
intel

INTELLEC 800
MICROCOMPUTER DEVELOPMENT SYSTEM

OPERATOR’S MANUAL

© Intel Corporation, 1975 98-129A

PREFACE

This manual contains information on the use of the Intellec®
Microcomputer Development System. The Intellec MDS is a design and
debugging tool for designers who are using the Intel®8080 CPU or Series
3000 computing elements in OEM designs. Through the use of MDS system
peripherals, optional plug-in modules, and the software provided, the
system can be made to operate as a stand-alone computing system to check
out software techniques; or as a partial system simulator which checks
out a user's hardware and software, while the software is executing from
RAM in the Intellec MDS; with OEM hardware; or as a chip simulator, to
verify the operation of the user's system after the software is
committed to ROM.

The following features of MDS software are discussed:
• MDS MONITOR Program. The MDS Monitor provides the basic

utility functions for the Intellec MDS. These functions
include program loading, memory display, memory
modification, PROM programming, program checkout and
debugging facilities, and a generalized extensible I/O
system which is accessible by user programs.

• TEXT EDITOR Program. The Text Editor provides
facilities for creating new source programs or
correcting existing ones.

• 8080 ASSEMBLER Program. The Assembler program accepts
8080 source language statements and generates a list
file and object code file.

It is assumed that the reader of this manual has prior knowledge of
computing systems and is familiar with 8080 programming.

Related Publications
8080 Assembly Language Programming Manual
Intel Publication # 98-004

Page 2

Intellec MDS Hardware Reference Manual
Intel Publication # 98-132
Universal PROM Programmer Hardware Reference Manual
Intel Publication # 98-133
Intel High-Speed Paper Tape Reader
Instruction and Operation Guide
Intel Publication # 98-016

Reference manuals and specifications may be obtained by contacting:
Intel Corporation
Customer Services
3065 Bowers Avenue
Santa Clara, California 95051

TABLE OF CONTENTS

GENERAL INFORMATION... 7
INTRODUCTION...7
SYSTEM DESCRIPTION.. 7

8080 CPU Module... 7
Monitor Module.. 8
Front Panel Control Module....................................... 8
Optional Modules.. 8

SOFTWARE SUPPORT.. 9
MEMORY REQUIREMENTS... 9
I/O SYSTEM CONFIGURATION... 11

OPERATING THE INTELLEC MDS... 12
INTRODUCTION.. 12
EQUIPMENT DESCRIPTION.. 12

Intellec®MDS Front Panel Description............................. 13
Attaching Peripherals to the Intellec^MDS........................14
Teletype Description... 14
High Speed Paper Tape Reader.................................... 18
Universal PROM Programmer..19

STARTUP PROCEDURES..21
Cold Start Procedure... 21
Return to Monitor from User Program............................. 21

THE MDS MONITOR... 22
INTRODUCTION.. 22
MONITOR OPERATIONS.. 23

Monitor I/O Configuration.. 23
Memory Control.. 23
Register Control..24
Paper Tape Input Control... 24
Paper Tape Output Control.. 24
Universal PROM Programmer Control.................................25
User Program Execution... 25
Utility Routine... 25

COMMAND DESCRIPTIONS..25
I/O System Configuration Commands............................... 26

I/O Assignment - A... 26
System Status Query - Q..................................... 29

Memory and Register Control Commands............................29
Display Memory - D... 29
Fill - F.. 30
Move Memory - M.. 30
Substitute Memory - ... 31
Examine and Modify CPU Registers - X....................... 31

Paper Tape I/O Commands.. 33
BNPF Punch - ... 33
Load BNPF Tape - ...34
Read Hexadecimal File -34
Write Hexadecimal File -35
End File - ... 35
Null Leader/Trailer - 35

Universal PROM Programmer Commands.............................. 36
PROM Programming - P...37
Compare - C....................37
Transfer PROM - T.. 38

Program Execute - G.. 39
Hexadecimal Arithmetic - H.......................................41

MONITOR ERROR CONDITIONS... 41
MDS TEXT EDITOR... 44

INTRODUCTION.. 44
GENERAL INFORMATION.. 4 4

Text Buffer and Buffer Pointer.................................. 44
Commands and Command Strings.................................... 45
Examples of Commands... 46

OPERATING FEATURES... 47
Aborting Commands.. 47
Deleting Typographic Errors..................................... 47
Use of TAB Characters.. 48
Carriage Return and Line Feed................................... 48

LOADING THE TEXT EDITOR.. 48
EDITOR COMMANDS... 4 9

Commands B, Z, I, T.. 49
B - Beginning of Text Buffer................................ 49
Z - End of Workspace...50
I - Insert Text.. 50
T - Type Out Text.. 50
Examples of Editing Using B, Z, I, and T.................... 51

Commands L, K...52
L - Line.. 52
K - Kill.. 52
Examples of Editing Using B, Z, I, T, L, and K.............. 53

Commands E, W, N...55
E - Exit.. 56
W - Write... 56
N - Punch 60 Null Characters................................ 57
Examples of Editing Using E, W, N............................ 57

Command A - Append..58
Examples of Editing Using A................................59

Commands C, D... 59
C - Character... 59
D - Delete Character... 59
Examples of Editing Using C, D.............................. 60

Commands F, S... 60
F - Find Text String... 60
S - Substitute Text String.................................. 61
Examples of Editing Using F, S.............................. 62

Command Iterations..63
TEXT EDITOR MESSAGES..64
USE OF EDITOR TO CORRECT SAMPLE PROGRAM............................. 6 5

MDS ASSEMBLER.. 71INTRODUCTION...71
LOADING THE ASSEMBLER...71
ASSEMBLING A PROGRAM.. 7 3

Input File Format...74

List Output.. 74
Object Code Output Format..78
Object Code Output for PROM Programming.......................... 78

ASSEMBLER ERROR MESSAGES.. 79
USE OF MONITOR'S I/O SYSTEM..80

INTRODUCTION..80
USING THE I/O SYSTEM... 80

Accessible I/O Routines... 81
I/O Driver Routines... 81

CI - Console Input......................................82
CO - Console Output.....................................83
RI - Reader Input....................................... 84
PO - Punch Output....................................... 85
LO - List Output.. 85

System Status Routines...................................... 86
CSTS - Console Input Status.............................87
IOCHK - Check I/O System Configuration.................88
IOSET - Set I/O System Configuration...................91
MEMCHK - Determine Size of RAM......................... 92

Extending the I/O System.................................... 93
IODEF - Define User-Written I/O Routines................93

APPENDICES
A. INTELLEC® MDS MONITOR COMMANDS....................................... A-l
B. TEXT EDITOR COMMANDS... B-l
C. ASSEMBLER ERROR MESSAGES...C-l
D. OBJECT CODE FORMATS.. D-l

Hexadecimal Object File Format..D-l
BNPF Object File Format.. D-3

E. MDS MONITOR I/O SYSTEM... E-l
Entry Point Addresses for MDS Monitor I/O Routines................. E-l
Device Selection Codes for Use with IODEF..........................E-l
Description of the I/O Status Byte.................................E-l

F. INTERRUPT PROGRAMMING ON THE INTELLEC® MDS..........................F-l

TABLES AND ILLUSTRATIONS

Figure 1-1: Intellec®MDS Memory Map..................................... 10
Figure 2-1: Intellec®MDS Front Panel Controls and Indicators........... 14
Figure 2-2: ASR-33 Teletype Controls.................................... 17
Figure 2-3: MDS-PTR High-Speed Paper Tape Reader........................ 19
Figure 2-4: Universal PROM Programmer................................... 20

Figure 4-1: Sample Program Before Editing.............................. 66
Figure 4-2: Sample Program After Editing............................... 70
Table 5-1: Assembler List File Format................................... 75
Figure 5-2: Sample Assembler List Output............................... 76
Figure 5-3: Sample Object File.. 78
Table 5-4: Assembler Error Codes...79

Page 7

SECTION 1
GENERAL INFORMATION

INTRODUCTION
The Intellec® Microcomputer Development System (MDS) is a complete design
and debugging tool which allows the integration of both microcomputer
hardware and software development. The system operates under control of
an 8080 microcomputer which supervises all system resources such as main
memory, I/O peripheral devices, Intellec bus facilities, and optional
system facilities such as DMA (Direct Memory Access) and ICE (In-Circuit
Emulator) . The Intellec MDS is a self-contained modular microcomputer
development system.

SYSTEM DESCRIPTION
The standard Intellec®MDS consists of four microcomputer modules, an
interconnecting printed circuit motherboard, power supplies, fans, a
chassis, and a front panel. The four microcomputer modules mentioned
above, consist of the 8080 CPU Module, 16K of RAM memory, Front Panel
Control Module, and the Monitor Module. Modular expansion capability is
provided by the additional 14 sockets on the motherboard.

8080 CPU Module
The CPU Module contains an Intel^ 8080 CPU, an n-MOS 8-bit
microprocessor. The CPU provides 2 us cycle time, 78 instructions,
unlimited subroutine nesting, vectored interrupt, DMA capabilities, and
a 16-line address bus which is associated with a bidirectional
eight-line data bus.
Besides the 8080 itself, the CPU Module contains a real-time clock, CPU
initialization logic, and logic to control the Intellec bus. It also
implements a sophisticated priority interrupt mechanism. The CPU Module
contains a priority encoder, which allows eight different levels of
interrupts to be serviced. An interrupt mask register on the CPU Module
allows the 8080 software to block interrupts at some levels, while
allowing interrupts at other levels to be serviced. All signals

GENERAL INFORMATION
System Description

Page 8

required by the 8080's own interrupt system are generated by the CPU
Module. A complete discussion of interrupt processing and programming
requirements on the Intellec MDS is included in Appendix F.

Monitor Module
The monitor module contains the Intellec® MDS Monitor and all MDS
peripheral interface hardware. This module contains all necessary
clocks, control, and data transfer circuitry to interface the following
peripherals:

• Teletype
• CRT (RS232 Interface Specification)
• High Speed Paper Tape Reader
• High Speed Paper Tape Punch
• Line Printer
• Universal PROM Programmer

Use of the Monitor is discussed in Section 3.

Front Panel Control Module
The Front Panel Control module contains circuits for controlling the
front panel operations. It also provides much of the system overhead
for bus control, clock generation, and the bootstrap program. A bus
time-out system is included to prevent the CPU from halting operation if
a nonexistent memory location or an incorrect I/O port is addressed.
The Intellec MDS front panel is intended to augment the console which is
the primary user interactive device. Controls and indicators are kept
to a minumum. These include eight interrupt initiation switches with
corresponding indicators, RUN and HALT indicators, a BOOTSTRAP
initialization switch, and a RESET switch. The use of these controls is
discussed in detail below.

Optional Modules
The basic Intellec MDS capabilities may be significantly enhanced by the
addition of the following optional modules.

• ICE (In-Circuit Emulator)
• Customized User I/O Facilities with the installation of

additional I/O modules
• Additional PROM or RAM memory modules to expand memory

Page 9GENERAL INFORMATION
System Description

in increments of 6K (PROM) or 16K (RAM) 8-bit bytes, up
to a maximum of 12K of PROM and 64K of RAM.

• DMA (Direct Memory Access)

Software Support
The following software is provided for use in the Intellec MDS. These
software packages are described in detail in Sections 3, 4, and 5.

© System Monitor
© Text Editor
© Macro Assembler

MEMORY REQUIREMENTS
The Intellec®MDS memory is arranged into 65,536 addressable 8-bit bytes.
Figure 1-1 describes the memory in the form of a memory map. The upper
2048 locations are reserved for a 2048 by 8-bit ROM containing the
Intellec MDS Monitor program. The lower 256 bytes may be read from RAM
or a "Shadow PROM", depending on the setting of the front panel
BOOTSTRAP switch. When the BOOTSTRAP switch is on, reading locations 00
through 255 retrieves the bytes from the "Shadow PROM"; writing into
these same locations causes the data to be stored in RAM. When the
BOOTSTRAP switch is off, reading and writing from locations 00 through
255 moves data to and from RAM only. This 256 byte "Shadow PROM"
contains the BOOTSTRAP portion of the Monitor program. Having the
BOOTSTRAP portion of the Monitor in "Shadow PROM" allows the
initialization code, invoked by the front panel RESET switch to be
executed starting at location 00. If a user program is run while the
system is in BOOTSTRAP mode, the results will be unpredictable.
User accessible RAM may be installed in locations 00 through F7FFH, in
increments of 16,384 bytes. Depending on the amount of memory
available, it may be installed contiguously or in segments. The only
restriction imposed with respect to memory installation is that at least
one block of memory be installed in the low order memory locations
(starting at location 00). It should be noted that the user must be
aware of any addressing discontinuities and produce code accordingly.
The Intellec MDS Monitor reserves 331 bytes of RAM for its own use.
These are:

• Locations 0 through 7;
• Locations 11 through 15 (0BH through 0FH);
• The 318 locations at the top of the first contiguous

block of RAM.

Page 10GENERÄL INFORMATION
Memory Requirements

The location of the upper 318 bytes is determined when the system is
initialized during the BOOTSTRAP procedure. The Monitor checks location W
256 (100H) for a successful write/read operation, verifying the presence
of a block of RAM in locations 256 through 511 (100H through 1FFH) . If
the test is successful, it is repeated at address 512 (200H). This
process is continued at memory address intervals of 256 (100H) until a
nonexistent memory block is found. The reserved area is placed
immediately below the last contiguous memory location. For example, in
a 16K system, the Monitor will use addresses 3EC0H through 3FFFH.
If memory is installed in noncontiguous segments, the 318 reserved
locations are placed immediately below the last contiguous location.
However, RAM may be installed in the locations above the missing
segment, providing usable memory above the reserved locations.
Normally, memory is installed from location 00, upward to the highest
available location without discontinuities.
When a full complement of memory is installed, the high order RAM which
would normally be accessible by addressing locations F800H through FFFFH
is shadowed by the Monitor ROM and cannot be accessed. This restriction
also applies to any configuration of RAM which has portions in locations
F800H through FFFFH.

Figure 1-1: In tel lecr" MDS Memory Map

Page 11GENERAL INFORMATION
I/O System Configuration

I/O SYSTEM CONFIGURATION
An In tel lee*1 MDS microcomputer system may be configured with a variety of
peripheral devices ranging from a basic 10-character-per-second Teletype
to higher speed devices such as a paper tape reader, punch, or CRT. The
following logical devices are necessary as the minimum peripheral device
complement to run the Intellec MDS Monitor. These devices may be
assigned to various physical peripheral devices using the Monitor
"Assign" Command, which is discussed in Section 3.

CONSOLE An interactive, character-oriented input/output device.
READER A character-oriented input stream device which transfers

data upon command and signals the calling program when
no more data is available (End Of File).

PUNCH A character-oriented output stream device which accepts
a character from the calling program and records it on
some extermal medium.

LIST A character-oriented output device which accepts a
character from the calling program and records it on
some external medium in human readable form.

Facilities are provided so that up to four distinct physical devices may
be assigned to each logical device; the operator may select only one
device at a time. Each logical device has a default physical device
which is assigned at startup time (during the BOOTSTRAP procedure).
However, the user has the option to specify any of the remaining three
physical devices for that logical device.

Page 12

SECTION 2
OPERATING THE INTELLEC®MDS

INTRODUCTION
The Intellec MDS is designed with a simplified front panel which
requires a minimum of button pushing. No data transfer facilities are
incorporated into front panel operations. Except for cold-starting the
MDS system, computer/operator dialogue is under control of the system
Monitor, which provides facilities to operate an interactive console and
other peripheral devices, and to accept operator commands. The system
is at all times under control of the operator, through the Monitor.
The operator may select one of four console devices, one of four listing
devices, one of four punching devices, and one of four paper tape
reading devices. Once the system is configured, the operator may load a
source 8080 program, edit it, and then assemble it into machine language
object code. When the operation is completed, the operator may test the
program by executing it in the MDS, then may output the code onto
punched paper tape or may program a PROM.
The following section describes the operation of various peripherals,
describes cold start and restart procedures, describes the procedures
for loading and using the Assembler and Text Editor programs, and
contains comprehensive instructions for the operation of the Monitor
program which controls and supervises system operation.

EQUIPMENT DESCRIPTION
The following paragraphs describe the operation of the Intellec MDS
front panel and the various peripherals which are used during normal
operation. This information is not intended to replace the operating
procedures which accompany the equipment, but to serve as a convenient
reference showing major operating controls and indicators. The discussion will include descriptions of the following:

Intellec MDS Front Panel

OPERATING THE INTELLEC®MDS
Equipment Description

Page 13

Teletype Console
High Speed Paper Tape Reader
Universal PROM Programmer

In tel lee“'MDS Front Panel Description
The Intellec MDS is pictured in Figure 2-1. The description of each
control and indicator is as follows:

POWER Switch A two-position, key-operated switch to
turn main power on and off.

POWER Indicator Lights to indicate power on status.
INTERRUPT Switches Eight momentary switches, numbered 0

through 7. When a switch is pressed, an
interrupt of the corresponding level is
generated on the Intellec MDS bus.

INTERRUPT Indicators Eight indicator lights, each associated
with the corresponding interrupt level.
Lights when an interrupt at the
associated level is pending. Goes out
when the interrupt is serviced.

HALT Indicator Lights when the Intellec MDS is in the
HALT state.

RUN Indicator Lights when the Intellec MDS is in the
RUN state.
If both the HALT and RUN indicators are
off, and power is on, the MDS is in a
WAIT state. If both are on, the MDS is
oscillating rapidly between the RUN and
HALT states.

BOOT Switch When operated, switches the Intellec MDS
into the BOOTSTRAP mode.

RESET Switch Momentary action switch which, when
operated, resets the program counter in
the 8080 to address 0, clears all
pending interrupts, and resets all other
MDS logic to its initialized state. The
contents of RAM, however, are not
affected.

OPERATING THE INTELLEC® MDS
Equipment Description

Page 14

Attaching Per ipherals to the In tellecw MDS
The Intellec MDS back panel contains two rows of six slots each, used
for mounting cable connectors for various peripheral devices. In a
standard Intellec MDS, the rightmost six slots are occupied by
connectors for six standard peripherals: a Teletype, a CRT, a paper
tape reader, a paper tape punch, a line printer, and the Universal PROM
Programmer. The function of each connector is shown in a legend, which
is stenciled in the upper right-hand corner of the MDS back panel.
Additional spaces are provided on the legend for the user to indicate
the functions of additional connectors he may install.

Figure 2-1: Intellec'" MDS Front Panel Controls And Indicators

Teletype Description
An ASR-33 Teletype is used in various applications. This peripheral
contains a printer, keyboard, paper tape reader, and a paper tape punch.
The ASR-33 Teletype is pictured in Figure 2-2. The controls are labeled
in the figure; the function of each control is listed as follows:

OPERATING THE INTELLEC®MDS
Equipment Description

Page 15

CONTROL KNOB Three-position switch:
OFF Turns Teletype off a

LINE Teletype is on
Intellec MDS.

and connected to
LOCAL Teletype is

connected to I
on,
ntel

but is
lec MDS.

not

KEYBOARD

PRINTER

The keyboard contains the operating keys
to produce printing, non-printing, and
control characters.
The printer produces a typed copy of
input and output at a maximum rate of
ten characters per second. When the
control knob is in the LINE position,
the printer types the output characters
transmitted from the computer. When the
control knob is in the LOCAL position,
the printer prints the characters typed
in on the keyboard.

Operation of the ASR-33 Teletype is described in the Teletype operator's

TAPE PUNCH The tape punch is used to record
information on punched paper tape at a
rate of 10 characters per second.

REL Disengages the paper tape to allow
loading or unloading of tape.

B.SP Backspaces the paper tape one character
for each depression.

ON Engages the tape punch and enables
punching of tape.

OFF Disengages the tape punch.
TAPE READER The tape reader reads characters which

are punched on paper tape. This
information is read at a rate of 10
characters per second.

START Begins reading tape.
STOP Stops reading tape.
FREE Disengages paper tape in the reader by

releasing the sprocket wheel. Allows
tape to be pulled through reader.

Before an ASR-33 Teletype can be used with the Intellec MDS, several
simple modifications must be made to the Teletype. These are described
in the Intellec MDS Hardware Reference Manual.

OPERATING THE INTELLEC®MDS
Equipment Description

Page 16

manual. This information includes loading paper into the printer,
loading paper tape into the punch, inserting punched paper tape into the
tape reader, and general operations of the ASR-33 Teletype.

4

OPERATING THE INTELLEC®MDS
Equipment Description

Page 17

Figure 2-2: ASR-33 Teletype Controls

OPERATING THE INTELLEC®MDS
Equipment Description

Page 18

High Speed Paper Tape Reader
The MDS-PTR High-Speed Paper Tape Reader, shown in Figure 2-3, permits
paper tape to be loaded into the Intellec MDS approximately twenty times
as fast as is possible using the Teletype. Operation of the reader is
very simple:

• Connect the cable leading from the Paper Tape Reader to
the socket labeled "PTR" on the Intellec MDS back panel.
Turn the tape reader on, and load the paper tape to be
read into the left hopper, with the sprocket holes
toward the rear.
Raise the tape gate over the sprocket wheel, and thread
the tape under the metal tape guide on the left, over
the sprocket wheel (making sure the wheel engages the
sprocket holes in the tape), and under the tape guide on
the right. If enough leader is available on the tape,
arrange one or two folds of tape in the bottom of the
right hopper.
Lower the tape gate onto the tape, thereby holding it
against the sprocket wheel.

OPERATING THE INTELLEC®MDS
Equipment Description

Page 19

Figure 2-3: MDS-PTR High-Speed Paper Tape Reader

Unive r sal PROM Prog r ammer
The MDS-UPP Universal PROM Programmer allows the Intellec MDS user to
program any Intel PROM. The UPP contains two zero-insertion-force
sockets, labeled "Socket 1" and "Socket 2". Socket 2 is used for
programming 24-pin PROMs; Socket 1 can be ordered in both a 16-pin and
a 24-pin configuration. Programming different kinds of PROMs involves
merely inserting the proper "personality card" for that PROM (available
from intel) into a slot in the UPP.
As shown in Figure 2-4, the front panel of the UPP is very simple and
straightforward. Besides the PROM sockets, there are two switches
(POWER and RESET) and two lights (POWER and PROGRAMMING). The POWER
light indicates that AC power is applied to the UPP; the PROGRAMMING
light indicates that the UPP is performing a programming operation. The
RESET switch is not normally needed, but can be used to reinitialize the
UPP if it is necessary to abort a programming operation in progress.

OPERATING THE INTELLEC®MDS
Equipment Description

Page 20

The UPP is operated as follows:
• Connect the cable from the UPP to the socket labeled

"PROM" on the MDS back panel.
• Flip the POWER switch on the UPP to its UP position, and

check that the POWER light comes on.
• Move the locking arm on the appropriate PROM socket to

its released position (sticking out) . Insert the PROM
in the socket, and move the locking arm to its locked
position (up).

• Enter the appropriate Monitor command on the MDS
CONSOLE, as described in Section 3 of this manual.

• When the PROM operation is complete, lower the locking
arm on the UPP socket and remove the PROM.

Figure 2-4: Universal PROM Programmer

OPERATING THE INTELLEC®MDS Page 21
Startup Procedures

STARTUP PROCEDURES
The startup procedures consist of turning the system power on and
initiating operation of the Monitor. Procedures are included for a cold
start from a power off condition, executing a user program, interrupting
a user program temporarily, and manually terminating a user program.

Cold Start Procedures
To start the Monitor, perform the following:

® Turn power on by inserting key in power switch and
turning clockwise. The POWER indicator should light.

® Set the BOOT switch to ON.
© Press the RESET switch.
© Type the "space" character on the device that is

selected to be the system CONSOLE. The Monitor polls
all devices capable of assuming the console function
(Teletype or CRT), and assigns the first device that is
used as the CONSOLE.
The Monitor then types the following message:
MDS MONITOR, Vx.x

© After the above message is typed, set the BOOT switch to
the OFF position. The Monitor them prompts with a
period (.) to indicate that it is ready to accept a
command.

Return to Mon i tor from User Program
If a user program is running, the Monitor can be reentered and the user
program terminated by pressing the INTERRUPT 0 switch. The Monitor
responds by printing an asterisk (*) and the value of the user's Program
Counter at the point where the interrupt occurred. The Monitor message
may appear as follows:

*FC98
If the user's program has disabled the 8080 interrupt system (using a DI
instruction, for example), or the program or the operator has altered
the Intellec MDS Interrupt Mask Register (with an X command from the
CONSOLE, for example), the Intellec MDS may not be sensitive to an
INTERRUPT 0. In this case, it will be necessary to repeat the BOOTSTRAP
procedure described above to re-enter the Monitor.

Page 22

SECTION 3
THE MDS MONITOR

INTRODUCTION
The Intellec®MDS Monitor is an Intel 8080 program available as eight
1702A PROMs or one 8316 Mask-Programmed ROM. The Monitor accepts and
acts upon user commands to operate the Intellec MDS system. It also
provides input and output facilities in the form of I/O drivers for user
peripheral devices. The Monitor provides the following facilities:

• Punching selected areas of memory onto paper tape in
BNPF or hexadecimal format.

• Checking the contents of a PROM by comparing with
selected areas of memory.

• Displaying selected areas of memory.
• Initiating execution of user programs.
• Modifying contents of memory and processor registers.
• Inputting hexadecimal file from external device to

memory
• Transferring the contents of an external PROM into

memory.
• Inserting breakpoints into user programs before

execution.
• Loading and executing the Text Editor and Assembler.
• Programming PROMs in conjunction with the Universal PROM

Programmer (UPP).

Page 23THE MDS MONITOR
In trod uction

The Monitor communicates with the user through an interactive console
device, normally a Teletype. The dialogue between the operator and
Monitor consists of user-originated commands in the Monitor's command
language, and Monitor responses, either in the form of a printed message
or an action being performed. After the cold start procedure (described
under the heading, "STARTUP PROCEDURES" in Section 2), the Monitor
begins the dialogue by typing the sign-on message on the console and
requesting a command by presenting a prompt character, ' (period).

MONITOR OPERATIONS
The Intellec®MDS Monitor is a command controlled operations supervisor
for the Intellec MDS system. Control commands are discussed in the
paragraphs titled, "Intellec MDS Command Structure". The following
discussion considers the control commands in functional order.

Monitor I/O Configuration
The Monitor is designed to have versatile I/O facilities so that a user
may select the peripheral device that is to be used for each of the I/O
functions. The Monitor itself must have at least four system devices
assigned to perform the functions defined as CONSOLE, READER, PUNCH, and
LIST. The user is then given the option to select the actual peripheral
device which is to perform the required system operation. Where
applicable, a peripheral device may be used for more than one system I/O
function. Selection of I/O devices for system use is the function of
the ASSIGN or A command and is discussed under the paragraph titled,
"I/O ASSIGNMENT".
The user is also given the facility to use non-standard I/O peripheral
devices. No system coding (drivers) are provided to use these devices.
However, system linkages are provided so that a user may prepare a
device driver and link it to the Monitor I/O system. Procedures to code
and link user generated device drivers is discussed in Section 6.
The 0 command is included to notify the user of the assignment status of
peripheral devices. When the Intellec MDS is initialized, default I/O
assignments are made by the system. Following the initialization
procedures, the device assignments may be changed as desired. The Q
command provides the required quick check of system configuration.

Memory Control
The DISPLAY, MOVE, FILL, and SUBSTITUTE commands provide the user with
control of Intellec MDS memory. These commands allow the user to read
and write data in the MDS memory.
The DISPLAY command, as the name implies, allows the user to display the
contents of blocks of memory on the LIST device. The MOVE command
allows the user to move blocks of memory from ROM or RAM into RAM. The
FILL command allows the user to replace the contents of all locations in

Page 24THE MDS MONITOR
Monitor Operations

a specified memory area with a constant value. The SUBSTITUTE command
allows the user to examine the contents of individual memory locations,
modifying each as it is displayed or leaving it unchanged.

Register Control
The 8080 CPU registers and the Intellec MDS Interrupt Mask Register may
be examined and modified with the X command. The Monitor maintains its
own environment and the user operating environment separate. It saves
and restores each environment each time control is passed between the
user's program and the Monitor. The X command provides the user with
the capability to examine amd modify the data in the user's registers.
The registers associated with the Monitor cannot be accessed or modified
with this command.

Paper Tape Input Control
Two commands, READ HEXADECIMAL FILE and LOAD BNPF TAPE, are included.
These commands read data from the PUNCH device and interpret the data
according to the specified format. Hexadecimal and BNPF formats are
described in Appendix D.
The R command (READ HEXADECIMAL FILE) is used to read a file of
hexadecimal records, terminated with an End-of-File record. An entry
point address may be optionally included in the EOF record. The L
command (LOAD BNPF TAPE) is used to read BNPF words from tape into
memory. Because a low memory address and a high memory address are
specified in the B command, only the number of words needed to fill the
specified memory area are read. The command is terminated when the
specified memory is filled. The R command is open ended, waiting for an
EOF record to be read in to terminate the command.

Paper Tape Output Control
Four commands are included to control data output to the PUNCH device.
The B command formats memory data into BNPF words and outputs it onto
punched paper tape. The format of the BNPF tape is four words,
separated by single spaces, and ending with a carriage return/line feed
character pair. Thus, when printing the contents of BNPF tape, it is
four words to a line.
The WRITE MEMORY or W command formats memory into hexadecimal formatted
records. Each record contains its own load address, data, and checksum.
The END OF FILE or E command is used to terminate a file generated with
the W command. Facilities are provided to include an entry point
address which is used with the G command.
The NULL or N command is used to produce leader and trailer on the paper
tape files. Use of this command causes sixty blank characters to be
punched on the tape (sprocket holes only). The command may be used more

THE MDS MONITOR
Monitor Operations

Page 25

than once to generate greater lengths of leader.

Un ive r sal PROM Programmer Control
Three commands are included to control the operations of the UPP. These
consist of the COMPARE or C command, the PROGRAM PROM or P command, and
the TRANSFER PROM or T command.
The COMPARE command is used to compare the contents of a PROM that is
installed in a socket on the UPP with the contents of a specified range
of memory locations. If differences are encountered, an output is
generated for the CONSOLE device showing the contents of both memory and
PROM at the location that did not compare correctly.
The PROGRAM PROM command transfers the contents of a specified area of
Intellec MDS memory into a PROM which is installed into a socket on the
UPP .
The TRANSFER PROM or T command transfers the contents of a PROM which is
installed in the UPP, into a specified area of Intellec MDS memory.

User
The PROGRAM EXECUTE command, G, is used to execute a user program. This
command transfers control to the user's program at a specified location.
Prior to transferring control, the Monitor sets up the user environment.
As control is passed back and forth between the Monitor and the user's
program, the operating environment is saved and and reestablished. The
state of user registers, as displayed with the X command (described
above), are the values of the register contents just before control is
transferred to the Monitor.
The G command also allows the operator to set breakpoints in his
program. When the program arrives at a breakpoint, control will be
returned to the Monitor, allowing the user to examine the status of MDS
memory, the 8080 CPU registers, etc.

Utility Routine
As an added convenience, the Monitor will perform addition and
subtraction of any two four-digit hexadecimal numbers, displaying the
results on the CONSOLE.

COMMAND DESCRIPTIONS
Intellee" MDS Monitor commands consist of a single alphabetic character
specifying a command, followed by a list of numeric or alphabetic
characters. Numeric parameters are entered as hexadecimal numbers.
Leading zeros may be omitted. Single commas (,) or space characters may
be used as delimiters between arguments in the parameter list. The

Page 26THE MDS MONITOR
Command Descriptions

valid range of numerical values is from 0000 through FFFFH (0 through
65,535 decimal). Longer numbers may be entered, but only the last four
hexadecimal digits are significant. Alphabetic parameters may be a
single character or a string of characters; the specific requirement is
described in the appropriate command description. The normal command
terminator character is the carriage return. Command syntax is
discussed in the individual command descriptions.
In the examples contained within the command descriptions, all
characters typed by the user are underlined to distinguish them from
characters generated by the Monitor. Commands may be terminated before
execution by entering a Control/C before the command terminator is typed
in.
Several Monitor commands require a pair of parameters which are referred
to below as "<low address>,<high address>". These parameters define a
section of MDS memory, which is to be used in the command. In all
commands in which this address pair is used, the following applies:

The command begins execution at <low address>, and continues
until <high address> is exceeded. The data at <high address>,
therefore, is included in the command's scope.
Normally, Clow address> will be less than or equal to Chigh
address>. If, however, the value specified for Clow address>
exceeds that specified for Chigh address>, the command acts on
the data at Clow address>, then terminates.

The following paragraphs contain descriptions of the individual
commands. A summary of this information is also included in Appendix A.

I/O System Configuration Commands - A, Q

I/O ASSIGNMENT - A
AClogical device>=Cphysical device>

The Monitor requires that at least four system peripheral devices be
assigned as a minimum complement of peripheral equipment. These devices
may be selected at run time from the group of peripherals (physical
devices) which are available to the system. If no selection is made
with the A command, default values are assigned by the system.
The system devices are defined as follows:

C or CONSOLE An interactive, character-oriented input/output
device.

R or READER A character-oriented input device, such as a
paper tape reader, which transfers data upon

THE MDS MONITOR
I/O System Configuration Commands

Page 27

P or PUNCH

L or LIST

command and signals the calling program when no
more data is available (End-Or-File).
A character-oriented output device, such as a
paper tape punch, which accepts a character from
the calling program an records it on an external
medium.
A character-oriented output device which accepts
a character from the calling program and records
it on some external medium in human readable
form.

One of four peripheral devices may be selected for each system device.
The physical device specified must be able to perform the functions
which are defined for the system device. Thus, a line printer (LPT)
cannot be specified as the CONSOLE; or a paper tape punch (PTP) cannot
be specified as the READER. The standard device designations which are
discussed below refer to system devices normally supplied with the
Intellec MDS system. Drivers for these peripheral devices are included
in the Monitor. it should be noted that the designation 'CRT' does not
apply to sll CRT devices, but only to those that are compatible with the
MDS system. Similarly all of the device designations used herein apply
to system compatible devices. Facilities are included for the user to
write his own device-specific driver coding and link it to the Monitor.
This allows a user to use his own console, paper tape punch/reader, and
listing device which may appear as non-standard equipment to the
Intellec MDS system. The standard devices are designated with the
following symbols. Either the single letter abbreviation or three
letter (or more) designation may be used:

T o r TTY

C or CRT
B or BATCH

Teletype console with keyboard, printer, paper
tape reader, and paper tape punch.
Compatible CRT.
BATCH mode is a non-interactive mode in which
CONSOLE input is read from the assigned READER
device and written to the assigned LIST device.
In preparing a command file for BATCH input, the
user should enter commands in exactly the same
way as if the system were in interactive mode.
Each command should end with a carriage
return/line feed pair. The period (prompt)
character which is generated by the Monitor in
interactive mode should not appear as part of
the command. Since the Monitor will continue to
read from the READER until the CONSOLE is
reassigned, the last command in the BATCH
command file should reassign the CONSOLE to
prevent the Monitor from reading off the end of
the tape.

page 28THE MDS MONITOR
I/O System Configuration Commands

p or PTR When used with the READER,
refers to the high speed paper

this
tape

designation
reader.

p or PTP When used with the PUNCH,
refers to the high speed paper

this
tape

designation
punch

L or LPT System line printer.

The following are valid device assignments. Only the first character
need be entered; the additional characters in each device name are
allowed for clarity.

CONSOLE Assignment
.AC=x or .ACONSOLE=x
Select one of the following for zxz:
T or TTY (Default as assigned during Cold Start
C or CRT sequence described in Section 2)
B or BATCH
1 Specifies a user-defined device

for which a user-written device
driver is present.

READER Assignment
• - or. AREADER=x
Select one of the following for zxz:
T or TTY (Default)
P or PTR
1 Specifies a user-defined device

for which a user-written device
driver is present.

2 Specifies a user-defined device
for which a user-written device
driver is present.

PUNCH Assignment
.AP=x or .APUNCH=x
Select one of the following for zxz:
T or TTY (Default)
P or PTP

Page 29THE MDS MONITOR
I/O System Configuration Commands

Specifies a user-defined device
for which a user-written device
driver is present.
Specifies a user-defined device
for which a user-written device
driver is present.

LIST Assignment
.AL=x or .ALIST=x
Select one of the following for 'x':

T or TTY (Default)
C or CRT
L or LPT
1 Specifies a user-defined device

for which a user-written device
driver is present.

SYSTEM STATUS QUERY - Q

The Q command allows the
assignable I/O system,
devices and the physical

operator to determine the current status of the
The Q command produces a list of the logical

devices currently assigned to them.
The 0 command causes the following to be printed on the CONSOLE device.

•2
C=T
R=P
P = T
L=T

Memory and Register Control Commands - D, F, M, S, X

DISPLAY MEMORY - D
D<low address>r<high address>

The contents of the memory area defined by the input parameters <low
address> through <high address> are output as a formatted listing on the
LIST device. Each line of the listing begins with the address of the

THE MDS MONITOR Page 30
Memory and Register Control Commands

first memory location displayed on that line. Following the four
hexadecimal digit memory address are up to 16 two-digit hexadecimal
numbers, which represent the contents of contiguous memory locations.
For example, if we wish to display the contents of memory locations 09H
through 2AH, the D command will appear as follows:

■D9,2A
The requested data will be output on the LIST device, formatted as
follows: (data are typical)

0009 00 11 22 33 44 55 66
0010 77 88 99 AA BB CC DD EE FF 10 20 30 40 50 60 70
0020 80 90 A0 B0 C0 D0 E0 F0 01 02 03

FILL - F
F<low address>,<high address>,<constant>

The F command may be used to initialize an area of RAM to a constant
value. The <low address> parameter specifies the low memory address of
the range; the <high address> parameter specifies the high memory
address of the range. The <constant> parameter specifies the 8-bit
pattern to be stored in the designated memory. If an area in ROM or
PROM is inadvertently specified within the range, the operation will
continue until its normal completion even though no writing will take
place in ROM/PROM.
For example, if the user wishes to write 'FF' in all memory from
addresses 0020H through 0FFFH, the command will appear as follows:

.F20,FFF,FF

MOVE MEMORY - M
M<low address>,<high address> , destination address>

The M command may be used to reposition blocks of data in memory.
Memory data is fetched from one location, specified by parameter <low
address>, and stored in location destination address>. Parameters <low
address> and destination address> are then incremented and the process
continues until the value of <low address> is greater than or equal to
the value of <high address>.
For example, the following M command will move the contents of memory
locations 100 through 2FF to locations 600 through 7FF:

»M100,2FF,600

THE MDS MONITOR Page 31
Memory and Register Control Commands

SUBSTITUTE MEMORY - S
S<add ress>

The S command displays memory
allows the user the option
displayed. The procedure for

locations on an individual basis
of modifying each location as

using the S command is as follows:
and

it is

2.

Type in an S, followed by the hexadecimal address of the
first memory location that is to be examined. Type in a
space. The contents of the location will be displayed,
followed by a dash.
You now have the facility to type in new data, followed
with a space or carriage return; a space character
only; or a carriage return character only.
Typing in a space character signifies that you wish to
retain the displayed data, in the specified address.
The contents of the next memory location will then be
displayed followed with a dash
To modify the contents of the displayed location, type
in a two-digit hexadecimal number. The contents of the
specified location will be changed. If more than two
characters are typed, only the last two will be used.
To terminate the command, type in a carriage return. If
the previous operation was entry of modification data,
the Monitor will replace the contents of the specified
location with the new data and terminate the command.
If the previous operation was simply to display the
specified location (space was typed in) the Monitor will
terminate the command.

For example, a user wishes to examine
through 27 and each time the value 7C
S command will appear as follows:

the contents of locations
is found replace it with FF.

20
The

.S20 03- IE- 41- 7C-FF D3- 46- E4- 39-

.D20£27
0020 03 IE 41 FF D3 46 E4 39

1.

EXAMINE AND MODIFY CPU REGISTERS - X
X<register identifier>

The x command displays and permits modification of the CPU registers.
The <register identifier> parameter selects the particular register to
be displayed, or if omitted, select all CPU registers for display. The

Page 32THE MDS MONITOR
Memory and Register Control Commands

<register identifier> parameter is a single alphabetic character defined
as follows:

A 8080 CPU A Register
B 8080 CPU B Register
C 8080 CPU C Register
D 8080 CPU D Register
E 8080 CPU E Register
F 8080 CPU Flag byte. The values of the 8080's condition

flags are packed into this byte, as follows:
76543210
I I I I I I I I------- Carrylililí i---------- Always 1
| | | | | |-------------- Parity
Illi |----------------- Always 0
I | | |-------------------- Auxiliary Carry
¡ I I----------------------- Always 0
| |---------------------------Zero
|------------------------------Sign

H
I
L
M
P
S

8080 CPU H Register
Intellec MDS Interrupt Mask
8080 CPU L Register
8080 CPU H and L Registers combined
8080 CPU Program Counter
8080 CPU Stack Pointer

The procedure for using the X command is as follows:
1. Type in an X, followed by either a <register identifier>

or a carriage return.
2. If a carriage return is typed in, an alphabetical list

of all registers and their contents is displayed on the
CONSOLE. A typical list would appear as follows:

A=AA B=23 C=CC D=01 E=EE F=FF H=12 I=FB L=34 M=1234 P=0100 S=2F00

3. If a register identifier is typed in following the X,
the contents of the register are displayed (two or four
hexadecimal digits are displayed, depending on the
selected register). A dash (-) character follows the
last hexadecimal digit.
.XE EE-

4. The register may be modified at this time by typing in
the new value, followed by either a space or a carriage
return. If no register modification is required, just
type in the space character or carriage return

THE MDS MONITOR
Memory and Register Control Commands

Page 33

character, without the register modification data.
5. If a space character is typed in, the next register, in

alphabetic sequence, is displayed. The procedure in
step 4 (above) may be repeated.

6. If a carriage return is typed in, the register in
question is modified (if modification was performed in
step 4), then the command is terminated.

For example, if the u
following command sho

.X

ser wishes to see all
uld be used:

of the registers, the

This command will di
command.
If the user wishes to

splay all of the regi

modify Register A, he ma

sters and terminate the

y type in :
.XA

The Monitor responds by printing the contents of Register A immediately
CV following the command, as follows:

.XA 7F-

If the user wishes to
the hexadecimal value

modify the contents from 7F
00, as follows :

to 00, he may type in

.XA 7F-00* Pressing the space key immediately following the modified data input
causes the Monitor to display the next register, which in this case is
the B Register. The B Register may similarly be modified. However, if
instead of the space key, the carriage return key were pressed following
the modified data entry, the command would be terminated.

Paper Tape I/O Commands - B, L, R, N

BNPF PUNCH - B
B<low address>,<high address>

The BNPF PUNCH command punches the contents of the memory range

THE MDS MONITOR Page 34
Paper Tape I/O Commands

specified by <low address> through <high address> in BNPF format on the
PUNCH device. Output data is formatted into groups of four words, each
group ending with a carriage return/line feed character combination, and
the words within each group separated with spaces. A detailed
description of BNPF format is included in Appendix D.
The following example will punch the contents of memory locations 100H
through 1FFH:

.B100,1FF

LOAD BNPF TAPE - L
L<low address> , <high address>

The L command loads a BNPF tape in the Intellec MDS system from the
READER device. Starting and ending locations of the loading process are
specified by the parameters <low address> and <high address>.
Additional BNPF words on the tape, in excess of the RAM memory range
specified by <low address> and <high address> are disregarded. if an
insufficient number of BNPF words are available to fill in the specified
memory range, what is available will be loaded; the excess memory
locations will remain unchanged. An error prompt (*) will be output.
An example of the L command is as follows:

.L100,1FF

READ HEXADECIMAL FILE - R
R<bias>

In the Intellec MDS system, object programs are normally saved on
punched paper tape in hexadecimal format. This format is described in
detail in Appendix D. The R command reads a hexadecimal tape from the
READER device and loads the data into the locations specified by the
address fields in the hexadecimal records.
The bias address is added to the load addresses in each of the
hexadecimal records and the data is loaded into a memory area which is
offset by the value of the bias address. For most applications the
address is zero. The data which is loaded remains unchanged; the
addition of the bias address does not imply that the program code is
relocatable. In most cases, the code cannot be executed at the biased
location.
A typical R command will appear as follows:

. R0

THE MDS MONITOR Page 35
Paper Tape I/O Commands

WRITE HEXADECIMAL FILE - W
W<low address> , <high address>

The W command outputs portions of Intellec MDS memory to punched paper
tape, on the PUNCH device. Data is in hexadecimal format.
Multiple W commands may be used to save non-contiguous memory areas as
one file. The final record in the file must be an End-of-File record,
which is generated with the E command. Refer to the description of the
E command for details.
An example of the Write Hexadecimal file operation is as follows:

. W200,3AF
This command punches out the contents of memory
3AF.

locations 200 through

END FILE - E
E<entry point address>

The E command is used in conjunction with the W command during
production of a hexadecimal output file, to generate the End-of-File
record. The <entry point address> input parameter defines the entry
point of the file for subsequent execution. If this is non-zero, the
subsequent R command (which reads the hexadecimal tape) transfers the
<entry point address> to the user's Program Counter. This allows the
user to start execution of the program immediately after reading the
tape with the R command, by entering the G command without giving
further consideraton to a starting address. If the value of the <entry
point address> is zero, the subsequent R command does not alter the
user's program counter.
For example, assume a hexadecimal formatted tape is puched with the W
command. An End-of-File record must also be punched to properly
terminate the file. Also, the user wishes to start execution of the
program represented by the punched paper tape at address 1000H. The E
command would appear as follows:

.E1000

NULL LEADER/TRAILER - N

The N command produces .a tape leader or trailer by outputting sixty NULL
characters on the PUNCH device.

Page 36THE MDS MONITOR
Universal PROM Programmer Commands

Universal PROM Programmer Commands - P , Cr T
The Universal PROM Programmer allows the Intellec MDS user to program a
wide variety of Intel PROMs. The UPP is available in two
configurations: one configuration contains one 24-pin socket and one
16-pin socket, while the other contains two 24-pin sockets. The 16-pin
socket, if present, must be in the "Socket 1" position on the UPP front
panel. The 16-pin socket is used for programming PROMs having a word
size of 4 bits; the 24-pin socket is used with PROMs having a word size
of 8 bits.
The three commands which are used with the UPP each require two
alphabetic parameters, in addition to numeric parameters. One of these
is referred to below as <socket option>, which specifies whether the
PROM being acted upon is in Socket 1 or Socket 2 and, if the PROM word
size is 4 bits, with which half of an 8-bit MDS memory byte the PROM
word corresponds. This parameter may take on the values X, Y, or Z, (
which have the following meanings:

X Select Socket 2 on the UPP for this operation. Treat
all data as 8-bit quantities.

Y

Z
data in each PROM word with the 4 least significant bits
(bits 3-0) in each byte in MDS memory/

Select
data
(bits

Socket
in each
7-4) in

1 on
PROM
each

the
word
byte

UPP. Correlate
with the 4 most
in MDS memory.

the
s ign

4
if i

bits
cant

o f
bits

Select Socket 1 on the UPP. Correlate the 4 bits of

The above discussion assumes that Socket 1 contains a 16-pin PROM. If
Socket 1 contains a 24-pin PROM, the specification of <socket option>
must be considered separately for the C, P, and T commands. This is
dealt with below.
The other alphabetic parameter required
<true/false>, or <t/f>, parameter,
’’sense" of the PROM with respect to MDS

by all three commands is the x"
This parameter establishes the t
RAM, as follows:

If <t/f> = T, the Monitor assumes that the data in PROM appears
in the same sense as it does in MDS RAM; i.e, a "1" bit in PROM
corresponds to a "1" bit in RAM, and a "0" bit in PROM
corresponds to a "0" bit in RAM.
If <t/f> = F, the Monitor assumes that the data in PROM is the
complement of the corresponding data in MDS RAM; i.e., a "1"
bit in PROM corresponds to a "0" bit in RAM, and vice versa.

Each command below requires the UPP to be connected to the
with power on, at the time the command is entered. If the
a READY state, the Monitor will immediately issue an error
as the command is entered.

Intellec MDS,
UPP is not in
indicator (*)

THE MDS MONITOR
Universal PROM Programmer Commands

Page 37

PROM PROGRAMMING - P
P<t/f xsocket optionxlow address> , <high address> , <PROM address>

The P command programs the PROM in the socket specified by <socket
option> with data taken from MDS memory locations <low address> through
<high address>. Data from Clow address> is transferred to the PROM at
<PROM address>, where each PROM is assumed to have a starting address of
0. If <t/f> = F, the data from MDS memory is complemented as it is
transferred to the UPP. The data in MDS memory always remains
unchanged.
The Monitor always transfers 8 bits of data to the UPP for each location
being programmed. If the <socket option> parameter is Y or Z, and
Socket 1 contains a 16-pin PROM, the UPP uses the information provided
by the Y or Z to determine which four bits to use in the programming
operation. If Socket 1 contains a 24-pin PROM, the UPP will use all
eight bits of data in the programming operation. Thus, to program a
24-pin PROM installed in Socket 1 of the UPP, the operator may specify a
<socket option> of either Y or Z. If the 24-pin PROM is installed in
Socket 2, he should use a <socket option> of X.
The UPP reads back and compares each location it programs in PROM with
the original data it received from the MDS. If the two values differ,

transmits an error indicator to the Monitor, which displays the
current <PROM address> value followed by an error indicator (*), then
terminates the programming operation.
NOTE: The P command in the MDS Monitor cannot be used to program the
2704, 2708, 8704, or 8708 PROMs. Intel distributes a special MDS
program for this purpose.

COMPARE - C
C< t/f Xsocket optionxlow address> , <high address>

The C command compares the contents of a PROM located on the UPP, in the
socket specified by the <socket option> input parameter, with the
contents of memory in the area specified by the input parameters <low
address> through <high address> . If the contents of a PROM location are
not equal to the contents of the corresponding memory location, the
memory address, the contents of the memory location, and the contents of
the PROM are printed on the CONSOLE for inspection.
The Monitor always reads 8 bits of data from the UPP. If the Y or Z
socket option is specified, the monitor masks off the appropriate 4 bits
from the contents of the selected memory location so that either the low
or high four bits remain to be compared with the 4 bits of the PROM
location. Assume that the Z socket option is specified. A typical byte
from the UPP may appear as follows:

07

Page 38THE MDS MONITOR
Universal PROM Programmer Commands

The Monitor retrieves the corresponding byte from memory (let us say,
F7) and masks off the most significant 4 bits to produce a byte with a
value of 07. The comparison is then made. Similarly, if the Y socket
option is selected, the byte from the UPP would be ZF0' and the
corresponding byte from memory would be masked to produce ' F0 ', then the
comparison made. Therefore, to compare a 24-pin PROM installed in
Socket 1 of the UPP with the contents of MDS memory, the operator should
do two C commands: once using a <socket option> of Y, and once using a
<socket option> of Z.
For example, the contents of an 8-bit by 256 word PROM is specified as
true logic, and is to be compared with the contents of memory from
locations 0A00H through 0AFFH. The C command is as follows:

.CTXA00,AFF

Assume that the contents of memory locations 0A06 and 0A91 are not equal
to the contents of the corresponding PROM locations. The Monitor will
print the following message:

0A06 AA FF
0A91 00 01

(Typical data)

TRANSFER PROM
T<t/f Xsocket optionXlow address> , <high address>

The T command transfers the contents of the PROM in the socket specified
by <socket option> to the area of MDS RAM specified by the <low
address>,<high address> pair. If the range of memory locations is
smaller than the contents of the PROM, the excess data in the PROM is
disregarded. If the range is greater than the size of the PROM, the
PROM data will be transferred; the excess memory locations will remain
unchanged; an error prompt (*) will be printed by the Monitor. If
<t/f> = F, the data coming from the UPP is complemented before being
stored in MDS RAM.
The Monitor always receives 8 bits of data from the UPP, and stores the
entire 8 bits in the next consecutive RAM location. Therefore, a
<socket option> of either Y or Z may be used to transfer data from a
24-pin PROM located in Socket 1 of the UPP.
For example, a user wishes to transfer an 8-bit by 256 byte PROM to
memory locations 100 through IFF. The status of the data is false
logic. A typical T command appears as follows:

.TFX100,1FF

THE MDS MONITOR
Program Execute Command

Page 39

PROGRAM EXECUTE G
G<start address> , <breakpoint 1> , <breakpoint 2>

The G command transfers control of the Intellec MDS from the Monitor
program to the user program starting at the location specified by the
<start address> parameter.
The <start address> parameter is a four-digit value which specifies the
address to be placed into the user's Program Counter. If this parameter
is omitted, the stored value of the user Program Counter is used as the
starting address. It is possible to have a previously stored value in
the user Program Counter due to four operations:

2

3

4

When the user program is interrupted with the Interrupt
0 switch on the MDS front panel, the status of the user
registers, including the user Program Counter, are
saved. This value of the user program counter allows a
user program to be resumed at the instruction
immediately following the interrupt.
When a non-zero <entry point address> is included in the
End-of-File record in a hexadecimal object file.
If the user has manually modified the user program
counter with a Monitor X. command.
When the user program reaches a breakpoint set by a
previous G command.

The Cbreakpoint 1> and <breakpoint 2> parameters are two 16-bit values
that specify breakpoint addresses in the user program. If either is
omitted, no corresponding breakpoint is set. If either breakpoint
address is encountered while executing the user program, both
breakpoints are reset and control is passed back to the Monitor.
A breakpoint enables the user to temporarily suspend execution of the
user program, examine the state of the program's memory and registers,
make modifications if desired, and then continue the program from the
point of suspension. When the address where the breakpoint is inserted
in the user program is reached, the user program is terminated, all
pertinent user data is saved, and control is returned to the Monitor
program. Immediately following a breakpoint, the value of the user
Program Counter points to the memory location in which the previous
breakpoint instruction was held. The user program may thus be reentered
at a point just beyond the halt.
The Monitor implements breakpoints by saving the contents of the RAM
locations specified as the breakpoint addresses, then substituting RST 0
instructions at these addresses. When the RST 0 instruction is
encountered during execution, the Intellec MDS hardware branches to
address 0, which contains a branch to the Monitor. When the Monitor is

Page 40THE MDS MONITOR
Program Execute Command

entered through this entry point, all status of the 8080 CPU is saved
and the original contents of the breakpoint addresses are restored.
The MDS interrupt system is enabled when the Monitor is entered. Since
the Monitor cannot determine the previous state of the interrupt system,
just prior to the exit from the user program, the assumption is made
that the interrupt system was enabled. When control is returned to the
user program, the interrupt system remains enabled. It is the user's
responsibility to either enable or disable the interrupt system (EI and
DI instructions).
An interrupt from a user program may be performed by pressing the front
panel INTERRUPT 0 switch. The suspension of the user program is similar
to that performed by a breakpoint interrupt. All user program status,
including the Program Counter, is saved. When the user program is
resumed, the saved value of the program counter may be used to restart
the program at the instruction immediately following the interrupted
instruction.
To use the G command, proceed as follows:

1 Type a G. If a starting address other than the current
(stored) value of the Program Counter is desired, enter
it immediately following the G.

2 If no breakpoints are desired, terminate the command
with a carriage return.

3 To set breakpoints, enter a comma or space. The Monitor
will type a dash (-) to indicate that it is ready to
receive a breakpoint. Enter the desired breakpoint
address.

4 To set only one breakpoint, enter a carriage return. To
set another breakpoint, return to step 3. At most two
breakpoints may be entered. If the character following
the second breakpoint is not a carriage return, the
Monitor will issue an error indicator (*) and abort the
command.

For example, a user program starts at location 20 and a breakpoint is to
be inserted at location 2FEH. To start executing the program, a user
will enter the following command:

.G20,-2FE
However, if the program was loaded from a hexadecimal tape, with the R
command, and an entry point address was specified in the End-of-File
record on the tape, the starting address need not be included in the G
command. In this case, the user may enter the command as follows:

The delimiter (,) immediately following the letter G indicates that the

THE MDS MONITOR
Program Execute Command

Page 41

entry point is assumed to be at the location specified by the present
contents of the user program counter. If desired, breakpoints may be
inserted following the delimiter, in the normal manner.
If the user wishes to start executing a program at location 1FA but does
not wish to use breakpoints, the command will be as follows:

.G1FA
If a user wishes to re-enter a program after a breakpoint suspension or
a front panel INTERRUPT 0, and new breakpoints are to be specified at
locations FF and 1AB, the command will be as follows:

.G ,-FF,-lAB
If no breakpoints are to be specified, and the user wishes to reenter a
program after a breakpoint or interrupt, the command will simply be:

If the G command is aborted while it is being entered (e.g., by a
Control/C) or if it contains a syntax error, no breakpoints will be set.

HEXADECIMAL ARITHMETIC - H
H<number l>,<number 2>

For the convenience of the user, the Monitor has the capability of
performing simple hexadecimal calculations. The sum (number 1 + number
2) and difference (number 1 - number 2) of the two numeric parameters
entered are calculated and displayed on the CONSOLE. Arithmetic is
performed modulo 65,536 (2**16) . The input parameters may be up to four
digits in length. Negative numbers must be entered in their two's
complement representation: for example, -2 would be entered as FFFE.
Negative results will be displayed in two's complement form.
For example, a typical hexadecimal arithmetic operation may be performed
as follows:

.H200,1FE
03FE 0002

MONITOR ERROR CONDITIONS \
The Monitor checks for several error conditions. Depending on the
particular error, either an error indication is output on the CONSOLE,
or the command is rejected. The Monitor's response to error conditions
is as follows:

THE MDS MONITOR Page 42
Monitor Error Conditions

INVALID CHARACTERS. The Monitor checks the validity of each character
as it is entered from the CONSOLE. As soon as the Monitor determines
that the last character entered is illegal in its context, it aborts the
command and displays a z*' to indicate the error.
For example, suppose a character 'G' is entered in a parameter list
where only hexadecimal digits (0-9, A-F) and delimiters (comma, space,
carriage return) are valid, the output on the console will be as
follows:

H100,10G*

Suppose the character ZY ' is used as a command. The Monitor will reject
this character and indicate the error as follows:

.Y*

ADDRESS VALUE ERRORS. Many commands require an address pair of the
form, <low address> , <high address>. If, in these commands, the value of
<low address> is greater than the value of <high address>, the action
indicated by the command will be performed on the data at <low address>
only.
Addresses are evaluated modulo 65,536. Thus, if a hexadecimal address
of more than FFFFH (four digits) is entered, only the last four digits
are significant. For example suppose the following address range were
entered:

.M04532AC,945216FCF,0

The above command would be equivalent to M32AC,6FCF,0.
Another type of address error may occur when the user specifies an
address in memory which does not exist in the Intellec MDS system. For
example, a user with a 16K system may enter an address above the highest
memory address, as follows:

.M0,FFF,4000
or .D6000,60FF

No error indication is generated by the Monitor for these error
addresses. In general, if the source address (address from which data
is taken) is nonexistent, the data fetched is unpredictable. If the
destination address (address to which the data is to be transmitted) is
nonexistent, the command has no effect.

Page 43THE MDS MONITOR
Monitor Error Conditions

CHECKSUM ERRORS. If the Monitor determines that a data record read in
an ZRZ command contains a checksum error, all of the data from that
record is destroyed and an error indication of an '* ' is output on the
CONSOLE.
If no checksum error exists, the Monitor reads the next record on the
tape .

PROM PROGRAMMING ERRORS. If an error is signalled from the UPP, during
a zpz command, the command is terminated and a '* ' message is output on
the CONSOLE. If the UPP is not connected to the MDS when a P, T, or C
command is input, an error condition is immediately indicated with the
'* ' message on the CONSOLE.

PERIPHERAL DEVICE ERRORS. Non-existent peripheral devices or devices
which are not ready cause a condition where the Monitor outputs the data
then waits indefinitely for the device to become ready. No other
indication is provided.

Page 44

SECTION 4
MDS TEXT EDITOR

INTRODUCTION
The Intellec®MDS Text Editor enables the user to create and edit ASCII
text files. The Text Editor may be used to edit any ASCII text; in
this system it is used primarily to create and edit source programs for
the 8080 MDS Macro Assembler.
The Text Editor is character oriented. That is, one or more characters
in a line of text can be replaced or deleted, or new characters inserted
without disturbing any of the other characters in the same line. Line
numbers or other extraneous information need not be appended to the text
in order for the Text Editor to operate correctly. All editing can be
accomplished by using the commands which are described in the following
paragraphs.

GENERAL INFORMATION
The Intellect MDS Text Editor occupies approximately 4K bytes of RAM
memory. All of the remaining RAM memory is available for use as the
Text Editor's working area, which is referred to as the Text Buffer.
The normal editing procedure to create a new file is to start the
editor, type in the text, edit the text (to incorporate additions and
corrections), and output the text file. Similarly, to edit an already
existing file, one would start the editor, input the text file, edit the
text, and output the edited version. If the file is already prepared
and is being stored on punched paper tape, it may be entered through the
system READER device. If a new file is to be created, it may be entered
by typing the text on the system CONSOLE device.

Text Buffer and Buffer Pointer
The text buffer is maintained by the Text Editor as the storage area
into which text strings are placed. The size of the Text Buffer is

Page 45MDS TEXT EDITOR
General Information

variable, enlarging as text is entered, and shrinking as text is
deleted. When the buffer is empty, the start of buffer and the end of
buffer coincide and the buffer size is zero.
Since the MDS Text Editor is character oriented, the Buffer Pointer is
needed to locate the character which is to be acted upon. The Buffer
Pointer is simply a movable position indicator which is positioned
either between two adjacent characters, before the first character in
the buffer (start of buffer), or immediately following the last
character in the buffer (end of buffer). The Buffer Pointer is never
positioned directly over a particular character, but may point before it
or after it. Text is placed into the buffer at a point immediately
following the buffer pointer. As each character is entered, the buffer
pointer is moved ahead one character position.
The user has the facility, through certain of the Text Editor commands,
to move the buffer pointer to any position inside the buffer. The
buffer pointer cannot be moved beyond the boundaries of the text buffer;
it cannot be moved further back than the start of buffer position, nor
further forward than the end of buffer position. Any command attempting
to move the buffer pointer beyond the boundaries of the Text Buffer is
terminated when the Buffer Pointer reaches the boundary, even though the
number of operations specified has not been completed.
Buffer Pointer movement may be either in terms of characters or lines.
The consideration of text in terms of lines is convenient because most
text is divided into lines. A line of text, in the Text Buffer, is a
string of characters having a line feed (0AH) character as its last
character. The next character in the Text Buffer, immediately following
the line feed, is in the next line. If no line feed characters are used
in the text, the entire text is considered to be one line.

Commands and Command Strings
Each editor command consists of a single letter command designator.
Certain of the commands take arguments. Commands may be entered one at
a time or may be combined into command strings. The Text Editor signals
its readiness to accept commands by printing a prompting asterisk (*) in
the left-most column of the system CONSOLE device. Command strings must
be terminated with a pair of ALT MODE or ESC characters (depending on
the type of the console device) . Except where otherwise noted below,
individual commands in a command string need not be terminated. If a
text string is included in a command string, the text string must be
terminated with a single ALT MODE or ESC character.
Command strings are stored in the same memory area that is reserved for
the text buffer. In order not to interfere with the text, command
strings are stored at the high end of the memory, above the 'end of
buffer'. Command strings are stored in reverse order, with the first
character of the command in the highest available location, and the
remainder of the characters in the command in descending locations.
When the reserved area is full, the command part may attempt to
overwrite text. This condition is trapped. The procedures to escape

page 46MDS TEXT EDITOR
General Information

this condition are discussed in the following paragraphs.

Examples of Commands
The following examples show a typical command, command string, and
command string combined with a text string. In all examples in this
section, characters typed by the operator are underlined; those typed
by the Monitor or Text Editor are not.

*10T$$
«—j—' V——/

-- Command Terminator
— Command

This command causes ten lines
of text to be printed on the
system CONSOLE device.

— Command Argument
—PROMPT Character From Editor

*B20K5T$$
Command Terminator

Command with Argument
^Command with Argument

^-Command
PROMPT Character From Editor

This command string causes the
Buffer Pointer to be moved
to the start of the buffer,
20 lines of text to be
deleted, and the following
five lines to be output on
the system console device.
The command terminator is
placed at the end of the
command string; the individual
commands do not need separate
terminators.

Page 47MDS TEXT EDITORGeneral Information

SOLD DATA$NEW DATA$$

‘—Text Terminator
-- Text String

This command string causes a
search for the text string
'OLD DATA' in the text buffer.
When found, it is deleted and
the text string 'NEW DATA' is
used as a replacement. The
single $ character represents
the text terminator for
'OLD DATA'; the pair $$
represents the text terminator
for 'NEW DATA' in addition to
being the command terminator.

Command
-- PROMPT Character from Editor

OPERATING FEATURES
User input to the Editor may be either a command, a command string, or a
text string. The Editor signals the user that it is ready to accept a
new command by printing an asterisk (*) in the left-hand column of the
system CONSOLE device. The user may specify text input by issuing the
INSERT command. User input immediately following this command is

(M accepted by the Editor as text. As long as the editor is accepting
input characters as text, the PROMPT character (*) is" not issued. A
command or command string is executed immediately following a command
terminator, which consists of two ALT MODE or ESC characters typed in
consecutively. The Editor echoes these terminator characters as dollar
signs ($$) .

Aborting Commands
A command string may be aborted while it is being entered, before the
command terminator is issued. If it is necessary to delete an entire
command string, without any consideration to its contents, entering a
Control/C will remove the entire command string and cause the Text
Editor to reprompt for a new command.
Also, after the command terminator is entered, and the commands are
being executed, the operation may be aborted by entering a Control/C.
The Text Editor will terminate its operation and reprompt for a new
command.

Deleting Typographic Errors
may be removed

be removed. As
deleted, the

this nature can

Any typographic errors in a command string or text string
by pressing the RUBOUT key once for each character to
each character, starting from the last one entered, is
Editor echoes the deleted character. Corrections of

Page 48MDS TEXT EDITOR
Operating Features

only be performed prior to entering the command string terminator.

Use of TAB Characters
The Editor accepts the horizontal TAB character (09H) , which is
generated by a Control/I on the keyboard. This character is stored in
the text buffer as a single character. The Intellec MDS system accepts
this character to generate a sufficient number of spaces to position the
curser to the next tab position. Tab stops are located every eight
character positions across a line of text.

Carriage Return and Line Feed Characters
Carriage return and line feed characters are saved in the text buffer
the same as any other ASCII character. However, because these two
characters are commonly used to format text listings, they are given
special significance, in the following respects:

During an INSERT command (to be described later) entering a
carriage return on the system console causes a line feed
character to be generated by the Editor and appended to the
carriage return character. Thus, the entry of a single carriage
return character causes a pair of characters to be stored in the
text buffer.
During an APPEND command (to be described later) , entering a
carriage return character via punched paper tape, causes only
the carriage return to be placed in the text buffer. Text may
be prepared off-line, using both the carriage return and line
feed characters to format the off line listing. The punched
paper tape, containing both the carriage return and line feed
characters, may then be input to the Editor, without causing
additional line feed characters to be generated. The carriage
return and line feed characters are accepted and stored as
single characters.

LOADING THE TEXT EDITOR
The Text Editor program is supplied on punched paper tape and is loaded
into the system using the loading facilities of the MDS Monitor.
Because the Editor uses the I/O facilities of the Monitor, all
peripheral devices must be defined before starting execution of the
Editor.
The following start-up procedures can be used to load and start the
Intellec MDS Text Editor:

If it is not already operating, start the system Monitor
and assign the CONSOLE and READER devices to the

MDS TEXT EDITOR
Loading the Text Editor

Page 49

peripherals to be used during the loading of the Editor
program.
Place the tape containing the Text Editor into the
peripheral assigned as the system READER.
Type in the READ HEXADECIMAL FILE command (R) on the
system CONSOLE.
. R0
The paper tape will be read by the reader until an
end-of-file record is read. The MONITOR will prompt for
a new command by printing a period (.) in the left-most
column of the CONSOLE device. If required, new device
assignments may be made at this time to assign the
system PUNCH and LIST devices, or to change the system
CONSOLE or READER devices.
To start executing the Editor, type in the following
command:
.G20
The Text Editor will assume control and print the
following message:
INTELLEC MDS TEXT EDITOR, - VERSION X.X ★

The Text Editor is now ready to accept commands on the
system CONSOLE device.

editor commands
Editor commands are provided to perform four groups of operations,
including: Text Input/Output, Buffer Pointer manipulation, Text
modification, and String Searches. In the following discussion, the
order in which the commands are discussed allows the user to initially
operate the Editor with a minimum of commands. Then, as more commands
are learned, the user can perform more complex editing operations.

Commands B, Z, I, T

B - BEGINNING OF TEXT BUFFER
The B command is a pointer manipulation command used to move the buffer
pointer to the beginning of the text buffer to the position defined as
Start of Buffer'. This command is useful in several respects, for
example:

Page 50MDS TEXT EDITOR
Commands B, Z, I, T

Setting a reference point for counting lines of text;
Defining a starting point when the whole text buffer
contents are to be typed out;
Moving the Buffer Pointer to the start of buffer prior
to starting a search for a selected text string;
Inserting text at the beginning of the text buffer,
before text already in the buffer.

Z - END OF WORKSPACE
The Z command is a pointer manipulation command used to move the buffer
pointer to the end of buffer position, immediately following the last
character in the buffer. This command is used mainly to position the
pointer so that new text will be inserted at the end of old text and be
appended to it.

I - INSERT TEXT
The I command is a text input command used to enter text into the text
buffer from the system CONSOLE device. Placement of the new text in the
text buffer is dependent on the position of the Buffer Pointer.
If the buffer is empty, the buffer pointer will be positioned at the
start of buffer. Thus, any text input with the I command would be
placed into the buffer starting at the beginning. If the buffer already
contains text and the buffer pointer is at some intermediate position in
the text, the new text will be inserted immediately following the buffer
pointer position, splitting the old text. If the text buffer already
contains text and the buffer pointer is at the end of buffer, the new
text will be inserted at the position immediately following the old
text. After insertion, the pointer will be positioned after the last
character in the new text.
Entering a carriage return character causes a line feed character to be
generated by the Editor and appended to the carriage return character.
Thus, the entry of a carriage return character causes a pair of
characters to be stored in the text buffer. Note that this only occurs
during the I command.
After recognizing the letter 'l' as a command, the Editor accepts all
subsequent input as text (including the carriage return and appended
line feed characters) until an ALT MODE, ESC, or Control/C is input.
The ALT MODE or ESC character specifies the termination of the text
string; the Control/C character aborts the command.

T - TYPE OUT TEXT
The T command is an output command, used to type out lines of text.

MDS TEXT EDITOR Page 51
Commands B, z, I, T

This command uses an argument which is placed in front of the command as
follows:

*nnnT$$ nnn represents any decimal number from
-65,535 to +65,534.

If the argument is positive, typing starts at the current location of
the buffer pointer; the argument value specifies the number of lines to
be typed. If the argument is negative, typing begins at the location
defined by the current location of the buffer pointer minus the number
of lines specified by the argument value. Typing continues until the
location of the buffer pointer is reached. If the argument value is
zero, typing starts at the beginning of the current line. All
characters up to the buffer pointer are typed. If no value is
specified, the Editor assumes a default value of 1.
(If the argument value is greater than the number of lines of text

between the buffer pointer and the appropriate buffer boundary, all the
specified text in the buffer will be typed. However, the command will
be terminated automatically when the buffer boundary is reached.

Examples Of Editing Using B, Z, I, and T Commands
S uppose
command
command

a user has
and now

string may
*§5 0 0T_$_$

entered data into the text buffer using the I
wishes to type out the entire buffer. The following

be used :
The B command moves the buffer pointer
to the beginning of the text buffer.
The 500T command types out 500 lines of
text. The argument 500 is assumed to be
larger than the number of lines of text
present in the buffer. This being the
case, the T command is terminated when
the end of buffer is reached, even
though the full count is not reached.

Suppose the user is entering a source program, using the I command, and
has already entered a large number of text lines. For some reason the I
command is terminated and the buffer pointer is moved to some other
location in the buffer. When the user wishes to resume entering the
source file, the buffer pointer is simply moved to the end of buffer and
the I command is initiated. A typical command string will be as
follows :

*ZITEXT STRING

If the user is entering
entered, without moving
used :

The new text will be inserted
the old text.

following

text and wishes to see the previous five lines
the buffer pointer, the following command may be

page 52MDS TEXT EDITOR
Commands B, Z, I, T

*-5T$$ The five lines before the current line
(the one in which the buffer pointer is
located) are printed on the system
CONSOLE device. The current line is not
printed.

The following command may be used to print the current line of text:
*0TT$$ The '0T' part of the command prints from

the beginning of the line up to the
buffer pointer. The following 'T'
command prints from the buffer pointer
to the end of the line.

Commands L, K
L - LINE
The L command is a line-oriented pointer manipulation command. This
command uses an argument which is placed in front of the command as
follows:

*nnnL$$ nnn represents any decimal number from
-65,535 to +65,534.

The pointer cannot be moved outside the boundaries of the text buffer.
If the user issues an L command to move the buffer pointer forward
beyond the end of buffer, or backward beyond the start of buffer, the
buffer pointer will be moved to the respective buffer boundary; the L
command will then be terminated.
The line feed character (0AH) serves as the delimiter between lines. A
line of text is defined as having a line feed character as its last
character.
When the argument value is 1 or no argument used (default value of 1
assumed), the buffer pointer is advanced to the start of the next line.
A positive argument value advances the buffer pointer to the beginning
of the nth line following the current line (n = positive argument
value). A negative argument value moves the buffer pointer back to the
beginning of the nth line preceding the current line (n = negative
argument value). When the argument value is -1 or just -, the buffer
pointer is moved back to the beginning of the line preceding the current
line. Finally, if the argument is 0, the buffer pointer is moved back
to the beginning of the current line.

K - KILL
The K command is a line-oriented deletion command used to delete lines
of text. This command uses an argument which is placed in front of the
command as follows:

MDS TEXT EDITOR
Commands L, K

Page 53

*nnnK$$ nnn represents any decimal number from
-65,535 to +65,534.

The numeric argument used with this command specifies a number and sign.
The number represents the number of lines to be deleted; the sign
indicates the direction. A negative argument deletes lines prior to the
line containing the buffer pointer. A positive argument deletes lines
following the line containing the buffer pointer. If the argument is
zero, the characters from the start of the current line up to the buffer
pointer are deleted. If the argument is 1, the characters from the
buffer pointer, up to and including the line feed character which is
used to terminate the line, are deleted. When no argument is included,
a default value of 1 is implied.

the number of lines of text
text buffer boundary, the lines

are deleted. The command is
hes the boundary.

If the argument value is greater than
between the buffer pointer and the
between the buffer pointer and boundary
terminated when the buffer pointer reac

a user
where
may be

Examples of Editing Using the B, Z, I, T, L, and K Commands
wishes to move the pointer back 5 lines of text and have the line
he pointer is positioned typed out. The following command string
used :
*-5LT$$ The buffer pointer is moved back to the

start of the fifth line before the
current line. This new line becomes the
current line. The T command causes the
line to be typed out.

pointer is at some intermediate position in a line and the user
to return the pointer to the start of the line, the following
may be used:
*0L$$ 0L causes the buffer pointer to move to

the start of the current line.
The following text is present in the text buffer:

If the
wishes
command

THIS IS LINE 1
THIS IS LINE 2
THIS IS LINE 3
THIS IS LINE 4
THIS IS LINE 5
THIS IS LINE 6
THIS IS LINE 7
THIS IS LINE 8
THIS IS LINE 9
THIS IS LINE 10

Assume that the buffer pointer is in line 6, positioned between the I

Page 54MDS TEXT EDITOR
Commands L, K

and the S in the word IS. Each of the commands in the following
examples will produce the specified type out:

of line.

*0T$$
THIS I*

Types
line

out
(line

from
6)

the start of the current
up to the buffer pointer.

*T$$ Types from the buffer pointer to the end
S LINE 6 ★

*0TT$$ Types the whole line without moving the
buffer pointer.

THIS IS LINE 6 *

*-5T$$
THIS IS LINE 1
THIS IS LINE 2
THIS IS LINE 3
THIS IS LINE 4
THIS IS LINE 5
THIS I*

*5TS$
S LINE 6
THIS IS LINE 7
THIS IS LINE 8
THIS IS LINE 9
THIS IS LINE 10

*-5T5T$$
THIS IS LINE 1
THIS IS LINE 2
THIS IS LINE 3
THIS IS LINE 4
THIS IS LINE 5
THIS IS LINE 6
THIS IS LINE 7
THIS IS LINE 8

Types 5 lines proceeding the
current pointer line. Types
the current line from its start
to the pointer position.

★
Types five lines including part
of current line from position
of buffer pointer. In this
case, the five lines were
typed. However, if the
command were '6T', the
sixth line would not be
typed because the sixth line
after line 6 does not exist
inside the text buffer
boundaries. The five lines
would be printed as in the
example to the left; then the
command would be terminated.

Types all ten lines of the
buffer. Includes the five
lines preceeding the buffer
pointer, the line containing
the buffer pointer (from the
beginning of the line up to the
pointer), the remainder of the
current line (from the pointer
to the end), and the four
remaining lines.

MDS TEXT EDITOR
Commands L, K

Page 55

THIS IS LINE 9
THIS IS LINE 10

The buffer pointer is located in line 6, between the characters I and S
in the word IS. The user wishes to delete lines 3,4,5,and 6.

THIS IS LINE 1
THIS IS LINE 2
THIS IS LINE 3
THIS IS LINE 4
THIS IS LINE 5
THIS IS LINE 6
THIS IS LINE 7
THIS IS LINE 8
THIS IS LINE 9
THIS IS LINE 10

Before this operation can be started, the buffer pointer should be
positioned either before or after the lines which are to be deleted.
First, let us move the pointer in front of the lines and use a positive
argument K command. Because the pointer is in line 6, it must be moved
in front of line 3, then the four lines 3,4,5,and 6 can be deleted. The
command is as follows:

*-3L4K$$ The -3L moves the pointer to
the start of line 3. The
4K deletes the next four lines.

The pointer may be moved to the line following the lines to be removed
and a negative argument K command used, as follows:

*L-4KS$ The L moves the pointer to
the start of line 7. The
-4K deletes lines 6,5,4,and 3.

Commands E, W, N
The E (End), W (Write), and N (Null) commands generate output on the
system PUNCH device, as described below. The operation of each of these
commands differs slightly, depending on which device is assigned as the
system PUNCH device. If the Teletype is assigned as the system PUNCH
device when an E, W, or N command is executed, the Editor recognizes
this and starts the punch operation with the message:

START PUNCH, TYPE CHAR
The Editor is requesting the user to turn on the Teletype punch, then
type in any character on the keyboard, to resume Editor operation.

Punching starts and continues until the specified number of lines are

Page 56MDS TEXT EDITOR
Commands E, W, N

punched out. The operation then stops, allowing the operator to turn
the punch off. To return the Editor to a prompt mode, type in any
character; the Editor will reply by prompting with an asterisk.
If the high speed punch is assigned as the PUNCH device and the Teletype
or CRT is assigned as the CONSOLE device, paper tape punching is
initiated immediately, without any requests for operator intervention.

E - EXIT
The E command is used to punch out the entire contents of the text
buffer at the completion of a work session. Output is on the system
PUNCH device. The text buffer is cleared after punching; the Editor
program is effectively restarted and will accept new text immediately
following the E command execution.
No leader is generated by the E command. However, 60 NULL characters
are generated at the end of the tape to act as trailer. If leader is
needed, the N command (described below) can be used.
After the buffer contents are punched on tape, the text buffer is
cleared, and the remaining input (on the READER device) is read in and
copied directly to the PUNCH device. The Editor then punches an
End-of-File mark (Control/Z) into the tape. If this tape is
subsequently input by an A command (to be described later) , this
character will be recognized by the Editor as the end of the tape. The
editor is reinitialized, and the following message is printed:

INTELLEC MDS TEXT EDITOR, - VERSION x.x
If the text buffer is empty, the E command may be used to copy punched
paper tape. The procedure to perform tape copying operations is as
follows:

While operating the Monitor, assign the READER and PUNCH
devices required to perform the tape copying operation.
Start the Text Editor as described in this section.
Place the tape to be copied into the READER.
Make sure that both the READER and PUNCH are turned on,
then type in the following command:
*E$$

W - WRITE
The W command is an output command used to punch out a specified number
of lines from the text buffer onto the system PUNCH device. The text is
always taken from the beginning of the text buffer, regardless of the
current position of the buffer pointer. As text is punched, the line

MDS TEXT EDITOR
Commands E, W, N

Page 57

punched is deleted from the text buffer, and the remaining text is
compacted up to the start of text. This command uses an argument which
is placed in front of the command as follows:

*nnnW$ $ nnn represents any decimal number from
-65,535 to +65,534. Both positive and
negative arguments are treated as
positive values. An argument value of
zero causes no punching to occur.

N - PUNCH 60 NULL CHARACTERS
The N command is an output command used to punch leader and trailer into
punched paper tape. Each 'n' entered into the command punches 60 NULL
characters.

Examples Of Editing Using The E, W, And N Commands
Assume a text buffer with 100 lines of text. The first 25 lines are
satisfactory and require no further editing. The user selects to output
these lines of text to punched paper tape before continuing with the
editing. The command will appear as follows:

*25W$$
The first 25 lines in the text buffer are punched on the system PUNCH
device. The pointer is moved to the start of buffer; line 26 becomes
line 1 and all of the subsequent lines of text are moved up a
corresponding amount.
If the user requires leader or trailer on the punched paper tape, it
should be produced with the ZN' command or the manual facilities of the
PUNCH device. No leader or trailer is generated with the 'W' command.

If a text file is being inserted and, for some reason, the user finds it
necessary to terminate the editing session before the file is complete,
the integrity of the text file can be maintained by punching out the
contents of the text buffer and reloading it when editing is resumed.
The ZEZ command and ZN' command can be used, as follows:

*NNE$$ Punches out 120 NULL characters, then
punches the contents of the whole text
buffer.

This procedure is handy when the user has to stop an editing job
temporarily and wishes to save the current contents of the text buffer
for subsequent continuation of the job.
A condition may occur where the text buffer part of reserved memory is

page 58MDS TEXT EDITOR
Commands E, W, N

almost full and the command string is attempting to overwrite the last
character in the text string. This condition is trapped and the last
character of the command string is rejected. When this condition
occurs, the only character that will be accepted is the RUBOUT.
The user must type in a sufficient number of RUBOUT characters so that
enough buffer is made available to input a command terminator . At this
point, the user must clear out part of the text buffer so that the
remainder of the input text, or part of it, may be input to the text
buffer. The most expedient manner to empty the text buffer while
maintaining the integrity of the text is to punch out the text that is
already edited. The 'w' command is best suited to this task. Suppose
that the first 500 lines of text are edited and can be output. The
following command string will output 500 lines of text:

*NN500WNN$$ This command string will punch 120 NULL
characters, punch out 500 lines of text,
relocate the remaining text to the front
of the text buffer, and then punch 120
NULL characters as trailer.

Command A
A - APPEND
The A command is used to enter text into the text buffer from the system
READER device. The input text is appended to the text already in the
buffer, with the new text being stored at the end of the buffer. Once
initiated, the A command continues reading text until one of the
following conditions is satisfied:

• The end of tape is reached.
• An End-of-File character is read (Control/Z). The

Control/Z is not placed into the text buffer.
• The workspace is full.
• A Form Feed character is read (Control/L). The Form

Feed is placed into the text buffer.
• 50 lines of text are read.

If needed to enter a large text file, the A command may be repeated as
many times as needed to enter the entire file. Each A command is
terminated when one of the above conditions is satisfied. If the READER
is turned off during an A command, the system recognizes this as an End
Of Tape and terminates the command.

MDS TEXT EDITOR
Command A

Page 59

Examples Of Editing Using The A Command
Suppose that, in the last example, the tape was to be reentered and the
editing job continued. Also, suppose that 150 lines of text are saved
(punched). The following procedure will reenter the saved text into the
text buffer :

© Start the Editor
q Place the tape into the tape READER.
0 Type in the following command,

*AAA$$
The tape READER will start and 150 lines of text will be read. The text
may now be edited, or new text appended.

Commands C, D
C - CHARACTER
The C command is a pointer manipulation command used to move the pointer
a specified number of character positions. An argument is used with
this command and is placed in front of the command as follows:

*nnnC$$ nnn represents any decimal number from
-65,535 to +65,534.

The pointer cannot be moved beyond the boundaries of the text buffer.
Thus, if the buffer contains 5,000 characters, the command "7000^ will
move the buffer pointer 5,000 characters, until the buffer pointer
reaches the boundary, then the command will be terminated. Similarly, a
command to move the buffer pointer in a negative direction, past the
start of buffer, will be terminated once the start of buffer boundary is
reached.
Normally, the C command is not the best way to move the pointer over
large distances. This command is best utilized when pointer movement,
on a character basis, is restricted to one line of text. Larger pointer
movements are more easily performed by using the ZLZ or ZFZ (to be
described later) commands.

D - DELETE CHARACTER
The D command is used to delete a specified number of characters from
the text. The numeric argument used with this command specifies a
number and sign. The number represents the number of characters to be
deleted; the sign indicates in which direction, moving from the buffer
pointer position, the deletion is to occur. A negative argument deletes
characters in front of the buffer pointer; a positive argument deletes
characters following the buffer pointer. The format of the D command is

Page 60MDS TEXT EDITOR
Commands Cf D

as follows:
*nnnD$$ nnn represents any decimal number from

-65,535 to +65,534.
An argument with a value larger than the number of characters between
the buffer pointer and either boundary of the buffer cannot be used to
move the delete operation out of the text buffer. The delete operation
will continue until the end of buffer or beginning of buffer (when the
argument is negative), at which time the command will be terminated.

Examples Of Editing Using The C and D Commands
A user wishes to delete a character from a line of text. The buffer
pointer is at the beginning of the line. Consider the following line of
text where the word MULTUIPLY can be corrected by simply deleting the
extraneous letter U.

THIS ROUTINE WILL MULTUIPLY TWO 16-BIT NUMBERS
Because the buffer pointer is at the beginning of the text line, it must
be moved 23 character positions to the point immediately before the
letter U; whereupon the letter U may be simply deleted with the D
command. The command to perform these operations is as follows:

*23CD$$
This is a clumsy way to position the buffer pointer and delete a
character. It is included here as an example to show use of the C
command. A better way to perform the same operation would be initiated
with the SUBSTITUTE 'S' command (to be described later).
If no argument is used with the C or D commands, the default value of 1
is assumed. If a value of 0 is used, the pointer does not move and the
command has no effect.

Commands F, S
F - FIND TEXT STRING
The F command is a search command used to find a text string of up to
sixteen characters. The characters ALT MODE, ESC, and Control/C are not
considered to be text because of their control functions, and cannot be
included in the set of text characters.
The F command causes the Editor to search for the first occurrence of a
character string matching the character string specified in the command
All characters must match, including printing and non-printing
characters. The search is started at the current location of the buffer
pointer and continues until either the end of buffer is reached or a
successful match is made. If a successful match is made, the Editor
terminates the command leaving the buffer pointer at a location

MDS TEXT EDITOR
Commands F, S

Page 61

immediately following the last character in the search string. A prompt
character is output, requesting the next command. If no match is found
when the end of the buffer is reached, the Editor prints the message:

CANNOT FIND "xxxxxxxxxx" where xxxxxxxxxx represents
BREAK the specified string.

The buffer pointer, in this case, is left at the end of the buffer. If
the specified string is larger than sixteen characters, only the first
sixteen will be used.
The format of the ZFZ command is as follows:

*FTHIS IS THE STRING$$
If the command is to be part of a command string, a single $ (ESC)
terminator character will terminate the text string, allowing additional
commands to be appended. If no other commands are to be included, the
text string and command string can both be terminated with the double
$$. It is important to remember to terminate the text string before
additional commands are appended. Otherwise, the additional commands
will be treated as part of the text string. For example, the string:

*FDIVIDE0LT$$
initiates a search for the string zDIVIDE0LTz, instead of the intended
string 'DIVIDE'. The appended command 0LT is part of the text string.
The correct format for this command is as follows:

* FD IVI DE$ 0 LT$ $
Note that the text string DIVIDE is itself terminated with a single $.
It is wise to verify the match of the requested text string with the
text string found. In some cases a string may appear in several
unexpected places prior to the line being searched for. For example, if
the label DIV: is being searched for and several occurrences of the
string DIV are present (i.e'. DIVIDE, DIV1, DIV2, DIV3, etc) specifying
DIV as the search string will produce spurious results. A unique
combination of characters are required; in this case, it would be
better to search for DIV: (include the colon), and then verify search
results by typing out the line.

S - SUBSTITUTE TEXT STRING
The S command is a search command used to find a text string and replace
it with another text string. The search part of the S command is
similar to the F command. The substitute part of this command occurs if
the search is successful. Any number of characters may be substituted
for the characters in the search string. At the completion of the S
command, the buffer pointer will be placed after the last character in
the replacement string. The format of the S command is as follows:

Page 62MDS TEXT EDITOR
Commands F, S

*SSTRING 1$STRING 2$$
Each of the strings must be terminated with a $. The first string
STRING 1 is the search string, which must be limited to sixteen
characters. STRING 2 is the substitution string and may contain any
number of characters (excluding the characters ALT MODE, ESC, and
Control/C). The substitute string must be terminated with an ESC or ALT
MODE.
If no substitution string is included, the search string will be found
and deleted. The S command is used in this manner to selectively delete
strings up to 16 characters long.

Examples Of Editing Using The F And S Commands
There are three extraneous characters which are to be deleted with the D
command. The line of text appears as follows:

PARAM: CALL BACKOFF ; BACK IS THE RETN
The user would like to delete the three characters OFF from the word
BACKOFF. First the pointer must be positioned adjacent to the string
OFF, and then the deletion performed. The command will appear as
follows:

*BFBACK$3D$0TT$$ This command string moves the pointer to
the start of buffer, then commences a
search for the string BACK. At the
first occurrence of this string, the
pointer is positioned following the K in
BACK. The next three characters are
deleted (OFF), and finally the line is
typed out. The $$ terminates the
command string.

When completed, the line of text will appear as follows:
PARAM: CALL BACK ; BACK IS THE RETN

If for some reason the pointer is positioned immeditaely after the
string of charcters which are to be deleted, the D command may be used
with a negative argument. Consider the following example. A user
wishes to delete the label PARAM:

PARAM: CALL SUB1
The command would appear as follows:

*FPARAM:$-6D$$ The string PARAM: would be searched
for, and when found, the pointer will be
positioned following the colon (:).
deleting the preceding six characters

MDS TEXT EDITOR
Commands F, s

Page 63

the six character string PARAM: is
deleted .

An error to be corrected consists of a misspelled word. The following
command is used to search for the incorrect word and replace it with the
correct one. Once corrected, a typeout is specified to verify the
operation.

*SINITAIL$INITIAL$0TT$$
The Editor responds by performing the substitution and typing out the
corrected line. At the termination of the operation, the buffer pointer
is positioned at the location between the L in INITIAL and the following
blank character. The corrected line is typed out as follows:

LXI H,0 ; INITIAL VALUE FOR REMAINDER
If a carriage return occurs in the search string of an F or S command,
or in the replacement string of an S command, the Text Editor will
automatically generate a line feed following it. Thus, the command

*FEND.
NEXT$$

will search for the characters "END.<cr><1f>NEXT".

Command Iterations
A command or command string may be repeated any number of times by
enclosing the string in angle brackets "<" and ">", preceded by a number
which specifies the number of times the iteration is to be performed.
The format of the command is as follows:

n<command or command string>$$
where n specifies the number of times
the command enclosed between the symbols
'<' and '>' is executed.

For example, if a user program is written using a label 'DIVID' which is
included fewer than ten times in the source file and wishes to shorten
the label to DIV, an iterative substitute (S command) would be used as
follows:

* Bl0<SDIVIDDIV>$$ The B command moves the pointer to the
beginning of the text buffer. The
iterative command is repeated ten times;
it searches for the text string DIVID,
and each time it finds the string,
replaces it with the new string DIV.

Command iterations may be nested up to eight deep. Any attempt to nest

Page 64MDS TEXT EDITOR
Command Iterations

command iterations more than eight deep is trapped and
is printed on the console device:

an error message

ITERATION STACK FAULT
For example, suppose the text buffer contains the SINEs of angles from 0
degrees to 90 degrees in increments of one degree. Assume these are
arranged one per line and each is listed to 15 digits of accuracy as
follows:

0.000000000000000
0.017452406437284
0.034899496702501
0.052335956242944

h

0.999390827019096
0.999847695156391
1.000000000000000

To improve the readability, it would be helpful to break each number up
into groups of five digits by inserting spaces, so that each one would
appear as follows;

0.00000 00000 00000
0.01745 24064 37284
0.03489 94967 02501

0.99939 08270 19096
0.99984 76951 56391
1.00000 00000 00000

This can be done by nesting two iterated commands: One level will
insert a space at every fifth character on each line, and the other
level will advance through the 91 lines in the file.
The command is:

*B91<2C2<5CI $>L>$$

TEXT EDITOR MESSAGES
The Intellect MDS Text Editor prints messages on the system CONSOLE
device to notify the user of various status conditions.

There are three error messages as follows:

”n” ILLEGAL IN THIS CONTEXT
The "n" represents the illegal alphanumeric character
that was incorrectly typed in.

CANNOT FIND "xxxxxxx”

Page 65MDS TEXT EDITOR
Text Editor Messages

The xxxxx represents the text string which the editor
could not find during an F or S command. This message
further prints *BREAK* to signal that the command is
abor ted .

ITERATION STACK FAULT
This message is a notification to the user that iterated
commands were nested more than eight levels deep. The
command is aborted.

A start-up message:
INTELLEC MDS TEXT EDITOR, - VERSION x.x

A device status message:
START PUNCH, TYPE CHARACTER

This message is device sensitive, appearing only when a
punched paper tape is output with an ZEZ, ZWZ, or ZNZ
command, while the Teletype is being used as the system
PUNCH device. The system waits for the requested
operat ion.

USE OF EDITOR TO CORRECT SAMPLE PROGRAM
The following consists of a sample program that needs correction, the
Editor commands and responses while making corrections, and a final
output showing the corrected listing.

MDS TEXT EDITOR
Use of Editor to Correct Sample

Page 66
Program

REENTRANT DIVIDE ROUTINE
DIV:

Change +0
il

DIV2

RAR.

MOV A,D
CMA
MOV D,A
MOV A,E
CMA
MOV E,A
INX D
LXI H,0
MVI A,17
PUSH H
DAD D
JNC DIVI
XTHL
POP H _
PUSH CpcwX
MOV a"c
RAL
MOV C,A
MOV A,B
RAL
MOV B,A
MOV A,L
RAL
MOV L,A
MOV A,H
RAL
MOV H,A
POP (^C^)
DCR A
JNZ DIV0
ORA A
MOV A,H
MOV D,A
MOV A,L
MOV E,A
RET
END

NEGATE THE DIVISOR

Be - DiViPl^P/^uci
Hu- îenfoRARy
pe X pi V i

SAVE REMAINDER
SUBTRACT DIVISOR (ADD NEGATIVE)
UNDER FLOW, RESTORE HL

; SAVE LOOP COUNTER
; 4 REGISTER LEFT SHIFT
; WITH CARRY
; CY -> C -> B -> L -> H

; RESTORE LOOP COUNTER
; DECREMENT IT
; KEEP LOOPING
; POST^DIVIDE CLEAN UP

Hevc, over and r
11 n e. 6 c* rou 170/. + h fii

Figure 4-1: Sample Program Before Editing

Page 67MDS TEXT EDITOR
Use of Editor to Correct Sample Program

The three comments may be entered into the text with the following
command string:

*3LI; BC = DIVIDEND/QUOTIENT
; HL = TEMPORARY
; DE = DIVISOR/REMAINDER
is

The next error to be corrected consists of a misspelled word. The
following command is used to search for the incorrect word and replace
it with the correct one. Once corrected, a typeout is specified to
verify the operation

*SINITAIL$INITIAL?0TT$$
The Editor responds by performing the substitution and typing out the
corrected line. At the termination of the operation, the buffer pointer
is positioned at the location between the L in INITIAL and the following
blank character. The corrected line is typed out as follows:

LXI H,0 ; INITIAL VALUE FOR REMAINDER
The next task is to find all occurrences of the label DIV0 and replace
it with the string DV0. The number 10 is selected because it is known
that there are fewer than 10 occurrences of the label DIV0. As each
occurrence is matched during search, it is replaced and the corrected
line is typed out. The command appears as follows:

*10£§DIX0?DV0?0TT>??
The editor will reply with the following:

DV0 :
JNZ DV0 ; KEEP LOOPING

CANNOT FIND "DIV0"
BREAK

Similarly, we can replace 'DIV1' with 'DVI' throughout.
Next, the register named PSW is incorrectly called PCW in the source
coding. A search will be made for the text string PCW, and each time it
is found it will be replaced with the text string PSW. The command is
as follows:

*Bl0<SPCWPSW0TT>$$
The operation is similar to that described above. The Editor output is
as follows:

PUSH PSW ; SAVE LOOP COUNTER
POP PSW ; RESTORE LOOP COUNTER

Page 68MDS TEXT EDITOR
Use of Editor to Correct Sample Program

CANNOT FIND "PCW"
BREAK

We have found all occurrences of DIV0, DIV1, and PCW and corrected them.
The buffer pointer is at the end of the buffer. The next task is to
delete the label DIV2 (which is not referenced in any of the statements)
and move the comments over to the left-hand margin. Also, comment lines
will be generated to precede and follow the POST DIVIDE CLEAN UP"
message. In addition, the word "POST DIVIDE" will be hyphenated. The
command string will appear as follows:

*BFKEEP LOOPING$LI;
$9DFPOST^DI-$LI; SHIFT REMAINDER RIGHT AND RETURN IN DE

4T$$

The first command, B, returns the pointer to the start of the buffer.
Although text string "KEEP LOOPING" is on the previous line, it is
convenient to use F to locate the required line.
The next command, L, moves the buffer pointer to the next line where the
semicolon and carriage return/line feed are inserted. Nine characters
are deleted, removing the label and four TAB characters, moving the
comment to the left-hand margin. The string POST is searched for and
quickly found because it is immediately following the pointer. This
positions the pointer after the letter T in POST. One character is
deleted and replaced with the dash (-) character. The L command moves
the pointer to the next line, where another comment line, a carriage
return/line feed, a semicolon, and another carriage return/line feed
combination are inserted. The -4T command is used to verify the
operation. The Editor prints the following:

; POST-DIVIDE CLEAN UP
; SHIFT REMAINDER RIGHT AND RETURN IN DE

The next task is to insert two "RAR" commands. The command to locate
the line and insert the first RAR is as follows:

*2<FMOV$>0LI RAR

From the current pointer position, following the last operation, a
search is made for two occurrences of the text string MOV. Note that
this command would produce unpredictable results if started when the
position of the pointer is unknown. However, remembering the last
command string and determining that the pointer is left at a position
between the line feed from the line containing the ";" and the <tab>
character proceeding the O in ORA, the position of the next two MOV

Page 69MDS TEXT EDITOR
Use of Editor to Correct Sample Program

strings is known.
After the second MOV is located, the pointer is positioned following the
V in the second MOV. The pointer is then moved to the start of the
current line and a line is inserted, containing <tab>, RAR, <cr,lf>.
The -2T command is used to look at the previous line and the current
line to verify the insertion. The Editor prints out the following:

MOV
RAR

A,H

In the last command string, the pointer is moved forward three lines,
then the string <tab>, RAR, <cr,lf> is inserted. The current line and
the previous line are output. The command appears as follows:

*3LI RAR
$-2T$$

The Editor replies by printing out:
MOV
RAR

A,L

The program is now complete. A corrected version of the text appears in
F ig ur e 4- 2 .

MDS TEXT EDITOR
Use of Editor to Correct Sample Program

Page 70

; REENTRANT DIVIDE ROUTINE
; BC = DIVIDEND/QUOTIENT
; HL = TEMPORARY
; DE = DIVISOR/REMAINDER

Figure 4-2: Sample Program After Editing

DIV:
MOV A,D NEGATE THE DIVISOR
CMA
MOV D, A
MOV A,E
CMA
MOV E,A
INX D
LX I H,0 / INITIAL VALUE FOR REMAINDER
MV I A,17 / INITIALIZE LOOP COUNTERDV0 :
PUSH H f SAVE REMAINDER
DAD D ! SUBTRACT DIVISOR (ADD NEGATIVE)
JNC
XTHL

DVI t UNDER FLOW, RESTORE HL
DVI :

POP H
PUSH PSW / SAVE LOOP COUNTER
MOV A,C 7 4 REGISTER LEFT SHIFT
RAL t WITH CARRY
MOV C,A t CY -> C -> B -> L -> H
MOV A,B
RAL
MOV B,A
MOV A,L
RAL
MOV L,A
MOV A,H
RAL
MOV H,A
POP PSW / RESTORE LOOP COUNTER
DCR A / DECREMENT IT
JNZ DV0 r KEEP LOOPING

; POST-DIVIDE CLEAN UP
; SHIFT REMAINDER RIGHT AND RETURN IN DE
/

ORA A
MOV A,H
RAR
MOV D,A
MOV A,L
RAR
MOV E,A
RET
END

Page 71

SECTION 5
MDS ASSEMBLER

INTRODUCTION
The Intellect MDS Assembler accepts 8080 source language statements and,
in two or three passes, depending on the peripheral devices available,
generates a listing (including symbol table) and a hexadecimal object
file on punched paper tape. A full description of assembly language
syntax and semantics is included in the 8080 Assembly Language
Programming Manual, Intel publication # 98-004.
In use, the assembler is loaded into the Intellec MDS system using the
hexadecimal loading facilities of the system Monitor. When initially
loaded and started, the Assembler prints an introductory header message.
The operator now specifies which pass of the Assembler is to be
executed. The source tape of the program being assembled is read during
each pass. After each pass the tape must be rewound and prepared for
the next pass. The assembler outputs a list file and a hexadecimal
object file.
The user's reply to the prompt question depends on the system I/O
format, specifically on the peripheral devices available for system I/O.
This is discussed below.

LOADING THE ASSEMBLER
The assembler is supplied on punched paper tape and is loaded into the
system using the tape loading facilities of the system Monitor. Because
the assembler uses the I/O facilities of the monitor, all peripheral
devices must be defined before starting execution of the assembler. The
following procedures load and start execution of the Intellect MDS
Assembler:

1 If the Monitor is not already operating, start the
system as described in the "START UP" procedures.

2 With the Monitor running, assign (using the Monitor "A"

MDS ASSEMBLER
Loading the Assembler

Page 72

command) the peripherals required for loading the
Assembler, as the CONSOLE and READER devices.

3 Place the tape containing the MDS Assembler into the
peripheral assigned as the system READER device.

4 Type in the R command as follows:
.R0

The paper tape will be read by the READER until an
End-Of-File record is read. The Monitor will prompt for
a new command by printing a period (.) in the left-most
column of the system CONSOLE device. If required, new
device assignments may be made at this time, to assign
the system PUNCH and LIST devices, or to change the
system CONSOLE or READER devices.

5 To start executing the Assembler, type in the following
command:

.G20
The Assembler will assume control and print the
following introductory message:

8080 MDS MACRO ASSEMBLER VERSION x.x
P=

The Assembler is now ready to read a source program from punched paper
tape. If the user has a single LIST/PUNCH device, such as a Teletype,
the assembler requires three passes to produce a listing and hexadecimal
object code output. A user with separate punch and list devices may
generate the list and object file outputs in two passes. The user has
control of assembler operations by replying to the ”p=" prompt with an
appropriate reply (by typing in the numerals 1, 2, 3, or 4).
It should be noted that a user with separate list and punch devices is
not limited to assembling a source program in two passes. However, the
user with a single list/punch device will produce an unusable object
output file if an assembly operation is performed in two passes.
The significance of the user's replies to "p=" are as follows:

P=1 Reads punched paper tape source file and sets up symbol
table for the subsequent passes. This reply is normally
used for the first pass of an assembly. It must be run
before any of the other passes can be run.

P=2 Reads source file again (user must first rewind the
source tape after pass 1) and generates a listing on the
LIST device.

Page 73MDS ASSEMBLER
Loading the Assembler

P=3 Reads source file again (user must first rewind the
source tape after pass 1 or pass 2) and generates a
hexadecimal object file on the PUNCH device.

P=4 Reads the source file again (user must first rewind the
source tape after pass 1) and generates a listing on the
LIST device concurrently with a hexadecimal object file
on the PUNCH device. If the LIST and PUNCH devices are
combined into a common unit, an unusable object file
will be generated.

Once the operator has run pass 1, he may run passes 2, 3, or 4 in any
order, executing each pass any number of times. This is useful when
multiple listings and/or object tapes are needed.
Twelve inches of tape leader and trailer are generated automatically
each time a hexadecimal object file is punched on paper tape.
Additional leader and trailer may be produced by using the manual
facilities of the PUNCH device. When using a Teletype, the procedure is
as follows:

1 Switch Teletype to LOCAL mode.
2 Turn on the PUNCH.
3 Press HERE IS. Approximately 15 feed characters are

generated each time the HERE IS key is pressed.
4 Turn off the PUNCH.
5 Switch Teletype to LINE mode and continue.

If using a tape PUNCH device, press the FEED (or equivalent) switch to
generate tape with sprocket holes only.

Facilities are provided with both the MDS Monitor and MDS Editor to
punch NULL characters as leader or trailer. Refer to the appropriate
paragraphs discussing the "N" command. Leader prepared in this way must
be done prior to entering the assembly program execution. Trailer may
be prepared after returning control to the Monitor.

ASSEMBLING A PROGRAM
The following procedure is suggested:

1 Prepare a source file using the Intellect MDS Text
Editor. This file should be on punched paper tape. The
file format required is described below.

2 Place the paper tape into the system READER device.
3 In reply to the prompt, "P=", type in the number 1. The

MDS ASSEMBLER Page 74
Assembling a Program

tape will be read in and a symbol table generated £
internally. *

4 Rewind the tape.
5 Depending on the peripherals available and on the job

requirements, type in 2, 3, or 4, in reply to the P=
prompt. The tape will be read in a second time. As the
tape is read, the listing is generated (P=2) or an
object file is generated (P=3) r or both a listing and
object file are generated concurrently (P=4), with
separate LIST and PUNCH devices.

6 Rewind the source tape and return to step 5 until all of
the required operations are performed.

7 To terminate the assembly, press the INTERRUPT 0 switch C
on the front panel.

Input File Format
The input file consists of lines of assembly language statements. A
line must be terminated with a carriage return/line feed character
combination, or a carriage return/form feed character combination; each
line can be at most 72 characters long. A complete description of the
8080 Assembly Language may be found in the 8080 Assembly Language
Programming Manual.

List Output
The list file is a formatted file created by the assembler. The data is
designed to be output to a printer. The significance of each column in
the listing is discussed in Table 5-1 below, with a sample listing shown
in Figure 5-2.

MDS ASSEMBLER
Assembling a Program

Page 75

COLUMNS DESCRIPTION
1 ASSEMBLER ERROR CODE. If the assembler encountered a syntax

error in this source line, the appropriate error code (see
Appendix C) will appear in this column. Otherwise, this column
will be blank .

2 Blank.
3-6 CURRENT VALUE OF THE PROGRAM LOCATION COUNTER. The address

assigned to the first byte of the object code shown in columns
8-9 of this line is printed in hexadecimal. In addition, the
result of the value-generating pseudo-ops ORG, EQU, and SET will
appear in this field.

7 Blank.
8-9 FIRST BYTE OF OBJECT CODE. The first byte of object code

produced by the assembler for this source line is printed here
in hexadecimal. If this source statement produces no object
code (e.g., is a comment, or a pseudo-op), this field will be
blank .

10-11 SECOND BYTE OF OBJECT CODE. This field will be blank if the
source statement generates no object code (comments and
pseudo-ops), or generates only one byte of object code. Again,
this field is printed in hexadecimal.

12-13 THIRD BYTE OF OBJECT CODE, if this statement produced three
bytes of code; otherwise blank.

14-15 FOURTH BYTE OF OBJECT CODE, if generated; otherwise blank.
16 MACRO EXPANSION FLAG. A " + " in this column indicates that- this

source line was produced as a result of a macro expansion.
Otherwise, this column will be blank.

17-... LISTING OF THE ASSEMBLER SOURCE TEXT. This field terminates at
column 72 for all output devices other than the line printer,
and at column 120 for the line printer.

Table 5-1: Assembler List File Format

Page 76MDS ASSEMBLER
Assembling a Program

8080 MDS MACRO ASSEMBLER VERSION 1.0 PAGE 1

; REENTRANT DIVIDE ROUTINE
; BC = DIVIDEND/QUOTIENT
; HL = TEMPORARY
; DE = DIVISOR/REMAINDER

0000
r
DIV:

0000 7A MOV A,D f NEGATE THE DIVISOR
0001 2F CMA
0002 57 MOV D,A
0003 7B MOV A,E
0004 2F CMA
0005 5F MOV E,A
0006 13 INX D
0007 210000 LXI H, 0 • INITIAL VALUE FOR REMA
000A 3E11 MV I A, 17 / INITIALIZE LOOP COUNTE
000C DV0 :
000C E5 PUSH H f SAVE REMAINDER
000D 19 DAD D : SUBTRACT DIVISOR (ADD
000E D21200 JNC DVI r UNDER FLOW, RESTORE HL
0011 E3 XTHL
0012 DVI :
0012 El POP H
0013 F5 PUSH PSW / SAVE LOOP COUNTER
0014 79 MOV A,C / 4 REGISTER LEFT SHIFT
0015 17 RAL / WITH CARRY
0016 4F MOV C,A CY -> C -> B -> L -> H
0017 78 MOV A,B
0018 17 RAL
0019 47 MOV B, A
001A 7D MOV A,L
001B 17 RAL
001C 6F MOV L,A
001D 7C MOV A,H
001E 17 RAL
001F 67 MOV H,A
0020 Fl POP PSW • RESTORE LOOP COUNTER
0021 3D DCR A DECREMENT IT
0022 C20C00 JNZ DV0 * KEEP LOOPING

; POST-DIVIDE CLEAN UP
; SHIFT REMAINDER RIGHT AND RETURN। IN DE

0025 B7 ORA A
0026 7C MOV A,H
0027 IF RAR
0028 57 MOV D,A
0029 7D MOV A,L
002A IF RAR
002B 5F MOV E,A
002C C9 RET

END

Page 77MDS ASSEMBLER
Assembling a Program

8080 MDS MACRO ASSEMBLER VERSION 1.0 PAGE 2

DIV 0000 DV0 000C DVI 0012

Figure 5-2: Sample Assembler List Output

Page 78MDS ASSEMBLER
Assembling a Program

Object Code Output Format
The object code output tape contains the contents of program memory
which result from loading the assembled source program. The code is
formatted in hexadecimal records. The punched paper tape contains the
ASCII representation of the hexadecimal bytes of data.
The format of the object code is a s
its record length, type, memory
Figure 5-3 shows a typical output
complete description of hexadecim
Appendix D.

eries of records, each containing
load address, checksum, and data.
file in hexadecimal format. A

1 object file format is given in

Twelve inches of paper tape
characters) is generated
Similarly, twelve inches of
the last hexadecimal record

leader, consisting of feed holes only (NULL
in front of the hexadecimal object file,
trailer are generated immediately following
in the output file.

— Record Mark
----Record Length

---- Starting Load Address
----- ^Record Type

r-Data
rChecksum

:100000007A2F577B2F5F132100003E11E519D21282
:1000100000E3E1F579174F7817477D176F7C176775
:0D002000F13DC20C00B77C1F577D1F5FC96A
: 00000001

Because Record Length = 0 and Record Type = 01,
this record specifies End-of-File.

Figure 5-3: Sample Object File

Object Code Output For PROM P£29£animing
No special output code is generated with the Intellec MDS Assembler to
program PROMs or ROMs. Control of the operations of the Universal PROM
Programmer is performed with the Intellec MDS Monitor, which accepts
hexadecimal object files as input.
The Monitor is also able to load a hexadecimal file and dump the memory
contents in BNPF format. This facility is useful when a BNPF punched
paper tape is needed to produce ROMs on another system which uses BNPF
tapes.

Page 79MDS ASSEMBLER
Assembling a Program

ASSEMBLER ERROR MESSAGES
Errors detected by the Assembler are indicated by single letter codes in
column 1 on the output listing. When multiple errors are detected in a
single source statement, the first error determines the error code
listed. The following is a list of the Assembler error codes. A full
discussion is included in Appendix C.

CODE
B
E
F
I
M
N
P
Q
R
S
T
U
V

NAME
Balance Error
Expression Error
Format Error
Illegal Character
Multiple Definition
Nesting Error
Phase Error
Questionable Syntax
Register Error
Stack Overflow
Table Overflow
Undefined Identifier
Illegal Value

Table 5-4: Assembler Error Codes

Page 80

SECTION 6
USE OF MONITOR'S I/O SYSTEM

INTRODUCTION
This section describes the use of the Intellec® MDS Monitor I/O
facilities. This information will enable a programmer to use the I/O
drivers already included in the Monitor coding to perform I/O operations
in the user routines. Also, information is included to allow a
programmer to write special device-specific drivers and link these to
the system I/O facilities so that the monitor may have access to these
dr ivers.
In some cases it may be better to write a user driver for a special
peripheral and access the driver directly from the user program.
However, by providing linkages from the monitor to the user driver and
accessing the driver through the monitor, additional versatility is
achieved because of several factors which include:

Common access point to driver for all user and monitor
calls.
Availability of driver to other programs such as MDS x
Editor and Assembler.
Device selection can be controlled with the Monitor 'A'
(ASSIGN) command.

USING THE I/O SYSTEM
The Intellect MDS I/O system contains drivers for several peripheral
devices, including a Teletype console/reader/punch, a high speed paper
tape reader, a high speed paper tape punch, a CRT console, and a line
printer. Access to any of these devices can be made through the Monitor
I/O system. A user can program his routine to access any of the four
logical devices, to perform the I/O function, and, before executing the
routine, assign (using the Monitor ZAZ command) the required physical
device. The user may also assign a device dynamically using the Monitor

Page 81USE OF MONITOR'S I/O SYSTEM
Using the I/O System

'IOSET' call (described in the following paragraphs).

Accessible I/O Routines
The user may access the Monitor I/O system from his programs (as do
other Intellec MDS system programs) by calling the routine provided by
t^ie Monitor to perform the desired function.
The calling sequence for each system I/O routine consists of a
subroutine jump to a reserved address. Each system I/O routine has a
unique starting address. These fixed addresses are listed in Appendix
E. Samples of driver access are included in the examples below.
Parameter passing from the user routine to the system I/O routine
consists of placing the parameter in the C-Register (if it is a byte
value), or in the C- and D-Registers (if it is an address value) then
calling the I/O routine. When address values are used, the least
significant byte must be placed in the C-Register; the most significant
byte must be placed in the D-Register.
Parameter passing from the system I/O routine to the user routine
consists of calling the I/O routine first, then retrieving the data from
the A-Register (if it is a byte value), or from the A- and B-Registers
(if the data is an address value). The least significant byte is
retrieved from the A-Register and the most significant byte is retrieved
from the B-Register.
This mechanism of parameter passing is the same as that performed by
PL/Mt.m It is equivalent to the operation produced by declaring and
calling a byte procedure with parameters of type address. A user
program written in PL/M has the mechanism to pass data to and from the
Monitor's drivers.
Accessible I/O can be considered from two general points of view: A
user can pass data to and from the Monitor's drivers, and can call a
driver; a user can request system status information, including device
status, memory size, and I/O system status.

I/O DRIVER ROUTINES
The following paragraphs contain descriptions of the use of the I/O
driver routines. The following functions are included:

• CI Console Input
• CO Console Output
• RI Reader Input
• PO Punch Output
• LO List Output

USE OF MONITOR'S I/O SYSTEM
I/O Driver Routines

Page 82

CI - Console Input
The CI routine is an Intellec/MDS Monitor driver that returns a
character received from the selected system console device and places it
in the A-Register. Once started, the CI routine loops until a character
is input. No timeout facilities are included. The character read is
not echoed. The A-Register and the CPU condition code are affected by
this operation. *

Examples:
The basic assembly language calling sequence is as follows:

CI EQU 0F803H

CALL
LXI
MOV

CI
H,DATA
M,A

The following routine is a sample of assembly language coding in
which the Console Input facilities are used. This routine will
input a string of characters from the console device and
terminate its operation when either a carriage return is
detected as an input character or the number of characters
specified in BUFSIZ have already been read. The two exits DONE
and OVFL correspond to the CR detected and buffer full
conditions respectively.

; CONSOLE INPUT ROUTINE
; INPUT UP TO 72 CHARACT
; A CARRIAGE RETURN IN I

ERS FROM CONSOLE DEVICE
NPUT CAUSES EXIT TO 'FULL'

; INPUT OF 72 CHARACTERS CAUSES EXIT TO 'OVFL'
ORG

CI EQU
20H
0F803H ; RESERVED ADDRESS OF CI ROUTN

CR EQU 0DH ; CARRIAGE RETN
BUFSIZ EQU 72 ; BUFFER SIZE 72 CHAR
START:

LXI H,BUFFR ; SET UP BUFFER POINTER
MVI D,BUFSIZ ; SET UP BUFFER SIZE

BPC:
CALL CI ; GET CHARACTER
ANI 7FH ; STRIP OFF PARITY BIT
MOV M,A ; SAVE CHARACTER
CPI CR ; IS IT CARRIAGE RETN
JZ DONE ; YES, TAKE DONE EXIT
INX H ; NO, MOVE BUFFER POINTER
DCR D ; DECR CHARACTER COUNT
JZ OVFL ; IF BUFFER FULL, TAKE 'OVFl/

Page 83USE OF MONITOR'S I/O SYSTEM
I/O Driver Routines

; EXIT
JMP BPC

DONE: xxxx xxxx

OVFL: xxxx xxxx

BUFFR: DS BUFSIZ ; RESERVE 72 LOCATIONS FOR
; BYTES RETURNED BY CI

CO - Console Output
The CO routine is an Intellec MDS Monitor driver that takes a character
from the C-Register and transmits it to the system CONSOLE for output.
The A-Register, C-Register, and CPU Condition Codes are affected by this
operation.

Examples:
The basic assembly language calling sequence is as follows:

CO EQU 0F809H

MOV C , M
CALL CO

The followi ng routine is a sample of assembly langueige
programming in which the Console Output facilities are used.
This routine allows a user to output a string of characters on
the CONSOLE. The operation terminates when a carriage return is
detected in
output, then

CR
CO
OTPT

the text string. The carriage return character
the operation is terminated.

EQU ODH
EQU 0F809H ; RESERVED ADDRESS
LXI H,MSGBUF; GET BASE ADDRESS OF MESSAGE

; BUFFER
MOV C,M ; GET CHAR FROM BUFFER
CALL CO ; OUTPUT CHARACTER
MVI A,CR ; IS CHAR CR?
CMP M
JZ RTN ; YES, EXIT THROUGH 'RTN'
INX H ; INCREMENT BUFFER POINTER

is

Page 84USE OF MONITOR'S I/O SYSTEM
I/O Driver Routines

JMP OTPT
RTN:

xxxx xxxx
MSGBUF: ; MSGBUF IS THE BASE ADDRESS OF

; THE STRING OF CHARACTERS WHICH
; ARE OUTPUT TO THE CONSOLE DEVICE

RI - Reader Input
The RI routine is an Intellec MDS Monitor driver that returns a
character from the system READER and places it in the A-Register. If no
character is read within a waiting period of 250 milliseconds, due to an
end of file condition, the A-Register is zeroed and the Carry condition
bit in the 8080 is set to one. Thus, immediately following a call to
this driver, a check can be made to determine if the carry bit is set or
reset. If the carry bit is one, the character in the A-Register is
invalid or is zero. If the carry bit is zero, the character in the
A-Register is a valid character. Once the end of file condition is
sensed, control is returned to the calling program.
The A-Register and the CPU condition codes are affected by this
operation.

Examples:
The basic assembly language calling sequence is as follows:

RI EQU ✓ 0F806H

CALL
JC
LXI
MOV

RI
LAST
H,DATA
M,A

The following routine is a sample of assembly language
programming in which the reader input facilities are used. This
routine reads a string of characters from paper tape and stores
them in an expanded buffer area. When the reader either runs
out of punched tape, or a Control/Z (1A Hexadecimal) character
is read (it is used in this context as an EOF character), the
operation is terminated and control is returned to the calling
program.

USE OF MONITOR'S I/O SYSTEM Page 85
I/O Driver Routines

RI
EOF

ORG
EQU
EQU

20H
0F806H
1AH ; USED AS EOF CHAR

START:
LX I H,BUFF ; BASE OF ADDR BUFFR

LOOP:
CALL RI ; GET CHARACTER
JC EFEX ; IF CY NOT ZERO TAKE

; 'EFEX' EXIT
; NO CHAR FOR 250 MS

ANI 7FH ; STRIP OFF PARITY BIT
MOV M,A ; STORE CHAR IN BUFFR
CPI EOF ; IS CHAR EOF ?
JZ EFEX ; YES, TAKE EFEX EXIT
INX H ; NO, ENLARGE BUFFER
JMP LOOP

EFEX : xxxx xxxx ;; EOF EXIT

BUFF:
DS 1

PO - Punch Output
The PO routine is an Intellec MDS Monitor driver that takes a character
from tne C-Register and transmits it to the device selected as the
system punch device.
The A-Register, C-Register, and CPU condition codes are affected by this
operation.

Examples :
The basic assembly language calling sequence is as follows:

PO EQU z 0F80CH

MOV
CALL

C,M
PO

LO - List Output
The LO routine is an Intellec MDS Monitor driver that takes a character
from the C-Register and transmits it to the system LIST device.

USE OF MONITOR'S I/O SYSTEM
I/O Driver Routines

Page 86

The A-Register, C-Register,
operation

and CPU condition codes are affected by this

Examples:
The basic assembly language calling sequence is as follows:

LO EQU 0F80FH

MOV
CALL

C,M
PO

The following routine is a sample of assembly language
programming in which the LIST output device is used. This
routine reads characters from a buffer area in memory and
continues outputting contiguous characters until an ETX (03H)
character is encountered in the text string.

ORG 20H
LO EOU 0F80FH ; LO ROUTINE FIXED
ETX EQU

; ADDRESS
03H ; TERMINAL CHAR

START:
PRNT:

BUFFR:

XIT:

LX I
MOV
CPI
JZ
MOV
CALL
JMP
DB
DB
xxxx
END

H,BUFFR. ; SET UP POINTER
A,M ; CHAR INTO ACCUM
ETX ; IS IT 'ETX'?
XIT ; YES, EXIT
C,M ; NO, SET UP CHAR
LO ; PRINT CHAR
PRNT ; RETURN FOR NEXT CHAR
'THIS IS THE MESSAGE'
ETX ; TERMINAL CHARACTER AT

; END OF BUFFER
xxxx

; EXIT

SYSTEM STATUS ROUTINES
The system status information routines include the following:

CSTS Console Input Status
IOCHK Check I/O System Configuration

USE OF MONITOR'S I/O SYSTEM Page 87
System Status Routines

• IOSET Set I/O System Configuration
• MEMCHK Determine Size Of RAM Memory

CSTS - Console Input Status
In many applications there is a need to poll the console device to see
if the operator wishes to terminate the current operation. The CSTS
routine allows the caller to test the console to see if a character is
ready for input. in other words, it checks to see if a console keyboard
key was pressed since the last CI operation. If no key was pressed, the
value of 00 is returned in the A-Register. If a key was pressed, a
value of 0FFH is returned in the A-Register. A CI operation may then be
initiated to retrieve the character.
Examples:

The basic assembly language calling sequence is as follows:
CSTS EQU 0F812H

CALL CSTS
RRC
JNC NOCHAR ; NO KEY WAS PRESSED

KYPRS: xxxx ; KEY WAS PRESSED

NOCHAR:
xxxx

The following routine is an example of use of the CSTS routine.
During a print (console output) operation, it is necessary to
monitor the keyboard so that the operator has facilities to
signal that the operation is to be terminated.

CSTS
CTLC
CI

ORG 20H
EQU 0F812H ; FIXED STARTING ADDR
EQU 03H ; CONTROL/C
EQU 0F803Hz
z
z
CALL CSTS ; GET STATUS
RRC ; ROTATE ACC INTO CY
JNC CONT ; NO CHAR, CONTINUE
CALL CI ; GET CHAR
CPI CTLC ; IS IT CONTROL/C?
JZ STP ; YES, JMP TO INTERRUPT

USE OF MONITOR'S I/O SYSTEM
System Status Routines

Page 88

z
z

CONT:
xxxx z xxxx

STP:
xxxx xxxx ; BREAK ROUTINE

IOCHK - Check I/O System Configuration
The IOCHK routine returns an 8-bit value in the A-Register which
describes the current assignment of physical devices to logical devices.
This routine allows the user to programmatically select I/O devices and
configure the I/O system. For example, if the system punch device can
be assigned to either a free standing punch device or a combination
print and punch device, the manner in which data is output may be
different for each device. The free standing punch device may be left
in an active mode at all times and be used by the user calling program
at any time. However, a combination punch/printer device usually
requires that the punch be turned off while printing. Otherwise,
massive amounts of tape will be wasted. Before using this type of punch
device, the user must be notified to turn it on, and similarly to turn
it off. Using the IOCHK routine, a user may determine which device is
being used, and tailor the user coding to the device.
The status byte that is returned contains the current mapping of logical
I/O devices to physical I/O devices. The 8-bit byte is divided into
four 2-bit fields as shown below:

BIT
76 5 4 3 2 1 0^ STATUS WORD

CONSOLE
READER
PUNCH
LIST

Each field may contain a value of 0 through 3 which represents the
physical device currently assigned to it. Each of the fields is
described as follows:

CONSOLE 0 Assigned to TTY

USE OF MONITOR'S I/O SYSTEM
System Status Routines

Page 89

1 Assigned to CRT
2 BATCH: Special assignment where CONSOLE

input function is reassigned to system
READER device, and CONSOLE output
function is reassigned to system LIST
device.

3 Assigned to user-defined I/O device (to
be discussed later).

READER 0 Assigned to TTY
1 Assigned to high speed paper tape reader
2 Assigned to user-defined I/O device 1

(to be discussed later).

3 Assigned to user-defined I/O device 2
(to be discussed later).

PUNCH 0 Assigned to TTY
1 Assigned to high speed paper tape punch

2 Assigned to user-defined I/O device 1
(to be discussed later)

3 Assigned to user-defined I/O device 2
(to be discussed later)

LIST 0 Assigned to TTY
1 Assigned to CRT
2 Assigned to line printer

3 Assigned to user-defined I/O device 1
(to be discussed later)

The Mon
CONSOLE
the TTY

Example

Ltor is initially configured at cold start time to assign the
to the device that is first operated during initialization, and

to all other devices.

The basic assembly language calling seouence is as follows:

IOCHK EQU 0F815H

USE OF MONITOR'S I/O SYSTEM
System Status Routines

Page 90

CALL
ANI
CPI
JZ

IOCHK
DEVMSK
DEVICE

Values for DEVMSK are as follows:
CONSOLE 03H
READER 0CH
PUNCH 30H
LIST C0H

00000011B
00001100B
00110000B
11000000B

Values for the peripheral devices for DEVICE are as follows:
CONSOLE TTY

CRT
BATCH
User

00
01
02
03

00000000B
00000001B
00000010B
00000011B

READER TTY 00 00000000B
PTR 04 00000100B
User 1 08 00001000B
User 2 0CH 00001100B

PUNCH TTY 00 00000000B
PTP 10H 00010000B
User 1 20H 00100000B
User 2 30H 00110000B

LIST TTY 00 00000000B
CRT 40H 01000000B
LPTR 80H 10000000B
User C0H 11000000B

In the following example, a check is made to determine if the
CONSOLE device is a CRT. If it is not, the routine exit is
'CONTINUE'. If it is a CRT, the routine exit is 'OUTCRT'.

IOCHK EOU 0F815H
DEVMSK EQU 03H
DEVICE EOU 1z

CALL IOCHK
ANI DEVMSK MASK ALL BUT CONSOLE

USE OF MONITOR'S I/O SYSTEM
System Status Routines

Page 91

CPI
JZ

DEVICE
OUTCRT

; IS IT A CRT?
; YES ,

CONTINUE: ; NO
xxxx xxxx
xxxx xxxx
xxxx

OUTCRT:
xxxx

xxxx xxxx

IOSET - Set I/O System Configuration
The IOSET routine allows the user to modify the system status word. The
new value of the status byte is placed in the C-Register before calling
the IOSET routine.
The A-Register, C-Register, and the CPU flags are modified by this
routine.
Examples:

The basic assembly language calling sequence is as follows:
IOSET EQU 0F818H
IOCHK EQU 0F815H

CALL
ANI

IOCHK ; GET STATUS WORD
NOT DEVMSK

; CLEAR CURRENT DEV
ORI
MOV
CALL

NEWDEV ; ENTER NEW DEV
C,A
IOSET ; REPLACE STATUS BYTE

Suppose a user wishes to change the I/O Status byte to change
the CONSOLE device from CRT to TTY. The following is an example
of the coding:

IOSET EQU 0F818H
IOCHK EQU 0F815H
DEVMSK EQU 03H
NEWDEV EQU 0

CALL
ANI

IOCHK ; GET STATUS BYTE
NOT DEVMSK

; CLEAR CURRENT CONSOLE
; DEVICE ASSIGNMENT

MEMCHK - Determine

USE OF
System

MONITOR'S I/O SYSTEM
Status Routines

Page 92

ORI NEWDEV ; ASSIGN TTY TO
; CONSOLE <

MOV C,A
CALL IOSET ; STORE MODIFIED BYTE

Size of RAM Memory
The MEMCHK routine provides the user the ability to determine the
highest RAM address which is currently available in the system. MEMCHK
returns the highest address available to the user after the Monitor has
allocated its own storage at the top of contiguous RAM memory.
If RAM memory is installed in segments, instead of contiguously from
address 0000 upward, the Monitor will assign its own storage area at the
top of the first segment of RAM memory. In this case, additional memory
will exist above the memory address determined by the MEMCHK routine.
However, the location and extent of this memory must be determined by
the user .
Examples:

The basic assembly language calling is as follows:sequence

MEMCHK EOU
z
z

0F81BH

CALL MEMCHK
LXI H,MEXMEM ; LOCATION ASSIGNED

; TO HOLD ADDRESS
MOV M,A ; LSB IN A
INX H
MOV z
z
z

M,B ; MSB IN B

r
A practical example of the use of MEMCHK is the setting up of
the Stack Pointer. A full description of the Stack Pointer is
included in the 8080 Assembly Language Programming Manual.
Generally, it is advisable to move the Stack Pointer into high
memory, away from the user coding. A suitable location to start
the Stack Pointer is at the high memory location determined from
MEMCHK. The coding to set up the Stack Pointer is as follows:

MEMCHK EQU 0F81BH z

CALL
MOV

MEMCHK
H,B

; FIND HIGH MEM ADDR
; MSB IN B r

MOV L,A ; LSB IN A

Page 93USE OF MONITOR'S I/O SYSTEM
System Status Routines

SPHL LOAD ADDRESS INTO
STACK POINTER

EXTENDING THE I/O SYSTEM
The user may write special drivers for non-standard system devices and
install them into the Intellec MDS system. By having them installed
into the I/O system, all system programs and user programs may access
them .

IODEF - Define User-Written I/O Routines x
The Monitor program defines a set of absolute addresses that it will
branch to in the event that the I/O status byte contains a selection of
user-defined I/O devices. The system routine IODEF allows a user to
define the logical device category of the device in question and the
starting address of the routine. IODEF requires two parameters as
follows:

(1) A byte value from the following table, defining the logical
device category. This value must be placed in the C-Register
prior to calling IODEF.

0 User Defined Console Input
1 User Def ined Console Output
2 User Defined Reader 1
3 User De fined Reader 2
4 User Defined Punch 1
5 User Defined Punch 2
6 User Defined List Device
7 User Defined Console Status

(2) The starting address of the driver routine, written by the user.
This address value must be placed in the D- and E-Registers
prior to calling IODEF, with the most significant byte in the
D-Register and the least significant byte in the E-Register.

The driver routines written by the user should save and restore any CPU
registers that are not specifically used to pass parameters.

Examples
IODEF EQU 0F81EH

USE OF MONITOR'S I/O SYSTEM
Extending the I/O System

Page 94

MVI C,LOGDEV ; SET UP LOGIC
; DEVICE SELECTION

LX I D,DRVADD ; GET DRIVER
CALL IODEF

; STARTING ADDRESS

For example, if a user wishes to write a driver for a magnetic
tape cassette and define it as a system PUNCH device, the
following coding can be used to install the driver into the
Monitor I/O system. Assume that the driver starting address is
labeled, 'MAGDRVR'.

IODEF EOU 0F81EH
P1LOC EQU 4z

MVI C,P1LOC
LX I D,MAGDRVR
CALL IODEF

; SET UP PUNCHI
; ADDR OF DRVR

APPENDIX A
INTELLEC®MDS MONITOR COMMANDS

The following brief descriptions are intended as a quick reference to
the function and syntax of the Intellec MDS Monitor commands. More
complete descriptions of the commands are given in Section 3 of the
manual .

A ASSIGN I/O DEVICE
A<logical dev>=<physical dev>

Valid values for <logical
<logical dev>
C or CONSOLE

dev> and <physical dev> are:
<physical dev>

L or LIST

P or PUNCH

R or READER

B or BATCH
C or CRT (Default)*
T or TTY (Default)*
1 (user-defined device)

C or CRT
L or LPT
T or TTY (Default)
1 (user-defined device)
P or PTP
T or TTY (Default)
1 (user-defined device)
2 (user-defined device)
P or PTR
T or TTY (Default)
1 (user-defined device)
2 (user-defined device)

*One assigned during Cold Start procedure. See Section 2.

INTELLEC MDS MONITOR COMMANDS Page A-2

PUNCH BNPF FILE
B<low address>,Chigh address> c
COMPARE PROM TO RAM
C<t/fXsocket optionXlow address> , <high address>
where <t/f> = T for positive TRUE, F for negative TRUE; and
<socket option> = X for Socket 2 (24 pin), Y for Sock.u 1 (high
4 bits) , and Z for Socket 1 (low 4 bits) .

DISPLAY CONTENTS OF MEMORY
D<low address>,<high address>

PUNCH HEXADECIMAL END-OF-FILE
E<start address>

FILL RAM WITH CONSTANT
F<low address>,<high address>,<constant>

EXECUTE PROGRAM (GO)
G<start address>,<breakpoint 1>,<breakpoint 2>
where <breakpoint 1> and <breakpoint 2> are always optional. If
<start address> is absent, execution resumes at stored value of
user's Program Counter. r
HEXADECIMAL ARITHMETIC
H<number l>,<number 2>
The two results printed are ((<number l>+<number 2>) MOD 2**16)
and ((Cnumber l>-<number 2>) MOD 2**16), respectively.

LOAD BNPF FILE
L<low address>,<high address>

INTELLEC®MDS MONITOR COMMANDS Page A-3

M MOVE MEMORY
M<low address> , <high address>,destination address>

N PUNCH NULL CHARACTERS
N
Each N will punch 60 NULL characters.

P PROGRAM A PROM
P<t/f Xsocket optionXlow address> , <high address>,<PROM address>
For values for <t/f> and <socket option>, see the C command.

Q I/O STATUS QUERY
0
For meaning of values displayed, see the A command.

R READ HEXADECIMAL FILE
R<bias>
<bias> will be added (MOD 2**16) to indicated load addresses.

S SUBSTITUTE MEMORY
S<address>
Continue command with ' ' or z,z; terminate with carriage
return.

T TRANSFER PROM TO RAM
T<t/f Xsocket optionXlow address> , <high address>
For values for <t/f> and <socket option>, see the C command.

W WRITE HEXADECIMAL FILE
W<low address> , <high address>

INTELLEC® MDS MONITOR COMMANDS Page A-4

X EXAMINE AND MODIFY CPU REGISTERS
X<register identified
where <register identified has the following meanings:
A , B , C , D , E , H , L Corresponding 8080 CPU register.
M H and L together.
P Program Counter.
S Stack Pointer
I Intellec MDS Interrupt Mask Register.
F 8080 CPU flags, packed as follows:

76543210
I I I I I I I I--------Carry
| | | | | | |----------- Always 1
I I I I I I------------- Parity
Illi |-----------------Always 0
| | | |---------------------Auxiliary Carry
| | |------------------------ Always 0
| |-------------------------- Zero
I------------------------------ Sign

If <register identified is absent, the Monitor will display
each register in alphabetical order. Type a ' 'or ',' to
continue command, or a carriage return to terminate.

APPENDIX B
TEXT EDITOR COMMANDS

A

B

Append text from READER to Text Buffer.

Move buffer pointer to beginning of Text Buffer.

nC Move buffer pointer "n" character positions to the right (if n
is positive) or to the left (if n is negative).

nD Delete the "n" characters to the right (if n is positive) or to
the left (if n is negative) of the buffer pointer.

E Empty Text Buffer to PUNCH; copy remaining input in READER to
PUNCH; reinitialize Text Editor.

Fstr ing$
Find the first occurrence of ’'string" following the buffer
pointer.

Istr ing$
Insert "string" into Text Buffer at current buffer pointer
position.

nK Delete ("Kill") the "n" lines following (if n is positive) or
preceding (if n is negative) the buffer pointer.

nL Move the buffer pointer "n" lines forward (if n is positive) or
backward (if n is negative).

F
TEXT EDITOR COMMANDS Page B-2

Punch 60 NULL characters.

Sstring l$string 2$
Substitute "string 2" for the first occurrence of "string 1"
following the buffer pointer.

Type the "n" lines
n is negative) the

following (if n is positive)
buffer pointer.

or preceding (if

Write the first "n lines of the Text Buffer to the PUNCH ;
delete these lines from the Text Buffer. Note: "n" is
interpreted as a positive number, regardless of the sign used in
the command.

Move buffer pointer to end of Text Buffer.

Repeat the commands enclosed in "< ... >" "n" times.

Mi

APPENDIX C
ASSEMBLER ERROR MESSAGES

Errors detected by the assembler are indicated by single-letter codes on
the output listing. When multiple errors are detected in a single line
of code, only the first error is flagged.
The error flags and their meanings are:

B Balance Error
This error indicates that the parentheses in an expression are
unbalanced, or that the quotes in a string are unbalanced.

Example:
ORG $/256+l)*256-$
DB ZAZZ

E Expression Error
This error indicates a badly constructed expression. It usually
occurs due to a missing operator, omitted comma, or a misspelled
opcode.

Example:
ORG ($/256+l)256-$

F Format Error
This message indicates an error in the format of a statement.
It is usually caused by a missing operand or an extraneous
operand.

Example :

ASSEMBLER ERROR MESSAGES Page C-2

MOV A,
MOV A,B,C

Illegal Character
This message indicates that an invalid ASCII character is
present in the statement. It is also caused by a numeric
character which is too big for the base of the number in which
it occurs.

Example :
MVI A,02B
ADI A,790

Multiple Definition
The M error message indicates that a symbol or a macro is
defined more than once. The M error will occur on all
definitions of, and all references to, the multiply-defined
symbol. Recall that symbols must be unique in the first five
characters; therefore, long symbol names which differ only at
the end may cause an M error.

Example:
LOCATIONl:
L0CATI0N2:

NOP
NOP

will cause an M error.

Nesting Error
This message indicates that an ENDIF, ENDM, or END statement is
improperly nested.

Example:
ENDIF
will cause an N error if no ''IF”
in the program.

statement precedes it

Phase Error
This message indicates that the value of an element being
defined changed between pass one and pass two of of the
assembly.

Example :

ASSEMBLER ERROR MESSAGES Page C-3

The following segment of code will cause every label in
the assembly to produce a P error:

ORG BEGIN

BEGIN EQU 5

During pass one, the symbol "BEGIN" is undefined when
the "ORG" is encountered. The assembler will assume it
to be at location zero and begin assembling the program
at that location. During pass two, the symbol "BEGIN”
is equal to 5. Therefore the location assigned to every
label in the program will have increased by 5, producing
a P error.

Questionable Syntax

This message is usually caused by omitting or misspelling an
opcode.

Example:
34H,B3H

Register Error
This message indicates that a register specified for an
operation is invalid for the operation.

Example:
INR 9

Stack Overflow
This error indicates that the assembler zs internal expression
evaluation stack became too large and overflowed the memory
available to the assembler. It may be caused by using extremely
long character strings, too many nested macros, too many nested
"IF" statements, or expressions which are too complex.

Example:
A nested "IF” statement is one which occurs between
another "IF/ENDIF" pair. Thus, long sequences of the
f orm:

ASSEMBLER ERROR MESSAGES Page C-4

IF <EXPRESSION>
IF <EXPRESSION>
IF <EXPRESSION>

T

V

ENDIF
ENDIF
ENDIF
may cause an S error.

Table Overflow

This message indicates that the assembler's symbol table space
has been exhausted. This is caused by using too many symbols in
one assembly, or by accumulating more macro text than the
assembler can store in the memory available.

Undefined Identifier
This message indicates that a symbol used in an operand field
has never been defined by appearing in the label field of
another instruction.

Example:
If the statement
JMP LABI

is in the program, but LABI does not appear in the label
field of any other statement, it will cause a "U" error.

Illegal Value
This message indicates that the value of an operand or
expression exceeds the range required for a particular
operation.

Example:
The statement
MVI A,257
will cause a "V" error because the second operand of an
"MVI" instruction must be in the number range 0 to 255 .

APPENDIX D
OBJECT CODE FORMATS

Hexadecimal Object File Format
Hexadecimal object code format is an ASCII representation of program
memory, expressed as a series of hexadecimal digits. These are blocked
into records, each of which contains the record length, type, memory
load address, and checksum, in addition to data. The description below
applies to paper tape on a frame-by-frame basis.

Frame 0 RECORD MARK
A colon (3A in base 16) is used to signal the start of a record

Frames 1, 2: RECORD LENGTH
This is the count of the actual data bytes in the record. Frame
1 contains the high-order digit of the count, and frame 2
contains the low-order digit. A record length of zero indicates
end of file.

Frames 3-6: LOAD ADDRESS
The four-character starting address at which the following data
will be loaded. The high-order digit of the load address is in
frame 3, and the low-order digit is in frame 6. The first data
byte is stored in the location indicated by the load address.
Successive data bytes are stored in successive memory locations.

Frames 7, 8: RECORD TYPE
A two-digit code in this field specifies the type of this
record. The high-order digit of this code is located in frame
7. Currently, all data records are type 0. End-of-file records
may be type 0 or type 1; in either case, they are distinguished
by a zero RECORD LENGTH field (see above). Other possible
values for this field are reserved for future expansion.

OBJECT CODE FORMATS Page D-2

Frames 9 to 9 + 2* (record length)-1: DATA
Each 8-bit memory word is represented by two frames containing
ASCII characters 0-9,A-F, which represent a hexadecimal value
between 0 and FF (0 and 255 decimal). The high-order digit of
each byte is located in the first frame of each pair.

Frames 9+2*(record length) to 9+2*(record length)+l: CHECKSUM
The checksum is the negative of the sum of all 8-bit bytes in
the record, beginning with the RECORD LENGTH and ending with the
last DATA byte, evaluated modulo 256. The sum of all bytes in
the record (including the checksum) should be zero.

OBJECT CODE FORMATS Page D-3

BNPF Object File Format
BNPF format is an ASCII representation of a byte in pure binary form. A
B is punched to indicate the beginning of a byte. Following the B, a
string of p's and N's will be punched, with a 'p' representing a '1'
bit, and an ZNZ representing a Z0Z bit. An 'F' is used to indicate the
end of a byte. All characters following the F are ignored until another
B is encountered. This allows comments (not containing the letter B) to
appear between bytes of data in BNPF format.
Bits of data in a BNPF byte appear in left-to-right order from most
significant to least significant.
Example: The two bytes '3AF0Z would be represented in BNPF format as

BNNPPPNPNF BPPPPNNNNF

APPENDIX E
MDS MONITOR I/O SYSTEM

Entry Point Addresses for MDS Monitor I/O Routines
Rout ine Address Function
CI 0F803H Console Input
RI 0F806H Reader Input
CO 0F809H Console Output
PO 0F80CH Punch Output
LO 0F80FH List Output
CSTS 0F812H Console Status
IOCHK 0F815H Check I/O System Configuration
IOSET 0F818H Set I/O System Configuration
MEMCHK 0F81BH Determine Size of Available RAM
IODEF 0F81EH Incorporate User-Written I/O Drivers

Device Selection Codes for Use with IODEF
Driver Function Code
Console Input 0
Console Output 1
Reader (1) 2
Reader (2) 3
Punch (1) 4
Punch (2) 5
List 6
Console Status 7

Description of the I/O status byte
The I/O system status byte contains the current mapping of logical I/O
devices to physical I/O devices. The 8-bit byte is subdivided into four
2-bit fields, each field corresponding to a logical device as follows:

bits 0,1 - CONSOLE
bits 2,3 - READER
bits 4,5 - PUNCH
bits 6,7 - LIST

MDS MONITOR I/O SYSTEM Page E-2

Each field can contain a value 0-3 which represents the physical device
currently assigned to it. The following paragraphs discuss each field
in detail.
CONSOLE field, bits 0,1
00 - CONSOLE is assigned to the TTY
01 - CONSOLE is assigned to the CRT
10 - BATCH mode: use the READER as CONSOLE input,

the LIST device as CONSOLE output.
11 - User-defined CONSOLE
READER field, bits 2,3
00 - READER = TTY
01 - READER = high speed reader, PTR
10 - User-defined READER (1)
11 - User-defined READER (2)
PUNCH field, bits 4,5
00 - PUNCH = TTY
01 - PUNCH = high speed punch, PTP
10 - User-defined PUNCH (1)
11 - User-defined PUNCH (2)
LIST field, bits 6,7
00 - LIST = TTY
01 - LIST = CRT
10 - LIST = LPT
11 - User-defined LIST device (1)

APPENDIX F
INTERRUPT PROCESSING ON THE INTELLEC®MDS

Introduction
Interrupt processing on the Intellec MDS is controlled by logic on the
8080 CPU Module. This module provides an eight-level priority interrupt
structure, using an Interrupt Mask Register and a "current operating
level" indicator, which keeps track of the level of interrupt (if any)
currently being serviced. The Interrupt Mask Register, which can be set
by a program or from the CONSOLE, permits the user to select which
interrupts will be acknowledged at any time.

Priority of Interrupts
The Intellec MDS bus provides eight interrupt lines, numbered 0 through
7, corresponding to the eight Interrupt switches and lights on the MDS
Front Panel. Interrupt 0 is the highest priority, and Interrupt 7 is
the lowest. Thus, for example, an interrupt of level 4 which is
currently being serviced can itself be interrupted to service an
interrupt of level 3, 2, 1, or 0, but cannot be interrupted to service
one of level 5, 6, or 7, nor by another interrupt of level 4.

The Interrupt Mask F£9£Ster
The Interrupt Mask Register on the 8080 CPU Module determines which
interrupts will be accepted by the MDS. The Interrupt Mask Register
contains 8 bits, numbered 0 (least significant) through 7 (most
significant). Each bit controls the recognition of interrupts at the
corresponding level. A "1" bit in the Interrupt Mask Register prevents
the corresponding interrupt from being serviced; a "0" bit allows the
interrupt to be serviced. For example, the MDS Monitor sets the
Interrupt Mask Register to 0FEH = 11111110, thereby blocking all
interrupts but Interrupt 0.
The Interrupt Mask Register can be set programmatically by writing the
desired value to Port 0FCH; thus

MVI
OUT

A,0F0H
0FCH

INTERRUPT PROCESSING ON THE INTELLEC®MDS Page F-2

sets the Interrupt Mask Register to 11110000, blocking interrupts 4 - 7
and permitting interrupts 0-3.
A program can also read the current value of the Interrupt Mask Register
from Port 0FCH:

IN 0FCH
places the current value of the Interrupt Mask Register into the
A-register.

There are three phases to interrupt processing on the MDS:
• Initialization
• Acceptance
• Removal

These are discussed in detail below.

In itia1ization
The interrupt logic on the 8080 CPU Module must be initialized whenever
the RESET switch on the front panel is used. The following steps must
be done in the order indicated:

• A value of 12H must be written to Port 0FDH.
• A value of 00H must be written to Port 0FCH.
• The Interrupt Mask Register must be set to the desired

value.
This can be accomplished as follows:

MVI A, 12H
OUT 0FDH
MVI A,00H
OUT 0FCH
MVI A,MASK
OUT 0FCH

where MASK has been set by an EQU or SET statement.

INTERRUPT processing on the INTELLEC® MDS Page F-3

Inter r upt Acceptance
When an interrupt occurs, the 8080 CPU Module checks the Interrupt Mask
Register to see if an interrupt at that level is permitted. if it is
not, no further action is taken; in particular, the interrupt is not
cleared, and remains pending on the Intellec bus. If the interrupt is
permitted, the CPU Module checks the "current operating level” to see if
another interrupt of equal or higher priority is being serviced. If so,
the new interrupt remains pending until the value of the "current
operating level" is less than the priority of the new interrupt.
If this interrupt can be serviced now, the following actions take place:

• The CPU Module transmits a signal to the Interrupt
Request line of the 8080, then locks out all interrupts
coming from the Intellec bus.

© When the 8080 responds with an Interrupt Acknowledge,
the CPU Module generates an RST instruction to one of
eight addresses (see table below), stacks the current
operating level to reflect the new interrupt, and resets
the 8080 Interrupt Request Line.

• The lockout placed on interrupts from the Intellec bus
is removed.

The addresses called when an interrupt is accepted are:

Interrupt Level Address
0
1
2
3
4
5
6
7

0000H
0008H
0010H
0018H
0020H
0028H
0030H
0038H

Interrupt Removal
The program servicing the interrupt must do two things: it must
transmit a signal to the interrupting device, telling it to remove the
interrupt signal it generated initially; and it must restore the
current operating level maintained by the CPU Module. The former action
is device-dependent; the latter is accomplished by writing a value of
20H to Port 0FDH. This must be done with interrupts disabled. If the
code permits another interrupt to Be serviced while this is Being done,
a stack overflow could result. A sample sequence for doing this is:

INTERRUPT PROCESSING ON THE INTELLEC®MDS Page F-4

<remove interrupt signal from external device>
DI
MVI A,20H
OUT 0FDH
POP PSW ; RESTORE A REGISTER AND FLAGS
EI

The example below shows the code necessary to service an interrupt a t
level 1. 0
INTI

ORG
JMP
ORG
EI
PUSH
PUSH
PUSH
PUSH

8
INTI
40H

PSW
B
D
H

/
/
RST ADDRESS FOR INTERRUPT 1
ABOVE AREA USED BY MONITOR AND RST'S
INTERRUPT ROUTINES CAN BE INTERRUPTED
SAVE REGISTERS

0
<code to service interrupt and remove signal>

POP H / RESTORE REGISTERS
POP
POP

D
B 0

DI r CRITICAL SECTION: DISABLE INTERRUPTS
MVI A, 20H f RESTORE CURRENT OPERATING LEVEL
OUT 0FDH
POP PSW ï RESTORE A REGISTER AND FLAGS
EI f PERMIT INTERRUPTS AFTER NEXT INSTRUCTION
RET ! MUST IMMEDIATELY FOLLOW 'EI' TO

! MAKE SURE IT'S EXECUTED BEFORE ANOTHER
r INTERRUPT OCCURS

	image00000a
	image00002
	image00004
	image00006
	image00007
	image00008
	image00009
	image00010
	image00011
	image00012
	image00013
	image00014
	image00015
	image00016
	image00017
	image00018
	image00019
	image00020
	image00021
	image00022
	image00023
	image00024
	image00025
	image00026
	image00027
	image00028
	image00029
	image00030
	image00031
	image00032
	image00033
	image00034
	image00035
	image00036
	image00037
	image00038
	image00039
	image00040
	image00041
	image00042
	image00043
	image00044
	image00045
	image00046
	image00047
	image00048
	image00049
	image00050
	image00051
	image00052
	image00053
	image00054
	image00055
	image00056
	image00057
	image00058
	image00059
	image00060
	image00061
	image00062
	image00063
	image00064
	image00065
	image00066
	image00067
	image00068
	image00069
	image00070
	image00071
	image00072
	image00073
	image00074
	image00075
	image00076
	image00077
	image00078
	image00079
	image00080
	image00081
	image00082
	image00083
	image00084
	image00085
	image00086
	image00087
	image00088
	image00089
	image00090
	image00091
	image00092
	image00093
	image00094
	image00095
	image00096
	image00097
	image00098
	image00099
	image00100
	image00101
	image00102
	image00103
	image00104
	image00105
	image00106
	image00107
	image00108
	image00109
	image00110
	image00112
	image00113
	image00114
	image00115
	image00116
	image00117
	intel

	PREFACE

	SECTION 1

	GENERAL INFORMATION

	SECTION 2

	OPERATING THE INTELLEC®MDS

	SECTION 3

	THE MDS MONITOR

	•2

	SECTION 4

	MDS TEXT EDITOR

	RAR.

	Be - DiViPl^P/^uci Hu- îenfoRARy pe X pi V i

	SECTION 5

	MDS ASSEMBLER

	SECTION 6

	USE OF MONITOR'S I/O SYSTEM

	APPENDIX B

	TEXT EDITOR COMMANDS

	Mi

	APPENDIX C

	ASSEMBLER ERROR MESSAGES

	APPENDIX D

	OBJECT CODE FORMATS

	MDS MONITOR I/O SYSTEM

