
intJ APPLICATION
NOTE

AP-279

May 1986

Implementing an, EPLD Design
Using Intel's Programmable
Logic Development System

LAKSHMI JAYANTHI
DSO APPLICATIONS

8·9 Order Number 28031()"OO1

AP-279

OVERVIEW

Welcome to the fascinating world of ERASABLE PRO
GRAMMABLE LOGIC DEVICES (EPLDs) and Intel's
Programmable Logic Development System (iPLDS). This
application note has been written for the newcomer to
Intel's devices and design tools. It has been designed as a
step-by-step guide through the tools but should also prove
useful as a reference document for the experienced logic
designer.

By the end of this application note you will have
designed/solved multiple logic problems and be in a posi
tion to implement solutions to many of the digital design
challenges you face today. It is anticipated that this appli
cation note will be used in conjunction with Intel's iPLS
software. To increase the usefulness of this application
note, Intel will supply a PCB card for you to experiment
on and a sample diskette (see Appendix E for details).

This application note is divided into the following three
sections:

1. An introduction to Erasable Programmable Logic
Devices (EPLD)

2. An introduction to Intel's Programmable Logic De
velopment System (iPLDS)

3. Implementation of EPLD and iPLDS using detailed
examples to implement a logic design.

INTRODUCTION

Programmable logic in the form of PALs have been availa~
ble for some time. They have' become more.complex as
Large Scale Integration (LSI) techniques have been ap
plied to this technology.

The benefits of Large Scale Integration circuits are many
fold. These circuits offer lower manufacturing costs,
since the use of customized LSI circuits reduces required
printed circuit board space, thereby significantly reducing
board costs. These circuits also consume lower power so
less expensive power supplies are required and cooling
fans are also eliminated. LSI circuits also have higher reli
ability than equivalent systems comprised of many low
density standard components.

As end users of semiconductors moved into higher and
higher levels of integration, chip designers found it more
and more difficult to define larger and larger blocks of
logic. These difficulties led to the emergence of the
user-defined Application Specific Integrated Circuit
(ASIC).

The options available for application specific logic are ex
plained below and shown in Figure 1.

8-10

I n CUJTOM n
PROGRAM- GATE STANDARD FULL

MABLE ARRAY CELL CUSTOM
LOGIC

2442

Figure 1. Logic Options

Full Custom: These circuits can be tailored to give the
best functional performance with the highest level of inte
gration, the smallest silicon area, the lowest power use,
and be produced for the least cost at high production
volumes.

Standard Cell Library: This approach represents an in
tegrated circuit which is composed of predesigned and
precharacterized cells chosen from a computer data base
library of cells.

Gate Arrays: These are integrated circuits that contain a
regular, usually square, matrix of predefined logic gates.

User Programmable Logic: The concept of user pro
grammable logic is to provide the designer with the bene
fits of custom LSI chips from standard products.

A recent innovation in the programmable logic field has
been Intel's introduction of an ERASABLE Program
mable Logic Device. Using the same technology used in
the manufacture of EPROMs, Intel now·offers increased
flexibility to the logic designer.

Intel has addressed the limitations of gate arrays and fuse
programming logic with its EPLD products and develop
ment system support tools. The benefits to the system de
signer are:

• Greatly reduced lead times

• Low design costs

• Ease of design changes

• Low power dissipation from CHMOS technology

• Multiple programming facility

• Maximum flexibility in each chip and the ability to
erase and reprogram

• High density products that maximize function, integra
tion, and quality

• A self-contained, low-cost sophisticated development
system based upon the industry standard IBM PC XT
or AT.

AP-279

Table 1. Intels EPLDs

EPLD Gates Pins
Dedicated

110 Inputs

5C031 300 20 10 8
5C060 600 24 4 16
5C09,O 900 40 12 24
5C121 1200 40 13 24
5C180 1800 68 12 48

EPLDs are now a cost-effective solution to the problem of
large scale logic integration. EPLDs are the simplest form
of high density application-specific logic to implement.
At present, the following logic devices are available from
Intel as shown in Table 1.

Intel's EPLDs use the. "Sum Of Products" architecture
with programmable AND and fixed OR gates to drive a
combinatorial or registered output. Each of the devices
listed in Table 1 has different attributes and resources tar
geted at specific applications.

In general each device contains multiple sets of program
mable MACROCELLS as shown in Figure 2;

Everything is programmable (and erasable if you need to
make modifications). Product terms may be generated
from any combination of input terms-any terms not used
are considered a "don't-care" in the array. The output
register is also programmable-you can choose D-type,
Toggle, SR, or even JK FLIP-FLOPs; you can even
choose no output register if you only require combinato
rial outputs. The clock and output enables are also
programmable.

Intel EPLD devices are available in many configurations
to fit most applications. A complete listing of data sheet
availability is covered in Appendix E.

DESIGN TECHNIQUES USING INTEL'S
EPLDS

Designing with EPLDs is similar to designing with stan
dard TTL logic circuits. The focus moves from "how can
I configure this design ~ith standard parts" to "what else
could I replace using this EPLD". Remember, if you ever
use all of an EPLDs resources you just move up the de
vice chain to the next bigger component-all of the work
you did is DIRECTLY PORTABLE to a larger device.

Any network, either combinatorial or registered, has an
equivalent two level form. Any logic circuit consisting of
AND, OR, NOR, NAND, XOR Logic can easily be con
verted into the corresponding truth table. Any Boolean
expression, no matter how complex, may be written in
Sum-Of-Products form. This Sum-Of-Products expres
sion that has been derived from the truth table can be re
duced until it has as few product terms as possible. This
procedure can be repeated for any complex network.

Let us consider a very simple network as shown in Figure
3. This logic circuit consists of an AND gate, an OR gate
and a NOT gate. The inputs are A, B, C, and the output
is Y.

For this simple .network, the truth table is shown in
Table 2:

A Boolean expression can easily be written from the truth
table in a Sum-Of-Products form. This expression con
tains the relationship between the inputs and the output.

AP-279

A

B

>---v

2444

Figure 3. Simple Network

Note that the output Y is true in five cif these eight states
(0,2,4,6, and 7) so expressing Y in the form
"Sum-Of-Products" by writing the ones in terms of A, B,
and C yields:

Y = IA*/B*/C + IA*B*/C + A*/B*/C
+ A*B*/C + A*B*C

Hence, given any network, that network can be converted
into its truth table. Next, a Sum-Of-Products expression
that has the same truth table can be derived. If so desired,
this Sum-Of-Products expression can be reduced using
DeMorgan's theorem to simplify the circuit (you will see
later that this will not be required),

DEVELOPMENT SUPPORT

Development tools are critical to the use of new technolo
gies because tools allow you to control and use a new
technology. Good tools help you, the designer, to work in
familiar methods, then translate the design to the device;

Good tools broaden the applications by making it easy to
use new technology in designs. They are not a barrier to
using the technology, but encourage its use and
applications.

Advanced and innovative technologies need similar ad
vancements and innovations in the corresponding tools.

Table 2.

STATE INPUT OUTPUT

A B C y
0 0 0 0 1
1 0 0 1 0
2 0 1 0 1
3 0 1 1 0
4 1 0 0 1
5 1 0 1 0
6 1 1 0 1
7 1 1 1 1

8·12

iPLDS, Intel's Programmable Logic Development Sys
tern,. provides a fulL spectrum of ways to design and use a
variety of design tools with fast, easy-to-use entry
software. .

The iPLDS contains all the software, hardware, documen
tation and devices needed to program EPLDs. iPLDS are
the most advanced PLD design tools available; It .provides
better utilization of device resources (more gates per
chip) than any other development software. These versa
tile tools are for users with different skill levels and appli
cations. iPLDS tools handle the details of converting your
design to working silicon on the personal computer.

The iPLDS contains the three fundamental modules

• Logic Builder (LB)

• Logic Optimizimg Compiler (LOC)

• Logic Programmer Software (LPS)

To implement the logic design we will use the iPLDS
modules in the order listed above.

The modules are essentially independant modules that use
special data files to pass information as shown in Figure
4. These data files are the ADF, RPf, LEF, and JED files.

The Advanced Design File (* .ADF) is generated from
the Logic Builder and contains the Inputs/outputs and all
the primitive equations.

The Logic Equation File (* .LEF) contains the primitive
equations that have been minimized by the Logic Opti-
mizing Compiler. .

The Utilization Report File (* .RPf) contains information
on the macrocell and pin assignments. .

The JEDEC File (* .JED) is the file generated by the
Logic Optimizing Compiler used to program the device
using the Logic Programmer.

Before implementing the logic design using the iPLDS,
let us briefly discuss the iPLDS family of parts to be fa
miliar with the iPLDS modules.

Logic Builder (LB)

The Logic Builder module guides you through the entire
process of design entry by prompting for necessary infor
mation and showing a screen display (one primitive at a
time) with input signals on the left side and output signals
on the right side. The Logic Builder is used to generate an
Advanced Design File (or ADF) by inputting the data in
netlists or Boolean equations.

After all required data are entered, the Logic Builder
module indicates whether the circuit is complete and
properly connected. If any changes need to be made, the
module enables you to edit the circuit design either by

AP-279

1----
I

1 LEF ANALYZER r--l

LOGIC
BUILDER

(LB)

I
I

DESIGN FILE
TRANSLATOR

TRANSLATOR!
EXPANDER

I
I

I
I

DESIGN
REQUIREMENT

FinER

DEMANDER!
FInERI

ASSEMBLER

LOGIC
PROG.

(LP)

2445

Figure 4. Block Diagram of iPLDS Modules

systematically scanning through the primitives in the Ad
vanced Design File (ADF) or by directly finding a primi
tive by the name of a node connected to it.

Any circuit may be edited. The Logic Builder reads in the
ADF and prompts you for changes. The Logic Builder
also allows two or more partially complete ADF files to
be MELDED together to form a more complex function.
This concept is not discussed in this application note but
will be a topic of a future application note.

Logic Optimizing Compiler (LOC)

The Logic Optimizing Compiler provides an easy-to-use
interface to the Logic User System software. Regardless
of the type of .design entry method used, the LaC first
translates an Advanced Design File (ADF) into internal
logic equations; then it performs a Boolean reduction on
the translated design, and finally produces a JEDEC Stan
dard File, which is then used to program an Intel EPLD.
In addition, you have the option of requesting an analysis
of the Logic Equation File (LEF) as output by the
Minimizer module.

The LaC performs the following functions:

• The TRANSLATOR translates the ADF into an inter
mediate Logic Equation File (LEF). (Most errors are
detected and corrected).

• The EXPANDER expands the Boolean equations into
Sum-Of-Products form, removes redundant factors
from product terms, and produces another LEE

• The MINIMIZER performs a sophisticated Boolean re
duction on the translated design to maximize utilization
of the EPLD .

• The LEF Analyzer converts the LEF output by the
MINIMIZER into a human readable file to allow you to
see your design. (*.LEF)

• The DEMANDER organizes the file output by the
MINIMIZER.

8-13

• The FITTER matches your design requirements with
the known resources of the Intel device.

• The ASSEMBLER- converts the fitted requests into
JEDEC file.

Logic Programmer Software (LPS)

The Logic Programmer Software provides a user inter
face to the JEDEC Standard File output of the Logic Opti
mizing Compiler and to the Logic Programmer Interface.
You can use the Logic Programmer Software to view
JEDEC files and to program your designs into EPLDs.

The Logic Programmer Software is used

• to program your designs into EPLDs

• to verify the validity of data in the device

• to read data from the device

• io display JEDEC data graphically

• to edit JEDEC data

HARDWARE REQUIREMENTS

The iPLDS requires an IBM PC XT, PC AT, or other
compatible computer. A color monitor is preferred. The
computer must have at . least one 360K double-sided
double-density disk drive, a second 360K floppy disk or
hard disk, and at least 512K bytes of RAM memory.

The iPLDS consists of the Logic Programmer Interface
card, and the programming unit needed to program and
verify EPLDs. The Intel iUP 201 with a aUPI adapter
may be used as an alternate system to program the EPLD
devices. .

SOFTWARE REQUIREMENTS

The personal computer should be capable of running DOS
V3.0 or a higher version. The Intel Programmable Logic

AP-279

Software (iPLS) that contains the software controlling the
logic programmer interface and assisting in the design of
Intel applications is shipped on floppy diskettes.

PROBLEM DEFINITION

We are going to use iPLDS to implement a medium com
plexity logic function. As a vehicle to show the usage of
the tools and design techniques we will design a circuit
that will roll and spin a pair of dice. The design has been
split into multiple stages for illustration purposes.

This example has been chosen since it incorporates many
of a typical logic design tradeoffs and also solves many of
the typical problems a hardware logic designer will
encounter.

Appendix A contains some basic definitions that may be
useful when reading through the design and its
implementation.

DESIGN SAMPLE

Problem Set-up

The circuit is designed to set both of the dice spinning
when you push a switch and display a random set of num
bers when you release the switch. The dice will spin at a
rate that is visually pleasing and roll at the highest possi
ble rate to ensure randonmess.

You will implement the design in the following steps:

A. One dice that will roll out a number.

B. Add a s'witch that will control the roll/not roll action,

C. Add a second dice to roll a number.

D. Add a spinniI)g option to both dice.

E. Retro-fit a power save feature to extend battery life.

Hence, at the end of the five design steps you will have a
pair of dice spinning and showing a pair of numbers be
tween I and 6 in a very random manner. At the end of the
five design steps, you will have added a very realistic and
practical feature to your design and that is extending the
battery life by a power saving option. It is important to
note that the five steps mentioned above are sequential
steps in that step C can be achieved only after steps A and
B etc. Let us describe the sample circuit for the dice roll
ing example. It is a very simple circuit allowing you to
concentrate upon the design process. It illustrates the pos
sible design stages and considerations in detail.

8-14

PART A

Four Outputs-lA, IB, IC, ID are required to drive the
LEDs arranged in a DICE pattern as shown in Figure 5.

1B •

10 •

1C •
• 1A

• 1C

• 10

• 1B

Figure 5. Dice Configuration

2452

Operating sequence-Rolling dice. from I to 6 and the
block diagram of the circuit, both shown in Figure 6.

The total number of states that are possible is 16 since the
four LED pairs generate a permutation of (2**4) = 16.
The LEDs should be lit up such that any number between
I and 6 inclusive is shown. Hence, out of the 16 possible
states, only six states are valid. This leaves ten invalid
states.

If the LEDs come up in a valid state upon power up, then a
number between I and 6 will be displayed.

However, if the LEDs come up in an invalid state upon
power up, then you have to design the circuit such that any
one of the ten invalid states will fall into a valid state.

If the LEDs fall into anyone of the ten invalid states, then
you have designed the circuit to move into a state where
lA, IB, IC, ID have zero logic values respectively on the
next clock edge. Every time a zero logic value appears in
the invalid states, then at the next clock edge, LED IA
gets lit up generating a valid state. Since I is a valid state,
the numbers between I and 6 inclusive will be displayed
at all subsequent clock edges.

Listed below are the steps involved in designing the logic
circuit.

STEP I. Generate the state diagram to clearly show the
operating sequence including the status of the outputs for
each state and the influence of the inputs on the next state
transitions as shown in Figure 7. We have arbitrarily cho
sen that the states should count 1,2,3,4,5,6, and repeat.
You could have implemented the design using any se
quence but we chose the most obvious. Note how most of
the invalid states move you to state 0 which then puts us
into a valid state which then repeats forever.

STEP 2. Generate a truth table with entries for all availa
ble states and combinations of inputs, and use the next
states resulting from these· as shown in Table 3. The
bracketed numbers, (3) etc., show the number being

intJ AP·279

reel
~
~
~ U· • • • •

Figure 6. Rolling Sequence

displayed on the dice and the 0, 1 values of 10, lC, lB,
and lA indicate which LEOs should be OFF/ON to dis
play the required dice pattern.

STEP 3. Convert the truth table directly into
Sum-Of-Products equations as shown below:

OICEIA has four entries; 3 from the valid states and one
to control the invalid states

DICE1A ~ (/lM1B*/1C*/1D + 11M1B*/1C*I1D
+ 11M1B*lC*lD + 11M/lB*/1C*/1D)

DICEIB has five entries from valid states

DICE1B ~ (1A*/1B*/1C*/1D + 11M1B*/1C*/1D
+ lA*lB*/1C*/1D + 11A*lB*lC*/1D
+ lA*lB*lC*/1D)

OICEIC has three entries from valid states

DICE1C ~ (lA*1B*/1C*/1D + 11A*lB*lC*/1D
+ lA*lB*lC*/1D)

2451

.. I·-------�NVAL�D------..... ,~I .. ·-------VALID-------.j'1

2453

Figure 7.

8-15

AP-279

Table 3. Truth Table for 0lCE1

Input State Output State

1A 18 1C 10 1A 18 1C 10 1A 18 1C 10

Valid state Invalid state

CHANGE TO THE NEXT VALID. STATE

1 0 0 0(1) 0 0 0(2)
0 0 0(2) 1 0 0(3)
1 0 0(3) 0 0(4)
0 0(4) 1 0(5)
1 0(5) 0 1 1 1(6)
0 1 (6) 0 0 0(1)

CONTROL THE INVALID STATES

0 0 0
1 0 1 0
0 0 0
1 0 0
0 1 0
1 1 0
0 0

0
1 1 1

0 0 0 0

DICElD has one valid entry

DICE1D = (/lA*lB*lC*lD)

Note that no attempt has been made to minimize these
equations - the iPLS software that you will use later con
tains reducing algorithms and other techniques to opti
mize the design. This allows you to focus upon the
problem and not on tasks such as Karnaugh map reduction
which a computer can often do better anyway.

Having designed part A of the circuit, you can now move
on to tool usage to implement the. design. Refer to the
Intel Programmable Logic Software Manual if you have
not installed the iPLS software.

In order to invoke iPLS type the following command

C:\IPLS>IPLS <Enter>

The iPLS menu will appear as shown in Screen I.

The number to the left of each function allows you to se
lect a function with a function key. Two kinds of function
keys are available: toggle keys and field keys. < F3 > and
< F4 > are toggle keys. All other keys are field keys.
Functions beyond < FlO > are executed by pressing the
< Shift> key together with the function key. Press
< F3 > to invoke the Logic Builder and observe the Logic
Builder menu as shown in Screen 2.

8-16

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0(1)

The first prompt asks for the file name. If the file already
exists, its header information and primary inputs and out
puts are displayed. If you enter a new file name, the Logic
Builder module prompts for all the functions remaining
on the screen.

Enter: DICE1 <Enter>
Create New Netlist(Y/N):Y

In this sample session, user entries are all in uppercase
letters. Note: IPLS is case sensitive.

When initially invoked, the Logic Builder module dis
plays its configuration menu. The Logic Builder configu
ration menu shows "5CI21" as the default Intel part and,
on the right side of the menu, displays those primitives
that are legal for use with the 5CI21. As soon as you enter
another part (e.g. 5C060) the list of primitives changes to
display the primitives applicable to that specific part.

Press < F6 > and enter 5C060 when prompted for user
entry.

Screen 2 shows the Logic Builder Configuration Menu for
the5C060.

• The left side of the screen shows a menu of functions,
each preceded by a function key number.

inter

iPLSl'I~nlJ
F1 11.~lp
F2 fi~it:

F 3 .~ .••. O •....• 9 !•. <: •....••.•.•...••.....•.. ~ ..•••• II .••.• ·.I.· ...•.• l•... d ..•...... iI r ..•...•.. F4 Loe
F 5 Lp9icPro.9l"amllllk
F6 J)Jrecl;t\ry
F7 i't Ill" OIme File
F8C?p~File
F9 ll.eletl! file
F10J)OScommand

AP-279

Intel Programmable Logic Software

iPLS Version 3.0, Copyright (C) 1985, Intel Corporation
Copyright (C) 1985, Altera Corporation

Select a function:

Builder Config Menu:

dice 1
5C060

Screen 1.

Intel Programmable Logic System

March 6, 1986

<--

Designer:

Screen 2.

8·17

AP-279

Table 4.

Prompt User Entrv
F6 EPLD 5(060
F7 Designer Your Name
F8 Company Your Company
F9 Date Present Date
FLO Comment Our first design
tF1 Part Number 0.1
tF2 Revision 1.0
tF3 Inputs CLOCKiill
tF4 Outputs DICE1Aiill0,DICE1Biil9,DICE1Ciil8,DICE1Diil7

• The right side of the screen shows the list of available
primitives (these are discussed in detail later).

• The two lines at the bottom of the screen are designated
for comments (first line) and prompts (second line).

• The center of the screen is used to show a representa
tion of the primitive; name and pictorial representation
are in the middle, input signals are to the left, and out
put signals are to the right of the primitive.

• The direction of the arrow located on the left side of the
screen below the list of functions determines the start
ing point and direction of design entry. If the arrow
points to the left, entry is from output pins to input
pins. If the arrow points to the right, entry is from input
pins to output pins.

N<YrE

We have assigned pin numbers to pin names by
using the "@" symbol within the name of the
logic variable. Specific pin numbers need not
be assigned if not desired. In that case, the
Logic Builder will assign its pin numbers for
you.

Type in the· information as given in Table 4 in the Logic
Builder Config Menu. The information is also shown in
Screen 3. After entering all of this required information,
iPLDS will automatically prompt you through defining
the circuit, starting with a primitive to drive the last out
put specified.

Once in the Logic Builder main menu, you are guided
with prompts to enter information as follows:

Enter the name of the primitive to connect to the first
node. The name may be entered by typing the name of the
primitive, which highlights the appropriate primitive on
the right side of the menu, then pressing < Enter>.

Subsequently, a representation of the primitive is dis
played in the center of the screen surrounded by input and
output signals. You are prompted for names of nodes to
connect to each of the signals. The Design Primitives li
brary contains approximately 80 basic functional blocks
needed for designing circuits in programmable logic
products.

8-18

Design Primitives are divided into the following groups:

• Input Primitives (INP,LINP)

• Logic Priniitives
(AND,GND,CLKB,Nar,VCC,OR,NAND,NOR,XOR)

• Equation Primitives (EQN)

• 110 Primitives (JOJF, NOJF, NORF, RORF, etc)

Refer to Appendix A for an explanation of the Primi
tives used in this example.

The logic is based on input clock transitions. At the rising
edge of the clock we want the LEDs to generate a particu
lar state depending on the input state. You want the output
of the LEDs to follow the input, which is basically a
D-TYPE FLIP-FLOP. You also require the feedback to
generate the next state, which means that you should use a
D-TYPE FLIP-FLOP with FEEDBACK or RORF as
shown in Screen 4.

N<YrE

The Logic Builder module starts with the last
output entered.

When you are prompted to select a primitive to drive
DlCElD enter:

Select a primitive to drive DICE1D@7:
RORF <Enter>

Now you are prompted for the remaining connections:

For FBK: 1D <Enter>

For OE, P, C: Press <Enter> (VCC, GND are
the defaults).

For D: IN1D <Enter>

For ClK: CLOCK <Enter>

Select a primitive to drive CLOCK: INP
<Enter>

inter

<--

AP-279

Intel Programmable Logic System

Builder Config Menu:

dice 1
5C060
Your name
Your company
March 6, 1986
Our first design
0.1
1.0
clockiill
DICE1Aiill0,DICE1Biil9,DICE1Ciil8,DICE1DiiI?

Outputs:DICE1Aiill0,DICE1Biil9,DICE1Ciil8,DICE1DiiI?

Logic Builder Main Menu:
FL·
F2
F3
F4
F5
F6
F?
F8
F9

<-
Pin=?

Fbk:ld

Screen 3.

Intel Programmable Logic System

Oe
P
C
D

Clk

RORF

Screen 4.

8-19

Out diceld
Fbk

AP-279

In: CLOCI(<Enter>

Select a primitive to,drive IN1D: EQN
<Enter>

To save the configuration and return to iPLS menu you
must press < F6> (Save-Exit).

After you are prompted for the equation, type it in as de
rived in the Problem Set-up seCtion. Please note that" I"
indicates a logical "Nor". "*" indicates a logical
"AND", and" + " indicates a logical "OR". The equa
tion is terminated by a ";" as shown in Screen s.

Note that you are saving the Advanced Design File (ADF)
that is generated by the Logic Builder.

You can print the ADF file that has been created at the end
of this session if you so desire. You can use <FlO>
when in the iPLS main menu to print the ADF file for a
listing. You can verify your file with the DICEI.ADF file
given in Appendix D. If you desire a listing, while you are
in the iPLS main menu, type the following:

INU = (1A * 18 * lC * 11D) ~ <Enter>

The following prompts and design entries, as shown in
Thble 5, are needed to complete the design entries for
DICEIC, DICEIB, and DICEIA respectively.

<FlO> <Enter>

PRINT »lCn. ADF <Enter>
The Logic Builder will stop prompting for primitives once
you have entered the complete design.

Press < F8 > to show the design so far as shown in'
Screen 6.

Submitting the ADF to the LOe

This ADF file is now compiled using the Logic Optimiz
ing Compiler. To enter the ADF created with the Logic
Builder module into the Logic Optimizing Compiler
(LOC), press <F4> to access the LOC menu.

Press < F2 > to exit.

The Logic Builder main menu is cleared, replaced by the
Logic Builder exit menu.

TableS.

, PROMPT USER ENTRY

Select a primitive to drive 1C: ftOftf <Enter>
Out:])ICE1C <Enter>
Oe: ' VCC<Enter>
p: GN]) <Enter>
C: GND <Enter>
]): IN1C <Enter>
Select a primitive to drive IN1C: EQN <Enter>
IN1C: (1A*18*/1C*/1]»+(/1A*18*1C*/1]»+(1A*18*1C*/1]» \

<Enter>
Select a primi tive to drive 18: ftOftF <Enter>
Out:])ICE18 <Enter>
Oe: VCC <Enter>
p: GN]) <Enter>
C: GN]) <Enter>
]): IN1B <Enter>
Select a primi tive to drive IN:L8: EQN <Enter>
IN:L8: (1A*/18*/:LC*/:L]»+(/:LA*18*/1C*/:L]»+(1A*18*/1C*/1]»

+(/1A*18*1C*/1D)+(:LA*18*:LC*/1D);<Enter>
Select a primitive todrive :LA: ftOftF <Enter>
Out:])ICE1A <Enter>
Oe: VCC <Enter>
p: GN]) <Enter>
C: GN]) <Enter>
]): IN1A <Enter>
Select a primi tive to drive IN1A: EQN <Enter>
IN1A: (/1A*18*/:LC*/1]»+(/1A*:L8*:LC*/:L]»+(/1A*18*1C*1]»

+(/1A*/18*/1C*/1]»;<Enter>

8-20

AP-279

Intel Programmable Logic System

Logic Builder Main Menu:
F1Hil
F2 '.'

F3
F4·
F5 'tii
Fb~d
F7 ' .. e.o.

~~,;:

<-
Pin=7

vee
GND
GND

inld
clock

Oe
P
e
D

elk

RORF

Out diceld
Fbk ld

ScreenS.

Once the LOC menu is displayed, you are prompted
through the LOC menu functions as follows:

The Input Format prompts you to specify your form of
input: If input is in the form of a pinlist as output by
DASH-2, enter P, if input is an Advanced Design File,
enter an ADF or press < Enter> (ADF is the default). If
output is a component list from PCAD, enter C.

INPUT FORMAT: A <Enter>

FILE NAME: DICE1 <Enter>

MINIMIZATION: <Enter to select def aul t>

INVERSION CONTROL: <Enter to select
default>

LEF ANAL YSIS: <Enter to se~ect def aul t>

After you have answered all the prompts, you are asked if
you wish to run under the above conditions as shown in
Screen 7.,

DO YOU WISH TO RUN UNDER THE ABOVE CONDI
TIONS [Y IN]?

Enter: Y

8-21

Finally you are prompted with:

WOULD YOU LIKE TO IMPLEMENT ANOTHER DE
SIGN [YIN]?

Enter: N

Note that the LOC generates a synopsis of its progress as
shown in Screen 8. You are returned to the iPLS menu.

At the end of the LOC a JEDEC Standard File has been
created which we will use in the Logic Programmer,
DICEI.JED.

Also at the end of the LOC a report file is created,
DICEl.RPf, which gives the pin configuration menu of
the device. The DICEI.RPf file is given in Appendix D.

ProgrammIng the EPLD

Finally, you submit your design to the Logic Programmer.
In order for you to use the Logic Programmer, you must
have the programming card plugged in. Please refer to the
Intel Programmable Logic Software User Manual for in

. stallation instructions.

Alternatively you can use Intel's GUPI (Generic Universal
Programmer Interface) to program your device.

inter

Lo
flo
f2
f3
f4
f5
flo
f7
fl!
f'l

<--

Main Menu:
clockilL
diceLailLD
diceLbil'l
diceLcill!
diceLdil7
vee
GND
lod
inLd
clock
La
lob
Lc
inLc
inlob
inloa

Unconnected nodes are bold
Press a function key:

Loe Menu
fL
f2
f3
f4
f5
flo
f7

ADf
dicd
Yes
No
Yes

AP·279

Intel Programmable Logic ~ystem

Screen 6.

Intel Programmable Logic ,System

Do you wish to run under the abo~e conditions [Y/Nl?

'Screen 7.

The iUP-GUPI and assorted GUPILOGIC adaptors pro
vide an alternative programming solution for Intel's
H-series and EPLD devices, when purchased with the
iPLS. This complete set of software is available without
the Logic Programmer pod and the mM interface card. '

8-22

While you are still in the iPLS menu, press < FS > . This
function allows you to access the Logic Programmer Soft
ware, The Logic Programmer will now come up as shown
in Screen 9.

AP·279

Intel Programmable Logic Software

ADF Minimization LEF-Analysis
dicel

***INFO-LOC-Begin execution
***INFO-LOC-ADF converted to LEF
***INFO-LOC-S.O.p. LEF produced
***INFO-LOC-LEF reduced
***INFO-LOC-LEF analyzed
***INFO-LOC-Resource demand determined
***INFO-LOC-Design fitting complete
***INFO-LOC-JEDEC file output

LOC cycle successfully completed

Would you like to implement another design [YIN]?

Screen S.

Use the cursor keys to select "Program Device" option.

When you are prompted

EnterJEDEC file name

Enter: DICE1. JED <Enter>

When you are prompted for:

Select Device For Programming

Enter: 5C060 <Enter>

When you are prompted for:

Do you wish to enable verify protection? [Y / N]?

Enter: N

When you are prompted for:

Do you ~ish to enable turbo-bit? [Y / N] ?

Enter: N

Once you have answered all the prompts, the device is
programmed and ready to be used in an actual circuit, as
shown in Screen 10.

Exit from the Logic Programmer after saving the JEDEC
file by using the "EXIT" option.

8-23

This completes part A of the design, which was to roll a
single dice. The programmed device can be tested as de
scribed in Appendix C.

PARTB

Now that you have a good understanding of the manner in
which a circuit is designed and also a good understanding
of how the programming tools are used to program the
device, you can proceed to the next step in the five stages
of the dice design. According to the truth table generated
in part A, the dice will roll a number between I and 6
inclusive as long as you supply a power source. When you
disconnect the power source, all the LEDs will tum off.
This will not be much help since you can only see the dice
roll, but not actually see a number displayed.

Let us include an additional feature into the rolling dice.
Let us include a switch to control the rolling and display
of the dice.

You could choose to gate the clock of the dice or add the
necessary inputs to the product terms to effect this design.
If you were to stop after this step, then gating the clock
would be a simpler choice, however, you will require the
dice to roll during part D of the design; so we will choose
to add product terms at this stage. This also results in a
better engineering solution since gated clocks often cause
problems in large systems, and it has been shown that
synchronous systems are more reliable.

intJ

HELP

Change Disk

AP·279

Program Device
Enter JEDEC file name [·JED]: DICE1.JED

ctory of .JED files for: C:\IPLS

Screen 9.

Designer: Your Name
Company: Your Company
Part I:
Revision: 0.0
EPLD: 5C060
Device code:

Comment: PART A: DICE ROLLING
LB Version 3.0, Baseline 17x, 9/26/85

the socket

Screen 10.

8·24

AP-279

Since you already have a proven design of a rolling dice
from part A, we shall use the Logic Builder and edit that
design. You may wish to save the original design at this
stage. You can do this by using the <FlO> key in the
Main Menu. Press <FlO> and issue the following com
mand before re-entering the iPLS menu:

COPYDICE1.* DICE1A.*

The truth table is shown in Thble 6.

Now you can use the iPLDS to design and program the
device.

Go through the same steps to program the device as in
Part A of the design example. Use the Logic builder, the
Logic Optimizing Compiler, and the Logic Programmer
respectively. The Logic Optimizing Compiler and the
Logic Programmer steps are identical to the correspond
ing steps explained in part A of the design example. How
ever, the Logic Builder will be used to edit the existing
file, DICE I , to include the switch feature as follows:

Invoke the Logic Builder Menu from the iPLS main menu
by pressing the < F3 > key. Once you obtain the Logic
Builder Configuration Menu, type in DlCEI as your input
file name.

Use (Shift)(F3) to get the Inputs option and then add
switch at pin #2 to it.

Inputs: CLOCK, SWITCH@2 <Enter>

Now press < F2 > to exit to the Logic Builder Main
Menu and answer the prompts as given in Table 7.

All that is left to do now is to edit the four equations,
INlA, INIB, INIC, INlD to add the SWITCH option to
it. Edit the four equations as follows:

Edit Function

When you press the "Edit" function key, < F6 >, while
in the main menu, the edit menu is displayed on the left
side of the screen as shown in Screen II. If you wish to
edit an EQN Primitive displayed on the screen, press
< F6 >. Then the equation is moved to the prompt line
where it can be edited.

Hence, the Boolean expressions for this case would con
sider the situations of when the switch was ON as well as
OFF. The Boolean equations would contain the expres
sion for the switch as follows.

8-25

DICE1A = ((lM/1B*/1C*/1D)+(lA**lB*11C*I1D)
+(lA*lB*lC*I1D)
+ (l1A*/1 B*/1 C*11 D))*ISWITCH
+ ((11A* 1 B*11 C*/1 D) + (l1A* 1 B* 1 C*11 D)
+(l1M1B*lC*1D)
+ (l1A*'1 B*11 C*11 D))*SWITCH

DICE1B = ((l1A*lB*11C*I1D)+(lA*lB*11C*I1D)
+(l1A*lB*lC*11D)+(lA*lB*lC*/1D)
+(/1A*lB*lC*lD))*/SWITCH
+ ((1 MI1B*I1C*/1D)
+(l1A*lB*I1C*/1D)+(lA*lB*11C*11D)
+(l1A*lB*lC*11D)
+(lA*lB*lC*I1D))*SWITCH

DICE1C ((/1A*lB*lC*11D)
+(lM1B*lC*/1D)
+(l1A*lB*lC*lD))*ISWITCH
+ ((lA*l B*11C*11 D) + (/1A*1 B*lC*11 D)
+(lA*lB*lC*I1D))*SWITCH

DICE1D (l1A*lB*lC*1D)*ISWITCH
+(lM1B*lC*11D)*SWITCH

The equation primitive must be displayed on the screen in
order to edit that equation. In order to display the equa
tion on the screen, use the "Find" command, < F5 >, to
find it.

The "Find" command prompts for a node name: then
searches the design for that node and displays it. If the
direction arrow points to the left, the primitive on the out
put side of the node is shown. If the direction arrow points
to the right, the first primitive on the input side is shown.

After you have modified all four equations to include the
SWITCH feature, return to the iPLDS main menu using
the < F5 > key and save the design using the < F6 > key.
You can verify your ADF file with the ADF file for part B
given in Appendix D.

The file is ready to be compiled using the LOC, and the
device is ready to be programmed using the LP.

The steps required to use the LOC and the LP are identi
cal to the steps in part A.

Now the device that has been programmed is ready to be
tested. At this stage in the design, you have completed
part B of the design which is to add a switch to give the
roll/no-roll option.

The programmed device can be tested as described in
AppendixC.

Let us summarize before moving on to the next part of the
design.

inter AP·279

Table 6. Truth Table for 0lCE1

Input State Output State

SWITCH 1A 18 1C 10 1A 18 1C 10 1A 18 1C 10

Valid state Invalid state

REMAIN IN THE SAME STATE

0 1 0 0 0 1 0 0 0(1)
0 0 0 0 0 0 0(2)
0 1 0 0 1 0 0(3)
0 0 1 0 0 1 0(4)
0 1 1 0 1 1 0(5)
0 0 1 1 0 1 1 (6)

CONTROL THE INVALID STATES
0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 1 1 1. 0 0 0 0
0 0 0 0 0 1 0 0 0(1)

CHANGETO THE NEXT VALID STATE"

1 0 0 0(1) 0 0 0(2)
0 1 0 0(2) 1 0 .0(3)
1 1 0 0(3) 0 1 0(4)
0 0(4) 1 1 0(5)
1 0(5) 0 1 1 1 (6)
0 1 (6) 1 0 0 0(1)

CONTROL THE INVALID STATES

0 0 0 0 0 0 0
1 0 1 0 0 0 0 .0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 1 0 0 0 0 0
0 0 0 0 0 0
1 0 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 0 0 0(1)

Note: This part of the truth table is identical to Table 3.

We have briefly discussed the EPLD and the IPLDS fam- Builder, Logic Optimizing Compiler, and the Logic
ily of parts. We have also defined the design problem. We Programmer.
have implemented the design using the state equations and
the truth table, edited an existing design to add features, Ourlogic in implementing the dice example is to use the
~and actually programmed a· device using the Logic LED pairs in outputs lA, IB, IC, and ID respectively as

8·26

AP-279

Table 7.

Prompts UserEn~

Select a primitive for switchGl2 to drive: INP <Enter>
Out: SWITCH<Enter>
Select a primitive for switch to drive: EQN<Enter>

shown in Figure 8. These LEDs are lit up to generate
numbers between I and 6 inclusive. We are using a
D-TYPE FLIP-FLOP to implement the truth table. The
clock is a free running clock. A push button switch is also
supplied to give the roll/no-roll option. Whenever the
switch is ON, the LEDs roll, and when the switch is OFF,
the LEDs display a number between I and 6, as long as
the clock is supplied to the device.

After seeing the dice roll and display a number, you can
either quit or move onto parts C, D and E of the design
process. The following three parts describe a versatile use
of the EPLD concept.

PARTe

We are using an EPLD 5C060 which is a 24 pin, 600 gate
device. It has four dedicated input pins and 16
input/output pins. Up to this point you have used only one
input pin which is the switch and only four input/output
pins for the four LEDs lA, lB, IC, lD.

Part C of the design is to include a second dice with the
first dice. This is a step towards real-world application
since dice are usually rolled in pairs. At the end of this
section, you will have a pair of dice rolling and displaying
a pair of numbers. All the conditions and truth tables and
Boolean expressions that were designed for part B, hold
good for DICE 1. The equations for DICE2 would change
slightly as explained below.

You have designed a 6 state counter and can define a carry
out (fortunately you can use state 6 and do not require
extra logic). You can use the carry out as an enable input
to form two cascaded counters.

The carry out of ID is used as an enable input to DICE2.
Hence, ID performs the same function as the push button
switch performed in dice 1. Therefore, whenever ID is
enabled or logic high, DICE2 is enabled and rolls a num
ber. DICE2 displays the number when ID is disabled or
logic is low. This configuration is shown in Figure 9.

Intel Programmable Logic System

Logic Builder Main Menu
Fl H~~P
F2 e:1lIt
F3 "IEiIl/
F4~pelJ
F5 find
F6 Edit
F7CClnfl.~<
F8 NOde.Ust
F9 RedraW

-->

la
lb IEQNI inld
lc
ld

inld=(la*lb*lc*/ldl;
inld=(/la*lb*lc*ldl*/switch+(/la*lb*lc*ldl*switch;

Screen 11.

8·27

intJ AP-279

Table 8.

PROMPTS
Find:
(NolII use the <cursor left> key to obtain the EQN Primi tive.)
Edit:

IN1D= (/1A*lB*lC*lD)*ISWITCH+(lA*lB*lC*/1D)*SWITCH;<Enter>

Find:
(NolII use the !=cursor left> key to obtain theEQN Primitive.)
Edit:

INJ.C = «/1A*lB*lC*/1D)+(lA*lB*lC*/1D)+(/1A*lB*lC*lD»*ISWITCH'
+«lA*lB*/1C*/1D)+(/1A*lB*lC*/1D)+(lA*lB*lC*/1D»*SWITCH;
<Enter>

Find:
(NolII use the <cursor left> key to obtain the EQN Primi tive.)

, ,

Edit:
IN1B = «/1A*lB*/1C*/1D)+(lA*lB*/1C*/1D)+(/1A*lB*lC*lD)+(lA*1B*lC*/1D)

+(/1A*lB*lC*lD»*ISWITCH
+«lA*/1B*/1C*/1D)+(/1A*lB*/J.C*/J.D)+(J.A*J.B*/1C*/J.D)+
(/J.A*J.B*J.C*/1D)+(J.A*J.B*J.C*/J.D»*SWITCH;<Enter>

Find:
(NolII use the <cursor left> key to obtain the EQN Primitive.)
Edit:
INJ.A=«J.A*/J.B*/J.C*/1D)+(J.A*lB*/1C*/J.D)+(J.A*J.B*J.C*/J.D)+
(/1A*/1B*/1C*/1D»*ISWITCH+«/1A*lB*/1C*/1D)+(/1A*lB*1C*/1D)
+(/1A*lB*lC*lD)+(/1A*/1B*/1C*/1D»*SWITCH;<Ente~>

The two conditions obtained are as follows:

When power is ON and 10 is enabled, DICE2 will roll ..

When power is ON and 10 is disabled, DICE2 will dis
play.

For DICE!, the logic conditions remain the same as in
partA. Just as you used the switch to enable and disable

ENABLE IN

CLOCK

USER ENTRY
INlD <Enter>

IN1C <Enter>

IN1B <Enter>

INLA <Enter>

1A

1B

1C

10

1A

1B

1C

10

CARRVOUT

2A
ClK 2B

2
2C

CARRVOUT aD
2447

2446

Figure 8. Figure 9.

8-28

inter AP-279

DlCE1, you will use the switch as well as the output of
LED ID to enable and disable DlCE2; because the num
ber on DlCE2 is a function of both the switch and the
present state of LED ID, as explained above.

Now. write down the truth table since the state diagrams
can easily be inferred from the truth table. Please note
that the truth table is identical to the one for DlCEI ex
cept for the switch input. For DlCE2, you will have the
combination of the switch and the ID, as shown in
Thble9.

The Boolean expressions for part C will consider the situ
ation when the switch is ON as well as OFF and also ID
enabled or disabled respectively. The Boolean equations
will contain the expression for the switch and LED lD, as
shown below.

DICE2A = «2A*/2B*/2C*/2Dj+(2A*2B*,2C*/2Dj
+ (2A*2B*2C*/2Dj + (/2A*/2B*,2C*/2Djj
(/SWllCH,lDj
+ «/2A*2B*,2C*/2Dj + (/2A*2B*2C*/2Dj
+ (/2A*2B*2C*2Dj + (/2A*/2B*/2C*/2D))
*(SWllCH*lDj

DICE2B = «/2A*2B*,2C*/2Dj + (2A*2B*/2C*/2Dj
+ (/2A*2B*2C*/2Dj + (2A*2B*2C*,2Dj
+ (/2A*2B*2C*2D))*(/SWllCH*,1 Dj
+ «2A*,2B*/2C*,2Dj
+ (/2A*2B*/2C*,2Dj +(2A*2B*/2C*/2Dj
+(/2A*2B*2C*/2Dj
+(2A*2B*2C*/2D))*(SWllCH*lDj

DICE2C = «/2A*2B*2C*/2Dj": (2A*2B*2C*/2Dj
+(/2A*2B*2C*2Djj*(/SWllCH*/l Dj
+ «2A*2B*/2C*,2Dj
+ (/2A*2B*2C*/2Dj +(2A*2B*2C*/2Djj
*(SWllCH*1Dj

DICE2D = (/2A*2B*2C*2Dj*(/SWllCH*,lDj
+ (2A*2B*2C*/2Dj*(SWllCH* 1 Dj

Now you can use the iPLDS to program and test the de
vice as explained in appendix C. At this stage in design,
you have completed part C of the design which is to add a
second DICE to the first one giving the the roll/no-roll
option.

In part C of the design process, you have used one dedi
cated input which is the switch, and a total of eight output
pins for the two pairs of LEDs, lA, IB,lC, 10 and 2A,
2B, 2C, 2D respectively. You have also used the RORF
primitive, since the design logic was the same for DlCE2
as it was for DICE!. This leaves 3 dedicated inputs and 8
1/0 pins on the 5C06O device.

You can stop the design now or go onto part D which gives
the next option, which is adding the spin.

. PARTD

This is the fourth step in our design process and adds the
spin option to the two dice that are rolling when the switch
is pushed and display a number when the switch is re
leased. The logic used to implement the spin concept is as
follows:

When the power is ON and the switch is OFF, DlCEI and
DlCE2 display a random number according to the logic
defined in parts B and C respectively.

But, when power is ON and the switch is ON, the two dice
spin by lighting the LEDs B, C, and D. That is, DlCEl
will light LEDs IB, lC, 10 while DlCE2 will light LEDs
2B, 2C, and 2D. This pattern on the LEOs will generate
the spinning pattern. The logic is shown in the truth table
in Thble 10. The schematic is shown in Figure 10.

As you can see from the truth table, when the present state
is any of the three valid states, then the two dice will spin.
The dice will also spin if the present state is an invalid
state, because all the invalid states go to"O 0 0 0" in the
next state. But from the truth table in Thble 10, you see
that this particular state is a valid state lighting LED C.

The spin frequency should be chosen to be visually ap
pealing and should be high enough to ensure randomness
of the dice. If we use the "carry out" state ofDICE2, then
the spin pattern will only change once for every combina
tion of the two dice. This will ensure randomness. The
"carry out" of DICE2 is signal 2d; we do not need extra
terms to derive it.

Thus we have achieved our objective of adding the spin
ning option to the two dice.

The Boolean equations that are obtained from the above
truth table are as follows:

SPIN1B = (SWITCH*2d*/S1D*/S1C*/S1B*S1Aj.

SPIN1C = (SWITCH*2d*/S1D*/S1C*/S1B*/S1Aj

SPIN1D = (SWITCH*2d*/S1D*S1C*/S1B*/S1Aj

SPIN2B = (SWITCH*2d*/S2D*/S2C*/S2B*S2Aj

SPIN2C = (SWITCH*2d*/S2D*/S2C*/S2B*/S2Aj

SPIN2D = (SWITCH*2d*/S2D*S2C*/S2B*/S2Aj

Please note in the above equations that A, B, C, and D
refer to both DICE 1 and DlCE2. For DlCEI the above set
of equations would be lA, IB, lC, and 10. For DlCE2
the above set of equations would be 2A, 2B, 2C, and 2D
respectively. SD is the feedback obtained from IN D of
both DlCEI and DlCE2 respectively. If the switch is not
ON, the dice will not spin and a random pair of numbers
will be displayed by the two dice; but, if the switch is ON,
then the two dice will spin according to the truth table and
Boolean expression given in Thble 10.

8-29

AP·279

Table 9. li'uth Table for 0lCE2

Input State Output State
"

(SWITCH * 1 0) 2A 28 1C 20 2A 28 2C 20 2A 28 2C 20

Valid state Invalid state

REMAIN IN THE SAME.STATE

0 1 0 0 0 1 0 0 0(1)
0 0 1 0 0 0 1 0 0(2)
0 1 1 0 0 1 1 0 0(3)
0 0 1 1 0 0 1 1 0(4) .
0 1 1 1 0 1 . 1 1 0(5)
0 0 1 1 1 0 1 1 1(6)

CONTROL THE INVALID STATES
0 0 0 1 0 0 0 0 0
O. 1 0 1 0 0 0 0 0
.0 0 0 0 1 0 0 0 0
(j 1 0 0 1 0 0 0 0

'0 0 1 0 1. 0 0 0 0
0 1 1 0 i 0 0 0 0
0 0 0 1 1 0 0 0 0
0 1 1 1 1 0 0 0 0
0 0 0 0 0 1 0 0 0(1)

CHANGE TO THE NEXT VALID STATE"

1 1 0 0 0(1) 0 1 0 0(2)
1 0 1 0 0(2) 1 1 0 0(3)
1 1 1 0 0(3) 0 1 1 0(4)
1 0 1 1 0(4) 1 1 1 0(5)

. 1 1 1 1 0(5) 0 1 1 1(6)
1 0 1 1 1(6) 1 0 0 0(1)

CONTROL THE INVALID STATES

1 0 0 1 0 0 0 0 0
1 1 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0
1 1 0 0 1 0 0 0 0
1 0 1 0 1 0 0 0 0
1 1 1 0 1 0 0 0 0
1 0 0 1 1 0 0 0 0 '.

1 1 0 1 1 0 0 0 0
:1 1 1 1 1 0 0 0 0
1 0 0 0 0 1 0 0 0(1)

Note the extreme similarity between this tr,uth table and the one given in Table 3 ..

8·30

inter AP-279

Table 10. Truth Table to Spin Two Dice spinning when the switch is on and displaying a number

Input State Output State

SWITCH A B C 0 A B C 0

CHANGE TO THE NEXT VALID STATE

1 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
1 0 0 1 0 0 0 0 1
1 0 1 0 0 0 0 0 0

ROLLING INTO A VALID STATE

1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0
1 0 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0
1 0 1 0 1 0 0 0 0
1 1 . 1 0 1 0 0 0 0
1 0 0 1 1 0 0 0 0
1 1 0 1 1 0 0 0 0
1 0 1 1 1 0 0 0 0
1 1 1 1 1 0 0 0 0

We have chosen the following two primitives for part D:

Registered Output Registered Feedback (RORF)

No output IK Feedback (NOJF)

For the dice spinning option you will use the RORF and
for the dice not spinning option you will use the NaIF,
while using the Logic Builder.

When you add the spinning option to the pair of rolling
dice, you obtain the following boolean equations. (These
Boolean equations satisfy the requirements of the two dice

ROLL
REGIS·
TERS

SWITCH +---..L...._-f--'"

ENABLE

when the switch is off).

SPIN1A = (/SWliCH*1A)

SPIN1B = (/SWITCH*1B)
+ (SWITCH*2d*/S1 0*/S1 C*/S1 B*S1 A)

SPIN1C = (/SWITCH*1C)
+ (SWITCH*2d*/S1 0*/S1 C*/S1 B*/S1A)

SPIN1D = (/SWITCH*1D)
+ (SWITCH*2d*/S1 0*S1C*/S1 B*/S1 A)

SPIN2A = (/SWITCH*2A)

SPIN2B = (/SWITCH*2B)
. + (SWITCH*2d*/S20*/S2C*/S2B*S2A)

SPIN2C = (/SWITCH*2C)
+ (SWITCH*2d*/S20*/S2C*/S2B*/S2A)

SPIN20 = (/SWITCH*20)
+ (SWITCH*2d*/S20*S2C*/S2B*/S2A)

At the end of the design step, you have completed all the
design steps. You can now program the device using
iPLDS.

The correct ADF file is included in Appendix D for your
reference. You can refer to it to verify the ADF file you
have created.

The programmed device can be tested on:

• A PCB with slow clock

For information on this board and on testing your design,
please refer to Appendix C.

It works!

SPIN
REGISTERS 1---,-- DISPLAY

2448

Figure 10 •.

8·31

intJ AP-279 .' ~.

LATE NEWS FLASH

The PCBs have been made and we have units in the field.
Now Marketing wants the design updated! Field trials of
the dice showed that the battery needed to last longer. A
simple mod to the design, chop the drive to the LEDs,
extends the battery life.

This is very simple using the EPLDs. Reprogram the
EPLD and test it. Imagine how difficult it would have
been without using EPLDs.

PARTE

This step of the design process is to modify the existing
circuit to add the power save feature which will extend the
battery life. This can easily be done by chopping the drive
to the LEDs. Chopping the drive.to the LEDs can be done
as follows:

When you designed the circuit and implemented it using
the iPLS, you have set the output enable (Oe) to VCC

8-32

supply. This means that the LEOs are enabled 100% of
the time. You can "chop" the drive to the LEDs with a
conveniant high (above 50Hz) signal that will not be visi
ble to the human eye.

Next set Output enable (De) to the clock signal. Thus,
depending on the clock input the LEDs will only be on
50% of the time and battery life is extended as required.
You can easily modify the ADF file to change the De input
from VCC to CLOCK and then test the design using the
PCB as ~xplained in Appendix C.

CONCLUSION

You should now have a comprehensive knowledge of
Intel's EPLD and iPLDS family of devices.

With this knowledge you will be able to implement de
signs using the iPLDS tools.

Good Luck!

AP-279

APPENDIX A:
BASIC DEFINITIONS

8-33

AP-279

BASIC DEFINITIONS

Logic Design - A systematic procedure for realizing
specified terminal characterisitics of digital networks, at
either the device or system level.

CLOCKED FLIP-FLOP - Output determined by the
leading or trailing edge of clock pulse.

T FLIP-FLOP - Output changes value with every input
clock pulse.

T FLIP-FLOP

D FLIP-FLOP - Output determined by the input signal
when clock pulse present.

x~====-::~:~~~I:=====:
o FLIP-FLOP

S-R FLIP-FLOP - Output states synchronized with the
clock pulse and controlled by the input signals, Sand R.

----~IL·~ __ ~-----:
S-R FLIP-FLOP

J-K FLIP-FLOP - Output states synchronized with the
clock pulse and controlled by the input signals, J and K.

----r:k~t-__ A

------IlK A
~9~--

R

J-K FLIP-FLOP

COMBINATORIAL CIRCUIT - Output determined by
current value of input signal.

REGISTERED CIRCUIT - Output determined by se
quence of input signals.

Intel Schematic Primitive - One of the basic functional
blocks needed to design circuits for Intel programmable
logic products.

Truth Table - A list of all the input-output possibilities of
a logic circuit.

Boolean Logic - Describes logic that obeys the theorems
of Boolean algebra. The Boolean portion of a design is
that portion which can be implemented in the AND-OR
matrix.

State Diagram - A diagram that shows the succession of
output states through which the circuit passes as its input
signals vary.

INP- Input

8-34.

PIN-NAME c::=>-----
INP

Input Primitive

GND - Ground.

GND

Ground Signal Name

VCC,-: Signal

Vee

T
Signal Name

EQN - Equation

o = ARBITRARY BOOLEAN EXPRESSION;

EQN

Equation Name

Registered Output Registered Feedback (RORF)

~--r'PIH-HAME

F

No Output Registered Feedback (NORF)

HORI'
F----J

AP-279

8-35

No Output JK Feedback (NOJF)

HOJI'
F-----'

JK Output JK Feedback (JOJF)

JOJI'

~--C:>PIH-NAME

f----'

Security Bit - A feature that prevents the device from
being interrogated or being accidentally programmed.

Thrbo-bit - A control bit that allows you to choose the
speed and power characteristics of the device. If the in
puts are static for approximately 50 ns and the Thrbo-bit
is not programmed, the device will enter power down
mode. When the input changes, the device will take an
extra 3-5 ns to wake-up and react to the change. Program
ming the Thrbo-bit inhibits the power down.

Macrocell - A basic building block of Intel's program
mable logic devices. A macrocell consists of two sections:
combinatorial logic and output logic. The combinatorial
logic allows a wide variety of logic functions. The output
logic has two data paths: one leads to the other macrocells
or feeds back to the macrocell itself: the other is confi
gured as a pin configuration acting as input, output, or
bi-directional 1/0 port on the chip.

Node - A wire connecting two or more primitives in a
schematic.

Pin - A node that is connected to an input or 1/0 primi
tive on one end and a pin of the 'chip on the other end.

Product tern (P-Term) - Two or more factors in a boolean
expression combined with the AND operator consitutes a
logic product term.

inter AP-279

JEDEC Standard File - An industry-wide standard for
the transfer of information between a data preparation
system and a logic device programmer.

EPLD PROGRAMMING TE:CtiNIQUES

You can enter your design in the following ways

1. BOOLEAN EQUATION - entering the design in
BOOLEAN equations or expressions.

8-36

2. NETLiST CAPfURE - selecting components and
specifying interconnections until all elements are
specified.

3. SCHEMATIC CAPrURE - using a mouse and
menu driven enviroJunent.

4. STATE MACHINE - specifying states and condi
tional branches and also inputs/outputs to the state
machines.

AP-279

APPENDIX B:
COMPONENTS LIST

8-37

AP-279

COMPONENTS USED IN DESIGN

In order to implement the EPLD program, you should use
the following:

• An 5C060 EPLD

• A pair of seven discrete LEDs (Dice I, Dice 2)

• A timer to generate a clock signal (NE555)

• A voltage regulator to generate a fixed voltage of 5
volts (7805)

8-38

• A push button switch to control the spinning
mechanism '

• A 9-Volt DC battery source to generate the power
supply

• Capacitors C1 = 0.1 MF, C2 = 0.01 MF

• Resistors R1 = 390K, R2 = lOOK

• A PCB as explained in Appendix C

AP-279

APPENDIX C:
PCB DESCRIPTION

8-39

inter AP-279

r---------------------------- ---j VOLTAGE

I' ! REGULATOR

+' ;IN 7805 OUT I'

POWER:

c 11-----=;~
T I' Rl

1 ! 2

1
i
I 2 2

555

I 6 U2
: + L.:'---""T71--' I

:' C1 !
~;-T--------------- ------;:iM~R

T

r------------
: 1 , ,
113

DICE2

2449

Figure C-1

You can test each part of your design using the PCB with a
slow clock on it. -

The PCB is a board that is very specific to the dice exam
ple. The PCB is portable, approximately 2" x 3". All
the components except for the EPLD are easily available
commercially. A complete list of all the components that
are required for the PCB is given in Appendix B. The
circuit can easily be connected and tested using the circuit

8-40

diagram given below. After the four steps of the design
are completed, the PCB can be used to throw a pair of
dice in any home games such as Monopoly etc.

After the EPLD is programmed using the Logic Program
mer, it can be inserted into the PCB. For design steps B,
C, and D the push button switch can be used to generate
the roll/no-roll or the spin/no spin option.

AP-279

Ul llU U10 11:. • .. 8

~ .,,: I ~OO, , i . !", 8 :

~~JDil'''i II ~ ~:18U':
~ 1986

INTEL Made In USA \::-I
2450

Figure C-2

8-41

inter AP·279

APPENDIX 0

8-42

inter AP-279

ADF FOR PART A: SINGLE DICE ROLLING

Lakshmi Jayanthi
DSO Applic: .. tions
February 19, 1986

5C060

Part A: D ICE ROLLI NG

LB Version 3.0, Baseline 17K, 9/26/85
PART: 5C060

INPUTS: c: le.c:k 1

OUTPUTS, dic:ela~10,dic:elb@9,dic:elc:@8,dic:eld@7

NETWORf<:

dic:e1a,l ..
dic:elb,lb
dic:elc:,Ic:
dic:eld,ld

RORF (inla,c:loc:kl;GND,GND,VCC)
RORF (inlb,c:loc:kl,GND,GND,VCC)
RORF (inlc:,c:loc:kl,GND,GND,VCC)
RORF (inld,c:loc:k1,GND,GND,VCC)

c:lockl = INP (cloc:kl)

EQUATIONS,

inl. =(/la*lb*/lc:*/ldl
+(/la*lb*Ic:*/1d)
+(11 .. *lb·"lc·"ld I
+(/la*/lb*/lc:*/ld);

inlb =(la*/lb*/lc:*/idl
+(/la*lb*/lc:*/1dl
+(la*lb*/lc:*/ld)
+(/la*lb*lc:*/ld)
+(la*lb*lc:*/ldl;

inlc a(la*lb*/lc:*/ldl
+(/la*lb*lc:*/ldl
+(1a*lb*1c:*/ldl;

inld =(la*lb*lc*/ldl;

END$

8-43

intJ AP-279

RPT FUR PART A: SINGLE DICE ROLLI hlG

Logic Optimizing Compiler Utilization Report

***** Design implemented successfully

Lakshmi Jayanthi
DSO Appl ic:atic:orls
February 19, 1986

5C060

Part A: !:lICE ROLLING

LEi Ver's iClii 3.0, Eiaseline 17H, 9/26/85

5C060

clockl -I 1 241-' Vcc
GND ~- I 2 23:- GNO
GND -I 3 221-~ GND
GND -. : 4 21: - GND
GND -I 5 201- GND
GND ._. I 6 1.91- GND

dice1d _.J 7 18:- GND
dicel.c _.J 8 1'7:- GND
dice1b -: 9 16:- GND
dicela -110 151- GND

GND -Ill 14:- GI\lD
GND -112 13:- GND

INPUTS

Name Pin Resource MCel1 #

clc,ck1 INP

Name Pin Resource MCel1 #

dic:e1d '7 RORF 13

dice1c: 8 RDRF 14

dice1b 9 RDRF 15

dic:ela 10 RDRF 16

PTerms

11 8

2/ 8

21 8

2/ 8

8·44

Feeds:
MCells DE Clear Clock

eLKl

Feeds:
MCells DE Clear Clock

13
14
15
16

13
14
1.5
16

13
14
15
16

13
14
15
16

AP-279

UNUSED RESOURCES

Name Pin ResDw-ce I'1Cell PTerms

2
3 9 8
4 10 8
5 11 8
6 12 8

11
13
14
15 8 8
16 7 8
17 6 i3
18 5 8
19 4 8
20 3 8
21 2 8
22 1 8
23

PARf UTILIZATION

22X Pins
25K MacrDCells
5~ F:terms

NOfE: Since part A is a simple design, the part utilization is very low.

8-45

AP·279

ADF FUR PART B: SINGLE DICE ROLL/NOT ROLL

Lakshmi Jayanthi
DSO ?\pplicatic.ns
February 19, 1986

5C060

PART B: DICE ROLL AND NOT ROLL

LB Version 3.0, Baseline 17M, 9/26/85
PART: 5C060

I~PUTS: clockl,switch@2

OUTPUTS: dicela@10,dicelb@9,dicelc@8,diceld@7

NETWORK:

diee1a,la
dicelb,1b
dicelc,lc
diceld,ld

RORF (inla,clockl,GND,GND,VCCI
RORF (inlb,clockl,GND,GND,VCCI
RORF (inlc,clockl,GND,GND,VCCI
RORF (in1d,clockl,GND,GND,VCCI

clock1 INP (elcock1 I

switch II~P(switchl

EQUATIONS:

inla -(/la*/lb*/lc*/ld*/switchl
+(la*/lb*/le*/ld*/switchl
+(la*lb*/lc*/ld*/switchl
+(la*lb*lc*/ld*/switchl
+(/la*/lb*/lc*/ld*switchl
+(/la*lb*/lc*/ld*switchl
+(/la*lb*lc*/ld*switchl
+(/la*lb*lc*ld*switchl;

inlb =(/la*lb*/lc*/ld*/SW1T,CIlI
+(la*lb*/lc*/ld*/switchl
+(/la*lb*lc*/ld*/switchl
+(la*lb*lc*/ld*/switehl
+(/la*lb*lc*ld*/switchl
+(la*/lb*/lc*/ld*switchl
+(/la*lb*/lc*/ld*switchl
+(la*lb*/lc*/ld*switchl
+(/la*lb*lc*/ld*switchl
+(la*lb*lc*/ld*switehl;

inle =(/la*lb*lc*/ld*/switchl
+(la*lb*lc*/ld*/switchl
+(/la*lb*lc*ld*/switchl
+(la*lb*/lc*/ld*switchl
+(/la*1b*1c*/ld*switchl
+(1a*1b*lc*/ld*switchl;

inld =(/la*lb*le*1d*/switchl
+(la*lb*lc*/ld*switchl;

END$

8-46

intJ AP-279

RPT FOR PART B: SINGLE DICE ROLL/NOT ROLL

Logic Optimizing Compiler Utilization Report

***** Design implemented sLiccessfLllly

Lakshmi Jayanthi
DBO Applications
FebrLlary 19, 1986

5CC>60

PART B: DICE ROLL AND NOT ROLL

LB Version 3.0, Baseline 17>:, 9/26/85

5C06Q

clockl -: 24 - Vcc
switch -: 2 23 - GND

GND -: 3 22 - GND
GND -: 4 21 GND
GND -: 5 20 - GND
GND -: 6 19 - GND

diceld -: 7 18 - GND
dicelc -: 8 17 - GND
dicelb -: 9 16 .- GND
dicela -: 10 1 ,,-_. - GND

GND -: 11 14 - GND
GND -: 12 13 - GND

INPUTS

Name Pin ResoLirce MCel1 #

clockl INP

switc:h 2 INP'

Name Pi n ResoLtrc:e MCell #

diceld '7 RORF 13

dicelc 8 RCIRF 14

PTerms

PTer-Als

2/ 8

3/ 8

8-47

Feeds:
Meells ClE Clear- Cloc:k

13
14
15
16

Feeds:

Cl.K1

MCeils DE Clear· Clock

13
14
15
16

13
14
15
16

inter
dic:elb 9 RORF

dic:ela 10 RORF

UNUSED RESOURCES

Name Pin Resourc:e

3
4
5
6

11
13
1"4
15
16
17
18
F~

20
21
22
23

PART UTILIZATION

27Y. Pins .
25Y. Mac:roCells·
lOY. Pterms

15

16

MCell

9
10
11
12

8
7
6
5
4
3

·2
1

AP-279

31 8

51 8

PTerms

8
8
8
8

8
8
8
8
8
8
'8
8

13
14
15
16

13
14
15
16

NaTE: Part B of the design gets more complicated, hence the part utilization of the pins,
macrocells and the Pterms is higher.

8-48

inter AP·279

AUF FOR PART C: TWO DICE ROLLING

Lakshmi Jiayan-thi
DSO Applications
February 19, 1986

5C060

PART C: TWO DICE ROLL AND NOT ROLL

B Version 3.0, Baseline 17M, 9/26/85
PART: 5C060

INPUTS: clockl,clock2,switch82

OUTPUTS: dicela810,dicelb89,dicelc88,diceld87,dice2a819,dice2b@20,dice2c@21,dicE
2d822

NETWORI<:

dicela,la
dicelb,lb
dicelc,lc
diceld,ld

RORF (inla,clockl,GND,GND,VCC)
RORF (inlb,clockl,GND,GND,VCC)
RORF (inlc,clockl,GND,GND,VCC)
RORF (inld,clockl,GND,GND,VCC)

dice2a,2a
dice2b,2b
dice2c,2r.:
dice2d,2d

RORF (in2a,clock2,GND,GND,VCC)
RORF (in2b,ciock2,GND,GND,VCC)
RORF (in2c,clock2,GND,GND,VCC)
RORF (in2d,clock2,GND,GND,VCC)

c le.ckl
clocl:2

switch

II\lP (clockl)
INP (cic'ck2)

INP (switch)

EQUATIONS:

inla =(/la*/lb*/lc*/ld*/switch)
+(la*/lb*/lc*/ld*/switch)
+(la*lb*/lc*/ld*/switch)
+(la*lb*lc*/ld*/switch)
+(/la*/lb*/lc*/ld*switch)
+(/la*lb*/lc*/ld*switch)
+(/la*lb*lc*/ld*switch)
+(/la*lb*lc*ld*switch);

lnlb =(/la*lb*/lc*/ld*/switch)
+(la*lb*/lc*/ld*/switchl
+(/la*lb*lc*/ld*/switch)
+(la*lb*lc*/ld*/switch)
+\/la*lb*lc*ld*/switchl
T(la*/lb*/lc*/ld*switchl
+(!la*lb*/lc*/ld*switch)
+\la*lb*/lc*/ld*switchl
+(/la*lb*lc*/ld*switchl
T\la*lb*lc*/ld*switch);

:nle =(;la*lb*lc*/ld*/switch)
T\la*lb*lc*/ld*/switchl
+(/la*lb*lc*ld*/switch)
+(la*lb*/lc*/ld*switch)
+1/la*lb*lc*/ld*switchl
+lla.lb*lc*/ld*switch);

lnld =l/la*lb*lc*ld*/swltchl
+(la*lb*lc*/ld*swltch);

8-49

inter AP·279

lG~. =1!2.~/2b~/2c~/2d~/(ld*switch»

.!2.~!2b*!2c~/2d*/(ld*switch»

~(2a*2b*/2c*/2d*/(ld*switch»
.(2 •• 2b*2c*/2d~l(ld*switch»
+(/2.*/2b*/2c*/2d*(ld*switch»
+(/2.*2b*/2c*/2d*(ld*swltch»
+(i2.*2b*2c~/2d*(ld*switch»

+,/2 •• 2b~2c~2d*(ld*switch»;
ln2c =(/2.*2b*/2c*/2d*/(ld*switch»

+(2a*2b*/2c*/2d*/(ld*switch»
+(/2a*2b*2c*/2d*/(ld*switch»
+(2a*2b*2c*/2d*/(ld*s~itch»
.,i2a*2b*2c*2d*/(ld*switch»
+(2a*/2b*/2c*/2d*(ld*switch»
+(/2a*2b*/2c*/2d*(ld*switch»
+(2a*2b*/2c*/2d*(ld*switch»
+(/2a*2b*2e*/2d*(ld*switch»
+(2a*2b*2e*/2d*(ld*switch»;

,n2e =(/2a*2b*2c*/2d*/(ld*switch»
+(2a*2b*2e*/2d*/(ld*switch»
+(/2a*2b*2e*2d*/(ld*switch»
+(2a*2b*/2c*/2d*(ld*switch»
+(/2a*2b*2c*/2d*(ld*switch»
+(2a*2b*2e*/2d*lld*switch»;

.n2d ='/2a*2b*2c*2d*/(ld*switch»
+(2a*2b*2c*/2d*lld*switch»;

8-50

AP-279

RPT F6R PART C: TWO DICE ROLLING

LDgic Optimizing Compiler Utilization Report

***** Design implemented successfully

L"kshmi Jayanthi
DSO Applications
February 19, 1986

5C060

PART C: TWO DICE ROLL AND NOT ROLL

B Version 3.0, Baseline 17K, 9/26/85

5C060

clockl -I 1 24:- Vcc
switch -~ : 2 231- GND

GND - 3 2'::)1 c.: I -- d i c:e2d
GND -I 4 21: - dice2c
GND -I 5 201- dice2b
GND -I 6 191- dice2a

diceld - 7 lSI- GND
dicelc -I 8 1"-n -, . GND
dicelb -I 9 16: -- GND
dice1a -: 10 151- GND

GND -: 11 14: .-. GND
GND -: 12 131- clock2

INPUTS

Name Pin Resource MCel1 #

INP

switch 2 INP

c 1 c.ck2 13 INP

OUTPUTS

Name Pin Resource MCel1 #

diceld 7 RORF 13

PTerms

2/ 8

8-51

Feeds:
MCells OE Clear Clock

1
2
3
4

13
14
15
16

Feeds:

CLKI

CLK2

MCells DE Clear Clock

1
2
3
4

13
14
15
16

inter
dice1c 8 ROf~F

dice1b 9 RORF

dice1a 10 RORF

di.ce2a 19 RORF

dice2b 20 ROF~F

dice2c 21 RORF

dice2d 22 RtJRF

**UNUSED RESOURCESH'

Name Pin Resource

3
4
5
6

11
1'_
15
16
17
18
23

PART UTILIZATION

50X Pins
50% MacroCells
24% Ptel-ms

14

16

4

3

2

MCeil

9
10
11
12

8
"1
6
5

Ap·279

3/ 8

3/ 8

!:j/ 8

'71 8

41 8

41 8

31 8

PTerms

8
8
8
8

8
8
8
8

1:3
14
15
16

1 ::1
14
15
16

13
14
15
16

1
2
3
'f

2
3
4

2
:-l
4

1
2
3

'-

NafE: in part C of the design you have added the second dice. Hence you can see that fifty
percent of the device has been used.

8·52

ADF FDf< PART D: TWO DICE SPINNING

Lakshmi Jayanthi
DSO Applications
F.~bl-Llary 19, 1986

5C060

PART D: TWO DICE SPINNING

B Version 3.0, Baseline 17x, 9/26/85
PART: 5C060

INPUTS: clockl,clock2,switch@2

AP·279

OUTPUTS: spinla@10,spinlb@9,spinlc@8,spinld@7,spin2a@19,spin2b@20,spin2c@21,spir
2d;j)22

NETWORK:

la NOJF (inla,clockl,inlia,GND,GND)
lb NOJF Cinlb,clockl,inllb,GND,GND)
lc NOJF (inlc,cloc:kl,inllc,GND,GND)
ld NOJF (inld,cloc:kl,inl1d,GND,GND)

2a NOJF (in2a,clock2,in22a,GND,GND)
2b NOJF (in2b,cl.ock2,in22b,GND,GND)
2c NOJF (in2c,clock2,in22c,GND,GND)
2d NOJF Cin2d,clock2,in22d,GND,GND)

inl1a
inl1b
inlle:
inl1d

in22a
in22b
in22c
in22d

NOT(inial
NOT(inlbl
NOT(inlc)
NOTe inld)

NOT C i n2a)
NOT (i n2b)
NUT (i n2c)
NUT (i n2d)

spinla,sia
spinlb,slb
spinlc,slc
spinld,sld

RURF (insla,clockl,GND,GND,VCC)
RURF Cinslb,clockl,GND,GND,VCC)
RURF (inslc,clockl,GND,GND,VCC)
RORF (insld,c:lockl,GND,GND,VCC)

sp i n2a , s;-3a
spin2b,s2b
spin2c,s2c
spin2d,s;2d

RORF eins2a,clock2,GND,GND,VCC)
RORF (lns2b,clock2,GND,GND,VCC)
RORF (ins2c:,c:lock2,GND,GND,VCC)
RORF (lns2d,clock2,GND,GND,VCC)

clock1
clock:::!

switch

H,IP (clockl I
INP (clock2)

II\IF' (switch)

EG1U1~TIC.il\lS :

inla =(/la*/lb*/lc*/ld*/switch)
+(la*/lb*/le:*/ld*/switch)
+(la*lb*/lc*/ld*/switch)
+(la*lb*lc*/ld*/switch)

8-53

AP-279

+(/la*/lb*/lc*/ld*switch)
+(/la*lb*/lc*/ld*switch)
+(/la*lb*lc*/ld*switch)
+(/la*lb*lc*ld*switch);

inlb =(/la*lb*/lc*/ld*/switch)
+(la*lb*/lc*/ld*/switch)
+(/la*lb*lc*/ld*/switch)
+(la*lb*lc*/ld*/switch)
+(/la*lb*lc*ld*/switchl
+(la*/lb*/lc*/ld*switchl
+(/la*lb*/lc*/ld*switch)
+(la*lb*/lc*/ld*switeh)
+(/la*lb*le*/ld*switch)
+(la*lb*lc*/ld*switeh);

inle =(/la*lb*lc*/ld*/switch)
+(la*lb*lc*/ld*/switeh)
+(/la*lb*lc*ld*/switeh)
+(la*lb*/le*/ld*switeh)
+(/la*lb*lc*/ld*switchl
+(la*lb*lc*/ld*switeh);

inld =(/la*lb*lc*ld*/switch)
+(la*lb*le*/ld*switeh);

in2a =(/2a*/2b*/2e*/2d*/(ld*switeh»
+(2a*/2b*/2e*/2d*/(ld*switeh)\
+(2a*2b*/2c*/2d*/(ld*switeh»
+(~a*2b*2e*/2d./(ld.9witeh»
+(/2a*/2b*/2e*/2d*(ld*switch»
+(/2a*2b*/2e*/2d*(ld*switch»
+(/2a*2b*2c*/2d*(ld*switch»
+(/2a*2b*2c*2d*lld*switch»;

in2b =1/2a*2b*/2e*/2d*/(ld*switch»
+12a*2b*/2c*/2d*/lld*switeh»
+(/2a*2b*2c*/2d*/(ld*switch»
+(2a*2b*2c*/2d*/lld*switeh»
+1/2a*2b*2c*2d*/(ld*switch»
+(2a*/2b*/2c*/2d*(ld*switeh»
+(/2a*2b*/2c*/2d*(ld*switch»
+(2a*2b*/2c*/2d*(ld*switch»
+(/2a*2b*2c*/2d*(ld*switeh»
+(2a*2b*2e*/2d*(ld*switehl);

in2e -1/2a*2b*2c*/2d*/(ld*switeh»
+(2a*2b*2e*/2d*/(ld*switeh»
+(/2a*2b*2e*2d*/(ld*switch»
+(2a*2b*/2c*/2d*(ld*switch»
+(/2a*2b*2c*/2d*(ld*switchll
+(2a*2b*2c*/2d*(ld*switchl);

in2d =(/2a*2b*2c*2d*/(ld*switch)I
+(2a*2b*2c*/2d*(ld*switch)I;

(iswitch*la) ; insla
inslb

inslc

insld

(/switch*lbl
+1(2d*switch)*sid*isic*/sib*/sia);
(/swi tc:h*·lc I
+«2d*switeh)*/sla*/slb*/slc*/sld);
(/switeh*ld)
+112d*switchl*/sla*/slb*slc*/sld);

i n=~2a
ins2b

i nsF-2c:

ins2d

I/switch*·2a) ;
(/swltch*2bl
+(12d*switch)*s2d*/s2c*/s2b*/s2a);
(/switch*2c)
+«2d*switchl*/s2a*/s2b*/s2c*/s2d);
(/switch*2d)
+1 (2d*switch)*/s2a*/s2b*s2c*/s2d);

8-54

LEF FOR PART 0: TWO DICE SPINNING

Lakshmi :Jayanth i
DSO ApplicatiDns
February 19, 1986

5C060

PART:
5C060

INPUTS,

clock1, clock2, switch@2

UU'fPUTS:

Ap·279

spinla@10, spinlb@9, spinlc@8, spinld@7, spin2a@19, spin2b@20,.
sp i n2c;j)21, 5p i n2d;j)22

clockl
clock2

switch

spinia,
spinlb,
spinic,
spinld,

spin2a,
spin2b,
spin2c,
!5pin2d,

x ***

II'IP(clocki)
II'1P (c lock2)

IN!'" (!.'~i tch)

sla I:::ORF' (i n51a,
sib RORF(inslb,
s1.c: HORF(ins1c,
sId RORF(insld,

s2a HOHF (i rls2a,
s2b r~()f,F (i ns2b ,
sE~c RORF (i ns2c ,
s2d RORF (i ns2d ,

clc.ckl, GND,
e:le.dd, 8ND,
clockJ. , 81'1D,
clc.ck1, I3ND,

c lClckE~ ~ 8ND,
clC1ck[~, GND,
clDck2, GND,
clc1ck2, GND,

ResClLlrce, l'lOJF, was minimized

2d = NOPF(•• SGOO7D, clock2, GND, GND)

~~ **-JiI' Rescl\ .. lrce, NOJ"F , was minimized

2c = NOTF(•• SGOO6D, clock2, GND, GND)

~~ *** Resource, NOJF, was minimized

E~b ... N[mF (.. SG005D, clc1ck2, 8ND, GND)

~~ ***. R€~sc,u)'"ce , NOJF, was minimized

2a = NORF (.• SG004D, clclckc!, GND, GND)

% -H.** Resource, NOJF, was minimized

1d = NORF(.• S800:3D, clockl, GIIlD, 8ND)

% * ii:. * I~esc,u)-CE." , NOJF, WL~S minimized

lc .- IIlORF (.• 8130020, clc.ckl, I3ND, GND)

8-55

8ND, VCC)
13ND, VC~)

GND, VCC)
131\10, vec)

8NO, Vee)
I3ND, vee)
GND, VC:C)
GND, VCC)

tCI NOPF *** X

te. NOTF -!E' i(. * ~{

to NORF ** .. l<- X

te. NOm' 1E.*.JE. ~/~

to NORF *.~ X

te. NORF '*~"IE' %.

inter AP·279

K *** Resource, NOJF, was minimized to NORF *** K

Ib = NORF(•• SGOOID, clockl, GND, 8ND)

K *** Rese.urce, NOJF, was minimized to NORF *** K

1~ = NORFI •• 88000D, clockl, 8ND, 8ND)

EQUATIONS:

ins2d = switch' * 2d
+ 2d * switch * s2a' * s2b' * s2c * s2d';

ins2c = switch' * 2c
+ 2d * switch * s2a' * s2b' * s2c' * s2d';

ins2b = switch', * 2b
+ 2d * switch * s2d * s2c' * s2b' * s2a';

ins2a = switch' * 2a

ins1d = switch' * 1d
+ 2d * switch * s1a' * s1b' * s1c * s1d';

ins1 c = switch' * 1 c
+ 2d * switch * s1a' * s1b' * s1c' * s1d';

ins1b = switch' * 1b
+ 2d * switch * s1d * s1c' * s1b' * s1a';

insla = switch' * la;

•• S8000D la' * lb' * lc' * ld'
+ la * Ic' * ld~ * switch'
+ la' * lb * Id' * switch
+ la * Ib * Id' * switch'
+ la' * Ib * Ic * switch;

•• 880010 lb * Id'

•• 88002D

• • 86003D

+ lb * la' * Ic * switch'
+ la * lc' * ld' * switch;

Ic * Ib • Id'
0t- Ic * la' ,M, Ib * swit'ch'
+ la * lb • Id' • switch;

ld • la' • lb * lc * switch'
+ Id' • l:a • Ib * lc • switch;

• .88004D 2a'. 2b ,. • 2c' • 2d'
+ 2a • 2c' • 2d' • Id'

• • 88005D

+ 2a * 2c' • 2d' • switch'
+ 2a • 2b • 2d' • Id'
+ 2a * 2b • 2d',,* switc.h'
+ 2a' • 2b * 2d' * Id * switch
+ 2a' * 2b * 2c * Id * switch;

2b * ,2d'
+ 2b * 2a' * 2c. • Id'
+ 2b * 2a' * 2c * switch'
+ 2a * 2c' * 2d' * Id * switch;

8·56

inter AP·279

END$

•. 8G0060 2c * 2b'
+ 2c * 2" * 2d
+ 2c * 2d * ld * switch
+ 2c' * 2a * 2b * 2d' * ld * switch;

•• 880070 2d * 2a' * 2b * 2c * switch'
+ 2d * 2a' * 2b * 2c * ld'
+ 2d' * 2a * 2b * 2c * ld * switch;

NOfE: PLease note how the IPLS software has simplified the equations for you. You need not
worry about minimization. The complicated Boolean expressions have been minimized to a
great extent.

8-57

intJ AP-279

RPT FOR PART D, TWO DICE SPINNING

LDgic Optimizing ComplIer Utilization Report

••• ** Design implemented successfully

Lakshmi Jayanthi
DBO Applications
February 19, 1986

5C060

PART D: TWO DICE SPINNING

B Version 3.0, Baseline 17x, 9/26/85

5C060

clock1 -: 24:- Vee
S," itch -: " 2~-:J: - GI\ID '"-

RESERVED -: 3 22: -- spin2d
RESERVED -: 4 211- spin2c
HE SERVED - 5 20:·- sp i ni;ob
PESERVED - 6 19: -. spin2a

spinld -: "7 lB:- RESERVED
spin1c -I 8 17: -- RESERVED
spin1b .- 9 161- PESERVED
spin1a -: 10 15:- RESEHVED

GND -:-: 11 14:- GND
GND -112 1.;31- clock2

•• INPUTS."·

Name Pin Resource

clock1 INP

switch 2 INP

c Ic:.ck2 13 INP

F'TI:2roms

8-58

Feeds:
MCeils DE Clear Clock

~)

"7
8
9

10
11
12
13
14
1 ~:.)
16

CL..1<1

CLKE!

8-59

15 NORF

~I NORF

NORF

5 NORF

6 NURF

UNUSED RESOURCES

Name Pin Resource

11
14
23

PART UTILIZATION

86Y.
100%

Pins
MacrDCells
'Pter'ms

8

9

10

11

1 '.0
~,

MCell

AP-279

71 8

21 El

3/ 8

31 8

5/ 8

PTerms

4
5
6
'7,
8

5
6

''7

8
9

10
11
12
1:3

9
10
II
:lE!
14

9
10
1.1
12
is

~;

10
11
12
16

NaTE: Part D of the design example utilizes the device in a very optimum manner. You have
utilized all the macrocells and also 86% of the pins but only 35% of the product terms.

You have not used three of the input pins.

Consider this:

Make these three pins a mode select on this dice example - if all of these three additional
inputs are high then the dice will function as described (this condition must be added to each
product term). You now have seven other modes in which to operate this DICE. Anyone want
to "load" the odds for "boxcars" or "snake-eyes"? You have 65 % more product terms to use
so you can be very creative. What else could you add to this EPLD?

8-60

