|nter " APPLICATION AP-274
NOTE

May 1986

Ethernet/Cheapernet LAN Design

Kiyoshi Nishide
APPLICATIONS ENGINEER

© Intel Corporation, 1986 Order Number: 292010-001

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors
which may appear in this document nor does it make a commitment to update the information contained
herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Contact your local sales office to obtain the latest specifications before placing your order.
The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

Above, BITBUS, COMMputer, CREDIT, Data Pipeline, GENIUS, i, 5, ICE,
iCEL, iCS, iDBP, iDIS, I2ICE, iLBX, im, iMDDX, iMMX, Insite, Intel, intgl,
intglBOS, Intelevision, intgligent Identifier, intgligent Programming,
Intellec, Intellink, iOSP, iPDS, iPSC, iRMX, iSBC, iSBX, iSDM, iSXM,
KEPROM, Library Manager, MAP-NET, MCS, Megachassis,
MICROMAINFRAME, MULTIBUS, MULTICHANNEL, MULTIMODULE,
ONCE, OpenNET, PC-BUBBLE, Plug-A-Bubble, PROMPT, Promware,
QUEST, QueX, Quick-Pulse Programming Ripplemode, RMX/80, RUPI,
Seamless, SLD, UPI, and VLSIiCEL, and the combination of ICE, iCS,
iRMX, iSBC, iSBX, iSXM, MCS, or UPI and a numerical suffix 4-SITE.

Ethernet is a trademark of Xerox.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered
trademark of Mohawk Data Sciences Corporation.

*MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:
Intel Literature Inquiries
SC6-58

P.O. Box 58065
Santa Clara, CA 95052-8065

ETHERNET/CHEAPERNET
LAN DESIGN

CONTENTS PAGE

PREFACEccoiiiiiiiiiinn, 1
1.0 INTRODUCTION 1
2.0 ETHERNET/CHEAPERNET

OVERVIEWcciiiiinn... 1
21CSMA/CDcovvvieeeiiaans PO §
2.2 Ethernet/Cheapernet e 2
3.0 LANHIB HARDWARE

DESCRIPTION 6
3.1 82586 (Min Mode) Interface to the

80186ovvviiiiiiiiiiiiiiiiaan, 6
3.2 82586 Address Latch Interface 6
3.3 80186 Address Latch Interface 7
3.4 82586 Memory Interface 7
3.5 80186 Memory Interface 10
36MemoryMapoeiialLl 10
3.7801861/Olnterface 10
3.7.1 82586 Channel Attention

Generationcoill 10
3.7.2 82586 Hardware Reset Port 10
3.7.382530 Interface 10
3.7.4 82501 Loopback Configuration

(o] o 10

3.7.5 On-Board Individual Address Port 10
3.8 82586 Ready Signal Generation 10
3.982501 Circuitscoovveviennnn.. 11
3.1082502 Circuitscoovviennnn.. 11
3.10.1 Isolation and Power

Requirementsl 11
3.10.2 Other Passive and Active Devices

forthe82502 11

3.10.3 Layout Consideration for the 82502
Circuitsccoiiiiiiii 12

CONTENTS PAGE

4.0 DEMONSTRATION SOFTWARE 13
41 Programming PROMs to Run the
TSMSProgramcocovennen. 13
4.2 Capabilities and Limits of the TSMS
Programcoooiiiiiiiiiiiiiian 13
4.3 Example Executions of the TSMS
o Program ... 15
4.3.1 Example 1: External Loopback
Executioncoooiiiiiiiiiiiint, 15
4.3.2 Example 2: Frame Reception in
Promiscuous Mode 15
4.3.3 Example 3: 35.7% Network Traffic
Load Generation 15
5.0 IN CASE OF DIFFICULTY 24
5.1 Troubleshooting 80186/82586
System ...t 24
5.2 Troubleshooting 82501/82502
CirCUItS ...ovveri i 24
APPENDIX A
LANHIB Schematics and Parts List A-1
APPENDIX B
Software Listings—TSMS Program and
LANHIB Initialization Routine B-1
APPENDIX C

The 82530 SCC - 80186 Interface Ap
Brief ..t C-1

intel

AP-274

PREFACE

Intel’s three VLSI chip set, the 82586, 82501, and
82502, is a complete solution for IEEE 802.3 10M bps
LAN standards—10BASES5 (Ethernet) and 10BASE2
(Cheapernet). The 82586 is an intelligent peripheral
which completely manages the processes of transmit-
ting and receiving frames over a network under the
CSMS/CD protocol. The 82586 with its on-chip four
DMA channels offloads the host CPU of the tasks re-
lated to managing communication activities. The chip,

for example, does not depend on the host CPU for time -

critical functions, such as transmissions/retransmis-
sions and receptions of frames. The 82501 is a 10 MHz
serial interface chip specially designed for the 82586.
The primary function of the 82501 is to perform Man-
chester encoding/decoding, provide 10 MHz transmit
and receive clocks to the 82586, and drive the transceiv-
er (AUI) cable in Ethernet applications. In addition,
the 82501 provides a loopback function and on-chip
watchdog timer. The 82502 is a CMOS transceiver
chip. The 82502 is the chip which actually drives the
coaxial cable used for Ethernet or Cheapernet.

This Ap Note presents a design example of a simple but
general Ethernet/Cheapernet board based on the three
chip set. The board is called LANHIB (LAN High In-
tegration Board) and uses an 80186 microprocessor as
the host CPU. The LANHIB is an independent single
board computer and requires only a power supply and
ASCII terminal. Demo software, called TSMS (Traffic
Simulator and Monitor Station) is also included in this
Ap Note. The TSMS program is a network debugger
and exercise tool used to exercise the 82586. In addi-
tion, flowcharts for troubleshooting are provided in or-
der to minimize debugging time of the LANHIB board.

1.0 INTRODUCTION

A brief overview of the CSMA/CD protocol is de-
scribed in Section 2. Ethernet and Cheapernet are also
compared in this section.

Section 3 discusses hardware of the LANHIB in detail.
This section should be helpful not only to understand
the LANHIB, but also to learn in general how a system
based on the three chip set can be put together. Since
the 82502 involves analog circuitry, an explanation on
proper layout is provided.

Demo software is presented in Section 4.0. It covers
EPROM programming procedures and three sample
sessions. Step by step operations at a terminal are illus-
trated in the figures.

Section 5 describes LANHIB troubleshooting proce-
dures. Flowcharts are used to guide troubleshooting.

Complete LANHIB schematics and parts list are found
in Appendix A. If a LANHIB is to be built, the sche-
matics and Section 5 can be submitted to an available
wire wrap facility. In parallel to board construction,
Sections 3 and 4 can be studied. A factory wire wrap
board for the LANHIB is offered at a discount price by
Augat Corporation. Please return the enclosed card for
more information.

Listing of the TSMS program and LANHIB Initializa-
tion Routine are in Appendix B. The source codes and
related files are available on a diskette by returning the
card enclosed in this design kit or through Insite (In-
tel’s Software Index and Technology Exchange Li-

brary).

2.0 ETHERNET/CHEAPERNET
OVERVIEW

2.1 CSMA/CD

Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) is a simple and efficient means of deter-
mining how a station transmits information over com-
mon medium that is shared with other stations.
CSMA/CD is the access method defined by the IEEE
802.3 standard.

Carrier Sense (CS) means that any station wishing to
transmit “listens” first. When the channel is busy (i.e.,
some other station is transmitting) the station waits
(defers) until the channel is clear before transmitting
(“listen before talk”).

Multiple Access (MA) means that any stations wishing
to transmit can do so. No central controller is needed to
decide who is able to transmit and in what order.

Collision Detection (CD) means that when the channel
is idle (no other station is transmitting) a station can
start transmitting. It is, however, possible for two or
more stations to start transmitting simultaneously caus-
ing a “collision”. In the event of a collision, the trans-
mitting stations will continue transmitting for a fixed
time to ensure that all transmitting stations detect the
collision. This is known as jamming. After the jam, the
stations stop transmitting and wait a random period of
time before retrying. The range of random wait times
increases with the number of successive collisions such
that collisions can be resolved even if a large number of
stations are colliding.

There are three significant advantages to the CSMA/
CD protocol. The first and foremost is that CSMA/CD
is a proven technology. One CSMA/CD network,
Ethernet, has been used by Xerox since 1975. Ethernet
is so well understood and accepted that IEEE adopted

intel

AP-274

it (with minor changes) as the IEEE 802.3 10Base5 (10
Mbps, Baseband, 500 meters per segment) standard.
Reliability is the second advantage to the 802.3 proto-
col. This media access method enables the network to
operate without central control or switching. Thus, if a
single station malfunctions, the rest of the network can
continue operation. Finally, since CSMA/CD networks
are passive and distributed in nature, they allow for
easy expansion. New nodes can be added at any time
without reinitializing the entire network.

2.2 Ethernet and Cheapernet

The IEEE 802.3 Type 10BASES standard (Ethernet)
has gained wide acceptance by both large and small
corporations as a high speed (10 Mbps) Local Area
Network. The Ethernet channel is a low noise, shielded
509 coaxial cable over which information is transmit-
ted at 10 million bits per second. Each segment of cable
can be up to 500 meters in length and can be connected
to longer network lengths using repeaters. Repeaters
regenerate the signal from one cable segment onto an-
other. At each end of a cable segment a terminator is
attached. This passive device provides the proper elec-
trical termination to eliminate reflections. The trans-
ceiver transmits and receives signals on the coaxial ca-
ble. In addition, it isolates the node from the channel so
that a failure within the node will not affect the rest of
the network. The transceiver is also responsible for de-
tecting collisions—simultaneous transmissions by two
or more stations. Ethernet transceivers are connected to
the network coaxial cable using a simple tap, and to the
station it serves via the transceiver cable which can be

IEEE 802.3 TYPE 10BASES (ETHERNET)
—ETYPE 10BASE2 (CHEAPERNET)
TYPE 1BASES (STARLAN)
292010-1

Figure 1. Different Implementations of IEEE
802.3 (Note: “10BASE5”, for example, implies
10 Mbps, Baseband, and 500 meters span.)

up to 50 meters in length. The transceiver cable is made
of four individually shielded twisted pairs of wires. An
Ethernet interface at a computer (DTE), which in-
cludes a serial interface and data link controller, pro-
vides the connection to the user or server station. It also
performs frame manipulation, addressing, detecting
transmission errors, network link management, and en-
coding and decoding of the data to and from the trans-
ceiver.

The IEEE 802.3 Type 10BASE2 (Cheapernet) has the
same functional and electrical specifications as Type
10BASES5 (Ethernet) with only two exceptions in physi-
cal (or rather mechanical) characteristics. Cheapernet
is as shown in Figure 1 just a different implementation
of the IEEE standard. Ethernet and Cheapernet are
both 10 million bits/second CSMA/CD LANs and use
the identical network parameters, such as slot time =
51.2 ps. Ethernet and Cheapernet can, therefore, be
built by the same VLSI components with the same soft-

ware (Figure 2).

The two physical differences attribute to the cost reduc-
tion purpose of Cheapernet—cheaper implementation
of Ethernet. First, the cable used in Cheapernet may be
a lower cost 509 coaxial cable than the one for
Ethernet. The most common coaxial cable for Cheaper-
net is RG58 which cost about $0.15/ft. A typical
Ethernet cable costs about $0.83/ft.

Second, the transceiver is integrated into the DTE in
Cheapernet. The coaxial cable physically comes to the
DTE, connects to the transceiver within the DTE, and
goes to the next DTE (see Figure 3). The kind of con-
nector used at the DTE is an off-shelf BNC “T” con-
nector. Topology is, therefore, a simple daisy chaining.
This cabling scheme contributes to further cost reduc-
tion due to omission of the Transceiver (AUI) Cable,
cheaper connectors, and easier installation. The
Ethernet transceiver cable costs about $1.49/ft. More
flexible thin coaxial cables and familiar BNC “T” con-
nectors are making Cheapernet a user installable Ether-
net compatible network.

mtel’ AP-274

TRANSCEIVER COAX CABLE
CABLE

ETHERNET CONTROLLER BOARD TRANSCEIVER
L

e ———
I |
82502

=

292010-5
CHEAPERNET CONTROLLER BOARD RG=58
COAXIAL CABLE
]
e IRr
NEKDEKD
ey
292010-6

Figure 2. 82586/82501/82502 in Ethernet and Cheapernet

.
PR

“ CHEAPERNET

TRANSCEIVER BOX . BNC "T" CONNECTOR ™.+
292010-2 292010-3

Figure 3. Ethernet Cabling vs Cheapernet Cabling

intef

AP-274

Table 1. Differences between Ethernet and Cheapernet

Ethernet Cheapernet
(10BASES5) (10BASE?2)
Data Rate 10 M bits/sec. 10 M bits/sec.
Baseband or Baseband Baseband
Broadband (Manchester) (Manchester)
Cable Length 500m 185m
per Segment
Nodes per Segment 100 30
Node Spacing 2.5m 0.5m
Cable Type 0.4 in diameter 500 0.2 in diameter 50}
Double Shielded Single or Double Shielded
example: example:
Ethernet Coax. RG 58 A/U or
RG 58 C/U
Transceiver Cable Yes, up to 50m No, not needed
Capacitance 4 pF 8 pF
per node
Typical Clamp-on Tap Connector or BNC Female
Connector Type N Plug Connector Connector

Because of the lower quality cables and connectors used
in Cheapernet, there are some drawbacks. The maxi-
mum distance for one Cheapernet cable segment is only
185m (600 feet), whereas 500m (1640 feet) for
Ethernet. The maximum number of nodes allowed for
one Cheapernet cable segment is 30. Ethernet on the
other hand allows the maximum of 100 nodes per seg-
ment. A BNC “T” connector used in Cheapernet intro-
duces more electrical discontinuity on the transmission
line than the clamp-on tap connector widely used for
Ethernet. The maximum capacitance load allowed at a

Cheapernet connection is 8 pF, while it is 4 pF for
Ethernet. The differences are summerized in Table 1.0.

Since Ethernet and Cheapernet share the same func-
tional and electrical characteristics, both may be mixed
in a network as shown in Figure 4. In this hybrid
Ethernet/Cheapernet network, it is important to keep
the network propagation delay within 46.4 us. The net-
work may be expanded as required within this round
trip propagation delay limit. Ethernet, for example,
may serve as a backbone for Cheapernet in a hybrid
Ethernet/Cheapernet network.

DTE | CHEAPERNET

CABLE

= 1|

DTE

ETHERNET
CABLE

0

DTE DTE | CHEAPERNET
CABLE
{] i I

0

292010-4

Figure 4. Ethernet/Cheapernet Hybrid Network

AP-274

£-010262

21901 1404
30VAYIINI NOLLYANSIINGD
STVNOIS OBINOD 05528 0£528/98108 Y 50v8d007
r 0528
S GIAVII0 3
| ¥IAIFIOSNVAHL VIVD o
N
SHE vIva & @
£0-0a S10-00 Si-oav|2
g <
1 IVANI ‘LLNI b
2 {1o¥a ‘coxa
g 9804 §S9d
2 9gl08
< > 2 N3g
8 TINNVHO <::> s - g’/ﬁm =z
z52-s4 < 2 & z5
ogszs (s3LAg 1 ¥9) a @ F 592
v TINNVHO (sama n9l) oy z *TF
752~y [5
)
Y 3 r ¥ X VoS E
8 +
AL Si=iv 48
f 3H8
Sne S53900V
ooy | | Hnoy HALV1
ss3ygay %
[T s B—
] AS+
s s
OTNVY a 3H8 ‘ov YOLVY3IN39 -
RECCIE I e 3LVLS LIVM
98628

¥3ILYIANOD
20/2a

AQ AS AOL

(859Y “6e)
318vd
13N¥3dVIHD

Figure 5. LANHIB Block Diagram

5

intel

AP-274

3.0 ETHERNET/CHEAPERNET NODE
DESIGN

Details on LAN High Integration Board (LANHIB)
design are presented in this section. The LANHIB is an
82586/80186 shared bus board and can be configured
to Ethernet or Cheapernet. The 82586 is used in mini-
mum mode to reduce chip count.

The reader is advised to refer to the 80186, 82586,
82501, and 82502 data sheets. Basic understanding of
the 80186 microprocessor is assumed. Figure 5 shows
the block diagram of the LANHIB. Schematics are in
Appendix A.

3.1 82586 (Min Mode) Interface to the
80186

The 82586 can be placed in minimum mode by strap-
ping the MN/MX pin to Vcc. In the minimum mode,
the chip directly provides all bus control signals—ALE,
RD, WR, DT/R, and DEN, saving the 8288 Bus Con-
troller. The 80186, which is the only other bus master
on the shared bus, also generates these bus control sig-
nals directly. The HOLDs and HLDAs of these two
chips are connected together so that only one of the two
bus masters can exclusively drive the bus at a time un-
der the HOLD/HLDA protocol. Except for the ALE,
all bus signals including address and data lines float
when the chip does not have control of the bus. In this
design example, RDs, WRs, DT/R and DEN from the
two chips are connected together respectively. ALEs

from the two chips are connected to an OR-gate to
generate a system ALE. Multiplexed address data lines
ADO-ADIS5 and address lines A15-A19 of the two
chips are also connected line by line correspondingly.

3.2 82586 Address Latch Interface

Figure 6 shows the timing of the address signals with
respect to the ALE signal. The ALE of the 82586 is
OR-ed with the ALE of the 80186 and the result is
connected to the latch enable inputs of Octal Transceiv-
er Latches. The latches transfer the input data to the
output as long as the latch enable is high, and captures
the input data into the latch when the latch enable goes
low. In this timing diagram, the setup and hold times of
the input data (82586 address) required by the address
latch can be verified. Estimating 7 ns of propagation
delay in the 74S32, the setup time is T38 + 7, which is
32 ns at 8 MHz. The hold time for A19 is shorter than
the other address lines because it is valid only during
T1. The hold time for the A19 is T4 — T36 — 7, which
is 3 ns. The hold time for the other address lines is T39
— 17, which is 38 ns. In this design, a 74F373 was cho-
sen to latch address lines A16-A19 and two 74LS373s
were used to latch address lines ADO-AD15. Required
setup and hold times of the 74F and 74LS 373s are
summerized in Table 2.

Note that address lines A16-A18 and BHE of the
82586 are not really needed to be latched. These lines
stay valid for an entire memory cycle.

| I2g:|s l

12 | 3

|
/ \ I _/

X

VALID BHE, A16-A18, A20~A23

X vaup a1e Y VALID S6

X VAILD A-A1S

)

129

T30
0-50ns

139
45ns MIN

SETUP TIME FOR
74F373 AND 74LS373

0-45ns
0-55ns 136
ALE 4 | \
135 ||
0-45ns
138
25ns MIN
ORED ALE \
DELAY IN —* r
OR GATE
<7ns@25°C

HOLD TIME FOR
74F373 AND 74LS373

292010-8

Figure 6. 82586 Address Timing

5]

intel

AP-274

Table 2. 74F and 74LS Data Setup and Hold Time Specifications at 25°C

74F373 74LS373 ‘Unit
Min Nom Max Min Nom Max
Data Setup Time 2] 50 ns
Data Hold Time 3] 20 ns

3.3 80186 Address Latch Interface

The address latch used by the 82586 is shared by the
80186. Figure 7 shows the 80186 address line timing
with respect to the ALE. Again estimating 7 ns delay in
the 74832, the setup time for the latch is TAVAL + 7
and the hold time is TLLAX — 7. These are 37 ns and
23 ns respectively at § MHz. Comparing to the required
values shown in Table 2, it is quite obvious that the
setup and hold times of the latch are met by wide mar-
gins. Note that the 80186’s address lines A16-A18 and
BHE are not valid for an entire memory cycle; there-
fore, they have to be latched.

3.4 82586 Memory Interface

The 7418373 has a delay of 18 ns for input data to
reach the output assuming the latch enable is high. A

demultiplexed valid address (output of the address
latch), therefore, becomes available after T29 + 18
measuring from the beginning of T1 (Figure 8). The
demultiplexed address remains valid until the ALE of
the next memory access becomes active. Upper address
lines, A14 through A20, are connected to a 16L8 PAL,
which provides address decode logic for all memory
devices. The PAL truth table is in Appendix A. The
PAL has a maximum of 35 ns propagation delay, so
chip selects will become active after 55 + 18 + 35 ns
(max.) from the beginning of T1 as indicated in Figure
8. Since address decode logic is implemented by a PAL,
any memory expansion would only require a repro-
gramming of this PAL.

Two 74LS245 bus transceiver chips are controlled by
the DT/R and DEN. Output enable and disable times
of the 7418245 are 40 and 25 ns respectively. The max-
imum propagation delay when the output enable is ac-
tive is 12 ns.

| m | & | ™ I
— [\ [
S-55ne l__‘ TOAX

*VALID BHE, A1 s-A19>|<

X VALID A0-A15)

TCHLH TLHLL -
35ns MAX 90ns MIN
ALE / \
TLLAX
30ns MIN
TAVAL
30ns MIN
ORED ALE A
DELAY IN =™ [*—
OR GATE
<7ns®25°C

SETUP TIME FOR
74F373 AND 74LS373

HOLD TIME FOR
74F373 AND 74LS373

292010-9

Figure 7. 80186 Address Timing

7

mter AP-274

T4 | m | T2 | 3 | T4 I T
DELAY IN
7 7415373
VALID AO-A19 FROM ADDRESS LATCH 3(
T29 PAL DECODER
0-55ns DELAY £35 ns
CHIP SELECT FROM PAL) /
r , 8 9
20ns MIN * ’ 10ns MIN
{ DATA INTO 82586 | }
o0~98 20 T42 200ns MIN ———————1
- S
READ RD FROM 82586
T41 T44
CYCLE 122 “90-70ns T 85nsMIN
l 0-60ns o= T22
60ns
- _ | —
OT/R 123 T24
/ ~—"|0-70ns 0-65ns
DEN
- 31 132
0-55ns Ons MIN
1\ DATA OUT OF 82586) e—
123
WRITE =700 T45 210ns MIN ———>1
CYCLE —
WR FROM 82586
124
0-65ns
123 124
I‘_O—70ns_’ 0-65nsj_
L DEN A
29201010

Figure 8. 82586 Memory Interface Timing

AP-274
| T | 12 | 13 | T4 I -
DELAY IN
] 74L5373
VALID AO-A19 FROM ADDRESS LATCH X
TCLAV PAL DECODER
5-55ns DELAY <35 ns
CHIP SELECT FROM PAL \ Vs
TDVCL TCLDX
I 20 ns MIN 10ns MIN
{ DATA INTO 80186),
1397'3,';5 TRLRH 200 ns MIN —————»
READ RD FROM 80186
CYCLE TCLRH TRHAV
TCHCTV 10=55ns 85 ns MIN
| 10=55ns TCHCTV __,
"710-55ns
DT/R
TCVCTV TCVDEX
I‘ — "|10-70ns = 10-70ns
— —
L DEN
I TCLDV TCLDOX
“"| 10-44ns 10ns MIN
DATA OUT OF 80186
TCVCTV
WRITE 10~70ns| TWLWH 210 ns MIN ——
CYCLE —_
WR FROM 80186
TCVCTX
5=-55ns
Teven o TCVCTX
10-70ns ’-— SeESrs
— —
L DEN
292010-11

Figure 9. 80186 Memory Interface Timing

intel

AP-274

Address access timeis 3 X T1 — T29 — 18 — T8 —
12 + n X T1, where n is the number of wait states. For
0 wait states operation at 8 MHz, it is 270 ns minimum.
Chip select access time is 3 X T1 — T29 — 18 — T8
— 12 + n X T1 — 35, which is 235 ns for O wait state
operation. Command access time for a read cycle is 2 X
T1 — T40 — T8 — 12 + n X TI, which is 123 ns.
Address setup time for a write cycleis T1 — T29 — 18
+ T23, which is 52 ns minimum.

To meet these timing requirements, 2764-20s must be
used for ROM. Static RAM chips, HM6264P-15, offer
very wide timing margins and were selected for this
design.

3.5 80186 Memory Interface

Figure 9 shows the timing of the 80186 memory inter-
face. By comparing this figure to Figure 7, it is easy to
notice that the 80186 offers a little faster bus interface.
For example, TCLRL which is equivalent to T40 (0 to
95 ns) of the 82586 is specified as 10 to 70 ns. Since the
memory choice satisfies the 82586 memory timing pa-
rameters, it also satisfies the 80186 memory timing pa-
rameters.

3.6 Memory Map

With 2764-20 EPROMs and 6264P-15 SRAMs, this
board has 32 K bytes of ROM space and 16 K bytes of
RAM space. Memory map is given in Figure 10. If
27128-20 EPROMs are used, the ROM space becomes
64 K bytes.

3.7 80186 1/0 Interface

3.7.1 82586 CHANNEL ATTENTION
GENERATION

The active low Peripheral Chip Select 0 (PCS0) was
used to generate a channel attention (CA) signal to the
82586. This way of CA generation satisfies the require-
ment that the width of a CA which must be wider than
a clock period of the system clock.

3.7.2 82586 HARDWARE RESET PORT
PCS1 of the 80186 will reset the 82586 if any 1/0 com-
mand is executed using this 1/0 chip select.

3.7.3 82530 INTERFACE

82530 interface to the 80186 was derived from the de-
sign example presented in the 82530 SCC-80186 Inter-
face Ap Brief. This document is attached to this Ap
Note as Appendix C.

10

OFFFFF OFFFFF
2 2764
PLUGGED IN
OFC000
427128
PLUGGED IN
OF7FFF
2 2764
PLUGGED IN
0F4000 0F0000
3FFF 3FFF
16k BYTE 16K BYTE
RAM RAM
0 0
292010-12

Figure 10. LANHIB Memory Map

3.7.4 82501 LOOPBACK CONFIGURATION
PORT

A 74LS74 D-type flip flop was used for this port. On
power up, it configures the 82501 to Non-Loopback
mode by providing a high level to pin 3 (LOOPBACK).
The chip select is generated from the 80186’s PCS2 and
the sychronized WR command of the 82530 interface.
The least significant bit of I/0 output data becomes the
state of the 82501°s pin 3.

3.7.5 ON-BOARD INDIVIDUAL ADDRESS PORT

To provide the 82586 a hardware configured host ad-
dress, a 32x8 ROM is connected to the bus. The chip
select for this ROM is generated from the 80186’s
PCS3, so that the address for the ROM is mapped into
the 1/0 space. Six or two (IEEE 802.3 specified address
lengths) consecutive 1/0 reads starting from the lowest
address of ROM will transfer the board address stored
in the ROM to an IA-Setup command block of the
82586.

3.8 82586 Ready Signal Generation

82586 asynchronous ready (ARDY) signal is generated
from a shift register. The shift register provides the
82586 a “normally ready” signal. When a wait state is
needed, the ready signal is dropped to the low state. As
shown in Table 3, the 82586 can be programmed to
have 0 to 8 wait states by setting the DIP switch prop-
erly. Even though the on-board memory devices are

intel

AP-274

Table 3. DIP Switch Settings for Various
Numbers of 82586 Wait States

Dip Switch Setting Number of Wait States

7 6 54 3 21 0| the82586Inserts
11 11 1 111 0
11111 110 1
11111 100 2
11111 000 3
11110 000 4

11 100 000 5

11 000 000 6

1 000 0 00O 7

0 000 O0OO0O 8

1 = Switch Open

0 = Switch Closed

fast enough for O wait states operation, this program-
mable wait state capability was added so that the effect
of wait states on the 82586 performance could be evalu-
ated.

3.9 82501 Circuits

Since the 82501 is designed to work with the 82586, no
interfacing circuits are required.

The transceiver cable side of the 82501 requires some
passive components. The receive and collision differen-
tial inputs must be terminated by 78Q2 £5% resistors.
Common mode voltages on these differential inputs are
established internally. 240Q +5% pull down resistors
must be connected on the TRMT and TRMT output
pins.

A 0.022 uF *10% capacitor connected between pin 1
and 2 of the 82501 is for the analog phase-locked loop.

Connected between the X1 and X2 pins is a 20 MHz
parallel resonant quartz crystal (antiresonant with 20
pF load fundamental mode). An internal divide-by-two
counter generates the 10 MHz clock. Since both Ether-
net and Cheapernet tolerate an error of only +0.01%
in bit rate, a high quality crystal is recommended. The
accuracy of a crystal should be equal to or better than
+0.002% @ 25°C and %0.005% for 0-70°C. A
30-35 pF capacitor is connected from each crystal pin
(X1 and X2) to ground in order to adjust effective ca-
pacitance load for the crystal, which should be about
20 pF including stray capacitance.

3.10 82502 Circuits

3.10.1 ISOLATION AND POWER
REQUIREMENTS

The IEEE 802.3 standard requires an electrical isola-
tion within the transceiver (MAU). Cheapernet

1

(10BASE2) requires the isolation means to withstand
500V ac, rms for one minute. Ethernet (10BASES5) re-
quires 250 Vrms. This electrical isolation is normally
accomplished by transformer coupling of each signal
pair. The kind of transformers recommended for the
82502 are the pulse transformers which have a 1:1 turn
ratio and at least 50 microhenry inductance. PE64102
and PE64107 manufactured by Pulse Engineering are
found to be good selections for this purpose. The PE
64102 offers 500 Vrms isolation. The PE64107 offers
2000 Vrms isolation. Both products provide three
transformers in one package. Even though the current
Type 10BASES specification requires only 250 Vrms, it
is very common to have a higher isolation, at least 500
Vrms, in transceivers.

The standard specifies the voltage input level and maxi-
mum current allowed on the power pair of the trans-
ceiver cable. The voltage level may be between
+11.28V dc and +15.75V dc. The maximum current
is limited to 500 mA. Since the 82502 requires + 10V
+10% and +5V +10% as power, there has to be a
DC/DC converter. In addition the DC/DC converter
must be isolated due to the requirement described
above. The DC/DC converter should be able to supply
about 100 mA on the + 10V line and 60 mA on the 5V
line. The efficiency required in the converter is, there-
fore, (11V X 100 mA + 5.5V X 60 mA) / ((11.28V
— 0.5A X 4Q) X 500 mA)) X 100 = 31% worst
case. 44 is the maximum round trip resistance the pow-
er pair may have. 82502’s CMOS process is the major
contributor to this low DC/DC efficiency requirement.

Since the DC/DC converter has an isolation transform-
er inside, the output voltages are all floating voltages.
The OV output of the converter, for example, has no
voltage relationship with the DTE’s ground. The Vgg
and AVgg pins of the 82502 should be connected to the
OV output of the DC/DC converter which is the
82502’s ground (reference voltage).

Both Pulse Engineering and Reliability Incorporated
produce DC/DC converters that meet the 82502’s re-
quirements. The Pulse Engineering’s part number is
PE64369 (enclosed in this design kit). The device mea-
sures about 1.5” x 1.5" x0.5” and provides 2000 Vrms
breakdown. The Reliability’s part number is
2E12R10-5. Preliminary data sheets are available from
Reliability.

3.10.2 OTHER PASSIVE AND ACTIVE DEVICES
FOR THE 82502

A 78Q * 5% resistor is required to terminate the trans-
mit pair of the Transceiver cable. The chip has an inter-
nal circuit that establishes a common mode voltage,
thus no voltage divider is required. The receive and
collision pair drivers need pull up resistors. A 43.2
+ 1% resistor must be connected from each output pin
to +5V.

intel

AP-274

A 243Q *0.5% precision resistor is required on the
REXT pin to the ground. The accuracy of this resistor
is very important since this resistor is a part of current
and voltage reference circuits in the analog sections of
the 82502.

Grounding the HBD (Heartbeat Disable) pin will allow
the chip to perform Signal Quality Error check (Heart-
beat) as required by the IEEE 802.3. The chip will
transmit the collision presence signal after each trans-
mission during Interframe Spacing (IFS) time. In a re-
peater application, this feature is disabled (HBD =
+5V).

Diodes connected on the CXTD pin are to reduce the
capacitive loading onto the coaxial cable. One diode is
sufficient, but two will provide a protection in case one
burns out (Short Circuit). The diode should have about
2 pF shunt capacitance at Vd = OV and be able to
handle at least 100 mA when biased in forward direc-
tion. A few candidates are 1N5282, 1N3600, and
1N4150.

A 100Q fusible resistor connected on the CXRD pin is
purely for protection. It is there as a fuse, not as a
resistor. The 82502 works without this resistor. The
IEEE 802.3, however, states that “component failures
within the MAU (Media Attachment Unit or Trans-
ceiver) electronics should not prevent communication

among other MAUs on the coaxial cable.” It is recom-
mending a transceiver design that minimizes the proba-
bility of total network failure. The fusible resistor will
provide an open circuit in an event of excess current. A
short circuit from the CXRD pin to ground will not
bring down the network due to the blown fuse.

An 8 MQ resistor connected between the coaxial cable
shield and the Transceiver cable shield will provide a
static discharge path. The Ethernet coaxial cable
should also have an effective earth ground at one point
in a network as required by the standard. A 0.01 wF in
parallel to the 8 MQ resistor provides ground for RF
signals. :

3.10.3 LAYOUT CONSIDERATION FOR THE
82502 CIRCUITS

It is strongly recommended that the board have a spe-
cial ground plane for the 82502 (see Figure 11). The OV
(reference) output of the isolated DC/DC converter
should be connected to the ground plane. The Vgg and
AVgg pins of the 82502 should be connected to the
ground plane with minimum lead wires.

There should be a 0.22 wF capacitor connected between
the coaxial cable shield and ground. The signal path
from the coax. shield through the 0.22 uF capacitor to

GROUND PLANE FOR 82502

+12v +IN ISOLATED +10V
pC/DC +5V

CONVERTER
ov | =IN ov

vcc vDD
AVCC
82502
Vss e
AVSS e

292010-13

Figure 11. Ground Plane for the 82502

12

intel

AP-274

the ground should be kept as short as possible—leads of
the 0.22 wF capacitor should be as short as possible.

The path length from the CXTD pin through two di-
odes to the center conductor of the coax should also be
minimized.

These are recommendations which will produce a more
reliable circuit if followed carefully. Remember that the
82502 has analog circuits in it.

4.0 DEMONSTRATION SOFTWARE

The demonstration software included in this Ap Note is
called “Traffic Simulator and Monitor Station”
(TSMS) program. The TSMS program is written in
PL/M and has the following features:

1. Programmable network load generation
2. Network statistical monitoring capabilities

3. Interactive command execution of all 82586 com-
mands

4. Interactive buffer monitoring

The environment created with the TSMS program was
found to be very useful for network debugging and oth-
er individual station’s hardware and software debug-
ging. The TSMS software listing is found in Appendix
B.

The 82586 Data Link Driver presented in Application
Note 235 (Chapter 4 of the LAN Components User’s
Manual) currently runs only on the iSBC 186/51. The
software will be modified to run on the LANHIB and
made available as another demonstration software.

4.1 Programming PROMs to Run the
TSMS Program

By returning the card enclosed in this kit or by contact-
ing Insite, the TSMS program and related submit files
can be obtained on a diskette. Files that are on the
diskette are:

TSMS.PLM
I0.PLM
INI186.PLM
LANHIB.CSD
SBC.CSD
IUPHIB.CSD
IUPSBC.CSD
HLBYT
LO.BYT
ROM.CSD

HLBYT and LO.BYT are the files which can be down-
loaded to PROMs directly. These files are already con-
figured for the LANHIB. The submit file ROM.CSD

13

invokes the Intel PROM Programming Software (iPPS)
under the ISIS-II operation system and programs two
2764 EPROMs. The Intel Universal Programmer must
be placed in ON-LINE mode.

Otbher files contained in the diskette are for compiling
and locating the original TSMS program. Using these
files, the original TSMS program can be changed or can
be compiled for an iSBC 186/51. ‘TSMS.PLM’ is the
original TSMS source program. ‘10.PLM’ contains the
IO driver needed when the TSMS program is run on
the iSBC 186/51. INI186.PLM is the LANHIB initjali-
zation routine. LANHIB.CSD is the submit file that
compiles, links, and locates the TSMS program and the
LANHIB initialization routine. SBC.CSD compiles,
links, and locates the TSMS program and the IO driver
for the iSBC 186/51. IUPHIB.CSD programs two
2764s for the LANHIB. IUPSBC.CSD programs two
2764s for the iSBC 186/51.

Therefore, if the TSMS program is to be run on the
LANHIB (Demo board), steps required are:

1. submit LANHIB
2. submit IUPHIB

If the TSMS program is to be run on the iSBC 186/51,
steps required are:

1. submit SBC
2. submit IUPSBC

4.2 Capabilities and Limits of the
TSMS Program

The TSMS program initializes the LANHIB Ethernet/
Cheapernet station by executing 82586’s Diagnose,
Configure, IA-Setup, and MC-Setup commands. The
program asks a series of questions in order to set up a
linked list of these 82586 commands. After initializa-
tion is completed, the program automatically starts the
82586’s Receive Unit (monitoring capability). Trans-
missions are optional (traffic simulation capability).

The TSMS program has two modes of operation: Con-
tinuous mode and Interactive Command Execution
mode. The program automatically gets into the Contin-
uous mode after initialization. The Interactive Com-
mand Execution mode can be entered from the Contin-
uous mode. Once entered in the Continuous mode, the
software uses the format shown in Figure 12 to display
information. Detailed description of each of these fields
is as follows:

Host Address: host (station) address used in the most
recently prepared IA-Setup command. The software
simply writes the address stored in the IA-Setup com-
mand block with its least significant bit being in the
most right position. Note that if the IA-Setup com-

intel

AP-274

Host Address:

Destination Address:
Frame Length: 118 bytes

Transmit Frame Terminal Count:

of Good # of Good CRC
Frames Frames Errors
Transmitted Received

10130 0 0

HdkkhdkhkRAkRhhhhRkhhRAkhkhd Station CONFiguration *uskkkkkkderdshhhithnhtn

00 AA 00 00 18 6D
Multicast Address(es): No Multicast Addresses Defined
FF FF FF FF FF FF

Time Interval between Transmit Frames:
Network Percent Load generated by this station: 35.7 %
Not Defined

82586 Configuration Block: 08 00 26 00 60 00 F2

Rhdkkhhhhhhhhkhhhhhhhhkhrhhrr Station Activities *kkkekkhkhhhhhhhhhhrrkhrns

159.4 microseconds

00 00 40

Alignment No Receive
Errors Resource Overrun
Errors Errors
0 0
292010-14

Figure 12. Continuous Mode Display

mand was just set up and not executed, the address
displayed in this field may not be the address stored in
the 82586.

Multicast Address(es): multicast addresses used in the
most recently prepared MC-Setup command. As in the
case of host address, the software simply writes the ad-
dresses stored in the MC-Setup command block. Note
that if the MC-Setup command was just set up and not
executed, the addresses displayed in this field may not
be the addresses stored in the 82586.

Destination Address: destination address stored in the
transmit command block if AL-LOC=0. If
AL-LOC=1, destination address is picked up from the
transmit buffer. The least significant bit is in the most
right position.

Frame Length: transmit frame byte count including
destination address, source address, length, data, and
CRC field.

Time Interval Between Transmit Frames: approximate
time interval obtainable between transmit frames (Fig-
ure 13). The number is correct if there are no other
stations transmitting on the network.

Network Percent Load Generated by This Station:
approximate network percent load that is generated by
this station (Figure 13). The number is correct if there
are no other stations transmitting on the network.

Transmit Frame Terminal Count: number of frames
this station will transmit before it stops network traffic
load generation. If this station is transmitting indefi-
nitely, this field will be ‘Not Defined’.

82586 Configuration Block: configuration parameters
used in the most recently prepared Configure com-
mand. As in the case of IA-Setup command, the soft-

14

ware simply writes the parameters from the Configure
command block. The least significant byte (FIFO Lim-
it) of the configuration parameters is printed in the
most left position.

of Good Frames Transmitted: number of good
frames transmitted. This is a snap shot of the 32-bit
transmit frame counter. It is incremented only when
both C and OK bits of the transmit command status are
set after an execution. The counter is 32-bit wide.

of Good Frames Received: number of good frames
received. This is a snap shot of the 32-bit receive frame
counter. It is incremented only when both C and OK
bits of a receive frame descriptor status are set after a
reception. The counter is 32-bit wide.

CRC Errors: number of frames that had a CRC error.
This is a snap shot of the 16-bit CRC counter main-
tained by the 82586 in the SCB.

Alignment Errors: number of frames that had an align-
ment error. This is a snap shot of the 16-bit alignment
counter maintained by the 82586 in the SCB.

No Resource Errors: number of frames that had a no
resource error. This is a snap shot of the 16-bit no re-
source counter maintained by the 82586 in the SCB.

Receive Overrun Errors: number of frames that had a
receive overrun error. This is a snap shot of the 16-bit
receive overrun error counter maintained by the 82586
in the SCB.

If the station is actively transmitting, # of good frames
transmitted should be incrementing. If the station is
actively receiving frames, # of good frames received
should be incrementing. In this continuous mode, a
user can see the activities of the network.

intel

AP-274

I‘— TIME FOR ONE FRAME TRANSMISSION (X)

TIME BETWEEN
FRAMES (Y)

-

D—LPRMABLE, DA, SA, LENGTH, DATA, CRC

—C

N Py t L =
etwork Percent Load X+ v

292010-15

Figure 13. Network Percent Load

Hitting any key on the keyboard while the program is
running in the Continuous mode will exit the mode.
The program will respond with a message ‘Enter Com-
mand (H for Help) — °. In this Interactive Com-
mand Execution mode, a user can set up any one of the
82586 action commands and/or execute any one of the
82586 SCB control commands. Setting up a Dump
command and executing a SCB Command Unit Start
command will, for example, execute the Dump com-
mand. Display commands are also available to see the
contents of the 82586’s data structure blocks. A display
command will enable a user to see the contents of the
82586’s dump (see Section 6.3).

Typing ‘E’ after ‘Enter command (H for help) — °,
executing a SCB Command Unit Start command with a
transmit command, or executing a SCB Receive Unit
Start command will exit the Interactive Command Exe-
cution mode. The program will be back in the Continu-
ous mode. Using this Interactive Command Execution
mode, one can, for example, reconfigure the station and
come back to the Continuous mode. Section 6 lists ac-
tual example executions of the TSMS program.

The TSMS program should be run in an 8 MHz system.
The software running at 8 MHz with a maximum of 2
wait states has been tested and verified to be able to
receive back-to-back frames separated by 9.6 microsec-
onds and still keep track of the correct number of
frames received. This capability, for example, can be
used to find out exactly how many frames a new station
in the network had transmitted.

The software does not perform extensive loopback tests
and hardware diagnostics during the initialization. A
loopback operation can be performed interactively in
the Interactive Command Execution mode.

The software allows a user to set up only 8 multicast
addresses maximum. It is not possible with this pro-
gram to set up more than 8 multicast addresses.

The command chaining feature of the 82586 is not used
in the Interactive Command Execution mode. Each
command setup performed by a ‘S’ command after ‘En-
ter command (H for help) —> ’ sets up a command
with its EL bit set, I bit reset, and S bit reset. Diagnose,
Configure, IA-Setup, and MC-Setup commands are
chained together during the initialization routine and
executed at once with only one CA.

15

The software sets up 5 Receive Frame Descriptors
linked in a circular list. Therefore, a user can see only
the last 5 frames the station has received. It also sets up
5 receive buffers, each being 1514 bytes long, linked in
circle. Therefore, the 82586 never goes into the NO
RESOURCES state.

4.3 Example Executions of the TSMS
Program

This section present: three example executions of the
TSMS program. When the TSMS program needs a
command to be typed, it asks a question with ‘ —> °.
Anything after ¢ —> ’ is what a user needs to type in on
the keyboard. To switch from the continuous mode to
the interactive command execution mode, type any key
on the keyboard.

4.3.1 EXAMPLE 1: EXTERNAL LOOPBACK
EXECUTION

In this example, 500 external loopback transmissions
and receptions are executed (Figure 14). In order for
the software to process each loopback properly, a large
delay was given between transmissions.

4.3.2 EXAMPLE 2: FRAME RECEPTION IN
PROMISCUOUS MODE

The 82586 is configured to receive any frame that exists
in the network (Figure 15). In this example, the station
received 100 frames.

4.3.3 EXAMPLE 3: 35.7% NETWORK TRAFFIC
LOAD GENERATION

The station is programmed to transmit 118 byte long
frames with a time interval of 159.4 microseconds in
between (Figure 16). The network load is about 35.7
percent if no other stations are transmitting in the net-
work.

A key was hit to enter the Interactive Command Exe-
cution mode. In that mode, a Dump command was
executed and the result was displayed. After the Dump
execution, a transmit command was set up again and
the station was put in the Continuous mode.

ﬂte[AP-274

Traffic Simulator and Monitor Station Program

Initialization begun

Configure command is set up for default values.

Do you want to change any bytes? (Y or N) ==> Y

Enter byte number (1 - 11) ==> 4

Enter byte 4 (4H) ==> A6H

Any more bytes? (Y or N) ==> Y

Enter byte number (1 - 11) ==> 11

Enter byte 11 (BH) ==> 6

Any more bytes? (Y or N) ==> N .

Configure the 586 with the prewired board address ==> N
Enter this station's address in Hex ==> 000000002200
You can enter up to 8 Multicast Addresses.

Would you like to enter a Multicast Address? (Y or N) ==> N
You entered 0 Multicast Address(es).

Would you like to transmit?
Enter a Y or N ==> ¥
Enter a destination address in Hex ==> 000000002200

Enter TYPE ==> 0

How many bytes of transmit data?

Enter a number ==> 2

Transmit Data is continuous numbers (0, 1, 2, 3, ...)
Change any data bytes? (Y or N) ==> N

Enter a delay count ==> 10000000000

The number is too big.

It has to be less than or equal to 65535 (FFFFH) .
Enter a number ==> 60000

Setup a transmit terminal count? (Y or N) ==> Yy
Enter a transmit terminal count ==> 500

Destination Address: 00 00 00 00 22 00

Frame Length: 20 bytes

Time Interval between Transmit Frames: 30.18 miliseconds
Network Percent Load generated by this station: .0 %
Transmit Frame Terminal Count: 500

Good enough? (Y or N) ==>Y

Receive Unit is active. 292010-16

Figure 14. External Loopback Execution

16

ntel AP-274

---Transmit Command Block=---
0000 at 033E .
8004
FFFF
034E
2200
0000
0000
0000

Hit <CR> to countinue

transmission started!

Khkkdkkkkkhhkkhhhkhhhkhhhdhrd Station Configuration *xkkskskshsrddhddhhidhhshhs

Host Address: 00 00 00 00 22 00

Multicast Address(es): No Multicast Addresses Defined

Destination Address: 00 00 00 00 22 00

Frame Length: 20 bytes

Time Interval between Transmit Frames: 30.18 miliseconds

Network Percent Load generated by this station: .0 %

Transmit Frame Terminal Count: 500

82586 Configuration Block: 08 00 A6 00 60 00 F2 00 00 06

Ihhkkhkhhhhhkkhhkhkhrkhakhdah Station Activities *kxhkdskkdddhdkdhdhihhhhhhkihs

of Good # of Good CRC Alignment No Receive
Frames Frames Errors Errors Resource Overrun
Transmitted Received Errors Errors
500 500 0 0 0 o]

292010-17

Figure 14. External Loopback Execution (Continued)

17

ntel‘ AP-274

Traffic Simulator and Monitor Station Program

Initialization begun

Configure command is set up for default values.

Do you want to change any bytes? (Y or N) ==> Y

Enter byte number (1 - 11) ==> 9

Enter byte 9 (9H) ==> 1

Any more bytes? (Y or N) ==> N

Configure the 586 with the prewired board address ==> Y

You can enter up to 8 Multicast Addresses.

Would you like to enter a Multicast Address? (Y or N) ==> N
You entered 0 Multicast Address(es).

Would you like to transmit?
Enter a Y or N ==> N

Receive Unit is active.

Fkdkkkhkhhkhkkhkhhkkhkkhhkkiik Station Configuration #*askkkkkdkkhdddhhhkhhids
Host Address: 00 AA 00 00 18 6D

Multicast Address(es): No Multicast Addresses Defined

82586 Configuration Block: 08 00 26 00 60 00 F2 01 00 40

kkkkhkhhhkhhkkkhhkkhkhhkkkkhkkkhkd Station Activities wukkkddddhhhhhdhhhhhhhhhhk

of Good # of Good CRC Alignment No Receive
Frames Frames Errors Errors Resource Overrun
Transmitted Received Errors Errors
(o] 100 o] 0 o] 0

Enter command (H for help) ==> D

Command Block or Receive Area? (R or C) ==> R
Frame Descriptors:
4000 at 036C A000 at 0382 A000 at 0398 A000 at O3AE AO000 at 03C4

0000 0000 0000 0000 0000
0382 0398 03AE 03C4 036C
03DA 03E4 O3EE 03F8 0402
2200 2200 2200 2200 2200
2200 2200 2200 2200 2200
0000 0000 0000 0000 0000

292010-18

Figure 15. Frame Reception in Promiscuous Mode

18

ntel

AP-274

0000 0000 0000 0000 0000

0000 0000 0000 0000 0000

0000 0000 0000 0000 0000

0000 0000 0000 0000 0000

Receive Buffer Descriptors:

Cc064 at O3DA C064 at 0O3E4 C064 at 03EE CO064 at 03F8 C064 at 0402
03E4 03EE 03F8 0402 03DA

040C 09F6 OFEO 15CA 1BB4

0000 0000 0000 0000 0000

05DC 05DC 05DC 05DC 05DC

Display the receive buffers? (¥ or N) ==> Y

Receive Buffers:

Receive Buffer 0 :

002C:014C 00 01 ©02 03 04 05 06 07 08 09 OA OB 0OC OD OE OF
002C:015C 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1lE 1F
002C:016C 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
002C:017C 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
002C:018C 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
002C:019C 50 51 52 53 54 55 56 57 58 59 S5A 5B 5C 5D SBE S5F
002C:01AC 60 61 62 63

Hit <CR> to countinue

Receive Buffer 1 :

002C:0736 00 01 ©02 ©03 04 05 06 07 08 09 OA OB OC OD OE OF
002C:0746 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1lE 1F
002C:0756 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
002C:0766 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
002C:0776 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
002C:0786 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D SE S5F
002C:0796 60 61 62 63
Hit <CR> to countinue

Receive Buffer 2 :

002C:0D20 00 01 ©02 03 04 05 06 07 08 09 OA OB OC OD OE OF
002C:0D30 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1lE 1F
002C:0D40 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
002C:0D50 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
002C:0D60 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
002C:0D70 50 51 52 53 54 55 56 57 58 59 S5A 5B 5C 5D SE SF
002C:0D80 60 61 62 63

Hit <CR> to countinue

Receive Buffer 3 :

002C:130A 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
002C:131A 10 11 12 13 14 15 16 17 18 19 1A 1B 1Cc 1D 1E 1F
002C:132A 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
002C:133A 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
002C:134A 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
002C:135A 50 51 52 53 54 55 56 57 58 59 5A SB 5C 5D 5E SF
002C:136A 60 61 62 63

Hit <CR> to countinue

292010-19

Figure 15. Frame Reception in Promiscuous Mode (Continued)

19

Iﬂter AP-274

Receive Buffer 4 :

002C:18F4 00 01 02 03 04 05 06 07 08 09 O0OA OB OC OD OE OF
002C:1%04 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1lE 1F
002C:1914 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
002C:1924 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
002C:1934 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
002C:1944 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E S5F
002C:1954 60 61 62 63

Hit <CR> to countinue

Enter command (H for help) ==> E

Rhkkkkkhkhkkdhhhkhkhkkkhkhkhhkx Station Cofiguration *kkwakkdhdkshmks ki ks

Host Address: 00 AA 00 00 18 6D
Multicast Address(es): No Multicast Addresses Defined
82586 Configuration Block: 08 00 26 00 60 00 F2 01 00 40

hhkkkhkkhkhhhkhhhhhhkrhhkkhhkhhhhddx Station Activities *xkkkkkkkhhtkhkhhhhdhhddkhs

of Good # of Good CRC Alignment No Receive
Frames Frames Errors Errors Resource Overrun
Transmitted Received Errors Errors
0 100 (o] 0 (o] (V]

292010-20

Figure 15. Frame Reception in Promiscuous Mode (Continued)

20

ntel AP-274

Traffic Simulator and Monitor Station Program

Initialization begun

Configure command is set up for default values.

Do you want to change any bytes? (Y or N) ==> N

Configure the 586 with the prewired board address ==> Y
You can enter up to 8 Multicast Addresses.

Would you like to enter a Multicast Address? (Y or N) ==> N
You entered 0 Multicast Address(es).

Would you like to transmit?
Enter a Y or N ==> Y
Enter a destination address in Hex ==> FFFFFFFFFFFF

Enter TYPE ==> 0

How many bytes of transmit data?

Enter a number ==> 100

Transmit Data is continuous numbers (0, 1, 2, 3, ...)
Change any data bytes? (Y or N) ==> N

Enter a delay count ==> 0
Setup a transmit terminal count? (Y or N) ==> N

Destination Address: FF FF FF FF FF FF

Frame Length: 118 bytes

Time Interval between Transmit Frames: 159.4 microseconds
Network Percent Load generated by this station: 35.7 %
Transmit Frame Terminal Count: Not Defined

Good enough? (Y or N) ==> Y
Receive Unit is active.

--~Transmit Command Block=---
0000 at O033E

8004

FFFF

034E

FFFF

FFFF

FFFF

0000

it <CR> untinue
Hit <CR> to co 292010-21

Figure 16. 35.7% Network Load Generation

lnte[AP-274

transmission started!

khkhhkhhkrkhhkhhkkkhhhhkkkhkkkkh® Station Configuration o % e e e ok o ok de de e e de ke Kk ke de ke ko ke

Host Address: 00 AA 00 00 18 6D

Multicast Address(es): No Multicast Addresses Defined
Destination Address: FF FF FF FF FF FF

Frame Length: 118 bytes

Time Interval between Transmit Frames: 159.4 microseconds
Network Percent Load generated by this station: 35.7 %

Transmit Frame Terminal Count: Not Defined

82586 Configuration Block: 08 00 26 00 60 00 F2 00 00 40

khkhkkhhhhhhhkRARARRARRRRAA*kk Station Activities **xxkkkkkhkdkhhhhkdhhhhddkhkhhk

of Good # of Good CRC Alignment No Receive
Frames Frames Errors Errors Resource Overrun
Transmitted Received Errors Errors

10459 0 [4] 0 0 0

Enter command (H for help) ==> H

Commands are:

S - Setup CB D - Display RFD/CB
P - Print SCB C - SCB Control CMD
L - ESI Loopback On N - ESI Loopback Off
A - Toggle Number Base

Z - Clear Tx Frame Counter

Y - Clear Rx Frame Counter

E - Exit to Continuous Mode

Enter command (H for help) ==> §

Enter command block type (H for help) ==> H
Command block type:

N - Nop I - IA Setup

C - Configure M - MA Setup

T - Transmit R - TDR

D - Diagnose S - Dump Status
H - Print this message

Enter command block type (H for help) ==> S
Enter command (H for help) ==> C

Do you want to enter any SCB commands? (Y or N) ==> Y
Enter CUC ==> 1

Enter RES bit ==> 0

Enter RUC ==> 0

Issued Channel Attention

Enter command (H for help) ==> D
292010-22

Figure 16. 35.7% Network Load Generation (Continued)

22

intal AP-274

Command Block or Receive Area? (R or C) ==> C
---Dump Status Command Block---

A000 at 0364

8006

FFFF

27D6

Dump Status Results

at 27D6

00 E8 3F 26 08 60 00 FA 00 OO0 40 FF 6D 18 00 00
AA 00 40 20 00 00 00 OO0 FF FF FF FF B5 9E EE CF
62 63 3F BO 00 00 00 00 OO OO OO 00 FF 85 08 FC
00 00 00 00 OO OO 00O OO0 OO OO OO OO0 70 03 06 00
DC 05 00 00 OC 04 DC 05 E4 03 DA 03 DA 03 78 05
82 03 6C 03 F8 03 64 80 D6 27 E8 21 FF FF 4E 03
06 80 FF FF 64 03 00 00 D2 02 00 00 00O 00 00 OO0
00 00 D6 27 00 01 00 28 00 00 OO0 00 30 26 00 OO0
20 00 40 06 30 01 00 00 90 OO0 10 01 00 00 6C 03
00 00 6A 03 OE 00 6C 28 00 OO0 74 03 00 00 00 OO0
00 00 00 00 00 CO 00 00 OO OO0

Enter command (H for help) ==> S

Enter command block type (H for help) ==> T
Enter a destination address in Hex ==> FFFFFFFFFFFF

Enter TYPE ==> 0

How many bytes of transmit data?

Enter a number ==> 100

Transmit Data is continuous numbers (0, 1, 2, 3, ...)
Change any data bytes? (Y or N) ==> N

Enter a delay count ==> 0
Setup a transmit terminal count? (Y or N) ==> N

Destination Address: FF FF FF FF FF FF

Frame Length: 118 bytes

Time Interval between Transmit Frames: 159.4 microseconds
Network Percent Load generated by this station: 35.7 %
Transmit Frame Terminal Count: Not Defined

Good enough? (Y or N) ==> Y
Enter command (H for help) ==> C

Do you want to enter any SCB commands? (Y or N) ==> Y
Enter CUC ==> 1

Enter RES bit ==> ¢

Enter RUC ==> 0

Issued Channel Attention

292010-23

Figure 16. 35.7% Network Load Generation (Continued)

23

intef

AP-274

Host Address: 00 AA 00 OO0 18 6D

Destination Address:
Frame Length: 118 bytes

82586 Configuration Block: 08

of Good # of Good CRC
Frames Frames Errors
Transmitted Received

106020 0 0

hkhhhhkhhhhdhhkhkikkrkkhkrkk Station Configuration kkkikkdkkdkkdkdhhhkkdhkkx

Multicast Address(es): No Multicast Addresses Defined
FF FF FF FF FF FF

Time Interval between Transmit Frames:
Network Percent Load generated by this station: 35.7 %
Transmit Frame Terminal Count: Not Defined

00 26 00 60 00 F2

khhhkhhhhhhkkhkhhhhkhhhhhhhhrrrd Station Activities Ahrakrkkkkkahhhkhhhhrhhdhk

A
E

0

159.4 microseconds

00 00 40

lignment No Receive
rrors Resource Overrun
Errors Errors
0 0
292010-24

Figure 16. 35.7% Network Load Generation (Continued)

5.0 IN CASE OF DIFFICULTY

This section presents methods of troubleshooting (“de-
bugging™”) a LANHIB board. When a LANHIB board
is powered up with the TSMS program stored in
EPROMs, it should display “TRAFFIC SIMULA-
TOR AND MONITOR STATION PROGRAM”
message on a terminal screen. If the message is not
displayed, the board has to be debugged. Section 5.1
describes basic 80186/82586 system troubleshooting
procedures. Section 5.2 is for troubleshooting 82501
and 82502 circuits. After the 80186/82586 system is
debugged, the 82501/82502 circuits have to be tested.

5.1 Troubleshooting 80186/82586
System

Shown in Figure 17 is a flow chart for troubleshooting
80186/82586 system. The procedure requires an oscil-
loscope. A logic analyzer is needed if problems appear
to be serious. The procedures will debug the board to
the point where the 82530 is initialized properly. If the
82530 can be initialized properly, ROM and RAM in-
terfaces must be functioning. Board initialization rou-
tines (IN1186.PLM) linked to the TSMS program re-
quires ROM and RAM accesses. Since the 82586
shares most of the system with the 80186, no special
debugging is required for the 82586. Wiring of all
82586 parallel signal pins should, however, be checked.

The flow chart branches to two major paths after the
first decision box. One path debugs the RS-232 channel

and the other debugs the 80186/82586 system. The
waveform of the TRXCB output of the 82530 deter-
mines which path to be taken. If the 82530 is getting
programmed properly, there should be 153.6 KHz
(1/f = 6.51 ps) clock on this output pin. If there is a
clock, the problem is probably in the RS-232 interface.
If there is no clock, then the system has to be debugged

. using a logic analyzer.

24

5.2 Troubleshooting 82501/82502
Circuits

If the TSMS program runs on the LANHIB but the
82586 is not able to transmit or receive, there must be a
problem in 82501/82502 circuits. The flow chart in
Figure 19 will guide troubleshooting in these circuits.
An oscilloscope is required.

The board should be configured to Cheapernet and dis-
connected from the network. Two terminators will be
required to terminate a “T” BNC connector providing
an effective load resistance of 25 to the 82502.

The 82586 must have the system and transmit clocks
running upon reset. Since the transmit clock is generat-
ed by the 82501, the 82501 transmit clock output pin
(pin 16) should be checked. The TSMS program exe-
cutes 82586’s Diagnose, Configure, IA-Setup, and MC-
Setup commands during initialization. If the 82586 has
active CRS (Carrier Sense) signal, it cannot complete
execution of these commands. The 82501 should, there-
fore, be checked if it is generating inactive CRS signal
to the 82586 after power up. The LANHIB powers up
the 82501 in non-loopback mode.

intel

AP-274

After making sure that the 82501 is generating proper
signals to the 82586, the TSMS program is restarted
with an initialization shown in Figure 20. The 82586 is
configured to EXT-LPBK=1, TONO-CRS=1, and
MIN-FRM-LEN=6. The chip is also loaded with a
destination address identical to the source address. If
there are no problems in the 82501/82502 circuits, the
station will be receiving its own transmitted frames. If
problems exist, the station will only be transmitting.
Since the 82586 is configured to TONO-CRS (Trans-
mission On NO Carrier Sense), the chip will keep trans-

mitting regardless of the state of carrier sense. The
82501/82502 circuits can then be probed with an oscil-
loscope at the locations indicated in Figure 21. Probing
will catch problems like wiring mistakes, missing load
resistors, etc.

Once the station is debugged, it can be connected to the
network. If there is a problem in the network, the
82586’s TDR command can be used to find the location
and nature of the problem.

< START ’

v
IS "TRAFFIC SIMULATOR AND

YES NO

MONITOR STATION PROGRAM"
MESSAGE ON CRT?

v

(HAVE AN OSCILLOSCOPE READY)
v

< START DEMO ’

YES

CHECK CLOCK WAVEFORM ON THE
TRXCB PIN(PIN 26) OF THE 82530
USING AN OSCILLOSCOPE.

- IS IT 153.6 KHz (1/f=6.51 pusec.)
SQUARE WAVE?

NO

(A LOGIC ANALYZER |

L MAY BE REQUIRED.)
A

CHECK RS=232 DRIVER &

THAT THE 1488(75188)

THAT THE 1489(75189)
| REQUIRES ONLY #5V.

RECEIVER CHIPS, ARE THEY
CONNECTED PROPERLY? NOTE

REQUIRES +12V & =12V AND

CHECK CLOCK WAVEFORM ON THE
FOLLOWING PINS:

1. CLKOUT PIN(PIN 56) OF 80186
THIS SHOULD BE 8 MHz 50% DUTY
CYCLE MOS CLOCK.

2. CLK PIN(PIN 32) OF 82586.

THIS CLOCK IS PROVIDED BY 80186.

v

3. CLK PIN(PIN 20) OF 82530.
THIS SHOULD BE 4 MHz CLOCK.

USED.

CHECK RS=232 DCE & DTE
CONNECTIONS. THE LANHIB IS
A DCE AND AN ASCII TERMINAL
IS A DTE. ONLY PIN2(TXD),
3(RXD), AND 7(GROUND) ARE

!

CHECK SIGNAL LEVELS OF THE FOLLOWING

80186 INPUT PINS. :

. RES PIN(PIN 24) SHOULD BE HIGH
AFTER POWER UP RESET.

T

. NMI PIN(PIN 46) SHOULD BE LOW.
. SRDY PIN(PIN 49) SHOULD BE HIGH.

AND 2 STOP BITS/CHAR.

CHECK CONFIGURATION OF THE
ASCIl TERMINAL. BAUD RATE
SHOULD BE SET TO 9600.
ALSO 8 BITS/CHAR, NO PARITY,

. ARDY PIN(PIN 55) SHOULD BE HIGH.
. HOLD PIN(PIN 50) SHOULD BE LOW.
82586 IS NOT INITIALIZED YET.

abrwN

START DEMO

292010-25

Figure 17. Flowchart for 80186/82586 System Troubleshooting

25

ntel

AP-274

CONNECT A LOGIC ANALYZER ON THE
MULTIPLEXED BUS. o

1. CONNECT AD15-ADO, ALE, RD, WR, ROMHI
ROMLO, RAMHI, RAMLO, AND CS PIN(PIN 33)
OF 82530.

2. USE CLKOUT OF 80186 TO CLOCK THE
LOGIC ANALYZER. SAMPLE DATA ON RISING
EDGES.

3. TRIGGER THE LOGIC ANALYZER ON ALE
BECOMING HIGH.

SHOWN IN FIGURE 18 IS AN EXAMPLE OF A
LOGIC ANALYZER TRACE. COMPARE WHAT'S
OBTAINED TO THE ONE IN FIGURE 18.
IF DIFFERENT, POSSIBLE PROBLEMS ARE:
1. HIGH BYTE EPROM AND LOW BYTE EPROM
ARE SWAPPED.
2. ADDRESS/DATA LINES ARE NOT CONNECTED
PROPERLY.
3. ADDRESS DECODE PAL IS NOT PROGRAMMED

PROPERLY.

etc.
CHECK IF 82530 IS GETTING INITIALIZED PROPERLY
ON THE LOGIC ANALYZER. TRY OTHER LOGIC
ANALYZER TRIGGERING EVENT, e.g. CS PIN(PIN 33)
OF 82530 BECOMING LOW.
MAKE SURE THERE IS 153.6 KHz(1/f=6.51 usec.)
SQUARE WAVE ON TRXCB(PIN 26) OF 82530.

Y

292010-26

)

CHECK RS=-232 DRIVER &
RECEIVER CHIPS. ARE THEY
CONNECTED PROPERLY? NOTE
THAT THE 1488(75188)
REQUIRES +12V & =12V AND
THAT THE 1489(75189)
REQUIRES ONLY +5V.

!

CHECK RS=232 DCE & DTE
CONNECTIONS. THE LANHIB IS
A DCE AND AN ASCIl TERMINAL
IS A DTE. ONLY PIN2(TXD),
3(RXD), AND 7(GROUND) ARE
USED.

!

CHECK CONFIGURATION OF THE
ASCIl TERMINAL. BAUD RATE
SHOULD BE SET TO 9600.
ALSO 8 BITS/CHAR, NO PARITY,
AND 2 STOP BITS/CHAR.

START DEMO

292010-27

Figure 17. Flowchart for 80186/82586 System Troubleshooting (Continued)

26

ntel

AP-274

0097
0098
0099
TRIG

0101

0102
0103
0104
0105
0106
0107
0108
0109
0110
0111

0112
0113
0114
0115
0116
0117
0118
0119
0120
0121

0122
0123
0124
0125
0126
0127
0128
0129
0130
0131

0132
0133
0134
0135
0136
0137
0138

8E

7

01001111
01001111
01101111
11101111
01001111
00101111
00101111
00101111
00101111
00101111
11101111
01101111
00101111
00101111
00101111
00101111
00101111
11101111
01101111
00101111
00101111
00101111
00101111
00101111
11101111
01101111
00101111
00101111
00101111
00101111
00101111
11101111
01101111
00101111
00101111
00101111
00101111
00101111
11101111
01101111
00101111
00101111

AD15-ADO
ALE

RD#

WR#
ROMHI#
ROMLO#
RAMHI#
RAMLO#
CS# PIN (PIN 33) OF 82530

THESE ARE MEMORY CHIP SELECTS

LOGIC ANALYZER IS TRIGGERED ON ALE =Hl.
80186 JUMPS TO FFFOH AFTER RESET.

JMP INSTRUCTION (DIRECT INTERSEGMENT)
SEGMENT OFFSET = 0006H

SEGMENT SELECTOR =FFCOH

(80186 INSERTS 3 WAIT STATES BEFORE
UMCS REGISTER IS PROGRAMMED.)

JUMPED TO FCO6H

292010-28

Figure 18. Example of Logic Analyzer Trace

27

ntel

AP-274

‘ START ’

v

DISCONNECT COAX. PUT TERMINATORS ON
BOTH ENDS OF "T"" CONNECTOR. MAKE SURE
THE BOARD IS CONFIGURED TO CHEAPERNET.

v

YES| 1. 10MHz TxC AND RxC
r—_' TO 825867
2. INACTIVE CRS
| RUN Tsms ProGRAM. | T0 825867

UPON POWER UP, DOES
82501 GENERATE:

NO

WHEN A TRANSMISSION IS

YES | ATTEMPTED, DOES THE TsMS | NO

PROGRAM DISPLAY ""NO
CARRIER SENSE" MESSAGE?

\ 4

POWER DOWN AND RE-
START TSMS PROGRAM
WITH 82586 CONFIGURED
T0: ’

1. EXT=LPBK=1

2. TONO=CRS =1

3. MIN-FRM=LEN =6
EXECUTE LOOPBACKS BY
USING DESTINATION ADDR
SAME AS SOURCE ADDR.
TRANSMIT ONLY A FEW
DATA BYTES.

Y

A4

82501/82502 CIRCUITS
MUST BE WORKING O.K.

IF THE STATION IS STILL
NOT RECEIVING, CHECK
STATION'S DESTINATION
AND SOURCE ADDRESSES,
CONFIGURATION OF 82586.

MAKE SURE THE 82501 IS
POWERED UP IN NON=~
LOOPBACK MODE.

IS S

AN EXAMPLE EXECUTION
HOWN IN FIGURE 20.

IF THE STATION IS NOT
RECEIVING WHILE IT'S
TRANSMITTING, THERE IS
A PROBLEM. PROBE
SIGNALS AT LOCATIONS
SHOWN IN FIGURE 21.
IT'S PROBABLY A WIRING
PROBLEM.

C BOARD SHOULD BE FUNCTIONAL.)

292010-29

Figure 19. Flowchart for 82501/82502 Circuits Troubleshooting

28

intel AP-274

Traffic Simulator and Monitor Station Program

Initialization begun

Configure command is set up for default values.

Do you want to change any bytes? (Y or N) ==> Y

Enter byte number (1 - 11) ==> 4

Enter byte 4 (4H) ==> A6H

Any more bytes? (Y or N) ==> Y

Enter byte number (1 - 1ll1l) ==> 9

Enter byte 9 (9H) ==> 08H

Any more bytes? (Y or N) ==> Y

Enter byte number (1 - 1l1) ==> 11

Enter byte 11 (BH) ==> 6

Any more bytes? (Y or N) ==> N

configure the 586 with the prewired board address ==> N
Enter this station's address in Hex ==> 000000002200
You can enter up to 8 Multicast Addresses.

Would you like to enter a Multicast Address? (¥ or N) ==> N
You entered 0 Multicast Address(es).

Would you like to transmit?
Enter a Y or N ==> Y
Enter a destination address in Hex ==> 000000002200

Enter TYPE ==> 0

How many bytes of transmit data?

Enter a number ==> 2

Transmit Data is continuous numbers (0, 1, 2, 3, ...)
Change any data bytes? (Y or N) ==> N

Enter a delay count ==> 0

Setup a transmit terminal count? (¥ or N) ==> N

Destination Address: 00 00 00 00 22 00

Frame Length: 20 bytes

Time Interval between Transmit Frames: 159.4 seconds
Network Percent Load generated by this station: 11.0 %
Transmit Frame Terminal Count: Not Defined

Good enough? (Y or N) ==> Y

292010-77

Figure 20. TSMS Initialization for 82501/82502 Circuits Troubleshooting

29

AP-274

‘gouenbes Buiqoid ese siequinp
0€-010262 ‘310N

1404 0/1 WOY4
GNVANOD ¥8d1

%50
veve
|
NSRS TR ®
< <
m ah LS T || vesLS ¥ad1
>
T
NSTO ' NSTD
Loy o Nl ieT / 5|
T b ASY 107 / os |2
Ay A%Y
=T 5|~
ma/L J d W Te| =2
o1 e GE. T3 52 985z
HOLYNINNAL AMA o o3 A0y oy '0STE XS 5 (25
TS zt z0528 (e ¢ zzo b. v
>
L $ i axif= o
¥OLOINNOD L ASY XL L
SNE - VTVJ axo Lo |- =71 L 31 a2
A'
B2 S e T | ™
HOLVNIANAL
YN =7]00A L o L
py Ip ssAy ssA vove$ vorz$
I G m R [
4 L
o MIT 4 100
FLAT m _ M
v“ (NIN) AOSL ‘M¥/ 1 *TW 1
T Addns A0
3 43IM0d
aaviosi f-¥
A01 A2l el

30

Figure 21. Probing 82501/82502 Circuits

AP-274

APPENDIX A
LANHIB SCHEMATICS
PARTS LIST
PAL EQUATIONS
DIP SWITCH SETTINGS
WIRE WRAP SERVICES

A-1

AP-274

8.-010262

%1l _“SUTTECQ SINIUNYLISNI SUX3IL 11l
HN _“¥3IS3IHINUM “ONI SIN3INOJWOI dd ady
82 _0931a NYS ONIN33INION3 3S1TINd 3d
<32AN0S CTHOID
TYIJ¥IUUWOD ANY)D
NOI1dI¥JS3Q A8 33AI0 asgo
Yd_3S0rf NUS _Q17 YII¥3UY HOYLIIH LIH
YI _UAYTI UINYS NOI1lY30d4d0] TIINI IN1
3d0d
NOIlwJ01 3¥NLIVINNBH e

‘S¥Y0LIJP4YI ONITJNOI3A 3IANTONI LON

$300 1SIT Slivd °"N1d ONNO¥S ONY NId ¥33IMOd
N33NM13E ¥0LIJYdYI 4n1°0 & 3NUH ATNOHS 31 HOW3

“3N0EY NMOHS 33¥ ANNOYS

UNY S39U1T0N 3S3IHL 03 SNIJ ¥3INMOJ SNEILINU

‘AZT- ONY ‘NZI+ NS+ SIVINOIY TIVOE IHL :SILON
SNOILO3NNOD ATddNS d¥dAMOd
omaZW|~

6-1d aZi-
98-1d sawuuu Z1-1d
g8-1d anz’z 11-1d
wa-_m_v A_NIE

- ¢ ¢ 1-1

Sa-1d ano d
8-1d nst. L nst L nez 9-1d
es-1d anzz T anzz T anz-z T S-1d
z8-1d v-1d
18-14 >—9 Ty —Je-14d
~|Mm»:.
oy e-1d

ZH WOZ
ago ‘1@ 3SAI) JUBUOSEY [a[leded ZA
ZH W91
ago ©123SAJJ JURUOSAN TO][eded 1A
ago apo1g [EERAE
asgo0 aporag 133
ado N@es -4nzz'@ ‘30 63 ‘82
aso NXZ_ 4n10° EIXS 01
ago Nnes -dnie - ‘Xo31oedey Z213°119
adgo Nn@s ‘4ne " ~J03t10edey fe
asgo NS 3ngzZe 730131 Sede) B,
780 %S _'N@e1 - J40E 303 1oedes 53 %2
aso NOZ ' Jnel - Jo3roedes 2
[(T{7) %3 N0l ~Jd4pz -I0910ede)
ago ZS ‘Mb/1 ‘WYO 3] °X03S1Say 9Zy-£2
aso utd 97 "WYo JY “YOo€d J035159y d3
ago 4S ‘hMb/T ‘WYo JS “X03SISAY Z2y¥ “12y
ago Z3°@ ‘M8/T ‘W40 gpZ ‘I03S1SaY LE]
25 ‘M8/1
ady S1qrsSnd ‘WYo Q@1 ‘X03SISON PAL]
aso Z1 "M8/1 WYOZ ' Ep “303SIS8Y S1y-€1Y
%S ‘(urTw) 2pN@SL
aso “HP /1 ‘WYO WY ‘X03S 1Ty
ado 4S_"NM¥y/1 “WYO @pZ “I03S 01y ‘63
ago Z1 'M8/1 “WYo L'8¢ ‘X035 2Ty "8d ‘¥
ago A4S ‘Mp/1 "wyo HNZ' SX03S] S
asgo ZS_‘MP/1 “WYO 8@l ‘X03S [X]
ezZy ‘s1d
aso 4S_‘NMy/1 "wWYO 3@ -303sSisé Sy “ey-1
INT {1euorido) HONd3I 1TE-HT 0
ado <] n
q60 3 Hill
INT 3 zZn |
aso 3 Zn
11 HOoNd 3t8-9SZ °J rZn
L1IH CTCEENE zZn_zzn |
adgo 3 szn
INI HO¥d3 ¥d-Mr9 °D ezn -
3d X3138040) JG/J
INI 3
3d Aoed JIWIojsSuex] asSIn
INI 3 Al
g0 e n
ago0 3 n
adgo 3 Lzn
ago)
aso]
INT fe]
INT 3 8N |
aso 3 Zn-9n_|
ad0 3 Sn_|
asgo s yrn_‘en
adgo 2 2N
ago o in
3aod
“43u NOIldI¥Js3a S3IN3¥343y

ISIT SLivd

A-2

AP-274

6.-0L0262

PAN
z|
2
snp1-l s _u
€3 4 ¥
2 1
1001 L 3
vy Y IBNT 2]
¥
nﬂv ns+
I
Jdaz $d0zd

[Sd] 80ya
[Sd1 103C

v g ey
s
Elt a1 o
Zd 11]98¢ 8v 8d 8v GTD ¢
oz 8 w g e 3 Mu
S ev]2d 9 e 99 ay
boad 5198 SY ;784 SY ay
Fea s ve ¢ d vd ¥o a9
FZa 91|88 EY¥[H eq eYI av
1@ 21]2%8 e Ba_21|%8 IY[TE 509
ts's e OLUd "oa e '8 __V[Z sq v '8 W[z 809
taras SHTSIrL EZZR
‘946 43
SSIHaay
» =n 710
[4 el a10HEy &1L
» YITHZE TH i
-
» 6
[4 X3 B CIPA
» ax1fez_Gx1983 1qy
8z ay
{ %197 9X1983 qy
4 qy
{ 1z 41 399
sz : s
-
SNAN0H 3|8 s
¢ 1T ay_v1]SaY
- |&! CXTCIEA hdd
» 4o 110y
v SnaWvy 4 Ix¥s7 qx398S, Z109
~ [Reray i etay I TR Sies
P[Tvay ey} Fa¥ Tay
otn Mziaw el 210Y €z _d) 1o
- e elay 319983
Z1 EQ fTevay g ¢ 10y - 19
61 Zv 19 - [F1ay 33 1]
Hog st & 15 e QO I) (T R =C wn (3__%1w
) oJuvyer] 2] Y
o8 €T ; 0L 7 13,1y 98528 Zeeve C 21098t
ST] ¥ 09 2 Ty g8ty INlge BINI96T
b1 os 3 g M e
tZd1| 3% i [¢
T 3 TH os [~.~ zy £
T9de191 I um \z:mnuwnwmx €
= ._o_n_ & w 3 7
€LEAVL E3 z {7
% ¥0STIPL
1] s
4 ! TN-13538
At B
| £5°2 _dl
9Z¥, z§ [, A1D_SAS
s Tr_d3 3
3 Tv '€ d3_ga
TZ 41 AQ¥998s
G

A-3

AP-274

08-010262

—g
€. T4l 9z%
(23] “
(T3 oty Y H
€33 zZud 34
al
TIX aT°
Z8ZSNT Z3zZSN1 m.a
Z|
FLIZ AN
5] 8 ¥ T q
N§IJ9 _ z'ey 2 2847
2] aNg a1y >y
NST[Z 3 b
€1fon 0l [z ey 8 <3
1 {ar]
F1aan noy [+ 8 B
axx A
. Naug
N
anzz°0) oxalg
Teo ' ¥ STEiIX) uyife L z
ey zHueZ L %39’
S ssny = 4doe
&z 8ssn za] 31
atn T ltx3a RN paa T | T T
Zeszen Zo1v93d 10528
zn TS5 1d1 W10 SAS
AUAL g
[FE] 8L <1
AV 8 ~\J 6 (td] 319985
— A » +esIre
LHIHJRM.HIWHI:: T .m_HI_ﬁ
R
ane 1.l ENGEL]
2 2 Ins
. Ix]
ant o+ ' EETTH
Z13 4 EAERE] Be 4
. Elnet nzif T nciv E 1l ¢
ant @ 69e¥93d e
T NETD Snasst 1 9
e-1d. o o slot
8-1d. vz erz
oty ey SUHON 1
¥ ﬂ 3 143
A5+

A-4

AP-274

18-010262

14l snawoy

IS+% 141 @3
ozn _ LN
uwody7 Hodry7
2 wMouomm K wlmuoul« 3
3AA'e7 THU [k GE] Z Q10
€19 Poz 3Ch g1y uum ax]]t
AL s AL mAaaT) v z1 v
11y 11Y] 3
A5+ T]990 g mu n nEv T[990 grobee n ASTT]9dn a.am C] S+ T|ddn o_am u
BY B A o
o oy e et eyg s
X L0 LY 50§ X 20 & — 5y §) L0 Y 3 L0 LY gy §
b3 57190 9% v —sqa 871190 9% iu = 90 9% - 90 [T v
P—sa 23110 S S50 Y P53 21]S0 SY 50] s0 s SO SY 39
F—5a s1]%% ¥ v F—a sT|v° ¥ 56§ ¥o ¥ ¥0 ¥ 50
3 €0 € =] £ €0 €] €0 € €0 €y 3
Z zZ0 2y 3 F—a e1]2° ¢ B Zo Z z0 Zy| 3
T 10 1Y <) Ta 10t Z6 10 1 b—ea z1] !0 1Y 3
—ea 1720 __®Yar v oa 20 oYy Tv P —sa T 22 °Y® 8a e0 ey v
92-9LC 8Z-+92Z 02-v3.2 0z-+92Z
T
troid) (TY-$TY) SSTYAAY
To 143

(B4-STA) WLYA

A-5

AP-274

28-040262

tTed snawvd
g U L& €5 147 an
T
NmthO Hodur
TS°€ 1d) @d
€Zn _ zzn
30P77 ZZ
1S3z oTuny 18967 THIGY
anry P
Sei v Syrer__Tv
ZY Y Zy
4 G b R T
& vy vl vy
2N afET 4 Su_ 3 vy T
b T — s 59
°oy 1D &1 A I] T 101 oYy
L 3 10 $ia 201 Y e gy - 201 LYooy
zZo—§ [@A €01 8YrEr ey €01 88 Fr gy Y
] ey L S €1 o1 m«vm 01 m«ww 2
Z6 19 v >0 X va 201 eIYy7 SOI elvrTy
O zy sy Sa ¥ sa 901 1IYrEF 901 11¥F7
€y] —5a X 9q 01 Z1Y] L01 Z1Y
oY ST_X5a Z 2 Zz
S ol P L8 —d Y ia 801 ZSI37 % 3 801 2s357
L T-drSZSUH 2 T-d>9ZoHH <
6c0seT1Jdl ot ot
ezy [:3%]
A A
(@0-STa) WLvq [1d1
N5+
Prst——
(TV-ETY) SSTAAWY

A-6

AP-274

£8-01026¢2

szn
N~
. [Pl TT 41 oeoad
vosure
XS gz
zzn ¥ 228 1 Pkl TT 43 TIND
38 rosupre
na+ T iz
1zy FAT
G P TT 47 %19 S48
€y d1 IWINL =
es-14.] o 2perl __
NTI0ES 3 E] A+
6e-1 [CEFYZLE] vesSIre
Azi- 8zn szn
a1 eletjrijzilesirtjsilst| ens
e B 3
M:NT X1 8 a|3] sesure
-1 529 ¢ muca 2 1
31 TT 43 1030 §L°_ S N5+
(2 aAa 3! YIS
a1 €-¥hS
€2y ezy
TEn
T T D
6 | L 9 |
3
2 C3
CTa] &1 1
ve Ca ns+
ve1
UET |
CE)
CE)
BZ1
I3 9
een (13 €
S b2
8]) o w szn
)
L ¥ Ve v.A €T a
11 Pevz vosube eosupe o' A
Z szn
T
1— Gov 1 i3s3y «oA“ T (7 431 13533
vosure
CA3]
T2 41 NI-HLUT
(80-240) WLvd

A-7

AP-274

OPTIONAL 1MEG (64Kx16) WORD-WIDE EPROM
27210 DATA (D15-D8)

ADDRESS (A16-A1)

RD

816 37 la1s 01512
A h14 014f2
A1435 ia13 0138
: 341012 012(8
[
)

pojor
wiw
o

33la11 0112
32 la1e 010:

A
A9 29 os|l@ D8
s 26 ng 07|12 D7
| A8 28 |
L7 270 06|13 D6
A6 26 Joc os[ia DS
£ AS 25 |04 ° 2
b Aa 240, 03|
a3 23], 02|
I a2 225, o1
5]

RDHEUS (428]

292010-84

Module Addr.

!RAMHI
{RAMLO

End Addr_dec

{ROMLO - =

dec

Kiyoshi Nishide

"Declarations

PAL1l

A0, Al4, Al5 pin

Al6, Al7, Al8 pin

Al9, BHE

HLDA, S2

RAMLO, RAMHI pin

ROMLO, ROMHI pin

ROM pin

R104 pin
Equations

!Al4 & !A15

Title 'LANHIB Address Decode Logic

Intel Corp. March, 1986’

device 'P1l6L8"' ;
1, 2, 3;
4, 5, 63

pin 7, 8;

pin 9, 11;

. 18, 17;

19, 12;

13;

16;

& !Al6 & !Al7 & !A18 & !A19 &

!ROMHI = Al5 & Al6 & Al7 & Al8 & Al9 & (HLDA # S2) & R104;
!A15 & Al6 & Al7 & Al8 & Al9 & (HLDA # S2) & R104;
!ROM = Al7 & A18 & Al9 & (HLDA # S2) & !R104;

!BHE & (HLDA # S2);

‘A0 & !Al4 & !AL5 & !Al6 & !Al7 & !A18 & !Al9 & (HLDA # S2);

PAL Equations

A-8

intel

AP-274

DIP SWIFCH SETTINGS FOR
VARIOUS OPERATIONS

“1” indicates ON (Switch is closed).
“0” indicates OFF (Switch is open).

“X” indicates Don’t Care.

1. To configure the board to Ethernet or Cheapernet:

SW3 Comment
87654321
Ethernet XX000000
Cheapernet | XX111111 | Transceiver Cable should
not be connected.

program:

2. To run the TSMS program or the Data Link Driver

Sw4

87654321

Comment

'TSMS Program
or

Data Link Driver
Program

XXXX0001

TSMS program uses
the 82530 in
Asynchronous Polling
mode. Data Link Driver
program uses the
825830 in
Asynchronous Polling
and Vectored Interrupt
modes.

3. To select the 2764-20 EPROMs or 27210 EPROM:

Sw3
87654321
2764-20 EPROMs 1XXXXXXX
27210 EPROM OXXXXXXX
4. Dip Switch Setting Examples:
SW3 SwW4
87654321(87654321
1) To run the TSMS Program [1X111111[XXXX0010
from the 2764-20 EPROMs
in Cheapernet Configuration
2) To run the TSMS Program |1X000000|XXXX0010
from the 2764-20 EPROMs
in Ethernet Configuration
3) To run the TSMS Program [0X111111|XXXX0001
or the Data Link Driver
program from the 27210
EPROM in Cheapernet
Configuration
4) To run the TSMS Program |0X000000|XXXX0001
or the Data Link Driver
program from the 27210
EPROM in Ethernet
Configuration

5. Dip Switch SW2 programs the number of wait states

for the 82586 (see Table 3).

intel

AP-274

WIRE WRAP SERVICES SUPPORTING WRAPID

AUGAT***
Interconnection Systems Division

40 Perry Avenue
P.O. Box 1037
Attleboro, MA 02703
(617) 222-2202

100935 South Wilcrest Drive
Houston, TX 77099
(713) 495-3100

Automation Delectronics Corporation

1650 Locust Avenue
Bohemia, NY 11716
(516) 567-7007

dataCon, Inc.***

Eastern Division

60 Blanchard Road
Burlington, MA 01803
(617) 273-5800

Mid-Western Division
502 Morse Avenue
Schaumburg, IL 60193
(312) 529-7690

Western Division

20150 Sunburst Street
Chatsworth, CA 91311-6280
(818) 700-0600

South-Western Division
1829 Monetary Lane
Carrollton, TX 75006
(214) 245-6161

European Division

In der Klinge 5

D-7100 Heilbronn, West Germany
(01731) 217 12

A-10

DATAWRAP

37 Water Street
Wakefield, MA 01880
(617) 938-8911

Elma/EMS
A Division of Sandberg Industries

Berkshire Industrial Park
Bethel, CT 06801
(203) 7979711

1851 Reynolds Avenue
Irvine, CA 92714
(714) 261-9473

3042 Scott Boulevard
Santa Clara, CA 95054
(408) 970-8874

WRAPEX Corporation

96 Mill Street
Woonsocket, RI 02895
(401) 769-3805

November 1985
*** WRAPID distributors

NOTE:
If your wire wrap service company is not listed here
have them contact COMPION, Inc. WRAPID output
specifications are provided free of charge to any inter-
ested wire wrap services.

mter AP-274

APPENDIX B
SOFTWARE LISTINGS—TSMS PROGRAM AND
LANHIB INITIALIZATION ROUTINE

B-1

ntel

AP-274

/3433 343630 38 2438 3 36 34 34 3638 36 36 38 SE 3836 38 3626 31 26 34 30 2436 38 36 38 35 336 34 36 36 SE 30 3026 3 6 34 35 54 35 35 30 34 36 55 3030 6 38 30 35 4030 244 30 36 310 S S 3¢/

/% K/
/3 Traffic Simulator/Monitor Station Program v/
/% for 186/586 High Integration Board and #/
/% iSBC 186/51 %/
/% */
/% Ver. 1.0 December 17, 1784 */
Vel */
/% Kiyoshi Nishide Intel Corporation #/
/% ®/

e # " # * wui/

/# This software can be conditionally compiled to work on the iSBC 186/51 or
on the LANHIB. If ‘set(SBC1B651)’ is added to the compiler call statement,
this source program will be compiled for the iSBC18651. #*/

tsms:

do;

declare main label public;

/% literals #/

$IF SBC18651

declare 1lit literally ‘literally’,
true 1it ‘17,
false lit ‘0’,
forever lit ‘while 1/,
ISCP$LOCSLO lit ‘OFFFOH’,
ISCP$LOCSHI lit ‘07,
SCB$BASES$LO lit ‘07,
SCB$BASE$HI 1it ‘0’,
CA$PORT lit ‘0CBH,
BOARD$ADDRESS$BASE 1it ‘OFOH’,
INTSTYPE$586 lit ‘20H,
INT$TYPE$TIMERO lit ‘30KH’,
INTCTLTIMERO lit ‘OFF32H’,
INTS$7 lit ‘27H‘,
PIC$MASK$130 lit ‘OE2H’,
PICEMASK$186 1it ‘OFF28H’,
ENABLE$586 lit ‘OFEH’,
ENABLE$586%186 lit ‘OEEH’,
PICEOI130 lit ‘OEOH’,
EOI$CMDO$130 lit ‘60H’,
EOI$CMD4%$130 lit ‘64H’,
PICSEQI$186 lit ‘OFF22H‘,
EDI$CMDO%$186 1it ‘0’,
PICVTR186 lit ‘OFF20H’,

292010-31

Traffic Simulator/Monitor Station Program

AP-274

TIMEROSCTL lit
TIMERO$COUNT lit
MAX$COUNTS$A lit
cA lit
ESISPORT lit
NO$LOOPBACK l1it
LOOPBACK 1it

$ELSE

declare lit literally
true lit
false lit
forever lit
1SCP$LOCSLO lit
ISCP$LOCSHI lit
SCB$BASES$LO lit
SCB$BASES$HI lit
CA$PORT lit
BOARD$ADDRESS$BASE 1it
INT$TYPE$586 lit
INT$TYPE$TIMERO lit
INT$CTLS$TIMERO lit
PIC$MASK$1846 lit
ENABLE$586 lit
ENABLE$586%186 lit
PICEDI186 lit
EDI$CMDO$186 lit
EOI$CMD4$184 lit
TIMEROSCTL lit
TIMEROSCOUNT lit
MAX$COUNTSA lit
CA lit
ESI$PORT lit
NO$LOOPBACK lit
LOOPBACK lit

$ENDIF

$IF NOT SBC18651
/# System Configuration Pointer
declare scp structure

(

sysbus byte,
unused (5) byte.,
iscpsaddr$lo word,
iscpsaddrshi word
)

at (OFFFF&H) data (0, O,

SENDIF

/# Intermediate System Configuration Pointer #/

’OFF5&H ",
‘OFFS50H ",
*OFFS2H ‘)
‘0,
‘OCBH”,
‘8,

‘07

‘literally’,
‘17,

‘0,
‘while 17,
‘O3FF8H ",
‘0’

‘0,

‘07,
‘8000H "7,
‘8180H’,
‘127,
‘8,
‘OFF32H ",
‘OFF28H‘,
‘OEFH’,
*OEEH‘,
'OFF22H’,
‘124,
‘8,
‘OFFS96H ",
*OFF50H ",
‘OFF52H',
‘0,
‘8100H’,
‘17,

‘07

#/

0, 0, 0, 0, ISCP$LOCSLO,

ISCPSLOCSHI);

292010-32

Traffic Simulator/Monitor Station Program (Continued)

AP-274

declare iscp$ptr pointer,
iscp based iscp$ptr structure
(

busy byte, /# set to 1 by CPU before its first CA to 586
cleared by 5846 after reading info from it #/

unused byte, /% unused #/

scb$o word, /% offset of system control block #/

scbsb (2) word /# base of system contral block #/
)i

/# System Control Block #/

declare scb structure
(<
status word, /# cause(s) of interrupt, CU state, RU state %/
cmd word, /# int acks, CU cmd, RESET bit, RU cmd #/
cbl¢offset word, /# offset of first command block in CBL #/
rpasoffset word, /% offset of first packet descriptor in RPA #/

crcd$errs word, /# crc error encounterd so far #/
alng$errs word, /# alignment errors #/
rscéerrs word, /# no resources #/

ovrn$errs word /% OVerTun errors #/
)i

/# 82586 Action Commands #/
/% NOP #/

declare nop structure
(
status word,
cmd word,
link¢offset word
)i

/# Individual Address Setup #/
declare iassetup structure
(

status word,

cmd word,
link$offset word,
iataddress (&) byte
)i

/# Configure #/
declare configure structure
(

status word,

cmd word,
link$offset word,
bytescnt byte,
info (11) byte

)i

292010-33

Traffic Simulator/Monitor Station Program (Continued)

B-4

AP-274

10 1
11 1
12 1
13 1
14 1
15 1

/# Multicast Address Setup #/
declare mc$setup structure
(

status word,

cmd word,
linksoffset word,
mc$bytescount word.

mc$address (48) byte /# only 8 MC addresses are allowed #/

)i

/# Transmit #/

/# This transmit command is made of one transmit buffer descriptor and one

1518 bytes long buffer. */

declare transmit structure
¢
status word,
cmd word,
link$offset word,
bdsoffset word.
dest$adr (&) byte,
type word

)i
/% Transmit Buffer Descriptor #/

declare tbd structure
(
act$count word,
link$offset word,
ad0 word,
adl word
)i

/% Transmit Buffer #/

declare txsbuffer (1518) byte;

/% TDR #/

declare tdr structure
(
status word,
cmd word,
linksoffset word,
result word
)i

/# Diagnose #/

declare diagnose structure
(

292010-34

Traffic Simulator/Monitor Station Program (Continued)

ntel

AP-274

16 1
17 1
i8 1
19 1
20 1
21 1

status word,

cmd word,
link$offset word
)i

/# Dump Status #/
declare dump structure
(
status word,
cmd word,
link$offset word,
bufféptr word
)i
/# Dump Area #/

declare dump$area (170) byte;

/# Frame Descriptor #/

/% Receive frame area is made of S RFDs, S5 RBDs, and 5 1514 bytes long

buffers. #/
declare rfd (5) structure
(

status word,

el$s word,
link$offset word,
bd$offset word,
dest$adr (3) word,
src$adr (3) word,
type word

)i
/# Receive Buffer Descriptor #/
declare rbd (5) structure
(
actscount word,
nextébd$link word,
ad0 word,
adl word,
size word
)i
/# Receive Buffer #/
declare rbuf (5) structure
(buffer (1514) byte);
/% global variables #/

declare status word, /% UART status #/

292010-35

Traffic Simulator/Monitor Station Program (Continued)

B-6

~

ntel

AP-274

a2
23
24
25
26
27
28
29

30

31

32

-

[

n

actual word,

cébuf (80) byte,
dhex byte.

ch byte at (@cs$buf),
char$count byte,
receive$count dword,
count dword,
preamble word,
address$length byte,
ad$loc byte,

crc byte,

goback byte.,

reset byte,

delay word,
curécbsoffset word,
current$frame byte,
nos$transmission byte,
stopscount dword,
stop byte,

mcécount byte,

2z byte,

y byte;

/# actual number of chars UART transferred #/
/% buffer for a line of chars #/
/# number base switch #/

/% counter for received frames #/

/# counter for transmitted frames 3/

/# preamble length in word #/

/# address length in byte #/

/# address location control of B2586 #/
/% crc length #/

/% if set, go back to Continuous Mode %/
/# reset flag #/

/# delay conunt for tranmission delay #/
/% offset of current command block #/

/% offset of frame descriptor just used #/

/% transmit terminal frame count s/

/# external procedures %/

read: procedure (a, b, c, d, e) external;
declare (a, c) word,

(b, d, e) pointer;
end read;

write: procedure (a, b, ¢, d) external;
declare (a, c) word,

(b, d) pointer;
end write;

csts: procedure byte external;

end cstsi

/# utility procedures #/

offset: procedure (ptr) word;

/# This procedure takes a pointer variable (selector:offset), caluculates an
absolute address, subtracts the B2586 SCB offset from the absolute address.
and then returns the result as an offset value for the 82586 #/

declare (ptr, ptr$loc) pointer,

base58&6 dword,
w based ptr$loc (2) word;
ptréloc = @ptr;

/# 82586 SCB Base Addres:. (20-bit wide in this 186 based system) #/
292010-36

Traffic Simulator/Monitor Station Program (Continued)

B-7

ntel

AP-274

33
34
35

36

37

3as

39

40

41

42

43

44

45

47

a8

49

(SR

P

n

PRn

n

NN

N O RWWNN P

baseS86 = (shl(double (iscp.scb$b(1)), 16) and OOOFOOOOH) + iscp. scb$b(0);
return low((shl(double (w(1)), 4) + w(0)) — based586);

end offset;

writeln: procedure (a, b, c. d);
/# This procedure writes a line and put a CR/LF at the end. #/

declare (a, c) word,
(b, d) pointer;

call writeta, b, c, d);
call write(O, @(ODH, OAH), 2, @status);

end writeln;

cr$lf: procedure;
/# This procedure writes a CR/LF. #/
call write (O, @(ODH, OAH), 2, @status);

end cr$lf;

pause: procedure;

/# This procedure breaks a program flow, and waits for a char to be typed. #*/
call write(O, @(ODH, OAH, ‘Hit <CR> to countinue’), 23, @status);
call read(1, @csbuf, 80, @actual, @status);
call crslf;

end pavuse;

skip: procedure byte;

/# This procedure skips all leading blank characters and returns the first
non-blank character. #/

declare i byte;

i =0

do while (c$buf(i) = * *);
i=1i+1;

end;

return i;

end skip;

readé$char: procedure byte;
292010-37

Traffic Simulator/Monitor Station Program (Continued)

B-8

ntel

AP-274

58
59
60
61

62

63

74

75
76

78
80

82
83

84

85

86

87
89
20
91

NN N

LU A R A WA NANANA NN V] -

-

-

nPpN N

N W URWLWWN R

/% This procedure reads a line and returns ther first non-blank character. #/

declare i word;
call read(1, @csbuf, BO, @actual, @status);
i = skip;
return(cebuf(id);

end reads$char;

readsbit: procedure byte
/# This procedure reads a bit and returns the value. #/
declare b byte;

do forever;
b = read$char;
if b = ‘1’ then return 1;
else
if b = ‘O’ then return O;
else
call write(O0, @(‘ Enter a 0 or 1 ==> ‘), 20, @status);
end;

end reads$bit;

yes: procedure byte

/# This procedure reads a character and determines if it is a Y(y) or N(n). */

declare b byte;

do forever;
b = read#char;
if (b = ‘Y’) or (b = ‘y’) then return true;
else
if (b = ‘N‘) or (b = ‘n’) then return false;
else
call write(O, @(ODH, OAH, ‘ Enter a Y or N ==> ‘), 22,
end;

end yes;

charstosint: procedure (c) byte
/# This procedure converts a byte of ASCII integer to an integer
declare c¢ byte;

if (0’ <= ¢) and (c <= ‘9’) then return (c - 30H);

else

if(‘A’ <= c) and (c <= 'F’) then return (c - 37H);
else

@status);

#/

292010-38

Traffic Simulator/Monitor Station Program (Continued)

ntel

AP-274

92

93

nn

94

n

95 1

96 2

97

99
101
102
103
104
105
106
107
108
109

LSS EANARARCEVEARARARARAN]

110

111 1

113
114

[N

115 2

116 1

if (’‘a’ <= c¢) and (c <= ‘f’) then return (c - S7H);
else return OFFH;

end char$tosint;

int$tosasci: procedure (value, base, 1ld, bufadr, width);

/# This procedure converts an interger ¢ OFFFFFFFFH to an array of ASCII]

codes.

Input variables are: valure = integer to be converted.
base = number base to be used for conversion,
1d = leading character to be filled in,

bufadr = buffer address of the array.
width = size of array. #/

declare value dword,
bufadr pointer,
¢i, J» base, 1d, width) byte,
chars based bufadr (1) byte;

do i = 1 to width;
J = value mod base:
if § € 10 then chars (width - i) =) + 30H;
else chars (width - i) = j + 37H;
value = value / base;

end;

i=0;

do while chars (i) = ‘0’ and i < width - 1;
chars (i) = 1d;
i=1i+1;

end;

charécount = width - i;

end int$tosasci;

out$word: procedure (wdptr, distance);

/# An integer at (selector of w$ptr): (offset of weptr + distance) is printed
as a 4 digit hexadecimal number. #/

declare chars(4) byte,
wéptr pointer,
distance byte,
w based w$ptr (1) word:

call int$todasci(wl(distance), 16, ‘0, @chars(0), 4);
call write(0, @chars(0), 4, @status);

end outdword;

writedint: procedure(dw, t);

/% An integer (dw) is printed in hexadecimal (t = 1) or in decimal (t = 0). #/
292010-39

Traffic Simulator/Monitor Station Program (Continued)

B-10

ntel

AP-274

117

118
119
120
121
122
123
124
125
126

127

128

129
130
131
132
133

134

135

136

137
138
139
140

141

142

143

144

N WO DNULWRR

-

N RN R

N O RNRNR M)

[

declare dw dword,
chars (10) byte.

t byte;
if t then
do;

call ints$tosasci(dw, 16, O, @chars(0), 8);

call write(0, @chars(B-charscount), char$count, @status);
end;
else
do;

call int$tosasci(dw, 10, O, @chars(0), 10);

call write(0, @chars(10-charscount), chars$count, @status);
end;

end write$int;

ovtddecshex: procedure(du);
/% This procedure prints an integer in decimal and hexadecimal. #/
declare dw dword;

call writesint(dw, 0);

call write(O, @(’ (’), 2, @estatus);

call write$int(dw, 1);

call writet(O0, @(’H)’), 2, @status);

end outs$decshex;

writedoffset: procedure(wsptr);

/# This procedure takes a pointer variable, converts it to a 82586 type offset,
and prints it in hexadecimal. #/

declare w$ptr pointer,
w wordi

call write(0, @(’ at ‘), 4, @status);
w = offset(wdptr); :

call outdword(@w, O0);

call write(O, @(’ ‘), 2, @status);

end writedoffset;

writesaddress: procedure (ptr)i

/% This procedure takes a pointer variable and prints it in the
‘selector:offset’ format. #/

declare (ptr, ptr$loc) pointer,
w based ptrsloc (2) word;

ptrdloc = @ptri
292010-40

Traffic Simulator/Monitor Station Program (Continued)

B-11

ntel

AP-274

145
146
147
148

149

150

151

152
153
154
155
156
157
158
159
160
161

162

163

164

165
166
167
168
169
170
171

172

173

174

LV E RSN N}

n

n

RN WedbEPPUWNN

N NP

call outsword(@u(l)., 0);
call write(0, @(‘:), 1, @status);
call out$word(@w(0). 0);
call write(O0, @(’ ‘), 1, @status);

end write$address;

printswds: procedure(wsptr, nodwords);

/# This procedure prints no$words number of words starting at w$ptr. */

declare w$ptr pointer,
(i, no$words) byte;

if noswords <> 0 then

doi
call cr$lf;
do i = O to noswords - 1;
call outsword(wsptr, i)
if i = 0 then
call writesoffset(wsptr);
call cr¢lf;
end;
end;

end printdwds;

print$str: procedure (stréptr, len);
/# This procedure prints len number of bytes starting at str$ptr. #/

declare (len, i) byte,
chars (2) byte.
stréptr pointer,
str based str$ptr (1) byte;

if len <> O then

do i = 0 to (len - 1);
call int$tosasci(str(i), 16, ‘0’, @chars(0), 2);
call write(O, @chars(0), 2, @status);
call write(0, @C’ ‘), 2, @status);

end;

call cr$l#f;

end printéstr;

printsbuff: procedure (ptr, cnt);
/% This procedure prints cnt number of buffer contents starting at ptr.

declare ptr pointer,
bt based ptr (1) byte,
(i, J) byte,
cnt word;

*/

292010-41

Traffic Simulator/Monitor Station Program (Continued)

B-12

ntel

AP-274

175
176
177
178
179
180
181
182
183
184
185
187
188
189

190
191
192

193

194

195

196
197
.198
199
200
201
202
203
205
206
208
210
211
214
215
216
217
218

219
220

221
223

N WEW RNUOWWSEERIUWNR

n

PP UL WHEDPIBPLIDIPIUNVWWWNR

if cnt > 16 then

do;
i = shr(cnt, 4) - 1;
do jJ = O to i;
tall writedsaddress(@bt(16%y));
call printsstr(@bt(16#y), 16);
if (y = 20) or (y = 40) or (3 = 60) or () = 80) then
call pause;
end;
i=1i+1;
if cnt-16#i <> O then call writedaddress(@bt(16#i));
call printsstr(@bt(16#i), cnt-16#i);
end;
else
do;
call writesaddress(@bt(0));
call printéstr(@t(0), cnt);
end;

end print$bufé;

read$int: procedure (limit) dword:

/% This procedure reads integer characters and forms an integer. If the
integer is bigger than ‘limit’ or an overflow error is encounterred, then
an error message is printed. #/

declare (wd, wh, limit) dword,
(i, J,» k, done, hex, dover, hover) byte:

do forever;
call read(1, @csbuf, 80, @actual, @status);
i, k = skip;
hex, done., dover, hover = false;
wd, wh = 0;
J = char$tosintlcsbuf(i));
do while j <= 15;
if J > 9 then hex = true;
if not dover then
if wd > 429496729 then dover = true;
else if (wd = 42949672%9) and (j > 5) then dover = true;
wd = wd#10 + §;
if not hover then if wh > OFFFFFFFH then hover = true;
wh = wh#ibé +)i
i i+ 1;
J charstosint(csbuf(id);
end;
if ((csbuf(i) <> ‘H’) and (c$buf(i) <> ‘h’) and (c$buf(i) <> ODH) and
(csbuf(i) <> OAH) and (c$buf(i) <> ¢ “)) or (i = k) then
call writeln(O, @(ODH, OAH, ’ Illegal character’), 20, @status);
else
do;

if (c$buf(i) = ‘H’) or (c$buf(i) = ‘h’) then hex = true;
if hex then

292010-42

Traffic Simulator/Monitor Station Program (Continued)

B-13

ntel

AP-274

224
225
227
228
229
230

231

232
233
234
235
236

237

238

239

240
241
242
243
244
245
246
247
249

250
251
252
254
255
256
257
258
259
260
261
262
263
264
265
266
267

268

N WWwdsd & d2dduud

[V ARARA R N ARARCR R NN N NN R N ANANANANAY 1]

do;
if not hover and (wh <= limit) then return wh;
end;
else
if not dover and (wd <= limit) then return wd;
call writeln(O, @(ODH, OAH, ’ The number is too big. '), 25,

estutus);

call write(0, @(’ It has to be less than or equal to ‘), 36,

status);

call outsdec$hex(limit);
call writeln(0, e@(’.), 1, @status);
end;
call write(0, @(’ Enter a number ==> ‘), 20, @status);
end;

end read$int;

putdaddress: procedurel(where);

/% This procedure puts an address typed in hexadecimal to the specified
location ‘where’. #/

declare where pointer,
(i, 3y, m, err) byte,
addr based where (1) byte;

do forever;
err = false;
call read(1, @csbuf, 80, @actual, @status);
i = skip;
m = address$length;
do while (m <> 0) and not err;
J = chars$tosint(csbuf(i));
i$) = OFFH then err = true;
else
do;
addr(m-1) = shl(y, 4);
J = charstosint(csbuf(i+l));
i# J = OFFH then err = true;
else addr(m-1) = addr(m-1) or y;

end;
if not err then
do;
m = cdbuf(i);
if (m = ODH) or (m = OAH) or (m = ‘h’) or (m = ‘H’) or (m =
then return;
end;
call writeln(O, @(ODH. OAH, ’ Illegal character’), 20, @status);
call write(0, @(’ Enter an address in Hex ==2> ‘), 29, @status);
end;

end puts$address;

Y

292010-43

Traffic Simulator/Monitor Station Program (Continued)

B-14

ntel

AP-274

269

270

271
272
274
275

276

277

278
279
280
281
282

283

284

285

RN R

N DR

percent: procedure;

/# This procedure calculates and prints a network percent load generated
by this station. The equation used in this procedure was obtained
from actual measurements. #/

declare i word,

(J» k) dword,
pcent (3) byte;

J = (tbd. act$count and 3FFFH)#8;

i# not ad$loc then k = (2#address$length + 2 + crc + preamble)#8;

else k = (crc + preamble)#8;

if delay <> O then
$IF NOT SBC18651

i = low((1000%(y + k))/(1805 + k + S#double(delay) + y));
$ELSE

i = low((1000#(y + k))/(2021 + k + Sw#double(delay) + y));
$ENDIF

else
$IF NOT SBC18651

i = low((1000#(y + k))/(1810 + k + §));
$ELSE

i = low((1000%(y + k))/(2026 + k + §));
SENDIF

call int$tosasci(i, 10, 0, @pcent(0), 3);

call write(O, @pcent(0), 2, @status);

call write(0, @(’. ‘), 1, @status);

call write(0, @pcent(2), 1, @status);

call writeln(0, @¢’ %’), 2, @status);

end percent;

printé¢networksaddr: procedure (ptr);

/# This station’s address is printed with its least significant bit
in the most right position. #/

declare ptr pointer,
addr based ptr (1) byte,
char (&) byte.
i byte;

292010-44

Traffic Simulator/Monitor Station Program (Continued)

ntel

AP-274

286
a87
288
289

290

291

293
294
295
296

297
298
299
300
301
302
303
304
305

306

307
308
309
310
311
312
313
314
315

316
317
318
319
320
321
322

LV SN A NARA)

-

NN RPRNR

NUHPDHEDELE WHPDPIPUWW

do i = 1 to address%length;

char(i-1) = addr(address$length-i);
end;
call printsstr(@char(0), address$length);

end print$networksaddr;

print$parameters: procedure;
/# This procedure prints transmission parameters. #/

declare w dword.
stgs (&) byte:

call write(O, @(’ Destination Address: ‘), 22, @status);
if not ad¢loc then
call print$networksaddr(@transmit. dest$adr(0));
else
call print$networksaddr(@txsbuffer(0));
if not adsloc then

w = (tbd.act$count and 3FFFH) + address$length # 2 + 2 + crc;

else w = (thd. act$count and 3FFFH) + crc;

call write(0, @(’ Frame Length: ‘), 15, @status);

call write$sint(w, 0);

call writeln(0, @(’ bytes’), & @status);

call write(O, @(’ Time Interval between Transmit Frames:
if delay <> O then

do;
$1F NOT SBC18651
w = 1810 + (double(de.laq) - 1) # 5;
$EL.SE
w = 2026 + (double(delay) - 1) # 5;
$ENDIF

call int$tosasci(w, 10, O, @stgs, 6);
if w >= 10000 then
da;
call write(0, @stgs(0), 2, @status);
call write(O. @(’. ‘), 1, @status);
call write(0, @stgs(2), 2, @status);
call writeln(0, @(‘ miliseconds’), 12, @status);
end;
else
do;
call write(0, @stgs(0), 5, @status);
call write(0, @(’. ‘), 1, @status);
call write(0, @stgs(S), 1, @status);
call writeln(0, @(’ microseconds’), 13, @status);
end;
end;
else

N

40,

@status);

292010-45

Traffic Simulator/Monitor Station Program (Continued)

B-16

ntel

AP-274

323

324
325
326
328
329

330

331

332
333

334

335

336

337
338
339
340
341
342
343
344
345
346

347

348

N O MRRNN R

nR

N UOWWRNWWNR N

$IF NOT SBC18451
call writeln(O, @(’ 159 4 microseconds’), 19, @status);

$ELSE

call writeln(0, @(’ 172.8 microseconds’), 19, @status);

$ENDIF
call write(O, @(’ Network Percent Load generated by this station: ‘), 49,
@status);
call percent:;
call write(O, @(‘’ Transmit Frame Terminal Count: ‘), 32, @status);
if stop then call writesint(stop$count, dhex);
else call write(O, @(’Not Defined’), 11, @status);
call crs$lé;
end print$parameters;
printé$scb: procedure;
/# prints the SCB #/
call writeln(O, @(ODH, OAH, ‘### System Control Block ###‘), 30, @status);
call printswds(@scb. status, B);
end print$sch;
'
waitdscb: procedure;
/# This procedure provids a wait loop for the SCB command word to
become cleared. 1/
declare i word;
i =0;
do while (scb.cmd <> 0) and (i < BOOOH);
i=1i+1;
end;
if scb.cmd <> O then
do;
call write(O, @(ODH, OAH, ’ Wait Time = ‘), 15, @status);
call writedint(i, 0);
call crslf;
end;
end waitdsch;
start$timerO: procedure;
/# B0186 timer0O is started. s/
292010-46

Traffic Simulator/Monitor Station Program (Continued)

B-17

ntel

AP-274

349

350

351

352

353
354

355
356
357
358
359
360
361
362
363
364

367
368
369

370
371
372
373
374
375
376
377
378
379
380
382

LR NARANARARANANANGVE U ARA R R A R ANARANARARANIY)

output (TIMERO$CTL) = OEOQOOH:

end start$timerO;

isr: procedure interrupt INT$TYPE$586 reentrant;
/% interrupt service routine for 82586 interrupt w#/
declare i byte;
/# Enable 82586 Interrupt #/
$IF SBC18651

output (PICSEOI$130) = EOI$CMDO%$130;
enable;

$ELSE

output (PICSEDI$186) = EOI$CMDO$186;:
enable;

SENDIF
/# Frame Received Interrupt has the highest pfioritu #/

it (scb. status and 4000H) = 4000H then
do;
disable;
scb. cmd = 4000H;
output (CASPORT) = CA;
call waitdsch;
if rfd(current$frame). status = OAOQOH then
do;
receivescount = receive$count + 1;
current$frame = currentéframe + 1;
if current$frame = 5 then currentéframe = 0;
end;
return;
end;

if (scb. status and 2000H) = 2000H then
do;
disable;
scb. cmd = 2000H;
output (CASPORT) = CA;
call waitésch;
enable;
if (transmit. status and OAOOOH) = OAQOCOH then
do;
count = count + 1;
if (stop and (count = stopdcount)) then return;
else
do;

202010-47

Traffic Simulator/Monitor Station Program (Continued)

B-18

ntel

AP-274

383
384
385
386
387
388
389
390
391
392

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438

aoeococcoCcOrUOW

SR IR R R S A N A R A I A N N X R NARAR RO W R ARA R R R R RN ARA RNl ol

end;

transmit. status = O;
if delay = O then

do;
disable;
scb. cmd = O100H;
output(CASPORT) = CA;
call waité$sch;
return;

end;

else

do;
call startétimerO;
return;

end;

end;

if (transmit. status and 0020H) = 0020H then

do;

end;

transmit. status = O;
disable;

sch. cmd = O100H;
output (CASPORT) = CA;
call wait$sch;

return;

if (transmit. status and 0400H) = 0400H then

do;

end;

call write(O, @(ODH, ‘ No Carrier Sense!’, ODH).

transmit. status = 0;
disable;

scb. cmd = 0100H;
ouvtput (CASPORT) = CA;
call wait$sch;

return;

if (transmit.status and O200H) = O200H then

do;

end;

call write(O, @(ODH, ’ Lost Clear to Send!’,
transmit. status = 0;

disable;

scb. cmd = O100H;

output (CA$PORT) = CA;

call wait$sch;

return;

if (transmit. status and O100H) = O100H then

do;

end;
end;
if (sch.

call write(O, @(ODH, ‘ DMA Underrun!’, ODH),
transmit. status = 0;

disable;

scb. cmd = 0100H;

ovtput (CASPORT) = CA;:

call wait$sch;

return;

status and BO00OH) = B00OH then

20, estatue);

ODH), 22, @status);

16,

@status);

292010-48

Traffic Simulator/Monitor Station Program (Continued)

B-19

nte[AP-274
439 2 do; :
440 3 disable;
441 3 scb. cmd = 8000H;
442 3 output (CA$PORT) = CA;
443 3 call wait$sch;
444 3 end;
445 2 if (scb.status and 1000H) = 1000H then
444 2 do;
447 3 disable;
448 3 scb. cmd = 1000H;
449 3 output (CA$PORT) = CA;
450 3 call wait®sch;
451 3 call write(O, @(ODH, ’ Receive Unit became not ready. ’, ODH), 33,
@status);
452 3 end;
453 2 if reset then
454 2 do;
455 3 if iscp. busy then
456 3 do;
457 4 call writeln(O0, @(ODH, OAH, ’ Reset failed.’), 14, @status);
458 4 disable;
459 4 sch. cmd = 00BOH:
460 4 autput (CASPORT) = CA;
461 4 call wait$sch;
462 4 output (CASPORT) = CA;
4463 4 call writeln(0, @(’ Software Reset Executed!’), 25, @status):
4464 4 end;
465 3 else reset = false;
466 3 end;
467 2 end isr;
4468 1 tx$isr: procedure interrupt INTSTYPESTIMERO;
/# interrupt survice routine for 80186 timer interrupt#/
469 2 scb. cmd = 0100H;
470 2 output (CASPORT) = CA;
471 2 call waitésch;
$IF SBC18651
output(PICSEDI$130) = EDI$CMD4%130;
enable;
output(PICSEDI®$186) = EQISCMDO%1864;
$ELSE
472 2 output(PICSEOQI®186) = EOISCMD4H186;
$SENDIF
473 2 end tx$isr;
292010-49

Traffic Simulator/Monitor Station Program (Continued)

B-20

ntel

AP-274

474
4735

476
477
478
479

480

481

482

N RN R

$IF SBC18651
isr$7: procedure interrupt INT$7;

/# The BO130 generates an interrupt 7 if the original interrupt is not
active any more when the first interrupt acknowledge is received. #/

call write(O, @(ODH, ‘Interrupt 7‘, ODH), 13, @status);
end isr$7;
$SENDIF
read$byte: procedure (k) byte:
declare k word;
call write(0, @(ODH, OAH, ‘ Enter byte ‘), 14, @status);
call out®decshex(k);
call write(O, @(¢(’ ==> ‘), 5, @status);
return read$int(OFFH);

end readsbyte;

init$186%timer0: procedure;
/% This procedure initializes the 80186 timer 0. #/
declare i byte;
$IF SBC18651
output (INT$CTLSTIMERO) = 8;
call write(O, @(ODH, OAH, ‘ Enter a delay count ==> ‘), 27, @status);

delay = read$int(OFFFFH);
if (delay < 100) and (delay <> 0) then

do;
call crsl#f;
call cr$lé;
call loop#char(35, ‘#');
call write(0, @(’ WARNING ‘), 9, @status);
call loopschar(35, ‘#’);
call writeln(O, @(ODH. OAH. ‘A delay count between O and 100 may be very
‘dangerous when this station starts’), 80, @status);
call writeln(0, @(’to receive many frames separated only by the ',
‘1IFS period (9.6 microseconds). ‘), 75, @status);
call writeln(0, @(‘If this station never receives a frame, then ’,
‘ignore this warning. /), &5, @status);
call loop$char(79, ‘#’);
end;

output (MAX$COUNTS$A) = delay;
call cr$lf;
output (PIC$SMASK$186) = 3EH;

292010-50

.
3

Traffic Simulator/Monitor Station Program (Continued)

B-21

ntel

AP-274

483
484
485
486
487
488

ag9

490
491

492

493
494
495
496
497

498

499
500

501

502
503

504
505

S06
507

So8
509
510
511
S12
513
514
515
516

517
518
519

520

UGV Y]

n

N DWW U NOUORNR RN -

O dUU NP LIDIWLUN NR RN R~

$E1SE

output (INT$CTLS$TIMERO) = OCH;

call write(O, @(ODH, OAH, ’ Enter a delay count ==> ‘), 27,
delay = read$int(OFFFFH);

output (MAXSCOUNTSA) = delay;

call crs$lf;

output (PICSMASKS186) = ENABLE$586%$186;

$ENDIF
end init$1B6stimerO;

setup$iadparameters: procedure;
declare i byte;

@status);

call write(O, @(ODH, OAH, ‘ Configure the 586 with the prewired’
+’ board address ==> ‘), 57, €status);

if yes then
do i = 0 to address$length - 1;

iassetup. iasaddress(i) = input (BOARDSADDRESS$BASE + 10 — 2 # i);

end;
else
do;

call write(O, @(ODH, OAH, ’ Enter this station’‘s address’,

‘ in Hex ==> ‘), 43,
call putdaddress(@iadsetup. iasaddress(0));
end;
end setupiadparameters;
setup$mcéparameters: procedure;

declare (j,» k, done) byte;

J = 0;

@status);

call writeln(O, @(ODH, OAH, ‘' You can enter up to 8 Multicast Addresses. ‘),

done = false;

45, @status);

call write(O0, @(’ Would you like to enter a Multicast Address?’,

‘(Y or N) ==> /),
do while not done;
if yes then
do;
k =) # address$length;
J=9+ 1
call crelf;
if jJ = 9 then
do;

99, @status);

call write(O, @(’ You already entered B Multicast addresses. ‘),
43, @status);

done = true;
end;
else
do;

call write(O, @(’ Enter a Multicast Address ==>

‘), 31, @status):
292010-51

Traffic Simulator/Monitor Station Program (Continued)

B-22

ntel

AP-274

521
522

523
524
525
526
527

529

530
531
532
533

534

535
936

537
538
539
540
541
542
543
544
545
546
547
548
549

550
551
552

553
554
555
556
5§57
959
560
S561

562
563
564
565
567
568
571

573

N O RNNRUNNRNRBOWSGO vua

MRANRUDNORODRANRNRORONN -

N O NURNUUNW QW0Wwbsdad dURN

call putsaddress(@mc$setup. mc$address(k));
call write(O, @(ODH, OAH, ‘ More Multicast Addresses?’,
‘(Y or N) ==> ‘), 42, @status);
end;
end;
else done = true;
end;
if yJ =9 then j = § - 1;
mcdcount = addressslength # ;
mcésetup. mcsbytedcount = mcecount:
call write(O, @(ODH, OAH, ‘ You entered ‘), 15, @status);
call writesint(y, 0);
call writeln(O, @(’ Multicast Address(es). ‘), 23, @status);

end setup$mcé$parameters:
setupsconfigure$parameters: procedure;
declare (k, J) byte;

configure. bytescnt = 11;
configure. info(0) ;

configure. info(1) = 0;
configure. info(2) = 26H;
configure. info(3) = 0;
configure. info(4) = 964;
configure. info(S5) = 0;
configure. info(b) = OF2H;
configure. info(7) = O;
configure. info(8) = 0O;
configure. info(9) = 64;

J = 0;
call write(O, @(ODH, OAH, ‘' Configure command is set up for default’,
’ values. ‘, ODH, OAH, ‘' Do you want to change any bytes?’,

‘(Y or N) ==> ‘), 99, @status);
do while yes;
do while j = 0;
call write(O0, @(ODH, OAH, ‘ Enter byte number (1 - 11) ==> '), 34,
@status);

J = readsint(11);
if J = 0 then
call write(O, @(ODH, OAH. '’ Illegal byte number’), 22, @status);
end;
if J = 1 then configure. byte$cnt = read$bytely);
else configure. info(y — 2) = reads$byte());
J=0;
call write(O, @(ODH. OAH. ’ Any more bytes? (Y or N) ==> ‘), 3,

kstatus);
end;

preamble = shl(1, shr((configure. info (2) and 30H), 4)+1);
address$length = configure. info(2) and O7H; :

if addresstlength = 7 then address$length = 0;

ad$loc = shr((configure. info(2) and 08H), 3);

if shr((configure. info(7) and 20H), 5) then crc = 2; else crc = 4;
if shr((configure. info(7) and 10H), 4) then crc = O;

end setupsconfiguredparameters;

292010-52

Traffic Simulator/Monitor Station Program (Continued)

B-23

ntel

AP-274

574
575

576
577
578
579
580
581

582
583
584

585
586
587
588
589
590
591

592
593
594
595
596
597
598
599
600
601
602
603

604

605
606

607
608
609
610
611
612
613
614

615
616
617

618

W WHdY BV AGLAAD Ad D

PUUPDIIDPUWUWW WHPPDUWW WHDd DUWWWN P=

setuptxparameters: procedure;
declare (size, i) word;

do forever;

nos$transmission = false;
transmit. bd$offset = offset (@tbd. actdcount);
if not adsloc then

do;
call write(O, @(ODH, OAH,
‘ Enter a destination address in Hex), 42, @status);
call putsaddress(@transmit. dest$adr(0));
end;

else call writeln(O, @(’ 82586 is configured to pick up DA, IA,’,
’ and TYPE from TX buffer. ‘), &4, @status);

call crs$lf;

if not ad¢loc then

do;
call write(O, @(ODH, OAH, ‘ Enter TYPE ==> '), 18, @status);
transmit. type = read$int(OFFFFH);
end;
call writeln(O, @(ODH, OAH. ' How many bytes of transmit data?’), 39,
estatus);
call write(O0, @(’ Enter a number ==> ‘), 20, @status);

size = read$int(1518);
tbd. actscount = size or 8000H;
if size <> O then

do;
tbd. linksoffset = OFFFFH;
tbd. ad0 = offset (@txsbuffer(0));
tbd. ad1l = O;
do i = 0 to 1517;
txsbuffer(i) = i;
end;
call writeln(O,
@(ODH, OAH, ’ Transmit Data is continuous numbers (0, t, 2, 3.7,
. Y’), 97, @status);
call write(0, @(’ Change any data bytes? (Y or N) ==3> ‘), U7,
estatus)i
do while yes:
call write(O, @(ODH, OAH, ‘ Enter a byte number ==3 '),
27, @status);
i = read$int(size);
call write(O, @(ODH, OAH, ‘ Byte ‘), 8, @status);
call out$decshex(i);
call write(O0, @(’ currently contains ‘), 20, @status);
call outsdecshex(txsbuffer(i));
call write(O, @(’. ‘), 1, @status);
tx$buffer(i) = readsbyte(i);
call write(O, @(ODH, OAH, ‘ Any more bytes? (Y or N) ==> ‘),
32, @stiatus);
end;
end;
else
transmit. bd$offset = OFFFFH;
call crslf;

292010-53

Traffic Simulator/Monitor Station Program (Continued)

ntel

AP-274

619
620

621
622
623
624

625
626
627
428
&29
630
631

632
634

635

636
637

638
639
640

641

642
643

644
645
646
647

648
649
650
651
652
653
654
655

656
&57

N WU UOWUW0WHd dDUW W

N WU -

NRNRPRDRORKN PRNRN RN -

nR

call init$186¢timer0;

call write(O, @(ODH, OAH, ’ Setup a transmit terminal count?’,
4 (Y or N) ==> '), 49, @status);

if yes then
do;

stop = true;

call write (O, @(ODH, OAH, ‘ Enter a transmit’,

‘ terminal count ==> ‘), 39, @status);

stop$count = read$int(OFFFFFFFFH);
end;
else stop = false;
call crslé;

call crslf;
call printdparameters;
call write(O, @(ODH, OAH, ‘ Good enough? (Y or N) ==>

if yes then return;
end;

end setuptxparameters;
loopschar: procedure (i, j);
declare (i, J, k) byte;
do k =1 to i;
call write(O, @y, 1, @status);

end;

end loop®char;

init: procedure;

declare i byte;

call crs$lf;
call loop#char(13, OAH);
call loopschar(15, * ’);

call writeln(0, @(’TRAFFIC SIMULATOR AND MONITOR‘,
’ STATION PROGRAM), 46,
call loopschar(7, OAH);
call wri.eln(O, @(ODH, OAH, ’ Initialization begun’), 23,
call crslf;
reset = true;
curdchbdoffset = OFFFFH;
output (ESI$PORT) NO$LOOPBACK;
output (ESI$PORT) LOOPBACK;
dhex = false;

/# set up interrupt logic #/

call set$interrupt(INTSTYPES$586, isrt)i
call set$interrupt (INTSTYPESTIMERO, tx$isr);

$IF SBC18651

‘) 29,

@status);

@status);

@status);

292010-54

Traffic Simulator/Monitor Station Program (Continued)

B-25

ntel

AP-274

658
659
660

661

662
663
664
665

666
667
668
669
670
671
672

673
674
&75

676
677
678
680

681
682
683
684

NN

RMRUNNURUNR MNROR

(SR

R

[VGUNVE

call set$interrupt(INTS$7, ist7);
ouvtput (PICEMASK$130) = ENABLESS586$186;

output (PICSEOI$130) = EOI$CMDO%130;
output (PIC$EOI®$130) = EOI$SCMD4$130;
output (PICEQI186) = EOI$CMDO$186;
output (PICEVTR$186) = 30H;

SELSE
output (PICSEOI$186) = EOQISCMDO%$186;
output (PICEOI186) = EODI$CMDA$186;
output (PICSMASK$184) = ENABLESS586;
$ENDIF
/# locate iscp #/
iscp$ptr = ISCP&LOCSLO;:
/# set up fields in ISCP #/
iscp. busy = 1;
iscp. scb$b(0) = SCB$SBASE$LO:
iscp. scb$b(1) = SCBSBASESHI:
iscp. schb$o = offset (@scb. status);
/# set up SCB #/
scb. status = O;

scb. cbl$offset = offset (Rdiagnose. status);
scb. rpatoffset = offset (@rfd(0). status);

sch. crcserrs = 0;
scb. aln$errs = 0O;
scb. rscderrs = 0;

scb. ovrn$errs = 0;
/% set up Diagnose command */

diagnose. status = 0;
diagnose.cmd = 7;
diagnose. link$offset = offset (@configure. status);

/% set up CONFIGURE command #/

configure. status = 0;

configure.cmd = 2;

configure. link$offset = offset (Riassetup. status)i;
call setup®configure$parameters;

/% set up IA command s/

iassetup. status = 0O;

iassetup.cmd = 1;

ia¢setup. linksoffset = offset (@mcesetup. status);
call setup¢iadparameters;

292010-55

Traffic Simulator/Monitor Station Program (Continued)

B-26

ntel

AP-274

685
686
687
688

689
690
691
692
693
694
695
696
697
698
699

700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720

721
722
723

[V VRG]

NUWOWWWWRRDRDR

(SRR AR NN VRN VN UNANARARARARARANARARAY S

nRoN

/% set up MC command #/

mc$setup. status = 0;

mcé$setup. cmd = BOO3H;
mc$setup. linksoffset = OFFFFH;
call setup$mcé$parameters;

/# set up one transmit cb linked to itself #/

transmit. status = O;
call writeln(O, @(ODH, OAH. ’ Would you like to transmit?’),
call write(O, @(’ Enter a Y or N ==> ‘), 20, @status);
if yes then
do;
transmit. cmd = 8004H;
transmit. link$offset = OFFFFH;
transmit. bd$offset = offset (@tbd. act$count);
call setup$tx¢éparameters;
end;
else nodtransmission = true;

/# initialize receive packet area #/

do i = 0 to 3
vfd(i). status = 0;
rfd(i). el$s = O;
rfd(i). link$offset = offset (@rfd(i+1). status);
Tfd(i). bd$offset = OFFFFH;
rbd(i). actscount = O;
rbd(i). nextsbdslink = offset (@rbd(i+1).act$count);
rbd(i). adO = offset (@rbuf(i). buffer(0));
rbd(i). adl = O;
rhd(i). size = 1500;
end;
T£d(0). bd$offset = offset (@rbd(0). act$count);
r£d(4). status = 0O;
rvfd(4). el$s = O;
Tfd(4). linksoffset = offset (@rfd(0). status);
T£d(4). bdsoffset = OFFFFH;
Tbd(4). actd$count = O;
vbd(4). nextsbd$link = offset (@rbd(0). actécount);
rbd(4). ad0 = offset (@rbuf(4).buffer(0));
Tbd(4). adl = O;
Tbd(4). size = 1500;

/% initialize counters #/

count = 0;
Teceivescount
current$frame

0;
0;

/% issue the first CA #/

30,

@status);

292010-56

Traffic Simulator/Monitor Station Program (Continued)

B-27

ntel

AP-274

724

725

726

727
728

729
730
731

732
733
734

735

736
737

738
739
740
741
742

743
744
745
746
747
748
749
750
751

752
754
755
756
757
759
760
761
762
763
764

rn

NP NN P

Py =

MO RNROURNRN DNOHPHIPIIUW VWML

output (CASPORT) = CA;

end init;

printthelp: procedure;

call writeln(0, @(ODH, OAH, ‘' Commands are: ‘'), 16, @status);

call writeln(0, @(ODH, OAH, ’ S - Setup CB D - Display KFD/CD*).
45, @status);

call writeln(0, @(’ P - Print SCB C — SCB Control CMD’),

aa,

@status);

call writeln(0, @(’ L ~ ESI Loopback On N - ESI Loopback Of¢f’),

@

call writeln(0, @(’ A - Toggle Number Base’), 23,

@

call writeln(0, @(’ Z - Clear Tx Frame Counter’), 27, @status),
call writeln(0, @(’ Y - Clear Rx Frame Counter’), 27, @status);
call writeln(0, @(’ E - Exit to Continuous Mode’), 28, @status),

end print$help;

enter$scb¥cmd: procedure;
declare i byte;

/% enter a command into the SCB #/

call crs$lf;
if sch.cmd <> O then

45,
itatus);

tiatus)s

doi
call writeln(O, @(’ SCB command word is not cleared’), 32, @status);
. call write(0, @(’ Try a Channel Attention? (Y or N) ==3> ‘),
39, estatus);
if yes then
do;
output (CASPORT) = CA;
call writeln(0, @(’ Issued channel attention’), 25, @status);
call crslf;
return;
end;
end;
call write(0, @(’ Do you want to enter any SCB commands? (Y or N) ==3 ‘),

53, @statue

if not yes then return;

call write(O, @(ODH, OAH, ‘' Enter CUC ==3> ‘), 17, @status);
i = readsint(4);

scb. emd = scb.cmd or shl(double(i), 8);

if i = 1 then scb.cblsoffset = curscbSoffset;

call write(O. @(ODH, OAH, ‘ Enter RES bit == ‘), 21, @status);
i = read$bit;

scb.cmd = scb.emd or shl(i, 7);

call write(O, @(ODH., OAH, ’ Enter RUC ==> ‘), 17, @status);
i = read$int(4);

scb.cmd = scb.cmd or shlli, 4);

)i

292010-57

Traffic Simulator/Monitor Station Program (Continued)

B-28

ntel

AP-274

765

766
767
768
769

770

771

772
773
774
775
776
777

778

779
780

781
782
783

784
785

786

787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805

- N PR n

N O RRRNBRRN

(VIO

WWw wmP

[ANARARANARARANINANANARARAN TN INARANANANENNA]

if (((scb.cblsoffset = offset (@transmit. status))
and ((scb.cmd and O100H) = O100H)) or ((scb.cmd and O010H) =
and not ((scb.cmd and 0080H) = 0080H)
then goback = 1;
call writeln(O, @(ODH, OAH. ‘' Issued Channel Attention’), 27, e@s
call crelf;
output (CASPORT) = CA;

end enter$scb®cmd;

printstypeshelp: procedure;

Q0G10H))

tatus);

call writeln(0, @(ODH, OAH., OAH. ‘Command block type: ’), 22, @status);

call writeln(0, @(’ N - Nop I - 1A Setup’), 35, @status);
call writeln(O0, @(’ C - Configure M - MA Setup’), 35, @status);
call writeln(0, @(‘ T — Transmit R - TDR’), 30, e@status):

call writeln(0, @(’ D - Diagnose S - Dump Status’), 38, @status);

call writeln(0, @(’ H — Print this message’), 23, @status);

end print$typeshelp:

setup$ch: procedure;
declare (t, valid) byte;

valid = false;
do while not valid;
call write(O, @(ODH, OAH, ‘ Enter command block type (H for~
‘ help) ==> '), 45, @sta
t = readschar;

tue);

if (t <> ‘H’) and (t <> ‘h’) and (t <> ‘T’) and (t <> ‘t’) and
(t <> ’N’) and (¢t <> ‘n’) and (t <> ‘R’) and (t <> ‘r’) and

(t <> ’D’) and (t <> ’d’) and (t <> ‘C’) and (t <> ‘c’) a
(t <> ‘I*) and (t <> ’i’) and (t <> ‘M’) and (t <> ‘m’) a
(t <> ’8S’) and (t <> ’s’) then

nd
nd

call write(O, @(ODH, OAH, ‘ Illegal command block type’), 29,

else
if (t = ‘H’) or (t = “h’) then call print$stypeshelp
else valid = true
end;
if (¢t = 'N’) or (t = ‘n’) then
do;
curscbsoffset = offset (@nop. status);
nop. status = 0;
nop. cmd = BOOOH;
nop. linksoffset = OFFFFH;
end;
if (t = ‘1I’) or (t = ‘i) then
do;
cur$cbsoffset = offset (@ia%¥setup. status);
iatsetup. status = 0O;
ia¢setup. cmd = B0OO1H;
iassetup. link$offset = OFFFFH;
call setupsiasparameters;
end;

@status);

292010-58

Traffic Simulator/Monitor Station Program (Continued)

B-29

£

AP-274

806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852

853

854
855

(O AR NN AN N RARANARARANAN IR NANARARANARAR VN IRANARANANANARSEIRANANARARANANVESNARANANANANAR RN

if (t = 'C*) or (t = ‘c’) then

do;

end;

cur$cbSoffset = offset (@configure. status);
configure. status = 0;

configure. cmd = 8002H;

configure. link$offset = OFFFFH;

call setup$contiguredparameters;

if (¢t = ‘M’) or (t = ‘m’) then

do;

end;

curscbsoffset = offset (@mcdsetup. status);
mc$setup. status = 0;

mc$setup. cmd = B8003H;

mcésetup. link$offset = OFFFFH;

call setup$mcéparameters;

if (t = ‘T’) or (t = ‘t’) then

do;

end;

curscbsoffset = offset (@transmit. status);
transmit. status = O;

transmit. cmd = B004H;

transmit. link$offset = OFFFFH;

call setuptxparameters

if (¢t = ‘R’) or (t = ‘v’) then

do;

end;

cur$cbsoffset = offset (@tdr.status);
tdr. status = O;

tdr. cmd = BOOSH:

tdr. link$offset = OFFFFH;

tdr. result = O;

if (t = ’S’) or (t = ‘s’) then

do;

end;

cur$cbsoffset = offset (@dump. status);
dump. status = 0;

dump. cmd = 800&H;

dump. link$offset = OFFFFH;

dump. buffsptr = offset (@dumpsarea(0));

if (t = ‘D’) or (t = ‘d’) then

do;

end;

curécbsoffset = offset (@diagnose. status);
diagnose. status = 0;

diagnose. cmd = B8007H:;

diagnose. link$offset = OFFFFH;

end setup$ch;

display$command$block: procedure
declare (i, J) byte,

wh pointer,
sel selector,

w word;
292010-59

Traffic Simulator/Monitor Station Program (Continued)

B-30

ntel

AP-274

856
857
858
859

861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
879
880

883
884
885
886
887
888
889

890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
?10
11
912

[ARAN AN INARANANINANANARAN LN VNARCNT NTNTRT NI R R ARARARANARARANARAR SR NARARANGNONARANARUNSNARANANIN RN AN

call crslf;
if curscbsoffset = OFFFFH then
call write(O, @(’ No Command Block to display’), 28, @status);
if curscbsoffset = offset (@nop.status) then
do;
call write(O, @(‘’——~NOP Command Blaock---‘), 23, @status);
call printswds(@nap. status, 3);
end;
if curscbsoffset = offset (@tdr.status) then
do;
call write(0, @(’——-TDR Command Block-—-—‘), 23, @status);
call printswds(@tdr. status, 4);
end;
if curscbsoffset = offset (@diagnose. status) then
do;
call write(0, @(‘---Diagnose Command Block—-—--‘), 28, @status);
call print$wds(@diagnose. status, 3);
end;
if curscbsoffset = offset (@transmit. status) then
do;
call write(0, @(’-—-Transmit Command Block---’), 28, @status);
if not address$length then i = address$length;
else i = address$length + 1;
if ad$loc then call printswds(@transmit. status, 4);
else call printswds(@transmit. status, i/2+1);
call crslé;
call cr$léf;
if transmit. bd$offset <> OFFFFH then
do;

call write(0, @(’~--Transmit Buffer Descriptor—--’), 33, @status);

call printswds(@tbd. actscount, 4);
call write(0, @(ODH, OAH, OAH,

‘’ Display the transmit buffer? (Y or N) ==3> ‘), 44, @status);

if yes then
do;
call cr$lé;
call writeln(0, @(’ Transmit Buffer: '), 17, @status);
w = tbd. act$count and 3FFFH;
call print$buff(@txsbuffer(0), w);

end;
end;
end;
if curtcbsoffset = offset (@iadsetup. status) then
do;

call write(0, @(‘’---1A Setup Command Block---'), 28, @status);
call print$wds(@iassetup. status, 6);

end;

if curdcbsoffset = offset (@configure. status) then

do;
call write(0, @(’-——Configure Command Block---'), 29, @status);
call printdwds(@configure. status, 9);

end;

if curscbsoffset = offset (@mco¥setup. status) then

do;
call write(O0, @€(’——-MC Setup Command Block—---’), 28, @status)i
i = 4 + mcdcount/2;

292010-60

Traffic Simulator/Monitor Station Program (Continued)

B-31

ntel

AP-274

213
914
915
216
917
218
919
920
921
922
923
924
925
926
927
928
92%
930
931
932
933
934
Q35
936
937

938

939
940

941
942
943
944

245
946
?47
?48
949
950
@51
953
954
955
956
957

958
959
60
961
963
964

N WHLDUUSBLDIDUWWWNNWWDIDDIIDUW

NUWWPPPL2UNNWER WRNNR -

EHDdHWN

if mcscount > 24 then
do;
call printswds(@mcésetup. status, 16);
call pause;
i=1i - 16;
call printswds(@mcssetup. mctaddress(B), i);
end;
else call print$wds(@mc$setup. status, i);
end;
if curdcbsoffset = offset (@dump. status) then
doi

call write(0, @(‘—--Dump Status Command Block---‘), 31, @status);

call printswds(@dump. status, 4);
if dump. status = OAOOOH then
do;

call writeln(O, @(ODH, OAH, ’ Dump Status Results’), 22, @stiatus)

call writesoffset(@dumpsareal(0));
call crsléf;
do i =0 to 9
call print$str(@dumpsareal(lé®i), 16);
end;
call printéstr(@dumpsarea(160), 10);
call crslf;
end;
end;

end displayscommands$block;
display$receivesarea: procedure;

declare (i, k, y» 1) byte,
chars(4) byte;

call writeln(0, @(ODH, OAH. ‘' Frame Descriptors:’), 21, @status);

if ad$loc then
do;

call writeln(O, @(ODH, OAH, ’ DA, SA, and TYPE are in buffer.’, ODH,

0AH), 364,
J =3
end;
else j = address$length + 4;
do k = 0 to i
do i = 0 to 4;
call outsword(@rfd(i). status, k)i
if k = 0 then call uriteboffset(@rfd(i). status):
else call loop$char(10, ‘ “);
end:
call cré$lf;
end;

@status);

call writeln(O, @(ODH, OAH, OAH, ’ Receive Buffer Descriptors: ‘), Ui,

do k = O to 4;
do i = C to 4;
call outdword(@rbd(i). actécount, k)i
if k = O then call writedoffset(@rbd(i). actécount);
else call loop$char(10, ’ ‘)
end;

@status);

292010-61

Traffic Simulator/Monitor Station Program (Continued)

B-32

ntel

AP-274

965
966
967

LE
‘970
971
972
973
974
975
977
978

980
981

982
°83
985
986
987
988
989

=
992
993
994

995

EENS
997
998

LB ANARSEREARANAR AN CN SR VEANA)

[LSEE IV SRANANANANCE SR VR Vg

MM -

WONR NN

[SEA]

call crslé;
end;
call write(O, @(ODH, OAH, OAH,
‘ buffers:
if not yes then return;
call writeln(0, @(ODH, OAH,
do i =0 to &;
call write(0, @(ODH.
call write$int(i, 0);

0AH,

’ Receive Buffers. ‘), 19,

‘ Display the rteceive’,

(Y or N) ==X ‘), 46, ®uclaius);

@status)i

* Receive Buffer ‘), 18, @atzta.:,

call writeln(0, @(’ :), 2, @status):

k = rbd(i). act$count and 3FFFH;
call printsbuff(@rbneli). nuffer(0),
call pause:

end;

end display$receivesarea;

displayscbs$rpa:
declare i byte;

procedure;

call write(O0, @(ODH, OAH,

i = read$chari
do while (i <> ‘R‘) and (i < ‘r’) and

* Command Block or Receive Arear it o

k)

o o==n o),

47, @status.,

(i <> ‘C’) and (i <> ‘c’);

call writeln(0, @(ODH, OAH, illegal command’), 18, @status)};
call write(0, @¢(’ Enter R or € ==> ‘), 18, @status);
i = read$char;

end,

if (i = ‘R’ or (i = ‘v‘) then call displaysreceivesarea;

else call display$commands$block;

end displaycbrpa;

process$cmd: procedure;
declare o, i) byte;

goback = 0;

b = read%char;

call crslf;

if (b <> ‘H’) and (b <> ‘h’) and (b <>
(b <> ‘D’) and (b <> ‘d’) and (b <&
(b 2 ‘C) and (b <> ‘c’) and (b <>
(b <> “L‘) and (b <> ‘1) and (b <&
(b <> ‘Z’) and (b <> ‘z*) and (b <&
(b <> ‘A’) and (b <> ‘a’) then

call write(O, @(’ Illegal command’), 16,

‘S’) and (b <> ‘s’) and
‘P’) and (b <» "p " =2nd
‘E’) and (b <> ‘e’) and
‘N‘) and (b <> ‘n

‘Y’) and (b <> ‘y’) and

@status);

if (b = ‘H’) or (b = ‘h’) then call printshelp;

1+ b ‘47) or (b = ‘a’) then
if dhex then
do;
dhex = false;
call write(O,

end;
eise

@(’ Counters are displayed in decimal. /), 3%,

@stutus);

292010-62

Traffic Simulator/Monitor Station Program (Continued)

B-33

ntel

AP-274

1009
1010

1011
1012
1012
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1035
1037
1039
1041
1043

1044

1045
1046

1047
1048
1049

1050
1051
1052
1053
1054
1055
1056
1058

1059
1060

1061

[V E VN NN VN NANARANAN S VEARARAN SR INARARANINANARANARIN VAR ANA]

N W DL PPWUWURN PNNN N~

Ll foed;

@status);

@status);

do;
dhex = true;
call write(O, @(‘ Counters are displayed in hesacdecimal. '), U9,
end;
if# (b = ‘L) or (b = ‘1) then
do;
output (ESI$PORT) = LOOPBACK;
call write(O, @(’ ESI is in Loopback Mode. ‘), 25, @status);
end;
if (b = ‘N’) or (b = ‘n’) then
doi
output (ESISPORT) = NO$LOOPBACK:
call write(O, @(‘ ESI is NOT in Loopback Mode. ‘), 29, @status);
end;
if (b = ‘Z’) or (b = “z’) then
doi
count = O;
call write(0, @(’ Transmit Frame Counter is cleared. ‘), 35
end;
if (b = ‘Y’) or (b = ‘y’) then
do;
receivescount = 0;
sch. crcderrs, scb. alnderrs, sch.rscd$errs, scb. ovrnserrs = 0;
call write(O, @(’ Receive Frame Counter is cleared. '), 34,
end;
if (b = ’'C’) or (b = ‘c’) then call entersschdcmd;
if (b = ’S’) or (b = ‘s’) then call setup$ch;
if (b = ‘P’) or (b = ‘p‘) then call printésch;
if (b = ‘D’) or (b = ‘d’) then call display$cbérpa;
if (b = ‘E’) or (b = ‘e’) then goback = 1;
call crélé
end process$cmd;
getout: procedure
declare b byte;
b = read$char;
goback = 0;
call write(0, @(ODH, OAH, ‘ Enter command (H for help) ==> ‘),

do forever;
if csts then

34,
@status);

do;
disable;
call process®cmd
enable;
if goback then return;
call write(O, @(ODH, OAH, ’‘ Enter command (H for help) ==> ‘), 34,
estatus);
end;
end;
end getout;
292010-63

Traffic Simulator/Monitor Station Program (Continued)

B-34

ntel

AP-274

1062
1063

1064
1065
1066
1067

1068 °

1069
1070
1071
1072
1073
1074
1075
1076
1077

1078
1079
1080
1081
1082
1083
1085
1086
1087
1088
1089
1090
1091
1092
1093

1094

1095

1096

1097

1098
1099
1100
1101
1102
1103
1104
1105

NN OLOWR RDRRNRNBRBNUNBUOODRORNN R~

n

- e R

update: procedure
declare i byte;

call crelf;
call loops$char(10, OAH);
call loop$char(28, ‘#’);
call write(0, @(’ Station Configuration ‘), 23, @status)i
call loop$char(27, ’#);
call cr$lf;
call crs$lé;
call write(O0, @(’ Host Address: ‘), 15, e@status);
call print$networksaddr(@Riatsetup. iataddress(0));
i=0;
call write(O0, @(’ Multicast Address(es): ‘), 24, @status);
if mcesetup. mcebytescount = O
then call writeln(O, @(’No Multicast Addresses Defined’), 30, @status);
else
do while i < mc$setup. mcsbytescount;
call printé$networksaddr(@mncesetup. mcSaddress(i));
call loop%char(24, ’ ‘);
i=i 4+ 6&;
end;
call write(O, @(ODH), 1, @status);
if not nostransmission then call print$parameters;
call write(0, @(’ 82586 Configuration Block: ‘), 28, @status);
call print$str(@configure. info(0), 10);
call cr$lf;
call loop$char(29, ‘#%)i
call write(O, @(’ Station Activities ‘), 20, @status);
call loop$char(29, ‘#’);
call crslf;

call créif;
call writeln(O, .
@(’ # of Good # of Good CRC Alignment No Receive’),

73, @status);
call writeln(O,
e(’ Frames Frames Errors Errors Resource Overrun’),
73, @status);
call writeln(O,
@(’ Transmitted Received Errors Evvors ‘),
72, @status);

end wpdate;

main:

call init;

enable;

do while reset;

end;

disable;

scb. cmd = O0100H;
output(CASPORT) = CA;
call wait$schb

enable;

292010-64

Traffic Simulator/Monitor Station Program (Continued)

B-35

ntel

AP-274

1106 1 do while (diagnose. status and 8000H) <> BO0OH;
1107 2 end;
1108 1 call crslf;
1109 1 if diagnose. status <> OAOOOH
1110 1 then call writeln(0, @(’ Diagnose failed!’), 17 , @status);
1111 1 if configure. status <> OAQOOH
1112 1 then call writeln(0, @(’ Configure failed!’), 18 , @status);
1113 1 if iagsetup. status <> 0AOOOH
1114 1 then call writeln(O, @(’ IA Setup failed!'’), 17 , @status);
1115 1 if mc$setup. status <> 0AOOOH
1116 1 then call writeln(0, @(’ MC Setup failed'’), 17 , @status);
1117 1 scb. cbl$offset = offset (@transmit. status);
1118 1 call writeln(O, @(ODH. OAH, ‘ Receive Unit is active. ‘), 26, @status);
1119 1 disable;
1120 1 scb. cmd = OO010H;
1121 1 output(CASPORT) = CA;
1122 1 call wait$sch;
1123 1 enable;
1124 1 output (ESISPORT) = NO$LOOPBACK:
1125 1 call cr$léf;
1126 1 if not nostransmission then
1127 1 do;
1128 2 call write(0, @(’———Transmit Command Block---'), 28, @status);
1129 2 call printswds(@transmit. status, B);
1130 2 call crs$lf;
1131 2 cur$cbsoffset = offset (@transmit. status);
1132 2 call pause;
1133 2 do z = 1 to 60;
1134 3 call time(250);
1135 3 end;
1136 2 call writeln(O, @(ODH, OAH, ‘transmission started!’), 23, @status);
1137 2 call crslf;
1138 2 disable;
1139 2 scb. cmd = 0100H;
1140 2 output (CA$PORT) = CA;
1141 2 call wait$sch;
1142 2 enable;
1143 2 end;
1144 1 call vupdate;
1145 1 do forever;
1146 2 call write(0, @(ODH, ‘ ‘), 2, @status);
1147 2 do y = 0 to 5;
1148 3 do case y;
1149 4 call writesint(count, dhex);
1150 4 call writesint(receive$count, dhex);
1151 4 call write$int(sch. crc$errs, dhex);
1152 4 call writebint(sch. alnserrs, dhex);
1153 4 call write$int(sch. rsc$errs, dhex);
1154 4 call writesint(sch. ovrn$errs, dhex);:
1155 4 end;
1156 3 char$count = 13 - char$count;
1157 3 call loop$char(char$count, ‘ ’);
1158 3 end;
1159 2 if csts then
1160 2 do;
1161 3 disable;
1162 3 call getout; _
1163 3 call update; 292010-65
1164 3 end;
1165 2 end;
1166 1 end tsms;
MODULE INFORMATION:
CODE AREA SIZE = 23C3H 9155D
CONSTANT AREA SIZE = OF8S5H 3973D
VARIABLE AREA SIZE = 265EH 9822D
MAXIMUM STACK SIZE = 0092H 146D
1994 LINES READ
O PROGRAM WARNINGS
O PROGRAM ERRORS
DICTIONARY SUMMARY:
159KB MEMORY AVAILABLE
23KB MEMORY USED (14%)
OKB DISK SPACE USED
END OF PL/M-B6 COMPILATION
292010-66

Traffic Simulator/Monitor Station Program (Continued)

B-36

nte[AP-274
[AR AR R RS R R G *a4 *# L -
/% %/
/% 186/586 High Integration Board initizlization Routine #/
’u% (This driver is configured for Ethernet/Cheapernet Design *®/
Al Kit Demo Board) #/
/% ,
/% Ver. 2.0 March 14, 1986 *®/
/3% */
/% Kiyoshi Nishide Intet Corporation #*/
R */
/i $- 22 ER S $ -2 - ¥y
/# The conditional compilation pa~ameter ‘EPROM27128’ determines board RKOM
size. If it is true, the B0186’s wait state aenerator is programmed to
0 wait state for upper b4K-byte memory locations. it i* is false, the
wait state genmerator is programmed to O wait state for upper 1<BK-byte
memory locacicn: */
1 ini1B6:
do;
P ¢ declare hib_ir label public;
2 1 declare main label external;
4 1 declare menu laoel evternal;
/% literals #/
S 1 declare lit literally ‘literally’,
UMCS_reg lit ’‘OFFAOH’,
LMCS_reg 1it ‘OFFA2H’,
PACS_reg 1it ‘OFFA4H’,
MPCS_reg lit "OFFASH‘,
INT_MASK_reg lit ‘OFF28H,
ISCP$LOCSLO lit ‘O3FFBH’,
ISCP$LOCSHI lit ‘0‘,
SCC _CH_B_CMD lit ‘8300H,
SCC_Ch_5_DATA 1it ‘8302H,
SCC_CH_A_CMD 1ii ‘9304H’,
SCC_CH_A DATA i1t ‘8306H‘,
N 1it ‘0,
CR lit ‘ODH’,
LF lit ‘OAH’,
BS lit ‘08H’,
sP 1it ‘20H‘,
GM 1it ‘OFA-,
DEL 1it ‘O7FH’,
BEL 1it ‘O7H‘;
292010-67

186/586 High Integration Board Initialization Routine

B-37

AP-274

10
11

12
14

15
16
17

18
20

21

R

R RR R

N N N~ N AR N

PI =

N RN

R

/# System Configuration Pointer #/
declare scp structure
(
sysbus byte,
unused (3) byte,
iscpdaddr$lo word,
iscpsaddre$hi word

)
at (OFFFF&H) data (0, O, 0, O, O, O, ISCPSLOCS$LO, ISCP$LOCHHL;

initsintsclt: procedure;
output(INT _mask_reg) = OFFH; /# mask all interrupts #/
end initsintéclt:

rra: procedure (reg_no) byte;
declare reg_no byte;

if# (reg_no and OFH) <> O then oueput(SCC CH_A_CMD) reg_no and OFH;

return input(SCC_CH_A_CMD);
end rra;
vrb: procedure (reg_no) byte:
declare reg_no byte;

if (reg_ho and OFH) <>0 then output (SCC_CH_B_CMD) = reg_no and OFH;
return input(SCC_CH_B_CMD);

end rrb;
wra: procedure (reg_no, value);
declare (reg_no, value) byte;

if (reg_no and OFH) <> O then output (SCC_CH_A_CMD) = reg_no and OFH;
output (SCC_CH_A_CMD) = value;

end wra;

wrb: procedure (reg_no, value);
declare (reg_no, value) byte;

if (reg_no and OFH) <> O then output (SCC_CH_B_CMD) = reg_no and OFH;
output (SCC_CH_B_CMD) = value:

end wrb;
init$SCC3$B: procedure;

call wrb(09, 01000000b); /3 channel B reset #/
292010-68

186/586 High Integration Board Initialization Routine (Continued)

B-38

AP-274

48

49
51

S2
53
54

55
57

58

59
60

N o NWw - N NN NRRBNRNMNNNRM

N RN -

VRS

[ANARANUEURN]

call wrb(04, 01001110b); /# 2 stop, no parity, brf = 16x #/
call wrb(03, 11000000b); /# rx 8 bits/char, no auto-enable %/
call wrb(05, 01100000b); /# tx 8 bits/char #/

call wrb(10, 0000GOO00b);

call wrb(11, 01010110b); /# rxc = txc = BRG, trxc = BRG out #/
call wrb(12, 00001011b); /# baud rate = 9600 #/

call wrb(13, 00000000b);

call wrb(14, 00000011ib); /# BRG source = SYS CLK, enable BRG #/
call wrb(15, 00000000b); /# all ext status intervupts off #/

call wrb(03, 11000001b); /# scc-b receive enable #/
call wrb(05, 11101010b); /# scc-b transmit enable, dtr on, rts on #/

end init$SCCeB;

c$in: procedure byte public;

do while (input(SCC_CH_B_CMD) and 1) = O; end;
return (input(SCC_CH_B_DATA));

end c$in;

c$out: procedure (char) public;
declare char byte;

do while (input(SCC_CH_B_CMD) and 4) = 0; end;
output(SCC_CH_B_DATA) = char;

end c$out;

read: procedure (filedid, msgéptr, count, actual$ptr, statussptr) public;
declare file$id word,
msg$ptr pointer,
count word,
actuvalsptr pointer,
statuséptr pointer,
msg based msg®ptr (1) byte,
buf (200) byte.
actual based actual$ptr word,
status based status$ptr word,
i word,
ch byte;

/% This procedure implements the ISIS read procedure. All control characters #/
/% except LF, BS, and DEL are ignored. If BS or DEL is encountered, a #/
/% backspace is done. #®/

status = O;

i, ch = 0;

do while (ch <> CR) and (ch <> LF) and (i < 198);
ch = c#in and O7FH;
if (ch = BS) or (ch = DEL) then
do;

292010-69

186/586 High Integration Board Initialization Routine (Continued)

B-39

AP-274

99

100
101

102

103
104

105

N WUNRNURNWY Wdedddbw WHPILEL WP U dd

-

if i > 0 then

do;
i=1i-1;
call c$out(DEL);
call c$out(BS);
call cHout(SP);
call c$out(DEL);
call c$out(BS);
end;
else
call csout(BEL);
end;
else
if ch >= SP then
do;
call csout(ch);
buf(i) = ch;
i=1i4+1;
end;
else
if (ch = CR) or (ch = LF) then
do;
buf(i) = CR;
buf(i + 1) = LF;
i=1i+2
end;
else
call c$out(BEL);
end;

call csout(CR);

if i > count then i = count;

actual = i;

do i = 0 to actual - 1;
msg(i) = buf(i);

end;

end read;

csts: procedure byte public
return ((input(SCC_CH_B_CMD) and 1) <> 0);

end csts;

write: procedure (file$id, msg®$ptr, count, status$ptr) public;
declare (file¢id, count) word,

(msg$ptr, statuss$ptr) pointer,

msg based msg$ptr (1) byte,

status based statusdptr word,

ch byte,

i word;

/% This procedure implements the ISIS write #/

status = 0;

292010-70

186/586 High Integration Board Initialization Routine (Continued)

B-40

ntel

AP-274

106
107
108
109

110
111

112
113

114

115

116
117

118
119
120
121

122

PN W WWw wwnn

i =0
do while i < count
ch = msg(i);
if ((ch >= SP) and (ch < DEL)) or (ch = CR) or (ch = LF) or (ch = NUL)
then
call csout(ch);
else
call c$out(@M);
i =14+ 1;
end;

end write

hib_ir:
$IF EPROM27128

output(UMCS_reg) = OFO38H; /# Starting Address = OFOOOOH,
no wait state #/

$ELSE
output(UMCS_reg) = OEQ38BH; /% Starting Address = OEOQOOOH,
no wait state #/
SENDIF
output(LMCS_reg) = O3FCH; /# 16K, no wait state #/
output(PACS_reg) = 0B3CH; /% PBA = BOOOH, no wait state for
PSCO-3 %/
output(MPCS_reg) = OBFH; /% Peripherals in 1/0 space, no Al & A2
provided, 3 wait states for PSCa4-4 #/
call init$sintsclt
call initSCCB;
go to main;
end inil1Bé;

292010-71

186/586 High Integration Board Initialization Routine (Continued)

B-41

intel

AP-274

APPENDIX C
THE 82530 SCC - 80186 INTERFACE AP BRIEF

INTRODUCTION

The object of this document is to give the 82530 system
designer an in-depth worst case design analysis of the
typical interface to a 80186 based system. This docu-
ment has been revised to include the new specifications
for the 6 MHz 82530. The new specifications yield bet-
ter margins and a 1 wait state interface to the CPU (2
wait states are required for DMA cycles). These new
specifications will appear in the 1987 data sheet and
advanced specification information can be obtained
from your local Intel sales office. The following analy-
sis includes a discussion of how the interface TTL is
utilized to meet the timing requirements of the 80186
and the 82530. In addition, several optional interface
configurations are also considered.

INTERFACE OVERVIEW

The 82530 - 80186 interface requires the TTL circuitry
illustrated in Figure 1. Using five 14 pin TTL packages,
74LS74, 74AS74, 7T4AS08, 7T4AS04, and 74LS32, the
following operational modes are supported:

® Polled

® Interrupt in vectored mode

e Interrupt in non-vectored mode

¢ Half-duplex DMA on both channels
® Full-duplex DMA on channel A

A brief description of the interface functional require-
ments during the five possible BUS operations follows
below.

DATA_(D7-D8)

RD.
TaATeq | [0se® 74a5080 82538
3 190
RESET 1 vz 8
2 vz D7 4 _[ppe TxDA |15
us D 37 Inpe RxDA [13 CHANNEL
|, 72ASED o 3 o Lol "
13 11 74ns04 244574 ' E 29 pB4 ﬁmm
3 4 4 s al& T Z5{002 SYNCE
74A504 = Dl 1 Jon: tTsa
D DO 7]
CLKOUTs N 6 B 6 e 32 fpse CDA_p43
K T3 38, TxpB [-25
24a508 A2 34%a,3 RxDB [27 CHANNEL
PesE | 4 a1 32 o TRYCE 26 B
PEEE |5 | uz)& 33 s] G —
2 UNEE [23
S ®ISE p23
10 /REQB TYSE p22
?'9 ¥ /REGB DB ,;2.2.%___
74LS%?4 B3 IEY e
4 [z £5]iE0 e
92 © cLk sun_n
2
TRTAS El £ E2 5° T Le
3
€ u1l
H ._] FaA574 I o
H ef3 IFee_ DTRZREGA
139 lES
7RS4 12 p
9 8 11
u3 usq NOTES: MW - PULLED HIGH THROUGH SK OHM
U1l - 74LS74
oRal uz - 74ases
U3 - ?4ARS04
74AS04 U4 - 74AS74
UE - 74L832
INTO 12 ~i3
us
74504
DRGO 18 it

us

202010-72

Figure 1. 82530-80186 Interface

AP-274

UNITS:

1286NS/18

80186
82580
UNITS: 126 NS/18
T, T, T, T, T
CLKOUT it gk T R TR R TR T_;‘_ir__r—
D — b TN £ — X
]
DI/R T : T PO FEFE PPN
80186 ALE
R d
BEN : 1
1 1
PCS | 1
1 1
1 1
1]
ADDRESS ~+— — : »
82530 T RN !
DATA I ; % ;
1 TDW
W — e e —
- R ———— | O L s [T —
TPDWR/ 1686—WR/523® (LOW)> TPW':/!OG—W/ESO(HIGH)
292010-74

Figure 3. 80186-82530 Interface Write Cycle

READ CYCLE: The 80186 read cycle requirements are
met without any additional logic, Figure 2. At least one
wait state is required to meet the 82530 tAD access
time.

WRITE CYCLE: The 82530 requires that data must be
valid while the WR pulse is low, Figure 3. A D Flip-
Flop delays the leading edge of WR until the falling
edge of CLOCKOUT when data is guaranteed valid
and WR is guaranteed active. The CLOCKOUT signal

C-2

is inverted to assure that WR is active low before the D
Flip-Flop is clocked. No wait states are necessary to
meet the 82530’s WR cycle requirements, but one is
assumed from the RD cycle.

INTA CYCLE: During an interrupt acknowledge cy-
cle, the 80186 provides two INTA pulses, one per bus
cycle, separated by two idle states. The 82530 expects
only one long INTA pulse with a RD pulse occurring
only after the 82530 IEI/IEO daisy chain settles. As

AP-274

CLKOUT

: 125 NS/12

AD o-15

80186 DT/R

TNTA

CLK

82630

VECTOR

292010-75

Figure 4. 82530-80186 INTA Cycle

illustrated in Figure 4, the INTA signal is sampled on
the rising edge of CLK (82530). Two D Flip-Flops and
two TTL gates, U2 and US5, are implemented to gener-
ate the proper INTA and RD pulses. Also, the INT
signal is passively pulled high, through a 1 k resistor,
and inverted through U3 to meet the 80186’s active
high requirement.

DMA CYCLE: Conveniently, the 80186 DMA cycle
timings are the same as generic read and write opera-
tions. Therefore, with two wait states, only two modifi-
cations to the DMA request signals are nec&ssary
First, the RDYREQA signal is inverted through U.
similar to the INT signal, and second the DTR/REQA
signal is conditioned through a D Flip-Flop to prevent
inadvertent back to back DMA cycles. Because the
82530 DTR/REQA signal remains active low for over
five CLK (82530)’s, an additional DMA cycle could
occur. This uncertain condition is corrected when U4
resets the DTR/REQ signal inactive high. Full Duplex
on both DMA channels can easily be supported with
one extra D Flip-Flop and an inverter.

RESET: The 82530 does not have a dedicated RESET
input. Instead, the simultaneous assertion of both RD
and WR causes a hardware reset. This hardware reset
is implemented through U2, U3, and U4.

ALTERNATIVE INTERFACE
CONFIGURATIONS

Due to its wide range of applications, the 82530 inter-
face can have many varying configurations. In most of
these applications the supported modes of operation

C-3

need not be as extensive as the typical interface used in
this analysis. Two alternative configurations are dis-
cussed below.

‘8288 BUS CONTROLLER: An 80186 based system

implementing an 8288 bus controller will not require
the preconditioning of the WR signal through the D
Flip-Flop U4. When utilizing an 8288, the control sig-
nal IOWC does not go active until data is valid, there-
fore, meeting the timing requirements of the 82530. In
such a configuration, it will be necessary to logically
OR the IOWC with reset to accommodate a hardware
reset operation.

NON-VECTORED INTERRUPTS: If the 82530 is to
be operated in the non-vectored interrupt mode (B step

only), the interface will not require Ul or U5. Instead,
INTA on the 82530 should be pulled high, and pin 3 of
U2 (RD AND RESET) should be fed directly into the
RD input of the SCC.

Obviously, the amount of required interface logic is ap-
plication dependent and in many cases can be consider-
ably less than required by the typical configuration,
supporting all modes of SCC operation.

DESIGN ANALYSIS

This design analysis is for a typical microprocessor sys-
tem, pictured in Figure 5. The Timing analysis assumes
an 8 MHz 80186 and a 4 MHz 82530. Also, included in
the analysis are bus loading, and TTL-MOS compati-
bility considerations.

intel

AP-274
ADDRESS
ATCH
MICROPROCESSOR ADDRESS BUS >
ALE
LD CONTROL BUS >
ROM RAM 1/0
DATA BUS >
DATA
TRANSCEIVER
292010-76

Figure 5. Typical Microprocessor System

Bus Loading and Volitage Level
Compatabilities

The data and address lines do not exceed the drive ca-
pability of either 80186 or the 82530. There are several
control lines that drive more than one TTL equivalent
input. The drive capability of these lines are detailed
below.

WR: The WR signal drives U3 and U4.

* ol (2.0 mA) > il (—0.4 mA + —0.5 mA)
loh (—400 pA) > lih (20 pA + 20 pA)

PCSS5: The PCSS5 signal drives U2 and U4.

* 1ol (2.0 mA) > lil (—0.5mA + —0.5 mA)
loh (—400 pA) > lih (20 pA + 20 pA)

INTA: The INTA signal drives 2(U1) and US.

* ol (20 mA) > il (<0.4 mA + —0.8 MA + —0.4 mA)
loh (—400 pA) > lih (20 pA + 40 pA + 20 pA)

All the 82530 I/0O pins are TTL voltage level compati-
ble.

TIMING ANALYSIS

Certain symbolic conventions are adhered to through-
out the analysis below and are introduced for clarity.

1. All timing variables with a lower case first letter are
82530 timing requirements or responses (i.e., tRR).

2. All timing variables with Upper case first letters are
80186 timing responses or requirements unless pre-
ceded by another device’s alpha-numeric code (i.e.,
Tclel or 373 Tpd).

3.In the write cycle analysis, the timing variable
TpdWR186-WR530 represents the propagation_de-
lay between the leading or trailing edge of the WR
signal leaving the 80186 and the WR edge arrival at
the 82530 WR input.

Read Cycle

1. tAR: Address valid to RD active set up time for the
82530. Since the propagation delay is the worst case
path in the assumed typical system, the margin is calcu-
lated only for a propagation delay constrained and not
an ALE limited path. The spec value is 0 ns minimum.

* 1 Tclcl — Tclav(max) — 245 Tpd(max) + Tclrl(min) +
2(U2) Tpd(min) — tAR(min)

= 125 — 55 — 20.8 + 10 + 2(2) — 0 = 63.2 ns margin

intel

AP-274

2. tRA: Address to RD inactive hold time. The ALE
delay is the worst case path and the 82530 requires O ns
minimum.

* 1 Tclel — Telrh (max) + Tchlh(min) + ’373 LE
Tpd(min) — 2(U2) Tpd(max)

= 55— 55+ 5+ 8 — 2(5.5) = 2 ns margin

3. tCLR: CS active low to RD active low set up time.
The 82530 spec value is 0 ns minimum.

* 1 Tclel — Tclesv(max) — Telrl(min) — U2
skew(RD — CS) + U2 Tpd(min)

=125 — 66 — 10 — 1 + 2 = 50 ns margin

4. tRCS: RD inactive to CS inactive hold time. The
82530 spec calls for 0 ns minimum.

* Tescsx(min) — U2 skew(RD — CS) — U2 Tpd(max)

= 35 — 1 — 5,5 = 28.5 ns margin

5. tCHR: CS inactive to RD active set up time. The
82530 requires 5 ns minimum.

*

1 Telel + 1 Tehel — Tehesx(max) + Telri(min) — U2
skew (RD — CS) + U2 Tpd(min) — tCHR

=125+ 656 - 35 - 10 — 1 + 2 — 5 = 131 ns margin

6. tRR: RD pulse active low time. One 80186 wait state
is included to meet the 150 ns minimum timing require-
ments of the 82530.

* Trrh(min) + 1(Tclciwait state) — 2(U2 skew) — tRR
= (250—50) + 1(125) — 2(1) — 150 = 173 ns margin

7. tRDV: RD active low to data valid maximum delay
for 80186 read data set up time (Tdvcl = 20 ns). The
margin is calculated on the Propagation delay path
(worst case).

*

2 Tclel + 1(Tclclwait state) — Tclri(max) — Tdvcl(min)
— '245 Tpd(max) — 82530 tRDV(max) — 2(U2) Tpd(max)

= 2(125) + 1(125) — 70 — 20 — 14.2 — 105 — 2(5.5)
= 154 ns margin

8. tDF: RD inactive to data output float delay. The
margin is calculated to DEN active low of next cycle.

*

2 Tclel + Tclch(min) — Tcirh(max) + Tchetv(min) —
2(U2) Tpd(max) — 82530 tDF(max)

= 250 + 556 —55 + 10 — 11 — 70 = 179 ns margin

9. tAD: Address required valid to read data valid maxi-
mum delay. The 82530 spec value is 325'ns maximum.

*

3 Tclel + 1(Tclclwait state) — Tclav(max) — 373
Tpd(max) — *245 Tpd — Tdvcl(min) — tAD

= 375 + 1256 — 556 — 20.8 —14.2 — 20 —325 = 65 ns
margin

Write Cycle

1. tAW: Address required valid to WR active low set
up time. The 82530 spec is 0 ns minimum.

* Tclel — Tclav(max) — Tevetv(min) — '373 Tpd(max)
+ TpdWR186 — WR530(LOW) [Tclcl — Tevetv(min) +
U3 Tpd(min) + U4 Tpd(min)] — tAW

=126 -55—-5—-208+[125 -5+ 1+ 44] -0
= 170.6 ns margin

2. tWA: WR inactive to address invalid hold time. The
82530 spec is O ns.

* Telch(min) — Tevetx(max) + Tchih(min) + '373 LE
Tpd(min) — TpdWR186 =WR530(HIGH) [U2 Tpd(max) +
U3 Tpd(max) + U4 Tpd(max)]

=556—-655+5+8—[55+3+71 = -26ns
margin

3. tCLW: Chip select active low to WR active low hold
time. The 82530 spec is O ns.

* 1 Tclel — Telesv(max) + Tevetv(min) — U2 Tpd(max)
+ TpdWR186=WR530(LOW) [Tclcl — Tevetv(min) + U3
Tpd(min) + U4 Tpd(min)]

=125-66+5—55+[125 -5 + 1 + 44] =
183.9 ns margin

4, tWCS: WR invalid to Chip Select invalid hold time.
82530 spec is O ns.

* Texesx(min) — U2 Tpd(max) —
TpdWR186=WR530(HIGH) [U2 Tpd(max) + U3
Tpd(max) + U4 Tpd(max)]

=35+ 1.5 — [6.5 + 3 + 7.1] = 20.9 ns margin

5. tCHW: Chip Select inactive high to WR active low
set up time. The 82530 spec is 5 ns.

* 1 Tclel + Tehel(min) + Tevetv(min) — Tchesx(max) —
U2 Tpd(max) + TpdWR186=WR530(LOW) [Tclcl —

Tevetv(min) + U3 Tpd(min) + U4 Tpd(min)] — tCHW

=1254+55+5—-35—-55+ [125 -5 + 1 + 4.4] —
5 = 264 ns margin

6. tWW: WR active low pulse. 82530 requires a mini-
mum of 60 ns from the falling to the rising edge of WR.
This includes one wait state.

intel

AP-274

Twiwh [2Tclel — 40] + 1 (Tciciwait state) — TpdWR/
186 —WR530(LOW) [Tclcl — Tevety(min) + U3 Tpd(max)
+ U4 Tpd(max)] + TpdWR/186= WR/530(HIGH) (V]
Tpd(min) U3 Tpd(min) + U4 Tpd(min)] —

=210 + 1(125) — [125 — 5 + 45 + 9.2] — [1.5 + 1
+ 3.2] — 60 = 135.6 ns margin i

7. tDW: Data valid to WR active low setup time. The
82530 spec requires O ns.

* Tevetv(min) — Tcldv(max) — '245 Tpd(max) +
TpdWR186—WRS530(LOW) [Tclel — Tevetv(min) + U3
Tpd(min) + U4 Tpd(min)]

=5—44 — 142 + 125 -5 + 1.0 + 4.4 = 722 ns
margin

8. tWD: Data valid to WR inactive high hold time. The
82530 requires a hold time of O ns.

* Tclch — skew [Tovotx(max) + Tcvetx(min)} + 245
OE Tpd(min) — TpdWR186 —WR530(HIGH) [U2 Tpd(max)
+ U3 Tpd(max) + U4 Tpd(max)]

=55—-5+ 1125 - [55+ 3.0 + 7.1] =
margin

—50.6 ns

INTA Cycle:

1. tIC: This 82530 spec implies that the INTA signal is
latched internally on the rising edge of CLK (82530).
Therefore the maximum delay between the 80186 as-
serting INTA active low or inactive high and the 82530
internally recognizing the new state of INTA is the
propagation delay through U1 plus the 82530 CLK pe-
riod.

*

U1 Tpd(max) + 82530 CLK period
= 45 + 250 = 295 ns

2. tCL: rising edge of CLK to INTA hold time. This
spec requires that the state of INTA remains constant
for 100 ns after the rising edge of CLK. If this spec is
violated any change in the state of INTA may not be
internally latched in the 82530. tCI becomes critical at
the end of an INTA cycle when INTA goes inactive.
When calculating margins with tCI, an extra 82530
CLK period must be added to the INTA inactive delay.

3. tIW: INTA inactive high to WR active low mini-

mum setup time. The spec pertains only to 82530 WR
cycle and has a value of 55 ns. The margin is calculated
assuming an 82530 WR cycle occurs immediately after
an INTA cycle. Since the CPU cycles following an
82530 INTA cycle are devoted to locating and execut-
ing the proper interrupt service routine, this condition

C-6

should never exist. 82530 drivers should insure that at
least one CPU cycle separates INTA and WR or RD
cycles.

4. tWI: WR inactive high to INTA active low mini-
mum hold time. The spec is 0 ns and the margin as-
sumes CLK coincident with INTA.

* Telel — Tevetx(max) — TpdWR186 — WRS30(HIGH)
[U3 Tpd(max) + U4 Tpd(max)] + Tcvctv(min) + U1
Tpd(min)

125—55—[55+3+71]+5+10—694ns
margin

5. tIR: INTA inactive high to RD active low minimum
setup time. This spec pertains only to 82530 RD cycles
and has a value of 55 ns. The margin is calculated in
the same manner as tIW.

6. tRI: RD inactive high to INTA active low minimum
hold time. The spec is 0 ns and the margin assumes
CLK coincident with INTA.

*

Tclel — Telrh(max) — 2 U2 Tpd(max) + Tevetv(min)
+ U1 Tpd(min)

= 125 — 55 — 2(5.5) + 5 + 10 = 74 ns margin

7. tIID: INTA active low to RD active low minimum
setup time. This parameter is system dependent. For
any SCC in the daisy chain, tIID must be greater than
the sum of tCEQ for the highest priority device in the
daisy chain, tEI for this particular SCC, and tEIEO for
each device separating them in the daisy chain. The
typical system with only 1 SCC requires tIID to be
greater than tCEQ. Since tEI occurs coincidently with
tCEQ and it is smaller it can be neglected. Additional-
ly, tEIEO does not have any relevance to a system with
only one SCC. Therefore tIID > tCEQ = 250 ns.

* 4 Tclel + 2 Tidle states — Tevetv(max) — tiC [U1
Tpd(max) + 82530 CLK period] + Tcvctv(min) + U5
Tpd(min) + U2 Tpd(min) — tIID

= 500 + 250 — 70 — [45 + 250] + 5 + 6 + 2 — 250
= 148 ns margin

8. tIDV: RD active low to interrupt vector valid delay.
The 80186 expects the interrupt vector to be valid on
the data bus a minimum of 20 ns before T4 of the sec-
ond acknowledge cycle (Tdvcl). tIDV spec is 100 ns
maximum.

* 3 Tclel — Tevetv(max) — U5 Tpd(max) —
Tpd(max) — tIDV(max) — '245 Tpd(max) — Tdvcl(min)

=375 —70 —25 — 55 — 100 — 142 — 20 = 140.3
ns margin

intel

AP-274

9. tII: RD pulse low time. The 82530 requires a mini-
mum of 125 ns.

* 3 Tclcl — Tevetv(max) — US Tpd(max) —
Tpd(max) + Tcvetx(min) + U5 Tpd(min) + U2 Tpd(min)
— tlli(min)

=375—-70-25-55+5+6+ 15— 125 =
162 ns margin

DMA Cycle

Fortunately, the 80186 DMA controller emulates CPU
read and write cycle operation during DMA transfers.
The DMA transfer timings are satisfied using the above
analysis. Because of the 80186 DMA request input re-
quirements, two wait states are necessary to prevent
inadvertent DMA cycles. There are also CPUDMA in-
tracycle timing considerations that need to be ad-
dressed.

1. tDRD: RD inactive high to DTRREQ (REQUEST)
inactive high delay. Unlike the READYREQ signal,
DTRREQ does not immediately go inactive after the
requ&eted DMA transfer begms Instead, the DTRREQ
remains active for a maximum of 5 tCY + 300 ns. This
delayed request pulse could trigger a second DMA
transfer. To avoid this undesirable condition, a D Flip
Flop is implemented to reset the DTRREQ signal inac-

tive low following the initiation of the requested DMA ,
transfer. To determine if back to back DMA transfers -

are required in a source synchronized configuration,
the 80186 DMA controller samples the service request

line 25 ns before T1 of the deposit cycle, the second

cycle of the transfer.

* 4 Tclel — Tclesv(max) — U4Tpd(max) — Tdrqcl(min)

= 500 — 66 — 10.5 — 25 = 398.5 ns margin

2. tRRI: 82530 RD active low to REQ inactive high
delay. Assuming source synchronized DMA transfer,
the 80186 requires only one wait state to meet the tRRI
spec of 200 ns. Two are included for consistency with
tWRI

* 2 Tclel + 2(Tclclwait state) —
Tpd(max) — Tdrqcl — tRRI

Telri(max) — 2(U2)

=2(125) + 2(125) — 70 — 2(5.5) — 200 = 219 ns

margin

3. tWRI: 82530 WR active low to REQ inactive high
delay. Assuming destination synchronized DMA trans-
fers, the 80186 needs two wait states to meet the tWRI
spec. This is because the 80186 DMA controller sam-
ples requests two clocks before the end of the deposnt
cycle. This leaves only 1 Tclcl + n(wait states) minus
WR active delay for the 82530 to inactivate its REQ
signal.

* Tclol + zgic!ciwalt state) — Tcvetv(min) —
TpdWR186—WR530(LOW) [Tclel — Tevetv(min) + U3
Tpd(max) + U4 Tpd(max)] — Tdrgel — tWRI

=375 -5—-[1256 — 5 + 45 + 9.2] — 25 — 200 =
11.3 ns margin

NOTE:
If one wait state DMA interface is required, external
logic, like that used on the DTRREQ signal, can be
used to force the 82530 REQ signal inactive.

4. tREC: CLK recovery time. Due to the internal data
path, a recovery period is required between SCC bus
transactions to resolve metastable conditions internal to
the SCC. The DMA request lines are marked from re-
questing service until after the tREC has elapsed. In
addition, the CPU should not be allowed to violate this
recovery period when interleaving DMA transfers and
CPU bus cycles. Software drivers or external logic
should orchestrate the CPU and DMA controller oper-
ation to prevent tREC violation.

Reset Operation

During hardware reset, the system RESET signal is as-
serted high for a minimum of four 80186 clock cycles
(1000 ns). The 82530 requires WR and RD to be simul-
taneously asserted low for a minimum of 250 ns.

* 4 Tclel — U3 Tpd(max) — 2(U2) Tpd(max) + U4
Tpd(min) — tREC

= 1000 — 17.6 — 2(5.5) + 3.5 — 2560 ns = 725 ns
margin

intel

INTEL CORPORATION, 3065 Bowers Ave., Santa Clara, CA 95051; Tel. (408) 987-8080

INTEL CORPORATION (U.K.) Ltd., Swindon, United Kingdom; Tel. (0793) 696 000

Printed in England.by Ben Johnson/3K/860525

