
© Intel Corporati on. 1974

INTEL CORP. 3065 Bowers Avenue, Santa Clara, California 95051 • (408) 246-7501

Intellec®8/MOD 80
Operators Manual

JUNE 1974

98-003A

I NT ELeo RPO RAT ION

I NTEL LEe 8 / MOD 8 0

MI CROC 0 MPUT E R S YS TEM

OPE RAT 0 R'SM ANUAL

1.0

2.0

3.0

4.0

- - TABLE OF CONTENTS --

THE INTELLEC 81 OPERATOR'S MANUAL

INTRODUCTION

HARDWARE ORGANI ZATION

OPERATOR'S GUIDE
3.1 Control Console

3.1.1 Indicators
3.1.2 Switches

3.2 Operating the INTELLEC 81
3.2.1 Starting the INTELLEC 81
3.2.2 Loading Data Into Memory
3.2.3 Examining Memory
3.2.4 Executing An Instruction Supplied

By The Console
3.2.5 Running A Program (Using Reset).
3.2.6 Search/Wait And Pass Count

3.3 I/O System
3.3.1 Logical And Physical Devices
3. 3.2 I/O Subroutines
3.3.3 User Supplied Devices

3.4 ASR-33 Teletype Description
3.5 Teletype Operation

3.5.1 Loading The Tape Reader

SYSTEM MONITOR
4.1 System Monitor Implementation And Execution

4.1.1 System Monitor Implementation
4.1. 2 Starting System Monitor

4.2 System Monitor Operand And Commands
4.2.1 A Command (Assign I/O Devices)

1

Page No.

1-1

2-1

3-1
3-1
3-3
3-6
3-11
3-11
3-11
3-13

3-14
3-16
3-18
3-20
3-20
3-22
3-27
3-29
3-31
3-31

4-1
4-3
4-3
4-3
4-3
4-3

Page No.

4.2.2 B Command (BNPF Output) 4-4
4.2.3 C Command (Compare PROM With

Memory) 4-6
4.2.4 D Command (Display Data) 4-8
4.2.5 F Command (Fill Memory With

Constant) 4-11
4.2.6 G Command (Go To) 4-12
4.2.7 H Command (Hexadecimal

Arithmetic) 4-14
4.2.8 L Command (Load BNPF Tape) 4-15
4.2.9 M Command (Move Memory) 4-16
4.2.10 R Command (Read Hex File) 4-19
4.2.11 S Command (Substitute Memory) 4-21
4.2.12 X Command (Examine And Modify

Registers) 4-22
4.2.13 E Command (End File) 4-23
4.2.14 W Command (Write Memory) 4-23
4.2.15 N Command (Null Punch) 4-25
4.2.16 T Command (Transfer From PROM

To Memory) 4-25
4.2.17 P Command (Program PROM) 4-26

5.0 THE INTELLEC 8 I TEXT EDITOR 5-1
5.1 Loading The Text Editor 5-1
5.2 Text Editor Operation And Commands 5-2

5.2.1 Input Commands A (Append) And
I (Insert) 5-4

5.2.2 Buffer Pointer Manipulation
Commands B (Beginning),
C (Character), L (Line), Z (End of
Workspace) 5-6

5.2.3 Output Commands W (Write),
T (Type), E (End) 5-8

5.2.4 Data Manipulation Commands
D (Delete), F (Find), S (Sub-
stttute) , K (Kill) 5-13

5.2.5 Command Strings 5-19
5.2.6 Use of Tabs 5-21
5.2.7 Command Iteration 5-22

6.0 THE INTELLEC 81 ASSEMBLER 6-1
6.1 Loading The Assembler 6-1
6.2 Execution of the As sembler 6-1
6.3 Assembler Limits 6-2
6.4 SYNTAX Restrictions 6-3
6.5 Assembler Error Messages 6-4

11

Page No.

Appendix A. Instruction Summary A-I

Appendix B. Instruction Machine Code Summary B-1

Appendix C. Software Operating Commands And Messages C-l

Appendix O. Hexadecimal Program Tape Format 0-1

Appendix E. Conversion Tables s-i

Appendix F. ASCn Codes F-l

Appendix G. I/O Port Assignment and Sample Device c-i
Drivers-

Appendix H. Example of a Program Listing H-l

LIST OF FIGURES

Figure 2-1 THE INTELLEC 81 BLOCK DIAGRAM 2-2

Figure 3-1 THE INTELLEC 81 CONSOLE (FRONT PANEL) 3-2

Figure 3-2 ASR-33 TELETYPE KEYBOARD AND CONTROLS 3-30

Figure 4-1 NORMAL USE AND EXECUTION SEQUENCE FUK
SYSTEM SOF1WARE 4- 2

111

The INTELLEC 8 can be supplied with either an 8008 or an 8080 CPU
chip. This manual uses the term 1NTELLEC 81 to mean the 1N'fELLEC
8 with 8080 CPU.

This manual assumes that the reader has read and understood the 8080
Programming Manual.

TERMS:

TERM

Address

Bit

Byte

Console

Instruction

Object Program

Program

Source Program

-- TERMS AND ABBREVIATIONS --

DESCRIPTION

A 16 bit number assigned to a memory location
corresponding to its sequential position.

The smallest unit of information which can be
represented. (A bit may be in one of two states,
o or 1) •

A group of 8 contiguous bits occupying a single
memory location.

The INTELLEC 81 front panel, containing switches
and indicators that allow a user to operate the
computer and monitor program execution.

The smallest single operation that the computer can
be directed to execute.

A program which can be loaded directly into the
computer's memory and which requires no altera­
tion before execution. An object program is usually
on paper tape, and is produced by assembling (or
compiling) a source program. Instructions are re­
pre s ent ed by binary machine code in an object pro­
gram.

A sequence of instructions which, taken as a group,
allow the computer to accomplish a desired ta sk ,

A program which is readable by a programmer but
which must be transformed into object program format
before it can be loaded into the computer and executed.
Instructions in an a ssembly language source program
are represented by their assembly language mnemonic.

TERMS -- (Continued):

TERM DESCRIPTION

System Program A program written to help in the process of
creating user program s •

User Program A program written by the user to make the
computer perform any desired task.

Word A group of 16 contiguous bits occupying two
successive memory locations. (2 bytes).

ABBREVIATIONS:

ABBREVIATION

Cr

CPU

1£

PROM

Sp

nnn B

nnn D

nnn 0

nnn Q
nnn H

DESC RIPTION

Carriage return

Central Processing Unit

Line feed

Programmable Read Only Memory

Space Bar

nnn represents a .nurnb er in binary format.

nnn represents a number in decimal format.

nnn represents a number in octal format.

nnn represents a number in octal format.

nnn represents a number in hexadecimal format.

Shaded portions of teletype/operator dialog repre­
sent teletype output.

1. a INTRODUCTION

This manual describes how to operate and run programs on the INTELLEC 81
computer. Information provided by this manual can be broadly divided into
console operations (Section 3), and use of system software (Sections 4, 5
and 6).

1.1 INTELLEC 81 PURPOSE AND CAPABILITIES

The INTELLEC 81 provides a stand alone computer built around the INTEL 8080
CPU. It has been designed primarily as a system development tool for INTEL
8 080 microcomputer users.

Since the entire 8080 CPU is enabled on one LSI chip, certain departures from
common computer design are present in the INTELLEC 81, and to the operator
this is most apparent in the INTELLEC 81 console, as described in Section 2.

An input/output system is provided which enables the programmer to use
standard devices, such as an ASR-33 teletype, or to supply his own devices
for input, output, and listing. In addition, the INTELLEC 81 console has a
connector for Programmable Read Only Memories (PROM), thus allowing
programs to be loaded directly into PROMs.

Combining the INTELLEC 81 system hardware with system software (summarized
in Section 1.2), the user is provided with the capability to generate executable
programs, and to load programs into PROMs.

For users who anticipate extensive programming on the INTELLEC 81, cross
assemblers are available, so the programmer may generate obj ect programs
on a larger and more powerful computer (any 'computer having a FORTRAN compiler
whose standard integer size is 32 bits or greater), using the INTELLEC 81 far
final program checkout and PROM loading only.

1-1

1.2 SYSTEM SOFTWARE

INTELLEC 81 system software consists of three programs designed to help a
user write, debug and prepare his own programs for execution. The three
system programs are:

(1) The MONITOR:
This is the user's principle interface to the INTELLEC 81. The
monitor is pre-loaded on PROMs, and is ready to use as soon
as power is applied to the INTELLEC 8 I. It controls the loading
and execution of other system and user programs.

(2) The EDITOR:
The editor, used by a programmer to create and correct source
program text.

(3) The ASSEMBLER:
The assembler is used to convert source programs into object
programs which may be loaded into PROMs or random access
memory and executed.

Before operating the INTELLEC 81 computer, a user should throughly understand
console operations as described in Sections 2 and 3. Next, execute the system
monitor (Section 4), and note the operations that can be executed either via the
system monitor I or via the console. Only when console operations and monitor
execution are clearly understood should a user execute the editor or assembler.

1-2

2.0 HARDWARE ORGANIZATION

In order to understand INTELLEC 81 console operations, it is necessary first
to appreciate some aspects of INTELLEC 81 hardware design.

Since the INTELLEC 81 CPU is realized on one LSI chip (INTEL's 8080), external
logic cannot interrogate registers or busses that are internal to the LSI chip.
Thus, the INTELLEC 81 console does not have any direct access to CPU working
registers, the program counter, or the CPU/memory interface; instead the console
must access busses external to the CPU in order to perform any operation.

Figure 2-1 proviJes a very simple illustration of INTELLEC 81 hardware organi­
zation as seen by the operator. The console is most accurately visualized as
a peripheral device, placed in parallel with the CPU, rather than as an adjunct
of the CPU.

Bus (a) carries memory addresses from the console or the CPU to memory, and
carries output data from the console or CPU to output ports, and thence to ex­
ternal peripheral devices (e. g. , a teletype printer).

Bus (b) carries data from the console or CPU to the memory.

Bus (c) carries data from memory to the con sole of the CPU.

Bus (d) carries data from input ports to the CPU but not the console. This data
is accessable to the console, however, by a process described later.

Bus (e) allows the console to tran smit a program interrupt to the CPU.

Bus (f) is a control bus which is used to control instruction execution. Since
the console is connected to the control bus, instruction execution can be con­
trolled from the console.

Busses (a), (b), (c), (d) and (f) may be visualized as having three way
switches that allow information to be routed to/from the CP U or the console.
Since the console is a device designed in parallel to the CPU it contains a
considerable amount of parallel logic, including its own data and address
registers. Thus, there are certain states in which the CPU remains in control
but the console has temporarily suspended operations and there are other states
in which the console can completely take over machine operations.

2-1

... CONSOLE

ADDRESS/ ADDRESS/
DATA INST/DATA
REGISTER REGISTER

-
MEMORY - -

(a)

(c) (e)

(b) (f)

....
CPU.... ..

ddres s Bus/Data Output
emory Bus (d)

Memory Bus
t Bus
Instruction
us

IINPUT OUTPUT

(a) Memory A
(b) Data to M
(c) Data from
(d) Data inpu
(e) Interrupt
(f) Control B

FIGURE 2-1.

A Simplified INTELLEC 81 Block Diagram
Showing the Computer a s Seen by the Operator.

2-2

Consider now how some operations must be perfonned, given the hardware or­
ganization illustrated in Figure 2-1. Operations are described conceptually
below, to provide an introduction to rigorous procedures given later in this
manual.

Since the console has .It s own address and data registers, and since there is
a bi-directional bus link between the console and memory, data can be read
from memory to console, and written from console to memory directly.

Although there is no direct path for data from input ports to the console, perform­
ing an input access operation from the console causes the input data to be sent
through the CPU and onto bus (c), where it is displayed on the console.

There is no direct link between the condition bits (carry, sign, zero, parity)
and the console.

There is no direct link between CPU registers and the console.

In order to deposit data into a CPU register, it is necessary to deposit the new
data into memory, then execute instructions that move the data to the required
CPU register.

Sections 4, 5 and 6 provide step-by-step 1NTELLEC 81 operating instructions,
but first the INTELLEC 81 console switches and indicators are described in Section
3.

2-3

3. a OPERATOR'S GUIDE

The INTELLEC 81 is controlled and operated by means of the front panel console
and a terminal, which on the standard system is an ASR-33 Teletype. By using
these devices, the operator can exercise complete control over the loading,
running, and debugging of programs, and can also monitor the status of the
INTELLEC 81 as programs run. An, optional high-speed paper tape reader allows
the operator greater ease in loading programs and data from punched paper tapes.

This section will describe the appearance and operation of the control cons ole,
Teletype, and high-speed paper tape reader, and will include information on
operating features available to the INTELLEC 81 user.

3.1 CONTROL CONSOLE

Console switches and indicators are used by an operator to control the
INTELLEC 81 computer. Indicators provide the status of processor operations,
console registers, and memory locations; the switches provide a means of
manually loading data into the various console registers, input/output ports,
and memory locations. Figure 3-1 is a picture of the INTELLEC 81 front panel.
A basic description of the operation and function of each of the switches and
indicators is given below.

The summary description of switches and indicators given in Section 3.1.1
and 3.1.2 do not attempt to explain terrn s or concepts described later in this
manual. However, the" SEARCH/WAIT" is one feature of the INTELLEC 81
which must be understood in order to avoid confusion when first reading the
switch and indicator descriptions provided below.

The "SEARCH/WAIT" allows the operator to cause program execution to halt
upon encountering a memory address which has been passed some fixed number
of times in the course of program execution. For a complete description of
this feature, see Section 3.2. 6.

3-1

3-2

3.1.1 INDICATORS

All of the indicators on the INTELLEC 81 are Light-Emitting Diodes, or LEDs,
and are lit when true.

STATUS INDICATORS

These indicators show the processor status.

1.

2.

3.

4.

5.

6.

7 •

8.

RUN

WAIT

HALT

HOLD

SRCH COMPL

ACCESS REO

INT REQ

INT DISABLE

3-3

Indicates that the processor is running.

Indicates that the processor is waiting
for memory or input/output facilities to
become available, or that the WAIT
switch is set.

Indicates that the processor is stopped.

Indicates that the processor is in the hold
state, allowing a memory access or
I/o access to be performed by the console.
This state may be entered only while the
processor is in the WAIT or HALT state.

Indicates that the memory address referred
to in a "SEARCH/WAIT" operation has
been encountered the required number of
times.

Indicates that a con sole memory
access or I/o access operation has been
attempted and is waiting to be executed.

Indicates that a console interrupt request
has been generated, but has not yet been
acknowledged.

Indicates that the CPU interrupt system
is disabled.

CYCLE INDICATORS

These indicators provide a continuous display of the processor's machine
cycle status.

1.

2.

3.

4.

5.

6.

7 •

8.

rETCH

MEM

I/O

DA

READ/INPUT

WRITE/OUTPUT

INT

STACK

Indicates that the processor is performing
an instruction fetch from memory.

Indicates that the processor is performing
a memory read or write operation, or that
a memory access operation is being per­
formed manually from the control console.

Indicates that the processor is performing
an input/output read/write operation, or
that a manual input/output operation is
being performed from the control console.

Indicates that a direct access to memory
or an I/o port is being performed.

Indicates that a memory read or input
operation is being performed.

Indicates that a memory write or output
operation is being performed.

Indicates that an interrupt operation is in
progress.

Indicates that a stack operation is
being performed.

ADDRESS INDICATORS

These indicators display memory and I/O addresses during processor operations.

0-15

3-4

These indicators display the memory address
being accessed during FETCH, READ, WRITE
and manual memory access operations.

0-7

INSTRUCTION/DATA INDICATORS

These indicators display the I/O address
during a programmed or manual Input/
Output acces s operation.

These indicators display the instruction or data pas sed between the processor
and memory, or between the processor and an input/output device.

REGI STER/FLAG DATA INDICATORS

0-7 These indicators display the data
byte being written to output port
255 (FFH); thus it is a programmable
display.

3-5

3.1. 2 SWITCHES

The switches on the INTELLEC 81 are considered to be true, or at a logic
1 level, when the top of the switch is pushed in.

ADDRESS/INSTRUCTION/DATA SWITCHES

MEM ADDRESS LOW/INT
INST/DATA/PASS COUNT

ADDRESS/DATA SWITCHES

MEM ADDRESS HIGH/
I/O ADDRESS/SENSE DATA

ADDRESS CONTROL SWITCHES

These switches are used for four functions:
to hold the lower eight bits of the memory
address during a manual memory acces s,
or "SEARCH/VVAIT" operation; to hold the
interrupt instruction used with the console
interrupt; to hold the data which is to be
deposited into memory or an output port;
and to hold the pass count during a
"SEARCH/WAIT" operation.

These switches are used for three functions:
to hold the higher 8 bits of a memory
address during a manual memory access;
to hold an I/O port number during a con­
sole I/O access; and to hold SENSE DATA
to be used by INPUT instructions when
the SENSE switch is set.

These switches control the loading of address or pa s s count data into the
various console registers.

1.

2.

LOAD PASS

DECR

3-6

When depressed, loads the pass count con­
tained in the Address/Instruction/Data
switches into the pass count register.

When depressed, decrements the console
memory address register by one.

3.

4.

INCR

LOAD

When depressed, increments the console
memory addres s register by one.

When depressed, loads the address held
in the Address switches into the console
memory address register for manual memory
access operations.

Example: To load the number 3A5F H into the console address register:

Set Address/Data switches 9,11,12, and 13 on, and
set Address/Instruction/Data switches 0,1,2,3,4, and 6 on,
then press LOAD switch.

Addres s/Data
15 14 13 12 11 10 9 8
00111010

Address/Instruction Data
76543210
o 1 0 1 1 1 1 1 = 3AS F

(1 :::- set, zero tr- reset)

If the INCR switch is now pressed, the console addres s register will contain
3A60 H (3ASF+l). This, of course, will not change the settings of the

address switches. If the INCR switch is pressed again, the console address
register will contain 3A61 H. If the LOAD switch is pressed again, the number
3ASF H held in the address switches is placed again in the console address register.

The state of the console address register during each of these steps is as
follows:

Set switches

Press LOAD

Press'INCR

Press INCR

Press LOAD

3-7

[0 I 0, 1 , I, I, 0 I 1,0 I 0 , 1 ,0 , I, 1, I, 1 ! 1I 3AS F H

IO,O.I,l.!,Od,O,O,I,I,O,O,o,oLQ] 3A60 H

10,0,1,1/1,011,0,0,1,1,0,0,0,0,11 = 3A61 H

I0, 0 I 1,I! 1 I 0 I 1 I 0 J 0 I 1 I 0 ,1 I 1 , 1 I 1, 1 I, 3AS F H

Example: To load a pass count of 1110into the console pass count register
(See Section 3.2.6) for a complete de scrlptton of SEARCH/WAIT - PASS
COUNT) :

Set Address/Instruction/Data switches 0,1, and 3 on,
then LOAD PASS.

Set switches: Address/Instruction/Data
76543210
o 0 a 0 1 a 1 1 = OB H = 11

(1 = set, 0 = reset)

Pass Count Register unchanged

Press LOAD PASS: Pass Count Register = 00001011

MODE SWITCHES

These switches control the mode of operation of the INTELLEC 81.

1.

2.

3.

4.

5.

SENSE

I/O ACCESS

MEM ACCESS

SRCH-WAIT

WAIT

3-8

When depressed I an "input instruction (IN) will
take its data from the Address/(SENSE
DATA) switches rather than from the input
port.

When depressed, provides access to any
of the I/O ports if the processor is in
the WAIT or HALT state. The accessed
port is that whose number appears in
Address/Data switches 8-15.

When depressed, provides access to memory.

When depressed, causes the proces sor to
execute a program up to a certain location,
then forces the processor into a WAIT
state. (See Section 3.2.6).

When depressed, forces the processor into
a WAIT state.

CONTROL SWITCHES

These switches provide operator control of the processor.

1.

2.

3.

4.

5.

STEP/CaNT

DEP

DEP AT HLT

INT

RESET

3-9

If the processor was forced into the WAIT
mode by depressing the WAIT switch,
pressing the STEP/CaNT switch causes the
next instruction to be executed, followed
by a return to the WAIT mode.

After the Search Complete condition forces
the processor into the WAIT mode (see
Section 3.2.6), pressing the STEP/CaNT
switch causes normal program execution to
continue.

Deposits the data held in the Address/
Instruction/Data switches into the memory
address held in the console address
register, or the I/O port whose number is
held in Address/Data switches 8-15.

If this switch is set, and the DEP switch
is set, and either the MEM ACCESS or
I/O ACCESS switch is set, and a program
HALT Is executed, then the 8 bit data word
held in the Address/Instruction/Data
switches will be deposited at the memory
address held in the console address register
or the I/O port whose number is held in
Address/Data switches 8-15.

When depressed, this switch causes the
processor to execute an interrupt cycle,
using the interrupt instruction contained
in the Address/Ins truction/Data switches.

When depressed, this switch forces the
processor to b ecin program execution at
location zero by executing an RST a in­
struction which is a CALL to location O.
The DART is also reset. (See the INTELLEC
8 Reference Manual) .

Example: If the SENSE switch is set, and Address/Data Switches 10,11,13,
and 15 are set, then any input instruction will place the number AC H into
the accumulator:

Address/Data
15 14 13 12 11 10 9 8

1 0 1 0 1 1 0 0 = AC H

Example: If the WAIT and I/O ACCESS switches are set, Address/lnstruction/
Data switches 1,3, and 4 are set, and Address/Data switches (I/O address)
10, 11, and 13 are set, then pressing the DEP switch will cause the number
lA H to be sent to output port number 2C H:

Addres s/Data
15 14 13 12 11 10 9 8
o 010 1100, T ;
2C H= output port number

Address/Instruction/Data.
76543210
000 1 101 0

t
1A.H = DATA SENT

Example: If the WAIT switch is set, the console address
register contains 20A1 H, and the Address/Instruction/Data switches are set
as in the preceding example, then pressing the DEP switch will cause the number
1A H to be placed at memory location 20A1 H.

Example: If Address/Instruction/Data switches 0,1,2,4,6, and 7 are set,
pressing the INT switch will cause the processor to begin an interrupt cycle,
executing the instruction RST 2, which is encoded as D7 H.

Address/Instruction/Data (INT INST)
76543210
1 1 0 1 0 1 1 1 = D7 H = RST 2

POWER AND PROM PROGRAMMING SWITCHES

1.

2.

PRGM PROM PWR

POWER

This switch provides the high vo.ltage used
by the PROM programmer.

This switch is the key-operated main
power switch.

PROM SOCKET

This socket is used to hold the 1602A or 1702A PROM (Intel's electronically
programmable and ultraviolet erasable memory) to be programmed.

3-10

3.2 OPERATING THE INTELLEC 81

3.2.1 STARTING THE INTELLEC 81

Before attempting to start the INTELLEC 81, ensure that the following conditions
are met:

(1) The line cord must be inserted firmly into the socket, and the
supply voltage must be at the proper level.

(2) All devices attached to the INTELLEC 81 must be turned OFF.

(3) All control and data switches should be switched OFF; (i. e. ,
the bottom of the switch should be in.

(4) The PROM PRGM PWR switch should be off I and no PROM module
should be in the PROM socket.

Insert the key into the PO'NER switch and tum .it to the ON position. This applies
power to the INTELLEC 81. The INTELLEC 81 is now in the HALT state and ready for
operation.

3.2.2 LOADING DATA INTO MEMORY

Any data which are to be loaded into memory may be loaded in one of two ways:
by means of the System Monitor program, discussed in Section 4, or by hand
from the console, as described below.

To load data into the INTELLEC 81 via the console follow these steps:

3-11

1. Press the MEM ACCESS switch, to enable memory access.

2. Set into the Address switches, the first memory byte address into which
data is to be loaded.

3. Pres s the LOAD switch, to load the memory address into the console
address register.

4. Set the data which you wish to load into the ADDRESS/INSTRUCTION/
DATA switches.

5. Press the DEP switch, the data will be loaded into the addressed memory
location.

6. If the next byte of data is to be loaded into the next sequential memory
location, press the INCR switch once, to increment the memory address
by one. If not, return to step 3.

7 • Return to step 5.

The most efficient way to manually load large amounts of data into mem ory is
to load it in sequential order, from the lowest memory location to the highest.

Example: Load the instruction IMP 3800 H into memory beginning at location
O. (This instruction will cause a jump to the INTELLEC 81 sys tern monitor) .
The instruction is encoded as C30038H. The following process is used:

1. Press the MEM ACCESS switch, enabling a memory access.

2. Set the Address/Data and Address/Instruction/Data switches all to 0
(indicating memory location 0).

3. Press the LOAD switch, setting the console address register to O.

4. Set the Address/Instruction/Data switches to C3 H (set switches 0, I,
6, and 7).

5. Pres s the DEP switch. Location 0 now holds C3 H.

6. Press the INCR switch. The console address register now = 1.

3-12

7. Set the Address/Instruction/Data switches to O.

8. Press the DEP switch. Location 1 now holds 00 H.

9. Press the INCR switch. The console address register now = 2.

10. Set the Address/Instruction/Data switches to 38 H (set switches
3,4,5).

11. Pres s the DEP switch. Location 2 now holds 38 H.

The entire instruction is now loaded.

3.2.3 EXAMINING MEMORY

To examine the contents of memory from the contro I console, perform the
following steps:

1. Press the MEM ACCESS switch.

2. Set the address you wish to examine into the address switches.

3. Press the LOAD switch, loading the address into the console address
register.

4. The contents of the selected memory location will be displayed in the
Instruction/Data indicators.

5. If the next piece of data you wish to see is in the next sequential memory
location, pres s INCR. The data from the next location wi 11 be disp layed
as in step 5. If not, return to step 3.

6. Return to step 3.

Example: Suppose that locations 0 through 2 contain the data C30038H as
in the example of section 3.2.2. To verify this, use the following procedure:

3-13

1. Press the MEM ACCESS switch.

2. Set the Addres s/Data and Addres s/Instruction/Data switches all to 0
(indicating memory location 0).

3. Pres s the LOAD switch, setting the console address register to O. In­
struction/Data Indicators 0 I I, 6, and 7 will light, indicating that
C3 H is the data in location O.

4. Press the INCR switch. The console address register will now contain
I, and none of the Instruction/Data Indicators will light, indicating
that location 1 contains 00 H.

5. Press the INCR switch. 38 H will appear in the Instruction/Data
Indicators.

3.2.4 EXECUTING AN INSTRUCTION SUPPLIED BY THE CONSOLE

When the CPU recognizes a console interrupt request, it executes the instruc­
tion whose hexadecimal encoding is held in the Address/Instruction/Data
switches. This enables the operator to supply the CPU with a one-byte
instruction to be executed from the console. The procedure is as follows:

1. Set the WAIT switch.

2. Set the encoding of the instruction to be supplied by the console into
the Address/Instruction/Data switches.

3. Press the INT switch.

4. Press the STEP/CONT switch repeatedly, until the INT and FETCH
indicators are lit. (This enables the CPU to complete the instruction
at which the WAIT occurred, and to fetch the interrupt instruction
from the console) •

5. Press the STEP switch once. The instruction set into the A/I/D
switches has now been executed.

3-14

6. Reset the WAIT switch, and program execution resumes with the
instruction following the one at which the WAI T occurred.

3-15

3.2.5 RUNNING A PROGRAM (USING RESET)

If your program has a starting address of zero, all that is necessary to begin
execution is to press the reset switch. The INTELLEC 81 will automatically
execute an RST O. instruction, causing program execution to begin at memory
addres sa. Otherwise, u se the following procedure to ple ce a "jump" to
your program's starting address at location O. Pressing RESET will cause this
jump to be executed, transferring control to the program.

1. Press the MEM ACCESS switch.

2. Place all of the Address switches into the a position, giving an address
of 0000 H.

3. Press the LOAD switch, loading the 0000 H address into the console
addres s register.

4. Place C3 H into the Address/Instruction/Data switches. This is the
8080 operation code for a Jump instruction.

5. Press the DEP switch to load the Jump code into memory location 0000 H.

6. Press the INCR switch one time to increment the memory address.

7 . Place the low order eight bits of the starting addres s of your program into
the Instruction/Data switches. The JUMP instruction format requires
that the low order byte be given first.

8. Press the DEP switch.

9. Press the !NCR switch once.

10. Place the high order eight bits of the starting address into the Address/
Instruction/Data switches.

11. Press the DEP switch.

12. Turn the MEM ACCESS switch to the OFF position.

3-16

13. Press the RESET switch. This will cause the INTELLEC 81 to begin
execution at location 0000 H, which now contains a Jump instruction
to the starting address of your program.

Example: Execute the System Monitor, which resides at location 3800 H.

1. Set the MEM ACCESS switch.

2. Set all the Address switches to 0, indicating memory location O.

3. Pres s the LOAD switch.

4. Set the Address/Instruction./Data switches to C3 H.

5. Press the DEP switch.

6. Press the mCR switch.

7. Set the Address/Instruction/Data switches to 00 H.
(The low order byte of the jump address)

8. Press the DEP switch.

9. Press the !NCR switch.

10. Set the Address/Instruction/Data switches to 38 H.
(The high order byte of the jump address)

11. Pres s the DEP switch.

12. Reset the MEM ACCESS switch.

13. Press the RESET switch. The "jump to 3800 H" instruction will be
executed, transferring control to the System Monitor.

3-17

3.2.6 SEARCH/WAIT AND PASS COUNT

The PASS COUNT feature allows the INTELLEC 81 to count the number of
times an operator-specified memory address is encountered and passed
during execution of a program, and, when this count reaches a specified
number, to enter the WAIT mode upon encountering this address again.

To use this feature, first set the WAIT switch to stop the proces sor , Then
load a pass count (using the binary representation of the count) into the con­
sole's pass count register. This is done by s etttnc the Address/lnstruction/
Data switches to the pass count, and pressing the LOAD PASS switch. Then,
set the memory address to be monitored into the Addres s switches, lea d this
addres s into the console memory register, set the SEARCH/WAIT switch,
reset the WAIT switch, and begin execution of the program. It the pass
count were set to N, the CPU wo uld execute the instruction at the indicated
address N times, and enter the WAIT state upon encountering the address
for the N + 1st time.

Example: Suppose the following program section appears in memory:

MEMORY ASSEMBLED
ADDRESS INS TRU CTIONS INSTRUCTIONS

0100 MVI H,02 2602

0102 MVI L,OO 2EOO

0104 MVI M,O STORE 0 IN 0200H 3600

0106 XRA A SET A=O AF

0107 BACK: AD!. 1 ADD 1 to A C60l

0109 MOV M,A STORE A IN 0200H 77

010A JMP BACK C30701

3-18

The first four statements cause memory location 0200 H and the accumulator
to be set to O. The ADI at location 0107 H adds one to the accumulator,
and the MOV stores the accumulator at location 0200 H. Control then
passes back to location 0107 H, where the accumulator is again incremented.

In order to cause the INTELLEC 81 to execute the ADI 14 times and to
enter the WAIT state upon reaching it for the fifteenth time, use the
following procedure:

1. Set the WAlT switch.

2. Set Address/Instruction/Data switches 1, 2, and 3 to 1 (representing
E H = 14

10),

3. Press LOAD PASS, loading 14 into the console pass count register.

4. Set the Address switches to 0107 H, the memory address to be
monitored.

5. Press the LOAD switch, setting the console address register to 0107 H.

6. Set the SEARCH/WAIT switch.

7. Reset the WAIT switch and begin execution of the program.

8. The WAIT and SEARCH COMPL indicators will light, indicating
that the instruction at 0107 H has been executed and passed 14
times, and the, CPU is waiting at this location.

If memory location 0200 H is displayed using the procedure of Section
3.2.3, it will be seen to contain OE H.

3-19

3.3 I/O SYSTEM

The INTELLEC 81 can support a number of input/output devices, from the
teletype and high speed paper tape reader to devices supplied by the user.
In general, it may be convenient to have two devices which can perform
the same function, but to use them for different purposes at various
times. For example, if a program is being assembled, you might want
the program listing to be written on one device, while any system messages
not relevant to the assembly would be written on a separate device.

The I/o system ,described below permits this type of change. Devices
may be assigned funct ions via a System Monitor command (see Section
4.2.1) or via the user's program. That is, it is possible to write programs
which read from several different input devtce s and write to several
different output devices of the program's choosing, without requiring any
human intervention.

3.3.1 LOGICAL AND PHYSICAL DEVICES

Regardless of how many I/O devices a particular INTELLEC 81 has, there
are only four operations which can be performed to. any of them. For
example, a punch operation can be performed either to the teletype
punch or a high speed punch. All system programs and user-written
programs, therefore, access four LOGICAL DEVICES (1. e., a PUNCH device)
which are then translated to a PHYSICAL DEVICE (1. e., a high speed
punch) by the I/O system.

The four logical devices available to programs are:

• CONSOLE

• READER

• PUNCH

• LIST

An interactive, character-oriented device used for both
input and output.

A character-oriented, input-only device which transfers
data on command and signals the program when there is no
more data (an end-of-file condition).

A character-oriented, output-only device which accepts a
character from the program and records it on some external
medium .

A character-oriented, output-only device which accepts
a character from the program and records it on some external
medium in human readable form.

3-20

Each of these four logical devices may be associated with one of four physical
devices at any instant, giving a total of 16 physical devices. The mapping
from logical to physical devices is specified by an I/o status byte which
resides in memory and is acces sible to system and user programs 'ria I/O
subroutines described in the next section. The possible mappings appear
as follows:

I/O Status Byte: rr-r-n
W-L1...LW
-...-. -----...-.----

LIST FIELD~ I I LCONSOLE FIELD

PUNCH FIELD~LREADERFIELD

LOGICAL DEVICES IOCHK FIELD PHYSICAL DEVICES
00 TTY

CONSOLE . 01 CRT

10 BATCH (READER=CONSOLE INPUT
LIST=CONSOLE OUTPUT)

11 1 (user console device)

00 TTY

READER , 01 PTR

10 1 (user reader device 1)

11 2 (user reader device 2)

00 TTY

PUNCH • 01 PTP

10 1 (user punch device 1)

11 2 (user punch device 2)

00 TTY

LIST - 01 CRT

10 1 (user list device 1)

11 2 (user list device 2)

3-21

At cold start or system reset, the I/O status byte is set equal to OOH, causing
the teletype to be selected for all logical devices.

3.3.2 VO SUBROUTINES

The way in which a program performs an VO operation to any of the four
logical devices is by calling the appropriate subroutine supplied by the
I/O system. The available subroutines and their locations in memory are
given in the following table:

ROUTINE

CI
RI
CO
PO
LO
CSTS
IOCHK
IOSET
MEMCK

FUNCTION

Console input
Reader input
Console output
Punch output
List output
Console input status
Check I/O mapping
Set I/O mapping
Check size of memory

MEMORY LOCATION

3803H
3806H
3809H
380CH
380FH
3812H
381SH
3818H
381BH

The rest of this section gives a description and examples of how to call
these subroutines.

CI - CONSOLE INPUT

This routine returns a character received from the selected console device
to the caller in the A register. The A register and the condition bits are affected
by this operation.

Example:

Assembly Language

CI EQU

CALL
STA

3803H

CI
DATA

3-22

PL/M

CI:
PROCEDURE BYTE;

DECLARE lOCI LITERALLY'3803H';
GO TO lOCI;

END CI;

DATA = CI;

CO - CONSOLE OUTPUT

CO transmits a character, passed from the calling program in the
C register, to the device selected for console output, The A and C registers
and the condition bits are affected,

Example:

As sembly Language

CO EQU

MVI
CALL

3809H

C ' I, ,
CO

PI/M

; PRINT'.' ON CONSOLE

CO:
PROCEDURE (CHAR);

DECLARE CHAR BYTE;
DECLARE lOCO LITERALLY' 3809 H';

GO TO lOCO;
END CO;

CALL CO(' ,');

RI - READER INPUT

RI returns a character read from the reader device in the A register, If
no character was read from the device (i , e" end of file), the CARRY ccndition
bit is set equal to 1, and the A register is zeroed. If data is ready, the
CARRY bit is zeroed. If no character is received from the physical device
within a pre-established time, an end of file is simulated and control is
returned to the calling program,

3-23

Example:

Assembly Language

RI

RI:

EQU

CAU.
IC
STA

3806H

RI
EOF
DATA

PL/M

: END OF FILE SENSED

PROCEDURE BYTE;
DECLARE IORI LITERALLY '3806H';

GO TO IORI;
END RI;

DATA = RI;
IF CARRY THEN GO TO EOF$LOC;

PO - PUNCH OUTPUT

PO transmits a character from the calling program to the device selected as the
punch device. PO is identical in format to CO, the only difference being the
entry point address, '380CH'.

LO - LIST OUTPUT

LO performs the same function to the selected list device as CO and PO do to
their selected devices. It's entry point address is '380FH'.

CSTS - CONSOLE INP UT STATUS

In many applications, there is a need to "poll' the console device to see if
the operator wishes to interrupt the current task and do something else. The
CSTS routine allows the caller to test the console to see if a cha racter is
ready for input. CSTS returns a logical value in the A register (true ='<lFFH,
false = 0) indicating whether or not a key has been depressed. The user may
then use CI to read the character.

3-24

Example:

As sembly Language

CSTS EQU

CALL
RRC
JNC
CAll
CPI
JZ

3812H

CSTS

CONTINUE
CI
BREAK
BREAKIT

; NO CHARACTER

; INTERRUPT PROCESSING
CONTINUE:

PI/M

CSTS:
PROCEDU RE BYTE;

DECLARE IOCS LITERALLY '38l2H';
GO TO IOCS;

END CSTS;

DO WHILE NOT CSTS;

END;
IF CIOBREAK THEN
DO;

END;

IOCHK - CHECK I/O SYSTEM CONFIGURATION

IOCHK returns an 8-bit value in the A register which describes He current
assignment of physical devices to loctcal devices. The calling program can
test selected bits in the byte returned and determine the current status of the
system. For a detailed description of this I/O status byte, see
section 3. 3. 1•

Example:

As sembly Language

IOCHK EQU

CALL
ANI
SUI
JZ

38l5H

IOCHK
CMSK
CCRT
CRTO

; MASK ALL BUT CONSOLE
; IS IT A CRT?
; YES

3-25

PL/M

IOCHK:
PROCEDU RE BYTE;

DECLARE IOCHECK LITERALLY '38lSH';
GO TO IOCHECK;

END IOCHK;

IF (IOCHK AND CMSK) = CCRT THEN
DO;

END;

JOSET - SET I/O SYSTEM CONFIGURATION

IOSET allows the user to modify the I/O status byte I thu s changing the
assignment of physical devices to logical devices.

Example:

As sembly Language

IOSET EQU

CALL
ANI
ORI
MOV
CALL

38l8H

IOCHK
NOT CMSK
CTTY
C,A
IOSET

PL/M

; GET STATUS
; CLEAR CONSOLE BITS
; CONSOLE = TTY

i STORE MODIFIED I/O BYTE

IOSET:
PROCEDURE (CHAR);

DECLARE lOS LITERALLY' 38l8H';
DECLARE CHAR BYTE;

GO TO lOS;
END IOSET;

CALL IOSET ((IOCHK AND NOT CMSK) OR CTTY);

MEMCK - DETERMINE SIZE OF RAM MEMORY

This subroutine gives the user the ability to determine the highest RAM
address currently available in the system. The MEMCK routine is equivalent
to a PL/M address function and the 16 bit value it returns in the A and B
registers is the highest address available to the user after the system monitor
has allocated its own. storage at the top of memory.

3-26

Example:

As sembly Language

MEMCK EQU

CAll
LXI
MOV
INX
MOV

381BH

MEMCK
H,MAXMEM
M,A
H
M,B

PL/M

LOW-ORDER BYTE IN A

HIGH-ORDER BYTE IN B

MEMCK:
PROCEDURE ADDRESS;

DECLARE MEMSIZ LITERALLY' 38lBH';
GO TO MEMSIZ;

END MEMCK;

DECLARE MAXMEM ADDRESS;

MAXMEM = MEMCK;

3.3.3 USER-SUPPLIED DEVICES

This section describes the necessary steps in hooking up a user-supplied
I/O device to the I/O system.

The I/O subroutines described in Section 3.3.2 assume that programs (called
drivers) exist which perform the actual transfer of data between I/O devices
and the CPU. For instance, when the console input routine is called, it
checks to see which physical device is assigned to the console, and then
branches to the driver appropriate to the device. (Examples of drivers for the
teletype are given in Appendix G). Therefore, when the user supplies his own
device, he must:

1) Write a program to perform the data transfer, making sure that the
program saves and restores any CPU registers it uses that are not
specifically changed by the I/O subroutine.

2) Store a IMP to this driver's address in the appropriate location as
defined in the following table:

3-27

MEMORY LOCATION
3700H
3703H
3706H
3709H
370CH
370FH
3712H
371SH
3718H

USE
USER DEFINED CONSOLE INPUT
USER DEFINED CONSOLE OUTPUT
USER DEFINED READER (l)
USER DEFINED READER (2)
USER DEFINED PUNCH (1)
USER DEFINED PUNCH (2)
USER DEFINED LIST (l)
USER DEFINED LIST (2)
USER DEFINED CONSOLE STATUS

Thus, if the user supplied a custom built listing device, he would write
a driver to transfer data to it in an appropriate manner, then store the
IMP to the driver's address at location 3712H. By assigning LIST=l, his
device would receive any listing output generated.

3-28

3 •. 4 ASR-33 TELETYPE DESCRIPTION

The basic input-output device for the INTELLEC 81 is the ASR-33 Teletype I

which consists of a printer I keyboard I paper tape reader and paper tape
punch.

The ASR-33 Teletype is pictured in Figure 3-2 and has its major controls
labeled. The function of each of the controls is listed below:

CONTROL KNOB

KEYBOARD

PRINTER

TAPE PUNCH

REL

3 -29

3-position knob. OFF: turns off Teletype
console. LINE: Teletype is on and
attached to INTELLEC 81 as an Input-Output
device. LOCAL: Teletype is on but not
attached to INTELLEC 8T.

The keyboard is illustrated in Figure
3-2 and is similar to a typewriter key­
board. Several non-printing control
characters are included and can be used
by depres sing the CONTROL key and then
depressing the selected character key.

The printer produce s a typed copy of
input and output at a maximum rate of
ten characters per second. When the
control knob is in the LINE position, the
printer types outputs transmitted from the
computer. When the control knob is in
the LOCAL position I the printer prints
in response to keyboard operation.

The tape punch is used to record in­
formation on punched paper tape at a
rate of 10 characters per second.

Disengages the paper tape to allow
loading or unloading of tape.

AUTOMATIC READER
CONTROLS

~""~~"\
~<:::f~

MANUAL REA~ <-

CONTROLS ~

FIGURE 3-2.

ASR-33 Teletype Keyboard and Controls.

3-30

7PEDES1AL

B. SP. Backspaces the paper tape one character
for each depression.

ON Engages the tape punch and enables
punching of tape.

OFF Disengages the tape punch.

TAPE READER The tape reader reads information punched
on paper tape at a ten character per
second rate.

START Begins tape reading.

STOP Stops tape reading.

FREE Disengages paper tape in the reader and
allows tape to be pulled through reader.

3.5 TELETYPE OPERATION

Operation of the ASR-33 Teletype is a simple task. There are few operational
controls that are not self-explanatory, and so operation can be learned in an
extremely short time. The more sophisticated operations are described in this
section.

3.5.1 LOADING THE TAPE READER

To load the tape reader, first lift the plastic cover over the sprocket wheel.
Place the control switch into the FREE position, and then place your tape onto
the tape reader. with the sprocket holes to your left. Close the tape reader
cover, ensuring that the tape is still in place.

3-31

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

4.0 SYSTEM MONITOR

The INTELLEC 81 System Monitor enables the operator to easily manipulate the con­
tents of memory, read and produce paper tapes, execute programs, and read or
initialize PROMs.

The System Monitor, and all INTELLEC 81 system software in general, use the
first 16 memory locations for storage of temporary data. Therefore if the operator
runs a program beginning in these locations, and then uses the System Monitor,
Text Editor, or Assembler, he must re-load the first 16 bytes of his program before
running it again. Alternatively, programs could be written beginning at location
16. Then system programs and user programs could be executed in any order, with­
out requiring the re-load operation.

Memory
Address a

1

15

16

Step 1

A8

09

·
·
·

OE ,i

37

User
Program

Step 2

FF

OA

·
·
·

FF

37

Step 3

A8

09

·
·
·

OE

37

Step 1 shows the first 17 bytes of memory while a user program beginning at location
a is being run.

Step 2 shows these bytes after the System Monitor has been run, changing the first
16 bytes of memory (0-15). Bytes 16 on are unchanged.

Step 3 shows that the user has reloaded the first 16 bytes of his program, and is
ready to execute the program again.

4-1

4.0 SYSTEM MON1 TOR

The 1NTELLEC 81 System Monitor enables the operator to easily manipulate the con­
tents of memory, read and produce paper tapes, execute programs, and read or
initialize PROMs.

The System Monitor, and all 1NTELLEC 81 system software in general, use the
first 16 memory locations for storage of temporary data. Therefore if the operator
runs a program beginning in these locations, and then uses the System Monitor,
Text Editor, or Assembler, he must re-load the first 16 bytes of his program before
running it again. Alternatively, programs could be written beginning at location
16. Then system programs and user programs could be executed in any order, with­
out requiring the re-load operation.

Memory
Address a

1

15

16

Step 1

A8

09

·
· >-

·
OE

37

User
Program

Step 2

FF

OA

·
·
·

FF

37

Step 3

A8

09

·
·
·

OE

37

Step 1 shows the first 17 bytes of memory while a user program beginning at location
o is being run.

Step 2 shows these bytes after the System Monitor has been run, changing the first
16 bytes of memory (0-15). Bytes 16 on are unchanged.

Step 3 shows that the user has reloaded the first 16 bytes of his program, and is
ready to execute the program again.

4-1

3FFF

3800

0000

MONITOR

DATA AREA

a) Initial power-on

3FFF 3FFF

3800
MONITOR

WORKSPACE

3800
MONITOR

SYMBOL
TABLE

b) Load editor and generate
source code in workspace.

OOOF
EDITOR ASSEMBLER

OOOF

c) Load assembler and convert
source code to object code.

Figure 4-1: Normal Use and Execution Sequence for System Software

The System Monitor is the operator's interface to INTELLEC 81, and controls
loading and execution of the editor and assembler, loading and execution
of user programs, and to some extent the debugging of user programs.
Figure 4-1 illustrates memory utilization during various stages of system
software use. While the System Monitor is running, it uses an
area at the top of memory for data storage and scratch work. The
user can determine how large this area is via the I/O subroutine
MEMCK (described in section 3.3.2), which returns the highest momory
address available for the user.

4-2

4.1 SYSTEM MONITOR IMPLEMENTATION AND EXECUTION

4.1.1 SYSTEM MONITOR IMPLEMENTATION

The INTELLEC 8I System Monitor program is implemented on eight PROM modules,
which are pre-installed into each INTELLEC 81. This allows System Monitor
to be used with great ease, as it is not necessary to wait for lengthy paper-
tape loading operations. All that is required to go on-line with System Moni.tor
1s to start the INTELLEC 81, turn the Teletype on-line, perform a program jump
to the execution address of System Monitor (3800), and begin execution.

4.1.2 STARTING SYSTEM MONITOR

To begin operating System Monitor, place a "Jump to 3800" command (C30038 H)
into the first three locations in the INTEUEC 81. Pres s the RESET button and the
INTELLEC 8I will automatically jump to the starting address of System Monitor,
3800. (For the exact sequence, see Section 3.2.2).

4.2 SYSTEM MONITOR OPERATION AND COMMANDS

A monitor command consists of a single letter typed into the Teletype
keyboard followed by a number of arguments, pos sibly none. The
arguments are separated, if there are more than one, by spaces or
commas. A command is terminated and executed by typing a carriage
return or space, depending upon the command.

4.2.1 A COMMAND (ASSIGN VO DEVICES)

The format of the A command is:

A ldev =pdev

ldev is one of the four logical I/O devices CONSOLE, READER, PUNCH or LIST.
Only the first character is required, the rest being optional.

pdev is one of the four legal physical I/O devices corresponding to ldev, as
shown in Table 4-1.

4-3

Description: The physical device pdev is assigned to logical device ldev .
The following table gives all possible A commands, with optional characters
shown in lower case. Numeric values for pdev indicate user-supplied devices.

AConsole = Tty
AConsole = Crt
AConsole = Batch
AConsole = 1

AReader'= Tty
AReader = Ptr
AReader = 1
AReader = 2

APunch = Tty
APunch = Ptp
APunch = 1
APunch = 2

AList = Tty
AList = Crt
AList = 1
AList = 2

Table 4-1: I/O Assignment Commands

For a description of the I/O system, see Section 3.3.

Error Conditions:

If a selected physical device has not been readred or does not exist, the monitor's
execution will be undefined, usually executing an infinite loop. This may be
corrected by readying the device or pressing system reset.

4.2.2 B COMMAND (BNPF OUTPUT)

The format of the B command is:

B low address , high addres s

Low address is a valid 16-bit memory address.

High address is a valid 16-bit memory address equal to or greater than low

address.

4-4

Description: The B command outputs the content of memory, from (low
address) through (high address), to the Teletype printer/punch in BNPF
form. Six inches of null tape are punched before and after the data.

BNPF form represents the data word in pure binary form. A B is punched to
indicate the beginning of a word, P is punched to indicate a "1" bit, N is
punched to indicate a "0" bit, and F is to indicate the end of a word. Thus,
'A5'H would be shown as follows:

BPNPNNPNPF

Beginning 10100101 End

For reference, the addres s is punched in decimal form every fourth byte.
The reason the addresses are punched in decimal rather than in hexadecimal
is to avoid confusion between the character 'B' punched on the tape to in­
dicate the beginning of a byte, and the character 'B' which would have to be
punched as part of some hexadecimal addresses. (See Section 4.2.7 for the
legal BNPF program tape format.)

Example: If memory bytes 1 through 4 contain 2B 00 FF 55 then the command:

.Bl,4(Cr)

typed into the teletype will cause the following to be punched and printed at
the teletype:

Error conditions:

1
4

BNNPNPNPPF
BNPNPNPNPF

BNNNNNNNNF BNPPPPPPPF

1. If low address or high address is greater than 16 bits, only the last
4 hex digits of the argument will be used as the address.

Example: The command:

.B3C03BOO,3CA3COl (Cr)

is equivalent to the command:

.B3BOO,3COl (Cr)

4-5

2. If low address is greater than high address, only the one byte at low
addres s will be punched.

Example: The command:

•B4AOO, 3A02 (Cr)

is equivalent to the command:

• B4AOO, 4AOO (Cr)

3. Non-existent memory is equivalent to a string of bytes all containing
FF H.

Example: If memory addresses 2000 H- 2003 H are not present in a particular
INTELLEC 81 system, then the command:

.B2000,2003 (Cr)

will cause the following to be printed and punched at the teletype:

8192
8195

BPPPPPPPPF
BPPPPPPPPF

BPPPPPPPPF BPPPPPPPPF

4. Iflow address or high address contains an invalid character, or if high
address is omitted, the monitor will immediately type '* (Cr) (If). I and
await the next command.

Example: If the user tries to enter the number 3AGE as low address, the
following will be printed:

[J.iBE 3AG1I;~
ik.1

4.2.3 C COMMAND (COMPARE PROM WITH_MEMORY)

The format of the C command is:

C address

4-6

Address is a valid 16 bit memory address.

Description: The C command causes the monitor to read a PROM plugged into
the console programming socket and compare its contents with a 256 byte area
of memory starting at address. If the contents of the PROM and memory match
completely, no message is given. Otherwise, for each location where a
mismatch occurs, the memory address, memory data, and PROM data are
printed.

Example: If the command

• C600 (Cr)

produces the printout

0600
0605

A3
6D

FF
05

then the PROM contains the same data as memory locations 0600 H through
06FF H, except at location 0600 Hand 0605 H. Memory contains A3 H

and 6D H, while the PROM contains FF Hand 05 H, respectively.

Error Conditions:

1. If address is greater than 16 bits, only the last 4 hex digits are
u sed a s the addres s .

Example: The command:

• COABC059(Cr)

is equivalent to the command:

· CC059(Cr)

2. If address specifies a non-existent memory range, the PROM contents
are compared to 256 bytes of FF H. .

Example: If locations 2000 H through 20FF H are non-existent, and the
command

• C2000(Cr)

4-7

is issued, every PROM byte not equal to FF H will be printed.

3. If a PROM is not installed in the socket, memory contents are compared
to 256 bytes of FF H.

Example: If a PROM is not plugged into the socket, any C command will
print every byte in the memory range not equal to FF H.

4. If an invalid character is specified in address, the monitor will type
I *(Cr) (If) • I and await the next command.

Example: If the user attempts to enter 3GAB as the address, the following
will be printed:

BlC3G8;t;Gs

t;iia

4.2.4 D COMMAND (DISPLAY DATA)

The format of the D command is:

D low address , high address

Low address is a valid 16 bit memory address.

High address is a valid 16 bit memory address equal to or greater than
low address.

Description: Upon execution of this command, memory data from (low address)
to (high address) is displayed upon the list device (normally the Teletype).
Data are displayed in hexadecimal form. Up to sixteen bytes per line are
printed, preceded by the hexadecimal address of the first byte of that line.
A carriage return is forced after a byte having a low order digit of F in .Its
memory address is printed.

Example: Enter at the teletype the command:

.DIOF,123(Cr)

and the teletype will type back:

4-8

OlOF M
0110 BB CC DD EE FF 11 22 3344 55 66 77 88 99 AB CD
0120 EF 12 34 56

where memory locations 010F through 0123 are assumed to contain

MBB CC DD EE FF 112233445566778899 AB CD EF 123456

The D command should be u sed only to examine memory contents. To punch
the memory contents onto a paper tape, either theB command or the W command
should be used. These commands produce a punched paper tape in the proper
formats, while the D command causes only a simple sequence of characters
to be output.

Error conditi ons:

1. If low addres s or high address is greater than 16 bits I only the last
4 hex digits of the argument will be u sed as the address.

Example: The command

.D30010,AB0013(Cr)

is equivalent to the command

.DOOI0,0013(Cr)

2. If low address is greater than high address, only the one byte at low
address will be displayed ..

Example: The command:

•Dl 0,6

is equivalent to the command

.DI0,10

3. Non-existent memory is equivalent to a string of bytes all containing
FF H.

4-9

Example: If memory address 2000 H- 2010 H are invalid, then the command:

.D2000,2010

will cause the teletype to print:

2000 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
2010 FF

4. If low address or high address contains an invalid character, or if
high address is omitted, the monitor will immediately type '*(Cr) (If).
and await the next command.

Example: If the user attempts to enter the number OG as an address, the
following will be printed:

i81JOG ii.;~

t!:ill

4-1fr

4.2.5 F COMMAND (FILL MEMORY WITH CONSTANT)

The fonnat of the F command is:

F low address, high address , data

Low address is a valid 16 bit memory address.

High address 1s a valid 16 bit memory address equal to or greater than low
address.

Data is an 8 bit data value.

Description: Execution of this command causes memory locations (low address)
through (high address) to be filled with the constant (data).

Example: The command:

• F7 , 14, AA(Cr)

will set bytes 0007 through 0014 equal to AA H.

0007 AA AA AA AA AA AA AA AA AA
0010 AA AA AA AA AA

Error Conditions:

1. If low addres s or high address is greater than 16 bits (or data 1s greater
than 8 bits), only the last 4 (or 2) hex digits will be used.

Example: The command:

• F7ABaaa7 , aa14 , FFACM (Cr)

is equivalent to the command:

• F0007 , 00 14, AA(Cr)

2. If low addres s is greater than high address, data will replace only the
byte at low addres s .

4-11

Example: If locations 7,8, and 9 contain AA H, BB H, and CC H, execution
q,f the command:

.F7,1,33(Cr)

will cause memory to appear as follows:

0007 33 BB CC

3. If a non-existent memory address is specified, this command has no
effect •

4. If low addres s , high addres s , or data contain an invalid character, the
monitor will immediately type '* (Cr)(lf) • I and await the next command.

Example: If the user tries to enter BQ as data, the following will be printed:

'-'0012 14 BO*gii;~ I I. ~:;::::~

II

4.2 • 6 G COMMAND (GO TO)

The format of the G command is:

G address, bkptl, bkpt2

Address, bkptl, and bkpt2 are valid 16 bit hexadecimal memory addresses.

Description: The G command causes program control to be transferred to
location address. If either bkptl or bkpt2 is specified, a breakpoint will
be set in the program at the corresponding address (es) , The specified
addres s must correspond to the first byte of a program instruct ion. If
either breakpoint is encountered during 'program execution, the System Monitor
will save all program status (CPU registers and condition bits), clear all
existing breakpoints, and take control. The user may then examine and/or
modify registers or memory, or use any other monitor commands. This
feature allows the user to debug portions of a program.

If address is not specified, the program status is restored and the saved value of
the program counter is used as the new starting address.

NOTE: Encountering a breakpoint may be simulated at any time by setting the
console.Address/Instruction/Data switches to CFH and pressing the INT switch.
All breakpoints will be cleared, status will be saved, and the System Monitor
will take control.

4-12

Example: The command:

G24A

will cause program execution to begin at location 24AH, with no breakpoints
being set.

The command:

G,12C

will cause a breakpoint to be set at 12CH, and program execution to resume
at the address indicated by the saved value of the program counter.

The command:

G

will cause program execution to resume at the address indicated by the .saved
value of the program counter, with all status restored and no breakpoints set.

Error Conditions:

1. If address is greater than 16 bits, only the last 4 hex digits of the
argument will be used as the address.

Example: The command:

• G3COO 10 (Cd

is equivalent to the command

• GOOI O(Cr)

2. If address is a non-existent memory address, the system will attempt
to transfer control and then stop with no response. The System
Monitor must then be manually restarted.

4-13

4.2.7 H COMMAND (HEXADECIMAL ARITHMETIC)

The format of the H command is:

• H number , number Sp

Number is a 16 bit hexadecimal number.

Description: The H command is de srqned to aid the user in performing hex­
adecimal arithmetic while using the Sys tem Monitor. It causes the sum and
difference its arguments to be printed in two's complement hexadecimal form.
This command is terminated by a space, rather than by a carriage return.

Example:

• HIE, SC

Error Conditions:

1. 'If either number is greater than 16 bits, only the last 4 hex digits are used.

Example: The command:

• HOOABC, 23Sp

is equivalent to the command:

• HOABC, 23Sp

2. If number contains an invalid character, the monitor will immediately
type '* (Cr) (If) .' and await the next command.

Example: If the user attempts to enter OlP, the following will be printed:

4-14

4.2.8 L COMMAND (LOAD BNPF TAPE)

The format of the L command is:

L low address, high address

Low address is a valid 16 bit memory address.

High address 1s a valid 16 bit memory address greater than or equal to low
address.

Description: The L command loads a paper tape punched in BNPF format into
memory starting at low address and continuing through high address. BNPF
format represents a word in pure binary form. A B is punched to indicate
the beginning of a word. Following the B, exactly eight pIS and N's must
be punched, P indicating a "1" bit and N indicating a "0" bit. The ninth
character foll owing the B must be an F, indicating the end of the word. All
characters following the F are ignored until another B is encountered.
This allows comments (not including the letter B) to appear between data
words in BNPF format. For instance, the two hexadecimal data words 3AFO
could be represented on a BNPF tape as follows:

BNNPPPNPNF * COMMENT * BPPPPNNNNF

Example:

•La, FF(Cr)

When executed, this would load the first page (256 bytes) from paper tape
into memory.

Error Conditions:

1. If low address or high address is greater than 16 bits, only the last
4 hex digits of the argument will be used as the address.

4-15

Example: The command:

•LO ,AFOOFF(Cr)

is equivalent to the command:

• LO, OOFF(Cr)

2. If low addres s is greater than high address, only one byte will be read
from the paper tape and transferred into memory at low address.

Example: The command:

.LlO,O(Cr)

is equivalent to the command:

.L,O,O(Cr)

3. If non-existent memory is referenced, the tape will be read, but no other
a ction wi 11 occur.

4. If low address or high address contains an invalid character, the
monitor will immediately type' *(Cr) (If) . ' and await the next command.

Example: If the user attempts to enter 3GAB as high address, the following
will be printed:

~1t..0,3Gil
fI

4.2.9 M COMMAND (MOVE MEMORY)

The format of the M command is:

. M low address , high address, destination address

Low address is a valid 16 bit memory address.

High address is a valid 16 bit memory address equal to or greater than low
address.

4-16

Destination address is a valid 16 bit memory address.

Description: The M command causes the block of memory from low address
through high address to be moved to the locations in memory beginning at
destination address.

Example: If memory appears as follows:

LOCATIONS DATA

0300-0304 contain 01020304
0200-0204 contain A1A2A3A4

then the command:

M200 I 204 1300

will cause the fol lowiriq:

LOCATIONS DATA

0300-0304 contain A1A2A3A4
0200-0204 contain A1A2A3A4

Note: The movement is performed byte by byte: the byte at low address is
moved to destination addres s I then low addres s+ 1 is moved to destination
addres s+ 1 I etc. Therefore I the MOVE command may be used to fill memory
with a byte or sequence of bytes.

Example: If location 0300 H contains FF H, the command

• M300 I 310 1301 (Cr)

will cause locations 300 through 310 to contain FF H. The FF at 300 is moved
to 301 I then the byte at 301 (which is now FF) I is moved to 302 I and so on.

4-17

Error Conditions:

1. If any address is greater than 16 bits, only the last 4 hex
digits are used as the address.

Example: The command:

• M00302, 303, 00405(Cr)

is equivalent to the command:

• M302, 303, 405(Cr)

2. If low address is greater than high address, only one byte will be moved
from low address to destination address.

Example: The command:

.M300,2FO,100(Cr)

is equivalent to the command:

.M300,300,100(Cr)

3. If low address through high address specifies a non-existent range of
memory, bytes of FF H will b~ moved to the memory locations specified
by destination addres s .

Example: If locations 2000 H through 2005 are non-existent, the command:

.M2000,2005,100(Cr)

will cause locations 0100 H through 0105 H to contain FF H.

4. If an invalid character is entered in an address, the monitor will type
I *(Cr) (If) . I and await the next command.

Example: If the user attempts to enter OBAG as the destination address, the
following will be printed:

~M1 00, 10F, OBAG!i
W!f
~

4-18

4.2.10 R COMMAND (READ HEX FILE)

The format of the R command is:

R bias address

Bias Address is a 16 bit two's complement hexadecimal number.

Description: This command loads paper tape punched in hexadecimal format
(using the W command) into memory. The address at which the tape is loaded
is detennined by adding the address punched on the tape to the bias address
using two's complement arithmetic. The bias may be negative I but in this case
must be in two's complement form. If the tape was produced using an
E command with a non-zero entry point address (see section 4.2.13) I

control will be transferred to that location in memory. Otherwise I the
System Monitor will remain in control and request another command.

Example: If a tape was punched which began at location 0100 H, the following
command:

• RFFBO(Cr)

will cause the tape to be read and loaded into location 50 H. (lOOO+FFBO=
50) .

NOTE: If an error occurs while reading the tape (such as a checksum error) I

the monitor will immediately stop reading the tape I type '* (Cr) (Lf}. I and
await the next command. The operation may be retried by backing up the
tape to any point before the last colon and issuing another R command I

since each data word specifies the address at which it is to be loaded. The
monitor will read up to the first colon it encounters I and then begin loading
data.

Note that this means that, if you wish to change data in locations in
memory I it is not necessary to regenerate an entirely new tape with the
change; instead you may read in the original tape I then read in a patch tape
which reloads only the erroneous locations.

Error Conditions:

1. If the bias address is greater than 16 bits I only the last 4 hex digits
are used a s the bia s addres s ,

Example: The command:

• ROOFFBO (Or)

4-19

is equivalent to the command:

• RFFBO (Cr)

2. If an invalid character is present in the bias address, the monitor
will immediately type 1* (Cr) (If). I and await the next command.

Example: IT the user attempts to enter GOO as a bias address, the following
will be printed:

4-20

4.2.11 S COMMAND (SUeSTITUTE MEMORY)

The S command is used to display and/or modify the contents of individual
memory locations. It is used as follows:

1. Type an S, followed by the hexadecimal address of the first memory
location you wish to display. Type space.

2. The data from the selected address is displayed, followed by a dash (-).

3. To modify memory, type in the new data followed by a space or a
carriage return. If you do not wish to modify the contents of that
location, do not type any data in, but only type a space or carriage
return .

4. If a space was typed in step 3, the next memory location will be displayed
a s in step 2. If a carriage return wa s typed, operation will be returned
to the System Monitor.

Example: The contents of the first four bytes of memory is 00 Al CE FF.
You wish to change it to 00 A3 CE 11.

User entries are un shaded . Printback is shaded.

Error Conditions:

1. If address is greater than 16 bits, or the data to be substituted is greater
than 8 bits, only the last 4 or 2 hex digits respectively are used.

Example: The following sequence is equivalent to the previous example:

2. If an invalid character is encountered, the monitor will immediately
type '* (Cr)(lf). and await the next command.

4-21

4.2.12 X COMMAND (EXAMINE AND MODIFY REGISTERS)

The format of the X command is:

X reg ident

Reg ident is a single character specifying a CPU register as follows:.

A = A register
B = B regi ster
C = C register
D = D register
E = Eregister
F = Flag byte, displayed in the form as it is stored by the instruction

PUSH PSW
H = H register
L = L register
M = Hand L registers combined (16 bits)
P = Program counter (16 bits)
S = Stack pointer (16 bits)

Note: The format of the flag byte F is:

~
Sign bit ~1J'1 1LSt at• of carry bit
Zero bit . EAlways I
Always 0 State of parity hit
Auxiliary carry bit Always 0

J)escription: The X command is used to display and/or modify CPU registers. It
operates similar to the S command, as follows:

1. Type an X, followed by the register identifier.
2. The data from the selected register is displayed, followed by a dash (-).

Four hexadecimal digits are displayed for M, P, and S; two hex digits
for the other register identifiers.

3. To modify the register, type in the new data followed by a space or a
carriage return. If you do pot wish to modify the register, type only the
space or carriage return.

4. If a space was typed in step 3, the next register in alphabetical order
is displayed. If carriage return was typed, the X command is terminated.
If a space is typed after register S has been displayed, the command is
terminated, this being the last register identifier in the list.

Example: The A, B, C, and D registers contain AAH, BBH, CCH, and DDH,
respectively. You wish to change the Band C registers to OOH and FFH, respectively.

4-22

Note: Values set by the X-command will become the actual
contents of the:registers after execution of the next GO
command.

The values displayed by the X-command are the contents
of the registers prior to the execution of the last
breakpoint set by the GO command. These displayed values,
however, will reflect any changes of register "contents"
made by the execution of X-commands since this last
breakpoint.

Type an X followed by a carriage return. The contents of all internal
registers will be printed out in the same form as above.

4-22.5

Note: Values set by the X-command will become the actual
contents of the:registers after execution of the next GO
command.

The values displayed by the X-command are the contents
of the registers prior to the execution of the last
breakpoint set by the GO command. These displayed values,
however, will reflect any changes of register "contents"
made by the execution of X-commands since this last
breakpoint.

4-22.5

Error Conditions:

1. If the data to be substituted is greater than 16 bits for regi sters
M, P, S,or 8 bits for the other register "identifiers, only the last
4 or 2 hex digits respectively are use d.

2. If an invalid register identifier or character is encountered I the monitor
will immediately type '* (Cr) (Lf).' and await the next command.

4.2.13 E COMMAND (END FILE)

The format of the E command is:

E address

Address is a valid 16 bit memory address.

Description: The E command causes an end-of-file mark and sixty null
characters to be punched at the end. of a hexadecimal output file. The
end of file mark is hexadecimal record of. length 00. (See Appendix D).
If address is 0 or absent, the R command which loads the file will return
control to the System Monitor. If addres s is non-zero I the R command
will transfer control to that memory address immediately after loading the file.

4.2.14 W COMMAND (WRITE MEMORY)

The format of the W command is:

W low addre s s v high address

Low address is a valid 16 bit memory address.

High address is a valid 16 bit memory address equal to or greatAr than low
address.

Description: The W command is used to output memory locations low address
through high address to the system punch device in hexadecimal format.
A series of W commands may be issued in order to punch various non-contiguous
memory locations onto a continuous strip of tape.

4-23

Any series of W commands should be terminated with an E command in order
to punch a termination character, so that when the tape is read it will be
handled properly.

Example: If memory locations I through 3 contain S3F8EC, the command:

•WOOOI, 0003 (or)

produces:

:03000100S3F8ECCS

(See Appendix D for an explanation of paper tape format.)

Error Conditions:

1. If low address or high address is greater than 16 bits, only the last
4 hex digits of the argument will be used as the address.

Example: The command:

WABOOI0,100(Cr)

is equivalent to the command:

•WOOI0,100(Cr)

2. If low addres s is greater than high address, only the one byte at low
address will be punched.

Example: The command:

· WI0, O(Cr)

is equivalent to the command:

· WI 0, 10 (Cr)

3. Non-existent memory is equivalent to a string of bytes all containing
FF H.

4. An invalid character in either address will cause the monitor to print
'*(Cr) (If) . t and await the next command.

Example: If the user attempts to enter 32 as low address, the following will
be printed:
\

4-24

4.2.15 N COMMAND (NULL PUNCH)

The N command consists only of the letter N followed by a carriage return
and causes 60 null characters to be punched.

4.2.1'6 T COMMAND (TRANSFER FROM PROM TO MEMORY)

The format of the T command is:

T address

Address is a valid 16 bit memory address.

Description: The T command causes the contents of a PROM in the front panel
programming pocket to be transferred to memory beginning at address and con­
tinuing for 256 bytes.

Error Conditions:

1. If address is greater than 16 bits, only the last 4 hex digits will he used
as the address.

Example: The command:

• TABO 100 (Cr)

is equivalent to the command:

· Tl OO(Cr)

2. If address specifies a non-existent memory range, no data is transferred.

3. If no PROM is present in the socket, 256 bytes of FF H will be transferred
into memory.

Example: If no PROM is present, and the command:

· TI00(Cr)

is issued, memory locations 0100 H through 01 FF H will contain FF H.

4-25

4. If address contains an invalid character, the monitor will immediately
type '* (Cr) (If). and await the next command.

4.2.17 P COMMAND (PROGRAM PROM)

The format of the P command is:

P low address, high address, PROM address

Low Address is a valid 16 bit memory address.

High Address is a valid 16 bit memory address equal to or greater than low
address.

PROM Address is an 8 bit data value.

Description: The P command causes the contents of memory from low address
to high address to be programmed into a PROM module in the PROM programming
socket.

Data are programmed into the PROM beginning at the PROM address.

Before attempting to program a PROM, ensure that the PROMPRGR POWER
switch is ON, and that the PROM module is inserted firmly into the socket.

Error Conditions:

1. If low address or high address is greater than 16 bits, or if PROM address
is greater than 8 bits, only the last 4 or 2 hex digits respectively will
be used.

Example: The command:

. PABOI 00 , IFF, 3FF(Cr)

is equivalent to the command

.PI00,IFF,FF(Cr)

4-26

2. If low address is greater than high address, only one byte of data at
low address will be transferred.

Example: The command:

•P400, 300,0 (or)

is equivalent to the command

• P400, 400, o(Cr)

3. If low and high address refer to a non-existent memory range, a string
of bytes containing FF H will be transferred to the PROM.

4. If an invalid character is typed in any address, the monitor will immediately
type '* (Cr) (If) . I and await the next command.

Example: If the user attempts to type 3R as the PRO't-.'l address, the following
will be printed:

!lP400, 410, 3R1i

Ii
5. If the PROM operation fails, the monitor will type a I $' and re-try the

operation. Up to 3 retries will be performed, and, if still unsuccessful,
the monitor will type the PROM address at which the failure occurred.

4-27

5.0 THE INTELLEC 81 TEXT EDITOR

The INTELLEC 81 Text Editor is used to create new source programs and to
correct existing ones. It enables the user to create large amounts of
alphanumeric text from either pre-existing paper tape or the assigned system
CONSOLE device. Additions, deletions, and corrections may be made to
the text on either a character-by-character or a line-by-line basis, and the
resulting text may be output to either the assigned system CONSOLE device
or the assigned system PUNCH device. For a complete description of the
assignment of system I/o devices under the I/O System, see Section 4.2.1.

5 .1 LOADING THE TEXT EDITOR

Prior to loading the Text Editor, system I/O devices should be assigned
as desired by the user. If no assignments have been made, the Teletype unit
will be used for all reading, printing, and punching operations. To load the
Text Editor into the INTELLEC 81 memory, place the paper tape which includes
the Text Editor onto the system READER device, as described in the appropriate
subsection of Section 3. Enter the System Monitor, if you are not already
using it, by loading C3H, 00 H, 38 H into the first three memory locations of
the INTELLEC 81 and press the RESET button. (Manual loading of data is
discus sed in Section 3.2.2). Execute an R command; that is, type:

R (Cr)

The Text Editor source tape will automatically be loaded into the INTELLEC 81
memory.

When the paper tape has been loaded, the System Monitor will type a period
in the left-hand column of the system CONSOLE device. Execute a Go To
location 0010 command:

Type:

.GOOI0(Cr)

The Text Editor will then type:

1NTELLEC 8 TEXT EPITOR, VERSION X.X

5-1

Start the systern PUNCH device. The Text Editor will cause sixty null
characters to be output to the PUNtH device and will then pause.
Tum the PUNCH device off. The Text Editor will reply by typing an
asterisk (*) in the left-hand column of the CONSOLE device; commands
may now be entered.

5.2 TEXT EDITOR OPERATION AND COMMANDS

Text Editor operates on input from one of two sources: either the system
CONSOLE device or the system READER device. The program stores the
input into a memory buffer, called the workspace. A special register,
called the buffer pointer, "points" to the location in the work space from
which operations are to be performed. The buffer pointer is always located
between two characters. For example, suppose the workspace contains
the following text (the buffer pointer is indicated by the arrow):

t
NOW IS THE TIME FOR ALL

In this case, the buffer pointer is located between the I and the M of TIME.

:fhe Text Editor divides the contents of the workspace by the two clas sifications:
characters and lines. A line, to the INTELLEC 81 Text Editor, is the space be­
tween two line feed characters. A character is a single ASCII character.
CARRIAGE RETURN and LINE FEED are considered to be characters by the text
editor, and can be manipulated in the same way a s any other characters
as in the following example:

The workspace contains the following data:

ABCDEFGH(Cr) (Lf)
IJKLMNOP(Cr){Lf)
QRSTUVWXYZ(Cr) (Lf)

Text editor divides this data into lines as follows: line I, consisting of
ABCDEFGH(Cr)(Lf); line 2, consisting of IJKLMNOP(Cr) (Lf); and line 3
consisting of QRSTUVWXYZ(Cr) (Lf) .

If the first LINE FEED character were removed, Text Editor would consider the
workspace as 2 lines:

line 1
line 2

ABCDEFGH(Cr)IJKLMNOP(Cr) (Lf)
QRSTUVWXYZ(Cr) (Lf)

5-2

Text Editor commands are single letters typed into the CONSOLE device
keyboard in response to the asterisk printed by the program. They may
have arguments associated with them, and are terminated and executed
with two ESCAPE or ALT MODE characters. These characters may differ
for different devices; if they do not appear on a particular device, check
its manual for the equivalent character.

*3D4L$$,..... ALT MODE KEY STRUCK lWICE

The ESCAPE character (rather than CARRIAGE RETURN) is used to terminate
commands because of the manner in which the Text Editor processes
the CARRIAGE RETURN character. Carnage returns and line feeds are treated
a s data by the editor, so in order to create a clear distinction between data
strings and command strings, ESCAPE is used as the command terminator
while LINE FEED is used as the internal line terminator.

Note: When lines are being typed into the workspace, the Editor automatically
supplies a LINE FEED with each CARRIAGE RETURN typed. It is not necessary
to manually insert a LINE FEED unless text is prepared off-line.

The execution of a command may be terminated at any time by typing a
BREAK chara cter. Thi swill cau se the editor to ceas e command execution,
and return to an input mode:

As described in Section 5.2.1 to 5.2.4, Editor commands may be divided
into four functional groups: Input commands, output commands, data
manipulation commands ~ and buffer pointer manipulation cornmends •

All text editor examples in Section 5 will assume that the workspace holds
the following data (unless specifically stated otherwise):

5-3

NOW IS THE TIME FOR ALL GOOD MEN TO COME TO THE AID OF THEIR
COUNTRY
ABCDEFG
HITKLMNOP
QRSTUV
WXYZ
123456
7890

The buffer pointer is a ssumed to be immediately preceding the word NOW, or
at the beginning of the workspace.

Editor commands are presented in groups so that the reader will quickly
identify commands by the purpose they serve in the normal sequence of
source program generation or correction. Al so, the format in which Editor
commands are described differs from that used in Section 4 for System
Monitor commands, since Editor commands are highly interactive and require
more complex examples, most of which are in Sections 5.2.3, 5.2.4 and
5.2.5.

5.2.1 INPUT COMMANDS A (APPEND) AND I (INSERT)

Input commands cause text to be input to the workspace. There are two input
commands: A, or Append, and 1, or Insert.

A COMMAND (APPEND):

The format of the Append command is:

A$$

Description: The Append command causes text to be read from the assigned
system READER device and to be appended to the workspace until one of
the following conditions are met.

1 • End of tape
2. End of file character (control-Z) read
3. Workspace full
4. 50 lines read

The Append command may be repeated until an entire input tape is read.

5-4

To execute an Append command, simply load the input tape onto the system
READER device, tum the device on, and type an "A" followed by two ESCAPE
characters on the CONSOLE device keyboard in response to the Text Editor
asterisk. The tape will automatically begin to load in. Text Editor will
type an asterisk at the left margin of the CONSOLE device when loading is
finished. If the paper tape has not been loaded correctly, or if the READER
device has not been turned on, Text Editor will issue an asterisk in the
left-hand column, and the command must be reentered after clearing the
error condition.

If there isno end-of-file on the tape, the Append will supply its own when the
end of the tape is reached. In any case, no null characters or end-of-file
characters will ever be put in the workspace; only the actual text characters
will be put in the work space·

I COMMAND (INSERT):

The format of the Insert command is:

I inserted text $$

Description: The Inseri. command causes text to be input from the CONSOLE
device keyboard into the workspace. Text is inserted at the location pointed
to by the buffer pointer and the buffer pointer is positioned after the last
character of the inserted text.

In use, the Insert command itself is followed by an alphanumeric argument made
up of the text to be inserted. For example, a typical appearance of the Insert
command might be:

.;;rNOW IS THE TIM E FOR ALL GOOD

In this case, executing the I command would cause NOW IS THE TIME FOR
ALL GOOD to be inserted into the workspace at the location of the buffer
pointer. The buffer pointer would then be positioned immediately after the D
in GOOD.

An example showing the relationship of the Insert command to the buffer
pointer is given below.

The workspace originally contained the following:

THE INTELLEC 8 IS A COMPUTER

DESIGNED'FOR DEVELOPMENT OF MICROCOMPUTERS

The following 'command was issued:

IIIIESPECIALLY (Sp) (Cr) (Lf) $$

5-5

The workspace now contains the following:

THE INTELLEC 8 IS A COMPUTER

DESIGNED ESPECIALLY

FOR DEVELOPMENT OF MICROCOMPUTERS

Note that the inclusion of the CARRIAGE RETURN and LINE FEED characters cause s
the formation of an entirely new line. If those characters had been omitted, the
workspace would contain:

THE INTELLEC 8 IS A COMPUTER
DESIGNED ESPECIALLY FOR DEVELOPMENT OF MICROCOMPUTERS

The argument to an Insert command may be of any length up to the number of
character spaces remaining in the workspace, and may be made up of any
characters except the ESCAPE, ALT MODE, or BREAK characters.

When the inserted text is long enough to fill the workspace, the Text
Editor stops echoing the inserted characters, instead echoing the BELL
character. The operator should then delete characters by using the RUBOUT
key, terminate the command, and either store the text on backup storage
or edit the existing text as desired.

5.2.2 BUFFER POINTER MANIPULATION COMMANDS B (BEGINNING),
C (CHARACTER), L (LINE), Z (END OF WORKSPACE)

Buffer pointer manipulation commands move the buffer pointer to different locations
in the workspace, allowing operations to take place at any specified point in the
workspace. There are four buffer pointer manipulation commands:
B, or Beginning; C, or Character; L, or Line; and Z, or end of workspace.

B COMMAND (BEGINNING):

The format of the Beginning command is:

B$$

Description: The B, or Beginning, command moves the buffer pointer to the
beginning of the workspace. ~his'ls useful when data is to be inserted at the
front of the workspace or in order to type out the entire contents of the workspace.

5-6

Z COMMAND (END OF WORKSPACE):

The format of the End of Workspace command is:

Z$$

Description: The Z command is used to position the buffer pointer to the end
of the workspace. This command is used before appending text to the end of
the workspace.

C COMMAND (CHARACTER):

The format of the Character command is:

nC$$

n is a decimal number from -254 to +255. If not in this range, n is evaluated
modulo 256. If not present, n is assumed to be positive 1.

Description: The C or Character command moves the buffer pointer forward or
backward the number of characters specified by n , A negative argument causes
the buffer pointer to move backward, and a positive argument causes the buffer
pointer to move forward. If n is greater than the number of characters between
the buffer pointer and the end (or beginning) of the workspace, the buffer pointer
is moved to the end (or beginning) of the workspace. If n is 0, no movement
occurs.

Example: Suppose the workspace contains:

ABCDEFG HIJKLMNOP

(Buffer pointer is indicated by the arrow).

A command of 3C would move the buffer pointer to between the 0 and P. A com­
mand of -4C would move it to between the H and I. A command of 10C would
move the buffer pointer to the end of the workspace; a command of -20C would
move it to the beginning of the workspace.

5-7

L COMMAND (LINE):

The format of the Line command is:

nL$$

n is a decimal number from -254 to +255. IT not in this range, n is evaluated
modulo 256. If not present, n is assumed to be positive 1.

Description: The L or Line command moves the buffer pointer the number of lines
specified by n. A positive argument causes the buffer pointer to move forward,
and a negative argument causes the buffer pointer to move backward. An argument
of 0 causes the buffer pointer to move backward to the first previous LINE FEED,
L e. , the beginning of the current line. IT n is greater than the number of line s
between the buffer pointer and the end (or beginning) of the workspace, the buffer
pointer is moved to the end (or beginning) of the workspace.

Text Editor considers a line to be a character string ending with a LINE FEED
character:

ABCDEFGHIJKLMNOP (Cr) is not a line, as no LINE FEED character exists.

ABCDEFG(Cr) (Lf) is a line. Note that the text editor will automatically supply
a LINE FEED with a CARRIAGE RETURN. It is not necessary to manually insert a LINE
FEED unless text is prepared off-line.

Numerous examples of Buffer Pointer manipulation commands use are given in
Section 5 • 2. 3 and 5. 2. 4 •

5.2.3 OUTPUT COMMANDS T (TYPE), W (WRITE), E (END), N (NULL)

Output commands cause the text in the workspace to be output to either the
system CONSOLE device or the system PUNCH device, where it is either
printed or punched, depending upon the command. There are four output
commands: T, or Type; W, or Write; E, or End; and N, or Null.

TCOMMAND (TYPE)

The format of the Type command is:

nT$$

n is a decimal number from -254 to +255. IT n is out of range, it is evaluated
modulo 256. If not present, n is assumed to be positive 1.

5-8

Description: The T, or Type command causes the number of lines specified
by n to be output to the system CONSOLE device. Typing starts at the current
location of the buffer pointer. n indicates the number of lines to be typed,
if positive, or the number of previou s lines to be typed if negative. If 0,
the characters from the previous LINE FEED to the current buffer pointer
location will be typed. If n is greater than the number of lines existing after
(or before) the buffer pointer, only the existing lines are typed.

EXAMPLE 1: TYPE OUT

Note that for this example, the buffer pointer is initially in front of the sixth
line in the workspace.

(6)

(3)

(5)

(4)

(1) a$$

(2)~;e~i~l

iASd.£.EfG,i/
::,fI1Il~Lt/[.NQP·i
:@?~§~T.f\l: ... :'
tt-4 T$$
::CpUN:rRY;
:~~§pBFG/
:HUKIMNOP::
:\QRS.XPM...)..",'\:
;t4T$$

ii~~~~!!:i
\~i~·~~~ ., ..',:

f~l.
(1)

(2)

(3)

T command - types one line after buffer pointer.

-5T - types the 5 lines preceding the buffer pointer.

-4T - types the 4 lines preceding the buffer pointer.

5-9

(4) 4T - types the 4· lines after the buffer pointer: Note that if the exist­
ing number of lines is less than the argument, only the existing line will
be typed.

(5) 3T - types the 3 lines after the buffer pointer.

(6) Control is returned to Editor. (Note that, since the line "7890 II does
not end with a Cr 1£ the asterisk is printed on the same line).

W COMMAND (WRITE):

The format of the Write command is:

nW$$

n is a decimal number from -254 to +255. A negative number is treated as if it
were positive by this command. n is evaluated modulo 256. If n is not present,
it is assumed to be positive 1.

Description: The W, or Write command causes the specified number of lines
to be output to the system PUNCH device. If the Teletype is assigned as the
PUNCH device, the lines will be printed as well as punched.

EXAMPLE 1: PUNCH 4 LINES

(l) i0;':t4'N$ $

g: l~g~~!~I.~~~
;illABCDit;G,;i:;
tttm.~NQB

(4) 14T$$

::: If[i~a

5-UJ

(1) W command--punch 4 lines.

(2) Typed by Editor only if the teletype is assigned as the system
PUNCH device. Allows punch to be started. Any character may
be input to start punching.

(3) 4 lines are typed .and punched I then Editor pauses for tape punch
shut-off, if the teletype is assigned as the system PUNCH device.

(4) T command -- types 4 lines.

(5) 4 lines typed -- new beginning of workspace.

(6) Control returned to Editor.

EXAMPLE 2: NEGATIVE ARGUMENT

RI-IW$$

Note that the argument is -I, but +1 lines are typed/punched since negative
arguments are treated as positive by this command.

E COMMAND (END):

The format of the End command is:

E$$

Description: The E, or End command causes the entire workspace to be
output to the system PUNCH device I the work space to be cleared, the
remaining input on the input tape to be copied onto the PUNCH device, and
the Editor to be reinitialized. If the Teletype is assigned as the system
PUNCH device, the output will be printed as well as punched.

5-11

EXAMPLE: E COMMAND

(n

(2)

(3)

(4)
(5)

(6)

lIE$$

~~

II
~~~~~3~~1~~~~~~~~I~:11~:i.IIIEWR
2~1;:~,.. ·,.,.,~,i;ili

E Command -- initiates punching or workspace.(I)

(2) First line typed only if teletype is assigned as the system PUNCH
device. Allows punch to be turned on. Any character may be input
to start punching.

(3) Workspace is output to the system PUNCH device. Note that jf there
is a paper tape in the system READER device, and if the READER device
is turned on, the paper tape would be appended to the end of the workspace
output.

(4) A character must be typed to give control back to Text Editor. Turn
punch off before returning control to the Text Editor.

(5) Text Editor is initialized and sixty null characters are punched. The
second line is typed only if the TIT is the system PUNCH device.

(6) Control is passed to the Editor.

N COMMAND (NULL):

The format of the Null command is:

N$$

Description: The N, or Null command causes sixty nullcharaeters to be
output to the system PUNCH device. This command may be used to punch
leader or trailer paper tape.

5-12



EXAMPLE:

(1) "N$$
(2) +,fs,-T'~,','f1,~~~,~·-'.-';r~:"tiill

;~.' .J~K£;";J:V;l~"~ .. .

(3) ~;

(1) N command - initiates punching
(2) Typed only if the teletype is as signed as the system PUNCH device ~

Allows PUNCH device to be turned on. After character is typed, Text
Editor punches sixty null characters, and pauses to allow the PUNCH
device to be turned off. Another character must be typed to return control

to Text Editor.
(3) Control is pa s sed to Editor.

5.2.4 DATA MANIPULATION COMMANDS
D (DELETE), F(FIND), S (SUBSTITUTE), K(KILL)

Data manipulation commands are used to actually cio the editing of the workspace
material. Characters or lines may be deleted, changed or searched out. There
are four data manipulation commands: D, or Delete; F, or Find, K, or Kill, and
S, or Substitute.

D COMMAND (DELETE ):

The format of the Delete command is:

nD$$

n is a decimal number from -254 to +255. If not in this range, n is evaluated
modulo 256. If not present, n is assumed to be positive 1.

Description: The D, or Delete command causes a specified number of characters
to be deleted from the workspace. The numeric argument which precedes the
command determines the number of characters to be deleted, and its sign deter­
mines which direction is taken. A negative argument deletes characters preceding
the buffer pointer, and a positive argument deletes characters following the
buffer pointer. If n is 0, no action occurs. If n is greater than the number of
characters between the buffer pointer and the end (or beginning) of the workspace,
the appropriate characters arc deleted and the buffer pointer is left at the end
(or beginning) of the workspace.

Consider the following text in the workspace:

i
COMPUTER PROGRAMMER

5-13



If the command 4D were executed, the end result would be:

COMPUTER PROGRA

If the command -6D were executed, the end result would be:

COMPUTER MMER

(Remember, the space is considered to be a character by the Editor).

EXAMPLE 1:

(1) 1I0L$$
(2) !t}tAC$$
(3) E~t-2D$ $
(4) \;~~)3$$

(5) ;?k4T$$

'w-r0VV'l'S··'TllB::*f~:BJ:.Thg~·:!~fiN.:;~s{:kJR·"lYt"~f:t..'~~'~§4:~.~,.·*¥l::.lt~B:t\m:Q:S.+~B:r;g}i
(6) ~:¢O:r;';'TR¥::

j~tlf~~~'
(7) ::::*.0[,

(1) Buffer pointer is moved three lines down; I , e. , to the beginning of
HIJKLMNOP

(2) Buffer pointer is moved forward four characters; 1. e., to just before L.
(3) Two characters immediately before the buffer pointer are deleted.
(4) Buffer pointer is moved to the beginning of the workspace.
(5) Four lines are typed, to observe the changes made in steps 1-3.
(6) Note that J and K were deleted.
(7) Editor IS again reedy to accept commands.

EXAMPLE 2:

(1)
(2)
( 3)
(4)
(5)

(6)

(7)

[;*;2L$$
i;!:3C$$
;f)f3D$$
{tB$$
!'53T$$

••••N'OW··.•l·S.·.~T.HR.;.:r.iW.~; ...E~,R ..iAi.i~j~QQO:i ..:~;$N'.:;;XlgC;Qm~;::XQ.;:.;$Il·;~I:XiIi?":'iJTI:l\1;f1ml~J
rCOVNTKiA
~1;~B,GGi1·"
~~ti

5-14



(1) Buffer pointer is moved two lines down to the beginning of ABCDEFG.
(2) Buffer pointer is moved three characters forward.
(3) Three characters are deleted.
(4) The buffer pointer is moved to the beginning of the workspace.
(5) Three lines are typed.
(6) Note the deletion of D,E and F.
(7) Editor is ready to accept commands.

K COMMAND (KILL):

The format of the Kill command is:

nK$$

n is a decimal number from -254 to +255. If not in this range, n is evaluated
modulo 256. If not present, n is assumed to be positive 1.

Description: The K, or Kill command performs the same operation as the D
command, except that it works on a line-by-line basis instead of a character­
by-character ba sis. If n is 0, the characters from the buffer pointer to the
first previous line feed will be deleted. If n is greater than the number of
lines between the buffer pointer and the end (or beginning) of the workspace I the
lines will be deleted and the buffer pointer will be at the end (or beginning) of
the workspace.

EXAMPLE 1:

(1) t~2K$$

(2) MW3T$$
;'AbbptFG i } ;;

(3) inTi j~ Lr.lNQ.P
·QRSTUV. .<:.'

(4) :+1L$$
(5) ;",2K$$
(6) ;*B$$
(7)r*,3T$$

~\nCDE.FG
(8)\','XYZ . i:

(1.·23456.~J
(9) t;%.1

5-15



(1) Two lines are deleted.
(2) Three lines are typed.
(3) Note that NOW IS THE TIME FOR ALL GOOD MEN TO COME TO THE AID

OF THEIR and COUNTRY have been deleted.
(4) The buffer pointer is moved down one line.
(5) Two lines are deleted.
(6) The buffer pointer is moved to the beginning of the workspace.
(7) Three lines are typed.
(8) Note the deletion of HITKLMNOP and QRSTUV.
(9) Editor is ready to accept more commands.

EXAMPLE 2:

(1)
(2)
(3)
(4)

(5)

(6)

(1)

(2)
(3)

(4)
(5)
(6)

'f;:~4L$$

.m.l¥-2K$$
:::/mB$$
:;"3T$$
!}l\f.Ow.·····fS···\1'.H·~•• Wl.~.l;··r<!R.·hi\~AG91.<Jt!, .••··Nt·~Ni •.•·.*Q.. ··gQ10••e••••.IQ:rtl·E.At;Q.~E,.xiE!:&1
iGC)U~TRY

r.;·~i~stuv\i~l
:tiL." :· · :::.

The buffer pointer is moved forward four lines; i. e., to the beginning
of ORSTUV.
The two lines preceding the buffer pointer are deleted.
The buffer pointer is moved to the beginning of the work space.
Three lines are typed.
Note the deletion of ABCDEFG and HIJKLMNOP
Editor is ready to accept new commands.

F COMMAND (F1ND):

The format of the Find command is:

Ftext$$

text is a string of length 16 characters or less, including any characters
except ESCAPE, ALT MODE, or BREAK.

5-16



Description: The F, or Find command, causes the Editor to search for the first
occurrence of a character string in the-workspace. The string to be searched
out appears as an alphanumeric argument after the initial F. The Editor will
begin its search at the present location of the buffer pointer and will conclude
upon reaching either of the following points:

( 1 ) A match is found. The buffer pointer is then positioned immediately
after the matched character string.

(2) The end of workspace is encountered. Text Editor then types the
message "CANNOT FIND" and the search string on the system
CONSOLE device. The buffer pointer is not affected. If the string
to be found is greater than 16 characters, a match will never occur.

EXAMPLE 1:

NOTE: Line 2 has been changed to PARTY instead of COUNTRY, and the buffer
pointer is an undetermined position.

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

(9)
(10)
(11 )
(12)
(13)

(14)

(1)
(2)

(3)
(4)
(5)
(6)
(7)

*PPARTY$$
;····GANN·Ci1tiEIfi:lji;~i'!A:Rm~:)]
t;~B$$

ltfFPARTY$ $
:~t):IAS WELL AS THEIR COUNTRY. $$
;:::tj~B$ $
I'!f2T$$

:I#TPARTY$$
'i;W:I $$
~rWB$$

iTE2T$$

·'~{i~~~J.~T~Z£~~~~i~L~~a.~~~~~~rr;;,1:·Q;;lti~,M~}·;~~m~!{J.;,~II·:l;~R;;m$.f£[Rm'u~;

Editor is told to search for the string "PARTY".
"PARTY" was not found. Either it does not exist within the workspace or
the buffer pointer was located after the last occurrence of "PARTY".
The buffer pointer is moved to the beginning of the workspace.
"PARTY" is searched for again.
"PARTY" is found and "AS WELL AS... " is inserted immediately after it.
The buffer pointer is reset to the beginning.
Two lines are typed.

5-17



(8)

(9)

(10)
(11)
(12)
(13)
(14)

(15)
(16)
(17)

(18)

Note that since the buffer pointer was left, after the search, at the end
of "PARTY" and no space was inserted, "AS" is concatenated with "PARTY".
"PARTY" is searched for again.

A space is inserted immediately after "PARTY".
The buffer pointer is reset.
Two lines are typed.
The new line is checked.
Editor is ready to accept more commands.

*FPARTY$$
*10D$$
*B$$
*2T$$
NOW IS THE TIME FOR ALL GOOD MEN TO COME TO THE AID OF THEIR
PARTYS THEIR COUNTRY.

(15) "PARTY" is searched for again.
(16) The ten characters following the buffer pointer are deleted.
(17) The first two lines are typed.
(18) Note that the ff rat ten characters after the Y in PARTY are deleted, in­

cluding spaces.

S COMMAND (SUBSTITUTE):

The format of the Substitute command is:

S search string $ substitute string $$

search string and substitute string are strings of characters
including any characters exceptALT MODE, ESCAPE or BREAK.

Description: The S or Substitute command searches the workspace for the
first occurrence of a specified character string of up to 16 characters and
substitutes another string for it, if the search is successful. The search
begins at the present location of the buffer pointer, and ends either when the
string is found I or at the end of the work space, in which case the mes sage
"CANNOT FIND" and the search string is typed on the system CONSOLE device.
If the search if su cces sful, the buffer poipter is positioned after the substituted
string. If the search is unsuccessful, the buffer pointer is unaffected.

If search string is greater than 16 characters, only the first 16 are used.

Even if substitute string is greater than 16 characters, the entire substitute
string will replace the search string.

5-18



Example:

(1)
(2)
(3)

(1)

(2)
(3)

gscOUNTRY$ PARTY$ $

1~~~~tS...lTI.~r:itmME::EI:llim;;~tl'l;l.m.ill'~lll.IIIII_W1e ..
t:pJ.\Rw¥;l
b*l

The workspace is searched for the string "COUNTRY" and, when
"COUNTRY" is found, substitutes the string "PARTY" for it.
The line immediately preceding the buffer pointer is typed.
Note the occurrence of "PARTY" rather than "COUNTRY".

5.2.5 COMMAND STRINGS

Text Editor commands may be chained together to form command strings. Strings
may be made up of any number of commands and will be executed as individual
commands from left to right. An example of a command string is

*B3LlK4DICORRECTION

which would, in order of execution:

Position the buffer pointer at the beginning of the workspace;

Move it down three lines;

Delete one line;

Delete four characters;

Insert the string "CORRECTION" into the workspace.

Commands may optionally be separated from each other with ESCape or ALT
MODE characters ( echoed as dollar stqn s ): S, F and I commands must be
separated from other commands in this manner, for otherwise Text Editor would
have no means of distinguishing between the text to be inserted or searched
and the next command: a string such as

5-19



IINSERT3L4D

would cause INSERT3L4D to be placed into the workspace, whee

IINSERT$3L$4D

would cause INSERT to be inserted, the buffer pointer to be advanced three
lines and four characters to be deleted.

Example 1:

The command string B3T causes the buffer pointer to be reset to the beginning
of the workspace and then types the three lines immediately after the buffer
pointer. The net effect is to type the first three lines in the workspace.

Example 2:

(I)

(2)
(3)

;n;z4L$$~:~e

tX«-2C$$
MW-4D$$
f~-2T$$

i~~~~t)~~~~"\)
·iHrJ1(t*S3L3T$$

.:.: ••.;.; .... -'.:.~ c •...•••. '.:<; .•::.:

,HTna,.•i?·.··i)
i;iQR.$TUV.?
WX'l.:'?, Jj;;
!i~B4L-2CrMNOP$$

:~B3L3T$$
'··.··1-trTKt1Vtf{QB:
IOESTIJ;Yi
i:t\rxx~
tit;;;.!

5-20



(1) The string B3L3T causes the third, fourth, and fifth lines to be typed.
(2) The string B4L- 2XIMNOP causes the buffer pointer to be positioned

immediately after the L in the third line (B4L-2C), and the string MNOP
to be inserted. Note that a line is ended with the two characters
CARRIAG E RETURN and LINE FEED.

(3) The first three lines are typed out.

The commands listed as 2 and 3 could have been combined effectively. The
resulting command string B4L-2CIMNOP$B3L3T would cause the same series
of operations to be performed as the two separate strings B4L-2CIMNOP and
B3L3T. Note, however, that the I command is separated from the B command
by an ESCape or ALT MODE character, echoed as a dollar sign.

5.2.6 USE OF TABS

The Text Editor allows the use of the horizontal tab character, ( created by
typing the CTRL and I keys simultaneously) wherever a space could be used.
This allows the operator to produce a more readable listing. Tab stops are
located every eight positions.

Example:

The editor command:

*ILABEL"tabMOVtabA, Btab; SpCOMMENTS$$

is printed as:

COL 0 1 2
0123456789012345678901234567890

LABEL: MOV
IMP

A, B ; COMMENT
HOME

5-21



5.2.7 COMMAND ITERATION

The Text Editor allows a specified command string to be automatically
executed a specified number of times. This is done by command iteration.

In order to cause a command string to be automatically executed more than
once, angle brackets « and » should be used to surround the command:

n c command string > $$

The number immediately preceding the left bracket «), n , determines the
number of times the command is executed. n is evaluated modulo 256.

EXAMPLE:

(l) IM< IHELLO. CrLf
R>$B4T$$

(2) HELLO
HELLO
HELLO
HELLO

(3) *

(l) The command is entered. This command will ins ert the string HELLO.
CrLf four successive times, move the buffer pointer to the beginning of
the workspace, and type the first four lines of the workspace.

(2) The first four lines of the workspace are typed. Note that the string
HELLO. CrLf has, indeed, been inserted four times.

(3) Control is returned to the Editor.

Command iterations may be nested up to eight levels deep, by placing
a bracketed command string inside of another bracketed string.

EXAMPLE:

(1) 1i2<IA$2< IB$»OLT$$
(2) lillBABBJ
(3) fi

(l) The command is entered. This command will cause, in order, "A" to
be inserted, "B" to be inserted twice, "A" to be inserted, "B" to be
inserted twice more, the buffer pointer to be moved to the beginning
of the line, and the line to be typed.

(2) The line is typed. Note that the command 2< m$> caused B to be
inserted twice each time it was encountered, and that the overall
command IA$2<IB$> was executed twice.

5-22



(3) Control is returned to the Editor.

If command iterations are nested more than eight deep, the Text Editor will
print the error message "ITERATION STACK FAULT" on the system CONSOLE
device, and the command will have to be reentered with the error condition
removed.

EXAMPLE:

(l) GIl2<IA$ 2 < IB$2< IC$2 < ID$2 < IE$2 < IF$2 < IG$2 < IHS2 <IrS ""»'-»>>> $$
(2) J;Xl:RATIQl\J STACK FAta..T
(3) *2 < IA$2 < IB$2 < IC$2 < ID$2< IE$2 < IF$2< IG$2< IHIr$ »»»»$$
(4) "OL$T$$

(5) ABeDEFG-HIIHIIGHflHffroHIlHlfBromINIIDEPGmnnIGDEFGHIIHIBBCDEFGHIIHII
ABC~HnHII

(6) ..

(l) The command is entered. Note that there are nine levels of iteration.
(2) Text Editor types the error message, and terminates command execution.
(3) Text Editor types an asterisk. The new command is entered. Note that

there are now only eight levels 'of iteration.
(4) The buffer pointer is reset, and the line is typed.
(5) The typed line.
(6) Control is returned to the Text Editor.

5-23



6.0 THE INTELLEC 81 ASSEMBLER

This section will deal with the loading and execution of the INTELLEC 81
assembler source tape. For more information on the assembly leriqua qe
itself, consult the 8080 Programmer's Manual. See Appendix A for a summary

.of pseudo operations and the assembly language instruction set.

6.1 LOADING THE ASSEMBLER

To load the Assembler into the INTELLEC 81 memory I place the paper tape
containing the Assembler onto the system READER device as described in
the appropriate subsection of Section 3. Ensure that the READER device is
turned on. Enter the System Monitor, if it is not already running I by loading
the data C3H, 00 H, and 38 H into the first three locations in memory, and
pre s sinr, the RESET button. When System Monitor is running, assign
I/O devices to the system READER, CONSOLE, LIST and PUNCH devices
as desired. For complete details of I/O device assignment under the
I/O System, see Section 4.2.1. Then execute an R command; that is, type:

• R(Cr)

The Assembler source tape will then be loaded into the INTELLEC 81
memory.

When the paper tape is completely loaded into memory, System Monitor
will type a period (.) in the left-hand column of the CONSOLE device.
When this occurs, enter a Go To 0010 command:

• GOOIO (Cr)

The INTELLEG 81 Assembler will begin operations.

6.2 EXECUTION OF THE ASSEMB~ER

The INTELLEC 81 Assembler is a two or three pass assembler, depending
upon the devices selected as the system LIST and system PUNCH devices.
If these devices can be operated independently, then two passes are
necessary for complete assembly; that is, the input paper tape must be
read in twice in order to produce the final paper tape containing the
machine-coded instructions. If the LIST device and the PUNCH device
cannot b'e operated independently I as is the case if the Teletype is

6-1



assigned to both devices, the Assembler operates as a three-pass assembler
and the input paper tape must be read in three times.

When the Assembler begins operations, it will print .)): on the CONSO~·.E

device. Load the input paper tape into the READER device, make sure
that the READER device is turned on, and type I on the CONSOLE de.vice.

The input tape will be read in, and the assembler will process the first
pass, which sets up the symbol tables for the program.

When the Assembler has finished processing the first pass, it will again
print .p=" on the CONSOLE device. Reload the input paper tape on the
READER device, and type in either 2 (if the LIST and PUNCH devices
cannot be operated independently) or 4 (if the LIST and PUNCH
devices may be operated independently). The input paper tape will be
read in again, and the Assembler will begin processing the second pass.

If the second pass was started by typing 4 in response to the Assembler
query, it will perform two functions: first, it will create a listing of the
program, including any error messages which may have been generated during
Assembly. This listing will be printed on the LIST device. Second, it
will output the machine-coded instructions to the PUNC H device to create
a hexadecimal format tape containing the ass.embled program.

If 2 was entered at the beginning of the second pass, then the second
pass will only output the program listing to the LIST device. The Assembler
will again print P= on the CONSOLE device. The input paper tape must
be reloaded, and 3 typed on the CONSOLE device. The input paper
tape will be read again, and the hexadecimal format machine-coded
program will be output to the PUNCH device.

6.3 ASSEMBLER LIMITS

The following facts should be remembered while creating source programs for
the INTELLEC 8I Assembler:

(1) There is no limit as to the number of characters in anyone assembler
statement; however only 72 characters per line will be printed on the
teletype.

( 2 ) There is no limit as to the number of characters in anyone symbol;
however, the first five characters of any symbol must be unique.

6-2



(3) The maximum number of parameters that may be associated with any macro
is 126.

(4) Only a finite amount of memory is available to the assembler in which to
store its symbol table. Therefore, assemblies containing excessive
numbers of symbols and macros may cause an overflow of the symbol
table, invalidating the assembly.

Each symbol requires 8 bytes of memory in the symbol table, and every
character of every macro definition is stored in the symbol table.
In addition, every macro reference requires some symbol table memory
(the precise amount varies with the environment of the macro
reference) .

If assemblies are being made on an INTELLEC 81 system with limited
memory, then, the macro definitions and number of symbols should
be as small as possible.

6.4 SYNTAX RESTRICTIONS

the following rules must be observed when writing source programs for the
INTELLEC 81 Assembler:

( 1 ) Symbols which appear as names in EQU or SET operations must
be defined before being used in expressions or operands.

Thus the instruction sequence:

FIRST:
SYM

is invalid.

DB
EQU

SYM*3
2

(2) A macro mu st be defined before any references to it are made.
Thus the instruction sequence:

REF:

LOAD

1s invalid.

LOAD

MACRO

ENDM

6-3

A,B

PI, P2

; MACRO REFERENCE

; MAC RO DEFINITION



(3) Macros may not be defined within other macro definitions; that is,
a MACRO pseudo instruction may not appear between any MACRO
and ENDM pseudo instructions.

Thus the sequence:

MACI

MAC2

is invalid.

MACRO

MACRO

ENDM

ENDM

(4) The parameters listed in the operand field of a MACRO pseudo-instruction
may not be symbols previously defined in the as sernbly ,

Thus the sequence:

PI:

MACI

is invalid.

EQU

MACRO

5

Pl,P2

6.5 ASSEMBLER ERROR MESSAGES

Errors detected by the assembler are indicated by single letter codes printed at
the teletype during pa ss 2. These codes are a s follows:

A ADDRESS ERROR:

Description: This error indicates that the address referenced by a JUMP or
CALL instruction is not in the range 0 to 65535.

Example:

JUMP
JUMP

65536D
-2

; A ERROR
; A ERROR

6-4



B BALANCE ERROR:

Description: This error indicates that the parentheses in an expression are un­
balanced, or that the quotes in an ASCII string are unbalanced.

Example:

MVI
DB

E EXPRESSION ERROR:

H, 3*(2 + (4)
"A'

; B Error
; B Error

Description: This error indicates a badly constructed expression. It usually
occurs due to a missing operator, omitted comma, or a misspelled opcode ,

Example:

MVI
MVO

F FORMAT ERROR:

H,3 (2 + 4)
H,M

; E Error, M is sing Opera tor
; E Error, Mispelled Opcode

Description: This error indicates an error in the format of a statement. It is
usually caused by a missing operand or an extraneous operand.

Example:

MOV
MOV

I ILLEGAL CHARACTER:

,D
A,B,C

F Error, Missing Operand
F Error, Extraneous Operand

Description: This error indicates that an invalid ASCII character is present in
the statement. It is also caused by a numeric character which is too pig for the
base of the number in which it occurs.

Example:

MVI
MVI

H,02B
H,79Q

6-5

I Error, 2 Inva lid in Binary
I Error, 9 Inva lid in Octal



M MULTIPLE DEFINITION:

Description: This error indicates that two or more labels exist which are identical or
not unique in the first five chara cters ,

NOTE: Identical labels generated by macro references are legal.

Example: The following segment of code is illegal:

LABELl:

LABEL2:

INC

INC

B

C ; M ERROR

N NESTING ERRO R:

Description: This error indicates that an IF, ENDIF, MACRO, or ENDM statement is
improperly nested.

Example: The statement:

ENDIF

will cause an N error if no IF statement precedes it in the program.

P PHASE ERROR:

Description: This error indicates that the value of an element being defined changed
between pass one and pass two of the assembly.

Example: The following segment of code will cause every label in the assembly to pro­
duce a P error:

ORG BEGIN

BEGIN EQU 5

During pass one, the symbol BEGIN is undefined when the ORG is reached. The
assembler will assume it to be 0, and begin assembling the program at O. During
pass two, the symbol BEGIN is equal to 5". Therefore the location assigned to every
label in the program will have increa sed by 5, producing a P error.

Q QUESTIONABLE SYNTAX:

Description: This error is usually caused by omitting an opcod e ,

Example:

LOC 1234H,SAB3H

6-6

; Opcode DW wa s omitted.



R REGISTER ERROR:

Description: This error indicates that a register specified for an operation is
invalid for that operation.

Example:

PUSH

S STACK OVERFLOW:

A R ERROR, A INVALID FOR PUSH

Description: This error indicates that the assembler's internal expression eval­
uation stack became too large and overflowed the memory available to the assembler.
It may be caused by using extremely long character strings, too many nested macros,
too many nested IF statements, or expressions which are too complex.

Example: A nested IF statement is one which occurs between another IF - ENDIF
pair. Thus long sequences of the form:

IF

IF

IF

ENDIF
ENDIF
ENDIF

may cause an S error.

EXP

EXP

EXP

The assembler can evaluate complex expre s srons as long as they do not contain
unnecessary parentheses.

An expression of the form:

( ( • (EXP). ) )

t
n times

~
n times

will cause an S error when n becomes large enough.

6-7



T TABLE OVERFLOW:

Description: This error indicates that the assembler's symbol table space has
been exhausted. This may be caused by using too many symbols I overly
lengthly macro definitions I or too many macro references in an assembly.

U UNDEFINED IDENTIFIER:

Description: This error indicates that a symbol used in an operand field was never
defined by appearing in the label field of another instruction.

Example: If the statement

MVI H/LABI

appears is an assembly I and the symbol LABI does not appear in the label field
of any other statement I it will cause a U error.

V ILLEGAL VALUE:

Description: This error indicates that the value of an operand or expression
exceeds the range required for a particular operation.

Example: The statement:

RST 8

will cause a V error I because the operand of a RST instruction must be in the
range 0 to 7.

The statements:

LOC:
ORG
INCR

256
B

MVI H/LOC

will cause a V error I since the value of the second operand of an MVI instruction
must be an 8 bit quantity I while the value of LOC is a 16 bit address which
cannot be held in 8 bits.

6-8



APPENDIX A

INSTRUCTION SUMMARY

\

This appendix provides a summary of 8080 assembly language
instructions. Abbreviations used are as follows:

A

A
n

ADDR

Aux. carry

Carry

CODE

DATA

DATAl6

DST

EXP

INTE

LABEL:

M

Parity

PC

PCH

PCL

REGM

The accumulator (register A)

Bit n of the accumulator contents, where n may have any value
from 0 to 7 and 0 is the least significant (rightmost) bit.

Any memory address

The auxiliary carry bit

The carry bit

An operation code

8 bits (one byte) of data

16 bits (2 bytes) of data

Destination register or memory byte

A constant or mathematical expression

The 8080 interrupt enable flip-flop

Any instruction label

A memory byt e

The parity bit

Program Counter

The most significant 8 bits of the program counter

The least significant 8 bits of the program counter

Any register or memory byte

A-l



RP

RPI
RP2

sign

SP

BRC

zero

Xy

[]

( )

.....

Format:

A register pair. Legal register pair symbols are:

B for registers Band C
D for registers D and E
H for registers Hand L
SP for the 16 bit stack pointer
PSVV for condition bits and register A

The first register of register pair RP

The second register of register pair RP.

The sign bit

The 16-bit stack pointer register

Source register or memory byte

The zero bit

The value obtained by concatenating the values X and Y

An optional field enclosed by brackets

Contents of register or memory byte enclosed by parentheses

Replace value on lefthand side of arrow with value on right­
hand side of arrow

CARRY BIT INSTRUCTIONS

[LABEL:) CODE

CODE DESCRIPTION

STC (carry)- 1 Set carry

CMC (carry)- (carry) Complement carry

Condition bits affected: Carry

A-2



SINGLE REGISTER INSTRUCTIONS

Fonnat:•

[LABEL:] INR REGM
-or-

[J.ABEL:] DCR REGM
-or-

[LABEL:) CMA
-or-

[):ABEL:) DM

Code Description

.INR (REGM) - (REGM)+l Increment register REGM

DCR (REGM) . (REGM)-l Decrement register REGM

CMA (A) • 00 Complement accumulator j

IDM If-(AO -A
3

) > 9 or (aux. carry)=l, Convert accumulator
(A) ~ (A)+6 contents to form
Then if (A

4
-A

7
) >9 or (carry)> t'NO decimal

1 fA) = fA' ~ 6 * 24 digits i
Condition bits affected: INR,DCR

CMA
DM

Zero, sign, parity
None
Zero, sign, parity, carry, aux. carry

NOP INSTRUCTION

Fonnat:

[LABEL:] NOP

Description

- - - - - - - No operationNOP

Code fr-----+--------------------------.,[,
Cfo"ndit1on bits affected: None

A-3



DATA TRANSFER INSTRUCTIONS

Format:

CODt RP

[LABEL:]

!LABEL:]

MOY
-or-

DST ,SRC

NOTE: SRC and DST not both = M

NOTE: RP = B or D

Store accumulator at memory
location referenced by the specified
register pair

Load accumulator from memory
location referenced by the specified
register pair

Description

«RP»

(DST) _.-- (SRC)

(A) _0-_-

(RP»,.-.-- (A)

Code

STAX

MaY

LDAX

~
I-----~l-----------------------------.l

Load register DST from register SRC I
"

~
~
1

Condition bits affected: None

REGISTER OR MEMORY TO ACCUMUlATOR INSTRUCTIONS

Format:

[LABEL:] CODE REGM
"i

Code f Description t
ADD (A) - (A)+(REGM) Add REGM to accumulator

ADC (A) - (A)+(REGM)+(carry) Add REGM to accumulator
with carry

SUB (A) - (A)-(REGM) Subtract REGM from accumulator "

SBB (A) - (A)-(REGM)-(carry) Subtract REG M from accumulator
with borrow

ANA (A) - (A) AND (REGM) AND accumulator with REGM

XRA (A) - (A) XOR (REGM) EXCLUSIVE-ORaccumulator
with REGM

A-4



Code Description

ORA (A) - (A) OR (REGM) OR accumulator with REGM

CMP Condition bits set by (A)-(REGM) Compare REGM with
accumulator

Condition bits affected:

ADD, ADC, SUB, SBB: Carry, sign, zero, parity, aux. carry
ANA, XRA, ORA: Sign, zero, parity. Carry is zeroed.
CMP: Carry, sign, zero, parity, aux. carry. Zero set if (A)=(REGM)

Carry reset if (A) < (REGM)
Carry set if (A) ~ (REG M)

ROTATE ACCUMULATOR INSTRUCTIONS

Format:

Code I
[LABEL:] CODE

Description

(carry)- A
7,

AI' - A , A
O

- A-n-t: n ·7
RLC

RRC

RAL

RAR

A -- A ,IttI n (carry) -- A
7,

A
O

- (carry)

(carry)-A
O

' A
7-

(carry)

Set carry = A." rotate
accumulator left
Set carry = A

O
' rotate

accumulator right
Rotate accumulator
left; through the carry
Rotate accumulator
right through carry

Condition bits affected: Carry

REGISTER PAIR rnSTRUCTIONS

Format:

[LABEL:]

[LABEL:]

CODEI
-or­
CODEZ

RP

Note: .For PUSH and POP, RP=B,D, H, or PSW
For DAD, INX, and DCX, RP=B ,D, H, or SP

A-S



Codel

PUSH

POP

DAD

INX
DCX

Code2

XCHG

XTHL

SPHL

Description

«SP)-1)- (RPl), «SP)-2) - (RP2),
(SP)- (SP)-2

(RPl)- ((SP)+l), (RP2)-. «SP»,
(SP) - (SP)+2

(HL)• (HL) + (RP)

(RP) - (RP)+1
(RP) - (RP)-1

Description

(H) - (D), (L) - (E)

(L) -4 «(SP», (H)~ «SP)+1)

(SP) - (H): (L)

Save RP on the
stack
RP=A saves accumulator
and condition bits.
Restore RP from
the stack
RP=Arestores accumulator
and condition bits.
Add RP to the 16-bit
number in Hand L.
Increment .RP by 1
Decrement RP by 1

Exchange the 16 bit
number in Hand L with
that in D and E.
Exchange the last
values saved in the
stack with Hand L.
Load stack pointer from
Hand L.

Condition bits affected:

PUSH, mx. DCX, XCHG, XTHL, SPHL: None
PO? If RP=PS\tV, all condition bits are restored from the stack, otherwise

none are affected.
DAD Carry

IMMEDIATE INSTRUCTIONS

Format:

[LABEL:J LXI
-or-

[LABEL:J MVI
-or-

[LABEL:J CODE

Note: RP=B,D,H, or SP

RP, DATA16

REGM, DATA

REGM

A-6



CODE DESCRIPTION

LXI (RP)- DATA 16 Move 16 bit immediate Data
into RP

MVI (REGM) DATA Move immediate DATA into REGM
ADI (A)- (A) + DATA Add immediate data to accumulator
ACI (Al- (A) + DATA + (carry) Add immediate data to accumulator

with carry
SUI 00- (A) - DATA Subtract immediate data from

accumulator
SBI (A)-(A) - DATA - (carry) Subtract immediate data from

accumulator with borrow
ANI (A)- (A) AND DATA AND accumulator with immediate

data
XRI (A)- (A) XOR DATA EXCLUSIVE-OR ccumulator with

immediate da ta

ORI (A) - (A) OR DATA OR accumulator with immediate
data

CPI Condition bits set by (A) -DATA Compare immediate data with
accumulator

...-I

Condition bits affected:

LXC MVI: None
ADI, ACI, SUI, S8I: Carry, sign, zero, parity, aux. carry
ANI, XRI,ORI:-- Zero, sign, parity. Carry is zeroed.
CPI: Carry, sign, zero, parity, aux. carry. Zero set if (A) = DATA

Carry reset if (A) < DATA
Carry set if (A) ~ DATA

DIRECT ADDRESSING mSTRUCTIONS

Format:

Condition bits affected: None

A-7



Format:

[LABEL:)

JUMP mSTRUCTIONS

PCRL

-or-

[LABEL: ] CODE ADDR

CODE DESCRIPTION ,
(PC)- (HL) Jump to location specified by

j

PCHL
register Hand L

JMP (PC) ADDR Jump to location ADDR

JC If (carry) = 1, (PC)- ADDR :j

If (carry) = 0, (PC)- (PC)+3 Jump to ADDR if carry set
;/

JNC If (carry) = 0, (PC)- ADDR IJ

If (carry) = 1, (PC) - (PC)+3 Jump to ADDR if carry reset 1
ijiJZ If (zero) = 1, (PC)- ADDR

If (zero) = 0, (PC)- (PC)+3 Jump to ADDR of zero set

IJNZ If (zero) = 0, (PC)- ADDR
If (zero) = I, (PC)--- (PC)+3 Jump to ADDR if zero reset

JP If (sign) = 0, (PC)- ADDR
If (sign) = I, (PC) - (PC)+3 Jump to ADDR if plus ;

1M If (sign) = I, (PC)- ADDR
If (sign) = 0, (PC)- (PC)+3 Jump to .ADDR if minus

JPE If (partty)« 1 , (PC)- ADDR
If (partry)> 0, (PC)- (PC)+3 Jump to ADDR if parity even l

~

JPO If (parity)= 0, (PC)- ADDR ~
If (parity)= 1, (PC)- (PC)+3 Jump to ADDR if parity odd !

"

Condition bits affected: None

A-a



CALL INSTRUCTIONS

Fonnat:

fLABEL:] CODE ADDR

.
CODE DESCRIPTION I
CALL ((SP)-I)- (PCH), ((SP)-Z)-(PCL), (SP)-(SP)+Z, (PC) - ADDR

Call subroutine and push return
addres s onto stack

CC If (carry) = I, ((SP)-I)-(PCH), «SP)-Z}-(PCL), (SP)-(SP)+2,
(PC) - ADDR

If (carry) = 0, (PC) - (PC)+3 Call subroutine if carry set

ONC If (carry) = 0, «SP)-1)- (PCH), «SP)-Z)- (PCL), (SP)--,-(SP)+Z,

I

(PC) - ADDR
If (carry) = I, (PC) - (PC)+3 Call subroutine if carry reset

CZ If (zero) = I, ((SP)-I)-(PCH), ((SP)-Z)- (PCL), (SP)-(SP)+Z,
(PC)-ADDR

If (zero) = 0, (PC) - (PC)+3 Call subroutine if zero set

CNZ If (zero) = 0, «SP)-I) - (PCH), ((Spy::.Z)- (PCL), (SP)- (SP)+2,
= (PC) -ADDR

If (zero) = I, (PC) - (PC)+3 -
Call subroutine if zero reset

CP If (sign) = 0, ((SP)-1)- (PCH), ((SP)-2)- (PCL), (SP)-(SP)+Z,
(PC) - ADDR

If (sign) = I, (PC) - (PC)+3 Call subroutine if sign plus

OM If (sign) = I, (SP)-l)- (PCH)" «(SP)-2)-(PCL), (SP)-(SP)+Z,
(PC)- ADDR

If (sign) = 0, (PC) - (PC)+3 Call subroutine if sign minus

CPE If (parity)> I, ((SP)-l)-(PCH), (SP)-Z)-(PCL), (SP)- (SP)+2,
(PC)-ADDR

If (partty)> 0, (PC) - (PC)+3 Call subroutine if parity even

CPO If (parity)= 0, «SP)-I)-(PCH), ((SP)-Z)-(PCL), (SP)- (SP)4:2,
(PC)- ADDR

If (parity)= I, (PC)- (11C)+3 Call subroutine if parity odd

eondit1on bits affected: None

A-9



RETURN INSTRUCTIONS

Fonnat:

[lABEL:) CODE

CODE DESCRIPTION

RET (PCL)- «SP)), (PCH)-«SP)+l), (SP)-(SP)+Z
Return from subroutine

RC If (carry) = I, (PCL)-«SP)), (PCH)- «SP)+I), (SP) - (SP)+Z
If (carry) = 0, (PC)- (PC)+3 Return if carry set

RNC If (carry) = 0, (PCL)-«SP)), (PCH)-«SP)+I), (SP)- (SP)+Z
If (carry) = I, (PC}-(PC)+3 Return if carry reset

RZ If (zero) = I, (PCL)-«SP)), (PCH)-«SP)+l) I (SP)- (SP)+Z
If (zero) = 0, (PC)- (PC)+3 Return if zero set

RNZ If (zero) = 0, (PCL)- «SP)) I (PCH)- «SP)+I) I (SP)- (SP)+Z
If (zero) = I, (PC)- (PC)+3 Return if zero reset

RM If (sign) = I, (PCL)-«SP)), (PCH)-«SP)+l), (SP)- (SP)+Z
If (sign) = 0, (FC)- (PC)+3 Return if minu 5

RP If (sign) = 0, (PCL}-«S?)), (PCH)-«SP)+l) I (SP)-(SP)+Z
If (sign) = I, (PC)- (PC)+3 Return if plus

RPE If (Parity)= I, (PCL)-«(SP)), (PCH)-«SP)+I), (SP)- (SP)+Z
If (paritv)» 0, (PC) -(PC)+3 Return if parity even

RPO If (Parity)= 0, (PCL)- «SP)) I (PCH)- (SP)+l) I (SP)- (SP)+2
If (Parity)= I, (PC) - (PC)+3 Return if parity odd

Oondition bits affected: None

RST INSTRUCTION

Format:

[LABEL:]

Note: 0 EXP 7

RST EXP

CODE' DESCRIPT ION

RST «SP)-I)-(PCH) I «SP)-Z) -(PCL), (SP)- (SP)+2
. (PC)-OOOOOOOOOOEXPOOOB Call subroutine at address

specified by EXP

Condition bits affected: None
A-IO



INTERRUPT-rUp n.or rnSTRUCTIONS

Format:

CODE

CODE DESCRIPTION

EI (INTE) - 1 Enable the interrupt system

fDr (INTE) - 0 Disable the interrupt system

Condition bits affected: None

INPUT/OUTPUT rnSTRUCTIONS

Fdrmat:

CODE

[LABEL:T CODE EXP

DESCRIPTION

IN

OUT

(A) _0--

output device

input device

(A)

Read a byte from device EXP into ~

the accumulator I
Send the accumulator contents to I
device EXP

Condition bits affected: None

HLT INSTRUCTION

Format:

[LABEL:]

CODE'

HLT

DESCRIPTIO:-J ,

Instruction execution halts until
an interrupt occurs 0

Condition bits affected: None

A-ll



Format:

PSEUDO - INSTRUCTIONS

ORG PSEUDO - INSTRUCTION

ORG EXP

Code Description

ORG LOCATION COUNTER .... EXP Set Assembler lo-
cation counter to
EXP

~QU PSEUDO- INSTRUCTION

Fonnat:

NAME EQU EXP

Code Descriotion

EQU NM1E .. EXP Assign. the value EXP to the
symbol Nlu'vlE

SET PSEUDO - mSTRUCTION

Fonnat:

SET EXP

A-12



Code De s crt ption

SET -- EXP Assign the value EXP to the symbolNAME
NA.'1E., which may have been pre-
viou slv SET.

END PSEUDO - INSTRUCTION

Format:

END

reode

END

Description

End the assembly.

CONDITIONAL ASSEMBLY PSEUDO - INSTRUCTIONS

IF
-and-

ENDIF

1'.-13

EXP



Code Description

IF If EX? =0, ignore as sembler statements until ENDIF
is. reached. Otherwise, continue assembling statements.

ENDIF End range of preceding IF.

MACRO DEFINITION PSEUDO - INSTRUCTIONS

Format:

NAME- MACRO

-and-

ENDM

LIST

Code Description

MACRO Define a macro named NAJv1E with parameters
LIST

ENDM End macro definition

A-14



APPENDIX B

--INSTRUCTION EXECUTION TIMES AND BIT PATTERNS--

This appendix summarizes the bit patterns and number of time
states associated with every 8080 CPU instruction.

When using this summary, note the following symbology:

1) DDD represents a destination register. SSS represents a
source register. Both DDD and SSS are interpreted as
follows:

DOD or SSS
000
001
010
011
100
101
110
111

Interpretation
Register B
Rf'qister C
Register D
Register E
Register H
Register L
A memory register
The accumulator

2) Instruction execution time equals number of time periods
multiplied by the duration of a time period.

A time period may vary from 480 nanosecs to 2 ~sec.

Where two numbers of time periods are shown (eg. 5/11),
it means that the smaller number of time periods will be
required if a condition is not met, and the larger number
of time periods will be required if the condition is met.

B-1



MNEMONIC 0
7

0
6 Os D

4
0

3 D21D1 DO Number of Time Periods

-

CALL 1 1 0 0 1 1 0 1 17
CC 1 1 0 1 1 1 0 0 11/17
CNC 1 1 0 1 0 1 0 0 11/17
CZ 1 1 0 0 1 1 0 0 11/17
CNZ 1 J. 0 0 0 1 0 0 11/17
CP I 1 1 1 0 1 0 0 11/17
CM 1 1 1 1 1 0 0 11/17
CPE 1 1 1 0 1 1 0 0 11/17
CPO 1 1 1 0 0 1 0 0 11/17
RET 1 1 0 0 1 0 0 1 10
RC 1 1 0 1 1 0 0 0 5/11
RNC 1 1 0 1 0 0 0 0 5/11
RZ 1 1 0 0 1 0 0 0 5/11
RNZ 1 1 0 0 0 0 0 0 5/11
RP 1 1 1 1 Q 0 0 0 5/11
RM 1 1 1 1 1 0 0 0 5/11
RPE 1 1 1 0 1 0 0 0 5/11
RPO 1 1 1 0 0 0 0 0 5/11
RST 1 1 A A A 1 1 1 11
IN 1

.,
0 1 1 0 1 1 10J-

OUT 1 1 0 1 0 0 1 1 10
LXI B 0 0 0 0 0 0 0 1 10
LXI D 0 0 0 1 0 0 0 1 10
LXI H 0 0 1 0 0 0 0 1 10
LXI SP 0 0 1 1 0 0 0 1 10
PUSH B 1 1 0 0 0 1 0 1 11
PUSH D 1 1 0 1 0 1 0 1 11
PUSH H 1 1 1 0 0 1 0 , 11s,

PUSH A 1 1 1 1 0 1 0 1 11
POP B 1 1 0 a 0 0 0 1 10
POP D 'I 1 0 1 0 0 0 1 10
POP H 1 1 1 0 0 0 0 1 10
POP A 1 1 1 1 0 0 0 1 10
STA 0 0 1 1 0 0 1 0 13
LDA 0 0 1 1 1 0 1 0 13
XCHG 1 1 1 0 1 0 1 1 4
XTHL 1 1 1 0 0 0 1 1 18
SPHL 1 1 1 1 1 0 0 1 5
PCHL 1 1 1 0 1 0 0 1 5
DAD B 0 0 0 0 1 0 0 1 10
DAD D 0 0 0 1 1 0 0 1 10
DAD H 0 0 1 0 1 0 0 1 10
DAD SP 0 0 1 1 1 0 0 1 10
STAX B 0 0 0 0 0 0 1 0 7
STAX D 0 0 0 1 0 0 1 0 7
LDAX B 0 0 0 0 1 0 1 0 7
LDAS D 0 0 0 1 1 0 1 0 7
INX B 0 0 0 0 0 0 1 1 5
INX D 0 0 0 1 0 0 1 1 5
INX H 0 0 1 0 0 0 1 1 5
INX SP 0 0 1 1 0 0 1 1 5

B-2



MNEMONIC D
7

D
6

D
S

D
4

D
3

D
2

D
1 DO ~umber of Time Periods

-
MOV T1,Tz a 1 D D D S S S 5

MOV M,T a 1 1 1 a s s S 7
MOV T,lvl a 1 D D D 1 1 a 7
HLT a 1 1 1 a 1 1 a 7
MYI T a a D D D 1 1 a 7
MYI 'M a a 1 1 a 1 1 a 10
INR 0 0 D D D 1 a a 5
nCR 0 0 D D D 1 a 1 5
INR A 0 0 1 1 1 1 a a 5
nCR A 0 0 1 1 1 1 0 1 5
INR M a 0 1 1 0 1 a 0 10
nCR M 0 0 1 1 0 1 a 1 10
ADD' T 1 0 0 0 0 s s S 4
ADCT 1 0 0 0 1 S S S 4
SUB T 1 0 0 1 a s s S 4
SBB T 1 0 0 1 1 S S S 4
NDA T 1 0 1 0 0 S S S 4
XRA T 1 0 1 a 1 S S C' 4....
ORA T 1 0 1 1 a s s S 4
CMP T 1 c 1 1 1 S S S 4
ADDM 1 0 a a a 1 1 0 7
ADCM 1 a a 0 1 1 1 0 7
SUB M 1 0 a 1 0 1 1 0 7
SBB.M 1 0 a 1 1 1 1 a 7
NDA lot 1 0 1 0 a 1 1 a 7
XRA M 1 0 1 0 1 1 1 0 7
ORA M 1 0 1 1 a 1 1 a 7
CMP M 1 0 1 1 1 1 1 0 7
ADI 1 1 0 0 0 1 1 a 7
ACI 1 1 0 ,0 1 1 1 a 7
SUI 1 1 0 1 a 1 1 a 7
SBI 1 1 0 1 1 1 1 a 7
NDI 1 1 1 a 0 1 1 a 7
XRI 1 1 1 0 1 1 1 0 7
ORI 1 1 1 1 a 1 1 a 7
CPI 1 1 1 1 1 1 1 a 7
RLC a 0 0 0 a 1 1 1 4
RRC 0 a a 0 1 1 1 1 4
RAL 0 0 a 1 a 1 1 1 4
RAR 0 a a 1 1 1 1 1 4
JMP 1 1 0 a 0 a 1 1 10
JC 1 1 a 1 1 a 1 0 10
JNC 1 1 0 1 0 0 1 a 10
JZ 1 1 0 a 1 0 1 0 10
JNZ 1 1 0 a a a 1 0 10
JP 1 1 1 1 a 0 1 0 10
JM 1 1 1 1 1 0 1 0 10
JPE 1 1 1 0 1 0 1 0 10
JPO 1 1 1 0 a 0 1 0 10

B-3



MNE110NIC D_ D
G Ds D4 D3 D2 D

1 DO Nwnber of Time Periods
I

DCI B 0 0 0 0 1 0 1 1 5
DIC D 0 0 0 1 1 0 1 1 5
DCX H 0 0 1 0 1 0 1 1 5
DCI SP 0 0 1 1 1 0 1 1 5
CMA 0 0 1 0 1 1 1 1 4
STC 0 0 1 1 0 1 1 1 ..
O,IC 0 0 1 1 1 1 1 1 ..
DAA 0 0 1 0 0 1 1 1 ..
SHLD 0 0 1 0 0 0 1 0 11
LHLD 0 0 1 0 1 0 1 0 11
EI 1 1 1 1 1 0 1 1 ..
DI 1 1 1 1 0 0 1 1 ..
NOP 0 0 0 0 0 0 0 0 ..

B-4



APPENDIX C
SOFTWARE OPERATING COMMANDS AND MESSAGES

c.r SYSTEM MONITOR

STARTING ADDRESS - 3800

All arguments are in hexadecimal form.

A ASSIGN I/O DEVICE

A Idev,pdev

Physical device pd cv is assigned to logical device ldev

B PUNCH IN BNPF FORMAT

Blow addres.s, high addres s

Memory from low address to high address is punched in BNPF form.

C COMPARE PROM WITH MEMORY

C address

256 bytes of memory beginning at address are compared with a PROM in the
programming socket, and miscompares are printed.

D DISPLAY IN HEXADECIMAL FORMAT

D low address, high address

Memory from low address to high address is displayed in hexadecimal form.

E END

E addres s

Endf He mark is created and punched; 60 null characters are punched.

F FILL MEMORY

Flow addre s s , high addre s s, da ta

Memory from low address to high address is filled with data.

c-i



G GO TO

G Address, bkptl , bkpt2

Program control is transferred to address. Breakpoints are set at bkptl and bkpt2.

H HEXADECIMAL ARITHMETIC

H number, number Sp

The sum and difference of the two numbers is printed in hexadecimal.

L LOAD BNPF FORMAT

L low address, high address

A BNPF format tape is read and stored in low address through high address.

M MOVE

M low address, high address, destination address

A block of memory from low address to high address is moved to location
destination addre ss .

N PUNCH NULL

N

Sixty null characters are punched.

P PROGRAM PROM

P low address, high address I PROM address

A 1602A or 1702A PROM is programmed with data from memory location low address
through high address. Programming begins at PROM location PROM address
MOD 256.

C-2



R READ HEXADECIMAL TAPE

R bias address

A hexadecimal format tape is read into memory at tape address plus bias address.

S SUBSTITUTE

S address Sp

Memory at address is displayed, and can be modified by typing in new data.
Termination with space opens next sequential address, termination with carriage
return ends command.

X EXAMINE REGISTERS OR MEMORY

X reg ident

Register is displayed, and can be modified as in the S command.

T TRANSFER PROM TO MEMORY

T address

The contents of a PROM are loaded into memory starting at address and
continuing for 256 bytes.

W WRITE HEXADECIMAL

W low address, high address

Memory from low address to high address is punched in hexadecimal format.

MESSAGES

Monitor ready to accept commands

* Error. Reenter command

C-3



C.2 TEXT EDITOR

STARTING ADDRESS - 0010

All commands are terminated with two ESCAPE or ALT MODE characters.

A

B

nC

nD

E

F string

I string

nK

nL

N

S search string $
substitute string $

nT

nW

z

n <command string> $$

C-4

Appends text to workspace.

Resets buffer pointer to beginning of
workspace.

Moves buffer pointer n characters.

Deletes n characters.

Punches workspace and input tape, creates
end of file.

Searches for string and places buffer
pointer after string.

Inserts string at location of buffer pointer.

Deletes n lines.

Moves buffer pointer n lines.

Writes 60 null characters

Searches for search string. If found,
substitutes substitute string and leaves
buffer pointer at end of substitute string.

Types n lines on the teletype.

Punches n lines from the beginning of the
workspace and deletes the lines typed.

Moves the buffer pointer to the end of the
workspace.

Executes command string n times.
May be nested up to eight levels.



MESSAGES

*

START PUNCH, TYPE CHARACTER

"CHARACTER" ILLEGAL IN THIS
CONTEXT

WORKSPACE FULL

CANNOT FIND "string"

ESCAPl/ALT MODE

BREAK

LINE FEED

c-s

Editor is ready to accept commands.

Allows tape punch to be started prior
to punching operations.

Error - reenter command or command string.

Self-explanatory

A 'F' or'S' command search was
unsuccessful

Terminates or separates commands

Terminates command execution

Identifies end of line



APPENDIX D
HEXADECIMAL PROGRAM TAPE FORMAT

The hexadecimal tape format used by the INTELLEC 8 system is a modified
memory image, blocked into discrete records. Each record contains record
length, record type, memory address, and checksum information in addition
to data. A frame by frame description is as follows:

Frame 0

Frames 1,2.
(O-9,A-F)

Frames 3 to 6

Frames 7, 8

Frames 9 to 9+2~· (Record
Length) -1

D-1

Record Mark. Signals the start of
a record. The ASCII character colon
(":" HEX 3A) is used a s the record
mark.

Record Length. lWO ASCII characters
representing a hexadecimal number in
the range 0 to 'FF' H (0 to 255). This
is the count of actual data bytes in the
record type or checksum. A record
length of 0 indicates end of file.

Load Address. Four ASCII characters
that represent the initial memory lo­
cation where the data following will
be loaded. The first data byte is
stored in the location pointed to by
the load addres s , succeeding data
bytes are loaded into ascending
addresses.

Record Type. Two ASCII characters.
Currently all records are type 0, this
field is reserved for future expansion.

Data. Each 8 bit memory word is
represented by two frames containing
the ASCII characters (0 to 9, A to F)
to represent a hexadecimal value 0 to
'FF'H (0 to 255).



Frames 9+2 *(Record Length) to
9+2 *(Record Length) +1

Checksum. The checksum is the neg­
ative of the sum of all 8 bit bytes in
the record since the record mark (": ")
evaluated modulus 256. That Is, if
you add together a 11 the 8 bit byte s ,
ignoring a 11 carries out of an 8-bit
sum I then add the checksum, the result
is zero.

Example: If memory locations I through 3 contain 5 3F8 EC I the format of the
hex file produced when these locations are punched is:

:0300010053F8ECC5

D-2



APPENDIX II Ell

... BINARY"DECIMAL-HEXADECIMAL CONVERSION TABLES--

E-l



HEXADECIMAL ARITHMETIC

ADDITION TABLE

0 1 2 3 4 5 6 7 8 9 A 8 C 0 E F

1 02 03 04 05 06 07 08 09 OA 00 OC 00 OE OF 10

2 03 04 05 06 r11 08 09 OA OB IX: 00 DE OF 1O n
3 04 05 06 07 08 09 OA 08 OC 00 OE OF 10 11 12

4 05 06 07 08 09 OA 08 OC 00 OE OF 10 11 12 13

5 06 07 08 09 OA 08 OC 00 OE OF 10 11 12 13 14

6 07 08 09 OA 08 OC 00 OE OF 10 11 12 13 14 15

7 08 09 OA 08 OC 00 OE OF 10 11 12 13 14 15 16

8 09 OA 08 OC 00 OE OF 10 11 12 13 14 15 16 17

9 OA 08 OC 00 OE OF 10 11 12 13 14 15 16 17 18

A 08 OC 00 OE OF 10 II 12 13 14 15 16 17 18 19

8 OC 00 OE OF 10 11 12 13 14 15 16 17 18 19 IA

C 00 OE OF 10 11 12 13 14 15 16 17 18 19 lA 18

16
I

0 OE OF 10 11 12 13 14 15 17 18 19 lA 18 IC

E OF 10 11 12 13 14 15 16 17 18 19 lA 18 lC 10

F 10 11 12 13 14 15 16 17 18 19 lA 18 lC 10 IE

MUUIPLICATION TABLE

1 2 3 4 5 6 7 8 9 A B C 0 E F

2 04 06 Ob OA OC OE 10 12 14 16 18 IA lC IE

3 06 09 OC OF 12 15 18 18 IE 21 ~4 27 2A 20

4 08 OC 10 14 18 lC 20 24 28 2C 30 J.t 38 3C

5 OA OF 14 19 IE 23 28 20 32 37 3C 41 46 48

6 OC 12 18 IE 24 2A 30 36 3C 42 48 4E 54 SA

7 OE 15 lC 23 2A 31 38 3F 46 40 54 58 62 69

8 10 18 20 28 30 38 40 48 50 58 60 68 70 78

9 12 18 24 20 36 3F 48 51 SA 63 6C 75 7E 87

A 14 IE 28 32 3C 46 50 SA 64 6E 78 82 8C 96

B 16 21 2C 37 42 40 58 63 6E 79 84 8F 9A AS

C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4

0 lA 27 34 41 4f 58 68 75 82 8F 9C A9 86 C3

E IC 2A 38 -46 54 62 70 7E 8C 9A A8 86 C4 02

F IE 20 3C 48 SA 69 78 87 96 AS 84 C3 02 EI

£-2



POWERS OF TWO

i:..!!.L.
I 0 1.0
2 I 0.5
4 2 0.25
I 3 0.U5

16 4 0.062 ,
32 , 0.031 2S
601 6 0.015 625

121 7 0.007 112 ,

256 I 0003 906 25
512 , 0.001 953 U5

1 024 10 0.000 976 562 5
2041 II 0.000 ... 211 25

4096 12 0.000 244 140 625
I 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 571 U5

65 536 16 0.000 OIS 258 789 062 5
131012 17 0.000 007 629 394 531 2S
262 144 11 0.000 003 114 697 26S 615
524 181 19 0.000 001 907 348 632 112 5

I 041 576 20 0.000 000 95J 674 316 406 15
2 097 152 21 0000 000 476 IJ7 158 203 125
4 194 304 22 0.000 00) 231 411 S79 101 562 5
I 388 608 2J 0000 000 119 209 2119 5;;0 781 25

16 m 216 24 0.000 000 059 604 644 775 390 62S
33 554 432 25 0000 000 029 802 322 387 ~9S 312 5
67 108 864 26 0.000 000 014 901 161 193 1.7 656 15

134 217 728 27 0.000 000 007 450 sea S96 923 128 125

268 435 456 21 0.000 000 003 ns 290 29B 061.914 062 5

536 870 912 29 0.000 000 001 862 6'S 149 2JO 957 031 25
I 073 741 824 30 0.000 000 000 911 J22 S7. 61S 47B 515 62S

2 '47 483 648 31 0.000 000 000 06S 661 287 307 739 157 112 5

4 294 967 296 32 0.000 000 000 2J2 830 643 653 &6' 628 906 25
I 589 934 592 33 0.000 000 000 116 .IS 321 826 934 114 453 US

17 179 &69 184 34 0.000 000 000 058 207 6t I 91J 067 407 226 562 5

34 359 738 368 3S 0.000 000 000 029 103 13. 456 733 703613 2BI 25

68 719 476 736 36 0.000 000 000 014 551 915 228 366 B51 806 640 62S
I J7 438 9S3 472 37 0.000 000 000 007 275 9S7 614 IB3 HS 90J 320 312 5

274 In 906 9U 38 0.000 'X() 000 003 637 971 807 091 712 951 eeo 156 2S

54' 755 813 888 39 0000 000 000 001 III ~89 403 545 856 .75 lJO 071 125

1 099 511 627 n« 40 0.000 000 000 000 9()9 494 701 772 928 237 915 039 062 5

2 199 023 H5 H2 41 0.000 coo 000 000 454 747 310 B86 .... 118 957 S19 531 2S

4 39B 046 511 104 42 0.000 000 000 000 227 373 67S 4., 232 059 478 7S9 76S 625

I 796 093 022 208 43 0.000 000 000 000 113 686 837 121 616 029 739 379 811 BI2 5

17 592 186 OU 416 44 0.000 000 000 000 056 8'J 418 B60 808 014 869 689 941 406 lS
35 184 372 DeB B32 45 0.000 000 000 000 02B HI 709 430 404 007 434 84. 970 703 'lS
70368 744 In 664 06 0.000 000 000 000 014 110 8S. 71S 201003 717 412 4BS JSI 561 5

140 737 48B 355 32B 47 0.000 000 000 000 007 lOS 417 JS7 601 001 858 711 242 675 7BI 25

191 .74 976 710656 48 0.000 000 000 000 003 SSl 713 67B 800 500 929 3SS 621 J37 B90 625
561949 9SJ .21 312 ., O()JO 000 000 000 001776356 Bl9 .00 210'64 677 BIO 668 "S 312 5

1 125 899 906 B'2 624 ~ 0.000 000 000 000 000 IBB 17B .19 700 115 H2 318 90S JJ • • n 656 15
2 151 799 813 68S HB 51 0.000 000 000 000 000 '" OB9 209 850 062 616 169 .Sl 667 236 328 125

4 S03 599 627 J70 .96 S2 0.000 000 000 000 000 122 0" 60. 91S 031 308 OB. n6 J33 61B 16' 062 S
9007 199 154 740 m 5J 0.000 000 000 000 000 111 022 JOl 461 SIS 65. 0.1 36l 166 B09 012 031 2S

IB 01. JfB SO' .91 98' S' 0.000 000 000 000 000 OSS SII lSI 231 1S7 B27 011) IBI S83.0. SOl OIS OS
36 02B 797 018 963 968 5S 0.000 000 000 000 000 017 7SS 57S 61S 62B 913 SIO S90 791 702 270 507 til S

12 OS7 S9C OJ7 927 936 56 0000 000 000 000 000 013 B77 7B7 807 814 .56 7SS 29S J9S BSI IJS 2S3 906 1S
,.. liS 188 07S 8SS Bn S7 0.000 000 000 000 000 006 938 B93 903 907 228 377 .. j 697 92S 567 626 9SJ 12S
281 2JO 376 ISI111 7•• 58 0.000 000 000 000 000 OOJ'" H6 951 9S3 614 IBB Bn B'B 961 7BJ Bil 476 561 5
576.60 7S2 JOJ .13 '81. S9 0.000 000 000 000 000 001734 72J .75 976 B07 Of•• 11 91. 'BI 391906 738 211 25

I 1S2 921 SO. 606 806 976 60 0.000 000 000 000 000 000 867 361 737 9B8 'OJ 547 20S 962 140 69S 95J 369 140615
23058.3009 213 693 952 61 0.000 000 000 000 0<-.:11>00 .n 680 B68 99. 201 77J 602981 120 J47 976 68. ~70 312 5
4 611 686 Oil 427 387 904 62 0.000 000 000 000 000 ooo 116 840 434 497 100 186 801 .90 S60 173 981 341 liS 156 25
, 223 3n 036 854 775 801 63 0.000 000 OJlJ 000 000 JOO 108 420 217 2" S50 4'3 400 745 210 086 994 171 142 S71 125

E-3



TABLE or POWERS or SIXTEEN 10

16" n 16-"

0 OOסס0.1 00000 00000 ooסס0 x 10

16 0.62500 ooסס0 ooooo ooסס0 II 10-'

256 2 0.39062 50000 00000 ooסס0 x 10-2

4 096 3 0.24414 06250 00000 ooooo x 10. 3

65 536 4 0.15258 78906 25000 00000 x 10. 4

I 048 576 5 0.95367 43164 06250 00000 x 10-6

16 777 216 6 0.59604 64477 53906 25000 Jl 10.7

268 435 456 7 0.37252 90298 46191 40625 x 10-8

4 294 967 296 8 0.23283 06436 53869 62891 Jl 10.9

68 719 476 736 9 0.14551 91522 83668 51807 l( 10- 10

c:fl9 511 627 776 10 0.9c:fl49 47017 72928 23792 l( 10. 12

17 592 186 044 416 11 0.56843 41386 OB080 14870 l( 10- 13

281 474 976 710 656 12 0.35527 13678 80050 09294 l( 10. 14

4 503 599 627 370 496 13 0.22204 46049 25031 30808 )( 10- 15

72 057 594 037 927 936 14 0.13877 78780 78144 56755 )( 10- 16

152 921 504 606 846 976 15 0.86736 17379 88403 54721 x 10- 18

TAB'" or POWER::; or \ n16

10" n 10-"

, 0 1.0000 0000 0000 0000

A I 0.1999 9999 9999 999A

64 2 0.28 F5 08F 508 F50 l( 16- 1

3E 8 3 0,4 189 3748 C6A7 EF 9E x 16-2

2710 4 0.68 DB 8BAC 710C 8296 l( 16-3

I 86AO 5 0.A7C5 AC47 lB47 8423 l( 16- 01

F 4240 6 ~.I OC6 F7 AD B5E 0 8037 l( 16-4

98 9680 7 0.lA07 F29 A BCM 4858 l( 16. 5

5F5 E 100 8 0.2 AF 3 10C4 6118 73BF l( 16-6

3B9A CAOO 9 0.4 4 B8 2F AO 9B5A 52CC l( 16-7

2 540B E400 10 0.6 of 3 7F67 5EF6 EAOF l( 16-8

17 4876 E800 11 O.AF EB FFOB CB24 AM F l( 16-9

E8 04A5 1000 12 0.1197 9981 20E A 1 I 19 l( 16-9

916 4E72 AOOO 13 0.1 C2 5 068 4976 81C2 l( 16- 10

5AF 3 107A 4000 14 0.2009 3700 4257 3604 l( 16- 11

3 807E A4C6 8000 15 0,480E BE7B 9058 5660 l( 16- 12

23 8652 6FCI 0000 16 0.734 A CASF 6226 FOAE l( 16- 13

163 4S78 508A 0000 17 0.8877 AA32 36A4 B449 x 16- 14

OED B6B3 A764 0000 18 0.1272 SOOI 0243 ABAI x 16- 14

8AC? 2304 89E 8 0000 19 0.1083 C94F 8602 AC3S • 16- 15

E-4



HEXADECIMAl·DECIMAlINTEGER CONVERSION
The .table below provides for direct conversions between hexa-
decimal integers>in the range O-FFF and decimal integers In
the range 0-4095. For conversion of larger j"tegers, the
table values may be added to the following fii/urel:

Hexadecimal Decimal Hexadecimal Decimal-
01OVO 4096 20000 131 072
02000 8 192 30000 196608
03000 12288 40000 262 144
04 000 16384 50000 327680
05000 20480 60000 393216
06 000 24576 70000 458752
07000 28672 80000 524288
08000 32768 90000 589824
09000 36 864 AOOOO 655360
OA 000 40960 80000 720896
OB 000 45056 CO 000 786 432
DC 000 49152 00000 851 968
00000 53248 EO 000 917504
OE 000 57344 FO 000 983040
OF 000 61 440 100000 1 048576
10000 65536 200 ·000 2097 152
11000 69632 300 000 ;) 145728
12000 73728 400 000 4 194304
13000 77 824 500000 5 242 880
14000 81 920 600000 6 291 456
15000 86 016 700000 7340032
16000 90 112 800 000 8388608
17000 94208 900000 9437 184
18000 98304 AOO 000 10485760
19000 102400 800 000 11 534336
1A 000 106 496 COO 000 12582912
18000 110592 000000 13631 408
ic coo 114 688 soo 000 14680 064
10000 118"784 FOO 000 IS 728640
IE 000 122880 1000000 16 777 216
IF 000 126 976 2000 000 33554432

0 1 2 3 4 5 6 7 8 9 A 8 C 0 E F

000 oooo 0001 0002 0003 0004 0005 0006 0007 0000 0009 0010 0011 0012 0013 0014 0015
010 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
020 0031 OOJ3 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
030 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063

0-i0 0064 0065 0066 0067 0068 0069- 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
050 0080 0001 0082 0003 0084 0085 0006 0087 OOBS 0089 0090 0091 0092 0093 0094 0095
060 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
070 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127

080 01,8 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
090 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
OAD 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
OBO 0176 0177 0178 0179 OISO 0181 0182 018J 0184 0185 0186 0187 0188 0189 0190 0191

oeo 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
000 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
OEO 0224 0225 0220 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OFO 0240 0241 0242 0243 02+4 0245 0246 0247 0248 0249 0250 02S1 0252 0~3 0254 0255

E-S



HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont.)

0 I 2 3 • S 6 7 8 9 A 8 C 0 E F

100 0256 0257 0258 0259 0260 0261 0262 0263 02~ 0265 0266 0267 0268 0269 0270 0271
110 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0266 0287
120 028!! 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
130 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 03'4 0315 0316 0317 0318 0319

140 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335
150 0336 0337 0338 0339 0340 0341 0342 OJ4J 03404 0345 0346 0347 0348 0349 0350 0351
160 0352 OJ53 0354 OJ55 0356 0357 0358 OJ59 0360 0.361 0362 0363 0364 036.5 0366 0367
170 0368 0369 0370 0371 0372 0373 0374 OJ75 0376 0377 0378 0379 0380 0381 0382 0383

180 0384 0385 0366 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
190 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
lAO 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
IBO 0432 0433 0434 0435 0436 0437 0438 0439 0440 044' 0442 0443 0444 0445 0446 0447

ICO 0448 0449 0450 0451 0452 0453 0454 04~5 0456 0457 0458 0459 0460 0461 0462 0463
100 0464 0465 0466 0467 0468 0469 0470 0471 0472 047) 0474 0475 0476 0477 0478 0479
lEO 0480 0481 OJ82 0483 0464 0485 0486 0487 0488 0489 0490 0491 049l 0493 0494 0495
IFO 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511

200 0512 0513 0514 0515 0516 0517 0518 0519 0520 05,1 05t:? 05lJ 0524 0525 0526 0527
,10 05,8 0529 0530 0531 05], 0533 0534 0535 0536 0537 05.13 0539 0540 0541 054, 0543
220 0544 0545 0546 0547 0548 0549 0550 0551 055, 0553 0554 0555 0556 0557 0558 0559
230 0560 056\ 0562 0563 05~ C565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575

240 0576 0577 0578 0579 0580 0581 0582 0583 0564 0585 0566 0587 0588 0589 0590 0591
250 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
260 0608 0609 0610 0611 0612 0613 0614 0615 1\',16 0617 0618 0619 06,0 0621 O6n O6lJ
270 06'4 0625 0620 06,7 0628 06,9 0630 0631 0632 0633 0634 0635 0636 0637 0639 0639

280 0640 0641 0642 0643 06« 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
290 0656 0657 0658 0659 0660 0661 0662 ~3 0664 0665 0666 0667 0668 0669 0670 0671
2AO 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0664 0685 0686 0687
280 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703

2CO 0704 0705 0706 0707 0708 0709 ozro 0711 0112 0113 0714 0715 07i6 0717 0718 0719
200 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2EO 0736 0737 07J8 0739 0740 0741 0742 0143 0744 0745 0746 0747 0748 0749 0750 0751
2FO 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

300 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
no 0800 0801 0802 0803 0804 0805 0806 0007 0808 0809 0810 0811 0812 0813 0814 0815
3JO 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 08,6 0827 0828 0829 0830 0831

340 OBJ, OBJ3 08J4 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 08-15 0846 0647
350 0B48 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 Ot\59 0860 OMi 0862 0863
360 0864 0865 0866 0867 0868 0869 0870 0871 087l 0873 0874 0875 0876 0877 0878 0879
370 0880 0881 0~82 08BJ 08B4 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895

380 0896 0897 0898 0899 0900 090\ 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
390 0912 0913 0914 0915 0916 0917 0918 0919 ono onl 0922 0923 on4 0925 0926 0927
3AO on8 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3BO 094. 0945 0946 09.7 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959

3C0 0960 0961 0962 0963 09~ 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
JDO 0976 0977 0978 0979 0980 0981 098~ 0983 0984 0985 0986 0987 0988 0989 0990 0991
3EO 0992 0993 099. 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3FO 1008 1009 1010 1011 1012 1013 101. 1015 1016 1017 1018 1019 1020 1021 1022 1023

E-6



HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont,)

0 I 2 3 4 5 6 7 8 9 A 8 C 0 E F

400 1024 1025 IOZ6 1027 1028 1029 1030 1031 1032 1033 10304 1035 1036 1037 1038 1039
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071

430 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

440 1088 1089 1090 1091 1092 1093 10904 1095 1096 1097 1098 1099 1100 1101 1102 1103

450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 11104 1115 1116 1117 1118 1119

460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

470 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 \162 1163 1164 1165 1166 1167

490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

4AO 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
480 1200 1201 1202 1203 12004 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

4CO 1216 1217 1218 1219 1220 122\ 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231

4DO 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

4EO 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

4FO 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295

510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

520 1312 1313 1314 1315 1316 1317 1318 1319 1320 132\ 1322 1323 1324 1325 1326 1327

530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

540 1344 1345 1346 lM7 1348 1349 1J50 1351 1352 1353 1354 1355 1356 1357 1358 1359

550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

560 1376 1377 1378 1379 1380 1381 1382 1383 13B4 13a5 13B6 1387 1388 1389 1390 1391

570 1392 1393 1394 1395 1396 1397 1398 1399 1400 140! 1402 1403 1404 1405 1406 1407

580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1416 1419 1420 1421 1422 1423

590 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 \435 1436 1437 1438 1439

SAO 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455

580 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5(0 1472 1473 1414 1475 1476 1477 1478 1479 1480 1481 14112 1483 1484 1485 1486 1487

500 1488 1489 1490 149\ 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

5EO 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519

5FO 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

600 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1546 1549 1550 1551

610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567

620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583

630 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 15'14 1595 1596 1597 1598 1599

640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 16\4 1615

650 1616 1617 16J8 1619 1620 162\ 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631

660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647

670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679

690 1680 1681 168" 1683 1684 1685 1686 1687 1686 1689 1690 1691 1692 1693 1694 1695

6AO 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 \710 1711

680 1712 1713 1714 1115 1716 1717 1118 1719 1720 1721 1722 1723 1724 1725 1726 1727

6(0 1728 1729 17.:10 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743

600 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759

6EO 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775

6FO 1776 1777 1778 1779 1780 1781 1762 1783 1784 1785 1786 1787 1788 1789 1790 1791

E-7



HEXADE:CIMAL-DECIMAL INTLGER CONVE:RSION (Cont i )

0 I 2 3 4 5 6 7 8 9 A 8 C D E F

700 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
710 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 i818 1819 1820 1821 1822 1823
720 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

740 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
750 1872 la73 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
760 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
770 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
790 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7AO 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
780 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

zco 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
700 2000 2001 2002 Z003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
no 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7FO 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

800 2048 2049 2050 205\ 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
810 2064 2065 2066 2067 2068 2069 207.0 2071 2072 2073 2074 2075 2076 2077 2078 2079
820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
850 2128 2129 2130 2131 2132 2133 2\34 2135 2131> 2137 2138 2139 2140 2141 2142 2143
860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
870 2160 2161 2162 2163 2164 2165 2166 2167 2168 .2169 2170 2171 2172 2173 2174 2175

880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2109 2190 2191
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8AO 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
880 2224 2225 2226 2227 2228 2229 2230 223'1 2232 2233 2234 2235 2236 2237 2238 2239

8CO 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
800 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8EO 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8FO 2208 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

900 2304 2305 2306 2307 2308 2109 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
920 2336 2337 2338 2339 2:l40 2341 2342 2343 2344 2345 2.346 2347 2348 2~49 2350 2351
930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 23f30 2381 2382 23!l3
950 2384 2385 2386 2387 2388 2389 2390 23S 1 2392 2393 2394 2395 2396 2397 2398 2399
960 2400 2401 2402 1403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

980 2432 2433 24:l4 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9AO 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
980 2480 2481 2482 2483 2484 2405 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

9<:0 2496 2497 24913 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
900 2512 2513 2514 2515 2516 2517 2518 2S19 2520 2521 2522 2523 2524 2525 2526 2527
9EO 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9FO 2544 2545 2546 2547 2548 2549 2550 255\ 2552 2553 2554 2555 2556 2557 2558 255?

E-8



HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont.)

0 I 2 3 -4 5 6 7 8 9 A 8 C 0 E r

AOO 2560 256, 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
AIO 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A30 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 263-4 2635 2636 2637 2638 2639
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2666 2687

A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAO 2720 272\ 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
A80 2736 2737 2738 2739 2740 2741 2742 2743 274-4 2745 2746 2747 2748 2749 2750 2751

ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 276:
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AfO 2800 2801 2802 2803 2804 2805 2806 2007 2808 2809 2810 2811 2812 2813 2814 28t5

BOO 2816 2817 2818 2819 2820 2821 2822 2B23 2824 2825 2826 2827 2B28 2829 2830 2831
810 2832 2833 2834 2835 2n" 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
820 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2B59 2860 2661 2862 2863
830 2864 2665 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

B40 2880 28BI 2882 21183 2894 2885 2886 2887 2888 2889 2890 2B91 2891 2893 2894 2895
B50 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B60 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
870 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

880 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 29501 2955 2956 2957 2958 2959
890 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
8AO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2'7Ot- 2'187 2988 2989 2990 299\
BBO 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

[lCO 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BOO 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
8ED 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BFO 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

COO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3033 3084 3085 3086 3087
CIO 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3.13;' 3133 3134 3135

C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3140 3149 3150 3151
C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3100 3181 3182 3183
(70 3184 3185 3186 3\87 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C90 3216 3217 32\8 3219 3220 322\ 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CAO 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CBO 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

CCO 3264 3?65 3266 3267 3268 3269 3270 3271 3272 3273 32"-4 3275 3276 3277 3278 3279
CDO 32BO 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 329l 3293 3294 3295
CEO 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CFO 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 33n 3323 332~ 3325 3326 3327

£-9



HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont,)

0 , 2 3 4 5 6 7 B 9 A 8 C 0 E F

000 3328 3J29 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
010 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
020 3360 3361 3362 3363 3364 3365 33M 3367 3368 3369 3370 3371 3372 3373 3374 3375
030 3376 3377 3378 3379 33ao 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

040 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
050 3408 3409 :.\410 3411 3412 3413 J414 3415 3416 3417 3418 J419 3420 3421 3422 3423
060 3424 3425 J426 3427 3428 3429 3430 3UI 3432 J433 3434 3435 3436 3437 3438 3439
070 3440 3441 3442 3443 3444 3445 34.46 3447 J448 3449 3450 345\ 3452 3453 3454 3455

080 3456 J457 3458 3459 3460 3461 3462 3463 J464 J465 3466 3467 3468 3469 3470 3471
090 3472 J473 3474 3475 3476 3477 J478 J479 J480 3481 3482 3483 3484 3485 3486 3487
OAO 3488 3489 J490 3491 3492 3493 J494 J495 J496 3497 3498 J499 3500 3501 3502 3503
OBO 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519

OCO 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
000 3536 3537 3538 3539 3540 354\ 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
OEO 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
OFO 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 358\ 3582 3583

EOO 3584 3585 3586 3587 3588 3589 3590 359\ 3592 3593 3594 3595 3596 3597 3598 3599
E10 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 36'0 361\ 3612 J613 3614 3615
E20 3616 3617 36\8 3619 3620 3621 3622 3623 3624 3625 36;6 3627 3628 3629 3630 3631
E30 3632 3633 36J4 3635 3636 3637 3638 3639 3640 364\ 3642 3643 3644 3645 3646 3647

f40 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 36.60 3661 3662 3663
E50 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E60 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 369\ 3692 3693 3694 3695
E70 3696 3697 3698 3699 37()() 370\ 3702 3703 3704 3705 3706 3707 3708 3709 3710 3111

E80 3712 3713 3714 3715 3116 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E90 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EAD 3744 3745 3746 3747 3748 3749 3750 3751 3757 3753 3754 3755 3756 3757 3758 3759
fBO 3760 3761 3762 3763 3764 3765 3766 3].67 3768 3769 3770 3771 3772 3773 3774 :1775

ECO 3n6 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 ·37e9 3790 3791
EDO 3792 3793 3794 3795 3796 3797 3798 3799 3800 380\ 3802 3803 3e04 3805 3806 3807
EEO 3808 3809 3810 38\1 3812 38\3 3814 3815 3816 3817 38\8 3819 3820 3821 3822 3823
HO 3824 3825 3826 3827 3828 3B29 3830 3831 3832 3833 3834 3835 38:16 3837 3838 3839

FOO 38.-\0 3841 3842 3843 3844 3845 3B46 3847 3848 3049 3850 3851 3852 3853 3854 3855
FlO 3856 3857 3858 3859 3860 3861 3862 3363 3B64 3865 3866 3867 3B68 3869 3870 387\
F20 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903

F40 3901, 3905 3906 3907 3908 3909 3910 391\ 3912 3913 3914 3915 3916 39\7 3918 3919
F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F60 3936 3937 393B 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
f70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

f80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
f90 3984 3985 3986 3987 39Be 3959 3990 399\ 3992 3993 3994 3995 3996 3997 3998 3999
fAD 4000 4001 4002 4003 4004 40\.')5 4006 4007 4008 4009 40\0 4011 4012 4013 4014 4015
f BO 4016 4017 40\8 4019 4020 4021 4022 4023 4024 4025 4026 4021 4028 4029 4030 403\

FCO 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FOO 4048 4049 4050 4051 4052 A053 4054 4055 4056 4057 4058 4059 4060 406\ 4062 4063
FEO 4064 4065 4066 4067 4068 4069 4070 401l 4072 4073 4074 4075 4076 40ll 4078 4079
FFO 4080 4081 4082 4083 408-4 4085 4066 4087 4088 4089 4090 4091 ,IOV" 4093 4094 4095

E-10



APPENDIX II F' II

-- ASCn TABLE--

The B08auses a seven-bit ASCII code, which is the normal 8 bit ASCII code
with the parity (high order) bit always reset.

Graphic or Control

NULL
SaM
EOA
EOM
EaT
WRU
RU
BELL
FE
H.Tab
Line Feed
V. Tab
Form
Return
SO
SI
DCa
X-On
Tape Aux. On
X-Off
Tape Aux. Off
Error
Sync
LEM
SO
SI
82
S3
84
S5
86
S7

1=-1

ASCII (Hexadecimal)

00
01
02
03
04
05
06
07
08
09
OA
OB
OC
OD
OE
OF
10
11
12
13
14
15
16
17
18
19
lA
IB
lC
ID
IE
IF



Graphic or Control ASCII Hexadecimal

ACK 7C
Alt. Mode 7D
Rubout 7F
I 21
II 22

*
23

$ 24
% 25

& 26
27

( 28
) 29
* 2A

+ 2B
2C
2D
2E

•
/ 2F

3A

· 3B,
3C{

= 3D
) 3E

? 3F
'( 58

I 5C

J SD

• SE
~ SF
@ 40

blank 20

0 30
1 31
2 32

3 33

4 34
5 35

6 36

7 37

8 38

9 39



Graphic or Control

A
B
C
D
E
F
G
H
I
J
K
L
M
N
o
P
o
R
S
T
U
V
W
X
Y
Z

ASCII Hexadecimal

41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
SA

t:-3



APPENDIX G
I/O PORT ASSIGNMENT AND SAMPLE DEVICE DRIVERS

The INTELLEC 81 I/O system as signs specific functions to certain of the
I/O ports. Table G-1 gives these assignments. When reading device status
or writing device commands I each bit of the 8 bit byte transmitted may have
a specific meaning or function. These are given in Tables G-2, G-3, and G-4.
For examples of how to use the I/O ports and commands, sample I/O
driver programs which read and punch a character using the Teletype, and
which read a character from the high-speed paper tape reader are given.
However, these functions should normally be performed by ca lUng the
I/O subroutines as described in Section 3.3.2.

PORT USE

INPUT PORT 0 Teletype data in

INPUT PORT 1 Teletype/PTR status in

INPUT PORT 2 PROM data in

INPUT PORT 3 PTR data in

INP UT PORT ,1 CRT data in

INPUT PORT 5 CRT status in

OUTPUT PORT 0 Teletype data out

OUTPUT PORT 1 Teletype/PTo/PROM commands out

OUTPUT PORT 2 PROM address out

OUTPUT PORT 3 PROM data out

OUTPUT PORT 4 CRT data out

Table G-1. I/O Port Assignment

NOTE: Input ports 0 through 3, and output ports 0 through 3 are
located on Ii 0 board 1.
Input ports 4 and 5, and output port 4 are located on I/O
board 2.

G-1



BIT NORMAL
NUMBER VALUE USE

0 1 If = 0, teletype input is ready

1 1 Overrun error

2 0 If = 0, teletype output is ready

3 1 Framing error

4 1 Parity error

5 0 If = I, paper tape reader has a character

6 1 If = I, paper tape punch is ready

7 -- Unassigned

Table G-2. Input Port 1 Bit Assignments
(Bit 0 = least s iqn Ificant bit)

BIT NORMAL
NUMBER VALUE USE

0 0 Teletype reader on/off

1 0 Paper tape punch on/off

2 0 Paper tape reader on/off

3 1 PROM enable/disable (disable = 1)

4 0 Data in is true/complement

5 0 Data out is true/complement

6 0 1702 PROM programmer on/off

7 0 1702a PROM programmer on/off

Table G -3. Output Port 1 Bit As signment s

G-2



BIT NORMAL
NUMBER VALUE USE

0 1 If = 0 I input is ready

1 1 Overrun error

2 0 If = 0 I output is ready

3 1 Framing error

4 1 Parity error

5 -- Unassigned

6 -- Unassigned

7 -- Unassigned

Table G-4. Input Port 5 Bit Assignments

(l) READING TAPES UNDER PROGRAM CONTROL

Bit 0 of output port 1 is used as the ON/OFF control for the teletype reader,
and is normally in the 0 state. To read one character from a paper tape, set
this bit to 1 and immediately set it back to 0, causing too reader to advance
one frame and stop on the next character.

When the character which has been read is ready for use by the program I

bit a of input port 1 will be set to zero by the UART devi ce (for a description
of the UART, see the INTELLEC 8 Reference Manual). The character which
has been read will then be available at input port O.

The following program section will read one character from the TTY tape reader.

NOTE: The character is transmitted in its one's complement form, i , e. I each
bit is inverted.

G-3



LABEL CODE OPERAND COMMENT

PTI
STI
STO

EQU
EQU
EQU

o
1
1

; TTY INPUT DATA PORT
; TTY INPUT STATUS PORT
; TTY OUTPUT COMMAND PORT

Set bit 0 of port 1=0 I pulse reader off.

Set bit 0 of port 1=1, pulse reader on.

OFFHXRI

MVI A,l
OUT STO
MVI A,O
OUT STO

; Character has been read and is being readied by UART
BACK: IN STI ; Read UART status into accumulator

ANI 01 H ; If bit 0=1, loop to BACK
JNZ BACK
IN PTI ; Read character from input port 0

; into accumulator
; Invert each bit of transmitted
; data to produce the character

; The character is now in the accumulator and ready for use
; by the program.

--------------------------,J

(2) PUNCHING TAPES UNDER PROGRAM CONTROL

Tapes may be punched under program control by merely outputting data to the
Teletype when the tape punch ha s been turned on. If, however, printing op­
erations are taking place which are not to be punched, provisions must be made
to enable the operator to start and stop the tape punch.

A gooq procedure to use in this case is to have the program clea rthe accumulator,
then loop until a character is input from the teletype keyboard. This allows
the operator to turn off the tape punch and then cause program execution to
continue by pressing any key on the teletype keyboard.

Example: The following program section will loop until a character is input
from the TTY keyboard, then will punch the character contained in the B
regi ster.

G-4



LABEL CODE OPERAND COMMENT

STI EQU 1 ; TTY input status port
PTO EQU 0 ; TTY output data port
PTI EQU 0 ; TTY input data port
; Loop waiting for a character to be typed by user.
BACK: IN STI ; Is character ready

ANI OIH ; to be input (bit O=O)?
JNZ BACK ; If not I loop to BACK
IN PTI ; Read in character to clear

; the port
Punch the character onto the tape

TO: IN STI ; Check if TTY buffer is
; available

ANI
JNZ
MOV

XRI

OUT

04H
TO
A,B

OFFH

PTI

; Loop until available
; Move character from B
; register to accumulator for punching

Invert each bit of
character
Punch character

(3) Reading Paper Tape using the High-Speed Paper Tape Reader

Bit 2 of Output Port 1 is used as the Step control for the high-speed paper
tape reader. In order to read one character frcm the reader, set this bit
to one and immediately reset it to zero. This produces a pulse on the
reader STEP control line; the reader will advance one frame, read the data
in that frame, and stop.

When the character which has been read is ready for use in the program
(available on Input Port 3), bit 5 of Input Port 1 will be set to zero by the
reader. The character which ha s been read is tra nsrmttcd in its one's
complement form, Le., each bit has been inverted.

The following program section will read and input one character from the
high-speed paper tape reader:

G-S



LABEL CODE OPERAND COMMENT

HSI
SHI
SHO

EQU
EQU
EQU

3
1
1

;HSPTR INPUT DATA PORT
;HSPTR INPUT STATUS PORT
;HSPTR OUTPUT COMMAND PORT

MVI A, 04 H ;BIT 2, PORT 1 = 1, PULSE READER ON
OUT SHO
XRA A ;BIT 2, PORT 1 = 0, PULSE READER OFF
OUT SHO

;CHARACTER HAS BEEN READ AND IS TRANSMITTED TO INPUT PORT 3

; READ HSPTR STATUS INTO ACC •
; IF STATUS BIT = 1, LOOP TO BACK: .

OFFH

SHI
20H
BACK
HSI

IN
ANI
JNZ
IN

XRI

,
BACK:

; READ CHARACTER FROM INPUT PORT 3
;TO ACCUMULATOR

;;INVERT EACH BIT OF TRANSMITTED
;DATA TO PRODUCE THE CHARACTER

;THE CHARACTER IS NOW IN THE ACCUMULATOR AND IS READY FOR USE BY THE
; PROGRAM .

G-6



inter

West 1651 E. 4th si., Suite 228/(714)835·9642, TWX: 910·595·1114/Santll Ana, California 92701
Mid-America: 6350 L.B.J. Freeway, Suite 178/(214)661·8829/Dallas, Texas 75240
Great Lakes: 856 Union Road/(5131836·2808/Englewood, Ohio 45322
Northeast: 2 Militia Drive, Suite 4/(617)861·1136, TELEX: 92·3493/Lexington, Massachusetts 02173
Mid-Atlantic: 30 S. Valley Road., Suite 108/(2151647·2615, TWX: 510·668·7768/Paoli, Pennsylvania 19301
Europe: 216 Avenue Louise, HI050 Brussels, Belgium
Onent: Intel Japan Corp., Kasahara Bldg., 1·6·10, Uchikanda , Chiyoda·ku/03·354·8251, TELEX: 781·28426/Tokyo 101

© Intel 1974/Printl'd in U.S.A

MCS-186-0576/1.5K


