| intl

User’s Manual

82786 Graphics Coprocessor

HWHH

(M@’

/ﬂ’

N
\g |

A

P 4 :
g ;
C’I}

V.

|

.
—— —

”

]

I
il

m;uu

w111

Al

Ll

u

.

Il
I

|

wuu
Il

.

intel

LITERATURE
To order Intel Literature write or call:
INTEL LITERATURE SALES TOLL FREE NUMBER:
P.0. BOX 58130 (800) 548-4725"

SANTA CLARA, CA 95052-8130

1988 HANDBOOKS

Product line handbooks contain data sheets, application notes, article reprints and other design information.

TITLE LITERATURE
ORDER NUMBER
COMPLETE SET OF 8 HANDBOOKS 231003

Save $50.00 off the retail price of $175.00. (Price applicable to U.S. and Canadian
shipments only)

AUTOMOTIVE HANDBOOK, 1200 pages 231792
(Not included in handbook set)

COMPONENTS QUALITY/RELIABILITY HANDBOOK, 288 pages 210997
(Available in July)

EMBEDDED CONTROLLER HANDBOOK, 2016 pages 210918
(2 volume set)

MEMORY COMPONENTS HANDBOOK, 528 pages 210830
MEMORY COMPONENTS HANDBOOK SUPPLEMENT, 256 pages 230663
(Available in July)

MICROCOMMUNICATIONS HANDBOOK, 1648 pages 231658
MICROPROCESSOR AND PERIPHERAL HANDBOOK, 2224 pages 230843
(2 volume set)

MILITARY HANDBOOK, 1776 pages 210461
(Not included in handbook set)

OEM BOARDS AND SYSTEMS HANDBOOK, 880 pages 280407
PROGRAMMABLE LOGIC HANDBOOK, 448 pages 296083
SYSTEMS QUALITY/RELIABILITY HANDBOOK, 160 pages 231762
PRODUCT GUIDE (No charge) 210846
Overview of Intel’s complete product lines

DEVELOPMENT TOOLS CATALOG (No charge) 280199
INTEL PACKAGING OUTLINES AND DIMENSIONS (No charge) 231369
Packaging types, number of leads, etc.

LITERATURE PRICE LIST (No charge) 210620

List of Intel Literature

For U.S. and Canadian literature pricing, call or write Intel Literature Sales. In Europe and other international locations,
please contact your local Intel Sales Office or Distributor for literature prices.

*Good in the U.S. and Canada.

Intel Literatu

date

Service

- Get Intel’s Latest Technical
Literature, Automatically!

Exclusive, Intel Literature Update Service

Take advantage of Intel’s year-long, low cost Literature Update Service and you will receive
your first package of information followed by automatic quarterly updates on all the latest
product and service news from Intel.

Choose one or all five product categories update

Each product category update listed below covers in depth, all the latest Handbooks,
Data Sheets, Application Notes, Reliability Reports, Errata Reports, Article Reprints,
Promotional Offers, Brochures, Benchmark Reports, Technical Papers and much more. . .

== 1. Microprocessors

Product line handbooks on Microprocessors, Embedded Controllers and Component
Quality/Reliability, Plus, the Product Guide, Literature Guide, Packaging Information
and 3 quarterly updates. $70.00 Order Number: 555110

p== 2. Peripherals

Product line handbooks on Peripherals, Microcommunications, Embedded Controllers,
and Component Quality/Reliability, Plus, the Product Guide, Literature Guide,
Packaging Information and 3 quarterly updates. $50.00 Order Number: 555111

== 3. Memories

Product line handbooks on Memory Components, Programmable Logic and
Components Quality/Reliability, Plus, the Product Guide, Literature Guide, Packaging
Information and 3 quarterly updates. $50.00 - Order Number: 555112

= 4. OEM Boards and Systems

Product line handbooks on OEM Boards & Systems, Systems Quality/Reliability, Plus,
the Product Guide, Literature Guide, Packaging Information and 3 quarterly updates.
$650.00 Order Number: 555113

= 5. Software

Product line handbooks on Systems Quality/Reliability, Development Tools Catalog,
Plus, the Product Guide, Literature Guide, Packaging Information and 3 quarterly
updates. $35.00 Order Number: 555114

To subscribe, rush the Literature Order Form in this-handbook,
or call today, toll free (800) 548-4725.*
Subscribe by March 31, 1988 and receive a valuable free gift.

The charge for this service covers our printing, postage and handling cost only.
Please note: Product manuals are not included in this offer.
Customers outside the U.S. and Canada should order directly from the U.S. -

o
Offer expires 12/31/88. 'n
*Good in the U.S. and Canada.

intel

LITERATURE SALES ORDER FORM

NAME:
COMPANY:
ADDRESS:
CITY: STATE: ZIP:
COUNTRY:
PHONE NO.: ()

ORDER NO. TITLE QTY. PRICE TOTAL

X X X X X X X X X X
I

Subtotal
Must Add Your
Local Sales Tax

Must add appropriate postage to subtotal -
(10% U.S. and Canada, 20% all other). -

Postage

Total

Pay by Visa, MasterCard, American Express, Check, Money Order, or company purchase order payable to
Intel Literature Sales. Allow 2-4 weeks for delivery.

OVisa [OMasterCard [American Express Expiration Date

Account No.

Signature

Mail To: Intel Literature Sales International Customers outside the U.S. and Canada
P.O. Box 58130 should contact their local Intel Sales Office or Distributor
Santa Clara, CA 95052-8130 listed in the back of most Intel literature.

Call Toll Free: (800) 548-4725 for phone orders
Prices good until 12/31/88.
Source HB

CG/LSOF/062188

intel

CUSTOMER SUPPORT

CUSTOMER SUPPORT

Customer Support is Intel’s complete support service that provides Intel customers with hardware support, software
support, customer training, and consulting services. For more information contact your local sales offices.

After a customer purchases any system hardware or software product, service and support become major factors in
determining whether that product will continue to meet a customer’s expectations. Such support requires an inter-
national support organization and a breadth of programs to meet a variety of customer necds. As you might expect,
Intel’s customer support is quite extensive. It includes factory repair services and worldwide field service offices
providing hardware repair services, software support services, customer training classes, and consulting services.

HARDWARE SUPPORT SERVICES

Intel is committed to providing an international service support package through a wide variety of service offerings
available from Intel Hardware Support.

SOFTWARE SUPPORT SERVICES

Intel’s software support consists of two levels of contracts. Standard support includes TIPS (Technical Information
Phone Service), updates and subscription service (product-specific troubleshooting guides and COMMENTS
Magazine). Basic support includes updates and the subscription service. Contracts are sold in environments which
represent product groupings (i.e., iIRMX® environment).

CONSULTING SERVICES

Intel provides field systems engineering services for any phase of your development or support effort. You can use
our systems engineers in a variety of ways ranging from assistance in using a new product, developing an applica-
tion, personalizing training, and customizing or tailoring an Intel product to providing technical and management
consulting. Systems Engineers are well versed in technical areas such as microcommunications, real-time applica-
tions, embedded microcontrollers, and network services. You know your application needs; we know our products.
Working together we can help you get a successful product to market in the least possible time. .

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementation.
In just three to ten days a limited number of individuals learn more in a single workshop than in weeks of self-study.
For optimum. convenience, workshops are scheduled regularly at Training Centers worldwide or we can take our
workshops to you for on-site instruction. Covering a wide variety of topics, Intel’s major course categories include:
architecture and assembly language, programming and operating systems, BITBUS™ and LAN applications.

CG/CUST/062188

intel

82786
GRAPHICS
COPROCESSOR
USER’S
MANUAL

1988

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Contact your local sales office to obtain the latest specifications before placing your order.
The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

Above, B|TBUS, COMMputer, CREDIT, Data Pipeline, ETOX, FASTPATH,
Genius, i, 1, ICE, iCEL, iCS, iDBP, iDIS, PICE, iLBX, i, iMDDX, iMMX, Inboard,
Insite, Intel, intgl, Intel376, Intel386, Intel486, intglBOS, Intel Certified, Intelevision,
intgligent Identifier, intgligent Programming, Intellec, Intellink, iOSP, iPDS, iPSC,
iRMK, iRMX, iSBC, iSBX, iSDM, iSXM, KEPROM, Library Manager, MAPNET,
MCS, Megachassis, MICROMAINFRAME, MULTIBUS, MULTICHANNEL,
MULTIMODULE, ONCE, OpenNET, OTP, PC BUBBLE, Plug-A-Bubble,
PROMPT, Promware, QUEST, QueX, Quick-Erase, Quick-Pulse Programming,
Ripplemode, RMX/80, RUPI, Seamless, SLD, SugarCube, UPI, and VLSICEL,
and the combination of ICE, iCS, iRMX, iSBC, iSBX, iSXM, MCS, or UPI and a
numerical suffix, 4-SITE, 376, 386, 486.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk
Data Sciences Corporation.

*MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:
Intel Corporation
Literature Sales

P.O. Box 58130
Santa Clara, CA 95052-8130

©INTEL CORPORATION 1988 CG-3/10/88

TABLE OF CONTENTS

CHAPTER 1 Page
82786 OVERVIEW
1.0 Revision INfOrmationcooceeiiiiiiiie e s e 1-2
1.1 Architecturecocoviviiiiiniins et ee et eee et e —ar e e e —t et e ee e ae e e eante s e nnnraeaenaan 1-3
1.1.1 Graphics Processor (GP)ccccceiieeiieiiiiriree e ree e sreesae s sse s see e sraeeneas 1-3
1.1.2 Display Processor/CRT Controller (DP)cccooieiiiiiieieenieeiesreesee e 1-3
1.1.3 Display Processor (DP) Master and Slave Modesc.cccocoevierivniieeninenne 1-4
1.1.4 Bus Interface Unit (BIU)c.cccoveeiiiiiiiieeeceee ettt 1-4
1.1.5 MemOry STTUCLUIE ...t et e e 1-5
1.1.6 Memory Access and Arbitrationccccoiciiiriiniiin e 1-5
1.1.7 Master and Slave Memory Access Interfacescccocceecviiiiiiiciciicnnen. 1-5
1.1.7.1 Master Mode INterfacecocvireciiiniiiecie et 1-6
1.1.7.2 Slave INErfaceccoo ittt 1-6
1.1.8 Internal REJISTErScccooiiiiiieeee ettt 1-6
1.2 System Configurationscocceverreriiiienienceeee e 1-6
CHAPTER 2
GRAPHICS PROCESSOR OVERVIEW

2.1 GraphiCs CONCEPLSeeiriiiiiiieeetieieeererte e e se e e ee e ebe e e saaeeeteeesaree e annas 2-1
P2 R = 0= oL USSR 21
2.1.2 Bitmap Coordinatesccceccvrcvricureinnns ettt eet e et e et e sreeeabeeeeanes 2-2
2.1.8 PIXEIS e e e e e n 2-2
2.1.4 Calculating the Effective ADAress (EA)cocvveerieievenseneessececee s 2-3
2.1.5 WINAOWS ..ottt see e st e e s e s st e s s ste e san e e eneeeas 2-4
2.2 Graphics Processor (GP) REQIStErScccccvvciirriier it e et 2-4
2.2.1 Internal Graphics Processor (GP) Registersccccooeviiveniviiiennvincescveenen 2-4
2.2.1.1 Graphics Processor Status Register (GSTAT) ...cccovcevrveevericieecnee e, 2-5
2.2.1.2 Graphics Processor Instruction Pointerccccvvivevieeviencciecciece e, 2-5
2.2.2 Graphics Processor (GP) Control RegiStersccccvveevieeviiecseessiecreesinee s, 2-6
2.2.3 Graphics Processor (GP) Context Registerscocccveeiienieciieiivecsien e, 2-7
2.3 Command Execution and FOrmMatcccccoeiiiriiiniiiieneneecee e 2-8
2.3.1 Graphics Processor Command Block (GCMB) Formatc..ccccceveieennnncne 2-9
2.3.2 POl SEAEoeiiiiieeee et e nbe e 2-10
2.3.3 RESET and Initializationcccccovieiinieiiieieceeres e srese e 2-10
2.3.4 Exception HandliNgcocceriiieeiiinie ettt 2-12
2.4 Graphics Processor (GP) COMMAaNAScccevuerreeereeressnrenee e eiesieesseesanenas 2-13
2.5 Nondrawing COMMANGAScceeviiiirriiire e eieesee e re e stessreessbeesree st sre e s e assaeas 2-13
2.6 Drawing Control Commands eererrrerssererererraesaeanreeesenannenberaneeesearreaans 2-14
2.6.1 Attributes Associated with Drawing Commandscccceverriericrenrsiennenn. 2-14
2.6.2 COlor Bit MASKooieieeeieiieete ettt e eean 2-15
2.6.3 LOgical OPErationscccccoeeeierieiienie e eie st e et eeaee e see e e saaeeraanraas 2-15
2.6.4 Clipping RECIANGIE ...cooiviieiiiie ettt sre e e e 2-16
2.6.5 PICK MOGEoieieiiiieeeeeee et ettt s re e e 2-16

|nte| TABLE OF CONTENTS

Page
2.6.6 Foreground and Background CoIOrscccverinniinieininnninicnsicsees 2-17
2.6.7 Transparent or Opaque MOdeccccoiiiirciiiinieene e 217
2.6.8 Pattern Maskioiiiiiieee e e 2-17
2.7 Geometric COMMEANGASccceiriuieeeiiriereeeceeeereeessee e s rene s e anre e s er e s ene e s seeseneesanns 2-18
2.8 Bit Block Transfer (Bitblt) Commandsccccovviiiiinnnce e, 2-18
2.9 Character COMMANGcccceeriierieeree e e e e 2-18
2.9.1 Character FONt SUPPOItoooiiiiiiei e e 2-18
2.9.2 Character STOragec.cccoccvrrrrimieeiriren e s 2-19
2.10 Command DeSCriptionsccccoeiveeireririiriiis s 2-23
2.10.1 ABS_MOV = MOVEooueiiiieieeiie et ee ettt et e e e e 2-24
2.10.2 ARG = Draw AICeoiiecieieiciiesiieeeseeeeette et e ssteeeete e s saeesesaeesnaessnanessneeanas 2-25
2.10.3 BIT_BLT - Bit BIOCK Transfercccoocoiieiiniieienciee e 2-27
2.10.4 BIT_BLT_M - Bit Block Transfer Between Bitmapsccoccceeviiiviiiinns 2-29 -
2.10.5 CALL — Call SUDIOULINEcceeeeiiiiirieieein et 2-31
2.10.6 CHAR - Draw Character Stringccccooiriecieniinie e 2-32
2.10.7 CIRCLE — Draw GirCleccccceieieiirieieieiesieesireessinesssseesseseesssneesesnessneeanns 2-38
2.10.8 DEF_BITMAP — Define Bitmapcccccceririvnniiniesie e 2-39
2.10.9 DEF_CHAR_ORIENT - Define Character Orientationcc.cccccvevririiennne 2-41
2.10.10 DEF_CHAR_SET - Define Character Setcccoovimreiriiniiniennieeenneee 2-43
2.10.11 DEF_SPACE - Define SPacecccccvrerireereeniireeseesie e 2-48
2.10.12 DEF_CLIP_RECT - Define Clipping Rectanglecccovciiiiineineicinnnne 2-49
2.10.13 DEF_COLORS - Define Colorscccveivierieeeeiierieniee e eree s sseeseeeene 2-51
2.10.14 DEF_LOGICAL_OP - Define Logical Operationccceceeverieerniencnnnnn 2-52
2.10.15 DEF_TEXTURE — Define Textureccccrvirniinimenneiecien e 2-55
2.10.16 DUMP_REG - Dump RegiStercccooiiriiiriieeiiiie e 2-56
2.10.17 EBITBLT—Expand 1bpp Source to Currently Defined Bppcccccvueeee 2-58
2.10.18 ENTER_PICK — Enter PICK MOAEcocoiiiieciieeeeeeeeeeeee e 2-60
2.10.19 EXIT_PICK - Exit PICK MOEc.cccoiiriiiiieeieereeree e 2-61
2.10.20 HALT - Stops Command EXeCUtionccccccceriiimiiiicrinieicniincieecniees 2-62
2.10.21 INCR_POINT - Draw Series of Incremental Pointsccoceiiiiiienninns 2-63
2.10.22 INTR_GEN - Generate Interruptcccccooieiiiniieiinccc s 2-66
2.10.23 LINE — Draw LINE ..ccccccieriiiereiceenieee s ieee e e s e e ssnes s e senen e snne s 2-67
2.10.24 LINK - Link Next Commandccccoeceriiimnnimenineee e 2-69
2.10.25 LOAD_REG - Load Registercccnviiiiiniinniciinccecnn e 2-70
2.10.26 NOP — NO OPErationccceeevereriieerirrerserennsiessinsessssneessseeresneessensesssneasne 2-71
2.10.27 POINT = Draw Pointcccervereieniennieneeeseeeeeeeene rereireeerteeeeeereesasaanes 2-72
2.10.28 POLYGON — Draw POIYgONcccccoeiiiiiiiiiiiiicnin s s 2-74
2.10.29 POLYLINE — Draw POIYliNGcccoocierieiriinceeeenee e 2-76
2.10.30 RECT - Draw Rectangleccccooieiieeiieien e s 2-78
2.10.31 REL_MOV — Relative MOVEcocceiriiiieiieee et 2-80
2.10.32 RETURN - Return from Subroutingccccccvriieviiiineniiicceecccrciee 2-81
2.10.33 SCAN_LINES - Draw Series of Horizontal Linescccccviviiriiininnnnnn, 2-82

Inte| TABLE OF CONTENTS

CHAPTER 3 Page
DISPLAY PROCESSOR OVERVIEW :
3.1 Display Processor Operationccccevceiesieeriieeniiesineniesseeeseeesseesasssseessaesnnns 3-1
3.1.1 Bitmap Organizationcccccciiiiiiiiiiiccce e 3-1
3.1.2 IBM PC Bitmap Format SUPPOrtooeeeciiiieiceieee et 3-2
3.1.3 Window Display FOrmatcc.ccocoiiiiiinieeieeeeeeee e 3-4
3.1.3.1 Strip DESCHPLOISeeiiiiieieee ettt ettt et st raeeaaes 3-4
3.1.3.2 Strip Descriptor FOrMatccccoeceeriierieieeeiee e eseeeeseee e e s reee e 3-5
B.1.4 CUISOT ettt ettt at e st e bt e bt e s aae s eeereesasessareeans 3-9
3.1.5 Bus Bandwidth REQUIrEMENtSccccciiiiiiiiiiiniietecee e 3-10
3.2 VIdEO INTEITACE ...oceeiieie i e 3-10
3.2.1 CRT CONMIOMEE ...ttt et e se e e e ne e 3-11
3.2.2 VIdEO RAIESooniiii ettt 3-12
3.2.3 HSync and VSync Multiplex Window Statusccccceveieriiieiniieieeneeieenne 3-13
T2 4 oTo) 2 g TESTH o] o o] o (RN O PSIN 3-13
3.2.5 VRAM SUPPOIT ..ottt ettt et ie e et a e see st sbe e ne e e neeenes 3-15
3.2.5.1 Sample VRAM DESIgNccceiiieiiiiieeiieeteeete ettt ae e 3-15
3.2.5.2 Hardware OVENAYScccceviiiiiiieieeecee et s 3-17
3.2.5.3 Initiating VRAM Mode and FUNCONScocereeciniinercceeeenceee 3-17
3.2.6 Extended 82786 System Configurationscccceeeerernenenneniinienceseennenns 3-18
3.3 Display Processor REQISIErScccocciviiiieiiiiiieee ettt 3-19
3.3.1 Display Processor Internal ReQIStErscccovevrieeveiiienieerc e 3-19
3.3.1.1 DPStatus Register and Exception Handlingccccooeiieiiinieniinicecieeene 3-20
B.3.1.2 INTEITUPES ettt et st st e n e s aeens 3-21
3.3.2 Display Control BIOCK REQISErScccovvveireeiieiiiiiecee e 3-21
IR e B = To [2 (=T 1] (= = SO 3-21
3.4 Display Command Synchronizationc.ccceeeereviernieenesiee e seeneens 3-21
3.5 Command EXECULIONccociviiiiiriiiieie it e e seee e s ree s s e e e senee e 3-27
3.6 Display Processor Register CoOmmandsc.cccceveveeriiieennicenniieenreeseeesninneanns 3-29
3.6.1 Load RegiSter (LD RG) ...ccceceerierierieireterie e e et sseeesree st e s seeesn e s ssaesseesns 3-29
3.6.2 Load All (LD ALL) ettt sttt 3-29
3.6.3 Dump Register (DMP RG)ccoviriiiiiieniinireseesie et e e ee e seeesee s eas 3-30
3.6.4 DUMP All (DMP ALL) ..ottt s 3-30
3.6.5 LOOP COMMANG ..ottt ettt e e e s ae s e e e e sreasaaeeens 3-30
3.6.5.1 Updating Display Processor Registers with Loop Modec.cccevevvnene 3-31
3.6.5.2 Suggested Mode of OPEerationc..cocceeveererreerniecernenee e 3-32
3.6.6 Write Protect Bitcoiieeieiiiiciencee et 3-32
3.7 INILIANZAtIONcooeiiiieeee e s 3-33
3.8 Video Data Signature ANalyzZerccoccooeeienieienneeiereeseee e 3-33
3.8.1 INVOKING TESt MOAEcouiiiiiieiieeeree ettt s 3-34
3.8.2 Operation of the Signature ANAlYZErcccccccvviieerieeieenie e se e 3-34

|nte| TABLE OF CONTENTS

CHAPTER 4 Page
BUS INTERFACE UNIT OVERVIEW
4.1 Memory Structure and Internal Registersccccoviiiiiiiniinniciee 4-2
4.2 Internal REGISIErScocciiiiiiiiiie ettt 4-2
4.2.1 Relocation REIStercocoiiirieii i 4-3
4.2.2 Control REISTErcociiiiiiciecie et e e e 4-5
4.2.3 DRAM/VRAM Refresh Control Registercccovieirieriensennieneeeieeeeeenee 4-6
4.2.4 DRAM/VRAM Control Registerccccoviiiiiniiiiiiicciceicce e 4-8
4.2.5 Display Priority REGISTErcceeiimiiiiiieiienie e 4-9
4.2.6 Graphics Priority Registercccoiiiiiiiiiincii 4-9
4.2.7 External Priority Register ..o 4-10
4.3 Bus Cycle Arbitrationcocooiiiiiiieee e 4-11
4.3.1 Priofity LEVEISoeeeeeeeieee et 4-11
4.3.2 Priority EXCEPONScoviiieieietie et 4-12
4.4 Master and Slave INterfaces ... 4-13
4.41 Master Mode INterfaceccccoveeieiiiiiiiinceee e 4-13
4.41.1 Initiating Master Mode Interfaceccocoviviiiiiininciceee 413
4.41.2 Retaining Control of the System Busccocoieiiiiniecee e 4-14
4.4.2 Slave INTerface ... e 4-14
4.42.1 Initiating a Slave Requestcccoci i 4-15
4.4.2.2 8-Bit and 16-Bit INnterfacesoccceeeiiiriinneeec e 4-15
4.4.2.3 Slave Interface Byte Access 1o MEeMOrycccovvieiiiniinicsinicscee 417
4.4.2.4 Slave Enable (SEN) as Ready Indicationccccccoviiiniieiiinniciinineeens 4-17
4.42.5 Accessing Internal Registers & Graphics Memorycccccceecveecieerneennen 417
4.4.2.6 Command LOCKOULcccociiiiiiiriiiiiniier e e 4-18
4.5 System Bus Interfacecccovviiiiiiiiii 4-18
4.5.1 Synchronous 80286 Interfacecccccceeoiriieriericsiic e 419
4.5.2 80186 Synchronous INterfacecccccervienieicccineeeee e 4-22
4.5.3 Asynchronous INErfaceccccoverirniinieniene e 4-23
4.6 PerfOrManCecccooioieiiieriiete ettt et s 4-25
4.7 RESET COoNAItiONS ooviuiiieiieieiieeeee et 4-25
4.7.1 SPECIAI PINS ..eoiiiiiiiiiieetie ettt e e e e e s e e e s e e e snaeeeans 4-25
4.7.2 INM@lizationooriee e e 4-25
CHAPTER 5
GRAPHICS MEMORY

5.1 DRAM/VRAM Configurationscccccccevriiiinieiiiiiiniiic e 5-1
5.1.1 VRAM Considerationsccccoeciriiiniiiiiniiiiie e 5-5
5.1.2 Considerations for X1 Memory DEVICEScccccerveerirnereierieeecre e 5-5
5.1.3 lilegal DRAM/VRAM Control Register Valuesccccocveeeviiienniennieeneeenne 5-7
5.1.4 Data Line CONNECIONccovriiieiiei et 5-8
5.2 DRAM/VRAM CyCle TYPES ...oooviiiriiririciis it 5-8
5.3 Graphics Memory Refreshcocoooiiiiiiiici e 5-10
5.3.1 Refresh LatenCyc.cooiviiiiiiiieiireec e 5-10
5.3.2 Refresh after RESET ..ot 5-12

vi

Intel TABLE OF CONTENTS

5.4 Configuring and Accessing Graphics Memory
5.5 Memory Mapcccoviiviiiiiiiieinee e
5.5.1 Mapping the Internal Registerscccccceecuennnne
5.5.2 Alternatives for Graphics Memory Mapping

CHAPTER 6
VIDEO INTERFACE

6.1 CRT Interfacesccccccoeevemrnennieenseesee e .
6.1.1 CRTs with TTL-Level Inputsccceeeuuennn.ee.
6.1.2 CRTs with Analog Inputsccccecvvivienicnnrcnenns
6.2 Using a Color Lookup Table/Video Palette Ram .
6.3 Window Status Signalscceceriericnriinnciens
6.3.1 Controlling the Cursorcceceeeerveencennceneenne.
6.3.2 Window Status Bits Segment Lookup Table for
6.4 High Resolutions with Standard DRAMs
6.4.1 External Logic Requirementsccceeeeeuenne

Multiple Windows

6.4.2 Software Changes Required for High Resolutionccccceceeveeineniieennnnnnn.

6.4.3 Cursor Controlccccecervereirccereiereereeee e
6.4.4 Zoom in Accelerated Modescoceecieeienns
6.4.5 Examples of High Resolution Configurations ...
6.5 Greater Resolution with Multiple 82786s
6.5.1 An Interlaced Display with Two or More 82786s
6.5.2 Bitmap Configurations with Dual 82786s
6.6 Video RAM (VRAM) Interfacecccccceeeeunreeennne
6.7 External Character ROMcccoveiiiinenceennennne.
6.8 Combining the 82786 with Other Video. Sources

6.9 Other Types of Displays and Printers
6.9.1 Pixel Clock Rateccccoevvevrcieenenrceninerecneneens
6.9.2 Partial Display Updatesccccccervevecerneernnen.
6.9.3 Pixel Address Generationcceccceeeeeeceenneen.
6.9.4 Super High Resolutionc.cccevveevvvivicieennnnn,
6.10 Calculating Video Parameterscccccceeucnee.
6.10.1 Application Parameterscccoccvveereenrcnnnns
6.10.2 Monitor Parametersccccvveiveivvveercieencnenns

6.10.4 Sample Video Parameter Calculations
6.11 A Spreadsheet for Calculating Video Parameters

vii

..

Page

5-12
5-13
5-14
5-156

6-2

6-2

6-3

6-5

6-7

6-7

6-9
6-10
6-10
6-11
6-12
6-12
6-12
6-14
6-16
6-16
6-18
6-18
6-20
6-23
6-23
6-23
6-24
6-24
6-25
6-26
6-27
6-29
6-30
6-34

Intel TABLE OF CONTENTS

APPENDIX A
TEST MODES

APPENDIX B
88-PIN GRID ARRAY

APPENDIX C
82786 COMMANDS

~ Figures

Figure Title

11 82786 Functional OVErVIEWcooeiiireiieieeercee et
1-2 Sequential Ordering Replaces Traditional Bit Plane Model
1-3 82786 128-Byte Internal Register BIOCKcceeceeeicrnneniienccecerceeenn
1-4 Low-End Low-Priced Personal Computercecoererericiceinicriennenas
1-5 Multi-Tasking Office Workstationcoccvveriiiicnseciene e
1-6 High-End WOrkstationcocoeiiiiirin e
2-1 Bitmap Coordinatesccccccirriirrnieeirneeeie e e
2-2 Graphics Processor Internal Registersccccccevcvierevenrcceecnsnecneesnne
2-3 Graphics Processor Status Register ..o,
2-4 Graphics Processor Instruction Pointerc.cccocoeeeiiiinieinnicnieeeeeeee
2-5 Graphics Command FOrmatcccceevrrvercinnnisirneniresseessseeseessaesseesnees
2-6 Sample Graphics Command Block (GCMB)ccoccceririeennrnicineeen.
2-7 Opcode Register Used in Poll Stateccccooveeeiinneniciieeeeeeee
2-8 GP Registers Used in Exception Handlingcccceeinvininnininiieninns
29 Character Descriptor Block Formatcccceeviricciieccie e
2-10 Sample Character Descriptor BIOCKcccoeceiieiiriceieeinrcceeeee e eene
2-11 BYIe MOGE ...t
2-12 WOrd MOE ...ceeieeiceiecee et s s et e e e
2-13 ADSOIUE MOVE ..ottt
214 DIraW ArC ittt sttt e e st e e s e e e re e
2-15 Bit Block Transfer eeeeeeeeeeeee et nens
2-16 Bit Block Transfer Between TWO Bitmapsccocceeecemreeeniecrsccieneeneennenn.
2-17 Character Descriptor BIOCK c.cccvirieiiniirincen e srcee e
2-18 Sample Character Descriptor BIOCKc.ccccvicreririneecienceeeeree e
2-19 Word Mode Selector Wordsccooeerereieiieesenceececee e
2-20 Character Command in Word Modeccoocriviiiricienncenecceeeceneee
2-21 Byte Mode Selector WOordsccceeccieeierinsseircee e esenee s
2-22 Draw GirClE ...ooooeiiiieeeee ettt e
2-23 Define BitMapccccoeieiriiiieiec e
2-24 Define Character Orentationcccoccecorecienenrnniese e
2-25 Character Descriptor BIOCKc.ccceiiiiiiiinircerercer e

viii

Page

1-1

1-9

Inte| TABLE OF CONTENTS

Figure Title Page

2-26 Sample Descriptor BIOCKcccciiiiiiieiciiicnenc e 2-44
2-27 - Word Mode Characterccceeeeeiiieineieeneree et 2-46
2-28 Byte Mode CharaCterccooccemrimrrecieisiiesieee et 2-47
2-29 Define Clipping Rectanglecccovcieeeieiicienieecerecrte e 2-50
2-30 Incr_Point DeSCriptOr AITAYcccceverreririeentiesee e st e seaesesesaesaeeeeasaees 2-63
2-31 Array Values for INCr_Pointcccociiiiiiiiniiiinee e 2-64
2-32 Draw LINE ..o.ooieieiieiee ettt et s 2-68
2-33 Draw POINtc.ooiiiiieiieciec ettt 2-73
2-34 Draw POIYGON ..ot 2-75
2-35 Polygon Vertices Array Informationcccoeveieiiiinnininiiiniee, 2-75
2-36 Draw POIYIINGceoeieiieiieectee et 2-76
2-37 Polyling Vertices Arraycc.ccoernieriienniiniinneste e see st 2-77
2-38 Draw Rectangleccccccirciiiiiiiiiieie e s 2-79
2-39 Relative MOVE ...t 2-80
2-40 Scan_Lines Horizontal Line Arrayccccvvivinceiinnnnenninccnencessennes 2-82
3-1 82786 and IBM PC Swapped Byte Bitmap Formatsccccccceviennnnee 3-2
3-2 IBM PC CGA Swapped Byte, 2 Bank Exampleccccceovveiecinnennnenn. 3-3
3-3 Swapped Byte, 4 Bank IBM PCJr Examplecccocceerieirneriireccnneenneen 3-3
3-4 Screen Composition with Strips and TilesScccecceeeiercieriiiceeseeee e 3-4
3-5 Irregular Shaped WINAOWccccoveiirirnieninrcnienec e 3-5
3-6 Strip and Tile DESCHPLOIS ...ccevieiiieiiciee e 3-6
3-7 C Bit Can Indicate Final Strip Colorcocovvriieiiiireieecree e, 3-9
3-8 Zoom Tile PIacement ..ot 3-14
39 Sample VRAM DESIGNcocceverieiereereeeereeeie sttt 3-16
3-10 Display Processor Internal RegiStersccoocvereiviiieeneiciennenneeeeee, 3-19
3-11 DPStatus Register BitSccccceciiiiiincieee e e 3-20
3-12 Display Control Block Registerscccoceivereieiiienirnceeiecte e 3-22
3-13 CRT TimiNg SigNalScoeeiieiiiiiirinier et 3-27
3-14 Video Data Pin OUIPULScoccuieiiieiiiecreeeee e e 3-28
4-1 128-Byte Internal Register BIOCKcccccoveriieeiciieniie e, 4-2
4-2 BIU Register Mapccocciiiiiiiiniiint s 4-3
4-3 Relocation Register ..., 4-4
4-4 Internal Relocation Register ADdresscccccviviensininininnciincnnnnns 4-4
4-5 BIU Control REGISIErcceieeieiieeeecir e 4-5
4-6 Refresh SCalErc..eoieiieieieiecceere e e s 4-6
4-7 DRAM/VRAM Control RegiStercoccereeiiernicnie e 4-8
4-8 Display Priority REgIStErcoocoiiiriieeecineeee e 4-9
4-9 Graphics Processor Priority REgIStercccccevevveiriiinecieenrcee e 4-10
4-10 External Priority REQISTErcoccciiriiieicierce e e 4-10
4-11 82786 Synchronously Connected to an 80286cc.ccceevereerneerennne. 4-20
4-12 Asynchronous Slave 10 MHz 82786 Interface to 8 MHz 80186 4-24
5-1 Noninterleaved DRAM AITaysc.cccvviiiinnniinnicniiecie e 5-2

TABLE OF CONTENTS

Figure

5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
- 5-10

5-11

5-12
5-13

6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
B-1
B-2

DRAM Arrays with X8 DEVICESccoereeiiceiiiieienee e .
Correlation of Address with RAS and CASccccoceeveeieeceeieeceeneeenas
External Multiplexers Provide 4 Bppcccocceeerverrcieennniniesensesieeessseee s
Two Interleaved Banks of 256K X 1 ..o
Data Line Connections X1ccoiiciiiieiireniceeceneeeee et
Data Line Connections X4 and X8cccciiiirreeienneenee e
82786 Viewpoint of Graphics Memory Mapcccccoccevereenvinrceecveeesrnenne
CPUMEMOIY MAPcociiiiieicnet ettt et
Possible Memory Map for 80286/82786 System with Memory Mapped
Internal Registers ...

Memory Mapping for 80286/82786 System with I/O Mapped Internal

REQISIEIS ..ot
80186 System Accesses Only a Portion of Graphics Memory

Bank Switched Memory Allows 80286 to Access all of Graphics

1113 To o RSP PPPO SRR
82786 Drives CRT with TTL-Level Inputs ccccvveeieeciieceeeceeeeee,
Buffer Used to Drive TTL-Input CRT Interfacecccccoeverciicienniecnnnen.
Analog CRT Interface Allows 256 COIOrSc.cccocereieeiericeniienseeneens
ReSIStOr Laddercooioiieiiiieee e
VDATA Color ASSIgNMENTS cccveiiiiiiiieieeiee e
(070] (o] gl WoTe] (3] o -1) (- PSP SRR
Color Lookup Table Circuit Generates 16 Video Bits from 8
Hybrid Color Lookup Table and DAC Simplifies Interfacecccceeueeee.
Blank Demultiplexes Window Status Pins ccccccocceniierinciciciieneeene,
Four Color Lookup Tables Selectable by Window Status Outputs
External Multiplexer Allows up to 50 MHz Video with 4 Bpp
Configuration for Video Data Rates up t0 100 MHz cccccoevvevivvinneenne
External ECL Shift Register Allows up to 200 MHz Video with 1 Bpp ...
Dual 82786s Generate 16 Bpp at 25 MHz ccoociiiiiicin e
Two 82786s Create a 4-Bpp Display at 100 MHzccocveeeierreineenee,
Character ROM and Bitmap Graphics on Same Screenccccceueeneee.
Very Large Character ROM and Bitmap Graphics on Same Screen
Dividing a Page into Strips Decreases Memory Requirements
Noninterlaced and Interlaced Displayscccoccvrirerririercciennineesscenenne
HSync and Blank Timing Parameters ..o
VSync and Blank Timing Parameters -ccoccooerenescenee e
Display Processor Register 05Hcccceiriiniiinneercee e
82786 PinOUt — TOP VIEW ..eeeiiiiieiieectr s
Pinout 82786 — Bottom VIEWcceeveiiieeciere et

Page

5-3
5-4
5-6
5-8
5-10
5-11
5-13
5-14

5-15

5-16
5-17

5-18
6-3
6-3
6-4

6-5
6-6
6-7
6-8
6-8
6-9
6-10
6-13
6-14
6-15
6-17
6-20
6-21
6-25
6-26
6-28
6-28
6-30
B-1
B-2

TABLE OF CONTENTS

Table

2-1
2-2
2-3
24
2-5
2-6

2-8
29
2-10
2-11
2-12
31

3-3
3-4
3-5

37
3-8
4-1
4-2
4-3
4-4

4-6
4.7
4-8
4-9
5-1
5-2

6-1
6-2
6-3

6-5
A-1
B-1

Tables

Title

Bits Per Pixel (bpp) and Pixels Per Word
Effective Address Variablesc.ccccoccvnnnen.
Graphics Processor Status Register Bits
Graphics Processor Control Registers
Context Registersccccccceviriinieeeenieeceeceeee,
Drawing Command Attributesccccceeeeeee.
Logical Operationsc.cccocvvereeseericnceeninnens
Logical Operationsccoccceeevemeciieeeecieenncneenns
Control Registersccocviivieriireeiieneeee e
Context Registerscccoviviniiiinicniciicncnen,
Increment Point Codesoccevveinciiienneenne
Incr_Point Command Array Values
Tile Descriptor Parameterscccccoecvveeeennee

Possible CRT Displays with Standard DRAMs

Possible CRT Displays with VRAMs
HSync, VSync, and Blank Settings
Timing Signal Resolution Changes
BPP for Dot Rate Tradeoffscccccceveeriieenne
DPStatus Registercccooiiviniiiiiniiiiinnnn,
Display Control Registersccocccevvieiennnnen.
RWT:0 ValUESooevevrieiiiiieniie e eeee e
DC1:0 Valuescccceevriiineiiiieeicrcc e,
HT2:0 Valuescccocviiiriiiiiinecniecceeenen,
Default Priority Levels Following RESET
Suggested Priority Valuesc..cccoeceeeeeeennnee.
80286 Bus Master Performancecc.c.......
82786 Address Comparisoncccccevveveeerennnns
82786 Status Interface for the 80286
BHE# and MIO Pin Valuesccccoceveeennnen.
Memory Configurationscccccvvveeieennnee.
DRAM Single Cycle TIMEScccccccevrverrrceeernne
DRAM Block Transfer Ratesccccceceeerenen.

Possible CRT Displays with Standard DRAMs

Possible CRT Displays with VRAMs
Valid StartBit and StopBit Values
HSync, VSync, and Blank Settings
Accelerated Video Mode Valuescccceeeee
82786 Test ModeSccovcvevveeiiceiieee e
Pin DesCriptionsccccevvieieeiieeieeee e

Xi

Page

2-3
2-3
2-6
2-7
2-8
2-14
2-15
2-52
2-56
2-57
2-64
2-65
3-7
3-11
3-11
3-11
3-13
3-13
3-20
3-23
4-8

4-9
4-12
4-12
4-14
4-18
4-18
4-19

5-9
5-11
5-11

6-1

6-2
6-11
6-22
6-29

A-1

B-2

82786 Overview 1

CHAPTER 1
82786 GRAPHICS COPROCESSOR OVERVIEW

The 82786 is an intelligent graphics coprocessor that replaces subsystems and boards, which
traditionally use discrete components and/or software for graphics functions. In a single
88-pin grid array or leaded carrier, the 82786 integrates a:

e - Graphics Processor,
» Display Processor with a CRT controller, and a

e Bus interface unit with a DRAM/VRAM controller supporting 4 MB of memory, which
can consist of both graphics and system memory.

The Graphics Processor (GP) and the Display Processor (DP) are independent processors
on the 82786. The Bus Interface Unit (BIU) with its DRAM/VRAM controller arbitrates
bus requests between the Graphics Processor (GP), Display Processor (DP), and the Exter-
nal CPU or Bus Master.

Figure 1-1 provides a functional overview of the 82786. Refer to Appendix B for top and
bottom pin-out views and a description of each pin.

CPU

N

82786

SYSTEM MEMORY

GRAPHICS
MEMORY
INTERFACE

GRAPHICS DISPLAY VIDEO
PROCESSOR PROCESSOR INTERFACE
SYSTEM BUS INTERFACE
BUS INTERFACE DRAM/VRAM
UNIT CONTROLLER

G30304

Figure 1-1. 82786 Functional Overview

1-1

Intel 82786 GRAPHICS COPROCESSOR OVERVIEW

The integrated design of the 82786 increases programming efficiency and overall perform-
ance while decreasing development and production time and costs of many microprocessor-
based graphics applications such as personal computers, engineering workstations, terminals,
and laser printers. Compatibility with Intel microprocessors, the many device independent
standards, and IBM Personal Computer bitmap memory format (see Section 3.1.2 “IBM
PC Bitmap Format Support”) combined with support for international character sets, multi-
tasking, and an 8- or 16-bit host makes programming the 82786 flexible and straightfor-
ward. The extensive features of the 82786 accommodate many designs. The list below contains
some of the main 82786 features.

e Available in 88-pin grid array or leaded carrier
e Interface designed for device independent software
e Integrated drawing engine with a high-level computer graphics interface instruction set

» Supports multiple character sets (fonts) that can be used simultaneously for text display
applications

e Hardware support for fast manipulation and display of multiple windows on the screen

e DRAM/VRAM controller supporting up to 4 MB of graphics memory, shift registers,
and DMA channel

¢ Supports sequential access DRAMs and dual port video DRAMs (VRAMs)
» Fast bit-block transfers (bitblt) between system and graphics memory

¢ Supports up to 200 MHz CRTs or other video interface

e Up to 256 simultaneous colors per frame

e Programmable video timing

o Third-party software support

» Supports rapid pattern fill

« International character support

¢ Advanced CHMOS technology

¢ IBM Personal Computer bitmap formats

Support for high resolution displays using a 25 MHz pixel clock lets the 82786 display up
to 256 colors simultaneously. Systems designed with multiple 82786s or a single 82786 with
VRAMs can support virtually unlimited color and resolution.

1.0 REVISION INFORMATION

This revision (-003) of the 82786 Graphics Coprocessor User’s Manual reflects the features
and capabilities of the “D” level of revision of the component, noted in this manual by the
term “D-step.”

Intel 82786 GRAPHICS COPROCESSOR OVERVIEW

1.1 ARCHITECTURE

The powerful yet flexible design of the 82786 requires minimal support circuitry for most
applications, which reduces costs and board space requirements for many applications.

Also key to the 82786 is its memory structure. The 82786 can access either graphics memory
directly supported by the integral DRAM/VRAM controller or external system memory
that resides on the CPU bus. When the 82786 accesses system memory, it controls the bus
and operates in Master Mode. The 82786 can also operate as a Slave with the CPU access-
ing the 82786 graphics memory and the Internal Registers. From the software standpoint,
the 82786 accesses graphics and external system memory in the same manner. However,
performance increases when the 82786 accesses its own graphics memory because the 82786
DRAM/VRAM controller accesses it directly without encountering contention with the CPU.
Conversely, the CPU accesses its own system memory more quickly than graphics memory
because it does not encounter contention from the Display Processor (DP) or Graphics
Processor (GP). :

Another feature of the 82786 is the bitmap organization. Replacing the traditional “bit plane”
memory model, the 82786 utilizes sequential ordering (linear memory) and takes advantage
of the fast sequential access modes of DRAMs or dual port vidleo DRAMs (VRAMsS) to
gain performance. The 82786 supports a packed pixel bitmap organization for color in which
all color bits for each pixel are stored in the same byte in memory. In the traditional bit
plane model, each plane defines separate color information. For example, a 4-plane bitmap
describes a bitmap with four colors as shown in Figure 1-2. Each byte of memory contains
one bit of color information for each pixel in the 4-plane bitmap. In the 82786 packed pixel
model, each byte stores data for two pixels. Section 2.1.3 “Pixels” describes the packed pixel
bitmap in detail.

1.1.1 Graphics Processor (GP)

The 82786 Graphics Processor (GP) draws all geometric objects and characters and moves
images within and between bitmaps. The GP creates and updates the bitmap, executes
commands placed in memory by the host CPU, and updates the bitmap memory for the
Display Processor (DP). The GP high-level commands provide high speed drawing of graph-
ics objects and text. The GP performs all these functions independent of the DP. Refer to
Chapter 2 for a detailed discussion of the GP and its functions.

1.1.2 Display Processor/CRT Controller (DP)

The Display Processor (DP) traverses bitmaps generated by the Graphics Processor (GP) or
external CPU, organizes the data, and displays the bitmaps in the form of windows on the
screen. The DP has a video shift register that can assemble several windows on the screen
from different bitmaps in memory and zoom any of the windows in the horizontal and/or
vertical directions. When the DP detects a window edge, it automatically switches to the
next bitmap to display the subsequent window.

1-3

Intel 82786 GRAPHICS COPROCESSOR OVERVIEW

PIXEL1 PIXEL2 PIXEL3 PIXEL4
MEMORY BIT PLANES I 11 10 11 1

76543210 PO [i51a131211109 8 7.6 5 4 3 2 1 0]

.
.
7 6543210 P1
N
.
.
76543210 P2
.
PIXEL 2 AT 4 BPP .

G 76543210 P3
PO
& .
P1 :
.

6
P2

P3
PIXEL: 1 2 3 4 TRADITIONAL BIT PLANE MODEL 82786 MEMORY MODEL

G30304

Figure 1-2. Sequential Ordering Replaces Traditional Bit Plane Model

Essentially, the DP operates as an address generator that accesses appropriate portions of
memory-resident bitmaps. The data fetched from bitmaps is passed to the DP CRT control-
ler, which displays the bitmap data on the screen. The DP CRT controller generates and
synchronizes the Horizontal Synchronization (HSync), Vertical Synchronization (VSync),
and Blank signals. The DP performs all these functions independent of the GP. Refer to
Chapter 3 for a detailed discussion of the DP and its functions.

1.1.3 Display Processor (DP) Master and Slave Modes

The Display Processor operates as a Master or a Slave based on the Horizontal Synchroni-
zation (HSync) and Vertical Synchronization (VSync) signals, which are set with the S bit
in the CRTMode Display Control Register (see Table 3-8 in Section 3.3.2 “Display Control
Block Registers”). When the S bit is set to one, the DP is a slave with the HSync and VSync
signals as inputs. If the S bit is 0, the DP operates as a Master with HSync and VSync as
outputs. For details, refer to Section 3.2.1 “CRT Controller.”

1.1.4 Bus Interface Unit (BIU)

The Bus Interface Unit (BIU) controls communication between the 82786, the external CPU,
and graphics and external system memory when both are configured. A low-end system can
use a single memory shared by the CPU and 82786 with the DRAM/VRAM controller

1-4

Intel 82786 GRAPHICS COPROCESSOR OVERVIEW

managing memory accesses as shown in Figure 1-4 in Section 1.2 “System Configurations.”
The BIU uses a DRAM/VRAM controller that supports dual port vidleo DRAMs (VRAMs)
and high speed burst access modes of page and fast page mode DRAMSs. Both the GP and
DP use the BIU to access bitmaps in memory. Refer to Chapter 4 for a detailed discussion
of BIU concepts.

1.1.5 Memory Structure

The 82786 can address 4 MB of memory. Most systems divide memory in at least two
segments: the 82786 graphics memory, which uses the DRAM/VRAM controller, and
external system memory. Dividing memory can enhance the performance of graphics appli-
cations. The DRAM/VRAM controller allows faster access to graphics memory than exter-
nal system memory because it does not encounter contention from the CPU. The CPU
accesses system memory and executes programs simultaneously, while the 82786 accesses
graphics memory and executes its commands. For sample system configurations, see
Figures 1-5 and 1-6 in Section 1.2 “System Configurations.”

However, when performance is not critical, the 82786 and CPU can share the same memory
with the integral 82786 DRAM/VRAM controller managing memory accesses. With this
configuration, target applications must be able to tolerate the decreased bandwidth of system
memory. For a sample system configuration, see Figure 1-4 in Section 1.2 “System
Configurations.”

The 82786 assumes graphics memory starts at address OH and ascends to the configured
value, specified in the BIU DRAM/VRAM Control Register described in Section 4.2.4
“DRAM/VRAM Control Register.” The 82786 can support a maximum of 4 MB of graph-
ics memory, but the 82786 cannot access system memory if all its 4 MB addressing capacity
is configured as graphics memory.

1.1.6 Memory Access and Arbitration

The BIU receives requests to access graphics memory from the Graphics Processor (GP),
Display Processor (DP), and CPU. The BIU also receives memory refresh requests from the
DRAM/VRAM controller. The BIU uses a priority system to arbitrate all requests. Memory
refresh requests always have highest priority. Other requests have programmable priorities.
A higher priority memory cycle can interrupt a lower one. For details, refer to Section 4.3
“Bus Cycle Arbitration.”

1.1.7 Master and Slave Memory Access Interfaces

During memory access, the 82786 operates either as a Master or a Slave. The 82786 operates
as a Master when it accesses external system memory. The 82786 acts as a Slave when the
host CPU accesses graphics memory or any of the 82786 Internal Registers (see
Section 1.1.8).

1-5

Il'ltel 82786 GRAPHICS COPROCESSOR OVERVIEW

1.1.7.1 MASTER MODE INTERFACE

The 82786 operates as a Master whenever it accesses a memory address that is beyond the
upper limit of configured graphics memory. Usually, this memory is external memory that
the 82786 and CPU share. A high level on the Hold Request (HREQ) line indicates the
82786 is requesting the bus. The 82786 drives the external bus only after it receives a Hold
Acknowledge (HLDA) from the External Bus Master. The HLDA is either externally
synchronized (82786 synchronous mode) or internally synchronized (82786 asynchronous
mode). The 82786 deactivates the HREQ when it no longer needs to access external memory
or senses an inactive HLDA. The 82786 indicates that it controls the bus by a high level on
the Master Enable (MEN) output. Details on the synchroncus and asynchronous modes are
discussed in Section 4.5 “System Bus Interface.” For details on the Master Mode Interface,
refer to Section 4.4.1.

1.1.7.2 SLAVE INTERFACE

As a Slave, the 82786 receives requests from the External Bus Master. For example, the
host CPU accesses the 82786 graphics memory or its Internal Registers. The external CPU
starts a slave access by asserting the Chip Select Low (CS) input for a read/write to the
82786. When the 82786 is not Bus Master, the address lines (A21:0), Read Low (RD),
Write Low (WR), Memory-1/0 (MIO), and Byte High Enable Low (BHE) lines are inputs.
The 82786 constantly monitors the RD, WR, MIO, and CS lines to detect whether a CPU
cycle occurred. The 82786 indicates the beginning of a Slave access by bringing Slave Enable
(SEN) high and indicates the end of the access by bringing SEN low. The data bus trans-
ceiver can be enabled by SEN. For details on the Slave Interface, refer to.Section 4.4.2.

1.1.8 Internal Registers

The 82786 has a 128-byte block of contiguous directly addressable Internal Registers, which
is shown in Figure 1-3. The host CPU directly addresses this block of Internal Registers to
communicate with the Graphics Processor (GP), Display Processor (DP), and Bus Interface
Unit (BIU). The block can be either Memory or I/O mapped in the CPU address space.
The base address and memory-1/0O map (MIO) option are programmable through the BIU
Internal Relocation Register, described in Section 4.2.1.

1.2 SYSTEM CONFIGURATIONS

The high performance and flexible features of the 82786 offer excellent solutions for a diverse
range of applications and system configurations. Figures 1-4 through 1-6 illustrate just a
few system designs.

In Figure 1-4, the 82786 combined with the 80186, shared system and graphics memory,
and a monitor provide a low-end, low-priced, graphics system. In this system the CPU and
the 82786 share memory and use the 82786 DRAM/VRAM controller for managing memory.
accesses. Target applications must tolerate the decreased bandwidth of system memory.

1-6

Intel 82786 GRAPHICS COPROCESSOR OVERVIEW

In Figure 1-5, the 82786 combined with an 80286, separate system and graphics memory,
and a monitor provide an excellent multi-tasking office workstation.

For processing-intensive engineering environments, Figure 1-6 depicts a system with multi-

ple 82786s in which each 82786 configures 4 MB of memory, an 80286 or 80386, and a
monitor, which offers a powerful solution.

1-7

82786 GRAPHICS COPROCESSOR OVERVIEW

Register Offset
(H) 15 14 13 12 1" 10 9 7 6 5 4 3 2 1 0
Internal Relocation 00 Base Address [mio
BIU Reserved 02 Reserved (zero for future compatibility)
'00-OFH BIU Control 04 Reserved (zero for future compatibility) VR [wr [Bcp [ai [o [wpi]wp2
Refresh Control 06 Reserved (zero for future compatibility) Refresh Scaler
DRAM/VRAM Control 08 Reserved (zero for future compatibility) Rw1 [Rwo [oct1 [pco | Hr2 [W11] HTO
Display Priority 0A Reserved (zero for future compatibility) FPL SPL
GP Priority 0C! Reserved (zero for future compatibility) FPL SPL
External Priority OE Reserved (zero for future compatibility) FPL Reserved
Reserved 10 Reserved (zero for future compatibility)
'10-1FH 12 Reserved (zero for future compatibility)
14 Reserved (zero for future compatibility)
16 Reserved (zero for future compatibility)
Reserved 18 Reserved (zero for future compatibility)
1A Reserved (zero for future compatibility)
1C Reserved (zero for future compatibility)
1E Reserved (zero for future compatibility)
GP GRO Opcode 20 Opcode | Reserved (zero for future compatibility) | GECL
'20-28H GR1 parameter 1 22 Link Address (Lower)
GR2 Parameter 2 24 Reserved Link Address (Upper)
Status Register (GSTAT) 26 Reserved JeroLL] Grep | GINT [apsc [aBcov]aMov] GeTp [aiBMO)
28 Instruction Pointer (Lower)
Instruction Pointer E: 2A Reserved (zero for future compatibility) '7 Instruction Pointer (Upper)
Reserved 2C Reserved (zero for future compatibility)
'2C-3FH 2E Reserved (zero for future compatibility)
30 Reserved (zero for future compatibility)
32 Reserved (zero for future compatibility)
34 Reserved (zero for future compatibility)
36 Reserved (zero for future compatibility)
38 Reserved (zero for future compatibility)
3A Reserved (zero for future compatibility)
3C Reserved (zero for future compatibility)
3E Reserved (zero for future compatibility)
P:O«iBH Opcode 40 Opcode I Reserved (zero for future compatibility) I ECL
Parameter 1 42 Memory Address (Lower)
Parameter 2 44 Reserved (zero for future compatibility) Memory Address (Upper)
Parameter 3 46 Reserved (zero for future compatibility) Register Identification
Status Register 48 Reserved [FRi_ [reo | pov [FmT [BLK | EVN [0DD [ECL
Default Video 4A Reserved Default Video
Reserved —» 4C Reserved (zero for future compatibility)
'4C-7FH 4E Reserved (zero for future compatibility)
50 Reserved (zero for future compatibility)
52 Reserved (zero for future compatibility)
Reserved 54 Reserved (zero for future compatibility)
56 Reserved (zero for future compatibility)
58 Reserved (zero for future compatibility)
5A Reserved (zero for future compatibility)
5C Reserved (zero for future compatibility)
5 Reserved (zero for future compatibility)
60 Reserved (zero for future compatibility)
62 Reserved (zero for future compatibility)
64 Reserved (zero for future compatibility)
66 Reserved (zero for future compatibility)
68 Reserved (zero for future compatibility)
6A Reserved (zero for future compatibility)
6C Reserved (zero for future cc
6E Reserved (zero for future compatibility)
70 Reserved (zero for future compatibility)
72 Reserved (zero for future compatibility)
74 Reserved (zero for future compatibility)
76 Reserved (zero for future compatibility)
78 Reserved (zero for future compatibility)
7A Reserved (zero for future compatibility)
7C Reserved (zero for future compatibility)
= 7E Reserved (zero for future compatibility)
15 14 13 12 " 10 9 7 6 5 4 3 2 1 0

G30304

Figure 1-3. 82786 128-Byte Internal Register Block

1-8

Inte| 82786 GRAPHICS COPROCESSOR OVERVIEW

MEMORY

80186 »| 82786 | »(MONITOR
G30304
Figure 1-4. Low-End Low-Priced Personal Computer
SYSTEM BITMAP
MEMORY MEMORY
80286 |= »| g2786 |——»(MONITOR
G30304
Figure 1-5. Multi-Tasking Office Workstation
SYSTEM -L
MEMORY BITMAP
MEMORY
80286/ | - J ‘<)
80ase | »| 82786s > MONITOR
G30304
Figure 1-6. High-End Workstation

Graphics Processor Overview 2

CHAPTER 2
GRAPHICS PROCESSOR OVERVIEW

The Graphics Processor (GP) is an independent processor within the 82786 that creates and
manages bitmaps in graphics or system memory. The GP creates and updates all graphics
and text in each bitmap. The GP draws and moves all images in and between bitmaps. The
list below outlines major functions provided by the GP.

» permits bitmaps to be any size (up to 32K X 32K pixels) and use 2, 4, 16, or 256 colors
depending on the number of bits per pixel (bpp) which can be 1, 2, 4, or 8

» draws geometric shapes with attributes such as texture and color

e draws characters from user-defined fonts with attributes such as color, path, rotation,
and proportional spacing

e combines one rectangular portion of a bitmap with another area, within the same bitmap
or into another bitmap

» allows logical operations between source and destination (for example, logical Exclusive-
OR or Complement of Source with Destination)

¢ clips drawings to a rectangular region

e supports picking, a mechanism used by user interfaces to select graphics menus (called
icons) with a pointing device such as a mouse

2.1 GRAPHICS CONCEPTS

To use the 82786 effectively, an understanding of basic graphics concepts and how they
relate to the 82786 is essential. The following sections discuss bitmaps, pixels, calculating
the effective address of pixels, bitmap coordinates, and windows in the 82786 environment.

2.1.1 Bitmaps

The 82786 writes all graphics and text into bitmaps in memory. Each bitmap is a rectan-
gular drawing area consisting of pixels that describe a graphic image or a character. The
size of a bitmap varies based on the number of pixels and the number of bits associated with
each pixel. A bitmap can be up to 32,768 pixels in each direction and contain 1, 2, 4, or
8 bits of color or gray scale information for each pixel. The amount of available memory
determines the number of bitmaps that can exist.

A bitmap and the output display area do not necessarily correspond on a one-to-one basis.
For example, a bitmap can be larger or smaller than the screen output area. Each bitmap
has a specific number of bpp, whereas a screen can display several bitmaps; each with a
different number of bpp. The Display Processor (DP) interprets the information residing
within bitmaps and extracts a bitmap which can be positioned anywhere on the screen as a
window. For details on DP operation, refer to Chapter 3.

2-1

Intel GRAPHICS PROCESSOR OVERVIEW

Programming and performance efficiency can be improved by segmenting graphics and
system memory, and using graphics memory and separate bitmaps for generating text and
color graphics. The GP can access graphics memory faster than system memory because it
does not encounter CPU contention. Two bitmaps can increase efficiency if, one bitmap
contains text with one bit per pixel (bpp) and the other bitmap contains a multicolor graphic
image with several bpp.

2.1.2 Bitmap Coordinates

Any location in a bitmap can be referenced through a set of (x,y) coordinates. As shown in
Figure 2-1, the 82786 uses a set of coordinates whose Origin Address begins at coordinates
(0,0), located in the top left corner. The x axis extends across the top and increases to the
right. The y axis extends down the left side and increases from top to bottom.

2.1.3 Pixels

Most Graphics Processor (GP) commands manipulate a pixel or a group of pixels within a
bitmap. A pixel is the smallest element that can be displayed on a CRT. A pixel can associ-
ate 1, 2, 4, or 8 bits with it. The number of bits per pixel (bpp) varies based on the attributes
associated with the pixel. Although the attributes, hence the bpp, can vary, all pixels in the
same bitmap must have the same number of bpp. Color and multiple gray scale displays
require multiple bpp.

(0,0) X

G30304

Figure 2-1. Bitmap Coordinates

2-2

Intel GRAPHICS PROCESSOR OVERVIEW

All bitmaps are stored in memory in a sequential packed pixel manner. The 82786 stores
pixels sequentially with as many pixels as possible in each 16-bit word. The number of pixels
each word contains varies based on the number of bpp. For example, if the bitmap has
" 2 bpp, each word contains 8 successive pixels. Table 2-1 lists variations on the number of
bpp and pixels per word.

Table 2-1. Bits Per Pixel (bpp) and Pixels Per Word

BPP Pixels Per Word

1

BN =
[\o 20 - o o))

The GP stores each bitmap as a series of bits, which the GP and Display Processor (DP)
interpret as a series of lines consisting of sequentially ordered pixels. Lines are arranged
from top to bottom and contain pixels ordered from left to right. The first pixel of every
bitmap is the top left-most pixel. Each bitmap starts at the Origin Address, coordinates
(0,0), which must be an even byte address because the GP and Display Processor (DP)
address words only. The contents of each word varies based on the bpp. In the 2-bpp model,
the first word of the bitmap holds the value of the first 8 pixels of the first line, (coordinates
(0,0), (1,0), (2,0), ... (7,0)). The next word represents the next 8 pixels of the first line, and
so on until the end of the line. The word containing the first 8 pixels of the second line
(coordinates (0,1), (1,1) (2,1) ... (7,1)) follows the word containing the pixels for the end of
the first line. The 82786 stores all bitmaps in this manner.

2.1.4 Calculating the Effective Address (EA)

To calculate the effective address of a pixel, refer to the formula below. Table 2-2 defines
all variables.

EA (Effective Address) = Bitmap Origin Address + ((x«bpp) DIV 16) + y«N
bnum (starting bit position) = 15 — (x«bpp) MOD 16

Table 2-2. Effective Address Variables

Variable Definition

bnum = starting bit position of pixel (onum = 0
is the least significant bit)

W= Bitmap Width (in number of pixels)
H= Bitmap Height (in number of pixels)
bpp = Bits per Pixel

(Xy) = Pixel Coordinates

N (Memory words per line) = (W*bpp) DIV 16

Note: (W*bpp) must be an integral muitiple of 16. The Bitmap Origin Address must point to a word (even
byte) address.

Intel GRAPHICS PROCESSOR OVERVIEW

2.1.5 Windows

Windows consist of one or more tiles, which are portions of bitmaps output by the Display
Processor (DP). Horizontally, the 82786 supports up to 16 tiles per displayed line. Verti-
cally, the 82786 can support the same number of tiles as scan lines. A tile must be a subset
of a single bitmap, which can contain the entire bitmap, but not portions of two or more
bitmaps.

2.2 GRAPHICS PROCESSOR (GP) REGISTERS
The Graphics Processor (GP) uses three types of registers:

eGP 82786 Internal Registers
¢ GP Control Registers

¢ Context Registers

All GP registers are 16 bits wide. Each register contains either data or an address. A data
register can use all or just a portion of the 16 bits in the register. When the register value
does not require all 16 bits, the value is right justified in the word and the upper unused bits
are zeroed to ensure future compatibility. An address register requires two consecutive words
to contain a 22-bit address. An address always begins on an even byte. Address registers do
not explicitly store the least significant bit, which is assumed to be 0. The first word contains
the 16 least significant bits. The second word contains the remaining six bits with the upper
ten bits zeroed for future compatibility. The following sections discuss GP registers in detail.

2.2.1 Internal Graphics Processor (GP) Registers

The Graphics Processor (GP) has six Internal Registers on the 82786 that are either I/O or
memory mapped. The external CPU uses these registers to initiate execution of graphics
command lists and record status. Unlike other GP registers, which must be read and written
to with Load and Dump Register commands, these GP registers are directly addressable.
They are located at Internal Register Block offsets 20h through 2Ah from the base address
(see Figure 1-3). The base address marks the beginning of the Internal Register Block and
is contained in the BIU Relocation Register described in Section 4.2.1. Figure 2-2 displays
these GP Internal Register Block registers which include GRO, the Opcode Register at offset
20h; GR1 and GR2, the lower and upper values of the starting address of the next Graphics
- Command Block (GCMB) at offsets 22h and 24h (see Section 2.3 “Command Execution
and Format” for details); the GP Status Register (GSTAT) at offset 26 (see Section 2.2.1.1

2-4

Intel GRAPHICS PROCESSOR OVERVIEW

Register Offset
'20-2BH
GRO Opcode 20 Opcode [Reserved [cEcL
GR1 Parameter 1 22 Link Address (Lower)
GR2 Parameter 2 24 Reserved 1 Link Address (Upper)
Status Register (GSTAT) 26 Reserved [aroLL] Grep | GINT [apsc [aBcov]aBMov] GeTp [aiBMD
28 Instruction Pointer Lower
Instruction Pointer [-
2A Reserved | Instruction Pointer Upper
15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0

G30304
Figure 2-2. Graphics Processor Internal Registers
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[Reserved [eroL] arep [GINT [apscaacov]aamov]GeTp [aiBmo]
G30304

Figure 2-3. Graphics Processor Status Register

for details); and the Instruction Pointer (GCIP) at offsets 28h and 2Ah, (see Section 2.2.1.2
for details). These registers are word or byte addressable based on the setting of the BCP
bit in the BIU Control Register described in Section 4.2.2 “Control Register.”

2.2.1.1 GRAPHICS PROCESSOR STATUS REGISTER (GSTAT)

The Graphics Processor Status Register (GSTAT) contains the Status Byte, shown in
Figure 2-3. Table 2-3 describes the GSTAT bits, which start at offset 26h. All the status
bits, except GPOLL are cleared upon RESET. The GPOLL bit is set on RESET as discussed
in Section 2.3.3 “RESET and Initialization.”

2.2.1.2 GRAPHICS PROCESSOR INSTRUCTION POINTER

The Graphics Processor Instruction Pointer (GCIP) points to the current command in the
Graphics Command Block (GCMB). The GCIP consists of a 22-bit value stored in two
82786 Internal Registers (GCIPL and GCIPH) at Internal Register Block offsets 28h and
2Ah from the base address as shown in Figure 2-4. The base address marks the beginning
of the Internal Register Block and is contained in the BIU Relocation Register described in
Section 4.2.1.

GRAPHICS PROCESSOR OVERVIEW

Table 2-3. Graphics Processor Status Register Bits

Bit Function

GPOLL Indicates if the Graphics Processor is in Poll State. See Section 2.3.2 *‘Poll State.”

GRCD Set if the Graphics Processor encounters an illegal opcode.

GINT The INTR_GEN command, described in Section 2.10.21, sets this bit, which can cause
an interrupt if the value in the GINT bit in the Interrupt Mask Register (GIMR) is zero.
For details on the GIMR, refer to Section 2.3.4 ‘‘Exception Handling.”

GPSC Pick Successful Flag. Set or cleared while the Graphics Processor (GP) is in PICK
Mode. Set if the Pick operation is successful on any command.

GBCOV Bitmap Overflow. This flag is set when executing a Bitblt or Charblt command if any
portion of the destination rectangle lies outside the clipping rectangle.

GBMOV Bitmap Overflow Flag for geometric commands.This flag is set when drawing a pixel
lying outside the clipping rectangle as a resuilt of any geometric drawing command
(Line, Circle, etc.).

GCTP Character Trap. Indicates that a character had its Trap Bit set in the character string

. parameter of the Char command. This is useful in initiating error handling or special
character handling routines such as those in which each character consists of multi-
ple 16X16 pixel segments.

GIBMD Illegal Bitmap Definition. Set if the Def_Bitmap command executes with illegal param-
eters. The illegal parameters are bits per pixel other than 1, 2, 4, 8, or Xmax defined
to be greater than 32k—1. This bit should not be masked out in the Interrupt Mask
(GIMR) to ensure the CPU is informed of this exception as soon as it occurs.

Offset

(H) 15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0

28[

Instruction Pointer Lower Address 1

2A|

Reserved Instruction Pointer Upper Address I

G30304

Figure 2-4. Graphics Processor Instruction Pointer

2.2.2 Graphics Processor (GP) Control Registers

The Graphics Processor (GP) has four Control Registers in addition to the Internal Register

Block registers:

Register Mnemonic
Poll Mask GPOEM
Interrupt Mask GIMR
Stack Pointer GSP
Character Count GCNT

2-6

Intel GRAPHICS PROCESSOR OVERVIEW

Table 2-4 lists the function and ID of each register.

Table 2-4. Graphics Processor Control Registers

Register ID Number of Bits Function

GPOEM 0003 6 Poll Mask

Six right justified bits in a 16-bit register corre-
sponding to GSTAT bits: GINT, GPSC, GBCOV,
GBMOV, GCTP, and GIBMD. If any GPOEM bits
corresponding to set GSTAT bits have a value of
zero, the GP enters Poll State.

GIMR 0004 8 Interrupt Mask

Eight right justified bits in a 16-bit register corre-
sponding to GSTAT bits: GPOLL, GRCD, GINT,
GPSC, GBCOV, GBMOV, GCTP, and GIBMD. The
GP generates an interrupt if any GIMR bits corre-
sponding to set GSTAT bits have a value of 0.

GSP 010C 21 Stack Pointer

The 21-bit address contained in two consecutive
words points to the current top of stack. The stack
grows toward lower addresses.

GCNT 0015 16 Contains the character count while drawing
characters in the bitmap.

The registers in Table 2-4 can be read from or written to with the Dump_Reg (Section
2.10.15) and Load_Reg (Section 2.10.24) commands. Each register is identified by a 9-bit
Register ID, which is right justified in the lower nine bits of a 16-bit word in which the
upper bits are zeroed.

GPOEM, GIMR, and GCNT are data registers, which always store their values right justi-
fied in a 16-bit word of memory in which the upper unused bits are zeroed. The Stack
Pointer (GSP) requires two consecutive words of memory to hold its 22-bit address. The
first word contains the lower 16 bits; the second word contains the six most significant bits
in bits O through 5 with the remaining upper bits zeroed. The stack grows down toward
lower addresses.

2.2.3 Graphics Processor (GP) Context Registers

The Graphics Processor (GP) also uses context registers, which should not be accessed
normally, but must be saved and restored if the GP is to be shared by multiple processes.
Any other access to these registers should be avoided. Table 2-5 lists these registers, their
IDs, and the number of bits each uses. A register using 16-bits or less stores its value in a
16-bit word. If the register does not require the entire 16 bits, the value is right justified in
the word and the upper bits are zeroed, unless noted otherwise. A register with a value larger
than 16 bits uses two consecutive 16-bit words of memory. The first word contains the lower
16 bits and the second word contains the upper bits with any remaining bits zeroed.

2-7

intel

GRAPHICS PROCESSOR OVERVIEW

Table 2-5. Context Registers

Name ID Bits Function

GCOMM 0002 (16) Command

GPOEM 0003 (6) Poll Mask

GIMR 0004 (6) Interrupt Mask

GCHOR 0007 (2,2) Character Orientation and Path*

GCHA 010B (21) Character Font Base Address~

GSP 010C (21) Stack Pointer~

GCA 010D (21) Memory Address of Current Position
(xy)~

GBORG 010F (21) Bitmap Origin Address~

GCX 0010 (16) Current X Position

GCY 0011 (16) Current Y Position

GPAT 0012 (16) Line Pattern

GSPAC 0013 (16) Spacing between characters and Bitblts

GCNT 0014 (16) Character. Count**

GN 0016 (16) Number of 16-bit- words spanning width
of bitmap

GVERS 0017 (16) Version Number*** (D Step Value = 5)

TEMP 0019 (16) Temporary Storage

GXMAX 0090 (16) Maximum X for Clipping Rectangle

GYMAX 0091 (16) Maximum Y for Clipping Rectangle

GXMIN 0094 (16) Minimum X for Clipping Rectangle *

GYMIN 0095 (16) Minimum Y for Clipping Rectangle *

GMASK 0099 (16) Pixel Mask

GBGC 009B (16) Background Color

GFGC 009C (16) Foreground Color

GFCODE 009E (4) Function Code

GCIP 01AC (21) Current Instruction Pointer~

GBPP(RO) 009F (4) Used with Dump Register command to
get Current Bits per Pixel Value * * *

GBPP(WO) 0008 (4) Used with Load Register command to
write Current Bits per Pixel Value * * *

Kk
A

A A
A AA

NOTE:

21-bit registers use 2 consecutive words.

These bits are right justified in each byte of the word in which they are stored. Two bits are stored
in bits 1 and 0 and two bits are stored in bits 8 and 9; the remaining upper bits in each byte are
zeroed.

GCNT ID reassigned from 0015 to 0014 in D-Step.

In D-Step, valid after RESET and prior to drawing or drawing control commands.

Correction to previous GXMIN 1D 0096 and GYMIN 0097 assignments.

GFCODE ID reassigned from 001C to 009E in D-Step.

New D-Step Bpp Registers.

The following information is not saved by saving the state of these registers:

1) Type of character font, word or byte.
2) Whether or not you are in pick mode.
3) Transparent or opaque drawing.

2.3 COMMAND EXECUTION AND FORMAT

The Graphics Processor (GP) fetches its commands from a Graphics Command Block
(GCMB), which is a linked command list in memory. Although the GCMB can exist in
system memory, the GCMB should be placed in graphics memory, controlled by the integral
DRAM/VRAM controller, to take advantage of the faster command access time. The GP

2-8

Intel GRAPHICS PROCESSOR OVERVIEW

82786 Internal Registers GRO, GR1, and GR2, shown in Figure 2-2 in Section 2.2.1, are
loaded with the address of the GCMB and a Link command to initiate execution. The
following sections discuss the GCMB format, Poll State, exception handling, and RESET.

2.3.1 Graphics Processor Command Block (GCMB) Format

The Graphics Processor (GP) processes Graphics Command Blocks (GCMBs), consisting of
memory-resident commands. The GP runs only when an application needs to change the
bitmap contents or support a special function such as picking (see Section 2.6.5).
Figure 2-5 shows the format of a graphics command.

Each command in a Graphic Command Block consists of an opcode, a Graphics End of
Command List (GECL) bit, and a list of parameters required by the command. The opcode
is 8 bits wide and resides in the high byte. Bits 7 through 1 must be all zeroes to ensure
future compatibility. Bit 0 is the GECL bit, which tells the GP to start or stop processing a
command. '

The 82786 uses a 22-bit address, but reserves 32 bits for all addresses. The 10 most signifi-
cant unused bits must be zeroes. All GCMBs and commands they contain must lie at even
byte addresses because the GP and Display Processor (DP) address words only.

The opcode is in the high byte. The GECL bit, bit 0, is the least significant bit of the low
byte. A varying number of parameters follow in consecutive words. The GP tests the GECL
of each command. If the GECL is set to 0, the GP processes the command. If the GECL is
set to 1, the GP does not process the command and enters Poll State (see Section 2.3.2). Poll
State halts the GP until:

e the upper and lower memory values denoting a link address are loaded into registers
GR1 and GR2,

e a Link command is loaded in the Opcode Register GRO, and
+ the GECL bit is zeroed.

Opcode Reserved J GECL
Parameter 1
Parameter 2

Parameter N I

G30304

Figure 2-5. Graphics Command Format

2-9

|nte| GRAPHICS PROCESSOR OVERVIEW

The Link command in the Opcode Register must reset the GECL bit to 0. Then, the GP
executes a new GCMB, which starts at the address specified in registers GR1 and GR2.
Figure 2-6 shows a sample GCMB which illustrates how the Control Registers provide a
link address to access memory-resident commands. The GCMB contains several Link
commands that execute commands in other memory segments. It also contains a Call
command that calls a graphics subroutine. A Nop command combined with the Halt
command stops command execution.

2.3.2 Poll State

Poll State is the Graphics Processor (GP) default state after a RESET. The GP also can
enter Poll State following command execution, an exception, a software abort signal, or if
the GRCD bit in the Status Register (GSTAT) is set (see Section 2.2.1.1 “Graphics Proces-
sor Status Register (GSTAT)” for details). While in Poll State, the GP does not execute
commands and is considered to be idle. However, the GP continuously monitors the GECL
bit in the Opcode Register, shown in Figure 2-7.

A valid command in the Opcode Register, which zeroes the GECL bit, starts the GP. After
RESET, the first command placed in the Opcode Register must always be a Link command
directing the GP to a GCMB in memory. If the GECL bit is a one, the GP does not execute
the command specified by the opcode, instead, the GP enters Poll State. For example, the
Halt command (Section 2.10.19) used with the Nop command (2.10.25) stops GP command
execution.

Normally, the Graphics Processor (GP) returns to Poll State following command execution
and the GECL bit being set to 1. The GP also can be forced to enter Poll State by receiving
a software abort when either of the following events occur:

e Writing to the Status Register (GSTAT), described in Section 2.2.1.1.
¢ Writing to the Instruction Pointer (GCIP), described in Section 2.2.1.2.

When the GP receives the software abort, it enters Poll state after executing the current
command. '

2.3.3 RESET and Initialization

Upon RESET, the Graphics Processor (GP) enters a well defined state with the following
events occurring:

1. Command execution halts and the GP enters Poll State.

2. The GECL bit in Opcode Register (GRO) is set to 1 indicating the end of the command
list. :

3. All status bits except GPOLL are cleared; GPOLL is set.

4. Interrupt Mask Register (GIMR) is set to all ones to disable it.

5. Poll On Exception Mask Register (GPOEM) is set to all ones to disable it.

6. '

GP exits Pick Mode.

GRAPHICS PROCESSOR OVERVIEW

GRO
GR1
GR2

GP Opcode Registers

Link

Link Address Lower

Link Address Upper

82786 Memory

GECL
Opcode 1 0
Parameter 1
Opcode 2 0
Parameter 1
Parameter 2
Parameter 3
Link 0
Link Address Lower
Link Address Upper
| Call 0
Call Address Lower
Call Address Upper —
| Opcode 8 0
Opcode 9 0
Parameter 1
Parameter 2
Opcode 10 0
Nop 1
(Graphics Subroutine)
Opcode 6 0 |-
Opcode 7 0
Parameter 1
L__ Parameter 2
Return 0
Opcode 3 0 |-
Opcode 4 0
Parameter 1
Parameter 2
Opcode 5 0
Link 0
Link Lower Address
Link Upper Address
G30304

Figure 2-6. Sample Graphics Command Block (GCMB)

2-11

Intel GRAPHICS PROCESSOR OVERVIEW

2.3.4 Exception Handling

The Graphics Processor (GP) either generates an interrupt or enters Poll State based on the
status of the bits in the Interrupt Mask Register (GIMR), the GRCD bit in the Status
Register (GSTAT), and the Poll On Exception Mask Register (GPOEM).

The Interrupt Mask GIMR has 8 bits corresponding to the GSTAT bits: GPOLL, GRCD,
GINT, GPSC, GBCOV, GBMOV, GCTP, and GIBMD (see Figure 2-8 and Table 2-3 in
Section 2.2.1.1 “Graphics Processor Status Register (GSTAT).” The GP generates an inter-
rupt when any bit in the GIMR with a value of zero corresponds to a set bit in GSTAT.
Another interrupt is not generated if the previous interrupt has not been acknowledged.
Reading GSTAT and the BIU Control Register serves as an Interrupt Acknowledge to the
GP; the interrupt and status bits not masked out by the Interrupt Mask are cleared. If the
GPOLL bit causes the interrupt, it is not cleared on an Interrupt Acknowledge. However,
this does not generate repeated interrupts.

In addition to a software abort signal or a Halt command, the GP enters Poll state when:

e The Status Register (GSTAT) Illegal Opcode GRCD bit is set.

e Any of the six GPOEM bits corresponding to set GSTAT bits GINT, GPSC, GBCOV,
GBMOYV, GCTP, or GIBMD have a value of zero. Refer to Figure 2-8 and Table 2-3
in Section 2.2.1.1 “Graphics Processor Status Register (GSTAT).”

Register Offset

(H) 15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0
GRO 20 Opcode | Reserved (zero for future compatibility) I GECL
GR1 22 Link Address (Lower)
GR2 24 Reserved (zero for future compatibility) I Link Address (Upper)

G30304
Figure 2-7. Opcode Register Used in Poll State
1514 13 12 1110 9 8 7 6 54 3 2 1 0
GPOEM | Reserved (zero for future compatibility) [ainT [apsc [eBcov]aemov] ecTp JaiBm)]
GPSTAT | Reserved (for future compatibility) [eroLL]erep] aiNT [aPsc [acov]aemov] GeTp Jaiemo]
GIMR | Reserved (zero for future compatibility) JepoLL] arep [GINT | apsc [eBcov] aamov] GeTe JaiBmp]
G30304

Figure 2-8. GP Registers Used in Exception Handling

2-12

Intel GRAPHICS PROCESSOR OVERVIEW

Any time the GP enters POLL State, the GECL bit in the Opcode Register, GRO, automat-
ically is set to one. When the GP is in POLL State, it can be restarted by writing a valid
opcode such as 02H, the Link command, into register GRO and writing a 0 into the GECL
bit, which directs the GP to the graphics command block (GCMB) in memory. Clearing the
GECL bit in this manner, also clears the status bits that caused the POLL State.

Interrupt and Poll are two independent functions. The GP can issue an interrupt and not
POLL, or issue an interrupt and POLL, or not issue an interrupt and POLL, or do none of
these functions.

2.4 GRAPHICS PROCESSOR (GP) COMMANDS
Graphics Processor (GP) commands can be divided into five classes:

1. Nondrawing

Drawing Control

Geometric

Bit Block Transfer (BitBlt)
Character Block Transfer (CharBlt)

A

The following sections list commands and discuss concepts.

2.5 NONDRAWING COMMANDS

Nondrawing commands control command fetching, and loading and dumping of the GP
Control and Context Registers. These commands are:

Command Function

Link Link To Next Command (Unconditional Jump)
Call Call Subroutine

Return Return from Subroutine

Intr_Gen Generate Interrupt

Dump_Reg Dump Register

Load_Reg Load Register

For details on any of these commands, refer to the specific command in the Command
Description Section 2.10.

2-13

Intel GRAPHICS PROCESSOR OVERVIEW

2.6 DRAWING CONTROL COMMANDS

Drawing control commands define the current bitmap and its attributes, and set the
Graphics Current Position Pointer (GCPP).

Command Function
Def_BitMap Define Bitmap
Def_Clip_Rect Define Clipping Rectangle
Def_Colors Define Colors
Def_Texture Define Texture
Def_Logical_Op Define Logical Operation
Def_Char_Set Define Character Set
Def_Char_Orient Define Character Orientation
Def_Char_Space Define Intercharacter Spacing
Abs_Mov Absolute Move GCPP
Rel_Mov Relative Move GCPP
Enter_Pick Enter Pick Mode
Exit_Pick Exit Pick Mode

For details on any of these commands, refer to the spemflc command in the Command
Description Section 2.10.

2.6.1 Attributes Associated with Drawing Commands

A drawing operation modifies pixels within a bitmap during the execution of graphics
commands. All drawing that the Graphics Processor (GP) performs (including lines, arcs,
characters, and bitblts) are subject to several attributes which must be defined before
executing any drawing command. The attributes and the commands that define them are
listed in Table 2-6. The following sections discuss each of these attributes in detail.

Table 2-6. Drawing Command Attributes

Attribute Initialized By
Color Bit Mask Def_Logical_Op
Logical Operation . Def_Logical_Op
Clipping Rectangle ‘ Def_Clip_Rect
Foreground/Background Color Def_Colors
Transparent or Opaque Mode Def_Texture or T/O bit

in Charblt command*

Pattern Mask (texture) i Def_Texture
Pick Move Enter_Pick

‘Note: Foreground and background color, Transparent and Opaque Modes, and Pattern Mask are not
applicable to bitblt and character block transfer (charbit) commands. However, charbit commands
use the T/O bit in the Char command to specify Transparent and Opaque Modes as well as the
active foreground and background colors. For details on the T/O bit in the Char command, refer to
2.10.6 “CHAR - Draw Character String.”

Intel GRAPHICS PROCESSOR OVERVIEW

2.6.2 Color Bit Mask

The color bit mask defined in the Define Logical Operation command (Def_Logical_Op in
Section 2.10.14) restricts the effect of graphics primitives on the bit plane to update a subset
of the bits per pixel. With the color mask, one set of drawings can exist in one or more colors
and other text or graphics information can reside in different color bits of the same bitmap.

2.6.3 Logical Operations

Logical operations can combine existing pixel information in a bitmap with new pixel infor-
mation generated as a result of a drawing operation, such as displaying only the overlapping
regions of two shapes. This operation logically combines the contents of separate bitmap
locations to produce new bitmap patterns. The logical operation attribute, defined with the
Def_Logical_Op command described in Section 2.10.14, applies to all subsequent pixel update
operations (line, arc, charblt, bitblt, etc.) Sixteen binary functions are permitted between
the source and destination as shown in Table 2-7.

The Fcode is the truth table of the assdcfated two variable functions with the truth table of
the FCode of function ABCD diagramed as follows:

Source

Destination 0 1
(0] A B

1 C D

Table 2-7. Logical Operations

Function Fcode (Hex)
0 0000
source AND destination 0001
CMP (source) AND destination 0002
Destination 0003
source AND CMP (destination) 0004
source 0005
source XOR destination 0006
source OR destination 0007
CMP (source) AND CMP (destination) 0008
CMP (source) XOR destination 0009
CMP (source) 000A
CMP (source) OR destination 000B
CMP (destination) 00oC
source OR CMP (destination) 000D
CMP (source) OR CMP (destination) 000E
1 000F

Intel GRAPHICS PROCESSOR OVERVIEW

The following example shows the Complement of Source (CMP) function (FCode = 000Ah),
which replaces the destination with the complement of the source. The truth table shows
that if the source equals zero, the destination value does not care, so the result always will
be one. It also shows that if the source is one, the destination value does not care, so the
result always will be zero.

Source

Destination 0 1
(] 1 0

1 1 0

2.6.4 Clipping Rectangle

The clipping rectangle limits the effects of drawing operations to a subset of the bitmap.
The Define Clipping Rectangle command (Def_Clip_Rect in Section 2.10.12) defines the
clipping rectangle as any rectangle within the bitmap. The default clipping rectangle is the
entire bitmap. The clipping rectangle prevents drawing outside the defined rectangular region.
The clipping rectangle must be defined after a Def_Bitmap command (see Section 2.10.8).

Pixels are not drawn beyond the clipping rectangle. For figures that are partially inside and
partially outside the clipping rectangle, only the part that is inside the clipping rectangle is
updated in the bitmap. For block transfer and character drawing operations, if any part of
the destination area lies outside the clipping rectangle, that outside part is not drawn. To
ensure predictable results, the following restrictions apply to the clipping rectangle:

» For lines, circles, polygons, polylines, bitblts, and character block transfers (charblts)
each pixel lying on the figure (both visible and the invisible parts) must not have its X
or Y coordinate outside the 32K range.

» For circular arcs, the above restriction applies to the circle of which the arc is a part.

Refer to Section 2.10.6 for more information on character clipping.

2.6.5 Pick Mode

Pick Mode uses the clipping rectangle, which can be software controlled, to support selection
of objects on the display by a pointing device. Drawing, bitblt, and character block transfer
(charblt) commands are executed, but pixels are not updated in memory. Instead, if any
pixels generated by the drawing command lie within the clipping rectangle, the Pick
Successful Flag (GPSC) in the Status Register (GSTAT) is set. This allows the clipping
rectangle to be set to correspond with the location of a graphics pointing device (for example,
a cursor or pointer) and the Graphics Command Block (GCMB) can be reprocessed to find
which drawing command corresponds to the selected area. Refer to Section 2.2.1.1 for details
on GSTAT.

Inte' GRAPHICS PROCESSOR OVERVIEW

To put the Graphics Processor (GP) in Pick Mode, define the clipping rectangle with the
Def_Clip_Rect command (see Section 2.10.12) and then execute the Enter_Pick command
(see Section 2.10.17).

Pick mode is not supported for Circle and Arc commands.

2.6.6 Foreground and Background Colors

The Define Colors command (Def_Colors), described in Section 2.10.13, sets the foreground
and background colors, the two colors drawn by all drawing operations (if both are needed).
This command is not applicable for bitblt. Character block transfer (charblt) commands use
the T/O bit in the Char command to select the active foreground and background colors
based on those set by the Def_Colors command. For details on the Char command, refer to
Section 2.10.6 “CHAR — Draw Character String.”

2.6.7 Transparent or Opaque Mode

The Define Texture command (Def_Texture), described in Section 2.10.15, determines
whether Transparent or Opaque Mode is used for most drawing and geometric commands.
Transparent Mode draws only the foreground color into the bitmap (for dotted lines or
characters) and does not change the pixels between dots or characters. Opaque Mode draws
the foreground color and fills in the background color between dots or characters. Neither
of these modes is applicable for bitblt or character block transfer (charblt) commands.
Charblt commands use the T/O bit in the Char command (see Section 2.10.6) to define
Transparent or Opaque Modes.

2.6.8 Pattern Mask

The pattern defined in the mask initiates a logical operation with drawing commands, which
permits dotted and dashed lines, arcs, and other shapes. This attribute is not applicable for
bitblt and character block transfer (charblt) commands. The Def_Texture command (see
Section 2.10.15) sets the transparent/opaque attribute for drawing operations other than
those that the Char command (see Section 2.10.6) defines.

|nte| GRAPHICS PROCESSOR OVERVIEW

2.7 GEOMETRIC COMMANDS

Geometric commands draw points, lines, and arcs in a variety of ways as the following list
illustrates.

Command Function
Point Draw Point
Incr_Point Draw Incremental Points
Circle Draw Circle
Line Draw Line
Rect Draw Rectangle
Polyline Draw Polyline
Polygon Draw Polygon
Arc Draw Arc
Scan_Lines Draw Series of Horizontal Lines

For details on any of these commands, refer to the specific command in the Command
Description Section 2.10.

2.8 BIT BLOCK TRANSFER (Bitblt) COMMANDS

Bit Block Transfer (bitblt) commands combine rectangular images from one piece of bitmap
memory to another.

Command Function
Bit_BIt Bit Block Transfer within a bitmap
Bit_BIlt_M Bit Block Transfer between bitmaps

For characters larger than native (16X 16 pixels), if the font is arranged as a bitmap,
Bit_BIlt_M can be used to write arbitrary sized characters. For details on either of these
commands, refer to the specific command in the Command Description Section 2.10.

2.9 CHARACTER COMMAND

The Character command (Char) allows an application using character codes such as ASCII
to draw character fonts stored in memory into a bitmap. The character fonts are stored in
pixel form. For details on the Char command, refer to Section 2.10.6 in the Command
Description Section. The following sections discuss font support and character storage.

2.9.1 Character Font Support

The Graphics Processor (GP) supports an unlimited number of character fonts, which can
reside anywhere in the 4 MB address space. The Def_Char_Set command, described in
Section 2.10.10, defines whether the character string is a string of bytes or a string of words.
The type of font used generally determines the mode that you should select. For fonts coded

2-18

lntel GRAPHICS PROCESSOR OVERVIEW

in ASCII, Byte Mode can be used because ASCII character codes are 8 bits. However, for
Kanji, Word Mode is necessary because more than the 256 character limit supported in Byte
Mode is needed.

The Def_Char_Set command sets the active font type and the base memory address of the
font. The Def_Char_Space command (see Section 2.10.11) can be used for negative inter-
character spacing to permit kerning for italic fonts and special effects.

2.9.2 Character Storage

Each character in a character font has an independently programmable size of up to 16 X16
pixels, which allows individual characters to be different sizes for proportional spacing.
Information about each character resides in memory and is provided by the user. Starting
from an even byte address, the character information is stored in consecutive words of memory
forming a character block containing n+1 words of memory, where n is the pixel height of
the character. Each Character Descriptor Block has the format shown in Figure 2-9.

Each Character Descriptor Block must start at an even byte address. The dot patterns for
each row must reside in consecutive words in memory. The first word defines the height and
width of the character (see Figure 2-9) and whether the character is an overstrike or exceeds
the 16 X 16 pixel limit in either direction. If the dot pattern for the width of the character is
less than 16 pixels, the dot pattern for the row must be right justified.

Each character is identified by specifying the address of the starting block. This address is
an offset from the character table base address, which is programmed before using the
Def_Character_Set command.

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
S Width (W —1) l T | Height (H —1)

Dot Pattern for First Row

Dot Pattern for Second Row

Dot Pattern for Third Row

Dot Pattern for Fourth Row

Dot Pattern for Fifth Row

Dot Pattern for Last Row

G30304

Figure 2-9. Character Descriptor Block Format

2-19

Intel GRAPHICS PROCESSOR OVERVIEW

The S bit, the most significant bit of the Character Descriptor Block, indicates whether the
Graphics Current Position Pointer (GCPP) is updated after the character is drawn. If the S
bit is set to 1, the GCPP is not updated following character drawing. If the S bit is 0, the
GCPP is updated following character drawing. Suppressing the updating of the GCPP after
certain characters are drawn can be useful for underlining, overstriking, or creating other
special effects.

The T bit (Trap bit), the most significant bit of of the first byte of the Character Descriptor
Block can be set to initiate a software trap, which can be used if the character being drawn
exceeds 16 pixels in either direction. The Trap bit can interrupt the CPU so that software
can specially process a character with bitblt or other technique. For example, the Trap bit
is useful for processing characters larger than 16X 16 pixels. Such characters can be divided
into quadrants and drawn by executing multiple character drawing commands. The Trap bit
also can be used to provide elementary memory management for large fonts that may not
reside entirely in physical memory at one time.

The height and width of the character refer to the difference between their limiting x and y
coordinates. For example, a width of zero specifies a character one pixel wide and a height
of zero specifies a character one pixel high.

The Char command (see Section 2.10.6) defines transparency/opaqueness, the character
string pointer, and the number of characters in the string. The Character Descriptor Block
containing the character to be drawn may be located anywhere in the 82786 memory space,
which can be accessed with either an 8- or 16-bit reference to the specific character. The
String Pointer specifies 8-bit (Byte Mode) or 16-bit (Word Mode) references for each
character to be drawn. Standard character fonts can be drawn flexibly because path and
rotation are defined with the Def_Char_Orient command (see Section 2.10.9) and inter-
character spacing is defined with a Def_Char_Space command (see Section 2.10.11). This
allows an application to specify variable spacing and direction of text, and rotate characters
without altering the font. Simple one-bit per pixel character font definitions can be used in
color applications because the Def_Color command specifies the foreground and background
colors and the necessary bits are written for each pixel during the drawing process.

The Def_Char_Set command (see Section 2.10.10) specified 22-bit font base address and
Char command specified parameter strings define the address of the Character Descriptor
Block, which describes the character. Figure 2-10 illustrates the format of a character
Descriptor Block for the character A.

In Byte Mode, characters are referenced in 8 bits, which allows existing software using
ASCII character codes and EBCDIC to be converted to 82786-based systems. In Byte Mode,
256 words of the font are reserved for a lookup table. To locate a specific character in the
table, the 8-bit Char command parameter string for the character is doubled (shifted left
one bit) and then added to the 22-bit font base address pointer of the Def Char_Set
command. The resulting word address is the offset into the font table. The contents of the
addressed word in the table are doubled and added to the font base address. This sum points
to the starting address of the Character Descriptor Block, which describes the character.
Figure 2-11 outlines Byte Mode, which permits only 256 characters in each 8-bit font. For
details on the Character Descriptor Block, refer to the Def _Char_Set command in
Section 2.10.10.

2-20

lntel GRAPHICS PROCESSOR OVERVIEW

Character “A”

DW 8608H ;$=1, T=0, Width (W —1)=6, Height (H —1)=8

DW 0011000B

DW 0100100B
DW 1000010B

DW 10000108
DW 11111108

DW 1000010B

DW 1000010B

DW 10000108

DW 00000008

G30304

Figure 2-10. Sample Character Descriptor Block

In Word Mode, the 16-bit Char command parameter string is doubled (shifted left one bit)
before being added to the 22-bit Def_Char_Set font base address. The resulting sum is the
starting address of the Character Descriptor Block (see Figure 2-12). Maximum Character
Descriptor Block size is seventeen words of data, which supports approximately four thousand
characters in one 16-bit font (worst case). Supplementary software using a lookup table can
be used to access as many as 65,000 characters in a single font. Alternatively, for characters
larger than native (16X 16 pixels), the font can be organized as a bitmap and with the
Bit_Blt_M command arbitrary sized single characters can be written.

2-21

ntel GRAPHICS PROCESSOR OVERVIEW

BYTE MODE
8-BIT

FONT BASE ADDRESS

— — *2

CHARACTER FONT

1 o

s —— ————— — —

CHARACTER DESCRIPTOR BLOCK

e — e —————

— ———— ————]

CHARACTER OFFSET TABLE

CHARACTER | 2
COMMAND | —’G
STRING POINTER

Figure 2-11. Byte Mode

WORD MODE
16-BIT

CHARACTER

COMMAND
STRING POINTER \

FONT BASE ADDRESS

CHARACTER FONT

CHARACTER DESCRIPTOR BLOCK

e —— — — —— —

Figure 2-12. Word Mode

2-22

Intel GRAPHICS PROCESSOR OVERVIEW

2.10 COMMAND DESCRIPTIONS
The following subsections describe Graphics Processor (GP) commands. The commands are

organized in alphabetical order. When using any of these commands, program reserved bits
to zero.

2-23

Iﬂte‘ GRAPHICS PROCESSOR OVERVIEW

2.10.1 ABS_MOV-Move
Opcode 4FH

Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode 4FH Reserved GECL

X coordinate

Y coordinate

Description: The Abs_Mov command moves the Graphics Current Position Pointer
(GCPP) to the absolute location specified by the given X and Y coordi-
nates. (See Figure 2-13.) The X and Y coordinates are specified in two’s
complement form and can be negative. The reserved bits should be
programmed to zero.

Neither the Pick Successful Flag (GPSC), or the Bitmap Overflow Flags
(GBMOV and GBCOYV), in the Status Register are set as a result of
this command, even if the GCPP moves beyond the clipping rectangle.
For discussions of the clipping rectangle and PICK Mode, refer to
Sections 2.6.4 and 2.6.5.

(0,0) X

GCPP
(10,10)

NEW GCPP
(30,20)

<X
[

N W
[=X<]

G30304

Figure 2-13. Absolute Move

2-24

intal

GRAPHICS PROCESSOR OVERVIEW

2.10.2 ARC-Draw Arc

Opcode 68H - Arc Exclusion
69H - Arc Inclusion
Format
15 14 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode 68H/69H I/E Reserved GECL
dxmin
dymin
dxmax
dymax
radius
Description Two versions of the Arc-.command can be used: arc inclusion and arc

exclusion. Each draws an arc with the center at the Graphics Current
Position Pointer (GCPP) and the radius specified in the command. The
parameters dxmin, dxmax, dymin, and dymax are the displacements
(relative to the GCPP). for the endpoints of an inclusion/exclusion
rectangle as shown in Figure 2-14. The inclusion rectangle includes the
endpoints of the arc, but the exclusion rectangle does not. The I/E bit
in the opcode determines which arc to draw. If the I/E bit equals 1, an
inclusion arc is drawn. The inclusion arc lies inside the rectangle and
includes points on the edge of the rectangle. If the I/E bit equals 0, an
exclusion arc is drawn. Conversely, the exclusion arc lies outside the
rectangle. The reserved bits should be programmed to zero.

The parameters are expressed as two’s complement numbers and can be
negative. However, if the radius is negative, no arc is drawn. If the radius
is zero, the arc is reduced to a single point at the GCPP. If dxmin >
dxmax or dymin > dymax, the inclusion/exclusion rectangle is treated
as a NULL rectangle. No part of an arc is contained in a NULL
rectangle.

The currently active texture, color, and logical operation are observed.

The GCPP remains at the center when the command. completes
execution.

2-25

GRAPHICS PROCESSOR OVERVIEW

(0,0)

/

DXMIN DXMAX

>

INCLUSION
EXCLUSION
RECTANGLE

DRAWING
DYMN - — = WIOM

INCLUSION ARC

DYMAX = — —

% Mwn ARC

TEXTURE
ALIGNED HERE

G30304

Figure 2-14. Draw Arc

The clipping rectangle and the inclusion/exclusion rectangle are
independent. Part of the inclusion/exclusion rectangle may lie outside
the clipping rectangle. However, if any part of the arc falls outside of
the clipping rectangle, the arc is drawn clipped and the Bitmap Overflow
Flag (GBMOYV) in the Status Register (GSTAT) is set. The arc is drawn
in a counterclockwise direction with the texture aligned on a pixel basis
to the point (xc + r, yc). The GCPP equals (xc,yc). For details on
GSTAT, refer to Section 2.2.1.1 “Graphics Processor Status Register
(GSTAT).”

PICK mode is not supported for this command. If drawing is in trans-

parent mode, the texture must be solid (applies only to this command
and the Circle command).

2-26

Inte| GRAPHICS PROCESSOR OVERVIEW

2.10.3 BIT_BLT-Bit Block Transfer
Opcode 64H

Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode 64H Reserved GECL

Source Rectangle x Coordinate

Source Rectangle y Coordinate

dx

dy

Description The Bit_BIt command copies a rectangular block of pixels within the
current bitmap. The parameters specify the source rectangle with a corner
at (%, y), width dx, and height dy. The source rectangle is copied to the
destination such that one corner of the destination rectangle at coordi-
nates (x, y) maps to the Graphics Current Position Pointer (GCPP), as
shown in Figure 2-15. The height and width of both rectangles are the
same. When the command completes execution, the GCPP moves to the
location (GCPPx + dx, GCPPy).

The reserved bits should be programmed to zero. The parameters are
expressed in two’s complement form and can be negative. The (x, y)
coordinates can be any of the four corners of the source rectangle, but
corresponds only to the upper left corner if dx and dy are both non-
negative. When dx = dy = 0, the single pixel at (x, y) is copied.

Each pixel of the destination rectangle is updated according to the
currently defined logical operation. The Graphics Processor (GP)
automatically adjusts the order of pixel transfer to accommodate source
and destination rectangles that overlap. If the destination rectangle (not
the source) crosses the clipping rectangle, no operation is performed and
the the Bitmap Overflow Flag (GBCOV) in the Status Register
(GSTAT) is set. When in PICK Mode, the Pick Successful Flag (GPSC)
in GSTAT is set if any of the pixels in the destination rectangle lie within
the clipping rectangle. Sections 2.6.4 and 2.6.5 discuss the clipping
rectangle and PICK Mode. Refer to Section 2.2.1.1 “Graphics Processor
Status Register (GSTAT)” for details on GSTAT.

2-27

GRAPHICS PROCESSOR OVERVIEW

(0,0)

(X,Y) DX

SOURCE
RECTANGLE

GCPP NEW GCPP

DYy
DESTINATION
RECTANGLE

G30304

Figure 2-15. Bit Block Transfer

2-28

intel

GRAPHICS PROCESSOR OVERVIEW

2.10.4

Opcode

Format

15 14

BIT_BLT_M-Bit Block Transfer Between Bitmaps

AEH

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode AEH Reserved GECL

Source Bitmap Lower Origin Address

Reserved Source Bitmap Upper Origin Address

Source xmax

Source ymax

Source rectangle x coordinate

Source rectangle y coordinate

dx

dy

Description

The Bit_Blt_M command copies a rectangular block of pixels across
bitmaps. Unlike other bitblt commands, the source rectangle lies in a
bitmap other than the currently active bitmap. The parameters specify
the Source Bitmap Origin Address, which defines the source rectangle
with the width xmax and height ymax. The Source Bitmap xmax and
ymax parameters, as well as X, y, dx, and dy parameters are measured
in pixels. The source rectangle defines a corner at (x, y), width dx, and
height dy. Reserved bits should be programmed to zero.

The source rectangle is copied to the destination in the currently active
bitmap (as defined by the previously specified Def_Bitmap command in
Section 2.10.8) such that (x, y) maps to the Graphics Current Position
Pointer (GCPP), as shown in Figure 2-16. The height and width of both
rectangles are the same. If the original GCPP was (xc, yc), following
command execution, the new GCPP location will be (xc + dx, yc).

The dx and dy parameters are expressed in two’s complement form and
can be negative. The (x, y) parameters correspond to the upper left corner
if dx and dy are both non-negative, otherwise these parameters corre-
spond to one of the other corners of the source rectangle. When dx =
dy = 0, a single pixel at (x, y) is copied.

2-29

GRAPHICS PROCESSOR OVERVIEW

(0,0)

YMAX

SOURCE BITMAP ADDRESS l
XMAX (0,0)
NEW
(X,Y) DX GCPP GCPP
DY SOURCE DESTINATION
RECTANGLE RECTANGLE
SOURCE BITMAP DESTINATION BITMAP

G30304

Figure 2-16. Bit Block Transfer Between Two Bitmaps

The Graphics Processor (GP) assumes the source bitmap has the same
number of bits per pixel (bpp) as the destination. This transfers the
requisite number of bytes from the source bitmap to the destination
bitmap. Unexpected results can occur if the bpp for the source bitmap
are not equal to the bpp of the destination.

Each pixel of the destination rectangle is updated according to the
currently defined logical operation. If the destination rectangle crosses
the clipping rectangle, no operation is performed and the Bitmap
Overflow Flag (GBCOV) in the Status Register (GSTAT) is set. The
source bitmap is not clipped.

In PICK Mode, the Pick Successful Flag (GPSC) in GSTAT is set if
any pixels of the destination rectangle lie within the clipping rectangle.
Sections 2.6.4 and 2.6.5 discuss the clipping rectangle and PICK Mode.
For details on GSTAT, refer to Section 2.2.1.1 “Graphics Processor
Status Register (GSTAT).”

NOTE

The Bit_Blt_M command defines the source bitmap and the last
specified Def_Bitmap command (defined in Section 2.10.8)
defines the active bitmap, which is the destination. The bits per
pixel (bpp) of the source and destination bitmaps must be the
same.

2-30

intel

GRAPHICS PROCESSOR OVERVIEW

2.10.5 CALL-call Subroutine

Opcode OFH
Format
15 14 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode OFH Reserved GECL
Call Address (Lower)
Reserved Call Address (Upper)
Description The Call command calls a subroutine of Graphics Processor (GP)

commands. When the GP encounters a Return command in the subrou-
tine, control returns to the command following the Call command. With
Call and Return commands, you can build subroutines, nested to an
arbitrary depth. Reserved bits should be programmed to zero.

Before issuing Call commands, the Graphics Processor Stack Pointer
(GSP Control Register), must be initialized. Use the Load_Reg command
to load the GSP with the stack address. Following an exception which
prematurely terminates the GP command stream, be sure to restore or
reinitialize the GSP. The GP stack grows toward lower addresses.

After receiving a Call command, the GP increments the current Instruc-
tion Pointer (GCIP) by 6 (to point to the following command) and pushes
the value onto the stack. Then, the GCIP is loaded with the subroutine
address specified by the Call command. Control jumps to the called
subroutine. Each subroutine call uses four bytes of stack space, which
causes the GSP to be decremented by 4 each time a subroutine call
occurs.

2-31

intel

GRAPHICS PROCESSOR OVERVIEW

2.10.6 CHAR-Draw Character String

Format

15 14

Command Opcode
CHAR_OPAQUE A600
CHAR_TRANSPARENT A700
CHAR_RV_OPAQUE A800
CHAR_RV_TRANSPARENT A900

12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode Reserved GECL

String Pointer Lower

String Pointer Upper

Number (# of Characters)

Description

This command writes a string of characters into the active bitmap. The
character dot matrix is read out of the active character table and the
characters are written into the active bitmap using the active character
path, character rotation and inter-character spacing. Reserved bits should
be programmed to zero. The characters can be drawn transparent or
opaque and reverse video. If normal video and transparent (opcode
A700), then a “1” in the character descriptor dot matrix specifies the
active foreground color and a “0” specifies no action. If opaque (opcode
A600), a “1” specifies the active foreground color and a “0” the active
background color.

If reverse video and transparent (opcode A900), then a “0” in the
character descriptor dot matrix specifies the active foreground color and
a “1” specifies no action. If reverse video and opaque (opcode A800), a
“1” specifies the active background color and “0” specifies the active
foreground color. Again the characters are drawn only in the planes
specified by the currently active Mask and using the currently defined
logical operation.

Each character in a character font has an independently programmable
size of up to 16X16 pixels, which allows individual characters to be
different sizes for proportional spacing. Information about each charac-
ter resides in memory and is provided by the user. Starting from an even
byte address, the character information is stored in consecutive words of
memory forming a character block containing n+1 words of memory,
where n is the pixel height of the character. Each Character Descriptor
Block has the format shown in Figure 2-17.

2-32

GRAPHICS PROCESSOR OVERVIEW

15 14 13 12 11 10 9 5 4 3 2 1 0

8 7 6
s Width (W —1) I T I Height (H --1)

Dot Pattern for First Row

Dot Pattern for Second Row

Dot Pattern for Third Row

Dot Pattern for Fourth Row

Dot Pattern for Fifth Row

Dot Pattern for Last Row

G30304

Figure 2-17. Character Descriptor Block

Each character is identified by specifying the address of the starting
block. This address is an offset from the character table base address,
which is programmed before using the Def_Character_Set command.

Each character block must start at an even byte address. The dot
patterns for each row must reside in consecutive words in memory. The
first word defines the height and width of the character (see
Figure 2-17) and whether the character is an overstrike or exceeds the
16X 16 pixel limit in either direction. If the dot pattern for the width of
the character is less than 16 pixels, the dot pattern for the row must be
right justified in the word of the Character Descriptor Block. However,
the dot pattern defining the character in the character cell can be left
justified as shown in Figure 2-18. In this way, a character can create its
own proportional spacing.

The S bit, the most significant bit of the Character Descriptor Block,
indicates whether the Graphics Current Position Pointer (GCPP) is
updated as defined by the Def_Char_Orient command after the charac-
ter is drawn. If the S bit is set to 1, the GCPP is not updated following
character drawing. If the S bit is 0, the GCPP is updated following
character drawing. Suppressing the updating of the GCPP after certain
characters are drawn can be useful for underlining, overstriking, or
creating other special effects.

2-33

GRAPHICS PROCESSOR OVERVIEW

15 14 13 12 11 10 9 8 7 6 5 3 2 1 0
1] 0 0 0 0 1 1 0 I 0 I 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Character “A”

DW 8608H ; $=1, T=0, Width (W —1)=6, Height (H —1)=8

DW 00110008

DW 01001008

DW 10000108

DW 10000108

DW 1111110B

DW 10000108

DW 10000108

DW 10000108

ow

G30304

Figure 2-18. Sample Character Descriptor Block

The T bit (Trap bit), the most significant bit of the first byte of the
Character Descriptor Block can be set to initiate a software trap, for
specialized processing of a character that exceeds 16 pixels in either
direction or elementary memory management. The Trap bit can inter-
rupt the CPU so that software can specially process a character with
bitblt or other technique. A character larger than 16X16 pixels can be
divided into quadrants and drawn by executing multiple character
drawing commands. The Trap bit also can be used to provide elementary
memory management for large fonts that may not reside entirely in
physical memory at one time.

2-34

GRAPHICS PROCESSOR OVERVIEW

The height and width of the character refer to the difference between
their limiting x and y coordinates. For example, a width of zero specifies
a character one pixel wide and a height of zero specifies a character one
pixel high.

Before issuing the Char command, the current character font must be
established by using the Def Char_Set command. This command also
determines whether to use Word or Byte Mode to select characters from
the font.

The initial x,y coordinates are taken to be the GCPP position. If the
character is not specified to be non-spacing then, after writing each
character, the GCPP is moved to a point “character width + space —
1” away (in the direction of the character path) from the initial point.
The new GCPP position becomes the initial point for the next character.
The character boundary is assumed to be the bounding rectangle of the
character. If any of the characters cross the clipping rectangle, the bitmap
overflow (GBCOV) flag is set and only the portions of the character
lying within the clip rectangle are drawn. The GCPP is updated to lie at
the final position of the Nth character and is unaffected by clipping of
the characters.

The character string is interpreted to be either a string of bytes or a
string of words depending upon the mode set up by the Def_Char_Set
command. In Word Mode, the string pointer parameter of the Char
command points to a string of n characters. The string is interpreted as
shown in Figure 2-19.

In this mode, each word in the character strings corresponds to a charac-
ter from the defined font. The correspondence is defined as follows. The
word code is added to the Character-font’s base address (22-bits) and
the resulting 22-bit quantity serves as the address to the beginning of the
character description block. Figure 2-20 shows the operation of the Char
command in Word Mode with the character path in the standard left to
right orientation.

char n

G30304

Figure 2-19. Word Mode Selector Words

2-35

GRAPHICS PROCESSOR OVERVIEW

FONT TABLE
CHARACTER
DESCRIPTOR
BLOCK
' FONT
BASE ADDRESS
CHARACTER
DESCRIPTOR
BLOCK I
CHARACTER
DESCRIPTOR COMMAND
BLOCK STRING POINTER
(SHIFTED LEFT 1 BIT)
.
L]
: L)

CHARACTER
DESCRIPTOR
BLOCK

G30304
Figure 2-20. Character Command in Word Mode
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
char 2 char 1
char 4 char 3
charn char n-1
G30304

Figure 2-21. Byte Mode Selector Words

If in byte mode, the character string is interpreted as shown in
Figure 2-21.

In this mode, each byte in the character string corresponds to a charac-
ter from the character font. One more level of indirection is added to the
character address generation. The byte is added to the Character-font’s
base address and the resulting 22-bit quantity addresses a word from the
memory. This word is added to the character-font’s base address and the
resulting 22-bit address points to the beginning of the character descrip-
tor block. The net effect is that of a lookup table being present at the
head of the character font itself.

2-36

GRAPHICS PROCESSOR OVERVIEW

If any of the characters are defined with a TRAP bit set, all further
processing of the string is aborted and the GTRP bit is set in the status
register, which might cause an interrupt depending upon the contents of
the Interrupt Mask Register or may cause an onset of the POLL mode
depending upon the POEM register. In case of the Char command being
aborted because of a GTRP bit, further information can be gotten from
reading registers GCNT and GCIP. GCNT holds the number of charac-
ters remaining to be drawn when the GTRP bit was encountered while
GCIP holds, as always, the address of the command that caused the
character string to be drawn.

If the PICK mode is on, the GPSC flag in the status register is set if any
of the pixels lying within the character bounding rectangle also lie in the
clipping rectangle. In case of the PICK mode or normal mode, the Char
command is processed for the entire character string. For instance, even
if the first character overflows clipping rectangle boundaries, the rest of
the character string is scanned for other characters that may lie within
the clipping boundary. Further information is accessible via registers
GCNT and GCIP. GCNT holds the number of characters that were
remaining to be drawn when the last exception occurred while GCIP
holds the address of the Char command that was under
execution.

Note that the character string for all character drawing must begin on
an even byte address. Byte strings that are aborted with a trap may
require special handling to restart on an even byte address.

Character clipping is supported for 16-bit character codes only. In
addition, if the top of the characters are to be clipped, the top row of
pixels of the character must begin on an even numbered scan line (scan
lines are numbered from top to bottom beginning with number 0). This
restriction does not apply to characters which have only the sides or
bottom clipped or which are not clipped at all.

2-37

Inl'e| GRAPHICS PROCESSOR OVERVIEW

2.10.7 CIRCLE-Draw Circle

Opcode 8EH
Format
15 14 13 12 11 10) 8 7 6 5 4 3 2 1 0
Opcode 8EH Reserved GECL
Radius
Description The Circle command draws a circle with the center at the Graphics

Current Position Pointer (GCPP) and radius as specified by the command
(see Figure 2-22). The GCPP remains at the center of the circle. Pixels
are updated according to the current texture and logical operation. A
circle with a radius set to zero consists of the single point at the GCPP.
If the radius is negative, the circle is not drawn. If the circle crosses the
clipping rectangle, the circle is drawn clipped. and the Bitmap Overflow
Flag (GBMOV) in the Status Register (GSTAT) is set.

Reserved bits should be programmed to zero.
PICK Mode is not supported for this command. If drawing is in trans-

parent mode, the texture must be solid (applies only to this command
and Arc command).

(0,0) X

|

GCPP

RADIUS

G30304

Figure 2-22. Draw Circle

2-38

intal

' GRAPHICS PROCESSOR OVERVIEW

2.10.8

DEF_BITMAP—-Define Bitmap

Opcode 1AH
Format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode 1AH Reserved GECL
Bitmap Lower Origin Address
Reserved Bitmap Upper Origin Address
Xmax
ymax
bpp (1,2,4,8)
Description The Def_Bitmap command defines the active bitmap, which continues

to be active until another Def_Bitmap command is executed. Def_Bitmap
defines the bitmap as the rectangle spanned by the point (0,0) at the
Origin Address in the top left corner and (xmax, ymax, which are speci-
fied in pixels) in the bottom right corner (see Figure 2-23). Bitmaps
must begin at a word (even byte) address. The bitmap is activated with
the Graphics Current Position Pointer (GCPP) at the Origin Address
(0,0); the clipping rectangle is set to the bitmap boundary until the
Def_Clip_Rect command redefines it. Reserved bits should be
programmed to zero.

The bpp parameter sets the number of bits per pixel for the bitmap and
must be 1, 2, 4, or 8. If any other value is used, if ymax < 0, if xmax
does not satisfy the equation below, or if xmax exceeds 32K-1, the Illegal
Bitmap Definition Flag (GIBMD) in the Status Register (GSTAT) is
set, which may cause an interrupt depending on the Interrupt Mask
Register (GIMR) discussed in Section 2.3.4 “Exception Handling.” If
an illegal bpp value is specified or ymax < 0, the bpp defaults to 1.

A bitmap must be an integral number of words wide. The value for xmax
must satisfy the following equation:

[(xmax + 1) « bpp] MOD 16 = 0

2-39

GRAPHICS PROCESSOR OVERVIEW

(0,0) = GCPP XMAX

ORIGIN ADDRESS

YMAX Y o e e e e e —— — _I

G30304

Figure 2-23. Define Bitmap

For example, with an xmax value of one (xmax = 1), the bitmap consists
of two pixels: x=1, x=0. The ymax parameter does not have a similar
restriction. However, if xmax or ymax are negative, the results are
unspecified. The absolute maximum value for xmax and ymax is 7FFF.
If a value greater than 7FFF is specified for either xmax or ymax, xmax
or ymax defaults to zero.

No default definition of a bitmap exists. Thus, after RESET, only
nondrawing commands may be executed prior to the Def_Bitmap
command. Drawing commands issued before establishing a bitmap with
the Def_Bitmap command have unspecified results.

2-40

intal

GRAPHICS PROCESSOR OVERVIEW

2.10.9

DEF_CHAR_ORIENT —Define Character Orientation

Opcode 4EH
Format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode 4EH Reserved GECL
Reserved 1 Reserved |
1 —_ 1
Path Rotation
Description The Def_Char_Orient command sets the character orientation used by

the Char command. The path parameter defines the direction to update
the Graphics Current Position Pointer (GCPP) after each character is
drawn. The rotation parameter sets the orientation of each character.
Specify both parameters as degrees counterclockwise to the horizontal
axis. Parameters must be selected from the following path and rotation

values:
Path and Rotation Values Degrees
00 0
01 90
10 180
11 270

The rotation defined by this command remains active until redefined by
another Def_Char_Orient command. Figure 2-24 shows possible
character orientations. Reserved bits should be programmed to zero.

2-41

GRAPHICS PROCESSOR OVERVIEW

CHARACTER ROTATION

CHARACTER PATH

90 180

CeT=]
[]
[]

z
o

90

o N
N

o

N o]
180 o N
270 | o N N 6
=,

O = OLD GCPP
N = NEW GCPP

G30304

Figure 2-24. Define Character Orientation

2-42

intal

GRAPHICS PROCESSOR OVERVIEW

2.10.10 DEF_CHAR_SET-Define Character Set

Opcode 0AH - Word Mode
0BH - Byte Mode
Format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode 0AH/OBH B/W Reserved | GECL
Character Font Base Address (Lower)
Reserved Character Font Base Address (Upper)
Description The Def_Char_Set command establishes the active character font used

for drawing characters in the bitmap. After Def_Char_Set establishes
the font, use the Char command to draw character strings into the
bitmap. No default character font exists; you must use Def_Char_Set
before drawing characters.

The command parameters specify the base address for the font, which
must be an even byte address. The font is then addressed in one of two
modes: Byte or Word. The opcode B/W bit selects the mode. Reserved
bits should be programmed to zero.

Each character is described by a Character Descriptor Block.
Figure 2-25 shows the layout of a Character Descriptor Block with the
upper left corner placed at the GCPP. The placement of the GCPP
changes as specified by the S bit in the Char command and the path and
rotation in the Def_Char_Orient command.

Each Character Descriptor Block must start at an even byte address and
the dot patterns for each row are stored in consecutive words of the
Character Descriptor Block. The height and width of each character
cannot be more than 16 pixels. When the character width is less than
16, the dot pattern for each row must be stored right justified within
the word.

The first word of a Character Descriptor Block specifies the height and
width of the character. These values are stored as the Height minus one
(Height —1) and Width minus one (Width —1). Different characters
in the same font can have different dimensions. You must ensure that
the size of each character matches the number of rows used and that dot
patterns are right justified within the word. Although, the character can
be left justified within the character cell as shown in Figure 2-26.

2-43

GRAPHICS PROCESSOR OVERVIEW

15 14 13 12 11 10 9 5 4

3

2

8 7 6
S Width (W —1) l T I Height (H —1)

Dot Pattern for First Row

Dot Pattern for Second Row

Dot Pattern for Third Row

Dof Pattern for Fourth Row

Dot Pattern for Fifth Row

Dot Pattern for Last Row

G30304

Figure 2-25. Character Descriptor Block

Character “A”

DW. 8608H ; $=1, T=0, Width =7, Height =9

DW 0011000B

DW 0100100B

DW 1000010B

DW 1000010B
DW 1111110B

DW 1000010B

DW 1000010B

DW 1000010B

DW 0000000B

G30304

Figure 2-26. Sample Descriptor Block

2-44

GRAPHICS PROCESSOR OVERVIEW

The first word of the Character Descriptor Block also contains S and T
bits for the character. The S bit determines whether or not the Graphics
Current Position Pointer (GCPP) is updated after the character is drawn.
When S is set to the value zero, the following characteristics determine
how the GCPP is updated:

e Character rotation as defined by the Def_Char_Orient command in
Section 2.10.9

e Character width/height as specified in the Character Descriptor
Block of the character font

* Intercharacter spacing occurs

When the S bit value is one, the GCPP is not updated, which can be
useful when underlining or drawing accented characters.

The T bit, or Trap Bit, when set to 1, causes the Graphics Processor
(GP) to trap during character drawing operations. When the GP
encounters a set T bit, the Character Trap bit (GCTP) in the Status
Register (GSTAT) is set, which can trigger an interrupt or cause the
GP to enter Poll State based on the Interrupt Mask (GIMR) and/or
Poll On Exception Mask (GPOEM). For details on the GIMR and
GPOEM, refer to Section 2.3.4 “Exception Handling.”

The T bit can be used for characters that require special handling. For
example, it can trigger an interrupt to the CPU to initiate emulation of
characters that are greater than 16X 16 pixels or provide elementary
memory management to handle large character fonts that may not reside
entirely in physical memory.

Figure 2-26 shows a sample Character Descriptor Block representing the
character A. In the example, the starting GCPP is at the upper left
corner, the Trap Bit (T) is turned off and the S bit is set to 1, which
means the GCPP is not updated after the character is drawn. The width
is set to 6 and height is set to 8, which indicates the character cell size
is 7X9 pixels. The Character Descriptor Block data for each row is right
justified in the word in which it is stored (as denoted by the Define Word
notation DW). However, the character is left justified within the charac-
ter cell to provide a 1-bit column of intercharacter spacing.

The opcode B/W bit of the Def_Char_Set command selects the charac-
ter addressing mode. In Word Mode, a character string is represented
by a string of consecutive words. Each word is the displacement from
the character font base address of the pointer to the Character Descrip-
tor Block for that character. Character addressing in Word Mode is
illustrated in Figure 2-27. The Character Selector Word is doubled
(shifted left one bit) and added to the base address to locate the Charac-
ter Descriptor Block. '

2-45

GRAPHICS PROCESSOR OVERVIEW

FONT TABLE
f N\
CHARACTER
DESCRIPTOR
BLOCK
FONT
BASE ADDRESS
CHARACTER
DESCRIPTOR
BLOCK I
CHARACTER
DESCRIPTOR COMMAND
BLOCK STRING POINTER
(SHIFTED LEFT 1 BIT)
L]
L]
: L
J

CHARACTER
DESCRIPTOR
BLOCK

G30304

Figure 2-27. Word Mode Character

In Byte Mode, a character string is represented by a string of consecu-
tive bytes. The 82786 computes the location of the Character Descriptor
Block for a specific character while executing a Char command by shift-
ing the Character String Pointer left one bit before adding it to the font
base address. The result is an address into the offset table. The 82786
shifts the contents of the addressed word in the offset table left one bit,
then adds it to the font base address. The resulting sum yields the
starting address of the Character Descriptor Block. This establishes a
character lookup table, located at the start of the font table.
Figure 2-28 illustrates Byte Mode character addressing.

2-46

GRAPHICS PROCESSOR OVERVIEW

CHARACTER
COMMAND
STRING POINTER

BYTE MODE
8-BIT

FONT BASE ADDRESS

_: Poum

*2

CHARACTER FONT

" T0O-
——(+

G30304

Figure 2-28. Byte Mode Character

2-47

intgl

GRAPHICS PROCESSOR OVERVIEW

2.10.11 DEF_SPACE-Define Space

Opcode 4DH
Format
15 14 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode 4DH Reserved GECL
Intercharacter‘ Spacing
Description The Def_Space command sets the intercharacter spacing, in pixels, which

subsequent Char commands require. Def_Space also defines' GCPP
positioning along the X-axis for all bit block transfer (bitblt) operations
initiated by a BitBIt, BitBlt_M, or BitBlt_E command. For example,
with initial GCPP coordinates (x,y), the new GCPP location after
executing a bitblt command becomes (x + dx + space, y). No default
spacing exists. Following RESET (see Section 2.3.3 “RESET and
Initialization™), spacing is undefined. Spacing set by this command
remains active until changed by another Def_Space command. ‘

The intercharacter spacing is always in the direction of the character
path defined by the Def_Char_Orient command, described in
Section 2.10.9. The intercharacter spacing parameter is a two’s comple-
ment number and can be negative, which may be used by italic fonts and
other kerning applications. Reserved bits should be programmed to zero.

2-48

intel

GRAPHICS PROCESSOR OVERVIEW

2.10.12 DEF_CLIP_RECT-Define Clipping Rectangle

Opcode 46H
Format
15 14 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode 46H Reserved GECL

Xxmin
ymin
Xmax
ymax

Description The Def_Clip_Rect command defines the current clipping rectangle for

the active bitmap against which all subsequent drawing commands are
clipped. Reserved bits should be programmed to zero. The xmin, ymin,
xmax, and ymax parameters cannot be negative numbers, and must lie
within a defined bitmap. A drawing operation updates only those pixels
that fall on or within the clipping rectangle that lies within a defined
bitmap. If xmax < xmin, or ymax << ymin, no updates of the bitmap are
possible.

After a Def_Bitmap command, the default clipping rectangle is the entire
bitmap. The Def_Clip_Rect command sets the clipping rectangle to the
unique rectangle spanning the two corners (xmin, ymin) and (xmax,
ymax) as shown in Figure 2-29. The four parameters are two’s comple-
ment numbers, which must be entered as positive numbers.

2-49

GRAPHICS PROCESSOR OVERVIEW

(0,0) XMIN XMAX X

-

YMIN | = = — —

CLIPPING
RECTANGLE

YMAX § e e —

G30304

Figure 2-29. Define Clipping Rectangle

2-50

intel

GRAPHICS PROCESSOR OVERVIEW

2.10.13 DEF_COLORS-Define Colors

Opcode 3DH
Format
15 14 13 12 11 10 8 7 4 0
Opcode 3DH Reserved GECL
Foreground Color
Background Color
Description The Def_Colors command sets the active foreground and background

colors for subsequent drawing operations. Reserved bits should be
programmed to zero. Only two colors are active at a time and the two
colors remain the same until changed by another Def_Colors command.

The term color refers to the pixel value, which can be 1, 2, 4 or 8 bits
wide, depending on the bits per pixel (bpp) defined for the current bitmap.
When setting a particular color, the color value must be extended
(repeated) across the entire word parameter. For example, in a 4 bpp
bitmap, if the required color is 0111, the associated parameter must be
set to 0111011101110111.

2-51

intal

GRAPHICS PROCESSOR OVERVIEW

2.10.14 DEF_LOGICAL_OP-Define Logical Operation

Opcode 41H
Format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode 41H Reserved GECL
Color Bit Mask
FCode
- Description The Def_Logical_Op command defines the logical operation performed

to modify the value of a pixel during any drawing command. Reserved
bits should be programmed to zero. Logical operations can combine
existing pixel information in a bitmap with new pixel information gener- -
ated as a result of a bitblt or other drawing operation, such as a bitbit
operation which displays only the overlapping regions of two shapes. This
example logically combines the contents of two separate bitmap locations
to produce new bitmap patterns. When defined, the Def_Logical_Op
command applies to all subsequent pixel update operations (line, arc,
character, bitblt, etc.) Sixteen binary functions are permitted between
the source and destination as shown in Table 2-8.

Table 2-8. Logical Operations

Function : ' Fcode (Hex)
0 0000
source AND destination 0001
CMP (source) AND destination 0002
Destination 0003
source AND CMP (destination) 0004
source 0005
source XOR destination 0006
source OR destination 0007
CMP (source) AND CMP (destination) 0008
CMP (source) XOR destination 0009
CMP (source) 000A
CMP (source) OR destination 0ooB
CMP (destination) 000C
source OR CMP (destination) 000D
CMP (source) OR CMP (destination) 000E
1) 000F

2-52

GRAPHICS PROCESSOR OVERVIEW

The Fcode is the truth table of the associated two variable functions.
The truth table of the function with the FCode ABCD is diagramed as
follows:

Source

Destination 0 1
0 A B

1 C D

The following example shows the CMP of source function (FCode =
1010), which replaces the destination with the complement of the source.
The truth table shows that if the source equals zero, the destination does
not care, the result always will be one. It also shows that if the source is
one, the destination does not care, the result always will be zero.

. Source
Destination 0 1
(o} 1 0

1) 1 0

The Color Bit Mask parameter in the Def_Logical Op command
preserves the concept of bit planes and their classical roles, while storing
pixels in a sequential manner to mask off subsets of the bitmap to all
drawing operations such that these subsets of color bit masks represent
different information.

The color bit mask has the same number of bits as the bpp of the current
bitmap. However, the mask must be extended (repeated) over the entire
parameter word. For example, in a 2 bbp bitmap, if the desired pixel
mask is 01, then the mask parameter must be 0101010101010101. In
the example, a zero (0) in the mask indicates the corresponding color bit
is masked and will not be modified during any drawing operation. A one
(1) in the mask indicates the corresponding pixel bit may be updated.

The FCode parameter selects the logical function that determines how
to assign color values when updating a pixel. Table 2-8 lists the FCode
values and corresponding logical functions. Each function is a bit-by-bit
logical combination of pixel values. Destination is the current color value
of the pixel being updated, which means the existing value of the desti-
nation pixel may determine the new color for the pixel.

2-53

GRAPHICS PROCESSOR OVERVIEW

The source value is interpreted according to the type of drawing command
performed. For geometric drawing commands, the source value is deter-
mined by the current texture, foreground color, and background color
(see Def_Colors in Section 2.10.13 and Def_Texture in Section 2.10.15).
For character drawing commands, the source is determined by the active
character font foreground color and background color. For bitbits, the
source is the value of the corresponding pixel in the source rectangle.
For transparent textures and transparent character strings, pixels corre-
sponding to zeros in the source pattern are not overwritten irrespective
of the FCode. '

2-54

intel

GRAPHICS PROCESSOR OVERVIEW

2.10.15 DEF_TEXTURE—-Define Texture

Opcode 06H - Opaque
07H - Transparent
Format
15 14 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode 06H/07H T/O Reserved GECL
Pattern
Description The Def_Texture command sets the active texture for subsequent

geometric drawing commands. The 16-bit pattern parameter specifies
the texture. Each bit in the pattern corresponds to a pixel, which allows
the command to specify a pattern of 16 pixels. Reserved bits should be
programmed to zero.

The texture is defined as either opaque or transparent depending on the
T/O bit in the opcode. In Transparent Mode, T/O equals one (1). In
Transparent Mode, a one in the pattern indicates the corresponding bit
should be updated using the foreground color as the source; a zero in the
pattern indicates the corresponding bit should not be overwritten. In
Opaque Mode, the T/O bit equals zero. In Opaque Mode, a value of one
in the pattern signifies that the corresponding pixel is to be written in
the foreground color; a zero indicates the corresponding pixel is to be
written in the background color.

When a geometric drawing command initializes the pattern, the first

pixel drawn corresponds to the most significant bit (MSb) of the defined
pattern.

2-55

intel

GRAPHICS PROCESSOR OVERVIEW

2.10.16 DUMP_REG—Dump Register

Opcode 29H
Format
15 14 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode 29H Reserved GECL
Dump Address (Lower)
Reserved Dump Address (Upper)
Reserved Register Identification
The Dump_Reg command writes the contents of a Graphics Processor

Description

(GP) Control or Context Register to the Dump Address specified in the
command. To remain compatible with future hardware, access only the
registers in Table 2-9. The registers in Table 2-10 should be saved and
restored only when switching between multiple tasks that share the GP.
The Dump Address must be specified as an even byte address. Reserved
bits should be programmed to zero.

A register with a value using 16 bits or less stores its value in a 16-bit
word. If the value requires less than 16 bits, the value is stored right
justified with the upper unused reserved bits zeroed. If a register has a
value requiring more than 16 bits, two consecutive 16-bit words are used.
The first word contains the least significant 16 bits. The second word
contains the remaining significant bits, which are right justified with the
unused, reserved upper bits of the word zeroed. For example, the Stack
Pointer (GSP) is stored in two consecutive words. The first word holds
the lower address, the least significant 16 bits. The second word holds
the higher address; the remaining most significant 6 bits, which are right
justified with the upper unused 10 reserved bits zeroed.

Table 2-9. Control Registers

Register ID

Register Name

(Number of Bits)

Register Function

GPOEM
GIMR
GSP
GCNT

0003 (6)
0004 (8)
010C (22)
0015 (16)

Poll Mask
Interrupt Mask
Stack Pointer
Character Count

2-56

Intel GRAPHICS PROCESSOR OVERVIEW

Table 2-10. Context Registers

Register Name Register ID Number
REG 5 0007 *2,2)
REG 6 010B 21
REG 7 010D 21
REG 8 010F 21
REG 9 0010 16
REG 10 0011 16 -
REG 11 0012 16
REG 12 0013 16
REG 13 0016 16
REG 14 001C 4
REG 16 0090 16
REG 17 0091 16
REG 18 0096 16
REG 19 0097 16
REG 20 0099 16
REG 21 009B 16
REG 22 009C 16

* These bits are right justified in each byte of the word in which they are stored. Two bits are stored in bits
0 and 1 and two bits are stored in 8 and 9; the remaining upper bits in each byte are zeroed.

2-57

Intel GRAPHICS PROCESSOR OVERVIEW

2.10.17 EBITBLT—Expand Ibpp Source to Currently Defined Bpp

Command Opcode
BITBLT_EO D400H
BITBLT_ET D500H
BITBLT_ERO D600H
BITBLT_ERT D700H

Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode R | T/O Reserved GECL

Source Bitmap Origin Address Lower

Source Bitmap Origin Address Upper

XMAX (Source Bitmap Width - 1)

YMAX (Source Bitmap Height - 1)

Source Rectangle X Coordinate

Source Rectangle Y Coordinate

DX (Rectangle Width - 1)

DY (Rectangle Height - 1)

Description Source Rectangle is monochrome and the bpp of Destination Rectangle
is same as the last defined in DEF_BITMAP.

COLOR USED IN RASTEROP

R T/0 SRC PIXEL = 0 SRC PIXEL = 1
0 0 Background Foreground
1 0 Foreground Background
0 1 Transparent Foreground
1 1 Foreground Transparent

2-58

GRAPHICS PROCESSOR OVERVIEW

If destination rectangle crosses clip rectangle boundaries, only the
portions of the destination rectangle lying within the window are drawn
but GBCOV is set. If source rectangle crosses source bitmap boundaries
then results are undefined. GBCOYV is not necessarily set. Source Bitmap
Origin address is even byte. Source Bitmap width needs to correspond
to a positive 16-bit word multiple. Allowable values of xmax are 0, 15,
31, ..., 32767. Dx = (width — 1) and dy = (height — 1) of rectangle
before clipping. Results are defined only if source rectangle is enclosed
within the source window.

GPSC is set if any pixels in destination rectangle lie within the clip
rectangle (whether or not they are transparent). GBCOYV is set and no
bitmap accesses are made if the destination rectangle lies completely
outside the clip rectangle. New GCPP = (xc + dx + space, yc) where
(xc, yc) = old GCPP (regardless whether clipping occurred or whether
in PICK mode).

2-59

||1te| GRAPHICS PROCESSOR OVERVIEW

2.10.18 ENTER_PICK-Enter PICK Mode

Opcode 44H

Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode 44H Reserved GECL

Description The Enter_Pick command puts the Graphics Processor (GP) in PICK

Mode (see Section 2.6.5). All GP commands execute normally, except
pixels are not updated in the bitmap. Instead, the x and y coordinates
that are generated are compared to the active clipping rectangle. If a
command is executed that would normally update a pixel in the clipping
rectangle, the GP sets the Pick Successful Flag (GPSC) in the Status
Register (GSTAT). Reserved bits should be programmed to zero.

In PICK Mode, neither Bitmap Overflow Flag (GBCOV or GBMOYV)
in GSTAT is updated by any command. The Exit_Pick command,
described in Section 2.10.18, returns the GP to normal operation. For
details on GSTAT, refer to Section 2.2.1.1 “Graphics Processor Status
Register (GSTAT).”

2-60

intel

GRAPHICS PROCESSOR OVERVIEW

2.10.19 EXIT_PICK-Exit PICK Mode

Opcode 45H

Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode 45H ‘ Reserved GECL

Description The Exit_Pick command exits Pick Mode and returns the Graphics

Processor (GP) to normal operation. See the Enter_Pick command in
Section 2.10.17 and Section 2.6.5 for details on PICK Mode. Reserved
bits should be programmed to zero.

2-61

Intel GRAPHICS PROCESSOR OVERVIEW

2.10.20 HALT-Stops Command Execution
Opcode xxO1H

Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode of Other Command xx01H Reserved 1

Description The Halt command stops command execution and forces the Graphics
Processor (GP) to enter Poll State. The Halt command can be used with
another command specifying a valid opcode, such as Nop, to halt GP
command execution. Whatever valid opcode is specified, the command
is not executed. Reserved bits should be programmed to zero. For details
on Poll State, refer to Section 2.3.2 “Poll State.”

2-62

intel

GRAPHICS PROCESSOR OVERVIEW

2.10.21 INCR_POINT-Draw Series of Incremental Points

Opcode B4H
Format
15 14 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode B4H Reserved GECL
Array Base Address (Lower)
Reserved Array Base Address (Upper)
Number of Points
Description The Incr_Point command draws a series of incremental points into the

active bitmap. This command can efficiently draw complex figures.
Incremental points are pixels that are adjacent to each other, so the drawn
figure resembles a continuous line drawing. The drawing starts at the
point indicated by the Graphics Current Position Pointer (GCPP) and
continues from point to point in a specified order. When the command
completes execution, the GCPP is positioned at the last point specified.
If drawing is in transparent mode, the texture must be solid.

Descriptors for incremental points are passed to the Graphics Processor
(GP) in an array. The largest allowable single array is 32K points. The
command parameters specify the base address of the array. Reserved
bits should be programmed to zero. The value n is the number of
descriptors; n points are drawn. Because the points are adjacent, only
nine possible choices exist for each successive point. Each Incremental
Point Descriptor is 4 bits wide. Figure 2-30 shows the array format.

inc1

incs

incn

incn—1

incn—2

G30304

Figure 2-30. Incr_Point Descriptor Array

2-63

GRAPHICS PROCESSOR OVERVIEW

Drawing starts at the GCPP and continues from point to point as deter-
mined by the array. Each 4-bit Descriptor describes the next point to be
drawn as shown in Figure 2-31 and Table 2-12. The two high order bits
of the nibble select an increment in the x direction. The two low order
bits select an increment in the y direction. Table 2-11 illustrates the
encoding. '

If any specified point lies outside the clipping rectangle (see Section
2.6.4), the Bitmap Overflow Flag (GBMOYV) in the Status Register
(GSTAT) is set and the point is not drawn. The net result is a clipped
figure. The current color, texture, and logical operation are observed.

In PICK Mode (see Section 2.6.5), all pixels (foreground and
background) are computed and checked against the clipping rectangle.
The bit pattern in memory remains unchanged. If any pixel lies within
the clipping rectangle, PICK Mode terminates and the Pick Successful
flag (GPSC) in GSTAT is set. For details on GSTAT, refer to Section
2.2.1.1 “Graphics Processor Status Register (GSTAT).”

270° = 2H

225° = AH 315° = 6H

180° = 8H [) 0° = 4H

135° = 9H 45° = 5H

90° = 1H

G30304

Figure 2-31. Array Values for Incr_Point

Table 2-11. Increment Point Codes

Code Increment
00 0
01 +1
10 -1
11 illegal

2-64

Intel GRAPHICS PROCESSOR OVERVIEW

Table 2-12. Incr_Point Command Array Values

(I.':’i;:c:;i::) x inc y inc Code Value

0 +1 0 0100 4H

45 +1 +1 0101 © 5H

90 0 +1 0001 1H

135 -1 +1 1001 OH
180 -1 0 1000 8H
225 —1 -1 1010 AH
270 0 -1 0010 2H
315 +1 -1 0110 6H

2-65

v Intel GRAPHICS PROCESSOR OVERVIEW

2.10.22 INTR_GEN-Generate Interrupt

Opcode OEH
Format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode OEH Reserved GECL
Description The Intr_Gen command can cause the Graphics Processor (GP) to issue

an interrupt. The Generate Interrupt Flag (GINT) in the Status Regis-
ter (GSTAT) is set during execution of this command. Setting the GINT
bit can cause an interrupt depending upon the current Interrupt Mask
defined in the Graphics Processor Interrupt Mask Control Register
(GIMR).

With GSTAT indicating the cause of an interrupt and the BIU Control
Register acknowledging the interrupt, both these registers must be read
to clear an interrupt.

When using this command, program the reserved bits to zero. For more

detail, see Section 2.2.2 “Graphics Processor (GP) Control Registers”
and Section 2.3.4 “Exception Handling.”

2-66

intel

GRAPHICS PROCESSOR OVERVIEW

2.10.23 LINE-Draw Line

Opcode 54H - draw endpoint
55H - do not draw endpoint
Format
15 14 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode 54H/55H Reserved GECL
dx
dy
Description The Line command draws a line between the Graphics Current Position

Pointer (GCPP) and the specified endpoint. The endpoint is specified as
a point relative to the GCPP. If the GCPP is defined as (X, y), the new
position of the GCPP after this command executes is (x + dx, y + dy).
If dx = dy = 0, a point will be drawn at the GCPP only. Reserved bits
should be programmed to zero.

For both opcodes, the new GCPP will be at the specified endpoint. The
difference between the two is that opcode 54H draws the endpoint while
opcode 55H does not draw the endpoint.

The line drawn by this command has the current active texture, color,
and logical operation. The pattern is initialized at the beginning of the
line (see Figure 2-32); the first pixel drawn corresponds to the most
significant bit of the pattern parameter in the Def Texture command
described in Section 2.10.15.

If any point of the line lies outside the clipping rectangle (see Section
2.6.4), the Bitmap Overflow Flag (GBMOYV) in the Status Register
(GSTAT) is set and the line is clipped.

In PICK Mode (see Section 2.6.5), all pixels (foreground and
background) are computed and checked against the clipping rectangle.
The bit pattern in memory remains unchanged. If any pixel lies within
the clipping rectangle, PICK Mode terminates and the Pick Successful
Flag (GPSC) in GSTAT is set.

2-67

GRAPHICS PROCESSOR OVERVIEW

(0,0)

GCPP
(X,Y)

NEW GCPP
(DX,DY)

G30304

Figure 2-32. Draw Line

2-68

Intel GRAPHICS PROCESSOR OVERVIEW

2.10.24 LINK-Link Next Command
Opcode 02H

Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode 02H Reserved GECL

Link Address (Lower)

Reserved Link Address (Upper)

Description The Link command loads the Graphics Processor Instruction Pointer
(GCIP) with the specified Link address. No drawing operation is
performed. This command is used to branch to subsequent Graphics
Command Blocks (GCMBs). The Link Address must be a word (even
byte) address. Reserved bits should be programmed to zero. For details
on the GCIP, refer to Section 2.2.1.2.

2-69

Intel GRAPHICS PROCESSOR OVERVIEW

2.10.25 LOAD_REG-Load Register

Opcode 34H

Format

15 14 13 12 11 10

Opcode 34H Reserved GECL
Load Address (Lower)
Reserved Load Address (Upper)
Reserved Register Identification
Description The Load_Reg command reads the contents of a specified memory

location into a Graphics Processor (GP) Control or Context Register
(See Sections 2.2.2 and 2.2.3). The load address must be a word (even
byte) address. Reserved bits should be programmed to zero.

Use Load_Reg to load the Stack Pointer (GSP), which is stored in two
consecutive words. The lower address holds the least significant 16 bits
and the upper address holds the most significant 6 bits which are right
justified; the remaining reserved 10 bits must be zeroed.

2-70

intel

GRAPHICS PROCESSOR OVERVIEW

2.10.26 NOP—No operation

Opcode 03H

Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode 03H Reserved GECL

Description The Nop command does not perform any operation. It exists for

programming convenience only. After executing the Nop command, the
Graphics Processor (GP) proceeds to the next command. The Nop
command with the GECL bit set to one is the same as using the Halt
command with a valid opcode to stop GP command execution. In both
cases, the command is not executed, GP command processing ceases,
and the GP enters Poll State. Reserved bits should be programmed
to zero. ,

2-7

intel

GRAPHICS PROCESSOR OVERVIEW

2.10.27 POINT-Draw Point

Opcode 53H
Format
15 14 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode 53H Reserved . GECL
dx
dy
Description The Point command draws a point at a position relative to the Graphics

Current Position Pointer (GCPP). The offsets dx and dy are specified in
two’s complement form and can be negative. Reserved bits should be
programmed to zero. With the GCPP defined as (xc, yc), the new GCPP
position following command execution is (xc + dx, yc + dy). The new
point uses the currently defined color and logical operation. The point is
always drawn in the foreground color.

If the new GCPP lies outside the clipping rectangle (see Section 2.6.4),
the point is not drawn and the Bitmap Overflow Flag (GBMOV) in the
Status Register (GSTAT) is set. The GCPP moves to the new pos1t10n
as shown in Figure 2-33.

In PICK Mode (see Section 2.6.5), the pixel is computed and checked
against the clipping rectangle. The bit pattern in memory remains
unchanged. If any pixel lies within the clipping rectangle, PICK Mode
terminates and the Pick Successful Flag (GPSC) in GSTAT is set.

2-72

GRAPHICS PROCESSOR OVERVIEW

(0,0) X

GCPP

NEW GCPP
(DX,DY)
°

\/

G30304

Figure 2-33. Draw Point

2-73

Intel GRAPHICS PROCESSOR OVERVIEW

2.10.28 POLYGON-Draw Polygon
Opcode 73H

Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode 73H Reserved GECL

Array Base Address (Lower)

Reserved Array Base Address (Upper)

Number of Lines

Description The Polygon command draws a line from the Graphics Current Position
Pointer (GCPP) through a series of points specified in an array and then
back to the GCPP. The closing line from the nth point to the starting
point is drawn automatically. The number of lines actually drawn to
complete the polygon is n + 1. The GCPP remains at the initial point.
Reserved bits should be programmed to zero.

The lines are drawn in the active texture and color with the currently
defined logical operation. The pattern is initialized at the beginning of
the first line; the first pixel drawn corresponds to the most significant bit
of the pattern parameter in the Def Texture command, described in
Section 2.10.15. The pattern is not initialized for subsequent lines, but
continues from one line to the next. The vertices are drawn only once as
shown in Figure 2-34.

Information for the vertices is contained in an. array, shown in
Figure 2-35. The array size should be 2 * N words.

The sides of the polygon proceeds from the Graphics Current Position

Pointer (GCPP) and continues to each coordinate in the order specified.

If any portion of the line lies outside the clipping rectangle (see Section

2.6.4), the line is drawn clipped and the Bitmap Overflow Flag
- (GBMOYV) in the Status Register (GSTAT) is set.

In PICK Mode (see Section 2.6.5), all pixels (foreground and
background) are computed and checked against the clipping rectangle.
The bit pattern in memory remains unchanged. If any pixel lies within
the clipping rectangle, PICK Mode terminates and the Pick Successful
Flag (GPSC) in GSTAT is set.

2-74

GRAPHICS PROCESSOR OVERVIEW

(0,0) X o
(x+dx1, y+dy1)
LINE 1 (x+dx1+dx2, y-+dy1+dy2)
(x,y)
(x+dx1+dx2+dx3, y+dy1+dy2+dy3)
LINE
DRAWN
BY GP
Y
Y (x+dx1+dx2+dx3+dx4, y-+dy1+,dy2-+dy3, +dyd)
G30304
Figure 2-34. Draw Polygon
15 14 13 12 11 10] 8 7 6 5 4 3 2 1
dx1
dy1
dxn
dyn
G30304

Figure 2-35. Polygon Vertices Array Information

2-75

intel

GRAPHICS PROCESSOR OVERVIEW

2.10.29 POLYLINE-Draw Polyline

Opcode 74H
Format
15 14 13 12 11 10 9 8 7 6 5 4 3 0
Opcode 74H Reserved GECL
Array Base Address (Lower)
Reserved Array Base Address (Upper)
Number of Lines
Description The Polyline command draws a line from the Graphics Current Position

Pointer (GCPP) through a series of specified points. The lines are drawn
in the active texture, color, and logical operation. The pattern is initial-
ized at the beginning of the first line; the first pixel drawn corresponds
to the most significant bit of the pattern parameter in the Def_Texture
command, described in-Section 2.10.15. The pattern is not initialized for
subsequent lines, but continues from one line to the next. With an initial
GCPP of (x,y), the new GCPP is (x + dx1 + dx2 + ..dxn, y + dyl
+ dy2 + ..dyn) as shown in Figure 2-36. Reserved bits should be

programmed to zero.

(0,0) X

\j

GCPP (x,y)

LINE 1
(x+dx1, y+dy1)

(x+dx1+dx2+dx3+dxn, y+dy1+dy2+dy3+dyn)
(x+dx1+dx2, y+dy1+dy2)

LINE 3

ﬁ (x+dx1+dx2+dx3, y+dy1+dy2+dy3)

G30304

Figure 2-36. Draw Polyline

2-76

GRAPHICS PROCESSOR OVERVIEW

Information for vertices is contained in an array as shown in
Figure 2-37. The size of the array should be 2 * N words.

The polyline proceeds from the GCPP and continues to each coordinate
in the order specified. Vertices are not drawn twice. If any portion of the
line lies outside the clipping rectangle (see Section 2.6.4), the line is
drawn clipped and the Bitmap Overflow Flag (GBMOV) in the Status
Register (GSTAT) is set.

In PICK Mode (see Section 2.6.5), all pixels (foreground and
background) are computed and checked against the clipping rectangle.
The bit pattern in memory remains unchanged. If any pixel lies within
the clipping rectangle, PICK Mode terminates and the Pick Successful
Flag (GPSC) in GSTAT is set.

G30304

Figure 2-37. Polyline Vertices Array

2-77

intel

GRAPHICS PROCESSOR OVERVIEW

2.10.30 RECT—D;aw Rectangle

Opcode 58H
Format
15 14 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode 58H Reserved GECL
dx
dy

Description

The Rect command draws a rectangle starting at the Graphics Current
Position Pointer (GCPP). Reserved bits should be programmed to zero.
The height and width are specified as displacements from the current
GCPP and can be negative. Drawing proceeds from the GCPP in the
x-direction to the dx value specified. With the GCPP defined as
(x,y), the new position of the GCPP after this command executes is
(x + dx, y). The new GCPP is at a new x coordinate, but the same y
coordinate as shown in Figure 2-38. If dx = dy = 0, one point will be
drawn at the GCPP.

The line drawn by this command uses the current active texture, color,
and logical operation defined in Def_Logical Op. The pattern is not
initialized for every line in the rectangle but continues from one line to
the next adjoining one.

If any point of the line lies outside the clipping rectangle (see Section
2.6.4), the Bitmap Overflow Flag (GBMOYV) in the Status Register
(GSTAT) is set and the line is clipped.

In PICK Mode (see Section 2.6.5), all pixels (foreground and
background) are computed and checked against the clipping rectangle.
The bit pattern in memory remains unchanged. If any pixel lies within
the clipping rectangle, PICK Mode terminates and the Pick Successful
Flag (GPSC) in GSTAT is set.

2-78

GRAPHICS PROCESSOR OVERVIEW

(0,0) X
INITIAL GCPP
(XC,YC) NEW GCPP
DX
DY
Y
Y
G30304
Figure 2-38. Draw Rectangle

2-79

Intel GRAPHICS PROCESSOR OVERVIEW

2.10.31 REL_MOV—Relative Move

Opcode 52H
Format
“15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode 52H Reserved GECL
dx
dy
Description The Rel_Mov command moves the Graphics Current Position Pointer

(GCPP) to a location relative to its current position. Reserved bits should
be programmed to zero. The offsets dx and dy are specified in two’s
complement form and can be negative. With the GCPP defined as
(x, y), the new position after this command executes is (x + dx, y + dy)
as shown in Figure 2-39.

The Bitmap Overflow Flags (GBMOV and GBCOV) and the Pick
Successful Flag (GPSC) are not set as a result of this command.

(0,0) X o
GCPP
(10,10)
NEW GCPP
DX = 15 (25,25)
DY = 15)
Y
Y

G30304

Figure 2-39. Relative Move

2-80

|nte| GRAPHICS PROCESSOR OVERVIEW

2.10.32 RETURN-Return from Subroutine

Opcode 17H
Format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode 17H Reserved GECL
Description The Return command returns command execution from a subroutine to

the calling program. Reserved bits should be programmed to zero. See
the Call command in Section 2.10.5 for a description of initiating
subroutine calls.

When the Graphics Processor (GP) receives a Return command, the GP
pops the return address off the stack and transfers it to the Instruction
Pointer (GCIP). The Stack Pointer (GSP) is incremented by four.
Command execution proceeds with the command addressed by the GCIP,
which is the command immediately following the Call command that
initiated the subroutine.

2-81

intal

GRAPHICS PROCESSOR OVERVIEW

2.10.33 SCAN_LINES-Draw Series of Horizontal Lines

Opcode BAH
Format
15 14 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode BAH Reserved GECL
Array Base Address (Lower)
Reserved Array Base Address (Upper)
Number of Lines
Description The Scan_Lines command draws a set of horizontal lines within the

specified parameters. This command can fill an area or draw a set of
horizontal lines with a defined line pattern.

The lines are drawn with the currently defined logical operation, color,
and texture. The pattern is adjusted so that a series of horizontal lines,
starting at different x coordinates, appear with their patterns aligned.
The texture is aligned to the beginning of the bitmap. Information for
the horizontal lines exists in an array as shown in Figure 2-40. The size
of the array should be 3 * N words.

dy1

deltax1

dxn

dxy

deltaxn

G30304

Figure 2-40. Scan_Lines Horizontal Line Array

2-82

GRAPHICS PROCESSOR OVERVIEW

Reserved bits should be programmed to zero. The arguments dx1 and
dyl specify the relative displacement of the starting point with respect
to the Graphics Current Position Pointer (GCPP). The arguments dx
and dy move the GCPP to the starting position of the next line. Deltax1
specifies the width of the horizontal line, which can be negative. Deltax
has no effect on the next coordinate.

If any portion of the lines lies outside the clipping rectangle, the lines
are drawn clipped and the Bitmap Overflow Flag (GBMOYV) in the
Status Register (GSTAT) is set.

In PICK Mode (see Section 2.6.5), all pixels (foreground and
background) are computed and checked against the clipping rectangle.
The bit pattern in memory remains unchanged. If any pixel lies within
the clipping rectangle, PICK Mode terminates and the Pick Successful
Flag (GPSC) in GSTAT is set.

With an initial GCPP of (x, y), after drawing the first line the new GCPP

is (x + dx1,y + dyl). When the command completes drawing, the new
GCPP is (x + dx1 + dx2 + ..dxn,y + dyl + dy2 + ...dyn).

2-83

Display Processor Overview 3

CHAPTER 3
DISPLAY PROCESSOR OVERVIEW

The Display Processor (DP) is an independent processor within the 82786. The DP is optim-
ized to control the display of video data on a CRT screen, but it also supports other displays.
The DP generates Horizontal Synchronization (HSync) and Vertical Synchronization
(VSync) timing and Blanking signals, and controls the 8 Video Data (VDATA) output pins.
The DP also fetches and loads parameters stored previously in memory.

3.1 DISPLAY PROCESSOR OPERATION

The Display Processor (DP) performs the following functions in generating the display
contents for output:

Generates control and Video Data (VDATA) signals to the display hardware.
» Provides a pointing symbol (cursor).

e Retrieves memory contents of selected bitmaps and outputs corresponding pixels into
windows on the display screen. '

» Using pixel replication, the DP permits selected portions of bitmaps to be magnified
(zooming) horizontally or vertically on the display.

e Loads the shift registers of dual port video random access memories (VRAMs).

Programming the 82786 on-chip Display Control Registers controls the Display Processor.
In this way, the application or system software dynamically alters the display content without
unacceptable display blinking (flickering) occurring.

The DP uses the memory-mapped DP Internal Registers and register commands to load the
Display Control Registers with parameters that have been set up in memory by the CPU.
The CPU can update these parameters at any time during screen refresh. The DP automat-
ically synchronizes loading with Vertical Blanking (VBlank). For details on the DP register
commands, see Section 3.6. For Display Control Registers, see Section 3.3.2. For the Inter-
nal Registers, see Section 3.3.1.

3.1.1 Bitmap Organization

The Display Processor (DP) is optimized to display data in sequential bitmap form. Usually,
the Graphics Processor (GP) writes the bitmap in memory, but the host CPU also can be
used. The DP can display 1, 2, 4, or 8 bits per pixel (bpp). Bits for each pixel are stored
sequentially in bitmap form. The first left-hand pixel to be displayed occupies the most
significant bit (MSb) of a word in memory; subsequent pixels occupy sequentially lower bits
in the word. The number of pixels per word varies based on the bpp (see Section 3.2 “Video
Interface”). Word addresses, moving left across the screen and from the top downward,
occupy ascending word address locations within the bitmap.

3-1

Intel DISPLAY PROCESSOR OVERVIEW

3.1.2 IBM PC Bitmap Format Support

In addition to the 82786 native bitmap format, the Display Processor (DP) supports the
swapped byte IBM Personal Computer (PC), Color Graphics Adapter (CGA) and PClJr
bitmap formats. Differing from the 82786 format, the IBM PC format positions the least
significant byte of a word to the left of the most significant byte on the screen; whereas, the
82786 format positions the least significant byte to the right of the most significant byte as
shown in Figure 3-1.

The DP also supports the 2-bank CGA (see Figure 3-2) and 4-bank PClJr (see Figure 3-3)
bitmap formats used by the IBM PC CGA and PCJr systems. This enables bitmaps created
by an IBM Personal Computer, PCJr, or compatible system to be upward compatible with
82786 displays. The IBM PC format bitmaps are displayed either as the whole screen or as
windows on a screen with 82786 created bitmaps. The IBM PC bitmaps can be zoomed, or
used with interlaced or accelerated displays. The 2-bank CGA and 4-bank PCJr modes are
not supported in interlace mode.

Figure 3-2 illustrates a 2 bank, swapped byte memory bitmap for a CGA 4-color medium
resolution display 80X200.

Figure 3-3 illustrates a swapped byte, 4 bank memory bitmap for the PCJr with a 16-color
medium resolution (4 bpp) and 4-color high resolution (2 bpp) display 160X 200.

Although the DP can display bitmaps created in these formats, the Graphics Processor (GP)
always draws bitmaps in 82786 format. The vertical mapping of IBM PC format bitmaps is
restricted in that the memory start address of an IBM PC format window must be in the
first of the 2 or 4 banks. For more details, see the PC parameter in Table 3-1 “Tile Descrip-
tor Parameters” and Figure 3-6 “Strip and Tile Descriptors” in Section 3.1.3.2 “Strip
Descriptor Format.”

Pixel Number from left as displayed on screen:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

82786 Bit Number

|15|14I13l12|11110|9|8[7l6|5[4|3|2|1 |0|
IBM Personal Computer Bit Number (swapped byte)

T [s <=]z] [ols]w]w]e]v]w]s]¢]

G30304

Figure 3-1. 82786 and IBM PC Swapped Byte Bitmap Formats

3-2

DISPLAY PROCESSOR OVERVIEW

0 1 2 3 4 5 6 — 4D 4E 4F
2000 2001 2002 2003 2004 2005 2006 —— 204D 204E 204F
50 51 52 53 54 55 56 —— 9D 9E 9F
2050 2051 2052 2053 2054 2055 2056 —— 209D 209E 209F
A0 Al A2 A3 A4 A5 A6 —— ED EE EF
20A0 20A1 20A2 20A3 20A4 20A5 20A6 —— 20ED 20EE 20EF
] F1 F2 F3 F4 F5 F6 —— 13D 13E 13F
20F0 20F1 20F2 20F3 20F4 20F5 20F6 —— 213D 213E 213F
140 141 142 143 144 145 146 —— 18D 18E 18F
2140 2141 2142 2143 2144 2145 2146 —— 218D 218E 218F
1EA0 1EA1 1EA2 1EA3 1EA4 1EA5 1EA6 —— 1EED 1EEE 1EEF
3EA0 3EA1 3EA2 3EA3 3EA4 3EA5 3EA6 —— 3EED 3EEE 3EEF
1EF0 1EF1 1EF2 1EF3 1EF4 1EF5 1EF6 —— 1F3D 1F3E 1F3F
3EF0 3EF1 3EF2 3EF3 3EF4 3EF5 3EF6 —— 3F3D 3F3E 3F3F
G30304
Figure 3-2. IBM PC CGA Swapped Byte, 2 Bank Example
0 1 2 3 4 5 6 — 9D 9E 9F
2000 2001 2002 2003 2004 2005 2006 —— 209D 209E 209F
4000 4001 4002 4003 4004 4005 4006 —— 409D 409E 409F
6000 6001 6002 6003 6004 6005 6006 —— 609D 609E 609F
A0 Al A2 A3 A4 A5 A6 —— 13D 13E 13F
20A0 20A1 20A2 20A3 . 20A4 20A5 20A6 —— 213D 213E 213F
40A0 40A1 40A2 40A3 40A4 40A5 40A6 —— 413D 413E 413F
60A0 60A1 60A2 60A3 60A4 60A5 60A6 —— 613D 613E 613F
1EA0 1EA1 1EA2 1EA3 1EA4 1EA5 1EA6 —— 1F3D 1F3E 1F3F
3EA0 3EA1 3EA2 - 3EA3 3EA4 3EA5 3EA6 —— 3F3D 3F3E 3F3F
5EA0 5EA1 5EA2 5EA3 5EA4 5EA5 5EA6 —— 5F3D 5F3E 5F3F
7EA0 7EA1 7EA2 7EA3 7EA4 7EA5 7EA6 —— 7F3D 7F3E 7F3F
G30304

Figure 3-3. Swapped Byte, 4 Bank IBM PCJr Example

3-3

Intel DISPLAY PROCESSOR OVERVIEW

3.1.3 Window Display Format

Windows can be displayed on the screen in flexible formats. Windows are divided into
segments called tiles. The portion of a window on a scan line is a tile. Up to 16 tiles can be
displayed on a horizontal display line and an unlimited number of tiles can be displayed
vertically.

At video rates up to 25 MHz and with 8 bits per pixel (bpp), windows can be placed at pixel
resolution on the screen, and mapped at pixel resolution in the bitmap. A border can be
displayed on any or all sides of each tile on the inside edge of the tile. The BdrColor Register
in the Display Control Block defines the border color (see Section 3.3.2 “Display Control
Block Registers”). With color centrally defined in the Display Control Block, rather than
the Tile Descriptor (see Figure 3-6), all borders for all windows are always the same color.
The border can be turned off or on for individual tiles (see the TBLR parameter in
Table 3-1 of Section 3.1.3.2 “Strip Descriptor Format”). The border width is always one
pixel; it does not vary with the pixel resolution of Accelerated Modes, which can be 1, 2, 4,
or 8 depending on the mode (see Section 3.2.1 “CRT Controller”) and dot rate (see Section
3.2.2 “Video Rates”).

A single, programmable, background color can be displayed in areas not covered by tiles.
Use of background color minimizes system bandwidth because data is fetched for tiles only.
Significant DP bandwidth reductions can be realized for many applications, which can
increase bandwidth availability for the CPU and Graphics Processor (GP). For details on
setting the background color, refer to the F bit in Table 3-1 in Section 3.1.3.2. “Strip
Descriptor Format™ and the FldColor Register in Table 3-8 of Section 3.3.2 “Display Control
Block Registers.”

3.1.3.1 STRIP DESCRIPTORS

The screen area with its windows (which can be overlapping) is divided into strips of arbitrary
width and height as shown in Figure 3-4.

The horizontal format of tiles remains constant for an entire strip, which creates a rectan-
gular area that is easy to manage. Circular or irregular shaped windows can be created by
defining a new strip every display line as illustrated in Figure 3-5.

Strip 1 Tile 1

Strip 2 Tile 1 Tile 2 Tile 3

Strip 3 Tile 1 Tile 2 Tile 3 Tile 4
Strip 4 Tile 1 Tile 2 Tile 3

G30304

Figure 3-4. Screen Composition with Strips and Tiles

3-4

|nte| DISPLAY PROCESSOR OVERVIEW

STRIP 1
STRIP 2
STRIP 3
STRIP 4
STRIP 5
STRIP 6
STRIP 7
STRIP 8
STRIP 9
STRIP 10
STRIP 11
STRIP 12

STRIP 13
STRIP 14 ROUND WINDOW USING ONLY THRITY STRIPS:
STRIP 15 USE OF 200 OR MORE STRIPS WOULD

STRIP 16 SIGNIFICANTLY REDUCE ‘““JAGGIES.”
STRIP 17
STRIP 18
STRIP 19
STRIP 20
STRIP 21
STRIP 22
STRIP 23
STRIP 24
STRIP 25
STRIP 26
STRIP 27
STRIP 28
STRIP 29
STRIP 30

G30304

Figure 3-5. Irregular Shaped Window

The CPU creates memory-resident Strip and Tile Descriptors defining the number of tiles
in each strip, the memory start address, fetch count, and bpp. The CPU updates these
memory-resident Strip Descriptors only when the window arrangement on the screen changes.
For details, see Section 3.1.3.2 “Strip Descriptor Format.”

Before each strip is displayed, the Display Processor (DP) reads the Strip Descriptor for the
strip and stores the information in its internal memory. The DP uses this information to do
all subsequent calculations required to display the strip.

3.1.3.2 STRIP DESCRIPTOR FORMAT

The CPU sets up the Strip Descriptors in memory for the Display Processor (DP). A Strip
Descriptor exists for each strip of window tiles to describe the tiles within the strip. Each
Strip Descriptor consists of a Header followed by one or more Tile Descriptors. The infor-
mation is ordered left to right as the tiles appear on the display screen. The Strip Descriptor
for a particular strip and all associated Tile Descriptors must be contiguous in memory. A
linked list of Strip Descriptors can be created by writing the address of the subsequent Strip
Descriptor in the Link to Next Strip Descriptor parameter in the header (see Figure 3-6) of
each Strip Descriptor in a series of Strip Descriptors. The addresses must link Strip Descrip-
tor strips together from top.to bottom to reflect the order in which the strips appear on the

3-5

- @
Int'el DISPLAY PROCESSOR OVERVIEW

5 14 13 12 11,10 9 8 7 6 5 4 3 2 1 0
HEADER ————r————
l NUMBER OF LINES IN STRIP - 1 I

!J.INK TO NEXT STRIP DESCRIPTOR (LOWER) —J

=

LINK TO NEXT STAIP
RESERVED ||| beSchpton whpee
NUMBER OF TILES
RESERVED I l IN STRIP - 1 l

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSt : —r—r—r—
TILE DESCRIPTOR fB“'MA" WIDTH —I

LMEMORV START ADDRESS (LOWER)

l RESERVED

L RESERVED 1

[RESERVED

MEMORY START
ADDRESS (UPPER)

BPP STARTBIT

STOPBIT

FETCH COUNT

T T T T : =

T B L R wst RESERVED BE‘

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SECOND T —r—r—1—
TILE DESCRIPTOR LBITMAP WIDTH J

T T —T e T T

I MEMORY START ADDRESS (LOWER) J

MEMORY START
i RESERVED I ADDRESS (UPPER)

I TESEAVED‘ “ I:PP i J I STARTBIT I ISTOPBIT J

L RESERVED I | FETCH COUNT l

= — T -
—% T T

[e _mem e R0

G30304

Figure 3-6. Strip and Tile Descriptors

display screen. The Strip Descriptor for the first strip is accessed during the Vertical Blank-
ing (VBlank) Interval by using the address specified in the Descriptor Address Pointer
Registers (see Table 3-8 in Section 3.3.2 “Display Control Block Registers”). Using the
Link to Next Strip Descriptor parameter in the Header of the first Strip Descriptor, the DP
accesses subsequent Strip Descriptors for the frame after completing the display data fetch
for the last line of the previous strip.

You must define in the strip descriptors no more scan lines than will actually be displayed.
For VRAM systems, the first strip must be at least two scan lines (see section 3.2.5).

The C bit, the most significant bit in the Number of Tiles in Strip parameter in the header
also can indicate the default background color when the display area is greater than the
number of defined Strip Descriptors as shown in Figure 3-7. For example, if two strips are

3-6

Intel DISPLAY PROCESSOR OVERVIEW

defined, but do not fill the display area, set the C bit in the Number of Tiles in Strip param-
eter of the second strip to one (1) and the DP automatically displays the background color
defined in the FldColor Register for the remaining display area (see Table 3-8 in Section
3.3.2 “Display Control Block Registers”).

After the first Strip Descriptor is read, subsequent Strip Descriptors are read into the Display
Processor (DP) as a single block read after fetching the last display data of the last line of
the current strip. The worst case scenario occurs during the Horizontal Blanking (HBlank)
time. With the use of interleaved Fast Page Mode DRAMSs, the maximum data transfer rate
is 50 ns per word. A maximum length Strip Descriptor containing a 4-word header and 16
6-word Tile Descriptors contains 100 words of data. To read the data, 50 cycles, or 5 uS at
10 MHz are required, excluding the few cycles of overhead to get onto the bus. Most CRTs
have HBlank times well in excess of 5 uS, but a few may have problems reading in all 16
Strip Descriptors. In such systems, the 82786 may be restricted to using a lower number of
windows horizontally across the screen.

If the Strip Descriptor list defines a window that extends beyond the active display area, the
Display Processor (DP) displays only the upper left-hand portion of the window and truncates
the remaining window. If the Strip Descriptor defines the display portion(s) to be smaller
than the active display area and the C bit in the Tile Descriptor Number of Tiles in Strip
parameter (see Table 3-1) is set, the remaining active display area is padded with the
background color defined in the FldColor Register (see Table 3-8 in Section 3.3.2 “Display
Control Block™).

The Strip Descriptor header is followed by a Tile Descriptor for each tile the window contains.
Table 3-1 outlines the parameters in each Tile Descriptor.

NOTE
The first tile of any scan line must be greater than 1 pixel.

Table 3-1. Tile Descriptor Parameters

~Bitmap Width The 16-bit width of the bitmap value defines the bitmap width in bytes.
It must be even because the Display Processor and Graphics Proces-
sor use 16-bit word addresses. The bitmap width is added to the
memory address for each scan line in the window (the Horizontal
Synchronization (HSync) period within the strip) to get the starting
address of the next display line (if y-zoom is inactive or has already
been calculated). For interlaced displays, the Memory Address is incre-
mented by twice the bitmap width.

Memory Start Address The 22-bit memory address contains the address of the first word of
bitmap data for the window tile. This is an even byte address, which is
always the first word in the top left corner of the bitmap.

Bpp The 4-bit Bpp in bits 11:8 defines the number of bits per pixel in the
current window tile. The Bpp can be programmed to 1, 2, 4, or 8 when
DRAMs are used at 25 MHz. With VRAMs, the Bpp must be set to zero
for the first Tile Descriptor. If Field bit is set to one; these bits are used
with the StartBit and StopBit parameters to denote the (number of pixels
—1) of background color to display. Program this 12-bit field to number
of pixels —1.

3-7

el

DISPLAY PROCESSOR OVERVIEW

Table 3-1. Tile Descriptor Parameters (Cont’d.)

StartBit

The 4-bit StartBit in bits 7:4 defines the bit position in the first memory
word that corresponds to the first bit of the first pixel in the tile. The
StartBit gives bit resolution to the Memory Start Address and pixel
resolution to the start of the window. When DRAMs are used, the
programmed Bpp must be consistent with the bpp defined for Bpp in
the Tile Descriptor. With VRAMSs, the StartBit must be set to zero for
the first Tile Descriptor. If the Field bit (F) is set to one, these bits are
used with the Bpp and StopBit parameters to denote the number of
pixels of background color to display.

StopBit

The 4-bit StopBit in bits 3:0 defines the position in the memory word
that corresponds to the last bit of the last pixel in the tile. The StopBit
gives bit resolution to the tile width. When DRAMSs are used, the StopBit
must be programmed to be consistent with the Bpp defined in the Tile
Descriptor. An illegal value causes incorrect display. With VRAMs, the
StopBit must be programmed to zero for the first Tile Descriptor. If the
Field bit (F) is set to one, these bits are used with the Bpp and StartBit
parameters to denote the number of pixels of background color to
display. :

Fetch Count

The Fetch Count in bits 11:0 specifies the number of bytes minus 2
(Fetch count = Bytes — 2) from the bitmap to be fetched for one
horizontal line of the current window tile when DRAMs are used. The
fetch count must be an even quantity. With VRAMs, the fetch count
must be set to zero for the first Tile Descriptor.

TBLR

The Border Control Bits in bits 15:12, if set to one turn on the border
on Top (T), Bottom (B), Left (L), or Right (R) of the window tile when
DRAMSs are used. All four TBLR bits must be programmed to zero for
the first Tile Descriptor when VRAMs are used.

Wst

The 2-bit Window Status (2 bits) in bits 11 and 10 define code presented
on the Window Status pins while the window is being displayed. WSt
can be used with DRAMs and VRAMSs.

PC

The two PC Mode bits in bits 2 and 3 indicate the display format of the
current window. The IBM PC CGA Mode (01) allows a bitmap created
in IBM PC swapped byte format, which differs from the 82786 format
(00). The IBM PC bitmap format positions the least significant byte of a
word to the left of the most significant byte on the screen; whereas the
82786 format positions the least significant byte to the right of the most
significant byte. For details, refer to Section 3.1.2 “IBM PC Bitmap
Format Support.” The list below contains valid codes for the PC bits.

00 = 82786 Mode (the default value)

01 = Swapped Byte Mode (IBM PC CGA format)
10 = Swapped Byte, 2 banks (IBM PC CGA format)
11 = Swapped Byte, 4 banks (IBM PCJr format)

The Zoom bit in bit 1, if set, zooms the window using the zoom param-
eters programmed into the ZoomX and ZoomY Registers (see Sections
3.2.4 “Zoom Support” and 3.3.2 “Display Control Block Registers”).
When VRAMSs are used and this bit is set, only vertical zoom is obtained,
unless external logic is provided.

3-8

Intel DISPLAY PROCESSOR OVERVIEW

Table 3-1. Tile Descriptor Parameters (Cont’d.)

F The Field bit in bit 0 denotes the window tile is the background color
and uses the Bpp, StartBit, and StopBit parameters to program the
number of pixels of background color to be displayed. If set to one, the
Field bit uses the Bpp, StartBit, and StopBit fields (shown in
Figure 3-6) as one 12-bit field to denote the number of pixels of
background color to be displayed. If zero, the Field bit uses the Bpp,
StartBit, and StopBit parameters to define the width of the field tile. The
value programmed must be one less than the desired tile width. The
Field bit must be set to zero for the first tile when VRAMSs are used (see
Section 3.2.5).

STRIP 1 HEADER NUMBER OF LINES IN STRIP - 1 ' STRIP 1
LINK TO NEXT STRIP DESCRIPTOR (LOWER)
LINK TO NEXT STRIP DESCRIPTOR (UPPER)

0 | NUMBER OF TILES IN STRIP - 1

STRIP 2

STRIP 2 HEADER NUMBER OF LINES IN STRIP - 1
LINK TO NEXT STRIP DESCRIPTOR (LOWER)
LINK TO NEXT STRIP DESCRIPTOR (UPPER)

1 I NUMBER OF TILES IN STRIP - 1

G30304

Figure 3-7. C Bit Can Indicate Final Strip Color

3.1.4 Cursor

The Display Processor (DP) supports a block or crosshair hardware cursor. The block cursor
can be an 8 X8 or 16X 16 pixel block. Either cursor can be positioned anywhere on the
screen within the defined pixel resolution using the Cursor Mode (CsrMode) Display Control
Block Registers to control the cursor. The DP CsrMode Registers also define the type of
cursor, block or crosshair; the cursor pattern; and whether it is transparent or opaque. A
transparent cursor may be any size and shape up to 16 X 16 pixels. The hot-spot for the block
cursor is the top-left of the cursor shape. The crosshair cursor is one pixel wide and stretches
the width and height of the screen. The hot-spot for the crosshair cursor is the intersection
of the crosshairs. The cursor color and pattern also are programmable. With-frame inter-
rupts to the CPU, the cursor can be programmed off or blinking. For details on frame inter-
rupts, refer to the FRI bit in Section 3.3.1.1 “DPStatus Register and Exception Handling”
and the Frint Register in Table 3-8 of Section 3.3.2 “Display Control Block Registers.”

3-9

lntel DISPLAY PROCESSOR OVERVIEW

In Accelerated Modes the horizontal cursor positioning is reduced to 2, 4, or 8 pixels based
on the mode used. For increased pixel resolution or a cursor larger than 16X 16, the hardware
cursor can be turned off and the cursor can be emulated by software bitblt operations.

3.1.5 Bus Bandwidth Requirements

The system bus bandwidth required by the Display Processor (DP) varies based on the screen
parameters such as bits per pixel (bpp) and Video Clock (VCIk) frequency. The 82786 has
a 40 Mbyte/second bandwidth during block accesses to memory, if the 10 MHz maximum
system clock (Clk) and interleaved Fast Page Mode DRAM:s are used. The Display Proces-
sor uses these fast block reads for screen refresh, which minimizes use of the system bus.
For example, with the DP running at its maximum speed of 25 MHz and with 8 bpp, about
65% of the bus is used for display refresh. At 25 MHz and with 1 bpp, the DP requires one-
eighth of the bus bandwidth that it required with 8 bpp. Proportional bandwidth reductions
also result with reduced VCIk frequencies.

3.2 VIDEO INTERFACE

The video interface connects the 82786 to the video display. The 82786 is optimized to drive
CRT monitors, but it can also drive other types of displays such as LCDs, plasma, and
intelligent printers. This chapter discusses the video interface as as it relates to the Display
Processor. Chapter 6 discusses the video interface in detail. The Intel 82786 Hardware
Configuration Application Note discusses considerations for other types of displays.

The video interface for a CRT depends on the CRT requirements and the resolution and
depth (bits per pixel (bpp)) of the image desired. The 82786 can be programmed to generate
all CRT signals for up to 8 bpp (256 colors) displays at video rates up to 25 MHz.

Eight parallel Video Data (VDATA) Output lines provide video output. The VDATA output
can be used as eight bits per pixel on the CRT, or it can be shifted externally to boost
maximum display resolution. An independent Video Clock (VCIk) controls the dot rate,
which can be up to 25 MHz. Horizontal signals are programmable from 1 to 4096 cycles of
the VCIk and vertical Synchronization (VSync) signals can be from 1 to 4096 scan lines.
With external hardware, a color lookup table can be used, higher display resolution can be
achieved by trading off bpp for dot rate, or VRAM:s can be used.

Tables 3-2 and 3-3 outline possible display configurations. The calculations assume 60 Hz
refresh rate. High resolution CRTs often run slower, which enables the 82786 to generate
significantly higher resolutions than these tables depict. All cases assume a CRT horizontal
retrace time of 7 uS, except the 512 X 512 X 8 (10 uS) and the 640 X 400 X 8 (13 uS).

Multiple 82786 systems can generate even higher resolutions with more colors. For example,
two 82786s can create a noninterlaced, 1144 X 860, 16-color display.

3-10

DISPLAY PROCESSOR OVERVIEW

intel

3.2.1 CRT Controller

The Display Processor (DP) CRT Controller operates as a master or a slave based on whether
the timing signals, Horizontal Synchronization (HSync), Vertical Synchronization (VSync),
and Blank, are inputs or outputs. Table 3-4 outlines typical HSync, VSync, and Blank settings.

When Blank is configured as output, the active display period is determined by the values
of VFIdStrt, VFIdStp, and HF1dStrt, and HF1dStp. When Blank is configured as input, the
external system determines the active display period. The internal video shift register gener-
ates video only during the active display period.

Table 3-2. Possible CRT Displéys with Standard DRAMs

Bpp Colors Noninterlaced Interlaced
8 256 512 X 512 900 X 675
640 X 400 900 X 675
640 X 480 900 X 675
4 16 870 X 650 1290 X 968
2 4 1144 X 860 1740 X 1302
monochrome 1472 X 1104 2288 X 1716
Table 3-3. Possible CRT Displays with VRAMs®*
Bpp Colors Noninterlaced
8 256 1024 X 1024
4 16 2048 X 1024
2 4 2048 X 2048
1 monochrome 4096 X 2048

* For 64K X 4; with 256K X 4, higher resolutions are supported.

Table 3-4. HSync, VSync, and Blank Settings

HSync and VSync Blank Application
Output Output | Master/Stand-Alone display generated by 82786
Input Output | 82786 generated display superimposed on externally generated video

or or
Input Slave 82786s in a multiple 82786 system

Inl'el DISPLAY PROCESSOR OVERVIEW

The CRTMode Display Control Registers (see Table 3-8 in Section 3.3.2 “Display Control
Block Registers™) define these modes and related parameters such as Horizontal and Verti-
cal synchronization intervals (HSync and VSync), Accelerated Video Modes, and line and
frame length.

The DP CRT Controller timing signals HSync, VSync, and Blank can be programmed at a
pixel resolution, with a maximum display size of 4096 X 4096 pixels. In any of the Accel-
erated Display Modes, High-Speed, Very-High-Speed, and Super High-Speed, the horizon-
tal resolution of the CRT timing signals change as outlined in Table 3-5.

These timing signal horizontal resolution changes determine the pixel resolution at which
windows and the cursor can be placed. In High-Speed Accelerated Mode (50 MHz), the
cursor is zoomed in x and y directions, to appear as a 32X 32 pixel blank cursor with 2 pixel
resolution on placement and pattern. Use of a software cursor is recommended for Acceler-
ated Modes when exact cursor placement or a larger cursor is essential. By turning off the
cursor with the Cursor_On (C) bit in the Video Status (VStat) Register (see Table 3-8 in
Section 3.3.2 “Display Control Block Registers”) and generating additional software to
control and position the cursor, you can obtain one-pixel horizontal resolution for the cursor
instead of the 2-, 4-, or 8-bit pixel resolution generated in these Accelerated Modes. In all
Accelerated Modes, the border width remains 1 pixel wide.

3.2.2 Video Rates

An external Video Clock (VCIk) Input clocks the Display Processor (DP) at any frequency
between 10 KHz and 25 MHz, based on the needs of the application. Printer applications
generally use the lower frequency. CRT screen applications use the higher frequency. In
addition to varied VCIk frequencies, the DP also supports interlaced, noninterlaced, and
interlace-sync displays.

The DP Accelerated Display Modes (see Section 3.2.1 “CRT Controller) allow systems to
trade off bits per pixel (bpp) for dot rate to gain greater overall resolution at the cost of
reduced color capacity due to less bpp. Table 3-6 outlines possible bpp for dot rate tradeofTs,
which assume a corresponding increase in the size and/or resolution of the monitors used.

The increased dot rate also reduces the timing signal horizontal resolution as outlined in
Table 3-5 and cursor positioning discussed in Section 3.2.1 CRT Controller. In Accelerated
Display Modes, software cursor control and positioning is recommended instead of using the
Cursor Mode (CsrMode) Registers, described in Table 3-8 of Section 3.3.2 “Display Control
Block Registers.”

The DP can display windows at any of the supported pixel depths (bpp) simultaneously. The
Bpp parameter in the Tile Descriptor indicates the bpp for a particular tile (see
Table 3-1 in Section 3.1.3.2 “Strip Descriptor Format”). In Accelerated Modes, the maximum

3-12

|nte| DISPLAY PROCESSOR OVERVIEW

bpp is reduced (e.g., in high-speed mode, only 1, 2, or 4 bpp are supported). To optimize
memory allocation and bus bandwidth requirements, text can be stored at 1 bpp, and a
complex graphic image can be stored at 8 bpp. When the DP displays the 1 bpp text bitmap,
the DP pads the high order Video Data (VDATA) output pins using data from the 1Bpp
Pad Register in the Display Control Register Block (see Table 3-8 in Section 3.3.2 “Display
Control Block Registers”).

3.2.3 HSync and VSync Multiplex Window Status

With external logic, the Horizontal Synchronization (HSync) and Vertical Synchronization
(VSync) CRT timing pins can be configured to be decodeable Window Status Output pins.
Values assigned to the Window Status bits (Wst) in the Strip Descriptor (see Table 3-1 in
Section 3.1.3.2 “Strip Descriptor Format”) program these pins. While the Display Processor
(DP) displays a tile, these pins can output code for tasks such as externally multiplexing in
video data from another source, or selecting a palette range for a particular window. Exter-
nal logic must be used to enable VSync and HSync as CRT timing signals when Blank is
high, and as decodeable Window Status signals when Blank is low. To implement Window
Status on these pins, see the W parameter in the CRTMode Register in Table 3-8 of Section
3.3.2 “Display Control Block Registers.”

3.2.4 Zoom Support

The Display Processor (DP) allows tiles to be zoomed up to 64 times in the x and y direc-
tions. The zoom feature is implemented through pixel replication. The DP ZoomX, ZoomY
Register (see Table 3-8 in Section 3.3.2 “Display Control Block Registers”) determines how
much each window is zoomed. The x and y zoom values are independent.

Table 3-5. Timing Signal Resolution Changes

. Resolution Pixels/Second (Dot Rate)
Display Mode (pixels) ; (MHz)
Normal 1 25
High-Speed 2 50
Very High-Speed 4 100
Super High-Speed 8 200

Table 3-6. BPP for Dot Rate Tradeoffs

Display Mode BPP Dot Rate
Normal 8 25 MHz
High-Speed 4 50 MHz
Very High-Speed 2 100 MHz
Super High-Speed 1 200 MHz

Intel DISPLAY PROCESSOR OVERVIEW

With zoom control centralized in the Display Control Block, all zoomed tiles on a display
are zoomed by the same amount. A tile either is zoomed or not zoomed. Zoom offset is not
supported; a zoomed pixel must be fully displayed or not displayed at all. This restricts tile
placement; a tile cannot be placed such that a zoomed pixel is partially obscured.

Each time the Display Processor displays a new strip, the vertical zoom counter is zeroed,
which can result in truncated pixels if a tile is not placed at a zoom factor boundary as
Figure 3-8 illustrates.

The zoom feature also can support an external character generator. The external system
interprets the VDATAT:0 output pins as a character code instead of an 8-bit color value.
The zoom feature enables the character code to be repeated for x pixels horizontally and y
pixels vertically. Zoom factors of up to 64 vertically and horizontally enable support of
character fonts such as Kanji.

Only even zoom factors are supported in the Y direction in interlaced mode. In addition,
when zooming interlaced displays, both descriptor lists (interlaced systems use two descrip-
tor lists, one for each frame) must point to the same place in memory, i.e., they must be
identical lists.

ZOOMED TILE ZOOMED TILE
STRIP 1 STRIP 1
1]A 1
STRIP 2 2|8 STRIP 2 2
| 12 o _ 3
3 -k 1
STRIP 3 4N
5|E \ STRIP 3
| : 5 1\
STRIP 4
STRIP 4
ST - T T\ .
RIP 5 STRIP 5
TRUNCATED PIXELS DUE TO ILLEGAL TILE PLACEMENT NO PIXEL TRUNCATION IN PROPERLY PLACED TILE
G30304

Figure 3-8. Zoom Tile Placement

Intel DISPLAY PROCESSOR OVERVIEW

3.2.5 VRAM Support

The 82786 supports use of dual port video DRAMs (VRAMEs) to generate high resolution
displays with low system overhead. In VRAM Mode, the 82786 generates

« VRAM control signals to read and write the VRAMs
o Data Transfer (DT) Cycles for loading VRAM data into the VRAM internal shift
registers and clocking out data

The video data passes directly from the VRAM shift registers to the video interface and is
not brought onto the 82786. As a result, the flexible windowing functions performed by the
82786 Display Processor are not available in VRAM Mode. However, the 82786 supports
the concept of hardware overlays, discussed in Section 3.2.5.2.

Table 3-2 summarizes typical screen sizes and resolution attainable using VRAMs. The
video data coming from the VRAM Shift Register is serialized externally. Like DRAM:s,
the screen resolution (size) may be traded off for pixel depth.

When VRAMSs are used, a data transfer (DT) cycle executes and loads the first tile for
every scan line into the shift register. The second tile and any subsequent tiles for all strips
use the VDATA pins. The Window Status pins can be used to multiplex the VRAM video
stream and the VDATA stream. The Strip Descriptor determines the address of the DT
cycle. The Byte Enable Low (BEN) pin is used as a DT pin for this case. If the graphics
memory banks are interleaved, both banks are loaded in the DT cycle. During Blanking,
default video data retrieved from the Default Video Internal Register (see Section 3.3.1)
appears on the VDATA pins. The first strip of a VRAM system must be at least two scan
lines.

3.2.5.1 SAMPLE VRAM DESIGN

Figure 3-9 depicts a VRAM sample design in which eight 64K X 4 VRAMs generate a
4 bpp display of up to 2K X 1K pixels. The VRAM Address and the Data and Control pins
are connected in the same manner as for DRAMs. The difference between VRAM and
DRAM system is the video interface.

On a Data Transfer (DT) Cycle to the VRAMs, the VRAM shift registers are loaded from
the selected memory row. As Figure 3-9 illustrates, this presents a 32-bit wide word of video
data on the shift out pins. This data is then serialized into eight 4 bpp pixels by four 8-to-1
multiplexers. A simple Mod 8 counter, driven by the dot clock frequency, controls the
sequencing of the multiplexer through the eight pixels. The Mod 8 counter should be eight
times the 82786 VClk frequency. The Shift Clock (SCIk) to the VRAMs also is clocked at
VClIk frequency, and enabled when Blank is low. The DT cycle occurs during Blank time.
SClk is activated during display time. This allows each SCIk to clock a new 32-bit word to
the multiplexer, providing a dot rate of up to 200 MHz using a 25 MHz VClk/SClk.

The video data from the multiplexers can be sent directly to a monitor, or passed through a
color lookup table, and /or digital-to-analog convertor (DAC) as described in Chapter 6.

The 82786 supports both static and dynamic Shift Register VRAMSs. Dynamic Shift Regis-
ter VRAMs (like the NEC uPD41264) have a minimum Shift Clock (SCIk) frequency

3-15

‘91-¢

P TS 10 T 1 1 1 1
BENO OE/DT Dys.sJOE/DT Diros|{OE/DT Doros|—{OE/DT Doses] BEN1—OE/DT D,,., OE/DT D,,o0 - OE/DT Doy OE/DT Doseo
CASo CAS —{cas -cas CAS CAS1—{CAS |- cas —cas I cas
82786 —— §JsoE -~ SOE I soE SOE SOE —{SOE —soE —soe
RAS, RAS RAS | {RAS RAS RAS L 1RAS LRAS RAS
WEL/H WE we L {we —wWE WE - wE L—we — we
DRA,, ADDR — ADDR | ADDR — ADDR ADDR — ADDR |— ADDR -~ ADDR
HSYNC SCLK 0,15 [T1SCK 0uyas [T[SCLK a0 [T]SCHK 0ipis f———qSCLK 0,0 [T15* 01on [TI5CHK 0uros [TJSCLK 0uso
VCLK _ BLANK
] YV =
DIV8
‘ LT
Y Jub (9§ LdLdl
RESET 0 1 2 3 4 5 6 7
»| mops | — 4+8TO 1 MUX VIDEO,, ﬂ
DOT CLOCK _J COUNTER
—
G30304

Figure 3-9. Sample VRAM Design

M3IIAHIAO HOSSIO0Hd AV1dSIa

Intel DISPLAY PROCESSOR OVERVIEW

specification below which the data in the Shift Register will decay. Such a specification may
be violated during Vertical Blanking. If the 82786 is in Slave Mode, the 82786 never “knows”
when Blank will fall and data should be clocked out of the VRAMSs. To ensure the VRAM
Shift Register stays refreshed, a VRAM Data Transfer (DT) cycle is issued on each
Horizontal Synchronization (HSync) during Vertical Blanking. These DT cycles reload the
VRAM Shift Register from the same address. After Blank has gone low, the 82786 incre-
ments the VRAM Start Address by the Bitmap Width parameter each time the DT Cycle
runs (unless zoom is activated).

3.2.5.2 HARDWARE OVERLAYS

Although the 82786 does not currently support hardware windows with VRAMs, the 82786
does support hardware windows overlaid on a VRAM background. This feature provides a
useful mechanism to implement pop-up menus or dialog boxes without modifying the contents
of the frame buffer and allowing instantaneous addition and deletion of these menus on a
very high resolution background.

The hardware overlays are fetched and formatted by the 82786 as hardware windows before
being output on the VDATA pins in parallel with the VRAM data. The position and size of
the overlays is programmed in the same manner as for DRAMs with Field (F bit) defining
the area in which windows are not placed. With additional external logic to select output
based on the 82786 Window Status pins, the system can multiplex the VRAM multiplexer
output and the VDATA pins. Following vertical blanking, the fetch count for the first display
line must not exceed 128 bytes. No restriction exists for subsequent display lines.

3.2.5.3 INITIATING VRAM MODE AND FUNCTIONS

To initiate VRAM Mode, set the VR bit in the BIU Control Register (see Section 4.2.2).
In VRAM Mode, the first tile in each display line is a VRAM tile. The address programmed
into the VRAM Tile Descriptor (see Section 3.1.3.2 “Strip Descriptor Format™) is the address
at which the Data Transfer (DT) cycle will be run to the VRAMs, which also indicates the
address of the first pixel to be displayed. Only one DT cycle can be run per display line, so
the specified address must ensure the pixel data for the display line is contained in one row
of memory (256 word for noninterleaved; 512 words for interleaved memory).

Second and all subsequent tiles on a strip can be programmed in DRAM Mode to provide
hardware overlays. For hardware overlays on high resolution screens, the DP Accelerated
Modes probably will be required to match the DP VDATA pixel rate with the VRAM pixel
rate. This restriction is not severe since pop-up menus normally have low pixel depth and
the resolution on the placement of the menus is not important. If no hardware overlays are
required, a second tile must exist and be programmed to be a field tile defined by the F bit
in the Tile Descriptor (see Section 3.1.3.2 “Strip Descriptor Format”).

VRAM Mode also supports horizontal split screen operation. As in DRAM Mode, the display
is divided into multiple strips. The Strip Descriptor header defines the number of lines in
each strip and the link to next strip address. This allows command entry areas to be located
in different memory areas from the main frame buffer or various views of the same or differ-
ent objects to be displayed in different parts of the screen without everything being moved
to a common frame buffer.

Inte| v DISPLAY PROCESSOR OVERVIEW

The 82786 also supports vertical zooming of VRAM windows. Use of the Window Status
outputs multiple window pixel depth windows can be displayed on the same screen by
controlling the manner in which the VRAM Shift Out data is multiplexed to the video inter-
face. For example, a screen might be divided into three areas: a schematic displayed at the
top of the screen at 2 bpp, a piece of IC layout corresponding to the schematic in the middle
of the screen at 4 bpp, and a 1 bpp dialog area displayed at the bottom of the screen. Each
area of the screen can be derived from VRAM data, together with hardware overlays imple-
menting pop-up menus.

3.2.6 Extended 82786 System Configurations

Extended 82786 systems combine multiple 82786s to provide a greater number of bits per
pixel, higher dot rate, larger display area, or more windows. One application for a multiple
82786 system is a high resolution color system, in which three 82786s are used; each 82786
runs 8 bpp to generate one of three colors: red, blue, and green for effectively 24 bpp.

To combine multiple 82786s, the Vertical Synchronization (VSync), Horizontal Synchroni-
zation (HSync), and Blank timing signal pins must be configured to allow either one of the
82786s to be the master and the additional 82786s to be slaves or all the 82786s to be slaves
controlled by an external synchronization source. For the master, the VSync, HSync, and
Blank are configured as outputs as in a standard stand-alone 82786 system (see Table 3-4
in Section 3.2.1 “CRT Controller”). For the slave 82786s, VSync and HSync are inputs.
Although VSync and HSync are inputs, they still output Window Status while Blank is low
(see Section 3.2.3 “Window Status Bits”). Blank may be programmed independently as
input or output based on the application’s requirements.

In a multiple 82786 system, the master HFIdStrt and HFIdStp Register values (see
Table 3-8 in Section 3.3.2 “Display Control Block Registers”) must be 2 greater than the
values in these registers for the slaves.

Each 82786 Display Processor in a multiple 82786 system runs in locked step to allow the
outputs to be combined on a single display.

Slave 82786s synchronize to the master every scan line. All slaves run off the same video
clock (VCIk), system clock (Clk), and RESET. However, because the display data and Strip
Descriptor fetch must be synchronized to both VClk and Clk, some of the 82786s tend to go
out of synchronization (within a few clock cycles) during the scan line. The slaves are never
more than one frame out of synchronization. The impact of the slave 82786s being out of
synchronization varies based on the application.

In slave video mode, at least a 1-line vertical front porch and a 7-line vertical back porch
are required.

Each 82786 reads data according to its own Slave Enable (SEN) signal. The SEN signal
remains active for a short time. A latch must be set for each 82786 when SEN goes high.
Send a READY to the CPU when all latches are set, and clear the latch.

When data is read from each 82786, the data is valid only while SEN is high. Latch the
data out when SEN is on the falling edge to read the correct data into the CPU. If all

3-18

Intel DISPLAY PROCESSOR OVERVIEW

drawing command blocks are identical, except for color and texture, and all the 82786s are
started at the same time, all drawing always will be within a few VClk cycles.

For more details on designing and using systems with multiple 82786s, refer to Section 6.5
“Greater Resolution With Multiple 82786s” and the Intel 82786 Hardware Configuration
Application Note.

3.3 DISPLAY PROCESSOR REGISTERS

The Display Processor (DP) has two types of registers: Internal and Display Control. Six
Internal Registers (see Figure 3-10), exist, which can be memory or I/O mapped in the
external CPU address space, where the host CPU directly accesses them. The CPU directly
addresses the Internal Registers to create command lists, indicate DP status, and provide
data for the Video Data (VDATA) Output pins during Blanking. The DP Display Control
Registers are local on-chip registers, accessed by the DP Load and Dump Register commands
in Section 3.6 and located in a contiguous 42-word Display Control Block (see Section 3.3.2).

3.3.1 Display Processor Internal Registers

The six Display Processor (DP) Internal directly addressable Registers are the Display
Processor Opcode Register, three command parameter registers, the DPStatus Register, and
the Default Video Register shown in Figure 3-10. For an overview of the DP Internal Regis-
ters with all the Internal Registers, refer to Figure 1-3.

The DP Opcode and the three<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>