MON960
Debug Monitor
User’s Guide

Order Number: 484290-008

Revision
-001
-002
-003
-004
-005
-006
-007
-008

Revision History

Original Issue.
Updated for V1.1 release.
Revised for MON960 release 2.0.
Revised for MON960 release 2.1.
Revised for MON960 release 3.0.
Revised for MON960 release 3.1.
Revised for MON960 release 3.3
Revised for MON960 release 3.3

Date

01/93
02/93
05/94
11/94
12/95
01/97
08/98
12/98

In the United States, additional copies of this manual or other Intel literature may be obtained by writing:

Intel Corporation
P.O. Box 5937
Denver, CO 80217-9808

Or you can call the following toll-free number:

1-800-548-4725
or visit Intel's website at http://www.intel.com

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local Intel
sales office.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no responsibility for any
errors that may appear in this document. Intel Corporation makes no commitment to update nor to keep current the
information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel
product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or
disclosure is subject to restrictions stated in Intel's Software License Agreement, or in the case of software delivered
to the government, in accordance with the software license agreement as defined in FAR 52.227-7013.

No part of this document may be copied or reproduced in any form or by any means without prior written consent of
Intel Corporation.

Intel Corporation retains the right to make changes to these specifications at any time, without notice.
Contact your local sales office to obtain the latest specifications before placing your order.

* Other brands and names are the property of their respective owners.

Copyright[] 1993-1995, 1997, 1998. Intel Corporation. All rights reserved.

Contents

Preface

PUIPOSE ... Xiii
AUIENCE. ...ttt Xiii
Notational CoONVENLIONS.........uuuuiiiiiiiiiiiiiiieeee e Xiii
CONTENTS ..o eeeees XV
Preface ..o XV
Chapter 1: Getting Startedcoooovvviiiiiiieiiieee e, XV
Chapter 2: OVEIVIEWuuvviiiiieeeeceeeeie e, XV
Chapter 3: Using the Monitorcccceviveeeiiieneeenene, XV
Chapter 4: Monitor Commandsccccceeeeeeiieeeeeeeeeee, XV
Chapter 5: Retargeting the Monitor..............ccccevvvvvnnnnn. XVi
Chapter 6: Theory of Operation............cccceeeeeieeeeiiiiinnnn, XVi
Chapter 7: The MON960 Application Environment........ Xvi
Chapter 8: Host Debugger Interface (HDI) XVi
Appendix A: Target Board NOtes.........ccccceeeeeeiieieeeeennnn. XVi
Appendix B: mondb Execution Utility............c.cccceeeeennnn. Xvi
CUSIOMET SUPPOIT... e e e XVi
Additional Information SOUICESuuvveveieiiiiiiiieeeeeeennenn, XVii
Electronic INformationcccccvvieiiieeei s XViii

Chapter 1 Getting Started

MONOG0 CONLENLS ...veiieieeiieeeei e 1-1
Installation Requirements...........ccccvveeeveiiiiiiiiiiieeeeeeeeen 1-1
Why Install the Source and ROM Hex Files 1-1
Preparing for Installation on UNIX............ccccoiiiiiiiiiiiieeee. 1-2
Installing 0N UNIX HOSESovviiiiiiiiiiiiiiieieeeeeeeeeeeeie 1-3

MON960 Debug Monitor User's Guide

Preparing for Installation in Windows................cccceeevvvivinne. 1-4
Installing on Windows HOSESooooeeeiiiiiiiicie, 1-4
WHAET'S NEXE? ..ottt 1-5
Chapter 2 Overview
Product SUMMAIYccooiiiiiiiiiiiiiiiiiiee e 2-1
MONItOr FEAtUIESeeeiieeeeiiice e 2-2
Components of the MONItOrcooovvieeiiiiiiiiie 2-2
Downloadingccooeeiiieiie e 2-5
Serial DowNIoadccoeiiiiieiiiiiee e 2-6
Parallel Downloadccceeeeiiiiieiiiiiieeee e 2-6
PCIDOWNIOAdcceeiiieeeeiieee e 2-7
Board Configurationsccccoeciiimiiiiiiiiieeeeeeee e 2-7
mondb TCP/IP Communications SUppOrt..........ccceeevveeeeeeen. 2-8
APIINK SUPPOIT ... 2-9
JTAG SUPPOI ...t 2-9
Chapter 3 Using the Monitor
PUIMPOSE e 3-1
Connecting to the User Interfacecccceevvvvvviiieeeneeeeee, 3-1
Setting BreakpointS..........ccoevvviiiiiiiiiiiie e 3-2
Displaying MEeMOIYcovviiiiiiiieiiieece e 3-3
Trace EVENTS.....ccooiiiiiiiie e 3-4
Loading MON960 Into Flashcccccceeiiiiiiiiis 3-5
Building and Loading New MON960 Code 3-6
PCI80960DP and EP80960BB Evaluation Platform
Programming ProCedureccceeevvvvveeeiiiiiiiiiineeeeeeeenn 3-7

IQ80960RP Eval Board Flash Programming Procedure 3-10

IQ80960RPLYV and IQ80960RD Eval Board Flash
Programming Procedurecccceeevviiieeiiiiiiiiiini e, 3-12

IQ80960RM/RN Eval Board Flash Programming........... 3-15

Contents

Chapter 4

Chapter 5

Monitor Commands

Elements of the Command Language..........ccccccceeeeeeennnnn. 4-1
NAMES .. e 4-1
AJArESSES ... 4-1
NUMDETS oo 4-2

Overview of Commands............ooovvviiiiiiiiiieies 4-2

Alphabetical Command Referenceccccceevvvvvviininnns 4-6

Retargetting the Monitor

OULPUL FIlES ... 5-1

Types Of SOUICE FilESooviiiiiiiiiiiiiii 5-2

Code Areas Affected by Retargeting..........cccccvvveveeeinneeeenn. 5-2

Modifying Board-specific Files ... 5-4

Board-specific Files ... 5-5
DOAIAd.N ..o 5-5
DoArd NW.C ..o 5-6
Memory Configurationceeveeeeiiiiieeiieiniiies 5-11

Creating the ROM IMage............uuuviriiiiiimmiiiiiiiiieieeeeeeeeeeeee 5-18
Edit the Makefile.........ccoovi i, 5-19
Copy the Linker-directives File ... 5-19
Configure the Makefileooo oo 5-20
Specifying Makefile Build Optionsccccceeviiiiiiinnns 5-22
Make the Monitor Files Using a Make Utility.................. 5-25
Produce New FLASH ... 5-25
Install the New @ FLASH ... 5-26

Debugging the MONITOT..........uviiiiiiiiiiiiiiiceeeeee e 5-26
Verifying Monitor Operation...........ccceeeeeeiiiieieeeeeciiines 5-27
Troubleshooting Host-target Serial Communication
ProblemS......ooveiiiii 5-28

PCIRetargetinguvvviiiiiieeeeceeein e 5-29

Board INitializationo.oveeee e 5-30

MON960 Debug Monitor User's Guide

Routines in 1eds_SW.Cuuuiiiiiiiie e 5-32
Serial Device Driver ROULINEScooveeviiiiieieeeeeiieeeeeeeiinnn, 5-38
Routines in 82510.c and 16552.C.......ccccoeeevvevviiiieeiiiiieeeenean, 5-39
Routines in flash.C........ccooooiiiiiiiiiiii e, 5-40
Local Routines in flash.C........cccccuvviiiiiiiiiiiiieicic e, 5-44
Routines in paradrvr.C.........cccccceeeeieieeeeeiceeeeeeeee e 5-45
Parallel Download Example Codeccccccceeeeeeieeneennn. 5-46
Retargeting JTAG ..o 5-47
Chapter 6 Theory of Operation
System INtialization ..., 6-1
FAUILS ... 6-5
SHACKS .. 6-6
Program EXecCUution ..o 6-8
System CallS......ooooiiiii 6-9
High Speed Downloading...........cccoooeviiiiiiiiiiniiiieieeeeee 6-13
Parallel Downloadcccooovveeiiiiiiiiieee e 6-13
PCIDOWNIOAdoeevieeieeeeeeeeeeee e 6-14
MONItOr COIE SOUICE ... cevvieiiteeeiee e 6-16
Vaniables ... 6-17
Private Monitor ROULINESccevviiiiiiiieeeeeeee e, 6-18
Public Monitor ROULINES.........ccoovviiiiiieeieeeeeee e 6-20
User Interface SOUICEcooouviiiivieieeeeeie e 6-21
Host Interface SOUICEoovvvviiiiieeeeeee e, 6-21
Serial DeVICE DIVEN.......coiiveieii i 6-23
Communications Packet Structureccccoeevvviieeeennnn, 6-23
COM LAY ...t 6-25
Serial Autobaud............ooooviiiiii 6-25
MON960 Support for PClI Communication 6-25

JTAG DEVICE DIV ... 6-27

Contents

Chapter 7 The MON960 Application Environment

Chapter 8

PUIDOSE ... 7-1
Execution ENVIrONMENT.........cvvviiiiiiiiiiiieeeeeiis 7-1
System Procedure Table...........coeeeviviiiveeiiiciiie e, 7-1
Fault Table ..., 7-5
Interrupt Table.......oooiieiiii e, 7-5
Control Table ... 7-5
MONITOr SEACKSevvvieiiiiiiiiiiiiiieee e 7-6
Changing the Environment.............ccccoceeeeiiiiie e, 7-6
LiDraries. ... 7-11
[T 7-11
[IDMON Lot 7-12
Compiling an Application Program..............cccccoovivvvviiinnnnns 7-15
=T] 0] £ 7-16
Debugging Interrupt ROULINESccooiiiiiiiiiiiici e, 7-18
Faults and Interrupts While Executingoceeevvveennnnns 7-19
1960 Processor Cache Invalidation by MON960O.................. 7-20
System CallS.......uuueiiiiiiiiice e 7-20
Reserved REQISLErScccoiiiiiiiiiie e, 7-21
Linking the Monitor with an Application................ccocoool. 7-25
Host Debugger Interface (HDI)
PUIPOSE ... e 8-1
Types and Variablesccccciiiiii 8-3
IMported ROULINESevviiiiiiiiiiiieieeeeeeeee e 8-10
Host Debugger Interface Library Routines (HDIL).............. 8-12
hdi_aplink_SYNC.........cooii e 8-13
HDIL Support for PCI Communicationc..eeeeveeeeeeee. 8-48

vii

MON960 Debug Monitor User's Guide

Appendix A Target Board Notes

Cyclone Board Configurations.............ccoovvvviviviiiiiiie e, A-1
Cyclone Evaluation Boardsccceeeevvevvviiiiiiiiiiiiieeeeeeee, A-1
EP80960BB and PCI80960DP Evaluation Boards......... A-1
DIP Switches and LEDs on Cyclone Boards A-2
IQ80960RP Evaluation Boards..............ccvvveeieeeeeivinnnnnnn. A-3
IQ80960RPLV and IQ80960RD Evaluation Boards....... A-4
IQ80960RM/RN Evaluation Boards..............ccevveereeeeenn. A-5
Appendix B MONDB Execution Utility
TCP/IP ComMUNICALION.....cceeviiiiiiieeee e B-2
Hardware Requirements............cccoooeeiieiciiniiiiieeeeee B-3
Software ReqUIremMents..........coooevveeeeiiiiiiiiiiice B-3
Server SEMANTICS . ..uuveiieii e B-3
Client SEeMAaNLICS ...vvveeiiieeei e B-4
PCI COMMUNICAtIONccceiieeeiiiiiiee e B-4
Hardware Requirements............cccoooeviiiiiciiiiiiiiieeeee B-4
Software Requirements — PCI Driver Installation B-5
MECRNANICScoeeeiiieicee e B-5
Y= 4= U o= B-6
EXaMPIE ... B-6
Serial CommuNICatioNccovviviiiiiiiiee e B-6
Hardware Requirements............cccooeeeieeiiciiiiiiiiiiieeee B-6
Windows PCI Download..........cccooviieeeeiiieeieiiiiiiei e B-7
Hardware Requirements............cccooeeeiiieiciiiiiiiiieeeeee B-7
MECNhANICSuviiiiii e B-7
Windows Parallel Download............ccccoeevviiiiiiiieeiiiiiiineeeeee, B-8
Hardware Requirements...........ccccuvveriiiiiiiieieeeeeeeeneiis B-8
MECNhANICSuv i B-8
UNIX Parallel Download............ccocoeeeiiiiiiiieeiieiieceeeeenann, B-9
Hardware Requirements............ccoeveviieiiiiiiiiiiiiiieeee B-10

viii

Contents

Index

Figures

MECNANICSeviiiiiiiiiiiiiie B-10
Selecting the Parallel Port On Your UNIX Host............. B-10
Default Serial and Parallel Port DeviCesccccccevviinnne B-12
[a\VZoTor=1 1T0] 4 1] 0] ¢ b QPR B-13
TCP/IP OPLiONScoeiiieeiiiiee e B-13
PClOPLIONS.....ccc e B-14
Parallel Download OptioNScccoovvviiiiiiiiiiiciee e, B-15
Communication Protocol Options..............cceevvvviiieennnnn. B-16
Serial Communication OptionS.............cceevvvevviiiiiieenennn. B-17
MONAD COMMANSuuuiiiiiiiiiiiiiiiiiiiieieiee e B-19
Examples of Using mondbccccceeeiiiiiininen, B-20
Windows PCI Downloadingcccceeeeieeeeeiiiiiiiiiiiiiennn, B-20
UNIX Parallel Downloading (SPARCstation 5) B-21
Communicating from UNIX Hosts at 57600
Or 115200 BaAUd.......ccceeieeeeiiiiiee e B-21
2-1 MONO9BO SIIUCLUIEvvveiiei et 2-3
2-2 TCP/IP Server/Workstation Communication 2-8
5-1 Memory Map for Cyclone i960 Sx/Kx/Cx/Ix/Hx
BOArdS ... 5-14
5-2 Memory Map for IQ80960RP Cyclone Board............ 5-15
5-3 Memory Map for Cyclone i960 IQ80960RPLV and
IQB0960RD B0ards...........ceeeeeeeeiiiiiiiiniiivieeeeeeeeeeeees 5-16
5-4 Memory Map for Cyclone i960 IQ80960RM/RN
BOAIdeeiiiieeeiee e 5-17
6-1 Stack SWILCh ... 6-7
6-2 MON960 System Call Sequence..............cccvvvvvveennen. 6-10

MON960 Debug Monitor User's Guide

Tables

4-1
4-2
4-3
4-4
5-1
5-2
5-3
5-4
55
5-6
5-7
5-8
6-1
6-2
6-3
8-1
A-1

A-7
A-8

Execution and Break Commands.............cceoevvviinnnne 4-4
Memory Access Commandsoeevvevvvvvvinnnnnnn. 4-5
Monitor Environment Commands...............oooeeennnnne 4-6
PCI COMMANAS......cccvviiiiiiiiiiiiiiiii e, 4-6
List of Cyclone Board Names and Abbreviations....... 5-2
Minimum makefile Symbols.........ccccoeeeiiiiiiiiiiiiinnin, 5-21
Optional makefile Symbols............cccccovvvviiiiiiiinnnnnn. 5-22
LED Symbolscoooviiiiiii i 5-24
Define Symbols for LED US€......ccccoevviiiieiiiiieiiiiiiinn, 5-33
Arguments for fatal_error().........ccccvvvveiiiiiiiennineeeenn, 5-35
LED Display for fatal_error()........ccceeeeeeeeeeeeiieiieennnnnnns 5-35
Pause Times for Pause Routine..........cccccvvvveviiinennnnn. 5-37
Monitor Initialization Routinescccccvvvvviveneennen. 6-3
Packet Field Values ..o 6-24
PCIdrvr.C ROULINESvvvvciiiiii e, 6-26
Error COOES....coovviiiiiiiiiiiiiieee e, 8-4
Cyclone Board DIP Switches for EP80960BB

and PCIB0960DPcccccvviiiiiiiiiiiieeeeeeeeee e e A-2
Cyclone Board LEDs for Usage After EP80960BB

and PCIB0960DPccccuuireiiiiiiiiiieiieeeeeeeeeaaaeeaae e A-2
Cyclone Board DIP Switches for PCIB0960RP........... A-3
Cyclone Board LEDs for PCIB0960RP A-3
Cyclone Board DIP Switches for IQ80960RPLYV and
PCIB0960RDceiiiiiiiiiiiiiiieeiieee e A-4
Cyclone Board LEDs for IQ80960RPLYV and
PCIB0960RD.cceiiiiiiiiieiiiieeieeeeeeee e A-4
Cyclone Board DIP Switches for IQ80960RM/RN A-5

Cyclone Board LED Usage During Bootup for
IQ80960RM/RNovviiiiiiiiiiiiiiiiiiee e A-6

Contents

A-9

B-1
B-2

Cyclone Board LED Usage After Bootup for
IQBO960RM/RNouiiiiiiiiiiiiiiiiiiieireeeeeeeeeeeeeeeeeeeeeeeeeas

Default Serial POrt DEVICESvvvveeeeeeeeieeeeeeeeeen
Default Parallel Port DEVICEScoouveeeieiieiiiieeeeann,

Xi

Preface

Purpose
This manual describes the MON960 debug monitor. It is written for
engineers designing systems based onHigB0cessors. Look in your
Getting Started with the i960 Processor Development Toatsual for a
complete list of i960 processor and tool manuals.

Audience

To use this product, you must be familiar with your host operating system,
the architecture of the i960 processor, and i960 processor program
development tools. This manual assumes that you know techniques for
writing and debugging software, though not necessarily using Intel
debugging tools.

Notational Conventions

The following notational and terminology conventions are used throughout

this manual:
1960 Cx/Ix/Hx/Rxprocessor refers generically to the following
i960 processors:
« CACF
« JA D, JF
o JT
e HA,HD, HT
* RP,RD,

* RM,RN

Xii

MON960 Debug Monitor User's Guide

1960 Kx processor refers generically to the 1960 processors
KA, KB, SA, and SB

target processor refers to the 1960 processor on the
target board. This processor can be any
of the following i960 processor

families:
e CACF
« JA,JD, JF
e JT
e HA,HD, HT
e KA KB
e SA SB
« RP,RD
e RM,RN
this type style indicates an element of syntax, a

reserved word, a keyword, a filename,
computer output, or part of a program
example. The text appears in lowercase
unless uppercase is significant.

| is lowercase letter L in examples
1 is the number 1 in examples
Ois the uppercase letter O in examples

0 is the number 0 in examples

This type style indicates the exact characters you type
in examples.
This type style indicates a place holder for an

identifier, an expression, a string, a
symbol, or a value. Substitute one of
these items for the place holder.

1 means the syntactic symbols enclosed
by the braces are optional.

Xiv

Preface

Contents

¢ means you must select one, and only
one, of the syntactic symbols enclosed
in the braces.

means exclusive or. Select only one of
the syntactic items on opposite sides of
the bar.

This guide includes the following chapters:

Preface

This preface describes the contents of this user's guide.

Chapter 1: Getting Started

The Getting Started chapter explains how to install MON960 files. Read
this chapter if you plan to retarget the monitor, update existing monitor
files, or build tools in CTOOLS from source.

Chapter 2: Overview

Chapter 2 describes how the components of the monitor function together
to support software debugging.

Chapter 3: Using the Monitor

Chapter 3 describes the user interface and how to perform simple
debugging tasks.

Chapter 4: Monitor Commands

Chapter 4 details the mon960 commands in alphabetical order.

XV

MON960 Debug Monitor User's Guide

XVi

Chapter 5: Retargeting the Monitor

Chapter 5 explains how to modify the source files and create a monitor
specific to your target board.

Chapter 6: Theory of Operation

Chapter 6 describes the mon960 source code, its structure and uses.
Chapter 5 describes how to modify the source code to run on an i960
processor board. You need the information in this chapter only if you are
using the monitor on an evaluation board other than a Cyclone or Cyclone
PCI.

Chapter 7: The MON960 Application Environment

Chapter 7 explains how to set up your debug environment.

Chapter 8: Host Debugger Interface (HDI)

This chapter describes the Host Debugger Interface (HDI). It is used by

debuggers to control a remote target board based on the i960 processor.
Appendix A: Target Board Notes

This appendix provides information specific to target boards the monitor

supports.

Appendix B: mondb Execution Utility

This appendix describes the mondb utility, which enables a host system to
download and execute an application program on a target board.

Customer Support

If you need service or assistance with the mon960 debug monitor, see
Chapter 3 of th&etting Started with the 1960 Processor Development
Toolsguide.

Preface

Additional Information Sources

Intel documentation is available from your Intel sales representative or
Intel Literature Sales.

Call 1-800-548-4725

Document Title Order

Getting Started With The 1960 Processor Intel Order # 485544
Development Tools

1960 Processor Compiler User’'s Guide Intel Order # 651230
1960 Processor Library Supplement Intel Order # 651231
1960 Processor Assembler User’s Guide Intel Order # 485276
1960 Processor Software Utilities User’s Intel Order # 485277
Guide

gdb960 User’s Manual Intel Order # 485546
1960 Processor Tools License Guide Intel Order # 614851
Professional 1/0 Application Developer’s Kit Intel Order # 273190-001
1960 Cx I/O Microprocessor User’'s Manual Intel Order # 270710-003
1960 Hx I/O Microprocessor User’'s Manual Intel Order # 272484-001
1960 Jx Microprocessor Developer’'s Manual Intel Order # 272483-002
1960 Rx I/O Microprocessor Developer’'s Intel Order # 272736-002
Manual

1960 RM/RN 1/O Microprocessor Developer’s Intel Order # 273158-001
Manual

Using the 28F020 Flash Memory, volume 1 Intel Order # 210830013
IQ80960RXx Evaluation Platform Board Intel Order # 273012-001
Manual

IQ80960RM/RN Evaluation Platform Board Intel Order # 273160-001
Manual

XVii

MON960 Debug Monitor User's Guide

Electronic Information

Intel's World-Wide Web Home Page http://www.intel.com/

Intel's Developers Web Site http://developer.intel.com/
Cyclone Microsystems http://www.cyclone.com
Spectrum Digital, Inc. http://www.spectrumdigital.com/

XViii

Getting Started

The following sections describe installing the MON960 files on UNIX*
and Windows* 95/Windows NT* 4.0 host systems.

MON960 Contents

« mon960 monitor code
e mondb machine level debugger
e source code builds mon960 and mondb

NOTE. MONO960 is the product name. mon960 is the monitor program
name.

Installation Requirements

« eight megabytes hard drive space for mon960 and mondb
« four megabytes hard drive space for source code

Why Install the Source and ROM Hex Files

MONO960 is available as a separate product, and is also included in the
CTOOLS software development toolset. MON960 includes source code
and ROM hex files for the evaluation boards identified in Chapter 2.

Typically, you install MON960 files for one of three reasons:

1. You are already using MON960 with an Intel or Cyclone evaluation
board and want to update your version of MON960.

2. You plan to retarget the MON960 source code for your target
environment.

11

1 MON960 Debug Monitor User's Guide

3. You plan to build the CTOOLS debugger gdb960 or the MON960
debugger mondb. Building the debuggers requires the libraries HDIL
and HDILCOMM which are part of MON960 source.

Preparing for Installation on UNIX

1. Back up any previously installed versions of the MON960 files.

2. Determine the installation directory for the MON960 files. It should
be the same directory in which you installed CTOOLS. Ensure that
you have write permission on this directory.

O If you want to install the new MON960 release files in an existing
intel960 directory, you must first remove MON960 from this
directory.

O If you want to retain the MON960 files in an existing directory,
either move them or choose another location in which to install
the new version.

3. Determine your interrupt key sequence (usually Ctrl-C) by wsging.

4. Determine the name of your system's tape device.

5. Place the installation tape in the tape device.

6. Decide if you need to install source code for MON960, or ROM image
files. The installation script prompts you to enter this information.

O Source code for the MON960 monitor allows you to modify the
monitor for your target environment.

O MON960 ROM image files provides the monitor for use on Intel
evaluation boards.

NOTE. You can repeat the installation program later if you need
components of MON960 that you omit during the initial installation.

1-2

Getting Started

Installing on UNIX Hosts

1.
2.

Change directoryeq) to an empty or temporary directory.

Extract the installation script from the tape device, using the tape
device name you determined in step 4 (above). Enter:

tar xvf tape_device install.mon

To save time during tape scanning, watch for the message:

x install.mon, numbytes, nummedia blocks

After you see this message, you may optionally enter your interrupt
key sequence, using the sequence you determined in step 3 (above)
and continue to the next step.

Execute the installation program. Enter:

./ install.mon

When prompted for the installation directory, specify the directory in
which to install MON960. Entering a Carriage Return specifies the
default/usr/local/intel960 . This manual references the
installation directory using the Windows environment variable
%INTEL960% You can also specify a full path name to install the
MON960 files in a custom location (e.g.,

lusr/projects/pl/ctools).

If the directory you specify has files in it, a warning similar to the
following appears:

WARNING: Directory dirname is not empty.
Attempting to install will corrupt your files.

Do you wish to proceed (y/n)?

Default is [n]

Enteringy may overwrite or remove the old files in the directory and
may cause an installation failure. If you entethe installation script
prompts you for a new location to install the MON960 files.

The installation script continues, prompting you for the following
information:

0 Tape device (default provided)

O Host and operating system (table provided)

MON960 Debug Monitor User's Guide

0 Whether or not to install source code for MON960 (default and
table provided)
O Whether or not to install source code for MON960 ROM images

During installation, the system displays several progress indicator
messages related to the renaming of files. No action is required in
response to these messages. A message notifies you when the installation
is complete.

If you want MON960 to be owned byot with a Group ID obin , have
your system administrator make that change now.

Preparing for Installation in Windows

Determine the installation directory for the MON960 files. In previous
version of MON960 the default installation directeryhteloso . With
version 3.3 and above, the installation directory is consistent installation
directory ofc:\Program Files\[company name]\[product name] .
Therefore, by default, the installation program places the files in
c:\Program Files\inteN\CTOOLS . The installation path is referenced
throughout the manual as environment varighileTEL960% You can also
specify a custom directory when the installation program prompts you. (If
you want to save a previous version of the MON960 files, you must copy it
to a different directory, or specify a different installation directory for the
new version.)

Installing on Windows Hosts

To install the MON960 files on a Windows host, insert CD into your drive.
The CD autorun features will launch the install program. If for any reason
the autorun fails to execute the installation, run setup.exe from the CD.

MONO960 is usually installed in the same directory as CTOOLS.

Getting Started

What's Next?

If your target board is one supported by MON960, go to Chaptdsifg
the Monitor If your target board is not supported, go to Chapter 5,
Retargeting the Monitor

1-5

Overview

Product Summary

This manual describes the MON960 Debug Monitor. This monitor can
help you debug software for embedded systems based on the 1960
processor. The monitor resides on an i960 processor target board and lets
you control the operation of the processor on that board.

With the monitor, you can test your hardware by displaying and changing
memory, displaying and changing registers, and disassembling memory.

You can also test your software by downloading application programs,
then stepping through the program, tracing values, and setting breakpoints.

The monitor offers two command interfaces:

1. The User Interface (Ul) is a simple command line interface. This
interface is supported only through a serial connection to the target and
requires either a terminal, a host computer terminal program, or
mondb. This is a machine interface using hexadecimal references for
address and values. The complete command list is defined in chapter 4.
mondb is included in MON960 and described in Appendix B.

2. The Host Debugger Interface (HI) operates with symbolic debuggers
such as gdb960 and gdb960v which are part of the CTOOLSs software
developers package. This interface supports target communication
choices serial, serial with parallel download, serial with PCI download,
PCl and JTAG.

2-1

MON960 Debug Monitor User's Guide

2-2

Monitor Features

The monitor User Interface supports the following features:

Memory Display. You can display memory in several forms,

including floating-point numbers.

Disassembly. You can display memory as assembler instructions.
Memory modification. You can modify bytes and 32-bit words in
memory.

Register display and modification.

Stepping. You can single-step through program execution or step over
a procedure.

Breakpoints. You can set two instruction breakpoints with most i960
processors. In addition, you can set two data breakpoints for the 1960
Cx, Jx, and Rx series processors. The i960 Hx series processors
supports six instruction and data breakpoints.

Downloading. You can download application programs to RAM,
flash, or EEPROM.

MONO960 is supplied with hardware modules which allow retargeting
support for popular UARTS, timers, and various size flash and
EEPRPOM memory configurations.

The Host Debugger Interface adds:

Serial, PCl and JTAG communication

Parallel Downloading. When using serial or PCI communication, you
can also download application programs over a parallel cable for
greater speed in downloading. Parallel download is described in
Chapter 2.

Components of the Monitor

This section describes each component of the monitor and the host
software that interfaces to the monitor. Figure 2-1 illustrates the monitor
components and their interfaces.

Overview

Figure 2-1

MONO960 Structure

Target System

Monitor

| Core |

Interpreter
Message

User

Interface Layer Host
Communication| | |nterface

Packet
Driver

| Device Driver |

Host System

MONDB

or
Debugger

Interface Library|
Host Debugger

Layer
Communication

Packet
Driver

Device Terminal
Driver Emulator

Terminal

A5315-01

Monitor Core

The monitor core controls the basic operations of the monitor:

 initializing the processor

» determining the active interface
» determining the active communication port
* handling faults and trace events

MON960 Debug Monitor User's Guide

* saving and restoring user registers, setting and clearing hardware
breakpoints

» reading and writing to user memory

» downloading application code

e setting breakpoints

« handling application code runtime requests

» starting the application

When the terminal interface or host interface needs to take steps that affect
the application, it calls the Core to perform the action. This arrangement
enables the monitor to operate consistently, regardless of the interface
used.

The application register values are copied into a global array when the
application stops, and they can be accessed by any part of the monitor.
However, all access to user memory is performed by calls to the Core. In
this way, access operations to user memory are controlled. For example,
each call to write to user memory is checked to see if it affects EEPROM,
and then the appropriate routine is called. For detailed information about
the monitor core, refer to Chapterfheory of Operation

User Interface

The User Interface (UI) is the monitor code that communicates with a
terminal. The User Interface parses ASCIl commands from the user and
calls the monitor core to complete the requested actions. It translates
information or status from the Core into ASCII output.

Host Debugger Interface Library

The Host Debugger Interface Library (HDIL) implements the Host
Debugger Interface (HDI), which is described in Chapter 8. This interface
provides a high-level abstraction of the target. It can be linked into any
80960 debugger that uses the Host Debugger Interface to access its
execution environment.

The library generates messages to the target to perform actions required by
calls. In addition, it:

e maintains a software breakpoint table

e maintains a memory cache

Overview

e maintains a register cache

* handles runtime service requests from the application while it is
running

» provides a mechanism to interrupt the application while it is running

The software breakpoint table is used for the following purposes:

* When the debugger requests user memory, the library replaces any
software breakpoints in the memory with the original code.

» When a software breakpoint is encountered, the library adjusts the IP
back to the address of the breakpoint.

* When execution is resumed after a software breakpoint is encountered,
the library (in cooperation with the target) restores the original
instruction, steps over the instruction, restores the breakpoint, and
continues execution, if appropriate.

Host Interface

The host interface processes messages from HDIL. It interprets the
command code, extracts the arguments from the message, and calls the
monitor core to complete the required actions. It responds to HDIL with a
message containing the status of the command and any results.

Downloading

The monitor and HDIL support downloading programs to a target using
one of three communication media:

1. serial
2. parallel
3. PClbus

Of these three, only serial download is available from the monitor's user
Interface.

MON960 Debug Monitor User's Guide

2-6

Serial Download

All HDI debuggers support serial downloading of ELF/DWARF2, COFF,

and b.out formats. Serial download is also available from the User

Interface with the following restrictions:

* A communications or terminal emulation program that supports
Xmodem transfer protocol must be used to connect to the Ul, and

» The Ul only downloads programs in Common Object File Format
(COFF). (mondb supports ELF and b.out formats.) Furthermore, the
Ul only downloads COFF programs with object records in little-endian
host and target byte order. The debugger HI does not have these OMF
restrictions.

Regardless of whether a debugger or the Ul is used for serial download, the
target must provide a serial port connector and hardware to which the
monitor's serial communication APl has been ported. With regard to
debuggers, HDIL must have been modified for the host's serial I/O API.
Currently supported hosts include:

o« AIX*3.2

 HP-UX*9.X

e Solaris* 2.4

¢ SunOS*4.1.X

* Windows 95 and Windows NT

Parallel Download

Host debuggers may choose to augment serial communication with parallel
download. The target must provide a parallel port connector and hardware
to which the monitor's parallel download API is ported. Additionally,

HDIL must have been modified for the host's parallel I/O API. Currently
supported hosts include:

¢« AIX3.2
¢« HP-UX9.X
e Solaris 2.4

e Sun0S4.1.X
* Windows 95 and Windows NT

Overview

Windows parallel download rates of as much as 40 Kbytes per second are
possible, while some UNIX hosts support more than 200 Kbytes per
second.

PCI Download

The PCI bus typically provides download transfer rates that range from
hundreds of Kbytes per second for small programs to more than one Mbyte
per second for large programs.

PCI download is available to any host debugger that supports PCI
communication. Host debuggers may choose not to support PCI
communication, but rather to augment serial communication with PCI
download.

PCI communications requirements are:

» The target must provide PCI hardware to which the monitor's PCI
communication API is ported.

» The host must provide a PCI bus and PCIl-compliant BIOS.

+ HDIL must have been modified for both the host and target's PCI I/O
API.

Board Configurations
The monitor supports the following target boards:

Processor Board Name Board Abbreviations

+ Cyclone EP80960BB, PCI80960DP CYSX, CYKX, CYCX, CYJX,
(Sx, Kx, Cx, Jx, Hx) CYHX

e Cyclone IQ80960RP (RP 5 volt) CYRP

» Cyclone IQ80960RP (RPLV, RD 3 volt) CYRD

« Cyclone IQ80960RM (RM, RN) CYRN

Note: This guide refers to the Cyclone and Cyclone PCI boards as the Cyclone boards.

To use the monitor on a target board other than those listed, you must first
modify, or retarget, the monitor program for your board. Steps for
completing that task are described in Chapt&ediargeting the Monitor

2-7

MON960 Debug Monitor User's Guide

2-8

mondb TCP/IP Communications Support

With version 3.1 of mondb, a host can share an evaluation board with
another workstation. The host workstation must run the mondb server
software along with the software shown in Figure 2-2. The remote
workstation communicates with the server via TCP/IP to access the
evaluation board. TCP/IP client debuggers include gdb960, gdb960v
(GUI) and mondb. When instructed, the server downloads the remote
workstation’s code to the evaluation board via PCI or serial connection.
For more information on using this feature, see Appendix B.

Figure 2-2 TCP/IP Server/Workstation Communication
Target System Server Client
Monitor
MONDB || MO(')\‘rDB
| Core | Server Debugger
| | Interface Library Interface Library
Interpreter Host Debugger Host Debugger
User Message Layer Layer
Communication Communication
Interface Layer Host
Communication | | Interface Packet Packet
Packet Driver Driver
Driver Device [] TCP/IP
| | Driver Driver
| Device Driver |
A5317-01

Overview 2

Aplink Support

Aplink is no longer supported. Ignore all references and comments to
Aplink in the source code.

JTAG Support

JTAG Emulator support has been added to MON960, mon960 (monitor)
and CTOOLS gdb960/gdb960v. The JTAG connection uses the Spectrum
Digital Incorporated JTAG emulator: SPI610. This emulator connects to
the host system through a serial port and to the target system through a
JTAG connector port as provided on some Cyclone evaluation boards.
The debugger support is provided by CTOOLS gdb960 / gdb960v
versions 6.1 and later. mondb does not currently support the JTAG
connection.

MON960 can be used in either a skeleton form or as a complete feature
build. The skeleton form requires a pointer located at the end of the IBR
which points to a JTAG descripter table, code to support system 10 if
functions such as printf are used, and special JTAG microcode for Jx and
Rx JTAG supported processors. The Hx processors use internal JTAG
microcode. The full build of MON960 includes these elements and allows
support for the other communication connections supported by MON960.

2-9

Using the Monitor

Purpose

This chapter explains how to use the MON960 debug monitor’s user
interface (UIl) to perform simple machine interface debugging tasks. You
can connect the target board to a terminal and use the monitor to set
breakpoints, step through programs, and examine memory and processor
registers. You can also use the monitor with a host system running a
terminal program and download application programs using Xmodem
protocol.

You can also use mondb, supplied with MON960 to download
ELF/DWARF2 or COFF OMF file formats.

If you are using a Cyclone evaluation board as your target, the source and
hexadecimal files that contain MON960 have been built for you and reside
in the directory you specified during installation. You need only produce
new flash from the hexadecimal files and install those flash on your target
board. Thespecifying Makefile Build Optiorsection, in Chapter 5, has
information about producing new flash for your target board.

Connecting to the User Interface

Complete these steps:

1. Connect a serial cable from the host system to the target board. See
your target board documentation for details.

2. Run any standard terminal emulation program such as Windows
Terminal, and connect to the port where the target board cable is
connected.

3-1

MON960 Debug Monitor User's Guide

3-2

3. Set your communications settings to the following:
e 9600 to 115,200 baud
. Data bits = 8
. Stop bits=1
. No parity
. Flow control = XON/XOFF
4. Enter six carriage returnsgpter>).
MON960 responds with an invocation header and a command prompt.

You are now ready to enter any of the commands described in the sections
that follow.

Setting Breakpoints

The monitor enables you to set instruction breakpoints, data breakpoints
and manually inserted software breakpoints. Instruction breakpoints are
set using théreak command with the address of the instruction. For
example, the following command sets an instruction breakpoint at address
80000040H:

=>break 80000040

You can set up to two instruction breakpoints on the 1960 processors Sx,
Kx, Cx, Jx, and Rx and six instruction breakpoints for the Hx.

Enterbreak with no address to display current breakpoints.

Enterdelete [address] to delete a breakpoint.

Thebreak command sets a hardware instruction breakpoint using the
breakpoint register in the processor. This type of breakpoint stops
execution after the instruction is executed. Seétw# command in
Chapter 4 for more information on hardware instruction breakpoints.

Using the Monitor

Hardware breakpoints stop execution when an address you specify with the
bdata command is either read from or written to. Seebttaea command
in Chapter 4 for more information on data breakpoints.

Set data breakpoints using the bdata commandbddie command sets a
data breakpoint at the specified address. The monitor stops execution
when the specified address is either read from or written to. This
command applies only to the i960 Jx/Cx/Rx processors, which have two
hardware data breakpoints. The i960 Hx processor supports six
breakpoints. If you omit an address, the monitor displays the current data
breakpoints. To delete a data breakpoint, usedbh® command.

You can insert software breakpoints manually. The monitor itself does not
include a command to set software breakpoints. Software breakpoints stop
execution before executing the instruction where they are set. To set
software breakpoints manually:
1. Replace the instruction where you want to break witlr& or fmark
instruction.
2. After execution stops at the breakpoint, replacenthg instruction
with the original instruction word and set the instruction pointer back
to that instruction.
3. Single-step over the instruction with thep command. If you want
to retain the breakpoint, replace the instruction withfrifaek
instruction again.

Displaying Memory

The monitor's memory-display commands let you display memory in
several different formats, ranging from single bytes to quad words.

The following command displays four bytes of memory, beginning at
80000004h, and displays printable ASCII characters within those four
bytes.

=>dbyte 80000004#4

08008004 : 63 c
08008005 : 61 a

MON960 Debug Monitor User's Guide

3-4

08008006 : 67 g
08008007 : 68 h

The following command displays four quad words of memory beginning at
80000010h:

=>dquad 80000010#4

08008010 : 0800648 8c603000 00001000 5908408c
08008020 : 5¢601e01 6563028c 5ca81615 8a0a3200
08008030 : 0800648 8c603000 00001000 5908408c
08008040 : 5¢601e01 6563028c 5¢a81312 8c083000

Each memory-display command uses a single memory-access instruction
to access memory. For example, dhead command invokes a four-word
burst fetch on the burst bus of the 1960 processor. The memory display
address must be aligned on a natural boundary.

Thedasm command lets you disassemble i960 instructions stored in
memory. The monitor displays valid instructions in assembly-language
format, and invalid instructions in the assembly formaid with the
invalid instruction following in hexadecimal.

See Chapter 4 for more information on memory display commands.

Trace Events

Thestep command single-steps and breaks after every instruction and the
ps command steps over procedures. The monitor also supports the
following types of instruction traces:

Branch trace breaks every time a branch is taken. A
conditional branch must take the branch
for a branch trace to occur. Branch-and-
link instructions do not cause a branch
trace to occur. Theace branch on
command turns on branch tracing.

Call trace breaks after any type of call or branch-
and-link instruction. The next
instruction to be executed is the first

Using the Monitor

instruction in the routine that was called.
Thetrace call on command turns on
call tracing.

Return trace breaks any time a return instruction is
executed. No return trace is generated
for a return from a branch and link. The
trace return on command turns on
return tracing.

Supervisor call trace breaks on supervisor calls that cause the
processor to change from user mode to
supervisor mode. The monitor, by
default, leaves your program running in
supervisor mode, so there is no mode
change and this trace fault does not
occur. If the program changes to user
mode and then does supervisor calls, this
trace fault occurs if the supervisor call
trace is enabled. A supervisor return to
user mode also triggers a supervisor
trace event. Theace supervisor on
command enables supervisor call
tracing.

After issuing a trace command, use ghecommand to continue executing
the program. When a trace event occurs, program control returns to the
monitor so you can look at memory or registers and determine the state of
the program. See Chapter 4 for more information omrdbe command.

Loading MON960 Into Flash

Some i960 processor-based boards contain at least two flash memory
devices, one of which is used to run MON960. For example, the Cyclone
boards with Cx, Hx and Jx CPU modules have flash memory. These
boards are designed so that the flash memory can appear at memory
locations EOOOO000H and FOOOO000H. You can load the flash memory

3-5

MON960 Debug Monitor User's Guide

3-6

with a PROM programmer just like an EPROM, or you can load it while it
is in the board. To load MON960 into flash memory while it is in the
board, you must have another program or monitor installed that can do
that. For example, if you are using the Cyclone board with a Cx CPU
module, and you have a previous version of MON960 installed in the CPU
module, you can use it to load the current MON960 into the expansion
flash sockets.

A RM/RN Cyclone board contains only one flash device. Reprogramming
MONO960 is not supported because there is only one flash.
Reprogramming MON960 requires the Flash I/O utility which is supplied
with the Pro 1/O kit. If MON960 is programmed into the flash, then the
monitor supports programming the application memory space of the flash.
The monitor attempts to prevent programming over its own space. The
RM/RN monitor occupies the memory space from 0xfefd0000 through
feffff.

Building and Loading New MON960 Code

The sections that follow provide step-by-step instructions for updating the
version of MON960 in the PCI80960DP and IQ80960RP evaluation
platforms assuming a PC host environment.

The RM and RN boards contain only one flash. The flash can be
programmed with the Flash 1/0O Utility which is supplied with the
Professional /0 Application Developer’s Kit. If MON960 is programmed
into the flash, then the flash programming command will allow
programming the application space of the flash. However, it will not allow
reprogramming MON960.

Using the Monitor

i

PCI80960DP and EP80960BB Evaluation Platform
Programming Procedure

NOTE. In order to write to flash on your Cyclone base board, you need a
12 volt power supply. Also, These instructions are used with the
CTOOLS 6.0 and MON960 3.2 toolsets and later.

1. Identify the flash on the Cyclone base board.

A blank flash chip ships on each Cyclone evaluation baseboard in
socket U22. To write MON960 to flash, you must move the blank
flash from socket U22 to socket U27.

2. Select the operational MON960 flash.
Locate the four-position DIP switch labeled S1. Flip S1.3 t@tRE
position. This enables the flash on CPU module daughter board.

3. Set the Cyclone baseboard voltage to 12 volts.

Locate the four-position DIP switch labeled S1. Flip S1.1 t®tke
position. This enables VPP to the Cyclone base board flash.

4. Power up the Cyclone evaluation base board.

Locate the four-pin connector that interfaces to a secondary power
supply labeled J6. Three of the connector pins connect to +5 VDC,
+12 VDC and ground. (On the PCI-SDK Platform, +12 VDC and
+5 VDC power is supplied through the edge connector.)

5. Editversion.c . (Optional only if you rebuild MON960 from
source.)

¢ Change directories to where theesion.c file resides. The
default installation directory for CTOOLS is:

%INTEL960%)\src\mon960\common

3-7

MON960 Debug Monitor User's Guide

3-8

Version.c contains the following information:

const

const

const

char mon_version_byte = nn; /* version n.n = nn */
char base_version[] = "MON960 n.n.n";

char build_date[] = __ DATE__;

« Change the file contents to reflect that this is your version of

MO

N960. For example, change

const char base_version[] = "MON960 n.n.n";

to:

const char base_version[] = "MY MON960";

e SaveVersion.c

6. Build th

e new MON960 from source (optional).

By default the source for MON960 is located at:

c:\intel960\src\mon960\common. You may use the pre-built version of

MON960 there, or build a custom version. To create a custom

version:

¢ Copymakefile. xxx to
%INTEL960%)\src\mon960\common\makefile

wherexxx is one of the following make files

g
g
U
U

makefile.ic (ic960 interface, COFF format)
makefile.ice (ic960 interface, ELF format)
makefile.gnu (gcc960 interface, COFF format)
makefile.gne (gcc960 interface, ELF format)

¢ |ssue the commands:

nmake - f makefile cyhx

This creates a file calleghx.fls

1. Write th

e flash.

To write the flash, use the mondb.exe utility located in the
%INTEL960%\bin\ directory. If you are going to use the pre-built

Using the Monitor

MONBO960 files, they are located in tk@NTEL960%\roms directory.
For example, if you used the default installation directory and are
using the pre-built MON960 files for the 80960HX, enter:

mondb -ser com1 -par Iptl -ef -ne %INTEL960%\roms\cyhx.fls

The options in this command are:

-ser com1 use serial port 1
-par Iptl use parallel port 1
-ne no execute

-ef erase flash

cyhx.fls input flash filename

Note also that if you built a version of MON960 from the source code
as described previously, thghx.fis file will be located in the
%INTEL960%\src\mon960\common\ directory.

2. Set board voltage back to +5 VDC.

Locate the four-position DIP switch labeled S1. Flip S1.1 t®tRE
position. This disables VPP to Cyclone EP base board flash and
protects your flash. Note that the PCI80960DP and i960 Hx processor
evaluation platforms do not boot when VPP is enabled and MON960
is running from the evaluation board flash.

3. Set board to boot from U27 socket.

Locate the four-position DIP switch labeled S1. Set S1.3 ROMSWAP
to theON position. This exchanges the addresses of the CPU Module
ROM and the base board ROMs. When the swit€HE the

processor boots from the CPU Module ROM; when the swit€hNis

the processor boots from the base board ROMs.

4. Reset base board.

Locate the reset button labeled S2. Use this button to manually reset
the Cyclone base board and boot from the base board ROMs.

3-9

MON960 Debug Monitor User's Guide

3-10

IQ80960RP Eval Board Flash Programming
Procedure

1.

Identify the flash on the Cyclone base board.

A blank flash chip ships on each Cyclone evaluation baseboard in
socket U4. To write MON960 to flash, you must add a blank flash in
socket U3.

Select the operational MON960 flash.

Locate the four-position DIP switch labeled S1. Flip S1.3 t®tRE
position. This enables the flash at U4.

Set the Cyclone baseboard voltage to 12 volts.

Locate the four-position DIP switch labeled SW1. Flip SW1.1 to the
ON position. This enables VPP to the Cyclone base board flash.

Power up or reset the host to test the Cyclone base board.

On the IQ80960RP Platform, +12 VDC and +5 VDC power is
supplied through the edge connector.

Editversion.c . (Optional only to rebuild MON960 from source.)

« Change directories to where thasion.c file resides. The
default installation directory for CTOOLS is:

%INTEL960%\src\mon960\common

Version.c contains the following information:
const char mon_version_byte = nn; /* version n.n = nn */
const char base_version[] = "MON960 n.n.n";

const char build_date[] = _ DATE__;

Using the Monitor

Change the file contents to reflect that this is your version of
MON960. For example, change

const char base_version[] = "MON960 n.n.n";
to:
const char base_version[] = "MY MON960";

SaveVversion.c

6. Build the new MON960 from source (optional).

By default the source for MON960 is located at:
c:\intel960\src\mon960\common. You may use the pre-built version of
MON960 there, or build a custom version. To create a custom
version:

Copymakefile. xxx to
%INTEL960%)\src\mon960\common\makefile

wherexxx is one of the following make files

O makefile.ic (ic960 interface, COFF format)

O makefile.ice (ic960 interface, ELF format)

O makefile.gnu (gcc960 interface, COFF format)
O makefile.gne (gcc960 interface, ELF format)

Issue the commands:

nmake -f makefile cyrp

This creates a file callegrp.fis
7. Write the flash.

To write the flash, use the mondb utility supplied with MON960. If you
are going to use the pre-built MON960 files, they are located in the
%INTEL960%\roms directory. For example, if you used the default
installation directory and are using the pre-built MON960 files for the
80960RP, enter:

mondb -ser com1 -ef -ne %INTEL960%\roms\cyrp.fls

3-11

MON960 Debug Monitor User's Guide

3-12

10.

The options in this command are:

-ser com1 use serial port 1
-ne no execute

-ef erase flash

cyrp.fls input flash filename

Note also that if you built a version of MON960 from the source code
as described previously, tbap.fls file will be located in the
%INTEL960%\src\mon960\common\ directory.

Disable the +12V programming voltage.

Locate the four-position DIP switch labeled SW1. Flip S1.1 to the
OFF position. This disables VPP to Cyclone EP base board flash and
protects your flash.

Set board to boot from U3 socket.

Locate the four-position DIP switch labeled SW1. Set SW1.3
ROMSWAP to theON position. This exchanges the addresses of the
U4 and U3 ROMs. When the switchQd$-F the processor boots from
the U4 ROM; when the switch @N the processor boots from the

U3 ROM.

Reset the base board.

Reset the base board by rebooting the host PC. There is no reset
switch on the IQ80960RP/RD evaluation board.

IQ80960RPLYV and IQ80960RD Eval Board Flash
Programming Procedure

1. Only the soldered-in flash located at U9 can be reprogrammed. The

socketed flash at U10 is not supplied with the necessary 12 volt
program voltage, therefore it is not programmable on the board.

2. Select the operational MON960 flash.

Using the Monitor

Locate the four-position DIP switch labeled S1. Flip S1.3 t®tRE
position. This enables the flash at U10.

3. Reset the host system to reset the Cyclone base board.

On the 1Q80960RP Platform, +12 VDC and +3 VDC power is
supplied through the edge connector.

4. Editversion.c . (Optional only to rebuild MON960 from source.)

« Change directories to where thesion.c file resides. The
default installation directory for CTOOLS is:

%INTEL960%\src\mon960\common

Version.c contains the following information:
const char mon_version_byte = nn; /* version n.n = nn */
const char base_version[] = "MON960 n.n.n";

const char build_date[] = __ DATE__;

« Change the file contents to reflect that this is your version of
MON960. For example, change

const char base_version[] = "MON960 n.n.n";
to:
const char base_version[] = "MY MON960";
e Saveversion.c
5. Build the new MON960 from source (optional).

By default the source for MON960 is located at:
c:\intel960\src\mon960\common. You may use the pre-built version of
MONO960 there, or build a custom version. To create a custom
version:

¢ Copymakefile. xxx to
%INTEL960%)\src\mon960\common\makefile

wherexxx is one of the following make files

3-13

MON960 Debug Monitor User's Guide

makefile.ic (ic960 interface, COFF format)
makefile.ice (ic960 interface, ELF format)
makefile.gnu (gcc960 interface, COFF format)
O makefile.gne (gcc960 interface, ELF format)

O oOod

¢ Issue the commands:
nmake -f makefile cyrd
This creates a file callegrd.fls
6. Write the flash.

To write the flash, use the mondb utility supplied with MON960. If you are
going to use the pre-built MON960 files, they are located in the
%INTEL960%\roms directory. For example, if you used the default
installation directory and are using the pre-built MON960 files for the
80960RP, enter:

mondb -ser com1 -ef -ne %INTEL960%\roms\cyrd.fls

The options in this command are:

-ser com1 use serial port 1
-ne no execute

-ef erase flash

cyrp.fls input flash filename

Note also that if you built a version of MON960 from the source code
as described previously, tbad.fls file will be located in the
%INTEL960%\src\mon960\common\ directory.

7. Set board to boot from U10 socket.

Locate the four-position DIP switch labeled SW1. Set SW1.3
ROMSWAP to theON position. This exchanges the addresses of the
U9 and U10 ROMs. When the switchQ&F the processor boots

from the U9 ROM; when the switch @N the processor boots from

the U10 ROM.

3-14

Using the Monitor 3

8. Reset the base board.

Reset the base board by rebooting the host PC. There is no reset switch on
the IQ80960RPLV and RD evaluation board.

IQ80960RM/RN Eval Board Flash Programming

A RM/RN Cyclone board contains only one flash device. Reprogramming
MONO960 is not supported because there is only one flash.
Reprogramming MON960 requires the Flash I/O utility which is supplied
with the Pro 1/O kit. If MON960 is programmed into the flash, then the
monitor supports programming the application memory space of the flash.
The monitor attempts to prevent programming over its own space. The
RM/RN monitor occupies the memory space from 0xfefd0000 through
feffff.

3-15

Monitor Commands

This chapter provides you with detailed information on the MON960
commands, including the elements of the command language, on overview
of the commands, as well as a complete command reference.

Elements of the Command Language

The elements of the command language include names, addresses, and
numbers, as described in the following sections.

Names

Names include command names and options. The monitor parses the
command line using only the first two characters of names. Therefore, you
can enter just the first two letters of each command or option. For
example, the syntax in the following commands is equivalent:

=>trace branch on
=>tr br on

Register names cannot be abbreviated.

Addresses

Addresses used in commands are hexadecimal and are accepted either with
or without a leading zero.

MON960 Debug Monitor User's Guide

4-2

Numbers

Numbers used in display commands are decimal when preceded by #. Note
that addresses are always in hex aadescan be entered as decimal or

hex. The default number of items displayed (for example, bytes or words)
is one, unless you specify a number.

Overview of Commands

Below is a listing of all MON960 commands, in their abbreviated forms:

Command Name

bd[ata] [address]
br[eak] [address]
cs

cf[lash]

da[sm] [address]
#instructions

db[yte] address [#bytes]

dc[char] address
[#characters]
dd[ouble] address
[#doublewords]

de[lete] address

di[splay] address [#words]

di[splay] register
do[wnload] [offset]
dg[uad] address [#quadwords]

dp

Description

Repeats last entered command.

Sets a data breakpoint at the specified address.
Sets an instruction breakpoint.

Configures the secondary PCI bus.

Checks to see if the flash memory is blank.

Disassembles instructions beginning at the
specified address.

Displays memory in bytes beginning at the
specified address.

Displays memory as ASCII characters.

Displays memory in double words at the specified
address.

Deletes an instruction breakpoint at the specified
address.

Displays memory in words beginning at the
specified address.

Displays the contents of the specified register.

Displays memory in quad words beginning at the
specified address.

Displays the current PRCB address.

Monitor Commands

ds[hort] address
[#shortwords]

dt[riple] address

efflash]

fi[ll] address1 address2
worddata

fllong] address [#longreals]

frleal] address [#reals]

fx[real] address
[#extendedreals]

go [address]

he[lp] [command]
? [command]
la register value

Im register value

mb[yte] address
mc[on] region value

md address hex-value
md register hex-value
mo[dify] address [#words]
moldify] register

pm [address] [hex value]

po
pp bus# device# [function#]

Displays memory in short words beginning at the
specified address.

Displays memory in triple words beginning at the
specified address.

Erases flash memory.

Fills memory from address1 to address2 with the
word value of worddata .

Displays long real (64-bit) floating-point numbers
beginning at the specified address.

Displays real (32-bit) floating-point numbers
beginning at the specified address.

Displays extended real (80-hit) floating-point
numbers beginning at the specified address.

Begins execution at the specified address.
Displays help for a specified command.

Sets the contents of the specified logical memory
address register to the designated value.

Sets the contents of the specified logical memory
mask register to the designated value.

Modifies one byte of memory.

Sets the memory configuration register for the
specified region to the specified value.

Modifies one word in memory.
Modifies the specified register.
Modifies one or more words in memory.
Modifies the specified register.

Displays/modify the PC PCI shared memory space
at address .

Runs the target’'s power-on self test.

Displays the PCI config space for the PCI device
specified by the bus, device, and function
members.

4-3

MON960 Debug Monitor User's Guide

ps[tep] [address] Steps over a procedure.

pt [address] [hex value] Displays the PCI register space at offset address
or writes a word to the register at offset address .

qu Resets the target board and leaves it waiting for
autobaud from a host or terminal.

rb Resets the target board and leaves it waiting for
autobaud from a host or terminal.

re[gisters] Displays the contents of all registers.

rs Resets the target board.

st[ep] [address] Single-steps one instruction starting at the current
IP or specified address.

trface] [option [on]|off]] Turns a trace option on or off.

ve[rsion] Displays the MON960 version number.

Tables 4-1 through 4-4 group the MON960 commands according to
function and give a brief description of each command.

Table 4-1 Execution and Break Commands
Entry Description
bdata Sets a data breakpoint.
break Sets an instruction breakpoint.
delete Deletes a breakpoint.
go Starts program execution.
pstep Single steps one instruction or procedure.
step Single steps one instruction.

trace Sets trace options.

Monitor Commands

Table 4-2

Memory Access Commands

Entry
cflash
dasm
dbyte
dchar
ddouble
display
download
dquad
dshort
dtriple
eflash
fill

flong
freal

fxreal

md
modify
posttest

registers

Description

Checks flash memory.

Displays memory as assembler instructions.
Displays memory in bytes.

Displays memory as ASCII characters.
Displays memory in double words.
Displays memory or registers.
Downloads a program.

Displays memory in quad words.
Displays memory in short words.
Displays memory in triple words.

Erases flash memory.

Fills memory.

Displays long real floating point numbers.
Displays real floating point numbers.
Displays extended real floating point numbers.
Sets a logical memory address register.
Sets a logical memory mask register.
Modifies one byte of memory.

Sets a memory configuration register.
Modify register or one word of memory.
Modifies memory or registers.

Runs the target post test.

Displays registers.

4-5

MON960 Debug Monitor User's Guide

4-6

Table 4-3 Monitor Environment Commands
Entry Description
help or ? Displays help on monitor commands.
rb Reboots the target board and communications link.
rs Resets the target board.
version Displays the monitor version.
Repeats the previous command.
Table 4-4 PCI Commands

Entry
cs

pm

pp

pt

Description
Configures the secondary PCI bus.

Displays the PCI shared memory space at offset address
or writes a word at offset address .

Displays the PCI config space for the PCI device specified
by the bus, device, and function members.

Displays the PCI register space at offset address or writes
a word to the register at offset address .

Alphabetical Command Reference

The MON960 commands are listed in alphabetical order. The entries
include the command syntax and examples of using the commands. The
examples include output from the monitor.

Monitor Commands I

The. period command repeats the last entered command.

Example
=>hd 801c000

=>,

bdata

bdlata] [address]

Thebd command sets a data breakpoint at the specified address. The
monitor stops execution when the specified address is either read from or
written to. This command applies only to the i960 Jx/Cx/Rx processors,
which have two hardware data breakpoints. The i960 Hx processor
supports six breakpoints. If you omit an address, the monitor displays the
current data breakpoints. To delete a data breakpoint, usediae
command.

Example
=>hd 801c000

4-7

MON960 Debug Monitor User's Guide

break
brfeak] [address]
Thebr command sets an instruction breakpoint. ddwess must be on
an instruction boundary. You can set up to two instruction breakpoints on
the 1960 Kx, Sx, Cx, Hx, and Jx processors. Emtewith noaddress to
display all current breakpoints. To delete a breakpoint, usiethe
command.
Example
=>br 8008000

cflash
cf[lash]
Thecf command checks to see if the flash memory is blank. When it is
not blank, the monitor displays the first and last addresses of programmed
memory and the total size of the flash memory.
Example
=>cf
Flash is programmed between 0x10000000 and 0x10005820
EEPROM size is 0x20000

CS

CS

Thecs command configures the secondary PCI bus. This must done prior
to testing private PCI devices on the Rx secondary bus.

Monitor Commands

dasm

da[sm][address | #instructions

Thedasm command disassembles instructions beginning at the specified
address. The default address is the current instruction pointer. The
address must be on a word boundary.

Example

=>da 8008000 2
08008000 : 5c601e01 mov 1, r12
08008004 : 6563028¢c modpc rl12, r12, r12

dbyte

db[yte] address [#bytes |

Thedb command displays memory in bytes beginning at the specified
address. The display includes ASCII characters, if printable.

Example

=>db 8008006 2
08008006 : 63 c
08008007 : 65 e

4-9

MON960 Debug Monitor User's Guide

dchar
dc[har] address [#characters |
Thedc command displays memory as ASCII characters.
Example
=>dc A0O0O0C000 10
A000C000 : ..FC..-X..
ddouble

dd[ouble] address [#doublewords |

Thedd command displays memory in double words at the specified
address. Theddress must be aligned on a two-word boundary.

Example

=>dd 8008000 2
08008000 : 5c601e01 6563028¢
08008008 : 5ca81615 8c083000

4-10

Monitor Commands

delete
de[lete] address
Thede command deletes an instruction breakpoint (for the Jx/Cx/Hx
processor, a data breakpoint) at the specified address.
Example
=>de 8008000
display

di[splay] address [#words |
di[splay] register

Thedi command displays memory in words beginning at the specified
address or displays the content of the specified register. When displaying
addresses thaidress must be aligned on a word boundary.

Example

=>di 8008000 2
08008000 : 5c601e01
08008004 : 6563028¢c

Thedi command displays the contents of the specified register. The
registers command displays the valid register names.

Example

=>di pfp
pfp : 0801c500

4-11

MON960 Debug Monitor User's Guide

4-12

download

do[wnload] [offset]

When using the Ul interface with a terminal teecommand downloads
only COFF OMF files using the Xmodem protocol.

When using mondb thée command can download ELF/DWARF2,
COFF, and b.out OMF file formats.

Theoffset is added to each word in the file to form the actual load
address. This feature enables you to download position-independent code,
or download code to flash that can be jumpered for different addresses.
When the monitor downloads a file, it automatically sets the IP to the start
address given in the file.

Example

=>do

Downloading
(Invoke local download here. Bring
the host side into the foreground
running Xmodem and download the
file.)

-- Download complete --

Start address is : 8008000

Downloading Flash Memory

The monitor supports programming flash memory when it is available on
the target board. Any memory-write command or download command
programs the flash memory when the address falls within the memory
space of the flash. The monitor checks to see that the flash memory is
erased before attempting to program it. If the flash is not erased, the write
fails.

Monitor Commands

dp
Displays the current PRCB address.
dquad
dg[uad] address [#quadwords |
Thedq command displays memory in quad words beginning at the
specified address. Theldress must be aligned on a four-word boundary.
Example
=>dq 80008000
08008000 : 5¢601e01 6563028c 5¢ca81615 8c083000
08008010 : 080064e8 8c603000 00001000 5908408¢
dshort

ds[hort] address [#shortwords |

Theds command displays memory in short words beginning at the
specified address. Theldress must be aligned on a two-byte boundary.

Example

=>ds 8008000 2
08008000 : 1e01
08008002 : 5¢c60

4-13

MON960 Debug Monitor User's Guide

dtriple

dt[riple] address

Thedt command displays memory in triple words beginning at the
specified address. Theldress must be aligned on a four-word boundary.
This alignment indicates that you can display only one triple word at a
time.

Example

=>dt 8008000
08008000 : 5¢601e01 6563028¢ 5¢a81615

eflash

efflash]

Theef command erases flash memory. The monitor prints an error
message if the board does not support flash memory or the flash memory
cannot be erased.

4-14

Monitor Commands

fill
fi[ll] address1 address2 worddata
Thefi command fills memory fromddress1 to address2 with the word
value ofworddata . If address1 = address2 then the monitor fills one
word ataddress1 . Theaddress1 must be aligned on a word boundary.
Example
=>fi 8008000 800800c a5a5a5a5

flong

fllong] address [#longreals |

Thefl command displays long real (64-bit) floating-point numbers
beginning at the specified address. &hgress must be aligned on a
two-word boundary.

Example

=>f| 8008000 2
08008000 : 2.46506565e180
08008008 : -0.10557101e-249

4-15

MON960 Debug Monitor User's Guide

4-16

freal
frleal] address [#reals |
Thefr command displays real (32-bit) floating-point numbers beginning
at the specified address. Tiéress must be aligned on a word
boundary.
Example
=>fr 8008000
08008000 : 6.02300001e23
fxreal

fx[real] address | #extendedreals |

Thefx command displays extended real (80-bit) floating-point numbers
beginning at the specified address. Although extended real numbers are
10 bytes, they must be aligned on quad word boundaries.

Example

=>fx 8008000 2
08008000 : 5.03696464¢e 19
08008010 : 6.40306565€e 84

Monitor Commands

go
go[address]
Thego command begins execution at the specified address. dontéth
no address to begin execution at the current IP. When the monitor
downloads a COFF file, it automatically sets the IP to the start address
given in the file. See Chapter 7 for more information on program
execution.
Example
=>go 10008000

help or ?

he[lp] [command

Thehe command displays help for a specified command. If you omit a
command, the monitor displays a summary of all commands.

Example

=>hers
rs
Resets the board.

4-17

MON960 Debug Monitor User's Guide

la
la regno value
Thela command sets the contents of the specified logical memory address
register to the designated value. The valid rangegab is0-1. This
command is valid for Jx/Hx processors only. Both command arguments
are assumed to be hex constants.
NOTE. Itis important for consistent monitor operation that you use this
command correctly.
Example
=>la 0 a0000002

Im
Im regno value
Thelm command sets the contents of the specified logical memory mask
register to the designated value. The valid rangegab is0-1. This
command is valid for Jx/Hx processors only. Both command arguments
are assumed to be hex constants.
NOTE. Itis important for consistent monitor operation that you use this
command correctly.

Example
=>|m 0 f0O000001

4-18

Monitor Commands

mbyte

mb[yte] address

Thembcommand modifies one byte of memory. The mema@tyess is
designated in hexadecimal. When the monitor displays the specified
address, you can enter a value in hexadecimal (34 in the example).

Example

=>mb 2800800c
2800800c : 34

mcon

mc[on] region value

Themccommand sets the memory configuration register for the specified
region to the specified value. The valid rangeeglon is0 tooxf . This
command is valid for the Cx/Hx/Jx processors only. When used for the Jx
processor, theegion is automatically divided by two to map to the

supported range of that processor. Both command arguments are assumed
to be hex constants.

NOTE. Itis important for consistent monitor operation that you use this
command correctly.

Example
=>mc a 800000

4-19

MON960 Debug Monitor User's Guide

modify data

md[dify] address [register hex-value

Themdcommand modifies one word in memory. When the monitor
displays the current value of the specified address, you can enter a new
value. Press Enter to leave the location unchanged.

Example

=>md 801c000 15
0801c000 : 00000002 : 5
0801c004 : 00000100 :

This example changes the contents of 0801¢000 to 5 and leaves the
contents of 0801c004 unchanged.

Programming Flash Memory. The monitor supports programming
flash memory if it is available on the target board. Any memory-write
command or download command programs the flash memory when the
address falls within the memory space of the flash and not part of
MON960. The monitor checks to see that the flash memory is erased
before attempting to program it. If the flash is not erased, the write fails.

md register hex-value

Modifies the specified register. When the monitor displays the current
value of the register, you can enter a new value. Press Enter to leave the
register unchanged. The monitor cannot modify floating-point registers
from the user interface.

Theregisters command displays the valid register names.

The register value is not changed until the application program resumes
execution.

4-20

Monitor Commands

NOTE. Thembandmocommands are not allowed iitbndb using thed
option. Use thendcommand instead.

Example
=>md g0 12ffff78

modify

mo|[dify] address [#words]
mol[dify] register

Themocommand modifies one or more words in memory. When the
monitor displays the current value of the specified address, you can enter a
new value. Press Enter to leave the location unchanged.

Example

=>mo 801c000 2
0801c000 : 00000002 : 5
0801c004 : 00000100 :

This example changes the contents of 0801c000 to 5 and leaves the
contents of 0801c004 unchanged.

Programming Flash Memory. The monitor supports programming

flash memory if it is available on the target board. Any memory-write
command or download command programs the flash memory when the
address falls within the memory space of the flash. The monitor checks to
see that the flash memory is erased before attempting to program it. If the
flash is not erased, the write fails.

mo register

4-21

MON960 Debug Monitor User's Guide

4-22

Modifies the specified register. When the monitor displays the current
value of the register, you can enter a new value. Press Enter to leave the
register unchanged. The monitor cannot modify floating-point registers
from the user interface.

Theregisters command displays the valid register names.

The register value is not changed until the application program resumes
execution.

Example

=>mo r10
r10 : 00008000 : 1

po

po
[follow menu steps if applicable]

Thepo command runs the target’s power-on self test. The menus step you
through tests for each hardware component of the board. For a better
understanding of the monitor operation, see Chapter 5.

The test menu is processor dependent. Below is a representation of support
test menus for different processors. To select a test, enter the test number,
for example, for Memory Tests, enter

For 80960RP/RD Processors
Memory Tests

Repeating Memory Test
16C550 UART Serial Port Tests
Internal Processor Timer Tests
LED Tests

Flash Tests

Continuous Write

Continuous Fill

©ONo s LWDNE

Monitor Commands

9.

10.
11.
12.
13.

For

OOoO~NOOUL, WNPRE

10
11
12
13
14

For
1.

2
3
4
5.
6
7
8
9

10

Continuous Read
System Call Tests
IQ70/73 82557 PCI Ethernet Tests
IQ70/73 53C875 PCI SCSI Tests
Exit the Test

IQ80960RM/RN Processors

. Memory Tests

. Repeating Memory Test

. 16C550 UART Serial Port Tests
. Internal Processor Timer Tests
. LED Tests

. Flash Tests

. Continuous Write

. Continuous Fill

. Continuous Read

. System Call Tests

. 82557 PCI Ethernet Tests
. Secondary PCI Bus Test

. 53C875 PCI SCSI Tests
. Exit the Test

Non 80960Rx Processors
Memory Tests

. Repeating Memory Test
. 16C550 UART Serial Port Tests
. 85C36 CIO Timer Chip Tests

On-board EEPROM Tests

. Squall EEPROM Tests
. Squall Ethernet Tests
. PLX-9060/PLX-9080 PCI Chip Tests

LED Tests
. Exit the Test

4-23

MON960 Debug Monitor User's Guide

4-24

pstep

ps[tep] [address]

Theps command steps over a procedure. If the instructioallis, callx

calls ,bal , orbalx , the entire called procedure is executed and execution
stops before the next instruction after the procedure. Otherwise, one
instruction is executed. When execution stops, the monitor displays the
next instruction to be executed.

Since this command uses a software breakpoint, which requires updating
the instructions, do not use it if the code is in ROM. If you do try to use it
in ROM code, the monitor reports a write verification error and does not
start execution.

Ref: step

pm

pm [address][hexvalue]

Displays the PC PCI shared memory space at offset address or writes a
word at offsetaddress .

Example
=>pm 0:1234

Monitor Commands I

PP

pp bus# device# [function#]

Displays the PCI config space for the PCI device specified by the bus,
device, and function numbers. This option is for use with an i960 RP
processor only.

Example
=>ppO0EO

Ref: cs, pm, pt

pt

pt[address][hexvalue]

Displays the PCI register space at offset address or writes a word to the
register at offsetddress .

Example
=>pt 0:1234

4-25

MON960 Debug Monitor User's Guide

4-26

qu and rb

qu/rb

Thequ orrb command resets the target board and leaves it waiting for
autobaud from a host or terminal. If you want to continue using a terminal,
press Enter two or three times to initiate the monitor signdmris

retained for compatibility. See also tkeandrb commands.

registers

re[gisters]

There command displays the contents of all registers.

Example
=>re

g0 : 00000000 g1 : 00000000 g2 : 00000000 g3 : 00000000
g4 : 00000000 g5 : 00000000 g6 : 00000000 g7 : 00000000
g8 : 00000000 g9 : 00000000 g10: 00000000 g11: 00000000
g12: 00000000 g13: 00000000 g14: 00000000 fp : 0801c540

pfp: 0801c500 sp : 0801¢c580 rip: 08000004 r3 : 00000000
r4 : 00000000 r5 : 00000000 r6 : 00000000 r7 : 00000000
r8 : 00000000 r9 : 00000000 r10: 00000000 r11: 00000000
r12: 00000000 r13: 00000000 r14: 00000000 r15: 00000000
pc : 001f0003 ac : 3b001001 tc : 00000000

fp0: 0.000000e O
fpl: 0.000000e O
fp2: 0.000000e O
fp3: 0.000000e O

Monitor Commands

I's
rs
Thers command resets the target board. This command retains the
current baud rate and prints the monitor sign-on. It does not leave the
target waiting for autobaud. See alsothe&ommand.

Step

stlep] [address |

Thest command single-steps one instruction starting at the current IP or
specified address. When execution stops, the monitor displays the next
instruction to be executed.

Example

=>st 8000000
08000004 : 6563028¢c modpc r12, r12, r12

Ref: ps

4-27

MON960 Debug Monitor User's Guide

4-28

trace

trface] [option [on|off]]

Thetr command turns a traegtion on or off as follows:

branch breaks every time a branch is taken.

call breaks after any type of call or branch-and-link
instruction.

return breaks any time a return instruction is executed.

supervisor breaks on supervisor calls from user mode.

To display the current value of all trace options, eméee . Enterirace
option withouton oroff to display the status of the specified option.

To start execution with the specified trace options, usgdtt®mmmand.

Example

=>tr br on

branch trace on
call trace off

return trace off
supervisor trace off

Monitor Commands I

version

ve

Theve command displays the MON960 version number.

4-29

Retargeting the Monitor

This chapter explains how to retarget the MON960 debug monitor to run
on a non-Intel board and how to rebuild and program MON960 onto Intel
evaluation boards. Intel supported are listed in Table 5-1.

Retargeting the monitor involves the following steps:

1. selecting appreciate low level device files

2. copying the board-specific source files and modifying them to match
targets memory configuration

3. editing the makefile to include selected components and build switches

4. maodifying the linker-directives file to match targets memory
configuration

5. configuring the makefile

6. making the monitor files

7. programming and installing new flash devices containing the monitor
program

8. verifying monitor operation

Output Files

The build process produces two types of output files, a .fls file and a. hex
file. For example, in support of the 80960CY processor on a Cyclone
EP80860BB board, the files cycx.fls and cycx.hex will be generated. The
fls file is used by mondb to reprogram MON960 on evaluations boards
which contain two flash devices such as EP80960BB and the PCI80960DP
but will not work on single IQ80960RM/RN boards. The .hex file is an
Intel® hex file which is supported by most third party PROM / FLASH
programmers. Int@lcompiled files are found in the MON960 installation
subdirector ROMS.

5-1

MON960 Debug Monitor User's Guide

Table 5-1 List of Cyclone Board Names and Abbreviations
Processor Board Name Board Abbreviations
« EP80960BB, PCI80960DP CYSX, CYKX, CYCX, CYJX,
(Sx, Kx, Cx, Jx, Hx) CYJT, CYHX

. IQ80960RP (RP) CYRP

. IQ80960RPLV CYRD

. IQ80960RD CYRD

. IQ80960RM CYRN

. IQ80960RN CYRN

Note: This guide refers to the Cyclone and Cyclone PCI boards as the Cyclone boards.

Types of Source Files

The source code for the monitor is in then960/common directory. The
monitor contains three classifications of files as follows.

» files pertaining to all i960 processor targets (board-independent)

« files that depend on the target type (board-specific)

* hardware-specific files, such as the 82c54 and 85c36 timers
Retargeting involves changing the board-specific files, and selecting
appropriate hardware-specific files. In this manved;d is a place holder
for the name of your board. The above table lists the supported board
names with the abbreviations that can substitutedam .

Carefully reading MON960’s makefile can determine exactly which files
are used for a specific evaluation board.

Code Areas Affected by Retargeting

When you retarget the monitor, the following areas of code may require
modification:
* memory configuration, which includes the following:

0 memory configuration imonboard .Id

0 bus configuration imoard .h (except for the Sx/Kx processors)

O hardware-dependent addresses and constamtarin.h

Retargeting the Monitor

For more information, refer to thdemory Configuratiorsection later
in this chapter.
» board-specific data ihoard _hw.c , which includes the following,
described in th8oard-specific Dataection:
O processor architecture, variallen
O architecture name, variabdear arch_name []
0 board name, variablhar board name []
« hardware-dependent routines, including, but not limited to:
O the device-driver routines #2510.c 0r16552.c , described in
the Serial Device Driver Routinesection
0 the LED routines imeds_sw.c , described in thRoutines in
leds_sw.csection
O the routines for using flash memory, described inRbatines in
flash.csection
O the parallel and PCI download routines. The parallel download
routines are described the Routines in paradrvr gection. For
information on the PCI download routines, see the section titled
MON960 Support for PCI CommunicationChapter 6.

The following sections discuss the portions of the monitor code that require
modification, and suggest modifications to that code.

MON960 Debug Monitor User's Guide

Modifying Board-specific Files

To retarget the monitor for

your board:

1. Duplicate the board-specific files that best match your hardware,
renaming these files to identify your target board. For use in these
examples, let's say your target iBrad board containing an i960

Cx microprocessor.

Contents and Example

hardware addresses and values

Example: copy cycx.h and rename it fred.h
board name, architecture name, initialization,
reset, and hardware interface routines

Example: copy cycx_hw.c and rename it

monitor linker-directives file for the board
Example: copy moncycx.ld and change it to

Modify the new board-specific files to support your target.

Select or add the hardware-specific files that support your target

board's features. Hardware-specific files are in the board-

Change the makefile to reflect your new board name and the files

you selected to support it. Refer to the section later in this chapter

File Name
board .h
board _hw.c
fred_hw.c
monboard .ld
monfred.ld
2.
3.
independent MON960 source code.
4.
titled Creating the ROM Image
5.

Use thenake command to build your retargeted MON960 files.

Refer to the section title@reating the ROM Imagiater in this

chapter.

5-4

Retargeting the Monitor

Board-specific Files

board .h

board .h , the board-specific include file, contains the following
information:

constants that specify information about your board's hardware
addresses. You must change these constants to describe the target
board.

constants you must define in order to use the monitor's flash memory
routines. Refer to the section later in this chapter tRledtines in
flash.c

constants that specify some of the fields of the boot control table
(except for the Sx/Kx processors.). The boot control table fields
specified inboard .h determine the board's bus configuration. Refer
to the next sectiorhoard_hw.¢for more information on those
constants.

if your board uses the 82510 UART, definitions of constants that
support its use. Refer to tBerial Device Driver Routinesection for
more information.

Note: If your board uses another serial device, you must provide the
driver to support it.

if your board uses the 16552 DUART, definitions of constants that
support its use. Refer to tBerial Device Driver Routinesection for
more information.

#define values used by the routinesiéds_sw.c . Those routines

are used to access and manipulate the LEDs on the board. Refer to the
sectionRoutines in leds_swfor more information.

if your board supports parallel download, definitions of constants that
support its use. Refer to the section in this chapter fmdines in
paradrvr.cfor more information.

MON960 Debug Monitor User's Guide

5-6

» if you use the timer driver 82c54.c (EPCX) or 85c36.c (CYCX),
definitions of the following values that support its use:

Value
TIMER_BASE
CRYSTAL_TIME
TIMER_O_VECTOR

TIMER_1_VECTOR
TIMER_0_IRQ
TIMER_1_IRQ

TIMER_O_OFFSET
TIMER_1_OFFSET

board hw.c

Variables

Setting

base address for timer chip

timer clock input frequency in MHz
interrupt vector set by MON960, e.g.
0XD2

interrupt vector set by MON960, e.g.
0XcC2

interrupt pin used by this timer
interrupt pin used by this timer
register address offset for each timer
register address offset for each timer

Theboard _hw.c file contains variables that specify information about
your board. You must change the contents of these variables to describe

the target board.

Variable

int arch

Description

arch specifies the processor architecture.

Supported arch values are defined in
src/hdil/common/hdi_arch.h

Examples oftirch are:

e ARCH_CA
e ARCH_HX
e ARCH_JX
e ARCH_RP

Retargeting the Monitor

The value ofarch is used by the monitor
and host to determine what registers and
other capabilities your board has.

If your target has a CA or CF processor,
USeARCH_CAThese values are defined
in hdi_arch.h in hdillcommon . Do

not add an architecture type since the
host-side debuggers depend on these
values.

char arch_name[] arch_name contains the name of the
processor architecture (Cx, Jx, Hx, or
Rx). The name is printed in a banner
across the screen when the monitor starts
up.

char board_name[] board_name contains the name you
specified for your board. The name
prints in a banner across the screen when
the monitor starts up.

char target_common_name[] target_common_name is a shortened
version ofboard_name[]
target_common_name is reported to
debuggers using the
hdi_get_monitor_config() service.

ADDR unwritable_addr unwritable_addr is the address of a
read-only memory location that does not
fault the processor or hang the target
hardware when written to. This
information is reported to debuggers via
thehdi_get_monitor_config()
service. Set this variable tb if an
unwritable address is not available.

5-7

MON960 Debug Monitor User's Guide

5-8

A date string, located ibid_date.c , prints in the banner when the
monitor starts up. You may use this variable to track retargeting code
revisions.

For the 1960 Jx/Cx/Hx/Rx processor, the filtard _hw.c also contains the
boot control table. This table is declaredst because it must be in

ROM, where it is read during processor initialization. During Monitor
initialization, it is copied to RAM, so the monitor may change fields as
required during operation. The fields of the control table that specify the
bus configuration are specified using defined constants feama .h . If

you need to change the bus configuration, do so in that file. Make any
other changes to the control table eithetidard _hw.c , or at runtime in
init_hardware

Routines

Theboard _hw.c file contains the following initialization routines that you
might need to change when retargeting the monitor:

void init_hardware(void)

int get_int_vector(int)

void init_imap_reg(PRCB *)

void board_reset(void)

int clear_break_condition(void)

void board_go_user(void)

void board_exit_user(void)

These routines isolate target-hardware dependencies in the monitor. If

necessary, modify these files to conform to the capabilities of your target
board. Below is an explanation of each routingdsrd _hw.c .

init_hardware()
void init_hardware(void)
This routine initializes the target board. The routine writes the processor

interrupt control registers with values applicable to the board. It also
initializes other board resources. See the programmer's reference manual

Retargeting the Monitor

for your processor for information on programming the interrupt control
registers.

Before calling thenit_hardware() routine, the monitor establishes most
of its own default variables. Thus, the values of these default variables can
be changed, if necessary, in thie hardware() routine.

Theinit_hardware() routine must not initialize any hardware devices
that are not required for the operation of the monitor. Initializing these
other devices should be left to the application that is downloaded to the
target board once the monitor is running.

get_int_vector()
int get_int_vector(int)

This routine returns the vector number of the interrupt that is generated
when a break is received by the serial port. The argument is not used.

When the Host Debugger needs to interrupt the application, it sends a
break signal to the target system. You can program a universal
asynchronous receiver transmitter (UART) to generate an interrupt when it
receives a break. The priority of this interrupt must be as high as possible
to ensure that the debugger can interrupt the application and regain control
even when the processor is running at high priority. If possible, use
priority 31 for the Kx version and NMI for the Jx/Cx/Hx/Rx version.

This feature is not necessary for the basic operation of the monitor. If
get_int_vector() returns 0, this feature is disabled. You can code this
routine to return O until the rest of the monitor is working properly. If this
routine returns 0, then do not program the UART to generate any
interrupts.

Theinit_hardware() routine configures the interrupt mechanism. The
get_int_vector() routine returns the interrupt vector number assigned to
the UART, and the monitor fills in the appropriate interrupt vector into the
interrupt table. Theerial_open() routine configures the UART to
generate an interrupt when a break is received.

If your target board requires special processing to clear the UART or an
interrupt controller, do that processing in thear_break_condition()

5-9

MON960 Debug Monitor User's Guide

5-10

routine. The monitor calls this routine to perform any special processing
required to clear an interrupt condition.

init_imap_reg()
void init_imap_reg (PRCB *prchb)

This function is required for the 1960 Jx/Cx/Hx/Rx processors only.

This routine initializes the proper IMAP register field in the control table
used for the monitor's interrupt. The routine is called at initialization and
when the PRCB is changed. The routine is passed a pointer to the new
PRCB, which it uses to locate the new control table.

You need not change this code if you defimx_PIN andBRKIV correctly
for your target board. If your target board uses NMI for the monitor's
interrupt, this routine does not need to set up for the next interrupt.

board_reset()
void board_reset (void)
This routine resets the monitor target. The routine does not return a value.

If the target hardware does not support resetting the processor, this routine
restarts the i960 processor.

To restart the 1960 Jx/Cx/Hx/Rx processor, this routine calls the following
routine:
send_sysctl(0x300, reinit, &rom_prch)

See your processor user's manual for information orytua
instruction.

clear_break_condition()
int clear_break_condition(void)

This routine clears an interrupt from the serial port. The routine is called
when an interrupt is received from the serial port. It completes any special
processing required to clear the interrupt condition in the UART or
interrupt controller. It must ensure that any null characters or framing
errors created by the start or end of the break are cleared in the UART. In

Retargeting the Monitor

the example code, this work is done by diéal_intr() routine in the
82510.c file.

If the interrupt was caused by a break received from the host, the routine
returnsTRUE If the interrupt was caused by some other condition, such as
overrun, the routine returmALSE

NOTE. You need not program the UART to generate an interrupt on
overrun or other error conditions. However, some UARTSs do not allow
you to disable these interrupts, so the monitor ignores them.

board_go_user()

void board_go_user(void)

The monitor calls this routine each time execution returns to the
application program. You can use this routine to light an LED to indicate
that the application program is running, or perform other board-specific
requirements to execute an application program. On the i960 Jx/Cx/Hx/Rx
processor, if the break interrupt priority is not NMI, this routine enables the

appropriate interrupt in the saved copy of the IMSK register, as in the
following code:

register_set[REG_IMSK] |= IMSK_VAL,;
board_exit_user()
void board_exit_user(void)

This function performs any required board-specific actions when execution
returns from the application to the monitor. The routine is called when
execution returns to the monitor.

Memory Configuration

mon board .Id

This linker-directives file is specified in the makefile by the line
BOARD_ROM_LDi#ename . For example, make a copymbncycx.ld in

5-11

MON960 Debug Monitor User's Guide

5-12

which you have modified the memory ranges specified at the beginning of
the file. The linker-directives file is discussed further in the next section,
Defining Memory Configuratian

Defining Memory Configuration

Define the target memory configuration by assigning values to the
following memory configuration variables ionboard .Id , the
linker-directives file (for examplenoncycx.ld):

Variable

ibr

eprom

data

Description

address of initialization boot record
(Cx/Ix/Hx/Rx only). Thebr addresses are
listed below and should never be changed.

Processor ibr Address
Cx OxffffffO0
JIX/HX/Rx Oxfeffff30

base address and size of FLASH space. The size
requirement for the full monitor is approximately
128 kilobytes.

You can reduce the monitor size by linking
without some of the features, for example, the
User Interface. Removing all available features
results in a minimum monitor size of 32
kilobytes. See th8pecifying Makefile Build
Optionssection for more information on building
a minimum monitor. See thereating the ROM
Imagesection for directions on using the
makefile to relink the monitor.

base address and size of monitor initialized data
space. The size requirement is about one
kilobyte.

Retargeting the Monitor

bss base address and size of monitor uninitialized
data space. The size requirement is about
12 kilobytes.

If you have room, reserve a portion of the beginning of RAM to enable
future expansion. For example, reserve 32 kilobytes to accommodate the
monitor made with all features enabled.

Several other symbols are defined in the linker-directives file:

pre_init set to the address of the pre-initialization code, if
it is required. See thgoard Initializationsection
for information on this pre-initialization code.

initial_stack defines the stack that is used after initialization.
Define it as monitor_stack

_checksum value placed in the initial memory image (IMI) as
part of the checksum.

You can edit the linker-directives file to change the addresses for some of
these variables to match your target board. If you are retargeting the
monitor for i960 Jx/Cx/Hx/Rx evaluation boards, tvard .h file defines

the bus configuration values for the processor. When you change the
settings in thenonboard .Id file, duplicate those changes in theard .h

file as well.

Thecx_ibr.c/jx_ibr.c/hx_ibr.c/rp_ibr.c/r_ibr.c file contains
the initialization boot record for the i960 Cx/Jx/Hx/Rx processor. You
need not change this file because the code is recompiled using the
definitions inboard .h . See the programmer's reference manual for your
processor for information on the initialization boot record.

The monitor normally resides in FLASH on the target board. The monitor
stores its own data and a copy of the 1960 processor data structures in
target RAM. Figure 5-1 shows the memory configuration for the Cyclone
1960 Sx, Kx, Cx, Jx, and Hx boards. Figure 5-2 shows the memory
configuration for the 1960 RP Microprocessor Cyclone board.

5-13

MON960 Debug Monitor User's Guide

Figure 5-1 Memory Map for Cyclone i960 Sx/Kx/Cx/Jx/Hx Boards

Update this figure with the latest version found in Cyclone user guide. The
new figure includes PLX and PCI memory locations.

EFFF FFFFH
CPU Module
Flash Boot ROM
FOO0 0000H for 80960Cx/Ix/Hx
Expansion Flash ROM Expansion
E000 0000t Flash ROM
Reserved
D000 0000
Squall Module
C000 0000
Reserved
BOOC 0000
Parallel Port
B008 0000
B004 0000 cio
B000 0000 Serial Port E::: EEEEZI ; 2322 E004 0000H
EO000 0000H
DRAM
A000 0000
93 Reserved s
1000 0000H
CPU Module Flash Boqt
0000 0000H ROM for 80960Kx/Sx
A5318-01]

5-14

Retargeting the Monitor

Figure 5-2 Memory Map for IQ80960RP Cyclone Board
Processor Memory
Mapped Registers
ROM, Flash ROM F000 000OH
and ROM B
Processor Registers EEEC 0000H
FO00 0000H ROM A
On-board
Devices FEF8 0000H
E000 0000H Reserved
FO00 0000H
Reserved
DRAM Status Register
B0OOO 0000H (read only)
DRAM LED_tRegi.Ic,ter
A000 0000H (write only) £004 0000
Reserved UART
9002 0000H EO000 0000H
ATU Outbound
8000 0000H Translation Windows
ATU Outbound Direct
Addressing Windows
0000 1000H
Peripheral Memory
Mapped Registers
0000 0800H
Reserved
0000 0400H
Processor Internal
Data RAM
0000 0000H
A5316-01

5-15

MON960 Debug Monitor User's Guide

5-16

Figure 5-3 Memory Map for Cyclone i960 IQ80960RPLV and IQ80960RD
Boards
Processor Memory
Mapped Registers
ROM, Flash ROM FF00 000CH
and ROM B
Processor Registers FEEO 0000H
FO00 0000H ROM A
%’;'\';’ig:gd FECO 0000H
E000 0000H Reserved
FO00 0000H
Reserved
DRAM Bank Size
B00O 0000H Register
E020 0000H
DRAM DRAM Revision Register
A000 0000H (read only)
Reserved Lgvl?itgeogr:f;)e r
9002 0000H E004 0000H
ATU Outbound
; : UART
8000 0000H Translation Windows E000 0000H
ATU Outbound Direct
Addressing Windows
0000 1000H
Peripheral Memory
Mapped Registers
0000 0800H
Reserved
0000 0400H
Processor Internal
Data RAM
0000 0000H
A5316-01

Retargeting the Monitor

Figure 5-4 Memory Map for Cyclone 1960 IQ80960RM/RN Board
Processor Memory
ROM, Flash ROM Mapped RegiSters | trq goooH
and
; Flash Rom
Processor Registers
FOOO 0000H FEEO 0000H
On-board Reserved
; FO00 0000H
E000 0000H Devices
Reserved LED Register
(write only)
B000 0000H E004 0000H
DRAM UART
A000 0000H E000 0000H
Reserved
9002 0000H
ATU Outbound
8000 0000H Translation Windows
ATU Outbound Direct
Addressing Windows
0000 2000H
Reserved
0000 1900H
Peripheral Memory
Mapped Registers
0000 0800H
Reserved
0000 0400H
Processor Internal
0000 0000H Data RAM AS316.01

5-17

5

MON960 Debug Monitor User's Guide

5-18

Creating the ROM Image

After modifying source files as necessary for your target board, create the
ROM image of the monitor according to the following steps:

1. Edit the makefile.

2. Copy the linker-directives filerponboard .Id).
3. Configure the makefile.

4. Make the monitor files using a make utility.
5. Produce a new FLASH.

6. Install new FLASH.

MONO960 includes a makefile that can build a monitor for any of the
evaluation boards in theon960/common directory.

The supplied makefile can build MON960 for any of the supported boards.
For example, if you want to build MON960 for a Cyclone board with a Cx
CPU module, either use the supplied makefile, or configure a new one as
described in the following steps; then typeake cycx . If you do not

change the makefile, advance to the step on the next page@aiiigure

the Makefile If you do change the makefile, go to the next dtelit, the
Makefile.

NOTE. The makefile has been tested on UNIX systems with the standard
make utility, and on Windows systems with the Microsoft make utility,
NMAKE, R1.62. If you use some other make utility, the makefile may
require modification.

To use the supplied makefile, do the following:

Retargeting the Monitor

Edit the Makefile

If you have retargeted the monitor, edit the makefile as follows:

1.

Duplicate the group ofiake commands for the evaluation board that is
most similar to your target board. For example, if your target board
uses the i960 Cx processor, duplicate the group of make commands
under the heading CYCX Evaluation Board.
Replace all theoard strings in your new commands with the
appropriate string for your target board. For example, replace all
occurrences ofYyCxwith FREDand all occurrences ofcx with fred .
You may want to remove lines from the makefile. For example, you
may not want th€RED_POST _OBJS=... command if you do not
intend to write power-on self-tests for your target board.
Edit the lineBOARD_OBJS=... to match the characteristics of your
target board and desired monitor. For example, the CYCX line is as
follows:

CYCX_OBJS= ${CX_BASE_OBJS} ${CX_HI_OBJS}

${CX_UI_OBJS} ${CYCX_BOARD_OBJS}

${COMMON_C145_OBJS} ${CYCX_TEST_OBJS}

If you do not want to link in the User Interface, replace

${CX_UI_OBJS} with ${NO_UI_0BJS} . Therefore, a reasonable

line might be:

CYCX_OBJS= ${CX_BASE_OBJS} ${CX_HI_OBJS}

${NO_UI_OBJS} ${CYCX_BOARD_OBJS}

${CYCX_TEST_OBJS} ${COMMON_C145_OBJS}

Copy the Linker-directives File

If you have retargeted the monitor, you also need to make a copy of the
linker-directives file that reflects the memory configuration of your target
board. The linker-directives file is specified in the makefile by the line
BOARD_ROM_LD#ename . For example, make a copymbncycx.ld in
which you have modified the memory ranges specified at the beginning of
the file.

5-19

MON960 Debug Monitor User's Guide

5-20

For a detailed explanation of the memory configuration variables in the
linker-directives file, refer to the section earlier in this chapter called
Defining Memory Configuratian

Configure the Makefile

Configure the makefile by entering the following command. Its variables
are described below.

make make [HOST= host] [TOOL= tool]| [obj_fmt= format]

Variable Description
host signifies the host computer, UNIX or Windows,
on which you are running the make utility.
tool signifies the toolset you are using to build the
monitor. Thetoo/ option can be any of the
following:
intel used to build with the
CTOOLS960 tools
gnu used to build with the
GNU/960 tools
format specifies the object module format as either:
elf generates ELF object modules
coff generates COFF object
modules

The defaults for thenake make areunix , gnu andcoff .

This make command creates a new makefile that enables the appropriate
make commands for your combination of host and toolset. The original
makefile is saved agakefile.old

The Minimum Monitor

Include the following in your makefile to build a minimum monitor. You
may usen_epcx and an example of a minimal monitor.

Retargeting the Monitor

Table 5-2 Minimum makefile Symbols

Symbol
XX_Ul_OBJS
or

XX_HI_OBJS

PCI_OBJS
or

SERIAL_OBJS

NO_PARALLEL_OB.&dded to the
BOARD_OBJ3st

NO_FLASH_OBJS
NO_TIMER_OBJS
NO_POST_OBJS

NO_APLINK

XX_BASE_OBJS

board_hw.o

FIRST_OBJS

Purpose

adds the modules that create the
MON960 User Interface

adds the modules that provide the
MON960 Host Debugger Interface

allows the use of PClI communication

allows the use of serial
communication

suppresses the use of parallel code

disables flash memory
disables use of your target’s timers

prevents the use of power-on self test
with your monitor

omits the code for ApLink support -
ApLink is no longer supported

include the basic object files

includes the correct board
initialization code

includes the monitor’s initialization
boot record and startup code

5-21

MON960 Debug Monitor User's Guide

Specifying Makefile Build Options

You may want to specify build options in the makefile, depending on
available EPROM space and the desired functionality of your target board.
Specifying these build options adds functionality, but the tradeoff may be
increased EPROM space requirements or decreased performance. The
following paragraphs describe the build options that you may enable or
disable in the makefile for each target board.

Table 5-3 Optional makefile Symbols

Symbol Purpose

XX_UI_OBJS adds the modules that create the
MON960 User Interface

NO_UI_OBJS suppresses the User Interface

HELPin UI_MAIN.C includes online help in the User

Interface. This option is enabled in
this file as the default. If you are
short of EPROM space, you may
want to comment the following line in
UI_MAIN.C :

#DEFINE HELP

XX_HI_OBJS adds the modules that provide the
MON960 Host Debugger Interface

NO_HI_OBJS suppresses the Host Debugger
Interface

TARGET PARA.Oin the BOARD_OBJS adds the code that creates the
list parallel download functionality of the
monitor

continued [

5-22

Retargeting the Monitor

Table 5-3

Optional makefile Symbols (continued)

Symbol

NO_PARALLEL_OBuin the
BOARD_OBJSlist

ALLOW_UNALIGNED

Commented ALLOW_UNALIGNED

NO_PCI_OBJS

PCI_OBJS

Uncommenting the lines
TIMER_HW=$(TARGET)timr.o and
HJ_TIMER=-DHJ_TIMER

Uncommenting the line
TIMER_HW=$(TARGET)8536.0

FLASH_OBJS
NO_FLASH_OBJS
SERIAL_OBJS

Purpose
suppresses use of parallel code

causes the monitor to support
unaligned references to memory. For
the JX/Cx/Hx/Rx architecture, this
also sets the Mask Unaligned Fault
bit in the PRCB

causes the monitor to generate an
error when the user requests an
unaligned memory access. On the
Jx/Cx/Hx/Rx architecture, this clears
the Mask Unaligned Fault bit in the
PRCB, causing the processor to fault
if the application makes an unaligned
reference

This option is enabled (defined) in the
makefile as the default:

ALLOW_UNALIGNED= -
DALLOW_UNALIGNED

suppresses the use of PCI
communication

allows the use of PCI communication

enables the use of Jx, Hx, or Rx on-
chip timers

allows the use of the Cyclone board
85c36 timers

enables the use of flash memory
disables flash memory

allows the use of serial
communication

continued [

5-23

MON960 Debug Monitor User's Guide

Table 5-3 Optional makefile Symbols (continued)

Symbol Purpose

_NO_SERIAL_OBJS disables serial communication

TIMER_OBJS allows the use of your target’s timers

NO_TIMER_OBJS disables the timers

POST_OBJS adds power-on self test code to your
monitor

NO_POST_OBJS prevents the use of power-on self test

with your monitor

USER_COMM sets the make file to link a user
program to MON960, using a
specified communication channel

USER_OBJS lists the user program objects used to
link into MON960

You may also add LED functionality to your board by adding the
following to theboard .h file. The default is no LED functionality.

Table 5-4 LED Symbols

Symbol Purpose

SWITCH_ADDR allows you to use the target board’s
switches

LED_8SEG_ADDR allows you to use the eight-segment
LED on your board

LED_1_ADDR allows you to use the individual LEDs

on your board

BLINK_PAUSE allows you to use blink-pause-wait
loops to distinguish LED changes

5-24

Retargeting the Monitor

Make the Monitor Files Using a Make Utility

You are now ready to make the monitor files. Enter the command:

make board

board is the name you used when you edited the
makefile (for exampleyed).

This command creates the following output files:

board the COFF file containing the complete monitor.
board .ima the binary image file of the complete monitor.
board .hex the Intel hexadecimal object-file format that

contains the complete monitor.

This command creates additional, smalek files if the specified target
board is a Cyclone with an Sx or Kx CPU module, which uses multiple
EPROMSs. Thesgex files contain the same information asrd .hex |,
but split the information across the EPROMSs.

Most PROM programmers can use hexadecimal-format files.

This command also createsanard. fls file for the Cyclone board, which
is the COFF file prepared for downloading into flash memory on those
target boards.

Produce New FLASH

Intel provides separateex and .fls files for each supported evaluation
board listed in Table 5.1. MON960 supports both standalone serial and
PCI boards. After using the makefile to produce.the file, you can
program any FLASH needed for your target board usinghixe file and

a PROM programmer. With evaluation boards which support at swapabel
FLASH devices, you can use mondb and the fls file to program a mondb
FLASH directly on the evaluation board.

5-25

MON960 Debug Monitor User's Guide

Install the New a FLASH

Finally, install the FLASH on your target board as follows:

1. Write the monitor image into the FLASH needed for your target using
a PROM programmer and thex file generated by the makefile.

2. Install the FLASH on your target board. Then, connect your target
board through a RS-232C cable or a PCl interface. Ensure that the
monitor is running properly on your target board as described in the
Verifying Monitor Operatiorsection.

NOTE. Although you could run the gdb960 debugger now, do not do so
‘ until you have used MON960 enough to be sure that your retargeting was
successful. The debugger adds levels of complexity that can interfere with
verifying that the monitor is running correctly.

Debugging the Monitor

Once the monitor is in FLASH on the target board, you can power up the
target board. The on board leds should indicate that the MON960
initialized and that the monitor is running. Next you can connect a

terminal to the target board, a host terminal program, or mondb. If you
choose a terminal or host terminal program and the baud rate is set to 9600
baud, you should see the stringN96oafter the system initializes. Ata
different baud a nonsensical string may be displayed Pressing Enter six
times will allow the monitor to sign on with:

Mon960 monitor for the Intel i960 processor

Version version board_name date
Copyright 1995, Intel Corporation

Variable Description
processor is the name of the i960 processor type.
version is the version number of the monitor core.

5-26

Retargeting the Monitor 5

board _name is the value of the variabl®ard_name specified
in theboard _hw.c file.

date is the build date of the monitor.

Alternatively, mondb can be used to provide the same basic data. For
example on a PC platform enter: C:>mondb —ser com1
or in UNIX enter mondb.

The following sections can help you isolate problem areas in the code.

Verifying Monitor Operation

To verify that the monitor is running correctly on your target board,

perform the following operations with the commands listed in Chapter 4.

Read memory from EPROM space.

Read memory from FLASH space.

Read memory from RAM space.

Write data to RAM space.

Write data to FLAHS space.

Check FLASH memory.

Erase FLASH memory.

Download code to RAM space using the serial interface.

Set a breakpoint.

10. Execute to the breakpoint.

11. Display the registers.

12. Single step an instructiostdp command).

13. Single step a procedugatep command).

14. Delete the breakpoint.

15. Download code to the flash space using the serial interface.

16. Download code to RAM and/or flash space using the parallel interface.
Perform the download using the mondb utility described in
Appendix B

© N OR®ONE

5-27

MON960 Debug Monitor User's Guide

5-28

NOTE. On the Cyclone boards with a Cx,,Hx, RP, RD CPU module,
you can download theboard> fls file, and then use the ROM swap
switch to boot the monitor out of flash memory instead of EPROM. See
the Loading MON960 Into Flash section in Chapter 3 for instructions on
loading MON960 into flash memory.

Troubleshooting Host-target Serial Communication
Problems

The following problems can occur between the host and the target.

You do not see thavion960 string when connected at 9600 baud.

Check the following:

« That the baud rate of the terminal is 9600 baud. At other baud rates,
you do not see thi@on960 message, because it prints before autobaud
is done.

» That the terminal program, if you are using one, is configured to use
the proper communications port.

« That the serial connection is correct. See the user manual for the board
for information on the serial-cable connection. Be sure to use a
null-modem adapter, if necessary.

If you have retargeted the monitor, check the following:

« Monitor initialization routines.

e Your serial_init() routine, anderial_open() if you changed it.

* Your serial_putc() routine, andserial_write() , if you changed
it.

» If you changederial_open() routine, ensure that it sets the baud
rate to 9600 and calterial_write() with theMon960 string.

Retargeting the Monitor

You see themon960 string, but do not see the sign-on message when
you press the Enter key.

Check the following:

e Your serial_getc() routine, anderial_read(), if you changed
it.

e Your serial_set() routine, andserial_baud(), if you changed it.

You must always press Enter six times to get a response. The autobaud

mechanism cannot recognize the baud rate fully when you enter only one
character. You must enter the subsequent Enter key presses within one

second after the first for the multiple entry to be recognized.

A terminal works properly, but mondb does not connect.

The mondb program is tldownload-and-gsoftware utility included with
the monitor.

» Check the specification of the communications port to mondb.

» Try alower baud rate. Some hosts cannot keep up at the maximum
supported baud rate.

e Check that the code berial_read() that handles timeouts is the
same as the code provided.

» Check the routinealc_looperms()

« If you are using a non-standard communications board in your
Windows, or UNIX host, check your supported configurations.

» Check thefreq invocation option. Théeq option sets the serial
crystal frequency. A non-standard communications board is one that
does not use a 1.8432 MHz crystal.

PCI Retargeting

The IQ80960Rx evaluation boards and the PCI80960DP evaluation boards
which contain PLX9060 or PLX9080 PClI interface devices, support PCI
interface. If your PCI hardware includes two mailbox registers and a
doorbell register, you can add mon960 PCI support by entering the your
hardware change just the addresses¥@LONE_TARGET_STATUS_MRd
CYCLONE_TARGET_DATA_Mmese #defines are found in the include file

5-29

MON960 Debug Monitor User's Guide

5-30

board .h . If greater changers exist in your PCI hardware, you may have to
rewrite the routines ipcidrvr.c (see Chapter 6) to match your PCI
hardware.

PCI Hardware Resources Reserved By MON960
Target Resource(s)*

Cyclone PCI80960DP Mailbox registers 6 & 7 and doorbell bits
30 & 31 in both the local-to-PCl and PCI-
to-local doorbell registers.

Cyclone Inbound Mailbox register 1 and outbound
Mailbox register 1. Doorbell interrupt bits
30 & 31 in both the local-to-PCI and PCI-
IQ80960RPLV to-local doorbell registers. For more
information on these registers, refer to the

IQ80960RP

IQ80960RD ATU chapter in i9600 Rx I/O
IQ80960RM Microprocessor Developer's Manual.
IQ80960RN

* These hardware resources are reserved exclusively for MON960 and should not be modified by
programs executing on the target.

Board Initialization

At reset, the 1960 processor completes a checksum self-test, reads pointers
from the initial memory image (IMI), and then begins executing user
instructions at the boot address. Boards designed for the i960 architecture
normally include a mechanism to signal assertion of the i960 processor
FAIL# pin. The Intel evaluation boards implement this mechanism with an
LED. This mechanism enables you to determine if the processor
successfully read the IMI and reached the boot address.

The boot address istart_ip in theinits file. Normally, this file

needs no modification. The coderihs checks the symbake_init

to see whether any code must be executed before monitor initialization. If
pre_init is not zerojnit.s calls this code via the instructidaix

pre_init,gl4

Retargeting the Monitor

Thepre_init() routine performs any functions that must be completed
before monitor initialization. For example, it may perform DRAM
initialization or board-level self-tests, such as memory tests or ROM
checksum verification.

Thepre_init() routine may be written in assembly language, since it is
entered via a branch-and-link instruction. The routine must preserve the
global registerg14 andgll. Thegl4 register is used as the return
address, and thi11 register contains processor revision information for
processors that support revision information.

Thepre_init() routine can be written in C, but it requires special

considerations, such as:

* Some boards need initialization before using RAM.

» Static data is not initialized.

e The runtime library is not initialized.

» The arithmetic controls register is not initialized.

* Thepre_init() routine is called with aalx instruction, and it must
save registergl4 andgll (described previously).

* No stack is available, so you should not use stack or call instructions.

NOTE. For all i960 compilers, if you want to call a C language routine,
you must save the valuegi# in another register and then clear thst
register before the call. Thee_init() routine must not call any C
library routines, because they are not yet initialized.

Put any initialization routines and non-application initialization routines
that need not be completed before monitor initialization in the
init_hardware() routine. Thenit_hardware() routine is called from
main and can use C and C library support.

After the pre-initialization code returns, tine.s file sets up the stacks,
initializes the C run-time environment, copies the processor data structures
to RAM, and re-initializes the processor for the new data structure
locations.

5-31

MON960 Debug Monitor User's Guide

5-32

Finally, inits ~ branches tomain , which calls thenit_hardware()

routine in theboard _hw.c module. If necessary, you can modify the
init_hardware() routine and other hardware-dependent routines in
board _hw.c .

The next two sections describe board-specific data and routines in
board _hw.c that might need modification.

Routines in leds_sw.c

The routines listed in this section are for accessing and manipulating the
LEDs on the board. The LEDs provide diagnostic information. All the
routines in this section are based#dsfine values fromboard .h . These
functions are for display purposes only and may be stubs that do not affect
monitor operation.

The following routines are in the fileon960/common/leds_sw.c
unsigned char read_switch ()

void blink (int n)

void blink_hex (int n, int size)

void blink_string (char *cha_ptr, int size)

void fatal_error (char id, int a, int b, int c, int d)

void led (int n)

void led_debug (char id, int a int b int c int d)

void led_output (char id, int a int b int c int d)

void leds (int val, int mask)

void pause()

NOTE. If your code does not define a particular address in Table 5-6, the
code does nothing with it.

Retargeting the Monitor

Table 5-5

The following table provides a listing of defined symbols and their uses:

Define Symbols for LED Use

Define Symbol
SWITCH_ADDR
LED_8SEG_ADDR

LED_1_ADDR
LED_2_ADDR
LED_3_ADDR
LED_4_ADDR
LEDS_SIZE
LEDS_MASK

LEDS_ON_IS_0

BLINK_PAUSE

DOT

CLR_DISP

DISPLAYO to DISPLAYF

Purpose

Byte address at which to read switch values

Byte address at which to write eight-segment
values

Byte address at which to write first N LEDs
Byte address at which to write second N LEDs
Byte address at which to write third N LEDs
Byte address at which to write fourth N LEDs
Number of LEDs per address

Mask LED_SIZE bits for writes to
LEDS_N_ADDR

Defines 0 as turning on LEDs. 0 normally turns
off LEDs

Loop count so LEDs may be seen
Eight-segment LED display "." (dot)
Clear eight-segment LED display

Display eight-segment LED value corresponding
to value represented in the name of the define
symbol

read_switch

unsigned char read_switch ()

This routine obtains user input through the switches. That information is
used to determine the initialization selection for the board. The routine
returns the inverted value read from the dipswitch defineddard>.h as

SWITCH_ADDR

5-33

MON960 Debug Monitor User's Guide

5-34

blink
void blink (int n)

This routine is used to display information on seven-segment LEDs. For
example, displaying an 8 on an LED could signify that board initialization
is complete. The routine displays the number long enough for the user to
read it, and then erases it from the LED.

blink_hex()
void blink_hex (int n, int size)

This routine displays user-readable hex number for debugging. It blinks
hex valuen for size digits onto an eight-segment LED, or individual LEDs.
The sequence is a long pause, then a series of size hex digits, followed by
another pause while the user reads the output.

blink_string()
void blink_string (char *cha_ptr, int size)

This routine displays a string value used for debugging. Either the string
displays on the eight-segment LED, or individual LEDs display the upper
ASCII hex digit, followed by the lower ASCII hex digit, for size number of
bytes.

fatal_error()
void fatal_error(char id, int a, int b, int c, int d)

The monitor calls this function if an unrecoverable error occurs. This
routine does not return.

Currently usedd values are 1 through 4. Thie values 5 through 127 are
reserved for future use by MON960, and the values 128 through 255 are
available for user-defined error handling. The following table provides a
list of values foid , the contents of the other parameters, and a description
of the cause of each error.

Retargeting the Monitor

Table 5-6 Arguments for fatal_error()
id a b c d Cause:
1 fault_type ip pc fp Unhandled fault
2 vector # ip pc fp Unhandled interrupt
3 no other args HI console output failed
4 no other args Board reset failed
If the monitor is not connected to a Host Debuggeriathk error()
routine attempts to print the messageidoto standard output. Then the
eight-segment LED displays three seconds of blank followed by the
contents of each argumentfaeal_error() . The display separates each
argument from the next by displaying a period. The valuigs andA
throughD appear in hexadecimal. The following table shows the sequence
of display:

Table 5-7 LED Display for fatal_error()

Display: Argument Represented:

3 seconds blank

XX id (2 hex digits)

XXXXXXXX A (eight hex digits)
XXXXXXXX B (eight hex digits)
XXXXXXXX C (eight hex digits)
XXXXXXXX D (eight hex digits)

5-35

MON960 Debug Monitor User's Guide

5-36

led()
void led(int n)

This routine displays as a hex digit to the LEDs definedoard.n as
eitherLED_8SEG_ADDRYI LED_1_ADDR If nis greater than 16, a dot
displays in the eight-segment LED. Enteringclears the display.

led _debug

void led_debug (char id, int a int b int ¢ int d)

This routine uses LED output to display the ID and the four values, if
SWITCH_ADDRs defined. It loops displaying these values until any switch
is changed. I18WITCH_ADDRs not defined, the routine loops four times
displaying these values.

led_output()
void led_output (char id, int a int b int ¢ int d)

This routine displays multiple values for debugging. The ID displays as
two hex characters on the eight-segment or individual LED; the four and
abcd values display as eight-digit hex values. A long pause precedes the
hex digits.

void leds()

void leds (int value, int mask)

Use this function with an-segment bar LED. The mask specifies which
segments are being changed, and the value specifies the new value for the
segments. A value of 1 indicates the segment is lit. A bitwise and is
performed on the value and mask to determine whether each segment is lit
or extinguished. For example, the gqaJb) extinguishes segment 0 (bit O

Retargeting the Monitor

Table 5-8

of mask is 1 and bit 0 ofalue is 0) and lights segment 2 (bit 2rofsk
and bit 2 ofvalue are both 1). All other segments are unchanged. The
segments currently used are:

8-Segment LED or Value Description

LEDOonor1l inserial_read()

LED1onor?2 inserial_write()

LED 2onor4 application is executing

LED 3onor8 parallel or PCI download is in progress

If no LEDs are available, or fewer than four user LEDs are available on the
board, and an eight-segment LED is available, this routine uses the eight-
segment LED to displayalue and adds the dot.

pause()
void pause()

This routine causes a delay so values in LEDs are visible before they
change. The following table provides pause times and speeds for various
architectures:

Pause Times for Pause Routine

The EP80960 and PCI80960 evaluation boards use an external timer which
runs independently of the processor speed. Pause times are defined below.
The IQ80960RP, RPLV, RM, and RN boards use the on chip timer.

Times Architecture
0x10000 for 16 to 20 MHz Kx or Sx
0x40000 for 25 to 33 MHz JX, Hx, Cx,

5-37

5

MON960 Debug Monitor User's Guide

5-38

Serial Device Driver Routines

The monitor code includes I/O device drivers for the Intel 82510 UART
and the National Semiconductor 16552 and 16550 DUARTS. The driver
routines are in the2510.c (UART) andi16552.c (both DUARTS) files,
respectively.

If your board uses the 82510 UART, you must modify the definitions of
the following constants in the board-specific include fileafd .h):

Constant Description

I510BASE the base address of the 82510

I510DELTA the spacing between the hardware registers

XTAL the frequency of the baud rate crystal as defined
by the hardware

ACCESS_DELAY the number of memory cycles between UART
accesses

If your board uses the 16552 DUART, you must modify the definitions of
the following constants in the board-specific include file:

Constant Description

DUART the base address of the 16552

DUART_DELTA the spacing between the hardware registers

XTAL the frequency of the baud rate crystal

DFLTPORT the port to use, defined asiAN1or CHAN2

ACCESS_DELAY the number of memory cycles between UART
accesses

If your board uses a 16550 DUART, S&tART _DELTA=1
DFLTPORT=CHAN2and usecHAN2for 1/O.

The serial driver is separated into two modules: the routingsiinc
and the routines in eitheép510.c or16552.c .

Retargeting the Monitor

Theserial.c file contains high-level routines that are not specific to a
particular UART, but can be implemented differently on some boards.
You normally do not changerial.c unless your board or UART has
unusual requirements. The calling conventions for the routines in
serial.c are listed below:

int calc_looperms(void)
int serial_baud(int port, unsigned long baud)
int serial_open(void)

int serial_read(int port, unsigned char *buf, int len,
int timo)

int serial_write(int port, const unsigned char *buf,
int len)

Routines in 82510.c and 16552.c

The files82510.c and16552.c contain low-level, device-specific
routines. These files have to be changed to work with any other type of
UART. The routines i82510.c andi6552.c are listed below:

serial_getc()
int serial_getc(void)

This routine returns a character received if one is immediately available;
otherwise it returns a -1.

serial_init()
void serial_init(void)

This routine initializes the serial port. It is calleddayial_open()

serial_intr()

int serial_intr(void)

5-39

MON960 Debug Monitor User's Guide

Theclear_break_condition() routine calls this routine when the
monitor is entered because of a break interrupt from the serial port. It
waits for the end of the break and clears the UART FIFO. It renRus

if the interrupt was caused by a BREAK condition. See
clear_break_condition() for more information.

serial_loopback()
void serial_loopback(int flag)

If flag is true, this routine enables loopback mode in the UART;
otherwise the routine disables it. This routine is called by
calc_looperms() . If your UART does not support loopback mode, you
must changealc_looperms() in serial.c

serial_putc()
void serial_putc(int c)

This routine transmits the character.

serial_set()
void serial_set(unsigned long baud)

This routine sets the baud rate for the serial port. Called by
serial_open() andserial_baud()

Routines in flash.c

The following routines are in the fil@on960/commoniflash.c
int check_eeprom (ADDR addr, unsigned long length)

int erase_eeprom (ADDR addr, unsigned long length)

void init_eeprom ()

int is_eeprom (ADDR addr, unsigned long length)

5-40

Retargeting the Monitor

int write_eeprom (addr start_addr, const void * data_arg,
int data_size)

Flash memory is erasable and programmable memory. Flash is useful for
testing boot code and other non-volatile code that would usually be placed
in non-volatile memory. The Cyclone evaluation boards feature flash
memory. The programming algorithms in the monitor are for the Intel
family of flash memory devices. Flash memory requires special
programming and erasure algorithms. The Intel 28F020 device is used on
the EP80960 and PCI80960 evaluation boards. For this device, the monitor
uses algorithms taken from thksing the 28F020 Flash Memory, volume 1
(order number 210830-013). The IQ80960RPLV / RD use the 28F008SA
in the soldered position and the 28F020150 in the socket portion. The
IQ80960RM / RN use the E28F016S5-090 FLASH device.

You must define the following constants in the board-specific include file
(board .h):

Constant Description

flash_ADDR the base address of the flash memory.

FLASH_WIDTH the number of devices that are accessed in
parallel.

PROC_FREQ the processor frequency in MHz. If you do not

definePROC_FRE@he flash initialization code
calibrates the timing loop usinigner.c . This
process works properly even if you change to a
processor with a different frequency. Note that
the timer is used only during initialization; it is
available to the application after that.

FLASH_TIME_ADJUST setto 1. Or, if the routine is too fast for flash
memory, set this to a higher number to increase
flash delay times.

NUM_FLASH_BANKS the number of flash banks on the board. The
default setting is 1. Flash devices connected in
sequence.

5-41

MON960 Debug Monitor User's Guide

FLASH_ADDR_INCR the size of each flash bank, expressed in bytes.
This constant is used only if the board has more
than one flash bank.

If you use this driver with a board that has more than one bank of flash,
MON960 assumes that the banks’ addresses are continuous.

check_eeprom()
int check_eeprom(ADDR addr, unsigned long length)

This function checks to see if the memory at the specified address is flash
memory and then checks to see if that memory is erased.

It returns one of the following values:
OK EEPROM is erased

ERR EEPROM is not erased or is not flash mememyoR addr ,
unsigned long length).

If addr is equal to the constaRDADDRthis routine checks all of the
EEPROM. Otherwise, it checks from the specified address.

This routine setsmd_stat to E_EEPROM_ADDIRthe memory specified is
not EEPROM. The routine setsid_stat to E_NO_FLASHTf flash memory
is not supported by this monitor or no flash memory is installed on the
board. If the EEPROM is not erased, this routinesedsstat to
E_EEPROM_PRO&Nd sets the following global variables:

eeprom_prog_first
eeprom_prog_last

erase_eeprom()

int erase_eeprom(ADDR addr, unsigned long length)

This routine erases the EEPROM at addaegs to addr+length-1 . It
returns one of the following values:

OK EEPROM is erased

5-42

Retargeting the Monitor

ERR EEPROM is not erased or is not flash memenyoR addr,
unsigned long length).

If addr is equal to the constaRDADDRthis routine erases all of the
EEPROM. Otherwise, it erases from the specified address.

If length is O,erase_eeprom() erases the smallest erasable block
starting withaddr . If length is not 0, it must match exactly the length of
one or more erasable blocks startingaalt . If these conditions are not
met, the routine setend_stat to E_EEPROM_ADD&nd return€RROR
without attempting any erasure.

init_eeprom()
void init_eeprom(void)

Theinit_hardware() routine calls this function to determine the amount
of flash memory on the board and initialize the values needed to program
the flash memory.

This routine sets the variabdeprom_size to the size of EEPROM
available. Thénit_eeprom() routine is not required if
init_hardware() does not call it.

is_eeprom()
int is_eeprom(ADDR addr, unsigned long length)

This function checks whether the region of memory specifiedidtry and
length is EEPROM. It returnsRUEIf the region is EEPROM;ALSE if it
is not, and=RRORY(it is partially EEPROM and patrtially not. This
function is called byheck_eeprom()

is_eeprom checks whether the EPROM at addrags to addr+length-
1 is erased.
write_eeprom

int write_eeprom (addr start_addr, const void * data_arg,
int data_size)

5-43

MON960 Debug Monitor User's Guide

5-44

This routine writes the data @dta_arg to start addr for data size bytes. It
returns one of the following values:

OK Data was written atata_arg.
ERR Data was not written atta_arg.

Local Routines in flash.c

The local routines in thitash.c file are not intended for your use. They
are documented here simply for your reference.

long loopcnt(int t)

int program_zero(ADDR addr, unsigned long length)

int program_word(ADDR addr, FLASH_TYPE data, FLASH_TYPE mask)
long time(int loops)

loopcnt()
long loopcnt(int t)

This routine returns the delay constant required to delajcroseconds. It
uses the time constants calculatedniyeeprom()

program_zero()
int program_zero(ADDR addr, unsigned long length)

This function programs the specified region of memory with zeros. The
erase_eeprom() routine calls this function to clear the flash memory
before programming it.

program_word()
int program_word(ADDR addr, FLASH_TYPE data, FLASH_TYPE mask)

This function programs the specified address of flash with the specified
data value.addr indicates the flash address to progra#nASH_TYPE
data is the size of flash word, either 1, 2, or 4 bytes. ritsk parameter

Retargeting the Monitor

indicates the bytes to change in the word. This function is called by
program_zero() andwrite_eeprom()

time()
long time(int loops)

This function returns the length of delay time in nanoseconds for a delay
loop of the specified length. The function uses the bentime default timer
defined intimer.c . Thetime() routine is called bynit_eeprom()

Routines in paradrvr.c

The routines in thparadrvr.c file are:

void parallel_init

void parallel_err

int parallel_read(unsigned char * data, unsigned int size,
unsigned short * crc)

parallel_init()
void parallel_init()

This routine initializes the parallel device on board call before each parallel
download. You must define the following constants in the board-specific

include file:

PP_DATA_ADDR PP_ERR_BIT
PP_STAT_ADDR PP_POUT BIT
PP_CTRL_ADDR PP_SEL BIT

Furthermore, if your parallel hardware does not automatically toggle the
ACKNOWLEDGHt during an I/O transfer, you must uncomment/define
PP_ACK_BIT andPP_NO_ACK_STROBE.(Refer to the code in

parallel_read for examples of use.) Finally, if your parallel transfers
proceed erratically, define the ma@BCOND_CHECK_PP_READ_STATUS
which causes the monitor to read the status register twice for each transfer.

5-45

MON960 Debug Monitor User's Guide

5-46

parallel_err()
void parallel_err()

This routine sets the error status set for a bad parallel message.

parallel_read()

int parallel_read(unsigned char * data, unsigned int size,
unsigned short * crc)

This routine readsize bytes from the parallel port intata . If crc is
NotNULL, the routine addgata tocrc . This routine returnekor ERR If
ERRIs returned, a serial break has interrupigdilel_read() . This
routine can be found iparadrvr.c

Parallel Download Example Code

In the MON960 software, three functions provide the parallel interface in
paradrvr.c

parallel_err() sets the error bit so the host reverts to
serial communications in the event of an
error.

parallel_init() identifies and initializes the parallel port

to transfer communication from serial to
parallel and to possibly test for
connection to the appropriate port. This
routine may be null if no initialization is
needed.

parallel_read() reads data sent from the host application
through the parallel port.

To see how MON960 reads from a parallel device, refer to the actual
source code iparadrvr.c , in themon960/common directory.

Retargeting the Monitor

Retargeting JTAG

Retargeting JTAG should not require changing any MON960 code values
or modifying any code modules. JTAG is supported by placing a pointer at
the end of the ibr record. This pointer points to a data structure defined in
jtag960.c Including the pointer in the ibr record, linking in jtag960.0 and
the appropriate LCD960 code should be sufficient to operate the JTAG
interface. The MON960 makefile shows which LCD960 module applies to
which processor.

5-47

Theory of Operation

This chapter explains the theory and design of the monitor source code.
The source code provides examples of the following:

e processor initialization

» fault handling

» stack switching

» use of the i960 processor debug features

e interrupt handling

« application parallel downloading

* general programming of the 1960 processor

The information in this chapter is not required to retarget or use the
monitor.

System Initialization

The monitor provides an initial memory image, a processor control block, a
control table (for the 1960 Jx/Hx/Cx/Rptocessors), a system address table
(for the Kx/Sx processors), a system procedure table, a fault table, and an
interrupt table. At power up or reset time, these data structures are located
in ROM, as appropriate, these structures are copied to ram and the
processor re-initialized to activate the RAM copies of these structures.

Jx/Hx/Cx/Rx initialization data structures:

e Cx 12 word initialization boot record (IBR) located at address
OxffffffOO0.
Jx/Hx/Rx 12 word initialization boot record (IBR) at address
Oxfeffff30.

» Processor control block (PRCB). This table is located on a quad-word
boundary and is 40 bytes long.

6-1

MON960 Debug Monitor User's Guide

System procedure table (SPT). This table is located on a quad-word
boundary and is a minimum of 48 bytes long.

Control table. This table is located on a quad-word boundary. This
table is 112 bytes long.

Interrupt table located on a word boundary.

Supervisor stack pointer.

Fault table.

Interrupt stack pointer.

Kx/Sx initialization data structures:

Eight checksum words located at address O.

System address table (SAT). This table is located on a four-kilobyte
boundary and is 176 bytes long. In the monitor, it is located at address
0 with the checksum embedded in its first eight words. (These eight
words would not otherwise be used in the SAT.)

Processor control block (PRCB). This table is located on a quad-word
boundary and is 172 bytes long.

System procedure table (SPT). This table is located on a quad-word
boundary and is a minimum of 48 bytes long.

Interrupt table. This table is located on a word boundary.

Supervisor stack pointer.

Fault table.

Interrupt stack pointer.

See the reference manual for your processor for more information on the
contents of these initialization elements.

Theinit.s file contains the monitor's initializations for the i960

processor. Table 6-1 lists the monitor initialization routines and tasks each
routine performs. Note that the main program name has changed to
mon960_main. This allows you to easily link your program into MON960.

6-2

Theory of Operation

Table 6-1

Monitor Initialization Routines

Routine
start_ip()

mon960_main()

init_regs()
init_monitor()

monitor()

com_init()

com_reset()

Tasks

Call pre_init for board-specific initializations (enable RAM,
self-test).

Initialize monitor data in RAM.
Copy processor data structures to RAM.
Call set_prcb to initialize the system tables.

Reinitialize the processor, using sysctl (Ix/Hx/Cx/Rx) or IAC
(Kx/SX).

Call fix_stack to turn off the interrupted state and change to
the monitor stack.

Branch to main.

Call the init_regs routine.

Call init_hardware for board-specific initialization.
Call the init_monitor routine.

Call monitor.

Initialize user register set.

Use boot value of g0 to determine processor stepping
(IX/HX/CxIRX only).

Call get_int_vector and set up break interrupt vector.
Call the com_init routine.

Call com_reset to initialize communications if this is the first
monitor entry.

Call hi_main if connected to host debugger.

Call ui_main if not connected to host debugger.
Initialize the communication system.

Initialize the serial port.

Wait for host or terminal connection and set baud rate.

6-3

MON960 Debug Monitor User's Guide

When the monitor begins initialization, it copies the initialized data area
(data section) from ROM to RAM, so initialized variables have the correct
initial values. Then the monitor initializes the bss section to 0.

The processor control block (PRCB) contains information for transferring
program control when the processor encounters a change of state (e.g., an
interrupt, fault, or system call). The PRCB contains pointers to the other
major data structures that the processor uses to handle these state changes.
The PRCB is cached on chip at processor initialization, but must be located
in RAM before changes can be made to data structures. The other tables
also must be moved to RAM to enable substitution of the default entries.
Once the new PRCB is in RAM, the monitor changes the pointers in the
PRCB to reflect the fact that the other tables are located in RAM.

The processor continues to use the old PRCB for state changes until
otherwise notified. To notify the processor of the new PRCB now located
in RAM, the monitor issues a reinitializgsctl or iac telling the

processor to use the new PRCB.

After the re-initialization, the processor is in an interrupted state, running
on the interrupt stack. To get out of the interrupted state, the code in the
monitor sets up a simulated interrupt record on the stack in preparation for
simulating a return from interrupt. The return from interrupt bit is set in
the previous frame pointer (PFP). The desired process controls and
arithmetic controls are set up in the simulated interrupt record. The return
(from interrupt) loads the process control and arithmetic control registers
from the interrupt record. The code to do this step is ifixhgack ()

routine in thenits file.

The process controls are set so that the monitor runs at priority 31 with
tracing turned off. With priority set at 31, only a non-maskable interrupt,
such as BREAK over the serial line, takes precedence. The application
code can determine and change the monitor priority by calling
get_mon_priorty and set_mon_priorty. The arithmetic controls are set up
so that all of the floating point and integer fault masks are set. The fault
masks enable the processor to continue executing when questionable
arithmetic results are obtained

Theory of Operation

Faults

The monitor selects which User Interface , the terminal Ul interface or the
host debugger Hl interface based on the data first supplied by the
communication cannel. If the serial autobaud mechanism recognizes a
carriage returns, indicating that a terminal is attached, or after an
command is issued, then the Ul interface is selected. Otherwise, the HI
interface is selected. After selection, the selected interface remains active
until the processor is reset. Once selected, the monitor always calls the
selected interface routine listed below:

void hi_main(const STOP_RECORD * stop_reason)
void ui_main(const STOP_RECORD * stop_reason)

For the first call after initializatiorstop_reason is NULL; subsequent calls
always contain information about why the application stopped.

The monitor requires the use of the trace-fault entry in the fault table. A
trace fault is generated whenever the processor encounters a breakpoint or
trace condition. On the 1960 Jx/Hx/Cx/Rx processor, the trace-fault entry
references procedure 255 in the system procedure table. On the Kx/Sx, the
trace-fault entry references procedure 0 in the trace-fault procedure table.
The trace-fault procedure table is used because tracing must be disabled
when a trace fault is taken. On the Kx/Sx, tracing is disabled when any
type of fault is taken.

The monitor also initializes all other fault entries. On the Kx/Sx, these
entries are initialized to the same trace fault procedure table entry as the
trace fault. On the 1960 Jx/HX/Cx/Rx processor, all other fault entries are
initialized to system procedure 256. The default handler enters the monitor
and reports the fault. The application is free to changes these entries to its
own system procedures or local fault handlers. On the Kx/Sx, the trace
fault procedure table is in ROM. Therefore, if the application changes a
fault entry to call its own supervisor procedure entry, it must change the
second word of the fault entry ¢@27f to reference the regular system
procedure table.

6-5

MON960 Debug Monitor User's Guide

6-6

Stacks

The 1960 processor recognizes three types of stacks: the user stack, the
supervisor stack, and the interrupt stack. The monitor defines these three
stacks, which can be used by the application program. The monitor does
not use these stacks, but defines its own stack which it explicitly changes
to when it runsrfonitor_stack). The monitor does not use supervisor
calls, so the processor never implicitly changes to one of the other stacks
while the monitor is running. However, if an interrupt occurs while the
monitor is running, the processor changes to the interrupt stack to service
the interrupt and then returns to the monitor stack once the interrupt service
is complete. Figure 6-1 shows the Application Stack and monitor Stack.
The section labeledpplication Stacks whichever of the three stacks the
application program is using when a fault occurs.

Theory of Operation

Figure 6-1 Stack Switch
Application Stack
Points to
Previous Low Memory
Frame
> PFP h
—— SP
RIP
g Local Register Application
] Space For Program Frame
T This Frame
2
= Stack Space For
E Application
% Program Frame
) —>
o
a
c
k)
3
= Fault
g Data
] Fault Record
§2)
c
'DC__> Process Controls [€——This Address
Arith Controls is Reported by
Fault Handler
Fr|er| [est
Fault Instr Addr
PFP
SP
RIP Fault Handler
» Frame (Discarded
Local Register by Fault Handler)
Space for
Fault Handler

High Memory

Monitor Stack

PFP (0)

SP

RIP

Local Register
Space for
Mon960 Frame

Mon 960
Frame

0OsSD1401

6-7

MON960 Debug Monitor User's Guide

The processor uses the interrupt stack after a reset. The monitor switches
to monitor_stack ~ when it takes the processor out of its initial interrupted
state. See thBystem Initializatiorsection for more information on
initialization.

The monitor runs as much in its own stack space as possible. When a fault
occurs, the processor creates the fault record and stack space for the fault
handler at the end of the faulting frame. The monitor then switches the
Stack Pointer (SP) to point taonitor_stack immediately upon entering

the fault handler. The stack switch is done withsthieh_stack()

routine in theentry.s file.

When starting the application program, the monitor switches the frame
pointer and stack pointer tger_stack . When returning to the
application program after a breakpoint, the monitor restores the stack
pointer and frame pointer to their values before the breakpoint.

Program Execution

The monitor attempts to be transparent and non-intrusive to application
programs by using minimal processor resources. When you are debugging
a program under the monitor (setting breakpoints, displaying registers,
displaying memory, single-stepping), the processor actually alternates
between executing your application program and executing the monitor.

Programs linked to run with the monitor must be linked withctt®80.0
andilibll.a library files. Theibll.a file provides links between
low-level I/O routines in the monitor and the high-level C library I/O calls.

The run-time initialization for your program is provideddmg60.o

Your application program is sandwiched between a startup routine and an
exit routine. The startup routine sets up the stack and the arithmetic-
controls register, initializes the libraries, and calén() . If main() ever
returns, the startup routine cadst()

Theory of Operation

When you debug a program using the monitor, and a breakpoint or trace
event occurs, the monitor changes to its own stack, flushes the cached local
register sets to their respective stack frames, and stores the global registers
in memory to preserve the current state.

When you use thgo command to continue execution from the current
instruction pointer, the monitor switches control back to the application
program. The monitor loads all the registers with the correct values stored
in memory and starts the application running with a return from fault. This
fault return switches the stack back to the application stack.

System Calls

Thelibll.a file is a library that provides the links between low-level 1/O
routines in the monitor and the high-level C library 1/O calls like

printf). . The routines in thibll.a file all result in system calls

through the system procedure table to the routines in the monitor that
handle the actual operations. The monitor half of the routines are located
in the filesruntime.c , hi_rt.c , andui_rt.c . Each routine in

runtime.c determines whether the request must be passed to the host
system or handled by the monitor terminal interface, and calls the
corresponding routine im_rt.c orui_rt.c

For example, suppose the application program patis) . After

formatting outputprintf() callswrite() . Thewrite() routine is in the
libll.a library. Both of these routines are linked with the application
program. Thevrite() routine executesalls instruction to the

monitor entry point calledsdm_write . The behavior ofsdm_write

depends on whether the application was started from the terminal interface
or the host interface.

If the application was started from the terminal interface and the file
descriptor fd) is STDOUT(with value 1), the monitor writes the contents of

the buffer to the terminal. If the application was started from the host
interface, the monitor sends a packet to the host containing the arguments
and the contents of the buffer. The host processes the runtime request and
returns a response.

6-9

MON960 Debug Monitor User's Guide

The monitor Core delays processing of unhandled interrupts that occur
during a runtime request until the host has responded to the request. That
is, it notes that the interrupt occurred, and returns from the interrupt
handler; then when the runtime request or response is completed, the
monitor Core responds as if the interrupt occurred at that time.

The system call returrisfor success. Otherwise it returns an error code.
The library routine places this error code in the global variabie , and
returns-1.

This sequence of calls is illustrated in Figure 6-2.

Figure 6-2 MON960 System Call Sequence

Application Program

call
A
High Level Library

printf

call
Y

Low Level Library
write

calls

A4 If Connected
- Debugger|
Monitor to Debugger > ‘ \

] hi_write
sdm_write -

Characters

else o to Terminal
>| ui_write

0SD2103

6-10

Theory of Operation

When the monitor is not controlled by a host-based debugger, the only
requests that can be executedresd() withfd =0, write withfd =1

orfd =2, andisatty() , which returnSRUEwhenfd iso, 1, or2. Other
requests or argument values return with an appropriate error status. The
include filesdm.h contains the following system calls to support the C
compiler libraries:

unsigned int mon_init_bentime();

unsigned int mon_bentime();

void mon_term_bentime();

unsigned long mon_init_bentime_noint(int Mhz);

unsigned long mon_bentime_noint();

void mon_init_eeprom();

int mon_is_eeprom(ADDR addr, unsigned long length);

int mon_check_eeprom(ADDR addr, unsigned long length);
int mon_erase_eeprom(ADDR addr, unsigned long length);

int mon_write_eeprom(ADDR start_addr, const void
*data_arg, int data_size);

int _sdm_open(const char * filename | int mode, int cmode,
int *fd)
int _sdm_read(int fd,char* buf,int size ,int* nread)
int _sdm_write(int fd , const char * data , int size
int * nwritten)
int _sdm_lIseek(int fd , long offset ,int whence,
long * new_offset)
int _sdm_close(int fd)
int _sdm_isatty(int fd,int* resul t)
int _sdm_stat(const char * path ,void* bp)
int _sdm_fstat(int fd ,void* bp)
int _sdm_rename(const char * old , const char * new)
int _sdm_unlink(const char * path)

6-11

MON960 Debug Monitor User's Guide

6-12

int _sdm_time(long * time)
int _sdm_system(const char * cp, int* result)
int _sdm_arg_init(char * buf , int len)

void set_prch(void * prch);

void * get_prcbptr();

void set_mon_priority(unsigned int new_priority);
unsigned int get_mon_priority();

void mon_bentime_onboard_only(int onboard_only);
void post_test();

void mon_entry();

void mon_init_p_timer();

void mon_term_p_timer();

void _sdm_exit(int exit_code)

Note that with release 3.1, the names of these library functions have been
changed fronsdm* to _sdm*. This allows a user program linked into
MON960 to make all library calls.

Downloading with Xmodem

When the monitor is executing in User Interface Ul mode and receives a
download command, it waits for the terminal program to initiate the
Xmodem protocol. The terminal program sends the COFF file in 128-byte
packets. As the monitor receives each packet, it verifies the checksum at
the end of the packet. If the checksum is correct, the monitor sends an
acknowledgeAcCK) signal back to the terminal program. If the checksum

is incorrect, the monitor sends a negative acknowlexige and the

terminal program retries the packet.

As the monitor successfully receives each packet, it locates the text and
data sections of the COFF file and copies the contents to the proper
memory locations.

Theory of Operation

After the last packet is sent and acknowledged, the terminal program sends
an end of transmissio&®1), and the monitor returns to the terminal
interface prompt.

In contrast, the host interface in the monitor, which is employed by the
debugger, does not use the download command or the Xmodem protocol.
The debugger uses theite_mem command to write the code and data to
target memory.

High Speed Downloading

The monitor allows parallel or PCI downloading of executable files to the
target. For additional information on downloading, see Chapters 2, 4, and
Appendix B.

Parallel Download

A host application initiates a parallel download by calling
hdi_download() and passing appropriate information in the
fast_config parameter (a pointer tolWNLOAD_CONFIstructure).
The following pseudo code shows example initialization:

#include <hdil.h>

DOWNLOAD_CONFIG cfg;
cfg.download_selector = FAST_PARALLEL_DOWNLOAD;

cfg.fast_port = "Iptl"; /* typical for Windows, Unix
device names vary */ ...

hdi_download(..., &cfg, ...);
hdi_init_app_stack();

Alternately, a host application may choose to bypaisdownload() and
perform the file transfer using its own loader. In that case, the following
series of HDI calls may be used to effect a parallel download:

6-13

MON960 Debug Monitor User's Guide

6-14

1. Optionally determine whether the target is capable of parallel
download operations:

if (hdi_fast_download_set_port(PARALLEL_CAPABLE) == OK) {

}
2. Callhdi_fast_download_set_port() with a properly initialized
DOWNLOAD_CONFEKtructure:

#include <hdil.h>

DOWNLOAD_CONFIG cfg;

cfg.download_selector = FAST_PARALLEL_DOWNLOAD;
cfg.fast_port = "Ipt1"; /* typical for dos */

if (hdi_fast_download_set_port(&cfg) == OK)

{

}

3. Actually download the executable by callimt) mem_write() to
write text and data sections to target memory, and by calling
hdi_mem_fill() to fill target memory with a single value.

4. Close the parallel download communication channel and then establish
a small bootstrap stack for the application:

hdi_fast_download_set_port(END_FAST_DOWNLOAD);
hdi_init_app_stack();

PCI Download

A host application initiates a PCI download by callidg download()

and passing appropriate information in #i_config parameter (a

pointer to eOWNLOAD_CONFESructure). Because HDI permits

specification of a PCI device address in one of three ways, initializing the
DOWNLOAD_CONFEtructure requires more work than parallel download.

The comments at the bottom of theM_PCI_CF&lata structure in

hdi_com.h describe all three addressing scenarios. For the purpose of
discussion here, the following pseudo code illustrates PCI download. It
selects the target using the simplest possible PCI address -- the default PCI
vendor ID.

#include <hdil.h>

Theory of Operation

DOWNLOAD_CONFIG cfg;

cfg.download_selector = FAST_PCI_DOWNLOAD;
cfg.fast_port = PCI_UNUSED_FAST_PORT;
cfg.init_pci.comm_mode = COM_PCI_MMAP; /* or
COM_PCI_IOSPACE */

strcpy(cfg.init_pci.control_port,
last_4_chars_of_controlling_serial_port);

cfg.init_pci.func = COM_PCI_DFLT_FUNC;

cfg.init_pci.bus = COM_PCI_NO_BUS_ADDR;
cfg.init_pci.vendor_id = COM_PCI_DFLT_VENDOR; /* currently
Cyclone */ ...

hdi_download(..., &cfg, ...);
hdi_init_app_stack();

Again, a host application may choose to bypassiownload() and
perform the PCI file transfer using its own loader. In that case, use the
following series of HDI calls to effect a PCI download:

1. Optionally determine if the target is capable of PCI download
operations:

if (hdi_fast_download_set_port(PCI_CAPABLE) == OK) {

2. Callhdi_fast_download_set_port() with a properly initialized
DOWNLOAD_CONFEtructure:

#include <hdil.h>

DOWNLOAD_CONFIG cfg;

cfg.download_selector = FAST_PCI_DOWNLOAD;
cfg.fast_port = PCI_UNUSED_FAST_PORT;
cfg.init_pci.comm_mode = COM_PCI_MMAP; /* or
COM_PCI_IOSPACE */
strcpy(cfg.init_pci.control_port,
last_4_chars_of_controlling_serial_port);
cfg.init_pci.func = COM_PCI_DFLT_FUNC;
cfg.init_pci.bus = COM_PCI_NO_BUS_ADDR;
cfg.init_pci.vendor_id = COM_PCI_DFLT_VENDOR; /*
currently Cyclone */

6-15

MON960 Debug Monitor User's Guide

if (hdi_fast_download_set_port(&cfg) == OK)

Actually download the executable by callimy mem_write() to

write text and data sections to target memory and by calling

{
3.

hdi_mem_fill()
4,

to fill target memory with a single value.
Close the PCI download communication channel and then establish a
small bootstrap stack for the application:

hdi_fast_download_set_port(END_FAST_DOWNLOAD);
hdi_init_app_stack();

Monitor Core Source

The source files that make up the monitor core are:

asm_supp.s
bentime.c
break.c
commcfg.c
CX.S
cx_break.c
cx_ibr.c
cx_step.c
entry.s
fault.c
flash.c
float.s
ghist.c
go_user.c

hj_timer.c
hx.s
hx_break.c
hx_ibr.c
hx_step.c
init.s
jx.s
jx_break.c
jx_ibr.c
jx_step.c
kx.s
kx_break.c
leds_sw.c
main.c

mem.c
monitor.c
no_flash.c
no_ghist.c
no_pci.c
no_post.c
no_post.s
no_serl.c
no_time.c
no_timer.c
pci.c
m.s
rn_break.c
rn_ibr.c

rn_step.c
rp.s
rp_break.c
rp_ibr.c
rp_step.c
runtime.c
serial.c
set_prch.c
timer.c
unimplmt.c

version.c

The rest of this section describes the variables and routines the Core
provides to the terminal interface and host interface.

Theory of Operation

Variables

The following global variables are defined by the monitor core. They are
for use by other parts of the monitor. They cannot be used by the
application.

int cmd_stat ; Error status of the last call to the monitor
core.

int break flag ; Set toTRUEwWhen break is received on
the RS232 port.

int break_vector Serial break interrupt vector.

UREGegister_set; Saves values of application's registers.

FPREGIp_register_set Saves values of application's floating

[NUM_FP_REGS]; point registers.

const int have data bpts ; TRUE when this architecture supports
data breakpoints.

const char base_version[]; Contains a version string of the board-
independent portion of the monitor.

int host_connection TRUE when the monitor is connected to a
host debugger.

char *step string String containing stepping information

for the 1960 Jx/HX/Cx/Rx processor.
The value isNULL when the processor is
not a Jx/Hx/Cx/Rx processor, or when
stepping information is not available.

6-17

MON960 Debug Monitor User's Guide

Private Monitor Routines

The following routines are defined by the monitor core for use by other
parts of the monitor. They must not be called by the application.

prepare_go_user()

int prepare_go_user(int mode, int bp_flag ,
unsigned long bp_instr)

Starts executing the application. This call does not return unless an error
occurs.

The argumentnode is one of the following:

GO_RUN GO_SHADOW
GO_STEPGO_NEXT
GO_BACKGROUND

See the description of théi_targ_go() routine in Chapter 8 for more
information on the values afode.

Whenbp_flag is TRUE thego_user() routine steps over a software
breakpoint at the current IP. The varialpeinstr is the original
instruction word that was replaced by the breakpoint. \Wheiag is
FALSE, bp_instr is ignored.

load_mem()

int load_mem(ADDR addr , int mem_size , void * buf ,
int buf_size)

Readsouf size bytes of memory intouf from addr , usingmem_size
byte read instructions.

store_mem()

int store_mem(ADDR addr , int mem_size ,void* data ,
int data_size ,int verify)

Writesdata_size bytes of memory atddr from data , usingmem_size
byte write instructions. Whewerify is TRUE verifies that the data was
stored correctly.

6-18

Theory of Operation

fill_mem()
int fill_mem(ADDR addr , int mem_size,void* data ,
unsigned long data_size ,int count)

Fills memory withcount copies of data, usingem_size byte write
instructions and verifies that the data was stored correctly.

copy_mem()
int copy_mem(ADDR dest , int dest_mem_size , ADDR src ,
int src_mem_size , int length)

Copieslength bytes fromsrc to dest , usingsrc_mem_size byte read
instructions andlest_mem_size byte write instructions and verifies that
the data was stored correctly.

verify_mem()

int verify_mem(ADDR addr , int mem_size ,void* data , int
data_size)

Comparesiata_size bytes of memory aiddr to data , usingmem_size
byte read instructions.

set_bp()
int set_bp(int type , int flags , ADDR addr)

Sets a breakpoint atidr . The variableype is BRK_HWrBRK_DATA
Whentype isBRK_HWaddr must be aligned on a word boundary. See the
hdi_bp_set() routine in Chapter 8 for a descriptionflafys . Note that

the monitor does not support setting and clearing software breakpoints.
Instead, the host handles software breakpoints. SétostdDebugger
Interface Librarysection for information on the host debugger interface
library.

set_break vector
void set_break_vector(int new_vector ,PRCB* prcb)

Initializes the Break interrupt vector in the interrupt table useerR©B
WhenPRCBIs NULL, the current PRCB is used. Whesw _vector is -1,
the currenbreak vector is used.

6-19

MON960 Debug Monitor User's Guide

6-20

clr_bp()
int clr_bp(ADDR addr)

Clears the breakpoint set earliemal’r .

bptable_ptr()
const struct bpt * bptable_ptr ()

Returns a pointer to the table of hardware and DATA breakpoints.

The following routines are in the system procedure table, so you can call
them from your application. These routines also are used internally by the
monitor.

Public Monitor Routines

The following routines are defined by the monitor core and are shared by
monitor and the application.

get_prcbptr()
PRCB *get_prcbptr()

Returns a pointer to the PRCB currently in use.

set_prcb()
void set_prcbh (PRCB * new_prch)

Initializes any required fields inew_prcb .

set_mon_priority()
void set_mon_priority (unsigned int priority)

Sets the minimum priority of the monitor. When the monitor is entered
due to a breakpoint or other reason, it raises the current processor priority
to this value, when the processor priority was lower.

get_mon_priority()

unsigned int get_mon_priority()

Theory of Operation

Gets the minimum priority of the processor while in the monitor.

User Interface Source

The source files that make up the User Interface are:

ui_main.c parse.c ui_break.c convert.c
dis.c disp_mod.c download.c trace.c
io.c perror.c fp.c no_fp.c
ui_float.s ui_rt.c no_float.s ui_stub.c
no_post.c

In monitor commands, all arguments representeskbyess or offset

must be written in hexadecimal, and any argument preceded#iyraust

be written in decimal. Bracketg§ “” indicate that an argument is optional.
When executing a command, any omitted, required argument results in an
error message stating that arguments are missing. The monitor commands
are detailed in chapter 4 of this guide.

Host Interface Source

The source files that make up the host interface are:

hi_main.c hi_rt.c cxX_cpu.c kx_cpu.c
no_para.c fastdown.c paradrvr.c jx_cpu.c
hi_stubs.c no_pci.c pcidrvr.c hx_cpu.c
rn_cpu.c rp_cpu.c

The communications system provides routines that send and receive data
records of various lengths between the host and the target. Both the host
and the target initiate communications by sending commands and receiving
responses. The host sends commands to setup and quire the target. The
target sends commands initiated the application programs request for 10 or
host system information.

This interface is independent of the underlying implementation, and can
select among multiple communications paths at runtime. The higher layers

6-21

MON960 Debug Monitor User's Guide

6-22

of the debugger (including HDIL) need not know what communications
path is in use. The code that implements the communications interface
layer is generic for all hosts, targets, and communications paths.

The monitor uses an error-detecting communications protocol to ensure
that all data sent between the monitor and the debugger is received
correctly. All data transmitted is enclosed in a packet, which includes
fixed values to ensure synchronization and a CRC to ensure data integrity.
Every packet must be acknowledged by the recen@) (when its

correctness is verified. If an incorrect packet is received, the receiver
responds with a negative acknowledyek), and the sender retransmits

the packet.

In the master-slave protocol of the monitor, the host is the default master.
The monitor acts as master only while executing user code, during which
time the host responds only to runtime service requests from the target.

The Host Interface, HI, communication is based on a four layer stack. The
stack is pictured in figure 2.1 and consists of the:

1. Device Driver

2. Packet

3. Communication (Com)

4. Host Debugger Interface (HDI)

The Device Driver layer currently supports:

1. Serial

2. Parallel

3. PCI

4. TCP/IP (Host side only)
5. JTAG

These low level hardware drivers operate independent of the other layers.
There interface is defined in HDILCOMM\dev.h struct dev.

Hardware requirements for parallel and PCI download are discussed in
Appendix B of this guide.

Theory of Operation

Serial Device Driver

The serial device driver is used by the serial packet layer; other packet
layers can have the device specific code built into them or can have other
device driver requirements. The serial device driver is also used in the
target by the terminal interface to read ASCII user commands and write
output. The implementation of the serial device driver is completely
specific to a particular target board or host/operating system.

Communications Packet Structure

The packet layer implementation is for byte stream communications using
serial, PCI, or TCP/IP. The same packet layer is used by both the ends of
the channel. The packet layer can be replaced for other types of
communications paths (for example, Ethernet*). More than one packet
layer can be linked into the debugger, so that the communications interface
layer can select the appropriate packet layer when the debugger is invoked
by the user. The packet layer interface is defined in HDILCOMM\dev.h
struct packet

The monitor ensures the integrity of serial transfer records by enclosing
them in packets. Each packet has a header, a data field, and a CRC
(cyclical redundancy check). Table 6-2 lists the packet fields and value
ranges.

6-23

MON960 Debug Monitor User's Guide

Table 6-2 Packet Field Values

Field Value

start of header 0x1
encoded_length_low 0x60 - Ox9f
encoded_length_high 0x60 - Ox9f
packet_number 0x0 - Oxff
start of text 0x2

(data)

end of text 0x3
crc_low 0x0 - Oxff
crc_high 0x0 - Oxff

The record length, encoded in theoded length_low and
encoded_length_high fields, is between 0 and 4095 bytes. To derive
this value from the encoded information in the packet, do the following:
1. Subtracbx60 from each of thencoded length bytes, giving a
six-bit value betweeox0 andox3f .
2. Concatenate the two resultant six-bit unitsy to the lower end and
_high to the higher end).
3. Read the result as a 16-hit value, filling the most-significant four bits
with zero-hits.

The packet number is used to check for repeated packets. If a message
contains only one packet, the packet number is zero. Otherwise the
numbers start at one and increment for each packet that is part of the same
message. The exception is packet number 252 which is used to
communicate packet layer time-out values.

A 16-bit CRC is computed on all bytes of the packet except the three
constant bytes and the CRC bytes.

6-24

Theory of Operation

Com Layer

The Com layer implements a number of rudimentary debugger commands
on the host to target operation and a number of system 10 commands on
the target to host operation. The host to target commands are listed in file
HDIL\common\GDB_MON.h and the target to host commands are listed
in the file HDI\common\cop.h

Serial Autobaud

The monitor adjusts automatically to the host baud rate. The monitor calls
theserial_baud() routine to set the baud rate to a known rate and then
walits for a byte from the host. Based on the byte the monitor receives, it
determines the baud rate the host is using andseals baud() again

to set that baud rate. At 9600 baud, the byte transmitted by the host is
0x5a. The Monitor responds with aCK (0x06).

The RS-232 table supports baud rates from 1200 to 115200 baud.
Additionally, this RS-232 table supports autobaud from a terminal by
pressing Enter.

The host and the target must use the same table. Note that the baud rate
range supported by the table does not imply that any given host or target
supports these rates.

MONO960 Support for PCI Communication

In MON960, three files support PCl communication:

* commcfg.c contains the code that determines whether the host
requests serial, PCI, or JTAG communication.

6-25

MON960 Debug Monitor User's Guide

» These board-specific files contain the PCl initialization code for the
Cyclone boards list below.

cyrn_hw.c IQ80960RN, 1Q80960RM
cyrp_hw.c IQ80960RP

cyrd_hw.c IQ80960RPLYV , IQ80960RD
c145 hw.c PCI80960DP

e pci_serv.c supports com commands for the PCI interface.

e pcidrvr.c . contains the MON960 PCI driver code. This code is
specific to the PLX PCI9060/ PLX PCI9080 chip and the 80960Rx
CPU chips and contains the following routines:

Table 6-3 pcidrvr.c Routines

Routine Purpose

pci_supported determines whether the target supports
PCI

pci_inuse/pci_not_inuse sets/resets the in-use status bit

pci_init initializes the PCl interface

pci_connect_request completes the host connection

pci_err sets the error status bit and resets the
data transfer status bits

pci_intr resets doorbell bit 31 to turn off the
interrupt

pci_write_data_mb writes a 32-bit value to verify that the
PCI download serial channel is correct

pci_read reads data from the host

pci_write writes data to the host

pci_dev_open opens the PCI bus for PCI
communication

pci_dev_close ends PCI communication

pci_dev_read reads packets using the PCI bus

pci_dev_write writes packets using the PCI bus

6-26

Theory of Operation

JTAG Device Driver

The JTAG device driver is either win_jtag.c and unix_jtag.c

Supported routines:

jtag_open Opens JTAG port to SDI emulator
Jtag_close Close JTAG port to SDI emulator
Jtag_read Reads data form the emulator
Jtag_write Writes data to the emulator
Jtag_signal Sets the communication signal flag
Jtag_intr_target Interrupts target in response to Ctrl-C

6-27

The MON960 Application
Environment

Purpose

This chapter discusses the application’s execution environment, compiling
an application, and related topics.

Execution Environment

The monitor sets up an environment for your application program. Your
program can use this environment or create its own.

The monitor sets up the following:

» process control block (PRCB)

» system procedure table

« fault table

e interrupt table

« control table (Cx, Hx, Jx, and Rx only)

e user stack, supervisor stack, and interrupt stack

System Procedure Table

The system procedure table has space for all 260 possible entries. The
monitor reserves entries 220-259. The application can fill in the rest of the
table with the values it requires. The monitor provides default routines for
all system procedure table entries.

Reserved MON960 system procedures are:
mon_init_bentime =220 [*INIT_BENTIME*/

7-1

MON960 Debug Monitor User's Guide

7-2

mon_bentime =221 *BENTIME*/
mon_term_bentime =222 FTERM_BENTIME*/
mon_init_bentime_noint =223 /*INIT_BENTIME_NOINT*/
mon_bentime_noint =224 BENTIME_NOINT*/
mon_init_eeprom =225 *INIT_EEPROM*/
mon_is_eeprom =226 I*IS_EEPROM*/
mon_check_eeprom =227 [*CHECK_EEPROM*/
mon_erase_eeprom =228 *ERASE_EEPROM*/
mon_write_eeprom =229 *WRITE_EEPROM?*/

sdm_open =230 /*SDM_OPEN?*/
sdm_read =231 /*SDM_READ*/
sdm_write =232 /[*SDM_WRITE*/
sdm_lIseek =233 /*SDM_LSEEK*/
sdm_close =234 /*SDM_CLOSE*/
sdm_isatty =235 [*SDM_ISATTY*/
sdm_stat =236 [*SDM_STAT*/
sdm_fstat =237 [*SDM_FSTAT?*/
sdm_rename =238 [*SDM_RENAME*/
sdm_unlink =239 /*SDM_UNLINK*/
sdm_time =240 [*SDM_TIME*/
sdm_system =241 [*SDM_SYSTEM*/
sdm_arg_init =242 /*SDM_ARG_INIT*/
mon_init_p_timer =243 [*init_p_timer*/
set_prcb =244 [*SET_PRCB*/
get_prcbptr =245 [*GET_PRCBPTR*/

The MON960 Application Environment]

mon_term_p_timer =246 [*term_p_timer*/
set_mon_priority =247 /*SET_MON_PRIORITY*/
get_mon_priority =248 *GET_MON_PRIORITY?*/

mon_set_timer =249 *MON_SET_TIMER?*/
cave_dispatch =250 [*CAVE_DISPATCH?/
mon_bentime_onboard_only = 252 /*bentime select*/
post_test =253 [*post_test*/

mon_entry =254 *MON_ENTRY?*/
sdm_exit =257 [*SDM_EXIT¥/

Alternate list: Tom this list is complete but it lacks the explanations in the
previous list.

{100, (void (*)())sys_pci_bios_present },
{101, (void (*)())sys_find_pci_device },
{102, (void (*)())sys_find_pci_class_code },
{103, (void (*)())sys_generate_special_cycle },
{104, (void (*)())sys_read_config_byte },
{105, (void (*)())sys_read_config_word },
{106, (void (*)())sys_read_config_dword },
{107, (void (*)())sys_write_config_byte },
{108, (void (*)())sys_write_config_word },
{109, (void (*)())sys_write_config_dword },
{110, (void (*)())sys_get_irg_routing_options },
{111, (void (*)())sys_set_pci_irq },

13, (void (*)())sys_timer0_initialization },
14, (void (*)())sys_timer1_initialization },
15, (void (*)())sys_timerO_enable },

16, (void (*)())sys_timerl_enable },
117, (void (*)())sys_timerQ_disable },
{118, (void (*)())sys_timerl_disable },
{119, (void (*)())isr_connect },

{120, (void (*)())isr_disconnect },

el ad

{
{
{
{
{

#endif

] MON960 Debug Monitor User's Guide

{220, init_bentime },
{221, bentime },
{222, term_bentime },
{223, init_bentime_noint },
{224, bentime_noint },
{225, init_eeprom },
{226, (void (*)()) is_eeprom },
{227, (void (*)()) check_eeprom },
{228, (void (*)()) erase_eeprom },
{229, (void (*)()) write_eeprom },
{230, _sdm_open},
{231, sdm_read},
{232, _sdm_write },
{233, _sdm_lIseek },
{234, sdm_close },
{235, sdm_isatty },
{236, sdm_stat },
{237, _sdm_fstat },
{238, _sdm_rename },
{239, _sdm_unlink },
{240, _sdm_time },
{241, sdm_system },
{242, sdm_arg_init},
{243, _init_p_timer },
{244, set_prcb },
{245, (void (*)())get_prcbptr },
{246, term_p_timer}, [* obsolete cmdbf
entry */
{247, set_mon_priority },
{248, (void (*)())get_mon_priority },
{249, mon_set_timer },
/*250 reserved for CAVE function */
{252, bentime_onboard_only },
{253, _post_test},
{254, mon_entry },
{ 255, fault_entry },
{256, fault_entry },
{257, _sdm_exit}, [* exit application */
{258, app_exit_user },
{259, app_go_user},

7-4

The MON960 Application Environment

Fault Table

The fault table contains entries that point to the monitor's fault entry point.
Entry 1 (trace fault) is reserved by the monitor. The rest of the entries can
be changed by the application to point to its own fault handlers. The
monitor provides a default fault handler for every entry in the fault table.

Interrupt Table

The interrupt table contains entries that point to the monitor's interrupt
entry point. One entry is reserved by the monitor for the break key, which
is used to break into the monitor during program execution. (For Cx, JX,
Rx and Hx targets, the break is typically NMI, while for Kx and Sx targets
the break is typicallynto.) The number of the reserved entry is the value
returned by theget_int_vector routine, which is specified during
retargeting. (See Chapter 5 for information on retargeting.) The
application can change the rest of the entries.

NOTE. The monitor provides a default interrupt handler for each
interrupt vector.

Control Table

The control table for the 1960 processors Cx, Jx, Rx, and Hx is defined by
the retargeting code. The monitor reserves the first four words and the
BPCON register to support instruction and data breakpoints. The monitor
uses the interrupt configuration registers to enable the BREAK interrupt, if
the BREAK interrupt is not connected to NMI. The application must
modify only those bits that it requires in the interrupt configuration
registers so it does not disturb the monitor's interrupt. The rest of the
control registers can be changed by the application as required.

7-5

MON960 Debug Monitor User's Guide

7-6

Monitor Stacks

The monitor provides three stacks:
1. auser stack ¢ser_stack)

2. asupervisor stacktfap_stack)
3. aninterrupt stack iptr_stack)

These stacks are definediiits . The frame pointer and stack pointer

are initialized to point to the user stack. The pointer to the supervisor stack
is in the system procedure table. This stack is used only if the application
changes to user mode and then does a supervisor call. The pointer to the
interrupt stack is in the PRCB, and has been cached by the processor when
the application begins executing.

Changing the Environment

The 1960 processors store various system environment information in the
PRCB. The processors cache the PRCB on-chip, not in regular memory.
Some applications change the environment (e.g., alter entries in the
interrupt table). The PRCB makes such changes.

Change system information in one of two ways. One method allows
changes to a value pointed to by a field in the PRCB. The second method
allows changing of a field value in the PRCB.

Changing a Value Pointed to by a Field in the PRCB

To change a field value pointed to by the PRCB (e.g., write a new entry to

the interrupt table), perform the following steps:

1. Callget_prcbptr() (system call 245) to get the address of the PRCB
into registery0. The address of the Interrupt Table is stored in the
PRCB.

2. Read the correct field of the PRCB to get the address of the Interrupt
Table.

3. Write the new entry into the field of the Interrupt Table. Be careful
not to overwrite one to MON960's reserved entries in any of the
system tables.

The MON960 Application Environment

Changing a Value in a Field of the PRCB

To create a new Interrupt Table by writing a new value in the Interrupt
Table Base Address field of the PRCB itself, perform the following steps:
1. Create a new Interrupt Table in memory.

2. Callget_prcbptr() to get the address of the PRCB into regigter

3. Write the address of your Interrupt Table into the appropriate field of
the PRCB.

4, Callset_prcb() to let MON960 write its reserved entries into all
PRCB related structures, including your new Interrupt Table.

5. Re-cache the processor. For an i960 Cx, Jx, Hx, or Rx processor,
execute theysctl instruction. For an i960 Kx or Sx processor,
execute theacC instruction. See your processor user’'s manual for
details about these instructions.

Creating a New PRCB

In some situations, you may choose to create a new PRCB before making
any modifications to the PRCB fields. To connect a new PRCB, perform
the following steps:

1. Build your own PRCB in RAM.

2. Initialize the newly created PRCB pointers to the system data
structures (e.g., the fault table, the interrupt table, and the system
procedure table).

3. Fillin the data structures with your own values or existing table
values.

4. Confirm that your PRCB contains valid fields, including pointers to all
the appropriate tables for your processor architecture's PRCB.

5. Callset_prcb() with the address of your new PRCB in regigter

6. Re-cache the processor. For an i960 Cx, Jx, Hx, or Rx processor,
execute thaysctl instruction. For an i960 Kx or Sx, execute the
instruction. See your processor reference manual for details about
these instructions.

7-7

MON960 Debug Monitor User's Guide

NOTE. For the i960 Kx/Sx processors, the pointer to the system
procedure table (SPT) is not in the PRCB. Rather, it is in the system
address table (SAT) located in ROM. Therefore, the system procedure
table cannot be relocated. However, the system procedure table can be
written to. The address of the SPT is stored at offset 120 decimal in the
SAT. Because the SAT is always at location 0 in ROM, your reinitialize
IAC call must always use 0 for the SAT.

set_prcb() generates a system call calls 244 and get_prcbptr() generates a
calls 245.:

..[../mon960/common/sdm.h

When a system cadlet_prcb()is made, the following actions occur:

« The entry in the new interrupt table corresponding to the monitor's
BREAK interrupt is set to point to the monitor's BREAK interrupt
handler (usually th&imi interrupt).

» The trace fault entry in the new fault table is set to point to the
monitor's trace fault handler.

e Fori960 Cx, Jx, Hx or Rx processors, entries 220 to 259 in the new
system procedure table are set to the addresses of the monitor's system
procedures. These are MON960's reserved entries.

» Fori960 Cx, Jx, Hx or Rx processors, the IP Breakpoint, Data Address
Breakpoint, and Breakpoint Control entries of the old Control Table
are copied into the new Control Table.

For Cx JX, Rx, or Hx processors, if you define an interrupt other ithan

for breaking into the debuggettr(-break), after a SyscCTLreinitialize"
instruction, the imap register needs to be set appropriately. Additionally,
after asyscCTLreinitialize, the stack pointer is set to the interrupt stack.
However, it is possible to save the andfp registers to memory before
issuing thesyscTLreinitialize and then to restore them or set them to some
other appropriate values afterwards.

The MON960 Application Environment

After reinitialization, the state of the processor (process-controls register) is

as follows:

* The trace-enable bit is set to 0. This must be set to one in order for
breakpoints to occur in the debugger. Usadpc instruction, as
shown in the following example.

e The priority field (process priority) is set to 31. Lower this priority if
you have interrupts set at lower priorities.

» The state-flag (state of the processor) is set to 1 (interrupted). Change
this to O (executing) if necessary. This change is made indide
instruction in the example below.

» The trace-fault Pending Flag (bit 10), is set to 0 (No Fault Pending).

» The execution-mode bit is set to 1 (supervisor mode).

The following assembler code example shows the use of system call 244
(set_prch()) and system call 24%5dt_prcbptr()). It uses the Jx-, Rx,
Hx- or Cx-specific instructiosysctl to cause the processor to reread the
PRCB. The assembly code is:

.global_change_prch

_change_prch:

Ida 245, g1 #system call to get_prcb, calls
gl #it returns the current PRCB
#in gO0.
st g0, _save_prch #store current PRCB
#address

#At this point, a new fault table, interrupt table,
#system table, or control table may be installed using
#the pointer to the current PRCB in g0.

Ida 244, gl #system call to set_prcb to
cals gl #inform the monitor that the
#PRCB has been changed.

Do a sysctl to cause the processor to re-read the PRCB

Id _save_prchb, r5 #PRCB address

Ida restart_label, r4 #next instruction to execute
#after sysctl

Ida 0x300, r3 #message type 300 for

flushreg #reinitialize

7-9

MON960 Debug Monitor User's Guide

st fp, _save_fp #save current fp to be
#restored after sysctl
st sp, _save_sp #save current sp to be

#restored after sysctl
sysctl r3, r4, r5

restart_label:

Id save_sp, sp

Id save_fp, fp
mov 0x1, r10 #set up to:
Ida 0x2001, g13 #turn off interrupt bit and

#set trace enable bit, using
#the modpc instruction
modpc g13, g13, r10

mov r7, r7 #NOP instructions to allow
mov r7, r7 #the modpc instruction to
mov r7, r7 #complete.

mov 17, r7

#Note that at this point the
#process priority is 31 and
#the execution mode is
#supervisor.

If the application already knows the address of the PRCB, it is not
necessary to doget_prcbptr() call. The application can place the
address of its new PRCB ing0 and then cabet_prcb() to inform the
monitor that it is changing the PRCB. The monitor fills in the reserved
fields in the tables with its required values. The application can then use a
reinitialize IAC orsysctl instruction to cause the processor to read the
new PRCB.

When the monitor starts executing your program, it sets the trace-enable bit
in the process controls register, and sets the trace-controls register
according to the trace mode enabled. The breakpoint trace bit is always
set. The application must not change the trace-controls register or clear the
trace-enable bit in the process controls register. Note, however, that a
reinitializesysctl , a reinitialize 1AC, or an interrupt clears the trace

7-10

The MON960 Application Environment

Libraries

enable bit. The application should userthepc instruction to set the
trace-enable bit after any of these events.

This section describes the libraries that can be linked with an application so
that it can work with the MON960 monitor.

libll

The library provided with the compileigll.a , is a low-level library that
works with the high-level libraries provided with the compiler. This

library contains the entry points described iniff& Processor Library
Supplementiisted in yourGetting Startedyuide. Each routine in the

library makes a call through the system procedure table to the monitor,
which completes the operation. Although the routines in this library can be
called by the high-level library, they can also be called directly by the
application, if desired.

In addition to the routines required by the high-level libraryjithe
file contains the following routines. The fiéem.h contains declarations
of these routines as well as their system-procedure table indexes.

void *get_prcbptr() Returns the address of the currently
active PRCB. The current PRCB is
initialized by the monitor, but either a
debugger or the application program can
change it. (In the latter case, the
application must inform the monitor that
it is changing the PRCB by calling
set_prcb() .) This routine can be used
to access and change non-reserved fields
in the PRCB and associated tables
(system procedure table entry #245).

set_prch(void *new_prch) Informs the monitor that the application
is about to change to a new PRCB. This

7-11

MON960 Debug Monitor User's Guide

void set_mon_priority
(unsigned int new_priority)

unsigned int
get_mon_priority()

libmon

These routines are in thiemon.a

Interrupting Benchmark Timer

must be done before doing a reinitialize
IAC or asysctl initialize. This enables
the monitor to properly make use of the
new tables. It also enables the monitor
to fill in the values of required fields, so
the application does not have to be
dependent on a particular
implementation of the monitor (system
procedure table entry #244).

Sets the minimum priority of the

monitor. When the monitor is entered
due to a breakpoint or other reason, it
raises the current processor priority to
this value, if the priority was lower. The
default value is 31, which means that all
maskable interrupts are disabled while
the monitor is running (system procedure
table entry 247).

If you want all interrupts enabled while
in the monitor, set this value to 0. Do
this when your interrupt handlers are
fully debugged.

Returns the monitor priority described
above (system procedure table entry
248).

file.

These routines use a 32-bit interrupting timer.

7-12

The MON960 Application Environment

init_bentime()
unsigned int init_bentime(x)
int x; /*unused */

This routine must be called before the first cabbdotime() . It starts the
timer and returns an unsigned integer that is the overhead in microseconds
for the call tabentime()

NOTE. The argument is unused, but is kept for compatibility.

bentime()

unsigned int bentime(void)

This routine returns the current timer value in microseconds. Note that the
timer is free running, so a call bentime() returns only the current value

of the timer.

term_bentime()

void term_bentime(void)

This routine disables thentime() timer interrupt and shuts down the
timer.

Non-interrupting Benchmark Timer

These routines use the 32-bit timer.

init_bentime_noint()

unsigned long init_bentime_noint(MHz)

int MHz; Funused*/

This routine must be called before the first call tobigr@ime_noint()

routine. It starts the timer and returns an unsigned long integer value that
is the overhead in microseconds for the call too#ingeime_noint()

routine.

7-13

MON960 Debug Monitor User's Guide

7-14

NOTE. The argumentiHzis unused, but is kept for compatibility.
Instead, eight MHz is assumed.

bentime_noint()

unsigned long bentime_noint(void)

This routine returns the current timer value in microseconds. Note that the
timer is free running, so a call bentime_noint() returns only the
current value of the timer.

init_flash()
init_flash(void)

This flash routine initializes the flash timer. It must be called before any
other flash routines are called.

program_flash()

program_flash(start_addr, dataptr, bytes)
unsigned int start_addr;

unsigned int *dataptr;

int bytes;

This flash routine programs the flash memory akthe addr for the

given number obytes . Thedataptr argument is a pointer to the data to
be copied. With the exception of the IQ80960RM/RN which only allows
programming the application space. See Section IQ80960RP Eval Board
Flash Programming in Chapter 3.

erase_flash()

int erase_flash(void)

This flash routine erases the flash space using a whole-chip erase. With the
exception of the IQ80960RM/RN which only allows erasing the

application space. See Section IQ80960RP Eval Board Flash Programming
in Chapter 3.

The MON960 Application Environment

set_mon_timer()

init_P_timer()

term_P_timer()

These routines are used only by ghist960.

The rest of the library routines and system calls support the C compiler
libraries.

Compiling an Application Program

L)

This section illustrates how to compile application programs using
MON960. Thenello.c file provided with the monitor source serves as an
example to illustrate compiling.

NOTE. This section contains examples for the Intel compiler and iC-960
compiler driver. If you are using another compiler, consult your compiler
manual for the correct syntax for compiler command lines.

To compile a program for running on the monitor, ensure that you have
installed the compiler correctly and set th&®BASE environment
variable.

Thehello.c file provided with the monitor source turns the benchmark
timer on and callguts("hello world!\n"). It also callsprintf() to
output the time it took to print the message. You can cornglitec

without benchmark timing by deleting the timing code.

7-15

MON960 Debug Monitor User's Guide

7-16

Interrupts

The following command line compilégllo.c for executing using the
1960 SA architecture on the Cyclone cysx board:

ic960 -TCYSX -ASA -0O2 -0 hello.sa hello.c

-Teysx specifies theysx.ld linker-directive file in the
I960BASE/lib directory. Theysx.ld file links
in crt960.0 andlibll.a from the
I960BASE/lib directory.

-ASA specifies the 1960 SA architecture.

-02 selects optimization level (Ois the capital
letter Oh.)

-0 hello.sa specifieshello.sa as the output file.

When you retarget the monitor, you must also change the linker-directive
file used to link the applications to be debugged. The linker-directive file
specifies what memory is available on the target board for the application,
and where the base of the application stack is.

By default, the monitor starts executing the application at interrupt priority
31. Therefore, only priority 31 interrupts (and NMI for i960 Jx/Cx/Hx/Rx
processors) are serviced. You can set the priority of the application
program in the process controls register by usingntitpc instruction.

The following code segment sets the program priority to zero:

Idconst 0x001f0000, g0

Idconst 0, g1

modpc g0, g0, g1

mov g0, g0 #Note that the modpc instruction can

mov g0, g0 #take up to 4 clock cycles to complete
mov g0, go #execution.

mov g0, g0

A protection fault occurs if theodpc is executed from user mode, so
ensure that your program is in supervisor mode when changing priority.
The monitor runs applications in supervisor mode by default. For more

The MON960 Application Environment

information on how the processor handles interrupts, seeaychitecture-
specific manuals.

The monitor provides a default interrupt handler for each interrupt vector.
The default handler stops execution and indicates that an unexpected
interrupt was received. If an unexpected interrupt is received while the
monitor is running, it is treated as a fatal error.

The application program must change any interrupt vectors it uses to point
to its own interrupt handlers. A method for making that change is found in
theset_timer_interrupt() routine, found inimer .

Theset_timer_interrupt() routine first locates the interrupt table to
enter a new vector into the table. The systengealprcbptr() returns
the PRCB address. The PRCB contains a pointer to the interrupt table.
This pointer can be used to replace the given entry in the interrupt table
with a vector that points to the new interrupt routine. The following code
replaces the default handler for the vedioter_vector in the interrupt
table with the timer-interrupt routininer_isr()

#include "i960.h"

#include "sdm.h"

PRCB *prcb;

INTERRUPT_TABLE *int_table;

prcb = (PRCB *)get_prchptr();

int_table = prcb—>interrupt_table_adr;
int_table—>interrupt_proc[timer_vector — 8] = timer_isr;

Note that 8 is subtracted from the interrupt vector number because
interrupt_proc is defined in960.n to point to the first usable vector,
vector 8. For more information on the interrupt table, see your processor
manual.

In a similar fashion, if you want to provide a fault handler, you can access
the fault table through the PRCB to replace an entry in the fault table. This
accessing technique is useful for writing application-specific fault handlers.

7-17

MON960 Debug Monitor User's Guide

7-18

Debugging Interrupt Routines

When debugging interrupt handlers, three different scenarios are possible
involving interaction between the monitor and the interrupt routine. They
are:

1. The user program is running, an interrupt occurs, and a
breakpoint is set in the interrupt routine—When the breakpoint in
the interrupt routine is hit, the break occurs. At that point you can
perform normal debugger activities. To prepare an interrupt procedure
for debugging, see the section below.

2. The monitor has control and an interrupt occurs—This is okay as
long as there are no breakpoints of any kind in the interrupt routine.
The interrupt is serviced and the monitor resumes upon completion of
the interrupt.

3. The monitor has control, an interrupt occurs, and a breakpoint is
set in the interrupt routine—This does not work and results in the
monitor losing information about the state of the application. If you
are using gdb960, or another host-based debugger, the host and target
may lose communications. By definition, the monitor has control of
the target except duringga command.

To avoid the third situation while the monitor has control, the processor
priority must exceed the priority of any interrupts you are debugging. By
default, the monitor priority is 31, and no interrupts occur while the
monitor is running. (If the serial port interrupt is not NMI, the monitor
priority is lowered to enable that interrupt.) If you have interrupts that you
want serviced while the monitor has control, you can lower the monitor
priority, but you cannot set breakpoints in those interrupt handlers. The
monitor priority can be changed from the application by calling the system
procedureset_mon_priority (system procedure table entry 247). If you
are using a host-based debugger, it may have an option or command to set
the monitor priority.

Due to the way the 1960 processor family handles interrupts, you must set
up the interrupt routine preamble correctly if you want to break inside the
interrupt routine. When an interrupt occurs, the processor clears the trace-
enable flag in the process-controls register. This disables all tracing

The MON960 Application Environment

features, including breakpoints. Therefore, your interrupt handler must set
the trace-enable bit in order for a breakpoint to be recognized. Otherwise,
the breakpoint is not recognized and your interrupt handler does not work
properly because one of the instructions has been replaced with the
breakpoint instruction. The following example usesnthépc instruction

to set the trace-enable bit and the required additiemainstructions to

allow themodpc instruction to complete:

mov 1, r3
modpc 1, 1, r3
mov r3, r3
mov r3, r3
mov r3, r3
mov r3, r3

Faults and Interrupts While Executing

When a fault or interrupt occurs while the application program is executing
and the application has not installed a handler for that fault or interrupt, the
monitor stops execution and displays information about the fault or
interrupt. The monitor also displays the address where the fault record or
interrupt record was saved on the stack. This address is above the current
sp, because the monitor unwinds the stack to the point where the fault or
interrupt occurred. The address displayed is of the last four words of the
fault record. Some types of faults store additional information below this
address. See your architecture-specific manuals for information on the
format and contents of the fault record.

The monitor saves the values for, ip , and other registers that they had

just before the fault occurred. If you want to see the values of any registers
inside the fault or interrupt handler, you can install a handler in the table
and set a breakpoint at the first instruction of the handler.

7-19

] MON960 Debug Monitor User's Guide

1960 Processor Cache Invalidation by MON960

The 1960 Jx/Cx/Hx/Rx processor's instruction cache is invalidated by the
monitor whenever the monitor passes control to the application. (This
code is located in filentry.s in the routine exit_mon() .) Invalidating

the cache is necessary because, while in the monitor, memory may have
been changed (e.g., by setting a breakpoint). This invalidation may
conflict with your use of the cache. In particular, if you use the cache to
store interrupt handlers in the i960 Jx/Cx/Hx/&twcessor, you will want

to change the way the monitor invalidates the cache.

This can be done by changing the assembly rodgtiste cache()

which is in the fileca.s for the 1960 Jx/Cx/Hx/Rx architecture. As
provided, this routine executesyactl instruction to invalidate the

cache. Alternately, you can force the contents of the cache to be discarded
by executing a sufficient number of NOP instructions to fill the entire
available instruction cache. For example, if you configure the Jx/Cx/Hx's
instruction cache for a 512-byte load-and-lock cache (to contain your
interrupt handler) and a 512-byte normal cache, you should replace the
sysctl instruction inflush_cache() with 128 NOP instructions. (You
can useMoVG0,Go as an NOP. Each such instruction occupies four bytes
of the cache. It therefore takes 128 four-byte instructions to fill the
512-byte normal cache.)

Note that if you configure the entire 1960 Jx/Cx/Hx/Rx instruction cache
for your interrupt handler, you can completely eliminate the

flush_cache() routine since there is no normal instruction cache needing
to be flushed.

System Calls

The following system procedures are called by the monitor. The monitor
provides stubs for these procedures. The application program can replace
these entries in the custom procedure table with the addresses of its own
routines by writing into the appropriate SPT fields. The base address of

7-20

The MON960 Application Environment

the SPT is stored in the PRCB for IX/Cx/Hx/Rx processors and in the SAT

for Kx/Sx processors.

app_exit_user(258) This entry is called by the monitor each
time it regains control from the
application due to a breakpoint,
single-step operation, or other reason.
This entry can complete a task such as
disabling a real-time clock while the
application is not running.

app_go_user(259) This entry is called by the monitor each
time it transfers control to the
application. This entry can perform a
task such as re-enabling a real-time clock
that was disabled while the monitor was
running.

If there is some action you want to perform each time any application is
entered or exited, then you can change the rouiisses go user() or
board_exit_user() in the fileboard _hw.c before you build the monitor.

NOTE. When using the i960 Cx, Jx, Hx, or Rx processor, be careful to
enter addresses fapp_go_user() andapp_exit_user() into the SPT
after each call taet_prcb() . The monitor useset prcb() to initialize

all monitor-reserved entries in the SPT. Therefore, when calling
set_prcb() after modifying the SPT for custapp_go_user() and
app_exit_user() routines, the new entries are overwritten by

set_prcb() . See the Changing the Environment section in this chapter
for details orset_prch()

Reserved Registers

There are several registers and fields of processor-defined tables that
MONO9G60 reserves for its use. It expects the application to preserve the

7-21

MON960 Debug Monitor User's Guide

7-22

value of these registers and fields. In addition, the operation of the
application must not depend on the values of these locations.

NOTE. This list omits obvious items, such as the fact that disabling all
interrupts prevent the BREAK signal from interrupting the application,
and that changing the memory region configuration for the monitor's
memory region(s) to an invalid value causes the monitor to fail.

Process-controls Register - Trace-enable Bit Only

If the application examines the value of the PC register, its operation must
not depend on the value of the trace-enable bit. If the application changes
the PC register using thedpc instruction, the trace-enable bit in the mask
value must be clear, so the trace-enable bit in the PC register is not
changed. If the application changes the image of the PC register on the
stack during an interrupt or fault handler, it must do the operation in such a
way that the saved image of the trace-enable bit is not changed.

Trace-controls Register

This register must not be changed by the application, and the application
must not depend on its value.

Trace Entry in Fault Table

This entry must not be changed by the application. If the application must
provide its own fault table, it must cabt prcb() before reinitializing

the processor with the new fault table. Eheprcb() routine initializes

the trace-fault entry in the new fault table to the proper value.

Interrupt Table - UART Interrupt Vector

This entry should not be changed by the application if you use the BREAK
signal to interrupt the application and return to the monitor. The number of
this entry is defined during retargeting; it is the value returned by the
get_int_vector() function.

The MON960 Application Environment]

Internal Data RAM - UART Interrupt Vector

On the 1960 Jx/Hx/Cx/Rx processors, the NMI vector that is cached at
location 0 in the internal data RAM must not be changed if the UART
interrupt is connected to NMI and you use the BREAK signal to interrupt
the application and return to the monitor. If the UART interrupt is not
connected to NMI, and the interrupt vectors are cached in internal data
RAM (by setting the Vector Cache Enable bit in the Interrupt Control
Register), the application must not change the location that corresponds to
the UART interrupt vector.

Interrupt-control Register

On the 1960 Kx/Sx processors, the field of this register that pertains to the
UART interrupt must not be changed by the application if you use the
BREAK signal to interrupt the application and return to the monitor. The
value of this field is defined during retargeting; it is set by the function
init_hardware()

Interrupt-mask Register

On 960 Jx/Hx/Cx/Rx processors, the bit of this register that pertains to the
UART interrupt must not be changed if you use the BREAK signal to
interrupt the application and return to the monitor. The bit used is defined
during retargeting. If the UART interrupt is NMI, all bits of this register

are available to the application.

7-23

MON960 Debug Monitor User's Guide

7-24

PRCB

If any fields of the PRCB must be changed, the application must make its
required changes and then call prco before reinitializing the processor
with the new PRCB. This process enables the monitor to ensure that all of
its reserved fields are initialized with the proper value before the processor
is reinitialized.

Control Table - Interrupt-mapping Registers

On 1960 Jx/Hx/Cx/Rx processors, the field of the register that pertains to
the UART interrupt must not be changed if you wish to use BREAK to
interrupt the application and return to the monitor. The field used is
defined during retargeting. If the UART interrupt is NMlI, all fields of
these registers are available to the application.

Control Table - Interrupt-control Register

On i960 Jx/Hx/Cx/Rx processors, if the application sets the vector-cache-
enable bit in the interrupt control register, it must copy the interrupt vector
that corresponds to the UART interrupt from the interrupt table to the
proper location in internal data RAM. This is not necessary if the UART
interrupt is NMI. It is also not necessaryét prcb is called after setting
the bit in the control table.

Control Table - Breakpoint Registers

On i960 Jx/Hx/Cx/Rx processors, the four breakpoint registers (IPBO,
IPB1, DABO, and DAB1) and the breakpoint control register (BPCON)
must not be changed by the application. If the application wishes to
provide its own control table, it should cadt_prcb before reinitializing
the processor with the new control tabdet_prcb copies the proper
values from the previous control table to the new one.

The MON960 Application Environment]

System Procedure Table - Entries 220-252

These entries are usedly to call the monitor and should not be
changed by the application if it usaési or calls the monitor for services
(such as to obtain the location of the PRCB). These entries can be called
directly by the application if the proper calling sequence is observed.

System Procedure Table - Entries 253

These entries are reserved by the monitor and should not be used by the
application.

System Procedure Table Entries 254-257

Entry 254 fhon_entry) is useful to call the MON960. If you have linked

in MON960 to your application, you might call the monitor when a rear
error condition occurs and you wish to debug the situation with mondb or
gdb960. After this call, program execution can be contingedd. exit,

calls 257 is used to terminate the application. After this call, the
program must be rerun from the beginning. can be called by the application
to exit and return to the monitor.

System Procedure Table - Entries 258-259

These entries should not be called by the application. They are hooks that
are called by the monitor at certain times. They can be changed by the
application. See th8ystem Callsection in this chapter for more

information on these entries.

Monitor Data Area

The area of memory that is specified during retargeting for the monitor's
data area is reserved and must not be modified by the application. Itis
usually the first 32K of dram.

Linking the Monitor with an Application

The monitor can be included with your final application. This enables you
to use it for field testing. MON960 lets you link a normal user program

7-25

MON960 Debug Monitor User's Guide

directly including all the normal library support. The program generated
goes through normal MON960 initialization and then starts the user code at
the Normal entry routine main(). All library feature i.e. terminal

interactions files that require a debugger return error until a debugger
interrupts the running user code. After your code is running you may use
the normal break interrupt to connect the exit your code and enter
MON960 using a debugger. Then you debug you code normally and all
file and terminal actions work i.e. messages to the user.

The procedure to link you code to MON960 is as follows using the
suppliednello.c sample program.
1. Inthe Makefile uncomment the two lines by removing the #.

#USER_COMM = -DSERIAL_USER_CODE -DBAUD_9600

#USER_OBJS = crtmon.o hello.
Crtmon.s is a special version of crt960.s that allows the linking of your
code with MON960. Replace hello.o with the list of user object
modules that make up your program.

The entry routinemain() is called fronmcrtmon.s to start the user
program.

2. Inthemoncyxx.ld file you must uncomment the 7 lines between
#heap and#syslib . This set the heap and stack used created by
crtmon.s for the user program an includes all the libraries for the user
code.

3. Inthe MON960 source filonitor.c use the defines in Makefile to
execute the user code, set the monitor communication path to serial or
PCI and if serial sets the serial baud rate. This must be the
communication path and baud rate you set your debugger to use.
There is no connect sequence as your user code runs immediately, so
before calling the user codenitor.c hard codes the communication
parameters into MON960.

4. Make the Makefile. Make the target file (i.e., makex). Use the
flash mon96QJser_code to test, burn it into the baseboard flash and
test it.

7-26

The MON960 Application Environment

5. Boot from the new flash. MON960 should do its normal initializing,
callcrtmon.o to create the user heap and stack and then ealls
in the user code. Led 3 should be on signifying a user program is
running. All SDM calls return ERR because no debugger is present to
handle these requests. To debug your code set you debugger to the
correct communication parameters you setanitor.c and use and
interrupt to connect. Using mondb the command parameters would be:

mondb -ser -b 115200 -it -d’

Led 3 should be off and you should be connected with all debugging
capabilities available. If you use the debugger to continue running
your program all SDM calls will work. On exit from the debugger the
board is usually reset which starts your user code running.

6. Test the hello/mon960 code.
O Download the cyhx.fls to your board:

mondb -ser -b 9600 -par -ef -ne cyhx.fls
O Switch the boot rom switch to boot from the baseboard flash.
0 Resetthe board. Led 3 should go on.
O Interrupt the hello program:
mondb -ser -b 155200-it -d

7. Test using the following sequence, re display the registers, step shows
trace mode works, go shows go mode works and printing from the
program is available. Ctrl-c shows interrupts still work and finally
exiting from mondb restarts hello, led 3 is on.

re

st

go
CTRL-c

qu

7-27

Host Debugger Interface (HDI)

Purpose

This chapter contains information on the Host Debugger Interface (HDI)
used by the gdb960 software debugger and the mondb execution utility.

The Host Debugger Interface is a procedural interface for controlling a
remote target board based on the i960 processor. This interface is
implemented by the Host Debugger Interface Library (HDIL). The HDI
interprets the command code, extracts the arguments from the message,
and calls the monitor core to complete the required actions. It responds to
the HDIL with a message containing the status of the command and any
results. Using the Host Debugger Interface, you can develop your own
debugger. The mondb source is provided as a simple example of how to

use this interface.

The interface exports the following routines:

hdi_aplink_enable()
hdi_aplink_switch()
hdi_aplink_sync()
hdi_async_input()
hdi_bp_del()
hdi_bp_rm_all()
hdi_bp_set()
hdi_bp_type()
hdi_convert_number()
hdi_cpu_stat()
hdi_download()
hdi_eeprom_check()
hdi_eeprom_erase()
hdi_fast_download_set_port()
hdi_flush_user_input()

hdi_mem_copy()
hdi_mem_fill()
hdi_mem_read()
hdi_mem_write()
hdi_opt_arg_required()
hdi_poll()
hdi_reg_get()
hdi_reg_put()
hdi_regfp_get()
hdi_regfp_put()
hdi_regs_get()
hdi_regs_put()
hdi_reset()
hdi_restart()
hdi_set_gmu_reg()

8-1

MON960 Debug Monitor User's Guide

8-2

hdi_get_arch()
hdi_get_gmu_reg()
hdi_get_gmu_regs()
hdi_get_message()
hdi_get_monitor_config()
hdi_get_monitor_priority()
hdi_get_region_cache()
hdi_get_stop_reason()
hdi_iac()

hdi_init()
hdi_init_app_stack()
hdi_inputline()
hdi_invalid_arg()

hdi_set_Imadr()
hdi_set_Immr()
hdi_set_mcon()
hdi_set_mmr_reg()
hdi_set_prch()
hdi_set_region_cache()
hdi_signal()
hdi_sysctl()
hdi_targ_go()
hdi_targ_intr()
hdi_term()
hdi_ui_cmd()
hdi_update_gmu_reg()
hdi_version()

See theéHost Debugger Interface Library Routingsction for information
on these routines. Declarations of these routines and of any data types and
constants required to use them are in the includedile , and other

files that are included biydil.h

All multi-byte data passed to these routines or returned from them is in
host byte order, with the exception of floating-point register values. The
data is changed to or from i960 processor byte order as required by the
library. The floating-point register format returnedHay regfp_get()

or passed tadi_regfp_put() is an array of bytes in the order used by
the 1960 processor architecture. The interpretation of the value must be

made by the debugger.

Multi-word data is handled as individual words. Whenmem_read()

hdi_mem_write() , Orhdi_mem_fill()

is passed aem_size value

greater than four, the data is interpreted as an array of words; the byte order
within each word is adjusted, but the order of words is not changed. This
process agrees with the 1960 Jx/Hx/Cx/RP processor implementation of
big-endian memory regions, but may not agree with the host's

interpretation. This situation can be handled by the debugger if necessary.

The Host Debugger Interface reserves all external symbols starting with

hdi_ or_hdi_ .

Host Debugger Interface (HDI)

Types and Variables

The following types, defined in theli.h include file, are used by
several of the routines defined in the host-debugger interface. Additional
types are described with the routines that use them.

typedef unsigned long ADDR;
typedef unsigned long REG;
typedef REG UREG[NUM_REGS];

The Host Debugger Interface defines tae cmd_stat variable, which
provides the debugger with additional information when errors occur. The
interface routines normally return a value indicating only whether the call
failed or succeeded. This variable contains additional information about
the last failure detected by the library.

Thehdi_cmd_stat variable is a typet variable that contains an error
number isolating the cause of the failure. Each error number is associated
with a symbolic name, beginning with the prefix and defined in the

hdi.h file. Each routine description in th&ost Debugger Interface

Library Routinessection includes a list of the possible error numbers to
which hdi_cmd stat can be set if the routine fails. The value of
hdi_cmd_stat is not meaningful after a call to a library routine that does
not return a failure status.

The description of each procedure contains a list of the error codes that it
can generate. Each procedure can alshaseimd_stat t0E_COMM_ERR
E_COMM_TIMQoOrE_INTR. Table 8-1 describes each error code.

8-3

MON960 Debug Monitor User's Guide

Table 8-1 Error Codes

Error Code
E_ALIGN
E_APLINK_REGION

E_APLINK_SWITCH2
E_ARCH

E_ARG
E_ARG_EXPECTED
E_BAD_CMD
E_BAD_CONFIG

E_BAD_MAGIC

E_BPNOTSET
E_BPSET
E_BPUNAVAIL

E_BUFOVFLH
E_BUFOVFLT

E_COMM_ERR

Message String [Extended Description]
Address not properly aligned

Region conflicts with dedicated processor
resources [An attempt was made to switch to a
memory region dedicated to CPU operation, e.g.,
boot region, internal RAM region, or Jx MMR
region.]

Only one switch command allowed following reset

Processor architecture does not support specified
operation

Invalid argument
Argument expected
Unsupported command

Unknown device or illegal configuration [Invalid
serial configuration or device name detected during
serial port open.]

File %s is not an 1960 executable (bad magic
number) [Substitution parameter reports actual file
name.]

No breakpoint at that address
Breakpoint exists at that address

All breakpoints of the specified type are already in
use

Buffer overflow in host
Buffer overflow in target

Communication failure [Communication link exists
but is faulty. Reset the monitor and try again.]

continued [

Host Debugger Interface (HDI)

Table 8-1 Error Codes (continued)

Error Code
E _COMM_PROTOCOL

E_COMM_TIMO

E_CONTROLLING_PORT

E_EEPROM_ADDR
E_EEPROM_FAIL
E_EEPROM_PROG
E_ELF_CORRUPT

E_FAST_DNLOAD_ERR

Message String [Extended Description]

Communication protocol unspecified or
unsupported [The host debugger either configured
HDI for an unsupported communication protocol or
else failed to initialize this setting.]

Communication timed out [No communication link
exists. Reset the monitor and try again.]

Specified target not controlled by communication
port [A PCI download was directed to a target that
is not controlled by the debugger's active serial port
connection. This is either an internal error or the
user’s environment contains multiple PCI targets
and the address of the desired board has been
incorrectly specified.]

Invalid EEPROM address or length
Attempt to erase or program EEPROM failed
EEPROM is not erased

ELF file %s is corrupt: %s [During a download, an
ELF executable (file name given as first
substitution parameter) had invalid object records
(the nature of the problem is described in the
second substitution parameter).]

Fast download error bit set by MON960 [The
monitor detected an invalid PCI or parallel port
download protocol state. This problem can result
from an internal software error or malfunctioning
communication hardware. Check the physical
communication media (e.g., parallel cable), reset
the monitor and try again.]

continued [

8-5

MON960 Debug Monitor User's Guide

8-6

Table 8-1 Error Codes (continued)

Error Code
E_FAST DOWNLOAD BAD DATA
_CHECKSUM

E_FAST_DOWNLOAD_BAD_FORMAT

E_FILE_ERR

E_GMU_BADREG
E_INTR
E_NOMEM
E_NOTRUNNING

E_NO_FLASH

E_NO_PCIBIOS

E_NUM_CONVERT
E_OLD_MON

Message String [Extended Description]

Data CRC does not match data at download port
[During a PCI or parallel download, the monitor
detected a checksum mismatch between host and
target data. This problem can be caused by
unstable target memory or malfunctioning
communication hardware. Check the physical
communication media (e.g., parallel cable), reset
the monitor and try again.]

Non download message at fast download port
[During a PCI or parallel download, the monitor
detected an invalid message sequence. This
problem can be caused by an internal software
error or malfunctioning communication hardware.
Check the physical communication media (e.g.,
parallel cable), reset the monitor and try again.]

%s: Error reading file %s [Reported by host when
a file read operation fails. The first substitution
parameter lists the expanded system error code.
The second substitution parameter reports the
actual file name.]

The specified GMU register does not exist
Function terminated by keyboard interrupt
Unable to allocate memory on the host

Target is not running [Operation attempted that
requires running application.]

Target flash region is not functional flash memory

PCI BIOS unavailable [PCI communication
attempted on host that has no detectable PCI
BIOS]

Invalid numeric value

Not supported in old monitor

continued [

Host Debugger Interface (HDI)

Table 8-1 Error Codes (continued)

Error Code
E_PARA_DNLOAD_TIMO

E_PARALLEL_DOWNLOAD_NOT
_SUPPORTED

E_PARA_NOCOMM

E_PARA_SYS ERR

E_PARA_WRITE

E_PCI_ADDRESS
E_PCI_CFGREAD

E_PCI_CFGWRITE

E_PCI_COMM_NOT_SUPPORTED

Message String [Extended Description]

Parallel download timeout [The target did not
respond to a parallel download request. Check
cable connections, reset the monitor, and retry.]

Target does not support parallel downloads [The
monitor does not contain code to support parallel
download. Rebuild the monitor to include an
appropriately configured driver.]

Parallel communication unsupported for host OS
and/or host parallel HW. [Parallel communication
has not been ported to your host and/or the
specified parallel port/device.]

%s: Parallel comm system error %s [Reported by
host for various problems related to parallel
communication. The first substitution parameter
lists the expanded system error code; the second
substitution parameter reports the condition that
triggered the error]

Parallel communication 1/O error: write mismatch
[The host detected that the requested write byte
count did not match the actual number of bytes
transferred. Check cable connections and try
again.]

Invalid PCI address component specified

Error reading PCI configuration space [A PCI BIOS
read operation failed.]

Error writing PCI configuration space [A PCI BIOS
write operation failed.]

Target does not support PCl communication [The
monitor does not contain code to support PCI
communication. Rebuild the monitor to include an
appropriately configured driver.]

continued [

8-7

MON960 Debug Monitor User's Guide

Table 8-1 Error Codes (continued)

Error Code
E_PCI_COMM_TIMO

E_PCI_HOST_PORT

E_PCI_MULTIFUNC

E_PCI_NODVC
E_PCI_SRCH_FAIL
E_PHYS_MEM_ALLOC
E_PHYS_MEM_FREE
E_PHYS_MEM_MAP

E_PORT_SEARCH

E_READ_ERR
E_RESET

E_RUNNING

Message String [Extended Description]

PCI communication timeout [The target did not
respond to a PCI communication protocol request.
Reset the monitor and retry.]

PCI comm unsupported for host OS on specified
target [Host-based PCI communication has not
been ported to the specified PCI device.]

PCI device not multi-function [Requested PCI bus
address specifies multi-function selection, but target
is single function.]

No PCI device at specified address

Search for specified PCI device failed
Unable to allocate mapped, physical memory
Unable to free mapped, physical memory

Physical memory mapping unavailable [A request
for PCI communication via memory-mapped |/O
failed because the host environment does not
support such access.]

Cannot locate controlling communication port [A
PCI download was directed to a target that is not
controlled by the debugger’s active serial port
connection. This is either an internal error or the
host’s controlling serial port is connected to a target
not accessible from the PCI bus (e.g., a target in
another PC).]

Error reading target memory

Target was reset [The host interrupted the monitor,
which reset the target. Requires special target
hardware.]

Target is running [The requested operation is only
allowed when the target is not running.]

continued [

Host Debugger Interface (HDI)

Table 8-1 Error Codes (continued)

Error Code
E_SWBP_ERR

E_SYS_ERR

E_TARGET_RESET

E_VERIFY_ERR

E_VERSION
E_WRITE_ERR

Message String [Extended Description]

Unable to write software breakpoint (write
verification error)

%s: System error %s [Reported by host for various
operating system-related problems. The first
substitution parameter lists expanded system error
code; the second substitution parameter reports the
condition that triggered the error.]

Target was in reset state, board was reset [The
target was asynchronously placed in a reset state
via a hardware reset or power cycle, and host-to-
target communication was successfully re-
established. To completely recover from this event,
reset the host and HDI to their initial states (reset
the HDI by calling hdi_reset()).]

Write verification error [Target memory did not read
back as written.]

Not supported in this version
Error writing to target memory

8-9

MON960 Debug Monitor User's Guide

8-10

Imported Routines

The Host Debugger Interface requires the debugger to supply the following
routines:

hdi_cmdext()
int hdi_cmdext(int arg , unsigned char * buf | int size)

This routine enables the debugger to define or redefine runtime requests
received from the target while the application is running. The

hdi_cmdext() routine is called for any requests that are not recognized by
the HDI implementation. Requests are defined by the first byte of the
message. Requests in the range of 0x80-0xff are guaranteed not to be used
by HDI. The debugger can also arrange tdatcmdext() be called for

every request from the application. THue cmdext() routine can handle

a request and retumRUE or it can returfALSE and allow normal

processing of the request to continue. The library provides a stub for this
routine, which is used if the debugger does not define it.

This routine is called withrg = HDI_EINIT when target execution is

started. In this calhur andsize are not used. When this call returns

TRUE hdi_cmdext() is called again each time a service request is received
from the application. In these calisg = HDI_EPOLL, andbuf andsize

are the buffer containing the request. htiecmdext() routine returns
TRUEto indicate that it has handled the request. When it rebar&s, the
request is processed normally.

When an unrecognized request is received from the application,
hdi_cmdext() is called witharg = EDATA As withHDI_EPOLL, buf and
size are the buffer containing the request. Agaii,cmdext() returns
TRUEto indicate that it has handled the request. When it refMr&s,
normal error processing for an unrecognized request occurs.

Host Debugger Interface (HDI)

Note that it is possible fordi_cmdext() to be called twice for a single
request. Whendi_cmdext() is called witharg =HDI_EPOLL and it
returnsrALSE, the request is examined by the HDI. When the request
turns out to be unrecognized by the HDI, theincmdext() is called
again, this time witharg =HDI_EDATA

Thenhdi_cmdext() routine is called wittarg = HDI_EEXIT before
hdi_targ_g() returns, whether or not target execution stopped normally.
In this call,buf andsize are not used.

The constantsiDI_EINIT , HDI_EPOLL, HDI_EDATA andHDI_EEXIT are
defined in the include filedil.h

hdi_get_cmd_line()

void hdi_get_cmd_line(char * buf , int size)

This routine is called by th&li_targ_go() routine when the user
application requests its command-line arguments. The
hdi_get_cmd_line() routine returns a null-terminated ASCII string of no
more tharsize —1 characters from the application’s command line and
places it inbuf . This string normally consists of the executable file name

followed by arguments separated by spaces. However, it is not interpreted
by the HDI, and can be in whatever format the application expects.

hdi_put_line()
void hdi_put_line(const char * msg)

This routine is used by the library to print an informational or error
message to the consoleisg is a null-terminated string.

8-11

MON960 Debug Monitor User's Guide

8-12

hdi_user_get_line() and hdi_user_put_line()
int hdi_user_get_line(char * buf , int size)
void hdi_user_put_line(const char * data , int size)

These routines are called by th targ_go() routine when the user
application performs I/O ostdin ~ orstdout . The

hdi_user_get_line() routine gets a line of no more thsire

characters from the user input and copies it bntfa It does not need to

add a null terminator to the data read. It returns the number of characters
read. It return® when no characters were read before end-of-file~and

on error.

Thenhdi_user_put_line() routine writessize bytes pointed to by data
to the user output. The data is not null-terminated.

Host Debugger Interface Library Routines (HDIL)

R

This section explains the routines defined by the Host Debugger Interface.
Most routines return special error values,hdacmd_stat , when they

fail. The failure values are listed with each routine. The meaning of each
error value is listed in the Error Codes table in this chapter.

NOTE. Many routines can return the errér TARGET_RESET This error

is a result of one of two cases: Either the target reset button was pressed
or there was a power cycle on the target. These conditions cause the
message from HDIL to time out. At that point, HDIL automatically
attempts to re-establish communication. When HDIL succeeds,
E_TARGET_RESETs returned. However, the host must then reset itself to
the initial target state. HDIL must be cleared. An easy way to clear the
HDIL is to call thehdi_reset() routine.

Host Debugger Interface (HDI)

hdi_aplink_enable

int hdi_aplink_enable (unsigned long bit, unsigned long
value)

This function, which should only be used in conjunction with an ApLink-
compatible target, modifies bits in the ApLink mode register. The valid
range of thevit parameter is 2-4, and the valid range ofvthige

parameter is 0-1. The returned value, eith¢or ERR indicates whether

or not the requested operation was successful. Refer Apthiek User's
Guidefor further details.

Failures: E_VERSION, E_ARG

hdi_aplink_switch

int hdi_aplink_switch(unsigned long region, unsigned long
mode)

This function relocates an ApLink monitor from its boot-up region into a
new memory region and simultaneously switches to one of ApLink's
supported modes. The valid range ofrtygon parameter is 0x1-0Ox1e,
and the valid range of theode parameter is 0-4. The returned valueks
or ERR indicating whether or not the requested option was successfully
executed. Refer to thApLink User's Guidéor further details.

Failures: E_VERSION, E_ARG, E_APLINK_REGION,
E_APLINK_SWITCH2

hdi_aplink_sync
int hdi_aplink_sync (int sync_type)
This function is used to manipulate an ApLink-compatible monitor that

meets the following preconditions:

e it must be mode 1 or 2
* it must have a new IMI downloaded into the appropriate processor
boot region.

8-13

MON960 Debug Monitor User's Guide

8-14

Assuming the monitor meets these conditiois,aplink_sync() may

be called with either anDI_APLINK_WAIT or HDI_APLINK_RESET

parameter. The former parameter causes the monitor to configure itself
internally in user mode (i.e., application mode), and then waits for a
hardware reset. The latter parameter causes the monitor to configure itself
in user mode and then immediately reset the target from the new IMI. The
returned value, eitheykor ERR indicates whether or not the requested
operation was successful.

NOTE. TheHDI APLINK_WAIT parameter causefsdi _aplink _sync()

to wait indefinitely for a target hardware reset. In other words, the host
debugger does not return from this call until a manual hardware reset
occurs.

Failures: E_VERSION

hdi_async_input()
void hdi_async_input()

Calling this routine during debugger initialization causes HDI to accept
asynchronous application input (e.g., typeahead) via future calls to
hdi_inputline() . See the description of that routine in this chapter for
more detalils.

hdi_bp_del()
int hdi_bp_del(ADDR addr)
This routine deletes the breakpoint at target addiss

The returned value iBKor ERR, indicating whether or not the breakpoint
was deleted.

Failures: E_BPNOTSET, E_RUNNING

Host Debugger Interface (HDI)

hdi_bp_rm_all()
int hdi_bp_rm_all()

This routine removes all known hardware and software breakpoints. Itis
not an error to call this routine when no breakpoints are set.

The returned value BALSE when no breakpoints were set. The returned
value isTRUEwhen all breakpoints were successfully deleted smrd
when any breakpoint could not be deleted.

Failures: E_RUNNING

hdi_bp_set()
int hdi_bp_set(ADDR addr , int type , int flags)

This routine sets a breakpointaatr . Thetype value indicates the type
of breakpoint to set. The following values are valid:

BRK_SW fmark breakpoint
BRK_HW hardware instruction breakpoint
BRK_DATA hardware data breakpoint (available on i960

JX/HX/CX/RP only)

flags provides additional information about a breakpoint. Currently, this
argument has meaning only when the value of typ&is DATA Then

flags indicates the type of accessesdar that cause a breakpoint, as
follows:

DBP_S store access

DBP_SL store or load access
DBP_SLF store, load, or fetch access
DBP_ANY any access

No more than one breakpoint can be set at any given address. tyahen
is BRK_Swor BRK_HWthe address must be aligned on a word boundary.
The returned value iBKor ERR, indicating whether or not the breakpoint
could be set.

8-15

MON960 Debug Monitor User's Guide

8-16

Failures: E_ALIGN, E_BPUNAVAIL, E_BPSET, E_ARCH,
E_ARG, E_RUNNING

hdi_bp_type()
int hdi_bp_type(ADDR addr)

This routine returns the type of breakpoint currently seti@t, or
BRK_NONREvhen no breakpoint is set there. Seenthiebp_set() routine
in this section for a list of legal breakpoint types.

This routine does not communicate with the target, and therefore cannot
fail.

hdi_convert_number()

int hdi_convert_number(const char *num,

long *arg,
int arg_type,
int base,

const char *error_prefix);

This routine converts an ASCII numeric string to an [unsigned] long in the
specified base. The routine ensures that the string contains only legal
digits for the specified base and, when using ANSI C libraries, that the
result does not overflow.

numis an ASCII numeric string to be converted to an [unsigned] lang.

is the converted value afim returned by reference. They type s
HDI_CVT_UNSIGNEDor HDI_CVT_SIGNED It specifies the sign of the

returned result. The conversion is implemented using the host's C libraries.
Consequentlyarg _type is meaningful only for those Kernighan and
Ritchie-based implementations that do not accept a leadorg when
converting a string to an unsigned numeric value.

base is a numeric base to be passed to conversion routines. If the host C
compiler is Kernighan and Ritchie-based, the only acceptable bases are 8,
10, and 16. Otherwise, acceptable bases are 2-36.

Host Debugger Interface (HDI)

When theerror_prefix is notNULL, this function prints out an error
message, usingror_prefix as a leader string, whenever a conversion
cannot be performed. Note that ther_prefix may be set to point at a
null character string ("), in which case this routine outputs the default
error message with an empty leader.

The returned value iBKor ERR indicating whether or not errors were
detected.

Failures: E_NUM_CONVERT

hdi_cpu_stat()
int hdi_cpu_stat(CPU_STATUS * cpu_status)

This routine reports the addresses of the various CPU objects listed in the
CPU_STATUSstruct. The single argument indicates where the information
should be placed. Itis a pointer to a structure of the following type:

typedef struct {
ADDR cpu_prcb; /* address of PRCB */
ADDR cpu_sptb; /* address of system procedure table */
ADDR cpu_ftb; /* address of fault table */
ADDR cpu_ith; /* address of interrupt table */
ADDR cpu_isp; /* address of interrupt stack */
ADDR cpu_sat; /* address of system address table
(KX and SX only) */
ADDR cpu_ctb; /* address of control table
(JIX/HX/ICX/IRP only) */
} CPU_STATUS;

Values that are meaningless for the processor under test are undefined.

Since the addresses of these data structures can be changed under software
control, the contents of a structure returned by a calitepu_stat()
should be discarded (and re-read) when the target is run.

8-17

MON960 Debug Monitor User's Guide

8-18

hdi_download()

int hdi_download(const char *filename,
ADDR *start_ip,
unsigned long textoff,
unsigned long dataoff,
int zero_bss,
DOWNLOAD_CONFIG *fast_config,
int quiet);

This routine downloads the contents of a COFF, ELF, or b.out file
specified by filename; both the target and host object records may be in
either big- or little-endian format. The entry point address of the
downloaded application is returned in the word pointed tady ip

To support Position Independent Code (PIC) and Position Independent
Data (PID) applicationsextoff ~ anddataoff are added to the
application's physical text and data addresses, respectively. Specify
textoff ~ anddataoff aso (zero) wheriilename is not PIC/PID. The
zero_bss flag applies only to COFF files and, wheRUE causes HDI to
explicitly zero the application's BSS. Lacking this feature, ELF and b.out
applications must explicitly zero BSS at startup, which is the default
behavior for applications linked with Intel's startup module (crt960.0).
Normally, status messages track the progress of the download, but when
the quiet flag iSTRUE these status messages are suppressed.

Note that if the target destination memory is EEPROM, the EEPROM is
programmed; if the EEPROM is already programmed, the download fails.
Since the download is implemented as a seri@giohem_write() calls,

part of EEPROM can be programmed before a failure occurs.

The returned value i3Kor ERR indicating whether or ndtename was
successfully downloaded.

The download may be completed via a serial, parallel, or PCI
communication channel, as specified by e config parameter.

Host Debugger Interface (HDI)

Serial Download

If the host debugger has opened a serial communication channel with the
target, a serial download is specified by calldg download with the
fast_config parameter set to the valN®_DOWNLOAD_CONHdefined

in hdi.h). In this situation, the HDI uses the serial channel currently
open to download data.

Parallel Download
A parallel download is best illustrated by the following code fragments:

#include <hdil.h>

DOWNLOAD_CONFIG cfg;

cfg.download_selector = FAST_PARALLEL_DOWNLOAD;
cfg.fast_port = “Ipt1”; /*typical for Windows, Unix
device names vary.*/

hdi_download(...,&cfg,...);

PCI Download

The host initiates a PCI download by callity download() and passing
appropriate information via thest_config parameter. HDI permits one
of the three PCI device address specifications listed below:

1. an absolute PCI bus address (specified as an address triple)
2. aspecific PCI vendor and device ID
3. the default PCI vendor and device ID

Consequently, initializing thiast_config structure for a PCI download

takes more work than for a serial or parallel download. The comments at
the bottom of the&eoM_PCI_CF&lata structure ihdi_com.h describe all

three addressing scenarios. (Note d@¥_PCl_CFGds a member of the
fast_config data structure.) The following pseudo code illustrates a PCI
download. It selects the target using an absolute address comprised of bus
0, deviceoxcC, functiono.

8-19

MON960 Debug Monitor User's Guide

#include <hdil.h>

DOWNLOAD_CONFIG cfg;
cfg.download_selector = FAST_PCI_DOWNLOAD;
cfg.fast_port = PCI_UNUSED_FAST_PORT;
cfg.init_pci.comm_mode = COM_PCI_MMAP;
[* or COM_PCI_IOSPACE */
strcpy(cfg.init_pci.control_port,

last_4 chars_of_controlling_serial_port);
cfg.init_pci.bus =0;
cfg.init_pci.dev = 0xc;
cfg.init_pci.func =0;

hdi_download(..., &cfg, ...);

Failures: E_EEPROM_PROG, E_BAD_MAGIC,
E_EEPROM_FAIL, E_READ_ERR,
E_WRITE_ERR, E_ARG, E_VERIFY_ERR,
E_RUNNING, E_FILE_ERR, E_NOMEM

various parallel and PCI communication failure
codes

hdi_eeprom_check()

int hdi_eeprom_check(ADDR address ,
unsigned long length , unsigned long * eeprom_size
ADDR prog [2])

This routine checks whether the specified area of memory on the target
board is EEPROM and whether it is erased. It retakshen the
memory is EEPROM and is erased. The valueepfom size is setto
the total size of the EEPROM on the board. This routine reBRRE the
following cases and setgi_cmd_stat to the value indicated:
» The target board or monitor does not support EEPROM. (Sets
hdi_cmd_stat t0 E_NO_FLASH)
» The region of memory is not entirely EEPROM. (Sefiscmd_stat
to E_EEPROM_ADDR

8-20

Host Debugger Interface (HDI)

» The memory address or length is not aligned on a programmable
boundary (board-specific). (Sets cmd stat toE_ALIGN.)

» The region of memory is EEPROM but is not entirely erased. (Sets
hdi_cmd _stat to E_EEPROM_PRQ)G In this caseyrog[0] is set to
the lowest angrog[1] to the highest address programmed.

Theaddress value can b&lO_ADDRIndicating that all of EEPROM wiill
be checked. Thength value can be, indicating that the smallest block
of EEPROM starting adddress will be checked. When the address is
NO_ADDRIength is ignored.

Failures: E_VERSION, E_EEPROM_ADDR,
E_EEPROM_PROG, E_ALIGN, E_RUNNING,
E_NO_FLASH

hdi_eeprom_erase()

int hdi_eeprom_erase(ADDR address ,
unsigned long length)

This routine erases the specified area of EEPROM on the target board.
Theaddress value is the address of the first byte of EEPROM to be
erased. It must be the address of the beginning of an erasable block of
EEPROM omoO_ADDRIndicating that all of EEPROM is to be erased.

Thelength value is the number of bytes of EEPROM to be erased. The
length must include exactly one or more erasable blocks of EEPROM.
Thelength value can be 0, indicating that the smallest erasable block of
EEPROM starting at address is to be erased. \dl#ass isSNO_ADDR
length is ignored. When these conditions are not nigtcmd_stat s

set toE_EEPROM_ADDR

To erase a specific flash chip, specifigrayth integer value of -1 to -16,
where -1 is the first flash chip in the address sequence and -2 is the second,
etc.

The returned value i3Kor ERR indicating whether or not the request was
successful.

Failures: E_VERSION, E_EEPROM_ADDR,
E_EEPROM_FAIL, E_RUNNING, E_NO_FLASH

8-21

MON960 Debug Monitor User's Guide

8-22

hdi_fast_download_set_port()
int hdi_fast_download_set_port(DOWNLOAD_CONFIG *cfg)

This routine is normally called lhdi_mem_write() and

hdi_mem_fill() to initiate and terminate a high speed download via a
PCI bus or parallel port. Usuallygi_fast download_set_port()

exists as an internal HDI service that debugger clients do not directly
invoke.

However, debugger clients may ugk fast download_set_port() to
determine if a target is PCI- or parallel-download-capable. In this
situation, the calling sequence is as follows:

#include "hdil.h"

if (hdi_fast_download_capable(PARALLEL_CAPABLE) == OK) {

/* parallel download supported by target */

}
if (hdi_fast_download_capable(PCI_CAPABLE) == OK) {

/* PCI download supported by target */
}

Failures: various parallel and PCI communication failure
codes

hdi_flush_user_input()
void hdi_flush_user_input()

Calling this routine clears the fixed location buffer used by
hdi_inputline() . See the description of that routine in this chapter for
more detalils.

hdi_get_arch()
int hdi_get_arch(void)

This routine returns an integer constant describing this monitor’s 1960
processor architecture. The range of values that this routine returns are
defined in the include filadi_arch.h

Host Debugger Interface (HDI)

hdi_get gmu_reg

int hdi_get_gmu_reg(int type, int regnum, HDI_GMU_REG
*reg)

This routine reads the current value and current enable status of the
specified Guarded Memory Unit (GMU) register from the processor
hardware and copies them into the struciege A GMU is available only
on Hx processors.

Values oftype are:

HDI_GMU_DETECT Sets up a memory detection low-address/high-
address register pair

HDI_GMU_PROTECT Sets up a memory protection address/mask
register pair

The return value i®9Kor ERR

Failures: E_ARCH, E_ARG, E_GMU_BADREG

hdi_get_gmu_regs
int hdi_get_gmu_regs(HDI_GMU_REGLIST *reglist)

This routine reads the current values and current enable statuses of all the
Guarded Memory Unit (GMU) registers from the processor hardware and
copies them into the structukaylist

The return value i9Kor ERR

Failures: E_ARCH

hdi_get _message()
const char *hdi_get_message()

This routine returns a pointer to a string containing a message about the
last error encountered by an HDIL operation. It uségmd_stat to
determine the nature of the error. The string is usually a static message, as
described in Table 8-1. The string can also contain additional formatted
information, such as the address of the failure.

8-23

MON960 Debug Monitor User's Guide

This routine does not communicate with the target and therefore cannot
fail.

hdi_get_monitor_config()
int hdi_get_monitor_config(HDI_MON_CONFIG *config_info)

hdi_get_monitor_config returns selected monitor configuration
information, as specified in theciude file hdi_mcfg.n . This

information is often used for internal configuration of a host debugger or
for querying monitor attributes in a regression test environment. The
mondb utility provides command line options to display the
HDI_MON_CONFIG@nformation that a target returns. RefeAjmpendix Bn
this guide for more information on mondb.

Failures: E_VERSION

hdi_get_monitor_priority()
int hdi_get_monitor_priority(int *priority)
The returned value is, by reference, the monitor’s current priority.

Failures: E_RUNNING

hdi_get_region_cache()
int
hdi_get_region_cache(REGION_CACHE cache_vector)

This routine returns, by value, the size of the HDI region cache vector and,
by reference, a copy of the vector's current contents. Refer to the
description ohdi_set_region_cache for a detailed explanation of HDI
region caching.

hdi_get_stop_reason()
const STOP_RECORD * hdi_get_stop_reason()

This routine returns either thep_record for the last program stop or a
NULL pointer if host-target communication fails.

8-24

Host Debugger Interface (HDI)

hdi_iac()
int hdi_iac(ADDR destination , const unsigned long iac[4])

This routine can be used only for the i960 Kx/Sx processors. It causes the
target processor to issue the specified IAC at the specified address. The
destination address can refer to the processor itself or to an external agent.
If the destination is 0, it is changed to the address for an internal IAC. The
meaning of the IAC and the address are specific to the processor and the
target hardware, and are not specified by the interface.

This routine is not required for debugger operation, and cannot be
implemented in all implementations of this interface. Certain IACs can be
prohibited by the interface library (e.g., Reinitialize) and others can cause
undefined results (e.g., Interrupt).

The returned value i3Kor ERR indicating whether or not the operation
was successful.

Failures: E_ARCH, E_RUNNING
hdi_init()
int hdi_init(HDI_CONFIG * config ,int* arch)

This routine initializes the interface and establishes communication with
the target. Thent pointed to byarch is filled in byhdi_init() ,andis
returned with a code indicating the type of i960 processor in the board.
The possible values (definedrti_arch.h) are:

ARCH_KA
ARCH_KB
ARCH_CA
ARCH_SA
ARCH_SB
ARCH_JX
ARCH_HX
ARCH_RP

8-25

MON960 Debug Monitor User's Guide

8-26

Theconfig structure contains various targeted configuration values.

typedef struct {
int reset_time;
int intr_trgt;
int break_causes_reset;
int mon_priority;
int tint;
int no_reset;

} HDI_CONFIG;

Whenintr_trgt is TRUE the host sends an interrupt to the target before
starting communications. You can use this to cause the application to pass
control to the monitor if the target boots into the application program.

Thereset time value is the time in milliseconds to wait after resetting
the target before starting communication. Spedifyo use the three-
second default value.

Whenbreak causes_reset is TRUE it means that a break signal from the
host causes a reset in the target, rather than an interrupt.

Themon_priority field sets the interrupt priority of the processor while it
is running the monitor code. The valid value range is 0 to 31. If you
specify -1, 31 (the default) is used. This disables all interrupts except NMI
and priority 31. If you have interrupts that must execute while the monitor
has control, use this field to set the priority of the monitor to a lower value.
You cannot debug interrupt routines with a priority greater than this value,
since the monitor will not be able to interrupt this routine.

Whenno_reset is TRUE HDI does not reset the target after establishing a
communication connection. This field is most useful in conjunction with
intr_trgt . Note that ifhdi_init() determines that the target is
currently in the reset statéy_reset is ignored.

Thetint field is no longer used.

Failures: E_BAD_CONFIG

Host Debugger Interface (HDI)

hdi_init_app_stack()
int hdi_init_app_stack()

This routine sets a user application to use the monitor's dedicated user

stack. It sets the usr to _hdi_fp_initial_monitor and thesp to

_hdi_sp_initial_monitor . The routine returneKor ERR Note that

the stack established by this routine:

« issmall and in the monitor's address space

» isintended for use as a so-callembtstrapstack

» initializes onlysp andip . Pfp initialization (say, to zero) is the client's
(e.g. the debugger's) responsibility

An application should use this stack only long enough to set up a larger

stack in its own address space. For example, one of the first tasks

application init code performs should be creating a new stack in application

address space.

Suggested use for debugger clients:

hdi_download(...)
hdi_init_app_stack() /*Establish application's initial, bootstrap stack */
hdi_put_reg(REG_PFP, 0)

if (executing application)
hdi_targ_go(...) /*App sets up own stack in init code*/

hdi_inputline()
void hdi_inputline(char *buffer, int length)
Thebuffer contains data to be sent to an applicatisidis stream.

Thelength is the number of data bytes in the buffer. Maximum input
buffer isMAX_MSG_SIzebytes.

The host debugger has elected to support asynchronous input (i.e.,
typeahead) from its User Interface (e.g., an I/O window in a GUI). In that
case, the debugger uses inputline() to pass asynchronous input to
the HDI, which buffers it and passes it to the applicatidils stream
when requested by the target.

8-27

MON960 Debug Monitor User's Guide

8-28

To configure HDI to support asynchronous input, these steps are required:

1.

After debugger and HDI initialization, but before an application is
executed, the debugger calls_async_input() to signal its request

for asynchronous input.

Each time an application is downloaded or restarted, the debugger calls
hdi_flush_user_input() to discard data buffered in

hdi_inputline().

Finally, the debugger must start applications in the background (i.e.,
passGO_BACKGROUNBquests tadi_targ_go()).

Note: Even when configured to use asynchronous input, HDI still calls
hdi_user_get_line(). However, the information returned by this call

is ignored. In this situation, a debugger may want to take advantage of this
"dummy" call to manage its asynchronous input queue.

hdi_invalid_arg()

void hdi_invalid(const char * err_prefix)

This routine setadi_cmd_stat to E_ARG and ikrror_prefix is not
null, HDIL prints out a message containisepr_prefix

hdi_mem_copy()

int hdi_mem_copy(ADDR destination ~ , ADDR source ,

unsigned long size , int dst_mem_size
int src_mem_size)

This routine copiesize bytes of target memory from target address
source to target addressestination ~ using memory access instructions
of the sizes specified. On the 1960 Jx/Hx/Cx/RP processor, if the source
and destination memory are not the same byte ordemedinesize values

will affect the pattern written to the destination. If the destination of the
copy is EEPROM memory, the memory is programmed. If the EEPROM
is already programmed, the copy fails.

The returned value BKor ERRindicating if the copy was successful.

Host Debugger Interface (HDI)

Failures: E_EEPROM_PROG, E_EEPROM_FAIL,
E_READ_ERR, E_WRITE_ERR, E_VERIFY_ERR,
E_RUNNING, E_ALIGN

hdi_mem_fill()

int hdi_mem_fil(ADDR address ,
const void * patternp
int patternsize , unsigned long patterncount
int mem_size)

This routine writes to target memory starting at addagssss , with the
pattern pointed to byatternp , which ispatternsize ~ bytes long, for
patterncount iterationsPatternsize must be >0 and <256. The
mem_size variable specifies the size of the objects that make up the
pattern, and the size of the write instructions used to write the pattern into
target memory. Pattern size must be a multipleah_size. Also, when
unaligned memory accesses are disabled in the monitor:
e If mem_size is 12,address must be a multiple of 16, and

patternsize must be 12. Otherwise:
e Bothaddress andpatternsize must be multiples ahem_size .

If the memory to be filled is EEPROM, the EEPROM is programmed. If
the EEPROM is already programmed, the command fails.

The returned value iBKor ERR, indicating whether the write was
successful.

Failures: E_EEPROM_PROG, E_EEPROM_FAIL,
E_READ_ERR, E_WRITE_ERR, E_ARG,
E_VERIFY_ERR, E_RUNNING, E_ALIGN

hdi_mem_read()

int hdi_mem_read(ADDR address ,

void * bufferp , unsigned int size

int bypass_cache ,int mem_size)
This routine readsize bytes of target memory starting at target address
address into the buffer specified byuffer

8-29

MON960 Debug Monitor User's Guide

The value ofnem_size can be 0, 1, 2, 4, 8, 12, or 16. This value specifies
the size, in bytes, of memory access instruction to use and of the objects
written. When unaligned memory accesses are disabled in the monitor:
e if mem_size is 12,address must be a multiple of 16 artte must

be 12, or
* bothaddress andsize must be multiples ofnem_size

If mem_size is 0, the data written is the same aséfn_size were 1, but

the monitor is not constrained to use 1-byte memory access instructions. |If
bypass_cache is TRUE the request is sent directly to the monitor without
checking for a cache hit, or filling the cache (useful for reading memory-
mapped 1/0). In this contextacherefers to HDI's local memory cache

and is unrelated to the i960 processor cache.

Failures: E_ALIGN, E_READ_ERR, E_RUNNING

hdi_mem_write()

int hdi_mem_write(ADDR address

const void * bufferp
unsigned int size ,int verify
int bypass_cache ,int mem_size)

This routine writesize bytes from the buffer pointed at byfferp into
target memory, starting at target addrassess . If the memory to be
written to is EEPROM, the EEPROM is programmed. If the EEPROM is
already programmed, the write fails.

Whenverify is set toTRUE the monitor reads back memory after it is
written to verify that the write was successful. In geneeafy should

be set torRUE except when writing to memory-mapped 1/O. Since the
verify operation is done by the monitor, there is no significant time cost.

The value ofnem_size can be 0, 1, 2, 4, 8, 12, or 16. This value specifies
the size, in bytes, of memory access instruction to use and of the objects
written. When unaligned memory accesses are disabled in the monitor:

e if mem_size is 12,address must be a multiple of 16 artte must
be 12, or
* bothaddress andsize must be multiples ofnem_size

8-30

Host Debugger Interface (HDI)

If mem_size is 0, the data written is the same aséfn_size were 1, but

the monitor is not constrained to use one-byte memory access instructions.
Whenbypass_cache is TRUE the request is sent directly to the monitor
without checking for a cache hit, or filling the cache (useful for reading
memory-mapped 1/O). In this contertiche refers to HDI's local

memory cache and is unrelated to the 1960 processor cache.

Failures: E_EEPROM_PROG, E_EEPROM_FAIL,
E_READ_ERR, E_WRITE_ERR, E_VERIFY_ERR,
E_RUNNING, E_ALIGN, E_BPSET

hdi_opt_arg_required()
int hdi_opt_arg_required(const char * arg, const char * err_prefix)

This routine checks for a required argument in stalgg An argument is
specified with a dash (-) or forward slash (/) followed by a string. When
the string contains no arguments, this routinets#tsmd_stat to
E_ARG_EXPECTEBNd whererr_prefix is not null, HDIL displays an
error message displayirgror_prefix

hdi_poll()

const STOP_RECORD *hdi_poll()

This routine should be called periodically by the debugger tool after it

starts execution by callingli_targ_go() with theGO_BACKGROUNMI

set. It checks for and handles a stop message or runtime requests from the
target. The returned value is the same as that described for

hdi_targ_go() . If the application is still running, the stop reason is
STOP_RUNNING

If hdi_signal() has been called and the application is still running,
hdi_poll() sends an interrupt to the target to return control of the target
to the monitor. A subsequent callhidi_poll() handles the stop
message.

Failures: E_NOTRUNNING, E_RESET

8-31

MON960 Debug Monitor User's Guide

8-32

hdi_reg_get()
int hdi_reg_get(int regname , REG * regval)

This routine retrieves the current value of the 1960 register specified by
regname from the monitor's copy of the user program's registers and stores
the value at the location specified fegva/ . The following are valid

values ofregname :

REG_ROOr REG_PFP
REG_R10rREG_SP

REG_R20r REG_RIPOr REG_IP
REG_R3-REG_R15

REG_GO - REG_G14
REG_G150r REG_FP

REG_PC

REG_AC

REG_TC

REG_SFO - REG_SF4
REG_FPO - REG_FP3

The routine fails if the specified register is not supported on the target
architecture.

NOTE. The register set is cached on the host, so it is not inefficient to
request one register at a time, or to call this routine repeatedly for a single
register. There is no need for the debugger to cache the values of the
registers.

The returned value i3Kor ERR indicating whether or not the register was
retrieved successfully.

Failures: E_ARCH, E_ARG, E_RUNNING

hdi_reg_put()

int hdi_reg_put(int regname , REG regval)

This routine changes the value of the user register designateghbye
toregval . See the description of thei_reg_get() routine for valid

Host Debugger Interface (HDI)

values ofregname . The routine fails if the specified register does not
exist on the target architecture.

The returned value iBKor ERR indicating whether or not the register was
set successfully.

Failures: E_ARCH, E_ARG, E_RUNNING

hdi_regfp_get()

int hdi_regfp_get(int foregnum , int format
FPREG * fpregval)

hdi_regfp_put()

int hdi_regfp_get(int foregnum , int format
const FPREG * foregval)

These routines retrieve and change the current value of the i960 floating
point register specified byregnum . Valid values ofpregnum are 0
through 3, corresponding to registéga® throughfp3 . These routines fail
with theE_ARCHerror if the target architecture does not support floating
point.

The format argument indicates the format of the floating point value to be
used. Supported formats @ 80BIT andFP_64BIT . FP_80BIT

specifies IEEE 80-bit extended real formae_64BIT specifies IEEE

64-bit long real format. Both formats are represented as an array of bytes
in the 1960 processor byte order. Rdr regfp_get() , when the

FP_64BIT format is requested, the target also provides the values of the
floating point flags resulting from the conversion (bits 16 through 20 of the
arithmetic controls register). Note that either format is meaningless to the
host without further software processing, unless the host supports IEEE
floating point format.

8-33

MON960 Debug Monitor User's Guide

8-34

A register may be retrieved and set using either format. If a register is set
using one format and then retrieved using another format, the value is sent
to the target for conversion. If a register is set using®he4BIT format

and then immediately retrieved using the same format, the value of the
flags field will be 0.

Failures: E_ARCH, E_ARG, E_RUNNING

hdi_regs_get()
int hdi_regs_get(UREG regval)

This routine copies the current values of the user register set from the
monitor's copy into the arraggval . The floating point registers (if any)
are not returned.

UREGs an array of unsigned longs (32-bit values). An individual register
value can be accessed by indexing the array with a register name from the
list presented in the description of th reg_get() routine. The order

in which the registers appear in the array is as folleaws:s |, go-g15 ,

pc, ac, tc , sfo-sf4 . Entries for registers not supported on the target
architecture are meaningless.

Failures: E_RUNNING

hdi_regs_put()

int hdi_regs_put(const UREG regval)

This routine copies the values in the am@yal into the user register set.
The floating point registers are not changed. See the description of the

hdi_regs_get() routine for information on the typdREG Entries for
registers not supported on the target architecture are ignored.

Host Debugger Interface (HDI)

NOTE. The debugger can get better performance if you use
hdi_reg_put() to change an individual register, siniedi_regs_put()
assumes that all the registers have changed. You can read all the
registers withhdi_regs_get() and change them individually with
hdi_reg_put()

The returned value iBKor ERR indicating whether or not the registers
were set successfully.

Failures: E_RUNNING, E_ALIGN

hdi_reset()
int hdi_reset()

This routine resets the interface library and the target and reestablishes the
default environment. This includes deleting any breakpoints and
discarding any cached memory or registers. The monitor does a hardware
reset on the target, if possible; otherwise it reinitializes the processor as if
from a cold start. The returned valueisor ERR, indicating whether the
target was reset successfully.

NOTE. Many routines can return the errér TARGET_RESET This error

is a result of one of two cases: Either the target reset button was pressed
or a power cycle occurred on the target. These conditions cause the
message from HDIL to time out. At that point, HDIL automatically
attempts to re-establish communication. If HDIL succeeds,
E_TARGET_RESETs returned. However, the host must then reset itself to
the initial target state. HDIL must be cleared. An easy way to clear the
HDIL is to call thehdi_reset() routine.

8-35

MON960 Debug Monitor User's Guide

8-36

hdi_restart()
int hdi_restart()

This routine should be called when you restart the application from the
beginning or load a new application. The routine re-initializes the HDI's
I/O descriptors.

hdi_set_gmu_reg
int hdi_set_gmu_reg(int type, int regnum, HDI_GMU_REG
*regval)

This routine initializes a new Guarded Memory Unit (GMU) register of the
specified type. A GMU is available only on Hx processors. Values of
type are:

HDI_GMU_DETECT Sets up a memory detection low-
address/high-address register pair
HDI_GMU_PROTECT Sets up a memory protection address/mask

register pair

The parametaegnum specifies the register to initialize. Each protection
type has its own set of register numbers, starting at 0=_AMU_BADREG
error occurs if there is no such register in the current hardware.

The parameteaegval is a pointer to an initializedDl_GMU_REG

structure. The bit layout eégval.access is given in tha960 Hx
Microprocessor User’'s ManualThe register is enabled when the value of
regval.enabled is non-zero; the register is disabled when the value of
regval.enabled is 0.

The return value i9Kor ERR, indicating whether or not the GMU register
was successfully initialized.

Failures: E_ARCH, E_ARG, E_GMU_BADREG

Host Debugger Interface (HDI)

hdi_set_Imadr()
int hdi_set_Imadr(unsigned int Imreg, unsigned long value)

This routine places a value in a Jx/Hx/RP processor's logical memory
address register (LMADR). This function is primarily for users of the
ApLink target, since ApLink cannot know in advance how the memory of
the target being tested will be configured.

Thelmreg field defines the Jx/HX/RP logical memory address register
number to write to.

Thevalue defines what to write tinreg .

The returned value iBKor ERR indicating whether or not the value was
written successfully. When the returned valueRS, it includes an
appropriate HDI error code via thei_cmd_stat routine, as follows:

Failures: E_ARCH the function is valid for Hx/Jx/RP
processors only

E_ARG theimreg specified is out of range

hdi_set_Immr()
int hdi_set_Immr(unsigned int Imreg, unsigned long value)

This routine places a value in a Jx/Hx/RP processor's logical memory mask
register (LMMR). This function is primarily for users of the ApLink

target, since ApLink cannot know in advance how the memory of the

target being tested will be configured.

Thelmreg field defines the Jx/HX/RP logical memory mask register
number to write to.

Thevalue defines what to write tinreg .

8-37

MON960 Debug Monitor User's Guide

8-38

The returned value iBKor ERR indicating whether or not the value was
written successfully. When the returned valueRS, it includes an
appropriate HDI error code via thei_cmd_stat routine, as follows:

Failures: E_ARCH the function is valid for Hx/Jx
processors only

E_ARG theimreg specified is out of range

hdi_set_mcon()
int hdi_set_mcon(unsigned int region, unsigned long value)

This routine writes a value to a specified memory control register and, in
the case of the Cx processor, tells the processor to reload that register.
This function is primarily for users of the ApLink target, since ApLink
cannot know in advance how the memory of the target being tested will be
configured.

Theregion field defines the memory region to write the value to. The
valid value range is 0 to 15. For the Jx processor, this value is divided by
two before being written into the processor's control tables.

Thevalue defines what will be written into the processor's memory
control tables.

The returned value iBKor ERR indicating whether or not the value was
written successfully. When the returned valueRS, it includes an
appropriate HDI error code via thei_cmd_stat routine, as follows:

Failures: E_ARCH the function is valid for Cx/Hx/Jx
processors only

E_ARG the region specified is out of range

Host Debugger Interface (HDI)

hdi_set_mmr_reg()

int

hdi_set_mmr_reg(ADDR mmr_offset, REG new_value, REG mask,
REG *old_value)

This routine allows the client to modify the memory mapped register
(MMR) via execution of aysctl instruction, rather than a simple
processor write. Note that whemask value ofo is used, this routine can
only be used to read the MMR.

Themmr_offset is the offset into the MMR (e.g. the address) to modify.

Thenew_value is the new value to place in the MMR. This parameter is
irrelevant if a mask value ofis used.

For a description of theask, refer to thesysctl instruction description in
youri960 Jx Microprocessor User's Manyalr i960 Hx Microprocessor
User’'s Manual

Theold_value is the value of MMRramr_offset) before it is modified.
It is returned by reference.

Failures:E_ARCH

NOTE. This routine can be used only with an i960 Jx or Hx processor.

hdi_set_prcb()
int hdi_set_prcb(ADDR preb)

This routine reinitializes the processor using the PRCB specified. The
debugger or user must ensure that the PRCB and associated data structures
are set up correctly before calling this routine. Before reinitializing the
processor, the monitor changes the values of any fields that it requires in

the PRCB or associated data structures.

8-39

MON960 Debug Monitor User's Guide

8-40

The returned value iBKor ERR indicating whether or not the request was
successful.

Failures: E_RUNNING

hdi_set_region_cache()

void
hdi_set_region_cache(REGION_CACHE cache_vector)

This routine permits the host debugger to enable or disable HDI memory
caching region by region. Setting an array element afdtte_vector

to a nonzero value enables HDI memory caching for that region. Likewise,
clearing an array element disables caching for that region. It is often
highly desirable to disable caching when accessing memory-mapped
hardware.

If the bypass_cache function parameter is set whedi_mem_write Or
hdi_mem_read is called, memory will not be fetched from HDI's internal
cache, regardless of what caching attributes have been specified via
hdi_set_region_cache . In other words, theypass cache function
parameter temporarily overrides attributes set using
hdi_set_region_cache

NOTES.
1. HDI memory caching is unrelated to processor caching.
2. By default, HDI memory caching is enabled for all memory regions.

hdi_signal()
void hdi_signal()

The debugger calls this routine to interrupt a call to the interface when the
user type<tri+C , or to interrupt a target that has been started in the
background. (Refer to the descriptiorai targ_go() for more details

on starting a target in the background.)

To interrupt a call to the interfadedi_signal() is normally called from
an interrupt or signal handler. HDIL finishes any transaction currently in
progress, and returns. If HDIL is completing the last transaction of an

Host Debugger Interface (HDI)

operation, the operation finishes successfully, and HDIL returns a success
status. If the HDIL request is not completed successfully, HDIL returns an
error code, anddi_cmd_stat() is set toE_INTR.

If hdi_signal() is called again before the operation completes, HDIL
returns immediately. This can leave the target in an unknown state, and it
may need to be reset by hand. You can ptess twice to regain

control immediately when the target is hung. In Windows, normally the
keyboard must be polled to allow Windows to checkcligrC . This

polling is done by callingbhit() in the inner loop of the communications
system while it is waiting for a response from the target. When you press
ctrl+C , Windows calls the interrupt handler that the debugger has
configured to handletrl+C , which in turn should calidi_signal()

hdi_sysctl()

int hdi_sysctl(int type , int f1,
unsigned int f2 , unsigned long 3,
unsigned long 4)

This routine can be used only for the 1960 Jx/Hx/Cx/RP processors. It
causes the target processor to isggetl with the specified arguments.
The meaning of theysctl is specific to the processor, not the interface.

This routine is not required for debugger operation, and need not be used in
all implementations of this interface. Certain message types can be
prohibited by the interface library (e.g., Reinitialize) and others can cause
undefined results (e.g., Request Interrupt).

The returned value iBKor ERR indicating whether or not the operation
was successful.

Failures: E_ARCH, E_RUNNING

8-41

MON960 Debug Monitor User's Guide

hdi_targ_go()
const STOP_RECORD *hdi_targ_go(int mode)

This routine begins (or resumes) execution of user code in the target. It
flushes to the target any commands that have been cached, and directs the
target to resume executing the user code at the address currently in the
target'sp register.

This routine continues from a software breakpoint: It single-steps through
the instruction where the breakpoint occurred, re-insertentire
instruction, and continues the user code according to mode.

The value ofnodeis one of: GO RUNGO STERPGO_NEXTOrGO_SHADQW

You can modify any of these values by Oring indte BACKGROUNt.

When this bit is sehdi_targ_go() starts execution and then returns
immediately without waiting for the target to stop. If execution is expected
to stop or if runtime requests are expected, the debugger tool must call
hdi_poll() to handle the target's response. You can also use the
GO_BACKGROUNiption to exit from the debugger and leave the application
running in the target, if execution is not expected to stop and no runtime
requests need to be handled.

The GO_SHADOWptIoN is similar tacO_RUNexcept that it may have
additional effects defined by the target.

GO_STEPhalts execution after a single machine instruction has been
executed.GO_NEXTis like GO_STEPR except that it steps over subroutine
calls. It executes a single instruction unless that instruction is a subroutine
call, in which case it executes to the instruction following the subroutine
call. Subroutine calls include the 1960 processor instructiahs, callx

calls , bal , andbalx .

The debugger can cause execution to halt after other trace conditions by
setting the userts register before calling this routine.

Once the user code is running, if the_BACKGROUNt is not set,
hdi_targ_go() waits for the target to re-enter the monitor. Meanwhile, it
handles runtime service requests from the application program. When
hdi_signal() is called hdi_targ_go() attempts to interrupt the target
(which should return it to the monitor). Thei_targ_go() routine then

8-42

Host Debugger Interface (HDI)

waits for the target to reenter the monitor. Wheinsignal() is called
again, the entire operation is aborted adidtarg_go() returnsNULL

Thehdi_targ_go() routine returnslULL if the user program cannot be
started or if the host cannot maintain communications when the user
program stops; otherwise, it returns a pointer to a data structure describing
the reason the application program stopped.

The format of this structure is as follows:

typedef struct {
unsigned long reason;
struct {
unsigned long exit_code; /* STOP_EXIT */
ADDR sw_bp_addr; 1* STOP_BP_SW */
ADDR hw_bp_addr; /* STOP_BP_HW */
ADDR da0_bp_addr; [* STOP_BP_DATAO */
ADDR dal_bp_addr; [* STOP_BP_DATA1 */
struct { [* STOP_TRACE */
unsigned char type;
ADDR ip;
} trace;
struct { /* STOP_FAULT */
unsigned char type;
unsigned char subtype;
ADDR ip;
ADDR record;
} fault;
unsigned char intr_vector; /* STOP_INTR */
} info;

} STOP_RECORD;

The value ofeason indicates the reason the program halted. It is bit
encoded with one or more of the following values:

STOP_TRACE Trace fault

STOP_BP_SW Software breakpointrfark executed)
STOP_BP_HW Hardware breakpoint
STOP_BP_DATAO Data address breakpoint
STOP_BP_DATA1 Data address breakpoint

8-43

MON960 Debug Monitor User's Guide

STOP_CTRLC Debugger interrupted execution

STOP_EXIT Program finished executing and calledtit()

STOP_FAULT Unclaimed fault

STOP_INTR Unclaimed interrupt

STOP_MON_ENTRY Program calledhon_entry() to enter the
monitor

STOP_RUNNING Target was left running (b0_BACKGROUNID
GO_SHADOW

STOP_UNK_SYS Application called an obsolete or reserved system
procedure

STOP_UNK_BP Breakpoint was not set by debugger; used in

conjunction withSTOP_BP_SW

The stop reason is bit-encoded because the application can stop for more
than one reason. The stop cause should be tested with a statement such as:

if (stop_reason.reason & STOP_TRACE) {
/* Handle trace stop */

}

A direct comparison should be done only to determine whether the target
stopped for a single reason, rather than multiple reasons.

NOTE. The value o6TOP_RUNNINGs 0. That is, if no stop reasons are
encoded, the target is running. Therefore, this value must always be
checked with a direct comparison.

The structurénfo provides additional information about the halt on a
reason-by-reason basis, as indicated by the comment to the right of each
member. The contents of fields that do not correspond to a bit set in
reason are undefined. The stop reassm®P_CTRLESTOP_MON_ENTRY
STOP_RUNNINGandSTOP_UNK_SYSlo not have any additional

information.

8-44

Host Debugger Interface (HDI)

Theexit code value is the argument passed by the program to the
exit() routine. The value ddxit code is the same as registgr.

Theintr_vector ~ value is the interrupt vector at which the unclaimed
interrupt was received. (An interrupt is unclaimed if the application
program did not install an interrupt handler for the interrupt in question.)

The value ofrace. ip is the address of the instruction that caused the
trace fault. The value ofice. type indicates the type of trace fault that
occurred. Legal values are:

TRACE_STEP instruction trace
TRACE_BRANCH branch trace
TRACE_CALL call trace
TRACE_RET return trace
TRACE_PRERET pre-return trace
TRACE_SVC supervisor trace

Any combination of breakpoints can occur at the same time, so each is
reported independently. The valuesaf bp_addr is the address of the

mark or fmark instruction that caused the breakpoint. This is the same as
the IP if the software breakpoint was sehbybp_set() ; otherwise, the

IP is the address of the instruction after the breakpoint.

A software breakpoint is reported if the next instruction to be executed is a
mark orfmark when the application stops for some other reason. If the
breakpoint was not set Ibgi_bp_set() , and execution is continued

without adjusting the IP to the address after the breakpoint, the breakpoint
is reported again. Thev_bp_addr value is the address of the instruction
that triggered the breakpoint. This is not the same as the IP since a
hardware breakpoint takes place after the instruction is executed. The
value ofda0_bp_addr ordal_bp_addr is the address whose access

caused the data breakpoint to occur.

The variablesault. type andfault. subtype are the fault type and
subtype extracted from the fault record. The values and their meanings are
described in the reference manual for the processor. The value of

8-45

MON960 Debug Monitor User's Guide

8-46

fault. ip is the address of the instruction that caused the fault. The value
of fault. record is the address of the fault record, which can be used for
extracting additional information.

Thehdi_targ_go() routine indicates failure by returnimgLL

Failures: E_ARG, E_RUNNING, E_RESET

hdi_targ_intr()
const STOP_RECORD *hdi_targ_intr()

This routine attempts to interrupt the code running on the target board,
returning the board to monitor control.

It is normally called internally bidi_targ_go() whenhdi_signal() is
called while the target is running. It is exported as a debugger-callable
entry point in case an internal attempt to interrupt the target fails and you
can make the target interruptable (e.g., by reconnecting a loose RS232
cable). You can then enter a debugger command that calls this routine to
regain control of the target.

The returned value is the same as that describedifesrg_go()
Normally, reason is STOP_CTRLC However, if the application stops for
some reason other than the interrupt, that reason is reported instead.

Failures: E_NOTRUNNING, E_RESET

hdi_term()

int hdi_term(int term_flag)

This routine must be called before the debugger exits. The routine
terminates the interface sub-system and releases system resources. When
term_flag iISFALSE, and the target is not running an application,

hdi_term() removes any software breakpoints in target memory and
resets the target board, leaving it in the auto-bauding state for the next
process that connects to it. Whemn flag iSTRUE hdi_term does not
communicate with the target. This can be used if the debugger knows that
the target is hung.

Host Debugger Interface (HDI)

The returned value iBKor ERR, indicating whether or naidi_term()
successfully removed software breakpoints and reset the target. The
interface to the target is closed in either case.

hdi_ui_cmd()
int hdi_ui_cmd(const char * cmad)

This routine sends the ASCIl command to the user interface in the monitor.
ASCII output from the monitor is passedhi_put_line()

Failures: E_VERSION, E_RUNNING, E_RESET

hdi_update_gmu_reg()
int hdi_update_gmu_reg(int type, int regnum, int enable)

This routine updates an existing Guarded Memory Unit (GMU) register of
the specifiedype . A GMU is available only on Hx processors.

Valid values oftype areHDI_GMU_DETECDrHDI_GMU_PROTECTThe
value ofregnum is the register to be updated. AnGMU_BADRE&rTOr
occurs if there is no such register in the hardware for the gipen.

The register is enabled when the valuerable is non-zero; the register
is disabled when the value @fable is 0.

The return value i9Kor ERR, indicating whether or not the GMU register
was successfully updated.

Failures: E_ARCH, E_ARG, E_GMU_BADREG

hdi_version()
int hdi_version(char * buffer , int len)

This routine returns a null-terminated ASCII version string suitable for
displaying in a banner. It first copies the HDIL version string kaiter

It then gets the version string from the target and appendsuitiée .

The value ofen indicates the length of the buffer in bytes.

8-47

MON960 Debug Monitor User's Guide

8-48

The returned value iBKor ERR indicating whether or not the request was
successful. If the command fails because of buffer overflow, the buffer
contains the initialen — 1 bytes of the version string(s). If the command
fails due to a communications failure, the buffer contains the HDIL version
string only. In all cases, the buffer is null-terminated.

Failures: E_RUNNING, E_BUFOVFLH

HDIL Support for PCI Communication

On Win32 hosts, the PCI driver is composed of two parts:

The first partpci_drvr.c containghe driver routines. They support PCI
communication to a PLX PCI9060 interface chip or the 80960 RP chip.
For Windows 95pci_drvr.c contains the BIOS calls written in inline
assembly language. For Windows N¢i,_drvr.c uses a device driver
that calls the HAL interface.

Host Debugger Interface (HDI)

pci_drvr.c PLX Driver Routines

Routine

pci_cyclone_init

pci_intr_trgt
pci_cyclone_err

pci_cyclone_connect
[BL2]

pci_cyclone_disconnect
pci_cyclone_put
pci_cyclone_get

pci_cyclone_direct_put

pci_get_reg
pci_put_reg
pci_disp_regs
pci_driver_routines
in_portd

out_portd

Purpose

initializes a Cyclone baseboard with PLX PCI bridge chip
installed to provide PCI download

sets doorbell interrupt bit 31 to stop the target
sets the error bit and resets all other data transfer bits to off

sets the PLX PCI bit for inuse and error, then waits for the
target to reset the error bit

resets the PLX PCI inuse bit
writes data to the Cyclone board
reads data from the Cyclone board

writes directly to the 1960 processor's memory space, rather
than passing data through mailbox registers

returns the value of a specified PLX register

writes a value to a PLX register

displays the contents of the PLX PCI registers

fills in the list of PCI drivers for a PLX interface

uses inline assembly code to send data to the system

uses inline assembly code to get data from the Cyclone
board

8-49

MON960 Debug Monitor User's Guide

8-50

The second paniin_pci.c , contains all Win32 BIOS interface routines
and the common interface routines for PCI download and PClI, including:

win_pci.c Routines

Routine
pci_cyclone_init
pci_cyclone_connect

pci_cyclone_disconnect
pci_cyclone_err

pci_cyclone_get
pci_cyclone_put
pci_cyclone_direct_put
pci_cyclone_targt_intr
plx_driver_routines

pci_get_reg
pci_put_reg
pci_disp_regs

Purpose
initializes the PLX driver

sets the in-use and error status bits, and waits for the error
bit to be turned off

sets the in-use status bit off

sets the error status bit and resets the data transfer status
bits

reads data from the target

writes data to the target

writes data directly to the target memory using the PCI bus
sets the doorbell bit 31 to interrupt the target

fills in the FAST_INTERFACE structure with pointers to the
PLX PCI9060 drivers

returns a PLX register value
sets the PLX PCI9060 register to a value
displays all the PLX PCI9060 register (debug display)

Target Board Notes

Cyclone Board Configurations

The monitor supports the following target boards:

Processor Board Name Board Abbreviations

e Cyclone EP80960BB, PCI80960DP CYSX, CYKX, CYCX, CYJIX,
(Sx, Kx, Cx, Jx, Hx) CYHX

* Cyclone IQ80960RP (RP 5 volt) CYRP

* Cyclone IQ80960RP (RPLV, RD 3 volt) CYRD

e Cyclone IQ80960RM (RM, RN) CYRN

Note: This guide refers to the Cyclone and Cyclone PCI boards as the Cyclone boards.

Cyclone Evaluation Boards

This appendix describes MON960’s use of the Cyclone evaluation board
LEDs and DIP switches during boot-up and normal operation.

Power-on Self-tests

The self-test (POST) for the Cyclone board is called from the user interface
commandoo.

EP80960BB and PCI80960DP Evaluation Boards

This section describes the EP80960BB and PCI80960DP evaluation
boards.

A-1

MON960 Debug Monitor User's Guide

A-2

DIP Switches and LEDs on Cyclone Boards

Table A-1 Cyclone Board DIP Switches for EP80960BB and PCI80960DP

Switch ON Function

SW1.1 VPP ON Allows programming of baseboard flash using
12 volts.

SW1.2 NMI ON Determines that UART uses NMI; MON960 works
whether SW2 is on or off. If SW2 is off, then UART
uses the CPU module interrupt.

SW1.3 ROM Swap OFF Boots from the CPU module flash memory. If SW3
is on, you must boot from baseboard flash.

SW1.4 OFF Not used.

Table A-2 Cyclone Board LEDs for Usage After EP80960BB and PCI80960DP

LED When lit, Indicates

0 MONB960 is listening at the serial port.

1 MON960 is writing to the serial port.

2 An application program is being executed.

3 MONB960 is listening for a parallel download.

Note that LED 0 is the one closest to the serial port. During boot-up the

LEDs indicate the following conditions:

LED 0 on after CIO chip initialization

LED 1 on after Memory test passed

LED 2 on after Flash, Squall module, and UART initialization
LED 3 on after PCl initialization

all LEDs off after MON960 complete initialization

MON960 flashes all LEDs on, then off, for PCI, LSERR and PCI
DEADLOCK interrupts using the i960 Cx/Jx/Hx CPU modules.

Target Board Notes

Thereafter, the LEDs indicate the conditions shown in Table A-2.

IQ80960RP Evaluation Boards
This section describes the IQ80960RP PCI evaluation boards.

Table A-3 Cyclone Board DIP Switches for PCISB0960RP
Switch ON Function
SW1.1 VPP OFF When on, lets you erase the baseboard flash.
SW1.2 ROM Swap OFF When off, the board boots from the flash in socket
U4. When on, the board boots from the flash in
socket U3.
SW1.3 ROM Disable OFF Disables booting from either flash.
SW1.4 OFF Not used.
Table A-4 Cyclone Board LEDs for PCI80960RP
LED When Lit, Indicates
0 MON960 is listening at the serial port.
1 MON960 is writing to the serial port.
2 An application program is being executed.
3 MONB960 is listening for a parallel download.
4-7 Only used during boot-up, available for application program

usage.

Note that LED 0 is the one closest to the serial connector. During boot-up,

the

Cyclone 1Q80960RP baseboard LEDs (eight small red LEDs) indicate

the following conditions:

LED 0-2 on when memory tests are complete
LED 3 on when core initialization is complete
LED 4 on when flash initialization is complete
LED 5 on when ATU and MU initialization is complete

A-3

MON960 Debug Monitor User's Guide

A-4

» LED 6 on when bridge initialization is complete
» LED 7 on when the UART test has passed
» all LEDs off when tests are complete

Thereafter, the LEDs indicate the conditions described in Table A-4.

IQ80960RPLV and IQ80960RD Evaluation Boards

This section describes the IQ80960RPLV and IQ80960RD PCI evaluation
boards.

Table A-5 Cyclone Board DIP Switches for IQ80960RPLV and PCI80960RD
Switch ON Function
SW1.1 OFF Not used.
SW1.2 ROM Swap OFF When off, the board boots from the flash in socket
U10 is enabled. When on, the board boots from
the flash soldered at U9.
SW1.3 ROM Disable OFF Disables booting from either flash.
SW1.4 OFF Not used.
Table A-6 Cyclone Board LEDs for IQ80960RPLV and PCI80960RD

LED When Lit, Indicates

0 MON960 is listening at the serial port.
MON960 is writing to the serial port.

2 An application program is being executed.

3 MON960 is listening for a parallel download.

4-7 Only used during boot-up, available for application program
usage.

Target Board Notes

Note that LED 0 is the one closest to the serial connector. During boot-up,
the Cyclone IQ80960RPLV and IQ80960RD baseboard LEDs (eight small
red LEDs) indicate the following conditions:

LED 0-2 on when memory tests are complete

LED 3 on when core initialization is complete

LED 4 on when flash initialization is complete

LED 5 on when ATU and MU initialization is complete
LED 6 on when bridge initialization is complete

LED 7 on when the UART test has passed

all LEDs off when tests are complete

Thereafter, the LEDs indicate the conditions described in Table A-4.

IQ80960RM/RN Evaluation Boards
This section describes the IQ80960RM/RN PCI evaluation boards.

Cyclone Board DIP Switches for IQ80960RM/RN

Name Description Default

RST_MODE# Determines if the processor is to be held in reset. OFF
ON = hold in reset.
OFF = allows processor initialization.

RETRY Determines if the Primary PCI interface will be OFF
disabled.

ON = retries all Primary PCI configuration cycles.

OFF = allows Primary PCI configuration cycles to
occur.

continued [

MON960 Debug Monitor User's Guide

A-6

Table A-7 Cyclone Board DIP Switches for IQ80960RM/RN (continued)

Position Name

Description

S1-3 32BITMEM_EN# Notifies Memory Controller of the SDRAM width.

S1-4* 32BITPCI_EN#

ON = Memory Controller utilizes 32-bit SDRAM
access protocol.

OFF = Memory Controller utilizes 64-bit SDRAM
access protocol.

Determines whether Secondary PCI bus is a 32- or
64-bit bus.

ON = indicates Secondary PCI bus is a 32-bit bus.

OFF = indicates Secondary PCI bus is a 64-bit bus.

Default
OFF

OFF

* This switch is active for IQ80960RN only.

Table A-8 Cyclone Board LED Usage During Bootup for IQ80960RM/RN

LEDS
LED O
LED 1
LED 2

LED 3
LED 4
LED 5
LED 6
LED 7

When Lit, Indicates

SDRAM serial EEPROM checksum validated
UART walking ones test passed

DRAM walking ones test passed

DRAM multiword test passed
Hardware initialization started
Flash ROM initialized
PClI-to-PCI Bridge initialized

UART internal loopback test passed

Target Board Notes

Table A-9 Cyclone Board LED Usage After Bootup for IQ80960RM/RN

LED
0
1
2
3

4-7

When Lit, Indicates

MON960 is listening at the serial port.
MON960 is writing to the serial port.

An application program is being executed.

MONO960 is listening for a parallel download.

Only used during boot-up, available for application program
usage.

A-7

MONDB Execution Utility

The mondb execution utility included with MON960 enables a host system
to download and execute an application program on the target board
running MON960. Once the program downloads, you can use mondb to
initiate the User Interface (Ul) debugging mode. The Ul is explained
further in Chapter 4 of this guide.

mondb supports both serial and PCI communication between the host and
target.

You can also use TCP/IP to allow a remote workstation to connect to a
mondb server. The mondb server uses serial or PCl communications to
download the remote workstation’s software to the evaluation board. This
feature lets you share an evaluation board with a group of workstations.
You can use gdb960, gdb960v, or mondb as the client TCP/IP debugger.

mondb supports Position Independent Code (PIC) and Position
Independent Data (PID). Additionally, mondb supports erasing flash
before a download. While the target is running, mondb processes runtime
requests from the application program. When the application completes,
mondb exits. The exit status of mondb is the same as that of the
application program.

mondb options, plus the program and any optional arguments, may be
placed within an environment variable callddNDBmMondb reads and
parses environment variable settings before parsing its command line.
Consequently, options and/or a load command tail specified at the
command line always override environment variable settings.

Downloads can be completed using a serial or parallel port, or the PCI bus.
mondb’s downloading features support the following:

« on Windows systems, PCI download to Cyclone PCI baseboards.
« parallel download on selected UNIX hosts.

B-1

MON960 Debug Monitor User's Guide

B-2

» downloading programs in ELF and b.out formats, as well as COFF.

» downloading programs in big- or little-endian host object file format.

» 57600 and 115200 serial baud rates on selected UNIX hosts. Refer to
the section tittedommunicating from UNIX Hosts at 57600 or
115200 Baud.

If you connect to a target using serial communication, but do not specify a
baud rate, mondb supplies the following default baud rates:

» for UNIX hosts, 38400

» for Windows hosts, 115200

When running a program, you may interrupt it by pressing CTRL-C or
CTRL-break. If the target does not respond, then pressing CTRL-C or
CTRL-break three more times causes mondb to exit.

mondb consists of these source files, which are divided into functional

areas.

mondb.c contains the init code, mainline debugger
interface, program execution, return and interrupt
code.

options.c contains all the option parsing routines.

tables.c contains all the CPU table display code.

tcp.c contains all the TCP/IP init, client, and server
code.

aplink.c contains all the Aplink code.

usage.c contains all the help message display code.

verstr.c contains the code the generatemion.c file

for version information.

TCP/IP Communication

mondb supports a client/server mode of operation using the TCP Internet
Protocols (AF_INET, SOCK_STREAM) to establish the connection. The
same mondb executable may be invoked as either the client or the server

MONDB Execution Utility

depending on the command line options used at startup. The operation of
mondb in client/server mode is completely transparent to the user with the
exception of the command line options required. The server must have a
target i960 board installed and be ready for communication via serial or
PCI connection prior to starting the client.

The mondb TCP/IP client communication software is implemented as a
standard driver that is part of the HDILCOMM library. The mondb server
communication software is implemented as an integral part of the mondb
source code. Both client and server systems must have standard TCP/IP
communication software installed in order for mondb to function in
TCP/IP mode.

The client HDILCOMM packets, which are normally sent directly to the
target board via SERIAL or PCI connection, are encapsulated into standard
TCP/IP packets and sent to the server where they are extracted and
forwarded to the target board via serial or PCI connection, depending on
how the mondb server was invoked. Response HDILCOMM packets from
the target board are received by the mondb server, encapsulated into
standard TCP/IP packets, and sent to the client for processing.

Hardware Requirements

» PC or UNIX workstation for client operation.

« PC or UNIX workstation for server operation.

* {960 evaluation board installed on server machine.
» Network adapter cards on both client and server.

Software Requirements
 TCP/IP software installed on both client and server.

Server Semantics

Invoke the mondb executable with teey option and one of the

standard target board communication options (serial or PCl)-sithe

option must be immediately followed by two arguments. The first

argument is the name of the server machine that directly corresponds to
that machine’s IP address. The second argument is the server port number

MON960 Debug Monitor User's Guide

that is used to establish the client/server connection. Note that selecting a
port number is left to the operator, there is no standard port reserved for
this type of connection. For example:

mondb -pci -srv computerXYZ.company.com 1234

Client Semantics

Invoke the mondb executable with thgy option only. Place the same
two arguments that were used to invoke the server immediately after the
tcp option. The first argument being the machine name of the server and
the second being the port number to be used for establishing the
connection. For example:

mondb -tcp computerXYZ.company.com 1234

PCI Communication

PCI communication is supported for the following hosts and hardware:

« any Windows-hosted PC with a PCI bus, and a PCI-compliant BIOS,
and

« any MON960-based target that includes a PCI interface.

Intel's Cyclone baseboards meet these requirements, using PLX's PCI
9060 PCI bus master interface chip. Note that the Cyclone baseboard
requires a PC host that has sufficient physical space to accept a full-sized
PCI card.

Hardware Requirements

To support PCI communication, the target must be connected to a PCI bus.
Furthermore, a communication driver is required to interface the target to
the host.

MONDB Execution Utility

Software Requirements — PCI Driver Installation

Windows NT requires that the PCI driveti(wnt.sys) is installed

before any PCI functions can operate. Windows 95 does not need its VXD
driver (pci_w9s.vxd) for operation, however, downloads run five times
faster when the VXD driver is available. The Windows 95 VXD just
needs to be copied to any directory in your path. To install the
Windows NT device driver you need to r#g_ntdd.exe from a
command window and then reboot your system. Run this program with
two parameterseg_ntdd (pci_wntsys directory) (WIinNT directory).
Seeset_ntdd.bat for an example assumimpgi_wnt.sys in the “Intel
tools directory/bin”. These files are in the directorypinh " usually
c:\inte960\bin. Ifoci_wnt.sys is in C;\intel960\bin then to install the NT
drive you type the following in a command window

reg_ntdd c:\intel960 %SystemRoot%

Note thatreg_ntdd looks for pci_wnt.sys in the bin directory under
directory specified. After runningg_ntdd you must shutdown and
restart your NT system. Now the driver is loaded after every NT boot.
You can verify this by looking in the Control Panel Devices icon. Look
for PCI_WNTIn the device list and it should be started and automatic.

Mechanics

If your PC host and target meet the requirements for PCI communication,
consider the advantages of its increased host-to-target transfer rates. Set up
PCI communication according to the following steps:

1. Turn off the power to the PC.

2. Install an appropriate target in an empty PCI bus slot in the PC host.

3. Turn on the power to the PC.

B-5

MON960 Debug Monitor User's Guide

B-6

Semantics

You can use any of three methods to establish PCI communication with a

target:

1. To connect to the single Cyclone PCI card in the PC, usgcthe
option.

2. To select one aftargets, all made by the same manufacturer, use the
-pcib option to select a target by absolute bus address.

3. To select a target from a unique collection of hardware devices, select
the target by its vendor and device ID, using-e& option.

Example
>mondb -pci myprog myarg

This example connects to the single Cyclone PCI target in the host PC, and
downloads and executesprog . All communication between the host and
target transmits over the PCI bus.

Serial Communication

Serial communication is available on all hosts supported by the 1960
processor tool chain. Serial communication is supported for all targets that
meet the hardware requirements described next.

Hardware Requirements

To support serial communication, the host must be connected to the target
by CTOOLS960 or GNU/960 through a serial cable. This implies that the
target is equipped with both an RS-232 connector and supporting
hardware, and that the monitor's serial communication API has been ported
to the target hardware. Since the serial protocol shared between host and
target does not use hardware or software flagging, no special modifications
are required for the serial cable connecting the host and target.

MONDB Execution Utility

NOTE. Be sure to disable hardware or software flagging for the serial
port that you will use to communicate with the target. This is not usually a
concern for Windows, but can be an issue for some UNIX hosts.

Windows Serial Communication Example
> mondb -ser com1 myprog myarg
This example connects to a target using the COML1 serial port, downloads

myprog , and executes itAll communication between host and target
transmits through the serial cable.

UNIX Serial Communication Example
> mondb -ser /dev/ttya myprog myarg
This example connects to a target usingdbettya serial port,

downloadsnyprog , and executes itAll communication between host and
target transmits through the serial cable.

Windows PCI Download

If a target supports PCI communication, but application requirements make
it undesirable for the monitor to tie up the PCI bus with I/O and various
service requests (e.qg., register dumps), then PCI download can be used to
augment serial communication.

Hardware Requirements

The hardware requirements are the same as those previously described for
both PCI and serial communication.

Mechanics

If your Windows host and target meet the requirements for PCI download,
connect a serial cable between the host and target and ensure that the target
is connected to a PCI bus. The serial cable is used by the host to

B-7

MON960 Debug Monitor User's Guide

establish the initial connection with the target, to service interrupts and
breaks, and to transfer all non-download data between host and target. The
PCI bus is used only to download programs to the target.

Example
> mondb -ser com2 -pci myprog myarg
This example connects to a Cyclone PCI target via the COM2 serial port,

downloadsmyprog to the target using the PCI bus, and executes the
program. All /O generated byyprog is serviced via COM2.

Windows Parallel Download

Parallel download can be used to augment serial communication. Parallel
download transfer rates are up to ten times the speed of the fastest
Windows serial transfer.

Hardware Requirements

To support parallel download, a host parallel port host must be connected
to a target's parallel port via an appropriate cable, which is typically double
male, 25-pin, and wired straight through. The target must include a
receive-only or bi-directional parallel port connector and supporting
hardware, and the monitor's parallel download APl must be ported to the
target hardware.

Mechanics

If your Windows host and target meet the requirements for parallel
download, consider the advantages of its increased host-to-target transfer
rates. To use parallel download, you must connect both a seriabodble
parallel cable between the host and target. The serial cable is used by the
host to establish the initial connection with the target, service interrupts and
breaks, and to transfer all non-download data between host and target. The
parallel cable is useshly to download programs to the target.

MONDB Execution Utility B

Example

> mondb -ser com1 -par Iptl myprog myarg

This example connects to a target via the COM1 serial port, downloads
myprog Via the LPT1 parallel port, and subsequently execuypsog . All
I/O generated bynyprog is serviced via COML1.

UNIX Parallel Download

Parallel download is up to 50 times faster than the fastest UNIX serial
transfer rate. UNIX parallel download is supported for selected hosts and
hardware, including:

* RS6000 workstations running AIX 3.2 or 3.25

» HP 9000/700 workstations running HP-UX 9.X

* Sun SPARCstation 4/5/10/20/Classic/LX running either SunOS 4.1.3
(or a later version), or Solaris 2.4 (or a later version), and using the
manufacturer's built-in parallel port.

The 4/5/10/20 SPARCstations usually require an adapter cable
purchased from Sun Microsystems. This cable permits Sun's
miniaturized parallel port connector to interface with an industry-
standard DB25 connector. The relevant part number for this adapter is
X975 A/C4, and it can be ordered from Sun Express
(1-800-873-7869).

» Sun SPARCstation 1/2/4/5/10/20/1000/classic/LX running SunOS
4.1.3 (or a later version) and using an SBUS add-in parallel card
supplied by MAGMA.. Intel has tested the following products from
MAGMA and found them acceptable:

0 Parallel Sp (a single parallel port)

0 2+1 Sp (a single parallel port, and two high-speed serial ports)
Other MAGMA SBUS cards that Intel has not tested, but that
should also support parallel download include:

O Dual Parallel Sp (two parallel ports)
O 2+8 Sp (two parallel ports, and eight high-speed parallel ports)

B-9

MON960 Debug Monitor User's Guide

B-10

Hardware Requirements

For host-to-target communications to support parallel download, both a
parallel port and a serial port must be available. The normal parallel port
cable is a double male, 25 pin straight through cable. Use parallel
download with any MON960-based target that includes a UNIX-
compatible, receive-only or bi-directional parallel port. Intel's Cyclone
baseboards meet those requirements.

Mechanics

If your UNIX host and target meet the requirements for parallel download,
consider the advantages of its increased host-to-target transfer rates. To
use parallel download, you must connect both a serial aalla parallel
cable between the UNIX host and target. The serial cable is used by the
host to establish the initial connection with the target and to transfer all
non-download data between host and target. The parallel cable is used
only to download program(s) to the target.

NOTE. The information in this chapter assumes that you can connect a
serial cable between a UNIX host and a target.

Selecting the Parallel Port On Your UNIX Host

» Sun workstations using the manufacturer's built-in parallel port will
probably provide only one parallel port connector; it is typically
accessed asdevibpp0 (bpp means bi-directional parallel port). Users
of this host/hardware combination need do nothing to set up the port.
For Sun workstations that have a MAGMA parallel port and driver
software installed, the port is usually accessed as éitvgsm00 or
/devipnm00 . Either device should work, so use the one that yields the
fastest download. Beyond installing the MAGMA add-in card and its
driver, no other port configurations are necessary.

MONDB Execution Utility

» AlX hosts probably provide only one parallel port connector, but it is
usually not configured. To configure it, use ¢het system tool's
System Management menu to add a printer/plotter. Set up the
following characteristics:

Setup Field Value
Printer/Plotter Type opp
Printer/Plotter interface parallel
Parent adapter ppa0
port number p

Send all characters to printer unmodified? yes

The defaults are sufficient for the other fields in these setup screens.
Once created, the parallel port is typically accessedbatp0 (but

smit lists the name of the port that it creates). If you have trouble
with this task, consult with your system administrator.

* An HP 700 host usually provides only one parallel port connector, but
it can be accessed using a number of drivers. Therefore, the user must
select a driver that useasyhandshake. Determine the proper driver
as follows:
1. List all available parallel devices using this command:
% Is -l /dev/ptr* /dev/plt* /dev/par* /dev/scn*
2. Look at each device's minor number. Any device number that
ends ire has a driver that uses thesyhandshake. Select a
likely candidate and see if it works with mondb.

The following example listing shows the likely candidates
flagged with an asterisk:

% Is - /dev/scn* /dev/par* /dev/ptr* /dev/plt*
/dev/par* not found
* crw-rw-rw- 2 audit kmem 11 0x206002 Dec 18 19:27
/dev/plt_parallel
crw-r--r-- 2 audit kmem 1 0x204004 Jul 16 1991
/devlplt_rs232_a
crw-r--r-- 2 audit kmem 1 0x205004 Jul 16 1991
/dev/plt_rs232_b

B-11

MON960 Debug Monitor User's Guide

* crw-rw-rw- 2 audit kmem 11 0x206002 Dec 18 19:27

/dev/ptr_parallel
crw-r--r-- 2 audit kmem 1 0x204004 Jul 16 1991

/dev/ptr_rs232_a
crw-r--r-- 2 audit kmem 1 0x205004 Jul 16 1991

/dev/ptr_rs232_b
crw-rw-rw- 1 audit kmem 11 0x206003 Jul 16 1991

/dev/scn_parallel

Default Serial and Parallel Port Devices

On selected hostmondbsupplies default serial and parallel port names
when arguments to theer and-par options are omitted. Selected hosts
and defaults are specified in the following tables:

Table B-1 Default Serial Port Devices

Host Hardware and Operating System Default Serial Port (-ser)
PC, Windows 95/NT coml

SPARCstation, SunOS 4.1.3 (or later) /devittya
SPARCstation, Solaris 2.4 (or later) /devi/ttya

HP 9000/700 Workstation, HP-UX 9.X /dev/tty00

RS6000 Workstation, AlX 3.2 & 3.25 /devi/tty0

Table B-2 Default Parallel Port Devices

Host Hardware and Operating System Default Parallel Port (-par)
PC, Windows 95/NT Iptl

SPARCstation, SunOS 4.1.3 (or later) /dev/bpp0
SPARCstation, Solaris 2.4 (or later) /dev/bpp0

HP 9000/700 Workstation, HP-UX 9.X /dev/ptr_parallel
RS6000 Workstation, AlX 3.2 & 3.25 /dev/Ip0

B-12

MONDB Execution Utility

Invocation Syntax

mondb option ...[application [argument]...]

Variable Description

option is any valid mondb invocation option.

application is the name of the application to download to the
target board. If no application is specified,
mondb connects to the target, and prints the
mondb, MON960, and HDIL version numbers.
Then, mondb processes all other command line
options, and exits.

arguments are the arguments passed to the downloaded

TCP/IP Options
Option

-Srv name port

-tcp name port

program.

Description

Starts the mondb program in TCP server mode.
name represents the server name, which
corresponds directly to the machine’s IP address.
port represents an arbitrary selection left to the
operator but it must not conflict with any other
active port on the server.

Starts the mondb program in TCP client mode.
name represents the name used when invoking
the mondb server to which you are connecting.
port represents the port number used when the
mondb server was invoked.

B-13

MON960 Debug Monitor User's Guide

PCI Options

mondb recognizes the following PCI options on Windows hosts:

Option Description

-pci Selects a target connected to the host’s PCI bus.

This option specifies selecting the target using an
algorithm that searches for the first available
Cyclone PCI baseboard.

-pcib bus_no Selects a target connected to the host’'s PCI bus.
dev_no func_no The target PCI device is selected using an
absolute PCI bus address. All arguments are
specified in hex.

-pcic {io | mmap} Configures PCI communications. By default,
mondb always attempts to communicate with a
PCI device via its fastest interface. This option
lets the user explicitly specify the interface.

io Specifies communicating via I/O space (use
infout instructions to access the PCI device).

mmap Specifies communicating via memory-mapped
access.

Notes: Memory-mapped access is used
automatically when possible.

This option is not useful for the real mode
versions of mondb (versions built with 16-bit
versions of Microsoft C). This is because 1/0
space access is the only feasible real mode
communication interface.

The prebuilt version afiondb.exe supplied with
each release of MON960 is a real mode
application and, consequently, does not support
memory mapped I/Qr(may.

B-14

MONDB Execution Utility

-pcif [vendor_id Dumps a list of all PCI devices that match the
device_id] specified vendor and device ID, which must be
specified in hex. If the vendor and device ID are
omitted, default values are chosen to list Cyclone
PCI baseboard(s). When the listing is complete,
the tool immediately exits. The location of each
PCI device is listed as a triple:

<PCI bus no> <PClI device no> <PCl function no>

Also listed: PCI Vendor and Device ID, Status
and Command Registers, Class Code, Revision
ID, and Header. This information can be used in
conjunction with thepcib or-pciv options to
select a specific card when more than one
MON960-compatible PCI target is present.

-pcil[bus no] Dumps a list of all PCI devices for the specified
bus. The default busds Specifying abus_no
value of-1 enables all devices on all 256 buses
in the PCI address to be listed. When the listing
is complete, the tool immediately exits. The
listing uses the same format as that used by the

-pcif option.
-pciv vendor_id Selects a target connected to the host's PCI bus.
device_id The target PCI device is selected by specifying a

PCI vendor and device ID. All arguments are
specified in hex. For this option, mondb
searches the PCI bus for the first available target
that matches the specified vendor and device ID.

Parallel Download Options

-par[port] Uses the specified parallel port for program
download. Us&PT1 throughLPT3 on Windows,
and an appropriate device path on UNIX, e.g.,
/devittya . The defaults are listed in
Tables B-1 and B-2.

B-15

B MON960 Debug Monitor User's Guide

Communication Protocol Options

mondb recognizes the following invocation options:

-at timeout

-hpt timeout

-mpl length

-mr retries

-tpt timeout

B-16

Specifies the number of milliseconds the host or
target waits to acknowledge that it has received a
packet. The valid range of milliseconds is from 1
to 65,535. The default is 5000.

Specifies the number of milliseconds the host
waits for a reply packet from the target. The
valid range of milliseconds is from 1 to 65,535.
The default is 5000.

Specifies the maximum number of bytes for a
packet. The valid range of packet sizes is from
two to 4095. The default is 4095. Decreasing
the packet size increases the chance of receiving
a good packet in a heavily loaded environment.

Specifies the maximum number of times for the
protocol to retry failed data exchanges. The valid
number of tries is from 1 to 255. The default is
five. Increasing the retry count increases the
possibility of receiving a good packet in a heavily
loaded environment.

Specifies the number of milliseconds the target
waits for a reply packet from the host. If the host
has several applications running, you may need
to increase this value. The valid range of
milliseconds is from 1 to 65,535. The default is
5000.

MONDB Execution Utility B

Serial Communication Options

—b rate sets the baud rate tate . mondb supports baud
rates of 1200, 2400, 4800, 9600, 19200, and
38400 on both Windows and UNIX. On
Windows and selected UNIX hosts, 57600 and
115200 are also supported. The default is 38400
on UNIX hosts, and 115200 on Windows hosts.

—ser [port] specifies the name of the serial port. Use
coMm1-4on Windows. The name of the port varies
on UNIX. See you your system administrator for
the name of the port. The defaults are listed in
tables B-1 and B-2 in this chapter.

Miscellaneous Options

-d After download, if any, initiates the User
Interface (Ul) debugging mode. The Ul mode is
the same as the terminal interface. For more
information on the Ul, see Chapter 4 of this
manual. To exit from the mondb Ul mode, type
quit .

-ef [1..16] Erases flash memory before downloading. To
erase a specific flash chip, specify a value of 1 to
16, where 1 is the first flash chip in the address
sequence and 2 is the second, etc. The default
value (i.e., no chip number given) erases all flash
chips.

-it Interrupts a target. This option assumes that the
target is running a program.

—ip start-ip Specifies the start address to be used instead of
the one in the object file. This option can be used
to start execution when no object file is specified.
The value oftart-ip must be hexadecimal.

B-17

MON960 Debug Monitor User's Guide

B-18

—-ne

-pic offset

-pid offset

-pix offset

-t secs

-tan

-tat

-v960

If you do not specify an object file and do not use
the-ip or-d option, mondb connects to the
target, prints the mondb version number and
monitor version number, and exits.

No execution. mondb downloads the application
program, but does not start program execution.

Downloads text sections to the object file address
plus the value obffset . The value obffset
must be in hexadecimal.

Downloads data sections to the object file address
plusoffset . The value obffset must be in
hexadecimal.

Downloads to the object file address plus
offset . The value obffset must be in
hexadecimal.

Specifies quiet mode. This mode suppresses
messages from mondb. Output from the
application is not affected.

Wait the specified number of seconds for the
target to reset. The rangesets is 1-60
seconds; the default value is 3.

Displays target attributes in verbose format and
exits. The reported information is described in
the HDlinclude file hdi_mcfg.h

Displays target attribute name only, and exits.
Displays the common target name, suchyas .

Displays target attributes in terse format, and
exits. The reported information is described in
the HDlinclude file hdi_mcfg.h

Displays version information for mondb and exits
the program.

MONDB Execution Utility

B

mondb Commands

Exits after the application begins executing.
Runtime requests from the application are not
serviced. The exit statusadsf execution
succeeds, and if not.

This section provides a list of debugging command available through
mondb that are not supplied by the monitor.

PCI display commands

PH [addr [hex value]]

PT [addr [hex value]]

PM [addr [hex value]]

Display PCI register space from Host
side.

No parameters is display the first 128
bytes in the register space. [addr hex
value] changes the register at offset addr
to hex value

Display PCI register area from the target
side. No parameters is display the first
256 bytes in the register space. [addr
hex value] changes the register at offset
addr to hex value

Display PCI shared memory from target
side. No parameters is display the first
256 bytes in the memory space. [addr
hex value] changes the register at offset
addr to hex value.

Display of i960 chip tables for the Cx, Jx, Hx, and RP CPUs.

TA

TF

Display a list of target board attributes as
used by debuggers

Display the Fault Table address and all
its entries

B-19

MON960 Debug Monitor User's Guide

B-20

TI

™

TP

TS

Miscellaneous commands.

DF
MM addr { value }

QU

SC filename

Examples of Using mondb

Display the interrupt table, pending
priorities, all entries, all interrupt
registers, and a list of active interrupts.
You can verify an interrupt is correctly
set using this command.

Display all MMR entries by name and
offset.

Display the PRCB table address and alll
its entries.

Display the system procedure table
address, supervisor stack pointer and all
the table entries.

Download i960 program to flash.

Display/change memory-mapped
register, wheraddr represents its
4-digit hex offset, andalue represents
the value that you would like to write to
the register.

Quit mondb.

Reads and executes commands from a
file.

Windows PCI Downloading

> mondb -ser com1 -pci myprog

This example debugs the progratyprog , downloading to the Cyclone
PCI baseboard target currently controlled via COML1.

> mondb -ser com1 -pcib 0 ¢ 0 myprog

MONDB Execution Utility B

This example downloadsyprog to the PCI target controlled via
COML1 and located at PCI bus addregbus#),0xc (device#)p
(function#).

> mondb -ser com2 -pciv 8086 8 myprog

This example downloadsyprog to a PCI target controlled via COM2
with vendor 1Doxsose and device IDxs .

> mondb -ser com2 -pci -par Iptl myprog

This example contains an error: It specifies more than one download
channel.

UNIX Parallel Downloading (SPARCstation 5)

> mondb -ser /dev/ttyb -par /dev/bpp0 myprog myarg

This example uses mondb to download and execute the application
myprog . The host-to-target serial connection is made uginvgtyb

at 38400 baud (the default), bt§prog is downloaded much more
quickly using the parallel communication charael/obppo

Communicating from UNIX Hosts at 57600 or
115200 Baud

You can communicate with a target at 57600 or 115200 baud on

selected UNIX hosts (the target must have a UART that supports

communication at those baud rates). Supported UNIX host/hardware

combinations include:

e HP 700 running HP-UX 9.X

« SPARCstation running either SunOS 4.1.3 or later, or Solaris 2.4 or
later, with a MAGMA 2+1 Sp SBUS card installed

» SPARCstation running either SunOS 4.1.3 or later, or Solaris 2.4 or
later, with a MAGMA 8+2 Sp SBUS card installed

B-21

Index

28F256 chip, 5-41

A

Acknowledge (ACK) signal, 6-12
ACKnowledge signal (ACK), 6-23
address
_start_ip boot address, 5-30
8254 count register for timer 0, 5-41
8254 timer control register, 5-41
boot address, 5-30
EPROM space base, 5-12
initialization boot record (Cx only), 5-12
monitor initialized data space, 5-12
monitor uninitialized data space, 5-13
pre-initialization code, 5-13

addresses, used in command language, 4-1

ApLink
manipulate compatible monitor, 8-13
modify register, 8-13
relocate monitor, 8-13
application
environment, 7-1
program compiling, 7-15
program downloading, 3-7, B-1
application-specific fault handlers, 7-17
arch variable, 5-6
ARCH_CA constant, 5-6
ARCH_HX constant, 5-6

ARCH_JX constant, 5-6

arch_name[] processor name array, 5-7
ARCH_RP constant, 5-6

ASCII numeric string, converting, 8-16
asynchronous application input, 8-14
autobaud, 6-25

autobaud mechanism, 5-29

B

base address, 5-12
baud rate, 6-25
crystal frequency, 5-38
tables, 6-25
benchmark timer, 7-15
board initialization, 5-30
board_name[] board name array, 5-7
boards
Cyclone, A-1, A-2, A-3, A-4, A-6
names and abbreviations, 5-2
boards supported by MON960, 2-7, A-1
board-specific
data, 5-6
routines, 5-8
boot address, 5-30
boot control table, 5-8
bp_flag flag, 6-18
BPCON register, 7-5
branch trace, 3-4, 8-45
break at serial port, 5-9

Index-1

MON960 Debug Monitor User's Guide

Index-2

break commands, 4-5
BREAK interrupt, 7-5
breakpoint, deleting, 8-15
breakpoints
data, 3-3
deleting, 8-14
deleting, 4-11
hardware, 3-2
hardware data, 4-7
hardware, software, data, 6-19
instruction, 3-2, 4-8
registers, 7-24
returning, 8-16
set at address, 8-15
setting, 4-8
setting, 4-7
software, 2-5, 3-3
types, 8-15
bss, 5-13
buffer, 8-27
fixed location, 8-22
writing to target meory, 8-30
build options, 5-22
bus configuration, 5-2, 5-8
values, 5-13

C

cache, invalidation, 7-20

caching, enable/disable, 8-40

call trace, 3-4, 8-45

calling conventions, serial.c file, 5-39
calls, sequence of, 6-10

CHANL1 port definition, 5-38

CHANZ2 port definition, 5-38
checksum, verification, 5-31
checksum words at address 0, 6-2
code, interrupt on target board, 8-46
COFF (common object file format)

file downloading, 4-12
cold-start, 5-30
command language

addresses, 4-1

names, 4-1

numbers, 4-2

overview of commands, 4-2
commands

alphabetical reference, 4-6

bd (bdata), 4-7

bdata (bd), 3-3

br (break), 3-2, 4-8

break command list, 4-5

cf (cflash), 4-8

da (dasm), 4-9

db (dbyte), 4-9

dbyte, 3-3

dchar, 4-10

dd (ddouble), 4-10

de (delete), 4-11

debug environment, 4-6

di (display), 4-11

do (download), 4-12

dquad (dq), 3-3, 4-13

ds (dshort), 4-13

dt (dtriple), 4-14

ef (erase flash), 4-14

execution command list, 4-5

Index

fi (fill), 4-15

fl (flong), 4-15

fr (freal), 4-16

fx (fxreal), 4-16

go, 3-5, 4-17, 6-9

he (help), 4-17
language elements, 4-1
list, 4-2

Im, 4-18

mb (mbyte), 4-18, 4-19
mc, 4-19

md (modify data), 4-20
mo (modify), 4-21
monitor environment, 4-6
overview, 4-2

po (post test), 4-24

ps (pstep), 4-24

qu (quit), 4-26

re (registers), 4-26
registers, 4-20, 4-22

rs, 4-27

st (step), 4-27

step, 3-4

tr (trace), 4-28

trace branch on, 3-4
trace call on, 3-4

trace return on, 3-5
trace supervisor on, 3-5
ve (version), 4-29
write_mem, 6-13

communications

host-target, 5-28, 6-21
interface layer, 6-21

parallel, B-1
PCI, B-1
problems, 5-28
protocol, 6-23
serial, B-1

config structure, 8-26
configuration

bus, 5-2, 5-8
memory, 5-2
variables, 5-12

constants

ACCESS_DELAY (access delay), 5-38

ACCESS_DELAY (UART access delay),
5-38

ARCH_xx (architecture type), 8-25
BRK_PIN break pin constant, 5-10
BRKIV (break pin), 5-10
DFLTPORT (port definition), 5-38
DUART (16552 base address), 5-38

DUART_DELTA (hardware register
spacing), 5-38

E_EEPROM_ADDR (no EEPROM at
address constant), 5-42

E_EEPROM_ADDR (no EEPROM at
address), 5-43

E_EEPROM_PROG (EEPROM not erased
constant), 5-42

E_VERSION (no flash available constant),
5-42

FLASH_ADDR (base address), 5-41

FLASH_WIDTH (number devices accessed
in parallel), 5-41

GO_NEXT, 6-18
GO_RUN, 6-18, 8-42
GO_SHADOW, 6-18, 8-42

Index-3

MON960 Debug Monitor User's Guide

GO_STEP, 6-18 power-on self-test, A-1
HDI_EINIT (host debugger interface running a post test, 4-24
initialization), 8-10 Cyclone boards, A-1
HDI_EPOLL (host debugger interface
polling), 8-10
I510BASE (base address of the 82510), D
5-38 data
I510DELTA (register spacing), 5-38 board-specific, 5-6
linker directive filename breakpoint, 3-3

BOARD ROM_LD, 5-19

NOADDR (check all EEPROM toggle),
5-42, 5-43

PROC_FREQ (processor frequency), 5-41
TIMER_O (count register address), 5-41
TIMER_CNTL (timer control register

structures, 960, 5-12
date string, 5-8
debug, environment commands, 4-6
debugger, exiting, 8-46
default variables, monitor, 5-9

address), 5-41 delay constant, 5-44
TIMER_XTAL (timer crystal frequency), device-driver routines, 5-3
5-42 For 16550 DUART, 5-38
TRACE_BRANCH, 8-45 For 16552 DUART, 5-38
TRACE_CALL, 8-45 For 82510 UART, 5-38
TRACE_PRERET, 8-45 serial_getc(), 5-39
TRACE_STEP, 8-45 serial_init(), 5-39
TRACE_SVC, 8-45 serial_intr(), 5-40
XTAL (baud rate crystal frequency), 5-38 serial_loopback(), 5-40
continue execution, 3-5 serial_putc(), 5-40
control table, 6-2, 7-5 serial_set(), 5-40
CA only, 6-1, 7-24 devices, 5-41
count register, 5-41 device-specific routines, 5-39
CPU, object addresses, 8-17 Directories
crystal frequency, baud rate, 5-38 lib/libevca/common, 7-17
Ctrl+Break key, 5-9 lib/libgt/common, 7-17
cyclic-redundancy check (CRC), 6-23 mon960/common, 5-18, 5-26
Cyclone board, 5-2 download
DIP switches, A-2, A-3, A-4, A-5 communication, B-10
memory configuration, 5-12 fast, 8-22

Index-4

Index

file, 8-18

parallel, 8-19

parallel, serial, PCI, B-1
PCI, 8-19

serial, 8-19

download-and-go monitor software (MONDB),
5-29

downloading
application programs to RAM, 6-12
MONO960, 3-7
with Xmodem, 6-16
DRAM initialization, 5-31
DUART
16550, 5-38
16552, 5-38
16552 base address constant, 5-38

E

EEPROM, 5-40, 5-41

checking memory for, 8-20

erasing a specified area, 8-21
eeprom routines

check_eeprom, 5-42

erase_eeprom, 5-43

write_eeprom, 5-44
encoded_length_high field, 6-24
encoded_length_low field, 6-24
end of transmission (EOT) signal, 6-13
environment

changing, 7-6

execution, 7-1

for your application, 7-1

LED, A-2, A-3, A-4, A-6
EPROM, 5-41

base address, 5-12

producing, 5-25

space for EPROM, 5-12

space requirements, 5-22

splitting code, 5-25
error codes, 8-5

listing and meanings, 8-4, 8-10
error messages, print to console, 8-11
error-detecting communications protocol, 6-23

beginning with go command, 4-17

commands, 4-5

of application program, B-1
execution of application program, 6-8
execution-mode bit, 7-9
external symbols, 8-2

F

FAILURE# pin, 5-30
fault
address, 7-19
entry point, 7-5
execution interrupt, 7-19
handler, 7-17
record address, 7-19
table, 6-5, 7-5, 7-6
trace, 6-5
while executing, 7-19
fault table, 6-1, 6-2

Index-5

MON960 Debug Monitor User's Guide

Index-6

files

.h, 5-2, 5-8, 5-38

.hex, 5-25

.hex, 5-18

.ima, 5-25

Ad, 5-2

_dat.c, 5-3, 5-8

_dbg.c, 5-3

_hw.c, 5-8, 5-32
16552.c, 5-3, 5-38, 5-39
82510.c, 5-10, 5-38, 5-39
82510.c, 5-3
bld_date.c, 5-8

board makefile, 5-25
board-independent, 5-2
ca.s, 7-20

ca_ibr.c, 5-13

COFF (common object file format), 5-25
crt960.0, 6-8
duplicating, 5-2

entry.s, 6-8, 7-20
flash.c, 5-44

flash.c contents, 5-40
hdi_arch.h, 8-25

hdil.h, 8-2

hello.c, 7-15
hexadecimal, 5-2
hi_rt.c, 6-9

host interface source, 2-5, 6-21, 6-2
init.s, 6-2, 7-6

init.s, 5-30, 5-31
leds_sw.c, 5-32
libevca.a, 7-12

libll.a, 6-8, 6-9
MCS-86 hexadecimal-format, 5-25
renaming, 5-2
runtime.c, 6-9
sdm.h, 7-11
serial.c, 5-39
serial.c, 5-38
ui_rt.c., 6-9
user interface source, 2-4
flash memory, 5-40, 5-41
base address, 5-41
cflash (cf) command, 4-8
erase_eeprom() routine, 5-42
erasing, 4-14, 7-14
initializing, 7-14
loading MON960, 3-5
programming, 3-5, 4-12, 4-20, 4-21, 7-14
programming, 5-44
size, 4-8
floating point register, change value, 8-33
fmark breakpoint, 8-15
fmark instruction, 3-3
format, memory display, 3-3
frequency, timer crystal, 5-42

G

global registers
gl1, 5-31
preserving, 5-31
global variables, 6-17
eeprom_prog_first, 5-42
eeprom_prog_last, 5-42
GO_BACKGROUND option bhit, 8-42

Index

Guarded Memory Unit
initialize register, 8-36
register status, 8-23
registers’ values and statuses, 8-23
update register, 8-47

H

halt values, 8-43
hardware
data breakpoint (ICx/Hx/RB, 8-15
initialization, 5-30
instruction breakpoint, 8-15
registers, spacing, 5-38
hardware-dependent
addresses, 5-2
routines, 5-3
HDI, region cache vector, 8-24
hdi_set_prcb() routine, 8-39
imported routines, 8-10
types, 8-3
variables, 8-3
Host Debugger Interface
initalizing, 8-25
last error, 8-23
library, 8-1
Host Debugger Interface (HDI), 8-11
host debugger interface library (HDIL), 2-4, 3-3
routines, 8-12
host interface, 6-21, 6-2
host interface source files, 6-21, 6-2
host systems, disk requirements, 1-1

host-target communications
packet layer, 6-23
serial transfer, 6-23
host-target communications, 6-21

I/O, device drivers, 5-38
1/0 routines, 6-8
IAC, issuing, 8-25
IAC, reinitializing, 7-8
IMI (Initial Memory Image), 5-13
include file, sdm.h, 7-17
Initial Memory Image (IMI), 5-30, 6-1
initialization
boot record (ca_ibr.c file, Cx only), 5-13
hardware, 5-30
initialization boot record (IBR), 6-1
initialization data structures, 6-1
installation, 1-1
installation procedures
preparing to install in Windows, 1-4
preparing to install on UNIX, 1-2
instruction, 4-24
disassembly, 4-9
instruction cache, 7-20
instruction trace, 8-45
instructions
bal, balx, call, calls, callx, 8-42
modpc, 7-9
interface library, resetting, 8-35
internal data RAM, 7-23

Index-7

MON960 Debug Monitor User's Guide

interrupt, 7-16

debugging handlers, 7-18

default handler, 7-17

entry point, 7-5

handler, 7-17

handlers, 7-18

interaction scenarios, 7-18

mechanism, 5-9

non NMI priority, 5-11

priority, 5-9

routine preamble, 7-18

table, 7-5, 7-6, 7-22

while executing, 7-19
interrupt stack pointer, 6-2
interrupt table, 6-1, 6-2
interrupt-control register, 7-23
interrupt-mapping registers, 7-24
interrupt-mask register, 7-23

K-L
keyboard polling, 8-40
last error, HDIL, 8-23
led routines
init_eeprom, 5-33
void blink, 5-34
void blink_hex, 5-34
void blink_string, 5-34
void led, 5-36
void led_debug, 5-36
void led_output, 5-36
LEDs, routines, 5-32

Index-8

libraries

libevca.a file, 7-12

libll.a, 7-11
linker-directive file, 5-12
local routines in flash.c, 5-44

logical memory mask, setting register contents
(Im), 4-18

M

makefile, 5-20, 5-22, 5-26
editing, 5-18

manual contents, Xiii

manual, related, xvi

mark instruction, 3-3

memory
access commands, 4-5
checking for EEPROM, 8-20
configuration, 5-2, 5-12, 5-13
copying, 8-28
cycles, 5-38
cycles, 5-38
displaying, 4-9, 4-10, 4-11
erasing EEPROM, 8-21
erasing flash, 4-14
extended real (fxreal), 4-16
filling, 4-15
fl (flong), 4-15
flash, 4-20, 4-21, 5-44
flash, 5-41
in ASCII, 4-10
in long real, 4-15
in quad words, 4-13

Index

modifying one address or register (md),

4-20
modifying one byte (mb), 4-18, 4-19

modifying one or more words (mo), 4-21

real (freal), 4-16

register contents, 4-26

setting configuration register, 4-19
short words, 4-13

triple words, 4-14

writing to, 8-29

memory display, 3-3
memory,flash

erasing, 7-14
initializing, 7-14
programming, 7-14

memory-mapped I/O, reading, 8-30
MON960

aplink routines, 8-13
architecture, 8-22

monitor, 3-5, 3-7

application environment, 7-1
boards supported by, 2-7, A-1
communications options, 2-1
components, 2-2

core, 2-3

core files, 6-16

core routines, 6-18

data area, 7-25

debugging, 5-26
environment commands, 4-6
EPROM, 5-27

fault entry point, 7-5
features, 2-2

flash, 5-27

initialization routines, 6-3
initializing, 5-8

interfaces, 2-2

interrupt entry point, 7-5

configuration information, 8-11 makefile, 5-18
current priority, 8-24 memory display, 3-3
structure, 6-10 modifying, 5-18
version number, 4-29 priority, 7-11, 7-18
mon960/common directory, 5-18, 5-26 RAM, 5-27
MONDB, TCP/IP support, 2-8 registers, 5-27

MONDB execution utility, 5-29, B-1 reserved entries, 7-1

examples of use, B-19

invocation options, B-16

invocation syntax, B-13
miscellaneous options, B-17

PCI options, B-14

serial communication options, B-17
TCP/IP options, B-13

reserved words, 7-5

sign-on, 5-26

stacks, 7-6

testing, 5-27

verifying operation, 5-27
monitor_stack, 6-6

Index-9

MON960 Debug Monitor User's Guide

N reinitialization, 8-39
revision information, 5-31
processor cache invalidation, 7-20
processor control block (PRCB), 6-1, 6-2, 6-4,

names, command language, 4-1
Negative AcKnowledge (NAK) signal, 6-12
Negative AcKnowledge signal (NAK), 6-23

NMI priority interrupt, 5-9, 5-10, 7-5 7;:2|f11nging, 7.6
numbers, command language, 4-2
program
execution (go command), 4-17
o-P last stop, 8-24
option bit constants, 8-42 program downloading, 6-12
option bits, 8-42 program execution, 6-8
packet utility, MONDB, B-1
field values, 6-23 publications, related to MON960, xvi
layer, 6-23
structure, 6-23 R
parallel download, B-8
parallel download HDIL, 6-13 record-length decoding algorithm, 6-24
parallel download, on UNIX, B-9 registers
BPCON, 7-5

parallel port, downloading through, B-10

PCI communication, B-4 breakpoints, 7-24

PCI download. B-7 changing values, 8-33
ports, CHAN1, CHAN2, 5-38 copying, 8-34
post test, the Cyclone board, 4-24 g0, 7-10

imsk, 5-11

power-on self-test, 5-30
interrupt configuration, 7-5

interrupt mapping, 7-23
interrupt mask, 7-23
interrupt-control, 7-24

logical memory address, 8-37
logical memory mask, 8-37
memory control, 8-38

names, 8-32
process-controls, 7-22
reserved, 7-21

pre-initialization code, 5-13
pre-return trace, 8-45
priority, 7-11

set_mon_priority routine, 7-18
priority 31 interrupts, 7-16
process-controls register, 7-8
processor

frequency, 5-41

initializing, 5-8

Index-10

Index

trace-control, 7-22
user, 8-32
value, 8-32
reserved, external symbols, 8-2
reset, 5-30
retargeting, 5-2, 5-19
return trace, 3-5
ROM
checksum verification, 5-31
image, 5-18
image building, 5-26
routine
parallel_init(), 5-46
parallel_read(), 5-46
routines
serial_putc(), 5-40
routines
_exit_mon(), 7-20
_main(), 5-32
_sdm_arg_init, 6-12
_sdm_close, 6-11
_sdm_exit(), 6-12
_sdm_fstat, 6-11
_sdm_isatty, 6-11
_sdm_lIseek, 6-11
_sdm_open(), 6-11
_sdm_read, 6-11
_sdm_rename, 6-11
_sdm_stat, 6-11
_sdm_system, 6-12
_sdm_time, 6-12
_sdm_unlink, 6-11
_sdm_write, 6-11

app_exit_user(), 7-21
app_go_user(), 7-21
bentime(), 7-13

bentime(), changing interrupt vectors, 7-17

bentime_noint(), 7-14
board_exit_user(), 5-8, 5-11
board_go_user(), 5-8, 5-11
board reset(), 5-8, 5-10
board-specific, 5-8

bptable_ptr(), 6-20
calc_looperms(), 5-29, 5-39, 5-40
check_eeprom (), 5-43
check_eeprom(), 5-41

clear_break_condition(), 5-8, 5-9, 5-10,

5-40
clr_bp(), 6-20
copy_mem(), 6-19
erase_eeprom(), 5-41, 5-42, 5-44
erase_flash(), 7-14
fatal_error(), 5-34
fill_mem(), 6-18
fix_stack(), 6-4
flush_cache(), 7-20
for 16550 DUART, 5-38
for 16552 DUART, 5-38
for 82510 UART, 5-38
get_int_vector(), 5-8, 5-9, 7-5, 7-22
get_mon_priority(), 6-20, 7-12
get_prcbptr(), 7-6, 7-11, 7-17
ghist(), 7-15
go_user(), 6-18
hdi_aplink_enable(), 8-13
hdi_aplink_switch(), 8-13

Index-11

MON960 Debug Monitor User's Guide

Index-12

hdi_aplink_sync(), 8-13
hdi_async_input(), 8-14
hdi_bp_del(), 8-14
hdi_bp_rm_all(), 8-15
hdi_bp_set(), 8-15
hdi_bp_type(), 8-16
hdi_cmdext(), 8-10
hdi_convert_number(), 8-16
hdi_cpu_stat(), 8-47
hdi_cpu_state(), 8-17
hdi_download(), 8-18
hdi_eeprom_check, 8-20
hdi_eeprom_erase, 8-21
hdi_fast_download_set_port, 8-22
hdi_flush_user_input(), 8-22, 8-28
hdi_get_arch, 8-22
hdi_get_cmd_line(), 8-11
hdi_get_gmu_reg(), 8-23
hdi_get_gmu_regs(), 8-23
hdi_get_message(), 8-23
hdi_get_monitor_config(), 8-11
hdi_get_monitor_priority(), 8-24
hdi_get_region_cache(), 8-24
hdi_get_stop_reason(), 8-24
hdi_iac(), 8-25

hdi_init(), 8-25
hdi_init_app_stack(), 8-27
hdi_inputline(), 8-27
hdi_mem_copy(), 8-47
hdi_mem_fill, 8-29
hdi_mem_fill(), 8-31
hdi_mem_read, 8-29
hdi_mem_read(), 8-47

hdi_mem_write(), 8-30
hdi_mem_write(), 8-31, 8-47
hdi_poll(), 8-31
hdi_put_line(), 8-11
hdi_reg_get, 8-32
hdi_reg_put(), 8-32
hdi_regfp_get(), 8-33
hdi_regfp_put(), 8-33
hdi_regs_get(), 8-34
hdi_regs_put(), 8-34
hdi_reset, 8-35
hdi_restart(), 8-36
hdi_set_gmu_reg(), 8-36
hdi_set_Imadr, 8-37
hdi_set_Immr, 8-37
hdi_set_mcon, 8-38
hdi_set_prchb(), 8-39
hdi_set_region_cache, 8-40
hdi_signal(), 8-40
hdi_sysctl(), 8-41
hdi_targ_go, 8-42
hdi_targ_intr(), 8-46
hdi_term(), 8-46
hdi_ui_cmd(), 8-47
hdi_update_gmu_reg(), 8-47
hdi_user_get_line(), 8-12
hdi_user_put_line(), 8-12
hdi_version(), 8-47
hi_main(), 6-5

1/0, 6-8

imported, 8-10

in flash.c, 5-40
init_bentime(), 7-13, 7-17

Index

init_bentime_noint(), 7-13
init_eeprom(), 5-41, 5-43
init_flash(), 7-14
init_hardware(), 5-8, 5-43
init_imap_reg (), 5-10
init_P_timer(), 7-15
initialization, 5-8
is_eeprom(), 5-41, 5-43
led_output(), 5-36

leds, 5-36

LEDs, 5-32

leds_sw.c, 5-32
leds_sw.c, 5-32
load_mem(), 6-18
loopcnt(), 5-44

monitor core, 6-18
parallel_err(), 5-46
parallel_init(), 5-45
parallel_read(), 5-46
pause(), 5-37
program_flash(), 7-14
program_word(), 5-44
program_zero(), 5-44
send_sysctl(), 5-10
serial device driver, 5-38
serial_baud, 6-25
serial_baud(), 5-29, 5-39, 5-40
serial_getc(), 5-29, 5-39
serial_init(), 5-28, 5-39
serial_intr(), 5-10, 5-39
serial_loopback(), 5-40
serial_open (), 5-9
serial_open(), 5-39, 5-40

serial_putc(), 5-28
serial_read(), 5-29, 5-37, 5-39
serial_set(), 5-29, 5-40
serial_write(), 5-28, 5-37, 5-39
set_bp(), 6-19
set_break_vector(), 6-19
set_mon_priority, 6-20
set_mon_priority(), 7-12
set_mon_timer(), 7-15
set_prcb(), 6-21, 6-2, 7-8, 7-11
store_mem(), 6-18
term_bentime(), 7-13
term_P_timer(), 7-15
time(), 5-45
ui_main(), 6-5
unsign.char read_switch, 5-33
verify_mem(), 6-19
void blink, 5-34
void blink_hex, 5-34
void blink_string, 5-34
void led, 5-36
void led_debug, 5-36
void led_output, 5-36
write_eeprom(), 5-44

RS-232 port, 6-25

RS-422 port, 6-25

runtime requests, defining, 8-10

S

self-test, 5-30

board level, 5-31
serial communication, B-6
serial device driver, 5-38, 6-23

Index-13

MON960 Debug Monitor User's Guide

Index-14

serial port
clear interrupt, 5-10
downloading through, B-10
serial transfer, 6-23
signals
acknowledge (ACK), 6-12
end of transmission (EOT), 6-13
negative acknowledge (NAK), 6-12
software breakpoints, 2-5
space requirements, EPROM, 5-22
spacing between hardware registers, 5-38
stack
pointer (SP), 6-8
sser, 6-6
stacks
interrupt, 6-6
monitor, 6-6, 7-6
monitor_stack, 6-8
supervisor, 6-6
switch_stack() routine, 6-8
user, 6-6
state-flag, 7-9
STDOUT file descriptor value, 6-9
supervisor
call trace, 3-5
trace, 8-45
supervisor stack pointer, 6-2
sysctl instruction, 7-8
system address table
SAT, Kx only, 6-1
system address table (SAT), 6-2
system calls, 6-9, 7-20

system initialization, 6-1

system procedure table (SPT), 6-1, 6-2, 7-1,
7-6, 7-11, 7-25

T

target
runtime request, 8-31
stop message, 8-31
target board, 5-2
connecting, 5-18
resetting, 4-26, 4-27, 5-10
target memory, reading, 8-29
target-hardware dependencies, 5-8
TCP/IP support, 2-8
terminal interface, 2-4
timer control register, 5-41
timer crystal frequency, 5-42
trace
-controls register, 7-22
displaying, 4-28
entry in fault table, 7-22
events, 3-4
-fault pending flag, 7-9
options, 4-28
toggling, 4-28
type values, 8-45
trace entry in fault table, 6-5
trace-fault procedure table, 6-5
types, 8-3

Index

U

Universal Asynchronous Receiver Transmitter

(UART)
82510, 5-38
clearing, 5-9
interrupt, 7-24
interrupt vector, 7-22
loopback, 5-40

memory cycles between, 5-38
memory cycles between, 5-38

user code, execute, 8-42
user interface, 2-4

source files, 2-4
User Interface(Ul)

initiate using MONDB, B-1
user registers, 2-3
user stack, 8-27

Y

variables
arch, 5-6
arch_name([], 5-7
base_version, 6-17
board description, 5-6
board _name[], 5-7
break_flag, 6-17
break_vector, 6-17
cmd_stat, 6-17
default, 5-9
eeprom_prog_first, 5-42
eeprom_prog_last, 5-42
fault.subtype, 8-45

fault.type, 8-45
fp_register_set, 6-17, 6-2
global, 6-17
have_data_bpts, 6-17
HDIL types, 8-3
register_set, 6-17
step_string, 6-17
stop_reason, 6-5, 8-44
vector cache enable bit, 7-23
vector number, 5-9

X

Xmodem
downloading with, 6-12
protocol, 6-12

Index-15

