
inter APPLICATION
NOTE

AP-273

November 1986

Developing
MCS®-96 Applications

Using the SBE-96

DAVE SCHOEBEL
DSO APPLICATIONS

3·174
Order Number: 280249·001

Ap·273

INTRODUCTION

With the increasing demands of industrial and comput
er control applications, today's designers are looking
for solutions whose performance extends beyond that of
conventional 8-bit architectures. Traditionally, these
control system architects must depend upon expensive
and complex multi-chip microprocessors to achieve this
high performance, but now a 16-bit single chip micro
controller can offer a much more cost-effective solu
tion. Microcontrollers are microprocessors specially
configured to monitor and control mechanisms and
processes rather than manipulate data. They include
CPU, program memory, data memory and a array of
specialized peripherals on chip to produce a low com
ponent count solution. The MCS-96 family uses
120,000 transistors to implement a high performance
16-bit CPU,8K bytes of program memory, 232 bytes of
data memory and both analog and digital I/O features.
Supporting this device are a suite of development tools
hosted on both Intel development systems (Series III
and IV) and industry standard hosts (IBM PC XT and
PC AT).

This application note includes a brief description of the
MCS-96 family of microcontrollers, its software devel
opment environment and hardware debugging centered

around the iSBE-96 Single Board Emulator. Also in
cluded are helpful hints and programs to enable you to
get the most from your investment dollars. The applica
tion note is partitioned into two sections. The first sec
ion introduces the MCS-96 architecture and develop
ment environment while the later section provides in-

. depth details of the iSBE-96 including its customization
to your particular environment.

MCS®·96 MICROCONTROLLER
.OVERVIEW

Introduction to the MCS®-96
Architecture

The MCS-96 architecture consists of a 16-bit central
processing unit (CPU) and a multitude of peripheral
and I/O functions integrated into a single silicon com
ponent as shown in Figure 1. The CPU supports bit,
byte and word operations. Double words (32-bits) are
also supported in a subset of the instruction set. With a
12 MHz input crystal frequency, the MCS-96 micro
controller can perform a 16-bit addition in 1.0 micro
seconds (,..,s) and a 16 x 16 bit multiply or 32/16 bit
divide in just 6.5 ,..,s.

n:c VBB VPD XTAL I XTAL Z CLKOUT

-
I
I
I
I
I
I
I

OIH:HIP
11011

L_-'-________ _

HSI HSO

Figure 1. Block Diagram of the MCS®·96 Mlcrocontro"er

3-175

280249-1

Ap·273

There are four high-speed trigger inputs that can record
the times at which external events occur as often as
every 2 IJ-s (at 12 MHz crystal frequency). Up to six
high-speed pulse generator outputs can trigger external
events at pre-selected times. Additionally, the high
speed output unit can simultaneously perform timer
functions. Up to four 16-bit software timers can be in
operation simultaneously, in addition to the two 16-bit
hardware timers. This makes the MCS-96 microcon
troller particularly useful in process and control appli
cations.

There is an optional on-chip analog to digital (AID)
converter which can convert up to four (in the 48-pin
version) or eight (in the 68-pin version) analog input
channels (IO-bits resolution) in only 22 IJ-s for the
8x9xBH parts or 42 IJ-s for the 8x9x-90 parts.

Also provided on-chip is a full duplex serial port, dedi
cated baud rate generator, 16-bit watchdog timer, and a
pulsewidth modulated output signal. Table I shows the
features summary for the MCS-96 microcontroller. Ta
ble 2 shows the different configurations for the MCS-96
family of microcontrollers.

The following sections briefly describe some of the fea
tures of the MCS-96 microcontroller.

High Speed 110 Unit (HSIO)

The HSIO unit consists of the High-Speed Input unit
(HSI), the High-Speed Output unit (HSO), one coun
ter, and one timer. The "high-speed" means that the
units can perform functions based on the timers with
out CPU intervention. The HSI unit records times
when events occur and the HSO unit triggers events at
preprogrammed times. All actions within the HSIO
units are synchronized to the timer or counter.

The HSI unit can detect transitions on any of its four
input lines. When one occurs, it records the time from
Timer I and which input lines made the transition. The
time is recorded with a 2 IJ-s resolution and is stored in
an eight-level first-in-first-out buffer (FIFO). The unit
can activate an interrupt when the holding register is
loaded or the 6th entry to the FIFO has been made.

Table 1. MCS®·96 Mlcrocontroller Features and Benefits Summary

Features Benefits

16-BitCPU Efficient machine with higher throughput.

8K Bytes ROM Large program space for. more complex, larger programs.

232 Bytes RAM Large on-board register file.

Hardware MULIDIV Provides good math capability 16 by 16 multiply or 32 by 16 divide in
6.5 IJ-s @ 12 MHz.

6 Addressing Modes Provides greater flexibility of programming and data manipulation.

High Speed 1/0 Unit Can measure and generate pulses with high resolution (2 /Ls @

4 dedicated 1/0 lines 12 MHz).
4 programmable 1/0 lines

1 O-Bit AI D Converter Reads the external analog inputs.

Full Duplex Serial Port Provides asynchronous serial link to other processors or systems.

Up to 40 110 Pins Provides TIL compatible digital data 110 including system expansion
with standard 8 or 16-bit peripherals.

Programmable 8 Source Priority Respond to asynchronous events
Interrupt System

Pulse Width Modulated Output Provides a programmable pulse train with variable duty cycle. Also
used to generate analog output.

Watchdog Timer Provides ability to recover from software malfunction or hardware
upset.

48 Pin (DIP) & 68-Pin (Flatpack, Pin Offers a variety of package types to choose from to better fit a specific
Grid Array) Versions application need for number of 1I0s and package size.

3-176

intJ AP-273

The HSO unit can be programmed to set or clear any of
its six output lines, reset timer 2, trigger an AID con
version, or set one of four software timer flags at a
selected time. An interrupt can be enabled for any of
these events and either Timer 1 or Timer 2 can be refer
enced for the programmed time value. Also, up to eight
commands for preset actions can be stored in the Con
tent Addressable Memory (CAM) file. After each ac
tion is carried out at the preset time, the command is
removed from the CAM, making room for another
command. The CPU is kept informed with a status bit
that indicates if there is room for another command in
the CAM.

AID Converter

The analog-to-digital (AID) converter is a lO-bit, suc
cessive approximation converter with an internal sam
ple and hold circuit. It has a fixed conversion time of 88
CPU state times. A state time is one complete crystal
frequency period. With a 12 MHz crystal, a state time
is 250 nanoseconds (ns) so the conversion will take
22 IJ-s.

The analog input needs to be in the range of 0 to VREF
(nominally VREF = 5V) and can be selected from any
of the eight analog input lines. The conversion is then
initiated by either setting the control bit in the AID
command register or by programming the HSO unit to
trigger the conversion at some specified time.

Serial Port

The on-chip serial port is compatible with the MCS-51
family (8051, 8031, etc.) serial port. It is a full duplex
port and there is double-buffering on receive. Addition
ally, the serial port supports three asynchronous modes
and one synchronous. mode of operation. With the
asynchronous modes eight or nine bits of data can be
selected and even parity can optionally be inserted for
one of the data bits. Selectable interrupts for transmit
ready, receive ready, ninth data bit received, and parity
error provide support for a variety of interprocessor
communications protocols.

Baud rates in all modes are determined by an indepen
dent 16-bit on-chip baud rate generator. The input to
the baud rate generator can come from either the
XTALI or the T2CLK pins. The maximum baud rate
provided by the generator in asynchronous mode is
187.5K baud and in synchronous mode is 1.5M baud.

Watchdog Timer

The watchdog timer is a 16-bit counter which, once
started, is incremented every state time. The watchdog

timer is optionally started, and once started it cannot be
stopped unless the system is reset. To start or clear the
watchdog timer simply write a lEH followed by a
OEIH to the WDT register (address OAH). If not
cleared before it overflows, the watchdog timer will pull
the RESET pin low for two state times, causing the
system to be reinitialized. With a 12 MHz crystal, the
watchdog timer will overflow after 16 milliseconds
(ms).

The watchdog timer is provided as a means of graceful
recovery from a software upset. The counter must be
cleared by the software before it overflows or the timer
assumes that an upset has occurred and activates the
RESET pin. Since the watchdog timer cannot be turned
off by software, the system is protected against the up
set inadvertently disabling the watchdog timer. The
watchdog timer has also been designed to maintain its
state through power glitches on VCC. The glitches can
be as low as OV or as high as 7V for as long as 1 IJ-s to 1
ms.

Pulse Width Modulator (PWM)

The PWM output can produce a pulse train having a
fixed period of 256 state times and a programmable
width of zero to 255 state times. The width is pro
grammed by loading the desired value, in state times, to
the PWM control register.

Table 2. Configurations of the
MCS®-96 Family of Microcontrollers

Options 68 Pin 48 Pin

Digital 110 ROM LESS 8096 8094

EPROM 8796 8794

ROM 8396 8394

Analog ROM LESS 8097 8095
and EPROM 8797 8795
Digital 1/0

ROM 8397 8395

Memory Space

The addressable memory space of the MCS-96 micro
controller consists of 64K bytes. Although most of this
space is available for general use, some locations have
special purposes (OOOOH through OOFFH and IFFEH
through 207FH). All other locations can be used for
either program or data storage or for memory mapped
peripherals. A memory map is shown in Figure 2.

The internal register locations (OOOOH through OOFFH)
on the 8096 are divided into two groups, a register file
and a set of Special Function Registers (SFRs).

3-177

AP-273

85535

18384

8320

8210

8192

8190

256
255

00

EXTERNAL MEMORY
, OR

VO

INTERNAL PROGRAM
STORAGE ROM

FACTORY TEST CODE

8
INTERRUPT i
VECTORS 0

PORT 4
PORT 3

EXTERNAL MEMORY
OR
VO

INTERNAL RAM
REGISTER FILE
STACK POINTER

SPECIAL FUNCll0N REGISTERS
(WHEN ACCESSED AS

DATA MEMORy)

FFFFH

4000H

2080H +- RESET

2012H

2000H

1FFEH

0100H
OOFFH

OOOOH

.------,..---....,----,255
EXTERNAL MEMORY RESERVED
FOR USE BY INTEL DEVELOPMENT
SYSTEMS
(WHEN ACCESSED AS PROGRAM
MEMORy)
~ _________ ... OO

280249-2

Figure 2. Memory Map

REGISTER FILE

Locations lAH through OFFH contain the register file.
The register file memory map is shown in Figure 3.
Additionally, locations OFOH through OFFH can be
powered separately so that they will retain their con
tents when power is removed from the 8096 VCC pin.
There are no restrictions on the use of the register file
except that code cannot be executed from it. If an at
tempt to execute instructions from locations OOH
through OFFH is made, the instructions will be fetched
from external memory. This section of external memo
ry is reserved for use by Intel development tools. Exe
cution of a nonmaskable interrupt (NMI) will force a
call to external location OOOOH, therefore, the NMI is
also reserved for Intel development tools.

SPECIAL FUNCTION REGISTERS (SFRs)

Locations OOH through l7H are used to access the
SFRs. Locations 18H and 19H contain the stack point
er. All of the I/O on the 8096 is controlled through the
SFRs. Many of these registers serve two functions; one
if they are read from, the other if they are written to.
Figure 3 shows the locations and names of these regis
ters. A summary of the capabilities of each of these
registers is shown in Figure 4. Note that these registers
can be accessed only as bytes unless otherwise indicat
ed. The stack pointer must be initialized by the user
program and can point anywhere in the 64K memory
space. The stack builds down, that is, it is a post-incre
ment (POP), pre-decrement (PUSH) stack.

RESERVED MEMORY SPACES

Locations lFFEH and lFFFH are reserved for Ports 3
and 4 respectively. This enables easy reconstruction of
these ports if external memory is used in the system.
This also simplifies changing between the ROMless,
EPROMed, and ROMed parts without changing the
program addresses for ports 3 and 4. If ports 3 and 4
are not going to be reconstructed, these locations can be
treated as any other external memory location.

The nine interrupt vectors are stored in locations
2000H through 2011H. The ninth vector (201OH-
2011H) is reserved for Intel development systems. Fig
ure 5 shows the interrupt vector locations and priority.
When enabled, an interrupt occurring on any of these
sources will force a call to the location stored in the
vector location for that interrupt source. Internal loca
tions 2012H through 207FH are reserved for Intel's
factory test code and for use by future components. To
ensure compati1;>ility with. future parts, external loca
tions 2012H through 207FH (if present) should contain
the hex value FFH.

SOFTWARE DEVELOPMENT
OVERVIEW

MCS®-96 Microcontroller Software
Development Packages

The MCS-96 Microcontroller Software Support Pack
age provides 8096 development system support specifi-

3-178

inter AP-273

cally designed for the MCS-96 family of single chip
micro controllers. The package consists of a symbolic
macro assembler (ASM-96), Linker/Relocator
(RL-96), Floating Point Arithmetic Library (FPAL96)
and the librarian (LIB-96).

19H
18H

17H

16H

15H

14H
13H
12H

11H

10H

OFH

OEH

ODH

OCH

OBH

OAH

09H

OSH

07H

06H

05H

04H

03H

02H

01H

OOH

OFFH 255

POWER-DOWN
RAM

OFOH 240
OEFH 239

INTERNAL
~

REGISTER FILE

lAHT

(RAM)

T~
280249-3

STACK POINTER STACK POINTER

PWM CONTROL

10Sl 10Cl

10SO lOCO

RESERVED RESERVED

SP STAT SP CON

10 PORT 2 10 PORT 2

10 PORT 1 10 PORT 1

10PORTO BAUD RATE

TIMER2" (HI)

TIMER 2 (LO) RESERVED

TIMER 1 (HI)

TIMER 1 (LO) WATCHDOG

INT PENDING INT PENDING

INT MASK INT MASK

SBUF(RX) SBUF (TX)

HSI STATUS HSO COMMAND

HSI TIME (HI) HSO' TIME (HI)

HSI TIME (LO) HSO TIME (LO)

AD RESULT (HI) HSI MODE

AD RESULT (LO) AD COMMAND

RO(HI) RO(HI)

RO(LO) RO(LO)

(WHEN READ) (WHEN WRITTEN)

Figure 3. Register File Memory Map

25
24

23

22

21

20
19
18

17

16

15

14

13

12

11

10

9

8
7

6

5
4

3
2

1

o

The PL/M-96 Software Package provides 8096 high
level language development system suport. The package
consists of a structured high-level language compiler
(PL/M-96), Linker/Relocator (RL-96), Floating Point
Arithmetic Library (FP AL96) and the librarian
(LIB-96).

Both software packages run on the IBM PC XT and
AT (with DOS 3.0 or greater) and on Series III/IV
Intellec® development systems.

A detailed description of the tools contained in the
packages is given in the following sections.

ASM-96 MACRO ASSEMBLER

The 8096 macro assembler translates the symbolic as
sembly language instructions into relocatable object
code. Since the object modules are linkable and locata
ble, ASM-96 encourages modular programming prac
tices. The macro facility in ASM-96 enables program
mers to save development and maintenance time, since
common code sequences only have to be done once.
The assembler also provides conditional assembly capa
bilities. ASM-96 supports symbolic access to the many
features of the 8096 architecture as described previous
ly. A file is provided with all of the 8096 hardware
registers defined. Alternatively, the user can define any
subset of the 8096 hardware register set. Math routines
are supported with instructions for 16 x 16-bit multiply
or 32/16-bit divide.

Modular programs divide a rather complex program
into smaller functional units that are easier to code, to
debug, and to change. The separate modules can then
be linked and located as desired'into one program mod·
ule of executable code. Standard modules can be devel
oped and used in different applications thus saving soft
ware development time.

PL/M-96

PL/M-96 is a structured, high-level programming lan
guage used for developing software for the Intel
MCS-96 family of microcontrollers. Symbolic access to
the on-chip resources of the MCS-96 microcontroller is
provided in PL/M-96. The PL/M-96 compiler trans
lates the PL/M-96 language into 8096 relocatable ob
ject code, compatible with object code -generated by
other MCS-96 translators (such as ASM-96). This en
ables improved programmer productivity and applica
tion reliability. PL/M-96 has been efficiently designed
to map into the machine architecture, so as not to trade
off higher programmer productivity with inefficient
code. PL/M-96 is also compatible with PL/M-86 thus
assuring design portability and minimal learning effort
for programmers already familiar with PL/M.

COMBINING PL/M-96 AND ASM·96

For each procedure activation (CALL statement or
function reference) in the source, the Object code uses a
calling sequence. The calling sequence places the proce
dure's actual parameters (if any) on the stack, then acti
vates the procedure with a CALL instruction. The pa
rameters are placed on the stack in left to right order.
Since the direction of stack growth is from higher loca
tions to lower, the first parameter occupies the" highest
position -on the stack and the last parameter occupies

intJ AP-273

Register Descripti~n

RO Zero Register-Always read as a zero, useful for a base when indexing and as a
constant for calculations and compares.

AD_RESULT AID Result Hi/Low-Low and high order Results of the AID converter (byte read
only)

AD_COMMAND AID Command Register-Controls the AID

HSI_MODE HSI Mode Register-Sets the mode of the High Speed Input unit.

HSI_TIME HSI Time Hi/Lo-Contains the time at which the High Speed Input unit was triggered.
(word r~ad only)

HSO_TIME HSO Time Hi/Lo-Sets the time f,or the High Speed Output to execute the command_
"' in the Command Register. (word write only)

HSO_COMMAND HSO Command Register-Determines what wiii happen at the time loaded into the
HSO Time registers.

HSLSTATUS HSI Status Registers-Indicates which HSI pins were detected at the time in the HSI
Time registers.

SBUF (TX) Transmit buffer for the serial port, holds cOntents to be output.

SBUF (RX) Receive buffer for the serial port, holds the byte just received by the serial port.

INT_MASK Interrupt Mask Register-Enables or disables the individual interrupts.

INT _PENDING Interrupt Pending Register-Indicates when an interrupt signal has occurred on one
of the sources.

WATCHDOG Watchdog Timer Register-Written to periodicaiiy to hold off automatic reset every
64K state times.

TIMER1 Timer 1 Hi/Lo-Timer 1 high and low bytes. (word read only)

TIMER2 Timer 2 Hi/Lo-Timer 2 high and low bytes. (word read only)

10PORTO Port 0 Register-Levels on pins of portO.

BAUD_RATE RegisW which contains the baud rate, this register is loaded sequentiaiiy.

IOPORT1 Port 1 Register-Used to read or write to Port 1.

IOPORT2 Port 2 Register-Used to read or write to Port 2.

SP_STAT Serial Port Status-Indicates the status of the serial port.

SP_CON Serial port control-Used to set the mode of the serial port.

10SO I/O Status Register O-Contains Information on the HSO status.

IOS1 I/O Status Register 1-Contains information on the status of the timers and of the
HSI.

lOCO I/O Control Register O-Controls alternate functions ot HSI pins, Timer 2 reset
sources and Timer 2 clock sources.

IOC1 I/O Control Register 1-Controls alternate functions of Port 2 pins, timer interrupts
and HSI interrupts.

PWM_CONTROL Pulse Width Modulation Control Register-Sets the duration of the PWM pulse.

Figure 4. SFR Summary

the lowest position. Note that a BYTE or SHORTINT
parameter value occupies two bytes on the stack, with
the value in the lower (even address) byte. The contents
of the higher byte are undefmed. A parameter of type

WORD orINTEGER (16 bits) is pushed as a word" A
parameter of type DWORD, LONGINT or REAL (32
bits) is pushed as two words; the high-order word is
pushed first.

3-180

inter Ap·273

Vector

Source
Location

Priority
(High (Low
Byte) Byte)

Software 2011H 2010H Not Applicable
Extint 200FH 200EH 7 (Highest)
Serial Port 200DH 200CH 6
Software Timers 200BH 200AH 5
HSI.O 2009H 2008H 4
High Speed 2007H 2006H 3

Outputs
HSI Data 2005H 2004H 2

Available
AID Conversion 2003H 2002H 1

Complete
Timer Overflow 2001H 2000H o (Lowest)

Figure 5. Interrupt Vector Locations

After the parameters are passed, the CALL instruction
places the return address on the stack. Function results
are returned via a global PL/M-96 double-word regis
ter, PLM$REG located at ICH. If a byte value is re
turned, the low-order byte is used; if a word value is
returned, the low-order word is used; otherwise, the full
register is used. PL/M-96 uses the eight byte registers
at addresses ICH-23H for temporary computations.
The library PLM-96LIB defines the public symbol
PLM$REG.

Table 3 describes symbol type matching between a
PL/M-96 global variable and an ASM-96 global vari
able. Note that except for NULL, no matches occur
between any ASM-96 type stamp and the PL/M-96
type stamps ARRAY and STRUCTURE. A mismatch
warning can be prevented by attaching the type stamp
NULL to the variable in question in the ASM-96 mod
ule.

The easiest way to ensure compatibility between
PL/M-96 programs or procedures and ASM-96 sub
routines is simply to write a dummy procedure in
PL/M-96 with the same argument list as the desired
assembly language subroutine and with the same attri-

butes. Then, compile the dummy procedure with the
specified CODE control. This will produce a pseudo-as
sembly listing of the generated MCS-96 code, which
can then be copied as the prologue and epilogue of the
assembly language subroutine.

OTHER SOFTWARE DEVELOPMENT TOOLS

The RL96 linker and relocator program is a utility that
performs two functions useful in MCS-96 software de
velopment. First, the link function combines a number
of object modules generated by ASM-96, PL/M-96,
and system libraries (such as PLM96.lib and
FPAL96.lib) into asingle program. Secondly, the lo
cate function assigns an absolute address to all relocat
able addresses in the linked MCS-96 object module.
RL96 resolves all external symbol references between
modules and will select object modules from library
files if necessary. besides the absolute object module
file, RL96 produces a listing file that shows the results
of the link/locate, including a memory map symbol ta
ble and an optional cross reference listing. With the
relocator the programmer can concentrate on software
functionality and not worry about the absolute address
es of the object code. All program symbols are passed
through into the object module as debug records. The
FPAL96 floating point arithmetic library contains sin
gle precision 32-bit floating point arithmetic functions.
All math complies with the IEEE floating point stan
dard for accuracy and reliability. FPAL96 includes the
basic arithmetic operations (i.e., add, subtract, multi
ply, divide, mod, square root) and other widely used
operations (i.e., compare, negate, absolute, remainder).
An error handler is included to handle exceptions com
monly encountered during arithmetic operations such
as divide by zero.

The LIB96 utility creates and maintains libraries of
software object modules. The user can develop standard
modules and place them in libraries. Application pro
grams can then call these modules using predefined in
terfaces. LIB96 has a streamlined set of commands
(create, add, delete, list, exit) to provide ease of use.
When using object libraries, RL906 will only include
those object modules that are required to satisfy exter
nal references, thus saving memory space.

Table 3 ASM96-PL/M-96 Symbol Type Matching

PL/M-96
Byte Word Dword

Short
Integer

Long Struc- Proce-
Real Array Label

ASM96 Int Int ture dure

BYTE M M
WORD M M
LONG M M
REAL M
ENTRY M M
NULL M M M M M M M M M M M

3-181

inter Ap·273

iSBE.96 EMULATOR OVERVIEW and a software program for interfacing to a host com
puter. Intel currently supports an IBM PC XT and AT,
and the Series IIIIIV Intellec development systems as

Introduction to the iSBE·96 Emulator hosts.

The iSBE-96 Single Board Emulator supports the exe
cution and debugging of programs for the MCS-96 fam
ily of microcontrollers at speeds up to 12 MHz. Figure
6 shows a block diagram of the iSBE-96 emulator. The
iSBE-96 emulator consists of an 8097 microcontroller,
a 12 MHz execution clock, 16K of zero wait state
RAM memory, and a user cable which connects the
MCS-96 pin functions to the user's prototype system.
The iSBE-96 emulator also supports an 8096 extended
addressldata bus for users with off chip memory and
reconstructs port 3 and 4 for the users of the ROMed
parts, 839x, and the EPROM parts, 879x. Additionally,
the iSBE-96 emulator provides two RS-232 serial ports,
serial communications cable, an EPROM based moni
tor for fundamental emulator control and functionality,

8097

iSBE·96 Emulator 1/0

The iSBE-96 emulator's on-board input and output
(1/0) devices are used to manage the emulator's re
sources. These 1/0 devices are mapped into memory at
locations IFOOH through IFFFH. This memory block
(IFOOH through IFFFH) is reserved for use by the
iSBE-96 emulator. Table 4 shows the iSBE-96 memory
mapped 1/0 address assigmnents. Since this memory
block is in all possible memory configurations of the
iSBE-96 emulator (see Figure 7 for the iSBE-96 memo
ry map), it is possible for user programs to utilize any
or all of the. system I/O devices.

1------------ J3

J4

J6

J7

280249-4

Figure 6. Block Diagram for the ISBE·96 Single Board Emulator.

3-182

inter AP-273

Table 4. iSBE-96 Memory Mapped
I/O Address Assignments

Address Function

01FEO Data set USART data register

01FE2 Data set USART control/status
register

01FE4 Data terminal USART data
register

01FE6 Data terminal USART
control/status register

01FE8 Timer counter 0

01FEA Timer counter 1

01FEC Timer counter 2

01FEE Timer mode control register

01FFO iSBE-96 mode register

01FF2 Port 3/4 control register

01FFE Port 3 reconstruction

01FFF Port 4 reconstruction

RS-232 SERIAL PORTS

Included as part of the on·board I/O are two RS·232
serial ports. One is configured as Data Communica
tions Equipment (DCE) and the other as Data Termi
nal Equipment (DTE). When operating with the host
software provided with the iSBE·96 emulator, the DCE
port is used for the system console and the link for
exchanging files. Table 5 shows the pin configuration of
the two serial port connectors.

The serial ports are serviced under control of the on
board 8097 non·maskable interrupt (NMI). The NMI
has the highest priority of all interrupts on the 8097
microcontroller. While in emulation (user program is
executing) the user program will be interrupted if moni
tor commands are entered from the console. Valid com
mands input on the console will be executed by the
monitor even during emulation. Therefore, the iSBE-96
emulator provides full.speed 12 MHz emulation, only if
no commands are entered until emulation is halted.

MCS®-96 PORT 3/4 AND EXTENDED
ADDRESS/DATA BUS

With the MCS-96 microcontroller, ports 3 and 4 pins
can be used as actual port pins or as an extended ad-

ress and data bus. For the convenience of the users of
the ROMed parts and the EPROMed parts (839x and
879x respectively) the iSBE-96 emulator provides are·
construction of ports 3 and 4. Additionally, for users of
the ROMless parts or parts in external access mode, the
iSBE·96 emulator provides an extended address and
data bus. The selection of what the port pins are used
for is left to the user via the MAP BUSPINS command.
On power-up ofthe iSBE-96 emulator, the default map
ping is for port 3/4.

iSBE-96 Emulator Memory Map

The iSBE-96 emulator has a number of memory map
options. All of the memory maps are compatible with
the MCS-96 microcontroller. Figure 7 shows the differ
ent memory map selections available. Each memory
map is selected by the MAP MODE command, which
changes the memory map currently recognized by the
iSBE-96 emulator. Table 6 summarizes the physical
memory configurations of the iSBE-96 emulator needed
to implement the various memory maps. Note that
modes (memory maps) 1 through 3 require that the
eight 2K x 8 RAM chips (16K bytes of RAM) on the
iSBE-96 emulator be replaced by 8K x 8 RAM or
PROM chips.

The memory map is controlled by two bipolar PROMs
and an eight bit register (the mode register at OlFFOH).
The format of the mode register is shown in Figure 8.
The mode register is a write only register and any
writes to this register need to be done with caution. In
addition to the memory map, the mode register is used
to enable each of the five possible sources of interrupts
connected to the NMI.

Monitor Command Summary

The iSBE-96 monitor is capable of executing a number
of commands without being connected to a host devel
opment system. It is possible to connect only a video
terminal to the iSBE-96 emulator and still have signifi
cant debug capability. Table 7 summarizes the monitor
commands. The load and save command will not work
with the iSBE-96 emulator connected to a terminal.
Load and save requires the iSBE-96 emulator to be con
nected to a host development system. If a non-Intel
suported host is used a software program will need to
be written for that computer to provide the mass stor
age/retrieval access and the proper communications in
terface protocol to the iSBE-96 emulator.

3-183

inter

FFFF

6000
5FFF

2000
1FFF

1FOO
1EFF

1000
FFF

600
7FF

100
OFF

000

MONITOR
MODE

w
<II
:::I

'" 0> .u
ID
!!!
II:
0
II.
Q
w
>
II: w
<II w
II:

0

ROMSIM

ROMSIM

•
DATARAM

DATARAM

DATARAM

•
1

AP-273

ROMSIM ROMSIM

ROMSIM ROMSIM

NOT NOT
AVAIL· AVAIL·
ABLE ABLE

NOT NOT
AVAIL· AVAIL·
ABLE ABLE

NOT
AVAIL· DATARAM
ABLE

2 3

USER USER USER USER

ROMSIM ROMSIM USER USER

MONITOR 110
RESERVED AREA

USER USER USER USER

USER USER USER USER

USER DATARAM USER DATARAM

NMI SERVICE RESERVED AREA

4 5 6 7

280249-5

Figure 7. iSBE-96 Memory Map and Monitor Modes

Design Considerations

When debugging MCS·96 designs with the iSBE·96 em·
ulator, there are some features of the emulator that
should be considered or taken into account as early in
the design process as possible.

MEMORY

The user's prototype memory should be mapped to be
compatible with one of the iSBE·96 memory maps (il·

Table 5. DS/DT RS-232 Pin-Out Configuration

Pin Number
Signal Name/Connector

DCE/J7 DTE/J6

1 GND GND
2 TXD·I TXD·O
3 RXD·O RXD·I
4 RTS·I RTS·O
5 CTS·O CTS·I
6 DSR·O DSR·I
7 GND GND
20 DTR·I DTR·O

lustrated in Figure 7) or else a new memory map for the
iSBE·96 emulator must be generated. External address
locations OOOOH through OOFFH and locations IFOOH
through IFFFH are reserved for development system
use and should not be used when using an Intel emula·
tor.

Program code or memory mapped peripherals should
be temporarily relocated before debugging with the
iSBE·96 emulator.

Table 6. Memory Configurations for Each Mode

Mode Allowable Memory Configurations

0 Monitor

1 8K x 8 Static RAMs or PROMs installed

2 8K x 8 Static RAMs or PROMs installed

3 8K x 8 Static RAMs or PROMs installed

4 User prototype may be RAM or PROM

5 User prototype may be RAM or PROM

6 All memory is on prototype, RAM or PROM

7 All memory above 7FFH is on prototype,
RAM or PROM

3·184

Ap·273

7 6 5 4 3 2 o

I J
l MO

M1

M2

Reserved for future use

DT TxRDV Int Enable

DT RxRDV Int Enable

DS TxRDV Int Enable

DS RxRDV Int Enable

280249-6

Figure 8. MODE Register Format

BREAKPOINTS

When emulation breakpoints or single-step emulation is
used, the iSBE-96 monitor requires six bytes of the us
er's stack space. Since the ASM-96 assembler and the
PL/M-96 compiler do not automatically take this into
account, an extra six bytes of stack space needs to be
allocated either explicitly in the code or implicitly with
the STACKSIZE control of RL-96.

Since the trap vector (locations 2010H and 2011H) is
utilized by the iSBE-96 emulator to provide break
points in emulation and single-step emulation, the trap
vector locations must remain in RAM space or break
points and single stepping will not work. The iSB~-96
emulator could still go into emulation if these locatIOns
are in ROM or EPROM, but the ability to set break
points and single-step would be lost. In this case, emu
lation would be halted by sending an escape « esc»
command to the iSBE-96 emulator.

When breakpoints are set, the instruction at the break
point is executed in single-step mode and not !n real
time. All other instructions up to the breakpOint are
executed in real time. Here is one example of how the
implementation of breakpoints affects debugging pro
grams. Normally, a break on a PUSHF instruction at
the start of a low priority interrupt service routine
should enable the service routine to continue executing
when emulation is resumed. Because the last instruc
tion at the breakpoint is executed in non-real time, a
higher priority interrupt could occur bef?r~ the
PUSHF instruction is actually executed. If thiS IS the
case, the higher priority interrupt would be serviced

before the breakpoint at the PUSHF instruction. The
breakpoint should be set on the instruction after t~e
PUSHF if the higher priority interrupts need to be dis
abled.

MCS®·96 MICROCONTROLLER INTERRUPTS.

All interrupt vector locations (2000H-200EH) should
be initialized. This is a good practice even if the
iSBE-96 emulator is not used for debug. This will pre
vent a system lock-up or crash in the event that the
program unexpectedly enables interrupts. ,!he vectors
contain random addresses upon power up since the de
fault memory map for the vector locations is in RAM.
When a breakpoint is encountered during emulation, or
while single-stepping, the monitor temporarily writes a
trap instruction (OF7H) at all locations stored i~ the
interrupt vectors. This could have adverse effects I~ the
vector happened to contain the address of a regtster
location, program data location or an instruction oper
and.

Any of the 8097 programmed events based on timer 1,
timer 2 or external interrupts will continue to occur
even while emulation ofthe-iSBE-96 emulator has been
stopped. When resuming emulation,. thes~ interrupts
may be pending and would be serviced In order of
priority. This could possibly cause an endles~ loop of
service routines, overflow of the stack or differences
between real-time emulation and emulation with break
points. Any code involving ~eal-time. events that has
been debugged using breakpOints or slngle-~tep emula
tion should be verified in full speed, non-Interrupted
emulation.

3-185

inter AP-273

Table 7. iSBE·96 Monitor Commands

Monitor Command Function

BAUD Sets up the baud rate.

BR Enables display and setting of up to eight software breakpoints ..

BYTE Enables display and changing of a single byte or range of bytes of memory or a
single.byte of the 8097 internal registers.

CHANGE Enables display and changing of a series of memory words or bytes.

<CONTROL>S Stops scrolling of the screen display.

<CONTROL>Q Resumes scrolling of the screen display.

<CONTROL>X Deletes the line being entered,

<ESCAPE> Aborts the command executing.

GO Begins emulation and continues until an enabled breakpoint is reached or
the escape key is pressed.

LOAD . Loads programs and data from disks.

MAP Enables mapping of several preprogrammed memory maps; also enables
configurable serial 110 and selective servicing of the watchdog timer.

PC Displays and changes the program counter.

PSW Displays and changes the program status word.

RESET CHIP Resets the 8096 to power-up conditions.

SAVE . Saves programs and data to disks.

SP Displays and changes the stack pointer.

STEP Provides single~step emulation'with selective display formats.
..

VERSION Displays the monitor version number.

WORD Enables display and changing of a single word or range of words of'memory.or a
single word of the 8097 internal registers.

MCS®·96 Microcontroller Port 3/4

For anyone reconstructing port· 3 and 4 (lFFEH and
IFFFH) on their target system,more care must be tak
en to debug the system. Since partof the port 3/4 re
construction is an address decoder for IFFEH imd
IFFFH, the easiest thing to do is to temporarily change
the mapped address for port 3/4 out of the reserved
memory block. This means that both the hardware as
well as the software has to be modified, but this enables
debugging· the integrated hardware and software. The
software could automatically change the port i1ddresses
for debugging with the use of conditional assemble or
coIripilestatements.

The other method for debugging port 3/4 requires that
the hardware and software be debugged separately or at
least in stageS. The user system, except for the port 3/4
reconstruction and any code utilizing port 3/4, would

have to be debugged first. Then, with the iSBE-96 emu
lator in port 3/4 configuratiOli (using MAP BUSPINS
= PORT 34), the iSBE-96. emulator would be connect~
ed directly to the user's system port 3/4 pins. That is,
the iSBE-96 port 3/4 pinson connector J4 would be
connected on the port side of the user's port 3/4 recon
struction, bypassing it altogether.

CONNECTING THE iSBE-96.
EMULATOR TO THE
IBM PC XT AND AT

Introduction

A communications program (driver) is supplied with
the iSBE-96 emulator so that it can be. used with. an

Ap-273

IBM PC XT and AT, as well as an Intel Series III or
Series IV development system. This driver provides an
enhanced command set (extensions shown in Table 8)
for the iSBE-96 emulator and provides access to the
host system's mass storage.

The following sections describe the additional features
provided by the driver.

iSBE-96 Emulator Additional
Commands Available

In addition to the command set provided by the
iSBE-96 monitor, the driver provides a set of computer
system interface commands. The additional commands
provided by the driver are summarized in Table 8. The
driver provides the proper communications protocol to
complete the implementation of the iSBE-96 monitor
LOAD and SAVE command. The LIST command will
save a copy of everything displayed on the console to a
system file, creating a complete log of the emulation
session for future reference. Also, the INCLUDE com
mand will redirect command input to come from a sys
tem file.

iSBE-96 Emulator Symbolic Support

The iSBE-96 monitor supports the use of symbolics for
the program counter (PC), program status word
(pSW), and stack pointer (SP). Additionally, the driver
supports symbolics for the MCS-96 special function
registers in the ASM and DASM commands. With this

feature, the symbolic reference can be to a special func
tion register when using the ASM and DASM com
mands rather than the register address, which can be
cumbersome to remember or look up. Figure 9 contains
a list of the symbolics supported by the ASM and
DASM commands. These symbols are compatible with
the MCS-96 symbols listed in Figure 4.

MODIFYING THE iSBE-96 EMULATOR
CLOCK SPEED

Introduction

Although it comes standard with a 12 MHz crystal, the
iSBE-96 emulator is designed to operate at crystal fre
quencies from 6 MHz to 12 MHz. The iSBE-96 moni
tor power-up diagnostics include board-level serial port
tests that take advantage of the 12 MHz crystal fre
quency. Therefore, to operate the iSBE-96 emulator at
other crystal frequencies, it is necessary to disable the
power-up diagnostics. Only two simple modifications
are needed: altering the monitor code and changing the
crystal itself.

iSBE-96 Monitor Patch

The first modification disables the power-up diagnos
tics. This is completed by changing the monitor's 3-byte
CALL instruction to the diagnostics to NOP (no-oper
ation) instructions. The call to diagnostics is located at

Table 8. Driver Commands

Driver Command Function

ASM Loads memory with translated MCS-96 assembler mnemonics.

DASM Displays memory as MCS-96 assembler mnemonics.

EXIT Exits the driver and returns to the host operating system.

<CONTROL>C Same as for the EXIT command, but will not properly close the system serial port.

HELP Displays the syntax of all commands.

INCLUDE Specifies a command file.

<CONTROL> I Turns the command file on and off.

<TAB> Same as <CONTROL> I (turns the command file on and off).

LIST Specifies a list file.

<CONTROL>L Turns list file on and off.

<CONTROL>S Stops scrolling of the screen display.

<CONTROL>Q Resumes scrolling of the screen display.

<CONTROL>X Deletes the line being entered.

<ESCAPE> Aborts the command executing.

3-187

AP-273

EPROM address 1046H (monitor address 20SCH).
The following is a step-by-step explanation of w;bat to
do to the monitor, version 1.1, to make the patch.

1. Remove the low-byte monitor EPROM (US3) and,
using a PROM programmer, copy its contents to the
PROM prograIrimer data bUffer.

2. Change bytes 1046H and 1047H; in the data buffer
from OEFH and 32H, respectiveiy, to OFDH.

3. Using another 27128 EPROM with 250 nanosecond
access tUne, program a new monitor ,PROM and
install it in the iSBE-96 emulator as US3.

4. Remove the high-byte monitor EPROM (U6l) and,
using a PROM programmer, copy its contents to the
PROM programmer data bUffer. '

S.Change byte 1046H in the data bUffer from 2CH to
OFDH.

6. Using another 27128 EPROM with 250 nanosecond
access time, program a new monitor PROM and
install it in the iSBE-96 emulator as U6L

With this change in place the DIAGS LED on the
iSBE-96 emulator will not go off after power-up. If for
any reason you suspect a problem with the iSBE-96
emulator, reinstall the original monitor PROMs and
use the power-up diagnostics for system checkout or
before servicing the iSBB-96 emulator.

AD_COMMAND
AD_RESULT
AD_RESULT _HI
AD_RESULT _LO
BAUDRATE
HSI_MO.DE
HSI_STATUS
HSI_TIME
HSI_ TIME_HI
HSI_TIMLLO
HSO_COMMAND
HSO_TIME
HSO-':"TIMLHI
HSO_TIMLLO
INT_MASK
INT _PENDING
lOCO
IPC1
10PORTO
IOPORT1

iSBE-96 Crystal Modification
There are now two ways to modify the iSBB-96 emula
tor to operate at different clock, speeds. The first is by
far easier and the second involves more work.

The first method of modifying the iSBB-96 emulator is
to Simply replace the 12 MHz crystal, Yl, with the
desired crystal. The only restriction is that the new
crystal must be between 6 MHz and 12 MHz.

The second method is to modify the iSBE-96 emulator
to use the target system crystal frequency. To do this,
carefully remove crystal Yland capacitors C6 and C7
from theiSBE-96 emulator. 'The target system crystal
oscillator should be bUffered with the circnit shown in
Figure 10. The bUffer output connects to the empiy Yl
board connection Closest to the edge of the board, as
shown in Figure 11. The target system clock is also
limited to 6 MHz through 12 MHz. '

Vee
+5V

5K

FROM TARGET
SYSTEM CRYSTAL

OSCILLATOR
:>O-4H~ TO ISBE-96

280249-7

Figure 10. External Clock Drive

IOPORT2
IOPORT3
IOPORT4
10SO
IOS1
PWM_CONTROL
SBUFRX
SBUFTX
SP
SP_CONN
SP_STAT
TIMER1
TIMER1_HI
TIMERL..;LO
TIMER2
TIMERLHI
TIMERLLO
WATCHDOG
ZERO

Figure 9. ASM and DASM Command Symbol Support LIst

3-188

infef AP-273

E~g:R':J' --

J~7
CONNECT EXTERNAL 1-/ ISBE-96
DRIVE CIRCUIT HERE

8~~~

280249-8

Figure 11_ External Clock Connection

Care should be taken to ensure adequate digital ground
connections between the target system and the iSBE-96 .
emulator. The user cable connected to J4 can be used
for that purpose. All even numbered pins on J4 (except
for pin 2) are connected to digital ground on the
iSBE-96 emulator.

Before having your iSBE-96 emulator serviced by Intel,
it should be restored to its original condition.

MODIFYING THE iSBE-96
MEMORY MAP

Introduction

The iSBE-96 emulator provides seven user memory
map (mode) selections. There are eight total, but the
monitor reserves the use of one map, mode zero. The
iSBE-96 memory maps are illustrated in Figure 7. Even
though these memory maps fulfill the majority of the
user's needs, there will be times when a custom memo
ry map is desired. This can be done easily if you follow
the guidelines in this section.

The memory space for the MCS-96 microcontroller, as
well as the 8097 used on the iSBE-96 emulator, has a
range from 0 to 64K (OFFFFH) bytes. The 8097 has a

linear memory space, but the data bus from the off-chip
memory's even bytes are connected to the low eight
data pins of the 8097 and the odd bytes are connected
to the upper eight data pins. Therefore, if the memory
map needs to be changed, it should be changed along
even byte boundaries (2K, 4K, 16K, 32K) and should
account for pairs of byte-wide memory chips (i.e.,
2-2K x 8 and 2-8K x 8).

There are only two blocks of memory that have restric
tions on them with the iSBE-96 emulator. These blocks
are locations 0 through OFFH and IFOOH through
IFFFH. These blocks are reserved for use by the
iSBE-96 emulator and should always be mapped ac
cordingly.

iSBE·96 Memory Map PROM

Before changing the iSBE-96 memory map PROM, it
will help to know what it is and what it does.

The iSBE-96 memory map PROM (U39) is a 2K x 8
bipolar PROM. Since PROMs are one-time program
mable, chances are that any changes will require re
placement of the PROM. There is one key parameter
when finding a replacement for the iSBE-96 memory
map PROM, the time required from valid address on
the input pins of the PROM to valid data on the output
pins (tavdv). The iSBE-96 memory map PROM requires
a tavdv time of 35 nanoseconds or better. An Intel
3636B-I or any PROM satisfying the time require
ments and having the standard JEDEC pin configura
tion can be used. Figure 12 shows the pin out and func
tional connections of the iSBE-96 memory map
PROM.

Since the iSBE-96 memory map PROM is 2K bytes
and there are eight memory maps, the memory map
PROM is functionally segmented· into eight blocks of
256 bytes each. Figure 13 illustrates the map PROM
block assignments. Each block contains the map for
one of the eight iSBE-96 monitor memory maps
(modes) and each byte within a block contains the
'map' for 256 bytes of the total 64K byte address range.
Figure 14 shows what the map byte contents should be
to enable the different memory areas that are re-mappa
ble.

The DA T ARAM (locations lOOH through 7FFH) is
not totally re-mappable. The DA T ARAM can be relo
cated to any 4K area in the 64K address range, but it
always has to be at locations 100H through 7FFH in
that 4K area.

3-189

MAP PROM
Address

O-OFFH
100-1FFH
200-2FFH
300-3FFH
400-4FFH
500-5FFH
600-6FFH
700-7FFH

ADDR8

ADDR9

ADDR10

ADDR 11

ADDR12

AD DR 13

ADDR14

AD DR 15

MODE 0

MODE 1

MODE 2

TO +5VTHRU

10K RESISTOR

GND

8

7

6

5

4

3

2

23

22

21

18

19

20

AP-273

AO

A1

A2 ~ 01

A3

A4

A5

A6

A7

A8

A9

A10

eS3

eS2

CS1

U39

3636 B-1

ADDRMAP

02

03

04

05

06

07

08

MONITOR PROM SELECT

MONITOR RAM SELECT

ROMSIM U49, U57 SELECT

ROMSIM U52, U60 SELECT

ROMSIM U50, U58 SELECT

ROMSIM U48, U56 SELECT

ROMSIM SELECT

USER BUS SELECT

Figure 12. iSBE-96 Address Map PROM

Monitor

280249-9

Memory Mode

Sample iSBE-96 Memory Map
Modification

0
1
2
3
4
5
6
7

As an example, let's say I have an iSBE-96 memory
map that matches the map of the system I am develop·
ing. The map that I want needs to have locations 100H
through 10FFH for mapped I/O devices, 1100H
through 17FFH for scratch pad RAM, and 2000H
through OFFFFH for my EPROM application.

Figure 13. MAP PROM Blocks

The I/O in my system is working, but I don't have the
scratch pad RAM working yet and I don't want to
program EPROMs until I have debugged my applica·
tion program. So, what I really want is the scratch pad
RAM mapped to iSBE-96 DATARAM and my
EPROM memory area mapped to iSBE-96 RAM
(ROMSIM). To accomplish the mapping for the
EPROM, the iSBE-96 ROMSIM will have to be reo
placed by larger RAMs, as shown in Figure 15.

Chip MAP Current MAPPED
Location Byte Address

U49-U57 OBBH 2000-2FFFH
U52-U60 OB7H 3000-3FFFH
U50-U5B OAFH 4000-4FFFH
U4B-U56 9FH 5000-5FFFH

User 7FH -
DATA RAM OBDH 100,...7FFH

Figure 14. iSBE-96 Map PROM Key

After looking at the different map modes (see Figure 7)
I can see that mode 2 is close, but not quite it. So, mode
2 is the mode that I decide to change.

3-190

inter AP-273

The following are the steps necessary to make the
change.

1. Remove U48-USO, US2, US6-US8, and U600n
the iSBE-96 emulator.

2. Install 8K x 8, ISO nanosecond tavdy static RAMs in
their place and jumper the iSBE-96 emulator per
Table B-2 in the iSBE-96 User's Guide, shown here
as Table 9.

3. Remove the iSBE-96 map PROM (U39) and, using
a PROM programmer, copy its contents to the
PROM programmer data buffer.

8Kx8

U58,U48

f FFFFH

U58,U50

ON
BOARD
ROMSIM

U80,U52·

U57,U49

2000H

4. Change bytes lOOH through IOFFH to 7FH, and
llOOH through l7FFH to OBDH.

S. Program a new map PROM and install it as U39.

The new memory map could now be accessed by enter
ing MAP MODE = 2 on the iSBE-96 console.

As you did with the monitor PROMs, the original ad
dress map PROM should be retained in case the
iSBE-96 needs to be serviced by Intel.

2Kx8

FFFFH

OFF BOARD
EXTENDED
MEMORY
SPACE

6000H

5000H U56,U48 ON BOARD

4000H U58,USO ROMSIM

3000H U60,U52

2000H U57,U49

280249-10

Figure 15. 8K x 8 Address Map

Table 9. 8K X 8 Replacement Jumper Configuration

Jumper Change
Function Incorporated by the Change

Default Replacement

E13-E14 E14-E15 Connects MA 12 to U48
E16-E17 E17-E18 Connects MA 12 to U49
E22-E23 E23-E24 Connects MA 12 to U50
E31-E32 - E32-E33 Connects MA 12 to U52
E39-E40 E40-E41 Connects MA 12 to U56
E47-E48 E48-E49 Connects MA 12 to U57
E58-E59 E59-E60 Connects MA 12 to U58
E77-E78 E78-E79 Connects MA 12 to U60
E19-'E20 OPEN Disconnects U49, U57 pin 26 from VCC(1)
E36-E37 OPEN Disconnects U48, U56 pin 26 from VCC(1)
E55-E56 OPEN Disconnects U50, U58 pin 26 from VCC(1)
E74-E75 OPEN Disconnects U52, U60 pin 26 from VCC(1)

NOTE:
1. It may be desirable to leave pin 26· connected to Vee. Check pin out for BKx B device. used.

3-191

intJ Ai'-273

HELPFUL MCS®-96 PROGRAMS FOR
THE ISBE-96

Introduction

During operation we discovered that the iSBE-96 emu
lator would be even more useful if it had a few more, or
slightly different, commands. The following sections
describe some helpful MCS-96 programs that can be
used on the iSBE-96 emulator to make debugging your
programs a little easier. '

Memory Write Without Read Verify

As you may have already discovered, the iSBE-96
BYTE, WORD, and CHANGE commands do a read
verify after writing the specified memory locations.
This is very useful for determining if the memory is
functioning, but requires that the memory be RAM.
What then do you do if your system has memory
mapped peripheral devices that access different regis
ters for a read and write operation? The BYTE and
WORD commands will write the location(s) correctly,
but they will display a read verify error message.

Figure 16 illustrates an ASM-96 program that will per
form the write to memory without a read verify .. The
program is located at 100H to correspond to the
iSBE-96 DataRAM and thereby not intrude into user
memory space. The program also uses eight bytes of
internal 8097 register space. Again, so that the program
does not intrude, the eight register bytes are pushed
onto the stack and restored upon exit. You will have to
ensure that there is sufficient stack available. The data
structure containing the bytes and their respective ad
dresses is assumed to be structured as follows: 150H
byte containing the count of data bytes, 152H first data
byte, '152H + byte count (+ 1 if byte count is odd)
address for first data byte. ,.

To use the prograIil, first make sure you ilre in an
iSBE-96 memory mode that provides DataRAM, then
load the program object code. Once the program is
loaded, put the data into the data structure at 150H:
byte count, data bytes followed by data addresses. To
execute the program simply type "00 FROM 100 TO
140". When the program stops at the breakpoint, the
data bytes will have been written to the specified ad
dresses.

Block Memory Move

If you have ever put something into memory and then
decided that it should be located at another address,
then you've probably wanted a block move program. It
becomes tedious to move data structures or code a byte
or word at a time. Sometimes it is inconvenient to relo
cate or link the original object code so that it can be
loaded at the new location.

Since the MCS-96 instruction set utilizes relative offsets
for the majority of the jump and branch instructions, it
is feasible to move code blocks around. Of course, the
block of code that you intend to move has to be either
self-contained or small enough to fit Within that mode
of addressing. That is; the block of code moved should
not contain a relative jump or branch to anywhere out
side the block.

Figure 17 illustrates an ASM-96 program that will per
form a block memory move. The program is located at
200H to correspond with the iSBE-96 DataRAM and
so that it will not interfere with the write program de
scribed previously in "Memory Write Without Read
Verify" section which is located at 1ooH. The program
uses eight bytes of internal 8097 register space. So that
t~e program is nonintrusive, the eight register bytes are
pushed onto the stack and restored upon exit. You will
have to ensure that there is sufficient stack available.
The data structure containing the start, stop and desti
nation addresses is assumed to be structured as follows:
230H start address, 232H stop address, and 234H desti
nation address.

To use the program, f1l'St make sure you are in an
iSBE-96 memory mode that provides DataRAM, then
load the program object code. Once the program is
loaded, put the data into the data structure at 230H:
start address,' stop address and finally destination ad
dress. To execute the program simply type "00
FROM 200 TO 22C". When the program stops at the
breakpoint, the block of memory will have been moved
to the 'specified location.

Writing/Reading an ISBE-96 Terminal
in Emulation

There may be times while a program is executing that
you would like to know how far it has progressed. But,
you may not wish to use breakpoints to check the prog-

, ress because they change the overall execution speed.
This is particularly true for programs using real-time
interrupts, since it may not be possible to use break
points. Since the iSBE-96 serial ports (DCE and DTE)
are accessible during emulation, you can include pro
gram routines that write to a terminal or from the ter
minal to relay program status or dynamically change
the program flow, provided you do it with Care.

The iSBE-96 emulator uses the on-board 8097 NMI
interrupt to service the DCE and DTE'serial ports.
This occurs even in emulation since there are some
commands that are valid during emulation. Therefore,
care should be taken when utilizing the unused serial
port for dynamic program status. Since the iSBE-96
emulator is always connected to the host development
system via the DCE serial port" a terminal can be con
nected to the unused DTE serial port. Incidentally, if
you want to see what you're typing yoUr program will
need to echo it to the terminal.

3-192

inter AP-273

MCS-96 MACRO ASSEMBLER 8096 Write with no Read Verify Routine 01/14/86

DOS MCS-96 MACRO ASSEMBLER, V1.0

SOURCE FILE: WRITE.A96
OBJECT FILE: WRITE.OBJ
CONTROLS SPECIFIED IN INVOCATION COMMAND: < none>

ERR LOC OBJECT LINE SOURCE STATEMENT
1 $TITLE ('8096 Write with no Read Verify Routine')
2
3
4 Write MODULE MAIN
5

0100 6 CSEG at 100h
7

0100 C820 8 start: push 20h ;save working registers
0102 C822 9 push 22h
0104 C824 10 push 24h
0106 C826 11 push 26h
0108 B301500120 12 Idb 20h,150h ;Ioad byte count
0100 990020 13 cmpb 20h,#0 ;make sure there are

;bytes to write
0110 DF26 14 je J3
0112 B10021 15 Idb 21h,#0 ;initialize registers
0115 A1520122 16 Id 22h,#152h
0119 C02420 17 st 20h,24h
011C 302004 18 jbc 20h,0,J1 ;see if byte count is odd
011F 65010024 19 add 24h,#1 ; if odd, add 1 for even

;boundary
0123 65520124 20 J1: add 24h,#152h ;Ioad location of first byte

;address
0127 A22426 21 J2: Id 26h,[24h) ;Ioad data byte address
012A B22321 22 Idb 21h,[22h) + ;Ioad data byte and

;increment pointer
0120 C62621 23 stb 21h,[26h) ;write the byte
0130 65020024 24 add 24h,#2 ;increment pointer to next

;address
0134 1520 25 decb 20h ;done yet?
0136 D2EF 26 jgt J2
0138 CC26 27 J3: pop 26h ;restore working registers
013A CC24 28 pop 24h
013C CC22 29 pop 22h
013E CC20 30 pop 20h
01.40 27FE 31 J4: br J4 ;wait here

32
0142 33 END

280249-11

Figure 16

3-193

inter AP-273

MCS-96 MACRO ASSEMBLER 8096 Block Memory MOVE Routine 01/14/86

DOS MCS-96 MACRO ASSEMBLER, V1.0

SOURCE FILE: MOVE.A96
OBJECT FILE: MOVE.OBJ
CONTROLS SPECIFIED IN INVOCATION COMMAND: <none>

ERR LOC OBJECT LINE SOURCE STATEMENT
1 $TITLE ('8096 Block Memory MOVE Routine')

0200

0200 C820
0202 C822
0204 C824
0206 C826
0208 A301300220
0200 A301320222
0212 A301340224
0217 882022

021A DE08

021C B22126

021F C62526

0222 27F3
0224 CC26
0226 .CC24
0228 CC22
022A CC20
022C 27FE

022E

SYMBOL TABLE LISTING

N A M E
J1
J2
J3
MOVE
START.

ASSEMBLY COMPLETED,

2
3
4 Move
5
6
7
8 start:
9

10
11
12
13
14
15 J1:

16

17

18

19
20 J2:
21
22
23
24 J3:
25
26 END

MODULE MAIN

CSEG at200h

push
push
push
push
Id
Id
Id
cmp

jlt

Idb

stb

br
pop
pop
pop
pop
br

20h
22h
24h
26h
20h,230h
22h,232h
24h,234h
22h,20h

J2

26h,[20h)+

26h,[24h)+

J1
26h
24h
22h
20h
J3

VALUE.
0217H
0224H
022CH

0200H

NO ERROR(S) FOUND.

Figure 17

3-194

;save working registers

;Ioad start address
;Ioad end address
;Ioad destination address
;make sure there is
;something to move
;if equal then only one
;byte to move
;Ioad byte and increment
;source pOinter
;store byte and increment
;destination pointer
;go see if done
;restore working registers

;wait here

ATTRIBUTES
CODE ABS ENTRY
CODE ABS ENTRY
CODE ABS ENTRY
MODULE MAIN STACKSIZE(O)
CODE ABS ENTRY

280249-12

intJ AP-273

Figure 18 illustrates the PL/M-96 procedures to read
and write a terminal connected to the DTE serial port
on the iSBE-96 emulator and a sample calling program.
The sample program uses an initial delay to ensure that
the iSBE-96 NMI line has stabilized so that spurious
NMI interrupts are not caused by accessing the DTE
serial port. Figure 19 illustrates steps to compile and
link the sample program.

To run the program, first load the sample program ob
ject code into the iSBE-96 emulator using the LOAD
command. Then, type "GO FROM 2080 FOREVER".
When you are ready to stop, press the escape key ,and
emulation will halt.

iSBE-96 SERIAL PROTOCOL FOR
LOAD AND SAVE

Introduction

The iSBE-96 emulator has ,a number of resident moni
tor commands, as described in Table 7. Normally, the
iSBE-96 emulator is hosted by an IBM PC XT or AT,
or an Intel Series III or Series IV development system.
If you have a different host, you must write your own
software program (driver) that meets the software
handshaking protocol required by the iSBE-96 emula
tor. In that way, the resident monitor commands can be
executed with any computer or terminal connected to
the iSBE-96 DCE or the DTE serial ports.

The normal configuration is for the iSBE-96 emulator
to be attached to a host computer system on the DCE
port. Alternately, the iSBE-96 emulator can be at
tached to a terminal on the DTE port, which leaves the
DCE port free to be connected to a computer. The ter
minal would be used to enter iSBE-96 debug commands
(including LOAD and SAVE) and the computer used
solely for loading and saving MCS-96 program files.

Whichever way you do it, the proper iSBE-96 serial
port (DCE,DTE) needs to be mapped appropriately for
loading, saving, and console connections. The MAP
CONSOLE command is used to change the serial port
connection for the console device. The iSBE-96 emula
tor will default to the port that the console is connected
to at power up. The MAP SEND command is used to
designate which serial port the iSBE-96 monitor uses
for data transfer (sending) for the SAVE command.
The MAP RECEIVE command is used to designate
which serial port the iSBE-96 monitor uses for data
transfer (receiving) for, the LOAD command.

The next three sections describe the handshaking proto
col used by the iSBE-96 emulator for loading and sav
ing files. They provide sufficient information to write
your own program to load and save programs with the
iSBE-96 emulator.

Handshaking Characters

There are two characters that are used for control dur
ing the actrial file transfer, EOF (IAH) and ESC
(IBH). Determination that one ofthe two control char
acters has been encountered requires the use of a third
character, DLE (1OH). When transferred as data, the
DLE, EOF and ESC characters must be prefixed by a
DLE character. Additionally any data byte when
ANDed with 7FH that yields one of the control charac
ters (90H,9AH, and 9BH) also needs to be prefixed by
a DLE. DLEs sent as prefixes should not be included in
the byte count and should not be stored as data.

Loading Files

The following describes the protocol required by the
iSBE-96 emulator for loading files. The following ter
minology is used: <cr> denotes a carriage return;
Console is the terminal or computer mapped to the
iSBE-96 CONSOLE device; Sender is the computer
mapped to the iSBE-96, SEND device; Receiver is the
computer mapped to the iSBE-96 RECEIVE device.

1. Console sends 'LOAD <cr>' to the iSBE-96.

2. iSBE-96 sends an XON (11H) to Console.

3. Sender sends up to 16,384 bytes and waits for
iSBE-96 to send an XON (11H).

4. iSBE-96 processes the, transferred bytes and sends
an XON (1IH) to Sender.

5. Steps 3 and 4 are repeated until the transfer is com
plete.

6. Sender sends ,an EOF (IAH) to iSBE-96.

7.' iSBE-96 sends a prompt ('.') to Console.

If, during the transfer, theiSBE-96 emulator receives
an unprefixed ESC (IBH) from the Sender or from the
Console, the load is aborted and an ESC is sent to the
Sender. The Sender should then respond with an XON
(llH) to acknowledge the ESC.

If the end of file is reached at any time during the load,
the transfer is terminated. The full 16,384 (16KH)
bytes do not necessarily have to be transferred.

3-195

AP-273

DOS PUM-96V1.0 COMPILATION OF MODULE SAMPLE
OBJECT MODULE PLACED IN TERMRW.OBJ
COMPILER INVOKED BY: C:\UDI\PLM96.EXE TERMRW.P96

2

3 1
4 2
5 3
6 2
7 2
8 2

9 1
10 2
11 2
12 3
13 2
14 2

15 1
16 1

17 1
18 1
1~ 1
20 2
21 2
22 1
23 1
24 2
25 3
26 3

$tille (' iSBE-96 Terminal Read/Write Sample Program')
$optimize (3)
sample: DO;

1* local declarations *1
DECLARE msg1(*)

msg2(*)
msg3(lIC)
(I ,char)

BYTE

BYTE
BYTE
BYTE;

DATA(44H,61 H, 76H,65H,20H,53H,63H,68H,
6FH,65H,62H,65H,SCH,20H,69H,73H,
20H,47H,52H,45H,41 H,54H),

DATA(OdH,OaH),
DATA(72H,69H,67H,68H,74H,3FH),

dLdata . ADDRESS AT (1 FE4H),
dLstatus ADDRESS AT (1 FE6H),

bell LITERALLY '07H';

1* Procedure declarations *1
ci: PROCEDURE BYTE PUBLIC;
DO WHILE «dLstatus AND 02H) = OH);

END;
char = dLdata AND 7FH;
RETURN char;
ENDci;

.co: PROCEDURE (char) PUBLIC;
DECLARE char BYTE;
DO WHILE «dLstatus AND 1) = 0);

END;
dLdata = char;
END co;

1* Program starts here *1
CALL TIME(SO);
dLstatus = 37H;

CALL TIME(1);
char = dLdata;
DO I =1 TO LENGTH(msg1);

CALL co(msg1 (1-1 »;
. END;

char = 'n';
DO WHILE (char = 'n');

DO i = 1 TO LENGTH(msg2);
CALL co(msg2(1-1»;
END;

Figure 18

3-196

1* wait till RxRDY *1

1* wait till TxRDY *1

1* clear any errors on the DTs 8251 A
USART *1

1* clear the DT receive buffer *1

280249-13

intJ
27 2
28 3
29 3
30 2
31 2
32 2
34 3
35 3
36 3
37 2

AP-273

DO I = 1 TO LENGTH(msg3);
CALL co(msg3(1-1»;
END;

char = ci;
CALL co(char);
IF «char< > 'Y') AND (char< > 'y'»THEN DO;

char = 'n';
CALL co(bell);
END;

END;

38 1 DO WHILE 1;
END;

1* wait here when done *1
39 2

40 END sample;

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
DATA AREA SIZE
STATIC REGS AREA SIZE
OVERLAY ABLE REGS AREA SIZE
MAXIMUM STACK SIZE
60 LINES READ

= OODBH
= 001EH
= OOOOH
= 0003H
= OOOOH
= 0004H

2190
300
00
3D
00
40

PUM-96 COMPILATION COMPLETE. o WARNINGS, o ERRORS

C:\SBE96 >plm96termrw.p96

DOS PUM-96 COMPILER V1.0
Copyright Intel Corporation 1983

Figure 18 (Continued)

PUM-96 COMPILATION COMPLETE. 0 WARNINGS, 0 ERRORS

C: \ SBE96 > rl96 termrw.obj,plm96.1ib to termrw.abs stacksize(16)

DOS MCS-96 RELOCATOR AND LINKER, V2.0
Copyright 1983 Intel Corporation
RL96 COMPLETED, 0 WARNING(S), 0 ERROR(S)

C:\SBE96 >

Figure 19

3-197

280249-15

280249-14

inter AP-273

Saving Flies

The following describes the protocol required by the
iSBE-96 emulator for saving files. The following termi
nology is used: <cr> denotes a carriage return; parti
tion denotes an address range, specified as 'address TO
address'; Console.is the terminal or computer mapped
to the iSBE-96 CONSOLE device; Sender is the com
puter mapped to the iSBE-96 SEND deviCe; Receiv
er is the computer mapped to the iSBE-96
RECEIVE device.

1. Console'sends 'SAVE partition <cr>' to iSBE-96,

2. iSBE-96 sends an six (02H) to Receiver.

3. Receiver acknowledges with an XON (11H) to
iSBE-96.

4. iSBE-96 sends up to 16,384 bytes and waits for Re
ceiver to send an XON (11H).

5. Receiver processes the'transferred bytes and sends
an XON (1IH) to the iSBE-96. '

6. Steps 4 and 5 are repeated until the transfer is com-
plete.

7. iSBE-96 sends an EOF (IAH) to Receiver.

8. iSBE-96 sends a prompt ('.') to Console.

If, during the transfer, the iSBE-96 emulator receives
an ESC (IBH) from the Receiver or from the Console,
the load is aborted and an ESC is sent to the Receiver.
The Receiver should then respond with an XON (11H)
to acknowledge the ESC. '

If the end of file is reached at iuiy time during the load,
the transfer is terminated. The full 16,384 (16KH)
bytes do not necessarily have to be transferred.

SAMPLE DEBUG SESSION WITH THE,
iSBE-96 EMULATOR

The following sample program requires the use of
PL/M-96, ASM-96, and an iSBE-96 emulator. It as
sumes the iSB&96 DCE serial port is connected to an
IBM PC XT or AT and a terminal is connected to the
iSBE-96 DTE serial port. The terminal should be set
for full-duplex and 9600 baud operation.

Sample Program Description

The MCS-96 program chosen for the sample debug
session combines and utilizes many of the features
described throughout this applications note and was
designed to show as many of the iSBE-96 emulator's
features as possible. The sample program uses both
a PL/M-96 main module and an ASM-96 module and
demonstrates how to link them together. The sample
program also uses the terminal input/output proce
dures discussed in the Block Memory Move Section for

, input to the program and to display status in real-time.
'Finally, the program makes use of one of the MCS-96

software timers for basic program timing.

The PL/M-96 main module is illustrated in Figure 20.
As shown, the main module contains local declarations,
procedure declarations,' and the maiuline PL/M-96
program. Functionally, the program uses software tim
er 1 to keep a real time clock which is then displayed to
the terminal connected to the iSBE-96 DT serial port.
Initially the 'clock' is set by entering the current time
through the terminal connected to the iSBE-96 DT
port.

The ASM-96 module is shown in Figure 21. It contains
the interrupt service routine for the software timer in
terrupt which actually does the timing for the 'clock'. It
also dermes all of the other MCS-96 interrupt vectors
(2000H to 200FH) to help guard against program run
away and to avoid program anomolies when debugging
with the iSBE-96 emulator. '

Figure 22 illustrates the ,DOS batch file
(CLOCK. BAT) used to compile, assemble, and link the
sample program. The STACKSIZB(20H) control is
added to the RL96 invocation to allow sufficient stack
space for the sample program and the six bytes required
by the iSBE-96 emulator. This batch file assumes that
PL/M-96, ASM-96 and the utilities, and ,libraries are
located in a directory called 8096,DIR while the sample
program modules and batch file are in the home direc
tory. After entering the sample program modules and
batch file using a word processor such as ABDIT, the
sample program can then be assembled, compiled, and
linked by typing CLOCK followed by an enter.

If a word processor other than AEDiT is used, you
should insure that the word processor did not put an
end of file character(lAH) at the end of the source
code files since the Intel assemblers and compilers can~
not handle it. It can be removed using the DOS copy/b
command.

Sample Program Discussion

Before beginning the sample debug session it may be
helpful to have a brief synopsis of what the sample pro
gram does and why, The MCS-96 software timers are
incremented once every eight state times and the maxi
mum count possible for the software timers is 65,535
(64KH). For a 12 MHz input crystal frequency, a state
,time is 250 ns. Therefore, orie second can be expressed
as: 1 = 1/(250E-9 • 8 • 65,535 • X) where X is the
number of times the software timer completes the speci
fied number' of counts (time-outs). If you solve for X
you will find that X = 7.6295. This tells us that we
need seven time-outs at the maximum count and
one time-out at a count of 41,254 (65,535 * 0.6295).

3-198

inter AP-273

PUM-96 COMPILER iSBE-96 Sample Debug Program

DOS PUM-96 V1.0 COMPILATION OF MODULE CLOCK
OBJECT MODULE PLACED IN CLOCK.OBJ
COMPILER INVOKED BY: C:\UDI\PLM96.EXE CLOCK.P96

2

$title (' iSBE-96 Sample Debug Program')
$optimize (3)
clock: DO;

1* local declarations *1
DECLARE bell '07H',

'08H',
'WHILE 1',
'0',
'NOT FALSE',
'BYTE',
DATA(OdH,OaH),
DATA(O,O,':',O,O,':',O,O),
FAST,

BS
FOREVER
FALSE
TRUE
BOOLEAN
msg1(*)
msg2a(*)
msg2(8)
msg3(*)
(I,char)
seconds
minutes
hours

LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
BYTE
BYTE
BYTE
BYTE
BYTE,
BYTE,
BYTE,
BYTE,
BYTE
WORD
BYTE
BYTE,
BOOLEAN,
BOOLEAN,
WORD
BYTE
BYTE
BYTE
WORD
ADDRESS
ADDRESS

DATA('sel time - hh:mm:ss <cr> '),

tick
tock
count
count1
not$done
not$first
HSO_TIME
HSO_CMD
INT_MASK
INLPENDING
TIMER1
dLdata
dLstatus

1* Procedure declarations *1
3 1 ci: PROCEDURE BYTE PUBLIC;
4 2 DO WHILE «dLstatus AND 02H) = OH);
5 3 END;
6 2 char = dLdata AND 7FH;
7 2 RETURN char;
8 2 END ci;

9 1 co: PROCEDURE (char) PUBLIC;
10 2 DECLARE . . char BYTE;
11 2 DO WHILE «dLstalus AND 1) = 0);
12 3 END; .

Figure 20

3-199

FAST PUBLIC,
PUBLIC,
EXTERNAL,

AT (04H),
AT (06H),
AT (08H),
AT (09H),
AT (OAH),
AT (1FE4H),
AT (1FE6H);

1* wail till RxRDY *1

1* wait till TxRDY *1

280249-16

inter
13 2
14 2

15 1
16 2

17 2
18 2
19 2

20 1
21 2

22 2
23 2
24 2
25 2
26 2

27 1
28 2
29 2
30 3
31 3
32 2

33

34
35
36
37
38
39
40
41 1
42 2
43 2
44 1
45 1
46 2
47 2

49 3
50 3
51 4
52 4
53 4

AP-273

dLdata = char;
END co;

init$DT: PROCEDURE PUBLIC;
dLstatus = 37H;

CALL TIME(1);

1* clear any errors on the DTs
8251A USART *1

char = dLdata; 1* clear the DT receive buffer *1
END init$DT;

ascii: PROCEDURE (value,dest$ptr) PUBLIC;
DECLARE (value,temp) BYTE,

dest$ptr ADDRESS,
(dest BASED dest$ptr) (2) BYTE;

value = SHL«value/10).4) + (value MOD 10); 1* convert to BCD *1
temp = value;
dest(O) = SHR(temp.4) + 30H; 1* convert to ASCII decimal value *1
dest(1) = (value AND OFH) + 30H;
END . ascii;

print$msg1: PROCEDURE;
DECLARE I BYTE;
DO I = 1 TO LENGTH(msg1);

CALL co(msg1(1·1));
END;

END print$msg1 ;

1* Program starts here *1
CALL TIME(50);

CALL init$DT;
count,count1 = 0;
not$done = TRUE;
not$first,tick = FALSE;
seconds,minutes,hours = 0;
CALL movb(.msg2a,.msg2,LENGTH(msg2a));
CALL print$msg1 ;
DO I = 1 TO LENGTH(msg3);

CALL co(msg3(1·1));
END;

CALL print$msg1;
DO WHILE not$done;

char = ci;
IF «char> = 30H) AND (char< = 39H)) THEN

DO;
CALL co(char);
DO CASE count1;

1* delay to insure iSBE·96 NMIline
is stable *.,
1* initialize DT serial port *1
1* Initialize variables *1

1* query for initial time *1

1* input initial time values *1

hours = SHL(hours.4) + (char -30H); 1* inputASCIl and convert to BCD *1
minutes = SHL(minutes,4) + (char - 30H);
seconds = SHL(seconds.4) + (char - 30H);

280249-17

Figure 20 (Continued)

3·200

intJ AP-273

54 4 END;
55 3 END;
56 2 ELSE IF (char = ':') THEN DO;
58 3 count1 = count1 + 1;
59 3 CALL co(char);
60 3 END;
61 2 ELSE IF (char = ODH) THEN not$done = FALSE;
63 2 ELSE CALL co(bell);
64 2 END;
65 1 CALL print$msg1 ;
66 hours = (SHR(hours.4) * 10) + (hours AND OFH); 1* convert BCD to hex *1
67 minutes = (SHR(minutes.4) * 10) + (minutes AND OFH);
68 seconds = (SHR(seconds,4) * 10) + (seconds AND OFH);
69 CALL print$msg1;
70 HSO_CMD = 38H; 1* set-up software-timer1 interrupt and TIMER1 as clock source *1
71 tock = TIMER1 + 62500; 1* load initial timer count for

interrupt *1
72 HSO_TIME = tock;
73 INLMASK= 20H; 1* set mask to select only software timer

interrupts *1
74 INLPENDING = 0; 1* clear interrupt pending register *1
75 1 ENABLE; 1* enable interrupts *1
76 1 DO FOREVER; 1* start the 'clock' *1
77 2 IF tick THEN DO;
79 3 tick = FALSE;
80 3 seconds = seconds + 1;

$CODE
81 3 IF (seconds = 60) THEN DO;
83 4 seconds = 0;
84 4 minutes = minutes + 1;
85 4 IF (minutes = 60) THEN DO;
87 5 minutes = 0;
88 5 hours = hours + 1;
89 5 IF (hours = 24) THEN hours = 0;
91 5 END;
92 4 END;
93 3 CALL ascii(seconds,.msg2(0»; 1* convert hex times to decimal

ASCII *1
94 3 CALL ascii(minutes,.msg2(3»;
95 3 CALL ascii(hours,.msg2(6»;
96 3 IF not$first THEN DO;
98 4 DOl == 1 TO 8; 1* backspace to beginning of line *1
99 5 CALL co(BS);

100 5 END; .
101 4 END;
102 3 DO I = 1 TO LENGTH(msg2); 1* print the 'clock' time *1
103 4 CALL co(msg2(1»;

280249-18

Figure 20 (Continued)

.3-201

inter AP-273

104 4 END;
$NOCODE

105 3 not$first = TRUE;
106 3 END;
107 2 END;

108 END clock;

PUM-96 COMPILER iSBE-96 Sample Debug Program
ASSEMBLY LISTING OF OBJECT CODE

; STATEMENT 81
01E7 993COC R CMPB SECONDS,#3CH
01EA D714 BNE. @0019' ,.

; STATEMENT· , 83
'01EC 110C R .CLRB SECONDS

; STATEMENT 84
01EE 170D R INCB MINUTES

; STATEMENT, 85
01FO 993COD R CMPB MINUTES,#3CH
01F3 D70B BNE @0019

; STATEMENT 87
01F5 110D R CLRB MINUTES·.

; STATEMENT , 88
01F7 170E R INCB HOURS

; STATEMENT 89
01F9 99180E R CMPB HOURS,#18H
01FC D702 BNE @OO19

; STATEMENT 90
01FE 110E R CLRB HOURS

; STATEMENT 93
0200 @0019:
0200 ACOC1C R LDBZE TMPO,SECONDS
0203 C81C PUSH. TMPO
0205 C90000 R PUSH #MSG2
0208 2E60 CALL ASCII

; STATEMENT 94
020A ACOD1C. R LDBZE TMPO,MINUTES
020D C81C PUSH TMPO
020F C90300 R ,PUSH #MSG2+3H
0212 2E56 CALL AS,CII·

; STATEMENT 95
0214 ACOE1C R LDBZE TMPO,HOURS
0217 C81C PUSH TMpO·
0219 C90600 R PUSH #MSG2+6H
021C 2E4C CA\..L ASCII

280249-19

Figure 20 (Continued)

3-202

inter AP-273

STATEMENT 96
021E 301211 R BBC NOTFIRST,OH,@OO1C

STATEMENT 99
0221 B1010A R LOB 1,#1H
0224 @0010:
0224 99080A R CMPB 1,#8H
0227 0909 BH @001C
0229 C90800 PUSH #8H
022C 2EOB CALL CO

STATEMENT 100
022E 170A R INCB I
0230 07F2 BNE @001O

STATEMENT 102
0232 @001C:

STATEMENT 103
0232 B1010A R LOB 1,#1H
0235 @001F:
0235 ACOA1C R LOBZE TMPO,I
0238 8908001C CMP TMPO,#8H
023C 0910 BH @0020
023E ACOA1C R LOBZE TMPO,I
0241 AF1000001C R LOBZE TMPO,MSG2[TMPO]
0246 C81C PUSH TMPO
0248 20EF CALL CO

, STATEMENT 104
024A 170A R INCB I
024C 07E7 BNE @001F
024E @0020:

MOOULE INFORMATION:

COOE AREA SIZE = 0231H 5610
CONSTANT AREA SIZE = 0022H 340
OATA AREA SIZE = OOOOH 00
STATIC REGS AREA SIZE = 0019H 250
OVERLAYABLE REGS AREA SIZE = OOOOH 00
MAXIMUM STACK SIZE = OOOAH 100
145 LINES REAO

PUM-96 COMPILATION COMPLETE. o WARNINGS, o ERRORS
280249-20

FIgure 20 (Continued)

3-203

AP-273

MCS-96 MACRO ASSEMBLER Sample Debug Program -Interrupt Service Routine

DOS MCS-96 MACRO ASSEMBLER, V1.0

SOURCE FILE: TIMER.A96
OBJECT FILE: TIMER.OBJ
CONTROLS SPECIFIED IN INVOCATION COMMAND: < none>

ERR LOC OBJECT LINE SOURCE STATEMENT

0004
0006
boOA

0000

0000

2000

2000
2002
2004
2006
2008
200A
200C
200E

1800 R
1800 R
1800 R
1800 R
1800 R
0000 R
1800 R
1800 R

1 $TITLE (,Sample Debug Program -Interrupt Service
Routine')

2
3
4
5
6
7
8

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

TIMER MODULE

;Externals

EXTRN tick

EXTRN took

;Publics

PUBLIC count

;Local variables

HSO_TIME
HSO_CMD
TIMER1

RSEG

count:

Eau
EaU
EaU

DSB

:BYTE ;tick is declared FAST
so will be in internal RAM
:WORD ;contains first
HSO_TIME setting

04H:WORD ; Write only
06H:BYTE ; Write only
OAH:WORD ; Read only

;vector table - only the software timer should be accessed

CSEG at 2000h

DCW
DCW
DCW
DCW
DCW
DCW
DCW
DCW

;service routines

Figure 21

3-204

oops
oops
oops
oops
oops
tovfl
oops
oops

;timecOverflow
;ADdone
;HSLDatLAvaiiable
;HSO_Execution
;HSIO
;SW_timers
;SeriaUO
;ExternaUnterrupt

280249-21

intJ AP·273

39
0000 40 CSEG

41
0000 F2 42 Tovfl: PUSHF

0001 1700 R 43 INCB count

0003 990800 R 44 CMPB count,H8

0006 0706 45 JNE 100p1

0008 B1FFOO E 46 LOB tick,HOFFH ;set 'tick' = TRUE

OOOB B10000 R 47 LOB count,HO

OOOE B13806 48 100p1: LOB HSO_CMD,H38H ;reload HSO
CAM

0011 4524F40004 E 49 ADD HSO_TIME,tock,H62500

0016 F3 50 POPF
0017 FO 51 RET

52
0018 F2 53 Oops: PUSHF ;arriving here means an

interrupt occurred which

0019 FD 54 NOP ; should not have occurred.
This is also used to

001A FD 55 NOP ; initialize all the interrupt
vectors for bebugging

001B F3 56 POPF ; with the iSBE·96.

001C FO 57 RET
58

0010 59 END

MCS·96 MACRO ASSEMBLER Sample Debug Program ·Interrupt Service Routine

SYMBOL TABLE LISTING

NAME

COUNT ;
HSO_CMD
HSO_TIME
LOOP1
OOPS
TiCK
TIMER•.

VALUE

OOOOH
0006H
0004H
OOOEH
0018H

TIMER1 ; . OOOAH
TOCK
TOVFL . OOOOH

ASSEMBLY COMPLETED, NO ERROR(S) FOUND.

Figure 21 (Continued)

3·205

ATTRIBUTES

REG RELPUBLIC BYTE
NULL ABS BYTE
NULL ABS WORD
CODE REL ENTRY
CODE REL ENTRY
NULL EXTERNAL BYTE
MODULE STACKSIZE(O)
NULL ABS WORD
NULL EXTERNAL WORD
CODE REL ENTRY

280249-22

AP-273

Since it is much easier to have an integer number for a
loop counter, by setting the number of time-outs to
eight we fmd that the count needed is 62,500. This
number may eventually have to be tweaked because we
did not account for the time required to service the
interrupt itself or the tolerance of the 12 MHz crystal
on the iSBE-96 emulator, but for our purposes it is
close enough.

After prompting for the initial time, the sample pro
gram converts the input ASCII characters to hexadeci
mal. It then initializes software timer 1 to use TIMER
1 as a clock source and signal· for an interrupt upon
reaching the specified time (a count of 62,5(0), which is
then input to the HSO time register. The software timer
interrupt service routine keeps count of the number of
times it is activated and on the eighth pass it sets a flag
which allows the mainline program to increment the
'clock'. The current 'clock' time is then converted to
decimal ASCII and displayed on the terminal connect
ed to the iSBE-96 DTE serial port.

Sample Debug Session

After generating the files CLOCK.P96 and
TIMER.A96 as shown in Figures 20 and 21 respective
ly, use the DOS batch file as show to generate the abso
lutely located object code (CLOCK.ABS). Figure 20
contains a partial assembly code listing of the PL/M-96
program module (compiled with the CODE and
NOCODE controls). The code listing is needed for de
bugging with the iSBE-96 emulator since it does not
support PL/M-96 symbols or line numbers. For the
sake of a manageable illustration only part of the as
sembly code was generated for the PL/M-96 module.
The segment map and symbol table generated by RL96
for the sample program (CLOCK.M96) is shown in
Figure 22. The segment map shows the address of the
instructions of the program since the addresses of the
relocatable code in the listing are only relative module
addresses.

Once the linked object module has been generated, in
voke the iSBE-96 driver software which will sign on
with the version number and establish communications
with the iSBE-96 emulator. The sample program can
then be loaded by typing LOAD CLOCK.ABS <cr>.
After the sample program object code has been loaded,
begin emulation by typing GO.

You will now be prompted on the terminal to set the
current time, 'set time hh:mm:ss <cr>' where <cr>

plm96 clock.p96
asm96 timer.a96

represents a carriage returu or enter. After entering the
time and carriage return, you will notice that the 'clock'
display appears to):lackup across the screen on the ter
minal. If you look closely, the hours and seconds also
appear to be transposed. Press the escape key on the
IBM PC XT or AT, (referred to from now on as the
console) to stop emulation. It should be clear that our
sample program has two separate problems, relative
clock print-out position and transposed hours and sec
onds.

First let's tackle the print-out position problem. By re
ferring to the PL/M-96 module listing (Figure 20), we
discover that the current time is printed out by the DO
loop in lines 102 through 104. H you compare these
lines with procedure 'print$msgl', you will see that the
message index in line 103 should be 1-1. This would
cause us to only print out 7 of the eight characters. But,
the DO loop in lines 98 through 100 backspaces eight
characters. These could very well cause the position
problem. .

To confirm this we first need to consult the assembly
code listing section of the PL/M-96 module listing and
the link map (Figures 20 and 23), to obtain the address
of line 102. The associated line number is printed on
the right-hand margin in the assembly code section of
thePL/M-96 listings (Figure 20). Since PL/M-96 al-.
ways places procedures and constants at the beginning
of code, the start address for line 102 is 0232H +
2084H = 22B6H. To verify this we can type DASM
22B6 to 2205 on the console. The resultant dissassem
bly display is shown in Figure 24. After comparing the
display to the listing we can verify that we have the
correct address.

To correct the problem we need to load TMPO (ICH)
with 1-1 (2EH) and, because TMPO is then used as an
index, we need to ensure that the high byte (lOH) for
word pointer lCH is clear. As you probably already
have guessed, the three byte instruction at 22C2H does
not give us enough room to do all that. Therefore, we
must branch to a non-used area (above 230DH from
the link map), add the necessary instructions, and then
branch back into the instruction stream. This can. be
done by typing the following on the console:

ASM 22C2 = BR +4AH <cr>,<cr>
ASM 230E = LOB 1C,2E <cr>
OECB 1C <cr> .
CLRB 10 <cr>
BR -53H <cr>,<cr>

rl96 clock.obj,tlmer.obj,plm96.lib to clock.abs stacksize(20H)

Figure 22

3-206

intJ

DOS MCS-96 RELOCATOR AND LINKER, V2.0
Copyright 1983 Intel Corporation

AP-273

INPUT FILES: CLOCK.OBJ, TIMER.OBJ, PLM96.LlB
OUTPUT FILE: CLOCK.ABS
CONTROLS SPECIFIED IN INVOCATION COMMAND:

STACKSIZE(20H)

INPUT MODULES INCLUDED:
CLOCK.OBJ(CLOCK) 01/14/86 13:28:27
TIMER.OBJ(TIMER) 01114/86 13:28:38
PLM96.LlB(PLMREG) 11/02183
PLM96.LlB(TIME) 11/02183

SEGMENT MAP FOR CLOCK.ABS(CLOCK):

TYPE BASE LENGTH ALIGNMENT MODULE NAME

**RESERVED* OOOOH 001AH
REG- 001AH 0001H BYTE TIMER

*** GAP *** 001BH - 0001H
REG 001CH 0008H ABSOLUTE PLMREG
REG 0024H 0019H WORD CLOCK

*** GAP *** 003DH 0001H
STACK 003EH 0020H WORD

*** GAP *** 005EH 1F86H
DATA 1FE4H 0002H ABSOLUTE CLOCK
DATA 1FE6H 0002H . ABSOLUTE CLOCK

*** GAP *** 1FE8H 0018H
CODE 2000H 0010H ABSOLUTE TIMER

*** GAP *** 2010H 0070H
CODE 2080H 0OO3H ABSOLUTE CLOCK

*** GAP *** 2083H 0001H
CODE 2084H 0253H WORD CLOCK
CODE 22D7H 001DH BYTE TIMER
CODE 22F4H 0019H BYTE TIME

***GAP *** 230DH DCF3H

ATTRIBUTES VALUE NAME

SYMBOL TABLE FOR CLOCK.ABS(CLOCK):

PUBLICS:
REG BYTE 0033H TICK
REG WORD 002CH TOCK
CODE ENTRY 20A6H CI

280249-23

Figure 23

3-207

AP-273

CODE ENTRY 20BDH CO
CODE ENTRY 20DAH INITDT
CODE ENTRY 20EEH ASCII
REG BYTE 001AH COUNT
REG NULL 001CH PLMREG
CODE ENTRY 22F4H ??TIME
NULL NULL 005EH MEMORY
NULL NULL 1F86H ?MEMORY _SIZE

MODULE: CLOCK

MODULE: TIMER

MODULE: PLMREG

MODULE: TIME

RL 96 COMPLETED, o WARNING(S), o ERROR(S) .

Figure 23 (Continued)

*dasm 22b6 to 22d5

ADDRESS DATA MNEMONIC OPERANDS
22B6H B1012E LDB 2E,#01
22B9H AC2E1C .. .LDBZE 1C,2E
22BCH 8908001C CMP 1C,#0008
22COH D910 JH $+12
22C2H AC2E1C LDBZE 1C,2E
22C5H AF1D24001C LDBZE 1 C,0024 [1 C]
22CAH C81C PUSH 1C
22CCH 2DEF SCALL $-020F
22CEH 172E INCB 2E
22DOH D7E7 JNE $-17
22D2H B1FF36 . LDB 36,#FF

*

Figure 24

3-208

inter AP-273

We must now restart emulation to see if this patch fixes
the position problem. To restart emulation type GO
FROM 2080 on the console. After setting the time on
the terminal, we see that this did fix the position prob
lem.

Now to fix the problem with the hours and seconds
transposed on the 'clock' print-out. By consulting the
PL/M-96 module listing (Figure 20), we see that the
times are converted and put into printable message for
mat by lines 93 through 95. Comparing those lines with
the format declarations of messages 2a and 3 in line 2,
we see that lines 93 and 95 use the wrong index into
message 2 for storing seconds and hours.

To confirm this we again need to consult the assembly
code listing section of the PL/M-96 module listing and
the link map (Figures 20 and 23), to obtain the address
of line 93. The address for line 93 turns out to be 0200H
+ 2084H = 2284H. We verify this by typing DASM

*dasm 2284 to 22aa

ADDRESS DATA MNEMONIC
2284H AC301C LDBZE
2287H C81C PUSH
2289H C92400 PUSH
228CH 2E60 SCALL
228EH AC311C LDBZE

. 2291H C81C PUSH
2293H C92700 PUSH
2296H 2E56 SCALL
2298H AC321C LD8ZE
229BH C81C PUSH
229DH C92AOO PUSH
22AOH 2E4C SCALL
22A2H 303611 JBC
22A5H B1012E LDB
22A8H 99082E CMPB

2284 TO 22AA on the console .. After comparing the
resultant display (Figure 25) and the code listing, we
can see that we have the correct address. To correct the
problem we need to swap the instruction at 2289H with
the instruction at 229DH. This can be done by typing
the following on the console:

ASM 2298 = PUSH #2A <cr>,<cr>
ASM 2290 = PUSH #24 <cr>,<cr>

We must now restart emulation to see if this fixes the
problem. To restart emulation where we left off, type
GO on the console. Checking the terminal, we can see
that this does fix the transposition problem and the
'clock' print-out is correct.

Now that we have confirmed that our fixes correct the
problems, the PL/M-96 module should be updated' to
incorporate those corrections. The debugged PL/M-96
module is illustrated in Figure 26.

OPERANDS
1C,30
1C
#0024
$-019E
1C,31
1C
#0027
$-01A8
1C,32
1C
#002A
$-0182
36,00,$+14
2E,#01
2E,#08

Figure 25

3-209

inter
$title (' iSBE-96 Sample DebugProgram')
$optimize (3)

. clock: DO;

1* local declarations *1
DECLARE bell

BS
FOREVER
FALSE
TRUE
BOOLEAN
msg1(*)
msg2a(*)
msg2(8)
msg3(*)
(I,char)
seconds
minutes
hours
tick
tockWORDPUBLlC,
count
count1 .
not$done
not$first
HSO_TIME
HSO_CMD
INLMASK
INLPENDINGBYTEAT (09H),
TIMER1
dLdata
dLstatus

1* Procedure declarations *1

AP-273

LITERALLY
LITERALLY

. LITERALLY
LITERALLY
LITERALLY
LITERALLY
BYTE
BYTE
BYTE
BYTE
BYTE,
BYTE,
BYTE,
BYTE,
BYTE

BYTE
• BYTE,
..BOOLEAN,

BOOLEAN,
WORD
BYTE
BYTE

WORD
ADDRESS
ADDRESS

'07H',
'08H',
'WHILE 1',
10',
'NOT FALSE',
'BYTE',
DATA(OdH ,OaH),
DATA(O,O, ':',0,0, ':',0,0),
FAST,
DATA('set time - hh:mm:ss < cr > '),

FAST PUBLIC,

EXTERNAL,

AT (04H),
AT (06H),
AT (08H),

AT (OAH),
AT (1FE4H),
AT (1FE6H);

ci: PROCEDURE ' BYTE PUBLIC;
DO WHILE «dLstatus AND 02H) = OH);

END;
char = dLdata AND 7FH;
RETURN char;
END ci;

co: PROCEDURE (char) PUBLIC;
DECLARE char BYTE;
DO WHILE «dLstatus AND 1) = 0);

END;
dLdata = char;
END co;

init$DT: PROCEDURE
dLstatus = 37H;

PUBLIC;

Figure 26

3-210

1* wait till RxRDY *1

1* wait till TxRDY *1

1* clear any errors on the DTs 8251A USART *1
280249-24

inter Ap·273

CALL TIME(1);
char = dLdata; 1* clear the DT receive buffer *1
END init$DT;

ascii: PROCEDURE (value,dest$ptr) PUBLIC;
DECLARE (value,temp) BYTE,

dest$ptr ADDRESS,
(dest BASED dest$ptr) (2) BYTE;

value = SHL((value/10),4) + (value MOD 1 0); 1* convert 10 BCD *1
lemp = value;
desl(O) = SHR(temp,4) + 30H; 1* convert 10 ASCII decimal value *1
dest(1) = (value AND OFH) + 30H;
END ascii;

print$msg1: PROCEDURE;
DECLARE I BYTE;
DO I = 1 TO LENGTH(msg1);

CALL co(msg1(1-1));
END;

END prinl$msg1 ;

1* Program starts here *1
CALL TIME(50);
CALL init$DT;
count,count1 = 0;
not$done = TRUE;
not$first,tick = FALSE;
seconds,minutes,hours = 0;
CALL movb(.msg2a,.msg2,LENGTH(msg2a));
CALL print$msg1;
DO I = 1 TO LENGTH(msg3);

CALL co(msg3(1-1));
END;

CALL print$msg1;
DO WHILE not$done;

char = ci;
IF ((char> = 30 H) AND (char< = 39H)) THEN DO;

CALL co(char);
DO CASE count1 ;

hours = SHL(hours,4) + (char - 30H);
minutes = SHL(minutes,4) + (char - 30H);
seconds = SHL(seconds,4) + (char - 30H);
END;

END;
ELSE IF (char = ':') THEN DO;

count1 = count1 + 1;
CALL co(char);
END;

ELSE IF (char = ODH) THEN not$done = FALSE;

1* delay to insure iSBE-96 NMIline is stable *1
1* initialize DT serial port *1
1* initialize variables *1

1* query for initial time *1

1* input initial time values *1

1* input ASCII and convert to BCD *1

280249-25

Figure 26 (Continued)

3-211

Ap·273

ELSE CALL co(bell);
END;

CALL print$msg1;
hours = (SHR(hoursA) * 10) + (hours AND OFH); 1* convert BCD to hex *1
minutes = (SHR(minutesA) * 10) + (minutes AND OFH);
seconds = (SHR(secondsA) * 10) + (seconds AND OFH);
CALL print$msg1;
HSO_CMD = 38H;

tock = TIMER1 + 62500;
HSO_TIME = tock;
INT _MASK = 20H;

INT _PENDING = 0;
ENABLE;
DO FOREVER;

IF tick THEN DO;
tick = FALSE;
seconds = seconds + 1;

$CODE
IF (seConds = 60) THEN DO;

seconds = 0;
minutes = minutes + 1;
IF (minutes = 60) THEN DO;

minutes = 0;
hours = hours + 1;
IF (hours = 24) THEN hours = 0;
END;

END;
CALL ascii(seconds,.msg2(6»;
CALL ascii(minutes,.msg2(3»;
CALL ascii(hours,.msg2(0»;

IF not$first THEN DO;
DO 1= 1 TO 8;

CALL co(BS);
END;

END;
DO I = 1 TO LENGTH(msg2);

CALL co(msg2(1-1»;
END;

$NOCODE
not$first = TRUE;
END;

END;

END clock;

1* set-up software-timer1 interrupt and
TIMER1 as clock source *1
1* load initial timer count for interrupt *1

1* set mask to select only software timer
interrupts *1
1* clear interrupt pending register *1
1* enable interrupts *1
1* start the 'clock' *1

1* convert hex times to decimal ASCII *1

1* backspace to beginning of line *1

1* print the 'clock' time *1

280249-26

Figure 26 (Continued)

3-212

