
. 

APPLICATION 
NOTE 

Ap ... 239 

November 1986 

Customer Applications of the 
EMV-88 Emulations Vehicle 

BILL ALLEN 
DSO PRODUCT MARKETING 

FRED MOSEDALE 
DSO TECHNICAL PUBLICATIONS 

3-110 
Order Number: 280105-001 



AP-239 

r--------------------------, 
I SCOPE OF INTEL PERSONAL DEVELOPMENT SYSTEM 

WITH AN EM\LS8 EMULATOR 

I 

I 
I 
I 
I 
I 
I 

I 
I 

L ___________________________________ ~ 

280105-1 

Figure 1. Typical Microcomputer Process 

INTRODUCTION 

Early customers' experiences with the EMV-88 emula
tion vehicle have shown the power, versatility, and ben
efits of this emulator. The EMV-88 emulator plugs into 
an Intel Personal Development system (iPDSTM) and 
aids in the development and debugging of user-designed 
8088 systems. 

To aid new and potential users of the EMV-88, this 
application note summarizes applications and debug
ging procedures of several early users of the'EMV-88 
emulator .. 

THE MICROCOMPUTER 
DEVELOPMENT 
PROCESS 

Designing a product that contains a microcomputer re
quires close coordination of two separate but highly de
pendent design efforts: hardware development and soft
ware development. 

Hardware development involves planning the micro
processor chip's interaction with associated logic, mem
ory, peripheral circuits, and specialized circuits. 

Software development involves programming the mi
crocomputer system to perform the required tasks. The 
resulting program eventually resides in the product's 
memory. 

These two development efforts can be accomplished in
dependently, but it is more efficient to work on them 
together. Successful designs make maximum use of the 
hand-in-hand nature of hardware and software. In ad
dition, real-world designing is an iterative process. 

3-111 

Each step in the design process may involve the debug
ging and re-design of previous steps. A change in hard
ware may involve a corresponding change in software 
and vice versa. 

Figure 1 illustrates a typical microcomputer develop
ment process. The iPDS system and the EMV-88 
emulator are two major de,sign aids that Intel offers to 
hardware and software designers. Note the areas of the 
design process where a microcomputer development 
system and an emulator aid in the design of a product. 
(Numbers 1 through 4 shown in Figure 1 are used later 
in this application note.) 

Features of the iPDSTM System and the 
EMV-88 Emulator . 

The iPDS system and EMV-88 emulator offer thefol
lowing resources. 

• A stand-alone computer with dual processors (op
tional), memory, mass storage, and a disk-based op
erating system. 

• Development system software such as assemblers, 
high-level language compilers, and EMV-88 debug
ging software. 

• An interface (using the EMV-88 cable) to the proto
type hardware. This allows you to check each piece 
of your prototype hardware as it is developed. 

• The EMV-88 mapping capability. This allows you to 
borrow the memory form the EMV-88 until proto
type hardware is available. 

• The EMV-88 break and trace ability. This allows 
you to specify the conditions under which emulation 
stops or tracing occurs. 



inter AP-239 

280105-2 

Figure 2. The iPDSTM System and the EMV-88 Emulator Connected to a User Prototype 

• Availability of other plug-in modules for PROM 
programming and for emulation,of other processors 
(8051, 8044, and 8085), 

Figure 2 shows the EMV-88 emulator inserted in the 
side of the iPDS system. The EMV-88 emulator is 
shown connected to a user prototype board. 

THE USERS 

To obtain information for this application note, three 
early EMV-88 users were visited. Users were asked a 
variety of questions: How did the EMV-88 system save 
them time? What debugging procedures were especially 
useful? What EMV-88 features proved important in de
veloping the users' designs? In retrospect, what features 
or techniques might have been used earlier to speed 
development and debugging even more? 

The customers visited were the following: 

- An established company originally specializing in 
water and waste water control devices. Now it is 
expanding to provide automatic control and moni
toring devices. This company recently began de
signing microcontrollers and microprocessors into 
its products. 

- An established communications and antenna com
pany that was designing an 8088-based system to 
control the antenna for a satellite communications 
system. 

- A new company that was designing a computerized 
system for monitoring automatic manufacturing 
process control machines. 

All the customers had iPDS systems with EMV-88 
plug-in emulators. (The customers also had other iPDS 
plug-in options, including PROM programming mod
ules.) 

USER APPLICATIONS AND 
DEBUGGING PROCEDURES 

New and potential EMV-88 users will be interested in 
two kinds of information supplied by the early EMV-88 
users: 

.(1) the different functions the EMV-88 emulators can 
be used to perform in early phases of a product's life 
cycle, and 

(2) some specific EMV-88 debugging techniques that 
proved useful to the users. The following two main 
sections focus on these topics. 

EMV-88 Emulator Functions In Early 
Phases of a Product's Life Cycle 

As a product is developed, debugged, and released to 
customers, the EMV-88 emulator can accomplish a va
riety of tasks during early phases of the product's life 
cycle. In particular, the iPDS system with the EMV-88 

3-112 



inter AP-239 

emulator proved to be especially productive in complet
ing the following tasks. (The task numbers are also 
shown in circles in Figure 1.) 

Task I Verifying hardware 

Task 2 Verifying software 

Task 3 Integrating prototype hardware and software 

Task 4 Production testing 

The EMV-88 system helped early users accomplish 
these tasks as described below: 

• Exercised hardware and software in real time (tasks 
1,2, and 3): Without an emulator, users would only 
have been able to check their prototypes by loading 
their programs into EPROMs and running the pro
grams. Then, when bugs were detected and correct
ed, the revised programs would have to be loaded 
into the EPROMs. This cycle would have to be re
peated each time a bug was found. However, with 
the EMV-88 emulator, users did not need to load 
programs into EPROMs. The program resided in 
emulator memory and could easily be modified and 
retested. Thus, the emulator saved users time and 
provided flexibility in modifying programs. 

• For a prototype system with large programs, the 
EMV-88 emulator was used to supplement main de
velopment systems (task I): One user had very large 
programs under development. The user's large de
velopment systems were tied up with software devel
opment and could not be used with their emulators 
to test hardware. To speed up debugging, the iPDS 
system with its EMV-88 emulator was pressed into 
service. Short EMV-88 macros were written to exer
cise particular portions of the hardware. Thus, hard
ware development and testing could continue 
despite the unavailability of emulators on the large 
development systems. 

• Patched around missing sections of code to allow 
emulation (tasks 2 and 3): Because the EMV-88 em
ulator allows users to patch co~e, whenever a sec
tion of code is incomplete or contain~ a bug, users 
can patch around it. One user was able to begin 
debugging the prototype before software develop
ment was completed. At the end of sections of com
pleted code, EMV-88 commands were used to patch 
in a command to jump from the last line of code in 
one section to the first line of code in the next avail
able section. Some of the activities of the still-to-be
completed code were also simulated withEMV-88 
commands in the patch. 

• Resolved disputes about whether bugs were in hard
ware or software (task 3): Because the iPDS system 
and its EMV-88 emulator can control and examine 
both user hardware and user software, it is relatively 
easy to determine whether a bug originates in soft
ware or hardware. For example, users took advan-

tage of the EMV-88 emulator's single-stepping ca
pability to determine at which line of code unde
sired values were generated. Then, carefully con
trolled emulation combined with the use of a logic 
analyzer allowed users to pinpoint the source of the 
problem. As a result, fingerpointing by software 
and hardware team members quickly came to an 
end. . 

• Provided remote site testing of prototype hardware 
and software (task 3): One user could not fully test 
the prototype hardware and software because the 
environment in which the prototype was intended to 
run could not be duplicated in the development 
area. Because the iPDS system and the EMV-88 are 
portable, they were easily moved to a site remote 
from the development area. Then, a full debugging 
session in the prototype's intended environment 
took place. 

• Tested early manufactured systems (task 4): When 
the earliest boards have been manufactured, there 
must be a way to test them. If a complete board-test
ing system is not yet in place, the EMV-88 can act 
as a hardware tester. After test programs are written 
for the EMV-88, and the emulator is connected to a 
new board, users can quickly determine whether 
flaws exist in the manufacturing process. If tests are 
skillfully written, hardware areas that are failing can 
be pinpointed. 

• Used to troubleshoot early customer systems (task 
4): Despite careful quality control, not all bugs in 
the design and manufacturing processes may be de
tected. Early customers may report problems they 
are having with the product. If swapping hardware 
and/or software corrects the problem, the defective 
hardware and/or software can be returned for trou
bleshooting. The EMV-88 emulator can track down 
the problem. It is important to determine the source 
of the problem so that, if need be, design changes or 

. manufacturing changes can quickly be initiated. 

As is evident from the preceding list, early users found 
a variety of tasks for the EMV-88 emulator to perform 
during product development and manufacturing. One 
user noted that the iPDS system is an excellent develop
ment system for both young and mature companies. Its 
low price, versatility, and portability make the iPDS 
system with the EMV-88 emulator an investment that 
returns its cost many times. 

Early EMV-88 Users' Debugging 
Techniques 
Six debugging problems early users encountered have 
been selected to illustrate a variety of EMV-88 emula
tor's capabilities. 

3-113 



inter 

*DEFINE :move 
• *BASE=Y 
• *SUFFIX=Y 
• *BYTEOT00111 =0 
.*BYTEOT00111 
• *DEFINE .n = 0 
• *DEFINE .k = 1 
• *REPEAT 
• *UNTIL .k=100000000 
• * REPEAT 
• *UNTIL.n = 1000 
• *BYTE.n =.k 
• *.n=.n+1 
.*END 
• *BYTE 0 to 0111 
• *.k= .k*10 
.*END 
.*EM 

* 

AP-239 

;Macro name is :move (* is the EMV-88 prompt) 
;Sets display radix to binary 
;Sets input radix to binary 
;Ini tializes first 8 bytes to 0 
;Displays first 8 bytes 
;Sets memory location variable to 0 
;Sets memory content variable to 1 
;8egins first repeat loop 
;Hal ts first loop when. k=100000000 
;8egins second loop 
;Halts second loop when.n reaches 8 (decimal> 
;Sets memory location. n=value . k 
;Increments. n 
;Ends second loop 
;Displays values in first 8 memory locations 
;Multiplies .k by 2 (decimal> 
;Ends first loop 
;Ends macro 

280105-3 

Figure 3. Sample Macro for Testing Memory 

PROBLEM 1: INITIAL CHECK OF PROTOTYPE 
HARDWARE (Task 1: Verify Hardware) 

One early user made an initial check of prototype hard
ware with the EMV-88 emulator. Once the user's 
RAM, USART, and registers were in place in the hard
ware prototype, an initial hardware check was sched-. 
uled. Were the components installed and connected 
properly? (To ease hardware-software integration, ef
forts should first be made to isolate hardware defects 
independently of the prototype softwar~) 

PROBLEM 1 SOLUTION 

The EMV-88 user performed the following steps to 
check out prototype hardware. 

I. Identified the addresses of all hardware elements to 
be tested. 

2. Devised EMV -88 hardware test macros: Macros 
. were created that wrote patterns of I's and O's to the 
memory devices and registers. The macros also were 

designed to read and display memory and register 
contents .. (See Figures 3 and 4' for a sample macro 
that writes patterns of I's and O's to a small portion 
of memory. Also, see the appendix for information 
on EMV-88 commands.) 

3. Executed the macros and observed the results on the 
IPDS system display screen. 

4. Identified defective hardware areas: When an output 
value was different from an input value, the user 
executed memory interrogation commands (e.g., 
BYTE, WORD, DUMP) to confirm the location of 
defective hardware. 

PROBLEM 2: WRONG INSTRUCTION 
EXECUTION SEQUENCE (Task 2: Verify Software) 

When this user's prototype program was emulated, a 
portion of the program ran properly, but then it per
formed strangely-it "ran in the weeds." How can the 
EMV -88 emulator locate the area of program Code 
where the execution sequence first begins to go wrong? 

3-114 



AP-239 

*:move iUsing macro name causes macro to be executed 
BYT DDDDDH=DDDDDDDDY DDDDDDDDY DDDDDDDDY DDDDDDDDY 
BYT DDDD4H=DDDDDDDDY DDDDDDDDY DDDDDDDDY DDDDDDDDY 
BYT DDDDDH=DDDDDDD1Y DDDDDDD1Y DDDDDDD1Y DDDDDDD1Y 
BYT DDDD4H=DDDDDDD1Y DDDDDDD1Y DDDDDDD1Y DDDDDDD1Y 
BYT DDDDDH=DDDDDD1DY DDDDDD1DY DDDDDD1DY DDDDDD1DY 
BYT DDDD4H=DDDDDD1DY DDDDDD1DY DDDDDD1DY DODD DO lOY 
BYT DDDDDH=DDDDD1DDY DDDDD1DDY DDDDD1DDY DDDDD1DDY 
BYT DDDD4H=DDDDD1DDY DDDDD1DDY DDDDD1DDY DDDDD1DDY 
BYT DDDDDH=DDDD1DDDY DDDD1DDDY DDDD1DDDY DDDD1DDDY 
BYT DDDD4H=DDDD1DDDY DDDD1DDDY DDDD1DDDY DDDD1DDDY 
BYT DDDDDH=DDD1DDDDY DDD1DDDDY DDD1DDDDY DDD1DDDDY 
BYT DDDD4H=DDD1DDDDY DDD1DDDDY DDD1DDDDY DDD1DDDDY 
BYT DDDDDH=DD1DDDDDY DD1DDDDDY DD1DDDDDY DD1DDDDDY 
BYT DDDD4H=DD1DDDDDY DD1DDDDDY DD1DDDDDY DD1DDDDDY 
BYT DDDDDH=D1DDDDDDY D1DDDDDDY D1DDDDDDY D1DDDDDDY 
BYT DDDD4H=D1DDDDDDY D1DDDDDDY D1DDDDDDY D1DDDDDDY 
BYT DDDDDH=lDDDDDDDY lDDDDDDDY lDDDDDDDY lDDDDDDDY 
BYT DDDD4H=lDDDDDDDY lDDDDDDDY lDDDDDDDY lDDDDDDDY 

* 

280105-4 

Figure 4. Sample Display Resulting from Figure 3 Macro 

PROBLEM 2 SOLUTION 

The user performed the following steps to locate the 
area of code where code begins defective operation. 

1. Emulated the program: The user executed the GO 
command with the FROM option; the program 
starting address was entered after FROM. (See the 
appendix for information on EMV-88 commands.) 

4. Re-emulated. When emulation occurred using the 
new breakpoint, emulation halted at the point the 
previous trace buffer started collecting trace infor
mation. Now, the new trace buffer contained the 
preceding lK bytes of executed instructions 

2. Examined the trace buffer: The PREVIOUS com
mand was used to scan through the lK byte trace 
buffer. (See Figure 5 for a sample display using the 
PREVIOUS command. In Figure 5, the first 16 in
structions in the lK byte trace buffer are displayed.) 
The instructions stored at the very beginning of the 
buffer were incorrect. This implied that the problem 
was further back in program execution. The instruc
tion address at the beginning of the trace buffer was 
noted. 

3. Set a breakpoint: To make possible examination of 
the previous lK bytes of the program execution se
quence, the user set an execution breakpoint at the 
address identified in step 2. 

5. Examined the trace buffer: Scanning through the 
new trace buffer contents the user came upon the 
program section where the execution sequence went 
awry. Study of the program section showed a pro
gramming error. 

6. Patched code: Using the ORG (originate) and ASM 
(assemble) commands, the user created a patch. (See 
Figure 6 for a display of sample EMV-88 patching 
commands.) First the instruction pointer was moved 
to the location of the defective line of code using the 
ORG command. Then, the ASM command inserted 
a jump command to an unused area of memory. Us
ing ORG and ASM, a patch of correct code was 
created at the unused memory location; .the patch 
included a jump back to the instruction next after 
the line of defective code. 

3-115 



inter AP-239 

f,PREVIOUS 1024TlENGTH 16 ;])isplays first 16 instructions in trace bUffe~ 
0040BH MOV ])S, AX 8ED8 PREV 
0040])H MOV AX, 0060H B86000 PREV 
00410H MOV ES,AX 8ECO PREV 
00412H NOP 90 PRE V 
.. ])ATA_AN])_CO])E.XlATE 
00413H '. MOV H,0028H BF2800 PRE V 
00416H MOV SI,OOOOH BEOOOO PRE V 
00419H MOV ' BX, 00S2H BBS200 PRE V 
0041CH Cl]) FC PRE V 
0041])H CALL 0440H ; SHORT E82000 PREV 
.. ])EMO_PROCS.SPOT1 
00440H LO'])S BYTE (SI) AC PREV 
00441H XlAT BYTE (BX) ])7 PREV 
00442H STOS BYTE (H) AA PRE V 
00443H lOOP 0440H ; SHORT E2FB PRE V 
.. ])EMO_PROCS.SPOT1 
00440H lO])S BYTE (SI) AC PREV 
00441H XlAT BYTE (BX) ])7 PRE V 
00442H STOS BYTE (H) AA PREV 
00443H lOOP 0440H ; SHORT E2FB PREV 
0044SH RET ; SHORT C3 PREV 
.. ])ATA_AN])_CO])E.REVERSE 
00420H MOV CX,WOR]) OOSOH 8BOESOOOPREV 

.~ -!) 

280105-5 

Figure 5. Sample Display Using the PREVIOUS Command 

7. R~emulated: Emulation stopped at the breakpoint 
set in step 3. 

8. Examined the trace buffer: This time the trace buff
er showed that program execution followed the cor
rect sequence. Thus, the patch fixed the problem. 

PROBLEM· 3: DEBUGGING IN A MULTI
TASKING ENVIRONMENT 
(Task 2: Verify Software) 

Programs that support multi-tasking can be difficult to 
debug,when interrupts arrive that place the current task 
on the stack while another task is undertaken. One 
EMV -88 user peifonned the following steps to over
""me this problem. 

PROBLEM 3 SOLUTION 
1. Cleared the int~Pt enable flag: By entering IFF 
~ 0, the 8088 interrupt. enable flag waS cleared. See 
Figure 7 for a display of register settings that shows 
the resulting IFF setting. 

2. Emulated the code of interest: The user used the GO 
command with the FROM option to set a break
point and thus control emulation of the desired sec
tion of code. (See the appendix for information on 
EMV-88 !X>IIlmands.) With the hiterrupt enable flag 
cleared, trace information was collected without 
other t8sksintermpting the trace data collection. 

3. Re-enablCd the interrupt enable flag. 

PROBLEM 4: MEMORY NOT BEING ZEROED 
(Task 3: Integrate Hardware and Software) 

This user first employed the EMV-88 emulator to test a 
section of code that was supposed to zero memory. The 
test showed that memory was not being zeroed. What 
prevented the memory initialization? 

PROBLEM 4 SOLUTION 

Once it was clear that memory was not being zeroed, 
the user (whose iPDS system had the optional dual 
processors) followed these steps to identify what was 
preventing memory from being initialized. 

3-116 



inter AP-239 

*ORG419 
ASM IP= o0419H 
*ASM JMP OAOO 
ASM IP=00419H 

;Sets address for assembly to 419H 

;Inserts instruction to jump to AooH 
E9E4oS 

*DASM419 ;Disassembles instruction at 419H 
o0419H 
*ORGOAOO 

JMP oAooH ; SHORT E9E405 DASM 
;Sets address for assembly to AooH 

ASM IP=ooAooH 
*ASM MOV BX,52 ;Inserts MOV instruction 
ASM IP=ooAooH BBS200 
*ASM MOVCX,WORD .MAX. ; Inserts MOV instruction 
ASMIP=00A03H 8BoE50oo 
*ASM JMP 41C ; Inserts jump back to 41CH 
ASM IP=00A07H E912F A 
*DASMOAOOTOOA07 ;Disassembles patch 
ooAooH MOV BX,00S2H BB5200 DASM 
00A03H MOV CX, WORD DO SOH 8BoESooo DASM 
00A07H JMP o41CH ; SHORT E912FA DASM 
·GOFROM400 ;Emulates beginning at 400H 
•• DATA_AND_CODE.REVERSE 
o0420H MOV CX, WORD OoSoH 8BOE5000 EX 

* 

280105-6 

Figure 6. Sample Patch Commands 

1. Used the B processor to locate code: The iPDS file 
display command (@) was used to scroll through the 
code listing to locate the line of code where memory 
zeroing began. The line that completed the zeroing 
operation was also located. 

2. Set up a trace point and a breakpoint: After switch
ing to the A processor, the user set a trace point and 
a breakpoint that began trace at the first line identi
fied in step 1 and caused emulation to break at the 
other line identified in step L (See the appendix for 
information on EMV-88 commands.) 

3. Initiated emulation using the GO command. 

4. Examined the trace buffer: The trace buffer showed 
tha the expected data (FC) was read from program 
memory. 

5. Connected a logic analyzer to an EMV-88 controller 
test signal: A logic analyzer was connected to the 
BRK test signal available on the EMV-88 controller 
module; the signal is useful in triggering a logic ana
lyzer to capture data on the bus. 

6. Re-emulated. 

7. Examined the logic analyzer display: The logic ana
lyzer display showed that FF was being received by 
the processor even though FC was being sent. 

8. Connected an oscilloscope to the bus: The oscillo
scope showed ringing on the bus. (The ringing was 
traced to a faulty extender card.) The ringing caus~d 
bus signals to be near threshold values. Low signals 
could be interpreted by the processor as high or low. 
Thus FC (1111 1100) could be interpreted as FF 
(11111111), . 

PROBLEM 5: DISPLAY UPDATE SIGNAL IS 
SLOW 
(Task 3: Integrate Hardware and Software) 

This user developed a system with a display that must 
be updated every second. However, in each five minute 
period, the display was updated one time less than it 
should be. The user needed to determine whether a 
counter implemented in software was not generating 
the correct update signal or whether the output from a 
separate timer board (that incremented the counter) 
was too slow. 

PROBLEM 5 SOLUTION 

This is a problem that became evident to the product 
development team after software and hardware were 

3-117 



Ap·239 

*IFF=O 
*REGISTER 

;Clears the interrupt enable flag 
;Displays current register settings 

*REGISTER DISPLAY* 

RAX=OOOOH 
RBX=OOOOH 
RCX=OOOOH 
RDX=OOOOH 

RAH=OOH 
RBH=OOH 
RCH=OOH 
RDH=OOH 

RAL=OOH 
RBL=OOH 
RCL=OOH 
RDL=OOH 

SP=OFFFH 
CS=FFFFH 

BP=OOOOH 
DS=OOOOH 

SI=OOOOH 
SS=OOOOH 

DI=OOOOH 
ES=OOOOH 

IP=OOOOH 

RF=F002H 

* 

OF=O 
SF=O 

DF=O 
ZF=O 

IFF=O 
AF=O 

TF=O 
PF=O CF=O 

280105-7 

Figure 7. Sample REGISTER Display that Shows the New IFF Setting 

integrated. It was unclear whether it was a software or 
hardware defect. The team employed the following 
steps with the EMV-88 emulator to locate the source of 
the problem. 

1. Created a counter macro: A macro was created that 
counted each time the external board sent a signal to 
a specific input port of the 8088. (See the appendix 
for information on EMV-88 commands.) The macro 
also sent a signal to an ouput port when the counter 
reached the correct count. The team reasoned that if 
the problem still existed when they used the macro 
counter, the counter in the prototype software 'could 
be eliminated as the source of the problem. 

2. Executed the macro and checked the output signal: 
The output port signal interval was slightly longer 
than the desired one second interval. Thus, the 
problem must be caused by the signal input to the 
counter. 

.3. Measured the input signal: The input signal was ex
pected to occur at 0.500 second intervals. However, 
measurements showed that it occurred at longer in
tervals. It seemed, then, that the count board was to 

blame. However, examination of the board's specifi
cations showed that the output of the board was 
ambiguously specified. In one place it gave the timer 
output as occurring at 0.500 intervals and in other 
places the interval was specified with a + 0.016 sec
ond tolerance. So the cause of the slow display up
date was neither a hardware defect nor a software 
defect. Rather, to blame were an ambiguous specifi
cation and the failure of the designers to look for 
and to take into account the tolerance of the timer's 
interval. 

PROBLEM 6: READ-ONLY MEMORY IS 
WRITTEN TO 
(Task 3: Integrate Hardware and Software) 

One user encountered a situation in which a read-only 
area of memory was written to during program execu
tion. The EMV-88 user performed the following steps 
to isolate the error. . 

3-118 



AP-239 

*BREAK ;Displaysbreakpointsettings 

*BREAKPOINT SETTINGS* TYPE 

BRO= OFF 
BRR= OFF 
BRB= OFF 
BV=OFF 

MO=EX 

BR1= OFF BR2= OFF BR3= OFF : location 
:range 

(GO mode on 1 y) : branch 
(STEPmodeonly) :value 

NOTE: Be will clear all breakpoints and set MO=EX 

NOTE: MO affects BRR and BRO,1,2,3. Legal MO settings are: 
DR-data read DW-data wri te DRW-data read or wri te EX-execution 
IR-IO read IW-IO wri te IRW-IO read or wri te 

* 

280105-8 

Figure 8. BREAK Display 

PROBLEM 6 SOLUTION 
1. Set a range breakpoint: By using the BREAK com

mand (or FUNCTION-2), the current breakpoint 
settings were displayed. (See Figure 8 for a display 
of EMV-88 breakpoint settings. Also, see the appen
dix for information on EMV-88 commands.) The 
breakpoint mode was set to data write (MO = 
OW), and the range breakpoint was set to the mem
ory range of interest. As a result of these settings, 
emulation breaks if a data write occurs within the 
specified memory range. 

2. Emulated. 

3. Examined the trace buffer: Examined the previous 
16 instructions in the trace buffer (by entering PRE
VIOUS 16). Defective code was discovered. 

4. Patched and tested the code. See Problem 2 for an 
account of patching procedures. 

SUMMARY 

Early users of the EMV-88 emulator used the emulator 
to perform the following functions in the early stages of 
their products; life cycles. 

• Exercised hardware and software in real time. 

3-119 



intJ AP-239 

• For a prototype system with large programs, the 
EMV-88 emulator was used to supplement main de
velopment systems. 

• Patched around missing sections of code to allow 
emulation when some portions of code were unavail
able. 

• Resolved disputes about whether bugs were in hard
ware or software. 

• Tested prototype hardware and software at a remote 
site. 

• Tested early manufactured systems. 

• Helped in troubleshooting early customer system re
turns. 

In addition, early users showed that the resources of 
the EMV-88 software and hardware can be used to 
cope with a wide variety of debugging problems. The 
EMV-88 emulator performed the following tasks: 

• Made an initial check of prototype hardware. 

• Located code that caused the instruction execution 
sequence to be wrong. 

• Devised a way to· debug in a multi-tasking environ
ment. 

• Identified the reason that memory was not being 
zeroed. 

• Isolated the cause for a counter counting too slowly. 

• Located code that was permitting writing to read
only memory. 

Finally, early EMV-88 customers also niade use of oth
er iPDS plug-in modules. They used other emulation 
vehicles to debug other portions of their hardware and 
software that were designed around other Intel proces
sors; they also used PROM programming modules to 
load their debugged code into their prototype system 
PROMs. 

New users of the iPDS system and EMV-88 emulator 
are encouraged to make full use of these systems' capa
bilities and resources to perfect their products. Only 
some of the capabilities of the EMV-88 emulator and 
the iPDS system have been described here. Review the 
iPDS system and EMV-88 emulator manuals to gain 
full lalowledge of the command sets and options. 

3-120 



inter Ap·239 

APPENDIX: SUMMARY OF EMV-88 COMMANDS AND 
COMMAND CATEGORIES 

APPENDIX: SUMMARY OF EMV·88 
COMMANDS AND COMMAND CATEGORIES 

DISPLAY/MODIFY COMMANDS 

The EMV -88 emulator is a full symbolic emulator, and 
hence all commands and displays can be entered sym
bolically. The EMV-88 emulator and the user can thus 
communicate by referring to symbols defined in the us
er's source program or symbols defined during the de
bugging session. Ths following sections describe the 
command categories and Table 1 summarizes the 
EMV-88 commands. 

These commands change or display any register, port, 
or memory addressable by the iAPX-88 target system. 
They provide access to specific areas of the processor or 
target system and thus minimize extraneous display in
formation. 

EMULATION COMMANDS 

Commands that control program execution or initiate 
emulation fall into this category. The GO, BREAK, 
and TRACE commands are in this category. UTILITY COMMANDS 

Utility commands performs functions not directly relat
ed to the task of emulation and debugging. These com
mands gain access to the iPDS system resources and 
display information about the emulator. 

ADVANCED COMMANDS 

The advanced commands offer an easy way to increase 
the debugging capability of this product. These ad
vanced features allow the EMV-88 emulator command 
sequences to be combined, executed, and stored. 

Table 1. Summary of EMV-88 Commands 

Command Category Command Command Definition 

Utility Commands DEFINE Defines symbol or macro. 
DOMAIN Establishes default module. 
ENABLE/DISABLE Controls expanded display. 
EVALUATE Evaluates any expression. 
EXIT Terminates EMV-BB session. 
HELP Displays command syntax. 
INCLUDE Loads a macro definition or a command file. 
LINE Displays statement numbers and associated absolute addresses. 
LIST Generates copy of emulation work session. 
LOAD Loads object file in mapped memory. 
MODULE Displays module names in EMV-BB module table. 
REMOVE Deletes symbol or macro. 
RESET Resets emulation processor. 
SAVE Saves memory to file. 
SYMBOLS Displays symbols. 
SUFFIX/BASE Sets input and displays numeric base. 
TYPE Sets/displays data type for symbol name. 

3-121 



intJ Ap·239 

Table 1. Summary of EMV·88 Commands (Continued) 

Command Category Command Command Definition 

Emulation BR Displays breakpoint menu. 
Commands BRO,BR1, BR2, BR3 Breakpoint register for execution address. 

BRB Breaks on branch. 
BRR Breakpoint register for execution range. 
BV Breaks on value. 
BC Clears all breaks. 
DTR Displays trace menu. 
GO Enters real-time emulation mode. 
MO Break qualifier. 
PREVIOUS Displays execution trace. 
STEP Enters slow-down emulation mode. 
TO Enable/disables display of code disassembly. 
TR Enable/disables display of registers. 
TRO, TR1, TR2, TR3 Enable/ disables display by execution address. 
TS Enable/disables display of PSW. 
TV Enable/ disables display by register value. 

Display/Modify ASM/DASM Changes/displays code memory in assembly language 
Commands mnemonics. 

ORG Sets address for assembling instructions. 
DUMP Displays memory as ASCII and hexadecimal. 
MEMORY Displays menu for memory access. 
PORT Changes/displays ports. 
REGISTER Displays 8088 registers menu. 
BYTE 

} WORD 
POINTER Change/display memory. 
SINTEGER 
INTEGER 
REAL } TREAL 8087 commands 
OREAL 

Advanced Commands DIR Displays names of all available macros. 
FUNCTION Invokes macro assigned to function key. 
MACRO Displays.macro text. 
MAP Sets/displays memory map. 
PUT Stores macro definitions. 
WRITE Evaluates and displays expressions and strings. 
IF THEN 

} COUNT 
REPEAT Control constructs. 
WHILE 
UNTIL 

3-122 


