
iC-86/286/386
COMPILER USER'S GUIDE

FOR DOS SYSTEMS

Order Number: 483327-002

Copyright© 1990, 1991, Intel Corporation, All Rights Reserved
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95052-8126

REV. REVISION HISTORY DATE

-001 Original Issue. Incorporates and updates tbe
Version 4.1 iC-86/286 User's Guide and the
Version 4.2 iC-386 User's Guide.

11/90

-002 Describes Version 4.5, including 80C187
coprocessor support.

11/91

In the United States, additional copies of this manual or other Intel literature may be obtained by writing:

Literature Distribution Center
Intel Corporation
P.O. Box 7641
Mt Prospect, IL 60056-7641

Or you can call the following toll-free number:

1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local Intel
sales office. For your convenience, international sales office addresses are printed on the last page of this
document.

Intel Corporation makes no warranty of any kind with regard to this materia], including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no
responsibility for any errors that may appear in this document Intel Corporation makes no commitment to update
nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuity embodied in an Intel
product No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or
disclosure is subject to restrictions stated in Intel's Software License Agreement or in the case of software
delivered to the government, in accordance with the software license agreement as defined in FAR 52.227-7013.

No part of this document may be copied or reproduced in any form or by any means without prior written consent
of Intel Corporation.

Intel Corporation retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products.
(Registered trademarks are followed by a superscripted ® .)

376 i287 Intel® LAN Print® PRO750
Above i386 Intel287 LANSelect® ProSolver
ActionMedia i387 Intel386 LANShell® READY-LAN
BITBUS i486 Intel387 LANSight Reference Point®
Code Builder i487 Intel486 LANSpace® RMX/80
DeskWare i750® Intel487 LANSpool® SatisFAXtion®
Digital Studio i860 intel inside MAPNET Snapin 386
DVI® i960 Intellec® Matched StorageBroker
EtherExpress t iPSC® MCS® SugarCube
ETOX i® iRMX® Media Mail The Computer Inside
ExCA ICE iSBC® NetPort Token Express
FaxBACK iLBX iSBX NetSentry Visual Edge
Grand Challenge Inboard iWARP OpenNET WYPIWYF

IBM and PC AT are registered trademarks, and PC XT is a trademark of International Business Machines
Corporation.
UNIX is a registered trademark of UNIX System Laboratories, Inc.
VAX and VMS are trademarks of Digital Equipment Cort oration.

Copyright © 1990, 1991, Intel Corporation, All Rights Reserved

ii

Contents

Getting Started... xv

Chapter 1 Overview
1.1 Software Development With iC-86/286/386 .. 1-1

1.1.1 Using the Run-time Libraries.. 1-3
1.1.2 Debugging... 1-3
1.1.3 Optimizing.. 1-4
1.1.4 Using the Utilities..1-5
1.1.5 Programming for Embedded ROM Systems................................. 1-6
1.1.6 Running iC-86 Code Under DOS..1-6

1.2 Compiler Capabilities...1-7
1.3 Compatibility With Other Development Tools.. 1-8
1.4 About This Manual...1-9

1.4.1 Related Publications.. 1-10
1.5 Trademarks...1-12

Chapter 2 Compiling and Linking or Binding
in the DOS Environment

2.1 Compiler Invocation on DOS...2-1
2.1.1 Invocation Syntax.. 2-2
2.1.2 Sign-on and Sign-off Messages... 2-3
2.1.3 Files That the Compiler Uses...2-4

2.2 DOS Batch and Command Files.. 2-8
2.2.1 Using DOS Batch Files..2-8
2.2.2 Using DOS Command Files.. 2-11

2.3 Linking or Binding iC-86/286/386 Object Files...2-12
2.3.1 Choosing the Files to Link or Bind..2-14
2.3.2 Customizing the Startup Code... 2-28

iii

2.4 Compiling an Example Different Ways..2-31
2.4.1 Example Files..2-31
2.4.2 Preprinting the Example Using iC-86... 2-34
2.4.3 Creating 186 Code and a Custom Print File Using iC-86.............2-39
2.4.4 Creating 86 Code and Linking for DOS Using iC-86...................2-44
2.4.5 Examining Included and Conditional Code Using iC-286........... 2-47
2.4.6 Creating Debug Information Using iC-386.................................. 2-52

2.5 Compiling at Different Optimization Levels.. 2-54
2.5.1 Results at Optimization Level 0..2-56
2.5.2 Results at Optimization Level 1..2-58
2.5.3 Results at Optimization Level 2..2-60
2.5.4 Results at Optimization Level 3... 2-61

Chapter 3 Compiler Controls and Qualifiers
3.1 How Controls Affect the Compilation...3-1
3.2 Where to Use Controls.. 3-2
3.3 Alphabetical Reference of Controls..3-6

Chapter 4 Segmentation Memory Models
4.1 How the Linker and Binder Combine Segments.......................................4-2

4.1.1 Combining iC-86 Segments With LINK86..................................... 4-3
4.1.2 Combining iC-286 Segments With BND286............................... 4-4
4.1.3 Combining iC-386 Segments With BND386............................... 4-5
4.1.4 How Subsystems Extend Segmentation...4-6

4.2 Segmentation Memory Models...4-6
4.2.1 Small Models... 4-10
4.2.2 Compact Models...4-14
4.2.3 Medium Models (iC-86 and iC-286)..4-18
4.2.4 Large Models (iC-86 and iC-286)..4-22
4.2.5 Flat Model (iC-386 Only)...4-26

4.3 Using near and far... 4-29
4.3.1 Addressing Under the Segmentation Models...............................4-31
4.3.2 Using far and near in Declarations...4-32
4.3.3 Examples Using far.. 4-33

iv

Chapter 5 Listing Files
5.1 Preprint File.. 5-1

5.1.1 Macros.. 5-2
5.1.2 Include Files... 5-3
5.1.3 Conditional Compilation...5-4
5.1.4 Propagated Directives.................. 5-4

5.2 Print File... 5-5
5.2.1 Print File Contents..5-5
5.2.2 Page Header...5-6
5.2.3 Compilation Heading..5-6
5.2.4 Source Text Listing.. 5-7
5.2.5 Remarks, Warnings, and Errors..5-8
5.2.6 Pseudo-assembly Listing.. 5-9
5.2.7 Symbol Table and Cross-reference...5-9
5.2.8 Compilation Summary..5-10

Chapter 6 Processor-specific Facilities
6.1 Making Selectors, Far Pointers, and Near Pointers..................................6^4
6.2 Using Special Control Functions.. 6-5
6.3 Examining and Modifying the FLAGS Register...................................... 6-6
6.4 Examining and Modifying the Input/Output Ports................................... 6-11
6.5 Enabling and Causing Interrupts...6-13

6.5.1 Hints on Manipulating Interrupts... 6-14
6.5.2 Interrupt Handlers for the 86 and 186 Processors........................ 6-17
6.5.3 Interrupt Handlers for 286 and Higher Processors.......................6-21

6.6 Protected Mode Features of 286 and Higher Processors.......................... 6-23
6.6.1 Manipulating System Address Registers......................................6-24
6.6.2 Manipulating the Machine Status Word.......................................6-26
6.6.3 Accessing Descriptor Information...6-28
6.6.4 Adjusting Requested Privilege Level.. 6-36

6.7 Manipulating the Control, Test, and Debug Registers of
Intel386™ and Intel486™ Processors... 6-37

6.8 Managing the Features of the Intel486™ Processor..................................6-41
6.9 Manipulating the Numeric Coprocessor..6^42

6.9.1 Tag Word..6-44
6.9.2 Control Word..6-45
6.9.3 Status Word.. 6-48
6.9.4 Data Pointer and Instruction Pointer.. 6-53
6.9.5 Saving and Restoring the Numeric Coprocessor State.................6-58

v

Chapter 7 Assembler Header File
7.1 Macro Selection...7-1
7.2 Flag Macros... 7-7
7.3 Register Macros...7-8
7.4 Segment Macros.. 7-9
7.5 Type Macros..7-12
7.6 Operation Macros.. 7-13

7.6.1 External Declaration Macros... 7-14
7.6.2 Instruction Macros...7-16
7.6.3 Conditional Macros... 7-17
7.6.4 Function Definition Macros.. 7-18
7.6.5 Examples Using Assembler Macros..7-27

Chapter 8 Function-calling Conventions
8.1 Passing Arguments.. 8-3

8.1.1 FPL Argument Passing..8-4
8.1.2 VPL Argument Passing... 8-5

8.2 Returning a Value..8-6
8.3 Saving and Restoring Registers...8-7
8.4 Cleaning Up the Stack... 8-9

Chapters Subsystems
9.1 Dividing a Program into Subsystems...9-2
9.2 Segment Combination in Subsystems... 9-7

9.2.1 Small-model Subsystems..9-7
9.2.2 Compact-model Subsystems... 9-10
9.2.3 Large-model Subsystems (iC-86 and iC-286 Only)......................9-12
9.2.4 Efficient Data and Code References... 9-12

9.3 Creating Subsystem Definitions..9-13
9.3.1 Open and Closed Subsystems... 9-14
9.3.2 Syntax..9-15

9.4 Example Definitions.. 9-20
9.4.1 Creating Three Small-model RAM Subsystems........................... 9-20
9.4.2 Two Small-model ROM Subsystems and One

Compact-model ROM Subsystem... 9-22
9.4.3 Example Using an Open Subsystem... 9-23

vi

Chapter 10 Language Implementation
10.1 Data Types... 10-1

10.1.1 Scalar Types.. 10-2
10.1.2 Aggregate Types..10-5
10.1.3 Void Type..10-5

10.2 iC-86/286/386 Support for ANSI C Features...10-6
10.2.1 Lexical Elements and Identifiers...10-6
10.2.2 Preprocessing.. 10-6

10.3 Implementation-dependent iC-86/286/386 Features.. 10-8
10.3.1 Characters..10-8
10.3.2 Integers.. 10-9
10.3.3 Floating-point Numbers.. 10-9
10.3.4 Arrays and Pointers... 10-9
10.3.5 Register Variables...10-11
10.3.6 Structures, Unions, Enumerations, and Bit Fields...................... 10-11
10.3.7 Declarators and Qualifiers...10-12
10.3.8 Statements, Expressions, and References................................... 10-13
10.3.9 Virtual Symbol Table.. 10-14

Chapter 11 Messages
11.1 Fatal Error Messages.. 11-2
11.2 Error Messages..11-7
11.3 Warnings...11-22
11.4 Remarks.. 11-29
11.5 Subsystem Diagnostics... 11-30
11.6 Internal Error Messages... 11-31

vii

Installation

Glossary

Index

Service Information..Inside Back Cover

Figures
1-1 Developing an iC-86/286/386 Application...1-2
2-1 Compiler Input and Output Files...2-5
2-2 Controls That Create or Suppress Files...2-7
2-3 Redirecting Input to a DOS Batch File... 2-10
2-4 Choosing the Correct Segmentation Model of

a Library for iC-86 or iC-286... 2-17
2-5 Choosing the Correct Segmentation Model of a Library for iC-386.........2-18
2-6 Choosing Libraries to Link with iC-86 Modules...................................... 2-19
2-7 Choosing Libraries to Link with iC-286 Modules.....................................2-20
2-8 Choosing Libraries to Link with iC-386 Modules.................................... 2-21
2-9 Source Code for LINK86 Example... 2-23
2-10 Source Code for BND386 Example.. 2-25
2-11 Source Code for BND386 Floating-point Example.................................. 2-27
2-12 Directory Structure for Sieve Example Files... 2-32
2-13 Source Code for Sieve Example..2-32
2-14 Command Log File for the Sieve Preprint Example................................... 2-36
2-15 Part of the Sieve Example Preprint File.. 2-37
2-16 Parts of the 186 Sieve Example Print File... 2-41
2-17 Part of the DOS Sieve Example Print File... 2-45
2-18 Parts of the Sieve Example Complete Print File... 2-49
2-19 Sieve Example Minimal Print File..2-53
2-20 Summary of Optimization Levels... 2-55
2-21 Source Code For Demonstrating Optimization Levels............................... 2-56
2-22 Pseudo-assembly Code at Optimization Level 0......................................2-57
2-23 Part of the Pseudo-assembly Code at Optimization Level 1.................... 2-59
2-24 Part of the Pseudo-assembly Code at Optimization Level 2.................... 2-60
2-25 Part of the Pseudo-assembly Code at Optimization Level 3...................... 2-62
3-1 Effect of iC-86 and iC-286 align Control on Example Structure Type . .. 3-11

viii

3-2 Effect of iC-386 align Control on
Example Structure Type...3-12

3-3 Effect of iC-86 and iC-286 noalign Control on
Example Structure Type.. 3-13

3-4 Effect of iC-386 noalign Control on
Example Structure Type.. 3-14

3-5 Summary of Optimization Levels.. 3-69
4-1 Choosing a Segmentation Memory Model for iC-86 or iC-286................ 4-2
4-2 Choosing the Segmentation Model of a Library

for iC-86 or iC-286... 4-8
4-3 Choosing the Segmentation Model of a Library for iC-386......................... 4-9
4-4 Creating a Small RAM Program...4-12
4-5 Creating a Small ROM Program...4-13
4-6 Creating a Compact RAM Program..4-16
4-7 Creating a Compact ROM Program..4-17
4-8 Creating an iC-86 or iC-286 Medium RAM Program.............................. 4-20
4-9 Creating an iC-86 or iC-286 Medium ROM Program..............................4-21
4-10 Creating an iC-86 or iC-286 Large RAM Program.................................. 4-24
4-11 Creating an iC-86 or iC-286 Large ROM Program.................................. 4-25
4-12 Binding and Building an iC-386 Flat-model Program.............................4-28
6-1 FLAGS and EFLAGS Register..6-7
6-2 Example DOS Interrupt Handlers.. 6-18
6-3 Example Embedded Interrupt Handlers... 6-19
6-4 Gate Descriptor for 286 and Higher Processors.......................................6-22
6-5 Machine Status Word of 286 and Higher Processors...............................6-26
6-6 Segment Descriptor for 286 Processor...6-28
6-7 Segment Descriptor for Intel386™ and Intel486™ Processors...............6-29
6-8 Special Descriptor for 286 and Higher Processors.................................. 6-32
6-9 Selector for 286 and Higher Processors... 6-36
6-10 Control, Test, and Debug Registers of Intel386™ and

Intel486™ Processors...6-38
6-11 Control Register 0 of Intel386™ and Intel486™ Processors...................6-40
6-12 Numeric Coprocessor Stack of Numeric Data Registers......................... 6-43

ix

6-13 8087 or 1287™ Numeric Coprocessor Environment Registers............... 6-43
6-14 Intel387™ Numeric Coprocessor or Intel486™ FPU Environment

Registers..6-44
6-15 Numeric Coprocessor Tag Word..6-45
6-16 Numeric Coprocessor Control Word..6-46
6-17 Numeric Coprocessor Status Word.. 6-49
6-18 8087 or i287™ Numeric Coprocessor Data Pointer and

Instruction Pointer..6-54
6-19 Intel387™ Numeric Coprocessor or Intel486™ FPU Data

Pointer and Instruction Pointer... 6-56
7-1 Precedence Levels of Assembler Header Controls.....................................7-5
7-2 Assembler Source for Accessing the Address of an

External Variable.. 7-28
7-3 ASM86 Expansion of Assembler Source for Accessing the

Address of an External Variable...7-29
7^1 ASM286 Expansion of Assembler Source for Accessing the

Address of an External Variable... 7-30
7-5 ASM386 Expansion of Assembler Source for Accessing the

Address of an External Variable...7-31
7-6 Assembler Source Code for strcmp Function... 7-32
7-7 ASM86 Expansion of Assembler Source Code for strcmp Function............7-34
7-8 ASM286 Expansion of Assembler Source Code for strcmp Function 7-35
7-9 ASM386 Expansion of Assembler Source Code for strcmp Function 7-38
7-10 ASM386 Assembler Source for memcpy Function.................................... 7-40
7-11 ASM386 Expansion of Assembler Source for memcpy Function.............. 7-41
8-1 Four Sections of Code for a Function Call... 8-2
9-1 Subsystems Example Program Structure.. 9-3
9-2 Subsystems Example Program in Regular Compact Segmentation

Memory Model... 9-3
9-3 Subsystems Example Program Using Small-model Subsystems.................. 9-4
9-4 Subsystems Example Program Using Two Small-model Subsystems

and One Compact-model Subsystem.. 9-6
9-5 Subsystems Example Program Using One Open and Two Closed

Subsystems... 9-24

x

Tables
1-1 Using iC-86 For DOS Applications..1-7
1-2 Assemblers, Compilers, Debuggers, and Utilities...................................... 1-8
1-3 86/8 8 Tool and Processor Publications... 1-10
1-4 286 Tool and Processor Publications..1-11
1-5 Intel386™ and Intel486™ Tool and Processor Publications..................... 1-11
2-1 iC-86 Libraries..2-14
2-2 iC-286 Libraries..2-15
2-3 iC-386 Libraries... 2-16
2^4- ASM Header Controls for Customizing the Startup Code......................... 2-29
2-5 Controls for Preprinting the Sieve Example...2-35
2-6 Controls for Creating the 186 Sieve Example.. 2-40
2-7 Controls for Creating the DOS Sieve Example.. 2-44
2-8 Controls for Creating a Complete Print File for the Sieve Example.......... 2-48
2-9 Controls for Creating Debug Information for the Sieve Example..............2-52
3-1 Compiler Controls Summary..3-3
3-2 DOS Errorlevel Values... 3-30
4-1 iC-86 Segment Definitions for Small Model Modules...............................4-10
4-2 iC-286 Segment Definitions for Small Model Modules.............................4-10
4-3 iC-386 Segment Definitions for Small Model Modules.............................4-11
4-4 iC-86 Segment Definitions for Compact-model Modules..........................4-14
4-5 iC-286 Segment Definitions for Compact-model Modules........................4-14
4-6 iC-386 Segment Definitions for Compact-model Modules........................4-15
4-7 iC-86 Segment Definitions for Medium-model Modules...........................4-18
4-8 iC-286 Segment Definitions for Medium-model Modules.........................4-19
4-9 iC-86 Segment Definitions for Large-model Modules...............................4-22
4-10 iC-286 Segment Definitions for Large-model Modules.............................4-22
4-11 iC-386 Segment Definitions for Flat-model Modules................................ 4-26
4-12 BLD386 Segment Names for Flat-model Programs...................................4-26
4-13 Segmentation Models and Default Address Sizes...................................... 4-29
5-1 iC-86/286/386 Predefined Macros..5-2
5-2 Controls That Affect the Print File Format...5-5
5-3 Controls That Affect the Source Text Listing.. 5-8
6-1 Built-in Functions in i86.h..6-2
6-2 Built-in Function in i8086.h... 6-2
6-3 Built-in Functions in il86.h...6-3
6-4 Built-in Functions in i286.h..6-3

xi

6-5 Built-in Functions in i386.h... 6-3
6-6 Built-in Functions in i486.h..6-4
6-7 Flag Macros..6-8
6-8 Interrupt Numbers.. 6-16
6-9 Machine Status Word Macros for 286 and Higher Processors.................. 6-27
6-10 General Descriptor Access Rights Macros for 286 and Higher

Processors................. .. 6-33
6-11 Segment Descriptor Access Rights Macros for 286 and Higher

Processors...6-34
6-12 Special Descriptor Access Rights Macros for 286 and Higher

Processors.. 6-35
6-13 Control Register 0 Macros for Intel386™ and Intel486™ Processors.....6-40
6-14 Numeric Coprocessor Tag Word Macros..6-45
6-15 Numeric Coprocessor Control Word Macros..6-47
6-16 8087 or i287™ Numeric Coprocessor Condition Codes...........................6-50
6-17 Intel387™ Numeric Coprocessor or Intel486™ FPU Condition Codes.. 6-51
6-18 Numeric Coprocessor Status Word Macros.. 6-52
7-1 Assembler Header Controls for Macro Selection..................................... 7-2
7-2 Assembler Header Control Defaults... 7-3
7-3 Assembler Flag Macros Set by Header Controls...................................... 7-8
7-4 Assembler Register Macros.. 7-8
7-5 ASM86 Segment Macro Expansion by Memory Model...........................7-10
7-6 ASM286 Segment Macro Expansion by Memory Model.........................7-10
7-7 ASM386 Segment Macro Expansion by Memory Model........................ 7-11
7-8 ASM86 Type Macro Expansion by Memory Model................................ 7-12
7-9 ASM286 Type Macro Expansion by Memory Model............................. 7-13
7-10 ASM386 Type Macro Expansion by Memory Model............................. 7-13
7-11 ASM86 Type Macro Expansion by Memory Model............................... 7-15
7-12 ASM286 Type Macro Expansion by Memory Model............................. 7-15
7-13 ASM386 External Declaration Macro Expansion by Memory Model..... 7-16
8-1 iC-86 and iC-286 FPL and VPL Return Register Use..............................8-7
8-2 iC-386 FPL and VPL Return Register Use...8-7
8-3 iC-86 and iC-286 FPL and VPL Register Preservation............................ 8-8
8-4 iC-386 FPL and VPL Register Preservation... 8-8

xii

9-1
9-2
9-3
9-4
9-5
9-6
9-7
10-1
10-2

iC-86 Segment Definitions for Small-model Subsystems........................ 9-8
iC-286 Segment Definitions for Small-model Subsystems.......................9-8
iC-386 Segment Definitions for Small-model Subsystems...................... 9-8
iC-86 Segment Definitions for Compact-model Subsystems...................9-11
iC-286 Segment Definitions for Compact-model Subsystems.................9-11
iC-386 Segment Definitions for Compact-model Subsystems.................9-11
Subsystems and Default Address Sizes.. 9-13
86 and 286 Processor Scalar Data Types... 10-3
Intel386™ Processor Scalar Data Types.. 10-4

xiii

Getting Started

This section of the iC-86/286/386 Compiler User's Guide tells you what is in
this manual and where to find the information you need to install and use the
software.

Installing the Software

Insert Disk 1 into the A: drive and type a: i n s t a 11. The tabbed Installation
section near the end of this manual contains detailed instructions for
installing the iC-86/286/386 compilers and libraries.

Learning About and Using the iC-86/286/386 Compiler

Chapter 1 contains an overview describing the compiler and its compatibility
with other Intel C compilers, how to use the iC-86/286/386 compiler to
develop applications, and information on related manuals. Chapter 2 shows
you how to use the iC-86/286/386 compiler, and Chapter 5 explains the
listing files.

Exploring Advanced Features

Chapter 4 discusses memory segmentation models, and Chapter 9 describes
how to extend the segmentation models with subsystems. Chapter 6 contains
information on header files that provide access to processor architectural
features, and Chapter 7 explains how to use an assembler header file to aid
interfacing iC-86/286/386 code with ASM code.

xv

Finding Reference Information

Chapter 3 contains reference information about controls. Chapters 8 and 10
contain reference information about calling conventions, data types,
keywords, and language implementation (including conformance to the 1989
ANSI C standard). Chapter 11 lists the messages that appear in print files
and on screen. Following the Installation section, the Glossary lists
definitions for terms used in this manual.

xvi

Contents 1
Overview
1.1 Software Development With iC-86/286/386 .. 1-1

1.1.1 Using the Run-time Libraries... 1-3
1.1.2 Debugging.. 1-3
1.1.3 Optimizing.. 1-4
1.1.4 Using the Utilities...1-5
1.1.5 Programming for Embedded ROM Systems................................1-6
1.1.6 Running iC-86 Code Under DOS...1-6

1.2 Compiler Capabilities................ ... 1-7
1.3 Compatibility With Other Development Tools... 1-8
1.4 About This Manual.. 1-9

1.4.1 Related Publications... 1-10
1.5 Trademarks..1-12

Overview

This chapter provides an overview of the features of the iC-86, iC-286, and
iC-386 compilers (referred to as iC-86/286/386) and their role in developing
applications. References throughout the chapter direct you to more detailed
information. This chapter contains information on the following topics:

• development of an application using an iC86/286/386 compiler and
related Intel development tools

• compiler capabilities

• compatibility with other translators and utilities

• this manual and related publications

• trademarks

1.1 Software Development With iC-86/286/386
The iC-86/286/386 compilers supports modular, structured development of
applications. Figure 1-1 shows the development path using the
iC-86/286/386 compilers. Some of the tasks in developing a modular,
structured iC-86/286/386 application are as follows:

• Compile and debug application modules separately.

• Select appropriate optimizations for the code.

• Use LINK86, BND286, or BND386 to link or bind the compiled
modules and libraries to create a loadable file. See Chapter 2 in this
manual for examples of linking and binding. Use LOC86 or a system
builder (BLD286 or BLD386), to create a bootloadable file.

• Use OH86 or OH386 to prepare the code for programming into ROM.

1-1

Create and
Maintain Libraries

Figure 1-1 Developing an iC-86/286/386 Application

1-2 Overview

1.1.1 Using the Run-time Libraries

iC-86/286/386 includes a run-time library that supports the entire ANSI C
library definition and provides a useful variety of supplementary functions
and macros. These supplementary library facilities are defined by the IEEE
Std 1003.1-1988 Portable Operating System Interface for Computer
Environments (POSIX), the AT&T System V Interface Definition (SVID), or
widely used non-standard libraries.

C: A Reference Manual describes the contents and use of the ANSI library.
The iC-86/286/386 Library Supplement is a supplement to the C reference
manual and to your iC-86/286/386 User's Guide for DOS Systems. The
library supplement describes the iC-86/286/386 run-time libraries, and
provides the detailed description of supplementary functions and macros.

See the Getting Started section of the iC-86/286/386 Library Supplement to
decide how to proceed with using the libraries. See Chapter 2 of this
iC-86/286/386 Compiler User's Guide for DOS Systems for the names of the
library files provided, and for finking and binding information.

1.1.2 Debugging

At logical stages in the application development, use a symbolic debugger
(such as DB86 or DB386) or an in-circuit emulator to debug and test the
application. iC-86/286/386 supports debugging by enabling you to specify
the amount of symbolic information in the object code and to customize the
output listing. See Chapter 3 for detailed information on each control. Use
the following controls when compiling modules for debugging:

• The preprint control creates a listing file of the code after
preprocessing but before translation.

• The type control includes function and data type definition (ty pedef)
information in the object file for intermodule type checking and for
debuggers.

• The debug control includes symbolic information in the object file
which is used by Intel symbolic debuggers and emulators.

• The line control includes source-line number information in the object
file, which debuggers use to associate source code wi± translated code.

Overview 1-3

• The code control generates a pseudo-assembly language listing of the
compiled code.

• The optimized) control ensures the most obvious match between the
source text and the generated object code.

• The listing selection and format controls customize the contents and
appearance of the output listings.

• The debugging information generated by the iC-86/286/386 compilers is
compatible with current versions of Intel high-level debuggers and
in-circuit emulators capable of loading Intel's object module format
(OMF).

1.1.3 Optimizing

Optimized code is more compact and efficient than unoptimized code. The
iC-86/286/386 compilers have several controls to adjust the level of
optimization performed on your code. See Chapter 3 for detailed
information on each control. The following controls adjust optimization:

• The align I noa 1 i gn control specifies whether to generate aligned data
structures that use more space than non-aligned structures, but permit
quicker memory access.

• The optimize control specifies the level of optimization the compiler
performs when generating object code. The iC-86/286/386 compilers
provide four levels of optimization: 0, 1,2, and 3; the higher the
number, the more extensive the optimization. Object code generated
with a higher level of optimization usually occupies less space in
memory and executes faster than the code generated with a lower level
of optimization. However, the compiler takes longer to generate code at
a high level of optimization than at a low level. See Chapter 2 for
examples of the code generated at each optimization level.

• The smal 1, compact, medi urn, 1 arge, and fl at controls set the memory
segmentation model. For iRMX I and II applications, you can use only
compact and large; for other iC-86/286 applications, you can also use
sma 11 and medi urn. For iRMX III applications, you can use only
compact; for other iC-386 applications, you can also use smal 1 and
flat. See Chapter 3 for an explanation of each control and Chapter 4
for an explanation of each memory model.

1-4 Overview

1.1.4 Using the Utilities

The Intel utilities also support modular application development. A list of all
the publications for the utilities is included at the end of this chapter. The
following utilities aid in the software development process:

• LIB86, LIB286, or LIB386 organizes frequently used object modules
into libraries. See the 86,88 Utilities User's Guide, the 286 Utilities
User's Guide, or the Intel386'u Family Utilities User's Guide for
information on LIB86, LIB286, or LIB386, respectively.

• LINK86, BND286, or BND386 links or binds together object modules
from Intel translators. The linker or binders produce a relocatable,
loadable module or a module for incremental binding. See the 86,88
Utilities User's Guide, the 286 Utilities User's Guide, or the Intel386'“
Family Utilities User's Guide for information on LINK86, BND286, or
BND386, respectively.

• CREF86 lists 86 intermodule cross-references. See the 86,88 Utilities
User's Guide for information on CREF86.

• MAP286 or MAP386 creates feature descriptions of 286 or 386™ object
modules. See the 286 Utilities User's Guide or the lntel386'u Family
Utilities User's Guide for information on MAP286 or MAP386,
respectively.

• LOC86 changes a relocatable 86 object module into an absolute object
module. See the 86,88 Utilities User's Guide for information on
LOC86.

• BLD286 or BLD386 builds an executable bootloadable 286 or 386
system. See the 286 Utilities User's Guide or the Intel386'u Family
System Builder User's Guide for information on BLD286 or BLD386,
respectively.

• LINK86 or OVL286 divides large 86 or 286 programs into overlays.
See the 86,88 Utilities User’s Guide for information on LINK86 or the
286 Utilities User's Guide for information on OVL286.

• OH86 or OH386 converts object code into hexadecimal form for
programming for ROM. See the 86,88 Utilities User's Guide or the
product release notes for the Intel386 family utilities for information on
OH86 or OH386, respectively.

Overview 1-5

1.1.5 Programming for Embedded ROM Systems

Use the r om compiler control to locate constants with code in the object
module. See the ram I rom control entry in Chapter 3 for more information
on the rom control. Link or bind your object modules with startup code
tailored for an embedded ROM environment. See Chapter 2 for information
on customizing the startup code. Use the LOC86, BLD286, or BLD386
utility to assign absolute addresses to your linked application.

Absolutely located Intel OMF object code is ready to use with the Intel iPPS
PROM programming software. The OH86 and OH386 utilities convert
absolute OMF86 or OMF386 code into hexadecimal form for use with
non-Intel PROM programming utilities.

1.1.6 Running iC-86 Code Under DOS

Either of two DOS-hosted utilities create DOS-executable (.EXE) files, as
follows:

• Use the LINK86 exe control (available in LINK86 V3.0 and above)
when linking to create a DOS-executable file.

• Use the UDI2D0S operating system interface utility to convert an
OMF86-loadable file to a DOS-executable file.

See the 86/88 utilities manuals and associated release notes for information
on the LINK86 exe control and on using UDI2D0S.

1-6 Overview

1.2 Compiler Capabilities

The iC-86, iC-286, and iC-386 compilers translate C source files and
produce code for the 86, 88, 186, or 188 processors; for the 286 processor; or
for the Intel386 or Intel486™ processors, respectively.

The executable programs can be targeted for the following environments:

• an 86, 88, 186, or 188 processor-based system running the DOS
operating system

• a 286, Intel386, or Intel486 processor-based system executing in real
mode and running the DOS operating system

• an 86/88/186/188,286, or Intel386/Intel486 processor-based system
running the iRMX® I, II, or III operating system, respectively

• a custom-designed 86/88/186/188, 286, or Intel386/Intel486
processor-based system

The iC-86/286/386 instruction sets are fully upward compatible, but they are
not downward compatible. Table 1-1 shows how to use iC-86 to produce
efficient code for PCs running the DOS operating system.

Table 1-1 Using iC-86 For DOS Applications

PC Processor Numeric Coprocessor iC-86 Compiler Controls

86 or 88 none or 8087 mod86 and nomod287
186 or 188 none or 8087 modi 86 and nomod287
80C186 none or 80C187 modi 86 and model 87

286 or i386™ (real mode) none modi 86 and nomod287
286 or I386 (real mode) i287™ modi 86 and mod287
i386 (real mode) i387™ modi 86 and model 87
i486™ (real mode) on-chip FPU modi 86 and model 87

The iC-86 compiler generates floating-point instructions for the 8087,
80C187, or the Intel287™ numeric coprocessor; see the mod287 I modcl87 I
nomod287 controls in Chapter 3. TheiC-286 compiler generates

Overview 1-7

floating-point instructions for the Intel287 numeric coprocessor. The iC-386
compiler generates floating-point instructions for the Intel387™ numeric
coprocessor and the Intel486 processor floating-point unit.

The iC-86/286/386 compilers and libraries conform to the 1989 American
National Standard for Information Systems - Programming Language C
(ANS X3.159-1989), and provides some useful extensions enabled by the
extend compiler control. See Chapter 3 for information on the extend
control. See Chapter 10 for a detailed discussion of the iC-86/286/386
implementation of the C programming language.

1.3 Compatibility With Other Development Tools

Table 1-2 shows the compatible Intel assemblers, compilers, debuggers, and
utilities.

Table 1-2 Assemblers, Compilers, Debuggers, and Utilities

Tool Name for Each Processor
Tool 86/88/186/188

Family
286
Family

Intel386™, Intel486™
and 376™ Family

assembler ASM86 ASM286 ASM386

(5 compiler iC-86 iC-286 iC-386

FORTRAN compiler Fort ran-8 6 Fortran-286 Fortran-386

Pascal compiler Pascal-86 Pascal-286

PL/M compiler PL7M-86 PL/M-286 PL/M-386

software debugger DB86 DB386

linker or binder LINK86 BND286 BND386

absolute locator LOC86 BLD286 BLD386

librarian LIB86 LIB286 LIB386

cross-reference utility CREF86 MAP286 MAP386

overlay generator LINK86 OVL286

object-to-hex converter OH86 OH386

1-8 Overview

The iC-86/286/386 compilers are largely compatible with previous Intel C
compilers. The extend control enables the compilers to recognize the al 1 en,
far, and near keywords. See Chapter 3 for more information on the extend
control. See Chapter 4 for information on the far and near keywords. See
Chapter 10 for information on the al i en keyword.

Modules compiled by the iC-86/286/386 compilers can refer to object
modules created with Intel assemblers and other Intel compilers. Use only
Intel compilers or translators to ensure compatibility with the memory
segmentation model of the application. Chapter 4 explains memory
segmentation models. Chapter 7 describes facilities that aid interfacing with
assembler modules. Chapter 8 discusses the function-calling conventions of
iC-86/286/386.

1.4 About This Manual
The iC-86/286/386 Compiler User's Guide for DOS Systems describes how
to use the iC-86/286/386 compilers in the DOS environment. It is one of two
iC-86/286/386 manuals: the other is the iC-86/286/386 Library Supplement.
These manuals apply to Versions 4.5 and later of the iC-86/286/386
compilers and libraries and describe Intel extensions to the 1989 ANSI C
standard.

The iC-86/286/386 manuals do not teach either programming techniques or
the C language. Intel provides a book, C: A Reference Manual, by Harbison
and Steele, that gives a complete description of the C programming
language, recent extensions, the 1989 ANSI C standard, and standard
run-time library functions.

Overview 1-9

1.4.1 Related Publications

Tables 1-3 through 1-5 identify additional publications that describe the other
development tools you are most likely to use when programming with
iC-86/286/386. (iC-86/286/386 manuals are described on the preceding
page.) The tables also identify the programmer's reference manuals for the
processors for which the iC-86/286/386 compilers generate object code. To
order Intel publications, contact your local Intel field sales office or write to
the Intel Literature Department, Intel Corporation, 3065 Bowers Avenue,
Santa Clara, CA 95052.

Table 1-3 86/88 Tool and Processor Publications

Title Number Contents

An Introduction to ASM86 121689 introduces 86/88 assembly language

ASM86 Assembly Language Reference Manual 480774 assembly language for 86/88 processors

ASM86 Macro Assembler Operating Instructions 122390 assembler operation

86,88 Utilities User's Guide 122395 utilities for86/88 processors

Operating System Interface Libraries Manual 480775 Universal Development Interface functions

8087 Support Library Reference Manual 480776 numeric coprocessor library reference

80C187 Support Library Reference Manual 483834 numeric coprocessor library reference

DB86 Software Debugger User's Guide 481850 software debugger operation

8086/8088 Programmer's
and Hardware Reference

240487 architecture, assembly language,
and hardware reference

1-10 Overview

Table 1-4 286 Tool and Processor Publications

Title Number Contents

ASM286 Assembly Language Reference Manual 122435 assembly language for the 286 processor

ASM286 Macro Assembler Operating Instructions 122440 assembler operation

286 Utilities User’s Guide 122450 utilities for 286 processor

286 System Builder User's Guide 122445 utility for building complete systems

80287 Support Library Reference Manual 122460 Intel287™ numeric coprocessor libraries

80286 Programmer's Reference Manual 210498 286 architecture and assembly language

80286 Hardware Reference Manual 210760 hardware design of the 286 microprocessor

Table 1-5 Intel386™ and Intel486™ Tool and Processor Publications

Title Number Contents

ASM386 Assembly Language
Reference Manual

480251 assembly language for the Intel386
and Intel486 processors

ASM386 Macro Assembler Operating Instructions 451290
for DOS Systems

assembler operation in DOS environment

Intel386ru Family System Builder User's Guide 481342 utility for building complete systems

lntel386TU Family Utilities User's Guide 481343 utilities for binding, mapping, and maintaining
libraries

80386 System Software Writer's Guide 231499 advanced programming guidelines

80387 Support Library Reference Manual 455497 numeric coprocessor libraries

386'u DX Microprocessor Programmer's
Reference Manual

230985 Intel386 DX architecture and assembly
language

387>u DX Microprocessor Programmer's
Reference Manual

231917 Intel387™ DX coprocessor architecture and
numerics assembly instructions

Overview 1-11

Table 1-5 Intel386™ and Intel486™ Tool and
Processor Publications (continued)

Title Number Contents

3S6™ SL Microprocessor Superset
Programmer's Reference Manual

240815 describes how to program a highly
integrated SL SuperSet system

386™ SX Microprocessor Programmer's
Reference Manual

240331 Intel386 SX architecture and assembly
language

i486™ Programmer's Reference Manual 240486 Intel486 architecture and assembly
language

See the Customer Literature Guide, order number 210620, to identify other
appropriate user's guides and manuals.

1.5 Trademarks

Intel andiRMX are registered trademarks, and Intel386, Intel387, Intel287,
Intel486, i386, i486, i287, ICE, and 376 are trademarks of Intel Corporation.

IBM and PC AT are registered trademarks and PC XT is a trademark of
International Business Machines Corporation.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

VAX and VMS are trademarks of Digital Equipment Corporation.

1-12 Overview

Contents 2
Compiling and Linking or Binding on DOS
2.1 Compiler Invocation on DOS... 2-1

2.1.1 Invocation Syntax.. 2-2
2.1.2 Sign-on and Sign-off Messages... 2-3
2.1.3 Files That the Compiler Uses..2-4

2.1.3.1 Work Files...2-5
2.1.3.2 ObjectFile..2-6
2.1.3.3 Listing Files.. 2-6

2.2 DOS Batch and Command Files... 2-8
2.2.1 Using DOS Batch Files... 2-8
2.2.2 Using DOS Command Files... 2-11

2.3 Linking or Binding iC-86/286/386 Object Files....................................... 2-12
2.3.1 Choosing the Files to Link or Bind.. 2-14

2.3.1.1 LINK86 Example...2-22
2.3.1.2 BND286 Example..2-23
2.3.1.3 BND386 Example..2-25

2.3.2 Customizing the Startup Code..2-28
2.4 Compiling an Example Different Ways..2-31

2.4.1 Example Files...2-31
2.4.2 Preprinting the Example Using iC-86.. 2-34

2.4.2.1 Macros and Conditional Compilation..............................2-37
2.4.2.2 Include Files.. 2-38

2.4.3 Creating 186 Code and a Custom Print File Using iC-86............ 2-39
2.4.4 Creating 86 Code and Linking for DOS Using iC-86.................. 2-44
2.4.5 Examining Included and Conditional Code Using iC-286...........2-47
2.4.6 Creating Debug Information Using iC-386..................................2-52

2.5 Compiling at Different Optimization Levels.. 2-54
2.5.1 Results at Optimization Level 0...2-56
2.5.2 Results at Optimization Level 1...2-58
2.5.3 Results at Optimization Level 2...2-60
2.5.4 Results at Optimization Level 3...2-61

Compiling and Linking
or Binding on DOS

This chapter provides the information you need to compile and link an
iC-86/286/386 program in the DOS environment. This chapter contains
many examples, and you can study the examples that are most applicable to
your development. If you are an experienced DOS user and have used other
Intel development tools, the most important information you need is in
Section 2.1.1, Invocation Syntax, and in Section 2.2.1, Linking or Binding
iC-86/286/386 Object Files. Less experienced developers can obtain
information on all of the following topics:

• Invoking the compiler: syntax, compiler messages, and the files that the
compiler uses

• Using DOS batch and command files

• Linking or binding object files: general syntax, how to choose the
libraries you need, examples, and how to customize the startup code

• Compiling an example program several ways: preprinting, exploring
different instruction sets, examining included and conditional code, and
creating type and debug information

• Compiling an example at different optimization levels

2.1 Compiler Invocation on DOS

This section describes the syntax for invoking the iC-86/286/386 compilers
on DOS, the messages that the compilers display on the screen, and the files
that the compiler uses.

2-1

2.1.1 Invocation Syntax

On DOS, the iC-86/286/386 compiler invocation has the following format:
[cdev:][cpath]icn86 [sdev:][spath]sfile [controls]

Where:

cdev: is the disk drive (or virtual disk) that contains the compiler.
If you do not specify a drive, DOS uses the current drive.

cpa th is the path to the directory that contains the compiler. If you
do not specify a directory, DOS uses the current directory or
searches directories specified in the DOS path command.

1 cn86 is the compiler itself. Use i c86, i c286, or i c386. Case is
not significant.

sdev: is the disk drive that contains the primary source file. If you
do not specify a disk drive, DOS uses the current drive.

spath is the path to the directory that contains the primary source
file. If you do not specify a directory, DOS uses the current
directory.

sfile is the name of the primary source file; compilation starts
with this file. This source file can cause other files to be
included by using the //include preprocessor directive. See
C: A Reference Manual, listed in Chapter 1, for information
on the ncl ude preprocessor directive.

controls are the compiler controls. Separate consecutive controls
with at least one space. Case is not significant in controls;
however, case is significant in some control arguments. See
Chapter 3 for the syntax of individual controls.

2-2 Compiling and Linking or Binding on DOS

DOS limits the invocation line to 128 characters. If your screen width is less
than 128 characters, an invocation command longer than the screen width
automatically wraps to the next screen line. If you want to force an
invocation line to continue on another screen line, type the ampersand
continuation character (&) at the end of the first line, press the Enter key, and
continue typing at the >> prompt on the next screen line, as shown in this
example:

C:> \intel\ic386\ic386 &
> > c:\applix\source\trial.c &
» object(c:\applix\obj\trial.out) &
> > type &
> > debug

DOS directory and filenames can be no longer than eight characters each
preceding the optional period plus three-character extension. DOS truncates
longer names from the right.

2.1.2 Sign-on and Sign-off Messages

The compiler writes information to the screen at the beginning and the end of
compilation. On invocation, the compiler displays the following message:
system-id 1C-n86 COMPILER Vx.y
Copyright years Intel Corporation

Where:
system-id identifies your host operating system.

i C-n86 identifies the compiler as either iC-86, iC-286, or iC-386.

\lx. y identifies the version of the compiler.

Compiling and Linking or Binding on DOS 2-3

On normal completion, the compiler displays the following message if the
diagnostic level is 0:
iC-n86 COMPILATION COMPLETE, x REMARKLS], y WARN I NG [S]. z ERRORLS]

Where:

1C-n86 identifies the compiler as either iC-86, iC-286, or iC-386.

x, y and z indicate how many remarks, warnings, and non-fatal error
messages, respectively, the compiler generated. If the
diagnostic level is 1 (default), the message does not identify
the number of remarks. If the notransl ate control is in
effect, the message does not appear. See Chapter 3 for more
information on the di agnosti c and notransl ate controls.

On abnormal termination, the compiler displays one of the following
messages:

iC-n86 FATAL ERROR --
message
COMPILATION TERMINATED

The print file lists the error that ended the compilation. If the nop ri nt
control is in effect, the compiler does not generate a print file and the console
displays any diagnostics. See Chapter 3 for more information on the effects
of the diagnostic control.

2.1.3 Files That the Compiler Uses

Output from the compiler usually consists of one object file and zero, one, or
two listing files according to the compiler controls in effect Figure 2-1
shows the input and output for files that iC-86/286/386 uses. The compiler
also uses temporary work files during the compilation process. In your DOS
confi g. sys file, the f i 1 es specification controls the maximum number of
files that DOS allows open at the same time. See the entries for the
preprint and include controls in Chapter 3 for information on how many
files iC-86/286/386 has open at the same time. The installation utility for
iC-86/286/386 identifies necessary changes to your system configuration file.
See the tabbed Installation section at the end of this manual.

2-4 Compiling and Linking or Binding on DOS

Input

Output OSD739

Figure 2-1 Compiler Input and Output Files

2.1.3.1 Work Files

The iC-86/286/386 compilers create and delete temporary work files during
compilation. The compiler puts the work files either in the root directory of
the C: drive or in the directory specified by the : w o r k: DOS environment
variable. To specify a RAM disk or specific directory for the compiler work
files, set : wo r k: to point to the specific path location. Using a RAM disk
can decrease compilation time. For example, the following command directs
the temporary files to the root directory on the d: drive:

C:> set :work:-d:

Be certain not to enter a space between the equals sign (=) and the DOS path
designation, d: in this example. See your DOS documentation for
information on RAM disks and environment variables.

Compiling and Linking or Binding on DOS 2-5

If your host system loses power or some other abnormal event prevents the
compiler from deleting its work files, you can delete the work files that
remain. Such files have a filename consisting of a series of digits and no
extension.

2.1.3.2 Object File

The compiler produces an object file by default Use the noob j ect control
or the notranslate control to suppress creation of an object file. See
Chapter 3 for more information on the noobj ect and notranslate controls.

The default name for the object file is the same as the primary source
filename with the . ob j extension substituted. The compiler places the object
file in the directory containing the source file by default. If a file with the
same name already exists, the compiler writes over it. To override the
filename or directory defaults, use the object control.

The object file contains the compiled object module, which is the relocatable
code and data generated by the compiler as a result of a successful
compilation. You can use many different compiler controls and preprocessor
directives to specify the information content and configuration of the object
module. See Chapter 3 for information on the object file controls. See
C: A Reference Manual, listed in Chapter 1, for information on preprocessor
directives.

2.1.3.3 Listing Files

The compiler can produce two listing files: a preprint file and a print file.
The preprint file contains the source text after preprocessing. The print file
can contain the source text and pseudo-assembly language code listings,
messages, symbol table information, and summary information about the
compilation. See Chapter 6 for more detailed information about the preprint
and print files. See Chapter 3 for information about the p r e pr i n t and print
controls. Figure 2-2 summarizes the controls that create or suppress output
files.

2-6 Compiling and Linking or Binding on DOS

Figure 2-2 Controls That Create or Suppress Files

OSD 781

Compiling and Linking or Binding on DOS 2-7

The compiler generates the preprint file only when the p r e p r 1 n t or
notransl ate control is specified. The default name for the preprint file is
the same as the primary source filename with the . i extension substituted.
The compiler places the preprint file in the directory containing the source
file by default. If a file with the same name already exists, the compiler
writes over it. To override the filename or directory defaults, use the
preprint control.

The preprint file contains an expanded source text listing. The preprint file is
especially useful for observing the results of macro expansion, conditional
compilation, and file inclusion. Compiling the preprint file produces the
same results as compiling the source file, assuming the compiler can expand
any macros without errors.

The compiler generates the print file by default Use the nopri nt control to
suppress the print file. The default name for the print file is the same as the
primary source filename with the .1st extension substituted. The compiler
places the print file in the directory containing the source file by default. If a
file with the same name already exists, the compiler writes over it. To
override the defaults, use the pr i n t control.

2.2 DOS Batch and Command Files
DOS offers two ways to invoke a series of commands automatically: batch
files and command files. This section demonstrates how to use these files to
simplify invoking the iC-86/286/386 compiler.

2.2.1 Using DOS Batch Files

A DOS batch file contains one or more commands that DOS executes
consecutively. Batch file commands are valid at the DOS command-line
prompt and include special commands that are valid only within a batch file.
All batch files must have the .bat extension.

2-8 Compiling and Linking or Binding on DOS

You can pass arguments to a DOS batch files. In the following example, the
386c .bat batch file contains a command invoking the iC-386 compiler. Any
primary source file with the . c extension can be the argument for 386c. ba t.
The batch file contains one line:

C:\intel\ic386\ic386 %l.c

DOS replaces the %1 parameter with the progl argument in this example. To
invoke the batch file, type the pathname of the batch file without its .bat
extension followed by the name of the primary source file without its . c
extension. For example:

C:> 386c progl

When 386c. bat executes, DOS replaces the %1 parameter by progl,
resulting in the command:

C:\intel\ic386\ic386 progl.c

DOS batch files have several other useful features, such as i f, goto, for, and
call commands. See your DOS documentation for explanations of these and
other batch file commands.

Consider the following characteristics when developing a batch file for the
iC-86/286/386 compiler:

• If a batch file directly invokes another batch file, control passes to the
called batch file but does not return to the calling batch file. Place at
most one direct batch file invocation as the last line in a batch file.

• An enhancement available in DOS V3.30 and successive versions
enables one batch file to call another batch file and enables control to
return to the original batch file. Use the cal 1 fil ename command.

• Batch files can contain command labels and control flow commands
such as i f and goto. For example, the following command allows the
result of program execution from the previously executed batch file to
determine at which label the current batch file continues execution:

if errorlevel n goto label

Compiling and Linking or Binding on DOS 2-9

The value of n is the error code that the last program returned. See the
entry for the di agnos ti c control in Chapter 3 for more information on
errorlevel values. If the error code is the same or greater than the
value of n, control transfers to the line immediately after 1 abel. The
label is any alphanumeric string significant up to eight characters, on its
own line, and prepended by a colon.

• Although a batch file can contain multiple DOS commands, each
command must fit on a single line (128 characters). You cannot use
continuation lines in batch files. To process a longer line, specify a
command to redirect input from a file containing the remainder of the
line. The redirected file can contain continuation lines.

The following example shows how to redirect additional input from another
file, how to use parameters, and how to call another batch file (in DOS 3.30).
Figure 2-3 shows the relationships between the 386cl. ba t batch file, the
386cl . 1 tx file of filenames, and the ma ke_map. bat batch file. Thisexample
demonstrates the use of redirection and calling a batch file, and is not a
functional example of how to compile and bind an iC-386 program.

Redirect Input to

Figure 2-3 Redirecting Input to a DOS Batch File

2-10 Compiling and Linking or Binding on DOS

The DOS batch file %0 parameter always represents the name of the batch file
itself (without the .bat extension). In the above example, since 386 cl .bat
and 386c 1 .1 tx have identical names except for the extension, 386 cl .bat
can refer to 386 cl . 1 tx as %0.1 tx.

To execute the 3 86 cl .bat batch file and pass progl as an argument, type the
following at the DOS command prompt:

C:> 386cl progl

When 386cl . bat executes, it invokes the iC-386 compiler to compile
p rogl. c, then invokes BND386 to bind the resulting object module,
progl. obj, to another object module and a library specified in 386cl .1 tx.
If the binding is successful, the ma ke_map .bat file produces a map file
named progl.map.

2.2.2 Using DOS Command Files

You can invoke the DOS command processor, command .com, with input
redirected from a file called a command file. A DOS command file contains
a sequence of DOS commands and ex i t as the final command. Be certain
that a carriage return follows the exl t command, not an end-of-file
character. See your DOS documentation forexplanations of the command and
exit commands.

For example, the ex ema kec. cmd command file contains the following
commands (not a functional example of how to compile and bind an iC-286
program):

ic286 progO.c
ic286 progl.c
bnd286 progxs.obj, prog0.obj, progl.obj, &
progxs.lib
exi t

To sequentially execute the commands in the command file, redirect
exema kec. cmd to command. com by typing the following at the DOS prompt:

C:> command < exemakec.cmd

Compiling and Linking or Binding on DOS 2-11

Consider the following characteristics when developing a command file for
the iC-86/286/386 compiler:

• This method of redirecting commands works for a command file
containing a fixed sequence of commands only. You cannot pass
arguments to a command file.

• The flow of control is always sequential, from top to bottom of the
command file. Command files do not allow conditional commands such
as i f or goto.

• You can nest command files. If a command file reinvokes command. com
with a secondary command file, control returns to the primary command
file when the secondary command file exits. To invoke a second
command file, insert a line in the first command file such as:

command < comfile2.cmd

The secondary command file must contain exi t as its final command
followed by a carriage return. If it does not, control does not return to
the primary command file until you enter exi t at the DOS prompt.
Control returns to the point in the primary file immediately following
the point from which the secondary file was invoked.

• Unlike batch files, command files can contain continuation lines.

If you invoke a command file with output redirected to a file, the
command-line interpreter records all commands from the first line of the
command file through the command exit and all console input and output to
the file. For example, the following command invokes the exema kec. cmd
command file and creates a log file named exema ke c. 1 o g containing a
record of all commands:

C:> command < exemakec.cmd > exemakec.log

2.3 Linking or Binding iC-86/286/386 Object Files

The iC-86/286/386 compiler supports modular, structured development of
applications. You can compile and debug application modules separately,
then bind them together to create an application. Use the LINK86 linker
utility to combine separately translated object modules from the iC-86
compiler. Use the BND286 or BND386 binder utility to combine separately
translated object modules from the iC-286 or iC-386 compiler, respectively.

2-12 Compiling and Linking or Binding on DOS

The linker and binders can perform type checking and resolve intermodule
references. The binders can automatically select modules from specified
libraries to resolve references. See your 86,88 Utilities User's Guide, the
286 Utilities User's Guide, or the Intel386"‘ Family Utilities User's Guide,
listed in Chapter 1, for complete information on LINK86, BND286, or
BND386, respectively.

The general syntax for DOS-hosted LINK86, BND286, and BND386
(without device and path designations) is as follows:
1 ink86 input_file_list to output_file [controls]
bnd286 1 nput_fi 1 e_l 1 st [controls]
bnd386 7nput_fi 1e_list [controls]

Where:

7 nput_fi1 e_ 1ist is one or more names of linkable files separated by
commas. A linkable file is generated from a
high-level language translator or assembler, or is an
incrementally-linked module.

output_file is the destination file for LINK86 that contains
linked object code. (Use the obj ect control for
BND286 or BND386 to specify anon-default
destination file.)

controls are the linker or binder controls separated by spaces.
See the 86,88 Utilities User's Guide for DOS
Systems, the 286 Utilities User's Guide for DOS
Systems, or the Intel386"‘ Family Utilities User's
Guide, listed in Chapter 1, for complete information
on DOS-hosted LINK86, BND286, or BND386
controls, respectively.

Compiling and Linking or Binding on DOS 2-13

I

2.3.1 Choosing the Files to Link or Bind

iC-86/286/386 applications can consist of many separately translated
modules. The applications can call functions from libraries. To create an
executable file, you must use a linker or binder to link all translated code and
libraries together. iC-86/286/386 includes several libraries, and you can
purchase other libraries, such as the numeric coprocessor libraries included
with the appropriate assembler, and you can create your own libraries.

Table 2-1 shows the iC-86 libraries. The ? character represents c, 1, m, or s,
indicating compact-, large-, medium-, or small-model libraries. Use the
cdosnfZ.lib, crmxnfl ?.l ib, and cl i bnf ?. 1 i b libraries for more compact
code when your program does not use floating-point numbers.

Table 2-1 iC-86 Libraries

Library Name Model Description

clibs.lib small C run-time library containing all functions that are
clibc.lib compact independent of the target operating system environment
clibm.lib medium
clibl.lib large

clibnfs.lib small C run-time library functions that are independent of
clibnfc.lib compact the target operating system environment except functions
clibnf mJ ib medium that use floating-point numbers
clibnf l.lib large
cdoss.lib small C run-time library containing all functions that interface
cdosc.lib compact to the DOS operating system, plus all functions in
cdosm.lib medium clibZIib
cdosl.lib large

cdosnfs.lib small C run-time library functions that interface to the DOS
cdosnfc.lib compact operating system except functions that use floating-point
cdosnfm.lib medium numbers, plus all functions in clibnf ?.lib
cdosnfl.lib large
crmxlc.lib compact C run-time library functions that interface to the iRMX 1
crmxl l.lib large operating system, plus all functions in clib?.lib
crmxnfl c.lib compact C run-time library functions that interface to the iRMX 1
crmxnfl l.lib large operating system except functions that use floating-point

numbers, plus all functions in clibnf ?.lib

clib87.lib all models C run-time library containing floating-point functions not
resolved by the preceding floating-point libraries

2-14 Compiling and Linking or Binding on DOS

Table 2-2 shows the iC-286 libraries. The ? character represents c, 1, m, or
s, indicating compact-, large-, medium-, or small-model libraries. Use the
c rmxn f 2 ?. 11 b and c 1 i bn f2 ?. 1 i b libraries for more compact code when
your program does not use floating-point numbers. Note that the iRMX® I
and IIC interface libraries are available only in the compact and large
memory segmentation models.

Table 2-2 iC-286 Libraries

Library Name Model Description

clib2s.lib small C run-time library containing all functions that are
clib2c.lib
clib2m. lib
clib2l.lib

compact
medium
large

independent of the target operating system environment

clibnf2s.lib small C run-time library functions that are independent of the
clibnf2c. lib compact target operating system environment except functions that
clibnf2m.lib
clibnf2l.lib

medium
large

use floating-point numbers

crmx2c.lib compact C run-time library containing all functions that interface
crmx2l.lib large to the iRMX II operating system, plus all functions in

clib2?.lib
crmxnf2c.lib compact C run-time library functions that interface to the iRMX II
crmxnf2l.lib large operating system except functions that use floating-point

numbers, plus all functions in clibnf2?.lib

Table 2-3 shows the iC-386 libraries. The ? character represents c, f, or s,
indicating compact-, flat-, or small-model libraries. Use the crmxnf3c .lib
and cl i bn f 3 ?. 1 i b libraries for more compact code when your program does
not use floating-point numbers. Note that the iRMX III C interface library
supports only the compact memory segmentation model.

Compiling and Linking or Binding on DOS 2-15

Table 2-3 iC-386 Libraries

Library Name Model Description

clib3s.lib small C run-time library containing all functions that are
clib3c.lib compact independent of the target operating system environment
clib3f.lib flat
clibnf3s.lib small C run-time library functions that are independent of the
clibnf3c. lib compact target operating system environment except functions that
clibnfSf .lib flat use floating-point numbers
crmx3c.lib compact C run-time library containing all functions that interface to

the iRMX III operating system, plus all functions in
clib3c.lib

crmxnf3c.lib compact C run-time library functions that interface to the iRMX III
operating system except functions that use floating-point
numbers, plus all functions in clibnf3c.lib

The library's segmentation model must be compatible with the application's
segmentation model and whether you compiled with the ram or rom control.
See Chapter 3 for a description of the compact, fl at, large, medi urn, smal 1,
ram, and rom compiler controls. See Chapter 4 for a discussion of all the
segmentation models for iC-86/286/386.

Figures 2-4 and 2-5 show how to select the segmentation model of the
libraries for linking with your program.

2-16 Compiling and Linking or Binding on DOS

OSD716

Figure 2-4 Choosing the Correct Segmentation Model of
a Library for iC-86 or iC-286

Compiling and Linking or Binding on DOS 2-17

OSD741

Figure 2-5 Choosing the Correct Segmentation Model of a Library for iC-386

Selecting the correct libraries depends upon whether the program:
• uses floating-point numbers
• uses an 8087 or 80C187 numeric coprocessor or emulator (iC-86)
• uses an Intel287 numeric coprocessor (iC-286)
• uses an Intel387 numeric coprocessor or emulator, or an Intel486

processor floating-point unit (iC-386)
• runs under DOS, an iRMX system, a different system, or no operating

system

Figure 2-6 shows how to select the correct libraries for linking with iC-86
modules. The cel 87.1 ib, c!187f.lib, 8087.1 1b, and 80187f.11b
numeric support libraries and the 8087 and 80C187 emulators (de8087,
e8087, and e80187) represented in Figure 2-5 are part of your ASM86
package.

2-18 Compiling and Linking or Binding on DOS

I For Large Model 0S013M

Figure 2-6 Choosing Libraries to Link with iC-86 Modules

Compiling and Linking or Binding on DOS 2-19

m For Medium Model
I For Large Model OSD713

Figure 2-7 Choosing Libraries to Link with iC-286 Modules

Figure 2-7 shows how to select the correct libraries for linking with iC-286
modules. The cel 287 .lib and 80287 .lib numeric support libraries are part
of your ASM286 package.

2-20 Compiling and Linking or Binding on DOS

1 For Flat Model
OSD714

Figure 2-8 Choosing Libraries to Link with iC-386 Modules

Figure 2-8 shows how to select libraries for linking with iC-386 modules.
The 80387n .1 i b, cl 387n.11 b, and eh387n. 1 i b files are part of thelnte!387
Support Library.

Compiling and Linking or Binding on DOS 2-21

2.3.1.1 LINK86 Example

This example program uses four C library functions to create and initialize a
read-only file under the DOS operating system. The example assumes that
all necessary files are in the current directory. Figure 2-9 shows the source
code. The following line compiles the i oexamp. c source file:

C:> ic86 ioexamp.c

The following LINK86 invocation links the object module with the startup
code and libraries and creates an executable file named ioexamp.exe:

C:> 11nk86 cstdoss.obj, &
> > ioexamp.obj, &
> > cdosnfs.lib &
> > to ioexamp.exe exe

Because the program performs no floating-point operations, LINK86 does
not need the floating-point functions in cdoss. 11 b to resolve references.
Using cdosnfs. 1 i b produces a smaller object file.

2-22 Compiling and Linking or Binding on DOS

/★

* File Name: ioexamp.c
* This example program creates a file, writes to it, and
* then closes it. The mode of the file is then changed to
* read-only,
*/

#include <fcntl.h>
^include <io.h>
(/include <stdio.h>
//include <sys/stat.h>

int main (int argc, char * argv[J)
1

int fh;
int result:
char buffer [] - "Hello world!":
char *pathname - ”EXAMPLE.OUT”;

/*
* Create the file. If the file cannot be created, then report
* the error to the user:
* /

fh - open(pathname, O_CREAT|O_RDWR|0_BI NARY, S_IREAD|S_IWRITE):
if (fh !- -1) {

/*
* Write the data to the file. After closing the file,
* change its mode to READ-ONLY:
*/

result - write(fh, buffer, sizeof(buffer)):
close(fh):
result - chmod(pathname, S_IREAD);
printfi"** read-only file was created\n") ;

} else {
/*
* Report the error:
*/

printf("** ERROR **: unable to create file\n”):

Figure 2-9 Source Code for LINK86 Example

2.3.1.2 BND286 Example

This example shows a set of commands that builds one of the C library test
suites. The test consists of a main routine (1 i bl. c), four primary test files
(test46. c, test47. c, test47b. c, and test48. c) and a utility file (util . c).
The example assumes that all necessary files are in the current directory.

Compiling and Linking or Binding on DOS 2-23

The test itself consists of repeated calls to C library functions. The test runs
under the iRMX II operating system. The iRMX interface library makes the
appropriate system calls to implement the requested C library functions.

All iC-286 compiler invocations for this example use the compact
segmentation model and optimization level zero. The compilation uses the
debug control so that a source level debugger can help debug the executable
file. The compiler invocations are as follows:

C:> i c286 1 i b 1. c compact optimi ze(0) debug
C:> ic286 test46.c compact optimized) debug
C:> ic286 test47.c compact optimize(0) debug
C:> ic286 test47b.c compact optimized) debug
C:> i c286 test48.c compact optimized) debug
C:> ic286 uti1.c compact optimi ze(0) debug

The BND286 invocation binds the object files with the appropriate libraries,
as follows:

C:> bnd286 &
» cst rmx2c.obj, &
» libl.obj, &
» test46.obj, &
» test47.obj , &
>> test47b.obj , &
» test48.obj , &
» uti1.obj , &
» crmx2c.lib, &
» cel 287.lib, &
» 80287.lib. &
» rmxi fc.1i b &
» rconfigure &
» object(1ibl)

First the binder invocation lists the object modules for the C startup code and
the six application modules. Next in the list is crmx2c. 1 i b, which contains
the C run-time library. Then the invocation lists the libraries for the numeric
coprocessor (cel 287 .lib and 80287 .lib). The last library to link is the
iRMX operating system interface library (rmxi fc .1 i b). The rconfigure
control tells BND286 to configure the object module for the iRMX II
operating system. The obj ect control names the executable file 1 i bl.

2-24 Compiling and Linking or Binding on DOS

The numeric coprocessor libraries are part of the ASM286 package. The
iRMX C startup code (cstrmx2c. obj) and run-time library (crmx2c .lib) are
part of iC-286 for VMS hosts. The iRMX II system interface library
(rmxi f c. 1 i b) is part of the iRMX II operating system, and is not supplied
with iC-286. If you use iC-286 to create applications that run under another
operating system, bind in the startup code, libraries, and operating system
interface library for that operating system instead.

2.3.1.3 BND386 Example

This example is cross-compiled to run under the iRMX III operating system
and prints the string "Hello, world" on the screen. The example assumes that
all necessary files are in the current directory. Figure 2-10 shows the source
code. The following line compiles the hel 1o. c source file:

C:> 1c386 hello.c compact

/*
* File Name: hello.c
* This example writes "Hello, world" on the screen.
*/

(/include <stdio.h>

int main (int argc, char * argv[])
{

printf("Hel1o , world\nn);
}

Figure 2-10 Source Code for BND386 Example

The following BND386 invocation links the object module with the startup
code and libraries and creates a loadable file named hello:

C:> bnd386 &
> > cstrmx3c.obj, &
> > hello.obj, &
> > crmxnf3c.1ib, &
> > rmxifc32.lib &
> > renameseg (CODE to C0DE32) &
> > rconfigure &
> > object (hello)

Compiling and Linking or Binding on DOS 2-25

First, the binder invocation list must specify the object module for the C
startup code and the application routine, in that order. Next, the binder links
in the target-independent and interface functions library that does not use
floating-point numbers (crmxnf3c. 1 i b). Last, the binder links in the
iRMX III operating system interface library (rmxi f c32 .lib).

The renameseg control ensures all library module code segments are named
C0DE32, for combining with iC-386 code segments. The rconf i gure control
causes BND386 to produce a single-task loadable module that can be loaded
by the iRMX III system loader. The object control names the executable
file hel 1 o instead of the default hello, bnd.

Because the program performs no floating-point operations, there are no
function references to the floating-point routines in the crmx3c .lib library.
Binding crmxnf 3 c. 1 i b produces a smaller object file than using
crmx3c.1i b.

The iRMX III C interface libraries, crmx3c .lib and crmxnf3c. 1 i b, are
included with iC-386 for use with applications written for the iRMX III
operating system. The iRMX III system interface library (rmxi f c32 .lib) is
part of the iRMX III operating system, and is not supplied with iC-386. If
you use iC-386 to create applications that run under another operating
system, link in the startup code, libraries, and operating system interface
library for that operating system instead.

The next example uses some floating-point arithmetic. The example
assumes that all necessary files are in the current directory. Figure 2-11
shows the source code. The following line compiles the f 1 oa t. c source file:

C:> ic386 float.c compact

2-26 Compiling and Linking or Binding on DOS

/*
* File Name: float.c
* This example calculates the volume of a cylinder, such as a glass.
* Volume - pi (diameter I 2)A2 height* *
*/

//include <stdio.h>
//include <math.h>
//define PI 3.14159

int main (int argc, char * argv[J)
(

float diam-3:
int height-7;
fl oat vol ;

vol - PI * square(diam / 2) * height;
pri ntf ("Your glass can hold 2//7.2f cubic inches\n" .vol);

Figure 2-11 Source Code for BND386 Floating-point Example

The BND386 invocation links the object modules and run-time libraries with
the appropriate floating-point libraries, as follows:

C:> bnd386 &
>> cstrmx3c.obj, &

>> float.obj, &

>> c rmx3 c. 1 i b, &

>> 80387n.lib, &

>> cl387n.lib, &

>> eh387n.lib. &

>> rmxi f c32.1i b &

>> renameseg (CODE to CODE32) &
>?
>>

rconfi gure
object (float)

&

1

The application uses the near version of the common elementary functions
library. Because the application runs in the compact segmentation memory
model, function calls are near calls. See Chapter 3 for a description of the
compa ct control. See Chapter 4 for information on the segmentation
memory models. See the 80387 Support Library Reference Manual, listed in
Chapter 1, for information on the numeric coprocessor libraries.

Compiling and Linking or Binding on DOS 2-27

2.3.2 Customizing the Startup Code

The iC-86/286/386 package includes an assembly language file that performs
several startup tasks: initializing the C library, initializing any hardware
systems, invoking the mai n() function, and responding to the return from
ma i n () if the application does not call exi t(). The source filename is
cstart.asm. The startup code can be configured to perform tasks according
to the needs of your target system.

The cstart.asm code uses many of the macros that the util . ah header file
defines. Ensure that the DOS : include: environment variable is set to the
path for uti 1 . ah. You can customize the startup code by using the %def i ne
macro definition facility for ASM when you assemble the startup code. See
your DOS documentation for information on setting environment variables.
See Chapter 7 for an explanation of the uti 1 . a h assembler header file.

The syntax for assembling the startup code (without device and path
designations) is as follows:
asmn86 cstart.asm [asm_controls] %define(controls)([header_control s])

Where:

asmn86 is the assembler. Use asm86, asm286, or asm386.

asm_controls is a sequence of assembler controls. See your
ASM86 Macro Assembler Operating Instructions for
DOS, ASM286 Macro Assembler Operating
Instructions for DOS, or ASM386 Macro Assembler
Operating Instructions for DOS, listed in Chapter 1,
for information on assembler controls.

header_controls is a sequence of special controls, separated by
blanks. Select up to one header control from each of
the sets shown in Table 2-4.

2-28 Compiling and Linking or Binding on DOS

Table 2-4 ASM Header Controls for Customizing the Startup Code

Control Sets Abbreviation Default Description

small sm X small segmentation model
compact cp compact segmentation model
medium md medium segmentation model
large la large segmentation model
flat fl flat segmentation model

ram (none) X RAM submodel (constants with data)
rom (none) ROM submodel (constants with code)

fixedparams fp X FPL calling convention
varparams vp VPL calling convention

mod86 (none) X 86 processor instructions
modi 86 (none) 186 processor instructions

asm86 (none) X ASM86 assembler
asm286 (none) ASM286 assembler
as m3 86 (none) ASM386 assembler

'module=nan?e' (none) cq_cstart module name

'stacksize=s/ze‘ (none) 0 stack size

dos (none) X DOS operating system
embedded em embedded system
rmxl (none) iRMX® I operating system
rmx2 (none) iRMX II operating system
rmx3 (none) iRMX III operating system

See Chapter 7 for definitions of all of the header_contro 1 s except the last
set (dos, embedded, rmxl, rmx2, and rmx3). The controls in the last set are
defined in the cs tart, asm source code, notin util .ah. Choose one from
the last set according to the target environment for your application.

The following examples demonstrate how to specify header_controls to
produce typical startup code.

Compiling and Linking or Binding on DOS 2-29

1. For a small-model program running under the DOS operating system
and on an 86 processor, you can let the header_con trols default. This
sample assembler invocation produces an object file named
cstdoss .obj and a listing file named cstart. 1 st:

C:> asm86 cstart.asm object(cstdoss.obj) &
>> %define(control s)()

2. For a large-model program running on a ROM-based embedded 86
processor (without operating system support), specify three
header_ controls. This sample assembler invocation produces an
object file named cstembl. obj and a listing file named cstart.1 st:

C:> asm86 cstart.asm objecttcstembl.obj) &
>> %define(controls)(1 arge rom embedded)

3. For a compact-model program running in an embedded 286 processor
ROM environment (without operating system support), specify four
header_contro 1 s. This sample assembler invocation produces an
object file named cstemb2c. obj and a listing file named cstart. 1st:

C:> asm286 cstart.asm object(cstemb2c.obj) &
>> %define(controls)(compact rom asm286 embedded)

The assembler produces an executable code fragment identical to the
previous example's, but the 286 assembler generates different object
code and segmentation directives depending on the segmentation
memory model and target architecture.

4. For a small-model program running in an embedded RAM Intel386™
processor environment, specify asm386 and embedded and let the
remaining header_controls default. This sample assembler invocation
produces an object file named cst386em. obj and a listing file named
cstart.1 st:

C:> asm386 cstart.asm object(cst386em.obj) &
>> %define(controls)(asm386 embedded)

5. For a compact-model program running on a 386 processor under
iRMX III, specify the asm386, compact, and rmx3 header_controls.
This sample assembler invocation produces an object file named
cstrmx3c. obj and a listing file named cstart. 1 st:

C:> asm386 cstart.asm object(cstrmx3c.obj) &
>> %define(controls)(asm386 compact rmx3)

2-30 Compiling and Linking or Binding on DOS

2.4 Compiling an Example Different Ways

This section contains a sample program compiled using the iC-86, iC-286,
and iC-386 compilers. The examples explore using preprocessor directives
and many controls useful for iC-86, iC-286, or iC-386. Parts of the listing
files explain the results of each compilation. See Chapter 3 for more detailed
information on each control. See C: A Reference Manual, listed in
Chapter 1, for information on preprocessor directives.

2.4.1 Example Files

Figure 2-12 shows the location of the files in the tree structure of the disk.
The files and directories in this example are:

• C:\cexample\sievec.c is the primary source file.

• C : \cexampl e\i ncl udes\prags. h is afile that specifies two compiler
controls in #pragma preprocessor directives: smal 1, extend, and
optimize(0).

• C:\intel\i cn86\ is the subdirectory, i c86, i c286, or i c386,
containing the compiler.

• C:\1ntel\icn86\inc\ is the subdirectory containing standard include
files, such as stdi o. h.

• C: \cexampl e\ is the current directory when the compiler is invoked.

Compiling and Linking or Binding on DOS 2-31

All Invocation
is Done From

Here

C:\
(Root Directory)

C:\intel
(subdirectory)

C:\cexample
(Subdirectory)

OS 0762

Figure 2-12 Directory Structure for Sieve Example Files

Figure 2-13 shows the complete source text from si evec. c. This program
prints the prime numbers up to 8,190.

2-32 Compiling and Linking or Binding on DOS

/* *
* File Name: sievec.c
* This program computes prime numbers using the sieve method
*/

//if defined(EXAMPLE)
//pragma ti tl e("Si eve Example")

//endif
//if defined(SCREEN)

//pragma pagel ength(24)
//pragma pagewi dth(80)
//pragma tabwidth(3)

Figure 2-13 Source Code for Sieve Example

//el if defined(NPAPER)
//pragma pagelength(40)
//pragma pagewidth(75)
//pragma tabwidth(2)

//end) f
//incl ude <stdio . h>
//define TRUE 1
//define FALSE 0
//define MAX 8190
//define EXECUTIONS 2
static char isprime[MAX+l];
int main (int argc, char * argv[J)
{

int i, aprime, j, howmany, n;
for (n = 1; n <= EXECUTIONS; n++)

{
howmany = 0;
for (i =0; i <= MAX; i++)

i sprime[i] = TRUE;
for (i = 2; i <= MAX; i++)

{
if (isprime[i])
{

howmany++;
aprime = i;
for (j = i + aprime; j <= MAX; j += aprime)

isprime[j] = FALSE;
)

}
for (i =0; i <= MAX; i++)

if (isprime[ij) printf(" %d",i);
}

Figure 2-13 Source Code for Sieve Example (continued)

Compiling and Linking or Binding on DOS 2-33

2.4.2 Preprinting the Example Using iC-86

This example discusses the controls and preprocessor directives that create a
useful preprint file. Conditional compilation uses macros that the invocation
defines. The source text includes a file that contains three //pragma
preprocessor directives. Table 2-5 shows the controls in effect for the
compilation. The noobject control overrides other object file controls. The
noprint control overrides other print file controls. Even though the
noobject control is in effect, translation occurs and the compiler reports the
number of warnings and errors. The default setting of the d i a g n o s t i c
control suppresses the reporting of remark messages. See Chapter 3 for
detailed information on each control.

This example uses the preprint, cmd command file to invoke the compiler.
The full pathname to this command file is C: \cexampl eXpreprint.cmd. The
contents of preprint.cmd are as follows:

XintelXic86\ic86 sievec.c &
define(NPAPER) &
include(prags . h) &
searchincludeCXintelXicSGXincX.includesX) &
preprint &
noprint &
noobject &
define(EXAMPLE)
exi t

The invocation of the DOS command processor accesses the command file
and causes DOS to record the command session in the prepri nt. 1 og file, as
follows:

C:\CEXAMPLE> command < preprint.cmd > preprint.log

2-34 Compiling and Linking or Binding on DOS

Table 2-5 Controls for Preprinting the Sieve Example

1The noobject and noprint controls override this control.
2The noprint control overrides this control.
^The preprint control overrides this control.
4This is the default segmentation model.

Controls Where Specified

define(NPAPER)
define(EXAMPLE)
include(prags.h)
noobject
optimize(O)1
pagelength(40)2
pagewidth(75)2
preprint
noprint
searchinclude(\intel\ic86\inc\,incliides\)
small1'4
tabwidth(2)2

title("Sieve Example")2

invocation
invocation
invocation
invocation
prags.h
sievec.c
sievec.c
invocation
invocation
invocation
prags.h
sievec.c
sievec.c

align1
nocode2
nocond2
nodebug1
diagnostic^)
noextend1
fixedparams1
noline1
list2
nolist expand2
nolistinclude2

mod861

nomod2871

modulename(SIEVEC)1
ram1
signedchar1
nosymbols2
translate3
type1
noxref1

default
default
default
default
default
default
default
default
default
default
default
default
default
default
default
default
default
default
default
default

Compiling and Linking or Binding on DOS 2-35

Figure 2-14 shows the contents of preprint. 1 og after command processing.

operating-system-message

C:\CEXAMPLE> \intel\ic86\ic86 sievec.c &
> > define(NPAPER) &
> > includeCprags.h) &
> > searchinclude(\intel\ic86\inc\,incl udes\) &
> > preprint &
> > noprint &
> > noobject &
» define(EXAMPLE)

system-id iC-86 COMPILER Vx.y
Copyright years Intel Corporation
iC-86 COMPILATION COMPLETE. 0 WARNINGS, 0 ERRORS

C:\CEXAMPLE> exit

Figure 2-14 Command Log File for the Sieve Preprint Example

The preprint control causes the compiler to generate a preprint file. The
n o p r i n t control causes suppression of the print file. The noobject control
causes suppression of the object file. The only output file resulting from this
compilation is the preprint file.

The preprint file contains the source text after preprocessing. Preprocessing
includes expanding macros, conditionally selecting source text, and including
other files.

The preprint file represents all files included by the i ncl ude control and the
ncl ude preprocessor directive by the #1 ine preprocessor directive

followed by the included text The #11 ne preprocessor directive also appears
in the preprint file to mark the first line of the primary source file.

Figure 2-15 shows the first few lines of the preprint file,
\cexampl e\si evec. i, resulting from this compilation.

2-36 Compiling and Linking or Binding on DOS

//line 1 "includes\prags.h”
//pragma small
//pragma optimized)
//line 1 "sievec.c"
/*
* File Name: sievec.c
* This program computes prime numbers using the sieve method
* /

//pragma title("Sieve Example")
//pragma pagel ength(40)

//pragma pagewidth(75)
//pragma tabwidth(2)

//line 1 "\intel\ic86\inc\stdio.h"
/* stdio.h - standard I/O header file

Figure 2-15 Part of the Sieve Example Preprint File

2.4.2.1 Macros and Conditional Compilation

The define control in the compiler invocation defines the macros N PAP ER
and EXAMPLE. Case is significant in the arguments to the def i ne control, so
the macros are in uppercase to match the use of the macros in the source text.

The code of the primary source file specifies the conditional compilation of
the following source text:

//if defined(EXAMPLE)
//pragma title("Sieve Example")

//endi f

//if defined(SCREEN)
//pragma pagel ength(24)
//pragma pagewidth(80)
//pragma tabwidth(3)

//el if defined(NPAPER)
//pragma pagel ength (40)
//pragma pagewidth(75)
//pragma tabwidth(2)

//endi f

Compiling and Linking or Binding on DOS 2-37

The //i f defined preprocessor directive tests whether a macro name has
been defined, without regard to the value of the macro. On invocation the
define control defines EXAMPLE, so the preprocessor propagates to the
preprint file the following line:

//pragma title("Sieve Example")

In another instance, the def 1 ne control defines NPAPER but not SCREEN, so the
preprocessor ignores the first set of directives under //if definedCSCREEN)
and propagates the following lines:

//pragma pagelength(40)
//pragma pagewidth(75)
//pragma tabwidth(Z)

The same source lines demonstrate that //pragma preprocessor directives can
specify many compiler controls. However, the ti tl e, page! ength,
p a g ew 1 d t h, and tabwidth controls have no effect in this example because
they affect only the print file, which the n o p r i n t control in the compiler
invocation suppresses.

2.4.2.2 Include Files

The in cl ude control in the compiler invocation causes the preprocessor to
insert text from the prags. h file at the beginning of the primary source file,
si evec. c. Since prags. h is in \cexampl e\incl udes and not in the current
directory \cexampl e, the searchinci ude control specifies the i ncl udes\
relative path.

The searchinci ude search path also specifies the \ intel \i c86\i nc\ path,
for the directory containing the stdi o. h header file. In the source text, the
//i ncl ude preprocessor directive causes the preprocessor to insert text from
the stdi o. h header file at that point in the primary source file.

The def i ne and incl ude controls are valid only in the compiler invocation;
they cannot be used in a //pragma preprocessor directive. Instead, use the
//def i ne and//i ncl ude preprocessor directives. See C: A Reference
Manual, listed in Chapter 1, for more information about preprocessor
directives.

2-38 Compiling and Linking or Binding on DOS

2.4.3 Creating 186 Code and a Custom Print File Using iC-86

This example creates an object file and a custom print file with a
pseudo-assembly code listing and a cross-reference table of symbols. The
compilation suppresses type-checking and debug information in the object
module.

The mod 186 control causes the iC-86 compiler to generate object code using
the 186/188 instruction set. (The iC-286 and iC-386 compilers do not use the
modl86 or mod86 controls.) The 186 and 188 processors can execute this
instruction set, but the 86 and 88 processors cannot A 286, 386, or i486™
processor executing in real mode can also execute the 186/188 instruction
set. Table 2-6 shows the controls in effect for the compilation.

This example uses the following compiler invocation;
C:\CEXAMPLE> \intel\ic86\ic86 sievec.c &
> > define(NPAPER) &
> > include(prags.h) &
> > searchinciude(\intel\ic86\inc\,includes\) &
> > object(prime.obj) &
> > modl86 &
> > notype &
> > nodebug &
> > print(prime.1 st) &
> > nolist &
> > code &
> > xref &
> > diagnostic^)

The compiler displays the following lines on the screen:
system-id iC-86 COMPILER Vx.y
Copyright years Intel Corporation
iC-86 COMPILATION COMPLETE. 0 REMARKS, 0 WARNINGS, 0 ERRORS

Compiling and Linking or Binding on DOS 2-39

Table 2-6 Controls for Creating the 186 Sieve Example

1This is the default setting tor this control.
2This is the default segmentation model.
®The xref control overrides this control.

Controls Where Specified

code
nodebug1

define(NPAPER)
diagnostic(O)
include(prags.h)
nolist
modi 86
object(prime.obj)
optimize(O)
pagelength(40)
pagewidth(75)
print(prime.lst)
searchinclude(\intel\ic86\inc\,includes\)
small2
tabwidth (2)
notype
xref

invocation
invocation
invocation
invocation
invocation
invocation
invocation
invocation
prags.h
sievec.c
sievec.c
invocation
invocation
prags.h
sievec.c
invocation
invocation

align(4)
nocond
noextend
fixedparams
noline
nolistexpand
nolistinclude
nomod287
modulename(SIEVEC)
nopreprint
ram
signedchar
nosymbols3
titlef'SIEVEC")
translate

default
default
default
default
default
default
default
default
default
default
default
default
default
default
default

2-40 Compiling and Linking or Binding on DOS

The print and object controls specify explicit file names for the print file
and object file. The compiler puts the print and object files in the current
directory, C:\cexample, by default

The xref control causes the compiler to print a symbol table with
cross-reference information in the print file. The xref control overrides the
default nosymbol s control. The cross-reference information associates each
symbol with each line that defines it, declares it, or references it The
cross-reference line numbers are on the far right of the symbol table listing,
under each entry in the ATTRIBUTES column.

The printfile is \cexampl eXprime .1 st. The pa gel eng th, pagewi dth, and
tabwidth controls affect the format of the print file. The invocation does not
define the EXAMPLE macro, so the title of the listing defaults to the module
name. The code and nolist controls affect the contents of the print file.
The nolist control overrides several controls that affect the source code
listing. Figure 2-16 shows the first two pages of the print file, the first page
of the symbol table listing from the print file, and the last page of the print
file.

iC-86 COMPILER SIEVEC mm/dd/yy hh:mm:ss PAGE 1

system-id iC-86 COMPILER Vx.y, COMPILATION OF MODULE SIEVEC
OBJECT MODULE PLACED IN prime.obj
COMPILER INVOKED BY: C:\intel\ic86\IC86.EXE sievec.c definetNPAPER) include

-tprags.h) searchinclude(XintelXic86Xinc\,includesX) object
-(prime.obj) modl86 notype nodebug printtprime.lst) nolist
-code xref diagnostic^)

line level incl

Figure 2-16 Parts of the 186 Sieve Example Print File

Compiling and Linking or Binding on DOS 2-41

iC-86 COMPILER SIEVEC m/dd/yy hh:m:ss PAGE 2
ASSEMBLY LISTING OF OBJECT CODE

: STATEMENT 29
mai n PROC NEAR

0000 C80A0000 ENTER 0AH.0H
@1:

: STATEMENT # 32
0004 C746F60100 MOV [BP].n,lH
0009 E9BA00 JMP @4

@2:
000C C746F80000 MOV [BP].howmany,0H

: STATEMENT # 35
0011 C746FE0000 MOV [BP] .1,0H
0016 E90F00 JMP @8

@6:
0019 8B5EFE MOV BX.[BP].i
001C C687000001 MOV i sprime[BX],1H

@7:
0021 8B46FE MOV AX , [BP].i
0024 40 INC AX
0025 8946FE MOV [BP].i.AX

@8:
0028 817EFEFE1F CMP [BP].i .1FFEH
002D 7F03 JG $+5H
002F E9E7FF JMP @6

@9:
: STATEMENT 37

0032 C746FE0200 MOV [BP].i,2H
0037 E94800 JMP @12

@10:
003A 8B5EFE MOV BX,[BP].1
003D 82BF000000 CMP isprime[BX] ,0H
0042 7503 JNZ $+5H
0044 E93400 JMP @14

: STATEMENT 41
0047 8B46F8 MOV AX,[BP].howmany
004A 40 INC AX
004B 8946F8 MOV [BP].howmany,AX

Figure 2-16 Parts of the 186 Sieve Example Print File (continued)

2-42 Compiling and Linking or Binding on DOS

-iC-86 COMPILER SIEVEC mmldd/yy hh:mm:ss PAGE 5
SYMBOL TABLE

NAME SIZE CLASS ADDRESS ATTRIBUTES

_exit 72

open stream sem
2

Tag

Member 0

struct
*66

pointer to void

open_stream_l1 st
2 Member 2

*69

pointer to struct iobuf

exit handler_sem
2 Member 4

*70

pointer to void

exi t_handler_count
2

exit_handler_l1 st
64

Member

Member

6

8

*71

i nt
*72

array[32] of pointer to func

_heap 8

_malloc_sem 2

Tag

Member 0

-tion returning void
*73
struct
*39
pointer to void

_primary free_list
2 Member 2

*42

pointer to struct free_list_

-Secondary free_list
2 Member 4

- i tern
*43

pointer to struct free_list_

secondary_list count
2

_iobuf 18

Member

Tag

6

- i tern
*44

i nt
*45
struct

MODULE INFORMATION:

CODE AREA SIZE - 00D4H 212D
CONSTANT AREA SIZE - 0004H 4D
DATA AREA SIZE - 1FFFH 81910
MAXIMUM STACK SIZE - 001AH 26D

iC-86 COMPILATION COMPLETE. 0 REMARKS, 0 WARNINGS, 0 ERRORS

Figure 2-16 Parts of the 186 Sieve Example Print File (continued)

Compiling and Linking or Binding on DOS 2-43

2.4.4 Creating 86 Code and Linking for DOS Using iC-86

This example creates an object file that is ready to link and run on an 86
processor. The target machine contains an i287 numeric coprocessor. The
print file contains the source text and a pseudo-assembly code listing.
Table 2-7 shows the controls in effect for the invocation.

Table 2-7 Controls for Creating the DOS Sieve Example

Controls Where Specified

code invocation
define(SCREEN) invocation
include(prags.h) invocation
mod287 invocation
object(sievedos.obj) invocation
optimize^) prags.h
pagelength(24) sievec.c
pagewidth(80) sievec.c
print(sievedos.lst) invocation
searchinclude(\intel\ic86\inc\,includes\) invocation
small1 prags.h
tabwidth(3) sievec.c
title("l_ink For DOS") invocation

align(4) default
nocond default
nodebug default
diagnostic(l) default
noextend default
fixedparams default
noline default
list default
nolistexpand default
nolistinclude default
mod86 default
modulename(SI EVEC) default
nopreprint default
ram default
signedchar default
nosyrnbols default
translate default
type default
noxref default
1This is the default segmentation model.

2-44 Compiling and Linking or Binding on DOS

This example uses the following compiler invocation:
C:\CEXAMPLE> \intel\ic86\ic86 sievec.c &
» define(SCREEN) &
> > include(prags.h) &
> > searchinciude(\intel\ic86\inc\,includes\) &
> > code &
> > mod287 &
> > print(sievedos.1 st) &
> > object(sievedos.obj) &
> > title("Link For DOS")

The compiler displays the following lines on the screen:
system-id iC-86 COMPILER Vx.y
Copyright years Intel Corporation
IC-86 COMPILATION COMPLETE. 0 WARNINGS, 0 ERRORS

The print file is \cexampl e\si evedos. 1 st. Figure 2-17 shows the print file.

iC-86 COMPILER Link for DOS mm/dd/yy hh:mm:ss PAGE 1

system-id iC-86 COMPILER Vx.y, COMPILATION OF MODULE SIEVEC
OBJECT MODULE PLACED IN sievedos.obj
COMPILER INVOKED BY: C:\irtel\ic86\IC86.EXEsievec.cdefine(SCREEN) i nclude(pr ag

-s.h) searchincl ude(\intel\ic86\inc\,incl udes\) code mod287 prin
-t(sievedos.1 st) object(sievedos.obj) title(Link for DOS)

line level incl

1 /*
2 File Name: sievec.c*
3 This program computes prime numbers using the sieve method*
4 /*
5
6 //if defined(EXAMPLE)

#endif
9

10 //if defined(SCREEN)
11 //pragma pagelength(24)
12 //pragma pagewidth(80)
13 //pragma tabwidth(3)
14 //elif defi ned(NPAPER)

Figure 2-17 Part of the DOS Sieve Example Print File

Compiling and Linking or Binding on DOS 2-45

iC-86 COMPILER Link for DOS mm/dd/yy hh:mm:ss PAGE 2

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

//endi f

//include <stdio.h>

//define TRUE 1
//define FALSE 0
//define MAX 8190
//define EXECUTIONS 2
static char isprime[MAX+l]:

int main (int argc, char * argv[])
{

int i, aprime, j, howmany, n:

for (n - 1; n <- EXECUTIONS; n++)
{

howmany - 0;
for (i - 0; i <- MAX; i++)
isprime[i] - TRUE;

for (i - 2; i <- MAX: i++)
{

iC-86 COMPILER Link for DOS mm/dd/yy hh:mm:ss PAGE 3

39 3
40 3
41 4
42 4
43 4
44 4
45 4
46 3
47 2
48 2
49 2
50 1

if (isprime[i])
{

howmany++;
aprime - i ;
for (j - i + aprime; j <- MAX: j +- aprime)

isprime[j] - FALSE:
}

}
for (i - 0: i <- MAX; i++)

if (isprimeCI]) printff" %d".i):

MODULE INFORMATION:

CODE AREA SIZE - 00DAH 218D
CONSTANT AREA SIZE - 0004H 4D
DATA AREA SIZE - 1FFFH 8191D
MAXIMUM STACK SIZE - 001AH 26D

iC-86 COMPILATION COMPLETE. 0 WARNINGS, 0 ERRORS

Figure 2-17 Part of the DOS Sieve Example Print File (continued)

2-46 Compiling and Linking or Binding on DOS

LINK86 links the object module to the libraries and creates an executable file
for DOS, The following LINK86 command assumes that the DOS search
path knows where to find LINK86 and assumes that the libraries and startup
code are in the \intel\ic86 and \intel\i c86\ 11 bs directories,
respectively.

C:\CEXAMPLE> 1ink86
> > \i ntel\i c86\li b\cstdoss.obj,
> > sievedos.obj,
> > \i ntel\i c86\li b\cdoss. lib,
> > \intel\ic86\lib\cel87.1ib,
> > \intel\ic86\lib\8087.1ib
> > to sieve.exe
> > exe

&
&
&
&
&
&
&

To execute the program, type the program name at the DOS prompt, as
follows:

C:\CEXAMPLE> sieve

2.4.5 Examining Included and Conditional Code Using iC-286

This example creates a print file that contains all of the source text, including
uncompiled conditional code, the text from include files, and expanded
macros. Table 2-8 shows the controls in effect for the invocation.

Compiling and Linking or Binding on DOS 2-47

Table 2-8 Controls for Creating a Complete Print File for the Sieve Example

Controls Where Specified

cond invocation
diagnostic(O) invocation —
define(NPAPER) invocation
include(prags.h) invocation
listexpand invocation
listinclude invocation
optimize(O) prags.h
pagelength(40) sievec.c
pagewidth(75) sievec.c
searchinclude(\intel\ic386\inc\,includes\) invocation
small1 prags.h
tab width (2) sievec.c
titlef'Long Listing") invocation

align(4) default
nocode default
nodebug default
noextend default
fixedparams default
noline default —
list default
modulename(SIEVEC) default
object(sievec.obj) default
nopreprint default
print(sievec.lst) default
ram default
signedchar default
nosymbols default
translate default
type default
noxref default
1This is the default segmentation model.

This example uses the following compiler invocation:
C:\CEXAMPLE> \intel\ic286\fc286 sievec.c &
» define(NPAPER) &
> > Include(prags.h) &
> > search!nclude(\intel\ic286\inc\,incl udes\) &
> > cond &
> > listexpand &
> > listinclude &
> > diagnostic^) &
> > title("Long Listing")

2-48 Compiling and Linking or Binding on DOS

The compiler displays the following lines on the screen:
system-id iC-286 COMPILER Vx.y
Copyright years Intel Corporation
iC-286 COMPILATION COMPLETE. 0 REMARKS. 0 WARNINGS. 0 ERRORS

The print file is \cexampl e\si evec. 1 st by default. The source text listing
includes uncompiled conditional code and the contents of included files.
Figure 2-18 shows the first two pages and the last two pages of the print file.

iC-286 COMPILER Long Listing mm/dd/yy hh:mm:ss PAGE 1

system-id iC-286 COMPILER Vx.y. COMPILATION OF MODULE SIEVEC
OBJECT MODULE PLACED IN sievec.obj
COMPILER INVOKED BY: C:\intel\ic286\IC286.EXE sievec.c define(NPAPER) inclu

-de(prags.h) searchinclude(\intel\ic286\inc\,includes\) con
-d listexpand listinclude diagnostic^) titletLong Listing)

line level incl

1
2
1
2
3

4
5
6

Q
10

15
16
17
18
19
20

1

1 //pragma small
1 //pragma optimize(0)

/*
* File Name: sievec.c
* This program computes prime numbers using the sieve me

-thod
*/

//if defined!EXAMPLE)
//pragma title!"Sieve Example”)

//endi f

//if defined(SCREEN)
//pragma pagelength(24)
//pragma pagewidth(80)
//pragma tabwidth!3)

//el i f defi ned (NPAPER)
//pragma pagelength(40)
//pragma pagewidth(75)
//pragma tabwidth!2)

//endi f

//include <stdio.h>
1 /* stdio.h - standard I/O header file

Figure 2-18 Parts of the Sieve Example Complete Print File

Compiling and Linking or Binding on DOS 2-49

iC-286 COMPILER Long Listing mm/dd/yy hh:mm:ss PAGE 2

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20

21

22

23

24

25

26
27
28

29
30
31

-ESERVED.
1 */
1
1 //ifndef _stdioh
1 //define _stdioh
1 /*lint -library */
1
1 /* ../cdos/stdio: */
1 //pragma fi xedparams (" rename”, "tempnam”, "tmpnam")
1
1 /* .,/cflt/stdio: */
1 //pragma fixedparams("_dtobcd", ”_dtos”, "_pow_10")
1
1 /* ../clib/stdio: */
1 //pragma fixedparamsl"_putch”, ”_getch")
1 //pragma fixedparamsl "_doprnt", ”_doscan", "_filbuf", "_fl

-sbuf”, "clearerr")
1 //pragma fi xedparams (” f cl ose". "feof", ”ferror", "fflush".

- "fgetc")
1 //pragma fixedparamsl "fgets", ”fopen”. "fputc", "fputs”, ”

-fread")
1 //pragma fixedparams("freopen", "fseek", "ftell", "fwrite"

-. "getc")
1 //pragma fixedparamsl"getchar". "gets", "perror". "putc",

- "putchar"1
1 //pragma fixedparamst"puts", "remove", "rewind", "setbuf",

- "setvbuf")
1 //pragma fi xedparams ("tmpfi 1 e", "ungetc", "vfprintf", "vpr

-intf", "vsprintf")
1 //pragma fi xedparams("fgetpos", "fsetpos")
1
1 //pragma varparams ("fpri ntf ”, "fscanf", "printf”, "scanf",

- "sprintf", "sscanf")
1
1 /* . ,/clib/stdio.ext: */
1 //pragma fixedparams("fcloseal 1 ”, "fdopen", "fgetchar". "f

-ileno", "flushall")

Figure 2-18 Parts of the Sieve Example Complete Print File (continued)

2-50 Compiling and Linking or Binding on DOS

1C-286 COMPILER Long Listing mm/dd/yy hh:mm:ss PAGE 13

23
24

#define
#defi ne

FALSE 0
MAX 8190

25 #def 1ne EXECUTIONS 2
26 stati c char 1sprime[MAX+l];
+ stati c char isprimeC8190+l];

27
28 int mai n (int argc, char * argv[])
29 {
30 1 1 nt i, aprime, j. howmany. n;
31 1
32 1 for (n - 1; n <- EXECUTIONS: n++)
4- for (n - 1; n <- 2; n++)

33 1 {
34 2 howmany - 0;
35 2 for (i - 0; 1 <- MAX; i++)
+ for (i - 0: i <- 8190; 1++)

36 2 1 spri me Li] " TRUE;
+ isprime[i] - 1;

37 2 for (i - 2: i <- MAX; 1++)
+ for (i - 2; i <-8190; 1++)

38 2 {
39 3 if (isprime[i])
40 3 (
41 4 howmany++;

— 42 4 aprime - i ;
43 4

■ i me)
for (j - 1 + aprime; j <- MAX; j +- apr

+ for (j - 1 + aprime: j <- 8190; j +- ap
■ rime)

44 4 isprimetj] - FALSE;
+ isprimeij] - 0;

45 4)
46 3 }
47 2 for (1 - 0; i <- MAX: 1++)

for (i - 0; i <-8190; 1++)
48 2 if (isprimeEi]) printfC %d’,i);
49 2 }

IC-286 COMPILER Long Listing mm/dd/yy hh:mm:ss PAGE 14

50 1 }

MODULE INFORMATION:

CODE AREA SIZE - 00D4H 212D
CONSTANT AREA SIZE - 0004H 4D
DATA AREA SIZE - 2000H 8192D
MAXIMUM STACK SIZE - 001AH 26D

iC-286 COMPILATION COMPLETE. 0 REMARKS, 0 WARNINGS, 0 ERRORS

Figure 2-18 Parts of the Sieve Example Complete Print File (continued)

Compiling and Linking or Binding on DOS 2-51

2.4.6 Creating Debug Information Using iC-386

This compilation of the example produces an object file with debug
information and a compilation summary. Use a symbolic debugger, such as
DB386, to trace program execution and debug the program. Table 2-9 shows
the controls in effect for the compilation.

The example in this section uses the following compiler invocation:
C:\CEXAMPLE> \intel\ic386\ic386 sievec.c &
» define(NPAPER) &
> > include(prags.h) &
> > searchinciude(\intel\ic386\inc\,includes\) &
> > nolist &
> > print(debug.1 st) &
> > debug

The compiler displays the following lines on the screen:
system-id iC-386 COMPILER Vx.y
Copyright years Intel Corporation
IC-386 COMPILATION COMPLETE. 0 WARNINGS, 0 ERRORS

Table 2-9 Controls for Creating Debug
Information for the Sieve Example

Controls Where Specified

debug invocation
define(NPAPER) invocation
include(prags.h) invocation
nolist invocation
optimize(O) prags.h
pagelength(4O) sievec.c
pagewidth(75) sievec.c
print(debug.lst) invocation
searchinclude(\intel\ic386\inc\,includes\) invocation
small1 prags.h
tabwidth(2) sievec.c

align(4) default
nocode default
codesegment(CODE32) default
nocond default
1This is the default segmentation model.

2-52 Compiling and Linking or Binding on DOS

2.5 Compiling at Different Optimization Levels

The optimi ze control specifies the compiler's optimization level. The
compiler has four optimization levels: 0,1,2, and 3, where 0 provides the
least optimization and 3 provides the most optimization. Each level performs
all the optimizations of the lower levels. Figure 2-20 shows the nesting of
the optimization levels. See Chapter 3 for detailed information on the
optimize control and an explanation of each type of optimization.

Figure 2-21 shows the source text that demonstrates optimization at each
level. Figures 2-22 through 2-25 show the significant results of compiling
with iC-386 at different optimization levels. Compiling with iC-86 or iC-286
produces optimizations at the same places.

2-54 Compiling and Linking or Binding on DOS

2.5 Compiling at Different Optimization Levels

The opti mi ze control specifies the compiler’s optimization level. The
compiler has four optimization levels: 0,1, 2, and 3, where 0 provides the
least optimization and 3 provides the most optimization. Each level performs
all the optimizations of the lower levels. Figure 2-20 shows the nesting of
the optimization levels. See Chapter 3 for detailed information on the
optimize control and an explanation of each type of optimization.

Figure 2-21 shows the source text that demonstrates optimization at each
level. Figures 2-22 through 2-25 show the significant results of compiling
with iC-386 at different optimization levels. Compiling with iC-86 or iC-286
produces optimizations at the same places.

2-54 Compiling and Linking or Binding on DOS

Optimization Level 3

Using the Numeric Coprocessor for Floating-point-to-lnteger Conversions

Optimizing Indeterminate Storage Operations

Optimization Level 2

Reversing Branch Conditions

Removing Unreachable Code

Re-using Duplicate Code

Eliminating Superfluous Branches

Optimizing the Instructions Used for
Short Jumps and Moves

Optimization Level 1

Eliminating Common Subexpressions

Optimization Level 0

Performing Operator
Strength Reductions

Folding Constant Expressions

0SD330

Figure 2-20 Summary of Optimization Levels

Compiling and Linking or Binding on DOS 2-55

1 i ne

] y *r*****x'ilci;'k***x******-*:**-*******x***x**Ti***********'****^**'****'***'k'****t*x'*'y

2 /* This example shows some of the optimizations that the iC-386 compiler */
3 /* performs with different values specified for the optimize control. */j ■*:■fc★ •k-fc■k★ it ftxi;***
5 int i ,j,k:
6 1 nt *a — &j ; /* *a is aliasing j */
7
8 i nt main (int argc. char * argv[J)
9 {

10 i - 1 + j + 1; /* Folding constants (all levels) */
11
12
13

k - 3:
j - k + 3;
i - k + 3: /* Eliminating common subexpressions (levels 1,2,3) */

14
15 if (i * 2) /* Reducing operator strength (all levels) */
16
17

i - isquare (i);
else /* Re-using duplicate code (levels 2 and 3) */

18
19
20

i - i square (j);
if (k)

goto 11; /* Branch chaining (levels 2 and 3) */
21
22
23
24 11:

el se
k - 100;

goto 12; /* Eliminating superfluous branches (levels 2 and 3) */
25 12: j - 100; /* Optimization of pointer indirection -- */
26 *a - 200; /* Note this step might lead to undesired result, */
27 i - j; /* as shown here, (level 3) */
28
29
30
31 }

return;

k - 200; /* Eliminating dead code (levels 2 and 3) */

Figure 2-21 Source Code For Demonstrating Optimization Levels

2.5.1 Results at Optimization Level 0

Figure 2-22 shows the iC-386 pseudo-assembly language code for
optimization level 0. At this level, constant-folding occurs in statement #10
and operator strength reduction occurs in statement #15.

2-56 Compiling and Linking or Binding on DOS

IC-386 COMPILER Optimization Level 0 mmlddlyy hh:mm:ss PAGE
ASSEMBLY LISTING OF OBJECT CODE

2

0000008F C7050800000064000000

mai n PROCNEAR
; STATEMENT # 9

00000000 55 PUSH EBP
00000001 8BEC MOV EBP,ESP

@1:
: STATEMENT 10

00000003 8B0504000000 MOV EAX.j
00000009 81C002000000 ADD EAX.2H
0000000F 890500000000 MOV i , EAX

; STATEMENT # 11
00000015 C7050800000003000000

MOV k,3H
: STATEMENT 12

0000001F 8B0508000000 MOV EAX.k
00000025 81C003000000 ADD EAX.3H
0000002B 890504000000 MOV j , EAX

; STATEMENT 13
00000031 8B0508000000 MOV EAX.k
00000037 81C003000000 ADD EAX.3H
0000003D 890500000000 MOV i , EAX

; STATEMENT 15
00000043 8B0500000000 MOV EAX.i
00000049 D1E0 SAL EAX.l
0000004B 0F8416000000 JZ @2

: STATEMENT 16
00000051 FF3500000000 PUSH i ;; 1
00000057 E800000000 CALL i square
0000005C 890500000000 MOV i , E AX
00000062 E911000000 JMP @3

: STATEMENT 17
@2:

: STATEMENT 18
00000067 FF3504000000 PUSH j :; 1
0000006D E800000000 CALL i square
00000072 890500000000 MOV i , EAX

@3:
: STATEMENT # 19

00000078 833D0800000000 CMP k,0H
0000007 F 0F840A000000 JZ @4

: STATEMENT 20
00000085 E90F000000 JMP 11
0000008A E90A000000 JMP @5

: STATEMENT # 21
@4:

STATEMENT # 22

MOV k,64H

Figure 2-22 Pseudo-assembly Code at Optimization Level 0

Compiling and Linking or Binding on DOS 2-57

@5:
; STATEMENT # 24

00000099

0000009E

11:
E900000000 JMP

12:
C7050400000064000000

MOV

12

J.64H

; STATEMENT # 25

; STATEMENT # 26

iC-386 COMPILER Optimization Level 0
ASSEMBLY LISTING OF OBJECT CODE

wnlddlyy hh:mn1:SS PAGE 3

000000A8 8B050C000000 MOV EAX. a
000000AE C700C8000000 MOV [EAXJ.0C8H

: STATEMENT # 27
000000B4 8B0504000000 MOV EAX .j
000000BA 890500000000 MOV i , EAX

; STATEMENT # 28
000000C0 5D POP EBP
000000C1 C20800 RET 8H

; STATEMENT 30
000000C4 C70508000000C8000000

MOV k,0C8H
: STATEMENT # 31

main ENDP
: STATEMENT # 31

MODULE INFORMATION:

0 WARNINGS, 0 ERRORS

CODE AREA SIZE - 000000CEH 206D
CONSTANT AREA SIZE - 00000000H 0D
DATA AREA SIZE - 00000010H 16D
MAXIMUM STACK SIZE - 00000014H 20D

iC-386 COMPILATION COMPLETE.

Figure 2-22 Pseudo-assembly Code at Optimization Level 0 (continued)

2.5.2 Results at Optimization Level 1

Figure 2-23 shows the changes in statements #12 through #16 when the
invocation uses optimization level 1. The code area size decreases from 208
bytes at optimization level 0 to 182 bytes at optimization level 1.

2-58 Compiling and Linking or Binding on DOS

iC-386 COMPILER Optimization Level 1 mm/dd/yy hh:im:ss PAGE
ASSEMBLY LISTING OF OBJECT CODE

00000078 C7050800000064000000

: STATEMENT # 12
0000001F B803000000 MOV EAX.3H
00000024 D1E0 SHL EAX.l
00000026 890504000000 MOV j.EAX

; STATEMENT 13
0000002C 890500000000 MOV 1 , EAX

; STATEMENT 15
00000032 D1E0 SAL EAX.l
00000034 0F8416000000 JZ @2

: STATEMENT # 16
0000003A FF3500000000 PUSH : 1
00000040 E800000000 CALL 1 square
00000045 890500000000 MOV i .EAX
0000004B E911000000 JMP @3

: STATEMENT # 17
@2:

; STATEMENT # 18
00000050 FF3504000000 PUSH j :; 1
00000056 E800000000 CALL i square
0000005B 890500000000 MOV i , EAX

@3:
: STATEMENT # 19

00000061 833D0800000000 CMP k,0H
00000068 0F840A000000 JZ @4

: STATEMENT 20
0000006E E90F000000 JMP 11
00000073 E90A000000 JMP @5

: STATEMENT # 21
@4:

: STATEMENT # 22

MOV k,64H
@5:

11:
: STATEMENT # 24

00000082 E900000000 JMP 12
: STATEMENT # 25

12:
00000087 C7050400000064000000

MOV j ,64H

Figure 2-23 Part of the Pseudo-assembly Code at Optimization Level 1

Compiling and Linking or Binding on DOS 2-59

2.5.3 Results at Optimization Level 2

Figure 2-24 shows the changes in statements #16 through #24 and #30 when
the invocation uses optimization level 2. Labels also change on several
instructions. The code area size decreases from 182 bytes at optimization
level 1 to 123 bytes at optimization level 2.

iC-386 COMPILER Optimization Level 2 mrn/dd/yy hh:mm:ss PAGE 2
ASSEMBLY LISTING OF OBJECT CODE

00000050 C7050800000064000000

; STATEMENT # 16
0000002F FF3500000000 PUSH i : 1
00000035 EB06 JMP @1

; STATEMENT # 17
@2:

; STATEMENT # 18
00000037 FF3504000000 PUSH J : 1

@1:
00000030 E800000000 CALL i square
00000042 A300000000 MOV i .EAX

: STATEMENT 19
00000047 833D0800000000 CMP k.0H
0000004E 750A JNZ 11

: STATEMENT 20
; STATEMENT # 21
: STATEMENT # 22

MOV k,64H

Figure 2-24 Part of the Pseudo-assembly
Code at Optimization Level 2

2-60 Compiling and Linking or Binding on DOS

0000005A

11:

12:
C7050400000064000000

: STATEMENT # 24

; STATEMENT # 25

MOV J.64H
: STATEMENT # 26

00000064 A10C000000 MOV EAX.a
00000069 C700C8000000 MOV [EAX],0C8H

: STATEMENT # 27
0000006F A104000000 MOV EAX.j
00000074 A300000000 MOV i , EAX

: STATEMENT # 28
00000079 50 POP EBP
0000007A C20800 RET 8H

; STATEMENT # 30
; STATEMENT # 31

main ENDP

iC-386 COMPILER Optimization Level 2 nrn/dd/yy hh:mm:ss PAGE 3
ASSEMBLY LISTING OF OBJECT CODE

; STATEMENT # 31

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
DATA AREA SIZE
MAXIMUM STACK SIZE

- 0000007DH
- 00000000H
- 00000010H
- 00000014H

125D
0D

16D
20D

iC-386 COMPILATION COMPLETE. 0 WARNINGS, 0 ERRORS

Figure 2-24 Part of the Pseudo-assembly Code
at Optimization Level 2 (continued)

2.5.4 Results at Optimization Level 3

Figure 2-25 shows the change in statement #27 when the invocation uses
optimization level 3. In this case, because a pointer is aliasing a variable, the
change introduces an error. The code area size stays the same from
optimization level 2, but one assembly instruction substitutes for two in
statement #27.

Compiling and Linking or Binding on DOS 2-61

Optimization Level 3 mm/dd/yy hh:mm:ss PAGE
ASSEMBLY LISTING OF OBJECT CODE

iC-386 COMPILER 2

main ENDP

STATEMENT# 12
0000001A B803000000 MOV EAX.3H
0000001F D1E0 SHL EAX.l
00000021 A304000000 MOV j.EAX

STATEMENT 13
00000026 A300000000 MOV 1.EAX

STATEMENT 15
0000002B D1E0 SAL EAX.l
00000020 7408 JZ @2

STATEMENT# 16
0000002F FF3500000000 PUSH i ; 1
00000035 EB06 JMP @1

STATEMENT# 17
@2:

STATEMENT# 18
00000037 FF3504000000 PUSH J : 1

@1:
0000003D E800000000 CALL i square
00000042 A300000000 MOV i .EAX

STATEMENT# 19
00000047 83300800000000 CMP k.0H
0000004E 750A JNZ 11

STATEMENT# 20
STATEMENT 21

I STATEMENT# 22
00000050 C7050800000064000000

MOV k,64H
STATEMENT# 24

11:
STATEMENT 25

12:
0000005A C7050400000064000000

MOV J.64H
STATEMENT# 26

00000064 A10C000000 MOV EAX.a
00000069 C700C8000000 MOV [EAXJ.0C8H

1 STATEMENT# 27
0000006F C7050000000064000000

MOV i ,64H
STATEMENT 28

00000079 50 POP EBP
0000007A C20800 RET 8H

STATEMENT# 30
STATEMENT 31

Figure 2-25 Part of the Pseudo-assembly
Code at Optimization Level 3

2-62 Compiling and Linking or Binding on DOS

IC-386 COMPILER Optimization Level 3 mm/dd/yy hh:mm:ss
ASSEMBLY LISTING OF OBJECT CODE

PAGE 3

STATEMENT # 31

MODULE INFORMATION:

CODE AREA SIZE - 0000007DH 125D
CONSTANT AREA SIZE - 00000000H 00
DATA AREA SIZE - 00000010H 16D
MAXIMUM STACK SIZE - 00000014H 20D

iC-386 COMPILATION COMPLETE. 0 WARNINGS, 0 ERRORS

Figure 2-25 Part of the Pseudo-assembly Code
at Optimization Level 3 (continued)

Compiling and Linking or Binding on DOS 2-63

Contents

Compiler Controls
3.1 How Controls Affect the Compilation... 3-1
3.2 Where to Use Controls... 3-2
3.3 Alphabetical Reference of Controls... 3-6

align I noalign...3-7
code I nocode..3-15
codesegment... 3-17
compact...3-19
cond I nocond... 3-21
datasegment.. 3-23
debug I nodebug... 3-25
define.. 3-27
diagnostic..3-29
eject...3-32
extend I noextend... 3-33
fixedparams...3-35
flat... 3-39
include.. 3-41
interrupt...3-43
large.. 3-45
line I noline... 3-47
list I nolist... 3-49
listexpand I nolistexpand..3-51
listinclude I nolistinclude..3-53
long64 I nolong64...3-55
medium... 3-56
mod86 I modi86..3-58
mod287 I model 87 I nomod287...3-60
mod486 I nomod486...3-62
modulename..3-64
object I noobject... 3-66

optimize.. 3-70
pagelength...3-76
pagewidth..3-78
preprint I nopreprint..3-80
print I noprint..3-82
ram I rom.. 3-85
searchinclude I nosearchinclude..3-87
signedchar I nosignedchar.. 3-90
small..3-92
subsys..3-94
symbols I nosymbols... 3-96
tabwidth..3-98
title.. 3-100
translate I notranslate..3-102
type I notype... 3-103
varparams..3-105
xref I noxref.. 3-109

Compiler Controls

The compiler controls specify compiler options such as the location of source
text files, the amount of debugging information in the object module, and the
format and location of the output listings. You need not use any controls
when you invoke the compiler. Most of the controls have default settings.
Table 3-1 provides default settings and a brief description of each control.

This chapter contains the following topics:

• how controls affect the compilation

• where to use controls

alphabetical reference of controls

3.1 How Controls Affect the Compilation
Each control affects the compilation in one of three ways:

Source-processing
controls

Object-file content
controls

Listing controls

specify the names and locations of input files or
define macros at compile time.

determine the internal configuration of the
object file.

specify the names, locations, and contents of the
output listing files.

3-1

3.2 Where to Use Controls

Use a compiler control once, freely, or only on invocation, depending on
which kind of control it is, as follows:

Primary controls apply to the entire module. Specify a primary
control in the compiler invocation or in a
#p r agma preprocessor directive. A primary
control in a#pragma preprocessor directive must
precede the first executable statement or data
definition statement in the source text. A
primary control in the invocation line overrides
any contradictory control specified in a
#pragma.

General controls can change freely within a module. Specify a
general control as often as necessary in the
compiler invocation and in #p r a gma
preprocessor directives anywhere in the source
text.

Invocation-only
controls

must never appear in a ^pragma preprocessor
directive. Specify an invocation-only control as
often as necessary in the invocation line.

Case is not significant in control names, though it can be significant in
arguments to controls. DOS preserves the case of arguments to controls.
Other systems can require quotation marks (") around arguments to controls
to preserve case.

Table 3-1 lists the controls with descriptions, defaults, precedence, effects,
and usage classes. Some controls optionally use one or more arguments,
indicated by [a]. Some controls require one or more arguments, indicated
by a. Certain controls override other controls, even if stated explicitly.
Table 3-1 summarizes such precedence.

3-2 Compiler Controls

Table 3-1 Compiler Controls Summary

1 iC-386 only.

Control Description, Default, and Precedence Effect Usage

align [a]
noalign [a]

Aligns or suppresses aligning all structures
to specified byte boundaries.
Default: align all on 2-byte boundaries (iC-86/286) or
4-byte boundaries (iC-386).

Object General

code
nocode

Generates or suppresses pseudo-assembly object code
in print file.
Default: nocode.

Listing
content

General

codesegment a1 Names iC-386 code segment.
Default: CODE32.

Object Primary

compact
flat1
large
medium
small

Specifies segment allocation and segment register
addressing in object module.
Default: small.

Object Primary

cond
nocond

Includes or suppresses uncompiled conditional code
in print file.
Default: nocond.

Listing
content

General

datasegment a1 Names iC-386 data segment.
Default: DATA.

Object Primary

debug
nodebug

Includes or suppresses debug information
in object module.
Default: nodebug.
nodebug overrides line.

Object Primary

define a Defines a macro. Source Invocation

diagnostic a Specifies level of diagnostic messages.
Default: diagnostic level 1.

Listing
content

Primary

eject Inserts form feed in print file,
format

Listing General

extend
noextend

Recognizes Intel extensions or not.
Default: noextend.

Source General

fixedparams [a]
varparams [a]

Specifies FPL or VPL function-calling convention.
Default: fixedparams for all functions.

Object General

Compiler Controls 3-3

Table 3-1 Compiler Controls Summary (continued)

I iC-386 only.
2 iC-86 only.

Control Description, Default, and Precedence Effect Usage

include a Specifies file to process before primary source file. Source Invocation

interrupt a Specifies function to be an interrupt handler. Object General

line
noline

Includes or suppresses source line number debug
information in object file.
Default: line if debug or noline if nodebug.

Object Primary

list
no list

Includes or suppresses source code in print file.
Default: list.
nolist overrides cond, listexpand, listinclude.

Listing
content

General

listexpand
nolistexpand

Includes or suppresses macro expansion in printfile.
Default: nolistexpand.

Listing
content

General

listinclude
nolistinclude

Includes or suppresses include files' text in printfile.
Default: nolistinclude.
nolistinclude overrides listexpand and cond for include
files.

Listing
content

General

Iong641
nolong64

Sets size for objects declared with long type.
Default: nolong64.

Object Primary

mod862
modi 86

Uses 86/88 processor instructions or 186/188
instruction set.
Default: mod86.

Object Primary

mod2872
model 87
nomod287

Generates floating-point instructions for i287™,
80C187, 8087 or numeric coprocessor.
Default: nomod287.

Object Primary

mod4861
nomod486

Uses i486™ processor instructions or i386™
instruction set.
Default: nomod486.

Object Primary

modulename a Names object module.
Default: sourcename.

Object Primary

3-4 Compiler Controls

Table 3-1 Compiler Controls Summary (continued)

Control Description, Default, and Precedence Effect Usage

object [a]
noobject

Generates and names or suppresses object file.
Default: object named sourcename.obj.
noobject overrides all object controls except as affects
the print file.

Object Primary

optimize a Specifies level of optimization.
Default: optimization level 1.

Object Primary

pagelength a Specifies number of lines per page in print file.
Default: 60.

Listing
format

Primary

pagewidth a Specifies number of characters per line in print file.
Default: 120.

Listing
format

Primary

preprint [a]
nopreprint

Generates and names or suppresses preprint file.
Default: nopreprint if translate or
preprint sourcename.i if notranslate.

Listing
content

Invocation

print [a]
noprint

Generates and names or suppresses print file.
Default: print file named sourcename. 1st.
noprint overrides all listing controls except preprint.

Listing
content

Primary

ram
rom

Puts constants in data segment or code segment.
Default: ram (constants in data segment).

Object Primary

searchinclude a
nosearchinclude

Specifies path to prepend to include files or limits path
to source directory plus DOS include: path.
Default: nosearchinclude.

Source General

signedchar
nosignedchar

Sign-extends or zero-extends char objects
when promoted.
Default: signedchar.

Object Primary

subsys a Reads a subsystem specification file. Object Primary

symbols
nosymbols

Generates or suppresses identifier list in print file.
Default: nosymbols.

Listing
content

Primary

tabwidth a Specifies number of characters between tabstops
in print file.
Default: 4.

Listing
format

Primary

title "a" Places title on each page of print file.
Default: "modulename".

Listing
format

Primary

Compiler Controls 3-5

Table 3-1 Compiler Controls Summary (continued)

Control Description, Default, and Precedence Effect Usage

translate
notranslate

Compiles or suppresses compilation after preprocessing. Source Invocation
Default: translate.
notranslate overrides all object and listing controls.
notranslate implies preprint.

type
notype

Generates or suppresses type information Object Primary
in object module.
Default: type.

xref
noxref

Adds or suppresses identifier cross-reference Listing Primary
information in print file. content
Default: noxref.
xref overrides nosymbols.

3.3 Alphabetical Reference of Controls

The entries in this section describe in detail the syntax and function of each
compiler control.

Square brackets ([]) enclose optional arguments for controls. If you do not
specify optional arguments for a particular control, do not use an empty pair
of parentheses.

Some controls use an optional list of arguments. Separate multiple argument
definitions with commas. Brackets surrounding a comma and an ellipsis
([,...]) indicate an optional list with entries separated by commas.

Enclose a control argument in quotation marks (") if the argument contains
spaces or any of the following characters:

! % ’ - - & $ @ { } ‘ (

Enter all other punctuation as shown, for example, pound signs (#) and
equals signs (=).

3-6 Compiler Controls

align I noalign
General control

Aligns structures on
specified boundary

Syntax

align [(structure_tag[=size] [,...])]
noalign [(structure_tag [,...])]
//pragma align [(structure_tag[=size] [,...])]
//pragma noalign [(structure^tag [,...])]

Where:

s tructure_tag is a structure tag defined in the source text (not a
structure identifier).

s ize is the number of bytes. The 5 ize can be 1 for
unaligned (byte alignment), 2 for alignment to byte
addresses evenly divisible by 2, or 4 for alignment to
byte addresses evenly divisible by 4.

Abbreviation

[no]al

Default

align

The default value for s ize is 2 bytes for iC-86 and iC-286, or 4 bytes for
iC-386. The compiler attempts to place structure components so that they do
not cross 2-byte (iC-86/286) or 4-byte (iC-386) boundaries.

Compiler Controls 3-7

align I noalign (continued)

Discussion

Use the al i gn control to minimize the number of alignment boundaries a
structure component can cross. The compiler allocates memory for an
aligned-structure component on the next alignment boundary if the
component would otherwise span that boundary. If a structure component is
larger than the space between alignment boundaries, the component starts on
an alignment boundary and still crosses one or more boundaries. Use the
noal i gn control or the al i gn control with a size of 1 to allocate structure
components on adjacent bytes, leaving no unused bytes.

The processor can require less time to access aligned structures. However,
aligned structures can occupy more space than unaligned structures in
memory. The compiler attaches no symbol or value to holes. The third
example shows a map of how the compiler allocates memory for an aligned
structure. The fourth example shows a map of how the compiler allocates
memory for an unaligned structure.

Bit fields smaller than one byte cannot cross byte boundaries regardless of
alignment Although an unaligned structure cannot contain any unused
bytes, it can contain undefined bits.

To specify 2-byte alignment (iC-86/286 default) or 4-byte alignment (iC-386
default) for all structures, use the al i gn control without arguments. To
specify byte alignment for all structures, use the noa 1 i gn control without
arguments. To specify alignment for all structures of a given type, identify
them by structure_tag. Do not specify structure or type definition
identifiers. To ensure alignment, specify the alignment for the structure tag
before defining the actual structure.

The notransl ate control overrides the al i gn and noal i gn controls. The
noobject control overrides the align and noal i gn controls except for their
effect on the print file.

3-8 Compiler Controls

align I noalign (continued)

See C: A Reference Manual, listed in Chapter 1, for more information on
structures.

Examples

The following examples show different uses of the al i gn and noalign
controls.

1. In this example, only structures of the type in argumen t_ 7 i s t are
unaligned; all other structures in the subsequent source text are aligned
on 2-byte boundaries for iC-86 and iC-286 or 4-byte boundaries for
iC-386. Use the following in the compiler invocation:

noalign (argument-! 1st)

Or use the following in the source text:
//pragma noalign (argument-!ist)

2. This example aligns all structures of the types in the argument list on the
specified boundaries; all other structures in the subsequent source text
are allocated regardless of word boundaries. Use the following in the
compiler invocation:

noalign align (argument-list)

Or, use the following in the source text:
//pragma noalign
//pragma align (argument-list)

Compiler Controls 3-9

align I noalign (continued)

3. This example aligns components of a structure on even-byte boundaries.
The structure is declared as follows:

struct std_struct
{

unsigned char mla;
unsigned char mlb;
unsi gned 1ong m4a;
unsigned m2a;
unsigned mba:5;
unsi gned mbb:7;
unsigned mbc:6;
double m8a;

1:
To align all structures of a particular type, use a type definition as
follows:

typedef struct std_struct
{

unsigned char mla;
unsigned char mlb;
unsigned long m4a;
unsigned m2a;
unsigned mba:5;
unsigned mbb:7;
unsigned mbc:6;
double m8a;

} std_struct_id;

In either case, specify the structure_tag, not a type identifier, in the
align control:

align (std_struct=2)

Figure 3-1 shows how the iC-86 and iC-286 compilers allocate a
std_struct structure.

3-10 Compiler Controls

align I noalign (continued)

Figure 3-1 Effect of iC-86 and iC-286 align Control on Example Structure Type

Figure 3-2 shows how the iC-386 compiler allocates a stcLstruct
structure, assuming the no! ong64 control is in effect.

Compiler Controls 3-11

align I noalign (continued)

Figure 3-2 Effect of iC-386 align Control on
Example Structure Type

4. This example aligns the components of the structure in the previous
example on 1-byte (unaligned) boundaries. Use the following control in
the compiler invocation:

noalign (std_struct)

(The align (std_struct=l) control achieves the same alignment.)

Figure 3-3 shows how the iC-86 and iC-286 compilers allocate a
std_struct structure.

3-12 Compiler Controls

align I noalign (continued)

Figure 3-3 Effect of iC-86 and iC-286 noalign Control on
Example Structure Type

Figure 3-4 shows how the iC-386 compiler allocates a std_struct
structure, assuming the nol ong64 control is in effect.

Compiler Controls 3-13

align I noalign (continued)

m8a (Continued) 20

m8a (Continued) 18

m8a (Continued) 16

m8a (Continued) 14

m8a XXXXXXXXXXX mbc 12

mbc mbb mba 10

m2a (Continued) 8

m2a 6

m4a (Continued) 4

m4a 2

m1b
_ I_I__I_ I_ I__I__!__

m1a
i i i i i ।

byte 0

7 0 7 0
OSD1297

Figure 3-4 Effect of iC-386 noalign Control on
Example Structure Type

Cross-references
1 ong64Inolong64
obj ectInoobj ect
translate I notranslate

3-14 Compiler Controls

code I nocode
General control

Generates or suppresses
pseudo-assembly language code in listing

Syntax

[nojcode
tfpragma [no]code

Abbreviation

[no]co

Default

nocode

Discussion

Use the code control to produce a pseudo-assembly language listing
equivalent to the object code that the compiler generates. The compiler
places this listing in the print file following the source text fisting. Use the
nocode control (default) to suppress the pseudo-assembly language listing.

The noobject control does not override the code control. The noprint
control causes the compiler to suppress all of the print file, even if code is
specified. The notransl ate control overrides the code control.

Use the code control for the following purposes:

• To view the effects of different levels of optimization set by the
optimize control.

• To view the differences in code the compiler generates under the mod86
and modl86 controls or mod287, nomod287, and modcl87 (iC-86) or the
mod486 and nomod486 controls (iC-386).

Compiler Controls 3-15

code I nocode (continued)

• To view the differences in pointer types the compiler generates under
the extend or noextend controls.

• To detect errors when debugging at the assembly-code level.

See Chapter 5 for more information on the print file.

Cross-references
extend I noextend object Inoobject
mod86 I modl86 optimize
mod287 Inomod287 | modcl87 print I noprint
mod486Inomod486 translate Inotranslate

3-16 Compiler Controls

codesegment
Primary control, iC-386 only

Names the code segment

Syntax

iC-386: codesegment (code_segment_name')
iC-386: //pragma codesegment (code_segment_name)

Where:

code_segment_name is the name of the iC-386 code segment in the object
module.

Abbreviation

cs

Default

The iC-386 compiler uses C0DE32 or the subsystem identifier as specified in
the subsystem definition file.

Discussion

Use the iC-386 codesegment control to name the code segment in the object
module. The code segment name is used by the BND386 binder and
BLD386 builder. This name also appears in output from the MAP386
mapper. See the Intel386"* Family Utilities User's Guide and the Intel386u
Family System Builder User's Guide, listed in Chapter 1, for information on
BND386, MAP386, and BLD386.

This control is provided for compatibility with C-386, Intel's previous
compiler for Intel386™ processor code.

Compiler Controls 3-17

codesegment (continued)

NOTE
Do not use the codesegment control in an invocation that
specifies the subsys control. The compiler issues an error or a
warning, depending on whether the subsys control is found in
the invocation line or in a #pragma preprocessor directive,
respectively.

Cross-references
datasegment
modulename
subsys

3-18 Compiler Controls

compact
Primary control

Specifies the compact
segmentation memory model

Syntax

compact
#pragma compact

Abbreviation

cp

Default

Of the fouriC-86 and iC-286 memory model specifications (smal 1, compact,
medi urn, and 1 arge) and the three iC-386 memory model specifications
(smal 1, compact, and fl at), the default is smal 1.

Discussion

Use the compact control to specify the compact segmentation model. The
compiler produces an object module containing a code segment, a data
segment, and a separate stack segment The linker or binder combines the
code segments for all modules into a single code segment in memory and the
data segments for all modules into a single data segment in memory, and
reserves a separate segment in memory for the stack. The compact
segmentation model is efficient in both program size and memory access,
and offers the maximum possible space for the stack

For 86 and 286 processors, code, data, or stack segments each can occupy up
to 64 kilobytes of memory. For Intel386 processors, each segment can
occupy up to 4 gigabytes of memory.

Compiler Controls 3-19

compact (continued)

The processor addresses the compact model program's code segment relative
to the CS register, the data segment relative to the DS register, and the stack
segment relative to the SS register. Depending on whether the rom or ram
control is in effect, the compiler places constants in the code segment or data
segment, respectively. All functions have near pointers and calls. All data
pointers are far pointers. See the extend I noextend control and Chapter 4
for more information about the far and near keywords.

The notransl ate control overrides the compact control. The noobj ect
control overrides the compact control except for its effect on the print file.

See Chapter 2 for more information on the availability of run-time libraries
for the various memory models.

See Chapter 4 for more specific information on segmentation and the
compact memory model.

Cross-references
extend I noextend
flat
1 arge
medi urn

obj ectInoobj ect
ram I rom
smal 1
translate I notranslate

3-20 Compiler Controls

cond I nocond
General control

Includes or suppresses uncompiled
conditional code in printfile

Syntax

[nojcond
//pragma [nojcond

Abbreviation

[no]cd

Default

nocond

Discussion

Use the cond control to include in the program listing code not compiled
because of conditional preprocessor directives. Use the nocond control
(default) to suppress listing of code eliminated by conditional compilation.

Regardless of these controls, the conditional preprocessor directives (#i f,
#ifdef, #ifndef, #el i f, #el se, and #endi f) delimiting the code appear in
the source text listing in the print file.

Then ol i st, notransl ate, and noprint controls override the cond control.
If any of these is in effect, the compiler does not list any source text. The
noli st include control overrides the cond control for include files. Neither
cond nor nocond has any effect on the preprint file.

Compiler Controls 3-21

cond I nocond (continued)

See Chapter 5 for more information on the preprint and print files. See
Chapter 2 for an example of the effect of the cond and nocond controls and
other listing specifications on the print file. See C: A Reference Manual,
listed in Chapter 1, for more information on conditional compilation.

Cross-references
1i st Inoli st
1i stincl udeInoli stincl ude
print I noprint
translate I notranslate

3-22 Compiler Controls

datasegment
Primary control, iC-386 only

Names the data segment

Syntax

iC-386:datasegment (data_segment_name)
iC-386:#pragma datasegment (data_segment_name')

Where:

da ta__segmen t_ name is the name of the iC-386 data segment in the object
module.

Abbreviation

ds

Default

The iC-386 compiler uses DATA or the subsystem identifier as specified in the
subsystem definition file.

Discussion

Use the iC-386 datasegment control to name the data segment in the object
module. The data segment name is used by the BND386 binder and BLD386
builder. This name also appears in output from the MAP3 86 mapper. See
the Intel38^* Family Utilities User's Guide and the Intel386M Family System
Builder User's Guide, listed in Chapter 1, for information on BND386,
MAP386, and BLD386.

This control is provided for compatibility with C-386, Intel's previous
compiler for Intel386 processor code.

Compiler Controls 3-23

datasegmerit (continued)

NOTE
Do not use the datasegment control in an invocation that
specifies the subsys control. The compiler issues an error or a
warning, depending on whether the s ubsy s control is found in
the invocation line or in a //pragma preprocessor directive,
respectively.

Cross-references
codesegment
modulename
subsys

3-24 Compiler Controls

debug I nodebug
Primary control

Includes or suppresses debug
information in the object module

Syntax

[no]debug
tfpragma [nojdebug

Abbreviation

[nojdb

Default

nodebug

Discussion

Use the debug control to place symbolic debug information used by symbolic
debuggers in the object module. Use the nodebug control (default) to
suppress symbolic debug information. Suppressing symbolic debug
information reduces the size of the object module. Debug information is
composed of the name, relative address, and type of every object and
function definition, and the relative address of each source line both in the
source file and in the object file.

The noobject and notransl ate controls override the debug and nodebug
controls.

Compiler Controls 3-25

debug I nodebug (continued)

Choose one of the following combinations of the debug or nodebug and type
or notype controls to aid debugging:

type debug to include all debug and type information (debug
implies 1 ine). This combination allows both type
checking and symbolic debugging.

type debug noline to include debug and type information, but no source
line numbers. This combination enables linker type
checking and symbolic debugging, but not source
level debugging.

type nodebug to include type definition information for external
and public symbols only. This combination allows
type checking by the linker or binder. Use this
combination to reduce the size of the object module
when you are not using a symbolic debugger.

notype nodebug to suppress all debug and type information. This
combination reduces the size of the object module
by omitting information not necessary for execution.

The opti mi ze control can further reduce the size of the object module.
However, higher levels of optimization reduce the ability of most symbolic
debuggers to accurately correlate debug information to the source code. The
line control causes the compiler to place source file and object file
line-number debug information in the object file. The symbol s control puts a
listing of all identifiers and their types into the print file. The x ref control
puts a cross-reference listing of all identifiers into the print file.

Cross-references
11 ne 1 noline
obj ect1noobj ect
o pt1 mi ze
symbols 1 nosymbols

translate 1 notranslate
type 1 notype
xref1noxref

3-26 Compiler Controls

define
Invocation control

Defines a macro

Syntax

define (name[=body1

Where:
name is the name of a macro.

body is the text (i.e., value) of the macro. If the body contains
blanks or punctuation, surround the entire body with
quotation marks (").

Abbreviation

df

Default

If the definition contains no body, the default value of the macro is 1.

Discussion

Use the def ine control to create an object-like macro at invocation time.
The body of an object-like macro contains no formal parameters. A macro
so defined in the compiler invocation is in effect for the entire module, until
the #undef preprocessor directive removes it. An attempt to redefine a
macro in a #defi ne preprocessor directive causes an error.

Available memory limits the number of active macro definitions, including
macros defined in the compiler invocation and macros defined with #def i ne
in your source text. Macros are useful when used with conditional
compilation preprocessor directives to select source text at compile time. Do
not use the define control for function-like macros; use the #def ine
preprocessor directive in the source text instead.

Compiler Controls 3-27

define (continued)

See C: A Reference Manual, listed in Chapter 1, for more information on
macros and preprocessor directives. See Chapter 2 for an example using the
def ine control.

Example

In this example, using the define control in the invocation determines the
result of conditional compilation. The invocation contains the following
control:

define (SYS)

The source text contains the following lines:
#if SYS
tfdefine PATHLENGTH 128
#el se
#define PATHLENGTH 45
#endif

The value of the symbol SYS defaults to 1. PATHLENGTH gets the value 128.

3-28 Compiler Controls

diagnostic
Primary control

Specifies level of
diagnostic messages

Syntax

di agnostic (1evel)
^pragma diagnostic (7ei/e7)

Where:

level is the value 0,1, or 2. The values correspond to all
diagnostic messages, no remarks, and only errors,
respectively.

Abbreviation

dn

Default

diagnostic level 1

Discussion

Use the di agnosti c control to specify the level of diagnostic messages that
the compiler produces. A remark points out a questionable construct, such as
using an undeclared function name. A warning points out an erroneous
construct, such as a pointer type mismatch. An error points out a construct
that is not part of the C language, such as a syntax error.

Compiler Controls 3-29

diagnostic (continued)

Use the different levels of the di agnosti c control as follows:

diagnostic (0) for the compiler to issue all remarks, warnings, and
errors.

diagnostic (1) (the default) for the compiler to issue warnings and
errors but no remarks.

diagnostic (2) for the compiler to issue only error messages.

The compiler's exit status is equal to the highest level of diagnostic reported.
For example, if the diagnostic level is 2, the compiler's exit status is zero if
the program contains no errors but could contain remarks or warnings. At
level 2, the compiler's exit status is non-zero only if the program contains
errors. Table 3-2 shows the DOS errorlevel values for the exit status of the
compiler at different diagnostic levels.

Table 3-2 DOS Errorlevel Values

Diagnostic Level Fatal Errors Errors Warnings Remarks Errorlevel

2 no no not used not used 0
no yes not used not used 1
yes yes or no not used not used 2

1 (default) no no no not used 0
no no yes not used 1
no yes yes or no not used 2
yes yes or no yes or no not used 3

0 no no no no 0
no no no yes 1
no no yes yes or no 2
no yes yes or no yes or no 3
yes yes or no yes or no yes or no 4

3-30 Compiler Controls

diagnostic (continued)

The notranslate control causes preprocessing diagnostics to appear at the
console. The noprint control causes the compiler to display all diagnostic
messages at the console.

Cross-references
print Inopr 1nt
translate I notransi ate

Compiler Controls 3-31

eject
General control
Causes form feed

Syntax

eject
^pragma eject

Abbreviation

ej

Discussion

Use the eject control to cause a form feed in the print file at the point where
the control is specified. If you specify the e j ect control on the invocation
line, the form feed occurs before the text of any source file is listed.

The noprint and notranslate controls suppress the print file, causing the
eject control to have no effect.

The pagelength, pagewi dth, tabwi dth, and ti tl e controls also affect the
format of the print file. See Chapter 5 for a description of the print file.

Cross-references
pagelength
pagewi dth
tabwi dth
title

3-32 Compiler Controls

extend I noextend
General control

Recognizes Intel C extensions or not

Syntax

[no]extend
tfpragma [nojextend

Abbreviation

[nojex

Default

noextend

Discussion

Use the extend control to enable the compiler to recognize the non-ANSI
a 11 en, fa r, and near keywords in the source text, and to allow the dollar
sign ($) to be a non-significant character in identifiers in the source text Use
the noextend control (default) to suppress recognition of Intel's extensions.
These extensions allow compatibility with earlier versions of Intel C.

Seethe fixedparams and varparams controls for information on calling
convention compatibility with earlier versions of Intel C.

See Chapter 4 for more information on the fa r and near keywords. See
Chapter 10 for more information on the al i en, far, and near keywords.

Compiler Controls 3-33

extend I noextend (continued)

Cross-references
fixedparams
ram I rom
varpa rams

3-34 Compiler Controls

fixedparams
General control

Specifies fixed parameter list
calling convention

Syntax

fixedparams [(function [,...])]
//pragma fixedparams [(function [,...])]

Where:

fund 7 on is the name of a function defined in the source text
Function-name arguments are case-significant.

Abbreviation

fp

Default

Of the two calling convention specifications (fixedparams and var params),
the default is f i xedparams . If you specify the fi xedparams control but do
not supply a fundi on argument, the fi xedparams control applies to all
functions in the subsequent source text.

Discussion

Use the fixedparams control (default) to require the specified functions to
use the fixed parameter list (FPL) calling convention. Most of Intel's non-C
compilers generate object code for function calls using the FPL calling
convention. Some earlier versions of Intel C use the variable parameter list
(VPL) calling convention.

Compiler Controls 3-35

fixedparams (continued)

A function's calling convention dictates the sequence of instructions that the
compiler generates to manipulate the stack and registers during a call to a
function. The FPL calling convention is as follows:

1. The calling function pushes the arguments onto the stack with the
leftmost argument pushed first before control transfers to the called
function.

2. The called function removes the arguments from the stack before
returning to the calling function.

See Chapter 8 for more detailed information on the FPL and VPL calling
conventions.

The FPL calling convention uses fewer instructions and therefore occupies
less space in memory and executes more quickly than the VPL calling
convention. See the varpa rams control for more information on the VPL
calling convention.

A calling convention specified without an argument in the compiler
invocation affects functions throughout the entire module. If a function uses
a calling convention other than the one in effect for the compilation, specify
the calling convention before declaring the function.

If FPL is in effect globally, you can use an ellipsis in a prototype or
declaration to declare a VPL function, or use thevarparams control. If VPL
is in effect globally, you must use the fi xedparams control in a #pragma
preprocessor directive to declare an FPL function.

If notranslate is specified, the compiler does not generate object code and
the calling convention control has no effect. If noobj ect is specified, the
effect of the calling convention control on the object code can be seen in the
print file, although the compiler does not produce a final object file.

3-36 Compiler Controls

fixedparams (continued)

NOTE
An error occurs if a function in the source text explicitly
declares a variable parameter list and also is named in the
function list for the fixedparams control. In the following
example, the ellipsis in the f vpr s function prototype indicates a
VPL convention for this function. Specifying the f i xedparams
(f vpr s) control in this case causes a compilation error:

^include <stdarg.h>
fvprs (int a, . ..);

See the extend I noextend control for other information on code
compatibility with previous versions of Intel C. See the varparams control
for information on the variable parameter list calling convention.

Examples

The following examples show different uses of the f i xedpa rams and
varparams controls.

1. This combination of controls specifies the variable parameter list
convention (VPL) for all functions in the source file except those in the
argument list. Use the controls on the invocation line as follows:

varparams fixedparams (argument-!ist)

Or use the controls in #pragma preprocessor directives as follows:
#pragma varparams
#pragma fixedparams (argument-list)

Compiler Controls 3-37

fixedparams (continued)

2. This control specifies the fixed parameter list convention (FPL) for all
functions in the source file except those in the argument list. Use the
var pa rams control on the invocation line to override the default for the
functions in the argument list as follows:

varparams (argument-1ist)

Or use the varparams control in a //pragma preprocessor directive as
follows:

//pragma varparams (argument-] 1st)

Cross-references
extend I noextend
obj ectInoobj ect
translate I notranslate
varparams

3-38 Compiler Controls

flat
Primary control, iC-386 only

Specifies the flat
segmentation memory model

Syntax

iC-386: flat
iC-386: #pragma flat

Abbreviation

fi

Default

Of the three iC-386 memory model specifications (small, compact, and
flat), the default is small.

Discussion

Use the iC-386 fl at control to specify the flat segmentation model. The
compiler produces an object module containing a code segment including
constants, a data segment, and a stack segment. Using the fl at control with
BLD386, the builder maps all of the code, data, and stack segments into a
single segment in memory. The flat segmentation model is efficient in both
program size and memory access, but does not take advantage of the
segmentation protection provided by the hardware.

The processor addresses the flat model program's code segment relative to
the CS register, the data segment relative to the DS register, and the stack
segment relative to the SS register. CS contains the selector for an execute
read segment. DS and SS contain the selector for a read-write segment that
is aliased to the execute-read segment.

Compiler Controls 3-39

flat (continued)

The rom or ram controls have little effect, because the compiler always places
constants in the code segment. The rom or ram control does affect the value
of the _ROM_ predefined macro. See Chapter 5 for information on predefined
macros.

All functions have near pointers and calls. All data pointers are near
pointers. See the extend I noextend control and Chapter 4 for more
information about the far and near keywords.

The notransl ate control overrides the fl at control. The noobject control
overrides the fl at control except for its effect on the print file.

See Chapter 2 for more information on the availability of run-time libraries
for the various memory models.

See Chapter 4 for more specific information on segmentation and the flat
memory model.

Cross-references
compact
extend I noextend
obj ectInoobj ect

ram I rom
smal 1
translate I notranslate

3-40 Compiler Controls

include
Invocation control

Inserts text from specified file

Syntax

include (filename

Where:
fi 1 ename is the file specification (including a device name and

directory name or pathname, if necessary) to be included and
compiled before the primary source file. You do not have to
enclose a fl lename in quotation marks, even if it contains a
pathname.

Abbreviation

i c

Discussion

Use the incl ude control to insert and compile text from files other than the
primary source file. These files are called include files. The compiler
processes include files in the order specified in the f i 1 ename list before
processing the primary source file.

Use the 1i sti nclude control to list the contents of the include files in the
source code listing in the print file. Use the search Include control to
specify a search path for include files. Use the p r e p r i n t control and the
notranslate control together to view the resulting order and names of
include files without compilation.

Files included by the i ncl ude control on the invocation line are within the
scope of all macros defined by the def ine control on the invocation line,
regardless of the order of the controls. Files included by the 1 ncl ude control
on the invocation line precede the scope of macros defined by the #def i ne
preprocessor directive in the primary source file. If more than one Include
control occurs in the invocation, the compiler includes files in the order
specified in the invocation line.

Compiler Controls 3-41

include (continued)

The maximum number of filenames in an instance of the include control is
19. The maximum number of files open simultaneously during compilation
is system-dependent. The maximum nesting level of include files is 10,
unless the prepri nt control is in effect, in which case the maximum nesting
level is 7.

The iC-86/286/386 compiler on DOS has two added facilities for searching
for files. The compiler maps slashes (/) in filenames to backslashes (\).
When a pathname begins with an environment variable, the compiler uses the
value of the environment variable as the directory path prefix and applies the
mappings to all filenames including prefixes specified with the
searchincl ude control.

See Chapter 2 for an example of using the i ncl ude control on DOS. See
Chapter 5 for a description of the print file.

Cross-references

1i stinclude
preprint I nopreprint
searchi ncl udeI nosearch include

3-42 Compiler Controls

interrupt
General control

Specifies a function to be
an interrupt handler

Syntax

iC-86: interrupt (functioning
iC-286 and iC-386: interrupt (function
iC-86: #pragma interrupt (functionin'] [,...])
iC-286 and iC-386: #pragma interrupt (function [,...])

Where:

function is the name of a function defined in the source text

n is an integer from 0 to 255 for iC-86 only.

Abbreviation

i n

Discussion

Use the interrupt control to specify a function in the source text to handle
some condition signaled by an interrupt. An interrupt-handler function must
be of type void and can neither take arguments nor return a value. The
interrupt designation must precede the function definition. The interrupt
control causes the compiler to generate prolog and epilog code to save and
restore registers and return from the interrupt.

For an 86-family target processor, you can use the interrupt control to
associate the interrupt handler with an interrupt number, n. The iC-86
compiler produces an interrupt vector entry for each interrupt handler. The
interrupt vectors are an array of pointer values beginning at physical address
0. The nth entry is at location 4 * n, and contains the location of the interrupt
handler associated with the interrupt number n. If you specify more than one
interrupt handler for the same vector number n, the compiler associates only
the first function with the interrupt number.

Compiler Controls 3-43

interrupt (continued)

For a 286 or Intel386-family target processor, use the BLD286 or BLD386
system builder to create a gate for the interrupt handler and place the gate in
the interrupt descriptor table (IDT). See the System Builder User's Guide,
listed in Chapter 1.

The notransl ate control overrides the interrupt control. The noobject
control overrides the interrupt control except for its effect on the print file.

See Chapter 6 for examples using the interrupt control. See
C: A Reference Manual, listed in Chapter 1, for information on the v o i d
function type.

Cross-references
object I noobject
translate! notransl ate

3-44 Compiler Controls

large
Primary control

Specifies the large
segmentation memory model

Syntax

1 arge
#pragma 1 arge

Abbreviation

1 a

Default

Of the four iC-86 and iC-286 memory model specifications (smal 1, compact,
medium, and large), the default is smal 1 . For iC-386, the 1 arge control has
the same effect as the compact control. The following discussion applies to
iC-86 and iC-286 only.

Discussion

Use the 1 arge control to specify the large segmentation model. The
compiler produces an object module containing a code segment, a data
segment, and a separate stack segment The linker or binder creates a
separate code segment for each module's code and a separate data segment
for each module’s data, and creates a single stack segment The large
segmentation model offers a total amount of code and data space limited only
by the target system.

For 86 and 286 processors, each code, data, or stack segment can occupy up
to 64 kilobytes of memory. For Intel386 processors, each segment can
occupy up to 4 gigabytes of memory.

Compiler Controls 3-45

large (continued)

The processor addresses the large model program's currently active code
segment relative to the CS register, the currently active data segment relative
to the DS register, and the stack segment relative to the SS register.
Depending on whether the rom or ram control is in effect, the compiler places
each module's constants in its code segment or data segment, respectively.
All functions have far pointers and calls. All data pointers are far pointers.
See the extend I noextend control and Chapter 4 for more information about
the far and near keywords.

The notransl ate control overrides the 1 arge control. The noobj ect control
overrides the 1 a r ge control except for its effect on the print file.

See Chapter 2 for more information on the availability of run-time libraries
for the various memory models.

See Chapter 4 for more specific information on segmentation and the large
memory model.

Cross-references
compact
extend I noextend
flat
mediurn

obj ectInoobj ect
ram I rom
smal 1
translate I notranslate

3^6 Compiler Controls

line I noline
Primary control

Generates or suppresses
source line number debug information

Syntax

Cno J1ine
^pragma Eno J1ine

Abbreviation

[no]ln

Default
line when the d e b u g control is in effect.

n o 11 n e when the nodebug control is in effect

Discussion

Use the 1 i ne control (default) to cause the compiler to create source line
number information in the object file. Use the n ol i n e control to suppress
this information, reducing the object file size by as much as 80%. Source
line number information is useful when using a symbolic debugger for
source-level debugging.

The nol i ne control was used in conjunction with the debug control to
generate the iC-86/286/386 libraries. This combination of controls retains all
debug information other than line information, which is only useful if the
source code for each function is available to the debugger.

The nodebug control, the noobject control, and the not nans 1 ate control
override the 1 i ne control.

Compiler Controls 3-47

line I noline (continued)

Cross-references
debug I nodebug
object I noobject
translate I notranslate

3-48 Compiler Controls

list I nolist
General control

Specifies source text listing
in print file

Syntax

[no]1 1st
#pragma [no]li st

Abbreviation

[no]li

Default

list

Discussion

Use the 1 i s t control (default) to generate a listing of the source text. The
compiler places the source listing in the print file. Use the no 1 i st control to
suppress the source listing.

The n o p r i n t and notranslate controls suppress the entire print file, even if
1 i s t is specified. The nolist control overrides the c o n d control and the
1 i stexpand and 1 i sti ncl ude controls.

Several other controls affect the contents of the listing, as follows:

• The code control causes pseudo-assembly code to appear after the
source listing.

• The cond control causes uncompiled conditional code to appear in the
listing.

• The 1 i stexpand control causes macros to be expanded in the listing.

• The 1 i s t i n c 1 ude control causes text from include files to appear in the
listing.

Compiler Controls 3-49

list I nolist (continued)

The eject, pagewidth, pagel ength, tabwidth,and title controls affect
the format of the print file.

See Chapter 5 for a description of the print file. See Chapter 2 for examples
of the effect that listing controls have on the print file.

Cross-references
code I nocode
condInocond
eject
1istexpandInoli stexpand
listincludeI nolistincl ude

pagelength
pagewi dth
print I noprint
tabwi dth
ti tl e
translate I notranslate

3-50 Compiler Controls

listexpand I nolistexpand
General control

Includes or suppresses macro
expansion in listing

Syntax

[no]listexpand
#pragma [no]l1stexpand

Abbreviation

[nolle

Default

no!1stexpand

Discussion

Use the 1 i stexpand control to show the results of macro expansion in the
source text listing in the print file. Use the nolistexpand control (default) to
suppress the results of macro expansion. Neither control has any effect on
the preprint file.

The compiler marks the macro expansion lines in the listing with a plus (+)
in the line-number column. Macro expansions appear only in the listing for
compiled code. If the preprocessor suppresses compilation of conditional
code, the listing does not include the expansion of any macro invocations in
the suppressed code.

Compiler Controls 3-51

listexpand I nolistexpand (continued)

Use the cond control to list uncompiled conditional code.

The nol ist, notransl ate, and noprint controls override the 1 i stexpand
control. If any of these is in effect, the compiler does not list any source text.
The nol i stincl ude control overrides the 11 stexpand control for include
files.

See Chapter 5 for a description of the print file.

Cross-references

condInocond print Inoprint
1i st Inoli st translatelnotranslate
1istincludeI nolistin clude

3-52 Compiler Controls

listinclude I nolistinclude
General control

Includes or suppresses text
from include files in listing

Syntax

[no] 1i stincl ude
//pragma [no]listinclude

Abbreviation

[nojlc

Default

no!1sti nclude

Discussion

Use the 1 i sti nclude control to list the text of include files in the source
text listing in the print file. Use the nolistinclude control (default) to
suppress the listing of include files. Neither control has any effect on the
preprint file.

The compiler lists files included with the i ncl ude control before the first line
of source listing. The compiler adds the text of files included with the
//include preprocessor directive after the line with the #i ncl ude directive.
The compiler lists include files in the order they are specified.

The no! 1 st, notransl ate, and noprint controls override the 1 i stincl ude
control.

Compiler Controls 3-53

listinclude I nolistinclude (continued)

When the nolistinclude control is in effect, diagnostic messages for
include files appear in the print file as follows:

• For files included with the i nc 1 ude control, diagnostic messages
precede the first line of source text.

• For files included with the #i ncl ude preprocessor directive, diagnostic
messages appear on the lines immediately after the #i ncl ude directive.

The compiler lists diagnostic messages in the order in which the associated
conditions occur. Use the diagnostic control to specify the level of
messages the compiler issues.

See Chapter 5 for a description of the print file. See Chapter 2 for an
example of the effect of listing controls on the print file.

Cross-references
diagnosti c
i nclude
1 i s t I n o 1 i s t

print Inoprint
translate I notranslate

3-54 Compiler Controls

Iong64 I nolong64
Primary control, iC-386 only

Specifies the size of long objects

Syntax

iC-386:[no J1ong64
iC-386: #pragma [no]long64

Abbreviation

[no]!64

Default

nolong64

Discussion

Use the iC-386 1 ong64 control to specify that objects declared with the 1 ong
type qualifier are 64 bits in length. Use the nol ong64 control (default) to
specify that objects declared with 1 on g are 32 bits in length.

The notransl ate control overrides the 1 ong64 and nol ong64 controls. The
noobj ect control overrides the 1 ong64 and nol ong64 controls except for
their effect on the print file.

See Chapter 10 for information on iC-386 data types. See C: A Reference
Manual, listed in Chapter 1, for information on specifying type qualifiers.

Cross-references
object I noobject
translate I notranslate

Compiler Controls 3-55

medium
Primary control
Specifies the medium
segmentation memory model

Syntax

medi um
#pragma medium

Abbreviation

md

Default

Of the four iC-86 and iC-286 memory model specifications (smal 1, compact,
medi um, and 1 a rge), the default is smal 1 . For iC-386, the med i um control
has the same effect as the smal 1 control. The following discussion applies to
iC-86 and iC-286 only.

Discussion

Use the med i um control to specify the medium segmentation model. The
compiler produces an object module containing a code segment, a data
segment, and a separate stack segment. The linker or binder creates a
separate code segment for each module's code, combines the data segments
for all modules into a single data segment, and reserves space in the data
segment to accommodate all stack activity. The medium segmentation
model offers efficient data access with code space limited only by the target
system.

For 86 and 286 processors, each code segment and the combined data and
stack segment can occupy up to 64 kilobytes of memory.

3-56 Compiler Controls

medium (continued)

The processor addresses the medium model program's currently active code
segment relative to the CS register, the data in the combined data and stack
segment relative to the DS register, and the stack in the combined data and
stack segment relative to the SS register (which has the same value as the DS
register). Depending on whether the rom or ram control is in effect, the
compiler places each module's constants in the corresponding code segment
or in the combined data and stack segment All functions have far pointers
and calls. If the ram control is in effect all data pointers are near pointers. If
the rom control is in effect all data pointers are far pointers. See the
extend I noextend control and Chapter 4 for more information about the far
and near keywords.

The notransl ate control overrides the medi um control. The noobject
control overrides the medi um control except for its effect on the print file.

See Chapter 2 for more information on the availability of run-time libraries
for the various memory models.

See Chapter 4 for more specific information on segmentation and the
medium memory model.

Cross-references

compact object I noobject
extend I noextend ram I rom
flat small
large transl ate Inotranslate

Compiler Controls 3-57

mod86 I modi 86
Primary control, iC-86 only
Generates 86/88 processor code or
186/188 processor code

Syntax

iC-86: mod86
modl86

iC-86: //pragma mod86
//pragma modl86

Abbreviation

(none)

Default

mod86

Discussion

Use the iC-86 mod86 control to cause the compiler to generate code for the
86/88 processor. Use the mod 186 control to cause the compiler to generate
code for the 186/188 processor. The 186/188 instruction set includes short
forms of some instructions.

The notransl ate control overrides the mod86 and modl86 controls. The
noobj ect control overrides the mod86 and modl86 controls except for their
effect on the print file.

3-58 Compiler Controls

mod86 I modi86 (continued)

NOTE
Object modules compiled with the mod 186 control do not
execute properly on the 86 or 88 processors. These modules
produce execution errors with unpredictable results, such as
hanging your system.

See the ASM86 Assembly Language Reference Manual, listed in Chapter 1,
for descriptions of the 86/88 and 186/188 instruction sets.

Example

Using the 186/188 instruction set instead of the 86/88 instruction set may
result in a program requiring less code space. The iC-86 compiler produces
the following three lines when the mod86 control is in effect:

0002 55 PUSH BP
0003 8BEC MOV BP,SP
0005 81EC0C00 SUB SP.0CH

The iC-86 compiler produces the following equivalent line when the modl86
control is in effect:

0002 C80C0000 ENTER 0CH.0H

Cross-references
obj ectInoobj ect
translate I notranslate

Compiler Controls 3-59

mod287 I model 87 I nomod287
Primary control, iC-86 only
Generates code for i287™, 80C187 or
8087 numeric coprocessor

Syntax

[no]mod287
modcl87
//pragma [no]mod287
//pragma modcl87

Abbreviation

(none)

Default

nomod287

Discussion

Use the iC-86 mod287 control to cause the compiler to generate code for the
Intel287 numeric coprocessor, without FWAIT instructions. This code is
more efficient for some systems, for example, an AT-class system with a 286
processor (executing in real mode) and an Intel287 numeric coprocessor.
Use the nomod287 control (default) to cause the compiler to generate code for
the 8087 numeric coprocessor, including FWAIT instructions. Do not use
mod 287 for code to be linked to the E8087 or DE8087 emulator.

3-60 Compiler Controls

mod287 I model 87 I nomod287 (continued)

Use themodcl87 control to cause the compiler to generate code for the
80C187 numeric coprocessor. Also use the mod 186 control to generate
efficient code for the 8OC186 processor used in conjunction with the
80C187.

Code generated with the mod287 control in effect executes correctly on a
system containing an Intel287, Intel 387, or 80C187 numeric coprocessor (or
true emulator) or Intel486 processor with on-chip FPU. Such code will not
execute correctly on an 8087.

Similarly, code generated with the modcl87 control will execute correctly on
an 80C187, Intel387, or Intel486 processor (or true emulator), but not on an
8087 or Intel287.

The notransl ate control overrides the mod287, modcl87, and nomod287
controls. The noobject control overrides the mod287, modcl87, and nomod287
controls except that the effect of the instruction set control on the object code
can be seen in the print file, although the compiler does not produce a final
obj ect file.

Cross-references
mod!86
object I noobject
translate I notranslate

Compiler Controls 3-61

mod486 I nomod486
Primary control, iC-386 only
Generates i486™ processor code or
1386™ processor code

Syntax

iC-386:[no]mod486
iC-386:#pragma [no]mod486

Abbreviation

(none)

Default

nomod486

Discussion

Use the iC-386 mod486 control to cause the compiler to generate code for the
i486™ processor. This code is particularly suited for fast execution on i486
processor-based systems. The code includes code alignment for the CALL
instruction, and different instruction sequences to take advantage of the
on-chip cache. Use the nomod486 control (default) to cause the compiler to
generate code for the i386™ processor, which also executes on the i486
processor.

If notranslate is specified, the compiler does not generate object code and
the instruction set control has no effect. If noob ject is specified, the effect
of the instruction set control on the object code can be seen in the print file,
although the compiler does not produce a final object file.

3-62 Compiler Controls

mod486 I nomod486 (continued)

NOTES
An object module compiled with the mod486 control can
execute on an i3 8 6 processor, but may execute more slowly
than if compiled with the nomod486 control.

Do not execute a mod486-compiled object module that contains
i486 processor built-in functions on an i386 processor. The
behavior of such code on an i3 86 processor is unpredictable.

Cross-references
object I noobject
translate I notranslate

Compiler Controls 3-63

modulename
Primary control
Names object module

Syntax

modulename {name)
#pragma modulename {name)

Where:

name is the name of the object module (not the object file).

Abbreviation

mn

Default

The compiler uses the source filename without its extension. For example,
the compiler names the object module main for the source file ma i n. c.

Discussion

Use the modul ename control to name the object module.

The object module name is used by the linker, binder, locator, and builder.
LINK.86 does not have the facility to rename object modules, but BND286
and BND386 do have such a facility. The object module name also appears
in the print file.

The notransl ate control overrides the modul ename control. The noobject
control overrides the modul ename control except for its effect on the print
file.

3-64 Compiler Controls

modulename (continued)

NOTE
A //pragma preprocessor directive specifying the modul ename
control must precede any //pragma directives that specify the
subsys control.

Cross-references
obj ectInoobj ect
subsys
translate I notranslate

Compiler Controls 3-65

object I noobject
Primary control
Generates and names
or suppresses object file

Syntax

object [(filename}]
noobj ect
//pragma object [(f i lename)]
//pragma noobject

Where:

f? 1 ename is the file specification (including a device name and
directory name or pathname, if necessary) in which the
compiler places the object code.

Abbreviation

[no]oj

Default

obj ect

By default the compiler places the object file in the directory containing the
source file. The compiler composes the default object filename from the
source filename, as follows:
sourcename.obj

Where:

sourcename is the filename of the primary source file without its file
extension.

For example, by default the compiler creates an object file named mai n. obj
for the source file mai n. c.

3-66 Compiler Controls

object I noobject (continued)

Discussion

Use the o b j ec t control to specify a non-default name or directory for the
object file. Use the noobject control to suppress creation of an object file.

The notranslate control suppresses all translation of source code to object
code and suppresses creation of the object file and the print file. The
noobj ect control does not suppress translation, and the compiler can
produce a print file. The noobject control overrides other object file
controls except for their effect on the print file.

To place a pseudo-assembly language version of the object code in the print
file, use the code control.

Cross-references
code I nocode
translate I notranslate

Compiler Controls 3-67

optimize
Primary control
Specifies the level of optimization

Syntax

optimize (1 evel)
#pragma optimize (7eve7)

Where:

level is 0,1, 2, or 3. The values correspond to the levels of
optimization, with 0 being the lowest level Geast
optimization) and 3 being the highest level (most
optimization).

Abbreviation

ot

Default

optimization level 1

Discussion

Use the optimize control to improve the space usage and execution
efficiency of a program. Use level 0 when debugging to ensure the closest
match between a line of source text and the generated object code for that
line. Each optimization level performs all the optimizations of all lower
levels. Figure 3-5 summarizes the optimizations performed at each level.

3-68 Compiler Controls

optimize (continued)

Optimization Level 3

Using the Numeric Coprocessor for Floating-point-to-lnteger Conversions

Optimizing Indeterminate Storage Operations

Optimization Level 2

Reversing Branch Conditions

Removing Unreachable Code

Re-using Duplicate Code

Eliminating Superfluous Branches

Optimizing the Instructions Used for
Short Jumps and Moves

Optimization Level 1

Eliminating Common Subexpressions

Optimization Level 0

Performing Operator
Strength Reductions

Folding Constant Expressions

OSD330

Figure 3-5 Summary of Optimization Levels

Compiler Controls 3-69

optimize (continued)

The opti mi ze control is aprimary control. Use it in the compiler invocation
or in a #p ra gma preprocessor directive. A primary control in a #pr a gma
preprocessor directive must precede the first line of data definition or
executable source text A primary control in the invocation overrides any
contradictory control in a ^pragma preprocessor directive.

See the compact, debug I nodebug, 1 i ne I no! i ne, type I notype, and smal 1
controls for other ways to optimize code size. See Chapter 2 for an example
program compiled at all four levels of optimization.

Folding of Constant Expressions at All Levels

The compiler recognizes operations involving constant operands and
removes or combines them to save memory space or execution time.
Addition with 0, multiplication by 1, and operations on two or more
constants fall into this category. For example, the expression a+2+3
becomes a+5.

Reducing Operator Strength at All Levels

The compiler substitutes quick operations for longer ones, such as shifting
left by 1 instead of multiplying by 2. The substituted instruction requires less
space and executes faster. The addition of identical subexpressions can also
generate left shift instructions.

Eliminating Common Subexpressions at Levels 1,2, and 3

If an expression reappears in the same block of source text, the compiler
generates object code to reuse rather than recompute the value of the
expression. It generates code to save intermediate results during expression
evaluation in registers and on the stack for later use. The compiler also
recognizes commutative forms of subexpressions. For example, in the
following block of code the compiler generates code to compute the value of
c*d/3 for the first expression and to save and retrieve it for the second
expression:

a = b + c*d/3;
c = e + d*c/3;

3-70 Compiler Controls

optimize (continued)

Optimizing the Machine Code of Short Jumps and Moves at
Levels 2 and 3

The compiler saves space in the object code by using shorter forms for
identical machine instructions.

Eliminating Superfluous Branches at Levels 2 and 3

The compiler combines consecutive or multiple branches into a single
branch.

Reusing Duplicate Code at Levels 2 and 3

Duplicate code can be identical code at the ends of two converging paths, or
it can be machine instructions immediately preceding a loop identical to
those ending the loop. In the first case, the compiler inserts code on only one
path and inserts a jump to that path in the other path. In the second case, the
compiler generates a branch to reuse the code generated at the beginning of
the loop.

Removing Unreachable Code at Levels 2 and 3

The compiler eliminates code that can never be executed. The optimization
that removes the unreachable code takes a second pass through the generated
object code and finds areas which can never be reached due to the control
structures created in the first pass.

Compiler Controls 3-71

optimize (continued)

Reversing Branch Conditions at Levels 2 and 3

The compiler optimizes the evaluation of Boolean expressions, so only the
shorter of two mutually exclusive conditions is evaluated. For example, the
following i f statement on the left has the execution order of its branches
reversed:

if (!a)
{

/* (block 1) */
)
el se
(

/* (block 2) */
}

/* becomes */

if (a)
{

/* (block 2) */
}
else
1

/* (block 1) */

Optimizing Indeterminate Storage Operations at Level 3

The indeterminate storage operations involve pointer indirection. When code
assigns a pointer to refer to a variable, it creates an alias for that variable. A
variable referenced by a pointer has two aliases: the pointer and the name of
the variable itself. Use optimization level 3 when the compiler need not
insert code to guard against aliasing.

The compiler performs this level 3 optimization as follows:

• When the code assigns an expression to a variable, the compiler
generates code to evaluate the expression and assign the result to the
variable. The result also remains in the register used in evaluating the
expression.

• When the code subsequently uses the same alias to access the variable,
the compiler does not generate code to access the variable; instead it
inserts a reference to the register.

• The compiler refers to the same register each time the code uses the
alias. Run-time performance is improved because accessing the register
executes faster than accessing the variable in memory.

3-72 Compiler Controls

optimize (continued)

This optimization can introduce errors when the code uses multiply-aliased
variables. The compiler does not insert code to check for intermediate
references to a variable using a different alias. If the code modifies a
variable using a different alias, the value in the variable is not necessarily the
same as the value in the register referenced by the compiler. For example, in
the following code under optimization level 3, y erroneously acquires the
value 1 instead of 2. If the optimization level is less than 3, the compiler
codes the assignment correctly:

int x,y;
int *a = &x;
x = 1;
*a = 2;
y = x;

/* *a is aliasing x */
/* put a value in x */
/* x now has value 2 */
/* TROUBLE at level 3! */

See C: A Reference Manual, listed in Chapter 1, for more information on
indirection and aliasing.

Using the Numerics Coprocessor for Floating-point-to-integer
Conversions at Level 3

Unsafe conversions of floating-point types to integral types may occur at
optimization level 3. The 1989 ANSI C standard specifies that these
conversions must use truncation. At optimization level 3, the numerics
coprocessor controls the method used in rounding. After RESET, the
rounding mode of the numeric coprocessor is round-to-nearest. Therefore, at
optimization level 3, the conversion of floating-point types to integral types
usually uses rounding, contrary to the standard. At lower optimization
levels, these conversions use truncation, which is according to the standard.

Cross-references
code I nocode
compact
debug I nodebug

1ineInoline
smal 1
type I notype

Compiler Controls 3-73

pagelength
Primary control
Specifies lines per page
in the print file

Syntax

pagel ength (7 Ines')
^pragma pagelength (.lines)

Where:

lines is the length of a page in lines. This value can range from 10
to 32767.

Abbreviation

pi

Default

60 lines per page

Discussion

Use the pagel ength control to specify the maximum number of lines printed
on a page of the print file before a form feed is printed. The number of lines
on a page includes the page headings.

The noprint and notranslate controls suppress the print file, causing the
page! ength control to have no effect.

The eject, pagewidth, tabwidth, and ti tie controls also affect the format
of the print file.

3-74 Compiler Controls

pagelength (continued)

See Chapter 5 for a description of the print file. See Chapter 2 for an
example of the effect of the pagel ength control on the print file.

Cross-references
eject
pagewi dth
print I noprint

tabwi dth
title
translate I notranslate

Compiler Controls 3-75

pagewidth
Primary control
Specifies line length in the printfile

Syntax

pagewidth (.chars)
//pragma pagewidth (chars)

Where:

cha rs is the line length in number of characters. This value ranges
from 72 through 132.

Abbreviation

pw

Default

120 characters

Discussion

Use the pagewidth control to specify the maximum length, in characters, of
lines in the print file.

The noprint and notransl ate controls suppress the print file, causing the
pagewidth control to have no effect.

3-76 Compiler Controls

pagewidth (continued)

The eject, pagel ength, tabwi dth, and ti tl e controls also affect the format
of the print file.

See Chapter 5 for a description of the print file. See Chapter 2 for an
example of the effect of the pagewi dth control on the print file.

Cross-references
eject
pagelength
print I noprint

tabwidth
title
translate I notranslate

Compiler Controls 3-77

preprint I nopreprint
Invocation control
Generates or suppresses a preprocessed
source text listing file

Syntax

preprint [(fi1 enamel]
nopreprint

Where:

fi 1 ename is the file specification (including a device name and
directory name or pathname, if necessary) in which the
compiler places the preprint information.

Abbreviation

[no]pp

Default

nopreprint when the translate control is in effect.
preprint when the notranslate control is in effect.

By default, the compiler places the preprint file in the directory containing
the source file. The compiler composes the default preprint filename from
the source filename as follows:
sourcename.i

Where:

sourcename is the filename of the primary source file without its file
extension.

For example, by default the compiler creates a preprint file named proto. i
for the source file proto. c.

3-78 Compiler Controls

preprint I nopreprint (continued)

Discussion

Use the prepri nt control to create a file containing the text of the source
after preprocessing. Use thenopreprint control (default) to suppress
creation of a preprint file. Preprocessing includes file inclusion, macro
expansion, and elimination of conditional code. The preprint file is the
intermediate source text after preprocessing and before compilation.

The preprint file is especially useful for observing the results of macro
expansion, conditional compilation, and the order of include files. If the
preprint file contains no errors, compiling the preprint file produces the same
results as compiling the primary source file and any files included in the
compiler invocation.

The preprint control creates a file different from the print file. The eject,
page! ength, pagewidth, tabwi dth, and ti tl e controls have no effect on the
preprint file.

When the preprint control is in effect, the maximum nesting level of
include files is 7.

See Chapter 5 for a description of the preprint and print files. See Chapter 2
for an example of the effect of the preprint or noprepri nt controls and
other listing controls.

Cross-references

i nclude
print I noprint

Compiler Controls 3-79

print I noprint
Primary control
Generates or suppresses the print file

Syntax

print {(filename)}
nopri nt
//pragma print (filename)
//pragma noprint

Where:

fi 1 ename is the file specification (including a device name and
directory name or pathname, if necessary) in which the
compiler places the print information.

Abbreviation

pr

Default

pri nt

By default the compiler places the print file in the directory containing the
source file. The compiler composes the default print filename from the
source filename, as follows:
sourcename. 1 st

Where:

sourcename is the filename of the primary source file without its file
extension.

For example, the compiler creates a print file named ma i n. 1 st for the source
file mai n . c.

3-80 Compiler Controls

print I noprint (continued)

Discussion

Use the p ri nt control to produce a text file of information about the source
and object code. Use the nopri nt control to suppress the print file. The
noprint control causes the compiler to display diagnostic messages only at
the console.

The nop r i n t control overrides all other listing controls except the pr epr i nt
control. The notransi ate control overrides the print control. The
noprint control causes diagnostic messages to appear at the console.

The print control creates a print file different from the preprint file.

The code I nocode, condI nocond,diagnostic, 1 istI nolist,1istexpand I
noli stexpand, 1 i stincl udeInoli sti ncl ude, symbol sI nosymbols,and
xref I xref controls affect the contents of the print file. The eject,
pag ewidth, pagelength, tabwidth, and ti tl e controls affect the format of
the print file.

See Chapter 5 for a description of the print file. See Chapter 2 for an
example of the effect of listing controls on the print file.

Compiler Controls 3-81

print I noprint (continued)

Cross-references
code I nocode
condInocond
diagnostic
eject
list Inol1 st
1 istexpandI nolistexpand
1i stincludeInoli sti nclude
pagelength

pagewi dth
preprint I nopreprint
symbol sI nosymbols
tabwi dth
ti tl e
translate I notransi ate
xrefInoxref

3-82 Compiler Controls

ram I rom
Primary control

Specifies the placement of
constants in the object module

Syntax

ram
rom
//pragma ram
//pragma rom

Abbreviation

(none)

Default

ram

Discussion

Use the ram control (default) to place constants in the data segment in
memory. When the ram control is in effect, the compiler initializes to zero
all static variables not explicitly initialized in the source text

Use the rom control to place constants in the code segment in memory.
When the rom control is in effect, the compiler does not initialize any static
variables not explicitly initialized in the source text. Also, the compiler
produces warning messages for all static variables the code explicitly
initializes.

Constants can be defined in the code or defined by the compiler. Constants
include the values of string literals, floating-point literals, and static variables
declared with the const attribute specifier.

Compiler Controls 3-83

ram I rom (continued)

The ram or rom controls have little effect when used with the fl at control
(iC-386 only), because the compiler always places constants in the code
segment. The rom or ram control does affect the value of the _ROM_
predefined macro. See Chapter 5 for information on predefined macros.

The compact, fl at, 1 arge, medi urn, and smal 1 controls determine the
segmentation model for the object code. The segmentation model
determines how many code and data segments are present in the object code.

The notranslate control overrides the ram and rom controls. The noobject
control overrides the ram and rom controls except for their effect on the print
file.

See Chapter 4 for more specific information on segmentation. See
C: A Reference Manual, listed in Chapter 1, for information on the const
attribute specifier and the static storage class.

Cross-references
compact
fl at
1 arge

medi urn

obj ectInoobj ect
smal 1
translate I notranslate

3-84 Compiler Controls

searchinclude I nosearchinclude
General control

Specifies search paths for include files

Syntax

searchinclude (.pathprefix
nosearchinclude
//pragma searchinclude (pathprefix
//pragma nosearchinclude

Where:

pathprefix is a string of characters that the compiler prepends to
the filename argument of an instance of the i ncl ude
or subsys control, or to the file argument of an
//incl ude preprocessor directive. If the path prefix
contains special characters such as the slash (/),
enclose the pa thprefix in quotation marks (").

Abbreviation

[no]si

Default

nosearchi nclude

The three default path prefixes are derived from the directory containing the
primary source file, the : i ncl ude: environment variable, and the null prefix
(current directory). The compiler always uses the path prefix in the
: i ncl ude: environment variable after the list specified by the
searchinci ude control.

Compiler Controls 3-85

searchinclude I nosearchinclude (continued)

Discussion

Use the searchi ncl ude control to specify a list of possible path prefixes for
include files. Use the nosearchinclude control (default) to limit the
compiler to the three default search path prefixes. Each pathprefix
argument is a string that, when concatenated to a filename, specifies the
relative or absolute path of a file (including a device name and directory
name, if necessary). The compiler tries each prefix in the order in which
they are specified, until a legal filename is found. If a legal filename is not
found, the compiler issues an error.

The DOS : i ncl ude: environment variable can specify a path prefix to the
name of a directory containing include files.

Include files are files specified with the 1 ncl ude control or the subsys
control in the compiler invocation or with the #i ncl ude preprocessor
directive in the source text In the #i ncl ude preprocessor directive, source
files are surrounded by quotation marks ("), and header files are surrounded
by angle brackets (<>).

When the compiler searches for a file specified in the 1 ncl ude control, or
when it searches for a source file (surrounded by quotation marks) specified
in an #i ncl ude preprocessor directive, the compiler tests the prefixes in the
following order:

1. the source directory prefix

2. the directories specified by the s e a r c h 1 n c 1 u d e list

3. the directory or directories specified by the : i ncl ude •. environment
variable, if defined

4. the null prefix, that is, the current directory

3-86 Compiler Controls

searchinclude I nosearchinclude (continued)

When the compiler searches for a header file (surrounded by angle brackets)
specified in an #! ncl ude preprocessor directive, the compiler tests the
prefixes in the following order:

1. the directories specified by the s e a r c h 1 n c 1 u d e list

2. the directory or directories specified by the :!nclude: environment
variable, if defined

3. the source directory prefix

4. the null prefix, that is, the current directory

The maximum number of path prefixes for the search! ncl ude control is 19.
The maximum number of files open simultaneously during compilation is
system dependent

The iC-86/286/386 compiler on DOS has two added facilities for searching
for files. The compiler maps slashes (/) in filenames to backslashes (\).
When a pathname begins with an environment variable, the compiler uses the
value of the environment variable as the directory path prefix and applies the
mappings to all filenames including prefixes specified with the
searchinci ude control.

The search! ncl ude and nos earchi ncl ude controls are general controls.
Use them freely in the compiler invocation or in #pragma preprocessor
directives. Specifying the sea rchi ncl ude control more than once adds to
the search path prefix list Specifying the nosearchinclude control after the
search! ncl ude control does not eliminate the searchinci ude list.

Cross-references

i nclude
subsys

Compiler Controls 3-87

signedchar I nosignedchar
Primary control
Sign-extends or zero-extends
char objects when promoted

Syntax

[no]signedchar
//pragma [no]signedchar

Abbreviation

[no]sc

Default

signedchar

Discussion

Use the signedchar control (default) to specify that objects declared to be
the c h a r data type are treated as if they were declared as the signed char
data type. The compiler sign-extends these objects when they are converted
to a data type that occupies more memory.

Use the nosi gnedchar control to specify that objects declared as the char
data type are treated as if they were declared as the unsi gned char data
type. The compiler zero-extends these objects when they are converted to a
data type that occupies more memory.

If notranslate is specified, the compiler does not generate object code and
the si gnedchar and nosignedchar controls have no effect. If noobject is
specified, the effect of the si gnedchar and nosignedchar controls on the
object code can be seen in the print file, although the compiler does not
produce a final object file.

The signedchar control does not affect the interpretation of objects
specifically declared as either si gned char or unsi gned char datatypes.

3-88 Compiler Controls

signedchar I nosignedchar (continued)

See C: A Reference Manual, listed in Chapter 1, for more information on the
char,unsigned char, and signed c h a r data types and data type
conversion.

Cross-referen ces
obj ectInoobj ect
translate I notranslate

Compiler Controls 3-89

small
Primary control
Specifies the small
segmentation memory model

Syntax

small
#pragma small

Abbreviation

sm

Default

Of the four iC-86 and iC-286 memory model specifications (smal 1, compact,
medium, and large) and the three iC-386 memory model specifications
(smal 1, compact, and fl at), the default is smal 1.

Discussion

Use the small control (default) to specify the small segmentation model.
The compiler produces an object module containing a code segment, a data
segment, and a separate stack segment. The linker or binder combines the
code segments for all modules into a single code segment, combines the data
segments for all modules into a single data segment, and reserves space in
the data segment to accommodate all stack activity. The small segmentation
model is efficient in both program size and memory access.

For 86 and 286 processors, code, data, or stack segments each can occupy up
to 64 kilobytes of memory. For Intel386 processors, each segment can
occupy up to 4 gigabytes of memory.

3-90 Compiler Controls

small (continued)

The processor addresses the small model's code segment relative to the CS
register, the data in the combined data and stack segment relative to the DS
register, and the stack in the combined data and stack segment relative to the
SS register (which has the same value as the DS register). Depending on
whether the rom or ram control is in effect, the compiler places the constants
from each module in the corresponding code segment or the combined data
and stack segment, respectively. All functions have near pointers and calls.
If the ram control is in effect, all data pointers are near pointers. If the rom
control is in effect, all data pointers are far pointers. See the
extend I noextend control and Chapter 4 for more information about the far
and near keywords.

The notransl ate control overrides the smal 1 control. The noobject control
overrides the smal 1 control except for its effect on the print file.

See Chapter 2 for more information on the availability of run-time libraries
for the various memory models.

See Chapter 4 for more specific information on segmentation and the small
memory model.

Cross-references
compact
extend I noextend
flat
1 arge

medi um
object Inoobject
ram Irom
translate Inotranslate

Compiler Controls 3-91

subsys
Primary control
Reads a subsystem specification

Syntax

subsys (filename
//pragma subsys (filename [,...])

Where:

f 71 ename is the file specification (including a device name and
directory name or pathname, if necessary) in which the
compiler finds the subsystem definition.

Abbreviation

(none)

Default

(none)

Discussion

Use the subsys control to cause the compiler to read one or more files for
subsystem definitions. The compiler searches for the named files the same
way that it searches for source files surrounded by quotation marks in the
//include preprocessor directive. See the entry for the searchinclude
control in this chapter for the search method. See Chapter 9 for how to
define subsystems.

The compiler preserves case distinction in identifiers in exports lists. The
compiler always ignores dollar signs ($) in identifiers, even if the extend
control is not in effect. The compiler ignores valid PL/M controls unrelated
to segmentation, such as $1F and $ INCLUDE. The compiler ignores lines
whose first character is not a dollar sign ($).

3-92 Compiler Controls

subsys (continued)

A subsystem can export only function and variable names with file scope.
The compiler implicitly modifies declarations of exported symbols, if
necessary, by inserting the far keyword in the appropriate place. The
modifications occur even if the extend control is not in effect.

If notranslate is specified, the compiler does not generate object code and
the subsys control has no effect. If noobj ect is specified, the effect of the
subsys control on the object code can be seen in the print file, although the
compiler does not produce a final object file.

NOTES
A //pragma preprocessor directive specifying the modul ename
control must precede any //pragma directives that specify the
subsys control.

Do not use the codesegment or datasegment controls in an
invocation that specifies the subsys control. The compiler
issues an error or a warning message, depending on whether the
subsys control is found in the invocation line or in a//pragma
preprocessor directive.

See C: A Reference Manual, listed in Chapter 1, for information on the
//Include preprocessor directive and the scope of identifiers. See Chapter 9
for a detailed discussion of subsystems. See the extend I noextend control
for more information on the far keyword. See Chapter 4 for more
information on segmentation memory models and how to use the fa r
keyword.

Cross-references
code segment
data segment
extend I noextend
modulename

object I noobject
search!ncl udeI nosearchinclude
translate! notranslate

Compiler Controls 3-93

symbols I nosymbols
Primary control
Generates or suppresses identifier
list in print file

Syntax

[no]symbols
//pragma [no]symbols

Abbreviation

[no]sb

Default

nosymbols

Discussion

Use the symbol s control to include in the print file a table of all identifiers
and their attributes from the source text. Use the nosymbol s control (default)
to suppress the table.

The noprint and notransl ate controls override symbol s. The xref control
causes the compiler to generate a cross-referenced symbol table even if the
nosymbol s control is specified.

See Chapter 5 for a description of the print file. See Chapter 2 for an
example of the effect of the symbol s or nosymbol s controls on the print file.

3-94 Compiler Controls

symbols I nosymbols (continued)

Cross-references
print I noprint
translate I notranslate
xrefInoxref

Compiler Controls 3-95

tabwidth
Primary control
Specifies characters per
tab stop in the printfile

Syntax

tabwidth (width')
#pragma tabwidth (width)

Where:

width is a value from 1 to 80. This value is the number of
characters from tab stop to tab stop in the print file.

Abbreviation

tw

Default

4 characters per tab stop

Discussion

Use the tabwi dth control to specify the number of characters between tab
stops in the print file.

The noprint and notranslate controls suppress the print file, causing the
tabwidth control to have no effect.

3-96 Compiler Controls

tabwidth (continued)

The eject, pagewi dth, pa gel ength, and title controls also affect the
format of the print file.

See Chapter 2 for an example of the effect of the tabwi dth control on the
print file.

Cross-references
eject
pagelength
pagewi dth

print 1 noprint
ti tl e
translate 1 notranslate

Compiler Controls 3-97

title
Primary control
Specifies the print file title

Syntax

title ("string'")
tfpragma title ("string'")

Where:

string is the title.

Abbreviation

tt

Default

The compiler uses the object module name.

Discussion

Use the title control to specify the print file title. The compiler places the
title at the top of each page of the print file.

To specify no title, use at least one blank in the title string. Do not use the
null string.

A title can be up to 60 characters long. A narrow page width can restrict a
title to fewer than 60 characters. In such cases, the compiler truncates the
title from the right

The noprint and notransl ate controls suppress the print file, causing the
title control to have no effect.

3-98 Compiler Controls

title (continued)

The eject, pagewi dth, pagel ength, and tabwi dth controls also affect the
format of the print file.

See Chapter 5 for a description of the print file.

Cross-references
eject
moduli ename
obj ectInoobj ect
pagelength

pagewidth
pri nt I noprint
tabwi dth
translate I notranslate

Compiler Controls 3-99

translate I notranslate
Invocation control
Compiles or suppresses compilation
after preprocessing

Syntax

[no]translate

Abbreviation

[nojtl

Default

translate

Discussion

Use the translate control (default) to cause the compilation to continue
after preprocessing. Translation includes parsing the input, checking for
errors, generating code, and producing an object module. Use the
notranslate control to cause compilation to cease after preprocessing.

The notransl ate control implies the preprint control. The notransl ate
control overrides all other object and listing controls except for their effect
on the print file. The notransl ate control causes preprocessing diagnostic
messages to appear at the console.

Cross-references
object I noobject
preprint I nopreprint

3-100 Compiler Controls

type I notype
Primary control

Generates or suppresses type
information in the object module

Syntax

[no]type
^pragma [nojtype

Default

type

Abbreviation

ty

Discussion

Use the typ e control (default) to include type information for public and
external symbols in the object module. Use the notype control to suppress
generation of type information. Suppressing type information reduces the
size of the object module.

Type information can be useful to other tools in the application development
process. The binder uses type information to perform type checking across
modules. A debugger or an emulator uses type information to display
symbol attributes.

The noobject and notransl ate controls cause type and notype to have no
effect.

Compiler Controls 3-101

type I notype (continued)

See the discussion of the debug control for information on combining
controls that affect the size of the object module, such as the line control.

The opti mi ze control can further reduce the size of the object module.
However, higher levels of optimization reduce the ability of most symbolic
debuggers to accurately correlate debug information to the source code. The
line control causes the compiler to place source line number debug
information in the object file. The symbol s control puts a listing of all
identifiers and their types into the print file. The xref control puts a
cross-reference listing of all identifiers into the print file.

See C: A Reference Manual, listed in Chapter 1, for more information on
type definitions.

Cross-references
debug I nodebug
1ineI no!ine
obj ectInoobj ect
opti mi ze

symbol sI nosymbols
translate I notranslate
xrefInoxref

3-102 Compiler Controls

varparams
General control

Specifies variable parameter list
calling convention

Syntax

varparams [(function [,...])]
^pragma varparams [(.function [,...])]

Where:

fund i on is the name of a function defined in the source text. Case is
significant in function-name arguments.

Abbreviation

vp

Default

Of the two calling convention specifications (f 1 xedparams and varparams),
the default is fixedparams. If you specify varparams but do not supply a
function argument, the varparams control applies to all functions in the
subsequent source text.

Discussion

Use the varparams control to require the specified functions to use the
variable parameter list (VPL) calling convention. Most of Intel's non-C
compilers generate object code for function calls using the fixed parameter
list (FPL) calling convention. Some earlier versions of Intel C use the
variable parameter list calling convention.

Compiler Controls 3-103

varparams (continued)

A function's calling convention dictates the sequence of instructions that the
compiler generates to manipulate the stack and registers during a call to a
function. The VPL calling convention is as follows:

1. The calling function pushes the arguments onto the stack with the
rightmost argument pushed first before control transfers to the called
function.

2. The calling function removes the arguments from the stack after control
returns from the called function.

See Chapter 8 for more detailed information on the FPL and VPL calling
conventions.

The VPL calling convention provides more flexibility than the FPL calling
convention. Use the VPL calling convention for functions that take a
variable number of parameters. See the f i xedparams control for more
information on the FPL calling convention.

A calling convention specified without an argument in the compiler
invocation affects functions throughout the entire module. If a function uses
a calling convention other than the one in effect for the compilation, specify
the calling convention before declaring the function.

If FPL is in effect globally, you can use an ellipsis in a prototype or
declaration to declare a VPL function, or use the varparams control. If VPL
is in effect globally, you must use the fi xedparams control in a #pragma
preprocessor directive to declare an FPL function.

If notranslate is specified, the compiler does not generate object code and
the calling convention control has no effect Ifnoobjectis specified, the
effect of the calling convention control on ±e object code can be seen in the
print file, although the compiler does not produce a final object file.

3-104 Compiler Controls

varparams (continued)

NOTE
An error occurs if a function in the source text explicitly
declares a variable parameter list and also is named in the
function list for the fixedparams control. In the following
example, the ellipsis in the fvprs function prototype indicates a
VPL convention for this function. Specifying the fi xedparams
(fvprs) control in this case causes an error:
#1nclude <stdarg.h>
fvprs (int a, ...);

The varparams and fi xedparams controls are general controls. Use them
freely in the compiler invocation or in #pragma preprocessor directives. If
you specify both controls without arguments in the invocation, the compiler
acts on the most recently encountered control. These controls only affect the
subsequent source text and remain in effect until the compiler encounters a
contrary control or the end of the source text.

See the entry for the extend Inoextend control in this chapter for other
information on code compatibility with previous versions of Intel C. See the
entry for the fixedparams control for information on the fixed parameter list
calling convention.

Examples

The following examples show different uses of the fixedparams and
varparams controls.

1. This combination of controls specifies variable parameter list
convention (VPL) for all functions in the source file except those in the
argument list. Use the controls on the invocation line as follows:

varparams fixedparams (argument-!1st)

Or use the controls in #pragma preprocessor directives as follows:
#pragma varparams
#pragma fixedparams (argument-!1st)

Compiler Controls 3-105

varparams (continued)

2. This control specifies fixed parameter list convention (FPL) for all
functions in the source file except those in the argument list. Use the
varparams control on the invocation line to override the default for the
function in the argument list as follows:

varparams (argument_l1st)

Or use the varparams control in a //pragma preprocessor directive as
follows:

//pragma varparams (arguments ist)

Cross-references
extend I noextend
fixedparams
obj ectInoobj ect
translate I notranslate

3-106 Compiler Controls

xref I noxref
Primary control

Specifies symbol table
cross-reference in listing

Syntax

[nojxref
(/pragma [nojxref

Abbreviation

[nojxr

Default

noxref

Discussion

Use the xref control to add cross-reference information to the symbol table
listing in the print file. Use the n ox ref control (default) to suppress the
cross-reference information.

The noprint and notransl ate controls override the xref control. The xref
and symbol s controls are similar, except that the xref control adds a
cross-reference listing of identifiers from the source program. The xref
control causes the compiler to generate a cross-referenced symbol table even
if the nosymbol s control is specified.

The print file lists the cross-reference line numbers on the far right under the
"Attributes" column in the symbol table listing. The "Attributes" column
describes the data or function type. A number with an asterisk (*) indicates
the line where the object or function is declared. A number without an
asterisk indicates a line where the object or function is accessed. The
cross-reference line numbers refer to the line numbers in the source text
listing in the print file. See Chapter 2 for an example of a cross-reference
listing.

Compiler Controls 3-107

xref I noxref (continued)

See Chapter 5 for more information on the symbol table and the print file.
See Chapter 2 for an example of the effect of the xref and noxref controls
on the symbol table in the listing.

Cross-references
print I noprint
symbol sInosymbols
trans! ate I notranslate

3-108 Compiler Controls

Contents 4
Segmentation Memory Models
4.1 How the Linker and Binder Combine Segments...................................... 4-2

4.1.1 Combining iC-86 Segments With LINK86.....................................4-3
4.1.2 Combining iC-286 Segments With BND286............................... 4-4
4.1.3 Combining iC-386 Segments With BND386............................... 4-5
4.1.4 How Subsystems Extend Segmentation.. 4-6

4.2 Segmentation Memory Models...4-6
4.2.1 Small Models... 4-10
4.2.2 Compact Models..4-14
4.2.3 Medium Models (iC-86 and iC-286)...4-18
4.2.4 Large Models (iC-86 and iC-286)... 4-22
4.2.5 Hat Model (iC-386 Only).. 4-26

4.3 Using near and far... 4-29
4.3.1 Addressing Under the Segmentation Models.............................. 4-31
4.3.2 Using far and near in Declarations...4-32
4.3.3 Examples Using far... 4-33

Segmentation
Memory Models

This chapter discusses how segmentation memory models manage code,
data, and stacks for the 86, 286, and lntel386'“ segmented architectures. This
chapter contains the following topics:

• how the linker and binder combine the compiler-created segments

• characteristics of the small, compact, medium, large, and flat memory
models

• how to use and interpret the far and near keywords

The iC-86 and iC-286 compilers use four segmentation memory models:
small, compact, medium, and large. The iC-386 compiler uses three
segmentation memory models: small, compact, and flat For iC-386, the
medium model is equivalent to the small model, and the large model is
equivalent to the compact model. Section 4.2 explains each model in detail.

The small and flat segmentation models are the most efficient models. Data
access is less efficient in the compact and large models, but these models
separate the data segment from the stack and enable access to other data
segments without specifying the far keyword. Code access is less efficient
in the medium and large models.

A segment for an 86 or 286 processor must not exceed 64 kilobytes. An
Intel386 processor segment can be as large as 4 gigabytes. Figure 4-1 shows
how to choose a segmentation model if your 86 or 286 application outgrows
its current model.

4-1

If Data Segment or
Code Segment
Overflows 64K

If Data-Stack
Segment
Overflows 64K

Large Model

Figure 4-1 Choosing a Segmentation Memory Model for iC-86 or iC-286

4.1 How the Linker and Binder Combine Segments

Segmentation divides a program into units that contain the program's code,
data, and stack. Segmentation makes references to memory locations more
efficient. The compiler places information defining segment attributes and
content into each object module. The linker or binder combines the
compiler's segments according to their definitions, thereby implementing the
segmentation memory model.

4-2 Segmentation Memory Models

A segment represents a contiguous set of memory locations, but does not
necessarily have a fixed address or fixed size until placed in memory for
execution. The LOC86 locator, BLD286 or BLD386 system builder, or
operating system loader assigns a fixed address to a segment and establishes
its size. The maximum size of an 86 or 286 segment is 64 kilobytes, and of
an Intel386 processor segment is 4 gigabytes.

4.1.1 Combining iC-86 Segments With LINK86

The LINK86 linker combines segments from its input modules if they have
the following characteristics:

• the same segment name

• the same overlay name

• the same combine-type

• a combined length no greater than 64 kilobytes

The group name identifies segments that must be kept within the same
64 kilobytes segment in memory.

The class name identifies segments that share common attributes and should
be kept together in the same area of memory, but not necessarily in the same
segment.

The iC-86 compiler places in each object module the following segment
definition characteristics for each compiler-created segment:

• the segment name

• a null overlay name for all segments

• the combine-type

• the size of the segment

• the group name

• the class name

Segmentation Memory Models 4-3

The iC-86 compiler assigns the word segment alignment attribute to all
segments, and does not assign the inpage attribute. Any alignment attribute
except byte can result in unused memory between combined segments. The
alignment attributes are as follows:

• Byte, which means a segment starts at any address.

• Word, which means a segment starts at an address that is a multiple of
2, starting from address OH (for example, OH, 2H, 4H,...). iC-86
assigns this attribute to all segments.

• Paragraph, which means a segment starts at an address that is a multiple
of 16, starting from address OH (for example, OH, 10H, 20H,...).

• Page, which means a segment starts at an address that is a multiple of
256, starting from address OH (for example, OH, 1OOH, 200H,...).

• Inpage, which means a segment starts at an address according to one of
the previous alignment attributes, and not cross a page boundary. An
inpage segment must not be larger than 256 kilobytes. iC-86 does not
assign this attribute.

4.1.2 Combining iC-286 Segments With BND286

The BND286 binder combines segments from the input object modules if
they have the following characteristics:

• the same segment name

• the same kind of contents, i.e., code or data

• the same privilege level

• compatible access rights

• compatible combine-types

• a combined length no greater than 64 kilobytes

4-4 Segmentation Memory ModeE

The iC-286 compiler places in each object module the following segment
definition characteristics for each compiler-created segment:

• the segment name

• whether the segment is code or data

• privilege level 3

• segment access rights: non-conforming, not present, and not
expand-down for all segments; and whether code is readable or data is
writable

• the combine-type

• the size of the segment

See Chapter 6 for more information on the characteristics of a 286 processor
segment.

4.1.3 Combining iC-386 Segments With BND386

The BND386 binder combines segments from the input object modules if
they have the following characteristics:

• the same segment name

• the same kind of contents, i.e., code or data

• the same privilege level

• compatible granularity and default operand and address size

• compatible access rights

• compatible combine-types

• a combined length no greater than 4 gigabytes

Segmentation Memory Models 4-5

The iC-386 compiler places in each object module the following segment
definition characteristics for each compiler-created segment:

• the segment name

• whether the segment is code or data

• privilege level 3

• byte granularity and 32-bit operand and address size

• segment access rights: non-conforming, not present, and not
expand-down for all segments; and whether code is readable or data is
writable

• the combine-type

• the size of the segment

See Chapter 6 for more information on the characteristics of an Intel386
processor segment.

4.1.4 How Subsystems Extend Segmentation

A subsystem is a collection of modules that use the same segmentation
model. A program can be made up of one or more subsystems. Subsystems
allow collections of program modules that are compiled with different
segmentation controls to be combined into the same program. For detailed
information on the use and syntax of subsystems, see Chapter 9.

4.2 Segmentation Memory Models
The segmentation memory model determines the number of segments and
the contents of those segments in the compiler-created object module. The
linker or binder uses the segments from each compiled object module to
create the linked object module. The smal 1, compact, medium, 1 arge, and
flat compiler controls determine the segmentation model that the compiler
uses to create an object module.

4-6 Segmentation Memory Models

NOTE
The iRMX® I and II operating systems support only the
compact and large segmentation memory models, and the
iRMX JU operating system supports only the compact
segmentation memory model.

There are four components of object code:

• code (executable instructions)

• data (global and static variables)

• stack (function activation records, automatic variables, and any
compiler-generated temporary storage not explicitly declared in the
source module)

• constants (statically allocated constant objects, character strings and
floating-point literals, and other compiler-generated constant values)

The compiler creates a code segment for executable instructions, a data
segment for global and static variables, and a stack segment for stack
activity. The ram and rom controls determine whether the compiler puts the
constants with the code segment or the data segment. If you specify the r om
control during compilation, the compiler places the constants in the code
segment. If you specify the ram control during compilation or accept the
default, the compiler places the constants in the data segment.

The segmentation memory model of your application determines the
segmentation model of the run-time libraries to which you bind your
applications. Figures 4-2 and 4-3 show how to select the segmentation
memory model of the libraries for linking or binding with your program.

Segmentation Memory Models 4-7

Start

OSD716

Figure 4-2 Choosing the Segmentation Model of a Library
for iC-86 or iC-286

4-8 Segmentation Memory Models

OSD741

Figure 4-3 Choosing the Segmentation Model of a Library for iC-386

Segmentation Memory Models 4-9

4.2.1 Small Models

Recall that the LINK86 linker combines iC-86 segments with the same name
and compatible combine-types, and the linker ensures that segments with the
same group name reside in the same 64K-byte segment The BND286 and
BND386 binders combine compiler-generated segments that have the same
name, compatible combine-types, and the same access attributes.

A program using the small segmentation memory model contains two
segments: CODE (iC-86 or iC-286) or CODE32 (iC-386) and DATA. The CS
register contains the selector for the code segment. The DS and SS registers
contain the selector for the DATA segment. For iC-386, the ES register also
contains the selector for DATA.

Tables 4-1 through 4-3 show the compiler segment definitions for a module
compiled with the smal 1 control. When you specify the rom control, the
compiler places the constants in the module's code segment When you
specify the ram control, the iC-86 compiler creates a segment for the
constants, which the linker combines with other DGROUP segments to make
the data segment. Under the ram control, both the iC-286 and iC-386
compilers place the constants in the module's data segment.

Table 4-1 iC-86 Segment Definitions for Small Model Modules

Description Name Combine-type Group

code segment CODE concatenate CGROUP
constant segment
(only with ram control)

CONST concatenate DGROUP

data segment DATA concatenate DGROUP
stack segment STACK overlay additively DGROUP

Table 4-2 iC-286 Segment Definitions for Small Model Modules

Description Name Combine-type Access

code segment CODE normal execute-read
data segment DATA normal read-write
stack segment DATA stack read-write

4-10 Segmentation Memory Models

Table 4-3 iC-386 Segment Definitions for Small Model Modules

Description Name Combine-type Access

code segment CODE32 normal execute-read
data segment DATA normal read-write
stack segment DATA stack read-write

The resulting linked small model module contains one code segment up to 64
kilobytes (iC-86 and iC-286) or 4 gigabytes (iC-386) long, and one combined
data-stack segment up to 64 kilobytes (iC-86 and iC-286) or 4 gigabytes
(iC-386) long.

The small segmentation memory model is efficient in both program size and
memory access. Using the small segmentation memory model restricts your
program to 128 kilobytes (iC-86 and iC-286) or 8 gigabytes (iC-386) of
memory.

Since all the executable instructions fall within one segment, function
pointers are near by default (the offset-only address format). If you specify
the ram control, all variables, temporary variables, and constants fall within
one segment, and data pointers are near by default. If you specify the r om
control, which places constants in the code segment, data pointers are far
(the segment-selector-and-offset address format). See Section 4.3 for an
explanation of near and far address formats.

Figures 4-4 and 4-5 show the process of linking or binding a small RAM and
a small ROM program from two modules. The relative sizes of the final
segments are not to scale. The order of modules in the linker or binder input
list affects the order of segments in the output file.

Segmentation Memory Models 4-11

OSD712

Figure 4-4 Creating a Small RAM Program

4-12 Segmentation Memory Models

OSD746

From main.obj
and

setup.obj

iC-86/286:
CODE

iC-386;
CODE32

With Constants

iC-8€A
64KM

286:
ax.

DATA

From main.obj
and

setup.obj

iC-386
4 Giga bytes Max. (Stack

for
Both)

4 hq

Figure 4-5 Creating a Small ROM Program

Segmentation Memory Models 4-13

4.2.2 Compact Models

Recall that the LINK86 linker combines iC-86 segments with the same name
and compatible combine-types, and the linker ensures that segments with the
same group name reside in the same 64K-byte segment. The BND286 and
BND386 binders combine compiler-generated segments that have the same
name, compatible combine-types, and the same access attributes.

A program using the compact segmentation memory model contains three
segments: CODE (iC-86 or iC-286) or C0DE32 (iC-386), DATA, and STACK.
The CS, DS, and SS registers contain the selectors for the CODE or C0DE32,
DATA, and STACK segments, respectively. For iC-386, the ES register contains
the same value as the DS register.

Tables 4-4 through 4-6 show the compiler segment definitions for a module
compiled with the compact control. When you specify the rom control, the
compiler places the constants in the module's code segment. When you
specify the ram control, the iC-86 compiler creates a segment for the
constants, which the linker combines with other DGROUP segments to make
the data segment. Under the ram control, both the iC-286 and iC-386
compilers place the constants in the module's data segment.

Table 4-4 iC-86 Segment Definitions for Compact-model Modules

Description Name Combine-type Group

code segment CODE concatenate CGROUP

constant segment
(only with ram control)

CONST concatenate DGROUP

data segment DATA concatenate DGROUP
stack segment STACK overlay additively

Table 4-5 iC-286 Segment Definitions for Compact-model Modules

Description Name Combine-type Access

code segment CODE normal execute-read

data segment DATA normal read-write
stack segment STACK stack read-write

4-14 Segmentation Memory Models

Table 4-6 iC-386 Segment Definitions for Compact-model Modules

Description Name Combine-type Access

code segment CODE32 normal execute-read
data segment DATA normal read-write
stack segment STACK stack read-write

The resulting linked compact model module contains one code segment up to
64 kilobytes (iC-86 and iC-286) or 4 gigabytes (iC-386) long, one data
segment up to 64 kilobytes (iC-86 and iC-286) or 4 gigabytes (iC-386) long,
and one stack segment up to 64 kilobytes (iC-86 and iC-286) or 4 gigabytes
(iC-386) long.

The compact segmentation memory model is efficient in program size, and
offers the maximum possible space for stack activity. Using the compact
segmentation memory model restricts your program to 192 kilobytes (iC-86
and iC-286) or 12 gigabytes (iC-386) of memory, but has a full 64 kilobytes
(iC-86 and iC-286) or 4 gigabytes (iC-386) for stack activity, and allows
access to multiple data segments.

Since all the executable instructions fall within one segment, function
pointers are near by default (the offset-only address format). Since data
(constants, program variables, or temporary variables) can be in different
segments (code, data, or stack), data pointers are far by default (the
segment-selector-and-offset address format). See Section 4.3 for an
explanation of near and far address formats.

Because all data pointers are far pointers by default, a compact model
program can dynamically allocate one or more additional data segments up
to 64 kilobytes (iC-86/286) or 4 gigabytes (iC-386) long.

Figures 4-6 and 4-7 show the process of linking or binding a compact RAM
and a compact ROM program from two modules. The relative sizes of the
final segments are not to scale. The order of modules in the binder input list
affects the order of segments in the output file.

Segmentation Memory Models 4-15

main.c setup .c
Source Code

OSD747

Figure 4-6 Creating a Compact RAM Program

4-16 Segmentation Memory Models

0SD748

Figure 4-7 Creating a Compact ROM Program

Segmentation Memory Models 4-17

4.2.3 Medium Models (iC-86 and iC-286)

Recall that the LINK86 linker combines iC-86 segments with the same name
and compatible combine-types, and the linker ensures that segments with the
same group name reside in the same 64 kilobyte segment. The BND286
binder combines compiler-generated segments that have the same name,
compatible combine-types, and the same access attributes.

NOTE
For iC-386, the medium model is equivalent to the small model.

A program using the medium segmentation memory model contains as many
code segments as input modules, and one combined data-stack segment,
DAT A. The value in the CS register changes during execution to point to the
currently active code segment. The DS, ES, and SS registers contain the
selector for the DAT A segment.

Tables 4-7 and 4-8 show the compiler segment definitions for a module
compiled with the medl um control. When you specify the rom control, the
compiler places the constants in the module's code segment. When you
specify the ram control, the iC-86 compiler creates a segment for the
constants, which the linker combines with other DGROUP segments to make
the data segment. Under the ram control, the iC-286 compiler places the
constants in the module's data segment

Table 4-7 iC-86 Segment Definitions for Medium-model Modules

Description Name Combine-type Group

code segment modu/e_CODE concatenate
constant segment
(only with ram control)

CONST concatenate DGROUP

data segment DATA concatenate DGROUP

stack segment STACK overlay additively DGROUP

4-18 Segmentation Memory Models

Table 4-8 iC-286 Segment Definitions for Medium-model Modules

Description Name Combine-type Access

code segment module_CODE normal execute-read
data segment DATA normal read-write
stack segment DATA stack read-write

The resulting linked medium module contains one 64K-byte code segment
for each separately compiled module and one 64K-byte combined data-stack
segment.

The medium segmentation memory model offers maximum program code
space, efficient data and stack size, and (with the ram control) efficient data
access. Using the medium segmentation memory model enables your
program to have 64 kilobytes of memory available per module for executable
instructions. Program code space is limited only by the number of modules
you define and the total memory available in your target system.

Since all the executable instructions do not fall within one segment, function
pointers are by default far (the segment-selector-and-offset address format).
If you specify the ram control, all variables, temporary variables, and
constants fall within one segment, and data pointers are by default near
(the offset-only address format). If you specify the rom control, which
groups constants with code, data pointers are far. See Section 4.3 for an
explanation of near and far address formats.

Figures 4-8 and 4-9 show the process of linking or binding a medium RAM
and medium ROM program from two modules. The relative sizes of the
final segments are not to scale. The order of modules in the linker or binder
input list affects the order of segments in the output file.

Segmentation Memory Models 4-19

4-20 Segmentation Memory Models

setup.cmain.c

OSD709

Figure 4-9 Creating an iC-86 or iC-286 Medium ROM Program

Segmentation Memory Models 4-21

4.2.4 Large Models (iC-86 and iC-286)

Recall that the LINK86 linker combines iC-86 segments with the same name
and compatible combine-types, and the linker ensures that segments with the
same group name reside in the same 64 kilobyte segment. The BND286
binder combines compiler-generated segments that have the same name,
compatible combine-types, and the same access attributes.

NOTE
For iC-386, the large model is equivalent to the compact model.

A program using the large segmentation memory model contains as many
code segments as input modules, as many data segments as input modules,
and one stack segment, STACK. The values in the CS and DS registers change
during execution to point to the currently active code and data segments,
respectively. The SS register contains the selector for the STACK segment.
The ES register contains the same value as the DS register.

Tables 4-9 and 4-10 show the compiler segment definitions for a module
compiled with the 1 a rg e control. When you specify the rom control, the both
compilers place the constants in the module's code segment When you
specify the ram control, both compilers place the constants in the module's
data segment.

Table 4-9 iC-86 Segment Definitions for Large-model Modules

Description Name Combine-type Group

code segment module_CODE concatenate

data segment moduleJJAT A concatenate
stack segment STACK overlay additively

Table 4-10 iC-286 Segment Definitions for Large-model Modules

Description Name Combine-type Access

code segment module_CODE normal execute-read
data segment module_DflJ'A normal read-write
stack segment STACK stack read-write

4-22 Segmentation Memory Models

The resulting linked large module contains one 64 kilobyte code segment for
each separately compiled module, one 64 kilobyte data segment for each
separately compiled module, and one 64 kilobyte stack segment.

The large segmentation memory model offers maximum program code
space, maximum program data space, and maximum program stack space.
Using the large segmentation memory model enables your program to have
64 kilobytes of memory available per module for executable instructions, 64
kilobytes of memory per module for data, and 64 kilobytes of memory for all
stack activity. Program size is limited only by the number of modules you
define and the total memory available in your target system.

Since all the executable instructions do not fall within one segment, function
pointers are by default far (the segment-selector-and-offset address format).
Since data (constants, program variables, or temporary variables) can be in
different segments (code, data, or stack), data pointers are by default far (the
segment-selector-and-offset address format). See Section 4.3 for an
explanation of near and far address formats.

Figures 4-10 and 4-11 show the process of linking or binding a large RAM
and large ROM program from two modules. The relative sizes of the final
segments are not to scale. The order of modules in the linker or binder input
list affects the order of segments in the output file.

Segmentation Memory Models 4-23

setup.cmain.c

0SD711

Figure 4-10 Creating an iC-86 or iC-286 Large RAM Program

4-24 Segmentation Memory Models

OSD708

Figure 4-11 Creating an iC-86 or iC-286 Large ROM Program

Segmentation Memory Models 4-25

4.2.5 Flat Model (iC-386 Only)

The iC-386 compiler creates segment definitions for the flat model of
segmentation the same as for the compact model, but all function and data
pointers are near by default (the offset-only address format). The system
builder, BLD386, combines the bound segments into one linear segment by
setting the CS, DS, and SS registers to the same selector, and adjusting all
offsets relative to the common base address. See the Intel386r,‘ Family
System Builder User's Guide, listed in Chapter 1, for more information on
how the builder creates a flat-model system from bound segments. See
Section 4.3 for an explanation of near and far address formats.

Table 4-11 shows the iC-386 compiler segment definitions for a module
compiled with the fl at control. Table 4-12 shows the changes to the
segment names after the module is processed by BLD386.

Table 4-11 iC-386 Segment Definitions for Flat-model Modules

Description Name Combine-type Access

code segment CODE32 normal execute-read
data segment DATA normal read-write
stack segment STACK stack read-write

Table 4-12 BLD386 Segment Names for Flat-model Programs

iC-386 Name BLD386 Name

CODE32 _phantom_code_
DATA _phantom_data_

STACK _phantom_data_

Whether you specify the rom control or the ram control, the iC-386 compiler
places the constants with the code segment. The rom and ram controls only
affect initialization of static variables. See the entry for the rom and ram
controls in Chapter 3 for more information on the initialization of static
variables.

The resulting bound and built flat model system contains one segment up to
4 gigabytes long containing all code, data, and space for stack activity.

4-26 Segmentation Memory Models

The flat segmentation memory model is efficient in size and memory access,
but disables many of the protection features that the other memory models
provide. Data, stack, and code are not protected from run-time segment
overruns. Using the flat segmentation memory model restricts your program
to 4 gigabytes of memory.

Since all the executable instructions fall within one segment, function
pointers are near by default (the offset-only address format). Since data
(constants, program variables, or temporary variables) fall within one
segment, data pointers are also near by default (the offset-only address
format). See Section 4.3 for an explanation of near and far address formats.

Figure 4-12 shows the process of building a flat model program from the
bound segments of two compiled modules, and other bound modules, such as
startup code. The relative sizes of the segments are not to scale. The relative
positions of code, data, and stack within the built program depend on the
definitions in the build file and system data structures, such as descriptor
tables. See the Intel386!u Family System Builder User's Guide, listed in
Chapter 1, for more information on how the builder positions code, data,
stack, and system data structures within the built program.

Segmentation Memory Models 4-27

main.obj Compiled Code setup.obj

4-28 Segmentation Memory Models

4.3 Using near and far
The near and far keywords are type qualifiers that allow programs to
override the default address size generated for a data or code reference,
which is determined by the segmentation memory model. You must compile
programs that use the near and far keywords with the extend control. See
Chapter 3 for information about the extend control. Table 4-13 shows the
default address sizes for all segmentation memory models.

Table 4-13 Segmentation Models and Default Address Sizes

Segmentation Model Code Reference Data Reference

small RAM offset offset
small ROM offset selector and offset

compact RAM offset selector and offset
compact ROM offset selector and offset
medium RAM selector and offset offset
medium ROM selector and offset selector and offset
large RAM selector and offset selector and offset
large ROM selector and offset selector and offset

flat RAM or ROM offset offset

The near type qualifier causes the compiler to generate an offset-only
address. An offset-only address occupies less space and results in quicker
execution than a selector-and-offset address. An offset-only address can
reference memory only within its segment. The far type qualifier causes the
compiler to generate a segment-selector-and-offset address. A
selector-and-offset address can reference all addressable memory.

Segmentation Memory Models 4-29

Use the far type qualifier for the following reasons:

to write code that
executes in different
memory models

You can compile a module using different
segmentation models for different applications.
To ensure that the code executes properly under
all models, use the far type qualifier when
non-local data and code references are required.

to call a library that
requires a
selector-and-offset call

Some libraries require access through a
selector-and-offset call.

to refer to code or data
in a subsystem of
another segmentation
model

In multiple segmentation model applications,
non-local references can require the far type
qualifier. See Chapter 9 for information on
using multiple subsystems to mix segmentation
models within an application.

to call a function at a
different privilege level
or handle an interrupt

Functions at different privilege levels are always
in different segments. A call to an interrupt
handler is a far call except in the flat
segmentation memory model.

Use the near type qualifier for the following reasons:

to discard the selector
portion of an address

Casting a pointer to near discards the selector.
Reference through an offset-only pointer is more
efficient.

to override the default
data address size

For efficient data references, override the default
far references to data that occur when the DS
register already has the correct selector.

to override the default
code address size

For efficient code references, override the
default far references to code that occur when
the CS register already has the correct selector.

4-30 Segmentation Memory Models

4.3.1 Addressing Under the Segmentation Models

In small and medium model programs, the CS register contains the code
segment selector and the DS and SS registers contain the data segment
selector. In medium model programs, the selector in the CS register changes
during execution as the current code segment changes.

In compact and large model programs, the CS register contains the code
segment selector, the DS register contains the data segment selector, and the
SS register contains the stack segment selector. In large model programs, the
selectors in the CS and DS registers change during execution as the current
segments change. The data and code segments are paired by module, and the
CS and DS registers always change together.

In flat model programs, the CS, DS, and SS registers contain selectors that all
point to the same base address.

In all models, a reference to a selector-and-offset object requires a load to a
segment register. In iC-86 and iC-286, the ES register is typically used to
de-reference selector-and-offset addresses. In iC-386, the FS and GS
registers are typically used to de-reference selector-and-offset addresses, and
the ES register is expected to contain the same value as the DS register.

A variable or a function is "near" if the segmentation model assigns
offset-only addresses by default, or if the variable or function is declared
with the near type qualifier. A variable or a function is "far" if the
segmentation model assigns selector-and-offset addresses by default, or if the
variable or function is declared with the far type qualifier.

In a call to a near function, the processor uses the segment selector in the CS
register with the offset-only address of the function to form the address of the
function. In a reference to a near variable, the processor uses the segment
selector in the DS register with the offset-only address of the variable to form
the address of the variable.

Segmentation Memory Models 4-31

In a call to a far function, the processor loads the segment selector portion of
the address into the CS register, and then uses the CS register with the offset
portion of the function's address to form the address of the function. In a
reference to a far variable, the processor loads the segment selector portion
of the address into the ES register (86 or 286) or FS or GS register (Intel386
CPU) if neither contains the necessary selector. Then the processor uses
either the ES, FS, or GS register with the offset portion of the variable's
address to form the address of the variable.

4.3.2 Using far and near in Declarations

The near and far type qualifiers can occur anywhere in a list of declaration
specifiers. Declaration specifiers include storage-class specifiers and type
specifiers. Declaration specifiers can also occur after an asterisk (*) in a
pointer declarator. See C: A Reference Manual, identified in Chapter 1, for
information on the syntax of declarations, declaration specifiers,
storage-class specifiers, type specifiers, and pointer declarators.
See Chapter 10 for the way iC-86/286/386 extends the syntax of declarators.

You can declare any variable or function with either the near or far type
qualifier to indicate whether it is declared in the same segment from which it
is referenced or in a different one. You can specify whether a pointer
variable contains a near or a far address.

4-32 Segmentation Memory Models

For example, the following declarations override the default addresses in a
module where all addresses are near by default:

'int far m; /* m is a local integer that */
*/
*/

/*
/*

is referenced from some
other segment

extern int far n; /* n is an integer in some */
/* other segment */
/* being referenced here */

int far * mn_ptr; /* mn_ptr is a local pointer */
/* to an integer like m or */
/* n in a different segment */

extern int far * far nm_ptr ;/* nm_ptr is a pointer in */
/* some other segment to an */
/* integer like n or m in a */
/* different segment */

extern int * far k_ptr; /* k_ptr is a pointer in */
/* some other segment to a */
/* local integer in this */
/* segment */

4.3.3 Examples Using far

All of the examples that follow assume the compilation uses the s ma 11
control. In these examples, each single letter in an identifier stands for a type
or a type qualifier. The identifiers are spelled so that if you read each letter
in the identifier from left to right, the types the letters stand for create a
description of the example declaration. Interpret the phrase "far something"
to be the same as "something in a different segment". The identifiers and
types in the examples are as follows:

i int
F far
f function returning
p pointer to

Segmentation Memory Models 4-33

1. This example declares two integers. The integer i is in the current data
segment, referenced through the DS register. The integer F i is in a
different data segment, and a reference causes a load to a segment
register. The address of 1, &i, is a near address (offset-only). The
address of Fi, or & Fi, is a far address (selector-and-offset). If the
extern storage class specifier did not exist in the declaration of Fi,
references to Fi would use near addresses, but the address of Fi would
still be a far address.
extern int i; /* Where "i" is read as "int" */

extern int far Fi; /* Where "Fi" is read as "far int" */

2. This example declares two functions. Calls to f i are near calls, and
calls to Ff i are far calls. The address of f i, or &f i, is a near address.
The address of Ff i, or & Ff i, is a far address. If the extern storage class
specifier did not exist in the declaration of Ff i, calls to Ff i would still
be far calls.
extern int fi(); /* Where "fi" is read as */

/* "function returning int" */

extern int far Ffi(); /* Where "Ffi” is read as */
/* "far function returning int" */

3. This example declares four pointer variables. The addresses of pi and
p F i are near addresses, and the addresses of F p i and F p F i are far
addresses. The values of pi and Fpi are near addresses (near pointers),
and those of pFi and FpFi are far addresses (far pointers). Reference to
Fpi, FpFi, *pFi, or *FpFi causes aloadto a segment register.

extern int * pi;
extern int * far Fpi;
extern int far * pFi;
extern int far * far FpFi;

4-34 Segmentation Memory Models

4. This example declares four functions that return pointers. Calls to f pi
andfpFi are near calls. Calls to Ffpi and FfpFi are far calls. Bothfpi
and Ffpi return near pointers, and f p Fi and FfpFi return far pointers.

extern int ★ fpi();
extern int * far FfpiO:
extern int far * fpFiO;
extern int far * far FfpFiO;

Reading the last identifier from left to right, the type of Ff pFi is read
"far function returning pointer to far int." Reading the declarator
inside-out (right-to-left), which is the standard way of reading complex
C declarators, gives "function returning far pointer to far int," as
follows:

Element Interpretation

Ff pFi () "function returning"
* far "far pointer to"
int far "farint"

Such an inside-out interpretation is illogical because a function's return
value must be in a register, not in memory (as a far pointer would be).
Adding parentheses and writing the same declaration as follows
preserves inside-out interpretation and matches the left-to-right reading
of the letters in FfpFi:
extern int far * (far FfpFi)();.

Element Interpretation

int far "farint"
* "pointer to"
(far FfpFi)() "far function returning"

The last declaration uses a non-standard type qualifier syntax explained
in Chapter 10.

Segmentation Memory Models 4-35

5. This example declares four variables whose values point to a function.
Such functions can be called indirectly. Reference to pf i or pFfi uses
the DS register. Reference to Fpf i or Fp Ff i causes a load into a
segment register. Calls through pfi or Fpf i are near calls. Calls
through pFf i or FpFf i are far calls.

extern i nt (* pfi)()
extern int (* far Fpfi)()
extern i nt far (* pFfi)()
extern int far (* far FpFfilO

6. This example declares eight pointers to functions that return pointers.
Three different kinds of memory references can occur: referencing the
pointer to a function, calling the function, and referencing the value
indirectly specified by the return value of the function. Reference to
Fpfpi, FpFfpi, FpfpFi,and FpFfpFi all cause a load into a segment
register; these functions are declared with the fa r type qualifier in the
third column. Calls to pFfpi, FpFfpi, pFfpFi, and FpFfpFi are far
calls; these functions are declared with the fa r type qualifier in the
second column. The values returned by pfpFi, FpfpFi, pFfpFi, and
FpFfpFi are far pointers; these functions are declared with the f a r type
qualifier in the first column.

extern int ★ (* pfpi)();
extern int ★ (* far Fpfpi)();
extern int * far (* pFfpi) () ;
extern i nt * far (* far FpFfpi)();
extern int far * (* pfpFi)();
extern int far * (* far FpfpFi)();
extern int far * far (* pFfpFi)();
extern int far * far (* far FpFfpFilO:

4-36 Segmentation Memory Models

Contents

Listing Files
5.1 Preprint File.. 5-1

5.1.1 Macros...5-2
5.1.2 Include Files..5-3
5.1.3 Conditional Compilation... 5-4
5.1.4 Propagated Directives... 5-4

5.2 Print File..5-5
5.2.1 Print File Contents.. 5-5
5.2.2 Page Header.. 5-6
5.2.3 Compilation Heading.. 5-6
5.2.4 Source Text Listing... 5-7
5.2.5 Remarks, Warnings, and Errors.. 5-8
5.2.6 Pseudo-assembly Listing...5-9
5.2.7 Symbol Table and Cross-reference... 5-9
5.2.8 Compilation Summary.. 5-10

Listing Files

The iC-86/286/386 compilers provide listing information in two optional
listing files: the preprint file and the print file. These two files embody two
phases in compiling. The preprint file contains the source text after textual
preprocessing, such as including files and expanding macros. The print file
contains information about the results of compiling, that is, using the source
text to create object code. The term "compiling" often refers to both the
preprocessing and compiling phases as one.

By default, the compiler does not generate a preprint file; use the preprint
control to produce a preprint listing file. By default, the DOS- and iRMX®
system-hosted compilers generate a print file; use the no p r i n t control to
suppress the print file. The VMS-hosted compilers also generate a print file
by default, except when used interactively with DCL-style syntax, as
described in Chapter 2. See Chapter 3 for more information about the
preprint and n o p r i n t controls. See Chapter 2 for examples of invocations
that produce print and preprint files.

5.1 Preprint File

This section describes the preprint file generated by the preprocessing phase
of the compiler. The preprint file contains the preprocessor output, which is
used as input for the compiling phase. Compiling the preprint file produces
the same results as compiling the source file, assuming the compiler can
expand any macros without errors.

The compiler preprocesses the source text, to produce the preprint text as
follows:

• Expands macros by substituting the body, or textual value, of each
macro for each occurrence of its name.

5-1

• Inserts source text from files specified with the i ncl ude compiler
control or the //i ncl ude preprocessor directive; inserts the #1 i ne
preprocessor directive to bracket sections of included source text in the
preprint file.

• Eliminates parts of the source text based on the //i f, //i fdef, //i fndef,
//el se, //el i f, and //endif conditional compilation directives.

• Propagates the preprocessor directives #1 i ne, //error, and //pragma
from the source text to the preprocessed source text.

5.1.1 Macros

Use the def ine control or the //define preprocessor directive to define a
textual value for a macro name. The preprocessor substitutes the textual
value everywhere the macro name appears in the subsequent source text. See
Chapter 3 for more information on using the def i ne control to define
macros, and see Chapter 2 for examples using the //define preprocessor
directive. See C: A Reference Manual, listed in Chapter 1, for detailed
information on the //d ef i n e preprocessor directive.

The iC-86/286/386 compilers provide several predefined macros for your
convenience. Table 5-1 shows these macros and their values. See Chapter 3
for information on the 1 ong64 I nol ong64, mod86 I modl86, mod287 I
nomod287, mod486 I nomod486, optimize, rom, and ram controls. See
Chapter 4 for information on segmentation memory models and addressing
formats.

Table 5-1 iC-86/286/386 Predefined Macros

Name Value

_ _DATE__
_ _FILE_ _
__ LINE__
__ STDC__

date of compilation (if available)
current source filename
current source line number
conformance to ANSI C standard:
1 indicates conformance

__TIME___ time of compilation (if available)

5-2 Listing Files

Table 5-1 iC-86/286/386 Predefined Macros (continued)

Name Value

-ARCHITECTURE. 86 for iC-86 compiler and mod86 control (default)
186 for iC-86 compiler and modi 86 control
286 for iC-286 compiler
386 for iC-386 compiler and nomod486 control (default)
486 for iC-386 compiler and mod486 control

_FAR_CODE_ default address size for function pointers and
default range for function calls:
1 (far) for medium and large segmentation models
0 (near) for small, compact, and flat segmentation models

_FAR_DATA_ default address size for data pointers:
1 (far) for all ROM, compact RAM, and large RAM

segmentation models
0 (near) for small RAM, medium RAM, and flat

segmentation models
LONG64 default type size for long data types in iC-386:

1 for 8-byte long datatypes if using Iong64 control
0 for 4-byte long data types if using nolong64 control

NPX generate FWAIT instructions for numeric coprocessor:
87 for iC-86 and nomod287 control (generate FWAITs)
287 for iC-86 and mod287 control (no FWAITs)

.OPTIMIZE. current optimization level as set by optimize control:
0, 1, 2, or 3

ROM placement of constants with code or data:
1 if using rom control
0 if using ram control

5.1.2 Include Files

Use the include control in the compiler invocation or the #1 ncl ude
preprocessor directive in the source text to specify an include file. The
preprocessor inserts the contents of a file included with the include control
before the first line of the source file. The preprocessor inserts the contents
of a file included with the #i ncl ude preprocessor directive into the source
text in place of the line containing the #1 ncl ude directive. See Chapter 3 for
more information on the i ncl ude control.

Listing Files 5-3

Paired occurrences of the #1 i ne preprocessor directive bracket the included
text. The compiler inserts the #11 n e directive in the preprint listing file at
the beginning of the included text and another #1 i ne directive at the end of
the included text.

5.1.3 Conditional Compilation

Conditional preprocessor directives delimit sections of source text to be
compiled only if certain conditions are met The preprocessor evaluates the
conditions and determines which sections of source text are kept. The source
text that is not kept does not appear in the preprint file unless the cond
control is in effect. See Chapter 3 for more information onthecondlnocond
control.

The conditional directives are #1 f, #el se, #el i f, #endi f, #i fdef, and
#ifndef. The #i f directive can take a special def in ed operator. See
C: A Reference Manual, listed in Chapter 1, for information on these
directives and the def i ned operator.

5.1.4 Propagated Directives

The preprocessor propagates the directives #1 ine, //error, and //pragma
from the source text to the preprint file to ensure that the preprint text is
equivalent to the source text after preprocessing. See Chapter 11 and
C: A Reference Manual, listed in Chapter 1, for information on these
directives. See Chapter 3 for a complete list of controls that a //p ra gma
directive can use.

5-4 Listing Files

5.2 Print File

This section describes the print file generated by the compiling phase of the
compiler. The print file contains information about the source text read into
the compiler and the object code generated by the compiler. See Chapter 2
for several examples of a print file. The following controls (and the
equivalent DCL-style qualifiers) affect the format and contents of the print
file:

code | nocode
cond | nocond
diagnostic
eject
list I nolist

listexpand | nolistexpand pagelength
listinclude | nolistinclude pagewidth
modulename tabwidth
symbols | nosymbols title
xref I noxref

Table 5-2 shows the compiler controls that affect the entire print file format.

Table 5-2 Controls That Affect the Print File Format

Control Effect

eject
pagelength
pagewidth
tabwidth

specifies a form feed (new page)
determines number of lines per page
determines number of characters per line
determines number of characters per tab stop

5.2.1 Print File Contents

The print file contains the following sections:

page header identifies the compiler and the object module
name and gives the date and time of
compilation.

compilation heading identifies the host operating system, the
compiler, the object module name, and describes
the parameters with which the compiler was
invoked.

source text listing is the listing of the C program.

Listing Files 5-5

remark, warning, and
error messages

are generated by the compiler and are listed with
the source text

pseudo-assembly listing is a listing of the assembly language object code
produced by the compiler. The code does not
contain all the assembler directives necessary for
a complete assembly language program.

—-

symbol table and
cross-reference

provide symbolic information and
cross-reference information.

compilation summary tabulates the size of the output module, the
number of diagnostic messages, and the
completion status (successful termination or
fatal error) of the compilation.

5.2.2 Page Header

Each page of the output listing file begins with a page header. The page
header describes the compiler, identifies the module compiled, and shows the
date and page number.

The following page header shows the iC-386 compiler compiling the module
MAIN on the 25th of January, 1991. This example shows the header from the
first page of the print file.

IC-386 COMPILER MAIN 01/25/91 10:28:20 PAGE 1

Page numbers range from 1 to 999, then start over at 0.

5.2.3 Compilation Heading

The compilation heading is on the first page of the print file. The
compilation heading gives the name of the object module, the pathname of
the object module file, and the compiler controls specified in the compiler
invocation. It also identifies the compiler version and host system.

For example, the compiler is invoked on a DOS host system as follows:
C:\CEXAMPLE> ic386 main.c define(NPAPER) &
>> include(prags.h) &
>> sea rchi ncl ude(\i ntel \i c386\i nc\,in cludes\)

5-6 Listing Files

The compiler processes the ma i n. c source file and puts the object module
into the file ma i n. o b j. The compilation heading shows the host operating
system, the compiler version, the module name, and the controls used on
invocation, as follows:

system-id iC-386 COMPILER Vx.y, COMPILATION OF MODULE MAIN
OBJECT MODULE PLACED IN main.obj
COMPILER INVOKED BY: \INTEL\IC386\IC386.EXE main.c deflne(NPAPER) includelp

- rags.h) searchinclude(\inte]\ic386\inc\,1ncludes\)

If the invocation includes the modul ename control and uses the noobj ect
control to suppress the object file, the invocation looks like the following:

C:\CEXAMPLE> ic386 main.c define(NPAPER) &
> > include(prags.h) &
> > searchinciude(\1ntel\ic386\inc\,includes\) &
» modulenamelNewName) &
> > noobject

The resulting compilation heading shows the different module name in the
first line, and shows the lack of object file in the second line, as follows:

system-id iC-386 COMPILER Mx.y, COMPILATION OF MODULE NEWNAME
NO OBJECT MODULE PRODUCED
COMPILER INVOKED BY: \INTEL\IC386\IC386.EXE main.c define(NPAPER) includelp

-rags.h) searchincl ude(\intel\ic386\inc\,includes\) modulen
-ame(NewName) noobject

5.2.4 Source Text Listing

The source text listing contains a formatted image of the source text. It also
gives the statement number, block nesting level, and include nesting level of
each source text statement. If a source line is too long to fit on one line, it
continues on as many following lines as are needed. Continued lines contain
a hyphen (-) in column 17, followed by the source text.

Statement numbers range from 1 to 99999. Error, warning, and remark
messages, when present, refer to the statement numbers in the source text
listing. Statement numbers do not always correspond to the sequence of
lines in the source text: source text lines that end in a backslash (\) are
continuations of the previous line. The listing statement numbers do not
increment for continuation lines.

Listing Files 5-7

The block nesting level describes how many source text block control
constructs surround the statement. It ranges from 0 (for a statement outside
of any function definition) to 99. When its value is 0, this field is blank.

The include nesting level describes how many #i nclude preprocessor
directives or instances of the include control the preprocessor encountered
to get to this statement in the source text. For the input source file, the
nesting depth is 0, and this field is blank. Each nested #1 ncl ude
preprocessor directive or i ncl ude control increments the include nesting
level. The include nesting level column has a value only if the 1 i sti ncl ude
control is in effect. The maximum nesting of include files depends on the
number of files open simultaneously during compilation and can vary with
the operating system. See Chapter 11 for limitations on the number of nested
include files and see the Installation section for more information on the files
that your operating system uses.

In addition to the format controls shown in Table 5-2, Table 5-3 shows the
compiler controls that affect the source text listing portion of the print file.
See Chapter 3 for complete descriptions of these controls.

Table 5-3 Controls That Affect the Source Text Listing

Control Effect

cond 1 nocond
diagnostic

list 1 nolist
listexpand 1 nolistexpand

listinclude 1 nolistinclude

Generates or suppresses uncompiled conditional code.
Determines class of messages that appear.

Generates or suppresses source text listing.
Generates or suppresses macro expansion listing.
Generates or suppresses text of include files.

5.2.5 Remarks, Warnings, and Errors

Compiler messages indicate errors (including fatal errors), warnings, and
remarks. The source text listing contains these messages. The compiler
prints each message on a separate line immediately following the offending
statement. If the offending statement is not printed, the compiler prints the
messages in the listing as the compiler generates them.

5-8 Listing Files

Use the di agnostl c control to suppress generation of lower-level messages.
See Chapter 3 for information on the di agnosti c control.

5.2.6 Pseudo-assembly Listing

The pseudo-assembly listing is an assembly language equivalent to the object
code produced in compilation. It contains a location counter, a source
statement number, and the equivalent assembly code. The location counter is
a hexadecimal value that represents an offset address relative to the start of
the object code.

The assembler cannot assemble the pseudo-assembly language listing; it is
not a complete program. It describes the object code produced by the
compiler and is useful for noticing program variations, such as those that
result from changing optimization levels.

Use the code or no code control to generate or suppress the pseudo-assembly
listing. See Chapter 3 for information on the code I nocode control.

5.2.7 Symbol Table and Cross-reference

The symbol table lists all objects and their attributes from the compiled code.
The table includes the name, type, size, and address of each object. The table
can optionally include source text cross-reference information. The compiler
generates the table in alphabetical order by identifier. A source module can
declare a unique identifier more than once, but each object, even if named by
a duplicate identifier, appears as a separate entry in the symbol table.

Use the symbol s or nosymbol s control to generate or suppress the symbol
table. Use the symbol s and xref controls together to generate additional
cross-reference information. See Chapter 3 for information on these
controls.

Listing Files 5-9

5.2.8 Compilation Summary

The final line of the compilation summary in the print file is identical to the
sign-off message displayed on the screen when the compilation is complete.
Before this final line, the compiler lists information about the compiled
object module.

If the compilation completes normally (without errors), the compilation
summary is similar to the following example:

MODULE INFORMATION:

CODE AREA SIZE - 0000028BH 651D
CONSTANT AREA SIZE - 000002A7H 679D
DATA AREA SIZE - 00000000H 0D
MAXIMUM STACK SIZE - 0000001AH 26D

iC-386 COMPILATION COMPLETE. 0 WARNINGS, 0 ERRORS

If the compilation ends with a fatal error, the following line is displayed on
the console:

COMPILATION TERMINATED

5-10 Listing Files

Contents

Processor-specific Facilities
6.1 Making Selectors, Far Pointers, and Near Pointers................................... 6-4
6.2 Using Special Control Functions...6-5
6.3 Examining and Modifying the FLAGS Register...................................... 6-6
6.4 Examining and Modifying the Input/Output Ports................................... 6-11
6.5 Enabling and Causing Interrupts...6-13

6.5.1 Hints on Manipulating Interrupts..6-14
6.5.2 Interrupt Handlers for the 86 and 186 Processors........................ 6-17
6.5.3 Interrupt Handlers for 286 and Higher Processors.......................6-21

6.6 Protected Mode Features of 286 and Higher Processors.......................... 6-23
6.6.1 Manipulating System Address Registers......................................6-24
6.6.2 Manipulating the Machine Status Word.......................................6-26
6.6.3 Accessing Descriptor Information..6-28
6.6.4 Adjusting Requested Privilege Level... 6-36

6.7 Manipulating the Control, Test, and Debug Registers of Intel386™
and Intel486™ Processors... 6-37

6.8 Managing the Features of the Intel486™ Processor.................................6-41
6.9 Manipulating the Numeric Coprocessor... 6-42

6.9.1 Tag Word... 644
6.9.2 Control Word..6-45
6.9.3 Status Word.. 6-48
6.9.4 Data Pointer and Instruction Pointer.. 6-53

6.9.4.1 8087 or i287™ Numeric Coprocessor Data Pointer
and Instruction Pointer................................ 6-53

6.9.4.2 Intel387™ Numeric Coprocessor and Intel486™
FPU Data Pointer and Instruction Pointer... 6-55

6.9.5 Saving and Restoring the Numeric Coprocessor State.................6-58

Processor-specific Facilities

This chapter describes the functions, macros, and data types available in the
186.h,18086.h, 1186. h, 1286. h, 1386. h, and i 486. h header files. These
facilities enable the program to manipulate the unique characteristics of the
n86 family of processors. This chapter contains the following topics:

• making selectors, far pointers, and near pointers

• using special control functions

• examining and modifying the flags register

• examining and modifying the I/O ports

• enabling and causing interrupts, with guidelines for creating interrupt
handlers

• manipulating the protected mode features of the 286, Intel386™ and
Intel486™ processors

• manipulating the special control, test, and debug registers in the Intel386
and Intel486 processors

• managing the data cache and paging translation lookaside buffer using
special Intel486 processor instructions

• manipulating the 8087, Intel287™, and Intel387™ numeric coprocessors,
and the Intel486 floating-point unit

The functions and macros take the place of assembly language routines you
usually need to write, saving coding time. The functions and macros also
improve run-time performance, because the compiler generates in-line
instructions instead of generating calls to your assembly language routines.

Six header files define the functions, macros, and data types. The header
files are designed so that your code includes only the file named for the
target processor, and your application has access to all appropriate features.

6-1

Tables 6-1 through 6-6 list the function names in the header files and the
section in this chapter that discusses the function. The function names are
available only if your code includes the appropriate header file, and if your
code does not redeclare the function names.

The i 86. h header file defines functions, macros, and data types that apply to
the entire line of n86 processors, the 8087, Intel287, and Intel387
coprocessor, and the Intel486 processor floating-point unit. Two functions
are not defined for Intel386 and Intel486 processors, as noted.

Table 6-1 Built-in Functions in i86.h

Function Section Function Section Function Section

buildptr 6.1 halt 6.2,6.5 outword 6.4
causeinterrupt 6.5 inbyte 6.4 restorerealstatus1 6.9.5
disable 6.5 initrealmathunit 6.9 saverealstatus1 6.9.5
enable 6.5 in wo rd 6.4 setflags 6.3
getflags 6.3 lockset 6.2 setrealmode 6.9.2
getrealerror 6.9.3 outbyte 6.4

1Not for Intel386 and Intel486 processors. See the I386.h header file for substitute definitions.

The i8086. h header file uses the #i ncl ude preprocessor directive to include
the contents of the i 86. h header file. The 18086. h header file contains a
function that applies to n86 processors executing in real mode only. This
header file is not part of iC-286 or iC-386.

Table 6-2 Built-in Function in i8086.h

Function Section

setinterrupt 6.5

The 1186. h header file uses the #incl ude preprocessor directive to include
the contents of the i 86. h header file. The i 186. h header file contains
functions that apply to 186 and higher processors.

6-2 Processor-specific Facilities

Table 6-3 Built-in Functions in i!86.h

Function Section Function Section Function Section

blockinbyte
blockoutword

6.4
6.4

blockoutbyte 6.4 blockinword 6.4

The i 286.h header file uses the #i ncl ude preprocessor directive to include
the contents of the i 186. h header file, which similarly includes the contents
of the i 86. h header file. The i 286. h header file contains functions, macros,
and data types that apply to 286 and higher processors in protected mode
only.

Table 6-4 Built-in Functions in i286.h

Function Section Function Section Function Section

adjustrpl 6.6.4 gettaskregister 6.6.1 segmentwrit able 6.6.3
cleartaskswitchedflag 6.6.2 restoreglobaltable 6.6.1 setlocaltable 6.6.1
getaccess rights 6.6.3 restoreinterrupttable 6.6.1 setmachinestatus 6.6.2
getlocaltable 6.6.1 saveglobaltable 6.6.1 settaskregister 6.6.1
getmachinestatus
getsegmentlimit

6.6.2
6.6.3

saveinterrupttable
segmentreadable

6.6.1
6.6.3

waitforinterrupt 6.5

The i 386. h header file uses the ncl ude preprocessor directive to include
the contents of the i 286. h header file, which enables access to the functions
and macros in the i 186. h and 186. h header files, as well. The i 386. h
header file contains functions and macros that apply to the Intel386 and
Intel486 processors in protected mode.

Table 6-5 Built-in Functions in i386.h

Function Section Function Section Function Section

blockinhword 6.4 gettestregister 6.7 saverealstatus1 6.9.5
blockouthword 6.4 inhword 6.4 setcontrolregister 6.7
getcontrolregister 6.7 outhword 6.4 setdebugregister 6.7
getdebugregister 6.7 restorerealstatus1 6.9.5 settestregister 6.7

1These functions are delined differently from those in the i86.h header file.

Processor-specific Facilities 6-3

The i 486. h header file uses the #i ncl ude preprocessor directive to include
the contents of the i 386. h header file, which enables access to the functions
and macros in the 1 286. h, i 186. h, and i86. h header files, as well. The
i 4 8 6. h header file contains functions and macros that apply to Intel486
processors in protected mode.

Table 6-6 Built-in Functions in i486.h

Function Section Function Section Function Section

byteswap 6.8
invalidatedatacache 6.8

invalidatetlbentry 6.8 wbinvalidatedatacache 6.8

The header files are include files, not libraries; use the #i ncl ude
preprocessor directive or the i ncl ude control to include one of the headers
when compiling. Do not bind to the header files.

6.1 Making Selectors, Far Pointers, and Near Pointers
The sei ector data type and the bui 1 dptr function, defined in the i 86. h
header file, construct far pointers (segment-selector-and-offset) and extract
the selector portion from far pointers.

A value of type sei ector refers to the 16-bit selector portion of a far pointer.
This data type is compatible with PL/M SELECTOR datatype. The sei ector
type is similar to the vo i d * type for type checking:

• The compiler implicitly converts a value of type selector to any
pointer type, and vice versa. An explicit cast is unnecessary. When the
compiler converts a far pointer totheselector type, the compiler
discards the offset portion of the far pointer. When the compiler
converts a selector to a far pointer type, the compiler supplies an offset
of zero.

• Conversion between the selector type and any integral type requires
an explicit cast. When the compiler converts a selector to an integral
type, it zero-extends to fill, or it truncates high-order bits to shorten.
When the compiler converts an integral value totheselector type, it
sign-extends signed values and zero-extends unsigned values to fill, or it
truncates high-order bits to shorten.

6-4 Processor-specific Facilities

The buildptr function takes two arguments: a selector and an offset. The
function returns a far pointer. The prototype for b ui 1 d pt r is as follows:

void far * buildptr (selector sei,
void near * offset);

The offset argument can be zero, and the value that bui 1 dptr returns is
equivalent to casting a selector to a far pointer type, as the following
expressions show:

(void far *) sei

/* is the same as */

buildptr (sei, 0)

Implicit conversion from a far pointer to a near pointer (offset-only) results
in a warning message. To retrieve the offset portion from a far pointer,
explicitly cast to a near pointer, as the following expression shows:

(void near *) farptr

6.2 Using Special Control Functions
The lockset and halt functions in the i 86. h header file provide special
control over processing. See Section 6.5 for information on functions that
control the processor interrupt mechanisms.

The 1 ockset function takes two arguments: apointer to a byte and a byte
value. The function generates an exchange instruction (XCHG) with a
LOCK prefix. The prototype for 1 ockset is as follows:

unsigned char lockset (unsigned char * lockptr,
unsigned char newbytevalue);

The exchange operation puts newbyteva 1 ue into the byte pointed to by
1 ockptr and returns the value previously pointed to by 1 ockptr. The LOCK
prefix ensures that the processor has exclusive use of any shared memory
during the exchange operation.

Processor-specific Facilities 6-5

The halt function enables interrupts and halts the processor. It generates a
set interrupt instruction (STI) to enable interrupts, followed by a halt
instruction (HLT). The prototype for h al t is as follows:

void halt (void);

6.3 Examining and Modifying the FLAGS Register
The getf 1 ags and setfl ags functions in the i 86. h header file provide
access to the FLAGS register for 86 and 286 processors, or the EFLAGS
register for Intel386 and Intel486 processors. In Intel386 and Intel486
processors, the EFLAGS register contains the FLAGS register in its
low-order 16 bits. Table 6-7 lists several macros in the i 86. h, i 286. h,
i 386. h, and i 486 . h header files that isolate individual flags from the
FLAGS and EFLAGS registers.

NOTE
In this section, the text refers to a 16-bit word and a 32-bit
double word, according to other Intel386 and Intel486 processor
documentation. In C programming literature, a word is the
amount of storage reserved for an integer, which is 16 bits for
iC-86 and iC-286, and 32 bits for iC-386.

The getf 1 ags function takes no arguments, and returns a 16-bit unsigned
integer for iC-86/286 or a 32-bit unsigned integer for iC-386. Use it to
retrieve the value of the FLAGS or EFLAGS register, respectively. The
prototype for getf 1 ags is as follows:

unsigned int getflags (void);

The setflags function takes as an argument a 16-bit unsigned integer for
iC-86/286 or a 32-bit unsigned integer for iC-386. Use it to set the value of
the FLAGS or EFLAGS register, respectively. The prototype for setfl ags
is as follows:

void setflags (unsigned int wordvalue);

The FLAGS register contains the processor flags reflecting the execution and
results of various operations. Figure 6-1 shows the format of the 86/286
FLAGS and Intel386 and Intel486 EFLAGS register.

6-6 Processor-specific Facilities

86, 286, i386™and i486™ Processors:
Carry Flag --------------------------------------
Parity Flag --------------------------------------
Auxiliary Carry Flag --------------------------
Zero Flag ---------------------------------------
Sign Flag ---------------------------------------
Trap Flag ---------------------------------------
Interrupt Enable Flag ------------------------
Direction Flag ----------------------------------
Overflow Flag

286, i386, i486 Processors:
I/O Privilege Level ----------------------------
Nested Task Flag ----------------------------

i386 and i486 Processors:
Resume Flag ----------------------------------
Virtual Mode ------------------------------------

i486 Processor:
Alignment Check ------------------------------

AC VMRF NT IOPL OF DF IF TF SF ZF AF PF ;ZlcF

31 ,15 8 0|

Flags Register .

EFlags Register
(i386 and i486 Processors)

Reserved by Intel,
Must be Zeros 0SU749

Figure 6-1 FLAGS and EFLAGS Register

Table 6-7 lists the names of the macros in the i 86. h, i 286. h, i 386. h, and
i 486. h header files and describes the meaning of the corresponding fields of
the flags register. These macro names must be uppercase in the source text.

Processor-specific Facilities 6-7

Table 6-7 Flag Macros

Name Value Meaning

FLAG_CARRY 0x0001 This flag is set when a subtraction
causes a borrow into, or an addition
causes a carry out of, the high-order bit
of the result.

FLAG_AUXCARRY 0x0010 This flag is set when a subtraction
causes a borrow into, or an addition
causes a carry out of, the low-order 4
bits of the result.

FLAG_PARITY 0x0004 This flag is set when the modulo 2 sum
of the low-order 8 bits of the result of an
operation is 0 (even parity).

FLAG_ZERO 0x0040 This flag is set when the result of an
operation is 0.

FLAG_SIGN 0x0080 This flag is set when the high-order bit
of the result of an operation is set, that
is, when a signed value is negative. s -

FLAG_TRAP 0x0100 This flag controls the generation of
single-step interrupts. When this flag is
set, an internal single-step interrupt
occurs after each instruction is
executed.

FLAGJNTERRUPT 0x0200 This flag, when set, enables the
processor to recognize external
interrupts.

F1_AG_DIRECTION 0x0400 This flag, when set, makes string
operations process characters
progressing from higher to lower
addresses.

FLAG_OVERFLOW 0x0800 This flag is set when an operation
results in a carry into but not a carry out
of the high-order bit of the result, or a
carry out of but not a carry into the
high-order bit of the result (e.g., signed
overflow).

6-8 Processor-specific Facilities

Table 6-7 Flag Macros (continued)

1For 286 and higher processors.
2For Intel386 and Intel486 processors.
3For Intel486 processors only.

Name Value Meaning

FLAGJOPL1 0x3000 These two bits define the current task's
I/O privilege level, controlling the task's
right to execute certain I/O instructions.

FLAG_NESTED1 0x4000 This flag is set when the processor
executes a task switch. The flag
indicates that the back-link field of the
task state segment is valid.

FLAG_RESUME2 0x10000 This flag, when set, disables debug
exceptions so that an instruction can be
restarted after a debug exception
without immediately causing another
debug exception.

FLAG_VM2 0x20000 This flag, when set, indicates that the
current task is a virtual 86 program.

FLAG_ALIGNCHECK3 0x40000 This flag, when set, causes interrupt 17,
generating a fault for a memory
reference to a mis-aligned address,
such as a word at an odd address. This
flag is ignored if the privilege level
is less than 3.

Use the functions and flag macros to set or clear particular flags, as shown in
the following examples.

Processor-specific Facilities 6-9

1 . This example shows a short program that tests the carry bit:
include <i86.h>
1nclude <1imits.h>
1 nclude <stdio.h>

int main (int argc, char * argv[])
(

unsigned char i,j;
unsigned short is_carry;

/* Test the carry bit */
i = UCHAR_MAX;
j = 1;
j += i; /* overflow, carry = 1 */
is_carry = getflagsO & FLAG_CARRY;

if (is_carry = FLAG_CARRY)
pri ntf("overflow\n");

return 0;
}

2 . This example shows a function that ensures that interrupts are disabled
before processing, then restores interrupts to their original state before
returning:

fO
{

unsigned short int_stat;
int_stat = getflagsO & FLAG_INTERRUPT;
disabled; /* See Section 6.5 */

/* process!ng */

setflags (getflagsO | int_stat);
}

6-10 Processor-specific Facilities

6 .4 Examining and Modifying the Input/Output Ports

The functions inbyte, inword, outbyte, and outword in the i86. h header
file, and inhword and outhword in the i 386. h header file perform reading
from and writing to processor I/O ports. The functions bi ocki nbyte,
blockinword, bl ockoutbyte, and bl ockoutword in the i 186. h header file,
and bl ocki nhword and bl ockouthword in the i 386. h header file perform
block reading from and block writing to processor I/O ports.

NOTE
In this section, the text refers to a 16-bit word and a 32-bit
double word, according to Intel386 and Intel486 processor
documentation. In C programming literature, a word is the
amount of storage reserved for an integer, which is 16 bits for
iC-86 and iC-286, and 32 bits for iC-386.

The inbyte, i nword, and i nhword functions take the hardware input port
number as an argument. The i nbyte function returns an 8-bit byte for all
processors. The i nword function returns a 16-bit word for 86 and 286
processors, or a 32-bit double word for Intel386 and Intel486 processors.
The inhword function returns a 16-bit word for Intel386 and Intel486
processors. The function prototypes are as follows:

unsigned char inbyte (unsigned short port');

unsigned int inword (unsigned short port);

unsigned short inhword (unsigned short port);

Processor-specific Facilities 6-11

The outbyte, outword, and outhword functions take two arguments: the
hardware output port number and the value to send to the port. The outbyte
function sends an 8-bit byte to an output port for all processors. The
outword function sends a 16-bit word for 86 and 286 processors, or a 32-bit
double word for Intel386 and Intel486 processors. The outhword function
sends a 16-bit word for Intel386 and Intel486 processors. The function
prototypes are as follows:

void outbyte (unsigned short port,
unsigned char bytevalue');

void outword (unsigned short port,
unsigned int word_or_dwordvalue);

void outhword (unsigned short port,
unsigned short wordvalue);

The bl ocki nbyte, bl ockinword, and bl ockinhword functions take three
arguments: the hardware input port number, a pointer to the initial byte in
the destination, and the byte, word, or double word count. The bl ocki nbyte
function reads 8-bit bytes from an input port for all processors. The
bl ocki nword function reads 16-bit words for 86 and 286 processors, or
32-bit double words for Intel386 and Intel486 processors. The
bl ocki n hword function reads 16-bit words for Intel386 and Intel486
processors. The function prototypes are as follows:

voi d blocki nbyte (unsi gned
unsi gned
unsi gned

short
char *
int

port,
destinationptr,
bytecount);

void blocki nword (unsigned short port.
unsi gned int * destinationptr,
unsi gned int word_or_dwordcount)

voi d blocki nhword (unsi gned short port,
unsi gned short * desti nati onptr,
unsi gned int wordcount);

6-12 Processor-specific Facilities

The bl ockoutbyte, bl ockouthword, and bl ockoutword functions take three
arguments: the hardware port number, a pointer to the initial byte in the
source location, and a byte, word, or double word count. The bl ockoutbyte
function copies 8-bit bytes from a location in memory to an output port for
all processors. The bl ockoutword function copies 16-bit words for 86 and
286 processors, or 32-bit double words for Intel386 and Intel486 processors.
The bl ockouthword function copies 16-bit words for Intel386 and Intel486
processors. The function prototypes are as follows:

void blockouthword (unsigned short port,
unsigned short const * sourceptr,
unsigned int wordcount');

void blockoutbyte (unsi gned
unsi gned
unsi gned

short
char const
i nt

port,
* sourceptr,

bytecount);

void blockoutword (unsi gned
unsi gned
unsi gned

short
int const *
i nt

port,
r sourceptr,
word_or__dwordcount)

6 .5 Enabling and Causing Interrupts
The enable, di sable, causeinterrupt, and halt functions in the i 86. h
header file provide control over the interrupt process. The set interrupt
function in the i 8086. h header file establishes an iC-86 function as an
interrupt handler for a particular interrupt vector. The waitforinterrupt
function in the i 286. h header file causes the 286, Intel386, and Intel486
processors to perform a task switch while in a nested interrupt task.

The enabl e function generates a set interrupt instruction (STI). STI sets the
interrupt enable flag. The prototype for enabl e is as follows:

void enable (void);

The disable function generates a clear interrupt instruction (CLI). CLI
clears the interrupt enable flag. The prototype for d i s a bl e is as follows:

voi d di sable (void);

Processor-specific Facilities 6-13

The cause! interrupt function generates an interrupt instruction (INT). It
takes the interrupt number as an argument The interrupt number must be a
constant in the range 0 through 255. The prototype for causeinterrupt is
as follows:

void causeinterrupt (unsigned char interruptnumber');

The halt function enables interrupts and halts the processor. It generates an
STI instruction followed by a halt instruction (HLT). The prototype for halt
is as follows:

void halt (void);

The setinterrupt function associates an interrupt handler with an interrupt
vector number at run time. This operation is only for the 86 and 186
processors (or any processor executing in real mode). The function takes
two arguments: the interrupt number and a pointer to the interrupt handler.
The interrupt number must be a constant in the range 0 through 255. The
prototype for set i n terr up t is as follows:

void setinterrupt (const unsigned char interruptnumber,
void far (* handler)(void));

The waitforinterrupt function generates a return from interrupt instruction
(IRET). IRET causes the processor to perform a task switch, saving the
status of the outgoing task in its task state segment. The prototype for
waitforinterrupt is as follows:

void waitforinterrupt (void);

6.5.1 Hints on Manipulating Interrupts

This discussion applies only to embedded applications or programs not
running under an operating system that traps interrupts.

All processors in the «86 family have two types of interrupt pins: the
non-maskable interrupt (NMI) and the maskable interrupt (INTR). You
cannot disable the non-maskable interrupts. You can enable and disable the
maskable interrupts.

6-14 Processor-specific Facilities

The following expression determines whether maskable interrupts are
enabled:

getflagsO & FLAG_INTERRUPT

The following two statements both enable interrupts; they do not differ in
function, but the first is more efficient:

enableO;

setflags (getflagsO | FLAG_INTERRUPT);

The following two statements both disable interrupts; they do not differ in
function, but the first is more efficient:

disabled;

setflags (getflagsO & ~FLAG_INTERRUPT);

Interrupts occur automatically when the associated condition occurs.
However, you can force a particular interrupt to occur at any point in your
source text by specifying an interrupt number directly. The following
statement initiates an integer overflow interrupt:

causeinterrupt(4);

Each maskable interrupt has an interrupt number designating the condition
which causes the interrupt. Interrupt numbers range from 0 to 255.
Table 6-8 shows the numbers reserved for specific interrupts. You can use
numbers greater than 31 to define your own interrupts. Intel reserves all
interrupts from 0 through 31, even if they are not defined for a processor. To
specify a handler for an Intel-reserved interrupt, you must use the interrupt
numbers as defined in Table 6-8.

Processor-specific Facilities 6-15

Table 6-8 Interrupt Numbers

Number Meaning Processor

0 divide error all
1 debug exceptions all
2 non-maskable interrupt all
3 debugger breakpoint all
4 overflow all
5 reserved 86

bounds check 186 and higher

6 reserved 86
invalid opcode 186 and higher

7 reserved 86
coprocessor/device not available 186 and higher

8 reserved 86 and 186
double fault/system error 286 and higher

9 reserved 86 and 186
coprocessor segment overrun 286 and i386T“
reserved i486™

10 reserved 86 and 186
invalid task state segment 286 and higher

11 reserved 86 and 186
segment not present 286 and higher

12 reserved 86 and 186
stack fault 286 and higher

13 reserved 86 and 186
general protection fault 286 and higher

14 reserved 86, 186 and 286
page fault i386 and i486

15 reserved all
16 coprocessor/floating-point error all
17 reserved 86, 186, 286, and i386

alignment check i486

18-31 reserved all
32-255 user-definable all

6-16 Processor-specific Facilities

6.5.2 Interrupt Handlers for the 86 and 186 Processors

In the 86 and 186 processors, each interrupt number indexes an interrupt
vector. The interrupt vectors are an absolutely located array of entries
beginning at location 0 in memory. The nth vector is at location 4*n, and
contains the address of the interrupt handler associated with interrupt number
n. Each vector is a four-byte value containing the
segment-selector-and-offset address of the interrupt handler. See Chapter 4
for information on segment-selector-and-offset addressing.

Two iC-86 facilities manipulate interrupt handlers for the 86 and 186
processors (or any processor executing in real mode): the interrupt control
and the set interrupt built-in function. See Chapter 3 for additional
information on the interrupt control.

• The interrupt control causes the compiler to do the following at
compile time:

Generate prolog and epilog code for the interrupt handler for
saving and restoring registers and returning from the interrupt.

Optionally generate an interrupt vector for the interrupt handler,
statically associating the handler with a specific interrupt number.

• The setinterrupt built-in function dynamically associates an interrupt
handler (one that already has the proper prolog and epilog code) with a
specific interrupt number.

Always use the interrupt control to make a function into an interrupt
handler. Use the following criteria to determine whether to use the
i nterrupt control or the setinterrupt built-in function to associate an
interrupt handler with a specific interrupt number:

• If the interrupt vector table is in ROM, use the interrupt control for
static association.

• If the interrupt vector is in RAM, use the set interrupt built-in control
for dynamic association.

• If the application runs under DOS and you link the application with the
exe control for LINK86, use the setinterrupt built-in function.

Processor-specific Facilities 6-17

• If the application runs under DOS and you use UDI2DOS to create the
executable version, use the interrupt control or the set interrupt
function.

• If the application runs under the iRMX® operating system, use the
interrupt control or the setinterrupt function.

The following examples use the control and the built-in function differently,
depending on the application.
1. This example, containing two modules, shows user-defined interrupts

for the interrupt numbers 100 and 200. The first module forces the
interrupts. The second module uses the i nterrupt control to declare
the interrupt functions and associate them with the interrupt numbers
100 and 200. This example runs under DOS and uses UDI2DOS to
create the executable file. Figure 6-2 shows the source text

/* first module of DOS application */

^include <i8086.h>
#include <stdio.h>

int reachl = 0;
int reach2 = 0;

mai n()
1

cause interrupts 00);
if (reachl == 1)

printf("handlerl was reached\n”);

causeinterrupt(200);
if (reach2 == 1)

printf("handler2 was reached\n");

Figure 6-2 Example DOS Interrupt Handlers

6-18 Processor-specific Facilities

/*--- */

/* second module of DOS application */

tfpragma interrupt("handlerl"=100, "handler2"=200)

extern int reachl, reach2;

void handlerl(void)
{

reachl = 1;
}

void handler2(void)
{

reach2 = 1;
}

Figure 6-2 Example DOS Interrupt Handlers (continued)

2. This example shows similar code for an embedded application with the
interrupt vector table in RAM. The second module uses the interrupt
control to declare the interrupt functions and the first module uses the
setinterrupt built-in function to associate the interrupt handlers with
the interrupt numbers 100 and 200. Figure 6-3 shows the source text.

/* first module of embedded application */

#i nc1ude<i 8086.h>

extern void far handlerl(void);
extern void far handler2(void);
i nt reachl = 0;
int reach2 = 0;

mai n()
(

setinterrupt(100,handlerl);
setinterrupt(200,handler2);

Figure 6-3 Example Embedded Interrupt Handlers

Processor-specific Facilities 6-19

causeinterrupt(100);
if (reachl == 1)

/* handlerl was reached */;
causeinterrupt(200);
if (reach2 == 1)

/* handler2 was reached */;
)

/*-- ---*/

/* second module of embedded application */

#pragma interrupt!"handlerl", "handled”)

extern int reachl, reach2;

void handlerl(void)
{

reachl = 1;
1

void handler2(void)
{

reach2 = 1;
)

Figure 6-3 Example Embedded Interrupt Handlers (continued)

To make a function into an unassigned interrupt handler, use the interrupt
control without an assignment. You can create the interrupt vector at a later
time and link the handler to the program. Similarly, you can have a library of
interrupt handlers that are not yet associated with an interrupt vector. Any
program can link in any of these functions and separately create the interrupt
vectors. For example, assume the compiler invocation includes the following
control:

i interrupt! i nt_0, i nt_l, i nt_2 , i nt_3 , i nt_4)

6-20 Processor-specific Facilities

Somewhere in the source text the following can occur:
#include <i8086.h>

/•* in declarations */

extern vol d far i n t_0(void)
extern voi d far i nt_l(void)
extern vol d far i n t_2(void)
extern voi d far i nt_3(voi d)
extern void far i n t_4(void)

/* in executable code */

set interrupts, int_0);
setinterruptt1,int_l);
setinterrupt(2,int_2);
setinterrupt(3,i nt_3);
set interrupts, int_4);

6.5.3 Interrupt Handlers for 286 and Higher Processors

The 286 and higher processors executing in protected mode require an
interrupt descriptor table (IDT). This table can be anywhere in memory. The
interrupt descriptor table register (IDTR) is a system register that holds the
address of the IDT. The startup code initializes this register. You can
manipulate this register with the saveinterrupttable and
restoreinterrupttabl e functions described in Section 6.6.1.

The entries in the IDT are task, trap, or interrupt gates. A gate is a special
control-transfer descriptor which acts like a sophisticated interrupt vector. It
contains the address of the handler and some access information. Its position
in the IDT determines which interrupt it handles. Figure 6-4 shows the
format of a gate. The special descriptors for a task state segment (TSS) and
the local descriptor table (LDT) share the four-bit type field but differ in
other fields from the gate descriptor. See the appropriate programmer's
reference manuals listed in Chapter 1, for more information on descriptors.

Processor-specific Facilities 6-21

Special Descriptor (Gate, LDT, TSS) = 0-------------

Descriptor Privilege Level ---------

Present -

Reserved, Must be Zeros for —
286 Processor

Offset 31.. 16 for i386™/i486™ —
Processor

— 0100 for 286 Call Gate
— 0101 for Task Gate
— 0110 for 286 Interrupt Gate
-0111 for 286 Trap Gate
— 1100 for i386, i486 Call Gate
— 1110 for i386, i486 Interrupt Gate
— 1111 for i386, i486 Trap Gate

—Unused for Task, Trap
and Interrupt Gates

—Word Count for Call
Gates

31 15 0

P DPL 0
—I—

,Ty
—I—
Pe, 0 0 0

___ I___ I___I 1 _

Selector Offset 15 . .0

OSD75O

Figure 6-4 Gate Descriptor for 286 and Higher Processors

High-priority hardware interrupts often use an interrupt gate for
automatically disabling interrupts upon invocation. Software-invoked
interrupts often use trap gates since trap gates do not disable the maskable
hardware interrupts. Sometimes low-priority interrupts (for example, a
timer) use a trap gate to enable other devices of higher priority to interrupt
the handler of the lower priority interrupt. Task gates cause a task switch,
which includes saving all of the processor registers and isolating the address
space and privilege level of the handler. A task resumes execution on each
invocation instead of starting from the initial entry point.

To make an iC-286 or iC-386 function into an interrupt handler, use the
interrupt control. This control causes the compiler to generate prolog and
epilog code for an interrupt handler to save and restore registers. See
Chapter 3 for more information on the i nterrupt control.

The easiest way to associate an iC-286 or iC-386 interrupt handler with a
processor interrupt is to use the system builder utility, BLD286 or BLD386.
Use the build file to create a gate, associate it with the handler, and position
it in the IDT. See the 286 System Builder User's Guide or the Intel386^
Family System Builder User's Guide, both listed in Chapter 1, for more
information on the builders and build files.

6-22 Processor-specific Facilities

For example, assume functions with the external names 1 nt_0, 1 nt_l,
i nt_2, i nt_3, and i nt_4 are interrupt handlers. In the build file, the
following text creates interrupt gates at descriptor privilege level 0 and
inserts the gates into the IDT:

BUILDFILENAME;
(other build specifications here)

GATE int_0_gate
i nt_l_gate
int_2_gate
int_3_gate
int_4_gate

(INTERRUPT, DPL -
(INTERRUPT, DPL -
(INTERRUPT, DPL -
(INTERRUPT, DPL =
(INTERRUPT, DPL ■=

0, ENTRY - int_0)
0, ENTRY = int_l)
0, ENTRY = int_2)
0, ENTRY = int_3)
0, ENTRY = int_4)

TABLE IDT (ENTRY = (0:int_0_gate,
1:1nt_l_gate,
2:i nt_2_gate,
3:i nt_3_gate,
4:i nt_4_gate));

(other build specifications here)
END

6.6 Protected Mode Features of 286 and Higher
Processors
The functions in the i 286. h header file enable iC-286 and iC-386 programs
to manipulate the system address registers and the machine status word, to
retrieve attributes of a segment descriptor, and to adjust the requested
privilege level (RPL) of a selector. The functions that access the global
descriptor table (GDT) and local descriptor table (LDT) return the
descri ptor_tabl e_reg datatype. The 1 286. h header provides macros for
isolating information from the machine status word and from segment
descriptors.

See the appropriate programmer's reference manual listed in Chapter 1, for
more information on the architecture of the 286, Intel386, and Intel486
processors, address translation, and protected mode features.

Processor-specific Facilities 6-23

6.6.1 Manipulating System Address Registers

The system address registers are the task register (TR), the global descriptor
table register (GDTR), the interrupt descriptor table register (EDTR), and the
local descriptor table register (LDTR).

The gettaskregister function returns the contents of the task register (TR).
The prototype for gettaskregister is as follows:

selector gettaskregister (void);

The settaskregister function loads a selector into the task register (TR).
Only protected mode code at privilege level 0 can execute this function. It
takes the selector value as its argument The prototype for sett as kregister
is as follows:

void settaskregister (selector sei);

The descri ptor_tabl e_reg structure type describes the register value
returned by the savegl obal tabl e and savei nterrupttabl e functions. The
structure definition is as follows:

#if _L0NG64_
typedef unsigned int base_addr;

#el se
typedef unsigned long base_addr;

#endif

//pragma NOALIGN("descri ptor_tabl e_reg")

struct descriptor_table_reg
{

unsigned short limit;
base_addr base;

);

The savegl obal tabl e function copies the contents of the global descriptor
table register (GDTR) into a specific 6-byte location of type
descri ptor_tabl e_reg. The function takes apointer to this destination as
an argument. The prototype for savegl obal tabl e is as follows:

void saveglobaltable
(struct descriptor_table_reg * destinationptr);

6-24 Processor-specific Facilities

The restoregl obaltabl e function loads a value of type
descri ptor_tabl e_reg into the global descriptor table register (GDTR).
Only protected mode code at privilege level 0 can execute this function. The
function takes a pointer to the descri ptor_tabl e_reg 6-byte area as an
argument. The prototype for restoregl obal tabl e is as follows:

void restoreglobaltable
(struct descri ptor_tabl e_reg const * sourceptr);

The save interrupttable function copies the contents of the interrupt
descriptor table register (IDTR) into a specific 6-byte location of type
descri ptor_tabl e_reg. The function takes apointer to this destination as
an argument. The prototype for save! nterrupttabl e is as follows:

void saveinterrupttable
(struct descriptor_table_reg * destinationptr);

The restore! nterrupttabl e function loads a value of type
descri pto r_tab 1 e_reg into the interrupt descriptor table register (IDTR).
Only protected mode code at privilege level 0 can execute this function. The
function takes apointer to the descri ptor_tabl e_reg 6-byte area as an
argument. The prototype for restore! nterrupttabl e is as follows:

void restoreinterrupttable
(struct descri ptor_tabl e_reg const * sourceptr');

The getlocaltable function returns the contents of the local descriptor table
register (LDTR). The prototype forgetlocaltableisas follows:

selector getlocaltable (void);

The setl ocal tabl e function loads a value of type sei ector into the local
descriptor table register (LDTR). Only protected mode code at privilege
level 0 can execute this function. It takes the selector value as an argument.
The prototype for setl ocal tabl e is as follows:

void setlocaltable (selector sei);

Processor-specific Facilities 6-25

6.6.2 Manipulating the Machine Status Word

The machine status word (MSW) contains four bits that indicate the status
and configuration of the processor. In the Intel386 and Intel486 processors,
the machine status word is the lower word in control register 0 (CRO).
Figure 6-5 shows the format of the machine status word.

i386™ and i486™ Processors:
Paging

i486 Processor:
Cache Enable

Protected Mode Enable
Monitor Coprocessor

Emulate Coprocessor
Task Switched

— Writes Transparent

Write Protect

i386 Processor:
Extension Type

PGCEWT

31

Alignment Mask

AM WP|

i486 Processor:
Numerics Exception

NEETTSEMMPPE

15 8 0
i I

Machine Status Word
।i

CRO
(i386 and i486 Processors)

Reserved by Intel, Must be Zeros OSOTM

Figure 6-5 Machine Status Word of 286 and Higher Processors

The getmachinestatus function returns the contents of the machine status
word. The prototype for getmachinestatus is as follows:

unsigned short getmachinestatus (void);

The setmachi nestatus function loads a value into the machine status word.
The compiler generates a short jump to the next instruction to clear the
instruction prefetch queue. Only code at privilege level 0 can execute this
function. The function takes the value for the machine status word as an
argument. The prototype forsetmachinestatusisas follows:

void setmachinestatus (unsigned short wordvalue');

6-26 Processor-specific Facilities

The cl eartaskswi tchedflag function clears the task flag in the machine
status word. Only code at privilege level 0 can execute this function. The
prototype for cl eartaskswi tchedfl ag is as follows:

void cleartaskswitchedflag (void);

Four macros isolate particular fields in the machine status word. Table 6-9
lists the names of the machine status word macros in the i 286. h header file
and describes the meaning of the corresponding fields of the machine status
word. These macro names must be uppercase in the source text.

Table 6-9 Machine Status Word Macros for 286 and Higher Processors

Name Value Meaning

MSW_PROTECTION_ENABLE 0x0001 This bit, when set, places the processor
into protected mode and cannot
be cleared except by RESET.

MSW_MONITOR_COPROCESSOR 0x0002 This bit, when set, makes WAIT
instructions cause interrupt number 7 if
the task-switched flag is set.

MSW_EMULATE_COPROCESSOR1 0x0004 This bit, when set, makes ESC
instructions cause interrupt number 7 to
enable coprocessor emulation.

MSW_TASK_SWITCHED 0x0008 This bit, when set, makes the next
coprocessor instruction cause interrupt
number 7 so software can test whether
the coprocessor context belongs to the
current task.

1Not meaningful for Intel486 processor.

Processor-specific Facilities 6-27

6.6.3 Accessing Descriptor Information

A segment descriptor contains several attributes in its access rights byte.
Figures 6-6 and 6-7 show the format of a 286 segment descriptor or Intel386
and Intel486 segment descriptor, respectively.

------- Present
____ Descriptor Privilege

Level

Segment Descriptor = 1
------- (Special System

Descriptor = 0)

-------Data = 0
-------Code = 1

-------Data: Normal = 0
Expanddown = 1

Code: Normal = 0
Conforming = 1

------ Data: Read Only = 0
Read/Write = 1

Code: Execute Only = 0
Execute/Read = 1

r- Accessed

31

P DPL 1 । Type | > Base 23.. 16 (,

Base 15..0 Limit 15..0

0

'y-1 Reserved by Intel, Must be Zeros
OSD719

Figure 6-6 Segment Descriptor for 286 Processor

6-28 Processor-specific Facilities

Present

Available ----------------------------------

Data: 16-bit Stack = 0 ---------
32-bit Stack = 1

Code: 16-bit Operand = 0 -----------
32-bit Operand =1

Granularity: Byte = 0 -------------
4K Bytes = 1 -----------

------- Descriptor Privilege Level
------- Segment Descriptor = 1

(Special System Descriptor = 0)

------- Data = 0
------- Code = 1

------- Data: Normal = 0
Expanddown = 1

Code: Normal = 0
Conforming = 1

------ Data: Read Only = 0
Read/Write = 1

Code: Execute Only = 0
Execute/Read = 1

Accessed

Base 31..24 __ I__I__L__I__ I I__ I_ 0 Limit 19..16 i i i p DPL 1 Jype, (Base 23..16 (

Base 15..0 Limit 15..0

31 0
OSD751

Figure 6-7 Segment Descriptor for Intel386™ and Intel486™ Processors

The getsegmentl i mi t function sets the zero flag and returns the limit of the
segment indicated by the selector argument if the following conditions are
met (or clears the zero flag and returns an undefined value otherwise):

• The selector argument is non-null.

• The selector denotes a descriptor within the bounds of the GDT or
the LDT.

• If the descriptor is for a data segment, its descriptor privilege level
must be greater than or equal to the current privilege level.

• If the descriptor is for a nonconforming code segment, its
descriptor privilege level must be greater than or equal to the
current privilege level.

Processor-specific Facilities 6-29

• If the descriptor is for a nonconforming code segment, its
descriptor privilege level must be greater than or equal to the
selector's requested privilege level.

• If the descriptor is for a conforming code segment, its descriptor
privilege level can be any value.

The getsegmentl i mi t function takes the selector value as an argument. The
prototype is as follows:

unsigned int getsegmentlimit (selector sei);

The segmentreadabl e function returns a 1 if the segment indicated by the
selector argument is readable (or returns a 0 otherwise). A segment is
readable if the following conditions are met:

• The selector argument is non-null.

• The selector denotes a descriptor within the bounds of the GDT or
the LDT.

• If the segment descriptor is for a code segment, the execute/read bit
must be 1.

• If the descriptor is for a data segment, its descriptor privilege level
must be greater than or equal to the current privilege level.

• If the descriptor is for a nonconforming code segment, its
descriptor privilege level must be greater than or equal to the
current privilege level.

• If the descriptor is for a nonconforming code segment, its
descriptor privilege level must be greater than or equal to the
selector's requested privilege level.

• If the descriptor is for a conforming code segment, its descriptor
privilege level can be any value.

The segmentreadabl e function takes a selector value as an argument. The
prototype is as follows:

int segmentreadabl e (selector sei);

6-30 Processor-specific Facilities

The segmentwri tabl e function returns 1 if the segment indicated by the
selector argument is writable (or returns a 0 otherwise). A segment is
writable if the following conditions are met:

• The selector argument is non-null.

• The selector denotes a descriptor within the bounds of the GDT or
the LDT.

• The segment descriptor denotes a data segment.
• The descriptor's read/write bit must be 1.

• The descriptor privilege level of the segment must be greater than
or equal to the current privilege level.

The segmentwri tabl e function takes a selector value as an argument. The
prototype is as follows:

int segmentwritabl e (selector sei);

The getaccessrights function returns the access rights of the segment
indicated by the selector argument and sets the zero flag if the following
conditions are met (or clears the zero flag and returns an undefined value
otherwise):

• The selector argument is non-null.

• The selector denotes a descriptor within the bounds of the GDT or
the LDT.

• If the descriptor is for a data segment, its descriptor privilege level
must be greater than or equal to the current privilege level.

• If the descriptor is for a nonconforming code segment, its
descriptor privilege level must be greater than or equal to the
current privilege level.

• If the descriptor is for a nonconforming code segment, its
descriptor privilege level must be greater than or equal to the
selector's requested privilege level.

• If the descriptor is for a conforming code segment, its descriptor
privilege level can be any value.

Processor-specific Facilities 6-31

The getaccessrights function takes a selector value as an argument. The
return value is four bytes with the access rights in the byte above the
low-order byte The prototype forgetaccessrightsis as follows:

unsigned int getaccessrights (selector sei);

A segment descriptor and a special descriptor have several fields in common:
the present bit, the descriptor privilege level, and the segment or special
descriptor bit. Figure 6-8 shows the format of a special descriptor, such as a
gate, local descriptor table (LDT), or task state segment (TSS).

— 0001 for 286 Available TSS
- 0010 for LDT
-0011 for 286 Busy TSS
- 0100 for 286 Call Gate
— 0101 for Task Gate

Special Descriptor (Gate, LDT, TSS) = 0 —

Descriptor Privilege Level —

Present —

Reserved, Must be Zeros —
for 286 Processor

— 0110 for 286 Interrupt Gate
— 0111 for 286 Trap Gate
- 1001 for i386/i486 Available TSS
— 1011 for i386/S486 Busy TSS
- 1100 for i386/i486 Call Gate
— 1110 for i386/i486 Interrupt Gate
— 1111 for i386/i486 Trap Gate

_ Unused for Task, Trap
and Interrupt Gates

_ Word Count for Call
Gates

Offset 31.. 16 for i386 ”71486 —
Processor

P DPL 0
i -r i

Type, 0 0 0 __I_ I_ I_ L_
Selector Offset 15 . .0

31 OSD752

Figure 6-8 Special Descriptor for 286 and Higher Processors

Table 6-10 lists the names of the macros in the i 286. h header file that isolate
information for all descriptors (segment and special) and describes the
meaning of the corresponding fields of the access byte. Refer to Figures 6-6
and 6-7 for the format of a segment descriptor. These macro names must be
uppercase in the source text.

6-32 Processor-specific Facilities

Table 6-10 General Descriptor Access Rights Macros for 286 and Higher
Processors

^The macro definition is as follows:
#define AR_PRIVILEGE(X) (((X) & AR_PRIV_MASK) » AR_PRIV_SHIFT)

Name Value Meaning

AR.SEGMENT 0x1000 This bit is 1 for a segment descriptor and 0
for a special descriptor, such as a gate.

AR_PRIV_MASK 0x6000 These two bits indicate the descriptor
privilege level of the segment.

AR_PRESENT 0x8000 This bit indicates whether or not the
segment is present in memory.

AR_PRIVILEGE(x)1 Isolates the descriptor privilege level in the
low-order bits of a word.

AR_PRIV_SHIFT 13 Used by AR_PRIVILEGE to shift the
descriptor privilege level bits.

Table 6-11 lists the names of the macros in the i 286. h header file that isolate
information for segment descriptors and describes the meaning of the
corresponding fields of the segment descriptor access byte. Refer to
Figures 6-4 and 6-5 for the format of a segment descriptor. These macro
names must be uppercase in the source text.

Processor-specific Facilities 6-33

Table 6-11 Segment Descriptor Access Rights Macros
for 286 and Higher Processors

Name Value Meaning

AR_ACCESSED 0x0100 If the AR_SEGMENT bit is 1 and the
AR_EXECUTABLE bit is 0, this bit is set to
1 when the segment is accessed or the
selector for the segment is loaded into a
selector register.

ARJ/VRITABLE 0X0200 If the AR_SEGMENT bit is 1 and the
AR_EXECUTABLE bit is 0, this bit is 1 for a
writable data segment and 0 for a read-only
data segment.

AR_READABLE 0x0200 If the AR_SEGMENT bit is 1 and the
AR_EXECUTABLE bit is 1, this bit is 1 for a
readable code segment and 0 for an
execute-only code segment.

AR_EXPAND_DOWN 0x0400 If the AR_SEGMENT bit is 1 and the
AR_EXECUTABLE bit is 0, this bit is 1 for
an expand-down data segment and 0 for a
non-expand-down data segment.

AR_CONFORMING 0x0400 If the AR_SEGMENT bit is 1 and the
AR_EXECUTABLE bit is 1, this bit is 1 for a
conforming code segment and 0 for a
non-conforming code segment.

AR_EXECUTABLE 0x0800 If the AR_SEGMENT bit is 1, this bit is 1 for
a code segment and 0 for a data segment.

Table 6-12 lists the names of the macros in the i 286. h header file that isolate
information for special descriptors and describes the meaning of the
corresponding fields of the segment descriptor access byte. These macro
names must be uppercase in the source text.

6-34 Processor-specific Facilities

Table 6-12 Special Descriptor Access Rights Macros for 286 and Higher
Processors

1The macro definition is as follows:
#define AR_GATE_TYPE(X) ((X) & AR_GATE_MASK)

Name Value Meaning

AR_CALL_GATE 0x0000 If the AR_SEGMENT bit is 0 and the
AR_GATE bit is 1, the low-order type bits
are 00 for a call gate.

AFLTSS 0x0100 If the AR_SEGMENT bit is 0 and the
AR_GATE bit is 0, this bit is 1 for an
available task state segment.

AR_TASK_GATE 0x0100 If the AR_SEGMENT bit is 0 and the
AR_GATE bit is 1, the low-order type bits
are 01 for a task gate.

AR_BUSY 0x0200 If the AR_SEGMENT bit is 0 and the
AR_GATE bit is 0, this bit is 1 for a busy
task state segment.

AR_INTR_GATE 0x0200 If the AR_SEGMENT bit is 0 and the
AR_GATE bit is 1, the low-order type bits
are 10 for an interrupt gate.

AR_GATE_MASK 0x0300 These two bits indicate the gate type.

AR_TRAP_GATE 0x0300 If the AR_SEGMENT bit is 0 and the
AR_GATE bit is 1, the low-order type bits
are 11 for a trap gate.

AR_GATE 0x0400 If the AR_SEGMENT bit is 0, this bit is 1 for
a gate and 0 for other special descriptors.

AR_386_TYPE 0x0800 If the AR_SEGMENT bit is 0, this bit is 1 for
an i386™ processor call, interrupt, or trap
gate and 0 for a 286 processor call,
interrupt, or trap gate.

AR_GATE_TYPE(x)1 Isolates the gate type in the high-order byte
of a word.

Processor-specific Facilities 6-35

6.6.4 Adjusting Requested Privilege Level

A selector for a processor segment has a two-bit field called requested
privilege level (RPL). This field normally contains the descriptor privilege
level of the referring or calling code segment (referring code segment if the
target is a data segment, calling code segment if the target is a code
segment). Through adjustment, the RPL field can represent the descriptor
privilege level of the original calling segment in a series of nested calls.
Figure 6-9 shows the format of a selector.

15 8 o
0SD2M

Figure 6-9 Selector for 286 and Higher Processors

Adjusting the RPL field of the selector of a called segment ensures that
nested code segment accesses occur at a level no more privileged than the
level of the original calling segment.

The adjustrpl function is for operating system software, but can execute at
any privilege level. The function takes a selector value as an argument (the
selector of the called segment). The prototype for adj ustrpl is as follows:

selector adjustrpl (selector sei);

6-36 Processor-specific Facilities

The adjustrpl function compares its argument with the selector for the code
segment that called the routine that invoked adjustrpl. The adjustrpl
function adjusts the selector argument and sets or clears the zero flag in the
flags register as follows:

• If the RPL of the argument is more privileged than the RPL of the
calling segment, the function sets the zero flag, adjusts the RPL of
the selector argument to the lesser privilege level, and returns the
adjusted selector.

• If the RPL of the argument is the same or less privileged than the
RPL of the calling segment, the function clears the zero flag and
returns the selector argument unchanged.

6.7 Manipulating the Control, Test, and Debug
Registers of Intel386™ and Intel486™ Processors

The 1386. h header file contains functions that enable iC-386 programs to
examine and set the contents of the control, test, and debug registers.
Accessing these registers can be made only from code executing at privilege
level 0. Figure 6-10 shows the special registers accessible in the Intel386
and Intel486 processors.

Processor-specific Facilities 6-37

Control Registers

CR3 Page Directory Base Register
I

CR2 Page Fault Linear Address

CR1 Reserved, Inaccessible
I

CRO MSW
i

31 15 0

Debug Registers

DR7 Control

DR6 Status

DR5 Reserved, Inaccessible

DR4 Reserved, Inaccessible

DR3 Breakpoint 3 Linear Address

DR2 Breakpoint 2 Linear Address

DR1 Breakpoint 1 Linear Address

DRO Breakpoint 0 Linear Address

31 15 0

Test Registers

TR7 TLB Test Data

TR6 TLB Test Command

TR5 Cache Test Control (i486™ Processor)

TR4 Cache Test Status (i486 Processor)

TR3 Cache Test Data ' (i486 Processor)

TR2 Reserved, Inaccessible

TR1
Reserved, Inaccessible

TRO
Reserved, Inaccessible

31 15 0

OSD794

Figure 6-10 Control, Test, and Debug Registers
of Intel386™ and Intel486™ Processors

6-38 Processor-specific Facilities

The getcontrol register, gettestregister, and getdebugregister
functions return the 32-bit contents of the specified register. The functions
take the register number as an argument The register number must be a
constant. Their prototypes are as follows:

unsigned int getcontrol regi ster (const unsigned char number)-,

unsigned int gettestregister (const unsigned char number);

unsigned int getdebugregister (const unsigned char number);

The setcontrolregister, settestregister, and setdebugregister
functions load a 32-bit value into the specified register. The functions take
the register number and the 32-bit value as arguments. Their prototypes are
as follows:

void setcontrolregister (const unsigned char number.
va1ue);unsigned int

void settestregister

void setdebugregister

(const unsigned char number,
unsigned int value);

(const unsigned char number,
unsigned int value);

Control register 0 (CRO) contains the machine status word in its low-order 16
bits. See Section 6.6.2 for functions and macros that manipulate the machine
status word. Figure 6-11 shows the format of control register 0.

Processor-specific Facilities 6-39

----- 1386™ and i486TM Processors:
Paging

------i486 Processor:
Cache Enable

— Writes Transparent

Write Protect--------------------------

Alignment Mask---------------------

Protected Mode Enable ---------
Monitor Coprocessor ----------

Emulate Coprocessor ---------
Task Switched ---------

i386 Processor:
Extension Type

i486 Processor:
Numerics Exception

PGCEWT NEETTSEMMPPE

31 15

Machine Status Word

CRO
(i386 and i486 Processors)

Reserved by Intel, Must be Zeros OSD73S

Figure 6-11 Control Register 0 of Intel386™ and Intel486™ Processors

Table 6-13 lists the names of the macros in the i 386. h header file and
describes the meaning of the corresponding fields in the high-order 16 bits of
the CRO control register. These macro names must be uppercase in the
source text.

Table 6-13 Control Register 0 Macros for Intel386™ and Intel486™ Processors

Name Value Meaning

CRO_EXTENSION_TYPE 0x0010 This bit is 1 if the i387™ coprocessor or the
i486™ processor is present,
and 0 if the i287™ coprocessor is present.

CRO_PAGING_ENABLED 0x8000 This bit is 1 if paging is enabled, or 0 if paging
is disabled.

6-40 Processor-specific Facilities

6.8 Managing the Features of the Intel486™ Processor

The i 486. h header file contains functions that enable iC-386 programs to
manipulate the unique features of the Intel486 processor.

The Intel386 and Intel486 processors execute memory read and write
operations from low-order to high-order addresses. This order is called "little
endian." The byteswap function reverses the order of bytes in a 32-bit
double word, converting little endian format to big endian format. This
feature is useful for transferring data between the Intel486 processor and
foreign processors or peripherals. The function takes a 32-bit double word as
its argument, and returns the swapped 32-bit value. The function prototype
is as follows:

unsigned int byteswap (unsigned int value')-.

The Intel486 processor also contains on-chip caches and provides
instructions to manipulate those caches. The invalidatedatacache
function flushes the internal data cache. Its prototype is as follows:

void invalidatedatacache (void);

The wbi n val i datedatacache function flushes the internal data cache and
directs any external cache to write back its contents and flush itself. The
function prototype is as follows:

void wbinvalidatedatacache (void);

The translation lookaside buffer (TLB) is a cache used for page table entries.
The invalidatetlbentry function marks a single entry in the translation
lookaside buffer (TLB) invalid. The function takes an address of a memory
location as an argument; the argument must have the address operator (&)
preceding it. If the TLB contains a valid entry which maps the argument
address, that entry is marked invalid. The function prototype is as follows:

void invalidatetlbentry (void far * memoryaddress');

Processor-specific Facilities 6^11

6.9 Manipulating the Numeric Coprocessor
The i 8 6. h header file contains several functions, macros, and data types that
enable iC-86/286/386 programs to manipulate a numeric coprocessor, a true
software emulator, or the Intel486 processor floating-point unit See the
following manuals, all listed in Chapter 1, for information on numeric
coprocessors:

• 8086/8088 Programmer's and Hardware Reference or ASM86 Assembly
Language Reference Manual for information on the 8087 numeric
coprocessor.

• 80286 Programmer's Reference Manual or ASM286 Assembly
Language Reference Manual for information on the i287™ numeric
coprocessor.

• 80387 Programmer's Reference Manual or ASM386 Assembly
Language Reference Manual for information on the Intel387 numeric
coprocessor. The Intel486 processor contains an on-chip floating-point
unit (FPU) that operates exactly the same as the Intel387 coprocessor.

This section uses the term "numeric coprocessor" to indicate a coprocessor,
emulator, or on-chip unit.

The i n i treal mat huni t function initializes the numeric coprocessor,
however, normally the iC-86/286/386 startup code initializes the
coprocessor. Use the initrealmathunit function if the standard startup
code is not used. The prototype for ini treal mathuni t is as follows:

void initrealmathunit (void);

The numeric coprocessor uses 8 numeric data registers, a control word
register, a status word register, a tag word register, an instruction pointer and
a data pointer. The coprocessor treats the numeric data registers as if they
were a stack. Figure 6-12 shows the numeric data register set. Figures 6-13
and 6-14 show the environment registers for the 8087 or i287 coprocessors,
and Intel387 coprocessor or Intel486 FPU, respectively.

6-42 Processor-specific Facilities

Figure 6-12 Numeric Coprocessor Stack of Numeric Data Registers

15 0

Data Pointer - —

Instruction Pointer - —

Tag Word

Status Word

Control Word

OSD718

Figure 6-13 8087 or i287™ Numeric Coprocessor Environment Registers

Processor-specific Facilities 6-43

Data Pointer

Instruction Pointer

1
—

Reserved Tag Word

Reserved Status Word

Reserved Control Word

31 5 0

OSD7I*

Figure 6-14 Intel387™ Numeric Coprocessor or Intel486™
FPU Environment Registers

The setrealmode function sets the fields of the control word. See Section
6.9.2 for more information on the control word and the set real mode
function.

The getreal error function retrieves the value of the status word. See
Section 6.9.3 for more information on the status word and the getreal error
function.

The numeric coprocessor's environment consists of the contents of the
control word, status word, tag word, instruction pointer, and data pointer.
The numeric coprocessor's state consists of the contents of all the registers.
See Section 6.9.5 for data types and functions relative to the numeric data
registers, environment, and state.

6.9.1 Tag Word

The tag word contains a 2-bit field for each numeric data register. The tag
fields indicate the kind of value in the register and whether or not the register
contains a valid value. Figure 6-15 shows the tag word and the possible
values for each tag.

6-44 Processor-specific Facilities

15 8 0

ST(7) ST(6)
I 1

ST(5)
I

ST(4) ST(3) ST(2) |ST(1)
I I I

ST(0)

For Each Tag: 00 = Valid
01 = Zero (True)
10 = Special
11 = Empty

OSD2S3

Figure 6-15 Numeric Coprocessor Tag Word

Table 6-14 lists the names of the tag word macros in the 186. h header file
that isolate a tag from the tag word. These macro names must be uppercase
in the source text.

Name Value Meaning

Table 6-14 Numeric Coprocessor Tag Word Macros

I87_TAG_MASK 0x0003 Each tag is 2 bits.

l87_TAG(x,y)i Isolates the tag for the yth numeric register
in the low-order bits of a word.

I87_TAG_SHIFT 2 Used by I87_TAG to shift the appropriate
tag into position.

1The macro definition is as follows:
#define !87_TAG(X,y) (((X).tag » (I87_TAG_SHIFT ' (y))) & I87_TAG_MASK)

6.9.2 Control Word

The control word contains exception mask bits and three sets of control bits.
The mask bits correspond to the flags in the status word (refer to Figure 6-17
for the format of the status word). Figure 6-16 shows the format of the
control word.

Processor-specific Facilities 6-45

-------- Infinity Control for
8087 and i287™ Coprocessors

-------- Rounding Control
--------Precision Control
-------- Interrupt Enable Mask for

8087 Coprocessor

Exception Masks:
(1 = Exception is Masked)

------- Precision Mask
------- Underflow Mask
------- Overflow Mask
------- Zero Divide Mask
------- Denormalized Operand Mask
------ Invalid Operation Mask

15

4 IC RC PC
1

•?/ PM UM OM ZM DM IM

8

Reserved by Intel,
Must be Zeros

PC Values: 00 = 24-Bit Significand (Single Precision)
01 = Reserved
10 = 53-Bit Significand (Double Precision)
11 = 64-Bit Significand (Extended Precision)

RC Values: 00 = Round to Nearest or Even
01 = Round Down (Toward -oo)
10 = Round Up (Toward 400)
11 = Chop (Truncate Toward Zero)

IC Values: 0 = Projective Closure Signed °°'s)
(8087/i287) 1 = Affine Closure (Unsigned 00’s)

OS0754

Figure 6-16 Numeric Coprocessor Control Word

The setrealmode function loads a value into the control word. The function
takes the value as its argument The prototype forsetrealmodeisas
follows:

void setrealmode (unsigned short mods');

6-46 Processor-specific Facilities

Table 6-15 lists the names of the macros in the 186. h header file that isolate
information from the control word. These macro names must be uppercase
in the source text.

Table 6-15 Numeric Coprocessor Control Word Macros

Name Value Meaning

I87JNVALID_OPERATION 0x0001 This bit masks or unmasks the IE bit in
the status word.

I87_DENORMALIZED_OPERAND 0x0002 This bit masks or unmasks the DE bit in
the status word.

I87_ZERO_DIVIDE 0x0004 This bit masks or unmasks the ZE bit in
the status word.

I87_OVERFLOW 0x0008 This bit masks or unmasks the OE bit in
the status word.

I87JJNDERFLOW 0x0010 This bit masks or unmasks the UE bit in
the status word.

I87_PRECISION 0x0020 This bit masks or unmasks the PE bit in
the status word.

I87_CONTROL_PRECISION 0x0300 These two bits control whether a 24-bit,
53-bit, or 64-bit significand is used.

I87_PRECISION_24_BIT 0x0000 The precision bits are 00 for 24-bit
significand (single) precision.

I87_PRECISION_53_BIT 0x0200 The precision bits are 10 for 53-bit
significand (double) precision.

I87_PRECISION_64_BIT 0x0300 The precision bits are 11 for 64-b'rt
significand (extended) precision.

Processor-specific Facilities 6-47

Table 6-15 Numeric Coprocessor Control Word Macros (continued)

Vor 8087 and i287 numeric coprocessors only.

Name Value Meaning

I87_CONTROL_ROUNDING OxOCOO These two bits control the method used
in rounding.

I87_ROUND_NEAREST 0x0000 The rounding bits are 00 to round to
nearest or even.

I87_ROUND_DOWN 0x0400 The rounding bits are 01 to round down.

I87_ROUND_UP 0x0800 The rounding bits are 10 to round up.

I87_ROUND_CHOP OxOCOO The rounding bits are 11 to truncate
toward zero.

I87_CONTROL_INFINITY1 0x1000 This bit controls whether projective
closure or affine closure is used to
represent infinity.

I87_INFINITY_PROJECTIVE1 0x0000 The infinity bit is 0 to use projective
closure (unsigned infinity).

I87_INFINITY_AFFINE1 0x1000 The infinity bit is 1 to use affine
closure (signed infinities).

6.9.3 Status Word

The status word contains flags, condition codes, the top of the stack of
numeric data registers, and a busy bit. The flag bits correspond to the mask
bits in the control word (refer to Figure 6-16 for the format of the control
word). Figure 6-17 shows the format of the status word. Tables 6-16 and
6-17 show the values of the condition codes for the 8087 or i287, and
Intel387 numeric coprocessors or Intel487 FPU, respectively.

6^18 Processor-specific Facilities

Busy
Condition Code 3
Stack top Pointer
Condition Code 2
Condition Code 1
Condition Code 0
Error Summary Status
(Set if any Unmasked
Exception bit is set, Else
Cleared)
Stack Flag for 1387™ i486’“ FPU

Exception Flags:
(1 = Exception has Occured)

Precision
Underflow
Overflow
Zero Divide
Denormalized Operand
Invalid Operation

ST Values: 000 = Register 0 is Top of Stack
001 = Register 1 is Top of Stack
010 = Register 2 is Top of Stack
011 = Register 3 is Top of Stack
100 = Register 4 is Top of Stack
101 = Register 5 is Top of Stack
110= Register 6 is Top of Stack
111 = Register 7 is Top of Stack csc?ss

Figure 6-17 Numeric Coprocessor Status Word

Processor-specific Facilities 6-49

Table 6-16 8087 or i287™ Numeric Coprocessor Condition Codes

Key:
ST = top of stack
X = instruction does not affect value
FTST = instruction that compares ST with zero
U = instruction leaves value undefined
Qn = quotient bit n following complete reduction (C2=0)

Instruction
Type

C3 C2 Ci Co Interpretation

compare, test 0 0 X 0 ST > source or 0 (FTST)
0 0 X 1 ST < source or 0 (FTST)
1 0 X 0 ST = source or 0 (FTST)
1 1 X 1 ST is not comparable

remainder Qi 0 Qo q2 complete reduction with three
low bits of quotient in Co, C3,
and C-j

u 1 u u incomplete reduction

examine 0 0 0 0 valid, positive unnormalized
0 0 0 1 invalid, positive, exponent=0
0 0 1 0 valid, negative, unnormalized
0 0 1 1 invalid, negative, exponents
0 1 0 0 valid, positive, normalized
0 1 0 1 infinity, positive
0 1 1 0 valid, negative, normalized
0
1

1
0

1
0

1
0

infinity, negative
zero, positive

1 0 0 1 empty register
1 0 1 0 zero, negative
1
1

0
1

1
0

1
0

empty register
invalid, positive, exponents

1 1 0 1 empty register
1
1

1
1

1
1

0
1

invalid, negative, exponent=0
empty register

6-50 Processor-specific Facilities

Table 6-17 Intel387™ Numeric Coprocessor or Intel486™ FPU Condition Codes

FSTSW, FCLEX, FINIT,
FSAVE

Instructions C3 C2 C1 Co Interpretation

FCOM, FCOMP, FCOMPP, 0 0 0 or O/U 0 stack top > operand
FTST, FUCOM, FUCOMP, 0 0 0 or O/U 1 stack top < operand
FUCOMPP, FICOM, FICOMP 1 0 0 or O/U 0 stack top = operand

1 1 0 or O/U 1 unordered

FPREM,FPREM1 Qi 0 Qo q2 complete reduction with three low
bits of quotient in Cg, Cg, and C-,

u 1 U u incomplete reduction

FXAM 0 0 Sign 0 unsupported
0 0 Sign 1 NaN
0 1 Sign 0 normal
0 1 Sign 1 infinity
1 0 Sign 0 zero
1 0 Sign 1 empty
1 1 Sign 0 denormal

FCHS, FABS, FXCH,
FINCTOP, FDECTOP,
Constant loads, FXTRACT,
FLD, FILD, FBLD, FSTP

u u 0 or O/U u

FIST, FBSTP, FRNDINT, u u Round u rounding valid when PE
FST, FSTP, FADD, FMUL,
FDIV, FDIVR, FSUB,
FSUBR, FSCALE, FSQRT,
FPATAN, F2XM1, FYL2X,
FYL2XP1

or O/U bit of status word is set

FPTAN, FSIN, FCOS, u 0 Round u complete reduction
FSINCOS

u 1
or O/U
U u incomplete reduction

FLDENV, FRSTOR Loaded Loaded Loaded Loaded each bit loaded from memory

FLDCW, FSTENV, FSTCW, U U U U undefined

Key:
O/U = When IE and SF bits of status word are set
1 = stack overflow and 0 = stack underflow:
U = instruction leaves value undefined
Qn = quotient bit n following complete reduction (C2=0)

Processor-specific Facilities 6-51

The get real error function returns the contents of the low-order byte of the
status word and then clears the exception flags in the status word to zeros.
The prototype forgetrealerrorisas follows:

unsigned short getrealerror (void);

Table 6-18 lists the names of the macros in the i 86. h header file that isolate
information from the status word. These macro names must be uppercase in
the source text

Table 6-18 Numeric Coprocessor Status Word Macros

Name Value Meaning

I87_STATUS_ERROR 0x0080 This bit is 1 if any unmasked
exception bit is set.

187_STATUS_STACKTO P_MASK 0x3800 These three bits indicate the
numeric register that is at the top
of the stack.

187_STATUS_STACKTO P_SH I FT

l87_STATUS_STACKTOP(env)1

11 Used by I87_STATUS_STACKTOP to
shift the stack top bits.

Isolates the stack top bits in the
low-order bits of a word.

I87_STATUS_BUSY 0x8000 This bit is 1 when the coprocessor is
executing or 0 when the coprocessor is
idle.

I87_STATUS_CONDITION_CODE 0x4700 These four bits are the condition code
bits; they reflect the outcome of
arithmetic operations.

1The macro definition is as follows:
#define l87_STACKTOP(env) (((env).status & I87_STATUS_STACKTOP_MASK) » \
I87_STATUS_STACKTOP_SH I FT)

6-52 Processor-specific Facilities

Table 6-18 Numeric Coprocessor Status Word Macros (continued)

Name Value Meaning

I87_CONDITION_CO 0x0100 This bit is condition code bit 0 (see
Tables 6-16 and 6-17).

I87_CONDITION_C1 0x0200 This bit is condition code bit 1 (see
Tables 6-16 and 6-17).

I87_CONDITION_C2 0x0400 This bit is condition code bit 2 (see
Tables 6-16 and 6-17).

I87_CONDITION_C3 0x4000 This bit is condition code bit 3 (see
Tables 6-16 and 6-17).

6.9.4 Data Pointer and Instruction Pointer

The format of the data pointer and instruction pointer differs depending on
which numeric coprocessor is used and whether the processor is executing in
real mode or protected mode.

6.9.4.1 8087 or i287™ Numeric Coprocessor Data Pointer and Instruction
Pointer

Figure 6-18 shows the real mode format of data pointer and instruction
pointer for the 8087 or i287 numeric coprocessor, and the protected mode
format of the pointers for the i287 numeric coprocessor.

Processor-specific Facilities 6-53

8087 or i287 Real Mode

Data Pointer
Address 19.. 16

Operand Address 15..0

Instruction
Pointer (IP)

Address 19.. 16 (Opcode

IP Address 15..0

15 11

i287 Protected Mode

Data Pointer
Operand Selector

Operand Offset

Instruction CS Selector
Pointer

IP Offset

15 8

Reserved by Intel, Must be Zeros oso n ।

Figure 6-18 8087 or i287™ Numeric Coprocessor Data Pointer
and Instruction Pointer

The i 87_real _address and i 87_address datatypes define the structure of
the information in the data pointer or instruction pointer for the 8087 or i287
coprocessor. The 187_REAL_ADDRESS macro computes a far pointer from the
real mode address information in the data pointer or instruction pointer of the
8087 or i287 coprocessor.

6-54 Processor-specific Facilities

The i87_real_address structure type accommodates the value of the real
mode data pointer. The opcode field is undefined for the data pointer. The
187_real_address structure definition is as follows:

^pragma A LI GN("i87_real_address")
struct 187_real_address
{

unsigned offset: 16, : 0;
unsigned opcode: 11, : 1;
unsigned selector: 4, : 0;

);

The i 87_address union type accommodates the value of the real mode or
protected mode data pointer or instruction pointer. The i 87_address union
definition is as follows:

union i87_address

struct i87_real_address real;
void far * protected;

) ;

The I87_REAL_ADDRESS macro computes a far pointer from an i 87_address
union. This macro name must be in uppercase in the source text. The macro
definition is as follows:

tfdefine I87_REAL_ADDRESS(addr) \
bui1dptr((seiector) ((addr).sei ector & 0xF0000), \

(void near * (addr).offset)

6.9.4.2 Intel387™ Numeric Coprocessor and Intel486™ FPU Data Pointer
and Instruction Pointer

Figure 6-19 shows the real mode and protected mode formats of the data
pointer and instruction pointer for the Intel387 numeric coprocessor or
Intel486 FPU.

Processor-specific Facilities 6-55

Data Pointer

Instruction
Pointer (IP)

Real Mode

- Operand Address 31 ..16

Operand Address 15..0

27 11

- IP Address 31..16 % Opcode 10..0

Reserved IP Address 15..0

31 27 15 10 0

Protected Mode

Data Pointer
Reserved Operand Selector

Operand Offset

Instruction
Pointer

31 26

Opcode 10..0 CS Selector

IP Offset

15 0

Reserved by Intel, Must be Zeros OSD756

Figure 6-19 Intel387™ Numeric Coprocessor or Intel486™
FPU Data Pointer and Instruction Pointer

The 1387_real_address, i387_protected_addr, and 1387_address data
types define the structure of the information in the data pointer or instruction
pointer for the Intel387 numeric coprocessor or Intel486 FPU.

6-56 Processor-specific Facilities

The 5 387_real_address structure type accommodates the value of the real
mode data pointer or instruction pointer. The opcode field is undefined for
the data pointer. The structure definition is as follows:

^pragma A LI GN("i387_real_address")
struct i387_real_address
{

unsigned ipl : 16, : 16:
unsigned opcode: 11, 1;
unsigned ip2 : 16, 4;
unsigned opl : 16, 16.
unsigned op2 : 16, 4;

1:

The 1387_protected_addr structure type accommodates the value of the
protected mode data pointer or instruction pointer. The opcode field is
undefined for the data pointer. The structure definition is as follows:

#pragma ALIGN(”i387_protected_addr")
struct i387_protected_addr
{

unsigned ip_offset: 32;
unsigned cs_sel : 16;
unsigned opcode ; 11, : 5;
unsigned op_offset: 32;
unsigned op_sel : 16, : 16;

1;

The i387_address union type accommodates the value of the real mode or
protected mode data pointer or instruction pointer. The union definition is as
follows:

union i387_address
(

struct i387_real_address real;
struct i387_protected_addr prot;

};

Processor-specific Facilities 6-57

6.9.5 Saving and Restoring the Numeric Coprocessor State

The numeric coprocessor's environment is the contents of the control word,
status word, tag word, instruction pointer, and data pointer. The numeric
coprocessor's state is the contents of the environment registers plus the
numeric data register stack. Refer to Figures 6-12 through 6-14 for the
general format of these registers.

The 187_envi roninent and i387_envi ronment datatypes define the
environment for the 8087 or i287 coprocessors, and the Intel387 coprocessor
or Intel486 FPU, respectively. The 187_tempreal data type and the
tempreal_t typedef define the format of one numeric register. The
i 87_state and i387_state data types define the structure of all the registers
for the 8087 or i287 coprocessors, and the Intel387 coprocessor or Intel486
FPU, respectively. The savereal status and restorereal status functions
manipulate the entire state of the numeric coprocessor.

The i 87_envi ronment structure type defines the 8087 or i287 numeric
coprocessor environment. The structure definition is as follows:

#pragma ALIGN("i87_envi ronment")
struct i87_environment
{

unsigned control: 16, : 0;
unsigned status : 16, : 0;
unsigned tag : 16, : 0;
union i87_address instruction;
union i87_address operand;

};

The i 387_envi ronment structure type defines the Intel387 numeric
coprocessor or Intel486 FPU environment. The structure definition is as
follows:

^pragma ALIGN("i387_environment")
struct i387_environment
(

unsi gned control : 16, 16;
unsi gned status : 16, : 16; —
unsigned tag : 16, 16;
union i387_address ptrs_n_opcode;

};

6-58 Processor-specific Facilities

The 187_tempreal structure type and tempreal_t typedef define the fields
in one numeric register. You can define theSBITFIELD macro to control
whether the one-bit sign field is signed or unsigned. The definitions for
187_tempreal and tempreal_t are as follows:

#pragma NOALIGN ("i87_tempreal")
struct i87_tempreal

char sigm’fi cand[8];
unsigned exponent: 15;

#if defined(SBITFIELD)
signed sign : 1;

#el se
unsigned sign : 1;

#endif
};

typedef struct i87_tempreal tempreal_t;

The i 87_state structure defines the state of the 8087 or i287 numeric
coprocessor. The structure definition is as follows:

struct i87_state
{

struct i87_environment environment;
tempreal_t stack[8J;

};

The i 387_state structure defines the state of the Intel387 numeric
coprocessor or Intel486 FPU. The structure definition is as follows:

struct i387_state
{

struct i387_environment environment;
tempreal_t stack[8];

};

The savereal status function copies the contents of the numeric
coprocessor state into a specific location of type i 87_state for the 8087 or
i287 coprocessor, or i 387_state for the Intel387 coprocessor or Intel486
FPU. The function takes a pointer to this destination as an argument.

The prototype for savereal status for 87 or 287 coprocessors is as follows:
void saverealstatus (struct i87_state * desti nati onptr);

Processor-specific Facilities 6-59

The prototype for sa vereal status for the Intel387 coprocessor or Intel486
FPU is as follows:

void saverealstatus (struct 1387_state * destinationptr);

The restorereal status function loads values into all the numeric
coprocessor registers. The function takes as an argument a pointer to the
i87_state save area for the 8087 ori287 coprocessor, orthe i387_state
save area for the Intel387 coprocessor or Intel486 FPU.

The prototype for restorereal status for 8087 or i287 coprocessors is as
follows:
void restorereal status (struct 187_state const * sourceptr};

The prototype for restorereal status for the Intel387 coprocessor or
Intel486 FPU is as follows:
void restorerealstatus (struct i387_state const * sourceptr);

6-60 Processor-specific Facilities

Contents 7
Assembler Header File
7.1 Macro Selection.. 7-1
7.2 Flag Macros... 7-7
7.3 Register Macros...7-8
7.4 Segment Macros.. 7-9
7.5 Type Macros..7-12
7.6 Operation Macros..7-13

7.6.1 External Declaration Macros..7-14
7.6.2 Instruction Macros... 7-16
7.6.3 Conditional Macros.. 7-17
7.6.4 Function Definition Macros... 7-18
7.6.5 Examples Using Assembler Macros... 7-27

Assembler Header File

The util .ah header file contains macros that help interface assembly
routines to iC-86/286/386 programs. To use these facilities, include the
header file in your assembly routines. The util .ah assembler header file
provides the following facilities:

• segmentation and linkage directives and generic data type specifiers for
any standard memory model (small, compact, medium, large, or flat)

• standard prolog and epilog for conformance to either the variable
parameter list (VPL) or the fixed parameter list (FPL) calling
convention

• simple directives for using parameters and automatic variables

To select these features, use header controls that the ut i 1 .ah macros
recognize. The source for the u 111 . a h header file is common for ASM8 6,
ASM286, and ASM386. See Section 7.6.5 for several examples.

7.1 Macro Selection

The macros defined in ut i 1 . a h fall into five groups, as follows:

Flag macros indicate segmentation model, calling convention,
and instruction set used in the assembly.

Register macros are generic register names and expand to appropriate
registers depending on the calling convention.

Segment macros are names of segments or groups as determined by
segmentation model.

Type macros are generic data type specifications and expand to
appropriate types depending on segmentation model.

7-1

Operation macros are instructions or directives for commonly used
assembly language operations.

Ensure that the : i ncl ude: environment variable contains the path for the
uti 1 . ah file. For example, set : incl ude: as follows:

C:> set :incl ude:-\intel\ic86\lib\

Use the following line in your assembly source text to include util .ah:

$include(:include:util .ah)

The expansion of the macros in uti 1 .ah depends on the value of a macro
named control s, which contains a list of header controls that specify the
behavior of the uti 1 . ah macros. Table 7-1 lists these header controls.

Table 7-1 Assembler Header Controls for Macro Selection

Header Control Abbr. Description

asm861 generate code for ASM86
asm2862 generate code for ASM286
asm3863 generate code for ASM386
small sm generate code for small memory model
compact cp generate code for compact memory model
medium4 md generate code for medium memory model
large4 la generate code for large memory model
flat5 fl generate code for flat memory model
fixedparams fp generate prolog/epilog for FPL calling convention
varparams vp generate prolog/epilog for VPL calling convention
mod861 generate 86 processor code
mod1861 generate 186 processor code

'module=name'6 set module name
ram generate code for RAM sub-model
rom generate code for ROM sub-model

‘stacks ize=szze'6 set size of the stack segment
1 For ASM86 applications only.
2For ASM286 applications only.
3For ASM386 applications only.
4For ASM86 or ASM286 applications only.
5For ASM386 applications only.
6Use single quotation marks around these header controls on the assembler invocation line.

7-2 Assembler Header File

If you include util .ah, you must define the control s macro in the
assembler invocation or in the assembly source text before the line including
util .ah. Otherwise, the assembler reports an undefined macro error. You
can define the control s macro with an empty value; any header controls that
you do not specify take on their default settings. Table 7-2 lists the default
settings for the header controls.

Table 7-2 Assembler Header Control Defaults

Header Controls Default

asm86, asm286, or asm386 asm86
small, compact, medium, large, or flat small
mod86 or modi 86 mod86
fixedparams or varparams fixedparams

module=name module=anonymous
ram or rom ram

stacksize=s/ze stacksize=O

You can define thecontrols macro in the assembler invocation, or in the
source text, or both places, as follows:

• If you define the controls macro in the assembler invocation, provide a
definition for the control s macro each time you assemble the program.
Thus, each time you assemble the program you can specify any header
control settings or define the control s macro with an empty value,
letting the unspecified controls take on their default settings.

• If you define the controls macro in the assembly source text as a
simple list of header controls, you can change the header control settings
only by modifying the source text. When the assembler processes a
macro definition, it discards any existing definition of that macro, so
defining the controls macro in the assembler invocation has no effect.

• You can define the control $ macro in the assembler invocation, then
use that definition of it as part of a redefinition of the controls macro
in the assembly source text. This forces some header control settings to
take effect any time you invoke the assembler for that source text. You
can also override other header control settings and let some header
controls take on their global default settings.

Assembler Header File 7-3

The DOS syntax for the assembler invocation is as follows:
asm/786 file [asm_control si %defi ne(control s)([header^control s])

Where:

asm/?86 is asm86, asm286, or asm386.

file is the source file to assemble.
asm_controls are controls for the assembly. See the ASM Macro

Assembler Operating Instructions for your host
system, listed in Chapter 1, for information on ASM
controls.

header_controls are header controls from Table 7-1, separated by
spaces.

Within the source text, the syntax for defining thecontrols macro and
including the uti 1. ah header file is as follows:

Mef ine(control s)
([fi le_defaul t_ctl s'} ^controls [fi le_overr ide_ct Is])

$include(:include:util.ah)

If you specify conflicting controls, the last one encountered by the assembler
takes effect. The precedence levels of the header controls are as follows:

• The fi le_override_ctls, specified lastin the control s definitionin
the source text, have the highest precedence. The f i 1 e_o verr ide_ct 1 s
always take effect, overriding any conflicting control in the
header_controls or fi 1 e_default_ctls.

• The header_con trols, specified in the assembler invocation (and
expanded in the source text from the%controls embedded in the
control s definition), have second precedence. The header_controls
take effect when they do not conflict with the fi 1 e_overri de_ctl s. A
control in the header_control s overrides any conflicting control in the
fi 1 e_defaul t_ctl s.

7-4 Assembler Header File

• The fi le_defaul t_ctls, specified first in the control s definitionin
the source text, have third precedence. The f i 1 e_de fault_ct] s take
effect whenever they do not conflict with the he a der_c on tro Is or
fi 1 e_o/erri de_ctl s.

• The global default controls, listed in Table 7-2, have the lowest
precedence. The global default controls take effect only when they do
not conflict with the fil e_overri de_ctl s, header_control s, or
file_defaul t_ctls.

Figure 7-1 shows the precedence relationship depending on where controls
are placed.

Highest
Precedence

file_override_controls
(Last in Controls Definition

in Source Text)

I
Overrides
Conflicting

header_controls

(In Assembler Invocation and Expanded in Source
Text at %controls)

Overrides
Conflicting

i
file_default_ctrls

(First in Controls Definition
in Source Text)

i
Overrides
Conflicting

Lowest
Precedence

Default Controls
From Table 7-2

OSD301

Figure 7-1 Precedence Levels of Assembler Header Controls

Assembler Header File 7-5

The following examples demonstrate invoking the assembler with header
controls to select macros.

1. This example invokes the ASM86 assembler with non-default assembler
settings and header controls. The assembler processes the source text in
the file utest .asm using the 186 processor instruction set and compact
model, producing an object module with variable parameter list (VPL)
calling convention.

C:> asm86 utest.asm %define(controls)(modl86 cp vp)

2. This example defines controls in the assembly source text. The header
control settings specify ASM386, the small model, and the ROM
submodel.

%define(controls)(asm386 sm rom)
$i nclude(: i nclude:uti1.ah)

3. This example defines header control defaults partly different from the
global default controls. The assembly source text contains the
following:

%defi ne(controls)
(cp vp ’ stacks!ze=50’ ^controls 'module=utl’)

This definition of the control s macro sets the following defaults:

• The object module is compact model rather than small.

• The calling convention is variable parameter-list (VPL) rather than
fixed parameter list (FPL).

• The stack size is 50 rather than 0.

• The module name is u11 instead of anonymous and cannot be
overridden; its position after ^controls indicates that it is a file
override control.

The assembler invocation for ASM286 on DOS is as follows:
C:> asm286 utest.asm %define(controls)(asm286 sm rom)

The controls defined in the assembler invocation override only the file
default controls that specify the memory model, as follows:

• The object module is small ROM model rather than compact RAM.

• The calling convention is VPL and the stack size is 50, as specified
in the file default controls.

7-6 Assembler Header File

7.2 Flag Macros

The value of a flag macro is either 1 (set) or 0. Use flag macros in ASM
macro programming language %i f constructs. See the ASM Macro
Assembler Operating Instructions manual for your system, listed in
Chapter 1, for more information on the macro programming language.

Use the flag macros to test the following conditions:

Table 7-3 lists which flag macros are set when you specify various header
controls.

%const_in_code indicates that constants are in the code segment; set
by the rom header control.

%far_code indicates that function pointers are far; set by the
medium or 1 arge header controls.

%far_data indicates that data pointers are far; set by the
compact, 1 arge, or rom header controls.

%fa r_stack indicates that the stack is in a separate segment, that
is, the SS register value is not the same as the DS
register value; set by the compact or 1 arge header
controls.

%f pl indicates that the calling convention is fixed
parameter list (FPL); set by the f i xedpa rams header
control.

%1186_i nstrs indicates whether to use or simulate instructions
available only in 186 and higher instruction sets; set
by the modl86, asm286, or asm386 header controls.

%i 86_asm
%i 286_asm
%i386_asm

indicates code specific to a particular architecture
when code is common between products targeted for
86, 286, or Intel386™ processors; set by asm86,
asm286, or asm386 header controls, respectively.

%set_ds indicates that each module has its own data segment;
set by the 1 a rge header control.

Assembler Header File 7-7

Table 7-3 Assembler Flag Macros Set by Header Controls

Header Control Flag Macros Set

asm86 %i86_asm
asm286 %i286_asm

%i186Jnstrs

asm386 %i386_asm
%i186_instrs

compact %far_data
%far_stack

medium %far_code
large %far_code

%far_data
%far_stack
%set_ds

fixedparams %fpl
modi 86 %i186_instrs

rom %const_in_code
%far_data

7.3 Register Macros
You can use a register macro as an instruction operand in place of the
register name. Table 7-4 shows macros useful in specifying operands to
instructions.

Table 7-4 Assembler Register Macros

Macro
ASM86
Expansion

ASM286
Expansion

ASM386
Expansion

%ax ax ax eax
%bx bx bx ebx
%cx ex ex ecx
%dx dx dx edx
%bp bp bp ebp
%sp sp sp esp
%si si si esi
%di di di edi

7-8 Assembler Header File

The registers referenced by the following register macros depend on whether
you specify the fixedparams or varparams header control, as follows:

% retoff is the register that holds the offset portion of a pointer return
value. The Eretoff macro expands to bx (for fl xedparams)
or ax (for varparams) for ASM86 and ASM286, and eax for
ASM386.

7« r e t s e 1 is the register that holds the selector portion of a pointer
return value. The % rets el macro expands to es (for
f ixedparams) or dx (for varparams) for ASM86 and
ASM286, and edx for ASM386.

7.4 Segment Macros

Each segment macro expands to the name of a segment. The memory model
determines the segment names. The segment names conform exactly to
those used by C and PL/M. You can use these names as instruction operands
and in segmentation directives.

The segment macros correspond to the names of segments. These segment
names, and what each macro expands to, are as follows:

Regroup the segment to which the CS register points

% c o d e the code segment name

% c o n s t the constant segment name

7 c d a t a the data segment name

7 c s t a c k the stack segment name

7 c d g r o u p the segment to which the DS register points

% s g r o u p the segment to which the SS register points

Tables 7-5 through 7-7 show the segment macro expansion by model for
each assembler.

Assembler Header File 7-9

Table 7-5 ASM86 Segment Macro Expansion by Memory Model

Macro Model Sub-model Expansion

%code small or compact RAM or ROM CODE

medium or large RAM or ROM module-id_CC)DE

%cgroup small or compact RAM or ROM CGROUP
medium or large RAM or ROM %code

%data small, compact, or medium RAM or ROM DATA
large RAM or ROM modu!e-id_DKT A

%dgroup small, compact, or medium RAM or ROM DGROUP
large RAM or ROM %data

%stack small, compact, medium, or large RAM or ROM STACK
%sgroup small or medium RAM or ROM DGROUP

compact or large RAM or ROM STACK
%const small, compact, medium, or large ROM %code

small, compact, or medium RAM CONST
large RAM %data

Table 7-6 ASM286 Segment Macro Expansion by Memory Model

Macro Model Sub-model Expansion

%code small or compact RAM or ROM CODE
medium or large RAM or ROM modu/e-/d_CODE

%cgroup small, compact, medium, or large RAM or ROM %code

%data small, compact, or medium RAM or ROM DATA
large RAM or ROM module-id_DAT A

%dgroup small, compact, medium, or large RAM or ROM %data

%stack small or medium RAM or ROM DATA
compact or large RAM or ROM STACK

%sgroup small, compact, medium, or large RAM or ROM %stack

%const small, compact, medium, or large RAM %data
small, compact, medium, or large ROM %code

7-10 Assembler Header File

Table 7-7 ASM386 Segment Macro Expansion by Memory Model

Macro Model Sub-model Expansion

%code small, compact, or flat RAM or ROM CODE32
%cgroup small, compact, or flat RAM or ROM %code
%data small, compact, or flat RAM or ROM DATA

%dgroup small, compact, or flat RAM or ROM %data

%stack small or flat RAM or ROM DATA
compact RAM or ROM STACK

%sgroup small, compact, or flat RAM or ROM %stack
%const small, compact, or flat RAM %data

small, compact, or flat ROM %code

The following example uses %data to bracket static variable data:
%data segment
•.assembler commands, e.g.,

var dw 0
%data ends

This example expands to the following, except under the large model:
DATA segment
jassembler commands, e.g.,

var dw 0
DATA ends

Under the large model, the example expands to the following:
module-id_DATA segment
jassembler commands, e.g.,

var dw 0
modu1e-id_DATA ends

Assembler Header File 7-11

7.5 Type Macros
You can use a type macro wherever an ASM data type (such as byte, word,
dword, etc.) can be used.

The type macros correspond to the data types of objects as follows:

%fnc the type of a global function

%fnc_ptr the size of a pointer to a function

%ptr the size of a pointer to data

%reg_si ze the size of a pointer

%i nt the size of an integer

%dint the size of a double integer

Tables 7-8 through 7-10 show the type macro expansion by model for each
assembler.

Table 7-8 ASM86 Type Macro Expansion by Memory Model

Macro Model Sub-model Expansion

%fnc small or compact RAM or ROM near

medium or large RAM or ROM far
%fnc_ptr small or compact RAM or ROM word

medium or large RAM or ROM dword
%ptr small or medium RAM word

small or medium ROM dword
compact or large RAM or ROM dword

%reg_size small, compact, medium, or large RAM or ROM word ptr

%int small, compact, medium, or large RAM or ROM word

%dint small, compact, medium, or large RAM or ROM dw

7-12 Assembler Header File

Table 7-9 ASM286 Type Macro Expansion by Memory Model

Macro Model Sub-model Expansion

%fnc small or compact RAM or ROM near
medium or large RAM or ROM far

%fnc _ptr small or compact RAM or ROM word
medium or large RAM or ROM dword

%ptr small or medium RAM word
small or medium ROM dword
compact, or large RAM or ROM dword

%reg_size small, compact, medium, or large RAM or ROM word ptr
%int small, compact, medium, or large RAM or ROM word
%drnt small, compact, medium, or large RAM or ROM dw

Table 7-10 ASM386 Type Macro Expansion by Memory Model

Macro Model Sub-model Expansion

—■ %fnc small, compact, or flat RAM or ROM near

%fnc_ptr small, compact, or flat RAM or ROM dword
%ptr small or flat RAM or ROM dword

compact RAM or ROM pword
%reg_size small, compact, or flat RAM or ROM dword ptr
%int small, compact, or flat RAM or ROM dword

%dint small, compact, or flat RAM or ROM dd

7.6 Operation Macros

The operation macros are grouped in four different classes according to their
function as follows:

External declaration
macros

expand to declarations of external variables,
constants, and functions.

Instruction macros expand to code simulating instructions or the
instructions themselves, depending on the
instruction set used.

Assembler Header File 7-13

Conditional macros expand to instructions that test or load data
pointers. The expansion depends on whether
data pointers have selectors.

Function definition
macros

expand to the basic parts of a function
definition.

7.6.1 External Declaration Macros

Use the external declaration macros as follows:

^extern(type, vname) to declare an external variable where type
is a valid assembler data type or a type
macro, and vname is a variable name; can
be used only outside all functions and
segments.

%extern_const (type, cname) to declare an external constant where type

%extern_fnc(fname)

is a valid assembler data type or a type
macro, and cname is a constant name; can
be used only outside all functions and
segments.
to declare an external function where
fname is a function name; can be used only
outside all functions and segments.

Tables 7-11 through 7-13 show the external definition macro expansion by
model for each assembler. See Tables 7-5 through 7-7 for expansion of the
% c o n s t segment macro.

7-14 Assembler Header File

Table 7-11 ASM86 Type Macro Expansion by Memory Model

Macro Model Sub-model Expansion

%extern small, compact, or medium RAM or ROM DATA segment
extrn vname-.type

DATA ends
large RAM or ROM extrn vname-.type

%extern_const small or compact
medium

RAM or ROM
RAM

%const segment
extrn %cname:%type

%const ends
medium
large

ROM
RAM or ROM

extrn %cname-.%type

%extern_fnc small or compact RAM or ROM CODE segment
extrn fnamemear

CODE ends
medium or large RAM or ROM extrn fnamezfar

Table 7-12 ASM286 Type Macro Expansion by Memory Model

Macro Model Sub-model Expansion

%extern small, compact, or medium RAM or ROM DATA segment
extern vname-.type

DATA ends
large RAM or ROM extrn vname-.type

%extern_const small or compact
medium RAM

RAM or ROM
RAM

%const segment
extrn %cname:%type

%const ends

medium
large

ROM
RAM or ROM

extrn %cname:%type

%extern_fnc small or compact RAM or ROM CODE segment
extrn fname.neat

CODE ends
medium or large RAM or ROM extrn fname:tar

Assembler Header File 7-15

Table 7-13 ASM386 External Declaration Macro Expansion by Memory Model

Macro Model Sub-model Expansion

%extern small, compact, or flat RAM or ROM DATA segment
extrn vname:type

DATA ends
%extern_const small or compact

flat
RAM
RAM or ROM

CONST segment
extrn aconst:type

CONST ends
small or compact ROM CODE32 segment

extrn aconst:type
CODE32 ends

%extern_fnc small, compact, or flat RAM or ROM CODE32 segment
extrn fname:near

CODE32 ends

7.6.2 Instruction Macros

The instruction macros provide compatibility between 86 and higher
processor instruction sets.

Center locals, level expands to code that simulates the enter ins
(for 86 instructions) The level argument is only a placeholder. The

locals argument indicates the value to subtract
from the sp register. Note that Center uses spaces
rather than parentheses to delimit the beginning and
end of its parameter list.

Center
(for 186, 286, or
Intel386 instructions)

expands to the enter instruction.

eave expands to code that simulates the 1 eave instruction
for the 86 instruction set, or the 1 eave instruction for
186 and higher instruction sets.

Xpusha expands to code that simulates the pus ha instruction
for the 86 instruction set, the pus ha instruction for
the 186 and 286 instruction sets, or the pushad
instruction for the Intel386 instruction set.

7-16 Assembler Header File

%popa expands to code that simulates the popa instruction
for the 86 instruction set, the popa instruction for the
186 and 286 instruction sets, or the popad instruction
for the Intel386 instruction set.

% p ij s h f expands to pushf for the 86, 186, and 286
instruction sets, or pushfd for the Intel386
instruction set.

Xmovsx expands to mo v for the 86, 186, and 286 instruction
sets, or movsx for the Intel386 instruction set

Xmovzx expands to mov for the 86, 186, and 286 instruction
sets, or movzx for the Intel386 instruction set.

7.6.3 Conditional Macros

The conditional macros select source text for assembly depending on
whether data pointers have selectors (the far address format). The
conditional macros expand as follows:

%mov|Isr expands to mov if %far_data is not set, or to the
register load instruction you specify as the Isr
argument if ar_data is set. Use this macro as an
instruction mnemonic for loading a data pointer.
The Isr argument can be either 1 ds, 1 es, 1 fs, or
1 gs. Note that %mov uses a vertical bar (|) rather
than parentheses to delimit its argument.

%if_sel (text) expands only if data pointers have selectors. The
text argument is the source text to be conditionally
assembled. This macro is equivalent to the
following:

%if (%far_data) then (text) fi

%if_nsel (text) expands only if data pointers do not have selectors.
The text argument is source text to be conditionally
assembled. This macro is equivalent to the
following:

%if (not %far_data) then (text) fi

Assembler Header File 7-17

7.6.4 Function Definition Macros

The following entries describe the function macros in detail in their order of
use, as follows:

unction open a function definition

Xparam define a parameter name

%param_flt define a floating-point parameter name
%auto define a local automatic variable

Xprolog generate a function prolog

%epi1og generate a function epilog

%ret generate a return instruction

%endf close a function definition

7-18 Assembler Header File

%function
Open a junction definition

Syntax

unction(fname)

Where:

fname is the name of the function to be opened.

Discussion

Use uncti on as the first statement in a function definition, to open the
function definition.

For ASM86 or ASM286 small or compact model, the Xfuncti on macro
expands to the following:

CODE segment
fname proc near
public fname

For ASM86 or ASM286 medium or large model, the ^function macro
expands to the following:

module-icLCODE segment
fname proc near
public fname

For ASM386 all models, the uncti on macro expands to the following:
CODE32 segment

fname proc near
public fname

Assembler Header File 7-19

%param
Define a parameter name

Syntax

%param(type, pname)

Where:

type is the data type of the parameter.
pname is the name of the parameter, which is defined as a macro

such that %pname expands to a valid reference to the
parameter.

Discussion

Use %par am to define a parameter name. Use %pa ram only between
Xfuncti on and %prol og. When you define aparameter of data type type,
the size of the parameter block increases by the number of bytes occupied by
a parameter of data type type.

Regardless of whether the calling convention is fixed parameter list (FPL) or
variable parameter list (VPL), parameters must be declared in the order that
their corresponding arguments occur in the ASM function call expression.

7-20 Assembler Header File

%param_flt
Define a floating-point parameter name

Syntax

%param_fl t(type, fpname')

Where:

type is the data type of the parameter

fpname is the name of the floating-point parameter, which is defined
as a macro such that % fpname expands to a valid reference to
the floating-point parameter.

Discussion

Use %param_f11 to define a floating-point parameter name. Use %param_fl t
only between Xfuncti on and 2prol og.

If you specify the varparams header control, the effect of %param_f 11 is
identical to that of %pa ram. If you specify the f i xedparams header control,
%param_fl t has no effect, since floating-point arguments are passed on the
numeric coprocessor stack instead of on the processor stack. In general, you
must handle floating-point arguments with a construct such as the following:

%if (not %fpl) then (
fid %fpname ; load the argument

) fi
; body of code

Assembler Header File 7-21

%auto
Define a local automatic variable

Syntax

%auto(type, mname')

Where:

type can be any valid assembler data type or a type macro.

mname is the name of the variable, which is defined as a macro such
that %mname expands to a valid reference to the variable.

Discussion

Use %auto to define a local automatic variable. Use %auto only between
^functi on and %prol og. When you define alocal automatic variable of data
type type, the size of the local area allocated by %prol og increases by the
number of bytes occupied by a variable of data type type.

7-22 Assembler Header File

%prolog
Generate a function prolog

Syntax

%prolog(registers)

Where:

reg is ters is a list of segment registers and general registers. However,
the macro ignores all but the DS, ES, DI, and SI registers for
ASM86 or ASM286; or DS, ES, EDI, and ESI registers for
ASM386. Separate the register names with spaces.

Discussion

Use %prol og to generate a prolog function. Use %prol og only after
%f uncti on and before any other instructions. Use *prol og whenever you
use %epi 1 og, Xparam, %param_fl t, or Xauto, and be sure to use %prol og
after %parm, %parm_fl t, and %auto. You must also use Xepi 1 og whenever
you use %prol og.

Of the registers you list in the reg is ters argument list, the prolog function
pushes only those that the calling convention requires to be preserved. The
prolog function performs the following tasks:

• pushes registers

• pushes BP for ASM86 or ASM286, or EBP for ASM386 (the base
pointer register) and initializes it for use as a local frame pointer using
the ENTER assembler instruction

• sets SP for ASM86 or ASM286, or ESP for ASM386 using the ENTER
assembler instruction

• allocates space for automatic variables

In addition, for ASM86 and ASM286 large model, if the %data segment
macro has been expanded, the prolog performs the following:

• pushes DS (the data segment register)

• loads the data segment address into DS

Assembler Header File 7-23

%epilog
Generate a function epilog

Syntax

% ep i 1 og

Discussion

Use Xepi 1 og to generate a function epilog. Use %epi 1 og only immediately
before a return instruction. The epilog deallocates space for automatic
variables (allocated by the Xauto function macro) and pops registers pushed
by the %prol og function macro. The epilog also issues the LEAVE assembler
instruction, thereby restoring the BP register for ASM86 or ASM286, or the
EBP register for ASM386; and the SP register for ASM86 or ASM286, or
the ESP register for ASM386.

7-24 Assembler Header File

%ret
Generate a return instruction

Syntax

%ret

Discussion

Use % ret to generate a return instruction. The expansion of %r et depends on
whether you specify the varparams or the fi xedparams header control, as
follows:

Under the varparams header control, %ret expands to the following:
ret

Under the fi xedparams header control, %ret expands to the following:
ret paramsize

The pa rams ize is the sum of the sizes of all the parameters declared with
% pa ram. The params 1 ze must be an even value, since parameters are
word-aligned.

Assembler Header File 7-25

%endf
Close a function definition

Syntax

%endf (fname')

Where:
fname is the name of the function to be closed.

Discussion

Use %endf as the last statement in a function definition to close the function
definition. The %endf macro always expands to the following:

fname endp

7-26 Assembler Header File

7.6.5 Examples Using Assembler Macros

This section contains several examples that use flag macros, register macros,
conditional macros, and function definition macros.

1. This example uses the following ASM source code:
mov al, byte ptr f_se1(es:)[ebx]

f_nsel(
push ds
pop es
)
rep stosb

For an ASM86 or ASM286 compact RAM, large RAM, or any ROM
model, the expansion is as follows:

mov al , byte ptr es:[bx]
rep stosb

For an ASM86 or ASM286 small RAM or medium RAM model, the
expansion is as follows:

mov al, byte ptr [bx]
push ds
pop es
rep stosb

For an ASM386 compact RAM, compact ROM, or small ROM model,
the expansion is as follows:

mov al, byte ptr es:[ebx]
rep stosb

For an ASM386 small RAM or flat model, the expansion is as follows:
mov al, byte ptr [ebx]
push ds
pop es
rep stosb

Assembler Header File 7-27

2. This example shows assembler source text that assembles correctly for
ASM86, ASM286, and ASM386. This example is not a working
function, but demonstrates expansion under the different assemblers.
The example uses the following DOS assembler invocations:

C:> asm86 ex2.asm Xdefine (controlsX)

C:> asm286 ex2.asm %define (controls)(asm286)

C:> asm386 ex2.asm ^define (controls)(asm386)

Figure 7-2 shows the contents of the ex2. asm source file, and Figure 7-3
shows the expansion of the source file, and Figures 7-3 through 7-5
show the expanded code under the three assemblers for the default small
memory model.

Wefi ne(control s) (modul e-ex2 stacksize-100 ^controls)
$i nclude(:i nclude:uti1 .ah)

; ext_var is an external variable
^extern(%int, ext_var)

; abc is a function that adds three values: its input argument
; plus 10 plus the offset of an external variable
; and returns the sum represented as a pointer.
%function(abc)
%param(Xint, p_word)
%auto(%int, a_word)

%prolog()
mov %a_word, 10
mov %cx, %p_word
add %cx, %a_word
add %cx, offset ext_var
mov ^retoff. %cx
%if_sel(mov Xcx. seg ext_var

mov ^retsel, 2cx)
%epi1og
%ret

%endf(abc)
end

Figure 7-2 Assembler Source for Accessing the Address of an External Variable

7-28 Assembler Header File

$i nclude(:i nclude:uti1.ah)
; macros and defines for assembly language code

name ex2

code segment para public ’code’
code ends

data segment para public ’data’
data ends

memory segment para memory ’memory’
memory ends
stack segment para stack ’stack’

db 64H dup (?)
ex2_tos label word

stack ends
const segment para public ’const'
const ends
cgroup group code
dgroup group data , const
assume cs:cgroup
assume ds:dgroup
assume es:nothing
assume sszdgroup

; ext_var is an external variable
data segment

extrn ext_var:word
data ends

: abc is a function that adds three values: its input
: plus 10 plus the offset of an external variable
; and returns the sum represented as a pointer.

end

code
abc

segment
proc
publi c
push
mov

near
abc
bp
bp. sp
sub sp. 02H

mov wore 1 ptr [bp - 02H], 10
mov ex,
add ex.
add ex,
mov bx,

ret 02H
abc
code

word ptr [bp + 04H + 02H
word ptr [bp - 02H]
offset ext_var
ex

mov sp, bp
pop bp

endp
ends

- 02H]

Figure 7-3 ASM86 Expansion of Assembler Source for
Accessing the Address of an External Variable

Assembler Header File 7-29

$i ncl ude(:i nclude:uti1 .ah)
: macros and defines for assembly language code

name ex2
code segment er public
code ends

data segment rw public
data ends

data stackseg 64H
assume ds: data
assume es:nothing
assume ss:data

: ext_var is an external variable
data segment

extrn ext_var:word
data ends

; abc is a function that adds three values: its input
: plus 10 plus the offset of an external variable
: and returns the sum represented as a pointer.

code segment
abc proc near

public abc
enter 02H, 0

mov word ptr [bp - 02H], 10
mov ex, word ptr [bp + 04H + 02H • 02H]
add ex, word ptr [bp - 02H]
add ex, offset ext_var
mov bx. ex

1 eave
ret 02H

abc endp
code ends

end

Figure 7-4 ASM286 Expansion of Assembler Source for
Accessing the Address of an External Variable

7-30 Assembler Header File

Ji nclude(:include:uti1.ah)
: macros and defines for assembly language code

name ex2
code32 segment er public
code32 ends

data segment rw public
data ends

data stackseg 64H
assume ds: data
assume es:nothing
assume ss:data

: ext_var is an external variable
data segment

extrn ext_var:dword
data ends

: abc is a function that adds three values: its input argument
: plus 10 plus the offset of an external variable
: and returns the sum represented as a pointer.

code32 segment
abc proc near

public abc
enter 04H, 0

mov dword ptr [ebp - 04H] , 10
mov ecx, dword ptr [ebp + 08H + 04H - 04H]
add ecx, dword ptr [ebp - 04H]
add ecx, offset ext_var
mov eax, ecx

1 eave
ret 04H

abc endp
code32 ends

end

Figure 7-5 ASM386 Expansion of Assembler Source for
Accessing the Address of an External Variable

Assembler Header File 7-31

3. This example is an implementation of the strcmp function for ASM.
This example demonstrates special techniques for source code that can
be compiled with different assemblers. Registers preceded with a
percent sign (%) expand to the expanded register for AS M3 86. Different
instructions are generated for the different processors in the
%if (%i386_asm) - then - el se statement. The assembler invocations
are as follows;

C:> asm86 strcmp.asm ^define (controls)()

C:> asm286 strcmp.asm Xdefine (controls)(asm286)

C:> asm386 strcmp.asm %define (controls)(asm386)

Figure 7-6 shows the assembler source code, and Figures 7-7 through
7-9 show the expanded source code for ASM86, ASM286, and
ASM386, respectively, for the default small memory model.

; strcmp - compare 2 strings
; Copyright (C) 1988 Intel Corporation. ALL RIGHTS RESERVED

SSdef i ne(control s) (modul e-cq_strcmp fp ^controls)

Sinclude (:include:uti1.ah)

Xfunction(strcmp)
%param(%ptr, str2) : Second string
^paramUptr, strl) ; First string

%prolog(si di es ds)

; Determine the length of the first string:

cl d
%if (not %far_data) then (

mov di, ds
mov es. di

) fi
2mov|1es %di, %strl
xor %ax, 2ax

xor %cx, Xcx
dec %cx
repnz scasb

not %cx

Figure 7-6 Assembler Source Code for strcmp Function

: Ensure that extra segment selector
: is the set correctly.

: Load the source address.
: Clear register (E)AX for the string

; scan instructions that follow.
: Set the count register to its
: maximum value.
: Scan to the end of str2 one

: byte at a time.
: Maximum number of bytes to comoare.

7-32 Assembler Header File

; Compare the two strings:

•

Xmovlles %di
%mov|lds %si

. %strl

. %str2
: Load the address of string 1.
: Load the address of string 2.

■—■

mov !dx, %cx

%if (%i386_asm)
then (

and %dx, 03H

shr %cx, 2
repe cmpsd
jz left_over

sub 2si. 4
sub Wi, 4
mov %dx, 04H

) else (
and %dx. 01H

shr %cx, 1

repe cmpsw
jz left_over

sub %si , 2
sub 2di. 2
mov 2dx, 02H

) fi

: Register (E)DX will contain the
: number of bytes left over after
: the word or dword compares.

; Calculate the number of bytes that
remain.

: Divide the count by 4 for the number
: of dword transfers.

: Compare the dwords.
: If zero, then strings are equal

: so far.
: Set the string pointers to the dword
: that contained the differences.

; Calculate the number of bytes that
: remain.

; Divide the count by 2 for the number
; of word transfers.

; Compare the words.
; If zero, then strings are equal

so far.
; Set the string pointers to the word
: that contained the differences.

1eft_over:
mov %cx, %dx
repe cmpsb
jz all done

sub %si, 1
sub %di, 1

di fferent:
xor %bx, %bx
mov al, byte

mov bl, byte

sub %ax, %bx
al 1 done:

%ep i1og
Uret

%endf(strcmp)
end

ptr

ptr

2if_

%if_

: Compare the left-over bytes (if any).

: Strings are equal, so return to the
: caller.

; Set the string pointers to the byte
: that contained the differences.

_sel (ds :) [%si J
: Subtract the character of

_sel (es:)[%di]
: the destination string from

; the source string.

Figure 7-6 Assembler Source Code for strcmp Function (continued)

Assembler Header File 7-33

; strcmp - compare 2 strings
$include (:include:uti1.ah)

macros and defines for assembly language code
name cq_strcmp
code segment para public ’code’
code ends

data segment para public ’data’
data ends

memory segment para memory ’memory
memory ends
stack segment para stack ’stack’

cq_strcmp_tos label word
stack ends

const segment para public ’const’
const ends
egroup group code
dgroup group data . const
assume cs:cgroup
assume ds:dgroup
assume es:nothing
assume ss:dgroup

code segment
strcmp proc near

public strcmp
; Second string
: Fi rst stri ng

push ds
push bp
mov bp, sp

Determine the length of the first string:

. stack, memory

cl d ;
mov di . ds ; Ensure that extra segment selector
mov es, di : is the set correctly.
mov di , word ptr [bp + 06H + 04H - 04H] : Load the source address
xor ax, ax : Clear register (E)AX for the string

: scan instructions that follow
xor ex, ex ; Set the count register to its
dec ex ; maximum value.
repnz scasb ; Scan to the end of str2 one

: byte at a time.
not ex : Maximum number of bytes to compare.

Compare the two strings:

mov di. word ptr [bp + 06H + 04H - 04H] ; Load the address of string 1.
mov si, word ptr [bp + 06H + 04H - 02H] ; Load the address of string 2.

mov dx, ex : Register (E)DX will contain the
; number of bytes left over after
; the word or dword compares.

Figure 7-7 ASM86 Expansion of Assembler Source Code for strcmp Function

7-34 Assembler Header File

and dx, 01H

shr ex, 1

: Calculate the number of bytes that
: remain,

: Divide the count by 2 for the number
: of word transfers.

: Compare the words.repe empsw
jz left_over

sub si, 2
sub di, 2
mov dx. 02H

1eft_over:
mov ex, dx
repe empsb
jz alldone

sub si, 1
sub di, 1

di fferent:
xor bx, bx

: If zero, then strings are equal
: so far.

: Set the string pointers to the word
; that contained the differences.

: Compare the left-over bytes (if any)

: Strings are equal, so return to the
; caller.

: Set the string pointers to the byte
: that contained the differences.

mov al, byte ptr [si] : Subtract the character of
mov bl, byte ptr [di]
sub ax, bx

al 1 done:
mov sp, bp
pop bp
pop ds

ret 04H
strcmp endp
code ends
end

: the destination string from
; the source string.

Figure 7-7 ASM86 Expansion of Assembler Source Code for strcmp Function
(continued)

; strcmp - compare 2 strings
$include (:include:uti1.ah)
: macros and defines for assembly language code

name cq_strcmp
code segment er public
code ends

data segment rw public
data ends

data stackseg 00H
assume ds: data
assume es:nothing
assume ss:data

code segment
strcmp proc near

public strcmp

Figure 7-8 ASM286 Expansion of Assembler Source Code
for strcmp Function

Assembler Header File 7-35

enter

: Second string
; First string

push ds
00H, 0

Determine the length of the first string:

cl d :
mov di , ds ; Ensure that extra segment selector
mov es, di ; is the set correctly.
mov di , word ptr [bp + 06H + 04H - 04H] : Load the source address
xor ax, ax ; Clear register (E)AX for the string

; scan instructions that follow
xor ex, ex ; Set the count register to its
dec ex : maxi mum value.
repnz scasb ; Scan to the end of str2 one

: byte at a time.
not ex : Maximum number of bytes to compare.

Compare the two strings:

mov di, word ptr [bp + 06H + 04H - 04H] : Load the address of stri ng
1.

mov si, word ptr [bp + 06H + 04H - 02H] ; Load the address of stri ng
2.

mov dx, ex ; Register (E)DX will contain the
; number of bytes left over
; the word or dword compares

after

and dx, 01H ; Calculate the number of bytes that
: remain.

shr ex. 1 ; Divide the count by 2 for the number
: of word transfers.

repe! empsw : Compare the words.
jz 1 eft_over ; If zero, then strings are equal

: so far.
sub si , 2 : Set the string pointers to the word
sub di . 2 ; that contained the differences.
mov dx, 02H 1

Figure 7-8 ASM286 Expansion of Assembler Source Code
for strcmp Function (continued)

7-36 Assembler Header File

1eft_over:
mov
repe
jz a

ex, dx
empsb

Compare the left-over bytes (if

Strings are equal, so return to
; caller.

any)

thelid one

sub si , 1 Set the string pointers to the byte
sub di,

di fferent:
xor bx,
mov al ,
mov bl ,
sub ax,

al 1 done:
1 eave

ret 04H
strcmp
code
end

1

bx
byte ptr [si]
byte ptr [di]
bx

pop ds

endp
ends

that contained the differences

Subtract the character of
the destination string from
the source string.

Figure 7-8 ASM286 Expansion of Assembler Source Code
for strcmp Function (continued)

Assembler Header File 7-37

; strcmp - compare 2 strings
$include (:include:uti1.ah)
: macros and defines for assembly language code

name cq_strcmp
code32 segment er public
code32 ends

data segment rw public
data ends

data stackseg 00H
assume ds: data
assume es:nothing
assume ss:data

code32 segment
strcmp proc near

public strcmp
: Second string
; First string

push es
push ds

enter 00H, 0

; Determine the length of the first string:

cl d ;
mov di, ds ; Ensure that extra segment selector
mov es, di ; is the set correctly.
mov edi, dword ptr [ebp + 10H + 08H - 08H] ; Load the source

address.
xor eax, eax ; Clear register (E)AX for the string

: scan instructions that follow
xor ecx, ecx ; Set the count register to its
dec ecx ; maximum value.
repnz scasb : Scan to the end of str2 one

: byte at a time.
not ecx ; Maximum number of bytes to compare.

Compare the two strings:

mov edi , dword ptr [ebp + 10H + 08H - 08H] ; Load the address of
stri ng 1.

mov esi , dword ptr [ebp + 10H + 08H - 04HJ : Load the address of
stri ng 2.

mov edx, ecx

and edx, 03H

shr ecx. 2

repe cmpsd
jz left_over

: Register (E)DX will contain the
; number of bytes left over after
: the word or dword compares.

; Calculate the number of bytes that
; remain.

: Divide the count by 4 for the number
: of dword transfers.

; Compare the dwords.
: If zero, then strings are equal

so far.

Figure 7-9 ASM386 Expansion of Assembler Source Code
for strcmp Function

7-38 Assembler Header File

sub esi, 4
sub edi, 4
mov edx, 04H

1eft_over:
mov ecx, edx
repe cmpsb
jz all done

sub esi , 1
sub edi, 1

di fferent:
xor ebx, ebx
mov al, byte ptr [esi]
mov bl, byte ptr [edi]
sub eax, ebx

al 1 done:
1 eave

pop ds
pop es

ret 08H
strcmp endp
code32 ends
end

Set the string pointers to the dword
that contained the differences.

Compare the left-over bytes (if any).

Strings are equal, so return to the
; caller.

Set the string pointers to the byte
that contained the differences.

Subtract the character of
the destination string from
the source string.

Figure 7-9 ASM386 Expansion of Assembler Source Code
for strcmp Function (continued)

Assembler Header File 7-39

4. This example is an implementation of the meme py function for ASM386.
The DOS assembler invocation is as follows:

C:> asm386 memcpy.asm %define (controls)(asm386)

Figure 7-10 shows the assembler source code for the memepy function,
and Figure 7-11 shows the expanded source code for the default small
memory model.

; memepy - copy a block of memory
; Copyright (C) 1988, 89 Intel Corporation. ALL RIGHTS RESERVED.

£endf(memepy)
end

Wefi ne (control s) (module-cq_memcpy fp ^controls)
$include(:i nclude:uti1.ah)
^functi on(memcpy)
%param(%ptr, dst)
^param(%ptr, sre)
2param(%int, count)

%prolog(si di es ds)
mov ecx. ^count
or ecx, ecx
jz done

; Set up necessary registers

: Fetch the number of bytes to move.
: If this number is zero, then
; there is no work to do.

in order to use the 86 string instructions:

cl d
%if (not %far_data) then (

mov dx, ds
mov es, dx

) fi
%mov11 ds esi, %src
%mov|1es edi, %dst

: Move the block of memory:

mov edx, ecx

shr ecx, 2

rep movsd
and edx, 03H

mov ecx, edx
rep movsb

done:
mov %retoff. %reg_size
2if_sel(mov ^retsel, %r
%epi1og
’/ret

Ensure that extra segment selector
is the set correctly.

Load the source address.
Load the destination address.

Register (E)DX will contain the
number of bytes left over after
the word or dword transfers.

Divide the count by 4 for the number
of dword transfers.

Transfer the dwords.
Calculate the number of bytes that

remai n.
Transfer the left-over bytes (if any).

Xdst : return the destination address
eg_size %dst + Xint_size)

Figure 7-10 ASM386 Assembler Source for memepy Function

7-40 Assembler Header File

; memcpy - copy a block of memory
$include(:include:util.ah)
: macros and defines for assembly

name cq_memcpy
code32 segment er public

language code

code32 ends
data segment rw public
data ends

data stackseg 00H
assume ds: data
assume es:nothing
assume ss:data

code32 segment
memcpy proc near

public memcpy
push es
push ds

enter 00H, 0
mov ecx, dword ptr [ebp + 10H + 0CH - 0CH

or ecx, ecx ; If this number is
jz done ; there is no work

Fetch the number of
to move.

zero, then
to do.

bytes

Set up necessary registers in order to use the 86 string instructions:

cld
mov dx, ds
mov es , dx
mov esi, dword
mov edi, dword

ptr
ptr

[ebp
[ebp

Ensure that extra segment selector
is the set correctly.

10H + 0CH - 08H] ; Load the source address.
10H + 0CH - 04H] ; Load the destination

; address.

Move the block of memory

■—-

done:

mov edx, ecx

shr ecx, 2

rep movsd
and edx. 03H

mov ecx, edx
rep movsb

mov eax, dword

1 eave
pop
pop

ret 0CH
memcpy endp
code32 ends
end

ptr

ds
es

dword

Register (E)DX will contain the
number of bytes left over after
the word or dword transfers.

Divide the count by 4 for the number
of dword transfers.

Transfer the dwords.
Calculate the number of bytes that

remain.
Transfer the left-over bytes (if any).

ptr [ebp + 10H + 0CH - 04H] : return the
; destination address

Figure 7-11 ASM386 Expansion of Assembler Source for memcpy Function

Assembler Header File 7-41

Contents

Function-calling Conventions
8.1 Passing Arguments.. 8-3

8.1.1 FPL Argument Passing.. 8-4
8.1.2 VPL Argument Passing... 8-5

8.2 Returning a Value..8-6
8.3 Saving and Restoring Registers.. 8-7
8.4 Cleaning Up the Stack...8-9

Function-calling Conventions
To interface functions in different languages, a programmer must know the
calling convention, data types, and segmentation model used by the different
translators. This chapter discusses calling conventions for interfacing
iC-86/286/3 86 functions with functions written in other Intel programming
languages. See Chapter 4 for information on segmentation memory models.
See Chapter 10 for information on data types.

This chapter contains information on how iC-86/286/386 generates object
code for a function call, and how the fixed parameter list and variable
parameter list conventions differ.

See Chapter 10 for information on the following related topics:

• conformance to the ANSI C standard

• implementation-dependent compiler features

• data types and reserved words

A large application can consist of many separately compiled modules. The
binding process combines the modules before execution to satisfy references
to external symbols. Use Intel translators and binding tools to ensure
compatibility with the segmentation model of the microprocessor.

A function-calling convention establishes rules and responsibilities for the
following activities:

• passing arguments to the called function

• returning a value from the called function to the calling function

• saving registers

• cleaning up the stack

8-1

The compiler generates four sections of object code for a function call.
These sections contain the code that handles the function-calling convention.
Figure 8-1 shows these four sections of code. The sections are as follows:

setup code in the calling function that the processor executes just
before control transfers to the called function

prolog code in the called function that the processor executes first
when control has transferred from the calling function

epilog code in the called function that the processor executes just
before control returns to the calling function

cleanup code in the calling function that the processor executes just
after control returns from the called function

Control Transfer Called Function:Calling Function:

OS02B2

Figure 8-1 Four Sections of Code for a Function Call

8-2 Function-calling Conventions

The iC-86/286/386 compilers support two calling conventions: fixed
parameter list (FPL) and variable parameter list (VPL). The FPL calling
convention is the default for the iC-86/286/386 compilers and for most non-C
compilers or translators. Ensure that the object code for the calling function
and for the called function use the same convention. For iC-86/286/386, use
the fl xedparams control for the FPL convention and the varparams control
for the VPL convention. See Chapter 3 for more information about these
controls.

NOTE
The iC-86/286/386 compilers use the fixed parameter list (FPL)
calling convention as its default. This feature produces more
compact code. Intel C compilers for «86 processors before
Version 4.1 use the variable parameter list (VPL) calling
convention. If the calling function and the called function do
not use the same calling convention, the result is unpredictable.

8.1 Passing Arguments
A calling function passes some or all of its arguments to the called function
on the processor stack. The following points differ in calling conventions:

• position that arguments occupy on the stack, or order in which
arguments are pushed onto the stack

• whether the calling function passes an argument by value (the actual
value of the argument appears on the stack) or passes an argument by
reference (a pointer to the argument appears on the stack)

• the format of pass-by-value arguments on the stack

The iC-86/286/386 compilers always use pass-by-reference for passing
arrays and pass-by-value for other objects. The calling function's setup code
pushes arguments onto the stack.

Function-calling Conventions 8-3

8.1.1 FPL Argument Passing

In the FPL convention, the calling function pushes all non-floating-point
arguments onto the processor stack, and the first seven (left-to-right)
floating-point arguments onto the numeric coprocessor (or numeric
coprocessor emulator) stack. The calling function pushes all remaining
floating-point arguments onto the processor stack.

The FPL convention pushes the leftmost argument in the function call first
and the rightmost argument last. Therefore, the first argument in the list
occupies the highest memory location of all the arguments on the stack for
this function call, and the last argument in the list is on the top of the stack.

Aggregate objects occupy memory on the stack in the same way that they
exist in the data segment: bytes match from low-order memory to high-order
memory.

Each argument on the processor stack occupies a multiple of four bytes. If
the size of the argument is less than four bytes, the compiler pads the
argument to four bytes with undefined bits. The compiler pads aggregate
arguments to a multiple of four bytes with undefined bits.

The floating-point arguments on the numeric coprocessor stack occupy 80
bits each (extended precision). In conformance to the ANSI C standard, the
parameter prototype declaration determines the size of any floating-point
arguments on the processor stack. In the absence of a prototype, or if the
parameter is the eight or subsequent floating-point value, the calling function
pushes floating-point arguments in doubl e format (64 bits).

When the calling function expects a structure or union as a return value, the
calling function pushes last an argument that is an address where the called
function places the structure or union.

8-4 Function-calling Conventions

NOTE
A non-prototyped FPL function risks using incorrect offsets for
all parameters following the eighth floating-point parameter if
the eighth or subsequent floating-point parameter is declared
within the function as fl oat instead of doubl e, as follows:

1. Under the FPL calling convention, the first seven floating-point
arguments are passed in the numeric coprocessor registers, and all
subsequent floating-point arguments are passed on the CPU stack.

2. In the absence of a prototype for the called function, the calling
function always promotes an argument of type fl oat to type
double before passing the argument on the CPU stack to the called
function.

3. If the called function declares the eighth or subsequent floating
point parameter as type fl oat (instead of type doubl e, as passed),
the called function uses incorrect offsets to access the ninth and
subsequent parameters, and the stack is not adjusted correctly upon
return to the calling function.

To avoid such errors, always provide prototypes for all FPL functions that
include floating-point parameters.

8.1.2 VPL Argument Passing

In the VPL convention, the calling function pushes all arguments, including
floating-point arguments, onto the processor stack.

The VPL convention pushes the rightmost argument in the function call first
and the leftmost argument last. Therefore, the last argument in the list
occupies the highest memory location of all the arguments on the stack for
this function call, and the first argument in the list is on the top of the stack.

Aggregate objects occupy memory on the stack in the same way that they
exist in the data segment: bytes match from low-order memory to high-order
memory.

Function-calling Conventions 8-5

Each argument on the processor stack occupies a multiple of four bytes. If
the size of the argument is less than four bytes, the compiler zero-extends or
sign-extends to four bytes depending on the argument's data type. The
compiler pads aggregate arguments to a multiple of four bytes with
undefined bytes.

In conformance to the ANSI C standard, the parameter prototype declaration
determines the size of a floating-point argument on the processor stack. In
the absence of a prototype, or if the parameter is beyond the ellipsis, the
calling function pushes a floating-point argument in doubl e format (64 bits).

When the calling function expects a structure or union as a return value, the
calling function pushes last an argument that is an address where the called
function places the structure or union.

NOTE
Variables declared with the register storage class are
candidates for storage in registers only under the VPL calling
convention. The register storage class is ignored under the
FPL calling convention. See C: A Reference Manual, listed in
Chapter 1, for more information on the regi st er storage class.

8.2 Returning a Value
Both the FPL and VPL calling conventions return scalar values in a register
and a floating-point value on the top of the numeric coprocessor stack.

The called function copies a returned union or structure starting at the
memory location pointed to by the last argument on the stack. The called
function also loads the address of the structure or union into a register, as if
returning a pointer to the return object.

Loading the register and copying a returned union or structure occurs in the
called function's epilog code.

In iC-86 and iC-286, FPL and VPL conventions use different registers to
return different scalar objects. Tables 8-1 and 8-2 show the registers used for
different scalar objects for iC-86/286 and iC-386, respectively.

8-6 Function-calling Conventions

Table 8-1 iC-86 and iC-286 FPL and VPL Return Register Use

Data Type FPL VPL

8-bit result AL AL
16-brt result AX AX
32-bit result DX:AX DX:AX
near (short) pointer BX AX
far (long) pointer ES:BX DX:AX
real top of coprocessor

or emulator stack
top of coprocessor
or emulator stack

Table 8-2 iC-386 FPL and VPL Return Register Use

Data Type FPL or VPL

8-bit result AL
16-bit result AX
32-bit result EAX
64-brt result EDX:EAX
near (short) pointer EAX
far (long) pointer EDX:EAX
real top of coprocessor

or emulator stack

8.3 Saving and Restoring Registers
The FPL and VPL calling conventions preserve different sets of registers.
The VPL calling convention preserves the (E)DI, (E)SI, and (E)BX registers.
Tables 8-3 and 8-4 show the register preservation scheme of iC-8 6/286 and
iC-386, respectively, for the FPL and VPL conventions.

In the FPL convention, if the calling function uses register variables, the
calling function is responsible for saving their values in the setup code. The
balance of register preservation occurs in the called function's prolog code.

Function-calling Conventions 8-7

Table 8-3 iC-86 and iC-286 FPL and VPL Register Preservation

Reg.
FPL
Preserved

FPL not
Preserved

VPL
Preserved

VPL not
Preserved

AX X X

BX X X

CX X X

DX X X
SP X X
BP X X

DI X X

SI X X

OS X X
DS X X

SS X X
ES X X

Table 8-4 iC-386 FPL and VPL Register Preservation

Reg.
FPL
Preserved

FPL not
Preserved

VPL
Preserved

VPL not
Preserved

EAX X X
EBX X X
ECX X X
EDX X X
ESP X X
EBP X X
EDI X X
ESI X X
OS X X
DS X X
SS X X
ES X X
FS X X

GS X X

8-8 Function-calling Conventions

8.4 Cleaning Up the Stack

In the FPL calling convention, the called function pops all the arguments off
the processor stack in its epilog before it returns control to the calling
function.

In the VPL calling convention, the calling function pops all the arguments off
the processor stack in its cleanup code after the called function returns
control.

In both conventions, the called function's prolog code pops any floating-point
arguments off the numeric coprocessor stack and saves them as local
variables. If the called function returns a floating-point value, it is left on the
top of the numerics coprocessor stack and is overwritten by the next
floating-point operand.

Function-calling Conventions 8-9

Contents

Subsystems
9.1 Dividing a Program into Subsystems..9-2
9.2 Segment Combination in Subsystems...9-7

9.2.1 Small-model Subsystems.. 9-7
9.2.2 Compact-model Subsystems.. 9-10
9.2.3 Large-model Subsystems (iC-86 and iC-286 Only)........................9-12
9.2.4 Efficient Data and Code References.. 9-12

9.3 Creating Subsystem Definitions... 9-13
9.3.1 Open and Closed Subsystems.. 9-14
9.3.2 Syntax.. 9-15

9.4 Example Definitions..9-20
9.4.1 Creating Three Small-model RAM Subsystems..........................9-20
9.4.2 Two Small-model ROM Subsystems and One

Compact-model ROM Subsystem..................................9-22
9.4.3 Example Using an Open Subsystem..9-23

Subsystems

This chapter tells you how to use subsystems to create extended
segmentation models and contains the following topics:

• when to use subsystems

• how subsystems combine to form extended segmentation models

• syntax for defining subsystems

• example definitions

Segmentation is the term for the division of code, data, and stacks in the 86,
286, Intel386™, and Intel486™ architectures. The small, compact, medium,
large, and flat segmentation memory models described in Chapter 4 are the
standard ways that iC-86/286/386 creates code, data, and stack segments.
When your program contains large amounts of data or code, the standard
segmentation memory models do not offer a way to group code and data
references and to structure your program into more segments to take
advantage of segmentation protection mechanisms.

Subsystems extend the efficiency and protection of the small, compact, and
large segmentation memory models described in Chapter 4. A subsystem is
a collection of program modules that uses the same standard model of
segmentation. If you use only the standard segmentation controls (and not
the subsys control) to compile your program modules, then your program
consists of one subsystem with all modules using the same model of
segmentation. The term "extended segmentation model" refers to the
memory model used by any program that consists of more than one
subsystem.

9-1

Extended segmentation models offer the following advantages:

• When a program contains multiple subsystems, each subsystem can use
a different segmentation model.

• Each program subsystem can execute at a different protection level.

• Each subsystem enjoys the segmentation protection mechanisms of the
processor architecture, such as restricted entry points and protection
from segment overruns.

The iC-86 and iC-286 compilers support three extended segmentation
models: the small, compact, and large models, and the iC-386 compiler
supports two extended segmentation models: the small model and the
compact model. A program can contain subsystems in the same or different
models.

A subsystem uses either the RAM or the ROM submodel, with constants in
the data segment or code segment, respectively. A program can contain
subsystems that use different submodels.

To compile a module that is part of a subsystem, place the definitions for the
subsystems in a special text file and use the subsys compiler control in the
invocation or in a //pragma preprocessor directive to include the special file
in each compilation. If you use subsys in a //pragma directive, the directive
must precede any data definitions or executable statements.

9.1 Dividing a Program into Subsystems

Using subsystems is an efficient way to structure programs that have large
amounts of data or code. For example, consider a program consisting of 10
modules, modi through modl0. Modules modi through mod3 deal with input
and initial processing. Modules mod4 through mod8 do the main data
processing. Modules mod 9 and mod 10 output the data. Figure 9-1 illustrates
the program structure and data flow.

9-2 Subsystems

Figure 9-1 Subsystems Example Program Structure

Under the compact segmentation memory model described in Chapter 4, the
binder combines the segments for this program into one code segment
containing all the code from modi through mod 10, one data segment
containing all the data from modi through modl0, and one stack segment, as
shown in Figure 9-2.

OSD757

iC-86Z286:
CODE

iC-386:
CODE32

(All Modules)
<-cs

DATA
(All
Modules)

<-DS

STACK
(All
Modules)

SS

Figure 9-2 Subsystems Example Program in Regular
Compact Segmentation Memory Model

Suppose the program is restructured using an extended segmentation model
composed of three small-model subsystems. Each subsystem is given a
name indicating its function, as follows:

Subsystem Name Modules in Subsystem

SUBINPUT modi through mod3

SUBPROCESS mod4 through mod8

SUBOUTPUT mod 9 and mod 10

Subsystems 9-3

In a program composed of small-model subsystems, modules are combined
by the linker or binder so that:

• Each subsystem has one code segment.

• All subsystems share one data-stack segment

Figure 9-3 shows the segments for the example if the modules are grouped
into three small-model subsystems.

iC-86/286:
SUBINPUT_CODE

iC-386:
SUBINPUT_CODE32

(Code From modi
Through mod3)

iC-86/286:
SUBPROCESS_CODE

iC-386:
SUBPROCESS_CODE32

(Code From mod4 Through
mod8)

iC-86/286:
SUBOUTPUT.CODE

iC-386:
SUBOUTPUT.CODE32

(Code From mod9 and
mod10)

CS Register Changes During Execution

DATA
(Data and Stack
For All Modules)

<-DS, SS OSD75S

Figure 9-3 Subsystems Example Program Using Small-model Subsystems

The program is efficient because most of the calls and references are near
and take place within a subsystem, and each subsystem enjoys segmentation
protection. Far calls are needed only between the subsystems. Far data
references are needed only if data is referenced between subsystems, or if
constants are in code. The compiler implicitly modifies the declarations of
symbols referred to by other subsystems by inserting the fa r keyword in the
appropriate place in the declarations even if the extend control is not in
effect

9-4 Subsystems

One further refinement might be to create subsystems that use different
segmentation models. Suppose that the SUBPROC ESS subsystem is
stack-intensive, and you wish to separate the SUBPROCESS data from the
processor stack, leaving more space in the data-stack segment. You can
place the SUBPROCESS data into a separate segment by using a
compact-model subsystem for SUBPROCESS and small-model subsystems for
SUBINPUT and SUBOUTPUT. Figure 9A shows the segments for this example if
the modules are grouped into two small-model subsystems and one
compact-model subsystem.

NOTES
All code in small-model subsystems assumes that the DS and
SS registers contain identical selectors, which occurs only if the
function where program execution begins is in a small-model
subsystem. Therefore, if a small-model subsystem is mixed
with one or more compact-model subsystems, the ma 1 n ()
function, where program execution begins, must be in a
small-model subsystem, ensuring proper access to the processor
stack from every subsystem.

The stack segment resulting from any compact-model
subsystems is not used when small-model and compact-model
subsystems are mixed in a program.

Subsystems 9-5

iC-86/286:
SUBINPUT_CODE

iC-386:
SUBINPUT_CODE32

(Code From modi
Through mod3)

iC-86/286:
SUBPROCESS_CODE

iC-386:
SUBPROCESS_CODE32

(Code From mod4 Through
mod8)

iC-86/286:
SUBOUTPUT_CODE

iC-386:
SUBOUTPUT_CODE32

(Code From mod9 and
mod10)

CS Register Changes During Execution

DATA
(Data From modi
Through mod3, mod9,
and mod10, and Stack
For All modules)

SUBPROCESS_DATA
(Data From mod4
Through mod8)

<-SS.-i

DS Register Changes During Execution

STACK
(Not Used)

OSD759

Figure 9-4 Subsystems Example Program Using Two Small-model
Subsystems and One Compact-model Subsystem

You do not increase efficiency or protection by merely dividing a program
into subsystems. If all the even-numbered modules are placed in one
subsystem, for instance, and all the odd-numbered ones into another, the
program becomes less efficient due to the greater number of far calls and far
data references between subsystems. A program is most efficient and takes
best advantage of segmentation protection when you place data accessed by a
collection of modules and the functions that refer to that data into a

9-6 Subsystems

subsystem. Data and code in another subsystem are protected and can be
accessed only if explicitly declared in the subsystem definition. All code
references within a subsystem are near calls. If you choose the member
modules for your subsystem carefully, you ensure few far calls.

9.2 Segment Combination in Subsystems

Chapter 4 describes the way that the binder combines segments under the
standard segmentation memory models. To understand the combination of
segments for programs structured with subsystems, you must understand the
distinction between compiling modules with iC-86/286/386 and combining
modules into a program with LINK86, BND286, or BND386.

The compiler compiles only one module at a time. During these separate
compilations, the compiler generates many code, data, and stack segment
definitions. Then, the linker or binder creates an executable program by
combining the segments that have compatible attributes. See Chapter 4 for
more information on the segment attributes that the binder uses, such as like
names.

Both the standard segmentation controls (small, compact, medi um, large,
and fl at) and the extended segmentation control (subsys) determine ±e
way segments are combined by controlling the way segments are named.

9.2.1 Small-model Subsystems

Recall that the linker or binder combines compiler-generated segments that
have the same name, and compatible characteristics. A linked small-model
subsystem named SMALLSUB contains two segments: SMALLSUB_CODE for
iC-86/286 or SMALLSUB_CODE32 for iC-386, and DATA. When code in the
subsystem is executing, the CS register contains the selector for
SMALLSUB_CODE or SMALLSUB_C0DE32, and the DS and SS registers contain
the selector for DAT A.

Tables 9-1 through 9-3 show the compiler segment definitions for a module
compiled with the subsys control and a definition for a small-model
subsystem. When you specify -const in code- in the subsystem definition,
the compiler places the constants in the module's code segment, which is like

Subsystems 9-7

specifying the rom control when you are not using subsystems. When you
specify - const in data-in the subsystem definition, the compiler places
the constants in the module's data-stack segment, which is like specifying the
ram control when you are not using subsystems. If the subsystem definition
contains a subsystem- 1d, making a closed subsystem as defined in Section
9.3.1, the identifier and an underscore (_) prefix the CODE or C0DE32 segment
name.

For iC-86, the DGROUP compiler segments link together to become DATA,
and the CGROUP compiler segments link together to become CODE.

Table 9-1 iC-86 Segment Definitions for Small-model Subsystems

Description Name Combine-type Group

code segment [subsystem-id_]CO D E concatenate CGROUP

data segment DATA concatenate DGROUP
stack segment STACK overlay additively DGROUP

constant segment
(only with -const in data-)

CONST concatenate DGROUP

Table 9-2 iC-286 Segment Definitions for Small-model Subsystems

Description Name Combine-type Access

code segment [subsystem-id_]CO D E normal execute-read

data segment DATA normal read-write
stack segment DATA stack read-write

Table 9-3 iC-386 Segment Definitions for Small-model Subsystems

Description Name Combine-type Access

code segment [subsystem-/'d_]CODE32 normal execute-read

data segment DATA normal read-write
stack segment DATA stack read-write

The linker or binder combines segments with the same name when linking
the modules for the program. Thus, each small-model subsystem contains its

9-8 Subsystems

own code segment up to 64 kilobytes for iC-86/286 or 4 gigabytes for iC-
386. All data-stack segments from all small-model subsystems are combined
into one data-stack segment up to 64 kilobytes for iC-86/286 or 4 gigabytes
for iC-386.

Function pointers are near by default (the offset-only address format). If you
specify -const in data - in the subsystem definition, all variables,
temporary variables, and constants fall within one segment DATA, and data
pointers are near by default. If you specify - const in code-, which places
constants in the code segment, data pointers are far (the segment-
eselector-and-offset address format). See Section 4.3 for an explanation of
near and far address formats.

Keep the following limitations in mind when using a small-model subsystem:

The program must
begin execution in a
small-model subsystem.

The far keyword is
required when mixing a
small-model RAM
subsystem with any
other model subsystem.

All code in small-model subsystems assumes
that the DS and SS registers contain identical
selectors, which only occurs if the function
where program execution begins is in a
small-model subsystem. Therefore, if a
small-model subsystem is mixed with one or
more compact-model subsystems, the ma i n ()
function, where program execution begins, must
be in a small-model subsystem, ensuring proper
access to the processor stack from every
subsystem.

The default near pointers generated under the
small model limit small-model RAM
subsystems. A function in a small-model RAM
subsystem can accept a pointer argument from a
subsystem under another model, such as
small-model ROM or any compact- or large-
model subsystem, only if the pointer parameter
is declared with the far keyword. A
small-model RAM subsystem must also use the
far keyword in a prototype, declaration, or cast
to pass a data pointer to a function in a
subsystem that is not small-model RAM.

Subsystems 9-9

Small-model Because small-model subsystems contain one
subsystems offer data-stack segment, data is not protected from
limited data protection. stack overruns.

9.2.2 Compact-model Subsystems

Recall that the linker or binder combines compiler-generated segments that
have the same name, and compatible characteristics. A linked
compact-model subsystem named COMPSUB contains three segments:
COMPSUB_CODE for iC-86/286 or C0MPSUB_C0DE32 for iC-386, COMPSUB_DATA,
and STACK. When code in the subsystem is executing, the CS register
contains the selector for COMPSUB_CODE or C0MPSUB_C0DE32, the DS register
contains the selector for COMPSUB_DATA, and the SS register contains the
selector for STACK.

Tables 9-4 through 9-6 show the compiler segment definitions for a module
compiled with the subsys control and a definition for a compact-model
subsystem. When you specify-const in code-in the subsystem
definition, the compiler places the constants in the module's code segment,
which is like specifying the rom control when you are not using subsystems.
When you specify-const in data-in the subsystem definition, the
compiler places the constants in the module's data segment, which is like
specifying the ram control when you are not using subsystems. If the
subsystem definition contains a subsystem-id, making a closed subsystem
as defined in Section 9.3.1, the identifier and an underscore (_) prefix the
CODE or C0DE32 and DATA segment names.

For iC-86, the DGROUP compiler segments link together to become DATA,
the CGROUP compiler segments link together to become CODE, and the stack
compiler segments link together to become STACK.

9-10 Subsystems

Table 9-4 iC-86 Segment Definitions for Compact-model Subsystems

Description Name Combine-type Group

code segment [subsystem-id_]CO D E concatenate CGROUP
data segment [subsystem-/d_]DAT A concatenate DGROUP
stack segment STACK overlay additively
constant segment
(only with -const in data-)

CONST concatenate DGROUP

Table 9-5 iC-286 Segment Definitions for Compact-model Subsystems

Description Name Combine-type Access

code segment [subsystem-id_]CO D E normal execute-read
data segment [subsystem-/d_]DAT A normal read-write
stack segment STACK stack read-write

Table 9-6 iC-386 Segment Definitions for Compact-model Subsystems

Description Name Combine-type Access

code segment [subsystem-id_]CO D E32 normal execute-read
data segment [subsystem-/d_]D AT A normal read-write

stack segment STACK stack read-write

The linker or binder combines segments with the same name when linking
the modules for the program. Thus, each compact-model subsystem contains
its own code segment up to 64 kilobytes for iC-86/286 or 4 gigabytes for
iC-386 and its own data segment up to 64 kilobytes for iC-86/286 or 4
gigabytes for iC-386. All stack segments from all compact-model
subsystems are combined into one stack segment up to 64 kilobytes for
iC-86/286 or 4 gigabytes for iC-386.

Subsystems 9-11

Function pointers are near by default (the offset-only address format). Data
pointers are far by default (the segment-selector-and-offset format).
Compact-model subsystems can pass pointer arguments between
compact-model RAM, compact-model ROM, small-model ROM, and
large-model modules without specifying the far keyword because data
pointers are always far pointers. See Section 4.3 for an explanation of near
and far address formats.

If a function in a compact-model subsystem accepts a pointer parameter
exported from a small-model RAM subsystem, the small-model RAM
subsystem must explicitly use the far keyword in a prototype, declaration, or
cast to pass the data pointer.

9.2.3 Large-model Subsystems (iC-86 and iC-286 Only)

Modules in a large-model subsystem are equivalent to the same modules
compiled with the 1 arg e segmentation control, because the segments are
named identically. Using all large-model subsystems has the same effect as
using the large segmentation control without subsystems. However, using a
mixture of large-model and other subsystems may be useful. See
Section 4.2.4 for information on segment names and characteristics under the
large segmentation control.

9.2.4 Efficient Data and Code References

The most efficient and compact code contains few far calls and few far data
references. A call from any subsystem to another subsystem is always a far
call. Only small-model RAM subsystems have data, constants, and stack in
the same segment. Therefore, a data reference between a small-model RAM
subsystem and another small-model RAM subsystem is a near reference.
Data references to and from other model subsystems are far references.

9-12 Subsystems

The near and far keywords are type qualifiers that allow programs to
override the default address size generated for a data or code reference. You
must use the extend control when you compile programs that use the nea r
and far keywords. Table 9-7 shows the default address sizes for code and
data references in all subsystem models. See Section 4.3 for information on
how to use the n e a r and far keywords. See Chapter 3 for a description of
the extend control.

Table 9-7 Subsystems and Default Address Sizes

Subsystem Model Code Reference Data Reference

small RAM offset offset
small ROM offset selector and offset
compact RAM offset selector and offset

compact ROM offset selector and offset
large RAM selector and offset selector and offset

large ROM selector and offset selector and offset

9.3 Creating Subsystem Definitions
A text file contains the definition for a subsystem. To compile a module as
part of a subsystem, use the s ub sy s compiler control in the invocation or in a
//pragma preprocessor directive to include the definition file in the
compilation. See Chapter 3 for a description of the subsys control. The
subsys control is a primary control and must appear in the invocation line or
in a //pragma preprocessor directive before the first line of data declaration or
executable source text A //pragma preprocessor directive containing the
modul ename control cannot follow any //pragma containing the subsys
control.

Subsystems 9-13

NOTE
When a module from a small-model subsystem calls a function
that is exported from a compact-model or large-model
subsystem, the linker or binder does not automatically compute
the stack requirement because the segments containing them
have different names. To get the proper stack size, use the
s e g s 1 z e control during linking or binding to increase the size
of the data-stack segment by the sum of the stack requirements
for both the small-model subsystem and the compact-model or
large-model subsystem.

9.3.1 Open and Closed Subsystems

The subsystems that make up an iC-86/286/3 86 program can be either open
or closed. The definition for a closed subsystem must list every program
module within it. An open subsystem contains all modules not specified as
part of another subsystem by default. A program can use open and closed
subsystems, according to one of the following options:

• All subsystems in a program are closed.

• A program can have many closed subsystems and a single open
subsystem.

• By default, a program has one open subsystem and no closed
subsystems.

The syntax for a subsystem definition is shown in Section 9.3.2. For a closed
subsystem, the compiler must know the name of the subsystem, the
s ubsys tem-i d, and the modules belonging to it, the h a s list. For an open
subsystem, the definition cannot have a subsys tern-Id. By omitting the
subsystem name in one subsystem definition, you automatically create an
open subsystem that contains all modules not claimed in another subsystem's
has list. You can add modules not named in a closed subsystem definition to
your program at any time, and the modules automatically become part of this
open subsystem without changing any subsystem definition.

9-14 Subsystems

9.3.2 Syntax

Defining subsystems tells the compiler the following:

• the memory model that each subsystem uses

• whether to place the constants in the code segment or data segment for
the subsystem

• the modules that belong to each subsystem

• the functions and data that are accessible from outside the subsystem

Making all functions and data available to all subsystems defeats the purpose
of subsystems and decreases the efficiency of the program. For example, if a
a subsystem definition declares a function to be accessible from another
subsystem, the function is a far function, making all calls far calls, even if the
function actually is never accessed from outside its subsystem.

A function or data that is accessible to another subsystem must have external
linkage. In the C programming language, public and external symbols are
functions or variables with external linkage. The linker or binder resolves
the addresses for such symbols. The following definitions identify public
and external symbols. See C: A Reference Manual, listed in Chapter 1, for
more information on external linkage.

A public variable is defined at the file level, not within a function,
and without the static keyword. By default, a
public variable is globally accessible within its
subsystem. Other subsystems can refer to a
public variable if the definition for the
containing subsystem exports the variable.

A public function is defined without the stati c keyword. The
public definition includes the function code. By
default, a public function is globally accessible
within its subsystem. Other subsystems can call
a public function if the definition for the
containing subsystem exports the function name.

An external variable is declared with the extern keyword. The
external declaration refers to a corresponding
public definition for the variable in another
module within the same or another subsystem.

Subsystems 9-15

An external function is declared with the extern keyword. The
external declaration can take on the form of a
function prototype. The external declaration
does not contain the function code but refers to a
corresponding public definition for the function
in another module within the same or another
subsystem.

Each subsystem in a program must have a subsystem definition. In the
following subsystem definition syntax, items in brackets ([]) are optional,
items in braces ((}) are a list from which to choose, and [; ...] indicates
you can choose another item from the previous list, separating adjacent list
items with a semicolon (;). Enter the dollar sign ($) and parentheses (()) as
shown:

$ model ([.subsystem-id] [submodel]
has module-list
exports public-list

[; ...]

Where:

model specifies the segmentation model for the subsystem.
Use smal 1, compact, or 1 arge. Case is not
significant in the smal 1, compact and large
keywords. All modules in a subsystem must be
compiled with the same model of segmentation.

subsystem-id specifies a unique name for a closed subsystem.
This name can be up to 31 characters long and must
not conflict with any module name. The compiler
forces this identifier to all uppercase. The identifier
can contain dollar signs ($), which the compiler
ignores.

submodel specifies the submodel, which defines the placement
of constants. Use -const in code- for placing
constants in the code segment or - const in data-
(default) for placing constants in the data segment.
Case is not significant in the -const in code- and
-const in data - keywords. All modules in one
subsystem are compiled with the same submodel.

9-16 Subsystems

has module-list specifies the modules that make up the subsystem.
Case is not significant in the h as keyword. A ha s
specification is required for a closed subsystem, and
the module-1 ist must contain all the closed
subsystem modules. A has specification is optional
for an open subsystem, and the module-1 ist does
not have to contain all of the open subsystem
modules. Identifiers inthe module-list can be up
to 31 characters long and are forced to all uppercase.

has module-list Each identifier in the modu 1 e -1 i s t must match a
module name to be included in the subsystem. A
module name is the module's source file name
without extension, unless specified differently by the
mod ul ename control. A particular module name can
appear in only one modu le-1 ist (i.e., a module can
belong to only one subsystem). Any module whose
name does not appear in a mo du 1 e -1 i s t becomes
part of the open subsystem. Module names can
appear in any order in the module-1 ist.

exports pub 1ic-1ist lists the functions and variables exported by the
subsystem, which are the functions and variables
that the subsystem wishes to make accessible to
other subsystems. Case is not significant in the
exports keyword. Any symbol named in the
public-1 ist must be a public symbol in one of the
subsystem modules. Each symbol must be declared
as an external symbol in all modules accessing the
identified function or variable, whether or not these
modules are within the same subsystem. Case is
significant in symbols in the pub 1 i c -1 i s t. Every
subsystem definition, with the possible exception of
the subsystem that contains the mai n () function,
must have an exports list that contains at least the
public symbol for the entry point to the subsystem.

Subsystems 9-17

The public-11st must list all symbols referred to
by other subsystems. Public symbols not in the
publ ic-1 ist are accessible only from within the
subsystem itself. Non-public symbols do not appear
in the publ ic-1 i st. Public symbols can appear in
any order in the pub 1 i c-1 is t.

Exported functions have the following characteristics:
• They use the far form of call and return.

• They save and restore the caller's DS register upon entry and exit.

• They reload the DS register with their associated data segment selector
upon entry.

The compiler implicitly modifies the declarations of exported symbols, if
necessary, by inserting the fa r keyword in the appropriate place in the
declarations. The modifications occur even if the extend control is not in
effect

Export a function only if it is referenced outside the defining subsystem,
because accessing exported functions requires more code and more execution
time than accessing functions within the same subsystem.

Within a program, the subsystem-i d name must be distinct from all module
names because both share the same name space. Within a program (across
all subsystems), exported symbols must also be unique. However,
subsystem-id names and module names do not share name space with
public symbols.

The has and exports lists often have several dozen entries each. To
accommodate lists of this length, a subsystem definition can be continued
over more than one line. The continuation lines must be contiguous, each
must begin with a dollar sign ($) in the first column, and the next
non-whitespace character cannot be a comma (,), a right parenthesis ()), or a
semicolon (;). You can specify any number of has and exports lists in a
definition, in any order, which allows you to format your subsystem
specification file so it can be easily read and maintained.

9-18 Subsystems

Compile all modules in your program with the same set of subsystem
definitions, so that the compiler makes consistent assumptions about the
location of external symbols. To avoid conflicting definitions, place all of
the subsystem definitions into one file and use the subsys control in the
invocation line or in a #pragma preprocessor directive for every compilation.
Inconsistent subsystem definitions cause the linker or binder to issue an
error.

NOTES
Do not use the codesegment or datasegment control in an
invocation that specifies the subsys control, or when the source
text contains the s u b sy s control in a #p ra gma preprocessor
directive. The compiler issues an error or a warning, depending
on whether the s u bsy s control is found in the invocation line or
in a #pragma preprocessor directive, respectively.

A ^pragma preprocessor directive specifying the modul ename
control must precede any #p ra gma directives that specify the
subsys control.

The definition for an open subsystem without submodel, has list, or exports
list can be placed on the invocation line. Place all definitions of closed
subsystems inside the subsystem definitions file.

Programs written in iC-86/286/386 and in PL/M-86/286/386 can share
subsystem definitions because the syntax for the definitions is identical for
both languages. Symbol names in the exports list must match the case used
in the C program because C is a case-sensitive language.

The compiler preserves case distinction in identifiers in expo r ts lists. The
compiler always ignores dollar signs ($) in identifiers, even if the extend
control is not in affect. The compiler ignores valid PL/M controls unrelated
to segmentation, such as $1F and $ INCLUDE. The compiler ignores lines
whose first character is not a dollar sign ($).

Subsystems 9-19

9.4 Example Definitions
Recall the example program in Section 9.1. The following examples guide
you through creating subsystem definitions for the small-model subsystems
in Figure 9-3 and the mixed-model subsystems in Figure 9-4.

9.4.1 Creating Three Small-model RAM Subsystems

The following subsystem definitions define three small-model RAM
subsystems for the program, which are closed subsystems by definition. The
SUBPROCESS and SUBOUTPUT subsystems export their entry-point functions.
No other symbols are exported. The definitions default to the
-const in data - submodel specification.

$ small (SUBINPUT
$ has modi, mod2, mod3)
$ small (SUBPROCESS
$ has mod4, mod5, mod6, mod7, mod8;
$ exports process_entry)
$ small (SUBOUTPUT
$ has mod9, modl0;
$ exports output_entry)

The program does not contain calls or references that require the far
keyword, because all three subsystems share one single DAT A segment, which
contains constants. Assuming that the mod3_fn function in the mod3 module
calls the process_entry function defined in the mod4 module and passes a
pointer to some data called data_object, the definitions of mod3_fn and
process_entry have the following general form:

/* in SUBINPUT */

int data_object:

i nt mod3_fn ()
{

extern int process_entry (int *);

/* calling a function in another */
/* subsystem causes a load to a */
/* segment register */

9-20 Subsystems

process_entry (&data_object);

/*--- */

/* in SUBPROCESS */

1 nt process_entry (int * data)
{

int mod4int;

/* de-referencing the pointer causes */
/* a load to a segment register */

mod4int = *data + 1;

If the subsystem definitions are in a file named smal 1 ss .def, the
compilation of mod3. c is as follows, where i cn86 is i c86, i c286, or i c386:

C:> icn86 mod3.c subsys(smallss.def)

Subsystems 9-21

9.4.2 Two Small-model ROM Subsystems and One
Compact-model ROM Subsystem

The following subsystem definitions define two small-model ROM
subsystems and one compact-model ROM subsystem for the program, all
closed subsystems by definition. The definitions list the entry points for the
SUBPROCESS and SUBOUTPUT subsystems. No other symbols are exported.

$ smal 1 (SUBINPUT
$ -const in code-
$ has modi, mod2, mod3)
$ compact (SUBPROCESS
$ -const in code-
$ has mod4, mod5, mod6, mod7, mod8;
$ exports process_entry)
$ smal 1 (SUBOUTPUT
$ -const in code-
$ has mod9, modl0;
$ exports output_entry)

All pointers to data in all three subsystems are far pointers, because data can
be in different segments within any of these subsystems. However, all of the
subsystems use near function calls within a subsystem. The definitions of
mod3_fn and process_entry have the same form as in Section 9.4.1.

If the subsystem definitions are in a file named comps s. def, the compilation
of mod3 .c is as follows, where i cn86 is i c86, 1 c286, or i c386:

C:> i cn86 mod3.c subsys(compss.def)

9-22 Subsystems

9.4.3 Example Using an Open Subsystem

Recall that if a program uses both small-model and compact-model
subsystems, the mai n() function must be in a small-model subsystem.
Assume the main() function is in the modi module. If the modi, mod2, and
mod3 modules are part of an open small-model RAM subsystem, the program
can use the following subsystem definitions:

$ compact (SUBPROCESS
$ -const in code-
$ has mod4, mod5, mod6, mod7, mod8;
$ exports process_entry)
$ small (SUBOUTPUT
$ -const i n code -
$ has mod9, modl0;
$ exports output_entry)
$ small (-const in data-)

Because the program passes a data pointer from a small-model RAM
subsystem to a different model subsystem, the calling function (in the
small-model RAM subsystem) must explicitly use the fa r keyword in a
prototype, declaration, or cast to pass the pointer. Use one of these three
options within the mod3_fn function as follows:

• Casting the address of d a t a_o b j e c t to far uses the selector-and-offset
address for this call only:

process_entry ((int far *) &data_object);

• Declaring data_object as a far integer results in all references to
data_ob ject using the selector-and-offset address, unless overridden
by the near keyword:

int far data_object;

• Changing the prototype for the pr oces s_en t ry external function results
in all calls from within mod3_f n (where the prototype is declared) to
process_entry to use the selector-and-offset address for whatever
pointer is passed:

extern int process_entry (int far *);

Subsystems 9-23

If the subsystem definitions are in a file named subs. def, the compilation of
modi. c is as follows, where i cn86 is i c86, ic286, or i c386:

C:> 1 c/786 modl.c extend subsys(subs.def)

Figure 9-5 shows the names of the segments. The code segment for the open
subsystem has the name CODE or CODE32 instead of SUBI NPUT_CODE or
SUB IN PUT_C0DE32 as in Figure 9-4, because an open subsystem by definition
does not have a. subsystem-id.

iC-86/286:
CODE

iC-386:
CODE32

(Code and Constants From
modi Through mod3)

iC-86/286:
SUBPROCESS_CODE

iC-386:
SUBPROCESS_CODE32

(Code and Constants From
mod4 Through mod8)

iC-86/286:
SUBOUTPUT_CODE

iC-386:
SUBOUTPUT_CODE32

(Code and Constants From
mod9 and mod10)

CS Register Changes During Execution

DATA
(Data From modi
Through mod3, mod9,
and mod10, and Stack
For All Modules)

<-SS,-

SUBPROCESS-DATA
(Data From mod4
Through mods)

DS Register Changes During Execution

STACK
(Not Used)

OS0760

Figure 9-5 Subsystems Example Program Using One
Open and Two Closed Subsystems

9-24 Subsystems

Contents 10
Language Implementation
10.1 Data Types..10-1

10.1.1 Scalar Types.. 10-2
10.1.2 Aggregate Types..10-5
10.1.3 Void Type..10-5

10.2 iC-86/286/386 Support for ANSI C Features...10-6
10.2.1 Lexical Elements and Identifiers... 10-6
10.2.2 Preprocessing...10-6

10.3 Implementation-dependent iC-86/286/386 Features................................ 10-8
10.3.1 Characters.. 10-8
10.3.2 Integers.. 10-9
10.3.3 Floating-point Numbers...10-9
10.3.4 Arrays and Pointers... 10-9
10.3.5 Register Variables...10-11
10.3.6 Structures, Unions, Enumerations, and Bit Fields......................10-11
10.3.7 Declarators and Qualifiers.. 10-12
10.3.8 Statements, Expressions, and References................................... 10-13
10.3.9 Virtual Symbol Table..10-14

Language Implementation 10
This chapter contains information on the iC-86/286/386 implementation of
the C programming language. This information is more specific than the
information found in C: A Reference Manual, listed in Chapter 1. The
implementation of the language is divided into the following topics:

• data types and keywords

• conformance to the ANSI C standard

• implementation-dependent compiler features

Where applicable throughout the chapter, conformance to the ANSI C
standard is noted.

10.1 Data Types

The iC-86/286/386 compilers recognize three classes of data types: scalar,
aggregate, and void. This section describes the iC-86/286/386
implementation of the data types. See C: A Reference Manual, listed in
Chapter 1, for more general information about data types.

Objects of a data type longer than one byte occupy consecutive bytes in
memory. Objects reside in memory from low-order to high-order bytes
within a word and from low address to high address across multiple bytes.
The address of an object is the address of the low-order byte of the object.

10-1

Many names of the data types serve as keywords in the source text. The
following words are keywords in iC-86/286/386:

auto do goto signed unsigned
brea k double if sizeof voi d
case el se i nt stati c volati1e
char enum 1 ong struct whi 1 e
const extern register swi tch
continue fl oat return typedef
default for short uni on

The following additional keywords are supported by iC-86/286/386 if the
extend control is in effect:

See Chapter 4 for information on where to use the near and far qualifiers.

alien is a storage-class specifier that indicates a function uses the
fixed parameter list calling convention.

far is a type qualifier that indicates a
segment-selector-and-offset address.

near is a type qualifier that indicates an offset-only address.

readonly is a type qualifier that is equivalent to the const keyword.

10.1.1 Scalar Types

A scalar object is a single value, such as the integer value 42 or the bit field
10011. Most scalar objects occupy 1, 2,4, or 8 bytes of memory. Bit fields
occupy as many bits as assigned and need not be a multiple of one byte long
(8 bits). A bit field cannot be longer than one word (2 bytes for iC-86 and
iC-286, or 4 bytes for iC-386).

Tables 10-1 and 10-2 show the scalar data types for iC-86/286 and iC-386,
the amount of memory occupied by the data type's object, the arithmetic
format, and the range of accepted values.

10-2 Language Implementation

The iC-86/286/386 compilers support the declaration of:

• a char to explicitly be declared si gned or unsigned

• an integer constant to be declared 1 on g, unsi gned, or unsi gned long

• enumerated types

Table 10-1 86 and 286 Processor Scalar Data Types

Data Type Size in Bytes Format Range

char1 1 integer or
two's-complement integer

0 to 255 or
-128 to 127

unsigned char 1 integer 0 to 255
signed char 1 two's-complement integer -128 to 127
enum 2 two's-complement integer -32,768 to 32,767
unsigned short 2 integer 0 to 65,535

signed short 2 two's-complement integer -32,768 to 32,767
unsigned int 2 integer 0 to 65,535
signed int 2 two's-cornplement integer -32,768 to 32,767
unsigned long 4 integer 0 to 4,294,967,295
signed long 4 two's complement integer -2,147,483,658 to

2,147,483,647
float 4 single-precision

floating-point number
8.43 x 10-37to 3.37x1038
(approx, absolute value)

double 8 double-precision
floating-point number

4.19 X IO’337 t0 1.67 X 10308
(approx, absolute value)

long double 8 double-precision
floating-point number

4.19x 10-307 to 1.67x 10308
(approx, absolute value)

bit field 1 to 16 bits integer depends on number of bits
near pointer 2 offset-only address 64K bytes
far pointer 4 2-byte offset and

2-byte selector
1 megabyte for 86 processor
1 gigabyte for 286 processor

1 Integer (unsigned) it the nosignedchar control is in effect, or two's complement integer (signed) if the signedchar control
is in effect (default).

Language Implementation 10-3

Table 10-2 Intel386™ Processor Scalar Data Types

Data Type Size in Bytes Format Range

char1 1 integer or
two's-complement integer

0 to 255 or
-128 to 127

unsigned char 1 integer 0 to 255
signed char 1 two's-complement integer -128 to 127
enum 4 two's-complement integer -2,147,483,648 to

2,147,483,647
unsigned short 2 integer 0 to 65,535
signed short 2 two's-complement integer -32,768 to 32,767

unsigned int 4 integer 0 to 4,294,967,295

signed int 4 two’s-complement integer -2,147,483,648 to
2,147,483,647

unsigned long2 4 or 8 integer 0 to 4,294,967,295 or
0 to 264-1

signed long3 4 or 8 two's-complement integer -2,147,483,648 to
2,147,483,647 or
-263 to 263-1

float 4 single precision
floating-point

8.43 X 10’37 to 3.37 X 1038

(approximate absolute value)
double or
long double

8 double precision
floating-point

4.19x1 O'307 to 1.67x 10308

(approximate absolute value)

bit field 1 to 32 bits integer depends on number of bits
near pointer 4 offset-only address 4 gigabytes
far pointer 6 4-byte offset and

2-byte selector
64 terabytes

1 Integer (unsigned) it the nosignedchar control is in effect, or two's complement integer (signed) if the signedchar control
is in effect (default).

2 If Iong64 control is specified, size is 6 bytes and range is 0 to 2s4-!.
3 If Iong64 control is specified, size is 8 bytes and range is -2s3 to 263-1

The iC-86/286/386 compilers support two precisions for floating-point
numbers: fl oat and double. The compiler treats the do ubl e and 1 on g
doubl e formats as doubl e. The numeric coprocessor automatically promotes
fl oat and double objects to extended precision for arithmetic operations.

10-4 Language Implementation

10.1.2 Aggregate Types

An object of an aggregate type is a group of one or more scalar objects. The
iC-86/286/386 aggregate datatypes are as follows:

array has one or more scalar or aggregate elements. All elements
in an array are the same data type. The elements reside in
contiguous locations from first to last Multi-dimensional
arrays reside in memory in row-major order.

structure has one or more scalar or aggregate components. The
different components of a structure can be different data
types. The components of a structure reside in memory in
the order that they appear in the structure definition, but may
have unused memory between components. See Chapter 3
for more information on the al i gn control and the allocation
of structures.

union has one piece of contiguous memory that can hold one of a
fixed set of components of different data types. The amount
of memory for a union is sufficient to contain the largest of
its components. A union holds only one component at a
time, and the union’s data type is the data type of the
component most recently assigned.

10.1.3 Void Type

The void data type has no values and no operations. Use the void keyword
for a function that returns no value or for a function that takes no arguments.
Use void * to denote a pointer to an unspecified data type or a pointer to a
function that returns no value. Cast to voi d to explicitly discard a value.
The following are sample declarations for these uses:

function returns no value */

function takes no arguments */

pointer to unspecified type */

discard the return value */

void retnothing (int a); /*

int intfunc (void); /*

void * genericptr(); /*

(void) intfuncO; /*

Language Implementation 10-5

10.2 iC-86/286/386 Support for ANSI C Features

This section provides information about features in the ANSI C standard that
are not discussed elsewhere in this chapter. The iC-86/286/386 compilers
support these features unless otherwise noted.

10.2.1 Lexical Elements and Identifiers

Trigraphs allow C programs to be written without using characters reserved
by ISO (International Standards Organization) as alphabet extensions. See
C: A Reference Manual, listed in Chapter 1, for more information about
trigraphs.

Character constants and string literals can contain numeric escape codes in
hexadecimal format. See C: A Reference Manual, listed in Chapter 1, for
more information about numeric escape codes.

Wide characters support very large character sets, such as pictographic
alphabets. The iC-86/286/386 compilers recognize the ANSI wide-character
syntax but implements wide characters the same as ASCII characters by
truncation.

At least 31 characters of non-external names must be significant The
compiler supports 40-character significance in internal and external names.
Case is significant in internal names.

10.2.2 Preprocessing

The ## operator concatenates adjacent tokens in macro definitions, forming a
single token. See C: A Reference Manual, listed in Chapter 1, for more
information about the ## operator.

The compiler concatenates adjacent string literals.

Preprocessor directives in the source text do not have to begin in column
one; the # character must be the first nonblank character of a preprocessor
directive line.

10-6 Language Implementation

The // operator, followed by the name of a macro parameter, expands to the
actual argument enclosed in quotation marks ("). When creating the string,
the preprocessing facility precedes quotation marks (") and backslashes (\)
within the argument with a backslash.

The ANSI C standard specifies the new //el 1 f preprocessor directive and the
defined preprocessor operator. See C: A Reference Manual, listed in
Chapter 1, for more information about these additions.

A single-character character constant in an //i f or //el i f conditional
preprocessor directive has the same value as the same character in the
execution character set.

The //pragma preprocessor directive allows communication of
implementation-specific information to the compiler. Most of the
iC-86/286/386 compiler controls can be used in a //pragma preprocessor
directive. For more information about using //pragma and the syntax of
compiler controls, see Chapter 3.

The maximum length of a //pragma preprocessor directive is 1 kilobyte
characters. All compiler controls except def i ne and i ncl ude can be
specified in a //pragma preprocessor directive. Where contro 1 is a single
compiler control and an optional argument list a //pragma has the following
form:

//pragma control

An //i ncl ude preprocessor directive can use a macro to identify the file or
header file.

The arguments to a //I i ne preprocessor directive may result from macro
expansion.

The //error preprocessor directive reports user-defined diagnostics.

The maximum nesting level of conditional compilation directives is 16. The
maximum nesting level of macro invocations is 64.

The maximum number of arguments in macro invocation is 31.

See Chapter 5 for a list of predefined macros.

Language Implementation 10-7

10.3 Implementation-dependent iC-86/286/386 Features
This section provides additional information about how iC-86/286/386
implements the implementation-dependent characteristics of the C language
as specified by the ANSI C standard.

The compiler's word size is 2 bytes for iC-86/286 and 4 bytes for iC-386. By
default, memory read and write operations in the «86 processors occur from
low-order address to high-order address ("little endian"). Objects over 32
kilobytes do not conform to ANSI standards for pointer arithemtic.

10.3.1 Characters

The source character set is 7-bit ASCII, except in comments and strings,
where it is 8-bit ASCII. The execution character set is 8-bit ASCII. The
compiler maps characters one-to-one from the source to the execution
character set. You can represent all character constants in the execution
character set. The iC-86/286/386 compilers recognize the wide-character
ANSI syntax. Wide characters are implemented the same as ASCII
characters.

The si gnedchar I nosi gnedchar control determines whether the compiler
considers a char that is declared without the si gned or unsi gned keywords
to be si gned or unsi gned. The default control is si gnedchar. A character
value occupies a single byte. Each character is made up of 8 bits, ordered
from right to left, or least significant to most significant.

In a character constant, the compiler assigns up to two characters for
iC-86/286 or four characters for iC-386 to a word, with the first character in
the low-order byte. In words containing at least one character, when any
byte does not contain a character, the compiler fills the byte with the sign of
the highest-order byte that does contain a character. An unused byte is
sign-extended if the si gnedchar control is in effect (default), or
zero-extended if the nosi gnedchar control is in effect

The encoding of multi-byte characters does not depend on any shift state.

10-8 Language Implementation

10.3.2 Integers

When a signed or unsigned integer is converted to a narrower signed integer,
or an unsigned integer is converted to a signed integer of equal width,
overflow is ignored and high-order bits are truncated; a sign change can
occur.

The compiler treats signed integers as bit strings in bitwise operations.

The sign of the remainder on integer division is the same as the sign of the
dividend.

A right shift of a signed integral type is arithmetic.

See Table 10-1 for types and sizes of integers.

10.3.3 Floating-point Numbers

When the compiler converts:

• an integral number to a floating-point number, any truncation is
controlled by the numeric coprocessor or emulator.

• a floating-point number to a narrower floating-point number, the
direction of rounding is controlled by the numeric coprocessor or
emulator.

See Table 10-1 for types and sizes of floating-point numbers.

10.3.4 Arrays and Pointers

Character string initializers within a character array are not null-terminated.

An unsigned integer is large enough to hold the maximum size of an array.
An integer is large enough to hold the difference between two pointers to
members of the same array.

Language Implementation 10-9

When you cast:

• a near pointer to i n t, the compiler preserves the bit representation.

• a near pointer to 1 ong, the iC-86/286 compilers zero-extend the offset.
The iC-386 compiler sign-extends the offset if the 1 ong64 control is in
effect Ifthenolong64 control is in effect, the result is the same as
casting a near pointer to i n t.

• a far pointer to i n t, the compiler yields the offset-only part of the
pointer value and discards the selector.

• a far pointer to 1 ong, the iC-86/286 compilers preserve the bit
representation. The iC-386 compiler sign-extends the high-order 16 bits
if the 1 ong64 control is in effect. If the nol ong64 control is in effect,
the result is the same as casting a far pointer to i nt.

• an i n t constant to a near pointer, the compiler preserves the bit
representation.

• an i n t constant expression to a far pointer, the compiler uses zero bits
for the selector. Casting any other i nt expression to a far pointer uses
the current value of the DS register for the selector.

• along integer to a near pointer, the iC-86/286 compilers discard the
high-order 16 bits. The iC-386 compiler discards the high-order 32 bits
if the 1 ong64 control is in effect. If the nol ong64 control is in effect,
the result is the same as casting an i n t to a near pointer.

• a 1 ong integer to a far pointer, the iC-86/286 compilers preserve the bit
representation. The iC-386 compiler discards the high-order 16 bits if
the 1 ong64 control is in effect. If the nol ong64 control is in effect, the
result is the same as casting an i nt to a far pointer.

The compiler can initialize arrays with storage class auto.

See Table 10-1 for the types and sizes of pointers.

10-10 Language Implementation

10.3.5 Register Variables

The (E)SI and (E)DI registers can contain objects of the regi ster storage
class. The register storage class is effective only for enum, signed short,
signed char, int, unsigned int, and near pointer objects. Register storage
is honored only under the variable parameter list (VPL) function calling
convention.

The iC-86/286/386 compilers allocate registers for register objects in the
following order (only under VPL):

1. parameters, in the order that they appear in the function declaration

2. local variables, in the order that the code references them

When a local variable assigned to a register goes out of scope, its register
becomes available again.

10.3.6 Structures, Unions, Enumerations, and Bit Fields

Each of the sets of structure, union, and enumeration tags has its own name
space. Each function has a name space for its labels. Each structure or union
has a name space for its members. Identical names in different name spaces
do not conflict. See Section 10.3.9 for information on virtual symbol table
capacity.

Assignment expressions can assign to structures or unions. A function can
have structures and unions as parameters. The function call passes structures
and unions by value. A function can return a structure or a union.

The compiler can initialize unions and structures of storage class auto.

When the program accesses a member of a union object using a member of a
different type than was last assigned, the result is undefined.

The first member in a union declaration determines the map of the union's
initializer.

The compiler represents enumeration types as i nt.

Language Implementation 10-11

Bit fields are not necessarily allocated on word boundaries; if a bit field is
short enough, it occupies the space between the end of the previous bit field
and the end of the word the previous bit field occupies. See Chapter 3 for
information on the al i gn control to allocate bit fields on word boundaries.

The compiler treats a bit field that is declared without the s i gned or
unsigned keywords as si gned.

The allocation of bit fields in an integer is low-order to high-order.

10.3.7 Declarators and Qualifiers

Objects can be declared as being const or vol a ti 1 e. Pointers can point to
const or vol ati 1 e objects. A const object cannot be modified by
assignment The compiler does not remove references to vol ati 1 e objects
during optimization.

Access to a vol at i 1 e object constitutes two references, a load and a store,
when an object qualified with the vol ati 1 e keyword occurs as any of the
following:

• an operand of a pre-increment operator

• an operand of a pre-decrement operator

• an operand of a post-increment operator

• an operand of a post-decrement operator

• a left operand of a compound assignment operator

Every other occurrence of a vol ati 1 e object constitutes one reference.

The iC-86/286/386 compilers allow attribute specifiers to follow a left
parenthesis (C) or comma (,). In the ANSI C standard, attribute specifiers
are valid in declarators only when subordinate to an asterisk (*). For
example, the following line is invalid in the ANSI C standard:

int (const i), volatile j;

10-12 Language Implementation

However, the iC-86/286/386 compilers recognize the line above as
equivalent to these lines:

int const i;

int vol a111e j:

This extended syntax does not affect the semantics of any source text that
conforms fully to the rules of the ANSI C standard. The extension causes an
asymmetry. For example, the first of the following two declarations causes
x, y, and z all to be read-only variables. The second declaration causes only
y to be read-only; x and z are both modifiable:

int const x, y, z; /* valid for ANSI C */

int x, const y, z; /* extended syntax */

See Section 10.1 for information on the al i en, far, and near type qualifiers.
See Chapter 4 for information on where to use the n ea r and far type
qualifiers.

10.3.8 Statements, Expressions, and References

The maximum number of:

• case values in a swi tch statement is 512.

• functions defined in a module is 1,022.

• external references in a module is 511.

• arguments in a function call is 31.

The maximum nesting level of:

• statements is 32.

• functions specified in function argument lists is 20.

The iC-86/286/386 opti mi ze control governs association of subexpressions
in evaluation.

Language Implementation 10-13

10.3.9 Virtual Symbol Table

The maximum virtual symbol table size is 512 kilobytes. This size is large
enough to hold over 8,000 C symbols or over 16,000 macros. The virtual
symbol table also stores identifiers and macro bodies. In addition, the
compiler generates a symbol for each string literal, floating-point constant,
and temporary variable.

The type table can contain a maximum of 2,048 entries. Each distinct type
takes up one entry in the type table. The compiler does not duplicate
identical pointer, array, function, or qualified types, except that every
prototype has a unique entry, even if an identical prototype entry exists.

10-14 Language Implementation

Contents
Messages
11.1
11.2
11.3
11.4
11.5
11.6

Fatal Error Messages... 11-2
Error Messages.. 11-7
Warnings... 11-22
Remarks...11-29
Subsystem Diagnostics... 11-30
Internal Error Messages.. 11-31

Messages

The iC-86/286/386 compilers can issue the following types of messages:

• fatal errors
• errors (syntax and semantic)
• warnings
• remarks
• subsystem diagnostics

• internal errors

All messages, except fatal and internal error messages, are reported in the
print file. Fatal and internal errors appear on the screen, abort compilation,
and no object module is produced. Other errors do not abort compilation but
no object module is produced. Warnings and remarks usually provide
information only and do not necessarily indicate a condition affecting the
object module.

iC-86/286/386 messages relating to syntax are interspersed in the listing at
the point of error. Messages relating to semantics are interspersed in the
listing or displayed at the end of the source program listing; they refer to the
statement number on which the error occurred.

11-1

11.1 Fatal Error Messages

Fatal error messages have the following syntax:
1C-Z786 FATAL ERROR
message

Where:

n is empty, 2, or 3 for the iC-86, iC-286, or iC-386 compiler,
respectively.

Following is an alphabetic list of fatal error messages.

argument expected for control control

A compiler control is specified without the argument required by
context. Not having a required argument is a fatal error if it occurs in
the compiler invocation, but the preprocessor only issues a warning if it
occurs in a #pragma directive. See Chapter 3 for more information on
compiler control syntax.

argument length limit exceeded for control control

The length of the argument to the control exceeds the maximum
allowable by the compiler. For example, an argument to modulename
exceeds 40 characters.

compiler error

This message follows internal compiler error messages. If you receive
this message, contact Intel customer service. See the Service
Information on the inside back cover.

control control cannot be negated

You cannot use the no prefix with this compiler control. See Chapter 3
for information on which compiler controls can be negated. Improper
negating is a fatal error if it occurs in the compiler invocation, but the
preprocessor only issues a warning if it occurs in a #pragma directive.

11-2 Messages

duplicate control control

A control that must not be specified more than once was specified more
than once. Only the following controls can be specified more than once:

align include
define interrupt
fixedparams searchinclude

subsys
varparams

See Chapter 3 for more information on these controls. If you specify a
compiler control both in the compiler invocation and in a #pragma
preprocessor directive, the compiler invocation specification takes
precedence. A duplicate control is a fatal error if it occurs in the
compiler invocation but the preprocessor only issues a warning if it
occurs in a ^pragma directive.

duplicate interrupt number: interrupt_number

Indicates i n terr up t_n umber was used more than once in interrupt
controls. A duplicate interrupt number is a fatal error if it occurs in the
compiler invocation, but the preprocessor only issues a warning if it
occurs in a #pragma directive.

expression too complex

A complex expression exhausted an internal structure in the compiler.
Break the expression down into simpler components, or try a lower
optimization level.

illegal macro definition: macro_name

An invalid macro was defined on the command line with the def i ne
control.

input pathname is missing

A primary source file pathname was not specified in the compiler
invocation.

insufficient memory

There is not enough memory available for the compiler to run. Check
the available system memory.

Messages 11-3

insufficient memory for macro expansion

An internal structure was exhausted during macro expansion. Two
causes of this error are: the macro or the actual arguments are too
complex, or the macro’s expansion is too deeply nested. See Chapter 10
for information on the applicable limits. Also see the related error
message, macro expansion too nested.

invalid control: control

A control not supported by the compiler was specified. Check the
spelling of the control. An invalid control is a fatal error if it occurs in
the compiler invocation but the preprocessor only issues a warning if the
invalid control occurs in a //pragma directive. See Chapter 3 for a list of
the iC-86/286/386 controls.

invalid control syntax

The compiler control contained a syntax error. See Chapter 3 for more
information on the syntax of the compiler controls. Invalid control
syntax is a fatal error if it occurs in the compiler invocation, but the
preprocessor only issues a warning if the invalid syntax occurs in a
//pragma directive.

invalid decimal parameter: value

Non-decimal characters were found in an argument that must be a
decimal value. See Chapter 3 for more information on the syntax of the
compiler controls. An improper non-decimal argument is a fatal error if
it occurs in the compiler invocation, but the preprocessor only issues a
warning if the improper argument occurs in a //pragma directive.

invalid identifier: identifier

An identifier does not follow the rules for forming identifiers in C. An
invalid identifier is a fatal error if it occurs in the compiler invocation,
but the preprocessor only issues a warning if the invalid identifier
occurs in a//pragma directive.

11-4 Messages

invalid syntax for control control

Invalid syntax is a fatal error if it occurs in the compiler invocation, but
the preprocessor only issues a warning if the improper control syntax
occurs in a //pragma directive. See Chapter 3 for more information on
the syntax of the compiler controls.

missing or misplaced right parenthesis

A right parenthesis is required to delimit arguments to a compiler
control. See Chapter 3 for more information on the syntax of the
compiler controls. An improper right parenthesis is a fatal error if it
occurs in the compiler invocation, but the preprocessor only issues a
warning if the misplaced or missing parenthesis occurs in a //pragma
directive.

no more free space

The internal structure used to hold macros is exhausted. Use fewer
macros in your program. See Chapter 10 for information on the
applicable limits.

null argument for control control

Null arguments for compiler controls are not allowed. For example, the
following is illegal:

ALIGN(siga=2,,sigb=2)

A null argument is a fatal error if it occurs in the compiler invocation,
but the preprocessor only issues a warning if the null argument occurs in
a//pragma directive.

parameter not allowed for control control

This message indicates an attempt to pass arguments to a control that
accepts none. See Chapter 3 for more information on the syntax of
compiler controls. Improper argument passing is a fatal error if it
occurs in the compiler invocation, but the preprocessor only issues a
warning if the improper argument occurs in a //pragma directive.

Messages 11-5

parameter not allowed for negated control control

Negated controls generally do not accept arguments. The noali gn
control is the only exception. See Chapter 3 for more information on
the syntax of compiler controls. An improper argument for a negated
control is a fatal error if it occurs in the compiler invocation, but the
preprocessor only issues a warning if the improper argument occurs in a
//pragma directive.

parameter out of range for control control: parameter

This message indicates an attempt to use an argument value that is out
of the valid range. See Chapter 3 for more information on the range of
argument values accepted by compiler controls. An out-of-range
argument is a fatal error if it occurs in the compiler invocation, but the
preprocessor only issues a warning if the improper argument occurs in a
//pragma directive.

parameter required for control control

A missing required argument is a fatal error if it occurs in the compiler
invocation, but the preprocessor only issues a warning if the missing
argument occurs in a //pragma directive.

previous errors prevent further compilation

The compiler was unable to recover from previous errors in the
compilation. Correct the errors reported thus far, then recompile.

subsys control conflicts with codeseg/dataseg control

A subsys control cannot occur while the codesegment or datasegment
control is in effect, and vice versa.

switch table overflow

Too many active cases exist in a sw itch statement that has not yet been
completed. See Chapter 10 for information on the applicable limits.

11-6 Messages

too many directories are specified for search - pathname

Too many directories are specified in the compiler invocation with the
control searchinci ude. The pathname is the directory at which the
error occurred, that is, the first directory over the limit. See Chapter 10
for information on the applicable limits.

type table full

Too many symbols with non-standard data types are defined in the
module. Remove unused definitions, or break down the module.

unable to recover from syntax error

A syntax error has put the compiler in a state that would lead to spurious
error messages or internal error messages if the compiler continues to
process the program; for example, using the far or near keywords in a
program compiled without the extend control, or omitting a semicolon
from a function declaration.

whiles, fors, etc. too deeply nested

The statement nesting structure of the module exhausted an internal
structure in the compiler. See Chapter 10 for information on the
applicable limits.

11.2 Error Messages

Syntax error messages have the following format:
*** ERROR AT LINE number OF file: syntax error near token

Where:

number is the line number of the offending source line.

file is the name of the source file.

token is the token in the source text near where the error occurred.

Messages 11-7

Semantic error messages have the following syntax:
*** ERROR AT LINE nn OF filename: message

Where:

fi 1 ename is the name of the primary source file or include file in
which the error occurred.

nn is the source line number where the error is detected.
message is the explanation.

Following is -an alphabetic list of error messages.

operator missing macro parameter operand

The # operator must be followed by a macro parameter.

operator occurs at beginning or end of macro body

The ## (token concatenation) operator is used to paste together adjacent
preprocessing tokens, so it cannot be used at the beginning or end of a
macro body.

a semantic token cannot precede subsys control

Text that constitutes a semantic token cannot occur before a #pragma
subsys.

align/noalign control not allowed with union/enum tag

A union or enumeration tag cannot be used as an argument to the align
or noal i gn control. Use a structure tag only.

an attempt to undefine a non-existent macro

The name in the #undef preprocessor directive is not recognized as a
macro.

anonymous parameter

A parameter in a function definition is prototyped but not named.

11-8 Messages

arguments not allowed

Arguments were passed to a function that does not accept arguments.

array too large

This error occurs when the size of an array exceeds 64 kilobytes for
iC-86 and iC-286, or 4 gigabytes for iC-386.

attempt to use 0 as divisor in division/modulo

A divide-by-0 was detected in a divide or modulo operation.

basic block too complex

This error is caused by a function with a long list of statements without
any statements such as 1 abel, case, i f, goto, or return. Break the
function into several smaller functions, or add labels to some statements.

call not to a function

A call is made to a symbol which is not a function.

call to interrupt handler

An interrupt handler can be activated only by an interrupt

cannot initialize

The type or number of initializers does not match the initialized
variable.

cannot initialize extern in block scope

An external declaration cannot be initialized in any scope other than file
scope. The following example is an invalid external declaration:

f()
{ extern int i = 1;
}

case not in switch

A case was specified, but not within a swi tch statement.

Messages 11-9

code segment too large

The size of the code segment exceeds 64 kilobytes for iC-86 and iC-
286, or 4 gigabytes for iC-386. Break the module into two or more
separately compiled modules, or use subsystem definitions. See
Chapter 9 for information on defining subsystems.

conditional compilation directive is too nested

The module contains more than the maximum number of conditional
statements. See Chapter 10 for information on the applicable limits.

constant expected

A non-constant expression appears when a constant expression is
expected (e.g., a non-constant expression as array bounds or as the
width of a bit field).

constant value must be an int

The constant specified must be representable as the data type int.

data segment too large

The size of the data segment exceeds 64 kilobytes for iC-86 and iC-286,
or 4 gigabytes for iC-386. Break the module into two or more
separately compiled modules, or use subsystem definitions. See
Chapter 9 for information on defining subsystems.

default not inside switch

A defaul t label was specified outside of a swi tch statement.

duplicate case in switch, number

The same value, number, was specified in more than one case in the
same switch statement.

duplicate default in switch

More than one defaul t label was specified within the same switch
statement.

11-10 Messages

duplicate label

A label was defined more than once within the same function.

duplicate parameter name

The same identifier was found more than once in the identifier list of a
function declarator. For example, the following code contains a
duplicate a identifier:

int f(a, a) {}

duplicate tag

A tag was defined more than once within the same scope.

empty character constant

A character constant should include at least one character or escape
sequence.

floating point operand not allowed

An operand is non-integral, but the operator requires integral operands.
That is, |, A, %, >>, and « all require integral operands.

function body for non-function

A function body was supplied for an identifier that does not have
function type, as in this example:

i nt i {}

function declaration in bad context

A function is defined (i.e., appears with a formal parameter list), but not
at module-level. Or, a function declarator with an identifier list, which
is legal only for function definitions, was encountered within a function,
as in this example:

int main(void)
(

int f(a);
1

Messages 11-11

function redefinition

More than one function body has been found for a single function, as in
this example:

int f() {}
int f() (}

illegal assignment to const object

Constants cannot be modified.

illegal break

A break statement appears outside of any swi tch, for, do, or whi 1 e
statement.

illegal constant expression

The expression within an #i f or #el i f is not built correctly.

illegal constant suffix

The suffix of a number is not L, U, or a legal combination of the two.

illegal continue

A continue statement appears, but not within any for, do, or whi 1 e
statement.

illegal #el i f directive

An #el i f directive is encountered after an #el se directive.

illegal #else directive

An #el se directive is encountered after an initial #el se directive.

illegal field size

Legal field sizes are 0-32 for unnamed fields, and 1-32 for named fields.
See C: A Reference Manual for more information on bit fields.

illegal floating point constant in exponent

A floating-point constant cannot be an exponent.

11-12 Messages

illegal function declaration

Internal error; may be caused by an earlier syntax error.

illegal hex constant

A hexadecimal constant contains non-hex characters or is without a 0
prefix.

illegal macro redefinition

A macro can be redefined only if the body of the redefined macro is
exactly the same as the body of the originally defined macro.

illegal nesting of blocks, ends not balanced

Braces delimiting a block of code are unbalanced.

illegal syntax - left parenthesis is expected

The name of a macro that accepts arguments is specified with no
argument list, or the argument list is not properly delimited with
parentheses.

illegal syntax in a directive line

A syntax error is encountered in a preprocessor directive.

illegal syntax in a directive line - newline expected

A preprocessor directive line is not terminated with a newline character.

illegal syntax in an argument list

An argument list in a macro contains misplaced or illegal characters.

incompatible types

The two operands of a binary operator have incompatible types, for
example, assigning a non-zero integer to a pointer.

Messages 11-13

Incomplete type

The compiler detected a variable whose type is incomplete, such as the
following example declaration where the type of s is not complete if the
program contains no previous declaration defining the tag S.

int f(struct S s)
{ ...)

invalid argument for builtin function

For example, the built-in function cause interrupt appears with a
non-constant argument. Built-in functions are the functions that provide
direct access to various processor features. See Chapter 6 for the syntax
of the built-in function calls.

invalid attribute for: function_name

The source program attempted to set multiple and conflicting attributes
for a function. For example, a varparams or fi xedparams control
appears for a function whose calling convention has already been
established by use, definition, declaration, or a previous calling
convention control. For another example, a function identifier appears
as an argument toaninterrupt control which appeared in a previous
calling-convention or interrupt control, or the function identifier has
been previously used, defined, or declared.

invalid built-in function

Use 1486™-specific built-in functions only with the mod486 control. Use
i386™-specific built-in functions only with the iC-386 compiler. See
Chapter 6 for more information on built-in functions.

invalid cast

The following are examples of invalid casts:

• casting to or from struct or uni on

• casting avoid expression to any type other than void

invalid field definition

A field definition appears outside a structure definition or is attached to
an invalid type.

11-14 Messages

invalid interrupt handler

Interrupt handlers take no arguments and return no value (voi d).

invalid interrupt number

An interrupt number argument to the function causeinterruptortothe
control interrupt must be an integer constant in the range 0 to 255 for
the iC-86 compiler. Only the iC-86 compiler generates this message.
See Chapter 3 for more information on the syntax of compiler controls.
See Chapter 6 for more information on interrupt functions.

i nvali d member name

The member name (that is, the right operand of a . or a - >) is not a
member of the corresponding structure or union.

invalid number of parameters

The number of actual arguments passed to a function does not match the
number defined in the prototype of that function.

invalid object type

An invalid object type has been detected in a declaration, for example
void array[5];.

invalid pointer arithmetic

The only arithmetic allowed on pointers is to add or subtract an integral
value from a pointer, or to subtract two pointers of the same type. Any
other arithmetic operation is illegal.

invalid redeclaration name

An object is being redeclared, but not with the same type. For example,
a function reference implicitly declares the function as a function
returning an i nt. If the actual definition follows, and it is different, it is
an error.

Messages 11-15

invalid register number

Only certain of the 386 or i486 processor special registers are available
for use in built-in functions. The register number specified must be a
numeric constant. See Chapter 6 for more information on the 386 and
i486 processor special registers.

i nvalid storage cl ass

The storage class is invalid for the object declared. For example, alien
can be used only for external procedures, or a module-level object
cannot be auto or regi ster.

invalid storage class combination

You cannot have more than one storage class specifier in a declaration.

invalid structure reference

The left operand of a . is not a structure or a union; or the left operand
of a - > is not a pointer to a structure or a pointer to a union. This error
message also occurs if an assignment is made from one structure to
another of a different type.

invalid type

An invalid combination of type modifiers was specified.

invalid type combination

An invalid combination of type specifiers was specified.

invalid use of void expression

An expression of data type void was used in an expression.

left operand must be lvalue

The left operand of an assignment operator, and of the ++ and
- - operators, must be an "lvalue;" that is, it must have an address.

limit exceeded: number of externals

The number of external declarations has exceeded the compiler limit.
See Chapter 10 for information on the applicable limits.

11-16 Messages

macro expansion buffer overflow

Insufficient memory exists for expansion of a macro; the macro is not
expanded.

macro expansion too nested

The maximum nesting level of macro expansion has been exceeded.
See Chapter 10 for information on the applicable limits. Macro
recursion, direct or indirect, can also cause this error.

member of unknown size

The data type of a member of a structure is not sufficiently specified.

missing left brace

The initialization data for an aggregate object (array, structure, or union)
must be enclosed by at least one pair of braces.

multiple parameters for a macro

Two parameters in the definition of a macro are identical. Every
parameter must be unique in its macro definition.

nesting too deep

See Chapter 10 for information on nesting level limits.

newline in string or char constant

The new-line character can appear in a string or character constant only
when it is preceded by a backslash (\).

no more room for macro body

Parameter substitution in the macro has increased the number of
characters to more than maximum allowed. See Chapter 10 for
information on the applicable limits.

non addressable operand

The & operator is used illegally, such as, to take an address of a register
or of an expression.

Messages 11-17

non- constant case expression

The expression in a case is not a constant

nothing declared

A data type without an associated object or function name is specified.

number of arguments does not match number of parameters

The number of arguments specified for the macro expansion does not
match the number of parameters specified in the macro definition.

operand stack overflow

An illegal constant expression exists in a preprocessor directive line.

operand stack underflow

An illegal constant expression exists in a preprocessor directive line.

operator not allowed on pointer

An operand is a pointer, but the operator requires non-pointer integral
operands (e.g., &, |, A, *, /, %, », «).

operator stack overflow

An illegal constant expression exists in a preprocessor directive line.

operator stack underflow

An illegal constant expression exists in a preprocessor directive line.

parameter list can not be inherited from typedef

A function body was supplied for an identifier that has function type,
but whose type was specified via a typedef identifier, as in the
following example:

typedef void func(void);
func f {}

parameters can’t be initialized

An attempt was made to initialize the parameters in a function
definition.

11-18 Messages

procedure too complex for optimize (2)

The combined complexity of statements, user-defined labels, and
compiler-generated labels is too great. Simplify as much as possible,
breaking the function into several smaller functions, or specify a lower
level of optimization. See the opti mi ze entry in Chapter 3 for more
information on optimization.

program too complex

The program has too many complex functions, expressions, and cases.
Break it into smaller modules.

real expression too complex

The real stack has eight registers. Heavily nested use of real functions
with real expressions as arguments is excessively complex. Simplify as
much as possible.

respecified storage class

A storage class specifier is duplicated in a declaration.

respecified type

A type specifier is duplicated in a declaration.

respecified type qualifier

A type qualifier is duplicated in a declaration.

sizeof invalid object

An implicit or explicit sizeof operation is needed on an object with an
unknown size. Examples of invalid implicit sizeof operations are
*p++, where p is a pointer to a function, or struct sig type s i ga, when
s igtype is not yet completely defined.

statement is too large

A statement is too large for the compiler. Break it into several smaller
statements.

Messages 11-19

string too 1ong

A string of over 1024 characters is being defined.

syntax error near ’string’

A syntax error occurred in the program. The near str i ng information
attempts to identify the error more precisely.

too many active cases

The limit of active cases in an uncompleted switch statement was
exceeded. See Chapter 10 for information on the applicable limits.

too many active functions

The number of function calls within a single expression has exceeded
the compiler limit. See Chapter 10 for information on the applicable
limits.

too many characters in a character constant

A character constant can include one to four characters. The effect of
this error on the object code is that the character constant value remains
undefined. See Chapter 10 for information on character constant size
for your target processor.

too many cross-references, data truncated

The cumulative number of cross-references exceeded the compiler’s
internal limit. Cross-references appear in the symbol table listing when
the xref control is active.

too many externals

Too many external identifiers were declared. See Chapter 10 for
information on the applicable limits.

too many functions

Too many functions were declared. See Chapter 10 for information on
the applicable limits.

11-20 Messages

too many initializers

An array is initialized with more items than the number of elements
specified in the array definition.

too many macro arguments

The maximum number of arguments specified for a macro was
exceeded. See Chapter 10 for information on the applicable limits.

too many nested calls

The nesting limit for functions called in function argument lists has been
exceeded. See Chapter 10 for information on the applicable limits.

too many nested struct/unions

The lexical nesting of struct and uni on member lists is limited to a
depth of 32.

too many parameters for one function

The maximum number of parameters specified for one function was
exceeded. See Chapter 10 for information on the applicable limits.

too many parameters for one macro

The maximum number of parameters specified for one macro was
exceeded. See Chapter 10 for information on the applicable limits.

unbalanced conditional compilation directive

Conditional compilation directives are improperly formed. For
example, the program contains too many #endi f preprocessor
directives, or an #el se preprocessor directive without a matching #i f
preprocessor directive.

undefined identifier: identifier

The program contains a reference to an identifier that has not been
previously declared.

undefined label: label

A label has been referenced in the function, but has never been defined.

Messages 11-21

undefined or not a label

An identifier following a goto must be a label; the identifier was
declared otherwise, or the identifier was declared as a label but was not
defined.

undefined parameter

The argument being defined did not appear in the formal parameter list
of the function.

unexpected EOF

The input source file or files ended in the middle of a token, such as a
character constant, string literal, or comment.

unit string literal too long; truncated

The maximum length of a string is 1024 characters.

variable reinitialization

An initializer for this variable was already processed.

void function cannot return value

A return with an expression is encountered in a function that is declared
as type void. In such functions, all returns must be without a value.

11.3 Warnings
Warnings have the following syntax:
*** WARNING AT LINE nn OF filename: message

Where:

f i 1 ename is the name of the file in which the warning occurred.

nn is the source line number where the warning is detected.

message is the explanation.

Following is an alphabetic list of warnings.

11-22 Messages

a //endif directive is missing

At least one //end i f preprocessor directive is missing at the end of the
input source file(s). The #i f, //el 1 f, and //endi f preprocessor
directives are not balanced.

an old bull tin header file has been used

A built-in header file from a previous release of the compiler has been
used. Obtain the built-in header file provided with this release and use
it.

argument expected for control control

A compiler control is specified without the argument required by
context. A missing required argument is a fatal error if it occurs in the
compiler invocation, but the preprocessor only issues a warning if it
occurs in a //pragma directive.

bad octal digit: hex_value (hex)

An octal number contains a non-octal character. The hex_va 1 ue is the
ASCII value of the illegal character.

comment extends across the end of a file

A comment that is started in a file is not closed before the end of the
file.

control control cannot be negated

The prefix no cannot be specified for this compiler control. Improper
negating is a fatal error if it occurs in the compiler invocation, but the
preprocessor only issues a warning if it occurs in a //pragma directive.
See Chapter 3 for a list of compiler controls that can be negated.

control control not allowed in pragma

The compiler encountered either a def ine or an i ncl ude control in a
//pragma preprocessor directive.

Messages 11-23

different enum types

An attempt was made to assign one enum type to a different enum type.

directive line too long

The line length limit for //pragma preprocessor directives was exceeded.
See Chapter 10 for information on the applicable limits.

division by 0

A division by the constant 0 was specified.

escape sequence value overflow

The escape sequence is undefined.

export ignored: identifier

An identifier that is an enumeration constant appeared in the EXPORTS
list of a subsystem specification. An enumeration constant cannot be
far. See Chapter 9 for information on subsystems.

exported identifier: identifier

An identifier that is either a built-in or appears as an argument to the
i nter rupt control, appears also in the EXPORTS list of a subsystem
specification.

extra characters in pragma ignored: string

The string represents characters that the compiler cannot process as
part of the current //pragma.

filename too long; truncated

The filename length exceeded the limit of the operating system.

illegal character in header name: hex_value (hex)

An illegal character was found in the header name of an//include < >
preprocessor directive.

11-24 Messages

illegal character: hex_value (hex)

The character with the ASCII value hex_va 1 ue is not part of the
iC-86/286/386 character set.

illegal escape sequence

The sequence following the backslash is not a legal escape sequence.
The compiler ignores the backslash and prints the sequence.

illegal syntax In a directive line

A preprocessor directive line is not terminated with a new-line
character.

illegal syntax in a directive line - newline expected

A preprocessor directive line is not terminated with a new-line
character.

indirection to different types

A pointer to one data type was used to reference a different data type.

initializing with ROM option in effect

When a program is placed in ROM, initialization of a variable that does
not have the cons t type qualifier has no effect. See Chapter 3 for more
information on the compiler controls ram and rom.

invalid control syntax

Invalid control syntax is a fatal error if it occurs in the compiler
invocation, but the preprocessor only issues a warning if it occurs in a
//pragma directive. See Chapter 3 for more information on the syntax of
compiler controls.

invalid decimal parameter: value

Non-decimal characters were found in an argument that requires a
decimal value. See Chapter 3 for more information on the syntax of
compiler controls. Invalid non-decimal argument is a fatal error if it
occurs in the compiler invocation, but the preprocessor only issues a
warning if the invalid argument occurs in a //pragma directive.

Messages 11-25

invalid identifier: identifier

An identifier does not follow the rules for forming identifiers in C. An
invalid identifier is a fatal error if it occurs in the compiler invocation,
but the preprocessor only issues a warning if the invalid identifier
occurs in a //pragma directive.

invalid syntax for control control

Invalid syntax is a fatal error if it occurs in the compiler invocation, but
the preprocessor only issues a warning if the invalid syntax occurs in a
//pragma directive. See Chapter 3 for more information on the syntax of
compiler controls.

missing or misplaced right parenthesis

A right parenthesis is required to delimit arguments to a compiler
control. See Chapter 3 for more information on the syntax of compiler
controls. Improper right parenthesis is a fatal error if it occurs in the
compiler invocation, but the preprocessor only issues a warning if the
missing or misplaced parenthesis occurs in a //p ra gma directive.

null argument for control control

Null arguments for compiler controls are not allowed. See Chapter 3 for
more information on the syntax of compiler controls. For example, the
following is illegal:
align(siga=2,, sigb=2)

A null argument is a fatal error if it occurs in the compiler invocation,
but the preprocessor only issues a warning if the null argument occurs in
a//pragma directive.

parameter not allowed for control control

An argument or arguments were passed to a control that accepts none.
See Chapter 3 for more information on the syntax of compiler controls.
Improper argument passing is a fatal error if it occurs in the compiler
invocation, but the preprocessor only issues a warning if the argument
occurs in a //pragma directive.

11-26 Messages

parameter not allowed for negated control control

Negated controls generally do not accept arguments (noal i gn is the
only exception). See Chapter 3 for more information on the syntax of
compiler controls. Improper argument for negated control is a fatal
error if it occurs in the compiler invocation, but the preprocessor only
issues a warning if the argument occurs in a //pragma directive.

parameter out of range for control control: parm

An argument or arguments were passed that were out of the specified
range for the parameter. See Chapter 3 for more information on the
range of values accepted by various compiler controls. An out of range
argument is a fatal error if it occurs in the compiler invocation, but the
preprocessor only issues a warning if the argument occurs in a //pragma
directive.

parameter required for control control

A missing required argument is a fatal error if it occurs in the compiler
invocation, but the preprocessor only issues a warning if the argument
occurs in a //pragma directive. See Chapter 3 for more information on
the syntax of compiler controls.

pointer extension

An integral expression is being converted to a far pointer type, and the
current value of DS is being inserted as the selector part. Later
operations using this value, particularly comparison against the N U L L
constant, may not give correct results.

pointer truncation

A far pointer expression is being converted to a narrower type, which
cannot represent the value of the selector part of the pointer. Later
indirection using this value can give incorrect results.

Messages 11-27

pragma ignored

An entire //pragma preprocessor directive was ignored as a result of an
error. Whenever an error is found in a //pra gma preprocessor directive,
the diagnostic is followed by either this message or remai nder of
pragma 1 gnored, whichever is appropriate. This message is usually
paired with one of several other messages.

predefined macros cannot be deleted/redefined

The predefined macros (e.g.,__ LIN E__ or__ FILE___) cannot be deleted
or redefined by the preprocessor directives //define or //undefine.

remainder of pragma ignored

This message indicates that a //pragma preprocessor directive is partially
ignored as a result of an error. Whenever an error is found in a# pragma
preprocessor directive, the message is followed by either this message
or pragma i gnored, whichever is appropriate. This message is usually
paired with one of several other messages.

subsys control conflicts with codeseg/dataseg control

A subsys control cannot occur while the codesegment or datasegment
control is in effect, and vice versa. The preprocessor detected both
controls in //pragma preprocessing directives.

token too long; ignored from character: hex_value (hex)

A character sequence was too long; such as an identifier or a macro
argument.

too many alignment specifiers for this tag: structure_tag

Alignment has already been specified for this s true ture_tag, either in
the current or in a previous align control. Redundant alignment
specification is a fatal error if it occurs in the compiler invocation, but
the preprocessor only issues a warning if it occurs in a //pragma
directive.

zero or negative subscript

In an array declaration, the value of an array subscript must be a positive
integer.

11-28 Messages

11.4 Remarks

Remarks have the following syntax:
*** REMARK AT LINE nn OF filename: message

Where:

fi 1 ename is the name of the file in which the remark occurred.
nn is the source line number where the remark is detected.

message is the explanation.

Following is an alphabetic list of remark messages.

a constant in a selection statement

A constant is encountered in the expression of a selection statement
such as an i f, el se, or switch statement.

implicit function declaration

The function is used without any previous declarations.

invalid number of parameters

The actual number of arguments in a function call do not agree with the
number of parameters in a function definition that is not a prototype.

return statement has no expression

A return statement with no return expression is encountered in a
function definition which returns an expression other than void.

statement has no apparent effect

A statement that does not have any effect in the source code is
encountered, as in the following example:

var + 1;

the characters /* are found in a comment

A comment-start delimiter (/*) occurs between a comment-start
delimiter and a comment-end delimiter (*/).

Messages 11-29

11.5 Subsystem Diagnostics
Subsystem diagnostic messages have the following syntax:
*** ERROR AT LINE nn OF filename: message

Where:

fi 1 ename is the name of the primary source file or include file in
which the error occurred.

nn is the source line number where the error is detected.

message is the explanation.

Following is an alphabetic list of subsystem diagnostic messages.

conflicting segmentation controls

More than one segmentation control affecting the module being
compiled was encountered. One common cause is specifying both
- const i n code- in a subsystem definition and the rom control.

illegal identifier in subsystem specification

An identifier was encountered that does not follow rules for PL/M
identifiers. See Chapter 9 for information on subsystem identifiers.

invalid control

An unrecognized control is in the subsystem definition. See Chapter 9
for more information on subsystem definitions.

subsystem already defined

The subsystem name has already been defined.

symbol exists in more than one has list

A module name can occur in only one HAS list

unexpected end of control

A subsystem definition was expecting a continuation line or a right
parenthesis.

11-30 Messages

11.6 Internal Error Messages

Internal error messages have the following syntax:
internal error: message

If your compilation consistently produces any of these errors, contact your
Intel representative.

Messages 11-31

Installation

This section provides the information you need to install the iC-86, iC-286,
or iC-386 compiler and libraries on a DOS host system.

Hardware

All of Intel's development tools for DOS require an IBM compatible PC
(XT- or AT- class) or an Intel386™ or Intel 486™ processor-based
workstation with a recommended minimum 512 kilobytes of RAM and DOS
V3.1 or later. Use your PC host system with Intel development tools as a
program development workstation.

Use ch kdsk to determine whether your system has enough available memory
and disk space, as follows:

C:> chkdsk

Volume name created date time

33435648 bytes total disk space
53248 bytes in 3 hidden files

227328 bytes in 106 directories
27154432 bytes in 1448 user files

133120 bytes in bad sectors
5867520 bytes available on disk

655360 bytes total memory
554864 bytes free

If your system contains expanded memory and the expanded memory
manager LIM 3.2 (or higher) is present, iC-86/286/386 uses available
expanded memory prior to spilling its tables to disk.

Installation-1

Installation on DOS Systems

The iC-86/286/386 compiler and libraries product is supplied on 5-1/4"
diskettes and 3-1/2" diskettes. Before installation, make a backup copy of
the product diskettes using the DOS diskcopy command.

The installation program i install. exe, found on the first distribution disk,
installs the compiler and libraries on your DOS host system. The program
creates directories if needed and copies files into them. At certain points
during the installation, you can:

• name a base subdirectory under which all files will be copied
(some into subdirectories), or choose the default.

• choose to install all or selected parts of the product, such as the
header files. You can rerun the installation program later to install
additional parts of iC-86/286/386 if you need them.

• create files named autoexec. new and confi g.new that contain the
modified path, fi 1 es, and buffers commands. These changes
simplify invocation and ensure efficient operation of the compiler.
You can rename the files autoexec .bat and conf i g. sys if you
choose to use the new files, or copy the values into your own files.

NOTE
The installation program used to install the iC-86/286/386
product, INSTALL, is licensed software provided by Knowledge
Dynamics Corporation, Highway Contract 4 Box 185-H,
Canyon Lake, Texas 78133-3508 (USA). INSTALL is provided
to you exclusively for installing the iC-86/286/386 software.

Installation-2

Software
After compiling your source code, you need the appropriate Intel utilities to
link or bind the object modules into an application:

• For iC-86, you need the 86,88 utilities.

• For iC-286, you need the 286 utilities.

• For iC-386, you need the Intel386’u family utilities.

To execute applications that use floating-point arithmetic, you need an n87
numeric coprocessor (or i486 with on-chip FPU) or a true software emulator.

Installation-3

Glossary
Absolute address An address in memory relative to the beginning

of memory.

Access attributes
286 and higher
processors

Characteristics which define the type of segment
access allowed: read-only data, read-write data,
execute-read code, or execute-only code. These
attributes are represented by bits 41
(Writable/Readable) and 43 (Executable) in the
segment descriptor.

Aggregate data type A data type that is a collection of scalar and
sometimes aggregate data types, treated either as
a unit, or as individual scalar or aggregate data
types.

Alignment (of an
object)

The allocation of an object in memory relative to
byte, even-byte, or 4-byte addresses and
boundaries.

Alignment (of a
segment)
86 processors

Big-endian

The allocation of a segment in memory relative
to byte, word, paragraph, or page addresses and
boundaries.

A processor that stores multi-byte objects
starting with the high-order byte at the lowest
address.

Binder, BND286 and
BND386

The utility that performs linking. The binder
combines segments with like names and resolves
symbolic addressing.

Glossary-1

Build file
286 and higher
processors

A file of system implementation definitions used
by the system builder, BLD286 or BLD386, to
create an absolutely-located system. The
definitions describe system data structures,
initial values for the system, and memory
configuration.

Builder, BLD286 and
BLD386

The utility that creates an absolutely-located
system from linkable input modules and system
definitions in a build file.

Calling convention The set of instructions that the compiler inserts
in object code to handle parameter passing, stack
and register use, and return values in a function
call.

Code segment A memory segment containing instructions and
sometimes constants.

Compiler control A directive you can specify in the compiler
invocation.

Compiler invocation The command that causes the compiler to begin
execution.

Conditional compilation Compiling only part of the source code,
depending on the preprocessor's evaluation of
conditions in the source code.

Cross-referenced
symbol table

A symbol table containing source line-number
reference information.

Current segment The segment pointed to by a segment register at
any particular time during execution.

Dbit
Intel386™ and Intel486™
processors

Bit 54 (B/D) in a segment descriptor. The D bit
refers to the default operand size of a code
segment. If the bit is 1, the default operand size
is 32 bits. If the bit is 0, the default operand size
is 16 bits.

Glossary-2

Data register One of four 16-bit registers (AX, BX, CX, or
DX for 86 and 286 processors), or four 32-bit
registers (EAX, EBX, ECX, or EDX for
Intel386 and Intel486 processors); the processor
usually uses data registers in arithmetic and
logical operations.

Data segment A segment containing data (e.g., variables and
constants).

Data type The format for representing a value.

Debugger A development tool that enables you to observe
and manipulate the step-by-step execution of
your program.

Descriptor
286 and higher
processors

An eight-byte data structure containing the base,
limit, and access attributes for a given region of
linear address space such as a segment, table, or
task state segment.

Descriptor privilege
level
286 and higher
processors

Bits 29 and 30 in a segment descriptor. The
segmentation hardware checks descriptor
privilege levels on accesses to code and data
segments to ensure that the referring code has
sufficient privilege.

Development tool

EFLAGS register
Intel386 and Intel486
processors

Error

Any product used for application development.

The processor register containing indicators of
the current state of the processor and of the
result of the just-completed instruction.

An exception that does not immediately
terminate compilation but can cause an invalid
object module.

EXE file
iC-86 only

A DOS-executable file with a filename
extension of . EXE.

Glossary-3

Expand-down
286 and higher
processors

A special kind of data segment useful for stacks.
The expand-down attribute is in bit 42 of the
segment descriptor. A software system can
dynamically increase the expand-down segment
size by lowering the limit in the segment
descriptor.

External reference A reference to a location in a different object
module via a data pointer or function call.

Far A reference from a location in one segment to a
location in a different segment; an address with
both the segment selector and offset specified.

Fatal error An exception that terminates compilation; no
object module is produced.

File type The characteristics of a file reflected in the
characters of the filename following the dot
character.

Filename The name of a file, including the device and
directory path, if necessary.

Filename base The part of a filename that is left of the

Filename extension The part of a filename that is right of the

FLAGS register The processor register containing indicators of
the cunent state of the processor and of the
result of the just-completed instruction. The
low-order 16 bits of the EFLAGS register in
Intel386 and Intel486 processors.

Gate
286 and higher
processors

An eight-byte data structure used to regulate
transfer of control to another code segment. A
gate is sometimes called a descriptor because it
has a layout similar to a segment descriptor.
Gates provide indirection that allows the
processor to perform protection checks.

General control A compiler control that you can specify on the
command line and in a tfpragma preprocessor
directive anywhere in the source code as often as
necessary.

Glossary-4

General register

Global descriptor table
(GDI)
286 and higher
processors

Any of the data, pointer, or index registers.

An array of descriptors defining segments and
gates available for use by all tasks in the system.
A software system contains only one global
descriptor table.

Global descriptor table
register (GDTR)
286 and higher
processors

Group
iC-86 only

The system register that contains the base
address and limit of the global descriptor table.

Two or more segments concatenated and
constrained to occupy together up to 64
kilobytes of memory.

Hardware flags

Host system

See FLAGS register and EFLAGS register.

The system on which the compiler executes.
(See also target system.)

Identifier The name you specify in your source code to
refer to an object or function.

In-circuit emulator A system of hardware and software that
emulates the operation of a microprocessor or
microcontroller within a target system.

Include files The source files other than the primary source
file; specified in the include compiler control or
in the #i ncl ude preprocessor directive.

Index register One of two registers (SI or DI for 86 and 286
processors, or ESI or EDI for Intel386 and
Intel486 processors) that you use for addressing
operands during execution.

Instruction set The executable elements of the object code.

Interrupt descriptor
table (IDT)
286 and higher
processors

An array of task, interrupt, and trap gates that
act as interrupt vectors. A software system
contains only one interrupt descriptor table.

Glossary-5

Interrupt descriptor
table register (IDTR)
286 and higher
processors

The system register that contains the base
address and limit of the interrupt descriptor
table.

Interrupt handler The function called when an interrupt occurs.

Listing controls Controls which specify the names, locations, and
contents of the output listing files.

Little-endian A processor that stores multi-byte objects
starting with the low-order byte at the lowest
address.

Local descriptor table
(LDT)
286 and higher
processors

An array of descriptors defining segments and
gates protected from use by all but specified
tasks in the system. Tasks that have a pointer to
a local descriptor in their task state segment can
access that table. The global descriptor table
can hold descriptors for local descriptor tables.
A software system can contain many local
descriptor tables.

Local descriptor table
register (LDTR)
286 and higher
processors

Lowercase

The system register that contains the selector for
the descriptor of the currently active local
descriptor table.

For ASCII characters a through z, the
hexadecimal values 61 through 7A.

Machine status word
(MSW)
286 and higher
processors

A 16-bit register whose value indicates the
configuration and status of the processor. In
Intel386 and higher processors, the MSW is the
low-order 16 bits of control register 0 (CRO).

Macro A string that the preprocessor replaces with text
you specify.

Module A file of code in some stage of translation. An
object module refers to the output of a translator,
linker, binder, or system builder. An input
module refers to a file in the form accepted by
translating, binding, or building software.

Glossary-6

Near A reference from one location to another within
the same segment; an offset-only address.

Numeric coprocessor An 8087, 80C187, i287™, or i387™ coprocessor,
the Intel486 processor on-chip floating-point
unit, or a true software emulator.

Object A variable, temporary variable, constant, literal,
or macro. (See also object module.)

Object code Executable instructions and associated data in
binary format.

Object file The file containing the object module that the
compiler generates.

Object-file content
controls

Controls which determine the internal
configuration of the object file.

Object module The formatted object code that the compiler
generates.

Offset The displacement; the number of units (usually
bytes) away from the zeroth location in memory,
or the number of units away from the base
address of the enclosing segment or data
structure.

Output listing The print file and preprint file that the compiler
generates.

Pathname The name of a directory or file relative to a
given directory.

Pointer registers The base pointer (BP for 86 and 286 processors,
or EBP for Intel386 and Intel486 processors)
and stack pointer (SP for 86 and 286 processors,
or ESP for Intel386 and Intel486 processors)
registers.

Preprint file A text file that the compiler generates,
containing the intermediate source code after
macro expansion, files included using the
include control or the //include preprocessor
directive, and conditional compilation.

Glossary-7

Primary control A compiler control that can only be specified
once. When you specify it in a preprocessor
directive, you must specify it before the first line
of data definition or executable source code.

Primary source file The file specified as the source file in a compiler
invocation.

Primary source text

Print file
The contents of the primary source file.

A compiler-generated text file containing code
listings, symbolic information, and information
about the compilation.

Privilege level
286 and higher
processors

One of four values in bits 45 and 46 of a
segment or special descriptor: 0 (most
privileged), 1, 2, or 3 (least privileged). The
descriptor privilege level (DPL) of the currently
executing code segment is also called the current
privilege level (CPL).

Privileged instructions
286 and higher
processors

Instructions that affect system registers or halt
the processor. These instructions can only be
executed when the current privilege level is 0.

Program A set of compiled modules ready to be linked or
located, or the complete associated source text.

Protected mode
286 and higher
processors

A mode of execution where the
protection-enable bit (PE) is on in the machine
status word. The first far jump has been
executed. This mode uses selectors and
descriptors to calculate addresses.

Protection
286 and higher
processors

The mechanisms implemented by the hardware
of the processor, especially when the
protection-enable bit (PE) is on and the first far
jump has been executed. There are five basic
kinds of protection available: type checking,
limit checking, restricting addressable domain,
restricting entry points, and restricting
instruction set.

Glossary-8

Protection-enable
bit (PE)
286 and higher
processors

Qualifier

Bit 0 in the machine status word. If PE is 1, the
processor executes in protected mode. If PE is
0, the processor executes in real mode.

Invocation command element that controls the
result of the invocation.

Real mode The mode of execution of the 86 processor, or of
higher processors with the protection-enable bit
(PE) off. The 286 and higher processors execute
in this mode upon reset, except the 376
processor executes in protected mode on reset.

Relative address An offset into a segment, before the segment
loads into memory.

Scalar data type A data type treated as a single value.

Search path A list of strings that the debugger uses as default
prefixes of possible pathnames to a file.

Segment
286 and higher
processors

Segment register

A continuous piece of memory defined by a base
address and a limit.

One of the CS, SS, DS, and ES registers (or FS
and GS registers in Intel386 and higher
processors) containing a segment selector.

Segmentation model The format used to combine object modules into
individual or contiguous blocks of memory
addressable by the processor determines the
placement of constants and the number and
names of segments generated by the compiler.

Selector
286 and higher
processors

A system data structure used in computing an
address that identifies a descriptor by specifying
a descriptor table and an index to a descriptor
within that table. A selector also contains a
requested privilege level (RPL), which is the
descriptor privilege level (DPL) of the referring
segment.

Glossary-9

Separately-compiled
code

Individual object modules each resulting from
its own compilation.

Source directory The directory containing your primary source
file.

Source-processing
controls

Controls which specify the names and locations
of input files or define macros at compile time.

Source text Text you write in a programming language such
as C.

Stack segment A segment reserved for dynamic memory
allocation for objects such as temporary
variables and function activation records.

Symbol table A chart in the print file containing symbolic
information.

Symbolic debugger See debugger.

Symbolic information Information about the format, location, and
identifier of an object or function.

System data structures
286 and higher
processors

Target system

Descriptors, tables, gates, selectors, and task
state segments.

The system on which your compiled program is
intended to execute. (See also host system.)

Task
286 and higher
processors
Uppercase

The code, data, and system data structures which
collectively define a sequential thread of
execution.

For ASCII characters A through Z, the
hexadecimal values 41 through 5 A.

Warning A message indicating a situation that is probably
unusual but that does not terminate compilation
and probably does not invalidate the object
module.

Glossary-10

Word Two bytes on all n86 processors. In C
programming, a word is the amount of storage
reserved for an integer, which is 16 bits for
iC-86 and iC-286 and 32 bits for iC-386. The
Intel386 and Intel486 processor documentation
and ASM386 instruction sets refer to a 16-bit
word and a 32-bit double word.

Work file A file that the compiler creates, uses, and deletes
during compilation.

Glossary-11

Index
operator, 10-7
operator, 10-6
#defme preprocessor directive, 3-27, 3-28

Vs. define control, 2-38
#elif preprocessor directive, 10-7

Example, 2-38
#endif preprocessor directive, example, 2-38
#error preprocessor directive, 5-2, 10-7
#if defined preprocessor directive, example,

2-38
#include preprocessor directive, 2-2, 2-36,

3-42, 3-53, 3-54, 3-87, 5-2, 5-3, 5-8,
10-7

Example, 2-38
Search path, 3-89
Vs. include control, 2-38

#line preprocessor directive, 2-36, 5-2, 5-4,
10-7

#pragma preprocessor directive, 2-31, 2-34,
3-2, 9-2, 9-13, 9-19,10-7

Example, 2-38
#undef preprocessor directive, 3-27
$ dollar sign in identifiers

Extend control, 3-33
Subsystems, 3-94

/ slash in filenames, 3-42, 3-89
8O287.hb, 2-24
8087 numeric coprocessor, 2-18
80C187 numeric coprocessor, 2-18
86 example

Controls, 2-44
Invocation, 2-45
Linking, 2-47
Print file, 2-45

286 example
Controls, 2-48
Invocation, 2-48

A
Abnormal termination, 2-4, 2-6
Absolute 86 object module, 1-5
Absolute address, Glossary-1
Access attributes, Glossary-1
Access rights, 6-31

Byte in descriptor, 6-28
Compact-model subsystem, 9-11
iC-286, 4-4, 4-5

Compact model, 4-14
Large model, 4-22
Medium model, 4-19
Small model, 4-10

iC-386,4-5, 4-6
Compact model, 4-15
Small model, 4-11

Small-model subsystem, 9-8
Macros, 6-33, 6-34, 6-35

Activation records, 4-7
Address of an object, 10-1
Address size, 5-3
adjustrpl function, 6-36
Aggregate data type, Glossary-1
Aggregate types, 10-1,10-5
Aliasing variables, 3-74
alien keyword, extend control, 3-33
align I noalign control, 3-7 thru 3-9

Examples, 3-9 thru 3-14
Alignment

Attribute (iC-86), 4-4
Of a segment, Glossary-1
Of an object, Glossary-1

ANSI C Standard, 1-8,1-9, 3-33, 10-1, 10-6,
10-8

Conformance, 5-2, 8-5, 8-6
Converting floating-point to integer, 3-75

Application development, 1-3, 1-5
Tasks, 1-1

Index-1

.ARCHITECTURE., 5-3
Arguments

Maximum number, 10-13
Array, 10-5, 10-9
ASM86, libraries, 2-18
ASM86/286/386, %define macro facility, 2-28
ASM286, libraries, 2-20
Assembler invocation, 7-4
%auto assembler macro, 7-22
Auto storage class specifier, 10-10, 10-11
Automatic variables, 4-7

B
Batch files, 2-8

%0 parameter, 2-10
Characteristics, 2-9
Example, 2-10, 2-11
Extension for, 2-8
Invoking, 2-8
Passing arguments to, 2-8
Redirecting input to, 2-9, 2-10
Valid commands, 2-8

Big-endian, Glossary-1
Binder, 9A, 9-15, 9-19, Glossary-1

Combining segments, 9-7 thru 9-11
Binding, 2-12

Compact model, 4-14, 4-15
General syntax, 2-13
iC-286, 4-4
iC-386, 4-5
Large model, 4-22, 4-23
Libraries, 4-7
Medium model, 4-18, 4-19
Small model, 4-10, 4-11

Bit field, 10-2, 10-12
BLD286,1-5,4-3, 6-22

Interrupt gate, 3 -44
BLD386,1-5,4-3, 6-22

Flat model, 4-26, 4-27
Interrupt gate, 3-44

Block nesting level, 5-7
blockmbyte function, 6-12
blockinhword function, 6-12
blockinword function, 6-12
blockoutbyte function, 6-13

blockoutword function, 6-13
BND286, 1-5, 2-12, 2-13

Object control, 2-24
rconfigure control, 2-24
Using libraries, 2-23

BND386, 1-5, 2-12, 2-13
Example, 2-26
object control, 2-26
rconfigure control, 2-26
renameseg control, 2-26
Using libraries, 2-25

Bootloadable 286 or 386 system, 1-5
Build file, Glossary-2

Example interrupt gates, 6-23
Builder, Glossary-2
buildptr function, 6-4
built-in functions, 6-1
byteswap function, 6-41

c
C libraries, 2-22, 2-23, 2-25
CALL instruction for 386 and i486 processors,

3-62
Calling convention, 3-35 thru 3-37, 3-105 thru

3-107, Glossary-2. See also
Function-calling convention

Case significance, 10-6
Control arguments, 3-2
Controls, 3-2
Subsystem identifiers, 3-94

Case values, maximum, 10-13
Casting

Pointer to near, 4-30
To and from pointers, 10-10

causeinterrupt function, 6-14
Causing interrupts, 6-15
cel287.1ib, 2-24
%cgroup assembler macro, 7-9
char data type, 3-90
Character

Constant, 10-8
Set, 10-8
Strings, 4-7

Class name (iC-86), 4-3

Index-2

Cleaning up the stack. See Fixed parameter
list; Variable parameter list

Cleanup code, 8-2, 8-7
cleartaskswitchedflag function, 6-27
CODE, 9-8, 9-10

Compact model, 4-14
Compact-model subsystem, 9-11
iC-86 medium model, 4-18
iC-86/286

Compact model, 4-14
Large model, 4-22
Medium model, 4-18
Small model, 4-10

iC-286 medium model, 4-19
Large model, 4-22
Small model, 4-10
Small-model subsystem, 9-8

Code access, efficiency, 4-1, 4-30
%code assembler macro, 7-9
Code segment, 3-85, 4-7, Glossary-2

Compact model, 3-19, 4-14,4-15
Compact-model subsystem, 9-11
Flat model (iC-386), 3-39
Large model (iC-86/286), 3-45,4-22
Medium model (iC-86/286), 3-56, 4-18,

4-19
Name (iC-386), 3-17,3-18
Small model, 3-92, 4-10, 4-11
Small-model subsystem, 9-8

code I nocode control, 2-41, 3-15, 3-16
CODE32, 9-8, 9-10

Compact-model subsystem, 9-11
iC-386

Compact model, 4-14, 4-15
Small model, 4-10, 4-11

Segment name (iC-386), 3-17
Small-model subsystem, 9-8

codesegment control (iC-386), 3-17, 3-18,
9-19

And subsys control, 3-18
Combine-type

Compact-model subsystem, 9-11
Compact model, 4-14, 4-15
iC-286, 4-4, 4-5
iC-386, 4-5, 4-6

Large model, 4-22
Medium model, 4-18, 4-19
Small model, 4-10, 4-11
Small-model subsystem, 9-8

Command files, 2-8, 2-11
Characteristics, 2-11, 2-12
Example, 2-11, 2-12, 2-34
exit command, 2-11
Invoking, 2-11
Log file, 2-34, 2-36
Nesting, 2-12
Redirecting output, 2-12
Redirecting to command.com, 2-11
Valid commands, 2-11

Command line
Preserving case, 3-2
Preserving special characters, 3-6

Compact control, 3-19, 3-20, 4-6, 4-14, 9-7
Compact, medium, large, and flat

segmentation memory model, 9-1
Compact model, 4-1

Default address size, 4-15
Dynamic data segments, 4-15
Efficiency, 4-15
Maximum program size, 4-15
Number of segments, 4-15
Segment definitions, 4-14, 4-15
Segments, 4-14
Selector register use, 4-14

Compact-model subsystems
far keyword, 9-12
Mixing with small-model subsystems, 9-9
Degment definition, 9-10, 9-11
Selector, 9-10
Stack segment, 9-5

Compact segmentation memory model, 9-2,
9-3

Compatibility
Function calling conventions, 3-33
iC-386 with C-386, 3-17, 3-23
Other Intel compilers, 3-33,3-35, 3-105
With Intel tools, 1-8

Compilation heading, 5-5, 5-6
Example, 5-7

Compilation summary, 5-6, 5-10

Index-3

Compiler
Capabilities, 1-7
Control, Glossary-2
Invocation, Glossary-2
Version, 1-9, 5-6

Compiling, 5-1
cond I nocond control, 3-21, 3-22, 5-8
Conditional assembler macros, 7-17
Conditional code, 5-8

In source listing, 3-21
Conditional compilation, 2-34, 5-2, 5-4,

Glossary-2
Example, 2-37, 3-28
Macros, 3-27
Maximum nesting, 10-7
Preprint file, 3-81
Uncompiled code, 2-49

Conditional directives, 5-4
config.sys file, 2-4
Console, messages, 3-102
CONST

iC-86
Compact model, 4-14
Large model, 4-22
Medium model, 4-18
Small model, 4-10

%const assembler macro, 7-9
const attribute specifier, 3-85, 10-12
%const_in_code assembler macro, 7-7
Constants, 3-85

Code or data segment, 4-7
Compact model, 4-14
Compact-model subsystem, 9-11
Definition, 4-7
Large model, 4-22
Medium model, 4-18
Small model, 4-10
Small-model subsystem, 9-8

Continued lines, in source text listing, 5-7
Control arguments

Case significance, 3-2
Special characters, 3-6

Control register 0 (CR0), 6-26, 6-39
Control registers, 6-37
Control word macros

Numeric coprocessor, 64-7, 6-48
Controls

Affect on compilation, 3-1
Arguments, 2-2, 3-6

Case significance, 2-2
Case significance, 2-2, 3-2
Debugging, 1-3, 1-4
For content of object file, 3-1
For print and preprint files, 3-1
For print file, 3-49, 3-50
For processing source file, 3-1
General, 3-2
Invocation-only, 3-2
Optimizing, 1-4
Precedence, 3-2
Primary, 3-2
Summary, 3-3 thru 3-6
Syntax notation, 3-6
Where to use, 3-2

Converting
Char objects, 3-90
Floating-point to integer, 3-75

CREF86, 1-5
Cross-reference

Information
In print file, 3-109

Listing, 2-41, 5-6, 5-9
Cross-referenced symbol table, Glossary-2
CS register

Compact model, 3-20, 4-14, 4-31
Far function, 4-32
Flat model (iC-386), 3-39, 4-26,4-31
Large model (iC-86/286), 3-46, 4-22,4-31
Medium model (iC-86/286), 3-57, 4-18,

4-31
Near variable, 4-31
Small model, 3-93,4-10,4-31

cstart.asm startup code, 2-28
Current segment, Glossary-2
C-386 compatibility, 3-17, 3-23

Fndex-4

D
D bit, Glossary-2
DATA, 9-10

Compact-model subsystem, 9-11
Small-model subsystem, 9-8

Data
Compact model, 4-14, 4-15
Definition, 4-7
Large model, 4-22
Medium model, 4-18, 4-19
Small model, 4-10, 4-11

Data access, efficiency, 4-1, 4-30
%data assembler macro, 7-9
data pointers, 9-9, 9-12

Compact model, 4-15
Large model, 4-23
Medium model, 4-19
Small model, 4-11

Data register, Glossary-3
Data segment, 3-85, 4-7, Glossary-3

Allocating dynamically, 4-15
Compact model, 3-19, 4-14,4-15
Compact-model subsystem, 9-11
Flat model (iC-386), 3-39
Large model (iC-86/286), 3-45,4-22
Medium model (iC-86/286), 3-56, 4-18,

4-19
Name (iC-386), 3-23, 3-24
Small model, 3-92, 4-10, 4-11
Small-model subsystem, 9-8

Data types, 10-1, Glossary-3
iC-386, 3-55

datasegment control (iC-386), 3-23, 3-24, 9-19
And subsys control, 3-24

DATE, 5-2
DB386, 2-52
Debug

Example, 2-52
Controls, 2-53
Invocation, 2-52
Print file, 2-53

Information, 3-25, 3-103
Registers, 6-37

debug I nodebug control, 3-25, 3-26
Debugger, Glossary-3

Debugging
Information

Compatibility, 1-4
Line control, 3-47
Optimize control, 3-70
Symbol attributes, 3-103
Using print file, 3-16

Declaration syntax, 4-32
Non-standard extension, 4-35
Reading inside-out, 4-35

Default address size, 9-13
Compact model, 4-15
iC-286, 4-4, 4-5
iC-386,4-5, 4-6
Large model, 4-23
Medium model, 4-19
Overriding, 4-29, 4-30

Examples, 4-33
Segmentation models, 4-29
Small model, 4-11

define control, 3-27, 3-28
Example, 2-37, 2-38, 3-28
Vs. #define preprocessor directive, 2-38

%define macro facility, 2-28
Defined preprocessor operator, 10-7
Descriptor, Glossary-3. See Gate descriptor;

General descriptor; Special descriptor
privilege level, Glossary-3

descriptor_table_reg structure, 6-24
Development tool, Glossary-3
%dgroup assembler macro, 7-9
Diagnostic control, 2-4, 2-34, 3-29 thru 3-31,

5-8
Diagnostic messages, 3-54, 3-85, 5-6,11-1

In print file, 3-83
%dint assembler macro, 7-12
Directory name, length, 2-3
disable function, 6-13
Disabling interrupts, 6-15
Dollar sign ($), 9-18

In identifiers
Extend control, 3-33
Subsystems, 3-94

Index-5

DOS
Applications, 1-6

iC-86 compiler controls, 1-7
Numeric coprocessor, 1-7

Errorlevel values, 3-30
Example

Controls, 2-44
Invocation, 2-45
Linking, 2-47
Print file, 2-45

DS register
Compact model, 3-20, 4-14, 4-31
Flat model (iC-386), 3-39, 4-26, 4-31
Large model (iC-86/286), 3-46, 4-22, 4-31
Medium model (iC-86/286), 3-57, 4-18,

4-31
Near variable, 4-31
Small model, 3-93, 4-10, 4-31

E
(E)DI register, used for register variables, 8-7
EFLAGS register, Glossary-3
eject control, 3-32
Embedded application, 1-6

rom control, 3-85
Interrupts, 6-14

enable function, 6-13
Enabling interrupts, 6-15
%endf assembler macro, 7-26
%enter assembler macro, 7-16
Enumeration types, 10-11
Environment variable

as path prefix, 3-42
:include:, 3-87 thru 3-89

%epilog assembler macro, 7-24
Epilog code, 8-2

Interrupt handlers, 3-43
Errors, 5-6, 5-8, Glossary-3

Messages, 3-29,3-30, 11-1,11-8
Errorlevel values, 3-30
ES register

Compact model, 4-14
De-referencing, 4-31
Far variable, 4-32
Large model, 4-22

Medium model, 4-18
Small model, 4-10

Escape codes, 10-6
(E)SI register, used for register variables, 8-7
Example program, 2-31. See also Debug

example; Optimization example;
Preprint example

Controls in include file, 2-31
Included files, 2-31
Source code, 2-32

EXE file, Glossary-3
Exit status, 3-30
Expand-down, Glossary-4
Exports list, subsystems, 3-94
extend control, 4-29, 9-4, 9-13
extend I noextend control, 3-33, 3-34, 10-2
Extended segmentation models, 9-2

Definition, 9-1
Extended syntax, 10-13
Extensions to ANSI C, 3-33
%extern assembler macro, 7-14
%extern_const assembler macro, 7-14
%extern_fnc assembler macro, 7-14
extern keyword, 9-15
extern storage class specifier

Examples with far type qualifier, 4-34
External

Declaration assembler macros, 7-14
Function, definition, 9-16
Linkage, definition, 9-15
References, Glossary-4

Maximum per module, 10-13
Symbols

Definition, 9-15
Type information, 3-26, 3-103

Variable, definition, 9-15

F
Far, Glossary-4
Far address

Compact model, 4-15
Large model, 4-23
Medium model, 4-19
Small model, 4-11

_FAR_CODE_, 5-3

Index-6

%far_code assembler macro, 7-7
_FAR_DATA_, 5-3
%far_data assembler macro, 7-7
Far function, 4-32
far keyword, 9-4, 9-9, 9-12, 9-13

Examples, 9-23
extend control, 3-33
Subsystems, 3-95

Far pointer, 5-3, 6-4
Compact model, 3-20
Converting to near pointer, 6-4
Converting to selector, 6-4
Flat model (iC-386), 3-40
Large model (iC-86/286), 3-46
Medium model (iC-86/286), 3-57
Small model, 3-93

%far_stack assembler macro, 7-7
Far type qualifier, 4-29, 4-31

Effect, 4-29
Examples, 4-33 thru 4-36
When to use, 4-30
Where to use, 4-32

Far variable, 4-32
Fatal error, Gloss ary-4

Messages, 11-1, 11-2
FILE, 5-2
File type, Glossary-4
File use, 2-4

Deleting work files, 2-5
Object file, 2-6
Preprint file, 2-6, 2-8
Print file, 2-6, 2-8

Filename, Glossary-4
Base, Glossary-4
Length, 2-3
Path prefix, 3-42
Extension, Glossary^

Fixed parameter list (FPL), 3-35, 3-36, 3-105,
3-106, 8-2, 10-2

Argument passing, 8-3
Cleaning up the stack, 8-9
Order of arguments on the stack, 8-3
Returning values in registers, 8-6
Saving and restoring registers, 8-6, 8-7

fixedparams control, 3-35 thru 3-38, 8-2

Examples, 3-37
Flags

Assembler macros, 7-7, 7-8
Examples manipulating, 6-10
Macros, 6-8, 6-9

FLAGS register, 6-6, Glossary-1
Flat control (iC-386), 3-39, 3-10, 4-6, 9-7

Efficiency, 4-27
Maximum program size, 4-27
Number of segments, 4-26
Protection, 4-27
Segments, 4-26
Selector register use, 4-26

Flat model (iC-386), 4-1
ram or rom control, 3-86

Floating-point, 10-9
Literals, 4-7
Precisions, 10-1
Unit, 6-1. See also Numeric coprocessor

Special functions, 6-42
Using special libraries, 2-26

%fnc assembler macro, 7-12
%fnc_j>tr assembler macro, 7-12
%fpl assembler macro, 7-7
Form feed in print file, 3-32
FS register (386)

De-referencing, 4-31
Far variable, 4-32

Function
Far, 4-31
Near, 4-31

Function activation records, 4-7
%function assembler macro, 7-19
Function call

Four sections of code for, 8-2
Maximum arguments, 10-13

Function-calling convention, 3-35 thru 3-37,
3-105 thru 3-107

Calling function and called function, 8-3
Passing arguments, 8-3
Returning a value, 8-6
Saving and restoring registers, 8-7
Stack use, 8-9

Index-7

Function definition assembler macros, 7-18
%auto, 7-22
%endf, 7-26
%epilog, 7-24
%function, 7-19
%param, 7-20
%param_flt, 7-21
% pro log, 7-23
%ret, 7-25

Function pointers, 9-9, 9-12
Compact model, 4-15
Large model, 4-23
Medium model, 4-19
Small model, 4-11

Functions
Maximum in argument list, 10-13
Maximum per module, 10-13

FWAIT instruction for 8087 numeric
coprocessor, 3-60

G
Gate, Glossary-4
Gate descriptor, 6-22, 6-32

Access rights macros, 6-33
General

Control, 3-2, Glossary-4
Descriptor

Access rights macros, 6-33
Register, Glossary-5

getaccessrights function, 6-31
getcontrolregister function, 6-39
getdebugregister function, 6-39
getflags function, 6-6
getlocaltable function, 6-25
getmachinestatus function, 6-26
getrealerror function, 6-52
getsegmentlimit function, 6-29, 6-30
gettaskregister function, 6-24
gettestregister function, 6-39
Global descriptor table (GDT), Glossary-5

Register (GDTR), 6-24, 6-25, Glossary-5
Global

Functions, 9-15
Variables, 4-7, 9-15

Granularity (iC-386), 4-5, 4-6

Group, Glossary-5
Group definition

Compact-model subsystem, 9-11
Small-model subsystem, 9-8

Group name (iC-86), 4-3
Compact model, 4-14
Large model, 4-22
Medium model, 4-18
Small model, 4-10

GS register (iC-386)
De-referencing, 4-31
Gar variable, 4-32

H
halt function, 6-5, 6-14
Hardware flags, Glossary-5
Header controls, 7-2 thru 7-6

Controls assembler macro, 7-1 thru 7-6
Syntax, 7-4

Defaults, 7-2
Examples, 7-6
Flag assembler macros, 7-7, 7-8
Operation assembler macros, 7-13
Precedence, 7-3 thru 7-5
Register assembler macros, 7-8
Segment assembler macros, 7-9, 7-11
Type assembler macros, 7-11

Header files, searching for, 3-88
Hexadecimal code, 1-5
Host system, Glossary-5

I
I/O ports, reading and writing, 6-11
i8086.h header file, 6-1, 6-2
%i86_asm assembler macro, 7-7
i86.h header file, 6-1, 6-2
i87_address union type, 6-55
i87_environment structure type, 6-58
I87_REAL_ADDRESS macro, 6-55
i87_real_address structure type, 6-55
i87_state structure type, 6-59
i87_tempreal structure type, 6-59
%il86_instrs assembler macro, 7-7
il86.h header file, 6-1, 6-3
i286.h header file, 6-1, 6-3

Index-8

%i286_asm assembler macro, 7-7
%i386_asm assembler macro, 7-7
i386.h header file, 6-1, 6-3
i387_address union type, 6-57
i387_environment structure type, 6-58
i387_protected_addr structure type, 6-57
i387_real_address structure type, 6-57
i387_state structure type, 6-59
i486 processor, 3-62, 6-1
i486.h header file, 6-1, 6-4
iC-86

Libraries, 2-14
Choosing for linking, 2-16, 2-18, 2-19

iC-86/286/386
Invocation syntax, 2-1
Libraries, 3-13 thru 3-20

iC-286
Libraries, 2-15

Choosing for binding, 2-16, 2-18, 2-20
iC-386

Example running under iRMX HI, 2-25,
2-26

Libraries, 2-16
Identifiers, 10-6, Glossary-5
%if_nsel assembler macro, 7-17
%if_sel assembler macro, 7-17
In-circuit emulator, Glossary-5
inbyte function, 6-11
include control, 2-36, 3-41, 3-42, 3-53, 3-54,

5-2, 5-3, 5-8
Example, 2-38
Search path, 3-88
Vs. #include preprocessor directive, 2-38

include: environment variable, 2-28, 3-87 thru
3-89

Include files, 3-41, 3-53, 5-8, Glossary-5
Nesting, 3-42, 5-8
Preprint file, 3-81
Searching for, 3-88
Source and header files, 3-88
Syntax, 3-88

Include nesting level, 5-7
Index register, Glossary-5
inhword function, 6-11
Initializing variables, 3-85

initrealmathunit function, 6-42
Instruction assembler macros, 7-16
Instruction set, 1-7, 5-3, Glossary-5

86/88 and 186/188, 3-58
Example, 3-59

1386 and i486, 3-62
Seeing effect in printfile, 3-15

%int assembler macro, 7-12
Integers, 10-9
Integral type, converting to selector type, 6-4
Intel

C, VPL calling convention, 8-3
Development tools, experience with, 2-1
Publications, ordering, 1-10

Intel287 numeric coprocessor, 2-18
Internal error messages, 11-31
Interrupt

Control, 3-43,3-44, 6-17, 6-22
Non-maskable, 6-14
Task switch, 6-13

Interrupt descriptor table (IDT) (iC-286/386),
3-44, 6-22, Glossary-5

Register (IDTR), 6-24, 6-25, Glossary-6
Interrupt gate, 6-22

iC-286/386, 3^4
Example, 6-23
Vs. trap gate and task gate, 6-22

Interrupt handler, 3-43, 3-44, 6-22, Glossary-6
Associate with interrupt number, 6-22
86 and 186 processors, 6-17 thru 6-20
286 and higher processors, 6-21

Interrupt numbers, 6-16
Definitions, 6-15
iC-86, 3-43

Interrupts
Causing, 6-15
Disabling, 6-15
Enabling, 6-15
Manipulating, 6-13
Testing, 6-14

invalidatedatacache function, 6-41
invalidatetlbentry function, 6-41
Invocation

Example, 5-6

Index-9

Invocation (continued)
Line, 2-2

Continuing, 2-3
Length, 2-3

Messages, 2-3
Syntax, 2-1, 2-2

invocation-only controls, 3-2
inword function, 6-11
In-circuit emulator, 1-3
iPPS PROM programming software, 1-6
iRMX II, binding libraries, 2-24
iRMX memory models, 4-7

K-L
Keywords, 10-2
Language implementation, 10-1
Large control (iC-86/286), 3-45, 3-46, 4-6,

4-22, 9-7
Large model, 4-1

Default address size, 4-23
Efficiency, 4-23
Maximum program size, 4-23
Number of segments, 4-23
Segment definitions, 4-22
Segments, 4-22
Selector register use, 4-22

Large segmentation memory model, 9-2
large-model subsystems, 9-12

Mixing with small-model subsystems, 9-9
%leave assembler macro, 7-16
LIB86, 1-5
LIB286, 1-5
LIB386, 1-5
Libraries, 1-3, 2-13 thru 2-21

Choosing for iC-86, 2-14, 2-22
Choosing for iC-286, 2-14, 2-15, 2-23
Choosing for iC-386, 2-16, 2-25, 2-26
Far calls, 4-30
Linking or binding, 2-14
Segmentation model, 4-7

_LINE____ 5-2
line I noline control, 3-47, 3-48
LINK86, 1-5, 2-12, 2-13, 4-3

exe control, 1-6
Using libraries, 2-22

Linker, 9-4, 9-15,9-19
Combining segments, 9-7, 9-8, 9-10, 9-11

Linking (iC-86), 2-12,4-3
Compact model, 4-14,4-15
General syntax, 2-13
Large model, 4-22,4-23
Libraries, 4-7
Medium model, 4-18, 4-19
Small model, 4-10,4-11

list I nolist control, 2-41, 3-49, 3-50, 5-8
listexpand I nolistexpand control, 3-51, 3-52,

5-8
listinclude I nolistinclude control, 3-53, 3-54,

5-8
Listing. See Print file

Controls, Glossary-6
Little-endian, 10-8, Glossary-6
LOC86, 1-5, 4-3
Local descriptor table (LDT), 6-32, Glossary-6

Register (LDTR), 6-24, 6-25 Glossary-6
Location counter, 5-9
lockset function, 6-5
long data type (iC-386), 5-3
Long type qualifier (iC-386), 3-55
LONG64, 5-3
long64 I nolong64 control (iC-386), 3-55, 10-4

Aligning structures, 3-11, 3-13
Lowercase, Glossary-6

M
Machine status word (MSW), 6-26, Glossary-6

Macros, 6-27
Macros, 5-2, Glossary-6

Defining with define control, 3-27
Example, 3-28
Example of defining, 2-37
Expansion, 5-8

In printfile, 3-51
Invocation

Maximum arguments, 10-7
Maximum nesting, 10-7

Predefined, 5-2
Preprint file, 3-81
Scope, 3-41

Manual scope, 1-9

Index-10

MAP286, 1-5
MAP386,1-5
Medium control (iC-86/286), 3-56, 3-57, 4-6,

4-18, 9-7
Medium model, 4-1

Compact, 3-19, 3-20
Default address size, 4-19
Efficiency, 4-19
Flat (iC-386), 3-39, 3-40
Large (iC-86/286), 3-45, 3-46
Maximum program size, 4-19
Medium (iC-86/286), 3-56, 3-57
Number of segments, 4-19
Segment definitions, 4-18,4-19
Segments, 4-18
Selector register use, 4-18

Memory model. See also Segmentation
memory model

Extending with subsystems, 3-94, 3-95
ram or rom control, 3-86
Small, 3-92, 3-93

Messages, 2-3, 5-8, 11-1
Diagnostic, 3-29, 3-30
In print file, 2-3, 2-4

mod86 I modl86 control (iC-86), 3-58, 3-59
Example, 3-59

mod287 I modcl87 I nomod287 control, 3-60,
3-61

mod486 I nomod486 control (iC-386), 3-62,
3-63

Module, Glossary-6
modulename control, 3-64, 3-65, 9-13, 9-17,

9-19
And subsys control, 3-65

%movsx assembler macro, 7-17
%movzx assembler macro, 7-17
%movllsr assembler macro, 7-17

Name space, 10-11
Near, Glossary-7
Near address

Compact model, 4-15
Large model, 4-23
Medium model, 4-19

Small model, 4-11
near function, 4-31
near keyword, 9-13

Extend control, 3-33
Near pointer, 5-3

Compact model, 3-20
Converting to far pointer, 6-4
Flat model (iC-386), 3-40
Large model (iC-86/286), 3-46
Medium model (iC-86/286), 3-57
Small model, 3-93

Near type qualifier, 4-29, 4-31
Effect, 4-29
When to use, 4-30
Where to use, 4-32

Near variable, 4-31
non-maskable interrupt, 6-14
noprint control, 2-4
Normal completion, 2-4
Notational conventions, 3-6
notranslate control, 2-4
NPX, 5-3
Numeric coprocessor,2-16, 2-26, 2-54, 3-65,

6-1,Glossary-7
8087, 80C187, or i287, 3-60
87 and i287 condition codes, 6-50
Control word, 6-43, 6-44, 6-46

Macros, 6-47, 6-48
Data pointer, 6-43, 6-44, 6-53
Environment, 6-44, 6-58
Flags, 6-49
i387 and i486 condition codes, 6-51
Instruction pointer, 6-43, 6-44, 6-53
Numeric registers, 6-43

Stack top, 6-49
Registers, 6-43, 6-44
Rounding, 3-75
Special functions, 6-42
State, 6-44, 6-58
Status word, 6-43, 6-44, 6-48, 6-49

Macros, 6-52, 6-53
Tag word, 6-43, 6-44

Macros, 6-45

Index-11

Numerics libraries, 2-13 thru 2-21, 2-26
For iC-286, 2-24
For iC-386, 2-26

o
Object, Glossary-7
Object code, Glossary-7

Components, 4-7
Object file, 2-6, Glossary-7

Changing defaults, 2-6
Configuration, 2-6
Default directory, 2-6
Default name, 2-6
Information content, 2-6
Name, 3-67
Overwriting, 2-6
Pseudo-assembly listing, 3-67

Object-file content controls, Glossary-7
Object module, Glossary-7

Name, 3-64
Size, 5-10
Format (OMF), 1-4

object I noobject control, 2-6, 2-34, 2-36, 2-41,
3-66, 3-67

Offset, Glossary-7
Offset-only address, 10-2

Format, 9-9, 9-12
OH86, 1-5, 1-6
OH386, 1-5, 1-6
Operation assembler macros, 7-13

Classes, 7-13
Conditional assembler macros, 7-17
External declaration assembler macros,

7-14
Function definition assembler macros,

7-18
Instruction assembler macros, 7-16

Optimization, 1^4
At different levels, 2-54
Converting floating-point to integer, 3-75
Eliminating checking for intermediate

references, 3-74
Eliminating common subexpressions, 3-72
Eliminating superfluous branches, 3-73
Folding of constant expressions, 3-72

Levels, 3-70, 3-71
Pointer indirection, 3-74
Reducing debug information, 3-26, 3-47,

3-103
Reducing operator strength, 3-72
Reducing the size of object module, 3-70,

3-72
Removing unreachable code, 3-73
Reversing branch conditions, 3-74
Re-using duplicate code, 3-73
Run-time performance, 6-1
Seeing effect in print file, 3-15
Structure aligning, 3-8
Using FPL calling convention, 3-36
Using short forms of jumps and moves,

3-73
Optimization example, 2-56

Level 0, 2-56,2-58
Pseudo-assembly code, 2-58

Level 1,2-58, 2-59
Pseudo-assembly code, 2-59

Level 2, 2-60, 2-61
Pseudo-assembly code, 2-60, 2-61

Level 3, 2-61, 2-62
Pseudo-assembly code, 2-62

Source code, 2-56
.OPTIMIZE., 5-3
optimize control, 2-54, 3-70, 3-71 thru 3-75,

5-3, 10-13
Order of arguments on the stack. See Fixed

parameter list; Variable parameter list
outbyte function, 6-12
outhword function, 6-12
Output listing, Glossary-7
outword function, 6-12
Overlay name (iC-86), 4-3
Overlays, 1-5
OVL286, 1-5

P
Page break in print file, 3-32
Page header, 5-5, 5-6
pagelength control, 2-41, 3-76, 3-77

Example, 2-38

Index-12

pagewidtb control, 2-41, 3-78, 3-79
Example, 2-38

%param assembler macro, 7-20
%param_flt assembler macro, 7-21
pass-by-reference arguments, 8-3
pass-by-value arguments, 8-3
path DOS command, 2-2
Pathname, Glossary-7

For include file, 3-42, 3-87
Pointers, 10-9

Compact model, 3-20
Flat model (iC-386), 340
Indirection

Unsafe optimization, 3-74
Large model (iC-86/286), 346
Medium model (iC-86/286), 3-57
Registers, Glossary-7
Seeing size in print file, 3-16
Small model, 3-93

%popa assembler macro, 7-17
Precedence of controls, 3-2
Preprint example, 2-34

Command'file, 2-34
Conditional compilation, 2-34, 2-37
Controls, 2-35
Including files, 2-34, 2-38
Invocation, 2-34
Log file, 2-36
Macros, 2-37
Preprint file, 2-37
Primary source file, 2-37, 2-38

Preprint file, 2-6, 2-8, Glossary-7
Contents of, 5-1
Changing defaults, 2-8
Default directory, 2-8
Default name, 2-8
Example, 2-37
Name, 3-80
Overwriting, 2-8
Usefulness, 2-8

preprint I nopreprint control, 2-8, 2-36, 3-80,
3-81,5-1

Preprocessing, 2-6, 2-8, 2-36, 3-80, 3-81,
3-102,5-1

Conditional compilation directives, 3-21

Diagnostic messages, 3-31
Macro expansion, 3-51
Directives, 54

Preprocessor directives, 5-2, 10-6
Primary

Controls, 3-2, Glossary-8
Source file, 2-2, 2-8, 341, 3-80, 3-82,

3-87, Glossary-8
Example, 2-37

Source text, Glossary-8
Print file, 24, 2-6, 2-8, 3-90, 3-95, 3-106, 5-7,

11-1, Glossary-8
Assembly code, 3-15
Changing defaults, 2-8
Characters per line, 3-78
Characters per tab stop, 3-98
Contents of, 5-1
Controls that affect contents, 5-5
Cross-reference, 241

Listing, 3-109
Default directory, 2-8
Default name, 2-8
Example, 241, 243, 249 thru 2-51, 2-53

Controls, 248
Form feed, 3-32
Lines per page, 3-76
Messages, 3-83
Name, 3-82
Overwriting, 2-8
Page heading, 3-76
Page numbers, 5-6
Pseudo-assembly code, 2-39
Source listing, 349, 3-50

Conditional code, 3-21
Include files, 341, 3-53
Macro expansion, 3-51

Symbol table, 241
Symbols listing, 3-96
Title in heading, 3-100
Uncompiled conditional code, 249

print I noprint control, 2-8, 2-34, 2-36, 241,
3-82 thru 3-84, 5-1

Example, 2-38

Index-13

Privilege level, 4-30, Glossary-8
iC-286, 4-4, 4-5
iC-386, 4-5, 4-6

Privileged instructions, Glossary-8
Processor

I/O ports, reading and writing, 6-11
Program, Glossary-8

Efficiency, 9-6
Programming for ROM, 1-5, 1-6
%prolog assembler macro, 7-23
Prolog code, 8-2

Interrupt handlers, 3-43
Protected mode, Glossary-8

Built-in functions, 6-23
Interrupt handlers, 6-21

Protection, 4-27, 9-1, 9-6, Glossary-8
Levels, 9-2

Protection-enable, bit (PE), Glossary-9
Pseudo-assembly

Code, 2-39
Example, 2-58 thru 2-62

Language listing, 3-15
Listing, 5-6, 5-9

%ptr assembler macro, 7-12
Public

Function, definition, 9-15
Symbols

Definition, 9-15
Name space, 9-18
Type information, 3-26, 3-103

Variable, definition, 9-15
Punctuation in control syntax, 3-6
%pusha assembler macro, 7-16
%pushf assembler macro, 7-17

Q
Qualifier, Glossary-9
Quotation marks around control arguments,

3-2, 3-6

R
ram control, 2-16, 2-18, 4-7, 5-3, 9-8, 9-10

Compact model, 4-14, 4-15
Flat model (iC-386), 4-26
Large model, 4-22, 4-23

Medium model, 4-18, 4-19
Small model, 4-10,4-11

RAM disk, 2-5
ram I rom control, 3-85, 3-86

Flat model (iC-386), 3-40
Reading and writing I/O ports, 6-11
Real mode, Glossary-9
Real-mode interrupt handlers, 6-17 thru 6-20
Register

Assembler macros, 7-8
Storage class, 8-6
Variables, 10-11

%reg .size assembler macro, 7-12
Related pubheations, 1-10, 1-11, 1-12
Relative address, Glossary-9
Relocatable object module, 1-5
Remarks, 3-29, 3-30, 5-6, 5-8, 11-1, 11-29
Requested privilege level (RPL), 6-36
Reserved words. See Keywords
restoreglobaltable function, 6-25
restoreinterrupttable function, 6-25
restorerealstatus function, 6-60
%ret assembler macro, 7-25
%retoff assembler macro, 7-9
%retsel assembler macro, 7-9
ROM, 5-3

Predefined macro, 3-86
Flat model (iC-386), 3-40

rom control, 2-16, 2-18,4-7, 5-3, 9-8, 9-10
Compact model, 4-14,4-15
Flat model (iC-386), 4-26
Large model, 4-22,4-23
Medium model, 4-18, 4-19
Small model, 4-10,4-11

Run-time libraries, 1-3

saveglobaltable function, 6-24
saveintemipttable function, 6-25
saverealstatus function, 6-60
SBITF1ELD macro, 6-59
Scalar data type, 10-1,10-2, 10-3, 10-4,

Glossary-9

Index-14

Search path, Glossary-9
Include files, 3-88, 3-89
Subsystems, 3-94

searchinclude I nosearchinclude control, 3-42,
3-87 thru 3-89

Example, 2-38
Segment, Glossary-9

Address in memory, 4-3
Attributes, 4-2
Binding iC-286, 4-4
Binding iC-386,4-5
Combining, 4-26
Compact model, 4-14, 4-15
Flat model (386), 4-26
iC-86

Characteristics, 4-3
Size, 4-3

iC-286 characteristics, 4-4, 4-5
iC-386 characteristics, 4-5, 4-6
Large model, 4-22
Linking iC-86, 4-3
Linking or binding, 4-2, 4-10,4-14, 4-18,

4-22
Medium model, 4-18, 4-19
Register, Glossary-9
Small model, 4-10, 4-11

Segment assembler macros, 7-9
Example, 7-11

Segment descriptor, 6-28, 6-29, 6-31
Access rights byte, 6-28
Access rights macros, 6-33, 6-34

Segmentation. See Memory model
Definition, 9-1
Controls, 2-16, 9-7
Memory models, 9-7

Choosing for iC-86/286, 4-2
Efficiency, 4-1
Extending with subsystems, 4-6
Implementation, 4-2
Number of segments, 4-6

Models, 2-16, Glossary-9
Protection mechanisms, 9-1, 9-2

segmentreadable function, 6-30
Segments

Attributes, 9-7

Compact-model subsystem, 9-11
Name, 9-7, 9-10
Small-model subsystem, 9-8

segment-selector-and-offset address, 10-2
Format, 9-9

segment-selector-and-offset format, 9-12
segmentwritable function, 6-31
segsize linker or binder control, 9-14
Selector, 6-36, Glossary-9
Selector register

Compact model, 3-20, 4-14
Flat model (iC-386), 3-40, 4-26
Large model (iC-86/286), 3-46, 4-22
Medium model (iC-86/286), 3-57,4-18
Segmentation models, 4-31
Small model, 3-93, 4-10

Selector type, 6-4
Converting to far pointer, 6-4
Converting to integral type, 6-4

separately-compiled code, Glossary-10
setcontrolregister function, 6-39
setdebugregister function, 6-39
%set_ds assembler macro, 7-7
setflags function, 6-6
setinterrupt function, 6-14, 6-17
setlocaltable function, 6-25
setmachinestatus function, 6-26
setrealmode function, 6-46
settaskregister function, 6-24
settestregister function, 6-39
Setup code, 8-2
%sgroup assembler macro, 7-9
Sign-on/off messages, 2-3
signed char data type, 3-90
signedchar I nosignedchar control, 3-90, 3-91,

10-8
Slash in filenames, 34-2, 3-89
Small control, 3-92, 3-93,4-6, 4-10, 9-7
Small model, 4-1

Default address size, 4-11
Efficiency, 4-11
Maximum program size, 4-11
Number of segments, 4-11
Segment definitions, 4-10, 4-11

Index-15

Small model (continued)
Segments, 4-10
Selector register use, 4-10

Small segmentation memory model, 9-1, 9-2
Small-model RAM subsystems, far keyword,

9-9
Small-model subsystems, 9^4

Data protection, 9-10
Example, 9-3
Limitations, 9-9
Main() function, 9-5,9-9
Mixing with other model subsystems, 9-9
Segment definitions, 9-7, 9-8
Selector registers, 9-5, 9-7, 9-9

Source directory, Glossary-10
Source text, Glossary-10

Filename, 5-2
Line number, 5-2
Listing, 5-5, 5-7, 5-8

Source-processing controls, Glossary-10
Special characters in control arguments, 3-6
Special descriptor, 6-32

Access rights macros, 6-33, 6-35
SS register

Compact model, 3-20, 4-14, 4-31
Flat model (iC-386), 3-39, 4-26, 4-31
Large model (iC-86/286), 3-46, 4-22, 4-31
Medium model (iC-86/286), 3-57, 4-18,

4-31
Small model, 3-93, 4-10, 4-31

STACK, compact-model subsystem, 9-11
Stack

Compact model, 4-14, 4-15
Definition, 4-7
iC-86

Medium model, 4-18
Small model, 4-10

Large model, 4-22
%stack assembler macro, 7-9
Stack segment, 4-7, Glossary-10

Compact model, 3-19, 4-14, 4-15
Compact-model subsystem, 9-11
Flat model (iC-386), 3-39
Large model (iC-86/286), 3-45, 4-22

Medium model (iC-86/286), 3-56, 4-18,
4-19

Small model, 3-92, 4-10, 4-11
Small-model subsystem, 9-8

Startup code, 2-28
Customizing, 2-28

86 DOS example, 2-30
86 embedded example, 2-30
286 embedded example, 2-30
386 embedded RAM example, 2-30
386 iRMX EQ example, 2-30

Header controls, 2-28,2-29
Defaults, 2-29

Target environment, 2-29
Tasks, 2-28

Statement numbers, 5-7
Statements, maximum nesting level, 10-13
static keyword, 9-15
Static variables, 3-85, 4-7

Flat model (iC-386), 4-26
Status word macros, numeric coprocessor,

6-52, 6-53
STDC, 5-2
Storage-class specifier, 10-2
String literals, preprocessing, 10-6
Structure aligning, 3-7, 3-8, 3-9

By structure tag, 3-8
With typedef, 3-10

Structures, 10-5, 10-11
Passing and returning. See Fixed

parameter list; Variable parameter
list

subsys control, 3-94, 3-95, 9-1, 9-2, 9-7, 9-10,
9-13, 9-19

Subsystem definitions, 9-13
Constants, 9-15, 9-16
Examples, 9-20, 9-21, 9-22, 9-23
exports keyword, 9-17
Functions and data, 9-15, 9-16
has keyword, 9-17
Memory model, 9-15, 9-16
Modules, 9-15, 9-16, 9-17
Syntax, 9-14, 9-16

Continuation lines, 9-18
Sharing with PL/M, 9-19

Index-16

Subsystems, 9-1, 9-2
Case distinction in identifiers, 3-94
Closed, 9-8, 9-10,9-14, 9-17, 9-19
Code segment, 9-7, 9-10
Compact and large keyword, 9-16
Compiling, 9-2
Consistent definitions, 9-19
-const in code-, 9-7, 9-9, 9-10, 9-16
-const in data-, 9-8, 9-9, 9-10, 9-16
Constants, 9-2
Data in separate segment, 9-5
Data segment, 9-10
Data-stack segment, 9-8, 9-14
Definition, 4-6, 9-1
Efficiency, 9-4, 9-12
Error messages, 11 -30
Example, 9-2
Exported functions, 9-18

Characteristics, 9-18
Exported symbols, name space, 9-18
Exports list, 3-94, 9-17, 9-18
far calls, 4-30, 9-4, 9-6
Far data references, 9-4
far keyword, 3-95, 9-18
Has list, 9-14, 9-18
Has specification, 9-17
Identifier scope, 3-95
Implicit declaration modification, 9-4, 9-18
main() function, 9-5
Module name

Name space, 9-18
Near calls, 9-7
Open, 9-14, 9-17, 9-19
PL/M controls, 3-94
RAM and ROM submodels, 9-2
Search path, 3-94
small keyword, 9-16
Small-model

Code segment, 9-4
Data-stack segment, 9-4

Stack, 9-9
Requirement, 9-14

Subsystem-id, 9-8, 9-10, 9-14, 9-16
Name space, 9-18

switch statement, maximum case values, 10-13

symbol table, 10-11, 10-14, Glossary-10
Cross-reference, 2-41

Symbolic debugger, 1-3, 2-52, 3-25,
Glossary-10

Symbolic information, Glossary-10
Symbols

In print file, 3-96
Listing, 5-6, 5-9

symbols I nosymbols control, 2-41, 3-96, 3-97,
5-9

Syntax conventions, 3-6
System

Address registers, 6-24
Builder. See BLD286; BLD386
Configuration, 2-4
Data structures, Glossary-10

T
tabwidth control, 2-41, 3-98, 3-99

Example, 2-38
Tag word macros

Numeric coprocessor, 6-45
Target

Environments, 1-7
System, Glossary-10

Task, Glossary-10
Gate, 6-22

Vs. interrupt gate and trap gate, 6-22
Register (TR), 6-24
State segment (TSS), 6-32
Switch in nested interrupt task, 6-13

tempreal_t typedef, 6-59
Test registers, 6-37
_TIME____5-2
Title control, 3-100, 3-101

Example, 2-38
Trademarks, 1-12
translate I notranslate control, 2-8, 3-102
Trap gate, 6-22

Vs. interrupt gate and task gate, 6-22
Trigraphs, 10-6
Type

Assembler macros, 7-11
Checking, 3-26,3-103
Interpreting, 4-33

Index-17

Type (continued)
Near and far keywords, 4-29, 9-13
Qualifier, 10-2
Table, 10-14

type I notype control, 3-103, 3-104
and debug control, 3-26

typedef
Aligning structures, 3-10
Information, 1-3

u
UDI2DOS (iC-86), 1-6
Union, 10-5, 10-11
unsigned char data type, 3-90
Uppercase, Gloss ary-10
util.ah assembler macros, examples, 7-27
util.ah header file, 2-28, 7-1

Assembling with, 7-4
Controls assembler macro, 7-1 thru 7-6
Header controls, 7-2 thru 7-6
Including in assembly text, 7-1

Syntax, 7-4
Macro groups, 7-1

Utilities, 1-5

V
Variable parameter list (VPL), 3-35, 3-36,

3-105, 3-106, 8-2
Argument passing, 8-5
Cleaning up the stack, 8-9
Order of arguments on the stack, 8-3
Returning values in registers, 8-6
Saving and restoring registers, 8-6, 8-7

Variables
Aliasing, 3-74
Far, 4-31
Near, 4-31
Static, 3-85

varparams control, 3-105, 3-106,3-107, 3-108,
8-2

Examples, 3-38, 3-107, 3-108
Version of compiler, 1-9
void * type, 6-4
void data type, 10-1, 10-5
void type qualifier

Interrupt handlers, 3-43
Volatile attribute specifier, 10-12

w
waitforinterrupt function, 6-14
Warnings, 3-29, 3-30, 5-6, 5-8, 11-1, 11-22,

Glossary-10
wbinvalidatedatacache function, 6-41
Wide characters, 10-6
Word, Glossary-11

Size, 10-8
:work: environment variable, 2-5
Work files, 2-5, Glossary-11

X
xref I noxref control, 2-41, 3-109, 5-9

Index-18

	Contents

	Installation

	Glossary

	Index

	Figures

	Tables

	Getting Started

	Installing the Software

	Learning About and Using the iC-86/286/386 Compiler

	Exploring Advanced Features

	Finding Reference Information

	Contents

	Overview

	Overview

	1.1 Software Development With iC-86/286/386

	1.1.1 Using the Run-time Libraries

	1.1.2 Debugging

	1.1.3 Optimizing

	1.1.4 Using the Utilities

	1.1.5 Programming for Embedded ROM Systems

	1.1.6 Running iC-86 Code Under DOS

	1.2	Compiler Capabilities

	1.3	Compatibility With Other Development Tools

	1.4	About This Manual

	1.4.1 Related Publications

	1.5	Trademarks

	Contents

	Compiling and Linking or Binding on DOS

	Compiling and Linking or Binding on DOS

	2.1 Compiler Invocation on DOS

	2.1.1 Invocation Syntax

	2.1.2 Sign-on and Sign-off Messages

	2.1.3 Files That the Compiler Uses

	2.1.3.1 Work Files

	2.1.3.2 Object File

	2.1.3.3 Listing Files

	2.2 DOS Batch and Command Files

	2.2.1 Using DOS Batch Files

	2.2.2 Using DOS Command Files

	2.3 Linking or Binding iC-86/286/386 Object Files

	2.3.1 Choosing the Files to Link or Bind

	2.3.1.1 LINK86 Example

	2.3.1.2 BND286 Example

	2.3.1.3 BND386 Example

	2.3.2 Customizing the Startup Code

	2.4 Compiling an Example Different Ways

	2.4.1 Example Files

	2.4.2 Preprinting the Example Using iC-86

	2.4.2.1 Macros and Conditional Compilation

	2.4.2.2 Include Files

	2.4.3 Creating 186 Code and a Custom Print File Using iC-86

	2.4.5 Examining Included and Conditional Code Using iC-286

	2.4.6 Creating Debug Information Using iC-386

	2.5.1 Results at Optimization Level 0

	2.5.2 Results at Optimization Level 1

	2.5.3 Results at Optimization Level 2

	2.5.4 Results at Optimization Level 3

	Contents

	Compiler Controls

	Compiler Controls

	3.1	How Controls Affect the Compilation

	3.2	Where to Use Controls

	3.3	Alphabetical Reference of Controls

	align I noalign

	Syntax

	Abbreviation

	Default

	Discussion

	Examples

	Cross-references

	code I nocode

	Syntax

	Abbreviation

	Default

	Discussion

	Cross-references

	Syntax

	Abbreviation

	Default

	Discussion

	NOTE

	Cross-references

	compact

	Syntax

	Abbreviation

	Default

	Discussion

	Cross-references

	cond I nocond

	Syntax

	Abbreviation

	Default

	Discussion

	Cross-references

	Syntax

	Abbreviation

	Default

	Discussion

	NOTE

	Cross-references

	debug I nodebug

	Syntax

	Abbreviation

	Default

	Discussion

	define

	Syntax

	Abbreviation

	Default

	Discussion

	Example

	diagnostic

	Syntax

	Abbreviation

	Default

	Discussion

	Cross-references

	eject

	Syntax

	Abbreviation

	Discussion

	Cross-references

	extend I noextend

	Syntax

	Abbreviation

	Default

	Discussion

	Cross-references

	fixedparams

	Syntax

	Abbreviation

	Default

	Discussion

	NOTE

	Examples

	Cross-references

	flat

	Syntax

	Abbreviation

	Default

	Discussion

	Cross-references

	include

	Syntax

	Abbreviation

	Discussion

	Cross-references

	interrupt

	Abbreviation

	Discussion

	Cross-references

	large

	Syntax

	Abbreviation

	Default

	Discussion

	Cross-references

	line I noline

	Syntax

	Abbreviation

	Default

	Discussion

	Cross-references

	list I nolist

	Syntax

	Abbreviation

	Default

	Discussion

	Cross-references

	listexpand I nolistexpand

	Syntax

	Abbreviation

	Default

	Discussion

	Cross-references

	listinclude I nolistinclude

	Syntax

	Abbreviation

	Default

	Discussion

	Cross-references

	Iong64 I nolong64

	Syntax

	Abbreviation

	Default

	Discussion

	Cross-references

	medium

	Syntax

	Abbreviation

	Default

	Discussion

	Cross-references

	mod86 I modi 86

	Syntax

	Abbreviation

	Default

	Discussion

	NOTE

	Example

	Cross-references

	mod287 I model 87 I nomod287

	Syntax

	Abbreviation

	Default

	Discussion

	Cross-references

	Syntax

	Abbreviation

	Default

	Discussion

	NOTES

	Cross-references

	modulename

	Syntax

	Abbreviation

	Default

	Discussion

	NOTE

	Cross-references

	object I noobject

	Syntax

	Abbreviation

	Default

	Discussion

	Cross-references

	optimize

	Syntax

	Abbreviation

	Default

	Discussion

	Folding of Constant Expressions at All Levels

	Reducing Operator Strength at All Levels

	Eliminating Common Subexpressions at Levels 1,2, and 3

	Optimizing the Machine Code of Short Jumps and Moves at Levels 2 and 3

	Eliminating Superfluous Branches at Levels 2 and 3

	Reusing Duplicate Code at Levels 2 and 3

	Removing Unreachable Code at Levels 2 and 3

	Reversing Branch Conditions at Levels 2 and 3

	Optimizing Indeterminate Storage Operations at Level 3

	Using the Numerics Coprocessor for Floating-point-to-integer Conversions at Level 3

	Cross-references

	pagelength

	Syntax

	Abbreviation

	Default

	Discussion

	Cross-references

	Syntax

	Abbreviation

	Default

	Discussion

	Cross-references

	preprint I nopreprint

	Syntax

	Abbreviation

	Default

	Discussion

	Cross-references

	print I noprint

	Syntax

	Abbreviation

	Default

	Discussion

	Cross-references

	ram I rom

	Syntax

	Abbreviation

	Default

	Discussion

	Cross-references

	searchinclude I nosearchinclude

	Syntax

	Abbreviation

	Default

	Discussion

	Cross-references

	signedchar I nosignedchar

	Syntax

	Abbreviation

	Default

	Discussion

	Cross-referen ces

	small

	Syntax

	Abbreviation

	Default

	Discussion

	Cross-references

	subsys

	Syntax

	Abbreviation

	Default

	Discussion

	NOTES

	Cross-references

	symbols I nosymbols

	Syntax

	Abbreviation

	Default

	Discussion

	Cross-references

	tabwidth

	Syntax

	Abbreviation

	Default

	Discussion

	Cross-references

	title

	Syntax

	Abbreviation

	Default

	Discussion

	Cross-references

	translate I notranslate

	Syntax

	Abbreviation

	Default

	Discussion

	Cross-references

	Syntax

	Default

	Abbreviation

	Discussion

	Cross-references

	varparams

	Syntax

	Abbreviation

	Default

	Discussion

	NOTE

	Examples

	Cross-references

	xref I noxref

	Syntax

	Abbreviation

	Default

	Discussion

	Cross-references

	Contents

	Segmentation Memory Models

	Segmentation Memory Models

	4.1	How the Linker and Binder Combine Segments

	4.1.1 Combining iC-86 Segments With LINK86

	4.1.2 Combining iC-286 Segments With BND286

	4.1.3 Combining iC-386 Segments With BND386

	4.1.4 How Subsystems Extend Segmentation

	4.2	Segmentation Memory Models

	NOTE

	4.2.1 Small Models

	4.2.3 Medium Models (iC-86 and iC-286)

	NOTE

	4.2.4 Large Models (iC-86 and iC-286)

	NOTE

	4.2.5 Flat Model (iC-386 Only)

	4.3 Using near and far

	4.3.1 Addressing Under the Segmentation Models

	4.3.2 Using far and near in Declarations

	4.3.3 Examples Using far

	Contents

	Listing Files

	Listing Files

	5.1 Preprint File

	5.1.1 Macros

	5.1.2 Include Files

	5.1.3 Conditional Compilation

	5.1.4 Propagated Directives

	5.2 Print File

	5.2.1 Print File Contents

	5.2.3 Compilation Heading

	5.2.4 Source Text Listing

	5.2.5 Remarks, Warnings, and Errors

	5.2.6 Pseudo-assembly Listing

	5.2.7 Symbol Table and Cross-reference

	5.2.8 Compilation Summary

	Contents

	Processor-specific Facilities

	Processor-specific Facilities

	6.1	Making Selectors, Far Pointers, and Near Pointers

	6.2	Using Special Control Functions

	6.3	Examining and Modifying the FLAGS Register

	NOTE

	6	.4 Examining and Modifying the Input/Output Ports

	NOTE

	6	.5 Enabling and Causing Interrupts

	6.5.1 Hints on Manipulating Interrupts

	6.5.2 Interrupt Handlers for the 86 and 186 Processors

	6.5.3 Interrupt Handlers for 286 and Higher Processors

	6.6 Protected Mode Features of 286 and Higher Processors

	6.6.1 Manipulating System Address Registers

	6.6.2 Manipulating the Machine Status Word

	6.6.3 Accessing Descriptor Information

	6.6.4 Adjusting Requested Privilege Level

	6.7	Manipulating the Control, Test, and Debug Registers of Intel386™ and Intel486™ Processors

	6.8	Managing the Features of the Intel486™ Processor

	6.9	Manipulating the Numeric Coprocessor

	6.9.1 Tag Word

	6.9.2 Control Word

	6.9.3 Status Word

	6.9.4 Data Pointer and Instruction Pointer

	6.9.4.1 8087 or i287™ Numeric Coprocessor Data Pointer and Instruction Pointer

	6.9.4.2 Intel387™ Numeric Coprocessor and Intel486™ FPU Data Pointer and Instruction Pointer

	6.9.5 Saving and Restoring the Numeric Coprocessor State

	Contents

	Assembler Header File

	Assembler Header File

	7.1 Macro Selection

	7.2 Flag Macros

	7.3 Register Macros

	7.4 Segment Macros

	7.6 Operation Macros

	7.6.1 External Declaration Macros

	7.6.2 Instruction Macros

	7.6.3 Conditional Macros

	7.6.4 Function Definition Macros

	%function

	Syntax

	Discussion

	%param

	Syntax

	Discussion

	%param_flt

	Syntax

	Discussion

	%auto

	Syntax

	Discussion

	%prolog

	Syntax

	Discussion

	Syntax

	Discussion

	%ret

	Syntax

	Discussion

	%endf

	Syntax

	Discussion

	7.6.5 Examples Using Assembler Macros

	Contents

	Function-calling Conventions

	Function-calling Conventions

	NOTE

	8.1 Passing Arguments

	8.1.1 FPL Argument Passing

	NOTE

	8.1.2 VPL Argument Passing

	NOTE

	8.2	Returning a Value

	8.3	Saving and Restoring Registers

	8.4	Cleaning Up the Stack

	Contents

	Subsystems

	Subsystems

	9.1 Dividing a Program into Subsystems

	NOTES

	9.2 Segment Combination in Subsystems

	9.2.1 Small-model Subsystems

	9.2.2 Compact-model Subsystems

	9.2.3 Large-model Subsystems (iC-86 and iC-286 Only)

	9.2.4 Efficient Data and Code References

	9.3 Creating Subsystem Definitions

	NOTE

	9.3.1 Open and Closed Subsystems

	9.3.2 Syntax

	NOTES

	9.4 Example Definitions

	9.4.1 Creating Three Small-model RAM Subsystems

	9.4.2 Two Small-model ROM Subsystems and One Compact-model ROM Subsystem

	9.4.3 Example Using an Open Subsystem

	10

	Language Implementation

	Language Implementation

	10

	10.1	Data Types

	10.1.1 Scalar Types

	10.1.2 Aggregate Types

	10.1.3 Void Type

	10.2	iC-86/286/386 Support for ANSI C Features

	10.2.1 Lexical Elements and Identifiers

	10.2.2 Preprocessing

	10.3	Implementation-dependent iC-86/286/386 Features

	10.3.1 Characters

	10.3.2 Integers

	10.3.3 Floating-point Numbers

	10.3.4 Arrays and Pointers

	10.3.5 Register Variables

	10.3.6 Structures, Unions, Enumerations, and Bit Fields

	10.3.7 Declarators and Qualifiers

	10.3.8 Statements, Expressions, and References

	10.3.9 Virtual Symbol Table

	Contents

	Messages

	11.1	Fatal Error Messages

	11.2	Error Messages

	11.3	Warnings

	11.4	Remarks

	11.5	Subsystem Diagnostics

	11.6	Internal Error Messages

	Installation

	Hardware

	Installation on DOS Systems

	NOTE

	Software

	Glossary

	Index

	c

	o

