|nte| APPLICATION AP-279
NOTE

May 1986

Implementing an EPLD Design
Using Intel’s Programmable
Logic Development System

LAKSHMI JAYANTHI
DSO APPLICATIONS

8-9 Order Number 280310-001

intel

AP-279

OVERVIEW

Welcome to the fascinating world of ERASABLE PRO-
GRAMMABLE LOGIC DEVICES (EPLDs) and Intel’s
Programmable Logic Development System (iPLDS). This
application note has been written for the newcomer to
Intel’s devices and design tools. It has been designed as a
step-by-step guide through the tools but should also prove
useful as a reference document for the experienced logic
designer.

By the end of this application note you will have
designed/solved multiple logic problems and be in a posi-
tion to implement solutions to many of the digital design
challenges you face today. It is anticipated that this appli-
cation note will be used in conjunction with Intel’s iPLS
software. To increase the usefulness of this application
note, Intel will supply a PCB card for you to experiment
on and a sample diskette (see Appendix E for details).

This application note is divided into the following three
sections:

1. An introduction to Erasable Programmable Logic
Devices (EPLD)

2. An introduction to Intel’s Programmable Logic De-
velopment System (iPLDS)

3. Implementation of EPLD and iPLDS using detailed
examples to implement a logic design.

INTRODUCTION

Programmable logic in the form of PALs have been availa-
ble for some time. They have become more complex as
Large Scale Integration (LSI) techniques have been ap-
plied to this technology.

The benefits of Large Scale Integration circuits are many
fold. These circuits offer lower manufacturing costs,
since the use of customized LSI circuits reduces required
printed circuit board space, thereby significantly reducing
board costs. These circuits also consume lower power so
less expensive power supplies are required and cooling
fans are also eliminated. LSI circuits also have higher reli-
ability than equivalent systems comprised of many low
density standard components.

As end users of semiconductors moved into higher and
higher levels of integration, chip designers found it more
and more difficult to define larger and larger blocks of
logic. These difficulties led to the emergence of the
user-defined Application Specific Integrated Circuit
(ASIC).

The options available for application specific logic are ex-
plained below and shown in Figure 1.

ASIC
SEMI-CUSTOM CUSTOM
PROGRAM- GATE STANDARD FULL
MABLE ARRAY CELL CUSTOM
LOGIC
2442

Figure 1. Logic Options

Full Custom: These circuits can be tailored to give the
best functional performance with the highest level of inte-
gration, the smallest silicon area, the lowest power use,
and be produced for the least cost at high production
volumes.

Standard Cell Library: This approach represents an in-
tegrated circuit which is composed of predesigned and
precharacterized cells chosen from a computer data base
library of cells.

Gate Arrays: These are integrated circuits that contain a
regular, usually square, matrix of predefined logic gates.

User Programmable Logic: The concept of user pro-
grammable logic is to provide the designer with the bene-
fits of custom LSI chips from standard products.

A recent innovation in the programmable logic field has
been Intel’s introduction of an ERASABLE Program-
mable Logic Device. Using the same technology used in
the manufacture of EPROMs, Intel now offers increased
flexibility to the logic designer.

Intel has addressed the limitations of gate arrays and fuse
programming logic with its EPLD products and develop-
ment system support tools. The benefits to the system de-
signer are:

® Greatly reduced lead times

® Low design costs

® Ease of design changes

® Low power dissipation from CHMOS technology

Multiple programming facility

® Maximum flexibility in each chip and the ability to
erase and reprogram

High density products that maximize function, integra-
tion, and quality

A self-contained, low-cost sophisticated development

system based upon the industry standard IBM PC XT
or AT.

8-10

intal

AP-279

Table 1. Intels EPLDs

EPLD | Gates | Pins | Dedicated | .
Inputs

5C031 | 300 | 20 10 8

5C060 | 600 | 24 | 4 16

5C020 | 900 | 40 12 |24

5C121 | 1200 | 40 13 | 24

5C180 | 1800 | 68 | . 12 48

EPLD:s are now a cost-effective solution to the problem of
large scale logic integration. EPLDs are the simplest form
of high density application-specific logic to implement.
At present, the following logic devices are available from
Intel as shown in Table 1. i

Intel’s EPLDs use the. “‘Sum Of Products” architecture
with programmable AND and fixed OR gates to drive a
combinatorial or registered output. Each of the devices
listed in Table 1 has different attributes and resources tar-
-geted at specific applications.

In general each device contains multiple sets of program-
mable MACROCELLS as shown in Figure 2.

Everything is programmable (and erasable if you need to
make modifications). Product terms may be generated
from any combination of input terms—any terms not used
are considered a ‘“don’t-care” in the array. The output
register is also programmable—you can choose D-type,
Toggle, SR, or even JK FLIP-FLOPs; you can even
choose no output register if you only require combinato-
rial outputs. The clock and output enables are also
programmable. ‘ '

Intel EPLD devices are available in many configurations
to fit most applications. A complete listing of data sheet
availability is covered in Appendix E.

DESIGN TECHNIQUES USING INTEL'S
EPLDS

Designing with EPLDs is similar to designing with stan-
dard TTL logic circuits. The focus moves from ‘“how can
I configure this design with standard parts” to “what else
could I replace using this EPLD”. Remember, if you ever .
use all of an EPLDs resources you just move up the de-
vice chain to the next bigger component—all of the work
you did is DIRECTLY PORTABLE to a larger device.

Any network, either combinatorial or registered, has an
equivalent two level form. Any logic circuit consisting of
AND, OR, NOR, NAND, XOR Logic can easily be con-
verted into the corresponding truth table. Any Boolean
expression, no matter how complex, may be written in
Sum-Of-Products form. This Sum-Of-Products expres-
sion that has been derived from the truth table can be re-
duced until it has as few product terms as possible. This
procedure can be repeated for any complex network.

Let us consider a very simple network as shown in Figure

.3. This logic circuit consists of an AND gate, an OR gate

and a NOT gate. The inputs are A, B, C, and the output
is Y.

For this simple .network, the truth table is shown in
Table 2:

A Boolean expression can easily be written from the truth
table in a Sum-Of-Products form. This expression con-
tains the relationship between the inputs and the output.

AND ARRAY

PRODUCT TERMS

OR
ARRAY

INPUT TERMS
(INCLUDING FEEDBACK)

CLOCK OUTPUT

ENABLE

O/P OUTPUT

REG I/ PIN

~———— FEEDBACK

2443

Figure 2. Macrocell Arch

8-11

AP-279

A AND
B_

—J o>
C——NOT

2444

Figure 3. Simple Network

" Note that the output Y is true in five of these eight states
(0,2,4,6, and 7) so expressing Y in the form
“Sum-Of-Products” by writing the ones in terms of A, B,
and C ylelds

= /Ax/Bx/C + /AxBx/C + A*/B*/C
+ AxBx/C + AxBxC

Hence, given any network, that network can be converted
into its truth table. Next, a Sum-Of-Products expression
that has the same truth table can be derived. If so desired,
this Sum-Of-Products expression can be reduced using
DeMorgan’s theorem to simplify the circuit (you will see
later that this will not be required).

DEVELOPMENT SUPPORT

Development tools are critical to the use of new technolo-
gies because tools allow you to control and use a new
technology. Good tools help you, the designer, to work in
familiar methods, then translate the design to the device.:

Good tools broaden the applications by making it easy to
use new technology in designs. They are not a barrier to
using the technology, but encourage its use and
applications.

Advanced and innovative technologies need similar ad-
vancements and innovations in the corresponding tools.

Table 2.
STATE INPUT QUTPUT

A B C Y
0 0 0 0 1
1 0 0 1 0
2 0 1 0 1
3 0 1 1 0
4 1 0 0 1
5 1 0 1 0
6 1 1 0 -1
7 11 1 1

iPLDS, Intel’s Programmable Logic Development Sys-
tem, provides a full spectrum of ways to design and use a
variety of design tools with fast, easy-to-use entry
software.

The iPLDS contains all the software, hardware, documén-

tation and devices needed to program EPLDs. iPLDS are

8-12

the most advanced PLD design tools available. It provides
better utilization of device resources (more gates per
chip) than any other development software. These versa-
tile tools are for users with different skill levels and appli-
cations. iPLDS tools handle the details of converting your .
design to working silicon on the personal computer.

The iPLDS contains the three fupdamental modules

* Logic Builder (LB) ' ‘
® Logic Optimizimg Compiler (LOC)

® Logic Programmer Software (LPS)

To implement the logic design we will use the 1PLDS
modules in the order listed above.

The modules are essentially independant modules that use
special data files to pass information as shown in Figure
4. These data files are the ADF, RPT, LEF, and JED files.

The Advanced Design File (%.ADF) is generated from
the Logic Builder and contains the Inputs/outputs and all
the primitive equations.

The Logic Equation File (%.LEF) contains the primitive
equauons that have been minimized by the Logic Opti-
mizing Compiler.

The Utilization Report File (X.RPT) comams information
on the macrocell and pin assignments.

The JEDEC File (%.JED) is the file generated by the
Logic Optimizing Compiler used to program the device
using the Logic Programmer.

Before implementing the logic design using the iPLDS,
let us briefly discuss the iPLDS family of parts to be fa-
miliar with the iPLDS modules.

Logic Builder (LB)

The Logic Builder module guides you through the entire
process of design entry by prompting for necessary infor-
mation and showing a screen display (one primitive at a
time) with input signals on the left side and output signals
on the right side. The Logic Builder is used to generate an
Advanced Design File (or ADF) by inputting the data in
netlists or Boolean equations.

After all required data are entered, the Logic Builder
module indicates whether the circuit is complete and
properly connected. If any changes need to be made, the
module enables you to edit the circuit design either by

- ®
mtel AP-279
-— LEF ANALYZER PEAZRTION
*.RPT

_—

A
DESIGN FILE REQUREMENT
: E
Loaic
BUILDER 5| TANSLATOR . Loaic 5] FTER JEDEG oG
(LB) TRANSLATOR/ MINIMIZER DEMANDER/ » JED (LP)
EXPANDER FITTER/
ASSEMBLER

2445

Figure 4. Block Diagram of iPLDS Modules

systematically scanning through the primitives in the Ad-
vanced Design File (ADF) or by directly finding a primi-
tive by the name of a node connected to it.

Any circuit may be edited. The Logic Builder reads in the
ADF and prompts you for changes. The Logic Builder
also allows two or more partially complete ADF files to
be MELDED together to form a more complex function.
This concept is not discussed in this application note but
will be a topic of a future application note.

Logic Optimizing Compiler (LOC)

The Logic Optimizing Compiler provides an easy-to-use
interface to the Logic User System software. Regardless
of the type of .design entry method used, the LOC first
translates an Advanced Design File (ADF) into internal
logic equations; then it performs a Boolean reduction on
the translated design, and finally produces a JEDEC Stan-
dard File, which is then used to program an Intel EPLD.
In addition, you have the option of requesting an analysis
of the Logic Equation File (LEF) as output by the
Minimizer module.

The LOC performs the following functions:

The TRANSLATOR translates the ADF into an inter-
mediate Logic Equation File (LEF). (Most errors are
detected and corrected).

The EXPANDER expands the Boolean equations into
Sum-Of-Products form, removes redundant factors
from product terms, and produces another LEF.

The MINIMIZER performs a sophisticated Boolean re-

duction on the translated design to maximize utilization
of the EPLD.

The LEF Analyzer converts the LEF output by the
MINIMIZER into a human readable file to allow you to
see your design. (%.LEF)

The DEMANDER organizes the file output by the
MINIMIZER. .

8-13

® The FITTER matches your design requirements with
the known resources of the Intel device.

® The ASSEMBLER: converts the fitted requests into
JEDEC file.

Logic Programmer Software (LPS)

The Logic Programmer Software provides a user inter-
face to the JEDEC Standard File output of the Logic Opti-
mizing Compiler and to the Logic Programmer Interface.
You can use the Logic Programmer Software to view
JEDEC files and to program your designs into EPLDs.

The Logic Programmer Software is used
¢ to program your designs into EPLDs

to verify the validity of data in the device
to read data from the device

to display JEDEC data graphically

to edit JEDEC data

HARDWARE REQUIREMENTS

The iPLDS requires an IBM PC XT, PC AT, or other
compatible computer. A color monitor is preferred. The
computer must have at least one 360K double-sided
double-density disk drive, a second 360K floppy disk or
hard disk, and at least 512K bytes of RAM memory.

The iPLDS consists of the Logic Programmer Interface
card, and the programming unit needed to program and
verify EPLDs. The Intel iUP 201 with a GUPI adapter
may be used as an alternate system to program the EPLD .
devices. ‘

SOFTWARE REQUIREMENTS

The personal computer should be capable of running DOS
V3.0 or a higher version. The Intel Programmable Logic

intel

AP-279

Software (iPLS) that contains the software controlling the
logic programmer interface and assisting in the design of
Inte] applications is shipped on floppy diskettes.

PROBLEM DEFINITION

We are going to use iPLDS to implement a medium com-
plexity logic function. As a vehicle to show the usage of
the tools and design techniques we will design a circuit
that will roll and spin a pair of dice. The design has been
split into multiple stages for illustration purposes.

This example has been chosen since it incorporates many
of a typical logic design tradeoffs and also solves many of
the typical problems a hardware logic designer will
encounter. :

Appendix A contains some basic definitions that may be
useful when reading through the design and its
implementation.

DESIGN SAMPLE
Problem Set-up

The circuit is designed to set both of the dice spinning
when you push a switch and display a random set of num-
bers when you release the switch. The dice will spin at a
rate that is visually pleasing and roll at the highest possi-
ble rate to ensure randomness.

You will implement the design in the following steps:

A. One dice that will roll out a number.

B. Add a switch that will control the roll/nqt roll action.
C. Add a second dice to roll a number.

D. Add a spinning opﬁon to both dice.

E. Retro-fit a power save feature to extend battery life.

Hence, at the end of the five design steps you will have a
pair of dice spinning and showing a pair of numbers be-
tween 1 and 6 in a very random manner. At the end of the
five design steps, you will have added a very realistic and
practical feature to your design and that is extending the
battery life by a power saving option. It is important to
note that the five steps mentioned above are sequential
steps in that step C can be achieved only after steps A and
B etc. Let us describe the sample circuit for the dice roll-
ing example. It is a very simple circuit allowing you to
concentrate upon the design process. It illustrates the pos-
sible design stages and considerations in detail.

8-14

PART A

Four Outputs—1A, 1B, 1C, 1D are required to drive the
LEDs arranged in a DICE pattern as shown in Figure 5.

iB @ ® i1C

MmWe® @ O 1D
1A

1C @ ® 1B

2452

Figure 5. Dice Configuration

Operating sequence—Rolling dice from 1 to 6 and the
block diagram of the circuit, both shown in Figure 6.

The total number of states that are possible is 16 since the
four LED pairs generate a permutation of (2X*4) = 16.
The LEDs should be lit up such that any number between
1 and 6 inclusive is shown. Hence, out of the 16 possible
states, only six states are valid. This leaves ten invalid
states.

If the LEDs come up in a valid state upon power up, then a
number between 1 and 6 will be displayed.

However, if the LEDs come up in an invalid state upon
power up, then you have to design the circuit such that any
one of the ten invalid states will fall into a valid state.

If the LED:s fall into any one of the ten invalid states, then
you have designed the circuit to move into a state where
1A, 1B, 1C, 1D have zero logic values respectively on the
next clock edge. Every time a zero logic value appears in
the invalid states, then at the next clock edge, LED 1A
gets lit up generating a valid state. Since 1 is a valid state,
the numbers between 1 and 6 inclusive will be displayed
at all subsequent clock edges.

Listed below are the steps involved in designing the logic
circuit. ' :

STEP 1. Generate the state diagram to clearly show the
operating sequence including the status of the outputs for
each state and the influence of the inputs on the next state
transitions as shown in Figure 7. We have arbitrarily cho-
sen that the states should count 1,2,3,4,5,6, and repeat.
You could have implemented the design using any se-
quence but we chose the most obvious. Note how most of
the invalid states move you to state O which then puts us
into a valid state which then repeats forever.

STEP 2. Generate a truth table with entries for all availa-
ble states and combinations of inputs, and use the next
states resulting from these as shown in Table 3. The
bracketed numbers, (3) etc., show the number being

inter AP-279

[o o o0 ® o o0 o
o o o o o
o o L N o O LK
2451
Figure 6. Rolling Sequence
displayed on the dice and the 0, 1 values of 1D, 1C, 1B, 'DICEIB has five entries from valid states
and 1A indicate which LEDs should be OFF/ON to dis-
play the required dice pattern, DICE1B = (1AX/BX/1CX/1D + [1AX1BX/1CX/1D
+ 1Ax1B¥/1Cx/1D + /1Ax1Bx1Cx/1D
, . + 1AX1B*1C*/1D)
STEP 3. Convert the truth table directly into
Sum-Of-Products equations as shown below:
DICEIC has three entries from valid states
DICEI1A has four entries; 3 from the valid states and one DICEIC = (1A%{BXMCX/D + [1AX1BX1CX/1D
to control the invalid states + 1AX{BX1CX/1D)
DICE1A = ([1A%1BX/1Cx/1D + /1Ax1B*/1C*/1D
+ [1Ax1Bx1Cx1D + /1A%/1Bx/1Cx/1D)
L INVALID o VALID .
I | |
0101 >

O
Q"’
o

2453 .

Figure 7.

8-15

intel

AP-279

Table 3. Truth Table for DICE1

Input State Output State -
1A 1B 1C 1D 1A 1B 1C 1D 1A 1B 1C 1D
» Valid state Invalid state
CHANGE TO THE NEXT VALID, STATE

1 0 0 o) 0 1 0 0@

o0 1 0 0@ 1 1 0 0@

1 1 0 0@ 0 1 1 0@

o 1 1 04" 1 1 1 05

1 1 1 05 0 1 1 16

0 1 1 1(6) 1 0 0 0(1)

CONTROL THE INVALID STATES

0 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0
0o 0 o0 1 0 0 0 0
1 0 0 1 0 0 0 0
0 1 0 1 0 0 0 0
1 1 0 1 0 0 0 0
0 0 1 1 0 0 0 0
1 0 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 0 0 0o(1)

DICELD has one valid entry
DICE1ID = (/1Ax1Bx1Cx1D)

Note that no attempt has been made to minimize these
equations - the iPLS software that you will use later con-
tains reducing algorithms and other techniques to opti-
mize the design. This allows you to-focus upon the
problem and not on tasks such as Karnaugh map reduction
which a computer can often do better anyway.

Having designed part A of the circuit, you can now move
on to tool usage to implement the design. Refer to the
Intel Programmable Logic Software Manual if you have
not installed the iPLS software.

In order to invoke iPLS type the following command
C:\IPLS>IPLS <Enter>
The iPLS menu will appear as shown in Screen 1.

The number to the left of each function allows you to se-
lect a function with a function key. Two kinds of function
keys are available: toggle keys and field keys. <F3> and
<F4> are toggle keys. All other keys are field keys.
Functions beyond <F10> are executed by pressing the
<Shift> key together with the function key. Press
<F3> to invoke the Logic Builder and observe the Logic
Builder menu as shown in Screen 2.

The first prompt asks for the file name. If the file already
exists, its header information and primary inputs and out-
puts are displayed. If you enter a new file name, the Logic
Builder module prompts for all the functions remaining
on the screen. : .

Enter: DICEl <Enter>
Create NewNetlist(Y/N):Y

In this sample session, user entries are all in uppercase
letters. Note: IPLS is case sensitive.

When initially invoked, the Logic Builder module dis-
plays its configuration menu. The Logic Builder configu-
ration menu shows “5C121” as the default Intel part and,
on the right side of the menu, displays those primitives -
that are legal for use with the 5C121. As soon as you enter
another part (e.g. 5C060) the list of primitives changes to
display the primitives applicable to that specific part.

Press <F6> and enter 5C060 when prémpted for user
entry.

Screen 2 shows the Logic Builder Configuration Menu for
the 5C060.

® The left side of the screen shows a menu of functions,
each preceded by a function key number.

mtel" AP-279

('

Intel Programmable Logic Software

iPLS Menu

Fl Help

F2 EXit, Gomma

F3 Logic Builder
Fu Loc
F5 Logic Programmer
Fb Directory .
F? Rename File -

F8 Copy File .

F9 Delete File
F10D0S command

iPLS Version 3.0, Copyright (C) 1985. Intel Corporation
Copyright (C) 1985, Altera Corporation
Select a function:

Screen 1.

—

Intel Programmable Logic System

Logic Builder Config Menu:
Fl

dice 1
5C0L0

March b+ 198b

Designer:

Screen 2.

8-17

AP-279
Table 4.
Prompt User Entry
Fb EPLD 5C0L0
F? Designer Your Name
F8 Company Your Company
F9 Date Present Date

F10 Comment
tF1 Part Number 0.1
tF2 Revision 3.0
tF3 Inputs CLOCK@L
tF4 Outputs

Our first design

DICELA®10-DICELB@9.DICELCA8.DICELDQ?

® The right side of the screen shows the list of available
primitives (these are discussed in detail later).

* The two lines at the bottom of the screen are designated
for comments (first line) and prompts (second line).

® The center of the screen is used to show a representa-
tion of the primitive; name and pictorial representation
are in the middle, input signals are to the left, and out-
put signals are to the right of the primitive.

® The direction of the arrow located on the left side of the
screen below the list of functions determines the start-
ing point and direction of design entry. If the arrow
points to the left, entry is from output pins to input
pins. If the arrow points to the right, entry is from input
pins to output pins.

NOTE

We have assigned pin numbers to pin names by
using the “@"” symbol within the name of the
logic variable. Specific pin numbers need not
be assigned if not desired. In that case, the
Logic Builder will assign its pin numbers for
you.

Type in the information as given in Table 4 in the Logic
Builder Config Menu. The information is also shown in
Screen 3. After entering all of this required information,
iPLDS will automatically prompt you through defining
the circuit, starting with a primitive to drive the last out-
put specified.

Once in the Logic Builder main menu, you are guided
with prompts to enter information as follows:

Enter the name of the primitive to connect to the first
node. The name may be entered by typing the name of the
primitive, which highlights the appropriate primitive on
the right side of the menu, then pressing <Enter>.

Subsequently, a representation of the primitive is dis-
played in the center of the screen surrounded by input and
output signals. You are prompted for names of nodes to
connect to each of the signals. The Design Primitives li-
brary contains approximately 80 basic functional blocks
needed for designing circuits in programmable logic
products.

8-18

Design Primitives are divided into the following groups:
¢ Input Primitives (INP,LINP)

 Logic Primitives
(AND,GND,CLKB,NOT,VCC,0R,NAND,NOR,XOR)

® Equation Primitives (EQN)
e]/O Primitives (JOJE, NOJF, NORF, ROREF, etc)

Refer to Appendix A for an explanation of the Primi-
tives used in this example.

The logic is based on input clock transitions. At the rising
edge of the clock we want the LEDs to generate a particu-
lar state depending on the input state. You want the output
of the LEDs to follow the input, which is basically a
D-TYPE FLIP-FLOP. You also require the feedback to
generate the next state, which means that you should use a
D-TYPE FLIP-FLOP with FEEDBACK or RORF as
shown in Screen 4.

. NOTE

The Logic Builder module starts with the last
output entered.

When you are prompted to select a primitive to drive
DICE1D enter:

Select a primitive to drive DICELDQ?:
RORF <Enter> ‘

Now you are prompted for the remaining connections:
For FBK: 1D <Enter>

For OE- P2 C: Press <Enter> (VC(C. GND are
thedefaults).

For D: INLD <Enter>
For CLK: CLOCK <Enter>

Select a primitive to drive CLOCK: INP
<Enter>

|nter AP-279

s

Intel Programmable Logic System

Logic Builder Config Menu:
Fl Help = ..o

F2 Main

F3 Dire
Fy:

F5 File dice 1
Fb i 5C0L0
Your name

Your company

March k. 198&

Our first design

0.1

1.0

clockdl
DICELA®LO-DICELBAY.DICELCAB.DICELDA?

==

Outputs:DICELAQLO-DICELBA9.DICELC@B.DICELDA?

~

_ J
Screen 3.
Intel Programmable Logic System

Fl Hel INP NOJF
F2 E» . EQN NORF
F3 Na CLKB NOSF.
FY i .
FS Fin

Fb Edi out diceld

[Fbk

<=
Pin=7?

Fbk:1ld

Screen 4.

8-19

intel

AP-279

In: CLOCK <Enter>

Select a primitive to-drive INLD: EQN
<Enter>

After you are prompted for the equation, type it in as de-
rived in the Problem Set-up section. Please note that “/”
indicates a logical “NOT”, “%” indicates a logical
“AND”, and “ + ” indicates a logical “OR”. The equa-

tion is terminated by a ““;** as shown in Screen 5.

INLD = (LA*x1Bx1LC*/1D)5 <Enter>
The following prompts and design entries, as shown in
Table 5, are needed to complete the design entries for
DICE1C, DICE1B, and DICE1A respectively.

The Logic Builder will stop prompting for primitives once
you have entered the complete design.

Press <F8> to show the design so far as shown in
Screen 6.

Press <F2> to exit.

The Logic Builder main menu is cleared, replaced by the
'Logic Builder exit menu.

To save the configuration and return to iPLS menu you
must press <F6> (Save-Exit).

Note that you are saving the Advanced Design File (ADF)
that is generated by the Logic Builder.

You can print the ADF file that has been created at the end
of this session if you so desire. You can use <F10>
when in the iPLS main menu to print the ADF file for a
listing. You can verify your file with the DICE1.ADF file
given in Appendix D. If you desire a listing, while you are
in the iPLS main menu, type the following:

<F10><Enter>
PRINT DICEL.ADF <Enter>

Submitting the ADF to the LOC

This ADF file is now compiled using the Logic Optimiz-
ing Compiler. To enter the ADF created with the Logic
Builder module into the Logic Optimizing Compiler
(LOC), press <F4> to access the LOC menu.

Selectaprimitivetodrive1lB:
Out:

Oe:

p:

C:

D:

Selectaprimitive todrive IN1B:
IN1B:

SelectaprimitivetodrivelA:
Out:

Oe:

P:

C:

D:

INLA:

Selectaprimitivetodrive INLA:

Table 5.
- PROMPT USER ENTRY
Select aprimitivetodrivel(C: RORF <Enter>
Qut: DICELC <Enter>
et VCC<Enter>
p: GND <Enter>
[GND <Enter>
D: INLC<Enter>
Selectaprimitivetodrive IN1C: EQN <Enter>
INLC: (LAX1B*/LC%x/LD)+(/LA%x1B*LC*x/1LD)+(LAXLBX1LCx/1D) 5
<Enter>

RORF <Enter>

DICELB <Enter>

VCC <Enter>

GND <Enter>

GND <Enter>

IN1B <Enter>

EAN<Enter>
(LA%x/1B*/1C*/1D)+(/LA*LB*/LCx/1D)+(LA*LB*x/1Cx/1D)
+(/LAx1Bx1Cx/1D)+(1A*1B*LCx/1D) 5<Enter>

RORF <Enter>

DICELA<Enter>

VCC <Enter>

GND <Enter>

GND <Enter>

INIA<Enter>

EAN <Enter> _
(/LAXx1Bx/1Cx/1D)+(/LTA*1BX1Cx/1D) +(/LAXLBxLCX1D)
+(/LAx/1Bx/1Cx/1D)5<Enter>

8-20

intel

AP-279

~

Logic Builder Main Menu:

inld ' laxlbxlc*/1ds

Intel Programmable Logic System

Fl Help INP NOJF

F2 Exit

3 haw vee oe CLKD NosF

F4 0 -

F5 'rg::” ‘ 6N C | u::g :gg

Ft Edit inld D g Qut diceld - NOR RONF

F? Config clock Clk 5 i Fbk 1d . NOT RORE

F8 Nodelist RORF . OR SONF

F9 Redraw . XOR SOSF
COIF TOIF
CONF TONF
JOJE TOTF
JONF

<o

Pin=7?

Screen 5.

Once the LOC menu is displayed, you are prompted
through the LOC menu functions as follows:

The Input Format prompts you to specify your form of
input: If input is in the form of a pinlist as output by
DASH-2, enter P, if input is an Advanced Design File,
enter an ADF or press <Enter> (ADF is the default). If
output is a component list from PCAD, enter C.

INPUT FORMAT: A<Enter>
FILE NAME: DICEL<Enter>
MINIMIZATION: <Enter toselect default>

INVERSION CONTROL: <Enter to select
default>

LEF ANALYSIS: <Enter toselect default>
After you have answered all the prompts, you are asked if

you wish to run under the above conditions as shown in
Screen 7.-

DO YOU'WISH TO RUN UNDER THE ABOVE CONDI-
TIONSEY/N1?

Enter: Y

8-21

Finally you are prompted with:

WOULD YOU LIKE TO IMPLEMENT ANOTHER DE-
SIGNLY/NI?

Enter: N

Note that the LOC generates a synopsis of its progress as
shown in Screen 8. You are returned to the iPLS menu.

At the end of the LOC a JEDEC Standard File has been
created which we will use in the Logic Programmer,
DICE1.JED.

Also at the end of the LOC a report file is created,
DICE1.RPT, which gives the pin configuration menu of
the device. The DICE1.RPT file is given in Appendix D.

Programming the EPLD

Finally, you submit your design to the Logic Programmer.
In order for you to use the Logic Programmer, you must
have the programming card plugged in. Please refer to the
Intel Programmable Logic Software User Manual for in-
stallation instructions.

Alternatively you can use Intel’s GUPI (Generic Universal
Programmer Interface) to program your device.

intel" AP-279

Intel Programmable Logic System

Logic Builder Main Menu:
1 clockdl
diceladl0
dicelbadd
dicelcdd
diceldd?
i«

GND
1d
inld
clock
la

1b

lc
inlc

" inlb
inla

<--

Unconnected nodes are bold
Press afunctionkey:

Screen 6.

Intel Progrémmable Logic System

Do you wish to run under the above conditions LY/N3?

Screen 7.
The iUP-GUPI and assorted GUPI LOGIC adaptors pro- While you are still in the iPLS menu, press <F5>. This
vide an alternative programming solution for Intel’s function allows you to access the Logic Programmer Soft-
H-series and EPLD devices, when purchased with the ware: The Logic Programmer will now come up as shown
iPLS. This complete set of software is available without in Screen 9.

the Logic Programmer pod and the IBM interface card.

8-22

AP-279

F? LEF Analysis

Intel Programmable Logic Software

LOC Menu

Fl Help ADF Minimization LEF-Analysis

F2 iPLS Menu . dicel .

F3 Input Format

F4y File Name *xxINFO-LOC-Begin execution

F5 Minimization : xxxINFO-LOC-ADF converted to LEF
Fb:Invarsion Control *xxINFO-LOC-S.0.P. LEF produced

*xxINFO-LOC-LEF reduced
*xxxINFO-LOC-LEF analyzed
xxxINFO-LOC-Resource demand determined
*xxINFO-LOC-Design fitting complete
*xxxINFO-LOC-JEDEC file output

LOC cycle successfully completed

Would you like to implement another design LY/N1?

Screen 8.

Use the cursor keys to select “Program Device” option.
‘When you are prompted

Enter JEDEC file name

Enter: DICEL.JED <Enter>

‘When you are prompted for:

- Select Device For Programming

Enter: 5C0L0 <Enter>

‘When you are prompted for:

Do you wish to enable verify protection? LY /N17
Enter: N

When you are prompted for:

Do you wish to enable turbo-bit? LY /N1
Enter: N

Once you have answered all the prompts, the device is
programmed and ready to be used in an actual circuit, as
shown in Screen 10.

Exit from the Logic Programmer after saving the JEDEC
file by using the “EXIT” option.

8-23

This completes part A of the design, which was to roll a
single dice. The programmed device can be tested as de-
scribed in Appendix C.

PART B

Now that you have a good understanding of the manner in
which a circuit is designed and also a good understanding
of how the programming tools are used to program the
device, you can proceed to the next step in the five stages
of the dice design. According to the truth table generated
in part A, the dice will roll a number between 1 and 6
inclusive as long as you supply a power source. When you
disconnect the power source, all the LEDs will turn off.
This will not be much help since you can only see the dice
roll, but not actually see a number displayed.

Let us include an additional feature into the rolling dice.
Let us include a switch to control the rolling and display
of the dice.

You could choose to gate the clock of the dice or add the
necessary inputs to the product terms to effect this design.
If you were to stop after this step, then gating the clock
would be a simpler choice, however, you will require the
dice to roll during part D of the design; so we will choose
to add product terms at this stage. This also results in a
better engineering solution since gated clocks often cause
problems in large systems, and it has been shown that
synchronous systems are more reliable.

im’er AP-279

LOGIC PROGRAMMER

0GIC PROGRAMMER Version 3.1
opyright (C) 1%985. INTEL Corporation
opyright (C) 1985. ALTERA Corporation
0Ob5 Bowers Ave. Santa Claras CA 95051
(408) 987-8080

Program Device :
Enter JEDEC file name C-JED3: DICEL.JED
Directory of .JED files for: C:\IPLS i

Change Disk

dit JEDEC File

Program Device

Verify Device

Examine Device

EXIT

Press <-- to use .default name

Screen 9.

EDEC File: DICEL.JED Device: 5COLO LOGIC PROGRAMMER
JEDEC File Header Text

Designer: Your Name
Company: Your Company
Part #:

Revision: 0.0

EPLD: 5COLO

Device code:

Comment: PART A: DICE ROLLING
LB Version 3.0. Baseline 17?x. 9/2b/85

Insert a 5C0b0 into the socket
Strik k h d

Screen 10.

8-24

intel

AP-279

Since you already have a proven design of a rolling dice
from part A, we shall use the Logic Builder and edit that
design. You may wish to save the original design at this
stage. You can do this by using the <F10> key in the
Main Menu. Press <F10> and issue the following com-
mand before re-entering the iPLS menu:

COPYDICEL.x DICELA.x
The truth table is shown in Table 6.

Now you can use the iPLDS to design and program the
device.

Go through the same steps to program the device as in
Part A of the design example. Use the Logic builder, the
Logic Optimizing Compiler, and the Logic Programmer
respectively. The Logic Optimizing Compiler and the
Logic Programmer steps are identical to the correspond-
ing steps explained in part A of the design example. How-
ever, the Logic Builder will be used to edit the existing
file, DICE]I, to include the switch feature as follows:

Invoke the Logic Builder Menu from the iPLS main menu
by pressing the <F3> key. Once you obtain the Logic
Builder Configuration Menu, type in DICEL1 as your input
file name.

Use (Shift)(F3) to get the Inputs option and then add
switch at pin #2 to it.

Inputs: CLOCK. SWITCH@2 <Enter>

Now press <F2> to exit to the Logic Builder Main
Menu and answer the prompts as given in Table 7.

All that is left to do now is to edit the four equations,
IN1A, INIB, IN1C, IN1D to add the SWITCH option to
it. Edit the four equations as follows:

Edit Function

When you press the “Edit” function key, <F6>, while
in the main menu, the edit menu is displayed on the left
side of the screen as shown in Screen 11. If you wish to
edit an EQN Primitive displayed on the screen, press
<F6>. Then the equation is moved to the prompt line
where it can be edited.

Hence, the Boolean expressions for this case would con-
sider the situations of when the switch was ON as well as
OFF. The Boolean equations would contain the expres-
sion for the switch as follows.

8-25

DICE1A

(1AX/BX/1C*/1D) + (1AX X1B*/1CX/1D)
+(1AX1BX1CX/1D)
+(11AXMBX/1C/1D)X/SWITCH
+((1AX1BX/1CX/1D) + (1AX1BX1Cx/1D)
+(11AX1BX1Cx1D)
+(1AX/1BX/1CX/1D))xSWITCH

DICE1B

((HA%1Bx/1C*/1D) + (1AX1BX/1CX/1D)
+(11AX1Bx1Cx/1D) + (1A%1Bx1C*/1D)
+(11A%1Bx1Cx1D))*/SWITCH
+((1AX/1BX/1CX/1D) . .
+(11AXx1Bx/1C*/1D) + (1A% 1BX/1Cx/1D)
+(/1A%1Bx1C*/1D)
+(1A%1BX1C*/1D))xSWITCH

DICE1C

((MAX1BX1CX/1D)

+(1AX1BX1CX/1D)
+(AX1BX1CX1D))X/SWITCH
+((1AX1BX/1C*/1D) + (1AX1BX1CX/1D)
+(1AX1BX1CX/D))XSWITCH

DICEID = (/1Ax1Bx1Cx1D)*/SWITCH

+(1AX1BX1CX/1D)XSWITCH

The equation primitive must be displayed on the screen in
order to edit that equation. In order to display the equa-
tion on the screen, use the “Find” command, <F5>, to
find it.

The “Find” command prompts for a node name: then
searches the design for that node and displays it. If the
direction arrow points to the left, the primitive on the out-
put side of the node is shown. If the direction arrow points
to the right, the first primitive on the input side is shown.

After you have modified all four equations to include the
SWITCH feature, return to the iPLDS main menu using
the <F5> key and save the design using the <F6> key.
You can verify your ADF file with the ADF file for part B
given in Appendix D.

The file is ready to be compiled using the LOC, and the
device is ready to be programmed using the LP.

The steps required to use the LOC and the LP are identi-
cal to the steps in part A.

Now the device that has been programmed is ready to be
tested. At this stage in the design, you have completed
part B of the design which is to add a switch to give the
roll/no-roll option.

The programmed device can be tested as described in
Appendix C.

Let us summarize before moving on to the next part of the
design.

intel

AP-279

Table 6. Truth Table for DICE1

Input State
SWITCH 1A 1B

0 1.0
0 0. 1
0 11
0 0 1
0 11
0 0o 1
0 0 o
0 1.0
0 0 o
0 1 0
0 0o 1
0 11
0 0 o
0 11
0 0 o0
1 10
1 0 1
1 11
1 0 1
1 11
1 0 1
10 0
1 1 0
1 0 o
1 1 0
1 0o 1
1 11
1 0 0
1 1 0
1 11
1 ‘0 0

- —_ o 000

iC

O =2 20000 = =

L Output State
1D 1A 1B 1C 1D 1A 1B 1C 1D
Valid state . Invalid state
REMAIN IN THE SAME STATE
0 1 0 0 o
0 0o 1 0 09
0 1 1 0 0(3)
0 0 1 1 0(4)
0 1 1 1 0(5)
1 0 1 1 1(6)
CONTROL THE INVALID STATES ‘ R
0 -) 0 0 0 0
0 0. 0 0 0
1 0 0. 0 0
1 0o 0 0 0
1 0 0 0 0~
1 0 0: 0 O
1 0 0 0 0
1 0o 0 o0 o
0 10 0 -00)
CHANGE TO THE NEXT VALID STATE*
o(1) 0 1 0 0®
0(2) 1 1 0 0@
- 0(3) 0 1 1 0(4)
" 0(4) 11 1 0(5)
0(5) 0 1 1 1(6)
16 1 0 0 o)
~ CONTROL THE INVALID STATES B
0 - 0 0 0 o
0 0 0 0 0
1 0 0 0 0
1 0 .0 0o -0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0 -
0 1 S0 0 001

QO ek b . OO OO — =

Note: This part of the truth table is identical to Table 3.

We have briefly discussed the EPLD and the IPLDS fam- Builder, Logic Optimizing Compiler, and the Logic’
ily of parts. We have also defined the design problem. We Programmer.

have implemented the design using the state equations and _ :

the truth table, edited an existing design to add features, Our logic in implementing the dice example is to use the
-and actually programmed a-device using the Logic ~ LED pairs in outputs'1A, 1B, 1C, and 1D respectively as

8-26

- |®
mtel AP-279
Table 7.
Prompts User Entry
Select aprimitive for switchag todrive: INP <Enter>
Out: SWITCH<Enter>
Select aprimitive for switchtodrive: EQN<Enter>

shown in Figure 8. These LEDs are lit up to generate
numbers "between 1 and 6 inclusive. We are using a
D-TYPE FLIP-FLOP to implement the truth table. The
clock is a free running clock. A push button switch is also
supplied to give the roll/no-roll option. Whenever the
switch is ON, the LEDs roll, and when the switch is OFF,
the LEDs display a number between 1 and 6, as long as
the clock is supplied to the device.

After seeing the dice roll and display a number, you can
either quit or move onto parts C, D and E of the design
process. The following three parts describe a versatile use
of the EPLD concept.

PART C

We are using an EPLD 5C060 which is a 24 pin, 600 gate
device. It has four dedicated input pins and 16
input/output pins. Up to this point you have used only one
input pin which is the switch and only four input/output
pins for the four LEDs 1A, 1B, 1C, 1D.

Part C of the design is to include a second dice with the
first dice. This is a step towards real-world application
since dice are usually rolled in pairs. At the end of this
section, you will have a pair of dice rolling and displaying
a pair of numbers. All the conditions and truth tables and
Boolean expressions that were designed for part B, hold
good for DICEI. The equations for DICE2 would change
slightly as explained below.

“You have designed a 6 state counter and can define a carry
out (fortunately you can use state 6 and do not require
extra logic). You can use the carry out as an enable input
to form two cascaded counters.

The carry out of 1D is used as an enable input to DICE2.
Hence, 1D performs the same function as the push button
switch performed in dice 1. Therefore, whenever 1D is
enabled or logic high, DICE? is enabled and rolls a num-
ber. DICE2 displays the number when 1D is disabled or
logic is low. This configuration is shown in Figure 9.

—

Logic Builder Main Menu

Intel Programmable Logic System

Fl Help la

F2 Exit . b [EeN] inld

F3 New lc

F4 Open - 1d

FS5 Find

Fb ‘Edit =

F? Config

F8 Node List _ OR S0

F9 Redraw - XOR S0S
COIF TOXF
CONF TONF
JOJF TOTF
JONE

-=>

inld=(laxlbxLcx/1d)3

inld=(/laxlbxlcx1ld)*/switch+(/Llaxlbxlcxld)xswitchs

\ J

Screen 11.

8-27

mtel" AP-279

Table 8.

PROMPTS

USER ENTRY

Find:
(Nowuse the <cursor left>key toobtainthe EANPrimitive.)
Edit:

INLD = (/LA%1B*1LCx1D)*x/SWITCH+(LA*1LB*LCx/1D)*SWITCH <Enter>

Find:

(Nowuse the <cursor left>key toobtainthe E@NPrimitive.)

Edit:

INLC = ((/LAxLBxLC*/1D)+(LA*1BxLC*x/1D)+(/LAx1Bx1Cx1D))x/SWITCH"
+((LAX*LB*/LC*x/1D)+(/LAx1B*LC*x/1D) +(LA*LBx1Cx/1D)) *xSWITCHS
<Enter>

Find:

(Now use the <cursor left>key toobtainthe EQNPrimitive.)

Edit: . '

IN1B = ((/LA*1B*/1C*x/1D)+(LA*1LB*x/1Cx/1D)+(/LAx1BxLCx1D)+(LA*1LB%1LCx/1D)
+(/LAXLBXxLCXx1D)) x/SUITCH
+((LA%x/1Bx/LCx/1D)+(/LAX1BXx/LCx/1D) + (LAX1Bx/LCx/1D) +
(/LAxLBxLCx/1D) +(LAXLBx1Cx/1D)) xSUITCHI<Enter>

IN1D <Enter>

INIC<Enter>

IN1B <Enter>

Find: INLA <Enter>
(Now use the <cursor left>key toobtainthe E@NPrimitive.)
Edit: ‘)
INLA=((LAXx/LB%x/LCx/1D)+(LAXLB*/LC*x/2D)+(LAXLB%XLCx/1D) +
(/LAx/1Bx/LC*x/1D)) */SWITCH+((/LA%1B*/LCx/1D)+(/LAXx1LBxLCx/1D)
+(/L1A%x1B*1Cx1D)+(/LA*/1LB%/LC*x/1D)) *SUITCH <Enter>
The two conditions obtained are as follows:
When power is ON and 1D is enabled, DICE2 will roll.
‘When power is ON and 1D is disabled, DICE2 will dis-
play.) ENABLE IN
For DICEI, the logic conditions remain the same as in 1
part A. Just as you used the switch to enable and disable 1A
' 18
(SWITCH) CLOCK 1Cc
ENABLE IN I !
10
1A
18 CARRY OUT
1c 2A
CLK—> 1D 2B
2
2C
CARRY OUT L
2447
2446
Figure 8. : Figure 9.

8-28

intel

AP-279

DICE], you will use the switch as well as the output of
LED 1D to enable and disable DICE2; because the num-
ber on DICE2 is a function of both the switch and the
present state of LED 1D, as explained above.

Now. write down the truth table since the state diagrams
can easily be inferred from the truth table. Please note
that the truth table is identical to the one for DICE1 ex-
cept for the switch input. For DICE2, you will have the
combination of the switch and the 1D, as shown in
Table 9.

The Boolean expressions for part C will consider the situ-
ation when the switch is ON as well as OFF and also 1D
enabled or disabled respectively. The Boolean equations
will contain the expression for the switch and LED 1D, as
shown below.

DICE2A = ((2A*/2Bx/2Cx/2D)+(2Ax2Bx/2Cx/2D)
+(2Ax2Bx2Cx/2D) + (/2Ax/2Bx/2Cx/2D))
*(/SWITCHx/1D)
+((/2A%2B%/2Cx/2D) + (J2Ax2B%2C%/2D)
+(/2Ax2Bx2C*2D) + (/2A*/2Bx/2Cx/2D))
*(SWITCHx1D)

DICE2B = ((/2A%x2B*/2C+/2D)+(2A%2B*/2C+/2D)
+([2Ax2Bx2Cx/2D) + (2A%2B2C/2D)
+(/2A%2Bx2C2D))%(ISWITCHx/1D)
+((2A%/2Bx/2C+/2D)
+(/2A%x2B*/2C/2D) + (2Ax2B*/2C*/2D)
+(/2A%x2BX2C+/2D)
+(2A%x2Bx2C/2D))x(SWITCH*1D)

DICE2C = ((/2A%2Bx2Cx/2D)+(2A%2B%2C*/2D)
+(/2A%2Bx2C%2D))x(/SWITCH=/1D)
+((2A%x2Bx/2Cx/2D)
+(/2Ax2Bx2Cx/2D) + (2A*x2B*2C*/2D))

*(SWITCHx1D)

DICE2D = (/2A%2Bx2C2D)x(/SWITCHx/1D)
+(2A%2B%2Cx/2D)(SWITCHx1D)

Now you can use the iPLDS to program and test the de-
vice as explained in appendix C. At this stage in design,
you have completed part C of the design which is to add a
second DICE to the first one giving the the roll/no-roll
option.

In part C of the design process, you have used one dedi-
cated input which is the switch, and a total of eight output
pins for the two pairs of LEDs, 1A, 1B,1C, 1D and 2A,
2B, 2C, 2D respectively. You have also used the RORF
primitive, since the design logic was the same for DICE2
as it was for DICEL1. This leaves 3 dedicated inputs and 8
1/0 pins on the 5C060 device.

You can stop the design now or go onto part D which gives
the next option, which is adding the spin.

"PARTD

8-29

This is the fourth step in our design process and adds the
spin option to the two dice that are rolling when the switch
is pushed and display a number when the switch is re-
leased. The logic used to implement the spin concept is as
follows:

When the power is ON and the switch is OFF, DICE1 and
DICE2 display a random number according to the logic
defined in parts B and C respectively.

But, when power is ON and the switch is ON, the two dice
spin by lighting the LEDs B, C, and D. That is, DICE1
will light LEDs 1B, 1C, 1D while DICE2 will light LEDs
2B, 2C, and 2D. This pattern on the LEDs will generate
the spinning pattern. The logic is shown in the truth table
in Table 10. The schematic is shown in Figure 10.

As you can see from the truth table, when the present state
is any of the three valid states, then the two dice will spin.
The dice will also spin if the present state is an invalid
state, because all the invalid states goto “0 0 0 0” in the
next state. But from the truth table in Table 10, you see
that this particular state is a valid state lighting LED C.

The spin frequency should be chosen to be visually ap-
pealing and should be high enough to ensure randomness
of the dice. If we use the “carry out” state of DICE2, then
the spin pattern will only change once for every combina-
tion of the two dice. This will ensure randomness. The
““carry out” of DICEZ2 is signal 2d; we do not need extra
terms to derive it.

Thus we have achieved our objective of adding the spin-
ning option to the two dice.

The Boolean équations that are obtained from the above
truth table are as follows:

SPIN1B = (SWITCHx2d«/S1D+/S1Cx/S1BxS1A) .
SPIN1C = (SWITCHx2dx/S1Dx/S1Cx/S1Bx/S1A)
SPIN1D = (SWITCHx2dx/S1DxS1Cx/S1Bx/S1A)
SPIN2B = (SWITCHx2d+/S2D/S2C/S2BxS2A)
SPIN2C = (SWITCHx2d/S2Dx/S2C/S2Bx/S2A)
SPIN2D = (SWITCH*2dx/S2D»S2C/S2B*/S2A)

Please note in the above equations that A, B, C, and D
refer to both DICE1 and DICE2. For DICE1 the above set
of equations would be 1A, 1B, 1C, and 1D. For DICE2
the above set of equations would be 2A, 2B, 2C, and 2D
respectively. SD is the feedback obtained from IN D of
both DICE1 and DICE2 respectively. If the switch is not
ON, the dice will not spin and a random pair of numbers
will be displayed by the two dice; but, if the switch is ON,
then the two dice will spin according to the truth table and
Boolean expression given in Table 10.

intel

AP-279

Table 9. Truth Table for DICE2

- Input State

0 1 0
0 0 1
0 11
0 0o 1
0 1 1
0 0 1
0 0 o0
0 1.0
0 0 o
0 1 0
0 0 1
0 1 1
0 0 o
0 1 1
0 0o o
1 1 0
1 0o 1
1 1 1
1 0o 1
1 171
1 0o 1
1 0 o0
1 1 0
1 0 . o0
1 1 0
1 0 1
1. 11
1 0 0
1 1 0
1 1 1
1 0 o0

(SWITCHX1D) -2A 2B

CHANGE TO THE NEXT VALID STATE*

o(1)
0(2)
0(3)
0(4)
0(5)
1(6)

—_ e OO0 0

A 02020

[T QR G G Gy

O = =2 400

0(2)
0(3)
0(4)
0(5)
1(6)
0(1)

CONTROL THE INVALID STATES

OC- 420000 ==
O = ek ek D a2 00

Output State
iC . 2D 2A 2B 2C 2D 2A
Valid state
REMAIN IN THE SAME STATE

0 0 10 0 o)

0 0 0 1 0 0@

0 0 1 1 0 0@

1 0 0o 1 1 04).

1 0 1 1 1 0(5)

1 1 0 1 1 1(6)

. “CONTROL THE INVALID STATES ‘

1 0 0

1 0 0
-0 1 0

0 1 0

0 1 0

0 1 0

1 1 0

1 1 0

0 0 1

~“ 000000000

2B 2C
" Invalid state
0 0
0 0
.0 0
0 0
0 0
0 0
0 0
-0 0
0 0
0 0
0. o0
0 0
0 0
0 0
0 0
0. o0
0 0
0 0
0 0

2D

[eNeNeNoNeNe NNl

(1)

[eRoNeoNeoNeoNoeNoNeNeNea)

(1)

Note the extréme similarity between this truth table and the one givén in Table 3.

8-30

intel

AP-279

Table 10. Truth Table to Spin Two Dice

Input State Output State
SWITCH A B C D A B CD
CHANGE TO THE NEXT VALID STATE
1 000 0 O 00 1 0
1 0 0 0 1 01 0 O
1 0 0 1 0 0 0 0 1
1 01 0 O 0 0 0O
ROLLING INTO A VALID STATE
1 1 0 0 O 0 0 0 O
1 11 0 0 0 0 0 O
1 10 1 0 0 0 0O
1 01 1 0 00 0 O
1 11 1 0 00 0 O
1 1 0 0 1 0 0 0 O
1 01 0 1 0 0 0 O
1 11 0 1 0 0 0 O
1 0 0 1 1 0 0 0O
1 10 1 1 0 0 0 O
1 o 1 1 1 00 0 O
1 11 1 1 0O 0 0 O

‘We have chosen the following two primitives for part D:
Registered Output Registered Feedback (RORF)

No output JK Feedback (NOJF)

For the dice spinning option you will use the RORF and
for the dice not spinning option you will use the NOJE,
while using the Logic Builder.

When you add the spinning option to the pair of rolling

dice, you obtain the following boolean equations. (These
Boolean equations satisfy the requirements of the two dice

spinning when the switch is on and displaying a number
when the switch is off).

SPIN1A = (/[SWITCHx1A)

SPIN1B = (/SWITCHx1B)
+ (SWITCHx2dx/S1D*/S1Cx/S1BxS1A)

SPIN1C = (/SWITCHx1C)
+ (SWITCH=2dx/S1D%/S1Cx/S1Bx/S1A)

SPIN1D = (/SWITCHx1D)
+{SWITCHx2d%/S1DxS1Cx/S1Bx/S1A)

SPIN2A = (/SWITCHx2A)

SPIN2B = (/SWITCHx*2B) :
"~ + (SWITCHx2d%/S2Dx/S2C*/S2BxS2A)

SPIN2C = (/SWITCHx2C)
+ (SWITCHx2dx/S2Dx/S2Cx/S2Bx/S2A)

SPIN2D = (/SWITCHx2D)
+(SWITCH=*2d*/S2D*S2C*/S2B*/S2A)

At the end of the design step, you have completed all the
design steps. You can now program the device using
iPLDS. :

The correct ADF file is included in Appendix D for your
reference. You can refer to it to verify the ADF file you
have created.

The programmed device can be tested on:
* A PCB with slow clock

For information on this board and on testing your design,
please refer to Appendix C.

It works!

ROLL
ROLL | .| ReGls-
LOGIC TERS

SPIN
REGISTERS

DISPLAY

2448

Figure 10.

intel

AP-279

XLATE NEWS FLASHx

The PCBs have been made and we have units in the field.
Now Marketing wants the design updated! Field trials of
the dice showed that the battery needed to last longer. A
simple mod to the design, chop the drive to the LEDs,
extends the battery life.

This is very simple using the EPLDs. Reprogram the
EPLD and test it. Imagine how difficult it would have
_ been without using EPLDs.

. PARTE

This step of the design process is to modify the existing
circuit to add the power save feature which will extend the
battery life. This can easily be done by chopping the drive
to the LEDs. Chopping the drive to the LEDs can be done
as follows:

When you designed the circuit and implemented it using
the iPLS, you have set the output enable (Oe) to VCC

8-32

supply. This means that the LEDs are enabled 100% of
the time. You can “chop” the drive to the LEDs with a
conveniant high (above 50Hz) signal that will not be visi-
ble to the human eye.

Next set Output enable (Oe) to the clock signal. Thus,
depending on the clock input the LEDs will only be on
50% of the time and battery life is extended as required.
You can easily modify the ADF file to change the Oe input
from VCC to CLOCK and then test the design using the
PCB as explained in Appendix C.

CONCLUSION

You should now have a comprehensive knowledge of
Intel’s EPLD and iPLDS family of devices.

With this knowledge you will be able to implement de-
signs using the iPLDS tools.

Good Luck!

AP-279

APPENDIX A:
BASIC DEFINITIONS

8-33

intel

AP-279

BASIC DEFINITIONS

Logic Design — A systematic procedure for realizing
specified terminal characterisitics of digital networks, at
either the device or system level.

CLOCKED FLIP-FLOP — Output determined by the
leading or trailing edge of clock pulse.

T FLIP-FLOP — Output changes value with every input
clock pulse.

T FLIP-FLOP

D FLIP-FLOP — Output determined by the mput sxgna]

when clock pulse present.

X r——— D

D FLIP-FLOP

S-R FLIP-FLOP — Output states synchronized with the
clock pulse and controlled by the input signals, S and R.

—————] S A
—e——bC
' A
S-R FLIP-FLOP

J-K FLIP-FLOP — Output states synchronized with the
clock pulse and controlled by the input signals, J and K.

>|

J-K FLIP-FLOP

COMBINATORIAL CIRCUIT — Output determined by
current value of input signal.

REGISTERED CIRCUIT — Output determined by se-
quence of input signals.

Intel Schematic Primitive — One of the basic functional
blocks needed to design circuits for Intel programmable
logic products.

Truth Table — A list of all the input-output possibilities of
a logic circuit.

Boolean Logic — Describes logic that obeys the theorems
of Boolean algebra. The Boolean portion of a design is
that portion which can be implemented in the AND-OR
matrix.

State Diagram — A diagram that shows the succession of
output states through which the circuit passes as its input
signals vary.

INP — Input
PINNAME [>———— 4
INP
Input Primitive
GND — Ground,

y

GND

Ground Signal Name

8-34.

intal

AP-279

VCC — Signal

Vee

i

Signal Name

EQN — Equation

0 = ARBITRARY BOOLEAN EXPRESSION; [

EQN

Equation Name

Registered Output Registered Feedback (RORF)

\

| | RORF

/10 Q PIN-NAME

No Output Registered Feedback (NORF)

| |
C P
/P 0

—

NORF

No Output JK Feedback (NOJF)

JK Output JK Feedback (JOJF)

JOJF

Cc P
Q PIN-NAME
B

—lRr

Security Bit — A feature that prevents the device from
being interrogated or being accidentally programmed.

Turbo-bit — A control bit that allows you to choose the
speed and power characteristics of the device. If the in-
puts are static for approximately 50 ns and the Turbo-bit
is not programmed, the device will enter power down
mode. When the input changes, the device will take an
extra 3-5 ns to wake-up and react to the change. Program-
ming the Turbo-bit inhibits the power down.

Macrocell — A basic building block of Intel’s program-
mable logic devices. A macrocell consists of two sections:
combinatorial logic and output logic. The combinatorial
logic allows a wide variety of logic functions. The output
logic has two data paths: one leads to the other macrocells
or feeds back to the macrocell itself: the other is confi-
gured as a pin configuration acting as input, output, or
bi-directional 1/O port on the chip.

Node — A wire connecting two or more primitives in a
schematic.

Pin — A node that is connected to an input or I/O primi-
tive on one end and a pin of the chip on the other end.

Product tem (P-Term) — Two or more factors in a boolean
expression combined with the AND operator consitutes a
logic product term.

inter AP-279

JEDEC Standard File — An industry-wide standard for
the transfer of information between a data preparation
system and a logic device programmer.

2. NETLIST CAPTURE — sclecting components and
specifying interconnections until all elements are
specified.

EPLD PROGRAMMING TECHNIQUES 3. SCHEMATIC CAPTURE — using a mouse and
menu driven environment.

4. STATE MACHINE — specifying states and condi-

1. BOOLEAN EQUATION — entering the design in tional branches and also inputs/outputs to the state
BOOLEAN equations or expressions. machines.

You can enter your design in the following ways

8-36

AP-279

APPENDIX B:
COMPONENTS LIST

8-37

intel

AP-279

COMPONENTS USED IN DESIGN

In order to implement the EPLD program, you should use
the following:

* An 5C060 EPLD

¢ A pair of seven discrete LEDs (Dice 1, Dice 2)

* A timer to generate a clock signal (NE555)

* A voltage regulator to generate a fixed voltage of 5
volts (7805) ‘

* A push button switch to control the spinning
mechanism

® A 9-Volt DC battery source to generate the power
supply

¢ Capacitors C1=0.1 MF, C2=0.01 MF

* Resistors R1 = 390K, R2 = 100K

e A PCB as explained in Appendix C

8-38

AP-279

APPENDIX C:
PCB DESCRIPTION

8-39

-
intgl AP-279
vcc vcc‘ vcc
1\ A A
- VOLTAGE 24
") out REGULATOR ;
1
P:) V?ER 7805 DICE2
ey u1 c2| + 13 22 o : LED13; LED14
/J76ND T 21 2 LED11: LED12
| . 12: et :::39 ‘giLED10
2 Fi ' ‘g LEDS
L
4 8 5C060
. , _ DICE1
3 7 i LEDG g LED7 |
'S R2 8 - LED4 .o i LEDS |
y 2 555 9 e 2 LED2 .o : LED3
s No 10 i LED1
u2 2 L
+ . 1 NC ST¢ u3 =
i A
: c1 l 12
TIMER EPLD
v = =
2449
Figure C-1

You can test each part of your design using the PCB with a
slow clock on it. '

The PCB is a board that is very specific to the dice exam-
ple. The PCB is portable, approximately 2" x 3". All
the components except for the EPLD are easily available
commercially. A complete list of all the components that
- are required for the PCB is given in Appendix B. The
circuit can easily be connected and tested using the circuit

diagram given below. After the four steps of the design
are completed, the PCB can be used to throw a pair of
dice in any home games such as Monopoly etc.

After the EPLD is programmed using the Logic Program-
mer, it can be inserted into the PCB. For design steps B,
C, and D the push button switch can be used to generate
the roll/no-roll or the spin/no spin option.

8-40

AP-279

intel

o
2

-
(7]

000

C1

 I—

1000
oo
=

2450

Figure C-2
8-41

Made in USA

INTEL

AP-279

APPENDIX D

8-42

w AP-279

ADF FOR PART A: SINGLE DICE ROLLING

Lakshmi Jayanthi

DSO Applications
February 19, 1986
SCO60

Fart Az DICE ROLLING

LE Versiocn 3.0, Baseline 17x,y, 9/2&6/8%
PART: SC060

INPUTS: clockl
OUTPUTS: diceladlO.dicelbd9,dicelcdB,diceldd7
NETWORE ¢

dicela,la RORF (inlasclockl,BND,GND,VCE)

dicelb,1lb = RORF {(inlb,clockl,GND,GND.VCC)
dicelcsle = RORF (inlcs,clockl,GND,GND,VCC)
diceld,ld = RORF (inldsclockl,GND,GND,VCT)

clockl = INP (clockl)
EQUATIONS:

inta =(/laxlb*/1lc¥*/1d)
+{/la*lb*lc¥/1d)
+{(/la*ib*ic*ld)
+(/1la¥/ib*/lc*/1d) 3
inlb =(la%/lb*/1cx*/1d)
+{(/la*ib*/lc*/1d)
+(la®lb*/1c*/1d)
+(/la*lb*lc*x/1d)
+(la*lb*lc*/1d)3
inle =(la*xlbx/lc*/1d)
+(/laklb*lc*/1d)
+(la®lb*lc*®/1d) 3
inld =(la*lb*ic*/1d);

END%

8-43

intel

AP-279

'

RFT FOR PART A: SINGLE DICE ROLLING

Logic Optimizing Compiler Utilization Report

*%%%% Design implemented successfully

Lakshmi Jayanthi
DSO Applications
February 19, 1986
SCO60

Fart Az DICE ROLLING

LE Versien 3.0, Baseline 17,

SC060
clockl -1 1 « 241~
GND -} 2 231~
GND -1 3 2a -
GND -i 4 211~
GND -1 5 201~
GND - & 194~
diceld -1 7 181-
dicelc -i 8 171~
dicelb - 9 161 -
dicela —-110 151 -
GND —-111 1440~
GND -112 131~
*# INPUTS**

Vee
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND

Name Fin Resource

clockl 1

*kOUTFUTS %%

INP

Name Fin Rescurce

diceld 7 RORF
dicelc g RORF
dicelb 9 RORF
dicela 10 RORF

MCell #

MCell #

13

14

16

?/84/8%5

FTerms

PTerms

1/ 8

2/ 8

a/ 8

2/ 8

8-44

MCells

MCells

i3
14
18

16

13
14
15

16

13
14
15

16

13
14
15

16

Feeds:
0OE

Feeds:
OE

Clear

Clear

Cleck

ClLk1

Clock

inter AP-279

¥UNUSED RESOURCES#

Name FPin Rescurce MCell FTerms
- a - - -
- 3 - 9 8
- 4 - 10 <]
- S - 11 8
- & - 12 8
— 11 - - -
- 13 - — =
- 1[’ —-— - -
- 15 - 8 8
- 16 - 7 8
- 17 - & a
- 18 - S 8
- 19 - 4 g
- 20 - 3 8
- a1 - =] 8
- 28 - 1 8
- EB - - -—

¥FPART UTILIZATION®

22% Fins
28% MacroCells
S% Fterms

NOTE: Since part A is a simple design, the part utilization is very low.

8-45

lntel AP-279

ADF FOR PART B: SINGLE DICE ROLL/NOT ROLL

Lakshmi Jayanthi

DSO Applications

February 19, 1986

SCO&L0

FART E: DICE ROLL AND NOT ROLL

LB Version 3.0, HRaseline 17x, 9/24/8%5
FART: SCO60

INFUTS: clocklyswitchad2
OUTFUTS: diceladlO,dicelb?9,dicelcd?8,diceldd?
NETWORE: 2

dicela,la RORF (inlasclockl ,GND,GND,VCE)

dicelb,ylb = RORF (inlbsclocklsGND,GND,VCC)
dicelcslc = RORF (inlc.clockl,GND.GND,VCC)
diceld,ld = RORF (inldsclockl.GND,GND,VCC)

clack} = INP (cleockl)
switch = INF{switch)
EQUATIONS:

inla =(/1ax*/1b*/lc*/1d*/switch)
+(lax/1b*/lc¥*/1ld¥/switch)
+(laxlb*/1c*/1d*/switch)
+(la®lb*lc*/ld*/switch)
+(/1a®/1b*/1c*/1d*switch)
+{(/la*®lb*/lc*/ld¥switch)
+(/1la*ib*lc*/1d¥switch)
+(/la*lb¥lc¥ld¥switch)

inlb =(/la*lb*/lc*/1d*/switcn
+(la¥lb#*#/lc*/1d*/switch)
+(/la*ilb¥lc*/1d*/switch)
+(laxib®lc*/ld*/switch)
+(/la*lb*lc*1d*/switch)
+{la%®/1b*/lc*/1d¥switch)
+(/1la*lb%/lc*/1d¥switch)
+(la®lb*/lc*/ld¥switch)
+(/la*lb*ic*/1d*¥switch)
- +(laxlb*lc*/ld¥switch);
inlec =(/la*lb*lc*/1d*/switch)
+{la®lb*lc*/1ld*/switch)
+(/la*lb*ic*ld*/switch)
+{la®lb®/1c*/ld¥switch)
+(/la*lb¥lc*/1d*¥switch)
+{la*¥lb*lc*/1ld¥switch)i
inld =(/1la*lb*ilc*xld*/switch)
+(la®ib*lc*/ld¥switch);

END#%

8-46

AP-279

intel

RFT FOR FART B: SINGLE DICE ROLL/NOT ROLL

Loegic Optimizing Compiler Utilization Report
*¥#%%% Design implemented sSuccessfully

Lakshmi Jayanthi

DSO Applications

February 19, 1986

SCO&0

FART EB: DICE ROLL AND NOT ROLL

?/24/83

LE Version 3.0, Baseline 17x.,
SCO60
clockl -1 1 241- Veco
switch -1 2 231— GND
GND -} 3 221 — GND
GND -1 &4 211{- GND
GND -} 8§ 201 - GND
GND -1 &6 191 - GND
diceld —-i 7 181 - GND
dicelc -1 8 71— GND
dicelb -} 9 161- GND
dicela —110 1541 - GND
GND —-i11 147 - GND
GND —112 131— GND
% INFUTS#*

Name Fin Rescource MCell # Flerms
clockl 1 INF - -
switch 2 INF - -

¥OUTFLUTS%

Name Fin Resouwrce MCell # FTerms
diceld 7 RORF 13 2/ 8
dicelc 8 RORF 14 3/ 8

8-47

MCells

13
14
15

16

MCells

13
14
15

146

13
14
15

16

Feeds:
QE

Feeds:
OE

Clear

Clear

Clock

CLEL

Clock

intgl AP-279

dicelb ? RORF 15 3/ 8 i3
14

16
dicela 10 RORF . 1-) S5/ 8 13
14

is
16

UNUSED RESOURCES#

Name Fin Rescource MCell PTerms

!
[
-
| OWom

i
-
W

i

|

i

]
-
©
1
I mRWd A J0 |
o000 ODEO |

#FPART UTILIZATION®

a27% Fins
25% MacrcCells
10% Fterms

NOTE: Part B of the design gets more complicated, hence the part utilization of the pins,
macrocells and the Pterms is higher.

8-48

ADF FOR PART C: TWO DICE ROLLING

Lakshmi Jayanthi

DSO Applications

February 19, 1986

S5C060

PART C: TWO DICE ROLL AND NOT ROLL

B Versiocn 3.0, Baseline 17x, 9/26/835
FART: S5C0O60

INPUTS: clocklsclock@,switchad2

OUTPUTS : diceiaaio,dicelb®9,dicelc@B,diceld®7,diceEan?5diceEb$20,diceEc$Elpdice
2daee :

NETWORIK 2

dicela,la RORF (inlasclockl,GND,GND,VCC)

dicelb.,1lb = RORF (inlb,clockl,GND,GBND,VCC)
dicelc,lc = RORF (inlc,clackl,GND,GND,VCE)
diceld,ld = RORF (inld,cleckl,GND,GND,VCC)

diceda,2a RORF (in2asclocka,BGND,GND,VCC)

dice2b,fb = RORF (in2b,clock®,GND,GND,VCC)
dicelc,2c = RORF (infc,clockd,BND,GND,VEE)
dice2d.2d = RORF (in2d,clocka,BND,GND,VCC)

clockl = IMNP (clockl)

clocke INP (clockd)
switch = INP (switch)
EQUATIONS:

inla =(/1lax/ib%/lc*/1d*/switch)
+(la¥/1lb*/lc*/ld*/switch)
+({la*lb*/lc*/1d*/switch)
+{la®lb¥lc*/ld*/switch)
+(/la%/ibh%/lc*/ld*switch)
+(/la%klb*/lcx/ld*switch)
+(/la*lb*lc*/1d*switch)
+{(/laxlb*lc*ld#switch)y

inlb =(/laxtb*/lcx/1d*/switch)
+{laxib*/1c*/1d*/switch)
+(/la*ib¥lc*/1d*/switch)
+{laxibxic#*,1d*¥/switch)
+1/1a®ibelc*id*/switch)
+{la*/lbx/lc#*/ld¥switch)
+i-1axib*/1c*/ld*switch)
+ilaxlb*/1c*/1d*switch)
+{/1a%lb*lc#*/1d*switch)
+ila®lb¥lc*/ld¥switch);

1nic =i 1axib*lcx/1d*/switch)
+ilaxibrlc*/1d*/switch)
+{/laxibslcxid#*/switch)
+{la*lpbx/1c*/1d*switch)
+i/la®ib*ic#/1d%*switch)
+ilavlb¥*ic#/1d¥switch);

1nld =i/ laxlb*icxlid*/switch)
+{laxib*lc*/ld¥switch)}

8-49

intel' AP-279

1mza =(/2a*/2b*/2c*/2d*/(1d*switch))
+iZa%®/2b¥/2c*/2d*/ (1d*switch))
+{Za*2b*/2c*/2d*/ (1d¥switch))
+{2a%xZh*2c*/2d*/ (1d¥switch))
+{/Ca*/Cb*/2c*/2d*(1d*switch))
+{/2a*2b*/2c*/2d*(1d¥switch))
+{/2axZb*2c*/2d*(1d¥switch))
+{/2a%Cb*2c*x2d* (1d¥switch))}
ingo =(/Za*2b*/2c*/2d*/ (1d¥switch))
+(2a*2b*/2c*/2d*/(1d¥switch))
+(/2a%*2b*2c*/2d*/ (1d¥switch))
+{Z2a*2b*2c*/2d*/ (1d¥switch))
+i{/2a*2b*2c*2d*/{(1d*switch))
+{2a*/2b*/2c*/2d*(1d¥switch))
+1(/2a*2b*/2c*/2d*(1d*switch))
+(2axZb*/2c+/2d*(1d¥switch))
+(/2a*Cb*2c#*/2d*(1d*switch))
+(ga*ch#*2c*/2d*(1d¥switch))
1n2c =t /2a*2b#*2c*/2d*/ (1d¥switch))
+{(2a*Zb#*2c*/2d*/ (1d¥*switch))
+i{/2a*Cb*2c*2d*/ (1d¥switch))
+{2a#2b#/2c*/2d* (1d¥switch))
+(/2a#2b*2c+/2d* (1d*switch))
+(2a*x2p¥cc*/2d*(1d¥switch))
inZa =i /2a#*cb#*2c#2d#/(1d¥*switch))
+(2a*b#dc#/2d+*(1d*switch));

8-50

inter AP-279

RPT FOR FART C: TWO DICE ROLLING

Logic Optimizing Compiler Utilization Report
*%¥%%% Design implemented successfully

Lakshmi Jayanthi

DS0 Applications

February 19, 1986

HCOHO

FART C: TWO DICE ROLL AND NOT ROLL

B Versicon 3.0, Baseline 171, 9/2&/8%

S5C060
cleckl -1 1 241~ Veco
switch -1 & 231~ GND
GND -1 3 22— diceld
GND -1 4 211~ dicegc
GND -1 5 201- diceéb
GND -} &6 191~ dicel2a
dicetd —-i 7 181 - GND
dicelc -1 8 171— GND
dicelb -} 9 161~ GND
dicela —-110 151~ GND
GND —~111 141 —- GND
GND —-i12 131- clock2
*% INPUTS %%

Name Fin Resource MCell # FTerms
clockl 1 INP - -
switch 2 INP - -
clocka 13 : INF - -

OUTPUTS

Name Pin Rescurce MCell # FTerms

diceld 7 RORF 13 2/ 8

8-51

MCells

Feeds:

QE

Feeds:
OE

Clear

Clear

Clock

CLEL

CLER

Clock

intd. AP-279

dicelc 8 RORF 14 3/ 8 13
14
15

16

dicelb 9 RORF 15 3/ 8 13
14
15

16
dicela 10 RORF 14 S/08 13
14

15

dice2a 19 RORF 4 7/ 8

wn-

L

diceeb 20 RORF 3 4/ 8

£ WUMW=

dice2c 21 RORF a 4/ 8

P WG

dicedd 22 RORF 1 37 8

S QM-

*#UNUSED RESOURCES#**

Name PFPin Rescurce MCell PTerms
- 3 - 9 8
- 4 il 10 8
- 5 .- 11 8
- 1) - 12 8
- 11 ER— - —
- 1[’ - - -
- 15 - 8 8
- 16 - 7 8
- 17 - & 8
- 18 - S 8
- EE - — -

*%FART UTILIZATION**

SO% FPins
SO% MacroCells
24% Pterms

NOTE: in part C of the design you have added the second dice. Hence you can see that fifty
percent of the device has been used.

8-52

intgl AP-279

ADF FOR PART D: TWO DICE SPINNING

Lakshmi Jayanthi

DSOU Applications

February 19, 1986

S5C0OL0

FART D: TWO DICE SFINNING

B Version 3.0, BRaseéline 17x, 9/24/85
FART: SCO&0

INPUTS: clockl,clock2yswitcha2

DUTFUTS: spinladlO,spinlbd?,spinlcdB,spinldd7,spin2adl?,spin2bd20,spindcd@l,spir
2daaz

MNETWORK :

NOJF (inla.,clockl,inila,GND,GND)

NQJF (inlbsclockl,inlibyGND,GND)

NOJF (inlcscleckl,inlic,GND,GND)
NOJF (inldsclocklyinlld.GNDJ.GND)

Howono

MOJF (in2asclock2.i1n28a.GNDyGND)
NOJF (in@bsclock2,in22b,GND.GND)
NOJF (in2csclocke, in22c,GND.GND)
NOJF (in@dsclock,inl22d,GND,GND)

2a
b
2c

2d

Wonu

NOT(inla)
NOT(Cimlb)
NOT(inlc)
NOT(inid)

inlla
inllb
inllc
inlld

awonon

NOT(inl2a)
NOT{in2b)
NOT(in2c)
NOT(in2d)

in2ea
ind2h
ind22c
in2ed

[T A)

RORF (inslas,clackl,GND,GND,VCE)
RORF (inslb.clocklGND,GND,VCC)
RORF (inslc.clocklyGND.GND,VCC)
RORF (inslds,clacklsGND,GND,VCC)

spinlas.sla
spinlib.slb
spinlc,slc
spinld.sid

nonoui

RORF {(ins2a,clock2s6ND,GND,VCC)
RORF (ins2b,clockd,BGND,GND,VCC)
RORF (ins2c,clock2.6ND,G6GND.VCC)
RORF {(ins2ds,clock®,GND,6ND,VCC)

spin2a.sia
spin2b.sib
Cspin2csslc
spinfd.s2d

Honon

4

clockl = INF {(clockl)
clecki = INF (clock2)
switch = INF (switch)
EQUATIONG:

inla =(/la%/1b*/lc*/1d*/switch)
+{(la%¥/1lb*/lc#/1d*/switch)
+{laxlb*/1c*/1d%/switch)
+(laxlb*lc*/1d*/switch)

8-53

intel

AP-279

+(/la®/ib*/1c*/1d¥switch)
+{/la*lb*/lc*/ld¥switch)
+(/la*¥lb*lc*/ld*switch)
+{/laklb¥lc*ld¥switch)

inlbh =(/la*lb*¥/lc*/1ld*/switch)

inle

inld

inda

ingb

+(laxlib*/lc*/ld*/switch)
+{(/la*®lb*lc*/ld*/switch)
+{laxlb*lc*/ld*/switch)
+(/la®ib*lc*ld*/switch)
+(lak/lb*/lc*¥/ld¥switch)
+(/la*klb*/1lc*/ld¥switch)
+{la®lb*/lc*/ld¥switch)
+(/la*ilh*lc*/1d¥switch)
+(laklb*lc*/ld¥switch) i

=(/la*lib*xlc*/1ld*/switch)

+(la¥lb*lc*/ld*/switch)
+(/la*lb*lc*ld*/switch)
+{la*®lb*/lc*/ld*switch)
+{/la®lb*lc*/1d*switch)
+{la¥ibxlc*/ld*switch)i

=(/la*lb*lc*ld*/switch)

+{la*¥lb*lc*/ld¥switch)

=(/2a*/2b*/2c*/2d*/ (1d¥switch))

+{2ak/2h*/Bex/2d*/ (ld¥switch))
+(RaxBb*/2c*/2d*/ {1d¥switech))
+{PaxBbRBck/2de/ (ld¥awitch))
+{/Ba*/Bh*/2c*/Bd*(ld¥switch))
+{/2a%Bb#/2ck/2dx {ld¥switch))
+{/2a*eb*2c*/2d*(ld*switch))
+(/Ra*b*R2c*2d*(ld*switch)) s

={/Ra*2b*/2c*/2d*/(ld*¥switch))

+(2ax2bh*/2c*/2d*/ (ld*switch))
+(/2a*@b*2c*/2d*/ (1d¥switch))
+(2a*2bh*2c*/2d*/ (ld¥switch))
+(/2a®Bh*2ck2d*/ (ld¥switch))
+{2a%/db*/2c*/ 2 (1deswitch))
+{(/2a*b*/2c*/2d*(1d*switch))
+(2a*2h®/2c*/2d* (1d¥switch))
+{/RakBh*Rc*/2d* (1d¥switch))
+{2a*Sh*2cw/2d* { 1d*switch))i

in2c =(/Bax2b*2cx/2d*/ (1d¥switch))

+(2a¥dbrPo*/2dx/ (ld¥switch))
+(/2a*2b*2c*2d*/ (1d*switch))
+{2ax2b*/2c*/2d¥ (ld¥switch))
+(/La*bhb*Rc*/2d* (1d*switch))
+(2axEb*dc*/2d*(ld¥switch))}

in2d =(/2ax2b*2c*2d*/ (1d¥switch))

insla
inslb

inslc

insid

ins2a
insib

insdc =

insa2d

END%

+{2axa2b*ck/2d* (1d¥switch))

(/switch¥la);
(/switch¥*lb)
+{{2d*switch)*sld*/slcx/sib*/sla);
(/ewitch*lc)
+{((2d*switch)*/sla¥/sib¥/slc*/s1d)
(/switch®1ld)
+{(2d¥switch)*/sla%/sib*slic*/s1d) 3

(/switch*2a)s
(/switch*2b)
+{(2d*switch) ¥s2d*/sRcx/seb*/s2a)
(/switch*2c)
+{(2d¥switch)*/s2ax/s2b*/s2c*/s2d) 3§
(/switch¥2d)
+((Bd*¥switch)*/sRa*/sEb*sPc*/s2d) 4

8-54

inter AP-279

LEF FOR FART D: TWO DICE SPINNING

Lakshmi Jayanthi

DEO Applications

February 19, 1986
HLOLO

FART 3
L0060

INFUTS:

clockly clock@, switchd2

QuUTPUTS

spinladl0, spinlbd9, spinlcd8, spinldd7, spin2adl9, spin2bR0,
spindcIB2Ll, spin2dIe

NETWORE

clockl = INP(clockl)
clocke = INF(cloock®)

switch = INP(switch)

spinla, sla = RORF(insla, clockl, GNDy GND, VCC)
spinlb, slb = RORF(insib, cleockl. GND, GND, VCC)
spinlcy slc = RORF{inslc, clockls GNDy GND, VCC)
spinld, sld = RORF(insid, clockl, GND, GND, VCC)

RORF (ins2a, clockds GND,y, GND, VIOC)
RORF (ins2b, cleockid, GND, GND., VCC)
RORF (ins2cy clockE, GND, GND, VOC)
RORF (insl2ds clock2, GND, GND. VCC)

spinday sia
spingb, siEb
spindc, sdc
spindd, s2d

Wouowu

4 ®¥% Rescuwrce, NOJF, was minimized to NORF #%% %
2d = NORF(..86007D, clock2, GND, GND)
% *¥% Rescurces NOJF, was minimized to NOTF %% %
Bc = NOTF(..86006D, clock2, GND, GND)
4. ¥%% Rescurce, NOJF, was minimized to NORF #x% %
2b = NORF(..86005D, clocke, GMD, GND)
% #¥% Rescuwrces NOJF, was minimized to NORF s#x Y%
2a = NORF (. .86004D, clockd, GND, GND)
% #¥% Rescouwrcey NOJF, was minimized to NORF #x% %
ld = NORF(..5G003Dy clockl, GND, GND)
h x¥% Rescwrce. NOIF, was min?mized to NORF %% %

NORF (. .8G0O02D, clockl, GND, GND)

il

lc

8-55

AP-279

% xx% Rescwrce, NOJF. was minimized to
1b = NORF(..56001D, clockl, GND, GND)
% *##%x Rescuwrces NOJF, was minimized to

la = NORF(..5G000D, clockls GND, GND)

EQUATIONS:

switch’ x 2d
2d * switch x s2a’ * s2b’ x s2¢ x s2d’;

ins2d

+

ins2c = switch’ x 2¢
2d * switch % s2a’ % s2b’ % s2¢’ x s2d’;

+

switch’ x 2b
2d x switch * s2d % s2¢’ x s2b’ x s2a’;

ins2b

+

ins2a = switch’ x 2a

ins1d = switch’ x 1d :
+ 2d % switch *x s1a’ x s1b’ X s1c x s1d’;

insic = switch’ x 1c
+ 2d x switch x s1a’ x s1b’ *x s1¢’ *x s1d’;

ins1b = switch’ x 1b
+ 2d * switch % s1d x s1c’ x s1b’ % s1a’;

insla = switch® * laj

-« SEO0O0OD la® * 1b" * 1lc™ % 1d°

+ Jla # lc’ ¥ 1d* * switch®

+ la® % 1b % 1d’ * switch

+ la % 1b # 1d* % switch’

+ la” % 1b * 1lc * switchs
.« SG0O0ID = ib * 1d°

+ lb * la” ®* lc ¥ switch?

+ la * lc® * 1ld* ¥ switchg
. - S6O02D lc * 1b % 1id7

+ lc * la” ® 1b ¥ switch?
+ la * 1b * 1d” * switchj

860030 = 1d * 1la’ % 1lb * lc % switch®

+ 1d" % lLa % 1b * lc * switchs
2860040 = Ba® * 2b* ® 2c” ¥ 2d°

+ Ra ¥ Bc’ ¥ 2d7 ¥ 1d7

+ Ba *® fc’ # 2d7 ¥ switch®

+ Ba * 2b * 2d* * 1d°

+ 2a * 2b * 2d°- % switch”

+ 2a’ ¥ 2b ¥ 2d7 ¥ 1d ¥ switch

+ 2a® * 2b ® 2c * ld ¥ switchs
. .8600SD = 2b * 2d”

+ 2b * 2a’ # 2c * id°

+ 2b * 2a® * 2c ¥ switch”

+ 2a % 2c” * 2d7 * 1d * switchsj

8-56

%

%

intel ~ AP-279

.« .8GO0O4D = 2c * 2b7

+ 2c * 2a ¥ 2d

+ 2c * 2d * 1d * switch

+ 2c® % 2a * 2b * 2d' * ld % switchsi
. «SBO0O7D = 2d * 2a” * 2b * 2c * switch’

+ 2d ¥ 2a’ * b % 2c * 1d?

+ 2d" #* 2a * 2b * 2c * 1d * switchs

END%

NOTE: PLease note how the IPLS software has simplified the equations for you. You need not
worry about minimization. The complicated Boolean expressions have been minimized to a
great extent.

8-57

inter AP-279

RET FOR PART D: TWO DICE SPINNING

Logic Optimizing Compiler Utilization Report
®¥#x%k%% Design implemented successfully
Lakshmi Jayanthi

DEO Applications
February 19, 1986

HC0&0

FART D: TWO DICE SFINNING

B Version 3.0, Baseline 17y, 9/26/88

SCO60
cleockl -1 1 241- Voo
switch -1 & 231 - GND
RESERVED -1 3 221 spingd
RESERVED -1 4 211~ spingc
RESERVED -1 5 201~ spinib
RESERVED —1 & 191~ spinda
spinld -i 7 181 - RESERVED
spinlec -1 8 171 - RESERVED
spinlb -1 9 161~ RESERVED
spinla —110 151~ REBERVED
GMD —111 141~ GND
GND -112 131~ clock?
* % IMPUTS*%

Name Fin Rescurce MCell # FTaerms
clockl 1 INF - -
switch = INF - -
clocka 13 INF .- -

8-58

MCells

LN oD W e

Feeds:
[8]:3

Clear

Cleock

ClL1

CLER

intel

AP-279
OQUTPUTS
! Feeds:
Name Pin Rescurce MCell # FTerms | MCells OE Clear Clock
spinld 7 RORF 13 2/ 8 13 - - -
14
15
spinlc 8 RORF 14 2/ 8 13 - - -
. 14
15
spinlb 9 RORF 15 2/ 8 13 - - -
14
15
spinla 10 RORF 16 1/ 8 13 - - -
14
15
spinda 19 RORF 4 i/ 8 1 - - -
a2
3
spinéb 20 RORF 3 2/ 8 1 - - -
2
3
spindc 21 RORF a2 2/ 8 1 - - -
2
3
spingd es RORF 1 &/ 8 1 - - -
a2
3
**HBURIED REGISTERS*#*
H Feeds:
Name Fin Rescurce MCell # FTerms | MEells OE Clear Clock
18 NORF S 3/ 8 1 - - -
&
=)
-
8
17 NORF) 4/ 8 e - - -
5
&
7
g
16 NORF 7 4/ 8 3 - - -
S
&
7
=]

8-59

iﬂter AP-279

15 NORF a8 VIR

B

W

3 MORF 9 a2/ b

4 NOFF 10 a7 8@ 5
10,
11
14
] NOFF i1 V] o
10
1e
13
& NURF - 1a 5708 o
10
i1

1a
14

#HUNUSED RESQOURCES®%
Name Fin Rescowrce MCell FTerms
- 1 1 . - —
- 14 - - -
- :)d —— — —-

¥FART UTILIZATION®*

[=1oyA Firng
100% MacroCells
A& Fiterms

NOTE: Part D of the design example utilizes the device in a very optimum manner. You have
utilized all the macrocells and also 86 % of the pins but only 35% of the product terms.

You have not used three of the input pins.
Consider this:

Make these three pins a mode select on this dice example — if all of these three additional
inputs are high then the dice will function as described (this condition must be added to each
product term). You now have seven other modes in which to operate this DICE. Anyone want
to “load” the odds for “boxcars” or “snake-eyes”? You have 65% more product terms to use
s0 you can be very creative, What else could you add to this EPLD?

8-60

