

-- -

Intel the Microcomputer Company:
When Intel invented the microprocessor in 1971, it created the era of

microcomputers. Whether used in embedded applications such as automobiles
or microwave ovens, or as the CPU in personal computers or supercomputers,

Intel's microcomputers have always offered leading-edge technology. Intel continues
to strive for the highest standards in memory, microcomputer components, modules

and systems to give its customers the best possible competitive advantages.

MICROCOMMUNICATIONS
APPLICATIONS

1990

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors
which may appear in this document nor does it make a commitment to update the information contained
herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before· placing your order.

The following are trademarks rof Intel Corporation and may only be used to identify Intel Products:

376,386,387,486, 4-SITE, Above, ACE51 , ACE96, ACE186, ACE196,
ACE960, BITBUS, COMMputer, CREDIT, Data Pipeline, DVI, ETOX,
FaxBACK, Genius, i, t, i486, i750, i860, ICE, iCEL, ICEVIEW, iCS, iDBP,
iDIS, 121CE, iLBX, iMDDX, iMMX, Inboard, Insite, Intel, intel, Inte1386,
intaiBOS, Intel Certified, Intelevision, inteligent Identifier, inteligent
Programming, Intellec, Intellink, iOSP, iPAT, iPDS, iPSC, iRMK, iRMX,
iSBC, iSBX, iSDM, iSXM, Library Manager, MAPNET, MCS,
Megachassis, MICROMAINFRAME, MUL TIBUS, MULTICHANNEL,
MULTIMODULE, MultiSERVER, ONCE, OpenNET, OTP, PR0750,
PROMPT, Promware, QUEST, QueX, Quick-Erase, Quick-Pulse
Programming, Ripplemode, RMX/80, RUPI, Seamless, SLD, SugarCube,
TooITALK, UPI, Visual Edge, VLSiCEL, and ZapCode, and the
combination of ICE, iCS, iRMX, iSBC, iSBX, iSXM, MCS, or UPI and a
numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS@ is a registered
trademark of Mohawk Data Sciences Corporation.

·MUL TIBUS is a patented Intel bus. >

CHMOS and HMOS are patented processes of Intel Corp.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its
FASTPATH trademark or products. .

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

@INTELCORPORATION 1989

CUSTOMER SUPPORT

INTEL'S COMPLETE SUPPORT SOLUTION WORLDWIDE

Customer Support is Intel's complete support service that provides Intel customers with hardware support,
software support, customer training, consulting services and network management services. For detailed infor­
mation contact your local sales offices.

After a customer purchases any system hardware or software product, service and support become major
factors in determining whether that product will continue to meet a customer's expectations. Such support
requires an international support organization and a breadth of programs to meet a variety of customer needs.
As you might expect, Intel's customer support is quite extensive. It can start with assistance during your
development effort to network management. 100 Intel sales and service offices are located worldwide-in the
U.S., Canada, Europe and the Far East. So wherever you're using Intel technology, our professional staff is
within close reach.

HARDWARE SUPPORT SERVICES

Intel's hardware maintenance service, starting with complete on-site installation will boost your productivity
from the start and keep you running at maximum efficiency. Support for system or board level products can be
tailored to match your needs, from complete on-site repair and maintenance support to economical carry-in or
mail-in factory service.

Intel can provide support service for not only Intel systems and emulators, but also support for equipment in
your development lab or provide service on your product to your end-user/customer.

SOFfWARE SUPPORT SERVICES

Software products are supported by our Technical Information Service (TIPS) that has a special toll free
number to provide you with direct, ready information on known, documented problems and deficiencies, as.
well as work-arounds, patches and other solutions.

Intel's software support consists of two levels of contracts. Standard support includes TIPS (Technical Infor­
mation Phone Service), updates and subscription service (product-specific troubleshootmg guides and;
COMMENTS Magazine). Basic support consists of updates and the SUbscription service. Contracts are sold in
environments which represent product groupings (e.g., iRMX® environment).

CONSULTING SERVICES

Intel provides field system engineering consulting services for any phase of your development or application
effort. You can use our system engineers in a variety of ways ranging from assistance in using a new product,
developing an application, personalizing training and customizing an Intel product to providing technical and
management consulting. Systems Engineers are well versed in technical areas such as microcommunications,
real-time applications, embedded microcontrollers, and network services. You know your application needs;
we know our products. Working together we can help you get a successful product to market in the least
possible time. ,

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and Implementa­
tion. In just three to ten days a limited number of individuals learn more in a single workshop than in weeks of
self-study. For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we
can take our workshops to you for on-site instruction. Covering a wide variety of topics, Intel's major course
categories include: architecture and assembly language, programming and operating systems, BITBUS™ and
LAN applications. .

NETWORK MANAGEMENT SERVICES

Today's networking products are powerful and extremely flexible. The return they can provide on your invest­
ment via increased productivity and reduced costs can be very substantial.

Intel offers complete network support, from definition of your network's physical and functional design, to
implementation, installation and maintenance. Whether installing your first network or adding to an existing
one, Intel's Networking Specialists can optimize network performance for you.

Table of Contents

Alphanumeric Index . viii
AP-302 Microcommunications Overview ix

SECTION ONE-DATA COMMUNICATIONS COMPONENTS
CHAPTER 1

Local Area Networks
CSMA/CD Access Method

AP-235 An 82586 Data Link Driver .. 1-1
AP-236 Implementing StarLAN with the Intel 82588 ~.. 1-81
AP-320 Using the Intel 82592 to Integrate a Low-Cost Ethernet Solution into a PC

Motherboard ... ;... 1-155
AP-274 Implementing EthernetiCheapernet with the Intel 82586 1-200
AP-324 Implementing Twisted Pair Ethernet with the Intel 82504TA, 82505TA, and

82521 T A 1-289
AP-327 Two Software Packages for the 82592 Embedded LAN Module 1-308
AP-331 Using the Intel 82592 to Implement a Non-Buffered Master Adapter for ISA

Systems .. 1-386
CSMA/CD Access Method Evaluation Tools

AP-326 PS592E-16 Buffered Adapter LAN Solution for the Micro Channel
Architecture .. 1-468

AP-328 PC592E Buffered LAN Adapter Solution for the IBM PC-XT and AT 1-519

CHAPTER 2
Wide Area Networks

AP-401 Designing With the 82510 Asynchronous Serial Controller. 2-1
AP-31 0 High Performance Driver for 82510 2-81
AP-36 Using the 8273 SDLC/HDLC Protocol Controller .. 2-112
AP-134 Asynchronous Communication with the 8274 Multiple-Protocol Serial

Controller .. 2-164
AP-145 Synchronous Communication with the 8274 Multiple Protocol Serial

Controller .. 2-202
AP-222 Asynchronous and SDLC Communications with 82530 2-240

CHAPTER 3
Other Components

AP-166 Using the 8291A GPIB Talker/Listener.............................. .. 3-1
AP-66 Using the 8292 GPIB Controller. 3-31

SECTION TWO-TELECOMMUNICATION COMPONENTS
CHAPTER 4

Modem Products
AB-24 89024 Modem Customization for V.23 Data Transmission 4-1

CHAPTERS
ISDN Products

AP-282 29C53 Transceiver Line Interfacing. 5-1
AP-400 ISDN Applications with 29C53 and 80188 5-15

CHAPTER 6
PCM Codec/Filter and Combo

Applications Information 291 OAl2911 Al2912A 6-1
AP-142 DeSigning Second-Generation Digital Telephony Systems Using the Intel

2913/14 Codec/Filter Combochip... 6-4

vii

Alphanumeric Index

AB-24 89024 Modem Customization for V.23 Data Transmission
AP-134 Asynchronous Communication with the 8274 Multiple-Protocol Serial Controller .. .
AP-142 Designing Second-Generation Digital Telephony Systems Using the Intel 2913/14

Codec/Filter Combochip
AP-145 Synchronous Communication with the 8274 Multiple Protocol Serial Controller
AP-166 Using the 8291A GPIB Talker/Listener
AP-222 Asynchronous and SDLC Communications with 82530
AP-235 An 82586 Data Link Driver .. .
AP-236 Implementing StarLAN with the Intel 82588 ;
AP-274 Implementing EthernetlCheapernet with the Intel 82586
AP-282 29C53 Transceiver Line Interfacing "
AP-302 Microcommunications Overview
AP-31 0 High Performance Driver for 82510 "•
AP-320 Using the Intel 82592 to Integrate a Low-Cost Ethernet Solution into a PC

Motherboard ...•....................
AP-324 Implementing Twisted Pair Ethernet with the Intel 82504TA, 82505TA, and .

82521TA .. .
AP-326 PS592E-16 Buffered Adapter LAN Solution for the Micro Channel Architecture
AP-327 Two Software Packages for the 82592 Embedded LAN Module
AP-328 PC592E Buffered LAN Adapter Solution for the IBM PC-XT and AT
AP-331 Using the Intel 82592 to Implement a Non-Buffered Master Adapter for ISA

Systems , ;•..........................
AP-36 Using the 8273 SDLC/HDLC Protocol Controller -............... .
AP-400 ISDN Applications with 29C53 and 80188 :•...
AP-401 Designing With the 82510 Asynchronous Serial Controller
AP-66 Using the 8292,GPIB Controller
Applications Information 2910Al2911A12912A :

viii

4-1
2-164

6-4
2-202

3-1
2-240

1-1
1-81

1-200
5-1

ix
2-81

1-155

·1-289
1-468
1-308
1-519

1-386
2-112

5-15
2-1

3-31
6-1

Ap·302

OVERVIEW

Imagine for a moment a world where all electronic
communications were instantaneous. A world where
voice, data, and graphics could all be transported via
telephone lines to a variety of computers and receiving
systems. A world where the touch of a finger could
summon information ranging from stock reports to
classical literature and bring it into environments as
diverse as offices and labs, factories and living rooms.

Unfortunately, these promises of the Information Age
still remain largely unfulfilled. While computer tech­
nology has accelerated rapidly over the last twenty
years, the communications methods used to tie the wide
variety of electronic systems in the world together have,
by comparison, failed to keep pace. Faced with a tangle
of proprietary offerings, high costs, evolving standards,
and incomplete technologies, the world is still waiting
for networks that are truly all-encompassing, the miss­
ing links to today's communications puzzle.

Enter microcommunications-microchip-based digital
communications products and services. A migration of
the key electronics communications functions into sili­
con is now taking place, providing the vital interfaces
that have been lacking among the various networks
now employed throughout the world. Through the evo­
lution ofVLSI (Very Large Scale Integration) technolo­
gy, microcommunications now can offer. the perform­
ance required to effect these communications interfaces
at affordable costs, spanning the globe with silicon to
eradicate the troublesome bottleneck that has plagued
information transfer during recent years.

"There are three parts to the communications puzzle,"
says Gordon Moore, Intel Chairman and CEO. "The
first incorporates the actual systems that communicate
with each other, and the second is the physical means
to connect them-such as cables, microwave'technolo­
gy, or fiber optics. It is the third area, the interfaces
between the systems and the physical links, where sili­
con will act as the linchpin .. That, in essence, is what
microcommunications is all about."

THE COMMUNICATIONS
BOTTLENECK

Visions of global networks are not new. Perhaps one of
the most noteworthy of these has been espoused by Dr.
Koji Kobayashi, chairman of NEC Corporation. His
view of the future, developed over the nearly fifty years
of his association with NEC, is known as C&C (Com­
puters and Communications). It defines the marriage of
passive communications systems and computers as
processors and manipulators of information, providing
the foundation for a discipline that is changing the ba­
sic character of modern society.

ix

Kobayashi's macro vision hints at the obstacles con­
fronting the future of C&C. When taken to the micro
level, to silicon itself, one begins to understand the'
complexities that are involved. When Intel invented the
microprocessor fifteen years ago, the first seeds of the
personal computer revolution were sown , marking an
era that over the last decade has dramatically influ­
enced the way people work and live. PCs now prolifer­
ate in the office, in factories, and throughout laboratory
environments. And their "intimidation" factor has less­
ened to where they are also becoming more and more
prevalent in the home, beginning to penetrate a market
that to date has remained relatively untapped.

Thanks to semiconductor technology, the personal
computer has raised the level of productivity in our
society. But most of that productivity has been gained
by individuals at isolated workstations. Group produc­
tivity, meanwhile, still leaves much to be desired. The
collective productivity of organizations can only be en­
hanced through more sophisticated networking
technology. We are now faced with isolated "islands
of automation" that must somehow be developed
into networks of productivity.

But no amount of computing can meet these challenges
if the corresponding communications technology is not
sufficiently in step. The Information Age can only grow
as fast as the lowest common denominator-which in
this case is the aggregate communications bandwidth
that continues to lag behind our increased computing
power. Such is the nature of the communications bot­
tleneck, where the growing amounts of information we
are capable of generating can only flow as fast as the
limited and incompatible communications capabilities
now in place. Clearly, a crisis is at hand.

BREAKING UP THE BOTTLENECK

Three factors have contributed to this logjam: lack of
industry standards, an insufficient cost/performance
ratio, and the incomplete status of available communi­
cations technology to date.

• Standards-One look at the tangle of proprietary
systems now populating office, factory, and labora­
tory environments gives a good indication of the
inherent difficulty in hooking these diverse systems
together. And these systems do not merely feature
different architectures-they also represent com­
pletely different levels of computing, ranging from
giant mainframes at one end of the scale down to
individual microcontrollers on the other.

The market has simply grown too fast to effectively
accommodate the changes that have occurred. Sup­
pliers face the dilemma of meshing product differ­
entiation issues with industry-wide compatibility as

intJ AP-302

they develop their strategies; opting for one in the
past often meant forsaking the other. And while
some standards have coalesced, the industry still
faces a technological Tower of Babel, with many
proprietary solutions vying to be recognized in lead­
ership positions.

• Cost/Performance Ratio-While various commu­
nications technologies struggle toward maturity,
the industry has had to cope with tremendous costs
associated ,with interconnectivity and interopera­
tion. Before the shift to microelectronic interfaces
began to occur, these connections often were pro­
hibitively expensive.

Says Ron Whittier, Intel Vice President and Direc­
tor of Marketing: "Mainframes offer significant
computing and communications power, but at a
price that limits the number of users. What is need­
ed is cost-effective communications solutions to
hook together the roughly 16 million installed PCs
in the market, as well as the soon-to-exist voice/
data terminals. That's the role of microcommunica­
tions-bringing cost-effective communications solu­
tions to the microcomputer world."

• Incomplete Technology-Different suppliers have
developed many networking schemes, but virtually
all have been fragmented and unable to meet the
wide range of needs in the marketplace. Some of
these approaches have only served to create addi­
tional problems, making OEMs and systems houses
loathe to commit to suppliers who they fear cannot
provide answers at all of the levels of communica­
tions that are now funneled into the bottleneck.

THE NETWORK TRINITY

Three principal types of networks now comprise the
electronic communications marketplace: Wide, Area
Networks (WANs), Local Area Networks (LANs), and
Small Area Networks (SANs). Each in its own fashion
is turning to microcommunications for answers to its
networking problems.

W ANs-known by some as, Global Area Networks
(GANs)-are most commonly associated with the
worldwide analog telephone system. The ,category also
includes a number of other segments, such as satellite
and microwave communications, traditional networks
(like mainframe-to-mainframe connections), modems,
statistical multiplexers, and front-end communications
processors. The lion's share of nodes-electronic net­
work connections-in the WAN arena, however, re­
sides in the telecommunications segment. This is where
the emerging ISDN (Integrated Services Digital Net­
work) standard comes into focus as the most visible
portion of the WAN marketplace.

x

The distances over which information may be transmit­
ted via a WAN are essentially unlimited. The goal of
ISDN is to take what is largely an analog global system
and transform it into a digital network by defming the
standard interfaces that will provide connections at
each node.

These interfaces will allow basic digital communica-'
tions to occur via the existing twisted pair of wires that
comprise the telephone lines in place today. This would
bypass the unfeasible alternative of installing complete­
ly new lines, which would be at cross purposes with the
charter of ISDN: to reduce costs and boost perform­
ance through realization of an all-digital network.

The second category, Local Area Networks, represents
the most talked~about link provided by microcommuni­
cations. In their most common form, LANs, are com­
prised of-but not limited to-PC-to-PC connections.
They incorporate information exchange over limited
distances, usually not exceeding five kilometers, which
often takes place within the same building or between
adjacent work areas. The whole phenomenon surround­
ing LAN development, personal computing, and dis­
tributed processing essentially owes its existence to mi­
crocomputer technology, so it is not surprising that this
segment of networking has garnered the attention it has
in microelectronic circles.

Because of that, progress is being made in this area.
The most prominent standard-which also applies to
W ANs and SANs-is the seven-layer Open Systems In­
terconnection (OSI) Model, established by the Interna­
tional Standards OrgaI)ization (ISO). The model pro­
vides the foundation to which all LAN configurations
must adhere if 'they hope to have any success in the
marketplace. Interconnection protocols determining
how systems are tied together are defined in the first
five layers. Interoperation concepts are covered in the
upper two layers, defining how systems 'can c:ommuni­
cate with each other once they are tied together.

In the LAN marketplace, a large number of networking
products and philosophies are available today, offering
solutions at various price/performance points. Diverse
approaches such as StarLAN, Token Bus and Token
Ring, Ethernet, and PC-NET, to name a few of the
more popular office LAN architectures, point to many
choices for OEMs and end users.

A similar situation exists in the factory., While the
Manufacturing Automation Protocol (MAP) standard
is coalescing around the leadership of General Motors,

inter AP-302

Boeing, and others, a variety of proprietary solutions
also abound. The challenge is for a complete set of in­
terfaces to emerge that can potentially tie all of these
networks together in-and among-the office, factory,
and lab environments.

The final third of the network trinity is the Small Area
Network (SAN). This category is concerned with com­
munications over very short distances, usually not ex­
ceeding 100 meters. SANs most often deal with chip-to­
chip or chip-to-system transfer of information; they are
optimized to deal with real-time applications generally
managed by microcontrollers, such as those that take
place on the factory floor among robots at various
workstations.

SANs incorporate communications functions that are
undertaken via serial backplanes in microelectronic
equipment. While they represent a relatively small mar­
ket in 1986 when compared to WANs and LANs, a
tenfold increase is expected through 1990. SANs will
have the greatest number of nodes among network ap­
plications by the next decade, thanks to their prepon­
derance in many consumer products.

While factory applications will make up a large part of
the SAN marketplace probably the greatest contributor
to growth will be in automotive applications. Micro­
controllers are now used in many dashboards to control
a variety of engine tasks electronically, but they do not
yet work together in organized and efficient networks.
As Intel's Gordon Moore commented earlier this year
to the New York Society of Security Analysts, when
this technology shifts into full gear during the next dec­
ade, the total automobile electronics market will be
larger than the entirel semiconductor market was in
1985.

MARKET OPPORTUNITIES

Such growth is also mirrored in the projections for the
WAN and LAN segments, which, when combined with
SANs, make up the microcommunications market pie.
According to Intel analysts, the total silicon microcom­
munications market in 1985 amounted to $522 million.
By 1989, Intel predicts this figure will have expanded to
$1290 million, representing a compounded annual
growth rate of 25%.

And although the WAN market will continue to grow
at a comfortable rate, the SAN and LAN pieces of the
pie will increase the most dramatically. Whereas SANs
represented only about 12.5% ($65 million) in 1985,
they could explode to 22.5% ($290 million) of the larg­
er pie by 1989. This growth is paralleled by increases in

xi

the LAN segment, which should grow from 34.5% of
the total silicon microcommunications market in 1985
to 44.5% of the expanded pie in 1989.

Opportunities abound for microcommunications sup­
pliers as the migration to silicon continues. And
perhaps no VLSI supplier is as well-positioned in this
marketplace as Intel, which predicts that 50% of its
products will be microcommunications-related bY1990.
The key here is the corporation's ability to bridge the
three issues that contribute to the communications bot­
tleneck: standards, cost-performance considerations,
and the completeness of microcomputer and microcom­
munications product offerings.

INTEL AND VLSI: THE
MICROCOMMUNICATIONS MATCH

Intel innovations helped make the microcomputer revo­
lution possible. Such industry "firsts" include the
microprocessor, the EPROM, the E2PROM, the
microcontroller, development systems, and single board
computers. Given this legacy, it is not surprising that
the corporation should come to the microcommunica­
tions marketplace already equipped with a potent arse­
nal of tools and capabilities.

The first area centers on industry standards. As a VLSI
microelectronic leader, Intel has been responsible for
driving many of the standards that are accepted by the
industry today. And when not actually initiating these
standards, Intel has supported other existing and
emerging standards through its longtime "open sys­
tems" philosophy. This approach protects substantial
customer investments and ensures easy upgradability
by observing compatibility with previous architectures
and industry-leading standards.

Such a position is accentuated by Intel's technology re­
lationships and alliances with many significant names
in the microcommunications field. Giants like AT&T
in the ISDN arena, General Motors in factory network­
ing, and IBM in office automation all are working
closely with Intel to further the standardization of the
communications interfaces that are so vital to the
world's networking future.

Cost/performance considerations also point to Intel's
strengths. As a pioneer in VLSI technology, Intel has
been at the forefront of achieving greater circuit densi­
ties and performance on single pieces of silicon: witness
the 275,000 transistors housed on the 32-bit 80386, the
highest performance commercial microprocessor ever
built. As integration has increased, cost-per-bit has de­
creased steadily, marking a trend that remains consist­
ent in the semiconductor industry. And one thing is

AP-302

certain: microcommunications has a healthy appetite
for transistors, placing it squarely in the center of the
VLSI explosion.

But it is in the final area-completeness of technology
and products-where Intel is perhaps the strongest. No
other microelectronic vendor can point to as wide an
array of, products positioned across the various, seg­
ment: that comprise the microelectronic marketplace.
Whether it be leadership in the WAN marketplace as
the number one supplier of merchant telecommunica­
tions components, strength in SANs with world leader­
ship in microcontrollers, or overall presence in the
LAN arena with complete solutions in components,
boards, software, and systems, Intel is a vital presence
in the growing microcommunications arena.

xii

That leadership extends beyond products. Along with
its own application software, Intel is promoting expan­
sion through partnerships with many different indepen­
dent software vendors (ISVs), ensuring that the neces­
sary application programs will be in place to fuel the ,
gains provided by the silicon "engines" residing at the
interface level. And finally, the corporation's commit-'
ment to technical support training, service, and its
strong force of field applications engineers guarantees
that it will back up its position and serve the needs that
will continue to spring up as the microcommunications
evolution becomes a reality.

Together, all the market segment alluded to in this arti­
cle comprise the world of microcommunications, a
world coming closer together every day as the web of
networking solutions expands-all thanks to the tech­
nological ties that bind, reaching out to span the globe
with silicon.

Local Area Networks 1

APPLICATION
NOTE

AP-235

November 1986

An 82586 Data Link Driver

CHARLES YAGER

Order Number: 231421-002
1-1

inter AP-235

INTRODUCTION

This application note describes a design example of an
IEEE 802.2/802.3 compatible Data Link Driver using
the 82586 LAN Coprocessor. The design example is
based on the "Design Model" illustrated in "Program­
ming the 82586". It is recommended that before read­
'ing this application note, the reader clearly understands
the 82586 data structures and the Design Model given
in "Programming the 82586". '

"Programming the 82586" discusses two basic issues in
the design of the 82586 data link driver. The first is
how the 82586 handler fits into the operating system.
One approach is that the 82586 handler is treated as a
"special kind of interface" rather than a standard I/O
interface. The special interface means a special driver
that has the advantage of utilizing the 82586 features to
enhance performance. However the performance en­
hancement is at the expense of device dependent upper
layer software which precludes the use of a standard
I/O interface.

The second issue "Programming the 82586" discusses
is which algorithms to choose for the CPU to control
the 82586. The algorithms used in this data link design
are taken directly from "Programming the 82586".
Command processing uses a linear static list, while re­
ceive processing uses a linear dynamic list.

The application example is written in C and uses the
Intel C compiler. The target hardware for the Data
Link Driver is the iSBC 186/51 COMMputer, however
a version of the software is also available to run on the
LANHIB Demo board.

1.0 FITTING THE SOFTWARE INTO
THE OSI MODEL

The application example consists of four software mod­
ules:

• Data Link Driver (DLD): drives the 82586, also
known as the 82586 ~andler.

• Logical Link Control (LLC): implements the IEEE
802.2 standard.

• User Application (UAP): exercises the other soft­
ware modules and runs a specific application.

• C hardware support: written in assembly language,
supports the Intel C compiler for I/O, interrupts,

,_ and run time initialization for target hardware.

Figure 1 illustrates how these software modules com­
bined with the 82586, 82501 and 82502 complete the
first two layers of the OSI model. The 82502 imple­
ments an IEEE 802.3 compatible transceiver, while the
82501 completes the Physical layer by performing the
serial interface encode/decode function.

The Data Link Layer, as defined in the IEEE 802 stan­
dard documents, is divided into two sublayers: the Log­
ical Link Control (LLC) and the Medium Access Con­
trol (MAC) sublayers. The Medium Access Control
sublayer is further divided into the 82586 Coprocessor
plus the 82586 Handler. On top of the MAC is the LLC
software module which provides IEEE 802.2 compati­
bility. The LLC software module implements the Sta­
tion Component responses, dynamic addition and dele­
tion of Service Access Points (SAPs), and a class 1 level
of service. (For more information on the LLC sublayer,
refer to IEEE 802.2 Logical Link Control Draft Stan-

, dard.) The class 1 level of service provides a connec­
tionless datagram interface as opposed to the class 2
level of service which provides a connection oriented
level of service similar to HDLC Asynchronous Bal­
anced Mode.

On top of the Data Link Layer is the Upper Layer
Communications Software (ULCS). This contains the
Network, Transport, Session, and Presentation Layers.
These layers are not included in the design example,
therefore the application layer of this ap note interfaces
directly to the Data Link layer.

OSI REFERENCE
MODEL LAYERS

APPLICATION

_-----------------EuA~P~U~~~~~~UL~E~~=~ ~~~RAP~:'::IotUNlCAlION SOFTWARE

---------"-,-,~:'~~~AC-~t-, ~~~ ~~~~~~ ~LOGICAL UNK CONTROL
PRESENTATION M 82586 HANDLER

DATA LINK COPROCESSOR
SESSION

TRANSPORT

NETWORK ,

DATA LINK

,/' ,',',',',' ENCODE/DECODE (ESI)

':,','," TRANSCEIVER CABLE

" PHYSICAL HARDWARE CONNECTOR

Figure 1. Data Link Driver's Relationship to 051 Reference Mode 1
1-2

AP-235

TERMINAL EMULATOR
AND

STATION MONITOR

OLD MODULE

82586

} APPLICA nON

DATA LINK

PHYSICAL

231421-2

Figure 2. Block Diagram of the Hardware and Software

The application layer is implemented in the User Appli­
cation (UAP) software module. The UAP module oper­
ates in one of three modes: Terminal Mode, Monitor
Mode, and High Speed Transmit Mode. The software
initially enters a menu driven interface which allows
the program to modify several network parameters or
enter one of the three modes.

The Terminal Mode implements a virtual terminal with
datagram capability (connectionless "class I" service).
This mode can also be thought of as an async to IEEE
802.3/802.2 protocol converter.

The Monitor Mode provides a dynamic update on the
terminal of 6 station related parameters. While in the
monitor mode, any size frame can be repeatedly trans­
mitted to the cable in a software loop.

High Speed Transmit Mode transmits frames to the ca­
ble as fast as the software possibly can. This mode dem­
onstrates the throughput performance of the Data Link
Driver.

The UAP gathers network statistics in all three modes
as well as when it is in the menu. In addition, the UAP
module provides the capability to alter MAC and LLC
addresses and re-initialize the data link.. (Figure 2
shows a combined software and hardware block dia­
gram.)

2.0 LARGE MODEL COMPILATION

All the modules in this design example are compiled
under the Large Model option. This has the advantages
of using the entire 1 Mbyte address space, and allowing
the string constants to be stored in ROM. In the Large
Model it is important to consider that the 82586's data
structures, SCB, CB, TBD, FD, and RBD, must reside
within the same data segment. This data segment is
determined at locate time.

1-3

The C_Assy_Support module has a run time start off
function which loads the DLD data segment into a
global variable SEGMT_. This data segment is used
by the 82586 Handler for address translation purposes.
The ·82586 uses a flat address while the 80186 uses a
segmented address. Any time a conversion between
82586 and 80186 addresses are needed the SEGMT_
variable is used.

Pointers for the 80186 in the large model are 32 bits,
segment and offset. All the 82586 link pointers are 16
bit offsets. Therefore when trading pointers between the
82586 and the 80186, two functions are called:
Offset (ptr), and Build_Ptr (offset). Offset (ptr) takes a
32 bit 80186 pointer and returns just the offset portion
for the 82586 link pointer. While Build_Ptr (offset)
takes an 82586 link pointer and returns a 32 bit 80186
pointer, with the segment part being the SEGMT_
variable. Offset () and Build_Ptr() are simple func­
tions written in assembly language included in the C_
Assy_Support module.

In the small model, Offset () and BuilLPtr() are not
needed, but the variable SEGMT..:... is still needed for
determining the SCB pointer in the ISCP, and in the
Transmit and Receive Buffer Descriptors.

3.0 THE 82586 HANDLER

3.1 The Buffer Modei

The buffer model chosen for the 82586 Handler is the
"Design Model" as described in "Programming the
82586". This is based on the 82586 driver as a special
driver rather than as a standard driver. Using this ap­
proach the ULCS directly accesses the 82586's Trans­
mit and Receive Buffers, Buffer Descriptors and Frame
Descriptors. This eliminates h.lffer copying. Transmit
and receiver buffer passing is done entirely through
pointers.

AP·235

The only hardware dependencies between the Data
Link and ULCS interface are the buffer structures. The
ULCS does not handle the 82586's CBs, SCB or initiali-'
zation structures. To isolate the data link interface from
any hardware dependencies while still using the design
model, another level of buffer copying must be intro­
duced. For example, when the ULCS,transmits a frame
it would have to pass its own buffers to the data link.
The data link then copies the data from ULCS buffers
into 82586 buffers. When a frame is received, the data
link copies the data from the 82586's buffers into the
ULCS buffers. The more copying that is done the slow­
er the throughput. However, this may be the only way
to fit the data link int,o the operating system. The 82586
Handler can be made hardware independent by adding
a receive and transmit function to perform the buffer
copying.

The 82586 Handler allocates buffers from two pools of
memory: the Transmit pool, and the Receive pool as
illustrated in Figure 3. The Transmit pool contains
Transmit Buffer Descriptors (fBDs) and Transmit
Buffers (TBs). The Receive pool contains Frame De­
scriptors' (FOs), Receive, Buffer Descriptors, (RBDs),
and Receive Buffers (RBs).

UPPER LAYER
COMMUNICATIONS SOFTWARE

SEND I RECEIVE

G~'·1 0<crN<) POOL POOL

~ m RBD
TB RB

82586 HANDLER

231421-3

Figure 3. 82586 Handler Memory
Management Model

When the ULCS wants to transmit, it requests a TBD
frOm the handler. The handler returns a pointer to a
free TBD. Each TBD has a TB attached to it. The
ULCS fills the buffer, sets the appropriate fields in the
TBD, and passes the TBD pointer back to the handler
for transmission. After the frame is transmitted, the
handler places the TBD back into the free TBD pool. If
the ULCS needs more than one buffer per frame, it
simply requests another TBD from the handler and
performs the necessary linkage to the previous TBD.

On the receive side, the RF A pool is managed by the
82586 itself. When a frame is received, the 82586 inter-

1-4

rupts the handler. The handler passes a FD pointer to
the ULCS. Linked to the FO is one or more RBDs and
RBs. The ULCS extracts what it needs from the FD,
RBDs and RBs, and returns the FD pointer back to the
handler. The handler places the'FD and RBDs back
into Jhe free RFA pool.

3.2 The Handler Interface

The handler interface provides the following basic func­
tions:

• initialization
• sending and receiving frames'

• adding and deleting multicast addresses

• getting transmit buffers

• returning receive buffers

Figure 4 lists the Handler Interface functions.

On power up, the initialization function is called. This
function initializes,the 82586, and performs diagnostics.
After initialization, the handler is ready to transmit and
receive frames, and add ~d delete multicast addresseS.

To send a frame, the ULCS gets one or more transmit
buffers from the handler, fills them with data, and calls
the send function. When a frame is received, the han­
dler calls a receive function in the ULCS. The ULCS
receive function removes the information it needs and,
returns the receive buffers to the handler. The addition
and deletion of multicast addresses can be done "on the
fly" any .time after initialization. The receiver doesn't
have to be disabled when this is done.

The command interface to the handler is totally asyn­
chronous-the ULCS can issue transmit commands or
multicast address commands whenever it wants. The
commands 'are queued ,by the handler for the 82586 to
execute. If the command queue is full, the send frame
procedure returns a false status rather than true. The
size of the command queue can be set at compile time
by setting the CB-CNT constant. Typically the com­
mand queue never has more than a few commands on it
because the 82586 can execute commands faster than
the ULCS can issue them. This is not the case in a
heaVily loaded network when deferrals, collisions, and
retries occur. .

The command interface to the 82586 handler is hard­
ware independent; the only hardware dependence is the
buffering. A hardware independent command interface
doesn't have any performance penalty, but some 82586
programmability is lost. This shouldn't be of concern

"sinCe most data links do not change configuration pa­
rameters during operation. One can simply modify a
few constants and recompile to change .frame and net­
work parameters to support other data links.

AP-235

Handler Interface Functions Description

IniL586() Initialize the Handler
Send_Frame (ptbd, padd) Sends a frame to the cable.

ptbd-Transmit Buffer Descriptor pointer
padd-Destination Address pointer

Recv_Frame (pfd) Handler calls this function which resides in the ULCS.
pfd_Frame Descriptor pointer

Add_MulticasLAddress (pma) Adds one multicast address
pma-Multicast Address pointer

Delete_MulticasLAddress (pma) Deletes one multicast address
GeLTbd() Get a Transmit Buffer Descriptor pointer
PuLFree_Rfa (pfd) Returns a Frame Descriptor and Receive

Buffer Descriptors to the 82586.

Figure 4. List of Handler Interface Functions

CB_TOS

L CB CB CB

STAT = 0
EL= 1

LINK

231421-5

Figure 5. Free CB Pool

231421-4

Figure 6. Free Transmit Buffer Descriptor Pool

1-5

inter AP-235

3.3 Initialization

The function which initializes the 82586 handler, Init_
586(), is called by the ULCS on power up or reinitiali­
zation. Before this function is called, an 82586 hard­
ware or software reset should occur. The Initialization
occurs in three phases. The first phase is to initialize the
memory. This includes flags, vectors, counters, and
data structures. The second phase is to initialize the
82586. The third phase is to perform self test.diagnos­
tics. Init_586() returns a status byte indicating the
results of the diagnostics.

Init_586() begins by toggling the 82501100pback pin.
If the 82501 is powered up in loopback, the CRS and
CDT pin may be active. To reset this condition, the
loopback pin is toggled. The 82501 should remain in
loopback for the first part of the initialization function.

Phase 1 executes initialization of all the handlers flags,
interrupt vectors, counters, and 82586 data structures.
There are two separate functions which initialize the
CB and RFA pools: Build_CB() and Build_Rfa().

3.3.1 BUILDING THE CB AND RFA POOLS

bUllQ_Cli{) builds a stack of free linked Command
Blocks, and another stack of free linked Transmit Buff­
er Descriptors. (See Figures 5 and 6.) Each stack has a
Top of Stack pointer, which points to the next free
structure. The hist structure on the list has a NULL
link pointer.

BEGIN FO -

The CBs within the list are initialized with 0 status, EL
bit set, and a link to the next CB. The TBD structures
are initialized with the buffer size, which is set at com­
pile time with the TBUF _SIZE constant, a link to the
next TBD, and an 82586 pointer to the transmit buffer.
This pointer is a 24 bit flat/physical address. The ad­
dress is built by taking the transmit buffer's data seg­
ment address, shifting it to the left by 4 and adding it to
the transmit buffer offset. An 80186 pointer to the
transmit buffer is added to the TBD structure so that
the 80186 does not have to translate the address each
time it accesses the transmit buffer.

Build_Rfa() builds a linear linked Frame Descriptor
list and a Receive Buffer Descriptor list as shown in
Figure 7. The status and EL bits for all the free FDs are
O. The last FD's EL bit is 1 and link pointer is NULL.
The first FD on the FD list points to the first RBD on
the RBD list. The RBDs are initialized with both 82586
and 80186 buffer pointers. The 80186 buffer pointer is
added to the end of the RBD structure. Begin and end
pointers are used to mark the boundaries of the free
lists.

3.3.2 82586 INITIALIZATION

The 82586 initialization data structure SCP is already
set siTI~e it resides in ROM, however, the ISCP must be
loaded with information. Within the SCP ROM is the
pointer to the ISCP; the ISCP is the only absolute ad­
dress needed in the software. Once the ISCP address is
determined, the ISCP can be loaded. The SCB base is
obtained from the C~ssy_Support module. The
global variable SEGMT_contains the address of the

END FO

FO FO FO r
STAT = 0 Lr STAT = 0 Lr STAT =0

EL=S=O EL=S=O EL-l 5=0

FD LINK FD LINK NULL
,...... RBD OFFSET NULL NULL

DA DA DA

SA SA SA

LENGTH LENGTH LENGTH

RBD RBO RBD r E
BEGIN RBD.4 Lr l-r ACT. COUNT ACT. COUNT ACT. COUNT

RBD LINK RBD LINK NULL

r- 82586 BUF PTR 82586 BUF PTR r- 82586 BUF PTR

RBUF SIZE RBUF _SIZE RBUF SIZE

80186 BUF PTR 80186 BUF_PTR 80186 BUF PTR

RBUF (RBUF _SIZE) RBUF (RBUF _SIZE) RBUF (RBUF _SIZE)

~ ~ ~
231421-6

Figure 7~ Free RFA

1-6

AP-235

data segment of the handler. The 80186 shifts this value
to the left by 4 and loads it into the SCB base. The SCB
offset is now determined by taking the 32 bit SCB
pointer and passing it to the Offset() function.

The 82586 interrupt is disabled during initialization be­
cause the interrupt function is not designed to handle
82586 reset interrupts. To determime when the 82586"is
finished with its reset/initialization, the SCB status is
polled for both the CX and CNA bits to be set. After
the 82586 is initialized, both the CX and CNA inter­
rupts are acknowledged.

The 82586 is now ready to execute commands. The
Configuration is executed first to place the 82586 in
internalloopback mode, followed by the IA command.
The address for the IA command is read off of a prom
on the' PC board.

3.3.3 SELF TEST DIAGNOSTICS

The final phase of the handler initialization is to run the
self test diagnostics. Four tests are executed: Diagnose
command, Internal loopback, External loopback
through the 82501, and Externalloopback through the
transceiver. If these four tests pass, the data link is
ready to go on line.

The function that executes these diagnostics is called
Test_Link(). If any of the tests fail, Test_Link() re­
turns immediately with the Self_Test global variable
set to the type of failure. This Self_Test global variable
is then returned to the function which originally called
Init_586(). Therefore Init_586() can return one of
five results: FAILED_DIAGNOSE, FAILED_
LPBK-INTERNAL, FAILED_LPBK-EXTER­
NAL, FAILED_LPBK-TRANSCEIVER or
PASSED.

FAILED DIAGNOSE

FAILED INTERNAL LOOPBACK

FAILED EXTERNAL LOOPBACK

FAILED LOOPBACK
THROUGH TRANSCEIVER

231421-7

Figure 8. Initialization Diagnostics: TesLLink 0
1-7

AP·235

The Diagnose() function, called by Test_Link(), does
not return until the diagnose command is completed. If
the interrupt service routine detects that a Diagnose
command was completed then it sets a flag to allow the
Diagnose() function to return, and it also sets the
Self_Test variable to FAIL if the Diagnose command
failed. If the Diagnose command completed successful­
ly, the loopback tests are performed.

Before any loopback tests are executed, the Receive
Unit is enabled by calling Ru_Start(). Loopback tests
begin by calling Send_LpbLFrame(), which sends 8
frames with known loopback data and its own destina­
tion address. More than one loopback frame is sent in
case one or more of them are lost. Also several of the
frames will have been received by the time flags.lpbL
test is checked.

Two flag bits are used for the loopback tests:
flags.lpbLmode, and flags.lpbLtest. flags.lpbL
mode is used to indicate to the receive section that the
frames received are potentially loopback frames. The
receive section will pass receive frames to the Loopback
Check() function if the flags.lpbLmode bit is set. The
LoopbacLCheck() function first compares the source
address of the frame with its station address. If this
matches then the data is checked with the known loop­
back data. If the data matches, then the flags.lpbLtest
bit is set, indicating a successful loopback. The flow of
the Test_Link() function is displayed in Figure 8.

3.4 Command Processing

Command blocks are queued up on a static list for the
82586 to execute. The flow of a command block is giv­
en in Figure 9. When the handler executes a command
it first has to get a free command block. It does this by
calling Get_CB() which returns a pointer to a free
command block. The CB structure is a generic one in
which all commands except the MC-Setup can fit in.
The handler then loads into the CB structure the type
of command and associated parameters. To issue the
command to the 82586 the Issue_CU_Cmd() func­
tion is called with the pointer to the CB passed to this
function. Issue_CU_Cmd() places the command on

INTERRUPT

231421-8

Figure 9. The Flow of a Command Block

1-8

the 82586's static command block list. After the 82586
executes the command, it generates an 'interrupt. The
interrupt routine, Isr_586(), processes the command
and returns the Command Block to the free command
block list by calling Put_Cb().

3.4.1 ACCESSING COMMAND BLOCKS-GET_
CBO and PUT _CBO

Get_Cb() returns a pointer to a free command block.
The free command blocks are in a linear linked list
structure which is treated as a stack. The pointer cb_
tos points to the next available CB. Each time a CB is
requested, Get_Cb() pops a CB off the stack. It does
this by returning the pointer of cb_tos. cb_tos is then
updated with theCB's link pointer. When the CB list is
empty, Get_CbO returns NULL.

There are two types of nulls, the 82586 'NULL' is a 16
bit offset, OFFFFH, in the 82586 data structures. The
80186 null pointer, 'pNULL', is a 32 bit pointer; with
OFFFFH offset and the 82586 handler's data segment,
SEGMT_, as the base.

Put_Cb() pushes a free command block back on the
list. It does this by placing the cb_tos variable in the
returned CB's link pointer field, then updates cb_tos
with the pointer to the returned CB.

3.4.2 ISSUING CU COMMANDS-ISSUE_CU_
CMDO

This function queues up a command for the 82586 to
execute. Since static lists are used, each command has
its EL bit set. There is a begiIL-cbl pointer and an
end_cbl pointer to delineate the 82586's static list. If
there are no CBs on the list, then begiIL-cbl is set to
pNULL. (Figure 10 illustrates the static list.) Each
time a command is issued, a deadman timer is set..
When the 82586 interrupts the CPU with a command
"completed, the deadman timer is reset.

Issue_Cu_CmdO begins by disabling the 82586's in­
terrupt. It then determines whether the list is empty or
not. If the list is empty, begin and end pointers are
loaded with the CB's address. The CU must then be
started. Before a CU_START can be issued, the SCB's
cbl_offset field must be loaded with the address of the
command, the Wait_Scb() function must be called to
insure that the SCB is ready to accept a command, and
the deadman timer must be initialized. If the list is not
empty, then the command block is queued at the end" of"
the list, and the interrupt service routine Isr_586(),
will continue generating CAs for each command linked
on the CB list until the list is empty.

inter AP-235

sca

cal POINTER

231421-9

Figure 10. The Static Command Block List

3.4.3 INTERRUPT SERVICE ROUTINE-ISR_
5860

Isr_586() starts off by saving the interrupts that were
generated by the 82586 and acknowledging them. Ac­
knowledgment must be done immediately because if a
second interrupt were generated before the acknowl­
edgment, the second interrupt would be missed. The
interrupt status is then checked for a receive interrupt
and if one occurred the Recv_Int_Processing() func­
tion is called. After receive processing is check the CPU
checks whether a command interrupt occurred. If one
did, then the deadman timer is reset and the results of
the command are checked. There are only two particu­
lar commands which the interrupt results are checked
for: Transmit and Diagnose. The Diagnose command
needs to be tested to see if it passed, plus the diagnose
status flag needs to be set so that the initialization pro­
cess can continue.

The transmit command status provides net~ork man­
agement and station diagnostic information which is
useful for the "Network Management" function of the
ISO model. The following statistics are gathered in the
interrupt routine: good_transmit_cnt, sqe_err_cnt,
defer_cnt, no_crs_cnt, underrun_cnt, max_col_
cnt. To speed up transmit interrupt processing a flag is
tested to determine whether these statistics are desired,
if not this section of code is skipped.

The sqe error requires special considerations when used
for statistic gathering or diagnostics. The sqe status bit
indicates whether the transceiver passed its self test or
not. The transceiver executes a self test after each trans­
mission. If the transceiver~s self test passed, it will acti­
vate the collision signal during the IFS time.

1-9

The sqe status bit will be·set if the transceiver's self test
passed. However if the sqe status bit is not set, the
transceiver may still have passed its self test. Several
events can prevent the sqe bit from being set. For exam­
ple, the first transmit command status after power up
will not have the sqe bit set because the sqe is always
from the previous command. Also if any collisions oc­
cur, the sqe bit might not be set. This has to do with the
timing of when the sqe signal comes from the transceiv­
er. It is possible that a JAM signal from a remote sta­
tion can overlap the sqe signal in which case the 82586
will not set the sqe status bit. Therefore the sqe error
count should only be recorded when no collisions oc­
cur.

One other situation can occur which will prevent the
SQE status bit from being set. If transmit command
reaches the maximum retry count, the next transmit
command's SQE bit will not be set.

The final phase of interrupt command processing deter­
mines if another command is linked, and returns the
CB to the free command block list. Another command
being linked is indicated by the CB link field not being
NULL. In this case the deadman timer and the 82586's
CU are re-started. If the CB link is NULL, there are no
further commands to execute, and begin_cbl is set to
pNULL.

3.4.4 SENDING FRAMES-SEND_FRAME(PTBD,
PADD)

Send~rame() receives two parameters, a pointer to
the first Transmit Buffer Descriptor, and a pointer to
the destination address. There may be one or more
TBDs attached. The last TBD is indicated by its link

AP-235

field being NULL and the EOF bit set. It is the respon­
sibility of the ULCS to make sure this is done before
calling Send_Frame().

Send_Frame() begins by trying to obtain a command
block. lethe free command block list is empty, the,send
frame function returns with a false result. It is up to the
ULCS to either continue attempting transmission or at­
tempt at a later time. The send frame function calcu­
lates the length field by summing up the TBDs actual
count field. After the length field is determined, send
frame checks to see if padding is required. If padding is
necessary, Send Frame will change the act count field
ill the TBD to meet the minimum frame requirements.
This technique transmits what ever was in the buffer as
padding data. If security is an issue, the padding data in
the buffer should be, changed.

231421-10

Figure 11. Flow Chart for Sending a Frame

3.4.5 ACCESSING TRANSMIT BUFFERS-GET_
TBD() AND PUT _ TBD()

Get_Tbd() returns a pointer to a free Transmit Buffer
Descriptor, and Put_Tbd() returns one or more
linked Transmit Buffer Descriptors to the free list. The
TBD which Get_Tbd() allocates has its link pointer
set to NULL, and its EOF bit cleared. If another buffer
is needed, the link field in the old TBD must be set to
point to the new TBD. The last TBD used should have
its link pointer set to NULL and its EOF bit set. Figure
11 shows the flow chart of getting buffers and sending a
frame.

Put_Tbd (ptbd) is called by the Isr_586() function
when the 82586 is done transmitting the buffers. A
pointer to, the first TBD is passed to Put_Tbd().
Put_ Tbd() finds the end of the list of TBDs and re­
turns them to the free buffer list.

3.4.6 MULTICAST ADDRESSES

The 82586 handler maintains a table of multicast ad­
dresses. Initially this table is empty. To enable a multi­
cast address the Add~ulticasL.Address(pma) func­
tion is called; to disable a multiqast address, Delete_
Multicast~ddress(pma) function is called. Both func­
tions accept a parameter which points to the multicast
address. Add and Delete functions perform linear
searches through the Multicast Address Table (MAT).

Add scans the entire MAT once to check if the address
being added is a duplicate of one already loaded. Add
will not enter a duplicate muilticast address. If there
are no duplicates Add goes to the beginning of the
MAT and looks for a free location. If it finds one, it
loads the new address into the free location and sets the
location status to INUSE. If no free locations are avail­
able, Add returns a false result.

Delete looks for a used location in the MAT. When it
finds one, it compares the address in the table with the
address passed to it. If they match, the location status is
set to FREE and a TRUE result is returned. If no
match occurs, the result returned is FALSE.

1-10

If Add or Delete change the MAT, they update the
82586 by calling Set_Multicast~ddress(). This
function executes an 82586 MC Setup command. Set_
M:ulitcast~ddress() uses the addresses in the ,MAT
to build the MC Setup command. The MC Setup com­
mand is too big to be built from the free CBs. Free CB

inter AP-235

command blocks are 18 bytes long, while the MC Setup
command can be up to 16,392 bytes. Therefore a sepa·
rate Multicast Address Command Block (ma_cb)
must be allocated and used. The size of the ma_cb and
MAT are determined at compile time based on the
MULTI_ADDR_CNT constant. The design exam·
pIe allows up to 16 multicast addresses.

Since there is only one ma_cb, and it is not compatible
with the other CBs, it must be treated differently. Only
one ma_cb can be on the 82586 command list. The
ma_cb command word is used as a semaphore. If it is
zero, the command is available. If not, Set_Multi­
cast_Address() must wait' until the ma_cb is free.
Also the interrupt routine can't return the ma_cb to
the free CB list. It just clears the cmd field, to indicate
that ma_cb is available.

The 82586's receiver does not have to be disabled to
execute the MC Setup command. If the 82586 is receiv­
ing while this command is accessed, the 82586 will fin­
ish reception before executing the MC Setup comand. If
the MC Setup command is executing, the 82586 auto­
matically ignores incoming frames until the MC Setup
is completed. Therefore multicast addresses can be add­
ed and deleted on the fly.

ENTER INTERFACE FUNCTION

231421-11

Figure 12. Reset Semaphore

1-11

3.4.7 RESETTING THE 82586-RESET_5860

The 82586 rarely if ever locks up in a well behaved
network; (i.e. one that obeys IEEE 802.3 specifica­
tions). The lock-ups identified were artificially created
and would normally not occur. This data link driver
has been tested in an 8 station network under various
loading conditions. No lock-ups occurred under any of
the data link drivers test conditions. However the reset
software has been tested by simulating a lockup. This
can be done by having the 82586 transmit, and dis­
abling the CTS pin for a time longer than the deadman
timer.

An 82586 deadlock is not a fatal error. The handler is
designed to recover from this problem. As mentioned
before, each time the 82586 is given a CA to begin
executing a command, a deadman timer is set. The
deadman timer is reset when a CNR interrupt is gener­
ated. If the CNR interrupt is not generated before the
deadman timer expires, the 82586 must be reset.

Resetting of the 82586 should not be done while the
handler software is executing. This could create a soft­
ware deadlock by interrupting a critical section of code
in the handler. To insure that the Reset_586() func­
tion is not executed while the handler is executing, all
of the entry points to the handler (i.e. interface func­
tions) set a semaphore flag bit called flags. reset_serna.
This flag is cleared when the interface functions are
exited.

If the Deadman timer interrupt occurs while
flags. reset_serna is set, another flag is set (flag. reset_
pend) indicating that the Reset_586() function should
be called when the interface functions are exited. How­
ever if the deadman timer interrupt occurs when
flags.reset_sema is clear, Reset_586() is called imme­
diately. Figure 12 shows the logic for entering and exit­
ing interface functions.

Reset_586() begins by disabling the 82586 interrupt,
placing the ESI in loopback, and resetting the 82586.
The reset can be a software or a hardware reset. How­
ever, there are certain lockups in the 82586 where only
a hardware reset will suffice. (The 82586 errata sheet
explicitly indicates which deadlocks require a hardware
reset.) After the reset, Reset_586() executes a Config­
ure, lA-Setup, and a MC-Setup command; the MC_
Setup command is built from the multicast address ta­
ble (MAT). The 82586 Command Queues and Receive
Frame Queues are left untouched so that the 82586 can
continue executing where it left off before the deadlock.
This way no frames or commands are lost. This re­
quires that a separate reset CB and reset Multicast CB
is used, because other CBs already in use cannot be
disturbed.

AP-235

3.5 Receive Frame Processing

The following functions are used for Receive Frame
Processing:

Recv_IntJrocessing() Called by Isr_586() to re­
move FDs alld RBDs from
'the 82586's RFA

Recv _Frame (Pfd)

Check_Multicast (pfd)

Called by Recv_Int_Pro­
cessing(). This function re­
sides in the ULCS

Used for perfect Multicast
filtering

Returns FDs and RBDs to
the 82586's RFA

Restarts the RU when in the
IDLE or No Resources
state.

. 3.5.1 RECEIVE INTERRUPT PROCESSING­
RECV_INT_PROCESSINGO

The Recv _IntJrocessingO function is called by
Isr_586() when the FR bit in the SCB is set. The
Recv_Int_Processing() function checks whether any
FDs and RBDs on the free list have been used by the
82586. If they have, Recv_IntJrocessing() removes
the used FDs and RBDs from the free list, and passes
them to the ULCS.

The Recv_Int_Processing() function is 'a loop where
each pass removes a frame from the 82586's RFA. '
When there are no more used FDs and RBDs on the
RFA, the function calls RU_StartO, then returns to
Isr_586(). The first part of the loop checks to see if
the C bit in the first FD of the free FD list is set. If the
C bit is set, the function determines if one or more
RBDs are attached. If there are RBDs attached, the
end of the RBD list is found. The last RBD's link field
is used to update beg~bdpointer, and then it's set
to NULL.

After the receive frame has been delineated from the
RFA, some information about the frame is needed to
determine which function to pass it to. Since the save
bad frame configure bit is nl)t set, the only bad fraine
on the list could be an out of resource frame. An out of
resource frame is returned to the RFA by calling Put_
Free_RFA (Pfd). If the flags.lpbLmode bit is set, the
frame is given to the loopback check function. If the
destination address of the frame indicates a multicast,
the check multicast function is called. If the frame has
passed all of the above tests and still has not been re­
turned, it is passed to the Recv_Frame() function
which resides in the ULCS.

ChecLMulticast (Pfd) determines whether the multi­
cast address received is in the multicast address table.
This is necessary because the 82586 does not have per-

1-12

fect multicast address filtering. ChecLMulticast does
a byte by byte comparison of the destination address
with the addresses in the multicast address table. If no
match occurs, it returns false, and Recv_Int_Process­
ing calls PutJree~FA() to return the frame to the
RFA. If there is a match, ChecLMulticast() returns
TRUE and Recv_IntJrocessing() calls Recv_
Frame(), passing the pointer to the FD of the frame
received.

3.5.2 RETURNING FDs AND RBDs-PUT_
FREE_RFA (pfd)

Put_Free_RFA, combines Supply_FP and Sup­
ply~D algorithms described in "Programming the
82586" into one function. The begin and end pointers
delineate what the CPU believes is the beginning and
end of the free list. The decision of whether tl) restart
the RU is made when examining both the free FD list
and the free RBD list. This is why two ru_start~ags
are used, one for the FD list and one for the RBD list.
Both flags are initialized to FALSE.

The function starts off by. initializing the FD so that the
EL bit is set, the status is 0, and the FD link field is
NULL. The rbd pointer is saved before the rbd pointer
field in the FD is set to NULL. The free FD list is
examined and if it's empty, begin-fd and end-fd are.
loaded with the address of the FD being returned. In
this case the RU should not be restarted, because there
is only one FD on the free list. If the' free FD list is not
empty, the FD being returned is placed on the end of
the list, the end pointer is updated, and the RU start
flag is set TRUE.

To begin the RBD list processing the end of the re­
turned RBD list is determined, and this last RBD's EL
bit is set. If the free RBD list is empty, the returned
RBD list becomes the free RBD list. If there is more
than one RBD on the returned list, the ru start flag is
set TRUE. If the free RBD list is not empty, the re­
turned RBD list is appended on the end of the free list,
the end-rbd pointer is updated, and the ru start flag is
set TRUE.

The last part of PutJree~FAO is to determine
whether to call RU_Start(). Both ru start flags are
ANDed together, and if the result is TRUE, the Ru_
Start() function is called.

3.5.3 RESTARTING THE RECEIVE UNIT-RU_
STARTO

The Ru_Start() function checks two things before it
decides to restart the RU. The first thing it checks is
whether the RU is already READY. If it is, there is no
reason to restart it. If the RU is IDLE or in NO_RE­
SOURCES, then the second thing to check is whether
the first free FD on the free FD list has its C bit set. If
it does, then the RU should not be restarted. The rea­
son is that the free FD list should only contain free FDs

AP-235

when the RU is started. If the C bit is set in the FD,
then not all the used FD have been removed yet. If the
RU is started when used FDs are still in the RFA, the
82586 will write over the used FDs and frames will be
lost. Therefore Ru_Start() is exited if the first FD in
the RFA has its C bit set. If the RU is not READY,
and begin_fd doesn't point to a used FD, then the RU
is restarted.

Note that in "Programming the 82586" there are two
more conditions to be met before the RU is started: two
or more FD on the RFA, and two or more RBD on the
RFA. These conditions are checked in Put_Free_
RFAO, and Ru_StartO isn't called unless they are
met.

4.0 LOGICAL LINK CONTROL

The IEEE 802.2 LLC function completes the Data
Link Layer of the OSI model. The LLC module in this
design example implements a class 1 level of service
which provides a connectionless datagram interface.
Several data link users or processes can run on top of
the data link layer. Each user is identified by a link
service access point (LSAP). Communication between
data link users is via LSAPs. An LSAP is an address
that identifies a -specific user process or another layer

(see Figure 13). The LSAP addresses are defined as
follows:

Data Link Layer (Station Component) OOH

Transport Layer FEH

Network Management Layer 08H

User Processes multiples of 4 in the range
OCH < LSAP ~ FCH

Each recelVlng process is identified by a destination
LSAP (DSAP) and each sending process is identified
by a source LSAP (SSAP). Before a destination process
can receive a packet, its DSAP must be included in a
list of active DSAPs for the data link.

Figure 14 illustrates the relationship between the Sta­
tion Component and the SAP components. (The SAP
components are user processes.) The Station Compo­
nent receives all of the good frames from the Handler
and checks the DSAP address. If the DSAP address is
0, then the frame is addressed to the Station Compo­
nent and a Station Component Response is generated.
If the DSAP address is on the active DSAP list, then
the Station Component passes the frame to the ad­
dressed SAP. If the DSAP address is unknown, the
frame is returned to the handler.

TRANSPORT USER USER USER ••• LAYER TASK TASK TASK

1 LSAP=OFEH
t LSAP=OCr 1 LS~= 10H t LSAP =14H

NETWORK
DATA LINK

~
USER

LAYER INTERFACE

! LSAP=OBH !
DATA LINK INTERFACE

1
DATA LINK

CONTROLLER

1
NETWORK MEDIUM

231421-12

Figure 13. Data Link Interface

1-13

infef Ap·235

SAP
COMPONENT

#0

SAP
COMPONENT

#1
• • •

SAP
COMPONENT

#N T
ULCS

~~.-----------.~
~':";';';':":';';"':";:;;;;;"':';';':::';':-I. ___________ • _L_LC_MODULE

HANDLER

~ __ ~8~2~5~86~ __ --I. ___________ ._M_A_C_

PHYSICAL

231421-13

Figure 14. Station Component Relationship

There are 3 commands and 2 responses which the class
1 LLC layer must implement. Figure 15 shows IEEE
802.2 Class 1 commands and responses and Figure 16
shows the IEEE 802.2 Class 1 frame format.

Commands Responses Description

UI Unnumbered
Information

XID XID ExchangelD
TEST TEST Remote Loopback

Figure 1S.IEEE 802.2 Class 1, Type 1 Commands
and Responses

HEAD I DATA I TAIL
.,.-> <

~~ ~

IOSAP I SSAP I CONTROL I D;";-I

231421-14

Figure 16. IEEE 802.2 Class 1 Frame Format

From Figure 15 it can be seen that there are no LLC
class 1 VI responses because information frames are not
acknowledged at the data link level. The only com­
mand frames that may require responses are XID and
TEST. If a command frame is addressed to the Station
Component, it checks the control field to see what type
of frame it is. If it's an XID frame, the Station Cotnpo­
nent responds with a class 1 XID response frame. If it's
a TEST frame, the Station Component responds with a
TEST frame, echoing back the data it received. In both
cases, the response frame is addressed to the source of
the command frame.

Any frames addressed to active SAPs are passed direct­
ly to them. The Station Component will not respond to
SAP addressed frames. Therefore it is the responsibility
of the SAPs to recognize and respond to frames ad­
dressed to them. When a SAP transmits a frame, it
builds the IEEE 802.2 frame itself and calls the Han­
dler's Send_Frame() function directly. The LLC
module is not used for SAP frame transmission. The
only functions which the LLC module implement are
the dynamic addition and deletion of DSAPs, multi­
plexing the frames to user SAPs, and the Station Com­
ponent command recognition and responses. This is
one implementation of the IEEE 802.2 standard. Other
implementations may have the LLC module do more
functions, such as SAP command recognitions and re­
sponses. A list of the functions included in the LLC
module is as follows:

LLC Functions . Description

IniLLlc() Initializes the DSAP
address table and calls
IniL586()

Add_Dsap_ Add a DSAP address to
Address (dsap, pfunc) the active list

dsap - DSAP address
pfunc - pOinter to the
SAP function

Delete-Dsap- Delete a DSAP address
Address (dsap) dsap - DSAP address

Recv-Frame (pfd) Receives a frame from
the 82586 Handler
pfd - Frame Descriptor
Pointer

Station-Component- Generates a response to
Response (pfd) a frame addressed to the

Station Component
pfd - Frame Descriptor
Pointer

1-14

inter Ap·235

4.1 Adding and Deleting LSAPs

When a user process wants to add a LSAP to the active
list, the process calls Add_Dsap-Address(dsap,
pfunc). The dsap parameter is the actual DSAP ad­
dress, and the pfunc parameter is the address of the
function to be called when a frame with the associated
DSAP address is received.

The LLC module maintains a table of active dsaps
which consists of an array of structures. Each structure
contains two members: stat - indicates whether the ad­
dress is free or inuse, and (*p_sap_func)() contains
the address of the function to call. The index into the
array of structures is the DSAP address. This speeds up
processing by eliminating a linear search. Delete_
Dsap-Address (dsap) simply uses the DSAP index to
mark the stat field FREE.

5.0 APPLICATION LAYER

For most networks the application layer resides on top
of several other layers referred to here as ULCS. These
other layers in the OSI model run from the network
layer through the presentation layer. The implementa­
tion of the ULCS layers is beyond the scope of this
application note, however Intel provides these layers as
well as the data link layer with the OpenNET product
line. For the purpose of this application note the appli­
cation layer resides on top of the data link layer and its
use is to demonstrate, exercise and test the data link
layer design example.

There can be several processes sitting on top of the data
link layer. Each process appears as a SAP to the data
link. The UAP module, which implements the applica­
tion layer, is the only SAP residing on top of the data
link layer in this application example. Other SAPs
could certainly be added such as additional "connec­
tionless" terminals, a networking gateway, or a trans­
port layer, however in the interest of time this was not
done:

5.1 Application Layer Human Interface

The UAP provides a menu driven human interface via
an async terminal connected to port B on the iSBC
186/51 board. The menu of the commands is listed in
Figure 17 along with a description that follows:

T - Terminal Mode
X - 'High Speed Transmit Mode
P - Print All Counters
A - Add a Multicast Address
S - Change the SSAP Address
N - Change Destination Node Address
R - Re-Initialize the Data Link

Terminal Mode - implements a virtual terminal with
datagram capability (connectionless "class 1" service).
This mode can also be thought of as an async to IEEE
802.2/802.3 protocol converter.

Monitor Mode - allows the station to repeatedly trans­
mit any size frame to the cable. While in the Monitor
Mode, the terminal provides a dynamic update of 6
station related parameters.

High Speed Transmit Mode - sends frames to the cable
as fast as the software possibly can. This mode demon­
strates the throughput performance of the Data Link
Driver.

Change Transmit Statistics - When Transmit Statistics
is on several transmit statistics are gathered during
transmission. If Transmit Statistics is off, statistics are
not gathered and the program jumps over the section of
code in the interrupt routine which gathers these statis­
tics. The transmission rate is slightly increase when
Transmit Statistics is off.

Print All Counters - Provides current information on
the following counters.

Good frames transmitted:
Good frames received:

CRC errors r~ceived:
Alignment errors received:

Out of Resource frames:
Receiver overrun frames:

Each time a frame has been successfully transmitted the
Good frames transmitted count is incremented. The
same holds true for reception. CRC, Alignment, Out of
Resources, and Overrun Errors are all obtained from
the SCB. Underrun, lost CRS, SQE error, Max retry,
and Frames that deferred are all transmit statistics that
are obtained from the Transmit command status word.
82586 Reset is a count which is incremented each time
the 82586 locks up. This count has never normally been
incremented.

M - Monitor Mode
V - Change Transmit Statistics
C - Clear All Counters
Z - Delete a Multicast Address
D - Change the DSAP Address
L - Print All Addresses
B - Change the Number Base

Figure 17. Menu of Data Link Driver Commands

1-15

inter AP-235

Clear All Counters - Resets all of the counters.

AddlDelete Multicast Address - Adds and Deletes
Multicast Addresses.

Change SSAP Address - Deletes the previous SSAP
and adds a new one to the active list. The SSAP in this
case is this stations LSAP. When a frame is received,
the DSAP address in the frame received is compared
with any active LSAPs on the list. The SSAP is also
used in the SSAP field of all transmitted frames.

Change DSAP Address - Delete the old DSAP and add
a new one. The DSAP is the address of the LSAP
which all transmit frames are sent to.

Change Destination Node Address - Address a new
node.

Print All Addresses - Display on the terminal thesta­
tion address, destination address, SSAP, DSAP, and all
multicast addresses.

Re-initialize Data Link - This causes the Data Link to
completely reinitialize itself. The 82586 is reset and

iSDM 86 Monitor, Vl.O

Copyright 1983 Intel Corporation

.G DOOO:6

reinitialized, and the selftest diagnostic and loopback
tests are executed. The results of the diagnostics are
printed on the terminal. The possible output messages
from the 82586 selftest diagnostics are:

Passed Diagnostic Self Tests

Failed: Self Test Diagnose Command

Failed: Internal Loopback Self Test

Failed: External Loopback Self Test
Failed: External Loopback Through Transceiver Self
Test

Change Base - Allows all numbers to be displayed in
Hex or Decimal.

5.2 A Sample Session

The following text was taken directly from running the
Data Link software on a 186/51 board. It begins with
the iSDM monitor signing on and continues into exe­
cuting the Data Link Driver software.

.***

• 82586 IEEE 802.2/802.3 Compatible Data Link Driver •
• •
.****************.***.*********.***.***** ••••••••••• ** ••••

Passed Diagnostic Self Tests

Enter the Address of the Destination Node in Hex -> 00AA0000179E

Enter this Station's LSAP in Hex - > 20

Enter the Destination Node's LSAP in Hex - > 20

Do you want to Load any Multicast Addresses? (Y orN) -> Y

Enter the Multicast Address in Hex - > OOAAOOllllll

Would you like to add another Multicast Address? (Y or N) -> N

This Station's Host Address is: 00AA00001868

The Address of the Destination Node is: 00AA0000179E

This Station's LSAP Address is: 20

The Address of the Destination LSAP is: 20

The following Multicast Addresses are enabled: OOAAOOllllll
1-16

inter AP-235

CO!11lllands are:

T - Terminal Mode M - Monitor Mode

x - High Speed Transmit Mode

P - Print All Counters

v - Change Transmit Statistics

C - Clear All Counters

A - Add a Multicast Address

S - Change the SSAP Address

Z - Delete a Multicast Address

D - Change the DSAP Address

L - Print All Addresses N - Change Destination Node Address

R - Re-Initialize the Data Link B - Change the number Base

Enter a command, type H for Help - > P

Good frames transmitted: Good frames received: 1

CRC errors received:

24

o

o

o

o

o

Alignment errors received: 0

Out of Resource frames: Receiver overrun frames·: 0

82586 Reset: Transmi t underrun frames: 0

Lost. CRS: SQE errors: 9

Maximum retry: Frames that deferred: 4

Enter a command, type H for Help --> T

Would you like the local echo on? (Y or N) --> Y

This program will now enter the terminal mode.

Press 'C then CR to return back to the menu

Hello this is a test.

,"C CR *'
Enter a command, type H for Help --> M

Do you want this station to transmit? (Y or N) --> Y

Enter the number of data bytes in the frame --> 1500

Hit any key to exit Monitor Mode.

No Receive # of Good
Frames

Transmitted

of Good
Frames

Received

CRC
Errors

Alignment
Errors Resource Overrun

Errors Errors

32 o 00000

I' CR "'
Enter a command, type H for Help --> X

Hit any key to exit High Speed Transmit Mode.

I' CR *'
Enter a command, type H for Help --> R
Passed Diagnostic Self Tests

1-17

00000 00000 00000

inter AP-235

5.3 Terminal Mode

The Terminal mode buffers characters received from
the terminal and sends them in a frame to the cable.
When a frame is received from the cable, data is ex­
tracted and sent to the terminal. One of three events
initiate the UAP to send a frame providing there is data
to send: buffering more than 1500 bytes, receiving a
Carriage Return from the terminal, or receiving an in­
terrupt from the virtual terminal timer.

The virtual terminal timer employs timer 1 in the 80130
to cause an interrupt every .125 seconds. Each time the
interrupt occurs the software checks to see if it received
one or more characters from the terminal. If it did, then
it sends the characters in a frame.

The interface to the async terminal is a 256. byte soft­
ware FIFO. Since the terminal communication is full
duplex, there are two half duplex FIFOs: a Transmit
FIFO and a Receive FIFO. Each FIFO uses two func-'
tions for I/O: Fifo_ln() and Fifo_Out(). A block
diagram is displayed in Figure 18.

ceive FIFO has data in it. The receive FIFO is filled
from frames being received from the cable. Each time a
transmit interrupt occurs a byte is removed from the
Receive FIFO and written to the 8274. When the Re­
ceive FIFO empties, the 8274 transmit interrupt is dis­
abled.

The flow control implemented for the terminal inter­
face is via RTS and CTS. When the Transmit FIFO is
full, RTS goes inactive preventing further reception of
characters (see Table 1). If the Receive FIFO is full,
receive frames are lost because there is no way for the
data link using class 1 service to communicate to the
remote station that the buffers are full. Lost receive
frames are accounted for by the Out of Resources
Frame counter.

The Async Terminal bit rate sets the throughput capa­
bility of the station in the terminal mode because the
bottle neck for this network is the RS232 interface. Us­
ing this fact a simple test was conducted to verify the
data link driver's capability of switching between the
receiver's No Resource state and the Ready State. For
example if station B is ~ending frames in ·the High

The serial I/O for the async terminal interface is always Speed Transmit mode to station A which is in the Ter-
polled except in the Terminal mode where it is inter- minal mode, frames will be lost in station A. Under
rupt driven. The Terminal mode begins by enabling the these circumstances station A's receiver will be switch-
8274 receive interrupt but leaves the 8274 transmit in- ing from Ready state to' Out of Resources ~tate. The
terrupt disabled. This way any characters received from sum of Good frames received plus Out of Resource
the terminal will cause an interrupt. These 'characters frames from station A should equal Good frames trans-
are then placed in the Transmit FIFO. The only time mitted from station B; unless there were any underruns
the 8274 transmit interrupt is enabled is when the Re- or overruns.

Function
FIFO_ T _IN()

FIFO_ T _OUT()

FIFO_R_IN()

FIFO_R_OUT()

ASYNC
TERMINAL

Table 1 FIFO State Table
Present State Next State
EMPTY IN USE
IN USE FULL
FULL IN USE
IN USE EMPTY
EMPTY IN USE
IN USE FULL
FULL IN USE
IN USE EMPTY

Figure 18

1-18

Action
Start Filling Transmit Buffer
Shut Off RTS
Enable RTS
Stop Filling Transmit Buffer
Turn on Txlnt
Stop Filling FIFO from Receive Buffer
Start Filling FIFO from Receive Buffer
Turn Off Txlnt

SEND FRAMES

RECEIVE FRAMES

231421-15

inter AP-235

5.3.1 SENDING FRAMES

The Terminal Mode is entered when the Terminal_
Mode() function is called from the Menu interface.
The Terminal_Mode() function is one big loop, where
~ach pass sends a frame. Receiving frames in the Ter·
minal Mode is handled on an interrupt driven basis
which will be discussed next.

The loop begins by getting a TBD from the 82586 han­
dler. The first three bytes of the first buffer are loaded
with the IEEE 802.2 header information. The loop then
waits for the Transmit FIFO to become not EMPTY,
at which point a byte is removed from the Transmit
FIFO and placed in the TBD. After each byte is re­
moved from the Transmit FIFO several conditions are
tested to determine whether the frame needs to be
transmitted, or whether a new buffer must be obtained.
A frame needs to be transmitted if: a Carriage Return is
received, the maximum frame length is reached, or the
send_frame flag is set by the virtual terminal timer. A
new buffer must be obtained if none of the above is true
and the max buffer size is reached.

If a frame needs to be sent the last TBD's EOP bit is set
and its buffer count is updated. The 82586 Handler's
Send_Frame() function is called to transmit the
frame, and continues to be called until the function re­
turns TRUE.

The loop is repeated until a 'C followed by a Carriage
Return is recieved.

5.3.2 RECEIVING FRAMES

Upon initialization the UAP module calls the Add_
Dsap--Address(dsap, pfunc) function in the LLC mod­
ule. This function adds the UAP's LSAP to the active
list. The pfunc parameter is the address of the function
to call when a frame has been received with the UAP's
LSAP address. This function is Recv_Data_lO.
Recv_Data_l() looks at the control field of the
frame received and determines the action required.

The commands and responses handled by Recv_
Dat~l() are the same as the Station Component's
commands and responses given in Figure 15. One dif­
ference is that Recv-.Dat~l() will process a UI
command while the Station Component will ignore a
UI command addressed to it.

of Good # of Good CRC
Frames Frames Errors

Transmitted Received

32 a 00000

1-19

Recv_Data_l() will discard any UI frames received
unless it is in the Terminal Mode. When in the Termi­
nal Mode, Recv_Data_l() skips over the IEEE 802.2
header information and uses the length field to deter­
mine the number of bytes to place in the Receive FIFO.
Before a byte is placed in the FIFO, the FIFO status is
checked to make sure it is not full. Recv_Data_l()
will move all of the data from the frame into the Re­
ceive FIFO before returning.

When a frame is received by the 82586 handler an in­
terrupt is generated. While in the 82586 interrupt rou­
tine the receive frame is passed to the LLC layer and
then to the UAP layer where the data is placed in the
Receive FIFO by Recv_Octal_Data_l(). Since
Recv_Data_l() will not return until all of the data
from the frame has been moved into the Receive FIFO,
the 8274 transmit interrupt must be nested at a higher
priority than the 82586 interrupt to prevent a software
lock. For example if a frame is received which has more
than 256 bytes of data, the Receive FIFO will fill up.
The only way it can empty is if the 8274 interrupt can
nest the 82586 interrupt service routine. If the 8274
could not interrupt the 82586 ISR then the software
would be stuck in Recv_Data_l() waiting for the
FIFO to empty.

5.4 Monitor Mode

The Monitor Mode dynamically updates 6 station relat­
ed parameters on the terminal as shown below.

The Monitor_Mode() function consists of one loop.
During each pass through the loop the counters are
updated, and a frame is sent. Any size frame can be
transmitted up to a size of the maximum number of
transmit buffers available. Frame sizes less than the
minimum frame length are automatically padded by the
82586 Handler.

The data in the frames transmitted in the Monitor
Mode are loaded with all the printable ASCII charac­
ters. This way when one station is in the Monitor Mode
transmitting to another station in the Terminal Mode,
the Terminal Mode station will display a marching pat~
tern of ASCII characters.

Alignment No Receive
Errors Resource Overrun

Errors Errors

00000 00000 00000

intJ AP-235

5.5 High Speed Transmit Mode

The High Speed Transmit Mode demonstrates the
throughput performance of, the 82586 Handler. The
Hs-'Cmit_Mode() function operates in a tight loop
which gets a TBD, sets the EOF bit, and calls Send_
Frame(). The flow chart for this loop is shown in Fig­
ure 19.

The loop is exited when a character is received from the
terminal. Rather than· polling the 8274 for a receive

231421-16

Figure 19. High 'Speed Transmit Mode
FlowChart

buffer full status, the 8274's receive interrupt is used.
When the Hs-'Cmit~ode() function is entered, the
hs~tat flag is set true. If the 8274 receive interrupt
occurs, the hs_stat flag is set false. This way the loop
only has to test the hs_stat flag rather than calling
inb() function each pass through the loop to determine
whether a character has been received.

, The performance measured on an 8 MHz 186/51 board
is 593 frames per second. The bottle neck in the
throughput is the software and not the 82586. The size
of the buffer is not relevant to the transmit frame rate.
Whether the buffer size is 128 bytes or 1500 bytes,
linked or not, the frame rate is still the same. Therefore
assuming a 1500 byte buffer at 593 frames per second,
the effective data rate is 889,500 bytes per second.

This can easily be demonstrated'by using two 186/51,
boards running the Data Link software. The receiving
stations counters should be cleared then placed in the
Monitor mode. When placing it in the monitor mode,
transmission should not be enabled. When the other
station is placed in the High Speed Transmit Mode a
timer should be started. One can use a stop watch to
determine the time interval for transmission. The frame
rate is determined by dividing the number of frames
received in the Monitor station by the time interval of
transmission.

1-20

inter AP-235

APPENDIX A
COMPILING, LINKING, LOCATING, AND RUNNING THE

, SOFTWARE ON THE 186/51 BOARD

********* Instructions for using the 186/51 board *""******

Use 27128A for no wait state operation, 27128s can be used but wait states will have to be added.

Copy HLBYT and LO.BYT files into EPROMs
PROMs go into U34 - HI.BYT and U39 - LO.BYT on the 186/51 board

JUMPERS REQUIRED

Jumper the 186/51 board for 16K byte PROMs in U34
and U39 Table 2-5 in 186/51 HARDWARE REFER­
ENCE MANUAL (Rev-DOl)

186/51(E5) 186/51 (5)/186/51

E151-E152 OUT E199-E203 OUT

E152-E150 IN E203-E191 IN

E94-E95IN E120-E119IN

E100-E1061N E116-E1121N

E107-E113IN E111-E1071N

E133-E134IN E94-E93IN

also change interrupt priority jumpers - switch 8274
and 82586 interrupt priorities

E36-E44 OUT

E39-E47 OUT

E37-E45 OUT

E43-E47 OUT

E46-ESOOUT

E44-E4BOUT

1-21

WIRE WRAP

E36-E47IN

E39-E44IN

E79-E45IN

USE SDM MONITOR

E43-E50 IN

E46-E47IN

E90-E4BIN

The SDM Monitor should have the 82586's SCP
burned into ROM. The ISCP is located at OFFFOH.
Therefore for the SCP the value in the SDM ROM
should be:

ADDRESS

FFFF6H

FFFF8H

FFFFAH

FFFFCH

FFFFEH

DATA

XXOOH

XXXXH

XXXXH

FFFOH

XXOOH

To run the program begin execution at ODOOO:6H

inter
I.E. G DOOO:6

GOOD LUCK!

AP-235

- submit file for compiling one module: ••••••••••

run

cc86.86 :F6:%O LARGE ROM DEBUG DEFINE(DEBUG) include(:F6:)

exit

•••••••••• submit file for linking and locating: .,..
run

l1nk86 :F6:assy.obj, :F6:dld.obj, :F6:llc.obj, &

:F6:uap.obj, lclib.lib to :F6:dld.lnk segsize(stack(4000h)) notype

10c86 :F6:dld.lnk to :F6:dld.loc&

initcode (ODOOOOH) start (begin) order(classes(data, stack, code)) &
addresses(classes(data(3000H), stack(OCBOOH), code(OD0020H)))

oh86 :F6:dld.loc to :F6:dld.rom

exit

•••••••••• submit file for burning EPROMs using IPPS:

ipps

i 86

f :F6:dld.rom (OdOOOOh)

3

2

1

o to :F6:1o.byt

Y

1 to :F6 :h1. byt,

y

t 27128

9

c :F6:lo.byt t p

n

C :F6:hi.byt t p

n

exit

1-22

••••••••••

inter AP-235

IPCO/USR/CHUCK/CSRC/DLD. H

1 •••••••• *** •••••••••••••••••••••••••• * •• ••••••••••••• ••••••••••••••••••• · • •
.
* • •••••••• _ •• **** •••••••••• 1

.dofino INUSE

.CI.'ine EWTV

.dofino FULL

.dofino FREE

.d •• in. TRUE

.dofino FALSE

.define NULL

o
I
2
I
I
o
OIFFFF

.define RBUF _SIZE

.deflne TBUF _SIZE

.define ADD....L£N
ed.'in. f'IIUL TI_ADDR_CNT

I:2B /. ,..cI1vI bu.f sizl ./
128 /* 't"Anl.it bu'fl" t1z1 *1
6
16

'"ped., unsigned short int u_Iho1't'

'* "'Ilults '1"011 T'lt_LinkO: laadld into Self_T'lt chI'" *'
.d.fin. PASSED 0
.deflne FAILEDJlIAQNOSE I
.doflno FAILED..L/'BK_INTERNAL a
.doflno FAILED_LPBK...EXTERNAL 3
.doflne FAILED..L/'BK_TRANSCEIYER 4

CallYUndl *' /* F m.
ed"ine
ed,'in.
ed.'in.
edl'ine
ed"ine

UI 0103
XlD OlAF

/* UnnUllbll"ld Information F,.. ... I *' '* ElchAn •• Identification *'

ed"in.

_d.fin.

.d.fin.

TEST 0lE3
P.J' _BIT OlIO
C_RJlIT 0101

OSAP_CNT

DSAP _SHIFT

XlD_LENQTH

S

:I

6

1* R.llat. Loopblc Ie T.lt *'
1* Poll/Fin.1 8it POlltion *' '* COlMland/R •• pon •• bit in SSAP *'
I. Numbe" of .llowabl. DSAPsl mu.t b ••

of 2**N, • nd DSAP .dd" •••••••• ign.d
divi.ibl. bU 2*.(S-N).
(I .•. the N L.SB. must b. 0) *'

I· DSAP _SHIFTS mu.t .qu.l S-N *'
I. Numb.,. a. Info b,t •• '01' KID R.spon ••

'* S".t.m Con.igu1"etion Pointe,. SCP *'
.t"uet BCP

u_short .,.bull '* 82:586 bus ,ddth, 0 - 16 bit.
1 - S bit • • ,

1-23

Multipl.
must b •

• ,. ••• *'

231421-17

intJ AP·235

IPCD/USR/CHUCK/CBRC/DLD. H

u_oh01't JunH2J,
u_shol"' :l.epl, '* low.,.. 16 bit. D' i.ep .dd" ••• *1
u_.hort t.cph, /. uPP." B bit. of i.ep .dd.,. ••• *1

),

'* Int di.". S,.t.m Configul'ation Point.,. ISCP *'
ot1'uct ISCP (

u_'ho"t lIu ... , / ••• t to 1 bl\l cpu b.'a",. tt. fit,. CA,
c 1 •• .,..d ltV 82:t86 .'t." ,. •• d inl *'

U_.hD ... t off •• t J /. of, •• t of .,.t ... cant1"ol blocll ./
u_,hort ba •• 1 J '* b ••• of .v.te .. cont'rol blocll .,
u_,ho ... ' a J

) ,
1* Sv.hm Cont1'ol Blod SCB *1

ot1'uct SCB

stT'uct CB

u_.hort .tat,
u_.ho"t ,.d,
u_'hort: cll1_off •• t,
u_.ho,., 1"._o •••• t,
U_.hD'I"t '1"C_.,,1'"
u_.ho"t .In_err.,
u_,ho ... t "',C_."''I"''
u_,ho,., DY1' _e,.r'J

),

'* Statu. ",o1"d *' '* COlllmand word ./ '* O •••• t o. fi".t co ... nd block in elL *' '* o •••• t o' fh'".t 'ra ... d.,c1'ipta1' in RFA ./ '* CRt .1''1''01'' accu.ulated *'
/. Al itn .. ent ."1'ora *' '* F1'atn •• last becaus. 0' no R.sau ... c •• *' '* Ov 1'un .1'T'a1'. *'

u_sho1't s,.t.
u_sho ... t cad,

'* Statu. 0' Co ... nd *'
/* Ca nd */

u_sho ... t linkl,
u_shoT't p."'1I11
u_sho ... t: pa"tn:z,
U_ShDT't p.T'il3J
u_shoT't ,aT'1I4,
u_sho,.t p.T'1I8,
u_sho1't p 6'

1* link flold *1 '* Para •• t.,.. *'

st,.uct ",,_CB(
u_sho,.t stat, /* Status 0' COII •• nd *1
u_ahoT't c.d, '* Co.and ./
u_oh01't link' 1* Link fleld *1 ,
u_shaT't ac_cnta I. NUllbeT' 0' Ie .ddT' ••••• • ,
ch.r .cJdd,.[ADDJ,EN*HULTl-l\DDR_CNTJ, '* HC .ddre .. n •• *1

),

1* Tnn .. U Buffe1' D"c1'lph1' TBD *1

.t1'uct TID (

1-24

231421-18

intJ AP-235

IPCD/USR/CHUCK/CSRC/DL.D. H

u_shart act_cntJ 1* Nu_b.,. of bvte. hi buffer *1
u_shart 1inkl 1* of'set to next TBD *'
u_short buff_II 1* 10wel' 16 bits of buffer add1"ess *1
u_thort buff_hi 1* upp B bit. of bu'f.r addl'ess *1
.truet TB _bu" Jtr' 1* not used b .. the 586: u •• d b\l the

.oft ". to savi .dd,.las translation
routine. *1

1* Tl'ansmi t Bu,f.1's *1
.t'l"uct T8 <

Cho1lT data [TBUF _SIZEl;
),

1* F,..III DeSCTiptor FD *1

st1"uc:t FD
u_sho,.t .t.t, 1* Status Word of FD *1
u_short al_s, 1* EL and S bit. *'
u_short linlll 1* link to next FD *1
u_shoT't 1'bd_o'f •• t, 1* Rlceivl buflfer descriptor offset *1
char d •• t_.ddrCADD_L.ENll/*Destination address *1
chaT' src_addrCADD_LEN]; 1* Source .dd1"ess *1
u_thort length, 1* Length field *1

),

.truet RDD (
u_short IiIct_cnti
u_shol't I inlo
u_shol't buff _I;
u_short buff_hi
u shol't .izes
si',.uct RD *buff -Itr;

1* Actual number of bUtes received *1
1* Of'.et to nell t RBD *1
1* Lower 16 bits of buffe" add,.ess *1
1* upper 8 bits of buffe" add,. ••• *1
1* SiZR of buffe ... *1
1* not used b~ the 586: used bU the

soft..,.re to save add,.es5 translation
routine. *1

/* Receive Buffers *1

.t,.uct RD
ch.,. data[RBUF _SIZE];

),

struct FRAI'IE_STRUCT
(

unsigned
unsigned
unsigned

),

1* L.6AP Addres.
.true t LAT (

char d •• pi
chaT' .sap;
chaT' cmdl

Tlilble *1

stat;

1* De.tination' Service Access Point *1
1* SOUT'c. SeT'V1Ce Access PDlnt *1 '* ISO Data Link Command *1

1* INUSE Dr FREE *1

1-25

231421-19

intJ AP-235

IPCO/USR/CHUCK/CSRC/DLO. H

int <.p_I.p_func) (),/* Point.,. to LSAP function, ••• oci.t.d
11111 th d •• p .dd,. ••• *1

1* "vltic •• ' Add,. ••• Tabl. *' _t'ruet "AT
cha,.
chI'''
.},

stat, '* lNUSE 01" FREE *1
add,.tADDJ.ENl, 1* actual AIle add *1

.truet FLAilS {
. unsigned dial_don. 1 I

unsilned st.t_on: J

unstgned "' ••• t_.... 1 I
unsigned t..."end 1 I

unligned Ipbk_t •• t: I I
unsilned Ipbk_IIod.: 1 I

} ,

Ideflne ELBIT
Ideflne EOFBIT
Idefine SBIT
Ideflne IBIT
Ideflne CBIT
Ideflne BBIT
Ideflne DKBIT

O,BDDD
O,BDDD
0,4000
0,2000
o,aooo
0,4000
0,2000

1* SCI p.tt n •• /

Ideflne CX
Ideflne FR
Ideflne CNA
Ideflne RNR
Ideflne RESET
Ideflne CU_START
Ideflne RU_START
Ideflne RU-",BORT
Ideflne CUJlASK
Ideflne RUJlASK
Idoflne RUJlEAOV

Ideflne NDP
Ideflne IA
Ideflno CDNFlllURE
Ideflne MC_SETUP
Idoflno TRANSI1IT
Idoflne TDR
Idoflno DUMP
Idoflne DIAIINDSE

o,aooo
0,4000
0,2000
0,1000
0,0080
0,0100
0,0010
0,0040
0,0700
0,0070
0,0040

0,0000
0,0001
0.0002
0.0003
0,0004
0.0005
0,0006
0,0007

/* dlagno •• co_and cOlllpl.t. *1 '* n.twoT'k diagnostic statistician/a" *1
/. don't ", ••• t IIIhen this bit is •• t *1
/* " ••• , IIhen this bit ts •• t *1
/. loopback , •• t flag ./
1* laopback lIod. an/of' *1

1-26

231421-20

inter

IPCO/USR/CHUCK/CSAC/OLO. H

Idofino CIIDJ1ASK 010007
Idofino NOERRBlT 012000
Idofino CDLLIIASK OIOOOF
Idofino DEFERIIASK 010080
Idofino NDCRSIIASK 010400
IUfino UNDERRUNIIASII 010100
Idofino SGEIIASII 010040
Idofino IIAXCDLIIASK 010020
'dofino OUT_OF_RESOURCES 0,0200

Idofino FIFO_LIII 010800
Idofino BYTE_CNT 010008
Idoflno SRDY 010040
Idofln. SAV.JIF 010080
Idofi no ADDRJ.EN 0101000
Idofino ACJ.DC 010800
Idofino PREAII_LEN 012000
Idofino INT_LPBCK 014000
Idofino EXTJ.PBCK 018000
Idofino LIN"'pRIO 010000
Idofino ACR 010000
Idofino BOF JET 010080
Idofino IFS OlbODO
IUfino SLOT_TIllE oloaoo
Idoflno RETRY_NUll OIFooo
.de'tn. PR" 0.0001
Idofino BCJ)JS 010002
.dofino IlANCHESTER 010004
.doflno TONOSRS OloooB
Idofino NCRC_INS 010010
Idoflno CRC_Ib 010020
'dofino IT_STUFF 010040
.doflno PAD 010080
'dofln. CRSF 010000
.doflno CRS_SAC 010800
'dofino CDTF 010000
Idoflno CDT_SAC 018000

AP-235

I. u.o FIFO 11 .. of B .,

,. no p"io,.ttv *'
,. IFS ti •• 9.6 us.e *' '* .10t tl •• :51. i2 u •• , */
/. r.tl'V nUllb.,. 1!t *'

,. no collision d.tect 'Ut.,. *,
Idoflno IIINJRKJ.EN 010040 I. 64
Ido'ino KINJ)ATAJ.EN IIINJRKJ.EN - IB

b .. t ••• /
1* a.lu ••• Ethernet/IEEE 802.3

41,. •••• with 6 bVt •• of .dd,. ••• *'

1-27

231421-21

....

intJ AP-235

IPCO/USR/CHUCK/CSRC/DLD. C

1** ••••••••••••••••••••••••••••••••••••• ** •• ** •••••• ** •••••••••• **** •••••
* * .. 82586 tMndleT' ..

* * •• ••••••• •• **** •••• **1

.define CB_CNT
Idefine FD_CNT
'define RBD_CNT
Idefine TBD_CNT

B /. Nu_be,. of availabl. Co nd Blocks *1
16 '* Nu ,. 0' availabl. Fr ••• D •• cT'ipto.,.. *1
64 /* NUllbe" of availabl. Receive Bu".", d •• c1'ipto". *1
16 '* Nu_beT' of available Tran •• it Buff.,. d •• c,,.iptors *'

Idefine INTERNAL.J.OOPB/ICK
'define EXTERNAL.J.OOPB/ICK
.define NO.J.OOPB/ICK

.do.lne TI~Rl_CTL OIFFSE

.define TUIER1_CNT OIFFSB
Idefine TI~2_CTL 0lFF66
Idefine TlI'IER2_CNT OIFF60

*1

014000
018000
010000

1* I/O
Int
void
void
void
void

in..,'), /. input wO'l'd : in.(add1" •••) *'
Dutil", '* output IIDT'd: Dutw(addr •••• Value) *1
intt_intvC), /* initlaliz. the inter1"upt v.eta,. t.b1. *'
enable')' '* enab1. 80186 int.,.,.upts *'
di •• ble'). ,. di •• bl. 80186 inteor ... upts *'

'* o.t •• e, .. ent value *'
I. NULL paint.or *1

1* tleCorD "tvpe" D' d.finitions *1

Ide.ine Cat. out.CO.CB,O) ,- the cOlMland to i.su •• Channel Attention *1

.de'lne ESI.J.OOPB/ICK out"tOICB.OI '* put the ESI In Loopbuk *1
Idefine NO..ESI.J.OOPB/lCK· out.tOI,ca. BI '* take the ESI out of Loopback *1

.de.tne EOJ_SOl30 outb COIEO, 0163) 1* End D' Jnt.l' ... upt *'

.deflne TI~1_EOIJlO1B6 out,.tOIFF22.01041 1* EOI for Tillor 1 on the lB6 *1
ad.'in. TJ"ER1~aJ_aol30 outbCOIEO,OI64) '-EOI 'Gor 186·s Tim l on the 13~ *1

1-28

231421-22

AP-235

IPCO/USR/CHUCIVCSRC/DLD. C

, ,.0..-.., alloc.tion ,

tnt Self_Telt' '* used fa,," diagnoltil::: pUl'pOI •• *'
u_Ihol"t temp' /. t •• po".1"\1 .to • ,

Id."n. LPBKjRAI1E_SIZE 4
.her Ipbk_'rell.tLPBKjRAIEJlIZEJ • <
0."1 OxAA, aI'S, OIM),

d.'ine whaami_io_add O.OOFO ' 1/0 .ddT-." of HOlt Add,. ••• Prom *'
ch." ... hoamiCADDJ.ENl, ,* Ram aT"'.'" \alh.,.. hOlt .dd,. ••• is .ta,..d ./

unligned long
u_,hort;:
u_short
unligned long
u_Iho1't
U_IhoT't
un' i lined 1Dnl
u_sho"t

DOod_l.it_cntl
unde"ru"_cnt,
no_e,.,_cnt •

. def.r_ent,
.,e_e,.. ... _ent'
•• ,_col_ent,
.... Cy_,,. ••• _cnt'
,. ••• t_entl

'* SVita .. Configur.tion Point.,.: Rail Initialization *1 '* struet SCP lep • <OaOOOO, 010000, 0.0000, O.IFF6, 010000), *1

'* stl'uct JSep ilcp; Intel' •• di.t. SI,I.t Configu,..tion Paint.,. *'
.t,.uet sca sebJ '* Swat Cant,.ol Block -,

st,.uet CD cbCCB_CNTl. '* COIIII.nd Blacll. *1
,*cb_ta., *b.gin_cb 1, .Ind_cbll '* paint.,. to the b'ginning of the f,. ••

colft ... nd block liat (cb_ta.) .nd the
b.ginning .nd .nd of the 82586 cbl *'

struet TBD tbdtTBD_CNTl, '* T,..n •• it Buff.,. D •• c,.lptar *,
tbd_tasJ 1. point.,. to thl ,,. •• T,..n.,..:lt buff.,.

d.ac,.ipta,.. *,

stT"uct FD fdCFD_CNTl. '* Fr D'scriptors *'
_begin_fd. _.nd_fdi '* point."s to the blginning .nd Ind of

thl frel FD 1 i st *'

1-29

231421-23

inter AP-235

IPCO/USR/CHUCK/CSRC/DLD. C

,. point.". to th. beginning and the
end of the ,.bd li.t *'

'* Receive Bu"e". *'
.truet "AT _tcHUL TI.)\DDR_CNTJ.
.truet ",,_C8 lU_cbJ

,. Multica.t Add,.. ••• Tabl. *'
1* "ultica.t Add,. ••• CO_lIIIand Iloc. *1

'* The following .tructu,. u •• d anI" in R ••• t_'B6C), function *1
.truet C8 ,"e._clu 1* T •• po,..,.., CB '01" inltt.U.ling tlte ~6 *1
.tTuct MA_CB ,. •• ,.In._cbJ '* T •• po,..,. .. ",,_CB fa,.. ,..10.dl"9 Multicast *'
'* He"'d ,.. Support Function •• /

Eneblo_'S6_lntO
(

tnt CI

c • inb COIE:I!), '* d the 80130 int.,.,.upt ... Ic "egi.t." ./
outbCOxE2. O.OOF7. ell '* W1"it. to the 80130 interrupt ••• k regi.t.,.. *1

Dheble_'S6_lntC I
(

int 1:1

c • inb (0IE2) I
outb (OxE2. OIOOOS Ie) J

Set_TimeoutC)

DutwCTlttER1_CNT, 0)1 /. ,"it •• 0 to Tim ! count t.t.,. *'
DUtW(OIFF5E. OIE009)1 '* s.t ENabl. bit in Ti.e,,1 "ade'Cant,.ol ,. •• 1.'." *'

R ••• t:_Ti •• out:()
(

Jnlt_TI •• ,.C) '* 186', T1 •• ,. 2 i, • p,. •• cal.,. '0,. T1.e" 1. l' clocks Ti •• ,. 1
ev.,., 32.7 ••• e. The d •• tI .. en ,i •• out i ••• , '0,. 1.25 •• e *'

outw(OIFF38. OIOOOCh '* S., TI 1 Jnte ... ,.upt Cont,.ol ,. •• i.t.,. */
outIllCO.FF62. OIFFFFh 1* •• t .. e. count ,. •• i.t.,. .or t1 •• ,.2 to OFFFFH 1Ir/
outwCO.FFSA, 3Bh 1* .et .a. count: ilte ... It. '0,. ti •• ,. 1 *'
outIllCO.FF66. O.COOI h '* S.t T:I. •• 'I"2 Mod./Control r.gi.t.r */
outlilCOxFFSE. 0.6009)1 '* S.t Ti •• rl "ode/Control re.t.ter */
DUtW(OIFF2B. (inIllCOIFF2S) • OIFFEF», /* Enabl. 18. T1 •• rl int.rrupt *'
outbCOIE2. CinbCOIE21 • OIDOEFII. 1* .neUe 80130 inh1'1'upt from SOlS6 *,

1-30

231421-24

inter

IPCD/USR/CHUCK/CSRC/DLD. C

loeb. cre_err. - 0,
leb. aln_eT'''1 • 0,
acb. ,.IC_.""'I - O.
leb. avT' _er,,' • O.

good_lIIli t_en1; - O.
und "u"_cnt • O.
no_u"s_ent • 0,
de'." _en1; • D •
..... _,. _ent • O •
••• _col_ent • 0, ,..CY_'1" ••• _cnt • OJ
", ••• t_en1; • OJ

.truet lSCP .pilcp,
U_Iho"t I.
It1"'Uct HAT .p •• t,

AP-235

ND..ESIJ.DOPBACK, ,. Dan. fa,. B2~01. In.etiv.te. eRS If pa .. .,..d up
in loapbacll: *'

ES I J.DOPBACK,

init_intv(I,

Init_Tim.,.(I,

.1a.l. "' ••• t_ ••••• o.
fl •••. ,. ••• t-P.nd • OJ
fla.l .• tat_on - 11

phep. OxOOOOFFFO, ,. Initi.li •• tho Ieep paint.,..,
piICp-:>buIV • 1.
pll'p-:>o' ••• 1;. Off •• tC •• cb),
pilcp->b ••• l • SEQMT « 4.
phep->b ... 2 • (SEllIn» 121 • OxOOOF ,

pNULL a BuildJ't,.(NULLII " build. NULL paint.,. - 8086 tvp.: 32 bih "
BuildJU.C)J '* inlt Receive Fr.,.. A" •• *'
Build_CbC)1 '* lnit Ca •• and Blacl!: lilt *1
ma_cb. clld - O. /. multic •• t addre •••• ".pho". inlt */

leb .• tat • OJ

foT' (i • O. i <- OxFFOO, i++)

1-31

231421-25

inter

IPCD/USR/CHUCK/CBRC/DLD. C

if (Icb .• tat •• (ex I CNA)>>
br •• 1I1

If (I :>OIFFOOI

AP-235

Fata1C It DLD: inlt - Dld not get an int:.,.,.upt •• ter Re.et/CA\n"),

1* Aell: the r ••• t Int.,. ... upt .,
ocb.cmd - (CX I CNAII
CAl
Walt_Sc b () I
En.b 1o_586_Int () I

Icb. cbl_off •• t - Df, •• tC'cIt(01),
Icb. ,.'8_0"5.' - Off •• tC"dCOl),

,* link ICIt to eb and ,d lilt. *1

1* move the ~T'O. bVt •• into ... hoa ... ! aT'''.'' *'
f.,. (I • 01 I (ADDJ.ENI 1++1

.. h 1[(ADD_LEN - 1 I - Il - Inb ".h •• ml_I._add + 1*211

'* Inltiallzati.n tho Multica.t Add,.. .. T.bl. *'
foT' (pmat 8tCO]1 pmet <- IcmetCt1ULTJ-"DDR_CNT - III p •• t++)

pmat->.tat - FREE.

C.nflgu,..(INTERNALJ.DDPBACKII

S.tAdd,. ••• C),

'* run diagnostics *1

If (Solf_T •• t !- PABBEDI
".turneS.I._Te,t).

1* Put 586 in int.,.nel loopback *1

C.nfigu,..(NO_LDDPBACKII '* C.n.igu,.. the 82586 *,

Bui Id..Rf.(I
<

.truet FD
struet RBD
struet RB
unsigned long

*pfdl
.prltd. .,bu',
baddJ

f.,. (pfd = &fdlOll ,p.d (~ &fdIFD_CNT - III pfd++1

pfd->stat = pfd->el_5 • Oi
pfd-:>Unk - Df'ut(pfd+lll
pfd->1"bd_o .. , •• t • NULL,

1-32

231421-26

AP-235

IPCD/USR/CHUCK/CSRC/DLD. C

end_I'd Ii:I --pfds 1* point to &'dCFD_CNT - 1] *1
pfd->11nk • NULL, 1* last I'd link is NULL *'
pfd-:>el_s • ELBJTs 1* l •• t fd h •• EL bit •• t *1
b.gin_fd =- pld • II:fd[Oll 1* point to first 'd *'
pfd->rbd_of, •• t - O" •• tC&rbdCO])s 1* link fir.t fd to first Tbd *'

for (pI"bd = a.:,.bd[O], pbu". &!,.bu'[Ol, prbd <Q 1I:1"bdCRBD_CNT - III

bad d IS SEQ"T « 4.
b.dd +- Dff •• tCpbuf)J
prbd->buff _1 • b.dd,
pT'bd->bu" _h • badd » 16,
prbd->bu" ,...pt,. - pbufl

prbd->act_cnt.. OJ
prbd->linll .. Of, •• tCprbd + 1)1
prbd->.il ... RBUF_SIZEJ

.nd_1'bd III: --pTbd.
p,.bd->l inll .. NULLJ
p1'bd-)sil' J. ELBITJ

b.gin_rbd = lt1'bd[Ols

1* la.t rbd paint. to NUL.L *'
1* la.t rbd hal .1 bit •• t *'

Build_Cbe) '* Build •• tacle of 'r" callm.nd blacks *1
{

.truct CD .pcbJ

.truct TBD *ptbdJ
struct TD *pbu'J
unsigned long b.ddJ

for (pcb - Ircb[OJ; pcb <- 'cb[CB_CNT - 1l; pcb++) (
pcb->st.t - 0;
pcb->cllld • ELBIT;
pcb->l ink • Off •• t(pcb + 1).

--pcb,
begin_cbl ... end_cbl - pNULLJ
pcb->link - NUL.L.
cb_tos • &cbtOl,

1* Build a stack of transmit buffer descriptors *1

prbd++, pbu'++) -(

'or (ptbd a IItbd[OJ, pb,... IS Cctbu'[Ol; ptbd <=- Cctbd[TBD_CNT - ll;

ptbd->ut_cnt • TBUF _SIZE,
ptbd->link - Dfh.tlptbd + II,

badd a SEIII1T « 4,

ptbd++, pbu'++) -(

1-33

231421-27

inter AP-235

IPCD/UBR/CHUCII/CBRC/DLD. C

badd +- Off •• t(pbufJ,
ptbd->bu" _1 - badd.
ptbd->buff _h - b.dd » 16.
ptbd->bu" .,JItr • pbu',

--ptbd.
ptbd->link • NULL. 1* l .. t tbd link is NULL *1
tbd_tol •• tbd[OlJ '* Set the Top 0' the Stack *1

stl'uct CB .get_CbC) 1* ,..tul'n • painte,.. to • fre. command block *1
(

.t1"uct CB .pcb,

if' (OffsetCpcb • cit tal) -. NULL)
,...tu1'nCpNULLJ,

cb_tos III Cst,.uct CB .> Build_Pt,.C.pcb->link)i
pcb->1 ink -= NULL,
return(pcb),

1* Put. Command Block beck onto the fre. lilt *'
Put_CbCpcb)

(

.tT'uct CB .pcb,

pcb-:>st.t .. 0,
pcb->1 ink • Offset (cb_tol) J

cb_tol - pcb,

stl'lJct TBD *g.t_TbdC) '* ,..tU1'n • pOinte" to • fre. t,.ansmit bu"e,.
d."1'ipto1' *'

(

)

,tT"uct TID *ptbd.

flags. r ••• t_s.m •• tJ
Di.abl._5B6_IntC),
if (Cptbd • tbd_tosJ !- pNULL) <

tbd_tas. Cstl"uct TBD ., Bu:lld_Pt1'(ptbd->link),
ptbd->link z NULL.

Enab le_SSiI_lnt (),
flags. ", ••• t_s.m •• OJ
if, (fl.g •. ", ••• tJend 1)

Reset_586C) J

",etu",nCptbdJJ

1-34

231421-28

inter AP-235

IPCD/U5R/CHUCK/CSRC/DLD, C

.truct THll *ptbd.
<

stT"UC t THO *p ,

,. find the end of the tbd li.t retUl'nltd. ptbd is the beginning */

for (p = ptbd; p->11nk !- NULL., P :III CstT'uct TBD .) Butld_PtT'Cp->l:lnk» J

P->Act_cnt • TBUF_SIZE, ,. c1 EOFBIT and update .i,. on l •• t tbd *1
p->11nk • O'f •• tCtbd_tal)'
tbd_tos = ptbd,

stTuct CB .pcb;

Mifdef DEBUO

;f «pcb. Oet_CbC» •• pNULL)
Fatal("dld. C - SetAdd" ••• - couldn't get .. C8\""),

•• 1 ••

pcb III Get_Cb();

Iond if 1* DEBUO *1

bCDP,,« (cher .)ltpcb->p."ml •• whoemiI:Ol, ADD_L.EN), 1* move the P1'OIl

pcb->cmd :II IA I EL.BtTi

I.lue_CU_'md Cpc"),

faT' C stat :=II FAL.SE, .t.t •• FALSE,) (

fo1' (i=O; i<=OxFFOO. 1++)
if Cscb.clld 0)

break,

if <1 > OxFFOO) <

else

Buge"DL.D: 9cb commend nat c1 •• r\""),
CA;

stat = TRUE;

addre •• to IA cmd *'

1-35

23142,1-29

inter Ap·235

IPCO/USR/CHUCK/CSRC/DLD.C

)

Issue_CU_CmdCpcbl 1* Gueue up a com.and and i.sue a .ta~t CU co .. and if no
other co ... nds a~e queued *1

.t~uct CD *pcb;
(

Dhable_5B6_IntC II'
if Cbegin_cbl aa pNULLI (1* if the list is inactive sta~t CU *1

begin_cbl = end_cbl a pcb,
scb.cbl_off.et a Off.etCpcbl,
Wait_Scb(J,
scb. c.d - CU_START'
Set_Ti.eoutCI, 1* .et deadman time~ fo~ CU *1
CAl

)

el.e (
end_cbl->link a Off.etCpcbl,
.nd_cbl - pcb,

)

)

Enable_i586_lntC I,

In7C I
(

outbCOIEO. 01671;
)

Isr6C '­
(

1* EOI 80130 *1

W~it.C·\nlnte~ru-pt 6\n"I,
outbCOIEO. 01661, 1* EOI 80130 *1

)

Isr5C I
(

)

W~iteC"\nlnt.~rupt 5\n"l;
outbCO.EO. 016511 1* EOI 80130 *1

1* Deadman Ti.e~ lnte~~upt S.~vice -Routine *1

ls~ _Tim.outC I
(

1* Int.~~upt 4 *1

)

R.s.t_TimeoutCI,
i. Cflags.~eset_sema _. 11

flag •. ~ ••• t-p.nd • 1,
.1.e

R •• et_586C II

TIMERljEOJ_801S61
TIMER1_EOI_801301

1* Int.r~upt 0 i. Ua~t in UAP Module *1
1* Inte~~upt 2 i. Ti.er in UAP Module *1

1-36

231421-3Q

intJ Ap·235

IPCO/USR/CHUCK/CSRC/DLD. C

ioriO
(

W"itIC"\nlntll""upt l\n""
autb (OlEO. 016111 I. EOI 80130 .,

'* 586 Int.rrupt •• rvici rautine: Intl1"1'upt 3 .,

U_Iho,.t Itat_Icb •
• ,,.uti; CB .pcb.

Watt_ScbC).
leb. cmd - Clt.t_lcb • leb.ltat) II (eX I CNA I FR : RNRh
CAl

If (stat_scb • (FR I RNRII
Rlcv_Int_P"ac ••• tng C) I

if Cltat_lcb .. CNA) (1* Ind of cb p"ac ••• ing *1

RII.t_Tilllout(). 1* cl •• l" d •• dman ti.I" *1
pcb. BuildJt,.Clcb. cbl_o-p ••• t)1

_lfdof DEBUQ

if (billin_cbl •• pNULL)(
BUll C "DLD: bl.in_cbl •• NULL in int'''l''upt TDutinl\n lll) •

.,..tu1'n.

if «pcb-:>.t.t .. OICOOO) !- 018000)
Fatal ("DLD: C bit not •• t a,. B bit •• t in intll""upt 'routine\n").

_ond If I. DEBUQ .,

..... ttch (pcb->cmd .. CMD_"ASK) (

c ••• TRANSMIT:

'* if Iql bit. 0 and th.,., no callisianl -> Iq. IrY"o"
thil condition 111111 occu" an the fi"st t"ans"is.ian if
th." ". no colli.ions, a,. if the p".vious t"an •• it
command ".ach.d the rna. colli.ion count, and th. cU'r".nt
transmi •• ion had no colli.ion. *'

if «pcb->stat • (SOEMASK : MAXCOLMASK I COLLI1ASKII == 01
++5,._."" _tnt;

if (pcb->stat • DEFERI1ASKI
++d.'." _cntl

1·37

231421-31

inter AP-235

IPCO/USR/CHUCK/CSRC/DLD. C

>

if (pob-:>.tat • NOERRBIT)
++good_Imtt_cntl

.1 •• "

I' (pob-:>.tat • NDCRSI'IASK)
++no_c,.,_cn"a

if (pob-:>.t.t • UNDERRU_SK)
++und.,.,.u"_cnt,

If (pob-:>.tat • I1AXCOLI1ASK)
++ •• x_col_cnt.

if (pcll-:>p.'I"lIl f. NULL)
Put_Tbd (Bui ld-"t~ (pob-:>puftll)).

b lu

on. DIAQNOSE:

flilill. dial_dane· 1,
If «pob-:>.tat • NOERRBITl •• 0)

S.1f _T .. t • FAILEDJ)JAONOSE.
b,. •• 11I

d.fault:

if (pcb-:>linll •• NULL)
begin_cbl • pNULL,

begin_obi • Build-"t~(pob->l1n~).
seb. cbl_of, •• t • pcb->linlu
Welt_SebC),
leb. elld - CU_START'
CA.
Walt_Sob (II
Set_Ti .. eoute). ,* START d •• dman timer *'

>
if « pob-:>olOd • CI'IDJ1ASK) •• I'IC_SETUP)

el,.

pcb->cmd • OJ 1* cl •• .,. Me_SETUP elftd WO'l"', tltis will implement.
lock •••• phD,.. 10 that it .. an't be reus.d until
it is completed *'

Put_CbCpcb), '* Don't ".tU1'" tIC_SETUP Cllld bloc-II. It'. not' •
• ene".1 pu,"po •• comm.~d black 'rom, ,,. •• CD list *1

di •• bleO, /. di •• ble cpu tnt 10 that the '86 i.,. will not n •• t ttl
EOJ_80130.

1-38

231421-32

intJ AP-235

IPCD/USR/CHUCK/CBRC/DLD. C

Recv_lntJT"Dc ••• tnll«)
(

Itruet
.truet

FD
RBD

.,fdl '* point. to the Frame D"cl"iptD1'" *1 .q,. /* point. to thl 1 •• t bd for thl ''' •• 1 *'
prbd; ' pointa to the fi,.,t rbd 'or thl ,,. ••• *'

'01' Cpfd .. blgift_.dl p.d !- pNULLJ p.d • blgin_fd)
If Cp'd->.tat • CBIT! (

.Ifdof DEBUg

blgin_'d. C.truct FD *J Bu:lld-Pt'l"Cpfd->l:LnIlJ,
p,.bd • "t"uet RID .) Bu:lldJ't,.Cpfd->,.bd_of ••• tJJ
if Cprbd !- pNULL) ('* chick to ••• i •• buff • .,. is attached *'

if Cpl"bd ,- '111"_1'bd)
Fatal ("DLD: prbd !- '1IIln_1"bd in Rlcv_lntJ,.oc ••• ing\n")1

.. ndif 1* DEBUg *1

>

>

'a,. (Il • p,.bdl (q,-).ct_,nt &.: EOFBIT) !- EDFBITI
II - Cstruct RBD *1 BulldJ'trCII->linkll.

blll"_1"bd - C,truet RID .) Bu:lld-Pt1"CIl-:>link)1
11,-:>1 inll • NULLJ

I' Cpfd->stat • DUT_DFJlESDURCEBI
Put_F _RFA C p fd) I

,I •• -('* if thl DL.D il in a loopbaclr te.t, checlr the .,. ... e ,.ecv *1
i' (.la ••. lpblr-JRade •• 1)

L.aopb.clr_Chec Ir (pfd) I
.1 ••

1* if it' •• flultic •• t .dd,. ••• check to ••• if it'.
in the lDultic •• t .dd,..,. t.ble, i. not di.c.,.d the ,,. e *1

If C IIpfd->dost_addr[Ol .011 - 011 •• C !ChockJlultlc ... tCpfdlll
PutJnoJlFACpfd I.

el.e
(Recvj,. ... eCp.d)1

++,.ecv_'l"' ••• _cntl

.15. 0(
Ru_St.,.tC), 1* If RU h •• lone into no ,. •• ou,.ce., t."t· it *1
b" •• lu

L.oopbac Ir_Chee II (pfd)

.tT'uct FD *p.dJ

st1"uct RHD *prbdl
.t"uct RB *pbu"

1* Called b\l Recv_lntJl ... oce •• lngJ checlr •• dd,. •••
.nd d.ta 0' potential loapbaclr 'T' ••• *1

1-39

231421-33

inter AP-235

IPCO/USR/CHUCK/CBRC/DLD. C

if (b,.p«ch.", .) .pfd-),,,,cJlddrCOl •• who.mitO). ADDJ.EN) !- 0) (
PutjreoJlFAC p.d I.
r.turn,

>
,T'bd • Cst,.uct RID .) BUild1tT'Cpfd->l'bd_oP, •• t), '* point to ceive

bU".1" d.,c1'ipto1' *1 '
pbu' • (st'l'uet RS .) pT'bd->bu"Jtr, 1* point to c.iv. bu".", *'
If C bCIRpCCch.,. *1 pbu', "lpbk_ tOl. L.PBKjRAIIE_BtzEI !- 01 (

Putj"'.JlFACpfd I • .,.etv.,.",

'lagl. Ipblc_t •• t - I, .. '* p •••• d laopback t •• t *'
Putj"'.JlFACp.dl.

CheckJ1ultic •• tCp'd) '* ,..tu,.nl t'l'ue i ... ultic.,' add".,1 tl in MT *'
,t"uet FD .p'd,

,true", HAT .p .. at,

'0,. Cp ... t ttOl. p •• t <. " ... ttMUL.TI..,ADDR_CNT - 11, pmat++1
i' C p ... t->st.t •• lNUBE
(bcmp«cha1' .) .p.d-)d •• t_addTCOl, .pmat->.dd'l'tOl. ADDJ-EN) ··0»
b'l" •• k,

i' Cpmat > ttMULTI_ADDR_CNT - I])
,..tu,.n C FAL.SE I.

,,*tu,.nCTRUE),

T .. t.J-ink ()
(

Self_T •• t - PASSED,
Diagnos.e),
i' CB.I. _Tnt •• FAILED,..DIADNOBEI

,..turn,
Ru_St.,.te), ,. sta ... t up the RU foT' loapbacll t •• ta *'
'I."s. Ipbll_ItDd •• 11 /* "D into loopb8cll Itod. */

'Iags. Ipbk_t •• t • 01 '* •• t loob.ck t •• t to 'al •• *'
S.nd.-Lpbk_Fl"8111.C)1 '* int."'n81 loopb8Ck t •• t *'
i' (.Iag •. Ipbk_t •• t •• 0) (

B.lf _Tnt· FAlLED.J-PBK_INTERNAL.
flag •. IpbkJlod •• 01
",.tUf'n'

'18.S. Ipbk_t •• t • O.
Configu",.CEXTERNAL.-LDOPBACK). /* •• t nal loopback t.st w' ESI in Ipbk *'
S.nd-.L,pbll_F,.8111.C),
i. cn.g •. Ipbk_hst - 0) (

B.I._T.st • FAILED.J-PBKjEXTERNAL.

1-40

231421-34

inter

IPCO/USR/CHUCK/CSRC/DLD. C

flilg •. Ipbll_rIIode .. 0;
return,

AP-235

'lags. Ipbk_t ... t .. 0; 1* •• ternal loopbilck test through transceiver *1
NO_ESI_LODPBACKI
SendJ.p b "_Fr () J
if (flags. Ipbk_t •• t _. 0)

So If _To.t = FAlLED_LPBK_TRANSCElYER.

Send_Lpbkjr ••• C)
{

struct TBD
Int

*ptbdJ
II

flor (1 • OJ i < BJ i++) < 1* .end Ipbk fr S tim ••• lince it's
b •• t .,fort del iv.,." *'

_Udof DEBUg
if ((ptbd ~ got_Tbd 0) == pNULLl

FatalC"dld - SendJ.pblc_F".lIe - couldn't get. TBD\"");

ptbd .. get_Tbd(),

_end!' 1* DEBUg *1

ptbd->act-<nt ~ EOFBIT I LPBKJRAI'IE_SIZEI
bcop~((eh > ptbd->buff,-Pt,., Iclpbk_',..ameI:Ol, LPBKjRAME_SIZE);

Diagnose()
{

.truct

_I,dof DEBUg

CB .pcb;

if «pcb - got_CbO) pNULLl
Fatal("dld - Diagnol. - couldn't get III CB'n");

".lse
pcb = Oet_CbOI

.end:i f 1* DEBUQ *1

flags. diag_dane - OJ
S.lf _Test .. FALSE,
pcb->cmd = DIAGNOSE ELBITJ

Issue_CU_Cmd (pcb),

"'hile (flags. diag_dane a·O)

1-41

231421-35

inter

IPCD/USR/CHUCK/CSRC/DLD. C

Can.tIU""« laop.l ••)

u_.ho"t 100p.lell'

,'-rue' CB .pclt,

.ifd.' DEBUg
if Ilpcb • got_Cbll) •• pNULL)

AP-235

FatalC"dld - Con.ilu"" - cQuldn't I.t • CI\n"),
•• 1 ••

pcb. g.t_Clte),

•• nd if 1* DEBUg *1

pl:b-),.".1 • O.08OC.
pcb-)par-=Z: • 0.2600 I 100p'18.,
pcb-),.",.3 • 016000.
pcb-)parm4 • O.F200,
pcb-),.1'".' • 0.0000,
if 1I •• pU_, •• NDJ.DDPIACK)

pcb-)p.,.. •• 0.0040,
.1 ••

pc 11'-),.",.6 • 0.0006, 1* loopbaclt ' m. ill ••• but •• than
the lIintMuli ,,. ••• l.ngth *'

pcb-)clld • CONFICIURE ELI IT •

)

1* S.nd a ''''.111. to thl cab1" p •••• ,oint.,. to the d •• tination .dd
and a ,oint.r to the ,i,..,t ,,..n •• U. buf"'" d'lc1'I,tol'. *'

Slndjr ••• e,tbd, p.dd) /. ,..tU,.nl '.1 •• if it tan't I.t • CO.llland black ./
.truct . TID *ptbd.
chat' .p.dd,
(

.truet CI .pcb.

l.n,th.

if ((pcb. g.t_Cbll) •• pNULL)
'1 •••. ,.. ••• t_ - 0,
if ('1 •••. " ••• tJ.nd •• 1»

R ••• t_~()J
, 1'.tu1'nCFALSEh

pcb->par .. l • D tlptbdl.

1-42

231421-36

inter Ap·235

IPCO/USR/CHUCK/CSRC/Dl.D. C

)

'* mav. d •• tination .dd,. ••• to cD", •• nd block *'
bcaplJ«cha,. .).p,b->p.,.1II2. (char .)p.dd, ADDJ.EN),

'* calculate the l.ngth ".1d IIv.au_ing up all the bu".", *'
fo1' Clongth - O. ptbd->Unk !- NULL. ptbd - DulldJ't1'Cptbd->Unkll

l.ngth +- ptbd->.ct_cntl

l.ngth +- cptbd->act_cnt Ie OI3FFF)J '* .dd the l •• t bu'f.,. *'
/* check to ••• i. p.dding 1, ,._,u1,..d. do not do p.dding an loopback *1

1* thia .. 111 nat wa1'k If "INJlATA.J.EN > TDUF_SIZE *1

If C Cl.ngth < "INJlATA.J.ENI.. 1* ... u •• ' • 4 b~t. CRC *1
CbctlpClcwha.m:HO:J, (,h.,. .)p.dd. ADD.-LEN) !- 0»

J 'lu._CU_Cmd (pcb),
'la.l. ,. ••• t_ ••••• 0,
If Cfl.g •. ,.. .. t..JI.nd 11

R ••• t_586C)J
,..tu1'nCTRUE),

AddJlultlc •• t_Add,. ••• CplNl) /. pm. - point.,. to multic.lt .dd" ••• *'
ch.,. .p •• ' '* ,..tu'I'n:l."1 .a1 •• ,. •• n. the Multic •• t: .dd

tablo ia full *1
(

'* i, the multica.t .dd,. ••• i, • duplicate of ane .11· •• dU in the ftAT,
then ".turn *1

for (pm.t • m.t, pmat <- ... tU'ULTI~DR_CNT - 111 pmat++)
if (p •• t->.t.t -- INUBE ••

(bemp(.p •• t->.dd,.[Ol, (char .) p.a, ADD..LEN) -.0» <
r.tu'rnCTRUE)1

'01" (pmat - t, p.At c- ... ttt1ULTJ,J\DDR_CNT - 111 p ... t++)
i 9 (pmet->stet .- FREE) (

plII.t->stat - INUSEI
bcap~C .p •• t->add1'[OJ. Cch.,. *1 p ••• ADD.J.ENI.
b,. •• k,

1-43

231421-37

intJ

IPCO/USR ICHUCK/CBRC/DLD. C

If (pm.' :> ttI1ULTIJlDDR_CNT - III (
fl1ag •. r.s.t_ = O.
if ('lags t..JI.nd -- 1)

Reset_'S6() J

returnCFALSEJ,

SetJ1ultic •• tjlddr ••• C),
'lags. r ••• t_ •••• - OJ
if ('1 •••. ,. ••• tJend •• 1)

R ••• t_5B6(),
retu1"nCTRUEJ,

AP-235

Deletlt_"ultic •• t_Add'l" ••• Cp •• ' 1* returning ,.1 na the lIultica.t: .-dd,. •• s
... a nat found *'

cha'" *, .. ,
(

'01' (p ... at - .at' , •• t <- ... tntULTI_ADDR_CNT - 111 p .. t++)
if (pm.'-:>s'.' - INUSE ••

(bell, (.pfNt->add,,[O], (char.) pilla, ADD.-LEN) .- 0»
p •• t->.tet • FREE,
bre.k.

if (p ... ' :> ttI1ULTIJlDDR_CNT - III (
.1ag •. r ••• t_ 0,
if ('lag8. 'I" ••• t...,P.nd .- 1)

Re.e'_5B6(I,
return CFALSE) J

S.tJ'lultica.t-.Add,. ••• C),
'1 ,. ••• t'_ ••••• OJ
if ('lags. ,. ••• tJ.nd •• 1)

R ••• t_586(),
retu1"nCTRUEJ,

SetJ1ulticast_Addr ••• ()
(

.t,.uct

.truet

i • 0;

"AT *p.atJ
"A_CB *p.a_cbJ

pma_cb • 8cma_cbf
whil. (pma_cb->cmd !- 0) J 1* if the f1A_Ca i. inus., it until it'. f" •• *,
p .. a_cb-:>llnk • NULL.

1-44

231421-38

AP-235

IPCD/USR/CHUCK/~SRC/DLD. C

'01' «pmat • met' pilat <- Icmat[t1ULTI.-ADDR_CNT - 11, p ... t++)
if C pmat-).t.t •• INUSE) (

bCDPU C 'p ... _cb-:> .. c __ ddr[iJ. 'p ... '-:>.ddr[Ol. ADD_LEN).
i +- ADD..J-EN.

pm._cb->ltc_cnt - il
p ... _cb-:>clOd - "C_SETUP I ELBIT.

PutJr •• ..RFACpfd) '* R.turn Fra .. e D •• cl'iptor and Receive Buf'."
D •• c1'ipto",. to the Fr •• Receive Fr ••• A,. ••• /

FD

It1'UCt RDD .prbd. '* points to beg inning of ,..tu1'ned RBD 1 tst *'
ell.l '* points to end of ,..tu1'ned RBD lilt *'

ru_'t.'I"t_'Pl.I_fd, /. indicat •• ..,hethe,. to r •• t.,.t RU *'
ru_,t.rt_'l·lI_rbd,

'18gl. r ••• t_ 1,
ru_start_'lal_'d • ru_st.,.t_'l.l_rbd • FALSE,
pfd-).l_s ... ELBIT,
pfd->st.t =- 0;
p,.bd • (struct RDD .) Build-pt,.Cp'd->rbd_o'f •• t), /. pick up the link to the rbd *'
pfd-)Unll • p'd-)rbd_of, •• t - NULL,

'* Di •• bl._586_IntCh this command is onl\l n.c.I •• ,." in a multitasking
p,.og,.am. Ho v.,. in thil lingl. t.sk envi,.an •• nt thil "autin. il a,.ig1nal1\1
called f,.om ilr _586 (). therefa". int.,.,.upts are al"e.dv disabl.d *1

if Cbogin_.d -- pNULL'
begin_.d • end_fd .. p'd.

else (
end_.d->linll .Df's.t(pfdh
end_.d->.l_ •• OJ
end_'d • ptldJ
rU_lt.,.t_'lag_fd • TRUEJ

if Cprbd !- pNULL) 1* if there il a rbd .ttached to the fd then
find the beginning and .nd of the rbd lilt *1

'Dr Cq m prbd. q-:>Unk !- NULL. q. Bu!ldJ"rCq-:>Unk))
q,->act_cnt • OJ

1* no .. pt"bd points to the beginning of the rbd Ust and
II. paint' to the end of the l'st *1

q-:>Iizo • RBUF JlIZE I ELBIT.
q,->act_cnt • OJ

1-45

231421-39

AP-235

IPCO/USR/CHIICK/CSRC/DLD. C

'* if "".r. il nothinl on the lilt ~
c" •• t •• n ... Iii' */

'egin_"bd - p"b ••
end_I'lId - "
if Cprbd !- q)

,.u_I,."'_.I •• _,,bd • TRUE, '* if ,t. il 110". than an. ,.bd
.... tu,.n.d .t.,., the RU ./

'* if the ".bd Iii' al1· •• d" •• ,.ts add on
tb. n,..tu"n bd. *'

.nd_'I"bd->link • D" •• tC,,.II&I);
.nd_"bd-:>.I •• - R8UF _SIZE,
.nd_1" ctl
1"U_It.,.t_'l •• _"bd • TRUE,

}
If C~u_ota~t_flag_fd ~u_ota~t_flag_~bd)

Ru_8t.,.t ().

'* Enable_:I86_lntC h t. Dl •• bl*_586_lnt() t. u •• d above .,

fla,l. r ••• t_ O.
if (fl •••. ,. ••• 'J.nd •• 1»

R ••• t_586C),

RuJltutc)
<

if «Icb. stat. RU-"ASK) .- RUJ'EADY) '* if the RU i. al,. •• d" '" •• dV'
then return */

If C C be.ln_fd-)otat • CIIT) - CIIT>
,...tu,.n •

.... in_'d-:>"bd_o., •• t - Dff •• tCb •• :l.n_"bdh /* link the ".ginning of the I'bd
Uot to the Unt fd *1

Icb. ,,'a_of, •• t • O" •• tCb.gin_.d)J
w..it_Scb(),
.cb. cfltd • RU_START,
CAl

Sa.t .. a",eJte •• t ()
<

scb. cllld • RESET,
CAl
Wdt_ScbClI

J •• U.Jt ••• t_CMd.()
<

WaitJlcbC)1
acb. ctld • CU_START'
CAl

1·46

231421-40

AP-235

IPCO/UBR/CHUCK/CSRC/DLD. C

out .. (OxFF'E, 0) J

Dut .. ITlIlER1_CNT. 01,
'Qutw(OxFF5E. OICOO.),

whil. «in ... (OJlFF~) • 0.00:20) - 0) 1* if PIa. Cnt bit il •• t before eNA
:h •• t, 596 emd de.dlocked *'

if C (Ieb .• tat Ie CNA) .- eNA)
b,. •• lu

if (Ieb .• t.t • eNA !- eNA)
Fat:alC"DLD: 1 •• ue.ft ••• t_Clldl - Co .. Mnd d •• dlocll dU1'ing "'It.ltt procedure\""),

R.I.t_Ti •• out C) I

leb. emd - CNlu '* Acll"o,lI1.d.1I CNA inter1"upt *'
CA,
Wait_Scbl I,

1* e •• cute • 1' ••• t, Configul"l, S.tAdd"' •••• and rlC_S.tup. th.n r •• te,,'I: the
R.e.iv. Unit And the COII •• nd Unit *1

Ro .. t_'SIoII
(

MT
i,

++,. ••• 'I:_C"'I:;
Di.abl._SB6_lntC),
ESJ_LOOPBACK,
Soft".-r.,jt ••• t () J

fo1' C :f. • OJ i <- OIFFOO, i++)
if <Ieb. stat - (eX leNA»

break,

if Ii :>DIFFOOI
Fatale "DLD: inl'1: - Did not I.t an int,,,,",upt .ft Soft ... ". R •• ltt'n"),

'* Aell the 1' ••• t Jnt.1'1'upt _,
Wait_ScbO,
Icb. cmd • (eX t CNA),
CA,
WaitJlcbC I,

IUdo. DEBUg
if (b •• in_cbl •• pNULL)

F.t.l("DLD: b •• tn_cbl • NULL tn R.let_5B6 H),

londi f I. DEBUg .,

1-47

231421-41

Ap·235

IPCO/USR/CHUCK/CSRC/DLD. C

1* Canflgun th 586 *1
1* Eth.,.net default ,.,. ••• t.,.., Conftllu'r,1 il not n.c •••• ,." IIIh.n ulin.

del.ul t pa lt.,., *'
,..,_cb. link - NULL,

"'I_cb. ,.,.,.1 • OxOBOC,
1'.,_cb. p.,..2 • 012.00,
"1'_CIt. parm3 • 016000.
"I'_CIt. p.,.114 • OxF200,
,.I,_cb. p.,. .. 5 • 0.0000,

, ".,_clt. p.,. ... 010040.
".,_clt. cmd • CONFIOURE , ELIJTJ

leb. cb1_off •• t • O, ••• 1;("'.,_cb. Itat),

J •• UIJf ••• t_CMdIC h

1* Set the Individual Add,. ••• *'
bcopU«ch.,. .) Ie,..,_cb. p.,.1ft1, &lIIh'01 .. 1[01, ADD-.L,EN), 1* lIIove thl '''011

add,..sl to IA cmd *'
1"UI_R .•• et_CfldIC),

'* ,.,load the multic'lt .dd,. ••••• *'
i - ".,-",a_clt. st.t • o.
,. •• .JII._clt. 1 ink • N~LI

'a~ C p .. at teOl' p .. at <- tCI'lUL TI_IIODR_CNT - 13, pmat++)
if (pmat->Itat •• INUSE) (

b<apv (~ a_<b ... <_.dd~[1 l. "pmat->add~[Ol. IIODJ.EN),
I +- IIDD.J-EN'

r".JII"_clt. mc_tnt • I,
,. •• .In._cb. c.d • I'1CJlETUP I ELBJTJ
Icb. cb l_olPleto: • Off •• to:(Ic,. •• .JI._cb. stat),

Issu._Reset_elld.()J

1* R •• t:.,.t the ColIftftI.nd Unit and the Receiv. Unit *' "
flag •. 1" ••• t_ O.
flag •. ,.e.etJend • O.

ND..ESI.J-OOPBIICK,

R.cv_lntJ»1"Dc.ssing (»J

Icb. cbl_o'fI.et • begin_cbl'
Walt_B<bl I.

1-48

231421-42

IPCO/USR/CHUCK/CSRC/DLII. C

scb. c.d • CU_8TARTI
Set_Timeout C)~ /. Set D •• d,.." Tim *1
CA.
Enable_5B6_Jnt(),

,. bcop\! -- lI,t. COP\! ,.outin. *'
bcoP'JCdlt e, "b",t •• »
che" edit, .'1"CI
int nbvt."
<

'* bCllp -- lI..,te co.p.,. •• /
bCltpCII. 12. nb,t ••)
ch.,. •• 1 ••• 2.
int nll\lt •••
<

>

IIIhtl. (nll,., •• -- 1++ - •• :2++),
.... tu1'nC.--.l - *--12),

Ap·235

231421-43

1-49

AP-235

IPCD/USR/CHUCK/CSRC/LLC. C

1 ***** •• *******·.*****·············***···**····**··**.****.***** •• * ••••••• ,. * * IEEE e02.2 Logical Link Cont1'ol Lave..
.. (Station Component) ..

** ••• **************.***.*.*.*.************** ••• *.******.**** •• *****.**********1
.include "dld. h"

•• t " ch.,. .pNULL,

.xt.,..n struet TID ..o.t:_TltdC),
ext.,.n chaT' *8uildJt"()J

" •• donl" cha,. xid_f m.tXIDJ.,ENQTHl. -C O. O. XID. O.Bl. Ox01. 0),
1* DSAP, SSAP, KID. xid cl ••• 1 ,. •• pon •• *1

.t,.uct LAT lattDSAP _CNTl,

Init..Llc()
{

.t1'uct LAT

fOT (plat. 1e1attOl, plat <- 8clattDSAP_CNT - ll, plat++'
plat->.tat • FREE,

,..turn(Init_586(»'

1* Function fa,. .dding .. ne ... DSAP *1

AddJ) •• p.-Addr.I.(d •• p, ,func) '* DBAP .Ult be divisible b .. :Z*.CB-N), IIIh.,..
2**N • DSAP _CNT. Ci .•. N LSBs must b. 01-
The function ..,ill ,..tuT'n FALSE if do •• not
m •• t the .bov. "eq,uiT'enl.nt.~ aT' the lo •• p
Add" ••• T.ble i. full, at' the add "e •• h ••
• l"e.d .. been us.d. NULL DSAP add",e •• i.
'I"e •• "v.d '01" the St.tion Companent *1

int dsap, (*pfunc) ()I
{

.t"uct LAT

if (Cd •• p « CS-DSAP_SHIFT) .. OxOOFF) !- 0 II d •• p -- 0)
,..tu1'n (FALSE),

1* Check 'OT" duplic.te d •• ps. *1
if ((plat - .. lateds .. p » DBAP_SHIFTl)->stat -= FREE) {

P lat->stat • INUSE,
plat->p_s.p_'unc • pfunc;
1'.tu1'n (TRUE),

.Ise
retuT'nCFALSE);

1* Function faT' deleting DBAP • • ,

neleteJ) •• p..AddT' ••• Cd •• p) I. I. th. speci.ied connection e.i.t., it i •• ev."ed.
I. the connection do •• not •• is.t, th. co_and Is ignoT'ed. *1

1-50

231421-44

inter AP-235

IPCO/USR/CHUCK/CSRC/LLC. C

Recv_FrameCpfd)
struct FD *pfdl

*prbdi
.pf.;
.platl

struct RBD
.truct FRAME_STRUCT
struct LAT

p1"bd • (stl'uct RBD *) Build1trCpfd-)T'bd_offset)i
pfl •• (struct FRAI'1E_ST~UCT *) prbd-)buff_ptl'l

if (pfd->1'bd_off •• t ,- NULL) (1* The,.. has to be iI rbd attached
to the fd, or .15e the fl'ilme i~

>

if (pf.->d •• p -- 0) (
too shoT't. *1

1* if the frame is addressed to the Station
Component, then,. respon •• me" b. required *,

if (! (pf.-:> ••• p &.: C.-R_BIT)) (/* if the '"am. received is a response.
inst •• d of ill command, then reJlI'ctl it.
aecau •• this Bafh,a doe. not implement
DUPLICATE_ADDRESS_CHECK. -> no response
fram •• should be ... ecy'd *1

Stati an_Component_Response (pfd) I

'* nat add,. •••• d to St.tion Component. *1
1* check to ••• if the d •• p addressed 1s lIc:tivI *1
oliO If ((pfl->d •• p <:<: (S-DSAP _SHIFT> .. O.OOFF) 0

. (plat - .. laU(pfl->dup) » DBAP_SHIFTl)->stat .- INUSE) {
(*plat'-)p_,.p_func) (pfld). 1* call thl function ••• ociated

with the ds.p rlclived .,
retU1"nl

Put_F1" •• _RFAtpfd)i 1* .,..tu,.n the pfd 1f nat given to the use,. saps *1

Station_ComponentJt.lpon •• (pfd)

st,.uct FD

Itruct FRAME_BTRUCT
st,.uct TSD
struct RBD

*p,., ••• ptfsi
.ptbd. *blgin,..ptbd. *q.
*pT'bdl

prbd = (Itruct RBD .) BulldJ'trCpfd->rbd_ofhot),
p,., •• (ItT'Uct FRAME_STRUCT .) p,.bd->bu"_pt,. •.

• ",1 tch C prh->cmd .. ~P J' _BIT>
{

case XID:

1-51

231421-45

AP-235

IPCO/USR/CHUCK/CSRC/LLC. C

while «ptbd • O.t_Tbd() .- pNULL) I
ptbd->oct_cnt - EOF81T I XID_LENgTH,
bcop .. «chaT' *) ptbd->buffJtT, aclid_f,..m.r;Ol, XJD-.LENQTH);
pUs. (.t~uct FRAI'IE_STRUCT *1 ptbd->buff t~,
ptfs-')cmd - p,,"s->c.d.

ptfs->d •• p • pT'f.-> ••• p I C_R_BITi J* .,..tUT'n the ,
to the sende,.. *1

ptfs-> ••• p • O.
while' !SendJ"AlieCptbd, Build_Ptf'Cpfd->.,.,_ add,.»)1
br •• k, c... TEST:

fo,. Cpl'bd • CstT'uct RBD .) Bul1dJltl'Cpfd->rbd_off •• t),
II. • beginJtbd • pNULL, prbd !-. pNULL,

p~bd • 8ui1d--"t~(p~bd->link))

whil. Uptbd • Oet_Tbd() •• pNULL).J
1f (II. !- pNULL)

q->Unlc • Off •• tCptbd),
el ••

b.ginJtbd :. ptltd,
ptbd->act_cnt • p,.bd->.ct_cnti
bcoPIJ«ch." .) ptbd->buffJtT'. (char.) prbd-:>buffJt1",

ptbd->act_cnt Ie O.3FFF).
II. D ptltdJ

ptfs • ,.tf'uc:t FRAME_STRUCT *> beginJtbd-'>buff .. ptr;
ptf.->cmd - p,.f.->Clldi

ptf,->d •• p • P1"II'->55., I C_R_BITI 1* l'etu.,.n the frame to
the send • .,. *1

ptfs->ssap • 0;
whi le(!Sl!'ndJra •• (beginJtbd, Build_Pt,.Cpfd-:>."c_addT')).
b.,. ••• 1

1-52

231421-46

inter Ap·235

IPCD/USR/CHUCK/CSRC/UAP. C

, .. **** **** •••••••••••••••• *** •••••••••••••••• *.*****.********.***
* * .. Use" Application Pl'ogl'am ..
.. Asunc to IEEE B02. 2/802. :3 Protocol Converte" ..

* * •••••••••••• *** *** •••••• ** •••••••• **···.·.*** **1

1* ASCII Ch.,.ect.,.. *'
IIdoUno ESC O,IB
.deftne LF OIOA
IIdofino CR 0,00
lido Uno BS 0,09
IIdoHno BEL 0,07
IIdofino SP 0,:/0
.de"n. DEL Ox7F
IIdoHne CTL_C 0,03

1* Hard ,.. *1
IIdofino CH.JI_CTL O,OODE
lido Uno CH_A_CTL O,OODC
lido Uno CH.JI_DAT O,OODA
IId,'ino CH-A_DAT O,OODS
IIdoUn. UART_STATJlSK 0,70

'* Intl"'1'upt ca.es fat' 8274 *1
IIdofine UART_TX_B °
.dofino UART_RECV_B O,OB
IIdoUne UART_RECV_ERR_B O,OC
.doUno EXT_STAT_INTJI 0,04
IId.fln. EXT_STAT_INT-A 0,14

char fifD_t[25bJJ
ch.,. 'l'o_,,[256JI
ch.,. ... ,..C5J, ..,rbC5JJ
unsigned char In_'::I.'o_1o. out_hfo t. In_'lfo_1', aut_fifo_t'. actual;
u_lhort t_buf _stat. ,. _bu' _stat;

1* Command line buff.,. *1 cbufCB01J
1 in.,[Sl], 1* Hanitor ,",od. displilU lin. *'

unsignld cha,. dsap, ss.p, Sind_flag, local_.choi
ch.,. DI.t_Add,.[ADD,J.ENll
cha,. Multi_Add,.CADD_L.ENll

int tmstati '* teT'min.l made status: for l.aving terminal mode *1
int dh,x, monitor _fl1ag, hs_,tat; 1* fllags *1

Ilt.,.n struct TOO *get_TbdO,
Ixtlrn char .BuildJ't~()i

extl ... n st,.uc't: FLAGS flagsl

Ixte ... n char lid_,,.ameClJ
ext.,.n cha,. whoamitl;

1-53 .

231421-47

inter AP-235

IPCD/UBR/CHUCK/CBRC/UAP. C

•• t.,," stl'uct IlAT rute],
•• t.,," st'l'uct LAT latl:l.
•• t.,.n ch.r *pNULL,

•• t."n unsigned long gOOd_lilt t_cnt,
•• tern u_short unde",.u"_cntJ
e.t.rn u_sho"t no_c,.,,_cnt;
•• t.,," unsigned long defe,,_cnt.
•• t.,." u_sho"t .",._."1' _tnt,
elt.,," u_short ",.x_col_cnt.
•• t.,.n unsigned long ".cy_f" ••• _cnt.
e.t.,," u_sho,.t ,.. ••• t_cnt'

•• t.,.n struct BCB seb,

'* Macro' t\lp.' of definitions *'
'define RTB_DNB Dutb ICHJI_CTL. 01011), Dutb ICH_B_CTL. ""bCIIJ ... rbCIIJ 10102)
'define RTB_DFFB Dutb ICHJI_CTL. 01011), DutbCCHJl3TL ... rbCIIJ ... rbCIIJ .. OIFD)
'define RTB_DNA DUtb CCH.J_CTL. 01011), Dutb CCH_A_CTL CIIJ_ .. CIIJ 10102)
'deflne RTB_DFFA DutbCCH.J_CTL. 01011), DutbCCH.J_CTL ... r.CSJ· CIIJ .. OIFD)
'define UART_TX..pIJI Dutb ICH_B_CTL. 0101), Dutb CCHJI_CTL ... rbCI J ... rbC IJI<ChFD)
'define UART_TX_EIJI Dutb CCHJI_CTL. 0101), Dutb CCH_B_CTL ... rbCU ... rbCIJ 10102)
'define UART _RX..PI_B Dutb CCHJI_CTL. 010111 Dutb CCHJI_CTL • .. rH 1J· .. rb t1 J1001E7)
'define UART_RX..EIJI DutbCCH_B_CTL. 01011, Dutb CCHJI_CTL. wrbCIJ-.. rbCI J 10110)
'define RESET _TX_INT Dutb CCHJI_CTL. 0128)
'define EDI_B274 ·DutbCCH.J_CTL.OI3B) 1* B274 int Is lR3 Dn 80130 *1
'define EDl_BOI30_B274 Dutb COIEO. 0160)
'define EDl_BOI30_TIl1ER DutbCOIEO.OI62)

En.b Ie _U.rt_lntc)
(

tnt CI

c • '"bCO.E:!:), 1* d the 80130 int.rrupt m •• ' ,._gist.,.. *'
DutbCOIE2. O,OOFE ...), 1* .. rlh to the BOl30 Inhrrupt k uglshr'*1

DI .. Ue_Uert_lntc)
(

tnt CI

c • inb (0IE2),
Dutb CO,E2. 010001 I .),

En.ble_Timer _IntO
(

>

tnt CI

. DutbCOIEA. 1211),
Dutb (OxEA, OaOO), '* Timer 1 lnt.rl'Uptl' eve,.., . 12~ .ee: *1
send_'Uag • FALSE,
e: • inb(0IlE2); 1* ,. •• d the 80130 lnt.".".upt M •• "..,I.t.,. *1
OUtbCOIE2, OIOOFB • c); 1* ",,.ite to the 80130 int.,.,.upt .. alk ,..giste,. *1

1-54

231421-48

intJ

IPCD/U5R/CHUCK/CSRC/UAP. C

Di •• ble_Timer_lnt()
(

tnt Ci

c = inbCOxE2);
autb COxE2, 0.0004 Ie),

COCc)

CHI
(

cha,. el

while (CinbCCH_B_CTL) • 4) .- 0),
autb (CH_B_DAT, c) I

11th! 1. C Cinb (CH_I_CTLJ Ie 1) •• 0 lJ
rotuTnCinbCCH_BJ)ATI 110 0.7FI,

R •• dCpmsg, ent. pact)
che,. .pmag'
unsigned cha" ent, .pact,

unsigned ch.,.. I,
ch.,. c. buft2001,

AP-235

fiaT" (i • c • 0, (c !- CR) ,. (c != LF) It&. (:i C 198),) {
c • Ci () 81 Ox7FI

}

If Ce •• DS II e == DEL)
if Ci > 01 (

lIse

81 ••

--1,
CaCDSI, CaCSPI, CaCBSI,

if Ce >= BPI
CoC,),
bufC 1++1 - (I

if (Cc =- CAl II (c 1;11. L.F» {
buft 1++1 • CRI
bu.t i++l • L.FI

}

.1s. CaCBELl J

CaCCRl, CaCLFJI
If C i > entl

.pac t = cnt,
1151

.p.et • 1,
fo1' (1 .0, i <: .pact J i++)

.pmag++ • buftil,

1-55

231421-49

IPCO/USR/CHUCK/CSRC/UAP. C

unligned char 1.

R •• d (lIcbufCOl. eo. ..ctual) I
I • SHpllocbuf[O]J,
returnC cbu'[i l),

Wl"iteCp"'lg)
,hal' .p.",
",hile '.pmlg !- '\0') -(

if '*p.' •• 111 '\n')
ColCRJ,

Co(.pmll++"

Ap·235

FataICpm'g) '* ",rit. _ to the Ic,..en then atop *1
che,. *pmlg'

Wl"ite("Fatal: 1111
W,.iteCpm.g),
foT'(, J "

DugCpmsg) '/* "rtte • m •••••• to the .e,.. •• n then continue *1
ch.,. *pmsg,

WrtteCIlBug; N);

WriteCpm •• ',

A,.cii_To_Ch.,.Cc) '* convlT't ASCII-H •• to Cha,. *1
cha" CI

if « '0' <- c) ... (c <- '9'»
returnC Ii - '0",

if « 'A' C- c) •• (c (- 'F'))
returnee - 0.37),

If «la' (c c) •• (c (- Ifl/»

1'lturn(c - OaS?),
,..turnCOaFF',

Low.", _Ca.1 (c)
ch.r
<

if «'.' (- c) .. (c <- '1'»
,..turn (c) I

if «'A' C- c) •• (c <- 'l'»
,.,turn(c + 0.20';

1"etu1'nCO',

1-56

231421-50

inter AP-235

IPCO/USR/CHUCIVCSRC/UAP. C

Ch.,,_To.-Asci!(c. c:h) 1* convert c:h." to ASCII-He. *1
unsigned char Co th[]1

unsigned char ii

i = (c II: a.FO) » 4.
if (i < 10)

cheOl ... i + Ox30;
al ••

cheal = i + 0.37.
j = (c " OxOF) ;
if (1 < 10)

chell CI i + 0130;
else

ch[ll = i + 0,37,
cht2J ;;:: '\0',;

Slcip(pmsg) '* skip blank. *1
ch.T' .pmagi

tnt 11

fo,. (i .. 01 .p ... g =- t , J i++. pmsg++) I
raturnCi);

R •• d_lnt () 1* Read a 16 bit Integer *1
<

wd. wh. wdl. whl, Ji
i. dan •• hex. doveT", haverl

foT' (dane -= FALSEi done •• FALSE!) (
R •• dC&':cbu.pC01. 80. &cactuaUI
i ,. SlcipC&':cbuftOl)1

for Che dover'" hover" FALSE. laid ... wh .. wdl .. whl ... 0; I

)

jf (J :> '1)
hex = TRUE;

wd = wd*tO + J;
... h = wh*16 + Ji
if (llald < wdl)

dav - TRUEI
if (wh <: ... hl)

(J • AscU,_To_CharCcbu'Ci]» (. 15; i++) ..

hover ,. TRUEI
IaIdl • Wdi ... hl • "'hi

1F [cbufU] •• 'H' II cbuf[i] 'h' : I c:buf[ll •• CR ::
c:buf[ll == LF I: cbu"[il t ') {

if (cbu"[iJ .~ 'H' II cbu"[1 J ~~ 'h')
ho. l1li TRUE,

• f (hex == TRUE haver ~= FALSE)
done = TRUE,

if (hex .. FALSE dover •• FALSE)
don TRUEI

1-57

231421-51

AP-235

IPCD/USR/CHUCK/CSRC/UAP, C

if C ~don.) (
WT'ti;e("\" Th1s nUMb." i. too Ittl. \" It ha. to b. le.1 than 65S3b. \n"),
W"tte(-'n Ent numb." --) P),

)

el ••
WT'ttl(" 111 ••• 1 Ch.,..act.,.," Ent." a numbe", __ >"),

)

If (h.l)
,...tu1'n<-..")'

,..tu1'n(lIId)i

Jnt_To~.c1i (valul, b ••• , Id, chi wtdth) /. con".", an int •• _", to an ASCII It'l"ing *1
unligned 10nl valUl1
u_short b •••• width.
eha'" che 1, Id,

fOT" (i - O. i < ,ddt'" 1++) (
J • "alul X b ••• ,
If (J < 10) ch[i] - J + 0130,
81s1 ch[il • J + 0.37,
valUI • valul I b ••• ,

'aT' 'Ci • width - I. ch[tl _. '0' Me i ,. O. 1--)
chCiJ • Id.

ch[lIIIidth] • '\0'.

W1'it.j.ong_lntCdw, t)
unlignld long db ..
u_Iho,.t ii

u_,ho,.t JI
ch.,. ch[111,

If'(dhn)
In1:_To-"lc i i (dill.

81 ••
Int_ToJlsc i i (dOl.

fo~ (J • OJ ch[J] !-
lin.[i] • chtJ]'

Wrtt._Sho1't_lnthh i)
u_short .. , li

u_ahol"t J'
c:h.... ch[61.
un_ilned 10nl dl.u

dill • III.
if (dbOl)

lb. '. 'ch[O]. B),

10. " 'ch [0]. 1011
'\0', i--, J++)

Jnt_To_AacU(dw, 16, '0', .c:h[O], 4)1

.1.8

1-58

231421-52

inter

IPCD/UBR/C/iUCK/CBRC/UAP. C

Int_To.-Alcitcdl.b 10, '0', "chCO], ~5),
for <J - OJ chCJl !- ·\D', i--, J++)

11n.[1] • c:btJ]5

Ves')
{

flor (J I) (

b • R .. d_ChnCl,
if Uti •• 'V') II (b '\I')

.,..tu,.nCTRUEJI
if (ea. •• 'N') II Cb 'n'»

1'l'tu"nCFM..BE);
W.,.it.C" Ent.r a V or N --> ""

AP-235

R •• d.J\ddl'(pmsa. add. cnt) /* P.'&I - point.,. to the output m ••••••• ,
1* add - paint.,. to the ad dr ••• *'
/. cnt - numb." of b\lt •• in thl addr ••• *1

ch.", *P.SII' addt], c:ntl

'01' C I ;) (
WritlCplIlg)J
R •• dCltcbufCO], 80 ••• ctu.l) i
for (J - •• ipU.cbufC01), i .0, i <: a*cnt I i++. J++) 0(

if (C'O' <- cbufCJ1) lele (cbuf[J] <- '9'»
cbuftil a cbuf[Jl - '0',

els.
if (C'A' <- cbu.tJl) ,. Ccbuf[Jl <- 'F'»

cbuftiJ • cbuftJl - 0137;
,I ••

i' «'.' <- cbufCJ]) Ie .. (cbuftJl <:- 'f'))
cbufCl1 - cbufCJl - 0.'7,

)

else (
Writ.(" Il1.g.1 Ch.".ct."\n")l
by-.alll

if (i :>= :Z*cnt - 1)
br •• lli

.par (1 .. 0, :I. <- tnt - 1, i++)
add[(cnt - 1) - il ";II tbuft:Z*l] «4 J cbu '[2*i + 1J;

IWrit._Addr(padd, tntl
char padd[J. cnt;

i. c[3JI

fOr (J cnt)0 i cnt--) (

1·59

231421-53

inter Ap·235

IPCD/USR/CHUCK/CSRC/UAP. C

)

<

t • p.ddtcnt-llJ
C;h." _To_Asc it (i. lcetOl),
Wrt hClocCO] II

e[Ol • "n',
ttll • '\0',
W,.tte(lcc[Ol);

at'ruct FD

.truet FRME_STRUCT
• truet TID

.,,,,.. .pt •••
*ptbd. *lIe,I"-Itbd. *ql
.prbd, .t,.uet RID

char .,,,bu"
tnt cnia

p1'bd =- CstTuct ABD .) Build.-pt1'Cpfd-:>,.bd_off •• th
pr'. - CatT'uct FRAtfE_STRUCT .) BUildJltrCprtuf->bu"Jtr),

... iteh C prh->e1ld 10 ~P J JIlT> <
ca.. 01:

if Cllonitor_.lag)
b1' •• k. 1* Don't put d.t. in fifo unless in t.,.minal ,mod. *1

pTbu' • (cha", .) ,,.,.,
p,..bu' +- 3, '* • .,i, ove'" the h •• d.,. info and point to the d.t. *1
ent • 3,
pfd->1.ngth - 3.
far ,(' prlld !- pNULL' tnt - o. p"bu' - (ch." .) p,.bd->buffJtrO)-(

fa,. (f cnt < (prbd->."t_cn't II OI03FFF) ... ,'d->length':> 0,
ent++, p,..bu'++, pf'->length--) -(

whileC,,_bu'_stat •• FULL),
Fifo_R_ln (*'T'bu')J

pT'bd • Bui ld_ptr (pT'bd->l ink) I

if (p'd-:>l.ngth II1II- 0 • ., pT'bd !~ pNULL)
F.t.l("U.p: R.cv_D.t __ l(p'd) ")1

•• "dil 1* DEBUG *1
}

b,.e.lu

cas. XID·

\IIhil. (ptbd - Oet_TbdO) == ,NULL),
ptbd->act_cnt • EOFBIT I XIDJ-ENgTH,
bCOPItI (ch.r -) ptbd-:>bu"-pt"~ 8clid_fT'ant.[Ol~ XID_LENGTH);
,tfs =- c,t,.uct FRAPE_STRUCT .) ptbd->buffJtri
,tf.->cmd • '1".->C."
,tf.->dsap a ,r'&->, •• , I C_R_BlTI 1* r.turn the frame

to the sender *1
ptf.-:> ••• p - ".'1
while(!S.nd,Jr ('tbd, - Sui ldJtr(pfd->,rc_addr»);

1-60

231421-54

AP-235

IPCO/USR/CHUCK/CSRC/UAP. C

>

case TEST:

for (prbd • (st'l"uc't RBO .) Bui 1 d1t,. C pfd-:>rbd_offslrt),
q, -= begin-ptbd • pNULL, prbd ~. pNULL,

pl'bd • Bui Id_Ptr C pT"bd->l ink») (
... hil. CCptbd • aat_TbdO) ... pNULL),
If (q !- pNULLI

q-:>lInk - Offset (ptbd I.
el ••

begln..JItbd • ptbd.
ptbd-:>act_cnt • prbd-:>.ct_cnti
bCDPlltech.,. .) ptbd->buff_pt1', (eh.,. *) p"bd->bu'f_ptr,

ptbd-:>act_cnt 8r O1lll3FFF);
!I - ptbd.

ptfo • (.truet FRA"E_BTRUCT *1 begln..JItbd-:>buH..JItr.
ptfs->c.d • pr'.->cltd,

pt,.->d •• p • ,"'.-)II.p I C~JUTJ ,. ,..tut'n the f,..me to
the •• nd.,. *,

ptf'-)llap • , •• pl
!.Ifh Ue(!Sendj,..me C beg in...ptbd, Bui Id_Pt,. (pfd-:>src_addr))) I
b,. •• lu

Put_Fr •• _RFA(pfd) I '* ratu,.n the fra"'e *'

Fifo_T_OutC) '* c.alled b\l main p1'og"a", *1
{

c • fi'D_tCout_'l'o_t++lJ

Di.able_Uart_lntC "
if (aut_fltflo_t •• in_,t'o_t) '* if the fifo is ."'pt\l *'

t_bu._stet .. EMPTV, '* ,top fI:i.lling r,..nl",it Bu'f.,. D.,c,.iptar. *'
el.. '* if the fifla III.' full .nd il nalal d,..ining *1

,i' (t_bu'_lot~t .D FUL.L •• aut_flifla_t - SO ... in_fli'D_t) < '* tu,.n Dn
tha spigot *1

ATB_DND.
t_buf _,t.t • INUSEI

Eneble_U.,.t_lnt(),
,.eturn(c),

F1fo_T_ln(c) 1* c.lled b\l UiII1't receive intaT'1'upt *1
cha,. c.

fiflD_tl:in_'i'D_t++l == Ci
If (t_buf _"tot == EI!PTYI

1-61

231421-55

inter AP-235

IPCO/UBR/CHlJCII/CSRC/UAP. C

'_bu._.ta' • JNUSE, 1* .t , filling T,...nlilit Buffer D.scriptor *1
.1.. 1* if th.,.. are onlv 20 locationa l.,t, turn of' the .pilot *'

If Ct_bu'_stat •• INUBE •• in_'lfo_t + l!O - out_'lfo_" (
RTS3IFF8.
'-'ul _Itat • FUL.L,

Fifo_R_Oute) '* called ltV ,,..nl.i'l: int rupt *'
<

if (out_fifo_r •• 1"_'1'0_") '* if the fi'a i, •• ptv *'
r _bu, _stat • E"TYJ

.1.. '* if the "fa ".1 full and ,. nOIll d,..inlng *1
If C,,_bu'_stet - FULL .. out_'I'o_" - SI - in_fifo_")

l' _bu' _,tat • INUSEf
,..turnCC)i

Fifo_R_InCcl '* cell •• bU Recv.J)4lte_lC) *1
cha... CJ

'l'o_"l:ln_"'o_",++) - CI
Dheblo_U .. t,;,lntC II
If C,,_bu'_stat -- EI'I'TV)

UART _TX_EI_B.
CoCO). I. pri .. th internpt *1
r _bu, _,tat. JNU8E.

el.. '* if the bu",,,, i. full. indicat. it *'
if C1'Ju,_,tat - lNUSE •• 1"_"'D_" _. out_'i'o_1')

r_bu,_,tat • FULLJ
Eneblo_U .. t_lntC).

outbCCH_B_CTL. 21. '* point to RR2 In 8274 *1

u .. UART_TXJI:

'if (,,_buf_Itat •• EI1PTY)
UART_TXJlIJI.
RESET_TX_INT •

• 1 ••
ouU CCHJlJlAT. Flfo--,,_OuU».

b ~J

1·62

231421-56

AP-235

IPCO/UBR/CHUCK/C8RC/UAP. C

c ... UARTJlECV_ERRJI:

Dutb (CHJt_CTL. 1), '* paint to RRI in 8274 *'
.t.t • inb CCH_B_CTL) J

DutbICHJI_CTL. 01301,
if I.tat .. 0.0010)

W,..:lt.C"\nP.,..it" E"raT' Detected\"");
if C .t.t .. 0.00201

Wl'ite''''nDve.,.run ET'l'or Detected\n");
if I .t.t .. 0.0040)

Wl'i t. C • \nF"ellling Error Detected\"")J
b,. •• lu

c • inbCCH_BJ)AT),

if (hi_stat •• TRUE) (
hs_stat • FALSE. '* Flag to t.,.minet. High Spe.d Transmit mode .,
br •• lu

i' (local_echo)
CoCc"

:1," (c. •• eTL. C)
t.atat • -FALSE;

.1 ••
Fiflo_T_In(c),

bre.k,

c ... EXT_STAT_INTJI:

Du1:bICHJI_CTL. 0.101,
bl' •• II.

c ••• EXT_STAT_INTJI:

DutbICHJI_CTL. 0.101,
break;

)

EOl_80130_8274,
EOIJ1274,

I.,.;!C)
{

.end_fleg • TRUE.
aut .. (OxEA, 125);

'* echo the cha" back to the t.,.lft1n.l, could cause
a ,,..namit overrun if TI inte"1'upt i. enabled *'

DutbeGIEA, 0.00), '* Tim.,. 1 inte1'rupta eve ... " .12' •• c .,
Dutb 101EO. 0162), 1* EOI 80130 *1

1-63

231421-57

AP-235

/PCO/UBR /CHUCIVCSRC /UAP. C

LoadJ."p!)
(

'aT'C, J) 0(

>

R •• d-"ddT'CtI\n\nEnt.,. this Btatlon'. LaAP in He. --:> ", p, 1),

if C !AddJl.apJlddnIOC."p. R.cvJlata_lIl (
WT'tteC"'n\nE","oT': LSAP Add mu.t: be on. o' thl 'ollotdnl: 'n"',
Writ.C"'" 20H, 4OH. 6OH. BOH, AQH. COM, EOH \n")'

Load-"ultic .. tC I
(

'a,. « I I) (
R •• d~ddl"("'nEnte ... the Multic •• t Add,. ••• in HI. __)11,

,,"ul UJlddr[OJ. ADDJ.ENI.
If C CMultlJlddr[Ol • 01011 •• 01

W,.tt.C"\nSo"'''~1 thl LSI of the "ultic •• t Add" •••• u.t 'e l\n"), .10. (If C !Add-"ultlca.t_Addr.IOI .. Mult1J1ddr[OJII (
W1"iteC"\n\nSo,.",. Multica.t Add,. ••• Table i •• ull "nil),
b lu

)
,I •• -C,

RIIIIDVI-"ultica.tC)
(

W,.ttitC"'n\nWauld .. ou Itll. to edd anath.,. Multic •• t Add,. ••• ?"),
Write' If CV aT' N) -::> "h
if I !V •• C II

b,. •• k,

.ar (i I) 0(
R •• d-"dd"C "\nEnt.,. thl "ultic,.' Add,. ••• the' \IOU .. ant to delete in H •• --)." ,

,,"ult1_Addr[OJ. ADDJ.ENI'
If CCMuUIJlddr[Ol .. 0.011 •• 01 ,

W"iteC -'nBa,.,.", the LBB af the "ultic •• t Add,. •• 1 mUlt b. 1 \n")J
.1 .. (If ('!Deleh-"ult1c .. tJlddnIlC,,"ultIJlddr[Olll (

)

. WTiteC"\n\nBa,.,. .. , tihet "ultic •• t Add" ••• da •• n't e.ilt!\n").1
b,. •• ki

et .. (
Wrtt.C"\n\nWauld Vou l:U:. ta del.te .nother "ultic.lt Add" ••• ?"),
WTtteC" (Y D" Nt --> ")J

if C!V .. III
b,..ekf

1-64

231421-58

inter, AP-235

IPCD/USR/CHUCK/CSRC/UAP. C

Pl'int--'dd" ••••• C)
{

.truc:1: MAT .p ... ii1
lnt .t.ti

Write''''" This Stations Hast Addr ••• 1s: ")1

Write_AddrCIc..,hoa",i[Ol. ADD_LEN);
W,.tte("\n The "Add" ••• a' the D •• tination Node is; "),
Write.,AddrC.D .. t_Addr[Ol. ADD_~EN)I
Writee"\" Thil Station. LSAP Address is: ");
W"ite_Add,.' •••• p. I),
WriteC 'I ," The Add"I". D' the D •• tination LSAP is: ");
W"ite..Addr'lcd •• p, 1);
.t.t • FALSEJ
'or C pmat /ill , ... at[O]s pilat <- &!matCI'IULTI_ADDR_CNT - 1 JJ Pnlilt++)

if (p •• t:-:>.1:.t •• JNUSE) (
.t.t • TRUE.
b,. •• lu

)

If Cshtl {
Wl'ite''''n The .alloliling Multica.t Addresses .re enabled: OIl;

'01'" (p ... t a bateOl; plII.t <- &cmatCI'IULTJ_ADDR_CNT - lJ; pmat++)
if (p •• 1:->.t.1: •• INUSEJ (

Write.,Addr C.pmet->edd,.[Ol.. ADDJ.ENI.
Writee" "),

el ••
WriteC"'" There .,.. no Multic •• t Add"esses enabl.d. \n H);

In1 t_DataLinlf ()
{

int stat;

if «~tilt = Init_Llc(») •• PASSED)
W,.lteC"\n\nP •• sed Di_gnostic Self T •• t_\n\n\n H);

.1 ••
jfCst.t =m FAI~EDJlIAQNDSEI

W,.tt.(H\n'nF.il.d: Self Test Diilgnos. Commilnd'n'"),
else

if C stat a. FAI~EDJ.PBK_INTERNALl
W,.it.("\n\nFail.d: Int.,."ill Loapbilck S.lf T •• t\n"),

.ls.
ilC.tat ~a FAI~ED_~PBKJ:XTERNA~)

W,.,t.("'n\nF.il.d: Ext'1'n.l Loopb.ck S.lf Test\n");
.1se

ifCstat =- FAI~ED_~PBK_TR"'NSCEIVERI
W,.tte("\n\nFili,lld: Ext.,.n.1 Loopback Th,.ough T,.anacltvl,. Self TIst\n'").

outb (OxEO. 01.31) I
outbCOxE2, 01.20).

l*initaUII 80130 pic - ICWl *1
1* lCW2 *1

1-65

231421-59

inter

IPCO/USR/CHUCK/CSRC/UAP. C

1* ICW3 *1
1* ICW. *1
1* ICW" *1

AP-235

Dutil (0IE2. 0110) I
Dutil (01£2. 0.00) I
outb IO.E2. 0.101,
outb COIE2. O.FFII 1* m •• 1I: all inte"l"upts *1

out1llCOxFF20. 010020),

outbCO.EE. 0.341,
outb CO.ES. OIBSII
QutbCOxEB. 0.08), 1* BYBTJCK. •• t 'or 1 ... ee *1
outb CO.EE. 01701'
outb(O.E/ .. 1251,
outb(OIEA, O.OOh /. Tillie,. 1 int.",.upt. eve"" . 12' sec *1

1* Inl ttali I. the B274 *1
outb (CHJI_CTL. 0.1011 outbCCHJI_CTL. 0.2Sh outbCCHJI_CTL. 0.301,
outbCCH-,,_CTL. 0.381,
outb(CHJI_CTL. 211 outbCCHJI_CTL ... ~bC21 .0.141,
outb(CHJI_CTL. II, outbCCHJI_CTL •.• ~bCll ·0.151,
outbCCHJI_CTL. 51! outbeCHJI_CTL ... ~bC51 • O.EAI,

W,. it.e Ii\n'n\"\"'n\n\"\n\n\n'n\"");
W,. i t. c .. • .. ****** * ** •• \"'");
W1"it.C" .. 825B6 IEEE 802. 2/B02. 3 Compatibl. Date L.ink DT"iv." *'n"); W,. i t. (II •••••••••• _ ________ \ nil) ;

WT"i t. (It\n\n\n\n\"\n\n") I

In! tJlat"LinkC I,

dhe •• FALSE.J
manito,. _'la. - TRUE;

R •• d..AddrC"\n\nEnte1" the Add,. ••• 0' the D •• tination Nade in He. --> ",
IoDnt_Add,.C01. ADD....LENI,

Load_L •• p () I

,R •• d_Add1"'("\"\nEnt.,. the D •• tination Nad. 's LSAP in He. --> ". IId •• pI 1);

Wl'it.C"\n\nDa "au nt to Load an.., Multica.t Add,. ••••• ? (Y 01" N» __ >"),

if (V .. el)
Laad_"ulth: •• t(),

PT'lnt~ddres.es();

int
, Itruet

ch.,.

f"allle_ent, buf _entl
TBD *ptbd. *q. *b.ginJtbd,

.pbu •• Ci '

W1"it.C"\" Would 'OU 1ill. the local echo an? CY Q1' N)-->")J

ifCVes() »

1-66

231421-60

IPCO/USR/CHUCII/CSRC/UAP. C

local_echo" TRUEJ
.1 ••

local_echo:;. FALSE.

AP·235

Writ.("\" This program w1ll nOlAf ant.,. the terminal mode. \n\n");
WT'ite("\n Pres. "'C th.n CR to r.turn back to the menu\n\n");

1* Initialize Fifo vilT'iabl •• */

aut_fifD_t =:I in_fifo_t .. aut_fifo_\", • in_fifo_" .a 01
t_buf _stoillt =- EMPTY, ,. _bu' _stat .. EMPTY,

EOI_BOI30_B2741
Enable_Ua,.t_JntC),
Enab la_Tim.,. _tnt () J

manito," _flag III FALSE.
tm5tat = TRUE;
lIIhile (tmstat)

far ('Tame_cnt - 01 framll_cnt < MAXjRAME_SIZEI q, -= ptbd) {

.,h:ll. «ptbd .. Oat_TbdC)) •• pNULL); 1* get iii limit buff.,. from the
data link *1

pbuf - (ch *) ptbd-:>buffJltT'1 1* point to the buffer *1
bu' _cnt =- 0;

if! ('''tlme_cnt .- 0) ('* if this is the fir.t bu'fer, add on IEEE 802.2
headel" info1'mation *1

begtn,JItbd D ptbd;
*pbuf++ III d •• pl
*pbuf+'" - •• apl
*pbu'++ • UJI
bu' _cnt • 3,

else Il->link =- OfFsetCptbd)1 1* if this isn't the first bufFer
link the previous buFfer \ltith the new one *1

1* fill up • datil IJ.nk .mit buffer f,.om IIs~nc transmit fife *1
for C ; buf _tnt < TBUF _SIZE leI.. frame_tnt < MAX_FRAME_SI2'EJ

bu' _cnt , pbuf++, ,rame_cnt++> {
if (fT'.me_cnt !. 0 &-Ie send_flag)

br •• kJ

4IIhile Ct_bu._stilt == EMPTV); 1* wait until fifo has data *1
if C(c • *pbuf • Fifo_T_DutO) CR) {

+"'bu' _cnt i ++pbufi ++f,..me_cnt.
br ••• '

if Cc == CR : I bu._cnt < TBUF_5~ZE II send_flag) < 1* last buffer in list *1
ptbd-)act_cnt • bu' _cnt t EOFBIT;
send_flag ::II FALSE;
br.ak.

while(!SendJ'T"ameCbeginJltbd, &-D.st_Addr[O]». 1* keep tT'~ing until
successful *1

1·67

231421-61

AP-235

IPCD/UBR/CHUCK/CBRC/UAP. C

Di •• ble_UaT"'_lntC h
Di.able_Tilll." _In\:()1
monito,. _flag =: TRUEs

.truet TDD
u .. shart
u __ hart

"'ruet TBD
char

*8uildJ"' (cnt)
cnt.

bu' _ent. '"ame_ent. if
.ptbd, *Il' *bellinJtbdl
.pbu';

.pOl' (J J Cl. ptlld)

whil. «ptlld - Oet_TlldC» ... pN'-A..L); 1* get .. amit buff.,. ""om the
data link *'

,bu' = (cha,. .) ptbd->buffJt~J 1* paint to the buffe,. *1
bu'_ent a 01

·ifl (fir ••• ent _. 0) ('* if this i. the 'j,.8t buff.,., add on IEEE 802.2
h •• de ... infDrmation */

}

beginJtb" • ,tbdl
.,bu'++ • dsap •
• pbu'++ •• s.p'
.,bu'++ • UJI
bu' _ent • 3.

else q->11n. - Of'.eteptbd),; 1* if! this i,n't the fiT,.t buff."
link the p".viGu, buf,.,. with the new one *1 '* fill up • d.t. link XIIlit buff.r lIith ASCII ,ha,,_ct.,.. *1

for (; bu'_tnt < TBUF_SJZE Srlc cnt > 0;
i++, buf _cnt++, pbuf++, cnt--, fT'.me_cnt++)

)

.pbuf • il
H (1 > Ox7EI

i = Ox1F.

if (cnt = ... 0) { 1* lest buffer in list *1
ptbd->.ct_cnt - buf _cnt I EOFBIT;
breaks

Monitor _"ode'»
{

u_short IImi t. cnt, i;
struct TBD *BuildJrameC), *ptbd',

Writ.(" Do "OU nt thi. station to transmit? (V or N) -_> I»;
1f eVes()>>

1-68

231421-62

Ap·235

IPCD/USR/CHUCK/CSRC/UAP. C

'or (amit • FALSEJ it •• FALSE;) (
Writee"\" Ent.,. thl nu.bl,. of deta bVt •• in the ,,.aml -> "),
tnt. Read_lntC)i
If Cent> 204111

Writ. ("\" Sa,"'rv, the numb,,. has to b. I ••• than 2046!\"")'
11.1

.mit • TRUE,

Wt'tteC"\" Hit .nV to IX it "onttar ,",odl. \n\n")1

Writ,C" • of! Qood
W,.itIC" F,. ••••
Writ,C'1 T,..n ... itt,d

• 0' Goad
FrI •••

Rlclived

CRC
Er1"O,..

Alillnment
E,.",or.

No
R •• ou,.'1
E",,,,o,,.

Rlceive'n"),
Ova,.,.un\n") J

E,.,.ors\"");

1* "01234'67B901234'67B901234'67B901234'67B901234'67B901234567B901234'67B9012345679
XI •••• I •••

•••• 11 ••
11

.1111'11.1 1111
.11111 ••

2'
for U • OJ i (791 t++)

linot I J • 0.20,
linot79J • CR.
lineCSO] • '\0',

",hllo CllnbCCH,JI_CTLI " II =- 01 (
foT' Ci • O. i (72J t++)

line[l] =all O.:zO,

33

WritlJ,.onl_lntC good_Illlli '_tnt, 11) I
W"i tl_Lanl_lnt '-r:.cv_ • .,. _cn't. 2S),
W1"it._Sho1"t_IntClcb. C1'C_'1"1"I. 33h
W,.it._Sho1't_IntClcb .• In_.,,,,,, 44),
W1" i t._Sho"t_Int (Icb. "IC_,,."I, ~7) I
W"it._Short_IntClcb.ovT'_'1"1"', 11)1
W~lto C.lInotOJ I,
If C ... ltI (

ptbd - BulldJnmo(entl,

••••
44

"'h 11. (!S.nd,.Fr.m.C ptbd, IrD •• t_Add,,[Ol»J

• CI n.

Itruct TBD *ptbdi

hl_Itat == TRUEi
EDl_BOI30_B274'
Enabl._U ... t_lntC)J

1-69

.XXI .1 I •

57 71 *1

231421-63

intJ AP-235

IPCO/USR/CHUCK/CBRC/UAP. C

}

whll. Ih,_"t .. " <
while _ (ptbd - Oet_TlldC» •• , pNULL), '* get tt buffa" frail

tho dd. link *1
ptbd->act_cnt 1- EOF81TJ '* .et the End D' Frame bit *1
whileC!Send_F,..meCptbd, IcD •• tJdd,..I:OJ»; 1* Send F ,

eh.,. ehtl1::1, b8'., d.idth, ... idth, 11
unlt"ned long temp'

)

<dh.,) (
dwidth oIa 01
IiItdth == 4,
b ••• - Uti

el •• {
b •••• 10.
rtlllidth • 10,
wlIStfl ... 5:

WI' i t. ("'n\n Qood ' m •• t,..nftlnl tted' n) J

for (i - 1, i <:- II - dlddth' i++)
ColSPl,

tnt_To.)'sc i i (good_"ltt_ent, b.... ' " .chtOl. dwidth J;
I ClI' 1" 111111d1:11 - 1, i)- 01 i--)

Co";hL1JI, -
W,.ite(" Qaod f".me. recltived: .. h
for (i • I, i <:- IS - dlllidth.; i~"\

ColSPl, .
Int_To~lc i i (,..cv_'l'a,u_cnt, b.... ", IcchtUJ, uwidth),
~",. (i • dwidth - I, i). 0, i--)

.~ .I (.:~ '[' i 1» I
W,.ite"'\n\n l."C 0,.. ,..cI:lved: If)j

'or Ci • 11 i (= 1:1 - .1~":"1 j++)
CoU;P),

tlmp •• cb. C,.C_.,. ... I
Int_To.JII.c i i (t •• p, b ••• , ' " .ch [0], "idth),
""" (i - width - I. i). 0, 1--)

:.:df"hfil)1
W'I'it.(" Al""rlIn~nt '''''0'''. ,.eceiv.d: "),
'0" Ci • 1, i <- 10 - 1II.l~""1 i++)

CO(SP)I
t •• p - &cb .• 1n~.,.T's;
.Int_Ta~.ci.iCt •• p, b •• " I I ;:u.hLO], width).
for (j - lIIidth - t: ... ". 0, i--)

Ca(r hr l~;,
'" H.IIf~"'n\n Out o' R •• ou,.c. ,,.."' •• : "), '0,. C i • 1. t <. 12 - .. idthJ 1++)

ColBPI'
tl .. p • acb. ".c_ • .,. ... ,
Jnt_Ta-ft.cii(t •• p. b ••• · I " tl'Ch[O], width).

1-70

231421-64

inter Ap·235

IPr(1 'tls::~ "'H''';Cio\/l.:t:iRC/UAP. C

for C 1 • width - 1, i >- OJ 1--)
CoCch[ilh

W,.itll(" R.e.iv overrun '"am.'" II~.
for Cl • I, i <= 12 - I,,;,..~t •• '&"'+'

CaCSP),
temt. = ~;::... ".,,. 1".,
.&nt_TD~5C i i C ti,.p. b •• e. ' " Itch [0]. ",tdth);
for (i • width - Ii i >- 01 i--)

Ca(chCil),
Writee","," 82586 R ••• t: 1'\.
for «i • 1; i < ... ~., Wl.d.:h. i++)

CcfSP':
t Itm~ z. 1' ••• '_cnt,
Int_To_Asc:Li C t.mp. b.... ' , I leeh [0]. width) I
fol' (:I. =- width - 11 i)= 0; i--l

Co(chtiJ)1
WriteC" Transmit. IInd"l'f'un m •• : ">;
fn ... tj Ilol 1; .i. ... =- 11 - <idth. i++)

ColSP),
t.mp - underru"_cnt,
Int_To_Asciiet •• p. b •• e •. ' " &leh[O], ... ldt"~; 'a,. (i ,. width - 1; i >=- OJ ;--'

Colc:h[i])'
Writ.' "\"\" loo," C.Rt:I: ")1
f.n ~i ... 11 i <=- 26 - width, t++)

CO(SP)I
tl"'P .. no_c,.,_cnt.
Int_To_Alcii.U.,.p. b •• a; I " Sec.h[Ol. lIIidth);
'01' (1 idth - i. i :> .. no "--1

Ca(cht1J)1
W .. ite'" SOE .1'1'01'.: "),
t"or (i = 11 i <- 2' - width; i++)

Ca(SP),
temp = _,a_arr _cnti
Int_TD_Asc ii (temp, bllse, • '. ~ch[O], width) i
for (i = "idth - 1; i ,= \11 i--)

CDCc:hl:l]li
~rJ,teC "\n\n Haximum retru: II),

for (i. • 11 i <= 21 - lIIidthi i++)
CoCSP),

tamp D max_col_cnt'
Jnt'_To-AsclHtempI base. ' " 'chtO], lIIidth);
for C i 1:1 lIIidth - I, i >- 0, i--)

CDC ch [i l) I
WriteC" Fram •• th.t deferred: I'),

far C i • 1, i (- l' - d1llidthi 1++)

Co(SP),
[nt_To_AsciHd.fe'T'_cnt. bilse. I I, lr:c:hCOl, dwidth)i
for (i := dwidth - I. i >- OJ i--)

CaCch[ll),

Write ("\n\n Commands. are: \r,\n"),
Write (.. T - Termin.l Hode

1-71

231421-65

Ap·235

IPCO/USR/CHUCK/CSRC/UAP. C

W,.it. (I. X - 'High SpI.d T,.an.llit Hade
W'r1t. P' P - Print All Counter,
Writ, (" A - Add. Multi, •• t Add
WT.:L t. «" S - Changl thl aSAP Addt'I'.
W,.ite (" N - Cheng. D,.tination Nod. Add" •••
W1'lt. (" R - RIl-InitlaUzI the Dat, Link

int 1:1

Init_Uop(l,
P~int..H.lp (I,

faT' CH) (

Y - Change T n •• i,t Statistics'n" h
C - CI •• ,. All Caunt.,.,'n"', .
Z - Dllltl • Multica.t Add,. •• ,,\""),
D - Chang_ th .. DSAP Add,. ••• \" .. "
L - p,.int All Add,. ••••• \" .. "
8 - Chang' the numb.,. Base'n" h

W,.it. e"\"\" Ent,,. a co •• and. tuP' H foT' Help --> ");
c • R.ad_Cha,.«) I
.witch CLDWll'_C •• ICc»

CI" 'h';
P~int..H.lp e),
bl' •• lu

ca •• 'm':
Hanita",-"odaC)1
br •• k,

ca.e 't':
Terminal_Mode C) J

br ••• ,
ca •• ' K':

Hs_Xmit_"adl(.,
b II,

ca •• 'v':
Wl'it""," T,..n.mit Statistics .T'. no ... ")i

if (:~~::'c::~~\~nW::l~) \IOu lik. to changl it? CY 0,. N) --» ")i

Ill ••
W1'ite(lIof'. \n Would 1I0U l:Lke to chan.e it ? CV 0,. N) --> ");,

if ev .. e» (
i' (flagl .• tat_on •• 1)

fl •••.• tat_an • O.
elle 'la ••.• tat_an • 1.

bT'.alu
ca •• 'p':

P1'int_entC).
b1' •• kJ

ca •• 'c':
Clear _entC),
bT' •• lu

ca., 'a':
Load_l'Iultica.tC'1
bT'eaks

case '1':
Remove-"ultica.tC),
break.

cas. 's':

1-72

231421-66

AP-235

/PCO/USR/CHUCK/CSRC/UAP. C

De lete_Osap_Adllres!t(ssap);
L08d_Lsap ();
break;

case 'd I:
Read Addr(lI\n\nEnter the De.tination Node's LSAP in Hex --> ", &dsap. 1).
break.

cas. 'n';
Read_Addl'(n\n\nEntl'r the Addr ••• of the Oe.tination Node in Hex --> ",

&COeost_Addr[Ol, ADD_LEN);

case '1':
Pri nt_Addr ••••• ();
bT'l!'ak,

c '1":
50ftware_R •• et()i
Init_OataLink () I
Add_Osap_Address (ssap, Recv_Oata_l);
break;

case 'b I:
Writ.("\" Th. c:uT'rl!'nt base is ");
if (dhe. =a TRUE)

W"ite'''Hex. \n Would "ou like to Change it? (Y or N) --> ");
else

Write("Decimal. \n Would IJDU like to change it 7 (Y Dr N) __ > It).

if (Yes(» {
1f (dhe. ::a TRUE)

dhex = FALSE;
e1s11 dhex == TRUE.

bre ... ;

default:
Wrlt .. ("'" Unknown command'n")J
break;

1-73

231421-67

inter AP·235

IPCO/USR/CHUCK/CSRC/ASSY. AS"

name c: ••• V lupport

.tack
Itletap
.tack

DLD_DATA

•• gmlnt "tee k
label word
ends

•• III"'lnt public: 'DATA'
e.t,." SEQI'tT_: word J data !leament addr •••
DLDJlATA end •

UAP_DATA
UAP_DATA

OLD_CODE

OLD_CODE

I.t.,."
e.t,."

• eg",.nt public
ends

'DATA'

••• ",en1; pubUc 'CODE'
1sT' _T1meout_: far, 1sT' _586_: f.". 11,,7_: fa"
1 6_: fa", 111'~_: '1111', 1.,,1_: f."

ends

UAPSODE
elt.,."

•• gment public 'CODE'
J.,._Ua'rt_: f.", 1 • .,.:2_: f.", M.l"_: f.,.
ends UAP _CODE

."'1 1
8'1'512

,+

inb

.lgmln1; public 'CODE'

public inllll_' outw_, init_intv_, In.llll_,· di •• bll_, Buil(_Ptr
public Dff •• t_, begin. lnb_, Dutb_

oqu
oqu

tOP + bJ
tOP + SJ

•• s.ume CS: Dei_CODE ••• u". OS: DLDJlATA

initialilation progTam fo,. the 82586 data link driv

• u
mav 81, DLD_DATA ; get b ••• of dg1'DUp and
mav SeQMT_, a. i p ••• the segmlnt value to thv c prDgram
mov ds, ex
call Main_ ~ go to th. c p'l'D91'am
hlt

proc fn
push 8P
.. DV DP. SP
pUBh DX
.. DV DX • • I"g 1
in A~. DX
pDp DX
IIDV SP. OP

1-74

231421-68

inter AP-235

1-75

inter

IPCD/USR/CHUCK/CSRC/ASBY. AS"

pU5h BP
mov BP. SP
m.v AX • • ,.gl
m.v BP. BP
pop BP
rot

Offset_ endp

•• rve_int_isT' proc f ..
push AX
push BX
push CX
push DX
push BI
push DI
push DS
puah ES

mov AX. DLDJ)ATA
m.v DS.· AX EB. AX

call Is,. _5B6_

p.p EB
p.p DB
p.p 01
p.p SI
p.p DX
pop CX
pop ax
pop AX
iret

serve_tnt_is" endp

•• rve_int_B274 proc far
push AX
push ex
push CX
pU15h DX
push SI
push DI
push DS
push ES

IOOV AX. UAI' J)ATA
IDOV DB. AX
m.v EB. AX

call Isr_U.,.t_

pop ES
pop DB
pop DI
pop 81
pop DX

231421-70

1-76

inter

IPCO/USR/CHUCIVCSRC/ASSY. ASM

pap CX
pap ax
pap AX
t,..t

•• rve_tnt_B274 endp

serve_tnt_timeout prac
push AX
push ax
push CX
push DX
push SI
push 01
puoh DB
push ES

may AX. OLOJIATA
may DB. AX
mav ES, AX

pap E5
pap OS
pap 01
pap 51
pap OX
pap CX
pap ax
pap AX
irat

•• rve_tnt_timeDut endp

serve_int1_ta1"
push
push
push
push
push
push
push
push

may
may
Olav

call

pap
pap
pap
pap
pap
pap
pap
pap

pToe
AX
ax
CX
OX
51
01
05
E5

AX.
OB.
ES.

OLOJIATA
AX
AX

IST'7_

E5
05
01
51
OX
CX
ax
AX

Ap·235

'a,.

231421-71

1-77

AP-235

IPCO/U6R/CHUCK/C5RC/A6BY. ABM

iT-.t
•• rv._int7_i!l" .ndp

5.1've_1 nt6_i 51" prot for
push AX
push BX
push CX
push DX
push SI
push DI
push DB
push EB

mov AX. DLD_DATA
mov D5. AX

EB. AX

call 15r6_

pop ES
pop DS
pop DI
pop BI
pop DX
pop CX
pop BX
pop AX
lret

sel"vI_int6_i5" Indp

•• rvI_int5_is" proc for
push AX
push BX
push ex
push DX
push 51
push DI
push DS
push ES

mov AX. DLD_DATA
mov DS. AX
mov EG. AX

call IST'5

pop ES
pop DS
pop DI
pop 81
pop DX
pop ex
pop BX
pop AX
iret

servI_int5_isr endp
231421-72

1-78

Ap·235

IPCO/USR/CHUCK/CSRC/ASSV. ASH

s.rv __ int:il_isr Pl'DC ,..
push AX
pufth BX
pU5h CX
push DX
push 91
push D1
push DS
push ES

IODY AX. UAP _DATA
OlDY DS. AX
mDY ES. AX

c.11]51'2_

pDp ES
pDP OS
PDP D1
pDp 91
pDp DX
pDp ex
PDP BX
pDp AX
h,.t

... rv._int2_isl' endp

•• r"e_intl_ 10 • pl'DC far
push AX
push BX
puah ex
push DX
push 51
push D1
push DB
pUlh EB

mDY AX. DLDJlATA
mDY DS. AX
mDV ES. AX

call ISI'1

PDP EB
PDP DS
pDp D1
pDP 91
pDP DX
pDP ex
pDp BX
PDP AX
u,.t

5erve_intl_isr "ndp

en.bl,,_ p,.OI: far
st1

231421-73

1-79

Ap·235

IPCO/UBR/CHUCK/CBRC/ABBV. AB'"

,..t
en.bl._ endp

di •• ble_ proc fa,.
eli
nt

disablo_ endp

init_intv_ proc fn
push DB
push AX

,or AX. AX
moy DB. AX

J Jnte""upt t\lpe. fo1' the 186/81 CDMMpute,..

moy DB:IIID'rd ptr BOh, off •• t •• rve_int_S:274 • Int 0
moy DS: word ptr B2h. DO_CODE
moy DB: word ptr B4h. offset •• "va_intl_is" Int 1
moy DS:WDrd ptr B6h. DO_CODE
moY DS:wo1"'d ptr BBh. offset s.'I"ve_int2_is,.. tnt 2
moy DS: IIIDT'd ptr BAh. DO_CODE
moy DS:IIIDT'd ptr BCh. offset •• rve_tnt_1s" • lnt 3
moY DS:word ptr BEh. DO_CODE
moy DS:WDT'd ptr 90h. off.et s.'I've_int_timeout Int 4
moy DS:WD'I"d ptr 92h. DO_CODE
moY DS:\IIord ptr 94h. off.et •• ,.ve_int5_is.,. • lnt S
moY DS:wol'd ptr 96h. DO_CODE
moy DS:ward ptr 9Bh. offset serve_into_isl' Int 6
,"oy DS: wo,.d ptr 9Ah. DO_CODE
may DB: W01'd ptr 9Ch. off •• t •• ,.ve_int7_i.,. • int 7
may DS:word ptr 9Eh. DO_CODE

pap AX
pap DS
ret

init_in'tv_ endp

DO_CODE ends
nd It.-gin, 6 .. : dld_d.t •. ... : st.e'k: stir top

231421-74

1-80

APPLICATION
NOTE

AP-236

November 1986

Implementing StarLAN with
the Intel 82588

ADIGOLBERT
DATA COMMUNICATIONS OPERATION

SHARAD GANDHI
FIELD APPLICATIONS-EUROPE

Order Number: 231422-003
1-81

inter AP-236

1.0 INTRODUCTION

Personal computers have become the most prolific
workstation in the office, serving a wide range of needs
such as word processing, spreadsheets, and data bases.
The need to interconnect PCs in a local environment
has clearly emerged, for purposes such as the sharing of
file, print, and communication servers; downline load­
ing of files and application programs; electronic mail;
etc. Proliferation of the PC makes it the workstation of,
choice for acCessing the corporate mainframe/s; this
function can be performed much more efficiently and
economically when clusters of PCs are already inter­
connected through Local Area Networks (LANs). Ac­
cording to market surveys, the installed base of PCs in
business environments reached about 10 million units
year-end '85, with only a small fraction connected via
LANs. The installed base is expected to double by
1990. There is clearly a great need for locally intercon­
'necting these machines; furthermore, end users expect
interconnectability across vendors. Thus, there is an ur­
gent need for industry standards to promote cost effec-

, tive PC LANs.

A large number of proprietary PC LANs have become
available for the office environment over the past sever­
al years. Many of these suffer from high installed cost,
technical deficiencies, non-conformance to industry
standards, and general lack of industry backing. Star­
LAN, in Intel's opinion, is one of the few networks
which will emerge as a standard. It utilizes a proven
network access method, it is implemented with proven
VLSI components; it is cost effective, easily'installable
and reconfigurable; it is technically competent; and it
enjoys the backing of a large cross section of the indus­
try which is collaborating to develop a standard (IEEE
802.3, type IBASE5).

1.1 StarLAN

StarLAN is a I Mb/s network based on the CSMA/
CD access method (Carrier Sense, Multiple Access
with Collision Detection). It works over standard,
unshielded, twisted pair telephone wiring. Typically,
the wiring connects each desk to a wiring closet in a
star topology (from which the IEEE Task Force work­
ing on the standard derived the name StarLAN in
1984). In fact, telephone and StarLAN wiring can coex­
ist in the same twisted pair bundle connecting a desk to
the wiring closet. Abundant quantities of unused phone
wiring exist in most office environments, particularly in
the U.S. The StarLAN concept of wiring and network­
ing concepts was originated by AT&T Information Sys­
tems.

1.2 The 82588

The 82588 is a single-chip LAN controller designed for
CSMA/CD networks. It integrates in one chip all func-

tions needed for such networks. Besides inplementing
the standard CSMA/CD functions like framing, defer­
ring, backing off and retrying on collisions, transmit-,
ting and receiving frames, it performs data encoding
and decoding in Manshester or NRZI format, carrier
sensing and collision detection, all up to a speed of 2
Mb/s (independent of the chosen encoding scheme).
These functions make it an optimum controller for a
StarLAN node. The 82588 has a very conventional mi­
crocomputer bus interface, easing the job of interfacing
it to any processor.

1.3 Organization of the Application
Note

This application note has two objectives. One is to de­
scribe StarLAN in practical terms to prospective imple­
menters. The other is to illustrate designing with 82588,
particularly as related to StarLAN which is expected to
emerge as its largest application area.

Section' 2 of this Application Note describes the Star-
, LAN network, its basic components, collision detec­

tion, signal propagation and network parameters. Sec­
tions 3 and 4 describe the 82588 LAN controller and its
role in the StarLAN network. Section 5 goes into the
details of designing a StarLAN node for the IBM PC.
Section 6 describes the design of the HUB. Both these
designs have been implemented and operated in an ac­
tual StarLAN environment. Section 7 documents the
software used to drive the '82588. It gives the actual
procedures used to do operations like, configure, trans­
mit and receive frames. It also shows how to use the
DMA controller and interrupt controller in the IBM
PC and goes into the details of doing I/O on the PC
using DOS calls. Appendix A shows oscilloscope traces
of the signals at various points in the network. Appen­
dix B describes the multiple point extension (MPE) be­
ing considered by IEEE. Appendixes C and D talk
about advanced usages of the 82588; working with only
one DMA channel, and measuring network delays with
the 82588.

1-82

1.4 References

For additional information on the 82588, see the Intel
Microcommunications Handbook. StarLAN specifica­
tion are currently available in draft standard form
through the IEEE 802.3 Working Group.

2.0StarLAN

StarLAN is a low cost 1 Mb/s networking solution
aimed at office automation applications. It uses a star

AP-236

topology with the nodes connected in a point-to-point
fashion to a central HUB. HUBs can be connected in a
hierarchical fashion. Up to 5 levels are supported. The
maximum distance between a node and the adjacent
HUB or between two adjacent HUBs is 800 ft. (about
250 meters) for 24 gauge wire and 600 ft. (about 200
meters) for 26 gauge wire. Maximum node-to-node dis­
tance with one HUB is 0.5 km, hence IEEE 802.3 des­
ignation of type lBASE5. 1 stands for 1 Mb/s and
BASE for baseband. (StarLAN doesn't preclude the use
of more than 800 ft wiring provided 6.5 dB maximum
attenuation is met, and cable propagation delay is no
more than 4 bit times).

One of the most attractive features of StarLAN is that
it uses telephone grade twisted pair wire for the trans­
mission medium. In fact, existing installed telephone
wiring can also be used for StarLAN. Telephone wiring
is very economical to buy and install. Although use of
telephone wiring is an obvious advantage, for small
clusters of nodes, it is possible to work around the use
of building wiring.

Factors contributing to low cost are:

1) Use of telephone grade, unshielded, 24 or 26 gauge
twisted pair wire transmission media.

2) Installed base of redundant telephone wiring in most
buildings.

3) Buildings are 'designed for star topology wiring.
They have conduits leading to a central location.

4) Availability of low cost VLSI LAN controllers like
the 82588 for low cost applications and the 82586 for
high performance applications.

HUB LEVEL 1

'Maximum of 5 HUB levels.
'pes or DTEs can connect directly at any level.

5) Off-the-shelf, Low cost RS-422, RS-485 drivers/re­
ceivers compatible with the StarLAN analog inter­
face requirements.

2,1 5tarLAN Topology

StarLAN, as the name suggests, uses a star topology.
The nodes are at the extremities of a star and the cen­
tral point is called a HUB. There can be more than one
HUB in a network. The HUBs are connected in a hier­
archical fashion resembling an inverted tree, as shown
in Figure 1, where nodes are shown as PCs. The HUB
at the base (at level 3) of the tree is called the Header
Hub (HHUB) and others are called Intermediate HUBs
(IHUB). It will become apparent, later in this section,
that topologically, this entire network of nodes and
HUBs is equivalent to one where all the nodes are con­
nected to a single HUB. Also StarLAN doesn't limit
the number of nodes or HUBS at any given level.

2.1.1 TELEPHONE NETWORK

StarLAN is structured to run parallel to the telephone
network in a building. The telephone network has, in
fact, exactly the same star topology as StarLAN. Let us
now examine how the telephone system is typically laid
out in a building in the USA. Figure 2 shows how a
typical building is wired for telephones. 24 gauge
unshielded twisted pair wires emanate from a Wiring
Closet. The wires are in bundles of 25 or 50 pairs. The
bundle is called D inside wiring (DIW). The wires in
these cables end up at modular telephone jacks in the
wall. The telephone set is either connected directly to

231422-2

Figure 1. StarLAN Topology

1-83

AP-236

the jack or through an extension cable. Each telephone
generally needs one twisted pair for voice and another
for auxilliary power. Thus, each modular jack has 2
twisted pairs (4 wires) connected to it. A 25 pair DIW
cable can thus be used for up to 12 telephone connec­
tions. In most buildings, not all pairs in the bundle are
used. Typically, a cable is used for only 4 to 8 telephone
connections. This practice is followed by telephone
companies because it is cheaper to install extra wires
initially, rather than retrofitting to expand the existing
number of connections. As a result, a lot of extra, un­
used wiring exists in a building. The stretch of cable
between the wiring closet and the telephone jack is typi­
cally less than 800 ft. (250 meters). In the wiring closet
the incoming wires from the telephones are routed to
another wiring closet, a P ABX or to the central office
through an interconnect matrix. Thus, the wiring closet
is. a concentration point in the telephone network.
There is also a redundancy of wires between the wiring
closets.

2.1.2 StarLAN AND THE TELEPHONE
NETWORK

StarLAN does not have to run on building wiring, but
the fact that it can significantly adds to its attractive­
ness. Figure 3 shows how StarLAN piggybacks on tele­
phone wiring. Each node needs two twisted pair wires
to connect to the HUB. The unused wires in the 25 pair
DIW cables provide an electrical path to the wiring
closet, where the HUB is located. Note that the tele­
phone and StarLAN are electrically isolated. They only
use the wires in the same bundle cable to connect to the
wiring closet. Within the wiring closet, StarLAN wires
connect to a HUB and telephone wires are routed to a
different path. Similar cable sharing can occur in con­
necting HUBs to one another. See Figure 4 for a typical
office wired for StarLAN throu~h telephone wiring.

231422-3

Figure 2. Telephone Wiring in a Building

WIRING CLOSET

800 f1

"--- BUNDLES or --./
......... . 25 - 50 PAIRS
~2 lWlSTED PAIRS

24 GAUGE. UNSHIELDED

• StarLAN and telephones share the same bundle, but are electrically isolated.
'SlarLAN uses the unused wires in existing bundles.

Figure 3. Coexistence of Telephone and StarLAN

1-84

231422-4

WIRING CLOSET

TELEPHONE
WIRES TO PBX

WIRING CLOSET

WIRING CLOSET

WIRING CLOSET

AP-236

ROOM # 1

ROOM # 2

ROOM # 3

Figure 4. A Typical Office Using Telephone Wiring for StarLAN

1-85

231422-5

inter AP-236

2.1.3 StarLAN AND Ethernet

StarLAN and Ethernet are similar CSMAlCD net­
works. Since Ethernet has existed longer and is better
understood, a comparison of Ethernet with StarLAN is
worthwhile.

1. The data, rate of Ethernet is IOMb/s and that of Star­
LAN.is 1 Mb/s.

2. Ethernet uses a bus topology with each node con­
nected to a coaxial cable bus \ via a 50 meter trans­
ceiver cable containing four shielded twisted pair
wires. StarLAN uses a star topology, with each node
connected to a central HUB by a point to point link
through two pairs of unshielded twisted pair wires.

3. Collision detection in Ethernet is done by the trans­
ceiver connected to the coaxial cable. Electrically, it
is done by sensing the energy level on the coax cable.
Collision detection in StarLAN is done in the HUB
by sensing activity on more than one input line con­
nected to the HUB.

4. In Ethernet, the presence of collision is signalled by
the transceiver to the node by a special collision de­
tect signal. In StarLAN, it is signalled by the HUB
using a special collision presence signal on the re­
ceive data line 'to the node.

5. Ethernet cable segments are interconnected using re­
peaters in a non-hierarchical fashion so that the dis­
tance between any, two nodes does not exceed 2.8
kilometers. In StarLAN, the maximum distance be­
tween any two nodes is 2.5 kilometers., This is
achieved by wiring a maximum of five levels of
HUBs in a hierarchical fashion ..

2.2 Basic StarLAN Components

A StarLAN network has three basic components:

1. StarLAN node interface
2. StarLAN HUB
3. Cable

ETHERNET

STAR LAN
231422-6

Figure 5. Ethernet and StarLAN Similarities

1-86

inter AP-236

2.2.1 A StarLAN NODE INTERFACE

Figure 6 shows a typical StarLAN node interface. It
interfaces to a processor on the system side. The proc­
essor runs the networking software. The heart of the
node interface is the LAN controller which does the job
of receiving and transmitting the frames in adherence
to the IEEE 802.3 standard protocol. It maintains all
the timings-like the slot time, interframe spacing
etc.-required by the network. It performs the func­
tions of framing, deferring, backing-off, collision detec­
tion which are necessary in a CSMA/CD network. It
also does Manchester encoding of data to be transmit­
ted and clock separation-or decoding-of the Man­
chester encoded data that is received. These signals be­
fore going to the unshielded twist pair wire, may under- .
go pulse shaping (optional) pulse shaping basically
slows down the fall/rise times of the signal. The pur­
pose of that is to diminish the effects of cross-talk and
radiation on adjacent pairs sharing the same bundle
(digital voice, Tl trunks, etc). The shaped signal is sent
on to the twisted pair wire through a pulse transformer
for DC isolation. The signals on the wire are thus dif­
ferential, DC isolated from the node and almost sinus­
oidal (due to shaping and the capacitance of the wire).

NOTE:
Work done by the IEEE 802.3 committee has shown
that no slew rate control on the drivers is required.
Shaping by the transformer and the cable is sufficient
to avoid excessive EMI radiation and crosstalk.

The squelch circuit prevents idle line noise from affect­
ing the' receiver circuits in the LAN controller. The
squelch circuit has a 600 mv threshold for that purpose.
Also as part of the squelch circuitry an envelope detec­
tor is implemented. Its purpose is to generate an enve­
lope of the transitions of the RXD line. Its output serve

as a carrier sense signal. The differential signal from the
HUB is received using a zero-crossing RS-422 receiver.
Output of the receiver, qualified by the squelch 'circuit,
is fed to the RxD pin.of the LAN controller. The RxD
signal provides three kinds of information:

I) Normal received data, when receiving the frame.

2) Collision information in the form of the collision
presence signal from the HUB.

3) Carrier sense information, indicating the beginning
and the end of frame. This is useful during transmit
and receive operations.

2.2.2 StarLAN HUB

HUB is the point of concentration in StarLAN. All the
nodes transmit to the HUB and receive from the HUB.
Figure 7 shows an abstract representation of the HUB.
It has an upstream and a downstream signal processing
unit. The upstream unit has N signal inputs and 1 sig­
nal output. And the downstream unit has 1 input and
N output signals. The inputs to the upstream unit come
from the nodes or from the intermediate HUBs
(IHUBs) and its output goes to a higher level HUB.
The downstream unit is connected the other way
around; input from an upper level HUB and the out­
puts to nodes or lower level IHUBs. Physically each
input and output consist of one twisted pair wire carry­
ing a differential signal. The downstream unit essential­
ly just re-times the signal received at the input, and
sends it to all its outputs. The functions performed by
the upstream unit are:

1. Collision detection
2. Collision Presence signal generation
3. Signal Retiming
4. Jabber Function
5. Start of Idle protection timer

PULSE
TRANSFORMER

TELEPHONE
JACK

8 BIT BUS

< > 82S88 PULSE
SHAPING

~----t (OPTIONAL)

CONTROL

< >
SYS ClK

RxD

SQUELCH
+ '

ENABLE
CIRCUITS

Figure 6. 82588 Based StarLAN Node

1-87

231422-7

inter AP·236

231422-8

Figure 7. A StarLAN HUB

The co~li.sion detect~on in the HUB is done by sensing
t?~ activity on the Inputs. If there is activity (or tran­
sItions) on more than one input, it is assumed that more
than one node is transmitting. This is a collision. If a
collision is detected, a special signal called the Collision
Presence Signal is generated. This signal is generated
and sent out as long as activity is sensed on any of the
input lines. This signal is interpreted by every node as
an occurrence of collision. If there is activity only on
one input, that signal is re-timed--or cleaned up of any
accumulated jitter-and sent out. Figure 8 shows the
input to output relations of the HUB as a black box.

If a node transmits for too long the HUB exercises a
J~bber function to disable the node from interfering
with traffic from other nodes. There are two timers in

IDLE
IDLE
IDLE

VALID MANCHESTER

VALID MANCHESTER
IDLE

VALID MANCHESTER

IDLE

VALID
MANCHESTER

COLLISION
PRESENCE

the HUB associated with this function and their opera­
tion . is described in section 6.

The last function implemented by the HUB is the start
of Idle prot~ction timer. During the end of reception,
the HUB Will see a long undershoot at its input port.
This undershoot is a consequence of the transformer
discharging accumulated charge during the 2 microsec­
onds of high of the idle pattern. The HUB should im­
plement a protection mechanism to avoid the undesir­
able effects of that undershoot.

Figure 9 shows a block diagram of the HUB. A switch
position determines whether the HUB is an IHUB or a

. HI:IUB (Header HUB). If the HUB is an IHUB, the
sWitch decouples the upstream and the downstream
units. HHUB is the highest level HUB; it has no place
to send its output signal, so it returns its output signal
(through the switch) to the outputs of the downstream
unit. There is one and only one HHUB in a StarLAN
network and it is always at the base of the tree. The
returned signal eventually reaches every node in the
network through the intermediate nodes (if any). Star­
LAN specifications do not put any restrictions on the
number of IHUBS at any level or on number of inputs
to any HUB. The number of inputs per HUB are typi­
cally 6 to 12 and is dictated by the typical size of clus­
ters in a given networking environment.

COLLISION PRESENCE
IDLE
IDLE

IDLE

COLLISION PRESENCE
IDLE
IDLE

VALID MANCHESTER

HUB

COLLISION
PRESENCE

COLLISION
PRESENCE

231422-9

Figure 8. HUB as a Black Box

1-88

intJ AP-236

TRANSMIT PAIR # 1

~II

~II
TRANSMIT PAIR # N

+
JABBER

+
PROTECTION

TIMER

TO HIGHER
LEVEL HUB

RECEIVE PAIR # 1 HHUB

'-311 IH~""B----I,--R_i_~_~A_INL_G ... KhJII E
'-311

RECEIVE PAIR # N

231422-10

Figure 9. StarLAN HUB Block Diagram

2.2.3 StarLAN CABLE

Unshielded telephone grade twisted pair wires are used
to connect a node to a HUB or to connect two HUBs.
This is one of the cheapest types of wire and an impor­
tant factor in bringing down the cost of StarLAN.

Although the 24 gauge wire is used for long stretches,
the actual connection between the node and the tele­
phone jack in the wall is done using extension cable,
just like connecting a telephone to a jack. For very
short Star LAN configurations, where all the nodes and
the HUB are in the same room, the extension cable
with plugs at both ends may itself be sufficient for all
the wiring. (Extension cables must be of the twisted
pair kind, no flat cables are allowed).

The telephone twisted pair wire of 24 gauge has the
following characteristics:

Attenuation : 42.55 db/mile @ 1 MHz

DC Resistance : 823.69 fl./mile

Inductance

Capacitance

Impedance

0.84 mH/mile

0.1 fLF/mile

92.6D, -4 degrees @ 1 MHz

Experiments have shown that the sharing of the tele­
phone cable with other voice and data services does not
cause any mutual harm due to cross-talk and radiation,
provided every service meets the FCC limits.

1-89

Although it is outside the scope of the IEEE 802.3
IBASE5 standard, there is considerable interest in us­
ing fiber optics and coaxial cable for node to HUB or
HUB to HUB links especially in noisy and factory envi­
ronments. Both these types of cables are particularly
suited for point-to-point connections. Even mixing of
different types of cables is possible (this kind of envi­
ronments are not precluded).

NOTE:
StarLAN IEEE 802.3 !BASES draft calls for a maxi­
mum attenuation of 6.5 dB between the transmitter
and the corresponding receiver at all frequencies be­
tween 500 KHz to 1 MHz. Also the maximum al­
lowed cable propagation delay is 4 microseconds.

2.3 Framing

Figure 10 shows the format of a 802.3 frame. The be­
ginning of the frame is marked by the carrier going
active and the end marked by carrier going inactive.
The preamble has a 56 bit sequence of 101010
ending in a O. This is followed by 8 bits of start of frame
delimiter (sfd) - 10101011. These bits are transmitted
with the MSB (leftmost bit) transmitted first. Source
and destination fields are 6 bytes long. The first byte is
the least significant byte. These fields are transmitted
with LSB first. The length field is 2 bytes long and gives
the length of data in the Information field. The entire
information field is a minimum of 46 bytes and a maxi­
mum of 1500 bytes. If the data content of the Informa-

AP-236

tion field is less than 46. padding bytes are used to
make the field 46 bytes long. The Length field indicates
hnw mlll'h rp"l cl"t" i. in thp TnfnrmMinn fj,,1cl. Th" l"st
32 bits of the frame is the Frame Check Sequence
(FCS) and contains the CRC for the frame. The CRC is
calculated from the beginning of the destination ad­
dress to the end of the Information field. The generat­
ing polynomial (Autodin II) used for CRC is: .

X32 + X26 + X23 + X22 + XI6 + XI2 + Xii +
xlO + XB + X7 + X5 + X4 + X2 + X + 1

No need for Figure N.

CARRIER ON

The frames can be directed to a specific node (LSB of
address must be 0). to a group of nodes (multicast or
grnnp-LSB of address must be I) or all nodes (broad­
cast-alI address bits must be 1).

2.4 Signal Propagation and Collision

Figure 11 will be used to illustrate three typical situa­
tions in a StarLAN with two IHUBs and one HHUB.
Nodes A and B are connected to HUBI. nodes C and D
to HUB2 and node E to HUB3.

CARRIER OFF
t.4AX=1500 I + 7 1 6 6 2 t.4IN = 46 4 ..

I PREAt.4BLE I SFD I DA I SA I LEN IINFORt.4ATION I FCS I

SFD ~ Start of Frame Delimiter
DA ~ Destination Address .
SA ~ Source Address
LEN ~ Length
FCS ~ Frame Check Sequence
All numbers indicate field length in octets.

,. FRAt.4E LENGTH ~
t.4AX=1518
t.4IN=64

Figure 10. Framing

1-90

231422-11

inter

HUB1, HUB2 are IHUBs
HUB3 is the HHUB

Fa, Fb, Fe-Frames from nodes A, B & C
Fx-Collision Presence Signal

Ap·236

Situation # 1. A Transmitting

Situation # 2. A & B Transmitting

Situation # 3. A, B & C Transmitting

Figure 11. Signal Propagation and Collisions

1-91

231422-12

231422-13

231422-14

inter AP-236

2.4.1 Situation # 1

WhpnpVPT nnop A tnm.mit. ~ fr~me Fa, it will reach
,HUB 1. If node B is silent, there is no collision. HUB I
will send Fa to HUB3 after re-timing the signal. If
nodes C, D and E are also silent, there is no collision at
HUB2 or HUB3. Since HUB3 is the HHUB, it sends
the frame Fa to HUBI, HUB2 and to node E after re­
timing. HUBI and HUB2 send the frame Fa to nodes
A, Band C, D. Thus, Fa reaches all the nodes on the
network including the originator node A. If the signal
received by node A is a valid Manchester signal and not
the Collision Presence Signal (CPS) for the entire dura­
tion of the slot time, then the node A assumes that it
was a successful transmission.

2.4.2 Situation # 2

If both nodes A and B were to transmit, HUBI will
detect it as a collision and will send signal Fx (the Colli­
sion Presence Signal) to the HUB3-Note that HUBI
does not send Fx to nodes A and B yet. HUB 3 receives
a signal from HUB I but nothing from node E or
HUB2, thus it does not detect the situation as. a colli­
sion and simply re-times the signal Fx and sends it to
node E, HUB2 and HUBI. Fx ultimately reach all the
nodes. Nodes A and B detect this signal as CPS and
call it a collision.

2.4.3 Situation # 3

In addition to nodes A and B, if node C were also to
transmit, the situation at HUBI will be the same as in
situation # 2. HUB2 will propagate Fc from C towards
HUB3. HUB3 now sees two of its inputs active and
hence generates its own Fx signal and sends it towards
each node.

These situations should also illustrate the point made
earlier in the chapter that, the StarLAN network, with
nodes connected to multiple HUBs is, logically, equiva­
lent to all the nodes connected to a single HUB (Yet
there are some differences between stations connected
at different HUB levels, those are due to different de­
lays to the header hub HHUB).

2.5 StarLAN System and Network
Parameters

Preamble length (incl. sfd) 64 bits
Address length : 6 bytes
FCS length CRC (Autodin II) 32 bits
Maximum frame length 1518 bytes
Minimum frame length 64 bytes
Slot time " 512 bit times
Interframe spacing ',' 96 bit times
Minimum jam timing 32 bit times
Maximum number of collisions 16
Backoff limit 10

Backoff method Truncated binary exponential
Encoding' Manchester

Clock tolerance ±0.01 % (100 ppm)
Maximum jitter per segment ± 62.5 ns

3.0 LAN CONTROLJ-ER FOR StarLAN

One of the attractive features of StarLAN is the avail­
ability of the 82588, a VLSI LAN controller, designed
to meet the needs of a StarLAN node. The main ·re­
quirements of a StarLAN node controller are:

1. IEEE 802.3 compatible CSMA/CD controller.
2. Configurable to StarLAN network and system pa-

rameters.
3. Generation of all necessary clocks and timings.
4. Manchester data encoding and decoding.
5. Detection of the Collision Presence Signal.
6. Carrier Sensing.
7. Squelch or bad signal filtering.
8., Fast and easy interface to the processor.

82588 performs all these functions in silicon, providing
a minimal hardware interface between the system proc­
essor and the StarLAN physical link. It also reduces
the software needed to run the node, since a lot of func­
tions, like deferring, back off, counting the number of
collisions etc., are done in silicon.

3.1 IEEE 802.3 Compatibility

The CSMA/CD control unit on the 82588 performs the
functions of deferring, maintaining the Interframe
Space (IFS) timing, reacting to collision by generating a
jam pattern, calculating the back-off time based on the
number of collisions and a random number, decoding
the address of the incoming frame, discarding a frame
that is too short, etc. All these are performed by the
82588 in accordance to the IEEE 802.3 standards. For
inter-operability of different nodes on the Star LAN net­
work it is very important to have the controllers strictly
adhere to the sam\! standards.

1-92

3.2 Configurability of the 82588

Almost all the networking parameters are programma­
ble over a wide range. This means that the StarLAN
parameters form a subset of the total potential of the
82588. This is a major advantage for networks whose
'standards are being defined and are in a flux. It is also
an advantage when carrying over the experience gained
with the component in one network to other applica­
tions, with differing parameters (leveraging the design).

The 82588 is initialized or' configured to its working
environment by the CONFIGURE command. After
the execution of this command, the 82588 knows its
system and net~ork parameters. A configure block in

Ap·236

memory is loaded into the 82588 by DMA. This block
contains all the parameters to be programmed as shown
in Figure 12. Following is a partial list of the parame­
ters with the programmable range and the Star LAN
value:

Parameter Range
StarLAN

Value

Parameter

Data encoding

Collision
detection

Range
StarLAN

Value
NRZI, Man.,
Diff. Man. Manch.
Code viol.,
Bitcomp. Code Viol.

Preamble length 2,4, 8, 16 bytes
Address length o to 6 bytes
CRCtype 16,32 bit

8
6
32

Beside these, there an: many other options available,
which mayor may not apply to StarLAN:

Minimum frame
length

Interframe
spacing

Slot time
Number of

retries

BYTE

o

2

3

4

5

6

7

8

9

10

11

6 to 255 bytes

12 to 255 bit times
1 to 2047 bit times

o to 15

7 6

I I

I _1
I I

SERIAL CHNG MODE

EXT INT
LP.BCK LP.BCK

BOF
METD

EXP
I

64

96
512

15

5 4

BIT

Data sampling rate of 8 or 16
Operating in Promiscuous mode
Reception of Broadcast frames
Internal loopback operation
External loopback operation
Transmit without CRC
HDLC Framing

3 2

I BYTE COU~T (L.S.B) I
I I

J i i i i

_ I BYTE COU~T (M.S.B) I
I I

I I I

SMPLG OSC
I

FIFO ILiMIT
I

RATE RANGE
I I I

lENGT~
I I

BUFFER
I I I
I

NO SRC
I I

PREAM LEN ADD lEN
I

ADD INS
I I

I
OIF.MAN

I I
PRIO

/MAN
LIN PRIO

I I I

I~TER I FRAME SPACING
I I

I I I I I I I
I I II I I I

SLOT TIME (l)
I I I I I
I I I

SllOT TIME (~) RETRY NUMBER CDBBC

o

PAD BIT CRC16 NCRC TON MAN BC PRM STUFF INS NCRS /NRZ· DIS

COT
SRC

I

CDTF CRS

I I SRC

I I
MINIMUM FRAME lENGTH

I I I I

CONFIG PARAMETER FORMAT

Figure 12. Configuration Block

1-93

CRSF
I I
I I

I I

231422-15

AP-236

3.3 Clocks and Timers

The 02.300 H::4UiH;:~ LWU ",l\.n ... ~~, uji~ fur thi: upcrutiGu. of
the system interface and another for the serial side.

, Both clocks are totally asynchronous to each other.
This permits transmitting and receiving frames at data
rates that are virtually independent of the speed at
which the system interface operates.

The serial clock can be generated on chip using just an
external crystal of a value 8 or 16 times the desired bit
rate. An external clock may also be used.

The 82588 has a set of timers to maintain various tim­
ings necessary to run the CSMA/CD control unit.
These are timings for the Slot time, Interframe spacing

time, Back off time, Number of collisions, Minimum
frame length, etc. These timers are started and stopped
e~!0:ne.ti~?-!!y 1)y th~ R'~RR.

3.4 Manchester Data Encoding and
Decoding

In StarLAN the data transmitted by the node must be
encoded in Manchester format. The node should also
be able to decode Manchester encoded data when re­
ceiving a frame--a process also known as clock recov­
ery. The 82588 does the encoding and decoding of data
bits on chip for data rates up to 2 Mb/s.

Besides Manchester, the 82588 can also do encoding
and decoding in NRZI and Differential Manchester
formats. Figure 13 shows samples of encoding in

DATA I 1 I 0 I 1 I 1 I 0 I 1 I 0 I 0 I 0 I 1 I

NRZ

NRZI

MANCHESTER

DIFFERENTIAL
MANCHESTER

Encoding Mid Bit Cell
Method Transitions

NRZ Do not exist.

NRZI Do not exist.

Manchester Exist for every bit of
the original data:
from 0 to 1 for 1
from 1 to 0 for 0

Differential Exist for every bit of
Manchester the original data.

Dependent on present
Encoded signal level:
to 0 if 1
t01 if 0

231422-16

Bit Cell Boundary
Transitions

Identical to original data.

Exist only if original data
bit equals o.
Dependent on present
encoded signal level:
to 0 if 1
to 1 if 0

Exist for consequent equal
bits of original data:
from 1 to 0 for 1 1
from 0 to 1 for 0 0

Exist only if original data
bit equals o.
Dependent on present
Encoded signal level:
to 0 if 1
to 1 if 0

Figure 13. 82588 Data Encoding Rules

inter AP-236

these three formats. The main advantage of NRZI over
the other two is that NRZI requires half the channel
bimdwidth. for any given data rate. On the other hand.
since the NRZI signal does not have as many tran­
sitions as the other two. clock recovery from it is more
difficult. The main advantage of Differential Manches­
ter over straight Manchester is that for a signal that is
differentially driven (as in RS 422). crossing of the two
wires carrying the data does not change the data re­
ceived at the receiver. In other words. NRZI and Dif­
ferential Manchester encoding methods are polarity in­
sensitive (Even though NRZI. Differential Manchester
are polarity insensitive. the 82588 expects a high level
in the RXD line to detect carrier inactive at the end of
frames).

3.5 Detection of the Collision
Presence Signal

In a StarLAN network. HUB informs the nodes that a
collision has occurred by sending the Collision Pres­
ence Signal (CPS) to the nodes. The CPS signal is a
special signal which contains violations in Manchester
encoding. Figure 14 shows the CPS signal. It has a 5 ms
period. looking very much like a valid Manchester sig­
nal except for missing transitions (or violations) at

periodic intervals. When the 82588 decodes this signal.
it fails to see mid-cell transitions repeatedly at intervals
of 2.5 bit times and hence calls it a code violation. The
edges of CPS are marked for illustration as a. b. c.
d •... 1. Let us see how the 82588 interprets the signal if
it starts calling the edge 'a' as the mid-cell transition for
'I'. Then edge at 'b' is '0'. Now the 82588 expects to see
an edge at ••• but since there is none. it is a Manchester
code violation. The edge that eventually does occur at
'd' is then used to re-synchronize and. since it is a fall­
ing edge. it is taken as a mid-cell transition for '0'. The
edge at 'e' is for a 'I' and then again there is no edge at
•••. This goes on. with the 82588 flagging code violation
and re-synchronizing again every 2.5 bit times. When a
transmitting node sees this CPS signal being returned
by the HUB (instead of a valid Manchester signal it
transmitted). it assumes that a collision occurred. The
82588 has two built-in mechanisms to detect collisions.
These mechanisms are very general and can be used for
a very broad class of applications to detect collisions in
a CSMA/CD network. Using these mechanisms. the
82588 can detect collisions (two or more nodes trans­
mitting simultaneously) by just receiving the collided
signal during transmission. even if there was no HUB
generating the CPS signal.

ENCODING

CPS

EDGES:

1 0 1 1 01 K 1 J 1 0 1

82588
DECODING

abc d e f 9 h
!-5.us PERIOD-I

I 2t I tit = 0.5 .us

• MISSING MID-CELL TRANSITION

1 0

.rt.r1.
abc d

o 1

1..JL..1'
d e f 9

1 0

.rt.r1.
J kim

O· 1

1..JL..1'
J kim

k I

Figure 14.82588 Decoding the Collision Presence Signal

1-95

231422-17

Ap·236

3.5.1 COLLISION DETECTION BY CODE
VIOLATION

If during transmission, the 82588 sees a violation in the
"encoding (Manchester, NRZI or Differential Manches­
ter) used, then it calls it a collision by aborting the
transmission and transmitting a 32 bit jam pattern. The
algorithm used to detect collisions, and to do the data
decoding, is based on finding the number of sampling
clocks between an edge to the next one. Suppose an
edge occurred at time 0, the sampling instant of the
next edge determines whether it was a collision (C), a
long pulse (L)-with a nominal width of 1 bit time-, or
a short pulse (S)-nominal width of half a bit time. The
following two charts show the decoding and collision
detection algorithm for sampling rates of 8 and 16
when using Manchester encoding. The numbers at the
bottom of the line indicate sampling instances after the
occurrence of the last edge (at 0). The alphabets on the
top show what would be inferred by the 82588 if the
next edge were to be there.

Sampling rate = 8 (clock is 8x bit rate)

C C S S S L L L L L C C
I I I I I I I I I I I I

o 23456"78910111213

Collision also if:
RxD stays low for 13 samples or more
A mid cell transition is missing

Sampling rate = 16 (clock is 16x bit rate)

CCCCCSSSSSCLLLLLLLLLCCCC
111111111111111111111111111
o 2 4 6 8 10 12 14 16 18 20 22 24 26

TRANSMITTED TX CRC FRAME

!.

Collision also if:
RxD stays low for 25 samples or more
A mid cell transition is missing

A single instance of code violation can qualify as colli­
sion. The 82588 has a parameter called collision detect
filter (CDT Filter) that can be configured from 0 to 7.
This parameter determines for how many bit times the
violation must remain active to be flagged as a collision:
For StarLAN CDT Filter must be configured to 0-
that is disabled.

3.5.2 COLLISION DETECTION BY SIGNATURE
(OR BIT) COMPARISON "

This method of collision detection compares a signature
ofthe transmitted data with that of the data received on
the RxD pin while transmitting. Figure 15 shows a
block diagram of the logic. As the frame is transmitted
it flows through the CRC generation logic. A timer,
called the Tx slot timer, is started at the same time that
the CRC generation starts. When the count in the timer
reaches the slot time value, the current value of the
CRC generator is latched in as the" transmit signature.
As the frame is returned back (through the HUB) it
flows through the CRC checker. Another timer-Rx
slot timer-is started at the same time as the CRC
checker starts checking. When this timer reaches the
slot time value, the current value of the CRC checker is
latched in as the receive signature. If the recdved signa­
ture matches the transmitted one, then it is assumed
that there was no collision. Whereas, if the signatures
do not match, a collision is assumed to have occurred.

TRA NSMIT CHANNEL

Tx SLOT TX SIGNATURE
TIMER LATCH

Rx SLOT RX SIGNATURE
TIMER LATCH

f
RECEIVED RX CRC

FRAME

+ COMPARE·

RE CEIVE CHANNEL

• MATCH = NO COLLISION
NO MATCH = COLLISION

Figure 15. Collision Detection by Signature Comparison
1-96

231422-18

AP-236

Note that, even if the collision were to occur in the first
few bits of the frame, a slot time must elapse before it is
detected. In. the code violation method, collision is de­
tected within a few bit times. However, since the signa­
ture method compares the signatures, which are char­
acteristic of the frame being transmitted, it is more ro­
bust. The code violation method can be fooled by re­
turning a signal to the 82588 which is not the same as
the transmitted signal but is a valid Manchester sig­
nal-like a I MHz signal. Both methods can be used
simultaneously giving a combination of speed and ro­
bustness.

NOTE:
In order to reliably detect a collision using the colli­
sion by bit comparison mode, the transmitter must
still be transmitting up to the point where the receiver
has seen enough bits to complete its signature. Other­
wise, the transmitter may be done before the RX sig­
nature is completed resulting in an undetected colli­
sion. A sufficient condition to avoid this situation is to
transmit frames with a minimum length of 1.5 • slot­
time (see Figure 16).

3.5.3 ADDITIONAL COLLISION DETECTION
MECHANISM

In addition to the collision detection mechanisms de­
scribed in the preceding sections, the 82588 also flags
collision when after starting a transmission any of the
following conditions become valid:

a) Half a slot time elapses and the carrier sense of
82588 is not active.

82588

TX

RX

b) Half a slot time + 16 bit times elapse and the open­
ing flag (sfd) is not detected.

c) Carrier sense goes inactive after an opening flag is
received with transmitter still active.

These mechanisms add a further robustness to the colli­
sion detection mechanism of the 82588. It is also possi­
ble to OR an externally generated collision detect signal
to the internally generated condition by bit comparison
(see Figure 17).

3.6 Carrier Sensing

A StarLAN network is considered to be busy if there
are transitions on the cable. Carrier is supposed to be
active if there are transitions. Every node controller
needs to know when the carrier is active and when not.
This is done by the carrier sensing circuitry. On the
82588 this circuit is on chip. It looks at the RxD (re­
ceive data) pin and if there are transitions, it turns on
an internal carrier sense signal. It turns off the carrier
sense signal ifRxD remains in idle (high) state for 13/8
bit times. This carrier sense information is used to mark
the start of the interframe space time and the back off
time. The 82588 also defers transmission when the car­
rier sense is active.

When operating in the NRZI encoded mode, carrier
sense is turned off if RxD pin is in the idle state for 8 bit
times or more (see Figure 18).

PD

HEADEND
PD

CONDITION FOR RELIABLE CDBBC

TLMIN_FRAMCLENGTH > SLOLTIME+ 2*PD

t SLOLTIME ~ 2*PD

231422-75

Figure 16. Limitation of CDeeC Mechanism

1-97

inter Ap·236

COLLISION DETECTION BY BIT COMPARISON (CDBBC)
(CONrIGURE BYTE B, BIT 3)

COLLISION DETECTION SOURCE (INTERNAL, EXTERNAL)
(CONrIGURE BYTE 10, BIT 7)

231422-76

Figure 17. Mode 0, Collision Detection

3.7 Squelching the Input

Squelch circuit is used to filter idle noise on the receiver
input. Basically two types of squelch may be used: Volt­
age and time. Voltage squelch is done to filter out sig­
nals whose strength is below a defined voltage thresh­
old (0.6 volts for StarLAN). It prevents idle line noise
from disturbing the receive circuits on the controller.
The voltage squelch circuit is placed right after the re­
ceiving pulse transformer. It enables the input to the
RxD pin of the 82588 only when the signal strength is
above the threshold.

MANCHESTER

If the signal received has the proper level but not the
proper timing, it should not bother the receiver. This is'
accomplished by the time squelch circuit on the 82588.
Time squelching is essential to weed out spikes, glitches
and bad signal especially at the beginning of a frame.
The 82588 does not tum on its carrier sense (or receive
enable) signal until it receives three consecutive edges,
each separated by time periods greater than the fast
time clock high time but less than 13/8 bit-times as
shown in Figure 18.

DATALFu---------~

CARRIER I b I

--+-E-D~-E-S-j.J

DATALFu-

CARRIER I b I

--+-E-D~-E-S-j...l

Figure 18. Carrier Sensing

1-98

I. .'---1

13/BBTxB
25/16BTx 16

-----u--
1
HI~H :rOR 1.1 ---

. .1
231422-77

intJ AP-236

The carrier sense activation can be programmed for a
further delay by up to 7 bit times by a configuration
parameter called carrier sense filter.

shows that it has an 8 bit data bus, read, write, chip
select, interrupt and reset pins going to the processor
bus. It also needs an external DMA controller for data
transfer. A system clock of up to 8 MHz is needed. The
read and write access times of the 82588 are very
short-95 ns-as shown by Figure 20. This further fa­
cilitates interfacing the controller to almost any proces­
sor.

3.8 System Bus Interface

The 82588 has a conventional bus interface making it
very easy to interface to any processor bus. Figure 19

SE~IAl CLOCK

Xl/TxC X2/RxC

DATA

RESET --+

00-7 JI--I\
STANDARD \r-v"

BUS R5
INTERFACE WR

cs
INT

[

DRQO
DMA DACKO--+

INTERFACE DRQl
DACKI

ClK

82588

28 PIN
PLASTIC/CERAMIC

t
SYSTEM CLOCK

RTS

+-- CTS SERIAL
Tx 0 INTERFACE

+--RxD

TClK (MODE 0)

CSMA/CD CRS}
INTERFACE

COT

Figure 19. Chip Interface

80n. - (MIN)

- . 95n •
(MIN) I

55n.-
(MAX)

-75ns-
(MIN)

. 95n •
\ (MIN)

231422-20

-on'll (MIN)

DATA

Figure 20. Access Times

1-99

231422-21

inter AP-236

The 82588 has over 50 bytes of registers, and most are
accessed only indirectly. Figure 21 shows the register
access mechanism of the 82588. It has one I/O port and
.2 uIviA cilannei pons. Tilese are tile windows into the
82588 for the CPU and the DMA controller. An exter­
nal CPU can write into the Command register and read
from the Status registers using I/O instructions and
asserting chip select and write or read lines. Although
there is just one I/O port and 4 status registers, they
can be read out in a round robin fashion through the
same port as shown in Figure 22. Other registers like
the Configuration, Individual Address registers can be

accessed only through DMA. All the internal registers
can be dumped into memory by DMA using the Dump
command. The execution of some of the commands is
oescrioeo in section 4. :See the !s~:)1S!s Keterence Manual
for details on these commands.

3.9 .Debug and Diagnostic Aids

Besides the standard functions that can be used directly
for StarLAN, the 82588 offers many debug and diag-

82588 REGISTER SET

~ I COMMAND I WRITE ONLY

_-II---f~--I---"L-.~-- t STATUS ~ READ ONLY

Figure 21. Register Access

1-100

CONFIGURATION

IA

MULTICAST READ

Tx CRC

Rx CRC

IMPLICIT REGISTERS
(OVER 50 BYTES)

&

WRITE

231422-22

AP·236

4 Status registers are accessed through one read port

POINTER

o:J L STATUS 0
1-----1

STATUS 1

STATUS 2 --+ I READ PORT

STATUS 3
231422-23

The pointer can be changed using a command or can be automatically incremented.

READ_STATUS_588: PROCEDURE;

OUTPUT (CS_588) = 15;

STATUS_588(0)=INPUT (CS_588)

STATUS_588(1)=INPUT (CS_588)

STATUS_588(2)=INPUT (CS_588);

STATUS_588(3)=INPUT (CS_588);

RETURN

END READ_STATUS_588;

f* COMMAND 15 *f

f* RELEASE POINTER, INITIAL = 00 of

f* REFRESH STATUS REGISTER IMAGE *f

/* . IN MEMORY.

READING 4 STATUS REGISTERS

Figure 22. Reading the Status Register

nostics functions. The DIAGNOSE command of the
82588 does a self-test of most of the counters and timers
in the 82588 serial unit. Using the DUMP command,
all the internal registers of the 82588· can be dumped
into the memory. The TDR command does Time Do­
main Reflectometery on the n.etwork. The 82588 has
two loopback modes of operation. In the internal loop­
back mode, the TXD line is internally connected to the
RXD one. No data appears outside the chip, and the
82588 is isolated from the link. This mode enables
checking of the receive and transmit machines without
link interference. In the external loopback mode, the
82588 becomes a full duplex device, being able to re­
ceive its own transmitted frames. In this mode data
goes through the link and all CSMA/CD mechanisms
are involved.

3.10 Jitter Performance

When the 82588 receives a frame from the HUB, the
signal has jitter. Jitter is the shifting of the edges of the
signal from their nominal position due to the transmis­
sion over a length of cable. Many factors like, intersym­
bol interference (pulses of different widths have differ­
ent delays through the transmission media), rise and
fall times of drivers and receivers, cross talk etc., con­
tribute to the jitter. StarLAN specifies a maximum jit­
ter of ± 62.5 ns whenever the signal goes from a
NODE/HUB or HUB/HiJB. Figure 23 shows that the
jitter tolerance of the 82588 is exactly the required

1-101

± 62.5 ns at 1 Mbs for both 8X, 16X Manchester en­
coded data.

Jitter ~ ± variation of an edge from its nominal position.
Jitter can occur on every edge.

I dW I dW I I dW I dW I
r:+= : : =F-: ___ ~ ________ ~. __ • ._._L ______ ~ ___ _

1-1. ---W------I, 1

231422-78

x8 x16

Manchester ± V'6 ±1/16

NRZI ±1/16BT ±3/32 BT
(Code Violations Enabled)

NRZI ±3/16 BT ±3/16 BT
(Code Violations Disabled)

Figure 23. 82588 Jitter Performance

4.0 THE 82588

This chapter describes the basic 82588 operations.
Please refer to the 82588 reference manual in Intel Mi­
crocommunications Handbook for a detailed descrip­
tion. Basic operations like transmitting a frame, receiv­
ing a frame, configuring the 82588 and dumping the
register contents are discussed here to give a feel for
how the 82588 works.

inter AP-236

4~1 Transmit and Retransmit
Operations

To transmit a frame, the CPU prepares a block in the
memory called the transmit data block. As shown in
Figure 24, this block starts with a byte count field, indi­
cating how long the rest of the block is. The destination
address field contains the node address of the destina­
tion. The rest of the block contains the information or
the data field of the frame. The CPU also programs the
DMA controller with the start address of the transmit
data block. The DMA byte count must be equal to or
greater than the block length. The 82588 is then issued
a TRANSMIT command-an OUT instruction to the
command port of the 82588. The 82588 starts generat­
ing DMA requests to read in the transmit data block by
DMA. It also determines whether and how long it must
defer on the link and after that, it starts transmitting
the preamble. The 82588 constructs the frame on the
fly. It takes the destination address from the memory,
source address from its own individual address memory
(previously programmed), data field from the memory

, and the CRC, is generated on chip, at the end of the
frame.

I. Prepare Transmit Data-Block in Memory

2. Program DMA Controller

3. Issue Transmit Command on the Desired
Channel

BYTE
COUNT

U
DESTIN.

ADDRESS

INFORMATION

231422-25

Transmit Data Block

4. Interrupt is received on completion of com­
mand or if the command was aborted or
there was a collision. The status bytes 1 and
2 indicate the Jesult of the operation.

6 5 4 2 o
TX HRT MAX NUM. or COlliSIONS 'OEr BEAT COll

STAnJS 1

COll TX I lOST I lOST IUNDER
OK CRS CTS RUN STAnJS 2

231422-26

TransmIt & Retransmit Results Format

Figure 24. Transmit Operation

At the conclusion of transmission the '82588 ,generates
an interrupt to the CPU. The CPU can then read the

status registers to fmd out if the transmission was suc­
cessful. If a collision occurs during transmissiQn, the
82588 aborts transmission and generates the jam se­
quence, as required by ,IEEE 802.3, and informs the
CPU through interrupt and the status registers. It also
starts the back-off algorithm.

To re-attempt transmission, the CPU must reinitialize
the DMA controller 7to the start of the transmit data
block and issue a RETRANSMIT command to the
82588. When the 82588 receives the retransmit com­
mand and the back-off timer has expired, it transmits

. again. Interrupt and the status register contents again
indicate the success or failure of the (re)transmit at-
tempt. .

The main difference between transmit and retransmit
commands is that retransmit does not clear the internal
count for the number of collisions occurred, whereas
transmit does. Moreoever, retransmit takes effect only
when the back-off timer has expired.

. 4.2 Configuring the 82588

To initialize the 82588 and program its network and
system parameters, a configure operation is performed.
It is very similar to the transmit operation. Instead of a
transmit data block as in transmit command, a config­
ure data block-shown in Figure 12-is prepared by
the CPU in the memory. The first two bytes of the
block specify the length of the rest of the block, which
specify the network and system parameters for the
82588. The DMAcontroller is then programmed by
the CPU to the beginning of this block and a CONFIG­
URE command is issued to the 82588. The 82588 reads
in the parameters by DMA and loads the parameters in
the on-chip registers.

Similarly, for programming the INDIVIDUAL AD­
DRESS and MULTICAST ADDRESSes, the DMA
controller is used to load the 82588 registers. '

4.3 Frame Reception

Before enabling the 82588 for reception the CPU must
make a buffer available for the frame to be received.
The CPU must program the DMA controller with the
starting address of the buffer and then issue the lUL­
ENABLE command to the 82588. When a frame ar­
rives at the RxD pin of the 82588, it starts being re­
ceived. Only if the address in the destination address
matches either the Individual address, Multicast ad­
dress or if it is a broadcast address, is the frame deposit­
ed into memory by the 82588 using DMA. The format
of storage in the memory is shown in Figure 25. At the
end, a two byte field is attached which shows the status
of the received frame. If CRC, alignment or overrun
errors are encountered, they are reported. An inter-

1-102

inter AP-236

1. Prepare a Buffer for Reception RECEIVED FRAME

2. Program DMA Controller DESTIN.
3. Issue Receiver Enable Command ADDRESS

When a frame is received, it is deposited in the
memory. Receive status bytes (2) are appended to

SOURCE the frame in the memory, byte count written in the ADDRESS
status registers 1, 2, and an interrupt is generated.

SRT NO
RECEIVE FRM EOF
STATUS RCV CRC ALG OVER INFORMATION

O.K. ERR ERR RUN

A
RECEIVE

STATUS REG. 1 ~ BYTE STATUS
STATUS REG. 2 COUNT

./
231422-27

Figure 25. Receive Operation (Single Buffer)

rupt from 82588 occurs when all the bytes have been
transferred to the memory. This informs the CPU that
a new frame has been received.

If the received frame has errors, the CPU must recover
(or re-use) the buffer. Note that the entire frame is de­
posited into one buffer. The 82588 when NOT config­
ured for the external loopback mode, will detect colli­
sions (code violations) during receptions. If a collision
is detected, the reception is aborted and status updated.
CPU is then informed by an interrupt (if the collided
frame fragment is shorter than the address length, no
reception will be started), and no interrupt will happen.

Buffer
Pointer
Table
(Managed by CPU)

@BUFFER 1

@BUFFER 2

@BUFFER 3

· · · ·
@BUFFER N

4.3.1 Multiple Buffer Frame Reception

It is also possible to receive a frame into a number of
fixed size buffers. This is particularly economical if the
received frames vary widely in size. If the single buffer
scheme were used as described above, the buffer re­
quired would have to be bigger than the longest expect­
ed frame and would be very wasteful for very short
(typically acknowledge or control) frames. The multi­
ple buffer reception is illustrated in Figure 26. It uses
two DMA channels for reception.

231422-28

Figure 26. Multiple Buffer Reception

1-103

intJ AP-236

As in single buffer reception, the one channel, say chan­
nel 0, of the DMA controller is programmed to the
start of buffer I, and the R25RR i~ p.n~hlprl fnr rprP!'tlr'!!

with the chaining bit set. As soon as the first byte is
read out of the 82588 by the DMA controller and writ­
ten into the first location of buffer 1, the 82588 gener­
ates an interrupt, saying that it is filling up its last avail­
able buffer and one more buffer must be allocated. The
filling up of the buffer 1 continues. The CPU responds
to the interrupt by programming the other DMA chan­
nel--channel I-with the start address of the second
buffer and issuing an ASSIGN ALTERNATE buffer
command with an INTACK (interrupt acknowledge).
This informs the 82588 that one more buffer is avail­
able on the other channel. When buffer 1 is filled up
(the 82588 knows the size of buffers from the configura­
tion command), the 82588 starts generating the DMA
requests on the other channel. This automatically starts
filling up buffer 2. As soon as the first byte is written
into buffer 2, the 82588 interrupts the CPU again ask­
ing for one more buffer. The CPU programs the chan­
nel ° of the DMA controller with the start address of
buffer 3, issues an ASSIGN .. LTERNATE buffer com­
mand with INT ACK. This keeps the buffer 3 ready for
the 82588. This switching of channels continues until
the entire frame is received generating an end of frame
interrupt. The CPU maintains the list of pointers to the
buffers used.

Since a new buffer is allocated at the time of filling up
of the last buffer, the 82588 automatically switches to
the new buffer to receive the next frame as soon as the
last frame is completely received. It can start receiving
the new frame almost immediately, even before the end
of frame interrupt is serviced and acknowledged by' the
CPU. If a new frame comes in, and the previous frame

interrupt is not yet acknowledged, another interrupt
needed for new buffer allocation is buffered (and not
lnlilt) A Col Clnnn '!lie! thoIlIo rt ... cot nneo t~ l n .. nlII + :
----J' --- ----- _ --- ---~ - --... ~ ... u··& ... -O""'-, " -
terrupt line goes active again for the buffered one.

If by the time a buffer fills up no new buffer is available,
the 82588 keeps on receiving. An overrun will occur
and will be reported in the received frame status. How-

. ever, ample time is available for the allocation of a new
buffer. It is roughly equal to the time to fill up a buffer.
For 128 byte buffers it is 128 x 8 = 1024 ms or ap­
proximately 1 millisec. You get 1 ms to assign a new
buffer after getting the interrupt for it. llence the pro­
cess of multiple buffer reception is not time critical for
the system performance.

This method of reception is particularly useful to guar­
antee the reception of back-to-back frames separated by
IFS time. This is because a new buffer is always avail­
able for the new frame after the current frame is re­
ceived.

Although both the DMA channels get used up in re-.
ceiving, only one channel is kept ready for reception
and the other one can be used for other commands until
the reception starts. If an execution command like
transmit or dump command is being executed on a
channel which must be allocated for recepfion, the
command gets automatically aborted when the AS~
SIGN ALTERNATE BUFFER command is issued to
the channel used for'the execution command. The in­
terrupt for command abortion occurs after the end of
frame interrupt.

1-104

AP-236

4.4 Memory Dump of Registers

All the 82588 internal registers can be dumped in the
memory by the DUMP command. A DMA channel is
used to transfer the register contents to the memory. It
is very similar to reception of a frame; instead of data
from the serial link, the data from the registers gets
written into the memory. This provides a software de­
bugging and diagnostic tool.

4.5 Other Operations

Other 82588 operations like DIAGNOSE, TDR,
ABORT, etc. do not require any parameter or data
transfer. They are executed by writing a command to

8 BIT BUS

the 82588 command register and knowing the results (if
any) through the status registers.

5.0 StarLAN NODE FOR IBM PC

This chapter deals with the hardware-the StarLAN
board-to interface the IBM PC to a StarLAN Net­
work. This is a slave board which takes up one slot on
the I/O channel of the IBM PC. Figure 27 shows an
abstract block diagram of the board. It requires the
IBM PC resources of the CPU, memory, DMA and
interrupt controller on the system board to run it. Such
a board has two interfaces. The IBM PC I/O Channel
on the system or the parallel side and the telephone
grade twisted pair wire on the serial side. Figures 28, 29
show the circuit diagram of the board.

PULSE
TRANSFORMER

TELEPHONE
JACK

82588 TxD PULSE
JIII.:;""'--1 SHAPING

SYSTEM
BUS

CONTROL

< >
SYS CLK

RxD

SQUELCH
+

ENABLE
CIRCUITS

Figure 27. 82588 Based StarLAN Node

1-105

231422-29

?

OSC .
D

I
A.
Aa
A4
AS
A.
A?
A.
AS

Cl
8'4 I,.

ua
CRVSTEK
8 .• 8"HZ

CC8-818-S8

~ +D? 8 8 B. 11
+D. B A7 .7 12
+DO l' A6 B6 13
+D4 £. 6 860. 04
'DO S .. B 16 US-U.
+D2 .. 3 83 16 US-16
+D' a 2 82 17 US-I?
+De 2 1 8. 18 UB-IS

ID'R 1pl!--
--l!.!.L-

-lORD
-IOWR

'::!! ca

1'" . c
",&

0 CD,
Ol

'" 12
011

A22
A2.

A24
81 A2&

A2.
A2?

Aa,
All

1974L832

-DACK.l ~ll
.. 74L892 ...

t::I -DACKa ..., 15 ua 6

+RESIJ'
~& ~

'AS
2 "I4tCT •• ~ 16L8
I U4 a ASHAHDA. '0 ~.!'SET '8 +A.

'--=---'" ' -;.;. '0
+A? 2 ? '4
'A. 0 • '8
+AS 4 & REG II
+A4 0 4 REG 8

• DREGI '? .n ? • DREQ
,.

+AEN 8 EN '2
UO

A I •• ~
12. or: C5 or: CI4 or: C, ::t c,a

J;18U.F =t .auF :t .• 47u.F 1: . 84?uF

:::~ a

? •

5 4

~

82688

• ? 1'R'f' /Xl ~ ? • CLK 4

• 5 ~ 1* • 4
,a s TK. 2a
II 2 RK. '9
'2 , ~ ~ ,a 0 Ere' .1HZ fli

i!R ~
& "" a

, ~ .8 ua 8

2? ~

25 ESET
2 "" I rr~~Q· 74S12S
18 DRDI. 'NT 2. 0 • u, "'rou.
II ~ U3-18

U3-17 : I gr--j-
U3-16 '2 t-i

~4
U3-1S ,S = o • I mf~ ~ II

U2 S ~ ~ D '4 YlmI
L-.!:!!.!..-

o 4

CLK

~
TKD
RMD

JunPER

704L5125
2 0 +DRQI US "'8

9

~, ,
7 .. LSI2&

•
L US ,.

~f: ~.

J'unPI

+DRQS ",.

.., +IRIlI5 £> 123
" " t> 124
ill +IRIiI8 I> 126

I DCO 11I:CHIIlCAL ItAIIICETI 1IGl. III'I'El-JA
InTLE . I.. PC - STAIIUIII - II2SIIII

FltE

HODEI.IINS

i'""iii'2

, 231422-79

l

~
'1J • N

~

D

A

8

!lmI

• SU ••
2.2K

1'l:III:

•

"4LS191
I I 15r;--;;
~; :;

c gC

3 ..
• ~"D'a

• •• II
.2
.3

D gD II;! ";(Reo 1Jf
";;1-0- .'u 1" , ...

.SU

..

+SU

a u.
26L632

••
2.2K

~
.ee
.S

Sp,

.!.
2

~

.2 aee • .K U2.... ::k!l "AK
u.

2.2k
I.

r---I
: EqUATIOItS :
I 9'. I (IAEN .. IA9NANDA8 e. IA7 .. IA6 eo. lAS II. IA4 .. IAe> ; I

: tJnSlBf!'. (IAEH eo. IASNANDA8 .. !R7 6. IA6 eo. lAS .. IA4 .. Ae .. ITImll) :
I I
I DREG I • I ((tREQ." 11Jiif1IT). (!REga II. IURErn) • RESET) ; I

: DREDS· I < (tREQI" I~) Ii (tREQl ... IDREGS) • RESET) ; :
I I
I 1URii· JA"fT{f .. ~ .. (I (IAEN .. IA9NAHDAB .. !A? II. !A6 .. !AS eo. !A·n); I
I I
~-- _____ I

7

I --------.

B

IICO 'mQtIIICAL _ETIIIG. Itrn:L IA
I TITLE

I at PC - STARLAH - IIZSII8

FILE

NOD£2.IU0I6

2'iiF2

231422-80

(

»
" , N

~

intJ AP-236

5.1 Interfacing to the IBM PC 1/0
Channel

IBM PC has '8 slots oil the system board to allow ex­
pansion of the basic system. All of them are electrically
identical and the I/O channel is the bus that links them
all to the 8088 system bus. The I/O channel contains
an 8 bit bidireCtional data bus, 20 address lines, 6 levels
of interrupt, 3 channels of DMA control lines and other
control lines to do I/O and memory read/write opera­
tions. Figure 30 shows the signals and the pin assign­
ment for the I/O Channel.

SIGNAL NAME

GNO

+RESET DRV

+5V

+IRQ2

-5VOC

+ORQ2

-12V

-CARD SLCTD

+12V

GNO

-MEMW

-MEMR

-lOW

-lOR

-OACK3

+ORQ3

-OACKl

+DROl

-OACKO

CLOCK

+IRQ6

+IRQ7

+IRQ5

+IRQ4

+IRQ3

-OACK2

+T/C

+ALE

+5V

+OSC

GNO

Rear Panel

...,...
81 Al

~

810 Al0

820 A20

...;.. 831 A31;;..

\. \

SI GNAL NAME

1/0 CH CK

+07

+06

+05

+04

+03

+02

+01

+00

+1/0 CH ROY

+AEN

+A19

+A18

+A17

+A16

+A15

+A14

+A13

+A12

+Al1

+Al0

+A9

+A8

+A7

+A6

+A5

+A4

+Al

+A2

+Al

+AO

COMP ONENT SIDE

231422-31

Figure 39.1/0,Channel Diagram

5.1.1 REGISTER ACCESS AND DATA BUS
INTERFACE

The CPU accesses the StarLAN adapter card through 2
I/O address windows. Address 300H is used to access

to 82588 for commands and status, address 30lH ac­
cesses an on board control port that enables the various
1ntprrnnt tIInti OM A linpl;l PUP." thnnn-h nnhr turn g,.L

d~~;e;r ~r~-;e~~d: -th~-~rd ;;~ --~llth~ -1-6' add;es~;s
spaces from 300H to 30FH. This was done to keep sim­
plicity and minimum component count. Registers ad­
dress decoding is done using a PAL (16L8) and an ex­
ternal NAND gate (U8).

Hex Range

OOO-OOF
020-021
040-043
060-063
080-083
OAX'
OCX
OEX
200-20F
210-217
220-24F
278-27F
2FO-2F7
2F8-2FF

300-31F
320-32F
378-37F
380-38C··
380-389"

3AO-3A9

3BO-3BF
3CO-3CF
3DO-3DF
3EO-3E7
3FO-3F7
3F8-3FF

Usage

DMA Chip 8237 A-5
Interrupt 8259A
Timer 8253-5
PP18255A-5
DMA Page Registers
NMI Mask Register
Reserved
Reserved
Game Control
Expansion Unit
Reserved
Reserved
Reserved
Asynchronous Communications

(Secondary)
Prototype Card
Fixed Disk
Printer
SDLC Communications
Binary Synchronous Communications

(Secondary)
Binary Synchronous Communications

(Primary)
IBM Monochrome Display/Printer
Reserved
Color/Graphics
Reserved
Diskette
Asynchronous Communications

(Primary)

• At power-on time, the Non Mask Interrupt into the
8088 is masked off.
This mask bit can be set and reset through
system software as follows:
Set mask: Write hex 80 to I/O Address hex AO
(enable NMI)
Clear mask: Write hex '00 to I/O Address hex AO
(disable NMI)

•• SDLC Communications and Secondary Binary
Synchronous Communications cannot be used
together because their hex addresses overlap.

Figure 31. I/O Address Map

1-108

inter AP-236

M-A9---+

AO---. LOGIC
U2, U8

~ CS_ (to 588)

AEN---+

IOW_---+

~ LDPRL (to DMA, INTERRUPT enable lines)

'-----' 231422-56

Register Access

Format of Following Equations Will Be According To

The Following Specifications:

II:

INVERT

SIGNAL ACTIVE LOW

LOGIC AND

LOGIC OR

A9NANDA8 = I (A9 II: A8)

CS_ = I (IAEN II: IA9NANDA8 II: IA7 II: IA6 II: IA5 II: IA4 II: lAO)

LDPORT_ = I (lAEN II: IA9NANDA8 II: IA7 II: IA6 II: IA5 II: IA4 II: AO II: IIOWR_)

BUSEN_ = DACKl_ II: DACK2_ II: (I (IAEN II: IA9NANDA8 II: IA7 II: IA6 II: IA5 II: IA4»;

The signal CS_ decodes address 300H, it is only active
when AEN is inactive meaning CPU and not DMA
cycles. LDPORT_ has exactly the same logic for ad­
dress 301H, but it is only active during I/O write cy­
cles. The I/O port sitting on address 30lH is write
only. The data BUS lines DO to D7 are buffered from
the 82588 ·to the PC bus using an 74LS245 transceiver
chip.

TO 588

231422-57

Data Bus Interface

The Bus transceiver is enabled if: A DMA access is
taking place, or I/O ports 300H to 30FH are being
accessed.

5.1.2 Control Port

As mentioned the StarLAN adapter port has. a 4-bit
write only control port. The purpose of this port is to
selectively enable the DMA and INTERRUPT request
lines. Also it can completely disable the transmitter.

Control Port Definition

I ENDRQ1 I ENDRQ3 I EN INTER I TXEN

ENDRQl, ENDRQ2
ENINTER

TXEN

: "I" Enable DMA requests.
: "I" Enable INTERRUPT

request.
: "I" Enable the transmitter.

On power up all bits default to "0".

1-109

intJ AP-236

5.1.3 CLOCK GENERATION

The 82588 requires two clocks for operation. The sys­
tem clock and the serial clock. The serial clock can be
generated on chip by putting a crystal across Xl and
X2 pins. Alternatively, an externally generated clock
:can be fed in at pin XI (with X2 left open). In both
cases, the frequeQcy must be either 8 or 16 times (sam­
pling factor) the desired bit rate. For StarLAN, 8 or 16
MHz are the correct values to generate I Mbls data
rate. A configuration parameter is used to tell the
82588 what the sampling factor is. An externally sup­
plied clock must have MOS leve~s (~.6V -3.9V). ~pec~­
cations for the crystal and the CIrcuIt are shown In FIg­
ure 32.

The system clock has to be supplied externally. It can
be up to 8 MHz. This clock runs the parallel side of the
82588. Its frequency does not have any impact on the
read and write access times but on the rate at which
data can be transferred to and from the 82588 (Maxi­
mum DMA data rate is one byte every two system
clocks). This cI~ck doesn't require MOS levels.

The 1/0 channel of the IBM PC supplies a 4.77 MHz
signal of 33% duty cycle. This signal could be used as a
system clock. It was decided, however, to generate a
separate clock on the StarLAN board to be indepen­
dent of the 1/0 channel clock so that this board can
also be used in other IBM PCs and also in some other
compatibles. The 8 MHz system clock is generated us-

Series Resonance

ing a DIP OSCILLATOR which have the required 50
ppm tolerance to meet StarLAN. This clock is convert­
ed to MOS levels by 74HCTOO and fed into both the
system and' serial clock inputs.

5.1.4 DMA INTERFACE

The 82588 requires either one or two DMA channels
for full operation. In this application, one channel is
dedicated for reception and the other is used for trans­
missions and the other commands. Use of only one
DMA channel is possible' but may require more com­
plex' software, also some RX frames may be lost during
switches of the DMA channel from the receiver to the
transmitter (Those frames will be recovered by higher
layers of the protocol). Also using only .0J?e pMA
channel will limit the 82588 loopback functionalIty. So
the recommendation is to operate with two DMA chan­
nels if available. APPendix C describes a method of op­
erating with only one DMA channel without loosing
RX frames. '

The IBM PC system board has on~ 8237A DMA con­
troller. Channel 0 is used for doing the refresh of
DRAMs. Channels I, 2 and 3 are available for add-on
boards on the I/O Channel. The floppy disk controller
board uses the DMA channel 2 leaving exactly two
channels (I and 3) for the 82588. The situation is worse
if the IBM PC/XT is used, since it uses channel 3 for
the Winchester hard disk leaving just the channel I for

-Frequency Will Drift by About 400 PPM from Nominal .=h
CRYSTAL 0 i C1

-No Capacitors Needed --Doesn't Meet StarLAN Requirements I -

i C2

--Use Parallel Resonance Crystal

Meeting StarLAN 100 PPM Requirements

-Recommended For Precise Frequencies
-82588 X-TAL ,Oscillator Stability ± 35 PPM (0-70°C)

Crystal: Load Capacitance = 20 pF
Shunt Capacitance = 7 pF Maximum
Series Resistance = 30n Maximum
Frequency Tolerance = 50 PPM (0-7fY'C)

CI, C2 -+ 27 pF or 39 pF, 5%

Figur, 32. Crystal Specifications

1-110

82588

231422-81

intJ AP-236

the 82588. On the other hand, the IBM. PCI AThas 5
free DMA channels. We will assume that 8237ADMA
channels I and 3 are available for the 82588 as in the
case of the IBM PC.

Since the channel 0 of 8237A is used to do refresh of
DRAMs all the channels should be operated in single
byte transfer mode. In this mode, after every transfer
for any channel the bus is granted to the current high­
est priority channel. In this way, no channel can hog
the bus bandwidth and, more important, the refresh of
DRAMs is assured every 15 microseconds since the re­
fresh channel (number 0) has the highest priority. This
mode of operation is very slow since the HOLD is
dropped by the 8237A and then asserted again after
every transfer. Demand mode of operation is a lot more
suitable to 82588 but it cannot be used because of the
refresh requirements.

Whenever the 82588 interfaces to the 8237A in the sin­
gle transfer mode, there is a potential 8237A lock-up
problem. The 82588 may deactivate its DMA request
line (DREQ) before receiving an acknowledge from the
DMA controller. This situation may happen during
command abortions, or aborted receptions. The 8237A
under those circumstances may lock-up. In order to
solve this potential problem, an external logic must be
used to insure that DREQ to the DMA controller is
never deactivated before the acknowledge is received.

. Figure 33 shows the logic to implement this function.
This logic is implemented in the 16L8 PAL.

The 82588 DREQ lines are connected to the IBM/PC
bus through tri-state buffers which are enabled by writ­
ing to 1/0 port 301H. This function enables the use of
either .one or two DMA channels and also the sharing
of DMA channels with other adapter boards.

5.1.5 INTERRUPT CONTROLLER

The 82588 interrupts the CPU after the execution of a
command or on reception of a frame. It uses the 8259A
interrupt controller on the system board to interrupt
the CPU. There are 6 interrupt request lines, IRQ2 to
IRQ7, on the I/O channel. Figure 34 shows the assign­
ment of the lines. In fact, none of the lines are com­
pletely free for use. To add any new peripheral which
uses a system board interrupt, this interrupt needs to
have the capability to share the specific line, by driving
the line with a tri-state driver. The 82588 StarLAN
adapter board can optionally drive interrupt lines
IRQ3, IRQ4 or IRQ5 (An 74LSI25 driver is used).

Number Usage

NMI Parity
0 Timer
1 Keyboard
2 Reserved
3 Asynchronous Communications

(Secondary)
SDLC Communications
SSC (Secondary)

4 Asynchronous Communications
(Primary)

SDLC Communications
SSC (Primary)

5 Fixed Disk
6 Diskette
7 Printer

,Figure 34. IBM PC Hardware Interrupt Listing

588REO~
. DREO

DACK

RESET----------'

588 REO---.l

DREO---.l
231422-82

Figure 33. DMA Request Logic

1-111

inter AP-236

5.2 Serial Link Interface
A _: ",1 Ct 1 "ltrt.T "'..:I l...:1 : ,..+:1 + Jl".OW-....... u ~.L.L, u v

twisted pair wiring using an extension cable (typically
up to 8 meters-25 ft.). See Figure 35. One end of the
cable plugs into the telephone modular jack on the Star­
LAN board and the other end into a modular jack in
t,he wall. The twisted pair wiring starts at the modular
jack in the wall and goes to the wiring closet. In the
wiring closet, another telephone extension cable is used
to connect to a StarLAN HUB. The transmitted signal
from the 82588 reach the on-board telephone jack
through a RS-422 driver with pulse shaping and a pulse
transformer. The received signals from the telephone
jack to the 82588 come through a pulse transformer,
squelch circuit and a receive enable circuit.

~, L.L.L.L.U..u.&.&.U

INTO IBM PC

IN THE WIRING CLOSET

WIRING
PANEL

231422-33

Figure 35. Path from StarLAN Board to HUB

5.2.1 TRANSMIT PATH

Thp ~inO'lp pnrlpti tr~nQ.m1t Qion~l nn thp Iyn nin 1q

~~;;v~rt;d-t~-~' diff~;~tial sig~al a~d the rise a~d fall
times are increased to 150 to 200 ns before feeding it to
the pulse transformer (this pulse shaping is not a re­
quirement, but proves to give good results). Am26LS30
is a RS-422 driver which converts the TxD signal to a
differential signal. It also has slew rate control pins to
increase to rise and fall times. A large rise and fall time
reduces the possibility of crosstalk, interference and ra­
diation. By the other hand a slower edge rate increases
the jitter. In the StarLAN adapter card, the first ap­
proach was used. The 2~LS30 converts /l square pulse
to a trapezoidal one-see Figure 36. The filtering effect
of the cable further adds to reduce the higher frequency
components from the waveform so that on the cable the
signal is almost sinusoidal. The pulse transformer is for
DC isolation. The pulse transformers from Pulse Engi­
neering-type PE 64382-was used in this design. This
is a dual transformer package which introduces an ad­
ditional rise and fall time of about 70-100 ns on the
signal, helping the former discussed waveshaping.

5.2.2 IDLE PATTERN GENERATION

StarLAN requires transmitters to generate an IDLE
pattern after the last transmitted data bit. The IDLE
pattern is defined to be a constant high level for 2-3
microseconds. The purpose of this pattern is to insure
that receivers will decode properly the last transmitted
data bits before signal decay. Currently the 82588 needs
one external component to generate the IDLE. The op­
eration principle .is to have an external shift register
(74LSI64) that will kind of act as an envelope ,detector
of the TXD line. Whenever the TXD line goes low

\

26LS30 • II~

~)
82588 TxD

150n.
RISE/FALL
TIMES

Figure 36. Wave Shaping

1-112

231422-34

inter AP-236

(first preamble bit), the output of the shift register
(third cell) will immediately go low, enabling the RS-
422 driver, the shift register being clocked by TCLK­
will time the duration of the TXD high times. If the
high time is more than 2 microseconds, meaning that
the 82588 has gone idle, the transmitter will be disabled
(See Figure 37). Another piece of this logic is the OR­
ing of the output of the shift register with TXEN-sig­
nal which comes from the board control' port. This sig­
nal completely disables the transmitter. The other pur­
pose of this enable signal, is to make sure that after
power-up, before the 82588 is configured, the RS-422
drivers won't be enabled (TCLK_ is not active before
the configure command). See Figures 28, 29 for the
complete circuit.

5.3 RECEIVE PATH

The signal coming from the HUB over the twisted pair
wire is received on the StarLAN board through a lOOn
line termination resistor and a pulse transformer. The
pulse transformer is of the same type as for the transmit
side and its function is dc isolation. The received signal
which is differential and almost sinusoidal is fed to the
Am26LS32 RS-422 receiver. As seen from Figure 38
the pulse transformer feeds two RS-422 receivers. The
one on the bottom is for squelch filtering and the one
above is the real receiver which does real zero crossing
detection on the signal and regenerates a square digital
waveform from the sinusoidal signal that

is received. Proper zero crossing detection is very essen­
tial; if the edges of the regenerated signal are not at zero
crossings, the resulting signal may not be a proper
Manchester encoded signal (self introduced jitter) even
if the original signal is valid Manchester. The resistors
in the lower receiver keep its ·differential inputs at a
voltage difference of 600 mY. These bias resistors en­
sure that the output remains high as long as the input
signal is more than -600 mY. It is very important that
the RxD pin remains HIGH (not LOW or floating)
whenever the receive line is idle. A violation of this may
cause the 82588 to lock-up on transmitting. Remember,
that based on the signal on the RxD pin, the 82588
extracts information on the data being received, Carrier
Sense and Collision Detect. This squelch of 600 mY
keeps the idle line noise from getting to the 82588. Fig­
ure 39 shows that when the differential input of the
receiver crosses zero, a transition occurs at the output.
It also shows that if the signal strength is higher than
-600 mY, the output does not change. (This kind of
squelching is called negative squelching, and it is done
due to the fact that the preamble pattern starts with a
going low transition). Note that the differential voltage
at the upper receiver input is zero when the line is idle.
The output of the squelch goes to a pulse stretcher
which generates an envelope of the received frame, The
envelope is a receive enable signal and is used to AND
the signal from the real zero crossing receiver before
feeding it to the RxD pin of the 82588.

18- 22
TX - FAST CLOCKS

'''--wm.J - - - - - - - - - - -u::BL
RS-422 ENABLE-----,~) _______________________________________ C_E_LL __ ~!

231422-83

Figure 37. Idle Generation

1-113

inter AP-236

FILTERING OF
IoIlm-l F"RF"nllF"Nr.v Nnl<:;F" ftl'!"I"t:"nII'!"O '''1:''01'\

0. ", 0.

CROSSING

:101! ·~II'-.....I· ~. ~--,----or >--------------+ DATA

t
TERMINATION

INPUT -'I!!!!!!!!!!!!!'"

, DATA

TIME >-----1 SQUELCH

(OPTIONAL)

ENVELOPE
IDLE

DETECT

------~

~----------------CARRIER - _____ --' b-3 EDGES

...J

'" ;:
% ...
"" ...
"-
"-a

""
~::l
"'11.
0% ... -
D::

mV

600

400

200

0

-200

-400

-600

Figure 38. Input Ports

FILTERED-OUT I

BY SQUELCH

,,,t LJ1S
VOL~ ~ ________________________ __

VOHtmuu' •

VOL
-r------------

Figure 39. Squelch Circuit Output

1-114

1.6}Ls

231422-35

CARRIER

231422-84

inter AP-236

5.4 80188 Interface to 82588

Although the 82588 interfaces easily to almost any
processor, no processor offers as much of the needed
functionality as the 80186 or its 8 bit cousin, the 80188.
The 80188 is 8088 object code compatible processor
with DMA, timers, interrupt controller, chip select log­
ic, wait state generator, ready logic and clock generator
functions on chip. Figure 40 shows how the 82588, in a
StarLAN environment interfaces to the 80188. It uses
the clock, chip select logic, DMA channels, interrupt
controller directly from the 80188. The interface com­
ponents between the CPU and the 82588 are totally
eliminated.

5.5 iSBX Interface to StarLAN

Figure 41 shows how to interface the 82588 in a Star­
LAN environment to the iSBX bus. It uses 2 DMA
channels-tapping the second DMA channel from a
neighboring iSBX connector. Such a board can be used
to make a StarLAN to an Ethernet or a SNA or DEC­
NET gateway when it is placed on an appropriate SBC
board. It may also be used to give a StarLAN access to
any SBC board (with an iSBX connector) independent
of the type of processor on the board.

1-115

,
Ol

."
a'
I:
;
....
?
!
:
S'
iil'

i
S'
co
J\)

~

..

SYSTEn RESET

8.

BIUBB
8Ea "'4

jj
"2

RESET "1
DRQ818
BRQ. 19
INTI ..
AD? 17
AD6 16
AD6 13
AD" 11
•••
• •• Rn 5
. " h

eLI< OUT '"

U'

ESET

lfR'f' "')(21 H.le

T)lt"~~~~

U3

+5U

704LS191

• Q.~ B QB 2
C QC '"
D QD 1

~10 I 4 ~.co LIJ 1 5
I? § D U 5

nA'
Ul

CARRIER DIUELIlPE

4

IDLE

••
•••
.5

•••

.4 ,.0

SQUELaI LOGIC

I HTEL DCD TEatHl CAL ttARICETI IIG

D

B

19&8 PRAIRIE CITY RD FOLson CIA 95638 IA

TITLE

DRAUN
BY

IELL

DATE

l1li188 INTERFACE 1U 8ZS88

FILE

lBB,DNG

1 OF 1

231422-85

cl

~
." .
p.)
Co)
CJ)

D
I

8

SBlC lItIS

.r6-82

.15-28

.r6-13

.76-1&
JS-BS
.16-841
36-98
.16-1"
.16-19

-'II .110-21

C- ~::~:

4

c J5-2?
;: C .16-29;' nD2 11112 Ie

!: ~:::!
• .16-22

(

~ ! l ~'u '4 8 • Jr.::C'LS ~ ,~ -L MHZ U3 SpF r-----' I\)
-.....J ~ DIP "I ... HCtae 16 11." I ~ or 8 - I a---... 2 IS .. c:::!"'-.;------------,

n
CD I CR'llSrEK S' - ceO-SUI-58

go
N
c.n
go
go

CARRI ER EllUELOPE

7

I HTEL DCO TECHHI CAL ItAllXETI HG
IseB PRAolR[E cny RD FOLson CA essaa

TITLE

DRAUH
BY

BELL
DATE

SBX I HTERFACE 'IU OZSB8

F-UE

SSX.DNG

f OF I

231422-86

inter AP-236

6.0 THE StarLAN HUB

The function of a StarLANHUB is described in section
2.0. Figure 42 shows a block diagram of a HUB. It
receives signals from the nodes (or lower level HUBs)
detects if there is a collision, generates the collision
presence signal, re-times the signal and sends it out to
the higher level HUB. It also receives signals from the
higher level HUB, re-times it and sends it to all the
nodes and lower level HUBs connected to it. If there is
no higher level HUB, a switch on the HUB routes the
upstream received signal down to all the lower nodes.
The functions performed by a HUB are:

"Receiving signals, squelch

• Carrier Sensing

'Collision Detection

'Collision Presence Signal Generation

'Signal Retiming

"Driving signals on to the cable

'Jabber Function

'Receive protection Timer

TRANSMIT PAIR # 1

~II

~II
TRANSMIT PAIR # N

SQUELCH
+

CARRIER
SENSE

+
COLL. DET.

+
JABBER

+
PROTECTION

TIMER

6.1 A. StarLAN Hub for the. IBM/PC

Figure 43 shows the implemention of a 5/6 port HUB
for the IBM/PC.

The idea of the following design is to show a HUB that
plugs into the IBM/PC backplane. This HUB not only
gets its power from the backplane, but also enables the
host PC to be one NODE into the StarLAN network.
This embedded node scheme enables further savings
due to the fact that aU the analog interface for this port
is saved (receiver, transmitter, transformer, etc).

This kind of board would suit very much a smaU clus­
ter topology (very typical in departments and small of­
fices) where the HUB board would be plugged into the
FILE SERVER PC (pC/XT, PC/AT).

The HUB design doesn't implement the Jabber and the
protection timers as called by the IBASE5 draft stan­
dard. Those functions are optional and were not closed
during the writing of this AP-NOTE. This HUB does
implement the RETIMING circuit which is an essen­
tial requirement of StarLAN ..

Figures 44 to 49 show a complete set of schematics for
the HUB design.

II~
TO HIGHER
LEVEL HUB

RECEIVE PAIR # 1 HHUB

~II

~II
RECEIVE PAIR # N

231422-40

Figure 42. Star LAN HUB

1-118

inter

• Low Cost HUB, Uses IBM/PC Power Supply
• 82588, Embedded Port Savings

Transformers
422 Drivers

AP-236

• Functional StarLAN Cluster, For Low Cost/Small Topologies

Figure 43, IBM/PC Resident HUB

1-119

PHONE JACKS

231422-87

., · Il
26L892

~

EA
ul r-. ______ PULSE TX I I R2 _ kZ":2K q=f! -_. L..,. . ?~Se! ID

!!!.
.!!..L.-

C8nHZ

1 .. .!..6LS32

!!.

EB I r----J PULSE.X I L h.2K I il:l>i -_., .4LS.4
C .!!!..J I. ~ __ -------.J....~R..7 s_ 12 ,,&.\,co,.,--!....-F2.,. 15 3 f"-......_. Ie

::!! 1 ~ L.:::.......Jv ill '" I; Re ~ !.. c +su •
I\) ;;; , +6U I\)
o Rl1 EC W :t .-----. PULSE •• L . 2K 0)

!E­
Re2

BI - L--J ~ TO. T ,.n. ~ IB
PHONE .JACK .a gel \IS

2.2K
IIRH

!!!
RD2

lli~LS92

.!!!

ED r-. _ PULSE T. II R" t,2.2K ~~ 1. __ '~S8~ --

A 1~~1~9-----.Z~ . ~ 2 lCI.K Q2rt2 I DCO TE<H4ICAL HARKETING. 1tn'BL I _u.. ~ _.... - ------:----;;;----y;--- - nom __
TITLE

I HP\JT PAl RS

.D1oI8

8 7 5 9

231422-88

.2

••
0.,
oD.

• 4

•• ••
oD.
oD4
oDO .7

•• ••
.D2
·D.
.D.

B,4
DI'

-lORD
-lOUR

!!
CQ ,

~I 8"
~

~ 8 ••

B2
.22 ...
.24
• 2.

• 2. ."

12~a2

-DACKI I _3.~
•

CJ -DACKS .l\l

+RESET
IIII .

•• 7 I 104L532

•• 4 2 Ull 3 ...
.11

...
+AEN

7

4

7""504

~~
.~ o.U 1 16 ";' 18 ~ Q 9 1 U ••

MHZ 13 'f 2 U16 a
r-Y?4. CBttHZ

DIP 12 D
osc 8 11 ~ 8

I U14

u ••
U

CRYSTEK
16 8MHZ

CtO-BIB-58

~ ~ 825&8 7""L5704 7""LS14
9 8 B8 11 • D? ~"')(1 ~ .. '§' Q 5 19 '§' Q 9 C2NHZ
0 .7 11 12 7 D • tLK ~

1 'f' 13 'f'
7 •• B6 13 • D • ~ 2 D 12 D

• •• DS ."" • D4
3 'D' 6 11 1J 8 n • .4 B4 IS U3-16 18 D3 = 4 • B3 16 U3-I& 11 D2 ~ U13 Ut3

• 2 12 17 U3-17 12 Dl
2 •• 11 18 U3-18 IS De TXD 2 • RF

lD.R ~p!..L- RXD •• RXD

--..!!.L- l:l!'f ~ •• u
CTS ~ • Ion.

•

~
7"'LS125

Imn • • +DRQI

• 18 U4 8 U.2
7"L532 4

8 ••

4 • 27~ 7 .. L5126 • UII • • +DRQ8

25 RESET L U.2 k 16L8 rfri~
.0

13 ~ESEr .s 7·4LS12S
r(DR ••

• s •• 18 DRIH 'NT 2. 2 • +IRQ5

2 0 '4 u.e l U'2 • 7 E .0 • 4 • REa II

• SorA ... REQI • rl "---+- lOUR DREQI " lInH
7 • DREDS •• 0 EN .2

U8-18 ~
U. .. Dl lQ~

U8-17 ~2 ~~ ~J
~

U8-16

11 11
U8-15 13 n4 8~

U7 • rn! ~m:..

DI.

B2 •

9 CD _~~ I DCO TECHIIICAL 1lAlllCET11tG. L.......!!.!.1.

TITLE

8258B I HTERFACE

1wn:J.

•

DRA5.lH

•• IELL
ii'iiiE

FILE

HUI2. DWe

~

231422-89

l

:to
"tJ
~
Co)
en

G

D

COLLISIOII PRTI'EIIII GEllEllATlOII

I I
~

::!! a . c
I\) ID
I\) ..

Q) E. • • EI 2 • EC • C
ED 4 D

"' - EE • E
G

R. 1 • .1 8 • RC ,
C

RD .. D
RE '8 E
RF .4 F

.S

-"'-'---

HUB COLLISIOII LOGIC

•

1

4

" .. Ls.e

5 4

D

UPINP

•

I DCO 'I'ECHIII CAL ItAJIICETIHG. IIITEL I •
TITLE

DRAWN
IV

BELL

iAiE

.... mLLISIOII LOGIC

FILE
HUB. Dlla

i'"""DFi'

231422-90

l

~
'1J
I

N
Co)
G)

,
~

I\)
Col

'11
cO"
e
ill
~

D

c

A

8 6 4

PULSE DESCRlnlHATOR

~:~=:

I
.- _ ...

III IIII :t ~11
FIFO

THRESHOLD DETECTOR

FIFO

7

Q8 13 .RiI4
QI 12 LSOUT
Q2 11
Q3 18

END OF FRAnE DETECTOR
AND IDLE BEHERATJDH

4

U26 GH 3 .. "

UPDAT

c

CONTROL PAL

1lI'l:R

I IIaJ "JJlCHIIlCAL ItAllJCET[HG. linE[. I A

TITLE

DRA"" •• IELL
iiiiii'

RETI"IHG LOGIC (UP I'A"l1I)

FILE
HU.4.»"6

4 OF 6

231422-91

(

»
"U

I
N
Co)
0)

,
~

I\:)
.j>.

"11
cO"
I:

iil
.j>.
co

DO,","INP
'Ce"i1H'Z

=

PULSE DESCRIMIHATOR

16L8

~ ~~~ g~~~~~1
3 Dl THRESH

• .-
"5 ..

FIFO
THRESHOLD DETECTOR

DOI-iHIIAt

14L5224 4 PDB t 8
DB !"DEi(3 : ODA'l-"~-+-"-"'-I

'---1-+-1Dl ~: ~: 16
Ql 12 L50UT PULSE RECONSTRUCTION

U33

>SV

Q2 11
03 10 74L5161

U.3

Te 15
Ml!'
l'r S
00 14
OJ 13
Q2 12
03 11

END OF FRAME DETECTOR
AND IDLE GENERAtION

•

CONTROL PAL

==

DCO TECHtlI CAL ttARJ<ET1 HG. I HTEL

TITLE

DRA"''''
IV

BELL

DATE

RETIHIHG LOGIC (DIIWH PA"IH)

FILE

HUB6 DIoIG

6 OF 6

231422-92

l

»
'U
I

N
(0)
0)

·
I\)
U1

"'II
,Pi
c
iil
"'" CD

lJRR

UPDAT

c 'II1I'IIlm!I'.

A

6

61 .. 11-12 S"IlTCH
DIP PACKAGE

4

••• ,
'R27
'2.2k ,.

11 DDUNIH'i

DPS~
26LS32 , > G ::.::::: :::lLJRE • '2

U"l -lI' ·SI-Il
RHa __

~ • ° :l1l~O,~ .A'
TXl! RA2 :

..,
~ .°:llmO'4 •• 2:

?iC.T_c::.'!:I.A TX21

~ .0311~O,~ ::::
?II:.U;;'!:I.A THai

c

I DCO 'lECHltICAL ItARlCETIHG. ItrJ'EL IA
TITLE _.F

4

DRAWN
BY

BELL

liifE

IIIIJ'PUT PAl RS

FILE

HUBS. DUB

6iF"6

231422-93

l

l>
l'
N
W en

inter AP-236

6.1.1 HUB. INPUT PORTS

Figure 38 shQWS a block diagram of an input port. Dif-.
ferently than the implementation in Figure 29 the HUB
input port is potentially more complex than the NODE
input port. The reason being that the HUB is a central
resource arid much more sensitive to noise. For exam­
ple, if the NODE input port would falsely interpret
noise on an IDLE. line as valid signal, the worst case
situation would be that this noise would be filtered out
by the 82588 time squelch circuitry, on the HUB by the
other hand, this false carrier sense could trigger a COL­
LISION and a good frame (on another input) potential­
ly discarded.

As shown in Figure 38 immediately after the termina­
tion resistor, there is a HIGH FREQUENCY FILTER
circuit. The purpose of this circuit is to eliminate high
frequency noise components keeping noi~e jitter into
the allocated budget (about ± 30 ns). A 4 MHz two
pole butterworth filter is being recommended by the
IEEE 802.3 IBASE5 task force (see Figure 50).

The time squelch for the NODE board is implemented
by the 82588 (see section 3.7) this circuit makes sure
that pulses that are shorter than a specified duration
will be filtered out.

The other components of the block diagram were ex­
plained in section 3.0.

The HUB design doesn't implement the HIGH FRE­
QUENCY FILTER and TIME SQUELCH. In the
HUB design as an output of each input port, two sig­
nals are available: Rn, En, (RA, RB ... , EA, EB ...).
The Rn signals are the receive data after the zero cross­
ing receivers. The En lines are CARRIER SENSE sig­
nals. The HUB design supports either 5 or 6 input
ports, dependent upon if it is configured as IHUB or
HHUB. Port RE, EE (Figure 49) is bidirectional, con­
figurable for either input or output. Port RF, EF _ is
the embedded 82588 port, and doesn't require the ana-

. log circuitry (EF is inverted, being generated from the
. RTS_ signal).

RXVE ... RI-_ ________ ·"I!f ! 110~ XX ::~TED
231422-94

Figure 50. Receiver High Frequency Filter

1-126

inter AP-236

6.1.2 COLLISION DETECTION

Rn and En signals from each channel are fed to a 16L8
PAL, where the collision detection function is per·
formed.

COLLISION DETECTION:

COT = ! (EA & !EB & !EC & !ED & !EE & EF _ #
! EA & EB & IEC & !ED & !EE & EF _ #
!EA&!EB&EC&!ED&!EE&EF_ #
!EA&!EB&!EC& ED&!EE&EF_ #
! EA & IEB & !EC & lED & EE & EF _ #
!EA&!EB&!EC&!ED&!EE&!EF_ #
! EA & !EB & !EC & !ED & !EE & EF _);

COLLISION DETECTION SR·FF:

COLLEN_ = ! (COT # COLLEN);

COLLEN_ = ! (RESET_ # COLLEN_ #

Collision Detection in the Star LAN HUB is performed
by detecting the presence of activity on more than one
input channels. This means if the signal En is active for
more than one channel, a collision is said to occur. This
translates to the PAL equations:

(only EA active)
(only EB active)
(only EC active)
(only ED active)
(only EE active)
(only EF active)

(none of the inputs active)

(set with collision)

(!CDT & !EA & !EB & !EC & !ED & !EE & EF _);

RECEIVE DATA OUTPUT:

RCVDAT = ((RA # !EA) & (RB # !EB) & (RC # !EC) &

(RD # !ED) & (RE # lEE) & (RF # EF_»;

1·127

(reset when all inputs inactive)

(output is high ifno active input)

AP·236

The COLLEN signal once triggered will stay active un­
til all inputs go quiet. This signal is used externally to .
either enable passing RCVDAT or the collision pres­
ence signal (CPS) to the retiming logic. An external
multiplexer using 3 nand gates is used for this function.
Note that in this specific implementation the. CPS/
RCVDAT mUltiplexer is before the retiming logic,
which is different from Figure 42 diagram. StarLAN
provides enough BIT-BUDGET delay to allow the CPS
signal to be generated through the retiming FIFO. In
this HUB implementation it was decided to use this
option to make sure that the CPs startup is synchroniz­
ed with the previously transmitted bit as required by
the lBASE5 draft. '

6.1.3 THE LOCAL 82588

As described before, the purpose of the local 82588 is to
enable the Host IBM/PC to also be a node into the
Star LAN network. The interface of this 82588 is exact­
ly similar to the one explained in section 5. The RTS_
signal serves as the carrier EF _ signal, and TXD as
RF signal. This local node interfaces to the HUB with­
out any analog interface which is a significant saving.

6.1.4 THE COLLISION PRESENCE SIGNAL

The Collision Presence Signal (CPS) is generated by the
HUB whenever the HUB detects a collision. It then
propagates the CPS to the higher level HUB. The CPS
signal pattern is shown in Figure 51. Whenever a Star­
LAN node receives this signal, it should be able
to detect within a very few bit times that a collision
occurred. Since the, nodes detect the occurrence of a '
collision by detecting violations in Manchester encod­
ing, the CPS must obviously be a signal which violates

Manchester encoding. Section 3.5 shows that the CPS
has missing mid-cell transitions occurring every two
and a half bit cells. These are detected as Manchester
code violations. Thus, the StarLAN node is presented'
with collision detection indications every two and a half
ms. This results in fast and reliable detection of colli­
sions. CPS has a period of 5 ms.

One may wonder why such a strange looking signal was
selected for CPS. The rationale is that this CPS looks
very much like a valid Manchester signal-edges are
0.5 or 1.0 microsec. apart-resulting in identical radia­
tion, cross-talk and jitter characteristics as a true Man­
chester. This also makes the re-timing logic for the sig­
nals simpler-it need not distinguish between valid
Manchester and CPS. Moreover, this signal is easy to
generate.

A few important requirements for CPS signal are: a) it
should be generated starting synchronized with the last
transmitted bit cell. CPS is allowed to 'start either low
or high, but no bit cell of more than 1 microsecond is
allowed (Avoid false idles, very long "low" bits). b)
once it starts, it should continue until all the input lines
to the HUB die out. Typically, wheh the collision oc­
curs, the multiplexor in the HUB switches from RCV
signal to the CPS. This switch is completely asynchro­
nous to the currently being transmitted data, and by
such may violate the requirement of not having bit cells
longer than 1 /Ls. In order to avoid those long' pulses,
the output of the CPS/RCVDAT multiplexer is passed
through the retiming circuitry which will correct those
long pulses to their nominal value. The reason for re­
striction b) is to ensure that the CPS is seen by all nodes
on the network since it is generated until every node
has finished generating the Jam pattern.

I 2t I t I 2t I 2t I tit = 0.5 }-'S

~5}-'s PERIOD---I

• MISSING MID-CELL TRANSITION
231422-42

• Collision Presence Signal (CPS) is generated by the HUB when it detects more than one input line active.

• CPS violates Manchester encoding rules-due to missing mid-cell transitions-hence is detected as a colli­
sion by the DTE (82588).

Choice of Collision Presence Signal

• It is a Manchester look-alike signal-edges are 0.5 or 1.0 /Ls apart.

- Identical radiation, crosstalk and jitter characteristics

- Eases ietiming of the signal in the HUB

• It is easy to generate--1.5 TTL pack, or in a PAL

Figure 51. Collision Presence Signal

1-128

AP-236

CPS is generated using a 4-bit shift register and a flip­
flop as shown in Figure 52. It works off a 2 MHz clock.
A closer look at the CPS waveform shows that it is
inverse symmetric within the 5 /ks period. The circuit is
a 5-bit shift register with a complementary feedback
from the last to the first bit. The bits remain in defined
states (01100) till collision occurs. On collision the bits
start rotating around generating the pattern of
0011011001, 0011011001, 00110 ... with each state
lasting for 0.5 /ks.

o o

COLLISION

COLLISION
,---..... PRESENCE

SIGNAL
Q

231422-43

Figure 52. Collision Presence
Signal Generation

6.1.5 SIGNAL RETIMING

Whenever the signal goes over a cable it suffers jitter.
This means that the edges are no longer separated by
the same 0.5 or 1.0 /ks as at the point of origin. There
are various causes of jitter. Drivers, receivers introduce
some shifting of edges because of differing rise and fall
times and thresholds. A random sequence of bits also
produces a jitter which is called intersymbol interfer­
ence, which is a consequence of different propagation
delays for different frequency harmonics in the cable.
Meaning short pulses have a longer delay than long
ones. A maximum of 62.5 ns of jitter can accumulate in
a StarLAN network from a node to a HUB or from a
'HUB to another HUB. The following values show what
are the jitter components:

Transmitter skew ± 10 ns
Cable Intersymbol interference ± 9 ns
Cable Reflections ± 8 ns
Reflections due to receiver
termination mismatch
HUB fan-in, fan-out
Noise

Total

±5 ns
±5 ns
±25.5

±62.5 ns

It is important for the signal to be cleaned up of this
jitter before it is sent on the next stretch of cable be­
cause if too much jitter accumulates, the signal is no
longer meaningful. A valid Manchester signal would, as

a result of jitter, may no longer be decodable. The pro­
cess of either re-aligning the edges or reconstructing the
signal or even re-generating' the signal so that it once
again "looks new" is called re-timing. StarLAN re­
quires for the signal to be re-timed after it has travelled
on a segment of cable.· In a typical HUB two re-timing
circuits are necessary; one for the signals going up­
stream towards the higher level HUB and the other for
signals going downstream towards the nodes.

6.1.6 RETIMING CIRCUIT, THEORY OF
OPERATION

This section will discuss the principles of designing a
re-timing circuit. Figure 53 shows the block diagram of
a re-timing circuit. The data coming in is synchronized
using an 8 MHz sampling clock. Edges in the waveform
are detected doing an XOR of two consecutive samples.
A counter counts the number of 8 MHz clocks between
two edges. This gives an indication of long (6 to. 10
clocks) or short (3 to 5 clocks) pulses in the received
waveform. Pulses shorter than 3 clocks are filtered out.
Every time an edge occurs, the length-(S)hort or
(L)ong-of the pulse is fed into the FIFO. Retiming of
the waveform is done by actually generating a new
waveform based on the information being pumped into
the FIFO. The signal regeneration unit reads the FIFO
and generates the output waveform out of 8 MHz clock
pulses based on what it reads, either short or longs. In
summary every time a bit is read from the fifo, it indi­
cates that a transition needs to occur, and when to fetch
the next bit. When idle the output of the retiming logic
starts with a "high" level.

FIFO
empty
S
S
L
L

Output
...... 1111

0000
1111

00000000
11111111

It can be seen that the output always has edges separat­
ed by 4 or 8 clock pulses---D.5 or 1.0 /ks.

The FIFO is primarily needed to account for a differ­
ence of clock frequencies at the source and regeneration
end. Due to this difference, data can come in faster or
slower than the regeneration circuit expects. A 16 deep
FIFO can handle frequency deviations of up to 200
ppm for frame lengths up to 1600 bytes. The FIFO also
overcomes short term variations in edge separation. It
is essential that the FIFO fills in up to about half before
the process of regeneration is started. Thus, if the re­
generation is done at a clock slightly faster than the
source clock, there is always data in the FIFO to work
from. That is why the FIFO threshold detect logic is
necessary, which counts 8 edges and then enables the
signal regeneration logic. .

1-129

intJ , AP-236

Example:

Input Waveform ... 11110001111000000011111111110001111100 ...

Input into
the FIFO

I I I I I I
<8> <5> <L> <Lx8> <8>

Regenerated Output:
Output: ... 1 11110000111100000000111111110000111 ...
FIFO: I I I I I I

<8> <8> <L> <L> <8> <8>

EDGE PULSE WIDTH INPUT
DATA ---:-+ SYNCHRONIZER

DETECTOR DISCRlt.lINATOR

8t.lHztLOCK
INCREt.lENT EDGE ! LOAD! SHORT/LONG

COUNTER fifO INfO

fifO
THRESHOLD fiFO

FO ACCOt.lt.lODATES fOR fREQ. efl
DR

DETECT
1m (SPEC 100 PPt.l)

X·DRlfT: et.lA
(1 500 BYTES x 8) x 200 PPt.l = 2.43 BT

ENABLE SIGNAL
REGENERATION

-

FIFO OUTPUT

SIGNAL --+ REGENERATION
OUTPUT

231422-95

Figure 53. Retiming Block Diagram

6.1.7 RETIMING CIRCUIT IMPLEMENTATION

The retiming circuit implementation can be seen in Fig­
ures 47, 48. Both figures implement exactly the same
function, one for the upstream, and the other for the
downstream. The retiming circuit was implemented us­
ing about 8 SSI, MSI TTL components, one fifo chip
and one PAL. The purpose of implementing this func­
tion with discrete components was to show the imple­
mentation details. The discussion of the implementa­
tion will refer to Figure 47 for unit numbers.

The signal UPIMP which is an output of the HUB
JilUltiplexing logic, is asynchronous to the local clock.
This signal is synchronized by two flip-flops and fed
into an edge generation logic (basically an XOR gate
that compares the present sample with the previous
one). On every input transition a 125 ns pulse will be

generated at the output of the edge detector (U28). This
pulse will reset the 74LSI61 counter that is responsible
for measuring pulse widths (in X8 clock increments).
The output of the pulse discriminator will reflect the
previous pulse width every time a new edge is detected.
The following events will take place on every detected
edge:

1. U26 which is the threshold detector will shift one
"I" in. The outputs of U26 will be used by the con­
trol PAL to start the reconstruction process.

2. The output of U23 which specifies the last pulse
width will be input into the control PAL for deter­
mining if it was a long or short pulse. The result of
this evaluation will be the LSIN signal which will be
loaded into the fifo (U22).

U22 is the retiming FIFO, it is 16x4 fifo, but only one
bit is necessary to store the SHORT/LONG informa­
tion.

1-130

inter AP-236

CONTROL LOGIC PAL functions (U25): CNTTC:

Signals definition:

Terminal count of the reconstruction
counter, indicating that reconstruction
of a new bit will get started.

INPUTS:

PDO .. PD3:

THRESH:

CNTEN:

CNTEND:

OUTDAT:

OR:

OUTPUTS:

Output of the FIFO indicating, that the
FIFO is empty and that IDLE genera­
tion can get started. Outputs of the pulse descriminator, indi­

cate the width of the last measured
pulse.

Output of the edge detector, pulse of 125
ns width, indicates the occurrence of an
edge in the input data.

LDFIFO_: Loads SHORT/LONG indications into
the FIFO.

Output of the threshold logic, indicates
at least one bit was already received.

Output of the Threshold logic, indicates
7 bits have been loaded into the FIFO,
and that signal reconstruction can begin.

ODAT:

Indicates SHORT/LONG

Loads FIFO SHORT/LONG output
into the reconstruction counter.

Together with the external U21 flip-flop
and OUTDAT implement a clocked
T-FF.

The same signal as before delayed by one
clock.

Output of the retiming logic, is feedback
into the PAL to implement a clocked
T-FF.

Loading the FIFO will be done every time there is an
edge, we have passed the one bit filter threshold level,
and the pulse width is longer than two 8X clocks. This
one bit threshold level serves as a time domain filter
discarding the first received preamble bit.

Resets the retiming logic.

LDFIFO_ = ! (PDl # PD2 # PD3) &: !EDD_ &: THRESH) ;

Whenever there is an edge, we are above the first received bit threshold
and the pulse width is longer than '1" the fifo is loaded.

LSIN = ! (PD3 # (PD2 &: PD~) # (PD2 &: PD1»;

Every pulse longer than 6is considered to be a long pulse.

CNTPE_ = ! ((CNTEN &: !CNTEND) # CNTTC) ;

The reconstruction counter is loaded in two conditions:

Whenever CNTEN comes aati ve, meaning the FIFO threshold of seven was exceeded.
Whenever the terminal count of U24 is acti ve meaning a new pulse is going to be reconstructed.

ODAT = !RESET_ # (!CNTPE_ &: !OUTDAT)
(CNTPE_ &: OUTDAT)
(!CNTPE_ &: lOR)

(A)
(B)
(C)

Minterm (A) and (B) implement a T-FF, whenever CNTPE. is 'low"
ODAT will toggle. The external U21is part of this flip-flop.
Minterm (C) insures the output of the flip-flop will go inactive
'high' when the FIFO is empty. RESET. causes the output to go
"high" on ini tial1zation.

1-131

inter AP-236

U24 as mentioned is the reconstruction counter. This
counter is loaded by the control logic with either 8 or
12, it counts up and is reloaded on terminal count. Es­
sentially generating at the output nominal length longs
and shorts.

U22 is the retiming FIFO, and its function as men­
tioned is to accommodate frequency skews between the
incoming and outgoing signal.

U27 is the IDLE generation logic. The purpose of this
logic is to detect when the FIFO is empty, meaning that
no more data needs to be transmitted: On detection of
this event this component will generate 2 ms of IDLE
time. On the end of IDLE the whole retiming logic will
be reset.

6.1.8 DRIVER CIRCUITS

The signal coming out of the RETIMING LOGIC is
fed into 26LS30s and pulse transformers to drive the
twisted pair lines (See section 5,0 for details).

6.1.9 HEADER/INTERMEDIATE HUB SWITCH

As seen on Figure 43 this hub can be configured as
either an intermediate hub, or a Header one. One of the
phone jacks, more specifically JACK #5 is either an
input port or an output one. In order to implement this
function, an 8 position DIP SWITCH (SWI) is used.
The phone jacks are marked with UD, DD notation,
meaning upstream data, and downstream data respec­
tively. As specified in the StarLAN IBASE5 draft
NODES transmit data on UD pair, and HUBS on the
DD pair. Switch SWI has the function to invert UD,
DD in PHONE JACK # 5 to enable it to be either
input or output port.

6.1.10 JABBER FUNCTION

This design does not implement the jabber unit but it is
described here for completeness. IEEE 802.3 does not
mandate this feature, but it is "Strongly Recommend­
ed". The jabber function in the HUB protects the net­
work from abnormally long transmissions by any node.

Two timers TI, T2 are used by the JABBER function ..
They may be implemented either as local timers (one
for each HUB port) or as global timers shared by all
ports. After detecting an input active, tim~rs 11, T2

will be started, and Tl will time out after 25 to 50 ms.
T2 will time-out after 51 to lOOms. During T2 time,
after Tl expired, the HUB will send the CP-PAT­
TERN informing any jamming stations to quit their
transmissions. If on T2 time-out there are still jamming
ports, their input is going to be disabled. A disabled
port, will be reenabled whenever its. input becomes
again active and the downward side is idle.

The following is an explanation of the requirement that
the downward side be idle to reenable an input port.
Consider the case of Figure 54. The figure shows a two
port HUB. Port A has two wires Au, Aci for the up and
down paths. Port B has Bu, Bd respectively. Port C is
the output port, that broadcasts to the other HUBs
higher in the hierarchy. Consider the case as shown,
where Bu and Bd are shorted together. Suppose the case
that port Au is active. Its signal will propagate up in the
hierarchy through Cu and come down from Cd to Ad,
and Bd. Due to the short between Bd and Bu the signal
will start a loop, that will first cause a collision and jam
the network forever. This kind of fault is taken care of
by the jabber circuitry. Tl and T2 will expire, causing
the jabber logic to disable Bu input. Upon this disabling
Bu is going to go Idle and be a candidate for future
enabling. Suppose now that Au is once again active. If
the reenable condition would not require Cd to be
IDLE, Bu would be reenabled causing the same loop to
happen once again. Note that in this case Cd will be
active before Bu causing this port to continue to be
disabled and avoiding the jamming situation (Figure
55) gives a formal specification of the jabber function).

231422-96

Figure 54. Jabber Function

1-132

inter AP-236

Power On

____ .:!~~EE ~~TEI!. ___ _
• stort_Jobber TIme 1
• start_Jobber TIme 2

.... Walt for Input active.

.... Input Is active, activate timers Tl, T2 •
If Input goes Idle, then It was a
normal transmission. Otherwise If
jabber Timer 1 expires, the transmissIon
Is Illegal. Start generating collision
pott.rn In stat. JABBER JAM •

.... Variable probation_alternative indicates
two possible ways of implementing the function.
Implementation of either one Is allowed.

«Jobb.rTlm. Ldon.+ INPUT(UPPER) = Idl.)
.INPUT(X) = ocllv.

'-----;==::;~=~;+~(;pr;o~bo~I:;o::n-~oJternotive * INPUT(X) = idle} Condilions for going to stat. JABBER SHUTOFF
- 12 expires.

-INPUT(UPPER) = Idl •• INPUT (X) = ocllv.
It maans thot the current HUB was
SHUTOFF by a higher hierarchy one.
This one will olso SHUTOFF with the
purpose that a jamming Input be
DISABLED at the lowest possible level.

-INPUT (X) = Idl.
Two alternatives are allowed:
Go bock to JABBER IDLE. or
go to the SHUTOFF stat ••

On slot. JABBER SHUTOFF. th.
Input Is disabled.

Input will be reenabled If input is active,
and the upper port Is quiet.

231422-99

Figure 55. Jabber State Diagram

6.1.11 HUB RECEIVER PROTECTION TIMER

On the end of a transmission, during the transition
from IDLE to high impedance state, the transmitter
will exhibit an undershoot and/or ringing, as a conse­
quence of transformer discharge. This undershoot/
ringing will be transmitted to the receiver which needs
to protect itself from false carriers due to this effect.
One way of implementing this protection mechanism is
to implement a blind timer, which upon IDLE detec­
tion will "blind" the receiver for a few microseconds.

Causes of the transmitter undershoot/ringing:

1. Difference in the magnitudes of the differential out­
put voltage between the high and the low output
stages.

2. Waveform assymmetry due to transmitter jitter.

3. Transmitter and receiver inductance (transformer
L).

4. Two to three microseconds of IDLE pattern.

All the described elements will contribute to energy
storage into the transfonner inductor, which will dis­
charge during the transition of the driver to high im­
pedance.

The blinding timer is currently defined to be from 20 to
30 microseconds for the HUBs, being from 0 to 30 mi­
croseconds for the nodes (optional). The 82588 has
built-in this function. It won't receive any frames for an
inter-frame-spacing (IFS) from the idle detection.

6.1.12 HUB RELIABILITY

Since the StarLAN HUBs form focal points in the net­
work, it is important for them to be very reliable, since
they are single points of failure which can affect a num­
ber of nodes or can even bring down the whole net­
work. StarLAN !BASES draft requires HUBs to have
a mean time between failures (MTBF) of at least 5
years of continuous operation.

1-133

AP-236

7.0 SOFTWARE DRIVER

The software needed to drive the 82588 in a StarLAN
environment is not different from that needed in a ge­
neric CSMA/CD environment. This section goes into
specific procedures used for operations like TRANS­
MIT, RECEIVE, CONFIGURE, DUMP, ADDRESS
SET-UP, etc. A special treatment will be given to inter­
facing with the IBM PC-:--DMA, interrupt and I/O.

Since all the routines were written and tried out in
'PLM-86 and ASM-86, all illustrations are in these lan­
guages.

The following software examples are pieces of an 82588
exerciser program. This program's main purpose was to
exercise the 82588 functionality and provide the func­
tions of traffic generation and monitoring. By such the
emphasis was on speed and accuracy of statistics gath-
ering. ' ,

7.1 Interfacing to IBM PC

The StarLAN board interfaces to the CPU, DMA con­
troller and the interrupt controller on the IBM PC sys­
tem board. The software to operate the 82588 runs on
the system board CPU. The illustrated routines in this
section show exactly how the software interface works
between the system resources on the IBM PC and the
StarLAN board.

7.1.1 DOING 1/0 ON IBM PC

The safest way to use the PC monitor as an output
device and the keyboard as the input device is to use
them through DOS system calls. The following is a set
of routines which are'handy to do most of the I/O:

key$stat -to find out if a new key has been
pressed

keyin$noecho -to read a key from the keyboard
char$out -to display a character on the screen

msg$out

line$in

-to display a character string on the
screen

-to read in a character string from the
keyboard

The exact semantics and the protocol for doing these
functions through DOS system calls is shown in the
listing in Figure 56. Refer to the DOS Manual for a
more detailed description. To make a DOS system call,
register AH of 8088 is loaded with the call Function
Number and then, a software interrupt (or trap) 21 hex
is executed. Other 8088 registers are used to transfer
any parameters between DOS and the calling program.
The code is written in Assembly language for register
access. Let us see an example of the 'msg$out' routine:

lds dX,STRING_POINTER
mov ah,09h
int 21h

load pointer to string in reg. ds:dx
9 = function number for string o'p
DOS System Call

These procedures are called from another module, written in a higher level language like PLM-86. The parameters
are transferred to the ASM-86 routines on the stack.

Examples of using the I/O routines:

KEY_STATUS = key$stat; "
NEW_KEY = keyin$noecho; /*
call line$in(@LINE_BUFFER) ; "
call char$out (CHAR_OUT) ; /*
call msg$out(@('THIS IS A MESSAGE.$')); /*

/*

1-134

INQUIRE KEYBOARD STATUS
INPUT NEW KEY *' 0'
STRING INPUT
TO OUTPUT CHAR_OUT ON
OUTPUT STRING
NOTE $ TERMINATOR

"
SCREEN*,

*' *'

intJ AP-236

/ ... -- - ------------------------- -_ ... I
1* Deolara.tions for external IBM PC 110 routines ... I
/. ------:---;---------------- ... I

keySstat: prooedure byte external:
end keyS stat :

I * key status routine • /

::si~;$~~~~~O~~~oedure byte external: /* oonsole input routine ... I

oharSout: prooedure(ohar) external: I' oonsole output routine 'I
deolare ohar byte:
end charS out :

msgsout: prooedure(msgSptr) external: I' oonsole string output routine
declare msgSptr painter:
end msgSout:

l1neUn: prooedure(lineSptr) external: I' console string input routine
deolare l1neSptr pOinter:
end l1neSin:

Assembly Language implementation of the routines

STITLB(IBM/PC DOS CALLS PROCEDURES)

HAIlE DOSPROCS

OOROUP GROUP DATA
CGROUP GROUP CODE

DATA
DATA

Dos
CoDE

SEGMENT WORD PUBLIC 'DATA'
ENDS

EQU 21R

SEGMENT WORD PUBLIC 'CODE'
ASSUME CS: CGROUP, DS : OOROUP

CHAR$OUT: PROCEDURE(CHAR) EXTERNAL:
DECLARE CHAR BYTE:
END CHAR$OUT:
Outputs character to the screen.
DOS system call 2

CHAR EQU [BP+41

CHAROUT PROC NEAR
PUBLIC CHAROUT
PUSH BP
MOV BP,SP
MOV DL,CHAR
MOV AH.2
INT DOS
POP BP
RET 2

CHAROOT ENDP

KEYINSNOECHO: PROCEDURE BYTE EXTERNAL:
END KEYIN$NOECHO:

STACK.

+------+
! CHAR ! x
+------+
lIP 10 I x-1
+------+
lIP hi ! x-2
+------+
IBP 10 ! x-3
+------+
IBP hi I x-4
+------+

Reads character withcut echOing to display

KEYINNOECHO PROC
PUBLIC
MOV
INT
RET

KEYINNOECHO ENDP

NEAR
KEYINNOECHO
AH,8
DOS

(DOS call 8)

<--SP

Figure 7-56. I/O Routines for IBM/PC (continued)

231422-58

231422-59

Figure 56. 1/0 Routines for IBMIPC

1-135

intJ AP-236

IISGSOUT: PROCEDtJRE(IISGSPTR) EXTERNAL;
DECLARE IISGSPTR POllITER;
END IISGSOUT;
/. NOTE: IIESSAG]! IS TERliINATED WITH A DOLLAR SIGN • /
IISGSPTR is double word pOinter SEG:OFFSET

IISG_L ~ [BP+41
IISG-H. -.v [BP+61

HSGOUT PROC NEAR
PUBLIC IISGOUT

IISGOUT

PUSI!
1I0V
IIOV
PUSI!
IIOV
1I0V
IIOV
INT
POP
POP
RET

BP
BP,SP
DX,IISGJ.
OS
AX,IISU
DS,AX
AII,9
DOS

'OS
BP
4
ENDP

LINE SIN : PROCEDURE(LINESPTR) EXTERNAL;
DECLARE LINESPTR POINTER;
END LlNESIN

LlNEIN

PUBLIC·
PUSI!
IICV
PUSI!
IICV
IICV
IICV
IIOV
INT
POP
POP
RET

[BP+41
[BP+61

PROC NBAR
LINEIN
BP
BP,SP
OS
AX,LlNE_H
DS,AX
DX,LlNEJ.
AII,10
DOS
OS
BP
4
ENDP

KEYSSTAT: PROCEDURE BYTB EXTERNAL;
END !tEYS STAT;

(DOS oall 9)

(DOS oall 10)

Indioates whether any keyboard key was pressed.

!tEYSTAT PROC NEAR
PUBLIC KEYSTAT
IICV AII,l1 (DOS oall 11)
INT DOS
RET

KEYSTAT ENDP

Com ENDS
END

Figure 56. I/O Routines for IBM/PC (Continued)

231422-60

231422-61

7.2 Initialization and Declarations Figure 58 shows the initialization routines for the IBM
PC and for the 82588. It also shows some of the typical
values taken by the memory buffers for Configure, Figure 57 shows some declarations describing what ad­

dresses the devices have and also some literals to help
understand the other routines in this section.

lA_Set, Multicast and transmit buffers. .

1-136

intJ AP-236

Following are some literal declarations that are used in the procedure examples

Following are some literal deolarations that are used in the
prooedure examples

deolare

cS_5BB
brd_port
pic_mask
p1c_oow2
dma.Jnask
dm!Lmode
dma31ff
dma_addr_l
dma_bo_l
dm!LaddrJLl
dma_addr_3
dm!Lbo_3
dma_addrh_3
dma_on...l
dmB._oD_3
dm!LofLl
dma_off_3
enable_B8B
seoLp1oo
t~d1r

literally '0300h' /' B25BB COMIIAND/ STATUS '/

r~d1r
dma_rx_mode_l
dma_=_mode_3
dm!L tx_mode_l
dma_tXJ\ode_3

literally '0301h' /' DIIA/INTERUPT BNABLE PORT '/
literally '021h' /' B259A IIASS: REGISTER ,/
literally '02Ch' /' 8259A COMIIAND WORD 2 '/
literally 'Oab' /' 8237A IIASS: REGISTER '/
literally 'Obh' /' B237A HODE REGISTER '/
literally 'Och' /' 8237A 1ST/2ND BYTE FLOP '/
literally '02h' /, 8237A ClIANIIEL 1 ADDR. REG. ,/
11 terally '03h' /' 8237A ClIANIIEL 1 BYTE COUNT '/
literally '083h' /' ClIANIIEL 1 PAGE REGISTER '/
literally '06h' /' 8237A ClIANIIEL 3 ADDR. REG. '/
literally '07h' /' 8237A ClIANIIEL 3 BYTE COUNT '/
literally '082h' /' CI!AlINEL 3 PAGE REGISTER '/
literally 'Olh' /' START ClIANIIEL 1 '/
literally , 03h ' /' START CIIAlIIIEL 3 '/
literally '05h' /' STOP ClIANIIEL 1 '/
literally '07h' /, STOP ClIANIIEL 3 ,/
literally 'Odfh' /' UNIIASS: INTERRUPT LEVEL 5 '/
literally '065h' /' SPECIFIC EOI LEVEL 5 '/
literally '1 ' /' MEHORY TO 82588 '/
literally '0' /, 825BB TO HEHORY '/
literally '045h' /' RlI: ON ClIANIIEL • 1 '/
literally , 047h ' /' RlI: ON CIIAlIIIEL • 3 '/
literally '049h' /' TX ON ClIANIIEL • 1 '/
literally '04bh' /' TX ON ClIANIIEL i 3 '/

Figure 57. Literal Declarations

Initialization Routines

Initialization routines

/' SYSTEH INITIALIZE '/

sys_1n1 t: procedure;

oall set$1nterrupt Cl3,1ntr_58B); /' BASE B, LEVEL 5 '/
output(p1o_maak) - 1nput(p1o_mask) and enable_B88; /' ENABLE 588 INTERR. '/
output(p1o_oow2) - seo1_p1co; /' ACXS PENDING INTBRR'/

wr_ptr, rd.-ptr, fifoont-O; /' RESET STATUS FIFO '/

, •••• *** •• ,
/' CONVERT SEG:OFFSET FORIIAT TO 20 BIT ADDRBSSES '/
/' FOR ALL THE BUFFERS '/
/ ... /
1aset_dm!Laddr
cnf_dma_addr
dmp_dm!Laddr
mC_dma_addr
tX_dm!Laddr
do 1-0 to 7 ;

- convert_20b1 t_addr (@:l.a_set_bufL5B8(0)) ;
- conv.ert_20b1t_addr(@Conf:l.g_BB8(0»;

oonvert_20b1 t_addr (lIldumpJrufL588 (0» ;
- convert_20b:l. t_addr (@mult:l.oastJrufL5B8(0)) ;
- oonvert_20b1 t_addr(@t~ffer_5B8(0» ;

rx_dm!Laddr(1)-oonvert_20b1t_addr(@r~buffer(1) .buff(O»;
end;

output (brd_port)-Offh; /' ENABLE DIIA AND INTERRUPT DRIVERS ,/

end ays_1n1 t ;

B25BB initialization

1n1t_588: prooedure:

/' TO CONFIGURE ALL 10 PARAHBTERS '/ conf1g_58B(00) - 10;
conf1g_588(01) = 00:
conf1g_588(02 - OOOOlOOOb;
conf1g_5B8(03) - buff_len/4;
conf1g_588(04) - OOlOOllOb;
oonf1g_58B(05) - OOOOOOOOb:
oonf1g_58B(06) - 96;
conf:l.g_588 (07) - 0;
conf:l.g_58B(08) - 1l1lOOlOb;
conf:l.g_588(09) - OOOOOlOOb;
conf:l.g_58B(l0) - 10001000b;
oonf:l.g_588(1l) - 64:

/' HODE 0, 8 HBZ CLOClt, 1 HE/S '/
/' RECEIVE BUFFER LENGTH '/
/' NO LOOPBACX, ADDR LEN - 6, PREAMBLE - 8 '/
/' DIFFERENTIAL MANCHESTER - OFF ,/
/, IFS - 96 TCLK '/
/' SLOT TIME - 512 TCLK '/
/, HAll:. NO. RETRIES - 15 '/
/' MANCHESTER ENCODING '/
/' INTERNAL CRS AND CDT, CRSF - 0 ,/
/' HIN FRAME LENGTH - 64 BYTES - 512 BITS '/

Figure 58. Initialization Routines

1-137

231422-62

231422-63

inter AP-236

1a...set_buff_555(O) - 6;
1a...setJlufC588(l) - 0;
1a_setj>ufC555(2) - OOOh
1a_setJluff_585(3) - 041h
1a...setJluff_588(4) - OOOh
1a...setJluff_588(5) - OOCh
1a...set_uf:C588(6) - OOOh
1a...setJlufC5BB(7) - OOOh

mult1oast_bufC5BB(OO) - 12;
mult1oastJlufC5BB(Ol) - OOh
mult1oastJlufC58B(02) - llh
mult1oastJlufC5BB(03) - 12h
mult1oasLbuff.5BB(04) - 13h
mult1oastJluff.5BB(OS) - 14h
mult1oe.stJlufC55B(06) - 15h
mult1oastJlufC5BB(07) - 1Bh
mult1oastJluff.5BB(OB) - 21h
mult1oastJluff.5BB(09) - 2ah
mult1oastJlufC5BB(10) - 2Sh
mult1oastJluff.58B(1l) -24h;
mul tioe.stJlufC5BB (lB) - 25h;
mult1oastJlufCS88(13) - Bah;

tzJ>uffer.5BB(OO) - t,,-frame.len mad 256;
tzJ>uffer_5BB(Ol) - t"-frame.len / 256;
;~~~:~=ggm:~ : gm; /' INITIAL DESTINATION ADDRESS - 110(1) '/

tzJ>uffer_58B(04) - 01Sh;
tzJ>uffer.5BB(05) - 014h;
tzJ>uffer.5B8(06) - 015h;
tzJluffer.588(07) - 016h;

. end 1n1 t.5B8;
231422-64

Figure 58. Initialization Routines (Continued)

7.3 General Commands

Operations like Transmit, Receive, Configure, etc. are
done by a simple sequence of loading the DMA con­
troller with the necessary parameters and then writing
the command to the 82588.

Example: Configure Command

To configure the operating environment of the 82588.
This command must be the first one to be executed
after a RESET.

oall
DMA.LOAD(1,1,12,@CONFIG.588.ADDR) ;
output (CS.588) = 12h;

The first statement is the prologue to' the configure
command to the 82588 which calls a routine to load
and initialize the DMA controller (or the desired opera­
tion. This routine is described in section 7.4. The pa­
rameters for DMA_LOAD are:

first parameter = 82588 ohannel
number (= 1)

seoond parameter = direotion (= 1,
memory > > 82588)

third parameter = length of DMA
transfer (= 12)

fourth parameter = pointer to a 20 bit
addre'ss of the
memory buffer
(=@CONFIG.588.ADDR)

The second statement writes l2h to the command regis­
ter of the 82588 to execute a Configure command on
channell.

When the command execution is complete (successfully
or not), 82588 interrupts the 8088 CPU through the
8259A, on the system board. This executes the inter­
rupt service routine, described in section 7.5, which
takes the epilogue action for the command.

Most operations are very similar in structure to Config­
ure. The 82588 Reference Manual describes them in
detail. Figure 59 shows a listing of the most commonly
used operations like:

CONFIGURE

TRANSMIT

DIAGNOSE
DUMP
TDR
RETRANSMIT

1-138

INDIVIDUAL·ADDRESS (IA)
SET·UP
MULTICAST·ADDRESS (MC)
SET·UP
RECEIVE (RCV)-ENABLE
RECEIVE (RCV)-DISABLE

. RECEIVE (RCV) -STOP
READ-STATUS

AP·236

1a_set: prooedure publ1o: /' COl!MAND - 01 ,/

00.11 clmlLload(om(Lohannel, tx_d1r, 8,@1aset_clma_addr) :

/' SE~ DIIA Cl!AllllEL 0 01\ 1 W TRANSFER FROII IIEIIORY
W THE 82588. 1aset_dma_addr VARIABLE SWRES THE
20 BI~ POINTER W THE INDIVIDUAL ADDRESS BUFFER '/

if om<Lohe.nnel then output (os_588) • llh:
else output(os_588) • Olh:

/' EVERY COl!MAND CAN BE BDCtlTED IN EITHER DIIA Cl!AllllEL 0 OR 1.
THE VARIABLE omd..ohatmel INDICAnS THE REQUIRED Cl!AllllEL '/

end. 1~set;

I" ---------------------------------------___________________________________ ./

oonf1g: prooedure publio: /, COl!MAND - 02 '/

00.11 dmlLload(Omd.-ohe.nnel, tlLd1r, 12,@Onf_dmlLaddr) :
if omd_ohe.nnel then output (os_888) • 12h:
else output(os_5BB) • Oah;

end oonf1g:

1* -----------------------------___ II/

mul t1oast: prooedure publ1o: /' COl!MAND - 03 '/

00.11 dmlLload(om<Lohatmel, tlLd1r , 14, hO_dmlLaddr) :
if omd_ohannel then output (os_5BB) • 13h:
else output(os_5BB) • 03h:

end mult1o&st:

/* --*/

transmit: prooedure(buffer_len) publ1o;

deolare buffer _lan word;

tx.J>uffer_5BB(00) • low(buffer_len);
tlLbuffer_5BB(01) • h1gh(buffer_len);

/, COl!MAND - 04 '/

oall dmlLload(Omd.-ohe.nnel, tlLd1r , 1536 ,@tlLdmlLaddr) ;

1£ omd..ohe.nnel then output (OS_8B8) • 14h;
elsa output(os_5B8) • 04h;

end transm1 t ;

Figure 59. General Commands

1-139

231422-65

AP-236

tdr: prooedure publiO; /" COIIMAND - 05 */

if OlIld_ohannel then output (os_6B8) - lSh;
else output(os_588) - 05h;

end tdr;

/* ---:--;---------*'

dump_S8B: prooedure publ1o; '" COIIMAND - 08 "'

oall. dm",--load(amd_ahannel, rZ-dir ,84, Cld.mp_~addr) ;
if amcLOOannel then output (os_688) - lSh;
else autput(os_588) - OSh;

end dump_S88;

'* --------------------------------.. ---* I

diagnose: prooedure publ1o; /" COIIMAND - 07 "/

if OlIld_ohallllel then output (os_588) - 17h;
else output(os_58B) - 07h;

end diagnose;

/ * --------------------------.... ---*'
rov_enable: procedure (ohannel ,buffer_no ,len) publio;

deolare ohannel ~e;
deolare len word;

/" COIIMAND - 08 "/

deolare buffer~o ~e;
oall dma_load(OOannel, rz_dir,len,iI1'Z-dm",--addr(buffer_no));
;is~~~~~~S~~~) o~t~:; (os_S88) - 18h;

/ * --* /

rev_disable: prooedure publio;

enable_rov-O;
output (os_S88) -OalL;

end rev_disable;

/* COIIMAND - 10 ./

/. --*/

rev_stop: prooedure publio;

ene.b18_rcv-O;
output(os_58B)- Ohh;

end rev_stop;

'" COIIMAND - 11 "/

/. --T---------------*'

retransmit: prooedure publio; '" COIlllA1lIl - 12 "'
oall dmaJoad(amd_ohannel, tz_dir, 1538, ct1:z-dm",--addr) ;
if amcLohannel then output (os_688) - 100; .

. else output(os_58B) - Ooh;

end retransmit;

'*--*'

abort: procedure publio; '" COIIMAND - 13 "'

:ir:~~~s~:~~;(~~;
end abort;

'* --*'

reset_SB8: procedure publio;

enable_rev-O;
output(os_SB8) - 1eh;
oall oonfig;

end resat_s88;

'" COIIMAND - 14 "'

F.igure 59. General Commands (Continued)

1·140

231422-66

231422-67

inter AP-236

7.4 DMA Routines

DMA_LOAD procedure is used to program the
8237A DMA controller for all the operations requiring
DMA service. It also starts or enables the programmed
DMA channel after programming it. Figure 60 shows

the listing of this procedure. It accepts 4 parameters
from the calling routine to decide the programming
configuration for the 8237A. The parameters for
DMA_LOAD are: Channel; direction, buff_len, and
buff_addr.

Convert1ng a pOinter SEG:OFFSET to a 20 llit address
oonvert_2Dlli t_addr: procedure(ptr) dword publio:

deola.re ptr po1nter,
ptr_addr pOinter.

f;~d20~~~e~w~~~ _addr) (2) word:

ptr _addr-@ptr :
ptr_20llit-shl((ptr_20llit :-wrd(l» ,4)+wrd(0):
return(ptr_20ll1t) :

end oonvert_20ll1 t_addr:

IBII/PC DIIA loading prooedure

dmB.-lcad: prooedure (ohannel. direction • buff_len .lluff _addr) reentrant publio:

deolare channel byte:
deolare direction byte:

/' CIIANIIEL •• 0 or 1
/' O-RX, 588 -. MEII:
/, BYTE COUNT

'/
lon, IIEII -. BBB ,/

deolare bufClen word: .
deolare llufCaddr pcinter:
deolare (wrd llased llufCaddr)(2)

channel-channel and 1:

/' BUFFER ADDR IN 20 BITS FORM
word;

/' GET LEAST SIGNIFICANT BIT

if ohannel-O then /' EXECUTE COIIIIAND ON CIIANIIEL 1
do:
~~t~;~:~!:6f) - 0: /' CLEAR FIRST/LAST FLIP-FLOP

then output(dma_mode)-dma_rJUllcde_l: /' DIRECTION BIT, TELLS
else output (dma.Jllcde)-dma_tx--",ode_l : /' TRANSIlIT OR RECEIVE
cutput(dma_addr_ll - lcw (wrd(O»: /' LOAD LSB ADDRESS BYTE
cutput(d.ma.-addr_l) - high(wrd(D»: /, LOAD IISB ADDRESS BYTE
cutput(dmB.-addrlLl) - low (wrd(l»: /' LOAD PAGE REGISTER
output (dma_llo_l) - low (buff_len): /' LOAD LSB BYTE COUNT
cut put (dlna.-llc_l) - high(bufClen): /' LOAD IISB BYTE COUNT
cutput(dmB.-mask) - dmB.-on..l: /' START CllANllBL.l
end:

else do: /' SAllE AS BEFORE FOR CllANllBL 3

~~t~~;~~o!:6f) - 0:
then cutput(dma.Jllode)-dmB.-rJUllcde_3:

else cutput(dma_mode)-dma_tx--",ode_3:
cutput(dma_addr_3) - lcw (wrd(O»:
cutput(dma_addr_3) - high(wrd(O)):
cutput(dmB.-addrh_3) - low (wrd(l»:
cutput(dmaJ>c_3) - low (llufClen):
cut put (dmaJ>c_3) - high(llufClen):
cutput(dma_mask) - dmB.-cn..3:
end:

end dma...load:

Figure 60. DMA Routine

1-141

'/
'/

'/

'/

'/

'/
'/
'/
,/
'/
,/
'/
'/

,/

231422-68

inter Ap·236

. One peculiarity about this procedure is that in order to
speed up the DMA step-up, this procedure doesn't get a
pointer to the buffer, but a pointer to a 20 bit address in
the 8237 format. The 8088/8086 architecture define
pointers as 32 bits seg:offset entities, where seg and off­
set are 16 bit operands. By the other hand the IBM/PC
uses an 8237A and a page register, requiring a memory
address to be a 20 bit entity. The process of converting
a seg:offset pointer to a 20 bit address is time

consuming and could negatively affect the performance
of the 82588 driver software. The decision was to make
the pointer/address conversions during initialization,
considering that the buffers are static in memory (es­
sentially removing this calculation from the real time '
response loops).

Figure 61 is a listing of the DMA-LOAD procedure
for the 80188 or 80188 on-chip DMA controller. It has
the same caller interface as the 8237A based one.

dma_Ioad: procedure(channel ,direction, trans_Ien,'buff_addr) reentrant:

/* To load and start the 80186 DMA controller for the desired operation */

declare dma_rx~ode literally '1010001001000000b': /* rx channel */
/* src=IO, dest=M(inc), sync=src, TC" noint, priority, byte */

declare dma_t~ode literally '000011010000000b': t* tx, channel */
/* src-M(inc), dest-IO, sync-dest, TC, noint, noprior, byte */

declare
declare
declare
declare

channel byte: /*
direction byte: /*
trans_len word: /*
buff_addr pointer: /*

channel '*
o - rx, S88 ->
byte count
buffer pointer

declare (wrd based buff_addr)(2) word:

do case channel and OOOOOOOlbl
do case direction and OOOOOOOlb:

*/
mem: I - tx, mem -> S88 */

*/
in 20 bit addr. form */

do: t* channel 0, S88 to memory */
output (dma_O_dpl) =wrd(O):
out put (dma_O_dph) - wrd(l):
output(dma_O_spl) - Ch ... A388:
output (dma_O_sph) - 0:
output (dma_O_tc) - trans_len:
output (dma_O_cw) - dma.J'~ode or 0006h; /* Start DMA chI ° *1
end;

do; 1*
output(dma_O_dpl)
output (dma_O_dph)
ou tpu t (dma_O_spl)
outpu~(dma_O_sph)

'ou tpu t (dma_O_t c)
output (dma_O_cw)
end;

end;

channel 0, memory to' 588 */
- cl!....,,-S88;
= 0:
- wrd(O);
-wrd(!);
~ trans_len;
- dma_t~ode or 0006h: /* Start DMA chI 0 *t

231422-69

Figure 61. 80186 DMA Routines

1-142

inter AP-236

do case direction and 00000001b;
do; f* channell 588 to memory *f
output(dma_l_dpl) wrd(O);'
output (dma_l_dph) wrd(l);
output(dma_l_spl) = clLb_588;
outputCdma_l_sph) _ 0;
outputCdma_l_tc) = trans_len;
output (dma_l_cw) = dma_r~ode or 0006h; f* Start DMA chi 1 *f
end;

do; f* channel 1, memory to 588 *f
- clLb_588;
= o·
- ~d(O);
- wrd(l);

trans_len;
dma_t~ode or 0006h; f* Star~ DMA chi 1 *f

output (dma_l_dpl)
output (dma_l_dph)
output(dma_l_spl)
output (dma_l_sph)
ou t pu t (dma_l_t c)
output (dma_l_cw)
end'

end; .

end;

231422-70

Figure 61. 80186 DMA Routines (Continued)

7.5 Interrupt Routine The interrupt handler will read 82588 status, and put
them into a 64 byte long EVENT_FIFO. Those
statuses are going to be used in the main loop for updat­
ing screen counters. All the statistics are updated as fast
as possible in the interrupt handler to fulfill the back­
to-back frame processing requirement.

The interrupt service routine, 'intr_588', shown in
Figure 62, is invoked whenever the 82588 interrupts.
The main difficulty in designing this interrupt routine
was to speed its performance. Fast status processing
was a basic requirement to be able to handle back to
back frames. The interrupt handler is not reentrant, interrupts are

disabled at the beginning and reenabled on exit.

1-143

AP-236

Interrupt service routine

intx_S8e : procedure interrupt 13;

deolare stat byte.
event byte,
i byte,
(stO,.tl,st2,st3) byte,
rx_stO byte.
rx_st 1 byte;

/' FOLLOWING LITERALS HAVE THE PURPOSE OF ENAllLE ACTING
ON EITHER CHANNEL 1 OR 3 SELECTIVELY "

declare

literally

literally

'if omd_ohannel
then output(dma_mask)-dma_off_3;

else output(dma._mask)-dma_off_l'.
'if rx_ohannel

then output(dma_mask)""dma_off_3;
else output(dme._mask)-dma._off_l'.

'if cmd_channel
then output(oB_688) .. lCh;

else output(os_5SB)"Ooh·.
'1f cmd_Channel

then output(os_68B)-14h;
else output(os_68B)",,04h';

disable;

output(cs_688) -Ofh:

;, DISABLE INTERRUPTS * /
/. NO IN'l'ERR. NESTING * /
I' RLS 68B PTa. START 0 *1

event_fifo(wr_ptr). atO. stO ... 1nput(os_588): /' READ 82588 STATUS
event_f1fo(wr_ptr). stl. stl-input(os_668); /' PASSING REGISTERS,
event_flfo(wr_ptr) . st2, st2-1nput (os_688) ; /' THEM TO THE MAIN
event_flfo(wr_ptr). st3, st3 ... 1nput(OS_688); /' PROGRAM ON THE FIFO

wr_ptr-(wr_ptr+l) and Ofh; /' INCREMENT FIFO
flfocnt-(flfoont+1) and Ofh: /' COUNTERS

event-stO and Ofh; /' GET EVENT- FIELD

output (os_S88)-80h: /' ACKNOWLEDGE 82688
/' INTERRUPT

do oase event;

ev_oo
eV_01
ev_02
eV_03
ev_04

~t op_cmd_dma.;
st op_cmd_dma;
stop_omd_dma:
do:
stop_cmd_dma:

1* NOP COMMAND * I
I * lA_SETUP, STOP DMA * I
/' CONFIGURE, STOP DNA '/
I * MULTICAST. STOP DMA * I
I' TRANSMIT DONE *1.

/' CHECK IF THERE WAS A COLLISION AND IS NOT THE
MAX COLLISION '/

stat-(st2 and lOOOOOOOb) or (stl and OOlOOOOOb):
U (stat-60h)

then do; I * RETRANSMIT * I
call dma._load(cmd_channel, tx_d1r, 1536,@tx_dma._addr) ;
1ssue_rtx_cmd ;
I· UPDATE STATISTICS
tota.l_tx_count .. total_tx_count+1 ;

,/

coll_ont(l7) - ooll_ont(17) + 1; I'TOTAL COLLII'I
bzuLtx_oount .. bad._tx_oount + 1;
end;

else do;

end;

if in_loop /' EXECUTING TRANSMISSIONS IN LOOP '/
then do: / '" RE ISSUE TRANSMIT COMMAND * /

oall dma_loadCcmd_ohannel. tX_dlr .1536,@t]cdma_addr
1ssue_ tx_cmd:
total_ t::lcoount-total_tx_count+ 1:
end;

U (st2 and OOlOOOOOb) - 0 1* BAD TRANSMIT$o/
then do;

bad_t:lCOOunt .. bad_tx_oount + 1;
/' INCREMENT UNDERRUN COUNTER
tmp-sor(tmp: -st2, 1) :

;~~~iMi~~~i ~iss ~bmBR
tmp-scr(tmp,l) :
lost_ots-lost_cts plus 0;

'/

'/

'/ /' INCREMENT LOST CRS COUNTER
tmp-sor(tmp, 1):
lost_ors-lost_crs plus 0;
if (stat-OAOh) /, INC COLLISIONS COUNTER '/

then ooll_ont(l7) - ooll_ont(17) + 1:
end:

end;

/' INCREMENT DEFER COUNTER
tmp-sol((tmp: -stl) ,1):
tx_defer-tx_defer plus 0;

Figure 62. Interrupt Routine

1-144

'/

'/
'/
,/
,/

'/
'/

'/

'/
'/ 231422-71

231422-72

inter
ev_OS:
Bv_06:
ev_07:
ev_08:

stop_cmd_dma;
stop_cmd_dma;
stop_cmd_dme.;

AP-236

/.. TDR COMMAND I STOP DMA .. /
/, DUMP COI!HANll, STOP DHA ' /
/' DIAGNOSE CHD, STOP DHA ' /
I" RECEIVED FRAME .. /

do;
stop_rx_dma;
i-(current_buff+l) and OOOOOlllb; /' INC BUFFER NO. MOD 8'/
if ena.ble_rov<)O /- IF RECEIVER IS ON If.j

then do; /.. PREPARE NEXT BUFFER • /
can dma_load(rx_channel,rx_dir,l632,@1'x_dma_addr(i));
if rJcchannel then output(os_6SS)- 16h:
else output(os_688)-08h;
rX_Duffer(i) .chaln_cnt-O;
end;

else 06011 rov _disable j /, DISABLE RECEIVER

/, FIND ADDRESS OF END OF CURRENTLY RECEIVED BUFFER
/, BY CALC1lLATING IT WITH THE 82688 BYTE COtlNT REGS.
r,,-bufCoff-(shl(double(st2) ,8) or double(stl));
/' READ STATUS BYTES FROM MEMORY
rx_stO-rx_bufferCcurrent_buff). buf:f'Crx_huff_off-2);
rx_st l-rx_buffer(ourrent_huff) . buffCrx_buff_off-l) ;
/, UPDATE ACTUAL BUFFER SIZE
rx_buffer(current_buff) . actual_size-rx_Duff_Off;
r::Z:_Duffer(current_buff) . etC-rx_sta;
rx_buffer(ourrent_buff). Btl-rx_Btl;
ourrent_huff-1;
/' UPDATB TOTAL RECEIVED BUFFERS
total_rcv _count-total_xcv _oount+ 1 :
/' UPDATE STATISTICS
if (n_stl and OOlOOOOOb)-O

then do;
bad_rov_count-bad_rov_count+l;
/' INCREMENT NO END OF FRAME COUNTER
tmp-scr(tmp: -r,,_stO, 7);
nO_Bof-no_eof plus 0;
/, INCREMBNT SHORT FRAME COUNTER
tmp-sor(tmp, 1) ;
srt_frm-srt_frm plus 0;
/' INCREMENT RX OVERRUN COUNTER
tmp-scr(tmp:-rx_stl,l) ;
rx_over-rx_over plus 0;-·
/, INCREMENT ALIGNMENT ERROR COUNTER
tmp-sor(tmp, 2);
alg_err-alg_Brr plUS 0;
/, INCREMENT eRC ERROR COUNTER
tmp-scr(tmp,1) ;
orc_err-oro_err plus 0;
end;

'/

'/
'/

'/

'/

'/

'/

,/

'/

'/

'/

'/

end' 231422-73

ev_09
ev_-10
ev_ll
ev_12

/' BV _09 REQUESTS ASSIGNMBNT OF A NEW BUFFER '/
call allocate_new_buffer(not(rol(st3,l)) and OOOOOOOlb);
stop_rx_dma; 1* RECEIVE DISABLE *1
stop_rx_dma; I" STOP RECEIVE .. /
do; /.. RE-TRANSMIT DONE .. 1
stat-(st2 and lOOOOOOOb) or (stl and OOlOOOOOb);
if (stat-BOh)
then do: /.. RETRANSMIT *1

call dma_load(l, tx_dir,l636,@t,,_dma_addr);
1ssue_rtx_cmd;
colLcnt(l7) - ooll_cnt(l7) + 1;
total_tx_oount-total_tx_oount+1 ;
bad._tx_count-bad_tx_oount +1;
end;

else do:

end;

if in_loop
then do; 1 * LOOP RETRANSMISSIONS * /

call dma_load(cmd_channel, tx_d.1r, 1536.@tx_dIna_a
1ssue_t~cmd;
total_tx_oount-total_tx_oount+1 ;
end;

if (stat-OAOh) /' MAX COLLISION '/
then do;

coll_ont(l6) - ooll_cnt(l6)+l;
oolLcnt(l7) - coll_cnt(l7)+1;·
bad._tx_oount-bad_tx_count +1;
end;

I" UPDATE SPECIFIC COLLISION COUNTER .. 1
else coll_ont(stl and Of h)

- ooll_cnt(stl and Of h) + 1;
end;

ev_13: stop_cmd_dma; /' EXECUTION ABORTED

/' DIAGNOSE FAILED

'/

:~::::i~~ stop_Omd_dma;
end:

/.. ACKNOWLEIXig 82S9A INTERRUPT
output(pio_ocw2)- seoi_pico; /, SPECIFIC EOI FOR 8269

end intr_688;

Figure 62, Interrupt Routine (Continued)

1-145

,/

'/
'/

231422-74

Ap·236

. APPENDIX A
STARLAN SIGNALS

1-146

Ap·236

231422-55

1-147

82588

nco RTS

(1)------

5pF

(2)---

24 GAUGE

5 pF

800 FT TWISTED PAIR WIRE
IN 25 PAIR BUNDLE

(.)~

231422-47

Figure 63. StarLAN Signals

inter

0
0
0
N

0
0

'"
0
0
0

>8
5'"
.",

'" z
0
0..
",0

'" Q:

'" (!)

~o
00
>?

0
0
0 ..
0
0

'" I

0
0
0
N
I

0.0 0.2

AP-236

Eye Diagram (58ils), DIW Cable
Manchesler Encoded Signal

Transmission Distance ~ 0.8 Kit.

0.4 0.6
TIME (~SEC)

Figure 64. Received Signal Eye Diagram

1-148.

O.S 1.0

231422-48

intJ A~-236

APPENDIX B
802.3 1 BASES MULTI-POINT EXTENSION (MPE)

As previously stated, one of the most important advan­
tages of StarLAN is being able to work on already in­
stalled phone wires. This advantage is considerably di­
minished in Europe where numerous constraints exist
to the using of those wires:

I. Wire belongs to local PTTs.
2. Not enough spare wires.

This same issue is raised when talking about small busi­
nesses where in a lot of cases no wiring closets and/or
spare wires are available.

In summary, in a lot of cases rewiring will be necessary,
in which case the STAR topology may not be the most
economical one.

Recently the StarLAN 802.3 !BASES task force has
been considering the extension of the StarLAN base
topology. This extension called MULTI POINT EX­
TENSION (MPE) is going to be developed to address
the previously described marketing requirements.

Currently no agreement has been reached by the
StarLAN task force on the MPE exact topology and
implementation. Multiple approaches have been pre­
sented, but no consensus met. It was decided though
that the MPE is going to be an addendum to the STAR
topology, and that its final specification will happen
after the approval of the current !BASES STAR topol­
ogy (July 1986).

1-149

"II
cO·
e ...
(II

en
PI
iii:
e

~ a:
(J1 "0
o 0 s· -

~
::J
en o·
::J

LOWER COST.
TERMINALS ATTRACTIVE

HUB COST ELIMINATED
IN SMALL TOPOLOGIES.

LOWER COST PER PORT
(UP TO 8 STATIONS PER PORT)

HUB

__ ... _-- THROUGH A HUB UPGRADABLE
TO THE FULL STAR LAN TOPOLOGY
(2500 m. MAX END-TO-END)

...
CONNECTION OPTIONAL,

NOT NEEDED FOR SMALL
TOPOLOGIES

FEWER CONNECTIONS TO
WIRING CLOSETS

231422-97

l

):0
"U ,
I\,)
CI)
en

inter AP-236

APPENDIX C
SINGLE DMA CHANNEL INTERFACE

In a typical system, the 82588 needs 2 DMA channels
to operate in a manner that no received frames are lost
as discussed in section 5.1.3. If an existing system has
only one DMA channel available, it is still possible to
operate the 82588 in a way that no frames are lost. This
method is recommended only in situations where a sec­
ond DMA channel is impossible to get.

Figure 66 shows how the 82588 DMA logic is inter­
faced to one channel of a DMA controller. Two DRQ
lines are ORed and go to the DMA controller DRQ
line and the DACK line from the DMA controller is
connected to DACKO and DACKI of the 82588. The
82588 is configured for multiple buffer reception
(chaining), although the entire frame is received in a
single buffer. Let us assume that channel CH-O is used
as the first channel for reception. After the ENAble
RECeive command, CH-O is dedicated to reception. As
long as no frame is received, the other channel, CH-1,
can be used for executing any commands like transmit,
multicast address, dump, etc., by programming the
DMA channel for the execution command. The status
register should be checked for any ongoing reception,
to avoid issuing an execution command when reception
is active.

OROO OROn OROl

OACKO . ..,
OACKl OACKn

82588 OMA
CONTROLLER
231422-49

Figure 66. 82588 Using One DMA Channel

If a frame is received, an interrupt for additional buffer
occurs immediately after an address match is estab-

lished, as shown in Figure 67. After this, the received
bytes start filling up the on-chip FIFO. The 82588 acti­
vates the DRQ.line after 15-FIFO LIMIT + 3 bytes
are ready for transfer in the FIFO (about 80 microsec­
onds after the interrupt). The CPU should react to the
interrupt within 80 p.s and disable the DMA controller.
It should also issue an ASSIGN ALTERNATE BUFF­
ER command with INT ACK to abort any execution
command that may be active. The FIFO fills up in
about 160 p.s after interrupt. To prevent an underrun,
the CPU must reprogram the DMA controller for
frame reception and re-enable the DMA controller
within 160 p.s after the interrupt (time to receive about
21 bytes). No buffer switching actually takes place, al­
though the 82588 generates request for alternate buffer
every time it has no additional buffer. The CPU must
respond to these interrupts with an ASSIGN ALTER­
NATE BUFFER command with INTACK. To keep
the CPU overhead to a minimum, the buffer size must
be configured to the maximum value of 1 kbyte.

If a frame transmission starts deferring due to the re­
ception occurring just prior to an issued transmit com­
mand, the transmission can start once the link is free
after reception. A maximum of 19 bytes are transmitted
(stored in the FIFO and internal registers) followed by
a jam pattern and then an execution aborted interrupt
occurs. The aborted frame can be transmitted again.

If the transmit command is issued and the 82588 starts
transmitting just prior to receiving a frame then trans­
mit wins over receive-but this will obviously lead to a
collision.

Note that the interrupt for additional buffer is used to
abort an ongoing execution command and to program
the DMA channel for reception just when a frame is
received. This scheme imposes real time interrupt han­
dling requirements on the CPU and is recommended
only when a second DMA channel is not available.

1-151

intJ

REQUEST
ALT BUFF
INTERRUPT

1
82588 -.-J

Ap·236

ASSIGN
ALT BUFF

WITH INTACK

1

rFIFO FULL

•
~; I I

:':==~~_-_!::B_O_~S ___ --;.·I ___ _
,- I !::160~S-----+l'1

1 1 1
ADDRESS MATCH

ON FRAME
RECEPTION

. DMA CONTROLLER
MUST BE DISABLED

PRIOR TO THIS

DMA CONTROLLER
MUST BE PROGRAMMED

FOR RECEPTION AND
ENABLED PRIOR TO THIS

231422-50

Figure 67. Timing at the Beginning of Frame Reception for Single DMA Channel Operation

1-152

AP-236

APPENDIX D
MEASURING NETWORK DELAYS WITH THE 82588

Knowing networks round-trip delays in local area net­
works is an important capability. The round-trip delay
very much defines the slot time parameter which by
itself has a direct relationship to network efficiency and
throughput. Very often the slot-time parameter is not
flexible, due to standards requirements. Whenever it is
flexible, optimization of this number may lead to signif­
icant improvement in network performance.

Another possible usage of the network delay knowledge
is in balancing the inter-frame -spacing (IFS) on broad­
band networks. On those networks, stations nearer to
the HEAD-END hear themselves faster than farther
ones. Effectively having a shorter IFS than stations far
from the HEAD-END. This difference causes an inba­
lance in network access time for different stations at
different distances from the HEAD-END. Knowing
the STATION/HEAD-END delay allows the user to
reprogram the 82588 IFS accordingly, and by that bal­
ance the effective IFS for all the stations.

The 82588 has an internal mechanism that allows the
user to measure this delay in BIT-TIME units. The
method is based on the fact that the 82588 when config­
ured for internal collision detection, requires that the
carrier sense be active within half a slot-time after
transmission has started. If this requirement is not ful­
filled the 82588 notifies that a collision has occurred.
Thus it is possible to configure the 82588 to different
slot time values, then transmit a long frame (of at least
half a slot-time). If the transmission succeeds, the net­
work round-trip delay is less than half the programmed
slot-time. If a collision is reported, the delay is longer.
The value of the round-trip delay can be found by re­
peating this experiment process while scanning the slot­
time configuration parameter value and searching the
threshold. A binary search algorithm is used for that
purpose. First the slot-time is configured for the maxi­
mum (2048 bits) and according if there was a collision
or not, the number changed for the next try. (See Fig­
ure 68)

1-153

8
2
5
8
8

TX

RX

Ap·236

PROPAGATION DELAY

HEADEND

• SCHEt.lE IS BASED ON THE F"ACT THAT THE 82588 EXPECTS RX CARRIER
TO BE ACTIVE ArTER 1/2 SLOT TIt.lE

K = APPROXIt.lATION F"ACTOR

Figure 68. Network Delay Measurement using the 82588

1-154

231422-98

APPLICATION
NOTE

AP-320

November 1988

Using the Intel 82592 to Integrate
a Low-Cost Ethernet Solution

into a PC Motherboard

MICHAEL ANZILOTTI
TECHNICAL MARKETING ENGINEER

1-155
Order Number: 290189-001

AP-320

1.0 INTRODUCTION

During the past several years office networking has be­
come an increasingly efficient method of resource shar­
ing for companies looking to increase productivity
while reducing cost. Networking allows multiuser ac­
cess to a data base of files or programs v,ia a network
file server; it allows sharing of expensive peripherals;
e.g., laser printers; and it offers a greater degree of data
security by centralizing the hard disk and backup facili­
ties. This type of network allows a user to concentrate
his resources; e.g., a high-capacity, high-performance
hard disk, at the network file server, allowing the other
nodes, or PC workstations, on the network to function
with limited or no mass data storage capability.

As I,.ocal Area Networks (LANs) have become more
common in the office and in industry, some clear mar­
ket development trends have emerged. Possibly the
most significant development in the LAN marketplace
is the concern for cost reduction. This need is driven by
intense competition between network vendors for mar­
ket share. Today's .LAN marketplace requires low-cost,
simple network solutions that do not sacrifice perform­
ance. Another significant development in the LAN
marketplace is the acceptance of Ethernet, or a deriva­
tive (e.g.; Cheapernet or Twisted Pair Ethernet), as the
industry standard for high-performance LANs. Be­
cause of Ethernet's popularity, there is a great need for
cost 'reduction in this market.

Personal computers (PCs) have also seen significant
changes over the past several years. PCs have become
firmly entrenched in the office. Their popularity, cou­
pled with a highly competitive market, has compelled
PC vendors to both reduce costs for their LAN solu­
tions and to attempt to distinguish their product from
the competition's. The means of this cost reduction
range from eliminating expensive hardware, such as
disk drives and their associated hardware,. to using
highly integrated VLSI devices that implement the
functions of a PC in a combination chip set containing
several devices. Differentiation has been achieved by
integrating peripheral functions, normally contained on
an external adapter card, into the main processor
board, or motherboard, of the PC. Video Graphics Ar­
ray (VGA) and LAN connections are examples of this
strategy. .

The Intel 82592 LAN controller is uniquely suited for
integration into a PC AT style motherboard. It meets
the demands of today's market by providing the PC
vendor (1) a means of reducing cost while maintaining
high performance, and (2) a path for differentiation. An
82592 integrated into a PC motherboard provides a
very low cost and very simple implementation because

,it uses the host system's existing resources to' complete

the LAN solution; e.g., system memory and DMA.
This leaves the 82592, the serial interface, and some
control logic as the only components required to com­
plete a motherboard LAN solution.

1.1 Objective

This Application Note presents the general concept of
integrating a Local Area Networking into a PC moth- '
erboard, and how the 82592 ,suits this purpose. The
design of the 82592 Embedded LAN Module, which
plugs into an Intel SYP301 motherboard (or any stan­
dard PC AT style motherboard), is explained in de­
tail-providing a demonstration of an integrated Ether­
net LAN solution.

1.2 Acknowledgements

For their contributions to this Application Note, and
for their work in developing the architecture of the
82592 Embedded LAN Module, I would like to ac­
knowledge, and thank, Uri Elzur, Dan Gavish, and
Haim Sadger, of the Intel Israel System Validation
group; and Joe Dragony, of Intel's (Folsom) Data
Communications Focus Group.

2.0 THE EVOLUTION OF LAN
SOLUTION ARCHITECTURES

LAN solutions have undergone an evolution in archi­
tecture--from expensive and complex to more cost-effi­
cient and streamlined. A definite trend in office net­
working can be seen, as these solutions permit the host
system to perform functions that were previously in­
cluded in the LAN solution.

The first LAN solutions were usually intelligent buff­
ered adapter cards, with a CPU, large memory require­
ments (up to 512 kB), firmware, a LAN controller, and
a serial interface. As networking became more preva­
lent in the office environment-linking PCs and work­
stations via Ethernet-this complex architecture
evolved into simpler and more streamlined nonintelli­
gent, buffered adapters. In this architecture the CPU is
no longer part of t~e LAN solution; its processing pow­
er is supplied by the host system. This architecture does
not need memory to support a local CPU. Memory is
only needed to supply a buffer space to store data be­
fore moving it to system memory or onto the serial link.
The memory requirement for nonintelligent, buffered
architectures is typically 8 kBytes to 32 kBytes. The
firmware to boot the CPU is also no longer needed. The
evolution to a nonintelligent, buffered architecture has
resulted in significant cost savings and reduced com­
plexity.

1-156

inter AP-320

Significant increases in speed and processing power
have been made to PCs during the past several years.
This trend to higher performance host systems has al­
lowed further streamlining of the LAN solution's archi­
tecture, resulting in even greater cost reduction and
simplification. This is accomplished by using host sys­
tem resources whenever possible. A nonintelligent, non­
buffered architecture is the result. In this architecture,
the host system's memory and DMA are used by the
LAN controller. The complexity associated with buff­
ered LAN solutions (e.g., supplying a dual-port arbitra-

tion scheme for local memory access by both the CPU
and the LAN controller) is reduced; this complexity is
removed from the LAN solution and returned to the
host system, which is designed for these complex tasks.
The result of this architectural optimization is a very
simple, low component count, cost-efficient solution for
a LAN connection. The 82592 Embedded LAN Mod­
ule is the realization of this optimization. The trend to
optimization of LAN architectures is shown in Figure
1.

Intelligent Buffered Adapter

EJ

Nonintelligent Buffered Adapter

290189-2

290189-1

Nonintelligent Non-Buffered Architecture
Embedded Module

290189-3

Figure 1. Architectural Optimization of LAN Solutions

1-157

i~ AP-320

3.0 THE 82592 LAN CONTROLLER • Internal and externalloopback

3~1 General Features

The 82592 is a second generation, CMOS, advanced
CSMA/CD LAN controller with a l6-bit data path.
Along with 'its 8-bit version, the 82590, it is the follow­
on design to the 82588 LAN controller. The 82592 is
upwards software compatible from the 82588. The
82592 has two modes of serial operation, High Speed
Mode and High Integration Mode. In High Speed
Mode (up to 20 Mb/s) the 82592 couples with the Intel
82C50l to provide an all CMOS kit for IEEE 802.3
Ethernet applications. In this mode the 82592 can also
serve as the controller for Twisted Pair Ethernet (TPE)
applications. In High Integration Mode (up to 4 Mb/s)
the 82592 performs Manchester and NRZI encoding/
decoding, collision detection, transmit clocking, and re­
ceive clock recovery on chip; in this mode it can serve
as a controller for StarLAN and other midrange LANs.

The 82592 provides several features that' allow an effi­
cient system interface to a wide variety of Intel micro­
processors (e.g., iAPX 188, 186, 286,and 386) and in­
dustry standard buses (e.g., the IBM PC I/O channel
or the PS/2™ Micro ChanneI™). To issue a com­
mand to the 82592 (e.g., TRANSMIT or CONFIG­
URE) the CPU only needs to set up a block in memory
that contains the parameters to be transferred to the
82592, program the DMA controller to point to that
location and issue the proper opcode to the 82592. The
82592 and DMA controller perform the functions
needed to complete the command, with the 82592 inter­
rupting the CPU when the command is complete. The
82592 has a high-performance, 16-bit bus interface, op­
erating at up to 16 MHz. It also implements a special­
ized hardware handshake with industry standard DMA
controllers (e.g., the Intel 8237, 82380, and 82370) or
the Intel 82560. This allows for back-to-back frame re­
ception, and automatic retransmission on collision'­
without CPU intervention. The 82592 FIFOs (Rx and
Tx) can have their 64 bytes divided into combinations
of 32/32, 16/48, 48/16, or 16/16.

The 82592 features a Deterministic Collision Resolu­
tion (DCR) mode. When a collisiori is detected while in
this mode, all nodes in a deterministic network enter
into a time-division-multiplexed algorithm where each
node has its own unique slot in which to transmit. This
ensures that the collision is resolved within a calculated
worst-case time. The 82592 also features a number of
network management and diagnostic capabilities; for
example,

• Monitor mode
• A 24-bit timer

• Three l6-bit event counters

• Internal register dump

• A TDR mechanism

• Internal diagnostics

For further information on the 82592, please refer to
the Intel Microcommunications Handbook.

3.2 Unique Features for Embedded
LAN Applications

The 82592 has several unique features that enable im­
plementing a high-performance embedded LAN solu­

,tion with minimal cost and complexity.

Peripherals on a motherboard must compete for access
to the system bus. Because there is no local buffer for '
intermediate buffering of data, data transfers take place
in real-time over the system bus to the system memory.
A LAN controller must have a large internal data stor­
age area to be able to wait for access to the system bus
while serial data is being received or transmitted. With­
out sufficient internal data storage, a LAN controller
cannot take advantage of the cost efficiency and sim­
plicity of a non-buffered architecture. The 82592 has a
total of 64 bytes of FIFOs. This expanded FIFO section
allows the 82592 to tolerate long system bus latencies.
For example,' during a Receive (with the Rx FIFO
length configured to 48 bytes) the 82592 can tolerate up
to 38.4 ,""S of bus latency-the time from a DMA re­
quest to reception of a DMA Acknowledge from the
DMA controller-before the possibility of a data over­
run occurring in a 10 Mb/s Ethernet application. Once
access to the system bus has been obtained, the 82592's
high-performance, l6-bit bus interface provides effi­
cient data transfer over the system bus, thus reducing
the bus utilization load for a LAN connection on the
host system.

The 82592 features a specialiied hardware handshake
with industry standard DMA controllers. This hard­
ware handshake between the 82592 and the DMA con­
troller (on signal lines DRQ and EOP) relays the status
of a Receive or Transmit and allows for back-to-back
frame reception and automatic retransmission on colli­
sion without CPU intervention. This allows the 82592
and the DMA controller to perform these time-critical
operations in real-time without depending on the CPU
via an interrupt service routine, and without the time
delays inherent in such routines. For the 82592 Embed­
ded LAN Module, this hardware handshake is enabled
by configuring the 82592 to the Tightly Coupled Inter­
face (TCI) mode. Figure 2 shows details of the 82592's
TCI signals.

1-158

inter AP-320

Transmit/Receive Status Encoding on ORQ and EOP

ORQ EOP Status Information

0 Hi·Z Idle

1 Hi·Z DMA Transfer

0 0 Transmission or Reception Terminated OK

1 0 Transmission or Reception Aborted

Tightly Coupled Interface Timings

DRQO, ~ '\. '\.
DRQl

--T23 - T1D4 --I DACKO,
DACKl §~

wR,Rfi

EOP

..... T1DS I- T1DS I-
2901e~-4

Symbol Parameter Min Max Units Notes

t23 WR or RD Low to DRQO 45 ns CL = 50 pF
or DRQ1 Inactive

tl04 WR or RD High to DRQO 2.5 65 ns CL = 50 pF
or DRQ1 Inactive

t105 WR or RD Low to EOP Active 45 ns Open Drain 1/0 Pin

t106 EOP Float after DACKO 40 ns Open Drain 1/0 Pin
or DACK1 Inactive

Figure 2. TCI Encoding and Timings

1·159

intJ AP-320

These three features (FIFO depth, high-performance
bus interface, and TCI) allow the 82592 to operate suc­
cessfully in a high-performance motherboard LAN
application. The application of these features will be
discussed further in Section 4.

4.0 SYP301 INTERFACE

This section will discuss the details of the Interface of
the 82592 Embedded LAN Module to the Intel
SYP301. The basic architecture will be presented, dem­
onstrating that the 82592 Embedded LAN Module is a
low-cost, low component count Ethernet solution for
networking office PCs or .workstations.

The Intel SYP301 is compatible with the IBM PC
ATTM. It features an Intel 80386TM microprocessor,
running at 16 MHz, as its CPU. Its system bus is com­
patible with the standard PC AT I/O-channel bus.

4.1 Basic Architecture

Figure 3 shows the basic architecture of the 82592 Em­
bedded LAN Module, and Figure 4 shows the module's

,

schematics. The module consists of an 82592, two
20LIO PALs, and two 8-bit LS573 address latches that
combine to provide a 16-bit address latch. The module
contains no DMA unit or local memory.

The 82592 Embedded LAN Module is a simple; low­
cost, low component count solution because it uses the
available system resources (DMA and memory) to pro­
vide for those functions normally added to a LAN solu­
tion. Removing DMA and local memory from a LAN
solution reduces cost and, complexity. Two host DMA
channels, one for receive and one for transmit, are
needed to support the module. The DMA interface
from the 82592 (through PAL B) is the standard com­
bination ofDRQ, DACK and EOP. These three signals
also provide the TCI between the 82592 and the DMA
controller. The size of the memory buffer needed to
support the module depends'on the specific application
and the amount of free memory available; the buffer
size can be specified by the programmer.

JI
ADDRESS BUS AO-15

LATCH "
" DATA BUS 00-15

LTCwt + OE

(RECEIVE) JI " DRQO DMA INTERfACE (DRQ,
DRQl

(TRANSMIT) " I'

DACK
(BOTH CHANNELS)

EOP
PAL B

INTRQ

INT lORD
I~

-:- -cs A
ADDRESS BUS AO-2 A5-9

PAL A "
lORD lORD ..

82592 IOWR .. IOWR

lolA BUS 00-15"
I'

290189-5

Figure 3. 82592 Embedded LAN Module Basic Architecture

1-160

....
01

"II
ca" e
Cil
~
CO
N

~
N
In
3
I:T
CD
0. g-
o.

~ z
iii:
8-e
CD
W
16
3
a-
ir

DATA 0-15

ADRS 0-15.
704ALS573

An 3 1Q 2
A1 4 2Q :)
A:2 7 3Q 6
A3 1:1 4C9
A4 13 50 12
AS 1... 6Q 15
AS 17 7Q 18
A7 18 BO 19

74ALS573
AS J 10 10 2'
A9 420205
Al0 7 3D 3Q 6
All 8 40 040 9
A12 13 flO 5Q 12
A13 14 60 6Q 15
A14 17 70 7Q 16
A1S 18 80 8Q 19

11 C
1 DC

U5

20Ll0

.!1Q.
01
ii2
OJ
ii4
D5
D6
07

00
ll1
ii2
OJ
ii4
05
Os
07

00
0,
ii2
OJ
ii4
D5
D6
07
D6
Do
010
Dn-
012
D'i'3
014
015

~ ~5 ~2~,~~-----------'
... 2 2 14
AS 7

:~ : PALA
AS 10 6 IOWR_
AS , 1 13 lORD_

1S 22 ENLANO
17 3 RESET

AEN 1

OACK7_
DACKS_

IOWR.
IORC_
RESET

U2
LATCH

j]j

5

5V

82592
, CSMA/CO
Rl CONTROLLER
41(.

Ul

II r1~~E~ .-----L· .u1-R11-i-8 IORO_

INTRQ~

21

19

17
16

13

3
5
7

1
1

~ ~ ~ :~
~ 8 .
I W

~

I 12V ~ ~~ 1 <.>

:c it 2 PI

7

USECP •

IR010

DROS
DR07

INTEL DFG TECHNICAL MARKETING
1900 PRAIRIE CITY HC FOLSOM CA 95630 I A

TITL_

DRAoWN
BY

BELR
OATE

82592 EMBEDDED LAN UODUL

FILE

ELMI

1 OF 1

290189-48

i

I I
)0
"tI
W
N
0

I I

inter Ap·320

The two PALs (PAL A and B) provide two major junc­
tions for the module: (1) address decode (PAL A), and
(2) interpreting the TCI from the 82592 (PAL B). PAL
A decodes addresses for CS to the 82592, OE for the
address latches, and an Enable/Disable of the LAN
module. PAL B interprets the TCI of the 82592. When
PAL B detects EOP from the 82592 during reception of
a frame (BOP indicates the last byte of the receive
frame) it loads the memory address of the last byte of

the receive frame (the byte count) into the Address
Latch at the time it is written into memory. This allows
back-to-back frame reception without CPU interven­
tion, and will be covered in detail in Section 4.2. For
Auto-Retransmit on collision, PAL B passes the EOP
signal from the 82592 to the DMA controller, reinitial­
izing the DMA controller for retransmission. This pro­
cess will be discussed in more detail in Section 4.3. Both
sets of PAL equations are listed in Table 1.

Table 1. PAL Equations

PAL20L 10 MMI-PAL A (Version 1.1)

AEN A2 RESET NC AO IOWBAR A5 A6 A7 AS A9 GND IORBAR 501LB Al 59CTS OE2BAR
OE1BAR LANRSTBAR NC NC ENLANBAR 592CSOBAR VCC

IF (VCC) 501LB = 592CTS

IF (VCC) 592CSOBAR = AEN • A9 • AS • A7 • A6 • A5·. A2 • Al • AO • ENLANBAR

IF (VCC) OE2BAR = AEN • A9 • AS • A7 • AS • 'A5 • A2 • Al • AO • IORBAR • ENLANBAR

IF (VCC) OE1BAR = AEN • A9 • AS • A7 • AS • A5 • A2 •. Al • AO • IORBAR • ENLANBAR

IF (VCC) 1ANRSTBAR = !EN • A9 • AS • A7 • A6 • A5 • A2 • Al • AO • IOWBAR •
ENLANBAR

IF (VCC) ENLANBAR = LANRSTBAR • ENLANBAR + AEN • A9 • AS • A7 • A6 • A5 • A2 • Al
• AO • IOWBAR

PAL20L 10 MMI-PAL B (Version 1.1)

592DRQO RESET DACK7BAR DACKSBAR lORBAR 592DRQl 592EOPBAR ENLANBAR AEN NC
IOWBAR GND 592INT NC DRQSBAR DRQ7 DRQS DISDACK IRQ10 NC MSEOPBAR LTCW .
592DACKBAR VCC

IF (VCC) LTCW = IORBAR + 592EOPBAR + DACK7BAR

IF (ENLANBAR • 592EOPBAR • DACKSBAR) MSEOPBAR = 592EOPBAR • DACKSBAR

IF (VCC) 592DACKBAR = DACKSBAR • DISDACK • ENLANBAR + DACK7BAR • ENLANBAR

IF (VCC) DISDACK = IOWRBAR • DISDACK • RESET + 592DRQO • DISDACK • RESET
+ 592DRQO • IOWRBAR ~ RESET

IF (VCC) DRQ7 = 592DRQl + 592EOPBAR • DACK7BAR

IF (VCC) DRQSBAR = 592DRQO • RESET + DACK6BAR • DRQSBAR • RESET

IF (VCC) i5RQ6 = DRQSBAR

IF (ENLANBAR) IRQ10 = 592INT

NOTE:
The suffix BAR added to the above signal names indicates an active low signal. A signal in these equations' with a line
drawn above it indicates this Signal is to be in a low state for the equation.

1-162

intJ Ap·320

4.2 Back-to-Back Frame Reception

The architecture of the 82592 Embedded LAN Module
allows it to receive back-to-back frames without CPU
intervention. It uses a contiguous Receive Frame Area
(RFA) buffer in host system memory where receive
frames can be continuously stored. This sequential stor­
age of receive frames can continue until the buffer space
is exhausted. The size of the RF A buffer can be speci­
fied by the programmer. Its size will be programmed as
the byte count of the Rx DMA channel. The Base Ad­
dress Register contents of that channel serve as the
start address of the RFA buffer. The receive frames will
be stored sequentially in the RFA buffer based on the
contents of the Current Address Register of the Rx
DMA channel. The module's architecture, and the
82592 receive frame memory structure, allows the CPU
to recover the addresses of each Receive frame in mem­
ory for processing. The CPU can also reinitialize the
RFA buffer (by reinitializing the Rx DMA channel) as
the RFA buffer fills up and its contents are processed.
Alternatively, configuring the Rx DMA channel to
Auto-Initialize mode will allow the Rx buffer to auto­
matically wrap around, back to the beginning of the
buffer, when its end is reached. This creates a virtual
"en'dless" circular buffer. When using this approach,
care must be taken to avoid writing over unprocessed
Rx frames-either by the addition of a hardware Stop
Register, or by guaranteeing that the Rx frames can be
processed faster than the buffer can wrap around.

Back-to-back frame reception without CPU interven­
tion-and eventual recovery of the frames for process­
ing by the CPU-is based on PAL B's decoding of the

15 14 13 12 11 10 9 8

DESTINATION ADDRESS SECOND BYTE

DESTINATION ADDRESS LAST BYTE

SOURCE ADDRESS SECOND BYTE

I
SOURCE ADDRESS, LAST BYTE

INFORMATION (LENGTH FIELD, HIGH)

I I I I I

7

TCI signals of the 82592 (PAL B loads the address
latch with the address of the last byte of the received
frame) and the structure of the received frame trans­
ferred from the 82592 to memory. Figure 5 shows the
format of an 82592 receive frame in TCI mode. After
the information fields are written to memory, the Status
and byte count of the received frame are appended to
the frame in memory. These four bytes (two bytes of
Status and two bytes of byte count) are the last four
bytes of the receive frame written to memory. The high
byte of the byte count is the last byte transferred from
the 82592 to memory. As this last byte is transferred to
memory, the 82592 asserts the EOP signal. When PAL
B detects the assertion of EOP by the 82592, it loads
the address of the last byte of the receive frame into the
Address Latch as this byte is written into memory. This
action ensures that there will always be a pointer (the
contents of the Address Latch) to the byte count of the
last frame stored in the RFA buffer in system memory.
Based on the value of the byte count, the beginning
address of the receive frame in memory can be calculat­
ed; i.e., Byte Count Address Pointer - Byte Count =
Beginning of Frame. The byte count of a previous re­
ceive frame would reside one address location before
the first byte of the current receive frame. That frame,
and any additional receive frames that may have pre­
ceded it, can have their start addresses recovered by the
same calculation used to recover the last frame re­
ceived. This process allows frames to be continually
stored in the RFA buffer without CPU intervention,
and to be recovered by the CPU for processing. Figure
6 illustrates the process of back-to-back frame recep­
tion.

6 5 4 3 2 o
DESTINATION ADDRESS FIRST BYTE

SOURCE ADDRESS FIRST BYTE

INFORMATION (LENGTH FIELD, LOW)

I . I I ~ I
INFORMATION LAST BYTE

CRCBYTE l' CRC BYTE o·
CRC BYTE 3' CRC BYTE 2'

SHORT NO TOO NO NOADD I·A
X X X X X X X X

FRAME EOF LONG
1

SFD MATCH MATCH

Rx LEN CRC ALG
0 X X X X X X X X 0 0

OK ERR ERROR ERROR

X X X X X X X X BYTE COUNT LOW

X X X X X X X X BYTE COUNT HIGH

'The CRC bytes are transferred to memory only when the deVice IS so configured

Figure 5. Receive Format for the 82592 in 16·Bit Mode (Tightly Coupled Interface Enabled)
1-163

Rx
CLD

OVER
RUN

i~ AP-320

Example No.1

First Frame
Received

Example No.2

Second Frame
Received

Example No.3
nth Frame
Received

I Latch 1--+

I Rev Frame Area-
In Host Memory

Frame 1

Status

Byte Count

Remainder of
RFA Buffer

290189-6

I Latch

NOTES: '

1-----+

Rev Frame Area
In ~ost Memory

Frome 1

Status

Byte 'Count

Frame 2

Slatus

Byte Count

Remainder of
RFA Buffor

290189-7

r Latch J-----.

RCV Frame Area I
In Host Memory

Frame 1

Slalus

Byte Count

Additional
RCV Frames

Frame n

Status

Byte Count

Remainder of
RFA Buffor

290189-8

The 82592 a'ppends the byte count to the'end of each RCV frame.
PAL 'B' loads the latch with the memory address of the last byte of each RCV frame.
Based on latch contents and the byte count of each frame, the CPU recovers the RCV frames.

Figure 6. Back-to-Back Frame Reception

4.3 Automatic Retransmission on
Collision

Automatic 'retransmission on collision detection is ac·
complished by the T<;!I between the 82592 and the host
8237 OMA controller and requires no CPU interven·
tion. The transmit channel of the 8237 should be con­
figured for Auto·Initialize mode. The transmit block
(data to be transmitted) starts at the location pointed to
by the Base Address Register of the Tx OMA channel.
Ouring a Transmit command, the 82592 riMA re­
quests begin at the start of the transmit block and work
sequentially through the block (by incrementing the
contents of the 8237's Current Address Register) until
the transmission is complete. Should a collision occur,
the 82592 asserts the EOP signal and ORQ' to the
8237 (these signals pass through PAL B) causing the
8237 to auto-initialize back, to the beginning of the
transmit block (the Current Address Register is loaded
with the value in the Base Address Register). Internal-

ly, the 82592 generates a Retransmit command and be­
gins making DMA requests to the 8237, which is now
pointing to the beginning of the transmit block. The
82592 also enters into a back-off algorithm (counting to
a random number to resolve the collision). When the
back-off algorithm is complete, and the 82592 regains
access to the serial link, retransmission is attempted.
The 82592 will repeat this process until the retransinis­
sion is completed successfully or until the maximum
allowable number of collisions per Transmit command
is reached-at that point all retransmit attempts stop.
No CPU involvement is required to carry out a retrans­
mission. The process of automatic retransmission is
shown in Figure 7.

NOTE:
"For Auto-Initialization of the S237, the signal ORQ
must be asserted to'the 8237 along with assertion of
EOP. With the 82380 and 82370 OMA controllers,
Auto-Initialization can be triggered by asserting the
EOP signal alone.

1-164

AP-320

Prior to Transmission
BAR = CAR

Collision:

Transmit DMA Channel In
Auto-Initialize Mode

During Transmission
CAR Increments

82592 EOP Asserted to 8237
CAR Reset to BAR
(by 8237's Auto-Initialize)

BAR/CAR~ BAR ~ ,--------, BAR/CAR ---+

Transmit
Buffer in
System
Memory

CAR~

Transmit
Buffer in
System
Memory

Transmit
Buffer in
System
Memory

BAR = Base Address Register
CAR = Current Address Register

After Back Off the 82592
Retransmits from Beginning of
Transmit Buffer.
No CPU Intervention is
Required for Retransmission

Figure 7. Automatic Retransmission on Collision

4.4 Target Systems for Integration

The 82592 Embedded LAN Module is designed to be
implemented on an Intel SYP301 motherboard; thereby
demonstrating a low-cost LAN connection for a work­
station. The SYP301 has an IBM PC AT style bus ar­
chitecture with a 32-bit Intel 80386 as the main proces­
sor. The interface between the 82592 LAN Module and
the SYP301 is based on standard interface signals
(DRQ, DACK, EOP, IRQ, lOR, lOW, etc.) so the
basic architecture of the module can be implemented on
PC AT based systems. This design has been successful­
ly tested in PC AT style systems produced by several
manufacturers. For some PC;:: AT based systems, and
PS/2 Micro Channel systems, the module's design may
require some modification. IBM PC and PC XT based
systems do not have sufficient DMA bandwidth to sup­
port the non-buffered architecture of this module.

4.4.1 PC AT BASED DESIGNS

High-integration chip sets replace a large number of
discrete. VLSI, LSI, and TTL components with several
integrated VLSI devices that duplicate a large portion
of the PC's functionality. PC AT compatible systems
using such chip sets may lack support for the automat~c
retransmission feature of the 82592 LAN Module. ThIs
is because many manufacturers of such chip sets have
integrated the EOP function but e~iminated th.e .~O~
input. This lack of an EOP input dIsables auto-Initiali­
zation of the DMA controller for retransmission. In

this case retransmission can be performed in one of two
ways.

• Should a collision occur while transmitting the pre­
amble, the 82592 (when configured to automatic r~­
transmission mode) will automatically retransmIt
without CPU intervention or auto-initialization of
the DMA. This is effective for shorter network to­
pologies where collisions are normally detected ear­
ly in the frame.

• Should a collision occur after the preamble, the
82592 will interrupt the CPU and the CPU will ini­
tiate the retransmission.

For a PC AT style architecture, logic must be imple­
mented to accommodate DRAM refresh. DRAM re­
fresh cycles typically occur at 15 ,...S intervals. In a stan­
dard PC AT, any DMA user should limit the time of a
DMA burst to 15 J-LS; this is to ensure that the system
bus is free for the refresh to take place. Any designer
using burst mode DMA must consider this requirement
when implementing a design.

4.4.2 PS/2 MICRO CHANNEL ARCHITECTURE
DESIGNS

The IBM PS/2 and other compatibles using the Micro
Channel architecture have a different host interface to
the 82592 Embedded LAN Module; however, the basic
architecture of the module is still applicable. As in the
SYP301 solution, the TCI between the 82592 and a

1-165

inter AP-320

control PAL loads the address latch with a pointer to
the last receive frame. Based on the contents of the'
latch and the 82592 receive memory structure, the
frames are recovered for prpcessing by the CPU. The
differences between a PC AT architecture and a Micro
Channel architecture require different control signal
decoding. The Micro Channel requires a 24-bit address
latch, as opposed to a 16-bit latch in the 301, and to
acquire the system DMA it requires different arbitra­
tion logic to drive a 4-bit arbitration level on the Micro
Channel. The Micro' Channel also does not have an
EOP input; therefore, auto-initialization of the Tx
DMA channel and support of automatic retransmission
without CPU intervention must be provided by using
one of the alternative methods recommended in the
previous section.

4.4.3 EMBEDDED CONTROL DESIGNS

The 82592 Embedded LAN Module architecture can
also be applied to an embedded control application that
contains some DMA functions. For an embedded appli­
cation using an 8237, 82380 or 82370 DMA controller,
the. basic architecture of the 82592 Embedded LAN
Module can be used. For an interface to DMA devices
that do not feature the EOP signal 'as an input (for
example, DMA units on board a CPU), the alternative
methods for retransmission given earlier can be used.

OSI
Reference Model Layer.

Application

5.0 SERIAL INTERFACE MODULE

The serial interface for the Intel SYP301 82592 Embed­
ded LAN Module is implemented as a separate module.
Since the 82592 Embedded LAN Module is intended to
be integrated into a system motherboard, implementing
the serial interface as a separate module-perhaps as a
very small PC board that plugs into a 'socket-allows
for easy interchangeability b\'tween different serial in­
terface media. This modularity allows the system board
manufacturer to avoid committing his motherboard to
only one type of medium, and thus requiring a major
.redesign for each different serial interface ..

Modularity in the data communications field is encour­
aged by the Open Systems Interconnect (OSI) ref~rence
model. The 82592 is designed to operate through the
lower half of the Data Link Layer (see Figure 8), imple­
menting CSMA/CD Medium Access Control and in­
terfacing directly with the Physical layer below it. By
interfacing the 82592's standard CSMA/CD interface
signals ~ a serial module (TxD, RxD, TxC, RxC,
CDT, CRS, and others) different Physical Link mod­
ules can be implemented without any change to soft­
ware. Examples of serial interface modules that could

. be interchanged by simply plugging a new module into
the motherboard are Ethernet/Cheapernet, Twisted
Pair Ethernet (TPE), StarLAN, Broadband Ethernet,
and many proprietary CSMA serial media. Figure 9
shows the schematics of an Ethernet module; and Fig­
ure 10 those of an .EthernetiCheapernet module.

7

6

5

4

3

2

Presentation
" LLC

Session

Transport

Network

Data Link

Physical

" Logical Link Control " 2.-------~------~ , MAC
" Medium Access Control , ,

,

......
....

PLS
Physical Signaling

290189-10

Figure 8. The 82592 Embedded LAN Module Relationship to the OSI Reference Model

1-166

:!! ca
c
iiJ
!D
m -::r CD ..

• ::::II
... CD
en -~ :I>

::::II
III
0" ca
i:
o a.
c
iD

RTS ..
TXD

TXC ..
RXD

RXC .. ·
COT ..

CRS ..

+12V

~'" 21l PF .1 Yl
= :2 20.01AHZ

,:;~ 2

21l PF
lN4148

, oJ 2

C;;
82C501
SERIAL , Rl 2

INTERFACE I 240

-4- Cl 1 ' R2 2

,f C2 TRMl 19 I 240
TEN. TRMT 18

17 TxD RCI 4
16 TxC. RCV .. S

9 RxD CLS~ 12
8 RxC .. CLSN 11
7 COT .. X2 13 , R3
6 CRS .. Xl 14

2

-2 LPBK .. 20. 78

Ul
, R4

2

78

J, CS ' C6

Tz°. 1UF Tz°. 1UF

~

-.--

,
RS
lOOK

2

, C3 J 1.0uF TRMT

.& TRI.n ..

II RCV

RCV ..

I CP

CP ..
+12V

, G1 2

21~uF

1
3
4

10
6
S
8

12
11
2

14
9

13

I
E C
T 0
H N
E N
R E
N C
E T
T 0

R

Jl

290189-46

l

:r:­
"D .
(0)

"" o

2VA12U10-5

." a
c
iil

12WC I ~ J 2
~ ~ 22

~ , C1S
'Cl1 -i ~ ;;i'O.OIUF"~ O.OluF

, DC/DC ~ .
2 ~ '5

~ CONVERTER ~
~ ~

~~ TRIff. it 14 -
..I:::li

~l ,RB 2 TRIff
UIO 7B

±C6 F"l~
, C1S ' C19

SVOC ,R122 RCV
'lO.OIUF ;; .22uF

43.2 lO.01UF" rOM .
,Rll 2 RCV. ¢'
43.2 ...

P
11'1 -:::T
CD ..
:::J
CD -..... 0 . :::T

~ CD
CD II
CD "til

CD ..
:::J
CD -)0
:::J
II
0"
fa

s:::
0 a.
c
i'

,R10 :I CPo R13 :I
82502 43.2

24~Rlff4 ~ lN4148 ,RS· :I CP 502BUS TRANSCIEVER IS
43.2 TRW_ 3 ~ eR3 ReV 4 ~

p-
Rev. 5 12
CPo S ~ 20PF" Qy, CP 7 1O

5~C 8

~ z 20.0MHZ ,
, GIJ • R22 -=-=- UI3

IN4148 1001<
20 PF ':1

CR4
C22 JUMPER au<
1.0uF

I
E6 TRIff

2 EI8
,RI 2 ES TRMT.

240 J~ EI7
B2CSO, R2 7 E4 RCV

1 Cl 1 2- PE64102 EI6 2 C2 TRMl/-;s 240 16 I EI2 E3 Rev.
TEN_""iS TEN_ TRMT 18 '5 PULSE 2 El1 EI5 ----n«>17 TxO R 4 '3 4 EIO E2 CP
~TXC. Rev. 5 '2 5 E9 EI4

~::~. c~~ ~~ '0 IRAN SFORMER 7 EB EI CPo
9 8 E7 EI3

~COT. X2~ I~.I -it- 3

~ ::;:~. SERIA~ f¥o--- 78 .ll. Ii: -= INTERF"ACr"-- • R4 • U3
U2 78

1, C4 1 C23N

'F0.'UF" T-0.'UF

~

SAWC

SAWC

10AVDC

' C20
.22uF .
c~ lN4148

2
,

OR2 .R21
10

2

5VOC
12WC

1'----
r--i- E

~ T C
H 0

~ E N

~ R N
N

t---¥ E

~ T

12VDC 13

,~6 • ~
22uF <7

290189-47

(

l>

l
~

inter AP-320

6.0 PERFORMANCE COMPARISON 7.0 SOFTWARE EXAMPLES

Figure II compares the performance of the 82592 Em­
bedded LAN Module with the PC586E nonintelligent,
buffered adapter. The PC586E is an 'Intel evaluation
board based on the Intel 82586 LAN Coprocessor. It
contains 16 kB of local memory, has a 16-bit bus inter­
face, and has a high-performance arbitration scheme
providing both the CPU and the 82586 LAN controller
zero wait state access to local memory. The PC586 has
been characterized in the industry as one of the highest
performance nonintelligent, buffered adapters available.

A perfornlance comparison, using Novell's Perform 2
utility, shows that the 82592 Embedded LAN Module,
operating as a workstation accessing a file server, out­
performs the PC586E. For all tests the host system was
an Intel SYP301. The SYP301 was run in both stan­
dard mode, a nominal 16 MHz", and in its reduced
speed mode, 6 MHz. In all cases the SYP301 system
DMA operates at 4 clocks per cycle at 4 MHz. The file
server was a Novell 286A, an 8 MHz, zero wait state
system, using a PC586E as the LAN adapter. The tests
recorded are for one node on the network (the worksta-

, tion under test). For write tests to the file server's hard
disk, the performance numbers are generally the same.
This is due to limitations in accessing the, file server's
hard disk. This slow access causes a bottleneck. For the
read tests the workstations are accessing files stored in
cache memory, thus removing 'the bottleneck for this
test. Without this limitation, the 82592 Embedded
LAN Module accesses the file server at a higher rate
than the PC586E: at full speed, 318 kB/s vs
282.3 kB/s; and at reduced speed, 202.8 kB/s vs
195.2 kB/s.

The following examples are from a driver written for an
82592 Embedded LAN Module operating in an Intel
SYP301. The driver was written by Joe Dragony, Intel
Data Communications Technical Marketing Engineer.
The excerpts will cover (I) declarations of program
constants and variables, (2) initializing the Embedded
LAN Module hardware and buffer space, (3) assembly
and transmission of a frame, and (4) processing re­
ceived frames. A brief description of each of these pro­
cesses is followed by excerpts from the code. The driver
uses the Xerox Internetwork Packet Exchange (IPX)
protocol and serves as a software interface between the
82592 Embedded LAN Module hardware and the IPX.

Exerciser Software for the 82592 Embedded LAN
Module is also available from Intel. Detailed documen­
tation for both the exerciser program and the network
driver are available upon request from Intel.

7.1 Declarations

Table 2 shows declarations of program variables and
equates of program constants. This section is included
to help the reader understand the following program
excerpts.

"NOTE:
The benchmark program Landmark CPU Speed Test,
@ 1986 by Landmark Software, shows an effective
throughput of 14.3 MHz for a SYP301 in standard
mode; and 5.4 MHz in reduced speed mode.

• Standard
Write

~ Standard
Read

III Reduced
Write

~ Reduced
Read

Kilobytes per Second
290189-11

NOTES:
Novell Perform 2 Version 2.3
File Server: '2B6A. B MHz, Zero-Wait-State with PC5B6E LAN Adapter
Node System: SYP301 (One Node on Network)

Reduced Speed Mode: Equivalent to 5.4 MHz AT
Standard Mode: Equivalent to 14.3 MHz AT

301 System DMA: 4 MHz, Four Clocks per Transfer

Figure 11_ 82592 SYP301 Embedded LAN Module vs PC586E Buffered Adapter

1-169

inter Ap·320

Table 2. Declarations

$'*define(slow) local label
jmp short 'label

Habel:
)

%*define(fastcopy) local label (
shr cx, 1
rep movsw
jnc Habel
movsb

,iabel:
)

'*define(inc32 m) (
add word ptr %m[D], 1
adc word ptr 'm[2], 0

name LANOnMotherboardModule

CGroup group

asswne cs: CGroup, ds: CGroup

Code segment word public 'CODE'

public DriverSendPacket
public DriverBroadcastPacket
public DriverPoll

public LANOptionName

extrn rpXGetECB: NEAR
extrn rpXReturnECB: NEAR
extrn rpXReceivePacket: NEAR
extrn rpXReceivePacketEnabled:
extrn l;PXHoldEvent: NEAR
extrn rpXServiceEvents: NEAR
extrn rpXrntervalMarker: word
extrn MaxPhysPacketSize: word
extrn ReadWriteCycles: byte

NEAR

extrn rpXStartCriticalSection: NEAR
extrn rPXEndCriticalSection: NEAR

1-170

290189-16

intJ AP-320

Table 2. Declarations (Continued)

:;;;;;; i;;;;;;:;;;;;
E'!'1ates ,." .. """""""

CR e'!'1 ODh
LF e'!'1 OAh
BAD a'!'1 OFFh
BPORT e'!'1 0
lRQLOC e'!'1 19
DMAOLOC 8'!'1 23
DMA6LOC 8'!'1 2S
TransmitHardwareFailure a'!'1 OFFh
PackstUnDalivarable a'!'1 OFEh
PacketOvertlow a'!'1 OFDh
ECBProcessing s'!'1 OFAh
'l"xTimaOutTicks s'!'1 20

Latch definitions
'l"anC&ntLo a'!'1 301h
'l"enCentHi e'!'1 302h

Enablas for 10cent
EnLAN B'!'1 303h
Dis LAN e'!'1 304h

8259 definitions

lnterruptControlPort e'!'1
lnterruptHaskPort e'!'1
ExtraInterruptContro1Port equ
EOl e'!'1

8237 definitions

020h
OAlh ;for sacondary S2S9A
OACh
020h

DMAc:lDdstat
DMAraq
DMASnglmsk
DMAmode
DHAff
DMAtmpclr
DMAclrmak
DMASllmsk
DMA6paga
DMA6addr
DMA6wdcount
DMA7pags
DMA7addr
DMA7 .. dcount
DMAtx6
DMAt,,7
DMArx6
DHArx7
DMA6m.sk
DMA6unmsk
DHA7mak
DMA7unmak
DMAena

S'!'1 ODOh
a'!'1 OD2h
a'!'1 OD4h
s'!'1 OD6h
a'!'1 ODSh
s'!'1 ODAh
s'!'1 ODCh
s'!'1 ODEh
e'!'1 089h
s'!'1 OCSh
s'!'1 OCAh
s'!'1 OSAh
s'!'1 OCCh
e'!'1 OCEh
e'!'1 01Ah
a'!'1 01Bh
e'!'1 006h
e'!'1 007h
e'!'1 006h
a'!'1 002h
B'!'1 007h
a'!'1 003h
e'!'1 Oh

demand mode, autoinit, read transfer
demand moda, autoinit, read transfer
demand mode, no autoinit, writQ transfer
demand mode, no autoinit, write transfer

1-171

290189-17

NetWareType equ llllh

: 82592 COlIU1Iands

C NOP equ OOh
C-SWPl equ 10h
C-SELRS"l" equ OFh
C-SWPO equ Olh
C-IASET equ Olh
C-CONl!":IG equ 02h
C-KCSE"l" equ 03h
C-TX equ 04h
C-TOR equ 05h
C-OtlMl? equ l6h
C-OIAG equ 07h
C-RXENB equ l8h
C-ALTBUF equ 09h
C-RXDISB equ lAb
C-STPRX equ lBh
C-RETX equ OCh
C-ABORT equ OOh
C-RST equ OEh
C-RLSPTR equ OFh
C-F:IXPTR equ lFh

·C:INTACK equ BOh

..............................
""""""""""""""" Data Structures
"", .. """"""""""."
even
hardware structure struc

io addrl dOl ?
io:range1 dOl
.i.o addr2 dOl ?
decode_range2 dw ?
IDem addrl dOl ?
mem:rangel dw
mem addr2 dw
_:range2 dw ?
int usedl db
int-linel db ?
int-used2 db
int-line2 db ?
dma-usedl db ?
dma-chanl db ?
dma-used2 db ?
dma-chan2 db ?

hardware_structure ends

ecb structure struc
-link

esr address
in use
coiiipletion_code

AP-320

Table 2. Declarations (Continued)

dd 0
dd 0
db 0
db 0

1-172

290189-18

intJ Ap·320

Table 2. Declarations (Continued)

socket nWllber dw
ip,,_workspace db
driver_workspace db
immediate address db
fragment count dw
fragment:descriptor_list db

eob_structure ends

fragment_descriptor struc
fragment_address dd 7
fragment_length dw ?

fragment_descriptor ends

:r:x buf stz:uctUl:ti struc
- rx-dest addr db

rz -source adelr db
r,,:physical_length dw
rx checksum dw
r":length dw
rx tran control db
r",:hdr_type db
rx. deat net db
r,,-dest-node db
rx-dest-socket dw
rZ-SQurce net db
rx-source-node db
rx-source-socket dw

rX_buf:structure ends

tci status struc
-status 0 db 7

deadl db 7
status 1 db 7
dead2 db
bc 10 db
de&"d3 db
bc hi db

tCi_st&"tus ends

ip,,_header_structure struc
checksum dw
packet_length dw
transport_control db
packet_type db
destination network db
destination-node db
destination-socket dw
aQuJ:'ce network db
source-node db
source-socket dw

ipx_header:structure ends

iii;;;;;;;:;:;;;;;:;;;;;;;
Variables

iii;:;;;;::;;;:::::;:;;;;;

even

dup
dup

7
7
7
7
7
4 dup
6 dup

4 dup
6 dup
7

?
7
7
7
4 dup
6 dup
7
4 dup
6 dup

0
4 dup (0)
12 dup (0)
6 dup (0)
1
6 dup (7)

(7)
(7)

(7)
(7)

(7)
(7)

(7)
(7)

(7)
(?)

1-173

290189-19

intJ

tz atart t1Dla
adapte,,_To
confiq
aend list
buffer_segment
rx acb
tx:ecb

dv 0
dw ?
dv ?
dd 0
dv ?
dd ?
dd ?

AP-320

Table 2. Declarations (Continued)

;points to liat of ECBs to be sent

confiq block db
Orh,00h,4~h,80h,26h,00h,60h,00h,OF2h,00h,00h,40h,OF5h,0Oh,3Fh, 87h,OFOh,ODFh

temp_flaq
int_mask_"eqiste"
old_ir'Lvector
int vecto" add"
int-bit -
int-mask
ccmiDand_req
"ead_in_length
confiq_dmaO_1oc
confiq_dmal_loc
confiq_i"'Ll0c
config_bport
tx_sctive_flaq
f"ame status
atatuslO
statuall
status20
status2l

even

'lP buf
'lP_length
'lP_buf_offaet
'lP_offaet_sdjust
'lP_buf_stsrt
'lP_buf"'psqe
t,,_byte_cnt
"" buf atart
rz:bufJ,aqe
rx buf head
here -
rx buf tail
r,,:bufJ,tr
",,_buf_stop
r"_buf_length
r,,_buf_segtMnt
curr_rx_lenqth
"z liat num of frames
reset rx buf
padding -

db
dw
dd
dw
db
db
dw
dw
db
db
db
dw
db
db
db
db
db
db

dw
dw
dw
dw
dw
dw
dw
dw
dw
d.

dw
dw
dw
dw
dw
dw
dw
dw

' dv
dw

o
?
?
?
?
?
300h ;82592 port 0 addresa
?
?
?
?
?
o
o
o
o
o
o

5000 dup (0)
1388h

;twice the required size

cgroup: 'lP _buf
o
o
o
o
o
o
o

o
o
o
o
o
o

;Al-AU of General Purpose Buffer EA
;Al7-A23 of General Purpoae Buffar EA
;IPX packet length plus header length
;Al-Al6 of General Purpose Buffer EA
;A17-A23 of General Purpoae Buffar EA
;current rx bead, buffer has been flushed to

ivalue read fram 10 cent latches
;u.ad during rz list generation
;point to reset tha DNA controller

;calculated at init for use by IPXReceivePackat

180 dup (0)
o
'0
o

Define Hardware Configuration

290189-20

infef Ap·320

Table 2. Declarations (Continued)

ConfigurationID db 'NetWareDriverLAN WS

SDriverConfiguration LABEL byte

reserved1 db
node addr db
reserved2 db
node addr type db
max data size dw
(512, 1024, 2048, 4096)
Ian deBe offset dw
lan-hardware id db
traiisport tiDie dw
reserved "3 db
major version db
minor - vez:sion db
fla!Lbits db
selected_configuration db
addressBs, etc.)
number_of_configs db
config-pointers dw

4 dup (0)
6 dup (-0)
o inon-zero means is a real driver.
o ;address is determined at initialization
1024 ;largest read data request will handle

LANOptionName
OAllh ; Bogus Type Code
1 ;transport time
11 dup (0)
Olh ;Bogus version number
OOh
o
o :board configuration (interrupts, IO

01
eonfigurationO

LANOptionName db 'Intel LAN-On-Motherboard Module',O,'$'

configurationO
db
dw
db
dw

d"
o
o , 0
o

300h, 16, 0, 0 ;10 ports and ranges

:m&mOry decode
db 10, 0, 0 ;interrupt lavel 10

o " 0
OFFh,
OFFh,
0,0
'IRQ 10,

db 6, OFih, 7 :DMA channels 6 and 7
db
db 10 Addr = 300h, DMA 6 and 7, For Evaluation Only', 0

;**.****~*** .* ..
Error Counters

i.--........................ -.. _ -.. _.*._ ... A ••

Public DriverDiagnosticTable,DriverDiagnosticText

DriverDiagnosticTable LABEL byte

DriverDebugCount dw DriverDebugEnd-DriverDiagnost'ic-:able
D~ive~Ve:r:sion db 01,00
StatistiesVersion db 01,00

- Tota1TxPacketCount dw 0,0
TotalRxPacketCount dw 0,0
NoECBAvailableCount dw 0
PacketTxTooBigCount dw -1 inot used
PacketTxTooSmallCount dw -1 ; not used
PacketRzOve:r:£1owCount dw 0
PacketRxTooBigCount dw 0
PaeketRxTooSmallCount dw 0
PacketTxHiscErrorCount dw -1 inot used
PacketRzMiscErrorCount dw -1 ;not used
RetryTxCount d" 0
ChecksumErrorCount dw -1 ;not used

1-175

290189-21

Ap·320

Table 2. Declarations (Continued)

HardwareRXMismatchCount dw 0
NumberOfCUstomvariables dw (DriverDiagno8tic~ext-DriverDebugEndl)/2

DriverDebUgEndl LABEL byte

.......................................
"""1"",., •• """".".""".",,

Driver Specific Error counts
""""""""""""""""""""

rx errors dw 0
underruns dw 0
no_cta dw 0
no era dw 0
rx-aborts dw 0
no-S90 int dw 0
false 590 int dw 0
lost rx - dw 0
stop:tx dw 0
ten cent latch crash dw 0
rx disb failure dw 0
t,,-abort failure dw 0
rx buff ovflw d" 0
tx:U.meout dw 0

DriverDiagnostic~ext LABEL byte

db 'RxErrorCount',O
db 'OnderrunCount',O
db 'LostC~SCount' ,0
db 'LostCRSCount',O
db ' RxAbortCount I I 0
db 'NoS90InterruptCount' ,0
db 'FalseS90InterruptCount',O
db 'LostOUrReceiverCount',O
db 'QuitTransm1ttingCount',O
db 'TencentLatchCrashCount',O
db 'RxDisableFailureCount',O
db 'TxWontAbort',O
db 'ReceiveBufferOverflow',O
db 'TxTimeoutErrorCount',O

db 0,0

DriverDebugEnd LABEL word
290189-22

1-176

inter AP-320

7.2 Initialization Routine

This routine, Driver Initialize, initializes the Embedded
LAN Module hardware and the system hardware need­
ed to support the module. It also sets up the system
memory structure to support the module.

7.2.1 HARDWARE INITIALIZATION AND 82592
CONFIGURATION

Initialization of the Embedded LAN Module hardware
begins with generating an individual address for the sta­
tion, initializing the interrupt line and interrupt vector,
and enabling the module by writing to port address
303h. After initializing the memory structure, the
82592 is directly programmed. This programming in­
cludes configuring the 82592 and initializing it with the
station's individual address. The 82592 is configured in
two steps. The first specifies a l6-bit-wide system bus
interface by issuing a Configure command to the 82592,

with OOh as the byte count; i.e., no parameters passed to
the device. Then a second Configure command is is­
sued; it does the following.
• The 82592 is put in High Speed Mode to support

Ethernet serial bit rates.
• It is placed in TCI mode for interface to the Embed­

ded LAN Module architecture.
• All network parameters (e.g., Frame Length, Slot

Time, and Preamble Length) are set up for default
Ethernet values.

FollowiIig this initialization llnd configuration of the
module's hardware, the 8259A Programmable Inter­
rupt Controller's-interrupt line for the module is en­
abled, allowing the interrupt-driven events frame recep­
tion and completed transmission. Then a Receive En­
able command is issued to the 82592. Table 3 contains
the code for hardware initialization.

Table 3. Hardware Initialization

segment ' CODE'

public OriverInitialize, DriverUnHook
no card massage db CR,LF, 'No adapter installed in PC$'
configJailure_Dlessage db CR, LF, 'Cqnfiquration Failure$'
iaset failure message db CR,LI', 'IA Setup Fail.ure$'
ConfigDatauncie'rrUnHeSS db CR, LF, , Configuration underrun$'

Driver Initial.iza

assumes:
OS, ES are set to CGroup (= CS)
DI points to where to stuff node: address
Interrupts are ENABLED
'lha Real. 'rilDe Ticks variabl.a is being set, and the
entire US system is initial.ized.

returns:
If initialization is clone OK:

AXhasaO
Xf board malfunction:

AX gets offset (in CGroup) of ' $' -terminated error string

DriverInitial.ize PROC NEAR.
mov MaxPhysPacketSize, 1024
cl.i
c:l.d
mov ax, cs
mov cis, ax
moves, ax
get DOS tizn& and use :for address.

mov ah,02Ch
int 2lh
mav bx, OFFSET CGroup: nod.a _ ac1dr
mav byte ptr c:group: [bx], OOh
mov byte ptr cgroup: [bx+l], OAAh
mov byte ptr cgroup: [bx+2], ch
mev byte ptr cgroup: [bx+3], dl.
mov byte ptr cgroup: [bx+4], db
mev byte ptr cgroup: [bx+S], 7Eh
mov si, bx ,
movsw ; stuff address at point IPX indicated
DlOVSW

mavs",
ati

initia,U.ze the configuration tabl.e
!nOv a1, selected_configuration
cbw
shl ax, 1 ; multiply ·by two
add az,OFESET CGROW:config.J'Ointers iax contains the offset value

1-177

290189,-23

inter AP-320

Table 3. Hardware Initialization (Continued)

IIIDV bx,ax
IIIDV bx, [bal
mov Config,hz
mov al, [ba+DMAOLOC]
mov config_dmaO_loc,al
mov al, [ba+DMA6LOCl
mov config_dmal_loc,al
mov al, [bxURQLOCl
mov config_i~loc,al
mov aa,[ba+BPOM]
mov command_reg, 300h

Set~heInterruptVector:

;of the default configuration
; list

SBT UP THlii DI'l'BRRUP~ VBC~ORS

push d1
al, config_ir~loc mov

mov
call
pop
mov
out

hz, OFFSE~ CGroup: DriverISR
SetInterruptVector
di
dx, BnLAN
dx, a1 ;enable LAN on MB module

hlow
IDOV dx, command_reg
mov al, C RS~
out dx, aT ; reset the 82592 controller

;generate 20 bit addreas for DMA controller from configure block location
;this i8 necessary to accomodate the page register used in the PC DNA

call set_up_buffers

:set up DMA channel for configure,command
xor ax, aa
out DMAff, al ;data i8 don't care

hlow
mov al, DMAena
out DMAcmdstat, al
mov ax, gp_buf_stsrt

'slow
out DMA6addr, al
mov al, ah

'slow
out DMA6aclclr, al
mov ax, gp_buf.J>age

blow
out DNA6page, al ;DNA page value
mov ax, 1

'slow
out DNA6wdcount, al ;make two transfers
mov al, ah

blow
out DMA6wdcount, al
mov al, DMAtx6 : setup channel 6 for tx mode

hlow
out DHAmode, al
mov al, DMA6Wl111Sk

1·178

290189-24

intJ AP-320

Table 3. Hardware Initialization (Continued)

%slow
out DMAsnglmsk, a1
XOI:' ax, ax

the
mov di, 9P buf offset ;mov zeroes into the byte count field of the
atoaw - -;buffer to put the 82592 into 16 bit mode
stOB'"

%slow
mov
mov
out

%slow

dx, command rag
al, C CONFXG
dx, 81

;configure the 82592 for 16 bit mode
:issua configure command

wide_modB_wait_100p:
xor al, a1

%slow
out dx, al ;point to register °

%slow
a1, dx ;read register °

a1,ODFh ;dioregard exec bit
in
and
cmp
jz
loop
mov

al, 82h i is configure finished?

jmp

do_confiq:
mov
out
xor

%slow
out
mov

%slow
out
mov

%slow
out
mov

%slow
out

%slow
mov
out

%slov

do config
wide-mode wait loop
ax, OFFSET CGroup: no card message
init_exit --

al, C IN'rACK
dx, aI ;clear interrupt
ax, ax

DMAff, a1 idata is don't care
ax, gp_buf_start

DMA6addr f a1
al, ah

DMA6addr, a1
ax, 9P_bufJ'age

DMA6page, al

al, DMAtx6
DMAmode, a1

;DMA page value

;setup channell for tx·mode

mov ax, 8
out DMA6wdcount, &1

%slow
mov
out

%810"
mov
out
mav
mov
mov
mov

al, ah
DMA6wd.count, a1

al, DMA6unmsk
DMAsnglmsk, a1
ax, d.s
es, ax
8i, offset cgroup:config block
di, 9P_buf_offset -

1·179

290189-25

, inter AP-320

Table 3. Hardware Initialization (Continued)

mav ex, 18
rep movab

mav
mav
out

dx, command_reg
a1, C CONFIG
dx, a1

configure the 82592

%slow
zor ex, ex

config wait 100p:
%a10" - -

"or
%slow

out
.. 10 ..

a1, a1

c:bI:, a1 ;point to register 0

a1, c:bI: ;read register 0 in
and
cmp
jz
100p
mav

a1, ODFh :discard·extranaous bits
a1, 82h ; is configure finished?

config done
config_wait_1oop

jmp
ax, OFFSET CGroup: config_fai1ure_message
init_exit

config done:
c1ear interrupt caused by configuration

mav a1, C IN'rACK
out cix, a1

do an lA_setup
mov di, gp_buf_offset
mov al, 06h :address byte count
stoab
mov
stosb
mov
mov

a1, DOh

8i, OFFSET CGROUP : node addr
cx, SIZE node_addr -

rep movsb
out DMAff, a1 ;data is don't care

%slow
mov
out
mov

'a1,?"
out
mav

h10w
out

%slow
mov
out

%&10w

ax, gp buf start
DMA6addr, 81
al, ah

DMA6addr, a1
ax, gp_bufJ>age

DMA6page, a1

a1, DMAtx6
DMAmode, 81

mav ax, 3
out DMA6wdcount, a1

%slow
mov a1, ah
out DMA6wdcount, a1

%slow
mov· a1, DMA6unmsk
out DMAsng1mak, a1

:DMA page value

:setup channell for tx mode

1-180

290189-26

inter Ap·320

Table 3. Hardware Initialization (Continued)

IIIOV

IIIOV

out

dx, cOlnIl\and reg
al, C IASET­
c!x, aT

xor ex, ex

;set up the 82592 individual ac1c1ress

:causea
ia wait loop:

- xo:- a~, a1

:cz is used by the loop instruction below. this
the loop to be executed 64k times max

out dx, a1
blow

in
and
cmp
jz
loop
IIIOV

jmp

ia_done:

al, c!x
al, ODFh
al, alh

:discard extraneous bits
; is command finished?

ia done
ia_wAit_loop
ax, OFFSET CGroup: iaset failure message
init_exit --

mov a~, C_DnACK
out dz, a1 :clear interrupt from iaset

;initialize the receive DNA channel
xo: al, a1
out DMAff, al
mov ax, rz_buf_start :set dma up to point to the beginning of rx buf

blow
out DMA7ac1c1r, al
mav al, ah

blow
out
IIIOV

%slow
out
IIIOV

hlow
out
IIIOV

%slow

DMA7ac1c1r, al
ax, rz_buf"'paqe

DllA7paqe, al
al, DKArx7

DMAmoc1e, al
ax, rx_buf_length

out DMA7wc1count, al
mov a1, ah,

'slow
out
mov

%slow

OMA7wdcount, a1
al, dma7unmsk

out DMAsnglmsk, 81

;unmask our interrupt channel

:set rz page register

;set wordcount to proper value

:unmask receive DNA channel

in al, InterruptHaskPort
mov bl, OFBh
and al, bl

blow
out InterruptMaskPort, a1

;enable the receiver
mav dz, command_reg ienable receives
mov al, C RXENB
out c!x, aT
xor ax, as.

1-181

290189-27

inter
Table 3. Hardware Initialization (Continued)

mov ex, 1

init exit:
ret

ConfigDataUnderrun:
mov ax, orrsJ:~ CGro"p: ConfigDataUnclerrunMaas
:imp init_axit

ZASet"poataunderrun:
mov ax, orrSE~ CG~o"p: ZASet"pDataUnderrun
:imp init_exit

Driverlnitiali.a andp

SetlnterruptVector

Sat the interrupt vector to the interrupt procedure' a address
aave the old vector for tha unhook procedure

assumes: bz has the ISR off.et
al has the IRQ lavel
intarrUpts are disabled

.SetlnterruptVector PROC
mask on the appropriate

push ax

!lEAR
interrupt mask

xchg ax, ex
raov dl, 1
shl d1, c1
mov eIl.int_bit, ell.
not

iget the appropriata bit location
iset the interrupt bit variable

raov int mask, ell. ; set th8 interrupt mask variable
raov az,-IntarruptMaakPort
II10V int_mask_register, ax
pop ax
cld
cbw

ex, ex
as, ex

xor
IIIOV

add al, 68h ;adding 8 converts int number to int type, i.e.,

shl
shl
xchg
IIIOV

IIIOV

IIIOV
mov
mov
xchg
stos"
mov

stos"
ret

lint 4 = type 12, int 5 = ,type 13 etc.
ax, 1
'ax, 1 ;two shifts • mul by 4 to create offset of vector
az, eli
int vector addr, di ;save this address,for unhook
ax,-as: IdYl ;save old interrupt vector
word ptr old_i~vector, ax
ax, es: ldil + 2
word ptr old_i~vector + 2, ax
ax, bx ;bx has tha ISR offsat

ax, os

SetlnterruptVector endp
290189-29

1-182

290189-28

inter AP-320

7.2.2 INITIALIZING SYSTEM MEMORY

A buffer is constructed in system memory to support
the Embedded LAN Module architecture. This buffer
is divided into a receive buffer area and a transmit/gen­
eral-purpose buffer area. This buffer (Tx/GP) is used as
the transmit buffer and as the parameter block for
82592 commands that require parameters.

The combined size of the buffer areas requested by the
program is 10 kB. The TxlGP buffer should be at least
1200 bytes long. The Rx buffer should be at least 5 kB
long. The amount of memory requested is twice the size
of the minimum Rx buffer length because of the possi­
bility of a DMA page break occurring at some point in
the 10 kB buffer area. A page break can occur because
the SYP301 (or any PC AT based architecture) uses a
static page register to supply the upper address bits
(A17-A23 for a 16-bit DMA channel) during a DMA
cycle. These upper bits of the address cannot be incre­
mented. The software checks for a page break and ad­
justs the buffer size if one is found. There are three
possible page break scenarios.

Buffer
Start

A

Buffer
Start

A

• No page break occurs. The buffer size is not adjust­
ed, the Tx/GP buffer area will be in the first 1200
bytes of the 10 kB buffer, and the Rx area will use
the remainder.

• A page break occurs, and the buffer is divided so
that one fragment is smaller than 1200 bytes. This
fragment is too small to be used and both the
TxlGP and Rx areas will be placed in the larger
segment.

• A page break occurs that divides the 10 kB buffer
into two segments both larger than 1200 bytes. The
software then places the Tx/GP area in the smaller
segment, and the Rx area in the larger.

These three scenarios are shown in Figure 12. In no
case is the Rx area less than 5 kB-half the total buffer
size. Once these calculations are m~de, the transmit
and receive DMA channels, along with their page regis­
ters, are programmed to point to their respective areas
in the buffer (Tx/GP and Rx). With the memory now
initialized, configuration and initialization of the 82592
can begin.

Buffer
Start

A
Unusable Portion Transmit and

Buffer
End

Transmit and
General Purpose

Buffer Space.
1200 Byte.

Receive Buffer =
Total Buffer Space

- 1200 Bytes

",-buLstart

rx.JJuf_stop
(1200 bytes
framend)

DMA
boundary

Buffer
End

(Less than
1200 Byte.)

B
Transmit and

General Purpose
Buffer Space.

1200 Bytes

C

Receive Buffer =

Total Buffer Space
-A+B

F'X-buf-start

<X-buf-Btop
(1200 bytes
framend)

DMA
boundary

Buffer
End

General Purpose
Buffer Space.

1200 Bytes

B

Wasted Space

C

Receive Buffer =
Total Buffer Space

-A+B

<X-buLstart

rl<-buf-.Stop
(1200 bytes
framend)

No DMA boundary in the buffer space.
Tx/GP buffer is located in the first 1200
bytes. Ax buffer occupies the balance of the
space. DMA boundary exists in the buffer space.

'and the first fragment is to small to use (less
than 1200 bytes). The buffer start pOint is ad­
justed by adding the length of the fragment
to the Original start point. Tx/GP buffer occu­
pies the first 1200 bytes after 'the DMA
boundary. Ax buffer occupies the balance of
the buffer space.

DMA boundary exists in the buffer space.
The first section is the smallest section. so
the buffer is located there. The receive buff­
er occupies the larger section of the buffer.

Figure 12. DMA Page Break Affect on Buffer Size

1-183

inter AP·320

The Rx buffer area is implemented as a restartable lin­
ear buffer. As frames are stored in this buffer they are
processed by the IPX routine IPXReceivePacket. A
variable called R"-JIUF JTOP points to' a location
1200 bytes from the end of the Rx area. On 'reaching
(or passing) this location in the Rx area, frame recep­
tion is temporarily disabled, and the remainder of the

receive frames are processed. After the last frames have
been processed, the receive area is reinitialized, the re­
ceive channel DMA is initialized to point back to the
beginning of the receive area, and frame reception is
reenabled. Table 4 contains the code that initializes the
buffer memory. Section 7.3 gives further information
on receive frame processing.

Table 4. Buffer Memory Initialization

Sat up Buffer.:
This routine generates the page and offset addxesses for the 16 bit
DNA. xt checks for a page crossing and uses the smaller half of the
buffer area for TX and general purpose if a crossing is detected. Xf
no crossing is detected the general purpose/transmit buffer is placed
at the beginning of the buffer area. This routine also generates a
segment address for the receive buffer which allows the value read
from the "10 cent" latches to be used as read for the offset passed
to XPXRaceivaPacket. This saves some arithmetic steps when tracing
back through the rx buffer chain.

proc near

mov ax, offset cgroup: gp_buf
mov gp_buf_offset, ax
mov bx, as
mov dz, cs
ahr u, 1
IDOV . ex, 3
shl b", cl
rol dz, cl
and dz, 0007h
acld ax, bx.
adc dz, 0
mov cx, Ol'l'l'l'h
sub ez, ax
cmp ex, 01388h
jb intel_hop
jmp copacetic

intel hop:
ciip cz, 0258h

;get upper 3 bits for page register
;elear all but the lowest 3 bits

lax contains BA of first location in buffer
;if addition caused a carry add it to page
;of buffer to page break

;ex contains the number of bytes to page break

;It's cool, whole buffer apace is in one page

ja low_ok ;low fragment i8 a usable Bize, check upper fragment
add ax, ex :move pointer past the page break to discard fragment
sub 9P_length, ex ;adjust length variable to reflect shorter length
mov 9P_offset_adjust, ex
shl 9P_offset_adjust, 1
mov ex, 9P_offset_adjust

; convert to byte format

add 9P_buf_offset, ex ;adjust gp_buf starting point to reflect change
jmp copacetic ;both buffers will be in the same page, r" buf

shortened

lo.,,_ok:
cmp ex, 1l30h
jb high_ok
mov 9P_length"
jmp copacetic

ex ;adjust length variable, discard upper buffer fragment

shortened

high_ok:
cmp
ja
mov
shl

iDev
cz, 09C4h
rz first
9P:bufJ>age,
9P_buf..l'age,

;both buffers will be in the same page, rz buf .

since both fragments are usable we have to find the
;actual page break. the large half will be the receive

;buffer and the small half will be the gp-tx buffer.
dz
1

1-184

290189-30

inter AP-320

Table 4. Buffer Memory Initialization (Continued)

mov gp buf sta:t, ax
mov rz -buf'-start, OOOOh
mov rx-buf-head, DOOGh
aCd d:&-; 1 - ; next page
!nOv r%_buf-page, dx
shl rX_buf...,page, 1.
shl ax, 1
ada dx, 0
mov bz, ex ; save number of bytes to page break
mov ex, 12
shl dx, a1
mov rx _ buf _segment, dx
sub gp_length, bx
mov ex, 9P _length
mov rz_buf_length, ex
sub ex, 258h
shl ex, 1
add. cz., ax
mov rx_buf_stop, ex
jmp buffers_set

rx first:
- mov rz_buf"'page, dx

shl rz _ buf -page, 1
mov rx buf start, ax
mov rx-]:)uf-head, ax
shl rx -buf-head, 1
mav rx:buf:langth, ex
mev :ex buf stop, OFB9Eh ; 1200 bytes from end of buffer
mov gp -buf-st.art., DOOOh
add dx-; 1 - ;next paqe

. mov gp_buf""page, dx
shl gp _ buf ""page, 1
acld ex, 1
shl. ex, 1
mev gp_offset._adjust, ex
add gp buf offset, ex
sub dx; 1 -
shl dx, 1
shl ax, 1.
ado dz, 0
mov oz, 12
shl dx, a1
mov rX_buf_segment,dx
jmp buffers_eet

copacetic:
mav gp_buf_start, ax
add ax, 258h
mov l:X bUf start, ax
mov rx-buf-head, ax
ehl. rx -bUf-head, 1
sub 9P:1Qn~h, 258h
mov ex, w_l.engtb
mav rx_buf_length, ex
shl. dz, 1
mav rx_buf-PBqe, dz
mav gp_bu.£-page, dx

sh1 ax, 1
ade dx, 0
mav ex, 12
shl dx, e1
mav l:X_buf_segment, dx
mav ex, rx _ buf _l.ength
sub ex, 258h
sh1 cz, 1
add ax, ex
mav l:X_buf_stop,

buffers set:
ret-

ax

;Al-Al6 of gp buffer, gp buffer is first
; 1200 bytes for gp buffer at front of buffer space
; rx buffer starts 1200 bytes in

; convert segment to byte address

;convert offset to byte address
; adjust segment for shift

; load variable for transfers to IPX

; setup marker for low rx buffer space, >600 words

1-185

290189-31

290189-32

AP·320

7.3 Assembly and Transmission of
Frames

Frame assembly and transmission ,is accomplished by
the interaction of the software driver and IPX through
the use of IPX Event Control Blocks (ECBs). To trans­
mit a frame, a transmit ECB is prepared that contains
address information and a list of fragments in memory
containing the frame to be transmitted. This ECB is
placed in a queue for assembly and transmission of the
frame. If the queue is empty, or when the ECB reaches
the ~ront of the queue, a routine is called that processes
the ECB for transmission. This routine determines the
length of the frame (padding the frame if necessary)
and then constructs the frame in the Tx/GP buffer

area. The construction of the frame is based on . the
ECB's address information and fragment list. The
transmit DMA channel is now initialized to point to
the beginning of the transmit frame in the Tx/GP area,
and the byte count for that channel is also initialized. A
Transmit command is now issued to the 82592. A sepa­
rate routine monitors the transmission for a time-out
error. When an interrupt from the 82592 indicates that
the transmission attempt is complete (whether success­
ful or unsuccessful), or if a time-out error has occurred,
the proper completion code is inserted into the fraine's
ECB, and the ECB is passed back to IPX. If additional
ECBs remain in the transmit queue the processing of
the next ECB will begin. Table 5 contains the code used
for assembly and transmission of frames.

Table s. Assembly and Transmission of Frames

Ddver Sand Packat

Assumes
ES:SI points to a fully prepared Event Control Block
DS = CS
Iftterrupts an DISABLED b\l.t JDay be reenabled tempoZ'arily if necessary

don't naad to save any registar.

DrJ.varBroaclc •• tPackat:
DdvarSendl'ackat PROC NEAR

cU. ; disabla the interrupts
mov cz, word ptr send_list + 2
jczz AddToFrontOfList
saarch to the end of the list, and add there.

mov di, word ptr send_list

AddToListLoop:
mov da, ex
mov cx, ds: word ptr [di).link + 2
jczz AddLiatBndFound
IIIOV di, de: word ptr [di).link
jmp AddToListLoop

AddListEndFound :
mav .s: vom ptr [ai] .link, ex ;move null pOinter to newest SCB's
moves: word ptr [s1) .link + 2, cz ;link field
mov de: word ptr '[di) . link, s1
mov de: word ptz: [di].l1nk + 2, a.
mov az, cs
mov ds, ax ; sat ds back to entry condition
ret

AddTol'rontOfList:
mov a.:word ptr[s1].l1nk, ox
mov as:word ptr[d].link + 2, ox
mov word ptr .and list, ai
mav worc:l ptr .end.:list + 2, .s

dz:op through to Start Sand

DriverSendl'acket endp

Start Send

assumes:
BS: SI points to the BCB to ba sant.
intarllUpts are disabled

start sand
public

oli

PROC NEAR
start sand

- ; dis.ble the interrupts

1-186

290189-33

inter AP-320

Table 5. Assembly and Transmission of Frames (Continued)

cld
save SCB address in vsriable tx_ecb to liberate regist~rs

mov word ptr tx_ecb, si
mov word ptr tx_ecb + 2, es
push de ;save da for future uae
get XPX packet length out of the first fragment (XPX header)

lds bx, es: dword ptr [sil.fragment_dascriptor_list
mov ax, ds: [bxl.packet_length
pop ds ; restore de to CGROUP
push ax ;save length for later use in 590 length field
zchg al, ah ;byte swap for 592 length field calculation
add ax, 18 ;add in the overhead bytes DA,SA,CRC,length

mov padding, 0
cmp ax, 64
ja long enough
mov paddIng, 64
sub padding, ax
!DO? ax, 64

long_enough:
sub ax, 10
inc ax

;minimum length frame
;pad length

;SA and CRC are done automatically

and a1, OFEh iframe must be even
mev tx byte ant, ax
mov di;gp buf offset
mev bx, C8 -
maves, bx

move the byte count into the transmit buffer
stosw

move the destination address from the tx BCB to the tx buffer
mov bx, ai
lea 8i, [bxl.immediate address
mov de,word ptr tx_ecb-+ 2
movsw
movs..,
movsw
mov ax,es
mav cis,ax

; qet back to the coda (Dqroup) section

now the 590 length field
pop ax
xchq ah, al
inc ax
and al, OFBh
xchq ah, al
s~osw

imake Bure E-Net length field is even

1ds ai, tx ecb
mav ax, ds: [sil.fragment count
lea bx, [sil.fragment_dascriptor_list

move_frag_loop:
push ds
mev ez, ds:
lds si, ds:
%fasteopy
pop de
add bx, 6
dec ax

; save the segment
[bxl.fragment_length
[bxl.fragment_address

; qet the segment back

jnz move_frag_loop

1-187

290189-34

inter AP-320

Table 5. Assembly and Transmission of Frames (Continued)

;start transmitting
mov ex, cs
mov da, ex

;add any ~ired padding
mov ex, 4 ;maka s~ra frame ends with a NOP
add cx, padding
ahr ex, 1
rep stosw
mov t,,_active_flag, 1
ZOE' ax, az
out DMAff, al idat. is don't care, AX has been zeroed
mov ax, 9P_buf_start

blow
out DMA6addr, 81 \
mov a1, ah

%2110.
out DMA6addr, al
mov ax, w_bufJ'age

%slow
out DNA6page, al

talow
iDHA page value

mov al, DMAtx6 ; setup channel 1 for tx mode
out . DMAmode, a1
mov ax, tX_byte_cnt
add ax, 4 ;add two for byte count, two for tx chain fetch
shr ax, 1 iconvert to word value and account for odd
ade ax, 0 ;byte DNA transfer
out DNA61fdcount, al

%slow
mav al, ah
out DMA6wdcount, a1

blow
mov a1, DMA6unmsk
out DMAsnglmsk, a1
Il10'' dx, command reg
mev a1, C TX -
out dx, al
mov ax, IPXlntervalMarker
:mov tx start time, ax
',inc32 -~otal:rxPacketCount
ret

; ; ••• *****.** •••••• ******** ••• **********.,******.***.*************
Driverpoli

Poll the driver to see i~ there is anything to do

Is there a transmit timeout? 7£ 80, abort transmdssion and return
ECB with bad completion code. Check to aee if frames a~ ~eued.
If they are set up ES:SI and call DriverSendPacket.

;**

DriverPoll
c1i

PROC

1-188

290189-35

inter AP-320

Table 5. Assembly and Transmission of Frames (Continued)

amp tx active flag, 0
jz Ho~WaitingonTx
mav dx, IPXlntervalMarker
sub cIz, tz start time
amp cIz, TxTimeOutTicks
jb NotTimedOutYet

Thia tranamit is taking too long so let'. terminate it now

Issue an abort to the 82592

mov dx, command :ego
II10V al, C ABORT­
out dz, a1

iabort transmit

inc tx timeout
les si-;- tz eob
II10V es: [aTl.completion_code, TransmitHardwareFailure

coda of a failed tz
II10V ax, ea: word ptr [ail.link
mav word ptr sand list, ax
II10V ax, es: word ptr [ail.link + 2
II10V word ptr send_list + 2, ax

Finish the transmit

moves: [ai].in use,
call IPXHoldEvent

:stuff completion

:make sure that execution unit didn't lock up because of abort errata

II10V cIz, command_reg
II10V al, C_SlIPl
out cIz, al
II10V al, C_SELRST

islow
out cIz, al
II10V al, C_SIIPO

islow
out cIz. al
II10V al, C_RXENB

blow
out cIz, al
II10V tx_active_flag, 0

See if any frames are queued

mov cx, word ptr send_list + 2
jcxz queue_empty
moves, ex
mov ai, word ptr send_list
call sta" _send

queue_empty:
NotWaitingOnTx:
NotT.imedOutYet:

ret

1-189

290169-36

inter Ap·320

Table 5. Assembly and Transmission of Frames (Continued)

DriverPoll endp

:*********************************** ••• **************** ••••••••••

Interrupt Procedure

j ***** •• *****.********************************,*******************
even

RxErrorType~eck:

BufferOverflow,
ino rx buff ovflw
jmp int_ezit

not 590 int:
-inc- no 590 int

jq> int_exIt

Dr1verISR PROC far
publio DriverISR

push ax
push bx
push cx
push de
push s1
push di
push bp

push dB
push es
old

int"'poll_loOp:
cli
oall IPXStartCriticalSection ;tell AES we're busy
mov al, EOI
out %nta~~ptControlPort, a1
out ExtralnterruptControlPort, al
mav ax, CIS

mov de, ax ;DS pOints to C/DGroup
mov de, command_reg
mov a1, 0
out de, al ;aet status reg t~ point to reg 0

"slow
in al, de
teat al, SOh
jz not_590_int

and al, NOT 20h
mov ah, al
amp ah, OoSh

;ignore the EXEC bit
isava the status in AH

;did I receive a frame?

1·190

290189-37

intJ Ap·320

Table 5. Assembly and Transmission of Frames (Continued)

j z rcv<!. J'acket
cmp .h, 8th ic11d I finish a transmit?
:I z sent "packet _1mp
cmp ah, 8Ch ; did I finish • retranami.t?
jz .""tJ'ack.t~"i'
inc: fala. SgO int ;unwanted interrupt
jmp int_eiit-

oentJ'.cket~"i':
jmp aent"packet

sent...,packet. :
cl.i
ClOP o
j.

tx_active_flag,
fala. tx int
al, eli -
statu.l0, a1

; ahouldD' t have been tranSlllitting
in
IIIOV

'.lov
in _v al, dx

atatusll, .1
atatusll, 2Gh
tx error

teat
jz
_v
and
add
xor

ai; atatualO
ax, OFh
RatryTzCount,
ax, ax

: extract the total number of retries from
ithe status register and add to retry count

ax
;atat.ua a 0, good transmit.

l'iniahUpTranamit: 1.. ai, tx acb
mov .a: [al] .completion_coda, a1
mov ax, 8": word ptz:- [IIi] • link
mov word ptr send. list I as.
laO" ax, •• : wo:rd pt.r [ail . link + 2
mov .om pt.%: send. list + 2, ax
move.: [ai]. in use, 0
call 15'lOIoldBvant
push as
pop do
mov ex, WON pt.r aend_list + 2
mov tz_aetiva_flag, cl
jcx. l.,nt_exit~"i'l.
moy ea, ex ;sagment of! next SCB in list
mov ai, vorc::l ptJ: aend_l.iat ;o:ff!set of! next SCD in list
call start send.
j"i' finish_exit

int_exit~"i'l:
j"i' int_exit

false tz int:
jiiip -int_exit

tz 8J:J:OJ::
- test statuI10, 20b

jnz Quit~ransmitting
test atatusll, Olh
ja l.oat_cta
inc undaJ:J:Ufts

lost cta:

;Maz collisions??

;!rX undarrun??

test statusll, 02h ;did we lose claar to send??
;II\: lost_crs
ine no ets

lost crs: -
teat atatusl1, O,f,h ;did we 10se caZ:J:ier aanse?? jz _

inc no era _: -
1es ai, tz ecb
ca11 start-send
mov al, '1ransmitHardwarel'ailura
j"i' l'iniohUp!rranomit

QuiUransmitting:
mov al, statu.lO
and ax, on
add Ratzy'l'zCount, ax
inc atop_tz
IIIOY al, TransmitHardwarel'ailura
jmp riniohUp!rransmit

DriverISa endp

1-191

290189-38

290189-39

inter AP·320

7.4 Receive Frame Processing

Receive frame processing is triggered by an interrupt
from the 82592. If the status read from the 82592 by
the Interrupt Service Routine (ISR) indicates that a
frame has been received, a jump is made to the begin­
ning of the code that services frames. The receive buffer
area is managed by using several variables. These vari­
ables are listed below. Please refer to Section 4.1 and
4.2 for a review of receive frame processing.

• ~UF _TAIL. Contains the contents of the
16-bit latch. They point to the byte count of the last
frame written into memory.

• RXJUF JTR. Keeps track of the current posi­
tion in the buffer while the CPU recovers locations
of the received frames in the buffer processing.

• ~UF _HEAD. Contains the pointer to the
byte count of the last frame that was processed by
the CPU. (This differs from rlL-buf_tail, which
points to the byte count of a frame not yet process­
ed.)

• ~UF _STOP. Points to a location that is 1200
bytes from the end of the receive buffer (slightly
more than the maximum size of a frame).

After servicing a receive frame, the contents of the
16-bit latch are loaded into ~UF _TAIL and
~UF JTR. 1Jtis value is compared with the val­
ue stored in ~UF _STOP to determine if most of
the buffer has been used and if the buffer must be reini­
tialized after the current receive frames have been pro­
cessed (In this case a flag called RESET~UF is

set to indicate that the buffer variables and receive
DMA channel must be reinitialized before the Inter­
rupt Service Routine is exited). To process the frame or
frames received, both the byte count and status bytes of
the frame are used. If the status indicates a receive er­
ror the frame is not passed up to IPX. The byte count is
used to index back through the chain of received
frames, using ~UF JTR to keep track of the
current position in the buffer. The frames are checked
for length (maximum and minimum), and a check is
also made to verify that the Ethernet and IPX length
fields agree (including provisions for padding the
Ethernet-length field). If these checks pass, the frames
are added to the list of received frames by storing their
location, length, and source address in an array of
structures called RX-LIST. When the ~UF_
PTR contains the same value 'as ~UF -.HEAD,
all currently received frames have been processed, and
a jump is made to a label called HAND_OFF_
PACKET. In this routine the frames are handed up to
IPX, in the order they were received, using calls to the
IPX routine IPXReceivePacket. The value. stored in
RX-BUF_TAIL is loaded into the RX-BUF_
HEAD variable, which now holds the address of the
last location in the receive area that was processed, and
the execution of the ISR falls through to a routine to
exit the ISR. Before exiting the ISR an Interrupt Ac­
knowledge is issued to the 82592; a check for additional
pending in,terrupts is made, if one is found the ISR
process is repeated; and the flag RESET~UF is
checked, if it is set the receive buffer is reinitialized.
The machine states of the previous routines are restored
to their original states, and the ISR is exited. Table 6
contains the code used for receive frame processing.

1-192

intJ Ap·320

Table 6. Receive Frame Processing

;**

Xnterrupt Procedure

;**

even

RxErrorTypeCbeck:

BufferOverf1o .. :
inc rx buff ovf1w
jmp int_exi"t"

not 590 int:
-inc- no 590 int

jmp int_exrt

D:iverISR PROC far
public DriverISR

push BZ
push bx
push cx
push dz
push si
push eli
push bp

push ds
push as
cld

intJ'0ll_loop:
cli
call
mov
out
out
mov
mov
mov
mov
out

IPxStartCriticalSection :tell AES we're busy
a1, EOl
InterruptContro1Port, a1
ExtralnterruptCont~olPort, al
ax, as
ds, ax :DS points to C/OGroup
dz, command_reg
al, 0
dz, a1 :set status reg to point to reg 0

lislow
in al, dz
test &1, 80b
jz not_590_int

1·193

290189-40

inter AP·320

Table'6. Receive Frame Processing (Continued)

intJ>oll_lOop:
and al,~:r 20h
JIIOV ah, al
cmp ah, ODBh
jx zcvdJ>acket

;ignore the EXEC bit
;save the status in AH

:did I receive a frame?

cmp ah, 84h ;did I finish a transmit?
jx sentJ>acket~mp
cmp ah, Beb ;did I finish a retransmit?
jx sentJ>acket~mp
inc false_SgO_int ;unwanted interrupt
jmp int_exit

sentJ>8cket~mp:
jmp sentJ>aCket

bad rc,;:
-inc rx errors

jmp RXZrzcr:rypeCheck

int_exit_jmp:
jmp int_exit

;When the address bytes are being read it is pcssible that another frame
;could come in and cause a coherency problem with the ten-cent latches.
;1 am dealing with this possibility by reading :renC8ntHi twice and making
;aure the values match. If they don't the read is re~ne.

rcvd.J>acket:
cli
JIIOV dx, :renCentHi
in al, dx
Il\OV ah, a1
JIIOV dx, :renCentLo
in al, dx

;read high address byte of last frame received

;save it in ah
;read low address byte of last frame received

JIIOV >:X buf tail,'ax ;this is the last location containing
:Read :renCeDtHi-again to make sure it hasn't changed ,.

rx data

mov dx, :renCentHi ;read high address byte again
in al, dx
cmp al, ah
jz addr ok
jmp rcvd:packet

addr_ok:
mov ax, Z'x buf tail
mav rZ_bufJ»t:r:7 ax
czap rx_buf_8top, ax
ja BufferOlC
mov reset rs buf, 1

BufferOK: --
cmp ax, >:x_buf_head
ja process_new_frames
inc ten cent latch crash
jmp int: ... it - -

do next frame:
procass:naw_frames:

JIIOV bz, rx_bufJ>tr
aub bz, 6
moves, Z'z_huf_sagment

;Z8ad the latches again

this ia a valid address
this is the last location containing rz data
is most of the buffer already used?

end of current frame to process
set bx up to point to beginning of the status
this is necessary because latches hold SA not
offset relative to CGROUP

1-194

290189-41

inter AP-320

Table 6. Receive Frame Processing (Continued)

al, es:[bx] .status1
81,20h
goocl_rx

mov
test
jnz
mov cl, es: [bx] .bc 10
mov ch, es: [bx] .bc:hi
clec ex
ancl cl, Ofeh
sub hz, ex
amp rx buf heBcI, bx
je hancl_off-packet_jmp
mev rx_bufJ>tr, bx
sub rx_bufJ>tr, 2

to clo next frame: - jmp dO_next_frame
hancl_offJ>&Cket_jmp:

jmp hancl_offJ>Bcket

goocl_rx:
mav c~, es:[bx] .be 10
mov ch, es: [bx].bc-hi
mov curr_rx_length; ex
dec cx
ancl cl, Ofeh
sub bx, ex
mov rx_bufJtr, bx
sub rx_buf-ptr, 2
sub ex, 14
amp ex, 1024 + 64
jbe not_too_big
inc PacketRxTooBigCount
jmp clo_next_frame

not too big:
-amp- ex, 30

jae not_too_small

;teat for good receive

:cx has actual number of bytes reacl
: toss byte count & status
: rouncl up
:bx points to first location of frame

:this was the first frame in the sequence

iCX has actual number of bytes read

; toss byte count , status
; round up

:bx points to first location of frame

:rx_buf-ptr = last location of n-l frame
: sub length of 802.3 header

inc PacketRxTooSmallCount
jmp clo next frame

not_t.oo_small: -

mav ax, es:[bx] .rx length
xchg al, ah -
inc ax
ancl al; Ofeh
xchg al, ah

get rpx length

amp ax, es:[bx].rx-physical_length
jne to do next frame
xchg a1; ah -

; same as 802.3 length?

amp ax, 60 - 14
ja len ok

a",-60 - 14 mov

; at least mdn length minus header
; yes, continue

; no, round up
len_ok:

amp ax, cx : match physical length
jz not_inconsistent ; yes, continue
inc HarclwareRxMismatchCount
jmp cIo_next_frama

not inconsistent:
-'inc32 TotalRxPacketCount

mov ax, 12
mul num_of_frames

Double Word Increment

1-195

290189-42

inter Ap·320

Table 6. Receive Frame Processing (Continued)

mov di, ax
mav rx list [di], bx
add rx-list [di] , 14
mov ax~ rx_buf_segment
mav rx list [di + 2], ax

:first location of ethernet frame
:first location of ipx packet

mav ax; word ptr es:[bx].rx length
xchg a1,ah -
mav rx list [di + 4], ax
mav ax; word ptr es: [bx]."",_source_addr
mav word ptr rx list [di + 6], ax
mov ax, word ptr as: [bx] . rx source addr
mav word ptr rx_list [di.+ i], ax­
mav ax, word ptr es:[bx].rx source addr
mav word ptr rx_list [di + 10], ax-
add num of fratrLas, 1
CII9i' . rx buf-head, bx
je hand_off-paeket
CII9i' num of f:cames, 50
je hand_off-packet
jmp do_next_frame

hand_off-packet :
mav ai, rx list[di]
mav as, rx-list[di -I- 2]
mav cx, rx:list[di + 4]
les bx, rx_list[di -I- 6]
cli
push da
call IPXReceivePacket
pop ds
sub num of frames, 1
jz adjust-rx head
sub di,.12- -
jmp hand_off-packet

adjust rx head:
mo; ax, rx but tail
add ax, 2 - -

+ 0

-I- 2

-I- 4

mov rx buf head, ax ;ast rx_buf_head to new value for next receive
- - :inter:cupt

int exit:
-push cs

pop ds
CII9i' tx_active_flag, 0
jnz finish_exit

ve:cify that our receiva:c is still going.

mov dx, ccmmand_reg
mav al, 60h ;point to status byta 3
out dx, a1

%slow
in al, dx
test al, 20h
jnz finish exit
jmp LostOUrReceive:c

finish exit:
eli

1-196

290189-43

Ap·320

Table 6. Receive Frame Processing (Continued)

call IPXEndCriticalSect.ion
mov dz, coltlltand_reg
mov al, C_INTAClt
out. dx, 81 ; issue interrv.pt acknowledge to the 590

'81o"
xor al, a1.
out dx, a1 ; set status reg to point to reg 0

%alo",
in al, dx
test al, SOh
jnz intJ"'nding
c:mp reset rx buf, 1
jnl: no_Z'z.:buf_reset
moy al, dma7msk
Qut CMA8nglmsJc, a1

,"slow

;mask receive DMA ch~nnel

out CHAff, a1 :data i" don't care
mov ax, rx bu! start ; set dma up to point to the beginning of rx buf
mov rx but-heaCi, ax
shl :cx-buf-head, 1
out OMA7addr, a1
mov al, ah

tslow
Qut DMA'7adc1r, a1
mov al, OMArx7

'slow
out DMAmacie, a1
mov ax, l:X_buf_l.enqth ; set up rx buf

'slov
out DMA7wdcount, a1
mov al, ah

'slow
out DMA 7wdeount, a1
mov dx, DMAsnglmsk
mov a1., DHA7unm.sk

IbloW'
out. dx, a1
mov dx, command_reg
mov al, C RXENB
out dx, aT
mov reset_Z'z_buf,

no rx buf reset:
- eli -

call 'IPXServiceEvents
pop as
pop ds-

pop bp
pop di
pop si
pop cIx
pop ex
pop b"

pop ax

aU
iret

LostOurRecei ver:
inc l.ost rx
1l\OY al., C RXENB
mov dx, command reg
out d:c., al. -
jmp finish _ ent

too_big:
.inc PacketRxOverfl.oWCount
jmp int_ent

int ..,pending:
jmp intJ'oll_loop

290189-45

1-197

290189-44

inter AP-320

APPENDIX A

Expanding the 82592 Embedded LAN
Module Architecture to a Low-Cost ,
Non-Buffered Adapter

The basic architecture ef the 82592 Embedded LAN
Medule can be expanded and applied to. a lew-cest,
nen-buffered adapter. This requires adding a DMA
unit and seme legic fer a bus master handshake. Such
an adapter would centain no. lecal bUffer memery. Its
cest advantage weuld ceme frem using existing system
memery, as the embedded medule dees. This adapter is
less cemplex than mest existing designs because it does
net require arbitratien legic fer access to. lecal memery.
This adapter becemes a bus master when data transfers
take place, either to. the 82592 (Tx) from system meme­
ry er frem the 82592 (Rx) into. system memery.

The same features ef the 82592 that make it successful
in embedded applicatiens make it well-suited fer nen­
buffered adapters. As with the embedded medule, there
is no. intermediate buffering ef data in a lecal memery,
therefere data transfers to. and frem system memery
take place in real time. The 82592's large FIFO area
allews it to. telerate leng system bus latencies during
memery access. The 82592's high-perfermance, 16-bit
bus interface allews the adapter to. efficiently transfer
data to. and frem system memery when it gains access
to. the system bus. The TCI ef the 82592 will interface
with the adapter's centrellegic and DMA unit to. pre­
vide back-te-back frame receptien and autematic re­
transmissien en cellisien (both witheut CPU interven­
tien). Figure 13 is a bleck diagram ef the basic architec­
ture ef the embedded medule medified fer a nen-buff­
ered adapter applicatien. The bleck titled "Centrel
PALs and Latch" tegether with the 82592 is the cere ef
the embedded medule architecture. One additienal
PAL (PAL C) has been added to. the basic architecture
to. effer mere legic fer deceding additienal cemponents
added to. the adapter. The address latch has alSo. been
,expanded to. 24 bits. The three shaded blecks (DMA
Machine, Master Legic, and Centrel PALs and Latch)
show the mest likely path fer integration on this adapt­
er, providing a three-chip solutien ef ASIC, 82592, and
82C501. 'The 82C37 is commen in many ASIC cell Ii­
braries, effering a migratien path for this integration.

ADAPTER BLOCK DESCRIPTIONS

DMA Machine

• 8237 DMA Controller. Serves as the core' fer the
DMA machine. Performs addressing and centrol fer
data transfers between the 82592 and hest system
memery.

• 8-Bit Page Counter. Provides the addressing bits fer
the upper bits ef address (A17-A23)'

• 8· Bit Register. Serves as the base register fer the
upper bits of the Tx DMA channel fer reinitializa­
tien for automatic retransmission.

• 8-Bit Multiplexer. Selects between the upper bits of
Rx- er Tx-channel DMA.

• 8-Bit Latch. Latches the upper bits of address frem
the 8237 (AS-A IS).

Master Logic

• Master PAL. Implements a "master" handshake
with the hest system bus to gain access to. the bus as
a bus master.

• Timers (2). Contrels the maximum time the adapter
can held the bus, and the minimum time it must
wait befere attempting to. regain bus access.

Control PALs and Latch (Together
with 82592 and 82C501)

The basic architecture of the 82592 Embedded LAN
Medule.

Transceivers

Used to. buffer the adapter legic frem the hest system
bus, fer drive purpeses. Address consists.ef24 bits; and
Data, 16 bits.

1-198 .

DNA Woellin. WR 'I 1:: I
c
0
iii ..
CII
>
l-
e(

5 IolHz ~

I~ N
::t:
:2 I!
0 Q

as

'I ;.) t ... Q

IolRD
·1_8 I ..II:

2
I ~ I l u

IolRW 0

lORD 2 ~ iii
0 10WN

,. ..
C'oI }Z fom:OA lORD CII CD
C") IOWR - ~ - CD

I
Q.

~

a. as .
<C

'tI

16 TxC I+-...... e(
'tI

DATA 0-15 ' 592 I--- 501 I-- CII ..
Cs CII

L....- ...
-I"""" ...

~
'5 a:a

I

OACK1.2 OACK c
0

EOP DROSO Z

111£&11
DROS1.2 OROSI ~

I Co~~~Ala:i L±tJ I
EOP Q)

INT
II)
~
CD

Ls cw)
T""

CII ..
~

IOROY ~
INT

1'1 I~

I I

~ --

APPLICATION
NOTE

Implementing
Ethernet/ Cheapernet
with the Intel 82586

KIVOSHI NISHIDE
APPLICATIONS ENGINEER

AP-274

November 1986

Order Number: 292010-002
1-200

inter AP-274

PREFACE

Intel's three VLSI chip set, the 82586, 82501, and
82502, is a complete solution for IEEE 802.3 10M bps
LAN standards-IOBASE5 (Ethernet) and IOBASE2
(Cheapernet). The 82586 is an intelligent peripheral
which completely manages the processes of transmit­
ting and receiving frames over a network under the
CSMS/CD protocol. The 82586 with its on-chip four
DMA channels offloads the host CPU of the tasks re­
lated to managing communication activities. The chip,
for example, does not depend on the host CPU for time
critical functions, such as transmissions/ retransmis­
sions and receptions of frames. The 82501 is a 10 MHz
serial interface chip specially designed for the 82586.
The primary function of the 82501 is to perform Man­
chester encoding/decoding, provide 10 MHz transmit
and receive clocks to the 82586, and drive the transceiv­
er (AUI) cable in Ethernet applications. In addition,
the 82501 provides a loopback function and on-chip
watchdog timer. The 82502 is a CMOS transceiver
chip. The 82502 is the chip which actually drives the
coaxial cable used for Ethernet or Cheapernet.

This Ap Note presents a design example of a simple but
general Ethernet/Cheapernet board based on the three
chip set. The board is called LANHIB (LAN High In­
tegration Board) and uses an 80186 microprocessor as
the host CPU. The LANHIB is an independent single
board computer and requires only a power supply and
ASCII terminal. Demo software, called TSMS (Traffic
Simulator and Monitor Station) is also included in this
Ap Note. The TSMS program is a network debugger
and exercise tool used to exercise the 82586. In addi­
tion, flowcharts for troubleshooting are provided in or­
der to minimize debugging time of the LANHIB board.

1.0 INTRODUCTION

A brief overview of the CSMA/CD protocol is de­
scribed in Section 2. Ethernet and Cheapernet are also
compared in this section.

Section 3 discusses hardware of the LANHIB in detail.
This section should be helpful not only to understand
the LANHIB, but also to learn in general how a system
based on the three chip set can be put together. Since
the 82502 involves analog circuitry, an explanation on
proper layout is provided.

Demo software is presented in Section 4.0. It covers
EPROM programming procedures and three sample
sessions. Step by step operations at a terminal are illus­
trated in the figures.

Section 5 describes LANHIB troubleshooting proce­
dures. Flowcharts are used to guide troubleshooting.

Complete LANHIB schematics and parts list are found
in Appendix A. If a LANHIB is to be built, the sche­
matics and Section 5 can be submitted to an available
wire wrap facility. In parallel to board construction,
Sections 3 and 4 can be studied. A factory wire wrap
board for the LANHIB is offered at a discount price by
Augat Corporation. Please return the enclosed card for
more information.

Listing of the TSMS program and LANHIB Initializa­
tion Routine are in Appendix B. The source codes and
related files are available on a diskette by returning the
card enclosed in this design kit or through Insite (In­
tel's Software Index and Technology Exchange Li­
brary).

2.0 ETHERNET ICHEAPERNET
OVERVIEW

2.1 CSMA/CD

Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) is a simple and efficient means of deter­
mining how a station transmits information over com­
mon medium that is shared with other stations.
CSMA/CD is the access method defined by the IEEE
802.3 standard.

Carrier Sense (CS) means that any station wishing to
transmit "listens" first. When the channel is busy (i.e.,
some other station is transmitting) the station waits
(defers) until the channel is clear before transmitting
("listen before talk").

Multiple Access (MA) means that any stations wishing
to transmit can do so. No central controller is needed to
decide who is able to transmit and in what order.

Collision Detection (CD) means that when the channel
is idle (no other station is transmitting) a station can
start transmitting. It is, however, possible for two or
more stations to start transmitting simultaneously caus­
ing a "collision". In the event of a collision, the trans­
mitting stations will continue transmitting for a fixed
time to ensure that all transmitting stations detect the
collision. This is known as jamming. After the jam, the
stations stop transmitting and wait a random period of
time before retrying. The range of random wait times
increases with the number of successive collisions such
that collisions can be resolved even if a large number of
stations are colliding.

There are three significant advantages to the CSMA/
CD protocol. The first and foremost is that CSMA/CD
is a proven technology. One CSMA/CD network,
Ethernet, has been used by Xerox since 1975. Ethernet
is so well understood and accepted that IEEE adopted ,

1-201

AP·274

it (with minor changes) as the IEEE 802.3 IOBase5 (10
Mbps, Baseband, 500 meters per segment) standard.
Reliability is the second advantage to the 802.3 proto­
col. This media access method enables the network to
operate without central control or switching. Thus, if a
single station malfunctions, the rest of the network can
continue operation. Finally, since CSMA/CD networks
are passive and distributed in nature, they allow for
easy expansion. New nodes can be added at any time
without reinitializing the entire network.

2.2 Ethernet and Cheapernet

The IEEE 802.3 Type IOBASE5 standard (Ethernet)
has gained wide acceptance by both large and small
corporations as a high speed (10 Mbps) Local Area
Network. The Ethernet channel is a low noise, shielded
son coaxial cable over which information is transmit­
ted at 10 million bits per second. Each segment of cable
can be up to 500 meters in length and can be connected
to longer network lengths using repeaters. Repeaters
regenerate the signal from o~e cable segment onto an­
other. At each end of a cable segment a terminator is
attached. This passive device provides the proper elec­
trical termination to eliminate reflections. The trans­
ceiver transmits and receives signals on the coaxial ca- '
ble. In addition, it isolates the node from the channel so
that a failure within the node will not affect the rest of
the network. The transceiver is also responsible for de­
tecting collisions-simultaneous transmissions by two
or more stations. Ethernet transceivers are connected to
the network coaxial cable using a simple tap, and to the
station it serves via the transceiver cable which can be

IEEE 802.3t:TYPE 10BASES (ETHERNET)

TYPE 10BASE2 (CHEAPERNET) ,

TYPE 1 BASES (STARLAN)

292010-1

Figure 1. Different Implementations of IEEE
802.3 (Note: "10BASES", for example, implies

10 Mbps, Baseband, and SOO meters span.)

up to 50 meters in length. The transceiver cable is made
of four individually shielded twisted pairs of wires. An
Ethernet interface at a computer (DTE), which in­
cludes a serial interface and data link controller, pro­
vides the connection to the user or server station. It also
performs frame manipulation, addressing, detecting
transmission errors, network link management, and en­
coding and decoding of the data to and from the trans­
ceiver.

The IEEE 802.3 Type IOBASE2 (Cheapernet) has the
same functional and electrical specifications as Type
10BASE5 (Ethernet) with only two exceptions in physi­
cal (or rather mechanical) characteristics. Cheapernet
is as 'shown in Figure 1 just a different implementation
of the IEEE standard. Ethernet and Cheapernet are
both 10 million bitslsecond CSMA/CD LANs and use
the identical network parameters, such as slot time =
51.2 ,""S. Ethernet and Cheapernet can, therefore, be
built by the same VLSI components with the same soft­
ware (Figure 2).

The two physical differences attribute to the cost reduc­
tion purpose of Cheapernet--cheaper implementation
of Ethernet. First, the cable used in Cheapernet may be
a lower cost son coaxial cable than the one for
~thernet. The most common coaxial cable for Cheaper­
net is RG58 which cost about $0. 151ft. A typical
Ethernet cable costs about $0.83/ft.

Second, the transceiver is integrated into' the DTE in
Cheapernet. The coaxial cable physically comes to the
DTE, connects to the transceiver within the DTE, and
goes to the next DTE (see Figure 3). The kind of con­
nector used at the DTE is an off-the-shelf BNC "Tn
connector. Topology is, therefore, a simple daisy chain­
ing. This cabling scheme contributes to further cost re­
duction due to omission of the Transceiver (AUI) Ca­
ble, cheaper connectors, and easier installation. The
Ethernet transceiver cable costs about $1.49/ft. More
flexible thin coaxial cables and familiar BNC "T" con­
nectors are making Cheapernet a user installable Ether­
net compatible network.

1-202

AP-274

TRANSCEIVER
CABLE

COAX CABLE
ETHERNET CONTROLLER BOARD

CHEAPERNET CONTROLLER BOARD

TRANSCEIVER

RG-58
COAXIAL CABLE

Figure 2. 82586/82501/82502 in Ethernet and Cheapernet

, . , , . ,

292010-5

292010-6

/ :::=C:J:=:::::::"/ ETHERNET
CABLE

-:::::::[:..J~=~ CHEAPERNET
/. CABLE

292010-2

Figure 3. Ethernet Cabling vs Cheapernet Cabling

1-203

, , .
292010-3

intJ AP-274

Table 1 .. Differences between Ethernet and Cheapernet

Ethernet Cheapernet
(10BASE5) (10BASE2)

Data Rate 10 M bits/sec. 10 M bits/sec.

Baseband or Baseband Baseband
Broadband (Manchester) (Manchester)

Cable Length SOOm 18Sm
per Segment

Nodes per Segmerit 100 30

Node Spacing 2.Sm 0.5m

Cable Type 0.4 in diameter son 0.2 in diameter son
Double Shielded Single or Double Shielded

example: example:
Ethernet Coax. RG S8A1U or

RG 58C/U

Transceiver Cable Yes, up to SOm No, not needed

Capacitance 4pF 8pF
per node

Typical Clamp-on Tap Connector or BNCFemaie
Connector Type N Plug Connector Connector

Because of the lower quality cables and connectors used
in Cheapernet, there are some drawbacks. The maxi­
mum distance for one Cheapernet cable segment is only
185m (600 feet), as compared to 500m (1640 feet) for
Ethernet. The maximum number of nodes allowed for
one Cheapernet cable segment is 30. Ethernet on the
other hand allows a maximum of 100 nodes per seg­
ment. A BNC "T" connector used in Cheapernet intro­
duces more electrical discontinuity on the transmission
line than the clamp-on tap connector widely'used for
Ethernet. The maximum capacitance load allowed at a

REPEATER

Cheapernet cbnnection is 8 pF, while it is 4 pF for
Ethernet. These differences are summarized in Table
1.0.

Since Ethernet and Cheapernet share the same func­
tional and electrical characteristics, both may be mixed
in a network as shown in Figure 4. In this hybrid
Ethernet/Cheapernet network, it is important to keep
the network propagation delay within 46.4 }Ls. The net­
work may be expanded as required within this round
trip propagation, delay limit. Ethernet, for example,
may serve as a backbone for Cheapernet in a hybrid
Ethernet/Cheapernet network.

CHEAPERNET
CABLE

CHEAPERNET
CABLE

292010-4

Figure 4. Ethernet/Cheapernet Hybrid Network

1-204

!!
CD
C
i;
PI

~
Z
::J:

~ iii
U1 ID
.~

2
J:
iil
3

82501
LOOPBACK

CONFIGURATION
PORT

~
00-015

DATA BUS

A1-1S A1, A2

lA-ROM

DO-07

82530 CONTROL SIGNALS

RS-232
CHANNEL A

RS-232
CHANNEL B

292010-7

l

»
"U .
N
...... .co.

inter AP-274·

3.0 ETHERNET ICHEAPERNET NODE
DESIGN

Details on LAN High Integration Board (LANHIB)
design are presented in this section. The LANHIB is an
82586/80186 shared bus board and can be configured
to Ethernet or Cheapernet. The 82586 is used in mini­
mum mode to reduce chip count.

The reader is advised to refer to the 80186, 82586,
82501, and 82502 data sheets. Basic understanding of
the 80186 microprocessor is assumed. Figure 5 shows
the block diagram of the LANHIB. Schematics are in
Appendix A.

3.1 82586 (Min Mode) Interface to the
80186

T.he 82586 can be placed in minimum mode by strap­
ping the MN/MX pin to Vee. In the minimum mode,
the c~directltl'rovidesall bus control signals-ALE,
RD, WR, DT/R, and DEN, saving the 8288 Bus Con­
troller. The 80186, which is the only other bus master
on the shared bus, also generates these bus control sig­
nals directly. The HOLDs and HLDAs of these two
chips are connected together so that only one of the two
bus masters can exclusively drive the bus at a time un­
der the HOLD/HLDA protocol. Except for the ALE,
all bus signals including address and data lines float
when the chip does not have control of the bus. In this
design example, RDs, WRs, DT /it and DEN from the
two chips are connected together respectively. ALEs

from the two chips are connected to an OR-gate to
generate a system ALE. Multiplexed address data lines
ADO-ADI5 and address lines A15-A19 o{the two

. chips are also connected line by line correspondingly.

3.2 82586 Address Latch Interface

Figure 6 shows the timing of the address signals with
respect to the ALE signal. The ALE of the 82586 is
OR-ed with the ALE of the 80186 and the result is
connected to the latch enable inputs of Octal Transceiv­
er Latches. The latches transfer the input data to the
output. as long as the latch enable is high, and captures
. the input data into the latch when the latch enable goes
low. In this timing diagram, the setup and hold times of
the input data (82586 address) required by the address
latch can be verified. Estimating 7 ns of propagation
delay in the 74S32, the setup time is T38 + 7, which is
32 ns at 8 MHz. The hold time for A19 is shorter than
the other address lines because it is valid only during
Tl. The hold time for the A19 is T4 - T36 - 7, which
is 3 ns. The hold time for the other address lines is T39

" -" 7, which is 38 ns. In this design, a 74F373 was cho­
sen to latch address lines A16-A19 and two 74LS373s
were used to latch address lines ADO-ADI5. Required
setup and hold times of the 74F and 74LS 373s are
summerized in Table 2.

Note that address lines A16-A18 and BHE of the
82586 are not really needed to be latched. These lines
stay valid for an entire memory cycle.

VALID BHE, A16-A18, A20-A23

VALID A19 Y VALID S6

VAlLO AO-A15

T29 ~ ~ns r- T30

0-55n. T36 0-50ns

E II
T35 I- T39

o-45ns 45ns lAIN

AL

I-- ~~SIAIN
ORED ALE r f----,

~7

DELAY IN- r
I OR GATE

ns@250C

SETUP TIIAE FOR HOLD TIIAE FOR
74F373 AND 74LS373 74F373 AND 74LS373

292010-8

Figure 6. 82586 Address Til11ing

1-206

inter AP-274

Table 2. 74F and 74LS Data Setup and Hold Time Specifications at 25°C

74F373

Min Nom Max

Data Setup Time 2.J,

Data Hold Time 3.J,

3.3 80186 Address Latch Interface

The address latch used by the 82586 is shared by the
80186. Figure 7 shows the 80186 address line timing
with respect to the ALE. Again estimating 7 ns delay in
the 74S32, the setup time for the latch is TA V AL + 7
and the hold time is TLLAX - 7. These are 37 ns and
23 ns respectively at 8 MHz. Comparing to the required
values shown in Table 2, it is quite obvious that the
setup and hold times of the latch are met by wide mar­
gins. Note that the 80186's address lines A16-A18 and
BHE are not valid for an entire memory cycle; there­
fore, they have to be latched.

3.4 82586 Memory Interface

The 74LS373 has a delay of 18 ns for input data to
reach the output assuming the latch enable is high. A

T1

74LS373 Unit

Min Nom Max

S.J, ns

20.J, ns

demultiplexed valid address (output of the address
latch), therefore, becomes available after T29 + 18
measuring from the beginning of TI (Figure 8). The
demultiplexed address remains valid until the ALE of
the next memory access becomes active. Upper address
lines, AI4 through A20, are connected to a 16L8 PAL,
which provides address decode logic for all memory
devices. The PAL truth table is in Appendix A. The
PAL has a maximum of 35 ns propagation delay, so
chip selects will become active after 55 + 18 + 35.ns
(max.) from the beginning of T1 as indicated in Figure
8. Since address decode logic is implemented by a PAL,
any memory expansion would only require a repro­
gramming of this PAL.

Two 74LS245 bus transceiver chips are controlled by
the DT/R and DEN. Output enable and disable times
of the 74LS245 are 40 and 25 ns respectively. The max­
imum propagation delay when the output enable is ac­
tive is 12 ns.

T2 T3

',-----,' ,'--_-..I' , , L....J

5-55ns I I TCLAX

I I IOns MIN

TCLAV

VALID BHE.AI6-AI9

TCH
35ns

ALE

ORED ALE

LH
MAX

TLHLL
90ns MIN

I

VALID AO-A 15

--
TLLAX
30ns MIN

lAVAL
~30nsMIN

DELAY IN-
OR GATE

:;:7n s@25OC

SETUP TIME FOR
74F373 AND 74LS373

HOLD TIME FOR
74F373 AND 74LS373

Figure 7. 80186 Address Timing

1-207

292010-9

intJ

READ
CYCLE

WRITE
CYCLE

T4

..J
T1

,'----, ,
___ DELAY IN

7r4LS373

Ap·274

T2 , T3 T4 , , ,'----,
VALID AO-AI9 FROM ADDRESS LATqH

T29 i-- ~ PAL DECODER
0-55ns I _I DELAY ~35 ns

T1

''-_ooJ'

CHIP SELECT FROM PAL ,]1-______________________ -'

-
i+- 20 Js8 MIN-- -1~ns MIN

DATA INTO 82586

/0-9J~~ T42 200 ns MIN

Ri5 FROM 82586

T22
-,0}~ns--85~!tIN -:-

I 0-60ns T22
0-6Ons I

I
DT/R 1----j1T23 I 0-70ns r-I T24 o-65ns

DEN
\ I

- T31 r- T32 o-55ns Ons MIN

DATA OUT OF 82586

T23

"

T45 210ns MIN ~ 0-70ns

WR FROM 82586 \

I---- T24
o 65n8

292010-10

Figure 8. 82586 Memory Interface Timing

1-208

intJ

READ
CYCLE

WRITE
CYCLE

CHI

Ap·274

T1 T2 T3 T4 T1

\ / , I '\..._...J/ '\..._...J1

- DELAY IN
i--74LS373

VALID AO-AI9 FROM ADDRESS LATCH

5-55ns TCLAV l- DELAY :S 35 ns
t:! PAL DECODER

P SELECT FROM PAL '\

h TDVCL ~ t TCLDX _2_0_n_S_M_IN __ -t_ IOns MIN

---------------~~~D~A~TA~IN~TO~8~0~18~6~~.~------------
TCLRL

TRLRH 200 ns MIN 10-70ns

RD FROM 80186

TCLRH TRHAV _

TCHCTV
10-55 ns 85 nsMIN

I .~~ 10-55ns I TCHCTV
10-55ns

DT/R
HTCVCTV

10-70ns
I+-TCVDEX

10-70ns

DEN \ I

- TCLDV
10-44ns IOns MIN

TCLDO~I

DATA OUT OF 80186 -
TCVCTV .1, lWLWH 210ns MIN-10-70n, I

WR FROM 80186 \

I-- TCVCTX -5 55ns

I-TCVCTVi DTCVCTX
_______ ,_1_0-_7_0_n_s-,l""_________________ 5-55ns

DEN·· -
292010-11

Figure 9. 80186 Memory Interface Timing

1-209

Ap·274

Address access time is 3 X Tl - T29 - 18 - T8 -
.12 + n X Tl, where n is the number of wait states. For
o wait states operation at 8 MHz, it is 270 ns minimum.
Chip select access time is 3 X Tl - T29 - 18 - T8
-: 12 + n X Tl - 35, which is 235 ns for 0 wait state
operation. Command access time for a read cycle is 2 X
Tl - T40 - T8 - 12 + n X Tl, which is 123 ns.
Address setup time for a write cycle is Tl - T29 - 18
+ T23, which is 52 ns minimum.

To meet these timing requirements, 2764-208 must be
used for ROM. Static RAM chips, HM6264P-15; offer
very wide timing margins and were selected for this
design.

3.5 80186 Memory Interface

Figure 9 shows the timing of the 80186 memory inter­
face. By comparing this figure to Figure 7, it is easy to
notice that the 80186 offers a little faster bus interface.
For example, TCLRL which is equivalent to T40 (0 to
95 ns) ofthe 82586 is specified as 10 to 70 ns. Since the
memory choice satisfies the 82586 memory timing pa­
rameters, it also satisfies the 80186 memory timing pa­
rameters.

3.6 Memory Map

With 2764-20 EPROMs and 6264P-15 SRAMs, this
board has 32 K bytes of ROM space and 16 K bytes of
RAM space. Memory map is given in Figure 10. If
27128-20 EPROMs are used, the ROM space becomes
64 K bytes.

3.7 80186 1/0 Interface

3.7.1 82586 CHANNEL ATTENTION
GENERATION

The active low Peripheral Chip Select 0 (PCSO) was
used to generate a channel attention (CA) signal to the
82586. This way of CA generation satisfies the require­
ment that the width of a CA which must be wider than
a clock period of the system clock.

3.7.2 82586 HARDWARE RESET PORT

PCSI of the 80186 will reset the 82586 if any I/O com­
mand is executed using this I/O -chip select.

3.7.382530 INTERFACE

82530 interface to the 80186 was derived from the de­
sign example presented in the 82530 SCC-80186 Inter­
face Ap Brief. This document is attached to this Ap
Note as Appendix C.

0"", -..,..,..,.~,...,. OFFFF, M""''''''''''''''''''

O,COOO [-'-.... "-"'-'1

OF7FF, ""..,...,..r-?-7"I

0,4000 t"'" "-"-....~ 0,0000 !'-';""'L.I.;""''''I

3FF, 3FF, ""'.,..r-?...,...,.-t

292010-12

Figure 10. LANHIB Memory Map

3.7.482501 LOOPBACK CONFIGURATION
PORT

A 74LS74 D-type flip flop was used for this port. On
power up, it configures the 82501 to Non-Loopback
mode by providing a high level to pin 3 (LOOPBACK).
The chip sele9t is~erated from the 80186's PCS2 and
the sychronized WR command of the 82530 interface.
The least significant bit of I/O output data becomes the
state of the 82501 's pin 3.

3.7.5 ON-BOARD INDIVIDUAL ADDRESS PORT

Tq provide the 82586 a hardware configured host ad­
dress, a 32x8 ROM is connected to the bus. The chip
select for this ROM is generated from the 80186's
PCS3, so that the address for the ROM is mapped into
the I/O space. Six or two (IEEE 802.3 specified address
lengths) consecutive I/O reads starting from the lowest
address of ROM will transfer the board address stored
in the ROM to an lA-Setup command block of the
82586.

3.8 82586 Ready Signal Generation

82586 asynchronous ready (ARDY) signal is generated
from a shift register. The shift register provides the
82586 a "normally ready" signal. When a wait state is
needed, the ready signal is dropped to the low state. As
shown in Table 3, the 82586 can be programmed to
have 0 to 8 wait states by setting the DIP switch prop-
erly. Even though the on-board memory devices are

1-210

AP-274

Table 3. DIP Switch Settings for Various
Numbers of 82586 Wait States

Dip Switch Setting
7 6 5 4 3

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 0
1 1 1 0 0
1 1 0 0 0
1 0 0 0 0
0 0 0 0 0

1 = Switch Open
o = Switch Closed

210

1 1 1
1 1 0
1 0 0
o 0 0
o 0 0
o 0 0
o 0 0
o 0 0
o 0 0

Number of Wait States
the 82586 Inserts

0
1
2
3
4
5
6
7
8

fast enough for 0 wait states operation, this program­
mable wait state capability was added so that the effect
of wait states on the 82586 performance could be evalu­
ated.

3.9 82501 Circuits

Since the 82501 is designed to work with the 82586, no
interfacing circuits are required.

The transceiver cable side of the 82501 requires some
passive components. The receive and collision differen­
tial inputs must be terminated by 780 ± 5% resistors.
Common mode voltages on these differential inputs are
established internally. 2400 ± 5% pull down resistors
must be connected on the TRMT and TRMT output
pins.

A 0.022 ""F ± 10% capacitor connected between pin 1
and 2 of the 82501 is for the analog phase-locked loop.

Connected between the Xl and X2 pins is a 20 MHz
parallel resonant quartz crystill (antiresonant with 20
pF load fundamental mode). An internal divide-by-two
counter generates the 10 MHz clock. Since both Ether­
net and Cheapernet tolerate an error of only ±0.01%
in bit rate, a high quality crystal is recommended. The
accuracy of a crystal should be equal to or better than
±0.002% @ 25°C and, ±0.OO5% for 0~70°C. A
30-35 pF capacitor is connected from each crystal pin
(Xl and X2) to ground in order to adjust effective ca­
pacitance load for the crystal, which should be about
20 pF including stray capacitance.

3.10 82502 Circuits

3.10.1 ISOLATION AND POWER
REQUIREMENTS

The IEEE 802.3 standard requires an electrical isola­
tion within the transceiver (MAU). Cheapernet

(lOBASE2) requires the isolation means to withstand
500V ac, rms for one minute. Ethernet (lOBASE5) re­
quires 250 Vrms. This electrical isolation is normally
accomplished by transformer coupling of each signal
pair. The kind of transformers recommended for the
82502 are the pulse transformers which have a 1: 1 turn
ratio and at least 50 microhenry inductance. PE64102
and PE64107 manufactured by Pulse Engineering are
found to be good selections for this purpose. The PE
64102 offers 500 Vrms isolation. The PE64107 offers
2000 Vrms isolation. Both products provide three
transformers in one package. Even though the current
Type lOBASE5 specification requires only 250 Vrms, it
is very common to have a higher isolation, at least 500
Vrms, in transceivers.

The standard specifies the voltage input level and maxi­
mum current allowed on the power pair of the trans­
ceiver cable. The voltage level may be between
+ l1.28V dc and + l5.75V dc. The maximum current
is limited to 500 rnA. Since the 82502 requires + 10V
± 10% and + 5V ± 10% as power, there has to be a
DC/DC converter. In addition the DC/DC converter
must be isolated due to the requirement described
above. The DC/DC converter should be able to supply
about 100 mA on the + lOV line and 60 mA on the 5V
line. The efficiency required in the converter is, there­
fore, «ltV X 100 mA + 5.5V X 60 mA) / «11.28V
- 0.5A X 40) X 500 mA» X 100 = 31 % worst
case. 40 is the maximum round trip resistance the pow­
er pair may have. 82502's CMOS process is the major
contributor to this low DC/DC efficiency requirement.

Since the DC/DC converter has an isolation transform­
er inside, the output voltages are all floating voltages.
The OV output of the converter, for example, has no
voltage relationship with the DTE's ground. The VSS
and A V ss pins of the 82502 should be connected to the
OV output of the DC/DC converter which is the
82502's ground (reference voltage).

Both Pulse Engineering and Reliability Incorporated
produce DC/DC converters that meet the 82502's re­
quirements. The Pulse Engineering's part number is
PE64369 (enclosed in this design kit). The device mea­
sures about 1.5" x 1.5" x 0.5" and provides 2000 Vrms
breakdown. The Reliability'S part number is
2E12RI0~5. Preliminary data sheets are available from
Reliability.

3.10.2 OTHER PASSIVE AND ACTIVE DEVICES
FOR THE 82502

A 780 ± 5% resistor is required to terminate the trans­
mit pair of the Transceiver cable. The chip has an inter­
nal circuit that establishes a common mode voltage,
thus no voltage divider is required. The receive and
collision pair drivers need pull up resistors. A 43.2
± 1 % resistor mlist be connected from each output pin
to +5V.

1-211

AP-274

A 243n ±0.5% precision resistor is required on the
REXT pin to the ground. The accuracy of this resistor
is very important since this resistor is a part of current
and voltage reference circuits in the analog sections of
the 82502.

Grounding the HBD (Heartbeat Disable) pin will allow
the chip to perform Signal Quality Error check (Heart­
beat) as required by the IEEE 802.3. The chip will
transmit the collision presence signal after each trans­
l)1ission during Interframe Spacing (IFS) time. In a re­
peater application, this feature is disabled (HBD =
+5V).

Diodes connected on the CXTD pin are to reduce the
capacitive loading' onto the coaxial cable. One diode is
sufficient, but two will provide a protection in case one
burns out (Short Circuit). The diode should have about
2 pF shunt capacitance at Vd = OV and be able to
handle at least 100 mA when biased in forward direc­
tion. A few candidates are IN5282, IN36oo, and
IN4150.

A lOOn fusible resistor connected on the CXRD pin is
purely for protection. It is there as a fuse, not as a
resistor. The 82502 works without this resistor. The
IEEE 802.3, however, states that "component failures
within the MAU (Media Attachment, Unit or Trans­
ceiver) electronics should not prevent communication

among other MAUs on the coaxial cable." It is recom­
mending a transceiver design that minimizes the proba­
bility of total network failure. The fusible resistor will
provide an open circuit in an event of excess current. A
short circuit from the CXRD pin to ground will not
bring down the network due to the blown fuse.

A 1 Mn resistor connected between the coaxial cable
shield and the Transceiver cable shield will provide a
static discharge path. The Ethernet coaxial cable
should also have an effective earth ground at one point
in a network as required by the standard. A 0.01 ,...F in
parallel to the 1 Mn resistor provides ground for RF
signals.

3.10.3 LAYOUT CONSIDERATION FOR THE
82502 CIRCUITS

It is strongly recommended that the board have a spe­
cial ground plane for the 82502 (see Figure 11). The OV
(reference) output of the isolated DC/DC converter,
should be connected to the ground plane. The V ss and
AVss pins of the 82502 should be connected to the
ground plane with minimum lead wires.

There should be a 0.22 ,...F capacitor connected between
the coaxial cable shield and ground. The signal path
from the coax. shield through the 0.22 ,...F capacitor to

GROUND PLANE FOR 82502

+12V +IN
ISOLATED

DC/DC
CONVERTER

+10V I----t--~
+5V.---.........

OV -IN ovl---+.

292010-13

Figure 11. Ground Plane for the 82502

1-212

intJ AP·274

the ground should be kept as short as possible-leads of
the 0.22 ,...F capacitor should be as short as possible.

The path length from the CXTD pin through two di­
odes to the center conductor of the coax should also be
minimized.

These are recommendations which will produce a more
reliable circuit iffollowed carefully. Remember that the
82502 has analog circuits in it.

4.0 DEMONSTRATION SOFTWARE
The demonstration software included in this Ap Note is
called "Traffic Simulator and Monitor Station"
(TSMS) program. The TSMS program is written in
PL/M and has the following features:

1. Programmable network load generation

2. Network statistical monitoring capabilities

3. Interactive command execution of all 82586 com­
mands

4. Interactive buffer monitoring

The environment created with the TSMS program was
found to be very useful for network debugging and oth­
er individual station's hardware and software debug­
ging. The TSMS software listing is found in Appendix
B.

NOTE:
The 82586 Date Link Driver presented in AP Note
235 also runs on the LANHIB. Please refer to the Ap
Note for detailed operati?ns of the software.

4.1 Programming PROMs to Run the
TSMS Program

By returning the card enclosed in this kit or by contact­
ing Insite, the TSMS program and related batch files
can be obtained on a diskette. TSMS related files that
are on the diskette are:

READ. ME
TSMS.PLM
IO.PLM
INIl86.PLM
LANHIB.BAT
SBC.BAT .
IUPHIB.BAT
IUPSBC.BAT
HI.BYT
LO.BYT
ROM.BAT

The READ. ME file contains instructions for program­
ming PROMs. HI.BYT and LO.BYT are the files
which can be downloaded to PROMs directly. These
files are already configured for the LANHIB. The

batch file ROM.BAT invokes tlie Intel PROM Pro­
gramming Software (iPPS) under the DOS operation
system and programs two 2764 EPROMs. The Intel
Universal Programmer must be placed in ON-LINE
mode.

Other files contained in the diskette arll for compiling
and locating the original TSMS program. Using these
files, the original TSMS program can be changed or can
be compiled for an iSBC 186/51. 'TSMS.PLM' is the
original TSMS source program. 'IO.PLM' contains the
10 driver needed when the TSMS program is run on
the iSBC 186/51. INI186.PLM is the LANHIB initiali­
zation routine. LANHIB.BAT is the batch file that
compiles, links, and locates the TSMS program and the
LANHIB initialization routine. SBC.BAT compiles,
links, and locates the TSMS program and the 10 driver
for the iSBC 186/51. IUPHIB.BAT programs two
2764s for the LANHIB. IUPSBC.BAT programs two
2764s for the iSBC 186/51.

Therefore, if the TSMS program is to be run on the
LANHIB (Demo board), steps required are:

1. C:>LANHIB

2. C: > IUPHIB

If the TSMS program is to be run on the iSBC 186/51,
steps required are:

1. C:>SBC

2. C: > IUPSBC

4.2 Capabilities and Limits of the
TSMS Program

The TSMS program initializes the LANHIB Ethernet!
Cheapernet station by executing 82586's Diagnose,
Configure, lA-Setup, and MC-Setup commands. The
program asks a series of questions in order to set up a
linked list of these 82586 commands. After initializa­
tion is completed, the program automatically starts the
82586's Receive Unit (monitoring capability). Trans­
missions are optional (traffic simulation capability).

The TSMS program has two modes of operation: Con­
tinuous mode and Interactive Command Execution
mode. The program automatically gets into the Contin­
uous mode after initialization. The Interactive Com­
mand Execution mode can be entered from the Contin­
uous mode. Once entered in the <!:ontinuous mode, the
software uses the format shown in Figure 12 to display
information. Detailed description of each of these fields
is as follows:

Host Address: host (station) address used in the most
recently prepared lA-Setup command.' The software
simply writes the address stored in the lA-Setup com­
mand block with its least significant bit being in the
most right position. Note that if the lA-Setup com-

1-213

AP-274

**************************** Station Configuration ************************

Host Address: 00 AA 00 00 18 60
Multicast Address(es): No Multicast Addresses Defined
Destination Address: FF FF FF FF FF FF
Frame Lenqth: 118-bytes ,
Time Interval between Transmit Frames: 159.4 microseconds
Network Percent Load qenerated by this station: 35.7 ,
Transmit Frame Terminal Count: Not Defined
82586 Confiquration Block: 08 00 26 00 60 00 F2 00 00 40

***************************** Station Activities **************************

of Good
Frames'
Transmitted
10130

of Good
Frames
Received
o

CRC
Errors

o

Aliqnment
Errors

o

No
Resource
Errors
o

Receive
Overrun
Errors
o

292010-14

Figure 12. Continuous Mode Display

mand was just set up and not executed, the address
displayed in this field may not be the address stored,in
the 82586.

Multicast Address(es): multicast addresses used in the
most recently prepared MC-Setup command. As in the
case of host address, the software simply writes the ad­
dresses stored in the MC-Setup command block. Note
that if the MC-Setup command was just set up and not
executed, the addresses displayed- in this field may not
be the addresses stored in the 82586.

Destination Address: destination address stored in the
transmit command block if AL-LOC=O. If
AL-LOC= 1, destination address is picked up from the
transmit buffer. The least significant bit is in the most
right position.

,Frame Length: transmit frame byte count including
destination address, source address, length, data, and
CRC field.

Time Interval Detween Transmit Frames: approximate
time interval obtainable between transmit frames (Fig-,'
ure 13). The number is correct if there are no other'
stations transmitting on the network.

Network Percent Load Generated by This Station:
approximate network percent load that is generated by
this station (Figure' 13). The number is correct if there
are no other stations transmitting on the network.

Transmit Frame Terminal Count: number of frames
this station will transmit before it stops network traffic'
load generation. If this station is transmitting indefi­
nitely, this field will be 'Not Defined'.

82586 Configuration Dlock: configuration parameters
used in the most recently prepared Configure com­
mand. As in the case of lA-Setup command, the soft-

ware simply writes the parameters from the Configure
command block. The least significant byte (FIFO Lim­
it) of the configuration parameters is printed in the
most left position.

'" of Good Frames Transmitted: number of good
frames transmitted. This is a snap shot of the 32-bit
transmit frame counter. It is incremented only when
both C and OK bits of the transmit command status are
set after an execution. The counter is 32-bit wide.

'" of Good Frames Received: number of good frames
received. This is a snap shot of the 32-bit receive frame
counter. It is incremented only when both C and OK
bits of a receive frame descriptor status are set after a
reception. The counter is 32-bit wide.

CRC Errors: number of frames ,that had a CRC error.
This is a snap shot of the 16-bit, CRC counter main­
tained by the 82586 in the SCD.

Alignment Errors: number of frames that had an align­
ment error. This is a snap shot of the 16-bit alignment
counter maintained by the 8258~ in the SCD.

No Resource Errors: number of frames that had a no
resource error. This is a snap shot of the 16-bit no re­
source counter maintained by the 82586 in the SCD.

Receive Overrun Errors: number of frames that had a
receive overrun error. This is a snap shot of the 16-bit
receive overrun error counter maintained by the 82586
in the SCD.

If the station is actively transmitting, '" of good frames
transmitted should be incrementing. If the station is
actively receiving frames, '" of good frames received
should be incrementing. In this continuous mode, a
user can see the activities of the network.

1-214

inter AP-274

j TIME BETWEENI FRAMES (Y) 1- TIME FOR ONE FRAME TRANSMISSION (X), •

r:::~}~-------<{::~P~R~EA~M~B~LE~.~D;A.:S~A:.~LE~N£GT~H~.~DA~T!A.~C~R~C: } <::::J
Network Percent Load = _x_

x+y

292010-15

Figure 13. Network Percent Load

Hitting any key on the keyboard while the program is
running in the Continuous mode will exit the mode.
The program will respond with a message 'Enter Com­
mand (II for Help) -+ '. In this Interactive Com­
mand Execution mode, a user can set up anyone of the
82586 action commands and/or execute anyone of the
82586 SCB control commands. Setting up a Dump
command and executing a SCB Command Unit Start
command will, for example, execute the Dump com­
mand. Display commands are also available to see the
contents of the 82586's data structure blocks. A display
command will enable a user to see the contents of the
82586's dump (see Section 6.3).

Typing 'E' after 'Enter command (H for help) -+ "
executing a SCB Command Unit Start command with a
transmit command, or executing a SCB Receive Unit
Start command will exit the Interactive Command Exe­
cution mode. The program will be back in the Continu­
ous mode. Using this Interactive Command Execution
mode, one can, for example, reconfigure the station and
come back to the Continuous mode. Section 6 lists ac­
tual example executions of the TSMS program.

The TSMS program should be run in an 8 MHz system.
The software running at 8 MHz with a maximum of 2
wait states has been tested and verified to be able to
receive back-to-back frames separated by 9.6 microsec­
onds and still keep track of the correct number of
frames received. This capability, for example, can be
used to find out exactly how many frames a new station
in the network had transmitted.

The software does not perform extensive loopback tests
and hardware diagnostics during the- initialization. A
loopback operation can be performed interactively in
the Interactive Command Execution mode.

The software allows a user to set up only 8 multicast
addresses maximum. It is not possible with this pro­
gram to set up more than 8 multicast addresses.

The command chaining feature of the 82586 is not used
in the Interactive Command Execution mode. Each
command setup performed by a'S' command after 'En­
ter command (II for help) -+ 'sets up a command
with its EL bit set, I bit reset, and S bit reset. Diagnose,
Configure, lA-Setup, and MC-Setup commands are
chained together during the initialization routine and
executed at once with only one CA.

The software sets up 5 Receive Frame Descriptors
linked in a circular list. Therefore, a user can see only
the last 5 frames the station has received. It also sets up
5 receive buffers, each being 1514 bytes long, linked in
circle. Therefore, the 82586 never goes into the NO
RESOURCES state.

4.3 Example Executions of the TSMS
Program

This section presents three example executions of the
TSMS program. When the TSMS program needs a
command to be typed, it asks a question with' -+ '.
Anything after' -+ 'is what a user needs to type in on
the keyboard. To switch from the continuous mode to
the interactive command execution mode, type any key
on the keyboard.

4.3.1 EXAMPLE 1: EXTERNAL LOOPBACK
EXECUTION

In this example, 500 external loopback transmissions
and receptions are executed (Figure 14). In order for
the software to process each loopback properly, a large
delay was given between transmissions.

4.3.2 EXAMPLE 2: FRAME RECEPTION IN
PROMISCUOUS MODE

The 82586 is configured to receive any frame that exists
in the network (Figure 15). In this example, the station
received 100 frames.

4.3.3 EXAMPLE 3: 35.7% NETWORK TRAFFIC
LOAD GENERATION

The station is programmed to transmit 118 byte long
frames with a time interval of 159.4 microseconds in
between (Figure 16). The network load is about 35.7
percent if no other stations are transmitting in the net­
work.

A key was hit to enter the Interactive Command Exe­
cution mode. In that mode, a Dump command was­
executed and the result was displayed. After the Dump
execution, a transmit command was set up again and
the station was put in the Continuous mode.

1-215

AP-274

Traffic Simulator and Monitor Station Program

Initialization begun

Configure command is set up for default values.
Do you want to change any bytes? (Y or N) ==> Y
Enter byte number (1 - 11) _a> 4
Enter byte 4 (4H) ._> A6H
Any more bytes? (Y or N) _a> Y
Enter byte number (1 - 11) _a> 11
Enter byte 11 (BH) _a> 6
Any more bytes? (Y or N) --> N
Configure the 586 with the prewired board addres~ _a> N
Enter this station's address in Hex •• > 000000002200
You can enter up to 8 Multicast Addresses.
Would you like to enter a Multicast Address? (Y or N) ==> N
You entered 0 Multicast Address(es).

Would you like to transmit?
Enter a Y or N --> Y
Enter a destination address in Hex ==> 000000002200

Enter TYPE _a> 0
How many bytes of transmit data?
Enter a number =-> 2
Transmit Data is continuous numbers (0, 1, 2, 3, •••)
Change any data bytes? (Y or N) ==> N
Enter a delay count -=> 10000000000
The number is too big.
It has to be less than or equal to 65535 (FFFFH).
Enter a number _a> 60000

setup a transmit terminal count? (Y or N) ==> Y
Enter a transmit terminal count ==> 500

Destination Address: 00 00 00 00 22 00
Frame Length: 20 bytes
Time Interval between Transmit Frames: 30.18 miliseconds
Network Percent Load generated by this station: .0'
Transmit Frame Terminal Count: 500

Good enough? (Y or N) ==> Y

Receive Unit is active.

Figure 14. External Loopback Execution

1·216

292010-16

inter AP-274

---Transmit Command Block---
0000 .at 033E
8004
FFFF
034E
2200
0000
0000
0000

Hit <CR> to countinue

transmission started!

**************************** station Configuration *************************

Host Address: 00 00 00 00 22 00
Multicast Address(es): No Multicast Addresses Defined
Destination Address: 00 00 00 00 22 00
Frame Length: 20 bytes
Time Interval between Transmit Frames: 30.18 miliseconds
Network Percent Load generated by this station: .0 %
Transmit Frame Terminal Count: 500
82586 Configuration Block: 08 00 A6 00 60 00 F2 00 00 06

***************************** station Activities ***************************

1# of Good 1# of Good CRC Alignment No Receive
Frames Frames Errors Errors Resource Overrun
Transmitted Received Errors Errors
500 500 a a a a

292010-17

Figure 14. External Loopback Execution (Continued)

1-217

inter AP-274

Traffic Simulator and Monitor Station Program

Initialization bequn

Configure command is set up for default values.
Do you want to change any bytes? (Y or N) .~> Y
Enter byte number (1 - 11) _a> 9
Enter byte 9 (9H) _a> 1
Any more bytes? (Y or N) ._> N
Confiqure the 586 with the prewired board address =z> Y
You can enter up to 8 Multicast Addresses.
Would you like to enter a Multicast Address? (Y or N) ==> N
You entered 0 Multicast Address(es).

Would you like to transmit?
Enter a Y or N =-> N

Receive unit is active.

**************************** Station Configuration ************************
Host Address: 00 AA 00 00 18 6D
Multicast Address(es): No 'Multicast Addresses Defined
82586 configuration Block: 08 00 26 00 60 00 F2 01 00 40

. •••••••••••••••• ********** Station Activities ********** •••••• **.*******

* of Good * of Good CRC
Frames Frames Errors
Transmitted Received
o 100 0
Enter command (H for help) ==>,D

Command Block or Receive Area? (R or C)
Frame Descriptors:

4000 at 036C AOOO at 0382 AOOO at 0398
0000 0000 0000
0382 0398 03AE
03DA 03E4 03EE
2200 2200 2200
2200 2200 2200
0000 0000 0000

Alignment
Errors

o

.. -> R

No
Resource
Errors
o

Receive
OVerrun
Errors
o

AOOO at 03AE
0000

AOOO at 03C4
0000

03C4 036C
03F8 0402
2200 2200
2200 2200
0000 0000

292010-18

Figure 15. Frame Reception In Promiscuous Mode

1-218

Ap·274

0000 0000 0000 0000 0000
0000 0000 0000 0000 0000
0000 0000 0000 0000 0000
0000 0000 0000 0000 0000

Receive Buffer Oescriptors:
C064 at 030A C064 at 03E4 C064 at 03EE C064 at 03F8 C064 at 0402
03E4 03EE 03F8 0402 030A
040C 09F6 OFEO 15CA 1BB4
0000 0000 0000 0000 0000
050C 050C 050C 050C 050C

Oisplay the receive buffers? (Y or N) ==> Y
Receive Buffers:

Receive Buffer 0 :
002C:014C 00 01 02 03 04 05 06 07 08 09 OA OB OC 00 OE OF
002C:015C 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 10 lE 1F
002C:016C 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 20 2E 2F
002C:017C 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 30 3E 3F
002C:018C 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 40 4E 4F
002C:019C 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 50 5E 5F
002C:01AC 60 61 62 63

Hit <CR> to countinue

Receive Buffer 1 :
002C:0736 00 01 02 03 04 05 06 07 08 09 OA OB OC 00 OE OF
002C:0746 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 10 1E 1F
002C:0756 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 20 2E 2F
002C:0766 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 30 3E 3F
002C: 0776 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 40 4E 4F
002C:0786 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 50 5E 5F
002C:0796 60 61 62 63

Hit <CR> to countinue

Receive Buffer 2 :
I

002C:0020 00 01 02 03 04 05 06 07 08 09 OA OB OC 00 OE OF
002C:0030 10 11 12 13 14 15 16 17 18 19 1A 1B lC 10 1E 1F
002C:0040 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 20 2E 2F
002C:0050 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
002C:0060 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 40 4E 4F
002C:0070 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 50 5E 5F
002C:0080 60 61 62 63

Hit <CR> to countinue

. Receive Buffer 3 :
002C:130A 00 01 02 03 04 05 06 07 08 09 OA OB OC 00 OE OF
002C: 131A 10 11 12 13 14 15 16 17 18 19 1A lB 1C 10 1E 1F
002C:132A 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 20 2E 2F
002C:133A 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 30 3E 3F
002C:134A 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 40 4E 4F
002C:135A 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 50 5E 5F
002C:136A 60 61 62 63

Hit <CR> to countinue
292010-19

Figure 15. Frame Reception in Promiscuous Mode (Continued)

1-219

inter AP-274

Receive Buffer 4
002C:18F4 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
002C:1904 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D lE IF
002C: 1914 20 21 \22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
'002C: 1924 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
002C:1934 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
002C:1944 50 51 52 53 54 55 56 57 58 59 SA 5B 5C 5D 5E SF
002C:1954 60 61 62 63

Hit <CR> to countinue

Enter command (H for help) ==> E

**************************** station Co figuration *************************

Host Address: 00 AA 00 00 18 6D
Multicast Address(es): No Multicast Addresses Defined
82586 cop figuration Block: 08 00 26 00 60 00 F2 01' 00 40

***************************** station Activities **************************

II of Good * 'of Good CRC Alignment No Receive
Frames Frames Errors Errors Resource OVerrun
Transmitted Received Errors Errors
a 100 0 0 0 0

292010-20'

Figure 15. Frame Reception in Promiscuous Mode (Continued)

1-220

inter AP-274

Traffic Simulator and Monitor Station Program

Initialization begun

Configure command is set up for default values.
Do you want to change any bytes? (Y or N) ==> N
configure the 586 with the prewired board address ==> Y
You can enter up to 8 Multicast Addresses.
Would you like to enter a Multicast Address? (Y or N) ==> N
You entered 0 Multicast Address(es).

Would you like to transmit?
Enter a Y or N ==> Y
Enter a destination address in Hex ==> FFFFFFFFFFFF

Enter TYPE ==> 0
How many bytes of transmit data?
Enter a number ==> 100
Transmit Data is continuous numbers (0, 1, 2, 3, •••)
Change any data bytes? (Y or N) ==> N

Enter a delay count ==> 0

setup a transmit terminal count? (Y or N) ==> N

Destination Address: FF FF FF FF FF FF
Frame Length: 118 bytes
Time Interval between Transmit Frames: 159.4 microseconds
Network Percent Load generated by this station: 35.7 %
Transmit Frame Terminal Count: Not Defined

Good enough? (Y or N) ==> Y

Receive Unit is active.

---Transmit Command Block---
0000 at 033E
8004
FFFF
034E
FFFF
FFFF
FFFF
0000

Hit <CR> to countinue

Figure 16. 35.7% Network Load Generation

1-221

292010-21

inter AP-274

transmission started I

**************************** station configuration ************************

Host Address: 00 AA 00 00 l86D
Multicast Address(es): No Multicast Addresses Defined
Destination Address: FF FF FF FF FF FF
Frame Length: 118 bytes
Time Interval.between Transmit Frames: 159.4 microseconds
Network Percent Load generated by this station: 35.7 %
Transmit Frame Terminal Count: Not Defined
82586 Configuration Block: 08 00 26 00 60 00 F2 00 00 40

***************************** station Activities **************************

of Good # of Good CRC
Frames Frames Errors
Transmitted Received
10459 0 0
Enter command (H for help) ==> H

- Commands are:

Alignment
Errors

o

S - setup CB
P Print SCB

D - Display RFD/CB

L ESI Loopback On
A Toggle Number Base

C - SCB Control CMD
N - ESI Loopback Off

Z Clear Tx Frame Counter
Y Clear Rx Frame Counter
E Exit to continuous Mode

Enter command (H for help) ==> S

Enter command block type (H for help) ==> H

Command block type:
N - Nop I - IA setup
C - Configure M - MA setup
T - Transmit R - TDR
D - Diagnose S - Dump status
H - Print this message

Enter command block type (H for help) ==> S

Enter command (H for help) ==> C

No
Resource
Errors
o

Do you want to enter any SCB commands? (Y or N) ==> Y
Enter. CUC ==> 1
Enter RES bit ==> 0
Enter RUC ==> 0
Issued Channel Attention

Enter command (H for help) ==> D

Figure 16.35.7% Network Load Generation (Continued)

1-222

Receive
Overrun
Errors
o

292010-22

inter AP-274

Command Block or Receive Area? (R or C) ==> C
---Dump status Command Block---
AOOO at 0364
8006
FFFF
27D6

Dump status Results
at 27D6

00 E8 3F 26 08 60 00 FA 00 00 40 FF 6D
AA 00 40 20 00 00 00 00 FF FF FF FF B5
62 63 3F BO 00 00 00 00 00 00 00 00 FF
00 00 00 00 00 00 00 00 00 00 00 00 70
DC 05 00 00 OC 04 DC 05 E4 03 DA 03 DA
82 03 6C 03 F8 03 64 80 D6 27 E8 21 FF
06 80 FF FF 64 03 00 00 D2 02 00 00 00
00 00 D6 27 00 01 00 28 00 00 00 00 30
20 00 40 06 30 01 00 00 90 00 10 01 00
00 00 6A 03 OE 00 6C 28 00 00 74 03 00
00 00 00 00 00 CO 00 00 00 00

Enter command (H for help) ==> S

Enter command block type (H for help) ==> T
Enter a destination address in Hex ==> FFFFFFFFFFFF

Enter TYPE ==> 0
How many bytes of transmit data?
Enter a number ==> 100

18
9E
85
03
03
FF
00
26
00
00

Transmit Data is continuous numbers (0, I, 2, 3, ..•)
Change any data bytes? (Y or N) ==> N

Enter a delay count ==> 0

Setup a transmit terminal count? (Y or N) ==> N

Destination Address: FF FF FF FF FF FF
Frame Length: 118 bytes

00
EE
08
06
78
4E
00
00
6C
00

Time Interval between Transmit Frames: 159.4 microseconds
Network Percent Load generated by this station: 35.7 %
Transmit Frame Terminal Count: Not Defined

Good enough? (Y or N) ==> Y

Enter command (H for help) ==> C

Do you want to enter any SCB commands? (Y or N) ==> Y
Enter CUC ==> 1
Enter RES bit ==> 0
Enter RUC ==> 0
Issued Channel Attention

00
CF
FC
00
05
03
00
00
03
00

Figure 16.35.7% Network Load Generation (Continued)

1-223

292010-23

inter Ap·274

**************************** station Configuration *,***********************

Host Address: 00 AA 00 00 18 60
Multicast Addressees): No Multicast Addresses Defined
Destination Address: FF FF FF FF FF FF
Frame Length: 118 bytes
Time Interval between Transmit Frames: 159.4 microseconds
Network Percent Load generated by this station: 35.7 %
Transmit Frame Terminal Count: Not Defined
82586 configuration Block: 08 00 26 00 60 00 F2 00 00 40

***************************** Station Activities **************************

of Good # of Good CRe Alignment No Receive
Frames Frames Errors Errors Resource Overrun
Transmitted Received Errors Errors
106020 0 0 0 0 0

292010-24

Figure 16. 35.7% Network Load Generation (Continued)

5.0 IN CASE OF DIFFICUL TV

This section presents methods of troubleshooting ("de­
bugging") a LANHIB board. When a LANHIB board
is powered up with the TSMS program stored in
EPROMs, it should display "TRAFFIC SIMULA­
TOR AND MONITOR STATION PROGRAM"
message on a terminal screen. If the message is not
displayed, the board has to be debugged. Section 5.1
describes basic- 80186/82586 system troubleshooting
procedures. Section 5.2 is for troubleshooting 82501
and 82502 circuits. After the 80186/82586 system is
debugged, the 82501/82502 circuits have to be tested.

5.1 Troubleshooting 80186/82586
System

Shown in Figure 17 is a flow chart for troubleshooting
80186/82586 system. The procedure requires an oscil­
loscope. A logic analyzer is needed if problems appear '
to be serious. The procedures will de~ug the board to
the point where the 82530 is initialized properly. If the
82530 can be initialized properly, ROM and RAM in­
terfaces must be functioning. Board initialization rou­
tines (INIl86.PLM) linked to the TSMS program re­
quires ROM and RAM accesses. Since the '82586
shares most of the system with the 80186, no special
debugging is required for the 82586. Wiring of all
82586 parallel signal pins should, however, be checked.

The flow chart branches to two major paths after the
first decision box. One path debugs the RS-232 channel

and the other debugs the 80186/82586 system. The
waveform of the TRXCB output of the 82530 deter­
mines which path to be taken. If the 82530 is getting
programmed properly, there should be 153.6 KHz
(1/f = 6.51 p.s) clock on this output pin. If there is a
clock, the problem is probably in the RS-232 interface.
If there is no clock, then the system has to be debugged
using a logic analyzer.

'5.2 Troubleshooting 82501/82502
Circuits

If the TSMS program runs on the LANHIB but the
82586 is not able to transmit or receive, there must be a
problem in 82501/82502 circuits. The flow chart in
Figure 19 will guide troubleshooting in these circuits.
An oscilloscope is required.

The board should be configured to Cheapernet and dis­
connected from the network. Two terminators will be
required to terminate a "T" BNC connector providing
an effective load resistance of 250 to the 82502.

The 82586 must have the system and transmit clocks
running upon reset. Since the transmit clock is generat­
ed by the 82501, the 82501 transmit clock output pin
(pin 16) should be checked. The TSMS program exe­
cutes 82586's Diagnose, Configure, lA-Setup, and MC­
Setup commands during initialization. If the 82586 has
active CRS (Carrier Sense) signal, it cannot complete
execution of these commands. The 82501 should, there­
fore, be checked if it is generating inactive CRS signal
to the 82586 after power up. The LANHIB powers up
the 82501 i~ non-Ioopback mode.

1-224

AP-274

After making sure that the 82501 is generating proper
signals to the 82586, the TSMS program is restarted
with an initialization shown in Figure 20. The 82586 is
configured to EXT-LPBK= 1, TONO-CRS= I, and
MIN-FRM-LEN=6. The chip is also loaded with a
destination address identical to the source address. If
there are no problems in the 82501/82502 circuits, the
station will be receiving its own transmitted frames. If
problems exist, the station will only be transmitting.
Since the 82586 is configured to TONO-CRS (Trans­
mission On NO Carrier Sense), the chip will keep trans-

(START)
I

YES IS "TRAffiC SIMULATOR AND NO - MONITOR STATION PROGRAM"
MESSAGE ON CRT?

mitting regardless of the state of carrier sense. The
82501/82502 circuits can then be probed with an oscil­
loscope at the locations indicated in Figure 21. Probing
will catch problems like wiring mistakes, missing load
resistors, etc.

Once the station is debugged, it can be connected to the
network. If there is a problem in the network, the
82586's TDR command can be used to find the location
and nature of the problem.

(HAVE AN OSCILLOSCOPE READY)

(START DEMO) CHECK CLOCK WAVEFORM ON THE
TRXCB PIN(PIN 26) OF THE 82530

~ USING AN OSCILLOSCOPE. NO

IS IT 153.6KHz(l/f=6.51 J.Lsec.}
SQUARE WAVE? (A LOGIC ANALYZER

MAY BE REQUIRED.)

CHECK RS-232 DRIVER & CHECK CLOCK WAVEFORM ON THE
RECEIVER CHIPS. ARE THEY FOLLOWING PINS:
CONNECTED PROPERLY? NOTE 1. CLKOUT PIN(PIN 56} OF B0186
THAT THE 1488(75188) THIS SHOULD BE 8 MHz 50% DUTY
REQUIRES +12V & -12V AND CYCLE MOS CLOCK.
THAT THE 1489(75189} 2. CLK PIN(PIN 32} OF 82586.
REQUIRES ONLY +5V. THIS CLOCK IS PROVIDED BY 80186.

"-
3. CLK PIN(PIN 20} OF 82530.

THIS SHOULD BE 4 MHz CLOCK.

CHECK RS-232 DCE & DTE "-CONNECTIONS. THE LANHIB IS
A DCE AND AN ASCII TERMINAL CHECK SIGNAL LEVELS OF THE FOLLOWING
IS A DTE. ONLY PIN2(TXD}. 80186 INPUT PINS.
3(RXD}. AND 7(GROUND} ARE 1. RES PIN(PIN 24} SHOULD BE HIGH
USED. AFTER POWER UP RESET.

"-
2. NMI PIN(PIN 46) SHOULD BE LOW.
3. SRDY PIN(PIN 49} SHOULD BE HIGH.

CHECK CONFIGURATION OF THE
4. ARDY PIN(PIN 55) SHOULD BE HIGH.
5. HOLD PIN(PIN 50} SHOULD BE LOW.

ASCII TERMINAL. BAUD RATE 82586 IS NOT INITIALIZED YET.
SHOULD BE SET TO 9600.
ALSO 8 BITS/CHAR. NO PARITY.

ctJ AND 2 STOP BITS/CHAR.

"-
(START DEMO)

292010-25

Figure 17. Flowchart for 80186/82586 System Troubleshooting

1-225

CONNECT A LOGIC ANALYZER ON THE
MULTIPLEXED BUS.

1. CONNECT ADI5-ADO, ALE, RD, WR, ROMHI
ROMLO, RAMHI, RAMLO, AND CS PIN(PIN 33)
OF 82530.

2. USE CLKOUT OF 80186 TO CLOCK THE
LOGIC ANALYZER. SAMPLE DATA ON RISING
EDGES.

3. TRIGGER THE LOGIC ANALYZER ON ALE
BECOMING HIGH.

SHOWN IN FIGURE 18 IS AN EXAMPLE OF A
LOGIC ANALYZER TRACE. COMPARE WHAT'S
OBTAINED TO THE ONE IN FIGURE 18.
II' DIFFERENT. POSSIBLE PROBLEMS ARE:

1. HIGH BYTE EPROM AND LOW BYTE EPROM
ARE SWAPPED.

2. ADDRESS/DATA LINES ARE NOT CONNECTED'
PROPERLY.

3. ADDRESS DECODE PAL IS NOT PROGRAMMED
PROPERLY.

etc.

CHECK II' 82530 IS GmlNG INITIALIZED PROPERLY
ON THE LOGIC ANALYZER. TRY OTHER LOGIC
ANALYZER TRIGGERING EVENT, 8.g. CS PIN(PIN 33)
OF 82530 BECOMING LOW. ,
MAKE SURE THERE IS 153.6 KHz(l/f= 6.51 },S8C.)

SQUARE WAVE ON TRXCB(PIN 26) OF 82530.

292010-26

AP-274

~
CHECK RS-232 DRIVER lie
RECEIVER CHIPS. ARE THEY
CONNECTED PROPERLY? NOTE
THAT THE 1488(75188)
REQUIRES + 12V lie -12V 'AND
THAT THE 1489(75189)
REQUIRES ONLY +5V.

.1-
CHECK RS-232 DCE lie DTE
CONNECTIONS. THE LANHIB IS
A DCE AND AN ASCII TERMINAL
IS A DTE. ONLY PIN2(TXD),
3(RXD), AND 7(GROUND) ARE
USED.

.1-
CHECK CONFIGURATION OF THE
ASCII TERMINAL. BAUD RATE
SHOULD BE SET TO 9600.
ALSO 8 BITS/CHAR, NO PARITY,
AND 2 STOP BITS/CHAR •

.1-
(START DEMO)

Figure 17. Flowchart for 80186/82586 System Troubleshooting (Continued)

1-226

292010-27

AP-274

.-------- AD15-ADO
.------- ALE
,-----RD#

jjj ~~~: 1 rn~EA" .~m ~. Sa=

. ,.....-, 1 r ~ ~~~L~~ (PIN 33) OF 82530

009700 41 01001111
00980041 01001111
009900 41 01101111
TRIG 0041 11101111
0101 FF FO 01001111
010206 EA 00101111
010306 EA 00101111
010406 EA 00101111
010506 EA 00101111
010606 EA 00101111
010706 EA 11101111
0108 FF F201101111
0109 CO 40 00101111
0110 CO 00 00101111
0111 CO 00 00101111
0112 CO 00 00101111
0113 CO 00 00101111
0114 CO 00 11101111
0115 FF F401101111
0116 FF FF 00101111
0117 FF FF 00101111
0118 FF FF 00101111
0119 FF FF 00101111
0120 FF FF 00101111
0121 FF FF 11101111
0122 FF F6 01101111
012300 40 00101111
0124000000101111
0125 00 00 00101111
0126 00 00 00101111
0127000000101111
0128 00 00 11101111

· LOGIC ANAL VZER IS TRIGGERED ON ALE = HI.
· 80186 JUMPS TO FFFOH AFTER RESET.
• JMP INSTRUCTION (DIRECT INTERSEGMENT)

SEGMENT OFFSET = 0006H
SEGMENT SELECTOR = FFCOH
(80186 INSERTS 3 WAIT STATES BEFORE
UMCS REGISTER IS PROGRAMMED.)

0129 FC 06 01101111 JUMPED TO FC06H
0130 2E FA 00101111
0131 2E FA 00101111
0132 2E FA 00101111
0133 2E FA 00101111
0134 2E FA 00101111
0135 2E FA 11101111
0136 FC 08 01101111
0137 16 8E 00101111
0138 16 8E 00101111

Figure 18. Example of Logic Analyzer Trace.

1·227

292010-28

AP-274

(START

1
)

DISCONNECT COAX. PUT TERMINATORS ON
BOTH ENDS OF "T" CONNECTOR. MAKE SURE
THE BOARD IS CONFIGURED TO CHEAPERNET.

UPON POWER UP, DOES
82501 GENERATE:

r-____ -"'YE;;.;S~ 1. 10 101Hz Tx C AND R x C .. N;..O __ .,

I TO 82586?
2. INACTIVE CRS

I RUN TSMS PROGRAM. I TO 82586?
'--~-~...-----.....

WHEN A TRANSMISSION IS
~ ATIEMPTED, DOES THE TSMS' ~

PROGRAM DISPLAY "NO
CARRIER SENSE" MESSAGE?

POWER DOWN AND RE­
START TSMS PROGRAM
WITH 82586 CONFIGURED
TO:

82501/82502 CIRCUITS
MUST BE WORKING O.K.
IF THE STATION IS STILL
NOT RECEIVING, CHECK
STATION'S DESTINATION
AND SOURCE ADDRESSES,
CONFIGURATION OF 82586.

I MAKE SURE THE 82501 IS I
POWERED UP IN NON­
LOOPBACK MODE.

1. EXT-LPBK = 1
2. TONO-CRS = 1
3. MIN-FRM-LEN = 6

EXECUTE LOOPBACKS BY
USING DESTINATION ADDR
SAME AS SOURCE ADDR.
TRANSMIT ONLY A FEW
DATA BYTES.

AN EXAMPLE EXECUTION
IS SHOWN IN FIGURE 20.

IF THE STATION IS NOT
RECEIVING WHILE IT'S
TRANSMITIlNG, THERE IS
A PROBLEM. PROBE
SIGNALS AT LOCATIONS
SHOWN IN FIGURE 21.
IT'S PROBABLY A WIRING
PROBLEM.

I

(BOARD SHOUtD BE FUNCTIONAL.)

Figure 19. Flowchart for 82501/82502 Circuits Troubleshooting

1-228

292010-29

AP-274

Traffic Simulator and Monitor Station Program

Initialization begun

configure command is set up for default values.
Do you want to change any bytes? (Y or N) =~> Y
Enter byte number (1 - 11) ==> 4
Enter byte 4 (4H) ==> A6H
Any more bytes? (Y or N) ==> Y
Enter byte number (1 - 11) =-> 9
Enter byte 9 (9H) ==> 08H
Any more bytes? (Y or N) ==> Y
Enter byte number (1 - 11) ==> 11
Enter byte 11 (BH) ==> 6
Any more bytes? (Y or N) ==> N
Configure the 586 with the prewired board address ==> N
Enter this station's address in Hex ==> 000000002200
You can enter up to 8 Multicast Addresses.
Would you like to enter a Multicast Address? (Y or N) ==> N
You entered 0 Multicast Address(es).

would you like to transmit?
Enter a Y or N ==> Y
Enter a destination address in Hex ==> 000000002200

Enter TYPE ==> 0
How many bytes of transmit data?
Enter a number ~=> 2
Transmit Data ie continuous numbers (0, 1, 2, 3, •.•)
Change any data bytes? (Y or N) ~~> N
Enter a delay count ==> 0
setup a transmit terminal count? (Y or N) ==> N

Destination Address: 00 00, 00 00 22 00
Frame Length: 20 bytes
Time Interval between Transmit Frames: 159.4 seconds
Network Percent Load generated by this station: 11.0 %
Transmit Frame Terminal Count: Not Defined

Good enough? (Y or N) ==> Y

Figure 20. TSMS Initialization for 82501/82502 Circuits Troubleshooting

1-229

292010-77

"1'1
iFi
c
~
~

a
0'

, ~.

~ ~
o ~

co
~
~

~ c ;:

I

I
I

I

I

I

+12V

OV

,

7

TXD
27 \,,=

TXC
26 16 TXC

RXD
25 9 RXD

RXC
23 8 RXC

82586

CRS
31 6 CRS

\ 30 7 cor COT

RTS
28 15 TEN

r- LPBK

0°
LPBK COMMAND
FROM I/O PORT

NOTE:
Numbers are probing sequence.

12V T I ISOLA TED I
:~;:'i~ I

1 M.I1,1/4W, 750V(MIN)

m~"\
.O.017~

240.11 . 240.11

·~lIf·
TRMT

10 \

V t~
RCV 4

0.22J'F

\ lit 82501 • ESI 78.11

RCV 5

12
CLSN

·~II~· 78.11

CLSN
11 \

\ 1

10V

t 5V

t

II

o,l~F
~t;-

t"7ol

*
8 91 16

Vss AVss Vee AVec

2 TRMT VDD
14

78.11

3 TRMT CXTD
15 I~ I~

5V
,

* 43.11 4 82502 12
RCV ETC CXRD

100.11
43.11 FUSIBLE

1/8W

5 RCV

5V NC~
1143.11 7

CL5N

h HBD
43.11

6 CLSN

1

243.!l
0.5"

'7

5

50.11

l/~~ BNC
''T'' CONNECTOR

~.22J'F ~

~ 50.11
TERMINATOR

292010-30

l

~
"a
I

N
......

inter Ap·274

APPENDIX A
LANHIB SCHEMATICS

PARTS LIST
PAL EQUATIONS

DIP SWITCH SETTINGS
WIRE WRAP SERVICES

1-231

r\)

~

REFERENCES
Ul
U2
US. U4
US
U6.U7
U9
U9
UI9
Ull
U12. U27
U29
ula
UI ...
UI6
Ul6
UI7
U19~ U20
u26
U22. U2-:-
U2 ...
U25
U29
US9
ual
U .. 2
RI-RS. R6
R19. R20
R ...
RS
Ri'. Re. R12
R9. Ria
RII

Rla-R16
RI?

RI9
R21. R22
RPI
R2a-R26
CL C2
C3
C4. C5
C6
C?
CILCI2
cia
C9. C9
CRI
CR2. eRa
'II

'12

PARTS LIST

DESCRIPTION
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
Pulse Transror •• r Pack
IC
DC/DC Convert.er
IC. 6"'K-Blt EPROM
IC
IC. SRAM
IC. 2S6-Blt PROM
IC
IC
IC
IC
IC. 1M-Bit EPROM (0 tional>
Resistor. 10K ohm. 11'41.L 5;(

Resistor. leeK OJUI. I/ ... ~. 5?
Resistor. 2.2K ohm. 1/4101. 5:(
Resistor. 78.7 ohm. 1;8 IX
Resistor. 249 ohm. 1 041.1. 5:-:
Resist.or. 1M oltro. 11"4101,
7S0Udc (min). 5?
Resistor. 43.2ohm 11'8101. I?
Resistor. tee ohm. Fu.sibl.
1/911. SOl
Resistor. 243 ohm. 11811. 0.6~

Resistor. 5K ohm. U"'". 5~
Recsistor Pack. lK ohm. 16 in
R.sistor. lK oJu •• 1/ ... 11. SOl
Ca acU·or. 20 F. 1011U. SOl
Ca aoit.or. lauF. 29U
Capacitor. ae F. 19aU. SOl
Capaoit.or~ e.e22uF~ SBU
Capacit.or~ l.euF~ 5BU
Capacitor~ e.81uF_ S0U
C~acitor~ e.81uF~ 2KU
Ca acitor. e.22uF. 50U
Diode
Diod~
Pa~all.1 Resonant C~vstal#
16r1 Hz
Parall.1 R~sonant. Cr~.t.al.
29M H%

~~:T NO
M R.
CODE QTY.

74532 OBD I
?4LS94, OBD I
74LS24S OBD 2
74Fa7a OBD I
7 ... LSa?S OBD 2
811186 INT 1
82586 INT 1
16L8 OBD 1
7 ... LS1I2 OBD I
74LS7-4 OBD 2
74AS?4 OBD 1
?4LS165 OBD 1
925111 INT I
PE6 ... 192 PE I
92502 INT I
PE6 ... S69 PE 1
276"'-29 INT 2
7<IAS08 OBD I
HIt626"'-IS HIT 2
TBPI9S9a9 TI I
74AS04 OBD I
82sall INT I
1-489 OBD I
1-488 OBD I
27210 INT I
COItL OBD 6

COItL OBD I
COML OBD 1
COItL OBD 3
COML OBD 2
COML OBD I

COML OBD ...
COML RCD I

COItL OBD I
COML ODD 2
COML OBD I
COItL OBD ...
COML ODD 2
COML OBD I
COItL ODD 2
COItL OBD I
COItL ODD I
COItL OBD 2
COML· OBD I
COML OBD 2
lN914 OBD I
INS292 OBD 2
COML OBD 1

COML OBD I

I

;:::§ I'''' PI':'.. +5'-' PI-91

:~=: ~ 2. 2~F I ~2~F 12M § :~=:; ,,-. r:.. I'" r ,,-,.
PI-I § § PI-7S PI-2 Pl-?6

PI-ll 2. 2uF Pi-8S
PI-12 I20U PI-S6

NOTES:

-12U ~PI-79
PI-se

POWER SUPPLY COtlHECTIOItS.

I. THE BOARD REQUI~ES +SU. +12U. AND·-12U.
MULTIBUS PO~ER PINS FOR THESE VOLTAGES AND
GROUND ARE SHOUN ABOVE.

2. EACH Ie SHOULD HAVE A 0.1u'f' CAPACITOR BETUEEN
POIIER PIN AND GROUND PIN. PARTS LIST DOES
NOT INCLUDE DECOUPLIHG CAPACITORS.

3.
nTR.
CODE nANUFACTURE LOCATION

292010-78

l

:J>
'U

I
N
",.

N
(,)
(,)

68&A[RpDVa. 4[t 21 IRS

[P 4] 2.2K l

svs eLK 82 R2&

!!.Y J1!!1 ~:S:;~~I z lK

~
~ 7"Lse.. I . 'R6 ,---=--R26 --------,

, S" ~_ 'fS'C'H 26 1 U -~ 36 eA 1 BII ?4JF3?3
749.2 I:~ ~ 88186 lim'" 14:"ESET MN/ifOll- ~ ~ ff- ,..--_-"n,,-_===_-, .. p- 1.!1, - a71:RDY/SRDY "" .. 2D 20 If-----l ~ _.1

r 6 Ul 6 ~ IHTI 052 46 A21 ~ HI 7 3n SQ 6 LHI 9 ..w
I ~ IHT2/T'R'fA1' a 45 A2B!-- • 8 4D 4Q 9 e 1-1~,~ ... [",P",2-'t' ~

49 RDY CLlc:our66 92 LK A192 A19 AIS 13 6D 50 12 LA19 '1 #
74L8B4 ARDY 6& RDY INfa 4& 1861NTB 3a INT AlB a AI8 IU814 6D 60 15 LA18 1& ...!.2.._
4 3 27 74882 AI?" A17 A1? 17 7D 7Q 16 LA1? 5 ; 13 JmR

U2 41 IHTS/'Y'R'!1iT ALE 1 186AL~2 B2S86 A16 6 A16 A1618 8D 8Q 19 A16... ~~18iIBd
67 ESET A19mAI l Ul a AD1560 AD16 ~ G ac p.!.-~A15 a 17 MH

'I'N!'AT II 28 AlB 6 Al ~~LE AD14 AD14 ~ 19 t1
CPSl I 29 AI? '1 A1 686ALE I ADIS AD1S ~ ---l....- 12 I ~~ A16 68 Al [P 2] AD12 AD12 Ule

f'n'IISIR' [P21 81 R ADl6 1 ADt AD11 10 ADII 7 ... L8873 -
1"'A1fOM [P4J I 82 ADt4 AD14 ~ 2a7 AD1S II AD1S ADlsa ~ 2 AtS I ~ ADla ADta 31 AD9 IS AD9 AD144 10 lQ rt- A14
~ CPS] ~ AD12 AD12 SS6RxD 25 xD ADS 14 ADS AD1S?;:;~ Ii Ala RAtIBUS CP 4

CPS] -!! nr ADll IS ADll a8 AD? 15 AD? AD1ZS 9 A1Z
DRQl CPS] ~ 7 ADUJ 12 AD10 ADG IS ADS ADlllS:D 4Q 12 All
DRaB CPS] l ~ ri AD9 14 AD AD5 I? ADS ADl014 ,: :~ 15 AlO

I ~ ~ ADa ~ AD41B AD4 ADS l??D ?Q 16 A9 ROHBUS [P ~n
+$V 19 RQl AD? ~ S86SB ADS IS ADS ADB 18 19 AS t 19 DRQe AD6 ~ ~ . AD2 20 AD2-J!.!!..!.:D ~~"-.L

1 a ~HMI ADS ~ AD121 ADI r----
R2 R3 ~ MROUTI AD4~ I""......... ADB22 ADB ~

lBk 1Bk ~ MROUTO ADa~ ~ 261'1")(1;; ?~

rr==;:~'~~~'~~§R!3~~1211~M~R~I:NI AD2~ 28 r~ AD?a ~ 2 A? R2 28 rNR I NO AD 1 ~ 586TxO 2? floCD AD6 4 ~D ~Q !S.AI'~~~~ 2 _ ADO ~ 29 :n - RIi ~ ADS 7 aD 30' AS
4? '_~~'" RR~..l... DT/1£ ~ AD48 40 4Q S A4

a Xl S9 X1 DT/1£ 48""" ADS 19 50 SQ 12AS
£ 'Ill HLDA 1 HI 42 LDA ADZ 14 60 6Q 15A2 c::: 16 Mhz ~X2 U8 HOLD B HOLD 4a OLD J"HE'44 ADI 1??0 ?Q tGAl
1 X2 I DTI U9 ADO 18 80 8Q t9A8

, CI I, C2 ADIIU OS '---'!.!!.!.L 6 ac ~ ADDRESS
20Pf~ lZBPf ~ [P 9.4.5.6l

3: :I ~ ?4LS24S -----
ADB 2 AI BI ~ ADB 2 ~ 18 De DATA [P 2.3 5.6l

..& ADS a A2 12~1? D9 ADI a A2 12~
AD1S 4 Aa 13 16 Dl AD2 4 Aa 13 ~

'-!_.--=+",S",U_-, ADU 6 A4 I .. ~ ADS 6 A4 14 ~
. AD12 6 A6 16 ~ AD4 6 A5 IS ~

1 ADla ? A6 16~ ADS? A6 16~
21N91.. R4 AD14 8 A7 17 ~ AD6 B A7 I? ~

cr1 lBBk AD16 9 A8 IB ~ AD? 9 A8 18 ~

, • '--IT ~IR +. ~IR
, , C3 '---'-"c~ ---'-'c ~

~Y'··'
292010-79

(

~

" I
N

N
c.J
-I:>-

RPI
lkOHMS

5"2

SYS eLK [PI.5]

DATA

S86ARD'J

~
~

•

[Pl]

9.22u.F

292010-80

(

»
'U
I

N
~

N
Ul
(J1

DATA (D1S-DB) [Pl.41

ADDRESS (A14-AU

RD [Pl .. 4 .. 51

RIlt1IIUS [P

[PI. 41

2764-28
At 18 e 08 11 DB
A2 9 1 01 12 09
AS 9 2 02 13 Ole
A-4 ;0 9 03 16 011
AS £. .. 0... 16 D12
AG S S as 17 D19
Ai' .. 6 06 18 Dl
AS :3 ,. 07 19 015
AS 25 8
Ale 24 9
All 21 19
A12 23 11 UPP~
Ata 2 12
At.. 26 Ala

28

RD~22--
27 " . uta

2764-20
At 19 r:-;--o; 11 De
A2 9 1 01 12 09
AS e 2 02 13 Ole
~Aa 03 15 D11

AS 6 0'"' 16 D12
AG 6 5 05 17 DIS
Ai' .. 6 06 18 D14
AB a 7 07 19 DIS
AS 25 a
AU' 24 9

I :~i ~~ :~ UPP~
A13 2 12
At'" 26 Ala

28 bOP"
I R 2210t

27 ran UJ9

00 11 De
01 12 Dl
02 13 D2
03 15 DS
04 16 D4
05 17 DS
06 19 D6
07 19 D7

~
At 18 AS
A2 9 Al
AS B A2
A4 7 a
AS 6 ..
AG S AS
Ai' .. 6
A8 3 A?
AS 25 8
Al8 24 AS

:~~ ~~ :!~ UPP~
Al3 2 AI2
At .. 26 Ala
OM 28

22
27

276""-29
At 19 00 11 De
A2 9 01 12 Dl
lAg e 02 13 D2
A..;o 03 15 D3
AS 6 ... 04 16 0-4
AG S S as 17 D5
IA; ... 6 06 18 06
AS 3 A7 07 19 D?
AS 25 9
Ale 24 9

::; i~ A!~ UPP~
Ala 2 A12
At'" 26 Ala

29 c
22 E

292010-81

l

:roo
"D
I

N

N
w
0)

ADDRESS ---

if»" [PL3.S1

OR [Pt.S]

RAHBUS [PI]

_0.- .. _-(A13-All
+SU

. . ,.
10K

2 HM6264P-1S

~~19 D.S
Ala 2 A12 107 18 D.4
Al2 23 All 106 17 D13
All 21 A10 105 16 D12
Ale 24 A9 104 15 DI1
A9 25 A8 103 13 Dl.
A. a .7 102 12 D.
A7 4 A. 101 11 DS
AO S AS
AS G A4
A4 7 A3
A3 S A2
A2 • Al ., 10 Ae

27 UE • 12. 1

--..!!E... lot

.
.2 •
10K

2 HM6264P-lS

~~t9 D7
AI3 2 A12 107 18 D.
Al2 23 All IDS 17 DS
All 21 Ale 105 16 D4
AtB 24 A9 104 15 Da
AS 25 AS 103 13 D2
A8 a A7 102 12 Dl
A7 4 AO 101 11 D.
AG S AS
AS G A4
A4 7 Aa
Aa S A2
A2 • .,
•• 10 A0

27 \.IE
A 20 CSt iDE ~

lARD"
1974S32

D • Ul

D7 •
D. 7
DS 0
D4 S
Da 4
D2 •
Dl 2
D. 1

~

8 Gil

[Pll

TBP18S030

.7 A4 14 AS

•• A3 13 A4

OS A2 12 AS

04 Alii A2

oa A0 te Al

02 .,
o.

G U24

DATA (D15 De:

292010-82

cl

):10
"U
I

N

ro
Co)
-...I

DA'M (D7-DIU

~[P2]

n [P "

74Ase ..
RESET [P II 'f:::,.; 1!Rrf

D74
~26 D6S? DB7

DB6
DBS
DB4
DBa
DB2
DBI
DBB

Dsa
n<4S8
D92
D239
Dll
DB4B

36 n
~ [P " .. 704ASBB ADDRESS A2 ~~!e"lr

[P t 1 5 U26 6 CSS633 B
Al 32 D"'~

9 DRa, [P "

U26

+6u 53BCLIC

TN'IAT [P II
svs eLK [P 1]

R21 t. _"-212 +SU

INTI [P IJ 74ASB4 1 I !~- I
~13 R22!~

U26 SK

74AS84
URQe [P 1] ~~!~I------------------------~

U26

lA

1489

USB

IS
,2
11
'B
9
B

.... ----=n
.K

R24
~
'K

R26
~
IK

CONI
I,.

l-B9

292010-83

l

»
'U .
I\,),
""'

inter AP-274·

OPTlotIAL 1ttEG (64)(.. 16) WOIID-NIDE EPRDI1

ADDRESS (A16 AU - 21218
LA1691 1& 01& 8 ml&

A1686 14 014 4 D14
A1486 19 019 DIS
Ala 94 12 012 6 m12
A1293 11 011 1 mu
A1192 Ie 018 Die
Ale 91 9 08 D9
A9 28 8 0818 D8
A8 28 A1 0112 D1
A? 21 A6 0613 D6
A6 26 6 ~&:: ~: A6 26 4
.. 4 24 9 OS 16 D8
AS 23 2 0211 D2
A2 22 I 0118 ml
AI 21 e 011 ~9 De

S9 "'fi.I
aH/C m!~

U92
n
ROI1BUS 'PI

Module Addr_dec
Title "LANHIB Address Decode Logic

Kiyoshi Nishide Intel Corp. March, 1986'

"Declarations

PALl

AO. A14, A15
A16. A17. Al8
A19. BHE
HLDA. 52
RAMLO, RAMHI
ROMLO. ROMHI
ROM
RI04

Equations

pin
pin

pin
pin
pin
pin

device

pin
pin

13 ;
16 ;

DATA (DiS-DB)

'P16L8' ;

I, 2, 3;
4 •. 5. 6;
7. 8;
9, 11;
18. 17;
19, 12;

!ROMHI = A15 &: A16 &: A17 &: A18 II: A19 &: (HLDA # 52) II: RI04;
!ROMLO = !A15 &: A16 II: A17 II: A18 II:A19 II: (HLDA # 52) II: RI04;
!ROM = A17 &: A18 II: A19 II: (HLDA # 52) II: !RI04;

292010-84

!RAMHI !A14 &: !A15 II: !A16 &: !A17 II: !A18 &: !A19 II: !BHE II: (HLDA # 52);
!RAMLO = !AO &: !A14 II: !415 II: !A16 II: !A17 II: !A18 &: !A19 II: (HLDA # 52) ;

End Addr_dec

PAL Equations

1-238

inter AP-274

DIP SWITCH SETTINGS FOR
VARIOUS OPERATIONS

"I" indicates ON (Switch is closed).
"0" indicates OFF (Switch is open).
"X" indicates Don't Care.

1. To configure the board to Ethernet or Cheapernet:

SW3
Comment 87654321

Ethernet XXOOOOOO
Cheapernet XX111111 Transceiver Cable should

not be connected.

2. To run the TSMS program or the Data Link Driver
program'

SW4
Comment 87654321

TSMS Program XXXXOO01 TSMS program uses
or the 82530 in
Data ~ink Driver Asynchronous Polling

Program mode. Data Link Driver
program uses the
825830 in
Asynchronous Polling
and Vectored Interrupt
modes.

3. To select the 2764-20 EPROMs or 27210 EPROM:

SW3
87654321 .

2764-20 EPROMs OXXXXXXX
27210 EPROM 1XXXXXXX

4. Dip Switch Setting Examples:

SW3 SW4
87654321 87654321

1) To run the TSMS Program OX111111 XXXX0010
from the 2764-20 EPROMs
in Cheapernet Configuration

2) To run the TSMS Program OXOOOOOO XXXX0010
from the 2764-20 EPROMs
in Ethernet Configuration

S) To run the TSMS Program 1X111111 XXXXOO01
or the Data Link Driver
program from the 27210
EPROM in Cheapernet
Configuration

~)To run the TSMS Program 1XOOOOOO XXXXOO01
or the Data Link Driver
program from the 27210
EPROM in Ethernet
Configuration

5. Dip Switch SW2 programs the number of wait states
for the 82586 (see Table 3).

1-239

inter AP-274

COMPANIES OFFERING WIRE WRAP. SERVICES

AUGAT
Interconnection Systems Division

40 Perry Avenue
P.O. Box 1037
Attleboro, MA 02703
(617) 222·2202

100935 South Wilcrest Drive
Houston, TX 77099
(713) 495·3100

Automation Delectronlcs Corporation

1650 Locust Avenue
Bohemia, NY 11716
(516) 567·7007

dataCon, Inc.

Eastern Division
60 Blanchard Road
Burlington, MA 01803
(617) ~73.5800

Mid·Western Division'
502 Morse Avenue
Schaumburg, IL 60193
(312) 529·7690

Western Division
20150 Sunburst Street
Chatsworth, CA 91311·6280
(818) 700·0600

South·Western Division
1829 Monetary Lane
Carrollton, TX 75006
(214) 245·6161

European Division
In der Klinge 5
D·7100 Heilbronn, West Germany
(01731) 217 12

DATAWRAP

37 Water Street
Wakefield, MA 01880
(617) 938·8911

Elma/EMS
A Division of Sandberg Industries

Berkshire Industrial Park
Bethel, CT 06801
(203) 797-9711

1851 Reynolds Avenue
Irvine, CA 92714
(714) 261·9473

3042 Scott Boulevard
Santa Clara, CA 95054
(408) 970·8874

WRAPEX Corporation

96 Mill Street
Woonsocket, RI 02895
(401) 769·3805

1-240

inter AP-274

APPENDIX B
SOFTWARE LISTINGS-TSMS PROGRAM AND

LANHIB INITIALIZATION ROUTINE

1-241

2

AP·274

1***1
1* R/

1* r,.affic SimulatoT'/MonitoT' Station P1"ogram f/
1* for 186/586 High IntRgration Baa,.d and *1
1* iSBC 186/51 *1
1* *1
1*
1*
1*
1*

Vu. 1.0

IH~oshi Nishide

December 17, 1984

Intel COT'poT'ation

*1
*1
*1
*1

1***1

1* This software c~n be conditlonallv compiled to work on the iSBC 186/~1 Dr
on the LANHIB. If ' •• tCSDCI8651), is added to the compiler call statement,
this source program will be compiled for the iSBC18651. *1

tsms:

do;

daclare main label publiCi

1* literals *1

$IF SBCI8651

declare lit Ii terall V 'literally I,
true lit '1',
false lit '0',
forever lit ',-,h i 1 It 1',
ISCPLOCLO lit 'OFFFOH',
ISCP.LOC.HI lit '0',
SCB.BASE.LO lit '0',
SCBUASESHI lit '0',
CA.PORT lit 'OeBH',
BOARD.ADDRESS.BASE lit 'OFOH',
INTSTVPE.586 lit '20H',
INTSTVPE.TIMERO lit '30H',
INTSCTL.TIMERO lit 'OFF32H',
INT$7 lit '27H',
PIC$MASK.130 lit 'OE2H',
PIC.MASK.18b lit 'OFF28H',
ENABLE.S86 lit 'OFEH',
ENABLE.SBb.18b lit 'OEEH',
PICEOI130 lit 'OEOH',
EOI$CMDO.130 lit '60H',
EOI$CMD4S130 lit '64H',
PIC.EOI$IBb lit 'OFF22H',
EOI$CMDO.IBb lit '0',
PICVTR18b lit 'OFF20H',

292010-31

Traffic Simulator/Monitor Station Program

1-242

:3

4

AP-274

TIMERO.CTL lit 'OFF56H',
TIMERO.COUNT lit 'OFF50H',
MAX.COUNTtA lit 'OFF52H',
CA lit '0',
ESItPORT lit 'oeBH',
NO.LOOPBACK lit 'B',
LOOPBACK lit 'O'i

.ELSE

d .. cla lit literall~ 'literally',
true lit ' 1',
false lit '0',
foreve" lit 'whi Ie 1',
ISCP.LOC.LO IH '03FFBH',
ISCP.LOC.HI lit '0'.
SCBtBASE.LO lit '0',
SCB.BASE$HI lit '0',
CA.PORT lit 'BaCOH',
BOARD.ADDRESS.BASE lit 'SISOH',
INTtTVPE$5B6 lit '12',
INTtTVPE$TIMERO lit 'B',
INTtCTL.TIMERO lit 'OFF:32H',
PIC.MASK.IB6 lit 'OFF28H',
ENABLE$5B6 lit 'OEFH' ,
ENABLE.5B6.IB6 lit 'OEEH',
PIC.EOI.IB6 lit 'OFF22H',
EOItCMDO$IB6 lit '12',
EOItCMD4.IB6 lit 'B',
TIMERO.CTL lit 'OFF56H',
TIMERO.COUNT lit 'OFF50H',
MAXtCOUNT.A lit 'OFF52H',
CA lit '0',
ESItPORT lit 'BIOOH',
NO.LOOPBACK lit 'I' ,
LOOPBACK lit 'O'i

.ENDIF

.IF NOT SBCIB651

1* S~.t.m Configuration Pointer *1

declare scp structure
(

s~.bus b~te,
unused (5) but.,
iscp'addr$lo word,
iscp'addr$hi word
)

at (OFFFF6H) data (0, 0, 0, 0, 0, 0, ISCP$LOC.LO, ISep$LOe'HI) i

$ENDIF

1* Intermediate System Configuration Painter *1

Traffic Simulator/Monitor Station Program (Continued)

1-243

292010-32

inter

5

7

B

<;I

Ap·274

declare iscpSptr pointer.
isep based iscp.ptr structure
(

busV bvte. ,* set to 1 bU CPU before its first CA to 5Bb.

unused bVte,
scb$o \aiD I' d ,
scb$b (2) ,"ord
),

cleared bV 586 after reading lnfo from It *1
1* unused *1
1* offset of sgstam'control block *1
1* base of svstem control block *1

1* System Control Block *1

declare 5tb structure
(

status word.
cmd lIIord.
'cblSoffset word.
rp .. $offset ,"ord.
ereSerrs word,
alnSerrs lIIord,
1"scSerrs word,
Dvrn'erT& lUord
),

1* cause(s) of intel"',rupt, CU state, RU state *1
1* int acks. CU cmd. RESET bit. RU cmd *1
1* of' set of 'irst command block in CBL *1
1* of' set of first packet descriptor in RPA *1
1* ere error e"counterd so far *1
1* alignment 'errors *1
1* no resources *1
1* overrun errors *1

1* B25Bb Action Commands *1

1* NOP *1

declare nap structure
(

cmd word,
link.offset ,"ord
),

1* Individual Address Setup *1

declare iaSsetup structure
(

statuI lIIord,
cmd word,
link.offset ,"ord.
iaSaddress (6) byte
),

,* Con'igure *1

declare configure structure
(,

statuI \IID'rd,
cmd lIIord,
link.offset ,"ord.
bvt.Scnt byte.
info (11) bVt.
),

Traffic Simulator/Monitor Station Program (Continued)

1-244

292010-33

inter

10

11

12

13

14

15

1* Multicast Add~es. Setup *1

d.cla~. me.setup structure
(

status lUDT"d,

cmd ward,
link.offset word,
me.byt •• count word,

AP-274

mcSadd~ess (48) byte 1* only 8 Me add~e.s •• a~e allowed *1
),

1* Transmit *1

1* This transmit command is made of one transmit buffeT descriptor and one
1518 bytes long buffe~. *1

declare transmit structure
(

status word,
cmd lIIord,
link'offset word,
bdSoffset wo~d.
destSad~ (6) byte.
type wo~d
),

1* Transmit BuFfer Descriptor *1

declare tbd structure
(

act.count \IIord,
link.offset word,
adO lIIord,
adl wo~d
),

1* TT"ansmit Buffer *1

d.cla~e tlSbuffe~ (1518) byte,

decla~e tdr .t~ucture
(

status laJOT'd,

cmd word,
linkSoffset word.
result la.IDT"d
),

1* Diagnose *1

declare diagnose structure
(

Traffic Simulator/Monitor St~tion Program (Continued)

1-245

292010-34

inter

16

17

18

19

20

21

1* Dump

declare

1* Dump

dec!.,..

status lIIord,
cmd ward,
linkSoffset word
),

Status *1

dump structure
(

status lIIord,
cmd word,
link.offset word,
b u ffSp tr 1001' d
),

Are. *1

dumpSarea (170) buts,

1* Frame Descriptor *1

AP-274

1* Receive frame area is made of 5 RFDs. 5 RBDs. and 5 1514 butes long
buffers. *1

declare rfd (5) structure
(

status w01"d,
elSs word.
linkSoffset word.
bdSoUnt word.
destS.dr (3) word.
src$adr (3) word,
tupe word
),

1* Receive Buffor Descriptor *1

declare rbd (5) structure
(

act.caunt lIIo1'd,
n •• tSbdSlink word.
adO word,
ad1 lIIord,
size wo,.d
),

1* Receive Buff.r *1

declare rbuf (5) structure
(buff.r (1514) bUte),

I*'global variable. *1

declare status ward, 1* UART status *1

Traffic Simulator/Monitor Station Program (Continued)

1-246

292010-35

O!O!
23

24

25
2b

27

28
29

30

31

32

1
2

2

1
2

2

1
2

2

2

AP-274

ae tua 1 word,
c$buf (80) b~te.
dh,,. b~te.

1* actual number of chars UART transferred *1
1* buffer fOT a line of chaT'S *1

ch bvte at (@c$buf).
char.count b'lte,
receive'caunt dCliord,
count dCliord,
pt"eamble word,
add~es.$length b~te.

ad.loc bvte.
CT'C but.,
goback b~te.

reset bvt.,

1* number base switch *1

1* counte,. for received frames *1
1* counter for transmitted frames *1
1* preamble length in word *1
1* add~ess length in byte *1
1* add~ess location cont~ol of B2~8b *1
1* c~c length *1
1* if set, go back to Continuous Mode *1
1* reset flag *1
1* dela" conunt for tranmission dela~ *1
1* offset of current command block *1

delav word,
curScb'of'set word,
current.frame bvte,
no.transmission bVte,
stop.count dWDT'd,
stop b~te.

1* offset of frame descriptor Just used *1

1* t~ansmit te~minal f~ame count *1

mc'count bvte,
z b~te.
9 b~tei

1* external procedures *1

~ead: p~ocedu~e Ca, b, c, d, e) exte~n.l.i

decla~e Ca, c) wD~d,
(b, d, e) PQinte~.i

end ~ead;

w~ite: p~ocedure (a, b, c, d) exte~nai;
decla~e (iii, c) wo~d,

(b, d) pointer;
end w~ite;

csts: p~ocedu~e blJte exte~nal;
end c StS1

1* utilitv p~ocedures *1

offset: procedure (ptr) word.i

1* This p~ocedu~e takes a point.~ va~iable (selector:offset), caluculates an
absolute .dd~e5s, subt~acts the 82586 SCB o'fset from the absolute address,
and then ~etu~ns the result as an offset value for the 82586. *1

declare (ptr, ptr$loc) pointer,
base586 dword,
w based ptrSloc (2) word;

pt~$loc = @pt~,

1* 8258b SeB Base Add~ess (20-bit wlde in this l8b based syst~m) *1

Traffic Simulator/Monitor Station Program (Continued)

1-247

292010-36

inter

33 2
34 2

35 2

3b

37 2

39 2
39 2

40 2

41

42 2

43 2

44

45 2
4b 2
47 2

49 2

49

'0 2

'1 2
'2 2
'3 3
54 3
55 2

'b 2

'7

AP-274

base59b s (shl!doubh (iscp. scbSb(Il>. Ib) and OOOFOOOOH) + iscp. scbSb(O),
return 101d«shl!double (..,(1)). 4) + lOW)) - base58b),

end offseti

writeln: procedure (a. b, c', d)i

1* This procedure writes a line and put a CR/LF at the end. *1

dec lare (a, c) 1IIOT,d,'
(b, d) painter;

·call ",rite(., b, c, d');

call .. rite(O. @(ODH. OAH). 2. @statusl,

end write!n;

cr$lf: procedure;

1* This procedure .. rites a CR/LF. *1

call Idrite (0. @(ODH. OAHI. 2. @statusl,

end crSlf,

pause: procedure;

1* This procedure breaks a program fl.old. and ... its for a char to be tuped. *1

call write(O. @(ODH. OAH. 'Hit (CR> to countinue·l. 23. @statusl,
cali read(l. @cSbuf. 90. @actual. istatusl,
call crSIf,

skip: procedure but.,

1* This procedure skips all leading blank characters and returns the first
non-blank character. *1

dec loire i bUte,

i - 0;
do Idhile (c'buf<iI ... 'I'

i 11K j + 1,
end,
l'etUT'n 11

end skip'

Traffic Simulator/Monitor Station Program (Continued)

1-248

292010-37 .

inter

5B 2

59 2
60 2
61 2

62 2

63

64 2

65 2
66 3
67 3
69 3
70 3
71 3

72 3

73 2

74

75 2

76 2
77 3
7B 3
BO 3

'B1 3
B2 3

B3 3

B4 2

B5

B6 2

B7 2
B9 2
90 2
91 2

AP-274

1* This procedure reads a line and returns thaT first non-blank character. *1

declare i word;

call read(!, @cSbuf, 80, @actual, (!status)i
i = skip;
returnCc$bufCi»;

end TeadSchaTi

'read.bit: pl'ocedure b'lte;

1* This procedure reads a bit and returns the value, *1

declare b bljtei

do foreveri
b = read.chari

if b "1' then return 1;
else

if b = '0' then return OJ
else

call writeCO. @(' Enter a 0 01' 1 ==> '), 20. @status);
end;

end read$b i ti

yes: procedure byte;

1* This procedure reads a character and determines if it is a y(~) or NCn), .,

dec laTe b b'Jte;

do forever;
b = read.chaT;
if (b = 'V') or (b = '1:1'> the~ return true;
else

if (b = 'N') or (b = 'n') then return false;
else

call writeCO, @(ODH, OAH, ' Enter a Y 01' N ==) ~), 22. @status);
end;

end yes;

cha1'toint: procedu1'e (c) blJtei

1* This procedure converts a blJte of ASCII integer to an intege1' *1

declare c b1jtei

if ('0' <= c) and (c <= '9') then 1'etu1'n (c - 30H)i
else

if('A' <= c) and (c (= 'F') then 1'etu1'n (c - 37H)i

292010-38

Traffic Simulator/Monitor Station Program' (Continued)

1-249

intJ

92
93

94

95

96

97
98
99

101
102
103
104
lOS
lOb
107
108
109

110

111

112

113
114

115

11b

2
2

2

2

2
3
3
3
3
3
2
2
3
3
3
2

2

2

2
2

2

AP·274

if ('a' <= c) and (c (= 'f') then return (c - 57H);
else return OFFHi

end char$to.inti

i.ntstoSasci: procedure (value, base. Id. bufadl"'. width),

1* This p,.oce.du,.. conv.,.t. an int.,.g..,. < OFFFFFFFFH to an .,';,..,u of ASCII
codes.
Input variables are: valure = integer to be converted,

base = number base to be used for conversion,
Id = leading ch.r.cter to be filled in,
buledr = buffer address of the arra~,
.. idth = .i Ie of a,.,.au. *1

declare value dword.
bufadr pOinter,
(i, J' base, Id, width) bljte,
ch.,,.s based buf.,d,. (1) bute.

do i = 1 to .. idth.
J - value mod base;
if J < 10 then cha,.. (.. idth - i) = J + 30H.
else cha,.s (.. idth - i) = J + 37H.
value Ig v.alue j base;

endJ
i = 0.
do while ch.rs (1) - 'O"and < .. idth - 1.

chars (i) - IdJ
i = i + 1;

end;
char.count m width - ii

end jnt.to.asci,

out.word: p'rocedura (w.ptl'.' distance),

1* An intege,. at (selecto,. of ... pt,.): (offset of ... pt,. + distance) is p,.;nted
•• ., 4 digit hex.,decimal numb.,.. *1

decla,.e chars(4) byte.
IIISptr point ,
dhtance byte •
.. besed ... pt,. (1) wo,.d.

call intSto.asciC .. (distance). lb. '0'.' I!cha,.s(O). 4);

call .. ,.ib(O. I!cha,.s(OI. 4. i!statusll

end outtlalOrdi

.. ,.ita.int: p,.ocedu,..(d ... t).

1* An ;ntege,.· (d ..) i. p,.inted in hexadecimal (t = 1) 0,. in decimal (t a 01. *1

292010-39

Traffic Simulator/Monitor Station Program (Continued)

1-250

intJ

117 2

118 2
119 2
120 3
121 3
122 3
123 2

124 3
12:1 3
126 3

127 2

12e

129 2

130 2
131 2
132 2
133 2

134 2

135

136 2

137 2
138 :2
139 2
140 2

141 2

142

143 2

144 2

d.cla~e dw dwo~d,
chars e 10) byte.
t byte,

if t then
do;

AP-274

call intStoSasciCdw. 16, 0, @cherseO), 8»)
call writeCO, C!chat's(S-cha",ScDunt), ch~r'cQunt, @status);

end;
else
do;

call intStoSasciCdw, 10. 0, @charsCO), 10);
call writ.CO, echars(10-charScDunt), char'count, @.tatus);

end ",,.it •• int;

out'dec'hex: pracedureCdw);

1* This procedure prints an integer in decimal and hexadecimal. *1

declare dUl dwordJ

call writ.tinted"" O)i

call .. riteeo. @e' e'). 2. I!status),
call .. rite.inted ... I),
calfwrite(O. @(/H)'), 2, 8status);

end out_dec.heli

.. rite.offset: proceduree"'ptr),

1* This procedure takes a pointer variable. converts it to a 82586 type offset.
and prints it in hexadecimal. *1

declare UI'ptr pointer.
til lIIo'rdj

call ",.rit.,CO, @(' at '), 4, @status);
.. = offsete"'ptr),
call DutS",ord(@w, 0);
call ~rite(O, @(/ '), 2, @status);

end IIIrite$offset;

IIIrite$addr~ss: procedure Cptr);

1* This procedure takes a pointer variable and prints it in thr
'selector:offset' format. *1

declare (ptr, ptr$loc) pointer,
III based ptr.loc (2) word;

ptr'loc = I!ptr,

Traffic Simulator/Monitor Statlon.Program (Continued)

1-251

292010-40

inter

145 2
146 2
147 2
148 2

149 2

150

151 2

152 .2
153 2
154 3
155 3
156 4
157 4
158 4
159 4
160 4
161 3

162 2

163

164 2

165 2
166 2
167 3
168 3
169 3
170 3
171 2

172 2

173

174 2

Ap·274

call out$word (@w(I). 0),
call ",riteCO. Ie': '), 1. @status);
call out$word(@w(O). 0),
call writeCO, @(' '), 1. @status)i

end write'address;

print$wds: proc~dure(w'ptr, no'words);

1* This procedure pr.ints no'words number of words starting at wSptr. *1

declare "'$ptr pointer.
(i, nO'IIIDT'ds) bVtei

if no$words <> 0 then
do;

end;

call cr$]f,
do i = 0 to no.words - 1;

call outSwordCwSptr, i);

if i = 0 then

end;

call write'Dffse~(w'ptr);
call cr$lf;

end pT"intSlllds;

1* This procedure prints len number of b~t.s starting at strSptr. *1

decla,..e (len, i) bljte,
chars (2) b~te.

st,.Sptr pOinter,
str based str$ptr (1) b~te,

if len <> 0 then
do i = 0 to (len - 1),

end;

call intSto$asciCstrCi), 16, '0', @chars(O), 2);
call writ,,(O. @chars(O). 2. @status),
call ",,.iteCO, @e' '), 2. @status);

call cr$lf,

print$buff: procedure (ptr. cnt),

1* This procedure prints cnt number of buffer contents starting at ptr. *1

declare ptr painter,
bt based ptr (1) buteo
(i. J) b~te.

cnt aa.ardi

Traffic Simulator/Monitor Station Program (Continued)

1-252

292010-41

inter

175 2
176 2
177 3
178 3
179 4
180 4
181 4'
182 4
183 4
184 3
185 :3
187 3
188 :3
189 2

190 :3
191 3
192 :3

193 2

194

195 2

196 2
197 3
198 3
199 :3
200 3
201 3
202 3
203 4
205 4
206 4
208 4
210 4
211 4
214 4
215 4
216 4
217 4
218 3

219 3
220 3

221 4
223 4

AP-274

if cnt > 16 then
do;

end;

i - sh1"(cnt, 4) - Ii
do J - 0 to is

end;

call ~rit ••• ddr ••• (ebt(16*J»'
call print.str(lbt(16*J)' 16),
if (J = 20) or (J = 40) or (J = 60) or (J = 80) then
call pause;

i = i + 1;
If cnt-16*i <> 0 then call ~rlte.addre •• (lbt(16*i»,
call print •• tr(ebtlI6*il, cnt-16*i),

call ~rlte.addr ••• (lbt(O)I'
call print •• tr(lbt(O), cnt),

end prlnt.buff.

,..ad.jnt: p'rocedul"e (limit) dl&Jordi

1* This procedure reads integer characters and forms an integer. If thp
integer is bigger than 'limit' Dr an Dv.rflo~ erroT' is encounterred. then
an .1"1"01" message is p,.inted. *1

declare (l&Jd. ""h, limit) d\llord.
(i. J •• , dane. he., dover, have,.) b"te;

do forever;
call read(l, leSbuf, eo. tactual. @st.tus),
i. II = skip;
hex. done, dove,., hover = falseJ
~d, ~h = 0,
J = char.to.int(c.buf(i)l,
do ~hile J <= 15,

if J > 9 then he. = t,.uei
if not dover then

If ~d > 429496729 then dover = true,
else if (~d = 429496729) and (J > 5) then dover = true,

~d = ~d*10 + J'
if not hover then if ~h > OFFFFFFFH then hover = true,
wh = ",h*16 + Ji
i - i + 1;
J = char.to.lnt(c.buf(i»,

end;
If «c.buf(i) <> 'H') and (cSbuf(i) <> 'h') and (c.buf(l) <> ODli) and

(c.buf(i) <> OAH) and (cSbuf(i) <> ' .» or (i = k) then
call ~ri teln(O, I(ODH, OAH, ' II ltPgal character'), 20, .status),
else
do;

if (c.buf(l) = 'W) or (c.buj>(1l = 'h') then hllx = true;
if he. then

Traffic Simulator/Monitor Station Program (Continued)

1-253

292010-42

intJ

224 4
225 5
227 5
228 4
229 4
230 4

231 4

232 4
233 4
234 4
235 3
236 3

237 2

238

239 2

240 2
241 3
242 3
243 3
244 3
245 3
246 4
247 4
249 4

250 5
251 5
252 5
254 5
255 5
256 4
257 4
258 4
259 3
260 3
261 4
262 4
263 4
264 4
265 3
266 3
267 3

268 2

AP-274

do.
if not hove~ and (wh <= limit) then return wh~

end;
else

if not dover and (wd <= limit) ~hen return wd;
call writeinCO, @(ODH, OAH, , The number is too big. '), 25,

(!StktU5) i

call writeCO, (!(' It has to be less than ar eq,ual to '), 3i"
(!StLctU5) ;

call DutSdecShex(limit);
call lIJritelnCO. @('. '), 1, @:status);

end;
call blriteCO, @C' Enter a number ==) '), 20, (!statu-a.);

end;

end read' inti

put'address: proc ed ure (wh ere);

1* This procedure puts an address t~ped in hexadecimal to the specified
location 'where'. *1

declare where painter,
(i. J. m, 'err) b~te,

addr based where (I) byte.

do f01"eVeTi

end;

err = false;
call read(!, @cSbuf, eo,' @actual, @status);
i = skipi
m = addressSlengthl
do while (m (> 0) and not err.

end;

J = char.to.int(c.buf(i)),
if J = OFFH then err = true.
else
do;

end;

.ddr(m-I) = shlCJ. 4).
J = char.to'int(c'buf(i+l)),
if J D OFFH then err = true,
else addr(m-I) = addr(m-l) or J'

i = + 21
m = m - 1;

if not err then
do;

m = c'buf(i),
if (m = ODH) or (m = OAH) or (m = 'h') or (m

,then return;
end;

'H") or (m

'call .. riteln(O. (I (ODH. OAH. ' Illegal character' h 20. @status),
call "'1'ite(O, @(' Enter an address in Hex ==> '). 29, .status);

end put.address;

Traffic Simulator/Monitor Station Program (Continued)

1-254

, .)

292010-43

intJ

269

270

271
272
274
275

276

277

27B
279
2BO
2Bl
2B2

2B3

2B4

2B5

2

2
2
2
2

2

2
2
2
2
2

2

2

AP-274

percent: procedure;

1* This procedure calculates and prints a network percent load generated
blJ this sta'tion. The eq,uatian used in this procedure was obtained
from actual measurements. *1

declare i word,
(J. k) d .. ord.
pcent (3) b~te,

J = (tbd.act.count and 3FFFH)*B,
if not ad.loc then k = (2*addres •• length + 2 + cre + preamble)*B,
else k = (ere + preamble>*Si
if dela~ <> 0 then

.IF NOT SBCIB651

lo .. «1000*(J + k»/(lB05 + k + 5*double(delay) + J»'

.ELSE

i = lo .. «1000*(J + k»/(2021 + k + 5*double(delay) + J)l,

.ENDIF

else

.IF NOT SBCIB651

lo .. «1000*(J + k»/(lBI0 + k + J»'

.ELSE

= Io .. «1000*(J + k»/(2026 + k + J»l

.ENDIF

call jnt.toSasci(i, 10, 0, @pcentCO), 3);
call "'Tite(O, @pcentCO), 2, estatus);
call w ... iteCO, @:('. '), 1. @status)j
call write(O. @pcent(2). 1. @status)'
call wT'itelnCO, (!(I X'), 2, (lstatus);

end percent;

print.net .. ork.addr: procedure (ptr),

1* This station's address is printed with its least signlficant bit
in the most right position. *1

declare ptr pOinter,
addr based ptr (1) b~te.
char (6) b~te.

i b~te,

Traffic Simulator/Monitor Station Program (Continued)

1-255

292010-44

inter

28b 2
287 3
288 3
289 2

290 2

291

292 2

293 2
294 2
295 2
29b 2

297 2
298 2
299 2
300 2
301 2
302 2
303 2
304 2
305 2

30b 3

307 3
308 3
309 3
310 4
311 4
312 4
313 4
314 4
315 3

316 4
317 4
31B 4
319 4
320 4
321 3
322 2

AP-274

do i = 1 to address.length;
chaT(i-l) = addrCaddress$Ienqth-i);

end;
call prinUstr CC!char CO). addressSlength),

end print'net~ork'addr;

print'parameters: procedure;

1* This procedure prints transmission parameters. *1

dec lare 1&1 dword,
stgs Cb) b~te,

call writeCO. C!e' Destination Address: '), 22, (!status),
if not adSloc then

call printSnetworkSaddrC@transmit.destSadrCO»,
else

call printSnetworkSaddrC@txSbufferCO»,
if nat ad'loc then
w = Ctbd.actScount and 3FFFH) + addressSlength * 2 + 2 + erc,
else w Q Ctbd.actScount and 3FFFH) + cre,
call writ.CO. @(' Frame Length: '), 15, .status);
call write.lnth." 0);
call writelnCO. @C' b~te5·>. b. C!status),
call 1I.IriteCO, @(' Time InteT'val between Transmit Frames: '), 40, @status);
if delay <> 0 then
do;

SIF NOT SBCIBb51

w = IBIO + CdoubleCdela~) - 1) * 5,

SEI.SE

w = 202b + CdoubleCdelay> - 1) * 5,

SENDIF

end;
.lse

call 1nt.to'asciCw. 10, 0, @stgs. 6);
if w >= 10000 then
do,

endJ
else
do,

end;

call lII",iteCO, (lstg.COh 2, @status);
call w1'iteCO, IC'. '), 1, .status);
call writeCO. @stgs(2), 2, @status),
call writelnCO, C!C' miliseconds'), 12, @status)J

call writeCO. @stgsIO), 5. @status),
call writeCO. @C'. 'I. 1. @status),
call writeCO. @stgs(5), 1. C!status),
call IaJriteln(O, (!(' micl'oseconds'), 13, @status);

Traffic Simulator/Monitor Station Program (Continued)

1-256

292010-45

inter

323 2

324 2
325 2
326 2
32B 2
3:Z9 2

330 2

331

332 2
333 2

334 2

335

336 2

337 2
33B 2

. 339 3
340 3
341 2
342 2
343 3
344 3
345 3
346 3

347 2

34B

AP-274

$IF NOT SBC1B651

call writeln(O. (!(' 159.4 miCl'DSeConds'), 19. C!status);

$ELSE

call writeln(O. @(' 172. B micTDseconds'), 19. @status)i

$ENDIF

call writeCO. @(' Netlllork Percent Load generated blJ this station: '), 49.
@:statu5);

call percent.;
call ul'rite(O, @(' Transmit Frame Terminal Count: '), 32. @status)i
if stop then cal} w1'iteSint(stapScount, dhex);

else call IdriteCO. @('Not Defined'), 11, C!status)j
call crSl.,;

end print.parameters;

printf,scb: procaduTei

1* print. the SeB *1

call "'TitelnCO. (!(ODH. OAH, '*** System Control Block ***'), 30, @status);
call printS ds«!scb. status, 8);

end pTintSscbJ

waitSscb: proceduT"e;

1* This pTocedure provids a wait loop for the sen command word to
become cleared. *1

dec lare i word;

i = 0;
do while (scb. cmd <:> 0) and (i < BOOOH);

i = i + 1;
end;
if scb. cmd <:> 0 then

do;

end;

call ,."ite(O, @(ODH, OAH, ' Wait Time
e.l1 blJ'ite$intCi, 0);

call cr$lf;

end waitSseb;

startStimerO: procedure.

1* B01B6 timerO is sta"ted. *1

'). 15, @status);

Traffic Simulator/Monitor Station Program (Continued)

1-257

292010-46

inter

349

350

351

352

353
354

355
356'
357
358
359
360
361
362
363
364
365
367
368
369

370
371
372
373
374
375
376
377
378
379
380
382

2

2

2

2
2

2
2
3
3
3
3
3
3
4
4
4
4
3
3

2
2
3
3
3
3
3
3
3
4
4
4

AP.-274

output (TIMEROSCTL) OEOOOH,

isr: procedure interrupt INTSTYPES586 reentrant.

1* interrupt .ervice routine for 82586 interrupt *1

declare i byte.

1* Enable 82586 Interrupt *1

SIF SBC18651

output (PICSEDISI30) D EDISCMDOSI30 •
• nab lei

SEL.SE

output· (PICSEOlSI86) .. EOISCMDOSIB6.
enolble.

SENDIF

1* Frame Received Interrupt has the highest priority *1

i' (scb. status and 4000H) 4000H then
do;

endJ

disabh.
sob. cmd .. 4000H.
output (CASPORT) = CA.
c.l1 .. aitSscb.
i' rfd(currentS'r.me), status D OAOOOH then
do.

receiv •• count = receive.count + 1;
current.frame = current.frame + 1;
if CUTTent.fr.me • 5 then current.frame 0;

endJ
return;

i' (scb. status and 2000H)
do.

2000H then

disable.
scb. cmd .. 2000H.
output(CASPORT) - CA.
call .. aitSscb.
enable.
if (transmit. status and OAOOOH) = OAOOOH then
do;

caunt = count + 1;
if (stop and (count = stopScount» then return.
e1.e'
do.

Tra.ffic Simul~tor/Monltor Station Program (Continued)

1-258

292010-47

inter

3B3 :I
3B4 5
3B5 5
3B6 6
3B7 6
3BB 6
3B9 6
390 6
391 6
392 5

393 6
394 6
395 6
396 5
397 4
39B 3
399 3
400 4
401 4
402 4
403 4
404 4
405 4
406 4
407 3
40B 3
409 4
410 4
411 4
412 4

'413 4
414 4
415 4
416 4
417 3
41B 3
419 4
420 4
421 4
422 4
423 4
424 4
425 4
426 4
427 3
42B 3
429 4
430 4
431 4
432 4
433 4
434 4
435 4
436 4
437 3
43B 2

end;

end;

Ap·274

transmit. status = 0;
if dela~ = 0 then
do;

end;
else
do;

end;
end;

disable;
scb. cmd = 0100H.
output(CASPORT) CA.
call waitSscbi
retuTni

call startStim.rO.

if (transmit. status and 0020H) = 0020H then
do;

end.

transmit. status = 0;
disable,
scb.cmd = 0100H.
output (CASPORT) = CA,
call waitSscbi
return;

if (transmit. status and 0400H) = 0400H then
do;

end;

call ,.rrite(O, @(ODH, ' No Carrier Sense! I, ODH)' 20, @statu!;.);
transmit. status = OJ
disable;
scb. cmd = 0100H.
output (CASPORT) = CA.
call ",aitSscb.
return;

if (transmit. status and 0200H) = 0200H then
do;

end;

call "'rite(O. @(ODH. 'Lost Cle .. r to Send! '. ODH). 22. @status).
transmit. status = OJ
disable;
scb. cmd = 0100H.
output (CASPORT) = CA.
call waitSscbi
return;

if (transmit. status and 0100H) = 0100H then
do.

end;

call writeCO, @(ODH, 'DMA Underl"un! I, ODH), 16, @status)j
transmit. status = 0;
disable;
scb. cmd = 0100H.
output (CASPORT) = CA.
call wai'tSscbi
t"etu'rn;

if (scb. status and BOOOH) BOOOH then

292010-48

Traffic Simulator/Monitor Station Program (Continued)

1-259

439 2
440 3
441 3
442 3
443 3
444 3
445 2
446 2
447 3
44e 3
449 3
450 3

,451 3

452 3

453 2
454 2
455 3
456 3
457 4
45e '4
459 4
460 4
461 4
462 4
463 4
464 4
465 3
466 3

467 2

46e

469 :I
470 2
471 :I

472 :I

473 2

do,

end;

disable,
scb. cmd = BOOOH,
Dutput CCA.PORT) = CA,
call U.scb'

AP·274

if Cscb.status and 1000H) .. 1000H than
do;

disable,
scb. cmd a 1000H,
output CCA.PORT) - CA,
call .. ait.ub,
call .. rUaCO. ICODH •• Receive Unit became not read,. '. ODH). 33.

·.&tatu~)'
and,

if rasat than
do,

.if isc~bus, then
do,

call .. rit.lnCO. ICODH. OAH. 'Re •• t faUed. '). 16. 'status),
disable, .
scb. cmd - 008OH,
output CCA.PORT) • CA,
call it •• cb'
output CCA.PORT) - CA,
c .. 11 writ.1nCO. IC' Soft ... r. Re.et E •• cuted!'). 25. Istatus),

and,
el •• r ••• t .".1 •• ,

end,

end isr,

tx.i.r: procedure interrupt INT.TYPE.TIMERO,

1* interrupt survic. routine for 80186 timer interrupt_I

scb. cmd - OIOOH,
outputCCA.PORT) - CA,
caU .. Bi t'scb,

.IF SBCle651

outputCPIC.EOI.130) - EOIfCMD4.130.
en .. ble,
outputCPIC.EOI.l86) = EOI.CMDO.le6,

, .ELSE

outputCPIC.EOI.le6) a EOI.CMD4.1e6,

fEND IF

end tx.isY"

Traffic Simulator/Monitor Station Program (Continued)

1·260

292010-49

inter

474
475

47b
477
47B
479

4BO

4BI

482

1
2

2
2
2
2

:1

2

AP-274

SIF SBCI8b51

i5r$7: procedure interrupt INT$7i

1* The 80130 generates an interrupt 7 if the original lnterrupt 15 not
active an~ more when the first interrupt acknowledge is received. *1

call writeCQ, @(ODH,""lnterrupt 7', OOH), 13, @status);

end i sr$7i

SENDIF

read.byte: procedure (k) blJtei
dec lare k word;

call writeCO, (!(ODH, OAH, ' Enter blJte '), 14, @status);
call QutSdecShe,(k),
call writeCO, @(' ==) '), 5, @status);
return readSint(OFFH);

end read$byte;

1nit.lab$timerO: procedure;

1* This procedure initializes the 80186 timer O. *1

dec lare i byte;

SIF SBCIBb51

Qutput(INT$CTLSTIMERO) = B,
call writeCO, @(ODH, OAH, Enter a delay count ==> '), 27, @status)i
delay = readSfnt(OFFFFH),
if (delay < 100) and (delay <> 0) then
do;

call cr$If;
call crSl fj
call loopSchar(35, '*');
call Ulrite(O, @(' WARNING '), 9, @.tatu.),
call 100p$char(35, '*')i
call writeln(O, @(ODH, OAH, 'A delalj count between 0 and 100 malj be verlj "

~dangerous when this station starts'), 80, @status);
call writeln(O, @('to receive many frames separated onl\1 by the

'IFS period (9. b microseconds). '), 75, @status);
call writeln(O. (!('If this station never receives a frame. then "

'ignoTe this warning. '), 65, @status);
call loop$char(79, '*'); \

end;
Qutput(MAXSCDUNTSA) = delay,
call c1'$lf;
Qutput(PICSMASKS1Bb) = 3EH,

Traffic Simulator/Monitor Station Program (Continued)

1-261

292010-50

inter

483 2
484 2
485 2
48b 2
487 2
488 2

489 2

490 1
491 ,2·

492 2

493 2
494 2
495 3
49b 3
497 2

498 3

499 3
500 3

501 2

502 1
503 2

504 2
505 2

50b 2
507 2

508 2
509 3
510 3
511 4
512 4
513 4
514 4
515 4
51b 5

517 5
518 5
519 4

520 5

AP-274

$EISE

output(INTCTLTIMERO) = OCH;
call WT'lte(O, @(ODH, OAH, ' Enter a delalj count ==> '), 27, @statub);
delay = read$.nt(OFFFFH);
output (MAX$COUNT$A) = delay;
call cr.lf;
output(PIC$MASK$18b), = ENABLE$58b$18b;

$ENDIF

end initS1B6$timerOi

setup.ia'parameters: procedure;
declare i byte;

call w,..iteCO, @(ODH, OAH, Configure the 58b ~ith the pre~ired'
, board address ==> '), 57, @5tatu~)j

if yes then
do i = 0 to address$length - 1;

ia$setup. ia$address(!) !nput(BOARO$ADDRESS$BASE + 10 - 2 * i);
end;
else
do.

call writeCO, @(OOH, OAH, ' Enter this station"s address',
I in Hex =~> '),43, @statu~)J

call put$address(@ia$setup. ia$address(O»;
end;

end setup.is'parameters;

setup.me.parameters: procedure;
declaT"~ (J, k, done) btjtei

J = 0;
call writelnCO, (!(ODH, OAH, I You can enter up to 8 Multicast Addresses. '),

45, @status).
done = false;
call writeCO, @(' Would lJou like to enter a Multicast Address?',

, fY or N) ==> '), 59, @status);
do ~hile not done;

if yes then
do;

k = J * address$length;
J = J + 1;
call cr$lf.
if J = 9 then
do;

call write(O. @(' You alread~ entered B Multicast addresses. I),

end;
else
do.

done = true;
43, @!.tatus);

call ~rite(O, @(' Enter a Multicast Address ==> '), 31, @status);

292010-51

Traffic Simulator/Monitor Station Program (Continued)

1-262

inter

521 5
522 5

523 5
524 4
525 3
526 3
527 2
529 2
530 2
531 2
532 2
533 2

534 2

535 1
536 2

537 2
538 2
539 2
540 2
541 2
542 2
543 2
544 2
545 2
546 2
547 2
548 2
549 2

550 2
551 3
552 4

553 4
554 4
555 4
556 4
557 3
559 3
560 3
561 3

562 3
563 2
564 2
565 2
567 2
568 2
571 2

573 2

AP-274

call putSaddressC@mcSsetup.mcSaddressCk»;
call writ.CO, (!(ODH, OAH, 'More Multicast Addresses?',

, (V Dr N) ==) '), 42, @status);

end;

endi
end;
else don. t,.uei

if J = 9 then = J - Ii
me'caunt = address'length * Ji
mc$setup.mcSbvt.Scaunt = me'count;
call '-I",iteCO, @(ODH. DAH, I You entered '), 15. @status);
call .. riteSintC J. 0);
call lIIT"ltelnCO. C!(I Multicast Addressees>' '), 23. @status);

end setup.me.parameters;

setup'configure'parameters: procedure;
declare Ck. J) byte;

cQnfigur •. b~t.'cnt = l1i
configure. in'o(O) = 8;
con.igure. infoCl) 0;
configure. info(2) 26H;
configure. info(3) Oi
configure. in'o(4) = 96;
configure. info(5) 0;
configure. in'o(6) = OF2Hi
configure. in'o(7) OJ
configure. info(8) 0;
configure. in'o(9) = 64;
J = 0;
call \IITiteCO, @(ODH, OAH. I Configure command is set up for default',

, values.', ODH, OAH, ' Do you urant to change an" bytes?',
, (Y or N) ==:> '), 99, @status);

do urhile 'Ies;
do .. hile J = 0;

. call writ.CO. @CODH. OAH •• Enter byte number C1 - 11) ==> 'I. 34.
@status)i

J = r.adSint(11);
if J = 0 then
call .. riteCO. @CODH. OAH •• lllegal byte number'). 22. @status);

end;
if J = 1 then configure. byteScnt = readSbyteCJ);

else configure. infoCJ - 2) = readSbyteCJ);
J = Oi
call ..,rite(O, @(ODH, OAH, Any more bytes? (Y ar N) =="<> i), 3;'!,

(!status) j
end;
preamble =- shiel, shr«canfigure. infD (2) and 30H), 4)+1);
addressSlength = configure. info(2) and 07H;
if addressSlength = 7 then addressSlength = 0.
adSloc = shrC Cconfigure. info(2) and 08H). 3);
if shrCCconfigure. info(7) and 20H). 5) then crc 2; else crc 4.
if shr((configure. info(7) and 10H), 4) then cre 0;

end setup'cDnfigure'parameters;

Traffic Simulator/Monitor Station Program (Continued)

1-263

292010-52

intJ

574 1
575 2

576 2
577 3
578 3
579 3
580 3
581 4

582 4
583 4
584 3

585 3
586 3'
587 3
588 4
589 4
590 4
591 3

592 3
593 3
594 3
595 3
596 3
597 4
598 4
599 4
600 4
601 5
602 5
603 4

604 4

605 4
606 5

607 5,
608 5
609 5
610 5
611 5
612 5
613 5
614 5

615 5
616 4
617 3

618 3

setupSt x'parameter 5: prot edure,
declaT"1!' (511e. i) UJordi

do forever;

AP-274

no.transmission = false;
transmit. bdSoffset = offset (@tbd. act'count);
if not ad'loc then
do;

call IIJriteCO, @eODH, OAH,
I Enter a destination address in Hex ==> '), 42, @statu!.);

call put$add~e5s(@t~ansmit, dest$ad~(O»,
end;
else call writelnCO, @(/ 82586 i5 configured to pick up OA. IA. '.

and TVPE '~om TX buf'.~. '), 64, @status),
call crSlfl
if not ad$loc then
do;

end;

call IIJrite(O, (!(ODH. OAH, ' Ente'r TYPE ==> '),. 18, @status);
t~ansmit, tvpe ='~ead$int(OFFFFH),

call \.fritelnCO, (!(ODH. OAH,' How manlj b\ltes of transmit data?'), 3S,
~sti:ltus) ;

call writeCO, @(/ Enter a number ==> '), 20, @status);
size = readSint('1518);
tbd.act$count = size o~ eOOOH,
if size <> 0 then
do,

end;
else

tbd. link$offset = OFFFFH,
tbd,adO = offset (@t'$buffe~(d»,
tbd. adl = 0,
do i = 0 to 1,517,

tx$bufferCi) = il
endl
call .. ~iteln(O,
@(ODH, OAH, ' Transmit Data is continuous numbers (0, 1, 2, 3, I,

) '), 57, @sta1.us),
call .. ~ite(O, @(' Change an~ data bVt ... ? (V or N) ==> '). 'j't,

et.1.b1.ub);
do while yes;

end;

call .. ~ite(O, @(ODH. OAH. ' Enter a b~te numbe~ ==> ').
2,./, @status);

i - readSint(size);
call .. ~ite(O, @(ODH, OAH. 'Bvte '). e, @status),
call outdeche.(i),
call writeCO, @(' cury.ently contains '), 20, @status);
call outdeche.(t.$buffe~(i»,
call writeCO, @('. '), 1, @status);
t.$buffe~(i) = ~ead$b~te(i)'
call .. ~ite(O. @(ODH. OAH. ' AnV mD~e bytes? (y o~ N) ==> ').

32, es1.atus),

t~ansmit. bd$offset - OFFFFH,
call c~$lf,

292010-53

Traffic Simulator/Monitor Station Program (Continued)

1-264

inter

619 3
620 3

621 3
622 3
623 4
624 4

625 4
626 4
627 3
628 3
629 3
630 3
631 3

632 3
634 3

635 2

636 1
637 2

638 2
639 3
640 3

641 2

642

643 2

644 2
645 2
646 2
647 2

648 2
649 2
650 2
651 2
652 2
653 2
654 2
655 2

656 2
657 2

AP-274

call init$186.time~Oi

call l.l'riteCO. @(ODH, OAH, ' Setup a transmit terminal count?',
(Y or N) ==> '), 49. @status)l

if yes then
do;

stop = true;
call un"ite (0. @(ODH. OAH. ' Enter a transmit',

, terminal count ==~ '), 39, @status);
stop'count = Tead'int(OFFFFFFFFH),

end;
else stop = false;
call cT'I',
call crSlfi
call printSparameters;
call wTite(O. @(ODH. OAH. ' Good enough? (V DT N) ==) '). 29,

@stat.U5)';

if ~e5 then return;
end;

end setupStxSparameters;

loop.char: procedure (i. J)i

declare (i, J. k) blJtei

do k = 1 to ii
call u .. rite(O. @J' I. @status);

end;

end loopSchari

init: procedure;

declare i byte;

call crSlf;
call loop'chaT(13. OAH),
call loop'chaT(15. ' '),
call wTiteln(O, @('TRAFFIC SIMULATOR AND MONITOR'.

, STATION PROGRAM '). ,46. @status),
call loop'chaT(7, OAH),
call wTiteln(O. @(ODH. OAH,
call cr.lf.

Initialization begun'), 23, @status);

reset = true;
cUT'cb'offset = OFFFFH,
Dutput(ESI'PORT) - NO.LOOPBACK,
output(ESISPORT) = LOOPBACK,
dhex = false;

1* set up inte~~upt logic *1

call set'inteTTupt<INT'TVPE$586, isr),
call setSinteTTupt(INTSTVPESTIMERO. txSiST)'

SIF SBC18651

Traffic Simulator/Monitor Station Program (Continued)

1-265

292010-54

658
659
660

661

662
663
664
665

666
667
668
669
670
671
672

673
674
675

676
677
678
680

681
682
683
684

2
2
2

2

2
2
2
2

2
2
2
2
2
2
2

2
2
2

2
2
2
2

2
2
2
2

AP-274

call set$interT"upt(INT$7. iST'7);
output (PIC.MASK.130) = ENABLE.586.186;
output (PICSEOISI30) EOISCMDO.130;
output (PIC.EOI.130) EOISCMD4.130;
output (PICSEOISI86) EOI.CMDO.186;
output (PIC'VTR$186) 30H;

SELSE

output (PIC.EOI.186) = EOI.CMDO.186;
output (PIC.EOI.186) = EOI.CMD4.186;
output (PIC.MASK.186) = ENADLE.586;

.ENVIF

1* locate iscp *1

iscp$ptr = ISCP.LOC.LO;

1* set up fields in ISCP *1

iscp. busy = 1;
iscp. scb$b(O) = SCD.BASE.LO;
iscp. scb'b(l) = SCD$BASE.HI;
iscp. scbSo = offset (@scb. status);

1* .et up SCB *1

5eb. status = OJ
scb. cbISoff •• t offset (@diagnose. status);
scb.rpaSoffset off •• t (@r'd(O).status);
5cb. cre$errs = 01
5tb.aln'errs = OJ
5cb.rsc$errs = 0;
5eb. ovrn$errs = Oi

1* set up Diagnose command *1

diagnose. status = 0;
diagnose. tmd = 71
di_gnose. link'offset = offset (~cDnfigure. status);

1* set up CONFIQURE command *1

configure. status = 0;
configure. tmd = 2;
configure. link'offset = offset (@ia$setup.status);;
call setup'configureSparameters;

1* set up IA command *1

ia.setup. status = 0;
iaSsetup. tmd = 1;
iaSsetup. link.offset = offset (@mcSsetup. status);
call setup.ia.parametersl

Traffic Simulator/Monitor Station Program (Continued)

1-266

292010-55

685
686
687
688

689
690
691
692
693
694
695
696
697
698
699

700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720

721
722
723

2
2
2
2

2
2
2
2
2
3
3
3
3
3
2

2
3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2

2
2
2

Ap·274

1* set up Me command *1

mC$s.tup. status = 0,
mc$setup. cmd = 8003H,
mC$setup. link$offset = OFFFFH,
call setup.mc.pa~ametersi

1* set up one transmit cb linked to itself *1

transmit. status = 0,
call ,-,,,itelnCO, (!(ODH, OAH, ' Would IJOu like to transmit?'), 30, @status),
call writ.CO, @(' Enter a Y or N ==> '), 20, <!status');
if ~e. then
do;

transmit. cmd = a004Hi
transmit. link$offset = OFFFFH,
transmit. bd$offset = offset C@tbd.act$count),
call satupStlSparametersi

end;
else no.transmission = true;

1* initialize receive packet area *1

do I = 0 to 3,
rfdCI). status = 0,
rfd(i). el$. = 0,
rfd(i). Ilnk$offset = offset (@rfdCI+l). status),
rfdll). bd$offset = OFFFFH,
rbdll).act$count = 0,
rbdlU. nextbdlink = offset C@rbdll+U.act$count),
rbdll).adO = offset l@rbufli).bufferIO»,
rbdlU. adl = O.
rbdlU. size = 1500,

endi
rfdIO).bd$offset = offset l@rbdIO).act$count),
rfd(4) .• tatus = 0,
rfdl4l. ea. " O.
rfd(4). Ilnk$off.et = offset l@rfdCO) .• t.tu.),
rfd(4).bd$offset = OFFFFH,
T'bd(4).actScount = 0;
rbd(4).nelt'bd$llnk = offset C@rbdCO).act$count),
rbd(4).adO = offset l@rbuf(4).bufferCO»,
rbdl4l. adl " 0,
rbd(4). size = 1500,

1* initialize counters *1

count = O.
receive.count = OJ
current$fT'ame = 0;

1* is.ue the first CA *1

Traffic Simulator/Monitor Station Program (Continued)

1-267

292010-56

inter

724 2

725 2

726

727 2
728 2

729 2

730 2

731 2

732 2
733 2
734 2.

735 2

736 1
737 2

738 2
739 2
740 2
741 3
742 3

743 3
744 3
745 4
746 4
747 4
748 4
749 4
750 3
751 2

752 2
754 2
755 2
756 2
757 2
759 2
760 2
761 2
762 2
763 2
764 2

AP-274

output (CA$PORT> CA,

enff initi

print.help. procedure;

call writeln(O, @(ODH, OAH, Commands are: '), 16, @status);
call ",riteln(O, (!(ODH, OAH, 5 - Setup CD D - Di'splay "FD/CO'I,

45, @!!:.Latus)i
call ",riteln(O, (!(' P - Print SCD C - SCD Control CMD'I, ~~,

call ",riteln(O, (!(' L - ESI Loopback On
@st.atuS)i

N - ESI Loopback Uff'I, 45,

call wrlteln(O, @(' A - Toggle Number Base'), 23,

call wl'ite'lnCO, @(/ Z - Clear Tx Frame Counter'), 27, @status),
call writelnCO, @(/ Y - Clear Rx Frame Counter'), ~7, C!$Jtatus);
call writelnCO, (!(" E - Exit t!J Continuous Mode'), 28, @status),

end pT'int$helpi

enterSscb$cmd: procedure;
declare i btjtei

1* enter a command into the SCD *1

call cr$if;
if 5cb.cmd <> 0 then
do;

".

call wl'itelnCO, @(' sea command lIIord is nat cleared'), 32, (tstatus);
call ",rite(O. (!(' Tru a Channel Attention? (V or NI ==> 'I.

39, @!.tatus)i

output(CASPORTI a CA;
call writ.lnCO, @e' Issued channel attention'), 25. @status);
call crSlf;
1"etU1"n;

end;
end;
call w~ite(O, @(' Do ~ou want to ente1" an~ SeD commands? (Y 01" N) ==) '),

53. @statu~ I;
if not ~e •. then ~&tu,.n;
call ..,~ite(O, @(ODH, OAH, ' Ente~ cue ==:> "), '17. @.tatus);
1 = raadSint(4l,
scb. cmd = scb. cmd or shlCdoubleCil, 81,
if i = 1 then scb.cblSoffset = curScbSoffset;
call ..,~it.(O, @(ODH. OAH, ' Ente~ RES bit ==> '), 21, @status);
i = ~ead.b i t;
5cb. cmd = scb. cmd or shl(i, 7)i
tall ",rite(O. @(ODH. OAH. 'Enter RUC ==> 'I. 17. @st"tusl,
i = ~ead.int(4);
scb. cmd = scb. cmd o~ shl(i, 4);

Traffic Simulator/Monitor Station Program (Continued)

1-268

292010-57

intJ

765 2

766 2
767 2
76B 2
769 2

770 2

771

772 2
773 2
774 2
775 2
776 2
777 2

77B 2

779 1
7BO 2

7Bl 2
7B2 2
7B3 3

7B4 3
7B5 3

7B6 3

7B7 3
7BB 3
7B9 3
790 3
791 2
792 2
793 3
794 3
795 3
796 3
797 3
79B 2
799 2
BOO 3
BOI 3
B02 3
B03 3
B04 3
B05 3

AP-274

if «(scb. cbl.offset = offset (@transmit. statusII
and «scb. cmd and 0100HI = 0100HI I Dr «scb. cmd and 0010HI = OOIOHI I
and not «scb. cmd and OOBOHI = OOBOHI
th.n goback = 1;

call lIIritelnCO, (teODH. OAH, I Issued Channel Attention '), 27. @statlls)'
call cr.H,
output(CA$PORTI = CA,

end enterSscbScmdi

print.t~peShelp: procedure;

call writelnCO. @(ODH. OAH. OAH. 'Command block t~pe: • I. 22. @statuf.);
call writelnCO, @(• N - Nap I - IA Setup' I. 35. @statu5)i
call IIIritelnCQ. @(' C - Configure M - MA Setup' I. 35, @statu~) ,
call writeinCO, @(' T - Transmit R - TDR'I. 30, @statu5);
call UJriteinCO, @(, D - Diagnose S - Dump Status ') I 3B. @statu5)j
call writeln(O. @('

end printSt~pe$help,

setupScb: procedure;
declare Ct, valid) byte;

valid = false;
do lIIhile not valid;

H - Print this message I), 23. @statusl,

call wT'iteCO. @(OOH, OAH, J Enter command block type (H for',
, help) ==) '), 45, @status)i

t = read$char;
if (t <> 'H'I and (t <> 'h'l and (t .:> 'T'I and (t ..::> 't'l

(t <> 'N') and (t <> In') and (t <> 'R'I and (t <> 'T' ')

(t <> 'D') and (t <> 'd ' I and (t <> 'e') and (t <> 'e ')
(t <> ' I') and (t <> ' i ') and (t <> 'M') and (t <> 'm')
(t <> 'S') and (t <> 's ') then

call write(O, @(ODH. OAH. , Illegal command block t~pe') •

end;

else
if (t = 'H'I Dr (t
else valid = t~ue;

'h') then call printSt~peShelp,

if (t = 'N') o~ (t = 'n') then
do;

curScbSoffset = offset (@nop. status),
nap. status = 0;
nap. cmd = BOOOH,
nap. linkSoffset = OFFFFH,

end;
if (t = ' 1') D~ (t = ' i ') then
dOi

end;

cu~Scb$affset = offset (@ia$setup. status);
iaSsetup. status = 0;
iaSsetup. cmd = BOOIH,
iaSsetup. link.offset = OFFFFH,
call setupiapa~amete~s;

Traffic Simulator/Monitor Station Program (Continued)

1-269

and
and
and
and

29,
~&1.iJ1.UE»i

292010-58

806 2
807 2
808 3
809 3
810 3
811 3
812 3
813 3
814 2
815 2
816 3
817 3
818 3
819 3
820 3
821 3
822 2
823 2
824 3
825 3
826 3
827 3
828 3
829 3
830 2
831 2
832 3
833 3
834 3
835 3
836 3
837 3
838 2
839 2
840 3
841 3
842 3
843 3
844 3
845 3
846 2
847 2
848 3
849 3
850 3
851 3
852 3

853 2

854 1
855 2

AP-274

if (t = 'e') 01' (t = 'e') then
do;

end;

cur$cbSoffset = offset <Jconfigure. status);
configure. status = 0;
configuTe.cmd = 8002H.
configuTe. linkSoffset = OFFFFH.
call setup'configure'parameters;

if (t = 'M') Dr (t = 'm') then
do;

end;

cUTScbSoffset m offset (emc •• etup.status).
messetup. status = 0;
mcSsetup.cmd - 8003H;
mCSsetup. linkSoffset a OFFFFH.
call setup'rnc'p.Tametersi

if (t = 'T') Dr (t = 't') thlPn
do;

endJ

cu,.$cbSoffset = offset (@transmit.status);
transmit. status = 0;
tTansmit. cmd = 8004H.
tTansmit. link.offset = OFFFFH.
Call setupSt.SpaTameteTs.

if (t = 'R') 01' (t = 'T') then
do;

cur.cbSoffset = offset (@tdT. status).
tdr. status = 0;
tdr. cmd = 8005H •

. tdr. linkSoffset = OFFFFH.
tdr. 'result = 0;

end;
if (t = 'S') or (t :. '5') then
do;

end;

cUTScbSoffset - offset (@dump. status).
dump. status = O.
dump. cmd = 8006H.
dump. linkSoffset = OFFFFH.
dump.buffSptT D offset (@dumpSarea(O».

if (t CI 'D') or (t = 'd') then
do;

endJ

cUTScb.offset = offset (@diagnose.status).
diagnose. status - 0;
diagnose. cmd = 8007H.
diagnose. linkSoffset = OFFFFH.

end setupSCbi

display.command.block: procedure.
declare (i. J) byte.

"'h pOinter,
5.1 aelector,
W IIID'rd;

Traffic Simulator/Monitor Station Program (Continued)

1-270

292010-59

intJ

B'6 2
B57 2
B5B 2
B59 2
B60 2
B61 3
B62 3
B63 3
B64 2
B65 2
B66 3
B67 3
B6B 3
B69 2
B70 2
B71 3
B72 3
B73 3
B74 2
B75 2
B76 3
B77 3
B79 3
BBO 3
BB2 3
BB3 3
BB4 3
BB5 3
BB6 3
BB7 4
BBB 4
BB9 4

B90 4
B91 4
B92 5
B93 5
B94 5
B95 5
B96 5
B97 4

'B9B 3
B99 2
900 2
901 3
902 3
903 3
904 2
905 2
906 3
907 3
90B 3
909 2
910 2
911 3
912 3

Ap·274

call cr$if.
i' curcboffset = OFFFFH then

call write(O. (!(' No Command Block to displalj'), 28. @status);
if curScb$offset = offset (@nop. status) then
do;

end;

call write(O, @('---NOP Command Block---'), 23. @status),
call printSwds(@nop. status, 3);

if curScb$of'set = offset (@tdr. status) then
do.

end;

call "'Tite(O, @('---TOR Command Block--- /), 23, @status);
call printSl&lds(@tdr. status, 4);

if curScbSoffset = offset (@diagnose. status) then
dOl

end;

call writeCO, @('---Diagnose Command 810cll:---'), 28, @status);
call print$1aJds(@diagnose. status. 3);

if curScbSof'set = offset (@transmit. status) then
do.

call "'T"ite(O, @('---Transmit Command Bloclc---'), 28. @status)j
if not address$length then i = address$length.
else i = address$length + Ii
if ad. lac then call pTint$wds«(!transmit. status, 4);
else call printSwds(@transmit. status, i/2+1);
call c,.Slfi
call c,.$l fi
if transmit. bd$offset <~ OFFFFH then
do.

call write(O, @('---Transmit Buffer Descriptor---'). 33. @status);
call print$Ulds(@tbd.actscount. 4).
call Ulrite(O. @(ODH. OAH. OAH.

, Display the transmit bui!fer? (Val' N) ==> '). 46, @status);
if yes then
do.

end;
end;

end;

ca 11 cr$lf;
call writeln(O, @(' Transmit Buffer: '), 17, @status)j
UI = tbd.act$count and 3FFFH.
call print$buff(@tx$buffer(O). "'),

if curcbof'set = offset (@iaSsetup. status) then
do;

end;

call write(O. @('---IA Setup Command Block---'), 28. @status);
call p,.intSwds (@iaSsetup. status, b);

if curScbSoffset = offset (@configure. status) then
d OJ

end;

call write(O. @('---Configure Command Block---'), 29. @status);
call print$wds(@configure. status. 9);

if curcbof'set = of'set (@mc$setup. status) then
do;

call write(O. @('---MC Setup Command Block---'). 28. @status)i
i = 4 + mc$count/2;

Traffic Simulator/Monitor Station Program (Continued)

1-271

292010-60

913 3
914 3
915 4
916 4
917 4
918 4
919 4
920 3
921 3
922 2
923 2
924 3
925 3
926 3
927 3
928 4
92" 4
930 4
931 4
932 5
933 5
934 4
q35 4
'>'36 4
937 3

938 2

939 1
940 2

941 2
942 2
943 2
944 3

945 3
946 3,
947 2
948 2
949 3
950 4
95: 4
953 4
954 4
955 3
956 3
957 2

958 2
959 3
960 4
961 4
963 4
964 4

Ap·274

if mc.count > 24 then
do;

call printSwdsC@mc$setup. status, 16»)
call pause;
i = i - 16.
call print$wds(@mc$setup.mcSaddress(S), i)j

end;
else call print$wds(@mcSsetup. statusJ" i)i

endi
if cur.cb.offset = offset (@dump, status) then
do;

call wTite(O, @('---Dump Status Command Block---'), 31, @status);
call print$wds(@dump. status, 4);
if dump, status = OAOOOH then
do.

call laIriteln(O, @(ODH, OAH, ' Dump Status Results'), 22, @st.atus)
call writeSoffset(@dump$area(O»i

end;
end;

call CT"Slfi
do i = 0 to 9;

call pl'intSstT«(!dumpSarea(16*i), 16),
end;
call print'str(@dumpSarea<160). 10);
call crSlfi

end display'command$block;

displav$receiveSarea: procedure;
declare (i, k, J, 1) bvte,

chars(4) byte;

call write]n(O, C!(ODH, OAH, ' Frame Descriptors: '), 21, @status);
if ad!U oc then
do;

call wrlhln(O. @(OCH. OAH •• CA. SA. and TYPE are In buffer, '. OIJB.
OAtH, 36, @!.tBttlS);

J = 3;
end;
el5e J • address'length ~ 4;
do k = 0 to J;

end;

do I = 0 to 4;

end;

call outSword(@rfd(l)' status. k);

if k = 0 then call wrlte'offset«!rfd(i), statu.);
else call 100pSchar(IO •• '),

call cr.lf;

call writelnCO, .(ODH, OAH, OAH, ' Receive Buffer Descripto1"'s: '), ~J,

tSt.£ttU5) ,;
do k = 0 to 4;

do i = 0 to 4,

end;

call out'word(@rbd(i),act'count. k),
if k = 0 then call writeSoff.et(@r'bd(!),act'cou"t,.

else call loopSchar(10, ' ');

Traffic Simulator/Monitor Station Program (Continued)

1-272

292010-61

intJ

965 3
966 3
967 2

I ~l.t- 2
970 2
971 2
972 3
973 3
974 3
q7~ 'J

3
977 3
979 3

2

990 1
991 2

992 2

993 2
.'':;': 2
98:> 3
996 3
997 3
989 3
989 2

.. L=-t 2

992 2

993 1
994 2

995 2
-.-:Jt., :;:
997 .2
999 2

999 2
1000 2
1002 2
1003 2
11)04 2
,,:C, .,
1006 3

1007 3
1009 2

AP-274

~o1Il J. crSl fi
end;
call I.&Irite(Q, @(ODH, OAH, OAH, I Displa\l th,. reCtHve',

bU4l'E-:";i.f (Y ar N) ==> 'l, 46. (~d.at.us);

if not \IRS then return;
call ..,,.itelnCO, @(ODH, OAH. Receive Bu-ffers. ')' 19, @status),
do i = n t;,

endi

call writeCO, @(ODH. DAH. Receive Buffer '), 18. @c;,t::~.,,"·'
call IIIrit.$intCi. O)i

call writ.InCO, @(' : '), 2. @status':
k = rbd(i).attStount and 3FFF~,

call print'buffCC!l"hll.e(ii. DufferCO), k)i

call P8US":

end displavSreceive$area,

d i sp Ialj'cbS,.pa: proCedU,.ei
det lare ~ blJte;

callI t:.IT'iteCO, @(OOH, OAH, Command Block or Receive Area':' ,~ 01 "' ;=> '),
47. @statu!."

i = read'chari
do while (i <:> 'R') and (i ...::... '1"') and (i (> 'C') ancJ (i <) 'c')J

call I&IritelnCO, @CODH, OAH, ' :i:ll~gal command'), 18, @status',
call write(Q, @C' Enter R or C ==> '), 18, @:status);
i = read$chari

enu,
if (i = 'R'I or (i :II 'r') then call Glspla1J$receive$iireai
else call di5pla~'command$block;

FoT'!'''":essScmd: procedure;
declare \", i \ blJte;

gobac k = 0,
b = readSchar;
tall cl'Slf;
if (b <> 'W) and (b

(b <> 'D') and (b
10 -- 'r:') and (b
(b <> 'L') and (b
(b <> 'Z') and (b
(b <> 'A') and (b

<> 'h ') and (b
'-- 'd') and (b
<> 'c ') and (b
<> 'I') and (b
c.::.- '2'1) and (b
<> 'a') then

tall I&I"ite(O. (!(' Illegal command'),
if (b = 'W) or (b = 'h') then
It ,b '= 'A') or (b = 'a') then

if dhlu t.hen
do;

dh.x = false;

tall

<> '9') and (b (> 's')
<> 'P') and (b .;." 'p
<:> 'E') and (b <> 'e ')
<> 'N') .. nd (b <> 'n')
<> 'V') and (b <> '\.I')

16, @status);
print"help,

and
.'"d
and
and
and

call writeCO. @(,' Counters are displayed in decimal, '), 3!:J.

end;
@.1se

Traffic Simulator/Monitor Station Program (Continued)

1-273

292010-62

1009 3
1010 3

1011 3
'012 2
~01': "!
1014 :;
1015 3
1016 3
1017 "2
1018 2
1019 3
1020 3
1021 3
1022 2
1023 2
1024 3
1025 3
1026 3
1027 2
1028 2
1029 3
1030 3
1031 3
1032 3
1033 2
1035 2
1037 2
1039 2
1041 2
1043 2

1044 2

1045 I
1046 2

1047 2
1048 2
1049 2

1050 2
1051 3
1052 3
1053 4
1054 4
1055 4
1056 4
1058 4

1059 4
1060 3

1061 2

Ap·274

do;
dhex = truei
call wTite(O, @(' CaunteT!. aT'e displaved in heAcide,=i",al. '), :39,

~ •. :,' 'Ir ';

end;
if (b = 'L') or (b = '1') then
do;

Qutput(ESI$PORT) = LOOPDACK.
call writeCO, @(' ESI is in Loopback Mode. '), 25, @status);

end;
if (b = 'N'~ DT" (b = 'n') then

output(ESI$PORT) = NO$LOOPDACK.
call lIIT'iteCO. @(' ESI is NOT in Loopback Mode. '), ·29. @status);

end;
if (b = 'Z') or (b = 'I') then
do;

count = 0;
call writeCO, @(' Transmit Frame Counter is cleared. '), 35, estatus);

end;
if (b = 'V') Dr (b = '':1') then
do;

receive.count = 0;
SCb.CTc'errs, scb.aln'errs, SCb.Tsc'eTl"S, scb. avrn.errs = 0;
call writeCO, @(' Receive Frame Counter is cleared. '), 34, @status);

end;
if (b 'e') or
if (b 'S') or
if (b s 'Pi) or
if (b '0·) or
if (b = 'E') or
call cr$U.

end process$c:md.

getout: procedure;
declare b byte,

b = read'char,
goback = 0,

(b = Ie I) then call enteT"'scbScmd;
(b 's') then call setup$cb,
(b = 'p') then call print$scb.
(b 'd ') then "call displaycbrpa,
(b 'e')" then gob.ck = 1,

call .. rite(O. @(ODH, OAH. ' Entu"command (H for help) ==:> 'I, 34,

do forav.,..;
if cst. then
do,

disable;
call process$cmd,
_nab lei
if gabac. then returni

@statu5)J

call .. rite(O, (i!(ODH, OAH, ' Enter command (H foT' help) ==> '). 34.

end;
end,

end ,.tout.

Traffic Simulator/Monitor Station Program (Continued)

1-274

@!JtiJtU5)J

292010-63

inter

1062 I
1063 2

1064 2
1065 2
1066 2
1067 2
1068 2
1069 2
1070 2
1071 2
1072 2
1073 2
1074 2
1075 2
1076 2
1077 2

1078 3
1079 3
1080 3
1081 3
1082 2
1083 2
1085 2
1086 2
1087 2
1088 2
1089 2
1090 2
1091 2
1092 2
1093 2

1094 2

1095 2

1096 2

1097

1098 1
1099 I
1100 2
1101 I
1102 1
1103 1
1104 1
1105 1

update: proceduTe;
dec lal'l i byte;

call cr$lf;
call loop.char (10. OAH) ,
call loopSchar(28, '*')j

AP-274

call "'TiteeO, @(I Station Configuration '), 23. @:status);
call Ioop$char(27. '*');
call cr.lf,
call crSlfi
call IIIriteCO, (!(I Host Address: '), 15, @:status);
call printSnetwDT'kSaddT(@ia$setup. ia$address(O»i
i = OJ
call lIIT'ite(O, @e' Multicast Address(es): '), 24, @:statuS)i
if mc$s.tup.mc$b~te'count = 0
then call writelnCO, @('Na Multicast Addresses Deofined '), 30. @status)i
else

do while i (me.setup mc$b~te$count;

end;

call printSnetwDTk$addT(@mcSsetup.mc$sddT'essCt»;
call 100p.char(24 •• '),
i = i + 6;

call IIIriteCO, @CODH). I. @statusl;
if not no.transmission then call print.parameters;
call "'riteCO, (!(I 82586 Configu1'ation Block: '), 28, @status)j
call print.strC@tonfigure. infoCO), 10),
call cr.If,
call IoopScha1'(29, '*/)j

call \lJrite(O. e(' Station Activities'), 20, @status);

call1oopScha1'(29, '*')i
call c1'Slfi
call c ... If,
call w1'iteln(O.

@C' * of GDod * of Good CRC Alignment No Rp.teive'),

call w'riteln(O,
@(' Frames Frames

call writelnfO,
ee/TT'ansmitted Received

end update;

main:

call initi
enable;
do IaIhile reset;
end;
disable;
scb. cmd = 0100H,
outputCCA.PORT) CA,
call wait$scbi
enable;

73. @Stcstu5);

Er1'ors E1'ro1'S Resource UV~1'run').
73, @StC'ttU5)j

E1'rurs E1"t"ort. '),
72. (!status),

292010-64

Traffic Simulator/Monitor Station Program, (Continued)

1-275

intJ AP-274

li06
1107 2
1108 1
110'1 1
1110 1
1111 1
1112 1
1113 1 '
1114 1
1115 1
1116 1
1117 1
1118 1
1119 1
1120 1
1121 1
1122 1
1123 1
1124 1
1125 1
1126 1
1127 1
1128 2
1129 2
1130 2
1131 2
1132 2
1133 2
1134 3
1135 3
1136 2
1137 2
1138 2
113'1 2
1140 2
1141 2
1142 2
1143 2
1144 1
1145 1
1146 2
1147 2
1148 3
114'1 4
1150 4
1151 4
1152 4
1153 4
1154 4
1155 4
1156 3
1157 3
1158 3
1159 2
1160 2
1161 3
1162 3
1163 3
1164 3
1165 2

1166

do while (diagnose.statu5 and BOaOH) () BeaOHi
end;
call cr$lf;
if diagnose status <~ OAOOOH
then cail writelnCO. @e' Diagnose failed! '), 17 •• status);
If configure. status <> OAOOOH
then call wrltelnCO. @(' Configul"e failed!'), '18, @status);
1 f la.setup. status (> OAOOOH
then call writelnCO. @(' IA Setup failed! '), 17 C!status);
if me.setup. status (> OAOOOH
then call writelnCO. @(/ Me Setup failed! '), 17 @status),
scb. cbI.offset = nffset (@transmit. status);
call urriteln(O, @(ODH, OAH, I Receive Unit is active. '), 26, @statut.);
disable.
5tb. cmd == OOIOHi
Dutput(CA$PORT) = CA;
call wait.5cb;
enab Ie;
Dutput(ESI$PORT) - NO$LOOPBACK;
call cr$l fi
if not no$transmission then
do;

end;

call write(O. @('---Transmit Command Block---'), 2e. @status);
call printSwds(@transmit. status. e);
call crSlfi
curScbSoffset = offset C@transmit. status);
call pauslf;
do z = 1 to &0;

call time(250);
endi
call writeln(O, (!(ODH, OAH. 'transmission st .. rt.d! '), 23, @status);
call c,.$If;
disable;
scb, cmd = 0100H;
output (CAtPORT) CA;
call UJait$scbi
enable;

call update;
do fo,.ever;

end;

call write(O,' @(ODH. I '), 2. @status);
d.o IJ = 0 to Si

end;

do case 1ji

end;

call I&Irite$int(CDunt. dhex)i
call I.IJriteSint(receive.count, dhex);
call I&Irit •• int(scb. crc.errs. dhex);
call writeSint(scb. aInSerrs. dhex);
call I&Irite$intCscb. rlc.errs. 'dhex),
call I&Irite$int(scb. DvrnSerrs, dhex)i

~har.count = 13 - char.count;
call loop$char(char.cDunt, , ')i

if csts then
do;

end;

disable;
call getout;
call update;

end tsms;

MODULE INFORMATION:

= 23C3H
OF85H
265EH
OO'l2H

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE =
MAXIMUM STACK SIZE
19'14 LINES READ
o PROGRAM WARNINGS
o PROGRAM ERRORS

DICTIONARY SUMMARY:

15'1KB MEMORY AVAILABLE
23KB MEMORY USED (14X)
OKB DISK SPACE USED

END OF PL/M-86 COMPILATION

'11550
39730
'1822D

1460

Traffic Simulator/Monitor Station Program (Continued)

1-276

292010-65

292010-66

5

Ap·274

/*******************9~k~**.***************************.********************.w.,
1* <·1
1* 186/5B6 High Integration Board init!31j.ation Routine *1
'. (This driver is configured for Ethernet/Cheapernet Desi~n *1
Iii 5(j t Demo Board) *1

.'"
1* Vel'. 2.0 Mal'ch 14, 1981, *1
1* '·1
1* Ki~oshi Nishide Intel ~utpD~atiDn
, ,
/ **************'*.*1: iI tc. *** w .. "

1* rhe conditional compilatIon ya"a",eter 'EPROM27128, determines board r(OM
size. If it is true, the 80186'5 ~alt ~tat~ aenerator 15 programmed to
o wait state for upper 64K-byte memory locations. if ~~ i& false, the
wait gtate generator is programmed to 0 wait state for uppe~ t~8K-byt~
memory locaclan~ *1

ini186:

do;

~eclare hib_ir label public
declare main label external
decla~e menu laD~l eyternal

1* literals *1

declare lit literally
UMCS_reg lit
:..~r.S_l"eCJ lit
PACS_reg lit
MPCS_reg lit
INT_MASK_reg lit
ISCPLOCLO lit
ISCPLOCHI lit
!:cr. . CH_B_CMO lit
SCC Ct1 ii ~.'TII lit
SCC:CH:A:CMO Iii.
SCC_CH_A _OIlT'. ilt
Nt u_ lit
CR lit
LF lit
BS lit
SP lit
OM lit
DEL 11t
BEL lit

'li teral1~ "
'OFFAOH',
'OFFA2H',
'OFFA4H',
·OFrN:-J.l',
'OFF28H',
'03FF8H'.
'0'.
'8300H',
'B302H',
'c;:.":J04H',
, 8306H "
'0',
'OOH' ,
'OAH' ,
'OBH' ,
'20H'.
'3Fn" ,
'07FH',
'07H',

186/586 High Integration Board Initialization Routine

1-277

*1
*1

292010-67

inter

6

7

8 2

'I 2

10 1
11 2

12 2
14 2

IS 2

16 1
17 2

18 2
20 2

21 2

22
2~ ;:

24 2
26 2

27 2

2B
2" ;;

30 2
32 2

33 2

34

3~ <:

declare acp structure
(

_V.bUB bvta.
unu •• d (:U b"tel
iscp'addrSlo word.
iscp'addr.hi word
I

Ap·274

at (OFFFF6HI data (0. O. O. O. O. O. ISCP.LDC.LO. ISCPSLOC$H.,.

output(INT_mask_regl • OFFH. 1* mask all interrupts *1

and initSintSclt.

rra: procedure (reg_nol bVte.
declare rag_no bvte.

i9 (rag_no and OFHI <> 0 then output(SCC_CH_A_CMDI
return input(SCC_CH~_CMDI.

end ,.raJ

rrb: procedure (reg_no I bvte.
declare ,.eg_"o b"te,

if Crag_no and OFHI <>0 than output CSCC_CH_D_CMDI = reg_no and OFH.
return inputCSCC_CH_B_CMDI.

end 1',.bJ

~ra: procedure (reg_"o, value);
declare (reg_no, value) byte;

if Creg_no and OFHI <> 0 then output C6CC_CH_A_CMDI a reg_no and OFH.
output CSCC~CH_A_CMDI • value.

end laIra;

W1'b: procedure (reg_"o, value);
declare (reg_no, value) byte;

if (reg_no and OFHI ~> 0 then output C6CC_CH~_CMDI = reg_no and O~H.
output C6CC_CH_B_CMDI = value.

end tu,.bJ

initSSCC'D: procedure.

call wrbCO'l. 01000000bl. 1* channel B reset *1

186/586 High Integration Board Initialization Routine (Continued)

1-278

292010-68

inter AP-274

36
37
38
39
40
41
42
43
44

4~

46

47

48

49
51

52

53
54

55
57

58

59
60

61
62
63
64
65
66

2
2
2
~

2
2
2
2
2

2
2

2

3
2

2

I
2

3
2

2

I
2

2
2
2
3
3
3

call wrb 104. 010011 lOb). 1* 2 stop. no parit~. brf = 16x *1
call wrb (03, 11000000b) , 1* rx 8 bits/chal'. no auto-enable *1
c.::.l1 wrbl05. 01100000b) , 1* tx 8 bits/char *1
call wrbe 10. OOOOOOOOb) ,
call wrbe II. 01010110b) , 1* rxc = txc DRG. trlc DRG out *1
call IIIrb(12, OOOOIOllb), 1* baud rate = 9600 *1
call wrb(13, OOOOOOOOb) ;
call lIIrb (14, 00000011 b), 1* BRG source = SYS CLK. enable DRG *1
call wrb(15, OOOOOOOOb), 1* all ext status interrupts

call wrbe03. 11000001b) , 1* scc-b receive enable *1
call IIIrb(05. 11101010b), 1* scc-b transmit enab 1 e,

end initSCCB;

,Sin: procedure blJte public;

do whlle einputeSCC_CH_O_CMD) and I)
return e inputeSCC_CH_B_DATA))'

end cSin;

cSout: procedul'e (char) publiCi
declare char blJtei

do while e,nputeSCC_CH_B_CMD) and 4)
outputeSCC_CH_B_DATA) = char,

end C$Duti

0; end;

0; end;

dtr

off *1

on. rts on *1

r .. ad: pl"oceduT'e (fileSid, msgSptr, count, actual'ptr, statusSptY') publiCi
declare fileSid ward,

msgSptr pointer.
count lIIord.
actual'ptr pointer,
status$ptr pointer.
msg based msg$ptr el) b~te.
buf (200) b~te.
actual based actualsptr word,
status based status$ptr word,
i word,
ch b~te,

1* This procedure implements the ISIS read p~ocedure. All control characters *1
1* except LF, BS, and DEL a1'e ignored. If BS Dr DEL is encountered. a *1
1* backspace is done. *1

status = 0;
i, ch = 0;
do while (ch <> CR) and (ch <> LF) and ei < 198),

ch = c$in and 07FHi
if ech = OS) or ech = DEL) then
do;

186/586 High Integration Board Initialization Routine (Continued)

1-279

292010-69

inter
67 4
loB 4
69 5
70 5
71 '5
72 5
73 5
74 5
75 5
76 4

77 4
7B 3

79 3
BO 4
Bl 4
B2 4
B3 4
B4 3

B5 3
B6 4
B7 4
BB 4
B9 4
90 3

91 3
92 2
93 2
95 2
96 2
97 3
9B 3

99 2

100

101 2

102 2

103 1
104 2

105 2

Ap·274

l~ I > '0 then
-do.

and.
else

and.
ehe

i .. i-I.
cd! cSoutCDELI.
call cSoutCBBI.
call cSDutCSPI.
call cSoutCDELI.
call cSoutCBSI.

call cSoutCBELI.

H ch >- SP than'
do.

end.
81 ..

call cSoutCchl.
bu~Ci) • chI
i .. i + I.

if Cch - CRI or Cch • LFI then
do.

endl

end.
else

bufOI .. CR.
bu~Ci + II - LF.
i .. i + 2.

call cSoutCBELI.

call cSDutCCRI.
if i > count than i = count.
actual -= i;
do i = 0 'to actual - I.

msgCiI .. buf(U.
- end.

end read;

CltS: procedura bvte publiCI

return «lnput(SCC_CH_B_CMDI and II <> 01.

end csts;

.. rit.: procedure (hlo!Sid. msgSptr. count. statu.Sptrl publiCI
declare (fileSid. countl .. ord.

(msgSptr. status'ptrl pointer;
msg ba.ed msgSptr (II bvte.
Itatul based .tatusSptr .. ord.
ch bvte.
i word;

1* This procedure implements the ISIS .. rit. *1

status = 0;

186/586 High Integration Board Inltlallzatlo,n Routine (Continued)

1-280

292010-70

intJ

106
107
lOB
1'09

110
III

112
113

114

115

116
117

liB

119
120
121

122

2
2
3
3

3
3

3
3

2

i = 0;
do whlle i < count;

ch = msg(i)i

AP-274

if ((ch :>= SP) and (ch (DEll) or (ch
then

CR) or (c h LF) or (ch

end;

call c$out(ch);
else

call c$out(GM);
i = i + 1;

end write;

hi b i r:

$IF EPROM2712B

$ELSE

$ENDIF

output IUMCS_reg)

output (UMCS_reg)

output(LMCS_reg)
output(PACS_reg)

OF03BH,

OE03BH,

03FCH,
OB3CH,

1* Starting Address
no wait state *1

1* Starting Address
no wait state *1

OFOOOOH,

OEOOOOH,

1* 16K, no wait state *1
1* PBA = BOCOH. no wait state for

PSCO-3 *1

NUll

OBFH, 1* Peripherals in 110 space. no At 8(A2
provided, 3 wait states +01' PSt4-6 *1

call initintclti
call ini tSCCB,
go to main;

end ini186;

186/586 High Integration Board Initialization Routine (Continued)

1-281

292010-71

inter AP-274

APPENDIX C
THE 82530 SCC 80186 INTERFACE AP BRIEF

INTRODUCTION INTERFACi: OVERVIEW

The object ofthis document is to give the 82530 system
designer an in-depth worst case design analysis of the
typical interface to a 80186 based system. This docu­
ment has been revised to include the new specifications
for the 6 MHz 82530. The new specifications yield bet­
ter margins and a 1 wait state interface to the CPU (2
wait states are required for DMA cycles). These new
specifications will appear in the 1987 data sheet and
advanced specification information can be obtained
from your local Intel sales office. The following analy­
sis 'includes a discussion of how the interface TTL is
utilized to meet the timing requirements of the 80186
and the 82530. In addition, several optional interface
configurations are also considered.

DATA (D7-D8)

74Ase4

The 8253'0 - 80186 interface requires the TTL circuitry
illustrated in Figure 1. Using five 14 pin TTL packages,
74LS74, 74AS74, 74AS08, 74AS04, and 74LS32, the
following operational modes are supported:

• Polled
• Interrupt in vectored mode
• Interrupt in non-vectored mode
• Half-duplex DMA on both channels
• Full-duplex DMA on channel A

A brief description of the interface functional require­
ments during the five possible BUS operations follows
below. .

.7 <4 DB? •• 37 DB6 •• S DI& •• 38 DB'" •• 2 ••

.2 89 82 ., I Bl •• •• ao
3'" A ... l'
82 DI''f'
aa
• • I.
•• 7 lEI
6 lEO
28 Lt<

B25a8
THIIA I.
RHIIA I. CHAHIIEL

'fI!lmi I. A
Jm!eli 12
~ II

1!T!li 17
~ I.
m! I •

JI'1!71mIli " fKlIB .0
litX1l8 .7 CHANNEL

'rIIll9 2. B
Ift'i!9 2.
'fVli9 2'
nu 2'

"lIEGB 1:'I'D 2'
"REBB 'fR .,

liYII7IImW ••
uee • .ou
ON. S!

HOtES' H - PULLED HIGH THROUGH 6K OH"
UI - " .. LS?"
U2 - 14Ase8
U3 - ? .. AS''''
U4 - 1"'AS14
us - ?4LS82

IIRGe " ~'~'----------------------~
U3

292010-72

Figure 1. 82530-80186 Interface

1-282

AP-274

UN ITS, 125NS/19

CLKOUT

AD 0-15

I TCLJ)X
DT/R ----~~--------~------------------------~------~ .. ~

90196
ALE ~r_+-___ ~~r-_o_oo_o_oo_oo_oo_o_oo_oo __ o_oo_oo_oo_oo_o_o0_00_00_0_00_00_00_0_00_00_0_0 ~~ ____ ~~ ____ __

TCLRH

92590
DATA

292010-73

Figure 2. 80186-82530 Interface Read Cycle

UNITS, 125 NS/19

CLKOUT

DT/R

90196

---------+-------- ""..-+-______________________ ~-,-----~/o ° 0.00.0 .. 0.000

------__f_. '--__ -i--+ ______________ -!---i;-__ o °i'o 0-0 -0 '-0 0-0 0-0 .-. 0 0-' 0

ADDRESS
92590

DATA

TPDHR/S86-WR/S30 (HIGH)

292010-74

Figure 3. 80186-82530 Interface Write Cycle

READ CYCLE: The 80186 read cycle requirements are
met without any additional logic, Figure 2. At least one °

wait state is required to meet the 82530 tAD access
time.

WRITE CYCLE: The 82530 requires that data must be
valid while the WR pulse is low,§ure 3. A D Flip­
Flop delays the leading edge of- WR until the falling
edge of CLOCKOUT when data is guaranteed valid
and WR is guaranteed active. The CLOCKOUT signal

is inverted to assure that WR is active low before the D
Flip-Flop is clocked. No wait states are necessary to
meet the 82530's WR cycle requirements, but one is
assumed from the RD cycle.

INTA CYCLE: During an interrupt acknowledge cy­
cle, the 80186 provides two INTA pulses, one per bus
cycle, separated by two idle states. The 82530 expects
only one long INT A ~e with a RD pulse occurring
only after the 82530 lEI/lEO daisy chain settles., As

1-283

inter AP-274

UNITS: 125 NS/12

2T
T.. IDLE S'l'A'l'ES T I T' 2 T. T. ToO

CLKOUT

: ~: :::::.: :::: ::::::: ::: :::: :::::::: :::::::: :::::::: ::::::: ::: ::::::::: ::: :t:~~';:: ::rECfO~ ~:::t:~~~~:

=It,;~lF·;;<'~l,==
AD "-15

Dulf 80186

TII'l'1i

RN

··············1···································1············ .. ·················· .. ·········· ···········1· ·············1···· .. ········ .. ···················1·· .. ··· ·········,' ·········1···················
CLK I.. I ..

TII'l'1i
82530

Q

VECTOR

292010-75

Figure 4. 82530-801861NTA Cycle

illustrated in Figure 4, the INT A signal is sampled on
the rising edge of CLK (82530). Two D Flip-Flops and
two TTL gates, U2 and U5, are implemented to gener­
ate the proper INTA and RD pulses. Also, the INT
signal is passively pulled high, through a I k resistor,
and inverted through U3 to meet the 80186's active
high requiremep.t.

DMA CYCLE: Conveniently, the 80186 DMA cycle
timings are the same as generic read and write opera­
tions. Therefore, with two wait states, only two modifi­
cations to the DMA request signals are necessary.
First, the RDYREQA signal is inverted through ·U3
similar to the INT signal, and second the DTR/REQA
signal is conditioned through a D Flip-Flop to prevent
inadvertent back to back DMA cycles. Because the
82530 DTR/REQA signal remains active low for over
five CLK (82530)'s, an additional DMA cycle could
occur. This uncertain condition is corrected when U4
resets the DTRlREQ signal inactive high. Full Duplex
on both DMA channels can easily be supported with
one extra D Flip-Flop and an inverter.

RESET: The 82530 does not have a dedicated RESET
input. Instead, the simultaneous assertion of both RD
and WR causes a hardware reset. This hardware reset
is implemented through U2, U3, and U4.

ALTERNATIVE INTERFACE
CONFIGURATIONS

Due to its wide range of applications, the 82530 inter­
face can have many varying configurations. In most of
thes~ applications the supported modes of operation

need not be as extensive as the typical interface used in
this analysis. Two alternative configurations are dis­
cussed below.

8288 BUS CONTROLLER: An 80186 based system
implementing an 8288 bus controller wilL not require
the preconditioning of the WR signal through the Ii
Flip-Flop U4. When utilizing an 8288, the control sig­
nal IOWC does not go active until data is valid, there­
fore, meeting the timing requirements of the 82530. In
such a configuration, it will be necessary to logically
OR the lowe with reset to accommodate a hardware
reset operation.

NON-VECTORED INTERRUPTS: If the 82530 is to
be operated in the non-vectored interrupt mode (B step
only), the interface will not require UI·or U5. Instead,
INT A on the 82530 should be pulled high, and pin 3 of
U2 (RD AND RESET) should be fed directly into the
RD input of the SCC.

Obviously, the amount of required interface logic is ap­
plication dependent and in many cases can be consider­
ably less than required by the typical configuration,
supporting all modes of sec operation.

DESIGN ANALYSIS

This design analysis is for a typical microprocessor sys­
tem, pictured in Figure 5. ,The Timing analysis assumes
an 8 MHz 80186 and a 4 MHz 82530. Also, included in
the analysis are bus loading,. and TTL-MOS cOmpati­
bility considerations.

1-284

Ap·274

ADDRESS
LATCH r--

l;t
MICROPROCESSOR ADDRESS BUS

r--- [\r
~

ALE

c---
--...£Q!:!!.RObJ!!,!L :> i-- .--- -

c---
'---

r--

'---- l;t
f\

---DATA
TRANSCEIVER

"'-..7'

~ ROM ~

"" 7' . "()7

RAM ~ 1/0

DATA BUS .~

292010-76

Figure 5. Typical Microprocessor System

Bus Loading and Voltage Level
Compatabilities

The data and address lines do not exceed the drive ca­
pability of either 80186 or the 82530. There are several
control lines that drive more than one TTL equivalent
input. The drive capability of these lines are detailed
below.

WR: The WR signal drives U3 and U4.

• 101 (2.0 rnA) > Iii (-0.4 rnA + -0.5 rnA)
loh (-400 ,.A) > lih (20,.A + 20,.A)

PCS5: The PCS5 signal drives U2 and U4.

• 101 (2.0 rnA) > Iii (-0.5 rnA + -0.5 rnA)
loh (-400 ,.A) > lih (20 p.A + 20 ,.A)

INTA: The INTA signal drives 2(Ul) and U5.

• 101 (2.0 rnA) > Iii (-0.4 rnA + -0.8 rnA + -0.4 rnA)
loh (-400 ,.A) > lih (20 ,.A + 40,.A + 20,.A)

All the 82530 1/0 pins are TTL voltage level compati­
ble.

TIMING ANALYSIS

Certain symbolic conventions are adhered to through­
out the analysis below and are introduced for clarity.

1. All timing variables with a lower case first'letter are
82530 timing requirements or responses (i.e., tRR).

2. All timing variables with Upper case first letters are
80186 timing responses or requirements unless pre­
ceded by another device's alpha-numeric code (i.e.,
Tclcl or '373 Tpd).

3. In ~ writ~cIe analysis, the timing variable
TpdWR186-WR530 represents the propagation de­
lay between the leading or traili~dge of the WR
signalleav~he 80186 and the WR edge arrival at
the 82530 WR input.

Read Cycle

1. tAR: Address valid to RD active set up time for the
82530. Since the propagation delay is the worst case
path in the assumed typical system, the margin is calcu­
lated only for a propagation delay constrained and not
an ALE limited path. The spec value is 0 ns minimum.

• 1 Tclcl - Tclav(max) - '245 Tpd(max) + Tclrl(min) +
2(U2) Tpd(min) - tAR(min)

= 125 - 55 - 20.8 + 10 + 2(2) - 0 = 63.2 ns margin

1-285

inter AP·274

2. tRA: Address to RD inactive hold time. The ALE
delay is the worst case path and the 82530 requires 0 ns
minimum.

• 1 Tclcl -' Tclrh (max) + Tchlh(min) + '373 LE
Tpd(min) - 2(U2) Tpd(max) ,

= 55 - 55 + 5 + B - 2(5.5) = 2 ns margin

3. tCLR: CS active low to RD active low set ,up time.
The 82530 spec value is 0 ns minimum.

• 1 Tclcl - Tclcsv(max) - Tclrl(min) - U2
skew(RD - CS) + U2 Tpd(min)

= 125 - 66 - 10 - 1 + 2 = 50 ns margin

4. tRCS: RD inactive to CS inactive hold time. The
82530 spec calls for 0 ns minimum.

• Tcscsx(min) - U2 skew(RD - CS) - U2 Tpd(max)

= 35 - 1 ~ 5.5 = 28.5 ns margin

5. tCHR: CS inactive to RD active set up time. The
82530 requires 5 ns minimum.

• 1 Tclcl + 1 Tchcl - Tchcsx(max) + Tclrl(min) - U2
skew (RD - CS) + U2 Tpd(min) - tCHR

= 125 + 55 - 35 - 10 - 1 + 2 - 5 = 131 ns margin

6. tRR: RD pulse active low time. One 80186 wait state
is included to meet the 150 ns minimum timing require­
ments of the 82530.

* Trlrh(min) + 1 (Tclclwait state) - 2(U2 s~ew) - tRR

= (250-50) + 1(125) - 2(1) - 150 = 173 ns margin

7. tRDV: RD active low to data valid maximum delay
for 80186 read data set up time (Tdvcl = 20 ns). The
margin is calculated on the Propagation delay path
(worst case).

• 2 Tclcl + 1 (Tclclwait state) - Tclrl(max) - Tdvcl(min)
- '245 Tpd(max) -; 82530 tRDV(max) - 2(U2) Tpd(max)

= 2(125) + 1(125) - 70 - 20 - 14.2 - 105 - 2(5.5)
= 154 ns margin

8. tDF: RD inactive to data output float delay. The
margin is calculated to DEN active low of next cycle.

• 2 Tclcl + Tclch(min) - Tclrh(max) + Tchctv(min) -
2(U2) Tpd(max) - 82530 tDF(max)

= '250 + 55 -55 + 10 - 11- 70 = 179 ns margin

9. tAD: Address required valid to read data valid maxi­
mum delay. The 82530 spec value is 325 ns maximum.

*3 Tclcl + 1 (Tclclwait state) - Tclav(max) - '373
Tpd(max) - '245 Tpd - Tdvcl(min) - tAD

= 375 + 125 - 55 - 20.8 -14.2 - 20 -325 = 65 ns
margin

Write Cycle

1. tAw: Address required valid to WR active low set
up time. The 82530 spec is 0 ns minimum.

• Tclcl - Tclav(max) - Tcvctv(min) - '373 Tpd(max)
+ TpdWR186 - WR530(LOW) [Tclcl - Tcvctv(min) +
U3 Tpd(min) + U4 Tpd(min)1 - tAW

= 125 - 55 - 5 - 20.B + [125 - 5 + 1 + 4.41 - 0
= 170.6 ns margin

2. tWA: WR inactive to address invalid hold time. The
82530 spec is 0 ns.

• Tclch(min) - Tcvctx(max) + Tchlh(min) + '373 LE
Tpd(min) - TpdWR186=WR530(HIGH) [U2 Tpd(max) +
U3 Tpd(max) + U4 Tpd(max)]

= 55 - 55 + 5 + 8 - [5.5 + 3 + 7.11 = -2.6 ns
margin

3. tCLW: Chip select active low to WR active low hold
time. The 82530 spec is 0 ns.

• 1 Tclcl - Tclcsv(max) + Tcvctv(min) - U2 Tpd(max)
+ TpdWR1B6=WR530(LOW) [Tclcl - Tcvctv(min) + U3
Tpd(min) + U4 Tpd(min)1 '

= 125 - 66 + 5 - 5.5 + [125 - 5 + 1 + 4.41 =
183.9 ns margin

4. tWCS: WR invalid to Chip Select invalid hold time.
82530 spec is 0 ns. ' -

• Tcxcsx(min) - U2 Tpd(max) -
TpdWR1B6=WR530(HIGH) [U2 Tpd(max) + U3
Tpd(max) + U4 Tpd(max)]

= 35 + 1.5 - [5.5 + 3 + 7.11 = 20.9 ns margin

5. tCHW: Chip Select inactive high to WR active low
set up time. The 82530 spec is 5 ns. '

• 1 Tclel + Tchel(min) + Tcvctv(min) - Tehesx(max) -
U2 Tpd(max) + TpdWR1B6=WR530(LOW) [Telel -
Tevetv(min) + U3 Tpd(min) + U4 Tpd(min)] - tCHW

=-125 + 55 + 5 - 35 - 5.5 + [125 -5 + 1 + 4.41 -
5 = 264 ns margin

6. tWW: WR active low pulse. 82530 requires a mini­
mum of 60 ns from the falling to the rising edge of WR.
This includes one wait state.

1-286

inter AP-274

• Twlwh [2Tclcl - 40] + 1 (Tclclwait state) - TpdWRI
186-WR530(lOW) [Tclcl - Tcvclv(min) + U3 Tpd(max)
+ U4 Tpd(max)] + TpdWR/186=WR/530(HIGH) [U2
Tpd(min) U3 Tpd(min) + U4 Tpd(min)] - tWW

= 210 + 1(125) - [125 - 5 + 4.5 + ~.2] - [1.5 + 1
+ 3.2] - 60 = 135.6 ns margin

7. tDW: Data valid to WR active low setup time. The
82530 spec requires 0 ns.

• Tcvctv(min) - Tcldv(max) - '245 Tpd(max) +
TpdWR186-WR530(lOW) [Tcici - Tcvclv(min) + U3
Tpd(min) + U4 Tpd(min)]

= 5 - 44 - 14.2 + 125 - 5 + 1.0 + 4.4 = 72.2 ns
margin

8. tWD: Data valid to WR inactive high hold time. The
82530 requires a hold time of 0 ns.

• Tclch - skew (Tcvctx(max) + Tcvctx(min)l + '245
OE Tpd(min) - TpdWR186-WR530(HIGH) [U2 Tpd(max)
+ U3 Tpd(max) + U4 Tpd(max)]

= 55 - 5 + 11.25 - [5.5 + 3.0 + 7.1] = -50.6 ns
margin

INTACycle:

1. tiC: This 82530 spec implies that the INTA signal is
latched internally on the rising edge of CLK (82530).
Therefore the maximum delay between the 80186 as­
serting INTA active low or inactive high and the 82530
internally recognizing the new state of INT A is the
propagation delay through VI plus the 82530 CLK pe­
riod.

• Ul Tpd(max) + 82530 ClK period

= 45 + 250 = 295ns

2. tel: rising edge of CLK to INT A hold time. This
spec requires that the state of INTA remains constant
for 100 ns after the rising edge of CLK. If this spec is
violated any change in the state of INT A may not be
internally latched in the 82530. tel becomes critical at
the end of an INTA cycle when INTA goes inactive.
When calculating margins with tCI, an extra 82530
CLK period must be added to the INTA inactive delay.

3. tIW: INTA inactive high to WR active low mini­
mum setup time. The spec pertains only to 82530 WR.
cycle and has a value of 55 ns. The margin is calculated
assuming an 82530 WR cycle occurs immediately after
an INT A cycle. Since the CPV cycles following an
82530 INT A cycle are devoted to locating and execut­
ing the proper interrupt service routine, this condition

should never exist. 82530 drivers should insure that at
least one CPV cycle separates INT A and WR or RD
cycles.

4. tWI: WR inactive high to INT A active low mini­
mum hold time. The spec is 0 ns and the margin as­
sunies CLK coincident with INT A.

• Tclcl - Tcvctx(max) - TpdWR186 - WR530(HIGH)
[U3 Tpd(max) + U4 Tpd(max)] + Tcvctv(min) + Ul
Tpd(min)

= 125 - 55 - [5.5 + 3 + 7.1] + 5 + 10 = 69.4 ns
margin

5. tlR: INTA inactive high to RD active low minimum
setup time. This spec pertains only to 82530 RD cycles
and has a value of 55 ns. The margin is calculated in
the same manner as tIW.

6. tRI: RD inactive high to INT A active low minimum
hold time. The spec is 0 ns and the margin assumes
CLK coincident with INT A.

• Tclcl - Tclrh(max) - 2 U2 Tpd(max) + Tcvclv(min)
+ Ul Tpd(min)

= 125 - 55 - 2(5.5) + 5 + 10 = 74 ns margin

7. tIID: INTA active low to RD active low minimum
setup time, This parameter is system dependent. For
any sce in the daisy chain, t1ID must be greater than
the sum of tCEQ for the highest priority device in the
daisy chain, tEl for this particular SCC, and tEIEO for
each device separating them in the daisy chain. The
typical system with only 1 sec requires t1ID to be
greater than tCEQ. Since tEl occurs coincidently with
tCEQ and it is smaller it can' be neglected. Additional­
ly, tEIEO does not have any relevance to a system with
only one sec. Therefore t1ID > tCEQ = 250 ns.

• 4 Tclcl + 2 Tidle states - Tcvclv(max) - tiC [Ul
Tpd(max) + 82530 ClK period] + Tcvclv(min) + U5
Tpd(min) + U2 Tpd(min) - tliD

= 500 + 250 - 70 - [45 + 250] + 5 + 6 + 2 - 250
= 148 ns margin

8. tlDV: RD active low to interrupt vector valid delay.
The 80186 expects the interrupt vector to be valid on
the data bus a minimum of 20 ns before T4 of the sec­
ond acknowledge cycle (Tdvcl). tIDV spec is 100 ns
maximum.

• 3 Tclcl - Tcvclv(max) - U5 Tpd(max) - U2
Tpd(max) - tlDV(max) - '245 Tpd(max) - Tdvcl(min)

= 375 - 70 - 25 - 5.5 - 100 - 14.2 - 20 = 140.3
ns margin

1-287

inter AP·274

9. tIl: RD pulse low time. The 82530 requires a mini­
mum of 125 ns.

• 3 Tclcl - Tcvctv(max) - U5 Tpd(max) - U2
Tpd(max) + Tcvctx(min) + U5 Tpd(min) + U2 Tpd(min)
- tII(min)

= 375 - 70 - 25 - 5.5 + 5 + 6 + 1.5 - 125 =
162 ns margin

DMACycle

Fortunately, the 80186 DMA controlier emulates CPU
read and write cycle operation during DMA transfers.
The DMA transfer timings are satisfied using the above
analysis. Because of the 80186 DMA request input re­
quirements, two wait states are necess~o prevent
inadvertent DMA cycles. There are also CPUDMA in­
tracycle timing considerations that need to be ad­
dressed.

1. tDRD: RD inactive high to DTRREQ (REQUEST)
inactive high delay. Unlike the READYREQ signal,
DTRREQ does not immediately go inactive after the
requested DMA transfer begins. Instead, the DTRREQ
remains active for a maximum of 5 tCY + 300 ns. This
delayed request pulse could trigger a second DMA
transfer. To avoid this undesirable condition, a D Flip
Flop is implemented to reset the DTRREQ signal inac­
tive low following the initiation of the requested DMA
transfer. To determine if back to back DMA transfers
are required in a source synchronized configuration,
the 80186 DMA controller samples the service request
line 25 ns before T1 of the deposit cycle, the second
cycle of the transfer.

• 4 Tclcl - Tclcsv(max) - U4Tpd(max) - Tdrqcl(min)

= 500 - 66 - 10.5 - 25 = 398.5 ns margin

2. tRRI: 82530 RD active low to REQ inactive high
delay. Assuming source synchronized DMA transfer,
the 80186 requires only one wait state to meet the"tRRI
spec of 200 ns. Two are included for consistency with
tWRI.

• 2 Tclcl + 2(Tclclwait state) - Tclrl(max) - 2(U2)
Tpd(max) - Tdrqcl - tRRI

=2(125) + 2(125) - 70 - 2(5.5) - 200 = 219 ns
margin

3. tWRI: 82530 WR active low to REQ inactive high
delay. Assuming destination synchronized DMA trans­
fers, the 80186 needs two wait states to meet the tWRI
spec. This is because the 80186 DMA controller sam­
ples requests two clocks before the end of the deposit
cycle. This leaves only 1 Tclcl + n(wait states) minus
WR active delay for the 82530 to inactivate its REQ
signal.

• Tclcl + 2(Tclclwait state) - Tcvctv(min) -
TpdWAI86-WA530(LOW) [Tclcl - Tcvctv(min) + U3
Tpd(max) + U4 Tpd(max)1 - Tdrqcl - tWAI

=375 - 5 - [125 - 5 + 4.5 + 9.21 - 25 - 200 =
11.3 ns margin

NOTE:
If one wait state DMA interface is required, external
logic, like that used on the DTRREQ signal, can be
used to force the 82530 REQ signal inactive.

4. tREC: eLK recovery time. Due to the internal data
path, a recovery period is required between SCC bus
transactions to resolve metastable conditions internal to
the SCC. The DMA request lines are marked from re­
questing service until after the tREC has elapsed. In
addition, the CPU should not be allowed to violate this
recovery period when interleaving DMA transfers and
CPU bus cycles. Software drivers or external logic
should orchestrate the CPU and DMA controller oper­
ation to prevent tREC violation.

Reset Operation

During hardware reset, the system RESET signal is as­
serted high for a minimum of four 80186 clock cycles
(1000 ns). The 82530 requires WR and RD to be simul­
taneously asserted low for a minimum of 250 ns.

• 4 Tclcl - U3 Tpd(max) - 2(U2) Tpd(max) + U4
Tpd(min) - tREe

= 1000 - 17.5 - 2(5.5) + 3.5 - 250 ns = 725 ns
margin

1-288

APPLICATION
NOTE

AP-324

June 1989 .

Implementing Twisted Pair
Ethernet with the Intel 82504TA,

82505TA, and 82521TA .

WILLIAM WAGER
TECHNICAL MARKETING ENGINEER

1-289
Order Number: 292057-001

infef AP-324

ABSTRACT

The market for Local Area Networks (LANs) has been
growing rapidly for several years, and LANs based on
the ANSI/IEEE 802.3-1985 standard have proven to
be the most popular. These networks are called
. CSMA/CD LANs because of their Medium Access
Control method (MAC)-Carrier Sense Multiple Ac­
cess with Collision Detection. Intel has been a contrib­
utor to both the standardization and the widespread
acceptance of CSMA/CD LANs since their concep­
tion.

The two most prevalent types of CSMA/CD LANs are
called, in IEEE terminology, IOBASE5 (aka Ethernet,
Yellow Cable, or Thick Wire) and IOBASE2 (Cheaper­
net or Thin Wire Ethernet). Ethernet operates over a
customized coaxial cable configured as a bus and re­
stricted to a maximum length of 500 meters-point-to­
point. Ethernet transmits data at 10 Mb/s on a base­
band network. Cheapernet uses the more common RO-
58 cable and has a maximum point-to-point distance of
185 meters; its data transmission rate is also 10 Mb/s.
Other types of CSMA/CD networks are IOBROAD36
(IO-Mb/s Broadband, 3600m on Coax) and IBASE5 (1
Mb/s Baseband, 500m on standard telephone wire).

The cost of the cable and its installation and reconfigu­
ration has been a factor in the acceptance of CSMA/
CD LANs. The members of the IEEE 802.3 Working
Group, including Intel, have recognized this, and we
are addressing this issue. We are· preparing a new
CSMA/CD standard (IOBASE-T) that operates at
10 Mb/s with a 100m point-to-point range and uses
unshielded, twisted-pair wiring-the common tele­
phone wire already installed in most buildings: Besides
using a less expensive wire type, 10BASE-I0 (TPE)
uses a star topology that can operate concurrently with
normal telephone traffic, and other services, in a paral­
lel cable plant.

Besides its active participation in the IOBASE-T Task
Force, Intel is now marketing products based on the
work of the task for(;;e. With these products-the
82504TA Transceiver Serial Interface, the 82505TA
Multiport Repeater controller, and the 82521 Serial Su­
percomponent-our customers can design high-speed
LANs that operate over unshielded twisted pair wiring,
which is usually already installed. These networks can
coexist with existing CSMA/CD networks; that is, they
can be integrated into a single network interfacing with
already installed Ethernet or Cheapernet networks.
Furthermore, Intel is committed to maintaining com­
patibility and conformity with the emerging standard.

1.0 INTRODUCTION

This Ap Note is intended to aid system designers who
have some knowledge of IEEE 802.3 standards, but
limited experience with analog design. System designers
designing Twisted Pair Ethernet LANs with Intel's
TPE products and Ethernet LAN controllers will find
this and other Intel Ap Notes useful (see also: AP-274,
Implementing Ethernet/Cheapernet with the Intel
82586, Kiyoshi Nishide; and AP-320, Using the Intel
82592 to Integrate a Low-Cost Ethernet Solution into a
PC Motherboard, Michael Anzilloti).

Intel has introduced the 82504TA Transceiver Serial
Interface (TSI), the 82505T A Multiport Repeater con­
troller (MPR), and the 82521 Serial Supercomponent
(SSC). These products simplify designing Twisted Pair
Ethernet LANs based on the emerging 10BASE-T stan­
dard. These LANs are compatible with existing ANSI/
IEEE 802.3 networks at the Physical Signaling layer
and the MAC portion of the Data Link layer. This
means that a Twisted Pair Ethernet LAN built with
these products will be software compatible with current
802.3 networks and can connect to other 802.3 net­
works through the standard Attachment Unit Interface
(AUI) port of a Multiport Repeater.

A Twisted Pair Ethernet LAN comprises several ele-'
ments: data terminal equipment (DTR), medium at­
tachment units (MAU), multiport repeaters (MPR),
and the cable plant. More complex networks, which
interconnect with existing 802.3 networks, are made
possible by using the 802.3-standard AUI port of the
MPR. Figure 1 illustrates a network that uses all these
elements ..

Figure 1 shows three types of DTE and MAU combina­
tions. Two have embedded MAUs, the other has an
external MAU connected to the DTE node by a stan­
dard AUI cable. Embedded MAU designs either use
the 82504TA, and its associated circuitry, or the
82521 T A SSC. The multiport repeaters are designed
around the 82505TA, they also contain one 82504TA.
Each of the eleven twisted pair ports contains an em­
bedded MAU. The cable plant is standard telephone
wire, 4- or 25-pair unshielded twisted pair (26 to 22
gauge). Each segment uses two twisted pairs for data, .
one for transmission and one for reception, and the un­
used pairs can carry other services as well. In a TPE
design the maximum node-to-repeater distance is 100
meters.

1-290

Ap·324

10 Mb/s Star Wired 100m Cable Length

MPR

292057-1

Figure 1. Typical TPE Network

1-291

Ap·324

2.0 SYSTEM DESCRIPTION

2.1 Network Description

The network shown in Figure 1 is a typical representa­
tion of TPE networks designed with Intel TPE prod­
ucts. The network follows the lOBASE-T draft stan­
dard specifications wherever possible. We recommend
that network designers follow the same practice. Table
1 compares the TPE network features to the earlier
10 Mb/s standards, and Table 2 compares TPE net­
works based on the Intel products to those based on the
most likely outcome of the lOBASE-T Task Force de­
liberations.

2.1.1 MEDIUM ATTACHMENT UNIT (MAU)

The MAD (i.e., the transceiver) provides the required
circuitry for interfacing with the twisted pair wire. It
performs several functions; e.g., line driving with pre­
distortion, line reception, and collision detection. Mul­
tiport repeaters and DTEs can contain embedded
MADs or attach to external MADs.

MAD Line Drivers: The transmitter is designed to
drive a 960 properly terminated cable and must meet
all its specifications under this load (unless otherwise
specified). A transformer provides dc isolation from the
twisted pair, and the transmitter has a matched source
impedance of 960 ± 20%. It will achieve a drive level
of 2.2V to 2.8V peak differential. The power spectrum
amplitude will be less than - 30 dB at, or above,
30 MHz from its 10 MHz value. The signal is Manches­
ter encoded like 10BASE5 and lOBASE2.

The transmit circuitry incorporates the predistortion
algorithm adopted by the lOBASE-T Task Force. This
algorithm improves overall system jitter performance
by reducing the amount of jitter induced by the twisted
pair. The line drivers will drive at full amplitude during
"thin" (50 ns) pulses and the first half of "fat" (100 ns)
Manchester pulses. They will reduce their drive level to
33% during the second half of "fat" Manchester'pulses.
This prevents the twisted pair from overcharging dur­
ing the fat pulses. Without this predistortion, the over­
charge would cause a delay in the zero crossing follow­
ing the "fat" bit, resulting in more induced jitter. Fig­
ure 2 shows the idealized output waveform for the pre­
distorted signal at the transmitter.

MAD Line Receiver: The MAD line receiver is also dc
isolated by a transformer. It must have a matched dif­
ferential impedance such that the return loss is at least
15 dB from 5 MHz to 10 MHz. The line receiver must
operate properly in the presence of a signal having a
350 mV to 2.8V differential. It must detect the start of
Idle within 1.8 bit times, and must include a squelch
circuit that rejects, as noise, any signals less than
250 mY, and accepts signals greater than 350 mV hav­
ing a pulse width greater than 20 ns.

Collision Detection: The MAD detects collision by not­
ing simultaneous activity on the transmit and receive
pair. No provision is made for receive-based collision
detection. When a transmitting station detects a colli­
sion it begins the normal 802.3 collision sequence of
jam, random backoff, and retransmit. When a repeater
detects a collision it also begins a jam and it enforces
the minimum frame length of 96 bits.

Table 1. Comparison of Network Features

Feature TPE 10BASE5 10BASE2

Wire Unshielded TP Yellow Coax Thin Coax

Topology Star Bus Bus

Segment Length 100m 500m 185m

Software Existing Existing Existing

Controller 82586/8259x 82586/8259x 82586/8259x

Data Rate 10 Mb/s 10 Mb/s 10 Mb/s

Access Method CSMAlCD CSMAlCD CSMAlCD

Table 2. Differences between Current TPE and Expected 10BASE·T

Feature CurrentTPE 10BASE-T

Squelch Single Pulse Multiple Pulse

Collision Detect Tx and Rx Active Tx and Rx Active for 5 Bits

Link Integrity None Single Linkbeat

Jabber Function None Watchdog Timer

DO -- 01 Loopback None Supported

1-292

Ap·324

Coax Cable

Tx Waveform

TPE

Tx Waveform

o o o

292057-2

Figure 2. Predistortion Waveform

2.1.2 MULTIPORT REPEATER

The Multiport Repeater is the central point in the star­
configured network. It is usually located in a telephone
closet or some other central wiring point. The link seg­
ments (repeater to node wiring) can then' be run using
available twisted pairs in the existing telephone cable
plant or a dedicated parallel cable plant. The repeater
conforms to the ANSI/IEEE 802.3c-1988 standard
for repeaters. It has eleven twisted-pair ports (embed­
ded MAUs) and one AUI port.

A block diagram of an 82505T A-based repeater is
shown in Figure 3. It uses one 82505TA, one 82504TA,
eleven TP port processors, two 74LS529 latches, a
74LA154 decoder, and an AUI interface processor. The
82505T A handles the repeater state functions such as
automatic preamble regeneration, minimum frame
length enforcement, signal retiming, collision detection
and jam, and control for the LED status indicators.
The 82504T A handles Manchester decoding and clock
recovery for the incoming data packet. The AUI inter­
face processor contains the DO line drivers and the DI
and CI line receivers as required by the ANSI/IEEE
802.3-1985 standard for AUI connectors. The
72LS 154 decoder disables the transmitter on the receiv­
ing port, and the 72LS259 latches control the status
LEDs. .

During normal transmission without contention (i.e.,
no collisions) the repeater detects the transmitting port
and immediately begins automatic preamble regenera­
tion (APR) to all other ports. It routes the incoming
data to the Manchester decoder and begins loading its
internal FIFO. When the FIFO reaches its threshold

the repeater ceases APR and begins to send data from
the FIFO. This data is Manchester encoded and re­
timed before it is rebroadcast. When a collision occurs,
the repeater stops broadcasting from the FIFO and be­
gins transmitting a jam pattern. It continues to jam
until the collision ceases and at least 96 bits have been
transmitted to each port (minimum frame length en­
forcement).

The repeater also supports autopartitioning and jabber
protection. These two features prevent faulty nodes
from bringing the network down. When such a fault is
detected, the port in question is removed from the net­
work, and the remainder of the network resumes nor­
mal operation. The repeater continually monitors the
faulty port, and when the fault is fixed the port is re­
connected to the network.

2.1.3 DATA TERMINAL EQUIPMENT

Data Terminal Equipment (DTE) includes usernodes,
file servers, and other devices that can originate and
accept data packets. A TPE network uses the same con­
trollers as other 802.3 networks. These are Intel's
82586, 82590, and 82592, as well as any future Intel
Ethernet controllers. This ensures a design continuity
that allows for migration from Ethernet or Cheapnet
designs to Twisted Pair Ethernet. The only part of the
design that requires redesign is that between the con­
troller and the connector.

I~tel's product line supports two DTE designs. Over
the twisted· pair they are functionally equivalent; how­
ever, they differ in the way they interface to the host

1-293

inter AP·324

'82505 MPR
AUI INTERFACE

82504 TSI AUIRxO

AUICRS

TRxO TRxO AUICOT

TPS TPS TRMT

MCV MCV' TRMT

CRS CRS TPEN

RxC RxC

RxO RxO

POC

TRO'"

LEOF TCS'"

LE08

TP PORT 1'"

LED7 POC

. TR01'"

LEO'" TCS1'"

292057-3

Figure 3. Repeater Block Diagram

LAN controller. Figure 4 shows the first DTE design.
It is based on the 82504TA, and comprises the
82504TA, the interface logic, the twisted pair.transmit­
ters, and the twisted pair receivers. This circuit con­
tains an embedded MAU; i.e., it connects directly to
the twisted pair wire. The second DTE design, shown
in Figure 5, also contains an embedded MAU. It is
built around the 82521TA Serial Supercomponent and
interfaces directly with the LAN controller and the
twisted pair. The complete twisted pair design consists
of an 82521TA and the qonnector. External MAUs,
which interface a standard Ethernet AUI node to the
twisted pair, are also allowed. External MAUs are part
of Intel's future product plans.

2.1.4 LINK SEGMENT

A link segment connects two twisted pair Medium At­
tachment Units (MAUs); it comprises two Medium De­
pendent Interface connectors (RJ-45, 8-pin standard
telephone connectors), two pairs of twisted pair wire
(note to exceed 100m) and a crossover. The connector's
pin assignments are shown in Table 3.

Table 3. Pin Assignments for MOl Connector

Pin Signal

1 Transmit Data + (TO +)
2 Transmit Data- (TO-)
3 Receive Data + (AD +)
4 Not Used
5, Not Used
6 Receive Data - (RD -)
7 Not Used
8 Not Used

The crossover function connects the TD outputs of one
MAU to the RD inputs of the other. This function can
be implemented externally or embedded within a
MAU. If the function is embedded, then the signal
names on the connector refer to the remote.MAU. That
is Pin 1 (TD +) on a MAU with an embedded cross­
over is connected to the Transmit Data (+) of the re­
mote MAU, and to its own Receive Data (+). The
crossover function is defined by the following connec­
tions between MAU A and MAU B.

1-294

inter

z
:3;
iJe c_
'- C
G> 0

~o

-
'- .
G> "
e~ _N
Co>
o III
ON _co

G> •
c<D
'-CO
G>1lI
.eN
~CO

-

AP-324

OTE = High CLK(20 MHz)

TRxO

TPS

82504TA TRMT Analog
Transceiver

Serial TRMT
Front End

Interface

TPEN

POC

Figure 4. 82504TA Based DTE Block Diagram

TO+ TD+
CTS CTS

TxC TxC TD- TO-
TxO TxO

RxC RxC
82521TA

RO+ RO+
RxO RxO

CRS CRS RO- RO-
COT COT

Figure 5. 82521TA Based DTE Block Diagram

1·295

-

'-
Ill;:! ... " I G> .., c

~8

RO+

RO-

'-
0

1lI-
TO+ ... " I G>

.., C

'" ~
TO-

0

292057-4

292057-5

inter Ap·324

MAUA
TD+ 1
TD- 2
RD+ 3
RD- 6

MAUB
3RD+
6RD­

'1 TD+
2TD-

When an embedded crossover function is used in a
DTE to repeater connection, the crossover must be em­
bedded in the repeater MAU. in general, repeater
MAUs have an embedded crossover, and DTE MAUs
do not. With proper use of the crossover function re­
peaters can be cascaded through twisted pair ports, and
two DTEs can be connected in a point-to-point net­
work. Repeaters can be cascaded in two' ways. First,
one twisted pair port on a repeater can be designed to
have a switched (optional) crossover function. This en­
ables a DTE connection on that port when the cross­
over is active, or a repeater connection when the cross­
over is disabled. Secondly, twisted pair ports with em­
bedded crossovers can be connected by using a third
external crossover.

2.2 Interoperation with Existing
802.3 Networks

Twisted Pair Ethernet networks that use Intel's Ether­
net controllers and TPE products are fully compatible
with existing 802.3 networks at the Medium Access
Control and Physical Signaling levels. Therefore, TPE
networks can be integrated with existing 802.3 net­
works to form one large network. The IEEE 802.3c-
1988 standard allows connecting different types of
lO-Mb/s networks. Because the repeater definition ex­
tends to a DTE type AUI connection on each port, the
type of wiring is determined by the choice of MAU.
Optionally, a repeater can have embedded MAUs on
any of its ports. The only requirement is that function­
ality at the Medium Dependent Interface point (e.g.,
coax tap or twisted pair connector) be maintained. '

The 82505T A Multiport Repeater provides embedded
MAUs on 11 of the 12 ports, and an AUI connection
on the remaining port. This allows creating local twist­
ed pair subnetworks that are connected to an Ethernet
backbone. Care must be taken not to violate the system
topology rules of 802.3 networks. The most important
of these are: (1) only one active signal path is allowed to
exist between any two stations on the network and (2)
no more than four repeaters are allowed in the signal
path between any two stations on the network. There is
an overall limit of 1024 stations on a network (repeaters
do not count as stations).

2.3 Software Compatibility

Because the twisted pair networks use the same control­
ler chips (82586 and 8259x) as current Ethernet and

Cheapernet networks they have an implicit software
compatibility. That is, Twisted Pair Ethernet designs
based on the 82586 (8259x) will be software compatible
with Ethernet/Cheapernet design based on the 82586
(8259x).

Two minor software configuration changes are required
when the 82504TA and 8252ITA are used. These
changes will not 'be necessary in future Twisted Pair
Ethernet products. Both these changes can be handled
by the application-specific soft~are driver for the TPE
application.

• Manchester Encoding. The Ethernet controller
needs to be configured for Manchester encoding.
For the 82586, bit 2, byte 14 of the CONFIGURE
command must be set to 1. For the 8259x, bit 2, byte
9 of the CONFIGURE command must be set to 1.

• External Loopback. The 82504TA and the 8252ITA
do not support the external loopback mode of the
Ethernet controllers. Software packages that used
this mode will fail without a workaround. Normally,
this is only an issue for diagnostics that use this
mode during self-test. This problem can be avoided
by modifying the software driver to look for external
loopback mode, and to do its own software loopback
when appropriate (based on a destination address
check).

3.0 NETWORK SYSTEM COMPONENT
DESIGN

The design of various TPE network system components
is presented, here. DTEs with embedded MAUs are
shown first, and then the repeater design is shown.

3.1 Designing a DTE Node Based on
the 82504TA

Figure 4 has shown a DTE node with an embedded
MAU based 011 the 82504TA. It showed the Ethernet
LAN controller, the 82504TA, the analog front-end,
and the connector. As in previous Ethernet designs, the
LAN controller provides the MAC services such as
transmission deferral, collision backoff and retransmis­
sion, CRC generation and checking, and address check­
ing. It also provides the host interface. The 82504TA,
in conjunction with the analog front-end, provides both '
the Physical Signaling and Physical Medium Attach­
ment services. These include carrier sense, collision de­
tect, Manchester decoding, clock recovery, line driving,
and line receiving. The analog front-end handles the
line driving and receiving functions from the 82504TA.

3.1.1 HOST TO ETHERNET LAN CONTROLLER

The interface of the Ethernet LAN Controller is dis­
cussed in previous Intel Ap Notes, AP-274 and
AP-320.

1-296

intJ AP-324

3.1.2 82504TA TO ETHERNET LAN
CONTROLLER

The 82504TA to controller interface consists of the di·
rect connection of TxC, TxD, RxC, RxD, and RTS.
The CRS signal to the controller is generated by a logi­
cal AND (a 74F08 is used) of CRS from the 82504TA
and RTS. CDT is the NAND of TPS and an inverted'
RTS; both the NAND function and invert function are
done by a 74FOO.

For clocking the 82504TA a clock oscillator is recom­
mended. Many that meet the requirements of the device
are available commercially. It must meet the following
specifications.

Frequency Tolerance ~0.01 %
Rise and Fall Times ~ 5 ns
Duty Cycle 40/60% or better
Output TTL compatible

The 82586 and the 82504TA have two specification in­
compatibilities. These are data sheet incompatibilities
only, and will not affect performance. Work is in prog­
ress to ensure that the 82586 and 82504TA specifica­
tions are fully compatible.

• TxD setup time. The 82504TA requires a 10 ns set­
up time from TxD to the TxC edge. The 82586 spec­
ifies that TxD will change within 40 ns of the previ­
ous TxC edge. Therefore, if the TxC duty cycle is
not exactly 50% the TxD setup time is violated.
However, the 82586 actually places the TxD edge
approximately 25 ns from the previous TxC edge,
and it never exceeds 30 ns. The next revision of the
82586 data sheet will correct this specification prob­
lem.

• TxC duty cycle. The 82504T A does not specify the
TxC duty cycle; however, the worst case would be
better than 40/60% based on the high- and low-time
specifications and signal rise and fall times. The
82586 data sheet requires a 45/55% duty cycle for
Manchester encoding. In fact, the tight duty cycle is
only important when control of the TxD duty cycle
is important. The 82504TA can tolerate the worst
case TxD duty cycle generated by the 82586 with a
worst case TxC, therefore there is no problem. The
82586 specification will become a recommendation
in the next revision of the data sheet.

3.1.3 ANALOG FRONT-END

The analog front-end is shown in Figure 6. It consists
of two main sections, Transmit and Receive. The trans-

mit section contains the interface, the line drivers, the
EMI filter, and the line coupling devices. The receive
section consists of the line coupling devices, the EMI
filter, the line receivers, and the squelch circuitry. The
line coupling devices and EMI filter are similar for both
the transmit and receive sections, and will be described
in a common section.

The 82504TA to Line Driver Interface. The 82504TA
to line driver interface consists of the four signals from
the 82504TA (TRMT, TRMT, PDC, and TPEN), a
quad XOR (e.g., 74F86), and quad line drivers. The
design shown here uses an octal line driver
(74ACT244) with the drivers paired. The four pairs are
configured using a voltage summing circuit to give two
differential drivers, one at 67% power, and the other at
33%. During "thin" pulses and the first half of "fat"
pulses, the two differential drivers act in unison to give
100% power. During the second half of "fat" pulses,
the 33% driver is inverted to provide only 33% power
as required by the predistortion algorithm.

The circuit operates as follows. The TPEN signal is the
enable signal for the drivers. It is asserted by the
82504TA whenever the node is transmitting. During
idle, it is deasserted, and the driver enters the tri-state
mode. The Manchester data ~rovided by the
82504TA on the TRMT and TRMT lines, and each
signal is fed into two XOR gates. One of the XORs for
each signal has one input grounded, therefore it acts as
a non-inverting buffer. The output of these XOR gates
feeds the two line drivers composing the 67% differen­
tial driver. Therefore, the 67% driver is always driving
the exact Manchester pattern. The other XOR gates are
also fed by the PDC signal. This signal is low for "thin"
pulses and the first half of "fat" pulses, and it is high
for the second half of "fat" pulses. These XOR gates
feed the 33% differential driver. The combination of
the PDC signal and the XOR gates ensures that the
33% driver follows the 67% drivers when 100% power
is required, and inverts when 33% power is required.

The design of this circuit is intended to present a con­
stant driver impedance during packet transmission.
This is vital since variations in the matching of driver
impedance to the twisted pair cable impedance will
cause reflections resulting in added jitter.

High.Voltage Protection. To prevent damage to the ac­
tive devices caused by high-voltage transients from the
twisted pair line, protection should be provided. We
recommend placing a pair of diodes on each of the four
differential signals (two transmit and two receive) as
shown in Figures 7 and 8. The diodes connect to the

1-297

inter AP-324

74F86 74ACT244

22A
TRt.tT

q A
0 FILTER

and
PDC LINE 2

COUPLING
DEVICES

TRt.tT B

....
0

If)

22A· """ 0 I CI)

1.19
...., c::

« a::: c::
TPEN

0
t- U

""" 0
If)
C'I
00 NE521

74F08 3
FILTER

TRxD and
LINE

6 COUPLING
DEVICES

TPS

4
2

V = 300 mV @ Vee = 5V

74F175

14
20t.tHz __ ~t-____ ~~ ____ ~~ ____ ~ ____ ~
CLOCK

292057-6

Figure 6. Analog Front End

± 5V power supplies. Tliese should be placed at the
interface between the active devices and the low pass
filters so the active circuits are protected and the filter
attenuates the transients.

Filter Design. The main function of the low-pass filter
is to remove the high-frequency components of the
transmitted signal without affecting the in-band fre­
quencies (5 MHz to 10 MHz). The high frequency com­
ponents can create electromagnetic interference (EMI)
above the levels permitted by FCC regulations. The de­
sign should provide minimum inband loss and mini­
mum-in-band ripple while providing maximum atten-

uation of frequencies above 30 MHz with appropriate
roll-off in the transition band.

The Group Delay variation is another critical factor in
the design of the filter. The group delay is defined as
the variation in signal phase with the frequency. The
group delay variation is the derivative of the group de­
lay. The group delay variation defines the difference in
propagation delay through the filter for the frequencies
of interest. These differences in propagation delay cause
amplitude and phase distortions in the signal, which
translate into jitter.

1-298

inter

A

8

C

o

+5V

-5V

+5V

-5V

High Voltage
Protection

+5V

-5V

High Voltage
Protection

AP-324

33pF 39pF

r~
~1 ~1

33pF 39 pF

Filter

Figure 7. Tx Filter Section

91 pF 39 pF

91 pF 39pF

Filter

Figure 8. Rx Filter Section

1-299

91 pF

A'

~1
8'

91 pF

292057-7

33pF

C'

0'

33pF

292057-8

inter AP-324

The impedance of the filter must be matched to both
the transmitter i~pedance and the line impedance.
Also, balance and grounding should be tightly con­
trolled for proper operation. Due to these considera­
tions we recommend a differential filter built syrnmetri­
cally on each line of the differential pairs with the im­
pedance matched at each end.

Filters that provide all these characteristics are present­
ed in Figures 7 (transmit) and 8 (receive). Their charac­
teristics meet the requirements of the twisted pair envi­
ronment. The requirements are as follows.

Type 7 Pole, Balanced Elliptical
I/O Impedance 960 ± 15% (5 MHz to 10 MHz)
3 dB Frequency 17 MHz to 19 MHz
50 dB Frequency 2 30 MHz
In-Band Ripple :s; 1 dB

Line Coupling Devices. The line coupling devices,
shown in Figure 9, include the transformers, common
mode chokes, and common mode noise filters. The
transformers provide ac coupling between the line and
the circuitry while providing dc isolation. The recom­
mended minimum isolation is 2250 V de. To provide

proper balance between the two ends of the transform­
ers, the windings should be identical. To provide appro­
priate impedance matching in the frequency range of
interest, the transformers should have appropriate pri­
mary and secondary induc~nce (200 I-'-H typical) and
minimal interwindjng capacitance « 20 pF).

The common mode choke is provided to reject common
mode radio frequency and electromagnetic interference
picked up from the unshielded telephone lines. It
should provide 1000 V de isolation between the wind­
ings. The common mode choke has four windings, each
one connected with proper polarity, in series with the
receive and transmit twisted pairs. The balance of the
choke is very important in order to provide proper
noise cancellation while passing through the differential
signal unaffected. We recommend a common mode to
differential balance of 30 dB at all frequencies up to
20 MHz.

The common mode noise filter removes undesirable
high-frequency common mode signals picked up on the
line, or generated by the transmitter. These signals are
mainly generated by fast rise and fall times and signal
crosstalk in the transmitter.

Common Mode Common Mode
Noise filter Choke .-- 2 .--

292057-9

Figure 9. Line Coupling Devices

1-300

inter AP-324

Line Receivers. The incoming receive signal passes
through the line coupli~g devices and the low pass fil­
ter. From there it is fed into a gated line receiver con­
trolled by the squelch circuitry. The line receiver con­
verts the received differential signal to TTL levels and
feeds it to the 82504TA. The receiver can be designed
using a zero crossing detector (e.g., NE521) and gated
with the TPS signal with a 74F08. A lOOn load resistor
is placed on the 74F08 output to reduce jitter induced
by the difference in the threshold mismatch between
the 82504TA input and the 74F08 output circuits.

Squelch Circuit. The, squelch circuit differentiates noise
from valid incoming data on the receive pair. It does
this by detecting signals that are above a preset voltage
level for a sufficient period. When there is no signal on
the receive pair, the squelch circuit disables the line
receiver, and deasserts the TPS signal to the 82504TA.
When a signal above the threshold arrives, TPS is as­
serted, and the line receiver is enabled. The squelch
circuit ensures that the receive circuits in the 82504TA
are operating only during packet reception. The
squelch circuit should meet the following specifications.

Reject < 250 m V
Accept > 350 m V and> 30 ns

The circuit shown in Figure 6 uses a high-speed com­
parator with an offset threshold. The output of this
comparator is fed to a retriggerable timing circuit that
controls the TPS signal to the 82504TA. To ensure rec­
ognition of the IDL (end of packet) signal, and to pre­
vent midpacket deassertion of TPS, the timing circuit
should be set to detect positive pulses between 1.5 and
2.0 bit times (200 ns). The timing circuit can be imple­
mented by using either a quad flip-flop (74FI75)
clocked from the 20 MHz clock generator or a retrig­
gerable monostable multi vibrator with an appropriate
time constant. The first method provides better stability
and requires fewer discrete components. If the multi vi­
brator is used, then the selection of the timing compo­
nents is critical. The timing capacitor must have very
low leakage with good temperature and aging stability.
The timing capacitor and resistor need to be as close as
possible to the IC to minimize stray capacitance and
noise injection.

Layout Considerations. The power and ground wiring
should conform to good high-frequency practice and
standards to minimize switching transients and parasit­
ic interaction between various circuits. To achieve this,
the following guidelines are presented.

• Place bypass capacitors (usually 0.01 /-LF) on each
IC between Vee and ground. They should be locat­
ed close to the Vee pins.

1-301

• Make power supply and ground traces as thick as
possible. This will reduce high-frequency cross cou­
pling caused by the inductance of thin traces.

• Separate and decouple all of the analog and digital
power supply lines.

o Close signal paths to ground as close as possible to
their sources to avoid ground loops and noise cross
coupling.

• Connect all unused IC inputs (except as directed by
the manufacturer) to ground or Vee to avoid noise
injection or parasitic oscillations of unused circuits.

o Use high-loss magnetic beads on power supply dis­
tribution lines.

• Group each of the receive and transmit circuits, but
keep them separate from each other. Separate their
grounds.

" Layout all differential circuits symmetrically so
parasitic effects are also symmetrical.

" Layout the circuitry from the line connector to the
active circuitry (especially the EMI filter) on a
ground plane to prevent undesirable EMI effects.

3.2 Designing a Simplified DTE Node
Based on the 82521TA Serial
Supercomponent

A design for an 82521TA based DTE node within em­
bedded MAU is shown in Figure 5. It includes all of the
functions described in Section 3.1, thereby relieving the
designer of those responsibilities. It is simple to use,
and it does not require mastering of pole-zero diagrams.
It is a direct interface from the Ethernet controller to
the RJ-45 connector.

Currently, the 82521 TA has the same specification in­
compatibilities with the 82586 as the 82504TA does,
and these will be resolved concurrently. There is one
added signal, Clear to Send (CTS), its implementation
is optional.

The layout of the 82521TA and the RJ-45 connector
should keep the TD +, TD, RD + , and RD signal lines
as short as possible. The power supply traces (Vee,
VEE, Voo, and ground) should be as thick as possible,
and bypass capacitors should be placed between each
power supply and ground. We also recommend laying
out the 82521TA on a ground plane.

intJ Ap·324

3.3 Designing a Multiport Repeater
Using the 82505TA

Figure 3 shows the multiport repeater based on the
82505TA (with one 82504TA). The repeater contliins
11 twisted pair ports with embedded MAUs and 1 AUI
port. The 82505T A controls the operation of the re­
peater in accordance with ANSI/lEEE 802.3c-1988
repeater unit specifications; this includes signal retim­
ing, automatic preamble generation, autopartitioning,
and jam signal generation. The 82504TA performs
Manchester decoding and clock recovery during an ac­
tive incoming signal. Two addressable latches
(74LS259) are used to control the 16 LED indicators.
A 4-to-16 decoder (74LSI54) is used to disable the
transmitter of the receiving port during transmission
without contention. The Twisted Pair port functions
contain the line drivers, the line receivers, the filter, and
the isolation required for a twisted pair embedded
MAU. In addition, one AUI interface is present to pro­
vide access to existing (IEEE 802.3) 10 Mbls baseband
segments.

3.3.1 82505TA TO 82504TA INTERFACE AND
CLOCK GENERATION

The 82505TA to 82504TA interface is straightforward.
It consists of six signals directly connected between the
devices. The signals are TRxD, TPS, MCV, CRS, RxC,
and RxD. The interface is shown in Figure 3.

A single clock oscillator is recommended for clocking
the 82505TA and 82504TA. The requirements are iden­
tical to those shown for the DTE design using the
82504TA. They are:

Frequency Tolerance ~0.01 %
Rise and Fall Times ~ 5 ns
Duty cycle 60/40% or better
Output TIL compatible

3.3.2 TWISTED PAIR PORT DESIGN

The design of the twisted pair port circuits is nearly
identical to the analog front-end circuits of the DTE
design based on the 82504TA. It is shown in Figure 10.
The design consists of two mian sections, transmit and
receive. The transmit section contains the interface cir­
cuits, the line drivers, the EMI filter, and the line cou­
pling-devices. Conversely, the receive section consists of
line coupling devices, an EMI filter, line receiver,
squelch circuit, and interface circuits. The line coupling
devices and noise filter are similar for both the transmit
and receive sections, and will be described in a common
section.

The 82S0STA to Line Driver Interface. The 82505TA
to line driver interface consists of the fout signals from
the 82505TA (TRMT, TRMT, PDC, and TPEN), the
port enable (PEx) signal from the port disable control,
two NAND gates, a quad XOR (e.g., 74F86), and quad
line drivers. The design shown here uses an octal line
driver (74ACT244) with the drivers paired. The four
pairs are configured using a voltage summing circuit to
give two differential drivers, one at 67% power, and the
other at 33%. During "thin" pulses and the first half of
"fat" pulses, the two differential drivers act in unison to
give 100% power. During the second half of "fat" puls­
es, the 33% driver is inverted to provide only 33%
power as required by the predistortion algorithm.

The circuit operates as follows .. The TPEN signal is
inverted and NAND'd with the individual port's Port
Enable signal. This generates the enable signal for that
port's drivers. It is asserted whenever the port is trans­
mitting; i.e., when another port is receiving, or during a
collision jam. During idle it is deasserted, and the driv­
ers enter the tri-state mode. The Manchester data is
provided by the 82505TA on the TRMT and TRMT
lines, and each signal is fed into two XOR gates. One of
the XORs for each signal has one input grounded,
therefore it acts like a non-inverting buffer. The output
of these XOR gates feeds the two line drivers compos­
ing the 67% differential driver. Therefore .. the 67%
driver is always driving the exact Manchester pattern.
The other XOR gates are also fed by the PDC signal.
This signal is low for "thin" pulses and the first half of
"fat" pulses, and it is high for the second half of "fat"
pulses. These XOR gates feed the 33% differential driv­
er. The combination of the PDC signal and the XOR
gates ensures that the 33% driver follows the 67% driv­
ers when 100% power is required, and inverts when
33% power is required.

The design of this circuit is intended to present a con­
stant source impedance during packet. transmission.
This is vital since variations in the matching of driver
impedance to the twisted pair cable impedance will
cause reflec~ions resulting in added jitter.

High.Voltage Protection. To prevent damage to the ac­
tive devices due to high voltage transients from the
twisted pair line, high-voltage protection should be pro­
vioed. We recommend placing a pair of diodes on each
of the four differential signals (two transmit and two
receive) as shown in Figures 7 and 8. The diodes con­
nect to the ± 5V power supplies. These should be
placed at the interface between the active devices and
low pass filters so that the active circuits are protected,
and the filter attenuates the transients.

Filter Design. The main function of the low-pass filter
is to remove the high-frequency components of the
transmitted signal without affecting the in-band

1-302

infef AP-324

74ACT2-4'"

m"T~~:q~[~~~~~~~~~~~~~r---~
I FILTER

"" U
o
iii -. g
g-
'" 1:: PEx 1----=::---'
o

,,'
LINE

COUPLING
DEVICES

FILTER
co,
LINE

",2
... u
I • , c
'" g u

g­
:;
~

+-------:+---"""+-..,....-r~ cg~~~~G

v = 300mV 0 Vee '" 5'1

20t.lHZ_-.l==========..J CLOCK
292057-10

Figure 10. TP Port x

(5 MHz to 10 MHz) frequencies. The high frequency
components can create electromagnetic interference
(EMI) above the levels permitted by FCC regulations.
The design should provide minimum in-band loss and
minimum in-band ripple while providing maximum at­
tenuation of frequencies above 30 MHz with appropri­
ate roll-off in the transition band.

The Group Delay variation is another critical factor in
the design of the filter. The group delay is defined as
the variation in signal phase with the frequency. The
group delay variation is the derivative of the group d~­
lay. The group delay variation defines the difference.m
propagation delay through the filter for the frequencIes
of interest. These differences in propagation delay cause
amplitude and phase distortions in the signal, which
translate into jitter.

The impedance of the filter must be matched to both
the transmitter impedance and the line impedance.
Also balance and grounding should be tightly con­
troll;d for proper operation. Due to these considera­
tions we recommend a differential filter built symmetri­
cally on each line of the differential pairs with the
impedance matched at each end.

Filters that provide all these characteristics are present­
ed in Figures 7 (transmit) and 8 (receive): Their ~hara~­
teristics meet the requirements of the tWIsted paIr envI­
ronment. The requirements are as follows.

3 dB Frequency 17 MHz to 19 MHz
50 dB Frequency :;;: 30 MHz
In-Band Ripple' :,; 1 dB

Line Coupling Devices.' The line coupling' devices,
shown in Figure 9, include the transformers, common
mode chokes, and common mode noise filters. The
transformers provide ac coupling between the line and
the circuitry while prmdding dc isolation. The recom­
mended minimum isolation is 2250 V dc' To provide
proper balance between the two ends of the transform­
ers, the windings should be identical. To provide appro­
priate impedance matching in the frequency ~ange ~f
interest the transformers should have appropriate Pri­
mary a~d secondary inductance (200 ,...H typical) and
minimal interwinding capacitance «20 pF).

The common mode choke is provided to reject common
mode radio frequency and electromagnetic interference
picked up from the unshielded telephone lines: It
should provide 1000 V dc isolation between the wmd­
ings. The common mode choke has four windings, each
one connected with proper polarity, in series with the
receive and transmit twisted pairs. The balance of the
choke is very important in order to provide proper
noise cancellation while passing through the differential
signal unaffected. We recommend a common mode to
differential balance of 30 dB at all frequencies up to
20 MHz.

The common mode noise filter removes undesirable
Type 7 Pole, Balanced Elliptical high-frequency common mode signals picked up on the
I/O Impedance 96.n ± 15% (5 to 10 MHz) line, or generated by the transmitter. These signals are

1-303

inter AP-324

'mainly generated by fast rise and fall times and signal
crosstalk in the transmitter.

Line Receiver. The incoming receive signal passes
through the line coupling devices and the low pass fil­
ter. From there it is fed into a gated line receiver con­
trolled by the squelch circuitry. The line receiver con­
verts the received differential signal to TTL levels and
feeds it to the MPR. The receiver can be designed using
a zero crossing detector (e.g., NE521) and gated with
the TCSx signal with a 74F08.

Squelch Circuit. The squelch circuit differentiates noise
from valid incoming data on the receive pair. It does
this by detecting signals above a preset voltage level.
When there is no signal on the receive pair, the squelch
circuit disables the line receiver, and deasserts the
TCSx signal to the 82505T A. When a signal above the
threshold arrives, TCSx is asserted, and the line receiv­
er is enabled. The squelch circuit ensures that the re­
ceive circuits in the 82505T A are operating oniy during
packet reception. The squelch circuit should meet the
following specifications:

Reject <250 mV
Accept > 300 m V and > 30 ns

The circuit shown in Figure 10 uses a high-speed com­
parator with an offset threshold. The output of this
comparator is fed to a retriggerable timing circuit that
activates the TCSx pin of the 82505TA. To ensure rec­
ognition of the IDL (end of packet) signal, and to pre­
vent mid packet deassertion of TCSx, the timing circuit
should be set to detect positive pulses between 1.5 and
2.0 bit times (200 ns). The timing circuit can be imple­
mented by using either a quad flip-flop (74FI75)
clocked .from the 20 MHz clock generator or a retrig­
gera!>le monostable multivibrator with an appropriate
time constant. The first method provides better stability
and requires fewer discrete components. If the multivi­
brator is used, then the selection of the timing compo­
nents is critical. The timing capacitor must have very
low leakage with good temperature and aging stability.
The timing capacitor and resistor need to be as close as
possible to the IC to minimize stray capacitance and
noise rejection.

Layout Considerations. The power and ground wiring
should conform to good high-frequency practice and
standards to minimize switching transients and parasit­
ic interaction between various circuits. To achieve this,
the following guidelines are presented.

• Place bypass capacitors (usually 0.01 /loF) on each
IC between Vee and ground. They should be locat­
ed close to the Vee pins.

• Make power supply and ground traces as thick as
possible. This will reduce high-frequency cross cou­
pling caused by the inductance of thin traces.

• Separate and decouple all of the analog and digital
power supply lines.

• Close signal paths to ground as close as possible to
their sources to avoid ground loops and noise cross
coupling.

• Connect all unused IC inputs (except as directed by
the manufacturer) to ground or Vee to avoid noise
injection or parasitic oscillations of unused circuits.,

• Use high-loss magnetic beads on power supply dis­
tribution lines.

• Group each of the receive and transmit circuits, but
keep them separate from each other. Separate their
grounds.

• Layout all differential circuits symmetricalIy so
parasitic effects are also symmetrical.

• Layout the circuitry from the line connector to the
active circuitry (especially the EMI filter) on a
ground plane to prevent undesirable EMI effects.

3.3.3 AUI PORT

The AUI port circuitry is shown in Figure 11. It com­
prises interface circuits, the DO line drivers, two quad
o flip-flops (74FI75), and terminated line receivers for
the, DI (squelch and data) and CI (squelch only) cir~
cuits.

The CI squelch line receiver feeds the 0-0 and clear
inputs for one of the quad 0 flip-flop circuits. When a
signal larger than the squelch offset is seen, the flip­
flops are cleared and AUICDT is asserted. This contin­
ues for as long as CI is active. During the start of idle,
the squelch teceiver output is held high, and the flip­
flops set in sequence. After four clocks, 150 ns to
200 ns, the last flip-flop is set, and AUICDT deasserts.
It remains deasserted during the entire idle period.

The 01 line receivers work in much the same way, ex­
cept that activity on CI, or an active transmission will
inhiJ?it AUICRS. The data channel on 01 is processed
without a voltage offset, and is gated by AUICRS. In
this way, the least amount of jitter is added on the
AUIRxD line, and the data channel is not sensitive to
idle noise.

The DO line drivers are controlled by the TPEN and
PEl 1. The drivers should activate when both are assert­
ed. A voltage divider is provided after the drivers to
achieve the proper driver levels.

3.3.4 PORT DISABLE CONTROL

The Port Disable Control, shown in Figure 12, is per­
formed by a 74LS154 4-to-16 decoder. During trans­
mission without contention, the address of the originat­
ing port is given to the decoder, and the control line
asserted. This in turn disables the transmitter to that
port. When a transmit based collision occurs, the con­
trolline to the decoder is deasserted, and jam is broad­
cast on all ports.

1-304

inter AP-324

NE521

CI+

CI-

~ c:I
:1l

AiTICDT

20 MHz
V=300mVOVCC =5V CLOCK

~ NE521

L.

01+ G)

E L. ".
2 01- .E u
u ., 0 ., c: c:I c:I iii c:

~
.. ..

c: '" '" L.

0 I- AUICRS
.,

U ~ 15
G) .,

::> E "--< ., .. 0:: .c:
W 1::

20MHz 0
"-CLOCK :;:;
:;

AUIRXO
::;

74ACT244

10011
DO+ TRMT

10011
00- TRMT

c:I c:I PEll
'fiiEN

292057-11

Figure 11. AUI Port

1-305

intJ AP-324

3.3.5 LED CONTROL

LED' control (Figure 13) is handled by two 8-bit ad­
dressable latches (74LS259). The controller cycles
through the addresses for the LEOs every 105 ms, and
will tum each one on or off. The three least significant
address bits (LO-L2) for the LED control are fed to
each 8-bit latch. The most significant address bit (L3)
controls the enable line to the two packages. When it is
strobed by LEDSTRB, the LEDCTRL signal deter­
mines the state of the LED.

23
PDO

,:,. 22
CJ PDl
0 21 iii PD2
.... 20
II) PD3
0 19 II)

PDCTL a.
II) 18

0::

1::
0
a.

:;:;
:;
~

,:,. LO
CJ
0

Ll iii
.... L2 (I)
0 LEDCTRL II)
a.
II) L3

0::

1::
LEDSTRB

0
a.
:E
::J
~

A

B

C

D

G1

G2

4.0 UPGRADE PATH TO THE FINAL
10BASE-T STANDARD

As the IOBASE-T Task Force completes writing the
standard, Intel is finalizing its plans for a standard­
compliant product. Our commitment is to provide an
upgrade to the final standard as soon as possible, while
minimizing the effort required by our customers to im­
plement it. In addition, Intel will ensure that networks
designed with our current (prestandard) products will
coexist with lOBASE-T networks. That is to say, there
is no built-in -obsolescence with these current products.

74LS154

PEO

PEl

PE2

PE3

PE4

PE5

PE6

PE7

PE8

PE9

13
PE10

Qll PEll
292057-12

inter AP-324

Prestandard and standard-compliant networks will co­
exist at the AUI interface. Network sections based en­
tirely on prestandard components will be able to con­
nect to network sections based entirely on compliant
components through coax backbones, or through exter­
nal MAUs connected to the AUI ports of the repeaters.

The simplest upgrade path will be a DTE designed with
the 82S21TA Serial Supercomponent. Here, the user
will merely have to substitute the standard-compliant
Supercomponent, and his design will work. At this time
we are planning to include a prestandard compatible
mode for the device, which will be a strapping option.
Since the 82S21TA has defined the pins required for
this mode, users can include either mode of operation
in their designs, or the ability to select between them.

Upgrading 82S04TA designs will be slightly more diffi­
cult, since the standard-compliant device will have
more functions integrated; e.g., line drivers, line receiv­
ers, and interface logic. These functions were not de­
fined by IOBASE-T when the 82S04TA was designed,
therefore they were intentionally not included. This will
require that the system designer change the design for
DTE nodes based on the 82S04TA, but will allow re­
ductions in the bill of material cost and board space
requirements for the design.

Intel intends the 82S0ST A standard-compliant product
to incorporate the Manchester decoder and clock re­
covery functions; therefore, an 82S04TA will not be
needed in the repeater. Intel further intends the device
to be backward compatible with the previous version,
that is, the new controller can be plugged into an old
controller socket. The standard-compliant MPR will
also include the capability for parallel expansion, allow­
ing repeater design with more than II twisted pair
ports.

Overall, the upgrade from the current products to stan­
dard-compliant products is easy, and incorporates low-

er cost, higher functionality, or both. The 82S21TA
SSC was designed to eliminate the effort (and the risk)
required for compliance. In both the case of the
82S04TA and 82S0STA, the upgrade will require mini­
mal redesign, and will maintain or reduce the require­
ments of material, board space, and power consump­
tion.

5.0 SUMMARY

In this Application Note, a 10 Mb/s Local Area Net­
work has been introduced that uses standard telephone
twisted pair wiring and a star configuration for cost
savings and flexibility. It is based on the IEEE 802.3
standard for CSMA/CD medium access. It complies
with the standard at the MAC and PLS levels, and
follows the emerging 10BASE-T standard at the PMA
level. This network type is fully software compatible
with and can coexist with current Ethernet or Cheaper­
net networks. The hardware connection is made by in­
cluding an 802.3 defined AUI port and complying with
the repeater standard ANSI/IEEE 802.3c-1988.

Intel has introduced three products for designing net­
work components (DTEs and repeaters). DTE design
can be done with either the 82S21TA Serial Supercom­
ponent or the 82S04TA Transceiver Serial Interface.
The Supercomponent contains all the circuitry required
between the Ethernet controller and the RJ-45 connec­
tor. It also provides a transparent upgrade path to a
standard compliant design. Multiport repeaters can be
designed using the 8250STA with an 82S04TA. It al­
lows for II twisted pair ports and I AUI port.

Finally, upgrade paths to the upcoming IOBASE-T
standard for Twisted Pair Ethernet were presented.
This simplest path is for designs which use the super­
component; however, all designs can be easily upgraded
to the standard when it is available.

1-307

APPLICATION
NOTE

AP-327

July 1989

Two Software Packages
for the 82592 Embedded·.

LAN Module

JOSEPH DRAGONY
APPLICATIONS ENGINEER

URI ELZUR
SYSTEM VALIDATION

INTEL CORPORATION

1-308
Order Number: 292062-001

intJ AP-327

1.0 INTRODUCTION

This Application Note is a companion piece to AP-320,
Using the Intel 82592 to Integrate a Low-Cost Ethernet
Solution into a PC Motherboard. While AP-320 deals
mostly with hardware issues this Application Note
deals almost entirely with software. Two programs are
presented. One is written in "C" and the other is writ­
ten in assembly language. The NetWare driver present­
ed in this Application Note is a revised version. of the
code in section 7 of A~-320.

1.1. Objective

This Application Note was written to serve as a design
example to aid the user in developing software for the
Intel 82592 LAN Controller. Two programs are pro­
vided. The ELM Exerciser Program demonstrates the
embedded LAN architecture and provides the user a
tool for exercising the 82592 in a system environment.
This program is written mainly in the "C" program­
ming language with assembly language used when nec­
essary. The NetWare driver provides an example of an
interface to a widely used networking package. The
NetWare driver provides an avenue for evaluation of
the ELM concept in a real LAN environment. The
Net Ware driver code provides routines that accomplish
all of the common functions required by LAN interfac­
es. This code should be adaptable to drivers for net­
work software packages other than NetWare without
too much effort. The NetWare driver is written com­
pletely in assembly language.

'1.2 Acknowledgements

We would like to thank Dror Avni, Gideon Prat, Zeev
Sperber and Koby Gottlieb of Intel Israel Design Cen­
ter for their excellent support during the development
of the Exerciser software. We also thank Ben L. Gee of
San Jose, California and Drex Dixon of Novell for their
advice during the development of the NetWare driver
software.

2.0 ELM HARDWARE

The ELM is intended to demonstrate the concept of
embedded LAN connections. This concept could be im­
plemented either directly on the motherboard of a mi­
crocomputer system or as a socket option similar to
todays math coprocessor sockets. The ELM illustrates
how little board space this concept requires, and also
makes it possible to evaluate the performance potential
of the nonbuffered architecture. The ELM is not in­
tended as a final solution. Additional hardware features
such as a DMA stop register and DMA capable of
chaining noncontiguous buffers could simplify the driv­
er software.

The ELM is implemented as a small printed circuit
board containing an 82592 Advanced CSMA/CD
LAN Controller, two PALs, and two latches. It is con­
nected by a ribbon cable to an analog module, which
provides the interface to the media. There are two ana­
log modules available. They are an Ethernet module
and an Ethernet/Cheapernet module. Using this ap­
proach, other analog modules, for example, StarLAN
or twisted Pair Ethernet, could be implemented without
modifying the digital module.

The ELM is designed to function in PC AT compatible
systems. It has been used in the Intel SYP301 system,
Compaq Deskpro 386-16, Compaq Portable 386-20,
Compaq Portable 286, and both 6- and 8-MHz IBM
PC AT machines. The ELM takes liberties with the
refresh cycles of the PC. It does not sense the system's
refresh request and can cause refresh cycles to be
missed occasionally. In a commercial implementation a
timer should be used to limit the amount of time the
ELM can control the bus. The ELM hardware and
driver software are used daily by one of the authors as
his connection to our department LAN and no prob­
lems have been caused by the lack of a refresh kickoff
timer. The module uses two of the system's 16-bit
DMA channels to provide transmit and receive DMA.
Channels 6 and 7 are used. The module also uses the
IntlO interrupt line. None of these hardware require­
ments are jumper selectable. The module also requires a
small modification to the system motherboard. A con­
nection must be made to the EOP pin of the DMA
controller to allow autoinitialization to be controlled by
the module for retransmission in case of collision. This
can be accomplished by soldering a binding post to the
EOP pin of the secondary 8237A DMA controller. In
cases where a connection to EOP cannot be made, the
software would have to be altered to allow retransmis­
sion to be controlled by the CPU.

As well as providing all required address decoding, the
two PALs interpret the Tightly Coupled Interface
handshake signals from the 82592 and generate control
signals to the latches and the DMA controller. These
signals accomplish two things. First, at the end of a
received frame, the Tightly Coupled Interface generates
a handshake. The PALs convert this to a signal that
latches the last location of the frame just received. The
82592 transfers length and status information into the
memory as the last four words of a received frame.
Using this information it is possible to reconstruct a
string of frames in memory. This feature of the module
allows reception of back-to-back frames. Second, when
a collision occurs, the Tightly Coupled Interface gener­
ates a handshake, which the PALs use to send an EOP
to the system's DMA controller. This allows the ELM
to execute a retransmission without intervention by the
CPU. This feature serves two purposes. The CPU is
free to continue the processing it is'involved with, and
the node is also guaranteed fair and equal access to the
media. When the CPU must actually handle retrans-

1-309

intJ AP-327

mission it is unlikely that the station will be ready to
retry access to the link in a timely fashion.

Section 2 Design Documentation for
82592 Embedded LAN Module Novell
NetWare* Driver

3.0 OVERVIEW

The Novell NetWare* Driver for the 82592 Embedded
LAN Module (ELM) is the first NetWare driver inter­
nally generated by MCFG LAN Marketing. The pur­
pose of the Embedded LAN Module project is to dem­
onstrate the feasibility of an embedded Ethernet LAN
connection.By providing a driver for a very widely used
Network Operating System (the popular NetWare from
Novell, Inc.) we are attempting to provide an tool for
evaluating this concept under real network conditions.
This driver is a workstation shell driver. This section of
the Application Note is intended to be used in conjunc-.
tion with the program listing in Appendix C. It is pre­
sented as an adjunct to the comments in the source
code listing itself. Hopefully the text will shed the need­
ed light where the source code comments fail to illumi­
nate.

The first part of this section contains an overview of the
requirements of a NetWare driver to allow those unfa­
miliar with NetWare drivers to follow the discussion. A
bibliography is provided as an appendix for those who
desire more detailed information. The balance of the
section is a discussion of each routine the driver soft­
ware. provides. Each routine is first explained from a
functional point of view. Then any hardware considera­
tions are discussed. Where it is warranted, alternative
approaches to the routine are given.

This document is not meant to be a tutorial on writing
Novell NetWare driver software. It is a discussion of
the generation of a single driver for a particular piece of
hardware. This driver is a demonstration tool and is not
represented to be a commercial NetWare driver. Nei­
ther. the author nor .Intel Corporation accept any re­
sponsibility for the use or misuse of this driver or of this
documentation. For.complete information on NetWare
driver generation please contact Novell. '

Novell's NetWare Network Operating System uses an
implementation of the Xerox Internetwork Datagram
Packet (IDP) protocol called the Internetwork Packet
Exchange (IPX) protocol. It provides the developer a
set of media independent services, and dictates a set of
services that the driver must provide. Information con­
cerning transmit and receive operations are communi­
cated between IPX and the driver by using Event Con­
trol Blocks (ECBs). For example, if Net Ware wants to
transmit a packet, a transmit ECB is prepared that con­
tains address information and a list of fragments in

*NetWare is a registered trademark of Novell Incorporated

memory containing the packet to be transmitted, The
driver routine DriverSendPacket is then called. Driver­
SendPacket processes the ECB and constructs the me-

. dia specific frame, which allows the information to be
transmitted to the target node on the Iletwork. When
the attempt to transmit the frame has been completed,
the driver stuffs a completion code into the proper posi­
tion in the ECB and passes it back to IPX through a
call to the IPX routine IPXHoldEvent. IPX puts the
ECB in a queue and later does the processing required
to complete the operation. .

NetWare requires the driver to provide several routines
for its use. Some of these routines may not be required
by a driver and can be implemented as a simple return.
This driver implements the routines DriverDisconnect
and DriverOpenSocket as a return. The remaining rou­
tines are implemented and are listed below.

• DriverInitialize configures the LAN adapter hard­
. ware and any variables that need to be initialized at
start up time such as the node' address.

• DriverSendPacket and DriverBroadcastPacket are
implementect. as a single routine with two labels at
the entry point. This routine processes the transmit
ECB that is passed to it and make a best effort at­
tempt to send it to the target node. It is not a guar­
anteed delivery routine.

• DriverISR is the interrupt service routine for the
driver and processes all interrupt events.

• DriverPolI checks to see if a transmit is in progress.
If there is no active transmit it returns. If a transmit
is underway DriverPolI checks to see if it has timed
out. If so, the transmission i~ aborted and its ECB is
returned with an error code.

• DriverCancelRequest searches the transmit queue
for the specified ECB and removes it from the
queue. It then stuffs the completion code and re­
turns.

• DriverCloseSocket unlinks all pending ECBs for the
specified socket and returns them to IPX.

• DriverUnhook is used to disinstall the driver if no
active file server can be found during initialization.
This involves restoring the interrupt vector to its
original value and disabling the LAN adapter so it
will not affect system operation.

• SetInterruptVector is called by DriverInitialize to
insert the interrupt vector for the LAN adapter into
the correct location in the system's interrupt vector
table after saving any vector that is already there:

4.0 DRIVER SOFTWARE ROUTINES

4.1 Driverlnitialize

This is the first routine IPX calls when the driver soft­
ware is being loaded. This routine is responsible for

1-310

inter AP-327

initializing the LAN adapter hardware and any vari­
ables or memory structures required by the driver. It
also sets the interrupt vector in system RAM after sav­
ing any vector already there. When IPX calls this rou­
tine it specifies a point in memory for the initialization
routine to place the node address.

The first thing this driver does is set the IPX variable
"MaxPhysPacketSize" to 1024. This value is used when
attaching to a fileserver to negotiate the largest packet
size that will be passed between the two stations. This
allows transferring packets larger than the 576-byte de­
fault packet size between the fileserver and the worksta­
tion.

4.1.1 GENERATING A STATION ADDRESS

The next action generates a station address. Since the
ELM has no address PROM the driver generates the
address by using a combination of hard-coded numbers
and the value read from the system's real-time clock.
The real-time clock is read using function 2Ch of the
DOS interrupt 21h. The first two bytes of the address
are OOh and AAh, which are Intel's Ethernet code. The
next three bytes are the minutes, seconds, and hun­
dredths of seconds read from the real-time clock. The
sixth byte is 7Eh, which' was a dysteieological choice on
the authors part. This technique gives a high likelihood
that several ELMs can be operated in a small network
without duplicate addresses occurring. A commercial
implementation of the ELM concept should be provid­
ed with a hard-coded address in PROM or EPROM on
the card. After the address bytes have been moved into
the drivers local variable array they are copied to the
location indicated by IPX in the DI register.

When the address initialization has been completed, the
driver initializes some parameters from the hardware
configuration table. This is mainly done as an example,
since there is only one possible hardware configuration
for this module. However, the code required to step
through the tables is provided.

4.1.2 INITIALIZING THE INTERRUPT VECTOR

Initializing the interrupt vector is the next action. The
interrupt number is read from the configuration vari­
able confi~irq_loc and placed in the AL register.
The offset of the interrupt service routine is moved into
the BX register then SetlnterruptVector is called. Set­
InterruptVector first generates the mask variables for
the 8259A by writing a one into DL and then shifting it
left a number of times corresponding to the value
passed in AL. The unmask variable is then generated
by the negation of the value in DL. SetlnterruptVector
then saves the vector for the interrupt that the board
will use and inserts the vector for DriverISR in its
place. The routine then returns control to DriverInitial­
ize.

Upon returning from SetInterruptVector the ELM is
enabled by a write to location 303h. The PALs decode
this write, and enable DMA and interrupts from the
ELM to the system (as well as reads and writes to and
from the 82592 registers). A Reset command is then
issued to the 82592.

4.1.3 INITIALIZING THE BUFFER VARIABLES

The driver must calculate the effective address of the
transmit and receive buffers to use the system DMA.
Since the PC architecture uses a static page register for
the upper address bits, checks must be made to ensure
that the buffers do not cross these hardware imposed
boundaries. This is accomplished through a call to
set_up_buffers. This routine sets up two buffers in
the lO-kB space allocated at load time. One buffer is
used fo~ a transmit buffer and as the parameter block
for commands th!!t require parameters. This buffer is
set up to be at least 1200 bytes long. All remaining
space is used for the receive buffer. The receive buffer is
implemented as a restartable linear buffer. This ap­
proach was taken to allow the use of the IPX routine
IPXReceivePacket, which requires the receive packet
to be contained in a single, contiguous buffer. IPXRe­
ceivePacket does most of the required receive process­
ing itself which makes the driver simpler.

There are four basic conditions that can exist for the
buffer space with which the driver must work.

• The buffer space has no hardware boundary. See
figure 1.

• The buffer space contains a boundary, and the lower
section is too small to use (i.e., less than the 1200
bytes used for the transmit buffer). See figure 2.

• The buffer space contains a boundary, and the upper
section is too small to use. See figure 3.

• The buffer space contains a boundary, and both sec­
tions are usable. See figure 4.

In the first case the transmit and general purpose buffer
will be located in the first 1200 bytes of the buffer
space, and the receive buffer will occupy the remainder
of the space. In the second case the unusable fragment
is discarded by adding the length of the fragment to the
original starting address of the buffer. The total buffer
area is adjusted by subtracting the length of the frag­
ment from the original length (lO-kB) of the original
total buffer area. The transmit buffer uses the first 1200
bytes of the buffer space. In the third case the starting
address remains the same and the total buffer area is
adjusted by subtracting the length of the unusable frag­
ment from the original total buffer area. In these three
cases the required addressing variables can now be cal­
culated. The fourth case adds one additional step. Since
both fragments are usable the larger fragment must be
determined. The receive buffer will be located in the
larger fragment. The receive buffer will be at least 5000
bytes and can be as large as 8800 bytes depending on
where DOS loads the driver.

1-311

infef

IIuIIorEnd

AP-327

_'andG~~Buftar
apace. 1200 byteS.

B

_Buller
TOIaI buffer space. 1200 bytes

gpJ'",--

Figure 1. Buffer with No Hardware Boundary

OMA boundary

IlutIerEnd

Unusable PortiOn ~ 111M 1200 bytes)

B
Traromil and General Purpose Buller
space. 1200 bytes.

c

_Buller
Total buner space - (A + B)

._._._. _____ ____ nt.but_Slllp(12OObyteslrom.nd)

292062-52

292062-54

Figure 2. Buffer with Boundary and Unusable Portion at Top

BuI1er_

DMA boundary

Buller End

T"-'omG~PurposeBuffer
space. 12OObytes.

B

_Buller
TotaI_r space • (A + C)

C
Unusable Portion (.... than 1200 bytes)

11'-""'--

292062-53

Figure 3. Buffer with Boundary and Unusable Section at Bottom

1-312

inter

BufferSIart

DMA boundary

Buffer End

BufferSIart

Buffer End

AP-327

A
Transmi1 and General Purpose Buffer
space. 1200 bytes.

B
Potential Unusable Portion

c
Receive Buffer

Total buffer space - (A -I- B)

"'_bul_sIart

--- ",_buLstop (1200 bytes from end)

a

A

Receive Buffer
Total buffer space - (B -I- C)

-------------------------------------- ",_buLS1OP (1200 bytes from end)

Transmit and General Purpose Buffer
space. 1200 bytes.

C
Potential Unusable Portion

b

Figure 4. Buffer with Boundary and Both Portions Usable

1-313

292062-55

292062-56

inter AP-327

Once these initial calculations have been made set_
up_butTers uses this information· to generate the ad­
dressing information to be used to program the DMA
control channels and their respective page registers.
Since the 16-bit DMA channels are set up to provide
word moves only, the etTective address ofthe beginning
of the transmit and receive butTers must be shifted right
one place so only AI-AI6 are contained in the variable.
The least significant bit of the page register is not used
by the l6-bit DMA channels because A16 is generated
by the DMA controller. The receive channel requires
an artificial segment to be generated because the latches
contain an etTective address rather than an otT set to the
actual segment the butTer resides in. This artificial seg­
ment is used when the received packet is passed up to
IPX. Once the required variables have been initialized,
control is returned to DriverInitialize.

4.1.4 CONFIGURING THE 82592

With the DMA variables initialized, the driver can now
prepare to configure and initialize the 82592 Advanced
CSMA/CD LAN Controller. The transmit DMA
channel is used during configuration to allow the 82592
to read parameters from memory. To put the 82592
into 16-bit mode, the first operation to the 82592 after
reset must be a Configure command with zero in the
byte count of the parameter block. To do this the trans­
mit DMA channel is set up to point to the beginning of
the transmit/general purpose butTer area. This is done
by first resetting the indexing flip-flop in the 8237 A,

and then enabling it by writing 10h to the command
register. This puts the 8237 A into rotating priority, late
write, and normal (rather than compressed) timing.
Next the address of the first location of the transmit/
general purpose butTer is written to the 2-byte base ad­
dress register of the 8237 A (low byte first) and the
DMA page register. A "I" is written to the word count
register of the DMA controller. This allows two trans­
fers to be made because the 8237A interprets this regis­
ter as "transfer count - 1." The channel is then set up to
do the desired type of transfer by writing to the DMA
controller's mode register. Finally, the channel is un­
masked by a ~rite to the 8237A mask register. After
moving "O's" into the first two words of the butTer
space, a Configure command is issued to the 82592.
DriverInitialize then enters a polling loop, reading reg­
ister zero of the 82592 and waiting for the command to
complete. After the command has completed, an Inter­
rupt Acknowledge is'issued to the 82592 to clear the
interrupt generated by the completion of the command.
All transfers that the 82592 makes through DMA will
be l6-bits wide from this point on.

The DMA channel is set up again as previously de­
scribed; however, the word count is set to eight. This
allows the 82592 to read in its configuration parameters
from the transmit/general-purpose butTer area. The
configuration parameters are copied into the butTer
from the array confi~block by the CPU using a
MOVSB instruction with a REP prefix. CX contains an
18 decimal when the MOVSB is executed. When the

1-314

inter AP-327

copy is completed a Configure command is issued and a
polling loop is entered to wait for command comple­
tion.

The parameters in the configure block set the 82592 to
function in the following manner. The serial mode is set
to high speed to allow Ethernet operation; both the
transmit and receive TCI modes are enabled;and slot
time, minimum frame length, preamble length are set to
the values required by Ethernet. After the command is
completed the generated interrupt is cleared.

4_1.5 SETTING THE STATION'S INDIVIDUAL
ADDRESS

The transmit DMA channel is again set up for use, this
time with a word count of three for use by the Individu­
al Address Setup command. The node address is copied
from its place in memory to the Tx/GP buffer area, and
the IASetup command is issued to the 82592. After the
command is completed the interrupt is cleared by an
Interrupt Acknowledge command.

4.1.6 FINAL INITIALIZATION

The receive DMA channel is now initialized to point to
the beginning of the receive buffer. The word count is
set so the receive DMA cannot go beyond the end of
the assigned receive buffer area.

Next, the interrupt channel is unmasked to allow inter­
rupt driven operation and a Receive Enable command
is issued to the 82592. The AX register is set to zero to
indicate successful completion of the initialization rou­
tine and control is returned to IPX. Should some part
of the initialization routine fail, AX would contain a
pointer to a $ terminated error message string in memo­
ry. On return of control IPX would display the speci­
fied message and terminate.

4_2 DriverSendPacket,
DriverBroadcastPacket

These two routines are treated as a single routine with
two labels at the entry point. The first action taken
when these routines are called is to disable interrupts
through a CLI command. The routine then determines
if any packets are queued for transmission. This is done
by checking the segment portion of the double-word
variable send_list to see if it is null. If it is, no frames
are queued and the packet is put in the first location in
the list. Flow then drops through to the start_send
routine, which does the actual transmission. (The
start_send routine will be detailed later.) If the trans­
mit queue is not empty then DriverSendPacket searches
to the end of the queue and adds the packet there. The
routine then returns control to IPX. The queued packet

will be sent when it is reached in the list. The queue is
maintained as a linked list using a dedicated link field
in the transmit ECBs. The head is the ECB contained·
in the send_list variable and the tail is the ECB with a
null link field.

The start_send routine is a subfunction of DriverSend­
Packet. It is not called directly by IPX but it can be
called by DriverPoll in response to a transmission tim­
ing out when frames are queued for transmission. This
routine starts by clearing the interrupt and direction
flags through a CLI and CLD instruction respectively.
It then retrieves the length of the packet to be transmit­
ted from the transmit ECB packet length field. The
packet length is compared to the minimum length re­
quired by Ethernet after a byte swap to allow arithme­
tic operations to be performed on it. If it requires pad­
ding the value is stored in the padding variable.

The byte count for the 82592 is then calculated and the
construction of the frame in the transmit buffer is be­
gun. Since NetWare requires the Ethernet length field
be an even number start_send next increments the
byte count then performs a bitwise AND operation
with FEh. This ensures that the byte count is consistent
with the Ethernet length. '

The first step in constructing the frame in memory is
to move the transmit byte count into the first word of
the transmit buffer. The byte count is stored low byte
first. The destination address is then copied from the
transmit ECB to the buffer by the CPU using MOVSW
instructions. It is not necessary to copy the source ad­
dress to the transmit buffer since the 82592 is config­
ured to do automatic source address insertion. After
ensuring that it is an even number, the length is moved
into the Ethernet header. Now the fragment list from
the transmit ECB must be processed. First the frag­
ment count is moved into the AX register. This value
indicates the number of fragments the list contains. By
decrementing AX after each fragment is copied to the
buffer the completion of the fragment processing can be
determined. The address of the first fragment is loaded
into DS;SI, and the length of the fragment is loaded
into ex. The fragment is then copied into the buffer
through a REP MOVSW. If the fragment was an odd
length a MOVSB is done to finish the copy. The pointer
to the fragment descriptor list is indexed to the next
entry. AX is decremented and ifit is not zero the opera­
tions above are repeated until all the fragments have
been copied to the buffer. Once the fragment list is
completely processed any required padding is moved
into the buffer. The word following the last location in
the frame must be a zero since the 82592 in TCI mode
checks this location to see if it has a chain of frames to
transmit. A zero is interpreted as end of chain, a 04h is
interpreted as a new transmit command. This driver
does not implement transmit chaining.

1-315

AP-327

The transmit DMA channel is now initialized and
transmit~ctiveJag is set to "I". The DMA address
registers and the page register are set to point to the
beginning of the transmit buffer. The channel mode is
set to move data from memory to the 82592. Four is
added to the transmit byte count that was calculated
earlier to allow the DMA controller to transfer the two
bytes of the byte count field and the transmit chain
word that completes a transmit in Tightly Coupled In­
terface mode. After this addition the transmit byte
count is shifted right one bit to convert it to a word
count. This value is then moved into the DMA control­
ler's word count registers. Finally, the channel is un­
masked.

A Transmit command is now issued to the 82592. IPX
provides a time mark called IPXIntervalMarker that
represents the PC clock tick. The current value of this
variable is read and moved into tlL-start_time to be
used by the DriverPoll routine to check for transmit
timeouts. The TotalTxPacketCount variable is incre­
mented and control is returned to IPX. The 82592 con­
tains a programmable timer that could be used to gen­
erate transmit timeouts in an application that does not
have such a built-in mechanism. This routine,must re­
turn with interrupts disabled.

4.3 DriverPoll

DriverPoll is called at intervals by IPX to allow the
driver to check for transmit timeouts or other non-in­
terrupt driven events, that need to be serviced. The first
thing done after disabling interrupts with a CLI is to
check if the transmit_active_flag variable is set. If it
is not set, a return is performed. If it is set, the tx_
start_time variable is subtracted from the current val­
ue of IPXIntervalMarker. If the result is less than the
value of TxTimeOutTicks, in this case 20, a return is
performed. If the transmit has timed out the transmis­
sion is aborted and a completion code of Transmi­
tHardwareFailure is moved into the completion code
field of the ECB. The ECB is then unlinked from the
transmit queue and returned to IPX through a call to
IPXHoldEvent.

To accommodate errata No. three of the 82592 A-I
stepping, as stated in revision 1.2 (December, 1988) of
the 82592 Errata Sheet,. a Switch to PorU command is
issued to the device. This is followed by a Selective
Reset in Portl, followed by a switch back to PortO. The'
receiver is' then reenabled by a Receive enable com­
mand. The flag that indicated an active transmission is
then cleared. The transmit queue is then checked. If the
queue is not empty, the ES:SI register pair is set up
with the values from the queue, and start_send is
called. If the queue is empty control is returned to IPX.

4.4 DriverlSR

This routine services all interrupts generated by the "
ELM. It first calls IPXStartCriticalSection to tell the
Asynchronous Event Scheduler (AES) function of IPX
'that it should not execute until an IPXEndCriticalSec­
tion call is issued. This allows interrupts to be reena­
bled for sources other than IPX's AES which is execut­
ed in response to the system clock tick interrupt. Dri­
verISR then saves the machine state by pushing the
general purpose registers, the index registers, the base
pointer and the ES and DS registers. Next the direction
and interrupt flags are cleared with a CLD and CLI
instruction, respectively. An EOI is then issued to each
of the two system interrupt controllers to clear them.
The DS and ES registers are then set to the same value
as the CS register because the driver is contained in a
single segment. The cause of the interrupt is now deter­
mined by reading register "0" in the 82592 .. A zero is
first written to the 82592 to set the internal pointer.
The value read from the 82592 is then compared with
the values representing a receive, transmit, and retrans­
mit interrupt, then a jump is taken to the proper section
of the interrupt service routine. If the value does not
match one of the expected values, the variable false_
590_int is incremented 'and a jump to the label int_
exit is performed.

4.4.1 RECEIVE CASE

If the value read from the 82592 indicates that a frame
has been received, a jump is made to the beginning of
the code that services receives. The first action is to
read the two latches that contain the address of the last
word that was transferred during the receive. This val­
ue is moved into the variables rlL-buf_tail and rx_
buf_ptr. This value is then compared with the value
stored in rlL-buf_stop by the set_up":""buffers rou­
tines to determine if most of the receive buffer has been
used and a reset is required. If most of the buffer has
been used the flag reset_rx_buf is set to indicate that
the buffer variables must be initialized before the inter­
rupt service routine is exited. The value read from the
latches is then compared with the value in rlL-buf_
head. This value represents the last location that con­
tains a received frame. If no frames have been received
it contains the address of the first location in the receive
buffer. If this comparison indicates that no new frame
has been received the ten_cent_IatcLcrash variable
is incremented and a jump is made to the label int­
exit.

If a frame, or frames, has been received the receive
buffer must be processed to allow the received frames
to be sent up to IPX in the order in which they were
received. This is accomplished by using the count and
status information that the 82592 deposits at the end of

1-316

intJ Ap·327

each frame when it is in TCI mode. Using the value
read from the latches as a base, the routine Process­
Frames indexes back through the chain of received
frames. The rx_buf_ptr variable keeps track of the
current position in the buffer. The status of the frame is
read from the end of the receive buffer and if it is good
a jump is done to the label good_rx. If the status is
bad, rlL.buf_ptr is adjusted to point to the end of the
previous frame in the buffer. This value is compared to
the value of rx_bufJead, which contains the loca­
tion last processed by the receive routine or the begin­
ning of the receive buffer if this is the first receive. If
the values are equal, all currently received frames have
been processed and a jump is made to the label hand_
off_packet. At the label good_rx three length checks
are made as required by the NetWare implementation
of Ethernet. First the frame is checked to see that is
does not exceed the maximum length of 1102 bytes
(1024 data size, 64 NetWare bytes, and 14 Ethernet
header bytes). Next it is checked to see that it is at least
the minimum size of 30 bytes. This 30 byte value is only
the IPX packet size, it does not count the Ethernet
header or the pad bytes required by Ethernet. The last
check ensures that the actual number of bytes received
agrees with both the Ethernet and IPX header length
fields. If the IPX length is less than the minimum
Ethernet frame length the total number of bytes re­
ceived is expected to be 60. This represents Ethernet's
64 byte minimum frame length less the four CRC bytes,
which are not counted as receive bytes. If all these
checks pass, the frame is added to the list of received
frames by' storing its location, length, and source ad­
dress in an array of structures called rx_list. Each en­
try consists of 12 bytes. These bytes are the location of
the frame in memory, the length of the frame, and the
address of the node that sent the packet.

When all received frames have been processed, all good
frames are passed up to IPXin the order they were re­
ceived using calls to IPXReceivePacket. When all en­
tries in rx_list have been. processed, the variable rlL.
bufJead is set to the value read from the latches at
the beginning of the interrupt service routine and stored
in rx_buf_tail. ProcessFrames then returns to the
point from which it was called and execution falls
through to int_exit.

4.4.2 TRANSMIT CASE

If the status read from the 82592 indicates that a trans­
mit completion is the cause of the interrupt, a jump is '
performed to the label sent_packet.The first action is
to check that tx_active_flag is set. If it is not set no
transmit should have been taking place, so a jump is
made to the label int_exit., If tx_active_flag was set,
the status is read from the 82592. If the status is bad a
jump is made to tlL.error, which increments the ap­
propriate counter and moves an error code to the AX
register before jumping to the FinishUpTransmit code.

If the status is good any retries contained in the status
register are added to the RetryTxCount variable, the
AX register is XOR'd to indicate a good transmission
and execution falls through to FinishUpTransmit. This
code inserts the proper completion code in the transmit
ECB, unlinks it from the transmit queue, and hands it
off to IPX by calling IPXHoldEvent. The transmit
queue is then checked to see is any frames are waiting.
If send~ist is not empty the next frame's ECB address
is put into the ES:SI register pair and a call is made to
start-send. On return execution jumps to int_exit.

4.4.3 EXITING THE INTERRUPT SERVICE
ROUTINE

At int_exit the driver makes a safety check to ensure
that the receiver is still enabled. This is done by check­
ing the two bits in status register 3. If the receiver is
disabled, a Receive Enable is issued to the 82592. Next,
an Interrupt Acknowledge is issued to the 82592 and
the interrupt bit is polled to see if any new interrupts
have occurred. If a new interrupt has occurred, execu­
tion jumps back into the interrupt service routine at the
label int_poILloop. If no new interrupts have oc­
curred, the reset_rlL.buf flag is checked to determine
if the receive buffer needs to be reinitialized. If reinitial­
ization is required, a final check is made to see if any
new frames have been received. If a new frame has been
received ProcessFrames is called. On return the Re­
ceive DMA channel is masked and the receiver is dis­
abled by issuing a Receive Disable command to the
82592. It is necessary to disable the receiver during the
reprogramming of the 8237 A because if there is an ac­
tive request on a channel when it is unmasked the
8237A enters an undefined state which can result in a
system crash. The necessary variables are reinitialized
as well as the receive DMA controller. The receive
DMA channel is then unmasked and the receiver is
reenabled by issuing a Receive Enable command to the
82592. The interrupt enable flag in the processor is then
cleared through a CLI instruction and IPXEndCritical­
Section is called to tell IPX that it is now free to run. A
call is made to IPXServiceEvents, and on return the
registers are popped to restore the machine state and
the interrupt service routine is exited.

This covers the main sections of code that make up this
driver. The routines that were not covered in detail are
generic in nature and can be understood by a reading of
the driver source code included as Appendix C.

Section 3. ELM Exerciser Program

5.0 OVERVIEW

The ELM Exerciser software is specifically written for
the Embedded LAN Module Demonstration board but
can accommodate other 82592 TCI (Tightly-Coupled-

1-317

AP-327

Interface) implementatiol)s, with minimal changes. The
~LM Exerciser software supports system and 82592
configuration, command execution and statistics dis­
play for the 82592 in the Embedded LAN hardware.

This section of the Application Note includes a descrip­
tion of the Exerciser, a discussion 0\1 design considera­
tions for 82592 software drivers and some program­
ming hints.

6.0 INITIALIZATION

System initialization begins with setting up all memory
structures. The 8259A PIC IRQlO is masked, to pre­
vent unsolicited 82592 interrupts before initialization is
completed. Control is then transferred to the user. The
ELM hardware is enabled by a write to I/O Port 303h.
This is d'one using the "LAN En" coml)1and.To acti­
vate the 82592, the following sequence should' be exe­
cuted. This sequence can be executed through the "Ini­
tialize" command or by executing each command sepa­
rately. First the 82592 should be reset. This places the
device in the default configuration. The default bus
width is eight bits. Next a Configur~command is issued
to the 82592 with "0" in the byte count field. This
places the 82592 into 16 bit mode. The 82592 will now
use a 16-bit data bus for DMA transfers. For com­
mands and status" only the low byte is used.

The ELM Software Package uses the 82592 in a config­
uration different from the 82592 default configuration.
Whenever a parameter is used that varies from the de­
fault, an explanation is given. The 82592 configuration
is presented in code example one. The Configure com­
mand is issued through channel 0, which is used for
memory read I/O write cycles. ,

'ByteCnt' is a word-wide field containing the number of
parameter bytes in the CONFIGURE command (ex­
cluding the 'ByteCnt' field). The maximum length is 15
bytes. The 82592 will execute 9 DMA word wide trans­
fers (1 for ByteCnt and 8 for parameters) but will ig­
nore the last (the 16th) byte.

The following 'Paramsl' fields are different from the
default:

• The FIFO limit field is set to OFh.This configures
the FIFO's as two equal 32 byte banks for receive
and transmit. For, this configuration, this parameter
is internally multiplied by 2 to generate the actual
FIFO limit. This parameter configures the transmit
side, so transmit FIFO limit equals 2 • OFh = 30.
The receive FIFO limit is then 32 - 30 = 2. This
means that the 82592 will issue a bus request after
the first word has been written into it. Note that this
configuration is provides the maximum bus latency
(Refer to the 82592 User Manual for more detailed
explanation). The system bus request mechanism of
the transmit and receive FIFO's is tuned using this

parameter. For the receive FIFO this determines the
number of bytes that may gather in the FIFO, be­
fore it requests the bus. The lower the FIFO limit,
the earlier the bus is requested and the 82592 will be
able to overcome a higher bus latency (the time it
takes from request asserted to actual bus transfers).
However, if the bus latency is short, fewer bytes will
be gathered in the FIFO and, before a request is
made. This increases the arbitration overhead per
transfer.

• The OSC RANGE and SMPLG RATE bits are set
to '0' as required in High Speed Mode. (Refer to the
82592 User Manual for more explanations on High
Speed Mode).

• The CHAINING bit is set to '0'. Together with
RxEOP set to '1' and TxEOP set to 'I', this causes
the 82592 to signal with the EOP# pin for all the
receive frames last byte (BC field)' and collided
transmit frames. The ELM logic uses EOP# with
DRQ lines to determine transmission status and to
latch the pointer to the byte count field into the
ELM latch.

• BUFFER LENGTH/TCI is set to "80h'. Together
with the chaining set to '0', RxEOP set to '1' and
TxEOP set to '1', this puts the 82592 in TCI mode.
In this mode the EOP # and DRQ pins signal the
completion and status of transmit and receive
events. This allows retransmission on collision by
auto initializing the DMA controller as well as re­
ception of back to back frames without CPU inter­
vention. When the device is not configured to TCI
mode, it requires CPU acknowledgement' after each
received frame. In TCI mode the status is stored in
memory, so the 82592 does not need immediate
CPU attention. If this parameter is programmed to
COh, the 82592 will not generate an interrupt upon
frame reception. The ELM Software packages use
this interrupt to invoke the RCV ISR. Note that
'Params3' fields are described in the manual using
decimal numbers. They should be translated into a
Hexadecimal base for programming, e.g. inter frame
spacing of 96 bits is programmed as '60h'.

The 'Params4' Max Retry' field is set by default to
'OFh'. In the case of a frame transmission attempt that
has experienced 15 retries, the NUIIL-Coll status is set
to '0', instead of 16. Namely, the first attempt and 15
retransmissions have collided so the Num_Coll should
be 16. Instead the 82592 will set this field to '0'. This is
further discussed in the transmit section.

The 'Params7' Monitor Interrupt field is set to '1'. This
prevents Monitor interrupts. This bit can remain in its
default state, since the Monitor Mode is, disabled.

The following 'Params8' fields are different from the
default: ' ,

• 'Params8' CLK divider is not used.

1-318

inter AP-327

CODE EXAMPLE 1

CONF.CONF_Ptr->ByteCnt = OxOOOF; /*
CONF.CONF_Ptr->Params1 = Ox804F; /*
CONF.CONF_Ptr->Params2 = OxOO26; /*
CONF.CONF_Ptr->Params3 = OxOO60; /~'
CONF. CONF _Pt r- > Params4 = OxOOF2 ; /*
CONF. CONF_Ptr->Params5 = Ox4000; /*
CONF.CONF_Ptr->Params6 = OxOOFF; /*
CONF. CONF _Pt r- > Params 7 = Ox873F; /*
CONF.CONF_Ptr->Params8 = OxFFFO; /~'

• RxEOP and TxEOP are set to '1' to enable the TCI
signaling as explained above.

• Status length is set to 6 bytes. Together with the
TCI mode configuration, this causes the Frame
Counter to be presented in the STATUS 2_0 regis­
ter. The 7 LSBs of STATUS 2_0 count the number
of frames received after the Receive Enable com­
mand was issued. Both good and bad frames are
counted. The frame counter value is valid when the
MSB of Status 2_0 is set. Comparison of the ISR
frame counter with the number reported by the
frame count contained in Status 2_0 can aid in the
ISR software debug.

7.0 TRANSMIT

Transmission is very simple with the 82592. The data is
stored in memory. The DMA is initialized to point at
the first byte of the data. After the 82592 is given a
Transmit command (code 04h, when using channel
O),it will request DMA data transfers, acquire the link
as soon as the first byte is stored in the internal trans­
mit FIFO and transmit the data. When transmission is
completed, the status field is updated and the INT pin
is asserted. However, if a collision occurs, retransmis­
sion is performed external to the 82592 by the ELM
logic. The ELM hardware uses the EOP# signal to
force the 8237 A DMA controller to point to the first
byte of the frame (DMA is in autoinitialize mode). The
82592 issues a data request to the DMA controller and
starts transmission again. This is done without CPU
intervention. The IEEE 802.3 time gap of9.6 uSec for a
retransmit attempt (for the first slot) is easily met. Re­
transmission is attempted until the internal 82592 max­
imum retry counter expires. In the ELM example, 15
retries will be attempted. Our laboratory experiments
indicate that most collisions are resolved within less
than 15 retries. In the case of errors the software driver
should intervene.

The 82592 is configured for TCI. This causes the 82592
to use its EOP# pin and thus, enables the external
ELM hardware to detect transmit collision events. The
ELM hardware uses both the EOP# and DRQ lines to
force the DMA to autoinitialize for the retransmissions.

15 BYTES */
TCI, Tx FIFO LIMIT = 32 */
PREAMBLE LEN =7 */
9.6 uS INTERFRAME, 512 SLOT */
RETRY =15 NO PROMISCUOUS */
minimum frame 64 "~I

NO AUTO RE-XMT ON COLLISION */
NO MONITOR INT */
RX & TX EOP, 32B RX & TX FIFO */

The configuration used in the Exerciser software (TCI
mode) causes the 82592 to search for a command byte
after the last data byte. This byte should always be ° so
it will be interpreted by the 82592 as a NOP command.
If the least significant 3 bits in this byte are 100 binary,
the 82592 will interpret this byte as a Transmit com­
mand and treat the following bytes as the byte count
field of a new frame. The 82592 will then attempt to
transmit it. XMT chaining is not used in the Exerciser
software. The ELM retransmission mechanism uses the
8237A DMA autoinitialize capability. If a chain of
frames is stored in the transmit buffer, there will be no
way to handle automatic retransmission for all the
frames but the first one. There is no way to cause the
8237A DMA controller to jump to the first byte of the
n-th frame, required for a retransmission when chain­
ing is used. However, transmit chaining is possible
when using the 82560/82561 DMA controller.

In case of a fatal transmission error, the 82592 will
signal the event to the CPU through the interrupt and
status mechanism. The CPU will issue another Trans­
mit command with the same data (or issue a higher
layer activity when not in the ELM Exerciser software
environment). The CPU will control the number of
times it retransmits the same frame. In case this num­
ber exceeds the ELM MAX_RETRY (default = 15.
This is a SW variable, not the 82592 internal max retry
counter) transmission is stopped and the following mes­
sage is printed on the screen: "ERROR no. 1 ". The
ELM Exerciser software 'MAX_RETRY' default val­
ue is 16.

Transmission of an exact number of frames in the range
of 1-32000 or an endless number of frames is
supported. The background transmit command, found
in the EXECUTE menu, communicates with the trans­
mit interrupt service routine (ISR) The XMT_LOOP
flag variable is reset by the background routine immedi­
ately before transmission and set by the transmit ISR.
This handshake allows transmission of 1 frame at a
time. The background transmit command polls the
XMT_LOOP flag until it is found to be set. The dis­
play is updated periodically. To stop the transmission
loop hit any key on the keyboard.

1-319

AP-327

8.0 INTERRUPT SERVICE ROUTINE

When an execution command has been completed, or a
frame has been received, the 82592 will assert its INT
pin. This is true if the BUFFER LENGTH/TCI pa­
rameter of the Configure command was 80h. If pro­
grammed to COh, the 82592 will not generate an inter­
rupt upon frame reception. The ELM Exerciser soft­
ware uses this interrupt to invoke the receive ISR). The
82592 INT pin drives IRQlO of the system bus. IRQlO
is connected to the slave PIC on the motherboard. The
slave PIC output drives one of the master PIC inputs.
If the 82592 INT pin is asserted, the slave .PIC gener­
ates (if not masked) an Int signal to the Master PIC

. which transfers (if not masked) the signal to the CPU.
Both PICs have experienced an INT event. This re­
quires that an EOI be issued to both PICs before exit­
ing the ISR.

The 82592 will present the event that caused interrupt
generation in its status register number 0, along with bit
7 set to indicate an unacknowledged interrupt event.
The content of the status registers will not be altered
until the CPU acknowledges the interrupt. When con­
figured to TCI mode, the 82592 will store one more
event in an internal queue. This allows the reception of

CODE EXAMPLE 2

an endless number of frames, while transmission is per­
formed in parallel and its status stored in this special
internal queue. This optional pending event will be pre­
sented in the STATUS register after each CPU inter­
rupt acknowledge sequence. The 82592 will use one re­
ceive event to report all the frames received from the
first INT assertion until its acknowledgement. The
82592 will not wait for the CPU to acknowledge the
interrupt; nor will the 82592 generate new interrupts by
toggling its INT pin. New 82592 interrupts for all
events will be generated after the CPU agknowledges
the previous INT request.The CPU can do so by issu­
ing a command to the 82592 with the ACK bit (bit 7),
in the 82592 command byte, ~et.

At program initiillization, the assembly language proce­
dure "ini_int" is executed. It saves the local environ­
ment pointers (private stack and segment registers) and
replaces the current 72h INT Vector in the interrupt
table, with a pointer to the int_hnd routine. The int_
hnd routine is the routine invoked upon any 82592 in­
terrupt. The original 72h interrupt vector, is saved in a
place known to be empty in the DOS interrupt vector
table (62h). The ELM Exerciser software will restore
the original vector before exiting to DOS at the end of
the execution.

;**
INI~INT : SET CONDITIONS TO WORK WITH 8259A COMMUNICATION INT

IRQIO IS CONNECTED TO 82592 INT PIN
INT VEC 72h IS JUMP TARGET FOR IRQIOMASKING IRQIO IS DONE
AT THE CALLING LEVEL ,

;**

push bp
mov bp,sp
jlush es
push bx .
mov bx, _mstck2
mov cs:lss, bx
mov bx, _mstckl
mov cs:lsp, bx
mov cs:lds, ds
mov cs:les, es
mov al,vec
call sys35
mov al,62h
call sys25
mov al,vec

. mov bx, offset int_hnd
push cs
pop es
call sys25
pop bx
pop es
mov sp,bp
pop bp
ret

_inLint endp

;save local stack segment

;save local stack pointer
;save local data segment
;save local extra 'segment
;hex communication interrupt no.
;es:bx ,hold returned address

;save for later retrieve in vec 62
;hex int no. of irqlO (LAN)
;address of interrupt handler routine

;es-segment of interrupt handler
;install via DOS system call

1-320

intJ AP-327

The assembly language procedure "int.hnd" is invoked
when the 82592 interrupts the CPU using IRQI0. First
it checks whether this is the first entry of "int.hnd" or
if the interrupt service routine has been reentered while
the previous interrupt was still being processed. The
section on the interrupt service routine discusses inter­
rupt nesting. In the ELM Exerciser Software, 82592
interrupt nesting is prevented. Therefore, the above test
should always return a "no nesting" answer. Then the
host process environment is stored in memory and the
local environment is restored (see the section "Interfac­
ing with DOS"). Next, the machine state is saved by
pushing the general purpose . registers (AX, BX, cx

CODE EXAMPLE 3

and OX) and the index registers (SI and 01). The exe­
cution until now is considered critical, in the sense that
it should not be interrupted. The processor hardware
prevents any new interrupts of the same level or lower
in priority from interrupting the execution.

The routine "irqlO_mask" masks interrupt request 10
of the 8259A PIC. This is the interrupt generated by
the 82592. This prevents the 82592 from causing nested
interrupts. Now an STI instruction can be issued. This
will enable processing of other interrupts by the proces­
sor in a timely fashion. An optional approach is dis­
cussed later in the section on interrupt nesting.

.** ,
INT_HND: INTERRUPT HANDLER FOR IRQIO (VEC 72)
DEALS WITH THE LOWER LEVEL OF THE TREATMENT, AND CALLS
THE CHANDLER

;**

inc cs:counter ;saves sS,sp,ds,es only for the first entry
cmp cs:counter, I
jne inter

first_entl:
mov cs:hsp,sp ;save registers of host process in memory
mov cs:hss,ss
mov cs:hes,es
mov cs:hds,ds
mov sp,cs:lsp ;pop local registers from memory
mov sS,cs:lss
mov dS,cs:lds
mov eS,cs:les

inter:

11:

push bp
mov bp,sp
push ax
push bx
push cx
push dx
push si
push di
call _irqiO_mask
sti
push ax
mov aX,20h ;end of interrupt to 8259A Slave
out OAOh,al
mov aX,20h ;end of interrupt to 8259A Master
out 20h,al
pop ax

1-321

inter AP-327

CODE EXAMPLE 3 (Continued)

exit:
call _parazit_rcv
cli :enter a critical

:if eoi is before
call _irqlO_unmask

,pop di
pop si
pop dx
pop cx
pop bx
pop ax
mov sp,bp
pop bp
dec cs:counter
cmp cs:counter,O
jnz inexit

last:

;nesting check

section must disable int only
this section

mov sp,cs:hsp
mov sS,cs:hss
mov ds,cs:hds
mov es,cs:hes

:pop host registers from memory

inexit:
sti

ext_int:
iret

inLhnd endp

Before program control is transferred to the "c" rou­
tine "c~ntO" the two 8259A PICs are acknowledged.
The "c_intO" routine reads the 82592 status from the
6 byte status register. To make sure Status byte ° is the
first byte read and that the following bytes are read in
order, a RLS_PTR (OFh) command, with ° as a point­
er value (points to Status_O), is issued. If no command
is issued to the 592 during the Status read sequence,
each successive read to the 82592 will increment the
internal status pointer and guarantee properly ordered

status bytes. Now the 82592 Interrupt can be acknowl­
edged. This allows the next event to be presented in the
status register, and the INT pin to be asserted. Since
the PIC is masked all further interrupts from the 82592
will be ignored until the ISR has been exited. The
'INTJROC_Stat' variable holds the interrupt event
presented in STATUS_O. For receive and transmit
events, a lengthy processing is required. It is described
below.

1-322

inter Ap·327

CODE EXAMPLE 4

far c_int()
(
register a; /* for a faster detection of the INT event */

write_592(OxOF) ;
get_592_status () ;
outp(ADDR_592,Ox80) ;
a = STAT_REG_Stat[O] ;
if (a &: Ox80)

/* RLS_PTR to 0 command */
/* IN operation from the 82592 */
/* acknowledge to 82592 */
/* Status byte 0 holds the event */
/* INT bit active */

(
a &:= OxOF;
switch (a)
(

/* clear irelevant bits */

case 8:
INT_PROC_Stat =
inLrcv() ;
break;

case 4:

"RCV-; /* last INT event for screen display */
/* call the RCV ISR */

INT_PROC_Stat = "XMTn;
int_xmt() ; /* TRANSMIT event */
break;

case 12:
INT_PROC_Stat = "ReX"; /* Re-TRANSMIT event */
inLxmt() ;
break;

case l:
INT_STAT_RDY = TRUE; /* Individual Address */
INT_PROC_Stat = lilA "; /* executed */
break:

case 2:
INT_STAT_RDY = TRUE: /* Configure executed */
INT_PROC_Stat = "CNF":
break:

case 5:
INT_STAT_RDY'= TRUE: /* TDR executed */
INT_PROC_Stat = "TDR";
break:

case 6:
INT_STAT_RDY = TRUE; /* Dump Executed */
INT_PROC_Stat = nDMpn:
break;

1-323

inter AP-327

CODE EXAMPLE 4 (Continued)

case 7:
INT_RDY = TRUE; /* Diagnose Passed */
INT_PROC_Stat = nDgP";
break:

case 10:
INT_STAT_RDY = TRUE; /* RCV Aborted */
INT_PROC_Stat = nRxD";
break;

case 13:

INT_STAT_RDY = TRUE; /* Execution aborted */
INT_PROC_Stat = nExA";
break;

case 15:
INT_STAT_RDY = TRUE; /* Diagnose Failed */
INT_PROC_Stat = DgF n ;
break;

default:
INT_STAT_RDY = TRUE;
INT_PROC_Stat = • ? n:
break;

/* end switch */
I /* end if */

/* exit interrupt handler */

Before leaving the "intJnd" interrupt service routine,
the 82592 interrupt is unmasked in the 8259A PIC. The
machine state is then restored by popping the registers
pushed on the stack at the entry of the interrupt han­
dier. The nesting control 'counter' variable is decre­
mented and finally the host process environment is re­
stored.

8.1 RCV Interrupt Service Routine: "lnLrcv()"

The RCV interrupt service routine handles the recep­
tion of one or more frames. All the frames received are·
stored in memory in successive addresses by the 8237 A
DMA controller. After the 82592 has completed reCeiv­
ing a frame it interrupts the CPU. The 82592 will con­
tinue to receive frames as long as the DMA continues
to service its requests to store data in memory.

The "int~cv()" routine implements a cyclic RCV
buffer handling. The buffer size is configurable. The
ELM Exerciser software uses 16 KB, a smaller size can
be used if interrupt latency is small enough. The maxi­
mum receive buffer size for this architecture is limited
to 120 kB due to the physical page register implementa­
tion of the PC-AT DMA subsystem. In the ELM it is
further limited to 64 kB due to the fact that AO through
A 15 are latched in the TCI latches. If A 1 through A 16
are latched then the full 128 kB that the DMA can
access could be ·used as a receive buffer. To allow maxi­
mum buffer size, the ELM Exerciser software locates
its r~eive buffer at the beginning of a physical address
segment, i.e. address of type xxOOOOh, (which of
course is not a must). This allows a simplification in
address calculation because the lowest 16 bits can be
directly used for address calculations: There is no need
to add a displacement from the beginning of the physi­
cal address segment.

1-324

inter Ap·327

The receive ISR starts with the frame received last
(pointed by the latch) and processes received frames,
backwards. The last received frame byte count field is
used to find the byte count field of the next to last
frame. After the pointer to the beginning of the frame
has been reproduced, the received frames can be pro­
cessed. This goes on until the first frame has been
found. The frames can then be processed in the order in
which they were received.

Throughout the RCV ISR session, the length of the
current frame is being subtracted from the "Cur-Latch­
abs" variable (pointer to the current frame Byte Count
field), to obtain the previous frame's byte count field.
When the 'Cur-Latch-abs' variable points to the byte
preceding the first byte received in this session of the
ISR, the receive ISR has completed processing all the
frames received in this session.

D15

As seen in figure 5, the 82592 appends the frame's
status and byte count fields, after the last data byte. In
the case of odd frame length (data field in bytes), the
592 will leave one byte empty so the status and byte
count are stored on a word boundary when the 82592 is
set to 16 bit mode.

8.2 Execution Algorithm

READING THE LATCH

The first action taken in the receive ISR is to read the
16-bit latch. It holds the low 16 bit physical address of
the byte count field of frame number N, the last com­
pletely received frame (latcLcontent = 470h in the
example of figure I). Note that more than I frame can

DO

~
Rev Start

r"
previous RD_POINTER_abs DA2 DAI

Frame #1

XXXX BC High 192h
DA2 DAI

r" Frame #2

XXXX BC High IEBh

~ ------ ------
------ ------

DA2 DAI

r Frame #N-l

XXXX BC High 30Eh

DA2 DAI

)"'" Latch
D15 DO F~ame #N

~
Latch_content IJ xxx x BC High 470h

Cur _Iatch_c~ntent J

F _Iatch_abs J

Old_latch_content J Rev End
292062-1

Figure 5. Memory Organization of RCV Frames

1-325

inter AP-327

be handled by "int_rcvO" in one session. It is not nec­
essarily the very same frame, designated 1, that its re­
ception completion has generated the INT signaUn
this program, the latch is read twice. The latch is read
in two 8 bit accesses since 16-bit I/O is not supported

, so the latch content can be altered in between. As the
DMA can work in parallel with INT processing, it can
capture the bus during the receive ISR latch read oper­
ation. If a frame was completed exactly at this time, a
new byte count field pointer. is loaded into the latch.
The second receive ISR read operation will then get
half of the new BC field pointer). If the read operations
yield the same result, the data is valid. In case of mis­
match, the read operations are repeated. Latch read
action is very short compared with frame reception, so
there will be no need for more than two iterations. This
can alsobe accomplished by doing a word read at the
low byte of the two latches. Since the ELM does not
return MEMCSI6 the processor will execute two back

. to back byte reads at consecutive I/O locations. These
two reads are locked thus pointer integrity is guaran­
teed.

FALSE ALARM

A "false alarm" is detected by the fact that the latch
content is equal to its value in the previous service se­
quence. If the latch was not updated no frame was re­
ceived since the last receive ISR invocation. If exactly
the butTer size bytes were stored in memory from the
last time a receive was serviced, this test may indicate
wrong results. However, the butTer size should be big
enough to accommodate the longest CPU latency in
servicing interrupts.

CODE EXAMPLE 5

BYTE COUNT AND STATUS

The frame length is read from the byte count field (two
words). The general status maintained by the ELM Ex­
erciser software is updated from the status field at­
tached to the end of the frame before the byte count
field. Then the frame q:tay be copied to the user's appli­
cation receive area. By now one frame has. been re­
ceived and processed (FRTT_CNT = I).Note that
the byte count field includes the number of the destina­
tion address field bytes, source address field bytes, in­
formation field (type field included) and two status
bytes. The'Byte Count field itself (four bytes) plus two
bytes of the status field are not included in the calcula­
tion. In 16-bit mode, the 82592 extends the status and
byte count fields to words instead of bytes This is treat­
ed in more detail in the 82592 User Manual. The previ­
ous frame's byte count field has now been located (byte
count + 6) bytes.previous to the current one. See figure
5.

DATA CHECK.

This utility allows checking the received data. The ba­
sic assumption is, of course, that the data is known in
advance so we have a reference to compare with. In the
ELM case, the data transmitted is sequential (word
wide), in case the user did not change the default trans­
mission data blocks. This is illustrated in the following
code example.

/***
* checkS the data words to be sequential data *
* 0,1,2, if data length is longer than 4. *
* length = 4·data = 0000 0000 *
* length = 5 data = 0000 0001 00 *
* length = 6 data = 0000 0001 0000 *
* length = 7 data = 0000 0001 0002 00 *

***/

/* RD_POINTER_seg.Ptr is pointing to the first byte of the frame
Cur_Latch_abs is pointing to the byte count of the previous frame
Prev_latch_abs is pointing to the byte count of the current frame
*/

1-326

inter AP-327

CODE EXAMPLE 5 (Continued)

find_boundary (f_byte)
unsigned int f_byte; /* offset of first byte in frame */
(

/* Don't compare last 5 words, 2* BC, 2* STATUS + last word is zero */
if_byte < Prev_Iatch_abs)

return«Prev_1atch_abs - f_byte - 10)/2);
else if(f_byte > Prev_Iatch_abs)

{
H((Prev_Iatch_abs - Sixteen_I) > 10)

(

else

wrap_required = TRUE;
return«RD_END_abs - f_byte)/2);
I

return«(RD_END_abs - f_byte)/2) - (10 - (Prev_Iatch_abs -
Sixteen_I))) ;
I
else

I
RX_CHECK = TRUE; RX_CHECK_DT = Oxa5a5; RX_CHECK_BNUM = Oxa5a5;
I

wrap()
(
wrap_around = TRUE;
bound_dist == find_boundary(Sixteen_1) ;
local.temp.xoffset = Sixteen_I;
I

check_data (f_byte)
unsigned int f_byte; 1* offset of first byte in frame */
(
int i ,j ;
int far * tmp;
unsigned int tmpl, delta, dt1en;

/* reset flags */

wrap_around = wrap_required = FALSE;

/* first find buffer boundary cross point from first DA word if any */
bound_dist = find_boundary(f_byte) ;

/* second find DA and compare to IA */
loca1.tmp = mk_pointer(Prev_latch_abs, -(Cur_Byte_Count + 4»;

if (*(local.tmp++) !=IASU.IASU_Ptr -- laAdd1)
{
RX_CHECK = TRUE; RX_CHECK_DT = * (local.tmp) ; RX_CHECK_BNUM = Oxaa1;

return;
I

if (bound_dist- __ 0)
wrap() ;

1-327

intJ AP-327

CODE EXAMPLE 5 (Continued)

if (*(local.tmp++) 1= IASU.IASU_Ptr -> laAdd2)
{
RX_CHECK = TRUE; RX_CHECK_DT = * (local.tmp) ;,RX_CHECK_BNUM = Oxaa2;

return;
l

if (bound_dist- __ 0)
wrap() ;

if (*(local.tmp++) I=IASU.IASU_Ptr -> IaAdd3)
{
RX_CHECK = TRUE; RX_CHECK_DT = * (local.tmp) ; RX_CHECK_BNUM = Oxaa3;

return;
l

/* second, disregard SA */

if (bound_dist- -- 0)
wrap() ;

local.tmp ==;
if (bound_di st- -- 0)

wrap() ;
local.tmp ++;
if (bound-dist- -- 0)

wrap() ;
local.t)llp ==;

/* third'check if frame includes data 1= 0 using LEN field */

if (bound_dist- == 0)
wrap() ;

if ((dtlen = *(local.tmp++» == 0)
{
RX_CHECK = TRUE; RX_CHECK_DT = * (local.tmp) ; RX_CHECK_BNUM = Oxaa6;

return;
l

/* if frame includes data 1= 0 compare all bytes till boundary cross */

i = 0;

if (bound_dist > 0)
[
for (i=O; i<bound_dist; i++)

[
if(*(local.tmp++) = i)

{
RX_CHECK = TRUE; RX_CHECK_DT = *(local.tmp); RX_CHECK_BNUM = i;

return;

1-328

inter AP-327

CODE EXAMPLE 5 (Continued)

1* if frame includes data != 0 compare all bytes after boundary cross *1
if (wrap_required && !wrap_around)

I
bound_dist = find_boundary(Sixteen_l) ;
local.temp.xoffset == Sixteen_l;
for (j=O; j<bound_dist; j++)

I
1f(*(local.tmp++) != (j+i))

I
RX_CHECK = TRUE; RX_CHEC~_DT = *(local.tmp); RX_CHECK_BNUM = i+j;
return;

I

1* compare LEN field *1
if «dtlen % 2) == 1)

dtlen++ ;
if (dtlen != Cur_Byte_Count-16)

I
RX_CHECK _. TRUE; RX_CHECK_DT = dtlen; RX_CHECK_BNUM =Oxdd7;
return;
I

I*compare status bytes *1

1**1

main loop

The main loop of the receive ISR determines if there is
"more_to_readO"; i.e., whether the ISR had serviced
all the frames received this time or more frames are
stored in memory and were not processed yet. The al­
gorithm of "more_to_readO", may be found in code
e1(ample 8.

Each received frame is processed following the algo­
rithm depicted above for the first frame traced by the
"int_rcv()" routine.

CODE EXAMPLE 6

NOTE Software Variable Naming Convention

The structure "V ARIABLE.Ptr" . holds a valid "C"
pointer to a specific memory structure. It is arranged in
a way that allows access to its two 16-bit entities, the
offset and the segment (or base). These are "VARI­
ABLE.Addr.xoffset" and
"V ARIABLE.Addr.xsegment". Another suffix is used
for variables holding the 16 low bits of a physical ad­
dress. These are denoted by "V ARIABLE-abs".

I*************************~*************************** ****************
The RECEIVE INT service routine
RCV_AREA.START_Ptr is always at the beginning of a Physical segment *
RD_POINTER_seg is a temp variable
***1

int-rcv()
I
int i,k;
unsigned int cbc_h;
int trace_cnt;
int far * tmp_ptr;
unsigned int tmp, tmp_l;

1-329

inter
CODE EXAMPLE 6 (Continued)

if ((i=latch_read() != 0)
{

AP-327

return; /* in case of fatal error */
} /* Compile with DEB_PRT switch,

to monitor this event */

Old_latch_content = latch_content; /* for parazit_rcv() */

/*= 470h */

F_Latch_abs = latch_content; /* = 470h */
RD_POlNTER_seg.Ptr = mk_pointer(F_Latch_abs, 2) ; /* 472h */
if (RD_POlNTER_abs == RD_POlNTER_seg.Addr.xoffset)

{ /* 100h == 472 */
false_int++; /* Compile with DEB_PRT switch,

to monitor this event */
return;
}

cbc_h = * (mk_pointer(Cur_Latch_abs,O)); /* 470h */
Cur_Byte_Count = * (mk_pointer(Cur_Latch_abs, -2)); /* 46Eh */
Cur.;.Byte_Count = (cbc_h « 8) + (Cur_Byte_Count Be OxOOFF) ;
if ((Cur_Byte_Count % 2) == 1) Cur_Byte_Count++; /* odd data bytes but all
fields are word aligned */

tmp_ptr = mk_pointer(Cur_Latch_abs, -6); /* status 46Ah */

if (*(tmp_ptr) Be OxOOEF)
(
rut-ERR = TRUE;
if (*(tmp_ptr) Be Ox0080)

SCB. SCB_Ptr -> SRT_FRM +=' 1;
if (*(tmp_ptr) Be Ox0040)

SCB. SCB_Ptr -> NO_EOF += 1;
if (*(tmp_ptr) Be Ox0020)

SCB.SCB_Ptr -> TOO_LNG += 1;
if (*(tmp_ptr) Be Ox0008)

SCB.SCB_Ptr -> NO_SFD += 1;
if (*(tmp_ptr) Be/Ox0004)

SCB.SCB_Ptr -> NAD_MCH += 1;
if (*(tmp_ptr) Be Ox0002)

SCB. SCB_Ptr -> lA_MCH += 1;
if (*(tmp_ptr) Be Ox0001)

SCB.SCB_Ptr -> RCV_CLD += 1;

tmp_ptr = mk_pointer(Cur_Latch_abs, -4);
if(*(tmp_ptr) Be Ox0020)

{
SCB.SCB_Ptr -> RCV_OK += 1;
UPDATE_RXCNT = TRUE;
}

1-330

inter
CODE EXAMPLE 6 (Continued)

if(*(tmp_ptr) & Ox001D)
(
rut-ERR = TRUE;

Ap·327

if (*(tmp_ptr) & Ox0010)
SCB.SCB_Ptr -> LEN_ERR += 1;

if (*(tmp_ptr) &'Ox0008)
SCB.SCB_Ptr -> CRCErrs += 1;

if (*(tmp_ptr) & Ox0004)
SCB.SCB_Ptr -> A1inErrs += 1;

if (*(tmp_ptr) & Ox0001)
SCB.SCB_Ptr -> OvernErrs+= 1;

FRTT_CNT = 1; /* Frames Received This Time count.Compi1e with DEB_PRT
switch, to monitor number of frames received each int_rcv invocation */
Prev_1atch_abs = Cur_Latch_abs; /* for Data Check */
RD_POINTER_seg.Ptr = mk_pointer(Cur_Latch_abs, -(Cur_Byte_Count + 6));
Cur_Latch_abs = RD_POINTER_seg.Addr.xoffset; /* previous frame BC pointer
308h */
RD_POINTER_seg.Ptr = mk_pointer(Cur_Latch_abs, 2) ; /* frame N 1st byte 310h
*/
tmp = RD_POINTER_seg.Addr.xoffset;

/******* Data Check ********
RD_POINTER_seg.Ptr points to the' first byte of the frame
Cur_Latch_abs points to the byte count of the previous frame */

if (CheckEnab1e == ON)
check_data(tmp) ;

while ((k = more_to_read(tmp)) != 0)
(
cbc_h = * (mk_pointer(Cur_Latch_abs,O));

/* MAIN LOOP */

Cur_Byte_Count = * (mk_pointer(Cur_Latch_abs, -2));
Cur_Byte_Count = (cbc_h ~ 8) + (Cur_Byte_Count & OxOOFF) ;
if ((Cur_Byte_Count % 2) == 1)

Cur_Byte_Count++;

tmp_ptr = mk_pointer(Cur_Latch_abs, -6);
if (*(tmp_ptr) & OxOOEF)

(
rut-ERR = TRUE;
if(*(tmp_ptr) & Ox0080)

SCB.SCB_Ptr -> SRT_FRM += 1;
if(*(tmp_ptr) & Ox0040)

SCB.SCB_Ptr -> NO_EOF += 1;
if(*(tmp_ptr) & Ox0020)

SCB.SCB_Ptr -> TOO_LNG += 1;
1f(*(tmp_ptr.) & Ox0008)

SCB. SCB_Ptr -> NO_SFD += 1;
if(*(tmp_ptr) & Ox0004)

SCB.SCB_Ptr -> NAD_MCH += 1;
if(*(tmp_ptr) & Ox0002)

SCB.SCB_Ptr -> IA_MCH += 1;
if(*(tmp_ptr) & Ox0001)

SCB.SCB_Ptr -> RCV_CLD += 1;
I '

tmp_ptr = mk_pointer(Cur_Latch_abs, -4);

1-331

intJ AP-327

CODE EXAMPLE 6 (Continued)

if(*(tmp_ptr) & ox0020)
(
SCB.SCB_Ptr -> RCV_OK += 1;
UPDATE_RXCNT = TRUE;
I

if(*(tmp_ptr) & Ox001D)
(
RX_ERR = TRUE;
if (*(tmp_ptr) & Ox0010)
SCB.SCB_Ptr -> LEN_ERR += 1;

if(*(tmp_ptr) & OxOOOB)
SCB.SCB_Ptr -> CRCErrs += 1;

if (*(tmp_ptr) & Ox0004)
SCB.SCB_Ptr -> AlinErrs += 1;

if (*(tmp_ptr) & Ox0001)
SCB.SCB_Ptr -> OvernErrs+= 1;

I

Prev_latch_abs = Cur_Latch_abs;: /* for Data Check */
RD_POINTER_seg.Ptr = mk_pointer(Cur_Latch_abs, -(Cur_Byte_Count + 6));
Cur_Latch_abs = RD_POINTER_seg.Addr.xoffset;
RD_POINTER_seg.Ptr =.mk_pointer(Cur_Latch_abs, 2);
tmp= RD_POINTER_seg.Addr.xoffset;

/******* Data Check ********

RD_POINTER_seg.Ptr points to the first byte of the frame
Cur_Latch_abs points to the byte count of the previous frame*/

if(CheckEnable == ON)
check_data(tmp) ;

FRTT_CNT++ ;
if (FRTT_CNT >1250)

break; . /* GUARD BAND * /
I ; /* MAIN LOOP END */

RD_POINTER_seg.Ptr = mk_pointer(F_Latch_abs, 2) ;
RD_POINTER_abs = RD_POINTER_seg.Addr.xoffset; /* next int_rcv session 1st
byte 472h */
RxCount += FRTT_CNT;
copy_data() ; /* from RCV buffer to user's application *1
INT_STAT_RDY = TRUE; /* for screen status update */
return; /* end of int_rcv() */
I

address calculation

In code example 3, the routine "mLpointer(address,
delta)" is used. This routine handles a 16-bit physical
address to pointer conversion (see Code Example 7)
and the buffer internal address calculation (which are
not straightforward).

As noted before, the RCV buffer is a cyclic buffer.
When calculating an address starting from one address
and adding/subtracting some 'delta' value, the buffer
boundaries can be crossed. Overlapping the buffer .

boundaries is further illustrated in Figure number 6.
When subtracting the byte Count of frame N, which
starts in (1) and ends in (2), a direct decrement will not
give the right results. If we calculate backwards and fall
out of the receive area, (address region within which
the buffer for all frames resides) ~'mk-pointerO" adds
the length of the receive area to get the right address. If
we go in the other direction, "mk_pointer" subtracts
the receive area length. Due to receive area alignment
into a physical address segment, the case in which the
address we get is lower than RCV~REA--START
is impossible.

1-332

intJ AP-327

CODE EXAMPLE 7

/***************************************
* mk_pointer transforms a 16 bit *
* abs to a pointer within the RCV_AREA *

***************************************/

int far *
mk_pointer(abs,delta)
unsigned int abs;
int delta;
(
unsigned int The_length;

The_length = (unsigned) DECRCVBLEN; /* buffer length */
RD_POINTER_seg.Addr.xoffset = abs + delta;
if(RD_POINTER_seg.Addr.xoffset > RD_END_abs)

{
/* check if going backwards */
if (delta <0)

RD_POINTER_seg.Addr.xoffset += The_length;
/* check if going forward */
if (delta> 0)

RD_POINTER_seg.Addr.xoffset -= The_length;
1

/* if result is before RCV buffer starts in the segment. */

/* impossible result for aligned RCV_AREA */

return(RD_POINTER_seg.Ptr) ;

Rev Start

c A

A

c

B

A

Rev End
n

The frames begin at RD_POINTER and end at F _LATCH.

Figure 6. Overlapped Buffer Boundary

1-333

292062-2

intJ Ap·327

Another address calculation is performed to determine
whether there is "more_to_readO" (see code example
8) i.e., whether.all the frames received this time were
processed and whether the next frame to be read is
valid. Cases of invalidity ate detected by this routine.
This error is denoted "SW _OVERRUN", for software
overrun errors. In case the interrupt handling was too
slow, the DMA could have over written received
frames which were not processed yet. In this case, a
valid byte count field can be replaced by arbitrary data.
This will mislead the backwards address calculation. It
may also cause a detectable address error, where the
previous frame byte count field is located in an area
known to be outside the last valid receive area. The
following variables are used in this calculation:

Cur-Latch-abs, labeled CUR LATCH in figure 7, is
used to hold the address of the current frame's byte
count in memory, while the ISR processes them. At the
beginning, it holds the last frame's byte coupt (frame
n), then it will hold frame n-I's byte count address and
soon.

F-latch-abs, labeled NEW LATCH in figure 7, holds
the address of the byte count of the last received frame
(frame N) in this "int~cvO" invocation. It is used to

n

detect a frame that is wrapped-around the end of the
receive buffer.

RD-POINTER-abs, labeled OLD LATCH in figure 7,
always points to the first byte of the next frame to be
processed in the next "int~cvO" invocation. It is up­
dated at the end of each service cycle; to hold F-latch­
abs + 2. (Note: 'RD-POINTER-abs' is not equivalent
to 'RD-POINTER-seg.Ptr' ,which serves as a template
for various pointer calculations.)

The following scenarios are possible for such intermedi­
ate results.

Legal intermediate results should fall in the "A" area if
the results are in "A", namely between RD-POINTER
(start of this session RCV-AREA) and F-LATCH
(First Latch, end of this session RCV-AREA). Note
that F-LATCH may be greater or smaller than RD­
POINTER. See Figure 7A.

If however, the result falls in "B" or "C" areas it is not
legal. This may happen if the buffer was too small and
the 82592 had overrun it in reception. This would occur
if the whole buffer was filled and then more frames
were received, before being processed by the ISR. See
figure 7B. .

Rev Start

A

c
c

A

Rev End,
][

~ Data received In this session

292062-3

Figure 7a_ Legal "CUR_LATCH" Values

1-334

AP-327

Rev start

C

B

A

Rev End
1I m

292062-4

Figure 7b. More Frames TO READ

Before Corruption

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5
Start

After Corruption

Frame 2

Frame 3

Frame 4

Frame 5
Start

292062-5

Figure 8. Receive Buffer Corrupted by Overrun

Frame # 5 erases the byte count infonnation stored by
frame # 1. When we calculate our way backwards we
will not find the byte count field of frame # I and read
instead a data word of frame # 5. This data may be
interpreted wrong and cause an avalanche in the frame
reconstruction process. This event can be detected by
the above test.

This can be completely avoided if a stop register is im­
plemented in hardware. This register would hold RD-

POINTER (the beginning of the current ReV-AREA)
and prevent write access to areas previously written by
592/DMA and not serviced yet. In case the maximum
delay of the system is detennined and known, one can
allocate a big enough buffer to accommodate that delay
in the ISR. eRe should be stored in memory and
checked by the S/W to assure data integrity.

1-335

inter AP-327

CODE EXAMPLE 8

/************************************
* checks whether more frames to *
* be read as indicated by the latch *

************************************/

more_to_read{tmp)
unsigned int tmp;
(

unsigned int cur_content, f_content, rd_content;

cur_content = tmp; /* Cur_Latch_abs [flow chart: cur latch] */
f_content = F_Latch_abs; /* [flow chart: new latch] */
rd_content = RD_POINTER_abs; /* [flow chart: old latch] */
if (f _content > rd_content)

(
if{ (cur_content> rd_content) &:&: (cur_content <= f_content))

return{l) ;
if ({cur_content < rd_content)

(cur_content> f_content)) ,
(

. SW_OVR++;
RX_ERR = TRUE;
I

return{O) ;
I

if (f_content < rd_content)
(
if ({cur_content> rd_content)

(cur_content <= f_content))
return{l) ;

if ({cur_content < rd_content) &:&: (cur_content> f_content))
(
SW_OVR++ ;
RX_ERR = TRUE;
I

return{O) ;

1-336

inter AP-327

CODE EXAMPLE 9

far parasite_rcv()
{
int i;
unsigned int j;

if ((i=latch_read ()) != 0)
(
LATCH_ERROR++ ;
return;
I

if((RxCount != 0) && (latch_content != Old_latch_content))
(
PARASITE++ ;
int-rcv() ;
I

Frames may be received during execution of the receive
ISR. These frames are handled before the receive ISR is
exited. This saves the interrupt latency involved and the
context switching overhead. Therefore, it will increase
the overall performance of the code. For all interrupt
events, the "parasite_rcv" routine is invoked, before
exiting the "intJnd" routine (see code examples 9
and 3). The routine "parasite_rcv" checks whether a
frame has been received using the address latch for in­
dication. It compares the current 'latcLcontent' with
the latest value known to this ISR invocation (stored in
'Old-Iatch-content'). Obviously, a different value will
indicate that a new frame has been received from the
time this ISR has been invoked until it is about to be
exited.

In the case of an odd frame length (data field in bytes),
the 592 will leave one byte empty so the status and byte
count are stored on a word boundary (when the 82592
is set to 16 bit mode).

8.3 Transmit Interrupt Service Routine: "inL
xmt{)"

The transmit ISR is simpler than the receive ISR. It
mainly deals with status update and software generated
retransmissions. First, collision status is checked.
Num_ColI is the number of times this frame has expe­
rienced a collision during a transmission attempt.
Num_ColI is equal to, or greater than 0, and smaller
or equal to the configuration parameter Max Retry.
FRM_COLL is an indication generated by the ELM
Exerciser software based on the status reported by the
82592. All the other status reports reflect the 82592
status report, with no further processing. FR~
COLL ,contains the number offrames that have experi-

enced at least one collision. COLL indicates that the
last transmission attempt has experienced a collision;
but, transmission was stopped due to other fatal
events). MAX_COLL indicates that the 82592 has at­
tempted to transmit this frame "Max Retry" times plus
1. All these attempts have experienced collisions.

The events of transmit deference, heartbeat and frame
too long are merely registered and transmission is con­
sidered successful. A frame too long error may indicate
a hardware error that caused the 82592 to load an in­
correct value into its byte count counter; e.g., 700h was
loaded into the 82592 byte count counter. However,
700h is greater than the maximum allowed length of an
Ethernet frame. This could have happened because of a
hardware or software malfunction.

The events of underrun, lost CRS, lost CTS, late colli­
sion or Max-Coll indicate a fatal error with which the
82592 cannot cope. The decision taken here is to re­
transmit in these cases. However, this decision can be
left for a higher software layer, where such a layer ex­
ists.A status report mismatch is fixed for the MA~
COLL status. There is a special case when the 82592 is
configured for 15 retries. After 15 retries it increments
the internal counter to hold (15 + I)MODI6 and hence
NUIIL-Coll holds zero. In this case 16 is added to
Num_CoII. A frame transmission that has been com­
pleted successfully still may have suffered from colli­
sions. Hence, this field should be checked even in TX_
OK cases.

Next, the statistics update flag is set ('INTJTAT_
RDY').

The last section of this code handles the counter load
for XMT LOOP cases.

1-337

inter AP-327

CODE EXAMPLE 10

'****************************
* XMT interrupt service *

'****************************

TxCount++; ,. update XMT frame counter "
,. for all events, do 0,

SCB.SCB_Ptr->Num_COLL += (STATUS.STATUS_Ptr-> Status_l_O & OxOOOF) ;
if((STATUS.STATUS_Ptr -> Status_LO & OxOOOF)
(STATUS.STATUS_Ptr -> Status_l_O & Ox0020))
SCB. SCB_Ptr->FRM_COLL++;

if(STATUS.STATUS_Ptr -> Status_Ll & OxOOBO)
SCB.SCB_Ptr->COLL += 1;
'0 status report, only',
if(STATUS.STATUS_Ptr-> Status_l_O & OxOODO)

I

[
if(STATUS.STATUS_Ptr->Status_l_O & OxOOBO)

SCB.SCB_Ptr->TX_DEF += 1;
if(STATUS.STATUS_Ptr->Status_l_O & Ox0040)

. SCB. SCB_Ptr->HRT_BEAT += 1;
if(STATUS.STATUS_Ptr->Status_LO & Ox0010)

SCB.SCB_Ptr->FRTL += 1;
TX_ERR = TRUE; ,. for status display purposes .,

r Fatal errors, ELM Software Package initiates another transmission of

the frame 0'
if! (STATUS.STATUS_Ptr->Status_Ll & OxOOOF)

(STATUS.STATUS_Ptr->Status_LO & Ox0020»
[
if (STATUS. STATUS_Ptr-> Status_Ll & Ox0001)

SCB.SCB.Ptr->UndernErrs+= 1;
if(STATUS.STATUS_Ptr->Status_l_l & Ox0004)

SCB.SCB_Ptr->LOST_CRS+= 1;
if(STATUS.STATUS_Ptr->Status_l_l & Ox0002)

SCB.SCB_Ptr->LOST_CTS+= 1;
if(STATUS.STATUS_Ptr->Status_l_l & OxOOOB)

SCB.SCB_Ptr->LTCOL += 1;
if(STATUS.STATUS_Ptr-> Status_l_O & Ox0020)

[
SCB. SCB_Ptr- > MAX_COLL += 1;
if(!(STATUS.STATUS_Ptr->Status_1_0 & OxOOOF))

SCB.SCB_Ptr->Num_COLL += Ox10;
I

FLAG_RE_XMT = TRlJE; r signals Re_XMT. is required .,
INT_STAT_RDY = TRUE;

TX_ERR = TRUE; " for status display purposes 0'
return;
I r xmt ok .,
if (STATUS.STATUS_Ptr->Status_l_1 & Ox0020)
(
SCB.SCB_Ptr->TX_OK += 1;
UPDATE_TXCNT = TRUE;
RETRY_CNT = 0;
I

inter Ap·327

CODE EXAMPLE 10 (Continued)

/ •••••••••• statistics ••••••••••••••• /

INT_STAT_RDY = TRUE;
/......... if xmt loop •••••••••••••••• / TermCount - ;
/. reload running counter '/
if«XMT_FOREVER == TRUE) && (TermCount == 0))
TermCount = Ox7FFF;

if (TermCount > 0)
XMT_LOOP = TRUE; /. set condition for next frame transmission, if

transmission in loop is requested ./

return;
I

9.0 SOFTWARE DESIGN HINTS

9.1 Segment Boundaries

The PC AT DMA subsystem uses an 8-bit page register
which allows 24 bit addressing. The page register di­
vides the 16 MB memory space into 128KB physical
segments in the 16-bit channels. This is because the
address 0 through 15 generated by the 8237A drive
address I through 16 of the system. in the 16-bit chan­
nels the page register is used to generated address 17
through 23. If a buffer is allocated so that it lies in two
physical segments, a special logic should take care of
segment boundary crossing and update the page regis­
ter. To prevent this complicated logic, memory buffer
allocation should prevent physical segment boundary
crossing.

9.2 Set Pointer

The internal status registers of the 82592 are read in
sequence. One of the ISR operations is reading the
status. One should make sure that the first byte of
status is read first. The background utilities can be in­
terrupted while reading the status. In that case, the in­
ternal 82592 status register pointer is not set to O. How­
ever, the background software will now get the status
pointer set to 0, while it expected it to be different.
Hence, during status read in the background, the inter­
rupts should be disabled.

9.3 Interfacing with DOS'

The 82592 can interrupt the program at any instant.
Since the ELM Exerciser software is run under the
DOS, the 82592 may interrupt a DOS system call. DOS
saves a small stack for its own use. It does not support
other uses for this stack. Calling routines or passing

parameters by using the DOS stack may cause a stack
overflow error and consequently a system collapse. In
order to prevent this from happening, a private stack
was constructed. Its size is dependent upon the routine
calls within the ISR and upon the stack required for
passing parameters to or from called routines.

9.4 Screen Operations

It is not advisable to use DOS screen operations from
within the ISR.This may cause the system to collapse,
due to DOS not being reentrant. Within the ISR, one
can use a software flag to indicate that data for screen
update is available. In the main program outside the
ISR, DOS services or direct BIOS calls can be made.

9.5 Nested Interrupts

The first check made when interrupt processing starts
is whether this is a nested interrupt. A memory variable
"counter" is incremented every time execution of int_
hnd starts and decremented just before exiting. If
"counter" is greater than I, then this is not the first
entry, it is a nested interrupt. In the code example, the
processing continues at the label "inter." This demon­
strates that, since we are using the local environment,
execution has to continue using the current stack point­
er and it should not be set to initial value. In this case,
local.environment restoration is skipped.

Another method to prevent interrupt nesting is by not
issuing the "STI" command in the "int_hnd" routine.
This blocks the CPU interrupt input and prevents ex­
ternal interrupt sources from preempting the "int_
hnd" execution. The drawback of this approach is that
it can significantly enlarge the interrupt latency of oth­
er devices. These devices may not be designed to cope
with long interrupt latencies.

.1-339

Ap·327

APPENDIX A
LIST OF USEFUL DOCUMENTS

Documents used in the development of the NetWare
driver.

1) Advanced NetWare V2.1 Internetwork Packet Ex­
change Protocol (IPX) with Asynchronous Event
Scheduler (AES) Revision 1.00. Copyright Novell,
Inc. '

2) Net Ware V2.1 Driver Specification for Network Inter­
face Cards Copyright Novell, Inc.

3) Advanced Net Ware Theory of Operations Version 2.1
Copyright Novell, Inc.

Other Useful Documents

4) Internet Transport Protocols (Xerox Corporation;
Xerox System Integration Standard; Stamford, Con­
necticut; December,1981; XSIS-028112)

5) Local Area Network (LAN) Component User's Manu­
al1988 Edition Copyright Intel Corporation

6) AP-320 Using the Intel 82592 to Integrate a Low Cost
Ethernet Solution into a PC Motherboard Copyright
Intel Corporation, 1988

7) 82590-82592 Advanced LAN Controller A-I Step Er­
, rata version 1.2, December, 1988

1-340

intJ AP-327

APPENDIX B
ELM EXERCISER FLOWCHARTS

ELM Exerciser Program RCV ISC Flow Chart

START

y

292062-6

1-341

AP-327

ELM Exerciser Program RCV ISC Flow Chart (Continued)

292062-7

ELM Exerciser Program Transmit ISR Flow Chart

SET XMT LOOP
to ALLOW NEXT

FRAME XMT

EXIT

UPDATE· TOTAL # of COLLISIONS (NUM-COLL)

UPDATE COUNTER:
DEFERRED DURING XMT
HEART BEAT
FRAME TOO LONG

FATAL ERRORS
UNDER RUN
LOST CRS
LOST CTS
LATE COLLISION
MAX COLLISION

UPOATE COUNTERS
SC_T SW RETRANSMIT FLRS

EXIT

1-342

292062-8

intJ Ap·327

NetWare Driver Flowcharts

Driver Broadcast Packet
Driver Send Packet

Drop Through
to StarLSend

292062-9

1-343

Start Send

AP-327

Calculate Byte Count to
Move Into Tx Buffer Space

Get Destination Address From
ECB to Move Into Buffer

Move ENet Length Field
Into Buffer

Get Fragment Count
Into AX Register

Get Length and Location of
f'lrst Fragment (or Next)

Copy to Tx Buffer

Decrement Fragment Count

1-344 -

Calculate Padding

292062-10

inter AP-327

Driver Poll

IPX Hold Event

292062-11

1-345

inter Ap·327

DriverlSR

292062-12

1·346

inter Ap·327

rcvd_packet

292062-13

1-347

inter AP-327

Process Frames

292062-14

1-348

inter AP-327

Process Frames (Continued)

292062-15

1-349

inter
SenLPacket

AP·327

Put proper completion
code in transmit ECB then

unlink it from send_list
and return It to IPX

No

1-350

292062-16

inter Ap·327

APPENDIX C
NETWARE DRIVER SOURCE CODE LISTING

NetWare Driver Source Code Listing

$mod186

;**

lIt!!! FOR EVALUATION PURPOSES ONLY!!!!!!

NetWare(Rl Driver for the LAN-On-MotherQoard Module

This shell driver is written for use in SYP301 systems.

Joe Oragony DFG Technical Marketing

REVISION 3.11

Last revision: Date 04-12-89 Time 16:30

;**

'*define(slowl local label
jmp short 'label

Uabel:

'*define(waitl local label (
mov ex. 03Fh

'label:
nop
loop 'label

'*define(fastcopyl local label (
shr ex, 1
rep movsw
jnc Uabel
movsb

Uabel:

'*define(inc32 ml (
add word ptr tm[Ol. 1

ado word ptr 'm[21. 0

1-351

292062-17

intJ AP-327

NetWare Driver Source Code Listing (Continued)

name LANOnMotherboardModule

CGroup group Code, mombo_init

assume cs: CGroup, ds: CGroup

Code segment word public 'CODE'

public Dri verSendPacket
public DriverBroadcastPacket
public DriverOpenSocket
public DriverCloseSocket
public DriverPoll
public DriverCancelRequest
public DriverDisconnect
public SDriverConfiguration

public LANOptionName

extrn IPXGetECB: NEAR
extrn IPXReturnECB: NEAR
extrn -IPXReceivePacket: NEAR
extrn IPXReceivePacketEnabled: NEAR
extrn IPXHoldEvent: NEAR
extrn IPXServiceEvents: NEAR
extrn IPXlntervalMarker: word

extrn MaxPhysPacketSize: -word
extrn ReadWriteCycles: byte
extrn IPXStartCriticalSection: NEAR
extrn IPXEndCriticalSection: NEAR

iii;;;;;;;;;;;;;;;;;

Equates
iii;;;;;;;;;;;;;;;;;

TRUE equ 1

FALSE equ
CR equ ODh
LF equ OAh
BAD equ OFFh
BPORT equ 0

IRQLOC equ 19
DMAOLOC equ 23
DMA6LOC equ 25
TransmitHardwareFailure equ OFFh
Packet UnDeliverable equ OFEh
PacketOverflow equ OFDh
ECBProcessing equ OFAh
TxTimeOUtTicks equ 20

292062-18

1-352

AP-327

NetWare Driver Source Code Listing (Continued)

Latch definitions
TenCentLo equ 301h
TenCentHi equ 302h

Enables for lOcent
EnLAN equ 303h
DisLAN equ 304h

B259 definitions

InterruptControlPort equ 020h
InterruptMaskPort equ
ExtralnterruptControlPort equ
EOl equ

OAlh :for secondary B259A
OACh
020h

8237 definitions

DMAcmdstat equ ODOh

DMAreq equ OD2h
DMAsnglmsk equ OD4h

DMAmode equ OD6h

DMAff equ ODBh
DMAtmpclr equ ODAh

DMAclrmsk equ ODCh
DMAallmsk equ ODEh
DMA6page equ OB9h
DMA6addr equ OCBh
DMA6wdcount equ OCAh
DMA7page equ OBAh
DMA7addr equ OCCh
DMA7wdcount equ OCEh

DMAtx6 equ OlAh idemand mode, autoinit, read transfer

DMAtx7 equ OlBh ; demand mode, autoinit, read transfer

DMArx6 equ 006h ;demand mode, no autoinit, write transfer

DMArx7 equ 007h idemand mode, no autoinit, write transfer
DMA6msk equ 006h
DMA6unmsk equ 002h
DMA7msk equ 007h
DMA7unmsk equ 003h
DMAena equ OlOh

1·353

292062-19

Ap·327

NetWare Driver Source Code Listing (Continued)

82592 Commands

C_NOP equ OOh
C_SWPl equ lOh
C_SELRST equ OFh
C_SWPO equ Olh
C_IASET equ Olh
C_CONFIG equ 02h
C_MCSET equ 03h
C_TX equ 04h
C_TDR equ 05h
C_DUMP equ 16h
C_DIAG equ 01h
C_RXENB equ 18h
C_ALTBUF equ 09h
C_RXDISB equ lAh
C_STPRX equ lBh
C_RETX equ OCh
C_ABORT equ ODh
C_RST equ OEh

~_RLSPTR equ OFh
C_FIXPTR equ lFh
C_INTACK equ 80h

;;\;;;;;;;;;;;;;;;;;;;;;;;;;;; ;

Data Structures

ii;;;;;;;;;;;;;;;;;;;;;;;:;;;;

even

hardware structure struc -
io_addrl dw
io_rangel dw
io_addr2 dw
decode_range2 dw
mem_addrl dw
mem_rangel dw
mem_addr2 dw
mem_range2 dw
int_usedl db ?

int linel db -
int_used2 db
int 11ne2 db -
dma_usedl db
dma_chanl db
dma_used2 db
dma_chan2 db ?

hardware_structure ends
292062-20

1-354

intJ AP-327

NetWare Driver Source Code Listing (Continued)

ecb_structure struc

link dd 0

esr_address dd 0

in_use db
completion_code db 0

socket_number dw
ipx_workspace db dup (0)

transmitting db 0

driver_workspace db 11 dup (0)

immediate_address db 6 dup (0)

fragment_count dw
fragment_de script or_ list db 6 dup (1)

ecb_structure ends

fragment_descriptor struc
fragment_ address dd
fragment_length dw

fragment_descriptor ends

rx_buf_structure struc
rx_dest -addr db dup (1)

rx_source_addr db 6 dup (1)

rX-9hysical_length dw
rx_checksum dw
rx_length dw
rx_tran_control db
rx_hdr_type db
rx_dest_net db dup (1)

rx_dest_node db 6 dup (1)

rx_dest -socket dw
rx_source_net db dup (1)

rx_source_node db 6 dup (1)

rx_source_socket dw
rx_buf_structure ends

tci_status strue

statusO db
deadl db
statusl db
dead2 db
bc_lo db
dead3 db
bc_hi db 1

tci_status ends
292062-21

1-355

inter AP-327

NetWare Driver Source Code Listing (Continued)

ipx_header_structure struc
checksum dw
packet_length dw
transport_control db
packet_type db
destination_network db

destination_node db
destination_socket dw
source_network db

source_node db

source_socket dw
ipx_header_structure ends

;;;;;;;:;:;;:;;;;;;;;;;;;;;

Variables
ii;;;;;:;;;;;;;;;;;;;;;;;:;

even

tx_ start_time
adapter_io
con fig
send_list
buffer_segment
rx_ecb
tx_ecb

dw
dw
dw
dd
dw
dd
dd

°

°
1

?

?

dup (1)

6 dup (1)

4 dup (1)

6 dup (1)

?

:points to list of ECBs to be sent

config_block db OFh,OOh,48h,80h,26h,OOh,60h,OOh,OF2h,OOh,OOh,40h,OF7h,OOh,3Fh, 87h,OFOh,OFFh

temp_flag
int_mask_register
old_irq_vector
int_vector_addr
int_mask
int_unmask
command_req

read_in_length
config_dmaO_loc
config_dmill_loc
config_irq_loc
config_bport
tx_active_flag
frame_status

statuslO
statusll
status20
status21

db
dw
dd
dw

db

db
dw
dw
db
db
db
dw
db
db

db
db
db
db

o

1

300h :82592 port ° address

?

° °
° o
o
o

1-356

292082-22

inter AP-327

NetWare Driver Source Code Listing (Continued)

even

dw
dw

gp_buf_offset dw
gp_offset_adjust dw
gp_buf_start
gp_bufyage
tx_byte_cnt
rx_buf_start

rx_bufyage
rx_buf_head
rx_buf_tail

rxJ>uf_ptr
rx_buf_stop
rx_buf_length
rx_buf_segment

curr_rx_length

rx_list
nurn_of_frames
reset_rx_buf

padding

dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

dw
dw
dw
dw
dw

dw

5000 dup (0)

1388h
cgroup:gp_buf

o

;twice the required size

o
o
o
o
o
o
o
o
o
o
o
o

;A1-A16 of General Purpose Buffer EA
;A17-A23 of General Purpose Buffer EA
;1PX packet length plus header length
;A1-A16 of General Purpose Buffer EA
;A17-A23 of General Purpose Buffer EA
;current rx head, buffer has been flushed to here

;value read from 10 cent latches

;used during rx list generation

:point to reset the DMA controller'

;calculated at in it for use by IPXReceivePacket

180 dup (0)
o
o
o

Define Hardware Configuration

ConfigurationID

SDr1verConfiguration

reservedl

node_addr
reserved2

node_addr_type
max_data_s1ze
lan_desc_offset
lan_hardware_id

transport_time

reserved_3

major_version
minor_version

flag_bits

db

LABEL

db

db
db

db

dw

dw
db
dw
db
db
db

db

'NetWareDriverLAN WS

byte

4 dup (0)

6 dup (0)

a inon-zero means is a real driver.
o ;address is determined at initialization
1024 ;largest read data request will handle

LANOptionName
OAAh ;Bogus Type Code
1 ;transport time

11 dup (0)

Olh ;Bogus version number
OOh
o

selected_configuration db
number_of_configs db

;board configuration (interrupts, 10 addresses, etc.)

config_pointers dw
01

conf1gurationO

1-357

292062-23

inter AP-327

NetWare Driver Source Code Listing (Continued)

LANOpt ionName'

confiqurationO
db
dw
db
dw

a
a ,
a
a ,

db 'Intel LAN-On-Motherboard Module',O,'$'

dw 300h, 16, 0, a ;IO ports and ranges

a

a ;~mory decode

db OFFh,
db OFFh,

10, 0, 0
6, OFFh, 7

;~nterrupt level 10
;DHA channels 6-and 7

db 0,0
db 'IRQ la, IO Addr - 300h, DHA 6 and 7, For Evaluation Only', a

;**

Error Counters

.** -'
Public DriverDiagnosticTable,DriverDiagnosticText

DriverDiagnosticTable LABEL byte

DriverDebugCount dw DriverDebugEnd-DriverDiagnosticTable

DriverVersion db 01,00
StatisticsVersion db oi,oo
TotalTxPacketCount dw 0,0

TotalRxPacketCount dw 0,0
NoECBAvailableCount dw a
PacketTxTooBigCount dw -1 ;not used
PacketTxTooSmallCount dw -1 ;not used
PacketRxOverfloWCount dw a
PacketRxTooBiqCount dw a
PacketRxTooSmallCount dw a
PacketTxMiscErrorCount dw -1 ;not used
PacketRxMiscErrorCount - dw -1 ;not used

RetryTxCount dw a
ChecksumErrorCount dw -1 ;not used
HardwareRxMismatchCount dw a
NumberOfCustomVariables dw (DriverDiagnosticText-DriverDebugEndl)/2

DriverDebugEndl LABEL byte -

1-358

292062-24

AP-327

NetWare Driver Source Code Listing (Continued)

i;i:;;;;;;;;;;;;:;;;;;;;:;;;;;;;;;;;;;;
Driver Specific Error counts

.......................................
""""""""""""""""",,,,,

rx_errors dw 0
underruns dw 0
no_ets dw 0
no_ors dw 0
rx_aborts dw 0
no_590 -int dw 0
false_590 - int dw 0
lost rx dw 0 -
stop_tx dw 0
ten cent -latch_crash dw 0
rX_disb_failure dw 0
tx_abort -failure dw 0
rx_buff_ovflw dw 0
tx_timeout dw 0

DriverDiagnosticText LABEL byte

db , RxErrorCount' , °
db 'Underruncount',O

db 'LostCTSCount',O

db 'LostCRSCount',O

db 'RxAbortCount',O

db 'N0590InterruptCount',0
db 'False590InterruptCount' ,0
db 'LostOurRece1vercou~t',O

db 'QuitTransmittingCount',O

db 'TencentLatchCrashCount',O

db 'RxDisableFailureCount',O
db 'TxWontAbort',O
db 'ReceiveBufferOverflow',O
db 'TxTimeoutErrorCount',O

db 0,0

DriverDebugEnd LABEL word
292062-25

1-359

Ap·327

NetWare Driver Source Code Listing (Continued)

;****.*._-*-_.*.* ••• * •• _*_ _ ... __ .. *.**--**.* ••• ****************

Interrupt Procedure

;_ •. _*.*.*_ •• * •••• *_ .. __ .. *-_ .. *._---*_.*_ _ .. *._-**.* .. _* •••• _.

even

~xErrorTypeCheck:

BufferOyerflow:
inc rx_buff_oYflw
jmp int_exit

not_590_int:
inc no_590_int
jmp int_exit

OriYerISR
public

PROC
OriYerISR

far

call IPXStartCriticalSection ;tell AES we're busy

pusha
push ds ;save machine state

push es
cld
in al, InterruptMaskPort
or al, int_mask

'slow
out InterruptMaskPort, al
moy a1, EOI

;read current interrupt mask
;mask our channel

;write it to the 8259A

out InterruptContro1Port, a1 ;issue E01's to the 8259A's

out ExtralnterruptControlPort, al

sti ;e,nable interrupts to be friendly

ax, cs
ds, ax ;OS points to C/OGroup
es, ax ;ES also

mov
mov
mov
mov
mov
out

dx, command_reg
a1, 0
dx, al

'slow
in a1, dx
test al, 80h
jz not_590_int

;set status reg to point to reg 0

;read status from 82592
;cheek if the INT bit is set

1-360

292062-26

inter AP-327

NetWare Driver Source Code Listing (Continued)

int_poll_loop:
and aI, NOT 20h
mav ah, a1

cmp

jz
cmp
jz

ah, OD8h
rcvdyacket
ah, 84h

;ignore the EXEC bit
isave the status in AH

;did I receive a frame?

;did finish a transmit?

cmp ah, aCh ;did I finish a retransmit?
jz sent-packet_jmp
inc false_590_int ;unwanted interrupt
jrnp int_exit

sent-packet_jmp:
jmp sentyacket

bad_rev:
inc rx_errors

jmp RxErrorTypeCheck

int_exit_jmp:
jmp int_exit

;When the address bytes are being read it is possible that another frame
;could come, in and cause a coherency problem with the ten-cent latches.
;I am dealing with this possibility by reading TenCentHi twice and making
;sure the values match. If they don't the read is redone.

rcvd-packet:
eli
mav dx, TenCentHi ;read high address byte of last frame received

in aI, dx
mav ah, a1 ;save it in ah

mov dx, TenCentLo ; read low address byte of last frame received

in aI, dx
;this is the last location containing rx data

;Read TenCentHi again to make sure it hasn't changed .•.•.••
mov dx, TenCentHi ;read high address byte again

in aI, dx

cmp aI, ah

jz addr_ok

jmp rcvdyacket

addr_ok:
mov ax, rx_buf_tail

moV rx_buf_ptr. ax

cmp rx_buf_stop, ax

ja BufferOK

mov reset - rx_buf. 1

BufferOK:
cmp ax, rx_huf_head

;da values match?

;if so, proceed

;else, read the latches again

;this is a valid address

;this is the last location containing rx data
lis most of the buffer already used?

;if not, proceed
;else, set flag for exit routin'e

;have we really received a frame?
ja process_new_frames ; if so, process it

inc ten_cent_latch_crash ;else, increment error count and exit
jmp int_exit

1-361

292062-27

Ap·327

NetWare Driver Source Code Listing (Continued)

process_new_frames:
call ProcessFrames

int_exit:
push cs
pop ds
cmp 'tx_active_flaq. 0
jnz finish_exit

verify that our receiver is still qoinq.

mov dx, co~and_req
mov aI, 60h :point to status byte 3
out dx, a1

'slow
in aI, dx
test a1. 60h

:read status byte 3
;check to see if, receiver is enabled
; if SO, proceed jnz

jmp LostOurReceiver ;else, take eorre~tive action

intyendinq:
jmp 1nt_po1l_1oop

finish_exit:
cli
mav dx, command_reg

mov a1. C_INTACK
out dx. al

'slow

:issue interrupt acknowledqe to the 590

xor a1, A1

out dx. al

;clear a1
;set status req to point to req 0

'slow
in a1, dx
test al. 80h

; read status 0
lis INT bit set1

jnz int-pendinq
cmp reset_rx_buf.

;if so. service pendinq interrupt
1 ;do we need to reinitialize receive DMA channe11

jnz no_rx_buf_reset
mov al, dma7msk :mask receive DMA channel
out DMAsnqlmsk. al
mov dx. TenCentHi
in al, dx
moV ah,. a1
mov dx. TenCentLo
in a1. dx
cmp ax. rx_buf_head
jna no_new_frames

'mov rx_buf_tail. ax
mov rx_buf-ptr. ax
call ProcessFrames

;read hiqh address byte of last frame received

:save it in ah
:read low address byte of last frame received

;de we have a new frame1

;this is the last location containinq rx data
:set pointer for use durinq buffer processinq

1-362

292062-28

AP-327

NetWare Driver Source Code Listing (Continued)

no_new_frames:
mov dx. command_reg
mov
out
mov
out
mov
out

'slow

al. C_RXDISB
dx. al
al. C_SWP1
dx. al
al. C_SELRST
dx. al

mov al. C_SWPO
out dx. al

;issue rx disable to kill any active requests

out DMAff. al ;data is don·t care
mov ax. rx_buf_start ;set dma up to point to the beginning of rx bUf
mov rx_buf_head. ax
shl rx_buf_head. 1
out DMA7addr. a1
mov al. ah

'slow
out DMA7addr. al
mov al. DHArx7

'slow ;set proper mode for receive

out DMAmode. a1
mov ax. rX_buf_1ength ;set up rx buf

'slow
out DMA7wdcount, al

mav a1, ah

'slow
out DMA7wdcQunt. al
mov dx. DMAsnglmsk
mov al. DMA7unmsk

'blow
out dx. al
mav dx, command_req
mov al. C_RXENB ;make sure receiver is enabled

out dx. al
mov reset_rx_buf. 0 ;clear the flag

no_rx_buf_reset:
eli
call IPXEndCriticalSection
in al. InterruptMaskPort
and al. int_unmask

'slow
out InterruptMaskPort. al
pop eB
pop dB
papa
sti
iret

1-363

292062-29

AP-327

NetWare Driver Source Code Listing (Continued)

LostOUrReceiver:
inc lost rx -
mov al, C_RXENB
mov dx, command_reg
out dx, al
jmp finish_exit

too_big:

inc PacketRxOverflowCount
jmp int_exit

sentJlacket:
eli
cmp tx_&ctive_flag, 0
jz false_tx_int ;shouldn't have been transmitting

in al, dx
mov statuslO, al

'slow
in al, dx
mov statusll, al
test statusll, 20h

jz tx_error
mov al, statuslO ;extract the total number of retries from
and ax, OFh ;the status register and add to retry count

add RetryTxCount, ax
xor ax, ax ;status - 0, good transmit

FinishUpTransmit:
les si, send_list
cmp es: [sil.transmitting, TRUE ;if the transmitting flag is not set

jnz ecb_cancelled ;then an ECB has been cancelled and
moves: [sil.completion_code, al ;this is a fresh one

mo~ ax, es: word ptr [sil.link

mov ~ord ptr send_list, ax
mov ax, es: word ptr [sil.link + 2

mov word ptr send~list + 2, ax
mav es: [si] . in_use .. 0 ;,finish the transmit

call IPXHoldEvent

ecb_caneelled:
push cs

pop ds
mov ex, word ptr send_list

mov tx_aetive_flag, c1

jcxz int_exit_jmpl

mov es, ex

mav si, word ptr

call start_send
jmp f~nish_exit

int_exit_jmpl:
jmp int_exit

send_ list

+ 2

;segment of next SCB in list
;offset of next SCB in list

1-364

292062-30

inter. AP-327

NetWare Driver Source Code Listing (Continued)

false_tx_int:
jmp int_exit

tx_error:
test statuslO. 20h
jnz QuitTransmittinq
test statusll.
jz lost_cts
inc underruns

lost_cts:
test statusll.
jz lost_crs
inc no_cts

lost_crs:

Olh

02h

test statusll. 04h
jz hmmm
inc no_era

hmmm:

;Max collisions??

;Tx underrun1?

;did we lose clear to send??

;did we lose carrier sense??

mov al. TransmitHardwareFailure
jmp FinishUpTransmit

QUitTransmittinq:
mov al. statuslO
and ax. OFh
add RetryTxCount,. ax
inc stop_tx
mov al. TransmitHardwareFailure
jmp FinishUpTransmit

DriverISR endp

ProcessFrames: a routine to process received frames and hand them
off to IPX

Assumes: rx_buf_tail and rx_bufytr have been set up with the value
read from the ten cent latches.

Returns: nothinq

1-365

292062-31

inter Ap·327

NetWare Driver Source Code Listing (Continued)

ProcessFrames proc near

do_next_frame:
sti

lend of current frame to process mov bx, rx_buf-ptr
sub bx, 6 ;set bx up to point to beginning of the status
maves, rx_buf_se9ment ;this is necessary because latches hold EA not

;offset relative to CGROUP
mov al, es:[bxl.status1
test al,20h ;test for good receive
jnz good rx
inc rx_errors

mov c1, es: [bxJ.bc_10
mov ch, es: fbxJ.bc_hi
dec cx
and cl, Ofeh
sub bx, cx
cmp rx_buf_head, bx
je hand_off-yacket_jmp
cmp rx_buf_head, bx
ja check_rx_queue
mov rx_bufytr, bx
sub rx_buf-ytr, 2

to_do_next_frame:
jmp do_next_frame

hand_off-packet_jmp:
jmp hand_off-packet ~~

check_rx_queue:

cmp num_of_frames, 0
jne hand_off-yacket_jmp
jmp process exit

good rx:
mov cl, es:[bxJ.bc_lo

;cx has actual number of bytes read

; toss byte count , status

; round up

;bx points to first location of frame

; this was the first frame in the sequence

;this frame is a fragment in the beginning
;the receive buffer

;have any frames been processed?
;if yes, give them to IPX
;if not, go back to ISR

mov ch, es:[bxJ.bc_hi ;cx has actual number of bytes read
mav curr_rx_lenqth, ',ex

dec ex

and cl, Ofeh
sub bx, ex
cmp rx_buf_head, bx
ja check_rx_queue
mov rx_buf-ptr, bx
sub rx_buf-ytr, 2
sub ex, 14

cmp cx, 1024 + 64
jbe not_too_big
inc PacketRxTooBigCount
jmp do_next_fram,e

not_too_big:

cmp ex, 30

jae not too_small

;toss byte count , status
;round up

;bx'points to first location of frame

;rx_buf_ptr = last location of n-l frame
;sub length of 903.2 header

inc PacketRxTooSmallCount

1-366

of

292062-32

inter. AP-327

NetWare Driver Source Code Listing (Continued)

not._t.oo_srnall:
mov ax, es:[bxl.rx_length
xchg aI, ah

get· IPX length

inc ax

and al. Cfeh
xchg al. ah
cmp ax. es:[bxl.rx-Fhysical_length
jne to_do_next_frarne

xchg al. ah

same as 802.3 length

cmp ax. 60
ja len_ok

14 ;at least min length minus header

;yes, continue

rnov ax. 60 - 14 ;no, round up

len_ok:
cmp
jz

inc
jrnp

ax, ex ;match physical length
not_inconsistent ;yes, continue

HardwareRxMisrnatchCount
do_next_frame

not_inconsistent:
\inc32 TotalRxPacketCount
mav ax, 12
mul nurn_of_frames
mav di, ax

mov rx_Iist [dil. bx
add rx_list [dil. 14
mav ax, rx_buf_segment

rnov rx_list [di + 21. ax

Double Word Increment

;first location of ethernet frame

;first location of ipx packet

mov ax. word ptr es:[bxl.rx_length

xchg al. ah
mov rX_Iist. [di + 41. ax
mov ax. word ptr es:[bx).rx_source_addr + 0
mav word ptr rx_~i5t [di + 6], ax

mov ax, word ptr es:[bx).rx_source_addr + 2

mov word pt.r rx_list [di + 81. ax
moV ax, word ptr es:[bx).rx_source_addr +
rnov word ptr rx_list [di + 101. ax
add nurn_of_frames. 1
cmp nurn_of_frames, 50

je hand_off-Facket.
cmp rx_buf_head. bx
je hand_off_packet.
jrnp do_next_frame

;prevent list overflow

1-367

292062-33

AP-327

NetWare Driver Source Code Listing (Continued)

hand_off-packet:
mov si, rx_list[dl]
moves, rx_list[di + 2]
mov cx, rx_list[di + 4]
lea bx, rx_list[di + 6]

cli
push ds

;offset in receive buffer space

:receive buffer bogus segment

;IPX packet length
;pointer to immediate address

call IPXReceivePacketEnabled ;since packet is contiguous let IPX do

pop ds
sub nurn_of_frames, 1
jz adjust_rx_head

sub di, 12
jmp hand_off_packet

adjust_rx...:head:
mav ax, rx_buf_tail

add ax, 2
mav rx_buf_head, ax

process_exit :

;the work

;decrement count
;if all frames are processed adjust head

;otherwise index to next list entry

;and loop to process next frame

:location of last location used in receive

:index to next word location

;set rx_buf_head to new value for next receive

ret ; interrupt

ProcessFrames endp

Driver Send Packet
Driver Broadcast Packet

Assumes

ES:SI points to a fully prepared Event Control Block

OS = CS
Interrupts are DISABLED but may be reenabled temporarily if necessary

don't need to save any registers

DriverBroadcastPacket:

PROC NEAR DriverSendPacket

cli ; disable the interrupts

moves: [siJ,transmitting, FALSE ;make sure the flag is initially clear
mov cx, word ptr send_list + 2 lit will be used later to prevent a

jcxz AddToFrontOfList ;cancelled ECB from being given to IPX twice
;search to. the end of the list, and add there.

mov di, word ptr send_list

AddToListLoop:
mav ds, ex
mov cx, ds: word ptr [diJ.link + 2
jcxz AddListEndFound
mov di, ds: word ptr [di].link
jmp AddToListLoop

1-368

292062-34

inter AP-327

NetWare Driver Source Code Listing (Continued)

AddListEndFound:
mov es: word ptr lsi] • link. ex

mov es: word ptr lsi] • link + 2, ex

mov ds: word ptr [di] .link, si

mov ds: word ptr [di].link + 2, es

mov ax, es

mov ds, ax iset ds back to entry

ret

AddToFrontOfList:
mov es:word ptr[si].link, cx
mov es:word ptr[si].link + 2, cx
mov word ptr send_list, 51
mav word ptr send_list + 2, es

;drop through to Start Send

DriverSendPacket endp

Start Send

assumes:

imove null

:link field

condition

ES: SI points to the ECB to be sent.
interrupts are disabled

start_send

public

cli
cld

PRoe NEAR
start_send

; disable the interrupts

mav es: [s1] .transmitting, TRUE

pointer to newest

;save SCB address in variable tx_ecb to liberate registers

mav word ptr tx_ecb, 81

mav word ptr tx_ecb + 2, es

push ds ;save ds for future use

;get IPX packet length out of the first fragment (IPX header)
Ids bx, es: dword ptr [si].fragment_descriptor_list
mov

pop
push
xchg

add

mov
cmp

ja

mov
sub
mov

ax, ds:
ds
ax
al, ah

ax" lB

padding,
ax, 64

[bx].packet_length

0

:restore ds to CGROUP

;save length for later use in 590 length field
;byte swap for 592 length field calculation

;add in the overhead bytes DA,SA,CRC,length

long_enough
padding,

padding,
ax, 64

64

ax
:minimum length frame

;pad length

1-369

SCB's

292062-35

inter AP-327

NetWare Driver Source Code Listing (Continued)

long_enough:
sub ax, 10
inc ax
and aI, OFEh

iSA and eRe are done automatically

;frame must be even

mev tx_byte_cnt, ax

mov di,gp_buf_offset
mav bx, os

maves, bx

;move the byte count into the transmit buffer

stosw

imove the destination address from the tx ECB to the tx buffer

mav bx, si
lea si, [bxJ. immediate_address
mav ds,word ptr tx_ecb + 2

movsw
movsw
movsw
mav ax,es get back to the code (Dgroup) section

mav ds,ax

;now the 590 length fieid
pop ax
xchg ah, al

inc ax
and al, OFEh ;make sure E-Net

xchg ah, al

stosw
Ids si, tx_ecb

mov ax, ds: [5i] . fragment_count

lea bx, [siJ.fragment_deseript'or_list

move_frag_loop:
push ds ; save the segment

mov ex, ds:· [bxJ • fragment_length
Ids si, ds: [bxJ.fragment_address

%fasteopy

length

pop ds
add bx, 6

; get the segment back

dec ax

jnz move_frag_loop
;start transmitting

mav ex, cs

mav ds, ex

;add any required padding

field

mav ex, 4 ;make sure frame ends with a NOP
add ex, padding
shr ex, 1

rep stDSW

mav tx_active_flag,
xor ax, ax

is even

out DMAff, al ;data is don't care, AX has been zeroed
mav ax, 9P_buf_start

'slow
out DMA6addr, al

1-370

292062-36

inter AP-327

NetWare Driver Source Code Listing (Continued)

mav aI, ah
tslow

out DMA6addr, al
mov ax, gp_buf-page

tslow
out DMA6page. al

'slow
mov al. DMAtx6
out DMAmode, a1
maV ax, tx_byte_cnt

;DMA page value

;setup channell for tx mode

add ax, 4 ;add two for byte count, two for tx chain fetch
shr
adc
out

ax, 1

ax, 0
;convert to word value and account for odd
;byte DMA transfer

DMA6wdcount, al
'slow

mov al. ah
out DMA6wdcount. al

'slow
mov al. DMA6unmsk
out DMAsnglmsk. al
maV dx, command_reg
mov al. C_TX
out dx. a1
mev ax, IPXlntervalMarker

mav tx_start_time, ax

'inc32 TotalTxPacketCount
ret

start_send endp

DriverOpenSacket:
DriverDisconnect:

ret

Iget a fix on the time that transmission
istarted and save it for later' use ,

;increment counter

1-371

292062-37

inter AP-327

NetWare Driver Source Code Listing (Continued)

i***--------_._----**

Driverpoll

Poll the driver to see if there is anything to do

Is there a transmit timeout? If so, abort transmission and return
ECB with bad completion code. Check to see if frames are queued.
If they are set up ES:SI. and call DriverSendPacket.

i***--_._----_.*----*

DriverPoll PROC NEAR
cmp tx_active _flag, 0

jz NotWaitingOnTx
mov dx, IPXlntervalMarker
sub dx, tx_ start_time
cmp dx, TxTimeOUtTicks
jb NotTimedOutYet

This'transmit is taking too long so let's terminate it now

Issue an abort to the 82592
mav dx, command_reg

mov aI, C_ABORT
out dx, al
inc tx_timeout
les si, tx_ecb

; abort transmit

moves: [sil.completion_code, PacketUnDeliverable
mov ax, es: word ptr [sil.link

;stuff completion code of a failed tx

mav word ptr send_list, ax

mov ax, es: word ptr [sil.link + 2
mov word ptr send_list + 2, ax

Finish the transmit

mov e~: [sil.in_use, 0
call IPXHoldEvent

292062-38

1-372

Ap·327

NetWare Driver Source Code Listing (Continued)

;make sure that execution unit didn't lock up because of abort errata

mov dx, command_reg

mov al, C_SIIPl
out dx, al

hait
mov al, C_SELRST
out dx, al

'wait
mov aI, C_SIIPO
out dx, al

'wait
mov aI, C_RXENB
out dx, al
mov tx_aetive_flaq, 0

;See if any frames are queued

mov ex, word ptr
jexz queue_empty
mov es, ex
mav' ai, word ptr
call start_send

queue_empty:

NotWaitinqOnTx:
NotTimedOutYet:

ret

DriverPoll endp

1-373

292062-39

intJ Ap·327

NetWare Driver Source Code Listing (Continued)

Driver Cancel Request

Assumes on entry:
ES:SI is.pointer to ECB· we want to cancel
OS is setup
Interrupts are DISABLED

Assumes any registers may be destroyed.

Returns completion code in AL:
00 Buffer was located and canceled.
FF Buffer was not found to be in use by the driver

DriverCancelRequest PROC NEAR

;first, see 1f it is the one we are currently sending_

mav dx, es
cmp
jnz
cmp
jnz

word ptr send_list. si
NotFirstOne
word ptr send_list + 2, dx
NotFirstOne

;we need to cance'l the first entry. first, unlink it

;from the
moV
mov

send list.
ax, es: word ptr [sil.link
word ptr send_list, ax

mov
mov

cx, es: word ptr [sil.link + 2
word ptr send_list + 2, cx

mov
mov

es: [sil.completion_code, OFch
es: [si]. in_use, 0

xor ax, ax

ret
;we need to search down the send list

NotFirstOne:
mov cx, word ptr send_list + 2
mov di, word ptr send_list

ScanTheSendListLoop:
jcxz NotFound

;move to the next link
mov es, cx
mov bx, di
mov cx, es: word ptr (bx].link
mov di, es: word ptr (bxl.link

;next node is pointed to by CX:DI
iprevious node is pointed

isee if we found it

cmp dl, 5i

to by ES:BX

jnz ScanTheSendListLoop
cmp ex, dx

jnz ScanTheSendListLoop

+ 2

1-374

292062-40

inter Ap·327

NetWare Driver Source Code Listing (Continued)

;we found it. now unlink it.

. push ds

mov ds, cx

mov ax, ds: word ptr [sil.link

mov es: word ptr [bxl.link, ax

mov ax, ds: word ptr [sil.link + 2

mov es: word ptr [bxl . link + 2, ax

mov ds: [sil .completion_code, O.FCh

mov ds: [sil.in_use,

pop ds

xor ax, ax

ret

NotFound:

mov aI, OFFh

ret

DriverCancelRequest endp

Driver Close Socket

Assumes on entry:

OX has socket number

OS is setup

0

Interrupts are DISABLED

Assumes any registers may be destroyed.

DriverCloseSocket PROC NE~

mov cx, word ptr send_list + 2

jcxz DriverCloseExit

les si, send_list

DriverCloseLoop:

cmp es: [sil.socket_number, dx

jnz DriverToNext

push dx·

call DriverCancelRequest

pop . dx

jmp OriverCloseSocket

DriverToNext:

moV cx, es: word ptr [sil.link + 2

jcxz DriverCloseExit

les si, es: [sil.link

jmp OriverCloseLoop

1-375

292062-41

Ap·327

NetWare Driver Source Code Listing (Continued)

DriverCloseExit:
ret

DriverClosesocket endp

Code ends

segment 'CODE'

public DriverInitialize, DriverUnHook

no_card_message
config_failure_message

db
db

CR,LF,'No adapter installed in PC$'
CR,LF, 'Configuration Failure$'
CR,LF,'IA Setup Failure$'

ConfigDataUnderrunMess db CR,L~,'configuration underrun$'

Driver Initialize

assumes:
OS, ES are set to CGroup (== CS)
DI points to where to stuff node address
Interrupts are ENABLED
The Real Time Ticks variable is being set, and the
entire AES system is 'initialized.

returns:
If initialization is done OK:

AX has a 0
If board malfunction:

AX gets offset (in CGroup) of '$'-terminated error string

DriverInitialize PROC NEAR
mov MaxPhysPacketSize, 1024
eli

cld
mav ax, cs
mov ds, ax'

mev es, ax
;get DOS time and use for address.

mov ah,02Ch
int 21h
mov bx,. OFFSET CGroup: node_addr
moV byte ptr cgroup:[bxl, OOh
moV byte ptr cgroup:[bx+1], OAAh
mev
mov
moV
moV
mov

byte
byte
byte
byte
si,

ptr
ptr
ptr
ptr

bx

cgroup: [bx+2]. ch
cgroup: [bx+3], dl
cgroup: [bx+4] , dh
cgroup: [bx+S], 7Eh

1·376

292062-42

AP-327

NetWare Driver Source Code Listing (Continued)

movsw ;stuff address at point IPX indicated

movsw

movsw
sti

;initialize the configuration table

mav al,selected_configuration

cbw

shl

add

ax,l ; multiply by two

ax,OFFSET CGROUP:config_pointers :ax contains the offset value

mov

mov

bx,ax

bx, [bxj

;of the default configuration

;list

mav Confiq,bx

mov aI, [bx+DMAOLOCj

mov config_dmaO_loc,al

mov aI, '[bx+DMA6LOC)

mov config_dmal_loc,al

mov aI, [bx+IRQLOC)

mav confi9_irq_loc,al

mov ax, [bx+BPORT)

mov command_reg, 300h

Set The Interrupt Vector:

SET UP THE INTERRUPT VECTORS

push di

mov aI, config_ir'Lloc

mov bx, OFFSET CGroup: DriverISR

call Set Interrupt Vector

pop di

mov dx, EnLAN

out dx, al ;enable LAN on MB module

'slow

mov dx, command_req

mov aI, C_RST

out dx, al ; reset the 82592 controller

;generate 20 bit address for DMA controller from configure block location

;this is necessary to accomodate the page register used in the PC DMA

;set up OMA channel for configure command

xor ax, ax

out

%slow

DMAff, al :data 1s don't care

mav aI, DMAena

out DMAcmdstat, al

mav ax, 9P_buf_start

%slow

out DMA6addr, al

mov aI, ah

1-377

292062-43

intJ AP-327

NetWare Driver Source Code Listing (Continued)

'slow
out DMA6addr, al

mov ax, gp_buf-page

\slow

out DMA6page, al ;DMA page value

mav ax, 1

hlow

out DMA6wdcount, al

aI, ah

;make two transfers

mov

blow
out DMA6wdcount, al

mov

'slow

aI, DMAtx6 isetup channel 6 for tx mode

out DMAmode, al

mav aI, OMA6unmsk

'slow
out DMAsnglmsk, al

xor ax, ax
mov di, gp_buf_offset ;mov zeroes into the byte count field of the

stosw ;buffer to put the 82592 into 16 bit mode

stoaw
blow

mov dx, command_reg
mov al, C_CONFIG ;configure the 82592 for 16 bit mode

out dx, a1 ; i'ssue configure command

'slow

wide_mode_wait_loop:

xor a1, a1

'slow
out

'slow
in

and

dx, al

al, dx

al,ODFh

IPoint to register 0

; read register 0

;disregard exec bit

cmp aI, 82h ; is configure finished?

jz do_config

loop wide_mode_wait_loop

mov ax, OFFSET CGroup: no_card_message

jmp init_exit

do_config:
mov al, C_INTACK

out dx, al ;clear interrupt
xor ax, ax

hlow

out DMAff, al ;data is don't care
mav ax, 9P_buf_start

%slow

out DMA6addr, al

mav al, ah

hlow

out DMA6addr, al

mov ax, gp_buf-page

1·378

292062-44

AP-327

NetWare Driver Source Code Listing (Continued)

'slow

out

%slow

DMA6page, al iDMA page value

mov

out

%slow

aI, DMAtx6

DMAmode, al

isetup channell for tx mode

mav ax, B

out DMA6wdcount, al

hlow

mav aI, ah

out DMA6wdcount, al

%slow

mav al, DMA6unmsk
out DMAsnglmsk, al

mav ax, ds

maves, ax

mov si, offset cgroup:config_block

mov di, gp_buf_offset

mav ex, 18

rep movsb
dx, command_reg mov

mov aI, C_CONFIG configure the 82592

out

hlow

xor

dx, al

cx, cx

config_wait_loop:

%slow

xor aI, al

, 'slow
out dx, al

, %slow
;point to register 0

al, dx ;read register 0 in

and

cmp

jz

loop

mov

al, ODFh ;discard extraneous bits

jmp

aI, 82h ; is configure finished?

can fig_done

config_wait_loop

ax, OFFSET CGroup: config_failure_message

init_exit

config_done:
;clear interrupt caused by configuration

mov aI, C_INTACK

out dx, al

;da an lA_setup

rep

mov di, gp_buf_offset

mov

stasb

mov

stosb

mov

mov

movsb

aI, 06h ;address byte count

aI, OOh

si, OFFSET CGROUP:node_addr

ex, SIZE node_addr

1-379

292062-45

intJ Ap·327

NetWare Driver Source Code Listing (Continued)

out

hlow

DHAff, al

mav ax, gp_buf_start

out DHA6addr, al

mav aI, ah
hlow

out DHA6addr, al

mciv ax, qp_buf.Jlaqe

'slow
but

'slow
mov

out

'slow

DMA6paqe, al

aI, DMAtx6

DMAmode, al

mav ax, 3
out DMA6wdcount, al

'slow
mov

out

hlow

mov

out

mav
mov

out

aI, ah

DMA6wdcount, al

aI, DHA6unmsk

DHAsnqlmsk, al

dx, conunand_reg

aI, C_IASET

dx, al

;data is don't care

;DMA paqe value

;setup channell for tx mode

;set up the 82592 individual address

xor cx, cx ;cx is used by the loop instruction below. this

;causes the loop to be executed 64k times max

ia_wait_loop,

xor aI, a1
out dx, a1

'blow

in

and

cmp
jz

aI, dx

aI, ODFh

loop ia_wait_loop

;discard extraneous bits

is command finished?

mov ax, OFFSET CGroup, iaset_failure_messaqe

jmp init_exit

ia_done,
mov aI, C_INTACK

out dx, a1 :clear int~rrupt from iaset

;initialize the receive DMA channel

xor aI, a1
out DMAff, al
mov ax, rx_buf_start ;set dma up to point to the beginning of rx buf

blow
out DMA7addr, al

mev aI, ah

blow
out DMA7addr, al

mov :set rx page register

1-380

292062-46

inter AP-327

NetWare Driver Source Code Listing (Continued)

"slow
out DMA1page, al

mov al, DMArx1

"slow
out DMAmode, al

mov

"slow
out DMA7wdcount, al

mov al, ah

"slow
out DMA1wdcount, al

mov

'slow

al, dma7unmsk

out DMAsnglmsk, al

;unmask our interrupt channel

;set wordcount to proper value

;unmask receive DMA channel

in al, InterruptMaskPort

and aI, int_unmask

blow

out InterruptMaskPort, al

;enable the receiver

mev dx, command_reg ;enable receives

mev al, C_RXENB
eut dx, al

xer ax, ax

mev cx, 1

DriverInitialize endp

1-381

292062-47

inter AP~327

NetWare Driver Source Code Listing (Continued)

Set up Buffers:
This routine generates the page and offset addresses for the 16 bit
DMA. It checks for a page crossing and uses the smaller half of the
buffer area for Tx and general purpose if a crossing'is detected. If
no crossing is detected the general purpose/transmit buffer is placed
at the beginning of the buffer area. This routine also generates a
seqment 'address for the receive buffer which allows the value read
from the "10 cent" latches to be used as read for the offset passed
to IPXReceivePacket. This saves some arithmetic steps when tracing

back through the rx buffer chain.

proc near

mov ax, offset cgroup: gp_buf

mov qp_buf_offset,
mov bx, cs
mov dx, cs
shr ax, 1
mov cx, 3

shl bx, cl
rol dx, cl
and dx, 0007h
add ax, bx
adc dx, 0
mov cx, OFFFFh
sub ·ex, ax
cmp cx, 01388h
jb intel_hop
jmp copacetic

intel_hop:
cmp cx, 0258h
ja low_ok
add ax, ex

ax

;get upper 3 bits for page register
;c1ear all but the lowest 3 bits
laX contains EA of first location in buffer
;if addition caused a carry add it to page

;of buffer to page break
;cx contains the number of bytes to page break

;it's cool, whole buffer space is in one page

;low fraqment ·is a usable size, check upper fragment
;move pointer past the page break to discard fragment

sub qp~length, cx;adjust length variable to reflect shorter length
mov qp_offset_adjust, cx
shl qp_offset_adjust, 1 ;convert to byte format
mov cx, qp_offset_adjust
add qp buf offset, cx ;adjust qp_buf starting point to reflect change
jmp copacetic ;both buffers will be in the'same page, rx buf shortenec

low_ok:
cJ!lP cx, 1130h
jb high_ok
mov gp_length, cx;adjust length variable, discard upper buffer fragment
jmp copacetic

high_ok:
cmp ex, 09C4h
ja rx_first

;both buffers will be in the, same page" rx buf shortened

;now since both fragments are, usable we have to fi'nd the
;actual page break. the large' half will be the receive
;buffer and the small half will be the gp-tx buffer.

mov gp_buf-page, dx

shl qp_buf-page, 1
mov gp_buf_start, ax

1-382

292062-48

inter AP-327

NetWare Driver Source Code Listing (Continued)

mov rK_buf_start, OOOOh
mov rK_buf_head, OOOOh

add dK, 1

mav rx_buf_page, dx
shl rx_buf_page,

shl ax, 1

adc dx, 0

inext page

mav bx, ex ;save number of bytes to page break

mav ex, 12

shl dx, cl
mev rx_buf_seqment,dx

sub qp_lenqth, bK

mov CK, qp_lenqth

mav rx_buf_length, ex

sub CK, 258h

shl ex, 1

add ex, ax
mav rx_buf_stop, ex
jmp buffers_set

rx_first:
mov rx_buf-paqe, dx
shl rK_buf-paqe, 1

mav rx_buf_start, ax
mav rx_buf_head, ax

shl rx-puf_head, 1

mov rK_buf_lenqth, CK

mov rx_buf_stop, OFB9Eh ;1200 bytes from end of buffer

mov qp buf start, OOOOh
add dx, 1 ;next page

mov qp_buf-paqe, dK

shl gp_buf-paqe,

add CX, 1

shl ex, 1

mov qp_offset_adjust, CK

add gp_buf_offset, cx

sub dx, 1

shl dx, 1

shl ax,
adc dx, a
mav ex, 12

shl dx, cl
mav rx_huf_segment,dx,

jmp buffers_set

copacetic:

mov qp_buf_start, ax ;A1-A16 of gp buffer, gp buffer is first

add ax, 258h ;1200 ~ytes for qp buffer at front of buffer space

mav rx_buf_start, ax ;rx buffer starts 1200 bytes in

mav rx_buf_head, ax
shl rK_buf_head, 1

sub qp_lenqth, 258h

mov cx, qp_ienqth

mov rK_buf_lenqth, CK

1-383

292062-49

intJ AP-327

NetWare Driver Source Code Listing (Continued)

shl dx, 1 ;convert segment to byte address

mov rx_buf_page, dx
mov gp_buf-page, dx

shl ax, 1

adc dx, 0

:convert offset to byte address

;adjust segment for shift

mev ex, 12
shl dx, el

mav rx_buf_segment, dx ;load variable for transfers to IPX

maV ex, rx_huf_length
Bub ex, 258h :setup marker for low rx buffer space, >6UO words

shl ex, 1
add ax, ex

mev rx_buf_stop, ax

buffers_set:

ret

Set Interrupt Vector

Set the interrupt vector to the interrupt procedure's address

save the old vector for the unhook procedure

assumes: bx has the ISR offset
al has the IRQ level

interrupts are disabled

Set InterruptVeetor PROC NEAR
;mask on the appropriate interrupt mask

push ax

xchg

and

mov

ax,

ex,

dl,

ex

07h

1

.hl

mqv
not

dl, cl

int_mask, dl

;get the appropriate bit location

;set the interrupt bit variable

dl

mov ;set the interrupt mask variable

mev ax, InterruptMaskPort
mov int_mask_reqister, ax
in aI, InterruJ?tMaskPort
or aI, int_mask

hlow

out InterruptMaskPort, a1

pop ax

eld

cbw

xor ex, ex
moves, ex
add aI, 68h ;addinq 8 converts int number to int type, i.e.,

oint 4 B type 12, int 5 - type 13 etc.

1-384

292062-50

inter Ap·327

NetWare Driver Source Code Listing (Continued)

shl ax,

shl ax, ;tWD shifts ~ mul by 4 to create offset of vector

xchg ax, di
mav int_vector_addr, di ;save this address for unhook

mav ax, es: [diJ ;save old interrupt veetor

mav word ptr old_ir~vector, ax

mov ax, es: [dil + 2
mov word ptr ~ld_ir~vector + 2, ax

xchg ax, bx ;bx has the I5R offset

stosw
mav ax, cs

stosw

ret

5etInterruptVector endp

Driver Unhook

Assumes
DS = C5 = IPX segment

Interrupts are DI5ABLED

Assumes any registers but D5, 55, 5P may be destroyed

This procedure restores the original interrupt vector

This procedure will never be called if DriverInitialize

did not complete successfully.

DriverUnhook PROC NEAR
in aI, InterruptMaskPort

or aI, int_mask

"slow
out InterruptMaskPort, al

xor ax, ax
mov

mov

mov

mov

mov

mov

ret

es, ax ;es is set to vector table segment

bx, word ptr int_vector_addr

ax, word ptr old_ir'Lvector

es: [bxl, ax ;restore old interrupt offset

ax, word ptr old_irq_vector + i
es: [bx + 2l, ax ; restore old interrupt segment

DriverUnhook endp

mombo_init ends

end

1·385

292062-51

APPLICATION
NOTE

AP-331

August 1989

U,sing the Intel 82592
to Implement a

Nonbuffered Master Adapter
for ISA Systems

JOSEPH DRAGONY
APPLICATIONS ENGINEER

1-386
Order Number: 292066-001

intJ AP-331

1.0 INTRODUCTION

The modern office has become increasingly computer­
ized due to the availability of reasonably priced, yet
very powerful, microcomputers. One of the rapidly
growing uses of these powerful computers is desktop
publishing. This technology allows text and graphics
output to be generated that rivals the quality of work
that could only be produced by very expensive photo­
typesetting equipment a few years ago. Another major
application is Computer Aided Design (CAD). One
thing that both of these applications have in common is
that the output devices they require are still relatively
expensive. Networking has enabled sharing these ex­
pensive peripherals, such as sophisticated laser printers,
plotters, and FAX equipment, that would not be practi­
cal if attached to a single user machine. Since these
peripherals are seldom in constant use by a single user,
sharing them throughout an office over a LAN allows
much better utilization of each unit. Through print
spooling, the sharing of the equipment is transparent to
the user except for the short walk to the print station to
retrieve any spooled jobs. The cost reduction aspects of
networking are beginning to be reflected in the network
hardware itself. Media 'cost has been reduced, first from
Ethernet to Cheapernet. Now the move to Twisted Pair
Ethernet (TPE) lowers medium costs even further. The
increased market for LAN adapters is also driving cost
reduction in the adapter market. The 82592 Nonbuf­
fered Master (NBM) is a simple, cost effective integrat­
ed LAN adapter for Industry Standard Architecture
(ISA) workstations which addresses this need for cost
reduction, coupled with high performance.

The NBM592 takes advantage of the increased band­
width capabilities of the bus and memory subsystems in
current ISA computers, commonly known as "AT"
type computers. It is based on the Intel 82592 Ad­
vanced CSMA/CD LAN Controller. The NBM592 has
its own DMA, which consists of an 82C37 A DMA con­
troller and support logic implemented in PALs and
TTL. Part of this logic implements the master hand­
shake which allows the NBM592 to take control of the
host bus. This DMA is used to transfer data from the
network directly into' the host memory subsystem. The
NBM contains no local buffer memory. This allows the
cost of local buffer memory to be trimmed from the
cost of the adapter. The low cost and very high per­
formance of this adapter architecture make it uniquely
suited to todays market.

Because the NBM592 is derived from the Embedded
LAN Module (ELM) the reader might find the follow­
ing Application Notes helpful. AP-320 Using the Intel
82592 to Integrate a Low-Cost Ethernet Solution into a
PC Motherboard, and AP-327 Two Software Packages
for the 82592 Embedded LAN Module. These publica­
tions are available from the Intel Literature Depart­
ment.

1.1 Objective

The objective of this Application Note is to present the
NBM592 architecture using the 82592. The implemen­
tation that will be described here uses readily available
off-the-shelf devices. This low level of integration is
presented as a starting point. Gate array or other ASIC
technology could be used to reduce the parts count of
this architecture while lowering cost and possibly in­
creasing performance. The software aspects of this solu­
tion will also be discussed. A NetWare* shell driver is
the vehicle for illustrating the programming of the
NBM.

1.2 Acknowledgements

I acknowledge and thank Dan Gavish of the Intel Isra­
el System Validation group, David Bar-On of Moran
Systems, Haifa, Israel, and Yosi Mazor of Intel MCFG
LAN Marketing for their efforts in the definition, de­
velopment, and debugging of the hardware. I also
thank Ben L. Gee of San Jose, California for his work
in modifying the Embedded LAN Module driver to run
on the NBM592 hardware.

2.0 HARDWARE OVERVIEW

The NBM592 is an extension of the ELM architecture.
The NBM592 differs from the ELM in the fact that it
contains its own DMA resources. The NBM592 also
contains logic to implement the ISA bus master hand­
shake, which allows the NBM592 to operate as a mas­
ter adapter on the ISA bus. This allows the adapter to
transfer data from the network directly into host mem­
ory at higher speeds than the system DMA channels
are capable of.

The NBM592 was specifically designed' to work in 6-
and 8-MHz IBM PC AT machines. Although the
NBM592 has been tested successfully in a variety of
other machines, a thorough worst-case timing analysis
would be required to ensure proper functioning in clone
machines using integrated chipsets. To implement the
master handshake logic in a gate array or other ASIC,
this analysis would need to be done for all of the cur­
rent motherboard chip sets to ensure clone compatibi1~
ity.

Figure 1 contains a block diagram of the NBM592 cir­
cuitry. The circuitry in the shaded area marked DMA
logic and the TCI address latches from the area marked
CSMA/CD logic would be good candidates for integra­
tion into gate array or other dense ASIC logic. The cost
reduction benefits would depend.on the level of integra­
tion ..

'NetWare is a registered trademark of Novell Incorporated.

1-387

"II
iEJ'
c ...
CD

~
Z
0
:::I
0'
C --CD ...
CD

W Il.

(Xl ~
(Xl Il.

DI
"C
CD ...
til
0'
n
;0;

C
iii'
ce
iil
3

19 SAO, 4 ADDRESS .--. __ .. _

: OO~: .. : ~~
, > ..

g ~ ~IAddressL~ ~
I I Buff.r I t!
~ ~ ~

....

1, ~-t~ ... ~~~~~=±~~
Ad~;~SS n Tra~s:~~v.rs II Addr.ss I High D:dAdr• ss J R~~~:rs h I EPROM I
latch J I Buff.r '.' latch J I ...
.~ . ~'. '1!; ?

.. .' l- L.. +----:!:------II""-----! "'.

I ~liIA/C\)L09I~ 1 '.. ...", tn.lA Uillic.. i 1
'. ~ .. ,' .. ,

r;;::n . '. '1 Stop J" Stop L ' r I~~~;~~~I I
~ I. 82C37 L R.gist.r .: logic r L ROM

Control 82592 I- J tL".... ____ f-I i
~~ . hi Wl ."

.1 .•. ' II G.~~i~or'
Analog .'. -'-

~ ~~
1. ." ..•.....

. . C

292066-1

l

):0
"U
I

Co)
Co)

inter AP-331

2.1 DMA Functional Block

The DMA functional block is comprised of an 8-MHz
82C37A DMA controller, page registers for the upper
addresses in DMA cycles, a receive ring buffer overflow
prevention circuit (stop register), a watchdog timer that
limits NBM592 DMA bursts to less than 15 us, and a
wait state generator for DMA cycles. Also contained in
this block are two latches that store the address of the
last memory location containing receive data.

2.2 CSMA/CD Functional Block

The CSMAlCD functional block is implemented by
the 82592 Advanced CSMA/CD LAN Controller. This
device supports all industry standard CSMA/CD
LANs, such as IEEE lOBASE5, lOBASE2,
lOBROAD36, 10BASE-T, and IBASE5. The 82592
also supports proprietary CSMA LANs from 1 to 20
Mb/S such as the IBM PC Network. The 82592 also
implements the CSMA/DCR protocol that provides
deterministic collision resolution on CSMA LANs.
This feature can be used when the worst case time for
accessing the medium must be known.

The 82592 also implements a Tightly Coupled Interface
(TCI) to industry standard DMA controllers that al­
lows back-to-back frame reception and retransmission
on collision to be done without CPU intervention.
When the 82592 is configured to TCI mode it generates
four additional DMA requests after the last byte of the
frame has been transferred to memory. The first two of
these transfers are used to 'move the status for the cur­
rent reception into memory. The second two transfers
write the number of bytes transferred into memory. By
using this byte count value it is possible to reconstruct
the chain of packets in memory so they can be handed
off to the 'higher layers of the software. This will be
discussed more fully in the software section of the Ap­
plication Note.

2.3 Analog Interface

The analog interface for the NBM592 consists of a sep­
arate daughterboard that attaches to the NBM592
through an SBX connector. By using this approach it is
possible to support IEEE lOBASE5, lOBASE2,
lOBase-T, lBASE5, and other proprietary network
standards by simply removing one daughterboard from
the digital assembly and installing a different analog
interface. There are currently three analog interface
modules, an Ethernet module, a Cheapernet module,
and a Twisted Pair Ethernet (TPE) module, which is
based on the Intel 82521 Serial Supercomponent.

2.4 System Bus Interface

The system interface for the NBM592 is I/O mapped.
It uses 16 bytes of read/write I/O space. The 82592
command and status registers, 82C37A registers, page
registers, and stop register are all accessible in this
l6-byte address space. The IA ROM contents can also
be read in this window.

3.0 DMA OPERATION

3.1 Better System Bus Utilization

The NBM592 operates as a DMA master on the I/O
channel of the host computer. This means that all ad­
dress and control signals are generated by the NBM592
while it is actively transferring data. The NBM592
DMA block is based on the 8-MHz 82C37A DMA
controller. By providing its own DMA the NBM592 is
able to transfer data between the network and memory
at a higher rate than the system DMA channels would
allow. Two of the four available channels of the on
board 82C37A are used by the NBM592. In the default
configuration Channel 0 is used as the transmit channel
and Channel 1 the receive channel. Channels 2 and 3
are not used. The transmit and receive channels may be
exchanged by using jumpers. The 82C3 7 A provides ad­
dress lines A 16 through A 1. Address lines SA 16-SA9
on the ISA bus are latched from the multiplexed ad­
dress/data bus of the 82C37A by ADSTB. Address
lines SA8-SAl are driven by the A7-AO outputs of the
82C37A through a transceiver. AO is pulled low during
DMA transfers because all transfers are word aligned.
The upper address bits are provided by the page regis­
ters, which are programmed during initialization. IClO
is the page register used for the Transmit channel, and
ICII is the page register used for the Receive channel.
This architecture allows DMA transfers across a
128-kB memory space for both transmit and receive.

3.2 System Bus Arbitration

When the 82592 needs to perform DMA cycles it as­
serts its request to the on-board 82C37A. The 82C37A
then asserts its HRQ pin. This pin is connected to the
DRQ6 line in the I/O channel. When DACK6 is re­
turned the NBM592 drives the MASTER line in the
I/O channel low, waits one clock and then drives the
address bus. One clock later the NBM592 drives the
control lines. The NBM592 may then perform DMA
cycles for' up to 15 /J-s. This time limitation exists to
ensure that the system can access the bus to perform
refresh cycles.

1-389

inter AP-331

3.3 Transmit DMA Channel

If a collision occurs during transmit, the NBM592 must
be able to reinitialize the DMA controller to point back
to the beginning of the transmit buffer. This reinitiali­
zation must be done without CPU intervention to be
ready to retransmit the frame within the 9.6 ,""S Inter­
frame Spacing (IFS) time. The NBM592 does this by
performing the TCI handshake with the 82592 to deter­
mine when a collision has occurred. The EOP pin on
the 82C37A is then activated by the TCI logic. Since
the 82C37 A has been programmed to autoinitialize
mode it resets its address to the beginning of the trans­
mit buffer. After the IFS time and the random backoff
time, if any, the 82592 will begin to make DMA re­
quests and the frame will be retransmitted.

3.4 Receive DMA Channel

The receive DMA channel in the NBM592 uses a ring
buffer. This is done by programming channel 1 of the
82C37A to autoinitialize mode. When the DMA chan­
nel reaches the end of the receive buffer space, it auto­
initializes to the beginning of the receive buffer space
and continues reception there. This approach ensureS
that the maximum possible buffering capacity is always
available to the adapter., The integrity: of the receive
buffer is protected by a stop register, which is discussed
in detail in section 3.4.1. A pair of latches is used to
store the last address in memory that contains receive
data. These latches are triggered by the TCI handshake
at the completion of a receive operation. At that instant
the latches are clocked and the address on the A16-Al
lines are latched. When the NBM592 receives a packet
it appends four words of information. The upper bytes
of these four words are not used. The lower bYtes con­
tain the status of the reception and the byte count of the
frame. The byte count, along with the value from the
TCI latches, is used to recover the received frame chain
from the receive buffer. This process is discussed in
section 7.3.1.

3.4.1 Stop Register

The Stop register (IC9) holds the stop address for the
receive ring buffer. This implementation uses a
256-byte resolution. A finer resolution would require
additional components. The CPU loads it with a new
value as each receive buffer is processed. The value
in the stop register is compared by IC8 to the corre­
sponding address lines during DMA receive cycles
(DMA_MW). When the contents of the latch and the
address bus contain the same value, the OVERFLOW
signal is activated. The OVERFLOW signal is latched
by PAL 4, and the interrupt line is asserted. The
OVERFLOW bit can be read by the CPU by an I/O
read at offset OEh from the base address of the adapter.
The bit appears on the DO' data line. When
OVERFLOW is active, the Receive channel of the
DMA is <l,isabled until the stop register is reloaded

by the CPU. This prevents corruption of the receive
buffer structure during extremely heavy network traffic
conditions. The stop register can be tested on power up ,
by reading the overflow bit. The lower five bits of the
stop register are used to select the IA PROM address.
The OVERFLOW line is pulled up to V cc' to allow
removing the overflow ,comparator and register IC8
and IC9 for ,a lower cost version of the board. If the
stop register circuitry is removed it would be advisable
to use the linear restartable buffering approach that was
used in the ELM driver. In this approach, as frames are
received, the driver software checks to see how much of
the ,receive buffer remains available. When most of the
buffer has been consumed the software reinitializes the
DMA controller to point back to the beginning of the
buffer space, and reception can resume. '

3.5 Wait State Generator

The DMA circuitry also contains an optional wait state
generator. Zero to three DMA wait states can be select­
ed by a jumper that controls the wait state generator
(IC23). Timing calculations show that one wait state is
needed for a 6 MHz AT, and that no wait states are
needed for an 8-MHz AT. The basic DMA transfer
~e is 3 clocks, two clocks for the command (RD or
WR) and one clock for address setup time. Wait states
extend the command. The address setup time can be
extended to two clocks by programming the 82C37A to
normal write cycle. In this case a wait state should be
added.

4.0 HARDWARE DESIGN
CONSIDERATIONS

There are several circuits that are designed in specific
ways, or use specific signals, to handle special cases of
82C37A/82592 interfacing. The reasons for the ap­
proach chosen in each case are individually discussed
below.

4.1 Transmit EOP

When programmed for late write the 82C37A can re­
ceive DRQ after the end of S3. This can cause an extra
DMA cycle. This can be solved by generating a special
write during DMA cycles (for the 82592) This write
starts when the MEMR signal is activated and ends
when the 82C37A-generated 10 WR signal ends.

The worst case timing for the sampling of- the
BAD_TX signal shows a problem. The solution is to
connect 592WR to the flip-flop clock input, instead of
DM~MW. BADTX is sampled by the rising edge of
DMA->1W. BADTX is EOP • DRQ delayed by one
pal. DMA_MW is not delayed by the PALs; thus tim­
ing requirements are met and DISDACK is generated
properly.

1-390

intJ AP·331

4.2 Separate Receive and Transmit
Page Registers

An address setup time of 120 ns is required before as­
serting the command (Read or Write). This is done by
adding a I-clock delay to the first command in each
burst, and asserting an additional wait state to this first
command. The signal EN_CMD is generated by
PAL3. EN_CMD is activated two clocks after
DACKO or DACKI, and remains active until the end
of the cycle. A wait state is added to this first command
by the qualification of the RD_O~ WR signal by
EN_CMD. The EN_CMD controls the enable line of
the command bus buffer. This buffer drives SAO and
BHE, which are part of the address and must be active
before command. These lines are driven by the PALs.

4.3 Extra Wait State

The 82C37A lOW signal can be active after the end of
the 82C37A S4. This will cause an extra wait state to be
inserted. This can be eliminated by using the 82C37A
MEMW signal for the wait state generator instead of
the 82C37A lOW. This line will always go inactive be­
fore the end of S4. This prevents the insertion of extra
wait states.

4.4 TCI·Direction

When the TCI latch is read by the CPU the data buffer
direction line that is driven from the RD line is in the
wrong direction. This is because the DMA controller
clear mask register can be accessed by writing to the
same address. To prevent this the RD line has been
disabled.

When addressing the DMA clear mask register the
37 CS is deactivated. This prevents access to this reg­
ister: The local RD signal is driven by lORD during
slave cycles.

4.5 Bus Contention

Since the 82C37A specification does not guarantee that
the mid address (strobed by ADSTB) will float before
the command is active, contention can occur on these
lines. The solution is to delay the command (Read or
Write) until after each ADSTB cycle. This is done by
generating EN_CMD, which disables the command
for one clock and adds one wait state in addition to
those added by the wait state generator. This is imple­
mented in PAL3.

The high data buffer is enabled by EN~DDR, which
is active only during master cycles. This prevents the
NBM592 from enabling the high data buffer (SDI5-
SD8) during slave accesses to odd I/O addresses. If this
was not done, contention with low data multiplexed
into the high data by the motherboard would occur.

4.6 DRAM Precharge Time

There is a problem with the worst case timing of the
82C37A when more than one transfer cycle is executed.
The problem is that the worst case time between two
commands can be lower than the precharge time re­
quired by the DRAMs. If extreme values are taken for
two delay parameters, (maximum value for inactive
time and minimum value for active time) the DRAM
precharge time will be violated. We assume that for the
same signal the difference between those two parame­
ters does not exceed 30 ns. This satisfies the precharge
time for the DRAM chips. The required precharge time
is 100 ns. For the address setup time, the assumption is
that command is activated after the address is stable
(i.e., the address setup time is greater than zero). The
address path to the memory chips consists of the delay
through the 74LS245 transceiver on the NBM plus the
delay of the 74FI58 in the host system. The total delay
is 19 ns. The command path to RAS consists of one
74LS244 on the NBM plus a 74FIO and a 74FOO in the
host'system. This path totals 9 ns. The required setup
time specified for the DRAM chips is 0 ns. Therefore, a
10 ns setup time from the 82C37A will satisfy the re­
quired setup time. The same analysis holds for read and
write cycles.

The 82C37A worst case timing does not guarantee that
the Read command signal will stay active after the
Write command is deactivated. For proper board oper­
ation the Read must stay active after the deactivation of
the Write signal.

5.0 DATA PATH

The data path includes the 82592, the interface to the
analog circuit, the 16-bit address latch for the TCI ad­
dress (IC2 and 4), the 16-bit data transceiver for buffer­
ing data (IC3 and 5), and the IA PROM which con­
tains the station address (IC6). 82592 connections and
signal names are the same as in the ELM. The low
address latch latches its data directly from the 82C37A
lines in order to minimize the loading on the bus. The
high address latch latches its data from the system's SA
lines. '

The Station IA is read from the PROM, which is en­
abled by PROM_CS. To read the IA PROM, the
CPU first preJoads the stop register with the address of
the byte to be read. The CPU then reads from I/O
address 30Ah. In the current design the 82592, the
DMA, and all the other circuitry is clocked by the same
8-MHz clock. In future versions the 82592 can be
clocked by a 16-MHz clock. In this case, the 8-MHz
clock to the rest,ofthe board will be generated by divid­
ing the 16-MHz clock by 2, in the unused flip-flop of
ICI5A. This requires jumper changes. There is an op­
tion of driving the 82592 clock from a 16 MHz clock.
The clock can be divided by 2 to produce the local
8-MHz Clk to the 82C37. The local oscillator could be
eliminated by using a IO-MHz 82C37A and using a

1-391

AP-331

Table 1. NBM592 I/O Map

Address
DMA

Write Read
Register

300h 0 Base and Current Current Address No. 0
Address No. 0

301h 8 Command Register Status Register

302H 1 Base and Current Current Word Count No. 0
Word Count No. 0

303h 9 Request Register

304h 2 Base and Current Current Word Count No. 1
Address No. 1

305h A Single Mask

306h 3 Base and Current
Word Count No. 1

307h B Mode Register

308h 4 592 PortO 592 Port 0

309h C Byte Pointer FF

30Ah 5 Page Register 0 (Tx) IAPROM

30Bh D Master Clear Temporary Register

30Ch 6 Page Register 1 (Rx) LowTCI Byte

30Dh E High TCI Byte

30Eh 7 Stop Register Overflow Flag

30Fh F Write Mask Register

buffered version of the TxC signal generated by the
82C50lAD on the analog module to clock all NBM592
circuitry.

and SMEMWR are buffered by the system. The lORD
and IOWR signals are inputs and are buffered by the
PALs. AEN is an input to the decode PAL.

Provisions have been made for a boot EPROM (IC25).
This optional device is accessed during the system boot
process. The BIOS searches for a remote boot ROM,
and if one is found the ROM initialization code is exe­
cuted. IC24 serves as its address decoder. EPROM size
and memory allocation are jumper selectable (see AP­
PENDIX B for details). If a remote boot is not needed,
both IC24 and IC2S can be omitted.

6.0 PC AT 1/0 CHANNEL INTERFACE

The board was designed to occupy no more than 16
I/O addresses; to meet this restriction, during slave
mode access to the 82C37A SAO is routed to A3 and
during DMA cycles A3 is routed to SA4.

The NBM592 uses a 16-bit DATA path. All signals in
the data path are buffered. SA lines are decoded direct­
ly by the PAL, and driven by the DMA through buff­
ers. LA lines are driven by the latches. MEMRD and
MEMWR lines are driven by the DMA. SMEMRD

The NBM592 can used IRQ 10, II, 12, 14, or IS.
IRQlO is the default interrupt request, driven by the
82592 interrupt signal OR'd with the overrun latch.
The interrupt line is jumper selectable. Jumper loca­
tions to select the various lines are given in the jumper
tables.

The master handshake requires the use of one host
DMA channel. In the NBM592 host DMA channels 5,
6, or 7 can be used. The channel is used in cascade
mode to allow the NBMS92 to master the host bus. The
default connectio~ is channel 6 with channels 5 or 7
available through jumper selection (see APPENDIX B
for details) .. The MASTER signal is activated by the
PALs when the board DMA is active.

6.1 Refresh Watchdog Timer .

There are two watchdogs on the NBM592. The watch­
dogs are driven from the local 8-MHz clock. Watchdog
No.1 is used to ensure that the refresh mechanism will
be able to gain control of the bus when it needs to.

1-392

inter Ap·331

Refresh cycles occur approximately every 15 /Ls. When
a refresh request occurs the DMA must release the bus
within 15 /Ls. This 'is done by using a time constant of
12 /Ls in the watchdog. When a refresh request is sensed
the watchdog starts to run. The watchdog timer will
expire after approx. 12 /Ls. This corresponds to W5 •
W6 at 8-MHZ, the 3 extra /Ls will be spent transferring
bus control between the two DMAs. After the bus is
relinquished, the request is regenerated one clock after
DACK6 is inactivated. Analysis and lab inspection
show that while working with no wait-states, 82592
bursts do not exceed 12 /Ls. Therefore, this circuitry
may be removed from future versions of the board.

6.2 Floppy Disk Watchdog Timer

Watchdog No.2 i~ an optional floppy disk watchdog
(SPARE-I). The purpose of this watchdog is to avoid
the possibility of bus starvation to the floppy disk dur­
ing DMA bursts by the NBM592. DRQ2 is used to
sense activity of the floppy drives. The watchdog drops
the 82592 request with a delay after a floppy DMA
request is encountered. This watchdog is disabled by a
jumper, as it is redundant. This is an optional feature
and is not used in the present implementation.

The + 12-V line in the ISA bus provides power to the
analog module.

The Reset line from the bus is used to reset the
NBM592 circuitry during system initialization.

7.0 SOFTWARE

The software discussion in this Application' Note is
based on a driver intended to be used with Novell
NetWare V2.1. The driver is based on the driver that
appears in AP-327, Two Software Packages for the
82592 Em.bedded LAN Module. There are two major
differences between the driver in AP-327 and the driver .
in this Application Note. First, this driver uses a ring
buffer approach, as opposed to the linear restartable
buffer used in the ELM. Secondly, this driver uses mac­
ros for conditional blocks to allow the code to be writ­
ten in a manner resembling a high-level language. This
makes the code more readable for those with limited
assembly language experience.

While this driver 'is written to run with a specific net­
working package, it contains all the functions that
would normally be required by any networking pack­
age. Once a good understanding of the code is gained it
should be possible to modify most of the procedures to
operate under another networking package. The main
differences will be the format of the communicating
structures between the driver and the lowest layer of
the networking software. The procedures that will be
discussed in detail in this Application Note are Driver­
Initialize, DriverSendPacket, DriverlSR, and Driver-

Poll. These four procedures are the backbone of the
driver and represent the most important code for un­
derstanding the functionality of the NBM592. Proce­
dures called from within the primary procedures will
also be covered.

The source code for the procedures discussed below is
included as APPENDIX E.

7.1 Initialization

In our software example, initialization is carried out by
the procedure Driverlnitialize. This procedure is called
by the networking software when it is loaded. This pro­
cedure initializes the hardware and any software vari­
ables that must be initialized at run time. The transmit
and receive buffer variables are initialized through a
call to SetUpBuffers. Driverinitialize also calls the pro­
cedure SetInterruptVector to initialize the proper entry
in the system interrupt vector table, after first saving
the vector that is already there.

7.1.1 Driverlnitialize

The first function that Driverinitialize performs is to
set the variable MaxPhysPacketSize to 1024. This value
is used to negotiate the maximum size of the frames
that will be transferred between the fileserver and the
workstation.

Next, the base I/O address is read from the configura­
tion table and this value is added to the offset value for
each register in the NBM592 I/O space. This includes
the 82C37 A registers, the stop register, the TCI latches,
and the IA PROM address.

The CPU now reads the Master DMA channel number
from the configuration table and calculates the required
variables. This is the host DMA channel that will be
used to implement the master handshake between the
NBM592 and the host.

The next operation is to read the station address from
the address PROM. This is done by first writing the
address of the byte to be read to the Stop register and
then reading from the IA PROM port. The value writ­
ten into the stop register is used to drive the address
inputs of the IA PROM. The code to read the PROM
is implemented as a loop, with the value written to the
latch staring at zero and incrementing through five to
read the six bytes of station address. These six bytes of
address are stored in the array node_addr and also are
written into a location in IPX's space. The location
IPX wants the address written to is passed in the DI
register when Driverlnitialize is called.

After the station address has been read and stored, Dri­
verinitialize loads the AL register with the number of
the interrupt line that the NBM592 will use, loads the
BX register with the offset of the procedure DriverISR,

1-393

inter AP-331

and calls the procedure SetlnterruptVector. Details of
this routine are provided in section 7.1.2. After SetIn­
terrupt Vector retu,rns, a call is made to the procedure
SetUpBuffers. SetUpBuffers initializes all the buffer
management variables. Details of this procedure appear
in section 7.1.3.

After SetUpBuffers returns, DriverInitialize is ready to
configure the DMA channels that the NBM592 will
use. One host DMA channel and two of the on-board
DMA channels will be configured. The host DMA
channel is configured to cascade mode. This allows the
onboard DMA to use this channel for arbitration in the
ISA bus. The onboard DMA controller is configured
for extended write, active low DREQ, and rotating pri­
ority. The transmit DMA channel in the onboard con­
troller is programmed next. The channel is configured
to autoinitialize mode to allow retransmission on colli­
sion without CPU intervention. This channel wilf be
used to transfer the configuration and address parame­
ters to the 82592.

The' 82592 operates in the 8-bit-bus mode after reset. It
is put into the 16-bit-bus mode by giving it a Configure
command with zero in the byte count field. This is the
first command that the driver issues to the 82592. The
transmit channel is set up to point to the beginning of
the'transmit buffer area. The word count is set to I
because the'82C37A interprets this register as transfers­
to-be-made - 1. A Configure command is now given to
the 82592. DriverInitialize n9w enters a polling loop to
determine when the command has been completed. The
software can tell when the command is complete by
reading the 82592 StatusO register and testing to see if
the interrupt bit is set. This loop will be repeated a
maximum of 65,536 times. If, the command has not
completed by that time, a pointer to an error message is
moved into the AX register and control is returned to
IPX. At that point the error message will be displayed
and the loading of the driver will be aborted.

After the first Configure command has completed, an­
other Configure must be done to actually load the de­
sired parameters into the 82592. The transmit channel
is set up to point to the beginning ofthe transmit buffer
space and the word count is set to eight. This will allow
the nine required transfers to be made. The byte count
and configuration parameters are copied into the trans­
mit buffer area and a Configure command is issued to
the 82592. Once again a polling loop is entered to wait
for command completion.

To set the station address the transmit channel is set up
to point to the beginning of the transmit buffer and the
word count is programmed to 3. The byte count and
station address are copied into the transmit buffer and
an IA Setup command is issued to the 82592. The
82592 is again polled for command completion.

Now that the 82592 is' initialized, the receive DMA
channel can be set up. This channel is also programmed
to autoinitialize mode and the word count is set to the
size of the receive buffer-I. This will cause the DMA
to wrap around to the beginning of the receive buffer
when it reaches the end. This results in a ring buffer.
The receive stop register is programmed with a value
near the end of the buffer. The receiver is enabled by
issuing a Receive Enable command to the 82592. The
AX register is zeroed to indicate that the initialization
completed successfully and control is returned to IPX-.
The, hardware is now ready for operation.

7_1.2 SetlnterruptVector

The CPU reads the value of the interrupt line to be
used from the configuration table. It puts this value in
the AL register. The offset of the Interrupt Service
Routine (ISR) is placed in the BX register and Setlnter­
ruptVector is called. This procedure calculates the
mask and unmask variables for the interrupt channel
that will be used for the driver. This channel is then
masked to prevent any unwanted interrupts. The CPU
now calculates the address in the interrupt vector table
where the vector will be stored. After saving the vector
that is already at the location to be used SetInterrupt­
Vector installs the interrupt vector for the NBM592.
The procedure ends in a return that passes control back
to Driver initialize.

The next initialization task is to set up the transmit and
receive buffer space to accommodate the architecture of
the NBM592 DMA subsystem. This is done by a call to
SetUpBuffers.

7.1.3 SetUpBuffers

The NBM592 DMA architecture is essentially the same
as the ISA DMA subsystem. It is made up of an
82C37A supplying AI6-Al and a page register supply­
ing AI7-A23. AO is pulled low when DMA transfers
are being made because all transfers are done on word
boundaries. Because of the fact that no carry can be
generated from A 16 to A 17, the buffers must be located
such that no 128-kB boundary exists in them. If the
address of the 82C37A is allowed to roll over from
FFFFh to OOOOh the page register will remain un­
changed. This will cause memory locations at the very
bottom of the 128-kB page to be overwritten. SetUp­
Buffers prevents the occurrence of this problem by
checking to see if a boundary exists in the buffer area
and then allocating the buffer space to the transmit and '
receive buffers accordingly. It is strongly recommended
that commercial implementations of the NBM concept
use counters instead of latches for the upper address
bits. This would eliminate the problems associated with
the page register implementation and would simplify
buffet setup and processing.

1-394

AP-331

The SetUpBuffers procedure in this Application Note is
an improved version of the procedure presented in AP-
327. Although the general approach is the same, several
changes have been made to accommodate the ring buff­
er implementation.

7.2 DriverSendPacket

Transmission on the network is accomplished by the
procedure DriverSendPacket. When the IPX wants to
send a packet to the fileserver or another station, it
prepares a Transmit ECB and calls DriverSendPacket.
The address of the ECB is passed in the ES:SI register
pair. The procedure checks to see if frames are already
queued for transmission. If frames are queued, Driver­
SendPacket adds the new ECB to the end of the queue
and returns control to IPX. If no frames are queued for
transmission, execution falls through to the procedure
StartSend.

7.2.1 StartSend

The procedure StartSend is responsible for actually
building the frame in the transmit buffer, setting up the
DMA controller, and issuing the Transmit command to
the 82592. This routine also calculates any padding
needed to bring the frame up to minimum Ethernet
length. '

The first action that StartSend takes is to set the trans­
mitting flag in the driver workspace area of the ECB.
This flag is used to ensure that only valid transmit
ECBs are returned to IPX by the transmit ISR. If a
transmit request is cancelled and then the interrupt for
the cancelled transmit occurs, the code could errone­
ously return a packet that had never been transmitted.
Having this flag available prevents this.

If the IPX packet plus the Ethernet overhead bytes do
, not add up to a frame size of 64 bytes StartSend calcu­
lates the number of padding bytes required and stores
this value in memory for later use. After the padding
calculations have been done StartSend begins to build
the transmit frame in memory. The frame begins with
the 82592 byte count. This includes the IPX packet, the
Ethernet header and CRC bytes, and the chaining byte
at the end of the frame. In this application the chaining
byte will always be zero, since chaining is not support­
ed.

The transmit ECB contains a fragment list which de­
scribes the length and location of each fragment in
memory that makes up the frame to be sent. This list ·is
processed by StartSend with the fragments being copied
in order into the transmit buffer. After the copy is com­
plete any required pad bytes are moved into the end of
the buffer.

After the transmit frame has been built in memory the
DMA controller and page register are programmed
with the address of the beginning of the transmit buffer.
The word count for the frame is written to the DMA
controller and then it is unmasked. Writing a Transmit
command to the 82592 causes it to begin making DMA

. requests and transmission begins. The starting time of
the transmission is saved in memory and StartS end re­
turns control to the calling code.

7.3 DriverlSR

DriverISR is the interrupt service procedure. It calls
the procedures RcvdPacket or SentPacket after it has
determined the source of the interrupt.

The first task in the Interrupt Service Routine (ISR) is
to save the machine state. This is done by pushing all
the registers on the stack as soon as the ISR is entered.
Once the machine state is saved the program is free to
use all of the processor's registers for its own purposes.
The segment registers are then set so they all point to
the same segment since the driver is implemented as a
.COM program. In this memory model code and data
share the same segment.

The ISR code next issues an End Of Interrupt (EOI) to
the two 8259A Programmable Interrupt Controllers
(PIC). This allows the PICs to accept interrupts from
other sources. Since the PICs are configured in the edge
triggered mode they can be cleared before the 82592
interrupt has been cleared. In a system that uses level
triggered interrupts, the interrupt from the 82592
would have to be cleared first. If this architecture were
migrated to the PS/2TM it would require the 82592 to
be acknowledged first because the PS/2 systems use
level triggered interrupts.

DriverlSR now checks to see what event caused the
interrupt. This is accomplished by comparing the status
read from the StatusO register of the 82592 to the event
codes for receive, transmit and retransmit. The value
read from StatusO is AND'd with ODFh prior to the
comparison to mask the state of the Exec bit. This sim­
plifies the comparison step. If the event code is not
receive, transmit, or retransmit, the driver increments
an error counter called false_590_int and proceeds to
the exit code. If the event code is receive;, the procedure
RcvdPacket is called. If the event code'is transmit or
retransmit, the procedure SentPacket is called. Upon
return the driver proceeds through the exit code.

7.3.1 RcvdPacket

The driver's first action upon entering the RcvdPacket
procedure is to read the TCI address latches. These two
8-bit latches contain A 1-A 16 of the ending address of

1-395

intJ Ap·331

the last frame received. This address is used as the
starting point for the buffer reconstruction process. It is
saved in a variable called rx_buff_tail. The last four
words of the receive buffer contain status and length
information for the packet. By subtracting the length of
the current buffer from the current address read from
the TCI latches, the end of the previous frame can be
found. By repeating this process the complete chain of
unprocessed frames can be reconstructed. The status
bytes are used to determine whether the frame should
be processed or discarded. The procedure Normalize
Pointer is used to account for the possibility that the
packet is wrapped around in the receive ring buffer
while the status and length bytes are being read.

Each packet contains two length fields. One is con­
tained in the IPX header and the other is contained in
the Ethernet header. The length of the packet is validat­
ed by doing several length checks. The length of the
Ethernet header' is subtracted from the total bytes re­
ceived prior to doing the length checks. The first length
check determines if the packet exceeds the 1088 byte
maximum length for this driver (1024 data bytes and 64
NetWare bytes). The next length check determines if
the frame is shorter than the miniinum dictated by IPX
(30 bytes plus padding). The final check makes sure
that,the IPX length and the actual number of bytes
received agree. If any of these length checks fail, the
appropriate error counter is incremented and the frame
is discarded. If all the length checks pass, the packet is
added to a list of good received frames by putting a
pointer to the first byte of the frame into the array rlL­
list and incrementing the variable num_of_frames.
Since the length of rx~ist is limited to 30 entries a
check is made to see if this is the last entry in rx_list.
This cycle is repeated, until all frames have been pro­
cessed, or all entries in rlL-list have been used. When
one of these two events occur the driver enters a small
loop of code that takes care of handing the received
packets off to IPX.

The handoff loop is controlled by the variable nuIIL.
of_frames. Mter each frame is hamled off to IPX
num_oLJrames is decremented. When, num_of_
frames reaches zero there are no more frames to hand
off and the loop terminates. The list is processed by
reading the offset of the first byte of the frame from
rx_list. This offset is used to read the socket number
from the IPX header of the frame. The socket number
is used as a parameter for a call to the IPX routine
IPXGetECB. If there is an ECB available for that sock­
et IPX passes a pointer back to the driver. If an ECB is
available the loop calls the procedure DeliverPacket,
which does the processing necessary to transfer a pack­
et from the. driver to IPX. If no ECB is available, the
next frame is processed.

After all frames have been processed the stop register is
checked to see if a receive overflow occurred. If an
overflow occurred the variable rx_buff_overflow is
incremented. The stop register is then updated by writ­
ing the value of rx_buf_tail- 256 into it. The value of
receive buffer head is then updated by writing the value
of rlL-buf_tail + 2 into it. The variable rlL-buf_
head now points to the first byte of the next receive
buffer. Execution now returns to DriverISR.

7.3.2 SentPacket

The first action taken in the SentPacket procedure is to
test the software flag tx_active_flag. If this flag is not
set then a transmit had not been initiated and the tralls­
mit interrupt is erroneous. In this case, control simply
returns to DriverISR. If tx_active_flag is set the driv­
er reads the status of the transmission from the 82592.
The driver tests the status to see if the transmission
completed successfully. If an error occurred the status
is tested to determine the type of failure, and the corre­
sponding error counter is incremented. If the transmit
completed successfully, this code is skipped. Next the
driver extracts the total number of collisions the frame
experienced and adds this value to the variable Re­
tryTxCount. The driver writes a completion code for
the transmission into the ECB, unlinks it from the
transmit queue, and returns it to IPX through a call to
IPXHoldEvent. The driver now checks the transmit
queue to see if any packets are awaiting transmission. If
there is a packet in the queue, the driver loads the ES:SI
register pair with the address of the ECB and calls
StartSend. If no packets are queued, control is returned
to DriverISR.

7_3.3 Exiting DriverlSR

After control is returned to DriverISR the driver
checks to make sure that the receiver is enabled. If it is
not, then a Receive Enable command is issued to the
82592. DriverISR then Issues an Interrupt Acknowl­
edge to the 82592. This clears the interrupt that caused
entry into the DriverISR code and allows any new in­
terrupt that may have occurred during processing to
move into the 82592 StatusO register. DriverISR reads
this register to determine if a new interrupt occurred. If
a new interrupt is detected then execution loops back to
the beginning of the ISR and the new interrupt is pro­
cessed. If no new interrupt is detected a call is made to
IPXServiceEvents to tell IPX it has events to process,
the machine state is restored to its condition when Dri­
verISR was entered, and an IRET instruction returns
control to the code that was executing when the inter­
rupt occurred.

1-396

AP-331

7.4 DriverPoll

The procedure DriverPoll is called by IPX to allow the
driver to check for timed-out transmits and any other
non-interrupt-driven events that need to be handled.
DriverPoll first checks to see if tx_active_flag is set.
If it is not, then control is returned to IPX. If tx_ac­
tive_flag is set, then the driver checks to see if the
current transmission has timed out. This is done by
reading IPXIntervalMarker, subtracting tlL-start_
time from the value read, and comparing the result
with TxTimeOutTicks. If the result of the subtraction is
greater than TxTimeOutTicks, the transmission is
aborted by issuing an Abort command to the 82592.

DriverPoll then writes a bad completion code into the
ECB for the packet, unlinks the ECB from the transmit
queue, and returns the ECB to IPX through a call to
IPXHold Event. The 82592 is then given a Selective

. Reset command to put it in a known state. All configu­
ration parameters are maintained when a Selective Re­
set is done but the Receive, Execution, and FIFO ma­
chines are all put in a known state. A Receive Enable
command is given to the 82592 to reenablethe receiver.
DriverPoll then checks the transmit queue to see if any
packets are queued. If a packet is awaiting transmis­
sion, the ES:SI register is loaded with the address of the
ECB and StartSend is called. If no packets are waiting
control"is simply returned to IPX.

1-397

intJ AP·331

APPENDIX A
SPECIAL CONSIDERATIONS

FOR A-1 STEPPING ANOMALIES

There are a few anomalies in the operation of the A-I
stepping of the 82592 that require workarounds in the
NBM592. They are discussed below.

ReceiveEOP

When bad frames are received, the 82592 signals this to
the hardware by not dropping the DREQ signal during
EOP. This can cause the 82C37A to issue another·
DMA cycle. This extra cycle can corrupt the receive
buffer chain. The NBM592 contains an Extra DMA
Read Elimination circuit to prevent this extra read cy­
cle. The DREQ signal is disabled during the time that
the EOP is active. The DREQI # signal to the 82C37A
is qualified by the EOP signal to eliminate another cy­
cle. The EOP goes active after the activation of the
RD# pin, this deactivates DREQI#, thus the DMA
will not issue another transfer. The EOP signal to the
DMA controller is blocked during receive cycles. This
is done because the receive channel is reinitialized when
the upper limit of the receive buffer is reached, not at
the end of each receive.

NOTE:
The NBM592 does not discard bad received frames.

Transmit EOP

The NBM592 also contains an Extra DMA Write
Elimination circuit for the Transmit channel. In some
case, when EOP and DREQ are driven active, the,
82C37A can execute an extra write cycle. This redun­
dant cycle can be wrongly interpreted by the 82592.
The NBM592 contains a circuit that eliminates this ex­
tra cycle, if it occurs. To disable the extra write, a signal
DISDACK # is generated. This signal, when active,
disables the DACK to the 82592, causing the 82592 to
ignore the write cycle. This signal is activated whim at
the rising edge of the 82592 WR # signal (at DMA
cycles), a bad Transmit event is identified. A BAD_
TX # signal is generated when the DRQ signal is active
during the occurrence of the 82592 EOP #. The DIS­
DACK # signal is deactivated when either the next

write arrives, or when the current'DMA burst ends
(this is identified by the DACK signal going inactive).
This function is implemented in ICI5B and PAL2.

In many cases the extra write cycle does not occur. The
DISDACK signal, in this case, would cause the elimi­
nation of the next write cycle. This write cycle would be
the first cycle of the next frame, which would cause
undefined data to be sent instead of the next frame.
This problem was remedied by canceling the DIS­
DACK signal at the end of the current burst. This is
done by connecting the preset signal of the DISDACK
flip-flop to the DMA controller's DACKO signal. Thus
if the extra write occurs, it is eliminated.

Transmit Error EOP

When a collision occurs after all the transmit data has
been transferred to the FIFO, the 82592 does not issue
the bad transmit EOP. This will cause the DMA con­
troller to continue with the retransmit cycle from the
current address, instead of autoinitializing to the begin­
ning of the transmit buffer. One solution to this prob­
lem is to program the 82C37A count register to the
actual transmit count. This will cause the 82C37A to
autoinitialize. This solution can cause a problem with
good transfers. The 82592, when tJ.'ansmitting in TCI
mode, can transmit a chain of frames. After the end of
a good transmit the 82592 issues another DMA cycle to
read the next memory location in the transmit buffer. If
the first three bits of that location are binary 100, then
the 82592 attempts to transmit another frame. With the
proposed solution to errata No.1, the 82592 will read
the chained command from the byte-count field of the
Transmit buffer. To prevent" an extra frame transmis­
sion, the NBM592 uses the 82592 EOP signal, which is
active during the' chain command read, to force the DO
line high. This is done by generating a KIL_DATA#
signal which disables the bidirectional data buffers. A
pull-up resistor on the local DO forces this line to 'I',
thus ensuring that the value read by the 82592 will not
be binary 100.

1-398

inter AP-331

APPENDIX B
JUMPERS

Jumpers are provided to allow selection of interrupt line used, DMA wait states, and the host DMA channel used for
the master handshake. The tables below show how to set the jumpers in each jumper block as required for your
configuration.

INTERRUPT JPl
IRQI0 (default) pins 1-6
IRQ12 pins 3-8
IRQ13 pins 4-9
IRQ14 pins 5-10

HOST DMA CHANNEL JP2
DRQ5 pins 1-7 and 2-8
DRQ6 (default) pins 3-9 and 4-10
DRQ7 pins 5-11 and 6-12

EPROM SIZE JP3
8 kB pin 1-7 not connected

pin 2-8 not connected
16 kB pin 1-7 connected

pin 2-8 not connected
32 kB pin 1-7 connected

pin 2-8 connected

EPROM ADDRESS JP4
Jumpers

A19 A18 A17 A16 A15 A14 A13
Address 1-8 2-9 3-10 4-11 5-12 6-13 7-14
C8000 NC NC C C NC C* C**
CAOOO NC NC C C NC C* NC**
CCOOO NC NC C C NC NC* C**
CEOOO NC NC C C NC NC* NC**
DOOOO NC NC C NC C C* C**
D2000 NC NC C NC C C* NC**
D4000 NC NC C NC C NC* C**
D6000 NC NC C NC C NC* NC**
D8000 NC NC C NC NC C* C**
DAOOO NC NC C NC NC C* NC**
DCOOO NC NC C NC NC NC* C**
DEOOO NC NC C NC NC NC* NC**
EOOOO NC NC NC C C C* C**
• When using a 32 kB EPROM this jumper is not used for address selection. Pin 13 should be connected to JP6.

*. When using a 16 kB or 32 kB EPROM this jumper is not used for address selection. Pin 14 should be connected
to JP5.

I/O ADDRESS SELECT JPI0
300h-30Fh pins 1-2 connected
310h-31Fh pins 1-2 not connected

WAIT STATES JP11
o WS pins 1-5
1 WS (use for 6 MHz AT) pins 2-6
2 WS pins 3-7
3 WS pins 4-8

1-399

inter

PAL 1

PALl

module PALl flag '-R3'

title 'NBMS92 - PAll X023'

IC18 device 'P20LIO' ;

SAO

SAl

SA2

SA3

lORD_BAR

IOWR_BAR

LIMIT_LATCH_BAR

BOARD_CS_BAR

EN_ADDR_BAR

EPROM_CS_BAR

NCl

NC2

LD_RX_BAR

LD_TX_BAR

LD_LIMIT_BAR

OE1_BAR

OE2_BAR

i592CSO_BAR

i37CS_BAR

PROM_CS_BAR

DO

RD_BAR

H,L,x=l,O,.X.;

AP-331

APPENDIX C
PAL EQUATIONS

pin 1; tlin

pin 2; "in

pin 3; "in

pin 4; lIin

pinS; ttin

pin 6; "in

pin 7; !lin

pin 8; , "in

pin 9; ''in

pin 10; ''in

pin 11; "not used

pin 13; "not used

pin 14; "out

pin 15; "out

pin 16; "out

pin 17; "out

pin 18; "out

pin 19; "out

pin 20; "out

pin21; "out

pin22; "out

pin23; "out

1-400

292066-2

AP-331

Equations

!LD_TX_BAR= !BOARD_CS_BAR & SA3 & !SA2 & SAl & !SAO & !lOWR_BARi "0AH

!LD_RX_BAR = !BOARD_CS_BAR & SA3 & SA2 & !SAl & !SAO & !I0WR_BAR; "QCH

!LD_LIMIT_BAR = IBOARD_CS_BAR & SA3 & SA2 & SAl & !SAO & !lOWR_BAR; "OEH

!.OECBAR = !BOARD_CS_BAR & SA3 & SA2 & ISAl & ISAO & !lORD_BARi "OCH

!OE2_BAR = !BOARD_CS_BAR & SA3 & SA2 & !SAl & SAO & !IORD_BAR; "ODH

li592CSO_BAR = !BOARD_CS_BAR & SA3 & !SA2 & !SAl & !SAO & EPROM_CS_BAR; "OSH

!i37CS_BAR = !BOARD_CS_BAR & EPROM_CS_BAR &((!SA3) # (SAO & SAl) # (lSA2 & SAO»;

enable DO = IBOARD_CS_BAR & SA3 & SA2 & SAl' & !SAO & !lORD_BAR; "0EH

!DO = LIMIT_LATCH_BAR;

!PROM_CS_BAR = !BOARD_CS_BAR & SA3 & !SA2 & SAl & !SAO & nORD_BAR; "0AH

enable'RD_BAR = EN_ADDR_BAR;

!RD_BAR = !lORD_BAR # !EPROM_CS_BAR;

end PAll
292066-3

1-401

PAL2

module PAL2 flag '-R3'

title 'NBi592 -pal2 REV X024'

IC19 device 'P20LlO' ;

RD_BAR

NCI

i592EOP _BAR

i592DREQO

i592DREQl

DAKO_BAR

DAKl_BAR

RESET

WATCHDOG_BAR

DISDACK_BAR

i592DRQODD

LIMIT_LATCH_BAR

LTCW

DREQO_BAR

DREQl_BAR

i592DACK_BAR

MSEOP_BAR

KILL_DATA_BAR

DAKO

WD_TICBAR

WD_RX_BAR

BADTX_BAR

AP-331

pin 1; "in

pin 2; "in (spare)

pin3; "in

pin 4; "in

pin 5; "in

pin6; "in·

pin 7; "in

pin 8; "in

pin9; "in

pin 10; "in

pin 11; "in

pin 13; "in

pin 14; "out

pin 15; "out

pin 16; "out

pin 17; "out

pin 18; "out

pin 19; "out

pin 20; "out

pin 21; "out (for internal use)

pin 22; "out (for internal use)

pin 23; "out

1-402

292066-4

AP-331

Equations

DAKO = !DAKO_BAR;

LTCW = !RD_BAR & !i592EOP _BAR & lDAK1_BAR;

!WD_TX_BAR = i592DREQO & !DAKO_BAR & IWATCHDOG_BAR & !RESET # !WD_TX_BAR

& !WATCHDOG_BAR & !RESET;"Arm when DACK active"

IWD_RX_BAR = i592DREQl & IDAK1_BAR & !WATCHDOG_BAR & !RESET # !WD_RX_BAR

& !WATCHDOG_BAR & lRESETi"Arm when DACK active"

!DREQ1_BAR = i592DREQl & DAK1_BAR & WD_RX_BAR & LIMIT_LATCH_BAR #

i592DREQl & i592EOP _BAR & WD_RX_BAR & LIMIT_LATCH_BAR;

!DREQO_BAR = i592DREQO & i592DRQODD & !RESET & WD_TX_BAR # lDREQO_BAR &

DAKO_BAR & !RESET & WD_TX_BAR; " KEEP TIL DACK

li592DACK_BAR = !DAK1_BAR# lDAKO_BAR & DISDACK_BARi

enable MSEOP _BAR = !i592EOP _BAR & !DAKO_BAR;

MSEOP _BAR = 0; "EOP TX UNIT

IBADTX_BAR = !i592EOP _BAR & i592DREQO; "DREQ active at EOP

!KILL_DATA_BAR = !DAKO_BAR & 1i592EOP _BAR;

endPAL2

1-403

292066-5

intJ Ap·331

PAL 3

module PAL3 flag '-R3'

title 'NBiS92 - P AL3 REV X024'

IC20 device 'P20LIO' ;

DMA_MW_BAR pin 1; "in

CIS_BAR pin 2; "in·

IOWR_BAR pin 3; "in

DACK6_BAR pin 4; "in

DASTB pinS; "in

DDASTB pin 6; "in

FLOPPY pin 7; "in

RESET pin 8; "in

WS pin9;"in

W6 pin 10; "in

DHALDA_BAR pin 11; "in

NO pin 13; "in (spare)

MASTER_BAR pin 14; "out

WR_BAR pin 15; "out

EN_CMD_BAR pin 16; "out

NC3 pin 17; "I/O (spare)

LPBK_BAR pin 18; "out

WATCHDOG_BAR pin 19; "out

QRD_OR_WR pin 20; "out

SAO pin 21; "I/O

EN_ADDR_BAR pin 22; "out

A3 pin 23; "out

H,L,x=l,O,.x.;
292066-6

1-404

Equations

enable SAO = !EN_ADDR_BAR;

SAO =0;

enable WR_BAR = EN_ADDR_BAR;

WR_BAR = IOWR_BAR;

enable MASTER_BAR = IDACK6_BAR;

MASTER_BAR = 0;

!WATCHDOG_BAR = FLOPPY & !RESET

W5 & W6 & !RESET

AP-331

"ARM by FLOPPY WATCHIX>G

"ARM by 15 ~ WATCHDOG

#!WATCHDOG_BAR & IDACK6_BAR & !RESET; "DROP after release

QRD_OR_WR = (IDMA_MW _BAR # !WR_BAR) & IEN_CMD_BARi

IEN_ADDR_BAR = !DACK6_BAR & !DHALDA_BARi

!EN_CMD_BAR = !DASTB & IDDASTB & !DACK6_BAR;

enable A3 = EN_ADDR_BAR;

A3=SAOi

LPBK_BAR = !CTS_BAR;

endPAL3

1-405

292066-7

intJ
PAL 4

modulePAU

title 'MBN592 - PAU REV X023'

IC21 device 'P20LIO' ;

AEN

SA9

SA8

SA7

SA6

SAS

SA4

RESET

RANGE

EPROM_CS_BAR

OVERFLOW_BAR

i592INT

EN_DATA_BAR

IRQ10

BOARD_CS_BAR

EN_CMD_BAR

KILL_DATA_BAR

HLDA37

LD_LIMIT_BAR

EN_ADDR_BAR

LIMIT_LATCH~BAR

BHE_BAR

H,L,X=1,0,.X.;

AP-331

pin 1; "in

pin 2; "in

pin 3; "in

pin 4; "in

pin 5; "in

pin 6; "in

pin 7; "in

pin 8; "in

pin 9; ·"in

pin 10; "in

pin l1i "in

pin 13; "in

pin 14; "out

pin 15; "out

pin 16; "out

pin 17; "in

pin 18; "in

pin 19; "out

pin 20; "in

pin 21; "in

pin 22;. "out

pin 23;

QADD=[X,x,SA9,SA8,SA7,SA6,SA5,SA4];

1-406

292066-8

intJ
Equations

enable EN_CMD_BAR = Oi

enable LD_LIMIT_BAR = Oi

enable EN_ADDR_BAR = Oi

enable KILL_DATA_BAR= Oi

Ap·331

lBOARD_CS_BAR = (!AEN & SA9 & SAS & !SA7 & !SA6 & !SAS & EN_ADDR_BAR &: ISA4 &

!RANGE) # (!AEN & SA9 & SAS & !SA7 & !SA6 & !SAS & EN_ADDR_BAR & SA4 & RANGE }i

!LIMIT_LATCH_BAR = (IOVERFLOW_BAR # !LIMIT_LATCH_BAR & LD_LIMIT_BAR) &

IRESETi

!EN_DATA_BAR = !EN_ADDR_BAR & !EN_CMD_BAR & KILL_DATA_BAR #

!BOARD_CS_BAR# !EPROM_CS_BARi

HLDA37 = !EN_ADDR_BARi

enable BHE_BAR = !EN_ADDR_BARi

BHE_BAR=Oi

IRQ10 = iS92INT # !LIMIT_LA TCH_BARi

endPAU
292066-9

1-407

+5V

SIP2 10K
II 1
9 1

10 1
11 1
12 1
13 1
14 1

z
0
::l
D'
C -it ...
111 a.
i!:
DI
III
CD --...
~ a.
DI
"0

1 ~ 74LSII1I8 1 JP4 2 PO p-o~
~II 4 PI

~ ,~ 8 P2
II P3

~ :~
11 P4
13 PS

~ 13 111 PII
-.:!...o 14 17 P7

AEN 3 00
SAU' II 01
SAl II 7 02

SA_CO-11t)
SA17 II 03
SAl. 12 04
SA1S 14 011
SA14 ,. Oil
SA13 111 07

SMEMRO. 1 C

./:.. CD
0 ...
(0 m

'tI

U18

EPROM ADD DEC
IIMHZ

:tI 5920ACK.

0 OR02

~ 272511

:E
!!l. n
:::r
a.
0

CO
-I
3'
111
iil

SAO 10 I'D 01 11
SAl 9 AI 02 12
SA2 1IA2 03 13
SA3 7A3 04 111
SA4 8 A4 05 III
SAIl liAS 011 17
SAil 4 All Q7 111
SA7 3 A7 011 III
SAil 25 M
SAil 24 All
SAID 21 AID
SAil 23 Atl
SA12 2 A12
SA13 1 ~A13
SA14 2 ~A14

T ~~CE II~G
II 4---l Vpp
3 .,....!

~
JP3 U211

EPROM
-

REFRESH WATCHDOG
74LS3113

1 lA lOA r-+
~ lCLR10B 4

10C Ii" 1101HZ

100 ~ ,g.. 2A 20A rti"" ~ 2CLR20B
II I 20C r-!-200

U4

+SV

~
~
~
~ 2

~
7

l..!2...

DO
01
02
D3
D4
OS
Oil
07

W5
wo

FLOPPY WATCHDOG

74LS1S3

A a.. ~ SPARE2
B ~ OB 13 -FLOPPY

C OC 12

~ o 00 11

CLl(CO ~
LD

CLR
EHP
ENT

UIISP

"';>

EPROW CS.

o (0-7) -

292066-11

l

l>
'tI .
Co)
Co)

z
0
:I
0-
C --CD ..
CD
Q.

s::
III
!II

CD ..
):>

l-
Q.
III

~ -a
0 ..

CD ..
0
0
:I
2-
;,
):>
r

.1\)

"1J
):>
r c.:o

~

~H: 1 ~ iii 20L'QA
WATCHDOG_ II ~ '4 LTCW
DISDACK. 10 1,0 02 22 WD RX-
5112DIlClOOD " 11 1 03 2' WD TX_

LIMIT I.ATC~ '3 112 011 15 DREClO_
.. 582DREQ1 5 l!!i OS 111 KILL DATA.-

I»J(Q. II 18 oe 18 MSEOP.
DAlCl. 7 17 07'7 SSl2DACK.
RESET II 18 011 111 DRECI,.
5112DREQO 4 14 04 20 DAl(O
5e2EOP- 3 13 01 23 BADTX-
lItO_ 1 11

2 12

74LS174
4 2D

11 4D
PAL2 II 3D

3 lD
AST_ 13 50

14 8D

r--+---;II~CLK
1 Ci:R +5V 10 74LS74

... 12 - 9
DPRQ

U5

a 11 CLK Q II
~ iL CUi REFRESH TI MER

I ~ -iii U3B
lIMA ... t 'f1.----05- 19 13 1
crs. 2 12 PULL UP =:_ !:! ~ ~~ A3 ~OD-7 _

DoO.STB 5 15 011 15 WR_
---lnB 8 '" 08 18 LPBK_

-: :~:~ ~~
W5 II lSI 02 22 EN ADOR-
we 10 110 010 '4 MASTER_
DIIALDA- " 111 7415184 JPll
OIIIIRD -l. ~ 112 1 A ~ 3 " READY

l..----.!..iB Q8 4 2 :tj -----at CLI< QC 5 3 7
O4bo RD...JILWR II CLR QD 8 4 II

u" QE~

I :~
QH~

l1liHZ W. S. GENERATOR

u;-s-

292066-12

l

»
"U
I

Co)
Co)

z o
:::l
C"
C
:::::
CD
ii!
Co

i!:
I»
en
iD .,
»
Co

, I»
./>. "C
~ iD .,

o o
3-
Cl
T
"0 »
!:

:
r
~

-

lORD_
IOWR_
EPROM CS_

SAO
SA1
SA2
SA3

SA (0-191

*' SA9
SAIl
SA7

a Ii: SA8

'" ~ iii SAS
SA4

RESET
AEN
EPROW CS.
OVERFLOW.
S921NT

~

~l

~ 20L1OA 1I~:Z3
7 17 02 22
II

-¥ S
8
10

+! 1
2
3
4

2
3
4
S
8
7
8
1
10
11
13
II

19 03
112 04
1:1 OS
lIS 08
110 07
111 08
11 09
12 010
13
1<4-

~
PALl

20L1OA
06

12 02
13 03
1<4- 04
1:1 OS
16 08
17 07
16 01
11 09
110 010
111
112
151

~ UII
PAL.

21
20
111
18
17
16
1S
14

16
22
21
20
19
18
17
23
1S
14

RD.
DO
PROW CS.
37 CS.
SII2CSO.
OE:Z.
0E1.
lJ) LIMIT_
LD TX.
L.D RX.

SA (0-1n

BOARD CS.
LIMIT LATCH_

EN AODR.
LD LIMIT_
HLDA37
KILL OAT".
EN CWD.
SHE_
IRQ10
EN DATA_

-

-

292066-13

cl

l>
l'
Co)
Co)

-"

82592
CSNA/CO

CONTROLLER

z
0
:::I
cr
C --CD ..
CD a.
3l:
III
!!!.
CD ..

U13 RTS. 32
015 38

RXC. 28 RXC. 014 37
TXO 31 TXO 013 38
RXO 30 RXO 012 311

011 9
CTS. 33 CTS. 010 10
CRS. 35 CRS_ 011 11
COT- 34 COT_ OS 12
TXC. 25 TXC.

~ NC o 13
.!! NC o 14

o 15
RO- e RD- ~ 18

> WR_ 4 WR- o 17
a.
III

"'C ...
~ CD

5112DACK. 2 o.t.CK- o 111
5112CSO- 3 CS.

~
III

RESET 40 RESET 20 ..
.J:,.. CO
~ N I\) U1

ID
!'J

~
21

'" a: ..
0: oi +~ ORal 211

~ ClKSRC ORQO 27
U2 ~ FREQ INT 41

<:7 14 11/18 8 5 ClK CSI/EOP. 42
1 7

0
~
0

N 101HZ DSC
0.. '" o.t.LE XO-438
iii ~

~ PROM CS.
C)
CD PUllUP
:::I
CD ..
2L
0 ..

~
2 - 5 D,PR Q

JPII~ 3 C~ 8
CLR

I U3A
~ 1

~
¢

+5V
~r-

.--

.. N

'" 0..
Ii: !!' iii ~

015
014
013
012
01.1
010

I.A. ROM 011
OS 82S123

07 07 9 07 "4 08 08 7 08 "3 05 05 8 05 .0.2
04 04 5 04 "I 03 03 4 03 "0 02 02 3 02
01 01 2 01
DO DO 1 00

15 CS
U14

RTS.

o (8-15)

14 PA4 PA (0-4)
13 PA3
12 PA2
11 PAl
10 PAD

5920REOO
5920REQI
51121 NT
592EOP.

o (0-7)

8IotHZ

-
-

-

292066-14

l

»
"tI
I

Co)
Co)

z
0
::l
C"
C - --CD

SA (0-19) SAil
SAl0 ...

CD
Co

SAIl
SA12

3:
III

SA13
SA14

III SA15
iii SAIII ...
~

LTCW
OE2.

III
"C ..
CD EN OATA. ...
:::: Ril.

0 EN ADOR.

~ tD c
(.) 1111 -C

A (0-7) AD
AI

!. A2
III A3
tD A4
c - All -CD ... A8

A7
J!l
-I DE,.
g
»
Co

il ---
o (0-7)

o (8-15)

ATD (0-15)

0 :::r

TCI MSB lATCH
74ALS573 -

2 10 lQ III
3 20 2Q III
4 3D 3D 17
5 4D 4Q 18
II 50 50 15
7 80 IIQ 14
II 70 7Q 13
II 110 IIQ 12

II ENe
1 DC

U27

74ALS573
2 10 lQ III
3 20 2Q 111
4 3D 3D 17
5 4D 4Q 18
II 50 50 15

7 80 8Q 14
II 70 7Q 13
II 80 IIQ 12

II ENe
I De

U24

TCI LSB lATCH

DO DO
01 01
02 02
03 03
04 D4
05 05
08 08
07 07

I

DO 011
01 011
02 DID
03 OIl
04 012
D5 013
011 014
07 015

LSB DATA BUFFER
74LS245 - -

2 A1 111 III
3 A2 112 17
4 A3 113 111
5 A4 114 15
II AS as 14
7 AS 1111 13
II A7 B7 12
II AS &II II

+v OIR
Ii

U211

74LS2045
2 AI III 111
3 A2 112 17
4 A3 B3 18
5 A4 114 15
II AS as 14
7 AS BII 13
II A7 B7 12
II AS &II II

+a OIR
Ii

U19

IASB DATA BUFFER

ATOO
ATOI
AT02
AT03
AT04
AT05
ATOll
AT07

AT08
ATOll
AT010
ATOll
AT012
AT013
AT014
ATOIS

D (0-7)

D l8-15}

ATD (0-15)

292066-15

i

>­
'tI
I

(,,)
(,,) ...

XNT PAGE REGISTER
74LS1I74

z
0
:::I
C'
5. -C1)

DO 2 10 10 111
01 3 20 2Q la
D2 4 3D 3Q 17
03 1I .0 4Q 111
D4 II 50 SO 15
Oll 7 110 IIQ 14
011 II 70 .70 13
07 II aD IIQ1.l..

LD TX* 11 CLK ..
C1)

CAKO_ 1 oc '
Co
3:
III
III

U20
EN AOOR.
OMA w_ ...

C1) , DMIotRO .. EN CWD_
»
Co
III
~ -C1) ..
"'0
III

CD
C1)

~
::u
C1)

'9. .j>.

~
C1)

RCV PAGE REGISTER o (0-7) 74LS1I74
DO 2 10 10 111
01 320 20 111
02 4 30 3Q 17
03 5 4Q 4Q 111
D4 II lID SO 111
DlI 7 lID IIQ 14
011 II 70 13 70
07 8 110 IIQ rll-LD RX- 11 CLK ..

J!I
OAK'. 1 OC

en U12
0'
"C
::u -C1)

PA (0-4)

CD
in ...
C1) STOP REGISTER ..
II"
0
0
3
"C
III ..
III ...
0 ..

74LS1I74
DO 2 10 10 111
01 320 20 111
02 4 3D 3Q 17
D3 5 .0 4Q 111
D4 II lID SO 15
05 7 lID IIQ 14
011 II 70 70 13
07 II lID 110 12

LD LIMIT_ '1 eLK

~ OC .. "~

74LS244
LA17 LA17 2 1 ... 1 1Yl la SAl II
LAla LAlli 4 1 ... 2 1Y2 111 SAl II
LAlli LAlli II 1 ... 3 1Y3 14 SA17
LA2D LA20 II 1 ... 4 1Y4 12 SA4
LA21 1 10
LA22 .g... 2Al 2Yl ~ LA23 13 2A2 2Y2 7

15 2A3 2Y3 5

.g.. 2A4 2Y4 t--2 111 2G
U25

MOST SIG. ADD. BUFFER

LA17
LAla
LAla
LA20
LA21
LA22
LA23 a

" !!

OVERFLOW COMPARATOR
74LS81111

SAIl 2 PO p..0 19
SAil 4 Pl
SAl0 II P2
SA" . II P3
SA12 11 P4
SA13 13 P5
SA14 15 PII
SIIlli 17 P7

PAD PAD 3 00
P ... l PAl 5 A'
PA2 PA2 7 02
PA3 PA3 II 03
PA4 PA4 12 04

14 05
111 all
111 Q7

1 G
U22

-' .. --
SA (0-19)

IoIWR.
WRO.

~

0
;;:
iii

OVERFLOW

--

292066-16

cl

»
"0
I

W
W
-"

z
0
:I
0-
C = CD ...
CD a.
s:::
DI
IIJ -CD ...

~ ~
UI DI

'tI -CD ...
C
s::: • 0
0
:I
=;-
0
iii' ...

- 0<1 __ -. _

A (0-7) A (0-7)

D (0-7) D (0-7)

74573 11237 74245
SAS 18 lQ lD 2 DO DD 30 DBO M 32 M M 111 Bl "I 2 SAl
SAID 18 2Q 2D 3 Dl Dl 28 OBI "I 33 "I "I 17 B2 A2 3 SA2
SAil 17 3D 3D 4 02 02 211 DB2 A2 34 A2 A2 18 B3 A3" SA3
SAI2 18 4Q 4D 5 03 D3 27 DB3 A3 35 A3 A3 15 B4 ". 5 SA4
SA13 15 50 5D II D4 D4 28 DB4 M 37 M M 1. B5 AS II &AS
SA14 1. lID liD 7 05 OS 23 DB5 A5 311 AS AS 13 B8 "II 7 SAil
SAUl 13 7Q 7D II D8 D8 22 DBS AS 38 "II AS 12 B7 "7 II SA7
SAU. 12 8Q eo e 07 D7 21 DB7 ",7 40 /1.7 1..7 11 B8 All sa SAil

ENC ri-!- II ADSTB HRQ 10 CIR H 1",..._-.
MID. ADD. LATCH oc ~ 18 DRQD AEN ~ I ADD. XCVR. G ~

U21 I I I~ ~~ ~~i~~:!i=~~!I~~~~~~!;t:;;l::;U;30;;~~;: ~::J:::~~~;;:::: I 13 RST CLK 12 DRQ •
DREQO. 1 JP7 3 I 11 CS DAKO 25 OACK 1
DREQI. 2 4 ' I ~ RDY OAKI 24 OACK2
HLDA37 ---* DRQ2 iOR 1
RESET,!!. DRQ3 lOw 2
37 CS. EOP 38 JP8
READY' 1iiR 4 1 3 DIIIA 18 ..

IotRD 3 2 4 OIotIlRD

1~7 Ul
EN ADDR.

DACKO ..
1l1otH2
RD_ RD. -. ~ .
MSEOP.

..... IL. %" ~ a
'+ r5V ~ii:~ii:.~~!!:~ii:

CII ~ii~iii~a:2"'~ii
lNXXXX SIP1C

L-____ ------~----+_~~~~~
CRNNN 10Kt

RNNN

XXXXI ASTB

... • z

SI 5

292066-17.

l

):0

l'
Co)
Co) ...

inter AP·331

Parts List
Type Vee Gnd Pins

Reference

IC1 82592 1,44,43 21,22,23 44 (PLCC)
IC2 74ALS573 20 10 20
IC3 74LS245 20 10 20
IC4 74ALS573 20 10 20
IC5 74 LS245 20 10 20
IC6 82S123 16 8 16
IC7 82C37A 31 20 40
IC8 74LS688 20 10 20
IC9 74ALS574 20 10 20
IC10 74ALS574 20 10 20
IC11 74ALS574 20 10 20
IC12 74ALS573 20 10 20
IC13 74LS245 20 10 20
IC14 74LS244 20 10 20
IC15 74LS74 14 7 14
IC16 74LS393 14 7 14
IC17 74AS174 16 8 16
IC18 PAL20L10 24 12 24
IC19 PAL20L 10 24 12 . 24
IC20 PAL20L10 24 12 24
IC21 PAL20L10 24 12 24
IC22 OSC8MHz 14 7 14
IC23 . 74LS164 14 7 14

·IC24 74LS688 20 10 20
IC23 27256 28 14 28
SPARE1 74LS163 16 8 16
SPARE2 DIP SWITCH 10
SIP1 10K 1 10
SIP2 10K 1 10
SIP3 10K 1 10
JP1 10 pin jumper
JP2 12 pin jumper
JP3 10 pin jumper
JP4 3 pin jumper
JP5 16 pin jumper
JP6 12 pin jumper
RR1 13K%W.
RR2 1K%W
RR3 1K%W
C1 100,...F/16V
C2 100,...F/16V
C3-C20 0.1,...F
P18 IBM CONN. 803,829

801,810,83162

1-416

inter AP-331

APPENDIX E
FLOWCHARTS AND PROGRAM LISTINGS

292066-18

Driver Broadcast Packet-Driver Send Packet

Decrement Fragment Count
292066-19

Start Send

1-417

intJ AP-331

IPX Hold [vent

292066-20

Driver Poll

1-418

Ap·331

292066-21

DriverlSR

1-419

inter AP-331

292066-22

RcvdPacket

1-420

inter Ap·331

292066-23

1-421

inter AP-331

292066-24

Deliver Packet

1-422

inter AP-331

292066-25

Sent Packet

1-423

$mod186
$nogen

AP-331

;**tittttttt __ _

IIIII! FOR EVALUATION PURPOSES ONLY IIIIII

NetWare Driver for the Intel Non Buffered Master adapter.

Written by Ben L Gee.

Based on Joe Dragony's driver for the LAN-On-Motherboard Module.

;*******~.**********************.***************** •• **ttttttt,ttttt*_

name Shell_Module

false equ 0
true equ 1

$ include (relid.ine)
$inelude(smaero.ine)

het (V2_l, 1)

het (V2_0, 0)

'*define(slow) local label
jmp short 'label

Uabel:

'*define(fasteopy) local label (
shr ex, 1
rep movsw
jne Uabel
movsb

Uabel:

'*define (ine32 m) ,(
add word ptr 'mID], 1
ade word ptr tm[2], D

1-424

292066-26

inter

;;;;;I;;;i;;;II;;;;;;;;;;;;;;;

Data Structures
iii;;;;;;;;;;;;;;;;;;;;;;;;;;;

ECBStructure struc
Link dd 0
ESRAddress dd 0

db 0
db 0
dw 0
db 4 dup (0)
db 0

11 dup (0)
6 dup (0)

dw 1

InUseFlag
CompletionCode
SocketNumber
IPXWorkspace
Transmitting
DriverWorkspace db
ImmediateAddress db
FragmentCount
FragmentDescriptorList db 6 dup (1)

ECBStructure ends

FragmentDescriptor struc
FragmentAddress dd ?

FragmentLength
FragmentDescriptor ends

rx_buf_structure strue
rx_dest_addr
rx_source_addr
rx-physical_Iength
rx_checksum
rx_length
rx_tran_eontrol db 1
rx_hdr_type
rX_dest_net
rx_dest_node
rX_dest_socket
rx_source_net
rx_source_node
rx_source_socket dw 1

rx_buf_strueture ends

tei_status strue
statusO db

db
statusl db?

db1
bc_Io

db1
bc_hi

db 1

tci_status ends

db

db 1

dw ?

db6 dup (1)

db 6 dup (1)
dw 1

dw
dw 1

db 1

db4 dup (1)

db 6 dup (1)

dw
db 4 dup (1)

db 6 dup (7)

AP-331

292066-27

1-425

inter

ipx_header_structure struc
checksum dw
packet_length
transport_control
packet_type
destination_network
destination_node db
destination_socket
source_network
source_node
source_socket

dw
db

db 7
db 4

6 dup (7)
dw 7
db 4
db6

dw ?

dup (7)

dup (7)
dup (7)

ipx_header_structure ends

CGroup

Code

group Code, mombo_init

assume cs: CGroup, ds: CGroup

segment word public 'CODE'

public DriverSendPacket
public OriverBroadcastpacket
public Dri~erOpenSocket
public DriverCloseSocket
public DriverPoll
pubUc DriverCancelRequest
public DriverOisconnect
public SDriverConfigurstion
public DriverISR

public LANOptionNams

extrn IPXGetECB: NEAR
extrn IPXReturnECB: NEAR
extrn IPxReceivePacket: NEAR
extrn IPXRece1vePacketEnabled: NEAR
extrn IPXHoldEvent: NEAR
extrn IPXServiceEvents: NEAR
extrn IPXlntervalMarker: word
extrn MaxPhysPacketS1ze: word
extrn ReadWritecycles: byte
extrn IPXStartCriticalSection: NEAR
extrn IPXEndCriticalSection: NEAR

AP-331

292066-28

1-426

inter AP-331

Define Hardware Configuration

ConfigurationID db 'NetWareDriverLAN WS

SDriverConfiguration LABEL byte

db 4 dup (0)
db 6 dup (0)

db 0
db 0 address is determined at initialization node_addr_type

max_data_size
lan_desc_offset
lan_hardware_id
transport_time

reserved_3
major_version
minor_version
flag_bits

dw 1024 I largest read data request wi~l handle (512, 1024, 2048, 4096)
dw LANOptionName
db 'LanType
dw 1 ; transport time

db 11 dup (0)
db tMajorVersion
db tMino'rVersion
dbO

selected_configuration db ; board configuration '(interrupts, 10 addresses, etc.)
number_of_configs db 10
config-pointers dw CFGO, CFG1. CFG2, CFG3, CFG4

dw CFG5, CFG6, CFG7. CFG8, CFG9

LANOptionName 'db' Intel '
db 'Non Buffered Master'
db' (For Evaluation Only)'
db' VtMajorVersion.tMinorVersion'
db ' (tVersionDate)'
db O. ' $'

Hardware Setting table ,structure

HardwareStructure struc

H_IOBase dw
H_IOLength dw
H_Auxl dd

tif (tV2_1) then (

db

)fi
H_RAMsegment dw
H_RAMSize dw unsigned

Uf (tv2_1) then (

db

)fi

H_Aux2 dd
H_IRQUsedFlag db
H_IRQ db
"_Aux3 dw
H_DMAOUsedFlag db

H_DMAO db

1·427

292066-29

inter Ap·331

H_DMA1UsedFlaq db ?

H_DMAl db ?

'if ('V2_11 then
H_Flaql db ?

H]laq2 db
If!

H_Descrlptlon db
HardwareStructure ends

'*deflne(CFG(pl,p2,p3,p4,ml,m2,m3,m4,11,12,13,14,dl,d2,d3,d4,fl,f2,msql) (label byte
dw 'pl, 'p2, -'p3, tp4
tif (tV2_1I then (db 0) £1

dw 'ml
tif (tV2_01 then dw 'm2 * 16 If!
tif ('V2_11 then dw tm2 If!
tif ('V2_1) then (db 0 I fi

dw 'm3
tif (tV2_01 then (dw tm4 * 16 f!
tif ('V2_11 then I dw tm4 f!
db '11, '12, '13, '14, 'dl, td2, 'd3, 'd4
tif I"V2_11' then (db tfl, U2) f!
''If ('pl ne 01 then (

db 'I/O Base - "pl'
'if l"p3 ne 0) then

db ' and tp4'
If!
'If (Itm2 ne 0) or (tl1 ne 0) or ,"dl ne 0» then (

db "
)£1

f!
'If '''m2 ne 0) then ,

db 'RAM Base - tml'
'If l'm4 ne 01 then (

- db ' and 'm3'
)f!
'if «'11 ne 01 or ,'dl ne 01) then (

db '
) fi

)f!
'If I'il ne 0) then (

db ' INT - t12'
'If ,'i3 ne 0) then

db ' and \14'
)£1

'if Itdl ne 0) then

db "
If!

)f!

1-428

292066-30

tif (tell ne 0) then (
cIb ' DMA = tel2'
tif (tel3 ne 0) then

elb ' anel 'el4'
) fi
f1

elb 'msq, °

I/O Memory Int

AP·331

DMA flaqs
CFGO tCFG(300h,16,O,O,O,0,O,O,-1,lO,O,O,-l,6,O,O,O,0,")
CFG1 tCFG(310h,16,O,0,0,O,O,0,-l,ll,O,0,-1,1,O,O,0,0,")

.CFG2 tCFG(300h,16,0,O,0,0,O,O,-1,12,0,O,-1,5,O,O,0,O,")
CFG3 tCFG(310h,16,O,0,0,0,0,O,-1,14,0,O,-1,6,0,O,0,O,")
CFG4 tCFG(300h,16,O,0,0,0,0,0,-1,15,0,0,-1,1,O,0,O,0,")
CFG5 tCFG(310h,16,O,0,0,0,0,0,-1,10,0,0,-1,5,0,0,0,0,")
CFG6 tCFG(300h,16,O,O,O,0,0,0,-1,11,0,0,-1,6,0,0,0,0,")
CFG1 tCFG(310h,16,0,0,0,0,0,0,-1,12,0,0,-1,1,0,0,O,O,")
CFGS tCFG(300h,16,O,0,O,O,O,O,-l,14,O,0,-1,5,O,0,O,O,")
CFG9 tCFG(310h,16,O,O,O,O,O,O,-1,15,O,O,-l,6,0,O,O,O,")

even

;***

Error Counters

i-*----*·**-----*-*---**-**·_-*------_· __ ·_*· __ ·_*------­
Public DriverDiaqnosticTable, DriverDiaqnosticText

DriverDiaqnosticTable LABEL byte

DriverDebuqCount
DriverVersion
StatisticaVeraion
TotalTxPacketCount
TotalRxPacketCount
NOECBAvailab1eCount
PacketTxTooBiqCount
PacketTxTooSmallCount
PacketRxOverflowCount
PacketRxTooBiqCount
PacketRxTooSmallCount

elw DriverDebuqEnel-DriverDiaqnosticTable
cIb tMajorVersion, 'MinorVersion
cIb 01, 00
elw 0, 0'

elw 0, a
elw a
elw -1 not useel

elw -1 not useel
elw a
elw a
elw a

PacketTxMiscErrorCount elw -1 not useel
PacketRxMisoErrorCount elw ° RetryTxCount elw 0

ChecksUmErrorCount elw -1 I not useel
HarelwareRxMismatchCount elw 0

NumberOfCustomVariables elw (DriverDiaqnosticText-DriverDebuqEnel1)/2

DriverDebuqEnel1 LABEL byte

1-429

292066-31

intJ

I;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
Driver Specific Error counts

i;;:;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;ll:

false_59a -int .dw a
no_ers dw a
no_ets dw a
lost_rx dw a
MaxCollisions dw a
no_59a_int dw a
rx_buff_ovflw dw a
ten_cent -latch_crash dw a
tx_timeout dw a
underruns dw a

DriverDiaqnosticText LABEL byte

db 'False59alnterruptCount',
db ' LostCRSCount' , 0

db 'LostCTSCount' , a
db 'LostOurRecelverCount', 0
db , MaxCollisionsCount', 0
db 'No590InterruptCount', a
db 'ReceiveBufferOverflow',a
db , TencentLatchCrashCount',
db , TxTimeoutErrorCount', a
db 'UnderrunCount', a

db a, a

DriverDebuqEnd LABEL word

even

I;;;;;;;;;;;;;;;;;;;
Equates

I;;;;;;;;;;;;;;;;;;;

CR equ ODh
LF equ aAb

TransmitHardwareFailure equ aFFh
Packet UnDeliverable equ OFEh
PacketOverflow
ECBProcessinq
TxTimeOutTicks

Adapter I/O

Addr592
IA_PROMyort
AddrLatchLow
AddrLatchHiqh
LimitReqister

ports

equ OFDh
equ OFAb
equ 10

dw aSh
dw aah
dw ach
dw Odh
dw Oeh

a

a

AP-331

+ IOBase (I/O)
+ IOBase (I)

+ IOBase (I)
+ IOBase (I)
+ IOBase (I/O)

292066-32

1-430

inter AP-331

8259 definitions

InterruptControlPort
InterruptMaskPort

ExtralnterruptControlPort
ExtralnterruptMaskPort
EOI egu

8237 definitions

equ 020h
equ 021h

equ OAOh

equ OAlh
020h

; Command Register
RotatingPriority
ExtendedWrite
ActiveLowDREQ

equ OlOh
equ 020h
equ 040h

; Mode Register
WriteTransfer

ReadTransfer

AutoInitialization
DemandMode
CascadeMode

DMAcmdstat
DMAsnglmsk

DMAmode
DMAff

XmtDMApage
XmtDMAaddr
XmtDMAwdcount

RcvDMApage
RcvDMAaddr
RcvDMAwdcount

even

MasterDMAcmdstat
MasterDMAsnglmsk
MasterDMAmode
MasterDMAff

MasterDMApage
MasterDMAaddr
MasterDMAwdcount

equ OOOOOlOOb
equ OOOOlOOOb
equ OOOlOOOOb
equ OOOOOOOOb
equ llOOOOOOb

dw OOlh
dw 005h

dw 007h
dw 009h

dw OOah
dw OOOh
dw 002h

dw OOch
dw 004h
dw 006h

equ ODOh
equ OD4h
equ OD6h
equ ODSh

dw
dw OcOh
dw Oc2h

+ IOBase

+ IOBase
+ IOBase
+ IOBase

+ IOBase
+ IOBase
+ IOBase

+ IOBase
IOBase

+ IOBase

(I/O)
(0)

(0)

(0)

(0)

(I/O)
(I/O)

(0)

(1/0)

(I/O)

XmtDMAtx
XmtDMAmsk
XmtDMAunmsk

db DemandMode + AutoInitialization + ReadTransfer
db 4

RcvDMArx
RcvDMAmsk
RcvDMAunmsk

db 0

db DemandMode + AutoInitialization + WriteTransfer + 1
db 4" + 1
db 0 + 1

1-431

292066-33

inter-

MasterDMAmodevalue
MasterOMAmsk
MasterOMAunmsk

82592 commands

C_NOP
C_SWP1
C_SELRST
C_SWPO
C_IASET
C_CONFIG

equ OOh
equ 10h
equ OFh
equ 01h
equ 01h
equ 02h
equ 03h

equ 04h
C_MCSET
C_TX
C_TDR
C_DUMP
C_DIAG
C_RXENB
C_ALTBUF
C_RXOISB
C_STPRX
C_RETX
C_ABORT
C_RST
C_RLSPTR
C]IXPTR
C_INTACK

equ 05h
equ 16h
equ 07h
equ 18h
equ 09h
equ lAb

equ 1Bh
equ OCh
equ OOh
equ OEh
equ OFh
equ 1Fh
equ 80h

db CascadeMode
db 4

db 0

I;;;;;;;;;;;;;;;;;;;;;;;;;;

Variables
;;;;:;;;;;;;;;;;;;;;;;:;;;;

even

gp buf size equ 600 in words

Ap·331

max_rx_buf_size equ 2200 in words
gp_buf dw gp_buf_size + max_rx_buf_size dup (1)
gp_buf-pointer dd 1

gp buf start dw
gp_buf-page dw ?

tx_byte_cnt dw 1

rx_buf_start dw 1

rx_buf-page dw
rx_buf_head dw ?

rx_buf_taU dw 1

rx_buf_length dw
rx_buf_segment dw 1

rx_buf_first dw ?

rx_buf_limit dw
rx_buf_size dw ?

Logica12Physical dw
rx_list dw 30

A1-A16 of General Purpose Buffer EA
A17-A23 of General Purpose Buffer EA
IPX packet length plus header length
A1-A16 of Receive Buffer EA
A17-A23 of Receive Buffer EA
current rx head, buffer has been flushed to here
value read from 10 cent latches
word size of rx_buf
calculated at init-for use by IPXReceivePacket
offset from rx_buf_segment of start of rx_buf
offset from rx_buf_segment of limit of rx_buf
byte size of rx_buf

? add this to convert from rx_buf_segment to rx_buf-psge
dup (1)

1·432

292066-34

inter AP-331

paddinq
SencIList

dw ?

dd 0 paints to list of ECBs to be sent
tx Btart_time dw 0
tx_active_flaq db 0

.;***.**************

Interrupt Procedure

;*t _____ ** _______ * ___ * _______ ***_* ______________ *. ___ ***************

even

DriverISR PROC far

pusha
push ds
push es
may ax, cs
mov ds, ax
moves, ax

mav al, EOI

DS points to C/DGroup
ES also

aut InterruptControlPart, al
out ExtraInterruptContralPart, al

mav dx. Addr592
may al, 0

out dx, al
'slow
in al, dx

test al, BOh
Ufz

inc
'else

'do

no 590 int
, -

and al, NOT 20h
maY ah, al
cmp ah, ODBh
Ufe

call RcvdPacket

'else
cmp ah, B4h

'He
call SentPacket

'else

set status req to paint to req 0

iqnare the EXEC bit
save the status in AU
did I receive a frame?

did I finish a transmit?

cmp ah, Bch '1 did I finish a retransmit?
Ufe

call SentPacket
'elae

inc falae_590_int ; unwanted interrupt
tendH

'endif
'endH

1:433

292066-35

push cs
pop ds

AP-331

cmp tx_active_flag, false
tife

: verify that our receiver is still going.
mov dx, Addr592
mov al, 60h : point to status byte 3
out dx, al
blow
in .. 1, dx
test'al, 60h
Ufz

inc lost_rx
mov al, C_RXENB
mov dx, Acidr592
out dx, al

hndif
'endif

mov dx, Addr592
mov al, C_INTACK
out dx, al

blow
xor al, al
out dx, al
hlow
in al, dx
test al, BOh

hhUenz
tendif

call IPXServiceEvents

pop es
pop ds
popa
iret

issue interrupt acknowledge to the 590

set status reg to point to reg 0

DriverISR endp

even

RcvdPacket proc near

When the address bytes are being read it is possible that·
another frame could come in and cause a coherency problem
with the ten-cent latches. I .. m dealing with this
possibility by reading AcidrLatchHigh twice and making
sure the'values match. If they don't the read is redone.

cli
mov dx, AddrLatchHigh read high address byte of last frame received
in al, dx

1·434

292066~36

'do
mov bh, al
mov dx, AddrLatchLow
in al, dx
mov bl, a1

Ap·331

save it in bh
read low address byte of last frame received

; Read AddrtatchHigh again to make sure it hasn't changed •••••••
mov dx, AddrtatchHigh ; read high address byte again
in al, dlt
cmp a1, bh

'lwhilene

shl bx, 1 ; convert to byte address
sub bx, Logical2fhysical I bx - magic - physical - (physical-logical)

logical

mov ai, bx
call Norma1izefointer
cmp bx, a1

this is the last location contai,ning rlt data
normalize si

Ufne

was it already a valid pointer 1

if not, big trouble •••
inc ten cent latch_crash

'elsel
'do

moves, rx_buf_segment
mov ch, ea: [ail get bc_hi
sub si, 2
call Normalizefointer
mov cl, es: [si]

aub si, 2
call NormalizePointer
mov ah, es: [ail
sub si, 2
call Norma11zePointer
mov a1, es: [si]

get statual

; get atatuaO

I cx haa actual number of bytes read
dec cx' ; toss byte count , atatus

round up and c1, Ofeh
Bub si, ex si points to first location of frame
call Normal1zePo1nter
mov bx, a1 aave in bx

test ah, 20h
'lfz

test for good receive
bad receive

inc facxetRxH1acErrorCount
jmp ahort Sk1pThiaFrame

telidif good rece1ve

sub cx, 14 sub length of 802.3 header

cmp cx, 1024 + 64

Ufa
inc PacketRxTooBigCount
jmp short SkipThisFrame

'endif

1-435

292066-37

intJ

Chip cx, 30

Ufb
inc PacketRxTooSmallCount
jmp short SkipThisFrame

'endif

lea si, [bx].rx_length
call NormalizePointer
mov ax, es: [si]
xchg al, ah
inc ax
and al, Ofeh
xchq al, ah

get IPX length

lea 8i, [bx].rx-physical_length
call NormalizePointer

AP-331

cmp ax, es: [si] ; same as 802.3 lenqth
Ufne

inc HardwareRxHismatchCount
jmp short SkipThisFrame

'endif
xchg al, ah
cmp ax, 60 - 14 at least min lenqth minus header
tifbe

mov ax, 60 - 14

'endif
DO, round up

cmp ax, ex
'ifne

match physical lenqth

inc HardwareRxHismatchCount
'else

mov di, num_of_frames
add di, di
mov rx li.t[dil, bx ; first location of ethernet frame

c-
inc num_of_frames
cmp num_of_frames, length rx_list
je hand_off-packet

.endif
Sk!pThisFrame:

movai, bx
cmp rx_buf_head, ai
je hand_off-packet
sub si, 2
call NormalizePointer

• forever
hand_off-packet:
~end1f

cli
mov di, num_of_frames
add di, di
Ufnz

'do
sub di, 2
mov ai, rx_list'(dil

first frame of sequence 1

yes, go process list

no, continue processing frames

lea si, [si].,rx_dest_socket

1-436

292066-38

intJ

call NormalizePointer
maves, rx_buf_segment
mov ax, es: (si)

call IPXGetECB
Ufnz

call DeliverPacket
hndif
dec num_of_frames

'whilenz
'endif

; update the limit reqister
mov dx, LimitReqister
1n al, dx
test aI, 1

\ifnz
inc rx_buff_ovflw

hndif
mov si, rx_buf_tail
sub 31, 256
call NormalizePo1nter
mav ax, 51
add ax, Loqical2Physical
mov al, ah
out dx, al

mav 51, rx_buf_tall
add si, 2
call Normal1zePointer
mov rx_buf_head, 8i
ret

RcvdPacket endp

even
DellverPacket proc near

push di
mav di, rx_list[di)
mov bp, si
xchq si, di
may ds, rx_buf_segment
assume ds: noth1nq
add d, 6
lea d1, (d1).Immed1ateAddress
call NormalizePointer
movsw
call NormalizePointer
movsw
call NormalizePointer
movsw
add si, 4

AP-331

just for the record

move new limit value to ax
convert to physical address
only need bits Al5 •• A8
store it in the limit reqister

set rx_buf_head to new value for next receive

copy ecb offset to bp
es:di ecb
ds:s! - packet

skip destination address

; skip etype and checksum
call NormalizePointer
mov dx, ds: (si) ; qet lenqth from IPX header

1-437

292066-39

AP-331

xchq dh, dl
sub si, 2 point to checksum
call NormalizePointer
moy di, bp·

disburse the packet

ds:si = packet data source
es:bp - ECB
ax fraqment count
dx - amount of data in source
bx - pointer to the FraqmentDescriptorList
cx = size of this fraqment

moy cx, es: [bp).FraqmentCount
lea bx, [bp).FraqmentDescriptorList

'do
push es
push cx
moy cx, es: [bx].FraqmentLenqth
les di, es: [bx).FraqmentAddress

moy ax, rx_buf_l1mit
sub ax, si

cmp ax, ex
lifb

cx = amount to copy xchq cx, ax
sub ax, ex ax - amount not copied

cmp dx, cx
Ufb

moy ex, dx

'endif
sub dx, ex

'fastcopy
moY si, rx_buf_first
mov ex, ax

tendif

cmp dx, cx
Uib

mov ex, dx
tendif
sub dx, cx

'fastcopy
pop cx
pop es
add bx, 6

Uoop

1~438

292066-40

inter

; deliver the ECB
mov si, bp
moves: [sij.CompletionCode, 0
push cs
pop ds
assume ds: CGroup
'inc32 TotalRxPacketCount
call IPXHoldEvent
pop di
ret

DeliverPacket endp

even

input:
si = pointer into rx_buf

output:
si a valid pointer into rx_buf
no other registers modified

NormalizePointer proc near

cmp si, cs: rx_buf_first
Ufae

cmp si, cs: rx_buf_limit
tifb

ret
%endif
sub si, cs: rx_buf_size
ret

tendif
add si, cs: rx_buf_size
ret

NormalizePointer endp

even
SentPacket proc near

eli
cmp tx_active_flag, true
tHe

in al, dx
mov ah, al
hlow
in aI, dx
xch9 ah, al
test ah, 20h
Ufz

AP-331

292066-41

1·439

AP-331

test al, 20h
Ufnz

Max collisions?1

inc MaxCollisions
'endif
test ah. Olh
Ufnz

Tx underrun?1

inc underruns
'endif
test ah. 02h
Ufnz

did we lose clear to aend??

inc no_cts
\endif
test ah. 04h
Ufnz

did we lose carrier sense??

inc no_crs
'endif
may al, TransmitHardwareFailure

'else
; extract the total number of retries from the status
and ax. OFh register and add to retry count
add RetryTxCount. ax
xor ax, ax

'endif
status - O. good transmit

may cx. word ptr SendList[2]
'ifcxnz

mav 8a, ex
mov si, word ptr SendList[O]
cmp es: [si].Transmitting. true
Ufe

segment of next sca in list
offset of next sca in list
I if not canceled

mayes: [si].CompletionCode. al
movax. ea: word ptr [si].Link[O]
mav ward ptr SendList[O]. ax
moyax. e8: word ptr [si].Link[2]
moY word ptr SendList[21. ax
; finish the transmit
moves: [si].InUaeFlag. 0
call IPXHoldEyent

'endif
'endif

mav tx_actiye_flag. false
may cx. ward ptr SendListl2]
'ifcxnz

mav ea, ex
maY si. word ptr SendList[O]
call StartSend

'endif
tendif
ret

Sent Packet endp .

segment of next sca in list
offset of next sca in list

1·440

292066-42

intJ

Driver Send Packet
Driver Broadcast Packet

Assumes

Ap·331

es: 51 points too a fully prepared Event Control Block

DS - CS
Interrupts are DISABLED but may be reenabled temporarily if necessary

don't need to save any reqisters

even

DriverBroadcastPaeket:
DriverSendPacket PROC NEAR

moves: [sil.Transmitting. false

mov cx. word ptr SendList[2)

Ufcxnz
; search to the end of the list. and add. there.
mov di. word ptr SendList[Ol

'do
mov ds, ex
mov cx. ds: word ptr [dil.Link[21
jcxz AddListEndFound
mov di. ds: word ptr [d11.Link[Ol

'forever

AddListEndFound:
mov es: word ptr [sil.Link [01.

mov es: word ptr [sil .Link [2).

mav ds: word ptr [di).Link[O).

mov ds: word ptr [dl).Llnk[2).

mav ax. es

cx move null pointer
ex l1n~ field
si
es

to newest SCB's

mov ds. ax ; set ds back to entry condition

ret
'endif

moves: word ptr[si).Link[O). cx
moves: word ptr[si).Link[2). cx
mov word ptr SendList[O). s1
mov word ptr SendL1st[21. es
; drop through to Start Send

DriverSendPacket endp

Start Send

assumes:

es: SI points to the ECB to be sent.
interrupts are disabled

1-441

292066-43

inter AP-331

even
StartSend PROC NEAR

old
moves: (si].Transmittinq, true
push ds I save ds for future use
I qet IPX packet le~qth out of the first fraqment (IPX header)
lds bx, es: dword ptr (si].FraqmentDescriptorList
mov ax, ds: (bx].packet_lenqth
pop ds ; restore ds to CGROUP

push ax
xchq al, ah
add ax, 18

save lenqth for later use in 590 lenqth field
byte swap for 592 lenqth field calculation
add in the overhead bytes DA, SA, CRC, lenqth

mov paddinq, 0
I cmp ax, 64

Ufb
mov paddinq,
sub paddinq,

64

ax

minimum lenqth frame
pad lenqth

moV ax, 64

tendif
sub ax, 10 SA and CRC are done automatically

inc ax
and al, OFEh frame must'be even
mov tx_byte_cnt, ax
lea ~:. qp_buf-pointer
I move the byte count ~nto the transmit buffer
stosw
I move the destination address from the tx ECB to the tx buffer

mov bx, si
lea si, [bx].ImmediateAddress
mov dB, word ptr SendList[2]
movsw
movsW

mOVSN

mav ax, cs qat'back to the code (Dqroup) section

mov dB, ax

; now the 590 lenqth field
pop ax
xchq ah, al
inc IIX

and al, OFEh
xchq ah, al
stosw

make sure E-Net lenqth field is even

lds si, SendList
movax, ds: (ai].FraqmentCount
lea bx, [ail .,FraqmentDescriptorList

'do
push ds, ; save the seqment
mov cx, ds: [bx].FraqmentLenqth
lds si, ds: [bx].FraqmentAddress
Hastcopy
pop ds ; qet the seq~nt back

1-442

292066-44

add bx,
dec ax

'whllenz
; start transmitting
mov ex, cs
mov ds, ex
; add any required padding

AP-331

mav ex, 4 ; make sure frame ends with a NOP

add cx, padding
shr cx, 1
rep stosw
mov tx_active_flag, true

mov dx, DMAff
out dx, al data is don't care

mov dx, XmtDMAaddr
mov al, byte ptr gp_buf_start[Oj
out dx, al
mov al, byte ptr gp_buf_start[lj
out dx, al

mov ax, gp_bufJ>age
mav dx, XmtDMApage DMA page value

out dx, al

mov al, XmtDMAtx; setup ohannel 1 for tx mode

mov dx, DMAmoda
out dx, al

mov ax, tx_byte_cnt
inc ax convert to word value
shr ax, 1 byte DMA transfer
mov dx, XmtDMAwdcount
out dx, al
hlow
mav d, ah
out dx, al

mov al, XmtDMAunmsk
mov dx, DMAsnglmsk
out dx, al

mov dx, Addr592
mov al, C_TX
out dx, al

mov ax, IPXIntervalMarker
mov tx_start_time, ax
tinc32 TotalTxPacketCount

ret

StartSend endp

1-443

and account for odd

292066-45

AP-331

DriverOpen5Dcket:
DriverDiscDnnect:

ret

;**

DriverpDll

PDll the driver to, see if there is anything to, do,

Is there a transmit timeDut? If so" abDrt transmissiDn and return
ECB with bad cDmpletiDn cDde. Check to, see if frames are queued.
If they are set up es: 51 and call DriverSendPacket.

;**

even
DriverPDll PROC NEAR

cmp tx_active_flag, true
Ufe

mDv dx, IPXIntervalMarker
sub dx, tx_start_time
cmp dx, TxTimeOutTicks

tHa
1 This transmit is taking tDD IDng so, let's terminate it nD,w
mDV tx_active_flag, false

; Issue an abDrt to, the 82592
mDV dx, Addr592
mDV al, C_ABORT
Dut dx, al

abDrt transmit'

inc tx_timeout
mDV cx', wDrd ptr SendList [2]
tifcxnz

mav es. ex
mov si, word ptr 5endList[O)
cmp es: (ai).Transmitting, true
Ufe

segment of next 5ca in list
offset of next sca in list
if not canceled

moves: [si].CDmpletionCode, TransmitHardwareFailure
mDvax, es: wDrd ptr [si).Link[O)

stuffcDmpletion cDde Df
a f~iled tx

mov wDrd ptr 5endLiat(0), ax
mDvax, es: wDrd ptr [si).Link[2)
mDV wDrd ptr SendL1st[2], ax

; Finish the transmit
mOVes: [si).InUseFlag, 0

call IPXHDldEvent
tend if

'endif

1-444

292066-46

inter Ap·331

; make sure that execution unit didn't lock up because of abort errata

mov dx, Addr592
mov al, C_SlIPl
out dx, al
mov al, C_SELRS'l'
hlow
out dx, al
mov al, C_SIIPO
hlow
out dx, al
mov al, C_RXENB
'slow
out dx, a1

: See if any frames are queued
mov ex, word ptr SendList[2]
Ufcxnz

moves, cx : segment of next SCB in list
mov si, word ptr SendList[O] ; offset of next SCB in list
call StartSend

hndif
hndif

tendif
ret

Dri verPoll endp

Driver Cancel Request

Assumes on entry:
es: SI is pointer to ECB we want to cancel

DS is setup
Interrupts are DISABLED

Assumes any registers may be destroyed.

Returns completion code in ALI

00 Buffer was located and canceled.
FF Buffer was not found to be in use by the driver

even

DriverCancelRequest proc near

: first, see if it is the one we are currently sending.
mav dx, es
cmp word ptr SendL1st[0], s1
Ufe

cmp word ptr SendList[2], dx
Ufe

we need to cancel tbe first entry. first, unlink it
from the send list.

movax, es: word ptr [si].Link[O)

1-445

292066-47

inter

mov word ptr SendList[O). ax
mov ex. es: word ptr [si).Link [2)
mov word ptr SendList[21. ex
mov e8: [si).CompletionCode.
mov es: [si).InUseFlag.
xor ax. ax
ret

\endif
'endif

0

OFCh

AP~331

; we need to search down the send list
movex. word ptr SendList[2)
mov di. word ptr SendList(O)

'do
'do

jexz Not Found
; move to the next link
mov ea, ex
mov bx. di
movex. es: word ptr [bx).Link(2)
mov di. es: word ptr (bx).Link(O)

next node is pointed to by CX:DI
; previous node is pointed to byes: BX
; see if we found it
emp di. si

hhUenz
cmp ex. dx

hhUen,z

; we found it. now unlink it.
push ds
mav ds, ex
movax. ds: word ptr (si).Link(O)
moves: word ptr (bx).Link(O). ax
movax. ds: word ptr [si).Link(2)
moves: word ptr [bx).Link(2). ax
mov ds: (si).CompletionCode. OFCh
mov ds: [si).InUseFlag. 0
pop ds
xor ax, a~

ret

NotFound:
mov al. OFFh
ret

DriverCaneelRequest endp

1-446

292066-48

intJ

Driver Close Socket

Assumes on entry:

even

DX has socket number
DS is setup
Interrupts are DISABLED

Assumes any registers may be destroyed.

DriverCloseSocket proc near

mov cx. word ptr SendList[2]
jcxz DriverCloseExit
les si. SendList
~do

cmp es: [si].SocketNumber. dx

Ufe
push dx
call DriverCancelRequest

pop dx
jmp DriverCloseSocket

~endif

mov cx. es: word ptr lsi] .Link[2]
jcxz DriverCloseExit
les si. es: [si].Link[O]

Horever
DriverCloseExit:

ret

DriverClosesocket endp

Code ends

mombo_init ~egment 'CODE'

AP-331

public Driverlnitialize, DriverUnHook
no_card_message db CR, LF, 'No adapter installed in PC$'
config_failure_messagedb CR. LF. 'Configuration Failure$'
iaset_failure_message db CR, LF. 'IA Setup Failure$',

DMAPageRegisters

con fig_block dw 15
db 48h
db BOh
db OOlOOllOb

1 2 3 5 6 7

db 87h, 83h. 81h. 82h. Bfh. Bbh. 89h. 8ah

; 0 •• 1: byte count
2: High-Speed Mode. Fifo Limit - 8
3: TCI mode
4:

1-447

292066-49

AP-331

db OOh 5:
db 96 6: Interframe Spacing
db OOh 7:
db OF2h 8:

db OOOOOOOOb 9:

db OOh 10:'
db 64
db 1111011lb

11:
12:

Minimum Frame Size
Auto Restransmit

db OOh 13:
db 3Fh 14 :
db 87h 15:
db ODOh 16:
db OFFh 17:

InterruptB1t db
InterruptMask db

even
OldIRQVector dd 1

InterruptMaskRegister dw 1

InterruptVectorAddress dd

Driver Initialize

assumes:
DS, ES are set to CGroup (-- CS)
DI points to where to stuff node address
Interrupts are ENABLED
The Real Time Ticks variable is being set, and the
entire AES system is initialized.

returns:
If initialization is d~ne OK:

AX has a 0
If board malfunction:

AX gets offset (in CGroup) of '$'-terminated error string

DriYerInitialize PROC NEAR

moy MaxPhysPacketSize, 1024
cld
c11

; initialize the configuration table
mov al, selected_configuration
cbw
shl ax, 1 ; multiply by two
mov bx,
moY bx,
mov ax,

ax
config-pointers/bx]
[bx] .R_IOBase

add Addr592, ax
add AddrLatchLow, ax
add AddrLatchRigh, ax

1-448

292066-50

add L!m!tRegister, ax
add DMAcmdstat, ax
add DMAsnglmsk, ax
add DMAmode, ax
add DMAff, ax
add XmtDMAaddr, ax
add XmtDMAwdcount, ax
add XmtDMAPage, ax
add RcvDMAaddr, ax
add RcvDMAwdcount, ax
add RcvDMAPaqe, ax
add IA_PROM-port, ax

; setup the dma registers

moval, [bxJ.H_DMAO
cbw
mav si, ax

. AP-331

mov cl, DMAPaqeReqisters[siJ ; qet the page register address
xor ch, ch
mov MasterDMAPage, ex

and aI, 03h
add MasterDMAmsk, al
add MasterDMAunmsk, al
add MasterDMAmodevalue, al
add ax, ax
add ax, ax

~dd MasterDMAaddr, ax
add MasterDMAwdcount, ax

; load the node address
lea si, node_addr
xor ax, ax
mav ex, size node_addr

'do
mov al, ah
mov dx, L1m1tReg1ster
out dx, al
mov dx, IA_PROM-port
in aI, dx
stosb
xchg si, di
stosb
inc ah

Hoop

: save it

tarqets are es:s! and es:di
ah = prom address

set prom address

read prom value
store it at es:di .

and at es:s!
increment prom address

SET UP THE INTERRUPT VECTORS

moval, [bxJ.H_IRQ
mov bx, OFFSET CGroup: Dr!verISR
call Set Interrupt Vector

1-449

292066-51

intJ AP-331

mov dx, Addr592
mov aI, C_RST
out dx, a1 ; reset the 82592 controller

qenerate 20 bit address for DMA controller from
configure block location this is necessary to
accomodate the paqe reqiater used in the PC DMA

call SetUpBuffers

; configure the master channel for cascade mode

mov al,
mov dx,
out dx,

mov aI,
mov dx,
out dx,

mov ai,
mov dx,
out dx,

MaaterDMAmak
MasterDMAsnq1msk
al

MasterDMAmodevalue
MasterDMAmode
al

MasterDMAunmsk
MasterDMAsnqlmsk
a1

disable the channel

qet the mode reqister address
set the mode

; enable the channel

; set up DMA channel for confiqu~e command

mov al, XmtD~sk
mav dx, DMAsnqlmsk
out dx, al

mav a1, RcvDMAmsk
mov dx, DMAsnqlmsk
out dx, al

mov dx, DHAFF
out dx, a1

disable the channel

disable the channel

; data is 'don't care

mov al, ActlveLowDREQ + ExtendedWrlte + RotatinqPriority
mov dx, DMAcmdstat
out dx, a1

mov dx, XmtDMAaddr
mov aI, byte ptr qp_buf_start[OJ
out dx, a1
mov a1, byte ptr qp_buf_start[l]
out dx, a1

mov ax, qp_bufJ'aqe
mov dx, XmtDMApaqe
out dx, al

mov ax,
mov dx, XmtDMAwdcount
out dx, al

DMA paqe value

make two transfers

1-450

292066-52

inter

mov a1,
hlow
out dx,

maY 0.1,

maY dx,
out dll,

may al,
may dll,
out dll,

les di,
stosw
stosw
may dx,
may al,
out dx,
hlow

xor ex,

'do
xor

ah

0.1

XmtDMAtx
DMAmode
al

XmtDMAunmsk
DMAsnglmak
al

gp_buf.J'ointer

Addr592
C_CONFIG
0.1

ex

0.1, al

AP·331

setup tll mode

maY zeroes into the byte count field
of the buffer to put the 82592 into
16 bit made

configure the 82592 for 16 bit made
; issue configure command

out dx, 0.1 point to register 0

hlow
in
and
emP

%!oopne

Ufne

al, dx
al, ODFh
al, 82b

read register 0
disregard exec bit
is configure finished1

maY ax, OFFSET CGroup: no_card_message
ret

hndif

maY al, C_INTACK
out dx, al clear interrupt

maV dx, DMAff
out dx, al data 1. don't care

maY dx, XmtDMAaddr
maY al, byte ptr gp_buf_start[O)

aut dx, al

mov al, byte ptr '1P_buf_start [1)
out dx, 0.1

mov ax, '1P_buf.J>age
may dx, XmtDMApage DMA page value
out dx, al

maY al, XmtDMAtx setup channel 1 for tx mode
maY dx, DMAmode
aut dx, 0.1

1-451

292066-53

mov ax, 8

mov dx, XmtDHAwdcount
out dx, a1
'slow
mav aI, ah
out dx, a1

mov aI, XmtDHAunmsk
mov dx, DHAsnqlmsk
out dX', a1

mov 8i, offset cqroup'
1es di, qp_bufJlointer
mov ex, 18
rep movsb

mov dx, Addr592
mov aI, C_CONFIG
out dx, a1

xor ex, cx
'do

xor aI, a1
blow
out dx, al
blow
in aI, dx
and aI, ODFh
cmp aI, 82h

'loopne

Ufnz

AP-331

config_b1ock

configute the 82592

point to register 0

read register .0
discard extraneous bits
is configure finished?

mav ax, OFFSET CGroup, confiq_failura_messaqe
ret

'endif

; clear interrupt caused by· configuration
mov aI, C_INTACK
out dx, al

; do an lA_setup
les di, 9P_bufJlointer
mov al, 06h
stosb
mov al, COh
stosb
mov si, OFFSET CGROUP, node_addr
mov ex, SIZE node_addr
rep movsb

mav dx, DHAff
out dx, al

add.resa byte count

data is don't care

1-452

292066-54

inter AP-331

mov dx, XmtDMAaddr
mov aI, byte ptr gp_buf_startIOl
out dx, al
mov aI, byte ptr 9P_buf_startlll
out dx, al

mov ax, gp_bufJlage
mov dx, XmtDMApage
out dx, al

mov aI, XmtDMAtx
mov dx, DMAmode
out dx, al

mov ax, 3

mov dx, XmtDMAwdcount
out dx, al
hlow
mov al, ah
out dx, al

mov al, XmtDMAunmsk
mov dx, DHAsnglmsk
out dx, al

mov dx, Addr592
mov aI, C_IASET
out dx, al

xor cx, cx

'do
xor al, al
out dx, al
'slow
in aI, dx
and al, ODFh
cmp al, 8lh

Uoopne

Ufne

DMA page value

setup channel 1 for tx mode

set up the 82592 individual address

discard extraneous bits
is command finished?

mov ax, OFFSET CGroup: iaset_failure_message
ret

'endif

moy al, C_INTACK
out dx, al ; clear interrupt from iaset

;initialize the receive DMA channel

mov dx, DHAff
out dx, al

mov dx, RcvDMAaddr
maY al, byte ptr rx_buf_startIOl set dma up to point to the

1-453

292066-55

inIJ AP-331

out dx, al beginning of rx_buf
mov al, byte ptr rx buf_startI1]
out dx, al

mov ax, rx_buf-page
mov dx, RcvDMApage
out dx, ax

mov al, RcvDMArx
mov dx, DMAmode
out dx, a1

mov dx, RcvDMAwdcount
mov ax, rx_buf_length
dec ax
out dx, al
mov al, ah
blow
out dx, al

I initialize the limit register
mov aX, rx_buf_limit
sub ax, 2
mov bx, rx_buf_seqment
shl bx, 4

set rx page register

add ax, bx compute physical address
mov aI, ab
mov dx, LimitRegister'
out dx, a1

mov aI, RcvDMAunmsk
mov dx, DMAsnglmsk
out dx, al

I 'enable the receiver
mov dx, Addr592
mov al, C_RXENB
out dx, al
at!

xor ax, ax
mov cx, 1
ret

Driverlnitialize endp

unmask receive DMA channel

enable receives

1-454

292066-56

AP-331

,. __ .a ..•. __ • ___ . _____ •••• _* __ • __ • __ •• _._-_._-_._ •• -.-*-*---_ .. _.----_.-.-._-

Set Interrupt Vector

Set the interrupt vector to the interrupt procedure's address.

Save the old vector for the unhook procedure.

assumes: cs:bx is the ISR routine
al has the IRQ level 10 •• 15
interrupts are disabled

;** •• _-----_ ••••••••• _*----**--_._.*----*------_._----*-*-----*._-----_._.---

Set Interrupt Vector proe near

I mask on the appropriate interrupt mask
push ax
xchq ax, ex
mov dl, 1

sub cl,
shl dl, el
mov InterruptBit, dl
not dl
mov InterruptMask, dl

in al, BxtralnterruptMaskPort
and al, dl
hlow
out BxtralnterruptMaskPort, al

mov InterruptMaskReqiater, BxtralnterruptMaskPort

; also mask on level 2 of first controller
in al, InterruptMaskPort
and al, not 4
blow
out InterruptMaskPort, al

pop ax

cld
ebw

xor
mov

add
shl
shl
mov

mov
mov

ex, ex
ea, cx

al, 70h - 8
ax, 1
ax, 1
di, ax

word ptr Inter7uptVeetorAddress[01,
word ptr InterruptVectorAddress[21,

di
as

1-455

292066-57

AP-331

mov ax, es: [di] [0]
mov word ptr OldIRQVector[O], ax
mov ax, es: [di] [2]

mov ward ptr OldIRQVector[2], ax

mav ax, bx
stosw
mav ax, c.

stos"

ret

Set Interrupt Vector endp

Set up Buffers:
This routine generates the page and offset addresses for the 16 bit
DMA. It checks for a page crossing and uses the smaller half of the
buffer area for Tx and general purpose if a crossing is detected. If
no crossing is detected the general purpose/transmit buffer is placed
at the beginning of the buffer area. This routine also generates a
segment address for the receive buffer which allows the value read
from the "10 cent" latches to be used as read for the offset passed
to IPXReceivePacket. This saves same arithmetic steps when tracing
back through the rx buffer chain.

gp_length
gp_offset_adjust

dw gp_buf_size + max_rx_buf_size
dw 0

SetUpBuffers proc near

mov ax,
mov bx,
mov dx,
shr ax,
mov cx,
shl bx,
rol dx,
and dx,
add ax,
adc dx,
xor cx,
sub cx,

cmp ex,

Ufae
jmp

tendif

offset cgroup: gp_buf
cs
cs
1

3

cl
cl
0007h
bx
o
cx
ax

copacetic

get upper 3 bits for page register
clear all but the lowest 3 bits
ax contains A16 •• Al of first location in buffer
if addition caused a carry add it to page
of buffer to page break
cx contains the number of wards to page break

I it's cool, whale buffer space is in one page

1-456

292066-58

inter

cmp cx, 9P_buf_size
tUbe

add ax, ex

sub 9P_length, cx
jmp copacetic

'endU

cmp ex, max_rx_buf_size
Ufae

AP-331

move pointer past the paqe break to discard fraqment
adjust lenqth variable to reflect shorter lenqth
both buffers will be in the same paqe, rx buf shortened

mav 9P_lenqth, cx
jmp.copacetic

'endU

adjust lenqth variable, discard upper buffer fraqment
both buffers will be 1n the same paqe, rx buf shortened

now since both fraqments are usable we have to find the
actual page break. the large half will be the receive
buffer and the small half will be the gp-tx buffer.

cmp cx, (gp_buf_size + max_rx_buf_size) I 2
, Ufbe

; transmit buffer first
mov 9P_buf-paqe, dx
mav gp_buf_start, ax
mov rx_buf_start, OOOOh
inc dx
mov rx_buf-paqe, dx
mov ax, gp_length
sub ax, ex
mov rx_buf_lenqth, ax

'else
; receive buffer first
mav rx_buf-paqe, dx
mav rx_buf_start, ax
mov rx_buf_lenqth, cx
mav qp_buf_start, OOOOh
inc dx
mov 9P_buf-paqe, dx

'end!f
jmp SetUpBuffers_exit

next paqe

next paqe

copacetic:
mav 9P_buf_start, ax
add ax, gp_buf_slze

mav rx_buf_start, ax
mov cx, gp_length
sub cx, gp_buf_size
mov rx_buf_length, cx
mov rx_buf'-page, dx

mav 9P_buf-paqe, dx

SetUpBuffers_exit:
mov ax, gp_buf_start
mav dx, 9P_buf-paqe
shr dx, 1

rcr ax, 1
shr dx,

A1-A16 of qp buffer, qp buffer 1s first
allocate qp_buf at front of buffer space
rx b~ffer starts 1200 bytes in

1-457

292066-59

inter Ap·331

rcr ax, 1
shr dx, 1
rcr ax, 1 I ax - a19 •• a4 of gp_buf
mav dx, cs
sub ax, dx
sh1 ax, 4

mov bx, gp_buf_start
shl bx, 1
and bx, Ofh
or ax, bx ; compute offset within cgroup
mov word ptr CJP_buf-pointer[O], ax
mav word ptr gp_bufJlointer.[2], cs

mov ax, rx_buf_1ength
shl ax, 1
mov rx_buf_size, ax

mov ax, rX_buf_start
mov dx, rx_bufJlage
shl ax, 1
rc1 dx, 1
push ax
xar al, a1
mov cx, 12

'do
sh1 ax, 1

rcl dx, 1

Uoop
pop ax
mov ah, eOh
sub dx, eOOh
mav rx_buf_segment, dx
mov rx_buf_first, ax
mov rx_buf_head, ax
add ax, rX_buf_size
mav rx_buf_limit, ax

mav ax, rX_buf_start
shl ax, 1
sub ax, rx_buf_first
mov Logica12Physica1,
ret

ax

get the physical word
address of rx_buf

convert to byte address

save bits A19 •• A8

compute the closest segment
baundry to rx_buf

increment offset by BOOOh bytes
decrement segment by BOOh paragraphs

logical to physical mapper

SetUpBuffers endp

1-458

292066-60

Driver Unhook

Assumes

OS - cs - IPX segment
Interrupts are DISABLED

Ap·331

Assumes any registers but OS, SS, SP may be destroyed

This procedure restores the original interrupt vector

This procedure will never be called if DriverInitialize
did not complete successfully.

DriverUnhook PROC NEAR

mov dx, InterruptMaskRegister
in al, dx
or al, InterruptBit
blow
out dx, al
las bx, InterruptVectorAddress
mov ax, word ptr OldIRQVactor[O)
mov es: [bx), ax; restore old interrupt offset
mov ax, word ptr OldIRQVactor[2)
mav es: [bx) [2),
ret

DriverUnhook endp

mombo_init ends
end

ax ; restore old interrupt segment

1-459

292066-61

AP-331

i**··******* ***************

SMacro.inc: A set of macros that allows assembly code to be

written in a structured fashion resemblin9 a hi9h

level lan9uage.

Written by Ben L Gee. San Jose, Ca. (408)578-1123

~his code may be used freely as 'long as the authors name appears

in the l1stln9.

;**

het (lev, 0)

het(number,O)

t'define (ifa) (

het (lev, Uev+1)

\set(number, tnumber+l)

het (level%lev, ,number)

iif (%lev eq 1) then (het(num, %level0lH)) f1

%if (Hev eq 2) then (tset (num, .level02H)) fi

tif (%lev eq 3) then (het(num, Uevel'03H» fi

%if (%lev eq 4) then (het(num, Uevel04H)) fi

\if (%lev eq 5) then (het(num, %level05H» fi

jna anum

"define (ifae)

'set (lev, Uev+,1)

'set (number, tnumber+l)

het (levelUev, tnumber)

\if (Hev eq 1) then (het(num, Uevel0lH)) fi'

iif (Ueveq 2) then (tset (num, Uevel02H» fi

tif (Hev eq 3) then (het (num, Hevel03H» f1

'if (Heveq 4) then (het(num, Uevel04H» fl

Hf (Ueveq 5) then (het (num, %level05H)) fi

jnae anum

"define (lfb)

het(lev, Hev+1)

het (number, 'number+l)

%set(leveltlev, 'number)

Uf (%lev eq 1) then (het(num, UevelOlH)) f1

\if (Uev eq 2) then (het (num, Uevel02H)) f1

Uf (Uev eq 3) then (het (num, Uevel03H)) fi

Hf (Hev eq 4) then (het (num, %level04H)) f1

Hf (Hev eq 5) then (het(num, Hevel05H)) fi

jnb Hnum

1-460

292066-62

Ap·331

'·define (ifbe) (

'II set (lev, Uev+l)

\set(number, 'number+1)

'set (leveHrlev, 'number)

tif (Uev eq 1) then (het(nurn, Ueve101H)) fi

tif (Uev eq 2) then ('set (nurn, Uevel02H)) fi

tif (%lev eq 3) then ('set (nurn, Uevel03H)) fi

tif (Uev eq 4) then (het (nurn, Uevel04H)) fi

tif ('lev eq 5) then ('set (num, Uevel05H)) fi

jnbe Unurn

'·define (ife)

het (lev, Uev+1)

\set(number, 'number+1)

het (level%lev, 'number)

tif ('lev eq 1) then ('set (nurn, Uevel01H)) fi

tif (Uev eq 2) then "set (nurn, Ueve102H)) fi

Hf (%lev eq 3) then ('set (nurn, Uevel03H)) fi

Hf (Uev eq 4) then (het (nurn, Uevel04H)) fi

Hf (%lev eq 5) then ('het (nurn, Uevel05H)) fi

jnc l'nurn

'.define (ifcxnz)

'het(lev, Uev+l)

'IIset(number, 'number+1)

het (leveHrlev, 'number)

tif (Uev eq 1) then ('set (nurn, Uevel01H)) fi

Hf (Uev eq 2) then ('set (nurn, Uevel02H)) fi

tif (Uev eq 3) then ('set (nurn, Uevel03H)) fi

lsif (Uev eq 4) then ('set (nurn, Uevel04H)) fi

'if (Uev eq 5) then ('set (nurn, %level05H)) f1

jcxz Unurn

,"define (ifnc)

'set (lev, !Uev+l)

het (number, 'number+1)

'set (level'lev, 'number)

tif (Uev eq 1) then ('set (nurn, Uevel01H)) fi

tif (Ueveq 2) then ('set (nurn, Uevel02H)) fi

tif (Ueveq 3) then ('set (nurn, Uevel03H)) fi

tif ('lev eq 4) then ('set (nurn, Uevel04H)) fi

tif (Ueveq 5) then ('set (nurn, Uevel05H)) fi

je Unurn

292066-63

1-461

AP-331

%*define(ife) (

'set (lev, Uev+l)

'set (number, 'number+l)

'set (levelUev, 'number)

%if (Uev eq 1) then "set (nurn, Uevel01H)) fi

%if (%lev eq 2) then ('set (nurn, Uevel02H)) fi

%if (Ueveq 3) then- ('set (nurn, Uevel03H)) fi

'if (%leveq 4) then (%set (nurn, 'IIlevel04H» fi

'if ('Hev eq 5) then ('set (nurn, Uevel05H» fi

jne Unurn

%*define (ifne)

het(lev, Uev+1)

tset(number, 'number+l)

%set (level,lev, 'number)

%if (Ueveq 1) then ('set (nurn, Uevel01H)) fi

%if (Uev eq 2) then- ('set (nurn, Uevel02H)) fi

%if (Uev eq 3) then ('set (nurn, Uevel03H)) fi

\if (Uev eq 4) then ('set (nurn, Uevel04H)) fi

%if (Uev eq 5) then ('set (nurn, 'IIlevel05H)) fi

je Unurn

t*define (Hz)

'set (lev, 'Hev+l)

'set (number, 'lsnumber+l)

'set (leveU1ev, 'number)

Uf ('Hev eq 1) then ('set (nurn, %level01H)) fi

%if (%leveq 2) then ('set (nurn, Uevel02H)) fi

%if ('Heveq 3) then ('set (nurn, Uevel03H» fi

%if (Ueveq 4) then ('set (nurn, %level04H» fi

'if ('lev eq 5) then ('set (nurn, UevelO5H» fi

jnz l%nurn

'*define (ifnz)

tset (lev, Uev+l)

'bet (number, 'number+l)

'"et (leve l% lev, 'number)

%if ('Hev eq 1) then ('set (nurn, Uevel01H)) fi

%if (Ueveq 2) then ('set (nurn, Uevel02H)) fi

'if ('Heveq 3) then ('set (nurn, Uevel03H)) fi

%if (%leveq 4) then "set (nurn, Uevel04H)) fi

Uf (Uev eq 5) then ('set (nurn, Uevel05H)) fi

jz Unum

292066-64

1-462

inter AP-331

"*define (else) (

'Hf (Hev eq 1) then (het(t, Hevel01H)) fi

'liif (Hev eq 2) then ('set(t, %level02H)) fi

'Hf (%lev eq 3) then ("set (t, %levelO3H» fi

Hf (Hev eq 4) then ('set (t, Hevel04H)) fi

'Hf (%lev eq 5) then (het(t, %levelO5H» fi

"set (number, "'number+1)

'set (leveUlev, 'number)

Uf (%lev eq 1) then ('set (nurn, UevelOlH» fi

Uf (Hev eq 2) then (het(nurn, HevelO2H» fi

Hf (%lev eq 3) then ("set (nurn, UevelO3H» fi

'Hf (Hev eq 4) then ("set (nurn, UevelO4H» fi

Uf (%lev eq 5) then ("set (nurn, %levelO5H» fi

jrnp short anum

Ut:

)

"*define (elsel)

Hf (%lev eq 1) then ("'set (t, UevelOlH» fi

Uf (Uev eq 2) then !'set (t, UevelO2H» fi

Uf (%lev eq 3) then ("set(t, Uevel03H)) fi

\if (%lev eq 4) then ("'set (t, Uevel04H)) fi

\if (Hev eq 5) then ("set(t, Uevel05H)) fi

"set (number, 'number+1)

"set \leveUlev, 'number)

tif (%lev eq 1) then ('set (nurn, %levelOlH)) fi

Hf (%lev eq 2) then ("set (nurn, %level02H)) fi

\if (%lev eq 3) then ("set (nurn, %level03H)) fi

'if (Uev eq 4) then ("set (nurn, %level04H)) fi

tif (%lev eq 5) then ("set (nurn, %level05H)) f1

jrnp Unum

at:

"*define (endif)

"if (Ueveq 1) then ("set (nurn, %levelOlH)) fi

tif (%leveq 2) then ("set (nurn, %levelO2H» fi

Uf ('lev eq 3) then ('set (nurn, %levelO3H» fi

Uf (Uev eq 4) then ('set (nurn, %level04H)) fi

Uf (%lev eq 5) then ('set (nurn, 'llevel05H)) fi

Unum:

"set (lev, %lev-I)

292066-65

1-463

intJ AP·331

t*define (do) (

'set (lev, Uev+l)

'bet (number, "number+l)
"set (leveUlev, 'number)

tif (Heveq 1) then (tset (num, UevelOlH)) fi

"if (Heveq 2) then (het(num, Uevel02H)) fi

tif (Heveq 3) then ("set (num, Uevel03H)) fi

tif ('lev eq 4) then ('set (num, Uevel04H)) fi

Hf ('lev eq S) then ("set (nurn, Hevel05H)) fi

Unum:

t*def1ne(forever)

Hf ('lev eq 1) then (tset (num, UevelOlH)) f1

Hf (Uev eq 2) then (tset (nurn, UevelO2H» fi

"if (Uev eq 3) then (tset(num, Uevel03H)) fi

Uf (Uev eq 4) then (tset (num, Uevel04H)) f1

tif (Hev eq 5) then (tset (num, 'level05H)) fi

jmp Unurn

tset(lev, Hev-l)

t*define (whilea)

tif (Hev eq 1) then (tset (nurn, UevelOlH» fi

tif ('lev eq 2) then (tset (num, Uevel02H)) fi

tif (Hev eq 3) then (tset(num, UeveI03H» f1

tif ('lev eq 4) then (tset (nurn, UeveI04H» fi

Uf (neveq 5) then (tset (num, Uevel05H)) fi

ja Unurn

tset (lev, %lev-l)

t*define(whileae)

tif (Uev eq 1) then (tset (nurn, UevelOlH)) fi

tif (Uev eq 2) then (tset (num, Uevel02H)) fi

tif (Uev eq 3), then (het (num, Uevel03H)) fi

tif (nev eq 4) then (het (nurn, UeveI04H» fi

tif ('lev eq 5) then (tset (num, UeveI05H» fi

jae Unum

tset (lev, Hev-l)

t*define (whileb)

'Hf (Uev eq 1) then ('set (nurn, 'leveIOlH» fi

tif (Uev eq 2) then ("set (nurn, Uevel02H)) fi

Uf ('Hev eq 3) then ('set (nurn, Uevel03H)) f1

Uf (Uev eq 4) then "tset (nurn, Uevel04H)) fi

tif (nev eq 5) then (het(nurn, UeveIOSH)) fi

jb Unurn

tset (lev, Hev-l)

292066-66

1-464

AP-331

'*def1ne(whilebe) (

Hf ('Heveq 1) then ('set (nurn, UevelO1H» fi

Hf "lev eq 2) then ('set (nurn, 'Uevel02H)) fi

tif (Ueveq 3) then ('set (nurn, UevelO3H» fi

'Hf (Heveq 4) then (het (nurn, UevelO4H» fi

tif (Uev eq 5) then ('set (nurn, 'UevelO5H» f1

jbe Unurn

'set (lev, 'Hev-1)

'*define (whilee)

'Hf (Uev eq 1) t.hen ('set (nurn, UevelO1H» fi

'Hf (Hev eq 2) then ('set (nurn, UevelO2H» fi

tif (Uev eq 3) then ('set (nurn, Hevel03H)) fi

tif (Hev eq 4) then ('set (nurn, 'levelO4H» fi

Hf (Uev eq 5) then ('het(nurn, UevelO5H» fi

je Unum

'set (lev, Hev-1)

'*def1ne(whilecxzl

Hf (%leveq 1) then ('set (nurn, UevelO1HI) fi

tif (%leveq 2) then (het(nurn, Hevel02H) I fi

tif (%leveq 3) then ('set (nurn, UevelO3H» fi

Hf ('IIleveq 41 then "set Inurn, 'IIlevel04H)) fi

Hf ('Heveq 5) then ('set (nurn, HevelO5H» fi

jcxz Unum

'set (lev, Hev-1)

'*define(whilenc)

tif (Heveq 11 then ("set (nurn, %levelO1H» f1

'if ('leveq 2) then ("set (nurn, 'UevelO2H» fi

tif (Ueveq 3) then ('bet (nurn, UevelO3H» fi

Hf (Ueveq 4) then ("set (nurn, %levelO4H» fi

Hf (Ueveq 5) then ('bet (nurn, Uevel05H)) fi

jne l'nurn
'set (lev, Uev-l)

'*define(whilee)

tif ('IIleveq 1) then "set (nurn, UevelO1H» fi

tif (\leveq 2) then ("set (nurn, UevelO2H» fi

tit ("lev eq 3) then ("set (nurn, 'levelO3H» fi

tif (Ueveq 4) then ("set (nurn, UevelO4H» fi

Hf ("lev eq 5) then ('het(nurn, UevelO5H» f1

je Unum

"set (lev, 'lev-1)

292066-67

1-465

inter AP-331

'*define(whilene) (

tif "leY eq 1) then (tset(nurn. UeyelO1H» fi

tif (Uey eq 2) then ""et (nurn. UeyelO2H» fi

tif (Ueyeq 3) then (.... et(nurn. neyelO3H» fi

tif (neY eq 4) then "set (nurn. neyelO4H» f1

tif (neY eq 5) then (' .. et (nurn. UeyelOSH» f1

jne Unurn

'set (leY. UeY-l~

'*define (whilez)

tif ('ley eq 1) then " .. et (nurn. Ueyel01H)) £1

tif (Uey eq 2) then (het(purn, Ueyel02H)) £1

tif (Uey eq 3) then (' .. et (nurn, UeyelO3H» fi

tif ('ley eq 4) then " .. et (nurn. UayalO4H» f1

tif (Uey eq 5) then ("set (nurn, UevelOSH)) fi

, jz l"num

""et (ley. Uey-1)

'*define(whilenz)
tif (Uey eq 1) then (het(num. UeyelO1H» fi

tif ('Heyeq 2) then (het(num, Uevel02H)) fi

tif (Ueyeq 3) then (het(num. Ueyel03H)) £1.

.. if ('Heyeq 4) then ("set (num, UeyelO4H» £1

tif (Ueyeq 5) then "set (num, UeyelOSH» fi

/jnz Unum

' .. et(leY ... ley-l)
)

'*define(loop)
tif ('Heyeq 1) then (het(num, Ueyel01H» fi

tif ('ley eq 2) then (het (num, Uevel02H» f1

tif (Uey eq 3) then "set (num, 'HeyelO3H» f1

tif ('ley eq 4) then ('set (num, 'Heyel04H)) fi

tif ('Hey eq 5) then (het(nurn, UeyelOSH» f1

loop Unum

' .. et(leY, Uey-l)

'*define Iloope)
tif (Uey eq 1) then (het(num, UeyelO1H» f1

tif (Uey eq 2) then (het(num, Ueyel02H» fi

tif (Uey eq 3) then ('set (num, Ueyel03H» f1

tif (UeYeq.4) then (het(num, UevelO4H» f1
tif ('Hey eq 5) then ('_et (num, 'Hevel05H)) fi

loope Unum
.. etlley, 'Hey-1)

)
292066-68

1-466

AP-331

'*define (loopz)

'if ('leveq 1) then

'llif ('lev eq 2) then

'if ('lev eq 3) then

tif (Hev eq 4) then

IIdf (Uev eq 5) then

loopz Hnurn

tset(lev, 'lev-1)

t*deflne(loopne)

Hf (nev eq 1) then

Hf (neveq 2) then

tif ('lev eq 3) then

Hf ('lev eq 4) then

tif ('lev eq 5) then

loopne Hnurn

tset (lev, Uev-!)

"'*define (loopnz)

tif (%lev eq 1) then

"'if (Uev eq 2) then

'Hf (Hev eq 3) then

tif ('Islev eq 4) then

Hf (nev eq 5) then

loopnz Unum

'set (lev, Uev-1)

)

(tset(nurn, 'level01H)) fi

(tset(nurn, tlevel02H)) fi

(tset (nurn, Uevel03H)) fi

(tset(nurn, Uevel04H)) fi

('set (nurn, Uevel05H)) fi

(tset (nurn, %level01H)) fi
(het (nurn, nevel02H)) f1
(het(nurn, Uevel03H)) f1
(het (nurn, 'Islevel04H)) fi

(tset (nurn, %level05H)) f1

('IIset(nurn, Uevel01H)) fl'

(tset(nurn, 'level02H)) fi

(tset (nurn, 'Islevel03H)) f1
(tset (nurn, 'level04H)) fi

("'set (nurn, Uevel05H)) fi

i···
; Relid.inc Include file eoDtaining revision information

fill' the NBMS92 driver software.

; Written by Ben L. Gee San Jose, Califomia

j •••

"*derme(MajIll'Vellion)(I)
"*derme(MioorVellion)(OO)
.. *define(VeniODOate)(890129)
"*detine(LanType)(171)

; 890124 use eateDded write cIma mode

; 890129 correcI BCB cancel bug

; DOl yet assigned

1-467

292066-69

292066-70

APPLICATION
NOTE

PS592E-16

AP-326

July 1989

Buffered Adapter LAN Solution
for the Micro Channel Architecture

DARYOOSH KHALILOLAHI
TECHNICAL MARKETING ENGINEER

1-468
Order Number: 292060-001

AP-326

1.0 INTRODUCTION

As the performance of personal computers increases,
their role in the office environment expands. This ex­
pansion, coupled with the rapid increase in the number
of personal computers, makes interconnection an indes­
pensible option. Sharing expensive peripherals (such as
high quality printers) reduces the cost. Sharing a single
data base improves data control and security. Having
electronic mail capabilities improves communication.
Proliferation of personal computers as the workstations
of choice provides yet another new application for net­
working. Clusters of workstations connected in Local
Area Networks (LANs) can improve productivity by
leveraging other station's (in the same or other clusters)
computing and storage capabilities. In such an environ­
ment the network throughput of workstation nodes is
increasingly important.

The best choices for Local Area Networks are those
that provide reliability, low cost, ease of expansion, and
the backing of major VLSI manufacturers. In recent
years IEEE 802.3 lOBASE5 (Ethernet), IOBASE2
(Cheapernet), and Twisted Pair Ethernet (TPE)
lOBASE-T have emerged as popular choices.

The PS592E is a 16-bit nonintelligent, 32-KByte, buff­
ered slave adapter. It interfaces IBM Micro Channel
(Personal System 2 models 50, 60, 70 and 80) comput­
ers to an Ethernet or Cheapernet based network.The
82592 LAN Controller and 82561 DMA Controller are
used to receive and transmit frames between the net­
work and local memory. The board can perform default
cycle (zero wait-state, 200 ns) memory data transfers
on the Micro Channel. The board comes with two in­
terchangeable network serial interface modules for
Ethernet and Cheapernet applications. A TPE network
module will be available in the near future.

A menu driven exerciser software and a NetWare driv­
er are provided with the demo board.

2.0 OBJECTIVE

This application note describes how the Intel 82561 and
82592 are used to build a high-performance, cost-effec­
tive LAN adapter that implements the traditional buff­
ered architecture. The last chapter describes an easy
migration to a 32-bit adapter design.

2.1 Acknowledgements

I ackowledge and thank Yosi Mazor and Joe Dragony,
of Intel's (Folsom, Calif.) Data Communications Focus
Group, and Adi Golbert of Intel's (Israel) architecture
definition group for their work in developing the hard­
ware and the software and their contribution to this
application note.

2.2 Terminology

In the PAL equations and schematics a "_" at the end
of a signal name indicates that the signal is active low,
"#" stands for logical OR, "&" stands for logical
AND, and "!" stands for logical inversion. In the sche­
matics any signal name starting with the letter "L" in­
dicates that the signal is latched on the board or that all
the signals used in generating this signal are latched.

3.0 ORGANIZATION

Chapter 4 provides an overview of the 82561 and 82592
functionality. The reader needs a basic knowledge of
these components to better understand the following
chapters. Chapter 5 provides a functional description of
the PS592E. In this chapter, the design is divided into
three architectural subsections (host interface, memory
subsystem, and network interface). PAL·equations and
schematics are broken down according to the architec­
tural division. Chapter 6 is the software chapter; sam­
ples from the Novell NetWare driver are given. Chap­
ter 7 provides the performance benchmarks for the
board. Chapter 8 shows how the design can be modified
(including new PAL equations) to upgrade it to a 32-bit
adapter. The appendix gives a brief description for most
of PS592E internal signals.

4.0 COMPONENT OVERVIEW

4.1 82592 LAN Controller

The CHMOS 82592 is CSMA/CD controller with a 16-
bit data path. It can be configured to support a wide
variety of industry standard networks, including Ether­
net, Cheapernet, TPE, PCNet, and StarLan. The 82592
consists of three subsystems: parallel, serial, and FIFO.
The parallel subsystem provides an 8- or 16-bit inter­
face to the external bus. The 82592 supports memory
transfers (at up to 16 MB/s), accepts commands from
the processor that controls the bus, and provides status
to it. The 82592 can support simultaneous transmission
and reception including autoretransmit, transmit frame
chaining, and back-to-back frame reception. The serial
subsystem consists of a highly flexible CSMA/CD unit,
a data encoder/decoder, collision detect and carrier
sense logic, and a clock generator. In high- integration
mode it supports NRZI, Manchester, or Differential
Manchester encoding and decoding at bit rates up to 4
Mb/s. In high-speed mode the 82592 is capable of 20-
Mb/s Manchester or NRZI encoding. The FIFO sub­
system consists of a transmit FIFO, a receive FIFO,
and control logic (with prqgrammable threshold). A to­
tal of 64 bytes of FIFO can be divided between receive
and transmit. This can be done in any of four possible
combinations (16/48, 32132, 48/16, 16/16 byte resolu­
tion).

1-469

inter AP-326

4.2 82561 Host Int~rface and Memory
controller

The CHMOS 82561 is a high-performance DMA con­
troller designed to work in a tightly coupled fashion
with the 82592 in a PC AT or PS/2 adapter applica­
tion.

Two independent DMA channels support transfers of
up to to MB/s to/from the local SRAM/LAN Con­
troller. Up to 32 KB of ring buffer memory can be I/O
or memory mapped into the address space. Host access­
es to the local memory can be made with zero wait
states. These accesses can be 16- or 32-bit wide. The
82561, without CPU intervention, supports all of the
82592 tightly coupled functions. It can also reclaim bad
receive buffers.

The 82592/82561 is an ideal choice for 16 or 32-bit
buffered adapters. The combination provides ease of de­
sign, high performance, low component count, low
power requirements, and competitive cost.

NOTE:
The 82560 and 82561 have similiar functionality. The
only exception is that the double-host bus mode of the
82561 supports 32-bit-wide local memory. The 82592/
82560 combination is equally suitable for a 16-bit-wide
buffered adapter design. The 82561 is used in the
PS592E design to demonstrate a 32-kB (8k X 32) buff~
ered memory implementation.

5.0 IMPLEMENTATION

The board is divided into three sections (Figure I), the
host interface, the memory subsystem, and the network
subsystem. Both the 82592 and 82561 operate on the

------~
16 I

+-_,-!1~6-+1 :
I
I
I
I
I
I
I
I
I
I

to-Mhz clock generated by the serial side. In the fol­
lowing sections of this chapter a component (designated
by its U No. on the board and the schematic) is defined
as part of a subsystem if one or more of its, output pins
are in that subsystem. The host CPU generates a re­
quest to the 82561 to access any port (including
SRAM) on the board. SRAM accesses are 16-bit wide.
All other transfers are 8-bit wide. The local memory is
accessed either directly (nonpipeline mode) or through
the data latches (pipeline mode). The data transfers be­
tween the local memory and the 82592 are 16 bits wide
and are controlled by the 82561. During DMA trans­
fers low and high banks of memory are accessed alter­
nately.

5.1 Host interface

This subsystem consists of the POS ID register (U2),
POS configuration register (U3), the command register
(Ul), the status register (U4), the address decoder
(U14, U25, U24, U29, U23, and US), the address latch­
es (U9 and U12), the data latches/transceivers (U32,
U22, U26, and U16), and their control (U31 and U21),
the request generator (USP, U24, U30, U23, U21, US,
and U19), and the controller (U7) and its support logic
(U20, U23, U30, and U13).

5.1.1 ADDRESS DECODING

After power-up the host reads the POS Read Identifica­
tion register of the board, and if it is what the host
expects, the host will configure the board. The ID re­
sides in location 16 and 17 of the on-board 32-byte
PROM. The first six Bytes of the PROM hold the
board's network address. The PAL equation for the
PROM chip select is given in section 5.2. For a com­
plete list of the ports accessed by the 82561 GCS_
output see the table in section 5.1.4.

Address
Decode

and
Control
Logic

[-------CSM;/CDL~k--------·
I
I
I

: L----:r---I
I ._---

,
"

~--~--~ ~--~~~ : , ,
L-~~ __ ~~L_-_-_-_-_-_-_-_~ __ !

292060-3

Figure 1. PS592E/16 Block Diagram

1-470

~
c:: ...
(II

N
!II
-g
CJl
CI1
CD
N

~ ...
."
C

.l:. 10'
-..J !!!.

~
I/)
(II

3

CRS. 1 ~ 2

4- 4

*- 8
GND 7 8
TXD 9 10

GND
.g. ..g.
13 14

C' GND 15 18

-< TXC. 17 111

CJl
() MODTO ~ 21 ~ 22
:r
(II

3
III ...
n'
I/)

MODT1 23 24

.g ~ ¥ 28
GND 29 3D

~ 32

~ ~
~ 38

CoN2

FCC
3 +-7
11 13
2 15
4 10
8 18
II 1 -- 12

10uFx2 -

+SV
+5V
COT_
+12V
+12V

RTS.
-12V
LPSK.

RXC.
GND

GND
RXD
+SV

CHRESET

O.01uF

C17

O.01uF

C33

292060-4

(

»
l'
w
N
01

inter

MICRO-CHANNEL
-CD SETU 1

WADE 24 2
OND3 ... ,'4-
""05
AlII I
IN 7
AlII
A1171
ADe 10

" AOS1Z
NJ413
M31. ,.
A0218

PSBUS A A0117
AD01S

'2VD '9
All,," ~ PREEMPT. 2'

~ BURST_
-12YD

ARlO
ARlO'
ARlO

-1ZVD
ARlO

ARB/GNT.

""-1.20
MICRO-CHANNEL

Te.
'IND

23

~
~
IW"
.g.
~

¥.-3,
SO. 32
51.33

M!IO.34
,ZVO 35

CD CHRD 38
DOO37
D0238

311
D0540
DO 4'
DO? 42
ON 43

DS18RTN'"

*" REFRESH_ ~
PSBUS A ~~

*" .vOl ~
01048
01'50
0' 5'

,2VD ~-RESERVED ~ SBHE 54
CDDS,,,,,,"

II

:=~:;' ~ ~

CDSETUP.
MAD£24

CND .. "
A'O ADDRESS 0-23
NO

+'V
AI
A7
AI

+'V
AS
M
A3

+,V
A2
A'
All

+l2V

-,2V

'2V

+'V
SO.
S,.

.. 10_

+'2V
COCHRDV

DO
D. DATA 0-15

+5V
DO
01
D7

OND

+.v
0'0
0"
0'3

+,2V

SBHE.
CDDS,.,.

+5V

Ap·326

MICRO-CHANNEL

AUD'!,~~~ t!.-
~ OND

'4.3 MHZ'::'~ ~
A231
A227
A2, I
ONDa
A20 10
At. "
A1I112
OND 13
A171.
A,e 15

PSBUS B ""518
OND1?
... ,418
""318

:;~ I :;;~:
:RG040 ~ GND
IRQD5 ~ IRooe ~ .RG07 21

OND2S1

-at 20

MICRO-CHANNEL
RESERVEI f¥.-RESERV.EI ~ CHCK. ~ CHD

eWD. 34
CHRDYRRT ~ CDSFDBK_ 31

ON 37
DO' 38
D0338
D0440
ON 4'

CHRESET.42
RESERV", *-RESERII~

PSBUS B ;'
~
~

~~ ~ 48
001 48
ONDSO
01251
D1452
D'S S3
ON S4

IROta ~ IRQ" ~ tlRQ12 S7
GN SB

83I1-SB

A23
A22
A2'

A20
All
AI8

AI7
AI8
A"

AI4
A'3
AI2

CND

D,
D.
04

DB
DI

0'2
0'4
D'S

Figure 2b. PS592E·16 Digital Assembly Schematics (Continued)

1-472

eND

OND

ADDRESS 0-23

GND

CHD

OND

OND
IRQI.
IRQ3.

OND

IRQ?_
OND

?4Fa.
3 4 ClIO

U24 CWD.

CDSFDBt(.
OND

DATA 0-15

eND
CHRESET

eND

eND

OND

IRata_
OND

292060-5

...
but

74ALS1I41
UMC,- 2 10 1Q 23

A14 3 2D 2Q 22 LA14
A13 4 3D 3Q 21 LA13
A12 5 4D 4Q 20 LA12
All 8 5D 50 19 LAll
AID 7 liD 8Q III LAID
AS II 70 7Q 17 LA9
All 9 8D 8Q III !All

orlolD"- T 10 aD . va 15
.-niP. II 10D 10Q 14

----.!.! C -----,- -
~ OCU12

~
A7 2 lD
All 3 2D
A5 4 3D
M 540
A3 8 5D

lQ 23 LA7

2Q ~~ ~
: 20 LA4
50 19 LA3

, ENINT3 ~4ALS311
• 2[U13 3 IRQ3.

ENINT7
74AL5311
4
~ 8 IRQ7.

74AL538
9 ENINTa

8 IRQDo

~
74AL538

ENINT12 12
II IRQ12. 131 U13

LSBHE.

LCDSFDBI<

LCDSETUP.

A2 7 8D
AI 8 7D

~S 0-23 AD II 8D IiQ t-~~ ~ • LADDRESS 0-14
7Q LAO ~EAD.
IIQ ~: LWRITE. • 10 9D

liTE. II 10D
13 C

1~g 14

rlOC I
~~

2

lN41411

I CRI

R4

4.021<

74FOO
9

r-_-,1"'0-l1 Ul II
8 HFI.

74FOO

II HFO.

U~
~lU

292060-6

l

l>
"P
Co)

~

+ov

.......
LAa

LADDRESS 0-14 LA'O
LA' 1
LA'2
LA'3
LA' 4

!!
A,a ADDRESS 0-23
A,8

co A,7
r::: ..
CD

11/10_
1MDE24

N
!1

COEN
A'8

+5V A'5

" en en
CD
N

~ _0

CD -,
C
~
!i

./>..
~
1/1

--..J 1/1
.j>. CD

3
c-
o<

ABOVE

A20
A2'
A22

en A23
()
~
CD
3
DI -n-
1/1

0

.&
h4 so- 11 10

0

~.
U2.

I s,.
:J
r:::
(!)

.e, I 74F04
5 '8

U24 r
T 74F10

CDSETUP. ! USP1.. 8
5

l
)

2
3
4

1.. 8 5
8

" '2 U'4

~ 2 AD ~ ,.

4 A'
8 A2
8A3

" A4
'3 A5
'5 AS
17 A7

a B3
'2 94 '"..,
14""

5 a'
'8 Be
'8 B7

riB2
p-,--l G

'--u.5-
,.....lli!L 10 NJ _ '" 12 AI a 8

''" A2 A>B ~
'5 A3

9 ..,
" B'
'4 B2

1 B3
,....+ <

-t A

'--u2i-

74Fl0
'3

1J U30 12
2)

74F10

'"
... U30 8

5 J

..
N f ::>

74F'OO

'2

''" U23

74F10
a

~U5
" J

S U23 }=±B

LSa1wtN.

COSFDBtc

" COSFDBf(.

8 CODS1S.

WRITE.

8 RDWR

READ_

292060-7

l

):0
"0 • W
N en

LOCAL DATA 0-15 lOO
lOl
lO2
lO3
lO4
lO5
lOe

'TI
cO·
c::

lO7
POSLDCNI'-
POSRDCNI'_ ..

CD
r.)

QoIRESET 13 12

!D U24 74F04

" CJl
U\
CD
r.)

'r' ... lOO
CD
C lOl

cO·
;=;:
e!.

lO2

.l>. »
".

-..j ".
01 CD

lO3
LOcwe_

3
C"

-<
CJl
\")

lOO
lOl

::T
CD
3
!

lO2
lO3
lO4

ir
".

'0
0 ROST.
::J g.
c::
CD cwo
.e,

LPIPECYC

CYCACT

SIl,IORDY

74ALSOOe
1 10 10 23
2 2D 2Q 22
3 3D 3D 21
441) 4Q 20

5 50 50 10
e eo eo Ie
770 70 17
leo eo Ie

II CLKT/C_ 14
10 RD_ 0- 15

EN_ 0
13 CLR.

U3

74ALS175
4 10 10 2

10 ~ 5 20 20 7

20 ~ 12 3D 3D
30 ~ 13 41) 4Q ~ 0 CLK 4Q ~ 1 CLR.

Ul
74ALS244

111 IVI lAl ~
III IV2 lA2 4
14 1Y3 lA3 8
12 lY4 lA4 8
0 2Yl 2Al 11

+- 2Y2 2A2 ~
±5V ~ 2Y3 2A3 ~

~ 2Y4 2A4 f-!1.
hi 10

To
U4

7~
4 S o~
1 C
2 0
3 "Qi>!-

'u2O

74FOO

~ II
J

+5V

ENINT3 -
ENINT7 -,r
ENINTII ::I
ENINT12 -,r

~7

741'10 I 0
10 U30t 8
11 r

CDEN
_I
_0
NJf:NE

ENINT

RAW

PROW

PIPELINE

WOOTO
MOOTI

CDCHRDY

292060-8

cl

»
." .
Co)
N
Q)

_.
IN

IN I ~~ I I cf IN
IN WEWREQ_

IN
IN
IN
IN
IN
IN
IN

I I I
."
fij"
I: ...
ID

~
." en
U1
ID
N

~ lifo,;;::';. ,
IN ... LSS1WIN. 2 IN

0) PROM 3 IN

C LSalE_ 4 IN

fij" IORD_/WWR. 5 IN

;::;: IOWR_ e IN

e!..
LCOSETUP. 7 IN

LA2 8 IN OUT '2 RDsr.

I I
:J> l> LA, g IN OUT 11. LCDSETUP ." .i>. til LAO " IN OUT '8 POSRDCNF_ I ~

" 1/1 Ct.ID 1., IN OU 17 POSLDCNF. Co)
Ol ID I\)

3 0)
17
-< 25NS

en
()
::T
ID
3
III ..
('j"
1/1

0
0
;a
:;-
c:
CD .e;

:;;ELINE' v liN
~! IN

IN

25NS

292060-9

OIR' -

."
cC'
c::

DO
~8

20 S1
01 111 52
02 18 S3
03 17 B4 ... 1" LDO LDO
D4 Ie B5 5 LDI LDI
05 15 Be 8 LD2 LD2

iil
I\)

cp

" en
U1
CD
I\)

~

08 14 87 ... 7 LD3 LD3
07 13 Be 8 LD .. LD"

~ OIR 9 LD5 LD5

G ... 7 10 LD8 LD8

23 CBA II LD7 LD7
I CAS

H! SBA

f-L ~a
'---...

al
U32

C
cC'
[

./:. > en
-..J en
-..J CD

3
c-

o<"

011
~8

20 al
09 19 S2
010 18 S3
011 17 S4 AI 4 LDB LD8
012 18 S5 5 LD9 LD9
013 15 S6 8 LDl0 LDl0
01 .. I .. B7 ... 7 LDll LDll
015 13 Be B LD12 LD12

~ OIR A II LD13 LDI3
Gl. G A 10 LDl .. LDl ..

en
(')
;j
CD
3

CBA1. 23 CBA II LDI5 LDI5
CAS. I CAS
S)(22 SBA

....-...L ~S a
0'

'---
U22

en
0
0
;:!.
5"
c

CBA2.
en.
SWEN.
WOE.

(!)

S DATA 0-15

LOCAL DATA 0-15

LOCAL DATA 16-31

DO
01

~5 02

2 ... 1 al Ie LD18 03
3 A2 a2 17 LD17 04 .. A3 S3 18 LDll1 05
5 S4 15 LD19 08
8 AS B5 14 LD20 07
7 Ae ae 13 LD21
II A7 87 12 LD22
II AS Be II LD23
I OIR
19 G
~

08
09

~5 OlD

2 Al 81 18 LD24 OIl
3 A2 82 17 LD25 012 .. A3 S3 16 LD2B 013
5 A4 a .. 15 LD27 014
8 AS B5 I .. LD28 015
7 A8 88 13 LD29
8 A7 B7 12 LD30
9 AS B8 II LD31
I OIR
19 G
~

~8 .. B

20 S1
19 a2
111 B3
17 a4 ... 1 ..
18 SS 5
HI S8 B

14 a7 A 7
13 a8 8

t-+, OIR A 9

G ... 7 10
23 CBA II
1 CAB

i--¥ SSA

f-L SAB
'---

U28

20~48
19 S2
18 S3
17 S .. Al ..
18 a5 5
15 S6 6
I .. 87 A 7
13 a8 8

~ DIR A II

G A 10
23 CBA •• II
I CAS

~ SBA

~ SAS
'---

U18

LDle
LD17
LD18
LD19
LD20
LD21
LD22
LD23

LD2 ..
LD25
LD28
LD27
LD28
LD29
LD30
LD31

292060-10

l

»
."

I
c.l
I\)
aI

intJ AP-326

. The board has one POS configuration register (address
102 h). The contents of this register are shown below.

Bit 0: Enable/Disable the adapter ,
Bit 1-3 : Mapping window (four below and four above
1 Megabyte)

Bit3 Bit 2 Bit 1 Memory window
0 0 0 OCOOOO h to OC7FFF h
0 0' 1 OC8000 h to OCFFFF h
0 1 0 000000 h to OOFFFF h
0 1 1 008000 h to OOFFFF h

0 0 FCOOOO h to FC7FFF h
0 1 FC8000 h to FCFFFF h

0 FOOOOO h to F07FFF h
F08000 h to FOFFFF h

Bit 4-7: Selective Interrupt level. Bit 4 when set selects
IRQ3_; Bit 5 selects IRQ7_; Bit 6 selects
IR,Q9_; Bit 7 selects IRQI2_.

The following PAL equations are for reading from and
writing to the POS configuration register.

POSRDCNF_ = I (IGCS_&ILAO&LA1&ILA2&!lORD_
&ILCDSETUP _);

POSLDCNF_ = I (IGCS_&ILAO&LA1&ILA2&IIOWR_
&ILCDSETUP _);

The upper 256 bytes of the address space (Base + 7FOO
to Base + 7FFF) are used to acccess the command
register and the 82561 register ports. All accesses in
this range must be byte accesses. An active SBHE_
(odd byte) is interpereted as a request for accessing the
command register and an inactive SBHE_ (even byte)
for 8256'1.2592 accesses. .

The remainder of the 32-kB memory window is shared
by the local SRAM, PROM, and an optional 8-or 16-
kB EPROM. The sharing is accomplished by a paging
scheme implemented in a 3-bit command register. Bit 0
and I of the command register are decoded as shown in
the following table.

Bit 1 BitO
0 0 EPROM access
0 1 RAM access
1 0 PROM access
1 ' 1 reserved

Bit 2 of the command register determines the mode for
accessing the buffer memory. When this bit is 0 the
host accesses to the local SRAM are made with 3 or 4
waits.tates. These are referred to as nondefault cycles in
the Micro Channel documents. When this bit is I, the
host accesses to the local SRAM are made without any
wait states. This'is referred to as default cycles. This is

achieved by configuring the 82561 to its pipeline mode .

The following is the PAL equation for writing into the
command register.

The status register is five bits wide. The three least sig­
nificant bits of this read only register are the contents of
the command register. The two most significant bits are
generated by the network module and determine the
type of the network module installed.

Bit 4 Bit 3
0 0 Ethernet
0 1 Cheapernet

0 Reserved
1 TPE

The reserved combination is for future use.

The following is the PAL equation for reading the
status register.

RDST_ = 1(IGCS_&IL561WIN_&ILSBHL&IIORD-l;

5.1.2 DATA TRANSCEIVERS/LATCHES

Bit 3 of the command register determines the mode in
which the host accesses the local SRAM. When 0 the
access is in nonpipeline mode (wait states asserted).
When I, the access is in the pipeline mode (Microchan­
nel default cycles). This bit, and bit 0 of the 82561 host
mode register should be set to the same value before a
memory access is attempted.

In the nonpipeline mode the data transceivers/latches
act as simple transceivers. The cycles are extended by
pulling CHRDY low until the transfer (to/from) local
memory is completed. AI, which is the second least
significant bit of host address, determines which 16-bit
bank of memory is being accessed. All non-SRAM ac­
cesses are in the nonpipeline mode.

In the pipeline mode the data transcieverllatches act as
data latches. In this mode a read ahead / write behind
operation is performed by the 82561 after every odd­
word access requested by the host CPU. These accesses
are to sequential locations in the local SRAM. In this
mode no wait states are asserted (default cycle on the
Micro Channel). Tlie direction of the pipeline transfer
is determined by the value of bit I of the 82561 host
mode register, therefore the direction cannot be
changed on the fly. In read cycles, after the current
transfer the 82561 updates the buffer with the contents
of the next local memory address. This is referred to as

1-478

inter AP-326

"read ahead" (in anticipation of the next host read re­
quest). In write cycles, the data is copied from the data
latch to' the local memory after the host has finished
writing to the data latch. This is referred to as "write
behind". Pipeline transfers are made after the host re­
quests accessing an odd word, they are double-word
wide (both memory chip selects are activated).

The control signals to the transcievers/latches are gen­
erated by the following PAL equations.

Gl_ = I «IMEMREQ_ & PIPELINE & ILREAD_ &
ILAl & ICMD_) #
(IXVR1_ & ICMD_) #

(IIORD_ & PIPELINE & IXVR2_));

GL = I «IHFO_ & HF1_ & PIPELINE & ILREAD_ &
LA 1 & !CMD_) #
(IHFO_ & HF1_ & !PIPELINE & IXVR2_ &
!CMD_) #
(1I0RD_ & PIPELINE & !XVR2-l);

CAB_ =! (1I0WR_ & !XVRL);

CBA1_ = ! (!CMD_& PIPELINE & ILWRITE_& ILAl &
RAM & L561 WIN_ & LCDSFDBK);

CBAL = I (IHFO_ & HF1_ & !CMD_ & PIPELINE &
ILWRITL&LA1);

DIR_ = I «PIPELINE & !XVR2_ & 1I0RD_) #

SX

(I(!HFO_ & HF1_) # !PIPELlNE) & !LWRITE_
);

= (IMEMREQ_ & PIPELINE # IIORD_ &
PIPELINE & !XVR2_);

5.1.3 ADDRESS LATCHES

The host address and status are latched using the fall­
ing edge of CMD_. The latches become transparent
when CMD_ goes inactive.

5.1.4 REQUEST GENERATOR

Active SO--"SI_ and CDSFDBK_ or CDSETUP_
initiate a Host request. "CYCACT" indicates an active
request. The following table shows the complete list of
Host requests to the 82561.

The following PAL equations realize the above table.
HFOU and HFI U are the unqualified HF line. They are
qualified using the host's status and command lines be­
fore they become 82561 input requests.

HFl U = «LRDWR & LCDSFDBK) & (!L561 WIN_ #
!RAM)) #
(!LCDSETUP _ & LRDWR);

HFOU = «LRDWR & LCDSFDBK) & ((!L561 WIN_ &
!LSBHE_) # (L561WIN_
& RAM & !PIPELlNE) # (L561WIN_& RAM &
LA1)
(L561 WIN_ & !RAM))) # (ILCDSETUP _ &
LRDWR);

NOTE
1. The request is qualified earlier (with status line de­
code) in the case of pipeline cycles. In the pipeline
mode the 82561 provides half-clock glitch protection
(on its HF inputs). In nonpipeline cycles the request is
qualified later (with CMD_), when the address de­
code is free of any glitch.
2. CRI, R4, and C36 are added to delay the low-to­
high transition of the signal. The 82561 spec requires
100-ns inactive time on its HF inputs. The CMD inac­
tive time can be as short as 80 ns. During back-to­
back nonpipeline write cycles this can cause the 82561
to miss the deassertion of the first request. The added
circuitry guarantees that the HF inputs of the 82561
will be inactive for at least 100 ns.

5.1.5 MEMORY CONTROLLER AND ITS
SUPPORT LOGIC

To access any port on the board the host generates a
request to the 82561. SO_ and SI_ are decoded to
determine if the request is a read or a write. The inter­
rupt from the 82561 activates one of the four interrupt
lines on the Micro Channel, depending on the POS con­
figuration. In the non pipeline mode CDCHRDY is
pulled low immediately after the cycle starts. In the
pipeline mode the CDCHRDY is high when the cycle
starts.

CYCACT LCDSETUP_ L561WIN_ RAM SBHE_ HF1_ HFO_
0 1 X X X 1 1 Idle
1 1 0 X 0 O· 0 GCS_ cycle: Command/Status
1 0 X 0 0 GCS_ cycle: ROM·

1 X 1 0 SRAM cycle
1 0 X 1 0 1 82561 cycle
0 X X X 0 0 GCS_ cycle: POS registers

• ROM refers to either PROM or EPROM. Bit 1 of the command register determines which.

1-479

inter Ap·326

Nonpipeline Cycles

5.1.5.1 Nonpipeline Cycles

In all nonpipeline cycles (SRAM or otherwise)
CDCHRDY is pulled low within 30 ns after the status
(SO_ or SI_) becomes active. It remains low until the
82561 HRDY output goes to 1, then it goes to I.

The memory address provided by the 82561 in the non­
pipline mode is the same as the host CPU address ex­
cept that its three most significant bits (12, 13, and 14)
are logically ORed with the three least significant bits
of the 82561 host address register. The low bank of
memory is accessed for even-word addresses and the
high bank for odd-word addresses.

BEO"':" =! «LRDWR & LCDSFDBK & !CMD_ &
!L561WIN_l
(LCDSFDBK & LRDWR & !CMD_ &
!(RAM& LA1))
(!LCDSETUP#));

BE1_ =! ((LRDWR & LCDSFDBK & !CMD_l &
(L561WIN_& RAM & LA1));

CYCLE_ = ! «!(LREAD_ & LWRITE_ & CMD_l &
!LCDSETUP -l #
(!CMD_ & LCDSFDBK));

292060-1

5.1.5.2 Pipeline Cycles

During SRAM pipeline cycles CDCHRDY stays high.
It goes low after the cycle is over (HF _ removed). This
is when the 82561 performs read ahead or write behind
operations. Read ahead means that the next double
word of data is copied from the local memory into the
data latches in anticipation of the next two requests.
Write behind means that two words of data are first
latc:hed in the data latches and then the 82561 copies
them (two words at a time) into the local memory. The
memory address in this mode is provided by the host
address register, which is incremented by one after ev­
ery 82561 transfer. To change the direction of the
transfer the 82561 Host mode register should be ac­
cessed first and its bit 1 changed.

LPIPECYC = (LCDSFDBK & L561 WIN_ & RAM &
PIPELINEl;

1-480

AP-326

Pipeline Cycles

''--_--If

'-----h
-~ 82561 HRDY

CDHRDY

292060-2
'CDHRDY is Pulled low only if the next CPU request is to the board (while the local bus cycle is being completed).

5.2 Memory Subsystem

The memory subsystem consists of the network address
PROM (V2), the low bank of SRAM (V 17 and
V27),the high bank of SRAM (V18 and V28),the data
bus transcievers (VII and V6), an optional EPROM
(VIO), part of a PAL (VIS), and the controller (V7).

All controls are generated by the 82561 except for chip
select for the PROM and the EPROM. Note that the
second term of the "PROMCS" is for recognizing the
host's request to access the POS identification registers
that reside in locations 16 and 17 of the PROM.

1-481

EPROMCS_ = ! (IGCS_&IIORD_&IPROM&L561WIN_);

PROMCS_ = I ((IGCS_&IIORD_) & (PROM&L561 WIN_ #

ILA 1 &ILA2&ILCDSETUP -l);

LCDSETUP = I (LCDSETUP _);

The data bus transceivers isolate the low- and high­
word data paths of the local SRAM. This is needed
because during pipeline read ahead or write behind op­
erations the accesses to the SRAM are double word
wide.

LAuurct.::a~ U-I'"

LOCAL DATA 16-31

MADDRESS 0-12

"II
C
c ...
CD
I\)

?'
"a
UJ en
CD

2.~'1I L03'
.... '2 2 '2 107 '11 LD30
.... " 23 .. " 10.'7 LD28
.... '0 2' "'0 1015 ,. LOU
.... " 24 NJ 10 '5 L027
..... 25 NJ 103'3 L02.
.... 7 3 .. 7 102'2 L025 " 4 NJ 10' " LD24
IoIAS 5 AS
.... 4 " A4
.... 3- 7 103
IIA2 II A2

I\)

ITI
I ...
en

.... , " .. ,
MAO '0

ORD./MWR.
NJ

27 WE
CSHe 20 CSt

C
~i
;::;:

MOE. 22«
LCOSETUP ~

!!!.

~
~
1/1

CD 1/1
I\) CD

3
EPROWCS.
PRoues.

ICI'
-<
UJ n :::r
CD
3
DI -n
1/1

0
0
::J

5-
c:

~
28 csa 1011 '8 LD'5

.... '2 2 "'2 107 '11 LD'4
MA" 23 .. 11 10. t? LD13
.... '0 2' "'0 105

,. LO,2
.... 0 24 All 104 '5 LO"
..... 25 NJ 103 '3 LO,O
.... 7 3 .. 7 102 '2 LOa
..... 4 NJ 10' " LOll
IoIAS 5 A!!
101M • A4
Mo\3 7 103
IIA2 • , a .. ,
MAO '0

CD
S:

27_
CSLo 20 cs,

I Ir~
LOCAL DATA 0-15

2.~ ,IILD2
.... ,2 2 "'2 10 ,. LO
MA" 23 At' 10 17 LD2
_'0 21

"'0 10
,. LO

.... 11 24 NJ 10 '5 LO'
MAS 25 NJ 10 '3 LO'
.... 7 3 :1 10 12 LD1

.... " 4 .. 10' " LO,
IoIAS 5 AS
.... 4 " M
Mo\3 7
IIA2 II A2 , II .. ,
MAO '0 NJ

27 WE

~CS'
~Foi
~

~
28 CS2 lOB ' II LD7

.... '2 2 .. , 2 107 ,. LO •
MA" 23 At 1 108 17 LDS
....'0 2' "'0 105 '8 L04
IIAO 24 All 10 '5 L03
..... 25 NJ 10 '3 L02
.... 7 3 .. 7 102'2 LO'
.... 11 4 NJ 10'" LOO
1oIAS5A!!
.... 4 • M
Mo\3 7 103
IIA2 • A2 , " .. ,
MAO 10 NJ

27 WE r(a1 22 Foi
~

.... 275'. J7 h
LD7 II 117 ~~ , I LO. 7 011
LOS • OS A2'2 MAO
LD4 5 Q4 At" LA1 I
L03 4 Q3 NJ'O LAD
L02 3 Q2
LD' 2 Q,
LDO ,

QO

'5 CS
U2

.... '2 .. J2

r-e-

I

I
R3

T 'OK •

LAD
Mo\3 ,
MAO
LA,.
IIA2
101M
IoIAS

.... " 7

.... "

.... '0

.... "

27C'211
'0 NJ Q,
SA!! Q2
7103 Q3
.A2 Q4
II .. , OS
·M 011
4NJ Q7
3 .. 7 011

25NJ
24 All

2' "'0
23 At'

2 ... ,2
28 ""3
27 POll
20CE
22 "

' Vpp

U'O

29206~-11

(

:J>
'P
Co)
II\)
CJ)

LOCAL~TA 0-15

IAADDRESS 0-12

"'1'1
LADDRESS 0-14 eE'

I: ...
(1)

~
"tJ LA'4 3. "'2 en 82561
U1 LA'3 38 A11 '2

8 '2
10 LA'2 37 ... ,0 " 85 " N LA" 36 A9 '0 86 '0
1)1 LA'O 35 N! 11 87 11 LA9 3 7 8 8. MAe a- LAS 337

, 7
0 S +5V LA7 32 Iofj 8 2

l-ee' LA8 3'5 3 5
;:;: LA5 30 A3 4 4 IM4
!!!. LA4 28 A2 MA3 6 3

l> LA3 27 A1 2 7 1M2 'K
J,.. In LA2 28 AO , 8 IMI Rl
(Xl In 561SEO .. 18 BEa. 0 9 0 ,
c.:> (1) sa,aE1. 18 BE1. : 49 07 3 D7

HFO. 25 HFO_ D8 48 D8
C' 147 D5 -< HF1. 24 HF1. D5

51511DROY 20 HRDY D4 ~ en XVR1. 22 XVR1. D3 ~ 0 XVR2. 21 XVR2_ D2 44 D2 =r
: 41 Dl (1) G'CS ... 58 GCS. Dl

3 INTOUT 50 INTOUT DO ~
III MOE. eD WOE. INTR 51 - CSH. 81 CSH. cs. 12
C:;' CSL. 82 CSL. DACK. 55
In CHRESET 42 RESET DRQl 52
'0 IORO./WWR. 58 IORO./WWR- DRQO 54
0 ,--# eLK IOWR_ 58
;:l. LREAO. 17 RO_ DACK1/EOP.~
S' I RSV1H? c RSV2 14
CD U7
S

L015
L014
L013
LO'2
LO"
LO'O
'-"9
LOS

L07
LOB
L05
L04
L03
L02

LO'
LOO

INT
CS.
DACK.
DRQl
DRQO
IOWR.
CS1/EO?_

+5V

•

" 5!?&!

U20

82592
cs /CO

CONTROLLER

~ 0'5
US

RXC. 28-' 3 014
~ 013 TXO 31

3 D,2 RXO 30 • 0" RTS. 32 ,
D'O CTS.~

" 08 CRS. as , oe COT. 34
TXC_ 2!S ,

D7 NC~ ,
DB NC~

1 OS ,
D4 CLKSRC n ,
03 ,
02 ,
0'

~~~ 
2 DO 

~INT 
-t ~~K. =¥, ORQ, 

RD. 8 ~DRQO 
4 WR. RESET ;0 

4l CSI/EOP. CLK 

IORO./IAwR. 

LPBK. 

~ lB 

·1 IL 
"­.0, 
.0 

w 'tI 
11" 

t ~ ~ 
" 

N 

=f 
;:T ci 

RXC. 
lXD 
RXO 
RTS. 

CRS. 
COT. 
lXC. 

IOWR. 

292060-12 

( 

I I 
l> 
"tI 
I 

W 
N 
Ol 



:!! 
ca c 
;; 
~ 

i 
~ i 
Q) ~ 
~ 0 

a. 
5. 
CD 

'§ 
~ 
:::l 
c: 
(!) 

S: 

Pf" 

MALE 

YI 

20.OMHZ 

PULSE 

C 
E 0 
TN 
H N 
E E 
R C 
NT 
E· o 
T R 

292060-41 

l 

~ 
'1' 
Co) 
N 
G) 



::!! 
IQ 
C 
Cil 
N 
~ 
o 
::T 

• CD ..,. DI 
ex> "C 
01 CD ... 

::I 
!!. 
iii: 
8. 
c 
iii 

av 
..... LE 

,..!!!-X 

~ ~ 
~ f-1 
'----i5 ~ ii If,-

T, 1-# 
iii lit RTS-
~ II TlCO 
~ 17 TlCC-
III 30 RlCO 
~ 22 RlCC-
as 8 CDT-
~ I CRS-

7 18 LPBI<-
: 211 10 +I2V 

24 8 +1ZV 
~ 15 21 MDOTO 

~ ~MDOTI 
'coNI 

,RI2 • 

100 

7-

+IIV 

• GJ.5 • 
O.1uF 

,ew • 
O.', .... F 

, crJ 2 

O.', .... F 

,7-

820501,0,0 

~ ENElVI-

~ HOOR- TRMT 
!TEN- TRIn' 

17 TKO RCV 
18 TlCC- RCV-

II RxD CLSH 
8 RxC- CLSH 
7 CDT- X2 
8 CR5- XI 
3 LPBK-

UI 

+~ 

.G~ • 
20 PF lY1 

= 
,~ • 

f20.ClMHZ 

20 PF 

RI4. 

,~~. II 
I 240 

III TR 
18 TR-
4 RC 
5 RC-
12 CL 
II CL-
13 X2 I 14 XI ,RIll • 

78 
RI7 • 

78 

PE84102 
18 I 
15 PULSE 2 
13 4 
12 5 
10 TRANSFORMER 7 

B 8 

# .ll 
~ 
f-!-

U2 

TRIn' 
TRIn'-
RCV 
RCV-
CLSH 
CLSH-

XCI EVER BUS 

292060-42 

l 

):0 
-a . 
Co) 
N en 



::!! 
10 
C 

"i I +'2V '" I" 
I 

FUI 
~ 
~ 
-t 

, CHI ~ .....: 
2.2uF ~ • .....: 

~ 
2. -IT 

0.~1UF 12 

PICOFUSE 

.. 
CD ,Rl • 
~ 1.0M 

0 
::T 
CD 
DI 

<7 

" CD .. 
.... ::::II 

CXI !!. 
en ~ 

0 a. c 

C 
XCIEVER BUS CLSN 2 

CLSN- 3 
RCV 4 
ReV- II 

• 
i' 
'0 TRMT 

~ • 
TRMT- 8 

0 10 a 
::::II 
C 
CD .s 

RIO Rll R9 

40.21 40.21 1741 

ZVP12U9 --. ----
~-

~ 
~ 
~ 
~ 

DC/DC ~ IW CONVERTER fii-
~ 
~ 
~ 

U4 

+. Cl0 
~ O.01uF 

7" • 

~ 18 

~ g.. 
I. 

~ 
~ 
~ 12 

" 
U3 

,'iP. 
33PF 

,R2 • 
1.1K 

,ca • 
0.1UF , C17 

!:-0.1UF 
• 

R3 • R4 • 

4118 24.8K 

Re • . ~. ,'1'" • 
11101< 1~F 22pF 

,RlI • 

711K 

R7 .~N41~;N41~ 

1110P4 • 

8.08 eft3 eft2 

• C7 , lN4001 
9.08 eftl 

R8 
, 

, 

1 - ::r ' C14 Ta' 0.01 uF' L- ",u .. 
. • 0.22UF C8 p 

q 
IC 

292060-43 

( 

:I> 
"a . 
Co) 
I\) 
G) 



l 
LM79L05ACH 

"II 
IE" 
c; 

~j ; WODTO ~~ I I 1~ +12V 
+12V 

27 ~2flNC NCIHI-- .33 uF 

-I 
~ 

~ .~ "I~- .. iii" 

~t 
[RJ-l ... 33 II TXD 5 TKO TO- 211 RJ45 2 "[RJ-2 

I I 
» CD 25 17 TXC- 7 TxC- RD+ 28 RJ45-3 [RJ-3 

.J,.. 
Co III 30 RXD 2 R"D RO- 27 RJ45 4 "C 

" 
[RJ-4 W CO III 34 22 RXC- 10 R><C- NC rM -..J ,," 35 II COT 34 COT- NC ~ 

I\) . ~.,- . U~ ., CTI 
ITI ... 
::J" 
CD ... 
:::I 
CD ... 
iii: 
0 
Co 
C; 

iii 
"V '0;;7 

292060-44 



AP-326 

5.3 Network Interface 

The network interface consists of the LAN controller' 
(U8), the DMA controller (U7), and a plug-in analog 
module (Ethernet or C-Net). 

5.3.1 DMA TRANSFERS 

Two independent DMA channels of the 82561 are used 
to transmit and receive frames. Each word-wide DMA 
transfer can have a duration of 200 to 500 ns (82561 
programmable), and the 82561 alternately accesses the 
two banks (low and high) of memory. Autoretransmit, 
back-to-back frame reception, and bad receive butTer 
reclamation are all performed without CPU interven­
tion. The 82561 in the 82592 TCI mode supports trans­
mit chanining. DMA channels are also used to config­
ure the 82592 and to read its 69 bytes of internal infor­
mation through the dump command. 

The arbitration between the two DMA requests, and 
between the host request and the DMA request are per­
formed by the 82561. 

Transmit butTer size (including the configuration block) 
is about four kilobytes. It stops 256 bytes before the end 
of the adapter .memory. The last 256 bytes of address 
are for accessing the 82561 and the command register. 
The receive memory space is 28 kB, arranged as a ring 
and managed by the 82561. The lower limit register of 
the 82561 hold the starting address of the ring and its 
Upper limit register holds the ending address of the 
ring. The 82561 performs the wraparound without 
CPU intervention .. The stop register of the 82561 points 
to the last receive butTer location processed by the host 
CPU. The 82561 generates an interrupt to the host ,if 
the Current address register of a channel reaches the 
stop register. For more information about the DMA 
transfers and the format of the transmit and receive 
frame, the user is referred to the 82560/82561 Techni­
cal Reference Manual. 

5.3.2 SERIAL INTERFACE 

The 82592 is used in the high-speed mode as the 
CSMA/CD controller. The 82C501AD performs Man­
chester encoding/decoding; it also provides a watchdog 
timer, collision detection, and transmit/receive clock 
generation. Using the loopback modes, the transmitted 
data is rerouted to the receive path (at the 82592, the 
82C501AD, or on the wire). This feature is useful for 
testing the nonphysical medium portion of the system. 
Figure 2j shows the schematics of the Ethernet module. 
Figures 2k and 21 show the schematics of the Cheaper­
net module. Figure 2m shows the schematics of the 
Twisted Pair Ethernet module. 

6.0 SOFTWARE EXAMPLES 

The software examples given in this chapter are from 
the PS592E Novell Netware driver written by Joe Dra­
gony, Intel Data Communications Technical Market­
ing Engineer. A brief description of each procedure is 

, followed by exerpts from the code. The driver uses the 
Internetwork Packet Exchange (IPX) protocol and, 
serves as the software interface between the PS592E 
hardware and IPX. 

6.1 Declarations 

Table 1 shows the declaration of program variables and 
equates of program constants including those of the 
POS registers. It also includes the data structures. One 
of these data structures is the ECB (Event Control 
Block). Information concerning transmit and receive 
operations is communicated between the IPX and the 
driver by using this data structure. Another data struc­
ture is the 82561 register ports which start at otTset 
7FOO h. This section is included to help the reader un­
derstand the rest of the code. 

1-488 



inter AP-326 

Table 1 

$modl86 

! !! ! ! ! ! ~ !! ! !! FOR EVALUATION PURPOSES ONLY !!!!!!!!!!!!! 

This code is given free of charge as an example of a driver for the 
PS592E Demonstration Board. No warranties are given as to its 
suitability for any purpose other than demonstration of the 
PS592E Demonstration Board. This code is specifically NOT 
represented as a commercial quality driver. 

I!!!!!!!!!!!! FOR EVALUATION PURPOSES ONLl !1!!!!! II!!!! 

NetWare(R) Driver for the PS592E Evaluation Board 

Written by Joe Dragony DFG Technical Marketing 

REVISION 0.00 

Last revision: Date 03-08-89 Time 12:30 

, 
;vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv 

%*define(slow) local label 
jmp short %label 

%label: 
) 

%*define(wordcopy) 
shr ex, 1 
rep movsw 

%*define(inc32 m) ( 
add word ptr %m[O], 1 
adc word ptr %m[2], 0 

'*define(validate r) local label ( 
cmp %r, 7000h 
jb %label 
sub %r, 7000h 

%label: 
) 

name 

CGroup 

assume 

PS592EDriver 

group Code, PSinit 

cs: CGroup, ds: CGroup 

Code segment word public 'CODE' 

public 
public 
public 
public 
public 
public 
public 
public 

public 

DriverSendPacket 
DriverBroadcastPacket 
DriverOpenSocket 
DriverCloseSocket 
DriverPoll 
DriverCancelRequest 
DriverDisconnect 
SDriverConfiguration 

LANOptionName 

1-489 

292060-13 



AP-326 

Table 1 (Continued) 

IPXGetECB: NEAR extrn 
extrn 
extrn 
extrn 
extrn 
extrn 
extrn 
extrn 
extrn 
extrn 
extrn 

IPXReturnECB: NEAR 
IPXReceivePacket: NEAR 
IPXReceivePacketEnabled: NEAR 
IPXHoldEvent: NEAR 
IPXServiceEvents: NEAR 
IPXlntervalMarker: word 
MaxPhysPacketSize: word 
ReadWriteCycles. byte 
IPXStartCriticalSection: NEAR 
IPXEndCriticalSection: NEAR 

Equates 
, 

vvvvvvvvvvvvvvvvvvv; 

CR equ 
LF equ 
TRUE equ 
FALSE equ 
TransmitHardwareFailure equ 
Packet UnDeliverable equ 
PacketOverflow equ 
ECBProcessing equ 
TxTimeOutTlcks equ 
Extlnterrupt equ 
TxChannel equ 
RxChannel equ 
HimmlntMask equ 

8259 definitions 

PrilntControlPort equ 
PrilntMaskPort equ 
seclntControlPort equ 
Sec IntMaskPort equ 
EOI equ 

; 82592 Commands 

C NOP equ OOh 
C-SWPI equ 10h 
C-SELRsT equ OFh 
C-SWPO equ 01h 
C-IASET equ llh 
C-CONFIG equ 12h 
C-MCsET equ I3h 
C-TX equ 14h 
C-TOR equ 05h 
C-OUMP equ I6h 
C-OIAG equ 07h 
C-RXENB equ 08h 
C-ALTBUF equ 09h 
C-RXDISB equ OAh 
C-STPRX equ OBh 
C-RETX equ lCh 
C-ABORT equ ODh 
C-RST equ OEh 
C-RLSPTR equ OFh 
C-FIXPTR equ IFh 
C:INTACK equ 80h 

; Adapter Setup Constants 

OOh 
OAh 
1 
o 
OFFh 
OFEh 
OFDh 
OFAh 
10 
01h 
30h 
OCh 
03Dh 

020h 
021h 
OAOh 
OAlh 
020h 

mask for checking for Ext 592 events 
mask for checking for Tx DMA events 
mask for checking for Rx DMA events 
mask to check for any 561 interrupt 

;for primary 8259A 

;for secondary 8259A 

1-490 

292060-14 



intJ 

POSPort equ 
CardIDLo equ 
CardIDHi equ 
IDValLo equ 
IDValHi equ 
POSCnf equ 

96h 
100h 
101h 
OF9h 
60h 
102h 

Data Structures 
; 
;vvvvvvvvvvvvvvvvvvvvvvvvvvvv 

even 
hardware structure 

io addrl 
io-rangel 
io-addr2 
io-range2 
meiii addrl 
mem-rangel 
mem-addr2 
mem::::range2 

struc 
dw 
dw 
dw ? 
dw 

int usedl 
int-linel 
int-used2 
int-line2 
dma-usedl 
dma-chanl 
dma-used2 
dma-chan2 

hardware_structure 

dw ? 
dw ? 
dw ? 
dw 
db 
db 
db .? 
db 
db 
db 
db 
db 

ends 

ecb structure struc 
-link 
esr address 
in use 
coiiipletion_code 
socket number 
ipx_workspace 
transmitting 
driver workspace 
immediate address 
fragment-"count 
fragment_descriptor_list 

ecb_structure ends 

fragment_descriptor 
fragment_address 
fragment_length 

fragment_descriptor 

struc 
dd 
dw 

ends 

rx buf structure struc 
- rx-dest addr db 

rx-source addr db 
rx~hysical_length dw 
rx checksum dw 
rx::::length dw 
rx tran control db 
rx::::hdr_type db 
rx dest net db 
rx-dest-node db 
rx-dest-socket dw 
rx-source net db 
rx-source-node db 
rx-source-socket dw 

rX_buf::::structure ends 

AP-326 

Table 1 (Continued) 

This port enables cardsetup for each slot 
Card ID low byte address 
Card ID high byte address 
Card 10 low byte value 
Card 10 high byte value 
POS configuration byte address 

dd 0 
dd 0 
db 0 
db 0 
dw 0 
db 4 
db 0 
db 11 
db 6 
dw 1 
db 6 

6 dup (?) 
6 dup (?) 
? 
? 
? 
? 
1 
4 dup (?) 
6 dup (?) 

4 dup (?) 
6 dup (1) 
? 

dup ( 0) 

dup ( 0) 
dup (0) 

dup ( ?) 

1-491 

292060-15 



AP-326 

Table 1 (Continued) 

ipk_header_structure struc 
checksum dw 
packet_length dw ? 
transport_control db ? 
packet_type db ? 
destination network db 4 dup (? ) 
destination-node db 6 dup (? ) 
destination-socket dw 
source netwOrk db 4 dup (? ) 
source-node db 6 dup (1) 
source::::socket , dw ? 

ipx_header_structure ends 

adapter_structu~e struc 
mem_space db 07FOOh dup (?) 
res loc_O' dd 3 dup (? ) 
portO db' ? 
command_reg db 3 dup (1) 
res loc_4 dd 
port1 dd ? 
res loc 6 dd 2 dup ( ?) 
semaphore dd 8 dup ( ?) 
master mode dd ? 
id_reg- dd ? 
control_reg dd 
res loc 13 dd 
statl_588_reg dd ? 
stat2_588_reg dd ? 
int_ctrl_stat_reg dd ? 
himm_int_mask_reg dd ? 
res loc 18 dd ' 1 - -res loc 19 dd 
select_reg dd 2 dup ( ?) 
host_addr_reg dd 3 dup ( 1) 
dma_mode_reg dd 1 
b_c_addrO_reg del 3 dup (? ) 
dma_ctrlO_reg dd ? 
lo_limitO_reg dd j dup (? ) 
rx_tempO_reg dd 1 
up_limitO_reg dd 3 dup (?) 
res loc 2b dd ? 
stopO_reg dd 3 dup (? ) 
host_mode_reg dd ? 
b_c_addr1_reg dd 3 dup ( ?) 
dma_ctrl1_reg dd 
lo_limitl_reg dd 3 dup (1) 
rx_templ_reg dd 1 
up_limit1_reg dd 3 dup (1) 
res loc 3b dd ? 
stopl_reg dd 3 dup ( 1) 
res loc 3£ dd 1 

adapter::::structure ends 
292060-16 

1-492 



Variables 
, 
;VVVVVVVVVVVVVVVVVVVVVVVVV 

.~AA~~AAAAAAAAAAAAAAAAAAAAAAAAAA , 
TRANSMIT , 

;VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV 

Ap·326 

Table 1 (Continued) 

even 
send list dd 0 

dw 0 
dw 0 
dw 0 
dw 0 
dw 0 
dw 0 
db 0 
db 0 

;points to list of ECBs to be sent 
tx start time 
tx-byte cnt 
tx-buf offset 
tx-buf-head 
padding 
loop_frag_cnt 
even_up_tx 
tx_active_flag 

,IPX packet length plus header length 

RECEIVE , 
;vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv; 

even 
rx ecb dd 0 
rx-buf head dw 0 ,used during rx list generation 
new_stop_val dw 0 
rx buf ptr dw 0 
curr rx length dw 0 
rx frag-count dw 0 
wrapped-frame dw 0 
pre_wrap_count dw 0 
misaligned dw 0 
split_fragment dw 0 

GENERAL , 
iVvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv; 

dw 0 
dw 0, 

adapter_base 
config 
config_block 

at_flag 
ir'L-array 
mem_array 

db OFh,00h,4Bh,OOh,OA6h,OOh,60h,OOh,OF2h 
db OOh,OOh,40h,OFFh,OOh,3Fh,B7h,Ol4h,OFFh 
dw 0 

int mask reg 
old-irq vector 
int-vector addr 
irq:::channel 
int mask 
int-unmask 
num-of slots 
curr slot 
pos byte 
himiii int mask 
confIg_ir'L-loc 
config mem loc 
event code­
resultl 
result2 
result3 
byte_cnt_hi 
byte_cnt_Io 

db OCh, 09h, 07h, 03h 
dw OCOOOh, OCBOOh, ODOOOh, ODBOOh 
dw 0 
dd 0 
dw 0 
db 0 
db 0 
db 0 
db 0 
db 0 
db 0 
db 0 
db 0 
dw 0 
db 0 
db 0 
db 0 
db 0 
db 0 
db 0 

1-493 

I, 

292060-17 



inter Ap·326 

Table 1 (Continued) 

.~~~AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA. , , 

• Define Hardware Configuration • 
, , 
jVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV; 

ConfigurationID 

SDriverConfiguration 

reserved 1 

db 'NetWareDriverLAN WS 

LABEL byte 

db 4 dup (0) 
db 6 dup (0) 
db 1 ;non-zero means is a real driver. 
db 0 ;address is determined at initialization 
dw 1024 ;largest read data request'will handle 
dw LANOptionName 
db OAAh ; Bogus Type Code 
dw 1 ;transport time 
db 11 dup (0) 
db Olh ;Bogus version number 
db OOh 
db 0 

node addr 
reserved2 
node...:.addr_type 
max data size 
lan-desc-offset 
lan-hardware id 
transport_time 
reserved 3 
major_version 
minor version 
flaLbits 
selected configuration 
number of configs 
config:J>oInters 

db 0 ;board configuration (int., 10 add., etc.) 
db 01 
dw configurationO 

LANOptionName db ' Intel PS592E Evaluation Driver$' 

configurationO dw 4 dup (0) ;10 ports and ranges 
db 0 
dw 0, 0 ;memory decode 
db 0 
dw 2 dup (0) ;memory decode (secondary, not used) 
db 4 dup (0) ;interrupt level . 
db 4 dup (0) :DMA 
db 2 dup (0) 

Count dw OFFFFh 

db 'Self Configuring Adapter o 

Error Counters . . , , 
jVVVVVVVVVVVVVVVVVVVVVVVi 

Public DriverDiagnosticTable,DriverDiagnosticText 

DriverDiagnosticTable LABEL byte 

DriverDebugCount dw 
DriverVersion db 

DriverDebugEnd-DriverDiagnosticTable 
01,00 

,StatisticsVersion db 
TotalTxPacketCount dw 
TotalRxPacketCount dw 
NoECBAvailableCount dw 
PacketTxTooBigCount dw 
PacketTxTooSmallCount dw 
PacketRxOverflowCount dw 
PacketRxTooBigCount dw 
PacketRxTooSmallCount dw 
PacketTxMiscErrorCount dw 
PacketRxMiscErrorCount dw 
RetryTxCount dw 
ChecksurnErrorCount dw 
HardwareRxMismatchCount dw 
NurnberOfCustomVariables dw 

01,00 
0,0 
0,0 
o 
-1 
-1 
o 
o 
o 
-1 
-1 
o 
-1 

jnot used 
jnot used 

;not used 
:not used 

:not used 
o 
(DriverDiagnosticText-DriverDebugEnd1)/2 

DriverDebugEndl LABEL byte • 

1·494 

292060-18 



inter Ap·326 

Table 1 (Continued) 

.A~AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA. , , 

Driver Specific Error Counters 
; 
iVvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv; 

rx errors dw 0 
underruns dw 0 
no_cts dw 0 
no ers dw 0 
rx-aborts dw 0 
no-590 int dw 0 
false 590 int dw 0 
false-rx Tnt dw 0 
false-tx-int dw 0 
lost rx - dw 0 
stop=tx dw 0 
rx disb failure dw 0 
tx-int count dw 0 
rx -buff ovflw dw 0 
tic:::tirneout dw 0 

DriverDiagnosticText LABEL 

db 'RxErrorCount' ,0 
db 'UnderrunCount',O 
db 'LostCTSCount',O 
db 'LostCRSCount',O 
db 'RxAbortCount',O 
db 'N0590InterruptCount',O 

byte 

db 'False590InterruptCount',0 
db 'FalseRxlnterruptCount',O 
db 'FalseTxlnterruptCount',O 
db 'LostOurReceiverCount',O 
db 'QuitTransrnittingCount',O 
db 'RxDisableFailureCount',O 
db 'TxlntCount',O 
db 'ReceiveBufferOverflow',O 
db 'TxTirneoutErrorCount',O 

db 0,0 

DriverDebugEnd LABEL word 

1-495 

292060-19 



AP·326 

6.2 Identification 

The first step in the initialization is the identification of 
the system and the board. If no mismatch is found, then 
the POS configuration register is read. The PS592E 
identification number (assigned by IBM) is 60F9. If 

mismatch is found or no card enable bit is found, then 
an error message is given and the initialization routine 
is exitecI. If no problem is found, then the "Set Inter­
rupt Vector" routine is called to set the vector to the 
address of the interrupt routine and save the old vect()r. 
Table 2 contains the code for the identification process. 

Table 2 

.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAftAAAAAAAAAAAAAAAAA. , ' 

Driver Initialize 

assumes: 
OS, ES are set to CGroup (== CS) .' 
01 paints to where to stuff node address 
Interrupts are ENABLEO 
The Real Time Ticks variable is being set, and the 
entire AES system is initialized. 
No registers or flags need to be preserved 

returns: 
If initialization is done OK: 

AX has a 0 
If board malfunction: 

AX gets offset (in CGroup) of '$'-terminated error string 
; ; 
;vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvVVVVVVVVVVVVVVVVVi 

Oriverlnitialize PROC NEAR 
mov MaxPhysPacketSize, 1024 
cld 

iFirst, find out the system we are in .... 
,Model 50 OFC04h 
,Model 60 OFC05h 
,Model 70 ?????h 
,Model 80 OF800h 

mov ah, OCOh 
int ISh 
cli 

(3 
(8 
(3 
(8 

jc cant get id 
mov ah, eS:[bx+l) 
mov aI, es:[bx+2) 
cmp ax, OFC04h 
jnz eight_slots 

slots) 
slots) 
slots) 
slots) 

,model byte 
,5ubmodel byte 
iis it a model 50? 

mov num of slots, 03h ,model 50 just has three slots 
jmp slots_set 

eight_slots: 
mov num of slots, 08h ,models 60 and 80 

cant get id:- - ,for now, default to eight slots 
slots set: 

add nurn of slots, OSh ;add OSh so we can use this in compare operation 
mav dl,-num_qf_slots 

;Next, find out which slot of the system we are in .... 

mov' curr slot, D8h 
next slot: -

mov aI, curr slot 
out POSPort,-al 
mov dx, CardIDLo 
in aI, dx 
cmp aI, IDValLo 
je next_byte 
inc curr slot 
cmp curr-slot, dl 
~e card-not found 
Jrnp next:::slot 

next byte: 
mov dx, CardIDHi 
in aI, dx 
cmp aI, IDValHi 
je its_us 
inc curr slot 
cmp curr:::slot, dl 
je card_not_found 
jmp next_slot 

islot number 

,Output slot 10 to Channel Position Select Reg. ~ 

Read the low byte of card 10. 
If it matches our low byte ... 
check the next byte 
Otherwise, index to the next slot and check there. 
Make sure we don't check beyond num_of_slots. 

Check next slot. 

Read high byte. 
Compare with expected high byte. 
If it's a match we can cont.inue. 
Otherwise, index to the next slot and check there. 
Make sure we don't check beyond nim_of_slots. 

Check next slot. 

1-496 

292060-20 



inter 

card not found: 
xor -aI, al 

AP-326 

Table 2 (Continued) 

out POSPort, a1 ;take system out of setup 
mov ax, offset cgroup:no_card_message 
jmp init_exit 

;Next, read the POS register on the PS592E to determine setup and 
;fi11 in the variables for later use ... 

bogus pas data: 
mav ax, offset cgroup:pos_data_error_message 
jmp init_exit 

its_us: 
mov dx, POSCnf 
in aI, dx 
mov pas_byte, al 
xor aI, a1 
out POSPort, al 
mov aI, pas byte 
mov bx, 0 -

try_next_Ioc: 
shl aI, 1 
jc set int 
inc bx­
cmp bx, 03h 
ja bogus-pos_data 
jmp try_next_Ioc 

set_int: 
mov 
mov 
mov 
cbw 
and 
mov 
mov 
mov 

aI, irq_array[bx) 
irCLchannel, al 
aI, pas_byte 

ax, 06h 
bx, ax 
ax, mem_array[bx1 
adapter_base, ax 

;save the value in a register 

;if bx reaches 3 without finding a set POS bit 
;then POS register was 1) not initialized or 
;2) not read correctly so abort 

iremove all extraneous bits 
;bx will index into array of memory offsets 
;get the value into ax 

;set the variable . 

;set up registers then call set_vector 
push di 
mov 
mov 
call 
pop 

aI, irq_channel 
bx, OFFSET CGroup:DriverISR 
SetlnterruptVector 
di 

1-497 

292060-21 



AP-326 

6.3 Hardware Initialization two configure commands. The first one puts the 82~92 
into 16 bit mode and the second one does the following: 

The 82561 configuration registers are set appropriately 
(enable memory mapped accesses, DMA 82588 Tel, 
double host bus mode, etc.). The command register is 
set to read the address PROM and store its value. Then 
the commimd register· is set to enable RAM access. 
Then the transmit channel is set and 82592 is issued 

Puts the 82592 in High Speed Mode to support 
Ethernet serial bit rates. 

All netwo~k parameters are set up for default 
Ethernet values. 

82561 Initialization section 
, 
;VVVVVVVVVVVVVVVVVVVVVVVVVVVVV~VVVVVVV 

mov ax, adapter_base 
moves, ax 
mov es:byte ptr id_reg, OOh 

%slow 

Table 3 shows the intialization code. 

Table 3 

;reset the 82561 

mov 
mov 
mov 
mov 
mov 

es:byte ptr master mode, 031h 
es:byte ptr control_reg, Olh 
es:byte ptr himm_int_mask_reg, 
es:byte ptr dma_mode_reg, 040h 
es:byte ptr select_reg+4, OCOh 

;DMA has priority, double bus width 
;late write, 0 i/o/mem wait state 
082h ;high assert,edge trig,drive,int 
; 588 TCI, discard bad frames 

on tx 

;enable access, memory mapped, 

mov es:byte ptr command_reg, 02h ;enable address PROM 
mov aI, es:byte ptr mem_space 
mov byte ptr ds:[di), al ;read address from PROM and store in 
mov byte ptr node addr, al 
mov a1, es :byte ptr mem_space+1 ; local variable "node_addr" 
mov byte ptr ds:[di+l], a1 
mov byte ptr node_addr[l], al 
mov aI, es:byte ptr mem_space+2 
mov byte ptr ds:[di+2], al 
mov byte ptr node_addr[2], al 
mov aI, es:byte ptr mem_space+3 
mov byte ptr ds:[di+3], al 
mov byte ptr node_addr[3], al 
mov aI, es:byte ptr mem_space+4 
mov byte ptr ds:[di+4], al 
mov byte ptr node_addr[4], al 
mov aI, es:byte ptr mem_space+5 
mov byte ptr ds:[di+5], al 
mov byte ptr node_addr[5], al 
mov es:byte ptr command_reg ,Olh ;enable RAM 

Receive Channel Initial~zation 

Receive is set up to use channel O. Receive buffer is 28K 
s~arting at location zero of adapter memory 

, 
;vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv~vvvvvvvvvvvvvvvvvvvvvvv 

mov es:byte ptr b.:..c_addrO_reg, OOh ;receive buffer starts at location. 
mov es:byte ptr b_c_addrO_reg+4, OOh ;zero in the adapter memory 
mov es:byte ptr b_c_addrO_reg+8, OOh 
mov es:byte ptr la_lim itO_reg , OOh ;lo_limitO_reg points to beginning 
mov es:byte ptr 10_limitO_reg+4, OOh ;of adapter memory 
mov es:byte ptr 10_limitO_reg+8, OOh 
mov es:byte ptr up_limitO_reg, OFFh ;up_limitO_reg points to the last 
mov es:byte ptr up_limitO_reg+4, 01Sh ;word of the 28K receive buffer 
mov es:byte ptr up_limitO_reg+8, OOh 
mov es:byte ptr stopO_reg, OFDh ;stopO_reg points to the location 
mov es:byte ptr stopO_reg+4, OlSh ;two words before the end of the 
mov es:byte ptr stopO_reg+8, OOh ;receive buffer 

1-498 

292060-22 



intJ AP-326 

Table 3 (Continued) 

.~~~~AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAA , 

Transmit Channel Initialization 

Transmit is set up to use channel 1. Transmit buffer is "4k 
starting directly above the receive buffer. Transmit buffer 
stops 256 bytes before the end of adapter memory because the 
B2561 registers and control registers are mapped there. 

~vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvyvvvvvv 

mov es:byte ptr b_c_addr1_reg, OOh 
mov· es:byte ptr b_c_addr1_reg+4, 01Ch 
mov es:byte ptr b_c_addr1_reg+B, OOh 
mov es:byte ptr lo_limit1_reg, OOh 
mov es:byte ptr lo_limitl_reg+4, 01Ch 
mov es:byte ptr lo_limit1_reg+B, OOh 
mov es:byte ptr up_limit1_reg, 07Fh 
mov es:byte ptr up_Iimitl_reg+4, OlFh 
mov es:byte ptr up_Iimitl_reg+B, OOh 
mov es:byte ptr stop1 reg, 07Dh 
mov es:byte ptr stop1-reg+4, OlFh 
mov es:byte ptr stopl=reg+8, OOh 
mov es:byte ptr dma_ctrll_reg, 14h 

mov tx buf head, 7000h 
mov rx=buf=head, OOOOh 

mov ax, OOh 
mov di, rx buf head 
mov cx, 3F7Fh -
rep stosw 

;set up-for configure command 

;transmit buffer starts at location 
;7000h (word 3BOOh) in the adapter 
imemory 
;lo_limitl_reg points to location 
;7000h in the adapter memory 

;up limitl reg points to the last 
;adapter memory location before the 
;561 mapping begins 
;stop register points to the spot 
;2 words before the 561 space 

;enable channel 

mov es:byte ptr portO, C RST 
mov di, tx buf head ;the 82592 must be given a configure comma~d 
xor ax, ax- - ;with zero in the byte count field to put 
stosw ;the 82592 into 16 bit mode 
stosw 
mov es:byte ptr portO, C_CONFIG ;configure the 82592 for 16 bit mode 
xor ex, ex 

wide mode wait loop: 
mov es:byte ptr portO, OOh 

aI, as:byte ptr portO 
al,ODFh 
aI, 92h 
do_config 
wide_mode_wait_loop 

;read register 0 
;disregard exec bit 
lis configure finished? 

%slow 
mov 
and 
cmp 
jz 
loop 
mov 
jmp 

ax, offset cgroup:no_response_message 
init_exit 

do_config: 
mov es:byte ptr portO, C INTACK ;clear interrupt in 592 

;disable channel mov es:byte ptr dma_ctrII_reg, 04h 
mov es:byte ptr b_c_addrl_reg, OOh 
mov es:byte ptr b_c_addrl_reg+4, OlCh 
mov es:byte ptr b_c_addrl_reg+8, OOh 
mov es:byte ptr dma_ctrll_reg, 14h 

transmit buffer starts at location 
7000h (word 3BOOh) in the adapter 
memory 

mov si, offset cgroup:config_block 
mov di, tx buf head 
mov cx, 9 - -

rep movsw 
mov es:byte ptr portO, C_CONFIG 
xor ex, ex 

1-499 

;enable channel 

;configure the 82592 

292060-23 



intJ AP-326 

Table 3 (Continued) 

config_w~it_loOP: 
mov es:byte ptr portO, OOh 

%slow 
mov 
and 
cmp 
jz 
loop 

aI, es:byte ptr portO 
aI, ODFh 
aI, 92h 
conf ig_done 
config_wait_loop 
ah, al 

iread register 0 
;discard extraneous bits 

,;is, configure finished? 

mov 
mov 
jmp 

ax, offset cgroup:config_failure_m~ssage 
init_exit 

config_done: 
clear interrupt caused by configuration 

mov es:byte ptr portO, C INTACK 
mov es:byte ptr int_ctrl=stat_reg, Olh ;clear 561 external interrupt 

do an lA_setup 
mov es:byte ptr dma_ctrll_reg, 04h 
mov es:byte ptr b c addrl reg, OOh 
mov es:byte ptr b=c=addrl=reg+4, OlCh 
mov es:byte ptr b_c_addrl_reg+8, OOh 
mov es:byte ptr dma_ctrll _reg, l6h 

mov di, tx buf head 
mov ax, 06h -;address byte count 
stosw 
mav si, OFFSET CGROUP:node_addr 
mov cx, 03h 

;disable channel 
; tra'nsmi t buf fer starts at location 
;7000h (word 3800h) in the adapter 
: memory 
;enable channel 

rep movsw 
;set up the 82592 individual address mov es:byte ptr portO, C_IASET 

xor ex, ex ;cx is used by the loop instruction below. this 
;causes the loop to be executed 64k times max 

ia wait loop: 
- mov- es:byte ptr portO, OOh 

ptr portO 
%slow 

mov 
and 
cmp 
jz 
loop 

aI, es:byte 
aI, ODFh 
aI, 9lh 

;discard ext'raneous bits 
is command finished? 

ia done 
ia=wait_Ioop 
ah, al mov 

mov 
jmp 

ax, offset cgroup:iaset_failure_message 
init_exit 

,ia done: 
mov 
mov 

;urunask 
mov 
in 
mov 
and 

%slow 

es:byte ptr portO, C_INTACK 
es:byte ptr int_ctrl_stat_reg, 

our interrupt channel 
dx, int_mask_reg 
aI, dx 
bl, int unmask 
aI, bl -

out dx, al 

Olh ;clear 561 external interrupt 

mov es:byte ptr himm_int_mask_reg, 04h ;enable slave interrupt 

;enable the receiver 
mov es:byte ptr dma c'trlO reg, 3Eh 
mov es:byte ptr portO, C_RXENB 

;enable channel 

xor ax, ax 
mov ex, 1 

in it exit: 
sti 
ret 

Driverlnitialize endp 

;make sure interrupts are enabled 
;return control to IPX 

1-500 

292060-24 



inter Ap·326 

6.4 Interrupt Routines 

First the current status of the machine is saved and the 
interrupt mask bits are set appropriately. Then the type 
of Interrupt is identified and the control is transferred 

to the appropriate routine. Transmit and receive inter­
rupts are handled by the 82561, other interrupts are 
passed to the CPU. Table 4 shows the Interrupt rou­
tines. 

Table 4 

Interrupt Service Procedure 

DMA channel 0 is the transmit channel 

DMA channel is the receive channel 

BX is set to point to the current receive or transmic buffer head 
after the cause of the interrupt has been determined. 

, 
;vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv 

DriverISR PROC far 
public DriverlSR 

pusha 
push ds 
push es 
call lPXStartCriticalSection ;tell AES we're busy 
mov ax, cs 
mov ds, ax 
mov es, adapter_base 
mov dx, int_mask_reg 
in aI, dx 
or aI, int_mask 
out dx, al 
mov aI, EOl 
out PriIntControlPort, 
cmp at_flag, Oh 
jz below 8 
out SeclntControlPort, 

below 8: 
cld 
mov aI, es:byte ptr 

int_poll_loop: 
sti· 

test aI, RxChannel 
jnz rcvd_packet_jmp 
test aI, TxChannel 
jnz sent_packet_jmp 
test aI, Ext Interrupt 
jnz other 588 int 
inc false-590-int 
jmp int_exit-

sent_packet_jmp: 
jmp sent_packet 

rcvd_packet_jmp: 
jmp rcvd_packet 

other 588 into 
inc false 590 int 

;DS points to C/DGroup 
;segment of adapter memory base 

;get mask state of 8259 
;set mask bit for our channel 
;write new mask to 8259 

al 
;is our assigned interrupt in the secondary 8259? 

al ;if so, clear secondary too 

;enable interrupts to be friendly 
idid I receive a frame? 

;did finish a transmit? 

;is there an error condition? 

;unwanted interrupt 

mov es:byte ptr portO, C_INTACK 
mov es:byte ptr int_ctrl_stat_reg, Olh 
mov es:byte ptr portl, C_lNTACK 
jmp int_exit 

1-501 

292060-25 



inter AP-326 

6.4.1 RECEIVE 

An interrupt on the receive channel is either due to 
receiving a frame or due to hitting the stop register. The 
location pointed to by the receive buffer head is exam· 
ined to check if a complete frame was received. This 
location is initalized to FF h (by the 82561). After re­
ceiving a frame the byte count is copied to this location. 
Assuming the value read is not FF h (a full frame was 
received), the routine checks the size of the frame. If 
the frame is too short, too long or does not match the 
phsical length, "buffer crash" routine is called. In this 

routine the receive error count is increased, the DMA 
channel is disabled, the DMA address registers are re­
programmed and then the channel is reenabled. If the 
frame length is O.K., then routine that processes the 
received frame is called. At the end the buffer head is 
incremented to point to the beginning of the next frame 
in the buffer. The stop register is then updated. A check 
is performed to findout if a wrap around was done duro 
ing the reception of the last frame. If so, then the buffer 
head is appropriately modified. Table 5 shows the driv­
er code for this section. 

TableS 

; ............................... ,."" .............. '''' ............. ; 
; RECEIVE EVENT 
,vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv; 

buffer crash: 
inc rx errors 
mav eS:byte ptr portO, C_RXDISB 
mev eubyte ptr portl, C_SELRST 

1disable channel mev es :byte ptr elma_ctrIO_reg, 2Eh 
mev es:byte ptr b_c_addrO_reg, QOh 
mav es: byte ptr b c addrO reg+4, DOh 

eSlbyte ptr b:c::a.ddrO:reg+8, DOh 
eSlbyte ptr la_IimitO_reg, OOh 

mev 8S ibyte ptr lO_limitO_reg+4, DOh 
mav es:byte ptr lo_limitO_req+S, DOh 
mev eSlbyte ptr up_limitO_r~g, OFFh 
mav es:byte ptr up_limitO_reg+4, DISh 
-maY es;byte ptr up_limitO_reg+9, ,DOh 
mov es:byte ptr stopO_reg, aFOh 

;receive buffer starts at location 
; zero in the adapter memory 

;10 limitO reg points to beginning 
; of-adapter memory 

;up_limitO_reg points to the last 
;word of the 2BK receive buffer 

mev eSlbyte ptr BtopO_reg+4, OlBh 
moves, byte ptr stopO _..:::eg+8, OOh 

;stopO_reg points to the location 
; two words before the end of the 
;receive buf,fer 

mov rx buf head, OOOOh 
mov estbyte ptr dma_ctrlO_reg, 3Eh 
mov es:byte ptr porta, C_RXENB 
mov eSfbyte ptr portO, C_SWPI 
moves: byte ptr portO, C_SWPO 
jmp int_exit 

;enable channel 

false rXf ; if not, increment counter and 
inc false_rx_int 
jmp int_exit 

rcvd -packet: 
mov ax, rx buf head ;get index into rx buffer 
mov rx buf~tr-; ax ' ;get index into rx buffer 
mav eS:byte ptr int_ctrl_stat_reg, Oeh Jack 561 interrupt 
mov bx, rx buf head ;get index into rx buffer 
mov ax, estword ptr mem_space(bx] ;word moves are required when 
mav cx, es:word ptr mem_space(bx] + 2 
mav ah, cl 
cmp ax, OFFFFh ;make sure we really received a frame 
jz false rx 

do next frame I -

accessing 

- mov- curr_rx_length, ax 
add bx, 4 

lax contains total length of the frame buffer 
; index bx to point to beginning of data 

dec ax 
and aI, Ofeh 
sub ax, 14 
cmp ax, 1024 + 64 
jbe not_too_big 
inc packetRxTooBigCount 
jmp buffer_crash 

not_too_bigl 
cmp ax, 30 
jae not_too_small 
inc PacketRxTooSmallCount 
jmp buffer_crash 

not too small: 

;toss byte count & status 
;round up 
;sub length of 802.3 header 

-mov- dx, eS:[bx].rx_Iength ;qet IPX length 
xchg dl, dh 
inc dx 
and dl, Ofeh 
xchg dl, dh 
cmp dx, 8S: [bx] .rxyhysieal_length :same as 802.3 lengt.h 
,je fields match 
jmp buffer:crash 

fields match: 
xchg dl, dh 
cmp dx, 60 - 14 
ja len_ok 
mov dx, 60 - 14 

at least min length minus header 
yes, continue 
no, round up 

1-502 

292060-26 



intJ AP-326 

Table 5 (Continued) 

len_ok: 
cmp ax, dx ; match physical length 
jz not_inconsistent ; yes, continue 
inc HardwareRxMismatchCount 
jmp buffer crash 

not_inconsistent: 
%inc32 TotalRxPacketCount 
call ProcessRxFrame 
mav ax, curr rx length 
add ax, 10 - -
add ax, 3 
and aI, OFCh 
add rx_buf_head, ax 

%slow 
mov 
cmp 
jb 
sub 
mov 

no wrap: 

ax, rx buf head 
ax, 7000h -
no_wrap 
ax, 7000h 
rx_buf_head, ax 

; Double Word Increment 

;get original byte count back 
;add overhead bytes to receive length 
;round up to nearest. double word 
; boundary 
;rx_buf_head points to next frame buffer 

- shr ax, 2 
sub ax, 4 

;convert byte address to doubleword address 
;calculate the stop value 

jns set_stop 
and ax, IBFFh 

set_stop: 

;check for negative value (stop was at 1st 16 bytes) 
;mask to generate required stop value 

mov new_s top_va I , ax 
mov bx, rx buf head 
mov ax, word ptr es:mem_space[bx] 
mov cx, word ptr es:mem_space[bx] 
mov ch, al 

;load bx for use as pointer 
;get byte count LSB 

+ 2 ;get byte count MSB 
;combine them in cxi 

mov ax, new stop val 
mov es:byte-ptr stopO_reg, al ;update the stop register 
mov es:byte ptr stopO_reg + 4, ah . ;by writing new values 
mov es:byte ptr stopO reg + 8, OOh ;to all three bytes 
cmp cx, OFFFFh - ;Is there another received frame to be 
je int_exit ; processed? 
mov ax, cx ;receive loop expects count to be in ax 
jmp do_next_frame 

int exit: 
-push cs 

pop ds 

finish_exit: 
moves, adapter_base 
mov aI, es:byte ptr int_ctrl_stat_reg 
test aI, himm_int_mask ;check for new interrupt 
jnz 
cli 
mov 
in 
and 

int_pending ;if we do, service it 

%slow 

dx, int_mask_reg 
aI, dx 

aI, int_unmask 

;mask interrupts so we can unmask our 
;channel without reentrancy problems 
;get mask state of 8259 
;clear mask bit for our channel to 
;enable new interrupts from adapter 

out 
call 
pop 
pop 
popa 
iret 

dx, al ;write new mask to 8259 
IPXEndCriticalSection ;tell IPX it can run 
es 
ds 

too_big: 
inc PacketRxOverflowCount 
jmp int_exit 

int_pending: 
jmp int_poll_loop 

;restore machine state 

ireturn 

1-503 

292060-27 



inter 
S.4.2 TRANSMIT 

After acknowledging the 82561 transmit interrupt, the 
routine checks if the transmit flag is set. If it is set, 
th,e routine reads the status registers of the 82561. If the 
transmit OK bit is not set, there was a problem with 

the transmit. In this case, other bits are read to deter· 
mine the exact cause of the problem so that the appro­
priate action can take place. If transmit was successfull 
the routine updates the retry count and returns the TX 
EeB to IPX with a good completion code. Table 6 
shows the code for transmit. . 

TRANSMIT EVENT 
:vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv: 

sentJ>acket: 
eli 

TableS 

mov 
cmp 

eS:byte ptr int_ctrl_stat_reg, 30h lack 561 interrupt 
tx active flag, 0 
bogus tx Tnt ;shouldn't have been transmitting jz 

inc 
mov 
mov 
mov 

tx lnt count 
al~ es,byte ptr statl_588_reg 
result!, a1 
aI, eS:byte ptr stat2_588_reg 
result2, a1 
aI, 20h 
tx error 
a1-; resultl 
ax, OFh 
RetryTxCount, ax 

iextract the total number of retries from 
;the status register and add to retry count 

mov 
test 
jz 
mov 
and 
add 
xor ax, ax jstatus ; 0, good transmit 

FinishUpTransmit: 
les si, send list 
cmp es:byte ptr [sil.transmitting, TRUE 
jnz not active 
mav es:-[si].completion_code, a1 
mav ax, eSI word ptr [si].link 
mav word ptr send_list, ax 
mev ax, es: word ptr [sil.link + 2 
mav word ptr send_list + 2, ax 

;finish the transmit 
moves: [si].in_use, 0 
call IPXHoldEvent 

not active: 
, -push cs 

pop ds 
mav cx, word ptr send_list + 2 
mav tx active flag, cl 
jcxz int_exit_Jmpl 
maves, ex ;segment af next SeB in list 
mav si, word ptr send list ;offset af next seB in list 
call start send 
jmp finish_exit 

int exit jmp1: 
-jmp -int_exit 

bagus_tx.:.,.int: 
inc false tx int 
jmp int_exi t-

tx_errar: 
test resultl, 20h ;Max collisions?? 
jnz QuitTransmitting 
test result2, Olh ~Tx underrun?? 
jz lost ets 
inc underruns 
mav aI, TransmitHardwareFailure 
jmp FinishUpTransmit 

lost ct.: 
test result2, 02h ;did we lose clear to send?? 
jz lost crs 
inc no cts 
mov al~ TransmitHardwareFailure 
jrnp FinishUpTransmit 

lost ers: 
test result2, 04h ;did we lose carrier sense?? 
jz late coll 
inc no crs 
mav al~ TransmitHardwareFailure 
jmp FinishUpTransmit 

1-504 

292060-28 



inter AP-326 

Table 6 (Continued) 

late coll: 
test result2, OSh ;did we have a late collision? 
jz hmmm 
inc no ers 
mov al; TransmitHardwareFaiIure 
jmp FinishUpTransmit 

hmmm: 
mov aI, TransmitHardwareFaiIure 
jmp FinishUpTransmit 

QuitTransmitting: 
add RetryTxCount, OFh 
inc stop_tx 
mov aI, TransmitHardwareFailure 
jmp FinishUpTransmit 

DriverISR endp 

1-505 

292060-29 



inter AP-326 

LAN / 

Under / rr­
Test 

IBM PS/2T1ot 
Model 50 I!c 70 

with 
PS592E-16 

Adopter 

I 
.. Novell Perform2 Ver 2.3 

Novell 286A 
8-MHz,OWS 

with 
PC5B6E 
Adopter 

I 

~ File Server: Novell 286A with PC586E Adopter 
.. Workstotlon Node: IBM PS/2 Model 50 ond io (One Node on Network) 

Doto Throughput of Workstotlon Node to Flleserver 

..... o 
z 
~ 
a:: e 
a:: ..... 
Q. 

PS/2 
Model 50 

PS/2 
Model 70 

300 350 
Kilobytes per Second 

292060-30 

, Figure 3. PS5292E/16 Performance Benchmarks 

7.0 PERFORMANCE 

The PS592E provides very high performance compared 
to many commercial adapters. The result of the per­
formance experiment is shown in Figure 2. The PS592E 
can perform default cycles (200 ns) on the Micro Chan­
nel. This is done when the board is configured for pipe­
line mode. Without this feature each host access would 
take about 500 ns, resulting in less efficient use of the 
host bus bandwidth. In addition to reducing the host 
bandwidth consumption, performing the default cycles 
(200 ns) on the Micro Channel improves the network 
performance by about 10% over non-default cycles. 
The experiment was performed using the standard 
Perform2 with one station and the file server (no colli­
sion). 

8.0 PS592E-32 

This chapter shows how the'PS592E-16 design can be 
modified to provide an adapter for the 32-bit Micro 
Channel I/O slots (Models 70 and 80). The design is so 
similar to the 16"bit design that only the differences 

. (PAL equations and schematics) are specified. 

8.1 Architecture 

The data path between tlie Micro Channel and the data 
latches/transceivers is 32-bit wide. The low word (DO­
D15) goes to U32 and U22 and the high word (D16-
D31) goes to U26 and U16. The component count is 
the same as in the 16-bit design. The complete set of the 
PS592E-32 schematic is given. 

1-506 



AP·326 

8.2 Schematics 

Besides the 32-bit data path, two other minor modifica­
tions are made to the schematics. 

1. U5 is changed from a 3-input NAND gate to a 4-in­
put NAND gate. Half of it is used to generate the 
CDDS32_ signal (indicating 32-bit data transfers) 
to the Micro Channel. An extra input is added to the 
CDDS16_logic (PIPELINE_, pin II ofUt). Only 
the memory transfers in the pipeline mode can be 32-
bit wide. Nonpipeline memory transfers remain 16-
bit wide on the low word (DO-DI5), and non-mem­
ory transfers remain 8-bit wide on the low Byte (DO­
D7). 

NOTE: 
1. Our Netware driver uses the pipeline mode to trans­
fer the frame data and nonpipeline mode to transfer 
other frame information (byte count, status, etc.). 
Since most of the time is spent in transfering frame 
data, the restriction (pipeline mode for data transfer 
only), does not reduce performance. However, if a de­
signer would like to extend the 32-bit transfers to non­
pipeline cycles he can do so. To do this, (BEO_ # 
BEI_) and (BE2_ + BE3_) should be generated 
on the board and latched (BEn_ are the Byte enable 
signals on the Micro Channel). . 

2. CBA2_ signal (which was generated in U31) is re­
moved and CBAI_ is renamed CBA_. CBA2_ was 
the latch signal for the high word data latch/transciev­
er (U26, U16) in the 16-bit version. It is not needed 
because the data is latched 32 bits at a time. The extra 
pins of U31 are used to generate SWEN_ in the PAL. 
SWEN_ is the enable signal to the local bus transceiv­
ers (U6 and Uti). 

3. Only the low 24 bits of address are decoded (no 
change from the PS592E-16). If the software code is 
that of the 80386, then the higher 8 bits should also be 
decoded and the result should be latched. 

8.3 PAL Equations 

8.3.1 HOST REQUEST 

The equation for unqualified HFO is modified. A re­
quest to the 82561 is generated each time the host CPU 
requests access to local memory (double word). Thus, 
LAI is removed as the qualifier. 

HFOU = ((LRDWR & LCDSFDBKl & ((!L561WIN_ & 
!LSBHE_l # (L561WIN-ll # 
(ILCDSETUP _ & LRDWRl; 

8.3.2 DATA LATCH/TRANSCEIVER CONTROLS 

CBAI_ is renamed CBA_, and LAI is removed from 
the equation, because the data is latched 32 bits at a 
time (independent of LAI). CBA2_ is removed. 

CBA- = ! (!CMD_ & PIPELINE & !LWRITL & RAM & 
L561WIN_ & LCDSFDBKl; 

For the same reason, data latch/transciever enable sig­
nals are modified to be independent of LA I during 
pipeline memory accesses. 

G1_ = ! ((!MEMRE~ & PIPELINE & ILREAD_ & 
!CMD-l # 
(!XVR1_&!CMD_l # 

(IIORD_ & PIPELINE & !XVR2_»; 

GL = ! ((!HFO_ & HF1_ & PIPELINE & !LREAD_ & 
!CMD_l # 
(!HFO_ & HF1_ & !PIPELINE & !XVR2_ & 
ICMD_l # 
(IIORD_ & PIPELINE & !XVRL»; 

1-507 



!! 
'g 
Gl 
~ 
cg 
la 
I\) 
m 
W 
I\) 

2 
I ceo 

g;l i 
(1) :.. 

I/J 

I 
3 
CT 
-< 
en 
g. 

i 

+sv -
:-0.01"F-: .01"F .01"F -: .01"F .01"F 0.01"F 0.01uF-: :-O.ohIF-: 
I' Cl ' ... 02 ' ... 03 ' I' C+ ' ... f:7 ' ... ce ' ... ce ' I' cIa ~ 

DND 

0.01uF-: :-0. 01 uF-: 0.01uF 0.01uF-: :-0.01uF :-0.01uF 0.01uF 0.01uF-: 
" Cl.' I' Cl .... ... 020' " 021'" I' 022' I' 023' 024 I' 025'" 

+IIV 

L-0.01uF_ L-0.01uF 10uFx2 10uFx2 

T :4 I 035 II C32 II 038 

efts. I ~ 2 

~ 4 

-!- 8 
DND 7 • .TlCD • 10 

lIND * 13 ~ 14 
lIND III I. 
TlCC. 17 1. 

IIOOTo 
.g. 
21 ~ 22 

IIOOTI 23 24 
.g r¥. 
¥. 211 

DND 30 

~ 32 

~ ~ ~ 

'coMa 

3FC~ 
7 • 

" 13 
a III 
4 10 
I II 

• I .. 12 

0.01uF 0.01UF-: 0.01uF-: 0.01uF 0.01uF 0.01uF 
... Cll' ... C12' C13 ' C14 ... , C15 ;; ... C18.' 

:-0.01uF 
I' 028' 

0.01"F-: 
027" "·~;,r=r=r~~T 

037 11 
10uF .. 2 -

+5V 
+5V 
COT. 
+12V 
+12V 

RTS. 
-12V 
LPBI<. 

RlCC. 
DND 

DND 
RlCD 
+SV 

CHRESET 

0:01uF 
C17 

0.01uF 

033 

292060-31 

( 

~ 
l' 
w 
N 
Q) 



intJ 

MICRO-CHANNEL 
-CD SEN 1 

MADE 24 2 
OND3 
A114 
AI 5 
..oaG 

7 
..oaa 
..07. 
ADI10 

11 
..0 ,. 
..0 13 
..0 14 
tN ,. 
..0 II 

PSBUS A ACt 17 
ACOta ,.w ,. 

..oLo 
PREEMPT ... ~ ~ BURST. 

-12VOC 
ARBO 
ARBOI 

-~.:c 
ARBO 

ARs/eNT. 

"'--'28 
MICRO CHANNEL -

~ 

~ 23 

~ 
~ 
F.t" 
~ 
t=-

~ 
so. 32 
S1.33 

"",0",34-
t2VO 35 

CD CHR 3a 
DO 37 
DO. 38 

H 
DO 4D 
DO 41 
DO ... 
aN 43 

DSt8RTN'" .... 
REFRESH. ~ 

PSBUS A ~~ '*" ..'to. I;ji-
1>1 4a 
D"50 
01 51 

12VO 52 
RESERVED ~ saHE 

CDDS"_ 55 
51 

11001 .. ~ 110015 l!!.. 

Ap·326 

CDSETUP", 
1otADE'4 

AUDIO GIl i:1-AUDIC 
~ GIlD GND 

OND 
A11 

'4.3 MHZ~:: ~ GND 
AID ADDRESS 0-23 A231 A23 
A8 A2'7 A2. ADDRESS 0-23 

+'V A211 A21 
AS GIlD. OND 
A7 A2010 A20 
AS Ate" AI. 

+5V "ta 12 Ala 
AS aND 13 aND 
A .. A17, ... A17 
A3 A1815 All 

+'V 
A2 PSBUS B ""5111 AI. 

ON017 aND 
AI A14111 A14 
..0 ""31. A13 

+12V A1220 AI • 
aND2' aND 

IRQCII 22 'ROD. 
IAQO .3 IR03_ 

-12V IRQO ... ~ eND •• GND 

-12V 

IRQO .. ~ IAQOII ~ .RQ07 • a IRQ7 • 
GND21 GND 

at 28 -
.... 'CRo-CHANNEL 

+5V 
so. 
51. 

:~:~~~ ~ 74FO'" ~ CHCK 
~ 

3 4 CMD 
GND GND 

t.I 10. CMD_ 34 U24 CWO. 

+12V 
CDCHRDY 

C~::~a';. ~ COSFOSK. 

DO GND:r7 GND 

D2 DATA 0-31 
+5V 

D5 

DOI38 01 
DO 3. D3 DATA 0-31 
DO 4D D4 

Da 
07 

eND 

+5V 

GN 41 GND 
CHRESET_ ... CHRESET 

:~~~= ~ 
PSBUS BOND *" DND 

:~ ~ 
DOS ~ DB 

010 
Dll 

DOli 48 DO 
OMDSD OND 

013 
+12V 

D1251 012 
01 •• 014 
0' 53 01. 

SBHE. DND 54 eND 
COOS1S_ 

+'V 

110010 ~ 110011 
110012 W IRQ12. 

GNDse OND 

830-158 

292060-32 

Figure 4. PS592E·32 Digital Assembly Schematics (Continued) 

1-509 



." 
iFi 
c 
; 
~ 
;g 
en 
CD 
I\) 

2! 
I\) 

o 
ce: 
!: 
1> , In 

U1 In 
...... (1) 

o 3 
I:J' 
-< 
en 
() 
:T 
(1) 

3 
!. 
~ 
'0 
o 
::J g. 
c: 
CD 
B: 

MICRO-CHANNEL 
RES. 
RES • 
RES. 
RES. 
GNO 
016 
017 
016 
GNO 
022 
023 
RES. 
GNO 
027 
028 

PSBUS B ~~~ 
BEO_ 
BE,. 
BE2_ 
GNO 
TR32 
01124 
01125 
GND 
01129 
A30 
A31 
GNO 
RES. 
RES. 

859-89 

DATA 0-31 

g.. 
~ 
~ g.. 
~ 
64 016 
65 017 
66 016 019 

g.. 020 
68 022 021 
69 023 

~ 024 

~- 025 
72 027 026 
73 028 
74 029 030 

~ 031 

~ 
~ 
~ 
~ 
~ COOS32_ 

~ g.. 
~ 
~ 
~ 
~ g.. 
~ 
~ 

--

~ 
~ 
~1 
~ 
~ 
~ 
~ 

6 
6 
6 

~ 
71 
7 

-J). 
7 
7 

~ 
~ 
'~ 
4.1 
~ 
-$l 

8 

~ 
~ 
~ 
~ 
~ 

MICRO-CHANNEl 
RES. 
RES. 
GNO. 
RES. 
RES. 
RES. 
+12V 
019 
020 
021 
+5V 

024. 
025 
026 
+5V 

030 PSBUS A 
031 

RES. 
+12V 
BE3_ 

OS32RTN* 
COOS32_ 
+12V 
01126 
01127 
01128' 
+5V 

RES. 
RES. 
RES. 
GNO. 

1'.59 89 

DATA 0-31 

292060-33 

( 

» 
'U . 
Co) 
N 
01 



!! 
cc 
c: ... 
CD 

f'" 
'U en 
III 
II) 
I\) 

IT! 
W 
I\) 

c 
~: 
i 
> 

tn III 
III 

~ CD 
~ 

3 
D" 

0<" 
en 
() 
:::r 
CD 
3 
III 
:::!: 
() 
III 

a 
0 a 
::J 
c: 
<D .s 

ENINT 74ALS3e 
INT6dT T ENINT3 1 R , 2 U1a 3 IRQ3_ 

74A1..S84' ----

SSHE· 2 '0 'Q 
23 

"'4 3 20 2Q 22 LAI4 

"'3 4 3D 3Q 2' LA, 3 

"'2 5 4D 4Q 20 LA' 2 .. " 8 50 ,. LA" 50 
"'0 7 eo eo ,e LA,O 
loS B 70 7Q 17 LA9 
AS 9 eo eo '8 1..A8 

CDSFOBK 10 90 9Q '5 
CDSETUP. " 100 10Q '4 

+5V '3 C r 2 74F10 ~DC 
~uspL'2 ~ 

aiD '3 J ,lliill±! 
A7 2 10 10 23 LA7 
AS 3 202Q 22 LAO 
14!5 ... 3D 3Q 21 1..A5 
A4 540 4020 LA4 
A3 e so 50 19 1..A3 
A2 7 00 SO'B 1..A2 
A1 8 70 70 17 LA' 

ADDRESS 0-23 NJ II 80 ea 18 LAD . '0 90 QQ'5 
WRITE_ " 100 10Q '4 

'3 C 

~DC 
~ 

LPIPECYC 
ROWR 2 

cwo-
HF'U 
HFOU 

ENINTl -

ENINT9 

ENINT12 

1N4148 

14 i I -~--
CR' 

R4 

4.02K 

u'" tirO 

74ALS38 
4 

~ 
74ALS38 

• 
~ 

74ALS38 

'2 
13 U13 

74F"OO 

r===k8 
74FDO 

8 IRQ7_ 

8 IROQ_ 

" IR:012. 

LSBHE. 

LCDSFOBK 

LCDSETUP. 

[ADDRESS 0 , 4 
LRE'AO • 
LWRITE_ 

8 HF1_ 

" HFO_ 

292060-34 

cl 

» 
"C 
W 
N 
OJ 



!! 
cc 
c 
iil 
f>' 
"V en 
C11 

~ 
'r' 
Co) 
I\) 

C 

~ 
> , III 

OT III 
~ CD 
I\) 3 

cr 
-< 
W =s­
CD 
3 
!. 
~ 
o o 
a 
::J c 
CD 
.& 

292060-35 

l 

» 
l' 
Co) 
N 
0) 



!! 
cc 
c 
iil 
~ 
'tI 
(f) 

~ 
I'll 
W 
I\) 

S! 
ceo 
~ 
» , til 

01 til 
~ II 
W 3 

2: 
'< 
(f) 
n 
::T 
II 

~ 
~ 

~ 
'0 o 
:J s· 
c:: 
CD 
S 

HFO. 
HFh 
PIPELINE 
LREAD. 
LWRITE· 
><VR'. 
XVR •• 
lORD_ MWR. 
IOWR_ 
CSH· 

ClIO. 

GCs. 
U581WIN. 
PRCIIoI 
LSBHE_ 
IORD./WWR. 
IOWR. 
LCDSETUP. 

IDDRESS 0-14 

CIID 

CIID. 
US81WIN. 
LSBHE. 

LWRITE. 
LREAD. 
LCDSFDBK 
PRCIIoI 
RAIl 
PIPELINE 
LCDSETUP. 

WRITE_ 
READ. 

-1!..!::!!... 
1 IN • IN 
3 IN IN 15 
4 IN OU 17 
~ IN OU 

,. 
e IN OUT 14 
7 IN OU 13 
e IN OUT ,. • IN 
11 IN OU 

,. 
18 IN 

2SNS 

~ 

1elBB 
1 IN • IN 
3 IN 
4 IN 
~ IN ou 

,. 
e IN ou 14 
7 IN OU 13 

lA2 e IN ou ,. 
LA1 • IN ou 15 
lAO 11 IN OU 1. 

18 IN ou 17 

.5NS 

~ 

~ 1 IN OU 18 
2 IN OU 1S 
3 IN ou 12 

LA1 4 IN OU 14 
5 IN OUT 

,. 
e IN 
7 IN OUT 13 
e IN 
11 IN 
11 IN OUT 17 

'8 IN 

25NS 

"---urr-

UEWREQ* 

74F10 
11 

'~ usp}--!-

74F10 
CYCLE_ 3~ 

4 USP '- • 
5 ) 

.. 

$WEN. 

"h 

"". CIR_ 
CAB. 

SX 

EPROWCS. 
PROWCS. 
LOCUO_ 
ROST_ 
LCDSETUP 
POSRDCNF. 
POSLOCNF. 

LPIPECYC 
HF1U 
HF'OU 
5818£0. 
se,BE1. 

CVCACT 

CllAh 

292060-36 

l 

» 
"tI 
I 

Co:! 
N 
0'1 



LU""'L UI\.I'\ U-I ~ 

MADDRESS 0-12 

:!! ca c LADDRESS 0-14 
iii 
f'> 
'1J en en 
UI 
N 
m 
~ 
N 

!2 
! 
!!!. 
~ u, I: ..... CD .". 3 
!l 
'< 
en 
() 
::J' 
CD 
3 
III 
=!: 
() 
(II 

"0 
0 a 
:::l 
c: 
([) 

.s 

LAI4 311 AI2 82561 114 LAI3 311 All MAl 2 MAl 2 
LAI2 37 115 MAli 10 .... 11 
LAII 311 I'a MAIO 118 .... ,0 
LAIO 35 All MA8 117 .... 11 
LAII 34 l1li MAlI .! MAli 
LAII 33 MA7 I MA7 
LA7 32 A5 MAli 2 .... 11 +~ 
LA8 31 M lIAS 3 .... 5 
LAS 30 A3 MA4 4 .... 4 ~ 
LA4 211 A2 MA3 II .... 3 

lit LA3 27 I MA2 7 .... 2 
LA2 28 AD MAl II .... , 

RI 
5818£0_ III SEOo MAO II .... 0 • 5111BE1. '8 BEl. D7 411 D7 
HFO- 25 HFO_ DII 411 011 
HF1_ 24 HF1. os 47 os 
581IDROY 20 HROY 04 411 04 
XVRI. 22 XVRI. 00 45 00 
XVR2. 21 X\IR2. D2 44 D2 
GCS. 511 GCSo DI 41 Dl 
INTOUT 50 INTOUT DO 4D DO 
MOE. 110 MOE. INTR 51 INT 
CSH. 111 CSH. CS. 12 CS. 
CSL. 82 55 DACK. CS~ DACK. 
CHRESET 42 RESET DROI 52 OROI 
IORD./MWRo !III IORD./MWRo DROD 54 DROD 

~ eLK lon_ 58 10WR_ 
LREAD. 17 RD. DACKI/EOP 53 CSI EOPo 

RSVI 13 

U7 RSV2 
14 

~~ .....! 0 5 10 
C 13 
o 12 

~o II 

Ii20 

82592 
CS .... /CO 

CONTROLLER 

U8 LOIS 3 015 
LOI4 3 014 RXC. 
LOI3' 31! 013 neo 
LOI2 3SI 012 RXO 
LOll II 011 RTS. 
LOIO I 010 crs. 
LOll "011 CRS. 
LOll I 011 CDT. 

nec. 
L07 I D7 HC 
LOll 1 DII HC 
LOS 1 D5 
L04 1 D4 CU<SRC 
L03 1 D3 
L02 1 D2 
LOI 1 Dl 
LOO DO FREQ 

411NT 
3 CS. 
2 DACK. 

DROI 
DROD RD. 

4 WH. RESET 
.~ CSI/EOP. CLK 

" !! Ii! 

~ 
N 

28 
31 
30 
32 

~ 
34 
25 

~ 
~ 

..!- .. 

..L.. ... 
N ",. ::J 

~ f$-II 

- ~ 

.~ 1: 
=1 

0 
): .. -
RXCo 
nco 
RXO 
RTS. 

CRS. 
COT. 
neCo 

a 
•• 

-... 
e ... ... 

N 

10Wlt_ 

292060~37 

cl 

~ 

l 
N 
Q) 



DIR_ 

DO 
~4G 

20 B' 
0' '11 B2 
02 '0 B3 

"TI 
cO' 
c .. 
(I) 

f'> 
"tI 

03 '7 B4 A' 4 LOO LOO 
04 '11 B5 e LO, LO' 
05 '5 B6 II L02 L02 
06 '4 B7 A 7 L03 L03 
07 '3 B8 8 L04 L04 

~ DIR A 9 LOS LOS 

(j A '0 LOll LOll 
(JJ 
en 
I&) 
N 

'II 

23 CIIA " L07 L07 , 
CAB 

---¥- SBA 
--L SAB 

Co) 
N 'u32 
C 
cg: ~6 

OIl 20 B' 

~ 
l> 

U, UI 
UI 

~ (I) en 3 
C" 

OIl '11 B2 
0'0 '11 B3 
0" 17 B4 A' 4 LOll L08 
0'2 '8 B5 e LOll L09 
0'3 ,e BII II LO'O LO'O 
0'4 '4 B7 A 7 LO" L011 
0'5 13 B8 8 L012 L012 

-< 
(JJ 
() 
:::T 
(I) 

3 
DI 

~ CIR A II LO'3 LO'3 
Ch (j A '0 LO, .. LOH 
ellA'. 23 CIIA " LO'5 LO'5 
CAB. 1 CAB sx 22 SBA 

~ SAB 
:::!: '---
() 
UI 

U22 

a 
0 

a: 
::J 

C2. 
WOE. 

c 
m $WEN. 

S DATA 0-31 

LOCAL DATA 0-15 

LOCAL DATA 16-31 

0'0 
0'7 

~ 0'11 
2 A' B,'II LOUI 0'11 
3 A2 B2'7 LO,7 020 
4 K3 B3 '8 LO,II 02' 
5 A4 B4 '5 LO'II 022 
II AS B5 '4 L020 023 
7 AD BO '3 L02, 
II A7 B7 '2 L022 
II All B8 " L023 , 
'11 -gIR 

~ 

024 
02S 

~ 0211 

2 A' B,'8 L024 027 
3 A2 B2 '7 L025 028 
4 K3 B3 '6 L0211 0211 
5 A4 B4 '5 L027 030 
8 AS B5 '4 L028 03' 
7 A6 BB '3 L0211 
8 A7 B7 12 LOaD 
II All BII " L03' 
1 DIR 
'9 Cl 
~ 

74ALS"4e 

20~ 
'11 B2 
'11 B3 
'7 B4 A' 4 
'11 Be 5 

'5 BII 0 

'4 B7 A 7 

'3 B8 8 

~ DIR A II 

G A7 '0 
23 CBA " , 

CAB 

r-----¥- SBA 

r-L SAB 
'---

U28 
74Al.SII411 

20~ 
'9 B2 
'8 B3 
,7 B4 A' 4 
'0 B5 5 

'5 BB 6 

'4 B7 A 7 
'3 B8 8 

c..+,c DIR A \I 

G A '0 
23 CBA " , 

CAB 

~ SBA 
..-.L SAB 

'---
U,8 

LO'II 
LO,7 
LO,a 
LO,II 
L020 
L02, 
L022 
L023 

LD24 
L025 
L026 
L027 
L028 
L0211 
L030 
L03' 

292060-38 

cl 

» 
"U 
I 

t.) 
N a.. 



+.v 

LADDRESS 0-14 

ADDRESS 0- 23 

:!! 
CQ 
c 
iii 

11110. 
IoIADE24 
CDEN 

f'" 
." en T 
U'I 
<0 
N 

~ 
(,) _0 
N _1 

2 
'9. 
~ 
:t- NlOVE 

o, III 
III .... (II 

(j) 3 
0-
-< 
en n :::r 
(II 

3 
I\) 
:::!: n 
III 

PIPELINE 
PIPELINE_ 

'0 
0 
3-

!WI 

74F04 
so. 11 10 

:l" 
c: 51. U24 
(1) 

.e, 1 74F04 

• a 

U24 

74FOO 
CDSETUP. 1 

2 U23 3 

I 

lAS 2 
tA8 3 
tAl0 4 

. LA" " 
a 

tA12 e .../ 
tA13 11 
tA14 12 U14 

A18 ~ 2 AD A=ii 1>1!---
A18 4 Al 
A17 I A2 

8A3 
11 ... 4 
13 .... 

All l' AS 
Al' 17 11.7 

• B3 12 114 • 
3 BO 

N 
::J 

14 85 

• 91 18 9a 
18 B7 

~ 92 

~ G 
~ 

~F8' 
10 AD _~ 

12 A1 ..... 8 e 
13 A2 A>B f--!. 
1. A3 

10:1.0 9 BO 
10:1.1 11 91 
10:1.2 14 B2 
A23 1 B3 
~ < 
~ A<B 

I 
~ > 

,',- ~ 

74F10 
13 

1 U30 12 
2 

74F10 

! U30\ a 

I " J 

.. 
• e • .-

II 

74FOO 
12 

~11 

74F40 
1 

~U~ e 
.1.-

74F+O 
9 

10 
U51. 12 8 

13 ../ 

5 U23 }=±8 • 

UUI1WIN • 

CDSFD8K. 

CDSF08K 

CODS32_ 

coos,s. 

WRITE_ 

RDWA 

READ. 

292060-39 

l 

)0 
-a 

I 
Co) 
N 
0) 



"1'1 
iii 
c 
iil 
~ 

~ 
~ 
l, 

'" c .e, 
i 
» 

b. I: 
..... CD 
-.J 3 

go 

-< 
~ 
CD 
3 
III 

~ 
'§ 
a 
::J 
c 

~ 

74F04 

292060-40 

l 

» 
'U . 
(0) 
M 
Q) 



intJ 

Signal Name 

ABOVE 

CDEN 

CYCACT 

DIIt-

ENINT3,7,9,12 

EPROMCS_ 

HFOU,HFIU 

AP-326 

APPENDIX A 

Description 

POS register bit that determines 
mapping below or above 1 Meg. 

data latch clock (direction: local 
memory to latch) 

data latch DO-DI5 clock (di­
rection: host to latch) 

data latch D16-31 clock (direc­
tion: host to latch) 

local SRAM chip selects (low 
and high banks) 

POS register bit for card enable 

active host cycle enveloping sig-
nal 

partial active host cycle envel-
oping signal ' 

direction signal for data latch­
es/trasceivers 

POS register bits determining 
the selected interrupt signal 

EPROM chip select signal 

general chip select (output of 
82561) 

data latch DO-DI5 ,transceiver 
tristate enable 

data latch D16-D31 transceiver 
tristate enable 

unqualified, active high host re­
quest signal 

active low host request signals 
to the 82561 

Signal Name 

LAO-LAI4 

LCDSETUP_ 

LCDSFDBK 

LDO-LD31 

LPBK-

LPIPECYC 

LREAD,LWRITE 

L56IWIN_ 

MAO-MAI2 

MEMREQ_ 

POSLDCNF_ 

POSRDCNF_ 

PROM 

PROMCS_ 

RAM 

RDWR 

SX 

, Description 

latched host address lines 

latched card set up signal 

latched card select feedback sig-
nal 

load command register 

local data bus 

loopback signal 

latched pipeline cycle signal 

latched read and write signals 

latched byte high enable 

latched 82561 subwindow 

memory address lines (output of 
82561) 

memory request' from the host 

memory output enable (output 
of 82561) 

load POS configuration register 

read POS configuration register 

command register bit determin­
ing PROM vs EPROM paging 

PROM chip select 

command register bit determin­
ing RAM vs. ROM paging 

read f!om the status, register 

unlatched read or write (decode 
of SO_ and SI_) 

select between latched and real 
time data 

transceiver !latch enable signals 
(output of 82561) 

IORD_I MWIt- read from non-SRAM port or 
'write to SRAM (output of 

82561) 

IOWIt- write to non-SRAM port (out­
put of 82561) 

561BEO_, 56IBE1_ low word and high word enable 
signals (input to 82561) 

561IORDY IORDY output of 82561 

INTOUT Interrupt output of the 82561 

1-518 



APPLICATION 
NOTE 

PC592E 

AP-328 

August 1989 

Buffered LAN Adapter Solution 
for the IBM PC-XT and PC-AT* 

DARYOOSH KHALILOLAHI 
TECHNICAL MARKETING ENGINEER 

TSVIKA KURTS 
SYSTEM VALIDATION GROUP 

'IBM, PC-XT and PC-AT are trademarks of International Business Machines. 

1-519 
Order Number: 292063-001 



inter AP-328 

1.0 INTRODUCTION 

In recent years IBM PC·A T*s and compatibles have 
become the most popular personal computers. Judged 
by the amount of adapter hardware and application 
software developed for them, the trend seems likely to 
continue in the near future. Introduction of the Extend· 
ed Industry Standard Architecture (EISA) is another 
reason supporting this prediction. 

The role of local area networks (LANs) expands as the 
role of the personal computers in the office environ· 
ment increases. Some examples of the benefits provided 
by networking are sharing expensive peripherals (to re· 
duce the cost); sharing a single data base (to improves 
data control and security), and having electronic mail 
capabilities (to improve communication). 

The best choices for Local Area Networks are those 
that provide low cost, reliable operation, ease of expan· 
sion, and the backing of major VLSI manufacturers. 

The 82592/82560 is an ideal choice for 16·bit, buffered 
adapter applications. The high level of integration re· 
duces the component count and the design cycle. The 
combination provides high performance and competi· 
tive cost. 

The PC592E is a 16·bit, nonintelligent, buffered slave 
adapter design. It interfaces the IBM PC·AT or PC· 
XT* or compatibles to an Ethernet network. The 82592 
LAN Controller and 82560 host interface and DMA 
Controller are used to receive and transmit frames be· 
tween the network and local memory (16 kB). The 
PC592E can perform zero wait state memory data 
transfers on the PC bus. The design permits the use of 
interchangeable network serial interface modules for 
Ethernet*', Cheapernet and TPE applications. 

2.0 OBJECTIVE 

This application note demonstrates how to use the Intel 
82560 and 82592 to build a high·performance, cost·ef· 
fective PC·A T LAN adapter that implements the tradi· 
tional buffered architecture. 

2.1 Acknowledgements 

We acknowledge and thank Yosi Mazor and Joe Dra· 
gony, of Intel's (Folsom, Calif.) Data Communications 
Focus Group, for their work in developing the hard· 
ware and the software and their contribution to this 
application note. 

2.2 Terminology' 

The following table shows the terminology used in this 
document. 
Symbol 

# 

& 

Description 
at the end of a signal name indicates 
active low 
logical OR 
logical AND 
logical INVERSION 

3.0 ORGANIZATION 

Section 4 provides an overview of the 82560 and 82592 
functionality. The reader needs a basic knowledge of 
these components to better understand the following 
chapters. Section 5 provides a functional description of 
the PC592E. In this section, the design is divided into 
three architectural subsections (host interface, memory 
subsystem, and network interface). PAL equations and 
schematics are broken down according to the architec· 
tural division. The last section provides the perform· 
ance benchmarks for the board. Appendix A provides a 
brief description of most PC592E internal signals. Ap· 
pendix B provides the complete sets of PAL equations. 

4.0 COMPONENT OVERVIEW 

4.1 82592 LAN Controller 

The CHMOS 82592 is a CSMA/CD controller with a 
16·bit data path. It can be configured to support a wide 
variety of industry standard networks, including Ether· 
net, Cheapernet, TPE, PCNet, and STARLAN***. 
The 82592 also supports Deterministic Collision Reso· 
lution (DCR) applications. The 82592 consists of three 
subsystems: parallel, serial, and FIFO. The parallel ! 

subsystem provides an 8· or 16·bit interface to the ex· 
ternal bus. The 82592 supports memory transfers (at up 
to 16 MB/s); it accepts commands from the processor 
that controls the bus and provides it with status infor· 
mation. The 82592 can support simultaneous transmis· 
sion and reception including autoretransmit, transmit 
frame chaining, and back·to·back frame reception. The 
serial subsystem consists of a highly flexible CSMA/ 
CD unit, a data encoder/decoder, collision detect and 
carrier sense logic, and a clock generator. In high inte· 
gration mode it supports NRZI, Manchester, or Differ· 
ential Manchester encoding and decoding at' bit rates 
up to 4 Mb/s. In high speed mode the 82592 is capable 
of 20·Mb/s Manchester or NRZI encoding. The FIFO 
subsystem consists of a transmit FIFO, a receive FIFO, 
and control logic (with programmable threshold). A to· 
tal of 64 bytes of FIFO can be divided between receive 
and transmit. 

'IBM, PC·AT and PC·XT are trademarks of International Business Machines Corp. ' 
"Ethernet is a trademark of Xerox Corp. 

"'STARLAN is a trademark of AT&T. 

1·520 



infef AP-328 

4.2 82560 Host Interface and Memory 
Controller 

The CHMOS 82560 is a high-performance DMA con­
troller designed to work in a tightly coupled fashion 
with the 82592 in a PC-XT, PC-AT or MCA adapter 
application. 

Two independent DMA channels support a transfer 
rate of up to 10 MB/s to/from the local SRAM. Up to 
16 kB of ring buffer memory can be I/O or memory 
mapped into the address space. Host accesses to the 
local memory can be made with zero wait states. These 
accesses can be byte or word wide. The 82560 imple­
ments all of the 82592 tightly coupled functions: back 
to back frame reception, bad receive buffer reclaima­
tion, auto retransmit upon collision, and transmit 
chaining. 

5.0 IMPLEMENTATION 

The board is divided into three sections (see figure 1), 
the host interface, the memory subsystem, and the net­
work subsystem. Both the 82592 and 82560 operate on 
the IO-MHz Ethernet clock generated by the serial side. 
In the rest of this section a component (designated by 
its unit No. on the board and the schematic) is defined 
as part of a subsystem if one or more of its output pins 
are in that subsystem. To access any port on the board 
(including SRAM), the host CPU generates a request 
to the 82560. When in a 16-bit slot the board supports 
16-bit hosts (PC-AT), otherwise it supports 8-bit hosts 
(PC-XT). To enable the board the most significant bit 
(bit 3) of the command register should be set to 1. In 
the 16-bit configuration SRAM accesses can be word 
(zero wait state or nonzero wait state) or byte wide 
(nonzero wait state). All other transfers (non-SRAM) 
are byte wide. In the 8-bit configuration SRAM access­
es can be either with zero added wait state (pipeline 
mode) or with 3 to 4 added wait states (nonpipeline 
mode). The reader is referred to the table and listing in 
Section 5.2.3 for a complete set of host memory cycles. 

The data transfers between the local memory and the 
82592 are 16 bits wide and are controlled by the 82560 
DMA channels. 

1-521 

5.1 Hardware Configurable Options 

The board has seven jumpers and one switch. These can 
be set to change the board configuration. 

5.1.1 MEMORY MAPPING WINDOW 

E 1 through E6 are used to select the lower portion of 
the address window. The letter E followed by a number 
refers to a unique jumper node. These two jumpers are 
used to select the lower portion of the memory address 
window. El, E2, E3 select the least significant bit 
(MAPO) of the three bit address selector. E4, E5, E6 
select the next bit (MAP1). 

E7 through E9 select the most significant bit (MAP2) 
of the address selector. MAP2 determines the upper 
portion of the address window; namely below I Mega­
byte or above 1 Meg. Together with MAPO and MAP1, 
these three jumper selections determine which one of 
the eight 16-kB windows of host memory address is 
chosen. 

a) Below 1 Megabyte 

memory window MAP2 MAP1 MAPO 
OCOOOO to OC3FFF 0 0 0 (factory 

E9/E8 E6/E5 E3/E2 default) 
OC8000 to OCBFFF 0 0 1 

E9/E8 E6/E5 E1/E2 

000000 to 003FFF 0 1 0 
E9/E8 E4/E5 E3/E2 

008000 to OOBFFF 0 1 1 
E9/E8 E4/E5 E1/E2 

b) Above 1 Megabyte 

memory window MAP2 MAP1 MAPO 
FCOOOO to FC3FFF 1 0 0 

E7/E8 E6/E5 E3/E2 

FC8000 to FCBFFF 1 0 1 
E7/E8 E6/E5 E1/E2 

FOOOOO to F03FFF 1 1 0 
E7/E8 E4/E5 E3/E2 

F08000 to FOBFFF 1 1 1 
E7/E8 E4/E5 E1/E2 



intJ AP-328 

5.1.2 INTERRUPT 

A switch is used to determine the interrupt line selected 
as shown below. 

PC bus Interrupt 
IROp 
IR07 
IR09 
IR012 

Switch position 
1 (factory default) 
2 
3 
4 

5.1.316- OR a-BIT HOST SUPPORT 

Jumper E16 through E18 is used to select the source of 
the BHE_. In a 16-bit sI0t'E16/E17 should be select­
ed. This connects the SBHE_ from the PC bus to the 
BHE_ of the board. In an 8-bit slot E18/E17 should 
be selected. This connects the inverted SAO to the 
BHE_ of the board. The factory default is E16/E17 
(PC-AT). 

PCXT is a signal on the board that can be read by the 
host (through the status register) to determine if the 
board is plugged into a 16- or 8-bit slot. This signal is 
connected to the GND pin of the D connector (pin 18) 
of the 16-bit I/O channel. A l-kohm pull-up resistor 
connects the node to the + 5-V supply. Therefore in a 
16-bit slot PCXT will be read as 0, otherwise it will be 
read as 1. 

5.1.4 CLOCK SOURCE 

Jumper E19 , E20, E21 selects the source of the clock 
for the 82592 and the 82560. 

Jumper position Clock source 

E19/E21 lO-MHz serial clock from the serial 
unit connected to TXC of 82592 (fac­
,tory default) 

E20/E21 external crystal connected to Xl of 
82592 

5.2 Host Interface 

This subsystem consists of the command register (U4), 
the status register (U12), and their control (U11); the 

6 5 4 3 

address decoder (U1 and V2) and its latch (V4); the 
data latches/transceivers (V8 and V9), the high memo­
ry bank to D7 -0 data transceiver (VlO), and their con­
trol (V5); the host request generator (U2); and the 
memory and peripheral controller (U6). 

5.2.1 .cOMMAND AND STATUS REGISTERS 

The command register is four bits wide. 
3 2 1 0 

I BOARDEN I PIPELINE I PROM RAM 

After power up; or reset, the board is disabled. When 
disabled, the board recongnizes only host requests to 
access its command and status registers. 

Bit 0, Bit 1: Determine the memory port being ac­
cessed. 

Bit 1 
o 
o 
1 

Bit 0 
o 
1 
o 

EPROM access 
RAM access 
PROM access 
Reserved 

Bit 2: Determines the mode for accessing the buffer 
memory. When 0 the host accesses to the local 
SRAM are made with added wait states. When I, 
and the 82560 is configured for the pipeline 
mode, the host accesses to the local SRAM are 
made with no added wait states '(pipelined data 
transfers). This bit and the bit 0 of the 82560 host 
mode register should always be set to the same 
value before an SRAM memory access is at­
tempted. 

Bit 3: Is the board enable bit. After power up, or reset, 
this bit should be set to 1 in order to access the 
on-board ports (SRAM, ,PROM, EPROM, 82560 
regisiers, and 82592 registers). 

The following is the PAL (VII) equation for writing to 
the, command register. 

LDCMD_ = !( !GCS_ & !L560WIN_ & !IOWR_l 

The status is seven bits wide read only register. 

2 o 
PCXT MODT1 MODTO BOARDEN PIPELINE PROM RAM 

1-522 



intJ AP-328 

The four least significant bits are the contents of the 
command register. 

Bit 4, Bit 5: Are generated by the network module and 
determine the type of network module installed. 

Bit 5 Bit 4 
o 0 Ethernet 
o 

o 
Cheapernet 
Reserved 
TPE 

The reserved combination is for future use. 

Bit 6: Is read to determine if the board is plugged into 
an 8- or 16-bit slot. In a 16-bit slot a 0 is read, 
otherwise a I is read. 

The following is the PAL (Vll) equation for reading 
the status register. 

RDST_ = !( !GCS_ & !L560WIN_ & !IORD_) 

5.2.2 ADDRESS DECODER 

The highest bits of the address (LA23 - 20) are decoded 
in V2. The output is the MSBOEC signal, which is 
latched on the falling edge of the BALE in V4. The 
latched signal (LMSBOEC) is input to the other PAL 
(VI). SA19-14 are decoded in this PAL for the lower 
portion (within I Megabyte) of the address mapping. 
The output is LSBOEC. 

Three signals from the board provide the handshake 
required by the host: 

IOCHRDY. MEMCSI6_. and ZEROWS_. 

The relevant PAL equations (of VI and V2) are given 
below. The reader is referred to the appendix A for the 
decription of internal signals. 

RAMEN = (RAM & BOARDEN) 
MSBDEC = ( !LA20 & !LA21 & !LA22 & 

!LA23 & !MAP2) # 
(LA 20 & LA21 & LA22 & LA23 
& MAP2) 

!LSBDEC_ = ( (SAI9 & SAl8 & ! SAl7 & 
!SAI6 & !SAI5 & !SAI4 & 
!MAPI & !MAPO) # 

(SAI9 & SAl8 & !SAI7 & !SAI6 
& SAI5 & !SAI4 & !MAPI & 
MAPO) # 
(SAI9 & SAI8 & !SAl7 & SAl6 
& !SAI5· & !SAI4 & MAPI & 
!MAPO) # 
(SAI9 & SAl8 & !SAI7 & SAl6 
& SAI5 & !SAI4 & MAP I & 
MAPO)) 

!L560WIN_ = (SAI3 & SAl2 & SAll 
« SAIO « SA9 & SA8 « 
SA7) 

!MEMCSI6_ = ( !LSBDEC_ & LMSBDEC 
& RAMEN & L560WIN_ & 
!SAO & !BHE_) 

enable (ZEROWS_) = (RAM & !LSBDEC_ & 
LMSBDEC & BOARDEN & 
PIPELINE « L560WIN_) 

ZEROWS_ = !L560IORDL 

5.2.3 DATA TRANSCEIVERS/LATCHES 

Bit 2 of the command register determines the mode in 
which the host accesses the local SRAM. 

In the non pipeline mode the data transceivers/latches 
act as simple transceivers. The cycles are extended by 
pulling IOCHROY low until the transfer to/from local 
memory is completed. All non-SRAM accesses are in 
non pipeline mode. 

In pipeline mode the data transciever/latches act as 
data latches. In this mode a read ahead or write behind 
operation is performed after every host request to the 
82560. These accesses are to sequential locations in the 
local SRAM. In this mode no wait states are asserted. 
The direction of the pipeline transfer is determined by 
the value of bit I of the 82560 host mode register. In 
read cycles, after the current transfer, the 82560 up­
dates the buffer with the contents of the next local 
memory address. This is called "read ahead" (in antici­
pation of the next host read request). In write cycles the 
data is copied from the data latch to the local memory 
after the host has finished writing to the data latch. 
This is called "write behind." 

In the 8-bit configuration, during odd byte memory ac­
cesses the transceiver VIO becomes transparent. Thus 
the data path would be from/to the high bank of 
SRAM (V13), through UIO, to the low byte of data bus 
(07-00). 

In the non pipeline mode V8 and V9 serve as simple 
data transceivers. All non-SRAM accesses use the even 
byte (07 - 00). In the 16-bit configuration the value of 
SAO and SBHE. determines which bank of memory (or 
both) should be accessed. 

The following table shows different types of memory 
cycles and the expected value of the transceiver and 
data latch (74ALS646) control signals. B is the host 
side and A is the local bus side. When SX is I, stored 
data is selected. When 0, real time data is selected. X 
stands for don't care. 

1-523 



inter AP-328 

cycle Pipeline PCXT BHE_ SAO MEMW_ MEMR_ G1L G1H_ G2_ CBA1_ CBA2_ 
1 1 0 0 0 0 
2 1 0 0 0 1 
3 0 0 1 0 X 
4 0 0 0 1 X 
5 0 0 0 0 X 
6 0 0 
7 1 0 1 
8 0 1 0 
9 1 0 1 

10 0 1 0 X 
11 0 0 1 X 

cycle 1 : PCAT pipelined (word-wide) memory write 
cycle 2 : PCAT pipelined (word-wide) memory read 
cycle 3 : PCA T nonpipelined even-byte memory access 
cycle 4 : PCAT nonpipelined odd-byte memory access 
cycle 5 : PCAT nonpipelined word-wide memory access 
cycle 6 : PCXT pipelined even-byte memory write 
cycle 7 : PCXT pipelined even-byte memory read 
cycle 8 : PCXT pipelined odd-byte memory write 
cycle 9 : PCXT pipelined odd-byte memory read 
cycle 10 : PCXT nonpipelined even-byte memory access 
cycle 11 : PCXT nonpipelined odd-byte memory access 

1 0 0 1 0 0 
0 0 0 1 
X 0 1 
X 1 0 
X 0 0 1 
1 0 1 1 0 
0 0 1 1 
1 0 0 0 0 
0 1 0 0 1 
X 0 1 1 t 
X 1 0 0 1 

The control signals to the transcievers/latches are generated by the PAL U5, which realizes the above table. 

lGIL_ = (MEMREQ & PCXT & SAO_ & lMEMR_l # (lPCXT & PIPECYC & MEMR_l # 
( lXCVL & SAO_l # (lHFO_ & lHFLl # (lXCV2_ & HFLl 

lGIH_ = (PIPECYC & lMEMR_l # (lXCVL & lBHE_l # (lXCV2_ & HFLl 

lG2_ = (PCXT & MEMREQ & lSAO_l 

lCAB_ = ( !IOWR_ & lXCV2_ & HFLl 

lCBAl_ = (PIPECYC & lMEMW_ & lPCXTl # (MEMREQ & PIPELINE & lMEMW_ & PCXT & 
SAO_l 

lCBA2_ = (PIPECYC & lMEMW_l 

SX = (MEMREQ & PIPELINE # lIORD_ & PIPELINE & lXCV2_ & HFl_l 

lDIR_ = ( lXCV2_ & HFL & lIORD_l # (lMEMW_l 

1-524 

SX 
1 
1 
0 
0 
0 

1 
1 
1 
0 
0 



inter Ap·328 

5.2.4 HOST REQUEST GENERATOR 

The following table shows how different ports on the board are accessed. BOARDSEL refers to the board address 
decoded, that is the logical AND of LSBDEC and LMSBDEC. X stands for don't care. 

BOARDSEL L560WIN_ BOARDEN RAM SBHL* HF1_ HFO_ 
0 X X X X 1 1 Idle 

0 X X 0 0 0 GCS_ access: Command/Status 
1 0 X 0 0 GCS_ access: ROM *. 

1 X 1 0 SRAM access 
0 X 1 0 1 82560 register access 

• In the a·bit configuration, inverted SAO serves as SBHE_ . 
•• ROM refers'to either PROM or EPROM. Bit 1 of the command register determines which. 

The following PAL equations realize the above table. HFO_ and HF1_ are the request lines to the 82560. 

mFO_ = ( !MEMW_ &: L560WIN_ &: BOARDSEL &: BOARDEN &: REQEN) # 
( !MEMW_ &: L560WIN_ &: BOARDSEL &: BOARDEN &: !PIPELINE) # 
( !MEMW_ &:!L560WIN_ &: BOARDSEL &: !BHE_) # 
( !MEMR_ &: L560WIN_ &: BOARDSEL &: BOARDEN &: REQEN) # 
( !MEMR_ &: L560WIN_ &: BOARDSEL &: BOARDEN &: !PIPELINE) # 
( !MEMR_ &:!L560WIN_ &: BOARDSEL &: !BHE_) 

mFL = ( !MEMW_ &: !RAM &: BOARDSEL &: BOARDEN) # 
( !MEMW_ &: BOARDSEL &: !L560WIN_) # 
( !MEMR_ &: !RAM &: BOARDSEL &: BOARDEN) # 
( !MEMR_ &: BOARDSEL &: !L560WIN_) 

5.2.5 MEMORY AND PERIPHERAL 
CONTROLLER 

To access any port on the board the host generates a 
request to the 82560. The 82560 will then synchronize 
the request and perform arbitration (with any active 
local DMA request). It then asserts the proper memory 
or peripheral control signals. 

The 82560 also supports the interrupt function. The 
interrqpt initiated by either the 82592 or the 82560 is 
passed to the host system through one of the four inter­
rupt lines (depending on the position of the switch). 

In nonpipeline mode 10CHRDY is pulled low immedi­
ately after the board address is decoded. It goes high a 
programmable number of clock transitions after the 
host cycle starts. The 82560 register bit that can affect 
it are: HRDY delay, HRDY delay reference source, 10 
and access delays. The reader is referred to the 82560 
data sheet for more details. In pipeline mode the 10-
CHRDY remains high until after the request is re­
moved. Then the 82560 HRDY output goes low while 
the local bus cycle is being completed. 10 CHRDY will 

, be pulled low while the board address decode is 'active 
and 82560 HRDY output is low. In either case the 
10CHRDY is tristated until the board address is de· 
coded. 

enable (IOCHRDy) = (LSBDEC & LMSBDEC) 
IOCHRDY = !560I0RDY_ 
# (!LSBDEC_ & LMSBDEC &. lBOARDEN . & 
L560WIN_) 
# (!LSBDEC & LMSBDEC & !BOARDEN & !BSAO) 

5.2.5.1 Nonpipeline cycles 

In ALL nonpipeline cycles (SRAM or otherwise) 10-
CHRDY is pulled low within 30 ns after the address on 
the PC bus becomes valid. It remains low until the 
82560 HRDY output goes high, then it goes high. 

The memory address input to the 82560 in th~ nonpip­
line mode is the same as the host CPU address shifted 
by one bit (SAl goes to AO input of 82560). During 
byte-wide memory accesses byte enable inputs of the 
82560 (BEO_ and BE1_) determine which bank of 
SRAM is being accessed. 

The output address of the 82560 is the same as its input 
address, except that its three most significant bits (12, 
13, and 14) are logically OR'd with the three least sig· 
nificant bits of the 82560 host address register. The low 
bank of memory is accessed for even-byte addresses and 
the high bank or odd-byte addresses. 

1-525 



inter AP-328 

',,--. ___ --II 
82560 HRDY 

IDCHRDY 

5.2.5.2 Pipeline Cycles 

. During SRAM pipeline cycles IOCHRDY stays high. 
It goes low after the cycle is over (HF _ removed). This 
is when the 82560 performs read· ahead or write behind 
operations. Read ahead means that the next word (or 
byte in the case of 8-bit configuration) of data is copied 
from the local memory into the data latches in anticipa­
tion of the next request. Write behind means that data 
is first latched in the data latch(s) and then the 82560 
copies the data into the local memory. The memory 
address in this mode is provided by the host address 
register, which is incremented by one after each 82560 
transfer. To change the direction of the transfer the 
82560 Host mode register should be accessed first and 
its bit 1 changed. 

5.3 Memory Subsystem 

The memory subsystem consists of the network address 
PROM (U15), the low bank of SRAM (U14), the high 
bank of SRAM (U13), an optional EPROM (U16), 
control PAL (UU, U5), and the 82560 memory con­
troller (U6). 

All controls are generated by the 82560, except for chip 
select for the EPROM and the PROM. 

EPROMCS_ = !( !GCS_ & !IORD_ & !PROM & 
L560WIN_l 

PROMCS_ =!( !GCS_ & !IORD_ & PROM & 
L560WIN_l 

5.4 Network Interface 

The network interface consists of the 82592 LAN con­
troller (U7), the 82560 DMA controller (U6), and a 
plug-in analog module (Ethernet, CNet, or TPE). 

5.4.1 DMA TRANSFERS 

Two independent DMA channels of the 82560 are used 
to transmit and receive frames. Each word-wide DMA 
transfer can have a duration of 200 to 500 ns (82560 

''----II 292063-3 

programmable). Autoretransmit, back-to-back frame 
reception, and bad receive buffer reclamation are all 
performed without CPU intervention. ' 

The 82560 in the 82592 TCI mode supports transmit 
chaining. DMA channels are also used to configure the 
82592 and to read its 69 bytes of internal information 
through the dump command. 

The arbitration between the two DMA requests, and 
between the host request and the DMA request, are 
performed by the 82560 local bus arbiter function. . 

Transmit buffer size (including the configuration block) 
can be about two kilobytes. It should stop 128 bytes 
before the end of the adapter memory. The last 128 
bytes of address (highest addresses) are for accessing 
the 82560 and the command and the status registers. 

The receive memory buffer can occupy the rest of the 
local memory. It can be arranged as a ring buffer and 
managed by the 82560. The lower limit register of the 
82560 holds the starting address of the ring, and its 
upper limit register holds the ending address of the 
ring. The 82560 performs the wraparound without 
CPU intervention. The stop register of the 82560 points 
to the last receive buffer location processed by the host 
CPU. The 82560 generates an interrupt to the host if 
the current address register of the channel reaches the 
stop register of that channel. 

For more information about DMA transfers and the 
format of the transmit and receive frame, the user is 
referred to the 82560/82561 Technical Reference Man­
ualOrder #290198. 

5.4.2 SERIAL INTERFACE 

The 82592 CSMA/CD controller is used in the high­
speed mode. The 82C501AD performs Manchester en­
coding and decoding; it also provides a watchdog timer, 
collision detection, and transmit/receive clack genera­
tion. Using the loopback modes, the transmitted data is 
routed to the receive path (at the 82592, the 
82C501AD, or on the wire). This feature is useful for 
controller and physical layer diagnostics. 

1-526 



inter AP-328 

5.5 Schematics 

015-08 07-00 
PC BUS 

LATCH/ PALS 
SRAM XVR 

High Bank 

1 

-'--

XVR 

--

SRAM 
Low Bank LATCH/ 

XVR 

I I 
P 

E 
COM/ R 

P 
592 560 STATUS 0 R 

REG. 
M 

0 
M 

292063-4 

Figure 1. PC592 Block Diagram 

1-527 



&. 
I\) 
CX> 

'TI 
iii 
c:: 
ill 
~ 
." o 
U'I co 
N 

C 
~: 
~ 
> g: 
11) 

3 
c­
o< 
en 
n 
:::T 
11) 

3 
!. 
~. 

(SHEET 5 

(SHEET 5) 

(SHEET 5) 

(SHEET 7) 
(SHEET 7) 

) CRS-

CND 
TXD 

CND 
GND 
TXC-

IIODTO 
IIODT1 

OND 

_ ClND 

1c21031c41:1c8 IC71c8 1 C1 
O.01uF· O.01uFIO.01uFIO.01uFIO.01uFIO.01uFIO.01uFIO.01uF'" 

+5V 

O.01uF 

10uF)(2 T 
1 
~ 

2 

~ 4 

~ 8 
7 8 
II 10 

+1-13 
..g 
14 

15 18 
17 18 
.g. 
21 ~ 22 
23 24 

~ ,.g 
~ 28 
211 30 

~ 
32 

~ ~ -=-
'--
CON2 

10uFM2 

C111 

C21 

r 10uFx2 

+5V 
+5V 
CDT-
+12V 
+12V 

RTS-
-12V 
LPBK-

RXC-
ClND 

OND 
RXD 
+5V 

RESET 

(SHEET 5) 
(SHEET 2) 
(SHEET 2) 

(SHEET 5) 
(SHEET 2) 
(SHEET 5) 

(SHEET 5) 

(SHEET 5) 

(SHEET 2) 

292063-5 

c.n 
in 
en 
n 
::T 
CD 
3 
I» -o· 
tn 

'§ 
~ 
:j" 
c:: 
(I) 

.9; 

l 

l> 
"D . 
Co) 
~ co 



~ 
lB 
I\,) 

S! 
9. 
i 

. i 
~ 3 co CT 

-< 
W 
~ 
CD 
3 
! 
~;r 

+L'
V 

R' , K. 

E2 MAPa (SHEET 4) 

r 
'1(1 

+l5V R2 

.If ..... P, (SHEET") r 
+l:5V R3 

'1(1 

r 
A w.P2 (SHEET 4) 

MEWR­

(SHEET 4.S) 

1oIEIIW-

(SHEET 4) 

292063-6 

U1 er. 
en 
n :::r 
CD 
3 a 
~. 

~ 
::J 
<:!". 
::J 
c:: 
CD 
.& 

l 

)0 
"'U . 
Co:! 

~ 



!! co 
c: ... 
ID 

'-""\oJt"'I ... """11"\ v-'''' "tC,1 D 

~ MADDRESS 0-12 (SHEET .) 
'tI 
0 
en 
CD 
N 

C 
C§: 
i 
l-
UI 
UI 

&. ID 
Ul 3 
0 c-

o< 
(J) 
() 
::r 
ID 
3 
III 
::!: 

~ ~ ~ CS2 loa ,g LD'. ~CS2 loa ,g 
""'2 2 A12 107 11 LD,4 WA12 2 A,,2 107 18 

""" 23 A11 108 17 LD13 WA1, 23 A11 108 17 

""'0 21 A1a 105 ,a LD'2 MAlO 21 A'O 105 ,a 
""g 24 AQ 104 1~ LD11 ..... e 24 AS 10 '5 
""a 25 All 103 13 LD10 MAS 25 All 103 '3 
""7 3 A7 102 12 loDe ""7 3 7 102 '2 
""a 4 All 10' " LOS ""a 4 All 10' " ..... • M IM5 • 
.... 4 8 ""4 a A4 
MA3 1 /43 MA3 7 /43 
""2 a A2. MA2 a A2. "", 9 

A' "", 9 
~~ ""0 '0 NJ IMO '0 

10RD-/IIWR- SHEET 5 27 WE 27 WE 
CSH- SHEET S 20 CS1 20 CS, 
""E- SHEET 5 22 GE 

I 
22 GE 

11 ~ '----u14-
() 
UI 

CSL- (SHEET 5) 
PROIICS- SHEET 1 

'0 EPROWCS- SHEET 7 

0 
:::J IISAO (SHEET 5) go 
C 
CD 
.9: 

AM27S19 
IISAO 

LD? LD7 9 Q7 A4 
,. .... 3 ""3 

LDa LDa 7' Q8 /43 '3 .... 2 ""2 
LD. LD5 a Q' A2. '2 .... , "", 
LD4 LD4 5 Q4 

"" " 
.... 0 .... 0 

LD3 LD3 4 a3 NJ l.!L.; .... 4 
LD2 LD2 3 a2 IM5 
LD, LD, 2 a, ""a 
LDO LDO , go ""7 

""8 
'5 CS ""9 

""'0 
UI5 """ ""'2 

, 
RQ 

'OK 
2 

+.v 

27C121 
'0 NJ Q' 
aM Q2 
7/43 a3 
aA2. a4 
9 A' as 
'A4 aa 
4 All a7 
3 A7 

25 All 
as 

24 AQ 
2' A'O 
23 All 

2 A'2 
2a A'3 
27 PGW 
20 CE 
22 G 

' V'pp 

u,a 

" LDO 
'2 LD, 

'3 LD2 
'5 LD3 
,a LD4 
17 LD. 
,a LDa 
'9 LD7 

292063-7 

U1 
U1 
CJ) 
n 
~ 
(I) 

3 
III -C:)" 
(J) 

'0 
o 
~ ::r 
c 
CD 
.9: 

( 

» 
" . Co) 
N 
Q) 



~ 
c 
iil 
~ 

~ en 
CD 
~ 

C c 
i 
~ 

, III 
01 CD 
(.0) 3 
~ D" 

'< 
en 
n 
i 
3 
!!l. 
~ 
~ 
::J g-
C 
(!) 

E: 

1N4'48 

CR' 

e) 
e) 
e) 
e) 
e) 
e) 
e) 
e) 

S) 

5) 
5) 
2) 

2) 

292063-8 

~ 
UI 

en 
(') 
::::T 
CD 
3 
II) -n' en 
() 
0 
::J g. 
c: 
(!) 
0-

I~ 

( 

» 
'U 
I 

(0) 
N 
CD 



!! 
(Q 
I: ., 
CD 

~ 
." 
0 
U'I 
CD 
I\) 

g 
(Q 
;:;: 
!!!. 
> en en 

U, CD 
w 3 
N C" 

-< 
en 
(') 
:::r 
CD 
3 
I» 
:r. 
(') 
en 
0 
0 
:::J 
g 
I: 
m 
S 

LVWI"L LH\ 11'\ U-lo:J SH£IET Itl 

!!ADDRESS 0-12 (SHEET 5) 

SADDRESS 0-19 (SHEET .) 

SA13 3V A12 82560 
SA' 2 38 A1 1 1M12 
SA" 37 '0 1M" 
SA'O 38 A9 1M' 0 
SAO :IS"" 1M. 
SA8 34 A7 1M. 
SA7 

33 "" ..... 7 
SAO 32 A5 ...... 
SA5 31 ...... ..... 5 
SA4 301'3 1M4 
SA3 2. A2 ...... 
""2 27 At 1M2 
SA' 2. /4!J ..... , 

BSAO (SHEET 2 18 8EO_ ..... 0 
BHE- SHEET 2 19 B£1- 07 
HFO- SHEET ... 25 HFO- 08 
HF, SHEET ... 24 HF1- 05 
MEMR- SHEET 2 17 RO- O. XVR,- SHEET ... 22 XCV1- 03 
XVR2- SHEET ... 21 )(CV2- 02 acs- SHEET 7 sa QCS- 01 
INT SHEET 3 50 INTOUT 00 
IoIOE- SHEET 3 ISO WOE- INTR 
CSH- SHEET 3 81 CSH- CS 
CSL- SHEET 3 82 CSL- DACK-
RESET SHEET 2 42 RESET oRQ, 

ORD- MWR- SHEET 3 .... 58 IORD-/UWR- DRQO 

74~~ ORDY- 8 13 S80 

(SHEET 0,7) U3 

RS 
201<1 

'----< 

~7 

---:b1. eLK IOWR-
20 HRDY - DACK1/EOP-

RSV' 

U6 RSV2 

RO 

1001< 

e4 1M12 
85 ..... " 
ee 1M' 0 
e7 ...... 
O. ...... , ..... 7 

+5V 2 ...... 
3 ..... 5 
4 ..... 4 ~ 
0 ...... 
7 - ..... 2 

'K 
8 1M' R7 
9 ..... 0 
49 L07 
48 L08 
47 LOS 
48 LO' 
45 L03 
44 L02 ., LOI 
40 LOO 
5' 
12 
55 
52 
54 
50 
53 
13 

" 

~ l U'I 

en 
n 
:r 
CD 

U'BK- (SHEET I 3 
I» 

R8 t .& 
U3 

10K 

74ACT11004 CI. 
0 '2 22pF 

-n' 
0 

0 
0 
~ 
5" 

= y, 
82592 C'7 

CSIM/CO 
10.0mH 

22p 

I: m 
S 

CONTROLLER 

U7 
LO'5 38 015 ~ 
LO'4 37 01 ... RXC- 2. RXC _(SHEET 
LO'3 38 013 TXO 31 TXo SHEET 
L012 3D 012 RXo 30 RXo SHEET 
LO" • Oil RTS- 32 RTS- SHEET 

,) 
,) 
I) 
,) 

LO'O 
, 

0'0 crs-r¥.-LOO 11 09 CRS- 35 CRS- (SHEET 
LOB '2 DB CoT- 34 COT SHEET 

TXC- 25 TXC SHEET 
L07 , 07 NC ~ LOO , 08 NC p!-
LOS 13 05 
L04 18 04 CLKSRC f-L- <to a. 
L03 17 03 
L02 , 02 

') 
') 
I) l> 

" • (,) 
N 
CD 

LO' 18 01 .,.. 
LOO 2° 00, FREQ f2---.. 

INTR 4' INT 
,. 

CS- 3 cs- 7 
U3 

DM:I(- 2 OACK-
74ACT11004 

DRQI 2BoRQI 
DRQO 27oRQO RO-r!o-- 3 
IOWR- • RESET 
CS, EOP .2 CS!/EOP CLK r.=--

10WR- {SHEET .) 

IORD- MWR-

292063-9 



0, 
w 
w 

!! 
IQ 
c: 
n; 
!'l 
'tI 
(') 
CI1 
CD 
r.) 

C 
i?J' 
~ 
» en 
en 
CD 
3 
0" 
-< 
W ::r 
CD 
3 
!!!. 
(;' 
en 
a 
o 
~ 
5· 
c:: 
CD 
S 

•• 7) 
.) 

'.7) 
7) 
',7) 
,,7) 

292063-10 

C1I 
tn 
(J) 
(') 
~ 
(\) 

3 
II) -(;' 
en 
a 
o 
~ 
5· 
c:: 
CD 
S 

cl 

» 
"'tJ 
I 

W 
N 
ClO 



LOCAL DATA 0-15 (SHEET II) LOO 111 
LOI 111 

." 
cO' 
I: 

L02 14 
L03 12 
L04 9 .. 

(1) 

!" 

" 0 
UI 
CD 

LOll 7 
LOll II 

3 
RD~ 
~ 

N 

C 
cO' 
;:;: 
!!!. 
):> 
en en 

I11l8 
LS8DEC SHEET 4 1 IN 

0, (1) 

Ul 3 
~ C" 

-< 
en 
() 

lIIIOIORDY- SHEET 5 2 IN 
8SAO- SHEET 2 3 IN 
PCXT SHEET 2 4 IN 
OCS- SHEET II 5 IN 
LlSIIOWIN- SHEET 4 II IN 

:::T 
(1) 

3 
! 
('j' 
en 
0 
0 

IOWR- SHEET 5 7 IN OUT 19 
IORD- SHEET 5 II IN OUT III 

+, IN OUT 17 RDST-
IN OUT 18 

LMSBDEC J:SHEET ~ "---1'2 OUT ~ OUT 14 . OUT 13 

:a 
:i" 
c 
tTl Ul1 
B 

74LS244 
lYl lAl 2 RAIl 
lY2 lA2 4 PROM 
lY3 lA3 II PIPELINE 
lY4 lA4 8 BOARDEN 
2Yl 2Al 11 MODTD 
2Y2 2A2 13 MODTI 
2Y3 2A3 15 PCXT 
2Y4 2A4 r-!! 
Tci 
20 U12 

EPROMCS-
PROMC5-

LOCMD-

REQEN 
IOCHRDY ---_.-

SI HEET 
'HEET 
'HEET 
HEET 
'HEET 
'HEET 
'HEET 

5 
5 
5 
5 
5 
5 

8) 
II) 
8) 
II) 
1) 
1) 
2) 

(5 HEET 3) 
5 HEET 3) 

(5 HEET 8) 

t5 HEET 4) 
(5 HEET 2) 

292063-11 

~ l CI1 

CJ) 
(') 
':s' 
ft) 

3 
II) -(or 
en 

» 
"tI 
I 

Co) 
I\) 
CG 



"TI 
cO' 
c ... 
CD 

~ 
"tJ o 
UI 
10 
I\) 

en o 
:::T 
CD .u, 3 

U)'1Il 
01 ~ 

o 
m 
:T 
CD ... 
::J 
!2. 
s:: 
o 
Co 
c 
~ 

IdALE 

YI 

20.0MHZ 

E C 
o 

TN 
H N 
E E 
R C 
N T 
E 0 
T R 

292063-12 

U1 
U, 

en 
n :::r 
CD 
3 a 
n' 
UI 

'0 o 
;a :;. 
c 
(1) 

S 

t 

> 
" I 
(0) 
I\) 
Oil 



+sv -.-

,C;VS a 

O:1'uF 

::!! co 
,GIJ a 

c 
ii1 

O.1uF 

f> 
." 
0 
g: 

,CFJ a 

~ O:1'uF 
N 
UJ 
n 
::T 
CD 
3 

&. ID 
:::!: c.J fl 0) 

n 
::T 
CD 
ID 
." 
CD .. 
:::J 
CD -s::: 
0 a. c 
.! 

MALE 

~ ~7 

~ ~ 
~ t---i 
'---20 ~ 82C501AD 

i'i 'it -4 ENETV1-r, t-ti 
~ NOOR- TRIIT 

"i8 ~ RTS- frEN- TRMT 
~ II lXD 17 fTxD RCV 
~ 17 lXC- 18 fTxC- RCV-
ii' 30 RXD II RxD CLSN 
'~ 22 RXC- . 8 RxC- CLSH 
~ 8 COl' 7 CDT- X2 
"28 I CR5- 8CR5- XI r---T 18 LP8K- 3 LPBK-

: 211 10 +12V 
24 8 +12V Ul 

~ 15 21 MODTO 

~ 23 MODTI 

'coNI I ,R12 I. 

100 

;;- . +~ 

,C;,. a 

20 PF 1 Yl 
~. 

20.0MHZ 
,e;; a 

2'; PF 

,R14 a 

,~~ a 1 ~ 
240 

III TR· 
18 TR-
4 RC 
5 RC-
12 CL 

" CL-
13 X2 
14 XI ,R18 a 

78 
,R17 a 

78 

PE84102 
18 
15 PULSE 13 
12 
10 TRANSFORMER 

II 

~ 
.l!. 

U2 

I TRMT 
2 TRMT-
4 RCV 
5 RCV-
7 CLSN 
8 CLSN-

~ 
~ 

XCIEVER BUS 

292063-19 

l 

~ 
." 
~ 
r.) 
OJ 



PICOFUSE 2VPI2UI .... ,--, ...... 

!! 
IQ 
C 
~ 
I" 

+I2V 2 

'" 
I I ~ 

-4 ~ 
FUI ~ ~ 

-4 ~ 
, CUI -i ~ 

:;~2.2UF ~ DC/DC .g.. 
~ 

II ~ CONVERTER I1Z-
-A ~ 

,G1,2 ~ .-w ~ ,4 

" 0 
,2 f!!-O.OluF 

III 
ID 
I\) 

III 
() 
:::I" 
CD 
3 
III 

U4 , R, II 

I.OIot 
lCIO 

"7 
Ta°.O'UF 

1:1: 
() 
III 

&. '0 
Co) :::I" 
-...I CD 

III 
"0 
CD ... 
::::I 
CD .. 
iii: 
0 
CL 

L 71911 

~ 
XCIEVER BUS CLSN 2 ,I 

CLSN- 3 III 
RCV 4 g. 
RCV- :s ,II 

II ~ 

TRMT 
~ ~ 

II ~ 
TRMT- I 12 

10 II 
c 
.! 
'0 

U3 

0 
::J 
d: 
::J 
C 
(1) 

.s 

RIO R11 
---~"--

RI 

40.21 40.21 1741 

,GP ~ 

33~F 
, R2 ,. 
'.IK 

, <;~ ,. 
O.'1UF , CI7 

:;~O.IUF 
II 

R3 • , R4 ~ 

411 24.IK 

, RII 2 ,~Oll ,<;101 2 

':SOK lOIO~F 22pF 

,R:S J. 

7:SK 

IN41:S0 'N41:S0 ,R7 112 '2 , 

l:sop4 

1.01 CR3 CR2 

~ 2 C7, ~ 'N4001 
9.09 • CR' 

RII , C 

1.CI4' :r-0.0, uF ... L- !l!lOP 
0. 22uF 

II CII p 
292063-20 

( 

):0 
"D 
I 

Co) 
I\) 
CCI 



0, 
c..> 
CD 

"11 
liS 
c 
a; 
~ 
'1J o 
UI 
CD 
N 
en 
n 
:::T 
II 
3 
! 
n' 
1/1 

'=i 
'1J 
In 
3: 
o 
Co 
c 
.!: 

+5V 
-r ..... LE 

Ul711LOlIACH 
Rl 

Z ~ ~~~5~ __ ~ 
II 
"7 

+5V ~ 

~ I 112521TA 

! ~~ -12V +12V ~ ~D VEE II I -:IV 1 O.1uF 

32 II +12V 32 VDD 
MOOT021 ~ # HC 

MOOTl ~ "* ¥~ b ~ RTS- 18 RTS-
33 II TXD 5 TwD 
~ 17 TXC- 7 TwC-
111 30 RXD 2 RwD 
~ 22 RXC- 1 D RwC-
~ II COT 34 CDT-
211 1 CRS- 1 CRS-
7 111 LPBK- 2D LPBK1-
211 311 L.CRESET 24 L.CRESET 

24 ~ ~HC 
15 ~ 12 ECu< 
13 ~ 13 leu< 

I&. 

~f 

vec~ - 'd:z 
vec 311 33 uF 

He 15 • ~I-
HC'ii 4 i:!3. 
HC ~ I RJ45-1 [ RJ-l 

TO+ 30 RJ45-2 [ RJ-2 
TO- 211 RJ45-3 [ RJ-3 
RD+ 211 RJ45-4 [ RJ-4 RO- 27 

HC~ 

:~ 
WS~ ~ 
WS 11 ~ 
WS 4 ~ 
WS II 
WS II 

'coNl Ul 

~ ~ 
292063-21 

l 

» 
"lJ . 
(0) 
I\) 
CD 



intJ Ap·328 

6.0 PERFORMANCE 

The PC592E design is expected to provide very high 
performance compared to many commercial adapters. 
When the board is configured for. pipeline mode, it can 
perform zero wait state cycles on the PC-AT bus. With­
out this feature each host access would be with three or 
four additional wait states, resulting in a less efficient 
use of the host bus bandwidth. In addition to reducing 
the host bandwidth consumption, performing zero wait 

state cycles should improve the network performance 
by about 12% over wait state cycles. 

Network performance can be influenced by how fast 
the station can retransmit after a collision. Measure­
ments show that an 82592/82560 design in the 82588 
TCI mode can retransmit 4.8 /LSec after collision. In 
the 82592 TCI mode this time is reduced to 2.1 ,...Sec. 
The 82592 built in FIFOs reduce the possibility of un­
derruns and overruns. 

1-539 



inter 

APPENDIX A 

Signal name 

BALE 
BHE 
BOARDEN 
CAB 
CBAI 
CBA2-
CSL -; CSH_ 
DIR­
EPROMCS 
GCS -
GlL-
GIH-
G2 -
HFO ,HFl 
IOCHRDY -
IORD / MWR 
IOWR- -
INT -
LA23-LA20 
LDCMD 
LDO-LD15 
LMSBDEC 
LPBK 
LSBDEC 
L560IORDY 
L560WIN -
MAPO,MAPI 
MAP 2 
MAO-MA12 
MEMR 
MEMREO 
MEMW 
MODTO,MODTl 
MOE 
MSBDEC 
MEMCS16 
PCXT -
PIPECYC 
PIPELINE 
PROM 
PROMCS 
RAM -
RAMEN 
RDST 
REOEN 
RESET 
5BHE 
SX -
5AI9-SAO 
XVRI ,XVR2 . 
ZEROW5 -
56 0 IORDY_ 

AP-328 

APPENDIX A 

Description 
-------------------------------------------------------------
address latch enable (from the PC bus) 
byte high enable (input of 82560) 
board enable (command register bit 3) 
data latch clock (direction: local memory to latch) 
data latch 07-00 clock (direction: host to latch) 
data latch D15-D7 clock (direction: host to latch) 
SRAM chip select outputs of 82560 (loW and high bank) 
direction signal for data latches/transceivers 
EPROM chip select signal 
general chip select (output of 82560) 
data D7-DO latch/transceiver tristate enable 
data 015-D8 latch/transceiver tristate enable 
byte swap transceiver tristate enable 
active low host request signals to the 82560 
IOCHROY to the PC bus 
read from non-SRAM port or write to SRAM (output of 82560) 
write to non-SRAM port (output of 82560) 
interrupt output of the 82560 
unlatched host address lines 
load command register 
local data bus 
latched most significant bit decode 
loopback signal 
least significant bit address deccode 
latched (falling edge of BALE), inverted 560 HRDY output 
latched 82560 subwindow 
Jumper selections for lower portion of the address mapping 
JUmper selection that determines mapping below or above 1 Meg. 
memory address lines (output of 82560) 
memory read (from the PC bus) 
memory access requested by the host CPU 
memory write (from the PC bus) 
network module identifier (bits 4 and 5 of the status register 
memory output enable (output of 82560) 
most significant bit decode (output of U2) 
memory chip select 16 (to the PC bus) 
8-bit vs. 16-bit configuration 
pipeline cycle 
pipeline mode (comamnd register bit 2) 
command register bit determining PROM vs EPROM paging 
PROM chip select 
command register bit determining RAM VS. ROM paging 
RAM and board enabled 
read from the status register 
memory request enabled (output of Ull) 
reset (from the PC bus) 
byte high enable (from the PC bus) 
select between latched and real time data 
latched PC address lines 
transceiver/latch enable signals (output of 82560) 
zero wait state cycle (to the PC bus) 
buffered (inverted) HROY output of 82560 

1-540 

292063-13 



inter AP-328 

APPENDIX B 

.... _ ........•.......... -........ -... __ ...... _.-.- ........•............... 
Module UI 
Ti tie 'MEMCSI6 REV 
Daryoosh Khalilolahi, 
PAL20LBB (15ns)' 

-PC592PI Device 

LMSBDEC Pin I : 
BHL Pin 2 : 
RAMEN pin 3 : 
MAPO Pin 4 : 
MAP I Pin 5 : 
SA7 Pin 6 : 
SA8 Pin 7 : 
SA9 Pin 8 : 
SAIO Pin 9 : 
SAl1 Pin 10 : 
SAl 2 Pin It: 
GND Pin 12 : 

" SIGNAL DEFINITIONS: 

"INPUTS: LMSBDEC 
" SAO 

RAMEN 
MAPO,MAPI 
SA7-SAt9 
BHL 

"OUTPUTS: MEMeS 16_ 
LSBDE<=­
L560W1N_ 

EQUATIONS 

4.0 5/3/89 
Intel Corporation 

'P20L8' : 

"I" VCC Pin 24: 
"I" MEMeS I 6_ Pin 22: "0" 
" I" LSBDEC_ Pin 15: "0" 
"I" L56OWIN_ Pin 21: "0" 
Itl" SAO Pin 20: "I" 
"I" SAI9 Pin 23: "I" 
"I" SAI8 Pin 19 : "I" 
"I" SAt7 Pin 18 : "I" 
"I" SAI6 Pin 17: "I" 
"I" SAI5 Pin 16 : III" 

"1" SAI4 Pin 14 : "I" 
SAI3 Pin 13: "I" 

% latched'most significant bits (LA23-LA20) decode 
% host address input 
% RAM selection anded with board enable 
% Jumper selection for the mapping window. 
% Latched address lines from the PC bus 
% Byte high enable 

% MEMCS16_ for the below 1 Meg. windows 
%'Least signifiacnt bit address decode 
% 82560/command subwindow addre.s decode 

" the corresponding addre •• lines are compared with MAPO and MAPI to generate 
" the least significan,t bits address, decode. 

I LSBDE<=- - «SAt9 & SA18 & ISA17 & ISAt6 & 
(SA19 & SAI8 & I SAt 7 & I SA16 & 
(SAt9 & SA18 & ISA17 & SA16 & 
(SAt9 & SA18 & ISA17 & SA16 & 
(SA19 & SAt8 & ISAt7 & SA16 & 

I SAlS & 
SA15 & 

ISAlS & 
SA15 & 
SAIS & 

I SAl4 & 
ISA14 & 
ISA14 & 
ISA14 & 
ISA14 & 

IMAPl & IMAPO) *' 
IMAPI & MAPO) *' 
MAPI & IMAPO) *' 
MAPl & MAPO»: 
MAPI & MAPO»: 

"If SA7 through SA13 are all one, assuming that higher bits of address match, 
" the address is for accessing the 82560 or cOlIlDand/status register. 

IL560W1N- s (SA13 & SA12 & SAil & SAIO & SA9 & SA8 & SA7): 

" a 16 bit memory transfer is recognized if the address for SRAM access is 
" matched and both SAO and BHL are low. 

IMEMCSI6_ - (LMSBDEC & RAMEN & I SAO & I BHL & L560W1N-) & 
«SA19 & SAlS & ISAl7 & ISA16 & ISA15 & ISAl4 & IMAPI & IMAPO) *' 

(SA19 & SAlS & ISA17 & ISAt6 & SAlS & ISA14 & IMAPI & MAPO) *' 
(SA19 & SAIS & ISA17 & SAl6 & ISAIS & ISA14 & MAPI & IMAPO) *' 
(SA19 & SA18 & ISA17 & SA16 & SAl5 & ISA14 & MAPI & MAPO»: 

end Ul: 
292063-22 

1-541 



inter Ap·328 

**.** •• _._.*.**.*._- ••.... *--.- .... _-_ ... -------_ ... _ .. _-_ ........ , ..... . 
Module U2 
Ti tIe , unlatched address decode and host interface REV 5.0 5/10/89 
Daryoosh Khalilolahi, Intel Corporation 
PAL20LBB (15ns)' 

PC592P2 Device 'P20LB' ; 

RAM Pin 1 ; "I" vee Pin 24; 
LSBDEC"":' Pin 2 ; "I" REQEN Pin H; "I" 
L560WHL pin 3 ; "I" MEMREQ Pin 17; "0" 
LA20 Pin' 4; "I" BOARDEN pin 16; "I" 
LA21 Pin 5; "I" PIPELINE Pin 13 ; "I" 
LA22 Pin 6; "I" LMSBDEC Rin 23; "I" 
LA23 Pin 7 ; Itl" MSBDEC Pin 22; "0" 
BHIL Pin 8; "I" RAMEN Pin 15; "0" 
MAP 2 Pin 9 ; ,. I II BFO_ Pin 2(); "0" 
MEMN_ Pin 10; II I" HF1_ Pin 21 ; "0" 
MEMIL. Pin 11; "1" ZEROWS_ Pin 19; "0" 
GND Pin 12; L560IORDYJ'in 14; "I" 

"Definitions 

BOARDSEL'· ILSBDEC-& LMSBDEC; 

" SIGNAL DEFINITIONS: 

"INPUTS: 
" 

RAM 
LSBDEC 
LMSBDEC 
L560WIN_ 
LA20-LA23 
BHlL 
MAP2 

% RAM selected 
% least significant bits address decode 
% latched most significant bit address decode 
% 560/command register sUUwind~ 
% unlatched address lines 
% byte high enable 
% jumper selection for below/above 1 Meg. 
% memory write command 
% memory read command 

MEMt\!... 
MEMIL 
PIPELINE 
BOARDEN 
L560IORDY_ 

% command register bit 2-, indicating pipeline mode 
% command register bit 3, board enabled 

"OUTPUTS: 
" 

E~ATIONS 

MSBDEC 
HFO_,HFl_ 
ZEROWS_ 
IOCHiIDY 
MEMREQ 

% latched and inverted 82560 HRDy output 

% Most significant bits address decode 
% host request to the 82560 
% 0 wait state output to the PC bus 
% output to the PC bus 
% host request to access SRAM 

" HFO_ is asserted during SRAM and GCS (general purpose chip select) cycles. 

(IMEMN_ & L560WHL & BOARDSEL & BOARDEN & REQEN) • 
(1MEMt\!... & L560WIN- & BOARDSEL & BOARDEN & IPIPELINE). 
(IMEMN_&IL560WIN_& BOARDSEL & IBHlL) • 
( IMEMIL & L5.6OWIN- & BOARDSEL & BOARDEN & REQEN) , • 
(IMEMIL& L560WIN-& BOARDSEL & BOARDEN & IPIPELINE). 
(IMEMIL &IL56OWIN- & BOARDSEL & IBHIL); 

" HF1_ is asserted during 560/592 register accesses'and also GCS accesses. 
" That Is all non-SRAM cycles. 

IHF1_ - (IMEMW_ & IRAM & BOARDSEL &' BOARDEN) • 
( IMEMW_ & BOARDSEL & IL56OWIN_) # 

1-542 

292063-23 



intJ Ap·328 

( !~ & !RAM & BOARDSEL & BOARDEN) ~ 
(!~ & BOARDSEL & IL56OWIN_); 

.. 0 Wait states cycles are performed only when accessing the SRAM and in the 
" pipeline mode. 

enable ZEROWS_ - (RAM & BOARDSEL & BOARDEN & PIPELINE & L56mWIN_); 

ZEROWS_ = L560IORDY_; 

MEMREQ - L56OWIN_& BOARDSEL & BOARDEN & RAM; 

" most significant bits of address are compared with jumper node MAP2. 

MSBDEC = ((ILA20 & ILA21 & ILA22 & ILA23 & IMAP2) ~ 
(LA20 & LA21 & LA22 & LA23 & MAP2)); 

RAMEN = RAM & BOARDEN; 

end U2; 

*** •••• *.** •• ** •••••• ******************.************************.***** 
Module US 
Title 'Local bus control REV 5.0 7/7/89 
Daryoosh Khali10lahi, Intel Corporation 
PAL20LS (25 ns)' 

PC592P3 Device 'P20L8' ; 

PCXT Pin 1 ; nln VCC 
SAO_ Pin 2; "In GIL_ 
BUlL pin 3 ; "I" G2_ 
HFO_ Pin 4; I'I" CAB_ 
MEMR.... Pin 5; ItI" SX 
MEMN_ Pin 6; "1 11 DlL 
MEMREQ Pin 7; ., I" GIlL 
HFL Pin 8 ; "I" CBA1_ 
IORD_ Pin 9 ; "I" CBAL 
I OWL Pin 10; "I" PIPELINE 
XCVL Pin 11; "I" unused 
GND Pin 12; XCV2_ 

"Definition 

PIPECYC - (HFL & IHFO_ & PIPELINE); 

Pin 24; 
Pin 22; "0" 
Pin 21; "0" 
Pin 20; "0" 
Pin 19; ,"0" 
Pin 18; "0" 
Pin 15; "0" 
Pin 17; "0" 
Pin 16; tlO" 
Pin 14; II I" 
Pin 23; "I" 
Pin 13; "I" 

"The following table shows different types of memory cycles and the expected 
"value of the transceiver and data latch (74ALS646) control signals. B is the 
"host side and A is the local bus side. When SX is 1, stored data is selected. 
''When O. real time data is selected. X stands for don't care. 

::cyc 1 e Pipeline PCXT BHlL SAO MEMN_ MEMR.... GIL- GIlL G2_ CBAl_ CBA2_ SX 
--------

1 1 0 0 0 0 1 0 0 1 0 0 1 
2 1 0 0 0 1 0 0 0 1 1 1 1 
3 0 0 1 0 X X 0 1 1 1 1 0 
4 0 0 0 1 X X 1 0 1 1 1 0 
5 0 0 0 0 X X 0 0 1 1 1 0 
6 1 1 1 0 0 1 0 1 1 0 1 1 
7 1 1 1 0 1 0 0 1 1 1 1 1 
8 1 1 0 1 0 1 0 0 0 1 0 1 
9 1 1 0 1 1 0 1 0 0 1 1 1 
10 0 1 1 0 .x X 0 1 1 1 1 0 
11 0 1 0 1 X X 1 0 0 1 1 0 

292063-24 

1-543 



infef AP-328 

.. cycle 1 PCAT pipel ined (word-wide) memory wri te 
, cycle 2 PCAT pipel ined (word-wide) memory read 

cycle 3 PCAT nonpipelined even-byte memory access 
cycle 4 PCAT nonpipelined odd-byte memory access 
cy,cle 5 PCAT nonpipelined word-wide memory access 
cycle 6 PCXT pip~lined even-byte memory write 
cycle 7 PCXT pipelined even-byte memory read 
cycle 8 PCXT pipelined odd-byte memory write 
cycle 9 ?CXT pipelined odd-byte memory read 
cycle 10 PCXT nonpipelined even-byte memory access 
cycle 11, : PCXT nonpipelined odd-byte memory access 

" SIGNAL DEFINITION 

"INPUTS: 
" 

PCXT 
SAO_ 
MEML 
MEMN_ 
IORD_ 
lo.vIL 
XCVl_ 
XCV2_ 
HFO_,HFl_ 
PIPELINE 

% Jwnper slecting 8 bit or 16 bit machine 
% inverted address line 0 
% MEML from the PC bus 
% MEMN_ from the PC bus 
% IORD-fMEMWR- output of the 82560 
% lo.vIL output of the 82560 
% XCVl_ output of the 82560 
% XCV2_ output of the 82560 
% host requests to the 82560 
% command register bit for 0 added W.S. cycles 

"OUTPUTS: GIL .. GIlL 
% Data transceiver/latch tristate enable 
% Data transceiver/latch tristate enable 
% local bus transceiver enable signal 

(07-00) 
(DI5-D8) 

GL 
CAB_ 
CBAl_ 
CBA2_ 
SX 
DIlL 

% Local data latch clock 
% latch host data (07-00) 
% latch host da~a (015-08) 
% Real time vs. latched data select 
% Data transceiver/latch direction 

EQUATIONS 

IGIL 

IGIIL 

IG2_ 

- (MEMREQ & PCXT & SAO_ & lMEML) # (I PCXT & PI PECYC & MEML) # 
( IXCVl_ & SAO_) # ( IHFO_ & IHFl_) # (IXCV2_ & HFl_) ; 

e (PIPECYC & IMEML) # (IXCVl_& IBHE-) * (IXCV2_& HFl_); 

- (PCXT & MEMREQ & I SAO_) ; 

- ICAIL - (I lo.vIL & IXCV2_ & HFL); 

ICBAL - (PIPECYC & lMEMN_ & IPCXT) * (MEMREQ & PIPELINE &IMEMN_ & PCXT & SAO_) 

I CBAl_ - (P I PECYC & IMmml.J; 

SX (MEMREQ & PIPELINE * IIORD_& PIPELINE & IXCV2_& HFl_); 

IDIIL - (IXCV2_ & HFL & 1-IORD_) * (!MEMN_J; 

end U5; 

*************************************.***************************.****** 
Module U11 
Title 'Local ports control 
Daryoosh Khalilolahi, Intel 
PAL16L8B-2 (25ns)' 

REV 3.0 5/3/89 
Corporation 

PC592P4 Device 'P16L8'; 

1-544 

292063-25 



inter 

LSBDEC_ P n 1 
IORDY_ P n 2 
BSAO P n 3 
PCXT P n 4 
GCS_ P n 5 
L56OWlN_ P n 6 
lCJNIL P n 7 
IORD_ P n 8 
BOARDEN P n 9 
GND P n 10 

" SIGNAL DEFINITION 

AP-328 

"]" VCC P n 20 
"1" EPR<NCL P n 19 
"]" PRCMCS_ P n 18 
tll n RDST_ P n 17 
"I" Loo.ID P n 16 
"I" LMSBDEC P n 15 
"Itl REQEN P n 14 
"I " IOCHRDY P n 13 
"I" unuseda P n 12 
"I" PR()J P n 11 

% General chip select ouput of 82560 
% 82560/command register sUUwindow 
% IORD_/MEMIVlL output of the 82560 
% 10NlL output of the 82560 
% PR()J selected 
% least Significant bits address decode 

"0" 
"0" 
"0" 
"0" 
ttl" 
"0" 
"0" 
"0" 
tl]" 

INPUTS: GCS_ 
L56OWIN_ 
IORD_ 
10NlL 
PRW 
LSBDEC_ 
LMSBDEC 
IORDY_ 
BSAO 
BOARDEN 

% latched most significant bits address decode 
% inverted 82560 HRDY output 

"OUTPUTS: 
" 

EQUATIONS 

EPR<NCS_ 
PRWCS_ 
LIXlwID 
RDST_ 
IOCHRDY 
REQEN 

% buffered address line 1 
% Board enabled 

% EPRW chip select 
% PRW chip select 
% load command register 
% read status register 
% IOCHRDY to the PC bus 
% memory request enabled or a non-SRAM access 

EPRWCS_ = I ( IGCS_ & I IORD_ & I PR()J & L56OWIN_); 

PRWCS_ - I (IGCS_ & I IORD_ & PRW & L560WHL); 

LIXlwID 

RDST_ 

REQEN 

- IGCS_ & IL560WHL & IIONIL; 

- I (IGCL & IL560WlIL & I IORD_); 

- (PCXT & BSAO) # (IPCXT) # (IL560WlN_); 

enable IOCHRDY = (ILSBDEC_& LMSBDEC); 

IOCHRDY = (I IORDY_) # (ILSBDEC_ & LMSBDEC & !BOARDEN & L56OWlN_) 
# (ILSBDE~ & LMSBDEC & IBOARDEN & IBSAO); 

end; 

1-545 

292063-26 





Wide Area Networks 2 





APPLICATION 
NOTE 

AP-401 

December 1986 

Designing With the 82510 
Asynchronous Serial Controller 

FAISAL IMDAD-HAQUE 
APPLICATIONS ENGINEER 

2·1 
Order Number: 231928·001 



inter AP-401 

1.0 INTRODUCTION 

The emergence of asynchronous communications as the 
most widely used protocol (it commands the largest in­
stalled base of nodes, exceeding HDLC/SDLC, the sec­
ond most popular protocol, by a factor of 10 to I) for 
point to point serial links has led to the need for an 
~synchr?nous communications component with high 
integratIOn to reduce component count and decrease 
the cost of a serial port. The trend towards higher data 
rates and multiple job, multiple user systems has under­
scored the need for an intelligent serial controller to 
improve system throughput and decrease the CPU load 
normally associated with asynchronous serial commu­
nications. 

The 82510 CMOS Asynchronous Serial Controller is 
designed to improve asynchronous communications 
throughput and reduce system cost by integrating func­
tions and simplifying the system interface. Two inde­
pendent FIFOs, and Control Character Recognition 
(CCR), provide data buffering and increase software 
efficiency. Two Baud Rate Generators/Timers, an On­
Chip Crystal Oscillator and seven Programmable I/O 
pins provide a high degree of integration and reduce 
system component count. This application note will 
demonstrate the use of these features in an Asynchro­
nous Communications Environment. 

1.1 Goal 

The goal of this application note is to demonstrate the 
use of the major 82510 features in an asynchronous 
communications environment and to depict basic hard­
ware and software design techniques for the 82510. It 
will discuss interfaces using both polling and interrupt 
techniques, as well as the impact of FIFOs using either 
scheme. An application example covering the applica­
tion of Error Free File Transfer is also provided. 

1.2 Scope 

The application note describes the operation of the 
82510 ASC in a normal (non 8051 9-bit) asynchronous 
communications mode. The majority of the discussion 
is focused towards the systems aspects of the Control­
ler. The use of the 82510 in a multidrop or 8051 9-bit 
asynchronous environment .is not covered. This appli­
cation note assumes that the reader is familiar with the 
82510 in terms of pin description, register architecture 
and interrupt structure. It is also assumed that the 
reader is familiar with the information provided in the 
82510 Data Sheet. 

The initial sections of the application note provide an 
overview of the 82510 and its major functional blocks. 

2-2 

This is followed by a discussion of the hardware design 
and system interface considerations in sections three 
and four. The fifth section provides some software tech­
niques for transmitting and receiving data as well as the 
use of timers. Section seven briefly discusses the file 
transfer application based on the XMODEM protocol 
and includes the software listings. 

2.0 82510 DESCRIPTION 

2.1 Overview 

The 82510 can be divided into seven functional blocks 
(See Figure 1): Bus Interface Unit (BIU), Timing Unit, 
Modem Interface Module, Tx FIFO, Rx FIFO, Tx Ma­
chine and Rx Machine. All blocks, except BIU can gen­
era!e a block interrupt request to the 82510 interrupt 
logIC. In the case of the Rx Machine, Timing Unit and 
Modem Iriterface Module, multiple sources (errors and 
status events) within the block cause the block interrupt 
request to become active. All of the blocks have regis­
ters asMciated with them. The registers, allow configu­
ration, provide status information about events/errors, 
and may also be used to send commands to each block. 

2.2 Bus Interface Unit (BIU) 

The Bus Interface Unit (BIU) interfaces the 82510 
functional blocks to the system or CPU bus. It provides 
read and write access to the 82510 registers and con­
trols the generation of interrupts to the external world. 
The interrupt logic resolves contention between block 
interrupt requests, on a priority basis. The BIU also has 
the Hardware Reset circuitry, which is driven by the 
RESET pin,. The reset signal clears all internal Flip 
Flops, and Registers and puts them in a predefined 
state. All activities on the Bus interface, including regis­
ter accesses by the CPU, are synchronized to an inter­
nal (82510) system clock, supplied via the CLK pin. 

2.3 Receive Machine (RxM) 

The Rx Machine (RxM) converts the serial data to par­
allel and writes it to the Rx FIFO, along with the ap­
propriate flags (available in the Receive Flags Register). 
The Rx Machine can be configured for control charac­
ter recognition, data sampling and DPLL ope,ration. 
The software can check for noise, control character, 
break, address or parity and framing errors by reading 
the status or character flags. Optionally, the Receive 
Status bits (in RST), when enabled, can generate inter: 
rupt requests. The Rx Machine block Interrupt request 
is reflected in the General Status Register and is set 
when an enabled interrupt request within the Rx Ma-



inter AP-401 

chine (i.e. RST bits) becomes active. The Rx Machine 
has eight registers associated with it: 

Receive Data (RXD)-Receive Data Character 

Receive Flags (RXF)-Receive Character Flags 

Receive Status (RST)-Receive Events and Receive Er­
rors 

Receive Interrupt Enable (RIE)-Enables Interrupts 
on corresponding bits in RST 

Receive Mode (RMD)-Receive Machine Configura­
tion 

Receive Command (RCM)-Receiver Command Reg­
ister 

Line Control (LCR)-16450 Register, Character Attri­
bute Configuration 

Line Status (LSR)-16450 Status Register, Tx and Rx 
status 

2.4 Transmit Machine (TxM) 

The Tx Machine reads characters from the Tx FIFO 
and transmits them serially over the TXD line. The Tx 
Machine can also transmit additional character attri­
butes (9th bit of Data, Address Marker, Software Pari­
ty) available from the Transmit Flags, if configured in 
the appropriate mode. The Tx Machine Idle interrJIpt 
request is reflected in the GSR and LSR registers to 
indicate that the Transmitter is either Empty or Dis­
abled. The Tx Machine has six registers associated with 
it: 

Line Control (LCR)-16450 Register, Character Attri­
bute Configuration 

Line Status (LSR)-16450 Status Register, Tx and Rx 
status 

Transmit Mode (TMD)-Tx Machine Configuration 

Transmit Command-(TCM)-Transmit Command 
Register 

Transmit Flags (TXF)-Transmit Character Flags 

Transmit Data (TXD)-Transmit Data Character 

2.5 Modem Interface Module 

The Modern Interface module is responsible for the mo­
dern interface and general purpose I/O pins. It will gen-

erate Interrupts (if enabled) upon transitions in the mo­
dern input pins (DCD, CTS, RI, and DSR). The mo­
dern output pins can be controlled by the CPU, also the 
RTS pin can be used to provide flow control, in the 
automatic transmission mode. It is the source of the 
Modem Interrupt bit in GSR. This bit is set whenever 
there is a state change in the DCD, RI, DSR or CTS 
inputs (reflected in Modem Status Register) and the 
corresponding enable bits are set. The function and di­
rection of the multifunction pins can be reprogrammed 
and is available as a configuration option. Multifunc­
tion pins, when configured as outputs, can be con­
trolled by the CPU through the Modem Control Regis­
ter. The Modem module has four registers associated 
with it: 

Modem Status 
Register (MSR)-State transitions on modem input 
pins, and State of the modem input pins 

Modem Control (MCR)-Control state of Modem 
Output pins 

Modem Interrupt 
Enable (MIE)-Enable Interrupt on State transitions in 
modem input pins 

I/O· Pin Mode (PMD)-Functions and Directions of 
Multifunction pins 

2.6 Timing Unit 

The Timing Unit is responsible for the generation of the 
System Clock, using either its Crystal Oscillator or an 
externally generated clock, and generation of the Tx 
and Rx clocks from either the On-Chip Baud Rate 
Generators or the SCLK pin. It is also responsible for 
generating Timer Expired interrupts when the 
BRGs/Timers are configured for use as Timers. There 
are ten registers associated with the Timing Unit, four 
of these are used in the Timer mode only. 

Timer Status (TMST)-Timer A and/or Timer B ex­
pired 

Timer Interrupt 
Enable (TMIE)-Enables Interrupts upon Expiration 

. of Timers A or B in TMST 

2-3 

Timer Control (TMCR)-Start and Disable Timers 

Clock Configure (CLCF)-Select source and mode for 
Tx and Rx clocks 

BRG B Configuration (BBCF)-Mode and Clock 
source of BRG B 



intJ AP-401 

. BRG B LSB of Divisor (BBL)-Least Significant Byte 
of BRG B Divisor/Count 

BRG A MSB of Divisor. (BBH)-Most Significant Byte 
of BRG B Divisor/Count 

BRG A Configuration (BACF)-Mode and Clock 
source of BRG A 

BRG A LSB of Divisor (BAL)-Least Significant Byte 
of BRG A Divisor/Count 

BRG A MSB of Divisor (BAH)-Most Significant 
Byte of BRG A Divisor/Count 

2.7 FIFOs, Rx and Tx 

The Dual FIFOs (transmit and receive), serve as buff­
ers for the 82510. They buffer the transmitter and Re­
ceiver from the cpu. Each of the FIFOs has a pro­
grammable threshold. The threshold is the FIFO level 
which will generate an interrupt. The threshold is used 
to optimize the CPU throughput and provide increased 
interrupt to service latency for higher baud rates. It can 
be configured through the FIFO Mode Register. Each 
FIFO character has flags associated with it (TxF and 
RxF). As each character is read from the Rx FIFO its 
flags are put into the RxF register. Before a write to 
TXD (if character configuration requires) the character 
flags are written to the; TXF register. The two FIFOs 

Vee :-

Vss ;-

)-
)+ 

A(2-0 

D(7-0 
IN T+ 

i-

!-
i-

Rli 
I'll! 
cs 

RESET r-

r--. 
r--. 

:: 
fo-

i-I 

~ 
I-' 

r-

INT 
4 

BUS 
INTERFACE 

UNIT 

I+-t 

INT 
2 

INTEiiNAi: BUS 

are t6tally independent of each other and each FIFO 
caR generate an interrupt request which indicates tpat 
the configured threshold has been met. 

3.0 HARDWARE DESIGN 

3.1 'System Interface 

The 82510 has a standard I/O peripheral interface, it 
has a demultiplexed Bus, which consists of a bidirec­
tional eight bit Data Bus, and three Address lines. In­
terrupt, Read, Write, Chip Select and Reset pins com­
plete the system interface. The three address lines along 
with the Bank register are used to select a particular 
register. 

3.1.1 REGISTER ACCESS 

The 82510 registers are logically divided into four 
banks. Only one bank can be accessed at .any one time. 
Each register bank occupies eight I/O addresses. To 
select a register, the correct Bank must first be selected 
by writing to the GIR/Bank register (the GIR/Bank 
register I/O address is two (Ao = 0, Al = 1, A2 = 0). 
Then one of the eight I/O space addresses is selected by 
outputting a value (between zero and seven) to the 
82510 address pins Ao-A2. 

SERIAL MODULE 

TX r--- TX 
l-t- f-+ FIFO MACHINE TXD 

RX I+- RX 
~ fo- I-FIFO MACHINE RXD 

T-IR~1 I!X ,Ix IX IX ·I M-j r T RXC TXC 

I TIMING 
BLOCK 

(BRGS. SYS CLOCK) 

I 
MODEM 

INTERFACE 
MODULE 

I 
+-1-
+-1-
+-1-

I 
~:: 
fo--+ 
fo--+ 
~t-

ClK/XI 

iiifi2/X2 
R1/SClK 

~ITA/= 
1iCli/IClK/OUTi 
OTRITB 
RTS 
CfS 

231928-1 

Figure 1.82510 Block Diagram 

2-4 



inter AP-401 

BANK ZERO 825G-COMPATIBLE BANK 

Register 7 6 5 4 3 2 1 0 Address Defaul 

~xD TxData TxData TxData TxData TxData TxData TxData TxData 0 -
bit 7 bitS bit 5 bit 4 bit 3 bit 2 bit1 bitO 

RxD RxData RxData RxData RxData RxData RxData RxData RxData 0 -
bit 7 bitS bit5 bit 4 bit3 bit 2 bit 1 bitO 

BAL BRGA LSB Divide Count (DLAB = 1) 0 02H 

BAH BRGA MSB Divide Count (DLAB = 1) 1 OOH 

pER 0 0 Timer TxMachine Modem Rx Machine TxFIFO RxFIFO 1 OOH 
Interrupt Interrupt Interrupt Interrupt Interrupt Interrupt 
Enable Enable Enable Enable Enable Enable 

PIR/BANK 0 BANK BANK 0 Active Active Active Interrupt 2 01H 
Pointer Pointer Block Int Block Int Block Int Pending 
bit 1 bit 0 bit2 bit 1 bit 0 

LCR DLAB Set Parity Parity Parity Stop bit Character Character 3 OOH 
Divisor Break Mode Mode Mode Length Length Length 
Latch bit2 bit 1 bitO bitO bit 1 bitO 
Access bit 

MCR 0 0 OUTO Loopback OUT 2 OUT 1 RTS DTR 4 OOH 
Complement Control bit Complement Complement Complement Complement 

LSR 0 TxM TxFIFO Break Framing Parity Overrun RxFIFO 5 SOH 
Idle Interrupt Detected Error Error Error IntReg' 

MSR DCDlnput Rllnput DSR Input CTSlnput State State(H-+ L) State State S OOH 
Inverted Inverted Inverted Inverted Change Change Change Change 

inDCD inRI inDSR inCTS 

~CRO Address or Control Character Zero 7 OOH 

BANK ONE-GENERAL WORK BANK 

Register 7 6 5 4 3 2 1 0 Address Default 

~xD TxData TxData TxData TxData TxData TxData TxData TxData 0 -
bit 7 bitS bit 5 bit4 bit 3 bit 2 bit 1 bit 0 

RxD Rx Data RxData RxData RxData RxData RxData RxData RxData 0 -
bit 7 bitS bit 5 bit4 bit3 bit2 bit 1 bit 0 

RxF - RxChar RxChar RxChar Address or Break RxChar Ninth 1 -
OK Noisy Parity Control Flag Framing Data bit 

Error Character Error of Rx Char 

TxF Address Software Ninth bit 0 0 0 0 0 1 -
Marker bit Parity bit of Data Char 

GIR/BANK 0 BANK BANK 0 Active Active Active Interrupt 2 01H 
Pointer Pointer Block Int Block Int Block Int Pending 
bit 1 bit 0 bit 2 bit 1 bit 0 

~MST - - GateB Gate A - - TimerB Timer A 3 30H 
State State Expired Expired 

trMCR 0 0 Trigger Trigger 0 0 Start Start 3 -
GateB Gate A TimerB Timer A 

MCR 0 0 OUTO Loopback OUT 2 OUT 1 RTS DTR 4 OOH 
Complement Control bit Complement Complement Complement Complement 

Figure 2. 82510 Register Map 

2-5 



intJ AP-401 

BANK ONE-GENERAL WORK BANK (Continued) 

Register 7 6 5 4 3 2 1 0 Address Default 

FLR - Rx FIFO Level - Tx FIFO Level 4 OOH 

RST Address/ Address/ Break Break Framing Parity Overrun RxFIFO 5 OOH 
Control Control Terminated Detected Error Error Error Interrupt 
Character Character Requested 
Received Match 

RCM Rx Rx Flush Flush LockRx OpenRx 0 0 5 -
Enable Disable RxM RxFIFO FIFO FIFO 

, 

MSR DCD Rllnput DSR Input CTSlnput State State State State 6 OOH 
Complement Inverted Inverted Inverted Change Change Change Change 

inDCD inRI inDSR inCTS 

TCM 0 0 0 0 FlushTx FlushTx Tx Tx 6 -
Machine FIFO Enable Disable 

GSR - - Timer TxM Modem RxM TxFIFO RxFIFO 7 12H 
Interrupt Interrupt Interrupt Interrupt Interrupt Interrupt 

ICM 0 0 0 Software Manuallnt Status Power 0 7 -
Reset Acknowledge Clear Down 

Command Mode 

BANK TWO-GENERAL CONFIGURATION 

Register 7 6 5 4 3 2 1 0 Address Default 

FMD 0 0 Rx FIFO Threshold 0 0 Tx FIFO Threshold 1 OOH 

GIR/BANK 0 BANK BANK 0 Active Active Active Interrupt 2 01H 
Pointer Pointer , Block Int· Blocklnt Blocklnt Pending 
bit 1 bit 0 bit 2 bit 1 bit 0 

TMD Error Control 9-bit Transmit Mode Software Stop Bit length 3 OOH 
Echo Character Character Parity 
Disable Echo Disable length Mode 

IMD 0 0 0 0 Interrupt RxFIFO ulan loopbackor 4 OCH 
Acknowledge Depth Mode Echo Mode 
Mode Select of Operation 

ACR1 Address or Control Character 1 5 OOH 

RIE Address/ Address/ Break Break Framing Parity Overrun 0 6 1EH 
Control Control Terminate Detect Error Error Error 
Character Character Interrupt Interrupt Interrupt Interrupt Interrupt 
Recognition Match Enable Enable Enable Enable Enable 
Interrupt Interrupt 
Enable Enable 

RMD Address/Control Disable Sampling Start bit 0 0 0 7 OOH 
Character Mode DPll Window Sampling 

. Mode Mode 

BANK THREE-MODEM CONFIGURATION 

Register 7 6 5 4 3 2 1 0 Address Default 

ClCF RxClock 
Mode 

BACF 0 

BBl 

BBH 

RxClock TxClock TxClock 0 0 
Source 

BRGA 
Clock 
Source 

Mode Source 

0 0 0 SRGA 
Mode 

BRGB lSB Divide Count (DLAB = 1) 

BRGB MSB Divide Count (DLAB = 1) 

Figure 2.82510 Register Map (Continued) 
2-6 

0 0 0 OOH 

0 0 1 04H 

0 05H 

1 OOH 



intJ AP-401 

BANK THREE-MODEM CONFIGURATION (Continued) 

Register 7 6 5 4 3 2 1 0 Address Default 

GIR/BANK 0 BANK BANK 0 Active Active Active Interrupt 2 01H 
Pointer Pointer Block Int Block Int Block Int Pending 
bit 1 bit 0 bit2 bit 1 bit 0 

BBCF BRGB Clock Source 0 0 0 BRGB 0 0 3 84 
Mode 

PMD DCD/ICLKI DCD/ICLKI DSR/TAI DSR/TAI RI/SCLK DTR/TB 0 0 4 FCH 
aUT 1 aUT 1 aUTO aUTO Function Function 
Direction Function Direction Function 

MIE 0 0 0 0 DCDState RIState DSR State CTSState 5 OFH 
Change Int Change Int Change Int Change Int 
Enable Enable Enable Enable 

TMIE 0 0 0 0 0 0 TimerB 'rimer A 6 OOH 
Interrupt Interrupt 
Enable Enable 

Figure 2. 82510 Register Map (Continued) 

3.1.2 READ AND WRITE CYCLES 

Like most other I/O based peripherals the Read and 
Write pins are used to access data in the 82510. Each 
read or write cycle has specified setup and hold times in 
order for the data to be transferred correctly to/from 
the 82510. The critical timings for the read cycle are: 

1. Address Valid to Read Active (Tavrl) 

2. Command Access Time to Data Valid (Trldv) 

3. Command Active Width (Trlrh) 

The less critical parameters are: 

4. Address Hold to Read Inactive (Trhax) 

5. Data Out Float Delay after Read Inactive (Trhdz) 

The critical timings for the write cycle are: 

1. Address Valid to Write Low (Tavwl) 

2. Write Active Time (Twlwh) 

3. Data Valid to Write Inactive (Tdvwh) 

The less critical parameters are: 

4. Address and Chip Select Hold Time After Write 
Inactive (Twhax) 

5. Data Hold Time After Write Inactive (Twhdx) 

These timings determine the number of wait states re­
quired for the 82510 and the CPU interface. The inter­
faces for some popular microprocessors are discussed in 
the following sections. 

2-7 

3.1.380186 INTERFACE 

The exact interface is shown in Figure 3. The schematic 
shows the 80186 interface to the 82510 on a local bus. 
Although the Data Bus is buffered. it is possible to 
directly connect the 82510 to the 80186 data bus; be­
cause the Data Float Delay after read inactive is 40 ns 
for the 82510. which is well under the 85 ns require­
ment of the 80186. The timing equations for the inter­
face are given below. 

Read Cycle: 

Address to Read Low = Tclcl - Tclavrnax + Tclrlrnin 
- Latch DeiaYrnax 

Read Access Time = 2Tclcl - Tclrlrnax - Tdvcl -
Transceiver DelaYrnax 

Read Active Time = Trlrh 
= 2Tclcl- 46 

Write Cycle: 

Address Valid to Write Active = Tclcl + Tcvctvrnin 
- Tclavrnax - Latch Prop. DelaYrnax 

Write Active Time = Twlwh 
= 2Tclcl - 40 

Data Valid to Write Inactive = 2 Tclcl - Tcldvrnax -
Transceiver DelaYrnax + Tcvctxrnin 



intJ AP-401 

16.0MHz RESET ROM 

riD.., A 4,,~ 

< DATA 
IV 

~ 
XI X2 UCS 

2" 

~~ 
A " A " 

AO-16 
A16-19 LATCH A16-19 -2!:. RD 

, ~ V ~ V 

RESET ~~ RES ALE STB -----
~ , PROGRAM RAM -- WR 

~ 
RQ 
LCS 

A 
00-15 

ADO-ADI6 

tk~re" A AO-15 
~ ADO-AD I 5 I ~ 

STB 
~ Ii rv MCSO-3 STB 

11 

80186 

~ 
LOW RAM 

XCVR 11 -roATA' 
00-,7 - ADOR 

OE l'f ~ WR 
r--- r--;:- RD 

OT/R 

~T A AO-15 
08-15 .. ""-

~ 

rD-DEN I 8.432 MHz 

r°'---' " A3-1 A (2-0) TXO f-+ 
I ~ 

00-7 82510 RXO ~ 
RD 

I V 
RD r+ 

WR 
.1 WR RTS 

INTO 

I CS PCSO RESET INT 

RESET 

I 1 
74LS05 ,--

231926-2 

Figure 3. 82510 Interface to 80186 

2-8 



intJ AP·401 

The user can transfer data to the 82510, using the 
DMA capabilities of the 80186, by using the RTS pin, 
in automatic modem control mode, as a DMA request 
line. The RTS pin, in automatic mode, will go inactive 
as soon as the Tx FIFO and the Tx shift register are 
empty. It will become active once a data character is 
written to the TXD register. In most 80186 DMA trans­
fers the user has to make sure that the DMA request 
line goes inactive at least two clock cycles from the end 
of the DMA deposit cycle. In this case, the extra DMA 
cycle is not a problem, because the Tx FIFO will buffer 
the data to prevent an overrun (Since the Tx FIFO can 
buffer up to four characters, the RTS pin only needs to 
go inactive two clocks before the end of the deposit 
phase of the fourth DMA). Typically RTS will go inac­
tive five (82510) system clocks after the rising edge of 
write. 

3.1.4 80286 INTERFACE 

The 80286 interface is shown in Figure 4. The 82510 is 
on the local bus, and is using the control signals from 
the 82288 Bus Controller. The Data Enable (OE) is 
qualified by the 82510 Chip Select, to avoid Data Bus 
contention between the 82510 and the CPU. The timing 
equations for the Read and Write Cycles are given be­
low. 

Read Cycle: 

Address Valid to Read Active = T1 (CLK period) + 
T29min (CLK to cmd active) - T16max (ALE active 
delay) - Latch ~rop. DelaYmax 

Read Access to Data Valid = 2T1 (CLK period) 
T29max (CLK to cmd active) - T8 (Read Data Setup 
Time) - Transceiver DelaYmax 

Read Active Time = 2T1 (CLK period) - T29max 
(CLK to cmd active) + T30min (CLK to cmd inactive) 

Write Cycle: 

Address to Write Low = T1 (CLK period) + T29min 
(CLK to cmd active) - T16max (ALE active delay) -
Latch DelaYmax 

Write Active Time = 2 T1 (CLK period) - T29max 
(CLK to cmd active) + T30min (CLK to cmd inactive) 

Data to Write High = 3 T1 - T14min (Write Data 
Valid Delay) + T30min (CLK to cmd inactive) -
Xcvr. DelaYmax 

Using an 8 MHz 80286 with the 82510 at 18.432 MHz 
(divide by two-9.216 MHz) requires two wait states. 
The critical timings are the read cycle timings-Read 
Access Time and Read Active Width. Inserting two 

2-9 

wait states means that the access times for the relevant 
parameters will be increased by 250 ns. 

NOTE:· 
The address decoding scheme of the 80286 interface is 
different from the IBM PC/PC AT I/O addresses for 
the serial ports, therefore the interface shown in Fig­
ure 4 cannot be used in PC/PC AT oriented designs. 

3.1.5 80386 INTERFACE 

The 80386 interface to the 82510 is given in Figure 5. 
The example uses the Basic I/O interface given in the 
80386 Hardware Reference Manual section 8.3. The 
only differences are in the specific address lines used for 
chip select generation, and the additional wait states in 
the wait state generation logic. The address lines A3, 
A4 and A5 are used to select one of the eight register 
address spaces in the 82510, therefore, A6 imd A7, 
rather than A4 and A5, are used in the I/O decoder. 
This causes a granularity of four in the 8251O's I/O 
address space, i.e., the addresses of two consecutive reg­
isters in the 82510 differ by four. 

The 82510 requires one additional wait state (as cur­
rently specified), the design assumes that the PAL 
equations are modified for that purpose. The user may 
also externally generate the wait states and connect to 
the "other ready logic" input ORed with the RDY pin 
of PAL 2. The two read timings Read Active width and 
Read Access time to Data Valid each require one addi­
tional wait state in order to meet the 82510 timing re­
quirements. The timings are given below. (82510 times 
are at 9.216 MHz) 

Read Cycle: 

Read Access to Data Valid = 253.25 ns 

82510 Trldv = 308 

additional time reqd. = 308-253.25 

=54.75 ns 

Read Active Width = 269.25 

82510 Trlrh = 308 

additional time reqd. = 308-269.25 

= 38.75 ns 

Address Valid to Read Active = 132.75 ns 

82510TAVRL = 7ns 

Since each additional wait state adds 62.5 ns at 
16 MHz, the 82510 requires one additional wait state. 



:!! 
ID 
C ... 
CD 

~ 

~ 
I\) 
CO 
CO 

~ 
S' -CD 

a ~ 
() 
CD -0 -:J' 
CD 
CO 
I\) 
en .... 
0 

r----------tl WAIT STATE ~-------;::===:::;-----. I lOGIC _ I . 

"----'. ~ I I 00-15 ~TRANSCEIVER~ 

rO'l 
X, X2 TXD '---

07-0 RXD~ 

°15-0 

BHE 

I:;i:E RESET RESET ClK 

M/iii ~ READY READY 

82284 
I I I II 80286 

!l11I A23- 0 

~ 
G2. G2A GI 

YO-Y7 

015-0 

T DE 

.--___ --,/107-0 

82510 
INT 

.-----1 ~ RTS I---f+ 
.-----tRD 

A2 
AI 
AO 

'---+-f--+---f CS RESET 

~ 
t"T---nU C - > IOCS7 

A3-A, 

It ADDRESS AZ3-0 

III L::::t==:1~ so INTA - • Is 

~~~Y E~ II 
ALE DT/R

6

DEN 1----+--.....
82288

231928-3

(

l>
"D
J,.
C)

"11
~.

c: ...
" !-"
co
0
w
CO
(I)

~
S-
iD
III
0

" 0 ..
:::T

" CO
N
CI1
0

READY
NA

ClK2~~::t:::~~=fl==;9E;,;~~~;;~~~~~~~
REsETt-::======~:t:;l T---'---_---"r

ADS!-

I.l/iO
ole
W/P. WE WE

HIoI651629-2 H).(651629-2
2Kx8 SRAM 2Kx8SRAM

80386 8516 lE ~ ~

o g II~~~~~~~~~ AI0-?07_0 AI0-?07_0

~~~~~~~~~~g 7445373 g 023-16 015-8 07-0 o LATCHES Q 
o 0 
o 0 

I I '111119 
A31- 2 o 
8E3-0 

DT/P. DEN 

~'-'I I"="il= 

INTR 

A14-:"'1IA13-007_0 

~ 

A13-0 
07-0 

ID7-D 

TXD 
RXD 

RESET ... =--

231928-4 

cl 

l> 
-g 
I 

""" o .... 



intJ AP·401 

The required recovery time between successive com­
mands is 123 ns for the 82510, this is well within the 
331.75 ns provided by the Basic I/O interface. 

Write Cycle: 

Addven to Write Low = 132.75 ns 

82510TAVWL = 7ns 

Write Active Time = 300.5 ns 

82510 TWLWH = 231 ns 

Data to Write High = 289.5 ns 

82510 TnvwH = 90ns 

NOTE: 
The interface sho~iJ. in Figure 5 uses a different ad­
dress decoding scheme than that used for the IBM 
PC/PC AT families, for the serial ports. Therefore, 
the interface in Figure 5 can not be used in PC/PC 
AT compatible designs. 

3.2 Reset 

The 82510 can be reset either through hardware (Reset 
pin) or Software (reset command via Internal Com­
mand Register-ICM). Either reset would cause the 
82510 to return to its default wake up mode. In this 
mode the register contents are reset to their default val­
ues and the device is in the 16450 compatible configura­
tion. The Reset pulse must .be held active for' at least 
eight system clocks, the system clock should be running 
during reset active time. 

3.2.1 DEFAULT MODES FOR 16450 
COMPATIBILITY 

Upon reset the 82510 will return to its Default Wake 
Up mode. The default register bank is bank zero. The' 
registers in bank zero are identical to the 16450 register 
set, and provide complete software compatibility with 
the 16450' in the IBM PC environment. The registers 
in the other banks have default values, which configure 
the 82510 for 16450 emulation. The recommended sys­
tem clock (for PC compatibility) is 18.432 MHz, this 
allows the baud rates generation to be done in a manner 
compatible with the PC software. The PC software cal­
culates baud rates based on a source frequency of 
1.8432 MHz. The 82510 system clock (18.432 MHz) is 
divided by two before being fed to BRG A and then is 
again divided by five (BRG B default). This causes the 
frequency to be divided by ten before being fed into 
BRG A. 18.432 divided by ten yields 1.8432 MHz, so in 
effect the BRG A is generating baud rates from a 
source frequency of 1.8432 MHz (which is compatible 

. '16450 is the PC AT version of the INS 8250A. 

2-12 

with the PC software). Also since in the PC family the 
interrupt request pin of the UART is gated by the 
OUT2 pin, The OUT2 pin must be available in the 
16450 compatibility mode, consequently the user is re­
stricted to an external clock source when using the 
82510 in the IBM PC compatible mode. The default pin 
out is given in Figure 6 and the configuration is given in 
Table 1. The default register values are given in the 
82510 register map shown in Figure 2 in section 3.1.1. 

Table 1.82510 Default Configuration 

INTERRUPTS 

Auto Acknowledge 

All Interrupts Disabled 

RECEIVE 

Stand Ctl. Char. Recogn. disabled 

Digital Phase Locked Loop (DPLL) disabled 

3/16 Samplins-

Majority Vote Start bit 

Non J-Llan (Normal) mode 

BkD, FE, OE, PE Int. enabled 

FIFO 

Rx FIFO Depth = I 

Tx FIFO Threshold = 0 

AUTO ECHO Disabled 

LOOP BACK Configured 
for Local Loopback 

CLOCK OPTIONS 

Baud Rate = 57.6K 

Rx Clock = 16 x 

Rx Clock Source = BRG B 

Tx Clock = 16 x 

Til Clock Source = BRG B 

BRG A Mode = BRG 

BRG A Source = Sys. Clock 

BRG B Mode = BRG 

BRG B Source = BRG A Output 

TRANSMIT 

Manual Control of RTS 

1 Stop Bit 

No Parity 

5 Bit Character 



inter AP-401 

04 03 

05 02 

06 01 

07 DO 

A2 

TXD A1 

VSS AO 

OUT2 Vee 
eLK Rii 

iii Viii 
DSR cs 
OCD RESET 

RTS 

CTS OTR 

231928-5 

Figure 6. Default Pin Out Configuration 
of the 82510 

3.3 System Clock Options 

The term "System Clock" refers to the clock which 
provides timings for most of the 82510 circuitry. The 
82510 has two modes of system clock usage. It can 
generate its system clock from its On-Chip Crystal Os­
cillator and an external crystal, or it can use an exter­
nally generated clock, input to the device through the 
CLK pin. The selection of the system clock option is 
done during reset. The default system clock source is an 
externally generated clock, which can be reconfigured 
by a strapping option on the RTS pin. During Reset, 
the RTS pin is an input; it is internally pulled high, if it 
is externally driven low, then the 82510 expects to use 
the Crystal Oscillator for system clock generation, oth­
erwise it is set up for using an external clock source. 
This can be done by using an open collector inverter to 
RTS, the input of the inverter is the Reset signal. The 
82510 has a pull up resistor in the RTS circuitry so no 
external pull up is needed. In the crystal oscillator 
mode the CLK/Xl pin is automatically configured to 
Xl, and the OUT2/X2 pin is configured to X2. In the 
External Clock mode, the CLK/Xl is configured to 
CLK and the OUT2/X2 is configured to OUT2. 

231928-6 
1 ms is needed for Oscillator startup 

Figure 7. Crystal Oscillator Strapping Option 

EXTERNAL CLOCK 

231928-7 

NOTE: 
Crystal Oscillator is always divided by two. 

Figure 8. Disable Divide by Two 

If the Crystal Oscillator is being used to supply the 
system clock, then the clock frequency is always divid-

. ed by two before being fed into the rest of the 82510 
circuitry. If, however an external clock source is being 
used to supply the system clock, then the user has two 
options: 

2-13 

1. Use the System Clock after division by two, e.g. if a 
8 MHz clock is being fed into the CLK pin, then the 
actual frequency of the 82510 system clock will be 4 
MHz (default). 

2. Disable Division by two and use the direct undivid­
ed clock, e.g. if an 8 MHz clock is being fed into the 
CLK pin, then the actual frequency of the 82510 
system clock is also 8 MHz. 

The divide by two option is the default mode of opera­
tion in the External Clock mode of the 82510. A strap­
ping option can be used to disable the Divide By :Two 
operation (For Crystal Oscillator Mode Divide By Two 
must always be active). During Reset, the DTR pin is 
an input; it is internally pulled high, if it is externally 
driven low then the Divide By Two operation is dis­
abled. The strapping option is identical to the one used 
on RfS for selection of the System Clock source. 

The 82510 system clock must be chosen with care since 
it influences the wait state performance, Baud Rate 
Generation (if being used as source frequency for the 
BRGs), the power consumption, and the Timer count­
ing period. The power consumption of the 82510 is de­
pendent upon the system clock frequency. If using the 
system clock as a source for the Baud Rate Genera­
tor(s), then the system clock frequency must be a baud 
rate multiple in order to minimize frequency deviation. 
For standard baud rates a multiple of 1.8432 MHz can 
be used, in fact the 18.432 MHz maximum frequency 
was chosen with this particular criteria in mind. 



intJ AP-401 

BACF(6) 

SCLK---" 

DEF' 
CLK/X1-~~ 

BRGA 
FSt.! + COUNTER 

+ LOGIC 

RXt.! 
16X 
CLOCK 

BBCF'(7-6) 
CLCF'(6) 

SCLK ..... - ___ .. 

CLK/X1-+ ....... ~ 

BRGB 
F'St.! + COUNTER 

+ LOGIC 

TXt.! 
16X 
CLOCK 

'----

Tx Ct.! BIT~ __ -; 
OF' CLCF' 

Rx Ct.! BIT ___ -; 
IN CLCF" 

CLCF'(4) 
TXt.! 

\------------------~~1X 
r CLOCK 

RXt.! 
l--------------------~1X 

Figure 9. Timing Flow of the 82510 

2-14 

CLOCK 
231928-8 



intJ AP-401 

3.3.1 POWER DOWN MODE 

The 82510 has a "power down" mode to reduce power 
consumption when the device is·not in use. The 82510 
powers down when the power down command is issued 
via the Internal Command Register (ICM). There are 
two modes of power down, Power Down Sleep and 
Power Down Idle. 

3.3.1.1 Sleep Mode 

This is the mode when even the system clock of the 
82510 is shut down. The system clock source of the 
82510 can either be the Crystal Oscillator or an exter­
nal clock source. If the Crystal Oscillator is being used 
and the power down command is issued, then the 
82510 will automatically enter the Sleep mode. If an 
external clock is being used, then the user must disable 
the external clock in addition to issuing the Power 
Down command, to enter the Sleep mode. The benefit 
of this mode is the increased savings in power con­
sumption (typical power consumption in the Sleep 
mode is in the range of hundreds of microAmps. How­
ever, upon wake up, if using a crystal oscillator, the 
user must reprogram the device. The data is preserved 
if the external clock is disabled after the power down 
command, and enabled prior to exiting the power down 
mode. To exit this mode the user can either issue a 
Hardware reset, or read the FIFO Level Register (FLR) 
and then issue a software reset (if using a Crystal Oscil­
lator). In either case the contents of the 82510 registers 
are not preserved and the device must be repro­
grammed prior to operation. 

NOTE: 
If the Crystal Oscillator is being used then the user 
must allow about 1 ms for the oscillator to wake up 
before issuing the software reset. 

3.3.1.2 Idle Mode 

The 82510 is said to be in the Idle mode when the 
Power Down command is issued and the system clock 
is still running (i.e. the system clock is generated exter­
nally and not disabled by the user). In this mode the 
contents of all registers and memory cells are preserved, 
however, the power consumption in this mode is great­
er than in the Sleep mode. Reading FLR will take the 
82510 out of this mode. 

NOTE: 
The data read from FLR when exiting Power Down is 
incorrect and must be ignored. 

4.0 INTERRUPT BEHAVIOR 

4.1 FIFO Usage 

The 82510 has two independent four bytes transmit and 
receive FIFOs. Each FIFO can generate an interrupt 
request, when the FIFO level meets the Threshold re­
quirements. The FIFOs can have a considerable impact 
on the performance of an asynchronous communica­
tions system. For systems using high baud rates they 
can provide increased interrupt-to-service latency re­
ducing the chances of an overrun occurring. In systems 
constrained for CPU time, the FIFOs can increase the 
CPU Bandwidth by reducing the number of interrupt 
requests generated during asynchronous communica­
tions. It can reduce the interrupt load on the CPU by 
up to 75%. By choosing the FIFO thresholds which 
reflect the system bandwidth or service latency require­
ments, the user can achieve data rates and system 
throughput, unattainable with traditional UARTs. 

Table 2. The Power Down Modes 

Mode Clock Source Exit Procedure Power Consumption Data Preservation 

Sleep CrystalOscill. H/W Reset or 100-900/LA Not Preserved 
Automatically Read FLR and Must be Reprogrammed 
Disabled Issue S/W Reset 

External Clock Enable External 100-900 !LA Not Preserved 
Must be Disabled Clock, Read FLR Must be Reprogrammed 
by User and Issue S/W Reset 

H/W Reset 

Idle External Clock H/W Reset 1-3mA All Data Preserved 
Running Read FLR Does Not Need to be 

Reprogrammed 

2-15 



AP-401 

4.1.1 INTERRUPT· TO-SERVICE LATENCY 

The interrupt·to·service latency is the time delay from 
the generation of an interrupt request, to when the in­
terrupt source in the 82510 is actually serviced. Its 
primary application is in the reception of data. In tradi­
tional UARTs the CPU must read the current charac­
ter in the Receive Buffer before it is overrun by the next 
incoming character. The Rx FIFO in the 82510 can 
buffer up to four characters, allowing an interrupt-to­
service latency of up to four character transmission 
times. The character transmission time is the time peri­
od required to transmit one full character at the given 
Baud Rate. It is dependent upon the baud rate and is 
given by equation (1): 

(I) Character Transmission Time = 

Num. of Bits per Character Frame 

Baud Rate 

The Transmit and Receive FIFO thresholds should be 
selected with consideration to two factors the Baud 
rate, and the (CPU Bandwidth allocated for Asynchro­
nous Channels is dependent upon the number of chan­
nels supported since it does not include the overhead of 
supporting other peripherals) number of Asynchronous 
Serial ports being supported by the CPU. In order ,to 
avoid overrun, the interrupt-to-service delay must be 
less than the time it takes to fill the 82510 Rx FIFO. 
The relationship is given by equation (2): 

(2) Int_to_service-Iatency < FIFO Size X 

Character Transmission Time 

Example 

Calculate the maximum baud rate that can be support­
ed by a 6 MHz PC AT to support four Full Duplex 
Asynchronous channels using 

a) The 82510 with four byte FIFO. 

b) The 82510 with one byte FIFO. 

Assumptions: 

• CPU dedicated to Asynchronous communications. 

• UART Interrupts limited to Transmission and Re­
ception only. 

• Interrupt Routines are optimized for fast through­
put. 

• 10 bits per charaCter frame. 

Going back to equation (2): 

Int._to_service latency < Buffer size x lO/baud rate 

Int_to_service latency = # of Channels X (# of 
into sources per channel) 
X Time required to serv­
ice interrupt 

Int_to_service latency = 4 X 2 X Time required to 
service interrupt 

The Time required to service interrupt has been calcu­
lated to be 100 f.Ls for a slightly optimized service rou­
tine. RMX86 interrupt service time is given as 250 f.Ls 
and for other operating systems it should be slightly 
higher. 

2-16 

Int_to_service 
latency = 4x2xlO0 s 

= 800 f.Ls 

82510 max Baud Rate = 4 X 10/800 f.Ls 

(four byte FIFO) 50K bits/sec 

82510 max Baud Rate = I X 10/800 f.Ls 

(one byte FIFO) 12.5K bits/sec 

4.2 Interrupt Handling 

The 82510 has 16 different sources of interrupt, each of 
these sources, when set and enabled, will cause their 
respective block interrupt requests to go active. The 
block interrupt request, if enabled, will set the 8251O's 
INT pin high, and will be reflected as a pending inter­
rupt in the General Interrupt Register (GIR) if no other 
higher priority block is requesting service. If a higher 
priority block interrupt is also active at the same time, 
then the General Interrupt Register will reflect the high­
er priority request as the source of the 82510 interrupt. 
The lower priority interrupt will issue a new edge on 
the interrupt pin only after the higher priority interrupt 
is acknowledged and if no other priority block requests 
are present. Both the block interrupts and the individu­
al sources within the blocks are maskable. The block 
interrupts are enabled through the General Enable Reg­
ister (GER) which prevents masked bits in the General 
Status Register (GSR) from being decoded into the 
General Interrupt Register. This does not prevent the 
block request from being set in the General Status Reg­
ister, it only prevents the masked GSR bits from being 
decoded into the General Interrupt Register, and thus 
generating any interrupts. The individual sources with­
in the block are masked out via the corresponding in­
terrupt enable register associated with the specific block 
(Rx Machine, Timing Unit and the Modem I/O mod­
ule each have an Interrupt Enable register). 



inter 

GER 

FIFO BELOW 
OR EQUAL 
THRESHOLD 

AP-401 

Figure 9. 82510'5 Interrupt Scheme 

2·17 

AUTOMATIC MODE 
11.40(3) 

231928-9 



intJ 
4.2.1 THE INTERRUPT SCHEME 

The 82510 interrupt logic consists of the following ele­
ments: 

4.2.1.1 Interrupt Sources Within Blocks 

Three of the 82510 functional" blocks (Rx Machine, 
Timer, Modem I/O) have more than one possible 
SO)lrce of interrupts, for instance the Rx Machine has 
seven different sources of interrupts-standard control 
character recognition (Std. CCR), control character 
Match (special CCR), Break Detect, Break Terminat­
ed, Overrun Error, Parity Error, and Framing Error. 
The mUltiple sources are represented as Status bits in 
the Status registers of. each of these blocks. When en­
abled the Status bits cause the block request to set in 
the General Status Register. There is no difference in 
the behavior of the INT pin or the block status bits in 
GSR, for multiple sources within a block becoming ac­
tive·simultaneously. The corresponding block status bit 
in GSR is set when one or more interrupt sources with­
in the block become active. When the status register for 
the block is read all the active interrupt sources within 
the block are reset. Each source within the three blocks 
can be masked through its respective enable register. 

4.2.1.2 General Status Register (GSR) 

This register holds the status of·the six 82510 blocks 
(all except Bus Interface Unit). Each bit when set indi­
cates that the particular block is requesting interrupt 
service, and if enabled via the General Enable Register. 
will cause an interrupt. 

4.2.1.3 General Enable Register (GER) 

This register is used to enable/disable the correspond­
ing bits in the General Status Register. It can be pro­
grammed by the CPU at any time. 

Table 3. Block Interrupt Priority 

Block Priority 
GIRCODE 
3 2 1 (Bits) 

Timers 5 (highest) .. 1 0 1 
TxMachine 4 100 
RxMachine 3 011 
RxFIFO 2 010 
TxFIFO 1 001 
Modem I/O o (lowest) 000 

4.2.1.4 Priority Resolver and General Interrupt 
Register 

If more than one enabled Interrupt request from GSR 
is active, then the priority resolver is used to resolve 
contention. The priority resolver finds the highest pri­
ority pending and enabled interrupt in GSR and de­
codes it into the General Interrupt Register (bits 3 to 1). 
The General Interrupt Register can be read at any time. 

NOTE: 
GIR is updated continuously, so while the user may 
be serving .one interrupt source, a new interrupt with 
higher priority may update GIR and replace the older 
one. 

4.2.2 INTERRUPT ACKNOWLEDGE MODES 

The 82510 has two modes of interrupt acknowledge­
ment-Manual acknowledge and Automatic acknowl­
edge. In Manual Acknowledge mode, the user has to 
issue an explicit Acknowledge Command via the 
Internal Command Register (ICM) in order to cause 
the INT pin to go low. In Automatic Acknowledge 
mode the INT pin will go low as soon as an active or 
pending interrupt request is serviced by the CPU. An 
operation is considered to be a service operation if it 
causes the source of the interrupt (within the 82510) to 
become inactive (the specific status bit is reset). The 
service procedures for each source vary, see section 
4.2.3.2 for details. . 

2-18 

4.2.2.1 Automatic Acknowledgement 

In the automatic acknowledge mode, a service opera­
tion by the CPU will be considered as an automatic 
acknowledgement of the interrupt. This will force the 
INT pin low for two clock cycles, after that the INT 
pin is updated i.e. if there is an active enabled source 
pending then the INT pin is set high again (reflected in 
GIR). This mode is useful in an edge triggered Inter­
rupt system. Servicing any enabled and active GSR bit 
will cause Auto Acknowledge to occur (independently 
of the source currently decoded in the GIR register). 
This can be used to rearrange priorities of the 82510 
block requests. 



intJ 

GSR 5 
TIMER 

GSR 3 

GIR 

INT 

8259A 

AP-401 

GIR = 1--

READ GIR SERVE 
(= 10) TIMER 

ISSUE 
EOI 
TO 

8259A 

READ GIR SERVE ISSUE READ GlR SERVE ISSUE 

USER 
OPERATIONS 

(= 2) TX FIFO EOI 
(WRITE 

CHARACTERS) 

(= 0) MODEM EOI 

6259A ~ Edge Triggered 
Non Auto EOI 
62510 Automatic Acknowledge 

Figure 10. Automatic Acknowledge Mode Operation 

GSR ---.J 
bit 3 

(MODEM) 

b?tS: (TXM) 

b~tS~ (TIMER) 

GIR 

(82590) 
INT 

8259A 

USER 

NOTE: 

READ GIR SERVE MODEM READ GIR 
(=0) INTERRUPT (=10) 

Vector refers to GIR bit (3-0) 
62510: Manual Ack. Mode 
6259A: Edge Triggered Non AEOI 

SERVE 
TIMER 

READ GIR SERVE 
(=8) TXN 

Figure 11. Manual Acknowledge Mode Operation 

2-19 

231926-10 

GIR = 1 

READ GIR ISSUE 
(= 1) MANUAL 

ACK TO 
82510 

231926-11 



intJ AP-401 

.4.2.2.2 Manual Mode of Acknowledgement 

The Manual Acknowledgement Mode requires that, 
unlike the automatic mode where a service operation is 
considered as an automatic acknowledg~, an explicit 
acknowledge command be issued to the 82510 to cause 
INT to go inactive. In this mode the CPU has complete 
control over the timing of the Interrupts. Before exiting 
the service routine, the CPU can check the GIR register 
to see if other interrupts are pending and can service 
those interrupts in the same invocation, avoiding the 
overhead of another interrupt as in the Automatic 

RESTORE ORIGINAL 
VALUE OF GIR/BANK 

TO RETURN TO 
ORIGINAL BANK 

mode. Of course the user has the option of issuing the 
acknowledge command immediately after the service, 
which would be similiar in behavior to the automatic 
mode. If the manual acknowledge command is given 
before the active source has been serviced· and no higher· 
priority request is pending, then the same source will 
immediately generate a new interrupt. Therefore, the 
software must make sure that the Manual Acknowl­
edge command is issued after the interrupt source has 
been serviced by the CPU (see section 4.2.3.2. for more 
details on interrupt service procedures for each source). 

READ CORRESPONDING 
STATUS REGISTER &: 

SERVICE ALL APPROPRIATE 
ACTIVE BITS 

231928-12 

Figure 12. Typical Interrupt Handler 

2-20 



AP-401 

4.2.3 GENERAL INTERRUPT HANDLER 

In general an interrupt handler for the 82510 must first 
identify the interrupt source within the 82510, transfer 
control to the appropriate service routine and then 
service the active source. The active source can be iden­
tified from two registers-General Interrupt Register. 
or General Status Register. The GIR register identifies 
the highest priority active block interrupt request. The 
GSR register identifies all active (pending or in service) 
Block Interrupt Requests. The .typical operation of the 
82510 interrupt handler is given in Figure 12. The two 
major issues of concern are the source identification 
and Control Transfer to the appropriate service routine. 

USER PRIORITY =! RX FIFO (HI) 
RX MACHINE 
TIMER 

( TX FIFO 
TX MACHINE 
MODEM (LOW) 

Since the 82510 registers are divided into banks, and 
the interrupt handler may change register banks during 
service, it is best to save the bank being used by the 
main program and then do the interrupt processing. 
Upon completion of service, the original bank value is 
restored to the GIRIBank register. 

4.2.3.1 Source Identification 

The 82510 has 16 interrupt sources, and the CPU must 
identify the source before performing any service. Al­
though the procedure varies, the typical method would 
be to identify the block requesting service by reading 

231928-13 

Figure 13. Bypassing the 82510 Fixed Interrupt Priority 

2-21 



inter AP-401 

GIR bits 3-1. If the source is either Tx Machine, Tx 
FIFO, or Rx FIFO, no further indentification is need­
ed, the user can transfer control to the service routine 
(in most cases, only one Timer will be used, therefore 
the Timer Routine can also be directly invoked). All 
modem I/O interrupts can be handled via one routine 
as all the modem interrupt sources are supplementary 
to the modem handshaking function. The Rx Machine, 
however, has two different types of interrupt sources, 
event indications (CCR/ Address recognition CCR! Ad­
dress Match, Break Detect, Break Terminate, and 
Overrun Error), and error indicati~ns (Parity Error, 
Framing Error, these error indications do not refer to 
any particular character, they just indicate that the spe­
cific error was detected during reception). For most ap­
plications, the error indicators can be masked off, and 
only the event driven interrupts enabled. The error in­
dicators can be read from the Receive Flags prior to 
reading a character from the FIFO. This interrupt 
scheme can be used, because the Receive character er­
ror indicators are available in the Receive Flags, and 
can be checked by the Receive routine before reading 
the character from the Rx FIFO. 

Since all active status bits (except Rx FIFO interrupt in 
LSR and RST) are reset when the corresponding block 
status register is read, the interrupt routine must check 
for all possible active sources within the block, and 
service each active source before exiting the interrupt 
handler. 

The 82510 interrupt contention is resolved on a fixed 
priority basis. In some applications the fixed priority 
may not be suitable for the user. For these cases the 

user can bypass the 8251O's priority resolution by using 
the General Status Register (rather than GIR) to deter­
mine the block interrupt sources requesting service. 
Each source is checked in order of user priority and 
serviced when identified (There will be no problem with 
using this algorithm in auto acknowledge mode because 
the INT pin will go low as soon as a pending and en­
abled interrupt request goes low). The user will be trad­
ing some service latency time for additional source 
identification time, this algorithm's efficiency will im­
prove as the number of block sources to verify is re­
duced. See Figure 13 for the algorithm. 

4.2.3.2 Interrupt Service 

A service operation is an operation performed by the 
CPU, which causes the source of the 82510 interrupt to 
go inactive (it will reset the particular status bit causing 
the interrupt). An interrupt request within the 82510 
will not reset until the interrupt source has been serv­
iced. Each source can be serviced in two or three differ­
ent ways; one general way is to disable the particular 
status bit causing the interrupt, via the corresponding 
block enable register. Setting the appropriate bit of the 
enable register to zero will mask off the corresponding 
bit in the status register, thus causing the INT pin to go 
inactive. The same effect can be achieved by masking 
off the particular block interrupt request in GSR via 
the General Enable Register. Another method, which is 
applicable to all sources, is to issue the Status Clear 
command from the Internal Command Register. The 
detailed service requirelIlents for each source are given 
below: 

Table 4 Service Procedures For Each Interrupt Source 
Interrupt Status Bits Interrupt Specific General 
Source & Registers Masking Service Service 

Timers TMST(1·0) TMIE(1-0) ReadTMST Issue 
GSR(5) GER(5) Status Clear 

(StC) 

Tx GSR(4) GER(4) Write Character Issue StC 
Machine LSR (6) toTxFIFO 

Rx LSR (4·1) RIE(7-1) Read RST or LSR Issue StC 
Machine RST(7-1) GER(2) Write 0 to bit 

GSR(2) in RST/LSR 

RxFIFO RST/LSR (0) GER(O) Write 0 to LSR/RST IssueStC 
GSR(O) Bit zero. 

Read Character(s) 

TxFIFO LSR (5) GER(l) Write to FIFO IssueStC 
GSR(l) ReadGIR 

Modem MSR(3-0) MIE(3-0) Read MSR IssueStC 
GSR(3) GER (3) write 0 into the 

appropriate bits of 
ofMSR(3-0) 

NOTE: 
The procedures listed in Table 4 will cause the INT pin to go low only if the 82510 is in the automatic acknowledge mode. 
Otherwise. only the internal source(s) are decoded. the INT pin will go low only when the Manual Acknowlege command is 
issued. 

2-22 



inter Ap·401 

4.3 POlling 

The 82510 can be used in a polling mode by using the 
General Status Register to determine the status of the 
various 82510 blocks, this is useful when the software 
must manage all the blocks at once. If the software is 
dedicated to performing one function at a time, then 
the specific status registers for the block can be used, 
e.g. if the software is only going to be Transmitting, it 
can monitor the Tx FIFO level by polling the FIFO 
Level Register, and write data whenever the Tx FIFO 
level decreases. Reception of data can be done in the 
same manner. 

5.0 SOFTWARE CONSIDERATIONS 

5.1 Configuration 

The 82510 must be configured for the appropriate 
modes before it can be used to transmit or receive data. 
Configuration is done via read and write registers, each 
functional block (except for BIU) has a configuration 
register. Typically the configuration is done once after 
start up, however, the FIFO thresholds and the inter­
rupt masks can be reconfigured dynamically. If the 
82510 configuration is not known at start up it is best to 
bring the device to a known state by issuing a software 
reset command (ICM register, bank one). At this point 
all block interrupts are masked out in GER and all 
configuration and status registers have default values. 
The bank register is pointing to bank zero. The 82510 
can now be configured as follows: 

1. If BRG A is being issued as a baud rate generator 
then load the baud rate count into BAL and BAH 
registers. 

2. Configure the character attributes in LCR register 
(Parity, Stop Bit Length, and Character Length). 

(Note if interrupts are being used, steps 1 and 2 can 
also be done at the end, since the user will have to 
return to bank zero to set the interrupt masks in GER) 

3. Load ACRO register with the appropriate Control 
or Address character (if using the Control Charac­
ter Match or Address Match capability of the 
82510). 

4. Switch to Bank two. 

(In this Bank the configuration can be done in any 
order) 

5. Configure the Receive and Transmit FIFO thresh­
olds if using different thresholds than the default). 

2-23 

6. Configure the Transmit Mode Register for the 
Stop Bit length, modem control, and if using echo 
or 9 bit length or software parity, configure the 
appropriate bits of the register. The default mode 
of the modem control is Manual, if using the FIFO 
then the automatic mode would be most useful). 

7. Configure the Rx FIFO depth, interrupt acknowl· 
edge mode, /lolan or normal mode and echo modes 
in IMD register. 

8. Load ACRI if necessary 

9. Enable Rx Machine Interrupts as necessary via 
RIE. 

10. Configure RMD for CCR, DPLL operation, Sam­
pling Window, and start bit. 

11. Switch to Bank 3. 
12. Configure CLCF register for Tx and Rx clocks and 

or Sources 

13. Configure BACF register for BRG A mode and 
source. 

14. Load BBL and BBH if BRGB is being used (as 
either a BRG or a Timer). 

15. Configure BBCF register if necessary. 

16. If reconfiguration of the modem pin is necessary 
then program the PMD register. 

17. Enable any modem interrupt sources, if required, 
via MIE register. 

18. Enable Timer interrupts, if necessary, via TMIE. 

19. If using interrupts 

then 

i) Switch to Bank zero. 
Disable Interrupts at CPU (either by masking 
the request at the interrupt controller or exe­
cuting the CLI instruction). 

ii) Enable the appropriate 82510 Block interrupts 
by setting bits in the GER register. (CPU inter­
rupts can now be reenabled, but it is recom­
mended to switch banks before enabling the 
CPU interrupts). 

NOTE: 
At this stage it is best to leave the TxM and Tx FIFO 
interrupt disabled. See section 6.3 Transmit Operation 
for details) 

20. Switch to Bank One. Load Transmit Flags if using 
9-bit characters, or 8051 9-bit mode or software 
parity. If using interrupts CPU interrupts can now 
be enabled. 

Bank One is used for general operation, the 82510 can 
now be used to transmit or receive characters. 



inter AP-401 

CONFIGURE: 
1. STOP BIT LENGTH 
2. MODE OF RTS CONTROL 

GENERAL 
CONFIGURATION 

3. 9-BIT CHAR. LENGTH} 
4. S/W PARITY OPTIONAL 

231928-14 

5. AUTO ECHE MODE IN 
TRANSMIT MODE REGISTER 

SET RX FIFO DEPTH. 
INTERRUPT 

ACKNOWLEDGE MODE, 
).LLAN OR NORMAL AND 

AUTO ECHO IN INTERNAL 
MODE REGISTER 

ENABLE INTERRUPTS FOR 
RX STATUS BITS VIA 

RX INTERRUPT 
ENABLE REGISTER 

SET MODES OF CONTROL 
CHARACTER RECOGNITION, 

DATA SAMPLING, AND 
DPLL USE, 

IN RX MODE REGISTER 

Figure 14. Configuration Flow Chart 

2-24 

TO C 

231928-15 



intJ AP·401 

C MODEM AND 
TIMING UNIT 

CONFIGURATION 

IN CLOCKS CONFIGURE 
REGISTER: SELECT SOURCES 

OF TX & RX CLOCKS 
SELECT MODES OF 
TX & RX CLOCKS 

CONFIGURE BRG A CLOCK 
SOURCE AND MODE OF 
OPERATION VIA BRG A 

CONFIGURATION REGISTER 

CONFIGURE BRG B FOR 
SOURCE AND MODE VIA BRG B 

CONFIGURATION REGISTER 
(IF BEING USED AS A BRG) 

ENABLE INTERRUPTS 
(IF NECESSARy) ON 

MODEM INPUT PINS VIA 
MODEM INTERRUPT 
ENABLE REGISTER 

'. ENABLE TIMER INTERRUPTS 
""S NECESSARY. VIA 

TIMER INTERRUPT 
ENABLE REGISTER 

TO D 

o 

231928-16 

ENABLE THE 82510 
BLOCK INTERRUPT 

SOURCES VIA GENERAL 
ENABLE REGISTER 

Figure 14. Configuration Flow Chart (Continued) 

2-25 

231928-17 



inter AP-401 

T 
X 

F 
I 
F 
o 
L 

4 

~ 3 
E 
L 

,l 
• 
" , 

'1 
• , 

-2 
THRESHOLD 

1 ):-_".._-----.... -=o;a", 
~ --· --- .. --, ...... 
'~~------~~---------~-~ -- -- -- ................ 

O-L----~-----------------~-~~---
INACTIVE 

--- Tx Machine and 82510 
---- User write operation 

INTERRUPTS ACTIVE 

231926-16 

Figure 15. Tx FIFO Interrupt Hysteresis 

5.2 Transmit Operation 

5.2.1 GENERAL OPERATION 

To transmit a character the CPU must write it to the 
TXD register, this character along with the flags from 
the Tx Flags register is loaded to the top of the TX 
FIFO. If the Tx Machine is empty, then the character 
is loaded into the shift register, where it is serially 
transmitted out via the TXD pin (the flags are not 
transmitted unless the 8251O's configuration requires 
their transmission e.g. if software parity is selected then 
the S/W parity bit is transmitted as the parity bit of the 
character). The CPU may write ' more than one charac­
ter into the FIFO, it can write four characters in a burst 
(five if the Tx Machine is empty) or it can check the 
FIFO level before each write, to avoid an overrun con­
dition to the transmitter. In the case of the latter, the 
software overhead of checking the FIFO level must be 
less than the time required to transmit a character, oth­
erwise the transmit routine may not exit until another 
exit cO,ndition has been met. 

e.g. at 288,000 bps for an 8-bit char no parity 

It takes 34.7 JLs to transmit one character. 

If the time, from the write to TXD to the reading of the 
Transmit FIFO level, is greater than 34.7 JLs then the 
Tx FIFO level will never reach higher than zero, and 
the FIFO will always appear to be empty. Therefore, if 
the transmit routine is checking for a higher level in the 
FIFO it may not be able to return until some other exit 
condition-such as no more data available-is met. 
This can be a problem in the interrupt handler, where 
the service routine is required to be efficient and fast. 

The transmitter has two status flags. Tx Machine Idle 
and Tx FIFO interrupt request, each of these condi­
tions may cause an interrupt, if enabled. The Transmit 
Idle condition indicates that the Tx Machine is either 
empty or disabled. The Tx FIFO interrupt bit is set 
only when the level of the Tx FIFO is less than or equal 
to the threshold. These interrupts should remain dis­
abled until data is available for transmission. Because 
outside of disabling the corresponding GSR status bits, 
the only way to service Tx Idle is by writing data to the 
Transmitter. Otherwise, the Tx Machine interrupt may 
occur when no data is available for transmission, and as 
a result will keep the INT pin active, preventing the 
82510 from generating any further interrupts (unless 
the Transmit Interrupt routine automatically disables 
the Tx Machine Idle and Tx FIFO interrupt requests in 
GSR). The threshold of the Tx FIFO is programmable 
from three to zero, at a threshold of three the Tx FIFO 
will generate an interrupt after a character has been 
transmitted. While at a threshold of zero the interrupt 
will be generated only when the Tx FIFO is empty. For 
most applications a threshold of zero can be used. If the 
threshold is dynamically configured, i.e. it is being 
modified during operation, then the Tx FIFO level 
must be checked before writing data to the transmitter. 

5.2.1.1 Transmit Interrupt Handler 

The Transmit Interrupt Handler will be invoked when 
either the Tx FIFO threshold has been met or if the 
Transmitter is empty. Since the Tx Machine interrupt 
is high priority (second highest priority, with Timer 
being the highest), the interrupt line will not be released 
to other lower priority, pending 82510 sources until the 
Tx Machine interrupt has been serviced. If no data is 
available for transmission, then the only way to ac­
knowledge the interrupt is by diSabling it in the General 
Enable Register. Thus the Tx Machine interrupt should 
not be enabled until there is data available for transmis­
sion. The T1!: Machine interrupt should be disabled af­
ter transmission is completed. 

5.2.1.2 Transmission By Polling 

2-26 

Transmission on a polling basis can be done by using 
the General Status Register and/or the FIFO Level Reg­
ister. The software can wait until the Tx FIFO and/or 
the Tx Machine Idle bits are set in the General Status 
Register, and then do a set number of writes to the TXD 
register. This method is useful when the software is try­
ing to manage other functions such as modem control, 
timer management and data reception, simultaneously 
with transmission. 

If management of other functions is not needed while 
transmitting, then continuous transmission can be done 
by monitoring the Tx FIFO level. A new character is 
written to TXD as soon as the FIFO level drops by one 
level. 



Ap·401 

Tx FIFO Threshold = 0 

NOTE: 

DISABLE TX MACHINE 
IDLE, AND TX FIFO 
INT. REO. IN GER 

231928-19 

TxM Idle and Tx FIFO Empty interrupts are enabled by the Main Program, when data transmission is required. 

Figure 16.16 Tx Interrupt Handler Flow Chart 

2-27 



intJ AP-401 

231928-20 

Figure 17. Using GSR for Polling, 

2-28 



inter AP-401 

231928-21 

Figure 18. Data Transmission by Monitoring FIFO Level 

2·29 



AP-401 

231928-22 

Figure 19. Break Transmission Using Tx FIFO to Measure Break Length 

2-30 



AP-401 

5.2.1.3 Break Transmission 

The 82510 will transmit a break when bit six of the 
Line Control Register is set high. This will cause the 
TXD pin to be held at Mark for one or more character 
time. The Tx FIFO can be used to program a variable 
length break, see Figure 19 for details. If the break 
command is issued in the midst of character transmis­
sion the TXD pin will go low, but the transmitter will 
not be disabled. The characters from the Tx FIFO will 
be shifted out on to the Tx Machine and lost. To pre­
vent the erroneous transmission of data, The CPU must 
make sure the Transmitter is empty or disabled before 
issuing the Send Break command. 

R 
X 

F 
I 
F 
o 
L 
E 
V 
E 
L 

4 

3 

--2 
THRESHOLD 

, , 
~ 
, 

I 
I 
~ • , , , 
~ 

"" .. 
.----­........ 

OVERRUN 

O~--~--------------------~r---

INACTIVE 

•• _. User Read Operations 
- 82510 Character Reception 

INTERRUPTS ACTIVE 
231928-23 

Figure 20. Rx FIFO Hysteresis 

5.3 Data Reception 

The receiver provides the 82510 with three types of 
information: 

a) Data characters received 

b) Rx Flags for each data character 

c) Status information on events within the Rx Ma­
chine. 

The Rx FIFO interrupt request goes active when the 
Rx FIFO level is greater than the threshold, if the in­
terrupt for this bit is enabled then it will generate an 
interrupt to the CPU. This is a request for the CPU to 

2-31 

read characters from the 82510. Each character on the 
Rx FIFO has flags associated with it, all of these flags 
are generated by the Rx Machine during reception of 
the character. These flags provide information on the 
integrity of the character, e.g. whether the character 
was received OK, or if there were any errors. The re­
ceiver status is provided via the Receive Status Register 
(RST), which provides information on events occurring 
within the Rx Machine, since the last time RST was 
read. The information mayor may not apply to the 
current character being read from the RXD register. 
The CPU may read one or more characters from the 
Rx FIFO. After each read, if the FIFO contains more 
than a single character, a new character is loaded into 
the RXD register and the flags for that character are 
placed into the RXF register. The software can check 
for the Rx character OK bit in the flags to make sure 
that the character was received without any problems. 

5.3.1 RECEIVE INTERRUPT HANDLER 

The Receiver will generate two types of interrupts, Rx 
FIFO interrupt and Rx Machine Interrupt. The Rx 
FIFO interrupt requires that the CPU read data char­
acters from the Rx FIFO. If the Rx Machine interrupts 
are disabled then the CPU should also check for errors 
in the character before moving it to a valid buffer. The 
interrupts generated by the Rx Machine can be divided 
into two categories-occurrence of errors during recep­
tion of data (parity error, framing error, overrun error), 
or the occurrence of certain events (Controll Address 
character received, Break detected, Break Terminated). 
For typical applications, the error status of each re­
ceived character can be checked via the Receive Flags, 
and the events can be handled via interrupts. 

5.3.2 RECEIVING DATA BY POLLING 

To receive data through polling. the 82510 can use the 
General Status or the Receive Status Registers to check 
for the Rx FIFO request. If the Receive routine does 
not generate time outs or modem pin transitions, then 
the data can also be received by monitoring the Rx 
FIFO level in the FIFO Level Register. The implemen­
tation using GSR would be useful in applications where 
the software routine must monitor the timer for time 
outs or the modem pins for change in status. The exam­
ple polling routine illustrates the use of the FIFO Level 
Register in receiving data. It waits for the Rx FIFO 
request before beginning data reception. The procedure 
Rx_DataJoll will receive the number of characters 
requested in Char_count and place them in the Re­
ceive buffer. 



inter AP-401 

231928-24 

Figure 20. Rx FIFO Interrupt Handler 

2-32 



inter AP-401 

#define base Ox3F8; /* base address of 82510 */ 
#define buff __ size 128; 

RX __ Data __ Po11 (Char __ count, Rxbuffer) 
int Char __ count; /* Total # of bytes to be received */ 
char *Rxbuffer [buffsize]; 
{ 
int count = 0; 
int status, lvI, Rok; 

While (((status = (Inp(base+7) & Ox05)) 
{ 

/* If Rx FIFO is not empty */ 

OxOl) /* If Rx FIFO Req in GSR set *1 
/* Assume in bank one */ 

While ((IvI = ((Inp (base+4) & Ox70)/Ox10)0&&(count < (Char __ count)) 
{ 

/* If Character Received OK */ 
if (((Rok.= (Inp (base+l) & Ox60)) 
( 

Rxbuffer [count] = Inp (base); 
++count; 

Ox40) 

Figure 21. Example Polling Routine 

5.4.3 CONTROL CHARACTER HANDLING 

The 82510 has two modes of control character recogni­
tion. It can recognize either standard ASCII or stan­
dard EBCDIC control characters, or it can recognize a 
match with two user programmed control (or Address 
Characters in MCS-51 9-bit mode, for Automatic Wake 
up) characters. Each mode generates an interrupt 
through the Receive Status Register. The Receive Flags 
also indicate whether the character being read is a con­
trol character. The usage of CCR depends on the maxi­
mum number of possible control characters that can be 
received at anyone time. Applications such as Termi­
nal Drivers, which have no more than two control 
characters outstanding, such as XON and Ctl-C, or 
XOFF and Ctl-C, can use just the Control Character 
Match mode by programming the registers ACRO and 
ACRI. If the CPU needs to process text on a line by 
line basis, the standard Control Character recognition 
capability can be used to determine when an end of line 
has occurred e.g. a whole line has been received when a 
Carriage Return (CR) or Line Feed (LF) is received by 
the UART. 

Implementation of a character oriented asynchronous 
file transfer protocol can be done using both standard 
and specific Control Character Recognition. In such 
protocols most control characters such as Start of 
Header (SOH), can only be received during certain 
states, these characters can be received via Standard 
Control Character Recognition. A few Control Charac-

2-33 

ters (e.g. abort) can be received at any stage of commu­
nication, these can be received by using the Control 
Character Matching capabilities of the 82510. 

5.3.3 BREAK RECEPTION 

The 82510 has two status indications of break recep­
tion, Break Detect indicates that a break has been de­
tected on the RXD pin. Break Terminated indicates 
that the Break previously detected on the RXD line has . 
terminated and normal Data reception can resume. 
Each of these status bits can generate an interrupt re­
quest through the Rx Machine Interrupt request. Nor­
mal consequence of break is to abort the data reception 
or to introduce a line idle delay in the middle of data 
reception. In the case of the former, the Break Detect 
interrupt can be used to reset the 82510 Receive Ma­
chine and the Rx routine flags; in the case of the latter, 
the break terminated interrupt can be used to filter out 
the break characters and resume normal reception. 
Each break character is identified by a break flag in the 
Rx Flags Register (the CCR flag, Framing error, and 
CCR Match flag also may become active when a break 
character is received) and is loaded onto the Rx FIFO 
as a NULL character. If break continues even after the 
Rx FIFO is full, then an overrun error will occur but 
no further break characters will be loaded on to the Rx 
FIFO. The user can also measure the length of the 
break character stream by using the Timer. 



inter 

RXMINTERRUPT-. 

YES 

READ CONTROL 
CHARACTER 

Ap·401 

READ DATA CHAR READ CONTROL CHAR 

READ DATA CHAR 

Figure 22. Handling Control Character Interrupts 

2-34 

231928-25 



inter AP-401 

SPECIAL CTL -CHARACTER 
= XOFF 

XON 
CTL-C 

NO 

231928-26 

Figure 23. Uslrig Control Character Match in Terminal Ports 

2·35 



intJ AP-401 

5.3.4 DATA INTEGRITY 

To improve the reliability of the incomIng data the 
82510 provides a digital filter, a Digital Phase Locked 
Loop, and multiple sampling windows (which provide a 
noise indication bit). 

5.3.4.1 Digital Filter 

The Digital Filter is used to filter spikes in the input 
data. The Rx Machine uses a 2 of 3 filter. The output is 
determined by the majority of samples. If at least two of 
the three samples are "I" then the output will be a "1". 
Spikes of one sample duration will be filtered but spikes 
of two or more samples duration will not be filtered. 

5.3.4.2 Digital Phase Locked Loop 

The Digital Phase Locked Loop (DPLL) is used by the 
Rx, Machine to synchronize to the incoming data, and 
adjust for any jitter in the incoming data. 

The 82510 DPLL operates on the assumption that a 
transition in the incoming data indicates the beginning 
of a new bit cell. A valid asynchronous character frame 
will contain one or more transitions depending upon 
the data. If upon occurrence of the transition, the 
DPLL phase expectation is different from the sampled 
phase, then there is jitter in the incoming data. The 
DPLL will compensate for the phase shift by adjusting 
its phase expectations, until the expected phase and the 
sampled phase are locked in. The user can enable or 
disable the DPLL through the Receive Mode Register 
(RMD). . 

5.3.4.3 Sampling Windows 

The' sampling windows are used to generate the data 
bit, by repeated sampling of the RXD line. The bit po­
larity decision is based upon a majority vote of the sam­
ples. Ifa majority ofthe samples are "I" then the bit is 
a "I". If all samples are not in agreement then the 
Noisy Character bit in the RXF register is set. The sam­
pling windows are programmable for either 3 of 16 or 7 
of 16. The 3/16 mode improves the jitter tolerance of 
the medium. While the 7/16 window improves the im­
pulse noise tolerance of the channel. 

The sampling windows also provide a Noisy character 
bit in the RXF register. This bit indicates that the cur­
rent character being read had some noise in one or 
more of its bits (all the samples were not in agreement). 
This bit can be used along with the Parity and Framing 
error bits to provide an indication of noise on the chan­
nel. For example, if the Noisy Character bit and the 
Parity or the Framing errors occur simultaneously, 
then the noise is probably sufficient to merit a complete 
check of the communications channel. The noisy bit 
can also be used to determine when the cable is too long 
or the baud rate is too high. The user would keep a tally 
of the noisy characters, and if more than a certain num­
ber of characters were received with noise indications, 
then either the baud rate should be lowered or the dis­
tance between the two nodes should be reduced. 

5.4 Timer Usage 

The 82510 has two baud rate generators, each of these 
can be configured to operate as Timers. Typical appli­
cations use BRG A as a BRG and BRG B as a Timer. 
Since both the Transmitter and the Receiver may need 
to generate time outs, it is best, to use the Timer as a 
Time Base to decrement ticks (upon a Timer Expired 
Interrupt) from (software implemented) Tx and/or Rx 
counters. The Timer can also be used to time out the 
Rx FIFO and read characters that otherwise may not 
have been able to exceed the Rx FIFO threshold. 

2-36 

5.4.1 USE AS A TIME BASE 

The transmitter and the receiver routines use a software 
variable which acts as a counter. The variable is loaded 
with the required number of ticks that are needed for 
the Time Out period. Once started the Timer generates 
an interrupt each time it expires, the interrupt handler 
then decrements the counters. Once loaded the soft­
ware mouitors the counters until their value reaches 
zero, this would indicate to the software that the re­
quired time period has elapsed. The Time Base value 
should be selected with regards to the CPU interrupt 
load. The CPU load will increase substantially when 
the Timer is used as a Time Base, therefore using the 
Timer in this mode at very high baud rates may cause 
character overruns. A time base of 5 or 1 ms is proba­
bly the most useful. An additional benefit of the Time 
Base is that it can support more than two counters if 
required. 



Ap·401 

BRG·B is used as Timer. 
BRG·A is used as BRG. 
TB Ex bit in TMST Enabled. 
TlL-Timer_Count contains count for Transmitter. 
RlL-Timer_Count contains count for Receiver. 

231928-27 

Figure 24. Timer use as Time Base for Transmit 
and Receive 

2-37 

5.4.2 USE FOR RX FIFO TIME OUT 

In the 82510, Rx FIFO interrupts will occur only after 
the FIFO level has exceeded the threshold. Due to this 
mechanism and the nonuniform arrival rate of charac­
ters in asynchronous communications. there is a chance 
that characters will be "trapped" in the Rx FIFO for 
an extended period of time. 

For example, assume the 82510 is a serial port on a 
system and is connected to a terminal. The user is en­
tering a command line. The Rx FIFO Threshold = 3, 
and at the end only two bytes are received. Since the 
FIFO threshold has not been exceeded, the Rx FIFO 
.interrupt is not generated. No other characters are re­
ceived for 30 minutes, if the characters (in the Rx 
FIFO) are a line feed and carriage return, respectively, 
the CPU may be waiting for the CR to process the 
characters it has received. Consequently the characters 
will not be processed for 30 minutes. 

In order to avoid such situations, a Rx FIFO Time Out 
mechanism can be implemented by using the 82510 
Timer. The time out indicates that a certain amount of 
time has elapsed since the last read operation was per­
formed. It causes the CPU to check the Rx FIFO and 
read any characters that are present. 

In applications where the character reception occurs in 
a spurious manner (the exact number of characters can­
not be guaranteed), the Rx FIFO Time Out is the only 
way to prevent characters from being trapped. The time 
out period is measured from the last read operation, 
every read operation resets the Rx FIFO Timer. To 
synchronize with the beginning of the data reception, 
initially the Rx FIFO threshold is set to zero. After the 
first character has been received. the threshold is ad­
justed to the desired value. When a Rx FIFO time out 
occurs and no data is available, the threshold is reset to 
zero. In error free data transmission, the beginning of 
data transmission is signaled by the reception of a con­
trol character, such as SOH or STX, the Rx FIFO time 
out mechanism should be triggered to the reception of 
these control characters. 



AP-401 

( MAIN RX ROUTINE) 

RX FIFO INTERRUPT ROUTINE 

231928-28 

231928-29 

Figure 25. Rx FIFO Time Out Flow Chart 

2-38 



inter AP-401 

CONTROL 
CHARACTER 

8 BIT 

ONE'S 
COMPLEMENT 

Of" PACKET 
NUMBER 

8 BIT 

128 BYTES 
Of" DATA 

128 BYTES 

231928-30 

Figure 26. Packet Structure of XMODEM 

6.0 82510 IMPLEMENTATION OF 
XMODEM 

The 82510 XMODEM implementation is a file transfer 
program for the 82510 based on the XMODEM proto­
col. The software runs on the PC AT on a especially 
designed adapter board (the adapter board design is 
shown in Figure 33). The software uses most of the 
82510 features including the baud rate generator, Tim­
er, Control Character Recognition and FIFOs. The 
software uses an interrupt driven implementation, writ­
ten in both assembly and C languages. 

6.1 XMODEM Protocol 

XMODEM is a popular error free data transfer proto­
col for asynchronous communications. Data is trans­
ferred in fixed length 128 byte packets, each packet has 
a checksum for error checking. The packets are deline­
ated by control characters, which act as flags between 
the Receiver and the Transmitter. There are four con­
trol characters, SOH, EOT, ACK, and NAK. SOH in­
dicates the Start of a Packet, EOT indicates the End Of 
Transmission; ACK and NAK are positive or negative 
acknowledgements of the packet respectively. The 
packet structure and protocol flow of XMODEM is 
provided in the figures given below. 

2-39 

6.2 Software 

Interrupts are used to transmit and receive data. The 
software is implemented as two independent finite state 
machines-Transmit State Machine and Receive State 
Machine. Each state machine is triggered by external 
events such as user commands and data or Control 
Character reception. The state machines communicate 
with the 82510 interrupt service routines through soft­
ware flags. The overall structure of the main routine is 
given in Figure 31. The major modules of the software 
are given in the hierarchy Chart, Figure 34, which lists 
the different modules in order. 

The interface between the main program and the inter­
rupt service routine is done through global flags. The 
interrupt handler services four sources-Transmit, 
Timer, Receive, and Control Characters. Each of the 
interrupt sources communicates with each of the state 
machines through the global flags. The state machines 
keep track of their individual states through state vari­
ables. The interface between the individual states within 
a state machine is done through state flags. The state 
machine diagrams are given in Figure 29 and Figure 
30. 



NO 

ASSEMBLE 
NEXT PACKET 

AP-401 

( TRANSMIT) 

231928-31 

Figure 27. Protocol Flow for Transmit Side of XMODEM 

2-40 



intJ 

RX PACKET # 
AND PACKET COMP 

AP·401 

SEND NAK 

SEND ACK 

231928-32 

Figure 28. Protocol Flow for Receive Side of XMODEM 

2·41 



AP-401 

231928-33 

Figure 29. Transmit State Machine 

2-42 



inter 

4 SEC TIME OUT 
AND <10 TIME OUTS 

Ap·401 

Figure 30. Rx State Machine 

2-43 

231928-34 



inter AP·401 

START 
Initialization 
WHILE (NOT QUIT) 
{ 

I 
END 

UPDATE STATUS ON SCREEN 
IF (KEYBOARD HIT) 

THEN PROCESS COMMAND 
PROCESS TRANSMIT STATE MACHINE 
PROCESS RECEIVE STATE MACHINE 

Figure 31. Software Structure 

6.2.1 TRANSMISSION OF DATA 

The Transmit interrupts are disabled until data trans­
mission is required, this prevents unnecessary Transmit 
interrupts. The Transmit interrupt is enabled when a 
packet has been assembled or if a Control Character is 
required to be transmitted. Upon invocation the Trans-

mit interrupt service routine reads characters from the 
packet buffer and writes it to the Tx FIFO. Since it 
does not require the use of the Transmit Flags, no in­
formation is written to the TXF register. 

6.2.2 RECEPTION OF DATA 

Data reception begins only after a Start of Header 
(SOH) control character is received. This control char­
acter puts· the receiver in a data reception mode. After 
receiving the SOH, the CCR interrupt is disabled (since 
all data being received now is transparent and can not 
be interpreted as a control character). After 132 charac­
ters are received, the CCR interrupt is reenabled and 
the corresponding ACK or NAK sent to the Transmit­
ting system. The receiver has a time out feature, which 
causes it to check the Rx FIFO for any remaining char­
acters. End of Transmission is indicated by an EOT 
control character, which causes the file to be closed and 
the Receiver to go into the Idle state. 

r--------- SEND_CCR_RQ(F'ROM RECEIVE STATE MACHINE) 

TX 
STATE 

MACHINE 

RX 
STATE 

MACHINE 

t~~ 

BYTES RXD 

RECEIVE 

CCR_TO_GET 
GELCCR_RQ 

Figure 32. Using Flags for Communications with Interrupt Routine 

2·44 

231928-35 



." 
~i 
c 
-; 
Co) 

~ 
J\) "'II 
J,.. 0 
C11 )0 

-I 

~ 
DI 
"0 
iD .. 

IBM-BUSS 

A8 23 

AEN 11 

74LS04 

AB~ 1 ol! B 
U9 2 _15 

74LS04 Ull 
3"-_4 

mu L-;;;- I AEN 

~ 

1 

2 
3 

4p"8 L==-____ =====~:~ U8 
- 11 • 
' 12 

A9 22 

A7 24 
PIN # A6 25 
N=BN A5 26 

N =AN A4 27 

A3 
28 

£ 
~ 
~ 
.M 
£ 

AI 30 ~ 

A2 
29 B. 

AD 31 

DO 9 

01 8 
02 7 

03 6 

04 5 

05 4 

06 3 

07 2 
lOR 14 

~ 
!l!l. 
!1.l 
.!lZ. 
~ 
.!l! 
.Q2 
.!l! 
!2Z... 
iOR 

74LS24~ 
2 

Al BI 
3 

A2 B2 
4 

A3 
5 

B3 
A4 B4 

A5 B5 

8 
A6 B6 
A7 B7 

9 
A8 BB 

OIR 

:~ I 0 ~: ! 
16 2 27 02 

15 3 28 03 

14 4 1 04 

13 5 2 05 

12 3 06 
11 7 4 07 

22 AD 

lOW 13 lOW 

INT 

RESET 2 RESET U 
CLK 20 OPSW 

IRQ4 24 IRQ4 3 14 

IRQ3 25 IRQ3 4 9:3 
OSC 30 Ull 

-12V 7 -12V ~ 
+12V 9 

GNO 1 
GNO 31 1 C3 1 3 C4 

5V 12o.~rJ2o.047 J.'r 
OSC 30 2 

'--_---.J 

+5V 

MOTHER-BO 

Ul 

CTS 
OSR 

74LS05 ~ CO 

U4 

+5V 

1 
Rl 
2K 

2 

TXDI 

RXOI 

~ !: 
5 lA 

2A 

3A 
3 IT 

+5V 

75154 
14 

4T 

lY 
13 

2Y 
12 

3Y 

4Y 

Rl 

11 

10 

9 

U3 

1 
R2 
2K 

2 

L!..!.........! 
2 

~ 
""4" 

+12V 

75150-P 

S +12V 

lA lY 

2A 2Y 
GNO -12V 

U5 

OTR 

-12V 

TXO 

231928-36 

l 

» 
l' 
"" o .... 



l 

'TI 
iC' 
c ... 
CD 
W 

"'" I GELS~URCE 11 51 O~ISR I I I ~I 
» 

N INILINLHANOlER @]~ " .I>. CONVIG_510 I 
WAIT PKT ~ 

O'l 0 
() 

.... 
:::r 
'< 
0 
:::r 
DI :::. 

231928-37 



AP-401 

6.3 Software Listings 

PACE MAIN FROCnAM ttp.c 82510 XMODEM 

'include "C:\ftp\ftp.dtlf" 
Z. linclude "C.\Ic:.\fcntl.h" 
3. 'include "C' \Ic\s'tdlib.h" 
4. 'include "C.\le\ltdio.h" 
5 , •••••••••••••••••••••••••••••••••••••••••••••••• , 
6., ,u. .tUt, 

7. , .. . 
a. , ... . 

SEPTEMBER 198& ..... , . .... , 
9. ,... 82510 I"ODE" IMPLEMENTATION ..... , 

10. / ................................................. , 

11. tnt eof,=falui '* end of fill flag *, 
12. int npt =0; 
13. tnt tirO;; 
14. tnt ruflg; 
15. tnt up_plct_null. ::I 1 j '* ne.t picht nUllbu IIpleled by reclinf *1 
U. tnt pht; 
11. tnt fltocnti J' Time Out countll' for rlt.her *' 
18. 
19. 
10. 
11. 
12. 
23. 
24. 
25 . 
U. 
27. 

Int 
Int 
Inl 
Int 
Int 
Int 
int 
int 
Int 

quit IIIlI!!!; to, . 0; 
lohent .0 ; 
ulent .0 ; 
cerc.nt .0 ; 
tI_5t&te .h_idll j 
rI_state = rI_idhi 
la_cad . inacti.,.; 
fl_cad . inact hi i 

28. /* rile to ba Tl'ln.1lltted ./ 
29. chl1' h_flla_nl1lel401. 
30. 
31. ,. Fila to be Received ., 
U. char 1'._fl.la_namet401. 
33. 

/' 
/' 
/' 
/' 
/' 
/' 
/' 

• of 5011 chifactul rlceivld ./ 
of HI FnO Intl1'rupts ./ 
of Ct IMChu. Interrupts ./ 

Tunsa1thr Stah Variable ., 
Rec.lur State Variable ., 
Indicates I Valid T. C01lalnd wu ginn ./ 
Indicatas I valid ftl COIDmand was illued ., 

34. lnt 
3S. int 
36 Int 

lend_CCf_l'.q :r: inaetive; 
Inh.c .OJ 

It F!aQ ~ Request to T. Ctl-Chu ., 
,. contains the GIft VIctor ., 

37. chAr 
38. char 
39. chit' 
40. char 
4\. 

I; 
t.data [lU1j 
rlbuf tUt]; 
rldatao [131l; 
"_'_bu' [32000]; 

42. / ••••• * •• * ••••••••••••••••••• , 
43. , ... tl state variables ..... , 
44. , •••••••••••••••• * ••••••••••• , 
4S. int tl_indl; 
H. 
47. 

struel picket 
char held i 
char pa.ct_nulli 
char pack_cmpl; 

,. TI Bufhl' '1 
,. RI Bufhr ./ 

,. R. ri I, Stoud In thh bufhr *' 

I' Polntlt to the nut charlctlt' in the 
buf fer t, 

48. 
49. 
50. 
'1. 
n. 
53. 
54. 

chit buff It [128] ; 
char chkl1li 

55. 
56. struct pact.t 1'lpaclc, hpaeti 
57. 

82510 XMODEM Implementation 

2-47 

231928-38 



intJ Ap·401 

PACE. 2 "AIN PROCRAH lip. 82510 rHODEM 

58. 
59. I II tt II ••••• II t •••• t._._ lit .... t ••• t •• _ t._ t •••••••••••••• t. I 
60. ,.... h State •• chine Ind inhrrupt ...... , 
61. ,.... handler flags .... ul 
62 .. /* II ••••••••••••• t •••• t.t t*t.t. tt •••• t.t •••• t.t t*_.t. tt I 
63. 
64. '** tam and tI fifo tt, 
6S. int tl_uq .OJ /* FI.g - indicates a requut for tran.mission to 
u. IlSl0 Inhrrupt Hlndler */ 
67. int cct_to_h &: OJ ,t Actual Ctl-char to Trans.it *1 
68. int 

". int 
70. 

h_byh_c.nt .. OJ It Total' of aytes Trans.ithd ./ 
ptts_slnt .0; ,t. of Pickets sent */ 

71. , .. Timer .. , 
71. tnt tI_tiae_c.nt =0; f. Trans.ttter Timer Counter */ 
73. 
74. , .. Ceft .. ,. 
75. int aet_e:u_rq =0;' 't Flag - Request to Ree.he Ctl-charaehr */ 
76. int cu_h_get .0. f. Rec.it,d ell-char n,lue *1 
17. 
71. 
79. , •••••• *t •• llttt •••••• t.t.t lI.t t •• t._ .... tlll.* •• '*""' •••••••• , 
80. /.... .. ... , 
11. , .. .. HI STATE VARIABLES 
8Z , ... . 
13. , .. .. 

. .... , ..... , 
• •••• I 

84. , •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• / 

15. 
16. char pk_chts.i ,. Calculated Chhua ., 
17. 'int eot_cnt cO; , •• of EDTs Reeeiud ., 
88. tnt bl.d_pkt_cnti '*. of aad Packets RecelYed */ 
19. 
fO. / •••••••••••••••••••••••••••••••••••••••••• _ ••••••••• , 
91. ,.... n state mlchine and Interrupt' ..... , 
92. ,.... handler flagl ..... , 
f3 , ••••••••••••••••••••••••••••••••••••••••••••••••••• / 

94. 

95. '** n hID **, 
". Int rK_b,te_cnt .. 0 i 
97. 
U. , .. eCR ttl 

n. 
100 lnt 
101. 
102. int 
103. 

104. Itt Timer **' 
105. int 

/ •• of a,tll R.c,lud ., 

'* Flaq-IndieatinljJ that a Ctl-Char. has b.en 
uelifd" 

I' Actaal Ctl-ebar rec:.elVed ., 

,. Reeene Til .. r Count ., 

82510 XMODEM Implementation (Continued) 

2-48 

231928-39 



Ap·401 

PACE HA III PROCRAH f I p . t 82 5 I a XHODEH 

10& . 
107. / •••••••••••••••••••••••••••••••••••••••• / 
108. ,.. HUN ROUTINE .U, 
109. , •••••••••• tt •••••• UI ••••••• ,U •••••• fI ••••• / 

110. 
1Iain () 

( 

lnt q.tlfl,uf1; 
,nt r,al" .0, 
lnl cad . 0, 
inl wn_statul .0, 
int ee,odl . 0, 
r! LE t fp; 
rILE trlfp; 
int rWlt; 
lnl west; 

III. 
112. 
113. 
114. 
115. 
116. 
117. 
III. 
119. 
120. 
121. 
122. 
123. 
124. 
125. 
126. 

lnl utl_cnt .0, /' Rlt unsmi t count 
int tocnt .0, /' TilDe Out Count ,/ 

Inl t I_sees t rl_,.c5 j 
int i 1St lpent . A' 

127. eLR 0, /' Cllar Settln '/ 

'/ 

118. ttV_CURS (so_r,so_c)j /' SiQn On KIlSioO' '/ 
U9. prlntf (sl); 
130. ini I (), /. Initialize 82510 and 
131. HENU 0, /' PI int Klnu '/ 
132. tnbint4 OJ /' En&b Ie Interrupti in 
133. Qutp (tpOO,laU; /' illUI ED! ,/ 

134. Gutp «bp&+3),OI2U; /' shrt t i.er B ,/ 

135. Jpcnt =0; /' Keepl Track of I 01 
136. 
'37. / .................................................... / 
138. ,t.. .Iin while loop 'U', 
139, / ••••••••••••••••••••••••••••••••••••••••••• 111 ••• .,1:., 
140. while (quih=falsl) 
141 ( 
142 . 
143. , ••••••••••••••••••••••••••••••••••••• , 

144. 'tt display protocol par.aeleu ttl 
145. ,.*** •••••••••••••• * •••••••••••••••••• , 
IU. 
147. ++ lpcnt; 
148. IIlV_CUfl (4,30); 

149. print! ("loop' • IfIu",.pcntJ; 
150. mv_cuu (4,50); 
151. printf (lin i~t. cnt :I 'Au",nfcnt), 
152. In_curs (5,501, 
153. printf ("eu tnt cnt II 'u",eerent), 
154 mv_curs (4,1); 
155. printf ("interrupt ,.etor .. ,"U \n", intvte); 
156. q II tnp (bp&+4), 
151. hO I; q & 0101, 
158. mY_curs (S,Ui 
159. prsntf CUTX FIFO II "U ",hO); 
160 q II inp (bpa+4); 
161. rdl II q , 0110; 
162. .,_ears (6,1), 

163. printf (l'RX FIFO. 'Au \n",r1fl/l6)i 
164. 
US. 

.v_curs ",50) i 
printf ("SOH coant & .. 3a .... ohcnt); 

Vu hbles 

8Z59A '/ 

Loop. ,/ 

'/ 

82510 XMODEM Implementation (Continued) 

2-49 

231928-40 



AP-401 

PACE 4 IIA1N PROCRAII ftp.< 82SI0 XIIODEH 

1" my_curs (1,1); 

167 prlntf ("bytes received 'IUu".u_bJh_cnt), 
168. mv_curs (7,30), 
169. printt ("Iyt .. sint .. "3u".II_byte_cnt); 
170. .,_curs (7,50); 
171. printf ("EaT count "h n , lot_ent); 
172. .,,_ears (5,30); 
173. printf ("pttl tad ... 3u",CI.p_ptt_nulD-l»; 
174. 8"_curs <6.30); 
175. printf ("ptts 'Int = 11311", pttl_"nt); 
176. tI_'tU = lI_tl.,_cntl200i 
177. tI_net 1:1 rI_tia._cnl/ZOOi 
118. op.n_wind (3,l,"TI Tiatt"); 
179. printe COl. "2u slc.",ll_SICI); 
110. open_wind (3,'50,"RI Tlau"); 
II.. prinU COO ."2u Ile.",II_I.e..); 
112. .,,_curt (I,U; 
183. pr int f ("Bad Packets ad • "3u" I bad_ptt_cnt) j 

114. .,,_curlU,30); 
115. prlntt ("I of ReTa pachtl ... 3u lO ,reh_cnl'j 
116. 
111. '* If Co •• and lI.uld then procllIi the Comllind ./ 
188. If ((ke, .kbhlt()) ) 0) 

:::. quit I'" prae.e.,_cad OJ 

.11. 
I 

191. 
192. 
193. 
194. 
195. 
196. 
19? 
198 . 
199 . 
200. 
101. 
202. 
203. 
204 
20S. 
206. 
207. 
201. 
209. 
210. 
211. 
ZI2 . 
213. 
214. 
ZlS. 
216. 
217. 
218. 
119 . 
no. 
221. 
222. 
ZZ3. 
124. 
22S. 

, ........................................................ , 
,..... Procu. Ta STATE MACHINE It ... , , ..... 
, ••• a. 

revision 0 aa ••• , ..... , 
, ••• * •••••• * ••••••••• a •••••••• a •• * •••••••••••••••••• , •••• , 

Iwitch (la_ltate) ( 
CIII h_idle: 

" ••••••• t ••••• , •• , t •••••••••••••••••••• * •••••••••••••• ,., 
,.... tUtti ,It.. TRANSMITTER IDLE STATE It"., I.... . .... , 
lit.. Checks for I. Send Ct I-Char. .. ... , 
lit.. Chick. for the Transmit Co •• and ... ttl ,.* •• I···· *** •• , . .... , 
, ••••••••••••••••••••••••••••••••••••••••• a •••••••••••••• I 

I. II Control Character to b. Transmitted Thin Transait the 
Control Ch4racter b, ,ettino thl TI_teq Uag and enabling 
the TIM and Ta FIFO interrupts ., 

h_uq -c t1_chr; 
h_i_enb () j 

whill'( h_uq)O); 
h_l_d is (); 
.Ind_ccr_uq_ inact I,,; 

82510 XMODEM Implementation (Continued) 

2-50 

231928-41 



inter 

PAC£ 5 

126. 
127. 
HI. 
129. 
230. 
131. 
23% . 
233. 
234. 
235. 
236. 
237. 
238 . 
239. 
240. 
241. 
242. 
243. 
244. 
245. 
246 . 
247 . 
241. 
249 . 
250. 
251. 
252. 
253. 
254. 
255. 
256. 
257. 
251. 
1S9. 
260. 
261. 
262 .. 
263. 
264. 
265. 
266 . 
267. 
UI. 
269. 
270. 
271. 
272. 
273. 
274. 
275. 
276. 
277. 
171. 
279. 
ZlO. 
211. 
21Z. 
213. 
214. 
215. 

AP-401 

HAIN PROCRAH lip .• 12510 IHOD£" 

/t If the Ttlftlllit C01l1und is 'Sluld then Wait for a HAlt *' 
if C tl_cmd 

I 
&CliVI) 

gtt_c.cr_rq .act in; 
tl_timl_cnt .. 200"0; /* '0 IIC. Tia. Out *' 
h_ltatl • wut_HAlti 

br.at; 

c.ase wait_NAl : '* \rI&itinQ for & NAl c.h&uc.ter to blain 11 *' 
/ ..... _ .............................•................... ,/ 
,.... TRANSMITTER \lAITINe FOR A HAlt TO BEC IN ..... , 
,.... TRANSKISSION. . .... , 
/ .... . .... / 
J It.. Chick. For 71 •• Out . .... / 
,.... or HAlt Recelnd ..... , 
/* •••• I ••••• *t ••••• *t. til 'II: 11;. * lII.t ...... * •• t •• t. * •••••••••••• */ 

wn_ltatus = chick_wait ()j 

switc.h Cwn_,tatus) ( 

tl_stat. .tI_idhi 
bliP (); 

1* Ti •• Out or NAK Re::,d? */ 

'* If Ti •• Out thin Abort 
Tun •• iI.ion *1 

pra'l) C"Tl •• OUT! I!' Etceher not Etld,") j 

ell Ctl_r. tI_c)j 
open_wind Ctl_r,tl_c."NONE")j 

brllk; 

easlI watt in; '* if no Tilll Out Ind no NAft 
rc,d thin do nothinG */ 

break j 

/* If NAK. reclh.d th.n Opln 
~ i Ie Ind Idunc. to 
Tranlllloit 'Ick.t atlt. *1 

fp .Iopen Ctl_Iill_nl.I."rb" ); 
if Cfp •• NULL) 
I 

I 
lIse 

hip (); 
pr." ("ERROR III fill do .. not I.ist"); 
ell Ch_r.tI_c); 
0Pln_wind Ctl_r.tl_c, "nonl"); 
tl_ltate sh_idll; 

'h_state • tI_rdy; 
tlrfl; • akptt; ,. First tut for TI 

il to Prepare Pactet *1 
WD_ltatUI • OJ 1* R ••• t Vlit_NAK FlaG *1 
I 

brelk; 
I 

brlat; 1* end Witt nit *1 

82510 XMODEM Implementation (Continued) 

2-51 

231928-42 



inter 

PAGE 

216 . 
287. 
218. 
219 . 
29D. 
HI. 
292 . 
1f3. 
294. 
29$ . 
296. 
H7. 
H8. 
In. 
3DD. 
3DI. 
3DZ 
3D3. 
3D4. 
30$ . 

3D6. 
3D7. 
3Da. 
309 . 
3\D. 
311. 
312 . 
313. 
3\4. 
315. 
316. 
317. 
318 . 
319 . 
32D. 
321. 
3U. 
323. 
324. 
32$ . 
326 . 
327. 
328 . 
329 . 
33D. 
331. 
332. 
333. 
334. 
33$ . 

336 . 
337. 
338. 
339. 
340 . 
3U. 
342. 
343. 
344. 
34$ . 

Ap·401 

"AIN PROGRAM IIp.e 8251D 'MODE" 

CIII tI_rdy: 
J • • t •••••••• tt III •••••••••••••• t ••••••••••••••••••••••••••• , 

/ .... TANSHITTER READY TO TRANSMIT flit ... , 

,.... thr .. st&91. of tranl.Jllion tt ... , 

,.... pr.pau plet,t .Utt/ 
,.... Int. Handler Tunsaitting ... ttl 
/.... or rettan.att rlqul.t ..... , ,* It t ••••• t. tt •••••••••••••••••••••••••••• t ••••• t •••••••• , 

1* Any Control Character To TransaU? *' 
if Ullnd_cc:r_,eq •• lethe) " (u_req,u:'» 

tI_r.q aetl_eh" 

/* Vhich ShOt of transmilsion ,./ 
switch (tuflg) 
( 

CIII .ltpt t : 
if (tI_uq •• O) 
( 

... bptt (ptts_sent.fp); 
epylbul () i 
tI_r.q .ptt; 

/' 

/' 

/' 

/' 

Preplre 'Ictet '/ 

A .... bh 'Icket */ 

R.qulst Int. Hlndler 
to TI data in buffer 
St If t Tt In •• tnt on *' '/ tiff I'll =hatgi 

tI_iftd •• Q j , 

h_i_lnb () i /' Enable TIK and TI FIFO 
Inhrrupts '/ 

brllt i 
Casl hat'll 

if C h_req c. D) /* Interrupt HaRdIn R ... t, 
thil f lag to 0, wbln 132 
b,llS UI tran •• Utld 'I 

h_lndl .OJ 
pra.g ("pactet tunlmUted") j 

get_eel_'ll aacU,,; J' Wilt for ACK or HAl " 
tl_Ua,_cnt • 100'1Oi /* 10 SIC: Tia. Out *' 
tI_ltate • wlil_CCi ,. Wilt for ctl Charac.ter ./ 
tarfl; •• tpktj 
tI_l_dil (); J. DiuUe T.r1 Ind TI FIFO 

Interrupts *1 

else 1* Tz_req not t .. lt then 
pr •• a ("tranIIiUting"); ltill tran.aitting *1 

brut j 
call uti : ,* Th, Retrln •• tt request is 

ilsued b, the Walt _CC 

state *' 
outp«bPI+U,tlln)j Jt enable till. flulh tI fUo 

& tam .. , 

h_uq = ptti 1* tranlmit 'Ictet.pkt. In 
bothr *1 

hrflg ct..tv; 1* nelt tnt - ReTrln •• it ./ 
h_i_Inb C); It Enalt Ie T.M Ind TI F no 

heat i 
I 

break; '* End tI rd, cal. t I 

Interrupts· , 

82510 XMODEM Implementation (Continued) 

2-52 

231928-43 



infef AP-401 

PACE 7 IIA IN PROCRAII f t p. c 82510 XIIODEH 

3U. ClI. WII t_CC 
347. / ••••••••••••••••••• 111.,1 .................................... / 

348. ,.... t .. **, 
349. , .. u Transmitter St~t. - Wutlng For ttl Char. ..... / ..:1 •. / ..... / . .... / 

.* ••• , . .... / 
350. , ... . 
351. , ... . NAK requests retransllusion 
352. , .. .. leX - Tuns.it·Nut Pacht 
353. 
354. 
355. 
356. 
357. 
358. 
359 . 
360. 
361. 
361. 
363. 
364. 
365. 
366 . 
367. 
368. 
369 . 
370 
371 
372 . 
373. 
374. 
375 
376. 
377. 
378. 
379. 
380. 
381. 
3n. 
383. 
384. 
385. 
386 . 
317. 
388 . 
389 
390. 
391. 
392. 
393 
394. 
395. 
39' . 
397. 
398. 
399 

/ •••••••••••••••••••••••••••••••••••••••••••••••••••••••• I 

wcst • check_wait (); 

Iwi t ch (wes t) , 

1 f (toent ) 10) , 
wcst =0; 
abort_h (); 

/' Check for on. of the 
Following e'llnts : 

Time Out 
NAIt Ret.hed 
leJC R.ceived 

or St ill Waltlng '/ 

/* If Time Out, then restart 
T. Tiller. Abort if Tille 
Out count is C)ruter than 
ten */ 

prmsg ("receiver not responding"); 
) 

break, 

++tocnt i 
\1_t i1le_ent :1:200*10; 

) 

c.ase WII tina 
break. 

case rX_gen 
prllls; ("NAI Iecel'ud n ); 

If (retl_cnt )10) 

tocnt =0; 
abott_tI (I; 

,. Inc.. Time Out Count ., 

1*. if waiting, do nothing ., 

1* If NAI or Corrupted 
ctl .. char. tecli,..d ., 

'* more than 10 attempts , 
then Abort., 

ptmsg (tlBad link transmISsion aborled"), 
) 

82510 XMODEM Implementation (Continued) 

2-53 

231928-44 



~kGt 8 

400. 
401 
401. 
403'. 
404 .. 
405. 
406. 
407. 
408. 
40' . 
410. 
411. 
411. 
413. 
414. 
415. 
416 . 
417 . 
418. 
419. 
no. 
411. 
411. 
413. 
414. 
415. 
416. 
427. 
41B . 

42' . 
430. 
431. 
431. 
433. 
434 
435. 
436 .. 

437. 
438. 
43' . 
440. 
441. 
442 . 
443 . 
441. 
445. 
446 . 
447 . 
441. 

AP-401 

MklN PROCRkK !\p.t HSID lKODtM 

Ill.. 1* If R,tUft.mlt Count Not 

tuflg autli 
++ rell_cnt i 

ll_ltate all_tdYi 
I 

brllt i 

CUI fI_ACK: 
pra.o ("ACK tlceivld"); 
rltl_cnhOj 
toent • OJ 
++pttl_lent j 

printf ("pUI_ltnt • "3u", 
if (Iof •• ral.,) 

tuf IIJ .atpU j 
h_.t&h .h_rdy; 

I 
lis' 

\ 
pratCJ ("lInding EOT") i 

ccr_to_h • EOTi 
h_uq .et l_chr; 
tl_l_enb (); 
while (h_req !. 0) i 

tl_'_dll (); 

I.cllded thin ,.0 back to 
Tranlmit ltagl - talt h 
tetran,.it *1 

/* ACE Rlceitld*' 

pU'_I'nt) j 

1* If mOrl data to tran.m,U 
thin r.hun to all:pU 
stagl,lDd tJ new pl:t. *1 

,. if tnd of fill, thin 
lind EDT */ 

1* wait for Int. Handlu 
to r ... t flag *' 

Olt_ccf_rq =Icthl; 1* wait for Ad ., 
whi I, (oet_cCf_rq •• IC~"') j 

pra.v C "EDT &ctnowlldv ••• nt rlctived"); 
.if (ect_lo_'lt .u Ael) ,. ACK rid I Clan Fll, ., 
.\ 

• • fcloll «(p); 

abor t_t I () j 

prlllg ("fil' tran •• illton co.pllh"); 

tl_.tat •• h_Jdhi 
I 

brut; 
) I. lend wait_cc cue " 

breat; 
) " end twitch h ltate *1 

It Return to ldlt ./ 

82510 XMODEM Implementation (Continued) 

2-54 

231928-45 



AP-401 

PAGt 9 MAIN PROGRAM lip c 82SI0 XMODtM 

449. '****1111:.** ••••••••••• _.111 •• '/1 •••••• 1'111 •••••••• " ••••••• 111**filii'.' 
450. ,..... Process R. STAT£ HACHINE *** __ 1/ 
451. , ... .. [IV is ion 0 
452. , ... .. 
453 ' •• _111.*** •• '/111: ••••••• 11 •••••••••••••••••••••••••••••••••••• / 
45 11 , switch In_state) 
455 ( 
456. case II_idle: 
457. / •••••••••••••••••••••••••••••••••••••••••••••• '1, •••••••• , 
4SB. ,.... .. ••• / 
459. , .... RECEIVER IDLE: ..... , 
460. 
461 
462. 
463. 
464. 
465. 
466 . 
467. 
468 
469. 
470. 
471 
472 . 
473. 
474 
415. 
476 . 
477. 
478 . 
479 . 
480. 
411. 
482 
483 
484 
485. 
486 
487 
488 
489 
190 
4?1 
492 . 
193. 
194 
195. 
4H. 
197. 
198. 
499 
500 
501. 
502. 
503. 
504. 
50S. 
506. 

f···· / .... f···· , ... . 
/ ... . 

WJ.tll for user cOllmand 
befote sending NAK. 

•••• 111{ 

• •• t*, 
.. .. ii/ 
••• 111' . .... / l'III:·····················*····,···t .................... *.*/ 

II_ltatl = rl_rdy j 

u_t imt_cnt .100*' 0; 
[a_cmd = in~ctive; 

/* It Teeelu Com.m.and is illutd 
thin Itut RI tilltr and thangl 
Rec:.livtr stat. to rudy 1/ 

break i 

cise tl_rdy: , ........................................................ , ,.... . .... , 
, .... RECEIVER READY: .. ... / ..... , ..... , ..... , ..... , . .... , 
, ... . , ... . , ... . , ... . , ... . 

sends NAK upon Time Out 
or checks for SOH 
or EDT ctl-chu. 

, •••••••••••••••••••••••••••••••• tt •• t ••••••• t ••••••••••• / 

Iwitch (urf1g) 
( 

/. Checks HI Tilller ind returns 
Tillie Out if tlpirtd 
Witting if not .. pind 
SOH if SOH ecr receiud 
EOT if EDT ecr received ./ 

ciSe wiiting: /. If wa.iting then do nothlng ., 
bre~k i 

easl SOH /. If SOH received, then go into 

++ sohent; 
,,_stitt cu_pkt; 

da.ta reclpt ion modi lnd cha.nge RI 
Timer eo~nt to 4 UCI ./ 

u_U.e_cnt .100.4, ,. four ucond thu out ., 
rxtocnt =0; 

bruk j 

82510 XMODEM Implementation (Continued) 

2-55 

231928-46 



inter 
PAGE " 
507. 
Ha. 
so, 
510. 
511 

'11 
'I' 514. 

'15 '16 
51' 
511. 
519 . 
520, 

"I 51. 
523. 
'524. 
$%5. 

51' 
517. 

51' 
5'19. 
no. 
53t. 
532. 

'" 
'" 535. , .. 
537. 
538. 
539. , .. 
541-

'" 543. 
544. 

'" .. , .. , ... 
'" '50 
5$l. 

f552 
553. 
554 . 
55S. 
SUo 
sn. 
SHI. 

'" 56O. 

'01 
50. 
SU. , .. 
SUo 

50' 

AP-401 

"AIN PROCR"" ftp.Co 82510 ZHODE" 

,. PA·' 

,- U tim. out I not In tI •••• d.t of 
packet rec'ptlon thin und HAl ./ 

If CC "p_pU_Dua .. I) " tu_'ytt_cnt .. 0» 
{ 

pt •• , COl" tI •• out IIIII tlndlnG' "A''''. 
if (s.nd_cn_uq .. )nae.th.l , 

e.cr_tO_h .NAX. j 

stnd_cer_r'lI .act i •• ; 

ra_lim'_CDl _ZOO*lO, 
break, 

CUt EDT- ,t II End Of Tut rewd, 
and data rewd th.n 
und lCX: and .... a 11 
p.chls reethld in 
Hit " 

.... lot_cnt; 
open_wind <U,SO,"End of Teat"', 
i( (Up_pH_Rua }Il , 

if (senlf_eel_uq "'"' inaduel 1* Stnd ACX. *1 
( •• nd_eel_r'lI .act I."., 

cer_h_h .ACI, 

,. Recuur Returns to 
Idh ., 

I. c.ruh Uh./ 
ralp .toptn (u_fll._ftaa.,"ab+"); 
rwst _twrite Clu_'_bufCOJ,IJ8,np_pkt_ftua.t,rafp), 
if (rw.t (1) , 

pra.~ ("'Jute file error "); 
prlntf ("error. \4u",(rwst_ferrorCufp»); 

I 
nal =fe.lose (falSI); 
if (rval •• 0) 

pr •• " ("file re~ei"'d") j 

.Is • 
pr.59 ("Error In closin.9 I1h M); 

break; , 
bt.alt, 

, ........................................................ , 
/tt •• 

,.... RECEIVE PACKET STATE 

chuks (or Tn,' Out 
or 131 bytes reuhed 
which SllnaIs the '~d 0( pacht 

• •• u" 
." ... , ..... / ..... / ..... , ..... , . .... / 

/ ........................................................ , 
82510 XMODEM Implementation (Continued) 

2-56 

231928-47 



intJ 

PAGE II 

5&7 
568. 
569 . 
570. 
571. 
571 . 
573. 
574. 
575. 
576 . 
577. 
578. 
579 . 
580. 
511. 
581. 
513. 
514. 
51S. 
586. 
517. 
588 . 
589. 
510. 
511. 
51% . 
513. 
514. 
515. 
596 . 
597 . 
598 . 
599 . 
600. 
601. 
60a. 
603. 
604. 
605. 
606. 
607. 
608. 
601. 
6\0. 
61 \. 
6\2 
6\3. 
6\4. 
6\5. 
6\6 . 
6\ 7. 
6\8. 
U9. 
120. 
U\. 
612. 
623. 
124. 
625. 
616. 

AP·401 

HAIM PROGRAH IIp.c 82510 XHODEH 

It If valid R. TI1II Out, I .•. no data recei ... d tor 4 s.c. then 
check R. FIFO lor characters I.nd read if Iny l'Iailable *' 

if «n_timl_cnt =-0) && Cra_byte_cnt (131» 

uri II (Cinp (bpI +4) " h70)1 DllQ}j /* chIck RI FIlD 
Le .. ,1 ./ 

if «utoent )a 10) U (url <-an '* if 1II0rl than 

els, 

fl_state =rI_idl,; 
prmsg" e" Hac.hu' Ti.1 Out. no DATA"); 
r.toent .0. 

10 atteapts 
Ind no dati 
thin abort 

trlnlalt *' 

f. otberwill rutart R. Tll1et'. and reid data hOIl :110 ., 
( 

,1.1 
( 

'* ,PI,·/ 

.1.1 
( 

'* RI FIFO 11'111 ) 0 *' 
flfl. (Clnp ( bpI .4) & 0110)10110), 
while ( nfl !II 0) It Rlad froll FIFO ., 
( 

ndata tn_byle_cntl .·inp (bpI), 
++ u_b,h_cnt; 
++ nfcnl i 
.. .. uU; 

nlccnt • OJ 

++ uloent i 
fI_t hu_cnt .100*4 j 

It. inc. rec.lv, TimeOut 

Count *' 

if (rI_bytl_cnt •• 13l) 
( 

I. Packet Recei.,ed *1 

u_byh_cnt =0 i 
ntocnt .0; 
plr:Jt achJr:plr:t (up_pkt_null) j /. Check Packet */ 

/. returns tOIC it Packet 
without auors *1 

if «ptst •• eolr:) II (ptst .ueold» 

presg ( .... ndin9 ACIC"); 
for (hO; i<llli i++J 

rabuf [il .. ndih [1+21; 
/*. write packet to buffar .. / 
if Cpkst •• eok) 
( 

/. cop, to main fila 
but far ./ 

82510 XMODEM Implementation (Continued) 

2-57 

231928-48 



AP-401 

PACt I Z MAIN FROCftAlI lip.. H510 IIIODEII 

. 627. 
618 
629 . 
630. 
631. 
631. 
633. 
634. 
635. 
636. 
637. 
638 
63' . 
640. 
&II. 
641. 
643 
644. 
645. 
646 . 
647. 
648 . 
64' . 
6S0. bUilt; 
651. 

else 

bUf_en (1I,_pH_nua) i 
++ elp_pltt_nuai 

pral9 ("old pacttt tltran •• ilted"). 

,h. 
'''_pltt_PUI. () j 

fl_ltltl • fl_rd" 

,. If trror thin show 
pacltet I, chtlUD and 
packet co.pll •• nt ., 

•• kint4 ()i II Enltt" etJ-Cht intll 
'It_banlr: (00) i 
outp C UpI.l) I (inptb, •• 1) Iceltn» j 

•• t_bank (01) j 

Inbintll () i 
•• nd_ccr_rlq lIact ht j 
CCt_to_lI .Aeli 

'* Sind Ael */ 

6$2. ) , .. end switch r1 .tate .. , 
653 . 
654. 
6SS. '* lad ,1se '/ 
6H. 
657. 1* end while qul~ */ 
658. 
6$9. utSlO <); 
660. outp «bp' + 1),00); 
661. 
662. 
663: cad II OalOi 
664. h:inp (OI%1)i 
US. cad II: ( .. I cad); 
666. outp (O:121,ClDd) i 

667. cit () i. 
U8. Icod. = OJ 
669. _u.lt (eeod,); 
670. 
671. II. Ind •• in *' 
672 . 

/* t .. ,t 12510 ./ 
/t disable 82510 interrupt. */ 

/* dhabi' 8259& inhrrupt II 
/" 00010000 "/ 

82510 XMODEM Implementation (Continued) 

2-58 

231928-49 



inter AP·401 

PAGE 13 HA IN PROGRAH f t p. t 82 5 f 0 XMOOEH 

rst510 () 
673. 
614 
615. 
616. 
677. 

, ••••••••••••••••••••••••••••••••••••••••••••••• - •••••••• J 

'.Ut .t •• *, 
678. , .. .. 
619. , .. .. 
680 , .. .. 

RESET 82510 to default wake up modt . .... , 
• ••• t/ 

t ••• t J 

UIII •• ' 

681. / ••••••••• *** •••••••••••••••••••••••••••••••••••••••••••• / 
6n 
683. 
684. set_bant (OUi 
68', outp «bp&+11,O'llD)j 

686. 1 
687. 
688 . 
619. mlnu () 
'90. / •••••••••••• _ •••••••••••••••••••••••••••••••••••• , 
,,1.'''' displa,. the •• ml on the u, 
69%. Itt !lu •• n. ttl 
693. ,U 
694. Itt 

'''. 1** 

'" 
'" 
'" "'. / ................................................. , 

697 . 
698. 
69' . 
700. open_wind tl.l."blud rate"); 
701. printf (" :I 1%00 ")i 

702. open_wind (I,lZ,"char: slu"l; 
703. print! (01 • 8 bits"); 
704. open_wind (1,45 • "Parity"); 
70S. printf (" disabled"); 
10.. open_wind (1,61, "Stop Bit,"); 
707. printf C ... 2"); 
70B. av_curs (2.1); 
709. prtntf ("uler a.suges ;")i 

710. av_cuts (10,15); 
711. printf ("(1) TRANSMIT FILE: II); 

112. OPEN_VIND (\ ._r, tI_c. "nonl") ; 
713. .v_curs C 12.1:1) ; 
714. print! ("I%) RECEIVE FILE: "); 
715. OPEN_VIND (u_r,rI_c,"nonl"); 
716 . 
717. 

82510 XMODEM Implementation (Continued) 

2-59 

231928-50 



intJ AP·401 

PAGE 14 _MAIN PROGRAM Itp .• !Z510 :MODEM 

711. 
() 719. I';lt 

7%0. / .• _.t .• *"1 _tttt.t ••••••• t , •••••••••• t,_ ttl ••••••••• / 

721. ,.. Inti_Ihls Software and Configur.. ttl 
7U. ,** the U510. Allo .et, up the interrupt IU, 
723. Itt Handler. 
724. Itt 
7%S. 'U 

", ", ", 
726. , .... ttt •••••••• t. It .t ••••••••••••••••• t ••• t •••• t.t/ 

7%7. 
7lB. [ 
129. tI_t i.,_ent _lOa i 
730. t1_t i •• _cnt 112000; 
731. initplck (t; 
732. cia. e)i 
733. lnit_ih OJ 
734. c:onf.lv_S1D OJ 
735 .•• t_bank COl); 
736. 
737. 
738. initplck () 

,t Set up intnrupt handler '*' 
1* Coni igau 11$10 ., 
,. Switch to Bant on. for opultion *1 

739. , •••••••••••••••••••••• * ••••• *** •••••••••••••••••• , 
740. 1** .. , 
741. Itt Inthll1l' T'I Buffer to NUt. tt' 
742, ,tt tt, 
743. ,t. It ••••••••••• t.t .. _t_ It •• tt* tt ••••••••••• t •• t •• t I 

744. 
745. 
746. 
747. 
741. 
7n. 
750. 
751. 
751. 
753. 
754. 
755. 
756. 
757. 
758. 

Int I; 

tlpld:.ht,d • SOHi 
npact. h.t.d .SOH; 
tlpact. pack_Raa .0; 
upact. pact_nua 110; 
tapaclr:. pact_capI • 0; 
nPlct.plct_capl I: 0; 
for (hO; i (U9; iu) 

[ 

rlpu.t.bufhrtll.NULi 
hplct.bufhrtll.HULj 

759. tlpac1r:.chklm .OJ 
760. UPlct. cht ••• 0 j 
761. I 
762. 
163. enb1llt4 () 
764. / tt. t. tt. tit * II t I It. t t * Itt * I '" t t t * ••• it •••••• t t ttl 
765. Itt .*/ 
166. I" Enables INT4 tn the 825U, ttl 
767. ,ta ", 
" 8. I'." t •••• I •••• I. I I ••• t t. t tt t ••• t ••• t. t ••••••••••• / 

769 . 
770. 
771. int 
772. Int 
713. " 
774 . .,..inp (ip01); 
775. int_Inb • (9 , tnt_Inb); 
776. outp (ipG1,int_Inb); 
777. I 

" 11101111 " 

82510 XMODEM Implementation (Continued) 

2-60 

231928-51 



inter AP-401 

PAGE 15 HAIN PROGRAM Itp.c aZ510 XMODEH 

778. askint4 () 
779. / •• ** ••••••••••• Ul ................................. , 

780. 1** 

781. '** Hash INT4 in the B2StA '" 
'" 
'" 782. / •• 

783. / ••••••••••••••• ..,1 •••••••••••••••••••••••••••••••• , 
184. 
785. int 
786. tnt 
111 

lRt_dis = DIEF; .. 
788. y=inp ClpOl), 
789. Int_d.is • (y I 01.10): 
790. Gulp C ipOI, int_dlS) i 
191 I 
In. 
793. eonfi9_S10 (J 

'* 00010000 ., 

'94. , •••••••• 11 ••• ** ••••••••••••••••••••••••••••• _ ••• ..,1/ 

795. lUI **' 
196. ,.. Confivvre the US10 U/ 

797. ,** u, 
798. / ••••••••••••••••••••••••••••••••••••••••••••••••• , 

199 . 
aoo. Int val; 
801. 

803. val = hOD. 
804. Gutp «bpa + 4), va1); 
805 ... 1.1 .. 0178 
806. Gulp «bpI .1),'1.1); 

807. not =0.00 
BOB. Gutp «bpI. .3),vall: 
809. 9'11 =0.30: 
810. Gutp (Cbpa+l),ull; 
811. val =0.80: 
81%. outp «bpu6),val); 
B13. set_bant (03)i 
814. val = 0150; 
815. outp «bpa),"I'!); 
816. tal ::O.dB; 
817. set_dhb (03); 
B18. outp «bpI), valli 
819 val ::O.b4; 
820. outp «bpu·1) ,val) i 
8U. reset_dlab (03); 
en val:: 0.00; 
823. outp «bpu3),vIIJ; 
824 val =0.02; 
825 outp «bpu6) ,val), 
8U. set_bant (00); 
827. 'Val .. bltenb; 
8U. outp ((bpa+ll,ul); 
819. 'Val = 0107; 
830, outp «bpa+3),ul)i 
831 set_dhb (00); 
832.. "Ia1 = hEO; 
833. outp (bpa,ul); 
834. "1&1 = 0101; 
835. outp «bpul>,val)i 
836. reset_did (00', 
837. I 

IHI •• " ••••••• t •• t •• ttt t tttttttt •••• til'. tt.tt.t I 

I. lliD - RI FIFO depth =4, lUte 'act,norall ., 
It local loopbact tl 
I. RHD - ASCII CCR,dl5lble dpl1,7/U sllIpl ., 
J. window, absolute start bit sampling ., 
,tTHD _ manual aode, 2. stop bits ., 
It no 9-bit char, no s/w parity ., 
,II' FHD _ R. fifo Threshold. 3 11'/ 

It T. fifo threshold =0 ./ 
I. RIE - Enable fa interrupts 

" " HOD EM CONFIGURATION 
" CLCF - 161. aRGA 

" It BDL - for :ims base 

" " 
" / t BBH - fo r 5 ms ba u 

" lie Bocr - 5J5 c:.1t 50uree, timer mode 

" /. THIE - Timer B interrupt enable 

" " BANK 0 FOR GENERAL CONFIG 
/. GER - .nab 1 e timer, tI, CCR 
I. block interrupts 
It LeR - disable parit" 8 bit char 

" 
" It BRGA divisor =OlEOH for 1200 

" 
" 
" 
" 
" 
" 
'/ 

" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" /. ttttttt .t •••••• t ••••• tt ••••••• t •••••••••••• / 

82510 XMODEM Implementation (Continued) 

2-61 

231928-52 



inter AP-401 

PAGE 16 "AIN PROGRA" ftp .• 82510 I"OOE" 

839 . 
840. 
84 I. 
84Z. 
843 . 
844 . 
81S. 
846 . 
847 . 
841 . 
8U. 
8H, 
85\. 
852 , 
853, 
854, 
855 . 

, ••••••••••••••••••••••• Ul •••••••••••••••••••••••• / 

/ .. 
/ .. 
/ .. 
/ .. 

Set DLAB llit to &I1'ow acciss to 
Dhilor Regilters 

../ .. / 

../ .. / , ................................................. , 
lnt bant; 
( 

lnt inn.; 
• tt_bant (00); 
in .... I • inpCbp. +3); 
In,,.l sh,.1 : OIao i 

outp «bpI+3).'n"11~i 
'It_bank (bant) j 

I 

.,6. r ••• t_ellab (bant) 

'* I.t dlab in LeRt, 

857. I.t tt ••••• t •••••• t.t tt •••• _.'11 ..................... I 
an. ,tt ttl 
859. 1** R ••• t DLAI bit or LeR tI, 
160. ,tt tt, 
861. , •••••••••••••••••• ** ••••••••••••••••••••••••••••• , 
161. 
1163. int bant. 
864, ( 
865. tnt inYII; 
166 .•• t_bant (00): 
8&7. in,i! • Inp(bp' +3); 
168. in,.l • (in.al , Dl7f)j 
'69. outp C (bpI+3) I in'ul) j 

'70 .• et_blnle (blnt); 
811, I 

,* dlab • 0 in Ltlt, 

82,510 XMODEM Implementation (Continued) 

2-62 

231928-53 



Ap·401 

PAGE 17 MA IN PROGRAM It p. , B2 51 0 XMODEM 

.72.. , ••• ttt •••••••••••••••••••••• I ........................... t •• t, 
813. , .. .. 
174. , .. .. 
875./uU 
876. , .. .. 
817. , ... . 
87 •. , .. .. 
879. , .. .. 

82510 interrupt slrv\ce routine 

12510 Interrupt sources: 
ToM 
CCR 

TX FIFO 
Rl FIFO 
TIMER B 

t.t.*/ ..... , ..... , ..... / . .... , 
• •••• I 
t.t •• , 

BIG. ,.... .. ... , 
881, ,.... Identifi .. and .. rvie .. thl 12510 inhrrupt ..... , 
812. /.... lourel requllting service. ... ... , 
813. ,.... ..t .. , 
884. ,.... .. ... , 
a15. I.t lII.t t •••• fl •••• t.t .t •••••••••• t.t_ •• t ••• I' ••••••••••••••• */ 

B86 • 
817. 
BII. 
BI!. 
190. 
BII. 
BIZ. 
B93. 
Bl4. 
B95. 
B9& . 
B97 . 
B98 . 

isr_510 
( 

Int 
Int 
Int 
Int 
Int 
Int 
Int 
Int 
int 

(I 

10urCI 

c1lld_b. 
st_b; 
i; 
ct lei 
f 191; 
gir,,1 j 

nf 1'11; 
lJ_chu; 

'99, gJrnl ~inp (bpl+2); 
900. 
901. Gulp «bp&+2),OJ20) 
'OZ. lourCI II: getsrc ()i 

903. in hIe .Iourel; 
904. switch (Iource) 
905. 

ea •• thur : 

'* Stor .. T.ap. Vl.lul of CIA */ 

It SUI BAnt reGlstlr ln temp. 
location ., 

/. Get Victor Fro. CIR 123 ., 

I. Slulc. thl Sourc • • , 

906. 
907. 
9DB. 

I • ••••••• -_ ••••••••••••••••••••••••• t tt •• t •••••• ••••••••• , 

/ .... 
909. /.... TIMER SERVICE ROUTINE 
910. ,.... decrtm,ntl tI counhr 
911. ,.... dlcrealnts rI counter , .... 

. .... / ..... / ..... / ..... / 
• •••• I 91Z . 

913 . , ••••••••••••••••• t •• _ ••••••••••••••••••••••••••••••••• *. I 
914. 
915. It_b z: inp (bpl+3)j ,* DeeUlllnt Trln •• it Counter */ 
916. if (la_tim'_tnt )0) 
917. lI_timl_cnt :l:1I_t i.,_cnt - 1 j 
911. if (n_Hal_cnt )0) '* Dleremlnt RICI1"'1 Counter *' 
919. rI_Ume_cnt =rI_tim,_cnt - 1 j 
910, cmd_b = 0122; 
9Zl. outp ( (bpa+3),emd_b ); /. [l5tart ti.er ./ 
922. outp (Cbpu1),Oz08)i '* mlDual lock *' 
913. break; 

82510 XMODEM Implementation (Continued) 

2-63 

231928-54 



inter AP-401 

PACE 18 HAIN PROCRAM lip .• 82510 XHODEH 

t14. ease tllD 
725. cu. tlf 
'%6. I .t ... _ ....... ft ••• ***.tw.t***t •••• t* ••••••••••••••••••••• / 
917. ,.... • .... / 
918. 
In. 
130. 
931. 
932. 
133. 

/.... TRANSHITTER SERVICE ROUTINE , .... 
,**** tran •• l ts Four c.haracters 
,.... and r.sets h_teq flag: when 
Itt.. whole paekl)lt tu,Ds.!tted 
/**** 

..... , 
• •••• J 
**.ul 
•• t.*/ .. ... , ..... / 

934, ' ••• 11 ••••••••••••••••••••••••••••••••••••• 1: •••••••••••••• / 

935. 
91'. 
137. 
938. 
139. 
940. 
141. 
In 
143. 
944. 
945. 
946. 
147. 
148. 
949 
ISO. 
951. 
151. 
953. 
954. 
955. 
956. 
957. 
958. 
959 . 
960. 
961. 
961. 
963. 
964. 
965. 
966. 
967. 
961. 
969 . 
970. 
971. 

If (t I_uq )0) /. II data 10 und .. / 

else 

il (h_uq ptU /. request to lind Picht ./ 

[ 

else 
( 

( 

lor (I .0 i 1<4 j iu) 

< 
ta char. hdala [1 + h_indll j 

outp (bpa,h_chu)j 

h_ind. +_4; 
h_byh_c.nt +_4 j 

set_bank (00) j 

It if 132 chit. sent thin ./ 
/. reset TI request *1 

/. if ell c:har. trans.inion 
requelhd . then trans.it the 
char. in cc:r_to_h ./ 

/. if no data to trans.it *' 
1* then diu.ble ta inhuupts */ 

oulp «bpa+1L (inpCbpa) &hUb); 
set_b~nt (01) i 

Gutp (Upu7).0I0,1); 
break j 

,. issue .. ~nual acknowledge *1 

82510 XMODEM Implementation (Continued) 

2-64 

231928-55 



PAGE 19 

973 . 
973. 
974 . 
975. 
97, . 
917. 
978. 
979. 
910. 
911. 
913. 
913. 
91 •. 
915. 
91, . 
917. 
91B. 9., . 
"0. 
"I. 
91Z . 
993. 
994. 

"5. 
99, . 

"7. " .. 
"9. 
lOOO. 
lOOI. 
1003. 
lO03. 
lO04. 
lO05. 
1006. 
1007. 
1001. 
lO09. 
1010. 
lOll. 
lOll . 
lOl3 . 
1014. 
1015 . 
1016 . 
1017. 
1011. 
1019 . 
1010. 
lUI. 
IOU. 
1023 . 
1024. 
Ion. 
1016. 
lOZ? . 

AP-401 

IIAIN PROGRllI lip .• 12510 IMODEM 

CI •• eer 
/t tt.t •• t.t ••••••• t ••••• t._ tt.t •••••• t •••••••••••••••••• *' ,.... .".t, ,.t.t Control Charl,chr S""ie, Rout in. ..... , , .... . .... , , .... if control char • NAI or ACK .. ... , , .... inform trlnl.Atter t •••• , , .... II SOH or EOT .. ... , , .... intora recdyer .. ... , , ...................................... "' ................. , 

...cerenl i '* rla'd RST fighter to Iuyici 
K.K interrupt *' f191 .. Jnp (bpI +5); 

Hal .1np (bPI+l) j 

ctle _inp (bpl)j 
if (U191 , OJFF) •• 0148) 
I 

Jt it no Irror. Ind cU. chlr *' 
/* thin proc ••• control char. */ 
''lInd. "Ind to h or u .• t,tt *' 

switch (etle) 
I 

I 
I 

CUI NAI: 
CI •• ACIt: 

if (;It_ecf_rq 
I 

Icth,) '* inleta tran •• lttu that 
etl. char. nelh,d */ 

vlt_cct_rq ainlcthl; 
tU_tO_'lt attlt; 

brelk; 

CI.I SOH: 
u •• EDT: 

if Cttlc .. SOH. 
I 

/' II SOH dillbil CCR Int. '/ 

.It_blnk (00.; 
Gutp C (bp&+l. I C lnpCbpl+l U ttidb.) i 
IIt_blnt COl) i 

if etl_ltIt! aa u_rd,) ,I if rlcliver wlltlnl for 
SOH Ind uld, to ft. 

thin infora rlc.i,,, of 
I .llld ctl. chlr .• , 

brelk; 

ct l_ud_f 1, alct hi; 
u_ctl_chf -etlei 

outp «bpl+7) ,01.08); /. ilsul _'null lek .• / 

82510 XMODEM Implementation (Continued) 

2-65 

231928-56 



inter AP-401 

PACE %0 HAIN PROCRAH IIp.e 8%51011l0DEH 

else nt Ion. 
10%9 . 
1030 . 
1031. 
Ion. 
1033. 
1034. 
1035. 
IOU. 
1037 . 
1038 . 
1039 . 

I •••••••••••••••••••••••••• •••••••••• t.t ••••••••••••••••• , /.... . .... , 
,.... R. FIFO SERVICE ROUTINE ..... , /.... . .... / 
,.... Rtads four by tel ..... , 
/ • .,.. Byte Count lndle,t •• padlt re.,d. .. ... , ,.... . .... , . .... , ,* ••• * tt * .... * *t ••• t t. *.t •• *.t.t. *t. tt * *t. t.t *. *t. * •• t ••• */ 

1040. 
1041. 
IOU. 

'* Rxr nat chected for IUOU, linel ell.chua is 11rl.d, U •• dllll, 

'* r ... t RI Tiaer to indlcah 
1043 . ehar. rte,hed before tl ••. out *' 
1044. 
1045. r.' 1 ... 1 • (C lnp ( bpI +4) , 0.70) 10110) i 
1046 . while ( nthl I- G) 1* Chick RI FIFO 1e.,ll Ind r •• d 
1047 . data it FIFO not •• pt, */ 
IOU. 
1049 . 
1050. 

ndlh [rl_byte_cntl • inp (bpI); 
++ rI_bytt_cnt i 

1051. ++ ufcnt; 
1052 . ..- fI.U". 
1053. 
1054. aut p (Upl.'), hOI}; 
lOSS. breat; 
1056, default 
1057. 
1051. 
1059, Gutp CUp&+7),0I0Uj 
1060. brlaki 
1061. I 
1062. oatp «bpa+1)r'oir1'al)i 
1063 . 
1064. 
1065. 
10". outp (1pOO,lo1)j 
1067. I 
1061. 
1069 . 
1070. Set_bant (bank_nua) 
1071. int hnt_nua; 

'* ill'U' a.RuII aetnowlld,1 */ 

1* if in,alid source thin illal a 
alnual Ictnowlld,1 ., 

" RI.tort Orl,inll 1'1 lUI of lant 
rioiller to rlturn thl 12510 to 
orioinai lant '1 

,. ll1ue Ind of int. to US'" 

101:& .•••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 
1073. ,.... PROCEDURE SET_lANK ..... / 
1074. ,.... Iwitchl' 1:&510 rioisler bank to ..... , 
1075. ,.... ohen ,aha.. • .... , 
1016. I •••••••••••••••••••••••• ~ ••••••••••••••• * •••••••••• *. * •••• , 
1077 . 
1078. Inl 
1079. Inl 
1080. 

port; 
bant_r .. ~_·"1 ; 

1081. bant_uo_val _bant_llu •• 0120. 
lUI. port = 9it_lddr +bpl; 
1083. outp (port, ballt_u9_1'II); 
1014. I 
1085 . 

/. output 1'11a1 to bank rilishr *' 

82510 XMODEM.lmplementatlon (Continued) 

2-66 

231928-57 



inter AP-401 

PAGE 21 HA IN PROGRAM It p.. 82510 XIIODEH 

1086. getstc () 
1087. / .................................................. , 

1088. /wt reid GIR Iond returns the **' 
1089. ,*. lourCI Vector UI 
10'0. 
1091 . 
Ion. 
10'3. 
10'4. 
1095. 
IOU. 

/ .. 
/" 
/" 
/" 
/" 
/" 
/" 

Timer 
Ta tlac.hine -
CCR -
HI FIFO -
T. FIFO -

,,/ 

05 HII ,,/ 

04 HII ,,/ 

03 HII ,,/ 

OZ HII ,,/ 

01 HII "/ 
,,/ 

1091, , ••••••••••••••••••••••••••••••••••••• * ••••••••••• , 
1098 . 
10" . 
1100. tnt 
1101. 

". Irc j 

1102 vdnp (bPI +2): 
1103. src 11' v , 0I0E; 
1104. 
lID'. Ire. src/2i 
1106, uturnCsrc); 
1107. ) 
1108. 
1109. process_cad () 

,'I read CIR ., '* Hut out all bits ncept for 
bits 1.2 Ind 3 I, 

1110. , .......... 1 ••••••••••• _ ••••••••••••••••••••••••••••••••••• , 

1111. , .... 
1112. IU" PROCESS COMMAND 
1113. ,.... Proceun User coamandl 
1114. /.... I - Tu.nslI.it 
1115 ,.... Z - Rteei." 
1116. ,.... - RUlt USiO 
1111. , .. .. 
1118. , .. .. 

1119. ,.**. 
lUO. , .... , .... 

o - quit 
r - Reinitillhe SlSIO 

- 5,stem monitor 

..... , 
*.*.*, *.*.*, ..... / ..... / ...... / . .... / 
* ••• */ 
.".t/ 
.111'.*' 
t ••• tf 11Z1. 

I12Z. 
lin. 

, ••••••••••••••••••••••••••• III * •• * III III * •• * * III .. * ....... III ....... III •• I 

IIZI. 
1125. 
1126. tnt rj 
1117. int IIflG .hl.1 
lU8. int ncp; 
lIZ' . 
1130. r = g.tch ()j 

1131. switch (r) ( 

1132. 
1133. casl '0' : 
1134. 
1135. 

.. fl9 = trulj 
brlak 

/. el i t .• , 

82510 XMODEM Implementation (Continued) 

2-67 

231928-58 



inter 

PAGE n 

113& . 
1137. 
1138. 
113' . 
1140. 
1141. 
1141. 
1143 . 
1144. 
1145. 
IIH. 
1147. 
1148. 
114' . 
1150. 
1151. 
IIH. 
1153. 
1154. 
1155. 
115& . 
1157. 
1158. 
115' . 
1160. 
1161. 
lin. 
1163. 
1164. 
1165. 
1166 . 
1167 . 
1168. 
116' . 
1170. 
1171. 
1171. 
1173. 
1174 . 
1175. 
II" . 
1177 . 
1178. 
II" . 
1180. 
1181. 
1181 . 
1183. 
1184. 
1185. 
1186. 
1187. 
1188 . 
118' . 
1110. 
II! I. 

I 

AP-401 

HA IN PROGRAH It p. c 82 5 I 0 XHODEH 

CIS I '1' 
if <\I_,tate 

eLKS C) j 

eLL (tI_r I h_c) i 
MV_CURS ltl_' I h_c) i 

,. Tun •• it Coallind only 
Iccepted if Idle ./ 

printl ,"U1t :"); ,t Cit n ••• or fill to T. '/ 
Icanf (III"", ltl_fill_ft ••• ); 
ell (tl_r. tl_C); 
open_wind (t 1_'. h_1! ," trans •• t tina") i 
open_wind (h_1', tI_c+14,lI_f i "_n •• ,) i 
tl_cad • lett'l; ,- Acthahl flag to Ilgnal 

tl,. 
I 

1I •• p OJ 

TransmU idle state ., 

pr.'9 ("tranl.I.llon in proar .. ,"); 
1 

bUlk; 
elll '1' : 

CLHS (I i 

eLL (ra_r,u_c)j 
"V_CURS (rI_,. u_c) ; 
printl ("fill :"); " Get u fill n •••• , 
Icant (II",", 'lI_fill_na •• ); 
ell en_r lu_cd i 
open_wind (fl_t I rl_c, "Inab ltd") i 
open_wind (u_r, r~_c:+141 rI_f t 1I_n •• ,> i 
u_cad 8,ett.,,: I' Actit.h flag to Ilgnal 

rI ltate machine ., 
bred:, 

Clle I •• : 

ut 51 D () i /. r .. et 82510 ., 
op.n_wind C24.30,"devie.e re.et"); 
breat j 

c.le • r I : 

rstSIO (); 
lnit (); 
enbint4 (); 
hep (); 
pra., (II USlO reinitialil.d"); 
helt; 

C.I, '!' : 
ncp •• ,stea (I'd: \aico.") j 

default: . 
BEEP () j 

/. reinithille IUto *1 

pratO ("incorrect cO •• lnd, reenter"', 
buat; 

if (tlflg .. true) /. if e.1t e.ommlnd j lIaed, 
then qllit progr.m ., 

return ctrue) i 
elle retarn (Calse) i 

I. end of co_and proc:tlling ., 

82510 XMODEM Implementation (Continued) 

2-68 

231928-59 



inter AP-401 

PAGE 13 HAIN PROGRAM ftp.e 81510 lHOOE" 

1192. as.bpU (,Jets_stnt,fp> 
1193. / ............................................................ , 
1194,u ReAds filt to b. lran.1littld Ind puts HI 
1195. It. the data Into lhe proper •• od •• pactet foraat U/ 
1196. I * •••••••••••••••••• ** ••• " ••••••••••••••••••••••••••••• * •••• , 
1197. 
lUI. int 
1199 . 
1100. FILE 
1201. { 

1102. Int 
1203. int 
1204. inl 
1205. char 
110'. 

Ifp; 

sua aO i 
i. blkent; 
It, It; 

'* this u1"1 11 used to 
,et tile ft •• t ,Jr:t •• , 

1107. bIkent -(read Uhplct.bufhr[Ol,128.1, fp); /* reid 128 bytes I' 
IZUI. if (bIkent (1) 

1209 ( 
UIO. if «shfeofel,» )0 && !<fhferrorCfp»)) 
I HI. 
1212 . 
1213 
1114. 
I !IS 
1216. 
1217. 
1118 . 
1119. 
I no. 
lUI 
IZZ2. 
1223. 
1224. 
1225. 
1116. 
IU? . 
1128. 
1229 . 
1230. 

lof c trutj 

bl.p (): 
praso <"Ear I!I!!I!I!!I 10); 

else 
If (ft )0) 

( 

I 

beep 0; 
pralg ("READ ERROR !!! II ! I ! ! !! ! .. ); 
t z_st at t!=t z_id 1. i 

e.pU .pUs_sent +1, 
tzplck. pac.'_nall 0: cpU; 
cpkcap .. -tlpae.k.pacl_Rull, 
hplck. PiC k_emp I • cp~cap; 

1Z31 for ChO, i (128; 1++) 

1131. SUIl" 5ulD.+hpack.baffet[ili 
1233 hpack.chk ••• saa" lSSj 
1234 
1135. 
1116. 
1137. 
1131. e.py2buf () 
lZ39 , ........................ 11 •• 1111 •• 1 

1140. I •• copy pact,t to h buffer **1 
1241. , ••••••••••••••••• 1111 ••••••••••• , 

1142 
1243. int 1; 
1244 . 
1245. tldah [01 =hpJ.ck.hlld; 
U46. hdah [11 =tJpack.pact_nulli 
lZ47. tzdJ.tdZl o;:hpack.pack_capl; 
U48. fOf (hO; i (UI; i++) 
1249. hdat& [i+3] .II hpaci:. buf fir [1]; 
U50 tJd.h [1311 -hpact.e.ht.a; 
lIS I. I 

'I if end of file then 
Bignal EOr */ 

/* one' 5 coap 1e.ln t 0 f 
pae.t,l number ., 

/* chlcksu. calculltld II 

82510 XMODEM Implementation (Continued) 

2-69 

231928-60 



intJ Ap·401 

PAGE Z4 KA IN PROGRAK lip. c 82510 XHODEH 

IIS2. 
1253. check_wait C) 
1254 . 
1255. 
1156 . 
\257. 
1118 . 
\259. 
11'0. 

/ ••• t.t .t ••••• t •••••••••••••••• 1 ••••••••••••••••••••••••• , '*.u PROCtUDRE CHECICWUT ..... , 
,.... .t ••• / 
,.... cheeks T_ Ttau, eu_to_Vlt and .... ul 
/U:.. - 'It_cd_raq and returns: ..... , ,.... . .... , , .... T1 •• Out .. Ts Tlaer • 0 

1261. , .. .. rr_ACK - Ad uell,ed 
'lUI. , .. .. u_NAK - Nat rlclhed 

1163 . 
11'4. 
1265. 
12". 
1167. 

,.* .. 
, ••• * 
/ .... wliting ,- ta Tl.,r not lI,ired 

u ... / • ••• t, ..... , ..... , .. ... , • ••• t, 
I •••• It t •••••••••••• It •••• t.*.*.*.t.t, .1 •••••• t.t ••••••• t I 

1261. 
1U'. if ({ltI_time_cntl " (Vlt_cer_rq •• Icthl) 
1270. 
U71. 
U72 . 
1213. return (ti.e_out); 
1214 ..... 
1275. if (get_eer_rq ... !nutl ... ) 
U76 . 
1277. 
1278. Iwi tc:h (c:c:r_to_Qlt) 
1279. ( 
1280. c: .. t ACI : 
UU. return err_AC'O. 
un. 
1283. 

bud: ; 

lZ84. eue NAIt 

1286. breat 
1287. 
1218. default: 
U89. 
U90. 
1291. 
un. 
1193. else 

bud; 
I 

,. 11 t. Tlalr nplrld 
Ind still wlttine 
for conlrol Char', thin 
Tia, out ., 

,. Ct I-Char rcwd then 
return status ., 

,. corrupted ctl char ., 

1194. if «h_tiae_cnt )0) && Cgel_ccr_rq :ulcthl" 
12". relarn (walling)j 
1196: ) 
1197 . 
1298. 

82510 XMODEM Implementation (Continued) 

2-70 

231928-61 



Ap·401 

PAGE 25 MAIN PROGRAM flp.' 82510 XMODEM 

1299. lbort_tr: () 
1300 , •••• t ••••••••••••••••••• ,U ••••••••••••••••••••••••••••• ,' 

1301. , ... . 
1302. , ... . 

1303. , .. .. 
1304. , .. .. 
1305. , .. .. 

Abort tranlmil5ion, reinti&Ilu 
Trlnlii1li l tet 
F laql 

•••. t, 
** ••• , ..... / 
* •••• / ..... , 

1306. /t •••••••• I1 ......... I11 •• *** •••••••••••••••••••••••••••••••• , 
1301. 
130B. 
1309. tot .. false; 
1310. tuflg to mkpkti 
1311. quit :fa,lu; 
1312. I::ey .. 0 j 
1313. tl._lt&ll.h_idl'i 
1314. tz_c.md. ;,: inactive; 
131:5. IInd_ccI_uq • inaeUn, 
1316. tz_indl .. 0 j 
1317. tl_rlq .1nl.c.tivei 
1318. cc.r_to_tl • OJ 
1317. tl_byh_c:nt .0; 
13%0. pkts_unt 110; 

'1321. h_tia._c:nl .0; 
1322. vlt_ec:r_rq .. 0; 
1323. ec:r_to_o.t .. 0; 
1324. ut_bank COO); 
13%5. outp (Cbp&+I),0I21>; 
1326 set_bank (DOli; 
1321. outpC(bpa+6),OIDD); 

1328. tI_state :h_idl.; 
1329. prmsg ("transmitter resf!t"l; 
1330. 
1331. 
1332. 
1333. wai t_tl () 
1334. , ••••• trtr.tr.trtr.tr •••• trtr •••••••••••••••••••••••••••••••••••• , 

1335. ,.... .. .. *' 
1336. ,.... 1JUT_RX: ..... , 
1331 , .... 
1338. , .. fit 

1339. , .... 

1340 IfItflt 

1341. / ... . 
1342. , .. .. 
1343. , •• fIt 

c.hlcks fJ timer, and returns the 
following "JUt 

SOH - SOH rH .• iud 
EOT - EOT rec:eiud 
time out - [I timet Il.pired. 
waiting - wliting for event 

. .... , .* ... , ..... / . .... , 
·*··*1 
..... * I . ..... , 

1344. , .............. * ••••••••••••••••• 111: •••••••••• * ••••••••• **., 
1345 
1346 . 

1348. 
1341 . 
1310 
1351. 
1352. 
1313. 

1314. 
1315. 
1356. 
1311. I 

e lie 

cll_fld_flg l::inactiu, 
return ( tI_c.tl_c.hr)j 

if ( rll_time_c.nt ... 0) 

return (t hu_out) j 

.1 •• 
uturn (wliting); 

82510 XMODEM Implementation (Continued) 

2-71 

231928-62 



AP-401 

PAGE 26 MAIN PROGRAM ftp.t 82510 XMODEM 

1358. e.htpkt <pknuIDI 
1359 / •••••••• ** •••••••• ** ••••• " ••••••••••••••••••• / 
1360. ,.. verifies the checksum and packel .. , 
1361. /.. number of the received paeket H' 
1361 1** returns a status cod. ttl 
1363. 1** **, 
1364 ,tt 
1365. Itt 
1366. ,tt 
1361 '** 
1368. '** 

EOX - Padet Ole '*' EPKNUH - Error in paeht number **1 
ECHKSUI1 - Error in Cheek SUlD "I 
EPKCJ1PL Euo in pl.Cktt e.oapleJl..nt .. , 

'" 1369. 1 •••••••••••••••••••••••••••••••••• ~ .... * •••• t.1 

1370· 
1371. 
1371. 
1373. 

int 
( 

int 
int 

ptnull; 

i; 
et.; 

1374. int sua .. 0, 
1375. char empl,ncmpJ,e.pk,ehre.tm; 
13U. 
1377. 
1378 
1379 
1380 
1381. 
I38Z. 
1383 
1384. 
13B5 

1316 
1387 
1388. 
1389. 
1390. 
1391 
I39Z 
1393. 
1394. 
1395. 
1396 . 
1397. 
1398. 
1399. 
1400. 
140 I. 
HOZ. 
1403 
1404 
1405. 
1406 
1407 

c.pt _pknumi 
if (cpt ==udataCO]) 

( 

empl = udala [0]; 
neapl "I.da.ta [1]; 
if (ncmpl ='" "e.pl ) 

( 

for (i=2; iOlO; i++) 

SUIl = sum +tad&ta [il, 
ctlll = SUID ,. 25S; 
ehrekll = cka; 
pt_thhm =chrck..; 
if (thrc:k. = .. udlta (130) 

return (eok); 

else 
return (echtsll); 

etse 
re turn (epkcap); 

else 
( 

if «udata [0] == cpt -1) " (cpk. )1) 

return (eold); 

e Is. 
return (epknum); 

1* packet number cor!ect *1 

1* p&cket nuaber compilit * I 

,* thec.kstl1D. correct *' 

1* old packet nuaber 
received *1 

82510 XMODEM Implementation (Continued) 

2-72 

231928-63 



AP-401 

PACE 17 HA'IN PROCRAH Itp.' 8%510 XHODE" 

1408. / ........................................................... t, 
140'9. ,.... tJ_l_dis PROCEDURE ..... / 
1410. ,.... Dhabi .. tlill. and TI rua interrupti ..... , 
1411. ,.... fro. eER rlGhhr ..... / 
1412. , ••••••••••••••••••••••• IU ••••••••••••••••••••••••••••••••• , 

1413. tI_l_di. (I 
1414. I 
1415 .• ,tint4 e)j 

1416 ••• t_bant (OO~j 

/* clillble intlrrupta */ '* twitch to blnt uro *' 
1417. oulp «(bpa+U.(inpUpa.ll " tltdb)); 
1418 • 
1419. s.t_h,nt (01)j 
1420. enbint4 C.i 
lUI. 

'* ma .. : out tnt.rruph in 
eER - TIM and TI FIFO *' 

/. lit bank onl ., 
,. I.n~bl. interrupts ., 

1422. 
1413. 
1424. 
1425. 
1416. )/ ••••••••••••••••••••••••• '* ••• 111 •• 111: •••••• ,. •••••••••••••••••• / 

1427. ,.... ll_i_.nb PROCEDURE ..... , 
1428. ,.... tnabhl the TIM Ind TI FIFO Interrupts ..... , 
1429. ,.... fro. eER reGister ..... , 
1430. / ••••••••••••••••••••••••••••••••••••••• * ••••• tt.t •• t •••••• , 

1431. 
1431. tI_i_.nb C) 
1433. I 
1434. B.Unt4 ()i 

1435. sel_bank (OO)j " 
dilabl. interrupts 

" 
Iwit ch to bank Ilro 

'/ 

" 1436. outp ((bpa+l),CinpCbpa+U hhn»>i 
" 

Inab 11 TIll AND TX F!FO 
1437. set_bant (Ol)j 

" 
uturn 

1438. InUnt4 C)i 
" 

Inab It 
1439. 
1440. 
144!. 
un. Ih_ptt_pUIID () 
1443. , ••••••••••• * ••• ,. t,.t t.,.t t,. •• t t •• t,.. ,.,. •••••• t.t I •• ' 

1444. ,It Display. the para.ltu of thl Hlcdvld tI' 
1445. Itt pact.t nUBbn. and the tlpecttd plti.mltera It/ 
1446. / •••••••••••••••••••••••••••••••••• ,. ••••••••••••• , 
1447. C 
1448. ++ bad_ptt_cnt i 
1449. pr.'9 (I'undin; NAIIt: II); 

1450. prlntf (" error :=I "5u",pht); 
1451. aY_curs C13.1); 
1452. print( (1Illptd 'ptt ..... 3u".np_ptt_nvm)j 
1453. 1n_e~rs (14,1); 
1454, printf ("rId ptt ... "3u", ndata[O])j 
1455, m"_curs (13.40)j 
1456. printf (".Ipd ptt cllpl = "X", C-nd&tdO])j 

. 1457. a"_cars (14.40); 
1458. print( (lind plct coapltalnl ;0 "X", rldatdlJ)j 
1459. a"_curs «15,1) i 
1440. prinU (Nrld cblcsulI;o Ii'X", ndah[t30])j 
1461 .• v_curs CI5,40); 
146Z. printf ("elpd chhua = "'X",pk_cbtsm)j 
1463 .•• nd_ccr_rlq _act hlj 
1464. ccr_to_h .. N1Kj 
1465. 1 

to bant one ./ 
interrupti " 

" 

82510 XMODEM Implementation (Continued) 

2-73 

231928-64 



PAGE 11 IIA IN PROGR!I'I 1\ P . • n 5\ 0 IIIODEII 

1466. , •• t ••• t •••••••••••••••••••••••••••••• / 

1461, / ... PROCEDURe BUF_CPY HI 
t468. ,.. coph. picht to UII bufhr H/ 
146'. , •••••••••••• ** .......... * ••••••••••••• , 
1470. buf_cPT Cpl.ckt_id) 
1411. int pactt_ldi 
147%. ( 
1473. int 
1474. Int 
1.475. 

I; 
inda .0 j 

1476 ind. = (packt_id-1) *128; 

AP·401 

1477. if (inda < (320aO - 129» '* No overwrite of' bufhr */ 
1478 ( 
1479. for (ho; 1<121; h+' 
1480. rI_'_baf [ind.+i] • nbuf ttl; 
148 I. 
1412. else 
1483. pra.; ("ttle too big. cannot su" in ••• ary"); 
1484. 

82510 XMODEM Implementation (Continued) 

2-74 

231928-65 



inter AP-401 

PAGE DEFINITiON F!LE ftp def 82510 XHOOEH 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
II. 
U. 
13 . 
14. 
IS. 
16 
17. 
18. 
U. 
20. 
11. 
U. 
13. 
24. 
15. 
16 

Idel Jne 51 "82510 FTP 1000 
Idellne bpa 0a3f8 
'define 9U_l.ddr 01 
Idef 1ft. esc 1 17 
Idef ine btl 07 
Idd ine 1119_1: 17 

Ide( Ine 1Il11J_f I 
Idef in. tI_c 35 
Ide I lne tJl_f 10 
'define fl_C 35 
'define fl_f 12 
• deflne 5o_I: 50 
Idel ine 10_f 14 
'd.f in. hilt 
Idefin. true 
Id.fine active I 
Idefine inact i" 0 
Idet lne ct l_ch'r 2 
Idet ine ptt I 
Idef ine eot 5555 
Id.t ine echksm 5500 
Idefine eptcmp 5501 
Idef I ne eold 5501 
Idefin. eptnum 5503 

21. / ............... 11 • .,1 •••••••• , 

28. , ... h stlte defintionstUI 
29. / •••••••••••••••••••••••••• , 

30. 
31. 'define h_idl. 000 
32. Ullin. w&it_NAX 001 
33. Ide( ine TO_eu_&D DOt 
34 .• define h_rd, 003. 
35. 'de'ine tI_pad:et 004 
36 .define w&it_CC 005 
31. 'del ine tl_pt_comp au 
38 .• def ine to_err 007 
39 .• define tun haZ 
40. 'def 1ft. lItptt 111 
41 .• def ine hato 112 
42. Idefin. retl 113 
43. Idefine waiting 114 
44. 
45. , •••••••••••••••••••••••••• , 

U. '*' rw state definition II/ 
47. , •••••••••••••••••••••••••• , 

48 
49. Idefine u_id1e 000 
50. Idet ine rl_rd, 001 
51. Idet in. u_ptt 002 
51. 
53. 
54. / •••••••••••••••••••••••••• / 

55. 
56, .de( ine 
57. Idel in. 
58 .• def ine 
59. Idet int:, 
60. 

t 1ml_out 
rw_NAK 
rl_AeK 
E'I_gln 

90 
91 
92 
93 

6130' 86" /' S Igft on mISSIV, '/ 
/' BUe I.ddress '/ 

/' esea.p. char. in h .. '/ 

/' c.oordin&tlS of the 
•• 51&91: lin. '/ 

/' 

coordinates 

,/ 

/' control char translli t '/ 
/' It:1\d PloCttt '/ 
/' pacht received ot '/ 
/' checksull error '/ 
/' packet compl incorrect ,/ 

/' old pact num [lceived '/ 

/' inval id piloCtit I rcvd. ,/ 

1* Transmit packet stag ... / 

I' u state signal 'alues ., 

82510 XMODEM Implementation (Continued) 

2-75 

231928-66 



AP-401 

PAGE % DEFINITION FILE Itp del 82510 I"ODE" 

6\, 
12, 
63, 
64, 
II, 

", 
67, 
68, 

", 
70, 
71. 
7%. 
73, 
74, 
75, 
76, 
77, 
78, 
7?, 
80, 
11. 
n, 
13, 
84, 
15, 
16, 
17, 
II, 
89, 
to, 
91. 
9%, 
n, 
94, 
!I, 

", 
97, 

/t' •• , •• *.t't .t •• t •••• t ••••••••• , 
,"" Pro toco! Control .... , ,,, chluchu' .... , 
/ ••••••••••••••••••••••••••••• **, 

Idellne NAK 0114 
Id.f he Atk 0101 
Id,t h. SOH 0.01 
Idlf in. EDT 0104 
.deOnl CAN 0118 
'dolinl NUL DIDO 

J ................... :***u: ••••••• / , .. inhrrupt lource .... , 
/ •••••••••••••••••••••••••• 1 •••• ' 

Idef In. thaer D5 
'd,f ill. t ... 04 
Id,t In. ccr 03 
.d,f ine nl az 
.dd Ine til 01 
'dlf in. hiln DIU 
'def inl tiiO 01%0 
'd,f In. eel'n 0104 
Ide'ine ccidb 0133 
thtifte b nlnll 0125' 

, ••••••••••••••• 'u •••••• tt ••• 1/ ,,, 82'59,\ ulan ......... / , ............................. / 
.d.finl 101 0110 
'dtfine IpOO OIlD 
Ide'ln. IpOI hZ1 

It Negat h' Act */ 
,. POliti" Act */ '* Start of Helder II 
/* End of Tet.t ., 

'* 12510 Int. veetors */ 

,. unallt TIM Ind TI FUO 111 '* mask TIM and Ts FIFO *' 
,* enable CCR inllrruptl */ 
/* mask CCR int *' '* enable, block interrupts 

throuGh tEA for 82510 *' 

1* end of interrupt */ 
," 8U9A port D ", '* 1259" port 1 *' 

82510 XMODEM Implementation (Continued) 

2-76 

231928-67 



inter AP-401 

PACE CRT 110 ROUTINES eio c 82510 X!100EM 

1. linclude "ftp def" 
2. 
3 CLR() 

/11:**11.** •••••••••••••••••••••• " ........................... / 
5, ,.... • •••• / 

6. /uu PROCEDURE CLR fit ... , 

/ ••• 11 

8. / •• ** 
9. ".u 

10 11"** 
11. /.11: fit: 

clears 
..... , ..... / ..... , ..... , ..... , 

12 , •• " •••••••••• ** ••••••••••• " ••••••••••• ** •••••••••••••••• , 
13-
14. 
1~ tnt escchr :: esci, 
16 
17 putch (escchr); 
18 pr lntf (" [2J"); 
!V. 
20 
21 
22. 
23 VOH () 
2<'1 , ............................. 111 ••••••••••••••••••••• " •••• ** I 
2S /.... • •••• , 

26. , •• fIt 

27 1 •• fIt: 
28 /*11" , ... . 

, ... -,* ... * 

PROCEDURE VOH 

Turns Reverse Video orr 

* •••• , ..... / 
111: •• */ ..... , ..... / ..... , Z9 

30 
31 
32. '.11 ••••••••••••• ** •••••••••••••••••••••••• 111: ••••••••••• fl •• ' 

33 
34. 
3S. lnt escchr :: esci; 

37 putch (esc.c.htl, 
38 pr intf ("[Om" 1; 

3' 
40 
41 

42. 
43. RVON () 
44 , •• * •• ".* •• " •• ""* •• *".*.* •••• " •• "",,,* •••• ,, ••••• ,, ••• 11 ••• ••• , 

45. 1" •• * ."".", 
46 
47. 
48 
4 •. 
50 
51 

1*·*" PROCEDURE ,." .. 
f···t , .. ". 
/ ... " 
/."t* 

RVON .tt.t, 
.11: ••• / 

Reverse Vi deo ON tt.t., 
..t •• , 
•• 1l;Il;1II' , 

•• * •• / 
52 ,." •••••• t •••• "" •••••••••• *." •••• * ••• * •••• ** •••• * •• * ••••• J 

53 
54. 
55. int escchr = esc:i; 
56. 
51. putc:.h (esc:.chr); 
58 print! ("[7111."); 
59 
60 

82510 XMODEM Implementation (Continued) 

2-77 

231928-68 



inter AP-401 

PACE 1 CRT 1/0 ROUTINES <io.< 81510 XKODEK 

61. OPEN_VIND (row,col,.tg) 
n. tnt row; 
63, tnt col j 

64, char st9[]j 
65. , ..................... ** •••••• ** ••• ** .•••• ** ••••• , •••••••• *, 
U. ,.... .. ... , 

67. I"" PROCEDURE OPEN_WIND ..... , 
U. ,'I." ..... , 
n. ,.... prints a string In flverse "UIO ... u/ 
10. ,.... at the ginn location ... **' 
71. / .. .. 
12. , .. .. 

..... , 

.****' 
73. I"" t .... It ................................... *t ...... ttt .............. t ..... t .. t ........ t/ 

74. 
75. 
76. 
77. MV_CURS (row, eol); 
71. RVON () l 
19. pfintf C'·"III,.t~n; 

80. VOFFe) l 
II. 
U. J 
13. BEEP e) 
84. , •• ** ••••••••••••••••••••••••••••••••••••••••••••••••• *.*/ 
85. ,.... .*ttt/ 
H. 
87. 
II. 
19. 
90. 
91. 

/ .... 
" ... 
/ .... 
/ .... 
/ .... , .... 

PROCEDURE BEEP 

prodllc •• 

..... , . .... , 
a b •• p . .... / . .... , 

"Uf" . .... , 
'2. /* *t ..... t ............... t ... t ••• t t .................. It .. It .......... *t" *t.t ...... It I 
93. 
94. 
9'. int belchr .. bll; 
fl. 
9? pqtc:h (belchr); 
91. 
99. 

100. 
101. CLLCrow.c:ol) 
102. tnt row; 
103. intcoli 
104. 
ios. 
106. 
107. 
108. 
109. 
110. 
111. 
111. 
113 . 
114. 
liS. 
116 . 
117. 
118 . 
119. 
120. 

/ ........................................................ , /.... . .... / I.... PROCEDURE CLL . .... / , ... . . .... , , ... . ellar lin. at oiYen coordinate ..... , 
/ ... . . .... , 
/ ... . .. ... , , ... . ..... , 
/ ........................................................ , 
tnt, •• cchr •• aci; 

MV_CURS (row, cal); 
patch ('Icc.hr) i 
printf (IIU") i 

82510 XMODEM Implementation (Continued) . 

2-78 

231928-69 



infef AP-401 

PAGE CRT I/O ROUTINES cio c 82510 XI10DEH 

Ill. 
,Ill. 
1Z3. CLIIS() 
114. , .................... t: ••••••••••••••••••• UI ••••••••••••••• , 

125. /.... .. ... , 
126. , ... . 
127. , ... . , .... 

/tt •• , ... . 
/ ... . 

PROCEDURE CLIIS 

elear ."lIage line 

. .... / 
.t,:z •• / 

u ••• , . .... / . .... / 
t.t •• / 

1Z8. 
119. 
\30. 
131. 
131. 
133. 
134. 
\35. 
\36. 

I .t •• t.t It .. t.t .. tt ••• 'II: •••••••••• t ........... 111. It ••••••• t.t. J 

137. 
138. pra.V (11119) 

139, ehar .59 []j 

140. , ••••••••• I1 ••••••••••••••••••• * ••••••••••• lu •••••••••••• *' 
141. 1**** UUt/ 

142. JU" PRINTS J1ESSAC£ AT MESS1CE LINE ...... , 
143. ,.... • .... , 
144. Itt.. .. ... , 
145. ,.... UUt, 

146. ,.... .. ... , 
147, ,.... ."U/ 
148. , •••••••••••• * ••••••••••••••••••••• 11: ••• **-* •• *** •••••••••• , 
149. 
150. 
151. elms (); 
152. printf (01 "s", 1I1.5g); 
153. 
154. 
155. CLLC () 
156. ( 
157. int escchr • uci j 

158. putch (escchr)j 
IS9 printf ("[K"); 
160. 
161. 

163. / •••••••••••••••••••••••••••••••••••••••••••••••••• * ••••• / 
164. /.... .. ... / 
165. J **** PROCEDURE HV_CURS 
1". / .... 
167. , .. .. 
16B. , ... . 
169, J .. .. 

movlS cursor to specified 
IOca li on. 

..... / 

... **/ . .... , . .... / . .... / 
170 / •• * •••••••••••••••••••••••••••••••••••••••••••••• * •••••• , 
171. 
17Z . 
173. 
174. 
175. 
176. 

int 
int 
( 

int 

.. 
" 
escchr = esci: 

171, putch (lIcchr): 
178. cprintf ("t"u;"uH",.,yJ; 
179 . 

82510 XMODEM Implementation (Continued) 

2-79 

231928-70 



inter AP-401 

.PAGt ASH 86 INTERRUPT INIT ,hl .. m 8)510 IHODE" 

I. NAHE flp,h 
Z 
3. DGROUP GROUP DATA 
4. DATA SEGHENT WORD PUBLIC 'DATA' 
S. ASSUME OS DGROUP 
6 DATA ENDS 
7. 
8 EURN 
9. 

10. PROG StGHENT BYTE PUBLIC 'PROG' 
11. ASSUME CS._PROG 
12. 
13. PUBLIC 
14. PUBLIC 
IS. 
U. init_ih 
17. push 
18. push 
19. push 
20. push 

init_ih 
·ihS10 

PRDe 
BP 
OX 
AX 
DS 

IIr 

21. moy OX, OFFSET i h51 0 
U push 
23. pop 
24 
25. 
26. 
27. 

.0' 

.ov 
INT 
pop 

es 
OS 
AH,2SH 
AL,OCH 
ZIH 
OS 

%B, pop AX 
29. pop DJ 
3~. pop BP 
31. ret 
32. ini t_lh ENDP 
33. 
34. ihSl0 
35. push 

push 
push 
push 
push 
push 
push 
push 
push 

PRoe 
BP 
AX 
BX 
el 
DX 
SI 
01 
OS 
ES 

lar 

36. 
37. 
38 .. 
3' . 
40 
11. 
42. 
43. 
44. AX, DGROUP 
45. mn' DS. AJ 
U. call hI 510 
47. pop ES 
48 pop DS 
49. pop Dl 
SO. pop SI 
51. pop . OX 
52. pop ex 
53. pop 81 
54. pop A.X 
55. pop SP 
56. het 
57. Ih510 ENDP 
58. 
59. _PROG 
!O . • nd 

ENDS 

DOS vector setup call 
COM1 vector 
DOS 'fstea e&l1 

82510 XMODEM Implementation (Continued) 

2-80 

231928-71 



APPLICATION 
NOTE 

High Performance 
Driver for 82510 

DAN GAVISH and TSVIKA KURTS 
SYSTEM VALIDATION 

AP-310 

June 1987 

Order Number: 292038-001 
2-81 



inter AP-310 

1.0 OVERVIEW 

The 82510 Asynchronous Serial Controller is a 
CHMOS UART which provides high integration fea~ 
tures to omoad-the-host CPU and to reduce the system 
cost. 

This Ap-Note presents a mechanism for reduction and 
optimization of interrupt handling during asynchro­
nous communication using the 82510. The mechanism 
is valuable in applications where handling of interrupts 
degrades system performance i.e., when high baud rate 
is used, when multiple channels are handled or whenev­
er real-time constraints exist. This implementation of 
the mechanism is a software driver that transmits or 
receives characters at 288000 bits per second. 

The driver is based on the burst algorithm which uses 
the 82510 features (FIFOs, Timers, Control Character­
Recognition etc.) to reduce CPU overhead. CPU is sig­
nificantly off-loaded for other tasks - about 75% of 
the usual load is saved. 

The driver can be easily modified to run in conjunction 
with other 82510 features such as the MCS-5l 9-bit 
Protocol. 

This document provides a full description of the driver. 
The burst algorithm is presented in Section 3, the soft­
ware module flow-charts and their descriptions are pre­
sented in Section 6, and the PL/M software listing is 
given in Appendix A. 

2.0 INTRODUCTION 

2.1 CPU Load Consideration 

The trend towards multi-tasking systems, combined 
with higher baud rates and increasing the number of 
channels per CPU, has led to the need for decreasing 
the CPU bandwidth consumed by the async communi­
cations for each byte transfer. Whenever the CPU is 
interrupted, a certain amount of CPU time is lost in 
implementing the context switch. This overhead can be 
as high as hundreds of microseconds per interrupt, de­
pending on the specific operating system parameters. 
Thus, in high baud-rate or multi-channel environments, 
where the interrupt frequency is very high, a substantial 
portion of the CPU time is taken up by this interrupt 
overhead. Therefore, systems usually require minimiza­
tion of the number of interrupt events. In the case of an 
asynchronous communication channel, reduction of the 

number of interrupts can be achieved by servicing (i.e., 
transferring to/from tjle buffer) as many characters as 
possible whenever the interrupt routine is activated. 
This can be done by utilizing FIFOs to hold received or 
transmitted characters, so that the CPU is interrupted 
only after a certain number of characters have been 
received or transmitted. Using a receive FIFO may 
cause a potential problem: Due to the random rate of 
character arrival in asynchronous communications, 
there is a chance that characters will be "trapped" in 
the Rx FIFO for extended periods of time. In·order to 
avoid such situations, a Rx FIFO time-out mechanism 
can be implemented using the 82510 timer. The time­
out indicates that a certain amount of time has elapsed 
since the last read operation was performed. It causes 
the CPU to check the Rx FIFO and read any charac­
ters that are present. This process, however, introduces 
the additional overhead of the timer interrupt. This Ap­
Note describes the use of the burst algorithm to avoid 
the timer interrupt overhead while maintaining the use 
of the Rx FIFO. 

2.2 82510 Features Used In This 
Implementation 

The following new 82510 features were used in this im­
plementation: 

2.2.1 FIFOs 

The 82510 is equipped with 2 four-byte FIFOs, one for 
reception and one for transmission. While characters 
are being received, a Rx FIFO interrupt is generated, 
when the Rx FIFP occupancy increases above a pro­
grammable threshold. While characters are being trans­
mitted, a Tx FIFO interrupt is generated, when the Tx 
FIFO occupancy drops below a programmable thresh­
old. The two thresholds are software programmable, 
for maximum optimization to the system requirements. 

2.2.2 TIMER 

2-82 

The 82510 is equipped with two on chip timers. Each 
timer can be used as a baud rate generator or as a gen­
eral purpose timer. When two independent baud rates 
are required for transmit and receive, the two timers 
can be used to generate both baud rates internally. Oth­
erwise, one timer can be used for external purposes. 
The timer is loaded with its initial value by a software 
command and it counts down using system clock puls­
es. When it expires, a maskable interrupt is generated. 



•"n+_f • .'eII AP-310 

2.2.3 CONTROL CHARACTER RECOGNITION 3.0 THE BURST ALGORITHM 

Depending on the application, the software usually 
checks the received characters to determine whether 
certain control characters have been received, in which 
case speCial processing is performed. This loads the 
CPU, as every received character should be compared 
to a list of control characters. With the 82510, the CPU 
is offloaded from this overhead. Every received charac­
ter is checked by the 825'10, and compared to either a 
standard set of cOIitrol characters (ASCII or EBCDIC) 
or to special user defined control characters.' The soft­
ware does not need to check the received characters, 
and a special interrupt is provided when a received con­
trol character is detected by the 82510. The specific 
operation mode (standard set, user defined, etc.) is pro­
grammable. 

2.2.4 INTERRUPT CONTROLLING MECHANISM 

The twenty possible interrupt sources of the 82510 are 
grouped into six blocks: Timer, Tx machine, Rx ma­
chine, Rx FIFO, Tx FIFO, or Modem. Interrupt 
source blocks are prioritized. The interrupt manage­
ment is performed by the 82510 hardware. The CPU is 
interrupted by a single 82510 interrupt signal. The in­
terrupt handler is reported on the highest priority pend­
ing interrupt block (GIR) and on all the pending inter­
rupt blocks (GSR), as well as on the specific interrupt 
source. Interrupts are maskable at the block level and 
source level. Interrupts can be automatically acknowl­
edged (become not pending) when serviced by the soft­
ware, or manually acknowledged by an explicit com­
mand. 

2-83 

3.1 Background 

The 82510 FIFOs are used to reduce the CPU interrupt 
load. When a burst of characters is transmitted or 
received, the CPU is interrupted only once per trans­
mission or reception of up to four characters. FIFO 
thresholds are programmable; thus, when high system 
interrupt latency is expected, an optimal threshold may 
be selected for the desired trade-off between the CPU 
load, and the acceptable system interrupt latency. The 
required Rx FIFO threshold is also a function of the 
receive character rate. When the rate is high, a deep 
FIFO is required. When the rate is very low (e.g., hun­
dreds of milliseconds between characters), a low thresh­
old is needed, to reduce the maximum character service 
latency (a character is available to the application pro­
gram only after it is stored in the receive buffer). 

The software mechanism described here tunes the Rx 
FIFO threshold dynamically when the incoming char­
acter rate is variable. The algorithm uses one of the 
82510 on-chip timers for time measurement, in order to 
automatically adapt the threshold to the character re­
ception rate. This is done without loading the CPU 
with the overhead of serving excessive interrupts gener­
ated by the timer mechanism itself. 

3.2 Burst Algorithm Description 

The 82510 timer is initialized to the time-out value with 
every Rx FIFO interrupt. The time-out value is the 
maximum acceptable time between a character's recep­
tion and its storage in the receive buffer, but not less 
than five character-times. Upon reception of the next 
character, the timer status is examined to determine 
whether the character rate is' high (the timer has not yet 
expired) or low (the timer has expired). 



intJ AP-310 

2nd character received, at LOW rate 

2nd character received, at HIGH rate 

receive characters at HIGH rate 
292038-1 

Figure 1. Burst Algorithm State Diagram 

The algorithm is best described as a finite state machine 
that can be'in one of three modes: HUNTING mode, 
SINGLE mode, or BURST mode. In HUNTING 
mode, after the first character received interrupts the 
CPU, the mode switches to SINGLE. On receiving a 
character in SINGLE mode (that is the second charac­
ter) the timer is examined; if the character rate is very 
low, the mode is switched back to HUNTING. Other­
wise, the rate is high enough to switch to BURST 
mode. In BURST mode, the Rx FIFO threshold is 
maximal. The machine remains in BURST mode as 
long as a burst' of characters is being received. When 
the rate of character reception becomes low, the timer 
eventually expires generating a timer interrupt which 
switches the mode back to HUNTING. 

Note that while a burst of characters is being received, 
the CPU is interrupted only once per four received 
characters. If the characters are received at a very ·Iow 
rate, an interrupt occurs for each received character. 
The CPU is interrupted by the timer only once, when 
the burst terminates. See Figure I for a state diagram. 

For more details about the burst algorithm see para­
graph 6.2. 

2-84 

4.0 SOFTWARE MODULE MAP 

The driver contains the following software modules: 

• MAIN 
• BURST ALGORITHM 

Burst Algorithm Initialization (*) 

Rx FIFO Step (") 

HUNTING mode 

SINGLE mode 

BURST mode 
- Timer Step (*)' 

• INITIALIZATIONS 
- Wait for Modem Status 

• INTERRUPT HANDLER 
- Rx FIFO Interrupt Service Routine 

- Tx FIFO Interrupt Service Routine 

- Status Interrupt Service Routine 

- Timer Interrupt Service Routine 

- Modem Interrupt Service Routine 

(*) The burst algorithm modules are called by the ini­
tialization module and by the interrupt handler mod­
ules. 



intJ AP-310 

INITIALIZATIONS 

292038-2 

Figure 2. Modules Block Diagram 

5.0 HARDWARE VEHICLE 
DESCRIPTION 

The driver was tested at 288000 baud, on an 80186 
based system, with an 8 MHz local bus running with 2 
wait-states, and an 18.432 MHz 82510 clock. Two sta­
tions were involved: one transmitter station and one 
receiver station. Each station consisted of an 
iSBC186/51 with a 82510 based SBX board connected 
to it. See Appendix B for description of the SBX board. 

This driver is, nonetheless, suitable for running iIi a 
large number of system environments. 

2-85 

6.0 SOFTWARE MODULE 
DESCRIPTIONS 

6.1 MAIN 

The MAIN module is a simple example of an applica­
tion program that uses the driver. 

The communication is done between two stations: One 
station is the transmitter and the other one is the re­
ceiver. After interrupts are enabled, the program waits 
for the Finish_Tx flag or the Finish~x flag (for the 
transmitter or receiver station, respectively) to be set. 
In the transmitter station, the driver is preloaded with 
the transmit data. In the receiver station, the received 
data is displayed after data reception is complete. 



inter AP-310 

292038-3 

Figure 3. MAIN 

6.2 The Burst Algorithm Modules 

6.2.1 INITIALIZE THE BURST ALGORITHM 

This module is called by the initialization module. 

The global variable Burst_algo is used to indicate the 
current burst algorithm mode. 

The burst algorithm is most useful at a baud rate of 
9600 or higher. At lower baud rates, where the Rx in­
terrupt rate is very low, the burst algorithm is degener­
ated (Low_baud is assigned to Burst_algo). At a 
baud rate of 9600 or more, the burst algorithm mecha­
nism is initialized and starts by disabling the timer in­
terrupt. 

The initial state of the burst algorithm is HUNTING 
mode. In this mode, it is looking for (hunting) the first 
character. The Rx FIFO threshold is zero, thus the first 
character received interrupts CPU. This interrupt starts 
the burst algorithm mechanism. 

BURST -;a190 = Low Baud 

292038-4 

Figure 4. Initialize The Burst Algorithm 

2-86 



Ap·310 

6.2.2 BURST ALGORITHM MECHANISM 

. Modules HUNTING, SINGLE, BURST are called by 
Rx FIFO interrupt service routine. Module 
BURST &TIMER is called by timer interrupt service 
routine. 

6.2.2.1 HUNTING Mode 

Hunting for the first character received is the first step 
in the burst algorithm. After the first character is de­
tected, received and handled, it must be determined if 
reception will be at high or low rate. This is done by 
starting the timer. HUNTING mode ends by assigning 
the second step, i.e., SINGLE mode, to Burst_algo. 

BURST-algo = HUNTING 

6.2.2.2 SINGLE Mode 

When the second character is received, the burst algo­
rithm is in SINGLE mode. Timer status is read 
(TMST). If the status indicates that the timer has ex­
pired, the receive character rate is low and there is no 
need to increase the Rx FIFO threshold. The burst al­
gorithm returns to its first state, i.e., HUNTING mode. 
However, if the timer has not expired, the receive char­
acter rate is high, and the Rx FIFO threshold is set to 
the maximal allowable value. The timer is restarted and 
the timer interrupt is enabled so that, if it expires before 
the Rx FIFO exceeds the. threshold, a timer interrupt 
will occur. 

SINGLE mode is ended by assigning the third step, 
BURST mode, to BURST_algo. 

SINGLE mode BURST mode 

292038-5 

Figure 5. The Burst Algorithm 

2-87 



inter AP-310 

6.2.2.3 BURST Mode 

The algorithm enters BURST mode as soon as the re­
ceive character. rate is evaluated as high, i.e., when two 
successive characters are received without a timer expi­
ration. The FIFO is now working at full threshold and 
the timer is used as a timeout watch dog. BURST mode 

. is the most time-critical path of the algorithm. There­
fore, it consumes a minimum amount of real time. 

The timer is restarted, in order to restart a new timeout 
measurement. The timer status is read to trigger auto­
matic reset of the previous status; this is done to avoid 
the timer interrupt if the timer has expired during the 
Rx FIFO interrupt service routine execution. 

6.2.2.4 Timer Interrupt and Bust Algorithm 

If the character reception rate becomes low, then the 
time between two successive Rx FIFO interrupts in­
creases. Hence, a reduction in the reception rate causes 
the timeout to expire, and a timer interrupt occurs. 
This drives the algorithm back to HUNTING mode. 
The timer interrupt is disabled and the Rx FIFO 
threshold is configured to zero, to issue an Rx interrupt 
on the first hunted character. 

292038-6 

Figure 6. Timer Interrupt and BURST Algorithm 

Table 1. BURST Algorithm Modes 

Mode 
FIFO 

Timer Timer-Interrupt 
Threshold 

Hunting 0 Idle Disabled 

Single 0 Started Disabled 

Burst Max. Restarted Enabled 

6.2.3 FLOWCHART DESCRIPTION 

The Rx FIFO interrupt handler executes the burst al­
gorithm immediately after the Rx FIFO is emptied (to 

2-88 

avoid an overrun error). The module was designed to 
minimize the CPU overhead inherent in the burst algo­
rithm itself. 

BURST mode is assigned the fastest path because it is 
the most real time sensitive mode. 

SINGLE mode has a slightly longer path. However, 
under a high reception rate,. the algorithm passes SIN­
GLE mode once only and then stays in BURST mode 
until the end of the burst. Under a low reception rate 
the algorithm passes SINGLE mode many times, but, 
since the period between two successive Rx interrupts is 
long, this hardly affects system performance. 

6.3 Initializations 

This module initializes the driver. It is called at pro­
gram start-up. 

The 82510 is configured for the specific operation mode 
by the CONFIG_8251O submodule: A Software Reset 
command is issued, and then the character configura­
tion is selected. In the receiver station ACRO and 
ACRI Registers are loaded with the End-Of-File 
ASCII character, so that the Control Character Recog­
nition feature of the 82510 can be used to detect the 
specific' file terminator. In the transmitter station, the 
ASCII characters XOFF and XON are loaded to 
ACRO and ACRl, respectively, to detect transmit-off! 
on requests automatically. The use of the control char­
acter recognition feature of the 82510 reduces system 
overhead, as the software does not need to check every 
received character. A special interrupt is received when 
the 82510 hardware detects a received control charac­
ter. 

Interrupt sources are enabled (note that a Tx interrupt 
will occur immediately). BRGA is loaded to generate 
the required baud rate (288000 baud in this specific 
implementation). Rx FIFO depth is set to 4. The Tx . 
and Rx FIFO thresholds are initialized to O. BRGB is 
selected to function as a timer, and is loaded with the 
timeout value (7 ms at 18.432 MHz, in this implemen­
tation). The RxC and TxC sources are selected to be 
BRGA. 

The burst algorithm' parameters are initialized by 
INIT_BURST. WAIT-YO~ODE~STATUS 
is called and implements a wait until the modem hand­
shake DSR signal is set. If W AIT_FO~MODE~ 
STATUS returns with a timeout error, the modem er­
ror is processed. If no error has occurred, the following 
parameters are initialized: Finish_Rx and Finish_Tx 
flags, receive and transmit buffer pointers, and the re­
ceiver flag. All status registers are cleared by issuing a 
STATUS CLEAR command to the ICM register. 



Ap·310 

292038-7 

Figure 7. Initializations 

2-89 



intJ 

ACRO = EOr char 
ACR 1 = EOr char 

GER = Enbl Intr 
Rx, Stat, t.Aodem 

AP-310 

ACRO = X_Off char 
ACRI = X_On char 

GER = Enbl Intr 
Rx, Stot, t.Aodem 

Figure 8. 82510 Configurations 

2-90 

292038-8 



intJ Ap·310 

This module waits, with a timeout, for the DSR modem 
handshake signal to be set. DSR should be active before 

any communication starts (it indicates that the modem 
is active). The returned Modem_Handshake flag indi­
cates normal return (true) or timeout error return 
(false). 

292038-9 

Figure 9. WaiLFor_Modem_Status 

2-91 



, inter AP-310 

6.4 Interrupt Handler 

The interrupt handler services the 82510 interrupt 
sources, Since this is a time-critical path, the code is 
optimized to minimize real time consumption, 

The interrupt handler services only one interrupt 
source at a time. This prevents CPU resource starva­
tion from other interrupt driven devices. Interrupts are 
enabled at the beginning of the interrupt handler, so 
that higher priority interrupt'sources are not disabled 
by the 82510 interrupt handler. 

6.4,.1 INTERRUPT HANDLER STRUCTURE 

The interrupt handler identifies the highest priority 
pending 82510 interrupt, by reading GIR. The inter­
rupt handler was designed so that shorter paths are 
assigned to more real time sensitive interrupt sources. 
Rx FIFO interrupt is the most sensitive, Tx FIFO is 
the second most sensitive, and so on. 

The programmable interrupt controller (8259A) is as­
sumed to be configured to "edge triggering mode" and 
"non-automatic end of the interrupt" mode. 

292038-10 

Figure 10. Interrupt Handler 

2-92 



inter AP-310 

6.4.2 Rx FIFO INTERRUPT SERVICE ROUTINE 

The Rx FIFO interrupt service routine first empties the 
Rx FIFO. The receive data register (RXD) is read, as 
many times as indicated by the FIFO occupancy regis· 
ter (FLR), and the characters are stored in Rx_Buf. 

After emptying the Rx FIFO, the Rx FIFO interrupt 
service routine executes the burst algorithm (see para· 

graph 6.2.2). Before leaving the Rx FIFO interrupt 
service routine, the FIFO occupancy register is re­
checked, to empty the Rx FIFO of characters that may 
have been received during the Rx FIFO interrupt serv­
ice routine itself. This can happen if the Rx FIFO inter­
rupt service routine has been interrupted by a higher 
priority interrupt. 

292038-11 

Figure 11. Rx FIFO Interrupt Service Routine 

2-93 



inter AP-310 

6.4.3 Tx FIFO INTERRUPT SERVICE ROUTINE 6.4.4 STATUS INTERRUPT SERVICE ROUTINE 

The Tx FIFO interrupt service routine fills 'the Tx 
FIFO with transmit characters while checking for the 
End·Of-File terminator, According to the FIFO occu­
pancy register (FLR), the Tx FIFO is loaded (by writ­
ing to TXD) until it is full or until the End-Of-File 
character is detected. The transmitted characters are 
taken from TxJuf. If an End-Of-File character is 
identified, then the transmission is immediately ended 
by disabling all 82510 interrupts and setting the Fin­
ish_Tx flag. 

(Txflfo Full) No 

The status interrupt service routine has four objectives: 

- To empty the Rx'FIFO, 

- To ·stop reception if an End-Of-File character is 
identified by the control character recognition 
mechanism (in the receiver station), 

To disable or enable the Tx interrupt ifaXOFF or 
XON character, respectively, is identified by the 
control character recognition mechanism (in the 
transmitter station). 

To handle parity, framing, or overrun errors (in the 
receiver station). 

t=t+ 1 

292038-12 

Figure 12. Tx FIFO Intr Service Routine 

2-94 



Ap·310 

First the Rx FIFO is emptied. In the receiver station, 
the RST register is checked to determine whether an 
End-Of-File terminator has been identified by the 
82510, in which case reception is stopped immediately 
by disabling all interrupt sources and setting the 
FinisLRx flag. In the transmitter station, the received 
characters are checked to identify the received control 
character. If XOFF is identified, Tx interrupt is dis­
abled. If XON is identified, Tx interrupt is enabled. 
Note that the so~tware does not need to check for any 

Transmit 
station 

control character during normal reception; the control 
characters are identified by the 82510 device. 

RST is checked for parity, framing or overrun errors. If 
one of these errors has occurred, then the error han­
dling routine is executed. 

If status interrupt occurs while Burst_algo is assigned 
to BURST mode, the timer is restarted. 

Note that status interrupt is enabled at both stations. 

Receive 
station 

,to End_lntr _Handler 

292038-13 

Figure 13. Status Intr. Service Routine 

2-95 



inter Ap·310 

6.4.5 TIMER INTERRUPT SERVICE ROUTINE 6.4.6 MODEM INTERRUPT SERVICE ROUTINE 

A timer interrupt occurs when the receive character 
rate becomes low. The timer interrupt service routine 
first empties the Rx FIFO and then switches the burst 
algorithm to HUNTING mode. . 

292038-14 

Figure 14. TIMER Intr Service Routine 

Modem interrupt occurs if one of the modem lines has 
dropped during transmission or reception. The modem 
interrupt service routine reads the MSR register to ac­
knowledge the modem interrupt. The modem error 
routine is then executed. 

292038-15 

Figure 15. MODEM Intr Service Routine 

2-96 



inter Ap·310 

APPENDIX A 
PL/M SOURCE FILE 

1************************************************************************* 

* * * 8 2 S 1 0 - H I G H PERFORMANCE D r i v e r * 
* * * This driver is optimized for Real Time systems, It supports * 

* high system performance, It is based on the "BURST algorithm" * 
*************************************************************************1 

HIGHPERFORMANCE: DO i 

1************************************************************************* 
* LITERALS * 
*************************************************************************1 

DECLARE LIT 
DECLARE TRUE 
DECLARE FALSE 
DECLARE BAUD 9600 
DECLARE BAUD-19200 
DECLARE BAUD-28BOOO 
DECLARE DLAB-O 
DECLARE DLAB-l 
DECLARE CR -
DECLARE LF 
DECLARE X Off 
DECLARE x-on 
DECLARE End Of File 
DECLARE BASE S10 
DECLARE NASO­
DECLARE WORKl 
DECLARE GEN2 
DECLARE MODM3 
DECLARE TXD 
DECLARE RXD 
DECLARE BAL 
DECLARE BAH 
DECLARE GER 
DECLARE GIR 
DECLARE BANI< 
DECLARE LCR 
DECLARE MCR 
DECLARE LSR 
DECLARE MSR 
DECLARE ACRO 
DECLARE RXF 
DECLARE TXF 
DECLARE TMST 
DECLARE TMCR 
DECLARE FLR 
DECLARE RST 
DECLARE RCM 
DECLARE TCM 
DECLARE GSR 
DECLARE ICM 
DECLARE FMD 
DECLARE TMD 

LITERALLY 'LITERALLY': 
LIT 'OFFH' 
LIT 'OOH' 
LIT '003CH' 
LIT 'OOlEH' 
LIT '0002H' 
LIT 'Oll1ll1lB' 
LIT '10000000B' 
LIT 'ODH' 
LIT 'OAH' 
LIT '13H' 
LIT 'llH' 
LIT 'lAH' 
LIT 'OBOH' 
LIT 'OOOOOOOOB' 
LIT '00100000B' 
LIT '01000000B' 
LIT 'Ol100000B' 
LIT 'BASE S10 + 0' 
LIT 'BASE-Sl0 + 0' 
LIT 'BASE-Sl0 + 0' 
LIT 'BASE-Sl0 + 2' 
LIT 'BASE-Sl0 + 2' 
LIT 'BASE-Sl0 + 4' 
LIT 'BASE-Sl0 + 4' 
LIT 'BASE-Sl0 + 6' 
LIT 'BASE-Sl0 + B' 
LIT 'BASE-Sl0 +10' 
LIT 'BASE-Sl0 +12' 
LIT 'BASE-Sl0 +14' 
LIT 'BASE-Sl0 + 2' 
LIT 'BASE-Sl0 + 2' 
LIT 'BASE-Sl0 + 6' 
LIT 'BASE-Sl0 + 6' 
LIT 'BASE-Sl0 + 8' 
LIT 'BASE-Sl0 +10' 
LIT 'BASE-Sl0 +10' 
LIT 'BASE-Sl0 +12' 
LIT 'BASE-Sl0 +14' 
LIT 'BASE-Sl0 +14' 
LIT 'BASE-Sl0 + 2' 
LIT 'BASE=S10 + 6' 

2-97 

: 
:1* Character configurations *1 

: 
:1* Reset DLAB 
:1* set DLAB 
il* Control characters 

i 
il* B 2 5 1 0 registers 

il* BANI< 0 - NAS 

" . 
il* BANI< 1 - WORI< 

*1 
*1 
*1 

*1 

*1 

*1 

il* BANI< 2 - GENERAL CONFIGURE *1 
292038-16 



Ap·310 

DECLARE IMD LIT 'BASE 510 + S' ; 
DECLARE ACR1 LIT 'BASE-S10 +1.0' ; 
DECLARE RIE LIT 'BASE-SI0 +12' ; 
DECLARE RMD LIT 'BASE-SI0 .+14' ; 
DECLARE CLCF LIT 'BASE-S10 + 0' ;1* BANK 3 - MODEM *1 
DECLARE BBL LIT 'BASE-S10 + 0' ;1* DLAB=l *1 
DECLARE BACF LIT 'BASE-SI0 + 2 ' · DECLARE BBH LIT 'BASE-SI0 + 2 ' ;1* DLAB=l *1 
DECLARE BBCF LIT 'BASE-SI0 + 6" ; 
DECLARE PMD LIT 'BASE-SI0 + S' ; 
DECLARE MIE LIT 'BASE::::SI0 +10' ; 
DECLARE TMIE LIT 'BASE 510 +12' · DECLARE OUT2 MCR , LIT 'OOOO1000B' ; I'!' Specific register bits *1 
DECLARE DTR MCR LIT 'OOOOOOOiB' ; 
DECLARE DSR-MSR LIT 'OO100000B' ; 
DECLARE CLRSTAT ICM LIT '.00000100B' ; 
DECLARE INTR 510 LIT '21H' ; 
DECLARE PORT-S0130M LIT 'OE2H' ; 
DECLARE EN S0130 LIT 'OFDH' ; 
DECLARE PORT EOI LIT 'OEOH' ; 
DECLARE COMM-EOI LIT '61H' ;1* End Of Interrupt command *1 
DECLARE ENRTX GER LIT 'OOOOll11B' ;1* Enable Interrupt bits *1 
DECLARE ENTX GER LIT 'OOOOOO10B' ; 
DECLARE ENTXSTAT GER LIT 'OOOOl110B' ; 
DECLARE ENRX_GER~ LIT 'OOOOl101B' ; 
DECLARE ENTIMRX GER LIT 'OO101101B' ; 
DECLARE DISTX GER LIT 'OOOO1101B' ; 
DECLARE DISR~-GER LIT 'OOOOOO10B' ;1* Disable Interrupt bits *1 
DECLARE DISRTX GER' LIT 'OOOOOOOOB' ; 
DECLARE TXTHRESHO FMD LIT 'OOOOOOOOB' ;1* FIFO threshold *1 
DECLARE RXTHRESHO-FMD LIT 'OOOOOOOOB' ; 
DECLARE RXTHRESH3-FMD LIT 'OO110000B' ;-
DECLARE MASK RXOCC LIT 'Oll10000B' ;1* Mask on occupancy bits *1 . 
DECLARE MASX-TXOCC LIT 'OOOOOl11B' · DECLARE MASK-ACRSTAT LIT 'Ol1)OOOOOB' ;1* Mask on ACR status bits *1 
DECLARE CHRLEN S LIT 'OOOOOO11B' ;1* Async parameters *1 
DECLARE STPBIT-1 LIT 'OOOOOOOOB' ; 
DECLARE PARITY-NON LIT 'OOOOOOOOB' ; 
DECLARE SWRES CMND LIT 'OOO10000B' ; 
DECLARE ERRCHR RST LIT 'OOOOl110B' ; 
DECLARE ACRSTAT RIE LIT .'01000000B' ; 
DECLARE ACRSTAT-RST LIT '01000000B' ; 
DECLARE NONI GIR LIT 'OO100001B' ;1* ',Interrupt vector *1 
DECLARE MODMI GIR LIT 'OO100000B' ; 
DECLARE TXI-GIR LIT 'OO100010B' ; 
DECLARE RXI-GIR LIT 'OO100100B' ; 
DECLARE STATI-GIR LIT 'OO100110B' ; 
DECLARE TIMI-GIR LIT 'OO101010B' ; 
DECLARE AUTOACK IMD LIT 'OOOO1000B' ; 
DECLARE TIMOD BeCF LIT 'OOOOOOOOB' ;1* Timer *1 
DECLARE TIMBI::::TMIE LIT 'OOOOOO10B' ; 
DECLARE FIFO IMD LIT 'OOOOOOOOB' ; 
DECLARE STARTIMB_TMCR LIT 'OO100010B' ; 
DECLARE STARTIMB TMST LIT 'OOOOOO10B' " DECLARE RTXCLK BRGA CLCF LIT '01010000B' · DECLARE LOW BAUD - LIT 'OOH' ;1* BURST algorithm *1 
DECLARE HUNTING MODE LIT 'OlH' ; 
DECLARE SINGLE-MODE LIT '02H' ; 
DECLARE BURST-MODE LIT '03H' , .. 
DECLARE TIME EXP LIT 'OFFFFH' ;1*. timeout=7mS (at lS.4 Mhz) *1 
DECLARE WAIT::::TlME LIT 'OOFFFH' ;1* WAIT_FOR_MODEM_STATUS *1 

292038-17 

2·98 



inter AP-310 

1************************************************************************* 
* VARIABLES * 
*************************************************************************/ 

DECLARE TX PTR POINTER PUBLIC 
DECLARE TX-BUF BASED TX PTR (3000) BYTE ; 
DECLARE IX-TX WORD PUBLIC ; 
DECLARE RX=BUF(3000) BYTE PUBLIC; 
DECLARE IX RX WORD PUBLIC 
DECLARE INTR VEC BYTE PUBLIC 
DECLARE FIN TX BYTE " PUBLIC 
DECLARE FIN-RX BYTE PUBLIC 
DECLARE RX eHR BYTE PUBLIC 
DECLARE TX-CHR BYTE PUBLIC 
DECLARE TX-OCC BYTE PUBLIC 
DECLARE RX-OCC BYTE PUBLIC 
DECLARE STAT BYTE PUBLIC • 
DECLARE BAUD WORD PUBLIC 
DECLARE TEMP BYTE PUBLIC 
DECLARE FIN BYTE PUBLIC 
DECLARE SELECTION BYTE PUBLIC 
DECLARE RECEIVER BYTE PUBLIC 
DECLARE BURST ALGO BYTE PUBLIC 
DECLARE MODEM-HANDSHAKE BYTE PUBLIC 
U~CLARE COUNTER WORD PUBLIC ; 
DECLARE RX_ERROR BYTE PUBLIC ; 

1* Transmit buffer 

1* Receive buffer 

1* Finish Transmission flag 
1* Finish Reception flag 

1* Receive station 
1* BURST algorithm 

1* Error occurred during 
1* reception 

*1 

*/ 

*/ 
*1 

*/ 
*1 

*/ 
*1 

�*----------------------------------------------------~------------------*I 

1* 1/0 console utilities 
$INCLUDE (:Fl:TIOHP.PEX) 

1* Setup and H/W configurations 
$INCLUDE (:Fl:HPUTIL.PEX) 

DECLARE MAIN LABEL PUBLIC 

*/ 

*1 

1************************************************************************* 
* Procedure INITIALIZATIONS * 
************************************************************************* 
* input: none * 
* output: none, * 
* function: driver initialization: parameters, 82510 * 
* configuration, modem status cheek. * 
* called by: Main * 
* calling: CONFIG_82510, INITIALIZE_BURST, WAIT_FOR_MODEM * 
* * * Init the Interrupt mechanism by enable Interrupt in GER register * 
* At the Receive station: Enable Rx FIFO, Status and Modem Interrupts * 
* Disable Timer Interrupt * 
* At the Transmit station: Enable Tx FIFO, Status and Modem Interrupts * 
* * * flowchart: figure 7 description: paragraph 6.3 * 
*************************************************************************1 

INITIALIZATIONS: PROCEDURE PUBLIC 

DISABLE ; 
CALL SET$INTERRUPT(INTR_510,INTR HANDLER) 

1* Install THE INTR HANDLER 

TX CHR=OO 
RX::-CHR=OO 

1* Clear TX_CHR and RX CHR 

2-99 

*/ 

*/ 

292038-18 



intJ AP-310 

CALL TEXT ; 1* TX PTR is a pointer to the transmitted*1 
1* data *1 

IX TX= OFFFFH 1* The index buffer are assiqned to -1 *1 
IX-RX= OFFFFH 
FIN TX=FALSE ; 1* Init Finish Transmit and receive flaqs*1 
FIN-RX=FALSE ; 
RX_BUF(O)=O 
RX_ERROR=FALSE 1* Reset the flaq *1 

BAUD=BAUD_288000 1* The Async communication Baud rate is *1 
1* the 82510-full scale 288000 *1 

CALL CONFIG_82510 1* Confiqured the 82510: *1 
1* S/W reset, character lenqth, parity, *1 
1* stop bit, baud rate and fifo threshol *1 

1************************************************************************* 
* INITIALIZE BURST * 
***********w************************************************************* 
* input: none * 
* output: Burst Alqo * 
* function: start-Burst alqorithm in Huntinq mode * 
* called by: INITIALIZATIONS * 
* callinq: none * 
* * * flowchart: fiqure 4 description: paraqraph 6.2.1 * 
*************************************************************************1 

IF BAUD<=BAUD_9600 THEN BURST ALGO~HUNTING MODE ; 
1* HUNTING mode: -
1* Rx FIFO threshold is 0 
1* Timer interrupt is disable 

ELSE BURST_ALGO=LOW_BAUD 

CALL WAIT FOR MODEM STATUS ; 

*1 
*1 
*1 

- - - 1* wait for Modem handshake line "DSR" *1 

TEMP 
TEMP 
TEMP 
TEMP 

INPUT (RXD) 
INPUT (RXD) 
INPUT (RXD) 
INPUT (RST) 

END INITIALIZATIONS ; 

1* if ACTIVE set MODEM_HANDSHAKE *1 

1************************************************************************* 
* Procedure CONFIG 82510 * 
************************************************************************* 
* input: none * 
* output: none * 
* function: configure the 82510 to a specific operation * 
* mode * 
* called by: INITIALIZATIONS * 
* callinq: none * 
* * * flowchart: fiqure 8 description: paraqraph 6.3 * 
*************************************************************************1 

CONFIG_825l0: PROCEDURE PUBLIC 

1* Perform Software reset 
OUTPUT (BANK) = WORK1; 
OUTPUT (ICM) = SWRES_CMND; 

1* Move to work bank 
1* S/W reset command 

2-100 

*1 
*1 
*1 

292038-19 



AP-310 

/* BANK ZERO - NAS (The default BANK) */ 

/* Configured the character by writing to Lea: */ 
/* 1 stop bit, 8 bit lengh, non parity */ 
OUTPUT(LCR)=(STPBIT_1 + CHRLEN_8 + PARITY_NON) 
OUTPUT(MCR)=(DTR MCR OR OUT2 MCR) ; 

- - /* Required only in IBM PC environment: */ 
/* set OUT2 signal to control an external*/ 
/* 3-state buffer that drives the 82510 */ 
/* interrupt signal */ 

IF RECEIVER THEN OUTPUT(ACRO)=End Of File ; 
/* At the Receive station EOF is */ 
/* recognized to terminate reception */ 

ELSE OUTPUT(ACRO)= X_OFF /* At the Transmit station "X Off" is */ 
/* recognized to stop transmission */ 
/* temporary */ 

/* Enable 82510 Interrupt by set GER, */ 
/* done at the end of INITIALIZATIONS */ 

DISABLE ; 
/* Init the 82510 Interrupt mechanism */ 

IF RECEIVER THEN OUTPUT(GER)=ENRX GER ; 
/* a~ the Receive station 

ELSE OUTPUT(GER)=ENTXSTAT_GER 
*/ 

/* and the Transmit station 

/* 
/* 

OUTPUT (LCR) = INPUT (LCR) OR DLAB 1; 
OUTPUT(BAL)=LOW (BAUD 288000) ; 
OUTPUT(BAH)=HIGH(BAUD-288000) ; 
OUTPUT(LCR)=INPUT(LCR) AND DLAB_O; 

Configured baud rate to 288000 
by writing to BRG A (BAL and BAH) 
/*Set DLAB to allow access to BRG 

*/ 

*/ 
*/ 
*/ 

/* reset DLAB */ 

/* BANK TWO - General configuration */ 
OUTPUT(BANK)=GEN2 ; 

OUTPUT(IMD)=(AUTOACK IMD OR FIFO IMD) ; 
- 7* Automatic interrupt acknowledge, */ 

/* Rxfifo depth is four bytes */ 

OUTPUT(FMD)=(TXTHRESHO FMD OR RXTHRESHO FMD) ; 
- /* Rxfifo threshold is temporally zero */ 

/* for HUNTING mode (BURST algorithm) */ 
/* Txfifo threshold is zero for max */ 
/* interrupt latency */ 

IF RECEIVER THEN OUTPUT(ACR1)=End Of File ; 
/* At the Receive station EOF is */ 
/* recognized, the same as ACRO */ 

ELSE OUTPUT(ACRl)=X_ON /* At the Transmit station "X On" is */ 
/* recognized to continue transmission */ 

OUTPUT (RIE) (ACRSTAT_RIE OR INPUT(RIE» ; 
/* Enable interrupt on programmed control*/ 
/* character received (ACRO/ACRl) */ 

/* BANK THREE ~ MODEM configuration 
OUTPUT(BANK)=MODM3 ; 

OUTPUTc'BBCF)=(TIMOD BBCF) /* 
OUTPUT (BANK) = NASO; ,/* 
OUTPUT (LCR) =INPUT (LCR) OR DLAB_l ; 
OUTPUT (BANK) = MODM3; /* 
OUTPUT (BBL) = LOW (TIME_EXP); /* 

BRG B configured to TIMER mode 
Move to nas bank to set DLAB 
/* Set DLAB to allow access to 
MODEM bank 
Set max timeout (7ms if l8Mhz 

2-101 

*/ 

*/ 
*/ 

BRG */ 
*/ 

crystal)·/ 

292038-20 



intJ Ap·310 

OUTPUT(BBH) = HIGH(TlME EXP); /. to issue interrupt when time has */ 
OUTPUT (BANK) = NASO; - /. expired. Move to NAS bank again */ 
OUTPUT (LCRl =INPUT(LCRl AND DLAB 0 ; /. Reset DLAB *1 
OUTPUT (BANK) = MODM3; 7. switch to BANK THREE - MODEM */ 
OUTPUT(CLCF)=RTXCLK BRGA CLCF /. The receive and transmit clock source ./ 

- - /. is BRG A . ./ 

OUTPUT(TMIE)=TIMBI_TMIE ; 

/* BANK ONE - general WORK 
OUTPUT(BANK)=WORK1 ; 
OUTPUT(ICMl=CLRSTAT_ICM 

/. Enable Timer block' interrupt 
/* (stil disabled in Timer bit in GER) 

- The RUNTIME b~nk 

/. Issues a command to clear all 
/. status registers 

/. Remain in W 0 R K - THE runtime bank 

END CONFIG_~2510 ; 

*/ 
*/ 

*/ 

*/ 
*1 

./ 

/****:********'******************* •• *******1Ir.******************************* 
• Procedure WAIT FOR MODEM STATUS • ••• * •••••••••••••• * ••• * ••••• *.*.* •••••••••••••••••••••••••••••••••••••• ** 
• input: none • 
• output: Moaem Handshake * 
• function: waits-with a timeout for DSR active, • 
• returns status flag * 
• called by: INITIALIZATIONS * 
• calling: none * 
• * 
• flowchart: figure 9 description: paragraph 6,3.1 * 
***************************.*********************************************/ 

WAIT_FOR_MODEM_STATUS: PROCEDURE PUBLIC ; 

MODEM HANDSHAKE = FALSE ; 
COUNTER = WAIT_TIME ; 

DO WHILE (NOT MODEM HANDSHAKE) AND «COUNTER:=COUNTER-1) > 0 ) ; 
IF (INPUT(MSR) . AND DSR MSR) <> 0 THEN MODEM_HANDSHAKE TRUE 

END -

END WAIT_FOR_MODEM_STATUS 

/ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• * ••• *.*.*.** 
• Procedure INTERRUPT HANDLER * 
•••••••••••••••••••••••••••••••••••••••••••••••••••• * •••••••••• *.** ••••• * 
• input: Tx Buffer • 
• output: Rx Buffer, Finish_TX, Finish_Rx • 
• function: service all 82510 interrupt sources: • 
• Rx Fifo, Tx Fifo, status, Timer, Modem • 
• cal'led by: 82510 hardware interrupt • 
• calling: Rx Fifo Intr, Tx Fifo Intr, Status Intr, • 
• Timer_Intr, Modem_Intr - .• 
• • 
• flowchart: figure 10 . description: paragraph 6.4, 6.4.1 • 
*********************************************.***************************1 

INTR_HANDLER: PROCEDURE INTERRUPT INTR_510 REENTRANT PUBLIC ;" 

ENABLE 

INTR_VEC=INPUT(GIR); 

/. Enable Interrupts of 
/. HIGHIER priority devices 

/. Get the 82510-highest priority 
/. pending interrupt 

2-102 

*/ 
*/ 

*/ 
*/ 

292038-21 



in1:ef AP-310 

/************************************************************************* * Rx FIFO INTR * 
************************************************************************* 
* input: none * 
* output: Rx Buffer, Burst Algo * 
* function: service Rx Fifo Interrupt * * receive characters; store 'in receive buffer * 
* called by: INTERRUPT HANDLER * 
* calling: BURST_ALGO * 
* * * flowchart: figure 11 description: paragraph 6.4.2 * 
*************************************************************************/ 

IF INTR_VEC=RXI_GIR THEN DO ; 

RX_OCC=INPUT(FLR) ; /* Rx fifo level occupancy */ 
/* Shift the Rx occupancy bit */ 

RX_OCC=SHR(RX_OCC,4) /* to get it's real value '*/ 
/* - OPTIMIZE code - */ 
/* Empty the Rx FIFO and store the */ 
/* received character in RX_BUF */ 

RX BUF(IX RX:=IX RX+l)=INPUT(RXD) 
- - - /* Read the first character immediatly */ 

/* to save Real Time */ 
DO WHILE (RX OCC:=RX OCC-l) > 0 ; 

RX BUF(IX-RX:=IX RX+l)=INPUT(RXD) 
END ;- - - , 

/************************************************************************* 
* BURST ALGORITHM * 
************,************************************************************* * input: Burst Algo * 
* output: Burst -Algo * 
* function: execute a step in the burst algorithm * 
* after characters are received * 
* called by: Rx_FIFO_INTR * 
* calling: rione * 
* * * flowchart: figure 5 description: par. 6.2.2.1 to 6.2.2.3 * 
*************************************************************************/ 

/*-----------------------------------------------------------------* * BUR S T MOD E - step 3 (full fifo threshold) * 
* Reset the Timer status * 
* Restart the Timer * 
*-----------------------------------------------------------------*/ 

IF BURST ALGO = BURST MODE THEN DO ; 
TEMP ~ INPUT(TMST); 
OUTPUT (TMCR) =STARTIMB_TMCR; 

END; 

/*-----------------------------------------------------------------* * HUN TIN G MOD E - step 1 * 
* Oper<lte the TIMER * 
* Change to step 2 SINGLE mode * 
*-----------------------------------------------------------------*/ 

ELSE IF BURST ALGO = HUNTING MODE THEN DO ; 
OUTPUT(TMCR)=STARTIMB TMCR 
BURST_ALGO=SINGLE_MODE 

END ; 

2-103 

292038-22 



inter Ap·310 

/*-----------------------------------------------------------------* 
* SIN G L E MOD E - step 2 * 
* If TIME has expired, means the receive * 
* rate is LOW, return to HUNTING mode * 
* If TIME did NOT expire, means the * 
* Receive rate is HIGH, set Rx FIFO threshold, Restart the * 
* Timer and switch to BURST mode * 
*-------------------------------~---------------------------------*/ 

ELSE IF BURST_ALGO = SINGLEJMODE THEN DO : 

IF «INPUT(TMST) AND STARTIMB_TMST) <>0) THEN 

ELSE 00: 
BURST_ALGO= HUNTING_MODE : 

OUTPUT (BANK) = GEN2:/* switch to BANK TWO - General Config */ 
OUTPUT(FMO)=TXTHRESHO_FMD OR RXTHRESH3_FMO: 
OUTPUT (BANK) =NASO: /* switch to BANK ZERO - NAS */ 
OUTPUT (GER) -= ENTIMRX GER: 

/* Enab~e TIMER,RX and MODEM interrupts */ 
OUTPUT(BANK)-WORK1: /* switch to BANK ONE - WORK */ 
BURST ALGO = BURST MODE: 
TEMP; INPUT(TMsT); /* Reset timer status */ 
OUTPUT (TMCR) = STARTIMB TMCR: 

END: ' -
END: /* End of SINGLE mode */ 

/* •••• End of BURST algorithm •••••• ~ ••••••••••••••••••.•••••••••••.... */ 

/* Another try to empty the Rx fifo 
/* before leaving the' interrupt handler 

*/ 
*/ 

DO WHILE (INPUT (FLR) <>0) • 
/* Empty the Rx FIFO and store the */ 
/* received character in RX_BUF */ 

RX BUF(IX RX:=IX RX+1)=INPUT(RXD) : 
END :- - -

END : /* End of Rx fifo interrupt */ 

/************************************************************************* 
* TxFIFO INTR * 
************************************************************************* 
* input: Tx Buffer * 
* output: Finish_tx * 
* function: service Tx Fifo interrupt * 
* transmit characters from transmit buffer (OPTIMIZE code) * 
* called by: INTERRUPT HANDLER * 
* calling: none * 
* • 
* flowchart: figure 12 description: paragraph 6.4.3 * 
*************************************************************************/ 

ELSE IF INTR VEC.,TXI GIR THEN DO : 
TX OCC=INPUT(FLR)-AND MASK TXOCC : 

- - /* Tx fifo level occupancy */ 
/* Fill Tx FIFO, the transmitted characters are taken from TX_buf */' 

DO WHILE (TX OCC:=TX OCC+1)<S : 

END 
END : 

OUTPUT(TXD)=TX BUF(IX TX:=IX TX+1): 
IF TX BUF(IX TX)-End Of File-THEN DO : 

END 

OUTPUT(BANK)=~ASO-: -- /* Disable Tx interrupt, as the transmit */ 
OUTPUT(GER)=DISTX_GER: /* delimiter character was identified */ 
OUTPUT(BANK)=WORKl /* Switch to BANK ONE - WORK *1 
TX_OCC = 5 : /* load TX_OCC to terminate external 'loop*/ 
FIN_TX = TRUE 1* Set Finish transmit flag */ 

/* End of TXFIFO_INTR 

2·104 

*/ 
292038-23 



inter AP-310 

1************************************************************************* 
* STATUS INTR * 
************************************************************************* 
* input: none * 
* output: Finish Rx * 
* function: service Status interrupt * 
* Receive station: EOF terminate the reception * 
* Transmit station: X Off Disable the transmission * 
* x::::on Enable the transmission * 
* called by: INTERRUPT HANDLER * 
* calling: none * 

* * * flowchart: figure 13 description: paragraph 6.4.4 * 
*************************************************************************1 

STAT=INPUT(RST) : 

RX OCC=INPUT(FLR) 
RX::::OCC=SHR (RX_OCC , 4) 

1* Get the current RST status 

1* Rx fifo level occupancy 

DO WHILE (RX OCC>O AND (NOT FIN RX»: 
RX OCC=RX-OCC-1 : 1* - First, empty Rx FIFO 
RX::::CHR=iNPuT(RXD) 

IF RECEIVER THEN 

ELSE DO: 
IF RX CHR = X OFF THEN DO ; 

*1 

*1 

*1 

OUTPUT(BANK)=NASO:I* Switch to BANK ZERO - NAS *1 
OUTPUT (GER) = INPUT (GER) AND DISTX_GER : 

1* Disable Transmit interrupt *1 
OUTPUT(BANK)=WORK1:1* switch to BANK ONE - WORK *1 

END : 
ELSE IF RX CHR = X ON THEN DO : 

OUTPUT(BANK)= NAsO ; 
OUTPUT (GER) = INPUT (GER) OR ENTX GER ; 

1* Enable Transmit interrupt again *1 
OUTPUT(BANK)= WORKl ; 

END 
END 

END ; 

IF RECEIVER THEN DO ; 

END 

END ; 

IF «STAT AND ACRSTAT_RST) <> 0) THEN DO ; 
OUTPUT(BANK)= NASO; 1* If End_Of_Line was recognized, *1 
OUTPUT (GER) = DISRTX GER ; 
OUTPUT(BANK)= WORK1; 1* Disable 82510-interrupts and the *1 
FIN RX = TRUE; 1* Reception *1 

END ; -
ELSE IF «STAT AND ERRCHR RST) <> 0) THEN DO ; 

CALL WRITE(@('** ERROR-in character Status ',0» 
~LL ERROR_CHAR_HANDLER ; 

IF BURST ALGO=BURST MODE THEN DO ; 
1* In BURST mode do: *1 

TEMP = INPUT(TMST); 1* Reset timer status, *1 
OUTPUT (TMCR) = STARTIMB TMCR; 

END; 1* Restart TIMER *1 
END 

1* End of STATUS interrupt 

2-105 

*1 
292038-24 



intJ AP-310 

1************************************************************************* 
* TIMER INTR * 
************************************************************************* 
* input: none * 
* output: Burst Algo * 
* function: service Timer interrupt; receive characters * 
* and switch Burst_Algo to HUNTING mode * 
* called by: INTERRUPT HANDLER * 
* calling: BURST &TIMER * 

* * * flowchart: figure 14 description: paragraph 6.4.5 * 
*****************************************~*******************************1 

ELSE IF INTR_VEC=TIMI_GIR THEN DO ; 

IF ((RX_OCC:=INPUT(FLR»<>O) THEN DO 

RX_OCC=SHR(RX_OCC,4) ; 1* Rx fifo level occupancy, shift right */ 
1* - OPTIMIZE code - */ 
1* Empty the Rx FIFO and store the */ 
/* received character in RX_BUF */ 

RX BUF(IX RX:=IX RX+l)=INPUT(RXD) ; 
DO-WHILE (RX OCC:=RX OCC-l) > 0 ; 

RX BUF(IX-RX:=IX RX+l)=INPUT(RXD) 
END - - -

END ; 
1* Store the received character in RX_buf*/ 

1************************************************************************* 
* BURST & TIMER * 
************************************************************************* * input: Burst_AI go * 
* output: Burst Algo * 
* function: execute a step in the burst algorithm * 
* after timer interrupt; switoh to HUNTING * 
* called by: TIMER_INTR * 
* calling: none * 

* * * flowchart: figure 6 description: paragraph 6.2.2.4 * 
*************************************************************************/ 

OUTPUT (BANK) ~ GEN2; /* switoh to BANK TWO - General Config */ 
OUTPUT (FMD) = TXTHRESHO_FMD OR RXTHRESHO FMD; 

OUTPUT (BANK) = NASO; 
OUTPUT (GER) ~ ENRX'GER; 
OUTPUT (BANK) = WORKl; 
TEMP = INPUT(TMST); 
BURST_ALGO HUNTING_MODE 

END ; 

1* Rxfifo threshold=O, Txfifo threshold=O*/ 

/* Switch to BANK ZERO - NAS 
/* Disable Timer interrupt and 
/* Enable RX,STAT,MODEM interrupts 
/* Acknowledge TIMER interrupt 
1* Back to HUNTING mode 
1* End of TIMER interrupt 

2-106 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

292038-25 



AP-310 

1************************************************************************* 
* MODEM INTR * 
************************************************************************* 
* input: none * 
* output: none * 
* function: service Modem interrupt and handle modem errors. * 
* Modem interrupt is occurred if No Modem was setup, or * 
* if DSR was dropped in the middle of the communication * 
* called by: INTERRUPT HANDLER * 
* calling: none * 
* * * flo~chart: figure 15 description: paragraph 6.4.6 * 
*************************************************************************/ 

STAT=INPUT(MSR) 

CALL ERROR_MODEM_HANDLER 

END 

OUTPUT (PORT_EOI) =COMM_EOI 

END INTR_HANDLER 

1* Get MODEM status 

1* Handel Modem Errors handshake 

1* End of MODEM interrupt 

*1 

*1 

*1 

1* Write End Of Interrupt command to the *1 
1* PIC (8259A) - *1 

1************************************************************************* 
* Procedure ERROR MODEM HANDLER * 
*************************************************************************/ 

ERROR_MODEM_HANDLER: PROCEDURE PUBLIC ; 

MODEM_HANDSHAKE = FALSE ; 1* Flag indicates that an Error occurred *1 
1* in Modem *1 

1************************************************************************* 
* Procedure ERROR CHAR HANDLER * 
*************************************************************************/ 

OUTPUT (BANK) 
OUTPUT (GER) 
OUTPUT (BANK) 

= TRUE 

NASO ; 
DISRTX GER 
WORKl ;-

END ERROR CHAR_HANDLER 

1* Flag indicates that an Error occurred *1 
1* during Reception *1 

1* switch to BANK ZERO - NAS 
1* Disable all the 82510 Interrupts 
1* Switch to BANK ONE - WORK 

2-107 

*1 
*1 
*1 

292036-26 



inter AP·310 

1************************************************************************* 
* Procedure LOOP * 
* * * LOOP procedure is executed until TransmissionlReception Finishes * 
* or until the loop ends. * 
*************************************~***********************************1 

LOOP: PROCEDURE PUBLIC 
DECLARE N WORD : 
DECLARE NUM WORD :. 
DECLARE MAXLOOP BYTE 
MAXLOOP= 20 : 
NUM=O : 
DO WHILE ( (NOT FIN TX) 

NUM=NUM+1 ; -
CALL WRITELN(@(' ••• 
ENABLE : 
CALL TIME(5000) 

END : 

AND (NOT FIN RX) AND (NUM<MAXLOOP) 
1* Count the LOOP times 

Background Program •• .",0»: 

1* Software delay 

*/. 

*1 

IF FIN TX THEN CALL WRITELN(@('T ran s m iss ion END E D ',0»: 
IF FIN=RX THEN CALL WRITELN(@('R e c e p t ion - END E D ',0»: 

OUTPUT(BANK)~NASO : 1* If communication is Not ended *1 
OUTPUT(GER)=DISRTX GER 1* successfully the Interrupts are *1 
OUTPUT (BANK) =WORK1-: 1* Disabled by MAIN *1 
IF RECEIVER THEN DO : 1* Display RX buffer *1 

IF FIN RX THEN DO : 
CALL WRITELN(@('The Received Message: ',0» ; 
CALL DISPTEXT(@RX BUF) ; 

END: .-
ELSE 

CALL WRITELN(@('** ERROR -THE Reception NOT ended successfully',O» 
END: 
ELSE IF (NOT FIN TX) THEN 

CALL WRITELN(@('** ERROR 
END LOOP; 

1* The Transimt station *1 
-THE Transmission NOT ended successfully'!O»: 

I~************************************************************************ 
* Procedure TEXT * 
************************************************************************* 
* input: none * 
* output: TXJltr * 
* function: Return a pointr to the Transmit buffer. Data in the * 
* transmit buffer must be trminated by End_Of_File. * 
* called by: INITIALIZATIONS * 
* calling: none * 
*************************************************************************1 

TEXT: PROCEDURE PUBLIC : 

TX PTR=@ ( , >' , 
CR-;-LF, 
, ABCDEFGHIJKLMNOPQRSTUVWXYZO123456789abcdefghijklmnopqrstuvwxyzo123456789', 
CR,LF, 
'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789abcdefghijklmnopqrstuvwxyz0123456789', 
CR,LF, 
'ABCDEFGHIJKLMNOP~RSTUVWXYZ0123456789abcdefghijklmnopqrstuvwxyz0123456789', 
CR,LF, 
, ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789abcdefghij klmnopqrstuvwxyzO 123456789', 
CR,LF, 
'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789abcdefghijklmnopqrstuvwxyz0123456789', 
CR,LF,End_Of_File,0) 

END TEXT ; 
1* End_Of_Fiie-terminate the Transmission*1 

292038-27 

2-108 



,i~ AP-310 

1************************************************************************* 
* External procedures * 
************************************************************************* 
* WRITELN: I/O console utility - dispaly a string, end with CR * 
* MENU: I/O console utility - display a menu, enter the user * 
* selection * 
* DISPTEXT: I/O console utility display the contents of the * 
* Receive buffer (Rx bUf) * 
* INIT HARDWARE SETUP: Setup and Hardware configuratIons of the * 
* - - specific station * 
*******************************~*****************************************/ 

1************************************************************************* 
* Procedure MAIN * 
************************************************************************* 
* input: Finish Rx, Finish Tx * 
* output: Receiver flag - * 
* function: get station type (Rx or Tx) from the operator; * 
* wait till communication is completed; display; * 
* RECEIVER STATION SHOULD BE ACTIVATED FIRST * 
~ called by: Application * 
* calling: INITIALIZATIONS, LOOP * 
* * * flowchart: figure 3 description: paragraph 6.1 * 
*************************************************************************/ 

MAIN: 

'/* External, Setup and H/W configurations*/ 
FIN=FALSE ; 
DO WHILE NOT (FIN) 

SELECTION=O ; 
CALL WRITELN(@('------------------------------------------------ ',0»; 

END 

SELECTION=MENU(SELECTION,@('station: (Quit/Transmitter/Receiver) ',0» ; 
/* Get operator selection. */ 
/* Receiver station should be activated */ 
/* prior to the transmitter' station */ 

DO CASE SELECTION ; 
FIN=TRUE 
DO ; 

/* ° - Quit of HIGH PERFORMANCE 
/* 1 - Transmit station 

RECElVER=FALSE ; 
CALL INITIALIZATIONS 
CALL LOOP ; 

END ; 
DO ; /* 2 - Receive station 

RECEIVER=TRUE 

END 
END 

CALL INITIALIZATIONS 
CALL LOOP ; 

Driver */ 
*/ 

*/ 

CALL EXIT 

END HIGHPERFORMANCE ; 

/*************************************************************************/ 
292038-28 

2·109 



AP-310 

APPENDIX B 
82510 BASED SBX SERIAL CHANNEL 

This document describes the implementation of an 
82510 based SBX board that provides a RS-232 inter­
face to any iSBC board which has an SBX connector. 
The SBX can be useful for customers that need a fast 
software development vehicle while the 82510 system 
hardware is still in the design stage. The customer can 
also use the SBX for evaluation of the 82510 in 11 sys­
tem environment. 

In order to minimize the customer's software develop­
ment costs, the RMX86/286 Terminal Device Drivel' 
for the 82510 has also been developed and can be run 
by the RMX user on his iSBC with the SBX-8251O 
board described herewith. The RMX86/286 drivers are 
available from INSITE, along with the source code and 
the documentation. 

BOARD DESCRIPTION (See F'igure B-1) 

The following 82510 signals are connected directly to 
the SBX connector (installed on the pin side): DATA, 
ADDRESS, INTERRUPT, RESET, READ#, 
WRITE# and CS #. Wait states are generated by a 
shift register logic (U5, U7), clocked by the MCLK 
signal of the SBX interface. The number of wait states 
is selected by installing one of the eight jumpers to se­
lect one parallel output of the shift register. The 82510 
is clocked by an 18.432 MHz Crystal (using its on-chip 
oscillator). A discrete transistor is used to pull down 
the RTS# signal during RESET to set the crystal mode 
(note that in a larger board, an unused open collector 
inverter or three-state gate can be used for this pur­
pose). The 82510 is connected to the communication 
channel through RS-232 line drivers and receivers. Ei­
ther a 25 pin D-Type connector (P) or a 26 pin Flat-Ca­
ble connector (F) is used to connect the board to the 
RS-232 channel. 

2-110 



:!! 
CD 
C ... 
ID 

!p 
:-" 

~ 
III 
0 
DI 

~ ... 
~ a. 

en 
() 
:::r 
ID 
3 
DI g-
III 

# of WAIT 
States 

1 
2 
3 
4 

, ... 5 INT 

/1 ...E. AO 

~Al 
~A2 
.2:! DO 

~Dl 

2N2222 

DTR# 1'5 I IUr 

.=~~ ________________________________________ :27jD2 Ul nD 

~~ __________________________________________ 2_8jD3 82510 

.,L~ 1 04 

P/4 r/20. RTS 

8 P/20 F/13, DTR 

P/2 F/24 , nOATA 

~~ ________________________________________ ~2 D5 

~~ ____________________________________ ~3 D6 

. i:io 4 07 

,""""3 P/5 F/18 , eTS 

P/6 F/16'DSR 

CTS#P4 11 
11 0< 

4 
~~ ____________________________________ r-~2:10 RD# 

.:i~ 19 WR# 
13 P/22 r/9"RI 

~~~-------------t--------------------t1~1'18Le_S~#X~I~~~~ P/8 F/12 , DeD 

~ P/3 r/22 10 ~ RXDATA

U4 P/7, 1 F/14 GND

F
GilD

292038-29
J/3,17,35

GND4 10)"r:::t:::1!:::1!:::1!::::l!.

Vcc 4 J/ 4,18,36 TTTTT
J/2 ·=O.l~F

-12 +;';:"'I
+124..i
~~

WAIT State Generator

Jumper # of WAIT Jumper
to CLOSE States to CLOSE

S1 5 S5
S2 6, S6
S3 7 S7
S4 8 S8

Type

U1 82510

U2 1488

U3 1489

U4 1489

U5 74LS164

Vee GND -12 +12 # Type Vee GND -12 +12

21 7 U6 Jumper

5,9 7 1 14 U7 74LSOO 14 7

14 7 J SBX Male Connector for 8 Bit Bus

14 7 P 25 Pin D-Type Connector (Male)

7 F
Only One Jumper Should Be Closed at a Time

1,2,14 26 Pin Flat-cable Connector (Male)
-

Either P or F should be installed,

i

~
"P
c,,) ...
C)

APPLICATION
NOTE

November 1986

Using the 8273 SOLC/HOLC
Protocol Controller

JOHN BEASTON
MICROCOMPUTER APPLICATIONS

2-112
Order Number: 611001-001

intJ Ap·36

INTRODUCTION

The Intel 8273 is a Data Communications Protocol
Controller designed for use in systems utilizing either
SDLC or HDLC (Synchronous or High-Level Data
Link Control) protocols. In addition to the usual fea­
tures such as full duplex operation, automatic Frame
Check Sequence generation and checking, automatic
zero bit insertion and deletion, and TTL compatibility
found on other single component SDLC controllers, the
8273 features a frame level command structure, a digi­
tal phase locked loop, SDLC loop operation, and diag-
nostics. .

The frame level command structure is made possible by
the 8273's unique internal dual processor architecture.
A high-speed bit processor handles the serial data ma­
nipulations and character recognition. A byte processor
implements the frame level commands. These dual
processors allow the 8273 to control the necessary byte­
by-byte operation of the data channel with a minimum
of CPU (Central Processing Unit) intervention. For the
user this means the CPU has time to take on additional
tasks. The digital phase locked loop (DPLL) provides a
means of clock recovery from the received data stream
on-chip. This feature, along with the frame level com­
mands, makes SDLC loop operation extremely simple
and flexible. Diagnostics in the form of both data and
clock loopback are available to simplify board debug
and link testing. The 8273 is a dedicated function pe­
ripheral in the MCS-80/85 Microcomputer family and
as such, it interfaces to the 8080/8085 system with a
minimum of external hardware.

This application note explains the 8273 as a component
and shows its use in a generalized loop configuration
and a typical 8085 system. The 8085 system was used to
verify the SDLC operation of the 8273 on an actual
IBM SDLC data communications link.

The first section of this application note presents an
overview of the SDLC/HDLC protocols. It is fairly
tutorial in nature and may be skipped by the more
knowledgeable reader. The second section describes the
8273 from a functional standpoint with explanation of
the block diagram. The software aspects of the 8273,
including command examples, are discussed in the
third section. The fourth and fifth sections discuss a
loop SDLC configuration and the 8085 system respec­
tively.

Opening Address Control
Flag Field (A) Field (C)

01111110 8 Bits 8 Bits

SDLC/HDLC OVERVIEW

SDLC is a protocol for managing the flow of informa­
tion on a data communications link. In other words,
SDLC can be thought of as an envelope-addressed,
stamped, and containing an s.a.s.e.-in which informa­
tion is transferred from location to location on a data
communications link. (Please note that while SDLC is
discussed specifically, all comments also apply to
HDLC except where noted.) The link may be either
point-to-point or multi-point, with the point-to-point
configuration being either switched or nonswitched.
The information flow may use either full or half duplex
exchanges. With this many configurations supported, it
is difficult to find a synchronous data communications
application where SDLC would not be appropriate.

Aside from supporting a large number of configura­
tions, SDLC offers the potential of a 2 X increase in
throughput over the presently most prevalent protocol:
Bi-Sync. This performance increase is primarily due to
two characteristics of SDLC: full duplex operation and
the implied acknowledgement of transferred informa­
tion. The performance increase due to full duplex oper­
ation is fairly obvious since, in SDLC, both stations can
communicate simultaneously. Bi-Sync supports only
half-duplex (two-way alternate) communication. The
increase from implied acknowledgement arises from the
fact that a station using SDLC may acknowledge previ­
ously received information while transmitting different
information. Up to 7 messages may be outstanding be­
fore an acknowledgement is required. These messages
may be acknowledged as a block rather than singly. In
Bi-Sync, acknowledgements are unique messages that
may not be included with messages containing informa­
tion and each information message requires a separate
acknowledgement. Thus the line efficiency of SDLC is
superior to Bi-Sync. On a higher level, the potential of a
2 X increase in performance means lower cost per unit
of information transferred. Notice that the increase is
not due to higher data link speeds (SDLC is actually
speed independent), but simply through better line utili­
zation.

Getting down to the more salient characteristics of
SDLC; the basic unit of information on an SDLC link
is that of the frame. The frame format is shown in Fig­
ure 1. Five fields comprise each frame: flag, address,
control, information, and frame check sequence. The
flag fields (F) form the boundary of the frame and all

Frame
Check

Information Sequence Closing
Field (I) (FCS) Flag

Any Length
16 Bits 01111110 o to N Bits

Figure 1. SOLC Frame Format

2-113

inter AP-36

other fields are positionally related to one of the two
flags. All frames start with an opening flag and end
with a closing flag. Flags are used for frame synchroni­
zation. They also may serve as time-fill characters be­
tween frames. (There are no intraframe time-fill charac­
ters in SDLC as there are in Bi-Sync.) The opening flag
serves as a reference point for the .address (A) and con­
trol (C) fields. The frame check sequence (FCS) is ref­
erenced from the closing flag. All flags have the binary
configuration 01111110 (7EH).

SDLC is a bit-oriented protocol, that is, the receiving
station must be able to recognize a flag (or any other
special character) at any time, not just on an 8-bit
boundary. This, of course, implies that, a frame may be
N-bits in length. (The vast majority of applications tend
to use frames which are multiples 'of 8 bits long, howev­
er.).

, The fact that the flag has a unique binary pattern would
seem to limit the contents of the frame since a flag
pattern might inadvertently occur within the frame.
This would cause the receiver to think the closing flag
was received, invalidating the frame. SDLC handles
this situation through a technique called zero bit inser­
tion. This techniques specifies that within a frame a
binary 0 be inserted by the transmitter after any succes­
sion of five contiguous binary Is. Thus, no pattern of
01111110 is ever transmitted by chance. On the receiv­
ing end, after the opening flag is' detected, the receiver
removes any 0 following 5 consecutive Is. The inserted
and deleted Os are not counted for error determination.

Before discussing the address field, an explanation of
the roles of an SDLC station is in order. SDLC speci­
fies two types of stations: primary and secondary. The
primary is the control station for the data link and thus
has responsibility of the overall network. There is only
one predetermined primary station, all other stations
on the link assume the secondary station role. In gener­
al, a secondary station speaks only when spoken to. In
other words, the primary polls the secondaries for re­
sponses. In order to specify a specific secondary, each
secondary is assigned a unique 8-bit address. It is. this
address that is used in the frame's address field.

When the primary transmits a frame to a specific sec­
ondary, the address field contains the secondary's ad­
dress. When responding, the secondary uses its own
address in the address field. The primary is never iden­
tified. This ensures that the primary knows Which of
many secondaries is responding since the primary may
have many messages outstanding at various secondary
stations. In addition to the specific secondary address,
an address common to all secondaries may be used for
various purposes. (An all Is address field is usually
used for this "All Parties" address.) Even though the
primary may use this common address, the secondaries
are expected to respond with their unique address. The
address field is always the first 8 bits following the
opening flag.

The 8 bits following the address field form the control
field. The control field embodies the link-level control
of SDLC. A detailed explanation of the commands and
responses contained in this field is beyond the scope of

. this application note. Suffice it to say that it is in the
control field that the implied acknowledgement is car­
ried out through the use of frame sequence numbers.
None of the currently available SDLC single chip con­
trollers utilize the control field. They simply pass it to
the processor for analysis. Readers wishing a more de­
tailed explanation of the control field, or of SDLC in
general, should consult the IBM documents referenced
on the front page overleaf.

In some types of frames, an information field follows
the control field. Frames used strictly for link manage­
ment mayor may not contain one. When an informa­
tion field is used, it is unrestricted in both content and
length. This code transparency is made possible because
of the zero bit insertion mentioned earlier and the bit­
oriented nature of SDLC. Even main memory core
dumps may be transmitted because of this capability.
This feature is unique to bit-oriented protocols. Like
the control field, the information field is not interpreted
by the SDLC device; it is merely transferred to and .
from memory to be operated on and interpreted by the
processor.

The final field is the frame check sequence (FCS). The
FCS is the 16 .bits immediately preceding the closing
flag. This 16-bit field is used for error detection through
a Cyclic Redundancy Checkword (CRC). The 16-bit
transmitted CRC is the complement of the remainder
obtained when the A, C, and I fields are "divided" by a
generating polynomial. The receiver accumulates the
A, C, and I fields and also the FCS into its internal
CRC register. At the closing flag, this register contains
one particular number for an error-free reception. If
this number is not obtained, the frame was received in
error and should be discarded. Discarding the frame
causes the station to not update its frame sequence
numbering. This results in a retransmission after the
station sends 'an acknowledgement from previous
frames. [Unlike all other fields, the FCS is transmitted
MSB (Most Significant Bit) first. The A, C, and I fields
are transmitted LSB (Least Significant Bit) first.] The
details of how the FCS is generated and checked is
beyond the scope of this application note and since all
single component SDLC controllers handle this func­
tion automatically, it is usually sufficient to know only
that an error has or has not occurred. The IBM docu­
ments contain more' detailed information for those
readers desiring it.

The closing flag terminates the frame. When the closing
flag is received, the receiver knows that the preceding
16 bits constitute the FCS and that any bits between the
control field and the FCS constitute the information
field.

2-114

intJ Ap·36

SOLC does not support an interframe time-fill charac­
ter such as the SYN character in Bi-Sync. If an unusual
condition occurs while transmitting, such as data is not
available in time from memory or CTS (Clear-to-Send)
is lost from the modem, the transmitter aborts the
frame by sending an Abort character to notify the re­
ceiver to invalidate the frame. The Abort character
consists of eight contiguous Is sent without zero bit
insertion. Intraframe time-fill consists of either flags,
Abort characters, or any combination of the two.

While the Abort character protects the receiver from
transmitted errors, errors introduced by the transmis­
sion medium are discovered at the receiver through the
FCS check and a check for invalid frames. Invalid
frames are those which are not bounded by flags or are
too short, that is, less than 32 bits between flags. All
invalid frames are ignored by the receiver.

Although SOLC is a synchronous protocol, it provides
an optional feature that allows its use on basically asyn­
chronous data links-NRZI (Non-Return-to-Zero-In­
verted) coding. NRZI coding specifies that the signal
condition does not change for transmitting a binary I,
while a binary 0 causes a change of state. Figure 2 illus­
trates NRZI coding compared to the normal NRZ.
NRZI coding guarantees that an active line will have a
transition at least every 5-bit times; long strings of ze­
roes cause a transition every bit time, while long strings
of Is are broken up by zero bit insertion. Since asyn­
chronous operation requires that the receiver sampling
clock be derived from the received data, NRZI encod­
ing plus zero bit insertion make the design of clock
recovery circuitry easier.

POINT·TO·POINT

MULTI·POINT

611001-2

DATA 1 o

BtT SAMPLE I I I I I I I I I I
NRZ

NRZI

611001-1

Figure 2. NRZI vs NRZ Encoding

All of the previous discussion has applied to SOLC on
either point-to-point or multi-point data networks.
SOLC (but not HOLC) also includes specification for a
loop configuration. Figure 3 compares these three con­
figurations. IBM uses this loop configuration in its
3650 Retail Store System. It consists of a single loop
controller station with one or more down-loop second­
ary stations. Communications on a loop rely on the
secondary stations repeating a received message down
loop with a delay of one bit time. The reason for the
one bit delay will be evident shortly.

Loop operation defines a new special character: the
EOP (End-of-Poll) character which consists of a 0 fol­
lowed by 7 contiguous, non-zero bit inserted, ones. Af­
ter the loop controller transmits a message, it idles the
line (sends all Is). The final zero of the closing flag plus

_ the first 7 Is of the idle form an EOP character. While

LOOP

611001-3

Figure 3. Network Configurations

2-115

AP-36

repeating, the secondaries monitor their incoming line'
for an EOP character. When an EOP is detected, the
secondary checks to see if it has a message to transmit.
If it does, it changes the seventh I to a 0 (the one bit
delay allows time for this) and repeats the modified
EOP (now alias flag). After this flag is transmitted, the
secondary terminates its repeater function and inserts
its message (with multiple preceding flags if necessary).
After the closing flag, the secondary resumes its one bit
delay repeater function. Notice that the final zero of the
secondary's closing flag plus the repeated Is from the
controller form an EOP for the next down-loop second­
ary, allowing it to insert a message if it desires.

One might wonder if the secondary missed any mes­
sages from the controller while it was inserting its own
message. It does not. Loop operation is basically half­
duplex. The controller waits until it receives an EOP
before it transmits its next message. The controller's
reception of the EOP signifies that the original message
has propagated around the loop followed by any mes­
sages inserted by the secondaries. Notice that secondar­
ies cannot communicate with one another directly, all
secondary-to-secondary communication takes place by
way of the controller.

Loop protocol does not utilize the normal Abort char­
acter. Instead, an abort is accomplished by simply
transmitting a flag character. Oown loop, the receiver
sees the abort as a frame which is either too short (if the
abort occurred early in the frame) or one with an FCS
error. Either results in a discarded frame. For more
details on loop operation, please refer to the IBM docu­
ments referenced earlier.

Another protocol very similar to SOLC which the 8273
supports is HOLC (High-Level Oata Link Control).
There are only three basic differences between the two:
HOLC offers extended address and control fields, and
the HOLC Abort character is 7 contiguous Is as op­
posed to SOLC's 8 contiguous Is.

Extended addressing, beyond the 256 unique addresses
possible with SOLC, is provided by using the address
field's least significant bit as the extended address mod­
ifier. The receiver examines this bit to determine if the
octet should be interpreted as the final address octet.
As long as the bit is 0, the octet that contains it is
considered an extended address. The first time the bit is
a I, the receiver interprets that octet as the final address
octet. Thus the address field may be extended to any
number of octets. Extended addressing is illustrated in
Figure 4a.

A similar technique is used to extend the control field
although the extension is limited to only one extra con­
trol octet. Figure 4b illustrates control field extension.

Those readers not yet asleep may have noticed the simi­
larity between the SOLC loop EOP character (a 0 fol-

lowed by 7 Is) and the HOLC Abort (7 Is). This possi­
ble incompatibility is neatly handled by the HOLC pro­
tocol not specifying a loop configuration.

This completes our brief discussion of the SOLCI .
HOLC protocols. Now let us tum to the 8273 in partic­
ular and discuss its hardware aspects through an expla­
nation of the block diagram and generalized system
schematics.

FIRST BIT TRANSMITTED elsa FIRST)

611001-4
A. HDLC ADDRESS FIELD EXTENSION

C EXTENSION BIT (1 MAXI

FLAG A It c,l c.i., I .• I FCO, I FCo.1 FLAG

, 611001-5
B. HDLC CONTROL FIELD EXTENSION

Figure 4

BASIC 8273 OPERATION

It will be helpful for the following discussions to have
some idea of the basic operation of the 8273. Each oper­
ation, whether it is a frame transmission, reception or
port read, etc., is comprised of three phases: the Com­
mand, Execution, and Result phases. Figure 5 shows
the sequence of these phases. As an illustration of this
sequence, let us look at the transmit operation.

611001-6

Figure 5. 8273 Operational Phases

When the CPU decides it is time to transmit a frame,
the Command phase is entered by the CPU issuing a
Transmit Frame command to the 8273. It is not suffi­
cient to just instruct the 8273 to transmit. The frame
level command structure sometimes requires more in­
formation such as frame length and address and control
field content. Once this additional information is sup-

2-116

inter AP-36

plied, the Command phase is complete and the Execu­
tion phase is entered. It is during the Execution phase
that the actual operation, in this case a frame transmis­
sion, takes place. The 8273 transmits the opening flag,
A and C fields, the specified number of I field bytes,
inserts the FCS, and closes with the closing flag. Once
the closing flag is transmitted, the 8273 leaves the Exe­
cution phase and begins the Result phase. During the
Result phase the 8273 notifies the CPU of the outcome
of the command by supplying interrupt results. In this
case, the results would be either that the frame is com­
plete or that some error condition causes the transmis­
sion to be aborted. Once the CPU reads all of the re­
sults (there is only one for the Transmit Frame
command), the Result phase and consequently the
operation, is complete. Now that we have a general
feeling for the operation of the 8273, let us discuss the
8273 in detail.

HARDWARE ASPECTS OF THE 8273

The 8273 block diagram is shown in Figure 6. It con­
sists of two major interfaces: the CPU module interface
and the modem interface. Let's discuss each interface
separately.

REGISTERS

'TxI/R

RxllR

TEST MODE

080_7

TxDRO-----t

Ao----I
A'---_I

COMMANO

PARAMETER

STATUS

RESULT

RESET-----'

OCLK -------'
TxlNT _____ ---'

R,INT ______ ...J

CPU MODULE INTERFACE

CPU Interface

The CPU interface consists of four major blocks: Con­
trol/Read/Write logic (C/R/W), internal registers,
data transfer logic, and data bus buffers.

The CPU module utilizes the C/R/W logic to issue
commands to the 8273. Once the 8273 receives a com­
mand and executes it, it returns the results (good/bad
completion) of the command by way of the C/R/W
logic. The C/R/W logic is supported kseven registers
which are addressed via the Ao, AI, RD, and WR sig­
nals, in addition to CS. The Ao and A I signals are gen­
erally derived from the two low order bits of the CPU
module address bus while RD and WR are the normal
I/O Read and Write signals found on the system con­
trol bus. Figure 7 shows the address of each register
using the C/R/W logic. The function of each register is
defined as follows:

Address Inputs Control Inputs

.A1 Ao CS-RD CS-WR

0 0 Status Command
0 1 Result Parameter
1 0 TxlfR Test Mode
1 1 RxlfR -

Figure 7. 8273 Register Selection

INTERNAL
DATA BUS

.--------- FLAG DETECT

,-------CD
.-------CTS

DATA
TIMING
LOGIC

,-----RTS

p..---T'C
I----T'D

p..---iiXc
J-----RxD

L-_____ DPLL

L---------32XCLK

MODEM INTERFACE

611001-7

Figure 6. 8273 Block Diagram
2-117

inter AP-36

Command-8273 operations are initiated by writing
the appropriate command byte into this register.

Parameter-Many commands require more informa­
tion than found in the command itself. This additional­
information is provided by way of the parameter regis­
ter.

Immediate Result (Result}-The completion informa­
tion (results) for commands which execute immediately
are provided in this register.

Transmit Interrupt Result (TxI/R)-Results of trans­
mit operations are passed to the CPU in this register.

Receiver Interrupt Result (RxI/R)-Receive operation
results are passed to the CPU via this register.

Status-The general status of the 8273 is provided in
this register. The Status register supplies the handshak­
ing necessary during various phases of the 8273 opera­
tion.

Test Mode-This register provides a software reset
function for the 8273.
,

_ The commands, parameters, and bit definition of these
registers are discussed in the following software section.
Notice that there are not specific transmit or receive
data registers. This feature is explained in the data
transfer logic discussion.

The final elements of the CIR/W logic are the inter­
rupt lines (RxINT and TxINT). These lines notify the
CPU module that either the transmitter or the receiver
requires service; i.e., results should be read from the
appropriate interrupt result register or a data transfer is
required. The interrupt request remains active until all
the associated interrupt results have been read or the
data transfer is performed. Though using the interrupt
lines relieves the CPU module of the task of polling the
8273 to check if service is needed, the state of each
interrupt line is reflected by a bit in the Status register
and non-interrupt driven operation is possible by exam­
ining the contents of these bits periodically.

The 8273 supports two independent data interfaces
through the data transfer logic; receive data and trans­
mit data. These interfaces are programmable for either
DMA or non-DMA data transfers. While the choice of
the configuration is up to the system designer, it is
based on the intended maximum data rate of the com-

munications channel. Figure 8 illustrates the transfer
rate of data bytes that are acquired by the 8273 based
on link data rate. Full-duplex data rates above 9600
baud usually require DMA. Slower speeds mayor may
not require DMA depending on the task load and inter­
rupt response time of the processor.

Figure 9 shows the 8273 in a typical DMA environ­
ment. Notice that a separate DMA controller, in this
case the Intel 8257, is required. The DMA controller
supplies the timing and addresses for the data transfers
while the 8273 manages the requesting of transfers and
the actual counting of the data block lengths. In this
case, elements of the data transfer interface are:

TxDRQ: Transmit DMA Request-Asserted by the
8273, this line requests a DMA transfer from memory
to the 8273 for transmit.

TxDACK.: Transmit DMA Acknowledge-Returned by
the 8257 in response to TxDRQ, this line notifies the
8273 that a request has been granted, and provides ac­
cess to the transmitter data register.

RxDRQ: Receive DMA Request-Asserted by the 8273,
it requests a DMA transfer from the 8273 to memory
for a receive operation.

RxDACK: Receive DMA Acknowledge-Returned by
the 8257, it notifies the 8273 that a receive DMA cycle
has been granted, and provides a'icess to the receiver
data register.

RD: Read-Supplied by the 8257 to indicate data is to
be read from the 8273 and placed in memory.

WR: Write-Supplied by the 8257 to indicate data is to
be written to the 8273 from memory.

To request a DMA transfer the 8273 raises the appro­
priate DMA request line; let us assume it is a transmit­
ter request (TxDRQ). Once the 8257 obtains control of
the system bus by way of its HOLD and HLDA (hold
acknowledge) lines, it notifies the 8273 that TxDRQ
has been granted by returning TxDACK and WR. The
TxDACK and WR signals transfer data to the 8273 for
a transmit, independent of the 8273 chip select pin
(CS). A similar sequence of events occurs for receiver
requests. This "hard select" of data into the transmitter
or out of the receiver alleviates the need for the normal
transmit and receive data registers addressed by a com­
bination of address lines, CS, and WR or RD. Competi-

2-118

AP-36

tive devices that do not have this "hard select" feature
require the use of an external multiplexer to supply the
correct inputs for register selection during DMA. (Do
not forget that the SDLC controller sees both the ad­
dresses and control signals supplied by the DMA con­
troller during DMA cycles.) Let us look at typical
frame transmit and frame receive sequences to better
see how the 8273 truly manages the DMA data trans­
fer.

Before a frame can be transmitted, the DMA controller
is supplied, by the CPU, the starting address for the
desired information field. The 8273 is then commanded
to transmit a frame. (Just how this is done is covered
later during our software discussion.) After the com­
mand, but before transmission begins, the 8273 needs a
little more information (parameters). Four parameters
are required for the transmit frame command: the ad­
dress field byte, the control field byte, and two bytes
which are the least significant and most significant
bytes of the information field byte length. Once all four
parameters are loaded, the 8273 makes RTS (Request­
to-Send) active and waits for CTS (Clear-to-Send) to go
active. Once CTS is active, the 8273 starts the frame
transmission. While the 8273 is transmitting the open­
ing flag, address field, and control field; it starts making
transmitter'DMA requests. These requests continue at
character (byte) boundaries until the pre-loaded num­
ber of bytes of information field have been transmitted.

DR01

8257 DACK1
DMA

TxDACK

CONTROLLER DROO RxDRO

DACKO RxDACK

At this point the requests stop, the FCS and closing flag
are transmitted; and the TxINT line is raised, signaling
the CPU that the frame transmission is complete. No­
tice that after the initial command and parameter load­
ing, absolutely no CPU intervention was required (since
DMA is used for data transfers) until the entire frame
was transmitted. Now let's look at a frame reception.

80 ms

8 ms

sec/byte

800 "s

80 "s

100 1K 10K 100K

BAUD RATE (bps)

611001-8

Figure 8. Byte Transfer Rate vs Baud Rate

lOR BUS RD

8273
lOW

WR

CS AO A1 07-DO

r'm'o,
ADDRESS
BUS

~
Figure 9. DMA, Interrupt-Driven System

2-119

~OA"""'
611001-9

inter AP-36

The receiver operation is very similar. Like the initial
transmit sequence, the DMA controller is loaded with a
starting address for a receiver data buffer and the 8273
is commanded to receive. Unlike the transmitter, there
are two different receive commands: General Receive,
where all received frames are transferred to memory,
and Selective Receive, where only frames having an ad­
dress field matching one of two preprogrammed 8273
address fields are transferred to memory. Let's assume
for now that we want to general receive. After the re­
ceive command, two parameters are required before the
receiver becomes active: the least significant and most
significant bytes of the receiver buffer length. Once
these bytes are loaded, the receiver is active and the
CPU may return to other tasks. The next frame appear­
ing at the receiver input is transferred to memory using
receiver DMA requests. When the closing flag is re­
ceived, the 8273 checks the FCS and raises its RxINT
line. The CPU can then read the results which indicate
if the frame was error-free or not. (If the received frame
had been longer than the pre-loaded buffer length, the
CPU would have been notified of that occurrence earli­
er with a receiver error interrupt. The command de­
scription section contains a complete list of error condi­
tions.) Like the transmit example, after the initial com­
mand, the CPU is free for other tasks until a frame is
completely received. These examples have illustrated
the 8273's management of both the receiver and trans­
mitter DMA channels.

It is possible to use the DMA data transfer interface in
a non-DMA interrupt-driven environment. In this case,
4 interrupt levels are used: one each for TxINT and
RxINT, and one each for TxDRQ and RxDRQ. This
configuration is shown in Figure 10. This configuration
offers the advantages that no DMA controller is re-

quired and data requests are still separated from result
(completion) requests. The disadvantages of the config­
uration are that 4 interrupt levels are required and that
the CPU must actually supply the data transfers. This,
of course, reduces the maximum data rate compared to
the configuration based strictly on DMA. This system
could use an Intel 8259 8-level Priority Interrupt Con­
troller to supply a vectored CALL (subroutine) address
based on requests on its inputs. The 8273 transmitter
and receiver make data requests by raising the respec­
tive DRQ line. The CPU is interrupted by the 8259 and
vectored to a data transfer routine. This routine either
writes (for transmit) or reads (for receive) the 8273 us­
ing the respective TxDACK or RxDACK line. The
DACK lines serve as "hard" chip selects into and out
of the 8273. TxDACK + WR writes data into the 8273
for transmit. RxDACK + RD reads data from the
8273 for receive.) The CPU is notified of operation
completion and results by way of TxINT and RxINT
lines. Using the 8273, and the 8259, in this way, pro­
vides a very effective, yet simple, interrupt-driven inter-
face. -

Figure 11 illustrates a system very similar to that de­
scribed above. This system utilizes the 8273 in a non­
DMA data transfer mode as opposed to the two DMA
approaches shown in Figures 9 and 10. In the non­
DMA case, data transfer requests are made on the
TxINT and RxINT lines. The DRQ lines are not used.
Data transfer requests are separated from result re­
quests by a bit in the Status register. Thus, in response
to an iJ;lterrupt, the CPU reads the'Status register and
branches to either a result or a data transfer routine
based on the status of one bit. As before, data transfers
are made via using the DACK lines as chip selects to
the transmitter and receiver data registers.

07-00

611001-10

Figure 10. Interrupt-Based DMA System

2-120

infef AP-36

CONTROL
BUS

611001-11

Figure 11. Non-DMA Interrupt-Driven System

NC NC NC NC

TxOACK
lOR

-CONTROL

BUS

8213

01-00

_DATA BUS

611001-12

Figure 12. Polled System

Figure 12 illustrates the simplest system of all. This
system utilizes polling for all data transfers and results.
Since the interrupt pins are reflected in bits in the
Status register, the software can read the Status register
periodically looking for one of these to be set. If it finds
an INT bit set, the appropriate Result Available bit is
examined to determine if the "interrupt" is a data
transfer or completion result. If a data transfer is called
for, the DACK line is used to enter or read the data
from the 8273. If the interrupt is a completion result,
the appropriate result register is read to determine the
good/bad completion of the operation.

The actual selection of either DMA or non-DMA
modes is controlled by a command issued during ini­
tialization. This command is covered in detail during
the software discussion.

2-121

The final block of the CPU module interface is the
Data Bus Buffer. This block supplies the tri-state, bidi­
rectional data bus interface to allow communication to
and from the 8273.

Modem Interface

As the name implies, the modem interface is the mo­
dem side of the 8273. It consists of two major blocks:
the modem control block and the serial data timing
block.

The modem control block provides both dedicated and
user·defined modem control functions. All signals s'up­
ported by this interface are active low so that EIA .in-

inter AP-36

verting drivers (MCI488) and inverting receivers
(MCI489) may be used to interface to standard mo­
dems.

Port A is a modem control input port. Its representa­
tion on the data bus is shown in Figure 13. Bits DO and
D1 have dedicated functions. Do reflects the logical
state of the CTS (Clear-to-Send) pin. [If CTS is active
(low), Do is a I.J This signal is used to condition the
start of a transmission. The 8273 waits until CTS is
active before it starts transmitting a frame. While trans­
mitting, if CTS goes inactive, the frame is aborted and
the CPU is interrupted. When the' CPU reads the inter­
rupt result, a CTS failure is indicated.

D) reflects the logical state of the CD (Carrier Detect)
pin. CD is used to condition the start of a frame recep­
tion. CD must be active in time for a frame's address
field. If CD is lost (goes inactive) while receiving a
frame, an interrupt is generated with a CD failure re­
sult. CD may go inactive between frames.

Bits D2 thru D4 reflect the logical state of the PA2 thru
P A4 pins respectively. These inputs are user defined.
The 8273 does not interrogate or manipulate these bits.
Bits D5, D6, and D7 are not used and each is read as a I
for a Read Port A command.

Port B is a modem control output port. Its data bus
representation is shown in Figure 14. As in Port A, the
bit values represent the logical condition of the pins. Do
and ~ are dedicated function o~ts. Do represents
the RTS (Request-to-Send) pin. RTS is normally used
to notify the modem that the 8273 wishes to transmit.

This function is handled automatically by the 8273. If
RTS is inactive (pin is high) when the 8273 is com­
manded to transmit, the 8273 makes it active and then
waits for CTS before transmitting the frame. One byte
time after the end of the frame, the 8273 returns RTS to
its inactive state. However, if RTS was active when a
transmit command is issued, the 8273 leaves it active
when the frame is complete.

Bit D5 reflects the state of the Flag Detect pin. This pin
is activated whenever an active receiver sees a flag char­
acter. This function is useful to activate a timer for line
activity timeout purposes.

Bits DI thru D4 provide four user-defined outputs. Pins
PBI thru PB4 reflect the logical state of these bits. The
8273 does not interrogate or manipulate these bits. D6
and D7 are not used. In addition to being able to output
to Port B, Port B may be read using a Read Port B
command. All Modem control output pins are forced
high on reset. (All commands mentioned in this section
are covered in detail later.)

The final block to be covered is the serial data timing
block. This block contains two sections: the serial data
logic and the digital phase locked loop (DPLL).

Elements of the serial data logic section are the data
pins, TxD (transmit data output) and RxD (receive
data input), and the respective data clocks, TxC and
RxC. The transmit and receive data is synchronized by
the TxC and RxC clocks. Figure 15 shows the timing
for these signals. The leading edge (negative transition)

D7 D6 DS D4 Dj D2 D, DO'

1, 1 I 1 I I ~ CTS - C~EAR TO SEND

I I I CD - CARRIER DETECT

PA2 }
PAa USER·DEFINED INPUTS

PA4
611001-13

Figure 13. Port A (Input) Bit Definition

D7 D6 DS D4 Da D2 D, Do

l' I 1 I I I I I I I

l I L RTS _ REQUEST TO SEND

PB, l PB2 USER,DEFINED OUTPUTS
PBa

PB4
FLAG DETECT

611001-14

Figure 14_ Port B (Output) Bit Definition

2-122

AP-36

of TxC generates new transmit data and the trailing
edge (positive transition) of RxC is used to capture the
receive data.

hO =x'--------'

:::~
611001-15

Figure 15. Transmit/Receive Timing

It is possible to reconfigure this section under program
control to perform diagnostic functions; both data and
clock loop back are available. In data loop back mode,
the TxD pin is internally routed to the RxD pin. This
allows simple board checkout since the CPU can send
an SDLC message to itself. (Note that transmitted data
will still appear on the TxD pin.)

When data loopback is utilized, the receiver may be
presented incorrect sample timing (RxC) by the exter-

nal circuitry. Clock loopback overcomes th~oblem
by allowing the internal routing of TxC and RxC. Thus
the same clock used to transmit the data is used to
receive it. Examination of Figure 15 shows that this
method ensures bit synchronism. The final element of
the serial data logic is the Digital Phase Locked Loop.

The DPLL provides a means of clock recovery from
the received data stream. This feature allows the 8273
to interface without external synchronizing logic to low
cost asynchronous modems (modems which do not
supply clocks). It also makes the problem of clock tim­
ing in loop configurations trivial.

To use the DPLL, a clock at 32 times the required baud
rate must be supplied to the 32 X CLK pin. This clock
provides the interval that the DPLL samples the re­
ceived data. The DPLL uses the 32 X clock and the
received data to generate a pulse at the DPLL output
pin. This DPLL pulse is positioned at the nominal cen­
ter of the received data bit cell. Thus the DPLL output
may be wired to RxC and/or TxC to supply the data
timing. The exact position of the pulse is varied depend­
ing on the line noise and bit distortion of the received
data. The adjustment of the DPLL position is deter­
mined according to the rules outlined in Figure 16.

Adjustments to the sample phase of DPLL with respect
to the received data is made in discrete increments. Re­
ferring to Figure 16, following the occurrence of DPLL

1 BIT TIME

R,D

DPlL
A

x
NO TRANSITION

2 4 6 8 10 12 14 16 18 2D 22 24 26 28 30 32

1-----32 CLOCKS -----1 1---1--- 30 CLOCKS --':~-=--I
I

I I
I I

I

I
I

1~--If---33CLOCKS ---+----
I I I

C-2

I I I

: I I F 1 1 32 CLOCKS ---t---- C NOMINAL

I I I
I I I I
I I I I

QUADRANT I A, I ., '.2 A2 I
ADJUSTMENT I -2 I -1 I +1 +2 I

611001-16

Figure 16. DPLL Phase Adjustments

2-123

AP-36

pulse A, the DPLL counts 32 X CLK pulses and exam­
ines the received data for a data edge. Should no edge
be detected in 32 pulses, the DPLL positions the next
DPLL pulse (B) at 32 clock pulses from pulse A. Since
no new phase information is contained in the data
stream, the sample phase is assumed to be at nominal
1 X baud rate. Now assume a data edge occurs after
DPLL pulse B. The distance from B to the next pulse C
is influenced according to which quadrant (A[, B[, B2,
or A2) the data edge falls in. (Each quadrant represents
8 32 X CLK times.) For example, if the edge is detected
in quadrant AI, it is apparent that pulse B was too close
to the data edge and the time to the next pulse must be
shortened. The adjustment for quadrant A I is specified
as - 2. Thus, the next DPlI pulse, pulse C, is posi­
tioned 32 - 2 or 30 32 X CLK pulses following DPLL
pulse B. This adjustment moves pulse C closer to the
nominal bit center of the next received data cell. A data
edge occurring in quadrant B2 would have caused the
adjustment to be small, namely 32 + 1 or 33 32 X
CLK pulses. Using this technique, the DPLL pulse
converges to the nominal bit center within 12 data tran­
sitions, worse case-4-bit times adjusting through
quadrant Al or A2 and 8-bit times adjusting through
BI or B2.

When the receive data stream goes idle after 15' ones,
DPLL pulses are generated at 32 pulse intervals of the
32 X CLK. This feature allows the DPLL pulses to be
used as both transmitter and receiver clocks.

In order to guarantee sufficient transitions of the re­
ceived data to enable the DPLL to lock, NRZI encod­
ing of the data is recommended. This ensures that,
within a frame, data transitions occur at least every five
bit times-the longest sequence of Is which may be
transmitted with zero bit insertion. It is also recom­
mended that frames following a line idle be transmitted
with preframe sync characters which provide a mini­
mum of 12 transitions. This ensures that the DPLL is
generating DPLL pulses at the nominal bit centers in
time for the opening flag. (Two OOH characters meet
this requirement by supplying 16 transitions with
NRZI encoding. The 8273 contains a mode which sup­
plies such a preframe sync.)

Figure 17 illustrates 8273 clock configurations using
either synchronous or asynchronous modems. Notice
how the DPLL output is used for both TxC and RxC in

. the asynchronous case. This feature eliminates the need
for external clock generation logic where low cost asyn­
chronous modems are used and also allows direct con­
nection of 8273s for the ultimate in low cost data links.
The configuration for loop applications is discussed in a
following section.

This completes our discussion of the hardware aspects
of the 8273. Its software aspects are now discussed.

T,e

T,O SYNC 8273
MODEM RiC

R,O
32XCLK DPLL

Ne

611001-17
Synchronous Modem Interface

611001-18
Asynchronous Modem Interface

Figure 17. Serial Data Timing Configuration

SOFTWARE ASPECTS OF THE 8273

The software aspects of the 8273 involve the communi­
cation of both commands from the CPU to the 8273
and the return of results of those commands from the
8273 to the CPU. Due to the internal processor archi­
tecture of the 8273, this CPU-8273 communication is
basically a form of interprocessor communication. Such
communication usually requires a form of protocol of
its own. This protocol is implemented through use of
handshaking supplied in the 8273 Status register. The
bit definition of this register is shown in Figure 18.

T.'RA - hiNT RESULT AVAILABLE
R~IRA - R.INT RESULT AVAILABLE

L~=~==== TxlNT - h INTERRUPT Rill NT - R.l.INTERRUPT
CRBF - COMMAND RESULT

- BUFFER FULL
'-------- CPBF - COMMAND PARAMETER

BUFFER FULL
'----------CBF - COMMAND BUFFER FUll

'-----------CBSy - COMMAND BUSY

611001-19

Figure 18. Status Register Format

2-124

inter AP-36

CBSY: Command Busy-CBSY indicates when the
8273 is in the command phase. CBSY is set when the
CPU writes a command into the Command register,
starting the Command phase. It is reset when the last
parameter is deposited in the Parameter register and
accepted by the 8273, completing the Command phase.

CBF: Command Buffer Full-When set, this bit indi­
cates that a byte is present in the Command register.
This bit is normally not used.

CPBF: Command Parameter Buffer Full-This bit in­
dicates that the Parameter register contains a parame­
te~. It is set when the CPU deposits a parameter in the
Parameter register. It is reset when the 8273 accepts the
parameter.

CRBF: Command Result Buffer Full-This bit is set
when the 8273 places a result from an immediate type
command in the Result register. It is reset when the
CPU reads the result from the Result register.

RxINT: Receiver Interrupt-The state of the RxINT
pin is reflected by this bit. RxINT is set by the 8273
whenever the receiver needs servicing. RxINT is reset
when the CPU reads the results or performs the data
transfer.

TxINT: Transmitter Interrupt-This bit is identical to
RxINT except action is initiated based on transmitter
interrupt sources.

RxIRA: Receiver Interrupt Result Available-RxIRA is
set when the 8273 places an interrupt result byte into
the RxI/R regis~er. RxIRA is reset when the CPU

. reads the RxI/R register.

TxIRA: Transmitter Interrupt Result Available­
TxIRA is the corresponding Result Available bit for
the transmitter. It is set when the '8273 places an inter­
rupt result byte in the TxI/R register and reset when
the CPU reads the register.

The significance of each of these bits will be evident
shortly. Since the software requirements of each 8273
phase are essentially independent, each phase is covered
separately.

Command Phase Software

Recalling the Command phase description in an earlier
section, the CPU starts the Command phase by writing
a command byte into the 8273 Command register. If
further information about the command is required by
the 8273, the CPU writes this information into the Pa­
rameter register. Figure 19 is a flowchart of the Com­
mand phase. Notice that the CBSY and CPBF bits of
the Status register are used to handshake the command
and parameter bytes. Also note that the chart shows

611001-20

Figure 19. Command Phase Flowchart

that a command may not be issued if the Status register
indicates the 8273 is busy (CBSY = 1). If a command
is issued while CBSY = 1, the original command is
overwritten and lost. (Remember that CBSY signifies
the command phase is in progress and not the actual
execution of the command.) The flowchart also ,in­
cludes a Parameter buffer full check. The CPU must
wait until CPBF = 0 before writing a parameter to the
Parameter register. Ifa parameter is issued while CPBF
= 1, the previous parameter is overwritten and lost.
An example of command output assembly language
software is provided in Figure 20a. This software as­
sumes that a command buffer exists in memory. The'
buffer is pointed at by the HL register. Figure 20b
shows the command buffer structure.

The 8273 is a full duplex device, i.e., both the transmit­
ter and receiver may be executing commands or' passing
interrupt results at any given time. (Separate Rx and Tx
interrupt pins and result registers are provided for this
reason.) However, there is only one Command register.
Thus, the Command register must be used for only one
command sequence at a time and the transmitter and

. receiver may never be simultaneously in a command
phase. A detailed description of the commands and
their parameters is presented in a following section.

2-125

inter Ap·36

;FUNCTION: COMMAND DISPATCHER
;INPUTS: HL - COMMAND BUFFER ADDRESS
;OUTPUTS: NONE
;CALLS: NONE
;DESTROYS: A,B,H,L,F/F'S
;DESCRIPTION: CMDOUT ISSUES THE COMMAND + PARAMETERS
;IN THE COMMAND BUFFER POINTED AT BY HL

CMDOUT: LXI H,CMDBUF ;POINT HL AT BUFFER
MOV B,M ;lST ENTRY IS PAR. COUNT
INX H ;POINT AT COMMAND BYTE

CMD1: IN STAT73 ;READ 8273 STATUS'
RLC ;ROTATE CBSY INTO CARRY
JC CMDl ;WAIT UNTIL CBSY=O
MOV A,M ;MOVE COMMAND BYTE TO A
OUT COMM73 ;PUT COMMAND IN COMMAND REG

CMD2: MOV A,B ;GET PARAMETER COUNT
ANA A ;TEST IF ZERO
RZ ;IF 0 THEN DONE
INX H ;NOT DONE, SO POINT AT NEXT PAR
DCR B ;DEC PARAMETER COUNT

CMD3: IN STAT73 ;READ 8273 STATUS
ANI CPBF ;TEST CPBF BIT
JNZ CMD3 ;WAIT UNTIL CPBF IS 0
MOV A,M ;GET PARAMETER FROM BUFFER
OUT PARM73 ;OUTPUT·PAR TO PARAMETER REG
JMP CMD2 ;CHECK IF MORE PARAMETERS

Figure 20A. Command Phase Software

Execution Phase Software
+ 4 PARAMETER 3

+3

+2

+1

CMDBUF:

PARAMETER 2

PARAMETER 1

COMMAND

PARAMETER COUNT ~HL

Figure 20B. Command Buffer Format

During the Execution phase, the operation specified by
the Command phase is performed. If the system utilizes
DMA for data transfers, there is no CPU involvement
during this phase, so no software is required. If non­
DMA data transfers are used, either interrupts or poll­
ing is used to signal a data transfer request.

For interrupt-driven transfers the 8273 raises the ap­
propriate INT pin. When responding to the interrupt,

2-126

infef Ap·36

the CPU must determine whether it is a data transfer
request or an interrupt signaling that an operation is
complete and results are available. The CPU deter­
mines the cause'by reading the Status register and inter­
rogating the associated IRA (Interrupt Result
Available) bit (TxIRA for TxINT and RxIRA for
RxINT). If the IRA = 0, the interrupt is a data
transfer request. If the IRA = I, an operation is
complete and the associated Interrupt Result register
must be read to determine the completion status (good/
bad/etc.). A software interrupt handler implementing
the above sequence is presented as part of the Result
phase software.

When polling is used to determine when data transfers
are required, the polling routine reads the Status regis­
ter looking for one of the INT bits to be set. When a set
INT bit is found, the corresponding IRA bit is exam­
ined. Like in the interrupt-driven case, if the IRA = 0,
a data transfer is required. If IRA = I, an operation is
complete and the Interrupt Result register needs to be
read. Again, example polling software is presented in
the next section.

Result Phase Software

During the Result phase the 8273 notifies the CPU of
the outcome of a command. The Result phase is initiat­
ed by either a successful completion of an operation or
an error detected during execution. Some commands
such as reading or writing the I/O ports provide imme­
diate results, that is, there is essentially no delay from
the issuing of the command and when the result is
available. Other commands such as frame transmit,
take time to complete so their result is not available
immediately. Separate result registers are provided to
distinguish these two types of commands and to avoid
interrupt handling for simple results.

;FUNCTION: IMDRLT
;INPUTS: NONE
;OUTPUTS: RESULT REGISTER IN A
;CALLS: NONE
;DESTROYS: A, F/F'S

Immediate results are provided in the Result register.
Validity of information in this register is indicated to
the CPU by way of the CRBF bit in the Status register.
When the CPU completes the Command phase of an
immediate command, it polls the Status register waiting
until CRBF = 1. When this occurs, the CPU may read
the Result register to obtain the immediate result. The
Result register provides only the results from immedi­
ate commands.

Example software for handling immediate results is
shown in Figure 21. The routine returns with the result
in the accumulator. The CPU then uses the result as is
appropriate.

All non-immediate commands deal with either the
transmitter or'receiver. Results from these commands
are provided in the TxI/R (Transmit Interrupt Result)
and RxI/R (Receive Interrupt Result) registers respec­
tively. Results in these registers are conveyed to the
CPU by the TxIRA and RxIRA bits of the status regis­
ter. Results of non-immediate commands consist of one
byte result interrupt code indicating the condition for
the interrupt and, if required, one or more bytes supply­
ing additional information. The interrupt codes and the
meaning of the additional results are covered following
the detailed command description.

Non-immediate results are passed to the CPU in re­
sponse to either interrupts or polling of the Status regis­
ter. Figure 22 illustrates an interrupt-driven result han­
dier. (Please note that all of the software presented in
this application note is not optimized for either speed or
code efficiency. They are provided as a guide and to
illustrate concepts.) This handler provides for inter­
rupt-driven data transfers as was promised in the last
section. Users employing DMA~based transfers do not

;DESCRIPTION: IMDRLT IS CALLED AFTER A CMDOUT FOR AN
;IMMEDIATE COMMAND TO READ THE RESULT REGISTER

IMDRLT: IN
ANI
JZ
IN
RET

STAT 73
CRBF
IMDRLT
RESL73
;RETURN

;READ 8273 STATUS
;TEST IF RESULT REG READY
;WAIT IF CRBF=O
;READ RESULT REGISTER

Figure 21. Immediate Result Handler

2·127

intJ AP-36

;FUNCTION: RXI - INTERRUPT DRIVEN RESULT/DATA HANDLEH
:INPUTS: RCRBUF, RCVPNT
;CALLS: NONE
:OU'rpUTS: RCRBUF, RCVPNT
; DESTROYS: NOTHING
;DESCRIPTION: RXI IS ENTERED AT It. RECEIVER IN'l'ERRUPT.
:THE INTERRUPT IS TESTED FOR DATA TRANSFER (IRA"'0)
;OR RESULT (IRAa l). FOR DATA TRANSFER. THE DATA IS
;PLAC£D IN A BUFFER AT RCVPNT. RESULTS ARE PLACED IN
; A BUFFER AT RCRDUF.

iA FLAG IRXFLAGJ IS SET IF TttE INTERRUPT WAS Po RESULT.
; (DATA TRANSFER INSTRUCTIONS ARE DENOTED BY (*) AND
:HAYBE ELIMINATED BY USt.RS USING OMA.

" RXI:

AXIl:

AXI2,:

kX!4:

AXIl:

PUSb
PUSH
PUSH
IN
ANI
JZ
LULD
IN
A.,
JZ
IN
ANI
JZ
IN
MOV
INX
BULD
JHF
SHLD
IN
MOV
INX
J"P
MVI
STA
POP
POP
POP
EI
REl'

H
PSW
B
STAT71
RXIRA
RXI2
RCRBUF
STAT71
RXINT
RXl4
STAT71
RXIAA
RUI
aXIR71
H,.
H
RCfI,BUE
RxIl
RCYPhT
RCVLAT
M,.
H
RXIl
A.01H
kXFLAG
B
FSW
H
; EhABLE
;DONE

;SAVE HL
;SAVE PSW I
;SAVE B
: (*) R!::AD 8271 STA1'US
: (*) 1'1;;:'T IRA B11'
: C*) IF It, DA1'A TRAhSFE1-c NI:.I::CED
;GE'r RE.SuL1' BuFfl::J., PuIN'lt::R
;Nt-AC 8271 S'I'A1'US AGAlh '
;TE.5T INT BI'I:
:IF e, 'l'H~h [jONE.
;READ 8271 S1'A1'US AGAIN
;TEST IkA AGAI~
: LllOP UN'I I L R~SUL,[IS hEAD's
;R.E.ACY, I<t.AD RXI/R
;5TOR.I:: Rf.~ULT Ifoi BuFFE;k
;BUMP RJ:;SULT ~OIhn;R
;RESTORE BUFFf.R POIN'IEI<
:GO BACK TO SEE IF MOk1.

C*I G1.'! DATA BUFFER POINT1.R
; C*) RE.Ae DATA VIA RX[jACK
; C*) 51'ORE.. CA'I'A I~ BIJf'FE.k
; C*) BuMP DATA POIhTEk
: (*) CONE,
:SET RX FLAG TO SHOh COMPLt::1'ION
;COHPLf.TIOh
:RESTORE BC
: RESTORE. PSh
:RI::STOR1. t:lL
INTERRUPTS

:FLJhClIvh: 'IXI - IhTl:.ftkUP1 ORIVI:.I11 Ri.SULT/DATA HANOLt;k
: I t-IE'LJ'I 5 ; lXkBI.JF, TXPNT, TXFLAG
:UU'rPU'l'S: TXJ;.BUF, TXPl'iT, TXFLAG
;(.ALL~: !'WalliE.
; ["f.STkuYS: NOTHING
;vl:.:'CRIP'IIUh: TXI IS E.hTE::RJ::D A1' A TRAhSMI'l'TER INTERRUPT.
;In£. If'lTEkRUl'T I~ TE.S'IEC BY WAY OF 'I'ttE'IRA BIT TO St.E
; If A [JATA TRAhSFU, OR RESuLT CuMPLETION HAS OCCURED.
:FOR CATA 'lRAfoISFE.RS (IHA"'B), 'I'd!:: DAl'A IS OBTAINED FItOH
.A BUf'Fi;.k LOCATION PUINTEC AT BY TXPN'l'. FOR COMPLETIO~,
; (lRA;l), TnE RESlJLT5 ARE REAL ANt. PLACED At A RESULT
; &lJH lR POIhTEL 'AT BY TXRdUF, AND ThE TxFLAG IS SET
:'IU IhLICA'IE TU THE. HAlh PROGRAM 'I'HAT A OPERATION IS
;C()HPLlTf.. TX OPE.RATIONS HAVE Ot-lLY ONE RESULT.
;t.A'l'A TRAhSFER I~STRUCTIOhS ARE DENOI'ED BY 1*). THESE
ihAYbf. REHUVlC BY USI:.RS USING DHA.

'l'XI:

1XIl:

TAI2:

PUSH
PUSrI
I.
ANI
JZ
IN
LHL&
HOV
INX
SHLO
MVI
S'l'A
POP
£001'
U
RET
LaLe
HOV
OUT
I ••
SHLC
JMP

H
PS.
STAT?l
TXIRA
TXl2
TXIR71
TXRBUF
M,A
H
TXRBUF
A,BIH
TXFLAG
PSW
H
; E~ABLE
:DONE
TXPhT
A,H
TXDATA
H
TXPNT
TxIl

;SAVE HL
;SAVE PSW
; (*) Rf.AD 82B STATUS
; ('-) TEST TXIRA BIT
; C *) IF 0, DATA TRANSFE:R
; 1, THEN RE;A[J TXIR
: GET RESULT SUFFER POINTER
J STORE RESULT IN BUFFER
: BUMP RESULT POINTER
; RESTORE RESULT POINTER
:SET TXFLAG TO SHOw COMPLETION
:SET FLAG
: RESTORE PSk
;RESTORE HL
IlliTERRUPTS

(*) GET DATA POI filTER
1*) GET DATA FROM BUFFER
C*) OUTPUT TO 8271 VIA TXDACK
(*) BUMP DATA POINTER
(-) RESTORE POINTER
(*) RETURN AFTER RESTORE

611001-61

Figure 22. Interrupt-Driven Result
Handlers with Non-DMA Data Transfers

need the lines where the IRA bit is tested for zero,
(These lines are denoted by an asterisk in the comments
column,) Note that the INT bit is used to determine
when all results have been read, All results must be
read, Otherwise, the INT bit (and pin) will remain high
and further interrupts may be missed, These routines

place the results in a result. buffer pointed at by
RCRBUF and TxRBUF,

A typical result handler for systems utilizing polling is
shown in Figure 23, Data transfers are also handled by
this routine, This routine utilizes the routines of Figure
22 to handle the results,

At this point, the readef'Should have a good conceptual
feel about how the 8273 operates, It is now time for the
particulars of each command to be discussed,

,FUNCTION: POLOP
; INPUTS: NONE
,OUTPUTS: C=0 (NO STATUS), =1 (RX COMPLETION),
, =2 (TX COMPLETION), =1 (BOTH)
,CALLS: TXI, RXI
: DESTROYS: a,c
,DlSCl<IPTION: POLOP IS CALLED TO POLL THE B271 FOR
,DATA TRANSFERS AND COMPLETION RESULTS. THE
,ROU1'INES TXI AND RXI ARE USED FOR THE ACTUAL
,TRANSHRS AND BUFFER WORK. POLOP RETURNS
,ThE S1'AWS OF THEIR ACTION.

POLOP: PUSh PSW :SAVE PSW
MVI C,01:tH ,CLEAR C

FOLOP1: IN STAT 71 : READ 8271 STATUS
IN1' ~ARE TXINT Ok RXINT SET?
PEXI1' iNO, EXIT
STA1'71 ,READ 8271 STATUS
RXINT' ;TI::ST RX INT
RXIC iYES, GO SERVlCE RX
TXI ;MUST BE TX, GO SERVICE IT
TXFLAG ,GET TX FLAG

ANI
JZ
IN
ANI
JNZ
CALL
LDA
CPI
JNZ
INR
INR
JMP

01H ;WAS IT A COMPLETION? (01)
PEXIT ;NO, SO JUST EXIT
C ;Y£S, UPDATE C
C
POLOP1 ;TRY AGAIN ,

kXIC: CALL RXI ;GO SERVICE ax

,

LDA
CPI
JNZ
INR
JHP

RXFLAG
01H
PEXIT
C
POLOP1

;GET ax FLAG
,wAS IT A COMPLE1'ION? (01)
;NO, SO JUST EXIT
; YI::S" UPDATE C
;TRY AGAIN

P£XIT: POP PSW ; .kt..Sl'ORE. PSW
RE'l' iRETUNt-. ~ITH COMPo STATUS IN C

611001-62

Figure 23. Polling Result Handler

8273 COMMAND DESCRIPTION

In this section, each command is discussed In detail. In
order to shorten the notation, please refer to the com­
mand key in Table 1. The 8273 utilizes five different
command types: Initialization/Configuration, Receive,
Transmit, Reset, and Modem Control.

Bo,B1,
Ro,R1

Lo, L1
A1,A2

RIC
TIC

A
C

Table 1. Command Summary Key

-LSB and MSB of Receive Buffer Length

-LSB and MSB of Received Frame Length
-LSB and MSB of TransmitFrame Length
-Match Addresses for Selective Receive

-Receiver Interrupt Result Code
-Transmitter Interrupt Result Code

. -Address Field of Received Frame

-Control Field of Received Frame

2-128

inter AP-36

Initialization/Configuration Commands

The Initialization/Configuration commands manipu­
late registers internal to the 8273 that define the various
operating modes. These commands either set or reset
specified bits in the registers depending on the type of
command. One parameter is required. Set commands
perform a logical OR operation of the parameter
(mask) and the internal register. This mask contains Is
where register bits are to be set. A "0" in the mask
causes no change in the corresponding register bit. Re­
set commands perform a logical AND operation of the
parameter (mask) and the internal register, i.e., the
mask is "0" to reset a register bit and a "I" to cause no
change. Before presenting the commands, the register
bit definitions are discussed.

Operating Mode Register (Figure 24)

D7-D6: Not Used-These bits must not be manipulat­
ed by any command; i.e., D7-D6 must be 0
for the Set command and I for the Reset com­
mand.

Ds: HDLC Abort-When this bit is set, the 8273
will interrupt when 7 Is (HDLC Abort) are
received by an active receiver. When reset, an
SDLC Abort (8 Is) will cause an interrupt.

EOP Interrupt-Reception of an EOP charac­
ter (0 followed by 7 Is) will cause the 8273 to
interrupt the CPU when this bit is set. Loop
controller stations use this mode as a signal
that a polling frame has completed the loop.
No EOP interrupt is generated when this bit is
reset.

Early Ti Interrupt-This bit specifies when
the transmitter should generate an end of
frame interrupt. If this bit is set, an interrupt is
generated when the last data character has
been passed to the 8273. If the user software
issues another transmit command within two
byte times, the final flag interrupt does not oc­
cur and the new frame is transmitted with
only one flag of separation. If this restriction is
not met, more than one flag will separate the
frames and a frame complete interrupt is gen­
erated after the closing flag. If the bit is reset,
only the frame complete interrupt occurs. This
bit, when set, allows a single flag to separate
consecutive frames.

Buffered Address and Control-When set, the
address and control fields of received frames
are buffered in the 8273 and passed to the
CPU as results after a received frame interrupt
(they are not transferred to memory with the
information field). On transmit, the A and C
fields are passed to the 8273 as parameters.
This mode simplifies buffer management.
When this bit is reset, the A and C fields are

DO:

passed to and from memory as the first two
data transfers.

Pre/rome Sync-When set, the 8273 prefaces
each transmitted frame with two characters
before the opening flag. These two characters
provide 16 transitions to allow synchroniza­
tion of the opposing receiver. To guarantee 16
transitions, the two characters are 55H-55H
for non-NRZI mode (see Serial I/O Register
description) or OOH-OOH for NRZI mode.
When reset, no preframe characters are trans­
mitted.

Flag Stream-When set, the transmitter will
start sending 'flag characters as soon as it is

. idle; i.e., immediately if idle when the com­
mand is issued or after a transmission if the
transmitter is active when this bit is set. When
reset, the transmitter starts sending Idle char­
acters on the next character boundary if idle
already, or at the end of a transmission if ac­
tive.

flAT STREAM MODE
PREFRAME SYNC MODE

L-___ BUFFERED MODE

'------- EARLY TIC INTERRUPT ENABLE

L~======= EOP INTERRUPT ENABLE
HOLe ABORT ENABLE

'----------- NOT useD - DO NOT CHANGE

611001-21

Figure 24. Operating Mode Register

Serial 110 Mode Register (Figure 25)

D7-D3: Not Used-These bits must be 0 for the Set
command and 1 for the Reset command.

D2: Data Loopback-When set, transmitted data
(TxD) is internally routed to the receive data
circuitry. When reset, TxD and RxD are inde­
pendent.

D\: Clock Loopback-When set. TxC is internally
routed to RxC. When reset, the clocks are in­
dependent.

Do: NRZI (NOli-Return to Zero Illverted-When
set, the 8273 assumes the received data is
NRZI encoded, and NRZI encodes the trans­
mitted data. When reset, the received and
transmitted data are treated as a normal posi­
tive logic bit stream.

Data Transfer Mode Register
(Figure 26)

D7-DF Not Used-These bits must be 0 for the Set
command and 1 for the Reset command.

2-129

inter AP-36

DO: Interrupt Data Transfer-When set, the 8273
will interrupt the CPU when data transfers are
required (the corresponding IRA Status regis- .
ter bit will be 0 to signify a data transfer inter­
rupt rather than a Result phase interrupt).
When reset, 8273 data transfers are performed
through DMA requests on the DRQ pins
without interrupting the CPU.

OJ De 05 D4 D3 D2 D1 Do

T "---I

I ,1.1 •• ZOMODE

~ CLOCK LOOPBACK
DATA LOOPBACK
NOT USED - DO NOT CHANGE

611001-22

Figure 25. Serial I/O Mode Register

07 De 05 04 03 02 '01 DO

cr. fI¥I¥'9l>f'¥1 ~ INTERRUPT DATA TRANSFERS

- NOT USED - DO NOT CHANGE

611001-23

Figure 26. Data Transfer Mode Register

One Bit Delay Register (Figure 27)

D7: One Bit Delay-When set, the 8273 retrans­
mits the received data stream one bit delayed.
This mode is entered and exited at a received
character boundary. When reset, the transmit­
ted and received data are independent. This
mode is utilized for loop operation and is dis­
cussed in a later section.

D6-DO: Not Used-These bit must be 0 for the Set
command and 1 for the Reset command.

NOT USED - DO NOT CHANGE
ONE BIT DELAY ENABLE

611001-24

Figure 27. One Bit Delay Mode Register

Figure 28 shows the Set and Reset commands associat­
ed with the above registers. The mask which sets or
resets the desired bits is treated as a single parameter.
These commands do not interrupt nor provide results
during the Result phase. After reset, the 8273 defaults
to all of these bits reset;

Register Command
Hex

Parameter
Code

One Bit Delay Set A4 Set Mask
Mode Reset 64 Reset Mask

Data Transfer Set 97 Set Mask
Mode Reset 57 Reset Mask

Operating Mode
Set 91 Set Mask

Reset 51 Reset Mask

Serial 1/0 Mode
Set AO Set Mask

Reset 60 Reset Mask

Figure 28. Initialization/Configuration
Command Summary

Receive Commands

The 8273 supports three receive commands plus a re­
ceiver disable function.

General Receive

When commanded to General Receive, the 8273 passes
all frames either to memory (DMA mode) or to the
CPU (non-DMA mode) regardless of the contents of
the frame's address field. This command is used for
primary and loop controller stations. Two parameters
are required: Bo and BI. These parameters are. the LSB
and MSB of the receiver buffer size. Giving the 8273
this extra information alleviates the CPU of the burden
of checking for buffer overflow. The 8273 will interrupt
the CPU if the received frame attempts to overfill the
allotted buffer space.

Selective Receive

In Selective Receive, two additional parameters besides
Bo and BI are required: Al and A2. These parameters
are two address match bytes. When commanded to Se­
lective Receive, the 8273 passes to memory or the CPU
only those frames having an address field matching ei­
ther A I or A2. This command is usually used for sec­
ondary stations with A I being the secondary address
and A2 is the "All Parties" address. If only one match
byte is needed, Al and A2 should be equal. As in Gen­
eral Receive, the 8273 counts the incoming data bytes
and interrupts the CPU if Bo, BI is exceeded.

Selective Loop Receive

This command is very similar in operation to Selective
Receive except that One Bit Delay mode must be set

2-130

inter Ap·36

and that the loop is captured by placing transmitter in
Flag Stream mode automatically after an EOP charac­
ter is detected following a selectively received frame.
The details of using the 8273 in loop configurations is
discussed in a later section so please hold questions un­
til then.

The handling of interrupt results is common among the
three commands. When a frame is received without er­
ror, i.e., the FCS is correct and CD (Carrier Detect)
was active throughout the frame or no attempt was
made to overfill the buffer; the 8273 interrupts the CPU
following the closing flag to pass the completion re­
sults. These results, in order, are the receiver. interrupt
result code (RIC), and the byte length of the informa­
tion field of the received frame (RO, R\). If Buffered
mode .is selected, the address and control fields are
passed as two additional results. If Buffered mode is not
selected, the address and control fields are passed as the

Command Hex
Code

General Receive CO
Selective Receive C1
Selective Loop Receive C2
Disable Receiver C5

"NOTE:

first two data transfers and RO, R\ reflect the informa­
tion field length plus two.

Receive Disable

The receiver may also be disabled using the Receive
Disable command. This command terminates any re­
ceive operation immediately. No parameters are re­
quired and no results are returned.

The details for the Receive command are shown in Fig­
ure 29. The interrupt result code key is shown in Figure
30. Some explanation of these result codes is appropri­
ate.

The interrupt result code is the first byte passed to the
CPU in the RxI/R register during the Result phase.
Bits D4 - Do define the cause of the receiver interrupt.
Since each result code has specific implications, they
are discussed separately below.

Parameters
Results'

Rxl/R

. Bo, B1 RIC, Ro, R1, A, C
Bo, B1, A1, A2 RIC, Ro, R1, A, C
Bo, B1, A1, A2 RIC, Ro, R1, A, C

None None

A and C are passed as'results only in buffered mode.

Figure 29. Receiver Command Summary

RIC
Receiver Interrupt Result Code

07-0 0

• 00000 A1 Match or General Receive

" 00001 A2 Match
000 00011 CRC Error
000 00100 Abort Detected
000 00101 Idle Detected
000 00110 EOP Detected
000 00111 Frame < 32 Bits
000 01000 DMAOverrun
000 01001 Memory Buffer Overflow
000 01010 Carrier Detect Failure
000 01011 Receiver Interrupt Overrun

'07-0 5 Partial Byte Received

111 All 8 Bits of Last Byte
000 Do
100 01-00
010 02-00
110 03-00
001 04-00
101 05-00
011 06-00

Figure 30. Receiver Interrupt Result Codes (RIC)

2-131

Rx Status
After INT

Active
. Active
. Active

Active
Disabled
Disabled
Active

Disabled
Disabled
Disabled
Disabled

intJ AP-36

The first two result codes result from the error-free re­
ception of a frame. If the frame is received correctly
after a General Receive command, the first result is
returned. If either Selective Receive command was used
(normal or loop), a match with Al generates the first
result code and a match with A2 generates the second.
In either case, the receiver remains active after the in­
terrupt; however, the internal buffer size counters are
not reset. That is, if the receive command indicated 100
bytes were allocated to the receive buffer (Bo, BI) and
an 80-byte frame was received correctly, the maximum
next frame size that could be received without recom­
manding the receiver (resetting Bo and BI) is 20 bytes.
Thus, it is common practice to recommand the receiver
after each frame reception. DMA and/or memory
pointers are usually updated at this time. (Note that
users who do not wish to take advantage of the 8273's
buffer management features may simply use Bo, BI =
OFFH for each receive command. Then frames of 65K
bytes may be received without buffer overflow errors.)

The third result code is a CRC error. This indicates
that a frame was received in the correct format (flags,
etc.); however, the received FCS did not check with the
internally generated FCS. The frame should be discard­
ed. The receiver remains active. (Do not forget that
even though an error condition has been detected, all
frame information up until that error has either been
transferred to memory or passed to the CPU. This in­
formation should be invalidated. This . applies to all re­
ceiver error conditions~) Note that the FCS, either
transmitted or received, is never available to the CPU.

The Abort Detect result occurs whenever the receiver
sees either an SDLC (8 Is) or an HDLC (7 Is), depend­
ing on the Operating Mode register. However, the in­
tervening Abort character between a closing flag and an
Idle does not generate an interrupt. If an Abort charac­
ter (seen by an active receiver within a frame) is not
preceded by a flag and is followed by an idle, an inter­
rupt will be generated for the Abort, followed by an
Idle interrupt one character time later. The Idle Detect
result occurs whenever 15 consecutive Is are received.
After the Abort Detect interrupt, the receiver remains
active. After the Idle Detect interrupt, the receiver is
disabled and must be recommanded before further
frames may be received.

If the EOP Interrupt bit is set in the Operating Mode
register, the EOP Detect result is returned whenever an
EOP character is received. The receiver is disabled, so
the Idle following the EOP does not generate an Idle
Detect interrupt.

The minimum number of bits in a valid frame between
the flags is 32. Fewer than 32 bits indicates an error. If
Buffered mode is selected, such frames are ignored, i.e.,
no data transfers or interrupts are generated. In non­
Buffered mode, a < 32-bit frame generates an interrupt

with the < 32-bit frame result since data transfers may
already have disturbed the 8257 or interrupt handler.
The receiver remains active.

The DMA Overrun results from the DMA controller
being too slow in extracting data from the 8273, i.e., the
RxDACK signal is not returned before the next re­
ceived byte is ready for transfer. The receiver is dis­
abled if this error condition occurs.

The Memory Buffer Overflow result occurs when the
number of received bytes exceeds the receiver buffer
length supplied by the Bo and BI parameters in the
receive command. The receiver is disabled.

The Carrier Detect Failure result occurs when the CD
pin ~ high (inactive) during reception of a frame.
The CD pin is used to qualify reception and must be
active by the time the address field starts to be received.
If CD is lost during the frame, a CD Failure interrupt
is generated and the receiver is disabled. No interrupt is
generated if CD goes inactive between frames.

If a condition occurs requiring an interrupt be generat­
ed before the CPU has finished reading the previous
interrupt results, the second interrupt is generated after
the current Result phase is complete (the RxINT pin
and status bit go low then high). However, the inter­
rupt result for this second interrupt will be a Receive
Interrupt Overrun. The actual cause of the second in­
terrupt is lost. One case where this may occur is at the
end of a received frame where the line goes idle. The
8273 generates a received frame interrupt after the clos­
ing flag and then IS-bit times later, generates an Idle
Detect interrupt. If the interrupt service routine is slow
in reading the first interrupt's results, the internal
Rxl/R register still contains result information when
the Idle Detect interrupt occurs. Rather than wiping
out the previous results, the 8273 adds a Receive Inter­
rupt Overrun result as an extra result. If the system's
interrupt structure is such that the second interrupt is
not acknowledged (interrupts are still disabled from the
first interrupt), the Receive Interrupt Overrun result· is
read as an !;xtra result, after those from the first inter­
rupt. If the second interrupt is serviced, the Receive
Interrupt Overrun is returned as a single result. (Note
that the INT pins supply the necessary transitions to
support a Programmable Interrupt Controller such as
the Intel 8259. Each interrupt generates a positive-go­
ing edge on the appropriate INT pin and the high level
is held until the interrupt is completely serviced.) In
general, it is possible to have interrupts occurring at
one character time intervals. Thus the interrupt han­
dling software must have at least that much response
and service time.

The occurrence of Receive Interrupt Overruns is an in­
dication of marginal software design; the system's inter­
rupt response and servicing time is not sufficient for the

2-132

intJ Ap·36

data rates being attempted. It is advisable to configure
the interrupt handling software to simply read the in­
terrupt results, place them into a buffer, and clear the
interrupt as quickly as possible. The software can then
examine the buffer for new results at its leisure, and
take appropriate action. This can easily be accom­
plished by using a result buffer flag that indicates when
new results are available. The interrupt handler sets the
flag and the main program resets it once the results are
retrieved.

Both SDLC and HDLC allow frames which are of arbi­
trary length (> 32 bits). The 8273 handles this N-bit
reception through the high order bits (D7-DS) of the
result code. These bits code the number of valid re­
ceived bits in the last received information field byte.
This coding is shown in Figure 30. The high order bits
of the received partial byte are indeterminate. [The ad­
dress, control, and information fields are transmitted
least significant bit (Aa) first. The FCS is complement­
ed and transmitted most significant bit first.]

Transmit Commands

The 8273 transmitter is supported by three Transmit
commands and three corresponding Abort commands.

Transmit Frame

The Transmit Frame command simply transmits a
frame. Four parameters are required when Buffered
mode is selected and two when it is not. In either case,
the first two parameters are the least and the most sig­
nificant bytes of the desired frame length (La, L,). In
Buffered mode, La and L, equal the length in bytes of
the desired information field, while in the non-Buffered
mode, La and L, must be specified at the information
field length plus two. (La and L, specify the number of
data transfers to be performed.) In Buffered mode, the
address and control fields are presented to the transmit­
ter as the third and fourth parameters respectively. In
non-Buffered mode, the A and C fields must be passed
as the first two data transfers.

When the Transmit Frame command is issued, the'
8273 makes RTS (Request-to-Send) act~pin low) if
it was not already. It then waits until CTS (Clear-to­
Send) goes active (pin low) before starting the frame. If
the Preframe Sync bit in the Operating Mode register is
set, the transmitter prefaces two characters (16 tran­
sitions) before the opening flag. If the Flag Stream bit is
set in the Operating Mode register, the frame (including
Preframe Sync if selected) is started on a flag boundary.
Otherwise the frame starts on a character boundary.

At the end of the frame, the transmitter interrupts the
CPU (the interrupt results are discussed shortly) and

returns to either Idle or Flag Stream, depending on the
Flag Stream bit of the Operating Mode register. IfRTS
was active before the transmit command, the 8273 does
not change it. If it was inactive, the 8273 will deactivate
it within one character time.

Loop Transmit

Loop Transmit is similar to Frame Transmit (the pa­
rameter definition is the same). But since it deals with
loop configurations, One Bit Delay mode must be se­
lected.

If the transmitter is not in Flag Stream mode when this
command is issued, the transmitter waits until after a
received EOP character has been converted to a flag
(this is done automatically) before transmitting. (The
one bit delay is, of course, suspended during transmit.)
If the transmitter is already in Flag Stream mode as a
result of a selectively received frame during a Selective
Loop Receive command, transmission will begin at the
next flag boundary for Buffered mode or at the third
flag boundary for non-Buffered mode. This discrepancy
is to allow time for enough data transfers to occur to fill
up the internal transmit buffer. At the end of a Loop
Transmit, the One Bit Delay mode is re-entered and the
flag stream mode is reset. More detailed loop operation
is covered later.

Transmit Transparent

The Transmit Transparent command enables the 8273
to transmit a block of raw data. This data is without
SDLC protocol, i.e., no zero bit insertion, flags, or
FCS. Thus it is possible to construct and transmit a Bi­
Sync message for front-end processor switching or to
construct and transmit an SDLC message with incor­
rect FCS for diagnostic purposes. Only the La and L,
parameters are used since there are not fields in this
mode. (The 8273 does not support a Receive Transpar­
ent command.)

Abort Commands

Each of the above transmit commands has an associat­
ed Abort command. The Abort Frame Transmit com­
mand causes the transmitter to send eight contiguous
ones (no zero bit insertion) immediately and then revert
to either idle or flag streaming based on the Flag
Stream bit. (The 8 Is as an Abort character is compati­
ble with both SDLC and HDLC.)

For Loop Transmit, the Abort Loop Transmit com­
mand causes the transmitter to send one flag and then
revert to one bit delay. Loop protocol depends upon
FCS errors to detect aborted frames.

2-133

AP-36

The Abort Transmit Transparent simply causes the
transmitter to revert to either idles or flags as a func­
tion of the Flag Stream mode specified.

The Abort commands require no parameters, however,
they do generate an interrupt and return a result when
complete.

A summary of the Transmit commands is shown in
Figure 31. Figure 32 shows the various transmit inter­
rupt result codes. As in the receiver operation, the
transmitter· generates interrupts based on either good
completion of an operation or an error condition. to
start the Result phase.

The Early Transmit Interrupt result occurs after the
last data transfer to the 8273 if the Early Transmit In­
terrupt bit is set in the Operating Mode register. If the
8273 is commanded to transmit again within two char­
acter times, a single flag will separate the frames. (Buff- .
ered mode must be used for a single flag to separate the
frames. If non-Buffered mode is selected, three flags
will separate the frames.) If this time constraint is not
met, another interrupt is generated and multiple flags
or idles will separate the frames. The second interrupt
is the normal Frame Transmit Complete interrupt. The
Frame Transmit Complete result occurs at the closing
flag to signify a good completion.

The DMA Underrun result is analogous to the DMA
Overrun result in the receiver. Since SDLC does not

Command
Hex

Code

Transmit Frame C8
Abort CC

Loop Transmit CA
Abort CE

Transmit Transparent CO
Abort CD

'NOTE:

support intraframe'time fill, if the DMA controller or
CPU does not supply the data in time, the frame must
be aborted. The action taken by the transmitter on this
error is automatic. It aborts the frame just as if an
Abort command had been issued.

Clear-to-Send Error result is generated if CTS goes in­
active during a frame transmission. The frame is abort­
ed as above.

The Abort Complete result is self-explanatory. Please
note however that no Abort Complete interrupt is gen­
erated when an automatic abort occurs. The next com­
mand type consists of only one command.

Reset Command

The Reset command provides a software reset function
for the 8273. It is a special case and does not utilize the
normal command interface. The reset facility is provid­
ed in the Test Mode register. The 8273 is reset by sim­
ply outputting a OlH followed by a DOH to the Test
Mode register. Writing the 01 followed by the 00 mim­
icks .the action required by the hardware reset. Since
the 8273 requires time to process the reset internally, at
least 10 cycles of the 4>CLK clock must occur between
the writing of the Oland the 00. The action taken is the
same as if a hardware reset is performed, namely:

1) The modem control outputs are forced high inactive.

Parameters'
Results
TxllR

La, Lj, A, C TIC
None TIC

La, Lj, A, C TIC
None TIC

La, Lj TIC
None TIC

A and C are passed as parameters in buffered mode only.

Figure 31. Transmitter Command Summary

RIC Transmitter Interrupt TxStatus
07-0 0 Result Code after INT

00001100 Early Tx Interrupt Active
00001101 Frame Tx Complete Idle or Flags
00001110 DMA Underrun Abort
00001111 Clear to Send Error Abort
00010000 Abort Complete Idle or Flags

Figure 32. Transmitter Interrupt Result Codes

2-134

AP-36

2) The 8273 Status register is cleared.

3) Any commands in progress cease.

4) The 8273 enters an idle state until the next command
is issued.

Modem Control Commands

The modem control ports were discussed earlier in the
Hardware section. The commands used to manipulate
these ports are shown in Figure 33. The Read Port A
and Read Port B commands are immediate. The bit
definition for the returned byte is shown in Figures 13
and 14. 00 not forget that the returned value represents
the logical condition of the pin, i.e., pin active (low) =
bit set.

The Set and Reset Port B commands are similar to the
Initialization commands in that they use a mask pa­
rameter which defines the bits to be changed. Set Port
B utilizes a logical OR mask and Reset Port B uses a
logical ANO mask. Setting a bit makes the pin active
(low). Resetting the bit deactivates the pin (high).

To help clarify the numerous timing relationships that
occur and their consequences, Figures 34 and 35 are
provided as an illustration of several typical sequences.
It is suggested that the reader go over these diagrams
and re-read the appropriate part of the previous sec­
tions if necessary.

HDLC CONSIDERATIONS

The 8273 supports HOLC as well as SOLC. Let's dis­
cuss how the 8273 handles the three basic HOLC!
SOLC differences: extended addressing, extended con­
trol, and the 7 Is Abort character.

Recalling Figure 4a, HOLC supports an address fi~ld
of indefinite length. The actual amount of extension
used is determined by the least significant bit of the
characters immediately following the opening flag. If
the LSB is 0, more address field bytes follow. If the
LSB is I,this byte is the final address field byte. Soft­
ware must be used to determine this extension.

Command
Hex

Port
Code

A Input Read 22

Read 23

B Output Set A3

Reset 63

If non-Buffered mode is used, the A, C, and I fields are
in memory. The software must examine the initial char­
acters to find the extent of the address field. If Buffered
mode is used, the characters corresponding to the
SOLC A and C fields are transferred to the CPU as
interrupt results. Buffered mode assumes the two char­
acters following the opening flag are to be transferred
as interrupt results regardless of content or meaning.
(The 8273 does not know whether it is being used in an
SOLC or an HOLC environment.) In SOLC, these
characters are necessarily the A and C field bytes, how­
ever in HOLC, their meaning may change 'depending
on the amount of extension used. The software must
recognize this and examine the transferred results as
possible address field extensions.

Frames may still be selectively received as is needed for
secondary stations. The Selective Receive command is
still used. This command qualifies a frame reception on
the first byte following the opening flag matching either
of the AI or A2 match byte parameters. While this does
not allow qualification over the complete range of
HOLC addresses, it does perform a qualification on the
first address byte. The remaining address field bytes, if
any, are then examined via software to completely qual­
ify the frame.

Once the extent of the address field is found, the follow­
ing bytes form the control field. The same LSB test
used for the address field is applied to these bytes to
determine the control field extension, up to two bytes
maximum. The remaining frame bytes in memory rep­
resent the information field.

The Abort character difference is handled in the Oper­
ating Mode register. If the HOLC Abort Enable bi,~ is
set, the reception of seven contiguous ones by an active
receiver will generate an Abort Oetect interrupt rather
than eight ones. (Note that both the HOLC Abort En­
able bit and the EOP Interrupt bit must not be set
simultaneously.)

Now let's move on to the SOLe loop configuration
discussion.

Parameter
Reg

Result

None Port Value

None Port Value

Set Mask None

Reset Mask None

Figure 33. Modem Control Command Summary

2-135

intJ AP-36

CARRIER DETECT -...-J \~-
RxD

Rx COMMAND t
OR~~~:~~~~~~~i~ ___ ~~_A ____ ~I_c ____ ~t~ll _____________________ __

NON·BUFFERED t FRAME t POSSIBLE
IN~~~~~~~~ __ M ___ O_DE ______________ ~~C~O~M~P~LE~T~E~ ___ ~ID~L~E~I~NT

611001-25
A. Error·Free Frame Reception

CARRIER DETECT -...-J \\\\\\\\\\\\
RxO

Rx COMMAND t

IN~~~~~~~~ _______________________ t;,....F..;,A.;.~;;.L~;.,R.;;E;,....I;,.......:.-....;;,.......:.-....; __ ..:.......; __ ..:... ____ ..:.....;,F..:.A;;.:~:.:~..:.R::E ____ _

611001-26
B. Carrier Detect Failure During Frame Reception

Figure 34. Sample Receiver Timing Diagrams

LOOP CONFIGURATION

Aside from use in the normal data link applications, the
8273 is extremely attractive in loop configuration due
to the special frame-level loop commands and the Digi­
tal Phase Locked Loop. Toward this end, this section
details the hardware and software considerations when
using the 8273 in a loop application.

The loop configuration offers a simple, low-cost solu­
tion for systems with multiple stations within a small
physical location, i.e., retail stores and banks. There are
two primary reasons to consider a loop configuration.
The interconnect cost is lower for a loop over a multi­
point configuration since only one twisted pair or fiber
optic cable is ,used. (The loop configuration does not
support the passing of distinct clock signals from sta­
tion to station.) In addition, loop stations do not need
the intelligence of a multi-point station since the loop

protocol is simpler. The most difficult aspects of loop
station design are clock recovery and implementation
of one bit delay (both are handled neatly by the 8273).

Figure 36 illustrates a typical loop configuration with
one controller and two down-loop secondaries. Each
station must derive its own data timing from the re­
ceived data stream. Recalling our earlier discussion of
the DPLL, notice that TxC and RxC clocks are provid­
ed by the DPLL output. The only clock required in the
secondaries is a simple, non-synchronized clock at 32
times the desired baud rate. The controller requires
both 32 X and 1 X clocks. (The 1 X is usually imple­
mented by dividing the 32 X clock with a 5-bit divider.
However, there is no synchronism requirement between
these clocks so any convenient implementation may be
used.)

2-136

inter

Tx COMMAND!

TxD

RTS~
CTS-----.....

AP-36

L
L

1 A 1 C 111 112
OR~~~:~~~~~~~~~------------I---I---I--

NON·BUFFERED 1
MODE

IN~~;=~~~~--~FR-A-M-E-C~O~M~P~L~E~TE

1ST FRAME

Tx COMMAND 1

TxD

RTS~
CTS~

A. Error-Free Frame Transmission

2ND FRAME
I I I I I
I I I I I

611001-27

hARLYT.
IN~~;~~~;~----------------------------~---------------------------------------

T. COMMAND I

B. Diagram Showing Tx Command Queing and Early Tx Interrupt
(Single flag between frames) Buffered Mode is Assumed

CTS------......

L

1 CTS

IN~~;=~~;~--~O~R~A~~~:~R~O~R---------------
ERROR

INTERRUPT

C. CTS Failure (or other error) During Transmission

Figure 35_ Sample Transmitter Timing Diagrams

2-137

611001-28

611001-29

inter AP-36

1.LOOP
OSCILLATOR

OR
DIVIDER

RxD RKC

TxD

8273
LOOP

CONTROLLER

TKC TxD

8273 8273
LOOP TxD 1--+--+--+1 RKD LOOP

TERMINAL TERMINAL

TKC RxC

611001-30

Figure 36. SOLe Loop Appli,catlon

A quick review of loop protocol is appropriate. All
communication on the loop is controlled by the loop
controller. When the controller wishes to allow the sec­
ondaries to transmit, it sends a polling frame (the con­
trol field contains a poll code) followed by an EOP
(End-of-Poll) character. The secondaries use the EOP

'character to capture the loop and insert a response
frame as will be discussed shortly.

The secondaries normally operate in the repeater mode,
retransmitting received data with one bit time of delay.
All received frames are repeated. The secondary uses
the one bit time of delay to capture the loop.

When the loop is idle (no frames), the controller trans­
mits continuous flag characters. This keeps transitions
on the loop for the sake of down-loop phase locked
loops. When the controller has a non-polling frame to
transmit, it simply transmits the frame and continues to
send flags. The non-polling frame is then repeated
around the loop and the controller receives it to signify
a complete traversal of the loop: At the particular sec­
ondary addressed by the frame, the data is transferred
to memory while being repeated. Other secondaries
simply repeat it.

If the controller wants to poll the secondaries, it trans­
mits a polling frame followed by all Is (no zero bit
insertion). The final zero of the closing frame plus the
first seven is form an BOP. While repeating, the secon­
daries monitor their incoming line for an BOP. When
an EOP is received, the secondary checks if it has any
response for the controller. If not, it simply continues
repeating. If the secondary has a response, it changes

. the seventh BOP one into a zero (the one bit time of
delay allows time for this) and repeats it, forming a flag
for the down-loop stations. After this flag is transmit­
ted, the secondary terminates its repeater function and
inserts its response frame (with multiple preceding flags
if necessary). After the closing flag of the response, the
secondary re-enters its repeater function, repeating the
up-loop controller Is. Notice that the final zero of the
response's closing flag plus the repeated I s from the
controller form a new BOP for the next down-loop sec­
ondary. This new BOP allows the next secondary to
insert a response if it desires. This gives each secondary
a chance to respond.

Back at the controller, after the polling frame has been
transmitted and the continuous Is started, the control­
ler waits until it receives an BOP. Receiving an BOP
signifies to the controller that the original frame has
propagated around the loop followed by any responses
inserted by the secondaries. At this point, the controller
may either send flags to idle the loop or transmit the
next frame. Let's assume that the loop is implemented
completely with the 8273s and describe the command
flows for a typical controller and secondary.

The loop controller is initialized with commands which
specify that the NRZI, Preframe Sync, Flag Stream,
and BOP Interrupt modes are set. Thus, the controller '
encodes and decodes all data using NRZI format. Pre­
frame Sync mode specifies that all transmitted frames
be prefaced with 16 line transitions. This ensures that
the minimum of 12 transitions needed by the DPLL to
lock after an all I s line has occurred by the time the
secondary sees ,a frame's opening flag. Setting the Flag
~tream mode starts the transmitter sending flags which
Idles the loop. And the BOP Interrupt mode specifies
that the controller processor will be interrupted when­
ever the active receiver sees an BOP, indicating the
completion of a poll cycle.

When ~he. controller wishes to transmit a non-polling
frame, It simply executes a Frame Transmit command.
Since the Flag Stream mode is set, no BOP is formed
after the closing flag. WheIi a polling frame is to be
transmitted, a General Receive command is executed
firs~. Thi~ enables the receiver and allows reception of
all mcommg frames; namely, the original polling frame
plus any response frames inserted by the secondaries.
After the General Receive command, the frame is
transmitted with a Frame Transmit command. When
the frame is complete, a transmitter interrupt is gener-

2-138

AP-36

ated. The loop controller processor uses this interrupt
to reset Flag Stream mode. This causes the transmitter
to start sending all Is. An EOP is formed by the last
flag and the first 7 Is. This completes the loop control­
ler transmit sequence.

At any time following the start of the polling frame
transmission the loop controller receiver will start re­
ceiving frames. (The exact time difference depends, of
course, on the number of down-loop secondaries due to
each inserting one bit time of delay.) The first received
frame is simply the original polling frame. However,
any additional frames are those inserted by the secon­
daries. The loop controller processor knows all frames
have been received when it sees an EOP Interrupt. This
interrupt is generated by the 8273 since the EOP Inter­
rupt mode was set during initialization. At this point,
the transmitter may be commanded either to enter Flag
Stream mode, idling the loop, or to transmit the next
frame. A flowchart of this sequence is shown in Figure
37.

o DEN~TES COMMAND

<=:) DENOTES INTERRUPT CODE

611001~31

Figure 37. Loop Controller Flowchart

The secondaries are initialized with the NRZI and One
Bit Delay modes set. This puts the 8273 into the repeat­
er mode with the transmitter repeating the received
data with one bit time of delay. Since a loop station
cannot transmit until it sees an EOP character, any
transmit command is queued until an EOP is received.
Thus whenever the secondary wishes to transmit a re­
sponse, a Loop Transmit command is issued. The 8273
then waits until it receives an EOP. At this point, the
receiver changes the EOP into a flag, repeats it, resets
One Bit Delay mode stopping the repeater function,
and sets the transmitter into Flag Stream mode. This
captures the loop. The transmitter now inserts its mes­
sage. At the closing flag, Flag Stream mode is reset, and
One Bit Delay mode is set, returning the 8273 to re­
peater function and forming an EOP for the next down­
loop station. These actions happen automatically after a
Loop Transmit command is issued.

When the secondary wants its receiver enabled, a Selec­
tive Loop Receive command is issued. The receiver
then looks for a frame having a match in the Address
field. Once such a frame is received, repeated, and
transferred to memory, the secondary's processor is in­
terrupted with the appropriate Match interrupt result
and the 8273 continues with the repeater function until
an EOP is received, at which point the loop is captured
as above. The processor should use the interrupt to de­
termine if it has a message for the controller. If it does,
it simply issues a Loop Transmit command and things
progress as above. If the processor has no message, the
software must reset the Flag Stream mode bit in the
Operating Mode register. This will inhibit the 8273
from capturing the loop at the EOP. (The match frame
and the EOP may be separated in time by several
frames depending on how many up-loop stations insert­
ed messages of their own.) If the timing is such that the
receiver has already captured the loop when the Flag
Stream mode bit is reset, the mode is exited on a flag
boundary and the frame just appears to have extra clos­
ing flags before the EOP. Notice that the 8273 handles
the queuing of the transmit commands and the setting
and resetting of the mode bits automatically. Figure 38
illustrates the major points of the secondary command
sequence.

2-139

AP-36

INITIALIZE -
SET NAZI. ONE
BIT DELAV MODES

o DENOTES COMMANDS

c:) DENOTES INTERRUPT CODES

611001-32

Figure 38. Loop Secondary Flowchart

When an off-line secondary wishes to come on-line, ,it
must do so in a manner which does not disturb data on
the loop. Figure 39 shows a typical hardware interface.
The line labeled Port could be one of the 8273 Port B
outputs and is assumed to be high (1) initially. Thus up­
loop data is simply passed down-loop with no delay;
however, the receiver may still monitor data on the
loop. To come on-line, the secondary is initialized with
only the EOP Interrupt mode set. The up-loop data is
then monitored until an EOP occurs. At this point, the
secondary's CPU is interrupted with an EOP interrupt.
This signals the CPU to set One Bit Delay mode in the
8273 and then to set Port low (active). These actions
switch the secondary's one bit delay into the loop. Since
after the EOP only. Is are traversing the loop, no loop
disturbance occurs. The secondary now waits for the
next EOP, captures the loop, and inserts a "new on­
line" message. This signals the controller that a new
secondary exists and must be acknowledged. After the
secondary receives its acknowledgement, the normal
commarid flow is used.

It is hopefully evident from the abC?ve discussion that
the 8273 offers a very simple and easy to implement
solution for designing loop stations whether they are
controllers or down-loop secondaries.

R •• t------~------UP.LOOPDATA

8273

DOWN·LOOP DATA

h·I----+---r'\
PORT I---+--~>o-J

611001-33

Figure 39. Loop Interface

APPLICATION EXAMPLE

This section describes the hardware and software of the
8273/8085 system used to verify the 8273 implementa­
tion ofSDLC on an actual IBM SDLC Link. This IBM
link was gratefully volunteered by Raytheon Data Sys­
tems in Norwood, Mass. and I wish to thank them for
their generous cooperation. The IBM system consisted
of a 370 Mainframe, a 3705 COmmunications Proces­
sor, and a 3271 Terminal Controller. A Comlink II
Modem supplied the modem interface and all commu­
nications took place at 4800 baud. In addition to ob­
serving correct responses, a Spectron D60 I B Datascope
was used to verify the data exchanges. A block diagram
of the system is shown in Figure 40. The actual verifica­
tion was accomplished by the 8273 system receiving
and responding to polls from the 3705. This method

. was used on both point-to-point and multi-point config­
urations. No attempt was made to implement any high­
er protocol software over that of the poll and poll
responses since such software would not affect the veri­
fication of the 8273 implementation. As testimony to
the ease of use of the 8273, the system worked on the
first try.

370
MAINFRAME

3705
COMM.

PROCESSOR

611001-34

Figure 40. Raytheon Block Diagram

An SDK-85 (System Design Kit) was used as the core
8085 system. This system provides up to 4K bytes of
ROM/EPROM, 512 bytes of RAM, 76 I/O pins, plus

2-140

AP-36

two timers as provided in two 8755 Combination
EPROM/IIO devices and two 8155 Combination
RAM/IIO/Timer devices. In addition, 5 interrupt in­
puts are supplied on the 8085. The address, data, and
control buses are buffered by the 8212 and 8216 latches
and bidirectional bus drivers. Although it was not used
in this application, an 8279 Display Driver/Keyboard
Encoder is included to interface the on-board display
and keyboard. A block diagram of the SDK-85 is
shown in Figure 41. The 8273 and associated circuitry
was constructed on the ample wire-wrap area provided
for the user.

The example 8237/8085 system is interrupt-driven and
uses DMA for all data transfers supervised by an 8257
DMA Controller. A 2400 baud asynchronous line, im­
plemented with an 8251A USART, provides communi­
cation between the software and the user. 8253 Pro­
grammable Interval Timer is used to supply the' baud
rate clocks for the 8251A and 8273. (The 8273 baud
rate clocks were used only during initial system debug.
In actual operation, the modem supplied these clocks
via the RS-232 interface.) Two 2142 1K x 4 RAMs
provided 512 bytes of transmitter and 512 bytes of re­
ceiver buffer memory. (Command and result buffers,

2-141

plus miscellaneous variables are stored in the 8155s.)­
The RS-232 interface utilized MC1488 and MC1489
RS-232 drivers and receivers. The schematic of the sys­
tem is shown in Figure 42.

One detail to note is the DMA and interrupt structure
of the transmit and receive channels. In both cases, the
receiver is always given the higher priority (8257 DMA
channel 0 has priority over the remaining channels and
the 8085 RST 7.5 interrupt input has priority over the
RST 6.5 input.) Although the choice is arbitrary, this
technique minimizes the chance that received data
could be lost due to other processor or DMA commit­
ments.

Also note that only one 8205 Decoder is used for both
peripheral and. memory Chip Select. This was done to
eliminate separate memory and 110 decoders since it
was known beforehand that neither address space
would be completely filled.

The 4 MHz crystal and 8224 Clock Generator were
used only to verify that the 8273 operates correctly at
that maximum spec speed. In a normal system, the
3.072 MHz clock from the 8085 would be sufficient.
(This fact was verified during initial checkout.)

~.

....
I\)

"11
IFi
c
;
en

,0

~ en

~
:::I a o
:::I
!!!.
III
0' n
~

o
iii
co
ji;
3

CPU

~D1 INTERRUPT 1085 .
INPUTS

DATAl.
ADDRESS

BUS

ADDRESSI
BUS

CONTROL
8US

U

I
I
I
I
I
I

:1

I
I
I
I
I

I
I
I
I

:
I

ADDRESS
DECODER

8205

I
I
I
I
I
I
I
I

I

I

1\

I
I
I
I
I

I
I
I
I
I

ROMIIO (1355)
EPROMtlO (1755)

~mt,
1755

I
I

8355 .J

L ;>

I
I
I
I
I
I
I
I

I

I
I
I
I

I
I
I
I
I

I
I
I
I
I

RAMtlOJCOUNTER

10 LINES

~n~-,
I
I

1155 .J

[
L

I
I
I
I
I

I
I
I
I
I

KEYBOARD DISPLAY

ADDRESS
FIELD

~""-" , C'.CI.,=,.,:::,.

DATA
FIELD

, , , ,
,::,. ,~,.

SDK-as KEYBOARD LAYOUT

VEeT
RESET INTR C 0 E F

~ SINGLE GO • • A B STEP H L

[V SUBST EXAM • 5 • 1
MEM REG SPH SPL PCH PCL

NEXT EXEC 0 1 2 3
!

L

~ 74lS15&

"It
8219 J

,

r - - -. OPTIONAL A PLACE HAS BEEN PROVIDED ON THE PC BOARD FOR THE DEVICE BUT THE L ___ J DEV'CE IS NOT 'NCLUDED,

I
I
I
I
I
I
I
I
I

: '
I
I
I
I
I

I
I
I
I

:

FOR BUS-EXPANSION

ir=>

"
v

"
v

"
/

DATA
BUS

r::')
L __ ..J] .. ADDRESS

8US

r--,
I 0212 I '
L __ ..J
r---,
~ 3 .. 121& K:4 L .J 15 CONTROL
__. BUS

611001-35

l

l>
'U
I

(0)
0)

"T1
40"
c ..
CD
01>0
!"
CO
I\)

~
-.j
Co)

.::. C/)

'" c

" = U1
C/)
'<
(II ..
CD
3

MEMR mA '
3 B'

5 A2

ReI-- 6 82

01~

021' , "OR
745257 I' -03 MEMW I I f , I , I

0,1" ;ow I I I I I I T I I I -t-WRI-_j'---'-'-I
L2.~_~

15

I : : : : X
01-00 DATA BUS I

SDK·8S
BUS

.HOlD~-
HLOA f-I---------t--j

RESET~ -, -1'1
~

Rm 5 \--<ID
RST75~

,.
Dl-DO ROT R.ORO

00 DACio 25
Rx.OACK

DRat
18

hORO

10 HRO DACKI Tl!.OACK

A0C-H-----"-l AO

All I~Al
llHLDA 8257

f--__ --""lll RESET

f----''-'-j2IclK CSp.!-'
AEN ADSTB

L
r-------tIJl' ., ,. 18

13 14 11

OS2 CLR 5TB

~1018
--------,,/ Olt

008~
D01~

MO OS,

h"
1-f1°'

AO

"

l' -r' , ;. I:"

!l©

k
820' 02

A' A2 0'

'TI' At2 IA At4 A15

23 22

07-00 WARD

ClKO

eLKl

elK:!

OUT2,l1

~ oelK 8251A R.C~

~cs

AD l---- ADDRESS BUS -J,.. J: :L J. -.,L--- "----- --------:L

(E"

) TOCRl

611001-36

l

»
"U

I
(,)
C1I

AP-36

The software consists of the normal monitor program
supplied with the SDK-85 and a program to input com­
mands to the 8273 and to display results. The SDK-85
monitor allows the user to read and write on-board
RAM, start execution at any memory location, to sin- .
gle-step through a program, and to examine any of the
8085's internal registers. The monitor drives either the
on-board keyboard/LED display or a serial TTY inter­
face. This monitor was modified slightly in order to use
the 8251A with a 2400 baud CRT as opposed to the
110 baud normally used. The 8273 program imple­
ments monitor-like user interface. 8273 commands are
entered by a two-character code followed by any pa­
rameters required by that command. When 8273 inter­
rupts occur, the source of the interrupt is displayed
along with any results associated with it. To gain a
flavor of how the user/program interface operates, a
sample output is shown in Figure 43. The 8273 pro­
gram prompt character is a "-" and user inputs are
underlined.

The "SO 05" implements the Set Operating Mode com­
mand with a parameter of 05H. This sets the Buffer and
Flag Stream modes. "ss 01" sets the 8273 in NRZI
mode using the Set Serial I/O Mode command. The
next command specifies General Receiver with a re­
ceiver buffer size of 0100H bytes (Bo = 00, BI = 01).
The "TF" command causes the 8273 to transmit a
frame containing an address field of C2H and control
field of IIH. The information field is 001122. The
"TF" command has a special format. The Lo and LI

'parameters are computed from the number of informa­
tion field bytes entered.

After the TF command is entered, the 8273 transmits
the frame (assuming that the modem protocol is ob­
served). After the closing flag, the 8273 interrupts the
8085. The 8085 reads the interrupt results and places
them in a buffer. The software examines this buffer for
new results and if new results exist, the source of the
interrupt is displayed along with the results.

In this example, the ODH' result indicates a Frame
Complete interrupt. There is only one result for a trans­
mitter interrupt, the interrupt's trailing zero results
were included to simplify programming.

The next event is a frame reception. The interrupt re­
sults are displayed in the order read from the 8273. The
EOH indicates a General Receive interrupt with the last
byte of the information field received on an 8-bit
boundary. The 03 00 (Ro, RI) results show that there
are 3H bytes of information field received. The remain­
ing two results indicate that the received frame had a
C2H address field and a 34H control field. The 3 bytes
of information field are displayed on the next line.

8273 MONITOR V1.2

~
H...!1..
OR 00 01
TF C2 11 00 11 22

TxlNT - 00 00 00 00 00

RxlNT - EC! 03 00 C2 34
FF EE 00

611001-63

Figure 43. Sample 8273 Monitor I/O

Figures 44 through 51 show the flowcharts used for the
8273 program development. The actual program listing
is included as Appendix A. Figure 44 is the main status
poll loop. After all devices are initialized and a prompt
character displayed, a loop is entered at LOOPIT. This
loop checks for a change of status in the result buffer or
if a keyboard character has been received by the 8251
or if a poll frame has been received. If any of these
conditions are met, the program branches to the appro­
priate routine. Otherwise, the loop is traversed again.

The result buffer is implemented as a 255-byte circular
buffer with two pointers: CNADR and LDADR.
CNADR is the console pointer. It points to the next
result to be displayed. LDADR is the load pointer. It
points to the next empty position in the buffer into
which the interrupt handler places the next result. The
same buffer is used for both transmitter and receiver
results. LOOPIT examines these pointers to detect
when CNADR is not equal to LDADR indicating that
the buffer contains results which have not been dis­
played. When this occurs, the program branches to the
DISPL Y routine. .

DISP.L Y determines the source of the undisplayed re­
sults by testing the first result. This first result is not
necessarily the interrupt result code. If this result is
OCH or greater, the result is from a transmitter inter­
rupt. Otherwise it is from a receiver source. The source.
of the result code is then displayed on the console along
with the next four results from the buffer. If the source
was a transmitter interrupt, the routine merely repoints
the, pointer CNADR and returns to LOOPIT. For a
receiver source, the receiver data buffer is displayed in
addition to the receiver interrupt results before return­
ing to LOOPIT.

2-144

intJ AP-36

START

CMDREC

LOOPIT

611001-37 611001-39

Figure 44. Main Status Poll Loop Figure 46. GETCMD Subroutine

611001-40

Figure 47. TF Subroutine

611001-38

Figure 45. DISPL Y Subroutine

2-145

inter

9
I ,CLEAR POll I

STATUS

I

I SETUP RESPONSE I
COMMAND BUFFER

J.
~

611001-41

Figure 48. TxPOL Subroutine

PARAMETER #2

PARAMETER 111

COMMAND

B -_I If OF PARAMETERS I
611001-42

Figure 49. COMM Subroutine with
Command Buffer Format

EXIT TO
MONITOR

611001-43

Figure 50. Txl (Transmitter Interrupt) Routine

AP-36

If the result buffer pointers indicate an empty buffer,
the 825lA is polled for a keyboard character. If the
8251 has a character, GETCMD is called. There the
character is read and checked if legal. Illegal characters
simply cause a reprompt. Legal characters indicate the
start of a command input. Most commands are orga~
nized as two characters signifying the command action;
i.e., GR-General Receive. The software recognizes the
two character command code and takes the appropriate
action. For non-Transmit type commands, the hex
equivalent of the command is placed in the C register
and the number of parameters associated with that
command is placed in the B register. The program then
branches to the COMM routine.

The COMM routine builds the command buffer by
reading the required number of parameters from the
keyboard and placing them at the buffer pointed at by
CMDBUF. The routine at COMM2 then issues this
command buffer to the 8273.

If a Transmit type command is specified, the command
buffer is set up similarly to the COMM routine; howev­
er, since the information field data is entered from the
keyboard, an intermediate routine, TF, is called. TF
loads the transmit data buffer pointed at by TxBUF. It
counts the number of data bytes entered and loads this
number into the command buffer as La, L\. The com­
mand is then issued to the 8273 by jumping to
CMDOUT. .

One command does not directly result in. a command
being issued to the 8273. This command, Z, operates a
software flip-flop which selects whether the software
will respond automatically to received polling frames.
If the Poll-Response mode is selected, the prompt char­
acter is changed to a '+'. If a frame is received which
contains a prearranged poll control field, the memory
location POLIN is made nonzero by the receiver inter­
rupt handler. LOOPIT examines this location and if it
is nonzero, causes a branch to the TxPOL routine. The
TxPOL routine clears POLIN, sets a pointer to a spe­
cial command buffer at CMDBUF1, and issues the
command by way of the COMM2 entry in the COMM
routine. The special command buffer contains the ap­
propriate response frame for the poll frame received.
These actions only occur when the Z command has
changed the prompt to a '+'. If the prompt is normal
, - " polling frames are displayed as normal frames and
no response is transmitted. The Poll-Response mode
was used during the IBM tests.

2·146

inter

CHECK IF RESULTS
WILL FILL RESULT
BUFFER

READ RESULTS AND
PLACE IN RESULT
BUFFER

~EXITTO
MONITOR

611001-44

Figure 51. Rxl (Receiver Interrupt) Routine

AP·36

The final two software routines are the transmitter and
receiver interrupt handlers. The transmit interrupt han­
dier, TxI, simply saves the registers on the stack and
checks if 101lding the result buffer will fill it. If the re­
sult buffer will overfill, the program is exited and con­
trol is passed to the SDK-85 monitor. If not, the results
are read from the TxI/R register and placed in the
result buffer at LDADR. The DMA pointers are then
reset, the registers restored, and interrupts enabled. Ex­
ecution then returns to the pre-interrupt location.

The receiver interrupt handler, RxI, is only slightly
more complex. As in TxI, the registers are saved and
the possibility of overfilling the result buffer is exam­
ined. If the result buffer is not full, the results "are read
from RxI/R and placed in the buffer. At this point the
prompt character is examined to see if the Poll-Re­
sponse mode is selected. If so, the control field is com­
pared with two possible polling control fields. If there is
a match, the special command buffer is loaded and the
poll indicator, POLIN, is made nonzero. If no match
occurred, no action is taken. Finally, the receiver DMA
buffer pointer; are reset, the processor status restored,
and interrupts, are enabled. The RET instruction re­
turns execution to the pre-interrupt location.

This completes the discussion of the 8273/8085 system
design.

CONCLUSION

This application note has covered the 8273 in some de­
tail. The simple and low cost loop configuration was
explored and an 8273/8085 system was presented as a
sample design illustrating the DMA/interrupt-driven
interface. It is hoped that the major features of the
8273, namely the frame-level command structure and
the Digital Phase Locked Loop, have been shown to be
a valuable asset in !in SDLe system design.

2-147

Ap·36

APPENDIX A

ASII88 : F1 RAYT73. SRC

ISIS-II 8888/9885 It1CRO RsSElfll.ER, X108 "OOULE PAGE

LOC OOJ

9888

eees

8889

SEQ SOURCE STATEMENT

1 $l«Jl'AG11Ii Il0085 NOCONI)

2 TR\£ EIlU eel! 08 FOR RAYTHEON
3 ; FF FOR SELF-TEST
4 TR\.IE1 EIlU 8eH 98 FOR NORPIfL RESPONSE
5 ; • FF FOR LOOP RESPONSE
60~ EQU 08H ; 08 FOR NO 000
7 ; ; FF FOR 0EtIJ
8 ;
9 ;

18 i GENERfI. 9273 IOIITOR WITH RAYTHEON POLL I100E ROOEO
11;
17 ;
18 ;
19 ; CO/IIRI) SUPPORTED ARE: RS - RESET SERIft. 110 ItOOE
28 ; 55 - SET SERIRL 1/0 ItOOE
21 ; RO - RESET OPERATIIIi I10DE
22 ; so - SET OPERATING "ODE
23 ; RO - RECEIYER OISRSLE
24 ; OR - GEI£Rf1. RECEI'r£
25 ; SR - SELECTI'r£ RECEIVE
26 ; TF - TRRNSIIIT FRRItE
27 ; RF - ABORT FRRI1E
28 ; sP - SET PORT B
29 ; RP - RESET PORTS
38 ; RB - RESET lINE BIT DELAY (PIJ1 • 7F)
31 ; 58 - SET ONE BIT D£l.RY (PIJ1 = 88)
32 ; 5L - SELECTIVE LOOP RECEI'r£
33 ; TL - TRRNSIIIT LOOP
34 ; Z - CHfING£ IlOO£5 FLIP1FLtI'
38;
39" i ****** ******.******************** •••• **
48;
41 ; NOTE: 'SET' CotmANOS I~EIIENT LOGICAL !OR' FLtlCTiOHS
42 ; 'RESET' CIlIItfH)5 I~~T LOGICAL 'RHO' FIH:TIOHS
43 ;
44 ; *** ******** ******.*** ********** I I III
45 ;
46 ; BI.FFEREIl "DOE IiJST BE SELECTED WHEN SELECTIVE RECEI'r£ 15 USED.
47 ;
48 ;COtmftNI) F~T 15: 'COItIRNO (2 LTRS)' 'PAR.Ii' 'PAR. 12' ETC.
49 ;
58 ; TI£ ~IT FRRI1E COItRI) F~T IS: 'TF' 'R' 'C' 'IIlfFER CIllTENTs'.
51·; NO LElliTH COUNT IS NEEDED. BlfFER CONl£NTS 15 OOEO WITH R CR.
52;
53 ; ** **.~.*** ** ... **
54;
55 ; POLLED 1tOOE: WIlEN Pru.ED ItOOE IS SELECTED (aTEO BY R '+' PRIIPT>. IF

2-148

611001-45

inter AP-36

56 A S~-P OR RR(9)-P IS RECEI'IED. A RESPONSE FRl1ItE OF NSA-F
57 OR RR(9J-F IS TRflHSAITTED. OTHER C!XttANI)S OPERATE HIIUR.I. Y.
62
63 ; ** •• *** * •••• ***
64.
65 ; 9273 EQUATES
66 ;

9999 67 STAm EIlU geIi ; STATUS REGISTER
9999 68 C1J11173 EQU 99H ; COI'MND REGISTER
9991 ';9 PARP173 EOU 91H ; PARAI£TER REGISTER
9991 78 ~ESL73 EQU 91H ;RESlJI..T REGISTER
9992 .1 TXIP7J EQU 92H ; IX INTERRUPT RESll T REGISTER
0093 72 RXIR73 EQU 93H ; RX INTERRUPT RESll T REGISTER
9992 73 TEsm EIlU 92H ; TEST ItODE REGISTER
9929 74 CPBF EQU 2l'tH ; PARlmETER BUFFER R.lL BIT
9994 75 IXINT EIlU 94/1 ; TX INTERRUPT BIT IN STATUS REGISTER
eee8 76 RXINT EIlU 99H ; RX INT~T BIT [N STATUS REGISTER
0091 77 TXIRA EQU 81H . • IX INT RESULT AYAIUIlLE BIT
9002 78 RXIRA EIlU 92H ; RX INT RESULT AYAILABLE BIT

79 ;
se ; 825, EQUATES
81 ;

9999 82 troOE53 EIlU 98N ; 82SJ PIOO£ ~ REGISTER
999C B3 CNT953 EIlU 9CH ; crulTER 9 REGISTER
9990 84 CNTl53 EIlU 90H ; CIlUNTER 1 REGISTER
999£ 85 CNT253 EIlU 9EH ; COUNTER 2 REGISTER
eeec 86 COOR EIlU aeacH ; CONSOlE BAUD RATE (2499)
9936 87 !!OCNre EIlU 36H ; PIOOE FOR CWNTER 9
9006 99 /IDCNT2 EIlU 006H ; tIOOE FOR COUNTER 2
2917 89 LKBRl EIlU 2917H ; B273 BAUD RATE LSB AOR
2918 99 LKBI12 EIlU 291811 ; 8273 BAUD RATE ItS8 AOR

91 ;
92 ; BAUD RATE TAIlLE. BAUD RATE LKBRl LKBI12
93 ; ••• *** ...

_
94; 9600 2E 99
95 ; 4999 sc 00
96; 2499 89 99
97 ; 1299 72 91
98 ; 699 ES 92
99; 399 C9 95

199 ;
181 ;
192 ; 8257 EIlUATES
193 ;

99A8 194 "ODES7 EIlU 9A8H ; 8257 ItOOE PORT
00A9 195 CHBADR [aU 9A8H ; CHe (RX) AOR REGISTER
8SAl 196 CHeTe EIlU 8A1H ; CH8 TERI1INAL COUNT REGISTER
99A2 187 CH1ADR EQU 9A2H ; CHi (TX) ADR REGISTER
00A3 198 CHiTC EQU BA,H ; CHi TER"INAL COUNT ~EG1STER
98A8 199 STAT57 EIlU 9A8H ; STATUS REGISTER
8289 119 RXElUF EIlU 8298H ; RX BUFFER START ADDRESS
seee 111 TXBUF EIlU 00B9H ; r. BlfFER START ADDRESS
9862 112 CROllA EIlU 62H • D [SABLE RX DIll CIRf£L TX STILL ON
41FF 113 RXTC EIlU 41FFH ; TERI1INAL COUNT AND t100E FOR RX CHAII£L
0063 114 ENDM EIlU 63H £HABLE 80TH IX I'll) RX CIflNNELS-EXT. IIR. IX SlW
8961 115 OTDIIA EIlU 61H DISABLE TX DIll CIiH£L RX STILL ON
81FF 116 TXIe EIlU 81FFH ~J1INAL COUNT AND "DOE FOR IX CHIH£I.

117 ;
611001-46

2-149

AP-36

118 ; 8251A EQUATES
119 ;

90S9 129-CNTL51 EIlU 89H ; CONTROL lolOO) REGISTER
9889 121 STAT51 EIlU 89M ; STATUS REGISTER
8888 122 0051 EIlU 8SH ; lli DATA REGISTER
8888 12] RXD51 EIlU 8SH ; RX DATA REGISTER
eec£ 124 ~DE51 EQU BCEH ; ItOOE 16X. 2 STOP. III PARITY
8827 125 0051 EQU 27H ; COIMlD. ElflBl.E TX&RX
9892 126 ROY EIlU 82H ; RXRDY BIT

127 •
128 ; ~ITOR SUBROUTINE EQUATES
129 ;

961F 139 GETCH EQU 061FH ; GET CHR FRM KEYBOARD. ASCII IN CH
85F8 131 ECHG' EQU 85FSH ; ECHG CHR TO DISPLAY
975E 132 YIUlG EIlU 975EH ; CHECK IF VALID DIGIT. C/lRRY SET IF VALID
959B 133 CNYBN EQU 95BBH ; COOYERTS ASCII TO I£X
95EB 134 CRLF EQU 05ESH ; DISPLAY CR. t£Ia LF TOO
96C7 135 NI«lUT EQU 96C7H ; CltWERT BYTE TO 2 ASCII CHR All) DISPLAY

136;
137 ; "ISC EIlUATES
138 ;

29C9 139 STKSRT EQU 2OC9H ; 5TACI: START
9893 149 CNTLC EQU 03H ; CNTL -C EIlUIYALENT
eees 14110ITIR EQU 9119SH ;'OUTOR
2909 142 CKDBUF EIlU 2909H ; START Of COIfIlNI) BUFFER
2829 143 CKDBFl EIlU 2820H ; POLL KOOE SPECIAL lli COIIIM) BUFFER
090D 144 CR EQU 9DH ;ASCII CR
009A 145 LF EQU 0AH ;ASCII LF
2804 146 RST75 EQU 2004H ; RST7. 5 JUKP ADDRESS
28CE 147 RST65 EQU 28CEH ; RST6, 5 JUKP ADDRESS
2818 148 L~ EIlU 291911 ; RESULT BUFFER LIRl POINTER STIRAGE
2813 149 CIRlR EQU 2913H ; RESULT BUFFER COOSOl.E POINTER STIRAGE
2809 1511 RESSUF EIlU 280IIH ; RESULT BUFFER START - 255 BYTES
9093 151 ~P EIlU 93H ; SNRK-I' CONTROL CODE
9011 152 AROP EQU 11H ; RR(91-1' ClJfIROl. CODE
9073 153 NSAF EQU 73H ; NSA-f CONTROl. CODE
9011 154 RR0F EQU 11H ; RR(9)-f ctlNTROL CODE
2815 155 PRItPT EQU 2815H ; PRI1PT STORAGE
2816 156 PIl.IN EQU 2016H ; POLL KODE SELECTI~ INDICATOR
2827 157 DEl10DE EQU 2827H ; DOO "ODE INDICATOR

161 ;
,162 ; ***** ****** ..
163 ;
164 ; RAK STORAGE DEl'INITI~S:
165 ; LOC DEI'
166 ;
167 ; 2BB0-200F ClJII1AII) BUFFER
168 ; 2819-2911 RESULT BUFFER LOAD POINTER
169 ; 2813-2814 RESULT 8UFFER C~E POINTER
179 ; 2815 PROKPT CIRlIICTER STORfliE
171 ; 2816 POLL I'KIIlE INDICATIR
172 ; 2017 8AIJ) RATE LS8 FIR 5ELF-TEST
173 ; 2818 8fIU) RATE KS8 FIR SELF-TEST
177 ; 2819 SPARE
179 ; 2829-2826 RESPONSE COKKAND BUFFER FOR POLL ItOOE
188 ; 2809-28FF RESULT BUFFER
181 ;
182 i ...

611001-47

2-150

intJ AP·36

183
184 PROGRAII STAilT
185
166 INITIALIZE 8253, 825;', 8251A, AND RESET 8273.
18;' ,ALSO SET NOFMAL liODE. AND PRINT SIGNOIl "ESSAGE
18S ;

9800 169 ORG 8\l0H
198

e898 31C828 191 START. LXI SPoSTKSRT ; INITIALIZE SP
9Se3 3E36 192 t1II1 A, MOCNTe ; 8253 MODE SET
0005 039B 193 OUT I'IODES3 ; 8253 HODE PORT
eB07 3Al;'28 194 LDA LKBR1 ,GET 8273 BAlI) RATE L5B
009A D39C 195 OUT CNT953 ,USING COUNTER 8 AS BAlI) RATE GEN
esee 3A1820 196 LOA LKB~2 ; GET 8273 8UAO RATE ~
BOOF 039C 197 OUT CNT953 ;COUNTER e
9S11 CDIA98 198 CALL RXDMA ; INITIALIZE 8257 RX D~ CIM£L
9814 C03588 199 CALL Txr.m ; INITIALIZE 8257 IX DIll CHfNlEI.
0017 3E91 299 t1II1 A,01J1 ; OUTPUT 1 FOLLOIED BY A 9
9819 0392 281 OUT TEsm ; TO TEST I!OOE REGISTER
8818 3E89 282 "VI A,9aH ; TO RESET Tl£ 8273
0010 0392 283 OUT TEsm
OO1F 3E2D 294 MYI A, '-' ,NORMAL HaDE PRIJ'PT CHR
0021 321529 285 STA PRMPT ; PUT IN STOI(OOE
9824 lE99 286 HVI A,99H , TX POLL RESPONSE INDICATOR
0826 321629 297 STA POLIN ; e MEANS NO SPECIAL TX
9829 322729 m STA DEMODE ,CLEAR DEl10 t10DE
9B2C 21A30C 212 LXI H, SIGNON ; SIGNON ~SSAGE AOR
982F C0929C 213 CAlL TYMSG ; DISPLAY SIGNOH

214;
215 ; MONITOR USES JUIIPS IN RAIl TO DIRECT INTERRUPTS
216;

9832 210429 217 LXI H, RST75 ; RST7. 5 JUIf> LOCATION USED BY HONIT1~
0835 918eec 218 LXI 8, RXI ; ADDRESS OF RX INT ROUTII£
98:18 36C3 219 HVI H,9elH ; LOAD 'JMP' OPCDDE
883A 23 229 INX H ; INC POINTER
9838 71 221 HOY H,C ; LOAD RXI LS8
983C 2:1 222 INX H ; INC POINTER
B830 79 223 HOY H,8 ; LOAD RXI "58
B83E 21CE28 224 LXI Ii. RST6S ; RST6. 5 JUMP LOCATION USED BY MONITOR
0041 91CEOC 22S LXI 8, TXI ; ADDRESS OF TX INT ROUTINE
0044 36(3 226 "VI ",OC3H ; LOAD 'JIIP' OPCODE
9846 23 227 INX H ,; INC POINTER
9847 71 228 HOV M,C ; LOAD IXI L58
9848 23 229 INX H ; INC POINTER
0849 79 239 HOV H, B ; LOAD TXI ~
984A 3E1S 231 MVI A,1SH ; GET SET TO RESET INTERRUPTS
984C 39 232 51" ; RESET' INTERRUPTS
9940 FB 233 EI ; ENABLE INTERRUPTS

234 ;
235 ; INITIALIZE BUFFER POINTER
236,
237;

994E 218928 238 LXI li.RESBUF ; SET RESIA. T BlJ'FER POINTERS
8951 221329 239 SHLO CNAOR ; RESULT CONSOLE POINTER
9854 221929 240 SHLO l.DIIOR ; RESULT LOll) POINTER

241;
242 ; HAIN PROGRAII LOOP - CHECKS FOR CHANGE IN RESULT POINTERS, USIlRT STATUS,
243 ; OR POLL STATUS

611001-48

2-151

intJ AP-36

244 ;
8857 COEB95 245 CI1>REC: CAlL CRLF DISPLAY CR
88SR 3A1529 246 LDA PRPlPT GET etmNT PRtWT CIt!
9aso 4F 247 ftOII C,R "DYE TO C
9S5E CDF885 249 CAlL ECIfl DISPLAY IT
9861 2A1329 249 LOOPIT: LHLD CNADR GET CONSOLE POINTER
0864 ro 259 ~y 1l.L SIM: POINTER LS8
99652A1929 251 LHlD LDADR GET LOll) POINTER
8868 SO 252· CPIP L SIIIE LS8?
8869 C2398A 253 JNZ DISPY NI1 RatTS t£EI) DISPLAYING
986C 0089 259 IN STAT51 YES, CI£CK KEVBOARI)

986£ E682 268 ANI . ROY CIt! RECEI'IED?
9879 C2roS8 261 JN2 GETCItIl IIU5T BE ctI! 50 GO GET IT
8873 3A1629 262 LDA POLIN GET POLL II)I)E STATUS
8876 A7 263 ANA A 15 IT 9?
88i7 C24C99 264 JNZ TXPtl. NO, THEN Pru. 0CClIU!Ep
987ft C36198 265 JIF LOOPIT YES, TRY AGAIN

266 ;
267 ;
268 ; COIIIRlD RECOGNIZER ROOTiNE
269 ;
279 ;

Il87D CD1F96 271 GETell>: CAlL GETCH GET CIt!
9889 CDF885 272 CAlL Eoo ECHO IT
9983 79 273 HOY II.C 5ET\.IP FOR CIJIPfI<E
9884 FE52 274 CPI 'R' R?
9886 CAAF98 275 JZ RDIfI GET !lORE
9899 FE53 276 CPI '5" S?
9988 CAD798 277 JZ 50IIl GET IIORE
Il88E FE47 278 CPI '6' G?
9899 CAFF98 279 JZ GOWN GET IIORE
9893 FE54 289 CPI 'T' T?
9895 CAIlE99 281 JZ TOWN GET IIORE
Il89.8 FE41 282 CPI 'A' A?
989A CA2299 293 JZ ADIf4 GET !tORE
989D FE5A 284 CPI 'Z' Z?
989F CR3199 295 JZ CIIOOE YES, GO CIIAIG: IDlE
98A2 FE93 299 CPI CNTU; CNTL-c?
98A4 CR9989 291 JZ ~OR EXIT TO ~I.TOR
98A7 0E3F 292 ILLEG: !WI C, I ?' PRINT ?
98A9 CDF895 293 CRI.L ECHO DISPLAY IT
98RC C35798 294 JPIP CItOREC LOOP FOR tmfAlI)

295
98AF CD1F96 296 ROlIN: CALL GETCH GET NEAT CHR
9892 CDF985 297 CALL Eoo ECHO IT
9985 79 299 HOY A,C SETIJ' FOR CMARE
11886 FE4F 299 CPI '0' O?
9888 CA5D99 398 JZ ROCItD ROCIJI9RI)
Il88B FE53 381 CPI '5' 5?
988D CA6799 392 JZ RSCItl RSC!JIMI)
1l8C9 FE44 383 CPI 'D' D?
98C2 CR7199 384 JZ RDCItl RO COItIIN)

1l8C5 FE59 395 CPI 'P' P?
98C7 CAD899 396 JZ RPCItl RP ClJ'IIN)

88CA FE52 387 CPI 'R' R?
98CC CA98e8 398 JZ START START DYER
98CF FE42 389 CPI 'B' e?
1l8D1 CR7989 319 JZ RBCItIl RBCIJtRI)

611001-49

2-152

intJ Ap·36

9804 C3A788 311 Ji'V' ILLEG ; ILLEGAL TRY AGAIN
312

8807 CD1F86 313 SDIIN: CALL GETCH ,GET NEXT CII1
eeDA CDF895 314 CALL ECHO ,EOO IT
800D 78 315 MOY A,B ; SETUP FIXl CIJII'fI1£
88D£ FE4F 316 CPI '0' ,01
88E8 CAR6B9 317 JZ SOCII) ;SO CDIIfN)

98E3 FE53 318 CPI 'S' is?
8BE5 CAIl899 319 JZ SSCII) ;SSC~

9BE8 FE52 329 CPI 'R' iR?
9BEA CIlBf199 321 JZ 5ROO ;SR COllIN)

88ED FE59 322 CPI 'P' ;P?
88EF CAE289 323 JZ SPCI!D ; SP CIJIIRI)
98F2 FE42 324 CPI 'B' ;8?
88F4 CIlB599 325 JZ S8C11l ;58 ClMVI)

98F7 FE4C 326 CPI 'L' ;L?
88F9 CIl8F89 327 JZ SLCII) ;SL COllIN)

88FC C3A788 328 Ji'V' ILLEG ; ILLEta. TRY AGAIN
329

88FF CD1F96 339 GOOl: CALL GETCH ; GET NEXT Oil
8982 CDFB95 331 CALL ECHO ;EOO IT
9995 78 332 MOY A,B ; SETUP FIXl ClIfARE
8986 FE52 m CPI 'R' iR?
8998 CIlC499 334 JZ GRCI'I) ;GR rotIAND
898B C1A788 335 JIIP ILLEG ; ILLEGAL, TRY AGAIN

336
998E CD1F96 337 TIlWN: CALL GETCH ;GET NEXT CII1
8911 COF885 339 CALL ECHO ;ECHO IT
9914 78 339 HOY A,B ; SETUP FIXl COIf'ARE
8915 FE46 349 CPI 'F' ;F?
8917 CAEC99 341 JZ TFCII) ; TF CIJIIRI)
891A FE4C 342 CPI 'L' ;L?
891C CA9999 343 JZ TLCII) ; TL C(IftffN)

991F C3A788 344 Jtf' ILLEG ; ILLEGAL, TRY AGAIN
345

9922 CD1F96 346 ADWH. CALL GETCH ; GET NEXT CII1
9925 CDF885 347 CALL ECHO ;ECHO IT
9929 78 348 HOY ItB ; SETUP FIXl CIJIPARE
8929 FE46 349 CPI 'F' ;F?
892B CACE89 358 JZ IFCMD ; IF COI1IfN)

892E C3A788 351 JHP ILLEG ; ILLEGAL, TRY AGAIN
352 ;
353 ; RESET POLL MODE RESPONSE - CHfWiE PROI'T CHR AS INDICIlTIXl
354 ;

8931 F3 355 CIIODE: DI DISII8I.E INTERRUPTS
9932 3A1529 356 LDA PRtf'T GET CURRENT PROI'T
8935 FE2D 357 CPI tmIf1I. PIODE?
8937 C24389 358 JHZ SW NO, CHANGE IT
993R 3E2B 359 MYI AI '+' NEIl PRIJI'T
893C 321529 360 STA PRHPT STIXlE NEIl PROIIPT
893F FB 365 EI ENABLE INTERRIPTS
8949 C35788 366 JMI' CIUEC RETURN TO LOOP
9943 3E2D 367 SW: ifill A, ,_1 NEIl PmfT CII1
8945 321528 368 STR PRHPT STIXlE IT
894B FB 369 EI ENABLE INTERRUPTS
9949 C35788 378 JI1P CMDREC RETIJRN TO LOOP

371 ;
372 ;

611001-50

2-153

AP-36

373 ; TRANSIt IT AHSIIER TO P(U SETUP
];4 i

894C 3EOO 382 TXPOL: KYI A,OOH ,ClEAR PCtL' IN> ICAT!I!
894E 321628 384 STA PCtIN , INDICAT!I! RlR
9951 216188 385 LXI ItLOOPIT ; SETUP STACK F!I! COIRI) OUTPUT
9954 E5 386 PUSH H ' ; PUT RrnJRN TO CI1DREC ON sTAcK
9955 8684 387 HYI B,84H ; GET • OF PARfl£TERS REfI)Y
09'57 212028 388 LXI H, Cll)BF1 ,POINT TO SPECIAl 8U'FER
89'SA C3FF8A :>89 JIf' CIlIIII2 ,JlIf' TO C!JIIIfIIl OUTPUTER

390 ,
391 ,
392 ,
393 ; COt1llAll) IHPlEI1ENTlI«i ROUTINES
394 ,
39'5 ,
396 ,RO - RESET OPERATING HOllE
397,

8950 8691 398 ROCI1D: KYI B,81H ,I OF PARAI£TERS
995F 0E51 399 KYI C,51H ; COIttfN)

8961 CDE50A 488 CAlL COM ,GET PARAl£TERS AN> ISSUE COIfN)
8964 C35708 481 JI'f CnoREe ,GET rEliT COIfN)

4B2 ,
483 ,RS - RESET SERIAl 1/0 HOllE COIMH)
4jI4'

8967 8681 485 RSCKO: KYI B,81H ,. OF PARAI£TERS
8969 eE68 486 ItIII C,68H , mIlAN>
9968 CDE59A 487 CAll COIIt ; GET PARAI1ETERS AN> ISSlE ClHIAN>
896E C35708 488 JItP CI1DREC ; GET I£liT COIRI)

489 ,
418 ; RO - RECElYER DISABlE COIIKAN>
411 ,

8971 8688 412 ROCItD: /lV1 B,eeH ;. OF PARll'lETERS
9973 SEC5 413 /lV1 C,8C5H' ,COIIRI)
8975 CDE59f1 414 CAll COllI • ,ISSIE CIJIft'VI)
9978 C35708 415 mP CIIlREC ,GET I£XT COIIIfN)

416 ;
417 ,RB - RESET ONE BIT DELAY cmRII)
418 ,

9978 8681 419 RBCKD: ItIII B,91H ,. OF PARAl£TERS
897D 8E64 429 HYI C,64H ,COllIN)

997F CDES8A 421 CAlL COM ; GET PARfI£TER AN> ISSlE COIRI)

9982 Cl5788 422 JIf' CIIlREC ,GET NEXT COIIIfN)

423;
424 ,58 - SET 0/£ BIT DElAY COIIIAN>
425 ,

8905 8691 , 426 SBCItl: ItIII B,8tH ,. OF PARfl£TERS
9987 eEA4 427 !WI C,9fI4H ,COllIN)

9989 CDE58A 4211 CAlL COIIt ;GET PARllllETER AN> ISSlE ClIIIN)

998C C35708 429 JIfP CHDREC ,GET rEliT COIIRI)
438 ,
431 ,SL - SELECTlYE LOOP RECElYE COItIIRII)
432 ,

99BF 8684 433 SLOO: ttYI B,84H • OF PARAI£IEREs
9991 eEC2 434 KYI C,9C2H C!JMI)

9993 CDE59f1 435 CAll COIIt GET MR£TERS AN> ISSlE COIRI)

9996 C35788 436 JI1P CKDREC GET NEXT COIIIfN)

437 ;
438 ,Tl - TRANSltlT LOOP COIIIlND

611001-51

2-154

AP-36

439 i

11999 21082B 44B TLCI1!l' LX[H, CNI)BUF ,SET CIJI1IIfH) BLfFER PO[NTER
999C 8682 441 MV[B, B2H i LM> P~MTER ClUHER
B99E 30CA 442 MV[M,BCAH ,LI:m CIlIft1Nl) INTO BUFFER
99AB 21B228 443 LXI H, CMCBlIF + 2 i POINT AT AOR AN) CNTL POSITI(Jl5
89A3 ClF689 444 JMP TFCMD1 i FINISI! OFF COMIIfH) IN TF ROJT[NE

445 i

446 'SO - SET OPERATING MODE COII'I1N)
447 i

B9A6 BOB1 44B 5OCI1!l' 11Y[B,81H 'IOFP~S
99A8 8E91 449 11Y[C,91H iCIJI1ItAN)
B9M Cl\E5IlA 451! CflLL COI'I1 i (ET PRRfI1E1£R IN) [SSIE CCMH)

B9AO C35708 451 .III' CI1DR£C i GET NEXT COIfIN)
452 i
453 ,55 - SET SERIAL 1i0 COI9IINO
454 i

89119 BOB1 455 S5CMC: MV[B,B1H i I OF PARAIlETERS
9982 B£AQ 456 MVI C,BA8H , COI9tfM)
9984 CDE5I!A 457 CALL COIIIt i (ET PflRIIIETER IN) ISSIE COItfPH)

B9B7 C15798 458 JMP CIt>REC ,GET NEXT COPIfAII)

459 i
46B i 511 - SELECTIVE RECE[YE ClHfIII)

461 i
B9BA B684 462 SRCI1D: MVI B,Q4H ,I OF PPilAlETERS
B9BC BEC1 463 ~lVI C,9C1H ; CMIANI)
\l9BE CDE59A 464 CALL CO/1I1 ; GET PARA1!ETER5 AND [SSIE COII'I1N)

B9C1 Cl57BS 465 JMP CI1!lREC ; (ET 1£01 COItiAND
466 i
467 i GR - (ENERAl. RECEIVE ClIV1RND
468 i

B9C4 B682 469 GRCHD: MV[' B,B2H i NO PARAI£TER5
99C6 BECB 479 MVI C,9CBH ' COI'I1fW)
B!'C8 CDE59A 471 CALL COI'I1 , ISSIE COIti1fd)
99C1! C357BB 472 JHP CMOREC ,GET NEXT com:INl)

473 i
474 i f'F - ABORT FRAME CMlANO
475 i

B9CE B088 476 f'FCHO: MYI B,BIlH NO PARMTERS
9908 SEC(477 HVI C,BCCH CIIIffN)

B902 CDE59A 478 CALL COllI ISSlE COMI1AND
\l905 C35798 479 JIll> CMOREC (ET NEXT COPIfAII)

488 i
481 i RP - RESET PORT COIIHAND
482 i

\l908 B081 483 RPCMD' MVI B,B1H I OF PARAIIETERS
99M SE63 484 MVI C,63H ClmAN!)
\l9OC CDE5Bfl 485 CALL COHM GET PARfIIETER IN) 1S5I.E COIfIN)

89DF C35788 486 JIf' CMOREe GET NEXT COIfIN)

487 i
488 i SP - SET PORT COIWIlD
489 i

\l9E2 9691 498 SPCMD' MVI 8,B1H I OF PARfIItETERS
89E4 B£A3 491 MVI C, BA3H COMIN)
89E6 CDE59A 492 CAlL COMII GET P~I£TER IN) ISSIE COIfIN)

89E9 Cl57B8 493 JIf' CHOREe GET HEX C!JtlRl)
494 i
495 i TF - lRfINSIIlT FRfft CQI1ItH)

496 i
611001-52

2-155

inter Ap·36

89EC 218828 497 TFC/tI): LXI II, CII)IIlf ; SET COIftIII) BUFFER POINTER
89EF 8682 498 IWI B,82H ; LIR> PAAAlETER COUNTER

. 89F1 36C8 499 IWI PL8C6If ; LM> CMfAN) INTO BUFFER
Il9F3 219228 see LXI II, CII)SUf+2 ; POINT AT ADR fill) CNTL POSITIONS
89F67l! 581 TFCIID1: "OY A,B ; TEST PII!AI£TER truIT
89F7 R7 5412 fHI A ; IS IT 8?
89F8 CA87l!A 583 JZ TllIJ'I. ; YES, LIR> TX DATA BUFFER
89FB CDfIl8A 5e4 CALL PARIN ;GETPARfI£TER
89FE 0AA788 585 JC ILLEG ; ILLER CIIi RETIRED
9A81 23 5e6 INX H ; Ill: COIftIII) BUFFER POINTER
8A82 95 5e7 OCR B ; DEC PARII'IETER CfUITER
8fMl3 77 see ~ ",A ; L(R) PfIiAIETER INTO COIftIII) BlFFER
8A84 C3f6119 5419 JII> TFOO1 ; GET NEXT PARfI£TER

519
1!A87 21888IJ 511 TBlfL: LXI II, TXBIF ; Lim TX DATA BUFFER POINTER
8A8A 81081!8 512 LXI B,888I!H ; CLEfI! Be - BVTE CWITER
BAIlI.l C5 513 TBlfL1: PUSH B ; SRYE Bm COLtITER
8A8E COA08fl 514 CALL PARIN ;GET DATA, ALIAS PARfI£TER
8A11 DA1B8A 515 JC ENlCII< ; IfIYBE END IF ILLER
8A14 77 516 ~ PLA ; LOfIl DATA BVTE INTO B\fFER
8A15 23 517 INX H ; Ill: BUFFER POINTER
8A16 C1 518 POP B ; RESTORE BVTE ClUtTER
eA17 83 519 INX B ; INC BVTE CWITER
8A18 C3808A 528 JII> TBUFL1 ; GET NEXT DATA
8A1B FE80 , 521 EI«If(: CPI CR ; REMNED ILLEGAL CIIR CR?
9A1D CA248A 522 JZ TBUFFL ; YES, THEN TX IMFFER FIll
8A28 C1 5Z3 POP B ; RESTORE B TO SRYE STACK
8A21 C3A788 524 J~ ILLEG ; ILLEGAL CII!
8fI24 C1 525 llllfFL: POP B ; RESTORE BYTE CIUlTER
8A25 210128 526 LXI II, CtIlelf+1 ; POINT INTO CMfVI) BlFFER
8A28 71 527 ~ PLC ; STORE BVTE truIT LS8
8A29 23 528 INX H ; Ill: POINTER
8A2A 7l! 5Z9 ~ PLB ; STORE BVTE truIT IISB
0A28 86e4 538 11'11 B,84/I ; LOAD PfIRfI£TER COUNT INTO B
0AZO 21360A 531 LXI H, TFRET ; GET RETlJ!N AIlR FOR THIS ROOTIHE
0A38 C5 532 PUSH 8 ; PUSH IKE
0A31 E3 533 XTHL ; PUT RETLRN oN STACK
8A32 C5 534 PUSH 8 ; PUSH IT SO C!tlOUT CAN USE IT
0A33 C3fII8A 535 JII> C/OOJT ; ISSUE C09RI)

0A36 C357118 536 TFRET: JII> CIIIlREC ; GET NEXT ClIftN)
537 ;
538 ;
539 ; ROOTIHE TO DISPLAY RESULT IN RESILT BUFFER Nt£N LIR> fill) COOSOLE
548 ; POINTERS ARE DIFFERENT.
541 ;
542 ;

0A39 1685 543DISPY' IWI O,B5H D IS RESUl. T ClUtTER
0fI38 2A1320 544 LHLO CNAIlR GET CONSOLE POINTER
0A3E E5 545 PUSH H SRYE IT

I
0A3f 7E 546 IfOY A," GET RESIL T IC
8A49 E61F 547 ANI 1FH L1"1T TO RESIL T cooe

- 8A42 FEBC 548 CPI 9tH TEST IF AX OR TX 5ru!CE
0A44 0A628A 549 JC RXSIlRC CIIRRY, THEN AX 5ru!CE
0A4721C39C 55e TXSIlRC: LXI H, TXIIISG TX INT IESSAGE
0A4A C092tM: 551 CALL TYIISG DISPLAY IT
0A4D E1 552 DISPY2: POP H RESTORE CONSOLE POINTER
0A4E 7E 553 OISPY1: ~ A," GET RESULT
0A4F COC786 554 CALL tIIOUT CONYERT fill) DISPLAY

611001-53

2-156

infef AP-36

1lA52 BE28 S55 "VI c~ I • iSP C~
0A54 CDF885 S56 CALL ECHO i DISPLAY IT
1lA57 2C 557 INR L ; INC BUFFER POINTER
8fIS8 15 558 OCR D ,DEC RESU.. T ClXJlTER
BAS9 C24E8R 559 JN2 DI5P'I1 ; NOT 001£
IlA5C 221328 569 SHLD CNfIlR ; UPOATE CONSOLE POINTER
8A5F 05788 561 JI!P CIIOREC ; RETlRN TO LIU'

562;
563 i
564 ;RECElVER SOURCE - DISPLAY RESUl.TS RII) RECEYIE BlFFER COOENTS
565 i
566 ;

8R62 21888C 567 RXSORC: l.l(l II, RXIHSG i RX INT I£5SRGE fI)R

8R65 CD928C 569 CRLL TYIISG i DISPLAY 1ES5&
8R68 E1 569 POP H ; RESTORE ClJl5O..£ POINTER
8R69 7E 578 RXS1: lillY A," ; RETRIEVE RESU.. T FRO! BlFFER
8R6Il CDC786 571 CAlL NllXJT ; CIIMRT AN) DISPLAY IT
8A6D 8E28 572 ~I C, I I ; ASCII SP
8R6F CDF885 573 CALL ECIIIl ; DISPLAY IT
8R72 2C 574 I~ L ,INC COOSOLE POINTER
8R73 15 575 OCR D ; DEC RESULT crulTER
8R74 7A 576 MY A,D i GET SET TO TEST CIXJITER
eA75 FE84 577 CPI 84H ;IS THE RESU.. T R8?
eA7, CAA28A 578 J2 R8PT i YES, 00 SAYE IT
eA7A FE83 579 CPI 8SH i 15 THE RESIU Ri?
8A7C CAA78R 588 JZ RiPT ; YES, 00 SAYE IT
eA7F A7 581 RXS2: ANA R ; TEST RESIL T ClXJlTER
eA88 C2698A 582 JNZ RXS1 ; NOT 001£ YET, GET NEXT RESlLT
8A83 221329 593 SHLD CNADR i D(l£, SO UPOATE CONSOLE POINTER
9AS6 CDE885 594 CALL CRLF ; DISPLAY CR
8A89 219882 585 LXI II, RXBlF i POINT AT RX SUFFER
8A8C C1 586 P(P B i RETRIEYE RECEIVED COlfiT
8A8I) 78 597 RXS3: MY ItB ; 15 CWIT 9?
8R8E B1 588 ORA C
9A8F CA5798 599 JZ CIIlREC ; YES, 00 BACJ(TO lO(P

8A92 7E 599 "OY It" iN(), GET ~
8A93 C5 591 PUSH B iSA\'E BC
9A94 COC786 592 CALL NllXJT ; C!IlYERT AN) DISPLAY ~
8A97 9E29 593 "VI C,' , ;ASCII SP
BA99 CDF885 594 CALL ECIIIl ;DISPLAY IT TO 5EPRRATE DATA
8A9C C1 595 P(P B ; RESTORE BC
8A9D 9B 596 DCX B ; DEC COCtIT
8R9E 23 597 INX H ; INC POINTER
8A9F C3B08A 598 J~ RX53 iGET NEXT ~

599
8AA2 4E 69B RaPT: lillY C," i GET R9 FOR RESIL T BlFFER
8AA3 C5 691 PUSH B ; SAYE IT

• 8AA4 C37F9A 692 JIf' RXS2 ; RETURN
693

eAR7 C1 684 RiPT: POP iGET R9
eARS 46 695 ~ B," i GET R1 FOR RESIl. T BlFFER
8AA9 C5 6e6 PUSH B iSAYE IT
8AfIII C37F8A 697 mP RXS2

698
699
618
611 PARAPIETER INPUT - PARAl£TER RETURNED IN E REGISTER
612

611001-54

2-157

AP-36

613 ;
IlAAO CS 614 PARIN: PUSH 8 ; SRVE Be
BRAE 1681 61S MVI D,9tH ; SET CHI! COltHER
BABe C01F96 616 CALL GETCH ;GET CIf1
9AB3 C[,FeeS 617 CALL ECHO ,; ECHO IT
eAll6 79 618 !WI' A,C ;PUT CIf1 IN A
eAll7 me 619 CPI ; SP?
9A!I9 C2EeeR 620 JNZ PARIN1 ; NO, ILLEGAL TRY AGIHN '
9ABC C01Fe6 621 PARIN3, CALL GETCH ; GET CHR ,OF PARfII£TER
0A!IF CDFees 622 CALL ECHO ; ECHO IT
9AC2 CDSEe7 623 CALL YALOO ; IS IT A VALID CHR?
eACS 02E99A 624 JNC PARIHi ,; NO, TRY AGAIN
eACS CDBBeS 625 CALL CNVBN ,; CONYERT IT TO HEX
9AC8 4F 626 "OY C,A ; SA'/E IT IN C
Mec 7A 627 I10V A,D ; GET CIf1 COUNTER
9ACD A7 628 ANA A ;IS Ii a7
eACE CADcaR 629 JZ PARIN2 ; YES, DONE WITH THIS PAAMTER
9ADl 15 63e OCR D ;llEC CIf1 COUNTER
0AD2 AF 631 XRA A ; CLEAR CARRY
9AD3 79 632 !WV ftC ; RECOVER 1ST CIf1
9A04 17 m RAL ; ~OTATE LEFT 4 PLAC£S
eAr,s 17 634 RAt.
9AD6 17 635 RAL
9AD7 17 636 RAt.
9AD8 5F 637 !WY E,A ; SAVE IT IN E
eAD9 GBCeR 638 Jl1P PARIN3 ; GET NEXT CIf1
9ADC 79 639 PARIN2: "OV A, C ,; 2HC CIf1 IN A
811){) 83 648 ORA E ; COMBINE BOTH CHRS
9A!lE Cl 641 POP B ; RESTORE Be
9ADf C9 642 RET ; RETURN TO ClUING PROGRAII
9AEa 79 643 PARIN1: IWV A,C ; PUT ILLEGAL CIf1 IN A
eRE1 37 644 STC ; SET CARRY AS ILLEGfl.STATUS
9AE2 Cl 645 POP ; RESTORE Be
eRE3 C9 646 RET ,; RETURN TO CALLII«l f'ROGRPI!

647 ;
648 ;
649 ; JUItP HERE IF BUFFER FUlL
6S9 ;

9AE4 CF 651 BUFFUL: DB OCFH ; EXIT TO MONITOR
6S2 ,;
653 ;
654 ; CO/1I1fINI) DISPATCHER
65S ;
656 ;

8AES 219820 657 COItII: LXI H, CI'IDBUF ; SET POINTER
HB C5 6S9 PUSH B ;5RVE Be
8AE9 71 659 MOIl ",C ; LOOD CClMI) INTO BlfFER
eREA 7B 669 C0I'I11: MOIl A,B ; CHECI< PARAI£TER COOHER
HB A7 661 Atf! A ; IS IT al
HC CAF99A 662 JZ OOOUT ; YES, GO IS5t£ C(JIfH)

9AEF CDAD9A 663 CALL PARIN ; GET, PARAMETER
9AF2 DAA798 664 JC ILLEG ; ILLEGAL CHR RE1U1I£I)
9AFS 23 66S INX H ; INC BUFFER POINTER
1!AF6 as 666 OCR B ,DEC PARAItETER COUNTER
1!AF7 77 667 IIIJV ",A ; PARAItETER TO BlfFER
9AF8 C3EAeA 668 JIf' COIIPI1 ; GET NEXT PARfIIETER
9AFB 21ee20 669 OOOUT. LXI ILCIIl!ltF ; REl'OINT POINTER
9AFE C1 67B PDP B ;RESTORE PARfl£TER CMT

611001-55

2-158

Ap·36

9AFF 0098 671 COI1112: IN STAm ; REJlI) 8273 STATUS
eBe187 672 RLC ; ROTATE CBSV INTO CARRY
8882 DAFF8A 673 JC COIIII2 ;WIlIT FOR OK
BBI!5 7E 674 HOY It" ; OK, PIIM: COIItAII) INTO A
eee6 m8 675 OUT CDIIIm ; OUTPUT CCftRi)

eaea 78 676 P1Il1: I10V A,B ; GET PARfI£TER COLtH
Be89 A7 677 ANA A ;15 IT 8?
888A CB 678 RZ ; YES, DO£, RETIRIN
BB88 23 679 INX H ; INC COItRil BUFFER POIHTEI!
BBeC 85 6ee OCR B ; DEC PARIItETER CIUIT
BeeD 0898 681 PAR2: IN STAm ; READ STATUS
BBeF m8 682 ANI CPBF ; 15 CPBF BIT SET?
BBi1 C2B0e8 683 1HZ PAR2 ; IIlIT TIL ITS B
BBi4 7E 6B4 HOY It" ; IJI(, GET PARAI£TER FR1JI BLFFEI!
8815 0391 6B5 OOT PAR~3 ; OOTPUT PRRAI£TER
BBi7 CJeSBB 686 J~ PAR1 ; GET IEXT PARMTER

687 ;
6BB ;
6B9 ; INITIALIZE AND EllAIIlE RX DIll CHAIf£L
698 ;
691 ;

BBiA 3E62 692 RXDI1A: ~I A,DROIIA ; DISABLE RX DIll CffHfl.
BBiC D3AS 693 OUT 1'OOE57 ; 8257 ID>E PORT
881E 81Be82 694 LXI B, RXBUF ; RX BUFFER START AOOR£SS
8821 79 695 HOY ItC ; Rl(BUFFER LSB
BB22 D3Ae 696 OUT CHeADR ; CH8 ADR PORT
8824 78 697 "DV ItS ; RX BUFFER ItSS
8825 D3A8 698 OUT CHeADR ; CH8 AOR PORT
8827 B1FF41 699 LXI S,Rl(TC ; RX CH TEERltINAL COUNT
882A 79 788 HOY A,C ; RX ~I1R. COONT L58
8IJ2B D3A! 781 OUT CHeTC ;CH8 TC PORT
BB2D 78 782 HOY ItS ; RX TERlfIIR. CIUIT ItSS
BB2E D3Ai 783 OUT CHeTC ; CH8 TC PORT
8838 3£63 7114 11'11 It~ ; ElRIlE DIll WORO
8832 DlAS 785 OUT IIODE57 ; 8257 ID>E PORT
8834 C9 786 RET ;~

797 ;
788 ;
789 ; INITIALIZE AND ENABlE TX DIll CIRI£I.
718 ;
711 ;

8835 3E61 712 TXDIIA: 11'11 It DTDIIA ;DlSABLE TX DIll CffHfl.
BBJ7 DJAS 71J OUT IIlDE57 ; 8257 ID>E PORT
BBJ9 Maese 714 LXI B, TXBLF ; TX BUFFER START fI>ORESS
8BJC 79 715 I10V ItC ; TX BUFFER LSB
BBJD DJA2 716 OUT CH1ADR ; CHi AOR PORT
BBJF 78 717 I10V A,B ; TX BUFFER ItSS
I!B4B DJA2 718 OUT CH1AOR ; CHi AOR PORT
8842 B1FF81 719 TXDIftI.: LXI S, mc ; TX CH TERIHIR. CtuH
8845 79 728 ~ fl.e . ; TX TERlfIIR. COONT LSB
BB46 D3AJ 721 OUT CHiTC ; CIU. TC PORT
e84B 78 722 ~ itS ; TX TERlfIIR. C!UIT ItSS
8849 D3AJ 72J OUT CHiTC ; CHi TC PORT
884B 3£6J 724 11'11 R.EIMl ; ElRIlE DIll IUD
BB4D DJAB 725 OUT IIOOES7 ; 8257 I10DE PORT
BB4F C9 726 RET ;RET\JRN

727;
728 ;

611001-56

2-159

intJ AP-36

729 ; lNERRUPT PROCESSING SECTI(JI
738 ;

IlC89 731 ORG 1lC89H.
732 ;
733 ;
734 ; RECEIVER INTERRUPT - RST 7. 5 (LOC lCH)
735 ;

1lC88 E5 736 RXI: PUSH H ; SAVE HL -
I!CI!1 F5 737 PUSH PSII ; 5A'/E PSII
9C82 C5 738 PUSH 8 ;5A'/E BC
1lC83 05 m PUSH 0 ; SAVE DE
9C84 3£62 748 ItVI fbDRDIII ; DISlB.E RX DIll
9C86 D3A8 741 OUT IDl£57 ; 8257 IIOOE P(RT
BC88 3E18 742 ItVI R.iSH ; RESET RST7. 5 FIF
IlC8R 3Il 743 51"
8C88 1684 744 ItVI O.84H ;0 IS RESIU CWlTER
IlC8D 2R1829 745 LHLD LDADR ; GET LOll) POINTER
BC18 E5 746 PUSH H ;SAVE IT
8C11 E5 747 PUSH H ; SAVE IT flGAlN
BC1245 748 !roY 8.L ; SAVE LS8
8C13 2R1328 749 LHLO CIRlR ; GET CONSDLE POINTER
BC16 84 758 RXI1: INR B ; BUt' LOfI> POINTER LS8
BC17 78 751 /lOY fbB ; GET SET TO TEST
BC18 SO 752 CI'I' L ; LOfIl=CIIIS(l.E?
BC19 CRE48R 753 JZ 1lU'fll. ; 'r£S. BlFfER Fll.L
BC1C 15 754 OCR 0 ; DEC CIUITER
BC1D C2168C 755 JNZ RXI1 ; NOT DONE. TRY AGAIN
BC28 16115 756 ItVI 0.95H ; RESET CWiTER '.
BC22 E1 757 POP H ; RESTORE LOfI> POINTER
8C23 DB9Il 758 RX12: IN STAID ; READ STATUS
8C25 E698 759 ANI RXINT ; TEST RX [NT BIT
8C27 CA39BC 768 JZ RX13 ; 1)(1£. GO FIN[SH If
BC2R DB9Il 761 [N STAID ; READ STRTUS fIGA[N
BC2C E6lI2 762 AN[RX[RA ; [5 RESll. T READY?
IIC2E CA23BC 763 JZ RX[Z ; NO, TEST fIGA[N
9C31 0893 764 [N RX[R73 ; 'r£S. READ REru. T
BC33 77 765 HOY It.R ;STORE [N BlFFER
BC34 2C 766 [NR L ; [t«: IlU'fER PO[NTER
BClS 15 767 OCR 0 ; DEC CIUITER
BC36 C323BC 768 JIf' RXI2 ; GET /lORE RESll TS
BC39 7R 769 RXI3: /lOY fbO ; GET SET TO TEST
8ClR A7 m RNA A ; ALL RESll T51
BC38 CR458C 771 JZ RX[4 ; 'r£S. SO F[N[SH If
8C3£ 3688 m 1tV[1t.90H ; 110. LOfI> 8 TIL [)(J£
BC48 2C m [NR L ; BUIf' PO[NTER
8C4115 774 OCR 0 ;DEC CWITER
8C42 C339BC 775 JIf' RX[3 ; GO fIGA[N
8C45221828 776 RX[4: SHLD l.DfilR ; lfOATE LOfI> PO[NTER
BC48 3111528 m LOA PRII'T ; GET IIOOE [ND[CATOR
8C4B FE2[) 778 CP['-' ;NORIR. IIODE'?
BC4D CR858C 779 JZ RX[6 ; YEs, CLEAN If BEFORE RETUIN

788
7B1 POLL HODE SO CHECK ClINTRQ. BYTE
7B2 [F CONTRU. [5 A POLL. SET If SPEC[AL TX COlIN) BlFFER
783 AND RETURN W[TH POLL [ND[CATOR NOT 8
7B4

BC59 E1 7B5 POP H ; GET PREVIOUS LOfI> AOR POINTER
BC51 7E "786 /lOY R." ; GET [e BYTE FROH BlFFER

611001-57

2-160

inter AP·36

9C52 E61E 787 ANl 1EH ,UJO(AT GOO) FRAI£ BITS
8&54 C2890C 788 JNZ RXI5 ,IF NOT e. INTERRUPT IIlSN'T FR<tI A GOOD FRII£
8C57 ZC 7a9 INR L ,B'lPflSS Re All) R1 IN BlfFER
9C58 ZC 798 INR L
8C59 ZC 791 INR L
8CSA 56 792 IIOV D." ,GET ADR BYTE All) SAVE IT IN 0
0C5B ZC 793 INIl L
8C5C 7E 794 NOV fL" ,G£T CNTl BYTE FR(tI BlfFER
8C5D FE!'3 795 CPI SNR~ ,WAS IT SNRIH'?
8CSF CA6C8C 796 J2 U ,YES. GO SET RESI'fIj5E

8C62 FEU 797 CPI RR8P ,WAS IT RR(8)-P?
9C64 C2898C 798 JN2 RXI5 ,YES. GO SET RESPIJISE, OTlOIUSE RETlMH
OC67 1£11 m INI E.RR9F ,RR(8l-P SO SET RESPIIISE TO RR(8)-F
0C69 C36E8C 88B JII' TXRET ,GO FINISH LOROINl SPEClfL Bt.fFER
0C6C 1E73 881 U: "YI E.NSAF ,~-P SO SET RESPIJISE TO NSA-F
0C6E 212828 882 TXRET: LXI H,C1UF1 ,SPECIAl. BlfFER ADR
OC71 36C8 886 INI ".8C8H ,LORO IX FRAI£ CIlI'ItfN)
OC73 23 888 INX H , INC POINTER.
Be74 3688 889 INI H.88H , LII:8
8C7623 818 INX H , INC POINTER
OC77 3688 811 INI H.88H ,L1=8
OC79 23 812 INX H ,It«: POINTER
OC7A 72 813 IIOV ".0 ,LORO RCYD ADR BYTE
0C7B 23 814 INX H ,INC POINTER
OC7C 73 815 NOY ".E ,LC¥IO RESPONSE CNTl 8YTE
8C70 3£81 816 INI A.81H ,SET POLL IIIlICAm! NOT 9
OC7F 321628 817 STR POLIN ,LORD POLL lNOICRm!
8C82 C3890C 818 JI1P RXI5 , RET\I!N

819
8C85 E1 828 RXI6: PCf H ,CLEAN II' STACK IF NORIft. 10)£
8C86 C3890C 821 JII' RXI5 ,RErUIN

822
8C89 C01R88 823 RXI5: CALL RXDIIR ,RESET I>MR CIfH£L
0C8C 01 824 POP 0 ,RESTORE REGISTERS
8C8O C1 825 PCf B
8C8E F1 826 POP P5W
8C8F E1 827 POP H
8C98 FB 828 EI ,Elfl8lE INTERRUPTS
OC91 C9 829 RET ,REruRN

838 ,
831;
832 ,I£SSRGE TYPER - ASSlItES I£SSRGE STARTS RT II.
833 ,
834 ,

OC92 C5 835 T'iItSG: PUSH a SfII/E Be
BC93 7E 836 TYII5G2: !lOY fL" GET ASCII CHR
BC94 23 837 INX H It«: POINTER
0C95 FEFF 838 CPI SFFN STOP?
OC97 CAR1BC 839 J2 TYI15G1 YES, GET SET FOR EXIT
BC9A 4F 848 NOY C.A SET II' FOR OISPUIY
BC98 COF895 841 CALL ECHO OISPUIY CHR
BC9E C393BC 842 JIf' TYHSG2 GET NEXT CHR
8CA1 C1 843 T'IIISG1: PCf a RESTORE ae
0CA2 C9 844 RET RETURN

845
846
847 SIGNON I£SSAGE
848

611001-58

2-161

inter Ap·36

9CR3 80 849 SIGNOO: DB CR, '8273 IOHm! Y11',CR,8FFH
SCM 38323733
8CR8 284D4F4E
8CfIC 49544F52
ecse 28285631
8C84 2E31
8CB6 80
8C87 FF

sse ;
851 ;
852 ;
853 ; RECEIVER INTERRuPT I£55AGES
854 ;
855 ;

8CB8 eo 856 RXIItSG: DB CR, 'RX INT - ',8FFH
ecB9 52582949
8C8D 4£542820
8CC1 2S
8CC2 FF

857 ;
858 ; TRANSltITTER INTERRIJ'T ItESSIIGES
859 ;

8CC3 eo 868 TXIItSG: DB CR, 'TX INT - ',8FFH
8CC4 54582849
8CC8 4E54282O
ecce 28
8CCD FF

861;
862 ;
863 ; TRAHSI1ITTER INTERRIJ'T ROOTitE
864 ;

ecCE E5 865 TXI: PUSH H ;SAYE HI.
8CCF F5 866 PUSH PSW ;SA:t'E PSW
8CDB C5 867 PUSH 8 ; SIM: 8C
BCD1 D5 868 PUSH ;.5A'/E DE
8CD2 3E61 869 ItVI A,DTDIfl ; DISABlE TX DIll
8CD4 D3A8 878 OUT I9JDE57 ; 8257 IQlE PlRT
8CIl6 1684 871 ItVI D,84H ; SET w..tflER
8CDB 2A1928 872 LlLD LOADR ; lET LIJI) POINTER
8CDB E5 873 PUSH H ; SIM: IT
eeoc 45 874 !tOy 8,L ; SIIYE LS8 IN 8
ecoo 2A1328 875 LILIl CIRlR ; GET caISOC.E POINTER
BCES 84 876 TXI1: llil 8 ; INC POINTER
BCE1 78 877 lIlY A,S ; lET SET TO TEST
BCE2 so 878 Clf' L ; LOAI>=COOSOI.E?
8CE3 CAE48A B79 JZ BIJ'F\L ; YES, BlfFER FI.lL

·BCE6 15 BB8 OCR D ; NO, TEST NEXT LOCATION
8CE7 C2E1l8C 8B1 JN2 TXI1 ;TR'/ fOIlN
BCEft E1 882 POP H ; RESTIH: LIJI) POINTER
8CEB DB92 883 IN TXIR73 ; REfI) RESll. T
8CED 77 B84 lIlY It, A ; STORE IN BlfFER
8CEE 2C B85 llil L ; llil POINTER
8CEF 3688 B86 ItVI It,IlIlH ; EXTRA lIESIl. T SPOTS e
8CF12C 887 llil L
8CF2 36Il8 BB8 ItVI 1t,3lH
8CF4 2C BB9 llil L
8CF5 36Il8 898 "YI H,1lIlH
8CF7 2C B91 IHI! L

611001-59

2-162

inter AP-36

e(1'8 S,;~O B92 MVl N· eOH
I)CI'R 2C ,39~ ItIF L
OCFS 221020 894 ;HLD L[!fIDP ,UP['I1TE LOil~ POINTER
OCFE C[I,5e8 899 CALL TX[,IR · FESET 01'111 CHANNEL
0001 D1 9il0 POF 0 · PESTOPE ~E
0{002 (1 901 POP B · ~ESTORE BC
(t09:! Fl 902 POP PSH · P.ESTORE PSI!
0084 E1 90, POP H ,~ESTORE HI.
OOOS 1'8 904 EI · EHI1SLE INTERRUPTS
0006 (9 905 ,:ET , RETURN

%6 '
90, .
952 '
95:; .
954 EN~

PUSL!(SW1BOLS

EAmNAL SYMBOLS

USER SYMBOLS
A['HN A 0922 AFClI[' A 09(E BUFFUL A 0AE4 CHOADP A 80A0 CHef(A 89Al CHlAOR A !l9fl2 CHlTC A 98A3
CMV51 A 082, em,8Fl A 2928 CI'H)BllF A 2!l00 ';~100UT A OAFS CttllREC A 08';7 CllfM A 8921 ~ A 2813
CNT053 A 0i!9C GNUS, A e09D CNT2S:; A 009E (NTLSl A 9989 CNTLC A 0003 CIMlH A 95B8 CoeR A B8IIC
COlIN A OAES ClJIIHl A 9AEA COll'12 A 9ilFF CIJIIH7:; A 9990 CPBF A 0020 CA A 0000 (IllF R 95EB
DEH A 8000 ['EHO[o£ A 2827 ['ISPI' A 0ffi9 D ISPVl A 0A4E DISPV2 A 0A4D DRDHA A 006.2 DTDHR A 0001
ECHO A 85F8 ENDCHi< A 8A1S EtIDllA A 0061 Gl'WH r1 88FF GETCH A 061F GETOO A 1iiI7rI iJRCII) A e9C4
lLLEG A 0BA, LDA['~ A 2018 LF A OOOA LK8Pl r1 201, LlllR2 A 2018 LOOPlT A tJ861 IIlCNT9 R 9936
I1CoCNT2 A 9iJ86 MDE51 A eeCE MODE)? A 0898 NODE57 R B0A8 MONTOR A ee08 NI10lJT A eoc7 HSPf A 0073
PARl A 0808 PAR2 A 0880 PAI1IN A 8AAu PAPINi A OREa PRP.IN2 A OADe PARIN3 A fIAB(PARII73 R 1!891
POLIN A 201. PRtlPT A 291S ROPT A 0AA2 RIPT A BAA7 RSCH" A 09,B R~CI'H) A 9971 RDIf; A 0SAF
R['I' A 0092 PESBUF A 2808 RESL;: A 0891 ROCHD A 095[' RPCM~ A 09~a RR0F A OOU RR9P A 0011
RSCIiIl A 0967 RSi65 A 20CE RST,S A 2tl!i4 RX8UF A 8200 R:\DSl A oeas RXNUl A 081R RXI R BC0B
RXI1 ~ 0el. R:m A 0[2l p:m A 0C,9 RXI4 A 8C45 iI:m A 0C69 RXI6 A BC85 R~IHSG A 9CB8
~,lNT A 0008 RXim A 0093 R"IRA A 000. Ri:Sl A 01109 RXS2 A 0A7F RXS:i A 9A8D RX~ A 9A62
RSTC ~ 41FF S8CMD A 0985 SDWN A eSD? SIGNOH A OCA] SLOO A 9981' 5IIRI1P A 0093 SOCII) A09A6
SPCHD A 09E2 SPCND A 89BA SS[MD A 09B0 START A 0800 STATS! A 00B9 STAT57 A e9RS STAT73 A 0099
STKSRT A 20ce sw A 094, T1 A 0C6C TBUFFL A 0A24 TBUFL A 0A07 TBUFLl A BAOO TDIfj A 9ge£
TESF'l A 0992 TFCIiIl A 09E[TFCHDl A 99F'; mET A 0A3'; TW1Co A 0999 TRUE A iJ800 TRUE1 A eooe
Ti:BUF A 8000 TXD51 ~ 0088 Ti:(lltA A 08::5 n:DMAl A 9B42 TXI A eccE TXI1 A BCEe TXIMSG A OCC?
T;;INT A 0004 T~IRn A 0092 TXIRA A 9001 n:POL A 094C Ti:P.£T A OC6E r..:sQRC A 0A47 TXTC A 81FF
T'IHSG r1 OC9~ T'fMSGl A OCAl TVNSG2 A em VALDG A 075E

ASSEMBLY COMFLETE. NO ERROPS
611001-60

2-163

APPLICATION
NOTE

AP-134

October 1986

Asynchronous Communication
with the 8274 Multiple-Protocol

Serial Controller

Order Number: 210311-002
2-164

inter AP-134

INTRODUCTION

The 8274 Multiprotocol serial controller (MPSC) is a
sophisticated dual-channel communications controller
that interfaces microprocessor systems to high-speed
serial data links (at speeds to 880K bits per second)
using synchronous or asynchronous protocols. The
8274 interfaces easily to most common microprocessors
(e.g., 8048, 8051, 8085, 8086, and 8088), to DMA con­
trollers such as the 8237 and 8257, and to the 8089 I/O
processor. Both MPSC communication channels are
completely independent and can operate in a full-du­
plex communication mode (simultaneous data trans­
mission and reception).

Communication Functions

The 8274 performs many communications-oriented
functions, including:

Converting data bytes from a microprocessor sys­
tem into a serial bit stream for transmission over
the data link to a receiving system.

Receiving serial bit streams and reconverting the
data into parallel data bytes that can easily be pro­
cessed by the microprocessor system.

Performing error checking during data transfers.
Error checking functions include computing/trans­
mitting error codes (such as parity bits or CRC
bytes) and using these codes to check the validity of
received data. .

Operating independently of the system processor in
a manner designed to reduce the system overhead
involved in data transfers.

System Interface

The MPSC system interface is extremely flexible, sup­
porting the following data transfer modes:

1. Polled Mode. The system processor periodically
reads (polls) an 8274 status register to determine
when a character has been received, when a charac­
ter is neeried for transmission, and when transmis­
sion errors are detected.

2. Interrupt Mode. The MPSC interrupts the system
processor when a character has been received, when
a character is needed for transmission, and when
transmission errors are detected.

3. DMA Mode. The MPSC automatically requests data
transfers from system memory for both transmit and
receive functions by means of two DMA request sig­
nals per serial channel. These DMA request signals
may be directly interfaced to an 8237 or 8257 DMA
controller or to an 8089 I/O processor.

• 4. WAIT Mode. The MPSC ready signal is used to syn­
chronize processor data transfers by forcing the
processor to enter wait states until the 8214 is ready
for another data byte. This feature enables the 8274
to interface directly to an 8086 or 8088 processor by
means of string I/O instructions for very high-speed
data links.

Scope

This application note describes the use of the 8274 in
asynchronous communication modes. Asynchronous
communication is typically used to transfer data to/
from video display terminals, modems, printers, and
other low-to-medium-speed peripheral devices. Use of
the 8274 in both iI;lterrupt-driven and polled system en­
vironments is described. Use of the DMA and WAIT
modes are not described since these modes are em­
ployed mainly in synchronous communication systems
where extremely high data rates are common. Pro­
gramming examples are written in PL/M-86 (Appendix
B and Appendix C). PL/M-86 is executed by the
iAPX-86 and iAPX-88 processor families. In addition,
PL/M-86 is very similar to PL/M-80 (executed by the
MCS-80 and MCS-85 processor families). In addition,
Appendix D describes a simple application example us­
ing an SDK-86 in an iAPX-86/88 environment.

SERIAL-ASYNCHRONOUS DATA
LINKS

A serial asynch~onous interface is a method of data
transmission in which the receiving and transmitting
systems need not be synchronized. Instead of transmit­
ting clocking information with the data, locally gener­
ated clocks (16, 32 or 64 times as fast as the data trans­
mission rate) are used by the transmitting and receiving
systems. When a character of information is sent by the
transmitting system, the character data is framed (pre­
ceded and followed) by special START and STOP bits.
This framing information permits the receiving system
to temporarily synchronize with the data transmission.
(Refer to Figure 1 during the following dis~ussion of
asynchronous data transmission.)

2-165

inter AP-134

-1-0.1

DA~~~~I~~LE S~~~T ~

PARITY

o

1-1-

CHARACTER (UPPER CASE S·53HI

I 0 I o 0 I 1
210311-2

Figure 1. Transmission of a 7-Bit ASCII Character with Even Parity

Normally the data link is in an idle or marking 'state,
continuously transmitting a "mark" (binary 1). When a
character is to be sent, the character data bits are im·
mediately preceded by a "space" (binary 0 START bit).
The mark·to·space transition informs the receiving sys­
tem that a character of information will immediately
follow the start bit. Figure 1 illustrates the transmission
of a 7-bit ASCII character (upper case S) with even
parity. Note that the character is transmitted immedi­
ately following the start bit. Data bits within the char­
acter are transmitted from least-significant to most-sig­
nificant. The parity bit is transmitted immediately fol~
lowing the character data bits and the STOP framing
bit (bi~ary 1) signifies the end of the character.

Asynchronous interfaces are often used with human in­
terface devices such as CRTlkeyboard units where the
time between data transmissions is extremely variable.

Characters

In asynchronous mode, characters may vary in length
from five to eight bits. The character length depends on
the coding method used. For example, five-bit charac­
ters are used when transmitting Baudot Code, seven-bit
characters are required for ASCII data, and eight-bit
characters are needed for EBCDIC and binary data. To
transmit messages composed of multiple characters,
each character is framed and transmitted separately
(Figure 2).

This framing method ensures that the receiving system
can easily synchronize with the start and stop bits of
each character, preventing receiver synchronization er­
rors. In addition, this synchronization method makes
both transmitting and receiving systems insensitive to
possible time delays between character transmissions.

VARIABLE DELAY BETWEEN
. CHARACTERS

~NODELAY
BETWEEN

CHARACTERS

-,ft'I'IrI'I'I''IT""'''''I

I· tI1: I: iii iii iii iii'" '" ... Q. ... Q. ... Q.

'" 0 '" 0'" 0
~ I;; ~ t;;~ ...

m m '" I- I I I I
CHARACTER CHARACTER CHARACTER

*' .2 H3

I: I:
'" iii iii '" ... Q. ... Q.

'" 0 '" 0

~
m ... m m

I I I I
CHARACTER CHARACTER

.4 H5

Figure 2. Multiple Character Transmission

2-166

210311-1

AP-134

Framing

Character framing is accomplished by the ST ART and
STOP bits described previously. When the START bit
transition (mark-to-space) is detected, the receiving sys­
tem assumes that a character of data will follow. In
order to test this assumption (and isolate noise pulses
on the data link), the receiving system waits one-half bit
time and samples the data link again. If the link has
returned to the marking state, noise is assumed, and the
receiver waits for another START bit transition.

When a valid START bit is detected, the receiver sam­
ples the data link for each bit of the following charac­
ter. Character data bits and the parity bit (if required)
are sampled at their nominal centers until all required
characters are received. Immediately following the data
bits, the receiver samples the data link for the STOP
bit, indicating the end of the character. Most systems
permit specification of 1, 11/ 2 , or 2 stop bits.

Timing

The transmitter and receiver in an asynchronous data
link arrangement are clocked independently. Normally,
each clock is generated locally and the clocks are not
synchronized. In fact, each clock may be a slightly dif­
ferent frequency. (In practice, the frequency difference
should not exceed a few percent. If the transmitter and
receiver clock rates vary substantially, errors will occur
because data bits may be incorrectly identified as
START or STOP framing bits.) These clocks are de­
signed to operate at 16, 32, or 64 times the communica­
tions data 'rate. These clock speeds allow the receiving
device to correctly sample the incoming bit stream.

Serial-interface data rates are measured in bits/second.
The term "baud" is used to specify the number of times
per second that the transmitted signal level can change
states. In general, the baud is not equal to the bit rate.
Only when the transmitted signal has two states (elec­
tricallevels) is the baud rate equal to the bit rate. Most
point-to-point serial data links use RS-232-C, RS-422,
or RS-423 electrical interfaces. These specifications call
for two electrical signal levels (the baud is equal to the
bit rate). Modem interfaces, however, may often have
differing bit and baud rates.

While there are generally no limitations on the data
transmission rates used in an aysnchronous data link, a
limited set of rates has been standardized to promote
equipment interconnection. These rates vary from 75

bits per seco'nd to 38,400 bits per second. Table I illus­
trates typical asynchronous data rates and the associat­
ed clock frequencies required for the transmitter and
receiver circuits,

Table 1. Communication Data Rates and
Associated Transmitter/Receiver Clock Rates

Data Rate Clock Rate (kHz)
(Bits/Second) X16 X32 X64

75 1.2 2.4 4.8
150 2.4 4.8 9.6
300 4.8 9.6 19.2
600 9.6 19.2 38.4

1200 19.2 38.4 76.8
2400 38.4 76.8 153.6
4800 76.8 153.6 307.2
9600 153.6 307.2 614.2

19200 307.2 614.4 -
38400 614.4 - -

Parity

In order to detect transmission errors, a parity bit may
be added to the character data as it is transferred over
the data link. The parity bit is set or cleared to make
the total number of "one" bits in the character even
(even parity) or odd (odd parity), For example, the let­
ter "A" is represented by the seven-bit ASCII code
1000001 (4IH). The transmitted data code (with parity)
for this character contains eight bits; 01000001 (4IH)
for even parity and 11000001 (OCIH) for odd parity,
Note that a single bit error changes the parity of the
received character and is therefore easily detected. The
8274 supports both odd and even parity checking as
well as a parity disable mode to support binary data
transfers.

Communication Modes

Serial data transmission between two devices can occur
in one of three modes. In the simplex transmission
mode, a data link can transmit data in one direction
only. In the half-duplex mode, the data link can trans­
mit data in both directions, but not simultaneously. In
the full-duplex mode (the most common), the data link
can transmit data in both directions simultaneously.
The 8274 directly supports the full-duplex mode and
will interface to simplex and half-duplex communica­
tion data links with appropriate software controls,

2-167

intef AP-134

BREAK Condition

Asynchronous data links often include a special se­
. quence known as a break condition. A break condition
is initiated when the transmitting device forces the data
link to a spacing state (binary 0) for an extended length
of time (typically 150 milliseconds). Many terminals
contain keys to initiate a break sequence. Under soft­
ware control, the 8274 can initiate a break sequence
when transmitting data and detect a break sequence
when receiving data. '

MPSC SYSTEM INTERFACE

Hardware Environment

The 8274 MPSC interfaces to the system processor over
an 8-bit data bus. Each serial I/O channel responds to
two I/O or memory addresses as shown in Table 2. In
addition, the MPSC supports non-vectored and vec­
tored interrupts.

The 8274 may be configured for memory-mapped or
I/O-mapped operation.

The 8274-processor hardware interface can be config­
ured in a flexible manner, depending on the oPerating
mode selected-polled, interrupt-driven, DMA, or
WAIT. Figure 3 illustrates typical MPSC configura­
tions for use with an 8088 microprocessor in the polled
and interrupt-driven modes.

All serial-to-parallel conversion, parallel-to-serial con-'
version, and parity checking required during asynchro­
nous serial I/O operation is automatically performed
by the MPSC.

Operational Interface

Command, parameter, and status information is stored
in 21 registers within the Mpsc (8 writable registers
and 2 readable registers for each channel, plus the in­
terrupt vector register). These registers are all accessed

, by means of the command/status ports for each chan­
nel. An internal pointer register selects which of the
command or status registers will be written or read dur­
ing a command/status access of an MPSC channel.
Figure 4 diagrams the command/status register archi-

, tecture for each serial channel. In the following discus­
sion, the writable registers will be referred to as WRO
through WR 7 and the readable registers will be re­
ferred to as RRO through RR2.

Table 2. 8274 Addressing

CS A1 Ao Read Operation Write Operation

0 0 0 Ch. A Data Read Ch. A Data Write
0 1 0 Ch. A Status Read Ch. A Command/Parameter
0 0 1 Ch. 8 Data Read Ch. 8 Data Write
0 1 1 Ch. 8 Status Read Ch. 8 Command/Parameter
1 X X High Impedance High Impedance

2-168

intJ AP-134

~ ADDRESS BUS .,. ... 6

6 DATA BUS II
iiD
WR

UVCC

~
'--

DBO-7
INTA

'-- 8205 '--- Ao

- 0 A, MPSC
CS
RD

WR

210311-3

a) Polled Configuration

'~HJ
INTA

CPU b b b
INT INTA INT INTA INT INTA

~
IPI IPO IPI IPO IPI IPO

MPSC MPSC MPSC
HIGHEST PRIORITY LOWEST PRIORITY

210311-4

b) Daisy-Chained Interrupt Configuration

Figure 3. 8274 Hardware Interface for Polled and Interrupt-Driven Environments

The least-significant three bits ofWRO are automatical­
ly loaded into the pointer register every time WRO is
written. After reset, WRO is set to zero so that the first
write to a command register causes the data to be load­
ed into WRO (thereby setting the pointer register). Af­
ter WRO is written, the following read or write accesses
the register selected by the pointer. The pointer is reset
after the read or write operation is completed. In this
manner, reading or writing an arbitrary MPSC channel
register requires two I/O accesses. The first access is
always a write command. This write command is used
to set the pointer register. The second access is either a
read or a write command; the pointer register (previ­
ously set) will ensure that the correct internal register is
read or written. After this second access, the pointer
register is automatically reset. Note that writing WRO

and reading RRO does not require presetting of the
pointer register.

During initialization and normal MPSC operation, var­
ious registers are read and/or written by the system
processor. These actions are discussed in detail in the
following paragraphs. Note that WR6 and WR7 are
not used in the asynchronous communication modes.

RESET

When the 8274 RESET line is activated, both MPSC
channels enter the idle state. The serial output lines are
forced to the marking state (high) and the modem in­
terface signals (RTS, DTR) are forced high. In addi­
tion, the pointer register is set to zero.

2-169

inter Ap·134

COMMAND/STATUS
POINTER

------..
02 Dt DO

_I W : R : o : : 1 1 0 0 R R

-I W R 1 1 R R

-I W R 2 I 1
R R 2' I

MSB LSB

-I
Read Registers

,0 W R

0 -I W R 4

'Ch. B only

0 -I W R

0 -I W R

-I W R 7

1
MSB LSB

Write Registers

210311-5

Figure 4. Command/Status Register Architecture (Each Serial Channel)

External/Status Latches

The MPSC continuously monitors the state of four ex­
ternal/status' conditions:

1.. CTS-clear-to-send input pin.

2. CD-carrier-detect input pin.

3. SYNDET-sync-detect input pin. This pin may be
used as a general-purpose input in the asynchronous
communication mode.

4. BREAK-a break condition (series of space bits on
the receiver input pin).

A change of state in any of these monitored conditions
will cause the associated status bit in RRO (Appendix
A) to be latched (and optionally cause an interrupt).

Error Reporting

Three error conditions may be encountered during data
reception in the asynchronous mode:

1. Parity. If parity bits are computed and transmitted
with each character and the MPSC is set to check
parity (bit 0 in WR4 is set), a- parity error will occur
whenever the number of "I" bits within the charac­
ter (including the parity bit) does not match the odd/
even setting of the parity check flag (bit 1 in WR4).

2-170

inter AP-134

2. Framing. A framing error will occur if a stop bit is
not detected immediately following the parity bit (if
parity checking is enabled) or immediately following ,
the most-significant data bit (if parity checking is not
enabled).

3. Overrun. If an input character has been assembled
but the receiver buffers are full (because the previ­
ously received characters have not been read by the
system processor), an overrun error will occur.
When an overrun error occurs, the input character
that has just been received will overwrite the imme-

, diately preceding character.

Transmitter IReceiver Initialization

In 'order to operate in the asynchronous mode, each
MPSC channel must be initialized with the following
information:

1. Clock Rate. This parameter is specified by bits 6 and
7 ofWR4. The clock rate may be set to 16,32, or 64
times the data-link bit rate. (See Appendix A for
WR4 details.)

2. Number of Stop Bits. This parameter is specified by
bits 2 and 3 of WR4. The number of stop bits may be
set to 1, 1'/., or 2. (See Appendix A for WR4
details.)

3. Parity Selection. Parity may be set for odd, even, or
no parity by bits 0 and 1 of WR4. (See Appendix A
for WR4 details.)

4. Receiver Character Length. This parameter sets the
length of received characters to 5, 6, 7, or 8 bits. This
parameter is specified by bits 6 and 7 of WR3. (See
Appendix A for WR3 details.)

5. Receiver Enable. The serial-channel receiver opera­
tion may be enabled or disabled by setting or clearing
bit 0 of WR3. (See Appendix A for WR3 details.)

6. Transmitter Character Length. This parameter sets
the length of transmitted characters to 5, 6, 7, or 8
bits. This parameter is specified by bits 5 and 6 of
WR5. (See Appendix A for WR5 details.) Characters
of less than 5 bits in length may be transmitted by
setting the transmitted length to five bits (set bits 5
and 6 of WR5 to 1).

The MPSC then determines the actual number of
bits to be transmitted from the character data byte.
The bits to be transmitted must be right justified in
the data byte, the next three bits must be set to 0 and
all remaining bits must be set to I. The following
table illustrates the data formats for transmission of
I to 5 bits of data:

Number of
Bits Transmitted

07 06 05 04 03 02 01 00 (Characte'r Length)
1 1 1 1 0 0 0 c 1
1 1 1 0 0 0 c c 2
1 1 0 0 0 c c c 3
1 0 0 0 c c c c 4
0 0 0 c c c c c 5

7. Transmitter Enable. The serial channel transmitter
operation may be enabled or disabled by setting or
clearing bit 3 of WR5. (See Appendix A for WR5
details.)

For data transmissions via a modem or RS-232-C inter­
face, the following information must also be specified:

1. Request-to-Send/Data-Terminal-Ready. Must be set
to indicate status of data terminal equipment. Re­
quest-to-send is controlled by bit 1 of WR5 and data
terminal ready is controlled by bit 7. (See Appendix
A for WR5 details.)

2. Auto Enable. May be set to allow the MPSC to auto­
matically enable the channel transmitter when, the
clear-to-send signal is active and to automatically en­
able the receiver when the carrier-detect signal is ac­
tive. Auto Enable is controleld by bit 5 of WR3. (See
Appendix A for WR3 details.)

During initialization, it is desirable to guarantee that
the external/status latches reflect the latest interface
information. Since up to two state changes are internal­
ly stored by the MPSC, at least two Reset External/
Status Interrupt commands must be issued. This proce­
dure is most easily accomplished by simply issuing this
reset command whenever the pointer register is set dur­
ing initialization.

An MPSC initialization procedure (MPSCRXINIT)
for asynchronous communication is listed in Appendix
B. Figure 5 illustrates typical MPSC initialization pa­
rameters for use with this procedure.

call MPSCRXINIT(41, 1,1,0,1, 3,1,1, 3,1,1,0,1);

initializes the 8274 at address 41 as follows:

X16 clock rate
1 stop bit
Odd parity
8-bit characters

(Txand Rx)

Enable transmitter
and receiver

Auto enable set
DTR and RTS set
Break transmission disabled

Figure 5. Sample 8274 Initialization Procedure
for Polled Operation·

2-171

inter AP-134

Polled Operation

In the polled mode, the processor must monitor the
MPSC status by testing the appropriate bits in the read
register. Data avaibible, status, and error conditions are
represented in RRO and RRI for channels A and B. An
example of MPSC-polled transmitterireceiver routines
are given in Appendix B. The following routines are
detailed:

1. MPSC$POLL$RCV$CHARACTER-This proce­
dure receives a character from the serial data link.
The routine waits until the character-available flag in
RRO has been set. When this flag indicates that a
character is available, RRI' is checked for errors
(overrun, parity, or framing). If an error is de­
tected, the character in the MPSC receive buffer
must be read and discarded and the error routine
(RECEIVE$ERROR) is called. If no receive errors
have been detected, the character is input from the
8274 data port and returned to the calling program.

MPSC$POLL$RCV$CHARACTER requires three
parameters-the address of the 8274 channel data
port (data$port), the address of the 8274 channel
command port (cmd$port), and the address ofa byte
variable in which to store the received character
(character$ptr).

2. MPSC$POLL$TRAN$CHARACTER-This pro­
cedure transmits a character to the serial data link.
The routine waits until the transmitter-buffer-empty
flag has been set in RRO 'before writing the character
to the 8274.

MPSC$POLL$TRAN$CHARACTER requires
three parameters-the address of the 8274 channel
data port (data$port), the address of the 8274 chan­
nel command port (cmd$port), and the character of
data that is to be transmitted (character).

3. RECEIVE$ERROR-This procedure processes re­
ceiver errors. First, an Error Reset command is writ­
ten to the affected channel. All additional error pro­
cessing is dependent on the specific application. For
example, the receiving device may immediately re­
quest retransmission of the character or wait until a
message has been completed.

RECEIVE$ERROR requires two parameters-the
address of the affected 8274 command port
(cmd$port) and the error status (status) from 8274
register RR 1.

Interrupt-Driven Operation

In an interrupt-driven environment,. all receiver opera­
tions are reported to the system processor by means of
interrupts. Once a character has been received and as­
sembled, the MPSC interrupts the system processor.
The system processor must then read the character
from the MPS<:: data buffer and clear the current inter­
rupt. During transmission, the system processor starts

serial I/O by writing the first character of a message to
the MPSC. The MPSC interrupts the system 'processor
whenever the next character is required (i.e., when the
transmitter buffer is empty) and the processor responds
by writing the next character of the message to the
MPSC data- port for the appropriate channel.

By using interrupt-driven I/O, the MPSC proceeds in­
dependently of the system processor, signalling the
processor only when characters are required for trans­
mission, when characters are received from the data
link, or when errors occur. In this manner, the system
processor may continue execution of other tasks while
serial I/O is performed concurrently.

Interrupt Configurations

The 8274 is designed to interface to 8085- and 8086-
type processors in much the same manner as the 82S9A
is designed. When operating in the 8085 mode, the 8274
causes a "call" to a prespecified, interrupt-service rou­
tine location. In the 8086 mode, the 8274 presents the
processor with a one-byte interrupt-type number. This
interrupt-type number is used to "vector" through the
8086 interrupt service table. In either case, the inter­
rupt service address or interrupt-type number is speci­
fied during MPSC initialization.

-To shorten interrupt latency, the 8274 can be pro­
grammed to modify the prespecified interrupt vector so
that no software overhead is required to determine the
cause of an interrupt. When this "status affects vector"
mode is enabled, the following eight interrupts are dif­
ferentiated automatically by the 8274 hardware:
-1. Channel B Transmitter Buffer Empty.

2. Channel B External/Status Transition.

3. Channel B Character Available.

4. Channel B Receive Error.

5. Channel A Transmitter Buffer Empty.

6. Channel A External/Status Transition.

7. Channel A Character Available.

8. Channel A Receive Error.

Interrupt Sources/Priorities

The 8274 has three interrupt sources for each channel:

1. Receiver (RxA, RxB). An interrupt is initiated when
a character is available in the receiver buffer or when
a receiver error (parity, framing, or overrun) is de­
tected.

2. Transmitter (TxA, TxB). An interrupt is initiated
when the transmitter buffer is empty and the 8274 is
ready to accept another character for transmission.

2-172

inter AP-134

3. External/Status (ExTA, ExTB). An interrupt is ini­
tiated when one of the external/status conditions
(CDE, CTS, SYNDET, BREAK) changes state.

The 8274 supports two interrupt priority orderings (se­
lectable during MPSC initialization) as detailed in Ap­
pendix A, WR2, CH-A.

Interrupt Initialization

In addition to the initialization parameters required for
polled operation, the following parameters must be sup­
plied to the 8274 to specify interrupt operation:

I. Transmit Interrupt Enable. Transmitter-buffer-emp­
ty interrupts are separately enabled by bit I of WRI.
(See Appendix A for WRI details.)

2. Receive Interrupt Enable. Receiver interrupts are
separately enabled in one of three modes: a) interrupt
on first received character only and on receive errors
(used for message-oriented transmission systems), b)
interrupt on all received characters and on receive
errors, but do not interrupt on parity errors, and c)
interrupt on all received characters and on receive
errors (including parity errors). The ability to sepa­
rately disable parity interrupts can be extremely use­
ful when transmitting messages. Since the parity er­
ror bit in RRI is latched, it will not be reset until an
error reset operation is performed. Therefore, the
parity error bit will be set if any parity errors were
detected in a multi-character message. If this mode is
used, the serial I/O software must poll the parity
error bit at the completion of a message and issue an
error reset if appropriate. The receiver interrupt
mode is controlled by bits 3 and 4 of WRI. (See
Appendix A for WRI details.)

3. External/Status Interrupts. External/Status inter­
rupts can be separately enabled by bit 0 of WR I. (See
Appendix A for WRI details.)

4. Interrupt Vector. An eight-bit interrupt-service rou­
tine location (8085) or interrupt type (8086) is speci­
fied through WR2 of channel B. (See Appendix A
for WR2 details.) Table 3 lists interrupt vector ad­
dresses generated by the 8274 in the "status affects
vector" mode.

5. "Status Affects Vector" Mode. The 8274 will auto­
matically modify the interrupt vector if bit 3 of WR I
is set. (See Appendix A for WRI details.)

6. System Configuration. Specifies the 8274 data trans­
fer mode. Three configuration modes are available:
a) interrupt-driven operation for both channels, b)
DMA operation for both channels, and c) DMA op­
eration for channel A, interrupt-driven operation for
channel B. The system configuration is specified by
means of bits 0 and I of WR2 (channel A). (See
Appendix A for WR2 details.)

7. Interrupt Priorities. The 8274 permits software spec­
ification of receive/transmit priorities by means of
bit 2 of WR2 (channel A). (See Appendix A for
WR2 details.)

8. Interrupt Mode. Specifies whether the MPSC is to
operate in a non-vectored mode (for use with an ex­
ternal interrupt controller), in an 8086-vectored
mode, or in an 808S-vectored mode. This parameter
is specified through bits 3 and 4 of WR2 (channel
A). (See Appendix A/or WR2 details.)

An MPSC interrupt initialization procedure
(MPSCINTINIT) is listed in Appendix C.

2-173

AP-134

Table 3. MPSC-Generated Interrupt Vectors in "Status Affects Vector"Mode

Original Vector
(Specified during

V7 V6 V5 V4 V3 V2 V1 VO V7 V6 V5 V4 V3 V2 V1 VO Initialization)

8086 8085 Interrupt
Interrupt Type Interrupt Location Condition

V7 V6 V5 V4 V3 0 0 0 V7 V6 V5

V7 V6 V5 V4 V3 0 0 1 V7 V6 V5

V7 V6 V5 V4 V3 0 1 0 V7 V6 V5

V7 V6 V5 V4 V3 0 1 1 V7 V6 V5

V7 V6 V5 V4 V3 1 0 0 V7 V6 V5

V7 V6 V5 V4 V3 1 0 1 V7 V6 V5

V7 V6 V5 V4 V3 1 1 0 V7 V6 V5

V7 V6 V5 V4 V3 1 1 1 V7 V6 V5

Interrupt Service Routines

Appendix C lists four· interrupt service procedures, a
buffer transmission procedure, and a buffer reception
procedure that illustrate the use of the 8274 in inter­
rupt-driven environments. Use of these procedures as­
sumes that the 8086/8088 interrupt vector is set to 20H
and that channel B is used with the "status affects vec­
tor" mode enabled.

I. TRANSMIT$BUFFER-This procedure begins se­
rial transmission of a data buffer. Two parameters
are required-a pointer to the buffer (buf$ptr) and
the length of the buffer (buf$length). The procedure
first sets the global buffer pointer, buffer length, and
initial index for the transmitter-interrupt service rou­
tine and initiates transmission by writing the first
character of the buffer to the 8274. The procedure .
then enters a wait loop until the I/O completion
status is set by the transmit-interrupt service routine
(MPSC$TRANSMIT$CHARACTER$INT).

2. RECEIVE$BUFFER-This procedure inputs a line
(terminated by a line feed) from a serial I/O port.
Two parameters are required-a pointer to the input
buffer (buf$ptr) and a pointer to the buffer length
variable (buf$length$ptr). The buffer length will be
set by this procedure when the complete line has
been input. The procedure first sets the global buffer
pointer and initial index for the receiver interrupt
service routine. RECEIVE$BUFFER then enters a
wait loop until the I/O completion status is set by
the receive interrupt routine (MPSC$RECEIVE­
$CHARACTER$INT).

0 0 0 V1 VO
Channel B Transmitter
Buffer Empty

0 0 1 V1 VO
Channel B External/Status
Change

0 1 0 V1 VO
Channel B Receiver
Character Available

0 1 1 V1 VO Channel B Receive Error

1 0 0 V1 VO
Channel A Transmitter
Buffer Empty·

1 0 1 V1 VO
Channel A External/Status
Change

1 1 0 V1 VO
Channel A Receiver
Character Available

1 1 1 V1 VO Channel A Receive Error

3. MPSC$TRANSMIT$CHARACTER$INT -This
procedure is executed when the MPSC Tx-buffer­
empty interrupt is acknowledged. If the current
transmit buffer index is less than the buffer length,
the next character in the buffer is written to the
MPSC data port and the buffer pointer is updated.
Otherwise, the transmission complete status is post­
ed.

4. MPSC$RECEIVE$CHARACTER$INT -This pro­
cedure is executed when a character has been assem­
bled by the MPSC and the MPSC has issued a char­
acter-available interrupt. If no input buffer has been
set up by RECEIVE$BUFFER, the character is ig­
nored. If a buffer has been set up, but it is full, a
receive overrun error is posted. Otherwise, the re­
ceived character is read from the MPSC data port
and the buffer index is updated. Finally, if the re­
ceived character is a line feed, the reception complete
status is posted.

5. RECEIVE$ERROR$INT-This procedure is exe­
cuted when a receive error is detected. First, the er­
ror conditions are read from RRI and the character
currently inthe MPSC receive buffer is read and dis­
carded. Next, an Error Reset command is written to
the affected channel. All additional error processing
is application dependent.

6. EXTERNAL$ST A TUS$CHANGE$INT -This
procedure is executed when an external status condi­
tion change is detected. The status conditions are
read from RRO and a Reset External/Status Inter­
rupt command is issued. Further error processing is
application dependent.

2-174

inter AP-134

DATA LINK INTERFACE

Serial Data Interface

Each serial I/O channel within the 8274 MPSC inter­
faces to two data link lines-one line for transmitting
data and one for receiving data. During transmission,
characters are converted from parallel data format (as
supplied by the system processor or DMA device) into
a serial bit stream (with START and STOP bits) and
clocked out on the TxD pin. During reception, a serial
bit stream is input on the RxD pin, framing bits are
stripped out of the data stream, and the resulting char­
acter is converted to parallel data format and passed to
the system processor or DMA device.

Data Clocking

As discussed previously, the frequency of data trans­
mission/reception on the data link is controlled by the
MPSC clock in conjunction with the .programmed
clock divider (in register WR4). The 8274 is designed to
permit all four serial interface lines (TxD and RxD for
each channel) to operate at different data rates. Four
clock input pins (TxC and RxC for each channel) are
available for this function. Note that the clock rate di­
vider spcified in WR4 is used for both RxC and TxC on
the appropriate channel; clock rate dividers for each
channel are independent.

Modem Control

The following four modem interface signals may be
connected to the 8274:

I. Data Terminal Ready (DTR). This interface signal
(output by the 8274) is software controlled through
bit 7 of WRS. When active, DTR indicates that the
data terminal/computer equipment is active and

ready to interact with the data communications
channel. In addition, this signal prepares the modem
for connection to the communication channel and
maintains connections previously established (e.g.,
manual call origination).

2. Request To Send (RTS). This interface signal (out­
put by the 8274) is software controlled through bit I
of WRS. When active, RTS indicates that the data
terminal/computer equipment is ready to transmit
data. When the RTS bit is reset in asynchronous
mode, the signal does not go high until the transmit­
ter is empty.

3. Clear To Send (CTS). This interface signal (input to
the 8274) is supplied by the modem in response to an
active RTS signal. CTS indicates that the data termi­
nal/computer equipment is permitted to transmit
data. The s.tate of CTS is available to the program­
mer as bit S of RRO. In addition, if the auto enable
control is set (bit S of WR3), the 8274 will not trans­
mit data bytes until CTS has been activated. If CTS
becomes inactive during transmission of a character,
the current character transmission is completed be­
fore the transmitter is disabled.

4. Carrier Detect (CD). This interface signal (input to
the 8274) is supplied by the modem to indicate that a
data carrier signal has been detected and that a valid
data signal is present on the RxD line. The state of
CD is available to the programmer as bit 3 of RRO.
In addition, if the auto enable control is set (bit S of
WR3), the 8274 will not enable the serial receiver
until CD has been activated. If the CD signal be­
comes inactive during reception of a character, the
receiver is disabled, and the partially received char­
acter is lost.

In addition to the above modem interface signals, the
8274 SYNDET input pin for channel A may be used as
a general-purpose input in the asynchronous communi­
cation mode. The status of this signal is available to the
programmer as bit 4 of status register RRO.

2-175

inter AP-134

APPENDIX A
COMMAND/STATUS DETAILS FOR ASYNCHRONOUS

COMMUNICATION

Write Register 0 (WROj:

r 0 o 1
1
o •

COMMAND/STATUS POINTER

REGISTER POINTER

. NULL CODE

NOT USED IN ASYNCHRONOUS MODES

RESET EXrfSTATUS INTERRUPTS
CHANNEL ReSET
ENABLE INTERRUPT ON NEXT Rx
CHARACTER

RESET TxlNT PENDING

ERROR REseT

BID OF INTERRUPlICh. A HI,)

NOT USED IN ASYNCHRONOUS MODES

210311-6

02,01,00 Command/Status Register Pointer bits
determine which write-register' the next
byte is to be written into, or which read­
register the next byte is to be read from.
After reset, the first byte written into ei­
ther channel goes into WRO. Following a
read or write to any register (except WRO)
the pointer will point to WRO.

05,04,03 Command bits determine which of the ba-
sic seven commands are to be performed.

Command 0 Null-has no effect.

Command 1 Note used in asynchronous modes.

Command 2 Reset External/Status Interrupts-resets
the latched status bits of RRO and reena­
bles them, allowing interrupts to occur
again.

Coinmand 3 Channel Reset-resets the Latched Status
bits of RRO, the interrupt prioritization

logic and all control registers for the chan­
nel. Four extra system clock cycles should
be allowed for MPSC reset time before
any ad,ditional commands or controls are
written into the channel.

Command 4 Enable Interrupt on Next Receive Charac­
ter-if the Interrupt-on-First-Receive
Character mode is selected, this command
reactivates that mode after each complete
message is received to prepare the MPSC
for the next message.

Command 5 Reset Transmitter Interrupt Pending-if
the Transmit'Interrupt mode is selected,
the MPSC automatically interrupts data
when the transmit buffer becomes empty .
When there are no more characters to be
sent, issuing this command prevents fur­
ther transmitter interrupts until the next
character has been completely sent.

Command 6 Error Reset-error latches, Parity and
Overrun errors in RRI are reset.

Command 7 End of Interrupt-resets. the interrupt-in­
service latch of the highest-priority inter­
nal device under service.

Write Register 1 (WR1):
00

01

02

External/Status Interrupt Enable-allows
interrupt to occur as the result of tran­
sitions on the CO, CTS or SYNOET in­
puts. Also allows interrupts as the result
of a Break/Abort detection and termina­
tion, or at the beginning of CRC, or sync
character transmission when the Transmit
Underrun/EOM latch becomes set.

Transmitter Interrupt/OMA Enable-al­
lows the MPSC to interrupt or request a
OMA transfer when the transmitter buffer
becomes empty.

Status Affects Vector-(WR1, 02 active
in channel B only.) If this bit is not set,
then the fixed vector, programmed in
WR2, is returned from an interrupt ac­
knowledge sequence. If the bit is set, then
the vector returned from an interrupt ac­
knowledge is variable as shown in the In­
terrupt Vector Table.

2-176

inter Ap·134

Write Register 1 (WR1):

MSB LSB

[D7[0 [DS [D4 : D3 [D'[D, [DO [

D4,D3

00

o 1

1 0

1 1

DS

'--..,-J I EXT INTERRUPT

ENABLE

TxINTERRUPT/
OMA ENABLE

, VARIABLE
STATUS AFFECTS VECTOR
VECTOR(CH B ONL V) 0 FIXED
(N ULL CODE CH A) VECTOR

~
0 0 RxiNTIDMA DISABLE

0 , RxiNT ON FIRST CHAR OR SPECIAL
CONDITION , 0 INT ON ALL Rx CHAR (PARITY AFFECTS
VECTOR)OR SPECIAL CONOITION

, 1 INT ON ALL Rx CHAR (PARITY DOES
NOT AFFECT VECTOR) OR SPECIAL
CONDITION

, WAIT ON Rx, 0 = WAIT ON 1x

MUSTBEZERO

WAIT ENABLE 1 ENABLE. 0 DISABLE

210311-7

Receive Interrupt Mode.

Receive Interrupts/DMA Disabled.

Receive Interrupt on First Character Only
or Special Condition.

Interrupt on All Receive Characters of
Special Condition (Parity Error is a Spe-
cial Receive Condition).

Interrupt on All Receive Characters or
Special Condition (Parity Error is not a
Special Receive Condition).

Wait on ReceivelTransmit-when the fol­
lowing conditions are met, the RDY pin is
activated, otherwise it is held in the High­
Z state. (Conditions: Interrupt Enabled
Mode, Wait Enabled, CS ~ 0, AO = Oil,
and Al = 0). The RDY pin is pulled low
when the transmitter buffer is full or the
receiver buffer is empty and it is driven
High when the transmitter buffer is empty
or the receiver buffer is full. The RDY A
and RDYB may be wired or connected
since only one signal is active at anyone
time while the other is in the High Z state.

D6 Must be Zero.

D7 Wait Enable--enables the wait function.

Write Register 2 (WR2): Channel A

MSB

I D7 : 0 I DS I D4 : D3 I D'[D' : DO [

'--..,-J '--..,-J

0 0 BOTH INTERRUPT

0 , A DMA. B INT

1 0 BOTHDMA

, , ILLEGAL

1 = PRIORITY RIIA>RxS>TxA>
rxa>EXTAo>EXTU"

o - PRIORITY RICA >TxA >RxB >
~ rxS>EXTA">eXTO"

0 0 8085 MODE 1

0 1 8085 MODE 2

, 0 8086188 MODE

1 1 ILLEGAL

1 = VECTORED INTERRUPT

0 NON VECTORED INTERRUPT

MUST BE ZERO

1 PIN 10='S"YN"DEfe

o PIN 10 = RTS e

NOTE: 210311-8
"External Status Interrupt-only if EXT Interrupt Enable
(WR1; DO) is set.

Dl,DO

00

o 1

1 0

1 1

D2

o

System Configuration-These specify the
data transfer from MPSC channels to the
CPU, either interrupt or DMA based.

Channel A and Channel B both use inter­
rupts.

Channel A uses DMA, Channel B uses in­
terrupt.

Channel A and Channel B both use
DMA.

Illegal Code.

Priority-this bit specifies the relative pri­
orities of the internal MPSC interrupti
DMA sources.

(Highest) RxA, TxA, RxA, RxB,

TxBExTA, ExTB (Lowest).

(Highest) RxA, RxB, TxA, TxB, ExTA,
ExTB (Lowest).

2-177

AP-134

D5,D4,D3 Interrupt Cod~specifies the behavior of
the MPSC when it receives an interrupt
acknowledge sequence from the CPU. (See
Interrupt Vector Mode Table.)

OXX

100

101

110

D6

D7

o

Non-vectored interrupts-intended for
use with an external interrupt controller
such as the 82S9A.

8085 Vector Mode I-intended for use as
. the primary MPSC in a daisy-chained pri­
ority structure.

8085 Vector. Mode 2-intended for use as
any secondary MPSC in a daisy-chained
priority structure.

8086/88 Vector Mod~intended for use
as either a primary or secondary in a dai­
sy-chained priority structure.

Must be Zero.

Pin 10 = RTSB'
Pin 10 = SYNDETB.

Write Register 2 (WR2): Channel B

MSB LSB

I~:~:~:~:~:~: ~:~I
\

Vector

210311-9

D7-DO Interrupt vector-this register contains
the value of the interrupt vector placed on

'the data bus during acknowledge se­
quences.

Write Register 3 (WR3):

MSB LSB

DO

os

D7,D6

00

o 1

1 0

R.ENABLE

L-____ NOT USED IN
ASYNCHRONOUS
MODES

L----------AUTO ENABLES

R. 5 BITS/CHAR

R.7 BITS/CHAR

R. 6 BITS/CHAR

R. 8 BITs/CHAR

210311-10

Receiver Enabl~a one enables the re­
ceiver to begin. This bit should be set only
after the receiver has been initialized.

Auto Enables-a one written to this bit
causes CD to be an automatic enable sig­
nal for the receiver and CTS to be an auto­
matic enable signal for the transmitter. A
zero written to this bit limits the effect of
CD and CTS signals to setting/resetting
their corresponding bits in the status regis-
ter (RRO). .

. Receiver Character length.

. Receive 5 Data bits/character.

Receive 7 Data bits/character.

Receive 6 Data bits/character.

1 1 Receive 8 Data bits/character.

2-178

inter AP-134

Write Register 4 (WR4):

1 . ENABLE PARITY
o ~ DISABLE PARITY

1 . EVEN PARITY

o ODD PARITY

o 0 ENABLE SYNC MODES

o 1 1 STOP BIT

1 0 1.5 STOP BITS

1 1 2 STOP BITS

NOT USED IN ASYNCHRONOUS MODES

o 0 Xl CLOCK

o 1 X16CLOCK

DO

DI

D3,D2

00

o I
I 0

I I

D7,D6

00

o 1

o X32 CLOCK

X64 CLOCK

210311-11

Parity-a one in this bit causes a parity bit
to be added to the programmed number of
data bits per character for both the trans­
mitted and received character. If the
MPSC is programmed to receive 8 bits per
character, the parity bit is not transferred
to the microprocessor. With other receiver
character lengths, the parity bit is trans­
ferred to the microprocessor.

Even/Odd Parity-if parity is enabled, a
one in this bit causes the MPSC to trans­
mit and expect even parity, and zero caus­
es it to send and expect odd parity.

Stop Bits.

Selects synchronous modes.

Async mode, I stop bit/character.

Async mode, 11/. stop bits/character.

Async mode, 2 stop bits/character.

Clock mode---selects the clock/data rate
multiplier for both the receiver and the
transmitter. If the Ix mode is selected, bit
synchronization must be done externally.

Clock rate = Data rate X 1.

Clock rate = Data rate x· 16.

I 0 Clock rate = Data rate X 32.

I I Clock rate = Data rate X 64.

Write Register S (WRS):

MSB LSB

1 D71 D6 ! D51 D4 I D3 I D2 I Dl I DO I

DI

D3

D4

D6,D5

00

o 1

I 0

I I

0

0

1

1

0

1

0

1

[NO T USED IN
YNCHRONOUS MODES AS

,--RT S

NO T USED IN
YNCHRONOUS MODES AS

T. ENABLE

SE ND BREAK

Tx 5 BITS OR LESSICHAR

Tx 7 BITSICHAR

T. 6 BITSICHAR

Tx 8 BITSICHAR

DT R

210311-12

Request to Send-a one in this bit forces
the RTS pin active (low) and zero in this
bit forces the RTS pin inactive (high).
When the RTS bit is reset in asynchronous
mode, the signal does not go inactive until
the transmitter is empty.

Transmitter Enable-a zero in this bit
forces a marking state on the transmitter
output. If this bit is set to zero during data

. or sync character transmission, the mark­
ing state is entered after the character has
been sent. If this bit is set to zero during
transmission of a CRe character, sync or
flag bits are substituted for the remainder
of the CRC bits.

Send Break-a one in this bit forces the
transmit data low. A zero in this bit allows
normal transmitter operation.

Transmit Character length.

Transmit 5 or less bits/character.

Transmit 7 bits/character.

Transmit 6 bits/character.

Transmit 8 bits/character.

Bits to be sent must be right justified, least-significant
bit first, e.g.:

D7 D6 D5 D4 D3 D2 D I DO

o 0 B5 B4 B3 B2 BI BO

2-179

Ap·134

Read Register 0 (RRO):

DO

DI

D2

D3

D4

Msa

Inl PENDING (CHA ONLY)

L-.. ___ T. BUFFER EMPTY

L..-_____ CARRIER DETECT

'--------- SYNDET

'--_________ CTS EXTERNAL STATUS
INTERRUPT MODE

L-.. __________ NOT USED IN

ASYNCHRONOUS MODES
L-______________ BREAK

Receive Character Available-this bit is
set when the receive FIFO contains data
and is reset when the FIFO is empty.

Interrupt Pending-This Interrupt-Pend­
ing bit is reset when an EOI command is
issued and there is no other interrupt re­
quest pending at that time. In vector
mode, this bit is set at the falling edge of
the second INT A in an INT A cycle for an
internal interrupt request. In non-vector
mode, this bit is set at the falling edge of
RD input after pointer 2 is specified. This
bit is always zero in Channel B.

Transmit Buffer Empty-This bit is set
whenever the transmit buffer is empty ex-
cept when CRC characters are being sent
in a synchronous mode. This bit is reset
when the transmit buffer 'is loaded. This
bit is set after an MPSC reset.

Carrier Detect-This bit contains the state
of the CD pin at the time of the last
change of any of the External/Status bits
(CD, CTS, Sync/Hunt, Break! Abort, or
Tx Underrun/EOM). Any change of state
of the CD pin causes the CD bit to be
latched and causes an ExternaVStatus in­
terr~ This bit indicates current state of
~he CD pin immediately following a Reset
External/Status Interrupt command. '

SYNDET-In asynchronous modes, the
operation of this bit is similar to the CD
status bit, except that it shows the state of
the SYNDET input. Any High-to-Low
transition on the SYNDET pin sets this
bit, and causes an ExternaVStatus inter-
rupt (if enabled). The Reset ExternaV

D5

D7

2-180

210311-13

Status Interrupt command is issued to
clear the interrupt. A Low-to-High tran­
sition clears this bit and sets the External/
Status interrupt. When the External/
Status interrupt is set by the change in
state of any other input or condition, this
bit shows the inverted state of the
SYNDET pin at time of the change. This
bit must be read immediately following a
Reset External/Status Interrupt command
to read the current state of the SYNDET
input. '

Clear to Send-this bit contains the in­
verted state of the CTS pin at the time of
the last change of any of the External/
Status bits (CD, CTS, Sync/Hunt, Break/
Abort, or Tx Und~/EOM). Any
change of state of the CTS pin causes the
CTS bit to be latched and causes an Exter­
nal/Status interrupt. This bit indicates the
inverse of the current state of the CTS pin
immediately following a Reset ExternaV
Status Interrupt command.

Break-in the Asynchronous Receive
mode, this bit is set when a Break se­
quence (null character plus framing error)
is detected in the data stream. The Exter­
nal/Status interrupt, if enabled, is set
when break is detected. The interrupt
service routine must issue the Reset Exter­
nal/Status Interrupt command (WRO,
Command 2) to the break detection logic
so the Break sequence termination can be
recognized.

inter AP-134

Read Register 1 (RR1):

MSB LSB

lool~I~I~loo:~:~lool

IL~"
NOT U

NT

SED IN ASYNCHRONOUS MODES

The Break bit is reset when the termination of the
Break sequence is detected in the incoming data stream.
The termination of the Break sequence also causes the
External/Status interrupt to be set. The Reset Exter­
nal/Status Interrupt command must be issued to enable
the break detection logic to look for the next Break
sequence. A single, extraneous null character is present
in the receiver after the termination of a break; it
should be read and discarded.

DO All sent-this bit is set when all characters
have been sent. It is reset when characters
are in the transmitter. In synchronous
modes, this bit is always set.

Read Register 2 (RR2):

04

05

PARITY ERROR

R. OVERRUN ERROR

CRC1FRAMING ERROR

NOT USED IN ASYNCHRONOUS MODES
210311-14

Parity Error-if parity is enabled, this bit
is set for received characters whose parity
does not match the programmed sense
(Even/Odd). This bit is latched. Once an
error occurs, it remains set until the Error
Reset command is written.

Receive Overrun Error-this bit indicates
that the receive FIFO has been overloaded
by the receiver. The last character in the
FIFO is overwrittenand flagged with this
error. Once the overwritten character is
read, this error condition is latched until

MSB LSB

06

RR2

I V7 : V6 : vs : V4" : V3" : V2" : VI": VO"I

~ ____________ ,, ____________ -JJ'

"Variable In
L.;1;;.nt;.;.e;;.rru;;.:p;.;t _________ Status Affects

Vector Vector Mode (WR1; D2)

reset by the Error Reset command. If the
MPSC is in the "status affects vector"
mode, the overrun causes a Special Re­
ceive Error Vector.

Framing Error-in async modes, a one in
this bit indicates a receive framing error.
It can be reset by issuing an Error Reset
command.

Channel B

2-181

07-00

210311-15

Interrupt vector--contains the interrupt
vector programmed into WR2. If the
"status affects vector" mode is selected; it
contains the modified vector. (See WR2.)
RR2 contains the modified vector for the
highest priority interrupt pending. If no
interrupts are pending, the varil!-ble bits in
the vector are set to one. May be read
from Channel B only.

inter Ap·134

APPENDIX B
MPSC-POLLED TRANSMIT IRECEIVE· CHARACTER

ROUTINES

MPSCRXINIT: .procedure

declare cmd$port
clock$rate
stop$bits
parity$type
parity$enable
rX$char$length
rx$enable
auto$enable
tx$char$length
tx$enable
dtr
brk
rts

output(cmd$port)=30H:

(cmd$port,
clock$rate,stop$bits,parity$type,parity$enable,
rx$char$length,rx$enable,auto$enable,
tx$char$length,tx$enable,dtr,brk,rts) :

byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte;

j" channel reset "j

output(cmd$port)=l4H: j" point to WR4 *j
j" set clock rate, stop bits, and parity information ";
output(cmd$port)=shl(clock$rate,6) or shl(stop$bits,2) or shl(parity$type,l)

or parity$enable:

output(cmd$port)=13H: j* point to WR3 "j
j" set up receiver parameters "j
output(cmd$port)=shl(rx$char$length,6) or rx$enable or shl(auto$enable,S);

output(cmd$port)=ISH: j" point to WRS "j
j" set up transmitter parameters "j
output(cmd$port)=shl(tx$char$length,S) or shl(tx$enable,3) or shl(dtr,7)

or shl(brk,4) or shl(rts,l);

end MPSCRXINIT:

2-182

210311-16

intJ Ap·134

~IPSC$POJ.I.$RCV$CIIAHACTER: procedure (da ta$por t, cmd$ por t, ch.u ~c t.'r Sptr) I,·,t.-·:

declare dataSport
cmd$port
character$ptr
character
status

declare char$avail
rcv$error

byte,
byte,
pointer,
based character$ptr
byte;

literally '1',
literally '70H':

/* wait for input character ready ./

byte,

while (input(crnd$port) and char$avail) c> 0 do: end:

/* check for errors In received character */
output(crnd$port)=l; /* point to RRl */
if (status:=lnput(crnd$port) and rcv$error)

then do;
character=input(data$port) : /* read character to clear MPSC */

1* clear receiver errors */ call RECEIVE$ERROR(crnd$port,status):
return OJ /* error return - no character avail */
end:

else do;
character=input(data$port) :
return OFFH:
end;

end MPSC$POLL$RCV$CHARACTER;

/* good return - character avail */

MPSC$POLL$TRAN$CHARACTER: procedure(data$port,crnd$port,character):

declare data$port
crnd$port
character

byte,
byte,
byte;

declare tx$buffer$ernpty literally '4';

/* wait for transmitter buffer empty ~/
while not (input(crnd$port) and tx$buffer$ernpty) do: end:

/* output character */
output(data$port)=character:

end MPSC$POLL$TRAN$CHARACTER:

RECEIVE$ERROR: procedure(crnd$port,status):

declare crnd$port
status

ou tput (crnd$por t) = 3011:

byte,
byte;

/* error reset */

/ • ••• other application dependent
error processing should be placed here */

end RECEIVE$ERROR;

2-183

210311-17

inter AP-134

TRANSMlT$BUFFER: procedure(buf$ptr,buf$lenqth)

declare
buf$ptr
bu f$leng th

pointer,
byte,

;* set up transmit buffer pointer and buffer length in global variables for
interrupt service */

tX$buffer$ptr=buf$ptr,
transmit$length=buf$length,

transmit$status=not$completej
output(data$port)=transmit$buffer(O) ,
transmit$index=l,

;* setup status for not complete *;
;* transmit first character *;
;* first character transmitted *;

;* wait until transmission complete or error detected *;
while transmit$status = not$complete do, end,
if transmit$status <> complete .

then return false:
else return true;

end TRANSMIT$BUFFER,

RECElVE$BUFFER: procedure (buf$ptr,buf$length$ptr),

declare
pointer,
pointer,

buf$ptr
buf$length$ptr
buf$length based buf$length$ptr byte,

;* set up receive buffer pointer in global variable for interrupt service *;
rx$buffer$ptr=buf$ptr;
receive$index=O:

receive$status=not$complete; ;* set status to not complete *;
;* wait until buffer received *;
while receive$status = not$complete do; end;
buf$length=receive$length;
if receive$status = complete

then return true:
else return false~

end RECElVE$BUFFER,

2-184

210311-16

Ap·134

APPENDIX C
INTERRUPT-DRIVEN TRANSMIT/RECEIVE SOFTWARE

declare
/" global variables for buffer manipulation "/

rx$buffer$ptr
receive$buffer based
receive$status
receive$index
receive$length

tX$buffer$ptr
transmit$buffer based
transmit$status
transmit$index
transmit$length

cmd$port
data$port
acmdport
bcmdport
line$feed
not$complete
complete
overrun

channel$reset
error$reset
resetextstatus

pointer,
rx$buffer$ptr(l28)

byte initial (0),
byte,
byte,

pointer,
tx$buffer$ptr(l2S)
byte initial (0) ,
byte,
byte,

1 terally '4 3H' ,
1 terally '4lH' ,
1 terally '42H' ,
1 terally '4 3H' ,
1 terally "OAH" ,
1 terally "'0"',
1 teraqy 'OFFH',
1 terally ""1"',

1 terally 'lSH',
1 terally '30H',
1 terally 'lOH',

/" pointer to receive buffer "/
byte,

/" indicates receive buffer status */
/* current index into receive buffer */
/* length of final receive buffer */

/" pointer to transmit buffer "/
byte,
/" indicates transmit buffer status "/
/* current index into transmit buffer */
/* length of buffer to be transmitted */

210311-20

2-185

intJ Ap·134

MPSCINTINIT: procedure (clock$rate,stop$bits,parity$type,parity$enable,
rx$char$length,rx$enable,auto$enable,
tX$char$length,tx$enable,dtr,brk,rts,
exten,txen,rx$en,stat$affects$vector,
config,priority,vectorintmode,int$vector) ;

declare
clock$rate
stop$bits
pari ty$type
parity$enable
rX$char$length
rx$enable
auto$enable
tx$char$length
tx$enable
dtr
brk
rts
ext$en
tx$en
rx$en
stataffvector
config .
priority
vectorintmode
int$vector

byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte;

output (bScmd$port) =channel$reset;

/* 2-bit code for clock rate divisor */
/* 2-bit code for number of stop bits */
/* I-bit parity type */
/* I-bit parity enable */
/* 2-bit receive character length */
/* I-bit receiver enable */
/* I-bit auto enable flag */
/* 2-bit transmit character length */
/*'l-bit transmitter enable */
/* I-bit status of DTR pin */
/* I-bit data link break enable */
/* l-bit status of RTS pin */
/* I-bit external/status enable */
/* l-bit Tx interrupt enable */
/* 2-bit Rx interrupt enable/mode */
/* l-bit status affects vector flag */
/* 2-bit system config - int/DMA */
/* I-bit priority flag */
/* 3-bit interrupt mode code */
/* a-bit interrupt type code */

/* channel reset */

output(bcmdport)=14H; /* point to WR4 */
/* set clock rate, stop bits, and parity information */
output (bcmdport)=shl(clock$rate,6) or shl(stop$bits,2) or shl(parity$type,l)

or parity$enable;

output (bScmdSport) =13H; /* point to I'IR3 */
/* set up receiver parameters */
output(bcmdport)=shl(rx$char$length,6) or rx$enable or shl(auto$enable,5);

output (b$cmdSport)=ISH; /* point to WRS */
/* set up transmitter parameters */
output(bcmdport)=shl(tx$char$lenqth,S) or shl(txSenable,3) or shl(dtr,7)

or shl(brk,4) or shl(rts,l);

output(bScmdSport)=12H;
/* set up interrupt vector */
output (bcmdport) =int$vector;

/* point to WR2 */

output(aScmd$port)=12H; /* point to WR2, channel A */
/* set up interrupt modes */
output(acmdport)=shl(vectorintmode,3) or shl(priority,2) or config;

autput(b$cmdSport)=llH; /* point to WRl */
/* set up interrupt enables */
output(b$cmdSpart)=shl(rx$en,3) or shl(statSaffSvectar,2) or shl(tx$en,l)

or ext$en:

end MPSCINTINIT;

2-186

210311-21

inter AP-134

MPSC$RECEIVESCIIARACTER$INT: procedure interrupt 22H:

;* ignore input if no open buffer */
if receivc$status <> not$complete then return;

/* check for receive buffer overrun */
if receive$index = 128

then receive$status=overrunj
else do:

/* read character from MPSC and place in buffer - note that the
parity of the character must be masked off during this step if
the character is less than 8 bits (e.g., ASCII) */

receive$buffer (receive$index) ,character=input (data$port) and 7:'1l:
receive$index=receive$index+l; /* update receive buffer index */

/* check for line feed to end line */
if character = line$feed

then do; receive$length=receive$index; receiveSstatus=completej end:
end:

end MPSC$RECElVE$CHARACTER$INT:

MPSC$TRANS~IIT$CHARACTER$INT: procedure interrupt 20H:

/* check for more characters to transfer */
if transmit$index < transmit$length

then do:
/* write next character from buffer to MPSC */
output(data$port)=transmit$buffer(transmit$index) :
transmit$index=transmit$index+l: /* update transmit buffer index */

end;
c]se transmit$status=complete;

end MPSC$TRANSMIT$CHARACTER$INT:

RECEIVE$ERROR$INT: procedure interrupt 23H:

declare
temp byte: /* temporary character storage */

output(cmd$port)=l:
receive$status=input(cmd$port) :
temp=input(data$port) :
output(cmd$port)=error$reset:

/* point to RRl */

/* discard character */
/* send error reset */

/* *,** other application dependent
error processing should be placed here *** */

end RECElVE$ERROR$INT:

EXTERNAL$STATUS$CHANGE$INT: procedure interrupt 21H:

transmit$status=input(cmd$port)
output(cmd$port)=reset$ext$status:

/* *** other application dependent

/* input status change information *1

error processing should be placed here **:to * /

end EXTERNAL$STATUS$CHANGE$INT:

2-187

210311-19

intJ AP-134

APPENDIX D
APPLICATION EXAMPLE USING SDK-86

This application example shows the 8274 in a simple
iAPX-86/88 system. The 8274 controls two separate
asynchronous channels using its internal interrupt con­
troller to request all data transfers. The 8274 driver
software is described which transmits and receives data
buffers provided by the CPU. Also, status registers are
maintained in system memory to allow the CPU to
monitor progress of the buffers and error conditions.

THE HARDWARE INTERFACE

Nothing could be easier than the hardware design of an
interrupt-driven 8274 system. Simply connect the data
bus lines, a few bus control lines, supply a timing clock
for baud rate and, voila, it's done! For this example, the
ubiquitous SDK-86 is used as the host CPU system.
The 8274 interface is constructed on the wire-wrap area
provided. While discussing the hardware interface,
please refer to Diagram I.

Placing the 8274 on the lower 8 bits of the 8086 data
bus allows byte-wide data transfers at even I/O ad­
dresses. For simplicity, the 8274's CS input is generated
by combining the M/IO select line with address line A 7
via a 7432. This places the 8274 address range in multi­
ple spots within the 8086 I/O address space. (While
fine for this example, a more complete address decod­
ing is recommended for actual prototype systems.) The
8086's Al and A2 address lines are connected to the AO
and Al 8274 register select inputs- respectively. Al­
though other port assignments are possible because of
the overlapping address spaces, the folloWing VO port
assignments are used in this example:

Port Function
Data channel A

Command/status A
Data channel B

Command/status B

I/O Address
OOOOH
0002H
0004H
0006H

To connect the 8274's interrupt controller into the sys­
tem an inverter and pull-up resistor are needed to con­
vert the 8274's active-low, interrupt-request output,
INT, into the correct polarity for the 8086's INTR in­
terrupt input. The 8274 recognizes interrupt-acknowl­
edge bus cycles by connecting the INT A (INTerrupt
Acknowledge) lines of the 8274 and 8086 together.

The 8274 ReaD and WRite lines directly connect to the
respective 8086 lines. The RESET line requires an in­
verter. The system clock for the 8274 is provided by the
PCLK (peripheral clock) output of the 8284A clock
generator.

On the 8274's serial side, traditional 1488 and 1489 RS-
232 drivers and receivers are used for the serial inter­
face. The onboard baud rate generator supplies the
channel baud rate timing. In this example, both sides of
both channels operate at the same baud rate although
this certainly is not a requirement. (On the SDK-86,
the baud rate selection is hard-wired thru jumpers. A
more flexible approach would be to incorporate an
8253 Programmable Interval Timer to allow software­
configurable baud rate selection.)

That's all there is to it. This hardware interface is com­
pletely general-purpose and supports all of the 8274
features except the DMA data transfer mode which re­
quires an external DMA controller. Now let's look at
the software interface.

SOFTWARE INTERFACE
In this example, it is assumed that the 8086 has better
things to do rather than continuously run a serial chan­
nel. Presenting the software as a group of callable pro­
cedures lets the designer include them in the main body
of another program. The interrupt-driven data transfers
give the effect that the serial channels are handled in
the background while the main program is executing in
the foreground. There are five basic procedures: a serial
channel initialization routine and buffer handling rou­
tines for the transmit and receive data buffers of each·
channel. Appendix D-l shows the entire software list­
ing. Listing line numbers are referenced as each major'
routing is discussed.

The channel initialization routine (INITIAL 8274),
starting with line #203, simply sets each channel into a
particular operating mode by loading the command
registers of the 8274. In normal operation, once these
registers are loaded, they are rarely changed. (Although
this example assumes a simple asynchronous operating
mode, the concept is easily extended for the byte- and
bit-synchronous modes.)

2-188

~
(Xl
co

EXPANSION I EXPANSION
SOCKET SOCKET

BAUD RATE I I
GENERATOR • L'T'""~_""'"

(For detailed description on SDK-B6. refer to SDK-B6 MCS-86 System Design Kit Assembly Manual.)

CONTROL
LINES

CONNECTOR

ADDRESS
BUS EXPANSION

CONNECTOR

LED DISPLAY

210311-22

(

»
"P
(.0)
~

inter AP-134

SDK·86
EXPANSION

BUS

INTR
28

Rii 22

WR
48 21'

INTA SO 27

PClK
36

RST

07
12

06
14 13

OS
12 14

04
10 15

03
16

02
17

01
18

DO
19

MilO 23

A7

25
Al

A2
8 24

SV

40

VCC

INT

Rii

WR

INTA

ClK

RESET

DB7

oB6

8274
oB5

DB4

DB3

oB2

OBI

DBa

CS

AO

Al

TxDA

RTSA

RxDA

CTSA

CoA

DTRA

TxoB

RTSB

RxDfI

CTSB

COB

DTRB

TxCA

RxCA

TxCB

751488

CHANNEL
A

751489

CHANNEL
B

210311-23

Figure 0-1. 8274/S0K-86 Hardware Interface

The channel operating modes are contained in two ta­
bles starting with line # 163. As the 8274 has only one
command register per channel, the remaining seven
registers are loaded indirectly through the WRO (Write
Register 0) register. The first byte of each table entry is
the register pointer value which is loaded into WRO
and the second byte is the value for that particular reg­
ister.

The indicated modes set the 8274 for asynchronous op­
eration with data characters 8 bits long, no parity, and
2 stop bits. An XI6 baud rate clock is assumed. Also
selected is the "interrupt on all RX character" mode
with a variable interrupt vector compatible with the
8086/8088. The transmitters are enabled and all model
control lines are put in their active state.

In addition to initializing the 8274, this routine also sets
up the appropriate interrupt vectors. The 8086 assumes
the first lK bytes of memory contain up to 256 separate
interrupt vectors. On the SDK-86 the initial 2K bytes
of memory is RAM and therefore must be initialized
with the appropriate vectors. (In a prototype system,
this initial memory is probably ROM, thus the vector
set-up is not needed.) The 8274 supplies up to eight
different interrupt vectors. These vectors are developed
from internal conditions such as data requests, status
changes, or error conditions for each channel. The ini­
tialization routine arbitrarily assumes that the initial
8274 vector corresponds to 8086 vector location 80H
(memory location 200H). This choice is arbitrary since
the 8274 initial vector location is programmable.

2-190

AP-134

Finally, the initialization routine sets up the status and
flag in RAM. The meaning and use of these locations
are discussed later.

Following the initialization routine are those for the
transmit commands (starting with line # 268). These
commands assume that the host CPU has initialized the
publicly declared variables for the transmit buffer
pointer, TX_POINTER_CHx, and the buffer length,
TX_LENGTH_CHx. The transmit command rou­
tines simply clear the transmitter empty flag, TX EMP­
TY CHx, and load the first character of the buffer into
the transmitter. It is necessary to load the first charac­
ter in this manner since transmitter interrupts are gen­
erated only when the 8274's transmit data buffer be­
comes empty. It is the act of becoming empty which
generates the interrupt not simply the buffer being emp­
ty, thus the transmitter needs one character to start.

The host CPU can monitor the transmitter empty flag,
TX_EMPTY_CHx, in order to determine when
transmission of the buffer is complete. Obviously, the
CPU should only call the command routine after first
checking that the empty flag is set.

After returning to the main program, all transmitter
data transfers are handled via the transmitter-interrupt
service routines starting at lines # 360 and # 443. These
routines start by issuing an End-Of-Interrupt command
to the 8274. (This command resets the internal-inter­
rupt controller logic of the 8274 for this particular vec­
tor and opens the logic for other internal interrupt re­
quests. The routines next check the length count. If the
buffer is completely transmitted, the transmitter empty
flag, TX_EMPTY _CHx, is set and a command is
issued to the 8274 to reset its interrupt line. Assuming
that the buffer is not completely transmitted, the next
character is output to the transmitter. In either case, an
interrupt return is executed to return to the main CPU
program.

The receiver' commands start at line # 314. Like the
transmit commands, it is assumed that the CPU has
initialized the receive-buffer-pointer public variable,
RX_POINTER_CHx. This variable points to the
first location in an empty receive buffer. The command
routines clear the receiver ready flag, RX_READY_
CHx, and then set the receiver enable bit in the 8274
WR3 register. With the receiver now enabled, any re­
ceived characters are placed in the receive buffer using
interrupt-driven data transfers.

2-191

The received data service routines, starting at lines
402 and # 485, simply place the received character in
the buffer after first issuing the EO! command. The
character is then compared to an ASCII CR. An AS­
CII CR causes the routine to set the receiver ready flag,
RX_READY _CHx, and to disable the receiver. The
CPU can interrogate this flag to determine when the
buffer contains a new line of data. The receive buffer
pointer, RX_POINTER_CHx, points to the last re­
ceived character and the receive counter, RX_COUN­
TER_CHx, contains the length.

That completes our discussion of the command rou­
tines and their associated interrupt service routines. Al­
though not used by the commands, two additional serv­
ice routines are included for completeness. These rou­
tines handle the error and status-change interrupt vec­
tors.

The error service routines, starting at lines #427 and
510, are vectored to if a special receive condition is
detected by the 8274. These special receive conditions
include parity, receiver overrun, and framing errors.
When this vector is generated, the error condition is
indicated in RRI (Read Register I). The error service
routine issues an EOI command, reads RRI and places
it in the ERROR_MSG_CHx variable, and then is­
sues a reset error command to the 8274. The CPU can
monitor the error message location to detect error con­
ditions. The designer, of course, can supply his own
error service routine.

Similarly, the status-change routines (starting lines
#386 and #469) are initiated by a change in the mo­
dem-control status lines CTS/, CD/, or SYNDET/.
(Note that WR2 bit 0 controls whether the 8274 gener­
ates interrupts based upon changes in these lines. Our
WR2 parameter is such that the 8274 is programmed to
ignore changes for these inputs.) The service routines
simply read RRO, place its contents in the ST A TUS_
MSG_CHx variable and then issue a reset external
status command. Read Register 0 contains the state of
the modem inputs at the point of the last change.

Well, that's it. This application example has presented
useful, albeit very simple, routines showing how the
8274 might be used to transmit and receive buffers us­
ing an asynchronous serial format. Extensions for byte­
or bit-synchronous formats would require no hardware
changes due to the highly programmable nature of the
8274's serial formats.

AP-134

8274 APPLICATION BRIEF PROGRAM

ISIS-II 11:5-86 I1ACRO ASSEltllLEF V2 1 ASSEI'BlV IF IW..tE ASYOCB
OBJECT IIJIlIA.E PLfUD IN Fl.AS'/N(B OBJ'
ASSEI1BLEF INI'(l(ED IN _ Fl AS'III(B SFC

LOC 08J LINE

1
2 ,
4
5
6
7
B
9

19
11
12
13
14
1~
16
17
18
19
29
21
22
2l
24
~
26
27
28
29
38

, fM
.• 9274 fl'PtlCATlm Bl!IEf _ . ..
"
"
" 11£ 8274 IS INITIALIZ£O FBI! SIIRE AS'rIDROOJS SERIAL
" FIRI'IIT fIf) VECTMED INTERRlJPH>RIVEN DATA WINSFERS.
,. THE INITIALI1RTIm ROOTINE ALSO LOIf)5 THE 8B86'S INTERRIJ'T
" VECTBI! TIIILE FRIll THE COO£ SEMNT INTO LOW RIll m THE
" 5Di(-86. TI£ TmEltITTEF fIf) RECEIVER ARE LEFT ENfIItEI).

;'
;' FIM! TmEltIT, THE CPU PllSSES IN I'IElDV TI£ POINTER IF A
" IIlFFER TO TRtIISItIT fIf) THE BYTE LEI«lTH IF THE IIlFFER. '
" TI£ DATA TRIIfSFER PROCEED USING INTERRII'T-IlRIVEN TRIIfSFERS,
" A STATUS BIT IN 1£101' IS SET II£N IF IIlFFERS IS E/FTV,

" ;' FBI! RECEIVE. THE CPU PASSES TI£ POINTER IF A IIlFFER TO FILL, •
;' THE IIlFFER IS FILLED lWTlL A 'CR_CII!' CllM:TER IS RECEIVEO, •
;' A STATUS BIT IS SET fIf) TI£ CPU I1fIII READ THE Rl(POINTER TO •
" DETERltll£ THE LOCATlm OF THE LAST ClRft::TER,

" ;"ALL ROOTII£S ARE ASSIJIED TO EXIST IN THE SRI£ COO£ SEMNT.' •
;' au '5 TO THE SERVICE ROOTINE~ ARE RSSIJIED TO BE 'SIfJRT' OR •
• INTRRSWENT (mLY TI£ RElWI fIlDRESS IP IS m THE STACK),

........................ *** '*..

2-192

210311-24

Ap·134

1IC5-1J1.i Ift:RQ ASSEIIIlER RSYI(8

LOC OOJ LINE 5tI.m:

11
J2 /fIlE ASII«:B ,IUIlI.E NfI1E
33
34 ,PUllLIC DECL~TIOOS FOR COItIfH) ROUTINES
35
36 PL6!.IC I NITIfL-B274 , INITIlllZATIOO ROOTINE
37 PUllLIC TX-CIJI'IINLCNB , IX BLfFER CIlltlAND CHAIilEL B
18 PUllLIC TX-Cll'ltfHUJIA , IX BLfFER COIt1fIN() C!mil A
39 PUllLIC Rx...CIIItItAII)_CIIl ,RX BLfFER ctIItIfINI) CNANI£L B
49 PUllLIC RX_COIl1fHWIA ,RX BLfFER (0_ UifIflEL A
41
42 ; PleLlC DECLfRlTIONS FOR STATUS YfRIABlES
43
44 PUllLIC PlLREfilY_CNB ,~X REAllY FLAIl (Ie

45 PUllLIC ~X-REflO'''-CHA ,R't READY FLAIl CIIA
46 PUBLIC Tx...EIt'TUHB , IX El1PTV FLAIl CIIB
47 PUllLIC Tx...EIf'TY_CHA , TX EtI'TY FLPIl CHA
4B PL6!.IC Rx...ctX.IlT_CHB ,RX BUFFER COl.tHE~ CHB
49 PUllLIC Rx...COl.IlI-CHA ,RX BLfFER COONTER CHA
51! PUllLIC ERROR..IISG..CNB ,ERROR FLAG CHB
51 PUBLIC EI1RtlR..I!SG_CHR ,EJ1R(ll FLAG CHA
52 PUBLIC STATUSJISG_CHB ,STATUS FLAIl CHB
53 PL6!.IC STATUS_HSG_CHR ,STATUS FLPIl eHA
54
55 ; PUllLIC DECLARRTIOOS FOP VARIABLES PASSED TO TI£ TRfflSHIT
56 ,IN) RECEIVE COII'iN)S.
57
58 PlRIC IX_POINTER-CHB ' TX 81.1'FEP POINTER FOR (HB
59 PlRIC Tx...LEI«iTILCHB • TX LEI~TH OF BUFFER FOR Cill
68 PUllLIC TX-POINTER-CIIA , TX BUFFER POINTER FOP (HA
61 PUllLIC Tx...LEI«iTH_CHA ' TX LEI«iTH OF BUFFEF FOP OIA
62 PUllLIC Rx...POINTEILCNB .I/X Bl.fFEP PO INTER FOR (HB
63 PlRIC Rx...POINTEP_CIIA ,PX BLfFER POINTEF FOP ellA
64
65 ; 110 PORT AS5lGIf£NTS
66
67 ,CIflNNEL A PORT ASSIIlIftENTS
6B

B&eIJ 69 tlATA_PORI-CHA EflU 0 . MTA liO POPT
99!l2 79 Ill'ItfH)J>OI1T_CHA EflU 2 ,COPIIANO PIlI'T
9002 71 STATUS~T _CHA EOO ta91IH'_POPUHA ,STATUS PORT

72
73 ,CIfHlEL B PORT A5SIGII1ENTS
74

9984 75 DATA-PCl1UHB [(OJ 4 ,toATA 1.'0 POPT - 7. COItfH>_PORUHB Eoo 6 ,CIlII1AH!' PIlRT
9ee6 77 STATUS_PORT ..I:HB E(lIJ COI'/IAI{o_PIlRT_CIIl ,STAfl.IS PIlI'T

78·
i9 ,HIS[SY5TEIt EfllIATES
89 - St CP_CllR EOI.I OCoH .A5(11 (~ (HAI'ACTEP (O['E

9200 82 INY-TltRLBASE EOO 2~ • INT \{(TI)< BASE A[HES:.
9500 8) COOLSTAFT Eoo 500H ,STAPT LOCATION Ftjl (O[f

84
8S +1 IEJECT
86
a, ,m1 ASSSIIlNHENTS FOP DATA SEGMENT
88
(!9 I·ATA ;EGHENT
91!

210311-25

2-193

intJ AP-134

K:S-So; tilCl1\I ASSEKelER RSI'lK8

LOt OSJ L1HE SOUP(E

~1 ,!/ECTOP INTERI'UPT TABlE - ASSUME /lIITIA\. s'174 IHTEPPI.lPT
92 ,!/E(1OP IS NltI6EP 00 ,@"OOH', FOf E~H ','EOOf, THE TABLE
?3 ,CONTIlINS STAPT LOCATION I'/l' (CI!oE SEij~ENT PEr,I5Tl' VALUE
~4 ,THE TABLE IS L(IfI[,E[, FP(,M PF'OM
9'j

021le % 0116 INUABILBASE
q--,

0298_ ~ TUETOIUHB ON ,T:: INTEP",!'T YECTOf FOP eNS
02Il2_ !j!I TUS_eHe [~

198
0204 0008 101 STS_VE(j()J1_CHB ON ,STATUS IHTEmn 'IECTeI' FOP eNS
Il296 0000 102 STS_CS_CHS DI<

183
0200_ 104 RlLYECTll1_CHe OW ,P:': IHTEPP'-I'T. IE Tel' FQP (NS
020A 0000 las I1X_CS_CHB ow

106 029C _
107 ERR_!/ECHI'_CHS ow ,E!>POP IHTEl'PUPT l/ECTDP F,JP CNS

020E_ 100 ERR_CS_CHe DI<
Ie!'

0210_ 119 TU'ECTll1_CH!l OW ,TX INTEPRUPT VECTOP FOP (HA
0212_ 111 T,-CS_CHA ON

112
0214_ 113 STS_ YECTIJLCHR [>W ,STATUS INTERRI.I'T !/E(TOP FOP (HA
0216_ 114 STS_CS_ClIl ON

liS
0218_ 116 RlL YECTOUHA [~ ,11X INTEPJ1UPT YECTeI' FOP (NA 021A _

117 PUS_ClIl ow
liB

S21C _ 119 ERR_YECTOR..CHA ow • ,EIIro> INTERRUPT I/ECTll1 FOP eHA 021E _
126 ERR_CS_CIIA ON
121
122 , "ISC I1fI1 LOCRTIOHS FOP CHANl£L STATUS 1M, POINTEPS
m
124 ,CHRNIf:L B POINTERS RHO STATUS
125

0220_ 126 TX_POINTER_CHe .w 8 ,T" BUFFER POINTEII FOP (He 8222 _
127 TUEM;TH_CHe ow e ' TX BUFFEP LENGTH FC4' CHS

8224 _ 128 I1X_POINTER_CHB ow e ,PX BI.lFFEP POINTEI' FOP [HS 0226 _
129 RUOIJNUHB ON B ,PX LENGTH WJNTEP FOF eHS

022898 138 TX_EllPTY_CHS os e , r ... : DONE FLAt:I
8229 00 131 RlLREfIlY_CHB os e ,PEf'DY FLA!, '1 IF (P_(HF PE(EIVE[', ELSE 0,
II22A 98 m STATUS_HSG_CH8 os B ,STATUS CHANGE IlESSA6E
0228 00 iI'S ERRORJ1SG_CH8 ll!I e ,ERI'OP STATUS LOCATIOO 'e IF NO EFPeI",

134
135 ,CIft1NNEL A PO INTEl'S fINO STRTUS
E6

1l22C_ 137 TX_POIHTEF_CHA ON ' TX BUFFEP POIHTEP FOP CNA
022E eeee BB TUENGTH_CHA ow ' T:: BUFFEP LENGTH FOP (NA
Il238 eeee B~ I1X_POINTEP_CHA ow ,PX BlfFEP POIHTER FOP [HA
0232_ 140 PlLCOUNUHA ow , PX lEl';TH COOJNm" FOR ,:HA
0234 00 141 TlLEllPTY_CIfl DEI ,TX [M FLAG
0235 00 142 RlLREAOY-CHA os ,PEfI)Y FLAG (I IF (P_CHP PEcmn, ELSE 0
8236 98 143 STATUSJl5(j_CHA os ,STATUS CHANGE I1ESSA6E
1Ill? 00 144 ERROP_I1SG_CIfl os ,EPFOR STRR'S L(~ATlON ". IF IlO mop,

145
146 DATA ENOS
147
148 +1 I£JECT

210311-26

2-194

inter AP-134

~ICS-80 H~O fiS:il1BlEF ASYNCB

LOC OBI

9511001
BSe!16

BSe8 85
BSe9 EA

8518 93
9m C8

8512 84
0513 4C

8514 95
0515 EA

8516 00
8517 98

LINE

H9
1511
151
152
153
154
15'5
156
15i'

SC<JPCE

OOC 5€GMENT
ASSlI1E (5 AB(.['S [,Hm.;, [·ATA
OFG CI][LSTAPT

.... u.*u.* u • .tt: j..I .. tthlt •• I+ h~ ... t .. tt., 4'f.HH .. ~

.t .. PAPAHfTEPS FOF ':HflM"L IHITIAU:ATlOH

158 , U+ H Utt +u ,

15~

lOJl
161
102
167

164
16'5

166
16~

168
169

li9
1<1

1<2
1,3

174

. CHAHNEL B PARfI1ETEP5

.IIPI - ilHERFlfT OH ALL P:': Oil'. YAI'IABLE IHT ·/£OOP. T": INT ENABlE
Cl'I)STRB vB 1.16H

• WF~ - IflTEPRt.!'T \~m~
DB 2 .• INUABLUASE,'4 •

· wp, - I1X 8 BITs/CHII. PX ['''fflLE
(08 J. OCOH

.1IR4 - Xl; CLocr. 2 STCf Bm. NIl PAFIT'I
DB 4.4CH

.1IR5 - DTR ACTIVE. Ii:.j BJT5,'CHP. "EIlI'8LE. PTS lI:mE
DB 5. eEAH

• W116 ANt> WPi NOT FECJlJIFE[' FOP AS'IN(
DB 9.8

175 C14AHNEL A PAFRKETEFS
176
l7i
m

179
100

181
182

183
184

18'5
180

18i
188

189

• WIll - WTEFRIJPT 011 ALL P:~ Oil'. T:·: [NT EHABLE
C/Il\STFA DB 1.12H

.1111~ - YECTI*ED INTEWtfT FOF 8886
DB 2.31!H

.WR' - I1X 8 BlTSlINF. PX [.ISABLE
DB J. OCI!H

.l1li4 - X16 wx:r. 2 ,Teo BITS. NO PRPITI'
DB 4.4CH

.III/S - ['TF A\TlVE. IX e BITS/CHP. rl. EHf<BLE. PT5 "'TI\'~
DB 5. BERH

· WF6 iN· l1li7 NOT PErlJIPED FOR ASI'HC
DB 9.8

L"6 +1 IEJECT

2-195

210311-27

intJ AP-134

HCS-86 ItfICFO AS5EPI8I.EiI AS\'IU

Loe 001 LINE SClJRt'E

191
192 . START Of COIIIfII(, i10UTlNES
m
194 ... **."'4U U UU UU U>t ,

195 " 196 .t IHITIFlIZATlOO CO_ FOR THE 82;4 - THE 8174
197 " IS SETlP OCCOl1!>ING TO THE PftI'AltETEFS STOI'EV IH
19S PFOIf ABO'.{ STAI'T1HO AT CHSTPI! F~ (HAMlEL • AII(.
L"9 . ,* CPlSTRA FOP OIfHEL A
200 ..
m . ** u u
292

0516 26J INITIAU274
264 • CIl'Y IHTERRtf'T VECTOP IP fH> CS VALUES F~OI1 PRON TO PAI1

0518C79609Il26866 2'l5 11)'/ Tll VECTOR-CHB, OFFSET XI1T1118 · l:~ MTA VE[lOF' CHB
eS1E 1lC9E8282 266 11)'/ TllCS.i1I8, CS
0522 C7_3596 287 lIlY STS-VECTOI"-CHB. OFFSET STAlhlI · SIATlJS VEm", (HB
0528 1lC9E8682 298 lIlY STS_CS_CIl!. CS
952CC_4995 289 lIlY RllVECTOIUHB, OFFSET RCVlle · RX DATA VEC TOR CHe
8532 1lC9E!1A82 219 11)'/ RllCS_CHB, CS
853'; C795OC82m6 211 lIlY ERR_VECTOIUIl8, OFFSET ERRI!e • ERROl' VE(!OIl CHB
9S3C 9CeE8f192 212 lIlY PX_CS_CNB, CS
8548 C79619828C95 21, lIlY TllVECTOIUHA, OFFSET XPlTIHA · TX MTA VEC TOP Clifl
8S46 9C8Ei2e2 214 lIlY TllCS_CltfI, CS
9:i4Il C786141l2B996 215 lIlY STS_VECTOP_CIf!. OFFSET STAIHA • STATUS VECTOR CHA
esse 9C8E1682 216 lIlY STS_CUHA, C5
!1554 C7861982CD86 217 lIlY RllVECTOP_CIIA. OFFSET RC'IINA ,PX MTA VECTOP CIIA
85SA BC8E1A82 219 lIlY RllCS_CltfI, CS
95SE C7951Ce2F99. 219 lIlY ERR..VECTl11_CHA. OFFSET ERRIIIA · EPROP VECTOR (HA
9564 9C8E1E82 228 lIlY ERR_CS_CHA. CS

221
222 ,Ctf'I SETlP TA8I.E _TEPS IHTO 82;4
m

9568 BF9995 224 tIOV 01, OFFSET OI>STR8 , IHITJIlIZE CNB
9568 M9698 22S lIlY OX, COIfItfIHO_POPLCII!
8S6E ES2EE18 226 CIlL SETUP ,COPY (I'B PARAI£TERS
8571 BF9C8S 227 IfJ'/ 01, OFFSET CItlSTIIR .IHITIIlIZE Ch!\
8574 IIA828e 228 lIlY Ox, COIfItfIHOJ'Of'UHA
8577 E82588 229 CIlL SETlP ,copy CHA _TEllS

239
231 ,INITJFlI2E STATUS MES AI{) FLAGS
232

057A98E18E18 233 IfJ'/ AX. 8
8570 II22B82 214 /tOY ERROP_ItSG.-CII!, Fl · CLEAR ERPOP FLAG (II! _ A2l782

2lS /tOY ERROPJISGJ,II, Fl · CLEAR EiIFOP FLAG elf!
8S83 A22A82 236 lIlY STATUS_I\S6_CII!, Il · CLEAP STATIJS FLAG CHe
8S86 A2l682 237 NlY STATUS_IISG_OO Fl · CLEAR STATUS FLAG CIIA
8589 Rl2682 238 lIlY RlLClUILCH8, AX ,CLEAP R:~ COUHT~ CHI!
esse Al3282 m IIOV RlLCOONT_OO A:< ,ClEAP PX cruffER CHA
8SBF Beel 248 IIOV Ill, 1
8591 1122982 241 /tOY RK-REAI''-CII!, Fl ,SET I>X OOOE FLAG CHe
8594 R23582 242 IfJ'/ RX..REfIlIY_CHA, Fl ,SET RX DON: FLAG CNA
8597 A228Il2 243 /tOY Tx..EIIPTY-CHII, At · SET r, OOOE FLAG CII!
859A A23482 244 IIOV TX..EII'TV_CltfI, Fl • SET T, OOOE FLAG CNA
8590 FB 245 STI ,ENA8I.E IHTERPlPTS
859E C3 246 RET · RETtPII - OONE HITH SETUP

247
859F 8A8S 248 SETlP' /tOY Fl, lOll ,PAPrtETEiI Ctf'IING i1OUTJr£
8SA1 lC88 249 ClIP Fl, 8
esAl 7484 2S8 JE OOOE

210311-28

2-196

intJ

LOC 08.1

e5f\5 EE
1l5A64:
e5A7 EBFr5
acJA? c]

0,'*1
e5f\A se
6SAB 57
e5flC 52
0Sf1[\ C6I362ae2ee
9582_
9SB5 IlBjE2002
ii5B9 1IftIl5
~~B EE
ii5BC SA
8"1J(' Sf
BSilE 5B
Il'H CJ

9SCe
e:;(B 51J
BSC157
9SC2 52
85(3 (606149200
95C9_
Il5C8 8BjE2CB2
8"J:F8IIe5
I!5Vl EE
B5D2 :il
e....,J Sf
e5!>4 SB
B5b5 (3

LINE

251
2'52
2Sj

2:~

255
256 t1
257

SW~fE

OJT
IH(
JI1P

00tIE ~ET

IE.lECT

[,:~. it
[,I
5ET'-~

AP-134

.(lJ.lTPtJT Pt1~'Hf1ETEF
,POINT AT N£~:T PfV:i1MEiEF
.ljI) lOtto Ii
·rl(~ - SO ~'ETlJF'~j

258 .• uu u " >tu t.u.t.
259 , ..

'268 ,. 1:-: C_L B C_, 1<1:~ITII£ - ~[1I-'TWE IS (fUEl' TO
261 ,. TFffl5lt1T A BLHER HE E<HE~ 5TAPTI"" f«HS5,
262 " E_f~INTEUHB, ilIlV THE B'-H~ LENGTH, TX_LENGTH_(~8,
26j " 11I.IST BE INITIALIZED 8Y THE (ALLING PFI)GPAII
264 BOTH ITEIIS APE WQ~r' 'lffIABlES
265 ...
266
267
268
269
278
271
272
2/]
274
275
276
277
278
279
2SB
261
202

TX_CI:tll1ff{>_CHB
~JSH

~J'.fj

PUSH
110'1
I10V
HOI'
I'f.!y
OJT
POP
f'(l'

POP
RET

(':':
TUI1PTY_CHB, 0 ,CLEAP EI'f'TY FLAG
D:" fflTA_PORUHB ,SEnf POI"T POIIHEP
DI, TV'OINTEP_lMli ,GET 1:: BUFFEf POIiHEfCHB
AL, [DII ,GET F[PST CHAPA(1EF TO T:,:
DX, AI. ,OIJTPIJT IT TO 8c:4 TO CoE! IT STHI"TE[,
VX
['I
A:,

281 ,.
284
2B'i
286
267
268
269
29B
291
292
29~

294
295
296
2~i'

m
29~

300
)Ill

302
302
304
305

" TX OfllHI A COHltAN(l ROl~IJE - R(l'-~INE IS CALLE[' TO
,. TRPHSHIT A BlfFEF Tf(.1HER STAPTU., AlH'ESI,

r,,_POIHTER_CHA, fflD THE BIJFFEF LEH(;TH, TUEI(;THJHA.
II-,ST BE INIlIALI<:ED ~I THE (ALLING PI<1:~"':AI1

.' BOTH ITEH5 ARE WORt· 'IARIABLE5

"
• , 1- ,. u.t

Ti:_COIflINIUffi
F'USH A:~ ,SAVE ~EljISTEPS
PUSH DI
PUSH v:':
/lOy T:UHPTY_CHA,. ,CLEAP EI\OT',' FLA<.;
I10Y t·:" rflTR_PORLCHA ,;EH.I' PC~T POIIHEP
I'IOV [,I, T:UOINTER_CHA ,GET TX BIJFFER POINTEP (HA
1'10'1 AL. [N! ,GET Fir;";T CHAHlCTEP TOT:,:
OUT DX, fl ,t)JTPIJT IT TO 8274 HI r.!T IT STRPiEf,
POI' r'i:
POP ~I
POP IV:
FET ,PETI."H

]£16 , ,... ... ** :u t."t:u.~ U;.t, +
39T ...
JOO
]99
319

• , /IX CO/ltllN, FOF Clff<l£L B - THE CAlLI"" f'OI-'TII.t: II-'IT
INITIAlIZE RX_POIHTEVHIl TO POINT AT THE F'ECEm:
BlHER BEfM (ALLlIIJ THIS HiJTI,*,

2-197

210311-29

intJ AP-134

11(5-86 I1IIC~O ASSEtilLEP AS'lNCB

LOC 08.1 LINE S[IIJI(E

m
!12 U."' .. .t:U"h.U· U"' .. tt++ •• U.~.H.+Uff·HIU t .. +.'.'Ulh

31,
85tll5 114 PX_COtll1/K·j)i!I
9SD6 59 ~15 PUSH A:·: · SfIIE i1[GISTEPS
9'5D';' S2 ,16 I'USH l'X
9508 00!62m00 317 HOY ~X_~E~UIll· 9 . (LEAP P": PEf(oV FLHIj
8500 C;86.268_ m HOY "K.COl~LCHf!. 9 . cLEI1P f'X CO~TEP
SSE> 8A868e)19 HOY OX. C!H1f1h1),f1)I1UHB . PQINT NT ';,JI'MAI1{· F('PT
1!';E6 B003 328 HOY AL. 3 · SET UP Fill' fI>:
B5E8 EE 321 em ~X. AL
B5E9 SOC1 ;22 I'0O\I AI.. eelH · WI', - 8 BITS. ~HP. ENABLE P>:
8l£B EE ;2; OUT DX. AI.
B5EC 5A 324 POP 0,
8l£D sa 325 POP AX
85EE CJ 326 . I1ET .I'ET~

)27
;28 , "'** "' ** u.· ... t +.
329 .,
ne .' RX COIIIfII(l FOP CHANI£L A - THE (ALllllG PCfJTINE ~U5T
;31 ., INITIALIZE PX_POINTEF_CHA TO POlllT AT TriE PEo:tIVE
332 .' BUFFEP B£fOl1E CALLING THIS POUTINE
m .,
:;34 .. "' , ... ttuu''''*Ut

335
B5EF 336 RlLCCI1IfH)_CHfI
I!';EF 59 137 PUSH fl·: · SfIIE PEGISTEPS
W8 52 338 PlISH OX
WI C686J59200 m 1111 RX-P£ADY-CHA. e . (LEAP PX REAC'V FUI(j
W6 'C71lt>3292B008 14Il HOY ~UOUHUHA. 8 . (LEAP PX COUNTER
85FC BAB2e9 341 HOY OX, ea1MIM)_POPUHA .PQIIIT AT CC!l'lftN[l POPT
8SFF Bee) 342 I'0O\I AI..) . SET UP FOI'~,
Ilt>Bl EE J4) OUT ~X. AI.
Ilt>B2 secl 144 HOI' AL iC1H · WP: - 8 B.IT~ 'CliP. ENABLE Pc'
B684EE 345 OUT DX, AL
e.;es 5A 346 POP OX
8686 sa 347 POP f!);

1lt>B7 C3 348 RET ·PETtIIN
349
J'j8 +1 IEJECT
351
lS2 ,.** *** *.* •• "' u.**"'*.uu u 4

3';3 "
lS4 " SIfRT OF INTE~RUPT SEII'II(£ ~II£S .
355 .' -
JS6 i ... u to

357
~ ,ChIIfEl. B TRfr6MIT DATR SEII'IICE POUlIN[
359

868852 368 ~TI~ PUSH ~x .SAI'E I1EGISTEFS
1lt>B957 361 PUSH 01
_59 362 PUSH AX _ E892e1 363 CALL EOI · 5E~ EOI CO __ TO 82,'
B68E FF862002 364 If«: TX_POINTEILM · POINT TO NEXT CH~ACTEP
8m FFeE2292 365 DEC TILLEOOnUNB · [lfe lEOO TH CDUNTER
8616 74BE 366 JE XIB · TEST IF 0CJIf'
8618_ 367 HOY OX. DATA-POF!UH8 .I«IT (o(Q; - (£T NEXT (HAPf!CTEP
861B 883E2002 368 HOY 0(. TX-POINTEP_ChII
861f BAB5 369 HOI' AL. (DIl · PUT CIfllACITR IN Al
8621 EE 378 OOT OX. AL · OUTPUT IT TO 82,4

210311-30

2-198

inter AP-134

1£5-86 I'iUO ASSfI'iBlER ASYI«:S

LOC OOJ LINE SOUlCE

8622 58 J71 POP AX .RESTIJIlE REGISTEIIS
9623 51' 372 POP 01
8624 sa 373 POP DX
9625 CF 374 IRET ,RETI.I1N TO FOREGROOND
8626 IIA868II 375 XIS. /tOIl OX. CMRf)_~LCIi!I • ALL CII'lPKTERS HAYE BEElI SEND
8629 B828 376 I10Y At. 2BN · ~ESET TRANSIUTTE~ IHTERI1UPT PEl{llfI/j
8618 EE 377 WI DX. RL
862C C6862BB281 378 I10Y TllEtfTY-CtIl. I . 00f: - SO SET TX ElIPTY Fllll CItS
8631 58 379 POP AX · RESTORE FEGISTEFS.
8632 51' 388 POP 01
8633 sa 381 POP OX
8634 CF 382 IRET · FE~ TO FIlPEGFC'.'I{I

383
• ClRt£L S STATUS CIIfIIa SERVltE ROUTINE 3B4

3B5
B63'552 386 STAINS· PUSH OX • SAVE REGISTERS
8636 57 387 PUSH DI
8637 59 3B9 PUSH AX
B63B EBDSBB 3B9 CRI.l EOI ; SEND EOI COIMlI> TO 8274
9638 BR9688 399 I10Y OX. CO/IIfH)_PORT _tItS
863E EC 391 IN AL. OX .REf[, RR0
B63F A22A02 m IfJV STATUS_H5G..CIiI. At · PUT RF0 IN STATUS I'iS51G:
8642 Bel9 393 lillY At. lell · SEI(> PESET STATUS INT COMMfiHC' TO 8m
8644 EE 194 WI DX. RL
804~ 58 395 POP AX · RESTIlPE PEGISTEPS
9646 51' 3% POP DI
8647 sa m POP DX
0648 IF 398 lPET

;99
499 · rlfHEl. B RECEIVED MIA SEI1\IICE FOIJTlNE
491

8649 52 492 PeVIHS PUSH DX · 5AI~ I1EGISTEFS
864A 57 493 PUSH vi
864B 58 404 PUSH Al:
864C E&100 485 tALL EOI · seN{> EOI COIf1AHC1 TO 82~4
864F BelC482 486 IIO¥ 01. R)UOINTEUHB · GET F:, CHS ~J.HEF POINTEP
e653 8A9400 407 tIO'I VX. DATA-POPUHB
Il656 EC 400 IN At. DX · ,EAI' (HAfIft(TEP
865~ IlOO5 489 HOY lOll. RI. · STOPE IN BUFFEP
\10559 FF862402 410 IIle RX_POINTEF _INS · BUPIP THE B'flEP FOIIIT,P
005(' FF86268Z 411 Iff: FllrOllNT _IHS · B'.tIP THE (QI.IlTE'
0661,(00 412 [tIP fl. Cfl_CHF · TEST IF LAST [HAP~CTEF TO BE 'Em··jEI,'
86tj] ;'5eE m ,HE RI8
!l6b5 (686<90201 414 ~OY Ri._fEAI·Y-CH5. 1 . rES. SET ~EAI'\' FLAG
\lo56ASA0600 415 MOV DX. (OIII\fIII'_POFLCiii .tljINTAl (~!I)P(lPi
8661. B003 41" I10V AL. , · POWT AT HP,
866F EE m I1JT r·x. At
8670 Bet8 418 HOY At. OCell .[·ISABLE i1'A
" .. 2 EE 419 OI)T [.~. At
867; 58 42(j RIB FUI' A>: .EITHEP HAV. ~ESTOPE PE';!'TEP,.
86~4 SF 421 POP ~I
06;'5 SA m POF' v:~

8676 CF 4., 1Ft. · F'ETL~'N TO ~1)FE,pOIJNr,
424
4i5 · CHflI'I£L £ ERFOP 3EFVI(E F~JTlNE
4::15

%j~ 52 4" " EPPlllF Fi-"'.H I':, · 511'",£ PE6ISTePS
96j$ 50 4Z~ PUSH NA
(1I5j~ ES~4eo 42~ (ALL HI · 5fl~' tOT (O'''HAU(' TO S2,~4
0O;e MOi<10 43e tV.1! I·::· ':'lMI1fiI.·_'O,jJHE

210311-31

2-199

inter AP-134

PlCS-% IR:RO A5SE111lER ASOCS

LOC !BJ LINE SOME

967F B881 431 lIlY fL, 1 ,POINT AT RRI
8681 EE 432 Ill! 01<. fL
8682 EC 433 I~ fL, OX ,RE/I) RRI
8683 R22B82 434 lIlY ERRaU15G..CII!, fL · SAYE IT IN ERRCR FLAG
8686 11838 435 lIlY fL, 38H .5£M) RESET ElIm1 ClHR() TO 82,4
8688 EE 436 OOT i»<,fL
11689 58 417 POP AX ,RESTORE PEGISTEI15
868R !it 438 POP OX
8688 CF 439 lRET ,REMN TO FORE~

448
441 ,CIfH£L AT_IT IlftTA 5a!VICE flOUT/HE
442

8611:: 52 443 lIIITINR: PUSH OX ,SAYE REGISTERS
868D 57 444 PUSH PI
868E 58 44S PUSH AX
868F E87E88 446 CRLL EOI ;SEII) EOI ~ TO 82,4
~ FF862C82 447 II«: tXJ'OINTEP_CIfI ,POINT TO NEXT Clfl!KTEJ1
8696 FF8E2E82 448 DE~ nUEN&TlLClII · DEC LEI«lTH cruHTEJ1
~74IIE 449 JE XIA · TEST IF 001£
1169C_ 458 lIlY ox, IlftTAJ>a!LCIfl · MIT 001£ - GET NEXT OfIRIICTElI
1169F 8113E2C82 451 lIlY 01, TXJ'OIHTER..CIfI
II6R3 8R85 452 lIlY fL, IDIl ,PUT ~TER IN fL
96fI5 EE 453 Our ox,fL .IlITPUT IT TO 8274
86A6 58 454 POP AX · RESTORE ilEGISTERS
116R7 5F 455 POP PI
_!it 4S6 POP DX
86119 CF 457 IRET · PEl1.I1N TO FOREGm.I(l _ 8R8288

458 XIA· lIlY DX. C(HfNlJ>a!UHA ,ILL CIIRRIICTEJ1S HfI\'E BEEN 5EHl'
1I6/llll828 4S9 lIlY fl. 28H ,PESET T_IlTER INTEmIPT PEll>II«l
II6RF EE 468 Ill! DX.fL
8688 C686348281 461 lIlY TX-fI1PTY-CIfi. 1 ,001£ - 51) SET TX E1f>TY FLffJ CHB
8685 58 462 POP AX • RESTORE REGISTEI15
8686 5F 46:; POP PI
8687 SA 464 POP DX
Il6IIS CF 40"') IRET ,RETUfIN TO FOPEGF(IJ('

466
46, ,CHfIf£L A SlAM 0Rr.£ 5a1\I/cE ~Ol~IHE
468

8689 52 469 STAJNR PUSH DX. .5A\IE PEGISTEI15
968A 57 4,8 PUSH [oj
8688 58 471 PUSH AX
II6eC E85188 4<2 CfLL EOI .SEN:' EOJ CCHIIlIl! TO S2~4
Il6BFBIlIiI288 -it3- OOV [Iii. ru1NRI{,_POPUHA
86C2 EC 474 IN fl. ~~ ·REA!l PI10
il6C A23682 475 lIlY STATlIS_I15IJ_ClI\. AL · flJT m IN 5TATlIS NESSAf£
96C6 8818 4;r,) lIlY fl. Iliff · SEll' PESET STATUS /HT C_ TO ,.m
8OC8 EE ~jj' 1m ox. fL
96C9 58 478 POP AX · PESTC*f PEGlSTEJ1S
86CA 5F 4(9 Pt4' PI
86('8 SA '4M POP D~
96CC CF 481 IPET

482
48, (HfH£l A RE(EI'lEI' lolTA SEF'VICE fIOUTlHE
484

eml 52 485 II(,'IINR flJSN v, · SAYE PEGISTEf'5
96CE S< 486 PUSH vI
9OI:F ~"l ... S, flJSH fC~
80W E8~ 4es (ALL EOI SEN[' EOI COItlAHI' Tn 2~~'
116[1, SS,E882 48!' flO"'" ['j. P;':. POINTtUIlA · GET p;: eHfl BUFFEP P,lIHTE'
86NBAE1880 498 11.lI' t':;. DATA_Pl"UIfl

210311-32

2-200

inter
HCS-s.; 1'11(110 ASSEHBLER ASVNCB

LOC OBJ L1N£

06I)ft EC 4n
8600 BIleS 492
8600 FF!163692 493
1l6£1 FF863262 4901
1l6£53COO 4~5
!l6E775IJE 4%
!l6E9 C6!16356261 497
Il6EE BR6Z66 498
1l6F1 8663 499
1l6F; EE 566
1l6F4 B6C6 561
86F6 EE 562
1l6F758 563
Il6FB Sf 564
661'9511 5Il5
Il6FA CF 5Il6

567
56B
569

1l6F852 510
Il6FC 56 511
Il6FD E81009 512
6766 BA6200 513
6763 8001 514
6785 EE 515
6766 EC 516

. 6767 A23762 517
879A 8036 518
876C EE 519
871!O 58 528
876E SA 521
871lF CF 522

523
524
525
526

8718 56 527
8711 52 528
8712_ 529
9715 se3ll 539
8m EE 531
8716 SA 532
6719 58 53l
671A CJ 534

535
536
537
536
539

AP-134

IN AL, ox . REf<O OlfPACTEP
110\1 Ion AL • STO~E IN 8I.fFEF
Ill: ~X_POINTER..[HA.BUIf Ttf 8I.fFER POINIE~
Ill: RX_W.INUHA ,BIAlP THE CMTEF
01P fl.. t11_(~ . TEST IF LAST (HfRAm~ TO BE REmVEl"
JIE RIA
Ifl'I ~XSEAOv.cHA. 1 • YES, SfT ~EACo\' FLAG
I'IlY OX. Cl1tltPIIC,_POPT.CHA . POINT AT CaItiff{' fOPT
HOY AL, 3 ,POINT AT WR?
OUT ox, II.
HOY fl., 8CeH . DiSABlE ~<
OUT OX, III

RIA POP "'" • EITHE~ ~V. IIfSTOPE ~EGI5TERS
POP 01
POP Ni
IPET . REm"N TO FORECoROO«!

,t_L A EWOR SERVICE POOTIHE

EI1RIIfl PUSH
PUSH
CALL
HOV
lIN
OUT
IN
HO'I
/tOY
OUT
POP
POP
IRET

ox ,SA'IE RE')ISTEFS

"'" EOI ,5ENI) EOI ClJII1fM1 TO 8274
ox, CIlMIDJ>ORT.OI\
fl., 1 ,POIHT AT W1
OX, fI.
fl., OX ,REIID I1Rl
ERROR..It56..CHA. AL .5A'IE IT IN Ew(IP FLff:i
11., 36H • SEt«> RESET EI1!I(JI COI9'/IH{\ TO 8274
OX, fI.
AX ,~ESTOI1E ~EGISTER5
OX

;ENKI"-IHTERRlfT POOllhl: - SfHDS EOI Cl1tItANO TO 8274
, THIS COIWlHD II.IST ALWAI'S TO ISSl(O ON CHAN£L A

EOI. PIJSIf
PUSH
lIN

• HOY
OUT
POP
POP
RET

AX . SAVE REGISTEPS
OX
ox, C __ POPT _CHfI ,fl.WAVS FOP ClRINEL A ",
fI.,3lIH
OX. fl.
OX
AX

; END OF COI:E ROUTlhI:

ABC ENOS
END

ASSEtRY CIWLETE, NO ERRORS FCU«> 210311-33

REFERENCES
1. 8274 Multiprotocol Serial Controller (MPSC) Data

Sheet, Intel Corporation, California, 1980.

3. Telecommunications and the Computer, J. Martin,
Prentice-Hall, New Jersey, 1976.

4. Technical Aspects of Data Communications, J. Mc­
Namara, DEC Press, Massachusetts, 1977.

2. Basics of Data Communication, Electronics Book
Series, McGraw-Hill, New York, 1976.

2·201

5. Miscellaneous Data Communications Standards­
EIA RS-232-C, EIA RS-422, EIA RS-423, EIA
Standard Sales, Washingto.n, D.C.

APPLICATION
NOTE

AP-145

November 1986

Synchronous Communication with
the 8274 Multiple Protocol

Serial Controller

SIKANDAR NAQVI
APPLICATION ENGINEER

2-202
Order Number: 210403-001

inter AP-145

INTRODUCTION

The INTEL 8274 is a Multi-Protocol Serial Controller,
capable of handling both asynchronous and synchro­
nous communication protocols. Its programmable fea­
tures allow it to be configured in various operating
modes, providing opimization to given data communi­
cation application.

This application note describes the features of the
MPSC in Synchronous Communication applications
only. It is strongly recommended that the reader read
the 8274 Data Sheet and Application Note AP134
"Asynchronous Communication with the 8274 Multi­
Protocol Serial Controller" before reading this Applica­
tion Note. This Application note assumes that the read­
er is familiar with the basic structure of the MPSC, in
terms of pin description, Read/Write registers and
asynchronous communication with the 8274. Appendix
A contains the software listings of the Application Ex­
ample and Appendix B shows the MPSC ReadIWrite
Registers for quick reference.

The first section of this application note presents an
overview of the various synchronous protocols. The
second section discusses the block diagram description
of the MPSC. This is followed by the description of
MPSC interrupt structure and mode of operation in the
third and fourth sections. The fifth section describes a
hardware/software example, using the INTEL single
board computer iSBC88/45 as the hardware vehicle.
The sixth section consists of some specialized applica­
tions of the MPSC .. Finally, in section seven, some use-

. ful programming hints are summarized.

SYNCHRONOUS PROTOCOL
OVERVIEW

This section presents an overview of various synchro­
nous protocols. The contents of this section are fairly
tutorial and may be skipped by the more knowledgeable
reader.

Bit Oriented Protocols Overview

Bit oriented protocols have been defined to manage the
flow of information on data communication links. One
of the most widely known protocols is the one defined
by the International Standards Organization: HDLC

Opening
Address' Control"

Flag Field (A) Field (C)
Byte

(High Level Data Link Control). The American Stan­
dards Association's protocol, ADCCP is similar to
HDLC. CCITT Recommendation X.25 layer 2 is also
an acceptable version of HDLC. Finally, IBM's SDLC
(Synchronous Data Link Control) is also a subset of the
HDLC.

In this section, we will concentrate most of our discus­
sion on HDLC. Figure I shows a basic HDLC frame
format.

A frame consists of five basic fields: Flag, Address,
Control, Data and Error Detection. A frame is bound­
ed by flags-opening and closing flags. An address field
is 8 bits wide, extendable to 2 or more bytes. The con­
trol field is also 8 bits wide, extendable to two bytes.
The data field or information field may be any number
of bits. The data field mayor may not be on an 8-bit
boundary. A powerful error detection code called
Frame Check Sequence contains the calculated CRC
(Cycle Redundancy Code) for all the bits between the
flags.

ZERO BIT INSERTION

The flag has a unique binary bit pattern: 7E HEX. To
eliminate the possibility of the data field containing a
7E HEX pattern, a bit stuffing technique called Zero
Bit Insertion is used. This technique specifies that dur­
ing transmission, a binary 0 be inserted by the transmit­
ter after any succession of five contiguous binary I's.
This will ensure that no pattern of 0 I I I I I lOis ever
transmitted between flags. On the receiving side, after
receiving the flag, the receiver hardware automatically
deletes any 0 following five consecutive I's. The 8274
performs zero bit insertion and deletion automatically
in the SDLC/HDLC mode. The zero-bit stuffing en­
sures periodic transitions in the data stream. These
transitions are necessary for a phase lock circuit, which
may be used at the receiver end to generate a receive
clock which is in phase to the received data. The insert­
ed and deleted O's are not included in the CRC check­
ing. The address field is used to address a given second­
ary station. The control field contains the link-level con­
trol information which includes implied acknowledge­
ment, supervisory commands and responses, etc. A
more detailed discussion of higher level protocol func­
tions is beyond the scope of this application note. Inter­
ested readers may refer to the references at the end of
this application note.

Data
Frame Closing

Field Check Flag
Sequence Byte

Figure 1. HOLC/SOLC Frame Format
"Extendable to 2 or More Bytes .

• "Extendable to 2 Bytes.

2-203

inter AP-145

The data field may be of any length and content in
HOLC. Note that SOLC specifies that data field be a
multiple of bytes only. In data communications, it is
generally desirable to transmit data which may be of
any content. This requires that data field should not
contain characters which are defined to assist the trans­
mission protocol (like opening flag 7EH in HOLC/
SOLC communications). This property is referred to as
"data transparency". In HOLC/SOLC, this - code
transparency is made possible by Zero Bit Insertion dis­
cussed earlier and the bit oriented nature of the proto­
col.

The last field is the FCS (Frame Check Sequence). The
FCS uses the error detecting techniques called Cyclic
Redundancy Check. In SOLCIHOLC, the CCITT­
CRC must be used.

NON-RETURN TO ZERO INVERTED (NRZI)

NRZI is a method of clock and data encoding that is
well suited to the HOLC protocol. It allows HOLC
protocols to be used with low cost asynchronous mo­
dems. NRZI coding is done at the transmitter to enable
clock recovery from the data at the receiver terminal by
using standard digital phase locked loop techniques.
NRZI coding specifies that the signal condition does
not change for transmitting a I, while a 0 causes a _
change of state. NRZI coding ensures that an active
data line will have transition at least every 5-bit times
(recall Zero Bit Insertion), while contiguous O's will
cause a change of state. Thus, ZBI and NRZI encoding
makes it possible for a phase lock circuit at the receiver
end to derive a receive clock (from received data) which
is synchronized to the received data and at the same
time ensure data transparency.

Byte Synchronous Communication

As the name implies, Byte Synchronous Communica­
tion is a synchronous communication protocol which
means lual lue uansmiiting station is synchronized LO
the receiving station through the recognition of a spe­
cial sync character or characters. Two examples of Byte
Synchronous protocol are the IBM Bisync and Mono-

sync. Bisync has two starting sync characters per mes­
sage while monosync has only one sync character. For
the sake of brevity, we will only discuss Bisync here.
All the discussion is valid for Monosync also. Any ex­
ceptions will be noted. Figure 2 shows a typical Bisync
message format.

The Bisync protocol is defined for half duplex commu­
nication between two or more stations over point to
point' or multipoint communication lines. Special char­
acters control link access, transmission of data and ter­
mination of transmission operations for the system. A
detailed discussion of these special control characters
(SYN, ENQ, STX, ITB, ETB, ETX, OLE, SOH,
ACKO, ACKI, WACK, NAK and EOT, etc) is beyond
the scope of this Application Note. Readers interested
in more detailed discussion are directed to the refer­
ences listed at the end of this Application Note.

As shown in Figure 2, each message is preceded by two
sync characters. Since the sync characters are defined
at the beginning of the message only, the transmitter
must insert fill characters (sync) in order to maintain
synchronization with the receiver when no data is being
transmitted.

TRANSPARENT TRANSMISSION

Bisync protocol requires special control characters to
maintain the communication link over the line. If the
data is EBCDIC encoded, then transparency is ensured
by the fact that the field will not contain any of the
bisync control characters. However, if data does not
conform to standard character encoding techniques,
transparency in bisync is achieved by inserting a special
character OLE (Oata Link Escape) before and after a
string of characters which are to be transmitted trans­
parently. This ensures that any data characters which
match any of the special characters are not confused for
special characters. A-n example of a transparent block is
shown in Figure 3. '

In a transparent mode, it is required that the CRC
(BCC) is not performed on special characters. Later on,
we will show how the; 8274 can be used to achieve
transparent transmission in Bisync mode.

SYNC SYNC SOH HEADER STXTEXT ETXOR ETB CRC1 CRC2

OLE STX
Enter transparent mode

Figure 2. Bisync Message Format

TRANSPARENT TRANSMISSION OLE
return to normal mode

,Figure 3. Bisync Transparent Format

2-204

ETX BCC

intJ AP-145

BLOCK DIAGRAM

This section discusses the block diagram view of the
8274. The CPU interface and serial interface is dis­
cussed separately. This will be followed by a hardware
example in the fifth section, which will show how to
interface the 8274 with the Intel CPU 8088. The 8274
block diagram is shown in Figure 4.

CPU Interface

The CPU interface to the system interface logic block
utilizes the AD, AI, CS, RD and WR inputs to commu­
nicate with the internal registers of the 8274. Figure 5
shows the address of the internal registers. The DMA
interface is achieved by utilizing DMA request lines for

DBO·7

ClK

-RESET

RDYBITxDRQA

RDYAIRxDRQA

I ! !

each channel: TxDRQA, TxDRQB, RxDRQA,
RxDRQ~ote that TxDRQB and RxDRQa..£.ecome
IPO and IPI respectively in non-DMA mode. IPI is the
Interrupt Priority Input and IPO is the Interrupt Prior­
ity Output. These two pins can be used for connecting
multiple MPSCs in a daisy chain. If the Wait Mode is
programmed, then TxRDQA and RxDRQA pins be­
come RDYB and RDYA pins. These pins can be wire­
OR'ed and are usually hooked up to the CPU RDY
line to synchronize the CPU for block transfers. The
INT pin is activated whenever the MPSC requires CPU
attention. The INT A may be used to utilize the power­
ful vectored mode feature of the 8274. Detailed discus­
sion on these subjects will be done later in this Applica­
tion Note. The RESET pin may be used for hardware
r~et while the clock is required to click the internal
logic on the MPSC.

CHANNEL A
WRITE

REGISTERS

CHANNEL A
TRANSMITTER

CHANNEL A
CONTROL

lOGIC

TxDA

TxCA

"' ... " v~~_ CHANNEL A
READ

DCDA

CTSA

RTSA

SYNDETA

DTRA

IPOITxDRQB

IP1IRxDRQB

INT

INTA

AO

A,

SYSTEM
INTERFACE
CONTROL

lOGIC

+ f
SYSTEM INTERFACE

'" REGISTERS

~
~VL->'-------I

~
CHANNEL A
RECEIVER

CHANNElB

NETWORK INTERFACE

Figure 4. 8274 Block Diagram

2-205

TxDB

TxCB

DCDB

CTsa

{ SYNDETB
RTSB _

omB
RXCB

RxDB

210403-1

inter AP-145

CS A1 AD Read Operation Write Operation

0 0 0 CHA DATA READ CHA DATA WRITE
0 1 0 CHA STATUS REGISTER CHA COMMAND/PARAMETER

(RRO,RR1) (WRO-WR7)

0 0 1 CHB DATA READ CHB DATA WRITE
0 1 1 CHB STATUS REGISTER CHB COMMAND/PARAMETER

(RRO,RR1,RR2) (WRO-WR7)

1 X X HIGHZ HIGHZ

Figure 5. Bus Interface

Serial Interface

On the serial side, there are two completely indepen­
dent channels: Channel A and Channel B. Each chan-

. nel consists of a transmitter block, receiver block and a
set of read/write registers which are used to initialize
the device. In addition, a control logic block provides
the modem interface pins. Channel B serial interface
logic is a mirror image of Channel A serial interface
logic, except for one exception: there is only one pin for
RTSB and SYNDETB.

A a given time, this pin is either RTSB or SYNDETB.
This mode is programmable through one of the internal
registers on the MPSC.

Transmit and Receive Data Path

Figure 6 shows a block diagram for transmit and re­
ceive data path. Without describing each block on the
diagram, a brief discussion of the block diagram will be
presented here.

TRANSMIT DATA PATH

The transmit data is transferred to the twenty-bit serial
shift register. The twenty bits are needed to store two
bytes of sync characters in bisync mode. The last three
bits of the shift register are used to indicate to the inter­
nal control logic that the current· data byte has been
shifted out of the shift register. The transmit data in the

CPU 10

TxDA

TIICA

210403-2

Figure 6. Transmit and Receive D.ata Path

2-206

inter AP-145

transmit shift register is shifted out through a two bit
delay onto the TxData line. This two bit delay is used
to synchronize the internal shift clock with the external
transmit clock. The data in the shift register is also
presented to zero bit insertion logic which inserts a zero
after sensing five contiguous ones in the data stream. In
parallel to all this activity, the CRC-generator is com­
puting CRC on the transmitted data and appends the
frame with CRC bytes at the end of the data transmis­
sion.

FIRST DATA CHARACTER

FIRST NON·SYNC
CHARACTER (SYNC MODES)

VALID ADDRESS
BYTE (SDLC)

PARITY ERROR

RX OVER-RUN ERROR

FRAMING ERROR

END OF FRAME
(SDLCONLY)

DCD TRANSITION

CTS TRANSITION

SYNC TRANSITION

TX UNDER-RUN/EOM

BREAK/ABORT DETECT

TX BUFFER EMPTY

INTERRUPT
ON FIRST RECEIVE

CHARACTER

INTERRUPT ON
ALL RECEIVE
CHARACTERS

SPECIAL
RECEIVE

CONDITION
INTERRUPT

RECEIVE DATA PATH

The received data is passed through a one bit delay
before it is presented for flag/sync comparison. In bi­
sync mode, after the synchronization is achieved, the
incoming data bypasses the sync register and enters di­
rectly into the three bit buffer on its way to receive shift
register. In SDLC mode, the incoming data always
passes through the sync register where the data pattern
is continuously monitored· for contiguous ones for the

TRANSMIT
INTERRUPT

MPSC
INTERRUPTS

210403-3

Figure 7_ MPSC Interrupt Structure

2-207

intJ AP-145

zero deletion logic. The data then enters the three bit
buffer and the receive shift register. From the receive
shift register, the data is transferred to the three byte
deep FIFO. The data is transferred to the top of the
FIFO at the chip clock rate (not the receiver clock). It
takes three chip clock/periods to transfer data from the
serial shift register to the top of the FIFO. The three bit
deep Receive Error FIFO shifts any error condition
which may have occurred during a frame reception.
While all this is happening, the CRC checker is check­
ing the CRC on the incoming data. The computed
CRC is checked with the CRC bytes attached to the
incoming frame and an error generated under a no­
check condition. Note that the bisync data is presented
to the CRC checker with an 8-bit delay. This is neces­
sary to achieve transparency in bisync mode as will be
·shown later in this Application Note.

MULTI-PROTOCOL. SERIAL
CONTROLLER (MPSC) INTERRUPT
STRUCTURE

The MPSC offers a very powerful interrupt structure,
which helps in responding to an interrupt condition
very quickly. There are multiple sources of interrupts
within the MPSC. However, the MPSC resolves the
priority between various interrupting sources and inter­
rupts the CPU for service through the interrupt line.
This section presents a comprehensive discussion of all

. the 8247 interrupts and the priority resolution between
these inter~pts.

All the sources of interrupts on the 8274 can. be
grouped into three distinct categories. (See Figure 7.)

I. Receive Interrupts

2. Transmit Interrupts

3. External/Status Interrupts.

An internal interrupt priority structure sets the priority
between the interrupts. There are two programmable
options available on the MPSC. The priority is set by
WR2A, D2 (Figure 8).

PRIORITY

WR2A:D2 Highest Lowest

0 RxA TxA RxB TxB EXTA EXTB
1 RxA RxB TxA TxB EXTA EXTB

Figure 8. Interrupt Priority

Receive Interrupt

All receive interrupts may be categorized into two dis­
tinct groups: Receive Interrupt on Receive Character
and Special Receive Condition Interrupts.

RECEIVE INTERRUPT ON RECEIVE
CHARACTER

A receive interrupt is generated when a character is
received by the MPSC. However, as will be discussed
later, this is a programmable feature on the MPSC. A
Rx character available interrupt is generated by the
MPSC after the receive character has been assembled
by the MPSC. It may be noted that in DMA transfer
mode too, a receive interrupt on the first receive char­
acter should be programmed. In SDLC mode, if ad­
dress search mode has been programmed, this interrupt
.will be generated only after a valid ad4ress match has
occurred. In bisync mode, this interrupt is generated on
receipt of a character after at least two valid sync char­
acters. In monosync mode, a .character followed after at
least a single valid sync character will generate this in·
terrupt. An interrupt on first receive character signifies
the beginning of a valid frame. An end of the frame is
characterized by an "End of Frame" Interrupt (RRI:
D7).* This bit (RRI:D7) is set in SDLC/HDLC mode
only and signifies that a valid ending flag (7EH) has
been received. This bit gets reset either by an "Error
Reset" command (WRO: D5D4D3 = 110) or upon reo
ception of the first character of the next frame. In mul­
tiframe reception, on receiving ·the interrupt at the
"End of Frame" the CPU may issue an Eri'or Reset
command which will reset the interrupt. In DMA
mode, the interrupt on first receive character is accom­
panied by a RxDRQ (Receiver DMA request) on the
appropriate channel. At the end of the frame, an End of
Frame interrupt is generated. The CPU may use this
interrupt to jump into a routine which may redefine the
receive buffer for the next incoming frame.

• NOTE:
RRI:D7 is bit D7 in Read Register 1.

SPECIAL RECEIVE CONDITION INTERRUPTS

So far, we have assumed that the reception is error free.
But this is not 'typical' in most real life applications.
Any error condition during a frame reception generates
yet another interrupt-special receive condition inter­
rupt. There are four different error conditions which
can generate this interrupt.

(i) Parity error

(ii) Receive Overrun error

(iii) Framing error

(iv) End of Frame

(i) Parity error: Parity error is encountered in asyn­
chronous (start-stop bits) and in bisync/monosync pro­
tocols. Both odd or even parity can be programmed. A
parity error in a received byte will generate a special
receive condition .interrupt and sets bit 4 in RRI.

2-208

AP-145

(ii) Receive Overrun error: If the CPU or the OMA
controller (in OMA mode) fails to read a received char­
acter within three byte times after the received charac­
ter interrupt (or OMA request) was generated, the re­
ceiver buffer will overflow and this will generate a spe­
cial receive condition interrupt and sets bit 5 in RR1.

(iii) Framing error: In asynchronous mode, a framing
error will generate a special receive interrupt and set bit
06 in RR1. This \lit is not latched and is updated on
the next received character.

(iv) End of frame: This interrupt is encountered in
SOLC/HOLC mode only. When the MPSC receives
the closing flag, it generates the special receive condi­
tion interrupt and sets bit 07 in RR1.

All the special receive condition interrupts may be reset
by issuing an Error Reset Command.

CRC Error: In SOLC/HOLC and synchronous modes,
a CRC error is indicated by bit 06 in RR1. When used
to check CRC error, this bit is normally set until a
correct CRC match is obtained which resets this bit.
After receiving a frame, the CPU must read this bit
(RRl:06) to determine if a valid CRC check had oc­
curred. It may be noted that a CRC error does not
generate an interrupt.

It may also be pointed out that in SOLC/HOLC mode,
receive DMA requests are disabled by a special receive
condition and can only be re-enabled by issuing an Er­
ror Reset Command.

Transmit Interrupt

A transmit buffer empty generates a transmit interrupt.
This has been discussed earlier under "Transmit in In­
terrupt Mode" and it would be sufficient to note here
that a transmit buffer empty interrupt is generated only
when the transmit buffer gets empty-assuming it had
a data character loaded into it earlier. This is why on
starting a frame transmission, the first data character is
loaded by the CPU without a transmit empty interrupt

, (or OMA request in OMA mode). After this character
is loaded into the serial shift register, the buffer be­
comes empty, and an interrupt (or OMA request) is
generated. This interrupt is reset by a "Reset Tx Inter­
rupt/DMA Pending" command (WRO: 05 04 03
101).

External/Status Interrupt

Continuing our discussion on transmit interrupt, if the
transmit buffer is empty and the transmit serial shift
register also becomes empty (due to the data character
shifted out of the MPSC), a transmit under-run inter­
rupt will be generated. This interrupt may be reset by
"Reset ExternaVStatus Interrupt" command (WRO:
05 04 03 = 101).

The External Status Interrupt can be caused by five
different conditions:

(i) CO Transition

(ii) CTS Transition

(iii) Sync/Hunt Transition

(iv) Tx under-run/EOM condition

(v) Break/Abort Oetection.

CO, CTS TRANSITION

Any transition on these inputs on the serial interface
will generate an ExternaVStatus interrupt and set the
corresponding bits in status register RRO. This inter­
rupt will also be generated in OMA as well as in Wait
Mode. In order to find out the state of the CTS or CO
pins before the transition had occurred, RRO must be
read before issuing a Reset ExternaVStatus Command
through WRO. A read of RRO after the Reset External/
Status Command will give the condition of CTS or CO
pins after the transition had occurred. Note that bit 05
in RRO gives the complement of the state of CTS pin
while 03 in RRO reflects the actual state of the CO pin.

SYNC HUNT TRANSITION

Any transition of the SYNOET input generates an in­
terrupt. However, sync input has different functions in
different modes and we shall discuss them individually.

SOLC Mode

In SOLC mode, the SYNOET pin is an output. Status
register RRl, 04 contains the state of the SYNOET
pin. The Enter Hunt Mode initially sets this bit in RO.
An opening flag in a received SOLC frame resets this
bit and generates an external status interrupt. Every
time the receiver is enabled or the Enter Hunt Code

, Command is issued, an external status interrupt will be
generated on receiving a valid flag followed by a valid
address/data character. This interrupt may be reset by
the "Reset External/Status Interrupt" command.

External SYNC Mode

The MPSC can be programmed into External Sync
Mode by setting WR4, 05 04 = 11. The SYNOET
pin is an input in this case and must be held high until
an external character synchronization is established.
However, the External Sync mode is enabled by the
Enter Hunt Mode control bit (WR3: 04). A high at the
SYNOET pin holds the Sync/Hunt bit (RRO,04) in
the reset state. When external synchronization is estab­
lished, SYNOET must be driven low on second rising

2-209

AP-145

edge of RxC after the rising edge of RxC on which the
last bit of sync character was received. This high to low
transition sets the Sync/Hunt bit and generates an ex­
ternal/status interrupt, which must be reset by the Re­
set External/Status command. If the'SYNDET input
goes high again; another External Status Interrupt is
generated, which may be cleared by Reset External/
Status command.

Mono-Sync/Bisync Mode

SYNDET pin acts as an output in this case. The Enter
Hunt Mode sets the Sync/Hunt hit in RO. Sync/Hunt
bit is reset when the MPSC achieves character synchro­
nization. This high to lo,\\, transition will generate an
external status interrupt. The SYNDET pin goes active
every time a sync pattern is detected in the data stream.
Once again, the external status interrupt may be reset
by the Reset External/Status command.

Tx UNDER-RUN/END OF MESSAGE (EOM,>

The transmitter logic includes a transmit buffer and a
transmit serial shift register. The CPU loads the char­
acter into the transmit buffer which is transferred,into
the transmit shift register to be shifted Ollt of' the
MPSC. If the transmit buffer gets empty, a transmit
buffer empty interrupt is generated (as discussed earli­
er). However, if the transmit buffer gets empty and the
serial shift register gets empty, a transmit under-run
condition will be created. This generates an External
Status Interrupt and the interrupt can be cleared by the
Reset External Status command. The status register
RRO, D6 bit is set when the transmitter under-runs.
This bit plays an important role in controlling a trans­
mit operation, as will be discussed later in this applica-
tion note. .'

BREAK/ ABORT DETECTION

In asynchronous mode, bit D7 in .RRO is set when a
break condition is detected on the receive data line.
This also generates an External/Status interrupt which
may be reset by issuing a Reset External/Status Inter­
rupt command to the MPSC. Bit D7 in RRO is reset
when the break condition is terminated on the receive
data line and this causes another External/Status inter­
rupt to ge . generated. Again, a Reset External/Status
Interrupt command will reset this interrupt and will
enable the break detection logic to look. for the next
break sequence.

In SDLC Receive Mode, an Abort sequence (seven or
more I's) detection on the receive data line will gener­
ate an External/Status interrupt and set RRO,D7. A
Reset External/Status command will clear this inter­
rupt. However, a termination of the Abort sequence
will generate another interrupt and set RRO,D7 again.
Once again, it may be cleared by issuing Reset Exter­
nal/Status Command. '

This concludes our discussion on External Status Inter­
rupts.

Interrupt Priority Resolution

The internal interrupt priority between various inter­
rupt sources is resolved by an internal priority logic
circuit, according to the priority set in WR2A. We will
now discuss the interrupt timings during the priority
resolution. Figures 9 and 10 show the timing diagrams
for vectored and non-vectored modes.

VECTORED MODE

We shall assume that the MPSC accepted an internal
request for an interrupt by activating the internal INT
signal. This leads to generating an external interrupt
signal on the INT pin. The CPU responds with an in­
terrupt acknowledge (INTA) sequence. The leading
edge of the first INT A pulse sets an internal interrupt
ac~nowledge signal (we will call it Internal INTA). In­
ternal INT A is reset by the high going edge of the third
INT A pulse. The MPSC will not accept any internal
requests for an interrupt during the period when Inter­
nal INTA is active (high). The.MPSC resolves the pri­
ority during various existing internal interrupt requests
during the Interrupt Request Priority Resolve Time,
which is defined as the time between the leading edge of
the first INT A and the leading edge of the second
INTA from the CPU. Once the internal priorities have
been resolved, an internal Interrupt-in-service Latch is
set. The external INT is also deactivated when the In­
terrupt-in-Service Latch is set.

The . lower priority interrupt requests are not accepted
internally until an EOI (WRO: DS D4 D3 = III Ch. A
only) command is issued by the CPU. The EOI com­
mand enables the lower priority interrupts. However, a
higher priority interrupt request will still be accepted
(except during the period when internal INTA is ac­
tive) even though the Internal-in-Service Latch is set.

2-210

INTERNAL INT J
ACCEPTED '.:...1
EXTERNAL

INT ~~ ____________ ~~

AP-145

\

\~--------------_\~------------~~-------+
IPO

INTA

INTERNAL
INTA I

:.;
:;"...".-__________ NO_IN_TE_\...JN: r./INTERRUPTS ACCEPTED

INT·IN·SERVICE Y
(INTERNAL LATCH)

EOICOMMA.~ND~ ________________________________ ~

Figure 9. 8274 in 8085 Vectored Mode Priority Resolution Time

INTERNAL INT

ACCEPTED

EXTERNAL INT -----""'\

IPI

\

\
\
I

210403-4

POINTER 2
SPECIFIED

~~OINTERNALINTERRUPTS-\
-------1..f ACCEPTED 1... --",~---+---+-----

I I
j4-PRIORITY
I RESOLVE

TIME

INT.IN.SERVICE= ____________________J

(INTERNAL LATCH)

EOICOMMAND--~~----....J

Figure 10. 8274 Non Vectored Mode Priority Resolve Time

2-211

210403-5

AP-145

Thi~her priority request will generate another exter­
nal INT and will have to be handled by the CPU ac­
cording to how the CPU is set up. If the CPU is set up
to respond to this interrupt, a new INT A cycle will be
repeated as discussed earlier. It may also be noted that
a transmitter buffer empty and receive character avail­
able interrupts are cleared by loading a character into
the MPSC and by reading the character received by the
MPSC respectively.

NON-VECTORED MODE

Figure 10 shows the timing of interrupt sequence in
non-vectored mode. The explanation of non-vectored is
similar to the vector mode, except for the following
exceptions.

- No internal priority requests are accepted during
the time when pointer 2 for Channel B is specified.

- The interrupt request priority resolution time is the
time between the leading edge of pointer 2 and lead­
ing edge of RD active. It may be pointed out that in
non-vectored mode, it is assumed that the status
affects vector mode is used to expedite interrupt re­
sponse.

,On getting an interrupt in non-vectored mode, the CPU
must read status register RR2 to find out the cause of
the interrupt. In order to do so, first a pointer to status
register RR2 is specified and then the status read from
RR2. It may be. noted here that after specifying the
pointer, the CPU must read status register RR2 other­
wise, no new interrupt requests will be accepted inter­
nally.

Just like the vectored mode, no lower internal priority
requests are accepted until an EOI command is issued
by the CPU. A higher priority request can still inter­
rupt the CPU (except during the priority request inhibit
time). It is important to note here that if the CPU does
not perform a read operation after specifying the point­
er 2 for Channel B, the interrupt request accepted be­
fore the pointer 2 was activated will remain valid and
no other request (high or low priority) will be accepted
internally. In order to complete a correct priority reso­
lution, it is advised that a read operation be done after
specifying the pointer 2B.

IPI and IPO

So far, we have ignored the IPI and IPO signals shown
in Figures 9 and 10. We may recall that IPI is the
Interrupt-Priority-Input to the MPSC. In conjunction
with the IPO (Interrupt Priority Output), it is used to
daisy chain multiple MPSCs. MPSC daisy chaining will
be discussed in detail later in this application note.

EOI Command

The EOI command as explained earlier, enables the
lower priority interrupts by resetting the internal In­
Service-Latch, which consequently resets the IPO out­
put to a low state. See Figures 9 and 10 for details. Note
that before issuing any EOI command, the internal in­
terrupting source must be satisfied otherwise, same
source will interrupt again. The Internal Interrupt is
the signal which gets reset when the internal interrupt­
ing source is satisfied (see Figure 9).

This concludes our discussion on the MPSC Interrupt
Structure.

MULTI-PROTOCOL SERIAL
CONTROLLER (MPSC) MODES OF
OPERATION

The MPSC provides two fully independent channels
that may be configured in various modes of operations.
Each channel can be configured into full duplex mode
and may operate in a mode or protocol different from
the other channel. This feature will be very efficient in
an application which requires two data link channeis
operating in different protocols and possibly at different
data rates. This section presents a detailed discussion
on all the 8274 modes and shows how to configure it
into these modes.

Interrupt Driven Mode

In the interrupt mode, all the transmitter and receiver
operations are reported to the processor through inter­
rupts. Interrupts are generated by the MPSC whenever
it requires service. In the following discussion, we will
discuss how to transmit and receive in interrupt driven
mode. .

TRANSMIT IN INTERRUPT MODE

The MPSC can be configured into interrupt mode by
appropriately setting the bits in WR2 A (Write Register
2, Channel A). Figure 11 shows the modes of operation.

WR2A Mode
D1

0
0

1
1

DO

0 CH A and CH B in Interrupt Mode
1 CHA in DMA and CH B in Interrupt

Mode
0 CH A and CH B in DMA Mode
1 Illegal

Figure 11_ MPSC Mode Selection for
Channel A and Channel B

2-212

inter AP-145

We will limit our discussion to SDLC transmit and re·
ceive only. However, exceptions for other synchronous
protocols will be pointed out. To initiate a frame trans·
mission, the first data character must be loaded from
the CPU, in all cases. (DMA Mode too, as you will
notice later in this application note). Note that in
SDLC mode, this first data character may be the ad·
dress of the station addressed by the MPSC. The trans·
mit butTer consists of a transmit butTer and a serial shift
register. When the character is transferred from the
butTer into the serial shift regiser, an interrupt due to
transmit butTer empty is generated. The CPU has one
byte time to service this interrupt and load 'another
character into the transmitter butTer. The MPSC will
generate an interrupt due to transmit butTer underrun
condition if the CPU does not service the Transmit
ButTer Empty Interrupt within one byte time.

This process will continue until the CPU is out of any
more data characters to be sent. At this point, the CPU
does not respond to the interrupt with a character but
simply issues a Reset Tx INT/DMA pending com·
mand (WRO: D5 D4 D3 = 101). The MPSC will ulti·
mately underrun, which simply means that both the
transmit butTer and transmit shift registers are empty.
At this point, flag character (7EH) or CRC byte is
loaded into the transmit shift register. This sets the
transmit underrun bit in RRO and generates "Transmit
Underrun/EOM" interrupt (RRO: D6 = I).

You will recall that an SDLC frame has two CRC bytes
after the data field. 8274 generates the CRC on all the
data that is loaded from the CPU. During initialization,
there is a choice of selecting a CRC·16 or CCITT·CRC
(WR5: D2). In SDLC/HDLC operation, CCITT·CRC
must be selected. We will now see how the CRC gets
inserted at the end of the data field. Here we have a
choice of having the CRC attached to the data field or
sending the frame without the CRC bytes. During
transmission, a "Reset Tx Underrun/EOM Latch"
command (WRO: D7 D6 = 11) will ensure that at the
end of the frame when the transmitter underruns, CRC
bytes will be automatically inserted at the end of the
data field. If the "Reset Tx Underrun/EOM Latch"
command was not issued during the transmission of
data characters, no CRC would be inserted and the
MPSC will transmit flags (7EH) instead.

However, in case of CRC transmission, the CRC trans·
mission sets the Tx Underrun/EOM bit and generates a
Transmitter Underrun/EOM Interrupt as discussed
earlier. This will have to be reset in the next frame to
ensure CRC insertion in the next frame. It is recom·
mended that Tx Underrun/EOM latch be reset very
early in the transmission mode, preferably after loading
the first c4aracter. It may be noted here that Tx Under·
run EOM latch cannot be reset if there is no data in the
transmit butTer. This means that at least one character
has to be loaded into the MPSC before a "Reset Trans·
mit UnderrunlEOM Latch" command will be accepted
by the MPSC.

When the transmitter is underrun, an interrupt is gen·
erated. This interrupt is generated at the beginning of
the CRC transmission, thus giving the user enough
time (minimum 22 transmit clock cycles) to issue an
Abort command (WRO: D5 D4 D3 = 00 I) in case if

. the transmitted data had an error. The Abort Com·
mand will ensure that the MPSC transmits at least
eight I's but less than fourteen I's before the line re·
verts to continuous flags. The receiver will scratch this
frame because of bad CRC.

However, assuming the transmission was good (no
Abort Command issued), after the CRC bytes have
been transmitted, closing flag (7EH) is loaded into the
transmit buffer. When the flag (7EH) byte is trans·
ferred to the serial shift register, a transmit butTer emp·
ty interrupt is generated. If another frame has to be
transmitted, a new data character has to be loaded into
the transmit buffer and the complete transmit sequence
repeated. If no more frames are to be transmitted, a
"Reset Transmit INT/DMA Pending" command
(WRO: D5 D4 D3 = 101) will reset the transmit buffer
empty interrupt.

For character oriented protocols (Bisync, Monosync),
the same discussion is valid, except that during trans·
mit underrun condition and transmit underrun/EOM
bit in set state, instead of flags, filler sync characters are
transmitted.

CRC Generation

The transmit CRC enable bit (WR5: DO) must be set
before loading any data into the MPSC. The CRC gen·
erator must be reset to all I's at the beginning of each
frame before CRC computation has begun. The CRC
computation starts on the first data character loaded
from the CPU and continues until the last data charac·
ter. The CRC generated is inverted before it is sent on
the Tx Data line.

Transmit Termination

A successful transmission can be terminated by issuing
a "Reset Transmit Interrupt/DMA Pending" com·
mand, as discussed earlier. However, the transmitter
may be disabled any time during the transmission and
the results will be as shown in Figure 12.

RECEIVE IN INTERRUPT MODE

The receiver has to be initialized into the appropriate
receive mode (see sample program later in this applica·
tion note). The receiver must be programmed into Hunt
Mode (WR3: D4) before it is enabled (WR3: DO). The
receiver will remain in the Hunt Mode until a 'flag (or
sync character) is received. While in the SDLC/Bi·
sync/Monosync mode, the receiver does not enter the
Hunt Mode unless the Hunt bit (WR3, D4) is set again
or the receiver is enabled' again.

2·213

AP-145

SDLC Address byte is stored in WR6. A global address
(FFH) has been hardwired on the MPSC. In address
search mode (WR3: D2 = I), any frame with address
matching with the address in WR6 will be received by
the MPSC. Frames with global address (FFH) will also
be received, irrespective of the condition of address
search mode bit (WR3: D2). In general receive mode
(WR3: D2 = 0), all frames will be received.

Transmitter Result Disabled during

1. Data Transmission Tx Data will send idle
characters' which will be
zero inserted.

2. CRC Transmission 16 bit transmission,
corresponding to 16 bits of
CRC will be completed.
However, flag bits will be
substituted in the CRC field.

3. Immediately after Abort will still be
issuing ABORT transmitted-output will be
command. in the mark state.

Figure 12. Transmitter Disabled
During Transmission

'NOTE:
Idle characters are defined as a string of 15 or more
contiguous ones.

Since the MPSC only recognizes single byte address
field, extended address recognition will have to be done
by the CPU on the data passed on by the MPSC. If the
first address byte is checked by the MPSC, and the
CPU determines that the second address byte does not
have the correct address field, it must set the Hunt
Mode (WR3: D2 = I) and the MPSC will start search­
ing for a new address byte preceded by a flag.

Programmable Interrupts

The receiver may be programmed into anyone of the
four modes. See Figure 13 for details.

WR1,CHA
Rx Interrupt Mode

D4 D3

0 0 Rx INT IDMA disable

0 1 Rx INT on first character

1 0 INT on all Rx characters
(Parity affects vector)

1 1 INT on all Rx characters
(Parity does not affect vector)

Figure 13. Receiver Interrupt Modes

All receiver interrupts can be disabled by WRI: D4 D3
= 00. Receiver interrupt on first character is normally

used to start a DMA transfer or a block transfer se­
quence using WAIT to synchronize the data transfer to
received or transmitted data.

External Status Interrupts

Any change in CD input or Abort detection in the re­
ceived data, will generate an interrupt if External Status
Interrupt was enabled (WRI: DO).

Special Receive Conditions

The receiver buffer is quadruply buffered. If the CPU
fails to respond to "receive character" available inter­
rupt within a period of three byte times (received
bytes), the receiver buffer will overflow and generate an
interrupt. Finally, at the end of the received frame, an
interrupt will be generated when a valid ending flag has
been detected.

Receive Character Length

The receive character length (6, 7 or 8 bits/character)
may be changed during reception. However, to ensure
that the change is effective on the next received charac­
ter, this must be done fast enough such that the bits
specified for the next character have not been assem­
bled.

CRC Checking

The opening flag in the fraine resets the receive CRC
generator and any field between the opening and clos­
ing flag is checked for the CRC. In case of a CRC
error, the CRC/Framing Error bit in status register 1 is
set (RRI: D6 = I). Receiver CRC may be disabled/en­
abled by WR3,D3. The CRC bytes on the received
frame are passed on ,to the CPU just like data, and may
be discarded by the CPU.

Receive Terminator

An end of frame is indicated by End of Frame inter­
rupt. The CPU may issue an "Error Reset" command
to reset this interrupt.

DMA (Direct Memory Access) Mode

The 8274 can be interfaced directly to the Intel DMA
Controllers 8237A, 8257A and Intel I/O Processor
8089. The 8274 can be programmed into DMA mode
by setting appropriate bits in WR2A. See Figure 11 for
details.

2-214

inter AP-145

TRANSMIT IN DMA MODE

After initializing the 8274 into the DMA mode, the
first character must be loaded from the CPU to start
the DMA cycle. When the first data character (may be
the address byte in SDLC) is transferred from the
transmit buffer to the transmit serial shift register, the
transmit buffer gets empty and a transmit DMA re­
quest (TxDRQ) is generated for the channel. Just like
the interrupt mode, to ensure that the CRC bytes are
included in the frame, the transmit under-run/EOM
latch must be reset. This should preferably be done af­
ter loading the first character from the CPU. The
DMA will progress without any CPU intervention.
When the DMA controller reaches the terminal count,
it will not respond to the DMA request, thus letting the
MPSC under-run. This will ensure CRC transmission.
However, the under-run condition will generate an in­
terrupt due to the Tx under-run/EOM bit getting set
(RRO: D6). The CPU should issue a "Reset TxInt/
DRQ pending" command to reset TxDRQ and issue a
"Reset External Status" command to reset Tx Under­
run/EOM interrupt. Following the CRC transmission,
flag (7EH) will be loaded into the transmit buffer. This
will also generate the TxDRQ since the transmit buffer
is empty following the transmission of the CRC bytes.
The CPU may issue a "Reset TxINT/DRQ pending"
command to reset the TxDRQ. "Reset TxINT/DRQ
pending" command must be issued before setting up
the transmit DMA channel on the DMA Controller,
otherwise the MPSC will start the DMA transfer im­
mediately after the DMA channel is set up.

RECEIVE IN DMA MODE

The receiver must be programmed in RxINT on first
receive character mode (WRl: D4 D3 = 0 1). Upon
receiving the first. character, which may be the address
byte in SDLC, the MPSC generates an interrupt and
also generates a Rx DMA Request (Rx DRQ) for the
appropriate channel. The CPU has three byte times to
service this interrupt (enable the DMA controller, etc.)
before the receiver buffer will overflow. It is advisable
to initialize the DMA controller before receiving the
first character. In case of high bit rates, the CPU will
have to service the interrupt very fast in order to avoid
receiver over-run.

Once the DMA is enabled, the received data is trans­
ferred to the memory under DMA control. Any re­
ceived error conditions or external status change condi­
tion will generate an interrupt as in the interrupt driven
mode. The End of Frame is indicated by the End of
Frame interrupt which is generated on reception of the
closing flag of the SDLC frame. This End of Frame
condition also disables the Receive DMA request. The

End of Frame interrupt may be reset by issuing an "Er­
ror Reset" command to the MPSC. The "Error Reset"
command also re-enables the Receive DMA request. It
may be noted that the End of Frame condition sets bit
D7 in RR1. This bit gets reset by "Error Reset" com­
mand. However, End of Frame bit (RRl: D7) can also
be reset by the flag of the next incoming frame. For
proper operation, Error Reset Command should be is­
sued "after" the End of Frame Bit (RRI: D7) is set. In
a more general case, "Error Reset" command should be
issued after End of Frame, Receive over-run or Receive
parity bit are set in RR 1.

Wait Mode

The wait mode is normally used for block transfer by
synchronizing the data transfer through the Ready out­
put from the MPSC, which may be connected to the
Ready input of the CPU. The mode can be pro­
grammed by WR 1, D7 DS and may be programmed
separately and independently on CH A and CH B. The
Wait Mode will be operative if the following conditions
are satisfied.

(i) Interrupts are enabled.

(ii) Wait Mode is enabled (WR1: D7)

(iii) CS = 0, Al = 0

The RDY output becomes active when the transmitter
buffer is full or receiver buffer is empty. This way the
RDY output from the MPSC can be used to extend the
CPU read and write cycle by inserting WAIT states.
RDY A or. RDYB are in high impedance state when the
corresponding channel is not selected. This makes it
possible to connect RDY A and RDY B outputs in wired
OR configuration. Caution must be exercised here in
using the RDY outputs of the MPSC or else the CPU
may hang up for indefinite period. For example, let us
assume that transmitter buffer is full and RDIAJs ac­
tive, forcing the CPU into a wait state. If the CTS goes
inactive during this period, the RDY A will remain ac­
tive for indefinite period and CPU will continue to in­
sert wait states.

Vectored/Non-Vectored Mode

The MPSC is capable of providing an interrupt vector
in response to the interrupt acknowledge sequence from
the CPU. WR2, CH B contains this vector and the
vector can be read in status register RR2. WR2, CH A
(bit DS) can program the MPSC in vectored or non­
vectored mode. See Figure 14 for details.

2-215

inter AP-145

In both cases, WR2 may still have the vector stored in
it. However, in vectored mode, the MPSC will put the
vector on the data bus in response to the INT A (Inter­
rupt Acknowledge) sequence as shown in Figure 15. In
non-vectored mode; the MPSC will not respond to the
INTA sequence. However, the CPU can read the vec­
tor by polling Status Register RR2. WR2A, 04 and 03
can be programmed to respond to 8085 or 8086 INT A
sequence. It may be noted here that IPI (Interrupt Pri­
ority In) pin on the MPSC must be active for the vector
to appear on the ·data bus.

WR2A,05 Interrupt Mode,

0 Non-vectored Interrupt
1 Vectored Interrupt .

Figure 14. Vectored Interrupt

STATUS AFFECT VECTOR

The V ~ctor stored in WR2B can be modified by the
source of the interrupt. This can be done by setting the
Status Affect Vector bit (WRI: 02). This powerful fea­
ture of the MPSC provides fast interrupt response time,
by eliminating the need of writing a routine to read the
status of the MPSC. Three bits of the vector are modi­
fied in eight different ways as shown on Figure 16. Bits
V4, V3, V2 are modified in 8085 based system and bits
V2, VI, VO are modified in 8086/88 based system.

In non-vectored mode, the status affect vector mode
can still be used and the vector read by the CPU. Status
register RR2B (Read Register 2 in Channel B) will con­
tain this modified vector.

WR2A IPI Mode 1st INTA 2ndiNTA 3rd INTA 05 04 03

0 X X X Non-Vectored HI-Z HI-Z HI-Z
1 0 0 0 8085-1 11001101 V7 V6 V5 V4 V3 V2 V1 VO 00000000
1 0 0 1 8085-1 11001101 HI-Z HI-Z
1 0 1 0 8085-2 HI-Z V7 V6 V5 V4 V3 V2 V1 VO 00000000
1 0 1 1 8085-2 HI-Z HI-Z HI-Z
1 1 0 0 8086 HI-Z V7 V6 V5 V4 V3 V2 V1 VO -
1 1 0 1 8086 HI-Z HI-Z -

Figure 15. MPSC Vectored Interrupts

(8085 V4 V3 V2
Channel Interrupt Source (8086) V2 V1 VO

0 0 0 B Tx Buffer Empty
0 0 1 EXT /STAT Change
0 1 0 RX CHAR Available
0 1 1 Special Rx Condition

1 0 0 A Tx Buffer Empty
1 0 1 EXT/STAT Change
1 1 0 RX CHAR Available
1 1 1 Special Rx Condition

..
Rx Special Condition: Panty Error, Framing Error, Rx Over-run Error, EOF (SOLC).
EXT/STAT Change: Change in Modem Control Pin Status: CTS, OCD, SYNC, EOM, Break/Abort Detection.

Figure 16. Status Affect Vector Mode

2-216

inter AP-145

8273,8274
SERIAL

I/O

CHANNEL C

DUAL PORT ACCESS
CONTROL

8255A
PARALLEL

I/O

LED'S

8254·2
PIT

COUNTERS

8259A
INTERRUPT
CONTROL

MULTI BUS
ADDRESS BITS

ADR14/·17/

210403-6

Figure 17. Functional Block Diagram-iSBC® 88/45

APPLICATION EXAMPLE

This section describes the hardware and software of an
8274/8088 system. The hardware vehicle used is the
INTEL Single Board Computer iSBC 88/45-Ad­
vanced Communication Controller. The software
which exercises the 8274 is written in PLM 86. This
example will demonstrate how 8274 can be configured
into the SOLC mode and transfer data through OMA
control. The hardware example will help the reader
configure his hardware and the software examples will
help in developing an application software. Most soft­
ware examples closely approximate real data link con­
troller software in the SOLC communication and may
be used with very little modification.

iSBC® 88/45

A brief description of the iSBC 88/45 board will be
presented here. For more detailed information on the

board and the schematics, refer to Hardware Manual
for the iSBC 88/45, Advanced Communication Con­
troller. iSBC 88/45 is an intelligent slave/multimaster
communication board based on the 8088 processor, the
8274 and the 8273 SOLC/HOLC controller. Figure 17
shows the functional block diagram of the board. The
iSBC 88/45 has the following features.

.. 8 MHz processor

.. 16K bytes of static RAM (12K dual port)

o Multimaster/Intelligent Slave Multibus Interface

.. Nine Interrupt Levels 8259A

o Two serial channels through 8274

o One Serial channel through 8273

.. S/W programmable baud rate generator

o Interfaces: RS232, RS422/449, CCITT V.24

" 8237A OMA controller

.. Baud Rate to 800K Baud

2-217

AP·145

INI.TIALlZE_B274· PROCEDURE PUBLIC,

1***.********1
1* *1
1* I N I TI ALI Z E THE 9274 FOR SDLC MODE *1
1* *' 1* I. RESET CHANNEL *1
1* 2. EXTERNAL INTERRUPTS ENABLED *I
I. 3. NO WAIT *1
1* 4. PIN 10 = RTS *1
I. S. NON-VECTORED INTERRUPT-BOB6 MODE *I
1* 6. CHANNEL A DMA. CH B INT *1
1* 7. TX AND RX = 9 BITS/CHAR *1
I. 9. ADDRESS SEARCH MODE *1
I. 10.CD AND CTS AUTO ENABLE *1
I. 11. XI CLOCK *1
1* 12. NO PARITV *1
1* 13. SDLC/HDLC MODE *1
1* 14. RTS AND 'DTR *1
1* IS. CCITT - CRC *1
1* 16. TRANSMITTER AND RECEIVER ENABLED *1
1* 17.7EH = FLAG *1
1* *1
1************************************.*************.*.**t.************* •• /

. DECLARE C .BVTE,

1* TABLE TO INITIALIZE THE 9274 CHANNEL A AND B *1
1* FORMAT IS: WRITE REGISTER. REGISTER DATA *1
1* INITIALIZE CHANNEL A ONLV *1

DECLARE TABLEJ4_A(*l BVTE DATA
(OOH.1SH.' 1* CHANNEL RESET *1
00H.90H. 1* RESET TX CRC *1
02H.II~ 1* PIN 10=RTSB. A DMA. B INT *1
04H.20H.
07H.07EH.
OIH.OOH.
OSH.OEBH.

06H.S5H.
03H.OD9H.

OFFH),

1* SDLC/HDLC MODE. NO PARITY *1
1* SDLC FLAG *1
1* RX DMA ENABLE *f
1* DTR. RTS. 9 TX OITS. TX ENABLE. *1
1* SDLC CRC. TX CRC ENABLE *1
1* DEFAULT ADDRESS *1
1* 9 RX OITS. AUTO ENAOLES. HUNT MODE. *1
1* RX CRC ENABLE *1
1* END OF INITIALIZATION TABLE *1

DECLARE TABLE_74_B(*l BVTE DATA
(02H.00H. 1* INTERRUPT VECTOR *1
OIH.ICH. 1* STATUS AFFECTS'VECTOR *1
OFFH), 1* END *1

1* INITIALIZE THE 9274 *1

C=OI
DO I~HILE TAOLEJ4_B (C l <:> OFFH,

END,

C=O,

OUTPUT (COMMAND_B_74) TABLEJ4_B (C).
C=C+li
OUTPUTlCOMMAND_Bj4l ~ TABLEJ4_B(C),
C=C+li

DO WH·ILE TABLEJ4_A(Cl <> OFFH,

END.
RETURN.

OUTPUT(COMMAND_AJ4) TABLEJ4_A(C).
C=C+l;
OUTPUT (COMMAND_AJ4)
C=C+l;

END INITIALIZE_9274'

Figure 18. Typical MPSC SOLC Initialization Sequence

2-218

210403-7

inter AP-145

For this application, the CPU is run at 8 MHz. The
board is configured to operate the 8274 in SDLC opera­
tion with the data transfer in DMA mode using the
8237A. 8274 is configured first in non-vectored mode in
which case the INTEL Priority Interrupt Controller
8259A is used to resolve priority between various inter­
rupting sources on the board and subsequently inter­
rupt the CPU. However, the vectored mode of the 8274
is also verified by disabling the 8259A and reading the
vectors from the 8274. Software examples for each case
will be shown later.

The application example is interrupt driven and uses
DMA for all data transfers under 8237A control. The
8254 provides the transmit and r~ceive clocks for the
8274. The 8274 was run at 400K baud with a local
loopback Gumper wire) on Channel A data. The board
was also run at 800K baud by modifying the software
as will be discussed later in the Special Applications
section. One detail to note is that the Rx Channel
DMA request line from the 8274 has higher priority
than the Tx Channel DMA request line. The 8274 mas­
ter clock was 4.0 MHz. The on-board RAM is used to
define transmit and receive data buffers. In this applica­
tion, the data is read from memory location 800H
through 810H and transferred to memory location
900H to 910H through the 8274 Serial Link. The oper­
ation is full duplex. 8274 modem control pins, CTS and
CD have been tied low (active).

Software

The software consists of a monitor program and a pro­
gram to exercise the 8274 in the SDLC mode. Appen­
dix A contains the entire program listing. For the sake
of clarity, each source module has been rewritten in a
simple language and will be discussed here individually.
Note that some labels in the actual listings in the Ap­
pendix will not match with the labels here. Also the
listing in the Appendix sets up some flags to communi­
cate with the monitor. Some of these flags are not ex­
plained in detail for the reason that they are not perti­
nent to this discussion. The monitor takes the com­
mand from a keyboard and executes this program, log­
ging any error condition which might occur.

8274 Initialization

The MPSC is initialized in the SDLC mode' for Chan­
nel A. Channel B is disabled. See Figure 18 for the
initialization routine. Note that WR4 is initialized be­
fore setting up the transmitter and receive parameters.
However, it may also be pointed out that other than
WR4, all the other registers may be programmed in any
order. Also SDLC-CRC has been programmed for cor­
rect operation. An incorrect CRC selection will result
in incorrect operation. Also note that receive interrupt

on first receive character has been programmed al­
though Channel A is in the DMA mode.

Interrupt Routines

The 8274 interrupt routines will be discussed here. On
an 8274 interrupt, program branches off to the "Main
Interrupt Routine". In main interrupt routine, status
register RR2 is read. RR2 contains the modified vector.
The cause of the interrupt is determined by reading the
modified bits of the vector. Note that the 8274 has been
programmed in the non-vectored mode and status af­
fects vector bit has been set. Depending on the value of
the modified bits, the appropriate interrupt routine is
called. See Figure 19 for the flow diagram and Figure
20 for the source code. Note that an End of Interrupt
Command is issued after servicing the interrupt. This is
necessary to enable the lower priority interrupts.

Figure 21 shows all the interrupt routines called by the
Main Interrupt Routine. "Ignore-Interrupt" as the
name implies, ignores any interrupts and sets the FAIL
flag. This is done because this program is for Channel
A only and we are ignoring any Channel B interrupts.
The important thing to note is the Channel A Receiver
Character available routine. This routine is called after
receiving the first character in the SDLC frame. Since
the transfer mode is DMA, we have a maximum of
three character times to service this interrupt by en­
abling the DMA controller.

IF V2V1V0 ~ 0, CALL-IGNORE - INTERRUPT
IF V2V1V0 ~ 1, CALL IGNORE - INTERRUPT
IF V2V1V0 ~ 2, CALL CHB Rx CHAR
IF V2V1V0 ~ 3, CALL IGNORE - INTERRUPT
IF V2V1V0 ~ 4, CALL IGNORE - INTERRUPT
IF V2V1V0 ~ 5, CALL CHA - EXTERNAL CHANGE

INTERRUPT
IF V2V 1V0 ~ 6, CALL CHA Rx CHAR
IF V2V1V0 ~ 7, CALL CHA Rx SPECIAL

210403-8

Figure 19. Interrupt Response Flow Diagram

2-219

1**************************1
1* MAIN INTERRUPT ROUTINE *1

1.*****************.*******1
OUTPUTCCOMMANDJlJ41 = 2,

Ap·145

TEMP - INPUTtSTATUS_B_74I AND 07H,
1* SET POINTER TO 2*1
1* READ INTERRUPT VECTOR *1
1* CHECK FOR CHA INT ONLY*I

1* FOR THIS APPLICATION CH B INTERRUPTS ARE IGNORED*I
DO CASE TEMP,

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

END.

IGNORE_INTI
IGNORE_INT.
CHBJlX_CHAR'
IGNORE_INT.
IGNORE_I NT,
CHA_EXTERNAL_CHANGE,
CHA_RX_CHARJ
CHA_RX_SPEC IAL.

1* \/2Vl\10 • 000*1
1* \/2\11\10 = 001*1
1* V2\11\10 = 010*1
1* Vi2V1VO ,. 011*1
1* V2VIVO = 100*1
1* V2VIVO = 101*,
1* V2Vl\10 = 110*1
1* \/2V1VO • 111*'

OUTPUTCCOMMAND_AJ4I -3BH,
RETURN,

1* END OF INTERRUPT FOR B274 *1

END INTERRUPT _B274.

Figure 20. Typical Main Interrupt Routine

1**1
1* CHANNEL A EXTERNAL/STATUS CHANGE INTERRUPT HANDLER *1

1***********-**1
CHA_EXTERNAL_CHANGE: PROCEDURE.

TEMP· INPUTCSTATUS_AJ41. 1* STATUS REel 1*1
IF (TEMP AND END_OF_TX_MESSAOEI = END_OF_TX_MESSAGE rHEN

TXDONE_S=DO~E.
ELSE DO.

TXDONE_S-DONE.
RESULTS_S-FAIL.

END.
OUTPUTtCOMMAND.JIJ41 • IOH. 1* RESET EXT/STATUS INTERRUPTS *1
RETURN.
END CHA_EX~ERNAL_CHANgE.

1**1
1* CHANNEL A SPECIAL RECEIVE CONDITIONS INTERRUPT HANDLER *1

1************._**1
CHAJlX;..SPECIAL: PROCEDURE.

RETURN.

OUTPUTtCOMMAND_AJ4I • I.
TEMP = INPUTCSTATUS.JIJ41.
IF (TEMP AND END_oFJRAMEI = END_oFJRAME THEN

DO,
IFCTEMP AND 040HI = 040H THEN,

RESULTB_S l1li FAILI 1* CRe ERROR *1
RXDONE_S = DONE.
OUTPUTCCOMMAND_A_74I = 30H. I*ERRoR RESET*I

END.
ELSE DO.

IF (TEMP AND 20H I = 20H THEN DO,
RESULTS_S = FAIL, 1* RX OVERRUN ERROR*I
RXDONE_S - DONE.
OUTPUTCCOMMAND.JIJ41 = 30H. I*ERRoR RESET*I
END, .

ENOl

END C!'tA_RX_SPECIAL,

1***********····****************.***.**.**1
1* CHANNEL A RECEIVE CHARACTER AVAILABLE *1
1**.********.* •• * •• ***** ••••• ** ••• ******** 1
CHA_RX_CHAR: PROCEDURE.
OUTPUTCSINGLE_MASKI = CHO_SEL,
RETURN,
END CHA_RX_CHAR.

I*ENABLE RX DMA CHANNEL_I

Figure 21. 8274 Typical Interrupt Handling Routines

2-220

210403-9

210403-10

intJ AP-145

It may be recalled that the receiver buffer is three bytes
deep in addition to the receiver shift register. At very
high data rates, it may not be possible to have enough
time to read RR2, enable the DMA controller without
overrunning the receiver. In a case like this, the DMA
controller may be left enabled before receiving the Re­
ceive Character Interrupt. Remember, the Rx DMA
request and interrupt for the receive character appears
at the same time. If the DMA controller is enabled, it
would service the DMA request by reading the received
character. This will make the 8274 interrupt line go
inactive. However, the 8259A has latched the interrupt
and a regular interrupt acknowledge sequence still oc­
curs after the DMA controller has completed the trans­
fer and given up the bus. The 8259A will return Level 7
interrupt since the 8274 interrupt has gone away. The
user software must take this into account, otherwise the
CPU will hang up.

The procedure shown for the Special Receive Condition
Interrupt checks if the interrupt is due to the End of
Frame. If this is not TRUE, the FAIL flag is set and
the program aborted. For a real life system, this must

CHA_5DLC_TEST PROCEDURE BYTE PUBLICi

CALL ENABLE_INTERRUPTS_Si
CALL INIT_8274_SDLC_Si
ENABLEi
OUTPUHCOMNAND A 741 = 28Hi
OUTPUHCOMNAND-B-741 = 28Hi
CALL INIU237 oS,
OUTPUHDATA_A]41 = 55H,

'* RESET TX INT'DMA *' '* BEFORE INITIALIZING a;:37*'

'*LOAD FIRST CHARACTER FROM *'
,*CPU *' '* TO ENSURE CRC TRANSMISSION, RESET TX UNDERRUN LATCH *'

OUTPUHCOMMAND A 741 = OCOHi
RXDONE_S, TXDONEj=NOT _DONE,
RESULTS S=PASSi
DO WHILE TXDONE_S=NOT _DONE,
ENDi

'* CLEAR ALL FLAGS *' '* FLAG SET FOR MaN ITOR *'
'" DO UNTIL TERMINAL COUNT *'

DO WHILEIINPUHSTATUS A 741 AND 04HI 0 04Hi
'* WAIT FOR CRC TO GET TRANSMITTED *'
'* TEST FOR TX BUFFFER EMPTY TO VERIFY THIS"
ENDi
DO WHILE RXDONE_S=NOT_DONE; '* DO UNTIL TERMINAL COUNT *'
ENDi
CALL STOP _8237 _Si

END CHA_SDLC_TESTi

be followed up by error recovery procedures which ob­
viously are beyond the scope of this Application Note.

The transmission is terminated when the End of Mes­
sage (RRO, D6) interrupt is generated. This interrupt is
serviced in the Channel A External/Status Change in­
terrupt procedure. For any other change in external
status conditions, the program is aborted and a FAIL
flag set.

Main Program

Finally, we will briefly discuss the main program. Fig­
ure 22 shows the source program. It may be noted that
the Transmit Under-run latch is reset after loading the
first character into the 8274. This is done to ensure
CRC transmission at the end of the frame. Also, the
first character is loaded from the CPU to start DMA
transfer of subsequent data. This concludes our discus­
sion on hardware and software example. Appendix A
also includes the software written to exercise the 8274
in the vectored mode by disabling the 8259A.

210403-11

Figure 22. Typical 8274 Transmit/Receive Set-Up in SOLe Mode

2-221

intJ AP-145

Vee

CPU
INT~o(1-~------~r---------------1I--------------

INTAP---------~--~~----------~--;_--------------

8085 CPU

IAPX-88/86
CPU

8085 INTERRUPT
MODEl

8088/86
INTERRUPT MODE

8088/86
INTERRUPT MODE

, OTHERS

8085 INTERRUPT
MODE 3

8088/86
INTERRUPT MODE

210403-12

Figure 23. 8274 Daisy Chain Vectored Mode

SPECIAL APPLICATIONS

In this section, some special application issues will be
discussed. This will be useful to a user who may be
using a mode which is possible with the 8274 but not
explicitly explained in the data sheet.

MPSC Daisy Chain Operation

Multiple MPSCs can be connected in a daisy-chain
configuration (see Figure 23). This feature may be use­
ful in an application where multiple communication
channels may be required and because of high data
rates, conventional interrupt controller is not used to
avoid long interrupt response times. To configure th.e
MPSCs for the daisy chain operation, the interrupt pn­
ority input pins (IPI) and interrupt priority output pins
(IPO) of the MPSC should be connected as shown. The
highest priority device has its IPI pin connected to
ground. Each MPSC is programmed in a vector~d
mode with status affects vector bit set. In the 8085 baSIC
systems, only one MPSC should be programmed in the
8085 Mode 1. This is the MPSC which will put the call
vector (CD Hex) on the data bus in response to the first
INTA pulse (see Figure 15). It may be pointed out that
the MPSC in 8085 Mode I will provide the call vector
irrespective of the state of IPI pin. Once a higher priori­
ty MPSC generates an interrupt, its IPO pin goes .inac­
tive thus preventing "ower priority MPSCs from mter­
rupting the cpu. Preferably the highest priority MPSC
should be programmed in 8085 Mode 1. It may be re­
called that the Priority Resolve Time on a given MPSC
extends from the falling edge of the first INT A pulse to
the falling edge of the second INT A pulse. During this
period, no new internal interrupt requests are accepted.
The maximum number of the MPSCs that can be con­
nected in a daisy chain is limited by the Priority Reso­
lution Time. Figure 24 shows a maximum number of
MPSCs that can be connected in various CPU systems.

It may be pointed out that lOP to IPI delay time speci­
fication is 100 ns.

Priority Number of 8274s System
Resolution Time Daisy Chained Configuration . Min (ns) (Max)

8086-1 400 4
8086-2 500 5
8086 800 8
8088 800 8
8085-2 1200 12
8085A 1920 19

NOTE:
Zero wait states have been assumed.

Figure 24. 8274 Daisy Chain Operation

Bisync Transparent Communication

Bisync applications generally require that data trans­
parency be established during communication. This re­
quires that the special control characters may not be
included in the CRC accumulation. Refer to the Syn­
chronous Protocol Overview section for a more detailed
discussion on data transparency. The 8274 can be used
for transparent communication in Bisync communica­
tions. This is made possible by the capability of the
MPSC to selectively turnon/turnoff the CRC accumu­
lation while transmitting or receiving. In bisync trans­
parent transmit mode, the special characters (DLE,
DLE SYN, etc) are excluded from CRC calculation.
This can be easily accomplished by turning off the
transmit CRC calculation (WR5: D5 = 0) before load­
ing the special character into the transmit buffer. If the
next character is to be included in the CRC accumula­
tion, then the CRC can be enabled (WR5: D5 = 1). See
Figure 25 for a typical flow diagram.

2-222

inter Ap·145

210403-13 210403-14

Figure 25. Transmit in Bisync Transparent Mode

During reception, it is possible to exclude received
character from CRC calculation by turning off the Re·
ceive CRC after reading the special character. This is
made possible by the fact that the received data is pre­
sented to receive CRC checker 8 bit times after the
character has been received. During this 8 bit times, the
CPU must read the character and decide if it wants to
be included in the CRC calculation. Figure 26 shows
the typical flow diagram to achieve this.

It should be noted that the CRC generator must be
enabled during CRC reception. Also, after reading the
CRC bytes, two more characters (SYNC) must be read
before checking for CRC check result in RRl.

Auto Enable Mode

In some data communication applications, it may be
required to enable the transmitter or the receiver when
the CTS or the CD lines respectively, are activated by
the modems. This may be done very easily by program­
ming the 8274 into· the Auto Enable Mode. The auto
enable mode is set by writing a 'I' to WR3,D5. The
function of this mode is to enable the transmitter auto­
matically when CTS goes active. The receiver is~
abled when CD goes active. An in-active state of CTS
or CD pin will disable the transmitter or the re~eiver
respectively. However, the Transmit Enable bit
(WR5:D3) and Receive Enable bit (WR3:DI) must be
set in order to use the auto enable mode. In non-auto
mode, the transmitter or receiver is enabled if the corre­
sponding bits are ~in WR5 and WR3, irrespective of
the state CTS or CD pins. It may be recalled that any
transition on CTS or CD pin will generate External/
Status Interrupt with the corresponding bits set in
RR I. This interrupt can be cleared by issuing a Reset
External/Status interrupt command as discussed earli­
er.

Note that in auto enable mode, the character to be
transmitted must be loaded into the transmit buffer af-

Figure 26. Receive in Bisync Transparent Mode

ter the CTS becomes active, not before. Any character
, loaded into the transmit buffer before the CTS became
active will not be transmitted.

High Speed DMA Operation

In the section titled Application Example, the MPSC
has been programmed to operate in DMA mode and
receiver is programmed to generate an interrupt on the
first receive character. You may recall that the receive
FIFO is three bytes deep. On receiving the interrupt on
the first receive character, the CPU must enable the
DMA controller within three received byte times to
avoid receiver over-run condition. In the application
example, at 400K baud, the CPU had approximately
60 Il-s to enable the DMA controller to avoid receiver
buffer overflow. However, at higher baud rates, the
CPU may not have enough time to enable the DMA
controller in time. For example, at 1M baud, the CPU
should enable the DMA controller within approximate­
ly 24 Il-s to avoid receiver buffer overrun. In mo~t appli­
cations, this is not sufficient time. To solve thIS prob­
lem, the DMA controller should be left enabled before
getting the interrupt on the first receive character
(which is accompanied by the Rx DMA request for the
appropriate channel). This will allow he DMA control­
ler to start DMA transfer as soon as the Rx DMA
request becomes active without giving the CPU enough
time to respond to the interrupt on the first receive
character. The CPU will respond to the interrupt after
the DMA transfer has been completed and will find the
8259A (see Application Example) responding with in­
terrupt level 7, the lowest priority level. Note that the
8274 interrupt request was satisfied by the DMA con­
troller, hence the interrupt on the first receive character
was cleared and the 8259A had no pending interrupt.
Because of no pending interrupt, the 8259A returned
interrupt level 7 in response to the INT A sequence
from the CPU. The user software should take care of
this interrupt.

2-223

intJ AP-145

PROGRAMMING HINTS·

This section will describe some useful programming
hints which may be useful in program development.

Asynchronous Operation

At the end of transmission, the CPU must issue "Reset
Transmit Interrupt/DMA Pending" command in WRO
to reset the last transmit empty request which was not
satisfied. Failing to do so will result in the MPSC lock­
ing up in a transmit empty state forever.

Non-Vectored Mode

In non-vectored mode, the Interrupt Acknowledge pin
(INT A) on the MPSC must be tied high through a pull­
up resistor. Failing to do so will result in unpredictable
response from the 8~74.

HOLC/SOLC Mode

When receiving data in SDLC mode, the CRC bytes
must be read by the CPU (or DMA controller) just like
any other data field. Failing to do so will result in re­
ceiver buffer overflow. Also, the End of Frame Inter­
rupt indicates that the entire frame has been received.
At this point, the CRC result (RRI:D6) and residue
code (RRI:D3, D2, Dl) may be checked.

Status Register RR2

ChB RR2 contains the vector which gets modified to
indicate the source of interrupt (see the section titled
MPSC Modes of Operation). However, the state of the
vector does not change if no new interrupts are generat­
ed. The contents of ChB RR2 are only changed when a
new interrupt is generated. In order to get the correct
information, RR2 must be read only after an interrupt
is generated, otherwise it will indicate the previous
state.

Initialization Sequence

The MPSC initialization ·routine must issue a channel
Reset Command at the beginning. WR4 should be de­
fined before other registers. At the end qf the initializa­
tion sequence, Reset External/Status and Error Reset
commands should be issued to clear any spurious inter­
rupts which may have been caused at power up.

Transmit Under-Run/EOM Latch

In SDLC/HDLC, bisync and monosync mode, the
transmit underrun/EOM must be reset to enable the
CRC check bytes to be appended to the transmit frame
or transmit message. The transmit under-run/EOM
latch can be reset only after the first character is loaded
into the transmit buffer. When the transmitter under­
runs at the end of the frame, CRC check bytes are
appended to the frame/message. The transmit under~
run/EOM latch can be reset at any time during the
transmission after the first character. However, it
should be reset before the transmitter under-runs other­
wise, both bytes of the CRC may not be appended to
the frame/message. In the receive mode in bisync oper­
ation, the CPU must read the CRC bytes and two more
SYNC characters before checking for valid CRC result
in RRI.

Sync Character Load Inhibit

In bisync/monosync mode only, it is possible to prevent
loading sync characters into the receive buffers by set­
ting the sync character load inhibit bit (WR3:DI = I).
Caution must be exerciSed in using this option. It may
be possible to get a CRC character in the received mes­
sage which may match the sync character and not get
transferred to the receive buffer. However, sync charac­
ter load inhibit should be enabled during all pre-frame
sync characters so the software routine does not have to
read them from the MPSC.

In SDLC/HDLC mode, sync character load inhibit bit
must be reset to zero for proper operation.

EOICommand

EOI command can only be issued through channel A
irrespective of which channel had generated the inter­
rupt.

Priority in OMA Mode

There is no priority in DMA mode between the follow­
ing four singals: TxDRQ(CHA), RxDRQ(CHA),
TxDRQ(CHB), RxDRQ(CHB). The priority between
these four signals must be resolved by the DMA con­
troller. At any given time, all four DMA channels from
the 8274 are capable of going active.

2-224

AP-145

APPENDIX A
APPLICATION EXAMPLE: SOFTWARE LISTINGS

PL/M-86 COMP ILER leBe e8/4:t 6274 CHANNEL. A SDL.e TEST

SERIES-III PL/M-Bb V2.0 COMPILATION OF MODULE INIT_B274_S
OBJECT MODULE PLACED IN : FI: SINI74. OBJ
COMPILER INVOKED BY: PLMBb. Bb : FI: SINI74. PLM TlTLE(ISDC BB/4' B274 CHANNEL
A SDLC TEST) COMPACT NOINTVECTOR ROM

2

3

1**· •• ••••••• •• •• •••••• • ••• •••• ••••• ·***** •••••••• 1
1* ./
1* INITIALIZE THE B274 FOR SDLC MODE *1
1* *1
1* I. RESET CHANNEL *1
1* 2. EXTERNAL INTERRUPTS ENABLED *1
1* 3. NO WAIT *1
1* 4. PIN 10 aRTS *1
1* 5. NON-VECTORED INTERRUPT-BOBb MODE *1
1* b. CHANNEL A DMA, CH B INT *1
1* 7. TX AND RX • B BITSICHAR *1
1* 9. ADDRESS SEARCH MODE *1
1* 10. CD AND CTS AUTO ENABLE *1
1* 11. XI CLOCK *1
1* 12. NO PARITY *1
1* 13. SDLC/HDLC MODE *1
1* 14. RTS AND DTR *1
1* I'. CCITT - CRC *1
1* lb. TRANSMITTER AND RECEIVER ENABLED *1
1* 17.7EH • FLAG *1
1* *1
, •••••••••••• ** •••• ** ••••••••••••••••••• **** •••••• 1

INIT _B274_S: DO,

.INCLUDE (: FI: PORTS. PLMl

, ••••••••••••• **** ••••••••••••••••••••••••• **.,
~ ~

1* ISBC 8B/45 PORT ASSIGNMENTS *1
/. */
, ••••••••••••••••••••••••••••• ** ••••• **.*******1

DECLARE LIT LITERALLY 'LITERALLY"

1* 8237A-~ PORTS *'
DECLARE CHO_ADDR LIT 'OaOH',

CHO_COUNT LIT 'oa1H',
CHI..ADDR LIT 'OB2H'.
CHI_COUNT LIT 'OB3H',
CH2_ADDR LIT 'OB4H',
CH2_COUNT LIT 'OS'H' ,
CH3..ADDR LIT 'OB6H' ,
CH3_COUNT LIT 'OB7H',
STATUS_37 LIT 'OBSH',
COMMAND_37 LIT 'OBBH',
REQUEST _REG_37 LIT 'OB9H' ,
SINGLEJ1ASK LIT 'OBAH',
MODE,ftEQ_37 LIT 'OBBH',

PLII1-B6 COMPILER ISBC BB/4, B274 CHANNEL A SDLC TEST

4

CLR_BYTE_PTR_37 LIT
TEMP _REG _37 LIT
MASTER_CLEAR_37 LIT
ALL_MASK_37 LIT

1* B254-2 PORTS *1

DECLARE CTR_OO
CTR_OI
CTR_02

LIT
LIT
LIT

'oaCH',
'OBDH',
'08DH'.
'OeFH',

'090H' ,
'091H',
'092H',

2-225

210403-15

intJ AP-145

CONTROLO_54 LIT '093H',
STATUSO_'4 LIT '093H',
CTR_IO LIT '09SH',
CTR_II LIT 'Oq9H~,

CTRI2 LIT 'OqAH',
CONTROL 1_'4 LIT '09BH'.
STATUS I_54 LIT '09DH';

1* 8255 PORTS *1

, DECLARE PORTA_" LIT 'OAOH',
PORTB_" LIT 'OAtH',
PORTC_'5 LIT 'OA2H',
CONTROL_55 LIT 'OA3H',

1* 8274 PORTS *1

I. ;. DECLARE DATA.J\]4 LIT 'ODOH'.
DATAJI]4 LIT 'ODIH'.
STATUS_A_74 LIT 'OD2H',
COMMAND_A]4 LIT 'OD2H'.
STATU9J1:...74 LIT 'OD3H'.
COMMAND_B]4 LIT 'OD3H',

1* 8259A PORTS *1

7 DECLARE STATUS..p0LL_59 LIT 'OEOH·.
ICWI_'9 LIT ·OEOH'.
OCW2_59 LIT 'OEOH·.
OCW3_59 LIT 'OEOH',
OCWI_59 LIT 'OElH',
ICW2.:,.59 LIT ·OEIH'.
ICW3_'9 LIT 'OEIH'.
ICW4_'9 LIT 'OElH',

1* 9274 REGISTER BIT ASS I QNI'1ENTS * I
1* READ REGISTER o *1

9 oi DECLARE RX.JIIIAIL LIT ·OIH'.
I NT ..PEND I Ng LIT '02H'.
TX_EMPTY LIT '04H',
CARR J ERJ)ETECT LIT 'OBH',
SYNC_HUNT LIT ·IOH'.
CLEAR_TO_SEND LIT '20H'.

PLIM-9b COMPILER iSBC 99/45 9274 CHANNEL A SDLC TE;BT

END_OF _TX_MESSAGE LIT '40H'.
BREAK_ABORT LIT 'BOH'i

1* READ REIH STER I .,

9 DECLARE ALL_SENT LIT 'OlH',
PAR ITY _ERROR LIT 'IOH'.
RX_OVERRUN LIT '20H'.
CRC_ERROR LIT '40H',
END_OF _FRAME LIT '80H',

I. READ REgISTER 2 *1

10 DECLARE TX_B_EMPTY LIT 'OOH' ,
EXT JI_CHANgE LIT 'OIH',
RX_B_AVAIL LIT '02H',
RX_B_SPECIAL LIT '03H'.
TX_A_EMPTY LIT '04H',
EXT _A_CHANgE LIT '05H',
RX_A_AVAIL LIT ·ObH'.
RX_A_SPECIAL LIT '07H',

210403-16

2-226

AP-145

1* 8237 0 IT ASSIGNMENTS *1

11 DECLARE CHO_SEL LIT ·OOH·.
CHI_SEL , LIT ·OIH·.
CH2_SEL LIT ·02H·.
CH3_SEL LIT ·03H·.
WRITE _XFER LIT '04H',
READ_X FER LIT ·08H'.
DEMAND _MODE LIT ·OOH'.
SINGLE_MODE LIT '40H',
BLOCK_MODE LIT ·80H·.
SET_MASK LIT '04H';

12 I DELAY _S: PROCEDURE PUBLIC,
13 2 DECLARE D WORD,
14 2 0=01
15 2 DO WHILE D<800H,
16 3 D=0+11
17 3 END.
18 2 END DELAY _5,

19 I N IT _827 4 _SDLC _5. PROCEDURE PUBLIC,

20 2 DECLARE C DYTE,

SE-.lECT

PL/M-86 COMPILER iSDC 88/45 8274 CHANNEL A SDLC TEST

21 2

22 2

23 2
24 2
2' 2

26 2
27 2
28 3
?9 3
30 3
31 3
32 3

1* TABLE TO INITIALIZE THE 8274 CHANNEL /It AND B *1

1* FORMAT IS: WRITE REGISTER. REGISTER DATA *1
1* INITIALIZE CHANNEL ONLY *'
DECLARE TASLE_74_AC.' BYTE DATA

(OOH.18H. 1* CHANNEL RESET *1
OOH.80H. 1* RESET TX CRe *1
02H.llH. '* PIN lO=RTSD. A OMA. B INT *1
04H.20H. 1* SDLt tHOLt MODE. NO PARITY *1
07H.07EH. 1* SDLt FLAG *1
OIH.OBH. 1* RX OMA ENABLE *1
O'H.OEBH. 1* DTR. RTS. S TX BITS. TX ENABLE. TX CRt

06H.5'H, I. DEFAULT ADDRESS *1
03H.OD9H. 1* 8 RX BITS. AUTO ENABLES. HUNT MODE. *1

1* RX CRe ENABLE *1
OFFH), 1* END OF INITIALIZATION TABLE *1

DECLARE TABLE_74_B (*) BYTE DATA
(02H,OOH. 1* INTERRUPT VECTOR *1
01H. lCH. 1* STATUS AFFECTS VECTOR *1
OFFH)I '* END */~

1* INITIAL.IZE THE 8254 *1

OUTPUT (CONTROLO_54) =36HI
OUTPUTCCTR_OO) ... LOW(20JI
OUTPUTCCTR_OO) =:I HIGH(20);

'* INITIALIZE THE 8274 *1

C=O,
DO WHILE TABLE_74_B (C) <> OFFH,

'* BAUD RATE 40010'. BAUD*I
1* BAUD RATE 400lo'.:BAUD*1

CUTPUTCCOMHAND_B_74) TABLE_74-.8 CC).
C=C+l.
OUTPUT CCOMMAND_B_74 J :::I TABLE_74_BCC);
C=C+l1

END.

2·227

ENABLE *1

210403-17

intJ AP-145

33 2 CaO.
34 2 DO WHILE TABLE]4.ACC) <> OFFH.
35 3 OUTPUTC COMMAND .A] 4) TABLE]4-",CC),
36 3 C-e+1;
37 3 OUTPUTCCOMMAND.A.74) - TABLE_74_A(C) I
3B 3 C=C+ll
39 3 END.
40 2 CALL DELAY.S.

41 2 RETURN,
42 2 END INIT .B274.SDLC.SI
43 1 END INIT.B274.S,

PL/M-B6 COMP ILER ISDC BB/4:1 B274 CHANNEL A SDLC TEST

MODULE INFORMATION:

CODE AREA SI ZE = OOABH 16BD
CONSTANT AREA SIZE - OOOOH OD
VARIABLE AREA SIZE a 0003H 3D
MAX IMUM STACK SIZE • 0006H 6D
213 LINES READ
o PROGRAM WARNINGS
o PROGRAM ERRORS

END OF PL/M-Bb COMPILATION

PL/M-B6 COMP ILER ISBC BB/4:1 8274 CHANNEL A SDLC TEST

SERIES-III PL/M-B6 V2.0 COMPILATION OF MODULE INIT.B237.CHA
OBJECT MODULE PLACED IN : Fl: SINI37. OBJ
COMPILER INVOKED BY: PLMB6. B6 : Fl: SINI37. PLM TITLEC iSDC BB/45 B274 CHANNEL A SDLC
TESTI COMPACT NOINTVECTOR ROM

1 •• * •• ·.····****··· .. ·** ••• *.** •••••• *** ••••• ••••• •••••• * •• * ••••••••••• **1
1* *1

12

13 2
14 2
.5 2
16 2
17 2
18 2
19 2
20 2
21 2
22 2
23 2
24 2
20 2
26 2

'* 1*
B237 INITIALIZATION ROUTINE FOR DI'IA TRANSFER *1

*1
1**********·* •• ·****.*****.*.********* ••••• ****.*******.*.****** •• **.*.**1
INIT .B237 .CHA: DOl

'NOLIST

INIT .B237 .S: PROCEDURE PUBUC,

OUTPUT C I'IASTER.CLEAR.37)-OI
OUTPUTCCOI'lMAND.37J - 20H. 1* EXTENDED WRITE *1
OUTPUT (ALLJ1ASK_3?) - OFHI '* "ASK AL.L REGUESTS *1
OUTPUTCI'IODE.REG.37) • CSINGLEJ10DE OR WRITE.XFER OR CHO.SEL),
OUTPUTCI'IODE.REG.37) • CSINGLE.I'IODE OR READ.XFER OR CHI.SEL).
OUTPUTC CLRJlYTE.PTR.37 J - O.
OUTPUTCCHO.ADDR) = 00, 1* RECEIVE BUFF AT 900H *1
OUTPUTCCHO.ADDR) = 09HI
OUTPUTCCHO_COUNT) • OHI
OUTPUTCCHO.CO_UNTI = 011
OUTPUTCCH1-",DDR) = 00, 1* TRANSI'IIT BUFF AT BOOH *1
OUTPUTCCH1.ADDR) - OBHI
OUTPUT(CH1_CDUNT) = 010HI
OUTPUTCCH1.COUNTI • OOH,

2-228

210403-18

intJ AP-145

27 2
I. ENABLE TRANSFER .,
OUTPUT<SINGLE_MASK) = CH1_SEL.
RETURN,

1* ENABLE TX DMA *'
2B 2

29 2

30 1
31 2
32 2
33 2
34 2
3~

'* TURN OFF THE 8237 CHANNELS a AND 1 *1

STOP _9237 _5: PROCEDURE PUBLIC,
OUTPUT<SINGLE_MASII.) • CH1_SEL DR SET _MASII.,
DUTPUTCSINGLE_MASK) = CHO_SEL OR SET_MASK;
RETURN;
END STOP _8237 _5i
END INIT _8237 _CHAi

MDDULE INFORMATION:

CODE AREA 91 ZE • OQ4CH 7bD
CONSTANT AREA SIZE OOOOH OD
VARIABLE AREA SIZE = OOOOH OD

PL/M-Bb COMPILER lsnc 88/45 8274 CHANNEL A SDLe TEST

MAXIMUM STAel'. SIZE. 0002H 2D
163 LINES READ
o PROGRAM WARNINGS
o PROGRAM ERRORS

END OF PL/M-96 COMP ILATION

PI / ~1 Sr-, (Ot1f'ILER 1 :'~BC 88/45 62"14 CHANNEL A SOLe TEST

SFi" IE::-' J i I PL/N-86 V2 ("> COMPILATION OF MODULE INTR~_8274_5

OUJEC I f'iODULE PLACED HJ Fl SINTP OD~
C0l1PILEH INVOKED DY PLM86 At. Ft SINTR PLM TI1LE.(lSBC 88/45 8274 CHANNEL
A SDLe TEST) COMPACl NOINTVECTOR RnM

: .. 1:1"10 11 ••• 11-............................... ** ••••• • *1

l~
13
14
15
16
17

18

19 2
20 2
21 2

..-.., 'fIt/

i­
i-

82"74 INTERRUPT ROUTINE " 'I
" *. ott .. * -It .. ** *** **** ** ... * *+* •• -If ****** I

00·

TEMP a'r'TE.

INTR_S27'4_S
toNOL 1ST
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE

\RESULTS S,TXDONE S,RXDONE 5)
INT_VEe POINTER AT (140), -
INT VEe STORE POINTER.

BYTE EXTERNAL,

MASK_59-0VTE,
DONE
NOT DONE
PASS
FAIL

LIT
LIT
LIT
LIT

1****************************1
1* IGNORE INTERRUPT HANDLER *1

1*.******"'****.**************1
IGNORE_INT PROCEDURE,

RESULTS_5 = FAll.
RETURN,
END IGNORE_INT,

'OFFH' ,
'OOH'.
'OFFH',
'DOH',

2-229

210403-19

inter

22

23 2
24 2
25 2
2b 2
27 3
28, 3
29 3
30 2
31 2
32 2

AP-145

1** •••• ***.** •• *.*********.* •• **.* •• *** ••••• ** •••••••• *1
1* CHANNEL A EXTERNAL/STATUS. CHANGE INTERRUPT HANDLER *1

1**********************.*********.*.*.****.************1
CHA_EXTERNAL_CHANGE: PROCEDURE.

TEMP = INPUTCSTATUS_A_74l, 1* STATUS REG 1*1
IF (TEMP AND END_OF _TX_MESSAGEl END_OF _TX_MESSAGE THEN

TXDONE_S=DONE,
ELSE DO,

TXDONE_S=DONE,
RESULTS_S=FAIL,

END,
OUTPUTCCOMMAND_A_74l a 10H, 1* RESET EXT/STATUS INTERRUPTS *'
RETURN;
END CHA_EXTERNAL_CHANGE;

$E,JECT

Pl.lr1·8b COMP ILER lEne 89/45 8274 CHANNEL A SOLe TEST

33

3.
35 2
36 2
37 2
38 :3
39 3
40 3
41 3
42 3
43 2

,4. 3
46 4
47 4
48 4
49 4
50 3
51 2
52 2

53 1
54 2
55 2
56 2

PL/M-86

57

58 2

59 2

60 2

1*********.***** ••• **********.*******.*********************1
I' CHANNEL A SPECIAL RECEIVE CONDITIONS INTERRUPT HANDLER *1

1*****.**********.********** •• ** •• ***.*.*******************1
CHA_R X _SPEC I AL PROCEDURE,

OUTPUT (COMI1AND_A_74 l = 1;
TEMP = INPUT(STATUS_AJ4l;
IF (TEMP AND END_OF _FRAMEl = END_OF]RAME THEN

DO,
IF (TEMP AND 040H I = 040H THEN

RESULTS_S = FAIL, 1* CRC ERROR *'
RXDONE_S • DONE.
OUTPUTC COMMAND_A_74 I = 30H, I*ERROR RESET-I

END;
ELSE DO,

IF <TEMP AND 20HI • 20H THEN DO,
RESUL TS_S • FAIL. 1* RX OVERRUN ERROR'I·
RXOONE_S • DONE,
OUTPUT (COMMAND_A_74) = 30H, I-ERROR RESEHI
END,

END;
RETURN,
END CHA_RX_SPEC tAL;

1********* •• ***************** ••• *********.1
1* CHANNEL A RECEIVE CHARACTER AVAILABLE *1

1************.*****.******** *.*******.**** I
CHA_RX_CHAR. PROCEDURE,
OUTPUT (5 I NGLE_MASK I CHO_SEL, I*ENABLE RX
RETURN,
END CHA_RX_CHAR,

$E,JEC'f

COMPILER 15BC 88/45 8274 CHANNEL A SOLC TEST

1* ENABLE 8274 INTERRUPTS - SET UP THE 8259A *1

ENABLE_INTERRUPTS_S. PROCEDURE PUBLIC,

DECLARE CHA_I NT _ON LIT 'OF7H' ,

DISABLE,

CALL SET$INTERRUPT<39,INT_391;

2-230

DMA CHANNEL * I

210403-20

61
62
03

0"
0;
00

67

68 2

69 2

70 2
71 2

72 2
73

74

75 2

76 2
77 2
78

AP-145

INT _VEC._STORE = IN1_VEC.
INT VEe = INTERRUPTSPTR (INT _8274_8),
MASK_59 = INPUT(OCWI 59),

RETURN.
END ENABLE_INTERRUPTS_5.

/* DISABLE 8274 INTERRUPTS - SET UP THE B259A *1

DISABLE_INTERRUPTS_S PROCEDURE PUBLIC.

DISABLE.

OUTPUT< OCW 1_59)
ENABLE.

RETURN.
END DISABLE_INTERRUPTS_S.

1* CHANNEL D RECEIVE CHARACTER AVAILABLE *1

CHB_RX_CHAR PROCEDURE.

TEMP= INPUT <CATA_B_74).

OUTPUT (COMMAND_B_74) 38H,
RE1URN.
END CHD_R X_CHAR,

SE.JECT

PLIM-86 COMPILER 1SBC eB/4S 8274 CHANNEL A SOLe TEST

79

80 2
81 2

82 2
83 3
84 3
85 3
86 3
87 3
88 3
89 3
90 3
91 3
92 2
93 2
94 2
95 2
96 2

1*****","**-11-*****************1
1* MAIN INTERRUPT ROUTINE *1
1*_* *_._ *_ ***.* *._ **_._. I

INT_8274_S· PROCEDURE INTERRUPT 35 PUBLIC.

OUTPUT (COMMAND B 74) = 2,
TEMP = INPUTCSTATUS_B_74) AND 07H.

/* SET POINTER TO 2*1
1* READ INTERRUPT VECTOR *1
1* CHECK FOR CHA INT ONLY'"

1* FOR THIS APPLICATION
DO CASE TEMP.

CH B INTERRUPTS ARE IGNORED_I

CALL IGNORE __ INT.
CALL IGNORE_INTo

. CALL CHB_RX_CHAR.
CALL IGNORE_I NT,
CALL IGNORE INT.
CALL CHA_EXTERNAL_CHANGE'
CALL CHA_RX_CHAR.
CALL CHA_RX_SPECIAL.

END.

1* V2V1VO ,. 000*1
1* V2V1VO 001*1
1* V2V1VQ 010*1
lilt V2V1VO 011*1
1* V2VIVO
1* V2V1VO
1* V2V1VO
1* V2V1VO

100*1
101*1
110*1
111*1

OUTPUT<COMMAND A 74) =38H. 1* END OF INTERRUPT FOR 8274 *1
QUTPUT(OCW2~.59) - b:JH; 1* 8259 EOI *1
OUTPUT(OCW1_59) = INPUT(OCW1_59) 'AND OF7H.
RETURNl
END INT_8274_S.

1* DEFAULT lNTERRUPT ROUTINE - 8259A INTERRUPT 7 *1
1* REGUIRED ONLY WHEN DMA CONTROLLER IS ENABLED *1
1* DEFORE RECEIVING FIRST CHARACTER WHICH IS *1
1* AT HIGH BAUD RATES LIKE 800K BAUD READ APP. *1
1* NOTE SECTION 6 FOR DETAILS *1

2-231

210403-21

intJ AP-145

'17 INT _3'1. PROCEDURE INTERRUPT 3'1,
98 2 OUTPUT (OCW2_S'I) = 20H. 1* NON-SPECIFIC EOI *1
'1'1 2 OUTPUTIOCWI_S9) = INPUT(OCWI_S9) AND OF7H.

100 2 RESUL TS_S = FAIL.
101 2 END INT _3'1.

10~

r,oDULE INFORMATION·

CODE AREA SIZE

~~~i!;~~ ::~: ~ g~. 
f1AXIMUM STACK SIZE = 
295 L tNES READ 
o PROGRAM WARNINGS 
o PROGRAM ERRORS 

END OF PL/i'I-Bb COMPILATION 

OIBFH 
OOOOH 
0006H 
0022H 

4470 
00 
60 

340 

PL/M-B6 COMPILER ISBC BB/45 B274 CHANNEL A SOLC TEST 

SERIES-Ill PLIM-B6 Y2.0 COMPILATION OF MODULE STEST 
OBJECT MODULE PLACED IN : FI: STEST. OBJ 
COMPILER INYO!'.ED BY: PLMB6. Bb : Fl: STEST. PLM TITLECiSBC BB/4:1 B274 CHANNEL A SDLC TEST) 
COMPACT NOINTVECTOR ROM 

2 1 
3 2 

4 1 
5 2 

6 1 
7 2 

B 1 
'1 2 

10 1 
11 2 

Ii! I 
13 i! 

14 1 
15 2 

16 1 
17 i! 

1**·· ••• **.·.·**········***···························.**** ••••••• * ••• *.*, 
~ ~ 
1* ISBC 545 PORT A (B274) SOLC TEST *1 

'* *1 
1** •••••• ·.*.··· .. ···.***···.**····**················· ... * ••••••••••••••• / 
STEST: DO, 

DELAY _So PROCEDURE EXTERNAL, 
END DELAY _5, 

ENABLE_INTERRUPTS_S: PROCEDURE EXTERNAL, 
END ENABLE_INTERRUPTS_S, 

DISABLE_INTERRUPTS_S: PROCEDURE EXTERNAL, 
END DISABLE_INTERRUPTS_S, 

INIT _B274_SDLC_S: PROCEDURE EXTERNAL' 
END INlT_B274_SDLC_S, 

INIT _B237 _5: PROCEDURE EXTERNAL, 
END INIT _B237 _S, 

STOP _B237 _5: PROCEDURE EXTERNAL, 
END STOP _B237 _5, 

VERIFY_TRANSFER_S: PROCEDURE EXTERNAL, 
END VERIFY_TRANSFER_S, 

INT _B274_S: PROCEDURE INTERRUPT 35 EXTERNAL, 
END INT _B274_S, 
_NOLIST 
_EJECT 

PL/M-S6 CaMP ILER lSBC SS/4:5 8274 CHANNEL A SDLe TEST 

2B 
2'1 

DECLARE (RESULTS_S. TXDONE_S, RXDONE_S). BYTE PUBLIC, 
DECLARE DONE LIT :OFFH', 

NOT DONE LIT 'OOH' I 
PASS LIT 'OFFH', 
F~IL LIT 'OOH', 

2-232 

210403-22 



intJ AP·145 

SE.JECT 

PL/"-86 CO"P ILER iSBC 88/U B274 CHANNEL A SDLC TEST 

30 

31 2 
32 2 
33 2 
34 2 
3' 2 
36 2 
37 2 

3B 2 
39 2 
40 2 

41 2 
42 3 

43 2 

44 3 
4' 2 
46 3 

47 2 

4B 2 

49 2 

'0 2 

" 2 
'2 1 

CHA_SDLC_TEST: PROCEDURE BYTE PUBLIC. 

CALL ENABLE_INTERRUPTS_S. 
CALL INIT _8274_SDLC_S. 

'ENABLE. 
DUTPUTCCOMt1AND_A_74J • 2BH. /* REseT TX JNT/DMA ./ 
OUTPUTlCO"MAND_B]4) ~ 2SH. 1* BEFORE INITIALIZINQ 8237*1 
CALL INIT _8237 _S. 
DUTPUTCDATA_A_74) • :t:tHJ 1* LOAD FIRST CHARACTER FROM CPU.' 

1* TO ENSURE CRC TRANSMISSION RESET TX UNDERRUN LATCH*I 
OUTPUTI COMMAND.JI_74) - OCOH. 
RXDONE_S. TXDONE_S-NOT _DONE. 1* CLEAR ALL FLAGS *1 
RESULTS_S-PASS. 1* FLAQ SET FOR MONITOR*I 

DO WHILE TXDONE_S-NOT J)ONE. 
END. 

1* DO UNTIL TERMINAL COUNT*I 

DO WHILEClNPUTCSTATUS_A_74) AND 04H) <> 04H. 
1* WAIT FOR CRC TD ClET TRANSMITTED *1 
1* TEST FDR TX BUFFFER EMPTY TO VERIFY THIS*I 
END. 
DO WHILE RXDONE_S*NOT J)ONE. 1* DO UNTIL TERMINAL COUNT*I 
ENOl 

CALL STOP _8237 _S. 

CALL DISABLE_INTERRUPTS_S. 

CALL VER I FY _ TRANSFER_S. 

RETURN RESUL TS_S. 

END CHA_SOLC _TEST. 
END STEST. 

MODULE INFORMATION: 

CODE AREA SIZE = 0063H 
CONSTANT AREA SIZE - OOOOH 
VARIABLE AREA SIZE - 0003H 
MAUMUI! STACK SIZE • 0004H 
198 LINES READ 
o PROIIRAM WARNINQS 
o PROIIRAI! ERRORS 

END OF PL/M-B6 COMPILATION 

99D 
00 
3D 
40 

PLIM-86 COMPILER iSBC 88/4:1 S274 CHANNEL A SDLC TEST 

SERIES-III PL/M-86 V2,0 COMPILATION OF MODULE VECTORJ10DE 
OB.JECT MODULE PLACED IN : Fl: VECTOR, OB.J 
COMPILER INVOKED BV: PLMB6,86: Fl: VECTOR, PLM TITLEC ISBC B8/4:1 8274 CHANNEL A SDLC TEST) 

1 ••• ** ••••••••• ** ••• ** ••••••••••••••••••••••••••••••••••• ** •••••• ***1 
n H 
1* 8274 INTERRUPT HANDLINO ROUTINE FOR *1 
1* 8274 VECTOR MODE *1 
1* STATUS AFFECTS VECTOR *1 
n H 
/ •••••••• ** ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 

2-233 

210403-23 



intJ 

12 
13 
14 

15 
16 2 
17 2 
IB 2 

19 I 
20 2 
21 2 
22 2 
23 2 
24 3 

AP-145 

1* THIS IS AN EXAMPl.E OF HOW B274 CAN BE USED IN VECTORED MODE. *' 
1* THE lSDCBB/45 BOARD WAS REWIRED TO DISABLE THE PIT .B259A AND *1 
1* ENABLE THE B274 TO PLACE ITS VECTOR ON THE DATABUS IN RESPONSE *1 
1* TO THE INTA SE()UENCE FROM THE BOBB. OTHER MODIFICATIONS INCLUDED *1 
1* CHANGES TO 8274 INITIALIZATION PROORAM (SINI74) TO PROORAM 9274 *1 
1* INTO VECTORED MODE (WRITE REGISTER 2A D5~1). *1 . 

VECTOR_MODE: DO, 
_NOLIST 

DECLARE TEMP BYTE, 
DECLARE (RESUL TS_S. TXDONE. RXDONE) BYTE EXTERNAL, 
DECl.ARE DONE l.ITERAl.LY ·OFFH'. 

NOT_DONE LITERALLV 'OOH', 
PASS LITERALLY ·OFFH'. 
FAIL LITERALLY 'DOH'. 

/********.****************.*.**.**********************.*.*.***** •• *.*.*., 
1* TRANSMIT INTERRUPT CHANNEL A INTERRUPT WIL.L. NOT DE SEEN IN THE *1 
1* OMA OPERATION. *1 

I .*********** •• ********************* •• ***********.******.* .****.********1 
TX_INTERRUPT _CHA: PROCEDURE INTERRUPT B4, 
OUTPUT(COMMAND_A_74) ,- 001010008. I-RESET TXINT PENDINQ_I 
OUTPUT C COMMAND_A_74) • 0011100001 /*Eol*1 
END TX_INTERRUPT _CHA, 

1*********.*.***********************************************************1 '* EXTERNALISTATUS INTERRUPT PROCEDURE: CHECKS FOR END OF MESSAgE *1 
1* ONLY. IF THIS IS NOT TRUE THEN THE FAIL FLAG IS SET. HOWEVER. *1 

,1* A USER PROGRAM SHOULD CHECK FOR OTHER EXTISTATUS CONDITIONS *1 
1* Al.SO IN RRI AND THEN TAKE APPROPRIATE ACTION BASED ON THE *1 
1* APPLICATION. *1 
1***********************************************************************1 

EXT _STAT _CHANGE_CHA: PROCEDURE INTERRUPT 95, 
TEMP - INPUT( STATUS_A_74)' 
IF (TEMP AND END_OF _TX_MESSAQE) = END_OF _TX_MESSAQE THEN 

TXDONE = DONE. 
El.SE DO, 

TXDONE =- DONE. 

PLIM-B6 COMP Il.ER iSBC BB/4S e274 CHANNEl. A SDLC TEST 

25 3 
26 3 

27 2 
2B 2 
29 2 
30 2 

31 I 
32 2 
33 2 
34 2 

RESUL TS_S - FAIL, 
END, 

OUTPUTCCOMMAND_A_74) • 0001000001 
OUTPUT(COMMAND_A]4) = 0011 I OOOB , 
RETURN, 

END EXT_STAT _CHANGE_CHAI \ 

I*RESET EXT STAT INT*I 
I*EOI*I 

1*******************.*******************.*******************************1 
1* RECEIVER CHARACTER AVAILABLE INTERRUPT WILL APPEAR ONLY ON FIRST*I 
1* RECEIVE CHARACTER. SINCE DMA CONTROLLER HAS BEEN ENABLED BEFORE *1 
1* THE FIRST CHARACTER IS RECEIVED. THE RECEIVER REOUEST IS *1 
1* SERVICED BY THE DMA CONTROLLER. *1 
1*********************************************************************.*/ 
RX_CHAR_AVAILABLE_CHA: PROCEDURE INTERRUPT 86. 

OUTPUT (COMMAND_A_74) • 001110008; /*EOI*/ 
RETURN, 

END RX_CHAR_AVAILAOLE_CHA; . 
• EJECT 

2-234 

210403-24 



AP-145 

PL/M-Bb COMPILER lSDC 88/45 8214 CHANNEL A SOLe TEST 

35 

36 2 
37 2 
39 2 
39 2 
40 2 
41 3 
42 3 
43 3 
44 2 
45 2 
46 2 
47 2 

4B I 
49 2 
50 2 
51 2 
52 2 
53 2 
54 2 
95 2 

56 

/ *.* .............................. * ................... * ....... * ••••••••••••• / '* SPECIAL RECEIVE CONDITION INTERRUPT SERVICE ROUTINE CHECKS FOR */ 
/* END OF FRAME OIT ONLY. SEE SPECIAL SERVICE ROUTINE FOR NON- *' 
/. VECTORED MODE FOR CRC CHECK AND OVERRUN ERROR CHECK */ 
/* •••••••••••••••••••••••••• ** ••••• * ••••• **** •••• * •• *.* ••••••••••••••••• / 

SPEC IAL_RX_CONDITlON3HA. PROCEDURE INTERRUPT B7. 

QUTPUT(COMMANO A 74) • I. I_POINTER 1*' 
TEMP = INPUTCSTATUS-.AJ4). 
IF (TEMP AND END OF FRAME) END_OF _FRAME THEN 

RXDONE = DONE;-
ELSE DO, 

RXDONE = DONE, 
RESUL T5 5 = FAIL. 

END, -
OUTPUTCCOMMAND_A_74) z:: 001100000. ,.ERROR RESET_' 
OUTPUT C COMMAND_A_74) Q 001110000. I*E01*1 

RETURN, 
END SPECIAL_RX_CONDITION_CHAi 

ENABLE_INTERRUPTS: PROCEDURE PUBLIC. 
DISABLE, 
CALL SETS INTERRUPT< 94. TX_INTERRUPT _CHA), 
CALL SETSINTERRUPT<95. EXT _STAT _CHANQE_CHAI' 
CALL SET. INTERRUPT (86. RX_CHAR_AVAI L.ADL.E_CHA) I 

CALL SETSINTERRUPT<97. SPECIAL_RX_CONDITION_CHA), 
RETURN, 
END ENABL.E_INTERRUPTS, 

END VECTOR_MODE, 1*** .. *******···············*···**···**·····**··*····* ... * ••• **.* ........... 1 / ••• * •••••••••••••••••••••••••••••••••••• * •• ***.* •••• *** •••••••••••••••••• *./ 

MODULE INFORMATION: 

CODE AREA SI ZE = 012EH 3020 
CONSTANT AREA SIZE = OOOOH 00 
VARIABL.E AREA SIZE. 000lH 10 
MAX IMUM STACK SIZE = OOIEH 300 
226 LINES READ 
o PROGRAM WARNINGS 
o PROGRAM ERRORS 

END OF PLIM-B6 COMPILATION 

2-235 

210403-25 



Ap·145 

APPENDIX B 
MPSC READ/WRITE REGISTER DESCRIPTIONS 

WRITE REGISTER 0 (WRO) 

MSB LSB 

1071061051041031021011001 

I L.OMMANO STATUS POINTER 
REGISTER POINTER 

o 0 0 NULL COOE 
o 0 1 SENO ABORT (SOLC) 
o 1 0 RESET EXT STATUS INTERRUPTS 
o 1 1 CHANNEL RESET 
1 0 0 ENABLE INTERRUPT ON NEXT RX CHARACTER 
1 0 1 RESET TXINT OMA PENOING 
1 1 0 ERROR RESET 
1 1 1 ENO OF INTERRUPT (Ch. A only) 

o 0 NULLCOOE 
o 1 RESET RX CRC CHECKER 
1 0 RESET TX CRO GENERATOR 
1 1 RESET TX UNOERRUN EOM LATCH 

WRITE REGISTER 1 (WR1) 

I 
EXT INTERRUPT 
ENABLE 

Tx INTERRUPT 
OMAENABLE 

STATUS AFFECTS VECTOR 1 VARIABLE VECTOR 
(CHB ONLY) 0 FIXED VECTOR 
(NULL COOE CH A) 

o 0 RxINT/OMA OISABLE 
o 1 RxlNT ON FIRST CHAR OR SPECIAL CONOITION 
1 OINT ON ALL Rx CHAR (PARITY AFFECTS VECTOR) OR 

SPECIAL CONOITION 
1 INT ON ALL Rx CHAR (PARITY OOES NOT AFFECT 

VECTOR) OR SPECIAL CONOITION 

1 WAIT ON Rx, 0 WAIT ON Tx 

MUST BE ZERO 

WAIT ENABLE, 1 ENABLE, 0 OISABLE 

2-236 

210403-26 

210403-27 



AP-145 

WRITE REGISTER 2 (WR2): CHANNEL A 

o 0 8085 MODE 1 
o 1 8085 MODE 2 
1 0 8086/88 MODE 
1 1 ILLEGAL 

- J ~~~T~:~fol~lg~~~:JRUPT 
- MUST BE ZERO 

_ 1 PIN 10 SYNDET6 
o PIN 10 RTSB 

'External Slatus Interrupt only if EXT Interrupt Enable (WR1: DO) is set. 
210403-28 

WRITE REGISTER 2 (WR2): CHANNEL B WRITE REGISTER 3 (WR3) 

MSB LSB 

Inl~I~lwl~I~I~I~1 

INTERRUPT 
- VECTOR" 

210403-29 

2-237 

LSB 

ADDR SRCH MODE (SDLC) 

Rx CRC ENABLE 

ENTER HUNT MODE 

AUTO ENABLES 

o 0 RxS BITS/CHAR 

1 Rx7 BITS/CHAR 

o Rx6 BITS/CHAR 

1 Rx8 BITS/CHAR 

210403-30 



AP-145 

WRITE REGISTER 4 (WR4) 

o 
o 
1 
1 

1 ENABLE PARITY 
o DISABLE PARITY 

EVEN PARITY 
ODD PARITY 

o 0 ENABLE SYNC MODES 
o 1 1 STOP BIT 
1 0 1.5 STOP BITS 
1 1 2 STOP BITS 

o 0 8 BIT SYNC CHAR 
o 1 16 BIT SYNC CHAR 
1 0 SOLC/HOLC(Olllll10)FLAG 
1 1 1 EXTERNAL SYNC MODE 

o Xl CLOCK 
1 X16CLOCK 
o X32 CLOCK 
1 X64CLOCK 

210403-31 

WRITE REGISTER 6 (WR6) 

MSB LSB 

1071061051041031021011001 

.. L LEAST SI:NIFICANT 
SYNC BYTE (AOORESS 
IN SOLC/HOLC MOOE) 

210403-33 

READ REGISTER 0 (RRO) 

MSB LSB 

1071061 OSI 041 031021 011001 

WRITE REGISTER 5 (WR5) 

o 0 
o 1 
1 0 
1 1 

OTR 

Tx CRC ENABLE 

RTS 

'----- rgk8~SgE)16 

'------ Tx ENABLE 

'------- SENO BREAK 

TxS BITS OR LESS/CHAR 
Tx7 BITS/CHAR 
TxB BITS/CHAR 
TxB BITS/CHAR 

210403-32 

WRITE REGISTER (WR7) 

MSB LSB 

1071061051041031021011001 

.. L MOST SI:NIFICANT 
SYNC aYTe (7EH 
IN SOLC/HDLC MODE) 

210403-34 

L= Rx CHAR AVAILABLE 

INT PENOING (CHA ONLY) 

Tx BUFFER EMPTY 

CARRIER OETECT 

SYNC/HUNT 

EXTERNAL CTS } 
TxUNDERRUN/EOM STATiiS 

INTERRUPT MOOE 
BREAK/ABORT 

2-238 

210403-35 



inter AP·145 

READ REGISTER 1 (RR1): (SPECIAL RECEIVE CONDITION MODE) 

MSB LSB 

1071061051041031021011001 :c LALLSENT 

I FIELO BYTE 
PREVIOUS BYTE 

I FIELO BYTE 
2NO PREVIOUS BYTE 

o 0 0 2 
o 0 1 0 
o 1 0 0 
o 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 0 1 1 1 1 

!} RESIOUE OATA 
3 BITS CHAR 
7 MOOE 

5 
8 

'-- PARITY ERROR 

Rx OVERRUN ERROR 

- CRC/FRAMING ERROR 

'--- ENO OF FRAME (SOLC HDLC MODE) 

READ REGISTER 2 (RR2) CHANNEL B ONL V 

MSB LSB 

! V7! v61 vsl V4-!V3-!v2-!v1-! vo-I 
\" ,; 

1 INTERRUPT -VARIABLES IN 
L.. ______ STATUS AFFECTS 

VECTOR VECTOR MODE 

210403-36 

210403-37 

REFERENCES 
1. IBM Document No. GA27-3004-2: General Informa­

tion-Binary Synchronous Communications 

2. Application Note AP134: Asynchronous Communica­
tion with the 8274 Multiple Protocol Serial Controller. 
Intel Corp., Ca. 

3. 8274 MPSC Dat~ Sheet, Intel Corporation, Ca. 

4. iSBC 88/45 Hardware Reference Manual, Intel 
Corp., Ca. 

S. Computer Networks and Distributed Processing by 
James Martin. Prentice Hall, Inc., N.J. 

2-239 



APPLICATION 
NOTE. 

AP-222 

October 1989 

Asynchronous and SOLC 
Communications with 82530 

DFG TECHNICAL MARKETING 

Order Number: 231262-004 
2-240 



intJ AP-222 

INTRODUCTION 

INTEL's 82530, Serial Communications Controller 
(SCC), is a dual channel, multi-protocol data communi­
cations peripheral. It is designed to interface to high 
speed communications lines using asynchronous, byte 
synchronous, and bit synchronous protocols. It runs up 
to 1.5 Mbits/sec, has on-chip baud rate generators and 
on-chip NRZI encoding and decoding circuits-very 
useful for SOLC communication. This application note 
shows how to write I/O drivers for the 82530 to do 
initialization and data links using asynchronous 
(ASYNC) and SOLC protocols. The appendix includes 
sections to show how the on-chip baud rate generators 
could be programmed, how the modem control pins 
could be used, and how the 82530 could be interfaced 
to INTEL's 80186/188 processors. 

This article deals with the software for the following: 

1. SCC port definition 

2. Accessing the SCC registers 

3. Initialization for ASYNC communication 

4. ASYNC communication' in polling mode 

5. ASYNC communication in interrupt mode 

6. Initialization for SOLC communication 

7. SOLC frame reception 

8. SOLC frame transmission 

9. SOLC interrupt routines 

The description is written around illustrations of the 
actual software written in PLM86 for a 80186 - 82530 
system. 

I. SCC Port Definition 

The Figure 1 shows how the 4 ports (2 per channel) of 
the SCC can be defined. Note that the sequence of ports 
in the ascending order of addresses is not the one that is 
normally expected. In the ascending order it is: com­
mand (B), data (B), command (A) and data (A). In an 
80186 - 82530 system, the interconnection is as follows: 

PGSn 
A1 

80186 pins A2 
RD 

WR 

GS 
DIG 
AlB 82530 pins 
RD 
WR 

2. Accessing the SCC Registers 

The SCC has 16 registers on each of the channels (A 
and B). For each channel there is only one port, the 
command port, to access all the registers. The register 
#0 can be always accessed directly through the com­
mand port. All other registers are accessed indirectly 
through register #0; First, the number of the register to 
be accessed is written to the register # 0 - see the state­
ment, in Figure 2: 'output (ch_Lcommand) = re~ 
no and Ofb'. Then, the desired register is written to or 
read out. The Figure 2 shows 4 procedures: rra and 
wra, for reading and writing channel A registers; rrb 
and wrb, for reading and writing channel B registers. 
The read procedures are of the type 'byte' - they return 
the contents of the register being read. The write proce­
dures require two parameters - the register number and 
the value to be written. 

1*----·---·--.. ------ ------- .--- -- .•. --- - ----.-- ---- --.----- ------------------------*1 
declare ch_b_command 

eh_b_data 
eh_a_command 
c:h_a_data 

literally 'pc55 + 0', 1* scc channel_b command word*/ 
literally 'pes5 + 2', 1* sec ehannel_b d.lta word *1 
literally 'pcs5 + 4', 1* sec channel __ a command word *1 
literally 'pes5 + 6'. 1* sec ehannel_a data word *1 

1*--------- ----------------------.--------------------.-----------------------*1 
231262-1 

Figure 1. see Port Definition 

2-241 



intJ AP-222 

I*-----------------------------------~--------------------------------------*1 
1* read .elected scc register *1 
rra: procedure (reg_no) byte, 

declare reg_no bvtei 

i~ (reg_no and Of h) <> 0 
then output(ch_a_command) reg_no and O~h; 
return input(ch_a_command), 

end rra, 

rrb: procedure (reg_no) bVte, 
declare reg_no byte; 

if (reg_no and Of h) <> 0 
then output (ch_b_command)' = reg_no and O'h, 
return input(ch_b_command), 

end rrb; 

1* write selected scc register *1 
wra: procedure (reg_no,' value), 

declare reg_no byte, 
declare value bvte; 

if .(reg_no and Of h) <> 0 
then output (ch_a_command) reg_no and O'h; 
output (ch_a_command) .. value, 

end wra, 

wrb: procedure (reg_no, value), 
declare reg_no byte, 
declare value byte, 

if (reg_no and Of h) <> 0 
then output (ch_b_command) - reg_no and OFh, 
output (ch_b_command) .. value, 

end wrb; 

1*--------------------------------------------------------------------------*1 
231262-2 

Figure 2. Accessing the see Registers 

2-242 



inter AP-222 

3. Initialization for ASYNC Operation 

In the following example, channel B of the SCC is used 
to perform ASYNC communication. Figure 3 shows 
how the channel B is initialized and configured for 
ASYNC operation. This is done by writing the various 
channel B registers with the proper parameters as 
shown. The comments in the program show what is 
achieved by each statement. After a software reset of 
the channel, register #4 should be written before writ­
ing to the other registers. The on-chip Baud Rate Gen­
erator is used to generate a 1200 bits/sec clock for both 
the transmitter and the receiver. The interrupts for 
transmitter and/or receiver are enabled only for the 
interrupt mode of operation; for polling, interrupts 
must be kept disabled. 

4. ASYNC Communication in Polling 
Mode 

Figure 4 shows the procedures for reading in a received 
character from the 82530 (sec_in) and for writing out 
a character to the 82530 (scc_out) in the polling mode. 

The sec_in procedure returns a byte value which is the 
character read in. The receiver is polled to find if a 
character has been received by the SCC. Only when a 
character has been received, the character is read in 
from the data port of the SCC channel B. 

The scc_out procedure requires a byte parameter 
which is the character being written out. The transmit-

1* ---.----.-----.-- -'- -.--- ---.- ---.... ----.-------------------------------.------------* I 

1* scc ch B register initialization for ASVNC mode */ 

call wrbC09, 01000000b), 
call wrb (04. 11001110b), 
call wrbC02. 00100000b); 
call wrb (03. 11000000b), 
call wrb(05, 01100000b), 
call wrbC06. OOOOOOOOb), 
call wrbC07. OOOOOOOOb), 
call wrb(09. OOOOOOOlb), 
call wrb(10. OOOOOOOOb)1 
call wrb(11. 010l0110bli 
call wrb(12. 000 11000tiI, 
call wrbC13. OOOOOOOOb), 
call wrb(14. 00000011b)1 
call wrb(15. OOOOOOOObl1 

1* enables *1 

call wrb(03. 11000001b), 
call wrb (05. 11101010b) I 

/* channel B reset */ 
/* 2 stop, no parity. brfl = 64x */ 
/* vector = 20h *1 
1* rx B bits/char, no auto-enable *1 
/* tx B bits/char */ 

1* vector includes status *1 

1* rxc = tXt = BRG • trxc = BRG out */ 
1* to generate 1200 baud. x64 @ 4 mhz *1 

1* BRG source = SYS eLK. enable BRG *1 
1* all ext status interrupts off *1 

1* scc-b receive enable *1 
1* sc c-b transmi t enab Ie. dtr on. rts on *1 

1* enable interrupts - only for interrupt driven ASYNC 110 *1 

call wrbC09. 00001001b), 
call wrb(Ol. 00010011b), 

1* master IE. vector includes status *1 
1* tx • rx. ext interrupts enable */ 

/ *------------------------------- -. --------------------------------------------* I 
231262-3 

Figure 3. Initialization for ASYNC Communication 

2-243 



AP-222 

1*---------. ------------.... ----.-----. ---- --------.... ----- -----------------------* I 
1* scc data character input from channel B *1 

scc_in: procedure byte; 

declare char byte; 

do while (input(ch_b_commandl and lh) = Oi endi 
char = input(ch_b_datali 1* if rx data character is available *1 
return chari 1* then input it to buffer *1 

1* sec data character output to channpl B *1 

sec_out: procedure (char)i 

declare char byte; 

do while (input(ch_b_command) and 4hl = 01 end; 
output(ch_b_datal = char; 1* if tx buff empty then transfer the *1 

1* data character to tx buff *1 

1*-------_·_·_--------------------_·_------------------------·-·----·---------------*1 
231262-4 

Figure 4. ASYNC Communication In Polling Mode 

ter is polled for being ready to transmit the next charac­
ter before writing the character out to the data port of 
see channel B. 

Typical calls to these procedures are: 

abc_variable = scc~n; 
call scc_out (xyz-variable); 

5. ASYNC Communication in Interrupt 
Mode 

In contrast to polling for the receiver and/or the trans­
mitter to be ready with/for the next character, the 
82530 can be made to interrupt when it is ready to do 
receive or transmit. 

The on-chip interrupt controller of the see can be 
made to operate in the vectored mode. In this mode, it 
generates interrupt vectors that are characteristic of the 
event causing the interrupt. For the example here, the 
vector base is programmed at 20h and 'Vector 

Includes Status' (VIS) mode. is set - WR9 = 
XXXOXXOI. Vectors and the associated events are: 

Vector Procedure Event Causing Interrupt 

20h txintrj ch b - transmit buffer empty 

22h esLb chj - extemal/status change 

24h rxintr b ch b - receive character available 

26h srcj ch b - special receive condition 

28h !xintr a ch a - transmit buffer empty 

2ah esLa ch a - external! status change 

2ch rxintr_a cIL-a - receive character available 

2eh src a ch a - special receive condition 

NOTE: 
Odd vector numbers do not exist. 

Figure 5 shows the interrupt procedures for the channel 
B operating in ASYNe mode. The transmitter buffer 
empty interrupt occurs when the transmitter can accept 
one more character to output. In the interrupt proce­
dure for transmit, the byte char_out_S30 is output. 
Following this, is an epiloge that is common to all the 

2-244 



Ap·222 

interrupt procedures; the first statement is an end of 
interrupt command to the 82530 - note that it is issued 
to channel A - and the second is an End of Interrupt 
(EOI) command to the 80186 interrupt controller 
which is, in fact, receiving the interrupt from the 82530. 

The receive buffer full interrupt occurs when the receiv­
er has at least one character in its buffer, waiting to be 
read in by the CPU. 

The esLb is not enabled to occur and src_b cannot 
occur in the ASYNC mode unless the receiver is over­
run or a parity error occurs. 

1*-----------·-------------·-------------·-----------·---------------·-----------*1 

1* channel B interrupt procedures *1 

procedure 

call w ... aCOO,38h). 
output (eoiT_18b) 
... etu ... n; 

end txint ... _b. 

p ... ocedure 

call w ... bCOO, 10h); 

call w ... a(00,38h); 
output (eoi ... _186) 
... eturn; 

end esi_b; 

rxint ... _b: p ... ocedu ... e 

call w ... aCOO,38h); 
output (eoi ... _186) 
.... tu ... n; 

end ... xint ... _bl 

p ... ocedu ... e 

call wrb(00,30h). 

call w ... aCOO,3Bh). 

inte ...... upt 20h. 

8000h. 
1* reset highest IUS *1 
1* non specific EOI *1 

inter",upt 22h; 

8000h; 

1* reset ESI *1 

1* reset highest IUS *1 
1* non specific EOI *1 

inter ... upt 24h; 

BOOOh; 
1* ... eset highest IUS *1 
1* non specific EOI *1 

inter ... upt 26h; 

1* e ...... o ... reset *1 

output (eoir_186) = BOOOh. 
return. 

1* reset highest IUS *1 
1* non specific EOI *1 

end s ... c_b; 

1*---------------------------------------------------------------------------*1 
231262-5 

Figure 5. ASYNC Communication in Interrupt Mode 

2-245 . 



inter AP-222 

6. Initialization for SOLC 
Communication 

Channel A of the SCC is programmed for being used 
for SDLC operation. It uses the DMA channels on the 
80186. Figure 6 shows the initialization procedure for 
channel A. The comments in the software show the 
effect of each statement. The on-chip Baud Rate Gener­
ator is used to generate a clock of 125 kHz both for 
reception and transmission. This procedure is just to 
prepare the channel A for SDLC operation. The actual 
transmission and reception of frames is done using the 
procedures described further. 

7. SOLC Frame Reception 

Figure 7 shows the entire set-up necessary to receive a 
SDLC frame. First the DMA controller is programmed 
with the receive buffer address (@rx_butl), byte count, 
mode etc and is also enabled. Then a flag indicating 
reception of the frame is reset. An Error Reset com­
mand is issued to clear up any pending error condi­
tions. The receive interrupt is enabled to occur at the 
end of frame reception (Special Receive Condition); 
lastly, the receiver is enabled arid put in the Hunt mode 
(to detect the SDLC flag). When the fi\"St flag is detect-

ed on the RxDA pin, it goes from the Hunt to the Sync 
mode. It receives the frame and the end of frame inter­
rupt (src_b, vector = 2eh) occurs. 

8. SOLC Frame Transmission 

Figure 8 shows the procedure for transmitting ~ SDLC 
frame once channel A is initialized. The DMA control­
ler is initialized with the transmit buffer address 
(@tx_buff(l» - note, it is the second byte of the trans­
mit buffer - and the byte count - again one less than the 
total buffer length. This is done because the first byte in 
the buffer is output directly using an I/O instruction 
and not by DMA. Then the flag indicating frame trans­
mitted is reset. The events following are very critical in 
sequence: 

a. Reset external status interrupts 

b. Enable the transmitter 

c. Reset transmit CRC 

. d. Enable. transmitter underrun interrupt 

e. Enable the DMA controller 

f. Output first byte of the transmit block to data port 

g. Reset Transmit Underrun Latch 

I*----------------------------------------------~---------------------------*1 

scc_init_a: procedure; 

1* scc ch A register initialization for SOle mode *1 

call 1111'41(09. 10000000b) ; 1* channel A reset *1 
call 1111' a (04. 00100000b )1 1* SOlC mode *1 
caU 1111'41(01. 01100000b) ; 1* OMA for Rx *1 
call 1111' a (03, 11000000b) I 1* e bit Rx char. Rx disable *1 
call 1111' a (05. 011 OOOOOb ) I 1* e bit Tr char. Tx disable *1 
call 1111'01(06. 01010101b )1 1* node address *1 
call 1111' a (07. 011U110b)1 1* SOle flag *1 
call 1111'.( 10. 10000000b) I 1* preset eRe, NRZ encoding *1 
call 1111'.( 11. 01010110b) I 1* rxc • txc = BRG . trxc = BRG out *1 
call 1111'41 ( 12. 00001110b) I 1* to .enerate 125 Kbaud. xl @ 4 mhz *1 
call 1111'41 ( 13. OOOOOOOOb ) ; 
call l111'a (14. 0000011 Ob ) ; 1* BRG source = SVS ClK. OMA for Tx *1 
call 1111'41 ( 15. OOOOOOOOb ) I 1* all ext status interrupts off *1 

1* enables *1 

call 1111'01(14. 00000111b) ; 1* enable : BRG *1 
call 1111'01(01. 11100000b) I 1* enable : drell. *1 
call 1111'01(09. 00001001 b); 1* master IE. vector include. .tatus *1 

end scc_init_a; 

1*------------------------------------------------7--------~----------------*I 
231262-6 

Figure 6. Initialization for SOLe Communication 

2-246 



intJ AP-222 

1*------------- ------------.. ------------.-----. -- .----------------------------- --* 1 

rx_inl.t: procedurel 

declare dma_O_mode literally '1010001001000000b'; 
1* src=IO. dest=M( inc I. sync"src, TC. noint. priDrity. byte *1 

1 D..,16 «!r x _b uff); 
high16«!rx_buff); 

.. ch_a_data; 
= 0; 

blDck_length + 2; 1* +2 fDr CRC *1 

outword (dma_O ._dp 1) 
outwDrd(dma_O_dph) 
outword(dma_O_spl) 
Dutword(dma_O_sph) 
outword(dma_O_tc) 
Dutword (dma_o_cw) = dma_O_mode Dr 0006h; 1* start DMA channel 0 *1 

1* reset frame received flag *1 

call wra(QO.30h)1 1* errDr reset *1 
call wra(Ol. I1111DDlb); 
call wra(Q3. 1101QDOlbl; 

1* sp. cond intr only, ext int enable *1 
1* enable receiver, enter hunt mDde *1 

1 *---------------------------.------------.------------------------.-----------* 1 
231262-7 

Figure 7. SDLC-DMA Frame Reception 

1*-------------------------------_·_-------------------·------------------------*1 

tx_init: procedure; 

declare dma_l_mode literally 'OODI011DIODOOODOb'; 
1* src=M( inc I, dest=IO, sync=dest. TC. noint, nopriDr. byte *1 

IOUI16«ttx_buff( 1) I; 
high16«!tx_buff(11); 
ch_a_data; 
.0; 

outword (dma.J_.sp I I 
outword(dma_l_sph) 
outword(dma_l_dpll = 
outword(dma_l_dph) 
outword(dma_l_tc) block_length - 1; 1* -1 for first byte *1 

'rame_tx = .0; 1* 'reset 'rame transmitted flag *1 

call wra(DD. OODIDDODb) ; 1* reset ESl *1 
call wra(Q5, QllD1Dllb); 1* enable transmitter *1 
call wra(DD, 10101DODb); 1* reset tx CRe, TxINT pending *1 
call wra(15. 01DDOOOOb) ; 1* enable TxU int *1 

outword(dma_l_Cl'/) .. dllla_l_mode 01' DOD6h; 1* start DMA channel *1 
output(ch_a_data) = tx_buff(OI/ 1* first byte - address field ~I 
call wra(QD, 11DOOOOObl; 1* Reset Tx Underrun latch *1 

1*---------------- -- ---'.--. -,--- - ----------------------------------------------* 1 
231262-8 

Figure 8. SDLC-DMA Frame Transmission 

2-247 



intJ AP-222 

1*--------------------------------------------------------------------------*1 

1* channel A interrupt procedures *1 

i n.terrup t 2Sh I 

call wra(OO,38h)1 
output (eoir_1Sh) • 8000hl 
returnl 

end txintr_al 

1* reset highest IUS *1 
1* non specific EOI *1 

procedure interrup~ 2ahi 

call wra(OO,10h)1 
tx_stat = rra(O); 
frame_tx = Offhl 

call wra(OO,38h)1 
output (eoir_1Sh) • SOOOhl 
returnl 

end es i_al 

1* reset ESI *1 
1* read in status *1 
1* set frame transmitted flag *1 

1* reset highest IUS *1 
1* non specific EOI *1 

procedure interrupt 2chl 

call wra(OO,38h)1 
output (eoir_1Sh) • SOOOhl 
returnl 

end rx int-r _al 

1* reset highest IUS *1 
1* non specific EOI *1 

interrupt 2ehl 

rx_stat = rra(l)1 
call wra(OO,30h)1 
call wra(03,11000000b)1 
frame_recd = Offhl 

call wra(OO,3Sh)1 
output (eoir_1Sh) • 8000hl 
returnl 

end src_al 

1* error reset *1 
1* disable rx *1 
1* set frame received flag *1 

1* reset highest IUS *1 
1* non specific EOI *1 

1*--------------------------------------------------------------------------*1 
231262-9 

Figure 9. SDLC-DMA Interrupt Routines 

2·248 



inter AP-222 

The frame gets transmitted out with all bytes, except 
the first one, being fetched by the SCC using the DMA 
controller. At the end of the block the DMA controller 
stops supplying bytes to the SCC. This makes the trans­
mitter underrun. Since the Transmitter Underrun 
Latch is in the reset state at this moment, the CRC 
bytes are appended by the SCC at the end of the trans­
mit block going out. An External Status Change inter­
rupt (esLa, vector = 2ah) is generated with the bit for 
transmitter underrun set in RRO register. This inter­
rupt occurs when the CRC is being transmitted out and 
not when the frame is completely transmitted out. 

9. SOLC Interrupt Routines 

Figure 9 shows all the interrupt procedures for channel 
A when operating in the SDLC mode. The procedures 
of significance here are esi_a and src_a. 

The end of frame reception results in the src_a proce­
dure getting executed. Here the status in register RRI 
is stored in a variable rx_stat for future examination. 
Any error bits set in status are reset, receiver is disabled 
and the flag indicating reception of a new frame is set. 

The esi_a procedure is executed· when CRC of the 
transmitted frame is just going out of the SCC. Reset 
External Status Interrupt command is executed, the ex­
ternal status is stored in a variable tx_stat for future 

examination and the flag indicating transmission of the 
frame is set. 

End of frame processing is required after both of these 
interrupt procedures. It involves looking at 
rx_stat and tlL-stat and checking if the desired opera­
tion was successful. The buffers used, may have to be 
recovered or new ones obtained to start another frame 
transmission or reception. 

CONCLUSIONS 

This article should ease the process of writing a com­
plete data link driver for ASYNC and SDLC modes 
since most of the hardware dependent procedures are 
illustrated here. It was a conscious decision to make the 
procedures as small and easy to understand as possible. 
This had to be done at the expense of making the proce­
dures general and not dealing with various exception 
conditions that can occur. 

REFERENCES 

1. 82530 Data Sheet, Order #230834-001 

2. 82530 SCC Technical Manual, Order 
#230925-001 

2-249 



inter AP-222 

APPENDIX A 
82530-BAUD RATE GENERATORS 

The 82530 has two Baud Rate Generators (BRG) on 
chip-one for each channel. They are used to provide 
the baud rate or serial clock for receive and transmit 
operations. This article describes how the BRG can be 
programmed and used. 

Step 1: Baud Rate Time Constant (BRTC) 

The, BRTC is determined by a simple formula: 

Serial Clock Frequency 
BRTC = , - 2 

The BRG for each channel is totally independent of 
each other and have to be programmed separately for 
each channel. This article describes how anyone of the 
two BRGs can be programmed for operation. To use 
the BRG, four steps have to be performed: 

2 X (Baud Rate X Baud Rate Factor) 

Example: 

For Serial Clock Frequency = 4 MHz 

1. Determine the Baud Rate Time Constant (BRTC) 
to be programmed into registers WRl2 (LSB) and 
WRl3 (MSB). 

Baud Rate 

Baud Rate Factor 

4000000 

= 9600 

16 

2. Program in register, WRII, to specify where the 
output of the BRG must go to. . BRTC = - 2 

3. Program the clock source to the BRG in register 
WRI4. 

2 X (9600 X 16) 

4. Enable the BRG. 
, = 13.021 - 2 = 11.021 

I~I~I~I~I~I~I~I~I 

II ~ I! I ,~coo,· me 0""", o 1 TRxC OUT = TRANSMIT CLOCK 

1 0 TRxC OUT = BR GENERATOR OUTPUT 
1 1 TRxC OUT = DPLL OUTPUT 

TRxC 0/1 

..!!.. J!.. TRANSMIT CLOCK a RTxC PIN 

~ ~ TRANSMIT CLOCK = TR!,C PIN 
...!....!.. TRANSMIT CLOCK = BR GENERATOR OUTPUT 

...!. ~ TRANSMIT CLOCK = DPLL OUTPUT 

r-!!-r!!.. RECEIVE CLOCK = RTxC PIN 

r-!!-r!- RECEIVE CLOCK = TRxC PIN 
~r!!- RECEIVE CLOCK = BR GEN,ERATOR OUTPUT 
c..!..~ RECEIVE CLOCK = DPLL OUTPUT 

L-______________ RTxCXTAUNOXTAL 

Figure 1. Write Register 11 

2-250 

231262-10 



inter AP-222 

Table 1 BRTC - Baud Rate Time Constant 

1 
9600 206.333 
4800 414.667 

Baud 2400 831.333 
Rate 1200 1664.667 

600 3331.333 
300 6664.667 

Since only integers can be written into the registers 
WRI2/WR13 this will have to be rounded off to 11 
and it will result in an error of: 

fraction 0.021 
-- X 100 = -- X 100 = 0.19% 
BRTC 11.021 

This error indicates that the baud rate signal generated 
by the BRG does not provide the exact frequency re­
quired by the system. This error is more serious for 
smaller baud rate factors. For asynchronous systems, 
errors up to 5% are considered acceptable. 

Note that for BRTC = 0, BRG output frequency = 1/4 x 
Serial Clock Freq. 

Table 1 shows the BRTC for a 4 MHz serial clock with 
various baud rates on the Y-axis and baud rate factors 
on the X - axis. The constant that is really programmed 
into registers WRI2/WR13 is the integer closest to the 
BRTC value shown in the table. 

Step 2: BRG Output 

The output of the BRG can be directed to the Receiver, 
Transmitter and the TRxC output. This is programmed 
by setting bits D6 D5, bits D4 D3, and bits D1 DO in 
register WRII to 10. See Figure 1. The output of the 
BRG can also be directed to the Digital Phase Locked 
Loop (DPLL) for the on-chip decoding of the NRZI 
encoded received data signal. This is done by writing 
100 into bits D7 D6 D5 of register WRl4 as shown in 
Figure 2. 

Step 3: BRG Source Clock 

Register WRl4 is used to select the input clock to the 
BRG. See Figure 2. 

2-251 

Baud Rate' Factor 

16 32 64 

11.021 4.510 1.255 
24.042 11.021 4.510 
50.083 24.042 11.021 

102.167 50.083 24.042 
206.333 102.167 50.083 
414.667 206.333 102.167 

IDd~I~I~I~I~I~IDd 

0 0 
0 0 

0 1 
0 1 
1 0 
1 0 

1 1 
1 1 

0 
1 
0 

1 
0 
1 

0 
1 

~~L BR GENERATOR ENABLE 
L BR GENERATOR SOURCE 

DTR/REQUEST FUNCTION 

AUTO ECHO 

LOCAL LOOPBACK 

NULL COMMAND 

ENTER SEARCH MODE 

RESET MISSING CLOCK 

DISABLE DPLL 

SET SOURCE = BR GENERATOR 

SET SOURCE = RTxC 

SET FM MODE 

SET NRZI MODE 

231262-11 

Figure 2. Write Register 14 

WRl4 / bit DI = 0 --+ Clock comes from pin 
RTxC 

WR14 / bit DI = I --+ Clock comes from System 
Clock (PCLK) 

On RESET WR14 / bit D1 = O. 

It should be noted that for the case of Bit D 1 = 0, the 
clock comes either from: 

a. Clock on pin RTxC - if WR11 / D7 = 0 

or b. Crystal on pins RTxC &. SYNC 

- ifWR11 / D7 = 1 

Step 4: BRG Enable 

This is the last step where bit DO of WRl4 is set to start 
the BRG. The BRG can also be disabled by resetting 
this bit. 



inter Ap·222 

APPENDIX B 
MODEM CONTROL PINS ON THE 82530 

Introduction 

This article describes how the CTS and CD pins on the 
82530 behave and how to write software to service 
these pins. The article explains when the External 
Status Interrupt occurs and how and when to issue the 
Reset External/Status Interrupt command to reliably 
determine the state of these pins. 

Bits D3 and D5 of~ster RRO show the inverted state 
of logic levels on CD and CTS pins respectively. It is 
important to note that the register RRO does not always 
reflect the current state of the CD and CTS pins. When­
ever a Reset External/Status Interrupt (RESI) com­
mand is issued, the (inverted) states of the CD and the 
CTS pins get updated and latched into the RRO register 
and the register RRO then reflect the inverted state of 
the CD and CTS pins at the time of the write operation 
to the chip. On channel or chip reset, the inverted state 
of CD and CTS pins get latched into RRO register. 

Normally, a transition on any of the pins does not nec­
essarily change the corresponding bit(s) in RRO. In cer­
tain situations it does and in some cases it does not. A 
sure way of knowing the current state of the pins is to 
read the register RRO after a RESI command. 

There are two cases: 

I. External/Status Interrupt (ESI) enabled: 

II. Polling (ESI disabled). 

Case I: External Status Interrupt (ESI) Enabled 

Whenever ESI is enabled, an interru~n occur when­
ever there is a transition on CD or CTS pins - the IE 

RESET 

bits for CD and/or CTS must als~ be set in WR15 for 
the interrupt to be enabled. 

In this case, the first transition on any of these pins will 
cause an interrupt to occur and the corresponding bit in 
RRO to change (even withoutthe RESI command). A 
RESI command resets the interru.E!.!ine and also latch­
es in the current state of both the CD and the CTS pins. 
If there was just one transition the RESI does not really 
change the contents of RRO. 

If there are more' than one transitions, either on the 
same pin or one each on both pins or multiple on both 
pins, the interrupt would get activated on the first tran­
sition and stay active. The bit in RRO corresponding 
only to the very first transition is changed. All subse­
quent transitions have no effect on RRO. The first tran­
sition, in effect, freezes all changes in RRO. The first 
RESI command, as could be ex~ed, latches the final 
(inverted) state of the CD and CTS pins into the RRO 
register. Note that all the intermediate transitions on 
the pins are lost (because the response to the interrupt 
was not fast enough). The interrupt line gets reset for 
only a brief moment following the first RESI com­
mand. This brief moment is approximately 500 ns for 
the 82530. After that the interrupt becomes active 
again. A second RESI command is necessary to reset 
the interrupt. Two RESI commands resets the interrupt 
line independent of the number of transitions occurred. 

Whenever operating with ESI enabled, it is recom­
mendable to issue two back-to-back RESI commands 
and then read the RRO ~ster to reliably determine 
the state of the CD and CTS pins and also to reset the 
interrupt line in case mUltiple transitions may have oc­
curred. 

SUBSEQUENT 
TRANSITIONS 

231262-12 

State Diagram 

2-252 



AP-222 

Case II: Polling RRO for CD and CTS Pins 

If RRO is polled for determining the state of the CD 
and CTS pins, then the External/Status Interrupt (ESI) 
is kept disabled. In this case the bits in RRO may not 
change even for the first transition. The best way to 
handle this case to always issue a RESI command be­
fore reading in the RRO register to determine the state 
of CD and CTS pins. Note, however, if two back-to­
back RESI commands were to be issued every time be­
fore reading in the RRO register, the first subsequent 
transition will change the corresponding bit in RRO. 

The state di~ above illustrates how each transition 
on CD and CTS pins affect the 82530 and what effect 
the RESI command has. 

State 0 

It is entered on reset. No ESI due to CTS or CD are 
pending in this state. Any transition on CTS or CD 
pins lead to the state I accompanied by an immedi­
ate change in the RRO register. 

State 1 

Interrupt is active (if enabled). If a RESI command 
is issued, state 0 is reached where interrupt ~ain 
inactive. However, a further transition on CTS or 
CD pin leads to state 2 without an immediate change 
in RRO register. 

State 2 

Interrupt is active (if enabled). Any further tran­
sitions have no effect. A RESI command leads to 
state I, temporarily making the interrupt inactive. 

CONCLUSIONS 

Register RRO does not always reflect the current (in­
verted) state of the CD and CTS pins. The most reliable 
way to determine the state of the pins in interrupt or 
polling mode is to issue two back-to-back RESI com­
mands and then read RRO. While polling, the second 
RESI is redundant but harmless. When issuing the 
back-to-back RESI commands to 82530 note that the 
separation between the two write cycles should be at 
least 6 CLK + 200 ns; otherwise the second RESI will 
be ignored. 

2-253 



AP-222 

APPENDIX C 
THE 82530 SCC - 80186 'INTERFACE AP BRIEF 

INTRODUCTION 

The object of this document is to give the 82530 system 
designer an in-depth worst case design imalysis of the 
typical interface to a 80186 based system. This docu­
ment has been revised to include the new specifications 
for the 6 MHz 82530. The new specifications yield bet­
ter margins and a I wait state interface to the CPU (2 
wait states are required for DMA cycles). These new 
specifications will appeaI' in the 1987 data sheet and 
advanced specification information can be obtained 
from your local Intel sales office. The following analy­
sis includes a discussion of how the interface TTL is 
utilized to meet the timing requirements of the 80186 
and the 82530. In addition, several optional interface 
configurations are also considered. 

DATA (D?-De) 

'l1I"fQ E. E2 

H.-1E8 
• 

ua 
IRQ! 

INtB 

?4ASe4 

INTERFACE OVERVIEW 

The 82530 - 80186 interface requires the TIL circuitry 
illustrated in Figure 1. Using five 14 pin TIL packages, 
74LS74, 74AS74, 74AS08, 74AS04, and 74LS32, the 
following operational modes are supported: 

• Polled 
• Interrupt in vectored mode 
• Interrupt in non-vectored mode 
• Half-duplex DMA on both channels 
• Full-duplex DMA on channel A 

A brief description of the interface functional require­
ments during the five possible BUS operations follows 
below. 

... DB? 
S'i'DI6 

8S DI6 
2 DB .. .n 
39 12 

DB. I. 

IIZS38 
T~DA •• 
RXDA • ~EL 

ftlmi •• iI 
IffimI 12 
!VImI II 

1!'f1Ili .7 

= .8 
rI!li •• 

Il1!7IIRli •• 
T)(DI 2. 
RKDI 27 ~L 

ftJII!I 2. B 
1mI9 28 
mI9 • 
IfI'lJIJ 2. 

,IREU n'D 22 
IRES. 9J" 2. 

I'!1!7IIRI 2. 
UCC . •• u 
G.D a. 

HOtES: H - PULLED HUH tHROUGH 6K OHM 
UI - 74LS?4 
U2 - 74AS88 
US - ?o4AS14 
U4 - ?o4AS?4 
us - 74LS82 

DRaB 
'0 ~"L-______________________ ~ 

u. 
231262-18 

F~gure 1. 82530-80186 Interface 

2-254 



AP-222 

125HS/16 

CLKOUT 

AD .... '5 

DT.I R 

60186 ALE 

1m 

15EFI 

PC'S 

1m 
62580 

DATA 

TCLCL L. 
===:::::~:::)~ Oll!-00 vtLjp ~ nl'lTjIII, Ul'liiD ~C==== 

TCL .... V I I TCLDX ---..... "' ... , ... : ............. , ................... : ................................. , ................ ..r.:-:-::-= 
I '. , 

~::::::!:::::::::::::::~r1::::<~L~~:::::::::::::::::::::::::::::::::::r::f:::::::~~~~<::::· 

mil?I'~~I~"":!':'~'~ 
" ' . . 

231262-19 

Figure 2. 80186-82530 Interface Read Cycle 

UNITS, 125 HS/16 

CLKOUT 

====~: ::lx ..... ,-0'" V?LIb x:::=====:J!Miu!Okm:==!=====:::::)C=== 
" ' DT/R 

80166 ALE 

WR 

iiEH 

ADDRESS 
62580 

DATA 

231262-20 

Figure 3. 80186-82530 Interface Write Cycle 

READ CYCLE: The 80186 read cycle requirements are 
met without any additional logic, Figure 2. At least one 
wait state is required to meet the 82530 tAD access 
time. 

WRITE CYCLE: The 82530 requires that data must be 
valid while the WR pulse is low,~ure 3. A D Flip­
Flop delays the leading edge of WR until the falling 
edge of CLOCKOUT when data is guaranteed valid 
and WR is guaranteed active. The CLOCKOUT signal 

is inverted to assure that WR is active low before the D 
Flip-Flop is clocked. No wait states are necessary to 
meet the 82530's WR cycle requirements, but one is 
assumed from the RD cycle. 

INTA CYCLE: During an interrupt acknowledge cy­
cle, the 80186 provides two INT A pulses, one per bus 
cycle, separated by two idle states. The 82530 expects 
only one long INT A ~e with a RD pulse occurring 
only after the 82530 lEI/lEO daisy chain settles. As 

2-255 



AP-222 

UNITS: 125 NSt'12 

T, T, 2T 
T.... IJlLE ST.-.TES T 1 

CLKOUT 

AD 0-15 

80186 DT/R 

INTA 

DEN 
~!~,~2jr,:.",,·~t~:,= 

.. ··T·· .. ········· .. ·········· .. ·······I· .. · .... · .. ·............................... 1 ............. . 

·············1 .. ········ ...... ···· .. ···· .... ·····1 .... ·· .. ···· .... ········ .. ·· .. ·· .. ··· .. · .. ·· .... ···········1···· .... ···· .. ·· .. · 
·····1···· .. ···· ........ ·········· .. ·····1 .... ·· .. ·· .... ·········· .. ······ .. ··· .. ····· .... ········ .. ·1···· .... ···· .. ·· .. · 

CLK ...... ·1.. .. ...... I .. 
''''1'' 

"fNTA --,..--1-1 ---,1 .................. ··1·· .... ·1·· .. ·· .................................................. ···1 .. · .. ~ 
.... T .... i tIC I 1 1 82530 

RD 

VECTOR .::::::::::i::;:r:::::::::::::::::::::>~·~~::::::::::::::::::::::::::::::::t;;~:~~~:·;·:;;~i~~~QiR··· .. ~ 
1 I I 1 

231262-21 

Figure 4. 82530-801861NTA Cycle 

illustrated in Figure 4, the INTA signal is sampled on 
the rising edge of CLK (82530). Two D Flip-Flops and 
two TTL gates, U2 and US, are implemented to gener­
ate the proper INT A and RD pulses. Also, the INT 
signal is passively pulled high, through a I k resistor, 
and inverted through U3 to meet the 80186's active 
high requirement. 

DMA CYCLE: Conveniently, the 80186 DMA cycle 
timings are the same as generic read and write opera­
tions. Therefore, with two wait states, only two modifi­
cations to the DMA request signals are necessary. 
First, the RDYREQA signal is inverted through U3 
similar to the INT signal, and second the DTR/REQA 
signal is conditioned through a D Flip-Flop to prevent 
inadvertent back to back DMA cycles. Because the 
82530 DTR/REQA signal remains active low for over 
five CLK (82530)'s, an additional DMA cycle could 
occur. This uncertain condition is corrected when U4 
resets the DTR/REQ signal inactive high. Full Duplex 
on both DMA channels can easily be supported with 
one extra D Flip-Flop and an inverter. 

RESET: The 82530 does not have a dedicated RESET 
input. Instead, the simultaneous assertion of both RD 
and WR causes a hardware reset. This hardware reset 
is implemented through U2, U3, and U4. 

ALTERNATIVE INTERFACE 
CONFIGURATIONS 

Due to its wide range of applications, the 82530 inter­
face can have many varying configurations. In most of 
these applications the supported modes of operation 

need not be as extensive as the typical interface used in 
this analysis. Two alternative configurations are dis­
cussed below. 

8288 BUS CONTROLLER: An 80186 based system 
implementing an 8288 bus controller will not require 
the preconditioning of the WR signal through the D 
Flip-Flop U4. When utilizing an 8288, the control sig­
nal IOWC does not go active until data is valid, there­
fore, meeting the timing requirements of the 82530. In 
such a configuration, it will be necessary to logically 
OR the IOWC with reset to accommodate a hardware 
reset operation. 

NON·VECTORED INTERRUPTS: If the 82530 is to 
be operated in the non-vectored interrupt mode (B step 
only), the interface will not require UI or US. Instead, 
INT A on the 82530 should be pulled high, and pin 3 of 
U2 (RD AND RESET) should be fed directly into the 
RD input of the SCC. 

Obviously, the amount of required interface logic is ap­
plication dependent and in many cases can be consider· 
ably less than required by the typical configuration, 
supporting all modes of SCC operation. 

DESIGN ANALYSIS 

This design analysis is for a typical microprocessor sys­
tem, pictured in Figure 5. The Timing analysis assumes 
an 8 MHz 80186 and a 6 MHz 82530 being clocked at 
4 MHz. The 4 MHz clock is the 80186 CLKOUT di· 
vided by two by a flip-flop (U6). Also, included in the 
analysis are bus loading, and TTL·MOS compatibility 
considerations. 

2·256 



inter AP-222 

MICROPROCESSOR 

ADDRESS 
LATCH 
roo-

l/L 
,..-- I'-r 
~ 

"ALE 

ADDRESS BUS 

f--
~RO~ f-- r-- r--- -

f--

f--

roo-

'-- Vt 
f"f 

I-
DATA 

TRANSCEIVER 

'" 7 

~ ROM ~ 

'" 7 '" '7 

RAM 
u., 

I/O .........". 

DATA BUS 

231262-22 

Figure 5. Typical Microprocessor System 

Bus Loading and Voltage Level 
Compatabilities 

The data and address lines do not exceed the drive ca­
pability of either 80186 or the 82530. There are several 
control lines that drive more than one TTL equivalent 
input. The drive capability of these lines are detailed 
below. 

WR: The WR signal drives U3 and U4. 

• 101 (2.0 mAl > iii (-0.4 mA + -0.5 mAl 
loh (- 400 /LA) > lih (20 /LA + 20 /LA) 

PCS5: The PCS5 signal drives U2 and U4. 

• 101 (2.0 mAl > iii (-0.5 mA + -0.5 mAl 
loh (-400 /LA) > lih (20 /LA + 20 /LA) 

\ 

INTA: The INTA signal drives 2(Ul) and U5. 

• 101 (2.0 mAl > Iii (-0.4 mA + -0.8 mA + -0.4 mAl 
loh (- 400 /LA) > lih (20 /LA + 40 /LA + 20 /LA) 

All the 82530 I/O pins are TTL voltage level compati­
ble. 

TIMING ANALYSIS 

Certain symbolic conventions are adhered to through­
out the analysis below and are introduced for clarity. 

1. All timing variables with a lower case first letter are 
82530 timing requirements or responses (i.e., tRR). 

2. All timing variables with Upper case first letters are 
80186 timing responses or requirements unless pre­
ceded by another device's alpha-numeric code (i.e., 
Tclcl or '373 Tpd). 

3. In the write cycle analysis, the timing variable, 
TpdWR186-WR530 represents the propagation de­
lay between the leading or trailing edge of the WR 
signalleav~he 80186 and the WR edge arrival at 
the 82530 WR input. 

Read Cycle 

1. tAR: Address valid to RD active set up time for the 
82530. Since the propagation delay is the worst case 
path in the assumed typical system, the margin is calcu­
lated only for a propagation delay constrained and not 
an ALE limited path. The spec value is 0 ns minimum. 

• 1 Tclcl - Tclav(max) - '245Tpd(max) + Tclrl(min) + 
2(U2) Tpd(min) - tAR (min) 

= 125 - 55 - 20.8 + 10 + 2(2) - 0 = 63.2 ns margin 

2-257 



AP~222 

2. tRA: Address to RD inactive hold time. The ALE 
delay is the worst case path and the 82530 requires 0 ns 
minimum. 

• 1 Tclcl - Tclrh (max) + Tchlh(min) + '373 LE 
Tpd(min) - 2(U2) Tpd(max) 

= 55 - 55 + 5 + 8 - 2(5.5) = 2 ns margin 

3. tCLR: CS active low to RD active low set up time. 
The 82530 spec value is 0 ns minimum. 

• 1 Tclcl - Tclcsv(max) - Tclrl(min) - U2 
skew(RD - CS) + U2 Tpd(min) . 

= 125 - 66 - 10 - 1 + 2 = 50 ns margin 

4. tRCS: RD inactive to CS inactive hold time. The 
82530 spec calls for 0 ns minimum. 

• . Tcscsx(min) - U2 skew(RD - CS) - U2 Tpd(max) 

= 35 - 1 - 5.5 = 28.5 ns margin 

5. tCHR: CS inactive to RD active set up time. The 
82530 requires 5 ns minimum. 

• 1 Tclcl + 1 Tchcl - Tchcsx(max) + Tclrl(min) - U2 
skew (RD - CS) + U2 Tpd(min) - tCHR 

= 125 + 55 - 35 - 10 - 1 + 2 - 5 = 131 ns margin 

6. tRR: RD pulse active low time. One 80186 wait state 
is included to meet the 150 ns minimum timing require­
ments of the 82530. 

• Trlrh(min) + 1 (Tclclwait state) - 2(U2 skew) - tRR 

= (250-50) + 1(125) - 2(1) - 150 = 173 ns margin 

7. tRDV: RD active low to data valid maximum delay 
for 80186 read data set up time (Tdvcl = 20 ns). The 
margin is calculated on the Propagation delay pllth 
(worst cas~). 

• 2 Tclcl + 1 (Tclclwait state) - Tclrl(max) - Tdvcl(min) 
- '245 Tpd(max) - 82530 tRDV(max) - 2(U2) Tpd(max) 

= 2(125) + 1(125) - 70 - 20 - 14.2 - 105 - 2(5.5) 
= 154 ns margin 

8. tDF: RD inactive to data output float delay. The 
margin is cai<,:ulated to DEN active low of next cycle. 

• 2 Tclcl + Tclch(min) - Tclrh(max) + Tchctv(min) -
2(U2) Tpd(max) - 82530 tDF(max) 

= 250 + 55 -55 + 10 - 11 - 70 = 179 ns margin 

9. tAD: Address required valid to read data valid maxi­
mum delay. The 82530 spec value is :h5 ns maximum. 

• 3 Tclcl + 1 (Tclclwait state) - Tclav(max) - '373 
Tpd(max) - '245 Tpd - Tdvcl(min) - tAD 

= 375 + 125 - 55 - 20.8 -14.2 - 20 -3::!5 = 65 ns 
margin 

Write Cycle 

1. tAW: Address required valid to WR active low set 
up time. The 82530 spec is 0 ns minimum. 

• Tclcl - Tclav(max) - Tcvctv(min) - '373 Tpd(max) 
+ TpdWR186 - WR530(LOW) [Tclcl - Tcvctv(min) + 
U3 Tpd(min) + U4 Tpd(min)) - tAW 

= 125 - 55 - 5 - 20.8 + [125 - 5 + 1 + 4.41 - 0 
= 170.6 ns margin 

2. tWA: WR inactive to address invalid hold time. The 
82530 spec is 0 ns. 

• Tclch(min) - Tcvclx(max) + Tchlh(min) + '373 LE 
Tpd(min) - TpdWR186=WR530(HIGH) [U2 Tpd(max) + 
U3 Tpd(max) + U4 Tpd(max)) 

= 55 - 55 + 5 + 8 - [5.5 + 3 + 7.11 = -2.6 ns 
margin 

3. tCLW: Chip select active lo~ to WR active low hold 
time. The 82530 spec is 0 ns. 

• 1 Tclcl - Tclcsv(max) + Tcvctv(min) - U2 Tpd(max) 
+ TpdWR186=WR530(LOW) [Tclcl - Tcvctv(min) + U3 
Tpd(min) + U4 Tpd(min)) . 

= 125 - 66 + 5 - 5.5 + [125 - 5 + 1 + 4.41 = 
183.9 ns margin 

4. tWCS: WR invalid to Chip S~lect invalid hold time. 
82530 spec is 0 ns. ' 

• Tcxcsx(min) - U2 Tpd(max) -
TpdWR186=WR530(HIGH) [U2 Tpd(max) + U3 
Tpd(max) + U4 Tpd(max)] 

= 35 + 1.5 - [5.5 + 3 + 7.11 = 20.9 ns margin 

5. tCHW: Chip Select inactive high to WR active low 
set up time. The 82530 spec is 5 ns. 

• 1 Tclcl + Tchcl(min) + Tcvctv(min) - Tchcsx(max) --: 
U2 Tpd(max) + TpdWR186=WR5~0(LOW) [Tclcl -
Tcvctv(min) + U3 Tpd(min) + U4 Tpd(min)1 - tCHW 

= 125 + 55 + 5 - 35 - 5.5 + [125 -5 + 1 + 4.41 -
5 = 264 ns margin . 

6. tWW: WR active low pulse. 82530 requires a mini­
mum of 60 ns from the falling to 'the rising edge of WR. 
This includes one wait state. 

2-258 



intJ AP-222 

* Twlwh [2Tclcl - 40] +·1 (Tclclwait state) - TpdWRI 
186-WR530(lOW) [Tclcl - Tcvctv(min) + U3 Tpd(max) 
+ U4 Tpd(max)] + TpdWR/186=WR/530(HIGH) [U2 
Tpd(min) U3 Tpd(min) + U4 Tpd(min)] - tWW 

= 210 + 1(125) - [125 - 5 + 4.5 + 9.2] - [1.5 + 1 
+ 3.2] - 60 = 135.6 ns margin 

7. tDW: Data valid to WR active low setup time. The 
82530 spec requires 0 ns. 

* Tcvctv(min) - Tcldv(max) - '245 Tpd(max) + 
TpdWR186-WR530(lOW) [Tcici - Tcvctv(min) + U3 
Tpd(min) + U4 Tpd(min)] 

= 5 - 44 - 14.2 + 125 - 5 + 1.0 + 4.4 = 72.2 ns 
margin 

8. tWD: Data valid to WR inactive high hold time. The 
82530 requires a hold time of 0 ns. 

* Tclch - skew {Tcvclx(max) + Tcvctx(min)l + '245 
OE Tpd(min) - TpdWR186-WR530(HIGH) [U2 Tpd(max) 
+ U3 Tpd(max) + U4 Tpd(max)] 

= 55 - 5 + 11.25 - [5.5 + 3.0 + 7.1] = -50.6 ns 
margin 

INTACycle: 

1. tIC: This 82530 spec implies that the INTA signal is 
latched internally on the rising edge of CLK (82530). 
Therefore the maximum delay between the 80186 as­
serting INTA active low or inactive high and the 82530 
internally recognizing the new state of INT A is the 
propagation delay through UI plus the 82530 CLK pe-
riod. . 

* Ul Tpd(max) + 82530 ClK period 

=45+250=295ns 

2. tCI: rising edge of CLK to INT A hold time. This 
spec requires that the state of INT A remains constant 
for 100 ns after the rising edge of CLK. If this spec is 
violated any change in the state of INT A may not be 
internally latched in the 82530. tCI becomes critical at 
the end of an INTA cycle when INTA goes inactive. 
When calculating margins with tCI, an extra 82530 
CLK period must be added to the INTA inactive delay. 

3. tIW: INTA inactive high to WR active low mini­
mum setup time. The spec pertains only to 82530 WR 
cycle and has a value of 55 ns. The margin is calculated 
assuming an 82530 WR cycle occurs immediately after 
an INT A cycle. Since the CPU cycles following an 
82530 INTAcycle are devoted to locating and execut­
ing the proper interrupt service routine, this condition 

should never exist. 82530 drivers should insure that at 
least one CPU cycle separates INT A and WR or RD 
cycles. 

4. tWI: WR inactive high to INT A active low mini­
mum hold time. The spec is 0 ns and the margin as­
sumes CLK coincident with INTA. 

* Tclcl - Tcvctx(max) - TpdWR1B6 - WR530(HIGH) 
[U3 Tpd(max) + U4 Tpd(max)] + Tcvctv(min) + Ul 
Tpd(min) 

= 125 - 55 - [5.5 + 3 + 7.1] + 5 + 10 = 69.4 ns 
margin 

5. tIR: INT A inactive high to RD active low minimum 
setup time. This spec pertains only to 82530 RD cycles 
and has a value of 55 ns. The margin is calculated in 
the same manner as tIW. 

6. tRI: RD inactive high to INTA active low minimum 
hold time. The spec is 0 ns and the margin assumes 
CLK coincident with INT A. 

* Tclcl - Tclrh(max) - 2 U2 Tpd(max) + Tcvctv(min) 
+ Ul Tpd(min) 

= 125 - 55 - 2(5.5) + 5 + 10 = 74 ns margin 

7. inD: INTA active low to RD active low minimum 
setup time. This parameter is system dependent. For 
any SCC in the daisy chain, tlID must be greater than 
the sum of tCEQ for the highest priority device in the 
daisy chain, tEl for this particular SCC, and tEIBO for 
each device separating them in' the daisy chain. The 
typical system with only 1 SCC requires tIID to be 
greater than tCEQ. Since tEl occurs coincidently with 
tCEQ and it is smaller it can be neglected. Additional­
ly, tEIEO does not have any relevance to a system with 
only one SCC. Therefore tIID > tCEQ = 250 ns. 

• 4 Tclcl + 2 Tidle states - Tcvctv(max) - tiC [Ul 
Tpd(max) + 82530 ClK period] + Tcvctv(min) + U5 
Tpd(min) + U2 Tpd(min) - tliD 

= 500 + 250 - 70 - [45 + 250] + 5 + 6 + 2 - 250 
= 148 ns margin 

8. tIDY: RD active low to interrupt vector valid delay. 
The 80186 expects the interrupt vector to be valid on 
the data bus a minimum of 20 ns before T4 of the sec­
ond acknowledge cycle (Tdvcl). tIDY spec is 100 ns 
maximum. 

• 3 Tclcl - Tcvctv(max) - U5 Tpd(max) - U2 
Tpd(max) - tIDV(max) - '245 Tpd(max) - Tdvcl(min) 

= 375 - 70 - 25 - 5.5 - 100 - 14.2 - 20 = 140.3 
ns margin 

2-259 



AP-222 

9. tIl: RD pulse low time. The 82530 requires a mini­
mum of 125 ns. 

• 3 Tclcl - Tcvctv(max) - U5 Tpd(max) - U2 
Tpd(max) + Tcvctx(min) + U5 Tpd(min) + U2 Tpd(min) 
- til (min) 

= 375 - 70 - 25 - 5.5 + 5 + 6 + 1.5 - 125 = 
162 ns margin 

DMACycle 

Fortunately, the 80186 DMA controller emulates CPU 
read and write ~ycle operation during DMA transfers. 
The DMA transfer timings are satisfied using the above 
analysis. Because of the 80186 DMA request input re­
quirements, two wait ,states are necessary to prevent 
inadvertent DMA cycles. There are also CPUDMA in­
tracycle timing considerations that need to be ad­
dressed. 

1. tDRD: RD inactive high to DTRREQ (REQUEST) 
inactive high delay. Unlike the READYREQ signal, 
DTRREQ does not immediately go inactive after the 
requested DMA transfer begins. Instead,. the DTRREQ 
remains active for a maximum of 5 tCY + 300 ns. This 
delayed request pulse could trigger a second DMA 
transfer. To avoid this undesirable condition, a D Flip 
Flop is implemented to reset the DTRREQ signal inac­
tive low following the initiation of the requested DMA 
transfer. To determine if back to back DMA transfers 
are required in a source synchronized configuration, 
the 80186 DMA controller samples the service request 
line 25 ns before T1 of the deposit cycle, the second 
cycle of the transfer. 

• 4 Tclcl - Tclcsv(max) - U4Tpd(max) - Tdrqcl(min) 

= 500 - 66 - 10.5 - 25 = 398.5 ns margin 

2. tRRI: 82530 RD active low to REQ inactive high 
delay. Assuming source synchronized DMA transfer, 
the 80186 requires only one wait state to meet the tRRI 
spec of 200 ns. Two are included for consistency with 
tWRI. 

• 2 Tclcl + 2(Tclclwait state) - Tclrl(max) - 2(U2) 
Tpd(max) - Tdrqcl - tRRI 

=2(125) + 2(125) - 70 - 2(5.5) - 200 = 219 ns 
margin 

3. tWRI: 82530 WR active low to REQ inactive high 
delay. Assuming destination synchronized DMA trans­
fers, the 80186 needs two wait states to meet the tWRI 
spec. This is because the 80186 DMA controller sam­
ples requests two clocks before the end of the deposit 
cycle. This leaves only 1 Tclcl + n(wait states) minus 
WR active delay for the 82530 to inactivate its REQ 
signal. 

• Tcicl + 2(Tclclwait state) - Tcvctv(min) -
TpdWR186-WR530(LOW) [Tclcl - Tcvctv(min) + U3 
Tpd(max) + U4 Tpd(max)] - Tdrqcl - tWRI 

=375 - 5 - [125 - 5 + 4.5 + 9.21 - 25 - 200 = 
11.3 ns margin 

NOTE: 
If one wait state DMA interface is required, external 
logic, like that used on the DTRREQ signal, can be 
used to force the 82530 REQ signal inactive. 

4. tREC: CLK recovery time. Due to the internal data 
path, a recovery period is required between SCC blls 
transactions to resolve metastable conditions internal to 
the SCC. The DMA request lines are,masked from re­
q1,lesting service until after the tREC has elapsed. In 
addition, the CPU should not be allowed to violate this 
recovery period when interleaving DMA transfers and 
CPU bus cycles. Software drivers or external logic 
should orchestrate the CPU and DMA controller oper­
ation to prevent tREC violation. In this example cir­
cuit, tREC could be improved by clocking the '530 with 
a 6 MHz clock. 

Reset Operation 

During hardware reset, the system RESET signal is as­
serted high for a minimum of four 80186 clock cycles 
(1000 ns). The 82530 requires WR and RD to be simul- ' 
taneously asserted low for a minimum of 250 ns. 

• 4 Tclcl - U3 Tpd(max) - 2(U2) Tpd(max) + U4 
Tpd(min) - tREC 

= 1000 - 17.5 - 2(5.5) + 3.5 - 25Q ns = 725 ns 
margin 

82530 VALID ACCESS LOGIC 

Due to the unique internal data path of the 82530, an 
intra-access recovery time must be provided to settle 
any internal metastable conditions. This internal me­
tastble condition gives rise to the Clock Recovery 
(tREC) specification required by the 82530. This tREC 
is measured from the risi~dge of a RD or WR to the 
falling edge of the next RD or WR intended for the 
82530, and equates to 6 CLK's + 130 ns. Effectively, 
this specification implies that the system must provide 
1130 ns (6 MHz 82530) between every CPU or other 
DMA access to the 82530. (Figure 1.) 

Systems that only allow CPU access to the 82530 are 
not significantly impacted by this clock recovery time. 
In CPU access only designs, the software designer ·can 
insert NOP's to guarantee the tREC idle time in be­
tween successive CPU RD or WR cycles to the 82530. 
Unfortunately, systems that contain more than one di­
rect memory access device, interfacing with the 82530, 
will require external hardware to arbitrate 82530 ac­
cesses and thereby guaranteeing the tREC restriction. 

2-260 



intJ AP-222 

82530 !I 
CS --.-I '--
Rii 

{" Non 82530 Sus Cyclo 

WR or--oJ \ ~ 

82530 Clock Recovery Time 
231262-23 

Figure 1 

EXTERNAL VALID ACCESS 
HARDWARE 

To accommodate this clock recovery specification, ex­
ternal hardware has been designed for the 82530 sys­
tems containing several DMA devices accessing, the 
82530 (ie., a CPU and a DMA controller). This logic 
has been tailored for an 80186 environment but can 
easily be modified to fit 8086 or 80286 systems. 

LOGIC STATE MACHINE 

There are two basic functions that need to be per­
formed by the external logic. The first is to mask the CS 
signal from reaching the 82530 until the tREC intra-ac­
cess idle time has elapsed. The second task is to gener­
ate a not ready condition to the CPU or DMA device 
until the tREC period has expired and the minimum 
wait state requirement for the particular access has 
been satisfied. The simple state machine, Figure 2, illus­
trates the required operation. 

The TTL logic pictured in Figure 2 implements the 
state machine with some assorted gates, a flip-flop, and 
a shift register. PCS from the 80186 should be qualified 
with RD + WR to eliminate switching glitches during 
Tl. The 'J..S74 and 'L~OO perform rising edge detection 
to reset the shift register. The shift register clocks out 
the tREC period to enable CS and the additional 2 
CLK's (82530 I to satisfy the 82530 3 wait state re­
quirement. The 80186 should be programmed to use 
the internal wait state generator (3 wait states for the 
82530 and an 8 MHz 801861 and the external READY 
signal. 

Note of caution: This hardware logic has not been veri­
fied on a bread board in an actual system. The hard­
ware designer should verify that this logic fulfills his 
particular system timing requirements. ' 

+5V 

7404 PC5530 1 74AS32 cs 
UCS """tr.;..;..;;.;... .... ~ U6 >= _______ -= 

U3 
74AS02 

ARDY 

231262-24 

Figure 2 

2-261 





Other Components 3 





APPLICATION 
NOTE 

Using the 8291A GPIB 
Talker /Listener 

AP-166 

April 1989 

Order Number: 230832-001 
3-1 



inter AP-166 

INTRODUCTION 

This application note explains the Intel 8291A GPIB 
(General Purpose Interface Bus) Talker/Listener as a 
component, and shows its use in GPIB interface design 
tasks. 

DEVICE A 
1 1 1 1'1 1 1 1 

ABLE TO -'--TALK. LISTEN. 
AND 

CONTROL 

(e.g. calculalor) 

DEVICEB 
ABLE TO i-'-----' 

TALK AND 
LISTEN 

(e.g. digital 
muilimeler) 

(--r-
DEVICEC 

ONLY ABLE i-'-----' 
. TO LISTEN 

(e.g. signal 
generalor) 

( '1/ 

DEVICE D 
ONLY ABLE -

TO TALK 

(e.g. counler) 

The first section of this note presents an overview of 
IEEE 488 (GPIB). The second section introduces the 
Intel GPIB component family. A detailed explanation 
of the 8291A follows. Finally, some application exam­
ples using the component family are presented. 

r 
(f- DATA BUS 

DATA BYTE 
TRANSFER 
CONTROL 

GENERAL 
INTERFACE 

MANAGEMENT 

}DI01 ... 8 Data InpuVOulpul 

DAV 

NRFD 
NDAC 

IFC 

ATN 

SRO 

REN 

EOI 

Dala Available 

Ready for Data 
Data Accepled 

Nol 
Nol 

Inler! ace Clear 

lion Allen 

Servl ce Requesl 

ole Enable 

or Idenllfy 

Rem 

End 

230832-1 

Figure 1. Interface Capabilities and Bus Structure 

3-2 



inter AP-166 

OVERVIEW OF IEEE 488/GPIB 

The GPIB is a parallel interface bus with an asynchro­
nous interlocking data exchange handshake mecha­
nism. It is designed to provide a common communica­
tion interface among devices over a maximum distance 
of 20 meters at a maximum speed of 1 Mbps. Up to 15 
devices may be connected together. The asynchronous 
interlocking handshake dispenses with a common syn­
chronization clock, and allows intercommunication 
among devices capable of running at different speeds. 
During any transaction, the data transfer occurs at the 
speed of the slowest device involved. 

The GPIB finds use in a diversity of applications re­
quiring communication among digital devices over 
short distances. Common examples are: programmable 
instrumentation systems, computer to peripherals, etc. 

The interface is completely defined in the IEEE 
STD.-488-1978. 

A typical implementation consists of logical devices 
which talk (talker), listen (listeners), and control GPIB 
activity (controllers). 

Interface Functions 

The interface between any device and the bus may have 
a combination of several different capabilities (called 
·functions'). Among a total of ten functions defined, the 
Talker, Listener, Source Handshake, Acceptor Hand­
shake and Controller are the more common examples. 
The Talker function allows a device to transmit data. 
The Listener function allows reception. The Source and 
Acceptor Handshakes, synchronized with the Talker 
and Listener functions respectively, exchange the hand­
shake signals that coordinate data transfer. The Con­
troller function allows a device to activate the interface 
functions of the various devices through commands. 
Other interface functions are: Service request, Remote 
local, Parallel poll, Device clear and Device trigger. 
Each interface may not contain all these functions. Fur­
ther, most of these functions may be implemented to 
various levels (called 'subsets') of capability. Thus, the 
overall capability of an interface may be tailored to the 
needs of the communicating device. 

3-3 

Electrical Signal Lines 

As shown in Figure 1, the GPIB is composed of eight 
data lines (008-001), five interface management lines 
(IFC, ATN, SRQ, REN, EOI), and three transfer con­
trollines (DAV, NRFD, NDAC). 

The eight data lines are used to transfer data and com­
mands from one device to another with the help of the 
management and control lines. Each of the five inter­
face management lines has a specific function. 

ATN (attention) is used by the Controller to indicate 
that it (the controller) has access to the GPIB and that 
its output on the data lines is to be interpreted as a 
command. A TN is also used by the controller along 
with EOI to indicate a parallel poll. 

SRQ (service request) is used by a device to request 
service from the controller. 

REN (remote enable) is used by the controller to speci­
fy the command source of a device. A device can be 
issued commands either locally through its front panel 
or by the controller. 

EOI (end or identify) may be used by the controller as 
well as talker. A controller uses EOI along with ATN 
to demand a parallel poll. Used by a talker, EOI indi­
cates the last byte of a data block. 

IFC (interface clear) forces a complete GPIB interface 
to the idle state. This could be considered the GPIB's 
"interface reset." GPIB architecture allows for more 
than one controller to be connected to the bus simulta­
neously. Only one of these controllers may be in com­
mand at any given time. This device is known as the 
controller-in-charge. Control can be passed from one 
controller to another. Only one among all the control­
lers present on a bus can be the system controller. The 
system controller is the only device allowed to drive 
IFC. 



inter 

NOTE: 

AP-166 

SOURCE 

NRFD SIGNAL LINES GOES HIGH 
r-__ ...... __ .,ONLY WHEN ALL ACCEPTORS ARE READY 

DATA IS VALID AND MAY 

NOW BE ACCEPTED 

DATA IS NOT TO BE CONSIDERED 

VALID AFTER THIS TIME 

NO 

YES 

230832-2 

Flow diagram outlines sequence of events during transfer of data byte. More than one listener at a time can accept data 
because of logical connection of NRFD and NDAC lines. 

Figure 2. Handshake Flowchart 

3·4 



intJ AP-166 

Transfer Control Lines 

The transfer control lines conduct the asynchronous in­
terlocking three-wire handshake. 

DAV (data valid) is driven by a talker and indicates 
that valid data is on the bus. 

NRFD (note ready for data) is driven by the listeners 
and indicates that not all listeners are ready for more 
data. 

NDAC (not data accepted) is used by the listeners to 
indicate that not all listeners have read the GPIB data 
lines yet. 

The asynchronous 3-wire handshake flowchart is 
shown in Figure 2. This is a concept fundamental to the 
asynchronous nature of the GPIB and is reviewed in 
the following paragraphs. 

Assume that a talker is ready to start a data transfer. 
At the beginning of the handshake, NRFD is false indi­
cating that the listener(s) is ready for data. NDAC is 
true indicating that the listener(s) has not accepted the 
data, since no data has been sent yet. The talker places 
data on the data lines, waits for the required settling 
time, and then indicates valid data by driving DA V 
true. All active listeners drive. NRFD true indicating 
that they are not ready for more data. They then read 
the data and drive NDAC false to indicate acceptance. 
The talker responds by deasserting DA V and readies 
itself to transfer the next byte. The listeners respond to 
DA V false by driving NDAC true. The talker can now 
drive the data lines with a new data byte and wait for 
NRFD to be false to start the next handshake cycle. 

Bus Commands 

When ATN and DAV are true data patterns which 
have been placed by the controller on the GPIB, they 
are interpreted as commands by the other devices on 
the interface. The GPIB standard contains a repertory 
of commands such as MTA (My Talk Address), MSA 
(My Secondary Address), SPE (Serial Poll Enable), etc. 
All other patterns in conjunction with ATN and DA V 
are classified as undefined commands and their mean­
ing is user-dependent. 

Addressing Techniques 

To allow the controller to issue commands selectively 
to specific devices, three types of addressing exist on the 
GPIB: talk only/listen only (ton/Ion), primary, and 
secondary. 

3-5 

Ton/Ion is a method where the ability of the GPIB 
interface to talk or listen is determined by the device 
and not by the GPIB controller. With this method, 
fixed poles can be easily designated in simple systems 
where reassignment is not necessary. This is appropri­
ate and convenient for certain applications. For exam­
ple, a logic analyzer might by interfaced via the GPIB 
to a line printer in order to document some type of 
failure. In this case, the line printer simply listens to the 
logic analyzer, which is a talker. 

The controller addresses devices through three com­
mands, MTA (my talk address), MLA (my listen ad­
dress), and MSA (my secondary address). The device 
address is imbedded in the command bit pattern. The 
device whose address matches the imbedded pattern is 
enabled. Some devices may have the same logical talk 
and listen addresses. This is allowable since the talker 
and listener are separate functions. However, two of the 
same functions cannot have the same address. 

In primary addressing, a device is enabled to talk (lis­
ten) by receiving the MTA (MLA) message. 

Secondary addressing extends the address field from 5 
to 10 bits by allowing an additional byte. This addition­
al byte is passed via the MSA message. Secondary ad­
dressing can also be used to logically divide devices into 
various subgroups. The MSA message applies only to 
the device(s) whose primary address immediately pre­
cede it. 

INTEL'S® GPIB COMPONENTS 

The logic designer implementing a GPIB interface has, 
in the past, been faced with a difficult and complex 
discrete logic design. Advances in LSI technology have 
produced sophisticated microprocessor and peripheral 
devices which combine to reduce this once complex in­
terface task to a system consisting of a small set of 
integrated circuits and some software drivers. A micro­
processor hardware/software solution and a high-level 
language source code provide an additional benefit in 
end-product maintenance. Product changes are a sim­
ple matter of revising the product software. Field 
changes are as easy as exchanging EPROMS. 

Intel has provided an LSI solution to GPIB interfacing 
with a talker/listener device (829IA), a controller de­
vice (8292), and a transceiver (8293). An interface with 
all capabilities except for the controller function can be 
built with an 8291A and a pair of 8293's. The addition 
of the 8292 produces a complex interface. Since most 
devices in a GPIB system will not have the controller 
function capability, this modular approach provides the 
least cost to the majority of interface designs. 



AP-166 

Overview of the 8291 A 
GPIB Talker/Listener 

The Intel 8291A GPIB Talker/Listener operates over a 
clock range of 1 to 8 MHz and is compatible with the 
MCS-85, iAPX-86, and 8051 families of microproces­
sors. 

A detailed description of the 8291A is given in the data 
sheet. 

The 8291A implements the following functions: Source 
Handshake (SH), Acceptor Handshake (AH), Talker 
Extended (TE), Service Request (SRQ), Listener Ex­
tended (LE), Remote/Local (RL), Parallel Poll (PP2), 
Device Clear (DC), and Device Trigger (DT). 

Current states of the 8291A can be determined by ex­
amining the device's status read registers. In addition, 
the 8291A contains 8 write registers. These registers are 
shown in Figure 3. The three register select pins RS3-
RSO are used to select the desired register. 

The data-in register moves data from the GPIB to the 
microprocessor or to memory when the 8291A is ad­
dressed to listen. When the 8291A is addressed to talk, 
it uses the data-out register to move data onto the 
GPIB. The serial poll mode and status registers are 
used to request service and program the serial poll 
status byte. 

A detailed description of each of the registers, along 
with state diagrams can be found in the 8291A data 
sheet. 

Read Registers Register Select Write Registers 
Code 

r--. __ -. __ -. __ -r __ -r __ ~ __ ~ __ -,RS2 RSI RS0r-~ __ -. __ ~ __ ~~~~ __ r-__ ~~ 

I DI7 I DI6 I DIS I DI4 I DI3 I DI2 I Dll DIO I 0 0 0 I D07 I D06 I DOS I D04 I D03 I D02 I DOl I 000 I 

DATA IN DATA OUT 

I CPT I APT I GET I END I DEC I ERR I BO BI I 0 0 

INTERRUPT STATUS 1 

liNT I SPAS I LLO I REM I SPC I LLOC I REMC I ADSC I 0 

INTERRUPT STATUS 2 

S8 I SROS I S6 I S5 I S4 I S3 S2 SI I 0 

SERIAL POLL STATUS 2 

I CPT I APT I GET I EN~ I DEC I ERR I BO BI 

INTERRUPT ENABLE 1 

o I 0 I 0 I DMAO I DMAd SPC I LLOC I REMC I ADSC I 

INTERRUPT ENABLE 2 

1 I S8 I RSV I S6 I SS I S4 I S3 S2 SI 

SERIAL POLL MODE 

I ton I Lon I EOI I LPAS I TPAS I LA I TA I MJMNI 

ADDRESS STATUS 

o 0 I TO I LO I 0 I 0 I 0 I 0 I ADMI I ADMO I 

ADDRESS MODE 

ICPT71 CPT61cPTSI CPT41 CPT31 CPT21 CPTI I CPTO I 1 0 1 I CNT21CNTII CNIO ICOM41cOM31cOM21cOMlicOMOI 

COMMAND PASS THROUGH 

liNT I DTO I DLO IADS-0IAD4-0IAD3-0IAD2-OIAD1-01 1 

ADDRESS 0 

I X I DTI I DLI IADS-lIAD4-1IAD3-1IAD2-1IAD1-11 

ADDRESS 1 

AUXMODE 

OIARSIDTI DL IADSIAD41AD31AD21ADli 

ADDRESS 011 

1 I EC7 I Ecsl ECS I EC4 I EC3 I EC2 I ECI I ECO I 

EOS 

Figure 3. 8291A Registers 

3-6 



AP-166 

Address Mode. 

The address mode and status registers are used to pro­
gram the addressing modes and track addressing states. 
The auxiliary mode register is used to select a variety of 
functions. The command pass through register is used 
for undefined commands and extended addresses. The 
address 0/1 register is used to program the addresses to 
. which the 8291A will respond. The address 0 and 

address I registers allow reading of these programmed 
addresses plus trading of the interrupt bit. The EOS 
register is used to program the end of sequence charac­
ter. 

Detailed descriptions of the addressing modes available 
with the 8291A are described in the 8291A data sheet. 
Examples of how to program these modes are shown 
below . 

1. MODE: Talker has single address of 01 H 
Listener has single address of 02H 

CPU Writes to: Pattern 

Address Mode Register 0000 0001 
Address 0/1 Register 0010 0001 
Address 0/1 Register 11000010 

2. MODE: Talker has single address of 01 H 
Listener has single address of 02H 

CPU Writes to: Pattern 

Address Mode Register 0000 0001 
Address 0/1 Register 0100 0010 
Address 011 Register 1010 0001 

Comment 

Select Mode 1 Addressing 
Major is Talking. Address = 01 H 
Minor is Listener. Address = 02H 

Comment 

Select Mode 1 Addressing 
Major is Listener. Address = 02H 
Minor is Talking. Address = 01 H 

Note that in both of the above examples, the listener will respond to a MLA message with five least significant bits 
equal to 02H and the talker to a OIH. 

3. MODE: Talker and listener both share a Single address of 03H 

CPU Writes to: Pattern Comment 

Address Mode Register 0000 00Q1 Select Mode 1 Addressing 
Address 0/1 Register 0000 0011 Talker and Listener Address = 03 
Address 0/1 Register 11100000 Minor Address is disabled 

4. MODE: Talker and listener have a primary address of 04H and a secondary address of 05H 

CPU Writes to: Pattern Comment 

Address Mode Register 0000 0010 Select Mode 2 Addressing 
Address 0/1 Register 0000 0100 Primary Address = 04H 
Address 0/1 Register 1000 0101 Minor Address is disabled 

5. MODE: Talker has a primary address of 06H. Listener has a primary address of 07H 

CPU Writes to: Pattern Comment 

Address Mode Register 0000 0011 Select Mode 3 
Address 0/1 Register 0010 0110 Talker Address = 06 
Address 0/1 Register 1100 0111 Listener Primary = 07 

The CPU will verify the secondary addresses which could be the same or different. 

3-7 



intJ AP-166 

APPLICATION OF THE 8291A 

This phase of the application note will examine pro­
gramming of the 8291A, corresponding bus commands 
and responses, CPU interruption, etc. for a variety of 
GPIB activities. This should provide the reader with a 
clear understanding of the role of the 8291A performs 
in a GPIB system. The talker function, listener func­
tion, remote message handling, and remote/local oper­
ations including local lockout, are discussed. 

Talker Functions 

TALK-ONLY (ton). In talk only mode the 8291A will 
not respond to the MTA message from a controller. 
Generally, ton is used in an environment which does 
not have a controller. Ton is also employed in an inter­
face that includes the controller function. 

When the 8291A is used with the 8292, the sequence of 
events for initialization are as follows: 

I) The Interrupt/Enable registers are programmed. 
2) Ton is selected. 
3) Settling time is selected. 
4) EOS character is loaded. 
5) "Pon" local message is sent. 
6) CPU waits for Byte Out (BO) and sends a byte to 

the data out register. 

Addressed Talker (via MTA Message) 

The GPIB controller will direct the 8291A to talk by 
sending a My Talk Address (MTA) message containing 
the· 8291A's talk address. The sequence of events is as 
follows: 

I) The interrupt enable and serial poll mode registers 
are programmed. . 

2) Mode 1 is selected. 
3) Settling time is selected. 
'4) Talker and listener addresses are programmed. 
5) Power on (pon) local message is sent. 
6) CPU waits for an interrupt. When the controller 

has sent the MTA message for the 8291A an inter­
rupt will be generated if enabled and the ADSC bit 
will be set. 

7) CPU reads the Address Status register to determine 
if the 8291A has been addressed to talk (TA = I). 

8) CPU waits for an interrupt from either BO or 
ADSC 

9) When BO is set, the CPU writes the data byte to 
the data out register .. 

10) CPU continues to poll the status registers. 
11) When unaddressed ADSC, will be set and T A reset. 

3-8 

LISTENER FUNCTIONS 

LISTEN-ONLY (Ion). In listen-only mode the 8291 
will not respond to the My Listen Apdress (MLA) mes­
sage from the controller. The sequence of events is as 
follows: 

I) The Interrupt Enable registers are programmed. 
2) Lon is selected. 
3) EOS character is programmed. 
4) "Pon" local message is sent. 
5) CPU waits for BI and reads the byte from the data-

in register. . 

Note that enabling both ton and Ion can create an inter­
nal loopback as long as another listener exists. 

Addressed Listening 
(via the MLA Message) 

The GPIB controller will direct the 8291A to listen by 
sending a MLA message containing the 8291A's listen 
address. The sequence of events is as follows: 

I) The Interrupt Enable registers are programmed. 
2) The serial poll mode register is loaded as desired. 
3) Talker and listener addresses are loaded. 
4) "Pon" local message is sent. 
5) The CPU waits for an interrupt. When the control­

ler has sent the MLA message for the 8291A, the 
ADSC bit will be set. 

6) The CPU reads the Address Status Register to de­
termine if the 8291A has been addressed to listen 
(LA = I). 

7) CPU waits for an interrupt for BI or ADSC. 
8) When BI is set, the CPU reads the data byte from 

the data-in register. 
9) The CPU continues to poll the status registers. 
10) When unaddressed, ADSC will be set and LA reset. 

Remote/Local and Lockout 

Remote and local refer to the source of control of a 
device connected to the GPIB. Remote refers to control 
from the GPIB controller-in-charge. Local refers to 
control from the device's own system. Reference should 
be made to the RL state diagram in the 2891A data 
sheet. 

Upon "pon" the 8291A is in the local state. In this state 
the REM bit in Interrupt Status 1 Register is reset. 
When the GPIB controller takes control of the bus it 
will drive the REN (remote enable) line true. This will 
cause the REM bit and REMC (remote/local change) 
bit to be set. The distinction between remote and local 
modes is necessary in that some types of devices will 
have local controls which have functions which are also 
controlled by remote messages. 



inter Ap·166 

In the local state the device is allowed to store, but not 
respond to, remote messages which control functions 
which are also controlled by local messages. A device 
which has been addressed to listen will exit the local 
state and go to the remote state if the REN message is 
true and the local rtl (return to local) message is false. 
The state of the "rtl" local message is ignored and the 
device is "locked" into the local state if the LLO re­
mote message is true. In the Remote state the device is 
nQt allowed to respond to local messages which control 
function that are also controlled by remote messages. A 
device will exit the remote state and enter the local 
state when REN goes false. It will also enter the local 
state if the GTL (go to local) remote message is true 
and the device has been addressed to listen. It will also 
enter the local state if the rtl message is true and the 
LLO message is false or ACDS is inactive. 

A device will exit the remote state and enter RWLS 
(remote with lockout state) if the LLO (local lockout) 
message is true and ACDS is active. In this mode, those 
local messages which control functions which are also 
controlled by remote messages are ignored. In other 
words, the "rtl" message is ignored. A device will exit 
RWLS and go to the local state ifREN goes false. The 
device will exit RWLS and go to LWLS if the GTL 
message is true and the device is addressed to listen. 

Polling 

The IEEE-488 standard specifies two methods for a 
slave device to let the controller know that it needs 
service. 

These two methods are called Serial and Parallel Poll. 
The controller performs one of these two polling meth­
ods after a slave device requests service. As implied in 
the name, a Serial Poll is when the controller sequen­
tially asks each device if it requested service. In a Paral­
lel Poll the controller asks all of the devices on the 
GPIB, if they requested service, and they reply in paral­
lel. 

Serial Poll 

When the controller performs a Serial Poll, each slave 
device sends back to the controller a Serial Poll Status 
Byte. One of the bits in the Serial Poll Status Byte indi­
cates whether this device requested service or not. The 
remaining 7 bits are used defined, and they are used to 
indicate what type of service is required. The IEEE-488 
spec only defines the service request bit, however HP 
has defined a few more bits in the Serial Poll Status 
Byte. This can be seen in Figure 4. 

When a slave device needs service it drives the SRQ line 
on the GPIB bus true (low). For the 8291A this is done 
by setting bit 7 in the Serial Poll Status Byte. The CPU 
in the controller may be interrupted by SRQ or it may 
poll a register to determine the state of SRQ. Using the 
8292 one could either poll the interrupt status register 
for the SRQ interrupt status bit, or enables SRQ to 
interrupt the CPU. After the controller recognizes a 
service request, it goes into the serial poll routine. 

The first thing the controller does in the serial poll rou­
tine is assert ATN. When ATN is asserted true the 
controller takes control of the GPIB, and all slave de-

rf SERVICE REQUESTED 

0: SERvICE NOT REQUESTED 

8 7 I 6 • • • • 

L-DEVICE DEPENDENT STATUS BITS----1 

TYPICAL HP UF-1SE: 1: SERVICE REQUESTED 

0: SERVICE NOT REQUESTED 

8 7 6 • • 

• 1 I 

• 

NOT USED W DEVICE DEFINED 
1: OPERATION COMPLETE 

0: BUSY , 

11: ERROR 
1-.-------1 

10: NORMAL 

Figure 4_ The Serial Poll Status Byte 

3-9 

230832-3 



AP-166 

vices on the bus must listen. All bytes sent over the bus 
while ATN is true are commands. After the controller 
takes control, it sends out a Universal Unlisten (UNL), 
which tells all previously addressed listeners to stop lis­
tening. The controller then sends out a byte called SPE 
(Serial Poll Enable). This command notifies all of the 
slaves on the bus that the controller has put the GPIB 
in the Serial Poll Mode State (SPMS). Now the control­
ler addresses the first slave device to TALK and puts 
itself in the listen mode. When the controller resets 
A TN the device addressed to talk transmits to the con­
troller its Serial Poll Status, Byte. If the device just 
polled was the one requesting service, the SRQ line on 
the GPIB goes false, and bit 7 in the serial ppll status 
byte of the 8291A is reset. If more than one device is 
requesting service, SRQ remains low until all of the 
devices requesting service have been polled, since SRQ 
is wire-ored. To continue the Serial Poll, the controller 
asserts A TN, addresses the next device to talk then 
reads the Serial Poll Status Byte. When the controller is 
finished polling it asserts ATN, sends the univeral un­
talk command (UNT), then sends the Serial Poll Dis­
able command (SPD). The flow of the serial poll can be 
seen from the example in Figure S. 

0) DEVICE A REQUESTS SERVICE (SRQ) 
I) ASSERT ATN 
2) UNIVERSAL UNLISTEN (UNL) 
3) SERIAL POLL ENABLE (SPE) 
4) DEVICE A TALK ADDRESS (MTA) 
5) RELEASE ATN 
6) DEVICE A STATUS BYTE (STD) (RQS SET) 
7) ASSERT ATN 
8) DEVICE B TALK ADDRESS (MTA) 
9) RELEASE ATN 
10) DEVICE B STATUS BYTE (STB) (RQS 

CLEAR) 
11) ASSERT ATN 
12) DEVICE C TALK ADDRESS (MTA) 
13) RELEASE ATN 
14) DEVICE C STATUS BYTE (STB) (RQS 

CLEAR) 
15) ASSERT ATN 
16) UNIVERSAL UNTALK (UNT) 
17) SERIAL POLL DISABLE (SPD) 
18) GO PROCESS SERVICE REQUEST 

Figure 5. Serial Polling 

The following section describes the events which hap­
pen in a serial poll when 8291A and 8292 are the con­
troller, and another 8291A is the slave device. While 
going through this section the reader should refer to the 
register diagrams for the 8291A and 8292. 

A. DEVICE A REQUESTS SERVICE 
(SRQ BECOMES TRUE) 

The slave devices rsv bit in the 2819A's serial poll mode 
register is set. 

B. CONTROLLER RECOGNIZES SRQ AND 
ASSERTS ATN 

The 8292's SPI pin 33 interrupts the CPU. The CPU 
reads the 8292's Interrupt status register and finds the 
SRQ bit set. The CPU tells the 8292 to 'Take Control 
Synchronously' by writing a OFDH to the 8292's com­
mand register. 

C. THE CONTROLLER SENDS OUT THE 
FOLLOWING COMMANDS: UNIVERSAL 
UNLISTEN (UNL), SERIAL POLL ENABLE (SPE), 
MY TALK ADDRESS (MTA) 

(MT A is a command which tells one of the devices on 
the bus to talk.) 

The CPU in the controller waits for a BO (byte ,out) 
interrupts in the 8291A's interrupt status I register be­
fore it writes to the Data Out register a 3FH (UNL), 
18H (SPE), OIOXXXXX (MTA). The X represents the 
programmable address of a device on the GPIB. When 
the 8291 A in the slave device receives its talk address, 
the ADSC bit in the Interrupt Status register 2 is set, 
and in the Address Status Register T A and TP AS bits 
are set. 

3-10 

D. CONTROLLER RECONFIGURES ITSELF TO 
LISTEN AND RESETS ATN 

The CPU in the controller puts the 8291A in the listen 
only mode by writing a 40H to the Address Mode regis­
ter of the 8291A, and then a OOH to the Aux Mode 
register. The second write is an 'Immediate Execute 
pon' which must be used when switching addressing 
modes such as talk only to listen only. To reset ATN 
the CPU tells the 8292 to 'Go To Standby' by writing a 
OF6H to the command, register. The moment ATN is 
reset, the 8219A in the slave device sets SPAS in Inter­
rupt Status 2 register, and transmits the serial poll 
status byte. SRQS in the Serial Poll Status byte of the 
8291A slave device is reset, and the SRQ line on the 
GPIB bus becomes false. 

E. THE CONTROLLER READS THE SERIAL 
POLL STATUS BYTE, SETS ATN, THEN 
RECONFIGURES ITSELF TO TALK 

The CPU in the controller waits for the Byte In bit (BI) 
in the 8291A's Interrupt Status I register. When this bit 
is set the CPU reads the Data In register to receive the 
Serial Poll Status Byte. Since bit 7 is set, this was the 
device which requested service. The CPU in the con­
troller tells the 8292 to 'Take Control Synchronously' 
which asserts ATN. The moment ATN is asserted true 
the 8291A in the slave device resets SPAS, and sets the 



inter AP-166 

Serial Poll Complete (SPC) bit in the Interrupt Status 2 
register. The controller reconfigures itself to talk by set­
ting the TO bit in the Address Mode register and then 
writing a OOH to the Aux Mode register. 

F. THE CONTROLLER SENDS THE COMMANDS 
UNIVERSAL UNTALK (UNT), AND SERIAL POLL 
DISABLE (SPD) THEN RESETS THE SRQ BIT IN 
THE 8292. INTERRUPT STATUS REGISTER 

The CPU in the controller waits for the BO Interrupt 
status bit to be set in the Interrupt Status I register of 
the 829lA before it writes 5FH (UNT) and 19H (SPD) 
to the Data Out register. The CPU then ,,(rites a 2BH 
to the 8292's command register to reset the SRQ status 
bit in the Interrupt Status register. When the 829lA in 
the slave device receives the UNT command the ADSC 
bit in the Interrupt Status 2 register is set, and the T A 
and TP AS bits in the Address Status register will be 
reset. At this point the controller can service the slave 
device's request. 

Note that in the software listing of AP-66 (USING 
THE 8292 GPIB CONTROLLER) there is a bug in 
the serial poll routines. In the 'SRQ ROUTINE' when 
the CPU finds that the SRQ bit in the interrupt status 
register is set, it immediately writes the interrupt Ac­
knowledge command to the 8292 to reset this bit. How­
ever the SRQ GPIB line will still be driven true until 
the slave device driving SRQ has been polled. There­
fore, the SRQ status bit in the 8292 will become set and 
latched again, and as a result the SRQ status bit in the 
8.292 will still be set after the serial poll. The proper 
time to reset the SRQ bit in the 8292 is after SRQ on 
the GPIB becomes false. 

Parallel Poll 

The 8291A supports an additional method for obtain­
ing status from devices known as parallel poll (PPOL). 
This method limits the controller to a maximum of 8 
d~vices at a time since each device will produce a single 
bit response on the GPIB data lines. As shown in the 
state diagrams, there are three basic parallel poll states: 
PPIS (parallel poll idle state), PPSS (parallel poll stand­
by state), and PPAS (parallel poll active state). 

In PPIS, the device's parallel poll function is in the idle 
state and will not respond to a parallel poll. PPSS is the 
standby state, a state in which the device will respond 
to a parallel poll from the controller. The response is 
initiated by the controller driving both ATN and EOI 
true simultaneously. 

The 8291A state diagram shows a transition from PPIS 
to PPSS with the "Ipe" message. This is a PP2 imple­
mentation for a parallel poll. This "Ipe" (local poll en­
able) local message is achieved by writing 
OilUSP3P2PI to the Aux Mode Register with u=o. 

3-11 

The S bit is the sense bit. If the "ist" (individual status) 
local message value matches the sense bit, then the 
829lA will give a true response to a parallel poll. Bits 
P3-PI identify which data line is used for a response. 

For example, assume the programmer decides that the 
system containing the 829lA shall participate in paral­
lel poll. The programmer, upon system initialization 
would write to the Aux Mode Register and reset the U 
bit and set the S bit plus identify a data line (P3-PI 
bits). At "pon," the 8291A would not respond true to a 
parallel poll unless the parallel poll flag is set (via Aux 
Mode Register command). 

When a status condition in the user system occurs and 
the programmer decides that this condition warrants a 
true response, then programmers software should set 
the parallel poll flag. Since the S bit value matches the 
"ist" (set) condition a true response will be given to all 
parallel polls. 

An additional method of parallel polling reading exists 
known as a PPI implementation. In this case the con­
troller sends a PPE (parallel poll enable) message. PPE 
contains a bit pattern similar to the bit pattern used to 
program the "Ipe" local message. The 829lA will re­
ceive this as an undefined command and use it to gener­
ate an "Ipe" message. Thus the controller is specifying 
the sense bits and data lies for a response. A PPD (par­
allel poll disable) message exists which clears the bits 
SP3P2Pl and sets the U bit. This also will be received 
by the 829lA and used to generate an "Ipe" false local 
message. 

The actual sequence of events is as follows. The con­
tro~le~ sends a PPC (parallel poll configure) message. 
ThiS IS an undefined command which is received in the 
CPT register and the handshake is held off. The local 
CPU reads this bit pattern, decodes it, and sends a 
VSCMD message to the Aux Mode Register. The con­
troller then sends a ppe message which is also received 
as an undefined command in the CPT register. The 
local CPU reads this, decodes it clears the MSB and 
writes this to the Aux Mode Register generatin~ the 
"Ipe" message. 

The controller then sends ATN and EOI true and the 
8291A drives the appropriate· data line if the "ist" (par­
allel poll flag) is true. The controller will then send a 
PPD (parallel poll disable) message (again, an unde­
fined command). The CPU reads this from the CPT 
register and uses it to write new "Ipe" message (this' 
"Ipe" message will be false). The controller then sends a 
PPU (parallel poll unconfigure) message. Since this is 
also an undefined command, it goes into the CPT regis­
ter. When the local CPU decodes this, the CPU should 
clear the "ist" (parallel poll flag), 



AP-166 

APPLICATION EXAMPLES 

In the course of developing this application note, two 
complete and identical; GPIB systems were built. The 
schematics and block diagrams are contained in Appen­
dix 1. These systems feature an 8088 CPU, 8237 DMA 
controller, serial I/O (8215a and 8253), RAM, 
EPROM, and a complete GPIB talker/listener control­
ler. Jumper switches were provided to select between a 
controller function and a talker/listener function. This 
system design is based on the design of Intel's SDK-86 
prototypi{lg kit and thus shares the same I/O and 
memory addresses. This system uses the same down­
load software to transfer object files from Intel develop­
ment systems. 

Two Software Drivers 

Two software drivers were developed to demonstrate a 
ton/lon environment. These two programs (BOARD 1 
and BOARD 2) are contained in Appendix 2. 

In this example, one of the systems (BOARD 1) initial­
ly is programmed in talk-only mode and synchroniza­
tion is achieved by waiting for the listening board to 
become active. This is sensed by the lack of a GPIB 
error since a condition of no active listener produces an 
ERR status condition. Board 1 upon detecting the pres­
ence of an active listener transmits a block of 100 bytes 
from a PROM memory across the bus. The second sys­
tem (BOARD 2) receives this data and stores it in a 
buffer, EO! is sent true by the talker (BOARD 1) with 
the last byte of data. Upon detection of Eo!, BOARD 
2 switches to the talk only mode while BOARD 1 upon 
terminal count switches to the listen only mode. 
BOARD 2 then detects the presence of an active listen­
er and transmits the contents of its buffer back to 
BOARD 1 which stores this data in the buffer. EO! 
again is sent ,with the last byte and BOARD 2 switches 
back to listen-only. BOARD 1 upon detecting EO! 
then compares the contents of its buffer with the con­
tents of its PROM to ensure that no data transmission 
errors occurred. The process then repeats itself. 

8291A with HP 9835A 

An example of the 8291A used in conjunction with a 
bus controller is also included' in this application note. 
In this example, the 8291A system used in previous 
experiments was connected via the GPIB to a Hewlett­
Packard 9835A desktop computer. This computer con­
tains, in addition to a GPIB interface, a black and 
white CRT, keyboard, tape drive for high quality data 
cassettes, and a calculator type printer. The software 
for the HP9835S is shown in Appendix 3. The user 
should refer to the operation ,manuals for the 
HP 9835A for information on the features and pro­
gramming methods for the HP 9835A. 

3-12 

In this example, the 8292 was removed from its socket 
and the OPT A and OPTB pins of the two 8293 trans­
ceiver reconfigured to modes 0 and 1. Optionally, the 
mode pins could have been left wired for modes 2 and 3 
and the 8292 left in its socket with its SYC pin wired to 
ground. This would have produced the same effect. 

The first action performed is sending IFC. Generally, 
this is done when a controller first comes on line. This 
pulse is at least 100 /los in duration as specified by the 
IEEE-488 standard. 

The software checks to see if active listeners are on line. ' 
For demonstration purposes, the HP 9835A will flag 
the operator to indicate that listeners are on line. 

The HP 9835A then configures and performs a parallel 
poll (PPOL). The parallel poll indicates I bit of status 
of each device in a group of up to 8 devices. Such infor­
mation could be used by an application program to de­
termine whether optional devices are part of a system 
configuration. Such optional devices might include 
mass storage devices, printers, etc., where the applica­
tion software for the controller might need to format 
data to match each type of device. Once the PPOL 
sequence is finished, the HP 9835A offers the user the 
opportunity to execute user commands from the key­
board. At this time the HP 9835A sits in a loop waiting 
for an SRQ condition. When the operator hits a key on 
the keyboard, the HP 9835A processor is interrupted 
and vectors to a service routine where the key is read 
and the appropriate routine is executed. The HP 9835A 
will then return to the loop checking for the SRQ true. 
For this application, the valid keys are G, D, R, H, and 
X. Pressing the "G" key causes the GET command to 
be sent across the bus. A message to this effect is print­
ed in the CRT and the HP 9835A returns. The "D" key 
causes the SDC message to be sent with the 8291A 
being the addressed device. Again, an appropriate mes­
age is output on the HP 9835A CRT. The "R" key 
causes the GTL message to be sent. The CRT displays 
"REMOTE MESSAGE SENT." The "H" key causes a 
menu to be displayed on the HP 9835A CRT screen. 
This menu lists the allowed commands and their func­
tions. NO GPIB commands are sent. The "X" key al­
lows the operator to send one line of data across the 
bus. The line of data is terminated by a carriage return 
and line feed produced by pressing the "CONTINUE" 
key on the HP 9835A. 

The characters are stored in the sequence entered into a 
buffer whose maximum size is 80 characters. Pressing 
the "CONTINUE" key terminates storing characters 
in the,array and all characters including the carriage 
return and line feed are sent. EOI is then sent true with 
a false byte of OOH. This false byte is due to the 1975 
standard which allows asynchronous sending and re­
ception of EO!. (The 8291A supports the later 1978 
standard which eliminates this false byte.) 



inter Ap·166 

After any key command is serviced control returns to 
the loop which checks for SRQ active. Should SRQ be 
active, then the keyboard interrupt is disabled and a 
message printed to indicate that SRQ has been received 
true. 

The controller then performs a parallel poll. 

This is an example of how parallel poll may be used to 
quickly check which group of devices contains a device 
sending SRQ. The eight devices in a group would, of 
course, have software drivers which allow a true re­
sponse to a PPOL if that device is currently driving 
SRQ true. This would be a valuable method of isolation 
of the SRQ source in a system with a large number of 
devices. In this application program, only the response 
from the 8291A is of concern and only the 8291A's 
response is considered. It does, however, demonstrate 
the technique employed. If a true response from the 
8291A is detected, then a message to this effect is print­
ed on the HP 9835A CRT screen. From this process, 
the controller has identified the device requesting serv­
ice and will use a serial poll (SPOL) to determine the 
reason for the service request. This method of using 
PPOL is not specifically defined by the IEEE-488 stan­
dard but is a use of the resources provided. 

The controller software then prints a message to indi­
cate that it is about to perform a serial poll. This serial 
poll will return to the controller the current status of 
the 2819A and clear the service request. The status byte 
received is then printed on the CRT screen of the 
HP 9835A. One of the 8291A status bits indicates that 
the 8291A system has a field (on line or less) of data to 
transfer to the HP 9835A. If this bit is set, then the 
HP 9835A addresses the 8291A system to talk. The 
data is sent by the 8291A system is then printed on the 
CRT screen of the HP 9835A. The HP 9835 then en­
ables the keyboard interrupts and goes into its SRQ 
checking loop. 

Appendix 4 contains the software for the 8291A system 
which is connected to the HP 9835A via the GPIB. 
This software throws away the first byte of data it re­
ceives since this transfer was used by the HP 9835A to 
test when the 8291A system came on line. 

Next; both status registers are read and stored in the 
two variable STAT 1 and ST AT 2. It is necessary to 
store the status since reading the status registers clears 
the status bits. 

Initially, six status bits are evaluated (END, GET, 
CPT, DEC, REMC, ADSC). Some of these conditions 
require that additional status bits be evaluated. 

If END is true, then the 8291A system has received a 
block from the HP 9835A and the contents of a buffer 
is printed on the CRT screen. Next, the CPT bit is 
checked. PPC and PPE are only valid undefined com­
mands in this example. 

3-13 

Next, the GET bit is examined and if true, the CRT 
screen connected to the serial channel on the 8291A 
system prints a message to indicate that the trigger 
command has been received. A similar process occurs 
with the DEC and REMC status bits. 

Address Status Chagne (ADSC) is checked to see if the 
8291A has been addressed or unaddressed by the con­
troller. If ADSC is false, then the software checks the 
keyboard at the CRT terminal. If ADSC is set, then the 
T A and LA bits are read and evaluated to determine 
whether the 8291A has been addressed to talk or listen. 
The DMA controller is set to start transfers at the start 
of the character buffer and the type of transfer is deter­
mined by whether the 8291A in in TADS or LADS. 
We only need to set up the DMA controller since the 
transfers will be transparent to the system processor. 
The keyboard from the CRT terminal is then checked. 
If a key has been hit, then this character is stored in the 
character buffer and the buffer printer set to the next 
character location. This process repeats until the re­
ceived character is a line feed. The line feed is echoed to 
the CRT, the serial poll status byte updated and the 
SRQ line driven true. This allows the 8291A system to 
store up to one line of characters before requesting a 
transfer to the controller. Recall that upon receiving an 
SRQ, the controller will perform a serial poll and sub­
sequently address the 8291A to talk. The 8291A system 
then goes back to reading the status register thus re­
peating the process. 

CONCLUSION 

This application note has shown a basic method to view 
the IEEE 488 bus, when used in conjunction with In­
tel's 8291A. 

The main reference for GPIB questions is the IEEE 
Standard 488-1978. Reference 8291A's data sheet fOT 
detailed information on it. 

Additional Intel GPIB products include iSBX-488, 
which is a multimode board consisting of the 8291A, 
8292, and 8293. 

REFERENCES 

8291A Data Sheet 
8292'Data Sheet 
8293 Data Sheet 
Application Note #66 "Using the 8292 GPIB Control­
ler" 
PLM-86 User Manual 
HP 9835A User's Manual 
IEEE-488-1978 Standard 



intJ AP-166 

APPENDIX A 
SYSTEM BLOCK DIAGRAM WITH 8088 

3-14 



inter AP-166 

APPENDIX B 
SOFTWARE DRIVERS FOR BLOCK DATA TRANSFER 

PL/M--86 COl1P ILER DOARD I 

ISIS--II PLlI1-86 'J!! COMPILATIUI, OF MODULE BOARD 1 
DeJECT MODl'LE F'LACED IN F 1 nRDI or;", 
COMPILER II-IVOKED BY: PLl1Bo. FI: BRDI. SRC SYMBOLS MEDIUM 

2 
3 2 

4 ;;; 
5 3 
6 2 
7 2 

1* BOARD 1 TPT PROGRAM .*1 
i * TH I S U Of-/; D TAL~.S Ttl THE OTHER 1leAR Ll fl" ~ I 
1* TRANSFERR!NG A BLOCI-I OF DATA VIA THE 8237 <0, 
/.. COUPLED I.ITH THE 8291A THE 8291A IS PROGRAM- *1 
1* MED TO SEND EOI I.HEN RECOGNIZING THE LAST *1 
,* DATA BiTE'S BIT PATTERN. WHILE DATA IS BEING *1 
1* TRANSFERRED, THE PROCESSOR PERFORMS 110 READS *1 
1* OF THE (,237 CC'Jtn REGIS1ERS TO SIMULATE. BUS *1 
!.~ ACTIVITy, AND TO DEl ERMINE WHEN TO TURN THE *1 
1* LINE ARC1UND. AFTER THE 8237 HAS REACHED *1 
1* TERMINAL COUNT, THE 8291A. IS PROGRAMMED TO *1 
1* THE L.lSTENER STATE At,D WAITS FOR THE BLOCK *1 
1* TO BE TR"'NSMITTED /lACK FROM THE SECOND BOARD. *1 
1* THIS D':'TA IS FL_ACED IN A SECOND BUFFER AND *1 
1* ITS CotHErns cor1PARED WITH THE ORIGINAL DATA *1 
1* TO CHECK FOR INTERFACE WTEGR ITY. *1 

BOARDI: 

DO, 
1* PROCEDURES *! 

co: PROCEDURE (X XX) 
DECLARE XXX BYTE. 
SERSSTAT LITERALLY 'OFFF2H'. 
SER~DATA LITERALLY 'OFFFOH', 
TXRDY LITERALLY '01H', 
DO 1.HILE 'INPUT (SERSSTATl AND TXRDY) <> 
END; 
OUTPUT (SERSDATA) = xxx; 

END CO; 

, '" SETUP BUFFERS *1 

TXRDY; 

B 
9 

DECLARE BUFF2 (100) BYTE; 1* RAM STORAGE AREA *J 
DECLARE BUFF! (lOa) BYTE DATA 

(1,2,3,4,5,6.7,8,9,10H, 
IIH, l~H, 13H. 14H. 15H, 16H. IlH. 18H. 19H. 20H. 
21H. 22H, 23H. 24H. 25H, 26H. 2lH. 28H. 29H. 30H. 
3tH. 32H, 33H. 34H. 35H. 36H. 37H. 38H. 39H. 40H. 
4tH. 42H. 43H. 44H. 45H. 46H. 47H. 48H. 49H. 50H. 
5tH. 52H, 53H. 54H. 55H. 56H. 57H. 5SH. 59H. 60H. 
61H, 62H. 63H. 64H. 65H. 66H. 67H. 68H. 69H. 70H. 
7tH, 72H. 73H, 74H, 75H, 76H. 77H. 78H. 79H. 80H. 
81H· 82H, 83H. 84H. 85H. 86H. S7H. 8SH. 89H. 90H. 

3-15 

230832-5 



intJ AP·166 

PL/M-86 COliP ILER !l1J/~RDl 

10 

11 

12 
13 

14 

15 

16 

Q1H, 92H, 93H, 94H, 95H, 96H, 97H, 98H, 99H. ODH), 
DECLARE !lIJFF3(17) !lYTE DATA 
(O[)H, OAH. 'COf1PARE ERROR', OD" C.4fO, 1* ROM STORAGE AREA *1 

,." 8~3? POPT ADDRESSES <t. 

DECLARE 

Cl.EAR$FF 
START$O$LO 
START$O$HI 
OSCOUNHLO 
O$COUNnHI 
SEnl10DE 
CMDS37 
SETSliASK 

LITERALLY 'OFFDDH', 1* MASTER CLEAR *1 
L ITER ALL " OFF DOH ' , 

LI TERALL,' 'OFFDOH', 
LITERALLY 'OFFD1H', 
LITERALLY 'OFFD1H·. 
LITERALLY 'OFFDBH', 
LITERALLY 'OFFD8H', 
LiTERALLY 'OFFDFW, 

/ * 8237 CCMI1AND - DATA BYTES "I 
DECLARE Dt1A$ADR$TALK POINTER, 
DECLARE DMA$ADRIJLSTN POII~TER, 

DECLARE 

RDSTRANSFER 
WR$TRANSFER 
NORM$TIME 
TC$LOI 
E$HIt 
TC$L02 

LITERALLY '48H', 
LITERALLY '44H', 
LITERALLY '20H', 
L ITER ALL Y 'OFFH' , 
LITERALLY 'OOH', 
LITERALLY '99D', 

TC LITERALLY 'OIH',' . 
I BYTE, 

DECl.ARE 

/* 100 XFERS *1 

DI1A$~'RD$TAU< ,2' I~ORl' 
Dt1A$~.RO"LSTN (2) ~mRD 

AT 
AT 

(@DMA$ADR$TALK), 
(@DMA$ADRSLSTN) I 

/* 8291"1 FORT ADDRESSES *1 

DECLARE. 

PORnOUT l.l TERALLY 'OFFCOH " /~ DATA OUT*I 
PORTUN LITERALLY 'OFFCOH' 
STATUS$! LITERALLY 'OFFC1H', I*INTR STAT 2*1 
STATUS$2 LITERALLY 'OFFC2H' , ;* INTR STAT 2 *1 
ADDRSSTATtJS LITERALLY 'OFFC4H', 
COf1MAND$110D LITERALLY 'OFFC5H', /.CMD PASS THRU *1 
ADDR$O LITERAl.LY 'OFFC6H', 
EOS$REG LITERALLY 'OFFC7H', 1* EOS REGISTER *1 

3-16 

230832-6 



· inter Ap·166 

!~ B291A COMMAND - DATA B~TES ., 

PL/M-Bb CO~PILER 

17 

BOARDI 

END$EOI LITERALL.Y 
DNE LITERALLY 
PON LITERALLY 
RESET LITERALLY 
CLEAR LITERALLY 
DMA$REG.L LITERALLY 
t't1A$RE<l$T L lTERALLY 
MOD1$TO LITERALLY 
MOD 1 $LO L.l TERALL Y 
EOS LITERALLY 
PRESCALER LI TERALL Y 
HIGH$SPEED I.ITERAL.LY 
O~A'r I.ITERALL·( 
XYZ 1lYTE. 
MA rCH I~ORD, 

BO L ITER ALL Y 
Bl L.I 'ERALLY 
ERR LITERALLY 

1* CODE BEGINS *1 

IB START91: 

'aSH' , 
'10H', 
'OOH', 

'02H ., 
'OOH' , 
'10H 1 , 

~20H' , 
'BOH', 
'40H', 

'OOH', 
'23H', 

'OA4H', 
'OFFFFH' , 

'02H', 
'OIH' , 
'04H' , 

OUTPUT iSTATUS$2) =CLEAR, '* SHUT-OFF OMA REG BITS TO *1 

19 
20 
21 
22 
23 
24 

25 

26 
27 
28 

29 
30 
31 
32 
33 

1* PREVENT EXTRA DMA REGS *1 
I*FROM B291A *1 

i* MAIHpui..t.TE OMA t>DDRESS VARIABLES <t/ 

Dl1A$ADR$';'(,L.!o' =(@BUFFI), 
DMt,$ADR$LSTt-1 =(@BUFF2), 
Dt1A$WRO$TALK< I) =SHL (OMA$WRD$TALK( I). 4), 
Dt1A$WRO$TALK (0) =Dt1A$I~RD$TALK (0) + DMA$WRD$TALK (1), 

OMA$lmO$LSTN ( 1 ) =SHL (Dt1A$WRD$LSTN (1), 4), 
Ot1A$WRO$LS TN (0) =[lMA$WRD$LSTN (0) +OMA$WRD$LSTN (1), 

INITJ7'j 
1* INIT 8237 i'OR TALKER FUNCTIONS *1 

OUTPUT (CLEAR$FF) 
OUTPUT (CMO$37) 
OUTPUT (SET$t10DE) 
OUTPUT (SET$MASK) 
OUTPUT (START$O$LO) 
OMA$I~RO$TALK (0) 

OUTPUT (START$O$HI) 
OUTPUT (O$COUNT$LO) 
OUTPUT (Q$COUNT$HI) 
1* INIT 82qlA FOR TALIo'.ER 

=CLEAR, 1* TOGGLE MASTER CLEAR *1 
=NORM$TIME, 
=RO$TRANSFER, 
=CLEAR, 

=DMA$WRD$TALK (0), 
=SHR (Dt1A$WRD$TALK (0). S), 

=DMA$WRD$TALK (0), 
=TC$L02, 
=TC$HI2, 

FUNCTIONS *1 

PL/M-86 COMPILER BOARD2. 

230832-7 

3-17 



inter 

34 
35 
36 
37 
38 
39 

40 1 
41 2 
42 1 

43 1 
44 2 
45 3 
46 2 
47 2 

48 

49 

50 2 

51 

52 1 
53 2 
54 1 
55 1 
56 
57 
58 

OUTPUT 
59 
60 

61 
62 
63 

64 1 
65 2 
66 1 

67 

68 

AP·166 

(EOS$REG) =EOS. OUTPUT 
OUTPUT 
OUTPUT 
OUTPUT 
OUTPUT 
OUTPUT 

(C0I1MAND$MOD) =END$EOI, 1* EOI ON EOS SENT *1 
(ADDR$STATUS) =MOD1$TO, 1* TALK ONLY *1 
(C0l1MAt~D$MOD I =PRE5CALER. 
«( 0I1MAND$t10D ) "H I GH$SPEED, 
(COMMAt~O$MOD) =PON, 

DO !~HILE (INPUT ,STATUS$!l AND BO) :0, 
END, 1* WAIT FOR BO INTR *1 
OUTPU1 (PORT$OUTl = OAAH. 

DO !jHILE (INPUT (STATUS$1) AND ERR) = ERR, 
DO !~HILE (INPUT (STATUS$!) AND BO) = 0, 
END, 1* !~AIT FOR BO INTR 4/ 
OUTPUT (PORT$OUT) ~OAAH, 

END. 

o\!TPUT ",lA1US$2' =DMA$REOH, / .. ENABLE Dt'.A REGS *1 

DO WH Il.E ( mpUT ( 010$::17 • AND TC) .(;- TC, 
1* I~AIT FOR TC = 0 *1 

END. 

INIT37L, 

OUTPUT (STATUS$2) =CLEAR. 1* DISABLE DMA REGS *"1 

I~ INIT 8237 FOR LISTENER FUNCTIONS *1 

OUTPUT (CLEAR$FFJ 
OUTPUT (Ct1D$37) 

O=CLEAR. f~ rOGGLE MASTER RESET *1 
=NORM$TIME; 

OUTPUT CSET$MODE) =WR$TRANSFER. 
OUTPUT (SET$MASK) =CLEAR, 
O'JTPUT '51 ART$O$L.O' =DMA$WRD$LSIN (0), 
DMA$WRD$LSTN (0) =SHH (DMA$WRDKSnj (0). 8), 

(START $O$HI) =DMA$WRV$LSTN (0), 

OUTPL'T W$COUrH$L.O) =TC$L01, 
OUTPUT (O$COUNT$HI) =TC$Hll. 

I. INIT 82~lA FOR LISTENER FUNCTIONS *1 

~RESET. OUTPUT 
OUTPUT 
O'JTPUT 

(COMMAND$MOD) 
(ADDR$STATUS) 
(COMMAND$t10D) 

=r10D!$L.0, I. LISTEN ONLY *1 
=PON, 

DO WHILE (INPUT (STATUS$!) AND IlIl =0. 
END, 1* WAIT FOR BI INTR ., 
XYZ INPUT (PORT$IN), 

OUTPUT (STATUS$2) ·=DMA$REQ$L. 1* Et~ABLE DMA REGS *1 

DO WHILE (TNPUT (STATUS$!) AI.!.) ONE)<> ONE, 
1* WAIT FOR EOT RECEIVED */ 

. 3·18 

230832-8 



infef AP-166 

PLlM-S<,> COMPll..EP [WAF.l' 

70 CMPM.~.~ 

," rC~PARE THE HIO BIJFFERS CONTENTS *1 

I1ATC:H=CMPB '.@BUFFI. @DUFF2, 100); 

71 IF r1ATCH OKAY THEN GOTO START91; 

.",' SE'm ERROR MESSI'GE IN BUt=FER 3 *1 

DO 1=1) ro 10; 73 
74 
75 

1 
2 
.2 

CALL CO (BUFF 3 (I) ); 
END; 

7<:. (;OTO START91; 

77 

MODULE INFORMATION: 

CODE AREA SIZE 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
243 LINES READ 
o PROGRAM CRflCR (5l 

END OF PL/t1-80 COMPILATION 

=OlOBH 
=0075H 
=0070H 
=OOOoH 

3-19 

4750 
1170 
1120 

00 

230832-9 



intJ AP-166 

PL/M-86 Cot1P ILER 1l0ARD2 

ISIS-II PL/M-86 VI. I COt1PILATION OF MODULE BOARD2 
OBJECT t10DULE PLACED IN FI- BRD2, OBJ 
COMPILER INVO"'ED BY: PLM86 Fl BRD2, SRC 

2 

3 

4 

/. BOARD 2 TPT PRO~RAM */ 

1* *1 
1* THIS BOARD LISTENS TO THE OTHER BOARD (I) *1 
1* AtJD Dt1A'S DATA INTO A BUFFER, I,HILE WAITING *1 
1* FOR THE END jtHERRUPT BIT TO IlECOt1E ACTIVE *1 
;* l'PON END ACTIVE, THE DATA IN THE BUFFER IS *1 
1* SENT 6AC~ TO THE FIRST BOARD VIA THE GPID *1 
1* ~HEN THE BLOC'" IS FINISHED THE 8291A IS *1 
1* PROGRAt1MED BAC'" INTO THE LISTENER MODE *1 

BOARD2 

DO; 
1* 8237 PORT ADDRESSES *1 

DECLARE 

CL.EAf'SFF 
STARTSOSLo 
STARTSOSHI 
OSCOUNTSLO 
OSCOUNTSHI 
SET$MODE 
Ct1D'I>37 
SEHMAS'" 

LITERALLY 
LITERALLY 
LITERALLY 
LITERALLY 
LITERALLY 
LITERALLY 
LITERALLV 
LITERALLv 

'OFFDDH' , 
'OFFDOH' , 
'OFFDOH', 
'OFFDIH', 
'OFFDIH', 
'OFFDBH', 
OFFD8H' , 

'OFF-DFH' , 

I*MASTER CLEAR *1 

1* 8237 COMMAND - DATA BYTES *i 

DECLARE 

RDSTRANSFER 
WRSTRANSFER 
ADDRUA 
ADDRSlll 
tJORt1STIME 
TCSLOI 
TC$HII 
TCSL02 
TCSHI2 

LI TERALLY 
LITERALLY 
LITERALLY 
LITERALLY 
LITERALLY 
LITERALLY 
LITERALLY 
LITERALLY 
LITERALLY 

TC l.ITERALLY 

'48H , 
'44H', 
'OOH', 
'OIH', 
'20H' , 
'OFFH', 
'OOH', 
'990', 
'OOH', 

'OIH' , 

I. 8291,0. PORT ADDRESSES *1 

DECLARE 

PORTSOUT 
PORHIN 
STATUSSI 
STATUSS2 
ADDRSSTATUS 
COt1t1ANDSt10D 

LITERALLY 
LITERALLY 
l.ITERALLY 
LITERALLY 
LITERALLY 
LITERALLY 

3-20 

'OFFCOH' , 
'OFFCOH',I* DATA IN *1 
'OFFCIH', 1* INTR STAT I *1 
'OFFC2H', 1* INTR STAT ~ *1 
'OFFC4H', 1* ADDR STAT *1 
'OFFC5H', 1* Ct1D PASS THRU *1 

230832-10 



inter AP-166 

PL IM-Bb Cot1P 1 LCR Rur,r'D2 

ADDRSO 
EOSSREG 

LITERALLY 
LITERALLY 

'OFFC6H', 
'OFFC7H', 1* EOS REGISTER *1 

/. 829tA COMMAND - DATA BYTES *1 

5 

b 

DECLARE 

ENDSEOI LITERALLY 
DNE L ITER ALL Y 
FOIl L lTER4l.LY 
RESE"T L ITER ALL Y 
CLEAR 1.I TERALL Y 
Dt1ASREQSL L ITER ALL Y 
DMASREQST LITERALLY 
MODISTO LITERALLY 
MODULO LITERALLY 
EOS LI1ERALLY 
PRESCALEf< L I TERAl.I_ Y 
HIGH$SPEED LITERALLY 
XY! IlYTE, 
110 LITERALLY 
III LITERALLY 
ERR I I TERALLY 

START91, 

'BSH', 
'tOH', 
'~OH', 

'O~H/, 

'OOH', 
'IOH', 
'20H', 
'BOH " 
'40', 

'ODH', 
'23H ., 
'A4H', 

'02H',. 
'OIH', 
'(j4H' , 

OUTPUT (STATUSS2) =CLEAR' 1* END INITILIZATION STATE *1 

7 

8 
9 
10 
II 
12 
13 
14 

I~ 

16 
17 
lB 
19 2 
20 
2! 

22 

;. I~IT 8~37 FOR LISTENER FUNCTION 0' 
INIT37L, 

OUTPUT 
OUTPUT 
OUTPUT 
OUTPUT 
OUTPUT 
OUTPUT 
OUTPUT 
OUTPLUT 

(CLEARSFF) =CLEAR, '* TOGGLE MASTER RESET *1 
(Cr1DS37l =NORMSTlr1E, 
iSETSr10DE) =WRSTRAr~SFER, 1* IlLOC¥. XFER MODE *1 
(SETSMASK) =CLEAR, 
(STARTSOSLO) =ADDRSIA, 
(STARTSOSHI) =ADDRSIIl, 
(OSCOUIHSLO) =TCSLO I; 
(OSCOUNTSHI> =TCSHI1, 

/... I1~IT 8291A FOR LISTENER FUNCTIONS *1 

OUTPUT (COMI1ANDSMOD) =RESET, 
OUTPUT (ADDRSSTATUS) =MOD!SLO, 
OUTPUT (COMMAND$MOD) :PON, 
DO I~HILE \ INPUT (STATUSS!) AND Ill) =0, 
END, I~ WAIT FOR III INTR *1 
XYZ= INPUT (PORTSIN), 
OUTPUT (STATUSS2) =DI1ASREQSL; 

1* IJAIT urHIL EOl RCVD AI~D END WTR-IlIT SET *1 

DO I~HILE (INPUT (STATUSSI) AI~D ONE) <> ONE, 

3-21 

230832-11 



AP-166 

PL/M··8e. CClMPIL.ER BOARD2 

24 

25 
26 
27 
28 
29 
30 
31 
32 

33 1 
34 1 
35 1" 
36 
37 
38 

39 1 
40 2 
41 

42 1 
43 2 
44 3 
45 2 
46 2 

47 

48 
49 2 

50 

51 END; 

END. 

INIT37T. 
1* INIT 8237 FOR TA'_KER FUNCTION */ 

OUTPUT 
OUTPUT 
OUTPUT 
(IUTPU·r 
OUTPUT 
OUTPUT 
OUTPUT 
OUTPUT 
OUTPUT 

(STATUSS21 =CLEAR. 1* CLEAR 8291A DRQ *1 
,CLEARSFF) =CLEAR. 
(CMDS37) =NORMSTI tiE. 
(SETSMOOE) =RDSTRANSFER. 1* BLOCK XFER MODE *1 
\ SETSMAS~, > =CLEAR; 
(STARTS()SLO I ' =ADDRS1A. 
(STARTSOSHI) =ADDRS1B. 
(OSCOUNTSLO) =TCSL02. 
(OSCOUtHSHI I =TCSHI2. 

1* HUT 8291A FOR TAl.KER FUNCTION *1 

OUTPUT 
OUTPUT 
OUTP,IT 
OUTPUT 
GUTP,IT 
OUTPUT 

(EOSSREG) =EOS. 
(COMMANDSMOD) 
(ADDRSSTATUS) 
\ COMMAt4vSMOD I 
(COMt1ANDSt10D) 
(COMMAt~DSMOD ) 

=ENDSEOI, 1* EOI ON EOS SENT *1 
=r10D1STO; 1* TALK ONLY *1 
=PRESCALER. 
=HIGHSSPEED; 
~PON; 

DO L~HILE (INPUT (STATUSS!) AND BO) =0; 
END. 1* WAIT FOR DO INTR *1 
O'JTPlJT (PORTS()\)T) =OAAH. 

DO LIH I LE <I NPU T ( STA TUSSlI 'At4D ERR) =ERR; 
DO L~HILE ('INPUT ,STATUSS1) AND BO) =0; 
END; 1* L~AIT FOR DO INTR *1 
OUTPUT (PORTSOUT) =OAAH; 

END; 

OUTPUl (STATUSS2) =DMASREGST; 
:* L4AIT FOR TC=O *1 

DO L~HILE 
END; 

GOTO STARr91. 

( INPUT (CMOS37) ANO TC) <> TC. 

MODULE W""ORMATION 

CODE AREA SIZE 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE 
MAXIMur1 STACK SIZE 
152 LINES READ 
o PROGRAM ERROR (S) 

=0122H 
=OOOOH 
=OOOIH 
=OOOOH 

2900 
00 
10 
00 

3-22 

230832-12 



inter 

10 REM S£lirl 11. 
TERFACE CLEAR 
20 ABORTIO 7 
30 REM FORCE E 
RRORS UNTIL LIST 
ENERS ACTIYE 
40 Freerr: OUT 
PUT 70~ US IIlG ",I 
,KM; "liM 
50 Chkst.st: ST 
RTUS 71 St. Go t 1 , 51 0. 
t2,Sta.t3,Sto.t4 
60 Err=S.tot;.:o A 
liD 
-;'0 IF Err=1 TH 
EN COTO FrcE'rr 
SO PRIIlT CHRrr 
12J, "LISTEUE~S A 
RE Oil L1I1E 
90 ~El-l COIIFIGU 
RE PPOll 
100 PPOll COli,: 
GURE 70';; MOOCH)·:: 
(10" 
110 

! reSr:loons.e ·:.r. 
bit 4 

120 PPlllY CHF" 
12'. "PARAllEL PO 
II COIIFIGUPED" 
130 REM El~ABlE 
~EYBOARD IllYERRU 
PT 
140 PRIIH ·COrll1 
AllD = ? (HIT 

'H' FOP LIST," 
150 r.e~en: au "­
ID GOSUB 610 
160 STATUS 7; S' 
o.t.l, StQt2, Stat3, 

Ap·166 

APPENDIX C 
SOFTWARE FOR HP 9835A 

St (\~ .. 
17'0 51" .:t=E: IUAIlD r 
Stotld,f.S) 
180 IF Srq=O TH 
EN (,010 I eo o:-ti 
l.,r, OF:=- l.to. 

200 PPItlT CHR$ ( 
12). "SP0 PECEIVE 
D" ' 
210 PRIIlT "SEIID 
ING PARAllEL POL 
L RESPONSE MESSA 
GE" 
220 REM EXECUTI 
NG PARAllEL POll 
2313 Ppo 11 byt e=P 
POlL(7) 
240 PRlllY "PARA 
LLEL POLL B','lE = 

.. ; Ppcfl1 b~ .. t ... 
2'50 PPltlT ___ _ 

2.68--P~o11b1~e=:E: 
IHAND (Ppol1 b1u-, 
0, 
279 IF Ppol1b,t 
.=0 THEN GOTO ., 
291 
2BO PRINT "SP 
NOT FROf1 8291" 
281 PRItH "COtH! 
AND = ? (HIT 
'H' FOP L1STl" 
290 GOTO t:eYEn 
300 PB291: PRill 
T "SRO IS FROM U 
CC 8.=91 ••• THE 
EIITERPRI SE" 
310 PRlIlY "PEPF 

230832-13 

B~0 PRINT 
Send P.EM, 

DC l'IE'ssaSle" 
890 PRINT 

Xl'li ts ked: 
Odrd 1 npu~ to :: ~ 
91" 
900 PRINT " H 

Prints thi 
s to.ble" 
910 PRINT 
920 PRlNT 

TRY' it 90 a.head, 

'" ,:i0 RETUPII 

3-23 

OF:Mllle. 5EPIAL PO 
l~ TO GET STATUS 

"3'::0 S HIlUS 7'04; 
Stat 
330 PRINT CHR. ( 
12), "St.atus = "; 
510t . 
340 :1 t.;r=BIIlAtI 
It ISt;::t. l' 

5~O IF D tEo .... 0 
THEtl GOTO Pc ')r 
539 GOTO' Eo', en 
531 Rcvr: REM R 
EADY TO RCY CHAR 
S FROM GPIB 
540 DIM GUB01 
550 ENTER 794 U 
SING "~,T~;Gt 
560 PRINT CHRfI 
12) ,C$ 
570 PRINT "COMM 
RtiD = '? (HIT 

'H' FOR L1STl" 
589 COTO key eon 
599 REM IHTERRU 
PT SERYICE ROUTI 
NES 
600 REM GET KEY 
BOARD DATA 
610 ~hatke'i: DI 
M KnSOl 
€ 2D K$=V-BDt 
630 IF K$="G" 
HEN GOT a Ge~ 
640 IF Kt="D" 
HEN COTO Dec 
650 IF K$="R" T 
HEN GOTO Rel'1 
660 IF I:$="H" 
HEll GOTO He). 
670 IF KS="X" T 
HEN GO TO X.it 
690 Ge\l TRI~-:'E 

940 X"d t I DIM A 
U80l 
950 PRIIH CHRf ( 
12), "Enter data 
to send o.nd h1t 
CONTlIIUE" 
960 IIIPUT At 
970 OUTPUT 794; 
AS 
97: EOI 7;0 
980 PRINT "COMM 
AND = ? (HIT 
'H' FOR LIST)" 

990 RETURN 
1909 EIlD 

230832-15 

R 704 
690 FR IIH CHRf( 
12). "GROUP E~:ECU 
TE TRIGGEP SEln" 
700 PRIIH 
710 PRINT "COml 
AUD =? (HIT 
'H' FOP L1STl" 
720 RETURII 
730 Doc: RESET 
794 
740 PRINT CHR$ ( 
12),"SELECTIVE It 
E ..... I CE CLEAR ~.Etn 

~50 
760 
AND 
'H' 
770 

PRIIlT'·~ 
PRIUT "COMM 

= ". (HIT 
FOP LJST1~ 

F.ETUf'I, 
780 Po?M: LOCAL 
704 
790 PR IIH CHRt l 
12" "REMOTE "ESS 
AGE SENT" 
B00 PRINT·" 
810 PRINT "COMM 
AND = ? (HIT 

'H' FOR lISTl" 
B20 RETURII 
B30 HoI.: . PRINT 

CHRt (IZ) 
840 PRINT @@@ 
@ OPERATOR ALlOU 
ABLE COMMANDS @@ 
@@ 

850 
koY 

860 

PRINT hit 
resul \" 

PRINT 
Send GET 1'1 

E'fSo.'Je," 
870 PRINT 

Send D€.C 1"1 
essd'Je" 

230832-14 



Ap·166 

APPENDIX D 
SOFTWARE FOR HP 8088/HP 983SA VIA GPIB 

PL/M-B6 COMPILER, HPID 

ISIS-II PL/M-B6 VI. 1 COMPILATION OF MODULE HPID 
OBJECT MODULE PLACED IN :Fl:HPIB.oBJ 
COMPILER INVOKED BY: PLMB6 :FI:HPIB.SRC LAROE 

2 

HPIB: 
1* 

PARAMETER DECLARATIONS 
*1 

DO. 

DECLARE 

ADDR.HI LITERALLY 'OIH', 
ADDR.LO LITERALLY 'OOH', 
ADSC LITERALLY .'OIH', 
BI LITERALLY 'OIH', 
Bo , LITERALLY '02H', 
CHAR.CoUNT BYTE, 
CHAR BYTE, 
CHARS(SO) BYTE, 
CLEAR LITERALLY 'OOH', 
CPT LITERALLY 'SOH', 
CRLF LITERALLY 'OAH', 
DEC LITERALLY 'OSH', 
DMA.ADR.LSTN POINTER, 
DMA.ADR.TALK POINTER, 
DMA.WRD.LSTN(2) WORD AT (eDMA.ADR.LSTNI, 
DMA.WRD.TALK(2) WORD AT (eDMA.ADA.TALK), 
DMA.REO$L LITERALLY 'IOH', 
DMA.REO.T LITERALLY '20H', 
DNE LITERALLY 'IOH', 
END.EOI LITERALLY 'SSH' , 
EoS LITERALLY 'ODH', 
ERR LITERALLY '04H', 
QET LITERALLY '20H', 
I BYTE, 
LISTEN LITERALLY '04H', 
MLA LITERALLY '04H', 
MODE. I LITERALLY 'OIH', 
NO$DMA LITERALLY 'OO,H', 
NO.RSV LITERALLY' OOH' , 
NORM$TIME LITERALLY '20H', 
PON LITERALLY 'QOH', 
PPC LITERALLY '05H', 
PPE.MASK LITERALLY '60H', 
PPOLL$CNFQ.FLAQ LITERALLY 'OIH', 
PPOLL$EN$BYTE BYTE, 
PRI$BUF(BOI BYTE AT (eCHARS), 
RD$XFER LITERALLY '4SH', 
RESET LITERALLY '02H', 
REMC LITERALLY '02H', 
RSV LITERALLY '40H', 
RXRDY LITERALLY '02H' , 

3-24 

230832-16 



intJ Ap·166 

PL/M-B6 COMPILER HPIB 

3 

4 , 
6 
7 
B 

9 

SROS LITERALLY '40H', 
STATl BVTE, 
STAT2 BVTE. 
TALK LITERALLV '02H'. 
TASORSLA BVTE. 
TRO LITERALLV '41H'. 
TC LITERALLV 'OlH'. 
TCSHI LITERALLV '~OH'. 
TCSLO LITERALLV 'OFFH'. 
TXRDV LITERALLV 'OlH'. 
UDC BVTE. 
WRSXFER LITERALLV ·44H'. 
XVZ BVTE, 

1* 

PORT DECLARATIONS 

*1 

DECLARE 

ADDRsO LITERALLV 
ADDRSSTATUS LITERALLV 
CLEARSFF LITERALLV 
CMDS37 LITERALLV 
COMMANDSMOD LITERALLV 
COUNTSHI LITERALLV 
COUNTSLO LITERALLV 
CPTSREG LITERALLV 
EOSSREG LITERALLV 
PORTSIN LITERALLV 
PORTSOUT LITERALLV 
SERSDATA LITERALLV 
SERsSTAT LITERALLV 
SETsMASK LITERALLV 
SETSMODE LITERALLV 
SPOLLSSTAT LITERALLV 
STARTSHI LITERALLV 
STAR TSLO LITERALLV 
STATUSSl LITERALLV 
STATUSS2 LITERALLV 

1* c~t message.' list *1 

'OFFC6H', 
'OFFC4H', 
'OFFDDH', 
'OFFDBH'. 
'OFFC'H'. 
'OFFD1H'. 
'OFFD1H'. 
'OFFC5H'. 
'OFFC7H'. 
'OFFCOH'. 
'OFFCOH'. 
'OFFFOH'. 
'OFFF2H'. 
'OFFDFH'. 
'OFFDBH'. 
'OFFC3H'. 
'OFFDOH'. 
'OFFDOH', 
'OFFC1H' • 
'OFFC2H', 

DECLARE GETSMSG(ll) BVTE DATA (ODH.OAH. 'TRIGGER'.OAH.ODH), 
DECLARE DECSMSG(16) BVTE DATA (ODH,OAH. 'DEVICE CLEAR'. OAH. ODH), 
DECLARE REMCSMSG(10) BVTE DATA (ODH.OAH. ·REMOTE'.ODH.OAH), 
DECLARE CPTSMSG(22) BVTE DATA (ODH,OAH. 'UNDEF CMD RECEIVED'.OAH,ODH), 
DECLARE HUHSMSG(ll) BVTE DATA (ODH,OAH. 'HUH ???'.ODH,OAH), 

1* called p~Dc.du~.s *1 

REOSER: PROCEDURE, 

230832-17 

3-25 



Ap·166 

PL/M-B6 COMPILER HPIB 

10 2 

11 2 
12 3 

13 2 

14 2 

l' 1 
16 2 

17 2 
lB 3 
19 2 
20 2 
21 1 
22 2 
23 3 
24 3 
2' 2 

26 

27 2 
2B 2 
29 3 
30 3 
31 3 
32 3 
33 3 
34 3 
35 3 
36 3 
37 3 
3B 4 
39 5 
40 4 
41 4 
42 3 
43 3 
44 2 

45 

46 2 

47 2 
4B 2 
49 2 

50 2 

OUTPUT (SPOLL.STATI~TRB' 

DO WHILE (INPUT (SPOLL.STATI AND SRBSI-SRBS, 
END, 

,OUTPUT (SPOLL.STATI 0NO.RSV, 

END REBSER, 

CO: PROCEDUREeXXXI, 
DECLARE 

XXX BVTE, 

DO WHILE (INPUT (SER.STATI AND TXRDVI<>TXRDV, 
END, 
OUTPUT (SER.DATAI=XXX, 

END CO, 
HUH: 

END 

PROCEDURE, 
DO 1=0 TO 10, 

CALL CO (HUH.MSG( I I l.i 
END, 
HUH, 

CI: PROCEDURE, 

IF (INPUT (SER.STATI AND RXRDVI=RXRDV THEN 
DO, 

1l1li0; 
CHAR.COUNT=O, 

STORE.CHAR: CHAR-(INPUT (SER.DATAI AND 7FHI, 
CHAR.COUNT=CHAR.COUNT+l, 
CALL CO (CHAR I , 
CHARS( I I-CHAR, 
1=1+1, 
IF CHAR <> CRLF THEN 

DO, 
DO WHILE (INPUT (SER.STATI AND RXRDVI <>RXRDV, 
END, 

END, 
END CI, 

GOTO STORE.CHAR, 
END, 

CALL REBSER, 

TALK.EXEC: PROCEDURE, 

OUTPUT (STATUS.21=CLEAR, 

1* 
manipulate address bits for DMA controller 

'*1 

DMA.ADR.TALK= (eCHARS I , 
DMA.WRD.TALK(1 I-SHL(DMA.WRD.TALKCl I. 41, 
DMA.WRD.TALK CO I=DMA.WRD.TALK (0 I +DMA.WRD.TALKC 1 I, 

OUTPUT (CLEAR.FFI oCLEAR, 

3-26 

230832-18 



AP-166 

PL/M-86 COMPILER HPIB 

51 2 
52 2 
53 2 
54 2 
55 2 
56 2 
57 2 
58 2 

59 2 
60 2 

61 2 
62 3 
63 2 

64 2 
65 3 
66 4 
67 3 
68 3 
69 2 

70 2 

71 

72 2 
73 2 
74 2 
75 2 
76 2 
77 2 
78 2 
79 2 
80 2 
81 2 
82 2 
83 2 
84 2 
85 2 

86 2 

87 

88 2 

89 2 
90 3 
91 3 
92 3 
93 2 

94 2 

OUTPUT CCMD37)=NORMSTIME, 
OUTPUT CSETSMODE)~RDSXFER, 
OUTPUT CSETSMASK)=CLEAR, 
OUTPUT CSTARTSLO) =DMASWRDSTALKCO) , 
OMASWROSTALKCO)=SHRCOMASWROSTALKCO).8), 
OUTPUT CSTARTSHI)=DMASWRDSTALKCO), 
OUTPUT CCOUNTSLO)=CHARSCOUNT, 
OUTPUT CCOUNTSHIl=O, 

OUTPUT CEOS$REQ)=EOS, 
OUTPUT CCOMMAND$MOD)=ENOSEOI, 

DO WHILE CINPUT CSTATUS$I) AND SO)=O, 
END, 
OUTPUT CPORT$OUTl=OAAH, 

DO WHILE CINPUT CSTATUSS!) AND ERRl=ERR, 
DO WHILE CINPUT CSTATUSSI) AND BOl~O, 
END, 
OUTPUT CPORTSOUTl=OAAH, 

END, 
OUTPUT CSTATUSS2l=DMA$REOST, 

END TALKSEXEC, 

LISTEN$EXEC: PROCEDURE, 

PRINTER: 

OUTPUT CSTATUSS2l=CLEAR, 
OUTPUT CCLEAR$FFl=CLEAR, 
OUTPUT CCMD$37)=NORM$TIME, 
OUTPUT CSET$MODEl=WR$XFER, 
OUTPUT CSET$MASKl=CLEAR, 
DMA$ADR$LSTN=C@CHARS), 
DMA$WRD$LSTNC!l=SHLCDMA$WRDSLSTNCll.4l, 
DMA$WRD$LSTN(Ol=DMA$WRD$LSTN(O)+DMA$WRO$LSTNC!l, 
OUTPUT CSTARTSLOl=DMA$WRD$LSTNCOl, 
DMASWRDSLSTNCO)=SHRCOMASWRDSLSTNCOl.8l, 
OUTPUT CSTART$HI)=DMA$WRD$LSTNCOl, 
OUTPUT CCOUNTSLOl=TCSLO, 
OUTPUT CCOUNTSHIl=TCSHI, 
OUTPUT CSTATUS$2l=DMA$REO$L, 

END LISTEN$EXEC, 

PROCEDURE, 

1=0, 

DO WHILE PRI$SUFCIl <>CRLF, 
CALL CO CPRISSUFCI», 
1=1+1; 

END, 
CALL CO CPRI$SUFCI)l, 

END PRINTER, 

3-27 

230832-19 



inter AP-166 

PL/M-86 COMPILER HPIB 

9!1 ADSC.EXEC: PROCEDURE. 

96 2 TA.OR.LA=INPUT (ADDR.STATUSI. 

97 2 IF (TA.OR.LA AND TALKI=TALK THEN 
98 2 CALL TALK.EXEC, 
99 2 IF (TA.OR.LA AND LISTENI-LISTEN THEN 

100 2 CALL LISTEN.EXEC. 

101 2 END ADSC.EXEC, 

102 1 OET.EXEC: PROCEDURE, 
103 2 DO 1=0 TO 10, 
104 3 CALL CO (OET.MSO(III, 
105 3 END, 
106 2 END OET.EXEC. 

107 1 DEC$EXEC: PROCEDURE. 
108 2 DO 1=0 TO 15, 
109 3 CALL CO (DEC.MSO(III, 
110 3 END, 
111 2 END DEC.EXEC, 

112 1 REMC.EXEC: PROCEDURE, 
113 2 DO 1=0 TO 9. 
114 3 CALL CO (REMC.MSO <I l.l' 
115 3 END, 
116 2 END 'REMC.EXEC. 

117 PPOLL.CON: PROCEDURE, 

118 2 OUTPUT (COMMAND.MODI =PPOLL.CNFO.FLAO, 

119 2 END PPOLL$CON. 

120 PPOLL.EN: PROCEDURE. 

121 2 PPOLL.EN.BVTE=(UDC AND 6FHI, 
122 2 OUTPUT (COMMAND.MODI-PPOLL.EN$BVTE, 

123 2 END PPOLL.EN. 

124 1 CPT.EXEC: PROCEDURE, 
125 2 DO 1=0 TO 21. 
126 3 CALL CO (CPT.MSO(III, 
127 3 END, 

128 2 UDC-INPUT (CPT.REOl, 
129 2 UDC-(UDC AND 7FHI. 
130 2 IF (UDC AND PPCI=PPC THEN 
131 2 CALL PPOLL.CON, 

132 2 IF (UDC AND PPE.MASKI-PPE.MASK THEN 
133 2 CALL PPOLL.EN, 

230832-20 

3-28 



inter AP-166 

PL/M-86 COMPILER HPIB 

134 

135 

136 
137 
138 
139 
140 

141 

14:2 

143 
144 

145 

146 

147 
148 
149 
150 
151 
15:2 
153 
154 
155 
156 
157 
158 
159 
160 
161 
16:2 
163 
164 
165 
166 
167 
168 
169 

2 

2 

1 
1 
1 
1 
2 
2 
2 
1 
1 
2 
2 
O! 

1 
2 
:2 
2 
1 
1 
2 
:2 
2 
1 

END CPTSEXEC, 
1* 
BEGIN CODE 
*1 

INIT: 

OUTPUT 
OUTPUT 
OUTPUT 
OUTPUT 
OUTPUT 
OUTPUT 

(CLEARSFF) =CLEAR, 
(COMMANDSMOD) =RESET, 
(ADDRSSTATUS) =MODEsl, 
(ADDRSO) =MLA, 
(STATUSS2) =NO$DMA, 
(COMMANDSMOD) =PON, 

LISTENERS: 

CMD: 

1* response to listeners check *1 

DO WHILE (INPUT (STATUS$I) AND BI)=O, 
END, 

XYZ=INPUT (PORT$IN), 
XYZ=INPUT (STATUS.2), 

RDSTAT: 
1* read status registers and 'interpret command *1 

STAT1=INPUT (STATUS$I), 
STAT2=INPUT (STATUS$2), 

IF (STATI AND DNE)=DNE THEN 
CALL PRINTER, 

IF (STAT1 AND CPT)=CPT THEN 
DO, 
CALL CPT$EXEC, 
STAT2=(STAT2 AND OFEHl, 
END, 

IF (STAT1 AND GETl=GET THEN 
DO, 
CALL GETSEXEC, 
STAT2=(STAT2 AND OFEHl, 
END, 

IF (STAT1 AND DECl=DEC THEN 
DO, 
CALL DECSEXEC, 
STAT2=(STAT2 AND OFEHl, 
END, 

IF (STAT2 AND REMC)=REMC THEN 
DO, 
CALL REMCSEXEC, 
STAT2=(STAT2 AND OFEHl, 
END, 

IF (STAT2 AND ADSCl=ADSC THEN 

3-29 

230832-21 



inter AP-166 

PL/M-Bb COMPILER HPIB 

DOl 170 1 
171 2 
172 2 
173 2 

CALL ADSCSEXECI 
STAT2=CSTAT2 AND OFEH) I 
ENDI 

174 CALL CII 

175 GOTO CMDI 

17b END, 

MODULE INFORMATION: 

CODE AREA SIZE • 0475H 
CONSTANT AREA SIZE = OOOOH 
VARIABLE AREA SIZE. OOb1H 
MAXIMUM STACK SIZE = OOOAH 
349 LINES READ 
o PROGRAM ERRORCS) 

&ND OF"PL/M-Bb COMPILATION 

1141D 
OD 

97D 
lOD 

3-30 

230832-22 



APPLICATION 
NOTE 

AP-66 

June 1989 

Using the 8292 GPIB Controller 

Order Number: 231324-002 
3-31 



inter AP·66 

INTRODUCTION 

The Intel® 8292 is a preprogrammed UPJTM-41A that 
implements the Controller function of the IEEE Std 
488-1978 (GPIB, HP-IB, IEC Bus, etc.). In order to 
function the 8292 must be used with the 8291 Talker/ 
Listener and suitable interface and transceiver logic 
such as a pair of Intel 8293s. In this configuration the 
system has the potential to be a complete GPIB Con­
troller when driven by the appropriate software. It has 
the following capabilities: System Controller, send IFC 
and Take Charge, send REN, Respond to SRQ, send 
Interface messages, Receive Control, Pass Control, Par­
allel Poll and Take Control Synchronously. 

This application note will explain the 8292 only in the 
system context of an 8292, 8291, two 8293s and the 
driver software. If the reader wishes to learn more 
about the UPI-41A aspects of the 8292, Intel's Applica­
tion Note AP-41 describes the hardware features and 
programming characteristics of the device. Additional 
information on the 8291 may be obtained in the data 
sheet. The 2893 is detailed in its data sheet. Both chips 
will be covered here in the details that relate to the 
GP[Q controller. 

The next section of this application note presents an 
overview of the GPIB in a tutorial, but comprehensive 
nature. The knowledgeable reader may wish to skip this 
section; however, certain basic semantic concepts intro­
duced there will be used throughout this note. 

Additional sections cover the view of the 8292 from the 
CPU's data bus, the interaction of the 3 chip types 
(8291, 8292, 8293), the 8292's software protocol and 
the system level' hardware/software protocol. A brief 
description of interrupts and DMA will be followed by 
an application example. Appendix A contains the 
source code for the system driver software. 

GPIB/IEEE 488 OVERVIEW 

Design Objectives 

WHAT IS THE IEEE 488 (GPIB)? 

The experience of designing systems for a variety of 
applications in the early 1970's caused Hewlett-Pack­
ard'to define a standard intercommunication mecha­
nism which would allow them to easily assemble instru­
mentation systems of varying degrees of complexity. In 
a typical situation each instrument designer designed 
his/her own interface from scratch. Each one was in-

, consistent in terms of electrical levels, pin-outs on a 
connector, and types of connectors. Every time they 

built a system they had to invent new cables and new 
documentation just to specify the cabling and intercon­
nection procedures. 

Based on this experience, Hewlett-Packard began to de­
fine a new interconnection scheme. They went further 
than that, however, for they wanted to specify the typi­
cal communication protocol for systems of instruments. 
So in 1972, Hewlett-Packard came out with the first 
version of the bus which since has been modified and 
standardized by a committee of several manufacturers, 
coordinated through the IEEE, to perfect what is now 
known as the IEEE 488 Interface Bus (also known as 
the HPIB, the GPIB and the IEC bus). While this bus 
specification may not be perfect, it is a good compro­
mise of the various desires and goals of instrumentation 
and computer peripheral manufacturers to produce a 
common interconnection mechanism. It fits most in­
strumentation systems in use today and also fits very 
well the microcomputer I/O bus requirements. The ba­
sic design objectives for the GPIB were to: 

1) Specify a system that is easy to use, but has all of the' 
terminology and the definitions related to that sys­
tem precisely spelled out so that everyone uses the 
same language when discussing the GPIB. 

2) Define all of the mechanical, electrical, and function­
al interface requirements of a system, yet not define 
any of the device aspects (they are left up to the 
instrument designer). 

3) Permit a wide range ,of capabilities of instruments 
and computer peripherals to use a system' simulta­
neously and not degrade each other's performance. 

4) Allow different manufacturers' equipment to be con­
nected together and work together on the same bus. 

5) Define a system that is good for limited distance in­
terconnections. 

3-32 

6) Define a system with minimum restrictions on per­
formance of the devices. 

7) Define a bus that allows asynchronous communica­
tion with a wide range of data rates. 

8) Define a low cost system that does not require exten­
sive and elaborate interface logic for the low cost 
instruments, yet provides higher capability for the 
higher cost instruments if desired. 

9) Allow systems to exist that do not need a central 
controller; that is, communication directly from one 
instrument to another is possible. ' 

Although the GPIB was originally designed for instru­
mentation systems, it became obvious that most of 
these systems would be controlled by a calculator or 
computer. With this in mind several modifications were 
made to the original proposal before its final adoption 
as an international standard. Figure 1 lists the salient 
characteristics of the GPIB as both an instrumentation 
bus and as a computer I/O bus. 



infer AP-66 

Data Rate 

1M bytes/s, max 

250k bytes/s, typ 

Multiple Devices 

IS devices, max (electrical limit) 

8 devices, typ (interrupt flexibility) 

Bus Length 

20 m, max 

2 m/ device, typ 

Byte Oriented 

8-bit commands 

8-bit data 

Block Multiplexed 

Optimum strategy on GPIB due to 

setup overhead for commands 

Interrupt Driven 

Serial poll (slower devices) 

Parallel poll (faster devices) 

Direct Memor~ Access 

One DMA facility at controller 

serves all devices on bus 

Asynchronous 

One talker 

Multiple listeners 

I/O to I/O Transfers 

} 3-wire handshake 

Talker and listeners need not 

include microcomputer/controller 

Figure 1. Major Characteristics of GPIB as 
Microcomputer 1/0 Bus 

The bus can be best understood by examining each of 
these characteristics from the viewpoint of a general 
microcomputer I/O bus. 

Data Rate-Most microcomputer systems utilize pe­
ripherals of differing operational rates, such as floppy 
discs at 31k or 62k bytes/s (single or double density), 
tape cassettes at 5k to 10k bytes/s, and cartridge tapes 
at 40k to 80k bytes/so In general, the only devices that 
need high speed I/O are 0.5" (1.3-cm) magnetic tapes 
and hard discs, operational at 30k to 781k bytes/s, re­
spectively. Certainly, the 250k:bytes/s data rate that 
can be easily achieved by the IEEE 488 bus is sufficient 
for microcomputers and their peripherals, and is more 
dian needed for typical analog instruments that take 
only a few readings per second. The IM-byte/s maxi­
mum data rate is not easily achieved on the GPIB and 

3-33 

requires special attention to considerations beyond the 
scope of this note. Although not required, data buffer­
ing in each device will improve the overall bus perform­
ance and allow utilization of more of the bus band­
width. 

Multiple Devices-Many microcomputer systems used 
as computers (not as components) service from three to 
seven peripherals. With the GPIB, up to 8 devices can 
be handled easily by I controller; with some slowdown 
in interrupt handling, up to 15 devices can work togeth­
er. The limit of 8 is imposed by the number of unique 
parallel poll responses available; the limit of 15 is set by , 
the electrical drive characteristics of the bus. Logically, 
the IEEE 488 Standard is capable of accommodating 
more device addresses (31 primary, each potentially 
with 31 secondaries). 

Bus Length-Physically, the majority of microcomput­
er systems fit easily on a desk top or in a standard 19" 
(48-cm) rack, eliminating the need for extra long ca­
bles. The GPIB is designed typically to have 2m of 
length per device, which accommodates most systems. 
A line printer might require greater cable lengths, bur 
this can be handled at the lower speeds involved by 
using extra dummy terminations. 

Byte Oriented-The 8-bit byte is almost universal in 
I/O applications; even 16-bit and 32-bit computers use 
byte transfers for most peripherals. The 8-bit byte 
matches the ASCII code for characters and is an inte­
gral submultiple of most computer word sizes. The 
GPIB has an 8-bit wide data path that may be used to 
transfer ASCII or binary data, as well as the necessary 
status and control bytes. 

Block Multiplexed-Many peripherals are block orient­
ed or are used in a block mode. Bytes are transferred in 
a fixed or variable length group; then there is a wait 
before another group is sent to that device, e.g., one 
sector of a floppy disc, one line on a printer or type 
punch, etc. The GPIB is, by nature, a block multi­
plexed bus due to the overhead involved in addressing 
various devices to talk and listen. This overhead is less 
bothersome if it only occurs once for a large number of 
data bytes (once per block). This mode of operation 
matches the needs of microcomputers and most of their 
peripherals. Because of block multiplexing, the bus 
works best with buffered memory devices. 

Interrupt Driven-Many types of interrupt systems ex­
ist, ranging from complex, fast, vectored/priority net­
works to simple polling schemes. The main tradeoff is 
usually cost versus speed of response. The GPIB has 
two interrupt protocols to help span the range of appli­
cations. The first is a single service request (SRQ) line 
that may be asserted by all interrupting devices. The 
controller then polls all devices to find out which wants 
service. The polling mechanism is well defined and can 



inter AP·66 

be easily automated. For higheF performance, the paral­
lel ,poll capability in the IEEE 488 allows up to eight 
devices to be polled at once-each device is assigned to 
one bit of the data bus. This mechanism provides fast 
recognition of an interrupting device. A drawback is 
the frequent need for the controller to explicitly con­
duct a parallel poll, since there is no equivalent of the 
SRQ line for this mode. 

Direct Memory Access (DMA)-In many applications, 
no immediate processing of I/O data on a byte-by-byte 
basis is needed or wanted. In fact, programmed trans­
fers slow down the data transfer rate unnecessarily in 
these cases, and higher speed can be obtained using 
DMA. With the GPIB, one DMA facility at the con­
troller serves all devices. There is no need to incorpo­
rate complex logic in each device. 

Asynchronous Transfers-An asynchronous bus is de­
sirable so that each device can transfer at its own rate. 
However, there is still a strong motivation to buffer the 
data at each device when used in large systems in order 
to speed up the aggregate data rate on the bus by allow­
ing each device to transfer at top speed. The GPIB is 
asynchronous and uses a special 3-wire handshake that 
allows data transfers from one talker to many listeners. 

I/O to I/O Transfers-In practice, I/O to I/O transfers 
are seldom done due to the need for processing data ' 
and changing formats or due to mismatched data rates. 
However, the GPIB can support this mode of operation 
where the microcomputer is neither the talker nor one 
of the listeners. 

DEVICE A 
111 r r r r r f 

ABLE TO 

==r--TALK. LISTEN. 
AND 

CONTROL 

(e.g. computer) 

DEVICE B 

ABLE TO =====r--TALK AND 
LISTEN 

(e.g. digital 
mulllme'ar) 

DEVICE C 

ONLY ABLE 
TO LISTEN I -
(e.g. Ilgnal 
generator) 

( 

DEVICE D 

ONLY ABLE 
TO TALK I 

(e.g. counter) 

, 

(-I-

DATA BUS 

DATA BYTE 
TRANSFER 
CONTROL 

GENERAL 
INTERFACE 

MANAGEMENT 

~}DID1 ... ( DATA 
INPUT/OUTPUTI 

DAV (DATA VALIDI 
NRFD (NO T READY FOR DATAl 

T DATA ACCEPTEDI NDAC(NO 

IFC (INTER FACE CLEARI 
NTIONI ATN (ATTE 

SRQ (SEAV ICE REQUESTI 
OTE ENABLEI 
OR-IDENTIFYI 

REN (REM 
EOI (END-

Figure 2. Interface Capabilities and Bus Structu-re 

3-34 

231324-1 



inter AP-66 

GPIB Signal Lines 

DATA BUS 

The lines 0101 through 0108 are used to transfer ad­
dresses, control information and data. The formats for 
addresses and control bytes are defined by the IEEE 
488 standard (see Appendix C). Data formats are unde­
fined and may be ASCII (with or without parity) or 
binary. 0101 is the Least Significant bit (note that this 
will correspond to bit 0 on most computers). 

MANAGEMENT BUS 

A TN-Attention. This signal is asserted by the Con­
troller to indicate that it is placing an address or con­
trol byte on the Data Bus. A TN is de-asserted to allow 
the assigned Talker to place status or data on the Data 
Bus. The Controller regains control by reasserting 
ATN; this is normally done synchronously with the 
handshake to avoid confusion between control and data 
bytes. 

EOI-End or Identify. This signal has two uses as its 
name implies. A talker may assert EOI simultaneously 
with the last byte of data to indicate end of data. The 
Controller may assert EOI along with ATN to initiate a 
Parallel Poll. Although many devices do not use Paral­
lei· Poll, all devices should use EOI to end transfers 
(many currently available ones do not). 

SRQ-Service Request. This line is like an interrupt: it 
may be asserted by any device to request the Controller 
to take some action. The Controller must determine 
which device is asserting SRQ by conducting a Serial 
Poll at its earliest convenience. The device deasserts 
SRQ when polled. 

IFC-Interface Clear. This signal is asserted only by 
the System Controller in order to initialize all device 
interfaces to a known state. After deasserting IFC, the 
System Controller is the active controller of the system. 

REN-Remote Enable. This signal is asserted only by 
the System Controller. Its assertion does not place de­
vices into Remote Control mode; REN only enables a 
device to go remote when addressed to listen. When in 
Remote, a device should ignore its front panel controls. 

TRANSFER BUS 

NRFD-Not Ready For Data. This handshake line is 
asserted by a listener to indicate it is not yet ready for 
the next data or control byte. Note that the Controller 
will not see NRFD deasserted (Le., ready for data) until 
all devices have deasserted NRFD. 

3-35 

NDAC-Not Data Accepted. This handshake line is as­
serted by a Listener to indicate it has not yet accepted 
the data or control byte on the DID lines. Note that the 
Controller will not see NDAC deasserted (Le., data ac­
cepted) until all devices have deasserted NDAC. 

DAV-Data Valid. This handshake line is asserted by 
the Talker to indicate that a data or control byte has 
been placed on the 010 lines and has had the minimum 
specified settling time. 

DID -1 ~---( ... ____ .... ~-
H­

DAV 
L-

H-,.., n NRFO L _--l 1 ______ ...... 10 ___ _ 

H- ,--, ,--, 
NOAC L I 110 ______ 1 L 

231324-2 

Figure 3_ GPIB Handshake Sequence 

GPIB Interface Functions 

There are ten (10) interface functions specified by the 
IEEE 488 standard. Not all devices will have all func­
tions and some may only have partial subsets. The ten 
functions are summarized below with the relevant sec­
tion number from the IEEE document given at the b~­
ginning of each paragraph. For further information 
please see the IEEE standard. 

I) SH-Source Handshake (section 2.3). This func­
tion provides a device with the ability to properly 
transfer data from a Talker to one or more Listen­
ers using the three handshake lines. 

2) AH-Acceptor Handshake (section 2.4). This func­
tion provides a device with the ability to properly 
receive data from the Talker using the three hand­
shake lines. The AH function may also delay the 
beginning (NRFD) or end (NDAC) of any transfer. 

3) T-Talker (section 2.5). This function allows a de­
vice to send status and data bytes when addressed 
to talk. An address consists of one (Primary) or two 
(primary and Secondary) bytes. The latter is called 
an extended Talker. 



inter Ap·66 

4) L-Listener (section 2.6). This function allows a 
device to receive data when addressed to listen. 
There can be extended Listeners (analogous to ex­
tended Talkers above). 

5) SR-Service Request (section 2.7). This function 
allows a device to request service (interrupt) the 
Controller. The SRQ line may be asserted asyn­
chronously. 

6) RL-Remote Local (section 2.8). This function al­
lows a device to be operated in two modes: Remote 
via the GPIB or Local via the manual front panel 
controls. 

7) PP-Parallel Poll (section 2.9). This function al­
lows a device to present one bit of status to the 
Controller-in-charge. The device need not be ad­
dressed to talk and no handshake is required. 

8) DC-Device Clear (section 2.10). This function al­
lows a device to be cleared (initialized) by the Con­
troller. Note that there is a difference between DC 
(device clear) and the IFC line (interface clear). 

9) DT-Device Trigger (section 2.11). This function 
allows a device to have its basic operation started 
either individually or as part of a group. This capa­
bility is often used to synchronize several instru­
ments. 

10) C-Controller (section 2.12). This function allows 
a device to send addresses, as well as universal and 
addressed commands to other devices. There may 
be more than one controller on a system, but only 
one may be the controller-in-charge at anyone 
time. 

At power-on time the controller that is hardwired to be 
the System Controller becomes the active controller-in­
charge. The System Controller has several unique capa­
bilities including the ability to send Interface Clear 
(IFC--clears all device interfaces and returns control 
to the System Controller) and to send Remote Enable 
(REN-allows devices to respond to bus data once they 
are addressed to listen). The System Controller may 
optionally Pass Control to another controller, if the sys- . 
tern software has the capability to do so. 

GPIB Connector 

The GPIB connector is a standard 24-pin industrial 
connector such as Cinch or Amphenol series 57 Micro­
Ribbon. The IEEE standard· specifies this connector, as 
well as the signal connections and the mounting hard­
ware. 

The cable has 16 signal lines and 8 ground lines. The 
maximum length is 20 meters with no ·more than two 
meters per device. 

3-36 

t 
SHIELD 
ATN 
SRQ 

GND IFC 

! NDAC 
NRFD 
DAY 

REN EOI 
0108 0104 
0107 0103 
0106 0102 

0101 

231324-3 

Figure 4. GPIB Connector 

GPIB Signal Levels 

The GPIB signals are all TTL compatible, low true 
signals. A signal is asserted (true) when its electrical 
voltage is less than 0.5 volts and is deasserted (false) 
when it is greater than 2.4 volts. Be careful not to be­
come confused with the two handshake signals, NRFD 
and NDAC which are also low true (i.e. > 0.5 volts 
implies the device is Not Ready For Data). 

The Intel 8293 GPIB transceiver chips ensure that all 
relevant bus driver/receiver specifications are met. De­
tailed bus electrical specifications may be found in Sec­
tion 3 of the IEEE Std 488-1978. The Standard is the 
ultimate reference for all GPIB questions. 

GPIB Message Protocols 

The GPIB is a very flexible communications medium 
and as such has many possible variations of protocols. 
To bring some order to the situation, this section will 
discuss a protocol similar to the one used by Ziatech's 
ZT80 GPIB controller for Intel's MULTIBUSTM com­
puters. The ZT80 is a complete high-level interface 
processor that executes a set of high leve1.instructions· 
that map directly into GPIB actions. The sequences of 
commands, addresses and data for these instructions 
provide a good example of how to use the GPIB (addi­
tional information is available in the ZT80 Instruction 
Manual). The 'null' at ·the end of each instruction is for 
cosmetic use to remove previous information from the 
010 lines. 



inter AP-66 

DATA-Transfer a block of data from device A to de· 
vices B, C ... 

I) Device A Primary (Talk) Address 
Device A Secondary Address (if any) 

2) Universal Un listen 
3) Device B Primary (Listen) Address 

Device B Secondary Address (if any) 
Device C Primary (Listen) Address 
etc. 

4) First Data Byte 
Second Data Byte 

Last Data Byte (EOI) 
5) Null 

TRIGR-Tfigger devices A, B ... to take action 

1) Universal Unlisten 
2) Device A Primary (Listen) Address 

Device A Secondary Address (if any) 
Device B Primary (Listen) Address 
Device B Secondary Address (if any) 
etc. 

3) Group Execute Trigger 
4) Null 

PSCTL-Pass control to device A 

1) Device A Primary (Talk) Address 
Device A Secondary Address (if any) 

2) Talk Control 
3) Null 

CLEAR-Clear all devices 

1) Device Clear 
2) Null 

REMAL-Remote Enable 

1) Assert REN continuously 

GOREM-Put devices A, B, ... into Remote 

1) Assert REN continuously 
2) Device A Primary (Listen) Address 

Device A Secondary Address (if any) 
Device B Primary (Listen) Address 
Device B Secondary Address (if any) 
etc. 

3) Null 

GOLOC-Put devices A, B, ... into Local 

1) Device A Primary (Listen) Address 
Device A Secondary Address (if any) 
Device B Primary (Listen) Address 
Device B Secondary Address (if any) 
etc. 

3·37 

2) Go To Local 
3) Null 

LOCAL-Reset all devices to Local 
I) Stop asserting REN 

LLKAL-Prevent all devices from returning to Local 
I) Local Lock Out 
2) Null 

SPOLL-Conducts a serial poll of devices A, B, ... 
1) Serial Poll Enable 
2) Universal Unlisten 
3) ZT 80 Primary (Listen) Address 

ZT 80 Secondary Address 
4) Device Primary (Talk) Address 

Device Secondary Address (if any) 
5) Status byte from device 
6) Go to Step 4 until all devices on list have been polled 
7) Serial Poll Disable 
8) Null 

PPUAL-Unconfigure and disable Parallel Poll re· 
sponse from all devices 
1) Parallel Poll U nconfigure 
2) Null 

ENAPP-Enable Parallel Poll response in devices A, B, 

1) Universal Unlisten 
2) Device Primary (Listen) Address 

Device Secondary Address (if any) 
3) Parallel Poll Configure 
4) Parallel Poll Enable 
5) Go to Step 2 until all devices on list have been con· 

figured. 
6) Null 

DISPP-Disable Parallel Poll response from devices A, 
B, ... 
1) Universal Unlisten 
2) Device A Primary (Listen) Address 

Device A Secondary Address (if any) 
Device B Primary (Listen) Address 
Device B Secondary Address (if any) 
etc. 

3) Disable Parallel Poll 
4) Null 

This Ap Note will detail how to implement a useful 
subset of these controller instructions. 



intJ Ap·66 

HARDWARE ASPECTS OF THE 
SYSTEM 

8291 GPIB Talker/Listener 

The 8291 is a custom designed chip that implements 
many of the non-controller GPIB functions. It provides 
hooks so the user's software can implement additional 
features to complete the set. This chip is discussed in 
detail in its data sheet. The major features are summa­
rized here: 

- Designed to interface microprocessors to the GPIB 
- Complete Source and Acceptor Handshake 
- Complete Talker and Listener Functions with ex-

tended addressing 
- Service Request, Parallel Poll, Device Clear, Device 

Trigger, Remote/Local functions 
- Programmable data transfer rate 
- Maskable interrupts 
- On-chip primary and secondary address recognition 
- 1-8 MHz clock range' 
- 16 registers (8 read, 8 write) for CPU interface 
- DMA handshake provision 
- Trigger output pin 

. - On-chip EOS (End of Sequence) 

The pinouts and block diagram are shown in Figure 5. 
One of eight read registers is for data transfer to the 
CPU; the other seven allow the microprocessor to mon­
itor the GPIB states and various bus and device condi­
tions. One of the eight write registers is for data transfer 

Pin Configuration 

T/RI 
T/R2 

Dl 

D2 

D3 

DO 

D5 

D6 

D7 

Vee 
EOi 
N6Ac 
NiiFD 
DiY 
6iOi 
D'i07 
Illl!l! 
0i0s 
Di04 
6i'03 
Di02 
i5i01 
SRO 
ill 
ii'EN 
iFC 
RS2 

RSI 

_____ .1 R~O 

231324-4 

from the CPU; the other seven control various features 
of the 8291. 

The 8291 interface functions will be software config­
ured in this application example to the following sub­
sets for use with the 8292 as a controller that does not 
pass control. The 8291 is used only to provide the 
handshake logic and to send and receive data bytes. It 
is not acting as a normal device in this mode, as it never 
sees ATN asserted. 

SH I Source Handshake 
AH I Acceptor Handshake 
T3 Basic Talk-Only 
LI Basic Listen-Only 
SRO No Service Requests 
RLO No Remote/Local 
PPO No Parallel Poll Response 
DCO No Device Clear 
DTO No Device Trigger 

If control is passed to another controller, ¢e 8291 must 
be reconfigured to act as a talker/listener with the fol­
lowing subsets: 

SH I Source Handshake 
AH I Acceptor Handshake 
T5 Basic Talker and Serial Poll 
L3 Basic Listener 
SRI Service Requests 
RLI Remote/Local with Lockout 
PP2 Reconfigured Parallel Poll 
DCI Device Clear 
DTt Device Trigger 
CO Not a Controller 

Block Diagram 

GPIB CONTROL TO NON·INVERTING 
I BUS TRANSCEIVERS 

I 
I 

T/RCONTROL 

231324-5 

Figure 5. 8291 Pin Configuration and Block Diagram 

3-38 



AP-66 

Most applications do not pass control and the control­
ler is always the system controller (see 8292 commands 
below). 

8292 GPIB Controller 

The 8292 is a preprogrammed Intel 8a51A that pro­
vides the additional functions necessary to implement a 
GPIB controller when used with an 8291 Talker/Lis­
tener. The 8a41A is documented in both a user's manu­
al and in AP-41. The following description will serve 
only as an outline to guide the later discussion. 

The 8292 acts as an intelligent slave processor to the 
main system CPU. It contains a processor, memory, 

. I/O and is programmed to perform a variety of tasks 
associated with GPIB controller operation. The on-chip 
RAM is used to store information about the state of the 
Controller function, as well as a variety of local vari­
ables, the stack and certain user status information. 
The timer/counter may be optionally used for several 
time-out functions or for counting data bytes trans­
ferred. The I/O ports provide the GPIB control signals, 
as well as the ancillary lines necessary to make the 
8291, 2, 3 work together. 

The 8292 is closely coupled to the main CPU through 
three on-chip registers that may be independently ac­
cessed by both the master and the 8292 (UPI-41A). 
. Figure 6 shows this Register Interface. Also refer to 
Figure 12. 

The status register is used to pass Interrupt Status in­
formation to the master CPU (Aa = 1 on a read). 

The DBBOUT register is used to pass one of five other 
status words to the master based on the last command 
written into DB BIN. DBBOUT is accessed when Aa 
= a on a Read. The five status words are Error Flag, 
Controller Status, GPIB Status, Event Counter Status 
or Time Out Status. 

DBBIN receives either commands (Aa = 1 on a Write) 
or command related data (Aa = a on a write) from the 
master. These command related data are Interrupt 
Mask, Error Mask, Event Counter or Time Out. 

8293 GPIB Transceivers 

The 8293 is a multi-use HMOS chip that implements 
the IEEE 488 bus transceivers and contains the addi­
tionallogic required to make the 8291 and 8292 work 
together. The two option strapping pins are used to 
internally configure the chip to perform the specialized 
gating required for use with 8291 as a device or with 
8291192 as a controller. 

In this application example the two configurations used 
are shown in Figure 7a and 7b. The drivers are set to 
open collector or three state mode as required and the 
special logic is enabled as required in the two modes . 

A t.. r--lA-r-- r- !----1\ I - I STATUS 

-'! !' ~ -5---.. 
CPU ~ a: a: AO I DBBIN I UPI-41A "' hi CI F='\ ... Clr----"' ~ CS. 

I- 1-"-1 U RD 

I I WR DBBOUT 

'-- '-- '-
231324-48 

CS AO RD WR REGISTER 

a a a 1 READDBBOUT 
a 1 a 1 READ STATUS 
a a 1 a WRITE DBBIN (DATA) 
a 1 1 a WRITE DBBIN (COMMAND) 
1 X X X NO ACTION 

Figure 6. UPI-41A Registers 

3-39 



Ap·66 

a. 8293 Mode 2 
MOOE2 

NOA~~--------------~ 

NRFO ~----------------I-l 

T/1I1 

IFC~--'-----------~ 

SYC ~~+-----------....... ...!..I 
, REN ~++------------I--I 

OPTA 
+5 

OPT. 

NOAC* 

NRFD* 

IFC* 

REN* 

SRa* 

ATN* 

EOI* 

231324-6 

b. 8293 Mode 3 
+5 

ATNO 
im: 

DiY 

DiD, 

01°2 

01°3 

0106* 

0107* 

0108* 

231324-7 

Figure 7 

8291/2/3 Chip Set 

Figure 8 shows the four chips interconnected with the 
special logic explicitly shown. 

The 8291 acts only as the mechanism to put commands 
and addresses on the bus while the 8292 is asserting 
ATN. The 8291 is tricked into believing that the ATN 
line is not asserted by the ATN2 output of the ATN 
transceiver and is placed in Talk-only mode by the 
CPU. The 8291 then acts as though it is sending data, 
when in reality it is sending addresses and/or com­
mands. When the 8292 deasserts ATN, the CPU soft­
ware must place the 8291 in Talk-only, Listen-only or 
Idle based on the implicit knowledge of how the con­
troller is going, to participate in the data transfer. In 
other words, the 8291 does not respond directly to ad­
dresses or commands that it sends on the bus on behalf 
of the Controller. The user software, through the use of 
Listen-only or Talk-only, makes the 8291 behave as 
though it were addressed. 

3-40 

Although it is not a common occurrence, the GPIB 
specification allows the Controller to set up a data 
transfer between two devices and not directly partici­
pate in the exchange. The controller must know when 
to go active again and regain control. The chip set ac­
complishes this through use of the "Continuous Accep­
tor Handshake cycling mode" and the ability to detect 
EOI or EOS at the end of the transfer. See XFER in the 
Software Driver Outline below. 

If the 8292 is not the System Controller as determined 
by the signal on its SYC pin, then it must be able to 
respond to an IFC within 100 JLsec. This is accom­
plished by the cross-coupled NORs in ~e 7a which 
deassert the 8293's internal version of CIC (Not Con­
troller-in-Charge). This condition is latched until the 
8292's firmware has received the IFCL (interface clear 
received latch) signal by testing the IFCL input. The 
firmware then sets its signals to reflect the inactive con­
dition and clears the 8293's latch. 

. / 



inter 

OAV 

T/ftl 

MOr.lI 

iim 

EOI 

T/ft2 

8291 

iFC 

NRFO 

fmAC 

ATN 

,SRQ 

DAY 

IFC 

SYC 

REN 

SRQ 

8292 ATNl 

EOi2 

A'ffm 
COUNT 

IFCL 
CLTH 

CIC 

Ap·66 

ATNO 

Ji!C[ 

DiW 

T/Rl 

Imrl 

l5I02 

ffi03 

Di"04 

i5i05 

0106 

0107 

0108 

EOI 

ATN 

NDAC 

NRFD 
T/Rl 

IFC 

SYC 
REN 

SAO 

ATNI 

ATN 

EOl2 
ATNO 

EOi 
T/R2 

WC[ 

CLTH 
CIC 

MOOE 3 +5 

-~ ~ 
~ 

OA 

OPTA 

OPTB 

V* 

V 

V 

I 

t 

Ii 

Hr-
01 

He-
01 

~e- 01 

He-
01 

Hr-
01 05* 

He-
01 06* 

Rr-
01 

~r-DI 08* 

MODE 2 

n OPTA 

OPTB 
NDAC* 

~ NRFO* SIR T'C 

IFC* 

~ REN* SI" TIC 

~ SRO* 

SR Td-- ATN* 

~JT 

=L>H= EOI* 

SR T C 

~ 
231324-8 

Figure 8. Talker/Listener/Controller 

3-41 



inter AP-66 

In order for the 8292 to conduct a Parallel Poll the 
8291 must be able to capture the PP response on the 
010 lines. The only way to do this is to fool the 8291 
by putting it into Listen-only mode and generating a 
DA V condition. However, the bus spec does not allow 
a DAV during Parallel Poll, so the back-to-back 3-state 
buffers (see Figure 7b) in the 8293 isolate the bus and 
allow the 8292 to generate a local DA V for this pur­
pose. Note that the 8291. cannot assert a Parallel Poll 
response. When the 8292 is not the controller-in-charge 
the 8291 may respond to PPs and the 8293 guarantees 
that the DIO drivers are in "open collector" mode 
through the OR gate (Figure 7b). 

ZT7488/18 GPIB Controller 

Ziatech's GPIB Controller, the ZT7488/18 will be used 
as the controller hardware in this Application Note. 
The controller consists of an 8291, 8292, an 8 bit input 
. port and TTL logic equivalent to that shown in Figure 8. 

DATA BUS 
DO·07 

ADDRESS 
AQ.A2 

CLOCK­

RD' 

WT' 

SVS RESET' 

10 EXp· 

IORO-

=u BUFFERS 

Lo--
-~ 

....... 
3-STATE 
BUFFERS 

-
~ ~~ 

CARD PORT 

Figure 9 shows the card's block diagram. The 
ZT7488/18 plugs into the STD bus, a 56 pin 8 bit mi­
croprocessor oriented bus. An 8085 CPU card is also 
available on the STD bus and will be used to execute 
the driver software. 

The 8291 uses I/O Ports 60H to 67H and the 8292 uses 
I/O Ports 68H and 69H. The five interrupt lines are 
connected to a three-state buffer at I/O Port 6FH to 
facilitate polling operation. This is required for the 
TCI, as it cannot be read internally in the 8292. The 
other three 8229 lines (SPI, IBF, OBF) and the 8291's 
INT line are also connected to minimize the number of 
I/O reads necessary to poll the devices. 

NDAC is connected to COUNT on the 8292 to allow 
byte counting on data transfers. The example driver 
software will not use this feature, as the software is 
simpler and faster if an internal 8085 register is used for 
counting in software . 

~ 

129' -
-

~ INTERFACE 
LOGIC 

1'--
r--- -r-

8292 -
--Y II 
- i-' 

.-L 
J2 

""---

r--

r;::: J, 

DMA 
CONNEC TOR 

BPI B 
NNECTOR co 

SELECT o--c SELECT '-- c- INTERRUPT TRANS- ;=... 
ADDRESS 
AS·A7 

ADDRESS 
A3 .... 

DECODER 

"----

'INDICATES ACTIVE LOW LOGIC 

PORT CEIYERS 
DECODER r--

fLo-- ""--

231324-9 

Figure 9. ZT7488/18 GPIB Controller 

3-42 



inter AP-66 

READ REGISTERS PORT # WRITE REGISTERS 

'I 0-17---'-1 -01-6 -.1-0-15-.1-0-14-;1.--01-3-;1-0-12----r1-0-11--,-O-10---, 6</>H I 0071 0061 005 1 0041 003 1 002 1 001 I 000 1 

DATA IN DATA OUT 

I CPT 1 APT I GET 1 END 1 DEC 1 ERR 1 BO BI 61 H 

INTERRUPT STATUS 1 

I CPT 1 APT I GET 1 END I DEC 1 ERR 1 BO 1 BI 1 

INTERRUPT MASK 1 

liNT ISPAsl LLO 1 REM ISPAsclLLoclREMclAoscl 62H 

INTERRUPT STATUS 2 INTERRUPT MASK 2 

I S8 ISRosl S6 I S5 I S4 1 S3 1 S2 S1 63H S8 1 rsv 1 S6 1 S5 1 S4 1 S3 1 S2 1 S1 I 
SERIAL POLL STATUS SERIAL POLL MODE 

I ton lion 1 EOIILPASI TPAS I LA I TA IMJMNI 

ADDRESS STATUS 

64H 1 TO 1 LO 1 0 1 0 I 0 1 0 IAOM11AOMOI 

ADDRESS MODE 

ICPT71 CPT61CPT51 CPT 41 CPT3 I CPT21 CPT1 I CPTO I 

COMMAND PASS THROUGH 

65H ICNT21CNT11 CNTO ICOM41 COM31COM21COM11COMOI 

AUXMODE 

x I OTO I OLO IA05-01 A04-0 IA03-0IA02-0IA01-01 

ADDRESS 0 

x IOT1 IOL1 IA05-1IA04-1IA03-1IA02-1IA01-11 

ADDRESS 1 

Figure 10_ 8291 Registers 

r---

ADDRESS 0/1 

EOS 

8, O,tt------'="--------------------------, 1 At -

AI iOif 
RD B2~O~--~~-~-----~---------~ n A3~03 MEMw 

13 mw 
WA :: °4tt+M--=.::.---I-~----_I_1r_--------_+__, 

-~ 
IO/M~ -----' T_ RESET'-----'---Irl++i----t-t-t-...,V.:>o----I+-----------, 

I~A~1===~~$$======~~~==~=====t~~------_l_t_l-__. IN~.:: 

07.00_" l RST RD WRG 1J ~l ~~ RST RD WR hR'ii""iR 

HOLO­HLDA-
eLK 

m I jg~~~ IBFt 
~ -.. D7·DO INTI----I I 8259-5:11> ~:tl 2142 

--qCS AD Tel f-- CS 

L.., DROO - OREO SROII~~~~~~~~~~;SRO 07-00 I;-
r' DACKD >-----< DACK ,~~ ~~N 

8257·5 - 8291 ~~=~ COUNT 8292 

~ ~~~A I ~ ~~~ ~ ~~~2 I~~ -~ ~ ~ 

CLK = =~~ ~,:; V'- - ~ :i:~ 
ill .. ~ r CLK ~:~~rr ~ ~gH T9: I CS I IrsvcT 

W 21.2 

--vt CS 

AO-

( 

.. ~ .. c~ :c c 
AtS-A:::.O _______ ---':.:.:.:.::'--'.:-=-____ ---' ____________ :.:....._-=-=----l 

Figure 11. DMA/lnterrupt GPIB Controller Block Diagram 

3-43 

231324-10 



AP~66 

,The application example will not use OMA or inter­
rupts; however, the Figure 11 block diagram includes 
these features for completeness. , 

The 8257-5 OMA chip can be used to transfer data 
between the RAM and the 8291 Talker/Listener. This 
mode allows Ii faster data rate on the GPIB and typical­
ly will depend on the 8291's EOS or EO! detection to 
terminate the transfer. The 8259-5 interrupt controller 
is used to vector the five possible interrupts for rapid 
software handling of the various conditions. 

8292 COMMAND DESCRIPTION 

This section discusses each command in detail and re­
lates them to a particular GPIB activity. Recall that 
although the 8041A has only two read registers and one 
write register, through the magic of on-chip firmware 
the 8292 appears to have six ,read registers and five 
write registers. These are listed in Figure 12. Please see 
the 8292 data sheet for detailed definitions of each reg-

ister. Note the two letter mnemonics to be used in later 
discussions. The CPU must not write into the '8292 
while IBF (Input Buffer Full) is a one, as information 
will be lost. 

Direct Commands 

Both the Interrupt Mask (1M) and the Error Mask 
(EM) register may be directly written with the LSB of 
the address bus (AO) a "0". The firmware uses the MSB 
of the data written to differentiate between 1M and EM. 

LOAD INTERRUPT MASK 

This command loads the Interrupt Mask with 07-00. 
Note that, D7 must be a "1" and that interrupts are 
enabled by a corresponding "1" bit in this register. IFC 
interrupt cannot be masked off; however, when the 
8292 is the System Controller, sending an ABORT 
command will not cause an IFC interrupt. 

READ FROM 8292 PORT # WRITE TO 8292 
INTERRUPT STATUS 

I SYC IERRI SRO lEVi X IIFCR I IBF OBF 69H 
D7 Do 

ERROR FLAG· 

X X IUSERI X I X I TOUTs I TOUT2I TOUT1I 6SH 

CONTROLLER STATUS· 

ICSBSI CA I X I X ISYCSI IFC I REN I SRO I, 6SH 
GPIB (BUS) STATUS· 

I REN IDAVI EOI I X I SYC I IFC I ANTI I SRO 6SH 
EVENT COUNTER STATUS· 

D D I D I D I D I D I D D 6SH 
TIME OUT STATUS· 

D D 6SH 

COMMAND FIELD 

11 I lop I C I C I C C 

INTERRUPT MASK 

11 ISP1 1 TCI ISYCIOBFII IBFI I 0 I SRO I 
D7 Do 

ERROR MASK 

101 0 IUSERI o I 0 I TOUT 41 TOUT sl TOUT 11 
EVENT COUNTER· 

I DI D D I D I D I D I D D 

TIMEOUT" 

I DI D I D I D I D I D D D 

·Note: These registers are accessed by a special 
utility command. 

Figure 12.8292 Registers 

3-44 



infef Ap·66 

LOAD ERROR MASK 

This command loads the Error Mask with D7-DO. 
Note that D7 must be a zero and that interrupts are 
enabled by a corresponding "I" bit in this register. 

Utility Commands 

These commands are used to read or write the 8292 
registers that are not directly accessible. All utility 
commands are written with AO = 1, D7 = D6 = D5 
= I, D4 = O. D3-DO specify the particular command. 
For writing into registers the general sequence is: 

1) wait for IBF = 0 in Interrupt Status Register 

2) write the appropriate command to the 8292, 

3) write the desired register value to the 8292 with AO 
= 1 with no other writes intervening, 

4) wait for indication of completion from 8292 (lBF = 
0). 

For reading a register the general sequence is: 

1) wait for IBF = 0 in Interrupt Status Register 

2) write the appropriate command to the 8292 

3) wait for a TCI (Task Complete Interrupt) 

4) Read the value of the accessed register from the 8292 
with AO = O. 

WEVC-Write to Event Counter 
(Command = OE2H) 

The byte written following this command will be load­
ed into the event counter register and event counter 
status for byte counting. The internal counter is incre­
mented on a high to low transition of the COUNT (Tl) 
input. In this application example NDAC is connected 
to count. The counter is an 8 bit register and therefore 
can count up to 256 bytes (writing 0 to the EC implies a 
count of 256). If longer blocks are desired, the main 
CPU must handle the interrupts every 256 counts and 
carefully observe the timing constraints. 

Because the counter has a frequency range from 0 to 
133 kHz when using a 6 MHz crystal, this feature may 
not be usable with all devices on the GPIB. The 8291 
can easily transfer data at rates up to 250 kHz and even 
faster with some tuning of the system. There is also a 
500 ns minimum high time requirement for COUNT 
which can potentially be violated by the 8291 in contin­
uous acceptor handshake mode (i.e., TNDDVI + 
TDVND2 - C = 350 + 350 = 700 max). When 
cable delays are taken into consideration, this problem 
will probably never occur. 

3-45 

When the 8292 has completed the command, IBF will 
become a "0" and will cause an interrupt if masked on. 

WTOUT-Write to Time Out Register 
(Command = OEIH) 

The byte written following this command will be used 
to determine the number of increments used for the 
time out functions. Because the register is 8 bits, the 
maximum time out is 256 time increments. This is 
probably enough for most instruments on the GPIB but 
is not enough for a manually stepped operation using a 
GPIB logic analyzer like Ziatech's ZT488. Also, the 
488 Standard does not set a lower limit on how long a 
device may take to do each action. Therefore, any use 
of a time out must be able to be overridden (this is a 
good general design rule for service and debugging con­
siderations). 

The time out function is implemented in the 8292's 
firmware and will not be an accurate time. The counter 
counts backwards to zero from its initial value. The 
function may be enabled/disabled by a bit in the Error 
mask register. When the command is complete IBF will 
be set to a "0" and will cause an interrupt if masked on. 

REVC-Read Event Counter Status 
(Command = OE3H) 

This command transfers the content of the Event 
Counter to the DBBOUT register. The firmware then 
sets TCI = 1 and will cause an interrupt if masked on. 
The CPU may then read the value from the 8292 with 
AO = O. 

RINM-Read Interrupt Mask Register 
(Command = OE5H) 

This command transfers the content of the Interrupt 
Mask register to the DBBOUT register. The firmware 
sets TCI = 1 and will cause an interrupt if masked on, 
The CPU may then read the value. 

RERM-Read Error Mask Register 
(Command = OEAH) 

This command transfers the content of the Error Mask 
register to the DBBOUT register. The firmware sets 
TCI = 1 and will cause an interrupt if masked on. The 
CPU may then read the value. 

RCST -Read Controller Status Register 
(Command = OE6H) 



Ap·66 

This command transfers the content of the Controller 
Status register to the DBBOUT register. The firmware 
sets TCI = I and will cause an interrupt if masked on. 
The CPU may then read the value. 

RTOUT-Read Time Out Status Register 
(Command = OE9H) 

This command transfers the content of the Time Out 
Status register to the DBBOUT register. The firmware 
sets TCI = I and will cause an interrupt if masked on. 
The CPU may then read the value. 

If this register is read while a time-out function is in 
process, the value will be the time remaining before 
time-out occurs. If it is read after a time-out, it will be 
zero. If it is read when no time-out is in process, it will 
be the last value reached when the previous timing oc­
curred. 

RBST -Read Bus Status Register 
(Command = OE7H) 

This command causes the firmware to read the GPIB 
management lines, DA V and the SYC pin and place a 
copy in DBBOUT. TCI is set to "I" and will cause an 
interrupt if masked on. The CPU may read the value. 

RERF-Read Error Flag Register 
(Command = OE4H) 

This command transfers the content of the Error Flag 
register to the DB BOUT register. The firmware sets 
TCI = I and will cause an interrupt if masked on. The 
CPU may then read the value. 

This register is also placed in DB BOUT by an lACK 
command if ERR remains set. TCI is set to "I" in this 
case also. 

lACK-Interrupt Acknowledge 
(Command = Al A2 A3 A4 1 AS 1 I) 

This command is used to acknowledge any combina­
tions of the five SPI interrupts (AI-AS): SYC, ERR, 
SRQ, EV, and IFCR. Each bit AI-AS is an individual 
acknowledgement to the corresponding bit in the Inter­
rupt Status Register. The command clears SPI but it 
will be set again if all of the pending interrupts were not 
acknow ledged. 

If A2 (ERR) is "I", the Error Flag register is placed in 
DBBOUT and TCI is set. The CPU may then read the 
Error Flag without issuing an RERF command. 

Operation Commands 

The following diagram (Figure 13) is an attempt to 
show the interrelationships among the various 8292 

Operation Commands. It is not meant to replace the 
complete controller state diagram in the IEEE Stan­
dard. 

RST-Reset (Command = OF2H) 

This command has the same effect as an external reset 
applied to the chip's pin #4. The 8292's actions are: 

I) All outputs go to their electrical high state. This 
means that SPI, TCI, OBFI, IBFI, .CLTH will be 
TRUE and all other GPIB signals will be FALSE. 

2) The 8292's firmware will cause the above mentioned 
five signals to go FALSE after approximately 17.5 
f.Ls (at 6 MHz). 

3) These registers will be cleared: Interrupt Status, In­
terrupt Mask, Error Mask, Time Out, Event Coun­
ter, Error Flag. 

4) If the 8292 is the System Controller (SYC is TRUE), 
then IFC will be sent TRUE for approximately 
100 f.LS and the Controller function will end up in 
charge of the bus. If the 8292 is not the System Con­
troller then it will end up in an Idle state. 

3-46 

5) TCI will not be set. 

RST. SYC 

r---------~----~ 

I I 
I ABO~~T. ~YC ---.. LOCAL I 

I I 
L ____ ~Y!!..E~0!:IT.R2!:..L~ ____ -.J 

231324-11 

Figure 13.8292 Command Flowchart 

RSTI-Reset Interrupts (Command = OF3) 

This command clears all pending interrupts and error 
flags. The 8292 will stop waiting for actions to occur 
(e.g., waiting for ATN to go FALSE in a TCNTR com­
mand or waiting for the proper handshake state in a 
TCSY command). TCI will not be set. 

ABORT-Abort all operations and Clear Interface 
(Command = OF9H) 

If the 8292 is not the System Controller this command 
acts like a NOP and flags a USER ERROR in the Er­
ror Flag Register. No TCI will occur. 



Ap·66 

If the 8292 is the system Controller then IFC is set 
TRUE for approximately 100 J.Ls and the 8292 becomes 
the Controller-in-Charge and asserts A TN. TCI will be 
set, only if the 8292 was NOT the CIC. 

STCNI-Start Counter Interrupts 
(Command = OFEH) 

Enables the EV Counter Interrupt. TCI will not be set. 
Note that the counter must be enabled by a OSEC com­
mand. 

SPCNI-Stop Counter Interrupts 
(Command = OFOH) 

The 8292 will not generate an EV interrupt when the 
counter reaches o. Note that the counter will continue 
counting. TCI will not be set. 

SREM-Set Interface to Remote Control 
(Command = OF8H) 

If the 8292 is the System Controller, it will set REN 
and TCI TRUE. Otherwise it only sets the User Error 
Flag. 

SLOC-Set Interface to Local Mode 
(Command = OF7H) 

If the 8292 is the System Controller, it will set REN 
FALSE and TCI TRUE. Otherwise, it only sets the 
User Error Flag. 

EXPP-Execute Parallel Poll 
(Command = OF5H) 

If not Controller-in-Charge, the 8292 will treat this as a 
Nap and does not set TCI. If it is the Controller-in­
Charge then it sets lOY (EO! & ATN) TRUE and 
generates a local DA V pulse (that never reaches the 
GPIB because of gates in the 8293). If the 8291 is con­
figured as a listener, it will capture the Parallel Poll 
Response byte in its data register. TCI is not generated, 
the CPU must detect the BI (Byte In) from the 8291. 
The 8292 will be ready to accept another command 
before the BI occurs; therefore the 8291 's BI serves as a 
task complete indication. 

GTSB-Oo To Standby (Command = OF6H) 

If the 82~2 is not the Controller-in-Charge, it will treat 
this command as a Nap and does not set TCI TRUE. 
Otherwise, it goes to Controller Standby State (CSBS), 

sets ATN FALSE and TCI TRUE. This command is 
used as part of the Send, Receive, Transfer and Serial 
Poll System commands (see next section) to allow the 
addressed talker to send data/status. 

If the data transfer does not start within the specified 
Time-Out, the 8292 sets TOUT2 TRUE in the Error 
Flag Register and sets SPI (if enabled). The controller 
continues waiting for a new command. The CPU must 
decide to wait longer or to regain control and take cor­
recti ve action. 

GSEC-Go To Standby and Enable Counting 
(Command = OF4H) 

This command does the same things as GTSB but also 
initializes the event counter to the value previously 
stored in the Event Counter Register (default value is 
256) and enables the counter. One may wire the count 
input to NDAC to count bytes. When the counter 
reaches zero, it sets EV (and SPI if enabled) in Inter­
rupt Status and will set EV every 256 bytes thereafter. 
Note that there is a potential loss of count information 
if the CPU does not respond to the EV /SPI before an­
other 256 bytes have been transferred. TCI will be set 
at the end of the command. 

TCSY-Take Control Synchronously 
(Command = OFDH) 

If the 8292 is not in Standby, it treats this command as 
a Nap and does not set TCI. Otherwise, it waits for the 
proper handshake state and sets ATN TRUE. The 8292 
will set TOUT3 if the handshake never assumes the 
correct state and will remain in this command until the 
handshake is proper or a RSTI command is issued. If 
the 8292 successfully takes control, it sets TCI TRUE. 

This is the normal way to regain control at the end of a 
Send, Receive, Transfer or Serial Poll System Com­
mand. If TCSY is not successful, then the controller 
must try TCAS (see warning below). 

TCAS-Take Control Asynchronously 
(Command = OFCH) 

.If the 8292 is not in Standby, it treats this command as 
a Nap and does not set TCI. Otherwise, it arbitrarily 
sets ATN TRUE and ECI TRUE. Note that this action 
may cause devices on the bus to lose a data byte or 
cause them to interpret a data byte as a command byte. 
Both Actions can result in anomalous behavior. TCAS 
should be used only in emergencies. If TCAS fails, then 
the System Controller will have to issue an ABORT to 
clean things up. 

3-47 



inter AP-66 

GIDL-Go to Idle (Command = OFIH) 

If the 8292 is not the Controller in Charge and Active, 
then it treats this command as a NOP and does not set 
TCI. Otherwise, it sets ATN FALSE, becomes Not 
Controller in Charge, and sets TCI TRUE. This com­
marid is used as part of the Pass Control System Com­
mand. 

TCNTR-Take (Receive) Control 
(Command = OFAR) 

If the 8292 is not Idle, then it treats this command as a 
NOP and does not set TCI. Otherwise, it waits for the 
current Controller-in-Charge to set ATN FALSE. If 
this does not occur within the specified Time Out, the 
8292 sets TOUTI in the Error Flag Register and sets 
SPI (if enabled). It will not proceed until ATN goes 
false or it receives an RSTI command. Note that the 
Controller in Charge must previously have sent this 
controller (via the 829l's command pass through regis­
ter) a Pass Control message. When ATN goes FALSE, 
the 8292 sets CIC, ATN and TCI TRUE and becomes 
Active. 

SOFTWARE DRIVER OUTLINE 

The set of system commands discussed below is shown 
in Figure 14. These commands are implemented in soft­
ware routines executed by the main CPU. 

The following section assumes that the Controller is the 
, System Controller and will not Pass Control. This is a 

valid assumption for 99 + % of all controllers. It also 
assumes that no DMA or Interrupts will be used. SYC 
(System Control Input) should not be changed after 
Power-on in any system-it adds unnecessary complex­
ity to the CPU's software. 

In order to use polling with the 8292 one must enable 
TCI but not connect the pin to. the CPU's interrupt pin. 
TCI must be readable by some means. In this applica­
tion example it is connected to bit 1 port 6FH on the 
ZT7488/l8. In addition, the other three 8292 interrupt 
lines and the 8291 interrupt are also on that port (SPI­
Bit 2, IBFI-Bit 4, OBFI-Bit 3, 8291 INT-Bit 0). 

These drivers assume that only primary addresses will 
be used on the GPIB. To use secondary addresses, one 
must modify the test for valid talk/listen addresses 
(range macro) to include secondaries. 

3-48 

INIT INITIALIZATION 

Talker/Listener 
SEND SEND DATA 
RECV RECEIVE DATA 
XFER TRANSFER DATA 

Controller 
TRIG 
DCLR 
SPOL 
PPEN 
PPDS 
PPUN 
PPOL 
PCTL 
RCTL 
SRQD 

GROUP EXECUTE TRIGGER 
DEVICE CLEAR 
SERIAL POLL 
PARALLEL POLL ENABLE 
PARALLEL POLL DISABLE 
PARALLEL POLL UNCONFIGURE 
PARALLEL POLL 
PASS CONTROL 
RECEIVE CONTROL 
SERVICE REQUESTED 

System Controller 
REME .REMOTE ENABLE 
LOCL LOCAL 
IFCL ABORTIINTERFACE CLEAR 

Figure 14. Software Drive Routines 



AP-66 

Initialization 

8292-Comes up in Controller Active State when SYC 
is TRUE. The only initialization needed is to enable the 
TCI interrupt mask. This is done by writing OAOH to 
Port 68H. 

8291-Disable both the major and minor addresses be­
cause the 8291 will never see the 8292's commands/ad­
dresses (refer to earlier hardware discussion). This is 
done by writing 60H and OEOH to Port 66H. 

Set Address Mode to Talk-only by writing 80H to Port 
64H. 

INIT: 

Set internal counter to 3 MHz to match the clock input 
coming from the 8085 by writing 23H to Port 65H. 
High speed mode for the handshakes will not be used 
here even though the hardware uses three-state drivers. 

No interrupts will be enabled now. Each routine will 
enable the ones it needs for ease of polling operation. 
The INT bit may be read through Port 6PH. Clear 
both interrupt mask registers. 

Release the chip's initialization state by writing 0 to 
Port 65H. 

Enable-8292 
Enable TCI 

;Set up In. pins for Port 6FH 
;Task complete must be on 

Enable-8291 
Disable major address 
Disable minor address 
ton 

;In controller usage, the 8291 
;1s set to talk only and/or listen only 
;Talk only is our rest state 

Clock frequency ;3 MHz in this ap note example 
All interrupts off 
Immediate execute pon ;Releases 8291 from init. state 

Talker/Listener Routines 

SEND DATA 

SEND <listener list pointer> <count> <EOS> <data buffer pointer> 

This system command sends data from the CPU to one 
or more devices. The data is usually a string of ASCII 
characters, but may be binary or other forms as well. 
The data is device-specific. 

My Talk Address (MTA) must be output to satisfy the 
GPIB requirement of only one talker at a time (any 
other talker will stop when MTA goes out). The MTA 
is not needed as far as the 8291 is concerned-it will be 
put into talk-only mode (ton). 

3-49 

This routine assumes a non-null listener list in that it 
always sends Univeral Unlisten. If it is desired to send 
data to the listeners previously addressed, one could 
add a check for a null list and not send UNL. Count 
must be 255 or less due to an 8 bit register. This routine 
also always uses an EOS character to terminate the 
string output; this could easily be eliminated and rely 
on the count. Items in brackets ( ) are optional and will 
not be included in the actual code in Appendix A. 



inter 

SEND: 
Output-to-829l MTA, UNL 
Put EOS into 8291 
While .20H s:: listener s:: 3EH 

output-to-829l listener 
Increment listen list pointer 

Output-to-8292 GTSB 
Enable-829l 

Output EOI on EOS sent 
If count < > 0 then. 
While not (end or count 0) 
(could check tout 2 here) 
Output-to-829l data 
Increment data buffer pointer· 
Decrement count 

Output-to-8292 TCSY 
(If tout3 then take control async) 
Enable 8291 

No output EOI on EOS sent 
Return 

AP-66 

;We will talk, nobody listen 
;End of string compare character 
;GPIB listen addresses are 
;"space" thru ">" ASCII 
;Address all listeners 
;8292 stops asserting ATN, go to standby 

;Send EOI along with EOS character 

;Wait for EOS or end of count 
;Optionally check for stuck bus-tout 2 
;Output all data, one byte at a time 
;8085 CREG will count for us 

;8292 asserts ATN, take control sync. 
;If unable to take control sync. 
;Restore 8291 to standard condition 

231324-12 

Figure 15. Flowchart for Receive Ending Conditions 

3-50 



inter AP-66 

LSTN 
"I" 

CONTROLLER 
8291.8292 

CTLR 

LSTN 
"+" 

DEVICE 

TALK 
"a" 

TALK 
"R" 

DEVICE 

TALK 
"K" 

DEVICE 

TALK 
"/I" 

231324-13 

Figure 16. SEND to "1", "2", ">"; "ABCO"; EOS = "0" 

RECEIVE DATA 

RECV <talker> <count> <EOS> <data buffer pointer> 

This system command is used to input data from a 
device. The data is typically a string of ASCII charac­
ters. 

This routine is the dual of SEND. It assumes a new 
. talker will be specified, a count of less than 257, and an 
EOS character to terminate the input. EOI received 
will also terminate the input. Figure 15 shows the flow 
chart for the RECV ending conditions. My Listen Ad­
dress (MLA) is sent to keep the GrIB transactions 

3-51 

totally regular to facilitate analysis by a GPIB logic 
analyzer like the Ziatech ZT488. Otherwise, the bus 
would appear to have no listener even though the 8291 
will be listening. 

Note that although the count may go to zero before the 
transmission ends, the talker will probably be left in a 
strange state and may have to be cleared by the control­
ler. The count ending of RECV is therefore used as an 
error condition in most situations. 



intJ 
RECV: 

Put EOS into 8291 
If 40H ::;: talker ::;: 5EH then 
Output-to-829l talker 

Increment talker pointer 
Output-to-829l UNL, MLA 
Enable-829l 

Holdoff on end 
End on EOS received 
lon, reset ton 
Immediate execute pon 

Output-to-8292 GTSB 
While not (end or count 0 
(or tout2)) 
Input-from-829l data 
Increment data buffer pointer 
Decrement count 

(If count = 0 then error) 
Output-to-8292 TCSY 
(If Tout3 then take control a~ync.) 
Enable-829l 

No holdoff on end 
~o end on EOS received 
ton, reset Ion 
Finish handshake 
Immediate execute pon 

Return error-indicator 

TALK 
"A" 

LSTN 
"1" 

LSTN 
"2" 

DEVICE 

DEVICE 

TALK 
"0" 

AP-66 

;End of string compare 'character 
;GPIB talk addresses are 
;"@" thru "II" ASCII 
;Do this for consistency's sake 
;Everyone except us stop listening 

;Stop when EOS character is 
;Detected by 8291 
;Listen only (no talk) 

;8292 stops asserting ATN, go to standby 
;wait for EOS or EOI or end of count 
;optionally check for stuck bus-tout2 
;input data, one byte at a time 

;Use 8085 C register as counter 
;Count should not occur before end 
;8292 asserts ATN take control 
;If unable to take control sync. 
;Put 8291 back as needed for 
;Controller activity and 
;Clear holdoff due to end 

;Complete holdoff due to end, if any 
;Needed to reset Ion 

LSTN 
"I" 

CONTROLLER 
1211,'212 

CTL. TALK 
"A" 

DEVICE 

TALK 
"Q" 

TALK 
"R" 

TALK 
"11" 

DEVICE LSTN TALK 
">"' "Nt 

LSTN TALK 231324-15 
">" "fI" 

231324-14 

Figure 17" RECV from "R"j EOS = ODH 

3"52 

Figure 18. XFER from" II" to "1", "2", "+"j 
EOS = ODH 



inter 
TRANSFER DATA 

XFER<Talker> <Listener list> <EOS> 

AP-66 

This is accomplished through the use of the 8291's con­
tinuous acceptor handshake mode while in listen-only. 

This system command is used to transfer data from a 
talker to one or more listeners where the controller 
does not participate in the transfer of the ASCII data. 

This routine assumes a device list that has the ASCII 
talker address as the first byte and the string (one or 
more) or ASCII listener addresses following. The EOS 
character or an EOI will cause the controller to take 
take control synchronously and thereby terminate the 
transfer. 

XFER: 
Output-to-8291: Talker, UNL 
While 20H :::; listen :::; 3EH 

Output-to-8291: Listener 
Increment listen list pointer 

Enable-8291 
lon, no ton 
Continuous AH mode 
End on EOS received 
Immediate execute PON 

Put EOS into 8291 
Output-to-8292: GTSB 

Upon end (or tout2) then 
, Take control synchronously 
Enable-8291 
Finish handshake 
Not continuous AH mode 
Not END on EOS received 
ton 
Immediate execute pon 

Return 

Controller 

GROUP EXECUTE TRIGGER 

TRIG <Listener list> 

;Send talk address and unlisten 

;Send listen address 

;Controller is pseudo listener 
;Handshake but don't capture data 
;Capture EOS as well as EOI 
;Initialize the 8291 
;Set up EOS character 
;Go to standby 
;8292 waits for EOS or EOI and then 

;Regains control 
;Go to Ready for Data 

This system command causes a group execute trigger 
(GET) to be sent to all devices on the listener list. The 
intended use is to synchronize a number of instruments. 

TRIG: 
Output-to-8291 UNL 
While 20H :::; listener :::; 3EH 

Output-to-8291 Listener 
Increment listen list pointer 

Output-to-8291 GET 
Return 

;Everybody stop listening 
;Check for valid listen address 
;Address each listener 
;Terminate on any non-valid, character 
;Issue group execute trigger 

3-53 



inter 

CONTROLLER 

LSTN TALK 
"A" 

TALK 
"Q" 

DEVICE 
;~,'----------1 

LSTN TALK 
"2" "R" 

DEVICE 

LSTN TALK 
"A" 

231324-16 

Figure 19. TRIG "1", "+" 

DEVICE CLEAR 

DCLR < Listener list> 

AP-66 

LSTN 

"'" 

CONTROLLER 
8291.8292 

EfRl 

.... ~ 

TALK 
"A" 

LSTN 

LSTN 
"'>" 

Figure 20. DCLR "1", "2" 

DEVICE 

TALK 
"K" 

DEVICE 

TALK 
"I\." 

231324-17 

This system command causes a device clear (SDC) to 
be sent to all devices on the listener list. Note that this 

is not intended to clear the GPIB interface of the de­
vice, . but should clear the device-specific logic. 

DCLR: 
Output-to-829l UNL 
While 20H s: listener s: 3EH 
Output-to-829l Listener 
Increment listen list pointer 

Output-to-829l SDC 
Return 

SERIAL POLL 

SPOL<Talker list> <status buffer pointer> 

;Everybody stop listening 
;Check for valid listen address 
;Address each listener 
;Terminate on any non-valid character 
;Selective device clear 

This system command sequentially addresses the desig­
nated devices and receives one byte of status from each. 

The bytes are stored in the buffer in the same order as 
the devices appear on the talker list. MLA is output for 
completeness. 

3-54 



SPOL: 
Output-to-8291 UNL, MLA, SPE 

While 40H ::;; talker ::;; 5 EH 
Output-to-8291 talker 
Increment talker list pointer 
Enable-8291 

lon, reset ton 
Immediate execute pan 

Output-to-8292 GTSB 
Wait for data in (BIl 
Output-to-8292 TCSY 
Input-from-8291 data 
Increment buffer pointer 
Enable 8291 
ton, rese~ lon 
Immediate execute pan 

Output-to-8291 SPD 

Return 

TALK 
"A" 

4;?-
~ 

,1:!,."'"Cl"'<:;,,,"'J;,"":!."" .. '"": ·~.:,~.:.m:: ,~, ::-! •.• 7l. 

i! 
;.. 
;~. 

~ 
j) 

~:·~:i: ... :kJ·:y t':',· ;: .. ~,:;.;. 

LSTH 
"1" 

LSTN 
''2" 

LSTN 
"." 

LSTN 
">" 

DEVICE 

~ 
DEVICE 

DEVICE 

DEVICE 

231324-18 

Figure 21. SPOL "Q", "R", "K", "/\" 

PARAI,..LEL POLL ENABLE 

AP-66 

;Unlisten, we listen, serial poll enable 
;Only one byte of serial poll 
;Status wanted from each talker 
;Check for valid transfer 
;Address each device to talk 
;One at a time 

;Listen only to get status 
;This resets ton 
;Go to standby 
;Serial poll status byte into 8291 
;Take control synchronously 
;Actually get data from 8291 

;Reset lon 
;Send serial poll disable after all 

devices polled 

LSTN 
"'" 

CONTROLLER 
8291,8292 

R TALK 
"A" 

DEVICE 

v LSTN 
"1" 

DEVICE 

v~ 
I·-:i··"] 

DEVICE 

V LSTN 

DEVICE 

V LSTN 

TALK 
"Q" 

TALK 
"R" 

TALK 
"K" 

231324-19 

Figure 22. PPEN "2"; iP3P2P1 = 0111B 

PPEN < Listener list> < Configuration Buffer pointer> 

This system command configures one or more devices to respond to Parallel Poll, assuming they implement subset 
PPI. The configuration information is stored in a buffer with one byte per device in the same order as 

3"55 



AP-66 

devices appear on the listener list. The configuration byte has the format XXXXIP3P2Pl as defined by the IEEE 
Std. P3P2Pl indicates the bit # to be used for a response and I indicates the assertion value. See Sec. 2.9.3.3 of the 
Std. for more details. 

PPEN: 
Output-to-829l UNL 
While 20H s;: Listener s;: 3EH 
Output-to-829l listener 
Output-to-829l PPC, (PPE or data) 
Increment listener list pointer 
Increment buffer pointer 

Return' 

PARALLEL POLL DISABLE 

PPDS<listener list> 

;Universal unlisten 
;Check for valid listener 
;Stop old listener, address new 
;Send parallel poll info 
;Point to next listener 
;One configuration byte per listener 

This system command disables one or more devices from responding to a Parallel Poll by issuing a Parallel Poll 
Disable (PPD). It does not deconfigure the devices. 

PPDS: 
Output-to-829l UNL 
While 20H 'S;: Listener s;: 3EH 

Output-to-829l listener 
Increment listener list pointer 

Output-to-829l PPC, PPD 
Return 

CONTROLLER 
8291.8292 

L~~N ~ TALK 
"A" 

V LSTH 
"2" 

TALK 
"Q" 

DEVICE 

TALK 
"ROO 

231324-20 

Figure 23. PPDS "1", ".+", ">" 

;Universal.Unlisten 
;Check for valid listener 
;Address listener 

;Disable PP on all listene.rs 

CONTROLLER 
8291,8292 

LSTN ~ TALK 
"I" ~~!t~ "A" 

.:: .~: ~ 

~.". 

I!.. .. :;'., .... ~¥., 

" ... 

" ::~:.~ . ···'r",:'o/;>t;·j ... 

"-
:.~ >':;':~~1:.~ ~"::.' ~:: .y;;> 

V 

LSTH 
"1" 

LSTH 
"2" 

LSTN 

LSTH 
"-::-" 

Figure 24. PPUN 

3-56 

DEVICE 

TALK 
''0'' 

DEVICE 

TALK 
"R" 

DEVICE 

TALK 
"K" 

DEVICE 

TALK 
"A" 

231324-21 



AP-66 

PARALLEL POLL UNCONFIGURE 

PPUN 

This system . command deconfigures the Parallel Poll response of all devices by issuing a Parallel Poll Unconfigure 
message. 

PPUN: 
Output-to-8291 PPU 
Return 

CONDUCT A PARALLEL POLL 

PPOL 

This system command causes the controller to conduct 
a Parallel Poll on the GPIB for approximately 12.5 
!J.sec (at 6 MHz). Note that a parallel poll does not use 
the handshake; therefore, to ensure that the device 
knows whether or not its positive response was ob-

PPOL: 
Enable-8291 
lon 
Immediate execute pon 

Output-to-8292 EXPP 
Upon BI 

Input-from-8291 data 
Enable-8291 
ton 
Immediate execute pon 

Return Data (status byte) 

PASS CONTROL 

PCTL < talker> 

This system command allows the controller to relin­
quish active control of the GPIB to another controller. 
Normally some software protocol should already have 
informed the controller to expect this, and under what 
conditions to return control. The 8291 must be set up 

PCTL: 
If 40H ::; talker ::; 5EH then 
if talker < > MTA then 
output-to-8291 talker, TCT 
Enable-8291 
not ton, not lon 
Immediate execute pon 
My device address, mode 1 
Undefined command pass through 
(Parallel Poll Configuration) 

Output-to-8292 GIDL 
Return 

;Unconfigure all parallel poll 

served by the controller, the CPU should explicitly ac­
knowledge each device by a device-dependent data 
string. Otherwise, the response bit will still be set when 
the next Parallel Poll occurs. This command returns 
one byte of status. 

;Listen only 
;This resets ton 
;Execute parallel poll 
;When byte is input 
;Read it 

;Talk only 
;This resets lon 

to become a normal device and the CPU must handle 
all commands passed through, otherwise control can­
not be returned (see Receive Control below). The con­
troller will go idle. 

;Cannot pass control to myself 
;Take control message to talker 
;Set up 8291 as normal device 

:Reset ton and lon 
:Put device number in Register 6 
:Required to receive control 
;Optional use of PP 
lPut controller in idle 

3-57 



inter AP-66 

CONTROLLER 
8211,1212 

~ 
TALK 

"r "A" 

• i' 
I~I~ 0101 

LaTH 
"1" 

0102 

LITH 
''2'' 

0103 

, LITH 
"+" 

LITH 
">-

Figure 25. PPOL 

RECEIVE CONTROL 

RCTL 

DEVICE 

TALK 
"0" 

DEVICE 

TALK 
"R" 

DEVICE 

TALK 
"K" 

DEVICE 

TALK 
"1\" 

231324-22 

This system command is used to get control back from 
the current controller-in"charge if it has passed control 
to this inactive controller. Most GPIB systems do not 
use more than one controller and therefore would not 
need this routine. 

To make passing and receiving control a manageable 
event, the system designer should speCify a protocol 

3-58 

CONTROLLER 
8291,8292 

LSTN TALK 
"I'" "A" 

DEVICE 

LSTH , TALK 

"'" "Q" 

DEVICE 

';t 

+ LSTN TALK 
"2" "R" 

DEVICE 

LSTH TALK 
"." "K" 

',: 

DEVICE 

LSTN TALK 

LITN ">" "A" 

"'" 
CTLR 

231324-23 

Figure 26. PCTL ','cn 

whereby the controller-in-charge sends a data message 
to the soon-to-be-active controller. This message should 
give the current state of the 'system, why control is be" 
ing passed, what to do, and when to pass control back. 
Most of these issues are beyond the scope of this Ap 
Note. 



intJ 
RCTL: 

Upon CPT 
If (command=TCT) then 
If TA then 
Enable-8291 

Disable major device number 
ton 

-Mask off interrupts 
Immediate execute pon 

Output-to-8292 TCNTR 
Enable-8291 
Valid command 

Return valid 
Else 

Enable-8291 
Invalid command 

Else 
Enable-8291 

Invalid command 
Return invalid 

CONTROLLER 
8291,8292 

LSTN 
CTLR fF "I" 

" ~ 

t-. 

v LSTN 
"1" 

t-. 

LSTH 
"2" 

t-. 

v LSTN ..... 

v LSTN 

~~ 
.. " 

LSTN TALK 
"#" "C" 

CONTROLLER 

DEVICE 

DEVICE 

DEVICE 

DEVICE 

TALK 
"0" 

TALK 
"R" 

TALK 
"K" 

TALK 
"A" 

231324-24 

Figure 27. RCTL 

AP-66 

;Wait for command pass through bit in 8291 
;If command is take control and 
;We are talker addressed 

;Controller will use ton and Ion 
;Talk only mode 

;Take (receive) control 

;Release handshake 

;Not talker addr. so TCT not for us 

;Not TCT, so we don't care 

SYSTEM 
CONTROLLER 

8291,8292 

LSTN ~ TALK 
"!" "A" 

Z w 
II: 

DEVICE 

LSTH TALK 
"1" "0" 

.DEVICE 

LSTN TALK 
"2" "R" 

DEVICE 

LSTH TALK 
"." "K" 

DEVICE 

LSTN TALK 
">" """ 

231324-25 

Figure 28. REME 

3·59 



SERVICE REQUEST 

SRQD 

AP-66 

This system command is used to detect the occurrence of a Service Request on the GPIB. One or more devices may 
assert SRQ simultaneously, and the CPU would normally conduct a Serial Poll after calling this routine to determine 
which devices are SRQing. 

SRQD: 
If SRQ then 

Output-to-8292 IACK.SRQ 
Return SRQ 
Else return no SRQ 

System Controller 

REMOTE ENABLE 

REME 

;Test 92 status bit 
;Acknowledge it 

This system command asserts the Remote Enable line (REN) on the GPIB. The devices will not go remote until they 
are later addressed to listen by some other system command. 

REME: 
Output-to-8292 SREM 
Return 

LOCAL 

LOCL 

;8292 asserts remote enable line 

This system command deasserts the REN line on the GPIB. The devices will go local immediately. 

LOCL: 
Output-to-8292 SLOC 
Return 

;8292 stops asserting remote ena~le 

3-60 



intJ AP·66 

SYSTEM 
CONTROLLER 

8291,8292 

LS1N R TALK 

"'" "A" 

I~ 

Figure 29. LOCL 

INTERFACE CLEARI ABORT 

IFCL 

DEVICE 

lSTN TALK 
"1" "Q" 

DEVICE 

LSTN TALK 
"2" "Rn 

DEVICE 

lSTN TALK 
"+" "K" 

DEVICE 

lSTN TALK 
">" "A" 

231324-26 

This system command asserts the GPID's Interface 
Clear (IFC) line for at least 100 microseconds. This 
causes all interface logic in all devices to go to a known 
state. Note that the device itself mayor may not be 

IFCL: 

SYSTEM 
CONTROLLER 

LSTN ~ TALK 
"I" "A" 

g 

DEVICE 

LSTN TALK 
"1" "Q" 

DEVICE 

lSTN TALK 
"2" "A" 

DEVICE 

LSTN 

DEVICE 

LSTN TALK 
">" "A" 

231324-27 

Figure 30. IFCL 

reset, too. Most instruments do totally reset upon IFC. 
Some devices may require a DCLR as well as an IFCL 
to be completely reset. The (system) controller becomes 
Controller-in-Charge. 

Output-to-8292 ABORT 
Return 

;8292 asserts Interface Clear 
;For 100 microseconds 

INTERRUPTS AND DMA 
CONSIDERATIONS 

The previous sections have discussed in detail how to 
use the 8291, 8292, 8293 chip set as a GPID controller 
with the software operating in a polling mode and using 
programmed transfer of the data. This is the simplest 
mode of use, but it ties up the microprocessor for the 
duration of a GPID transaction. If system design con­
straints do not allow this, then either Interrupts and/or 
DMA may be used to free up processor cycles. 

3-61 

The 8291 and 8292 provide sufficient interrupts that 
one may return to do other work while waiting for such 
things as 8292 Task Completion, 8291 Next Byte In, 
8291 Last Byte Out, 8292 Service Request In, etc. The 
only difficulty lies in integrating these various interrupt 
sources and their matching routines into the overall 
system's interrupt structure. This is highly situation­
specific and is beyond the scope of this Ap Note. 

The strategy to follow is to replace each of the WAIT 
routines (see Appendix A) with a return to the main 
code and provide for the corresponding interrupt to 
bring the control back to the next section of GPID 



AP-66 

MAIN CODE 

USER: 

ACTIVATE 

INTERRUPT CODE GPIB SUBROUTINE 

SEND: 

SEND .. (WAIT 0) 

= ·INT: ~ 
~ G~O? 

- (WAIT 0) 
__ ___INT: __ __--------. 
~ GPIBBO?-

--...... I------===----------_(WAIT 0) = _____ INT: = __ 
~ GPIBBO?-
.. (WAIT T) 

.____INT: GPIB BO~ =.. GPIB TCI? 

ETC. ETC. 
231324-28 

Figure 31. GPIB Interrupt and Co-Routine Flow of Control 

code. For example W AlTO (Wait for Byte Out of 
8291) would be replaced by having the BO interrupt 
enabled and storing the (return) address of the next 
instruction in a known place. This co-routine structure 
will then be activated by a BO interrupt. Figure 31 
shows an example of the flow of control. 

DMA is also useful in relieving the processor if the 
average length of a data buffer is long enough to over­
come the extra time used to set up a DMA chip. This 
decision will also be a function of a data rate of the 
instrument. The best strategy is to use the DMA to 
handle only the data buffer transfers on SEND and 
RECV and to do all the 'addressing and control just as 
shown in the driver descriptions. 

Another major reason for using a DMA chip is to in­
crease the data rate and therefore increase the overall 
transaction rate. In this case the limiting factor be­

, comes the time used to do the addressing and control of 
the GPIB using software like that in Appendix A. The 
data transmissio'n time becomes insignificant at DMA 
speeds unless extremely long buffers are used. 

Refer to Figure 11 for a typicar DMA and interrupt 
based design using the 8291, 8292, 8293. A system like 
this can achieve a 250K byte transfer rate while under 
DMA control. 

APPLICATION EXAMPLE 

This section will present the code required to operate a 
typical GPIB instrument set up as shown in Figure 32. 
The HP5328A universal counter and the HP3325 func­
tion generator are typical of many GPIB devices; how­
ever, there are a wide variety of software protocols to 

3-62 

be found on the GPIB. The Ziatech ZT488 GPIB ana­
lyzer is used to single step the bus to facilitate debug­
ging the system. It also serves as a training/familiariza­
tion aid for newcomers to the bus. 

This example will set up the function generator to out­
put a specific waveform, frequency and amplitude. It 
will then tell the counter to measure the frequency and 
Request Service (SRQ) when complete. The program 
will then read in the data. The assembled source code 
will be found at the end of Appendix A. 

ZTI488/18 
CONTROLLER 

LSTN 
CTLR 

TALK 
"In "A" 

HP 5328A 
COUNTER 

lSTN TALK 

"'" "Q" 

HP 3325A 
FUNCTION 

GENERATOR 

lSTN TALK 
"2" "R" 

ZT488 
GPIB ANALYZER 

231324-29 

Figure 32. GPIB Example Configuration 



intJ AP-66 

SEND 
LSTN: "2", COUNT: 15, EOS: ODH, DATA: "FU1FR37KHAM2VO (CR)" 
;SETS UP FUNCTION GEN. TO 37 KHZ SINE, 2 VOLTS PP 
;COUNT EQUAL TO # CHAR IN BUFFER 
;EOS CHARACTER IS (CR) = ODH = CARRIAGE 

SEND 
LSTN: "1", COUNT: 6, EOS: "T" DATA: "PR4G7T" 
;SETS UP COUNTER FOR P:INITIALIZE, F4: FREQ CHAN A 

G7:0.1 HZ RESOLUTION, T:TRIGGER AND SRQ 
;COUNT IS EQUAL TO # CHAR 

WAIT FOR SRQ 
SPOL TALK: "Q", DATA: STATUS 1 

;CLEARS THE SRO_IN THIS EXAMPLE ONLY FREQ CTR ASSERTS SRQ 

RECV TALK: "Q", COUNT: 17, EOS: OAH, 
DATA: "+ 37000.0E+O" (CR) (LF) 
;GETS 17 BYTES OF DATA FROM COUNTER 
;COUNT IS EXACT BUFFER LENGTH 
;DATA SHOWN IS TPYICAL HP5328A READING THAT WOULD BE RECEIVED 

CONCLUSION 

This Application Note has shown a structured way to 
view the IEEE 488 bus and has given typical code se­
quences to make the Intel 8291, 8292, and 8293's be­
have as a controller of the GPIB. There are other ways 
to use the chip set, but whatever solution is chosen, it 
must be integrated into the overall system software. 

3-63 

The ultimate reference for GPIB questions is the IEEE 
Std 488 -1978 which is available from IEEE, 345 East 
47th St., New York, NY, 10017. The ultimate reference 
for the 8292 is the source listing for it (remember it's a 
pre-programmed UPI-4IA) which is available from IN­
SITE, Intel Corp., 3065 Bowers Ave., Santa Clara, CA 
95051. 



AP-66 

APPENDIX A 

ISIS-II 8080/8085 MACHO ASSE,",BLER, V3.0 
GPI~ CON'rHOLLER SUBROU'rINES 

LOC 08J 

1000 

0060 

0961 
0061 
0002 
0001 
0010 
008B 

B062 

0064 
0080 
0049 
00C0 
0001 

001i4 
0020 
0092 
0091 

0065 
0023 

LINE SQUllCE STATEMEN'r 

$'rI'rLE ('GPIR CON'rROLLER SUBROU'rINES') 
2 
3 ()PIa CONTROLLER SUBROUTINES 
4 
5 
Ii 
7 
8 
9 

18 
11 
12 
13 
14 
IS 

~j ~RT91 
18 
19 ; 
20 DIN 
21 DOUT 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31; 

; 
~HTI 
IH'r"l 
BOM 
~IM 

ENDMK 
CPT 

32 INT2 
33 

; 
ADRMD 
TON 
LON 
TLON 
MODEl 

34 
35 
31i 
37 
38 
39 
40 
41 I 
42 ADRST 
43 EOIST 
44 TA 
45 LA 
46 I 
47 , 
48 AUXMD 
49 CLKRT 

for intel 8291, 8292 
Bert Forbes, Ziatech 
2410 Broad Street 
San Lui s Ohispo, CA, 

on ZT 748q/IR 
Corporatinn . 

USA 934~1 

General Definitions" Equates 
8291 Control Values 

ORG 10001l ;. I'or ZT748S/IS w/8085 

EQU ,8291 Base Port 

Reg .0 Data in " Data out 
EOU PRT91+B ; 91 Data in reg 
EQU PRT91 +~ ; 91 Data out req 

Req 
EQU 
EQU 
EQU 
EOU 
EOU 
EOU 

, 1 Interrupt 1 Constants 
PRT91+1 ; tNT Req 1 
PRT91+1 lINT Mask Reg. 
~2 ; 91 80 I'IITRP Mask 
01 ; 91 BI INTRP Mask 
18H ;91 E"'D INTRP Mask 
RAH ; 91 cornman" ,pass thru 

Req 12 Interrupt 2 
EQU PRT91+2 

'4 Address ~ode Constants 

int hit· 

Reg 
E(lU 
EQU 
EOU 
EQU 
EQU 

PRT91+4 ; 91 ad"ress mode register .' 

Reg 14 
EQU 
EOU 
EOU 
EOU 

Reg '5 
EQU 
EOU 

SOH ;91 talk only mode & not listen only 
48H ;91 listen only, not ton 
BeBH r9l talk' listen only 
9.11 rmode I addressinq for device 

(Read) 
PRT91+4 ; reg 14 
20H 

Address Status Reqister 

2 
1 rlistener active 

(Write) A.uxillary Mode Reqlster 
PRT91+S r91 ;tuxll1ary mode reqister 
23H ;91 3 Mhz clock input 

3-64 

231324-30 



intJ Ap·66 

BOB] 50 FNHSK EOU 0] 191 flninsh handshake command 
AAAfi 51 SDEOI EOU A~ ,91 senti EOl wi th next hyte 
eB8~ ~2 AXRA EOIl 83H ,91 aux. req A pattern 
A801 5] HOHSK EOU 1 191 hold off honrlshake an oil bytes 
8002 54 HOEND EOU 7- ,91 hal .... off handshake on enti 
808] 55 CAHCY EOU ] 191 conti nuous AH eyell nq 
BB04 56 EDEOS EOU 4 ,91 end on FoOS received 
080S 57 EOIS EOU 8 ;91 output EOI on EOS sent 
OB0F 58 VSCMD EQU AFH ;91 valid command pass throuqh 
OB07 59 NVCMD EOU 87H ;91 invalid command pass through 
88AO fi8 AXRB EOU 8A8H JAux. reg. B pattern 
88Al ~1 CPTEN EOU AIH 1command pass thru enable 

~2 , 
6] 1 Reg IS (Reod) 

83fi5 ~4 CPTRG EOU PRT91+5 
fiS , 
~fi , Reg '6 Address 0/1 reg. constants 

B8fi~ 67 ADRAI EQU PRT91+fi 
8060 fi8 D'rm.l EOU 6AH ;Disable major talker & 1 istener 
80E0 ~9 DTDL2 EOU AEOH ,Disable minor talker & listener 

78 , 
71 , Reg 17 EOS Character Req 1 ster 

90fi7 72 EOSR EQU PRT91+7 
7] , 
74 , 
75 , 8292 CONTROL VALUES 
76 , 
77 , 
78 , 

0068 79 PRT92 EOU PRT91+8 ; 8292 Base Port t (CS7) 
80 , 

0068 81 INTMR EgU PRT92+8 ,92 INTRP '''ask Reg 
00AO 82 INTM EQU A/lBH ;TCI 

83 , 
896B B4 ERRM EOU PRT92+0 ; 92 Error Mask Req 
0301 BS TOUT 1 EQU 31 ; 92 'rime Out for Pass Control 
AA02 86 TOUT2 EOU 82 ;92 Time Out for Standhy 
9884 87 TOUT3 EOU 04 ;92 Time Out for Take Control Sync 
90~B 88 EVREG EQU PRT92+0 ; 92 Event Counter P&eurto Req 
~0fiB 89 TOREG EQU PRT92+9 ,92 Time Out Pseudo Req 

99 , 
0869 91 CMD92 EOU PRT92+1 ,92 Command Reqister 

92 , 
8069 93 INTST EOU PRT92 +1 ; 92 Interrupt Status Reg 
0018 94 EVBrT EOU IBM ; Event Counter Bi t 
8892 95 IBFBT EQU 92 ; Input Ruffer Full Bit 
0~28 95 SROBT EOU 2AH ;Seq bit 

97 , 
00~B 9B ERFLG EQU PRT92+0 192 Error Flaq Pseurlo Reg 
9868 99 CLRST EOU PRT92+8 ,92 Controller Status Pseudo Reg 
9968 100 BUSST EOU PRT92+0 ,92 aPIB (Bus) Status Pseudo Reg 
9868 101 EVCST EOU PRT92+8 ,92 Event Counter Status Pseudo Reg 
0968 102 TOST EOU PRT92+0 ,92 Time Out Status Pseudo Req 

103 , 
104 , 8292 OPERATION COMMANDS 
US , 
196 

~PCNI 89F8 187 EOU 0F8H ;Stop Counter Interrupts 
B8Fl 108 GIDL EOU 8FIH ;Go to idle 
geF2 199 RSET EOU AF2H ;Reset 
B8F] 119 RSTI EOU BF3H ;Reset Interrupts 
88F4 111 aSEC EOU AF4H ;Goto standby, enable counting 
90FS 112 EXPP EQU 8F5H ;Execute parallel poll 
0BF6 113 aTSB EOU AF6H ;Goto standby 
09F7 114 SLOC EOU BF7H ;Set local mode 
BBFB 115 SREM EOU 9FBH ;Set interface to remote 
08F9 116 ABORT EQU 9F9H ;Abort all operation, clear interface 
801'A 117 TCNTR EOU 8FAH ;Take control (Receive control) 
99FC 118 TCASY EOU eFCH ;Take control asyncronously 
99FD 119 TCSY £OU 9FDH ;Take control syncronously 
B0FE 128 STCNI EOU 9FEH ;Start counter interrupts 

121 , 
122 , 

231324-31 

3-65 



inter 

A8EI 
80E2 
88E3 
80E4 
80E5 
80E6 
80E7 
A8E9 
88EA 
8888 

BAAl 
B041 
B021 
0S3F 
3908 
B004 
B018 
B019 
08B5 
B"10 
BA60 
0U5 
0809 

123 
124 
125 , 
126 WOUT 
127 WEVC 
128 REVC 
129 RERF 
130 RINM 
131 RCST. 
132 R8ST 
133 RTOUT 
IH RERM 
135 lACK 
13~ 
137 
138 
139 
148 
141 , 
142 PRTF 
143 TCIF 
144 SPIF 
145 OBFF 
146 18FF 
147 SOF 
148 
149 
150 , 
151 MM· 
152 MTA 
153 I'lLA 
IS4 UNL 
ISS GET 
156 SOC 
157 SPE 
158 SPD 
159 PPC 
1~0 PPD 
HI PPE 
H2 PPU 
163 TCT 
164 
1~5 
H~ 
H7 
168 , 
169 SETF 
170 
171 
172 , 
173 WAITO 
174 
175 WAITL. 
176 
177 
178 
179 
lR0 , 
181 WAITI 
182 
183 WAITL. 
184 
185 
186 
181 
188 , 
189'WAITX 
190 
191 WAITL. 
192 
193 
194 
195 

Ap·66 

8292 UTILITY COMMANDS 

EQU 
EOU 
EOU 
EQU 
EOU 
EOU 
EOU 
EQU 
EQU 
EOU 

OEIH 
8E2H 
0E3H 
8E4H 
0E5H 
0E6H 
0E7H 
0E9H 
0EAH 
8BH 

;Wr j te to timeout req 
;Write to event counter 
;Read event counter status 
;Read error flag reg 
; Read interrupt mask reg 
,Read controller status req 
;Read GPtB BUs' status reg 
;Read'timeout status reg 
;Read error mask reg 
; Interrupt Acknowledqe 

PORT F BIT ASSIGNMENTS 

EQU PRT91+AFH ,ZT14RR port fiF 'for interrupts 
EQU 82M ;Task complete interrupt ' 
EOU 84H ;Special interrupt 
EOU 0BH ,92 Output (to CPU) Buffer full 
EQU 10H ,92 Input (from CPU) Buffer empty 
EQU AIH ,91 Int line (BO in this easel 

GPIB 'lESSAGgs (COMMANDS) 

EQU 
EOU 
EQU 
EQU 
EOll 
EOU 
EOU 
EOU 
EQU 
EQU 
EQU 
EQU 
EOU 

1 
MMHAH 
MDA+20H 
3FH 
08 
84H 
IBH 
19H 
05 
10H 
60H 
ISH 
09 

;M.y device address is 1 
;M.y talk address is 1 (~A·) 
,My listen address is 1 (MIM) 
;Unlversal unlisten 
;Group Execute Tr iqqer 
;Device Clear 
,Serial poll enable 
,Serial poll disable 
;Parallel poll confiqure 
;ParAllel poll disable 
;Parallel poll disahle 
,Parallel poll unconfiqured 
;'fake control (pass control) 

MACRO DEFINI'rIONS 

MACRO 
ORA 
END., 

, MACRO 
LOCAL 
IN 
ANI 
JZ 
ENDM 

MACRO 
LOCAL 
IN 
MOV 
ANI 
JZ 
ENDM 

MACRO 
LOCAL 
IN 
ANI 
JNZ 
END'" 

A 

WAITL 
INTI 
BOM 
WAITL 

WAITL 
INTI 
B,A 
8IM 
WAITL 

WAITL 
PRTF 
TCIF 
WAITL 

;Sets flaC]s on A reqister 

;Wait for last 91 byte to be none 

,Get IntI status 
;Check for hyte out 
:If not, try aqaln 
;until it is 

;Wait for 91 hyte to be input 

;Get INTI stlltus 
,Save status in B 
;Check for byte In 
; If not, just try aqaln 
,until it is ' 

;Walt for 92's Tel to go false 

3-66 

231324-32 



intJ 

1090 3EAA 
le02 D3~8 
1004 3E'~ 
1900 030~ 
10~9 3EE0 
lA~A 03fi~ 
U~C 3E80 
100E 03~4 
leU 3E23 
HH2 03<;5 

1014 AF 
1015 0301 
1017 03.2 
1019 03~5 
101S C9 

196 WAITT 
197 
198 WAIT~: 
199 
200 
201 
202 
203 RANGE 
204 
205 
200 
207 
208 
209 
210 
211 
212 
213 
214 
215 ; 
216 C~RA 
217 
218 
219 
220 
221 
222 
223 
224 
225 
22. 
227 
228 
229 
230 
231 
232 
233 
234 
235 
23. 

MACRO 
~OCA~ 

IN 
ANI 
JZ 
ENOM 

MACRO 

MOV 
CPI 
JM 
CPI 
JP 
ENDM 

MACRO 
XRA 
ENDM 

WAITL 
PRTF 
TCIF 
WAIT~ 

AP-66 

:Get task complete int,etc. 
:h1ask 1 t 
:Wa i t fa r til sk to be com pI ete 

LOWER, UPP~R, LABEL 

A,M 
~OWER 
~BE~ 

UPPER+! 
~"BE~ 

A 

:Checks for value in ranqe 
: hranches to 1 ahel if no t 
;in ranqe. Falls throuqh if 
; lower (= ( CH) eL) ) (= upper. 
:Get next byte. 

;A XOR A "'" 

A.II of the followin!) routines have these com'l11on 
assumptions about the state of the 87.91 & Q297. upon entry 
to the routine and will exit the routinE" in an identical state. 

8291 : 

8292: 

R~85: 

BO is or has he en set, 
All interrupts are rnasketi off 
'rON morle, not LA 
No holdoffs in effect or enabled 
No holdoffs waitinq for finish cornmantJ 

ATN asserted (active controller) 
note: RC'rL is an exception--- it,expects 
to not be active controller 
Any previous task is complete & 92 is 
ready to receive next command. 
Pointer reqisters (DE,HL) enrJ one 
heyond last le'la1 entry 237 

238 
239 

* *.* * ** '* * '* *. * * * •• '* '* * '* ill * '* '* '* * '* '* '* '* '* '* *. * ill 'III '* '* '* * * '* '* '* '* '* '* *. * '* '* '* 
240 
241 
242 
243 
244 
24~ 
24. 
247 
248 
249 
250 
251 
252 
253 
254 
255 
25<; 
7.57 
258 
259+ 
2~~ 

2~1 
202 
263 
264 
2.5 
2~~ 
2~7 
268 
209 

I'ITIA~IZATION IlOU'rINE 

INPu'rs: None 
OUTPU'rS: r.lone 
CA~~R : None 
OES~'qOYS : A,I" 

NIT: MVI A, IH'r,., ;F.:nahle Tel 
ou'r I~TMR ;Output to 92 1 s lntr. mask req 
MVI A,OTO~1 ;nisa~le major talker/l istener 
o~'r AORAI 
MVI ",DTOL2 ;Disahle minor talker/listener 
ou'r AORAI 
WI A,TON ;'rlilk only mocie 
ou'r ADR"O 
MVI A, C~~RT ;3 ~HZ for nelay timer 
ou'r AUX~D 

CLflA 
X~.~ A ;A XOR A =0 
ou'r IN'I'I 
ou'r INn ,Disahle all 91 ml!sk hi ts 
OUT AUX"D ; Imme" i.iI te execute PO~ 
RET 

* * * ............ * .. * *.* * .. * ..... * * .. **. * .. * ........ ** .. * * ............ * ............ . 

SENO ROU'rINE 

3-67 

231324-33 



inter 

1I1C 3£41 
10lE D3~9 

1021 DBfil 
1022 £692 
1124 CA20lB 
1127 3E3F 
1129 D369 
IA2a 78 
192C D3~7 

IA2E 7F. 
112F FE20 
!A31 FA471A 
1034 FE3F 
1~3~ F2471A 

IA39 DB61 
1038' E692 
IA3D CA3919 
1040 7£ 
1941 D36A 
1143 23 
1044 C32EIO 

1047 DBfil 
1049 E602 
1I4B CA4710 

1H4£ 3EFfi 
i0SB D369 
!eS2 3EBB 
IAS4 D36S 

10S~ DB6F 
lASB E~02 
10SA C2S~18 

IA5D DBSF 
105F E692 
1061 CASDlA 

1064 79 

1165 B7 
1065 CA88lB 
IA69 l~ 
105A D3~0 
10fiC BR 

270 , 
271 
272 
273 , 
274 , 

'27S , 
276 , 
277 , 
278 , 
279 , 
2B0 , 
281 , 
282 SEND. 
2B3 
284 
2~S+??A3Bl' 
28~+ 
287+ 
288 
289 
29B 
291 
292 
293 SE~Dl. 
294+ 
295+ 
29~+ 
297+ 
298+ 
299+ 
300+ 
301+ 
302+ 
3A3+ 
304 
305+??A~A2. 
386+ 
307+ 
308 
309 
310 
311 
312 
313 SEND2. 
314+710933. 
31S+ 
31H 
317 
318 
319 
320 
321 
322 
323 
324+??AA04. 
325+ 
326+ 
327 
328+7100B5. 
329+ 
33B+ 
331 
332 , 
333 , 
334 
335 
33~+ 
337 
338 SEND3. 
339 
340 
341 
342 

INPU'rs, 

Ap·66 

HL listener list pointer 
DE data buffer pointer 
C count-- 8 will caule no "'Ita to be sent 
b FoOS ch.llracter-- software detected 

ou'rpUTS. 
CALLS, 
DESTROYS. 

none 
none 
A, C, DF.!, HL, F 

MVI 
oU'r 
WAITO 

IN 
ANI 
JZ 
MVI 
OUT 
MOV 
OUT 

RANGE 

MOV 
CPI 
JM 
CPI 
JP 
"IAITO 

IN 
ANI 
JZ 
>lOV 
OUT 
INX 
J~P 

WAITO 
IN 

A~I 

JZ 

MVI 
OUT 
MVI 
OUT 
WA[TX 
I~ 

ANI 
J~Z 

WAITT 
IN 
ANI 
,lZ 

A,MTA 
DOUT 

INTI 
BOM 
??A~Al 

, A,U~L 
DOUT 
A,B 
EOSR 

,Send M'rA to turn off Iny 
,previous talker 

,Get Inti status 
,Check for byte out 
;If not, try aqaln 
,Senti universal unllsten 
Ito stop previous listeners 
;Get EOS character 
,Output it to 82ql 
;whlle listener ..••• 

20H,3EH,SEND2 ,Check next listen address 

A,M 
29H 
SEND2 
3EH+1 
SEND2 

INn 
ROM 
n3AA? 
A,M 
DOU'r 
H 
SENDI 

INTI 
BOM 
71~9~3 

;Checks. tor value In ranqe 
; branches to label if not 
; in ranqe. Falls throu'Jh if 
,lower (= ( (H) (L) ) (= upper. 
;Get next byte .. 

,wai t for previous listener sent 
;Get tntl status 
,Check for byte out 
;If not, try again 

;Get this listener 
;Output to GPIA 
;Increl'tent listener list pointer 
;Loop till non-valid listener 
;Enab1e 91 enrUnt) conditions 

;Wait for 1stn addr accepted 
;Get IntI status 
,Check for byte out 
;If not, try aqaln 
;WAITO required for early versions 
;of 8292 to Avoid GTC;B before OAe 

A,GTSB ;Goto stan"lhy 
CMD92 , 
A,AXRA+EOIS 
AUX~D 

;Sttnci EOI with EOS character 

PRTF 
TCIF 
??A~A4 

PRTF 
TCIF 
??~095 

,Watt for Tel to qo false 

;walt for Tel on GT~A 
;Get task complete int,etc. 
;Mask It 
;Walt for task to be complete 

delete next instructions to make count of O=2SFi 

~OV 
SETF 
ORA 
JZ 
LDAX 
OUT 
CMP 

A,C 

'A 
SENM 
D 
DOUT 
B 

,Oet count 
;Set flaqs 

; If count:9, send no data 
,Get data byte 
;Output to GPIB 
;Test EOS ••• this is faster 
;anti uses less code than u!llin1 
;91 1 s ENO or EOl bits 

3-68 

231324-34 



inter 

lA~D CA7F lA 

1070 DB~l 
1972 E~~2 
U74 CA7Bl0 
1~77 13 
lB7B BD 
1879 C2~910 
U7C C3BB10 
U7F 13 
lAB~ ~D 

10Bl DB~l 
lOB) E~n 
lAB5 CAB1l9 

19B8 n,'D 
19BA D3~9 
10BC 3EBA 
19BE D)~5 

1099 DB~F 
1992 E~92 
U94 C29310 

1997 DB~F 
1999 EI;02 
199B CA97U 
199E C9 ' 

109F 7B 
lMO D3~7 

!BA2 7E 
!BAl FE40 
UA5 FA3911 
!BA8 FE5F 
10M F23911 

lOAD 03150 
lOAF 23 

10BO DBl;l 
19S2 E"02 
19B4 CAB9lA 
lOB7 3E3F 
10B9 DH0 

10BS DBl;l 
10BD E692 
10BF CABB10 

343 
344 SEND4: 
345+??AIH'f;: 
341;. 
347+ 
348 
349 
35B 
Hl 
352 SEND5: 
353 
354 

JZ 
wl\rro 

IN 
ANI 
JZ 
INX 
DCR 
J~Z 

J~P 

INX 
OCR 
WAI'fO 

355+??0AH7: I~ 
356+ 
357+ 
35H 

ANI 
JZ 

359 SEND": MVI 
363 OU'f 
31H 
3"2 
3~3 
3'i4 +77111"98: 
3~5+ 
3~~+ 
31;7 
366+?7;31"')9 : 
369+ 
370+ 
371 

I\IIVI 
OUT 
;./AITX 
IN 
A~I 
.JNZ 
WAIT'r 
IN 
I\NI 
JZ 
RET 

SEND~ 

INTl 
BO~ 

?'?A01'J~ 

o 
C 
SEND3 
SENDo 
D 
C 

IN'1'1 
BO~ 

??0""'7 

A,TCSY 
CIID92 
A, AXRA 
AUXIID 

PRTF 
TCIF 
??9::'A8 

PRTF 
TCIF 
??9909 

AP-66 

;If char = F.O~ , qo finish 

;Get IntI statu'S 
;C~eck for byte out 
;If n")t, try aq"dn 
; Inr:reJ?\ent huffer pointer 
,Decrement count 
; I f count < ) ~, qo senrj 
;Else qo finish 
; fo r consi steney 
; " 

,'rhis ensures that the strlnrJard entry 
;Get lnt! status 
;Check for byte out 
; If not, try a1ain 
;assumptions for the next su'">routine 
;Take control syncronously 

;Reset send EOI on EOS 

;Wait for TCI false 

;Wait for TCI 
;Get task complete int,etc. 
;Mask it 
;Wait for task to "e complete 

are met 

372 ,._-*--._.* .. _* ••• _._-* ... _--_ ... --... __ ... ______ ... __ .. _______ ._. __ _ 
373 
374 
375 
376 

RECE IVE ROU'rINE 

377 ; INPU'r: 
378 
379 

m ;DU'rpUT: 
382 ;CALLS: 
383 ,DESTROYS: 
384 I 
385 ; RETURNS: 
38'5 
3B7 
388 
389 I 
399 RECV: 
391 
392 
393+ 
394+ 
395+ 
39~+ 
397+ 
398+ 
399+ 
40B+ 
401+ 
492+ 
403 
4A4 
405 
406 
407+??9BlA: 
408+ 
499+ 
410 
411 
412 
413+??""11: 
414+ 
415+ 

MOV 
ou'r 
RI\NGE 

MOV 
CPI 
.JM 
CPI 
.JP 

ou'r 
INX 
""Al'rO 

IN 
A'II 
.JZ 
MVI 
ou'r 
...,1\1 TO 

IN 
ANI 
JZ 

HL talker pointer 
DE (lata buffer pointer 
C count (max buffer size) " implil!s 251} 
B EOS character 
Fills buffer pointen at hy nE 
None 
A, BC, DE, HL, F 

A=0 normal termination--Eos "Ietf"cted 
A=4A £rror--- count overrun 
A(4A or A>SEH Error--- ba~ talk ad"ress 

A,B ;Get Ens character 
EOSR ;Output it to 91 
40H, SEH, RECVf) 

A,M 
49H 
RECV6 
5EH+1 
RECVIl 

DOUT 
H 

INTI 
BOM 
??aB1B 
It.,UNL 
DOUT 

INTI 
BOM 
119Bl1 

;Checks for value in range 
:branches to label if not 
;In ranqe. Falls throuqh if 
; lower (= ( (H) (L) ) (= upper. 
;Get next byte. 

;valid if 40H(= talk (::oSEH 
;Output talker to GPla 
;Incr pointer for consistency 

;Get IntI status 
;Check for byte out 
; If not, try aqain 
;Stop other listeners 

;Get IntI status 
; Check for byte out 
;If not, try aqain 

3-69 

231324-35 



UC2 3E21 
IBC4 03~8 
18C6 3E86 
18C8 D3~5 

IleA DBfil 
IeCC E5A2 
10CE CACA10 
1001 3e4M 
1003 03~4 

10D5 AF 
1006 0355 
1008 3EF~ 
UOA OH9 

100C 086F 
}HOE E632 
10E8 C20C10 

10E3 DB6F 
18E5 E~02 
IBEA OB51 
18Ee 47 
10EO E618 
IBEF C20511 
lBF2 78 
IBFJ E681 
lBF5 CAEA10 
l0F8 OB60 
10FA 12 
UFB 13 
lAFC 00 
lBFO C2EAlO 
1180 8640 
1182 C31711 

1105'78 
1186 E601 
1108 C21011 
118B DB61 ' 
IUD C30611 
1110 OB60 
1112 12 
1113 13 
1114 0D 
1115 0600 

1117 3EFO 
1119 0359 

ll1B DB6F 
ll1D E602 
I11F C21Bll 

1122 DB6F 
1124 E682 
1126 CA2211 

1129 3E88 
112a 03~5 
112D 3E80 

, 112F D364 
1131 3E03 
1133 0365 

'1135 AF 
1136 0365 
1138 78 
.1139 C9 

41~ 

417 
418 
419 
428 
421+170912: 
422+ 
423+ 
424 
425 
425 
427+ 
428 
429 
430 
431 
432+??0013: 
433+ 
434+ ' 
435 
43H17A014: 
437+ 
439 RECVl: 
448 
441 
442 
443 
444 
445 
446 
447 
448 
449 
458 
451 
452 
453 , 
454 RECV2: 
455 RECV3: 
456 
457 
458 
459 RECV4: 
460 
461 
462 
4~3 
464 , 

~VI 

ou'r 
~VI 
ou'r 
WAITO 

IN 
ANI 
JZ 
~VI 

ou'r 
CLRA 
XHA 
OUT 
",VI 
ou'r 
WAITX 
IN 
ANI 
JNZ 
WAITT 
IN 
~NI 

IN 
MOV 
ANI 
JNZ 
MOV 
ANI 
JZ 
IN 
STAX 
INX 
DCR 
JNZ 
MVI 
JMP 

MOV 
ANI 
JNZ 
IN 
JMP 
I!oI 
STAX 
INX 
OCR 
"'VI 

465 RECV5: MVI 
466 ou'r 
467 WAITX 
468+??0015: IN 
469+ ANI 
478+ JNZ 
471 WAITT 
472+??0U 6: IN 
473+ , ANI 
474+ JZ 

A,MLA 
oou'r 

AP-66 

J For completeness 

A, AXRA+HOE"ID+EDEOS ;gnt1 when 
AUX!'1D ;EOS or Eat & Hoinoff 

INTI 
BOM 
??0!U2 
A., LON 
ADRPlJ) 

A 
AUXMD 
A,GTSB 
CMD92 

PRTF 
TCIF 
??0IH3 

PRTF 
TCIF 
INTI 
B,A 
ENDMK 
RECV2 
A,a 
BIOI 
RECV1 
DIN 
o 
D 
C 
RECV1 
B,40H 
RECV5 

A,B 
81M 
RECV4 
INTI 
MECV3 
DIN 
D 
D 
C 
8,9 

A, TCSY 
CMD92 

PRTF 
TCIF 
17M915 

PRTF 
TCIF 
??IJIH6 

;Get IntI status 
;Check for byte out 
;If not, try ag~in 
;Listen only 

; Immed late XEO PON 
,A XDR A =0 

;Goto standhy 

;Wait for TeI=0 

;wait for Tel=l 
;Get task complete int,eto. 
;Mask; it 
;Get 91 lnt status (END 'lor BI) 
;Save it In 8 for BI check later 
;ctteck for EOS or EOI 
,Yes end--- go wait for BI 
;NO, retrieve status & 
;check for BI 
;NO, 1')0 wait for either END or BI 
;YES, .81--- qet data 
;Store it in buffer 
; Increment buffer pointer 
;Decrement counter 
;If count < > A go back & walt 
;Else set error indicator 
;And qo· take control 

;Retreive status 
;Check for BI 
;If B~ then ~o input data 
;Else wait for last BI 
;In loop 
;Get data byte 
;Store it in buffer 
;Iner elata pointer 
;Decrement count, but l,)nore it 
;Set normal completion indicators 

;Take control synchronously 

,Walt for TCI=~ (7 tcy) 

;Wait for Tel .. } 
;Get task complete int,etc. 
;""Iask it 
;Wlt i t fo r task to be complete 

475 
476 
477 
478 
479 
480 

:i£ timeQut is to be checked', the above WAITT should 

481 
482 
483 
484 
485 
486 
487+ 
488 
489 

;be o:nitted & the appropriate code to look for Tel or 
;TOU'r3 inserted here. 

A, AXR.l\ ;pattern to clear 91 END conrHtions 
AUXMD ; 
A,TON ;This bit pattern alrea"y in "A-
ADRMD ;Output TON 
A,FNHSK ;Finish handshake 
AUXMD 

A 
AUXMD 
A,B 

;A XOR A =0 
; IlI1med iate execute PO~-Reset LO~ 
;Get completion character 

490 RECV6: 

MVI 
ou'r 
MVI 
OUT 
MVI 
OUT 
CLRA 
XRA 
ou'r 
MOV 
RET 

3-70 

231324-36 



inter 

113A 7E 
113B FE40 
1130 FABB11 
1149 FE SF 
1142 F28B11 
1145 0350 
1147 23 

1148 OB51 
114A £602 
114C CA4B11 
114F 3E3F 
1151 0360 

1153 7£ 
1154 FE28 
1156 FAGC11 
1159 FE3F 
115B F26C11 

115E 0861 
1160 £602 
1162 CA5El1 
1165 7E 
1166 0359 
l1~B 23 
1169 C35311 

116C 0861 
116E E602 
1179 CA6Cl! 
1173 3EB7 
1175 0355 
1177 3E40 
1179 0364 

117a !IF 
117C 0365 
117E 78 
117F 0367 
1181 3EF5 
11B3 0359 

AP-66 

491 , 
492 J •• *.,., * * * * '* * '* -* '* '*., III '* * * *._.*., _* *._.111: * * * * * * * * * * *., *.* .. * .... '* * *_ • ., * 
493 XHi< ROU'UNE 
494 
495 , 
49~ ,INPU'rS: 

;OU'fPUTS: 
,CALLS: 
;DESTROYS: 
; RETURN'S: 

497 
49B 
499 
590 
591 
532 
5q3 , 
594 ; NOTE: 
535 
506 
507 
~P8 
589 
510 , 
511 XFER: 
512+ 
513+ 
514+ 
515+ 
5H+ 
517+ 
51R+ 
519+ 
520+ 
521+ 
522 
523 
524 
525+119017: 
526+ 
527+ 
528 

RANGE 

MOV 
CPI 
JM 
CPI 
.TP 
OUT 
INX 
"'AI'rO 

IN 
ANI 
JZ 
MVI 

529 OUT 
539 XFER1: RANGE 
531+ 
532+ 
533+ 
534+ 
535+ 
536+ 
537+ 
53B+ 
539+ 
549+ 
541 
542+??9018: 
543+ 
544+ 
545 
546 
547 
548 

_ 549 XFER2: 
550+110919: 
551+ 
552+ 
553 
554 
555 
555 
557 
558+ 
559 
560 
551 
552 
563 

MOV 
CPI 
JM 
CPI 
JP 
WAITO 

IN 
ANI 
JZ 
MOV 
ou'r 
INX 
JMP 
WAITO 

IN 
ANI 
JZ 
~VI 

OUT 
MVI 
ou'r 
CLRA 
XRA 
OUT 
MOV 
aU'f 
MVI 
OUT 

HL rJevice list pointer 
B EOS character 
None 
None 
A, HL, 
A=3 normal, A ( ) 0 har'l talker 

XFER will not work if the talker 
uses EOI to terminate the transfer. 
Intel will be making hardWare 
modifications to the 9291 th?lt will 
correct this problem. Until that time, 
only EOc:i may be used without possible 
loss of the last rtata byte transfered. 
4f1H, SEH, XFER4 ;Check for val id talker 

A,M 
40H 
XFER4 
5EN+l 
XFER4 
IlOUT 
H 

IN'r1 
80M 
??AA17 
A,UNL 
OOUT 

;Cheeks fot' value in ranqe 
;branches to label if not 
;in ranqe. Falls throu'lh if 
; lower (= ( CH) tLl ) (= upper. 
;Get next byte. 

; Senti it to GPIB 
;Iner pointer 

;Get IntI status 
;Check for byte out 
,If not, try again 
;Universal unl isten 

2f1H,3EH,XFER2 :Check for valid listener 

A,M 
2AH 
XFER2 
lEH+l 
XFER2 

INTI 
80M 
??0018 

;Checks for val ue in range 
;branches to label if not 
;in range. Falls through if 
,lower <= ( (H) (L) ) <= "pDer. 
;Get next byte. 

:Get IntI status 
;Check for byte out 
;If not, try again 
:Get 1 istener 

:Incr pointer 

A,M 
IlOUT 
H 
XFER1 ;Loop until non-valin listener 

INTI ;Get IntI status 
80M ;Check for byte out 
1?""19 ,If not, try again 
A, AXRA+CAHCY+EDEOS :Invisible 
AUX"10 ;Continuous ~H mode 
A,LOS :Listen only 
AOR~O 

A 
AUX~O 
A,B 
EOSR 
A,GTSB 
CM092 

,A XtJR A ." 
; Immed. XEQ PON 
;Get EOS 
;Output it to 91 
;Go to standby 

3-71 

hanrlshake 

231324-37 



inter 

118~ 08~F 
1187 E~02 
1189 C28511 

118C D86F 
118E £602 
1190 CA8C11 
1193 0861 
1195 E~U 
1197 CM311 
119A 3EFO 
119C OH9 

119£ D85F 
11A0 E692 
11A2 C29E11 

11A5 DB6F 
11A7 £602 
11M CAI\511 
11AC 3E80 
11AE 03~5 
1180 3£03 
1182 0355 
1184 3£80 
118~ 03~4 

1188 AF 
1189 0355 
1188 C9 

118C 3E3F 
118E 03~0 

11C0 7E 
11CI FE28 
11C3 FA0911 
11C6 FE3F 
lIC8 F20911 

11C~ 0861 
11CO £5n 
11CF CACB11 
1102 7£ 
1103 0360 
1105 23 
1106 C3C011 

1109 OB61 
110B EoA2 
1100 CAD911 
11£0 3E08 
11E2 OH0 

11E4 0851 
11E~ E6n2 

564 
565+110020: 
556+ 
567+ 
5~8 
569+110321 : 
570+ 
571+ 
572 XFER3: 
573 
574 
575 
57~ 
577 
578+1700122: 
579+ 
580+ 
581 
582+710023: 
583+ 
584+ 
5~5 
586 
587 
588 
589 
590 
591 
592+ 
593 
594 XFf<4: 

WAITX 
IN 
ANI 
JNZ 
WAITT 
IN 
ANI 
JZ 
I~ 

ANI 
,lZ 
MVI 
ou'r 
WAITX 
I~ 

ANI 
JNZ 
WAITT 
IN 
A~I 
JZ 
'"'VI 
ou'r 
MVI 
ou'r 
",VI 
ou'r 
CLRA 
XRA 
OUT 
RET 

PRTF 
TCU' 
?1011128 

PRTF 
TCIF 
??0921 
I~TI 
ENDMK 
XFER3 
A,TCSY 
C'I092 

PRTF 
TCIF 
119322 

PRTF 
TCIF 
710023 
A,AXRA 
AUX'ID 
A,FNHSK 
AUX~D 

A,TON 
ADRMD 

A 
AUX~D 

AP-66 

;Wait- for TCS 
;Get task cl')mplete tnt,etc. 
;Mask 1 t 
;Wait for task to be complete 
;Get END status bit 
;Mask 1 t 

;'rake control syncronously 

;Wait for 
;Get task 
;Mask it 
;Wait for 
;Not cont 

TCI 
complete jnt,etc. 

task to be complete 
AJt 0 rEN'O on EOS 

1Finish handshllke 

;Talk only 

,Normal return A=G 
;A XOR A =0 
;Immediate XEQ PON 

~5 , . 
596 ; *.***. * **** * ***** ***.* '!'*** **~** ** *** ** * **'*. *** *** __ 
597 
598 
599 
500 

TRIGGER ROUTINE 

; 
iI~PU'rS: 
;OUTPU'rS: 
;CALLS: 
,OESTROYS: 

501 
602 
603 
604 
50S 
686 
607 , 
608 TRIG: 
6A9 
619 TIUGl: 
611+ 
~12+ 
~13+ 
614+ 
615+ 
6H+ 
617+ 
618+ 
619+ 
62A. 
621 
~22.710024. 
~23+ 
624+ 
625 
626 
627 
628 
629 TRIG2: 
630+??0025. 
631+ 
632+ 
633 
634 
635 
G36+??9B2fi: 
637+ 

MVI 
ou'r 
RANGE 

MOV 
CPI 
J~ 
CPI 
JP 
WAITO 

IN 
liN I 
JZ 
'IOV 
ou'r 
INX 
JMP 
WIIITO 

IN 
liN I 
JZ 
·WI 
OUT 
WAITO 

IN 
ANI 

HL listener list pointer 
None 
None 
A, HL, F 

A,UNL ; 
DOUT ;Send universal unl isten 
20H,3EH,TRIG2 ;Check [or valid listen 

A,M 
208 
TRIG2 
3EH.I. 
TRIG2 

INn 
BOM 
?10924 
A,M 
DOUT . 
H 
TRIG) 

INn 
ROM 
110B25 
... ,GET 
DOUT 

INTI 
aOM 

,Checks for value in ranqe 
;branches to label if not 
lin ranqe. Falls through if 
,lower (= ( (M) (L) ) (- upper. 
;Get next byte. 

;Walt for LNL to finish 
;Get IntI status 
;Chetek for byte out 
;If not, try a~ain 
,Get listener 
; Send Ll stener to GPIB 
;Iner. pointer 
,Loop until non-valid char 
,Wait fl')r last listen to finish 
;Get IntI st .. tus 
,Cheek for byte out 
,If not, try a~ain 
;Senn qroup execute tril')'ger 
Ito all addresset! listeners 

;Get IntI status 
;Check for hyte out 

3-72 

231324-38 



inter 
11E8 CAE411 
11EB C9 

11EC 3E3F 
11EE D3~0 

UF8 7£ 
UFl FE28 
llF3 FA0912 
llF6 FE3F 
11F8 F2B912 

lll'B DB61 
llFD E682 
llFF CAF811 
12B2 7E 
12B3 D36B 
12B5 23 
1206 C3FBll 

12B9 DB61 
12BB E682 
12BD CA8912 
1218 3£94 
1212 0368 

1214 DB61 
1216 E682 
1218 CA1412 
121B C9 

121C 3E3l' 
121£ 0361 

1228 DB61 
1222 E6B2 
1224 CA2812 
1227 3E21 
1229 0368 

1228 DBG1 
122D E692 
122F CA2B12 
1232 3El8 
1234 D361 

1236 D861 

638+ 
639 
648 , 

JZ 
RET 

??U26 

AP-66 

,If not, try again 

641 , ••••• _ ••••••••••••••• _-_ •••••• _ •••• _- ••••• 
642 , 
643 ,DEVICE CLEAR ROU'rINE 
644 , 
645 , 
646 , 
647 ,INPUTS, 
648 ,OUTPUT: 
649 ,CALLS: 
~51 ,DESTROYS: 
651 , 
652 DCLR: MVI 
653 OUT 
654 DCLR1: RANGE 
655+ 
656+ 
657+ 
658+ 
659+ 
661+ 
661+ 
662+ 
~63+ 
664+ 
665 
6~6+118827: 
667+ 
6~8+ 
669 
678 
671 
672 
673 DCLR2: 
674+178128: 
675+ 
676+ 
677 
678 
679 
689+118829: 
681+ 
682+ 
683 
684 ; 

OIDV 
CPI 
JM 
CPI 
JP 
WAITO 

IN 
ANI 
JZ 
MOV 
OUT 
INX 
Ji'lP 
WAITO 

IN 
ANI 
JZ 
MVI 
OUT 
WAITO 

IN 
ANI 
JZ 
RET 

HL listener pointer 
None 
None 
A, HL, F 

A,UNL 
DOUT 
28H,3EH,DCLR2 

A,M 
288 
DCLR2 
3EH+1 
OCLR2 

INT! 
BOM 
??8827 
A,M 
DOUT 
H 
DCLR1 

INT1 
BOM 
778828 
A,SDC 
DOUT 

INT1 
BOH 
118929 

,Cheeks for value in range 
,branches to label 1 f not 
; in range. '''lIS throuqh if 
,lower (= ( (H) IL) ) (- uPper. 
;Get next byte. 

;Get IntI status 
,Check for byte out 
;If not, try again 

;Send listener to GPIB 

;Get Intl status 
,Check for byte out 
;If not, tryaqain 
,Sen~ device clear 
,To all addressed listeners 

;Get IntI status 
,Check for byte out 
,If not, try again 

685 ,._._-----.-._._._. _____ •••• ________ e __ e ______ .e •• __ 

fi86 
687 SERIAL POLL ROUTINE 
~88 , 
689 ,INPUTS: 
698 
691 
692 
~93 
694 

;OUTPUTS: 
,CALLS: 
,DESTROYS: , 

695 SPOL: 
696 
697 
698+178038: 
699+ 
7BB+ . 
781 
702 
703 
784+178031 : 
785+ 
786+ 
787 
788 
789 
718+178832: 

MVI 
OUT 
WAITO 

IN 
ANI 
JZ 
MVI 
OUT 
WAITO 

IN 
ANI 
JZ 
MVI 
OUT 
WAITO 

IN 

HL talker list pointer 
DE status buffer pointer 
Fills buffer pointed to by DE 
None 
A, BC, DE, HL, F 

A,U~L 
DOUT 

INTl 
BOM 
??8B38 
A,MLA 
DOUT 

INTI 
BOM 
118131 
A,SPE 
DOUT 

INT1 

,Universal unllsten 

,Get Inti status 
,Check for byte out 
,If not, try again 
, My I I sten add ress 

;Get IntI status 
,Check for byte out 
,If not, try aqain 
,Serial poll enable 
,To be formal about 1 t 

,Get IntI status 

3-73 

231324-39 



1238 EI'jA2 
123A CA3~12 

1230 7P-
123E FE4A 
1240 FA9412 
1243 FE5F 
1245 F29412 
1248 7E 
1249 03~0 
124B 23 
124C 3E40 
124£ D364 

1250 0861 
1252 E502 
1254 CA5012 

1257 IIF 
1258 D3~5 
125A 3EF6 
125C 0369 

125E D86F: 
12~0 E502 
12~2 C25E12 

1265 DBGF 
1267 £602 
1269 CM512 

126C DB~1 
126£ 47 
126F E6n 
1271 CII6C12 
1274 ]EFD 
1276 D3S9 

1278 DB6F 
12711 E602 
127C C27812 

127F DB6F 
1281 £602 
1283 CA7Fl2 
1286 DB60 
1288 12 
1289 13 
12811 3£80 
128C D364 

128E AF 
128F D365 

1291 C33D12 

1294 3E19 
1296 D360 

1298 DB61 
129A £6~2 
129C CA9812 

129F IIF 
12AO D365 
12A2 C9 

711+ 
712+ 
71 3 SPOLl: 
714+ 
715+ 
71fl+ 
717+ 
71A+ 
719+ 
720+ 
721+ 
722+ 
723+ 
724 
725 
726 
727 
728 
729 
739+710033: 
731+ 
732+ 
733 
734+ 
735 
736 
737 
738 
739+170034: 
748+ 
741+ 
742 
743+1?A035: 
744+ 
745+ 
746 
747+170035: 
748+ 
749+ 
759+ 
751 
752 
753 
754+?10037: 
755+ 
756+ 
757 
758+170338: 
759+ 
760+ 
761 
762 
763 
764 
765 
766 
767+ 
H8 
769 
770 
771 , 
772 SPOL2: 
773 
774 
775+??a039: 
776+ 
777+ 
778 
779+ 
780 
781 
782 I 

II~I 

.1Z 
RANGE 

MOV 
CPI 
J'" 
CPI 
JP 
·~OV 
oU'r 
INX 
!'IVI 
oU'r 
WAITO 

IN 
ANI 
JZ 
CLRA 
XRA 
oU'r 
~VI 
ou'r 
WAITX 
IN 
ANI 
JNZ 
WAITT 
IN 
ANI 
JZ 
WAITI 
IN 
HOV 
ANI 
JZ 
MVI 
ou'r 
WAITX 
IN 
A~I 

JNZ 
WAIT'r 
IN 
ANI 
.1Z 
IN 
STAX 
INX 
MVI 
ou'r 
CLRA 
XRA 
ou'r 

JMP 

MVI 
OUT 
WAl'fO' 

IN 
A~I 

JZ 
CLRA 
XRA 
OUT 
RET 

AP-66 

BOflo) ;Check for byte out 
??AA12 ;If not, try again 
40'H,SP.H,SPOL2 ;Check for valid to!!llker 

A,M 
40H 
SPOL2 
5tH+i 
SPOL2 
A,M 
DOU'r 
H 
A,LO~ 

ADRMD 

INTI 
80~ 

??0033 

II 
AUXMD 
A,GTSB 
CMD92 

PRTF 
TCIF 
170B34 

PRTF 
TCIF 
170035 

IN'rl 
B,A 
aIM 
170036 
A,TCSY 
Cl'ID92 

PRTF 
TeIF 
170037 

PRTF 
TCIF 
170038 
DIN 
D 
D 
A,TON 
ADRMD 

A 
IIUXMD 

SPOLI 

A,SPO 
DOUT 

INTI 
BOM 
??B039 

A 
AUXMD 

;·Cheeks for value In ran'1e 
: hrllnches to 1,,")el if not 
:in ranqe. Falls throuqh if 
; lower (= ( (H) (L) ) (s upper. 
,Get next hyte. 

;Get talker 
,Sen'" to GPIB 
;Incr tl'llker list pointer 
;Listen only 

;wait for talk atidress 
;Get IntI status 
,Check for byte out 
;If not, try again 
;Pattern for Imme~iate 
III XOR A cB 

;Goto standby 

;Wait for Tel false 

;Wait for Tel 

to complete 

XEQ PON 

;Get task complete int,etc. 
,Mask it 
;Walt .fnr task to he complete 
;Wait for status hyte input 
,Get INTI st .. tus 
;Save status in B 
,Cheek for byte in 
IIf not, just try again 
;Tltke control sync 

;Wait for Tel false 

,Walt for TCI 
,Cet task complete int,ete. 
;Mask it 
;walt for task to be complete 
;Get serial pOll status byte 
;Store it In buffer 
; Incr pointer 
;Talk only for controller. 
; 

,A XOR A ~n 
; Immed 1 ta te XI:':Q PON 
,CLR LA 
ICO on to next device on list 

,Serial poll disable 
;We know 80 was set (WAITO above) 

:Get IntI status 
,Check for byte out 
;If not, try 8'1ain 

;A XOR A cA 
; Immed late XEQ PON to cl ear LA. 

783 I ** .*.**** .**** .... **** ** ***.* ** ***** ** ••••• "'''''''''* .. *. * ... 
784 

3-74 

231'324-40 



intJ 

12A3 ]~3F 
12A5 D360 

12A7 7E 
12A8 FE20 
12M FA0812 
12AO FE3F 
12AF F20812 

12B2 OB61 
12B4 £692 
12B6 CAB212 
12B9 7£ 
128A 0359 

128C OB61 
128£ £602 
12Cn CABC12 
12C3 ]E05 
12C5 O]~0 

12C7 0861 
12C9 E~~2 
12Cd CAC712 
12CE 1/\ 
12CF Ffi6B 
1201 0360 
1203 23 
1204 13 
1205 C3A712 

1208 0861 
120/\ £602 
120C CA0812 
12DF C9 

12£0 3£3F 
12E2 0350 

12E4 7E, 
12E5 FE20 
12E7 FAF012 
12EI\ F£3F 
12£C F2FD12 

12£F OBfil 
12Fl £602 
12F3 CAEF12 

Ap·66 

785 
78~ 

PARALLEL POLL ENABLE Rou'rINE 

787 INPUTS: 
788 
789 OUTPU'rS: 
79B CALLS: 
791 DESTROYS: 
792 
791 
794 PEN: 
795 
795 PPEN1: 
797+ 
798+ 
799+ 
800+ 
891+ 
8A2+ 
803+ 
804+ 
895+ 
806+ 
897 
898+110049: 
809+ 
819+ 
811 
812 
813 
814+??0041 : 
815+ 
816+ 
817 
8111 
819 
820+1?0042 : 
821+ 
822+ 
823 
824 
825 
826 
827 
828 
829 PPEN2: 
839+119343: 
831+ 
832+ 
833 

MVI 
au'r 
RANGE 

MOV 
CPI 
J~ 

CPI 
JP 
WAITO 

IN 
ANI 
JZ 
MOV 
OUT 
'~AITO 

IN 
ANI 
JZ 
'~VI 
Ou'r 
WAITO 

IN 
ANI 
JZ 
LDAX 
ORI 
ou'r 
INX 
INX 
JMP 
I~AITO 

IN 
ANI 
JZ 
RET 

HL listener 11st 
rJE confi'luration 
None 

pointer 
byte pointer 

None 
A, OF-, HL, F 

A,U~L 

DOU'r 
;Universal unl isten 

20H,3EH,PPElIJ2 ;Check for valid listener 

A,~ 

2AH 
PPEN2 
3EH+l 
PPEN2 

IN'rl 
80M 
??nA4A 
A,M 
oou'r 

IN'rl 
80M 
1?9041 
A,PPC 
DOUT 

INT1 
80M 
110042 
o 
PPE 
OOUT 
H 
o 
PPENl 

INTl 
80~ 

??U43 

,Checks for value in ranqe 
:branches to label if not 
lin ran"e. Falls throUtlh If 
,lower (= ( (HI (LI I (= upper. 
;Get next byte. 

;Valid wait 91 data 
;Get IntI status 
;Check for hyte out 
: If not, try aqain 
;Get listener 

;Get IntI status 
;Check for byte out 

out req 

;If n~t, try again 
;parallel poll confiqure 

;Get IntI status 
;Check for byte out 
rIf not, try again 
;Get matchin'l confiquratlon byte 
;Met'l'e with parallel poll enable 

;Incr pointers 

;Loop until Invalirl listener char 

;Get IntI status 
;Check for byte out 
;If not, try again 

:~~ ;PARALLEL POLL OISA8LE ROU'rINE 
8]6 , 
837 ,INPU'rS: 
838 ,OU'rpUTS: 
839 ,CALLS: 
849 ,DESTROYS: 
841 , 
842 PPOS: 
84] 
844 PPDS1: 
845+ 
84~+ 
847+ 
848+ 
849+ 
859+ 
851+ 
852+ 
853+ 
854+ 
855 
856+??0044 : 
857+ 
858+ 

I'1VI 
ou'r 
RANGE 

MOV 
CPI 
J~ 

CPI 
lP 
WAITO 

IN 
MI 
,JZ' 

HL listener list pointer 
None 
None 
A, HL, F 

A,U'iL 
DOUT 

;Universal unl isten 

23H, 3eH, PPDS2 ; Check for val id Ii stener 

A,M 
• 20H 

PPOS2 
]EH+l 
PPDS2 

IN'fl 
BO~ 

??3"44 

,Checks for value in ranqe 
; branches to lahel if not 
; in ran'le .. Falls throuqh if 
; lower (= ( (ti) eLl ) (= upper .. 
;Get next hyte .. 

;Get IntI status 
;Check for hyte out 
;If not, try aqain 

3-75 

231324-41 



intJ 

12F6 7E 
12F7 0368 
12F9 23 
lUA C3F.412 

12FO 0861 
12t"F F.~H2 
1391 CAFOl2 
13114 3EAS 
139~ 0359 

1398 0861 
13ell E~82 
13ec CA8S13 
13BF 3£7~ 
1311 OH9 

1313 0861 
IllS E602 
Ill7 CA1313 
131A C9 

IllS 3£15 
1310 0368 

131F 0861 
1321 £6B2 
1323 CAIF13 
1326 C9 

1327 3£4B 
1329 0354 

1326 AF 
132C 0365 
132£ 3EF5 
1339 03~9 

1332 0861 
1334 47 
1335 £Ul 
1337 CA3213 
133A 3ES8 
133C 0364 

133£ AF 
133F 0355 
1341 OB~8 
1343 C9 

859 ~OV 
8~9 OUT 
~~I INX 
M2 J'IP 
863 PPOS2: WAlTa 
86H11A~45: IN 
8~5+ ANI 
8511+ .1Z 
867 ~VI 
8~8 ou'r 
S~9 WAlTa 
87w+nB~4r,: IN 
871+ ANI 
872+ JZ 
873 "VI 
874 OUT 
875 WAlTa 
876+119847: IN 
877+ ·ANI 
878+ JZ 
879 RET 
888 

A,M 
DOUT 
~ 
PPDSI 

INn 
80'1 
n8A4~ 
A,PPC 
DOUT 

INTI 
80~ 

119846 
A,PPD 
DOUT 

IN'U 
BOIo\ 
??8847 

Ap·66 

,Get 1 i stener 

,Iner pointer 
,Loop until invalid listener 

;Get IntI St"tU5 
,Check for byte out 
,If not, tryaqain 
;parallel poll confiC'JuE'e 

,Get IntI status 
,Check for hyte out 
;If not, try aqat" 
,Parallel poll disable 

,Get Inti status 
,Check for byte out 
, If not, try aqain 

881 
882 

PARALLEL POLL UNCONFIGURE ALL ROU'rINE 

883 
884 
885 
886 
887 
888 
889 
899 

, 
I INPUTS: 
,OUTPUTS: 
ICALLS: 
,DESTROYS: 
I 
PPUN: 

891 
892+??3048: 
893+ 

~VI 

ou'r 
WAlTa 

IN 
ANI 
JZ 
RET 

894+ 
895 , 

None 
None 
None 
A, F 

A,PPU 
DOUT 

INTI 
80'1 
??8B48 

,Parallel poll unconfiqure 

;Get IntI status 
;Cheek for byte out 
,If not. try 8'1ain 

895 
897 
898 
899 
988 
9al 
9A2 
903 
984 
985 
9A6 

, ********* * ***** ** ***** ***** *** **.* * ** ** * * •• ****** * 
I 
ICONDUCT A PARALLEL POLL 

, 
,INPu'rs: 
IOUTPUTS: 
,CALLS: 
I DESTROYS: 
,RETURNS: 

m ~POL: 
989 
918 
911+ 
912 
913 
914 
915 
916+n8A49: 
917+ 
918+ 
919+ 
928 
921 
922 
923+ 
924 
925 
926 
927 , 

"IVI 
ou'r 
CLRA 
XRA 
OUT 
",VI 
OUT 
WAITI 
IN 
MOV 
ANI 
JZ 
MVI 
OUT 
CLRA 
XRA 
ou'r 
IN 
RET 

~one 

None 
None 
A, ft, .. 
A= par"llel poll status byte 

A,LON 
AI)R"D 

A 
AUXMO 
A,EXPP 
CMD92 

INTI' 
8,A 
~IM 

nBW49 
A,TO~ 
ADR'ID 

A 
AUX"D 
DIN 

,Listen only 

I Immed late X£O paN 
IA XOR A -9 
,Reset TO'" 
;Execute parallel poll 

,Wait for completion= BI on 91 
,Get INTI status 
rSave status in e 
ICheck for byte In 
,If not, iust try aqain 
ITaik only 

I Immed late XEQ PON 
rA XOR A -" 
,Reset LO'" 
IGet PP byte 

928 ; ***** •••• **** * * *** * * ***.* ** *** *** ********* ***. 
929 ,PASS CONTROL ROU'rINE 
938 I 
931 IINPu'rs: 
932 ,0u'rpUTS: 

HL pointer to talker 
None 

3-76 

231324-42 



1344 7E 
1345 FE40 
1347 FA8A13 
134A FE5F 
134C F28A13 
134F FE41 
1351 CABA13 
1354 03<;0 

1356 0861 
1358 EG~2 
135A CA5~13 
1350 3E09 
135F 03<;" 

1361 OB61 
1363 E602 
13~5 CMl13 
1368 3EOl 
136A 0364 

13'5C AF 
1360 0365 
13<;F 3EOl 
1371 0356 
1373 3EAl 
1375 D3~5 

1377 JEFI 
1379 D3~9 

1378 DB~F 
1370 E602 
137F C27B13 

1382 OB6F 
1384 E602 
1385 CA8213 
1389 23 
138A C9 

138B D8~1 
1380 E680 
138F CACF13 
1392 1)865 
1394 FE09 

AP-66 

933 ;CALLS: 
934 ,DESTHOYS: 

None 
A, HL, F 

935 PCTL: RANGE 4121H, 5EH, PCTLI ; Is ita val id talker 
936+ 
937+ 
938+ 
939+ 
940+ 
941+ 
942+ 
943+ 
944+ 
945+ 
946 
947 
94 R 
949 
95A+??A}tS::J : 
951+ 
952+ 
953 
954 
955 
956+71121051 : 
957+ 
958+ 
959 
960 
951 
9~2+ 
963 
964 
965 
96~ 

MOV 
CPI 
J." 
CPI 
JP 
CPI 
JZ 
OUT 
WAITO 

IN 
A~I 

JZ 
'1VI 
OU'f 
WAITO 

IN 
A"I 
JZ 
'1VI 
ou'r 
CLRA 

A,M 
40~ 
PCTLI 
5EH+l 
PCTLI 
MTA 
PC'fLl 
DOUT 

INn 
BOM 
170050 
A,TCT 
DOUT 

I!'J'U 
80M 
170351 
A,MODEl 
ADRMD 

;Checks for value in ran~e 
;b~anches to la~el if not 
lin ranqe. Falls through if 
; lower (= ( (M) eLl ) (= upper. 
;Get next byte. 

;Is it my talker ad~ress 
;Yes, just return 
;Senrt on GPIB 

;Get IntI status 
;Check for byte out 
;If not, try again 
;Take control meSS8Qe 

;Get IntI status 
;Check for hyte out 
;If not, try again 
;Not talk' only or listen only 
;Enable ql anrlress mone 1 

XRA A ; A XOR A =0 
OUT AUXto!.O; Immed iate XEO PON 
'~VI A,MDA ;My device adrlress 
ou'r ADRAI ;enabled to talk and listen 
MVI A,AXR8+CPTE"" ;Command pass thru enable 
Du'r AUX"'10 967 

968 
9~9 
970 

;*****··optional PP configuration goes here**** •• ** 

971 
972+??9952 : 
973+ 
974+ 
975 
97ti+??(/JA53: 
977+ 
978+ 
979 
9S0 PCTLl: 
981 
982 , 

MVI A,GIDL ;q2 go idle commanrl 
ou'r CMD92 
WAITX 
IN 
ANI 
JNZ 
WAITT 
IN 
ANI 
JZ 
INX 
RET 

PRTF 
TCIF 
??~:;'52 

PRTF 
TCIF 
??0A53 
H 

;Wait for TCI 
;Get task c~mplete int,etc. 
;Mask it 
;Wait for task to he complete 

983 ; ************************ ••• ****.t ••• ****** 
::~ ;RECEIVE CONTROL ROUTINE 
986 

None 
None 
None 
A, F 

987 ; INPUTS: 
988 ,OU'fPUTS: 
989 ;CALLS: 
990 ;DP.STROYS: 
991 ,RETURNS: 
992 , 

A= invalid fnot take control to us or cP'r bit not on) 

993 ,NOTE: 
994 
995 
996 
997 
998 
999 

HHl0 ; 
1031 RCTL: 
1002 
1003 
1004 
1005 

IN 
ANI 
JZ 
IN 
CPI 

( > " = val id take control-- 92 will nnw be in control 
THIS CODE MUST BE TIG~TLY WTEGRATED IN'fO ANY USp.~ 
SOFTWARE THA'f FUNCTIONS tilTH 'fHP. "291 A~ A DEVICE. 
NORMALLY SQI'<l.E AOVA~CE WARNING OF IMPENDI"'I'G PASS 
CONTROL SHOULD 8E GIVE" 'fO US "Y fHP. CON'fROLLP'q 
tilTH OTHER USEFUL INFO. THIS PRO'fOCOL IS SITUATION 
SPECIFIC AND '<ILL NOT BE COVERF.D HERE. 

INTI 
CPT 
RC'fL2 
CP'rRG 
TCT 

;Get INTI req (i.e. cP'r etc.) 
,Is command pass thru on ? 
;No, invalid-- go return 
;Get command 
;Is it take control? 

3-77 

231324-43 



inter 

139/i C2eA13 
1399 DB'4 
139" E"~2 
139D CACA13 
13"" 3P.60 
13A7 D3"" 
13M 3E8~ 
13M 113<;4 

13AB AF 
13A9 D351 
13AB D3"2 
13M D3"S 
13AF 3EFA 
13Bl o3Jl9 
13B3 3 .. 0,' 
138S D3<;S 

13B7 DB"F 
1389 E6~2 
13rlB C2B7l3 

13rlE DB"F 
13ce 8fi02 
13C2 CME13 
13CS 3E~9 
13C7 C3Cfl3 
13CA 3E~F 
13CC D365 

13CE At' 
13CF C9 

131.)0 DR(,9 
13D2 E620 
13D4 CAE213 
13D7 F""S 
13D9 0369 
13D8 DBfi9 
13DD Efi02 
13DF CADB13 
13E2 C9 

13E3 3EF8 
13ES 0359 

13E7 DBfiF 
13E9 E"02 
13EB C2F-7l3 

13EE DB6F 
13,'0 E"A2 
13F2 CAEEI3 

10A<; 
1"07 
1808 
1~09 
lOlA 
I~II 
1~12 

1"11 
1014 
181S+ 
1"1" 
1817 
1018 
1819 
1~2" 
1021 
1022 

,)NZ 

Mvr 
ou'r 
MVI 
ou'r 
CLRA 
XRA 
alIT 

'ou'r 
ou'r 
MVI 
Du'r 
MVI 
ou'r 

RCTLI 
ADRt;T 
'rA 
RCTLl 
A,DTDLI 
ADRAI 
A,TO~ 

ADR"10 

AUXMO 

Ap·66 

NO, qo return inVnlid 
Get arMress st .. tus 
I5 TA ~n ? 
No -- qo return inval id 
Oi5anle talker listener 

;Talk only 

,A XOR " ~O 
;Mask off I~T hits 

h,TCN'rR :T"ke (receive) control 92 command 
C/OlD92 
A,vse,'·m :valin commanri pi'\ttern for 91 
AUXro1D 

1023 ; ******** optional ToU'rl 
',.olAITX 1~24 

1~2S+??~"S4 : 
1026+ 

check could he put here **"''''''''''** 

1027+ 
1028 
1029+??0~S5: 
103~+ 
lA31+ 
1037 
1~33 
1834 HCTLl: 
1035 

IN 
ANI 
JNZ 
'.oIAITT 
IN 
ANI 
JZ 
MV! 
,np 
~vr 

ou'r 
1~35 CLRA 
1~37+ XR,~ 
1038 Bcn2: RET 
1039 ; 

PHTF 
TCIF 
??~0S4 

PHTF 
TCI~ 
7?~~1}C; 

A.,TC'r 
HC'rL2 
A,VSCMD 
AUX:'oID 

,~ 

:Wait for Tel 
:Get task complete lnt.etc. 
;Mask it 
;Wait for task to be complete 
;Val in. return pattern 
;Only one return per routine 
;Acknowledqe cP'r 

:Error return pattern 
,A xon A ~~ 

104 ~ 1 * *_. '* * * * * '* '* ** * * * **. * *. '* II ••••• * * * * * *.* * '* * II. * '* * * * '* * 
1041 
1042 SRO ROU'r I"JE 
1043 
1044 
1~4S 
lA45 
1047 
104 B 
1049 
1050 

, 
; INPUTS: 
;ou'rpUTS: 
;CALLS: 
; RE'rURNS: 

10Sl SHQD: 
1052 

IN 
ANI 
,JZ 
ORr 
ou'r 
IN 

1053 
1054 
1055 
105<; SRQDI: 
lA57 ANI 
IA58 JZ 
1059 SRQD2: RET 
1(H,3 ; 

None 
None 
None 
A= " no St-l0 
A. < ) A SRQ occureri 

INTST 
SR(JHT 
SHQD2 
IACI( 
CMD92 
INTST 
IRFBT 
SRQDl 

;Get q,'s I~TRO st .. tus 
:t.1ask off SRQ 
;Not set--- go return 
;Set--- must clear it with lACY< 

;Get IS'F 
:Mask it 
;Wi'lit if not set 

lC61 ;._ ••• _._----_ •• _--_ •• _--.-._-_ ••• _---_ •• _--­
ao;2, 
1063 ,REMOTE ENABLE ROUTINE 
1064 
105S 
10"" 
1."7 
1058 
1059 

,INPu'rs: 
,ou'rpu'rs: 
;CALLS: 
; D8STROYS: 

107~ REME: 
1071 
1072 , 
l073+?'?'H151j: 
1074+ 
1.75+ 
1075 
1077+710057: 
1078+ 
1079+ 

MVI 
ou'r 
l't'AI'rX 
IN 
ANI 
JNZ 
WAIT'r 
IN 
ANI 
JZ 

None 
None 
NON"E 
A. F 

A,SRE~ 

CMD92 

PRTF 
TCIF 
??A::J5'; 

PRTF 
TCrF 
??A~57 

; 92 aSSerts remote enehie 
;Wait for TeI = ~ 

W:.it for Tel 
Get task complete lnt,etc. 
Mask it 
Wait for task to he complete 

3-78 

231324-44 



intJ AP-66 

131'5 C9 10BA RE'r 
1AB1 
10R2 : **** ."._- """"" *" *.- *""" * """". _._-- ***** .--
UR3 , 
1084 :LOCAL ROU'rIII,JF.: 
10B5 
1086 , 
1B87 ,INPU'I'S: None 
lABR ;OUTPUTS: None 
1389 ,CALLS: None 
1A90 ;DESTROYS: A, I' 
1091 , 

131'6 3EF7 !An LOCL: ~VI A, SLoe 
131'8 0359 1093 OUT C~D92 :92 stops assertinq remote enable 

1A94 NAITX ;wait for Tel '0 
131'A DB6F 1A95+110058: IN PR1'F 
13FC E6~2 1A96+ ANI 'rCIF 
13FE C2FA13 1A97+ JNZ 170A~A 

lA98 WAIT'r :Wait for TCI 
1401 DR6F 1099+17A0 59: IN PRTF ;Get task complete int,etc. 
1403 E602 110A+ ANI TCIF ;Mask it 
1405 CA0114 1101+ JZ ?1"" 59 ;Wait for task to be complete 
1408 C9 1102 RE'r 

1103 , 
1104 ;********************************************** 
1105 
1106 , INTERFACE CLEAR / AROI~T ROU'rINE 
1107 
1108 , 
11A9 ; INPu'rS: None 
l11B ;OU'rpIJTS: None 
1111 ,CALLS: None 
1112 ,DESTROYS: A, I' 
1113 
111' , 

1409 3EF9 1115 IFCL: MVI A,ABORT 
140~ DH9 1116 OUT CMD92 :Send IFC 

1117 ',o/AITX ,Wait for TCI =0 
HAD DR6F 1118+??A36~: IN PR'rF 
140F E~~2 1119+ ANI TCIF 
1411 C20D14 1120+ JNZ ??iHHi1 

1121 WAITT :1"1a i t for TCI 
1414 DB6!' 1122+??IH'lil: IN PRT!' ;Get task complete int,etc. 
1416 E602 1123+ ANI TCIF :Mask it 
1418 CA1414 1124+ JZ ??""':;1 :Wait for tas\( to be complete 

1125 ;Delete bot" WAl'fX " WAITT if this routine 
l12+' _~ is to be called while the 9292 is 
1127 ;Controller-in-Char~e. If not C.I.C. then 
1128 ,TCI is set, else nothinq is set (IFe is sent) 
1129 land the WAIT'S will hanq fo rever 

141B C9 1138 RET 
1132 

231324-45 

3-79 



0032 
0031 
9051 
0000 
003A 
~0;'F 

00~0 

141C 4~55314~ 
1420 52333748 
1424 48414032 
1428 5~4F 
142A 00 
A00F 
1428 50463447 
142F 3754 
0006 
1431 31 
1432 FF 
1433 32 
1434 FF 
1435 51 
143~ FF 

1437 ~500 
1439 0EDF 
1438 ll1C14 
l43E 213314 
1441 COIC10 

1444 0~54 
1445 3E06 
1448 112a14 
1448 213114 
144E COICIA 

1451 COD913 
1454 CA5114 

1457 11003C 
145A 213514 
1450 COIC12 
1460 IB 
14~1 III 
1462 E~4 A 
1464 CA7714 

1467 06311 
1469 BEll 
1468 213514 
14~E lUl3C 
1471 C09F10 
1474 C27714 

1477 00 

3C00 
3Cn 
0311 

AP-66 

1133 
1134 
1135 
1131i 
1137 
1138 
1139 
1140 
1141 
1142 
1143 

,APPLICATIO~ eXMPLF. CODe FOR 8q~~ 

FGD\JL EQU 
,'CDNL E(lU 
FCDNT SOU 
CR EQU 
LF EOU 
LEND EQU 
SHQM EQU , 
FGDA1'A: DB 

1144 LIMI eQU 
11~5 FenllTA: DB 

1146 LI"2 
1147 LLl: 

1148 LL2: 

1149 TLl: 

1150 ; 
1151 ,SETUP 
1152 
1153 
1154 
1155 
1156 
1157 , 

EOU 
DB 

DB 

DB 

FUNCTION 
MVI 
MVI 
LXI 
LXI 
CALL 

'2 ' 
'I' 
'Q' 
,mrl 
0A~ 

An'H 
40H 

:Func qen device num "2" ASCII,lstn 
;Freq etc device num ·1" A~CII,lstn 
;Freq etr talk address 
;ASCII carriaqe return 
;ASCII line feed 
;[.ist end for Talk/Listen lists 
;Bit indicatinq d~vice sent SRO 

I FUIFR37KHA'III2VO I ,eR ;Oat~ to set up func. qen 

15 
'PF4G7r' 

FeONL, LEND 

FGDNL, LEND 

FCDNT,LF.!flJD 

GENE"ATOR 
B,eR ; EOS 
C, LIMI ;Count 
D,FGDATA. 
H,tL2 ;Listen 
SEND 

;'3uffer lenqth 
. ;Data to set up freq etr 

;Buffer length 
;Listen list for freq etr 

;Listen list for fune. qen 

;'ralk list for freq etr 

;Data pointer 
list pointe,r 

1158 ,SETUP FREO cOU~'rER 
1159 
1160 
1161 
1162 
1163 
1164 
111;5 .. 

.. VI 
MVI 
LXI 
LXI 
CALL 

B, 'T' ,EOS 
C,tttot2 ;Count 
0, FCDATA 
H,LLl ;Listen 
~END 

;Data pointer 
list po'inter 

116,:) ;WAIT FOR st{Q FROM PREO CTR 
1167 , 
1168 LOOP: 
1169 

CALL 
JZ 

SRQO 
LOOP 

;Has SRQ occurred 
;No, wait for it 

1170 • 
1171 ;SERIAL,POLL TO CLEAR SRQ 
1172 
1173 
1174 
1175 
1176 
1177 
117R 
1179 
1180 , 

LXI 
LXI 
CALL 
DCX 
LDAX 
ANI 
JZ 

O,SPBYTE 
H,TLI 
SPOL 
D 
o 
SRQM 
ERROR 

;Suffer pointer 
:Talk list pointer 

;Backup buffer pointer to ctr byte­
;Get status byte 
;Did ctr assert SRQ ? 
;Ctr shoulti have sait! yes 

1181 ,RECEIVE READING FROM COU~TER 
1182 , 
1183 
1184 

, 1185 
1186 
1187 
1188 
1189 " 

MVI 
~VI 
LXI 
LXI 
CALL 
JNZ 

B,LF ;EOS 
C, Llhl3 ; Count 
H,TLI ;'ralk list pointer 
D,FCDATI ;Data in buffer pointer 
RECV 
ERROR 

11991 :******!' rest of user processing ~oes here * •••• 
1191 
1192 I 
1193 ERROR: 
1194 I 
1195 
1195 
1197 

ORG 
SPBYTe: 
LI .. 3 

NOP 
ETC. 
3CnBH 
OS 
EOU 

1 
17 

;User depentlant error handlinq 

;Location for serial poll byte 
;Max freq counter input 

3-80 

231324-46 



AP-66 

3C01 1198 FCOA'I'I : OS LIM3 ;Freq ctr input buffer 
1199 E"D 

PUBLIC SYMBOLS 

EX'fER'lAL SYI~1l0LS 

us £1{ SY,·HiOLS 
AHOItT A "eFg ADiUll , "eli" ADIl"O , A~'i4 ADR!;'r , A~t;4 AlIX"",U 1\ ~"'I;r; "XiV. " ""Ii" AXIHi A AAA'" 
"I. " ~'UHH "OF A AfiAl AO:" , "~!'2 f\USST , QlAr;R CAHCY Ii, A:'I~l CLK~'r A A.t'l eLKA + ;to!'7 
CLHs'r A ~HJIl!t CII1092 A 01)"9 CPT , AAQ~ CPT~N , AA~l CPTRCi A UA<!\r; CR " ""'\J) DCL A "~14 
OcLIt , llEC OCLRI , 1 If'" DCLR2 , 12"99 01_ A ~~Il'1 flOUT A ,,~r;q DTOLl fir. "~~(I DTDL2 A AREI! 
~Dt:OS , 90A4 I::Io.IU'otK , qAI" £0[5 II, 0~~e P.l)IST A !'''''' r,ns'l. , A~q ERFLG A ~Ac;R EHo""" fro "n,;R 
t:~RO~ A 1477 EVdI1' A It:U,1 !-;vcs'r A n~Il" EVREG A (HHjq EXPP A Itt:lFr; FCDATA " 101,,, (o'COATI A leAl 
~'cnNL A 0031 FCDNf A 101"'51 FCDATA " Idle f'GI)'IlL A nAJi' FN~SK A IH1Pl G€T A 11~!PI CIOL 1\ "AFI 
GSI::C A (lo1F4 G1'S~ A "AF~ !ioe",o A """2 IiOJ.lSI( A (III'!'! lACK A A~~B tBFST A GAlll lRFF A 9~UJ 
IFCL A 1409 I~IT A lenn I"'Tl A 0~1;1 I"'T2 A 0"~2 IIJTM , 

OJ~A" PIT'" 1 " li:t'l1 I"TMR A W21i8 
IN'fS'f A "'''''9 LA A ,,0"1 LEND A BAFF LF A AftA" Llhll A AA~F LPt2 A nAAti LlM3 A 3~11 
LLI A 1431 LL2 , 1413 LOCL A 13F~ LO_ A ""'4A Lnop A 1~c;1 MOA A (H',,1 "LA A 01121 
'''hJl.I£l A (HUH "TA A 0341 ~vc~n A AAA7 OHFF A ~A~~ peTL A 1311" PCTLI , 119A PPC A ""AS 
PPO A 007111 PPDS , 12t:\l PPllSl A 121::.1 PPDS2 , 12FD PPE , ",,1;11 PPE'" A liIA3 PPENI A 12A7 
l'Pl::N2 A 1208 PPOL A 1327 PPU A AA15 PP!JN A IllR PIlTQl A ,,~-;~ Plt'n' A '''''lEt PitTto"' A 'Hl~F 
H,'NGE:: + (HtSS Has')' A IH1E7 RC~T A A~E" ~C'rL , 13A~ R(:1'Ll , iJCA RCTL2 A IJCF RECV A lA9F 
HECVl A !BeA RECV2 A llA5 RECV3 , 11nl; RECVo1 A lllP UF.CV" " 1117 RECV'> A llJ9 RF./OtE A 13P.3 
H~:}U' A A8E::4 RERM A 0:)~A REVC A "REJ RI"'~ A ~"ES RSP.T A 0~F2 "1.5Tl A "ltF) RTou'r A 0~E9 
SDEOI A IHH1'i SEND A IIHe 5£0.101 A UJ2E 5E~D2 A 1047 Sr."'03 A lAliq SF.Nn4 1\ lA70 SF.~DS A HJ7F 
51:";..,06 A 1089 SE'rF + !-til":' SLoe A nAF7 SP~'i'rp. A )con SPCNI A "!lFB 5PO A An19 SPi'; A 1'''113 
SPIF A '''''''4 5POL A 121C SPOLl , 1210 ';POL2 , I?,Q4 sq£t.iI A "AFR SQOHT A A"291 SAQr) A 1]00 
SAQIl1 A 13D. 5RQ02 A lJP.2 St{OM A 011140 ~Te'H A AAt'"F: TA A A~!-I2 'rc,sy I\. A!lFC 'fell!' A A"A2 
feN'rH A !lOFA TC'S'{ A "..,F'n 'reT A 'HU:'9 'rL1 A 14)'; 'rL,,'" A "'Aen 'ro"l A A~qll TOi~EG A Ant;B 
TOST A "0f1~ Tou'rl , ~AIH TOUT2 " AAA2 'rou'r3 , Ano::t4 'rHIG , 11RC TM IGI , llC~ rRJG2 A 1109 
UNL A AAlF' VSC\\O A n;JnF WAITI + "I'IA2 WAITO + 'HHll ~'1"ITT + ;t~!l4 'flAITX + nu,,) rrlF.VC A A1F:2 
~ou'r A IH1El XF£t{ A 113A XFF. .. U A llS3 xn:1'f.2 A 11':;r. XF'F.A'\ , 1193 XF't:qll , 11ari 

.~SSEI~dLY COI~PLETE. NO ERflORS 

231324-47 

3-81 



inter Ap·66 

APPENDIX B 

Test Cases for the Software Drivers 

The following test cases were used to exercise the soft­
ware routines and to check their action. To provide 
another device/controller on the GPIB a ZT488 GPIB 

Analyzer was used. This analyzer acted as a talker, lis­
tener or another controller as needed to execute the 
tests. The sequence of outputs are shown with each test. 
All numbers are hexadecimal. 

Send Test Cases 
B= 44 44 44 
C= 30 2 0 

DE= 3EBO 3EBO 3EBO 
HL=' 3E70 3E70 3E70 

3E70: 20 30 3E 3F 
3EBO: 11 44 

GPIB output: 41 ATN 41 ATN 41 ATN 
3FATN 3FATN 3FATN 
20ATN 20ATN 20ATN 
30ATN 30ATN 30ATN 
3EATN 3EATN 3EATN 
11 11 
44EOI 44EOI 

Ending B= 44 44 44 
EndingC= 2E 0 0 

Ending DE= 3EB2 3EB2 3EBO 
Ending HL= 3E73 3E73 3E73 

Receive Test Cases 
B= 44 44 44 44 44 44 44 
C= 30 30 30 30 4 4 0=256 

DE= 3E80 3EBO 3EBO 3EBO 3EBO 3EBO 3EBO 
HL= 3E70 3E70 3E70 3E70 3E70 3E70 3E70 

3E70: 40 50 5E 5F 40 40 40 
GPIB output: 40ATN 50ATN 5EATN 40ATN 40ATN 40ATN 

3FATN 3FATN 3FATN 3FATN 3FATN 3FATN 
21 ATN 21 ATN 21 ATN 21 AT~ 21 ATN 21ATN 

ZT4BB Data 1 1 1 1 11 1 
In 2 2 2 2 22 2 

3 3 3 3 33 3 
4 4 44,EOI 4 44 44 
44 5,EOI 

EndingA = 0 0 0 5F 40 0 0 
Ending B = 0 0 0 44 40 0 0 
EndingC = 2B 2B 2C 30 0 0 FC 
Ending DE= 3EB5 3EB5 3E84 3EBO 3EB4 3E84 3EB4 
Ending HL= 3E71 3E71 3E71 3E70 3E71 3E71 3E71 

3-B2 



Serial Poll Test Cases 
C= 30 

DE= 3E80 
HL= 3E70 

3E70: 40 
50 
5E 
5F 

GPIB output: 3F ATN 
output: 21 ATN 
output: 18 ATN 
output: 40 ATN 
input': 00 
output: 50 ATN 
input': 41 
output: 5E ATN 
input': 7F 
output: 19 ATN 

AP-66 

C= 
DE= 
HL= 

3E70: 
GPIB output: 

EndingC = 
Ending DE= 
Ending HL= 

°NOTE: leave ZT488 in single step mode even on input 
EndingC = 30 
Ending DE = 3E83 
Ending HL= 3E73 
Ending 3E80: 00 41 7F 

Pass Control Test Cases 
HL= 3E70 

3E70: 40 
GPIB output: 40 ATN 

09ATN 
-ATN 

Ending HL= 
EndingA = 

3E71 
02 

Receive Control Test Cases 

3E70 
41 (MTA) 

3E70 
41 (MTA) 

GPIB input 10 ATN 
ATN 

Run Receive Control 
GPIB Input 
EndingA= o 

3E70 
5F 

3E70 
5F 

40ATN 
09ATN 

ATN 
o 

3-83 

30 
3E80 
3E70 
5F 
3FATN 
21 ATN 
18ATN 
19ATN 
30 
3E80 
3E70 

41 ATN 
09ATN 

ATN 
09 



inter 
Parallel Poll Enable Test Cases 

OE= 
HL= 

3E70; 
3E80; 

GPIB output: 

Ending OE= 
Ending HL= 

Parallel Poll Disable Test Cases 
HL= 

3E70; 
GPIB output; 

Ending HL= 

AP-66 

3E80 
3E70 
20 30 3E 3F 
01 02 03 
3FATN 
20ATN 
05ATN 
61 ATN 
30ATN 
05ATN 
62ATN 
3EATN 
05ATN 
63ATN 
3E83 
3E73 

3E70 
20 30 3E 3F 
3FATN 
20ATN 
30ATN 
3EATN 
05ATN 
70ATN 
3E73 

Parallel Poll Unconflgure Test Case 
GPIB output: IS ATN 

Parallel Poll Test Cases 
Set 010# 1 2 3· 4, 5 6 7 8 None 
Ending A 1 2 4 8 10 20 40 80 0 

SRQTest 

Ending A = 
Set SAO momentarily 
02 

3-84 

3E80 
3E70 
3F 

3FATN 

3E80 
3E7Q 

3E70 
3F 
3FATN 
05ATN 
70ATN 

3E70 

AesetSAO 
00 



infef 

Trigger Test 
HL= 
DE= 
BC= 

3E70: 
_GPIB output: 

Ending HL= 
DE= 
BC= 

3E70 
3E80 
4430 
20 30 3E 3F 
3FATN 
20ATN 
30ATN 
3EATN 
08ATN 
3E73 
3E80 
4430 

Device Clear Test 

XFERTest 

HL= 
DE= 
BC= 

3E70: 
GPIB output: 

Ending HL= 
DE= 
RC= 

B= 
HL= 

3E70:­
GPIB output: 

GPIB input: 

Ending A = 
B= 

HL = 

Ap·66 

3-85 

3E70 
3E80 
4430 
20 30 3E 3F 
3FATN 
20ATN 
30ATN 
3EATN 
14ATN 
3E73 
3E80 
4430 

44 
3E70: 
40 20 30 3E 3f 
40ATN 
3FATN 
20ATN 
30ATN 
3EA~N 

o 
1 
2 
3 
44 
o 
44 
3E74 



intJ 
Application Example 
GPIB Output/Input 

GPIB output: 

GPIBinput: 
GPIB output: 

GPIB input: 
GPIB output: 

Ap·66 

3-86 

41 ATN 
3FATN 
32ATN 
4~ 
55 
31 
46 
52 
33 
37 
4B 
48 
41 
4D 
32 
56 
4F 
ODEOI 
41 ATN 
3FATN 
31 ATN 
50 
46 
34 
47 
37 
54EOI 
SRO 
3FATN 
21 ATN 
18ATN 
51 ATN 
.40SRO 
19ATN 
51 ATN 
3FATN 
21 ATN 



inter AP-66 

GPIB input: 

GPIB output: 

3-87 

20 
2B 
20 
20 
20 
33 
37 
30 
30 
30 
2E 
30 
45 

. 2B 
30 
00 
OA 
XXATN 



AP-66 

APPENDIX C 

REMOTE MESSAGE CODING 

Bus Signal Line(s) and 
Coding That Asserts the 

True Value of the Message 
C 

T I ,D D NN 
Y a I I DRD A E S I R 
P s 0 o AFA TOR F E 

Mnemonic' Message Name e s 8 7 6 5 4 3 2 1 VDC N I Q C N 

ACG addressed command group M AC Y 0 0 0 X XXXXXX 1 X X X X 
ATN attention U UC X X X X X X X X XXX 1 X X X X 
DAB data byte (Notes 1, 9) M DO 0 o 0 0 0 0 0 0 XXX 0 X X X X 

8 7 6 5 4 3 2 1 
OAC . data accepted U' HS X X X X X X X X XXO X X X X X 
OAV data valid U HS ·X X X X X X X X 1XX X X X X X 
OCL device clear M UC Y 0 0 1 0 1 o 0 XXX 1 X X X X 
END end U ST X X X X X X X X XXX 0 1 X X X 
EOS end of string (Notes 2, 9) M DO E E E E E E E E XXX 0 X X X X 

8 7 6 5 4 3 2 1 
GET group execute trigger M AC Y 0 o 0 1 0 0 0 XXX 1 X X X X 
GTL go to local M AC Y 0 0 0 000 1 XXX 1 X X X X 
lOY identify U UC X X X X X X X X XXX X 1 X X X 
IFC interface clear U UC X X X X X X X X XXX X X X 1 X 
LAG listen address group M AD Y 0 1 X X X X X XXX 1 X X X X 
LLO local lock out M UC Y 0 0 1 000 1 XXX 1 X X X X 
MLA my listen address (Note 3) MAOY01 L L L L L XXX 1 X X X X 

543 2 1 
MTA my talk address (Note 4) M AD Y 1 0 T T T T T XXX 1 X X X X 

543 2 1 
MSA my secondary address (Note 5) M SE Y 1 1 S S S S S XXX 1 X X X X 

543 2 1 
NUL null byte M DO 0 0 0 0 0 0 0 0 XXX X X X X X 
OSA other secondary address M SE (OSA = SCG A MSA) 
OTA other talk address M AD (OTA = TAG A MTA) 
PCG primary command group M - (PCG = ACG V UCG V LAG V TAG) 
PPC parallel poll configure M AC Y 0 0 0 0 1 o 1 XXX 1 X X X X 
PPE parall,el poll enable (Note 6) M SE Y 1 1 0 SPPPXXX 1 X X X X 

321 
PPO parallel poll disable (Note 7) M SE Y 1 1 1 0 ODD XXX 1 X X X X 

4 321 
PPR1 parallel poll response 1 } (Note 10) 

U ST X X X X X X X 1 XXX 1 1 X X X 
PPR2 parallel poll response 2 U ST X X X X X X 1 X XXX 1 1 X X X 

3-88 



intJ AP-66 

REMOTE MESSAGE CODING (Continued) 

Bus Signal Line(s) and 
Coding That Asserts the 

True Value of the Message 
C 

T I D D NN 

Y a I I DRD A E S I R 

P s 0 0 AFA T 0 R F E 
Mnemonic Message Name e s 876 5 4 3 2 1 VDC N I Q C N 

PPR3 parallel poll response 3 } U ST X X X X X 1 X X XXX 1 1 X X X 
PPR4 parallel poll response 4 (Note 10) U ST X X X X 1 X X X XXX 1 1 X X X 
PPR5 parallel poll response 5 U ST X X X 1 X X X X XXX 1 1 X X X 
PPR6 parallel poll response 6 } U ST X X 1 X X X X X XXX 1 1 X X X 
PPR7 parallel poll response 7 (Note 10) U ST X 1 X X X X X X XXX 1 1 X X X 
PPR8 parallel poll response 8 U ST 1 X X X X X X X XXX 1 1 X X X 
PPU parallel poll unconfigure M UC y 00101 0 1 XXX 1 X X X X 
REN remote enable U UC X X X X X X X X XXX X X X X 1 
RFD ready for data U HS.X X X X X X X X XOX X X X X X 
ROS request service (Note 9) U ST X 1 X X X X X X XXX 0 X X X X 
SCG secondary command group M SE Y 1 1 X X X X X XXX 1 X X X X 
SOC selected device clear M AC Y 0 0 001 0 0 XXX 1 X X X X 
SPD serial poll disable M UC Y 0 0 1 100 1 XXX 1 X X X X 
SPE serial poll enable M UC Y 001100 0 XXX 1 X X X X 
SRO service request U ST X X X X X X X X XXX X X 1 X X 
STS status byte (Notes 8, 9) M ST S X S S S S S S XXX 0 X X X X 

8 6 5 4 3 2 1 
TCT take control M AC Y 0 0 o 1 o 0 1 XXX 1 X X X X 
TAG talk address group M AD Y 1 0 X X X X X XXX 1 X X X X 
UCG universal command group M UC Y 0 0 1 X X X X XXX 1 X X X X 
UNL unlisten M AD Y 0 1 - 1 1 1 1 1 XXX 1 X X X X 
UNT untalk (Note 11) M AD Y 1 o 1 1 1 1 1 XXX 1 X X X X 

.. . . 
The 1/0 coding on ATN when sent concurrent with multiline messages has been added to thiS revIsion for Interpretive convenience . 

NOTES: 
1. 01-0B specify the device dependent data bits. 
2. El-EB specify the device dependent code used to indi­
cate the E08 message. 
3. L l-L5 specify the device dependent bits of the device's 
listen address. 
4. Tl-T5 specify the device dependent bits of the device's 
talk address. 
5. 81-85 specify the device dependent bits of the device's 
secondary address. 
6. 8 specifies the sense of the PPR. 

S Response 

o 0 
1 1 

Pl-P3 specify the PPR message to be sent when a paral­
lel poll is executed. 

3-89 

P3 P2 P1 PPR Message 

o o o PPR1 

1 1 1 PPR8 
7. 01-04 specify don't-care bits that shall not be decoded 
by the receiving device. It is recommended that all zeroes 
be sent. 
B. 81 -86, SB specify the device dependent status. (0107 
is used for the RaS message.) 
9. The source of the message on the ATN line is always 
the C function, whereas the messages on the 010 and EOI 
lines are enabled by the T function. 
10. The source of the messages on the ATN and EOllines 
is always the C function, whereas the source of the mes­
sages on the 010 lines is always the PP function. 
11. This code is provided for system use, see 6.3. 





Modem Products 4 





APPLICATION 
BRIEF 

AB-24 

May 1989 

89024 Modem Customization 
for V.23 Data Transmission 

BRIAN D. WALSH 
APPLICATIONS ENGINEER 

INTEL CORPORATION 

4-1 
Order Number: 292058-001 



AB-24 

INTRODUCTION 

This application brief will illustrate the steps involved 
in customizing a modem application using the 89024 
modem chip set. Specifically, it will show how one may 
add V.23 capability to an 89024 modem design as em­
bodied in the MEK II (Intel Modem Evaluation Kit) 
running software version 3.2. 

GENERAL DESCRIPTION 

This design consists of using the 89026 processor to 
control a separate V.23 Data Pump IC (Texas Instru­
ments TCM3105) to support V.23 modulation in addi­
tion to the currently supported V.22bis/V.22/V.21/ 
BeIl2121BeIl103. 

The modem is placed in V.23 mode using the 
"AT &A 1" command and is returned to normal opera­
tion with the "AT&AO" command. The originating 
modem dials normally using "AT" commands and then 
2 seconds after completion of dialing, the modem sends 
75 bps V.23 carrier. The answering modem, upon de­
tecting a ring signal, goes off hook and sends 1200 bps 
V.23 carrier. The originate modem sends data at 75 bps 
and receives data at 1200 bps, whilj! the answer modem 
sends at 1200 bps and receives at 75 bps. Both respond 
to "escape" at 1200 bps and command mode is always 
at 1200/1200 bps. The V.23 transmit level is fixed. 
Backward channel CCITT circuits -are not supported, 
data is always transmitted from pin 2 and received at 
pin 3. 

This application brief d~es not address the issues of 
V.2S calling tones or V.2S calling station identification. 

HARDWARE DESCRIPTION 

The MEK II is modified by adding a Texas Instru­
'ments TCM310S FSK Modem IC. This Modem chip 
does not have an on-chip 4-wire to 2-wire hybrid cir­
cuit, so we use a dual op-amp MCI4S8 for this purpose. 
In order to control the TCM310S we use 3 additional 
outputs of the 74LS373 latch that is already used to 
latch the /JS and AA signals from the microcontroller 
address/data bus. A 74LSI57 2- to I-line data selector 
is used to select the source of received data and the 
source of "energy detect" signal to the microcontroller. 

V.23 Modem IC 

The TCM3105 (Ul02) is a CMOS V.23 modem in a 
16-pin package that consumes only 40 mW. It requires 
an external 4.4336 MHz crystal connected between pins 
15 and 16 to derive timing. A resistor divider sets the 
carrier detect threshold by adjusting the voltage at pin 
10. Bias distortion may be minimized by adjusting the 
voltage at pin 7. Pins 5, 13 and 12 together set the 
various modes of operation. These pins are connected 
to pins 6, 9 and 12 respectively of 74LS373 (U18) and 
are controlled through bits 2, 3 and 4 and executing a 
"STore" instruction to any even address of external 
memory (since this is the only external memory to be 
used). The modes of interest to us are: 

fF,TCt.l310S pl~ 12-TXR2 
CTCt.l310S pin 13-TXRl 
~tTCt.l310S pinS -TRS 

76S43210 
xxx 111 xx - Transmit Disabled 
xxxOO lxx - TX 1200 bps. RX 75 bps (V.23 Answer mode) 
xxxOl0xx -TX 75bps.RX 1200 bps (V.23 Originate mode) 

292058-1· 

74LS157 Data Selector 

This IC is always enabled and the select signal is con­
nected to the 6th output (bit 5) of the 74LS373 latch 
(U18). "SToring" a "0" to bit 5 of the latch selects 
"normal" mode of operation, while "SToring" a "I" to 
bit 5 selects V.23 mode. During "normal" mode. Re­
ceive Data (RXD) is routed from the 89026 microcon­
troller to the DTE and Energy Detect (ED) is routed 
from the 89027 AFE to the microcontroller. During 
V.23 mode RXD goes from the TCM3105 to the DTE 
and ED goes from the TCM3105 to the microcontrol­
ler. Transmit Data (TXD) is always connected from the 
DTE to both the 89026 and the TCM3105. 

MC1458 Dual Op-Amp 

This IC is configured as an active hybrid circuit, con­
verting the 4-wire transmit and receive signals to 2-wire 
to drive the line transformer. The transmitted signal is 
also summed, but since only one of the transmitters will 
be active at a time, this will not be a problem. The 
89027 has pin 10 tied low so as to disable the AFE's on­
chip hybrid. 

A schematic diagram of these changes is shown in Fig­
ure I.' . 

4-2 .-



inter 

EXISTING MEK-II 

ED .. 9'-.-..... _--' 

89026 

RXO 29 

WR TXD 27 

TXD 
RXD 

AB-24 

V.23 ADDITIONS 

4Y 12 

3Y 9 

2Y 7 

Figure 1. Schematic Diagram 

4-3 

18 ED 
HYB 10 

89027 

292058-2 



intJ AB-24 

SOFTWARE DESCRIPTION 

We choose the "&A" command as one that is not currently used by major "AT" compatible modem vendors. We 
will use S23 bit 3 as the bit to indicate that V.23 mode has been selected, since this bit is unused in "AT" modems. 
"&AI" will cause S23 bit 3 to be set to a "I" and &AO or just "&A" will cause it to be cleared. The modem software 
will examine this bit to determine whether V.23 mode has been selected. 

Note that source code will always be written in capital letters and that the assembler ignores the rest of a line after a 
semi-colon (;). When giving modified source code I will usually "comment out" the original code by adding a semi­
colon to the beginning of the line. This is an excellent practice to facilitate the documentation of changes. 

By convention we name the source files: nmxxx.SRC (where n.m is the software version and xxx is the generic file 
name). Since we are using software version 3.2 the files that we will be changing are: 

32AAD.SRC register assignment definitions ($INCLUDEd with all source files) 

32CMD.SRC Command Decoder 
32CPM.SRC Call Progress Monitor routines 
32HND.SRC Handshake routines 
32DATA.SRC Data Mode routines 

Decoding AT&Al Command and Setting the S23 Bit 
All of these changes will be done to the 32CMD.SRC file. 

Since many commands simply modify S-register bits, we can take advantage of the "COMMON~EOI5TE~ 
OPERATIONS:" code by adding our command to the necessary tables and allowing it to be decoded as a register­
modifying command. 

Add as the last entry in TABLE_I: 

I DCB (3· 32) + (523-50) 

This will tell the common routine that this command affects bit 3 of 523. The table is set up so that it only occupies 
one byte per entry, with the bit number in the upper 3 bits and the register number in the lower 5 bits. 

Add the command to the command list and the command vector table: 

AND_CMD5: DCB ·CJLPR5DG' 
DCB "MXFWZT', 
DeB "MXAFWZT', 

o 
o 

was like this 
added &A command betw X and F 

DCB AND_G_CMD-Gl, AND_M_CMD-Gl, AND_X_CMD-Gl, AND_F_CMD-G2 
DCB AND_G_CMD-Gl, AND_M_CMD-Gl, AND_X_CMD-Gl, AND_A_CMD-Gl 
DCB AND_F_CMD-G2 

The command vector table is the address offset of the command label from that of the first command (01 EQU ~ 
CMD). In the interests of saving space this offset table is only I byte per entry and so it has to be split into 2 groups 
as the range of addresses of command labels is more than 255 bytes. When modifying command code it is worth 
checking the list file to make sure that the CMDJU_TBL: entries do not get bigger than OFFH and wrap around 
through 0, causing those commands to branch to the wrong address. 

4-4 



inter AB·24 

Fix the branch vector calculator and the dial command offset calculator because the I st group of commands are now 
33 instead of 32: 

GENERATE_BRANCH_VECTOR: 
ADD TEMP_CMD_3, #G1 
CMPB TEMP_CMD_2, #32 
CMPB TEMP_CMD_2, #33 

D_R_CMD: 
SUBB 
SUBB 

CPM_CONTROL, TEMP_CMD_2, #36 
CPM_CONTROL, TEMP_CMD_2, #37 

ADD OFFSET TO 1ST CMD GROUP 
FIRST 32 CMDS FIT IN 
FIRST 33 CMDSFIT IN 

Add the command label with the rest of the register modifying commands: 

LCMD: 
AND_A_CMD: added &A command for V.23 operation 
AND_C_CMD: 

Updating the Output Pins to Control the TCM3105 and Data Selector 
The 10_CONTROL: section of code in file 32CMD.SRC runs all the time and could be considered the "back­
ground routine". This is where the RS232 leads are updated, the health of the other routines is checked and the 
74LS373 latch (UIS) is written and is thus an appropriate place for the TCM3105 chip and the Data Selector (Data 
Mux) to be updated. 

4-5 



inter 
Add the following code after END_IS_UPDATE: 

V_23_UPDATE: 
ANDB TEMP_CMD_l, #llOlllllB 
ORB TEMP_CMD_l, #OOOlllOOB 
JBC S23, 3, END_V_23_UPDATE 

JBC CNTRL_C, 1, END_V_23_UPDATE 
ANDB TEMP_CMD_l, #lllOOlllB 
ORB TEMP_CMD_l, #OOOOOIOOB 

JBC S14, 7, NOT_ORIG_MODE 
ANDB TEMP_CMD_l, #lllOlOllB 
ORB TEMP_CMD_l, #OOOOlOOOB 

NOT_ORIG_MODE: 
JBC CNTRL_C, 0, END_V_23_UPDATE 
JBS CNTRL_C, 2, END_V_23_UPDATE 
ORB TEMP_CMD_l, #OOlOOOOOB 

AB-24 

MUX TO NON-V.23 POSN 
SET V.23 CHIP OFF 
JMP IF NOT IN V.23 MODE 

JMP IF NOT IN HND OR DATA MODE 
SET V.23 CHIP TO ANS MODE 

JMP IF S REG SET TO ANS MODE 
SET V.23 CHIP TO ORIG MODE 

JMP IF NOT IN DATA MODE 
JMP IF CMD FUNCTS ENABLED 
DATA MODE, SO MUX TO V.23 POSN 

The next instruction in the source code STores the contents of TEMP _CMD_I to PORT3, and so updates the 
Data Mux. 

In order to ensure that the Data Mux gets set before the "OK" message is sent when entering the on-line escape state 
(response to "+ + + "), add a line of code after the three "ORB" instructions: 

VALID_ESCAPE_SEQUENCE: 
ORB CNTRL_F, #OOOlOOOOB ENABLE ESCAPE STATE 
ORB CNTRL_C, #OOOOOIOOB ENABLE CMD FUNCTIONS 
ORB MSG_RQST, #OOlOOOOOB SEND "OK" MESSAGE WITH MSG RQST 
JBS S23, 3, ESCAPE_DETECT_END TRICK TO FORCE 1 MORE PASS THRU 

; IO_CONTROL FOR MUX SETUP BEFORE GOING TO COMMAND DECODER 

4-6 



inter AB-24 

After a dial command is executed by the Command routine, it will activate the Call Progress routines. 

The V.23 Call Progress Monitor Routines 
The 32CPM.SRC routines check for call progress signals on the phone line and also for answer tone from the remote 
answering modem. Since a V.23 modem will answer with a 1300 Hz tone (1200 bps mark frequency), the AFE 
receive filter must be set to V.22 answer mode so as to pass this frequency to the energy detect circuitry. 

Add three lines of code at the label SET~NSWE~CONT: 

SET_ANSWER_CONT: 
ANDB CPM_FLAG, #lllOllllB ; FLAG ANSWER PROCESSING FOR HOUSEKEEPING 

JBC S23, 3, SET_ANSWER_CONT_1 
LDB AFE_BYTE3, #OlOOOOOOB 

SET_ANSWER_CONT_1: 

SJMP SIGNAL_MONITOR_INIT 

IF V23 MODE THEN 
SET FILTER TO QAM ANS FOR 
1300Hz CARRIER DETECTION 

The CPM routines will hand over control to the Handshake routines which we need to modify for V.23 handshake. 

The V.23 Handshake Routines 
The Handshake mode 32HND.SRC is entered for the first time after successful completion of the Call Progress 
routines. The first time that HANDSHAKE_MODE: is called, it goes through the Initialization code before the 
main routine is executed, thereafter the Initialization is skipped. The Main routine is entered at a rate of 600 times 
per second or more and consists of checking for Energy Detect and then branching to the routine address saved in 
T~TN_ADDR. The logical flow of the handshaking is controlled by changing the contents of T~RTN_ 
ADDR to the address of the routine to be executed the next time Handshake is called. 

292058-3 

Figure 2 

4-7 



AB·24 

The Initialization required for V.23 consists of starting the S7 wait-for-carrier timer, starting a 2 second timer and 
loading a return address for the next time the routine executes. The following lines of source code are added 
(identified by "V23" at the start of the comment field) to the Handshake Initialization: 

HANDSHAKE_INIT : 
ANDB MODE_STATUS, #lOllllllB 

JBC S23, 3, NOT_V23_INIT 
V23_HND_INIT: 

ADDB S7_TIMER, TIME_BASE_SECOND, S7 
ADDB TX_TIMER, TIME_BASE_lOOMS, #20D 
LD TX_RTN_ADDR, #V23_HND_WAIT 
SJMP HND_INIT_END 

CLEAR INIT FLAG 
V23 
V23 
V23 
V23 INIT S7 DCD TIMER 
V23 INIT 2 SEC TIMER 
V23 
V23 
V23 
V23 

After the initialization code is executed once, the software will keep branching to V23_HND_ WAIT: until the 
2-second timer has expired, then it will initiate a "CONNECT" message. While the Connect message is being sent, 
the software will branch to V23_HND_MESSAGE:, then it will set up the Data mode and thereafter the Data 
Mode will be called instead of the Handshake mode. 

V23_HND_WAIT: 
CMPB TIME_BASE_lOOMS, TX_TIMER 
JNE V23_HND_END 

V23_HND_MESSAGE_INIT: 
LDB MESSAGE_REQUEST, #OOlOOOOlB 
LD TX_RTN_ADDR, #V23_HND_MESSAGE 
SJMP V23_HND_END 

V23_HND_MESSAGE: 
JBS MESSAGE_REQUEST, 5, V23_HND_END 

V23_HND_MESSAGE_END: 

ANDB COPY_PORT4, #lOllllllB 
V23_SET_UP_DATA_MODE: 

V23 
V23 TIMER EXPIRED YET? 

, V23 
V23 
V23 START CONNECT MESSAGE 
V23 
V23 
V23 
V23 
V23 MESSAGE SENT YET? 
V23 
V23 
V23 DCD HIGH AFTER CONNECT 
V23 

This is where we need to set 
ORB CNTRL_C, #OOOOOOllB 
ANDB AFE_BYTE4, #OOllllllB 

up for going to data mode 

CLRB DM_FLAGS 
ORB MODE_STATUS, #lOOOOOOOB 

V23_HND_END: 
LJMP HANDSHAKE_MODE_END 

4-8 

V23 
V23 
V23 
V23 
V23 
V23 
V23 

GO TO DATA ~ODE 
TXMITTER OFF, AFE OFF 
CLEAR FLAGS FOR DM 
INIT DATA MODE 



intJ AB-24 

V.23 Data Mode 
The modifications required in the Data Mode consist of checking for V23 mode and skipping past: 

Initialization 
Send space disconnect (twice) 
Receive space disconnect 
Loss of carrier disconnect 
Retrain request 
Test mode 

DATA_MODE_INIT : 
; DM FLAGS ALREADY CLEARED IN HANDSHAKE MODE 

ANDB MODE_STATUS,#7FH CLEAR INITIALIZE FLAG 
JBS S23, 3, DATA_MODE_INIT_END ; IF V23 THEN INIT DONE 

DISCONNECT_INIT: 
ANDB DM_FLAGS, #llllllOlB 
JBS S23, 3, HANG_UP 

SEND_SPACE: 
JBC S21, 7, HANG_UP 
JBS S23, 3, HANG_UP 

CHECK_DISCONNECT: 
CHECK_BREAK: 

JBS S23, 3, SET_BREAK_TIME 

CHECK_CARRIER_LOSS: 

CLEAR DISCONNECT INIT FLAG 
V23 FORGET SPACE DISCONNECT 

IF BREAK_DISCONNECT DISABLED 
V23 FORGET BREAK 

CHECK FOR LONG SPACE DISC 

V23 FORGET BREAK 

JBS PORTO, 7, CHECK_CARRIER_LOSS_END ; SKIP IF ED IS HIGH 
ORB DM_FLAGS, #OlOOOOOOB ; SET CDLOSS FLAG 
ADDB EDOFF_TIME,TIME_BASE_IOOMS,SlO ; CDOFF THRESHOLD IN REGISTER 
INCB EDOFF_TIME PUT AN OFFSET IN TIME FOR PROPER 

OPERATION DURING TM EXIT 
JBS S23, 3, CARRIER_LOSS_END ; ALL DONE IF V23 MODE 

QAM_RETRAIN: 
JBS S23, 3, SJMP_CHECK_TEST_MODE SKIP RETRAIN IF V23 MODE 

CHECK_S16_STATUS: 
EXAMINE S16 REGISTER FOR ANY TEST MODES AND SET FLAG 
JBS S23, 3, CHECK_S16_STATUS_END ; SKIP RETRAIN IF V23 MODE 

4-9 



inter AB·24 

Assembling the Source Files 
The source files can be assembled by issuing the following commands at the DOS prompt: 

ASM96 32CMD.SRC 
ASM96 32CPM.SRC 
ASM96 32HND.SRC 
ASM96 32DATA.SRC 

Linking the Object Files 
Link the object files by issuing the following command at the DOS prompt: 

RL96 32HND.OBJ, 32INIT.OBJ, 32CMD.OBJ, 32CPM.OBJ, 32DATA.OBJ, 
32S0FT.OBJ, 32HSI.OBJ, 32HSO.OBJ, 32RX.OBJ TO 32ATR 

Programming the EPROMs 
After the code has been linked and located, the code must be split into low and high byte segments for programming 
into EPROMS. The following IPPS session illustrates that process (IPPS prompts are not shown): ' 

IPPS 
I 80 
FORMAT 32ATR 
3 
2 
1 
o to 32ATR.LO 
1 to 32ATR.HI 
<enter> 

TYPE 
27128 

COPY 32ATR.LO TO PROM 

COPY 32ATR.HI TO PROM 
EX 

invoke IPPS 
initialize file format 
filename resulting from linking 
logical unit is byte 
input file is in wordS (2 bytes) 
output file is in bytes 
low order bytes to one file 
high order bytes to another 
press ftenterft to exit formatting 

the following assumes that an 
INTEL PiUP 20lA programmer is 
connected to the PC 

display available EPROM types, 
specify EPROM type 
insert blank EPROM into programmer 
copy low byte file to' prom 
insert blank EPROM into programmer 
copy low byte file to prom 
exit IPPS 

Custom routines can now be tested by placing EPROMS into target hardware. 

REFERENCES 
1. "FSK Modems: TCM310S Designers Information" from Telecommunications Circuits Data Book, 1986. By 

Texas Instruments. ' 

2. MEKII 89024 Enhanced Modem Evaluation Kit Users Manual, 1987. By Intel Corp. 

3. 89024 Modem Reference Manual, 1987. By Intel Corp. 

4. Developing MCS-96 Applications Using the SBE-96. Application Note AP-273 (Order Number 280249-001). By 
Intel Corp. 

4-10 



ISDN Products 5 





APPLICATION 
NOTE 

AP-282 

January 1989 

29C53 Transceiver Line 
Interfacing 

JAGTINDER s. BOLARIA 
TELECOM PRODUCT MARKETING 

5-1 
Order Number: 270209-003 



inter AP-282 

INTRODUCTION 

Presently, the majority of the transmission from the 
telephone to the Central Switching system is analog. 
For this purpose the circuitry interfacing to the twisted 
pair line is optimized to operate between 300 and 3400 
Hz. The essential line interface functions consist of iso­
lation, over voltage protection, signaling, power feeding 
and a ringing signal insertion. With the advent of ISDN 
(Integrated Services Digital Network) these functions 
have to be reassessed. 

ISDN is implement~d with digital transmission from 
the subscriber to the switch, which in turn offers the 
user various data services in addition to the voice serv­
ice. CCITT has various recommendations' for the im­
plementation of the ISDN network. Of these, 1.430 de­
tails the basic rate access i.e. the physical communica­
tions between a terminal and the first level of switching. 
For 1.430, Intel offers a transceiver which is capable of 
operating at either end of the loop, namely the 29C53. 

The 29C53 is a four wire (two for transmit and two for 
receive) transceiver operating over the "S" loop. The 
data transmitted by the 29C53 at the switch and the 
terminal is at a rate of 192 kb/s; the effective data 
throughput is 144 kb/s. This data consists of two bearer 
channels of 64 kb/s each (Bl + B2) and a 16 kb/s D 
channel. The 29C53, additionally, incorporates some 
protocol processing for the D channel. This transceiver 
has four interfaces, namely the microprocessor port, a 
general purpose I/O port, the SLD port and the "S" 
loop interface. It is the loop interface requirements that 
are addressed by this application note. 

This note will analyze the line interface requirement at 
both the line card and the te~inal, and will offer gen­
eral implementations. These implementations will ad­
dress power feeding, the protection circuitry, the line 
transformers and power extraction. Throughout this 
brief, the approach has been to present various alter­
nate concepts which may assist the designer in address-
ing a specific application. ' 

LINE INTERFACE 

Both at the line card and the terminal, there is a need to 
provide isolation for the circuitry from the line itself. 
As well as isolation, it is also necessary to protect the 
equipment from any overvoltage conditions on the line. 
Additionally the system may be designed to provide 
phantom power feeding i.e. the switching system deliv­
ers power to the terminal over the "S" loop. Unlike its 
analog counter part the digital line card does not need 
to send a ringing signal owing to the fact that all signal­
ing is accommodated via the D channel. 

5-2 

-TERMINAL SWITCH 

~IIE 
ailE 

270209-1 

Figure 1. Voltage Feeding 

POWER FEEDING 

Figure 1 shows the CCITT recommended technique of 
phantom power feeding as described in section 9 of 
1.430. The current splits evenly between the two sec­
ondary windings. This in turn produces equal and op­
posite fluxes in the transformer, that cancel each other 
out, thus preventing the core from saturating. The 
equality of the fluxes in the secondary will depend on 
the longitudinal balance of the transformer and the 
transmission line. ' 

The scheme shown on Figure 1 may be wasteful of 
power when feeding short lines. One way around this 
would be to have a constant current feed, which will 
make the power consumption'independent of the length 
of li~e. Figure 2 shows such an implementation. 

-TERMINAL SWITCH 

~IIE 
ailE 

270209-2 

Figure 2. Current Feeding 



intJ Ap·282 

One way of reducing the power dissipation over the 
loop is to provide a variable voltage source, instead of 
the traditional fixed voltage. This can be accomplished 
by using a DC to DC converter, or a switching regula­
tor. The feedback circuit of the switching regulator can 
be used to ensure that the regulator provides just 
enough voltage to maintain a pre-defined feed current 
down any length of line. The DC to DC converter can 
have a built in threshold detector, which would be used 
to release the line in case excessive currents are being 
drawn. 

In the event of mains power loss, it is often required to 
maintain a minimal voice service powered off the line. 
Figure 3 shows the block diagram of a digital tele­
phone, illustrating the necessary components required 
to maintain a voice service. 

29C48 

'--~:---r-

I[ 
I[ 

SOCS1 

270209-3 

Figure 3. Digital Telephone 

The 80CSI is a low power microcontroller while the 
29C48 is an SLD compatible combo (codec and filter). 
The gains through the 29C48 can be set externally or 
programmed by the microcontroller via the SLD inter­
face. The 29C48 is designed to allow insertion of side­
tone and DTMF (dual tone multi-frequency); both 
these features are presently used to provide feedback to 
the user. 

PROTECTION 

Next, let us examine the question of protection. A tele­
communication system comprises subscribers linked to-

5-3 

gether through the cable plant and a switching net­
work. The cable plant consists of multiple pairs of 
transmission lines, either suspended on poles, or buried 
in the earth. In either case, transient energy can be cou­
pled from lightning (or other electromagnetic events) 
and conducted to the switch or the terminal. The other 
major source of transient energy is the commercial AC 
power system, where high currents that accompany 
faults can induce overvoltage in the lines, or the power 
lines can fall and make contact with the telephone lines. 
The latter is sometimes referred to as a mains or power 
cross. 

It is gen~rally agreed, as shown in Figure 4, that two or 
more levels of protection are required. The primary 
protector is usually placed on the line at a distance 
greater than 2Sm from the line card. The impedance of 
the line will ensure that the primary protector will op­
erate first and the secondary protector will not be ex­
posed to the full surge. If the primary protector is to be 
placed closer to the secondary, then a small resistor can 
be inserted in series with the line between the primary 
and the secondary protector (1). A SO 3W resistor or a 
positive temperature coefficient resistor may be used. 
During a surge, the voltage drop across the resistor will 
increase allowing the voltage across the primary protec­
tor to build up thus driving it to conduction. 

The primary protection can be a gas discharge tube, 
such as the General Instrument three terminal 
PMT3-(310). These devices consist of spaced metallic 
gaps enclosed in a combination of gases at low pressure. 
In the event of a surge, the gap breaks down, diverting 
the transient and thus rerouting the energy. These de- . 
vices can be operated a number of times and present a 
capacitance of less than S pF. Since the templates in 
Figures 10 and II of 1.430 specify a low output capaci­
tance for the terminal and the network terminator, the 
low output capacitance feature of the gas discharge 
tube makes it ideal for ISDN i.e. it will have a minimal 
effect on the line drivers. 

The secondary protection can be provided by Schottky 
diodes chosen for the low voltage drop and capacitance 
across them. The diodes are placed between the power 
supplies and the loop interface pins on the 29CS3, thus 
forming a diode bridge across the line. This will ensure 
that the voltage on these pins does not exceed the pow­
er supplies by more than approximately 300 mY, thus 
fulfilling the specification that the voltage on any pin 



AP-282 

-TERMINAL 

~'~~;';-310 
V220MA49 

-<l........:H-~ 

~ .. ~~;·;-310 V220MA49 - , 

-<l........:H ...... ~ 

-SWITCH 
,..-JWrl--+--.... LX+ 

"'-'1""" .... --..----1 LX-
29C53 

,..-JWIr'1l--+--.... LR+ 

"'-'1""" .... -..----1 LR-
270209-4 

Figure 4. Protection 

may not exceed the power supply by more than 500 
mY. The 5V and ground connections to the diodes 
should be as close as possible to the 29C53 power sup­
ply pins, which in tum should be decoupled by a 0.1 'I-"F 
capacitor. The capacitor serves a secondary function of 
bypassirig surge currents. The particular diodes chosen 
are dependent on the expected surge current, however, 
BAT85 from Philips used in this application can with­
stand 200 mA forward current while presenting a maxi­
mum of 10 pF capacitance across it., The maximum 
current through the diodes can be limited by placing a 
resistor in series with the diodes and the transformer. 
The value of this resistance can be extracted from 'the 
transformer design discussion. To further limit the cur­
rent to the 29C53, the series resistance can be split, 
with part of it on the 29C53 side ofthe diodes, and part 
of it on the transformer side of the diodes. For the 
receive direction it is possible to replace the diode 
bridge by placing a resistance in series with the 29C53 
receive pins. This series resistance will limit the surge 
current that the 29C53 is exposed to. The value of this 
resistance is limited by the input impedance presented 
by the 29C53 and the loss that can be tolerated in the 
received signal. The receive differential input imped-

5-4 

ance of the 29C53 is 100 KO, hence a 10 KO resistor in 
each arm will reduce the received signal by, 17%. 

In case of a mains cross, the loop can be made to self 
recover by using thermal deviceS such as the positive 
temperature coefficient thermister (PTC). Keystone 
Carbon Company has a range of PTCs specific to tele­
phone line applications that they refer to as resettable 
fuses. Economic considerations may make this unjusti­
fiable in which case a fusible resistor or link may be 
used. 

Further protection may be deemed necessary, in which 
case two varistors can be placed across the line close to 
the transformer. The varistor has a volt-current rela­
tionship similar to a diode i.e. after a specified voltage 
across the varistor is reached, the current through it 
will rise dnimatically; thus clamping the voltage to the 
specified level. A typical varistor that may be used as a 
back-up protection is the GE V220MA4B. This device 
typically presents a 21 pF ~pacitance. 

The ideas discussed thus far are encompassed in Figure 
5 for a minimal component count protection scheme. 



inter AP-282 

270209-5 

Figure 5. Protection with Minimal Components 

LINE TRANSFORMER 

A transformer is used at both the terminal and the line 
card to provide isolation from the line. A well balanced 
1.430 transformer resolves the issue of DC currents 
since they induce self-cancelling fluxes. Generally 
speaking, a pulse transformer with minimum leakage 
inductance and self capacitance is required. The imped­
ance templates in 1.430 specify the minimum value of 
the inductance required at the line side. This value can 
be calculated to be 20 mHo A further requirement is to 
minimize the winding resistance, so that a minimal 
voltage is dropped across it. A 2.5: I ratio transformer 
can be used with the 29C53 to produce the proper pulse 
amplitude. The transformer design discussed below can 
be used with the 29C53 at either the line card or the 
terminal. Alternatively it can be used for example pur­
poses to aid designs. 

The RM series of ferrite cores are chosen to facilitate 
easy winding and PCB mounting, additionally the RM 
series is available internationally from various vendors­
Ferroxcube in the U.S. and Mullard in Europe, to name 
two. The RM6 core was selected to be the smallest size 
that accommodates wiring which does not exceed the 
maximum allowable DC resistance. The core material 
has to have a high enough permeability to allow the 20 
mH inductance with a minimum ~umber of turns 
hence, the Ferroxcube core material 3E2A was select­
ed. This material has a very high inductance factor, AL. 
This is given by the manufacturer as the inductance (in 
mH) per 1000 turns. 

5-5 

For the core RM6PLOO-3E2A 

AL = 6710 ± 25% 

Therefore minimum 

AL = 5032 '" 5000 

The number of turns, Ns, required for 20 mH is given 
by: 

Ns = 103 ~LI AL L - required inductance in mH 

Ns = 70 turns - assume 25 mH is required 

The 29C53 side winding will require 2.5 times this 
number of turns. 

Np = 175 turns 

The transformer is now ready to be wound, the 32 
gauge wire will just fill the RM6PCBI bobbin. The 
bobbin is started by bifilar winding the 175 turns. Bifi­
lar winding is accomplished by taking two separate 
pieces of wire and winding them simultaneously. The 
finish of one winding is then soldered to the start of the 
other and often, as is the case in this implementation, 
the point of connection of the two wires (center tap) is 
brought out to a pin of the transformer. The remaining 
ends (start and finish) now comprise the winding. The 
transformer is now followed by I'!. layers of insulating 
tape. The insulating tape used was the Permacel P-256 
which forms a dielectric capable of withstanding 5 KV, 
this serves to protect the line card and the subscribers 



AP-282 

from lightning induced surges. The 70 turns are then 
bifilar wound; this results in a well balanced transform­
er. The start of one winding should be connected to the 
finish of the other and brought out to a pin, thus creat­
ing a center tap on the line winding. The transformer is 
then finished with 1 'I. layer of insulating tape. The 
transformer thus designed gave satisfactory results in 
the lab and is characterized by the followIng: ' 

Secondary inductance 

Secondary leakage inductance 

Secondary winding resistance 

Primary winding resistance 

Ls=26mH 

Is = 20,...H 

Rs = 1.50 

Rp = 2.70 

The capacitance between the two bifilar windings was 
measured to be 100 pF and this may be too high for 
certain applications. For this case the bifilar winding 
can be replaced by the cross winding technique shown 
in Figure 6a. The two windings are now wound in op­
posite directions, one wire is on top on the top side 
while the other is on top on the bottom side,. This tech­
nique reduced the above mentioned capacitance to less 
than 50 pF. 

270209-7 

Figure 6a. Crosswinding 

The 29C53 has been designed to drive voltages as speci­
fied in the 1.430, since the transformer presents a series 
resistance, some of this voltage will be dropped across 
it. For the transformer designed above, the overall se­
ries resistance is (2.7 + 1.5.6.25) = 120 which will 
result in a 3.8% error over the allowed peak transmit 
signal in 1.430. This is acceptable as 1.430 allows a 10% 
error for the peak voltage. If series resistors are re­
quired to protect the Schottky diodes, their value may 
be calculated by having the maximum 'allowed peak 
voltage error. Note that equal value resistors should be 
placed on both arms of the line. If larger values of pro­
tection resistors are required, the above procedure may 
be repeated with a larger core. This will allow the same 
inductance to be achieved with a fewer turns and the 

5-6 

larger core will make it possible to use a thicker wire. 
Both of these factors will contribute to reduce the wind­
ing resistance, ~ence a larger value diode protection re­
sistor may be used. Alternatively, the transformer turns 
ratio can be decreased so that the output voltage is in­
creased and hence more of it can be dropped across the 
series resistance.' This in turn means that the value of 
this protection resistor can be increased. However, note 
that the 29C53 is only capable of driving loads greater 
than 2000. If. a turns ratio of 1.8: 1 is used then the 
overall series resistance can be 640. This also increases 
the output impedance to 200 while transmitting a 
pulse. As discusSed earlier this resistor can be larger on 
the 29C53 receive pins. 

Some establishments may require further line isolation 
from the transformer in which case a Faraday shield 
can be placed in between the primary and the second­
ary windings. The Faraday shield can be made by 
wrapping 1'/4 layers of a copper tape (such as the per­
macel P-389) between the two windings. The copper 
tape should be insulated from the windings and should 
be brought out to the local ground. As well as isolating, 
the Faraday shield also serves to reduce the interwind­
ing capacitance. 

The transformer designed was connected up as shown 
in Figure 6b to measure its longitudinal balance. 

2500HM 50 OHM :t 0.02% 

50 OHM :t 0.02% 
270209-6 

Figure 6b. Longitudinal Balance 
Let v = vi/2.5 , ' 
Then longitudinal balance is given by: 20 Log VIVo 

Measurements conducted showed this figure to be bet­
ter than 70 dB for the frequency range;. of 10 KHz to 1 
MHz. 

The center tap on the primary (29C53 side) is coupled 
to ground via a 10 nF capacitor. In this manner longi­
tudinal signals on the primary are bypassed to ground. 
Measurements produced greater than 70 dB of longitu­
dinal signal rejection. 



inter AP-282 

When designing the System board, special care should 
be paid to the layout. The transformer and the 29C53 
should both be placed on a ground plane. The connect­
ing tracks from the 29C53 to the transformer should be 
as short as possible. The two devices should be placed 
close to the edge where the transmission lines interface, 
while the high frequency logic should be placed on the 
opposite edge. The analog ground wiring should follow 
a star configuration and should have a separate isolated 
lead originating from the system ground where it enters 
the board. 

Though the analysis of pulse transformers is beyond the 
scope of this brief (2), one should be aware of the perti­
nent parameters affecting the good reproduction of the 
pulse. The pulse transformer is generally analyzed by 
different equivalent circuits, depicting the varying phas­
es of the pulse. 

Figure 7 shows these circuits. The pulse shape is then 
, optimized by considering the transient response of the 

equivalent circuits. 

The pulse response of the transformer is characterized 
by a finite rise time, a decaying top period and finite fall 
time as depicted in Figure 7d. The fastest rise time that 

0) RISE PERIOD 

~ 
--1J 
b)TOP AND 'DECAY PERIOD 

c) FALL PERIOD 

can be obtained without overshoot is for the critically 
damped case and is given by: 

Ir = 3.35 .Ja[C where a = RL / (Rg + RU 

For the top period, there will be some decay leading to 
a fractional droop, this is given by: 

D'" T~ 
R 

where T =. pulse width 

R = RL and Rg in parallel 

The fall period is characterized by the second order 
circuit of Figure 7c; the primary concern here to pre­
vent severe undershoot or backswing when the 29C53 
transmitter is in the high impedance mode. This can 
best be achieved by having an overdamped system, 
which is the case when: 

Lp> 4CRL2 

Commercially available pulse transformers exist which 
are compatible with the 29C53. Some examples are giv­
en in Table 1. Most manufacturers will modify their 
design to meet the requirements of a particular applica­
tion. 

d) PULSE RESPONSE 

RL - Load impedance 
c - Shunt capacitance 
L - Leakage inductance 
Lp - Primary inductance 

270209-8 

Figure 7. (a) Equivalent Circuits for Rise Period 
(b) Top and Decay Period (c) Fall Period (d) The Pulse Response 

5-7 



inter Ap·282 

TABLE 1. Manufacturers of Pulse Transformers 

Manufacturer Location 

AlE Magnetics St. Petersburg, FL 
(813) 347-2181 

Schott Corporation Nashville, TN 
(615) 889-8800 

CTM Magnetics Tempe,AZ 
(602) 967-9447 

Pulse Engineering San Diego, CA 
(619) 268-2400 

POWER EXTRACTION 

The same transformer can be used at both the line card 
and the terminal, and the same ,protection scheme can 
be used at both ends of the loop. The need now arises to 
provide power to the terminal. There are a number of 
ways of providing power to the terminal, for instance a 
secondary cell can be used as battery back-up in con­
junction with a main supply. There is also some scope 
for trickle charging secondary cells from the line or 
from a small solar cell array, but the drawback with 
secondary cells tends to be their short life span. This 
disadvantage can be offset by using special purpose pri­
mary cells as a back-up supply, these do not need any 
charging circuitry and can be expected to have life ex­
pectancy twice that of the secondary cells. Finally, the 
power can be fed from the switch, in which case a regu­
lator is required at the terminal to extract the power off 
the line. Figure 8 illustrates this approach. 

TERMINAL SWITCH 

270209-9 

Figure 8. Power, Extraction 

5-8 

Winding Ratio Part No. 

1.8:1 325-0228 
2.5:1 325-0172 

·1.8:1 11207 
2.5:1 11124 

1.8:1 22087 
2.5:1 25585 

1.8:1 64994 
2.5:1 64996 

A DC to DC converter is ,required to convert the line 
voltage to 5V for the local circuitry. In order to obtain 
the lowest losses in the conversion process, it is neces­
sary to use a high efficiency regulator, specifically, a 
switched mode .regulator. Basically, th~re are three 
types of switched mode power supplies, the forward, 
the push pull and the flyback converter (3). This sec­
tion is devoted to the flyback implementation of a DC 
to DC converter. The flyback is the most suitable con­
verter lor this application, as it provides the highest 
achievable efficiency and the simplest drive circuitry. 
Figure 9 shows a block diagram of a flyback converter. 

OUT 

LINE 

>:* 
270209-10 

Figure 9. Flyback Converter 



~ c --. 
111 

? 
c 

01 0 , .. 
co 0 

g 
fl 
:::I 

~ 
it -. 

R9 
51Ktl 

270209-13 

l 

» 
"tI . 
I\) 
CC) 
I\) 



intJ AP-282 

In the flyback inductor, energy is inductively stored 
during the switch on period, and then passed to the 
load during the switch off, or the flyback period. Dur­
ing the switch on period, the output diode does not 
conduct so that the energy in the choke (although ap­
pearing as a transformer, this element will be referred 
to as the choke in accordance with its function) builds 
up with rising current. While the switch is off the choke 
voltage reverses in polarity causing the output diode to 
conduct whereupon the inductive energy is discharged 
into the output capacitor to form a DC voltage. Regula­
tion is achieved by modulating the oscillator duty cycle, 
which effectively varies the switch on/off periods. In 
Figure 9 the diode bridge ensures the correct polarity 
for the converter while the opto-isolator completes the 
input to output isolation. 

Figure 10 shows a discrete circuit implementation of a 
DC to DC converter. This circuit was designed to regu­
late a 5V output for 20-60V input voltage. This imple­
mentation provides a maximum power of at least 450 
m W. The DC to DC converter consists of an oscillator, 
a pulse width modulator incorporating an error ampli­
fier and isolating stage, the start up circuitry and the 
flyback converter. When T5 is on, the choke stores en­
ergy and reverse biases diodes D8, D9 and D 10. While 
T5 is off, the choke voltage is negative, hence diodes 
D8, 9 and 10 are all forward biased and thus build a 
DC voltage on their respective capacitors. Note that 
due to the reverse winding technique, the voltage in the 
output windings are opposite in polarity to the switch 
winding. The 5V output is regulated by comparing it to 
a reference voltage, the error in the comparison is then 
used to modify the transistor T5 on time in such a way 
so as to keep the 5V output constant. 

The diode bridge DI-D4 ensures a certain polarity of 
the DC voltage for th.e converter, this is necessary in 
case the network uses polarity reversal for signaling. 
The decoupling capacitor CI serves a secondary func­
tion of bypassing any induced surge current. One half 
of the Schmitt NAND gate CD4093 is used to form a 
25 KHz oscillator. 

At the output, the opto-isolator in conjunction with the 
regulating diode TIA31 is used to generate an error 

current. The current through the regulating diode is 
proportional to the voltage difference between the out­
put and the reference. This device is available from 
Texas Instruments and Motorola amongst others. Fig­
ure II illustrates its function. 

..... ... 
RIO 

R9 

VOUT 
TL431 

Figure 11. Regulator 

27020S-11 

For the regulator diode, the output voltage is given by: 

Vout = (1 + R10 IRs) Vref 
where Vref is typically 2.5V. 
If R10 = Rs 
then Vout = 5V 

The current through the regulating diode will increase 
or decrease with a respective change in the output volt­
age. This change in current is coupled to the output of 
the oscillator through the opto-isolator. The opto-isola­
tor used is a Hewlett Packard 6N139, which has Dar­
lington transistor stage providing high current gain that 
results in a lower power dissipation in the opto-isolator. 
The current through the isolator differentiates the out­
put of the oscillator through capacitor C3. This differ­
entiated signal is then squared off to define the switch­
ing transistor T5 on period. T5 is an IRFDllO MOS­
FET and is available from International Rectifier. The 
isolator current and hence the output voltage control 
the amount of differentiation or the transistor T5 on 
period as illustrated in Figure 12. Thus regulation is 
achieved, as the on period is reduced with increasing 
output voltage and vice versa. ' 

OSCILLATOR OUTPUT Jl..J - ~ -~ - TO T5 

abc' 
27020S-12 

Figure 12. Pulse Width Modulation 

5-10 



AP-282 

The two transistors T2 and T3 provide a low source 
impedance driving stage for the switching transistor. 
The fast current sinking and sourcing will ensure fast 
switching of transistor T5. 

The input capacitance of the MOSFET IRFDIIO is a 
maximum of 200 pF. Without the buffer stage the 
MOSFET will stay in the linear region longer before 
saturating, thus resulting in 'a slower switching speed. 
The slow switching in tum will result in a lower overall 
efficiency for the converter. 

The resistor R6 and transistor T4 provide current over­
load protection. Transistor T4 will conduct when the 
voltage across R6 exceed 0.6V or conversely, the cur­
rent through it is greater than 150 mAo With T4 con­
ducting, the drive to the MOSFET is nulled by the 
associated NAND gate. 

The transformer choke is a three winding transformer 
consisting of the switching winding, the output wind­
ing, which is split for the + 5V and - 5V and the self­
bias winding. The transformer is designed for complete 
energy transfer under no load conditions and incom­
plete energy transfer under full load conditions. Figure 
13 shows the wave forms of the two modes. . 

TS DRAIN VOLTAGE LfLJ 
TS DRAIN-SOURCE A _ 

CURRENT --/ L--....../" 
(0) 

At full load, the incomplete energy transfer mode ex­
hibits a lower peak switching transistor current, while 
the complete mode at lower power assures a smaller 
core. The inductance required to achieve this is 6.5 mH 
for the switch winding. The core used was an 
RM6CA400-3B7. The number of turns required to 
achieve this inductance is 130 and for a 20-60V line 
voltage, 50 turns are required for a + 5V output, hence 
use 50 turns for the - 5V too. The self bias winding uses 
70 turns. The transformer was wound with 130 turns of 
34A WG, followed by 50 bifilar turns of 32A WG and 
finished off with 70 turns of 32A WG. The dot scheme 
in Figure 10 should be adhered to. The bobbin is then 
immersed in varnish such as the Dolph's BC356 to dis­
pel any moisture and to provide a protective coating. 
Alternatively, a commercially available DC to DC con­
verter transformer such as the 326-0533 can be pur­
chased from AlE Magnetics. 

At start up, the converter is powered by the linear regu­
lator OS, RI and TI, which sets the power supply at 
5.3V. After start up the self bias winding forces the 
voltage on C4 to be between 7 and 15 volts, which will 
back bias diode 06, thus turning off the linear regula­
tor. Under this condition the power supply provides a 
selfbias voltage to keep it running, while little power is 

270209-14 

Figure 13. (a) Current Voltage Waveforms for Complete Energy Transfer 
(b) Waveforms for Incomplete Energy Transfer 

. 5-11 



inter AP-282 

GATE VOLTAGE 

DRAIN VOLTAGE 

5V SECONDARY 
CURRENT 
100 MAIDV 

GATE VOLTAGE 

DRAIN VOLTAGE 

5VPRIMARY 
CURRENT 
50 MAlOY 

270209-15 

270209-16 

Figure 14. Converter Oscillograms 

dissipated in the start up regulator. Transistor TI is se­
lected so that the base-collector can sustain the high 
voltage stress when it is off. The - 5V supply will only 
be regulated if the load on that winding is the same as 
that on the + 5V winding. If this is not possible, it may 
be necessary to use a linear post regulator to obtain a 
regulated - 5V supply. 

Figure 14 shows the volt-current oscillograms for a 30V 
line voltage and 400 mW output power. This shows the 
flyback converter working in the incomplete energy 
transfer mode. The results obtained in the lab gave fin 
overall efficiency of better than 67% and a power sup­
ply ripple of less than 25 m V. The no load power con­
sumption was less than 50 mW. Regulation of the out-
put voltage was better than 150 mY. . 

The design ~as wire wrapped to illustrate the concept 
of power extraction and can of course, be optimized for 
better performance. Special care should be paid to the 
layout; Figure 15 shows good layout principles. Use 
star ground connections to avoid current loops in the 
ground. 

All lead lengths going to the switching MOSFET 
should be minimized and in particular the gate lead. 
The resistor in series with the MOSFET should be 

5-12 

placed as close to the gate lead as possible. These pre­
cautions will avoid undesired oscillations in the MOS­
FET. The output stage uses Schottky diode and low 
ESR capacitors to reduce. power dissipation. In th~ 
event of any undesired EMI radiation the transformer 
can be placed in an electromagnetic container and the 
converter can.be enclosed in a copper container. 

/ 
MAGNETIC rlELDS 
DUE TO FORWARD 
AND RETURN 
CURRENTS CANCEL 

Ilf 

270209-17 

Figure 15. Good Layout Principles 



intJ AP-282 

POWER FAILURE CONSIDERATIONS 

Without power the line interface pins of the 29C53 ap­
pear as diode drops across the line. This means that the 
transmitter of the Network Terminator and the pow­
ered on terminals in a multidrop configuration will be 
terminated by a diode instead of the usual 50n. In the 
event of a failure, it therefore becomes necessary to iso­
late the offending terminal from the line. This can be 
done by providing a switch in the transmit path that is 
normally closed and opens when no power is applied. 

LX+I-----..... 

TRANSMIT 

2.9C53 E 
LX- 1-____ -6' 

LR+ t--.JVV\r--.... 

LR-I--~~=::.....r 

270209-18 

Figure 16. Isolation of Equipment In 
Case of Power Failure 

In the receive path, it is only necessary to increase the 
impedance seen by the line. One way to implement this 
principle is to use a MOSFET bilateral switch in the 
transmit path and to place series resistors in the receive 
path, such that the impedance seen by the line is greater 
than 25oon. Figure 16 illustrates this approach. A 
noteworthy point is that the series resistors in the re­
ceive path not only provide terminal isolation in case of 
failure but also protect the terminal from current 
surges. 

5-13 

When there is power, the two MOSFETS will be on 
and appear as a small on resistance, which has to be 
included in the line transformer design analysis. When 
there is no power, the MOSFETS appear as back to 
back diodes, thus stopping any AC flow. The VN0300 
MOSFETS manufactured by Siliconix may be used, 
when on they present a 1.2n resistance each. Note that 
in order to ensure that the MOSFETS conduct it is 
necessary to have a IOV supply in the system. If this is 
not possible the MOSFETS can be replaced by a Reed 
relay which presents a lower on resistance and capaci­
tance but has the disadvantage of consuming more 
power. A low power relay could not be located hence a 
vendor was requested to customize one. Figure 17 
shows the isolation technique using the Wabash 
1992-2-1 25 mW relay which will operate at 3.8V and 
release at 0.5V. 

LX+ 1-------... 

I 

C I 

~ 
2.9C53 5V 

II i 
LX-

I 

LR+ 

c 
LR-I------

270209-19 

Figure 17. Power Failure Isolation 



intJ AP-282 

CONCLUSION 

Specific implementations have been provided for the 
general aspects of line interfacing at both the line card 
and the terminal end. These solutions can be taken as 
they are and placed in the particular application or 
used to aid a system design. 

The fixed voltage or constant current feed are both sim­
pler and more economical to realize in discrete form; 
however the constant current variable voltage scheme 
may be more suitable in an integrated form. The power 
converter discussed was based on a low cost simple im­
plementation and it is certainly possible to optimize it 
to obtain conversion efficiencies in the 75% range. As 
an alternative to discrete implementations, a low power 
switch mode power supply is commercially available 
from Fairchild and Motorola, to name two. 

The protection circuits and the transformer, however, 
can only be provided in discrete form at the present 
time. The concepts presented in the protection section 
emphasized low capacitance and maximum protection. 
The section took an overkill approach and as ,such a 
subset of the discussed ideas should suffice most appli­
cations. The transformer designed pointed out the rele­
vant parameters to consider and can be used as it is or 
modified to the particular application. Of course the 
ISDN transformer is also commercially available. 

REFERENCES 
1. Protecting against surge voltages in short and long 

branch circuits. By Shamiwaz M. Khan, Communi­
cations Systems Equipment Design, December 1984 

2. Transformers for electronic circuits. By Nathan R. 
Grossner, McGraw Hill 

'3. Design of solid state power supplies. By Eugene R. 
Hnatek, Von Nostrand Reinhold Company 

5-14 



APPLICATION 
BRIEF 

AP-400 

September 1989 

ISDN Applications with 
29C53 and 80188 

HERBERT WEBER 
TELECOM OPERATIONS 

5-15 
Order Number: 270247-004 



intJ AB-400 

TERMINAL ADAPTOR (TA) 

A terminal adaptor, or "TA", is the link between exist­
ing non-ISDN equipment like terminals; facsimile, 
printers and the ISDN network. The function of this 
application is to effectively replace equipment such as a 
modem. Usually provided as a separate box, it process­
es RS232 or X.21 data and places it on the 4 wire'S' 
loop. No change at the terminal is 'required to make it 
ISDN compatible. 

The design is based on a 29C53 transceiver for the 
ISDN connection and an 80188 microprocessor in com­
bination with an 82530 communications controller for 
the data connection. Benefits of the application are: 

• Data rates up to 19.2 Kb/s using an RS232 interface 
or up to 48 Kb/s using an X.21 interface. 

• Compact design and low cost. 
• Virtually error free transmission. 

Link Setup 

The user sets up a call in the same manner as a Hayes' 
modem user does, i.e. a command is transferred to the 
adaptor via the RS232 interface. The command takes 
the form of an ASCII string in which the first 2 charac­
ters are "AT". 

The 80188 accepts the command and begins the call 
setup procedure by communicating the call's destina­
tion to the NT (or CO). This is achieved by passing call 
setup messages to a link level protocol, which is passed 
to the NT over the physical level (S bus). The partition­
ing of the tasks is as follows: 

82530 

Full duplex, dual channel serial communications con­
troller capable of working in asynchronous, bit or byte 
synchronous modes. The 82530 receives commands 
from the terminal's RS232 or X.21 interface and passes 
them on to the 80188. 

80188 

After having received the dialing information from the 
keyboard, the 80188 sets up the call via the 29C53 D­
channel by sending the appropriate CCITT message up 
the link. 

• Call setup message generation (CCITT 1.451). 

'Hayes is a registered trademark of Hayes Microcomputer 
Products. Inc. 

• Upper portion of link access procedure (CCITT 
1.440) handling: 

- Multiple logic channels 

- Sequence control 

- Error correction (retransmission) 
, -, Flow control 

EPLD 

• Interface conversion, serial to/from SLD 

• B-channel assignment 

29C53 

• Physicallevei interface (CCITT 1.430) , 

• Lower portion of the link access procedure: 
- Zero insertion/deletion 

- CRC generation and checking 

- Flag appending and detection 

• D-channel message buffering 

The 80188 passes the information for the D-channel 
. messages via the parallel bus into the FIFO's of the 
29C53. 

5-16 

The NT grants a B-channel (if available) to the TA and 
the channel is now ready for data transfer. 

Data Transfer 

An indication is given to the user's terminal via the 
RS232 or X.21 port that communication may com­
mence. Any subsequent data, from the terminal, is 
treated as follows: 

Data from the terminal passes via the 82530 to RAM 
via one of the 80188 DMA channels. 

The 80188 fetches the data from RAM, depacketizes 
and packetizes it before sending it back to the 82530 
where a protective HDLC protocol is added. 

From the 82530 the data reaches the EPLD to be in­
serted into the Bl or B2 channel on the SLD bus. The 
29C53 sends it out over the "S" interface . 



intJ 

RS 232C ~ 

200 blt/s :nJ. 300 - 19 

o 

X 
600 - 48 

R 

.21 
000 blt/s 

AB-400 

SLD 29C53 
P3/4 AID 

.II .. 

~ CHANNEL 
SELECT 

HDLC r-

82530 
SEL 

.... ~ , 
D/C .... ~ .. ~ a-

... ,. ... ,. 
AID AID 

EPROM RAM 

Figure 1. Terminal Adaptor 

5-17 

I c:::: 
4W 'S' Interface 

CS I~ 

INT1 

PCSI 

INTO 

PCSS 
iAPX188 

.... .. AID 

UCS 

LCS 

270247-1 



intJ AB-400 

ISDN PHONE WITH BUILT IN TERMINAL ADAPTOR (TA) 

Figure 2 shows the concept of an ISDN phone with 
hookup to standard sync/async terminals. No change 
at the terminal is required to make it ISDN compatible. 

The design is based on a 29C53 transceiver for the 
. ISDN connection, a 29C48 combo for the voice connec­
tion and an 80188 microprocessor in combination with 
an 82530 communications controller for the data con­
nection. Benefits of the application are: 

• Data rates up to 19.2 kb/s using an RS232 interface 
or up to 48 kb(s using an X.21 interface. 

• Compact design and low cost. 
• Virtually error free transmission. 

Link Setup 

Applies both for speech and data links. The 80188 ac­
cepts the command and begins the call setup procedure 
by communicatirig the call's destination to the NT (or 
CO). This is achieved by passing call setup messages to 
a link level protocol, which is passed to the NT oyer the 
physical level (S-bus). The partitioning of the tasks is as 
follows: 

8279 

The 8279 keyboard and display controller scans the tel­
ephone number pad and supports a small telephone dis­
play. Calls are initiated either through the terminal 
keyboard using an extended Hayes Smart Modem com­
mand set or via the telephone number pad. 

82530 

Full duplex, dual channel serial communications con­
troller capable of working in asynchronous, bit or byte 
synchronous modes. The 82530 receives commands 
from the terminal's RS232 or X.21 interface and passes 
them on to the 80188. 

80188 

After having received the dialing information from ei­
ther keyboard, the 80188 sets up the call via the 29C53 
D-channel by sending the appropriate message up the 
link. . 

• Call setup message generation (CCITT 1.451) 

• Upper portion of link access procedure (CCITT 
1.440) handling: 

- Multiple logic channels 

- Sequence control 

- Error correction (retransmission) 

- Flow control 

EPLD 

• Interface conversion, serial.to/from SLD 

• B-channel assignment 

29C53 

• Physical level interface (CCITT 1.430) 

• Lower portion of the link access procedure: 
- Zero insertion/deletion 

- CRC generation and checking 

- Flag appending and detection 

• D-channel message buffering 

The 80188 passes the information for the D-channel 
messages via the parallel bus into the FIFO's of the 
29C53. 

The NT grants a B-channel (if available) to the TA and 
the channel is now ready for data transfer. 

Information Transfer 

VOICE 

The voice transfer is supported by the 29C48 which 
transmits the voice on either the Bl or B2 channel 
(controlled by the EPLD) into the 29C53 and onward 
to the S-bus. 

DATA 

5-18 

An indication is given to the user's terminal via the 
RS232 or X.21 port that communication may com­
mence. Any subsequent data, from the terminal, is 
treated as follows: 

Data from the terminal passes via the 82530 to RAM 
via one of the 80188 DMA channels. 

The 80188 fetches the data from RAM, depacketizes 
and packetizes it before sending it back to the 82530 
where a protective HDLC protocol is added. 

From the 82530, the data reaches the EPLD to be in­
serted into the Bl or B2 channel on the SLD bus. The 
29C53 sends it out over the "S" interface. 



intJ AB-400 

OJ- :! c::: 
29C48 29C53 SLD SLD 4W ·S· Interface 

"" :! c::: ... 81/82 P3/4 AID CS 

.. .. 

~ CHANNEL INn 
SELECT 

PCSI 

RS 232 C ~ HDLC f-
INTO 

300 - 19200 blt/s :rJ.I. 82530 IAPX188 
SEL 

PCSS 
OR .... "l ~ .. 

D/C ... .. !I> .. .. ... AID 
X.21 " II' 600 - 48000 bit/s UCS 

LCS 

PCS4 

INT3 

"l ,. "l ~ "l , I 
AID AID AID CS INT 

OUT ........ DISPLAY 
EPROM RAM 8279 

RL .-.. KEY80ARD 

270247-2 

Figure 2. ISDN Phone With Built In Terminal Adaptor 

5-19 



inter AB-400 

PERSONAL COMPUTER INTERFACE 
Like the terminal adaptor, the ISDN PC adaptor 
provides a link to the ISDN network. The ISDN Co­
Processor shown in Figure 3 implements the hardware 
functions required to support the CCITT I-series "S" 
interface. 

The ISDN Co-Processor is using the 80188 microproc­
essor in combination with an 82530 serial communica­
tions controller for data processing, dual port RAM as' 
interface and buffer to the host bus, the 29C48 Codec/ 
filter for voice support and the 29C53 transceiver for 
the ISDN connection. 

The ISP188 ISDN Software Package is optimized for 
this hardware configuration. 

Co-Processor 
The PC adaptor is an intelligent communications sub­
system designed to function as a slave processor board 
in the PC. This relieves the host processor of much of 
the communications function. 

82530 

Full duplex, dual channel serial communications con­
troller. One of the two channels is attached to either of 
the B channels and operates at 64 kb/s. The s~ond 
channel is available to external datacom equipment via 
an optional serial port, or for connection to the second 
B channel. 

DUAL PORT RAM 80188 

29C48 

Voice conversion and interface to the four wire handset 
is performed by this software programmable integrated 
Codec/filter combo. Designed for ISDN terminal ap­
plications it offers programmable gain in transmit and 
receive direction for user loudness control and adapta­
tion to local network requirements as well as sidetone 
insertion and tone injection for locally produced feed­
back signals. 

The 29C48 can access either Bl or B2 channel by set­
ting the B Sel pin accordingly. 

29C53 

"S" bus transceiver and D channel controller in a single 
chip. The 29C53 provides the physical level interface to 
the "S" bus in accordance to CCITT 1.430 and the 
lower portion of the link access protocol. Activation, 
deactivation, zero insertion/deletion, CRC generation 
and checking and flag appending and detection are per­
formed by the 29C53, the higher level portions of 
LABD are executed on the 80188 and passed on to the 
29C53 via the parallel bus into the FI'FO's. 

B channel access is via the SLD serial port. Voice sig­
nals are directly passed on to the 29C48. Data is 
extracted and injected by the EPLD (Erasable, Pro­
grammable Logic Device) which performs the B chan­
nel assignment and the interface conversion to the 
82530. 

RAM 

ROM 

270247-4 

Figure 3. Personal Computer Interface 

5-20 



intJ AB·400 

FULL FEATURE ISDN LINE CARD 

: I PCt.!1 
4W 'S' Interface 29C53 TOt.! BACKPLANE : I PCt.!2 

LINE CARD 
CONTROLLER 

CONTROL/ HOLC 
.......... SIGNALING CS INT : I SLO 

4W 'S' Interface 29C53 
: I 7 

PACKET NETWORK 

PCS4 

~=~~~~~t~JINT3 ucs 
LCS 

PCSO.1 

PSC2.3 

270247-3 

Figure 4. Full Feature ISDN Line Card 

The addition ofISDN line cards to a PABX provides 
the user with access to the ISDN network. While the 
analog line card provides access for standard telephone 
as well as for modems, ISDN terminal adaptors, termi­
nals and phones are connected to the ISDN line card 
via a 4 wire 'S' loop. The described application provides 
all functions to separate voice and switched data (B­
channels) from signaling and packetized data (D-chan­
nel). 

The 29C53 and 80188 together handle the processing of 
D-channel protocols and messages as follows: 

1. The 29C53 executes all bit level HDLC processing, 
puts the "raw" messages into its FIFO and raises the 
interrupt signal. 

2. A special status register in the 29C53s allows the 
80188, through a single status read operation, to de­
termine which of the 29C53s is requiring interrupt 
servicing, i.e. has D-channel messages(s) in its FIFO. 

3. The 80188 accesses the FIFO concerned and the 
data is transferred to RAM. 

5-21 

4. The 80188 determines whether the data is for signal­
ing (S-packet) or is a message to be sent out over the 
packet (P-packet) switched network. 

Signaling information can be processed locally or 
sent via the Iinecard controller. 

If the data is of "P" type, meant for the packet 
switched network, it is DMA'd into the 82530 serial 
communications controller which performs the nec­
essary HDLC transmission, again without any CPU 
involvement. 

5. The 80188 software is responsible for sending out 
acknowledgements for received messages from the 
29C53's D-channel and can thus support large win-
dow sizes. . 

B-channel information is directly passed from the "S" 
loop over the 29C53 and line card controller to the 
switch backplane. 

For transmission in the opposite direction, the proce­
dure is equivalent to the one described above. 



inter AB·400 

OTHER AVAILABLE TELECOM LITERATURE 

Title 

29C53AA Reference Manual 

29C53 Line Card Evaluation Kit 
(LEK) Manual 

29C53 Terminal Evaluation Kit 
(TEK) Manual 

5-22 

Order Number 

296399-001 



PCM Codec /Filter 
and Combo 

6 





APPLICATIONS INFORMATION 
. 2910A/2911A/2912A 

CODECINTERFACE 
The 2912A PCM Filter is designed to directly inter­
face to the 2910A and 2911 A Codecs as shown be­
low. The transmit path is completed by connecting 
the VFxO output of the 2912A to the coupling ca­
pacitor associated with the VFx input of the 2910A 
and 2911 A codecs. The receive path is completed 
by directly connecting the codec output VFR to re­
ceive input of the 2912A VFRI. The PDN input of the 
2912A should be connected to the PDN output of 
the codec to allow the filter to be put in the power­
down standby mode under control of the co dec. 

CLOCK INTERFACE 
To assure proper operation, the ClK input of the 
2912A should be connected to the same clock pro­
vided to receive bit clock, ClKR of 2910A or 2911 A 
Codec as shown below. The ClKO input of the 
2912A should be set to the proper voltage depend­
ing on the standard clock frequency chosen for the 
codec and filter. 

2910A DIGITAL 
SIG. -------------------------, ~ 

SIGR -------------------, r-----+-VOD POWER SUPPLY 

LINE 

~ 

ANALOG INPUT AND j 
GAIN ADJUSTMENT 

OUTPUT TO 
ELECTRONIC HYBRIDS 

POWER AMPLIFIER INPUT 

POWER AMPLIFIER OUTPUT { 
TO TRANSFORMER HYBRIDS 

GRDA GRDD 

~ -:!-: 

} 
CONTROL INPUTS 
FROM SYSTEM 

PCM FRAME SYNCH 
AND BIT CLOCKS 

.-+-----' ~-:::-::_+--+_INPUT FROM PCM HIGHWAY 

~:::DJ:=-~ES 
'-----------------------'=--_ v •• 

V-GRDA 11) DECOUPllNG CAPACITORS 

270219-1 

Figure 1. A Typical 2910A Co dec and 2912A Filter Configuration 

6-1 
October 1986 

Order Number: 270219-001 



inter 2910A/2911A/2912A 

GROUNDING, DECOUPLING, AND 
LAYOUT RECOMMENDATIONS 

The most important steps in 'designing a low noise 
line card are to insure that the layout of the circuit 
components and traces results in a minimum of 
cross coupling between analog and digital signals, 
and to provide well bypassed and clean power sup­
plies, solid ground planes, and minimal lead lengths 
between components. 

1) All power source leads should be bypassed to 
ground on each printed circuit board (PCB), on 
which codecs are provided. At least one electro­
lytic bypass capacitor (at least 50 I-lF) per board 
is recommended at the point where all power 
traces from the codecs and filters join prior to 
interfacing with the edge connector pins as­
signed to the power leads. 

2) When using two-sided PCBs, use both corre­
sponding pins on opposite sides of the board for 
the same power lead. Strap them together both 
on the PCB and on the back of the edge con­
nector. 

3) Layout the traces on codec- and filter-equipped 
boards such that analog signal and capacitor 
leads are separated as widely as possible from 
the digital clock and data leads. 

4) Connect the codec sample and hold capacitor 
with. the shortest leads possible. Mount it as 
close to the codec CAP1 X, CAP2X pins as pos­
sible. Shield the capacitor traces with analog 
ground. 

5) Do not layout any board traces (especially digi­
tal) that pass between or near the leads of the 
sample and hold capacitor(s) since they are in 
high impedance circuits which are sensitive to 
noise coupling. 

6) Keep analog voice circuit leads paired on their 
layouts so that no intervening circuit leads are 
permitted to run parallel to them and/or be­
tween them. 

7) Arrange the layout for each duplicated line; trunk 
or channel circuit in identical form. 

8) Line circuits mounted extremely close to adja­
cent line circuits increase the possibility of inter­
channel crosstalk. 

9) Avoid assignment of edge connector pins to any 
analog signal adjacent to any lead carrying digi­
tal (periodic) Signals or power. 

6-2 

10) The optimum grounding configuration is to main­
tain separate digital and analog grounds on the 
circuit boards, and to carry these grounds back 
to the power supply with a low impedance con­
nection. This keeps the grounds separate over 
the entire system except at the power supply. 

11) The voltage difference between ground leads 
GRDA and GRDD (analog and digital ground) 
should not exceed two volts.' One method of 
preventing any substantial voltage difference be­
tween leads GRDA and GRDD is to connect two 
diodes back to back in opposite directions 
across these two ground leads on each board. 

12) Codec-filter pairs should be aligned so that pins 
9 through 16 of the filter face pins 1 through 12 
of the codec. This minimizes the distance for an­
alog connections between devices and with no 
crossing analog lines. 

13) No digital or high voltage level (such as ringing 
supply) lines should run under or in parallel with 
these analog VF connections. If the analog lines 
are on the top (component side) of the PC 
board, then GRDD, GRDA, or power supply 
leads should be directly under them, on the bot­
tom to prevent analog/digital coupling. 

14) Both the codec and filter devices should be 
shielded from traces on the bottom of the PCB 
by using ground or power supply leads on the 
top side directly under the device (like a ground 
plane). 

15) Two +5V power supply leads (Vecl should be 
used on each PCB, one to the filters, the other 
to the codecs. These leads should be separately 
decoupled at the PCB where they then join to a 
single 5V supply at the backplane connector. 
Decoupling can be accomplished with either a 
series resistor/parallel capacitor (RC lowpass) 
or a series RF choke and parallel capacitor of 
each 5V lead. The capacitor should be at least 
10 p,F in parallel with a 0.1 p,F ceramic. This 
filters both high and low frequencies and accom­
modates large current spikes due to switching. 

16) Both grounds and power supply leads must have 
low resistance and inductance. This should be 
accomplished by using a ground plane whenev­
er possible. When narrower traces must be 
used, a minimum width of 4 millimeters should 
be maintained. Either multiple or extra large plat­
ed through holes should be used when passing 

. the ground connections through the PCB. 



intJ 2910A/2911A/2912A 

17) The 2912A PCM filter should have all power 
supplies bypassed to analog ground (GRDA). 
The 291 OAl2911 A Codec + 5V power supplies 
should be bypassed to the digital ground 
(GRDD). This is appropriate when separate 
+ 5V power supply leads are used as suggested 
in item 15. The - 5V and + 12V supplies should 
be bypassed to analog ground (GRDA). Bypass 
capacitors at each device should be high fre­
quency capacitors of approximately 0.1 to 1.0 
/iF value. Their lead lengths should be mini­
mized by routing the capacitor leads to the ap­
propriate ground plane under the device (either 
GRDA or GRDD). 

ZERO TRANSMISSION LEVEL POINTS 

2910A/2912A 0 dBmO 

TRANSMIT 
FILTER ENCODER DECODER 

2.85 d8m 
1.08 Vlms 

5.B5 dBm 
t.52Vrms 

2911A12912A 0 dBmO 

2.88 dSm 
1.08 Vrms 

TRANSMIT 
FILTER 

5.88 dBm 
1.S2Vrms 

ENCODER 

DIGITAL 
MILLIWATT 
CODES 
(OR EQUIV.) 

rnGITAL 
MILLIWATT 
CODES 
(OR EQUIV.) 

DECODER 

6-3 

18) Relay operation, ring voltage application, inter­
ruptions, and loop current surges can produce 
enormous transients. Leads carrying such sig­
nals must be routed well away from both analog 
and digital circuits on the line card and in back­
planes. Lead pairs carrying current surges 
should be routed closely together to minimize 
possible inductive coupling. The microcomputer 
clock lead is particularly vulnerable, and should 
be buffered. Care should also be used in the 
backplane layout to prevent pickup surges. Any 
other latching components (relay buffers, etc.) 
should also be protected from surges. 

19) When not used, the AUTO pin should float with 
minimum PC board track area. 

5.63 dBm 
1.48 Vrma 

5.66 dBm 
1.49Vrms 

RECEIVE 
FILTER 

RECEIVE 
ALTER 

5.85 dSm 
1.52 VIrna 

5.88 dBm 
1.52 V,ms 

POWER 
AMPLIFIERS 

SINGLE ENDED, 600 n 
5.85 dBm 
1.S2Vrms 
BALANCED, 600 n 
11.9 dam 
3.04Vrms 

POWER 
AMPLIFIERS 

270219-2 

SINGLE ENDED, 600n 
5.88 dBm 
1.52Vrms 
BALANCED, 600 n 
11.9dBm 
3.05 Vlma 

270219-3 



APPLICATION 
NOTE 

AP-142 

November 1986 

Designing Second-Generation 
Digital Telephony Systems 

Using the Intel 2913/14 
Codec/Filter Combochip 

ROBERT E. HOLM 
. TELECOM TECHNICAL SUPPORT 

JOHN HUGGINS 
TELECOM DESIGN ENGINEERING 

6-4 
Order Number: 210314-002 



AP-142 

Note: See data sheet· for latest specifications. Values given in this application 
note are for reference only, and were considered correct at the time of publi­
cation (Feb. 1982). 

1.0 INTRODUCTION 

This application note describes the features and capa­
bilities of the 2913 and 2914 codec/filter combochips, 
and relates these capabilities to the design and manu­
facturing of transmission and switching linecards. 

1.1 Background 

The first generation of per line codecs (Intel 
29IOA/IIA) and filters (Intel 2912A) economically in­
tegrated the analog-digital conversion circuits and 
PCM formatting circuits into one chip and the filtering 
and gain setting circuits into another chip. These two 
chips helped to make possible the rapid conversion to 
digital switching systems that has taken place in the last 
few years. 

The second generation of Intel LSI PCM telephony 
components, the 2913/14 Combochip, extends the level 
of integration of the linecard by combining the codec 
and filter functions for each line on a single LSI chip. 
In the process of combining both functions, circuit de­
sign improvements have also improved performance, 
reduced external component count, lowered power dis­
sipation, increased reliability, added new features, and 
maintained architectural transparency. 

The 2913 and 2914 data sheet contains a complete de­
s~ription of both parts, including detailed discussions of 

each feature and specifications for timing and perform­
ance levels. This application note, in conjunction with 
the data sheet, describes in more detail how the new 
and improved features help in the design of second-gen­
eration linecards first by comparing the two generations 
of components to see where the improvements have 
been made, and then by discussing specific design con­
siderations. 

1.2 Comparison of First- and Second­
Generation Component 
Capabilities 

The combochip represents a higher level of component 
integration than the devices it replaces and, because of 
the economics of LSI (replacing two chips with one), 
ultimately will cost significantly less at the component 
level. But comparison of the combochip block diagram 
with first-generation single-chip codec and filter reveals 
few major functional differences. Figure 1 compares the 
first-generation codec and filter chips to the combo­
chip. Both provide rigidly specified PCM capabilities of 
voice signal bandlimiting and nonlinear companded 
A/D and D/ A conversion. The first on-chip reference 
voltage was introduced in the 2910/2911 single-chip 
codecs and is included in the combochip. The provision 
of uncommitted buffer amplifiers for flexible transmis­
sidn level adjustment and enhanced analog output drive 
was a feature of the now standard 2912 switched-capac­
itor PCM filter is available on the combochip. Like-

PCM BANDPASS ENCODE S/H 
"ORA-LAW 
ENCODING 

TIMESLOT 
CONTROL 

ciw 
OZ 
... 0 
oC" ZOo 
oCw 
00: ...... 
I 
I 

TRANSFORMER TRANSMISSION PCM 
DRIVER LEVEL CONTROL LOWPASS 

SINGLE'CHIP PCM FILTER SINGLE-CHIP PCM CODEC 

COMBO CHIP 
~---------------------------------------------

Figure 1. LSI Partitioning of Codec/Filter Functions 

6-5 

210314-1 



inter AP-142 

wise, independent transmit (AID) and receive (D/ A) 
analog voice channels which permit the two channels to 
be timed from independent (asynchronous) clock sourc­
es is common to the first- and second-generation devic­
es. Finally, the ability to multiplex signalling bits on a 

. bit-stealing .basis from th~ digital side of the device has 
been duplicated on the combochip. 

Data traffic-conscious systems manufacturers now pro­
vide dedicated codec, filter, and subscriber interface 
functions on a per-subscriber basis, which in turn puts 
intense cost pressures on these functions. The function­
al duplication of first-generation components addresses 
the needs of the system manufacturer who wants to 
cost reduce existing fixed-architecture system designs. 
Whereas the bulk of the system development costs (and 
time) are in the switching machine call processing and 

diagnostic software, the bulk of the production costs 
are in the high-volUlne linecards. The combochip ad­
dresses these cost pressures and defers the appetite for 
new integrated functions to a future generation of PCM 
components . 

Figure 2 contains the block diagram of the 2913/14 
combochip which illustrates not only the basic com­
panding and filtering functions but also some of the 
changes and new features contained in the second-gen­
eration devices, such as internal auto zero, separate 
ADC and DAC for transmit and receive sections, re­
spectively, precision gain setting (ReV section), and in­
put/output registers for both fixed and variable data 
rates. Table 1 lists many of the features that are impor­
tant to Iinecard design and performance. A direct com­
parison between first-and second-generation products 

Table 1_ Comparison between 2913/14 Combochlp and the 
2910A/11A/12A Single-Chip Codecs and Filters 

Features 2910A/11A plus 2912A 2913114 
Power Operating 280-310mW 140mW 

Standby 33mW 5mW 

Pins 38-40 20-24 

Board Area Including Interconnects Normalized = 1.0 0.33 

Data Rates. -Fixed 1.536, 1.544, 2.048 Mbps Same 

-Variable None 64 Kbps -+ 2.048 Mbps 

Compal]ding Law -p.-Law 2910 + 2912 Strap Selectable 

-A-Law 2911 + 2912 

PSRR 1 KHz 30dB >35dB 

> 10 KHz NotSpec'd > 35dB 

Gain Setting Trim Using Pot Necessary . Precision Resistors 
Eliminate Trim Req. 

Operating Modes Direct Yes Yes 

Timeslot Assign Yes No 

On-Chip VREF Yes Yes 

ICN - Half Channel Improvement 15 dBrncO Transmit 15 dBrncO Transmit 
11 dBrncO Receive 11 dBrncO Receive 

SID - Half Channel Improvement See Data Sheet See Section 2.0 

GT - Half Channel Improvement See Data Sheet See Section 2.0 

Power Down (Standby) PDN Pin Frame Sync Removal or PDN Pin 

Signalling 2910-8th Bit 2914-8th Bit 

Auto Zero External Internal 

S&HCaps External Transmit Internal 
Internal Receive 

Test Modes None Design Tests 
- Manufacturing Test 

On-Line Operational Tests 

Encoder Implementation Resistive Ladder Capacitive Charge Redistribution 
Ladder 

Filter/Gain Trim Fuse Blowing ± 0.2 dB Fuse Blowing ± 0.04 dB 

6-6 



intJ 

VFxl+ 

YFxl -

XUIT 
SECTION 

SAMPLE 
AND HOLD 
AND OAe 

AP·142 

AUTO 
ZERO 

COMPARATOR 
SUCCESSIVE 

APPROXIMATION 
REGISTER 

OUTPUT 
REGISTER 

D, 

lSx/CClKX 

SIG.IASEL 

as'_I-;:=~ 

as. 

RCV 
SECTION 

PWAO+ _-+-,.--, 

PWAO- _-+--+ __ -' 

Vee 
PWRO +, PWRO-
GSR 
PDN 
CLKSEL 

LOOP 
SIGR 
DCLKR 
DR 
FSR 

GRDD 
Vee 

ANAloa 
TO 

DIGITAL 
CONTROL 

LOGIC 

1--------..... ---4--FS, 

t------------i_-CLKx 

Yee VIII QRDO GRDA 

(a) Combochip Block Diagram 

Power (-5V) GSx 
Power Amplifier Outputs VFxl-, VFxl + 
Receive Gain Control GRDA 
Power Down Select NC 
Master Clock Frequency SIGx 
Select 
Analog Loop Back ASEL 
Receive Signaling Bit Output TSx 
Receive Variable Data Clock DCLKx 
Receive PCM Input Dx 
Receive Frame FSx 
Synchronization Clock 
Digital Ground CLKx 
Power (+5V) CLKR 

(b) Combochip Pin Names 

ClKSEL 

PIm 
LOOP 

D. 

'-----1--510fl; 

210314-2 

Transmit Gain Control 
Analog Inputs' 
Analog Ground 
No Connect 
Transmit Signaling Input 

IL- or A-law Select 
Timeslot Strobe/Buffer Enable 
Transmit Variable Data Clock 
Transmit PCM Output 
Transmit Frame 
Synchronization Clock 
Transmit Master Clock 
Receive Master Clock 

Figure 2. Block Diagram of 2913/14 Combochip 

6-7 



intJ Ap·142 

shows the significant improvement in the combochip 
both in performance levels and system flexibility. 

2.0 DESIGN CONSIDERATIONS 

The key point with the 2913/14 is that it will result in a 
linecard that performs better and costs less than any 
two-chip codec/filter solution. The lower cost results 
from many factors, as seen in Table 2. Both direct re­
placement costs and less tangible design and manufac­
turing time savings combine to yield lower recurring 
and nonrecurring costs. As an example, the wider mar­
gins to transmission specs and the higher power supply 
rejection ratios of the 2913/14 will both shorten the 
design time needed to build and test the linecard proto­
type and reduce the reject rate on the manufacturing 
line. . 

Table 2. 2913/14 Factors which Lower the Cost 
of Linecard Design and Manufacturing 

• Lower LSI Cost (2914 vs. 2910/11 + 
2912) 

• Fewer External Components 

• Less Board Area 
• Shorter DesignlPrototype Cycle 

• Better Yields/Higher Reliability 

• Lower Power/Higher Density 

Part of the recurring cost of linecard production is the 
efficiency of the manufacturing line in turning out each 
board. This is measured in both parts cost and time. 
Average manufacturing time is strongly effected by the 
line yield, i.e., the reject rate reliability. A linecard us­
ing the 2913/14 has many labor-saving features, which 
also increases the reliability -of the manufacturing pro­
cess. Some of these features are detailed in Table 3. 

The combination of fewer parameters to trim (gain, ref­
erence voltage, etc.), tolerance to wider power supply 
variations, and on-chip test modes make the linecard 
very manufacturable compared to first-generation de­
signs. 

Probably the most obvious improvement in linecard de­
sign based around the 2913/14 is the reduction in line­
card PCB area needed compared to two-chip designs. 
The combination of the codec and filter into a single 
package alone reduced the LSI area by one-third. Table 
4 shows many of the other ways in which board area is 
conserved. In general, it reduces to fewer components, 
more on-chip features, and layout of the chip resulting 
in-an efficient board layout which neatly separates the 
analog and digital signals both inside the chip and on 
the board. 

6-8 

Table 3. 2914 Factors which Increase Llnecard 
Manufacturing Yields and Efficiency 

• Higher Reliability 
-Fewer connections and components 

-More integrated packaging 

-More margin to specs 

-Lower power 

-NMOS proven process 

-Less sensitive to parameter variations 

• Fewer Manufacturing Steps 
-No gain trimming 

-On chip VREF 

-Wide power supply tolerance 

-On chip test modes 

-Wide margins to spec 

Table 4. Design Factors for 2914 which Reduce 
Linecard PCB Area 

• Integrated Packaging 
-2914 vs. 2910/11 + 2912 

= 1/3 board area 

-2913 takes even less space 

• Fewer Interconnects/Components 
-Codec/filter combined 

-On-chip reference voltage 

-On-chip auto zero 

-On-chip capacitors 

-No gain trim components 

-No voltage regulators 

• Efficient Layout (Facilitates Auto Inser­
tion) 

-Analog/digital sections separated on 
chip 

-Digital traces can cross under chip 

-Two power supplies only 

-Low power/high density 



intJ AP-142 

Table 5 2913/14 Operating Mode Options Add Flexibility to Linecard Design 

Option Mode Control Pins 
Results of Mode Selection 

2914 (24 Pin) I 2913 (20 Pin) 

Companding Law SIGX/ASEL A-Law or /L-Law + Signalling I A-Lawl/L-Law, no Signalling 

Power Down PDN Transmit & Receive Side Go To Standby Power (5 mW) 

FSx & FSR Removed Same (12 mW) 

FSx Removed Transmit Side Goes to Standby (110 mW) 

FSR Removed Receive Side Goes to Standby (70 mW) 

Data Rate = Vee/GRDDlVss 1.536/1.544/2.048 Mbps in Fixed Data Rate Mode 
DCLKR = Vss 

- Vee/GRDDlVss Variable Data Rate Mode from 64 Kbps to 2.048 Mbps, 
DCLKs = Clock No Signalling 

Test Modes LOOP = Vee Implements Analog Loopback I No Loopback Capability 

PDN = Vss Provides Access to Transmit Codec Through ASEL and TSX 
Pins 

DR = Vss Provides Access to RCV Filter Input at DCLKR and Transmit 
Filter Outputs at ASEL and TSX Pins 

Many of the factors discussed-which result in effi­
cient, cost-effective linecard designs-are discussed in 
more detail both in the 2913/14 data sheet and in the 
following sections of this note. 

2.1 Operating and Test Mode 
Selection 

A key to designing with the 2913/14 combo is the wide 
range of options available in configuring, either with 
strap options or in real time, the different modes of 
operation. The 2913 combochip (20 pins) is specifically 
aimed at synchronous switching systems (remote con­
centrators, PABXs, central offices) where small pack­
age size is especially desirable. The 2914 combochip (24 
pins) has additional features which are most suitable for 
applications requiring 8th-bit signalling, asynchronous 
operation, and remote testing of transmission paths 
(e.g., channel banks). Once the specific device is select­
ed, there is a wide range of operating modes to use in 
the card design, as seen in Table 5. This table lists the 
optional parameters and the pins which control the op­
erating mode. The result of selecting a mode is listed for 
both the 2913 and 2914. 

The purpose of offering these options is to ensure that 
the 2913/14 combo will accommodate any existing 
linecard design with architectural transparency. At the 
same time, features were designed in to facilitate design 
and manufacturing testing to reduce overall cost of de­
velopment and production. 

2.2 Data Rate Modes 
Any rapid conversion scenario presumes 'that the com­
bochip will fit existing system architectures (retrofit) 

6-9 

without significant system timing, control, or software 
modifications. To this end, two distinct user-selectable 
timing modes are possible with the combochip. For 
purposes of discussion, these are designated (a) fixed 
data rate timing (FDRT) and (b) variable data rate tim­
ing (VDRT). 

FDRT is identical to the 2910/2911 codec timing in 
which a single high-speed clock serves both as master 
clock for the codec/filter internal conversion/filtering 
functions and as PCM bit clock for the high-speed seri­
al PCM data bus over which the combochip transmits 
and receives its digitized voice code words. In this 
mode, PCM bit rates are necessarily confined to one of 
three distinct frequencies (1.536 MHz, 1.544 MHz, or 
2:048 MHz). Many recently designed systems employ 
this type of timing which is sometimes referred to as 
burst-mode timing because of the low duty cycle of 
each timeslot (i.e., channel) on the time division multi­
plexed PCM bus. It is possible for up to 32 active com­
bochips to share the same serial PCM bus with FDRT. 

VDRT (sometimes referred to as shift register timing), 
by comparison, utilizes one high-speed master clock for 
the combochip internal conversion/filtering functions 
and a separate, variable frequency, clock as the PCM 
bit clock for the serial PCM data bus. Because the serial 
PCM data rate is independent of internal conversion 
timing, there is considerable flexibility in the choice of 
PCM data rate. In this mode the master clock is per­
mitted to be 1.536 MHz, 1.544 MHz, or 2.048 MHz, 
while the bit clock can be any rate between 64 KHz and 
2.048 MHz. In this mode it is possible to have a dedi­
cated serial bus for each combochip or to share a single 
serial PCM bus among as many as 32 active combo­
chips. 



inter AP-142 

Thus, the two predominant timing configurations of 
present system architectures are served by the same de­
vice, allowing, in many cases, linecard redesign without 
modification of any common system hardware or soft­
ware. Additional details relating to the design of sys­
tems using either mode are found in section 3.0. 

2.3 Margin to Performance 
Specifications 

The combochip benefits from design, manufacturing, 
and test experience with first-generation PCM products 
on the part of the system manufacturer, component 
suppliers, and test equipment suppliers. The sub-milli­
volt PCM measurement levels "and tens of microvolts 
accuracy requirements on the lowest signal measure­
ments often result in tester correlation problems, yield 
losses, and excess costs for system and PCM compo­
nent manufacturers alike. Thus additional performance 
margin built into the PCM components themselves will 

Gain Tracking Error Versus Signal Level 
2914 Combo AID 

Sinusoidal Test (CCITT G712.11 Method 2) 

iii 
~ 
a: o 
a: 
ffi .5 

" '" 0 .g 
~ -.5 ... 
~ -1 

-2 

I 
I 

L-- 1 : 

I ;'-,... ~--I---I---I---I I L~~~r 
-55 -50 -410- - ------ --p +3 

1--....1 IdBmO 
1 I 
1 I 
1 I 
I I 

210314-3 

Gain Tracking Error Versus Signal Level 
2914 Combo AID 

White Noise Test (CCITT G712.11 Method 1) 

iii 
~ 1 
a: o 
~ .5 
w 

~ 0 
;< 
~ -.5 

I!: 
'" -1 C 

" 
-2 

I 
1 
1 
I 
-l 1 

'- ____________ J 

INPUT 
1---1---+--. I I LEVEL 

-55 -so -40 0 +3 
r------~-----ldBmO 

1 1 
r~ 

I 
I 
I 

210314-5 

have its effect on line circuit costs even though the sys­
tem transmission specifications may not reflect the im­
proved performance margin. 

Half channel measurements have been made of the 
transmission parameters-gain tracking (GT), signal to 
distortion ratio (SID), and idle chan~el noise (ICN). 

Gain Tracking-Figure 3 shows the gain tracking data 
for both the transmit and receive sides of the combo 
using both sine wave testing (CCITT G712.11 Method 
2) and white noise testing (CCITT G712.11 Method I). 
The data shows a performance very nearly equal to the 
theoreticafiy best achievable using both test techniques. 

. End to end measurements, although not spec'd, also 
show a corresponding good performance with errors 
less than or equal to the sum of the half channel values. 

Signal to Distortion Ratio-:. This is a measure of the 
system linearity and the accuracy in implementing the 
companding codes. Figure 4 shows the excellent perfor-

Gain Tracking Error Versus Signal Level 
2914 Combo DIA 

Sinusoidal Test (CCITT G712.11 Method 2) 

iii 
~ 
a: 1 
o 
a: 
ffi .5 

" '" ;< 
u 
: -.5 ... 
~ -1 

-2 

I 
1 

I 
1 

---I 1 
-----------1 INPUT 

I Ll I' 1 1 1 I 1 LEVEL 
-55 -50 -40--- - - -- - --'0+3 

1--": idBmo 
I I 
1 1 
I 1 

I 

210314-4 

Gain Tracking Error Versus Signal Level 
2914 Combo DIA 

White Noise Test (CCITT G712.11 Method 1) 

iii 
~ 
a: o 
~ .5 
w 

~ 0 

8 .. -.5 
a: ... 
'" -1 

~ 

-2 

L_I 1 

!...-------______ I 
INPUT 

ILEVEL 
-55 -50 -40 0 +3 
,-- - - ----- ----'dBmO 
1 1 

1_-' 

I 
1 

1 

210314-6 

Figure 3. 2914 Half Channel Gain Tracking Performance Measurements 
for Both Sine and Noise Testing 

6-10 



intJ AP-142 

iii .., 
0" 40 

ii 
0: 

li 30 

~ o 
In 20 
;; ... 
;! rO 

-
AID SINEWAVE TEST 

~ O~----+--r~r-'--.-----.-----r~~.-
-45 -40 -35 -30 -25 -15 -5 0 5 

INPUT LEVEL (dBmO) 

210314-7 

iii 
:!. 40 or-ii 
~ 30 AID WHITE NOISE TEST 

~ o 
In 20 / FULL CHANNEL SPEC _ ;; 
;;! 
l) 10 

5 
• ~ 0 
o ~-~'---45'--4-r0-_'3r5-_'30--_'~-----_lT5-----_r5L,0r-'5-

INPUT LEVEL (dBmO) 

210314-9 

iii 
:!. 40 
o 
ii 
0: 
Z 30 o 
;: 
0: 
o 
Ii; 2~ 
;; ... .. rO 

~-
/ ~ DIA SINEWAVE TEST 

-45 -40 -35 -30 -25 -15 -5 

INPUT LEVEL (dBmO) 

210314-8 

fi~~n~ 
/ ""- FULL CHANNEL SPEC 

o 0~-.--.--r--r-'--.-----.-----rL,r-'­o ~ -45 -40 -35 -30 -25 -15 -5 

INPUT LEVEL (dBmO) 

210314-10 

Figure 4. 2914 Half Channel Signal to Distortion Ratio (SID) Performance Measurements 
, for Both Sine and Noise Testing 

mance of the 2914 for both the transmit (AID) and 
receive (DI A) channels using sine wave and noise test­
ing. The margin is greater than 3 dB above the half 
channel spec which means that a larger error budget is 
available to the rest of the channel. 

Statistical Analysis-A statistical analysis of G.T. and 
SID measurements over many devices shows a very 
tight distribution, as seen in Figure 5. There are several 
consequences resulting from this highly desirable distri­
bution: (1) the device performance is controllable, re­
sulting in high yields, (2) the device circuit design is 
tolerant of normal process variations, thereby ensuring 
predictable production yields and high reliability, and 
(3) understanding of the circuit design and process fun­
damentals is clearly demonstrated-largely as a result 
of previous telephony experience with the Intel NMOS 
process. 

Idle Channel Noise-The third transmission parameter 
is idle channel noise (ICN). Figure 6 gives half channel 
ICN measurements which show a substantial margin to 
specification. 

6-11 

Power Supply Rejection-Circuit innovation in the in­
ternal combochip design has resulted in significant im­
provements in power supply rejection in the 5 to 50 
KHz range (Figure 7), and it is this frequency band 
which usually contains the bulk of the switching regula­
tor noise. These higher frequencies, outside the audio 
range as they are, are not objectionable or even detect­
able in the transmit direction except to the extent that 
they alias into the audio range as a result of internal 
sampling processes in the transmit filter and AID con­
verter. Sampling techniques in the combochip minimize 
this aliasing. In the receive direction, excess high fre­
quency noise which propagates onto the subscriber loop 
can interfere with signals in adjacent wires and is thus 
objectionable even without aliasing. The symmetrical 
true differential analog outputs of the combochip are an 
improvement from earlier designs which failed to main­
tain true power supply symmetry through the output 
amplifiers. Not only does the differential design im­
prove transmission performance, but it also reduces the 
need for power supply bypass capacitors, thereby sav­
ing component cost on the Iinecard. 



AP-142 

2 MINIMAX 

m- m- y;: :! I MINIMAX I :!4O 

II: I/c-ENVELOPE I 
0 

1 Ii 0 I I 
II: L _ : INPUT 

II: 

f5 .5 L ________ " LEVEL ~ 30 ATATSPEC. TA.84 
CI I Ii 2914 COMBOCHIP 
z 0 I::::± I II D/A SINEWAVE TEST .. -55 -50 -4q.--- ______ ,0+3 0 

~-.5 
:--- :dB~O ~20 

II: D 

~ -1 
I ' 

... 
~ 

<i , I 5 CI 10 

-2 ~ 
·210314-11 

CI 
iii 0 

-45 -40 -35 -30 -25 -15 -5 0 5 

INPUT LEVEL (dBmO) 

210314-12 

Figure 5. Statistical AnalysIs of Transmission Performance Showing 
Tight. Distribution Over Many Devices 

I 
I 

Weighting ICN 

AID C Message 15 dBrnCO 

D/A C Message 11 dBrnCO 

Figure 6. 2914 Idle Channel Noise (ICN) 
. Measurements 

Autozero-The autozero circuit is contained. complete­
lyon-chip. It automatically centers the signal/noise dis­
tribution at .the encoder input. This ensures minimal 
ICN due to bit toggling and also maintains maximum 
sensitivity to the AC signals of interest. 

2.4 Power Conservation 

Figure 8' illustrates typical power consumption and of­
fice equipment dissipation for a resistive line biasing 
arrangement (with no loop current limiting) and for the 
per-line PCM components. It can be seen that overall 
line circuit power consumption and dissipation are 
strong functions of subscriber loop resistanc.e, and are 
dominated by line biasing current regardless of loop 
length. It can also be seen that the combochip achieves 
significant reductions in PCM component contribu­
tions relative to both the 291OA12912A and 
2910/2912. Present residential traffic characteristics 
are such that the PCM components are active less than 
10% of the time, and in its low-power standby state, 
the combochip power dissipation drops to typically 
5 mW as the line current (and dissipation) goes to its 
background on-hook leakage level of typically a few 
milliwatts (but for very leaky lines, as much as 50 m W -
500 mW). 

6-12 

The concern for linecard power consumption and 'dissi­
pation is related both to the cost of providing power 
and to the system density problem involving convection 
heat removal from the linecards. Consequently, much 
recent line circuit development activity centers. on elim­
ination of the inefficient resistive line current feed both 
by current limiting in short loops and by more exotic 
and expensive per-line dc-dc converters. For both pres­
ent-generation designs and cost-reduction redesigns, 
the typical combochip dissipation of 140 mW 
active/5 mW standby will allow system board packing 
density improvements and power supply cost reduc­
tions. 

A closer look at the effect ofloading (duty cycle) on the 
average power dissipation of a combochip is given in 
Table 6. Typical loading percents run as low as 5% for 
very large switching systems (thousands of lines) up to 
100% in nonswitching applications such as channel 
banks. Clearly, the average power dissipation in a typi­
cal switching system is below 35 mW which facilitates 
board packing density and cost of power considera­
tions. 

Table 6. Typical Power Dissipation Per Line 
Using 2914 Combochlp 

Duty Power 
Cycle Dissipation 

Central 5% 12mW 
Office 

PABX 15% 25mW 

Peak Hour 50% 73mW 
C.O. 

Channel 100% 140mW 
Bank 



inter 

POWER LINE 
HARMONI~~ I 
100 

-ZOOB 

-300B 

-400B 

-500B 

AP-142 

VOICEBAND r. SWITCHING REGULA:rOR • I 
1000HZ l0000HZ 

-

Figure 7. Wideband 2914 Power Supply Rejection Ratio (PSRR) 

200 400 

72 VOLT BATTERY 
900 OHM FEED RESISTOR 
NO CURRENT LIMITING 

600 BOO 1000 1200 1400 1600 1600 

SUBSCRIBER LOOP RESISTANCE (OHMS) 

Figure 8. Line Circuit Power Consumption and Dissipation Curves 

6-13 

210314-13 

210314-14 



inter AP-142 

2.5 Elimination of Gain Trim in the Line 
Circuit 

Four resistors-RI-R4 of Figure 9-on the transform­
er side of the PCM components are used to establish 
appropriate transmission levels at the PCM compo­
nents and are, at first glance, equivalent in the two cas­
es. However, a significant reduction in linecard manu­
facturing costs associated with individual line trim (or 
mop-up) is possible with the combochip. The need for 
this trim is dictated by system gain contrast specifica­
tions which typically require that the line-to-line gain 
variation shall not exceed 0.5 dB, which translates to 
0.25 dB for each (transmit and receive) channel. Table 
7 shows that the major portion of this gain variation 

has previously been in the nominal insertion loss of the 
PCM filter and in the uncertainty of. the reference volt­
age of the codec. With this cumulative 0.15 dB uncer­
tainty in the PCM components themselves, the system 
manufacturer had no choice but to resort to the cost 
and manufacturing complexity of the active trim. The 
combochip, however, can be trimmed during its manu­
facture to a nominal tolerance of ± 0.04 dB which in­
cludes uncertainties in both the filter and codec voltage 
reference functions. This leaves 0.21 dB uncertainty to 
variations in the other line circuit elements and to tem­
perature and supply variations. 

The variation in combochip gain with supply and tem­
perature has also been improved to allow as low as 

2910/11 
PCMCODEC 

TRANSFORMER ;. r-::-~' "+==;-~=:=lJ---' ...--...... ---q 

-=- I 

1:] 

l~ __________ ~::~~~~~~~~~~~~~~~~~~VCC GRDD 
Vss 
GRDA 

(a) Line Circuit Utilizing Single-Chip PCM Codec and Filter 

TRANSFORMERr:~~--~========;=,--r~ 

':,. [r-; 
I I 

; - r!J i I I 
I ,....I~-..:;;;::~ 

. I 

TIP I ~_--------H"" '-_____ ..J 

(b) Line Circuit Using Combochip 

.. 0 
"'·0 II. .. 

CI 

210314-15 

210314-16 

Figure 9. Schematics of the Codec/Filter Function and the 2/4 Wire Hybrid Transformers 

6-14 



intJ AP-142 

Table 7. Gain Trim Budget for Codec/Filter Functions 

Manufacturing Uncertainty ~T Variation' Budget 
Device 

(Initial) ~Supplies 
Total 

for Other Componen~s 

2910 ±0.1 
2912 ±0.05 

±0.15 

2914 ±0.04 
.. • Assumes 0.5 dB end to end gain contrast specifications . 

0.08 dB variation over supplies and temperature so that 
more than half the system specification could be re­
served for transformer, wiring, and resistor uncertain­
ties. This possibility of using fixed precision gain trim 
components and abandoning the active trim holds the 
potential for simplification and cost reduction of the 
line board manufacturing process. 

2.6 Power Up/Down Considerations 

Power Supply Sequence-There are no requirements 
for a particular sequence of powering up the combo­
chip. All discussions of power up or power down tim­
ing assume that both Vee and VBB are present. 

Power Up Delay-Upon application of power supplies, 
or coming out of the standby ppwer down mode, three 
circuit time constants must be observed: (1) digital sig­
nal timing, (2) autozero timing, and (3) filter settling. 
An internal timing circuit activates SIFr, Dx, and TSx 
approximately two or three frames after power up. Un­
til this time, SIGr is held low and the other two signals 
are in a tri-state mode. During this time, SIGx will have 
no effect on the PCM output. 

Power Down Modes-These modes are described in de­
tail in Table 3 of the 2913/14 data sheet except for a 
fail-safe mode in case CLKx is interrupted. If this 
should happen, both Dx and TSx go into the ti-i-state 
mode until the clock is restored. This ensures the safety 
of the PCM highway should the interrupted clock be a 
local problem. 

3.0 OPERATING MODES 

There are three basic operating modes that are support­
ed by the 2913/14: fixed data rate timing (FDRT), vari­
able data rate timing (VQRT), and on-line testing. 

3.1 Fixed Data Rate Mode 

The FDRT mode is described in some detail in both 
section 2.2 of this note and in the 2913/14 data sheet. 
In addition, Intel Application Note AP-64 (Data Con-

±0.1 
±0.05 
±0.15 ±0.3 dB o dB 

±O.OB ±0.12dB ±0.13dB 

6-15 

version, Switching, and Transmission using the Intel 
291OA/291lA codec and 2912 PCM filter) also de­
scribes the basics of using the fixed data rate mode for 
first-generation codecs and filters which is essentially 
the same as for the 2913/14 second-generation combo­
chip. 

3.2 Variable Data Rate Mode 

The VDRT mode is described in some detail both in 
section 2.2 and in the 2913/14 data sheet. This section 
focuses on two design aspects: (I) the advantage of 
clocking data on the rising edges of the clock for trans­
mit and receive data, respectively, and (2) making the 
2913/14 transparent in previously designed systems (a 
retrofit, cost reduction redesign) .. 

Clock Timing-The 2913/14 is ideally set up 'to trans­
mit and receive data, using the same clock, with no race 
conditions or other marginal timing requirements. This 
is accomplished by transmitting data on the rising edge 
of the first clock pulse following the data enable pulse 
FSx and receiving data on the falling edge of the clock 
which is directly in the middle of the Dx data pulse. 
Several manufacturers use leading edge timing for both 
transmit and receive requiring an inversion of the re­
ceive clock. 

Figure 10 shows the transmit and receive clock and 
data timing for an entire time slot of data. A closer look 
at the timing functions is given in Figure 11 which 
looks specifically at the first clock cycle after the trans­
mit data enable FSx. 

According to the 2913/14 data sheet, the frame sync/ 
data enable FSx must precede the clock (DCLKx) by 
at least Ttsdx or nominally 15 ns for that clock pulse to 
be recognized as the first clock pulse in the time slot. In 
actuality, the 2914 will allow FSx to lag up to 80 ns the 
DCLKx rising edge and recognize it as the first clock 
pulse in a 2.048 MHz system. 

Once FSx has reached VIH of about 2V, the Dx output 
will remain in the tri-state high-impedance mode for 



inter AP-142 

Transmit Timing 

210314-17 

Receive Timing 

210314-18 

NOTE: 
All timing parameters referenced to VIH and VIL except tOON and tOFF which reference a high impedance state. 

Figure 10. Variable Data Rate Timing for an Entire Time Slot 

T don or about 34 ns longer. It then comes out oftristate 
and will represent some data which is invalid until the 
valid data is available TooX or about 75 ns (100 ns 
worst case) after the clock rising edge. This means there 
is about 90 ns of invalid data after the tri-state mode. 
At this point there is valid data on the Dx higlIway 
that lasts for approximately one full clock cycle. 

Since the Dx highway is tied directly to the Dr high­
way in digiti! loopback, the valid data above is now 
available to the receive channel with some propagation 
delay. The receiver is only interested in the data for 
about a 50 ns (110 ns worst case) window centered 
about the falling edge of the DCLKr clock which oc­
curs about half a clock cycle from the FSr rising edge. 
The window width is equal to the data set-up time. 
Tdsr, plus the clock fall time, 'Te, plus the data hold 
time, T dhr' Information at any other time on the Dr 
highway falls into the DON'T CARE category. 

Retrofitting the 2913/14-Several switching/transmis­
sion systems have been designed using first-generation 
codecs which operate at data rates from 64 Kbps to 
2.048 MBps. In addition, they may have been designed 
using the rising clock edges for both transmit and re­
ceive data. 

6-16 

Other aspects of these older designs could be relative 
skewing between the, sync pulses (Data Enable) and the 
clock pulses in such a way that the sync pulse occurs 
after (Lags) the first clock pulse rising edge. All of these 
conditions can be easily handled using the variable data 
rate timing mode of the 2913/14 plus some simple ex­
ternal logic. By the addition of this logic, the 2913/14 
becomes transparent to the older design thereby allow­
ing an upgrade in performance while having no impact 
on backplane wiring or on system control hardware/ 
software. In addition, many of the features of the 
2913/14 may be incorporated, such as the test modes, 
which provide additional capabilities beyond, those 
available in the original design and at a lower cost. 

The circuit diagram in Figure 12 shows the maximum 
amount of additional random logic that could be neces­
sary to make the 2913 or 2914 cOr.1pletely transparent 
at the linecard level (no impact on backplane wiring or 
timing). The inverter on DCLKR inverts all the receive 
clocks for each linecard. This inverter is only needed if 
(I) the transmit and receive clocks are inverted at the 
system/backplane level (as opposed to the linecard lev­
el) and (2) the previous design used only rising (or fall­
ing) edges to clock the transmit/receive data: 



inter AP-142 

FSx• Fs~~2V -- Ttldx=15 "sec 
:S0.8Y - I I 

_I l.-

DIGITAL LOOP BACK 
VARIABLE DATA RATE MODE 

I 1,------... 
1 

1 1 1...,./ Tddx"100 nsec I 
DCLKx,r ~ .....-"t.-=- 1 

-o~~1 ~Inl r-------~I-+------------~ 
. 1 1 

Dx ~~~~~~ ~ __________ +:-T ___ T_R_A_NS_M_I_T_D_A_TA_V_A_L_ID __ J 

I 

Dr 

Dr 

I 1 
1 I 

~~~rTE 7i 
T don :::35 nsec I

1

DON'T
CARE

I

T rdl=-SO nsec
(SETUP TIME)

DON'T
CARE

210314-19

Figure 11. Waveform Timing Diagrams for the 2913/14

3.3 On-Line Test Modes

Two modes are available which permit maintenance
checking of the linecard up to the SLIC/combochip
interface, including the PCM highways and time slot
interchanges. Tests include time slot-dependent error
checking. The two test modes are called "redundancy
testing" and "analog loopback." These test modes are
described in detail in Section 4.3.

4.0 MUL TIMODE TEST CAPABILITIES

The 2913/14 was designed with every phase of design,
manufacturing, and operation taken into consideration.
In particular, several test modes have been implement­
ed within the device with essentially no increase in the
package size or pin count. These test modes fall into
three categories: design/prototype tests, manufacturing
tests, and on-line operation tests; see Table 8.

6-17

4.1 Design/Prototype Testing

In the design of a linecard prototype or in the qualifica­
tion of a device, it is often helpful to have direct access
to the internal nodes at key points in the LSI system.
Some manufacturers even dedicate pins specifically for
this function. The Intel 2913/14 approach was to re­
duce cost by using multifunction pins and smaller pack­
ages to achieve this goal. Measurements through these
multipurpose pins will typically yield full device capa­
bility against performance specifications, however these
measurements are not included in the device specifica­
tions. This is done for two reasons: first, to save manu­
facturing cost by eliminating unnecessary tests and
specifications, and, second, more cost effective manu­
facturing test techniques are available, as discussed in
section 4.2.

AP-142

~')
DCLKX

TSXI

TSRI

NOTE:

2913 HOOKUP

~~ ~, -DCLKR 7 14 TSX/DCLKX-

DR [8 13p DX

VCC
GSx

VFXI­

VFXI+
GRDA

ASEL

GSR
P6N

CLKSEL

r--FSR{ 9 12P.FSX-
GRDD [~P CLKX.

(1) One inverter per linecard.

I

2914 HOOKUP

VBB 1
PWRO+

PWRO-

GSR

P6N
CLKSEL

LOOP

SIG RI:::
,DCLKR-C 9

DR [10

r--FS~-C 11
GRDD[12

VCC
GSx

VFXI­

VFXI+

GRDA

=' x X-
16::J DX

NC
SIGx/ASEL
is IDCLK

15 ::rFSX-
14::J CLKX
13::J CLKR

210314-20

Figure 12. Circuit Diagram Showing Connections Needed to Retrofit the 2913/14
into Existing Variable Data Rate Systems

Table 8. Multimode Testing for Each Level from
Design to On-Line Operation

• Design/Prototype Testing

- Direct access to transmit codec inputs

- Direct access to the receive filter input
and the transmit filter differential out­
puts

• Manufacturing Tests
- Standard half channel tests for com­

bined codec/filters

- Filter response half channel measure­
ments

• Operation On-Line Tests
- Analog loopback for testing PCM and

codec analog highways

- Redundancy checks with repeatable
DX outputs

Table 9 gives the input control pin values and the corre­
sponding functions assigned to the key test pins on the
2914 for the design test modes.

Transmit Coded (Encoder)-The transmit filter can be
bypassed by directly accessing the differential input of
the transmit encoder with an analog differential drive
signal. Table 9 shows the control pin voltages and the
input pins for this test. This test mode permits DC test­
ing of the encoder which is otherwise blocked by the
AC coupling (low frequency reject filter) of the trans­
mit filter.

Transmit and Receiver Filter-Tab,le 9 shows the con­
trol values that permit access to the differential outputs
of the transmit filter and the single-ended input to the
receive filter. The voltage difference between the trans­
mit filter outputs represents the filtered output that will
be encoded. By driving VFxI (single ended or differen­
tially), the transmit filter response is obtained as a dif­
ferential output. The final stage is the 60 Hz reject filter
which is a switched capacitor filter sampled at an
8 KHz rate. When measured digitally (after the encod­
er), the filter characteristic is obtained directly: howev·
er, when measured in analog, a sin, (roT12)/roT/2 cor­
rection factor must be included.

6-18

intJ AP-142

Table 9. 2914 Test Functions and Control Inputs for the Design Test Modes

Input Pin Function (24-Pin)
Test

PDN DR
Pin 9 Pin 17 Pin 18 Function

DCLKR TSx/DCLKx SIGx/ASEL

O-Vee O-Vee DCLKR TSx/DCLKx SIGx/ASEL Normal Operation

VBB O-Vee - +VFX -VFX Encoder

O-Vee VBB VFRI +VFXO -VFXO RCV, XMIT Filter

NOTES:
The terms used above are defined as:
± VFX = Encoder Input
±VFXO = XMIT Filter Output
VFRI = ReV Filter Input

The input to the receive filter first passes through a
sample and hold. This is necessary to simulate the
sin (wT /2)1 wT 12 characteristic that results from the
decoder DI A output. The net result is a filter charac­
teristic that can be compared directly to the specifica­
tions.

Start-up Procedure for Test Modes-To place the
2913/14 in the test mode it is first necessary to operate
the device for a few ms in normal operation. Then V BB
can be applied to the control pins to select the desired
test access.

4.2 Production Testing

While it may be convenient for the designer to have
access to both the filter and the codec inputs and out­
puts during the design or evaluation phase the final
product will always use the filter and codec circuits
together with all signals passing through both on the
way to or from the PCM highways. It therefore makes
sense to perform all manufacturing measurements with
the device configured in its normal operating mode, i.e.,
all measurements should be complete filterlcodec half
channel measurements. This approach not only tests
the combo as it will actually be used, but also saves
time and money by eliminating separate measurements
and correlation exercises to determine the full half
channel performance.

Since the transmission specifications of SID, gain
tracking, and ICN all require measurements which are
"in-band" or "filter independent," the codec functions
can be easily tested using conventional half channel
measurement equipment. The apparent difficulty arises
in trying to fully measure the filter characteristics be­
yond the half sampling frequency of 4 KHz. In fact,
this is not really a problem with today's computer­
based testing plus an understanding of the sampled data
process which is discussed under "Filter Testing".

ENCODER/DECODER TESTING

Transmission specifications are AC-coupled in-band
measurements when using either CCITT G.712.11
methods I & 2 (white noise testing and sinusoidal test­
ing, respectively) or AT&T Pub 43801 (Sinusoidal
Testing). The noise testing uses a narrowband of flat
noise from 300 to 500 Hz to drive the filter/codec (ei­
ther in analog or the equivalent digital sequence for the
transmit/receive channels, respectively). The resulting
harmonic products are used to determine SID. Like­
wise, gain tracking is also determined from this signal
input. Sinusoidal testing uses a tone at 1.020 KHz for
SID measurements and gain tracking measurements.
Idle channel noise measurements require the combined
filter I codec since it has long been shown that separate
measurements of filters and codecs are difficult to relate
to the combined measurement (usually there is no spe­
cific relationship because of the non-linear properties of
the encoderldecoder operations). Typically the fre­
quency response of ICN measurements is primarily de­
termined by the weighting filter (either C message or
psophometric, which are both AC-coupled, bandpass
type filters).

The conclusion is that combined filterlcodec testing in
no way limits the measurement of half channel trans­
mission parameters of SID, G.T., or ICN.

FILTER TESTING

Testing the filter response, of the transmit and receive
. channels presents two separate test situations which, in

some ways, are mirror images of one another. With the
transmit side, signals may be introduced at any fre­
quency to test the filter response. At the output of the
filter, the resulting signals are sampled at 8 KHz and
digitized resulting in a sequence of PCM words repre­
senting the samples of filtered input signal. On the re­
ceive side, a digital PCM sequence of samples repre­
senting the driving signal is converted to an analog sig­
nal by the decoder and can be measured at the filter
output in analog form.

6-19

inter AP-142

Sampling Process-In both cases of testing the filter,
the signal eventually is in a sampled form. Since the
sampling rate is fixed at 8 KHz, all signals must be
represented below 4 KHz (half the sampling frequen­
cy). This means that the PCM bit stream can only rep­
resent signals at frequencies below 4 KHz. If a signal
above 4 KHz is sampled, those samples appear exactly
as if the signal was at a frequency mirror imaged about
4 KHz. Two examples include signals at 5 KHz and
7 KHz which will result in samples that look like sig­
nals of 5-8 KHz = 3 KHz and 7-8 KHz = 1 KHz,
respectively.

Conversely, the sampling process produces replicas (ali­
asing) of the sampled signal around multiples of the
sampling frequency. Therefore, if two signals are intro­
duced digitally representing I KHz and 2 KHz. there
will also be frequency components located at 8 KHz =
± 1 KHz and 8 KHz, = ± 2 KHz, and so on for all
multiples of 8 KHz. Thus it is possible to generate fre­
quencies at arbitrary values after sampling by control­
ling the frequency of each signal within the 4 KHz in­
put band regardless of whether it is in analog or PCM.

When an analog signal is sampled, the frequency com­
ponents generated are all of the same amplitude as the
corresponding input spectral components. Therefore.
on the transmit side, measurements made from the
PCM data will nave a throughput gain of unity except
where components are superimposed (e.g .• a 4 KHz in­
put signal will have an alias component at 4 KHz
which may double the amplitude at 4 KHz when the
two components are combined).

When an analog signal is reconstructed from digital
samples, it goes through a sample and hold st/lge which
has the effect of imposing a weighting function on the
resulting spectral components that is represented by

. (CzlT) Sin -

Sinc [~T] = CzlT2

2

where Czl is the actual spectral component frequency
going into the filter, and T is the width of the hold
pulse at the decoder output. For the 2913/14, the ana­
log output is held the full sample period of 125 p.s
(1/8000 Hz) so that a frequency component at ft will
have a weighting of

,(8000) . ['IT ft] W = -- Sm --
'lTft 8000

Transmit Filter Test Approach-Two approaches can
be used for half channel testing of the transmit filter
characteristic: (1) input analog test frequencies and per­
form an FFf on the corresponding PCM samples that

6-20

are generated to determine spectral frequencies and am­
plitudes at the codec output, or (2) use an "ideal" D/ A
converter on the PCM samples to convert the digital
data back to analog so that the spectral amplitudes and
frequencies can be determied using analog circuits such
as spectrum analyzers or filter banks. In either case, the
effects of sampling will be the same. Figure 13 shows
two spectral diagrams of amplitude versus frequency.
The top'diagram represents the locations of nine test
frequencies corresponding to the seven specified fre­
quencies in the 2913/14 data sheet plus a component at
7 KHz and one at 10 KHz. The bottom figure shows
the "equivalent" spectral component locations when
carried in the PCM bit stream. As an example, frequen­
cy # 8 is located at 7 KHz. The corresponding PCM
frequency is seen in the lower figure at 1 KHz. Note
also that the analog component at 9 KHz (see #8·)
would also generate the 1 KHz component in the PCM
data.

To test the filter, the desired test frequencies are intro­
duced in' analog to the filter input in such a way that
there is no confusion as to where the resulting compo­
nent will be after sampling (i.e., don't simultaneously
put in 1 KHz and 7 KHz since both of these inputs
result in a 1 KHz component in the PCM data). Then,
using either technique (FFf or analog) mentioned
above, measure the amplitude of the corresponding

o 2 3 4 6 8 9 10 FREO
kHz

210314-21

(a) Analog Signal Frequency Locations,

AMP

02345 910FREO
kHz

210314-22

(b) PCM Representation of the Signals in (a)

Figure 13. Spectral Properties of the Filter Test
Frequencies in Analog and PCM

intJ AP-142

sampled component. The difference between that am­
plitude and the input amplitude repr!!sents the filter
attenuation at the frequency of the input signal. So, if
the signal was at 7 KHz, the FFT will determine the
amplitude of the corresponding I KHz signal. The am­
plitude change relative to the input will represent the
filter attenuation at 7 KHz.

Receive Filter Test Approach-In this case, the PCM
test signals can be generated directly from digital cir­
cuits or by going through an "ideal" A/D (companded)
to generate the PCM samples. Since these samples rep­
resent frequencies below the half sampling rate, Figure
12(b) now represents the input signals and 12(a) the
output, but with one significant difference--a
Sinc[7T fl/S000] weighting function is imposed on all
the frequency components because of the decoder sam­
ple and hold output. At the filter output, the spectral
component amplitUdes will include the effect Qf the fil­
ter response and the weighting function measured at
the actual test frequency. The receive filter includes a
compensation network for the weighting function in its
passband. Therefore, inside the passband (300 Hz to
3.4 KHz) the measured amplitudes should be compared
directly to the data sheet specifications. Frequencies
outside the passband must be compensated for the
weighting function first to determine the true filter re­
sponse.

Summary of Filter Testing-Table 10 lists the nine test
frequencies shown in Figure 12 for both the transmit
and receive filter testing. For each filter test, the input
frequency (analog or PCM), measurement frequency,
and test circuit gain is tabulated corresponding to the

desired test frequency. The various weighting values are
easily handled by computer-based test equipment since
the inverse weighting function can be stored in the,
computer and applied to each measured amplitude as
appropriate.

4.3 Operational On-Line Testing

Two test modes 'are available which facilitate on-line
testing to verify operation of both the combochip and
the entire switching highway network. The first is sim­
ply the capability to duplicate the same Dx transmis­
sion in multiple PCM time slots (redundancy check­
ing), and the second is the analog loopback capability
which allows the testing of a call completion through
the entire PCM voice path including the time slot inter­
change network.

Redundancy Checking-A feature of the 2913/14 is
that the same S-bit PCM word can be put on the Dx
highway in multiple time slots simply by holding the
frame sync/data enable (FSx) high and continuing to
supply clock pulses (CLKx or DCLKx). If the data
enable was held high for multiple time slots, each time
slot would have identical data in it. By routing this data
through the PCM highways, time slot interchanges,
etc., and then correlating the data between time slots, it
would be possible to detect time slot-dependent data
errors. When this test mode is used, no other data will
be generated for the transmit highway until the frame
sync returns low for at least one full clock cycle.

Table 10. Filter Response Testing Input/Output Frequencies and Amplitude Gain Schedule

Transmit Receive
Test
Freq. Input Measured Amp Input Measured Amp

Freq. Freq. Weighting Freq. Freq. Weighting

1 200 200 200 1 200 200 1

2 300 300 300 1 300 300 1

3 3000 3000 3000 1 3000 3000 1

4 3300 3300 3300 1 3300 3300 1

5 3400 3400 3400 1 3400 3400 1

6 4000 4000 4000 o to 2 4000 4000 Oto 2

7 4600 4600 3400 1 3400 4600 . [4600 7T]
Sine 8000

8 7000 7000 1000 1 1000 7000 . [7000 7T]
Sine 8000

9 10000 10000 2000 1 2000 10000 . [10000 7T]
Sine 8000

6-21

inter AP-142

Analog Loopback-The 2914 (2913 does not have this
feature) has the capability to be remotely programmed
to disconnect the outside telephone lines and tie the
transmit input directly to the receive output to effect
analog loopback within the combo chip. This is accom­
plished by setting the LOOP input to Vee (TTL high).
The result is to disconnect VFxI + and VFXI - from
the external circuitry and to connect internally
PWRO+ to VFxI+, GSr to PWRO-, and VFXI­
to GSX (see Figure 14).

With this test set up, the entire PCM and analog trans­
mission path up to the SLiC can be tested remotely by
assigning a PCM word to a time slot that is read by the
combo being tested. This' data is converted to analog
and passed out of the receive channel. It is taken as
input by the transmit channel where it is filtered and
redigitized (encoded) back to PCM. The PCM word
can now be put on the transmit highway and sent back
to the remote test facility. By comparing the PCM data
(individually or as a series of codes) the health of that
particular connection can be verified.

--------------------------,
: I-LOOP

TRANSMIT
VOICE

VFXI+

PWRO+ -------::7+

PWRo--r----~~~.h

COMBOCHIP ANALOG LOOP BACK FUNCTION

•
•
•

DX'

I
I
I
I
I

•
• DR.

DIGITIZED
PCM
LOOP BACK
REBPONSE

DIGITIZED
PCM
TEST
TONE

210314-23

Figure 14. SimplifIed Block Diagram of 2914 Combochlp In the Analog Loopback Configuration

6-22

