERS

A module that was originally written in PL/M may contain gtatement

numbers, if the module was compiled using the DEBUG control of the

PLM-80 compiler. The PL/M statements in the source module are
numbered in sequence (starting with 1) by the compiler, and in the
object-code module, each statement number is associated with the first
instruction compiled from the corresponding PL/M statement.

A statement number is specified in ICE80SD commmands by prefixing a
constant with a # character. For instance,

#25

is a reference to the location of the first instruction compiled from
PL/M statement number 25 in the source module.

Like a symbol reference, a statement number can be prefixed with a
module name. When this is done, the reference is to the specified
statement number within the specified module.

If a statement number is not prefixed with a module name, it refers to
the specified statement number in the first module in the default
interval. See Section 4,

FEATURES

The DISPLAY command has a new option, DISPLAY ALL MODULES. This lists
the names of all modules in ICE80SD's module table. See Section 9.

Also, the DISPLAY ALL SYMBOLS command now lists only the symbols in
the symbol tables in the default interval. The symbols are listed in
groups under their module names. See Section 9.

Section 1 -- INTRODUCTION Page U
(Summary of New Features)

A new command, REMOVE, is provided to delete symbols from symbol
tables and to delete an entire module. See Section 8.

The action of the EQUATE command is affected by the new definition of

a <symbol-name> (see below) and by the default interval. See Section
70

The ICE80SD program itself now consists of four separate files:

ICE80

ICE80.0V0
ICE80.0V1
ICE80.0V2

All of these files must be on the same diskette; however, this

diskette may be in any drive. The last three files must not be
renamed.

NEW DEFINITIONS

The following new definitions apply to ISIS-II ICE80SD.

® An <identifier> is a string of ASCII characters beginning with a
letter and not including the characters

v, / = 3 - @ [] < > + : # space
carriage-return rubout control-X control-R escape

This resembles the old definition of a <symbol-name> -- however,

the characters : and # cannot be included in an <identifier>,
although they were allowed in the old definition.

An <identifier> does not appear explicitly in any ICE80SD
command. However, we will use it in stating the other new
definitions below.

e A <module-name> is an <identifier> followed by a colon. It is
assumed that the <identifier> 1is the name of a module in
ICE80SD's module table. The following are examples:

MAIN:
AUX:

UTIL:
MATH:

A <module-name> may also be formed by stringing single

Section 1 -~ INTRODUCTION Page 5
(New Definitions)

<{module-name>s together, as in the following examples:

MAIN:MATH:
AUX:UTIL:
MAIN:MATH:AUX:

The meaning of this construction is explained in Section 5.

e A <symbol-name> may now be any of the following:
® An <identifier> (as in older versions of ICE80SD).

e Two or more <identifier>s separated by slashes (as in older
versions of ICE80SD).

e A <module-name> as defined above, followed by either a

single <identifier> or two or more <identifier>s separated
by slashes.

The following are examples of valid <symbol-name>s:

HIGH

CORR/HIGH
CORR/HIGH/TMP

AUX :CORR
MAIN:AUX:HIGH
MAIN:AUX:CORR/HIGH

The meanings of these constructions are explained in Section 5.

e The definition of a <value> is now somewhat expanded. A <value>
may be any of the following:

e A constant (as in older versions of ICE80SD).

e A constant prefixed with a # character to denote a statement
number (see description above; this is a .new feature). A

statement number may also be prefixed with a <module-name>.
See Section 5.

o A <symbol-name> as defined above. The value of this is the
memory address of a source-language symbol, or the assigned
value of a symbol created with the EQUATE command.

® A register-pair name prefixed with an @ character, to denote
the contents of the register pair (as in older versions).

e The sum or difference of any two <valued>s (as in older
versions).

Section 1 -- INTRODUCTION

Page 6
(New Definitions)

e A <value> enclosed in square brackets, to denote the
contents of a double-memory location (as in older versions).
The <value> inside the brackets is the address of the
double-memory location.

The new definitions of <symbol-name> and <value> apply to all the

commands described in the ICE-80 Operator's Manual where
<{symbol-name>s and <value>s can be used.

Page 7

2. CHANGES IN THE LOAD COMMAND

The new format for the LOAD command is

LOAD <file-name> {NOCODE}{NOSYMBOLS}{NOLINES}

where

{file-name> is the name of an absolute OBJECT file to be loaded.
NOCODE causes all of the code in the input file to be omitted.

NOSYMBOLS causes all of the symbol tables in the input file to be
omitted.

NOLINES causes all of the statement numbers in the input file to
be omitted.

The controls NOCODE, NOSYMBOLS, and NOLINES do not have to be

entered in the order shown.

If the input file is not a valid absolute OBJECT file, the LOAD
command issues the error message

ERR=64

and aborts. Control returns to the command level of ICE80SD.
If any module in the input file contains an external symbol reference

that is not satisfied by linkage to another module in the file, the
LOAD command issues the error message

ERR=69

This is a warning message only. The LOAD completes normally, and
ICE80SD operation can continue.

If the program you have loaded is incomplete, and you know that you
can work with it without access to the "unsatisfied" symbol, go ahead.

Section 2 -- CHANGES IN THE LOAD COMMAND Page 8

However, if there is any attempt to access the "unsatisfied" symbol --
either by the program or by ICE80SD commands -- the results are
undefined.

After any LOAD command, the default interval is reset to include all
modules in ICE80SD's module table.

When a module containing no debugging information is loaded, its name
is added to the module table but there is no other symbolic
information. A subsequent LOAD may cause the module name to disappear
from the module table, but the code of the module is not affected by
this.

Page 9

3. CHANGES IN THE SAVE COMMAND

The format of the SAVE command is unchanged. SAVE writes out the code
in the specified <partition>, and all symbol tables and statement
numbers (as modified by ICE80SD commands).

If an input file containing a start address has been loaded, the
output file will also contain this start address. If more than one
start address has been loaded by multiple LOAD commands, the output
file will contain only the last start address loaded.

Information other than code, symbol tables, statement numbers, and one
start address may be 1lost by SAVE. For example, if the input file
contained a PUBLIC declaration, it is lost by SAVE.

If no LOAD has been performed, SAVE produces an output file containing
only a single module. This module contains symbols created with the
EQUATE command, if any.

Page 10

4. STATEMENT NUMBERS

A statement number is specified by prefixing a constant with a #
character. This construction is allowed wherever a <value> is allowed
in ICE80SD commands, and is translated by ICE80SD into the memory

address of the first instruction compiled from the corresponding PL/M
statement.

Statement numbers are present only in modules compiled from PL/M
source code using the DEBUG control.

Statement numbers may be prefixed with <module-name>s, as described in
the next section.

Page 11

5. MODULE NAMES

The module names in an OBJECT file are the names of the original
source-language modules, The modules occur in the OBJECT file in the
order in which they were linked together by LINK. ISIS-II ICE80SD
preserves this order, and if two or more separate LOAD commands are
given, the modules loaded by each LOAD follow the modules that are
already in ICE80SD's module table.

The names of all modules in ICE80SD's module table can be 1listed in
order by means of the new DISPLAY ALL MODULES command (see Section 9).
This is useful for checking the order of the modules.

A <module-name> may be used to qualify any symbol reference or
statement number reference in an ICE80SD command. This is done by

prefixing the <symbol-name> or statement number with the <module-name>
as shown in the following examples.

MAIN:INIT

means the first occurrence of the symbol INIT in the symbol table for
the first module named MAIN.

MATH:#13

means the address of the first instruction compiled from PL/M
statement 13 of the first module named MATH.

A <module-name> may also be used to qualify any other <module-name>,
in cases where there are two or more modules with the same name. Thus

MATH:AUX :CORR

means the first occurrence of the symbol name CORR in the symbol table
for the first module named AUX that follows the first module named
MATH.

The use of <module-name>s may be combined with the qualification of
one symbol name by another. The reference

MATH:INDEX/LIM

Section 5 -- MODULE NAMES Page 12

causes the following search for LIM:

e Starting at the beginning of the module table, find the first
module named MATH.

e Within the symbol table for module MATH, find the first
occurrence of the symbol INDEX.

e Starting from this point, find the first occurrence of the symbol
LIM within this same symbol table.

The search will succeed only if both symbols are found in the symbol
table of module MATH, in the specified order.

The reference
MAIN:AUX:HIGH/CORR
causes the following search for CORR:

e Find the first module named MAIN.
e Starting from this point, find the first module named AUX.

e Within the symbol table for module AUX, find the first occurrence
of the symbol HIGH.

e Starting from this point, find the first occurrence of the symbol
CORR within this same symbol table.

The search will succeed only if both modules are found in the
specified order, and both symbols are found within the symbol table
for module AUX, in the specified order.

Page 13

6. THE DEFAULT COMMAND

The new DEFAULT command is used to change the default interval. The
default interval is either the set of all modules in ICE80SD's module
table, or one specific module. When an ICE80SD command contains a
symbol reference or statement-number reference without a
<{module-name>, the symbol or statement number is searched for in the
default interval. A more complete discussion of the default interval
can be found in Section 1.

The DEFAULT command has the format

DEFAULT {<module-name>}

where

<{module-name> is defined in Section 1.

If no DEFAULT command has been given, the default interval is the set
of all modules in ICE80SD's module table. Any symbol reference that
is not qualified with a <module-name> will be processed by searching
all symbol tables in sequence until the first occurrence of the symbol
name is found. Any statement number reference that is not qualified
with a <module-name> will be processed by searching only the symbol
table for the first module.

If a <module-name> is used in a DEFAULT command, the default interval
consists of the specified module. Thus

XDEFAULT MAIN:

causes the default interval to be the first module named MAIN. Any
symbol reference or statement number reference that is not qualified
with a <module-name> will be looked up only in the symbol table for
module MAIN.

The <module-name> may be qualified with another <module-name>, as
follows:

XDEFAULT UTIL:AUX:

Section 6 -- THE DEFAULT COMMAND Page 14

This causes the default interval to be the first module named AUX that
follows the first module named UTIL. Any symbol reference or
statement number reference that is not qualified with a <module-name>
will be looked up only in the symbol table for module AUX.

If a DEFAULT command with no <module-name> is given, the default
interval is (again) the set of all modules in ICE80SD's module table.

Also, the default interval is reset to include all modules 1in
ICE80SD's module table after each LOAD command and after any REMOVE

command (see Section 8) that deletes a module from the default
interval.

Page 15

T. CHANGES IN THE EQUATE COMMAND

The format of the EQUATE command is unchanged, but the new definition
of a <symbol-name> (see Section 1) affects the operation of EQUATE.

EQUATE first searches for the symbol, using the rules given in

Sections 5 and 6. If the search succeeds, meaning that the symbol
already exists, EQUATE issues the error message

ERR=6

and makes no change in the symbol tables.

If the search fails, meaning that the symbol does not already exist,
EQUATE creates it, assigns the specified <value> to it, and places it
at the end of the interval that it has just searched. The name of the

new symbol 1is the 1last <identifier> in the <symbol-name> in the
command. Thus

*EQUATE AUX:CORR=2

causes CORR to become the last symbol in the symbol table for the

first module named AUX -- if and only if AUX does not already contain
a symbol named CORR.

If no <module-name> is used, the new symbol becomes the last entry in
the symbol table for the last module in the default interval. Thus

*EQUATE LIM=100H

causes LIM to become the last entry in the symbol table for the 1last
module in the default interval -- if and only if no symbol named LIM
already exists in any module in the default interval.

The command

¥EQUATE CORR/LIM=100H

first causes a search, within the default interval, for CORR. If CORR
is not found, the search fails and LIM is created and placed at the

Section 7 -- CHANGES IN THE EQUATE COMMAND Page 16

end of the last symbol table in the default interval. If CORR jis
found, we next search for LIM. If LIM is not found, the search fails
and the new symbol LIM becomes the last symbol in the 1last symbol
table in the default interval.

Note that the effect of this is different from the previous example

only if there is already a symbol named LIM which comes before CORR.
If this is the case, then the command

#EQUATE LIM=100H

will find the LIM that already exists, issue an error message, and do
nothing else. However, the command

XEQUATE CORR/LIM=100H

does not look for LIM until it has already found CORR. When it finds
that no symbol named LIM occurs after CORR, it creates LIM and places
it at the end of the default interval.

DELET

1

Page 17

8. THE REMOVE COMMAND

The new REMOVE command has three formats, and can be used to delete a

single symbol, an entire module, or a set of symbols.

The first format for the REMOVE comand is

REMOVE <symbol-name>

where

{symbol-name> is defined in Section 1.

The specified symbol is searched for, using the rules given in
Sections 5 and 6, and if found it is deleted. Thus

SREMOVE MAIN:HIGH

causes the symbol HIGH to be deleted from the symbol table of the
first module named MAIN.

*REMOVE LOW

causes the symbol table(s) in the default interval to be searched in
sequence. The first occurrence of the symbol LOW is deleted from the
symbol table where it is found.

Section 8 -- THE REMOVE COMMAND Page 18

DELETING A MODULE

The second format for the REMOVE command is
REMOVE <module-name>

where
<module-name> is defined in Section 1.

This causes the specified module to be deleted. Thus
*REMOVE AUX:

causes the first module named AUX to be deleted.

X*REMOVE AUX:UTIL:

searches for the first module named UTIL that follows the first module
named AUX, and deletes the module named UTIL.

Everything associated with the module is deleted -- the module name,
the symbol table, and the statement numbers (if any). Note that the
code is not deleted. Once loaded, the code of a module is not
associated with the module.

If the default interval has been set to one specific module, and this
module is deleted with a REMOVE command, then the default interval is
automatically reset to include all modules in ICE80SD's module table.

Section 8 -- THE REMOVE COMMAND Page 19

DELETING A SET OF SYMBOLS

The third format for the REMOVE command is

REMOVE <symbol-name> TO <symbol-name)

where
<{symbol-name> is defined in Section 1.

This searches for both symbols, using the rules given in Sections 5
and 6. If both are found, and the first symbol is found before the

second one, all symbols from the first to the second (inclusive) are
deleted.

If the second symbol is found before the first, REMOVE issues the
error message

ERR=10

and does not delete any symbols.

The command
*REMOVE AUX:HIGH TO AUX:CORR

searches within the first module named AUX for the symbols HIGH and
CORR. If they are found in the specified order, all symbols from HIGH
to CORR (inclusive) are deleted from the symbol table for the module
AUX.

The command
#REMOVE LOW TO LIM

searches all symbol tables in the default interval for the symbols LOW
and LIM. If they are found in the specified order, all symbols from
LOW to LIM (inclusive) are deleted. If LOW and LIM are found in
different modules, this includes all symbols in intervening modules -~
but not the module names or statement numbers.

Page 20

9. CHANGES IN THE DISPLAY COMMAND

DISPLAY ALL SYMBOLS now lists only the symbols in the modules in the
default interval. It groups the symbol names by modules, with the
module name as a heading for each group.

DISPLAY ALL MODULES is a new option which 1lists the names of all
modules in ICE80SD's module table.

Page 21

10. CHANGES IN EFFECT OF BASE COMMAND

If a BASE SYMBOLIC command is given, values subsequently displayed
will be in the form of a symbol name followed by a + sign and a
decimal constant (as in older versions of ICE80SD). However, ISIS-II
ICE80SD will only use symbols from the symbol tables of modules in the
default interval. Therefore, the symbol displayed is not necessarily
the symbol whose value is actually closest to but not greater than the

value being displayed -- it is merely the closest one within the
default interval.

Page 22

Appendix A
REDUCING THE SIZE OF INPUT FILES

A file containing code and debugging information may be large, and in
some cases -- especially when using a 32K system -- it may be too
large to be loaded under ICE80SD. The following are some suggestions
for overcoming this problem.

e At any time during an ICE80SD session, the register-pair
UPPERLIMIT contains the highest available physical memory
address. This is useful for determining how much memory space is
available (see Chapter 1 of ICE-80 Operator's Manual).

e One approach to the problem is to write your program in small
modules, and debug them one at a time (or a few at a time). If
you do this, you only need the debugging information for the
module(s) being debugged. When you compile or assemble the
modules of the program, use the NODEBUG control of the compiler
or assembler to eliminate debugging information from the other
modules.

® You can eliminate all debugging information from your program
file by using the PURGE control in LOCATE, and you can eliminate
symbol tables and/or statement numbers by using the NOSYMBOLS
and/or NOLINES controls in the LOAD command of ICE80SD. Then, by
using an absolute symbol-table listing (obtained from LOCATE, or
from ASM-80 if you used it to produce absolute code), you can use
the EQUATE command to restore only the symbols that you need for

debugging purposes. (Note that you cannot restore statement
numbers.)

® You can load the file with the NOCODE control in the LOAD
command, to 1load only the symbol tables (and statement numbers,
if they exist). Then use the REMOVE command to delete all
symbols that you do not need for debugging purposes. You can get
rid of all symbols and statement numbers for a module by deleting
the module with a REMOVE command. Finally, LOAD the file again
using NOSYMBOLS and NOLINES, to load only the code. You now have

the code and a selected set of debugging information loaded into
ICE80S3D.

o Note that after using either of the last two methods to obtain a
cut-down version of the program within ICE80SD, you can save this
cut-down version as a file by using the SAVE command. The
resulting file can 1later be 1loaded into ICE80SD in a single
operation.

Page 23

THIS PUBLICATION IS PROTECTED BY COPYRIGHT

That means transcription and use of programs or examples contained
herein requires the written permission of Intel Corporation.
Permission is hereby granted to make transcriptions or copies of
programming examples, for the purpose of studying this manual, or in
accordance with the use of an Intel software product described in this
manual, where that use is defined by the applicable software license
agreement. All such copies must include a statement as follows: "(C)
Intel Corporation (date) reproduced with permission."

Using information in this publication to derive similar software or
hardware may be an infringement of copyright unless Intel's written
permission is granted.

If you wish to reprint or copy any part of this manual for any purpose
other than stated above, please write for permission to Intel
Corporation, 3065 Bowers Avenue, Santa Clara, California 95051, Attn:
Software Marketing Department.

INTEL SOFTWARE IS PROTECTED BY COPYRIGHT

That means it is illegal to make any copy of all or part of an Intel
program, whether of source code or object code, to translate an Intel
program (for example by using an assembler or compiler), to load or
execute an Intel program, or to derive your own version of an Intel
program, without written permission of Intel Corporation.

Intel customers who wish to do these things can generally obtain
permission to do so: Intel licenses its proprietary software with
several standard customer agreements. These agreements grant
permission to exercise the copyrights that are required by the
intended use of the product.

If your software license agreement does not seem to grant you a
permission you require, please contact Intel Corporation, 3065 Bowers
Avenue, Santa Clara, California 95051, Attn: Software Marketing
Department.

	Supp001
	Supp002

