
I P & I M I M K V

OpenNET™
NETWORK RESOURCE MANAGER (NRM) 

iMDX 460
■ Ethernet-Based File Server to Connect

— Intellec Series ll/lil/IV
— Model 800
— Compilengine
— Intel XENIX* and iRMXTM-Based 

System
— VAX*/MicroVAX* Running VMS
— DOS 3.1 (and up)-Based PCs

■ Runs 8- and 16-Bit Languages
■ Protected Hierarchical File System
■ Remote Job Execution for Distributed 

Processing

■ Shared Resources
— Central Disk Storage up to 560 MB
— 60 MB Streaming Tape
—  Shared Spooled Line Printer

■ High-Performance Hardware
—  iSBC® 286/12, 8 MHz CPU Board 

with One Megabyte of Zero Wait- 
State RAM

— iSBC® 214 Disk Controller with a 
Dedicated 80186 CPU and Track 
Caching

280173-1

♦XENIX is a registered trademark of the Microsoft Corp.
♦VAX, MicroVAX, VMS and DEC are registered trademarks of Digital Equipment Corp.

4-1
November 1986 

Order Number: 280173-002



iMDX 460in y

OVERVIEW
The OpenNET NRM is a network file server opti
mized for a distributed development systems envi
ronment. Workstations on the network address the 
hardware engineer’s needs by providing the base 
environment for tools such as in-circuit emulators 
and PROM programmers. Furthermore, workstations 
support software engineering teams—hosting soft
ware tools such as compilers, software debuggers, 
and project management tools. For a project team, 
the OpenNET NRM creates a network that provides 
the dual advantage of a powerful desk-top computer 
and access to shared resources on a high-speed 
standard network. These capabilities include trans
parent file access to shared files, remote job execu
tion, and print spooling. The OpenNET NRM is plug- 
compatible with the original NDS-II NRM.

FUNCTIONAL DESCRIPTION
The OpenNET NRM manages all workstation re
quests for centralized network resources. These 
tasks include service of workstation file access re
quests, print spooling, management of remote job . 
execution queues, and network maintenance func
tions such as user creation/authentication, file ar
chiving, and system configuration.

The iNDX operating system on the OpenNET NRM 
uses a hierarchical file system providing file sharing 
and protection features. With this file organization, 
files can be logically grouped into directories and 
sub-directories. File protection is implemented in the 
form of access rights for each file or directory.

For messages or simple file transfers among work
stations, Electronic Mail is included for Series 11/111/ 
IV, Model 800 and ISIS cluster users.

In addition to the management of communications 
between shared disks and workstations, the NRM 
maximizes the use of all network resources with a 
remote job execution facility called Distributed Job 
Control (DJC). Any Series ll/lll/IV , Model 800, ISIS 
cluster or VAX/VMS user on the network can export 
a batch job through the NRM for remote execution 
on other idle workstations or a specialized system 
called the Compilengine. The Compil0ngine is an In
tel product that specializes in the importation of 
large compilations and link/locates from other net
work workstations. Alternatively, the NRM can ac
cept medium compile and link/locate jobs when it is 
not loaded down with file requests.

NDS-II Plus OpenNET™ Network 
Communications Enable Data Sharing 
in Mixed Vendor Environments
The OpenNET NRM communicates with other sys
tems over the industry standard Ethernet network. 
The OpenNET NRM supports two Intel network pro
tocols used on Ehternet: the NDS-II and OpenNET 
network protocols. Installed in the NRM, and iSBC 
550 communications board set supports the NDS-II 
protocols. An iSXM 552 supports the ISO 8073 com
patible iNA960 transport software for the OpenNET 
network. Intellec Series ll/ l ll/ IV  systems, Model 800 
workstations, Compilengines, communicate with the 
NRM via the NDS-II protocols while XENIX, iRMX 
and PC-DOS systems communicate via the 
OpenNET network. The VAX and MicroVAX running 
VMS connect to the NRM via VAX Link.

All data that is stored at the NRM is visible to, and 
can be transparently accessed by, all workstations 
in the network. VAX/VMS users have file transfer 
capability. For example, PCs or 286/310 systems 
(running the iRMX or XENIX operating system) can 
share files on the NRM with Series IVs with the ca
pability to upload those files to the VAX for back-up.

Network Managment Facilities
The NRM provides your network administrator with 
tools such as hardware diagnostics, network status 
and configuration commands to help optimize your 
user environment. These capabilities include the dis
play all network users and transaction counts, defini
tion of the number of multitasking jobs and allocate 
communication memory. For example, for a network 
with 2 -3  Series IVs and 4 -5  PCs, the NRM can be 
configured with maximum communication buffer 
memory. This is to maximize throughput for a few 
workstations. Alternatively, for a network with 4 -5  
Series IVs and 20 PCs, the NRM can be configured 
with smaller buffers but large numbers of users. This 
is to maximize the number of users on the network.

A Comprehensive Set of Development 
Tools Supported
All current Intel development tools such as lan
guages, assemblers, linker/locators, PROM pro
grammers, debuggers and in-circuit emulators can 
be used on networked workstations. In addition, the 
NRM can run 8- and 16-bit compile and link/locate 
jobs to maximize the computing power of your NRM 
when it is relatively idle from communication tasks. 
These jobs can be sent from any workstation on the 
network.

4-2



iMDX 460 IPIRilUGMMf

Series III

Series II

VAX/VMS 
System

VAX Link Software

LEGEND

Transparent File Access, DJC 

File Copy, DJC

O penNET Transparent File Access

Figure 1. Share Files Transparently on the OpenNETTM NRM From Any Workstation

State-of-the-Art System Components 
means Performance
The OpenNET NRM is a high performance 80286- 
based microcomputer. Two models are offered: the 
MAXI and MINI. The MAXI has a fast 140 MB disk 
with a 60 MB streaming tape drive while the MINI 
has a 40 MB disk with no tape. Each system con
tains an iSBC 286/12 8 MHz CPU board with one 
megabyte of zero wait-state on-board Random Ac
cess Memory (RAM). Also contributing to the high 
system performance is the iSBC 214 multiprocess
ing peripheral controller. This controller features its 
own 80186 microprocessor and 32 KB of software 
transparent cache memory. The 80186 offloads the 
80286 CPU from virtually all peripheral controller 
tasks, while the cache memory greatly reduces ap
parent access times to hard disk memory. The iSBC

214 controller is used to support the Winchester and 
640 KB half-height floppy disk drives in both the 
MAXI and MINI models. The iSBC 214 controller ad
ditionally supports the streaming tape drive in the 
MAXI model.

Interconnecting Hardware Is Standard
To connect workstations to the OpenNET NRM, 
standard Ethernet transceivers, transceiver cables, 
and Ethernet coaxial cables are used. Intel’s Intellink 
module may also be used to connect multiple work
stations to Ethernet. The same (one) Intellink mod
ule can be used to connect Series ll/lll/IV s, VAXs 
via VAX Link, and OpenNET workstations, as long 
as cables from both the iSBC 550 and iSXM 522

4-3



iMDX 460

boards are connected to that Intellink module. The 
Series ll/lll/IV s, VAXs will respond to messages 
from the iSBC 550 board while the OpenNET work
stations will respond to messages from the iSXM 
552 board. This helps the user optimize usage of 
current and new interconnect hardware.

The OpenNETTM NRM Expands To Fit 
Growing Development Environments
Creating a network in your development lab is ac
complished by adding an NRM and upgrade kits for 
Intellec, 286/310 XENIX and iRMX, PC-DOS and 
VAX/VMS systems. The network grows with your 
development environment. Workstations can be 
added, mass storage increased, and multiple net
works connected—giving your development environ
ment maximum flexibility. You only need to acquire 
as much development equipment as you require to
day, knowing that you will be able to grow in incre
ments tomorrow.

SPECIFICATIONS

Hardware

NDS-II Workstations

Workstation Hardware/Software 
Products Required

Compil0ngine 
Model 800 
Series ll/ l ll 
Series IV 
VAX/VMS 
jmVAX/VMX

PIMDX455
PIMDX455
PIMDX456
IMDX 392 & DEUNA* board 
iMDX 392 & DEQNA* board

*A DEC product

OpenNETTM Workstations

Workstation Hardware/Software 
Products Required

PC-DOS V3.1 System 
System 310 XENIX

System 310 iRMX 86/286

VAX/VMS
jxVAX/VMS

PCLNK
XNX-NET&iSXM 552 
board
iRMX-NET 8 iSXM 552
board
VMSSVR
MVSSVR

Dimensions: 61/ 2" x 17" x 22"
Weight: 55 lbs.
Electrical: User selectable AC power with either 

88-132V, 60 Hz or 180-264V, 50 Hz

Software
iNDX R3.2 Operating System

OPERATING ENVIRONMENT 

Environmental Characteristics
Temperature: 10°C to 35°C 
Humidity: 20-80% relative humidity
Altitude: Sea Level to 8000 Feet

Hardware Required
User supplied ANSI 3.64 standard terminal 
Workstation interconnecting hardware:
Intellink module, transceivers, transceiver cables, 
Ethernet coaxial cables (depending on number of 
workstations and distance)

DOCUMENTATION
iNDX User’s Guide 
(order # : 138809-001)

iNDX System Installation Guide 
(order # : 138810-001)

ORDERING INFORMATION
Product Order Code
iMDX 460-140T

iMDX 460-40

Description
OpenNET NRM 
(MAXI model)
OpenNET NRM 
(MINI model)

iSYP312 Floor stand which encloses
either the OpenNET NRM or 
the SYS 311 (see peripheral 
upgrades section) peripheral 
expansion box

4-4



iMDX 460 PKIBJMIDMIMV

Interconnecting Hardware
Product Order Code Description
PIMDX 457/458 Transceiver cables (10/50

meters) (two are required for 
an OpenNET NRM)

PMDX3015 Transceiver for Ethernet co
axial cables (at least two a re , 
required unless an Intellink is 
used)

iDCM 91-1 Intellink module (the
OpenNET NRM uses 
two ports)

PIMDX 3016-1/ Ethernet coaxial cable
3016-2 (25/50 meters)

Workstation Kits
Product Order Code Description
PIMDX 455 NDS-II Workstation Upgrade

Kit for any Series II/85, Se
ries III, or Model 800 to con
nect to the OpenNET NRM

Product Order Code Description
PIMDX 456 NDS-II Workstation Upgrade 

Kit for the Series IV
PIMDX 581 ISIS Cluster Board Package
MVMSSVR VAX/VMS-OpenNET Link 

S/W and Controller Board
VMSSVR MicroVAX/VMS OpenNET 

Link S/W  and Controller 
Board

PCLNK OpenNET PC Link hardware 
and software kit to connect 
the PC XT, PC AT, and com
patible systems to the NRM 
via the OpenNET network; 
requires DOS 3.1 or higher

RMXNT961KITWSU iRMX Networking Software 
for a 286/310 system run
ning the iRMX 86 Operating 
System to connect to the 
NRM via the OpenNET net
work

SXM5524 Ethernet-based Single Board 
Transport Engine for 310 
systems

XNXNETKRIKIT Open N ET-XenixN ET iNA 
961 iSXM 552 and XenixNET 
Pass-through Kit

STORAGE EXPANSION SUB-SYSTEMS
Winchester Storage Size With Tape No Tape
0 MB PSYS311A02 

PSXM311TCBL
—

40 MB PSYS311A14
PSXM311WDCBL
PSXM311TCBL

PSYS311A13 
PSXM311WDCBL

2 x 40 MB PSYS311A17
PSXM311WDCBL
PSXM311TCBL

PSYS311A16 
PSXM311WDCBL

140 MB PSYS311A34
PSXM311WDCBL
PSXM311TCBL

PSYS311A33 
PSXM311WDCBL

2 x140 MB PSYS311A37
PSXM311WDCBL
PSXM311TCBL

PSYS311A36 
PSXM311WDCBL

3x140  MB — PSYS311A39 
PSXM3T1WDCBL

NOTE:
Check product catalog (under PSYS311) for add-on Winchester disk drive ordering information

4-5



COMPILe NGINE 
iMDX 485CE

■ Fast, Dedicated Import Station on the 
Network

■ Off-Loads Compilations and Link/ 
Locates from other Intellec® 
Development Workstations on the 
Network Using Remote Job Execution

■ Off-Loads Compile Jobs from a DEC 
VAX/VMS** via the NRM and VAX Link

■ Supports 8051, 8086, 8096, 80186, 
80286 Languages Including ASM, C, 
PL/M, Pascal, and Fortran

■ High Performance System Containing 
an 8 MHz 80286 CPU with One 
Megabyte of Zero Wait-State RAM

■ Fast Disk Access via iSBC® 214 Disk 
Controller with 32 KB Track Caching

■ 640 KB Half-Height Floppy Disk Drive 
for Initial Software Load

■ Supports Optional Standard Terminal 
for System Maintenance and Direct Job 
Execution

The Compilengine is a 286-based supermicrocomputer system designed to improve productivity of a net
worked development team. Connected to a Network Resource Manager (NRM), it is optimized to off-load large 
compile and link/locate jobs from the Series ll/lll/IV , Model 800, and DEC’S VAX/VMS systems. PC-DOS and 
XENIX* systems connected via the OpenNETTM network to the NRM can also export compiles and link/lo- 
cates onto the Compilengine. The Compilengine performs compilations and link/locate jobs faster than any 
single workstation on the network. By exporting time-consuming jobs to a shared Compilengine, workstations 
are free to perform other tasks such as editing or debugging.

280174-1

Offload Your Non-lnteractive Software Jobs from any System to the Compilengine

*XENIX is a registered trademark of the Microsoft Corporation.
**VAX, VMS, DEC are registered trademarks of Digital Equipment Corporation.

4-6
October 1986 

Order Number: 280174-002



iMDX 485CE

FUNCTIONAL DESCRIPTION
The Compilengine adds more performance to your 
networked development environment by off-loading 
time consuming tasks from workstations. These 
tasks are execued by a powerful 286-based system 
hardware running the iNDX operating system. By us
ing Intel’s remote job execution facility called Distrib
uted Job Control (DJC), Intellec Series ll/ l ll/ IV  and 
Model 800 workstations as well as VAX/VMS sys
tems connected via optional VAX Link software can 
export compile and/or link/locate jobs to one or 
more Compilengines. Remote job execution is also 
possible from OpenNET systems via an NRM sup
porting the OpenNET network and an export utility in 
the Network Toolbox product. The user can now 
compile or link, during the workday, those long, 
CPU-intensive jobs that traditionally have been exe
cuted off-hours.

Easy to Start, Easy to Use
The Compilengine is connected to the network just 
like any other workstation on the NDS-II network, via 
the iSBC 550 communication board set (included) 
and a transceiver cable. Once physically connected 
and configured (system generated) onto the NRM, 
the Compilengine starts automatically with a simple

switch on of the power. The system autoboots from 
the floppy disk drive or the network. Sending jobs to 
this execution vehicle is equally as simple. By exe
cuting the EXPORT command on a batch job con
taining the compile or link/locate task, DJC on the 
NRM takes over and completes the job at the 
Compilengine.

The Right Location of Files Maximizes 
Performance
To maximize the performance of compiles and link/ 
locates sent to the Compilengine, frequently ac
cessed but stable files (compiler, linker/locators, 
and language libraries) should reside on the 
Compilengine’s local 40 MB Winchester drive. This 
will help reduce network traffic. On the other hand, 
frequently changed files such as source code, in
clude files, and user object libraries should reside on 
the NRM for version control. For the best perform
ance on large compiles, files may be copied to the 
Compilengine as part of an exported job. All shared 
files should reside on the NRM so that the most up- 
to-date copy of the files are visible to all network 
users. During off-hours the NRM can update or re
place compilers, linker/locators, or other commonly 
used files with the latest versions.

4-7



iMDX 485CE

State-Of-The-Art System Components 
Means Performance
The Compilengine is a high-performance super-mi
crocomputer with state-of-the-art technology. Each 
system contains the advanced iSBC 286/12 8 MHz 
CPU board with one megabyte of zero wait-state on 
board Random Access Memory (RAM). Also contrib
uting to the high system performance is the iSBC 
214 Multiprocessing Peripheral Controller. This con
troller features its own 80186 microprocessor and 
32 KB of software transparent cache memory. The 
80186 offloads the 80286 CPU from virtually all pe
ripheral controller tasks, while the cache memory 
greatly reduces apparent access times to hard disk 
memory. The iSBC 214 Controller is used to support 
a 40 MB Winchester drive and 640 KB 5%" floppy 
disk drive. To communicate with the NRM, the Com
pilengine uses the iSBC 550 Communication Board 
set for the standard high-speed (10 MB per second) 
Ethernet network.

Comprehensive Software 
Development Tools Supported
Since the Compilengine is a very fast, specialized 
iNDX system, all languages, macro assemblers, and 
linker/locaters currently supported on the Series IV 
and the NRM are also supported on the Com
pilengine. This includes popular high-level lan
guages such as PL/M, Pascal, Fortran, and C, as 
well as powerful “ high-level”  macro assemblers 
such as ASM86. These languages support develop
ment for 8051, 8086/8088, 80186/188, 80286, and 
8096 architectures. '

For More Flexibility
Although a terminal is not required to operate the 
Compilengine, the capability to connect an ANSI 
standard terminal is provided. This feature gives the 
customer the ability to perform file maintenance on 
the local storage devices (40 MB Winchester and 
floppy disk drives). The user can also initiate jobs 
directly on the Compilengine.

APPLICATIONS
As shown in Figure 1, any workstation configured on 
the NDS-II network can export jobs to the Com
pilengine using DJC. For example, on a Series IV, 
the user can simply execute the EXPORT command 
on a batch file containing a compile job. Then, edit 
or debug other programs while the Compilengine 
compiles that job.

Use of the Compilengine(s) from a VAX connected 
via VAX Link R2.0 is similar to use from a Series IV. 
The only requirement is that the source files to be 
compiled or the object modules/library routines to 
be link/located reside on the NRM. This is easily 
achieved by creating a batch file on the VAX. Each 
time a DJC command for remote compiles is execut
ed under VMS, this batch file copies files to be com
piled from the VAX onto the NRM and returns the 
compiled code back to the VAX. (See Figure 2.)

Systems connected on the OpenNET network can 
access the Compilengine via the NRM. To use the 
Compilengine, the PC or XENIX user simply copies 
the submit file to a special directory on the NRM. An 
export program in the Network Toolbox that runs on 
the NRM will scan that directory and send that job to 
the DJC queue for remote execution at the Com
pilengine. (See Figure 3.)

SPECIFICATIONS

Hardware
Dimensions: 61/ 2" x 17" x 22"
Weight: Less than 55 pounds
Electrical: User selectable AC power with either 

88-132V, 60 Hz or 180-264V, 50 Hz

Software
iNDX operating system

OPERATING ENVIRONMENT

Environmental Characteristics
Temperature: 10°C to 35°C 
Humidity: 20-80%  relative humidity
Altitude: Sea level to 8000 feet

Hardware Required
•  An NDS-II NRM (iMDX 450) or OpenNET NRM 

(iMDX 460) with the iSBC 550 communications 
board set installed.

•  Interconnecting hardware (one of the following):
— One transceiver cable and one port on an In- 

tellink module
— One transceiver cable, one transceiver and an 

Ethernet coaxial cable
•  Optional: ANSI 3.64 standard terminal

4-8



IMDX 485CE

NRM
shared files, 

DJC
management

280174-3

Figure 1. Series ll/lll/IV  and Model 800 Environment

280174-4

Figure 2. VAX/VMS and Other Intellec® Workstations

4-9



iMDX 485CEinteT

Figure 3. OpenNETTM Systems and Other inteltec® Development Systems

Software Required ORDERING INFORMATION
High-level language compilers and/or assemblers 
on 51/ i "  iNDX-formatted (96 tpi) diskettes.

SUPPORT DOCUMENTATION
iNDX .User’s Guide 
(order # 138809)

iNDX System Installation Guide 
(order # 138810)

Product
Order Code Description
iMDX 485CE Compilengine
iMDX 460-140T OpenNET NRM (maxi model) 
iMDX 460-40 OpenNET NRM (mini model) 
iMDX 457/458 Transceiver cables (10/50 meters) 
iDCM 911-1 Intellink module
iMDX 3015 Transceiver for Ethernet coaxial

cables
iMDX 3016

iSYP 312 
iMDX460-140T

iMDX460-40

Ethernet coaxial cables (25 or 50 
meters)
Floor stand for the Compilengine
OpenNET NRM file server 
(Maxi Model)
OpenNET NRM file server 
(Mini Model)

4-10



OpenNET™
PERSONAL COMPUTER LINK

■ Connects an IBM* PC AT, PC XT (and 
PC-DOS Compatibles) to the 
OpenNET™ Network

■ Works with Standard DOS Commands
■ Interconnects a PC System to iRMX™,

XENIX*, and NDS ll/NRM Systems 
Offering OpenNET Server Capability

■ Uses an 80186/82586 Processor-Based 
Network Controller Board

■ Contains Power-Up Diagnostics

The OpenNET Personal Computer Link (OpenNET PC Link) enables users to connect their IBM PC AT and PC 
XT computer systems to the OpenNET network. This connection enables a PC system to be configured as a 
consumer workstation on the OpenNET network, and to transparently access and share files and printers on 
an OpenNET network resource manager (NRM), NDS-II (with the OpenNET upgrade installed) NRM, iRMX, 
and XENIX-based remote server systems. The OpenNET PC Link is an 80186/82586 microprocessor-based 
expansion board, which is easily installed in an expansion card slot of the PC system. On-board jumpers and a 
user configurable software package enable the OpenNET PC Link to be used with a wide-range of expansion 
boards currently available for the PC system. The OpenNET PC Link incorporates the Microsoft* Networks 
(MS-NET) networking software and iNA 960 (ISO 8073 compatible) transport software as a part of its software 
package.

•IBM is a registered trademark of the International Business Machines Corporation.
•MS-DOS is a trademark of the Microsoft Corporation.
•Microsoft is a registered trademark of the Microsoft Corporation.
•XENIX is a trademark of the Microsoft Corporation.

280164-1

■ Supports the ISO/OSI Seven Layer 
Networking Standards

■ Enables a PC System to Access 
Remote Storage and Printer Devices

■ Provides Transparent-File-Access 
Capability Between a PC System and 
Remote Servers

■ Uses ISO 8073 Transport and Ethernet/ 
IEEE 802.3 Standard Communication 
Protocols

■ Intelligent Board Uses Only 44K of PC’s 
Memory

4-11
October 1986 

Order Number: 280164-002



OpenNETin t e f

PRODUCT OVERVIEW
The OpenNET PC Link is a member of Intel’s Open
NET networking product family. The OpenNET prod
ucts incorporate a set of system and component lev
el LAN products covering all seven layers of the ISO 
(International Standards Organization) Open System 
Interconnect (OSI) model, and the protocols on 
which they are based. OpenNET network protocols 
are established industry standards for each function. 
Therefore, OpenNET network products can connect 
and operate not only with each other, but with the 
most popular networking products from other ven
dors. OpenNET networks provide a high level of in
teroperability between heterogeneous systems (MS- 
DOS', PC-DOS, iNDX, XENIX, and iRMX operating 
system versions are available). Thus, users can tai
lor their networks to meet their specific needs by 
incorporating any combination of the capabilities of 
these diverse systems.

The OpenNET network application protocols imple
mented by OpenNET PC Link software are those 
adopted by Intel, Microsoft, and IBM for their com
puter networking products. The OpenNET PC Link 
software is compatible with and will operate with 
iNDX, XENIX, and iRMX networking software at the 
application layer.

PHYSICAL DESCRIPTION
The OpenNET PC Link consists of a network con
troller board and a 5% inch disk that contains the 
software necessary for the PC system to communi
cate across the OpenNET network. The following 
sections describe the hardware and software com
ponents of the OpenNET PC Link.

OpenNET PC Link Network Controller 
Board
The network controller board is an adaptor board 
that can be installed in any available expansion slot 
of a PC system. The board implements the industry 
standard ISO 8073 transport protocol (a modified 
version of iNA 960) and Ethernet/IEEE 802.3 physi
cal data link technology (see Figure 1). The board 
uses an Intel 80186 microprocessor in combination 
with an 82586 LAN communication controller. The 
board includes the following major components:
•  80186 microprocessor ....
•  82586 LAN communications controller
•  8 KB of EPROM

• 128 KB of RAM shared between the PC system 
and the 80186 microprocessor on the network 
controller board

•  82501 Ethernet serial interface
•  Fujitsu MB502A encoder decoder
• 15-pin Ethernet D connector
• 8-bit parallel DMA interface arid control register 

set
•  Power-up diagnostics

The network controller board performs all network 
communication functions for the first two layers of 
the ISO/OSI model (see Figure 2). Layers three and 
four reside in the modified iNA 960 transport soft
ware. The remaining layers (five through seven) re
side in the MS-NET networking software on the PC 
system.

POWER-UP DIAGNOSTICS

An effective diagnostic function is implemented in 
firmware on the network controller board. This func
tion is invoked at system initialization during both 
power-up and system reset time. The following list 
summarizes the functions tested:
•  80186 and 82586 microprocessors
•  I/O  ports
•  Shared memory window
• Interrupt channels
•  DMA channel
•  Ethernet connection

An on-board LED indicates whether the network 
controller board failed any of the various test func
tions.

OpenNET PC Link Software
The software is supplied on a 5% inch double-densi
ty disk (360 KB). The following files are included as 
part of the OpenNET PC Link:
•  A specially configured version of iNA 960 trans

port layer software, called UBCODE.MEM, which 
operates on the network controller board.

•  A DOS interface driver, called XPORT.EXE, 
which enables DOS programs to access the net
work controller board.

•  The Microsoft Networks (MS-NET) networking 
software, release 1.0, which enables users to 
connect with and access remote file servers on 
the OpenNET network system.

4-12



OpenNETinM

PRINTER

NOS ll/NRM
OpenNET™ UPGRADE KIT

10Mbps ETHERNET
——'■'I-----

OpenNET™-

280164-2

Figure 1. The OpenNETTM pc Link Environment

4-13



OpenNETinter

NETWORK
MANAGEMENT

iNA 960 
(ISO 8073)

ETHERNET/IEEE 802 
SPECIFICATIONS

APPLICATION (7)

PRESENTATION (6)

SESSION (5)

TRANSPORT (4)

NETWORK (3)

DATA LINK (2)

PHYSICAL (D

MS-NET NETWORKING 
SOFTWARE

OpenNET™ PC LINK 
SOFTWARE

NETWORK
CONTROLLER BOARD

TRANSCEIVER CABLE

OPTIONAL
INTELLINK™ MODULE, 

TRANSCEIVER, 
AND CABLES

Figure 2. ISO/OSI OpenNET™ pc Link Implementation

PC SYSTEM REQUIREMENTS
For the PC system to function as a workstation on 
the OpenNET network, it must contain at least 192 
KB of memory. A 32 KB memory window is shared 
between the PC system and the network controller 
board. The starting address of this window must be 
placed in an area of memory that does not conflict 
with the PC system’s internal memory address 
space. The network controller board is jumpered at 
the factory to reflect a setting which is compatible 
with the PC system and most of the expansion 
boards available for use with the PC system.

In order for the network controller board and the 
OpenNET software to function properly, the PC sys
tem must use the DOS (MS-DOS or PC-DOS) oper
ating system, version 3.1 or later.

FUNCTIONAL DESCRIPTION
The OpenNET PC Link enables a PC system to be 
configured as a consumer workstation in the Open
NET network environment. This enables a PC sys
tem to access and share files and remote printers on 
a remote file server. After establishing a connection 
with a remote server, the user can access different 
directories by connecting drive letters at the PC sys
tem to the desired directories. ' '

Creating a PC System Consumer 
Workstation
The PC system is easily configured as a consumer 
workstation on the OpenNET network. The following 
steps summarize how to configure the PC system for 
use as a workstation:
•  Install the OpenNET PC Link network controller 

board in the PC system and connect the PC sys- 
tern to an Ethernet transceiver or IntellinkTM 
module.

•  Configure the OpenNET PC Link software to re
flect the name and network address assigned to 
the PC system and each remote server system 
that the PC system will access.

•  Define the PC system user as a valid user of the 
remote server system.

To connect with and access remote resources over 
the OpenNET network, perform the following steps:
•  Invoke the PC system’s consumer networking 

software.
•  Execute a connect-to-server command.
•  Execute standard DOS commands.

The PC system user can now access remote re
sources (files, directories, or printers) at remote 
servers on the network.

4-14



OpenNET

The user has the option of automatically connecting 
to a remote server each time the DOS operating sys
tem is booted. This is done by placing networking 
commands in a DOS AUTOEXEC.BAT file.

Remote Server Access
The PC user gains access to a remote server by 
connecting an unused drive letter at the PC system 
to a remote home directory at the server. The server 
validates the PC system user by comparing the user 
name offered in the connect-to-server command 
with the server’s user definition file. If the name is 
valid, the user is logged on to the server, and can 
access any file within the home directory. Multiple 
subdirectories may be created within the home di
rectory. The user is restricted from accessing direc
tories or files located above the user’s home directo
ry.

Transparent Access to Multiple 
Directories
A PC system user may access multiple directories at 
a file server. This is done by defining multiple users 
(giving users access to different directories) at the 
server. After establishing a connection to the server, 
the user can access different directories by connect
ing drive devices at the PC system to the desired 
directories.

Data and resource sharing are implemented via 
transparent remote file access. This enables the 
user to work with remote data files and resources 
residing at server systems on the network as if they 
were resident on the PC system. Users of a remote 
server may be given access to the same home di
rectory, enabling multiple users to access and share

remote data files. The access rights of remote data 
files can be changed to enable all or some of the 
users to read, write, or delete files in that directory.

Using DOS Commands Across the 
OpenNET Network
Once the PC system has been connected to a re
mote server on the network, almost any DOS com
mand can be used with remote files and directories. 
The exceptions are commands that manage physi
cal devices (e.g., FORMAT). The MS-NET software 
reports an error message if an invalid DOS com
mand is sent across the network. Using DOS com
mands, the user can manipulate drives, files, and 
directories as follows:
•  Look at and list remote directories and files.
• Copy files back and forth between a PC system 

and a remote server.
• Redirect print requests to a remote printer.
• Set and reset the read-only attribute of remote 

directories and files.
• Map drive assignments to remote directories.
•  Set the path to remote directories and files.

Shared Printer Access
The PC system can be linked to a remote printer that 
is connected to a server on the OpenNET network. 
This enables the user to take advantage of the re
mote printer services, thus freeing the user from 
having to install a printer at the PC system.

A PC system user can print local or remote data files 
by first connecting the PC system’s logical printer 
device to the remote server’s printer spool. Then, 
the MS-NET networking software command NET 
PRINT is used to print the file on the remote printer 
device.

Table 1. MS-NET Networking Commands
Command Description

APPEND 
NET CONTINUE 
NET HELP 
NET NAME 
NET PAUSE 
NET PRINT
NET START REDIRECTOR 
NET USE

Locates a file which is outside the current directory.
Restarts the disk redirector or print redirector programs.
Displays a help file with information about MS-NET commands. 
Displays the name assigned to your PC system.
Temporarily halts the disk redirector and print redirector programs. 
Prints a file on a remote printer.
Invokes the OpenNET PC Link consumer networking software. 
Connects a device at the PC system to a remote server or printer.

4-15



OpenNETinteT
Microsoft Networks Software
The Microsoft Networks (MS^NET) networking soft
ware is included as part of the OpenNET PC Link 
software. The MS-NET software manages the trans
fer of information between the PC system and a re
mote server. Once a connection is made between 
the PC system and a remote server or printer, the 
user uses the MS-NET software (in conjunction with 
DOS commands) to access and manipulate remote 
files or printers. Table 1 presents a list of MS-NET 
commands and a description of each command.

The MS-NET networking software displays a mes
sage each time a command is successfully complet
ed. If an error is made, the software displays an error 
message listing the probable cause of the error and 
suggestions for correcting it. On-line help files en
able the user to quickly reference MS-NET com
mands and obtain the correct syntax for entering 
commands.

OpenNET PC LINK SPECIFICATIONS 

Host Requirements
IBM PC AT or PC XT computer system
— 192 KB of system memory
— DOS (MOS-DOS or PC-DOS) operating system, 

version 3.1 or later

Physical Characteristics

NETWORK CONTROLLER BOARD

Width: 13.315 in. (33.82 cm)
Height: 4.15 in. (10.54 cm)
Weight: 35 oz. (0.99 kg)

SOFTWARE

5% inch double-density disk (360 KB)

POWER REQUIREMENTS

+  5V at 2.7 Amps 
+  12V at 0.5 Amps

Environmental Characteristics
Operating Temperature: 0° to 55°C (32° to 

131°F)

Operating Humidity: Maximum of 90% relative 
humidity, non-condensing

Convection Cooling

Documentation
166664 OpenNETTM p c  Link User’s Guide

Optional Equipment
The following items can be ordered for use with the 
OpenNET PC Link:
PCLNK20F Transceiver cable, 20 ft (6.1m) 
PCLNK164F Transceiver cable, 164 ft (50 m) 
DCM911-1 Intellink module 
iMDX3Q15F Transceiver

ORDERING INFORMATION
PCLNK OpenNET PC Link: Consists of a net

work controller board, a PC XT card 
support, software, and a user’s guide

4-16



i n t e T
NDS-II/VAX* LINK NETWORKING SOFTWARE

■ Authenticates User File Access 
Privileges for All Network Resource 
Manager (NRM) File Operations

■ Requires a Digital Equipment 
Corporation DEUNA or DEQNA 
Communication Board for Operation 
(Not Supplied)

■  Co-Exists with DECNET on the Same 
DEUNA or DEQNA Board

■ Supports Multiple VAXs and Network 
Resource Managers (NRMs) in a Single 
Network

NDS-II/VAX Link is an Ethernet-based communication link between Intel’s Network Resource Manager (NRM) 
and a Digital Equipment Corporation (DEC*) VAX and MicroVAX II minicomputer. The NDS-II/VAX Link en
ables users to transfer files to/from the Series ll/lll/IV , Model 800, and the high-performance 286/310 based 
Compilengine. VAX users also have access to systems connected on the OpenNET network via the NRM. All 
data that is stored at the NRM is visible to, and can be accessed by, VAX users.

A major advantage of the NDS-II/VAX Link is its ability to optimize computing resources on the network via 
Distributed Job Control (DJC). DJC allows VAX users to queue jobs for remote execution upon the NRM. 
Similarly, NRM users can send jobs for remote execution upon the VAX. For example, CPU intensive jobs, 
such as compiles, can be sent from the VAX to idle Intel workstations for execution, saving valuable computa
tional power for other activities. Or engineers using Intel development workstations can send special jobs to 
the VAX.

■ Links VAX/VMS* to both NDS-II and 
OpenNETTM Development 
Environments

■ Transfers Data via High-Speed 
Standard Ethernet/IEEE 802.3

■ Enables File Transfer Between the NRM 
and VAX or MicroVAX II*

■ Offers VAX Users Access to All NRM 
File Services

■ Optimizes Computing Resources with 
Distributed Job Control

231299-2
Figure 1. NDS-II/VAX Link Enables High Speed Ethernet Data Transfers 
between the NDS-II, OpenNETTM and VAX Development Environments

NOTE:
All connections are on the same Ethernet cable.

*DEC, VAX, MicroVAX II and MicroVMS are trademarks of Digital Equipment Corporation.

4-17
August 1986 

Order Number: 231299-003



NDS-II/VAX* LINK

NDS-II/VAX Link supports numerous commands 
that are initiated at the VAX. These commands are 
similar to Digital Command Language (DCL) com
mands and execute at the DCL command level. Us
ers can obtain information on all commands by using 
the standard VMS* help facility. Commands cover 
general link operations (NVOPEN, NVCLOSE, 
NVLOGON, NVBYE, NVMESSAGE), distributed file 
system services (NVCOPY, NVDIRECTORY, 
NVCREATE, NVRENAME, NVDELETE, NVSET) 
and Distributed Job Control functions (NVCREATE/ 
QUEUE; NVCREATE/IMPORT, NVEXPORT, 
NVCANCEL, NVSTATUS). Summaries of the more 
important commands follow below:

General Link Commands:
NVOPEN allows a VAX user with OPERATOR privj- 
lege to startup the link. NVCLOSE allows a VAX user 
to gracefully shutdown the link.

NVLOGON gives a VAX user access to the NDS-II 
files on a given NRM. The user must provide an 
NDS-II username and password. NVBYE logs a user 
off from a given NRM.

Distributed File System Commands:
NVCOPY copies a single file or a group of files from 
the VAX to the NRM or vice versa. The command 
accepts wildcard filename specifications and sup
ports common sequential VAX/VMS file types.

NVDIR lists the directory entry of the NRM fiie(s) 
specified. The directory listing is in iNDX format. The 
user can request an expanded directory listing con
sisting of the filename, owner name, length, type, 
and owner and world access rights.

NVDELETE deletes one or more files or directories 
from the NRM file system. The invoker must have 
DELETE permission on each file or directory speci
fied. A directory must be empty before it is deleted.

NVCREATE creates a new directory in the NRM file 
system. The invoker must have write access to the 
parent directory where the new directory is being 
created.

NVSET displays and/or changes the protection 
mask for files in the NRM file system. The user must 
have the appropriate access rights to the files in 
question when using the NVSET command.

Distributed Job Control Commands:
NVCREATE/QUEUE creates NRM queues. Queues 
must be created before they are used by either 
NVCREATE/IMPORT or NVEXPORT.

NVCREATE/IMPORT creates an import station on 
the VAX that serves the specified existing NRM 
queue. This is a privileged command that can only 
be executed by users having OPERATOR privilege.

NVEXPORT queues a job for execution in the NRM 
queue specified in the command parameters. The 
exported job will be executed by an import station 
serving the specified queue.

NVSTATUS lists NRM queues, the number of jobs 
waiting in the queues, and the number of import sta
tions serving the queues. By specifying the /FULL 
qualifier the user can display detailed information on 
each job in the queue(s).

NDS-II/VAX Link supports up to 16 users on the link 
at a given time. With multiple users the link is operat
ed in time-sharing fashion thus, giving each user 
the appearance of a dedicated connection to the 
NDS-II.

NDS-II/VAX Link also supports multiple VAXs and 
multiple NRMs in a single network. Users on sepa
rate VAXs can access the same NRM simultaneous
ly, and users on the same VAX can access different 
NRMs. Multiple NRM support is only supported un
der VAX/VMS* version 4.0 (and later versions). 
Separate NDS-II/VAX Link software licenses must 
be purchased for each VAX connected in a multiple 
VAX/NRM environment.

NDS-II/VAX Link requires a DEC DEUNA-AA or 
DEQNA communication assembly that must be pur
chased from and installed by DEC. In addition, a 
standard external Ethernet transceiver cable is re
quired to connect the DEUNA or DEQNA assembly 
to the Intel NDS-II IntellinkTMModule.

4-18



NDS-ll/VAX* LINK

SPECIFICATIONS 

Operating Environment:

REQUIRED HARDWARE:

NDS-II NRM or OpenNET NRM

DEC* VAX 11/730, 11/750, 11/780, 11/782, or 
11/785, or Micro VAX II Minicomputer

DEC DEUNA-AA or DEQNA Assembly (from DEC)

Ethernet Transceiver Cable (Intel iMDX-457 or 
equivalent)

REQUIRED SOFTWARE:

iNDX Network Operating Software, Version 3.0 or 
later

VAX/VMS* or MicroVMS* Operating Software, Ver
sion 4.2 or later

Documentation:
NDS-ll/VAX Link User’s Guide (Order Number 
122301-002)

Software Support:
This product includes a 90-day initial support con
sisting of subscription services and telephone hot
line support. Additional software support services 
are available separately.

Future Update Kits are not covered under warranty 
and must be purchased separately.

ORDERING INFORMATION
Part Number Description
iMDX392 NDS-ll/VAX* Link

9 track magnetic tape media
iMDX 393F NDS-ll/MicroVAX II Link 

RX 50 5%" Floppy Media
iMDX 393T NDS-II/MicroVAX II Link

TK 50 Cartridge-tape Media

4-19



i n y
iMDX 555

NDS-II NRM OpenNET™ UPGRADE
■ Provides Series ll/lll/lV , Model 800 and 

VAX*/VMS Development Customers an 
Upgrade Path into the OpenNET™ 
Networking Environment

■ NDS-II NRM now Becomes a File Server 
for OpenNET Users Including XENIX, 
iRMX™ 86, and PC-DOS Systems

■ Supports Large Number of OpenNET 
Workstations up to the Physical 
Connection Limit for Ethernet (100 
Direct Connections via Transceivers or 
over 800 via Intellink™) Boxes with the 
Ability for 30 to Simultaneously Access 
the NRM

■ Transparent File Access to the NDS-II 
NRM from XENIX*, iRMX 86, and 
PC-DOS Systems

■ Additional OpenNET Workstations Can 
Be Added without Reconfiguring the 
Network

■ Authenticates OpenNET User File 
Access Privileges for all NRM 
Resources

■ Shared Resources, e.g., Spooled Line 
Printer, up to 336 MB Winchester 
Central Disk Storage, Tape Archive

■ Uses ISO 8073 Transport and 
Ethernet/IEEE 802.3 Standard 
Communication Protocols

The NDS-II NRM OpenNET Upgrade contains software and hardware that allow the Network Resource Man
ager (NRM) to function as a file server in an OpenNET network environment. The Intellec® Series ll/ l ll/ IV  and 
Model 800 development systems, and Digital Equipment Corporation’s VAX minicomputers can now share 
files residing on the NRM with XENIX, iRMX 86, and PC-DOS systems. XENIX, iRMX 86, and DOS system 
users can also take advantage of the NRM resources such as the spooled line printer, tape archive, and fast 
disks.

NDS-II PROTOCOL OpenNET™ PROTOCOL

280141-1

NDS-II NRM Links Series ll/lll/IV  and VAX/VMS to iRMXTM 86, XENIX, and DOS Systems Via OpenNET

*VAX is a registered trademark of Digital Equipment Corporation
*XENIX is a trademark of Microsoft
*IBM is a trademark of International Business Machines

4-20
October 1986 

Order Number: 280141-002



iMDX 555inteT

FUNCTIONAL DESCRIPTION
The NDS-II NRM OpenNET Upgrade provides the 
capability for existing NDS-II users to expand into 
the OpenNET networking world. OpenNET network 
file access is based on protocols developed jointly 
by Intel, Microsoft, and IBM* to interconnect sys
tems running different operating systems. This in
cludes systems running XENIX, iRMX 86, PC-DOS, 
VAX/VMS, and now iNDX (on the NRM) operating 
systems. Alternatively, new NDS-II owners can inte
grate development tools running on XENIX, iRMX 
86, and PC-DOS workstations, with the NRM file 
server.

These capabilities are achieved by combining the 
iNDX OpenNET software and OpenNET transport 
engine—the iSXMTM 552 board. The iSXM 552 
board implements the industry standards ISO 8073 
transport protocol (iNA 961) and Ethernet/IEEE 
802.3 physical data link technology.

The NDS-II and OpenNET networks utilize separate 
communication boards (i.e., iSBC® 550 and iSXM 
552 boards, respectively); therefore, there is no con
tention for communication resources.

Some limitations (e.g., formatting remote disks from 
a local workstation) do apply to iNDX OpenNET. See 
iNDX OpenNET User’s guide for specific command 
support.

Number of Users Supported on the 
OpenNET™ Network
Each time an OpenNET workstation connects or 
“ logs on” to the NRM (e.g., for file or printer ac
cess), a virtual circuit is created between the work
station and the NRM. iNDX OpenNET supports up to 
30 simultaneous NRM users (virtual circuits) on the 
OpenNET side (one virtual circuit per OpenNET con
sumer node). When that limit is reached, no new 
circuit will be established until one of the existing 
circuits is closed. This means that although the num
ber of physical OpenNET workstations on the net
work is potentially the limit of Ethernet connections 
(e.g., 100 via transceivers or over 800 via cascaded 
Intellink boxes), only 30 can access the NRM at any 
given time.

Because of this limit, iNDX OpenNET implements a 
least-recently-used algorithm to maximize virtual cir
cuit availability. An idle OpenNET consumer (no out
standing file requests or log-ons) is automatically 
disconnected when the 31st network connection re
quest is made. Alternatively, a workstation that is 
turned off without disconnecting from the NRM is 
automatically disconnected approximately 10 min
utes after it is turned off.

Under normal file usage, the number of users on the 
OpenNET side should not affect the number of us
ers on the NDS-II side ( i.e., Series ll/lll/IV , 
VAX/VMS etc.)

NRM User Creation/File Access
The NDS-II NRM OpenNET Upgrade allows Open
NET workstations to transparently access files on 
the NRM without physically copying those files onto 
local disk. Files to be shared between NDS-II work
stations (e.g., the Model 800, Series ll/lll, Series IV) 
and OpenNET workstations (e.g., PC-DOS, XENIX, 
iRMX) reside on the NRM.

Every OpenNET user is created on the NRM con
sole with two simple commands:
• USERDEF DEFINE gives each user a unique log

on ID and home directory (it is mandatory to 
specify a home directory)

•  CHPASS creates the user password.

These two commands allow the NRM Administrator 
(i.e., SUPERUSER) to control access by other 
OpenNET users to files as well as other resources 
(e.g., print spooler) residing on the NRM. Each time 
an OpenNET user attempts to access an NRM re
source, an automatic log-on process occurs. Those 
users who do not have the proper log-on ID and 
password will be denied access to the requested 
NRM resource.

For file sharing at the NRM, users can be created 
with the same home directory. Then, the access 
rights of the home directory can be changed to allow 
all the users to read, add or delete files in that direc
tory. The iNDX hierarchical protected file system 
supports owner and world access rights to files 
(READ, WRITE and DELETE) and directories (DIS
PLAY, ADD-ENTRY, and DELETE). These access 
rights may be set by the owner of the file/directory, 
or by the SUPERUSER (on the NRM). The SUPER
USER on the NRM terminal has access rights to all 
resources at the NRM as well as the authority to 
create and delete users.

iNDX supports concurrent read access to files and 
single write access to files (i.e., while a file is opened 
for writing by a user, no other user can read from or 
write to that file).

OpenNETTM Consumers
To become a valid network user under OpenNET, 
the user configures his/her OpenNET workstation

4-21



iMDX 555inter
as an NRM OpenNET consumer. This involves per
forming three simple steps at the workstation:
•  Adding the NRM’s communication address in the 

workstation’s session data base
•  Activating the workstation’s consumer network 

software
•  Executing a connect-to-NRM command

This establishes connection between the worksta
tion and the home directory specified during user 
creation at the NRM (with the USERDEF DEFINE 
command).

A user may access different directories residing on 
the NRM. This can be done by defining multiple 
NRM users (giving access to different directories) at 
the NRM console. After establishing a connection 
with the NRM, a user at that workstation can access 
different directories with different log-ons.

NRM Print Spooler Access
An OpenNET user can print files on the NRM by first 
connecting the workstation’s printer logical device to 
the NRM print spooler (with the NET USE com
mand). Then, local and/or network files are printed 
by using the workstation’s local network print com
mand.

For example, a DOS user would enter the NET 
PRINT command from the DOS workstation. A 
XENIX user, on the other hand, would simply use the 
RPRINT command with the specified NRM destina
tion to print a file at the NRM. Alternatively, the 
XENIX user can use the copy command (CP) to 
copy local print files to the NRM print spooler (:SP:).

Once a file has been sent to the NRM print spooler, 
that print job can be cancelled with the DELETE 
command at the NRM terminal by the network ad
ministrator.

The OpenNET™ Communications 
Engine (iSXM 552 Board)
The iSXM 552 board integrates a high performance 
processor, the 80186, and a powerful Local Area 
Network (LAN) coprocessor, the 82586, on a single 
MULTIBUS® board. With the iNA 961 transport soft
ware, this solution set provides the implementation 
of the first 4 layers of the ISO OSI (7-layer) network 
communications model.

This Intel LAN solution offers reliability and easy ex- 
pandibility. iNA 961 provides internal detection and 
correction of communication mediums and worksta
tions so that a malfunction at a given point will not 
cause total network failure. Moreover, stations can

be added or deleted from an existing network with
out reinitialization or reconfiguration of all other 
workstations.

OpenNET™ and Interconnection 
Hardware
Although the OpenNET connection requires a com
munications board (iSXM 552) different from NDS-II 
(DFS/ISIS) communications boards (iSBC 550 
board), all existing Intellink™ boxes, transceivers, 
and cables remain the same. Furthermore, the same 
(one) Intellink can be used to connect Series 
ll/lll/IV s, VAXes, and OpenNET workstations, as 
long as cables from both the iSBC 550 and iSBC 
552 boards are connected to that Intellink box. The 
Series ll/ l ll/ IV ’s, VAXes will only respond to the 
messages from the iSBC 550 board while the Open
NET workstations will only understand the mes
sages from the iSBC 552 board. This helps the user 
maximize usage of current interconnect hardware.

SPECIFICATIONS

Hardware Supplied
iSXM 552A OpenNET communication board 
iSBC028A 128K RAM board 
Internal cable assembly

Software Supplied
iNDX OpenNET software 
iNDX Operation System

Operating Environment
•  Hardware required:

NDS-II NRM with 2 unoccupied MULTIBUS board
slots

•  OpenNET workstation connection requirements
Personal Computer:
PCLNK OpenNET PC Link hardware

and software kit to connect the 
PC XT, PC AT, and compatible 
systems to the NRM via the 
OpenNET network; requires 
DOS 3.1 or higher

XENIX System:
XNXNETNRIKIT OpenNET-XenixNET, iNA 961, 

iSXM 552 and Xenix-NET 
Pass-through Kit

4-22



iMDX 555inteT
RMX System:
RMXNETKITWRI iRMX Networking Software 

for a 286/310 system running 
the iRMX 86 R6.0 Operating 
System to connect to the 
NRM via the OpenNET net
work, SXM 552S.

VAX or MicroVAX running VMS:
—VAX OpenNET server s/w  and controller board

• Documentation:

NDS-II OpenNET User’s Guide 
(order no. 138809-001)

ORDERING INFORMATION
Part Number Description
iMDX 555 NDS-II NRM OpenNET Upgrade

Package

4-23



i n U r
iMDX-581

ISIS CLUSTER BOARD PACKAGES
■ Converts Spare Slots In Series II, III, IV, 

or Model 800 Workstations into 
Additional Workstations

■ Up to Seven Additional NDS-II 
Workstations May Reside in One 
Development System Host

■ Utilizes the Powerful ISIS-III(C) 
Operating System

■ Supports 16-bit Development with 
Local ASM-86 and PL/M-86, and Via 
NDS-II Distributed Job Control

■ Supports 8-bit Macroassemblers and 
High-Level Languages

■ Supports all 8-bit ISIS-Based Software 
Development Tools Including the 
AEDIT-80, Text Editor, Program 
Management Tools, and NDS-II 
Electronic Mail

■  Provides Execution Environment for 
8085-Based Application Programs

■ Compatible with a Variety of 9.6K or 
19.2K Baud Terminals

The ISIS Cluster Board Package is an NDS-II upgrade that cost effectively supports incremental software 
workstations on the network. Each Cluster board provides an 8085 CPU, 4K of ROM and 64K of RAM, and 
must reside in a Series II, Series III, Series IV, or Model 800 development system host. When attached to a 
user-supplied terminal, an ISIS Cluster workstation will boot onto the NDS-II and provide an ISIS environment 
which allows users to log on to the network and run Intellect-supported 8-bit software, as well as “ export”  
jobs to other network resources.

231408-1

Figure 1. Example of an NDS-II Configuration

4-24
December 1985 

Order Number: 231408-001



iMDX-581intef
FUNCTIONAL DESCRIPTION
Summary: The ISIS Cluster board is a single-board 
computer centered around an 8085AH-2 CPU run
ning at 4.0 MHz. 64K bytes of dual-ported RAM are 
provided on-board, along with 4K of ROM prepro
grammed with a bootstrap program and self-test 
diagnostics.

The ISIS Cluster MULTIBUS® interface provides 
data and address interface latches. The serial I/O 
interface provides a full duplex RS232C serial data 
communications channel that can be programmed 
to handle serial data transmission at 19.2K or 9.6K 
baud. Software reset may be accomplished using 
the BREAK key on the terminal.

A block diagram of the ISIS Cluster board is shown 
in Figure 2.

Central Processing Unit
Intel’s powerful 8-bit 8085AH-2 CPU running at 
4.0 MHz is the central processor for the Cluster 
board. It is fully software compatible with all 8-bit 
ISIS-based languages and utilities which run on the 
Intellec Model 800, Series II/80, Series II/85, or Se
ries HE.

System ROM
4K bytes of non-volatile read only memory are in
cluded on the Cluster board using Intel’s 2732A 
EPROM. Preprogrammed with the ISIS Cluster Boot 
program, the system ROM provides boot-up and di
agnostic capabilities, and a generalized I/O  system.

The Boot program communicates with the operator 
via an interactive console. Upon reset of the Cluster 
system, execution is handled by the bootstrap 
PROMs which overlay 4K bytes of system RAM, ini
tialize Cluster board devices, run self-test diagnostic, 
and perform a communication handshake before 
prompting the user.

RAM
The Cluster board uses eight 2164 RAMs and a dual 
port RAM controller to provide 64K of dual-ported 
dynamic read/write memory. Slave RAM decode 
logic allows extended MULTIBUS addressing with a 
1 Megabyte address space, so that RAM accesses 
may occur from either the Cluster board or from the 
network communication boards interacting via the 
MULTIBUS interface. Since on-board RAM access
es do not require MULTIBUS accesses, the bus is 
available for other concurrent operations. Dynamic 
RAM refresh is accomplished automatically by the 
Cluster board.

MULTIBUS-

231408-2

Figure 2. Block Diagram of the ISIS Cluster Board

4-25



iMDX-581

Serial I/O
A programmable communications interface using 
the Intel 8251A USART (Universal Synchronous/ 
Asynchronous Receiver/Transmitter) is on the Clus
ter board, and provides a full duplex RS232C serial 
communications channel. The transmit and receive 
lines are link exchangeable to enable a data set or 
data terminal to be used with the Cluster board. The 
board is pre-set for 9600 baud, but may be jumpered 
for 19.2K baud.

cage slots. A Model 800 will support a maximum of 2 
ISIS Cluster workstations, and Series IV workstation 
will support a maximum of 4 ISIS Cluster worksta
tions. Each ISIS Cluster workstation counts as one 
additional network workstation, so the maximum 
number of Cluster workstations on a network is con
strained only by the total number of users supported 
by the NDS-II Network Resource Manager. NDS-II 
iNDX Release 2.8 or later will support ISIS Cluster 
workstations in any Intellec development system 
host, including the Series IV.

Programmable Timers Programming Capability
The interval timer capability is implemented with an 
Intel 8254 Programmable Interval Timer. The 8254 
includes three 16-bit BCD or binary counters. The 
first two counters are not used. The output from the 
third counter is applied to the serial I/O  interface 
and provides the baud rate frequency for serial com
munications.

Interrupt Controller
The Cluster board also includes an Intel 8295A In
terrupt Controller. It is pre-configured with Interrupt 1 
triggered by the BREAK key on the user-supplied 
terminal.

MULTIBUS® Interface
The Cluster board is a complete computer on a sin
gle board, capable of supporting a variety of 8-bit 
development tools. For applications requiring addi
tional processing capacity, the Cluster board pro
vides full MULTIBUS arbitration control logic. The 
bus arbitration logic operates synchronously with a 
MULTIBUS clock. All memory references made by 
the CPU refer to the on-board RAM. The Cluster 
board cannot access devices local to the host devel
opment system, but all of the shared network re
sources are accessible.

The Cluster board communicates with the Network 
Resource Manager via the MULTIBUS interface and 
the network communication board set in the host 
development system.

System Configuration
Each ISIS Cluster board requires one master slot in 
an Intellec cardcage. The host development system 
may be a Model 800, Series IV, Series II or ME, or 
Series III or IIIE with an optional expansion chassis. 
A Series II or HE with an expansion chassis will sup
port a maximum of seven ISIS Cluster workstations, 
since the Integrated Processor Card and Network 
Communication boards occupy three of the ten card-

The Cluster workstation’s ISIS environment supports 
all 8-bit Intellec-supported ISIS-based software, in
cluding the programmer-oriented AEDIT-80 text edi
tor, PMT-80 Program Management Tools, NDS-II 
Electronic Mail, 8-bit macroassemblers, and PL/M, 
FORTRAN, PASCAL, and BASIC high-level 8-bit lan
guages. 16-bit development is supported by the 
ASM86 cross assembler and the PL/M-86 cross 
compiler, or by “ exporting” any 16-bit job to a 16-bit 
workstation for execution.

SPECIFICATIONS
CPU: 4.0 MHz 8085AH-2 
MEMORY:

On-board RAM, 64K bytes, dual-ported 
On-board ROM, 4K bytes preprogrammed with 
the ISIS Cluster Bootstrap Program

Interfaces
SERIAL I/O:

BUS:
TIMER:

INTERRUPTS:

RS232C compatible, program
mable interface
MULTIBUS compatible, TTL level
3 programmable 16-bit BCD or bi
nary counters, 1 used as baud rate 
timer
1 interrupt level available to user 
via the BREAK key on the terminal

Physical Characteristics
Two-sided printed circuit board fits into Intellec card- 
cage:
Length: 12 inches
Width: 6.75 inches
Depth: 0.062 inches
Internal flat ribbon cable connects ISIS Cluster 
board edge connector to the development system 
rear panel.
External 10-foot RS232C compatible cable connects 
the development system rear panel to a user-sup
plied terminal.

4-26



iMDX-581

Electrical Characteristics
DC Power Requirements (from Mainframe)
Vcc =  +5V, 4.5 Amps 
VDD =  +  12V, 25 mA 
VAA =  -12V , 23 mA

Environmental Specifications
Operating Temperature: 0°C to 55°C 
Humidity: up to 90%, without condensation

Documentation
iMDX-581 Installation, Operation, and Service Manu
a l (#122293)
NDS-ii ISIS-III(C) User’s Guide Supplement 
(#122098)

Equipment Required
Recommended Terminals* (one per ISIS Cluster 
Board)

The following terminals have been tested and found 
to be interface compatible with the ISIS Cluster 
board; configuration files are provided for these ter
minals. Customers are advised to select terminals to 
meet their own environmental specifications.

Hazeltine, Model 1510 
Televideo, Model 910 + , 925, 950 
Lear Seigler, Model ADM 3A 
Adds Viewpoint, Model 3A+
Qume, Model 102
Zentec, Model ZMS-35, Cobra

*AII of the recommended terminals run at 9.6K or 
19.2K baud.
CAUTION: Other RS232C-compatible devices may 
not meet Intel environmental specifications, and 
could degrade overall system performance.

Host Development System (requires one open 
6.75 x 12 in. master slot in system cardcage per 
ISIS Cluster board):

Series II/85 or Series ME*
Series III or Series IIIE*
Model 800**
Series IV
*with optional Expansion Chassis 
**supports maximum of 2 ISIS Cluster Boards

Workstation Upgrade Kit (one per host system):
iMDX-455 for Series II, III, or Model 800 
iMDX-456 for Series IV

NDS-II Network Resource Manager with Hard 
Disk Mass Storage

Software Required
For Series II, III, or Model 800 Host:

NDS-II iNDX Operating System, Release 2.0 or 
later
ISIS-III(N)/III(C) Operating System, Version 2.0 or 
later*

For all Development System Hosts,
Including Series IV:

NDS-II iNDX Operating System, Release 2.8 or 
later
Series IV iNDX Workstation Operating System, 
Release 2.8 or later**
ISIS-III(N), version 2.2 or later**
ISIS-III(C), version 2.2 or later**
included with NDS-II Release 2.0 
* included with NDS-II Release 2.8

ORDERING INFORMATION 

Part Number Description
iMDX-581 ISIS Cluster Board Package for

Series II, Series III, Series IV, or 
Model 800—includes processor 
board, cables, and documen
tation. Must be installed on 
NDS-II in a Model 800, Series II, 
Series III, or Series IV worksta
tion and connected to a user- 
supplied terminal.

4-27



i n y
INTEL ASYNCHRONOUS COMMUNICATIONS LINK

■ Communications Software for VAX* 
Host Computer and Intel 
Microcomputer Development Systems

■ Compatible with VAX/VMS* and UNIX! 
Operating Systems

■ Supports Intel’s Model 800, Intellec® 
Series II, Series III, Series IV and 
iPDSTM Microcomputer Development 
Systems

■ Supports NDS-II Workstations
■ Allows Development System Console 

to Function as a Host Terminal
■ Operates through Direct Cable 

Connection or over Telephone Lines
■ Software Selectable Transmission Rate 

from 300 to 9600 Baud

Intel’s Asynchronous Communications Link (ACL) enables Intel microcomputer development systems to com
municate with a Digital Equipment Corporation VAX family computer. The link supports Intel Model 800, 
Intellec Series II, Series III, Series IV or iPDS development systems. Programmers can use the editing and file 
management tools of the host computer and then download to the Intel microcomputer development system 
for debugging and execution. Programmers can use their microcomputer development system as a host 
terminal and control the host directly without changing terminals.

NDS-II Example

210903-1

NOTE:
NDS-II VAX Link is an Ethernet Link between V A X W M S  and Intel’s Network Resource Manager. This product is also 
available from Intel.

*VAX and VAX/VM S are trademarks of Digital Equipment Corporation. 
tU N IX  is a trademark of Bell Laboratories. 
ttV A D IC  is a trademark of Racal-Vadic Inc.

4-28
October 1986 

Order Number: 210903-003



INTEL ASYNCHRONOUS COMMUNICATIONS LINKinter

FUNCTIONAL DESCRIPTION
The Asynchronous Communications Link (ACL) con
sists of cooperating programs: one that runs on the 
VAX computer, and others that run on each micro
computer development system. The development 
system programs execute under the ISIS-II or ISIS- 
lll(N), ISIS-IV, ISIS-II(W), or ISIS-PDS operating sys
tem. They invoke the companion program on the 
VAX-11 /7XX, which runs under either the VAX/VMS 
or UNIX operating system.

The link provides three modes of communication: 
on-line transmission, single-line transmission,. and 
file transfer. In on-line mode, the development sys
tem functions as a host terminal, enabling the pro
grammer to develope programs using the host com
puter’s editing, compilation, and file-management 
tools directly from the development system’s con
sole. Later, switching to file transfer mode, text files 
and object code can be downloaded from the host 
to the development system for debugging and exe
cution. Alternatively, files can be sent back to the 
host for editing or storage. In single line mode, the 
programmer can send single-line commands to the 
host computer while remaining in the ISIS environ
ment.

The user can select transmission rates over the link 
from 300 to 9600 baud. The link transmits in encap
sulated blocks. The receiver program validates the 
transmission by checking record-number and check
sum information in each block’s header. In the event 
of a transmission error, the receiving program recog
nizes a bad block and requests the sender to re
transmit the correct block. The result is highly reli
able data communications. .

SOFTWARE PACKAGE
The Asynchronous Communications Link Package 
contains either a VAX/VMS or UNIX compatible 
magnetic tape, a single 8", double 8", Series-IV 
51/ 4", and PDS 51/4" diskette compatible with the 
Intellec development system, and the Asynchronous 
Communications Link User’s Guide containing in
stallation, configuration and operation information.

HARDWARE CONNECTION
The Link sends data over an RS232C cable. The 
communication line from the host computer con
nects directly to a development system port.

TELECOMMUNICATIONS USING THE 
LINK
The ACL is ideal for cross-host program develop
ment using a commercial timesharing service. This 
configuration requires RS232C compatible modems 
and a telecommunications line. Depending on the 
anticipated level of usage, wide-area telephone 
service (WATS), a leased line, or a data communica
tions network may be chosen to keep operating 
overhead low.

NDS-II ACCESS USING THE LINK
The ACL is ideal for interconnecting VAX host com
puters with NDS-II. This configuration requires that 
an NDS-II workstation be connected to the VAX host 
computer using the RS232C interface qnd to NDS-II 
using the Ethernet interface.

All three modes of communication operate identical
ly on NDS-II. In the on-line mode, the development 
workstation operates as a host terminal, and concur
rently, as an NDS-II workstation. It is an easy tran
sition between the VAX and ISIS operating system 
environments as LOGON/LOGOFF sequences are 
not required to re-enter environments.

In file transfer mode, text and object files can be 
transferred from the VAX directly to the Winchester 
Disk at the NRM without first copying the files to the 
workstation local floppy disk. Similarly, files residing 
on the NDS-II Network File System (the Winchester 
Disk at the NRM) can be transferred directly to the 
VAX without using local workstation storage.

Using the EXPORT/IMPORT mechanisms of NDS- 
II, a network workstation which is not directly con
nected to the VAX can cause files to be transferred 
between the VAX and NRM. For example, any NDS- 
II workstation can “ EXPORT” ACL commands to

4-29



INTEL ASYNCHRONOUS COMMUNICATIONS LINKinteT
another “ IMPOFTT’ing NDS-II workstation which is 
physically connected to a VAX. The “ IMPORTning 
workstation executes the ACL command file causing 
the desired action to occur.

VAX ACCESS USING THE LINK
Users who want multiple workstations concurrently 
operating as VAX terminals (ONLINE mode) must 
physically connect each workstation to the VAX. 
However, users who want multiple workstations to 
be able to upload/download files, for example, must 
only physically connect one workstation to the VAX. 
By using the EXPORT/IMPORT mechanism of 
NDS-II as described above, the user can have multi
ple workstations accessing the VAX using only one 
connection.

SPECIFICATIONS

Software
Asynchronous Communications Link development 
system programs

VAX/VMS or UNIX companion program

Media
Single- or double-density ISIS 8" and Series-IV, 
iPbS 5 % ''compatible diskette

600-ft. 1600 bpi magnetic tape, VAX/VMS or UNIX 
compatible

Data Transfer Speeds
All systems up to 9600 bps

Online Terminal Mode Speeds
Series II, Series III, Series IV — 2400 bps max PDS 
— 9600 bps max
Model 800 — equal or less than the Terminal speed

Manual
Asynchronous Communications Link User's Guide 
Order No. 172174-001

Required Host Configuration
VAX-11/7XX running VAX/VMS (Version 4.1 and 
later) or fourth Berkley distribution of UNIX 4.2

Required Intel Development System 
Configuration
Model 800, Series II, Series III, Series IV, or iPDS 
under ISIS

Required Connection
RS232C compatible—cable 3M-3349/25 or equiva
lent; 25-pin connector 3M-3482-1000 or equivalent

Recommended Modems for 
Telecommunications
300 baud—Bell 103 modem; VADIC tf 3455 modem 
or equivalent

1200 baud— Bell 202 modem; VADIC 3451 modem 
or equivalent

9600 baud—Bell 209A (full duplex, leased line) or 
equivalent

NOTE:
Since one of the two Model 800 ports uses a cur
rent loop interface, Model 800 users need a termi
nal or modem that is current loop compatible, or a 
current loop/RS232C converter.
The model 800 might require modification by a 
qualified hardware technician. Intel does not repair 
or maintain boards with these changes.

ORDERING INFORMATION

Product Name
Asynchronous Communications Link

Ordering Code $
iMDX 394 for VAX/VMS systems 

iMDS 395 for UNIX systems
t  See price book for proper suffixes for options and media selections.

4-30



NDS-ll/Series-IV/OpenNET™ Toolbox

■ XENIX Services for Any Workstation 
that can Access an OpenNETTM NRM

■ Access to NDS II DJC for OpenNETTM 
Workstations

■ Allow 8080 Based Intel Tools on 8086 
Family Systems

The NDS-ll/Series-IV/OpenNET Toolbox is a software only product that contains valuable collection of tools 
developed for the NDS-II, Series-IV and OpenNET user. These tools have been designed to make hybrid 
development system environments work together and to more fully automate the software developer’s task. 
Many tools are provided with source to allow the engineer to customize these products to their own environ
ment.

Note: However, this is not a supported product.

■ Multiple NRM Communication
■ Remote Series-IV from VAX* Terminal
■ Series-IV Menu Compiler
■ MS-DOS*/Series-IV Disk Read Utility

BOOTUP
SERVER
ID
SLEEP
REPORT
DBLIST

SERIES IV TOOLS 
TREE
MENU COMPILER
OS LIBRARIES
SLEEP
DIRT
LIST
CLOCK
CHECK

ISIS CLUSTER

MODEM ] — i— 1 M0DEM I  £ 7

231488-2
Example of the Many Possible Connections Available with NDS-ll/Series-IV/OpenNETTM Toolbox

* MS-DOS is a trademark of Microsoft Corporation 
*VAX is a trademark of Digital Equipment Corp.
CP/M ® is a registered trademark of Digital Research Inc.

4-31
May 1986 

Order Number: 231488-002



NDS-ll/SERIES-IV/OpenNETTM TOOLBOX

CONNECT
CONNECT allows software developers to use their 
VAX terminal as a virtual terminal for their Series-11 
or Series-IV work station. Software developers can 
now run PSCOPE, ICEtm and I2ICEtm emulators 
from their VAX terminal, eliminating the need to 
switch terminals when debugging a program. This 
serial communications based program runs at 9600 
baud for the Series-11 and 2400 baud for the Se
ries-IV. Complete support of the Series-IV menu line 
is available on the VAX terminal. CONNECT does 
not provide file transfer capability, this is provided for 
in either the VAX Link or ACL products. A separate 
serial cable, not supplied with Toolbox, is required 
for connecting the development system to the VAX. 
Source and generation are provided.

NRM to NRM Communications
The NRM to NRM communications package pro
vides file transfer and printer spooling from one 
NDS-II network to another via ethernet. Two new 
commands are provided, NNCOPY and NNDIR, for 
Series-IVs running iNDX version 2.5 or greater. 
These commands do not function on the MDS-800 
development system, ISIS Cluster, Series II, or Se
ries III; although an ISIS work station may use export 
to run NNCOPY or NNDIR remotely. Full file protec
tion is provided by this application. This product also 
requires that the NRM terminal run the slave pro
gram, NNL. The system administrator can prevent 
access to the NRM from remote systems by not exe
cuting NNL.

TREE

TREE is a program for the SIV or NRM that provides: 
ARCHIVE over the network, listing of a directory 
tree, searching a directory tree for a specified file, 
deletion of an entire directory tree, wildcard deletion 
of files from a directory tree, or displaying the total 
disk space used by a particular user or directory 
tree. Commands provide for OWNedby, MODIFIED- 
BEFORE or SINCE controls.

MENU COMPILER

Allows users of the Series IV or NRM to modify the 
command level menu to include their own com
mands or to remove commands not often used. 
Source for the current Series-IV menu line is provid
ed as well as the additional information needed to 
add Toolbox commands. Menu compiler input is pro
vided in the form of an LL1 parse tree which will 
require some knowledge of compiler technology to 
modify.

MSCOPY

MSCOPY is an iNDX utility that allows manipulation 
of an MS-DOS disk on a Series IV or NRM. Using 
this program, the Series-IV or NRM can read and 
write MS-DOS files. Source and generation are pro
vided.

NETWORK CP/M-80

Network CP/M is a package that allows a Series-ll 
or ISIS cluster to run CP/M®-80 and use the NDS-II 
as a remote file server. A separate license is re
quired for CP/M on each work station. This package 
is only an interface that allows to use the NDS-II as a 
file server, the CP/M operating system is not provid
ed. CP/M is available separately as Intel part num
ber SD01CPM80-B-SU. Source is provided for utili
ties only.

NETWORK CP/M UTILITIES
CP/M — loads Network CP/M onto the Series 

II or ISIS cluster.
MAKDSK — creates a blank Network CP/M disk 

image.
CDIR — gives directory of a Network CP/M 

disk image or CP/M-80 diskette in drive 
1 of a Series II.

ADDSYS — adds CP/M OS to disk image A: 
created using MAKDSK.

CCOPY —- allows an ISIS user access to CP/M
files.

CPMOMF — converts a program developed under 
ISIS to a CP/M executable program.

SUCPM — SUPERUSER facility for CP/M. 

BOOTUP

BOOTUP allows an iMDX-580/581 ISIS cluster 
board to be used in any SBC chassis instead of only 
a microcomputer development system. BOOTUP is 
a special monitor PROM which is installed on a stan
dard ISIS cluster board. This board is then installed 
into any SBC system chassis to provide a diskless 
work station. The cluster board accesses the NDS-II 
file system via an iSBC®550 communication control
ler also installed in the system chassis. Additional 
ISIS cluster boards may be installed in the same 
chassis to provide for more users instead of using a 
Series-ll, III, or IV. Up to eight clusters can be used 
in a single system chassis.

NOTE:
Only object files are provided, the customer must 
provide his own 2732A PROM. Object files are pro
vided for all formats of Intel PROM programmers.

4-32



NDS-ll/SERIES-IV/OpenNET™ TOOLBOX

SERVER

SERVER allows an ISIS Cluster to automatically log
on to the NDS-II network by supplying a username 
and password from PROM. ISIS will then execute 
the corresponding initialization file (:f9: ISIS.INI). A 
useful application of SERVER is to provide addition
al spooled printer capability to the network by exe
cuting PRINCE, another Toolbox application, in an 
infinite loop from the ISIS initialization file. Some 
source and generation are provided. All object files 
are supplied.

PRINCE

PRINCE is an ISIS based spooling program for use 
with a Series-ll, III, IV, or ISIS cluster board in either 
the stand-alone or networked environments. 
PRINCE provides support for both parallel and serial 
printers, including complete XON/XOFF or 
DTR/DSR printer ready protocols. PRINCE is most 
effective when used with an ISIS Cluster board and 
the SERVER PROM. The program features exten
sive logging capabilities. Source and generation are 
provided.

PRMSLO

PRMSLO is a PROM image for an ISIS Cluster that 
sets the default baud rate to 300 or 1200 baud. This 
enables the cluster board to be used with a modem. 
Object files only supplied.

UDXCOM.LIB

System library for iNDX specific UDI extensions. 
This library provides support for MULTIBUS® hard
ware and software interrupt calls, enable/disable in
terrupts, read directory expanded, and more. Object 
code and documentation are provided for this li
brary.

OSXCOM.LIB

System library for internal iNDX operating system 
extensions. This extensive internal system library 
provides many system level calls, such as create di- 
rectpry, enable/disable break, change access, 
change owner, change password, MIP communica
tion calls, and many more. Object code and docu
mentation are provided for this library.

BVOSX.LIB

This library provides operating system support for C 
language programs in the SMALL model. Normally 
the programmer would use OSXCOM.LIB and the 
COMPACT model of compilation. The functions in

BVOSX.LIB are the same for the corresponding calls 
in OSXCOM.LIB, although not all functions are pro
vided. Source and generation are provided.

BVCLIB

BVCLIB is a useful set of C language functions con
tained in the libraries BVCSLB.LIB and BVCLLB.LIB. 
BVCSLB.LIB is SMALL model, and BVCLLB.LIB is 
large model. Functions included are: parse, wmatch, 
strtok, valid, creat, open, read, write, seek, close, 
conn_num, str__to_uppercase, str__to_lower
case, plm__to_c__str, c__to__plm_str, err__chk, 
mark__end. All references to strings are assumed to 
be C format strings. Source and generation are pro
vided.

SLEEP

This program puts a Series-IV or NRM to SLEEP for 
the time specified in the (time) parameter. SLEEP 
can be used in a submit file to execute a program at 
a certain time. For example, automatically archiving 
at midnight and then returning to sleep until the next 
day at midnight and repeating the archive. Source 
and generation are provided.

ID

ID is an iNDX utility that lists the name of the current 
user to the current console. It is useful if you forget 
who you are or need to know who is executing a 
particular submit file (MAILMAN is a good example 
of this). Source and generation are provided.

MDS-800 FPORT

INIT800.86 and FPRT are iNDX and ISIS utilities that 
allow file transfer between an MDS-800 develop
ment system and Series-IV over a serial line. Re
quires S4FPRT.86 (supplied standard with the Se
ries-IV). Source and generation are provided.

DBLIST

DBLIST is an ISIS utility that enhances the operation 
of the SVCS programming tool set. It can list the 
entire SVCS database to an output device and may 
be used to remove deleted variants from a data 
base directory. Source and generation are provided.

REMOTE Communication with iPDS, Series-ll,
III, IV

This program gives the remote iPDS, Series-ll, III, or 
IV user complete access to an NDS-II system 
through an ISIS Cluster board; including file upload 
and download capability. The program is menu driv

4-33



NDS-ll/SERIES-IV/OpenNETTM TOOLBOXinteT
en and includes: serial channel select, 8253 clock 
select, break-key select, baud rate select, modem 
present/not present select, dial/touchtone select, 
add-to-out call list option. Source and generation are 
provided.

REMOTE Communication with iBM PC running 
MS/DOS

This program enables an IBM Personal Computer 
running MS/DOS to act as a dumb terminal for an 
ISIS Cluster board connected to an NDS-II network. 
The ability to upload and download files from the PC 
to the network is supplied. Source and generation 
are provided.

REPORT

REPORT is an ISIS utility that reports back on the 
status of a job that has been EXPORTED to the 
NDS-II network for execution on a remote job sta
tion. The user can add messages to the command 
file at appropriate positions in the job sequence, and 
these messages are returned to the ISIS user when 
encountered. Source and generation are provided.

DIRT

DIRT is an iNDX utility which provides a directory 
listing with time and date of file creation and modifi
cation. Source and generation are provided.

VIEWPASS

VIEWPASS is an iNDX utility provided exclusively for 
the SUPERUSER. It lists all the usernames on the 
system, their associated passwords, and their id 
number. Source and generation are provided.

FDUMP

FDUMP is an iNDX utility that is used to print the 
contents of a file on the console in one of four possi
ble formats: HEX, BINARY, OCTAL, or DECIMAL. 
The default is HEX if no option is specified; all for
mats include a display of the file in ASCII (reverse 
video on the Series-IV). Source and generation are 
provided.

CLOCK

CLOCK is a desk clock for use when you have noth
ing else to worry about. CLOCK displays the current 
system time on the console of a Series-ll, III, IV 
(iNDX) or ISIS Cluster. Eight and sixteen bit versions 
are supplied for ISIS and iNDX systems. Source and 
generation are provided.

IFILES

FILES is an ISIS-III (N) utility used to identify date/ 
time stamped files in a directory. All of the files that 
conform to the defined specification will be listed in 
a savefile. This file can further be used in command 
files for manipulating the identified files. Source and 
generation are provided.

LIST

LIST is a utility that copies files to the system printer 
(:SP: or :LP:). LIST has the following features as en
hancements over a normal copy to :SP:.
1) No form feed at the very beginning of a file.
2) Assumes ‘.LST’ for an extension if none is given.
3) Supports multiple copies.
4) Supports multiple files.
5) Supports page breaks.
6) Supports printing of the filename at the beginning 

of the listing.
7) Converts tabs to spaces if necessary.

Source and generation are provided for ISIS and 
iNDX versions.

TA

TA is an ISIS based type-ahead utility for the Se- : 
ries-ll/lll. TA provides a 255 character type-ahead 
buffer on the Series-ll/lll. TA requires the iMDX-511 
enhanced IOC upgrade, available on most systems 
manufactured after 1983. Source and generation are 
provided,

MAILMAN

MAILMAN is an extensive command file that sup
ports multiple network electronic mail when used 
with more than one NRM and NRM to NRM commu
nications. Source is provided.

CHECKEXIST and CHECKTIME

CHECKEXIST and CHECKTIME are iNDX utilities 
used to assist the automation of iNDX command 
files. CHECKEXIST provides a true or false system 
variable (%status) depending upon the existance of 
a specified file. A following check of %status within 
the command file will control the flow of the com
mand file based upon the existance of the specified 
file. CHECKTIME provides a greater or less than 
%status by comparing an input time with the system 
clock for conditional execution of commands in the 
command file at specified times. Source and genera
tion are provided.

4-34



NDS-ll/SERIES-IV/OpenNETTM TOOLBOX

XID

XID, (pronounced “ zid” ) the (X)enix (l)mport (Dae
mon, provides XENIX services for any workstation 
that can access an OpenNET NRM. Thinking of it in 
another way, XID provides yet another resource for 
NRM users; a resource much like a spooled line 
printer or mass storage. In this case, the resource 
provided is “ any job or service that a XENIX box can 
do; you, as an NDS-II user can gain access to” . 
Source and generation are provided.

REEXPORTER

Reexporter is an iNDX utility that allows OpenNET 
users (PC’s, Xenix, iRMX Systems) to execute batch 
jobs on NDS-II systems (i.e., VAX/VMS, Model 8001 
Series II, III, IV). The utility will execute on a Series- 
IV, Compilengine or the NRM itself. In brief, it scans 
special user directories on the NRM looking for com
mand files. If a command file is found, it ^ “ EX
PORT’S the command file to a DJC job queue. A log 
file is generated to allow the OpenNET user to 
check the success/failure of the job. Source and 
generation are provided.

XTAR

XTAR is a program that will let you manipulate a 
XENIX tar diskette at a Series IV. XTAR works only 
with disks formatted by the /dev/dvfO device driver 
on a 286/310 box, or with the /dev/fd048ds96 de
vice driver on a PC/AT. This version will not handle 
files physically bigger than a single flippy (367104 
bytes). Source and generation are provided.

ISIS

The ISIS environment is designed to allow 8080 
based Intel tools (such as ASM, PLM LINKER/LO- 
CATOR) to run on an 8086 family system, either 
iRMX or PCDOS based system. The ISIS environ
ment does not support all ISIS calls, but is sufficient 
to run 8051 translators and utilities. Hosting ISIS on 
Xenix-286 systems is possible and installation in
structions are included. All object files are supplied.

OAP

OAP is a utility that for security reasons masks the 
username and password in the PC-Link net use 
command for increased security. The utility also dis
plays all available servers, by looking at the NE- 
TADDR file. Source and generation are provided.

SPECIFICATIONS

Operating Environment

ISIS, iNDX, RMX, XENIX, or PC-DOS operating sys
tem. Check description of each tool for specific re
quirements.

Documentation

“ NDS-ll/Series-IV/OpenNET Toolbox”
(122336)

ORDERING INFORMATION
NDS2 TLB NDS-ll/Series-IV/OpenNET 

Toolbox

4-35



PRODUCT BRIEFiritef
VAX/VMS* NETW ORKING SOFTWARE 
M ember of the OpenNET™ Product Family

As a member of Intel’s OpenNET™ family 
of network software, VAX/VMS* Networking 
software (VMSNET) lets you connect a VAX 
or MicroVAX n* system to other OpenNET 
systems. This includes the IBM PC AT,
PC XT, Intel’s OpenNET NRM (Network 
Resource Manager), NDS-II NRM (with the 
OpenNET upgrade kit installed), iRMX®, 
and XENIX*systems. VMSNET enables a 
(Micro)VAX system to be configured as a 
Server System on the OpenNET network, 
thus allowing any OpenNET Consumer 
workstation (iRMX, XENIX, MS-DOS) 
to transparently access files residing at 
remote (Micro)VAX systems. In addition, 
VMSNET supports bidirectional file transfer 
initiated from a (Micro)VAX to all other 
OpenNET servers.

Product Highlights

-  Connects a VAX and MicroVAXII to the 
OpenNET Network

-  Interoperation between VAX/VMS and MS-DOS, 
iRMX, XENIX, and iNDX systems over a Local 
Area Network (LAN)

-  Conforms to the ISO-OSI networking standards
-  Adheres to ISO 8073 Transport and 

Ethernet/IEEE 802.3 Standard 
Communication Protocols

-  Uses 80186/82586 Processor-based Unibus and 
Qbus Network Controller Boards

-  All data stored at the (Micro)VAX is visible to, 
and can be transparently accessed by, all 
consumer workstations on the OpenNET network

-  Enables high speed file transfer/file copy between 
the (Micro)VAX and OpenNET workstations

-  Compatible with DECnet*

OpenNET Overview _________________■_________

Intel’s OpenNET product family incorporates a set of 
system and component level LAN products covering all 
seven layers of the ISO (International Standards Organiza
tion) Open Systems Interconnect (OSI) model, and the 
protocols on which they are based. OpenNET protocols are, 
whenever possible, established industry standards for each 
function. Therefore, OpenNET network products can inter
connect and interoperate not only with each other, but with 
the other vendors’ ISO-OSI based LANs. An OpenNET 
network provides a high level of interoperability between 
heterogenous systems: MS-DOS, VMS, iNDX, XENIX, and 
iRMX operating system versions are available. Thus, users 
can tailor their networks to meet their specific needs by 
incorporating any combination of these diverse systems.

‘XENIX is a trademark of Microsoft Corporation. VAX/VMS, MicroVAX II, DECnet are trademarks of Digital Equipment Corp.

4-36

ORDER NUMBER 280329-001



Physical Description
The VAX/VMS Networking Software package consists of 
the appropriate network controller board and the software 
necessary for the (Micro)VAX to communicate over the 
OpenNET network. The following sections describe the 
hardware and software components of VMSNET.

VMSNET Hardware
VMSNET comes with one of two types of Ethernet 
controller boards: a Unibus* board for the high-end VAX or 
a Qbus board for the MicroVAXII system. Both boards 
implement the industry standard ISO 8073 transport protocol 
and Ethemet/IEEE 802.3 physical data link technology.
Both boards are high performance, intelligent communica
tions controllers featuring onboard, dedicated Intel 
80186/82586 processors which support layers 1 through 4 of 
the ISO OSI Reference Model. Thus, the Unibus and Qbus* 
boards perform the CPU tasks associated with lower layer 
LAN communications protocols, thereby freeing the 
(Micro)VAX host CPU to concentrate on applications 
requirements.

Power-up, self-test diagnostics are resident on both the 
Unibus and Qbus controller. Extended host resident 
diagnostics are also provided which can be loaded onto the 
boards to aid in problem resolution. In addition, appropriate 
internal cables, and chassis mounting hardware are included.

VMSNET Software
The software is supplied on either a 9 track magnetic tape 
(for high-end VAXs) or on both a TK50 cartridge tape and 
RX50 514-inch disk (for MicroVAXIIs). The following soft
ware components are included as part of the VAX/VMS 
networking software:

-  A specially configured version of iNA 960 transport layer 
software which operates on the network controller boards

-  A VMS interface driver which enables VMS programs to 
access the network controller board

-  An implementation of the Network File Access (NFA) 
protocols (jointly developed by Intel, IBM, and Microsoft) 
which enables (Micro)VAX users to interoperate with 
other nodes on the OpenNET network

ISO-OSI VAX/VMS OpenNET Implementation

OpenNET, iRMX are trademarks of Intel Corporation.
* Unibus and Qbus are trademarks of Digital Equipment Corporation. |

4-37



Functional Description 

Transparent File Access

VMSNET provides transparent remote file access capability 
to the (Micro)VAX through a file server module. The server 
receives, interprets and executes the command acting as a 
user to its local file system. Consequently, a PC, iRMX, or 
XENIX user can work with data files and resources 
residing at the VAX as if they were resident on his/her 
system.

File Transfer

VMSNET also provides a set of file transfer utilities that 
allow (Micro)VAX users with the ability to transfer files 
that reside on other OpenNET server nodes to the 
(Micro)VAX or vice-versa. These utilities include copying 
files, deleting files, listing directories, and a help facility.

DECnet Access *

VMSNET will allow consumer access to a file residing on 
DECnet nodes. The only protocol restriction is that the 
server will not allow file locking or compatibility mode 
opens on DECnet file access. The consumer may use 
logical names to define DECnet pathnames. For example, if  
“dev” is defined in login.com with an equivalence string of 
“isodev” user mypasswork“ ::dra lfuser]”, the consumer can 
use “dev” as the first pathname component; the server will 
automatically use DECnet for the file access:

-  net use. vms //vms/user mypasswork
-  lc //vms/dev
-  cp //vms/dev/test.obj/usr/bin 

Network Management

A set of network management utilities provide (Micro)VAX 
users with information and statistics of VMSNET along 
with the capability to control the execution of the VMSNET 
server and file transfer utility. To invoke the network utility, 
the user simply needs to type “NET” in response to the 
DCL (Digital Command Language) prompt.

Host Requirements

-  VAX 750, 780, 782, 785
-  VAX 8xxx family
-  MicroVAXII
-  (Micro)VMS operating system, version 4.2 or later

Physical Characteristics 

Software

1. 9 track 1600 bpi magnetic tape 
or

2. TK50 cartridge tape and RX50 514-inch disk

Power Requirements ,

Unibus controller: + 5 vdc (±5% ) at 4.5 amps typical, 
6 amps maximum 
-15  vdc (±10%) at .5 amps, 3 amp 
surge

Qbus controller: +5 vdc (±5% ) at 6 amps typical
+12 vdc (±10%) at .5 amps, 3 amp 

, surge

Environmental Characteristics

Operating Temperature: 0° to 50°C (32° to 122 °F)

Operating Humidity: Maximum of 90% relative humidity,
non-condensing

Forced air cooling

Ordering Information

VMSNET VAX/VMS Networking Software for installa
tion on a high end VAX: consists of a Unibus 
network controller board with 256KB RAM, a 
5 ft. and 10 ft. flat transceiver cables, software 
on a 9 track 1600 bpi magnetic tape, and an 
installation and user’s guide.

MVMSNET VAX/VMS Networking Software for installa
tion on a MicroVAXII: consists of a Qbus net
work controller board with 256KB RAM, an 
18 inch flat transceiver cable, software on both 
TK50 cartridge tape and RX50 514 inch disk, 
and an installation and user’s guide.

4-38



NETWORKING FOR 
THE DEVELOPMENT 

ENVIRONMENT

• OpenNET™ Network Resource Manager (NRM) 
provides shared file storage for all workstations

•  OpenNET PC Link connects personal computers 
to the network

• Compilengine offlc Tds compiles from any system  
on the network

• VAX Link for VAX/VM S* network 
communication

• NDS-II NRM OpenNET Upgrade

• Ethernet communication speeds
• Conforms to industry communication standards 

(ISO/IEEE)

ORDER NUMBER 280258-001



The total network 
development solution based 
on standards
Intel’s open development networking 
encompasses the needs for existing as 
well as new Intel OpenNET™ 
development users. In the lab, Intel 
protects your investment by allowing 
you to interconnect existing Intel 
development workstations and other 
industry-standard hosts, such as the 
VAX/VMS* and the IBM PC. This 
network integrates OpenNET, Intel’s 
open systems strategy for local area 
networks (LANs). It also ties the 
development lab, factory and office 
into a coherent environment.

The OpenNET family implements 
standards at each level of the 
International Standards 
Organization’s seven-layer Open 
Systems Interconnect (OSI) model. 
For the lab, this includes a range of 
special networking services to provide 
your development lab with the power 
and flexibility needed to solve 
today’s and tomorrow’s problems.

A file server tailored to lab 
requirements
The OpenNET Network Resource 
Manager file server manages all 
network workstation requests for 
central resources, including file 
access, print spooling, tape back-up, 
remote job execution queue 
management, program management 
and network maintenance functions. 
The NRM, unlike many office file 
servers, features a full-featured, 
protected, hierarchial file system.
The NRM supports transparent 
access to this file system from any 
OpenNET consumer (e.g., MS-NET, 
XENIX*, iRMX™ 86) as well as 
from Intel’s Intellec Model 800,
Series II, III and IV Systems.

Two OpenNET models are available: 
the MAXI, with a 140MB Winchester 
and a 60MB tape storage, and the 
MINI, with a 40MB Winchester only. 
Both are 8 MHz, 80286-based super
microcomputers with 1MB o f zero 
wait-state RAM. And, both are 
optimized for file access using 
techniques such as caching o f most 
recently used tracks, very fast disks, 
fast disk-seeking algorithms and 
communications boards with their 
own dedicated microprocessors.

Program Management Tools (PMTs) 
decrease the time spent tracking

program/module changes and 
manually generating programs, 
giving software engineers more time 
for design, development and testing.

A remote job execution facility 
provides automatic network load 
balancing.

Transform your PC from an 
individual workstation to 
team member
The OpenNET PC Link enables users 
to connect their IBM PC XT/A T or 
compatibles to the OpenNET 
Network and to transparently access 
and share files and printers on an 
OpenNET NRM, NDS-II NRM, 
iRMX and XENIX-based file servers. 
OpenNET PC Link features an 
80186/82586 microprocessor-based 
Ethernet/IEEE 802.3 expansion 
board, Microsoft networking

Workstation requirements

software (MS-NET) and iNA960 
transport software 
(ISO8073-compatible).

Compilengine: a shared 
network resource
Compilengirie is a shared, networked 
system optimized to offload compile 
and link/locate.jobs from any 
workstation or VAX on the network. 
It is an 80286-based supermicro
computer that compiles faster than 
any workstation and requires no 
terminal to operate. Moreover, 
because it supports two partitions, it 
can be used as a software work
station at the same time it is being 
used as a shared resource.

This product can be connected to an 
NDS-II NRM or OpenNET NRM.

SOFTWARE HARDWARE
WORKSTATION REQUIREMENTS REQUIREMENTS

. NDS-II workstations
Compilengine — —
Model 800 — PIMDX 455
Series II/III — PIMDX 455
Series IV — ■ PIMDX 456
Cluster Chassis NDS2TLB PIMDX 455
VAX IMDX 392; [VMS V4.2] [DEUNA* Board]

OpenNET workstations
PC DOS DOS V3.1 PCLNK
System 310 XENIX XNX-NET R1.0 iSXM 552
System 310 RMX 86 RMX-NET R1.0 iSXM 552

[] Available from DEC
NOTE: Interconnecting hardware (cables, transceivers) requirements are not 

included in the above chart.

Ordering Information
iMDX 460-MOT OpenNET NRM (MAXI model).

iMDX 460-40 OpenNET NRM (MINI model).

iMDX 555 NDS-II NRM OpenNET Upgrade Kit.

iMDX 485CE Compilengine.

NDS2TLB Network Software Toolbox.

iSYP 312 Floor stand which encloses either the OpenNET NRM
or the SYS 311 peripheral expansion box.

4-40



NDS-II/VAX Link
This Ethernet-based link between an 
OpenNET NRM or an NDS-II NRM 
and a DEC* VAX/VMS micro
computer allows VAX users to copy 
files from the VAX to the NRM for 
debugging, in-circuit emulation and 
testing. With the remote job 
execution feature, VAX users can 
send CPU-intensive jobs to idle 
workstations (such as the 
Compilengine) for execution. 
Conversely, NRM users can send 
jobs for remote execution on the 
VAX.

NDS-II NRM OpenNET™ 
Upgrade
This product allows your NDS-II 
NRM to double as an OpenNET file 
server for PC, XENIX and iRMX 
workstations; files on the NRM may 
be transparently accessed by any 
workstation on the network.

Peripheral Expansion 
Option
The OpenNET NRM supports 40 or 
140MB of Winchester storage on a 
single disk drive. Mass storage can be 
expanded to 460MB on the MINI 
NRM and 560MB on the MAXI 
NRM, using the 311 peripheral 
system.

Workstation Kits
PIMDX 455

PIMDX 456 

PIMDX 581 

IMDX 392

PCLNK

RMXNETKITWRI

SXM 552S

XNXNETNRIKIT

NDS-II Workstation Upgrade Kit for any 
Series 11/85, Series III, or Model 800 to connect to 
the OpenNET NRM or NDS-II NRM.

NDS-II Workstation Upgrade Kit for the Series IV. 

ISIS Cluster Board Package.

VAX Link R2.1 for VAX/VMS connection to the 
NRM.

OpenNET PC Link hardware and software kit to 
connect the PC XT, PC AT, and compatible systems 
to the NRM via the OpenNET network; requires DOS 
3.1 or higher.

iRMX Networking Software for a 286/310 system 
running the iRMX 86 operating system to connect to 
the NRM via the OpenNET network.

Ethernet-based Single Board Network 
Communication Engine for 310 systems.

OpenNET-XenixNET Networking Kit. Includes 
iNA 961, SXM 552 and XenixNET pass-through 
networking software.

Interconnecting Hardware
PIMDX 457/458

PMDX 3015

iDCM 911-1

PIMDX 3016-1/ 
3016-2

Transceiver cables (10/50 meters) (two are required 
for an OpenNET NRM; one is required for a 
Compilengine).

Transceiver for Ethernet coaxial cables (at least two 
are required unless an Intellink is used).

Intellink module (the OpenNET NRM uses two 
ports).

Ethernet coaxial cable (25/50 meters).

•VAX/VMS, DEC & DEUNA are trademarks of 
Digital Equipment.Corp.
XENIX is a trademark of Microsoft Corp.

4-41



APPLICATION AP-240
NOTE

October 1986

Using Archive To Efficiently 
Control a Network

SRIVATS SAMPATH
DSO APPLICATIONS ENGINEERING

Order Number: 231476-001
4-42



AP-240

INTRODUCTION
The onset of large scale software projects has generated 
additional needs in all levels of the development envi
ronment. The need for a sophisticated source and ver
sion control system and efficient disk management be
comes particularly important as the project team 
grows. This need is more pronounced at the software 
management level, where operating the project on 
schedule is of prime importance. Efficient disk manage
ment includes keeping the disk free of redundant files 
and keeping copies of older versions somewhere other 
than the disk itself. In other words ‘‘ARCHIVING” all 
previous versions onto another storage media that is 
inexpensive, reliable and transportable is key. One stor
age media that meets all these requirements is the NDS 
II tape sub-system which forms an integral part of 
the development environment. Moreover, the actual 
archive process should be easy to use, preferably 
automatic and should not be a drain on resources. The

ability to manage mass storage devices efficiently trans
lates into a substantial increase in productivity for 
everyone. Intel realizes this need and has developed a 
solution that is tailored towards helping the NDS-II 
system manager efficiently control the development 
project. We introduced the TAPE SUB-SYSTEM on 
our Network to provide an inexpensive, reliable and 
transportable media, and a utility called ARCHIVE to 
make actual disk management both user friendly and 
automatic.

ARCHIVE
The ARCHIVE utility performs file backup and resto
ration by copying files and directories to magnetic tape 
or other secondary storage devices. This utility is exe
cuted at an NRM console, and with its powerful set of 
options, it positions itself as an invaluable tool for effi
cient disk management.

SYSTEM \  
CONSOLE J

SHARED NRM SHARED
PRINTER s^H A R D ^y

DISK

TRANSCEIVER

ETHERNET CABLE

231476-1

Figure 1. The Network and Its Components

4-43



AP-240inteT
WHY USE A TAPE?
Magnetic tape is regarded as the most useful storage 
device in the computer industry. In spite of its sequen
tial structure, tape answers a number of requirements 
that can not be met by any other conventional mass 
storage devices. The most strong argument in favor of 
tape is its portability - the ability to transport tape with 
the minimum overhead and damage during transit 
makes it an extremely attractive media. Moreover, stor
ing tapes is much more organized and efficient than 
storing diskettes. All these arguments lead to a single 
conclusion: “The Magnetic Tape should form an inte- 
geral part of any development environment”. The AR
CHIVE utility and the tape drive together form the 
foundation for effective disk management, bringing 
about a more productive environment for any develop
ment project.

Additionally, the tape is a safety net for one of those 
rare disk crashes. Having backups on tape will reduce 
the amount of data loss in the event of a fatal disk 
crash. Additionally, completed projects can be saved on 
ape to provide more disk work space. Having these 
projects on tape minimizes the effort in reloading all 
the data if major bugs are found, or if an update is 
involved. Multi-project sites can benefit from the fact 
that tape allows easy transporting of data.

Tape backup can be classified into incremental backup 
and tape streamer. Tape streamer allows volume copies,

with every record on the disk copied onto tape. It is a 
mass data transfer from one storage device to another. 
This brings about a lot of overheads when only some 
parts of the disk need to be backed up or restored.

Incremental tape backup treats the tape as a random 
access device similar to a disk. Files can be added, ap
pended or deleted, just as in a disk. This feature allows 
selective backup onto tape; thus eliminating the need 
for a mass copy operation when only a few files need to 
be archived or restored.

The tape drive on the NRM is an incremental backup 
device and ARCHIVE has been designed to use this to 
the fullest extent.

HOW DOES ARCHIVE HELP?
ARCHIVE has been, designed to let the NDS II system 
manager operate the development project at maximum 
efficency. Using its various options, the system manag
er can selectively archive files and directories onto tape, 
employing various qualifiers such as date accessed, cre
ated, modified, before, since, on, etc.. These qualifiers 
will be discussed in a later chapter (Invocation and 
Syntax) with examples. The options are essential for 
NDS-II system managers to perform selective archives 
of files and directories. ,

4-44



AP-240

ARCHIVE can also be used in a submit or a batch file. 
This saves the NDS II system manager from having to 
type in the whole command syntax every time an AR
CHIVE must be performed adding another step toward 
improved productivity.

Utilities like SLEEP, wakes up the system at a specified 
date or time, goes a long way in automating AR
CHIVE. A submit file is invoked at the NRM that 
wakes up the system at a specified time (preferably near 
midnight when system load is low), archives all quali
fied files onto tape, then ‘goes back to sleep’ again. This 
is an important factor eliminating the need for operator 
intervention at any time and automating the entire pro
cess.

ARCHIVE frequency depends on the particular appli
cation and system load. It is recommended that AR
CHIVE be performed at least once a week. However, in 
large project implementations (i.e 6 or more design en
gineers involved in generating or modifying more than 
100K of code), ARCHIVE should be performed auto
matically each night. This ensures that even if a disk 
crash occurs, data loss is restricted to a single day’s 
work.

All the features incorporated in ARCHIVE make it an 
attractive solution for effective version control and disk 
management. It is a productivity tool that no system 
manager should do without.

DATA LAYOUT ON TAPE
Tape is a sequential structured media, with all files and 
directories sequentially stored, but it maintains the hi
erarchic file structure of a disk. Every time an AR
CHIVE is performed, a LOGICAL VOLUME is creat
ed, containing any number of files, from NULL to a set 
of files residing on a device. Each LOGICAL VOL
UME has a VOLUME NUMBER and a HEADER 
associated with it. VOLUME NUMBERS start with 1 
upwards. The HEADER is the source path name. For 
example:

ARCHIVE /WDO/USERS.DIR TO CTO
creates the first record onto tape and gives it the VOL
UME NUMBER 1 and HEADER /W DO/ 
USERS.DIR. Files and sub-directories under 
USERS.DIR will be copied in a TOP DOWN order. 
The same rules apply to all the subsequent sub-directo
ries. The data layout on tape is shown in Figure 3.

• START OF TAPE
+ • VOLUME HEADER RECORD

(CONTAINS VOLUME NUMBER AND HEADER INFORMATION)
FILE HEADER |— ► END DATA RECORD

VOLUME HEADER 
FOR SECOND 
VOLUME.

DATA END RECORD

REPEAT FOR EACH VOLUME
231476-3

Figure 3. Format of Data on the Tape

4-45



AP-240

INVOCATION AND SYNTAX
ARCHIVE, with its powerful set of options, gives the 
user flexibility in effectively managing the disk. The 
syntax of ARCHIVE is given below. During operation 
at the NRM, the system syntax builder prompts the 
user for options so none of the options have to be mem
orized.

The ARCHIVE syntax consists of a set of qualifiers 
and a set of switches. QUALIFIERS are options that 
qualify a file or directory for copying, allowing the user 
to selectively choose files and directories for archiving. 
SWITCHES are sets of controls that enable the user to 
actually control the I/O  operation.

SYNTAX:

ARCHIVE source TO destination 
< O P T I O N S  >

OPTIONS ARE:
1. QUALIFIERS:
INCLUDE, EXCLUDE (files that w e r e . . . )

ACCESSED / CREATED / MODIFIED  
BEFORE / SINCE / ON  

T O D A Y /d ate  
hour

DIRECTORY (directory nam e,. . . )  
OWNEDBY (Owner nam e,. . . )  

FILE (path-name,. . . )  
A N D / O R . . .

2. SWITCHES: APPEND
DELETE
ERASE
LOG log-file-name
NAME physical volume name
NOUPDATE
QUERY
UPDATE
VOLUME (logical volume number )

ARCHIVE QUALIFIERS
Qualifiers enable the user restrict the number of files to 
be archived, and discriminate against any file by time 
stamps (time created, modified, etc), the owner, file 
names and even by parent directory, These qualifiers 
have no limit to their length or order of appearance, an

may be specified using the keywords INCLUDE/EX- 
CLUDE.

Include/Exclude

INCLUDE specifies the files that are to be included in 
the command, while EXCLUDE lists the file that can 
not be archived if the qualifying condition is met. EX
CLUDE has precedence over INCLUDE; therefore, 
when both keys are used (INCLUDE files, EXCLUDE 
files) the following set of files will be archived:

SET OF ALL FILES

231476-4 *
/ :  indicates files . ,

included

The following is the list of all acceptable keywords for 
INCLUDE/EXCLUDE:

1. ACCESSED/CREATED/MODIFIED

These switches compare the time specified in the time 
qualifier to the last time the file was accessed, or the 
time it was created, or the time it was last modified. If 
this time agrees with the time qualifier condition, then 
the file is qualified. The time qualifier is required for 
ACCESSED and CREATED and is Optional for 
MODIFIED. If the time is not specified with the 
MODIFIED switch, a default value of SINCE LAST- 
ARCHIVE-DATE will be used. This default value will 
qualify all the files which:

a. Were modified since last ARCHIVE.
b. Were created since last ARCHIVE.
c. Were created or modified prior to last AR

CHIVE but, through use of qualifiers, they were 
somehow EXCLUDED from being archived 
earlier.

4-46



AP-240

Time Qualifiers:

The time qualifiers allow the user to specify an instant 
in time which is used in a comparison with the time a 
file was last accessed, created, or last modified to quali
fy the file for archiving:
— BEFORE Allows specifying a file accessed, created, 

or modified BEFORE a specific date.
■— SINCE Allows specifying a file accessed, created, or 

modified SINCE a specific date.
— ON Allows specifying a file accessed, created, or 

modified ON a specific date within a 24 hour period.

Examples:

ARCHIVE /WDO TO CTO INCLUDE CREATED BEFORE 12/21/84 
jwould archive all files created before DEC 21,
ja time default of 00:00:00 would be used.

ARCHIVE /WDO TO CTO EXCLUDE MODIFIED SINCE 10/10/83 ( 10:11:22 ) 
jarchives all files, exclude those which were modified 
;since 10:11:22 on October 10th, 1983.

ARCHIVE /WDO TO CTO INCLUDE ACCESSED ON TODAY , EXCLUDE & CREATED BEFORE 
10/26/83 AND MODIFIED SINCE 10/24/83 ( 10:11:12 ) '
jarchives all thefiles which were accessed today, and 
jexclude those which were created before October 26th 
jand were somehow modified since 11 minutes and 12 seconds 
jafter 10 AM on October 24th.

ARCHIVE CTO TO /WD1/DIR1 INCLUDE ACCESSED ON TODAY , EXCLUDE & CREATED 
BEFORE 10/24/83 AND MODIFIED SINCE 10/26/83 ( 10:11:12 ) 

jail files on the tape which were last accessed today 
;( exclude archive access itself ) will copied to the 
j/WDl/DIRl directory. Files which were CREATED before 
jOctober 24,83 and were MODIFIED since October 26, 83 
jwill be excluded.

— date/TODAY
For neither BEFORE, SINCE, and ON a does 
default date value exist. Date could be specified 
in two forms, either by using TODAY switch, 
which would read the current date from the sys
tem, or by actually specifying the date in the 
form of mm/dd/yy. An optional time of the day 
(in hours) in hh:mm:ss form with a default value 
of 00:00:00 can be used.

— hour
Time of the day can be specified in hh or hh:mm 
or hh:mm:ss. The hour qualifier is to be in paren
thesis.

2. DIRECTORY/FILES/OWNEDBY

Allows the user to specify qualifiers other than time
such as owner of files, directories, etc.
— DIRECTORY Allows the user to specify particular 

directories to be included or excluded in AR
CHIVE. The directory could either be the full path 
name of the directory or partial name from where 
source-name left off. DIRECTORY does not accept 
wildcard characters. However, logical names are al
lowed.

— FILE Allows the user to specify particular files to 
be included or excluded in archive. The file name, 
in order to be recognized, should only be the file
name, not a path name. Wildcard characters are 
accepted.

—  OWNEDBY Allows archive select files on the basis 
of owner’s name.

3. AND/OR

AN D /O R  allows the extension of the qualifying condi
tions within a qualifying set. A N D/O R can not be in
termixed within a qualifier set defined by one IN
CLUDE or EXCLUDE.

4. COMMA

Comma is the separator (delimiter) between IN
CLUDE and EXCLUDE. In English, it makes sense to 
use AND in between INCLUDE and EXCLUDE. 
However, in ARCHIVE, you can not use anything oth
er than Comma to separate INCLUDE/EXCLUDE. 
Example:

ARCHIVE /WDO TO CTO INCLUDE ACCESSED 
ON TODAY , EXCLUDE & CREATED BEFORE 
10/26/83 AND MODIFIED SINCE 10/24/83 ( 10:11:12 )

4-47



AP-240

ARCHIVE SWITCHES
SWITCHES are controls that ARCHIVE gives the 
user to selectively copy files and directories to/from  
tape or any other storage device. We will discuss each 
of these switches in depth to highlight the versatality of 
ARCHIVE.

1.0 Append, Volume
Every time ARCHIVE is issued onto tape, a Logical 
Volume is created. This logical volume can consist of 
one file or as many as all files residing on a particular 
device. Unless otherwise specified ARCHIVE always 
starts from the beginning of a tape. The tape is rewound 
and the header information is written followed by the

actual copy operation which copies all qualified files 
from the beginning of tape. Using the Append switch 
allows the user to have more than one volume or a 
related group of files on a single tape .Now instead of 
starting from the beginning of a tape ARCHIVE 
searches through the tape for the volume name speci
fied. Default for Append is the last volume on tape.

ARCHIVE will always overwrite an existing volume if 
Append switch is not specified. Append to an empty 
tape is not valid as ARCHIVE will not know what to 
Append the new record to.

Recommendation: The tape should be dismounted only 
after ARCHIVE signs back on with the message ‘AR
CHIVE COMPLETE4. Use the ERASE option when 
writing to a new tape.

Examples: (WITH A NEW TAPE)

ARCHIVE /WINIO/USERS•DIR TO TAPEO APPEND
; This is an ERROR. No previous volume on tape 
; to append new volume to

ARCHIVE /WINIO/USERS.DIR TO TAPEO
; This will create header for Volume il and then 
; copies all the USERS.DIR files and sub-directories 
; to the tape.

ARCHIVE /WINIO/SYSTEM.DIR TO TAPEO APPEND
; This creates a new volume on the tape (Volume i 2) 
; and adds all SYSTEM.DIR files and sub-directories 
; to the tapeat Volume i2

ARCHIVE /WINIO/ISIS.SYS/FILES TO TAPEO APPEND VOLUME 3
; This skips to the third volume on tape ,writes 
; the header for Volume i3 and then copies all 
; files and sub-directories to Volume i3

2.0 Delete
This switch instructs ARCHIVE to delete all qualified 
files on the disk after they have been copied onto tape 
or disk. It is very useful when backups of older versions 
are performed. Once the archive process has been com
pleted, all the old files are deleted from the source disk 
giving the user a better control over managing disk 
files. This is a disk only option.

Recommendation:

It is recommended that the user archive to tape first, 
using a LOG option and ascertaining that the files exist 
on tape. Then, he repeats the ARCHIVE to :BB: with 
the delete switch on to delete all the qualified files from

disk. This will eliminate any possibility of deleting files 
without first archiving them.

3.0 Erase
This option causes the tape to be erased before any 
write operation is performed. ERASE goes over all 
tracks on the tape and erases everything written on it. 
ERASE and APPEND cannot be used simultaneously, 
since one erases the tape and the other tries to append 
to non-existent volumes. ERASE is a tape otion.

Recommendation:

Use the ERASE switch when archiving onto tape the 
first time. Use Append for subsequent logical volumes.

4-48



AP-240inter
4.0 Log file—name
The LOG option will redirect all console messages to a 
specified LOG file. Errors generated because of LOG 
file existence will not abort ARCHIVE, (i.e. if a log file 
already exists it will be automatically overwritten by 
ARCHIVE)

Recommendation:

It is good practice to redirect console output to a LOG 
file when a sufficiently large ARCHIVE is being per
formed, keep a record of all succesful archives. This 
LOG file should be listed and stored along with the 
tape.

5.0 Name physical_volume_name
The first time an ARCHIVE is issued to a tape, using 
the NAME option will associate the physical__vol
ume__name with that tape. This option ensures that the
right tape is used when reading from or writing to the 
tape. When the NAME switch is specified the name on 
tape will be compared against the name on the AR
CHIVE command line. ARCHIVE will not continue if
names do not match. The default physical__volume__
name is ARCHIVE, meaning that if a NAME option 
was not specified during the first write operation to 
tape, it will be named ARCHIVE.

Recommendation:

The use of logical sounding names for the physical—  
volume—name of the tape is good practice. This helps 
in fast identification of the tape being used. Names like 
PROJECT 1 and VERSION 1.0 are good names while 
THIS.IS.IT and LATEST are not. The physical—vol
um e-nam e should not be more than 14 characters 
long.

6.0 Noupdate
When archiving information from any source to a hard 
disk, if an existing file is encountered, NOUPDATE  
instructs ARCHIVE not to copy over the existing files. 
Thus if a file is on the disk and there is a matching file 
name on that tape, archive from the tape to the disk 
will not update the contents of the file when the 
NOUPDATE switch is used. This option is a default 
switch in submit files. If neither UPDATE nor NOUP
DATE is used, the user will be queried whether the 
existing file should be deleted.

Recommendation:

The specified default for ARCHIVE in a submit file is 
NOUPDATE. However, the default for ARCHIVE in 
a submit file is similar to the QUERY command. If 
files being restored already exist, ARCHIVE will 
prompt the user for deletion. It is recommended that 
UPDATE or NOUPDATE option be specified within a 
submit file.

7.0 Query
This causes ARCHIVE to prompt the user for every 
data and directory file in the source directory, then 
waits for confirmation. When the user is prompted re
garding a directory file, and the user chooses not to 
copy that directory file, none of the files and sub-direc
tories in that directory can be archived. The default is 
no QUERY. QUERY used in conjuction with NOUP
DATE prompts the user for every qualified file in the 
source directory. When confirmed that the file exists in 
the destination directory, the user will be informed that 
the file exists at the destination directory, but the file 
will not be copied over. QUERY used in conjunction 
with UPDATE prompts the user for each file in the 
source directory. Once confirmed, it will copy the qual
ified files to the destination regardless of their existence.

ARCHIVE /WD0/USERS•DIR TO CTO NAME TAPE1
jarchives every file and directory in USERS.DIR 
;onto the tape. The tape will be named TAPE1 
;from now on. If an attempt is made to access 
;or write more files onto the tape with the 
;NAME switch on, TAPE1 is the only name that will
;be accepted by ARCHIVE.

ARCHIVE /WD0/USERS.DIR/MINE•DIR TO CTO NAME TAPE1 APPEND 
;would append MINE.DIR to the tape.

ARCHIVE /WD0/USERS.DIR/Y0URS.DIR TO CTO APPEND
;would still work fine and appends the 
;new directory YOURS.DIR to the tape.

ARCHIVE /WD0/USERS•DIR/WH0SE•DIR TO CTO NAME TAPE0 
;would be rejected with the message: 
;RIGHT VOLUME EXPECTED......

4-49



AP-240inteT

Assume that files FI and F2 are in /W l/D l  and direc
tory file D2 is in / Wl .  Also assume F2 exists at /W 2 /  
D l.

Example:

> ARCHIVE /Wl TO /W2 QUERY <CR> 
iNDX-Nll (V2.8) ARCHIVE, V2.8 
10/26/84 11:12:33 DIRECTORY = /Wl 
COPY /Wl/Dl TO /W2/D1 ? Y <CR>
DIRECTORY = /Wl/Dl
COPY /W1/D1/F1 TO /W2/D1/F1 ? Y ©
COPIED /W1/D1/F1 TO /W2/D1/F1
COPY /W1/D1/F2 TO /W2/D1/F2 ? Y <CR>
File Already Exists
Pathname = /W2/D1/F2
Delete Existing File ? Y <CR>
COPIED /W1/D1/F2 TO /W2/D1/F2 
COPY /W1/D2 TO /W2/D2 ? N <CR>
ARCHIVE COMPLETE .

> ARCHIVE /Wl TO /W2 QUERY NOUPDATE © 
iNDX-Nll (V2.8) ARCHIVE, V2.8 
10/26/84 11:12:33
DIRECTORY = /Wl
COPY /Wl/Dl TO /W2/D1 ? Y <CR> 
DIRECTORY = /Wl/Dl
COPY /W1/D1/F1 TO /W2/D1/F1 ? Y <CR> 
COPIED /W1/D1/F1 TO /W2/D1/F1 
COPY /W1/D1/F2 TO /W2/D1/F2 ? Y <CR> 
File Already Exists Pathname 
= /W2/D1/F2
COPY /W1/D2 TO /W2/D2 ? N <CR> 
ARCHIVE COMPLETE

> ARCHIVE /Wl TO /W2 QUERY UPDATE <CR> 
iNDX-Nll (V2.8) ARCHIVE, V2.8 
10/26/84 11:12:33
DIRECTORY = /Wl
COPY /Wl/Dl TO /W2/D1 ? Y <CR> 
DIRECTORY = /Wl/Dl
COPY /W1/D1/F1 TO /W2/D1/F1 ? Y <CR> 
COPIED /W1/D1/F1 TO /W2/D1/F1 
COPY /W1/D1/F2 TO /W2/D1/F2 ? Y <CR> 
COPIED /W1/D1/F2 TO /W2/D1/F2 
COPY /W1/D2 TO /W2/D2 ? N <CR>
ARCHIVE COMPLETE

8.0 Update
This switch is the exact opposite of the NOUPDATE 
switch. If UPDATE is specified, all the qualified files 
on the tape will be copied to the destination directory, 
despite the previously existing files in the destination 
directory.

4-50



AP-240intef

9.0 Volume
The first time an ARCHIVE command is issued, one 
logical volume will be created on the tape. Subsequent 
ARCHIVE’S to the tape using the APPEND switch 
create additional logical volumes on the tape. For in
stance, one ARCHIVE without APPEND and three 
more ARCHIVE’S with APPEND create four logical

volumes on the tape. If the user is restoring information 
from the tape, not specifying volume number restores 
all the logical volumes on the tape. Specifying a non-ex
istent number causes an error message arid aborts the 
command. A valid volume number searches that partic
ular logical volume for the qualified files and restores 
only files from that specific logical volume.

Example:

ARCHIVE /WDO/USERS•DIR TO CTO

then
ARCHIVE

jerases the tape and copies USERS.DIR to 
jthe tape as logical volume 1.

/WDO/MISC.DIR TO CTO APPEND VOLUME 3

then
ARCHIVE

jcauses an error message, because logical 
jvolume number 2 is not created yet.

/WDO/MISC.DIR TO CTO APPEND or
ARCHIVE /WDO/MISC.DIR TO CTO APPEND VOLUME 2

then
jcreates the second logical volume and 
jcopies all the files from MISC.DIR to it.

ARCHIVE CTO TO /WD0/DIR1 VOLUME 3

then

generates an error message because , 
jlogical volume 3 does not exist.

ARCHIVE CTO TO /WD0/DIR1 VOLUME 2
jcopies to DIR1 all the data and directory 
jfiles which were under /WDO/MISC.DIR and 
jwere archived to the tape. In a sense, the 
jsubtree starting from /WDO/MISC.DIR will 
;be added to DIR1. v

4-51



AP-240inteT
DATA RESTORATION FROM TAPE
ARCHIVE allows data restoration from tape onto disk, 
facilitating easy recovery from a disk crash without a 
significant loss of data. Reopening a project simply in
volves reloading all data archived onto tape. This also 
simplifies multi-site projects, where data can be trans
ported and reloaded from one site to another.

In order to restore data from a tape, the user can use 
the device name CTO and restore all information from 
tape to disk. Or the user can specify a pathname to a 
directory on tape and restore only that directory and

associate files and sub-directories. Finally one can spec
ify a particular VOLUME and restore information 
stored under that volume. Examples:

Assuming that /WDO/USERS.DIR/TEMP.DIR is 
empty and the tape has three records (i.e. LOGICAL 
VOLUMES)

APPEND and ERASE are switches that can be used 
only when archiving onto tape. DELETE, NOUP
DATE and UPDATE switches can only be used with a 
disk.

Record il (Volume Number 1) , \
Header /WD1/USERS.DIR/TEMP1.DIR '
FILES and DIRECTORIES

/WD1/USERS•DIR/TEMP1•DIR/FILE1
/WD1/USERS.DIR/TEMP1.DIR/FILE2
/WD1/USERS.DIR/TEMP1.DIR/FILE.DIR/FILE3
/WD1/USERS.DIR/TEMPI.DIR/FILE.DIR/FILE4
/WD1/USERS.DIR/TEMP1.DIR/FILE.DIR/PASCAL.DIR/FILE5

RECORD i2 (Volume Number 2)
Header /WD0/MISC.DIR/TEMP2.DIR/TEMP3.DIR/ FI 
FILES and DIRECTORIES

/WDO/MISC.DIR/TEMP2•DIR/TEMP3.DIR/FILE1 
/WDO/MISC.DIR/TEMP2.DIR/TEMP3.DIR/FILE2

~  ARCHIVE CTO TO /WDO/USERS•DIR/TEMP.DIR 
would copy all files from tape onto disk.
—  ARCHIVE CTO TO /WDO/USERS.DIR/TEMP.DIR VOLUME 2 
would copy all files in VOLUME 2 to disk.

4-52



AP-240inter

APPENDIX A

SLEEP:
SLEEP is a utility, available in the Network/Series IV toolbox, that executes at an NRM or SERIES IV, allowing 
the user to delay the execution of certain programs until a certain time. This can be included in a submit file and 
made to execute continuously. The sample/submit file looks like this:

Repeat
Sleep til 23:30:00
ARCHIVE /WDO/USERS•DIR TO CTO INCLUDE ACCESSED ON TODAY APPEND 
End
This submit file will run forever at the NRM console and will wake up at midnight do all the archives, then go back 
to sleep again. Since sleep runs on the foreground at the NRM, a Cntr-C has to be performed if the user must utilize 
the NRM terminal for some other purpose.

This is a very useful utility in conjunction with ARCHIVE as it makes the whole process automatic and eliminates 
the need for operator intervention.

ACKNOWLEDGMENTS:
I would like to take this opportunity and thank Bahram Saghari in DSO Software Support for his contribution 
towards this Application Note. All examples on ARCHIVE were supplied by his group.

4-53



APPLICATION AP-242
NOTE

October 1985

Additional Printer Support 
for the NDS-II System

CHRIS FEETHAM
DSO APPLICATIONS ENGINEERING

4-54
Order Number: 231478-001



AP-242

INTRODUCTION
Using printers for hard copy of data has long been nec
essary in most computer systems. Software engineers 
use printers primarily for software program listings, but 
increasingly, letter quality printers are being used to 
generate memos, reports, and other business docu
ments, rather than queueing them up at the secretary’s 
typewriter. Additionally, with the cost of computer ter
minals and network connections declining, it is becom
ing rare for the business professional not to have imme
diate or direct access to a terminal with some type of 
word processor available. The ability to send hard copy 
directly to a printer rather than waiting for a typist to 
re-type the input is a productive benefit for everyone.

THE NDS-II NETWORK
With Intel’s advanced Network Development System 
II (NDS-II), development systems are connected into a 
network using Ethernet. Additionally, each develop
ment system has the ability to host several ISIS Clus
ters that use low cost serial lines to support the termi
nals. The complete product line is described in the 
NDS-II System description (refer to Appendix D for 
complete details).

With low cost terminals available to everyone, includ
ing engineers, managers, and secretaries, files and data 
can be shared and manipulated directly on the network, 
reducing the many intermediate steps required in pro
ducing a final document. The addition of CPM/80 cou
pled with the industry standard Wordstar word pro
cessing package, available for the NDS-II system (refer 
to Appendix D for details), further increases secretarial 
efficiency.

Engineers, managers and secretaries all benefit from the 
advanced editors and tools provided with Intel’s sys
tems. Getting the output to a printer is the next step in 
the process, and is the subject of this application note.

GETTING THE DATA PRINTED
Virtually every computer sold today, from the most in
expensive PC to the largest mainframe, has serial and/ 
or parallel ports for connections to printers and other 
devices. Intel’s development systems are no exception, 
providing hardware ports for both serial and parallel 
printer types.

Intel’s operating systems supplied with the NDS-II net
work and development mainframes, INDX and ISIS

respectively, provide software “devices” which the user 
can copy files to. The software device designations are 
:LP: for the parallel line printer, and :TO: for the serial 
device. However, varying types of serial printers and 
their associated protocols render the simple “Copy file 
to :TO:” inadequate. Additionally, printers are some
what expensive and noisy. The desired method of oper
ation is to provide one or two printers accessible by a 
group of people, located in a separate room away from 
the immediate working area.

This application note shows how Intel’s NDS-II net
work, combined with ISIS Clusters and terminals pro
vide a solution for the desired method of operation. The 
NDS-II’s INDX operating system provides a print 
spooler that allows users to copy files to a central spool 
printer (:SP:). Files copied from the remote stations 
(ISIS Clusters , Series-II/III and Series-IV develop
ment systems) are then copied to a parallel line printer 
connected to the NDS-II.

This print spooling feature is not a new concept for 
computers, and is only one of many excellent features 
of the NDS-II system. Many users would like to sup
port additional printers on the network, both parallel 
and serial, but the NDS-II’s built in spooler does not 
provide for this.

SOLUTION-Prince
Prince is a versatile spooling program designed for use 
with Intel’s Series-II, Series-Ill, and Series-IV develop
ment systems, either in standalone or network mode, 
and for ISIS Clusters operating with an NDS-II net
work. Using a dedicated ISIS Cluster is perhaps the 
most effective and efficient method of operation. The 
ISIS Cluster solution provides for the cheapest and 
most automatic operation, which is detailed in Appen
dix C.

HOW IT WORKS
Prince is an ISIS-based program operating in the 8085 
environment of the Development System or ISIS Clus
ter. After extensive initialization, Prince continually 
polls the directory that is ASSIGNed to :F8:, and any 
files in this directory are PRINTED, then DELETED. 
As this is an ISIS based program, files to be printed 
must conform to the ISIS file name format-.a maximum 
of six characters, plus an optional three character ex
tension, separated by a period.

4-55



AP-242

:F8: can be assigned to a directory created on a Series- 
IV for standalone operation, or to a directory on the 
Network Resource Manager. If the Network Resource 
Manager is used, and the NRM has no parallel printer 
attached, you may assign :F8: to /(root)/SPOOL, the 
main print spooler directory. A workstation could then 
copy directly to :SP: instead of :F8:. This saves each 
workstation from having to assign :F8: to a specific 
directory.

Prince has been designed for optimal use of network 
resources, and provides additional capabilities and flex
ibility above and beyond the automatic print spooler 
provided with the NDS-II. Prince also provides useful 
capabilities for Series-IV system operating in stand
alone mode. ■ ■ •

Other applications might include operation of a parallel 
printer at a development system host for ISIS Cluster 
users, or even communication interface that automati
cally copies files from one system or network to another 
system connected via a serial or parallel line.

Upon invocation, Prince automatically checks its envi
ronment to determine the type of system it is loaded on. 
Valid systems are Series-II, Series-Ill, Series-IV, and 
the ISIS Cluster. Prince then sets up the appropriate 
serial channel for output, unless output has been direct
ed elsewhere. For the Series-II and Series-Ill, this is 
serial channel 1. The Series-IV uses serial channel 2, 
and the ISIS Cluster uses the on-board serial channel 
normally used for the console.

Series-IV systems can use serial printers, but the con
trol interface for the serial device, specifically the 
XON/XOFF (cntl-s /  cntl-q) protocol, is currently not 
provided with a simple copy to the system serial file 
(designated :TO:). Prince solves this problem by pro
viding the XON/XOFF protocol, and optionally 
checks for a hardware printer ready signal if desired, by 
selectively monitoring Data Set Ready (DSR) on the 
serial line.

The Intel development systems set the serial channel 
used for the serial device (:TO:) to a specific file trans
fer rate, better known as baud rate. Prince can selec
tively output serial data at user specified baud rates of 
110, 300, 600, 1200, 2400, 4800, 9600, and 19200. This 
allows faster devices and devices that can “buffer up” 
data to take advantage of the full capabilities of the 
serial line, while the controls mentioned previously 
(XON/XOFF and DSR) provide the desired control 
protocol to run the serial devices and the development 
systems at their fastest rate.

For management tracking and control, Prince keeps a 
log of all activity, including error messages, initializa
tion defaults, and information about each file printed. 
File PRINT.LOG is created in the directory assigned

to :F9:, and contains relevant information about the 
files being printed: the file name, time that the file was 
printed, owner of the file, and the number of bytes actu
ally printed. The log information can be re-directed to 
another file, including the console, line printer, or disk 
file. If the log file specified is a disk file, it can be 
viewed, copied, or deleted at any time. If the log file is 
deleted, Prince creates the log file again, using the origi
nal log file name, at the next file detected for printing.

Prince allows re-direction of the output to a file rather 
than the printer connected to the serial line. Spooling to 
a parallel line printer is accomplished by specifying 
:LP: as the output path. The output re-direction can 
also go to a disk file, or any other valid ISIS output file 
name except :TO:. If a disk file is specified for output, it 
can be viewed, copied, or deleted at any time. Files 
being copied to the output file are added to the end of 
the file. For orderly printing, Prince automatically out
puts a form feed before printing each file.

This version is initialized for use with a Diablo 630 
serial interface and supports the XON/XOFF protocol 
at 2400 baud. These parameters may be changed by 
command line controls.

The ISIS.INI, or submit file that invokes this program, 
must contain a directory assignment to :F8:, for the 
files to be printed, and also an assignment to :F9: for 
the log file, unless it has been re-directed.

The default log file name, if none other is specified, is 
:F9:PRINT.LOG. Any file specified for the optional re
direction of the log file and/or the output path must be 
a valid ISIS output file name (refer to the NDS-II ISIS 
III User’s Guide #  121765-004 for a definition of valid 
ISIS output filenames).

INVOCATION AND CONTROL 
OPTIONS
Invocation of Prince is best accommodated in a com
mand file, or SUBMIT file. For Intel systems, use of a 
user ‘init‘ file is recommended, and essential for auto
matic use with an ISIS Cluster. User Init files are auto
matically submitted for execution upon LOGON to the 
system. This file contains assignments, and the com
mand line that starts Prince.

Control options are all single letter characters, followed 
immediately by an “ =  ” sign, then the actual option. 
Controls can be entered in any order, upper or lower 
case, can be separated by spaces or commas, but must 
contain no imbedded spaces. If Output is redirected to 
a file, as opposed to the default serial channel, then 
DSR and Baudrate controls have no effect, and the se
rial channel is not initialized.

4-56



AP-242

Control Description and Examples
Controls: Control Description:

Valid ISIS filename - log file re-direction 
:F9 .-PRINT.LOG is the default 
Valid ISIS filename - output re-direction 
can be :LP: for the local line printer, etc. 
DSR control. Any character other than 'T' will 
not set the DSR control - pin 6 on the RS-232 
line is monitored for printer ready. No DSR is 
the default.
valid number. Only the first two characters 
are checked to determine uniqueness.
Any following characters are ignored.

600
1200 '

2400 
4800 
9600 
19200

ij=±ogrij.e
P=output$file
D=T

B=baudrate
110
300

Examples:
1. To set log file to console out and output to line printer:

:F9:PRINCE 1 =  :co: p =  :lp:
2. To set baudrate to 9600 and initialize DSR control (defaults to :F9-.print.log):
:F9:PRINCE b = 9600 d = t 

Example ISIS.INI:
ASSIGN 8 to /w/prntspool.dir 
ASSIGN 9 to /w/printlog.dir 
ISIS
:F9 .-PRINCE

ISIS.INI file for Series-II/III 
and ISIS Cluster 
copy files to be printed to :F8: 
:f9:also contains the program 
Invoke ISIS-IV - for Series-IV 
Invoke print spooler

CONCLUSION
Prince is a versatile utility that enhances the operation of standalone Series-IV systems or NDS-II networks. Prince 
is available separately from Intel’s INSITE Library, (order PRINTS, Insite order code BG61) and is also available 
along with many other useful tools in Intel’s NDS-II Software Tool Box.

4-57



AP-242

APPENDIX A
PROGRAM FLOW CHART

START PRINT$FILES;

231478-1

4-58



AP-242inteT

4-59



AP-242

PROGRAM FLOW CHART (Continued)

inteT

231478-3

4-60



AP-242

APPENDIX B 
PROGRAM LISTING

PL/M-80 COMPILER PRINT FILES PAGE 1
ISIS-II PL/M-80 V4.0 COMPILATION OF MODULE PRINTFILES 
COMPILER INVOKED BY: :fl:plm80 :F3:prince.p80 PAGEWIDTH(80)

$TITLE (1 PRICE*) PAGEWIDTH(80)
1 Prince: do;

Jnolist include(:f3:procs.p80)
$list

j  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ppQgpQjn s t a r t  ************************* y

r

450
451
452
453
454
455
456
458
459
460
461
463
464
465
467
468
469
470
471
472
473

Read input line and set log file. Signon to log file, then determine 
system type. Check for optional baud rate control, and DTR/DSR control.
Then set up the 8251'USART per the system type.

V1 call read (1,.input^buffer,128,.in$buffer$actual,.status) ;
1 do i = 0 to in$bufferftactual-1; /* UPPER CASE the input buffer.*/
2 input?buffer(i) = setftupperftcase(inputftbuffer(i)) ;
2 end;
1 call setftlogftfile ; /* Set up the log file. */
1 call printftmessage(0) ; /* Signon to log file. */
1 if (high$byte<l) or (highftbyte>5) then do ;/* Exit if invalid */
2 call print^message(11) ; /* system type. */ •
2 end;

/* Check if Line Printer specified in command.*/ 
call setjfdevice ;
if lpftflag <> true then do;/* If not line printer, set USART. */ 

call setftbaud; /* Set baud rate.*/
call setftdsr; /* Check for DTR/DSR control. */
if system$is$SII or systemftisftSIV then do;

serial$output=.s$serial$output; /* Use SeriesII/IV */
wait$for$printer=.s$wait$for$printer; /* serial chn. */ 
end;

call initializeftusart; 
end;

/* How much free memory below the Overlay base? */ 
limit = 0E87FH - .memory; 
do forever;
/* Any files to be printed ? */

4-61



AP-242inter

474 2
475 2
476 2
477 2
478 2
479 2

481 3
482 3
483 4
485 5
486 5
487 5
488 4
489 3
491 4
492 4
493 4
494 5
496 6
497 6
498 6
499 5
500 4
501 3

502 3
503 4 
.s ta tu s )
504 4

505 3
506 3
507 3
508 3
509 3
510 3
511 3

512 3
513 3 
PL/M-80

r  P r in t
514 3
515 3
516 3
517 3
518 3
519 3
520 3

call load(.('ISIS.0V0 ')» 0, 0, .entry, .status); 
call checkjstatus(1) ; 
start = 0;
call getd(8, .start, 1000, .actual, .dir$dump, .status); 
call checkftstatus(2) ;
if actual <> 0 then do index = 0 to actual - 1;

/* Something to be printed */
/* Format the filename */

3 = 4;
do i = 0 to 5;

if dirftdump(index).filename(1) <> 0 then do ; 
filename(j) = dirftdump(index).filename(i); 
3 = 1 + 1 ;
end;

end;
if dir$dump(index) .filename(6) <> 0 then do ; 

filename(3) = '.' ; .
3 = 3 + 1 ;  
do i = 6 to 8;

if dirjdump(index).filename(i) <> 0 then do; 
filename(3) =dir$dump(index).filename(i) ; 

.. 3 = 3 +1;
end;

end;
end;

filename(3) = V ' ;
/* Filename formatted, get the file */ 
do while status <> e$file$open;

call open(.aftn, .filename, read-only, no$line$edit,
»

end;
/* Get information for the header */ 

filei|table.aftn = aftn;
call spath(.file$name, .file$table.device$number, .status); 
call check{status(4) ;
call load(.(1ISIS.0V1 *)> 0, 0, .entry, .status); 
call checkftstatus(3) ;
call filinf(.file$table, 1, .fileftinfo, .status); 
call checkftstatus(6) ;

I* Load ISIS.0V2 to get the TIME! */
call load(.(*ISIS.0V2 *), 0, 0, .entry, .status); 
call checkftstatus(5) ;

COMPILER PRINT FILES PAGE 3
$e3ect

the header - form feed to printer, header to log file or :co:*/ 
call print(.(FF), 1);
call open$file$safely (.aftnl,.logfile,wr}only|log); 
call write(aftnl,.header|l, length(headerjl),.status) ; 
call write(aftnl,.filename(4), (3-4),.status) ; 
call write(aftnl,.header$2, length(header}2),.status); 
call move(4, .zerofttime, .dt.systemjtime) ; 
call de$time(.dt.systemjtime, .status) ;

4-62



AP-242inteT
521 3
522 3
523 3
524 3
525 3
526 3
527 3

528 3
529 3
530 4
531 4
532 4
534 4
535 4

536 3
537 3
538 3
539 3
540 3
541 3
542 3
543 3
544 3
545 3

546 2
547 3
548 4
549 4
550 3
551 2
552 1

call write.(aftnl, .dt.time (0), 8,.status); 
call write(aftnl,.(' on 1)* 4,.status); 
call write(aftnl,.dt.date(0), 8,.status); 
call write(aftnl,.header$3, length(headerj3),.status); 
call write(aftnl,.fileinfo.owner(1), fileinfo.owner(0),.status) ; 
call writejaftnl, .(cr,lf),2,.status) ; 
call close (aftnl,.status) ;
/* Print the file */
fileftbytes = 1;
do while fileftbytes <> 0;

call read(aftn, .memory, limit, .fileftbytes, .status) ;
call check$status(8) ;
if memory(O) = FF then memory(0) =0;
call print(.memory, fileftbytes);
end;

/* File has been printed */
call close(aftn, .status) ; 
call checkftstatus(9);
call open$file$safely (.aftnl,.logfile,wr$only$log) ;
call write(aftnl,.header#4,length(header$4),.status);
call printftsize (file$info.len$hi,file$info.len$lo);
call write(aftnl, .(cr,lf),2,.status) ;
call close(aftnl, .status) ;
call delete(.filename .status);
call checkftstatus(lO) ; .
end; /* Look for next file */ >

/* No files to be printed , Wait a minute or so */ 
else do i = 0 to 60;

do j = 0 to 500; •
call time(10) ; 
end;

end;
end; /* of Do forever */ 

end Prince;

4-63



AP-242irteT

APPENDIX C
ISIS CLUSTER BOARD PREPARATION

Used with an ISIS Cluster, Prince can be driven from 
the ISIS Cluster board’s serial channel, which is nor
mally used for a terminal. With the addition of the 
special SERVER PROM for the ISIS Cluster, the 
Prince program can be automatically invoked and be
gin copying files from a network spool directory to a 
serial printer or other serial device, immediatley upon 
power-up. In this mode of operation, there is no console 
connected to the ISIS Cluster. Instead, the serial prin
ter or other serial device is connected to the console 
port, and the SERVER PROM installed on the Cluster 
board automatically logs the Cluster board onto the 
NDS-II network, then submits the ISIS.INI command 
file. This command file contains the necessary assign
ments, as well as the Prince program invocation.

To prepare the NDS-II to support the Prin’ce spooler, a 
username and home directory for the Prince program 
and SERVER prom must exist. To provide trouble free 
spooling, the username for the SERVER prom should 
be declared as a Superuser. This way, file access rights 
need not be set each time a file must be spooled, print
ed, and deleted.

The SERVER PROM image is included with the 
Prince program. The SERVER PROM image can be 
modified to change the username or password. Bytes 
OFFO to OFFC (inclusive) are reserved for the SERV
ER username, password, and string terminator (00H). 
(Note that these are PROM addresses - this PROM 
image is moved to a different location in RAM on ini
tialization.)

byte OFFDH: PROM checksum 
byte OFFEH: resreved
byte OFFFH: system ID ( 05 for Cluster - DO NOT 

CHANGE!)

The following strings are stored in the PROM image: 
username: SERVERO < CR >  
password: ©  
checksum: 082H

FFO
0 1 2 3 4 5 6 7

If you change the LOGON name and/or password, re
member to change the checksum, which is stored in 
byte OFFDH. NOTE:The checksum is actually the 
two’s compliment of the checksum calculated by the 
boot code. Thus, if you change the username to 
SERVER2 from SERVER1 (increment byte 0FF6H), 
you must decrement byte OFFDH. Changing the 
PROM image can easily be accomplished using Intel’s 
IPPS software, which is supplied with the iUP-200 
PROM programmer.

CLUSTER BOARD PREPARATION -  PROM 
BURNING
1. The PROM image is written in 286 format. Remem

ber to initialize the iPPS properly.
2. Read in PROM image, modify LOGON strings, 

modify checksum, and bum a 2732 or 2732A.
3. Remove the old monitor prom from the Cluster 

board (A25) and place in the next-door socket (A37) 
for safe keeping (may be needed by CE).

4. Install new SERVER prom in A25.
5. Install a jumper between pins 67 and 68. This ties 

Clear-to-Send/ Request-to-Send together on-board. 
Prince uses XON/XOFF or XON/XOFF and DSR 
for control, so CTS/RTS is not required between de
vices.

6. If the printer to be used operates with the hardware 
DTR/DSR protocol, configure the serial cable such 
that the printer ready line comes in on pin 6 (DSR) 
of the serial cable to the Cluster board.

7. Refer to the ISIS Cluster installation manual for fur
ther Cluster installation instructions.

8. Set up ISIS.INI file to make assignments and invoke 
PRINCE, plug it all in and go.

8 9 A B C D E F

53 45 52 56 45 52 30 0D 0D 00 spare 82 00 05 HEX
S E R V E R 0 CR CR ASCII

4-64



AP-242

APPENDIX D RELATED PUBLICATIONS
1. ISIS Users G u id e ............................................9800306 3. CP/M-80 on the NDS-II -  Application NoteAP 253
2. Network Development System II iMDX 4. ISIS Cluster Installation instructions...........................

450 . .............................................................. 210937-004

APPENDIX E ERROR MESSAGES
Prince returns messages and error conditions if certain 
external conditions prevent normal functioning of the 
spooler. All messages are directed to the log file, unless 
a fatal ISIS error occurs, preventing Prince from han
dling the error. ISIS will trap the fatal error and re-boot 
itself. Some error conditions that are not fatal ISIS er
rors are considered fatal by Prince, and after logging 
the error message in the log file, Prince will exit. The 18 
messages given by Prince are as follows:

1. Serial printer driver xxx‘
Non-fatal message - The normal sign-on message at 
Prince invocation.

2. TSIS.OVO not present on system disk*
Fatal error, Prince will exit. ISIS overlay 0 must be 
present on :F0:for Prince to function properly.

3. ‘GETD system call failed*
Non-fatal - Prince uses this system call to deter
mine the presence of files to be printed in directory 
:F8:. Possible causes for failures damaged or in
correct ISIS.OVO, file access rights, etc.

4. ‘ISIS.OVl not present on system disk*
Non-fatal - Prince must load ISIS.OV1 to support 
the file$info system call. ISIS.OV1 is not on :F0:, 
or access rights are insufficient.

5. *SPATH system call failed*
Non-fatal - SPATH returns information about the 
file to be printed for log file status of the file.

6. TSIS.OV2 not present on system disk*
Non-fatal - ISIS.OV2 is used to provide time and 
date information that is placed in the log file for all 
files printed, and all messages.

7. ‘FILINF system call failed*
Non-fatal - The fileSinfo call returns file informa
tion to be used in the log file, such as the owner of 
the file, etc. If this call fails, meaningful file infor
mation will be absent from the log.

8. ‘Could not open the file to be printed*
Non-fatal - Most common causes of this malfunc
tion are insufficient access rights to the file, or an 
invalid ISIS file name. Rename the file name, or 
give access rights to the Prince user.

9. ‘Could not read the print file*

Non-fatal - This error will occur only during the printing 
of the file, before the print has completed, but after the 
first successful open.

10. ‘Could not close the print file*
Non-fatal - Prince could not close the file just 
printed.

11. ‘Could not delete the print file*
Non-fatal - Prince attempts to delete the print file 
after printing. Most common cause of this error is 
insufficient (delete) access rights. Give Delete Ac
cess rights to the Prince user.

12. ‘Unknown System Type - not supported*
Fatal error, Prince will exit. Printfiles checks byte 
0FFFFH to discern system type. Valid types are: 
01 =  Series-II 02 =  Series-IV 05 =  ISIS Cluster

13. ‘BAUD control defaulted to 2400 baud*
Non-fatal message - An attempt was made to set a 
different baud rate per the baud rate control 
(B =  number) and number was invalid. Valid num
bers are: 110, 300, 600, 1200, 2400, 4800, 9600, 
19200.

14. ‘LOG control defaulted to :F9:print.log*
Non-fatal message - An attempt was made to redi
rect the log file, but the log file name was greater 
than 14 characters. Prince does a gross check on 
the pathname specified to assure a correct ISIS file 
name.

15. ‘DTR/DSR control activated*
Non-fatal message - The DSR control is active.

16. ‘DTR/DSR control not activated*
Non-fatal message - An attempt was made to set 
DSR other than true - DSR not true is the default.

17. ‘OUTPUT file defaulted to :F9:print.out*
Non-fatal message - An attempt was made to re-di
rect the output file, but the file name was greater 
than 14 characters. Prince does a gross check on 
the pathname specified to assure a valid ISIS file 
name.

18. ‘Could not write OUTPUT file*
Fatal Error, Prince will exit. Prince could not write 
to the output file specified, so spooling is suspend
ed.

4-65



APPLICATION AP-244
NOTE

October 1985

Distributed Job Control 
the Key to Increased Network 

Productivity

SRIVATS SAMPATH
DSO APPLICATIONS ENGINEERING

Order Number: 231480-001



AP-244

INTRODUCTION
Large software projects and shorter production sched
ules generate the need for a more flexible and produc
tive development environment, which allows users full 
access to all available resources.

Recognizing this need, Intel designed the Distributed 
Job Control (DJC) Facility into the NDS-II system. 
DJC allows currently idle networked development sys
tems to be supplied to the network as public resources. 
This is essentially a remote job execution unit to which 
jobs can be sent by other users on the network. Remote 
job execution offers higher throughput and increased 
efficiency, since more than one computer on the net
work can be controlled and used by a single user. This 
ability to manipulate idle systems on a network and 
convert them into productive systems for other users 
directly translates into increased project productivity.

DJC consists of a set of system utilites that enable the 
NDS-II system manager to more efficiently run the net
work. When all idle systems on the network are allocat
ed to other active users, the throughput and efficiency 
of the network dramatically increases. The Network 
Resource Manager (NRM) is the nerve center for the 
distributed job control system (DJC). All jobs are 
scheduled and queued by the NRM. The NRM also 
coordinates job cancellation and maintains a system log 
of job queue activity. DJC, with its powerful set of op
tions, positions itself as an invaluable tool for increased 
network productivity.

WHY DISTRIBUTED JOB CONTROL?
The need for distributed job control (remote job execu
tion) is apparent in a networked environment where a 
number of teams are working on different projects. 
With DJC, all idle systems can be channeled towards 
the particular time-critical project. As a result, the en
gineers have control over more than one system and 
increase their efficiency and productivity.

Figure 1 shows a typical NDS-II system. This network 
includes the NRM configured with two 84 MB Win
chester drives, a 600-LPM line printer, three Series IV 
Microcomputer Development Systems (one of which 
has four cluster boards), two Series IIs with one cluster 
board each, and an assortment of ICETM and 
I2ICETM modules. Although the development systems

are functionally similar, they are logically different as 
viewed by the NRM. Figure 2 illustrates the difference. 
Two teams are working on this network. Team 1 is an 
8-bit development team, and Team 2 is a 16-bit devel
opment team. Both teams are meeting tight deadlines 
and need all the system time that they can get. One 
engineer working on the 8086 project is on vacation, as 
a result, one Series IV is underused. The other two Se
ries IVs do not have anything running in their back
ground. On an average of the 14 computers available to 
this network, (the Series IVs being counted as two each 
with foreground/background capabilities), only 10 are 
being used. The percentage use rate is only 60 percent 
when it should be close to 100 percent. Percentage use 
rate can be defined as:

(Total Number of Nonidle Systems/Total Number of 
Systems)* 100

231480-2
Key-F =  Series IV Foreground 

B =  Series IV Background 
C =  ISIS cluster board

Figure 2. Non-ldle Computers are Shown Shaded

Meanwhile, the 8-bit team is trying to meet a very tight 
schedule and needs all the system time possible. This 
team requires a dedicated compile engine that will free 
its systems for interactive work, such as debugging and 
editing. DJC can help the 8-bit team by converting the 
idle machine and the backgrounds of the other two Se
ries IV systems to productive work doers. This enables 
Team 1 to have all their compiles remotely executed 
while they concentrate on editing and debugging other 
modules. These remote execution units can serve both 
teams, since the Series IV can operate in both 8-bit and 
16-bit modes. This results in definite increase in overall 
team and network productivity.

4-67



4-68

UP TO TWO PERIPHERAL

WORKSTATION
231480-1

Figure 1. A Typical NDS-II Network .

AP-244



AP-244inteT
A CLOSER LOOK AT DISTRIBUTED 
JOB CONTROL
The DJC system recognizes that the network has three 
types of stations: the NRM, private workstations, and 
import workstations. The NRM is the nerve center of 
the DJC system, and it maintains all the state informa
tion of remote jobs and status of workstations. A pri
vate workstation is one that can send jobs to the NRM  
and have them executed at other workstations on the 
network. However, it does not accept jobs from the 
NRM. These are clasified as work generators. Exam
ples of work generators are Model-800, Series II, Series 
III, Series IV and ISIS clusters.

An import workstation that can accept jobs from the 
NRM is called a work doer. Examples of work doers 
are Model-800, Series II, Series III, Series IV and ISIS 
clusters. Work generators and work doers use the same 
hardware. The software executing at the workstation 
determines if it is a generator or doer. The mix of gen- 
erators/doers may be flexibly altered through the day/ 
week/project to best suit the user’s needs. Normally, 
when a workstation is first powered up or reset, it con
figures itself as a private workstation. (The workstation 
can also be configured to power up as an import sta
tion. See Appendix A).

A private workstation can be turned into a work doer 
for the network withth e IMPORT command. The im
port command informs the NRM that the private 
workstation is now capable of doing some type, or 
types, of jobs. A station remains an import station until 
the keys CONTROL and C are pressed from its key
board. If an import station is executing a remote job 
when the CONTROL and C keys are pressed, it contin
ues executing the job until the job is finished. Only 
then, does it return to private workstation mode. A  
Series IV stationthat supports both foreground and 
background partitions can import into either fore
ground, background, or both. Thus, a physical station 
can appear as two import stations to the DJC system.

DJC UTILITIES 

Understanding Job Queues
Since the network consists of heterogeneous worksta
tions, some type of mechanism is needed to match the

job with the type of workstation it can execute on. This 
generated the concept of a job queue. A job queue can 
be envisioned as a waiting place for all work doers and 
a depository for workgener ators. Job queues are creat
ed and deleted using the QUEUE utility, and their sta- 
tis is monitored using the SYSTAT utility. Each net
work can have up to 10 queues. The system does not 
support any predefined queues. While any name may be 
used, descriptive names based on the work doer’s capa
bilities are recommended. 8-bit.q, 16-bit.q, and print.q 
are good names, while ONE.queue and compile.queue 
are not.

The system does not guarantee that a job is sent to a 
queue capable of doing the job. A Series II or ISIS 
cluster is only capable of doing 8-bit work. Therefore, 
the work generator is responsible for ensuring that the 
work doer chosen can execute the job. Multiple work 
generators can export to the same queue, and more 
than one work doer may import from a queue to get 
jobs done quicker.

Queues are maintained using files at the NRM. The 
DJC system uses these queue files to maintain job and 
queue status. These files are shared files and should not 
be tampered with.

Remote Job Execution
A job is scheduled for remote execution using the EX
PORT command. An in depth discussion on the syntax 
and use of job queues is discussed in Chapter 5 (DJC 
Utilities). The export command must specify a job 
queue capable of executing the job. Export checks if the 
queue exists and displays an exception message if the 
job is not queued. It also warns the user if there are no 
importers (work doers) currently serving the chosen 
queue. The job will wait indefinitely at the job queue 
until a work doer is assigned to import from this queue.

The exported job may have to wait for some time before 
it can be executed, since other jobs arrived at the queue 
earlier might not have been executed. The queue is a 
first-in-first-out (FIFO) file.

In this way, the DJC system keeps a track of all jobs at 
the queue and executes them on a FIFO basis.

Example:

QUEUE NAME: 16BIT.Q QUEUE NAME: 8BIT.Q
JOB NAME STATUS JOB NAME STATUS
FOUR.CSD WAITING PRINT.CSD WAITING
THREE.CSD WAITING LOCATE.CSD EXECUTING
TWO.CSD EXECUTING LINK.CSD DONE
ONE.CSD DONE COMPILE.CSD DONE

4-69



AP-244intef
When it successfully finds an importer for the specified 
job queue, the NRM will send the job over to that sta
tion. At the station, an implicit logon takes place using 
initialization options that are identical to a normal user 
logon. For example, the station will take the user’s 
INIT.CSD file and execute it first and then execute the 
job. The environment set up at the import station is 
exactly as that at normal logon. The import station, 
a“reincarnation” of the user who exported the job, has 
access to all of files the user has. It looks just as if a user 
is inputting information at the import station. The only 
difference is that, in this case, input is from a file speci
fied by the user exporting the job.

DJC Commands
DJG system on the NDS-II system has a number of 
commands that help theuser in effectively configuring 
an efficient remote job execution system. These 
are:QUEUE, IMPORT, EXPORT, CANCEL, and 
SYSTAT.

Each of these commands perform unique and impor
tant tasks to make the network distributed job control 
system a very productive and efficient solution.

QUEUE

QUEUE is a command for managing and displaying 
job queues at the NRM. The QUEUE command dis
plays the name, number of jobs outstanding and the 
number of servers. After this information is displayed, 
the user is prompted to:

ADD DELETE LIST EXIT
ADD option creates new queues. Up to 10 queues 

can exist at the NRM
DELETE option deletes a queue
LIST redisplays previously displayed information
EXIT terminates QUEUE

For example:

Anyone can delete these queues. Since there is no pro
tection offered, the use of the QUEUE command 
should be restricted to a SUPERUSER. This may be 
accomplished simply by removing world access rights 
on QUEUE. 86. However, a queue that has jobs waiting 
cannot be deleted; in this example, only 8BIT.Q can be 
deleted.

IMPORT

The syntax for the IMPORT command is the follow
ing:
IMPORT FROM queue ,queue .•••••• TO
BACKGROUND
where
queue is a character string up to 14

characters long, which names 
the queues from which the im
port station can execute jobs. 
Up to five queues may be speci
fied in the command line.

TO BACKGROUND is an option that will execute 
, the job in a background mode. 

This is a Series IV option only.

The IMPORT command declares the given worksta
tion to be a public resource on the network, converting 
it from a work generator into a work doer. This public 
resource can now receive jobs from the various queues 
in the NRM. If the user enters the name of a queue that 
does not exist at the NRM, an exception message will 
be displayed. The queues are searched for jobs accord
ing to the order in which they were listed in the com
mand line (left to right). If jobs are available on any 
queues, the import station starts processing them. The 
importing station starts by performing an implicit log
on for the user, whose job is first at the head of the 
queue. Then it processes the commands within the 
command file. At the end of the command file, the 
importing station logs off the user and looks for jobs 
from the queues to process (left to right).

> QUEUE <cr>  will bring up the following display

• NAME OF QUEUE # OF SERVERS # OF WAITING JOBS
16BIT.Q 2 1
8BIT.Q 1 0
PRINT.Q 1 2

4-70



AP-244

For example, the import station is configured to exe
cute jobs from 16bit.q, 8bit.q, and iNDXutility.q. Ini
tially, there is only one job on 8bit.q, so execution of it 
commences at the import station. During theexecution 
of this job, three more jobs arrive at 8bit.q and one at 
16bit.q. The job on 16bit.q will be the next to execute, 
since the command line in import mode is always 
scanned left to right.

All output messages from the remote job, displayed on 
the screen of the import station, may be put in a log file 
if the LOG option is specified with the EXPORT com
mand. When a station is in import mode, no local pro
cessing is possible. To reconvert the import station back 
to a private station, the user must enter CONTROL-C 
by pressing both the CONTROL and C keys.

EXPORT

The syntax for the EXPORT command is the follow
ing:
EXPORT pathname [parameters] TO queue
[fLOG/NOLOG}]
where
pathname is a valid pathname for a command 

file

parameters is a list of up to 10 parameters
queue is the queue to which the job is to be

sent
LOG, NOLOG specifies whether a log is to be kept of 

all console activity on a mass storage 
device.

The EXPORT command allows a command file com
posed at one workstation to be executed on another 
workstation. The command file must be on a public 
volume, so that the import workstation can access it. 
An example of a public volume is a volume resident at 
the NRM and not a local mass storage device. If the 
queue does not exist at the NRM, an exception message 
is displayed and the job does not get queued. LOG, 
NOLOG determines whether a log file is to be main
tained of all console activity, at the import station dur
ing the execution of that particular job.

The optional parameters specified in the command line 
are actual parameters to be substituted for the formal 
parameters embedded within the command file. In the 
example below, %0 will be replaced by the name of the 
source file specified in the command line. This way, one 
compile command file can handle programs with differ
ent names.

In this example, the command file links, and binds a 
“C” program.

Listing for:COMPILE•CSD
cc86 %0.c debug
Iink86 %0.obj, 

C/sqmain.obj, & &
C/sclib.lib, &
C/small.lib, &
C/87null.lib 
to %0.86

& '
&

bind &
ss(stack(+800h),memory(+1200h))

>EXPORT COMPILE(/C— SOURCE— DIR/ISTIME) TO 16BIT.Q LOG
>EXPORT JOB NUMBER :0027H

4-71



AP-244intef

This will export the job to the specified queue (in this 
case 16BIT.Q), print an export job number, and return 
control to the user, so that he or she may continue with 
productive work. Meanwhile, the import station acting 
as a server for 16BIT.Q will log on as the user, process 
his or her initialization file, and process the command 
file COMPILE. CSD. After all commands inCOM- 
PILE.CS D have been processed, the import station 
goes back into waiting mode and waits for other jobs to 
be sent from the NRM.

CANCEL
CANCEL [BACKGROUND/REMOTE] queue 
{(job name) (# job number)}

where
queue is the queue where the job has been queued 

for execution
job name is the final component name of the remote 

job to be cancelled
(in the previous case, the job name will be 
COMPILE)

job number is the assigned value of the remote job (this 
can be displayed by the SYSTAT com
mand discussed next).

The CANCEL command is used to cancel a back
ground or remote job. If the user wants to abort a re
mote job, the job name and job number must be en
tered. If the job name is selected and multiple instances 
of the job name are in the queue, the first one encoun
tered is deleted (this may not be the first one queued). 
To avoid this, the unique name job number may be 
used,

Example:
> CANCEL REMOTE 16BIT.Q (COMPILE) will 
result in
1NDX-W41 (V2.8) CANCEL VERSION V2.8 
""COMPILE*' CANCELLED
The job name can be substituted with the job number. 
In this case, it will be 0027H (see example under EX
PORT). Once the job is cancelled, the import station 
will execute the next job in the queue it is serving. If no 
jobs exist in the queue, it will go into a waiting mode 
for the next job.

SYSTAT

The syntax for the SYSTAT command is the following: 
SYSTAT [{QUEUE/MY JOB } (queuename 
[ » • • • • ] ) ]  TO PATHNAME [EXPAND] [ALL]

where
queuename(s) designates the name(s) of the queue(s) 

for which jobs are to be listed
pathname designates the file where the information

is listed
QUEUE displays information for all queues, or 

for only those queues explicitly listed af
ter the queue specifier. If this option is 
specified, the queuenames must be sepa
rated by commas.

MYJOB parallels the queue option but lists infor
mation about jobs belonging onlyEX- 
PAND specifies that complete informa
tion is displayed for each job. If expand 
is not specified, condensed information 
will be displayed for each job.

EXPAND specifies that complete information is 
displayed for each job. If expand is not 
specified, condensed information will be 
displayed for each job.

ALL displays appropriate information for all
jobs in the specifiedqueue(s). If ALL is 
not specified, information is displayed 
only foivwaiting or executing jobs.

The SYSTAT command is used to display information 
about the DJC subsystem to the user. There are many 
options which are best discussed by examples.

Examples:
< SYSTAT < c r >
SYSTAT VERSION V 2 .8  
QUEUE # OF JOBS #  OF IMPORT
NAME WAITING STATIONS
16BIT.Q  0 1
8BIT.Q  0 1
iNDXUTILITY.Q 1 0

This command displays the status of all queues and 
information on the number of jobs waiting and number 
of import stations serving any queue. No detailed infor
mation of actual job status is shown here.

4-72



AP-244

<SYSTAT QUEUE
SYSTAT VERSION V 2 .8

JOB STATUS FOR: 16BIT.Q

JOB NAME JOB # OWNER DATE TIME STATUS

No jobs are waiting or executing in this queue.

JOB STATUS FOR: 8BIT.Q

JOB NAME JOB # OWNER DATE TIME STATUS

No jobs are waiting or executing in this queue.

JOB STATUS FOR: iNDXUTILITY.Q

JOB NAME J O B # OWNER DATE TIME STATUS '

PRINTFILE #0028 JOHN 1 1 /3 0 /8 4 1 6 :2 0 :2 2 WAITING

This command lists by queue all jobs waiting in a queue. This helps in quickly determining the status of jobs
in a queue.

< SYSTAT QUEUE ALL
SYSTAT VERSION V 2 .8

JOB STATUS FOR: 16BIT.Q

JOB NAME JOB # OWNER DATE TIME STATUS

COMPILE #10 0 3 SRIVAT 1 1 /3 0 /8 4 1 2 :1 2 :3 0 DONE
COMPILE # 1 0 0 2 SRIVAT 1 1 /3 0 /8 4 1 2 :0 5 :1 9 DONE
COMPILE #1001 SRIVAT 1 1 /3 0 /8 4 1 1 :3 0 :2 0 DONE

JOB STATUS FOR: 8BIT.Q

JOB NAME JOB # OWNER DATE TIME STATUS

COMP #2008 WAYNE 1 1 /2 8 /8 4 1 8 :1 2 :3 0 DONE
COMP #20 0 7 WAYNE 1 1 /2 8 /8 4 1 5 :1 0 :2 0 DONE
LINK #2006 NORI 1 1 /2 7 /8 4 1 0 :1 0 :2 3 DONE

JOB STATUS FOR: iNDXUTILITY.Q

JOB NAME JOB # OWNER DATE TIME STATUS

PRINT # 2 0 0 2 JOHN 1 1 /3 0 /8 4 1 8 :1 0 :2 0 WAITING
PRINT #20 0 1 SRIVAT 1 1 /2 9 /8 4 1 2 :1 0 :2 2 DONE
PRINT #2000 WAYNE 1 1 /2 9 /8 4 1 0 :1 0 :1 0 DONE

4-73



AP-244

This command lists the status of all jobs done or wait
ing in the queue since the queue was created. This is 
useful to the system administrator to study queue use.

This command lists the status of all of the jobs that 
users have submitted. Queue files are circular files 256 
jobs long. For example, SYSTAT will display the last 
255 jobs done or waiting. If the number of jobs exceeds 
256, the first entries (jobs) into the queue file are delet
ed to make room for the new entries. The expand op
tion, which displays all these jobs, is useful for system 
administration purposes. Information containing aver
age wait time for each job, the average length of a job, 
may be obtained. The system administrator may use 
this information to install another work doer on a par
ticular job queue, thereby optimizing the system for his 
or her particular environment. This queue can be delet
ed and then recreated once this information is recorded 
to clear this log of queue activity.

RECOMMENDATIONS FOR AN 
EFFICIENT DJC SYSTEM
The following discussion outlines recommendations for 
a useful DJC system for a network. A  number of con

siderations should be made before your DJC system is 
implemented on the network.

A  minimum of three queues should exist at the 
NRM:one queue for 8-bit work, one for 16-bit work, 
and the other an indxutility queue. Normally, one serv
er is enough to serve these queues. However, if the load 
on any particular application increases, having a dedi
cated server for that queue will be more efficient.

In the example following, it is assumed that the high 
16-bit workload requires a dedicated server for the 16- 
bit work being done on the network. Therefore, a dedi
cated server for 16BIT.Q has been generated using the 
IMPORT command. The other server imports from all 
three queues. Private workstations can also be convert
ed into import stations whenever they are not being 
used. The background of one of the private worksta
tions should come up in automatic import mode on 
powerup. This is discussed in Appendix D.

4-74



AP-244inteT

APPENDIX A
Looping in Export Files

Often, a job needs to be run continuously to do a prede
termined task like checking mail. The versatility of the 
DJC system allows the user to do this in just one sub
mit file. For example, an import station can export a 
job to itself or any other server on the network.

Example:
Mail Box(%0)
Save 1 msg.file 
EXIT
eheckexist msg.file 
if ^status i 0 then .

report YOU HAVE MAIL IN BOX %0
end
export mailcheck (#0) to indxutility.q
nolog
end
This is an example of ah export file that constantly 
checks for mail in a user’s box. If a mail message exists, 
a message is sent to the user. Checkexist is a program 
that looks for a specified file and sees the value of

% status to 1 if the file exists and 0 otherwise. Report is 
a utility that sends a message to the user’s console. 
These utilities are explained in depth in the Application 
Note AP-245:“Using Command Files to speed program 
development.”

The submit file is exported using the command: 
EXPORT MAILCHECK(SRIVAT) TO 
iNDXUTILITY.Q

The import station will execute this command file and 
later reexport the job back to the queue. This job will be 
put at the end of the job queue behind all others waiting 
at this queue. It will not totally dominate the job queue. 
The only way to stop MAILCHECK once it is running 
is to use the CANCEL command. There is no limit to 
the number of times an export job can be looped.

Conditional exports can also be done from within an 
exported job. The IF, THEN, ELSE constructs of com
mand files are used. The above example is just one of 
the different ways DJC can be used. This feature is very 
useful if some remote job has to be done continuously.

4-75



AP-244intef

APPENDIX B 
REPORT.86

Since all exported jobs are remotely executed, the only 
method of monitoring their status is by using the SYS- 
TAT utility. The need for a more interactive Status re
porter becomes more pronounced. REPORT.86 has 
been designed to answer this need. REPORT is a utility

that should be included in all export files. The syntax 
for REPORT is the following:

REPORT <any message> : v

The following command file example shows how REPORT is used:

cc86 %0.c debug ; Compile the program
if ^status <> 0 than ; If error in compile

REPORT Error in compile of %0.c ; Send message to user
else ; and exit.

REPORT Successful compile. Proceeding with LINK 
link86 %0.obj, &
1/sqmain.obj, &
1/sclib.lib, &
1/small.lib, & 
l/87null.lib & 
to %0.86 &
bind & ■
ss(stack(+800h).memory(+2800h))
if %status i 0 then ; Check for error in link

REPORT Successful Link. End of Job. ; If no error inform user
else

REPORT Error while linking
end

If error inform user and 
and exit.

REPORT.86 writes the message specified into the us
er’s home directory in a file called REPORT.DAT. All 
the messages get appended on to this file. The ISIS and 
iNDX command line interpreters (CLI) have been ex
tended to check for the existence of the file 
REPORT.DAT in the user’s home directory. If the file 
exists, the contents of the file are displayed on the us
er’s screen. The CLI then deletes this file. This gives the 
user the ability to constantly monitor the execution of a 
remote job. In the above example, if there was an error 
in compilation of the program, REPORT will write the 
message “Error in Compile of filesheck.c” and the re
mote job will terminate. This message will then come 
up on the user’s terminal anywhere on the network, and 
the user can take corrective action. All messages are 
held until the user returns to the command level. They 
are not displayed instantaneously in the middle of an 
AEDIT session, for example.

The REPORT function used throughout the submit file 
will keep the user constantly informed on the success of 
all required operations. This results in greater produc
tivity, since the user does not have to wait until the 
whole submit file is over and then examine the log file. 
The extensive use of the variable %STATUS in this 
submit file requires explanation. All Intel utilities, such 
as PL/M86, C86, and LINK86, exit with a UDI call 
DQ$EXIT(0) if the operation is successful and 
DQ$EXIT(n) if the operation was not successful (N is 
any number). This value passed into the DQSEXIT call 
is stored in a variable called STATUS. This variable 
can be accessed from any submit file. Conditional oper
ations can be done by accessing this variable.

4-76



AP-244

APPENDIX C 
CHECKTIME.C

Often, a program must be executed at a particular time. 
CHECKTIME. 86 is a utility that allows a program to 
be executed at a particular time from within a submit 
file. The concept of STATUS and looping in submit 
files are used here again. This program obtains from the 
user a particular time, which can be set to be less or 
greater than system time. When the defined condition is 
satisfied, the program will exit with a return code of 1. 
Otherwise, it will exit with a return code of 0. For ex
ample, a match condition will exit with DQ$EXIT(0). 
This return code is passed on to the %STATUS vari
able that can be accessed by a submit file.

This program has been designed for doing jobs at a 
particular time of day in an export file.

The syntax for CHECKTIME. 86 is the following:
CHECKTIME greater 22:23:45 or
CHECKTIME greater 22:23 or
CHECKTIME greater 22 or
CHECKTIME g 22:23:45 or
CHECKTIME g 22:23 or
CHECKTIME g 22

This will return with a return code of 1 if the system 
time is greater than the time specified and 0 for all 
other cases.

CHECKTIME less 22:23
CHECKTIME less 22:23
CHECKTIME less 22
CHECKTIME 1 22:23
CHECKTIME 1 22:23
CHECKTIME 1 22

This will return with a return code of 1 if the system 
time is less than the time specified and 0 for all other 
cases.

For example, backup needs to be done only at a partic
ular time, preferably during the night, when the system 
load is lighter. This can be done in an export file using 
the CHECKTIME.86 utility.
F i l e s  BACKUP.CSD

CHECKTIME g 2 2 : 5 9 :0 0  
i f  ^STATUS = 1 th e n

TREE BACKUP /APS— WO/USER.DIR/ 
SRIVAT.DIR/* t o  /A PSl/SR IV A T . DIR

EXPORT BACKUP t o  iNDXUTILITY.Q 
end

In the above submit file, CHECKTIME compares the 
given time with the system time. If a match is found, it 
will exit with STATUS set to 1; otherwise it will exit 
with STATUS set to 0. If STATUS is set to 0, a match 
has not been found and the submit file will export itself 
to the queue. In this way, the jobs get stacked up on the 
queue. When the CHECKTIME condition does get sat
isfied, the export file will back up all files in the volume

APS—W O/USER.DIR/SRIVAT.DIR to the /A P S 1/ 
SRIVAT.DIR.

4-77



AP-244irtef

APPENDIX D
Configuring a Station to Come Up 

as an IMPORT Station

A workstation (Series IV) can be configured to power 
up as an import station through the SYSGEN com
mand at the NRM. SYSGEN, restricted only to the 
SUPEREfSER, will not allow any other user to modify 
the system configuration. Invoke SYSGEN by typing: 
SYSGEN

SYSGEN will then clear the screen and display all the 
workstations on the network and their Ethernet ad
dresses. Select the soft key labelled “Options”. Next, 
select the node that has to come up as an import sta
tion. SYSGEN will then display another screen with 
one of the options being:

(7) Automatic Import to Partition 1 Partition 2

Select the partition needed to to come up in import 
mode. Both partitions can be selected. SYSGEN will 
next ask for queue names that will serve that import 
station. List the queues (maximum of 10) and then exit 
from SYSGEN. Reset the network and the Series IV 
will come up as an import station on powerup. To ter
minate import mode, do a Control-C at the import sta
tion keyboard by pressing the Control and C keys 
simultaneously.

4-78



APPLICATION AP-246
NOTE

October 1985

Setting Up an Efficient 
Hierarchical File System

WAYNE ROSEN
DSO APPLICATIONS ENGINEERING

4-79
Order Number: 231482-001



AP-246in y

INTRODUCTION
Software development has become a team activity.

— Team members need an efficient file management 
scheme.

— Team members need to share common databases, 
but need to be protected against unauthorized file 
access.

Intel provides a superior hierarchical file system for file 
management, protection, and sharing in a totally con
trolled environment.

This Application Note is directed to the NDS-II or Se
ries IV SUPERUSER who is setting up the system’s

hierarchical file system (HFS) and software develop
ment environment. We will be using some hypothetical 
products to illustrate our recommendations for this 
HFS.

Intel’s NDS-II Network Resource Manager (NRM) 
and Series IV, running the iNDX operating system, en
courage a logically constructed HFS. However, unless 
set up in a well-structured manner, an HFS can cause 
many problems. As software tasks grow larger and 
more complex, a properly structured file system will 
speed overall system development.

An HFS, (a tree-type file system opposed to a flat file 
system), promotes system protection and project parti
tioning and allows users to quickly find needed files. 
Figure 1 shows a stylized HFS.

7 "  (BACKSLASH) ROOT

PHYSICAL
DEVICES
(VOLUMES)

DIRECTORIES & 
DATA FILES

ETC. FOREVER

231482-1

NOTE:
1. A “volume” is a mountable, physical device. The system maintains device names for these, which should not be 
confused with the names you give them. For example:
Device name WFO is the 85 MB Winchester drive controlled by the disk controller board’s first driver circuit.
Device name WF1 is the 84 MB Winchester drive controlled by the disk controller board’s second driver circuit.

Figure 1. A Stylized HFS

4-80



AP-246

ADVANTAGES OF AN HFS
The following are properties of Intel’s HFS (See Figure
i).
•  All files have a unique pathname starting from the 

root.
•  Each physical device represents a directory at the 

root.
•  Directories may contain data files or more directo

ries.

Where the root (represented by “/ ”) is the symbolic 
connection point for all physical volumes of an HFS.

To determine the physical volumes available to you as a 
user, enter the command “DIR / ”. For example:
DIR /
1NDX-W41 (V2.8) DIR V2.8 
DIRECTORY OF /
FILENAME LOCATION ACCESSIBILITY
SYS remote 
APSO remote 
APS1 remote 
WLR.BACKUP local

an NDS-II device
n it

a local device on 
my Series IV

siderable time, may not be worth the effort, and may 
have disastrous side effects (like never finding the ob
ject of the search).

How much simpler it is for Joe, and for anyone work
ing on his system, if a logical structure is imposed on 
the system. More importantly, how much simpler for 
all if a minimal effort is exerted to maintain this logical 
order.

Protection
Another advantage to using INTEL’S HFS properly is 
file protection. iNDX provides the capability to protect 
critical files not only from malicious tampering, but 
from accidental changes (accidents do happen!). For ex
ample, all users (even SUPERUSER) should be able to 
use a compiler; but they should not be able to change or 
delete it.

Every file in INTEL’S HFS has an “owner” associated 
with it. This owner is someone the SUPERUSER has 
defined as a system user (see the USERDEF utility). 
This owner controls access rights to his or her files by:
•  Setting the individual access rights
•  Setting the world’s (the rest of the users on the sys

tem) access rights.

A Logical Place to Put “Things”
A big advantage to using an HFS is the ability to group 
files according to user-defined relationships. Let’s illus
trate this important feature with a story.

We live in a disorganized universe. The laws of entropy 
tend to maintain and promote this disorganized state. 
Human beings fight the forces of entropy and try to 
maintain order in the small niche they carved out for 
themselves.

Superuser (including those people with secondary Super
user rights) can override the built-in protections and do 
anything to your files. This is a good reason to restrict 
the use of Superuser authority to the absolute mini
mum.

The Software Version Control System (SVCS), Intel’s 
database manager, maintains another level of protec
tion over that provided by the HFS. Features of this 
utility are discussed in Application Note AP 162 - a 
PMT tutorial.

In our small comer of the universe, some people like “a 
place for everything and everything in its place;” that 
is, they expend some energy organizing their life and 
surroundings, while others do not bother. Joe Slobot- 
nick (a very bad NDS-II manager) leans towards maxi
mum entropy. Joe does not bother to expend the mini
mal energy necessary to maintain order on his system.

Joe is the only one in the world who might know where 
something is kept on the system. Occasionally, even Joe 
forgets where something needed is stored (“I swear I 
put that file in the TEMP3 directory along with the 
other prototypes”) At this point, a mad, random-access 
search begins. This frantic search follows no known 
rules (like a binary or Shell sort), and no maximum 
search time can be calculated to tell Joe how long the 
search will take. Thus, the frantic search may take con

Your Home Directory
You will want to keep your personal files in a protected 
directory that you own. This directory should be your 
home directory defined at USERDEF time.

When you log on, the iNDX operating system will au
tomatically assign the logical names ‘ ’ (the NULL logi
cal name) and WORK: to your home directory.

LNAME Path
1NDX-W41 (V2.8) LNAME V2.8 
LOGICAL NAME PATHNAME
■ 1 /volume/USER.DIR/WAYNE.DIR
:W0RK: /volume/USER.DIR/WAYNE.DIR

4-81



AP-246

Utilities will default their operations to the NULL logi
cal name if no directory is specified, that is, the DIR  
command will give a directory listing of my home di
rectory. PLM86 SOMEFILE.PLM will look for the file 
SOMEFILE.PLM in my home directory. In addition, 
the NULL logical name is the starting point to easily 
reference subdirectories located in your home directo
ry. For example:

DIR MEMOS.DIR ;MEM0S.DIR is
a sub-directory
1NDX-W41 (V2.8) DIR V2.8 ;in my home 
directory
DIRECTORY OF /volume/USER.DIR/
WAYNE.DIR/MEMOS.DIR -full pathname 

FILE-NAME FILE-NAME FILE-NAME
MANP0W.D14 MAILD.323 UPGRAD.D12
CONF.305 SUNEWS.127 HFS.612
VACATION.N14
The NULL logical name can be redefined, but we do 
not recommend it.

The .-WORK: logical name is used by various utilities 
(including translators) for workspace. We do recom
mend redefining this logical name. For example, if you 
are logged onto a network and have an Series IV with a 
Winchester (a fast device), defining WORK: to some 
working directory on your local Winchester will speed 
you own processing and will reduce overall network 
Ethernet traffic. In fact, any temporary files created by 
you should be dispatched to this WORK: directory. At 
the end of the day, you can clean up your workspace by 
simply deleting this working directory.

As you accumulate additional files in your home direc
tory, you should break off related files into subdirecto
ries, such as:

MEMOS.DIR ;all memos
KEYRESULTS.DIR;those memos that are 

key results
In fact, we recommend that, other than needed initiali
zation or configuration files, only put other directories 
in your home directory. Figure 2 is a sample home di
rectory.

Under iNDX, the maximum directory name is 14 al- 
phanumerics. Periods as readability delimeters count as 
one of the 14 characters.

Under ISIS-III(N), the maximum directory name is 6 
dot 3. That is, six alphanumerics, a period and three 
alphanumerics for the optional extension. Also, it is 
convenient to name memos in the following form:

name.date-code
Where date_code =  Mdd (three alphanumerics)

M =  month code
(1-9 for Jan through Sep, 0 for Oct, N  for Nov, D  for 
Dec)
dd -  day of the month (0 1 -3 1 )

/VOLUME/USER.DIR/WAYNE.DIR

DIRECTORIES
ONLY

DIRECTORIES &  
DATA FILES

231482-2

Figure 2. A Sample Home Directory
4-82



AP-246

One Place For Tools
Tools (compilers, linkers, editors, etc.) should be kept 
in only one location. The world and owner should have 
DISPLAY ACCESS rights only.

This centralized tool directory is very convenient. Since 
there is only one copy of each of the tools, the system 
manager can guarantee that:
•  Everyone is using the same version of the tools
•  Tool updates need be made in one place only
•  When a system generation is done, it can be proven 

that every module was generated using the same 
tools.

This last point is very important when it comes to sys
tem validation and certification. The Department of 
Defense (DOD), the Federal Aviation Administration 
(FAA), and others require such version control guaran
tees.

What takes place inside the computer when a command 
is invoked? For example:

PLM86 some.file Debug
Based on user and system-defined search rules (dis
cussed later in this note), the operating system will be
gin searching specific directories for the PL/M86 com
piler. If the compiler is not found in the first directory, 
the operating system will then search subsequent direc
tories.

How does the operating system know if a file is in a 
directory? The operating system performs a linear 
search through the file entries until a match is found. 
Files marked as “deleted” and subdirectories count as 
entries too. The average “match time” is:

O/2) X (total #  of file entries) X (time to perform the 
match function)

To optimize system performance, you will want to:
•  Make certain that the most frequently used utilities 

are located in the first directory searched
• Order the utilities in this first directory to minimize 

“match time” for very frequently used utilities,, 
such as AEDIT, DIR, and COPY (put them into 
the tools directory first)

•  Minimize the total number of files in a directory
(especially the tools directory). The maximum num
ber of files that iNDX will allow in a directory is 
1,024. .

The Problem With Dir
Doing a directory (DIR) listing has to be one of the 
most frequently used commands of any computer sys

tem. However, doing a DIR on an unsorted directory 
that contains 756 files not only takes a lot of time, but 
limits the probability of locating all desired files. Your- 
brain and eyes have a difficult time scanning pages of 
scrolling directory listings. Approximately 75 files (one 
page of a three-column DIR listing) is the recommend
ed maximum amount of files to be scanned at one time.

How do you pick out subdirectories in a DIR listing? 
Unless you know the names of those subdirectories, an 
expanded DIR is the only way to find those directories. 
Expanded DIRs take a long time and degrade overall 
network performance. The answer? Where possible, 
suffix all directories with .DIR. Under iNDX, you have 
up to 14 characters to specify a directory name. This 
way, you will be able to find your subdirectories with a 
standard DIR listing. Or, you can search for occurrenc
es of .DIR only. For example:

DIR directory_name FOR *.DIR
However, you might prefer having 756 files (or more) 
in your directories. When you look for a particular 
file(s), you will use wildcard characters and match for a 
particular pattern. Unfortunately, this also takes time. 
Then, there is the problem of possibly missing a needed 
file that does not quite match the search pattern (or 
getting other extraneous files that do match the pat
tern).

The bottom line is this: If you have a system that sup
ports an HFS, use it wisely! And, be sure to:

GROUP RELATED FILES UNDER A  
M E A N I N G F U L L Y  
NAMED DIRECTORY!!

A SAMPLE PROJECT
The following sample project will help illustrate how to 
set up an NDS-II hierarchical file system. There are 
many projects being developed on our NDS-II network. 
The one project our group is working on is:

ROBOTWELDER a dual 186-based project

Our development environment has the following com
ponents:
•  One NDS-II
•  built-in tape cartridge (for back-up)

— One 35 MB Winchester (what we originally or
dered)

— One 84 MB Winchester (we bought this unit when 
we needed more disk space)

•  Two Series IVs
— One flippy/winny
— One flippy/flippy

4-83



AP-246

•  Two Series IIs (our original boxes, pre-network)
•  One Series III
•  Four ISIS cluster stations
•  Intel in-circuit emulators as needed.

A MODEL HFS
Software is divided into three worlds:

* * * program equivalent * * * 
TOOLS: editors, compilers, linkers, etc. (code)
USERS: you, me, and our projects (data)
SYSTEM: network operations (operating system)

In general, the tools operate on output from the users, 
Users’ files =  Tools (users’ files)

The system software is responsible for the operation of 
the computer. The system software manages the tools, 
the users’ files, and itself.

Network operation =  System (Tools, users’ files, system)

Under iNDX, the system software is responsible for file 
protection, distributed job control, resource sharing, 
electronic mail, etc.

Using The Winchesters
Since we have this particular Winchester configuration 
(see “Sample Project”), we will use the 35 MB Win
chester as the boot and system device. In fact, we will 
make this disk “read only”. All of our tools (which 
have read permission only) will reside on this disk. We 
get a performance benefit by making this disk read 
only. A disk write takes approximately seven times 
longer than a disk read (reduced head thrashing). In 
our particular configuration, we gain added perform
ance, since there are separate disk controllers for the 35 
MB and 84 MB Winchesters (each type of controller 
can support up to four disks).

Since this 35 MB disk has our tools, contains our sys
tem software, and is the boot disk, we will name it 
something meaningful. For example:

/SYS
not simply /W  or /WO.

Later, we will show why limiting this name to three 
alphanumerics is useful. An early hint: 14 characters is 
the maximum that the SEARCH CUSP presently ac
cepts.

* Wordstar is a trademark of Micropro.
** Multiplan is a registered trademark of Microsoft Corp.

You should always have at least 2 MB of spare room on 
the boot disk. iNDX creates many temporary files, 
some quite large, and puts them on this boot disk. For 
example, the SPOOL directory is the temporary hold
ing space for print jobs. If you have sent 500k worth or 
listings (all at once) to be printed, you will need at least 
500k free on the boot disk.

Tools
Let us take an in-depth look at these software tools. As 
far, as our NDS-II and workstations are concerned, 
these tools are divided between:

8-bit tools
— These tools run on the 8085 microprocessor.
— The Series II, cluster board, and Model-800 can run 

ONLY these tools.
— The hosted 8-bit operating systems are ISIS and 

CP/M.

16-bit tools
— These tools run on the 8088/8086 microprocessors.
— The Series III and Series IV run these tools (in ad

dition to being able to run all the 8 bit tools).
— The hosted 16-bit operating systems are iNDX and 

ISIS RUN.

As far as CP/M  is concerned, Intel’s development tools 
do not run under CP/M. CP/M is useful if you wish to 
include others into the development process for exam
ple, the professional using Wordstar* and the financial 
planner using Multiplan.** CP/M  running on a work
station on the network is discussed in depth DSO Ap
plication Note AP-253:Adding Value to Intel’s NDS-11 
Development System Network with Network CP/M- 
80.

It is a misconception to believe that tools running on a 
8-bit machine can only generate objects that an 8-bit 
microprocessor can use. Intel supplies a 8-bit PL/M  
compiler (i.e., runs under ISIS) that generates object 
code for an 8088/8086 microprocessor.

Due to the inertia of history or tradition, the 8-bit 
world is called:
ISIS.SYS (it would have been nice to 
call it 8BIT.DIR)•
However, we can call our 16-bit world:
16BIT.DIR.

4-84



AP-246

16BIT.DIR

It is useful and very convenient to subdivide ISIS.SYS 
and 16BIT.DIR into logical groups. Under ISIS, we 
have great flexibility to do this. A Series IV can specify 
one additional Search path right now.

We would like to digress a bit and talk about the iNDX  
SEARCH CUSP. Under ISIS, when a CUSP is invoked 
or referenced by just its name, the command line inter
preter (CLI) looks for the CUSP in the default directo
ry, :FO:. For example:

DIR ( t h i s  i s  th e  same a s  ty p in g  
:F0sDIR)

Similarly, under iNDX, when a CUSP is invoked or 
referenced by just its name, the CLI:
• First looks in the system volume directory (in our 

example, this is called /SYS).
• If not found, the CLI then looks in the directory 

specified by the NULL logical name (")• The 
NULL Logical name is defaulted to your home di
rectory and should not be changed.

It is convenient to have additional search paths. The 
current SEARCH CUSP gives us one more, which we 
can use to point to 16BIT.DIR:
SEARCH /SY S /16B IT .D IR

Thus, for our Series I Vs, our search paths are: 
/SY S/16B IT .D IR
/SYS ;boot

d e v ic e
/WORK/USER. D IR /h o m e _ d ire c to r y  ;th e  

NULL l o g i c a l  name

The CLI will first search /SYS/16BIT.DIR, then the 
boot device, and finally our home directory. A CUSP 
found in any of our search directories with an entry in 
the menu compiler, will be able to:
— Access its syntax builder
— Complete command lines (FILL ON)
— Display HELP messages for any portion of the 

command line.

Why did we limit the system volume name to three 
alphanumerics? Currently, the search pathname, 
/SYS/16BIT.DIR, cannot be longer than 14 alphanu
merics (including backslash delimeters). Our way to get 
around this limitation (if you have a longer volume 
name) is to use an LNAME.
LNAME define 16BIT.DIR for 

/long_volume_name/16BIT.DIR,
But then:
— You use one more LNAME
— This LNAME cannot be removed or redefined
— All users have to set up this LNAME.

ISIS.SYS

It seems that everyone sets up his or her own virtual 
floppy assignments in individual ISIS.INI files. We rec
ommend that the group adopt a common standard and 
stick with it. We suggest the following:

*** 8-bit workstation ***
ASSIGN :F0:to /SYS/ISIS.SYS
ASSIGN :Fl:to :F9itoday’s.project.DIR (your working directory)
ASSIGN :F2:to /work_volume/PROJECT.DIR/xxx•DIR/DATABASE•DIR/MODULE.dir 

;xxx is the project you’re working on
jmodule is the particular piece of the project you’re working on at the 
moment (if a large project)

ASSIGN :F3:to /SYS/ISIS.SYS/LIB.DIR
jlibraries, system $INCLUDE files 

ASSIGN :F4:to /SYS/ICE.DIR/which_ICE„you'refusing.DIR

ASSIGN :F9:to /work_volume/USER.DIR/home_directory.DIR

NEVER, NEVER re-ASSIGN :F9:, your home directory.



AP-246

16-BIT WORKSTATION (SERIES III)

This is a Series III in RUN mode. In addition to the assignments above, add the following:

ASSIGN :F7:to /SYS/16BIT.DIR/LIB.DIR ;16-bit libraries
ASSIGN :F8:to /SYS/16BIT.DIR ;16-bit CUSPS

DIRECTORY STRUCTURE FOR TOOLS

We will put all interactive software tools under one of 
the following directories:

/SYS/ISIS.SYS, or 
/SYS/16BIT.DIR V

based on whether the tools are hosted on an 8-bit or a 
16-bit processor.

Since commonly used $ INCLUDE files (.H files for 
you “C” people) and libraries are nonexecutable and 
are usually brought in during a SUBMIT file, we can 
put them into subdirectories:

/SYS/ISIS.SYS/LIB.DIR, and 
/SYS/16BIT.DIR/LIB.DIR

Project-related SINCLUDE files should be stored in 
the project database.

There are other files that have nothing to do with the 
host processor, such as configuration files that set up a 
terminal for an editor or PSCOPE or configure a termi
nal for a second user (Series IV). These we will put 
under:

Our target processor (the processor(s) in our product) 
has nothing to do with the host processor that our de
velopment system is running. For this reason and for 
modularity and partitioning purposes, we have elected 
to break out all of the ICE emulator software and lump 
it under a separate directory:

/SYS/ICE.DIR
For convenience, certain CUSPs should be kept in the 
root directory of the boot device. We suggest that all 
you need to leave behind are:

LOGON ;Never remove from the root 
(see Appendix A)
DIR.86 
LOGOFF.86

You may be wondering why we chose to remove as 
many CUSPs out of the root as possible. The root di
rectory of the boot device is already cluttered with 
many system files; the total number can be substantial. 
(See Appendix 1 for a list of these system files.)

Figure 3 contains our suggested directory structure for 
tools.

/SYS/CONFIG.DIR

/SYS ;volume name
/16BIT.DIR ;16-bit tools

/LIB.DIR ;libraries
/ISIS.SYS ;8-bit tools

/LIB.DIR ; libraries
/CONFIG.DIR ^configuration files

; for various terminals
/AEDIT.MAC.DIR ;.AEDIT
/STTY/CFG.DIR ; Series IV users

/ICE.DIR
/ICE51.DIR 
/ICE.86.DIR

;in-circuit emulators

/I2ICE.DIR

Figure 3. Directory Structure for Tools.

4-86



AP-246

The first thing your INIT.CSD (Series IV LOGON ini
tialization file) should do is:

SEARCH /SYS/16BIT.DIR 

THE CASE OF THE MISSING CUSPS

SET allows (re-)definition of CLI 
variables

IF conditional execution
ORIF conditional execution
ELSE conditional execution

You have looked everywhere on your disk, but you sim
ply cannot find the EXPORT.86 file. Has someone de
leted it? No! This iNDX CUSP, and other “hidden” 
CUSPs listed below, are built directly into the iNDX  
CLI.

” ’ COMMAND FILE PROCESSING
BATCH command file editor with syntax

help
SUBMIT executes the command file in

stantaneously
EXPORT executes the command file at an

other time and place
BACKGROUND executes the command file in my 

background now

* ’ ’ COMMAND FILE CONTROLS
COUNT allows multiple executions of

commands
REPEAT allows multiple executions of

commands
UNTIL used by COUNT and REPEAT
WHILE used by COUNT and REPEAT
ENDJOB terminates this command file

now
OPEN opens a parameter file
READ gets a parameter from a file

” ’MISCELLANEOUS CUSPS
SEARCH enables or lists CLI search paths
FILL enables disables CLI command

completion
LOG saves all console output to a file
END noop command for ISIS compat-

ability
RUN noop command for ISIS compat-

ability
VIEW scan a file (AEDIT-like inter

face)

The command file controls (IF, UNTIL, etc) are very 
useful for controlling command file (SUBMIT) execu
tion. (Refer to the Application Note AP 245 for further 
discussion.)

Users
The next part of our software world is for the users. 
The first part of this world contains all our personal, 
home directories. The second part of this world con
tains all the project files.

The following example shows setting up this directory. 
We are using our 84 MB Winchester as our work disk 
and, therefore, are naming it WORK1.

PEOPLE

/W0RK1
/USER.DIR

/SUPERUSER.DIR

/WAYNE.DIR
/MEMO.DIR

/KEYRESULTS.DIR 
/APNOTES.DIR 

/BRIAN.DIR 
/CHRIS.DIR 
/DEBBIE.DIR

;volume name 
;main directory
;with release 2.8 of iNDX, the 
superuser
;gets his or her own home directory

;as an example 
as an example 
;as an example

Figure 4. Setting Up Home Directories

4-87



AP-246inter
USER.DIR contains all the home directories for every
one using the system. These directories should be as
signed at USERDEF time;

USERDEF define WAYNE id 20000 DIR 
/W0RK1/USER•DIR/WAYNE•DIR .
The names of the home directories should be the user
names (the name asked for at logon time) plus the suf
fix .DIR.

NOTE:
For normal operation, I will logon as WAYNE. When 
superuser priviledges are required, I can logon as

SUPERWAYNE (previously defined as a secondary 
superuser). If you reserve logging on as SUPERUSER 
for the times you need to do a USERDEF, you can let 
the system protect you as it was designed to do.

PROJECTS

The next major directory is for our projects. Our group 
is working on ROBOTWELDER. Other groups are 
also using the NDS-II. Lump their project directories 
under PROJECT.DIR, too.

/W0RK1
/PROJECT.DIR

/ROBOTWELDER.DIR 
/DATABASE.DIR

/SYSTEM.DIR 
Only put SVCS-type 
/ASM.DIR
Only put SVCS-type 
/DISPLAY.DIR 
Only put SVCS-type 
/database4.DIR 
Only put SVCS type

;volume name
;a main project
,‘overall system database 
files in this directory.
files in this directory.
files in this directory.
files in this directory.

/yet— another— project .DIR 
/DATABASE.DIR

/SYSTEM.DIR joverall system database
Only put SVCS-type files in this directory, 
/database.2.DIR
Only put SVCS-type files in this directory.

Figure 5. Project Directories

Put all files associated with your projects into a protect
ed SVCS database. These file include source and ob
jects, SINCLUDE files, MAKE files, and documents.

Break the database into many databases, each support
ing a particular function or system block. In our exam
ple for the ROBOTWELDER project, one major sys
tem building block is called DISPLAY. We lump all 
files connected to DISPLAY into a subdirectory. DIS
PLAY is just one basic function of our slick new micro
processor-based ROBOTWELDER machine.

Each database should contain no more than 50-related 
modules to reduce database contention. The system da
tabase contains the files- associated with overall project 
maintenance and organization. These files include

block diagrams, documents and memos, timetables, and 
system integration test procedures.

You should not keep .LST files in a database or even on 
the Winchesters. They take up alot of space, and can 
always be regenerated when needed.

NOTE:
Only people using the network should have user 
names. Do not set up a user name, for example, called 
ROBOTWELDER.
We believe that if you do set up a project user name, 
such as ROBOTWELDER, with people logging on 
with this user name, you will lose control over your 
sources. It will be difficult to know who made changes 
on files. (Refer to the Applications Note AP 162 for 
further discussion.)

4-88



AP-246inter

APPENDIX A

SYSTEM FILES
Appendix A contains a list of description of those files 
that the iNDX operating system maintains in the boot 
disk. Files beginning with r?DUP are duplicate files 
maintained by the operating system in case a disk 
“glitches.” The original files are kept near the physical 
front of the disk, and the duplicates are kept near the 
back of the disk.

If the operating system detects that an original file is 
bad, a warning message will be printed and the dupli
cate files will be used. At this time, save all your files 
onto another device and reFORMAT the suspect disk. 
Otherwise, you might lose everything on your disk.

CAUTION: unless you really know what you are doing:

LEA VE ALL THE FILES LISTED B ELOW ALONE!!!

DJC Queues__________________________________________________________

1. Information about DJC queues. These file can grow to contain a maximum of 256 job entries.
16BIT.Q  ;an im port queue we c r e a t e d  f o r  1 6 - b i t  jo b s

8BIT.Q  ;an im port queue we c r e a t e d  f o r  8 - b i t  jo b s
e t c

HINT: Give your queues meaningful names, not like:
FOOWAFFLE or BOZO.

2. DJC header file.
DJC— CHK— PT ;c o n t a in s  names o f  q u e u e s , w h ich  s t a t i o n s  s e r v ic e

;w hich q u e u e s , and th e  p r o t o c o l  v e r s io n  number

Series IV Temporary Files

1. SUBMIT jobs.

8 8 — CMD— 18 ;as an exam ple
8 8 — CMD— 19 ;th e  nam ing form at i s  8 3 — CMD— x y

8 8 — CMD—■Y9
e t c .

and

8 8 — STACK— 18 ;as an exam ple
8 8 — STACK— 19

8 8 — STACK— Y9
e t c

2. LNAMES (logical names the Series IV people are using)
8 8 — LNAME— 1

8 8 — LNAME— J
e t c

4-89



AP-246inteT
Series IV and NRMCLI File

CLI-HELP ;large Series IV text file
PRM.HELP {large NRM help text file
CLI.SYN.TBL ;used by the Series IV menu compiler
PRM_SYN_TBL ;used by the NRM menu compiler
HCLI {Series IV error messages
PRM_HCLI ;NRM CLI error message

Series IV and NRM Logon Files

**'Series IV
LOGON {logon CUSP

{delete this and no one can logon to Series IV
L0G0N_HELP {online HELP text
LOGON.SYN ;logon menu line

***NRM
PRM.L0G0N {logon CUSP

{delete this and no one can log on at NRM)
PLOGON-HELP jonline HELP text
PLOGON•SYN ;logon menu line

Electronic Mail

1. MAIL.DIR is a directory. In this directory, electronic mail will set up individual mailbox directories.
MAIL.DIR
As an example:

WAYNE ;all of Wayne’s messages will be put in this 
{directory

BRIAN {Brian's mailbox (MAIL uses USERDEF usernames)

NDX Operating System
0S88.RESIDENT ;NRM operating system, iNDX.Gll (no overlays)
0S88.OVERLAY {empty (length 0)

Communication Software
SYSTEM ;a directory that contains the following files

CONFIG ;SYSGEN info (including Ethernet addresses)
MUSER.INFO terminal configuration info
C0MMID0S jcommunication info
C0MM3.X02 {Ethernet communication software
C0MM3.X03 {Ethernet communication software
INDX.W31 {OS downloaded to a SeriesIV/3
INDX.W41 {OS downloaded to a Series IV/4

4-90



AP-246inteT
Disk Maintenance

VERIFYFIX ;a directory used by the VERIFY CUSP
r ?BADBLOCKMAP ;which parts of the disk not to use
r ?DUPBADBLO CK ; duplicate
r?SPACEMAP ;which parts of the disk are used
r?DUPSPACEMAP ; duplicate
r?FNODEMAP ;which directory entries are used
r?DUPFNODEMAP ; duplicate
r?DUPFNODE jcontains all file information (redundant) 

; Note:an iNDX disk is RMX-86-compatible
r ?DUPBLO CKZERO ;a copy of the first block on the boot disk
r ?VOLUMELABEL ;name of the disk

System Files

UDF ;user-definition file (NAMES + PASSWORDS)
BAK.UDF ;a duplicate copy you should make every time ‘

; you do a USERDEF
HOME ;user names and home directories
BAK.HOME ;a duplicate copy you should make every time

; you do a USERDEF .
PUBLIC.UDF jpublic versions of UDF NAMES and home directories
BAK.PUBLIC.UDF ;a duplicate copy you should make every time

; you do a USERDEF
SPOOL ;the directory behind :SP:device
r?ACCOUNTING ;not currently used .
r?ISOLABEL jstandard ISO label
r?RESERVEDl ;reserved for future use
r?RESERVED2 jreserved for future use

4-91



AP-246

APPENDIX B

Acronyms and Definitions
iNDX (i)ntel (N)etwork (D)istributed e(X)executive

Intel’s proprietary 16-bit operating system 
that runs on the NRM and the Series IV.

ISIS (i)ntel’s (S)ystems (I)mplementation (S)uper- 
visor

Intel’s proprietary 8-bit operating system 
that runs on the Model-800, Series II, Se
ries III, Series IV and cluster stations.

RMX (R)eal time (M)ultitasking (Executive
Intel’s real-time proprietary system (8-bit 
and 16-bit versions).

CLI (C)ommand (L)ine (I)nterpreter 

CUSP (Qonnonly (U)sed (S)ystem (P)rogram 

NDS-II (N)etwork (Development (S)ystem, version II

NRM (N)etwork (R)esource (M)anager

PL/M  (P)rogramming (L)anguage for (M)icroproc- 
essors

Intel’s system’s implementation language.

PMTs (P)rogram (M)anagement (T)ools

SVCS (S)oftware (V)ersion (C)ontrol (S)ystem, one 
of the PMTs

An automated means of tracking changes 
to program source code, maintaining vari
ants of the source and objects modules for 
a program, and recording access to the 
source and object modules in a multipro
grammer environment.

MAKE not an acronym, one of the PMTs
A program designed to generate a submit 
file that can be used to construct the most 
current version of the requested software.

4-92



APPLICATION
NOTE

Adding Capability 
to the NDS-II System 
with Cluster Boards

CHRIS FEETHAM
DSO APPLICATIONS ENGINEERING

AP-247

November 1986

4-93
Order Number: 231483-001



AP-247WeT

INTRODUCTION
The ISIS cluster board (iMDX 581) was introduced 
into the NDS-II product line to reduce dramatically the 
cost of a personal workstation. It achieved this goal and 
gave the network numerous expansion opportunities. 
All of the applications discussed in this note are avail
able through the NDS-II toolbox.

ADDING ADDITIONAL USERS
The cluster board is a single MultibusR board with an 
8085-2 processor, 64 K of RAM, an RS232 serial port, 
and other supporting circuitry. Figure 1 shows a block 
diagram, and a complete circuit diagram is included in

Appendix A. A cluster board may be installed into any 
master slot of a network Model 800 or Series II, III, or 
IV development system to support an additional net
work user via a dumb terminal. This low-cost method 
of adding extra users to the network served as the pri
mary motivator for the development of the cluster 
board.

With the exception of Multibus slot, some power, and 
access to the host’s Ethernet controller board, the clus
ter board uses none of its host development system’s 
resources. The cluster board does not slow the host, 
which generally has no knowledge of its presence in the 
system. A host may support multiple cluster boards. 
Figure 2 shows the maximum number that may be add
ed to each host system.

USER
TERMINAL

MULTIBUS INTERFACE
231483-1

Figure 1. Cluster Board Block Diagram

During initialization of the host system, an operating 
system is loaded from the network resource manager 
(NRM) into the RAM of the cluster board. While ISIS 
operating system was chosen to ensure compatability 
with previous development environments, CP/M-80 
may also be used (see AP 253). During operation, ISIS 
accesses data files and programs from the protected hi
erarchical file system of the NRM using the Ethernet 
controller boards. Access to local host devices, such as 
floppy disks or Winchester disks, is not permitted.

In normal use, a dumb CRT would be connected to the 
RS232 port of the cluster board. The user would then 
have access to all of the 8-bit network tools, including 
full-screen editors, program management tools, and 
electronic mail. While some 8-bit compilers are also 
available, the cluster board is generally used for interac
tive work supportng the engineer (or the support staff). 
Access to 16-bit advanced tools is available via the Ex
port facility of the networks’ distributed job-control 
system, where the cluster user may generate a job using

4-94



AP-247

local tools and then request its execution on a more 
capable system upon the same network. This produc
tive shared-tool environment is described further in AP 
244.

It is not mandatory to install a dumb CRT. In fact, any 
RS232 device will suffice. The possibilities are endless, 
since RS232 is one of the few standards in the electron
ics industry today. Although this article will discuss 
various applications, the solution is general in nature, 
and anysystem with an RS232 interface could be con
nected to the cluster board.

REMOTE NETWORK OPERATION
Figure 3 shows the connection of an Intel iPDSTM 
portable development system. The iPDS system is espe
cially suited to 8-bit microprocessor applications devel
opment. It has many tools for individual development 
but does not include advanced network tools, such as 
electronic mail or program management. In this appli
cation, the iPDS system is at a remote site, and a mo
dem link connects the iPDS system to the NDS-II net
work.

A dumb terminal emulator program called REMOTE 
has been written for the iPDS system. This program, as 
part of the network toolbox, includes autodialing a 
Hayes smart modem. While running in terminal emula
tion mode, the iPDS can access all facilities of the net
work, including electronic mail and distributed job con
trol facilities. REMOTE also includes a file-transfer 
protocol that enables data transfer between the iPDS 
system and the NRM.

If the iPDS system is at a service location, you need a 
diagnostic program from the NRM. Or, the iPDS could 
have data gathered from a remote site to be analysed 
back at base. The possibilities are endless.

System Maximum
Clusters

Model 800 2
Series II 3
Series III 1
Series IV 3
Expansion Chassis 4

Figure 2. Adding Cluster Boards 
to Host Systems

231483-2

Figure 3. Attaching the iPDSTM System to the 
Network via an ISIS Cluster Board

ADDING AN ADDITIONAL PRINTER
An additional printer is often required on an NDS-II 
system. Letter quality printers are popular and their 
RS232 connection makes them a natural for connection 
to the cluster board. One problem - how does an output 
device such as a printer LOGON to the network and 

. initiate file transfer from file to paper.

Server is a slight modification of the standard cluster 
PROM - it includes a PROM based console to solve the 
initialization problem. After power-up the LOGON 
program calls the console input routine to input the 
user name and password - within server a user name 
and password is supplied from PROM (Refer to the 
AP-242 — Additional printer support for the NDS II 
— for more complete information.)

4-95



AP-247

Once logged on the system executes an initialization file 
ISIS.INI from the users home directory. In this server 
example a program that never exits will be chosen - 
PRINCE, a versatile serial printer driver, is such a pro
gram. Following initial drive assignments PRINCE 
polls a directory looking for files, once a file is identi
fied it is copied to the serial printer and then deleted - 
simple but most effective.

AUTOBOOT CLUSTER BOARD
BOOTUP is an extensively modified cluster PROM. 
Rather than rely upon a host system to provide its op
erating system BOOTUP allows a cluster board to load 
its own ISIS operating system from the network. Fol
lowing power-up BOOTUP initializes an SBC550 
Ethernet controller and then logs on to the NRM under 
a predefined name of ISIS. Once logged on BOOTUP 
loads its operating system from the network. Before 
passing control to the user BOOTUP seeks out and 
initializes any other cluster boards also installed within 
the same chassis.

BOOTUP provides the network user with a low cost 
method of adding software developers - take any iSBC 
chassis, add an Ethernet Comm set and a cluster board 
containing the BOOTUP PROM and the system is 
complete. Up to seven additional cluster boards may be 
added to provide a very low cost eight-user environ
ment as shown in Figure 4. BOOTUP also supports the 
server concept. The BOOTUP PROM is provided with 
the Network/Series IV Toolbox product.

CONCLUSION
I hope I have explained some of the versatility of the 
ISIS cluster board. Think of it as a universal interface 
board between the complex multi-protocol world of 
Ethernet and the straight forward start-data-stop world 
of RS232. I am sure this will prompt many new appli
cations for the product - feel free to experiment and 
benefit from your findings.

C L U o lt K  W lm  D U U lU r  rK U M

......................! ...... ..... ................... THREE A U D IIIU N A L  USERS

| SB(T 55 0  ETHERNET BOARDS
J

ISBC C H A S S IS 231483-3

Figure 4. BOOTUP Allows a Low Cost iSBC® Chassis to Act as a Host for Software Developers

4-96



4-97

i

231483-4

NOTES: unless otherwise specified
1. Capacitance values are in microfarads.
2. Resistance values are in ft, 1 /4W , 5% .
3. Customer installed capacitor.

o

(/>
H
m
33
0 3
O
>
3)
D

>
O
C3
0)

O
>
■u
>
DO

- <

A
PPEN

D
IX A



4-98

A
P-247



AP-247inteT

4-99



4-100

231483-7

A
P-247



4-101

A
P-247



4-102

A
P-247



4-103

A
P-247



AP-247inter

J

j

r
\

S V

!

!
p
m

si
c

s

a ss u $ &

G*

m i is

J S ! I
iaiSSsg'̂ a

c d j  i : S £
8o a s !i i ;

ins
3 j*sS

* S *>!{
‘ J S S 11

I
Cf_ 1(9-

a l J

*

J| MS
11 I if

g i t
a 6

*ee

$3 i*fc®
35 * q 8S

!5i
**a§§*

m

f f c l

«
* P.
P§.£ In
2 i

3 1
3*

i i i l l i i n i l l ii
rf'lr- S' 

1(1  J i t
fidsLlurA ^scrfiid2E

flSggjjggS
T

SeSS Sm ®

* *»|<J

s*§

-  * 

S!;s
< j o

m

. I

4-104



APPLICATION A P-278
NOTE

October 1986

Integrating the PC AT 
Into the Intel

Development Environment

SRIVATS SAMPATH
DSO APPLICATIONS

4-105
Order Number: 280272-001



AP-278iny
INTRODUCTION
In recent years the Personal Computer has become a 
popular vehicle for delivering computing power to the 
engineers. IBM’s latest offering the Personal Computer 
AT (Advanced Technology) incorporating INTEL’S 
80286 16-bit microprocessor, brings about a high level 
of technical sophistication into a personal computer. 
The power, speed and memory addressability of the 
80286 microprocessor is now available to the user to do 
tasks which at one time could be run only on a mini or 
mainframe.

Intel has recognized this growing trend and has intro
duced translators, debuggers and networking for the 
PC AT. The same tools that have in the past, been 
offered only on Intel’s proprietary development systems 
are now available on the PC AT under PC-DOS 3.0 or 
greater. Language translators are available for the com
plete spectrum of Intel microcontrollers (MCS®-51 and 
MCS-96 families) and microprocessors (8086, 80186, 
80286). 80386 tools will be introduced early 1987. This 
is the first time powerful software debuggers like 
PSCOPE and TSCOPE, hardware debuggers like 
I2IC E tm have been made available on a personal com
puter. Intel already supports a broad range of worksta
tions which may be networked to form a productive 
network. This application note discusses the multiple 
methods in which the PC AT may be integrated into 
this development environment.

All software discussed in this application note is avail
able (except where listed) in the Network Toolbox, Part 
No NDS2TLB 2.0, as discussed in Appendix D.

THE INTEL DEVELOPMENT 
ENVIRONMENT
The Intel development environment consists of iPDS™  
Personal Development System, Series-II’s, Series-Ill’s, 
Series-IV’s all of which can be operated standalone or 
networked through a file sever using the NRM (Net
work Resource Manager). Intel also supports industry 
standard hosts such as the DEC VAX and now we 
include the PC AT as a supported host. Figure 1 shows 
all combinations of the Intel development environment 
while Figure 2 illustrates the possible inclusion points 
of the personal computer.

This appliction note assumes that the reader is familiar 
with the current Intel Development Environmanet. For 
more information on the Intel Development Envion- 
ment please refer to:
1. AP Note Number AP-244 D J C  A  K e y  To Increased  

N etw ork  P roductivity

2. AP Note Number AP-245 C reating an E fficien t H F S

These application notes are also available in the 1986 
DSO Handbook, Order Number 210940.

This application note deals with integrating the PC AT 
into an existing Intel development environment. The 
enclosed details will allow the reader to choose the 
method that best suits the project. This applications 
note will discuss three methods of data transfer—serial 
interconnect, media transfer and networking. Of these, 
serial transfer is the most universal, media transfer is 
the most straightforward and Ethernet transfer is the 
most efficient.

SERIAL INTERCONNECTS
The simplest method of integrating the PC AT into the 
Intel development environment is through serial inter
connects. This method is inexpensive albeit slow. Serial 
interconnects also allows the user the flexibility to use 
modems to interconnect with systems which are not 
in the same location. It allows for both terminal emula
tion and file transfer at speeds of up to 9600 baud. 
Serial connections have always been a popular method 
of linking different computers. Unfortunately this has 
resulted in a variety of serial communication software 
being developed that are incompatible over different 
operating systems. Intel recognized this incompatibility 
and decided to advocate serial communication software 
that was compatible over a range of operating systems. 
The KERMIT file transfer protocol developed by Co
lumbia University, addressed all the needs of serial 
interconnects, and resolved most inadequacies in previ
ously available serial software. It also solved the multi
ple operating system incompatibility issue. KERMIT, 
is available for all hosts shown in Figure 1. Note how
ever that all KERMIT implementations are not equal. 
The specification details a minimal set of and also spec
ifies numerous additional features which may be added. 
Currently, the ISIS implementation on the iPDS sys
tem, Series II, III and Series IV is a minimal set while 
the VAX and PC implementations are both extensive. 
The XENIX and iRMX versions are good and being 
improved. KERMIT is public domain software and 
cannot be charged for. Versions for the Intel hosts are 
available from Insite for a small disk copying fee (see 
Appendix C).

The following paragraphs discuss the different methods 
of integrating the PC AT using the KERMIT file trans
fer protocol. Intel, with help from a number of custom
ers presently using our systems, has developed KER
MIT software for the following systems:
•  iPDS—Serial port
•  Series-II or III—Serial port
•  Series-IV— Serial port 2
•  ISIS cluster board—Directly into the ISIS cluster 

board

4-106



AP-278

SERIES III ISBC®
CHASSIS

VAX
VMS

IRMX™
SYSTEM

CLUSTER BOARD

Figure 1. The Intel Development Environment

KERMIT
KERMIT is a file transfer and terminal emulation pro
tocol developed by Columbia University in 1981. Since 
then KERMIT has been ported to over 30 different 
systems and is on its way in becoming an industry stan
dard protocol. The KERMIT protocol is designed 
around character oriented transmission over serial 
lines. The design allows for peculiarities in transmission 
medium and requirements of different operating envi
ronments. The KERMIT protocol incorporated fea
tures and ideas from protocols like DIALNET, DEC- 
NET and APPANET. Currently KERMIT has been 
implemented in over 26 systems. A detailed discussion 
on the KERMIT protocol is covered in Appendix A.

The following list shows the different systems and oper
ating systems that support the KERMIT protocol.

System o/s
Series-II, III, IV, iPDS ISIS
IBM 370 Series VM/CMS, MVS/TSO,

MTS
CDC Cyber NOS
DEC VAX-11/7XX VSM, UNIX
PC MS-DOS, PC-DOS
Apollo Aegis
PRIME PRIMOS
HP 3000,1000
Apple 11 6502 Apple DOS

KERMIT is a two ended protocol. It needs the remote 
system to have KERMIT running on it too, to do file 
transfers. The KERMIT executing on the PC is MS-. 
KERMIT and the one on the Series-II, III, IV, iPDS is 
the ISIS-KERMIT. The following chapters will detail 
how this serial interconnect is established.

KERMIT can communicate over either port on the PC 
AT. Switching between the PC ports can help the PC 
user communicate with two different systems alterna
tively.

MS-KERMIT
MS-KERMIT is a program that implements the KER
MIT file transfer protocol for the IBM PC AT and 
several other machines using the same processor family 
(Intel 8088 or 8086) and operating systems family (PC- 
DOS or MS-DOS 2.0 or greater).

MS-KERMIT has an extensive command set. A brief 
summary is shown in Figure 4 wih a more detailed 
explanation in Appendix A.

ISIS KERMIT
ISIS KERMIT is a minimal KERMIT implementa
tion. This is also available in Insite as described in Ap
pendix C.

4-107



AP-278inteT

THE OpenNET™ 
NETWORK

 ̂ | PCAT

280272-2

Figure 2. Including the PC

It operates under the ISIS operating system. The basic 
command set supported by ISIS KERMIT are:

CONNECT—enters terminal mode for communication 
with host.

DEBUG— toggles debug mode on/ofF. Prints messages 
during transfers. Normally used only during trouble
shooting.

EXIT—Return back to ISIS.

SEND filename—specifies the file to be transferred to 
host. May use the ISIS :fn: drive designation to open 
file on any logical drive in the system. That drive desig
nator will be stripped from the name before it is sent to 
the host.

RECEIVE [n]—After commanding the host to send a 
particular file, or a group of files (wildcards can be used 
on hosts if they’re smart enough), press ‘HOME’ or 
‘control ]’ to drop back to ISIS-KERMIT and enter

the ‘RECEIVE’ command. If the command is followed 
by a number (0 -9 ) the files(s) will be sent to that logi
cal drive. For example, ‘REC 4’ will cause the file
name^) to be prefixed by :f4: when opened. The num
ber of drives varies, depending on which system is used.

Since there are only 5 commands, a single letter is all 
that is required to use them. .

’r 3’ is euivalent to ‘RECEIVE 3’

KERMIT is invoked as follows:

KERMIT [baud-rate] [port number]

The default baud rate is 2400, Others available are 300, 
1200,9600. ;

The port number selection is effective only on Series II. 
The iPDS system has only one port, and the Series IV 
must use to port 2, since it is global in multi-user mode.

4-108



AP-278

Series II, Series III,
Series IV, or ISBC® Chassis

Figure 3. How to Connect the PC 
to a Remote Host Using KERMIT

A TYPICAL KERMIT SESSION

With the availability of 8051 and 8044 languages on 
DOS, an existing user may need to move existing soft
ware from the iPDS system to the PC AT. The follow
ing paragraphs serve both as an example, and as a 
method to help the iPDS user set up his serial intercon
nects to do the migration. The various steps, which are 
explained in detail, include setting up the iPDS system 
for serial communications, setting up the PC and the 
actual terminal emulation and file transfer sequence. 
The steps illustrate the ease with which this migration 
is brought about.

Command Explanation
CONNECT To connect as a remote 

terminal to a remote system.
DELETE Delete local files
LOCAL Prefix for local file 

management commands
RECEIVE Receive files from remote 

system
SEND Send files to remote system
QUIT Quit from MS-KERMIT
RUN Execute a MS-DOS program
SET Set parameters like baud 

rate, serial channel
SHOW Display all parameters
EXI Exit from MS-KERMIT
DIRECTORY Directory of local PC

Figure 4. KERMIT Command Set

STEP 1.

Install ISIS KERMIT on a iPDS diskette, and create a 
CSD file ABOOT.CSD that looks like this:

SERIAL A B = 9600
;Set the serial port in ASYNC mode at 9600 

ASSIGN :C0:TO :S0:
;Redirect console out to the serial port 

ASSIGN :CI:TO :SI:
;Redirect console in to the serial port

This step sets up the iPDS for serial communication by 
initializing the serial port to communicate asynchro
nously at 9600 baud. The console I/O  redirection is 
done to enable KERMIT-MS to control the iPDS. 
Placing these commands in the ABOOT.CSD file help 
bring up the iPDS system in the right mode whenever it 
is reset.

STEP 2.

Install DOS KERMIT on the PC AT and invoke it by 
typing KERMIT from the command line.

C: \> KERMIT

IBM-PC KERMIT-MS VER 2.26 
TYPE? FOR HELP 
KEMIT-MS > SET BAUD 9600 
KERMIT-MS > connect

Once a successful connection has been made to the 
iPDS the PC AT terminal will display the iPDS 
prompt.

A0>

Now the user can do any operation like DIR, ASSIGN, 
etc., on the iPDS system from the PC keyboard.

STEP 3.

FOR FILE TRANSFER. ,

Invoke the iPDS KERMIT by typing in KERMIT

A0>KERMIT 9600 1 ;9600= baud rate and 
l=port

The ISIS KERMIT prompt will appear ISIS-KER- 
MIT>

For receiving files type in 

I SI S-KERMIT > RECEIVE :F0:

4-109



AP-278

Exit back to the PC by typing in CNTRL ] C at the 
same time. The user is now back to the KERMIT- 
MS> prompt. Now type in

KERMIT-MS > SEND EXAMPLE. BAT
A Screen comes up showing data transfer status and on 
successful completion on file transfer will give back the 
prompt. More information on setting the number of 
retries on error packets and timeouts are explained in 
Appendix A.

KERMIT-MS>

MEDIA TRANSFER UTILITIES
Diskettes constitute the main source for data and infor
mation storage. Most software is kept on diskettes for 
ease of storage, transportability, and safekeeping. Mi
grating from one host system to another involves trans
ferring this data on to the new host system media. Me
dia transfer is useful only if both hosts are at the same 
site and support a compatible peripheral device. If both 
these conditions are met, media transfer provides a fast 
convenient way for casual data transfer.

Handling diskettes and interacting with two host com
puter systems is error-prone and inconvenient. I recom
mended the other two methods of file transfer in a pro
duction environment where the two computers may 
converse without operator intervention. One major 
problem with media transfer is the lack of industry 
standards. There is an 8 inch single density standard 
(IBM 3740) but not for other densities nor for 5 y4 inch 
media. To solve this problem, special host dependent 
utility programs must be written to permit the reading 
of another systems diskettes. This was addressed for the 
PC by developing a set of utilities that allow file trans
fer from 5% inch and 8 inch. This gives the user the 
ability to move between the Series-IV environment and 
the PC-DOS environment with the least overhead and 
loss of productivity. A key factor in projects these days.

MSCOPY is program that manipulates a MS-DOC 
disk on a Series IV or NRM. It also helps the PC AT 
user access the NRM print spooler. The user can copy 
software both to and from a Series-IV. MSCOPY ex
pects the MS-DOS diskette in FLO. While running 
MSCOPY do NOT change the disk as MSCOPY keeps 
the Disk allocation table in memory and will not re
read them from a new disk but will write out the old 
table and directory.

MSCOPY supports 48 or 96 TPI disks, 8 or 9 sectors 
per track, 1 or 2 heads, MS-DOS vers. 1, 2 or 3. It does 
not support 1.2 Mb high density diskettes.

It has two modes of operation, interactive and non-in
teractive. In the non-interactive mode you may enter 
only one command and it must deal only with the 
MS-DOS root directory. To use the non-interactive 
type the command on the invocation line.

In the interactive mode, (entered by invoking 
MSCOPY with no parameters) MSCOPY will prompt 
you for a command. Currently there are seven legal 
commands.

The seven commands are:

READ msfile indxfile—Copies msfile to indxfile. msfile 
must be in the current directory, indxfile can be any 
valid iNDX pathname up to 40 characters long.

WRITE indxfile msfile—Copies indxfile to msfile. 
msfile will be added to the current directory, indxfile 
can be any valid iNDX pathname up to 40 characters 
long.

CD msdir—Changes the current directory to the direc
tory msdir. This command will only go up or down the 
tree one node at a time. To go back one level say “CD”. 
To go deeper say “CD name” where name is a dir entry 
in the current directory. Typing in “CD \ ” will jump to 
the root directory.

DELETE msfile—Removes msfile from the current di
rectory and reclaims the space it occupied.

RELAB label name—Will change or add the volume 
name of the MS-DOS disk. Label name may be up to 
eleven characters long.

DIR—Will display the current directory.

EXIT—To return to iNDX.

8" ISIS Media
Flagstaff Engineering in Phoenix, Arizona have a set of 
tools that allow direct transfer from 8" ISIS (SS/SD) 
media to PC’s. The tool set consists of a add-on board 
for the PC, an 8" drive and the driver software to do 
the required transfer. File transfer is bidirectional. The 
program ISS8T05 copies files from 8 inch media to PC, 
and ISS5T08 copies the other way. An example is 
shown in Figure 5.

Please note that Intel does not sell, support or warrant 
reliability of this product. Intel’s evaluation sample has 
proved reliable and Flagstaff technical support has been 
good. ,

For more information please contact:

Flagstaff Engineering 
Box 1970

Flagstaff, AZ 86001

4-110



AP-278

> ISS8T05
COPY INTEL ISIS DISKETTE FILE TO IBM PC-DOS FILE PROGRAM 
COPYRIGHT FLAGSTAFF ENGINEERING 10/17/83
THIS PROGRAM WILL COPY A FILE FROM A 8" ISIS SINGLE DENSITY DISKETTE TO AN IBM 
PC-DOS DATA FILE. THE FILES MUST BE CREATED USING ISIS-II OR RMX/80 SYSTEMS.
INSERT 8” ISIS DISKETTE— ENTER DRIVE(1/2) WHEN READY.? 
FILE DIRECTORY FOR DISKETTE 164539001
01-ISIS .DIR(025) 02-ISIS •MAP(002) 03-ISIS •TO(023)
04-ICE51 . (253) 05-ICE51 •0V0(020) 06-ICE51 .OVl(Oll)
07-ICE51 •0V3(027) 08-ICE51 •0V4(008) 09-ICE51 •0V5(036)
10-ICE51 •0VE(082) 11-ICE51 .0VH(498) 12-ICE51 •0VS(049)
ENTER ISIS FILE NUMBER (l-96/99=ALL)— PRESS ENTER IF NONE? 
DO YOU WANT TO COPY FROM ANOTHER ISIS DISKETTE (N/Y)?

Figure 5

NETWORKING THE PC AT WITH THE 
OpenNET™ SYSTEM

OpenNETTM Architecture
OpenNET is Intel’s Local Area Network architecture. 
OpenNET conforms to the Open Systems Interconnect 
(OSI) model defined by the International Standards Or
ganization (ISO). The major objective of ISO is to cre
ate an open systems networking environment where 
any vendor’s computer system can be connected to any 
network and freely share data with the network.

The OSI ISO architecture is based on a seven layer 
model (see Figure 6). The seven layers isolate indepen
dent functions so that the network can better make use 
of new software and hardware without adversely affect
ing the other layers. The upper three layers (5 through 
7) provide interoperation functions, while the lower 
four layers (1 through 4) provide interconnect functions 
and the bottom two layers (1 through 2) are concerned 
with the transmission through physical medium.

OpenNETTM Family
As part of Intel’s Open Development Environment 
(ODE), OpenNET supports a number of industry stan
dard hosts and operating systems. To date, OpenNET 
runs on the IBM PC family with PC-DOS 3.1 or great
er, iRMX, XENIX and iNDX as shown in Figure 7.

Since all of the above mentioned systems conform to 
the ISO seven layer model, they can all interoperate 
and interconnect over the same network.

OpenNETTM pc Link: Overview
Intel’s PC connection on the OpenNET system, named 
OpenNET PC Link, consists of an add-in controller 
board for the PC, XT or AT (Layers 1-2), the iNA960 
ISO transport software (layers 3 -4 ) and the MS-NET 
software (layers 5-7).

PC AND THE NRM FILE SERVER ON THE 
OpenNETTM SYSTEM

The remainder of this application note discusses the use 
of a PC on the OpenNET system with Intel’s Nework 
Resource Manager (NRM) as the OpenNET file server.

The current NDS-II NRM can be converted into an 
OpenNET file server by installing the iSXM™  552 
board and iNDX R3.0 or greater software (the board 
and the software have been kitted into the “NDS-II 
OpenNET Upgrade Kit”, Part #  “iMDX555”). New 
users have the choice of a Mini OpenNET NRM with a 
40 Mb disk or a Maxi OpenNET NRM with a 140 Mb 
disk (upgradeable to 4 140 Mb disks) and a 60 Mb tape.

DETAILED EXPLANATION OF CONNECTING PC 
TO THE OpenNETTM SYSTEM

The OpenNET system uses concepts such as SERV
ERS and CONSUMERS which allow a building block 
approach to creating a network that can be tailored to 
your particular specification. The following chapters 
will discuss indepth the various concepts of the Open
NET system and on how to implement PC’s and iNDX  
systems on an OpenNET network.

4-111



AP-278

Figure 6

A server is defined as a system on which network re
sources like files, directories and a printer are kept. A  
Server usually has a number of hard disks. It is called a 
“SERVER” because it serves the other systems on the 
network when they request for files and printer service. 
There may be a number of servers on the network. The 
NRM with the iSXM 552 board and iNDX 3.0 in
stalled in it acts as a SERVER for the other systems on 
the OpenNET network. XENIX and iRMX system can 
also be servers.

Computers that are linked to a server and use it as a 
resource for files and printer service are called CON
SUMERS. CONSUMERS can also operate indepen
dent of a SERVER. An example of a CONSUMER on 
the OpenNET network is the PC. It can operate inde
pendently as a workstation and also uses the NRM for 
file services. XENIX and iRMX are capable of operat
ing as consumers too.

280272-5

Figure 7



AP-278in y

Figure 8. Server and Consumer

A list of all servers and consumers on an OpenNET 
system is stored in a database file called the 
NETADDR file. This is discussed in Appendix C.

Figure 8 illustrates how the server and consumers inter
act on a network.

A SAMPLE OpenNET™ SESSION FROM THE 
PC TO THE NRM

The following paragraphs will describe how the PC 
user can access files at the NRM. But before going into 
the details a few hints on making the process automatic 
and easy.

Since the OpenNET system uses the concept of virtual 
drives, it will be beneficial to have as many virtual 
drives as possible. Refer to the Virtual Drives section 
under the Chapter “Connecting PC’s to OpenNET”. 
DOS 3.1 has a default number of virtual drives 5 (A: 
through E:), however for OpenNET more drives may 
be needed. This can be achieved through modifying the 
CONFIG.SYS file in the root directory of the PC. Edit 
this file to include the command:
lastdrive = z jincrease the number of 

virtual drives to 26.

A typical CONFIG.SYS file is shown in Figure 9.

On boot up, DOS 3.1 will read this file and automati
cally configure the PC as specified.

Now start the PC as a consumer by entering:

C :NET START RDR <this PC name>

This is specified in the NETADDR file discussed in 
Appendix C.

This command loads the PC-LINK communication 
software onto the PC-Link board, and sets up the envi
ronment for communicating with any server. This sets 
up the session layer on the controller board.

If all the steps went through successfully, the network 
software will be loaded into the PC-Link board and will 
sign on with:

# *
OpenNETTM pc Link #

Copyright 1985, Intel Corporation* *
*#* ***************************************!{«* 

C:>

Now connect to the NRM using the NET Use com
mand. The syntax for this command is:

C:> NET USE <virtual drive>\\<server name> 
\username password

Example:

C :> NET USE J:\\APPS— NRM1/GUEST WELCOME

The above command creates a virtual drive J: which 
points to the home directory of the user GUEST with a 
password WELCOME at APPS—NRM1. This drive J: 
is like any PC drive except that it points to a directory

4-113



AP-278

lastdrive = z ;Set the number of virtual drives to 26
device = \sys\ansi.sys ;Set the terminal characteristics to ANSI
files = 20 jNumber of files open at one single time
buffers = 20 ;Number of buffers for file I/O
break on ;set break key on

Figure 9

at a remote NRM. The user can do any DOS function 
like copy, dir, etc. even execute DOS applications pro
grams that are stored at the NRM in this directory. 
Just by having this capacity the PC becomes a very 
powerful and flexible workstation. By sitting at one PC 
the user can have access to several file servers.

The command will come back with a message “com
mand successfully completed” if it was successful, oth
erwise it will wait about 4 minutes before timing out 
and giving back the DOS prompt.

The user can now use this virtual drive just as if it was 
any other PC drive. For example a DIR command on 
drive J: will look like this.

C :>dir J:

Volume in drive J has no label 
Directory of J:/

INIT BAR 83 9-06-85 9:23a
INIT CSD 290 9-06-85 9:23A
CDISK CPM 401408 9-06-85 9:24a
NNMAC MAC 74 9-06-85 9 :24A
HILIB <DIR> 9-06-85 9:26a
DJC <DIR> 9-06-85 9:26a
DATABASE DIR <DIR> 9-06-85 9:55a
KERMIT DIR <DIR> 9-06-85 9:57a
IMPORT DIR <DIR> 9-06-85 10:15a
OPENNET DIR <DIR> 9-06-85 10:28a

10 File(s) 30642176 bytes free

This is the home directory of the user GUEST at the 
NRM. Users familiar with the Intel development envi
ronment, will notice that the OpenNET network trans
lated the output of the DIR command at the NRM to 
DOS format. The user can change directories at this 
drive, invoke DOS applications from this drive, if they 
are stored at the NRM, store data files on this drive. 
The underlying OpenNET protocol is transparent so all 
existing DOS applications programs can access this 
drive just as if it was stored locally.

Any time a user wants to fund out which of his virtual 
drives are connected to which servers he enters the 
NET USE command.

C:> NET USE 
Local Network 
Status Device Name

E: \\APPS_NRM1\GUEST
F: \\APPS_NRM2\GUEST
G: \\APPS-NRM1\GUEST
Command completed successfully.

More information on the NET USE commands are giv
en in the OpenNET PC Link manuals.

DISTRIBUTED JOB CONTROL 
SYSTEM FOR THE PC
The Distributed Job Control system on the NDS-II al
lows currently idle networked development systems to 
be supplied to the network as public resources. This is a 
remote job execution unit to which jobs can be sent by 
other users on the network. Remote job execution of
fers higher throughput and increased efficiency, as 
more than one computer can be controlled by a single 
user. For more information on DJC, refer to Applica
tion Note 244, “DJC A key to increased network pro
ductivity”. It is recommended that this Application 
Note be read since a number of concepts explained in 
the following paragraphs assumes that the user has 
knowledge of the DJC system at the NRM.

The Network Resource Manager (NRM) is the nerve 
center of the DJC system. All jobs are scheduled and 
queued by the NRM. Traditionally the PC user had to 
wait for his compiles to be finished locally before doing 
anything else on the PC. With the introduction of the 
OpenNET network, a mechanism has been designed to 
let the resources of DJC at the NRM be made available 
to the PC user. This feature enables the PC user to edit 
files at he PC and send the compiles over to the NRM. 
An efficient tracking system has also been designed to 
help keep the user informed at all times on the status of 
his job. With the introduction of the 286/310 iNDX  
based Compile Engine shown in Figure 10, the

4-114



AP-278

Series 
II,III,IV

Compilengine

Compilengine
iSBC®550 board 

NDSII

iSXM™552 board 
OpenNET™  
protocol

1
N R M PC-DOS XENIX

286-
iRMX™
86-

shared files,
system based

system
based
system

DJC
management

280272-7

Figure 10. PC’s, Compilengine, DJC and the OpenNETTM Systems

Reexporter ;invoke the REEXPORTER Utility-
Export Reexport to iNDXUTILITY.Q nolog ;now export this job again

Figure 11. Contents of REEXPORT.CSD

throughput on such exported jobs increases dramatical
ly. This directly translates into increased productivity 
and efficiency for the PC user.

The PC-Export package consists of a utility that runs at 
an iNDX station on the DFS side of the NRM (i.e., 
NRM itself, Series-IV or 286/310 compile Engine). 
This package called REEXPORTER. 86 checks 
through a specified directory of all users on the net
work and if any jobs from the PC exist it will export it 
to the appropriate queue at the NRM and then will 
delete the file. Each OpenNET PC user who needs ac
cess to the DJC manager at the NRM must create a 
directory NRMDJC.DIR under his/her HOME direc
tory. It is advisable to limit the above operation to only 
those users who need to access the DJC system at the 
NRM. This will help the REEXPORTER utility in 
having a faster turnaround rate, by not checking redun
dant directories.

The Superuser then has to create an export file REEX
PORT.CSD shown in Figure 11.

It is assumed that the NRM has three queues, 8bit.q 
(for 8 bit jobs), 16bit.q (for 16 bit jobs) and iNDXUT
ILITY.Q (for utilities other than compiles, limited to 
doing system administrative jobs). For more informa
tion please read Application Note #244 “DJC a Key to 
increased network productivity”. The Superuser must 
bring up a Series-IV workstation, or a 286/310 Com

pile Engine in Import mode, importing from all the 
three queues. This is shown in Figure 12.

> Import from 8bit.q, 16bit.q, indxutility.q

Figure 12

The command now puts the workstation as a network 
resource that all user can acess.

Now export REEXPORT.CSD to iNDXUTILITY.Q

> Export REEXPORT.CSD to iNDXUTILITY.Q Nolog

Exporting from the PC
To export jobs from the PC, the user must first connect 
to the NRM using the NET USE command explained 
in previous chapters. One of the design considerations 
was to make this utility as easy to use as possible. The 
following paragraphs illustrate how this has been 
brought about.

Consider this example file that does a compile and link, 
COMPILE.CSD. A requisite is that the file must have 
a .CSD extension, as it is this extension that informs the 
NRM that it is a command file.

4-115



AP-278

;queue = w16bit.qn 
lname define 1 for/winiO/libs.dir 
lname define p for /winiO/strng.dir 
plm86 example.p86 debug optimize (2) 
if % status = 0
link86 example.obj,1/compac.lib,& 
p/hstrng.lib,l/osxcom.lib & 
to example.86 bind

end

The first line in the command file is a comment, which 
also indicates the queue where this job is to be execut
ed. As far as the DJC manager is concerned, this is just 
a comment. But the REEXPORTER utility uses this 
field to find out the queue name. This comment field 
must exist within the first 128 bytes of the command 
file. An absence of this field will result in the job not 
being sent to any queue. The queue name must be en
closed within double quotes.

Since there is no way by which the NRM can access 
files stored on the PC, all source, libraries and objects 
must reside on the network. Note the two commands 
after the comment which set up the logical names for 
directories used in the job. Doing this will ensure that 
the right libraries are used. .

Now all the PC user has to do is to copy this file to the 
directory NRMDJC.DIR under their home directory 
at the NRM. The REEXPORTER utility does the rest. 
For example if virtual drive G: has been connected to 
the NRM.
C: \Copy COMPILE.CSD G: ANRMDJC.DIR

Once the job has been reexported it will be deleted from 
the directory. This helps the user in determining if the 
job got exported or not. The REEXPORTER utility 
also creates a log file in the NRMDIC.DIR directory 
for each job exported. This allows the user to find out if 
his job was successful or not. The COMPILE.CSD file 
will be replaced by a COMPILE.LOG file once the job 
has been completed. The COMPILE.LOG file is a 
LOG file of all the operations by the job.

The REEXPORTER utility was designed and imple
mented to allow the OpenNET PC user access to the 
powerful Distributed Job Control mechanism at the 
NRM. The utility has the capability to determine all 
the users on the network, work out their home directo
ries and look for jobs sent from PC’s. On finding a job, 
the utility determines the appropriate queue and reex
ports the job to that queue. The status of each job is

displayed on the screen at all times. Status information 
includes username, jobname, queue and the status of 
the exported job. The use of this utility is restricted to 
the Superuser. A normal user invoking REEXPORT
ER. 86 will generate an insufficient access rights excep
tion.

REEXPORT.CSD is a batch file configured as a job 
that runs forever. It first uses REEXPORTER to check 
for jobs in the directory NRMDJC.DIR of all users and 
exports them to appropriate queues. It then reexports 
itself to the same queue. Due to the way the DJC mech
anism is structured, the import station will start execut
ing all the jobs found by the REEXPORTER utility, 
and on completing all of them will execute the REEX
PORT.CSD job once again to look for more work to 
do. The cycle keeps repeating forever.

Referring back to the IMPORT command in Figure 12, 
highest priority is given to 8bit.q and lowest to iNDX- 
UTILITY.Q. This way the system manager makes sure 
that all jobs waiting in the first two queues are executed 
before the REEXPORT.CSD job is started again. This 
helps the NRM in controlling the queues, and not over
loading them at one single time. A point to note at this 
time is that the REEXPORTER utility is capable of 
exporting up to 23 jobs a minute.

The REEXPORT utility combined with OpenNET net
working opens out a completely new environment for 
the PC AT user. An environment where compiles, links 
and locates can be done remotely. The PC user has at 
his/her disposal the power of the iNDX Distributed 
Job Control subsystem. This help in bringing about an 
increase in productivity that normally could not have 
been achieved without Intel’s OpenNET network. The 
PC AT user can spend more time on interactive work 
such as program generation or debugging, while the 
compiles are being done elsewhere. This feature set 
should be used by developers doing system designs in 
todays world where “Time to Market” is key.

Summary
This application note has discussed in detail all the dif
ferent methods by which the PC AT can be integrated 
into the Intel Development Environment, from serial 
interfaces to networking. These different methods can 
be intermixed to suit your needs. Serial interfaces and 
disk transfers support the low end needs while Open
NET brings about a powerful new environment to the 
PC AT. This coupled with the REEXPORTER utility, 
can help increase the productivity of the PC AT user 
dramatically.

4-116



AP-278intef

APPENDIX A 
THE KERMIT PROTOCOL

THE KERMIT PROTOCOL
The KERMIT protocol is designed around character 
oriented transmission over serial lines, and incorporates 
features from decnet, arpanet, dialnet etc.

File transfer takes place over transactions. A transac
tion is an exchange of packets. A successful transaction 
is done when one system sends a packet and the remote 
system acknowledges it.

Transmission begins with a send__init packet(s) and
ends with a break__transmission (b) or error (e) packet.
All communication is done through packets, even if no 
data is being sent.

The Kermit packet is built around the following for
mat.

mark length seq type data check

All the fields are ASCII characters.

Mark
This is the synchronization character that marks the 
beginning of a packet. This is normally a cntrl-a and 
can be redefined.

Length
The number of ASCII characters within the packet fol
lowing this field. -

Seq
The packet sequence number, ranging from 0 to 63. 
Sequence numbers wrap around to 0 after each group 
of 64.

Type
The packet type is represented in a single ASCII char
acter. The different packet types are:

D data packet 
Y acknowledge

N negative acknowledge 
S send initiate 
B break transmission 
F file header 
Z end of file 
E error

Data
The contents of this packet.

Check
A checksum on the characters between, but not includ
ing the mark and check. The check for each packet is 
computed by each host and must be equal for the pack
et to be accepted.

KERMIT File Transfer Sequence
File transfer is initiated by the sender sending a send__
initiate packet, where parameters like packet length, 
time out limits are specified.

The receiver than sends an ack (y) with its own param
eters in the data field.

The sender then transmits a file—header packet which 
contains the filename in the data field. The receiver 
then sends an ack.

The sender then sends the contents of the file in data 
packets (d), any data that is not in the printable range is 
prefixed and replaced by a printable equivalent. Each d 
packet has to be acknowledged before the next one is 
sent.

After all the file data has been sent the sender then 
sends an eof packet. The receiver acks it.

End__of_transmission packet (b). The receiver acks it
and the transaction is over.

4-117



AP-278infeT

KERMIT-MS Commands

CONNECT

The CONNECT command connects the PC as a termi
nal to the remote system. KERMIT-MS uses either 
communications port 1 or 2 and uses full duplex and no 
parity. These can be changed using the SET command. 
To get back to KERMIT from terminal emulation type 
in the escape character followed by the letter C. The 
escape character by default is CENTRL-]. This can be 
modified by the SET ESCAPE commnd. SET BAUD  
changes the baud rate, SET PORT changes the serial 
port. For example: .

C:\KERMIT <cr>
KERMIT-MS>SET PROT 1 jselect port 1 
KERMIT-MS> SET BAUD 9600 
KERMIT-MS >C ; connect

SEND

The SEND command causes a file or a group of files to 
be sent from the local PC to the KERMIT on the re
mote system. The remote KERMIT must be running in 
either server or interactive mode; in the latter case the 
user must have already given a RECEIVE command 
and escaped back to the PC.

SEND filespecl [filespec2]

If filespecl contains a wildcard then all matching files 
will be sent in the same order that the DOS would show 
them on a directory listing. If filespecl contains a single 
file, the user may direct KERMIT-MS to send that file 
with a different name.

SEND KERMIT. ASM TEST. ASM would send the file 
KERMIT. ASM as TEST. ASM

or

SEND *.ASM will send all files with the extension 
.ASM to the remote system.

Once the SEND command has been invoked the name 
of each file will be displayed, packets transferred, re
tries and other counts will be displayed along with oth
er informational messages. If file transfer is successful a 
“COMPLETE” message will be displayed else an error 
message will be displayed. When the specified operation 
has been done the program will sound a beep.

Several single character commands can be given while a
file transfer is in progress.
CNTRL-X Stop sending the current file and go on 

the next one.
CNTRL-Z Abort file transfer.
CNTRL-C Return to KERMIT-MS.
CNTRL-E Send an ERROR packet to the remote 

server in an attempt to bring it back to 
server or interactive mode.

RECEIVE

The RECEIVE command tells KERMIT-MS to re
ceive a file or a group of files from the remote KER
MIT. KERMIT-MS simply waits for the file or files to 
arrive. The user should have already issued a SEND 
command at the remote KERMIT and escaped back to 
the PC before issuing the RECEIVE command.

Syntax:

RECEIVE filespec v

If the optional filespec is provided the incoming file is 
stored under that name. The filespec may include a 
device designator or may consist only of a device desig
nator. For example:
RECEIVE TEST.ONE ;will name the incoming file 

as TEST.ONE
RECEIVE A:TEST.ONE ;will name the incoming file 

as TEST.ONE and store it 
in drive A:

RECEIVE A: ;will store all incoming files
in Drive A

If an incoming file does not arrive in its entirety, KER
MIT-MS will normally discard it. This may be changed 
by the SET INCOMPLETE KEEP command, which 
will keep as much of the file that arrived successfully.

If the incoming file has the same name as a file that 
already exists and “WARNING” is set ON, KERMIT- 
MS will change the incoming file name and inform the 
user of the new name. If W ARNING has been SET 
OFF using the SET WARNING OFF command, files 
with the same name as incoming files will not survive.

SET

The SET command allows the user to modify various 
parameters for file transfer and terminal emulation. 
These parameters can be displayed with the SHOW 
command.

4-118



AP-278

APPENDIX B
SETTING UP OpenNET™ CONNECTIONS 

BETWEEN PC & NRM

APPS_NRM1
APPS_NRM2
APPS_XENIX_1
DIAG_NRM
MFNG_RMX__1
MKTG_NRM
APPS_PCAT__SS

•.address =  0x80000a0100000000aa00003510000000 
:address =  0x80000a0100000000aa000034de000000 
•.address =  0x80000a0100000000aa00002de2000000 
:address =  0x80000a0100000000aa00000c0f000000 
■.address =  0x80000a0100000000aa000006e4000000 
:address =  0x80000a0100000000aa00000304000000 
•.address =  0x00010a0100000000dd00002584000000

Figure 13

OpenNET™ CONCEPTS
To enable the PC to talk DFS-OpenNET protocol, the 
user must install a PC-Link card in the IBM PC, and 
the networking software PC-LINK supplied by Intel. 
The prerequisite is that the PC should have PC-DOS 
Version 3.1 or greater. Follow the installation instruc
tions given in the PC-Link manual. It is advisable to 
create a directory on the PC called COM (short for 
Communication S/W) and install all the PC-LINK 
software in this directory.

Once the hardware and software have been installed on 
the system the user can now use the PC as a consumer 
off of the NRM. Before going into a discussion on the 
actual use, a number of concepts have to be explained, 
to give the reader a better understanding of how 
PC’s work when networked to the NRM using the 
OpenNET protocols.

The NETADDR File
Each computer on the network is assigned a name, to 
identify it. These computers can be named anything, 
but it is preferable to have one standard naming con
vention. This makes it easier for the users to connect up 
to the server of choice. The NETADDR file is a text 
file that contains the names of these servers and their 
addresses on the network. This is extensively used by 
the PC-LINK software to connect to the desired server. 
This gives the user the flexibility to connect to any serv
er just by giving its name, and the PC-LINK software 
automatically directs the connection to that server. A 
sample NETADDR file is shown in Figure 13.

The NETADDR file above has the lists of 6 servers on 
the OpenNET network. Note the naming convention. 
The first four letters in the name indicate the depart
ment where the server is stationed. For example APPs 
is short for Applications Engineering, DIAG for Diag
nostics Engineering, MFNG Manufacturing etc. The 
rest of the name indicates the type of server (NRM, 
XENIX or RMX). This naming convention helps in 
connecting up to the different servers without any con
fusion. This file is created by each individual PC con
sumer using any standard text editor (one which does 
not put control characters in the file). One of the entries 
in the NETADDR file is the name of the users PC 
where this file resides. This is important as the 
PC-LINK software cannot be invoked without this in
formation. The name and ethemet address of the con
sumer station is necessary for the NRM OpenNET file 
server to send message packets back to the correct orig
inating consumer (i.e., the NRM should know which 
consumer station has requested for a particular process 
for sending back the response to it).

The rest of the numbers following each computer name 
are the Port address and the iSXM 552 Ethemet ad
dress of the server. An example is shown in Figure 14.

The Ethemet address of the iSXM 552 is obtained from 
the NRM on boot up. Refer to the Chapter “Installing 
the iSXM 552 in the NRM” for further details.

The MSNET.INI File
The MSNET.INI file is the PC-LINK initialization file 
for setting up the help files and loading the PC-Link

4-119



AP-278

APPS is the department where the server is located
NRM2 is the NRM name (2 is used to differentiate it from the other NRM)
80 is the port address (always 80)
00aa000034de is the ethernet address of the iSXM552 board at NRM2.

Figure 14

board with the communication software. Any time a 
PC station is brought up as a consumer this file is 
parsed and executed. The file may need a little modifi
cation if the communication software is located in some 
other directory. The sample MSNET.INI file is used as 
an example, see Figure 15.

Virtual Drives
PC-LINK uses the concept of virtual drives to connect 
to the NRM file server through the OpenNET network. 
When a connection to a NRM server is made the PC- 
LINK software creates a virtual drive, which is identi
cal to the PC drives. The only difference is that it does 
not physically exist on the PC. The user treats this as 
any other drive on the PC. The number of virtual drives 
that can be used is limited to the English alphabet (26). 
The user can connect different virtual drives to differ
ent directories at the NRM file server and all these 
drives can be used just as if they existed on the PC.

Configuring PC Link
PC Link as shipped uses default settings for its memory 
window, number of connections, interrupt levels and 
number of servers that it can access. The following par
agraphs will discuss various configuration parameters 
that will allow the user to configure PC link to suit his 
environment.

CONFIGURING THE BASE FOR THE 
PC LINK BOARD
All communication with the PC link board takes place 
via a dual-port memory, which is a 32K window that 
may start on any 64K window within the first mega
byte of addressable memory. The default base is 
OAOOOh. In some cases the window might clash with an 
existing board or application. This default can be 
changed by jumpers on the PC link board and by mak
ing modifications to the MSNET.INI file. Figure 16 
indicates all possible bases and associated jumpers.

After the jumpers have been selected, the MSNET.INI 
file has to be changed to inform the PC link software 
about the new window being used. Referring to Figure 
15:

start redirector $1 
start rdr ftl
\command.com/c type \com\pclink.msg 
chknet
xport/syssat/base:d
/file :c :\com\ubcode.mem 

session \com\netaddr 
redir
setname $1
\command.com/c psclose

The string of commands following the start redirector 
$1 or start rdr $1 indicate the sequence of events in

use
use $* /*

print $* 
printq ft*

name
setname

start redirector $1 
start rdr $1

Acommand.com /c type \com\pclink.msg 
chknet
xport/syssat /base;d 
/file scs\com\ubcode.mem\nvcss5 
session \com\netaddr 
redir
setname $1
\command.com /c psclose

Figure 15. (Sample MSNET.INI file)

loading the PC link board and starting the network. 
XPORT is the network program that loads the PC link 
board and the driver. One of the options that can be 
specified in the xport commands is the base option. In 
the previous example the base was set to D. This base 
should reflect the base at which the PC link board is 
strapped.

Configuring Connection Limits
PC link allows the user to have simultaneous connec
tions to a number of file servers which is configurable.

4-120



AP-278

The PC link defaults allow the user to connect to two 
file servers simultaneously and have up to 5 active vir
tual circuits. The MSNET.INI file supplied with PC 
link has to be modified for users who need access to 
more than two file servers and more simultaneous con
nections.

For example:

A user needs connections to three different servers. The 
first two NET USE commands will come back success
fully, however the third command will come back im
mediately with a message “Connection Refused”. This 
is due to the fact that the PC link software uses a de
fault value of 2 for the number of servers it can simulta
neously access.

Starting Address E5 E8 E11 E14
00000 E4 E7 E10 E13
10000 E4 E7 E10 E15
20000 E4 E7 E10 E13
30000 E4 E7 E10 E15
40000 E4 E9 E10 E13
50000 E4 E9 E10 E15
60000 E4 E9 E12 E13
70000 E4 E9 E12 E15
80000 E6 E7 E10 E13
90000 E6 E7 E10 E15
A0000 (DEFAULT) E6 E7 E12 E13
B0000 E6 E7 E12 E15
coooo E6 E9 E10 E13
D0000 E6 E9 E10 E15
E0000 E6 E9 E12 E13
F0000 E6 E9 E12 E15

Figure 16

C:\ NET USE H: \\APPS_NRM\JOHN PASSME
Command completed successfully
C:\ NET USE I: \\DEM0_NRM\J0HN PASSME
Command completed successfully
C:\ NET USE LPT1: \\DIAG_NRM\JOHN PASSME
Command Refused

In the above case the user tried to access more than one 
server and since the default was set at 2, the PC link

network management facility came back with an error. 
To change this default value, edit the MSNET.INI file 
and modify the REDIR specification to read:

REDIR /S:5 '.connection available for up to 
5 servers

Reboot the PC and PC link will now allow the user to 
connect to up to 5 servers simultaneously.

Another variable that can be configured is the number 
of active virtual circuits at the PC. As a default PC link 
will allow up to 5 net uses (Logons) to a server. Again 
when the default limit is exceeded the system will come 
back with a “CONNECTION REFUSED” message. 
For example consider the following NET USES:

C:\ NET USE F: \\APPS_NRM\SRIVATS PASSME
Command completed successfully
C:\ NET USE G: WAPPS-NRMUPl PASSAP1
Command completed successfully
C:\ NET USE H: \\APPS_NRM\SY1 PASSSY1
Command completed successfully
C:\ NET USE I; \\APPS_NRM\SYO PASSSYO
Command completed successfully
C:\ NET USE J: \\APPS_NRM\APO PASSAPO
Command completed successfully
C:\ NET USE K: \\APPS-NRM\JOHN PASSME
Connection Refused. '

In the above example the number of simultaneous con
nections was set at a default of 5. Modify the REDIR 
command to include the following option.
REDIR /S:5/L:10 ;connection available for up to 5 

servers and 10 simultaneous con
nections.

Reboot the system and PC link will allow the user to 
connect up to 5 servers with up to 10 simultaneous 
connections.

4-121



AP-278inteT

APPENDIX C
INSITE LIBRARY PROGRAM

MS-KERMIT and ISIS KERMIT are available from:

Intel Corporation 
2402 West Beardsley Road 
Phoenix, Arizona 85027

ATTN: Insite User’s Program Library

Telephone: (602) 869-3805

This is a public domain software and is available for a nominal charge of $25 each.

4-122



AP-278

APPENDIX D 
NDS-II/SERIES IV 
TOOLBOX V2.0

NDS-II/SERIES-IV TOOLBOX V2.0
The NDS-II/Series-IV Toolbox V2.0 is a set of 7 disk
ettes with useful programs for NDS-II/Series-IV and 
OpenNET users. The programs used from this toolbox 
were MSCOPY.86, ReExporter, NET CONNECT. It 
contains many other useful utilities. An index listing 
the various programs in the Toolbox are listed below.

NDS-li/Series IV Toolbox 2.0
Chapter 1—CONNECT........................................... 1-1
Chapter 2—NDS-II to NDS-II Communications. 2-1
Chapter 3—TREE..........................   3-1
Chapter 4—MENU COM PILER.......................   4-1
Chapter 5—MSCOPY ...........   5-1
Chapter 6—NETWORK CP/M-80...................   6-1
Chapter 7—BOOTUP.............................................. 7-1
Chapter 8—SERVER............... ........................... . .  8-1
Chapter 9—P R IN C E ...............................................  9-1
Chapter 10—PRMSLO................................................ 10-1
Chapter 11—SLEEP.....................................................11-1
Chapter 12—I D ............................................................. 12-1

Chapter 13—MDS-800 FPORT..................................13-1
Chapter 14— DBLIST...................................................14-1
Chapter 15—R EM O TE.....................  15-1
Chapter 16—PC REM OTE........................................ 16-1
Chapter 17—REPORT.................................................17-1
Chapter 18—D IR T ....................................................... 18-1
Chapter 19—VIEWPASS ............................................ 19-1
Chapter 20—FDUMP ................................................ 20-1
Chapter 21—CLOCK.................................................. 21-1
Chapter 22—IFILES.................................................... 22-1
Chapter 23—L I S T . . . . ................................................23-1
Chapter 24—TA ........................................................  .24-1
Chapter 25—M A IL M A N ...............................   .25-1
Chapter 26—CHECKEXIST..................................... 26-1
Chapter 27—CHECKTIME . . . . . . . . . . . . . . . . . . 2 7 - 1
Chapter 28—BVCLIB ......................................  28-1
Chapter 29—UDXCOM.LIB...................  29-1
Chapter 30—OSXCOM .LIB..................................... 30-1
Chapter 31—BVO SX.LIB..........................................31-1
Chapter32—XID  ...............................................32-1
Chapter 33—REEXPORTER................................... 33-1
Chapter 34—X T A R ...................................................34-1
Chapter 35—ISIS ENVIRONM ENT.......................35-1
Chapter 36—O A P .........................................................36-1

4-123



ARTICLE
REPRINT

AR-204in te l

Technical articles—__ _________ ___________—

Smart link comes to the rescue 
of software-development managers

Resource-management hardware and software join existing development systems 
into an Ethernet-based network that eases software creation and control

by James P. Schwabe, IntelCorp., Santa Clara, Calif.

□  A strong lifeline in a sea 
of complexity, the new NDS 
II network development sys
tem will help manage the 
writing of complex software 
for tomorrow’s powerful mi
crosystems. It builds on 
existing Intellec develop
ment systems and the speci
fications of the Ethernet 
protocol to create a local 
network for distributed soft
ware development.

Considerable intelligence 
is contained within the NDS 
II system, linking program
mers’ work stations and 
managing the interactive 
flow of software develop
ment that results. Commu
nications control, via 
Ethernet or an even simpler 
alternative, is split between 
the central manager and the 
work stations.

At the heart of the system 
is the network resource 
manager, which both con
trols the net of work stations 
and lets the user configure it 
to suit the development task 
under way. The NRM will 
also manage a powerful sys
tem memory of Winchester- 
technology disk drives.

The manager itself is an 
example of the boons of 
well-thought-out and com
plex software, for it contains 
powerful system  tools.
Among these features are a 
hierarchical file structure that is also distributed and a 
file-protection setup that offers the maximum flexibility 
in access to files while guaranteeing their integrity.

Important program-man
agement tools include a rou
tine that oversees the rewrit
ing of software during de
velopment and another that 
automates the generation of 
a complete program from 
the most current modules.

The NDS II is the second 
step in the evolution of 
Intel’s network architecture, 
iLNA [Electronics, Aug. 25, 
1981, p. 120]. It connects 
Intellec development sys
tems together so they can 
share large-capacity Win
chester disk drives and a 
line printer located at the 
NRM. It will also serve as 
the basis for a whole new 
line of modular development 
system tools such as remote 
emulators, logic analyzers, 
and more.

Both the NRM and each 
work station can be connect
ed directly to the Ethernet 
coaxial cable by a transceiv
er or by the Intellink com
munications module (Fig. 
1). By itself, the Intellink 
module provides nine ports 
for interconnection, creating 
a local network of nine sys
tems (eight work stations 
and one NRM). To another 
controller, the Intellink rep
resents a segm ent of 
Ethernet cable that has nine 
transceivers already in place 
and working.

For networks with a radius of 50 meters or less, 
Intellink is a simple, low-cost alternative to installing 
Ethernet cabling and transceivers. Any work station can



ETHERNET CABLE SEGMENT (500 METERS)

10- OR 50-METER 
CABLES

MDS SERIES SERIES SERIES SERIES
800 II/85 II/85 'I I I III

-M AXIM UM  OF EIGHT WORK STATIONS-

NDS-II 
OR OTHER 

WORK 
STATIONS

TRANSCEIVER TRANSCEIVER

1. Developing net. The NDS II brings existing Intel development systems, or work stations, into an Ethernet. A new network resource manager 
and the Intellink communications manager make management of distributed software development possible.

be installed by simply plugging a 50-m transceiver cable 
directly into the Intellink—a 5-second operation.

For expansion beyond nine systems or to a distance 
greater than a 50-m radius, the Intellink provides a 
built-in port for connecting the local cluster to Ethernet 
cable by means of a transceiver. Connection to the 
Ethernet allows communication with other \york sta
tions, NDS II networks, or other Ethernet-compatible 
devices that use the iLNA network architecture.

No matter which physical setup is chosen, each work 
station has independent access to, and can be directly 
accessed from, the Ethernet and the NDS II network. 
Each has a unique work-station identifier, distinguishing 
it from every other terminal in the world and ensuring 
correct communication between stations on the various 
local networks.

For multiple-net environments, each network can have 
a unique network identifier to allow their coexistence on 
one Ethernet. In. a single net, the network identifier is 
not used, but its assignment ensures an orderly pro
gression to a multi-net environment.

All current Intellec development systems can be 
upgraded to NDS II work stations. An upgrade consists 
of a communication-controller board set, software, and 
either 10- or 50-m cables.

The communication controller, a two-board set that 
plugs into any Intel Multibus chassis, provides many of 
the data- and physical-link functions of the six-layer 
standard reference model for open-systems interconnec
tion (Fig. 2). The data-link functions performed are 
framing, link management, and error detection. Physi
cal-link functions include preamble generation and 
decoding and bit encoding and decoding.

One board contains a 5-megahertz 8086 microproces
sor with local random-access and read-only memory and 
interval timers, as well as direct-memory-access channels 
for sending and receiving data at 10 megabits per 
second. The second board contains bit-serial send-and- 
receive logic, packet address-recognition logic, and

error-detection logic. The boards ensure that bad packets 
resulting from a collision are ignored.

The NRM coordinates all the work stations’ activities 
and manages file access to the shared disks. Initially, it 
will support one 8-inch 35-megabyte Winchester disk 
subsystem, as well as Intel cartridge-module disks. Mul
tiple-disk support is in the wings, along with a larger 
84-megabyte disk. It will be possible to attach six disks 
to one NRM, providing more than enough on-line shared 
storage for large program development and archiving. In 
addition, each work station can contain 2.5 megabytes of 
floppy-disk storage as a local resource.

Control contingent
The NRM (Fig. 3). comprises 13 Multibus slots, power 

supply, 8086-based system-processor board, input/out- 
put board based on the 8088 and 8089, 512-K-byte 
memory board with error checking and correction, two 
communication boards, and one 5'/4-in. floppy-disk drive. 
The cabinet also has space for a cartridge-tape unit, 
expected to be delivered in mid-1982, which will give full 
intelligent archival backup for the Winchester disks 
housed in the attached cabinet.

To protect the integrity of the network, access to the 
NRM is restricted: a special supervisory terminal con
nected to the unit’s serial port provides an interface with 
its commands and utilities. These facilities include sys
tem generation, intelligent archiving, and normal net
work maintenance such as the creation of any necessary 
user identifications.

The most important utility for system configuration is 
called Sysgen, an interactive routine designed to assist 
the supervisor, or project manager, in creating the NRM 
operating system. Sysgen makes it possible to create, 
modify, or delete system parameters, peripheral-devices 
configuration, and network configuration. It allows the 
project manager to tailor the network configuration on 
the fly in order to fit the changing needs of microproces
sor development projects.

4-125



2. New layers. To the hardware layers of Ethernet, NDS II adds 
software layers that permit up to eight users to work together. The 
network layer need not be present if NDS II is not linked to the 
Ethernet, simplifying the operating system.

From the work-station perspective, the NRM is a 
remote file system. Each station functions as a stand
alone development system for all tasks not requiring 
NRM resources. When access to these resources is 
required, the user simply logs onto the network. The 
work station’s resident operating system formats the 
appropriate file request, which the NRM processes inter
actively with other stations’ demands.

The NRM operating system is multitasking, allowing a 
work station to access a file on the shared disk while 
other stations concurrently access other disk files. The 
interleaving of disk accesses, as well as the high-speed 
packet transmissions on the Ethernet, enables each work 
station to share equally the large file store—its being 
accessed by one user does not prevent other work stations 
from gaining access.

In an eight-station environment, the performance deg
radation due to network contention and the NRM operat
ing system will be no more than 10%. This performance 
is one of the major reasons why distributed development 
systems provide a more cost-effective method for micro
processor development than time-shared systems; the 
former are much less susceptible to saturation under 
concurrent loading than are the latter.

Managing the work
To ensure efficient software development, high per

formance must be combined with tools to manage soft
ware complexity. For example, large software projects 
are often broken down into small tasks, and efficient file 
sharing becomes essential to project coordination. The 
shared-file system on NDS II is built on the RMX-86 
volume-based hierarchy in which each user directory 
represents a node on a hierarchy of directories, common
ly referred to as a hierarchial file system (Fig. 4).

Hierarchical file systems can contain a multitude of 
directories and data files. At the apex is the root volume, 
a conceptual file from which all directories emanate. The 
root volume contains all the volumes of the directories.

Each volume can contain as many directories or files as 
available disk space will allow, and any directory may 
contain other directory files or data files. Each file 
(directory or data) can be traced through the hierarchy 
by its own path name. The NDS II hierarchical file 
system goes one step further by extending from the NRM 
to include the directories at the user’s work station. 
When the user logs off the network, the only directories 
available are those on the work-station disks. When the 
user logs on, he or she gains access to the NRM system 
directories.

Thus each programmer has access to a common data 
base without the confusion of sifting through one mas
sive directory. What’s more, the structure keeps other 
users’ files out of the way. In addition, it permits logical
ly separate types of software within a user’s directory. A 
programmer can create subdirectories to separate source 
files from object files, from backup files, and so on.

As a project’s size increases, the number of directories 
and the complexity of path names in the system also 
increases. To simplify the task of accessing any particu
lar directory, the user can assign a less cumbersome 
name—what amounts to a macroinstruction. Then, the 
user simply types in this macroname. Maximum flexibil
ity is maintained, as each programmer can assign 
macronames to any directory.

An added benefit from macroname assignment is 
device transparency: the user concerns himself only with 
directories, irrespective of physical location. Physical 
devices are fixed in size and location, as opposed to 
directories, which can be adjusted to organize the con
tents in an optimal fashion.

File protection
Before accessing the network, each user must be iden

tified to the NRM through a log-on procedure. This setup 
establishes a unique user identification that is subse
quently used to control access to files and directories in 
the hierarchical file system. Each directory and data file 
has specific “owner” and “world” access rights, which 
protect against accidental modification or deletion.

A file has three possible access rights for both the 
owner and the world: read, write, and delete. A directory 
also has three similar access rights for both the owner 
and the world: list a directory, add a directory entry, and 
delete a directory entry.

The access rights in file systems improve coordination 
during software development by allowing complete mod
ules that have been tested and debugged in a user’s work 
space to be converted into read status for the world. 
Then these modules can be integrated and tested with 
other independently developed software modules. Thus 
modules declared as read-only are guaranteed to be the 
most current debugged versions, and a common data 
base of completed modules is ensured. ^

Extended to multiple-project environments, the file 
system can provide logically separate work spaces for 
each project group. Specific directories can be set aside 
for complete modules for various projects. Each user can 
develop portions of the program in a private work space 
with guaranteed file protection and can use( the public 
files (or directories) for integration and testing of the

4-126



3. Manager. The network resource manager (NRM) in the cabinet’s 
left side governs access to the 35-megabyte Winchester drive on the 
right. Access to network-managing software is gained only through a 
supervisory terminal attached directly to the NRM.

module under development. Commonly used utilities and 
compilers can be accessible in a specific directory as 
public files (read-only for world access) to eliminate the 
necessity of redundant files at each work station. As a 
result, all programmers can proceed without fear of 
inadvertent modification of private files either by others 
or by themselves.

As well as managing communications between shared 
disks and work stations, the NRM maximizes the use of 
all network resources with distributed job control, djc 
allows the user of any work station to export a batch job 
to the NRM for remote execution.

To accomplish this, the NRM classifies each work 
station into one of two groups—private and public. It 
keeps track of the public work stations and uses them to 
execute the queue of batch-type jobs. A user can declare 
any work station as public: available for use by the NRM

for remote execution. Also, a programmer can send a job 
to a specific queue at the NRM by using the export 
command. The NRM executes the job on a public work 
station and return the results to the user directory.

With DJC, the resources of the entire network can be 
shared to maximum advantage. A typical project 
involves program-module editing and debugging at Intel- 
lec series II or model 800 work stations, while a 8086- 
based Intellcc series III unit can provide a host execution 
environment to compile completed modules quickly. DJC 
allows the user to export the compilation process to the 
high-performance series III work station, then return 
immediately to other tasks while the NRM oversees the 
compilation. At any time, the users can check on job 
status or queue status by typing a command from their 
work stations.

New work stations
Currently, Intellec development systems provide a sin

gle-task environment and therefore can be declared pub
lic to the NRM as users finish on-line work. Later this 
year, Intel will introduce high-performance work sta
tions with foreground-background capability to allow a 
user to run a job in the foreground while making the 
background public so that jobs exported by other pro
grammers can be executed through DJC. Foreground- 
background capability with DJC will effectively double 
the usefulness of the work station and substantially cut 
the cost of development time.

In-house benchmark tests indicate that the perform
ance of each work station connected to the NRM is much 
improved. For example, a compilation executed with all 
file requests from the NRM hard disk is twice as fast as 
requesting files from the work station’s floppy disk. Each 
station enjoys hard-disk performance during compila
tion, assembly, and any file manipulation —at a fraction 
of the cost of a dedicated disk system.

User’s tools also speed program development, as well 
as make management easier. The most important pro
grammer tools on NDS II are sv es (software-version 
control system) and make, an automatic software- 
generation tool. They provide a superset of the functions 

offered by the SVCS and 
MAKE found in the Unix 
programmers workbench.

SVCS controls and docu
ments changes to software 
products, handling both 
source and object files. It 
contains facilities for storing 
and retrieving different ver
sions of a given program 
module, for controlling up
date privileges, and for re
cording who made what 
changes, when, and why.

Documentation of module 
status and of the levels, or 
versions, involved is the key 
factor determining the suc
cess of program develop
ment by group effort. Valu-

4. Climbing an inverted tree. To find a file in the NDS II, the user first goes to the root volume of this 
hierarchical file structure. From that volume, he or she can go to the project volume assigned by the 
project manager and access other directories or files that have been declared accessible.

4-127



MAKEing It easy to revise programs
NDS-H’s MAKE facility is a development tool for both 
generation and documentation of a software system. Sup
pose, for example, a software system called PGM.86 
consists of three separate programs linked together, and, 
for simpiicity, that each program consists of only one 
compiled source file, rather than a subsystem of multiple 
files. This relationship forms a dependency that would be 
graphed by the user as in the figure below.

With the MAKE facility, a user can create an automated- 
generation procedure for the system PGM.86 that checks 
the currency of each subprogram. A MAKE command file 
that does so is illustrated in the accompanying table.

When the command file is invoked, the commands it 
contains are executed in top-down fashion. In step 1 of 
the table, the facility first checks if the PGM.86 is older 
(represented by the greater-than sign) than any of its 
dependent object-code modules. The facility checks and 
compares the date and time stamp of each module with 
that Of PGM.86. Date and time stamps are updated auto
matically whenever a file is modified.

If any of the object modules are newer versions, then 
MAKE is instructed to link together the latest versions of 
the object modules to form the latest version of the 
software system. Before executing the link . routine, the 
MAKE facility must first check to see if any of the object 
files are older than the related source files given in the 
dependency graph, as shown in steps 2, 3, and 4.

The MAKE facility goes through each step and executes 
the specified task only if the specified condition is true. 
Once the dependency graph is created, the MAKE facility 
can quickly and automatically generate the latest version 
of a software system under development even when 
source files change frequently.

The MAKE facility removes much of the guesswork 
surrounding software-system generation by ensuring the 
latest versions of source code is incorporated into the final 
software system. The dependency graph in its current 
form can also be printed by NDS II to document the 
software-system construction without having to keep an 
out-of-date sketch taped to the laboratory wall.

able development time can be lost trying to work some
one else’s modified modules if documentation specifying 
what, where, when, and why changes were made is not 
available. In fact, as programs become more complicat
ed, even the module writer may not exactly remember 
the history of the module.

Automatic documentation
SVCS provides a tool for automatic documentation of 

these facts. When a new module is created, it is set to 
level 1. All subsequent versions of the module are main
tained with in a single file. Changes to the module are 
stored as “deltas” to the original. SVCS automatically 
records what changes were made and when they were 
made, and it requires the modifier to specify a reason for 
the change. The project manager may create a software 
checkpoint at any time by declaring the module as the 
next release level; subsequent deltas will then be applied 
to only this new release level.

Other capabilities in SVCS also increase project con
trol. Restrictions may be placed on who is allowed to

make changes to which modules and at which levels. An 
identification facility is also included, allowing the sys
tem to stamp modules containing object code with ver
sion information. From this information alone, a user 
can determine the level of source code used to generate 
the object module and thereby determine exactly which 
level of software is current and which level is being 
executed. To aid support groups in future maintenance 
of the program, any level of a software system can be 
regenerated from the original modules.

The second important program management tool on 
NDS-II is called MAKE, (see “MAKEing it easy to revise 
programs,” above). When MAKE is invoked, a software 
system is automatically generated from the most current 
version of specific modules delineated by a dependency 
graph. MAKE ensures that the software generation is 
current and correct, while recompiling only program 
modules that need to be updated. To coincide with the 
concept of modular program development, any compo
nent of a MAKE could invoke another make to generate 
a lower-level component such as a library. □

Reprinted from E LE C TR O N IC S , March 10, 1982, copyright 1982 by McGraw-Hill, Inc., with all rights reserved.

4-128



ARTICLE
REPRINT

AR-425in y

IEEE SPECTRUM March 1986

Helping Computers 
Communicate

JOHN VOELCKER

4-129 O r d e r  N u m b e r : 280 27 1-00 1





Helping computers 
communicate
The Open Systems Interconnection model promises compatibility fo r  a variety 
o f  computer systems, although not all its functions are yet defined

Computers made by different companies ordinarily 
do not “ talk” to one another. This aloofness some
times applies even to different types of computers 
made by the same company. And when it comes to 
computerized systems, like machine tools and auto
matic teller machines, the communications prob
lems can be nightmarish. Aside from expensive cus
tomized adapters and software links, compatibility 
remains an elusive target of the computer industry.

Even when two computers or computerized sys
tems can be made to talk to each other, problems may arise in get
ting networks—whether telephone, satellite, or microwave—to 
handle the conversation. Will universal compatibility among 
computers, computerized equipment, and communications net
works ever become reality?

Many industry leaders believe that the Open Systems Intercon
nection (OSI) model is the key to making users’ dreams come 
true. The set of OSI standards being developed by the Interna
tional Organization for Standardization (ISO) in Geneva, Swit
zerland, is a framework for defining the communications process 
between systems. It includes a Reference Model, with seven 
layers that define the functions involved in communicating; and 
definitions of the services required to perform these functions.

To implement the OSI model, the ISO also describes protocols 
—specifications for how information is coded and passed be
tween parties in a communication. Only protocols can actually 
be implemented; both the Reference Model and the service defi
nitions are merely structures for discussing the functions in
volved in communications between dissimilar equipment.

Standards are emerging gradually
Computers, computerized equipment, and communications 

networks are all covered by OSI. This has created considerable 
confusion among users, because systems that manufacturers 
claim “conform to OSI” may not necessarily be compatible with 
other systems for which the claim is made. What the label means 
is that the equipment uses some o f the OSI standards—a subset 
of those that have been defined so far. Testing for OSI confor
mance is just beginning.

Many of the protocols to implement OSI are now complete, 
and some manufacturers offer products to implement various of 
these standards. The ISO will continue to expand the functions 
covered by OSI as new communications network architectures 
and technologies emerge. But the revisions are being made, the 
architects say, so that older equipment will not be rendered ob
solete.

Some companies—General Motors and the Boeing Co., for 
example—already specify the use o f OSI protocols in certain 
computer networks. IBM is examining how it can make its own 
computers and network standards communicate with OSI equip
ment. Digital Equipment Corp. has announced that within three

John Voelcker A ssocia te E d ito r

years, it will replace proprietary protocols in its 
DECnet network with OSI protocols. A number of 
suppliers have banded together in a new group, the 
Corporation for Open Systems, to promote accep
tance and use o f OSI protocols. In short, the out
look for OSI is promising.

No one contends, of course, that all computer
ized equipment should be covered by OSI. There 
seems little need, for example, to allow the 
microprocessor in a new refrigerator to communi

cate with the international banking industry’s funds-transfer net
work. But in many industries, the ability to interconnect many 
different computer systems and communications networks could 
radically improve the way business is done.

Frustrations abound
Consider the plight of a design engineer who must use a newly 

installed computer-aided engineering (CAE) system to analyze 
the deformation of a cylindrical strut with a load applied. The 
strut was designed on an older computer-aided design (CAD) 
system made by another company; the system uses a different 
graphic descriptor language to represent cylinders than the CAE 
system does. The design engineer must enter the description of

Defining terms
Application process: a part within an open system that pro
cesses information and uses OSI communication services to 
communicate with other application processes in other open 
systems.
Channel: the part of a communications system that connects a 
message source to a message link; a path for electrical trans
mission between two or more points.
Conversation: an interactive exchange of information between 
two systems or systems users.
Function: an action performed to further the communications 
process by parts of a communications system.
Gateway: devices or systems to connect different network ar
chitectures having different protocols by providing protocol 
translation. Gateways may use all seven layers of the OSI 
model, but must include Layers 1 through 4.
Layer a set of network-related services within an OSI network
ing architecture.
Open system: a computer processor or set of connected pro
cessors, for which standards are published, that allows an ap
plication running in the system to communicate with other ap
plications in the same or other systems.
Packet-switching: the use of software to route messages dy
namically from source to destination within a communications 
network.
Protocol: a specification for coding messages exchanged be
tween two communications processes.
Service: a function offered by some part of an open system to 
communicating application processes.

COMPUTERS

4-131



7
A p p lic a t io n

la y e r

3
N e tw o rk

la ye r

f l j  The O SI Reference M odel breaks the process o f  com m unicat
ing into an orderly sequence o f  seven layers.

the strut into the CAE system to analyze it. But if he makes any 
specification changes, he will have to enter them into the oki 
CAD system, which will ultimately generate the drawings to pro
duce the part.

These drawings will be sent to the machine shop, where a pro
totype part will be produced on a digitally controlled lathe. Once 
again, the part description must be entered into a computer ter
minal—that of the machine tool—before the next step in the pro
duction process can be completed. If all o f these machines could 
communicate, the engineer could change the specification and 
transmit the design automatically to the machine tool.

The systems designer who must connect automated office 
equipment from several manufacturers faces a similarly challeng
ing task. While compatible personal computers can be connected 
to one of the many local-area networks, other types of computers 
are not so easily attached. '

An IBM mainframe used for accounting and corporate rec
ord-keeping, for example, cannot easily exchange information 
with the company’s personal computers. Even the physical media 
for data storage differ—large tape drives for the mainframe, 
514-inch floppy diskettes for the personal computer.

To “hardwire” the personal computers to the mainframe 
would require, among other accommodations, the ability to 
translate every file from one character set to another. The same 
obstacle applies to most minicomputers, which might be used for 
other applications like inventory control in a small warehouse.

This lack of compatibility has remained essentially unchanged 
for at least 20 years. Families of computers or computerized 
equipment from a single manufacturer can be connected by 
proprietary communications protocols, but this ties users to a 
particular supplier’s equipment, locking out competing 
manufacturers.

OSI to the rescue
The OSI model offers a way to establish unity in the fragment

ed computer and communications fields. It provides a frame
work for connecting open systems; allowing any supplier to con
struct a system that communicates with another made by a differ
ent company.

Richard desJardins, chairman of the ISO subcommittee re

sponsible for OSI, notes, “The OSI Reference Model simply de
scribes the many functions involved in a communication between 
two computers or systenis, and the terms used to define those 
functions.”

Implementations of these functions consist o f software written 
to span the gap between the application process, which starts the 
communication—a program in an automated teller machine, say, 
that responds to a customer’s balance request—and the physical 
medium over which the communication travels—the bank’s pri
vate telephone lines, in this case. Often this software is embedded 
in special-purpose circuitry that is included in computers or other 
communications equipment.

The physical medium is simply the “channel” over which the 
message is sent. It includes not only the wires in a telephone 
system, but also transmitting and receiving stations for satel
lite and microwave communications, as well as local-area net
works.

In each layer of the Reference Model, major functions have 
been defined. International standards define the services and the 
protocols to implement them. The OSI Reference Model, de
fined by ISO 7498, is complete and was adopted by the ISO in 
1984 [Fig. 1].

The bottom layer o f the Reference Model, Layer 1, is called 
the Physical Layer. It includes the functions to activate, main
tain, and deactivate the physical connection. It defines both the 
functional and procedural characteristics of the interface to the 
physical circuit; the electrical and mechanical specifications arc 
considered to be part of the medium itself.

Layer 2, the Data Link Layer, covers synchronization and er
ror control for the information transmitted over the physical 
link, regardless o f the content. This can be thought of as “point- 
to-point error checking.”

Layer 3 is the Network Layer. Its functions include routing 
communications through network resources to the system where 
the communicating application resides; segmentation and 
reassembly o f data units; and some error correction.

The Network Layer acts as the network controller by deciding 
where to route data—either out along a physical network path or 
up to an application process. Data routed between networks or 
from node to node within a network requires only the functions 
of Layers 1 to 3 [Fig. 2]. The network node is called a relay 
system.

End-to-end reliability ensured
The Transport Layer, Layer 4, includes such functions as mul

tiplexing a number o f independent message streams over a single 
connection when desired, and segmenting data into appropriate
ly sized units for efficient handling by the Network Layer. 
Through these functions, it compensates for differences in the 
network services that have been provided. It also provides end- 
to-end control of data reliability, regardless o f the type or quality 
of the network used.

The functions of Layer 5, the Session Layer, are to manage 
and synchronize conversations between two application process
es. Data streams, for example, are marked and resynchronized to 
ensure that dialogues are not cut off prematurely. The layer pro
vides two main styles of dialogue: two-way alternating (half
duplex), in which two parties alternate in sending messages to 
each other; and two-way simultaneous (full-duplex), in which 
two parties may send and receive at the same time.

The Session Layer’s control functions are analogous to the use 
o f control language to run a computer system. While Layer 5 
selects the type of service, the Network Layer chooses appropri
ate facilities and the Data Link Layer formats the messages.

Layer 6, the Presentation Layer, ensures that information is 
delivered in a form that the receiving system can understand and 
use. The format and language (syntax) o f messages can be deter
mined by the communicating parties; the functions o f the Pre
sentation Layer translate if required. The meaning (semantics) o f 
the message is preserved. If, for example, one application process

4-132



transmitted a file in ASCII code, while another used IBM’s EBC
DIC, the two sides would negotiate which encoding to use and 
which side would perform translation.

The top of the Reference Model, Layer 7, is the Application 
Layer. To support distributed applications, its functions manipu
late information. It provides resource management for file trans
fer, virtual file and virtual terminal emulation, distributed pro
cessing, and other functions. It is the layer that will contain the 
most functionality, and it is certainly the one in which the widest 
variety of work is being done at present.

Viewed as a system, the layers of the Reference Model can be 
broken into two groups. The bottom three layers—Physical, 
Data Link, and Network—cover the components of the network 
used to transmit the message. The top three layers, however, 
generally reflect the characteristics of the communicating end 
systems. Their functions take place without regard for the physi
cal medium actually used, whether it is a satellite, an X.25 net
work, or a local-area network (LAN). Only the two parties to a 
communication invoke the functions of the Session, Presenta
tion, and Application layers. The Transport Layer acts as the liai
son between the end system and the network.

Freedom o f  services provided
At each layer of the Reference Model, there are services to 

carry out the functions. For instance, a service such as requesting 
initialization of a conversation is needed to initiate the control 
function for a conversation between two end systems.

The services defined for each layer are performed by building 
on services provided by the layer directly underneath. Converse
ly, the services at each layer are called upon by those at the next 
higher layer. Thus when an application process initiates a com
munication, it passes its message down through each layer. The 
functions of each layer add value by providing services that 
enable the communication to be completed.

One shining feature of OSI is that these service definitions are 
independent. In other words, any service can be implemented re
gardless of the methods used to implement services in the layers 
above and below it. Error checking, for instance, may be provid
ed in different systems by dissimilar devices or by unique soft
ware. As long as the device or software provides the service de
fined by OSI, using an approved protocol, it will perform the 
same function for the end user.

Specifying independent services allowed protocols for several 
layers o f the model to be developed in parallel, before Subcom
mittee 21 of ISO’s Technical Committee 97 had defined the entire 
set of services. In theory, it also allows individual service defini
tions to be modified without disturbing other layers in the model. 
However, few users are likely to implement protocols in such a 
way that their interfaces correspond to all the service boundaries. 
Instead, for instance, a single ROM chip might provide the func
tions of two or three layers together.

The ISO specifies protocols for each service definition within 
the layers of the model. These are descriptions of the bit coding 
formats in which specific information is passed between process
es, as well as the procedures to interpret it. Protocols operate bet
ween “peer entities” —the parts of a system providing services 
for a given layer—in the different end systems. Thus information 
about Network Layer protocols in a message sent by one system 
is used only by the Network Layer in the receiving system.

A number of protocols may implement a given service, and 
more than one service may be provided by each layer of the Ref
erence Model. In this respect, OSI can be viewed as a collection 
of worldwide engineering design activities, with overall coordina
tion provided by the ISO Reference Model. Thousands of engi
neers from hundreds o f organizations worldwide participate, in
cluding all major computer and network manufacturers.

The service definitions and protocols are in various states of 
development for each layer [Fig. 3]. Service definitions have been 
completed for Layers 2 ,3 , and 4, and work on other layers is well 
underway. Protocols for some layers are already international

standards, including Network, Transport, and Session layers. 
The working group’s goal is to complete the initial set of proto
cols for the Application and Presentation layers of the Reference 
Model by the end of 1986.

Some manufacturers have already moved to implement OSI 
protocols that have been completed. General Motors, for exam
ple, is using one set of OSI protocols in its Manufacturing Auto
mation Protocol (MAP). Boeing is proposing a similar set for its 
Technical and Office Protocols (TOP). [The MAP and TOP 
standards will be covered in the April issue of IEEE Spectru m .]

An application using a different set of OSI protocols, however, 
may or may not be able to communicate with MAP and TOP. 
OSI does not allow all computers and communications networks 
to communicate automatically and at will. Rather, OSI users will 
form “ communities of interest” to limit the options. They will 
define a set of services to be provided by communicating ma
chines in their particular industry and then implement those ser
vices in a handful of protocol options for each level.

Lower layers based on existing standards
The initial set of protocols for the lower OSI layers are based 

on existing international standards and thus the protocols are 
already widely implemented. There are a number of physical 
medium standards for OSI communication over short distances, 
including the traditional analog RS-232C, the more recent digital 
CCITT X.21, and the IEEE 802 LAN standards (ISO 8802.3, 
8802.4, and 8802.5). [For a comparison of the IEEE LANs with 
the OSI model, see “ Lining up against the layers,” p. 68.]

For longer-distance communication among OSI applications, 
the physical interface for the Integrated Services Digital Network 
(ISDN) may become the dominant standard [see “A universal 
plug already developed,” p. 70],
. The set of protocols that provides the services of Layer 2 over 
X.25 networks is called the High-level Data Link Control. Sev-

[21 A  message m ay pass through m any relay system s on its way 
between application processes. In an O SI application, the pa th  
taken is invisible to the end users. Only a relay system  ‘‘k n o w s” 
what route a message is using.

4-133



P r o d u c t  d e s ig n P r o c e s s  c o n tro l A u to m a te d  m a c h in e  to o ls F i le  tra n sfe r
C A D ...................... J o b  c o n tro l R o b o t s V irtu a l te rm in a l

C A E P ro g ra m m a b le D o c u m e n t  e x c h a n g e J o b  tra n sfe r
C A M c o n tro lle rs G r a p h ic s E le c t r o n ic  m a il

N u m e ric  d a ta  

G r a p h ic s  d a ta  

F in a n c ia l  d a ta

‘MilltiSf";Iw v  O a n l

[3] The "O SI wineglass”  o fp ro to co ls  show s the m any fu nctions cov
ered b y  upper layers and the multiple options f o r  physical m edia a t the 
lower layers. The Session and Transport Layers, however, have few er  
alternatives and are now  international standards.

eral subsets have been defined; work is proceeding on others. The 
first to be defined was the CCITT X.25 Link Access Procedure 
B, for balanced connection-oriented communication—that is, a 
one-to-one link over a dedicated circuit between two parties.

Next to come was an option allowing multilink communica
tion, or splitting a single communication among several physical 
channels. And most recently a new subset provides multiplexing 
functions—allowing several communications to use a single phy
sical channel. Three types of service are provided by the High- 
level Data Link Control: connection-oriented, connectionless, 
and single-frame transmission.

Connection-oriented service requires a connection to be 
established between the two end systems before the communica
tion is transmitted. The connection can be either physical—a set 
of wires—or “ virtual” —preplanned routes over which packets 
will travel. A good analogy here is a telephone call; a line is 
established and dedicated to a particular conversation before the 
two parties begin talking.

Connectionless service involves communication in which each 
data unit, or packet, travels independently. The path may be es
tablished in advance—as on certain LANs—or as the message ar
rives at each network junction. A good analogy for this type of 
service is mailing a letter, since it will travel to its destination in
dependently of any others sent to the same address, regardless of 
whether the same route is used. ,

Single-frame transmission sends only one frame of data at a 
time. An example o f this is a remote sensor that transmits a signal 
to a guard station if it detects motion.

Layer 2 protocols may break a stream of data up into frames, 
which are transmitted sequentially, and may require a frame ac
knowledgment signal from the receiving system. If so, the frame 
is retransmitted if the signal is not received. The Data Link Layer 
may also provide flow control—monitoring the rate of frame 
transfer—so that systems can exchange data at different speeds.

H ow to connect networks
As for Layer 3, the Network Layer, its service definition in

cludes network connection, data transfer, reset, and connection-

release functions. Expedited data and receipt-confirmation 
services are optional and are specified when a network 
connection is established. The receipt-confirmation service 
supports conformance to the CCITT X.25 standard. An ad
dendum to ISO 8348 is now being developed to add connec
tionless network service—the simple transfer of a data unit.

The Network Layer must provide for many network 
types, only some o f which have been fully identified. Each 
type or family'of protocols within the layer has a unique 
identifier, so the protocol can be identified and changed dur
ing the transmission o f a message. All protocols in the 1984 
revision o f X.25 are accommodated without change.

The service definition (ISO 8072) and protocol specifica
tion (ISO 8073) are now approved for Layer 4, the 
Transport Layer. ISO 8073 specifies several classes o f pro
tocol for connection-oriented communication, with a wide 
range of functionality—from the simple (Class 0), for use 
with highly reliable X.25 networks, to high-quality service 
(Class 4), with error detection and recovery for possibly 
unreliable networks. ,

Specifically, Class 4 service ensures that data is not lost, 
duplicated, or corrupted in transit and that it arrives at its 
destination in the right order. The Transport Layer can also 
provide end-to-end error checking between communicating 

• parties, or it may rely on the quality of service provided by 
the Network Layer. Work is now underway on Transport 
Layer service definition and protocol specification for con
nectionless data transmission.

The service definition (ISO 8326) and protocol specifica
tion (ISO 8327) are also approved for Layer 5, the Session 
Layer. While this layer is full of options among the facilities 
available to the users, initial implementations will contain 

two subsets o f service definitions: the session kernel, for 
establishing and releasing a session; and the basic combined 
subset, which adds token management—a request for use of 
resources—to the kernel.

For Layer 6, the Presentation Layer, an Abstract Syntax Nota
tion 1 developed by CCITT has been adopted as ISO 8824 to pro
vide rules for defining and recording the meaning, or semantic 
content, o f messages. Associated with this are a basic encoding rule 
(ISO 8825), as well as custom encodings registered with ISO, to 
turn such notations into actual messages for transfer.

Layer 7, the Application Layer, is the only one that provides 
services directly to the application process. It does so by drawing 
on the services o f all six layers below it. Conceptually, the Appli
cation Layer is broken down into three parts: a user element, 
common-application service elements (CASEs), and specific-ap
plication service elements (SASEs).

The user element represents functions specific to the applica
tion process that needs to communicate . It selects among the ser
vices offered by the rest o f the layer, including the CASEs and 
SASEs, on behalf o f the application program.

The CASEs are general-use capabilities needed by nearly all 
applications. Included among CASE functions are commitment, 
concurrency, and recovery for distributed processing.

The SASEs include file transfer, access, and management; job 
transfer and manipulation, for distributed batch jobs; message 
handling facilities; virtual terminal systems, which allow remote 
systems to communicate as terminals; and directory services.

S erving‘communities o f  interest*
These functions serve specific industries, known as communi

ties o f interest. The financial services and banking industry is one 
example of a broad community of interest; another is the users of 
automated industrial equipment. Each group has unique needs 
and requires Application Layer services specific to the industry.

For example, industrial automation applications may not have 
a high volume of on-line inquiry. But because factory communi
cation must occur in real time—as opposed to sending messages 
in batches—the maximum permissible waiting time between

4-134



commands sent to the machine tools must be very low. In this en
vironment, real-time “ foreground” protocols will be carefully 
designed for high performance. For “ background” pro
cessing-analyzing production data, for instance—the job 
transfer and manipulation functionyof the SASE might be used.

The message from the Application Process, plus information 
added by each layer below, forms the frame that is sent out over 
the network [Fig. 4]. At each layer, header control information is 
appended to the data unit received from the layer above. This in
formation identifies the protocol options used and gives other 
data about the message and its routing. At the receiving end, the 
header information is removed and processed by each layer. 
Then the remaining data unit is passed up to the next layer, where 
a similar operation takes place.

A good analogy to show how the functions o f the OSI model 
operate is the production and transmission o f a simple business 
letter. It parallels the OSI process, using only the language of 
business communications; no computer terminology is needed 
[Fig. 5].

The thank-you letter
Imagine that the president o f a West German company has 

agreed to buy 50 tons of wheat from a firm in Wichita, Kan. Be
cause he got a good price, he asks the public relations manager to 
send a thank-you note to the sales director of the Wichita firm.

The West German executive represents the application process 
that initiates a communication. He deals in terms of the meaning 
o f the communication, or the semantics; he merely tells the PR 
manager to send a thank-you note. The PR manager actually 
gets the machinery going. He is the Specific Application Ser
vice Element of the Application Layer, calling on the services 
of the layers below him to meet his needs in transmitting the 
message.

The West German PR manager dictates the note onto a cas
sette tape and gives it to his secretary—who acts as the Presenta
tion Layer. She translates the message into English and types it as 
a formal business letter. In OSI terms, she has prepared the 
Transfer Syntax—a string of data in a language common to the 
sender and the receiver—in this case, English.

After typing it, the secretary hands the letter to her administra
tive assistant—the Session Layer. He records the letter in the Ger
man company’s file on Wichita Wheat Co., ensuring that the 
right person has been addressed, with the correct title and spell
ing, exact office number, and other details. This checking allows 
both ends of the communication to organize and synchronize 
their dialogue, by noting where the message goes and when it was 
sent. If there is back-and-forth exchange 
of information, the Session Layer will 
manage the dialogue.

The next layer—Transport—is provid
ed by the manager of shipping and receiv
ing. His job is to negotiate the quality of 
service available from the Network Layer, 
approve the connection, and provide re
ceipt and delivery. He is really guaran

teeing end-to-end transmission. If something untoward happens 
during transmission, he will recover by sending another copy of 
the letter—hence he always copies a letter before sending it.

After copying the letter, he assigns a sequence number (in this 
case, “ 1 o f 1” ). Then he passes the shipment—tagged with both 
destination address and phone sequence number—to a shipping 
clerk. He tells the clerk to establish a route over which the note 
will be sent to Kansas. The Network Layer (the shipping clerk) 
will select the routing and advise the Transport Layer (the trans
port manager) o f it.

The shipping clerk calls his counterpart in the German com
pany’s New York City office. He learns that the company’s inter
nal mail service can take the shipment to the New York office, 
and Federal Express will deliver it to Wichita the next day. Note 
that OSI applies to communications over private networks (the 
company’s internal mail operation) and public networks (Federal 
Express).

He attaches a routing slip and puts the letter with others into a 
mail cart labeled “ New York.” Then he sends the cart to the 
mailroom, which serves as the Data Link Layer.

The mailroom workers also make copies o f everything they re
ceive, bag the mail, and weigh it on a very accurate scale. They 
note the destination and weight o f each mailbag on a tag attached 
to the bag. Then they move the bag to the loading dock—the 
Physical Layer, or the interface to the physical medium (the 
trucks, trains, and airplanes to take it to the United States).

The workers on the dock call the trucks and load the mailbags 
onto them when they arrive. At this point, the “bits” have left the 
machine and are in transit on the medium—the communication 
has been sent on its journey.

When the mailbag arrives in New York City, the workers on the 
New York loading dock—the Physical Layer—pass the mailbag to 
the workers in their mailroom—the Data Link Layer. This mail- 
room has a scale identical to the one in West Germany, which can 
detect the loss o f even one letter from the mailbag. If the weight of 
the bag does not match that on the label, the whole shipment is re
jected and the mailroom in Germany is notified to send replace
ment copies of all the letters, using the duplicates they have kept.

This task represents “ frame check sequences” performed by 
the Data Link Layer. In this case, the weight of the letters match
es exactly, so the New York mailroom sends word back to Ger
many that the mailbag is OK. Then the shipment goes to the 
routing clerk in New York—the Network Layer—who opens the 
mailbag and sorts the mail.

Mail for employees in the New York office gets passed along to 
the transport manager— the Transport Layer—for processing up

A p p lic a t io n
p r o c e s s X O u tg o in g  fra m e  

c o n stru c t io n
In c o m in g  fra m e  
re d u c tio n

[4] A  message passed  fro m  A pplication  
Process “X ” down through the layers to  
an X .25  netw ork acquires header infor
m ation fro m  the fu nctions o f  each layer. 
The receiving Application  Process “ Y ”  
does n o t see this, however; its Application  
L ayer passes along only the message sent 
b y  ‘‘X . ”  The message is stripped o f  all its 
headers and fram e inform ation by  the 
layers below  the application process. The 
bitstream  actually sent over the netw ork is 
an X .2 5  data fram e.

p p lic a t io n

Transport

Data fink

| Physical

A p p lic a t io n
d a ta

-BE > -

D a ta  u n it

K
- X . 2 5  p a c k e t -

D a ta  u n it  (I F ie ld )

A p p lic a t io n
p r o c e s s Y

Q
A p p lic a t io n

I

S e s s io n  |

ElEB
TransportJ

______L

a linkj

-C o m m u n ic a t io n  p a t h -

Physlcaf I 
I_ _ r

P h y s ic a l t ra n s m is s io n  m e d ia

4-135



in the organization. Other mail remains at the Network Layer to 
be rerouted. The routing clerk recognizes the thank-you letter as 
one to be sent through Federal Express, so she tags it for Federal 
Express and sents it back to the mailroom.

The mailroom groups together (multiplexes) all mail for 
Federal Express delivery to the Wichita firm, as there are many 
letters concerning the grain deal. Again the contents are copied, 
weighed, sealed (in a Federal Express package), and tagged with 
a new shipment number and address. The bags go out onto the 
loading dock and away in the Federal Express trucks.

Assuming Federal Express and the Wichita firm use an OSI

Application process
(company president)

" . . .  Danke schon . . . ”

v ™

Presentation layer
(his secretary)
-  Translates letter into English
-  Types as a business letter

Session layer
(administrative assistant)
-  Records letter in file
-  Puts in addressed envelope

Network layer (shipping clerk)
-  Calls New York office
-  Establishes route
-  Attaches routing slip
-  Puts in mail cart
Data fink layer
(maiiroom workers)
-  Makes copies of letters
-  Weighs mailbag
-  Attaches destination tag

Physical layer
(loading dock workers)
-  Calls trucks ;
-  Loads mailbags

WEST GERMANY

model, they will go through a similar process to route the 
package. In all the cases, only the lower three layers—Network, 
Data Link, and Physical—are involved when a message is routed 
via intermediate networks. The upper layers — Transport and 
above—are involved only at the origination and destination o f a 
communication.

When the Federal Express package arrives in Wichita, the 
routing clerk passes it up to the transport manager, who checks 
the packing slip and telephones her counterpart in Germany to let 
him know that the letter has arrived in good order.

In this way the Transport Layer acknowledges “end to end” 
communications. All previous acknowledgments have been at 
the Data Link Layer, from one leg o f a journey back to the pre
vious, leg. This final acknowledgment connects the end of the 
journey to the beginning, no matter what carriers — reliable or 
not— have been used in between.

Once the communication has been received and acknowledged 
by the Transport Layer, it is passed along to the Session Layer. A 
file clerk logs the letter in the file for the German wheat buyer 
and takes the letter to the Presentation Layer — the sales 
director’s secretary. She reads the letter and determines that it is 
in English; no translation from German is necessary. -

The secretary gives it to a vice president of Wichita Wheat, who 
serves as the Application Layer. At a staff meeting, the VP informs 
the sales director that the German firm has thanked him for the 
good price they got. The receiving application process—the sales 
director of Wichita Wheat—receives the semantics of the message 
but not the message itself, which was “danke schon. ”

OSI and ISDN
The protocols associated with OSI may seem to be merely new 

entries in a sea of often conflicting communications standards, but 
they were not created in a vacuum. Many of them have been de
fined to incorporate existing standards; others are aimed at the like
ly future of international telecommunications. In particular, ongo
ing work on the Integrated Services Digital Network (ISDN) is 
closely related to work on OSI.

The architecture o f the ISDN standards closely follows the 
OSI Reference Model. Although these standards do not map ex
actly onto existing OSI protocols, ISDN may be considered a 
prototype for the evolution of OSI standards. As work on ISDN 

implementations continues, further re
quirements to be incorporated into OSI 

... . . . . protocols will emerge.
The idea benind ISDN is that in a digi

tal communications world, the same 
basic switched telecommunications sys
tems can integrate telephone voice ser
vice with a number of other services. 
These include digital data transmission, 
personal computer interfaces, local-area 
networks, private automatic branch ex
changes (PABXs), videoconferencing,

(5J The jou rn ey o f  a thank-you letter  
fro m  the presiden t o f  a  W est German 
bread com any to  the sales director o f  his 
wheat supplier in Wichita, Kan., is anal
ogous to  the operation o f  O SI fu nctions  
during a communication.

D
00 
0 C

4-136



and joint-use remote applications, like automatic teller machines 
and self-service fuel pumps.

Only the lower three layers of OSI are applicable to initial 
ISDN work [Fig. 6]. The basic ISDN interface is composed of a 
16-kilobit-per-second signaling channel (D-channel) plus two 
circuit-switched 64-kb/s digital channels (B-channels). Depend
ing on the characteristics of connecting networks, ISDN offers 
access to the D-channel alone or in combination with one or both 
B-channels.

In the basic service, the ISDN Physical Layer operates with a 
bit stream of 192 kb/s and provides a multiplexing arrangement.

O f this, 48 kb/s is control information that facilitates the 
multiplexing.

The signaling channel uses the Link Access Procedure D pro
tocol for Data Link Layer services. It provides multiplexing for 
three functions: signaling information that controls switching 
connections on the B-channels; low-speed packet-switched ser
vices; and optional channels that can be used for sporadic low- 
bandwidth transmission, like burglar-alarm signaling.

The OSI Network Layer protocol for the D-channel is 
specified by CCITT recommendation Q.931. It provides the 
mechanism for making and breaking connections on the

NEW YORK CITY

Application layer
(VP of public relations) 
-  Reads letter

Session layer
(file clerk)
-  Logs “letter rec'cT in file

r 7 \

Transport layer
(transport manager)
-  Calls German counterpart
-  Confirms arrival of letter

4-137



Lining up against the layers
To understand the division of functions among the layers of 
the Open Systems Interconnection (OSt) model, It Is helpful to 
compare It with some existing networks and communications 
standards- Perhaps the most widely known among data pro
cessing professionals Is IBM’s Systems Network Architec* 
ture (SNA), designed to provide a common architecture for 
communication within the company’s diverse equipment 

The distribution of functionality among the layers of SNA 
varies significantly from that of OSt; the number of options is 
not as large, because SNA is Intended for a limited set of 
machines operating in a known network environment 

The SNA transaction services layer has elements of both 
the application process and the OSI Application Layer. It pro

. vldes services necessary for operation of the network—for In
stance, a program to agree on the number of sessions bet
ween network nodes. But it also Includes such functions as 
electronic malt, defined under OSi as an application process.

The presentation services layer Is comparable to the rest of 
the OSi Application Layer and to the entire Presentation 
Layer. It provides a high-level interface to application pro
grams, taking high-level statements—such as s e n d  d a t a — and 
translating them into lower-level service requests.

One “half-session” serves each user on either end of a 
communication, although more than one user may use a 
piece of equipment on the network. A half-session includes 
resources for data flow control — controlling requests and 
responses in a dialogue— and transmission control, manag-, 
ing buffer resources and expediting data. The services 
manager responds to requests from the presentation services 
layer to create, assign, and destroy conversations.

Beneath the half-session, the path control function is divid
ed into three layers for IBM’s “backbone” machines, 
predominantly mainframe computers. Peripheral equipment 
— personal computers, minicomputers, and terminals—uses 
a much simpler path control function without the sublayers.

Virtual route control provides flow control and error control 
to the logical—as opposed to the physical—network. Explicit 
route control establishes physical paths for connection.

O S f  S N A  A R P A n e t

A p p lic a t io n
p r o c e s s T ra n s a c tio n

?

A p p lic a t io n

s e r v ic e s

6
P re se n ta t io n

P re se n ta t io n
s e r v ic e s

JL
4

§

1
«8
X

D a ta  f le w  L

rokSw §
c o n tro l |

T ra n sp o rt

2
V irtu a l

j o u t e  contro l_

3
'E x p l ic i t  

ro u te  c o n tro l
N e tw o rk 1 T ra n s m is s io n

Transmission group control provides a multilink capability 
and ensures data delivery. And the SNA data link control pro
vides reliable transfer of Information between nodes, as does 
the OSI Data Link Layer. The physical layer Is not explicitly 
defined In SNA, since the medium Is known, but the OSI 
Physical Layer functions are Implicit in the architecture.

The ARfifcnet — developed for research purposes by the 
Department of Defense in the early 1970s— has a different 
distribution of functionality. Here too, the Application Layer 
provides the same user services as does the OSI equivalent. 
But there is no ARFAnet equivalent of the OSt Presentation 
and Session layers; either ASCII characters or data bits are 
passed through the network, and the communicating applica
tions know what to send and expect

The ARRknet Service Layer provides OSI Transport Layer 
functions and a few from the Session Layer— namely the 
ability of the network Itself to initiate a '‘graceful close” to a 
communication session if a user drops off the network.

ARPAnet's Internet Layer routes communications among 
networks, either to intermediate networksorto an application 
process if the message has reached its destination. Finally, 
the rest of OSI’s Network Layer functions and the Data Link 
and Physical Layers are contained In ARPAnet’s Network 
Layer. This layer addresses the real characteristics of the 
many actual networks across which the ARPAnet system 
operates. The functions are not strictly independent of the 
physical medium, however, as is the OSI Physical Layer.

The X.25 standard for packet-switched communication 
over national and international data networks defines one 
major way to Implement network services.

The functionality of the latest X2S specification, issued in 
1984, corresponds entirely to OSI. The X.25 Packet Level pro
tocol, which routes and switches packets through network 
nodes, corresponds to the OSI Network Layer. The X.25 Link 
Level guarantees reliable data transfer across the physical 
link—as does the OSI Data Link Layer. And the Physical Level 
of X.25 Includes the functional and procedural characteristics 
to activate, maintain, and deactivate the physical connection.

The IEEE 802 local-area networks (LANs), which define 
three commonly used networks for single-site communica
tions, also conform to OSi. The 802.2 Link Level Control (LLC) 
procedures compare to the upper half of the OSI Data Link 
Layer, and the lower half is matched by the Medium Access 
Control (MAC) functions of each individual LAN standard.

Depending on the implementation, the LLC may provide 
such services as end-to-end error control, flow control, and 
sequencing. Beneath the LLC, each LAN type has Its own 
MAC standard to provide data requests, confirmation of data 
requests, and data transfer services. —J. V

Compared with the Open Systems Interconnection (OSt) 
model, architectures like IBM's Systems Network Architec
ture (SNA) and communications networks like the ARPAnet 
perform most of the same functions but divide them different• 
ty. The international X.25 standard for tong-distance voice and 
data transfer provides only Network Layer functions and 
below; the IEEE 802 LAN standards provide only Data Unk 
and Physical Layer functions.

lo g i c a l  lin k  
c o n tro l 

M e d ia  a c c e s s  
co n tro l

P h y s ic a l
m e d iu m

4-138



B  c h a n n e ls  
_______A _______

B 2
C h a n n e l

D  c h a n n e l
.----------------- A------------------ -

'  B -c h a n n e l L o w -sp e e d  N
c o n tro l p a c k e t-sw itc h e d  O p t io n a l
In fo rm a tio n  s e rv ic e  fu n c t io n s

i t i !  a
L a y e r  3 —  
N e tw o rk

P ro to co l:
Q .9 30
Q .931

Pro to c o l: P ro to c o ls :
P ro to c o l: Pro to c o l: X .25 to  be

u n s p e c if ie d u n sp e c if ie d p a c k e t
level

d e fin e d
la te r

Layer 1—

------------- 1-----
I

I

I

M u lt ip le x in g
c o n tro l

in fo rm a tio n P r o to c o l:
Physical I I 4 8  k i lo b its 1.431 .

I I per s e c o n d

P h y s ic a l
m e d iu m

[6] Initial IS D N  w ork is concentrated in the Physical, D ata  Link, and N etw ork  layers o f  
OSI. A b o v e  the netw ork  services, p ro toco ls f o r  IS D N  will depen d on the application. 
F or example, teletex term inal equipm ent interface specifications, character sets, and  
m ixed-m ode term inal capabilities are included in the O SI Application  Layer protocols.

B-channels and for other ISDN control 
functions. For the packet-switching func
tion, Layer 3 is the packet level of X.25.
The protocols for optional functions will be 
defined by the CCITT at a later date or may 
be specified as a national option.

The data link and network protocols are 
unspecified for the B-channels; these chan
nels provide a “ transparent” facility that 
may use whatever protocols are appropriate 
for the application.

Above the Network Layer, ISDN pro
tocols depend on the application being us
ed. CCITT Recommendation 1.212 covers 
the upper four layers of ISDN services, 
referring to them as Teleservices. Protocol 
recommendations for Layers 4 through 7 
have been developed by CCITT.

But will it work?
Computer users— many stung in the past 

by false promises of compatibility—may be 
inclined to greet claims of compatibility with 
skepticism. If OSI is to catch on, there must 
be a way to verify that products conform to 
its definitions. Work on testing products for 
OSI conformance has just begun but is 
developing rapidly.

The main influence in the United States 
to date has been the National Bureau of 
Standards, headquartered in Gaithersburg,
Md. A newly formed group of equipment 
manufacturers, the Corporation for Open 
Systems in Washington, D.C., is also likely 
to become an important factor in OSI testing.

The NBS does not provide testing services to manufacturers; it 
simply develops methods and software to test conformance to 
various OSI protocols and sells them through the National 
Technical Information Service. Currently, software to test the 
complete set o f protocols for the OSI Transport Layer and the 
upper—or Internet—portion of the Network Layer are available.

Under development at NBS are tests for the messaging, file 
transfer, and virtual-terminal protocols for the Application 
Layer; the agency is developing these test programs under a 
Department of Defense contract. Also being developed are pro
grams to test the Physical Layer and the bottom half of the Data 
Link Layer for the IEEE token-bus local-area network standard.

The NBS hopes to bring on line shortly a service called Osinet, 
a nationwide network for manufacturers interested in OSI 
testing. There are three immediate goals, according to John E 
Heafner, chief o f the systems and network architecture division 
at the NBS: to promote the development and dissemination o f 
testing systems; to allow vendor-to-vendor testing o f products, 
or interoperability testing; and to offer demonstrations of OSI 
testing services and products.

A more distant goal is to tie together OSI testing centers 
around the world, Heafner said, noting: “ We would like to be 
able to offer testing for worldwide product conformance, but 
only if we can be assured that there will be no trade barriers 
created to protect individual markets.”

The goals of the Corporation for Open Systems are equally 
ambitious. Initiated by the Computer and Communications In
dustry Association (CCIA), the corporation will encourage the 
development o f test capabilities that manufacturers can use dur
ing product development, to reassure customers that products 
being marketed conform to the appropriate standards.

The corporation, formed late last year by a group o f 18 sup
pliers of computer and communications equipment, is not a stan
dard-setting body, noted Jack Biddle, president o f the CCIA. 
But it does intend to promote development o f a universally ac

cepted set o f OSI protocols for individual applications, including 
such standard data processing functions as file transfer and 
management and electronic message handling.

The group does not plan to provide testing services, Biddle 
said, but instead will develop testing programs and services or 
subcontract this development to others. A possible provider of 
those services, he noted, is the Industrial Technology Institute of 
Ann Arbor, Mich. This not-for-profit organization is currently 
involved in testing compatibility with the MAP specification 
among suppliers o f factory automation equipment.

Over the long term, the corporation hopes to convince execu
tives in the computer and communications industries o f the strate
gic importance of a single open network architecture. “There is a 
need for greater voluntary efforts in the standards community,” 
Biddle said. “These activities are not yet accepted as an integral 
part of product planning strategies by many companies.”

Biddle is confident that testing for OSI conformance will 
become vitally important to the world electronics market, but he 
expects “a long struggle to make it happen.” Asked whether users 
were really demanding OSI-compatible equipment, he said: “You 
should have heard my phone ringing off the hook after the word 
got out about the corporation. They are frustrated, they don’t like 
buying from just one vendor, and they want solutions.”

IBM  pursuing OSI
A big question is how OSI will affect IBM. For a quarter o f a 

century, IBM has been the leader in the computer industry. Its 
11-year-old Systems Network Architecture (SNA) is the most 
widely implemented communications architecture for mainframe 
computers, and IBM has often functioned as a de facto standard
setting body for computer networking.

At the start of work to define the OSI Reference Model in the 
late 1970s, IBM participated in standards meetings and technical 
sessions. “ IBM contributed very significantly and very construc
tively,” said Harold Folts, president of Omnicom Inc. in Vienna, 
Va., a telecommunications consulting and education concern.

4-139



“And there is no question that 
they are moving in the direction 
of OSI for the European 
market.”

Last year Digital Equipment 
Corp. announced that it would 
gradually modify its Digital Net
work Architecture to conform 
to OSI protocols as they are 
developed. The 12 major Euro
pean computer manufacturers 
have indicated that they too will 
adopt OSI protocols. To pro
mote OSI, some European 
governments have introduced 
regulations requiring OSI com
patibility in new data network 
installations. With a significant 
presence in Europe— as indeed 
it has anywhere — IBM has an
nounced plans to support OSI 
there.

The company stated: “As 
standards for Layers 6 and 7 are 
agreed upon over the next two 
years, based on business con
siderations, IBM will develop 
products that will meet the re
quirements of both the custo
mers and OSI standards.” IBM 
said that “OSI will complement 
the well-proven SNA architec
ture” and that “OSI and SNA 
can supplement each other to 
provide a balanced solution for 
the management of networks 
and for the transfer of informa
tion between them.”

IBM Europe offers OSI capa
bility through Layer 5, which in
dicates that the company will offer OSI implementations in addi
tion to its own SNA architecture. [For a comparison o f SNA with 
the layers of OSI, see “ Lining up against the layers,” p. 68.] The 
company’s center for research on OSI implementations is the IBM 
European Networking Center in Heidelberg, West Germany.

IBM’s Open-systems Transport and Session Support software, 
first shipped last December, supports most functions of OSI 
Layers 4 and 5 on the IBM/370 mainframe. The company has 
also offered several products for Layers 1 to 3 of OSI, mainly in
terfaces for various equipment to connect to X.21 and X.25 com
munications networks. But the Open-systemsTransport and Ses
sion Support software is IBM’s first comprehensive offering for 
OSI connectability above the Network Layer.

Currently the company is testing the X.400 messaging stan
dard, a set of CCITT recommendations developed within the 
OSI framework. IBM may attempt to provide a bridge between 
its own document architectures and X.400. There will ultimately 
be a host o f applications to which IBM’s massive array of equip
ment will have to be connected, including electronic mail, teletex, 
videotex, and other such European services.

Many observers feel that ultimately IBM will offer not only 
full OSI implementations but also gateways to allow OSI to inter
connect with existing SNA networks. “There will be a migration 
of SNA to OSI standards, probably without a lot o f flag 
waving,” said Folts of Omnicom. “They will offer two standards 
to start with, then they will merge—they can afford to make ma
jor leaps without worrying about backward compatibility.” IBM 
has also recently joined the Corporation for Open Systems.

The implications are profound. If IBM’s equipment uses 
essentially the same communications protocols as those of its

many competitors, the company 
will be forced to compete in

' creasingly on the technological 
merits of its products and per
haps on price. In a sense IBM 
will lose some control over the 
direction o f computer equip
ment and design that it has en
joyed — particularly in the 
United States — for the last 
quarter of a century.

In some ways the promise of 
OSI has been oversold. It is not a 
magic cure-all that will allow 
every variety of computer equip
ment to be plugged together as 
stereo components are..

But OSI probably has a better 
chance than most of living up to 
its potential. For one thing, the 
group of potential users for OSI 
implementations spans many 
countries and diverse industries. 
Many suppliers will compete to 
supply conforming equipment.

OSI users can also decide 
which protocols are appropriate 
for their own needs. The best ex
amples so far are the MAP and 
TOP standards, and there will 
be more as OSI gains public at
tention. The banking commun
ity, for instance, is working hard 
to apply OSI to electronic funds 
transfer and other services.

Finally, OSI leaves room for 
inevitable growth and change in 
a most elegant way. Standard
izing protocols between func
tions — but not the design for 

implementing those functions — ensures compatibility between 
different systems while leaving room for innovative engineering.

One communications design engineer told Spectrum  that “ the 
only interesting question provoked by OSI is whether we end up 
with communications provided by the computer industry, or 
computers made by the communications industry.” The answer 
may not be clear for decades. But OSI will provide a giant step 
toward the worldwide integration of computing and communica
tion. From any perspective, Open Systems Interconnection pro
mises to affect every part of both industries. It is, in the words of 
the same designer, “ the only game in town.”

To probe further
Over 20 articles in the Proceedings o f  the IEEE  for December 

1983 cover virtually all aspects of Open Systems Interconnection in 
detail. This issue can be ordered from the IEEE Service Center, 445 
Hoes Lane, Piscataway, N.J. 08854.

An index of standards relating to OSI is available from Om
nicom Inc., 501 Church St. NE, Suite 304, Vienna, Va. 22180. Pro
posed, draft, and approved ISO, standards are available from the 
American National Standards Institute, 1430 Broadway, New 
York, N.Y. 10018.

The IEEE 802 LAN standard documents (802.2,802.3, 802.4, 
and 802.5) are available from the IEEE Service Center. For fur
ther discussion of IEEE 802 LANs, see “ Local area nets: a pair 
o f standards,” by Maris Graube in the June 1982 issue o f Spec
trum. P ot more details on ISDN, see “The innovation revolution 
awaits,” by Paul Wallich and Glenn Zorpette, in the Nov. 1985 
issue of Spectrum. Copies o f both issues are available from the 
IEEE Service Center. ♦

4-140

A universal plug already developed

The RJ-45 minimodular connector is likely to be ap
proved as the universal interface for the Integrated Ser
vices Digital Network (ISDN), and thus ideally would be 
used for many Open Systems Interconnection (OSI) ap
plications. Developed by AT&T Bell Laboratories, it is 
an eight-wire version of the familiar RJ-11 jack and plug 
widely used in U.S. telephone terminals and instru
ments (see photo).

The pins are arranged as follows: 1 and 2 are power 
sources, 3 and 6 transmit, 4 and 5 receive, and 7 and 8 
are power sinks. Because the plug centers itself in the 
socket, the current four-pin plug would contact pins 3 
to 6, allowing customer premises in the United States 
to be wired with the new socket and still remain com
patible with existing telephone equipment.

While it may appear to be fragile, the plug has 
proved to be quite rugged, and it meets a number of 
criteria: it is small, keyed, self-orienting, and can be 
released without any tools. The connector set is now 
an International Organization for Standardization draft 
standard, and chances for final approval appear good.

—J.V.


