Order Number 231658-005

L]

tions

]

-

icrocommmunica
Applications

Volume 11

M

Microcommunications 1990

Volume II - Applications

intal’

Intel the Microcomputer Company:

When Intel invented the microprocessor in 1971, it created the era of
microcomputers. Whether used in embedded applications such as automobiles

or microwave ovens, or as the CPU in personal computers or supercomputers,
Intel’s microcomputers have always offered leading-edge technology. Intel continues
to strive for the highest standards in memory, microcomputer components, modules
and systems lo give its customers the best possible compelitive advantages.

MICROCOMMUNICATIONS
APPLICATIONS

1990

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors
which may appear in thls document nor does it make a commitment to update the information contained
herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Contact your local sales office to obtain the latest specifications before placing your order. ‘
The following are trademarks f Intel Corporation and may only be used to identify intel Products:

376, 386, 387, 486, 4-SITE, Above, ACE51, ACE96, ACE186, ACE196,
ACE960, BITBUS, COMMputer, CREDIT, Data Pipeline, DVI, ETOX,
FaxBACK, Genius, i, i, 486, i750, i860, ICE, iCEL, ICEVIEW, iCS, iDBP,
iDIS, 12ICE, iLBX, iMDDX, iMMX, Inboard, Insite, Intel, intgl, Intel386,

~intglBOS, Intel Certified, Intelevision, intgligent ldentifier, intgligent
Programming, Intellec, Intellink, iOSP, iPAT, iPDS, iPSC, iRMK, iRMX,
iSBC, iSBX, iSDM, iSXM, Library Manager, MAPNET, MCS,
Megachassis, MICROMAINFRAME, MULTIBUS, MULTICHANNEL,
MULTIMODULE, MultiSERVER, ONCE, OpenNET, OTP, PRO750,
PROMPT, Promware, QUEST, QueX, Quick-Erase, Quick-Pulse
Programming, Ripplemode, RMX/80, RUPI, Seamless, SLD, SugarCube,
ToolTALK, UPI, Visual Edge, VLSIiCEL, and ZapCode, and the
combination of ICE, iCS, iRMX, iSBC, iSBX, iSXM, MCS, or UPI and a
numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered
trademark of Mohawk Data Sciences Corporation.

*MULTIBUS is a patented Intel bus. -
CHMOS and HMOS are patented processes of Intel Corp.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its
FASTPATH trademark or products.

Additional copies of this manual or other Intel literature may be obtained from:
Intel Corporation
Literature Sales

- P.O. Box 7641
- Mt. Prospect, IL 60056-7641

© INTEL CORPORATION 1989

intel®

CUSTOMER SUPPORT

INTEL’S COMPLETE SUPPORT SOLUTION WORLDWIDE

Customer Support is Intel’s complete support service that provides Intel customers with hardware support,
software support, customer training, consulting services and network management services. For detailed infor-
mation contact your local sales offices.

After a customer purchases any system hardware or software product, service and support become major
factors in determining whether that product will continue to meet a customer’s expectations. Such support
requires an international squort organization and a breadth of programs to meet a variety of customer needs.
As you might expect, Intel’s customer support is quite extensive. It can start with assistance during your
development effort to network management. 100 Intel sales and service offices are located worldwide —in the
U.S,, Canada, Europe and the Far East. So wherever you’re using Intel technology, our professional staff is
within close reach.

HARDWARE SUPPORT SERVICES

Intel’s hardware maintenance service, starting with complete on-site installation will boost your productivity
from the start and keep you running at maximum efficiency. Support for system or board level products can be
tailored to match your needs, from complete on-site repair and maintenance support to economical carry-in or
mail-in factory service.

Intel can provide support service for not only Intel systems and emulators, but also support for equipment in
your development lab or provide service on your product to your end-user/customer.

SOFTWARE SUPPORT SERVICES

Software products are supported by our Technical Information Service (TIPS) that has a special toll free
number to Erowde you with direct, ready information on known, documented problems and deficiencies, as.
well as work-arounds, patches and other solutions.

Intel’s software support consists of two levels of contracts. Standard support includes TIPS (Technical Infor-
mation Phone Service), updates and subscription service (product-specific troubleshooting guides and;
COMMENTS Magazine). Basic support consists of updates and the subscription service. Contracts are sold in
environments which represent product groupings (e.g., 1RMX® environment).

CONSULTING SERVICES

Intel provides field system engineering consulting services for any phase of your development or application
effort. You can use our system engineers in a variety of ways ranging from assistance in using a new product,
developing an application, personalizing training and customizing an Intel product to providing technical and
management consulting. Systems Engineers are well versed in technical areas such as microcommunications,
real-time applications, embedded microcontrollers, and network services. You know your application needs;
we know our products. Working together we can help you get a successful product to market in the least
possible time.)

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementa-
tion. In just three to ten days a limited number of individuals learn more in a single workshop than in weeks of
self-study. For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we
can take our workshops to you for on-site instruction. Covering a wide variety of topics, Intel’s major course
categories include: architecture and assembly language, programming and operating systems, BITBUS™ and
LAN applications.

NETWORK MANAGEMENT SERVICES

Today’s networking products are powerful and extremely flexible. The return they can provide on your invest-
ment via increased productivity and reduced costs can be very substantial.

Intel offers complete network support, from definition of your network’s physical and functional design, to
implementation, installation and maintenance. Whether installing your first network or adding to an existing
one, Intel’s Networking Specialists can optimize network performance for you.

=

Table of Contents

Alphanumeric Index e viii
AP-302 Microcommunications OVerviewooiiiiiirnennenennn.. ix
SECTION ONE—DATA COMMUNICATIONS COMPONENTS
CHAPTER 1
Local Area Networks
CSMA/CD Access Method
AP-235 An 82586 Data Link Driver ...ttt 1-1
AP-236 Implementing StarLAN with the Intel 82588, 1-81
AP-320 Using the Intel 82592 to Integrate a Low-Cost Ethernet Solution into a PC
Motherboard i 14155
AP-274 Implementing Ethernet/Cheapernet with the Intel 82586 1-200
AP-324 Implementing Twisted Pair Ethernet with the Intel 82504TA, 82505TA, and
B2 2 T A . e e 1-289
AP-327 Two Software Packages for the 82592 Embedded LAN Module 1-308
AP-331 Using the Intel 82592 to Implement a Non-Buffered Master Adapter for ISA
Sy eMS . e 1-386

CSMA/CD Access Method Evaluation Tools
AP-326 PS592E-16 Buffered Adapter LAN Solution for the Micro Channel

Architecture e 1-468
AP-328 PC592E Buffered LAN Adapter Solution for the IBM PC-XT and AT 1-519
CHAPTER 2 \
Wide Area Networks
AP-401 Designing With the 82510 Asynchronous Serial Controller 2-1
AP-310 High Performance Driverfor82510t iannn.. 2-81
AP-36 Using the 8273 SDLC/HDLC Protocol Controller 2-112
AP-134 Asynchronous Communication with the 8274 Multiple-Protocol Serial
CoNtroller ..o e e 2-164
AP-145 Synchronous Communication with the 8274 Multiple Protocol Serial
Controller ... i 2-202
AP-222 Asynchronous and SDLC Communications with 82530 2-240
CHAPTER 3 ‘
Other Components
AP-166 Using the 8291A GPIB Talker/Listener..........................oou. 3-1
AP-66 Using the 8292 GPIB Controllerottt 3-31
SECTION TWO—TELECOMMUNICATION COMPONENTS
CHAPTER 4
Modem Products
AB-24 89024 Modem Customization for V.23 Data Transmission 4-1
CHAPTER 5
ISDN Products
AP-282 29C53 Transceiver LineInterfacing.o it 5-1
AP-400 ISDN Applications with 29C53and 80188cccoveven... 5-15
CHAPTER 6
PCM Codec/Filter and Combo
Applications Information 2910A/2911A/2912A, 6-1
AP-142 Designing Second-Generation Digital Telephony Systems Using the Intel
2913/14 Codec/Filter Combochip. ... 6-4

vii

Alphanumeric Index

V

AB-24 89024 Modem Customization for V.23 Data Transmission e 441
AP-134 Asynchronous Communication with the 8274 Multiple-Protocol Serial Controller... 2-164
~ AP-142 Designing Second-Generation Digital Telephony Systems Using the Intel 2913/14

Codec/Filter ComboChip . « v vttt i i ettt e et iiinea s 6-4
AP-145 Synchronous Communication with the 8274 Multiple Protocol Serial Controller.... 2-202
AP-166 Using the 8291A GPIB Talker/Listenerciiiiiiiiiiiininneenn, 3-1
AP-222 Asynchronous and SDLC Communications with82530.................cuvunn. 2-240
AP-235 An 82586 Data Link Drivert e 1-1
AP-236 Implementing StarLAN with the Intel 82588ot 1-81
AP-274 Implementing Ethernet/Cheapernet with the Intel 82586 1-200
AP-282 29C53 Transceiver Line Interfacingot e 5-1
AP-302 Microcommunications OVEIVIEWvueviner ittt ieei e eieieienanenen. ix
AP-310 High Performance Driver for82510.oiiiii i 2-81
AP-320 Using the Intel 82592 to Integrate a Low-Cost Ethernet Solution into a PC

Motherboard e e e - 1-165
AP-324 Implementing Twisted Pair Ethernet with the Intel 82504TA, 82505TA, and

B2 T A o e 1-289
AP-326 PS592E-16 Buffered Adapter LAN Solution for the Micro Channel Architecture.... 1-468
AP-327 Two Software Packages for the 82592 Embedded LAN Module 1-308
AP-328 PC592E Buffered LAN Adapter Solution for the IBM PC-XT and AT ... 1-519
AP-331 Using the Intel 82592 to Implement a Non-Buffered Master Adapter for ISA

SO M . L i N 1-386
AP-36 Using the 8273 SDLC/HDLC Protocol Controllercoovvviiiiiiien. 2-112
AP-400 ISDN Applications with29C53and 80188coviiiiiiiiiinnnnne.. 5-15
AP-401 Designing With the 82510 Asynchronous Serial Controller..................... . 2-1
AP-66 Using the 8292 GPIB Controller............ ... 3-31

Applications Information 2010A/2911A/2912Aieuiiiiiii it 6-1

viii

intel

AP-302

OVERVIEW

Imagine for a moment a world where all electronic
communications were instantaneous. A world where
voice, data, and graphics could all be transported via
telephone lines to a variety of computers and receiving
systems. A world where the touch of a finger could
summon information ranging from stock reports to
classical literature and bring it into environments as
diverse as offices and labs, factories and living rooms.

Unfortunately, these promises of the Information Age
still remain largely unfulfilled. While computer tech-
nology has accelerated rapidly over the last twenty
years, the communications methods used to tie the wide
variety of electronic systems in the world together have,
by comparison, failed to keep pace. Faced with a tangle
of proprietary offerings, high costs, evolving standards,
and incomplete technologies, the world is still waiting
for networks that are truly all-encompassing, the miss-
ing links to today’s communications puzzle.

Enter microcommunications—microchip-based digital
communications products and services. A migration of
the key electronics communications functions into sili-
con is now taking place, providing the vital interfaces
that have been lacking among the various networks
now employed throughout the world. Through the evo-
lution of VLSI (Very Large Scale Integration) technolo-
gy, microcommunications now can offer.the perform-
ance required to effect these communications interfaces
at affordable costs, spanning the globe with silicon to
eradicate the troublesome bottleneck that has plagued
information transfer during recent years.

“There are three parts to the communications puzzle,”
says Gordon Moore, Intel Chairman and CEO. “The
first incorporates the actual systems that communicate
with each other, and the second is the physical means
to connect them—such as cables, microwave technolo-
gy, or fiber optics. It is the third area, the interfaces
between the systems and the physical links, where sili-
con will act as the linchpin. That, in essence, is what
microcommunications is all about.”

THE COMMUNICATIONS
BOTTLENECK

Visions of global networks are not new. Perhaps one of
the most noteworthy of these has been espoused by Dr.
Koji Kobayashi, chairman of NEC Corporation. His
view of the future, developed over the nearly fifty years
of his association with NEC, is known as C&C (Com-
puters and Communications). It defines the marriage of
passive communications systems and computers as
processors and manipulators of information, providing
the foundation for a discipline that is changing the ba-
sic character of modern society.

Kobayashi’s macro vision hints at the obstacles con-
fronting the future of C&C. When taken to the micro
level, to silicon itself, one begins to understand the "
complexities that are involved. When Intel invented the
microprocessor fifteen years ago, the first seeds of the
personal computer revolution were sown , marking an
era that over the last decade has dramatically influ-
enced the way people work and live. PCs now prolifer-
ate in the office, in factories, and throughout laboratory
environments. And their “intimidation” factor has less-
ened to where they are also becoming more and more
prevalent in the home, beginning to penetrate a market
that to date has remained relatively untapped.

Thanks to semiconductor technology, the personal
computer has raised the level of productivity in our
society. But most of that productivity has been gained
by individuals at isolated workstations. Group produc-
tivity, meanwhile, still leaves much to be desired. The
collective productivity of organizations can only be en-
hanced through more sophisticated networking
technology. We are now faced with isolated “islands
of automation” that must somehow be developed
into networks of productivity.

But no amount of computing can meet these challenges
if the corresponding communications technology is not
sufficiently in step. The Information Age can only grow
as fast as the lowest common denominator—which in
this case is the aggregate communications bandwidth
that continues to lag behind our increased computing
power. Such is the nature of the communications bot-
tleneck, where the growing amounts of information we
are capable of generating can only flow as fast as the
limited and incompatible communications capabilities
now in place. Clearly, a crisis is at hand.

BREAKING UP THE BOTTLENECK

Three factors have contributed to this logjam: lack of
industry standards, an insufficient cost/performance
ratio, and the incomplete status of available communi-
cations technology to date.

® Standards—One look at the tangle of proprietary
systems now populating office, factory, and labora-
tory environments gives a good indication of the
inherent difficulty in hooking these diverse systems
together. And these systems do not merely feature
different architectures—they also represent com-
pletely different levels of computing, ranging from
giant mainframes at one end of the scale down to
individual microcontrollers on the other.

The market has simply grown too fast to effectively
accommodate the changes that have occurred. Sup-
pliers face the dilemma of meshing product differ-
entiation issues with industry-wide compatibility as

intel

AP-302

they develop their strategies; opting for one in the
past often meant forsaking the other. And while
some standards have coalesced, the industry still
faces a technological Tower of Babel, with many
proprietary solutions vying to be recognized in lead-
ership positions.

® Cost/Performance Ratio—While various commu-
nications technologies struggle toward maturity,
the industry has had to cope with tremendous costs
associated with interconnectivity and interopera-
tion. Before the shift to microelectronic interfaces
began to occur, these connections often were pro-
hibitively expensive.

Says Ron Whittier, Intel Vice President and Direc-
tor of Marketing: ‘“Mainframes offer significant
computing and communications power, but at a
price that limits the number of users. What is need-
ed is cost-effective communications solutions to
hook together the roughly 16 million installed PCs
in the market, as well as the soon-to-exist voice/
data terminals. That’s the role of microcommunica-
tions—bringing cost-effective communications solu-
tions to the microcomputer world.”

® Incomplete Technology—Different suppliers have
developed many networking schemes, but virtually
all have been fragmented and unable to meet the
wide range of needs in the marketplace. Some of
these approaches have only served to create addi-
tional problems, making OEMs and systems houses
loathe to commit to suppliers who they fear cannot
provide answers at all of the levels of communica-
tions that are now funneled into the bottleneck.

THE NETWORK TRINITY

Three principal types of networks now comprise the
electronic communications marketplace: Wide Area
Networks (WANSs), Local Area Networks (LANs), and
Small Area Networks (SANSs). Each in its own fashion
is turning to microcommunications for answers to its
networking problems.

WANs—known by some as Global Area Networks
(GANs)—are most commonly associated with the
worldwide analog telephone system. The category also
includes a number of other segments, such as satellite
and microwave communications, traditional networks
(like mainframe-to-mainframe connections), modems,
statistical multiplexers, and front-end communications
processors. The lion’s share of nodes—electronic net-
work connections—in the WAN arena, however, re-
sides in the telecommunications segment. This is where
the emerging ISDN (Integrated Services Digital Net-
work) standard comes into focus as the most visible
portion of the WAN marketplace.

The distances over which information may be transmit-
ted via a WAN are essentially unlimited. The goal of
ISDN is to take what is largely an analog global system
and transform it into a digital network by defining the
standard interfaces that will provide connections at
each node.

These interfaces will allow basic digital communica-
tions to occur via the existing twisted pair of wires that
comprise the telephone lines in place today. This would
bypass the unfeasible alternative of installing complete-
ly new lines, which would be at cross purposes with the
charter of ISDN: to reduce costs and boost perform-
ance through realization of an all-digital network.

. The second category, Local Area Networks, represents

the most talked:about link provided by microcommuni-
cations. In their most common form, LANs are com-
prised of—but not limited to—PC-to-PC connections.
They incorporate information exchange over limited
distances, usually not exceeding five kilometers, which
often takes place within the same building or between
adjacent work areas. The whole phenomenon surround-
ing LAN development, personal computing, and dis-
tributed processing essentially owes its existence to mi-
crocomputer technology, so it is not surprising that this
segment of networking has garnered the attention it has
in microelectronic circles.

Because of that, progress is being made in this area.
The most prominent standard—which also applies to
WANSs and SANs—is the seven-layer Open Systems In-
terconnection (OSI) Model, established by the Interna-
tional Standards Organization (ISO). The model pro-
vides the foundation to which all LAN configurations
must adhere if they hope to have any success in the
marketplace. Interconnection protocols determining
how systems are tied together are defined in the first
five layers. Interoperation concepts are covered in the
upper two layers, defining how systems can communi-
cate with each other once they are tied together.

In the LAN marketplace, a large number of networking
products and philosophies are available today, offering
solutions at various price/performance points. Diverse
approaches such as StarLAN, Token Bus and Token
Ring, Ethernet, and PC-NET, to name a few of the
more popular office LAN architectures, point to many
choices for OEMs and end users.

A similar situation exists in the factory. While the
Manufacturing Automation Protocol (MAP) standard
is coalescing around the leadership of General Motors,

intel

AP-302

Boeing, and others, a variety of proprietary solutions
also abound. The challenge is for a complete set of in-
terfaces to emerge that can potentially tie all of these
networks together in—and among—the office, factory,
and lab environments.

The final third of the network trinity is the Small Area
Network (SAN). This category is concerned with com-
munications over very short distances, usually not ex-
ceeding 100 meters. SANs most often deal with chip-to-
chip or chip-to-system transfer of information; they are
optimized to deal with real-time applications generally
managed by microcontrollers, such as those that take
place on the factory floor among robots at various
workstations.

SANs incorporate communications functions that are
undertaken via serial backplanes in microelectronic
equipment. While they represent a relatively small mar-
ket in 1986 when compared to WANs and LANs, a
tenfold increase is expected through 1990. SANs will
have the greatest number of nodes among network ap-
plications by the next decade, thanks to their prepon-
derance in many consumer products.

While factory applications will make up a large part of
the SAN marketplace probably the greatest contributor
to growth will be in automotive applications. Micro-
controllers are now used in many dashboards to control
a variety of engine tasks electronically, but they do not
yet work together in organized and efficient networks.
As Intel’s Gordon Moore commented earlier this year
to the New York Society of Security Analysts, when
this technology shifts into full gear during the next dec-
ade, the total automobile electronics market will be
larger than the entire semiconductor market was in
1985.

MARKET OPPORTUNITIES

Such growth is also mirrored in the projections for the
WAN and LAN segments, which, when combined with
SANSs, make up the microcommunications market pie.
According to Intel analysts, the total silicon microcom-
munications market in 1985 amounted to $522 million.
By 1989, Intel predicts this figure will have expanded to
$1290 million, representing a compounded annual
growth rate of 25%.

And although the WAN market will continue to grow
at a comfortable rate, the SAN and LAN pieces of the
pie will increase the most dramatically. Whereas SANs
represented only about 12.5% ($65 million) in 1985,
they could explode to 22.5% ($290 million) of the larg-
er pie by 1989. This growth is paralleled by increases in

Xi

the LAN segment, which should grow from 34.5% of
the total silicon microcommunications market in 1985
to 44.5% of the expanded pie in 1989.

Opportunities abound for microcommunications sup-
pliers as the migration to silicon continues. And
perhaps no VLSI supplier is as well-positioned in this
marketplace as Intel, which predicts that 50%90f its
products will be microcommunications-related by 1990.
The key here is the corporation’s ability to bridge the
three issues that contribute to the communications bot-
tleneck: standards, cost-performance considerations,
and the completeness of microcomputer and microcom-
munications product offerings.

INTEL AND VLSI: THE
MICROCOMMUNICATIONS MATCH

Intel innovations helped make the microcomputer revo-
lution possible. Such industry “firsts” include the
microprocessor, the EPROM, the E2PROM, the
microcontroller, development systems, and single board
computers. Given this legacy, it is not surprising that
the corporation should come to the microcommunica-
tions marketplace already equipped with a potent arse-
nal of tools and capabilities.

The first area centers on industry standards. As a VLSI
microelectronic leader, Intel has been responsible for
driving many of the standards that are accepted by the
industry today. And when not actually initiating these
standards, Intel has supported other existing and
emerging standards through its longtime “open sys-
tems” philosophy. This approach protects substantial
customer investments and ensures easy upgradability
by observing compatibility with previous architectures
and industry-leading standards.

Such a position is accentuated by Intel’s technology re-
lationships and alliances with many significant names
in the microcommunications field. Giants like AT&T
in the ISDN arena, General Motors in factory network-
ing, and IBM in office automation all are working
closely with Intel to further the standardization of the
communications interfaces that are so vital to the
world’s networking future.

Cost/performance considerations also point to Intel’s
strengths. As a pioneer in VLSI technology, Intel has
been at the forefront of achieving greater circuit densi-
ties and performance on single pieces of silicon: witness
the 275,000 transistors housed on the 32-bit 80386, the
highest performance commercial microprocessor ever
built. As integration has increased, cost-per-bit has de-
creased steadily, marking a trend that remains consist-
ent in the semiconductor industry. And one thing is

intgl

AP-302

certain: microcommunications has a healthy appetite
for transistors, placing it squarely in the center of the
VLSI explosion. :

But it is in the final area—completeness of technology
and products—where Intel is perhaps the strongest. No
other microelectronic vendor can point to as wide an
array | of - products positioned across the various seg-
ments that comprise the microelectronic marketplace.
Whether it be leadership in the WAN marketplace as
the number one supplier of merchant telecommunica-
tions components, strength in SANs with world leader-
ship in microcontrollers, or overall presence in the
LAN arena with complete solutions in components,
boards, software, and systems, Intel is a vital presence
in the growing microcommunications arena.

~ That leadership extends beyond products. Along with

Xii

its own application software, Intel is promoting expan-
sion through partnerships with many different indepen-
dent software vendors (ISVs), ensuring that the neces-
sary application programs will be in place to fuel the
gains provided by the silicon “engines” residing at the
interface level. And finally, the corporation’s commit-
ment to technical support training, service, and its
strong force of field applications engineers guarantees
that it will back up its position and serve the needs that
will continue to spring up as the microcommunications
evolution becomes a reality.

Together, all the market segment alluded to in this arti-
cle comprise the world of microcommunications, a
world coming closer together every day as the web of
networking solutions expands—all thanks to the tech-
nological ties that bind, reachmg out to span the globe
with silicon.

T

Local Area Networks | 1 |

u ®
Intel APPLICATION AP-235
NOTE

November 1986

An 82586 Data Link Driver

CHARLES YAGER

Order Number: 231421-002
1-1

intel

AP-235

INTRODUCTION

This application note describes a design example of an
IEEE 802.2/802.3 compatible Data Link Driver using
the 82586 LAN Coprocessor. The design example is
based on the “Design Model” illustrated in “Program-
ming the 82586”. It is recommended that before read-
‘ing this application note, the reader clearly understands
the 82586 data structures and the Design Model given
in “Programming the 82586”.)

“Programming the 82586 discusses two basic issues in
the design of the 82586 data link driver. The first is
how the 82586 handler fits into the operating system.
One approach is that the 82586 handler is treated as a
“special kind of interface” rather than a standard I/0
interface. The special interface means a special driver
that has the advantage of utilizing the 82586 features to
enhance performance. However the performance en-
hancement is at the expense of device dependent upper
layer software which precludes the use of a standard
170 interface.

The second issue “Programming the 82586 discusses
is which algorithms to choose for the CPU to control
the 82586. The algorithms used in this data link design
are taken directly from “Programming the 82586”.
Command processing uses a linear static list, while re-
ceive processing uses a linear dynamic list.

The application example is written in C and uses the
Intel C compiler. The target hardware for the Data
Link Driver is the iSBC 186/51 COMMputer, however
a version of the software is also available to run on the
LANHIB Demo board.

1.0 FITTING THE SOFTWARE INTO
THE OSI MODEL :

The application example consists of four software mod-
ules:

® Data Link Driver (DLD): drives the 82586, also
known as the 82586 Handler.

® Logical Link Control (LLC): implements the IEEE
802.2 standard.

® User Application (UAP): exercises the other soft-
ware modules and runs a specific application.

® C hardware support: written in assembly language,
supports the Intel C compiler for I/0, interrupts,
_and run time initialization for target hardware.

Figure 1 illustrates how these software modules com-
bined with the 82586, 82501 and 82502 complete the
first two layers of the OSI model. The 82502 imple-
ments an IEEE 802.3 compatible transceiver, while the
82501 completes the Physical layer by performing the
serial interface encode/decode function.

The Data Link Layer, as defined in the IEEE 802 stan-
dard documents, is divided into two sublayers: the Log-
ical Link Control (LLC) and the Medium Access Con-
trol (MAC) sublayers. The Medium Access Control
sublayer is further divided into the 82586 Coprocessor
plus the 82586 Handler. On top of the MAC is the LLC
software module which provides IEEE 802.2 compati-
bility. The LLC software module implements the Sta-
tion Component responses, dynamic addition and dele-
tion of Service Access Points (SAPs), and a class 1 level
of service. (For more information on the LLC sublayer,
refer to IEEE 802.2 Logical Link Control Draft Stan-

~dard.) The class 1 level of service provides a connec-
tionless datagram interface as opposed to the class 2
level of service which provides a connection oriented
level of service similar to HDLC Asynchronous Bal-
anced Mode.

On top of the Data Link Layer is the Upper Layer
Communications Software (ULCS). This contains the
Network, Transport, Session, and Presentation Layers.
These layers are not included in the design example,
therefore the application layer of this ap note interfaces
directly to the Data Link layer.

OSI REFERENCE ~ __..--
MODEL LAYERS ___o-=="""" __ UAP MODULE USER APPLICATION
oo 1 uLcs UPPER LAYER COMMUNICATION SOFTWARE
,,,,,, /uc{] Lic MODULE J« 2 LOGICAL LINK CONTROL
PRESENTATION T e Mso DULE 2 52586 HANDLER
K L} 52586 DATA LINK COPROCESSOR
SESSION K gl 2l ENCODE,/DECODE (ESI)
p L
TRANSPORT / i
t . TRANSCEIVER CABLE
NETWORK Sl
I’ "
DATA LINK 82502 J€ 2 __ rpanscever
PHYSICAL € 2 HARDWARE CONNECTOR
5 MEDIUM 5
2314211

Figure 1. Data Link Driver’s Relationship to OSI Reference Mode 1

1-2

RS232

-

TERMINAL EMULATOR

AND
STATION MONITOR

AP-235
|] Jrerueano
UART UAP MODULE APPLICATION
T T L
Y
R DATA LINK
DLD MODULE
82586
82501
PHYS]CAL
82502
; 231421-2

Figure 2. Block Diagram of the Hardware and Software

The application layer is implemented in the User Appli-
cation (UAP) software module. The UAP module oper-
ates in one of three modes: Terminal Mode, Monitor
Mode, and High Speed Transmit Mode. The software
initially enters a menu driven interface which allows
the program to modify several network parameters or
enter one of the three modes.

The Terminal Mode implements a virtual terminal with
datagram capability (connectionless “class 1” service).
This mode can also be thought of as an async to IEEE
802.3/802.2 protocol converter.

The Monitor Mode provides a dynamic update on the
terminal of 6 station related parameters. While in the
monitor mode, any size frame can be repeatedly trans-
mitted to the cable in a software loop.

High Speed Transmit Mode transmits frames to the ca-
ble as fast as the software possibly can. This mode dem-
onstrates the throughput performance of the Data Link
Driver.

The UAP gathers network statistics in all three modes
as well as when it is in the menu. In addition, the UAP
module provides the capability to alter MAC and LLC
addresses and re-initialize the data link. . (Figure 2
shows a combined software and hardware block dia-
gram.)

2.0 LARGE MODEL COMPILATION

All the modules in this design example are compiled
under the Large Model option. This has the advantages
of using the entire 1 Mbyte address space, and allowing
the string constants to be stored in ROM. In the Large
Model it is important to consider that the 82586’s data
structures, SCB, CB, TBD, FD, and RBD, must reside
within the same data segment. This data segment is
determined at locate time.

1-3

The C__Assy__Support module has a run time start off
function which loads the DLD data segment into a
global variable SEGMT__. This data segment is used
by the 82586 Handler for address translation purposes.
The 82586 uses a flat address while the 80186 uses a
segmented address. Any time a conversion between
82586 and 80186 addresses are needed the SEGMT__
variable is used.

Pointers for the 80186 in the large model are 32 bits,
segment and offset. All the 82586 link pointers are 16
bit offsets. Therefore when trading pointers between the
82586 and the 80186, two functions are called:
Offset (ptr), and Build__Ptr (offset). Offset (ptr) takes a
32 bit 80186 pointer and returns just the offset portion
for the 82586 link pointer. While Build__Ptr (offset)
takes an 82586 link pointer and returns a 32 bit 80186
pointer, with the segment part being the SEGMT__
variable. Offset () and Build__Ptr() are simple func-
tions written in assembly language included in the C__
Assy__Support module.

In the small model, Offset () and Build__Ptr() are not
needed, but the variable SEGMT__ is still needed for
determining the SCB pointer in the ISCP, and in the
Transmit and Receive Buffer Descriptors.

3.0 THE 82586 HANDLER

3.1 The Buffer Model

The buffer model chosen for the 82586 Handler is the
“Design Model” as described in ‘“Programming the
82586”. This is based on the 82586 driver as a special
driver rather than as a standard driver. Using this ap-
proach the ULCS directly accesses the 82586’s Trans-
mit and Receive Buffers, Buffer Descriptors and Frame
Descriptors. This eliminates taffer copying. Transmit
and receiver buffer passing is done entirely through
pointers.

intel

AP-235

The only hardware dependencies between the Data
Link and ULCS interface are the buffer structures. The
ULCS does not handle the 82586’s CBs, SCB or initiali-
zation structures. To isolate the data link interface from
any hardware dependencies while still using the design
model, another level of buffer copying must be intro-
duced. For example, when the ULCS transmits a frame
it would have to pass its own buffers to the data link.
The data link then copies the data from ULCS buffers
into 82586 buffers. When a frame is received, the data
link copies the data from the 82586’s buffers into the
ULCS buffers. The more copying that is done the slow-
er the throughput. However, this may be the only way
to fit the data link into the operating system. The 82586
Handler can be made hardware independent by adding
a receive and transmit function to perform the buffer
copying.

The 82586 Handler allocates buffers from two pools of
memory: the Transmit pool, and the Receive pool as
illustrated in Figure 3. The Transmit pool contains
Transmit Buffer Descriptors (TBDs) and Transmit
Buffers (TBs). The Receive pool contains Frame De-
scriptors (FDs), Receive Buffer Descriptors. (RBDs),
and Receive Buffers (RBs).

UPPER LAYER
COMMUNICATIONS SOFTWARE
SEND | RECEVE
TRANSMIT RECEIVE
POOL POOL
T8D ReD

8
RB
82586 HANDLER -

231421-3

Figure 3. 82586 Handler Memory
Management Model

When the ULCS wants to transmit, it requests a TBD
from the handler. The handler returns a pointer to a
free TBD. Each TBD has a TB attached to it. The
ULCS fills the buffer, sets the appropriate fields in the
TBD, and passes the TBD pointer back to the handler

for transmission. After the frame is transmitted, the .

handler places the TBD back into the free TBD pool. If
the ULCS needs more than one buffer per frame, it
simply requests another TBD from the handler and
performs the necessary linkage to the previous TBD.

On the receive side, the RFA pool is managed by the
82586 itself. When a frame is received, the 82586 inter-

rupts the handler. The handler passes a FD pointer to
the ULCS. Linked to the FD is one or more RBDs and
RBs. The ULCS extracts what it needs from the FD,
RBDs and RBs, and returns the FD pointer back to the
handler. The handler places the FD and RBDs back
into_the free RFA pool.

3.2 The Handler Interface’

The handler interface provides the following basic func-
tions:

® initialization

sending and receiving frames-

adding and deleting multicast addresses
getting transmit buffers

returning receive buffers

e o o o

Figure 4 lists the Handler Interface functions.

On power up, the initialization function is called. This
function initializes the 82586, and performs diagnostics.
After initialization, the handler is ready to transmit and
receive frames, and add and delete multicast addresses.

To send a frame, the ULCS gets one or more transmit
buffers from the handler, fills them with data, and calls
the send function. When a frame is received, the han-
dler calls a receive function in the ULCS. The ULCS
receive function removes the information it needs and
returns the receive buffers to the handler. The addition
and deletion of multicast addresses can be done “on the
fly” any time after initialization. The receiver doesn’t
have to be disabled when this is done.)

The command interface to the handler is totally asyn-
chronous—the ULCS can issue transmit commands or
multicast address commands whenever it wants. The
commands are queued by the handler for the 82586 to
execute. If the command queue is full, the send frame
procedure returns a false status rather than true. The
size of the command queue can be set at compile time
by setting the CB—CNT constant. Typically the com-
mand queue never has more than a few commands on it
because the 82586 can execute commands faster than
the ULCS can issue them. This is not the case in a
heavily loaded network when deferrals, collisions, and
retries occur. -

The command interface to the 82586 handler is hard-
ware independent; the only hardware dependence is the
buffering. A hardware independent command interface
doesn’t have any performance penalty, but some 82586
programmability is lost. This shouldn’t be of concern

-since most data links do not change configuration pa-

rameters during operation. One can simply modify a
few constants and recompile to change frame and net-
work parameters to support other data links.

AP-235

Handler Interface Functions

Description

Send__Frame (ptbd, padd)

Recv__Frame (pfd)
Add__Muiticast__Address (pma)
Delete__Multicast__Address (pma)

Put__Free__Rfa (pfd)

Initialize the Handler

Sends a frame to the cable.
ptbd—Transmit Buffer Descriptor pointer
padd—Destination Address pointer
Handler calls this function which resides in the ULCS.
pfd__Frame Descriptor pointer

Adds one multicast address
pma—Multicast Address pointer

Deletes one multicast address

Get a Transmit Buffer Descriptor pointer
Returns a Frame Descriptor and Receive
Buffer Descriptors to the 82586.

Figure 4. List of Handler Interface Functions

CB_TOS

cB cB cB
STAT=0 r STAT=0 r STAT=0
EL=1 EL=1 EL=1
LINK LINK NULL

N\

g

"N\

231421-5
Figure 5. Free CB Pool
TBD_TOS
TBD T8D TBD
—»| TBUF_SIZE _’—b TBUF_SIZE _|-> TBUF_SIZE
LINK LINK NULL
—]82586 BUF_PTR 82586 BUF_PTR 82586 BUF_PTR
80186 BUF_PTR 80186 BUF_PTR 80186 BUF_PTR
TBUF (TBUF_SIZE) TBUF (TBUF_SIZE) TBUF (TBUF_SIZE)
231421-4

Figure 6. Free Transmit Buffer Descriptor Pool

1-5

intel

AP-235

3.3 Initialization

The function which initializes the 82586 handler, Init__
586(), is called by the ULCS on power up or reinitiali-
zation. Before this function is called, an 82586 hard-
ware or software reset should occur. The Initialization
occurs in three phases. The first phase is to initialize the
memory. This includes flags, vectors, counters, and
data structures. The second phase is to initialize the
82586. The third phase is to perform self test.diagnos-
tics. Init__586() returns a status byte indicating the
results of the diagnostics.

Init__586() begins by toggling the 82501 loopback pin.
If the 82501 is powered up in loopback, the CRS and
CDT pin may be active. To reset this condition, the
loopback pin is toggled. The 82501 should remain in
loopback for the first part of the initialization function.

Phase 1 executes initialization of all the handlers flags,
interrupt vectors, counters, and 82586 data structures.
There are two separate functions which. initialize the
CB and RFA pools: Build__CB() and Build__Rfa().

3.3.1 BUILDING THE CB AND RFA POOLS

buna__CbB() builds a stack of free linked Command
Blocks, and another stack of free linked Transmit Buff-
er Descriptors. (See Figures 5 and 6.) Each stack has a
Top of Stack pointer, which points to the next free
structure. The last structure on the list has a NULL
link pointer.

The CBs within the list are initialized with O status, EL
bit set, and a link to the next CB. The TBD structures
are initialized with the buffer size, which is set at com-
pile time with the TBUF__SIZE constant, a link to the
next TBD, and an 82586 pointer to the transmit buffer.
This pointer is a 24 bit flat/physical address. The ad-
dress is built by taking the transmit buffer’s data seg-
ment address, shifting it to the left by 4 and adding it to
the transmit buffer offset. An 80186 pointer to the
transmit buffer is added to the TBD structure so that
the 80186 does not have to translate the address each
time it accesses the transmit buffer.

Build__Rfa() builds a linear linked Frame Descriptor
list and a Receive Buffer Descriptor list as shown in
Figure 7. The status and EL bits for all the free FDs are
0. The last FD’s EL bit is 1 and link pointer is NULL.
The first FD on the FD list points to the first RBD on
the RBD list. The RBDs are initialized with both 82586
and 80186 buffer pointers. The 80186 buffer pointer is
added to the end of the RBD structure. Begin and end
pointers are used to mark the boundaries of the free
lists.

3.3.2 82586 INITIALIZATION

The 82586 initialization data structure SCP is already
set since it resides in ROM, however, the ISCP must be
loaded with information. Within the SCP ROM is the
pointer to the ISCP; the ISCP is the only absolute ad-
dress needed in the software. Once the ISCP address is
determined, the ISCP can be loaded. The SCB base is
obtained from the C__Assy__Support module. The
global variable SEGMT__contains the address of the

BEGIN_FD END_FD
FD FD FD
STAT=0 STAT=0 STAT=0
EL=S=0 l EL=S=0 | EL=1 S=0
FD LINK : FD LINK NULL
—] RBD OFFSET NULL NULL
‘DA DA DA
SA SA SA
LENGTH LENGTH LENGTH
END_RBD
M LPRBDACT COUNT RBDACT COUNT RBDACT couf:
RBD LINK RBD LINK NULL
—182586 BUF_PTR |82586 BUF_PTR 82586 BUF_PTR
RBUF_SIZE RBUF_SIZE RBUF_SIZE
80186 BUF_PTR 80186 BUF_PTR 80186 BUF_PTR
RBUF (RBUF_SIZE) RBUF (RBUF_SIZE) RBUF (RBUF_SIZE)
—p -

"

231421-6

Figure 7. Free RFA

1-6

intel

AP-235

data segment of the handler. The 80186 shifts this value
to the left by 4 and loads it into the SCB base. The SCB
offset is now determined by taking the 32 bit SCB
pointer and passing it to the Offset() function.

The 82586 interrupt is disabled during initialization be-
cause the interrupt function is not designed to handle
82586 reset interrupts. To determime when the 82586'is
finished with its reset/initialization, the SCB status is
polled for both the CX and CNA bits to be set. After
~ the 82586 is initialized, both the CX and CNA inter-
rupts are acknowledged.

The 82586 is now ready to execute commands. The
Configuration is executed first to place the 82586 in
internal loopback mode, followed by the IA command.
The address for the IA command is read off of a prom
on the PC board.

3.3.3 SELF TEST DIAGNOSTICS

The final phase of the handler initialization is to run the
self test diagnostics. Four tests are executed: Diagnose
command, Internal loopback, External loopback
through the 82501, and External loopback through the
transceiver. If these four tests pass, the data link is
ready to go on line.

The function that executes these diagnostics is called
Test__Link(). If any of the tests fail, Test__Link() re-
turns immediately with the Self__Test global variable
set to the type of failure. This Self__Test global variable
is then returned to the function which originally called
Init__586(). Therefore Init__586() can return one of
five results: FAILED__ DIAGNOSE, FAILED__
LPBK__INTERNAL, FAILED__LPBK__EXTER-
NAL, FAILED__LPBK__TRANSCEIVER or
PASSED.

INITIALIZATION DIAGNOSTICS

EXECUTE DIAGNOSE

ENABLE RECEIVER

FAILED DIAGNOSE

I SEND LOOPBACK FRAMES J

0

FAILED INTERNAL LOOPBACK I

<

CONFIGURE 82586
TO EXTERNAL LOOPBACK

v

I SEND LOOPBACK FRAMES

vl

FAILED EXTERNAL LOOPBACK |

?——4

| Taxe esi our o Loopaack |

SEND LOOPBACK FRAMES

é

RETURN

| THROUGH TRANSCEIVER

FAILED LOOPBACK

231421-7

Figure 8. Initialization Diagnostics: Test__Link ()

intel :

AP-235

The Diagnose() function, called by Test__Link(), does
not return until the diagnose command is completed. If
the interrupt service routine detects that a Diagnose
command was completed then it sets a flag to allow the
Diagnose() function to return, and it also sets the
Self__Test variable to FAIL if the Diagnose command
failed. If the Diagnose command completed successful-
ly, the loopback tests are performed.

Before any loopback tests are executed, the Receive
Unit is enabled by calling Ru__Start(). Loopback tests
begin by calling Send__Lpbk__Frame(), which sends 8
frames with known loopback data and its own destina-
tion address. More than one loopback frame is sent in
case one or more of them are lost. Also several of the

frames will have been received by the time flags.lpbk__

test is checked.

Two flag bits are used for the loopback tests:
flags.Ipbk__mode, and flags.lpbk__test. flags.Ipbk__
mode is used to indicate to the receive section that the
frames received are potentially loopback frames. The
receive section will pass receive frames to the Loopback
Check() function if the flags.lpbk__mode bit is set. The
Loopback__Check() function first compares the source
address of the frame with its station address. If this
matches then the data is checked with the known loop-
back data. If the data matches, then the flags.lpbk__test
bit is set, indicating a successful loopback. The flow of
the Test__Link() function is displayed in Figure 8.

3.4 Command Processing

Command blocks are queued up on a static list for the
82586 to execute. The flow of a command block is giv-
en in Figure 9. When the handler executes a command
it first has to get a free command block. It does this by
calling Get__CB() which returns a pointer to a free
command block. The CB structure is a generic one in
which all commands except the MC-Setup can fit in.
The handler then loads into the CB structure the type
of command and associated parameters. To issue the
command to the 82586 the Issue__CU__Cmd() func-
tion is called with the pointer to the CB passed to this
function. Issue__CU__Cmd() places the command on

LOAD COMMAND
AND PARAMETERS

['1ssue_cu_cwmp (pcB) |

Figure 9. The Flow of a Command Block

231421-8

the 82586’s static command block list. After the 82586
executes the command, it generates an interrupt. The
interrupt routine, Isr__586(), processes the command
and returns the Command Block to the free command
block list by calling Put__Cb(). '

3.4.1 ACCESSING COMMAND BLOCKS-GET__
CB() and PUT_CB()

Get__Cb() returns a pointer to a free command block.
The free command blocks are in a linear linked list
structure which is treated as a stack. The pointer cb__
tos points to the next available CB. Each time a CB is
requested, Get__Cb() pops a CB off the stack. It does
this by returning the pointer of cb__tos. cb__tos is then
updated with the CB’s link pointer. When the CB list is
empty, Get__Cb() returns NULL.

There are two types of nulls, the 82586 ‘NULL’ is a 16
bit offset, OFFFFH, in the 82586 data structures. The
80186 null pointer, ‘pNULL’, is a 32 bit pointer; with
OFFFFH offset and the 82586 handler’s data segment,
SEGMT__, as the base.

Put__Cb() pushes a free command block back on the
list. It does this by placing the cb__tos variable in the
returned CB’s link pointer field, then updates cb__tos
with the pointer to the returned CB.

3.4.2 ISSUING CU COMMANDS-ISSUE_CU_
CMD()

This function queues up a command for the 82586 to
execute. Since static lists are used, each command has
its EL bit set. There is a begin__cbl pointer and an
end__cbl pointer to delineate the 82586’s static list. If
there are no CBs on the list, then begin__cbl is set to
pNULL. (Figure 10 illustrates the static list.) Each
time a command is issued, a deadman timer is set..
When the 82586 interrupts the CPU with a command
completed, the deadman timer is reset.

Issue__Cu__Cmd() begins by disabling the 82586’s in-
terrupt. It then determines whether the list is empty or
not. If the list is empty, begin and end pointers are
loaded with the CB’s address. The CU must then be
started. Before a CU__START can be issued, the SCB’s
cbl__offset field must be loaded with the address of the
command, the Wait__Scb() function must be called to
insure that the SCB is ready to accept a command, and
the deadman timer must be initialized. If the list is not
empty, then the command block is queued at the end of*
the list, and the interrupt service routine Isr__586(),
will continue generating CAs for each command linked
on the CB list until the list is empty.

AP-235
scB BEGIN_CBL END_CBL
| cB, B, oy
CBL POINTER] STAT STAT | EeL=1
EL=1_CMD EL=1 TRANSMIT CMD
LINK LINK NULL
e
BD POINTER
8D, 1 180, 3 T80n
0 [ACT. COUNT! J 0 | ACT. COUNT J 1 | ACT. COUNT
NEXT BD NEXT BD NULL
BUFFER BUFFER | ***| BUFFER
POINTER POINTER POINTER
BUFFER BUFFER BUFFER
1 2 N
231421-9

Figure 10. The Static Command Block List

3.4.3 INTERRUPT SERVICE ROUTINE-ISR__
586()

Isr__586() starts off by saving the interrupts that were
generated by the 82586 and acknowledging them. Ac-
knowledgment must be done immediately because if a
second interrupt were generated before the acknowl-
edgment, the second interrupt would be missed. The
interrupt status is then checked for a receive interrupt
and if one occurred the Recv__Int__Processing() func-
tion is called. After receive processing is check the CPU
checks whether a command interrupt occurred. If one
did, then the deadman timer is reset and the results of
the command are checked. There are only two particu-
lar commands which the interrupt results are checked
for: Transmit and Diagnose. The Diagnose command
needs to be tested to see if it passed, plus the diagnose
status flag needs to be set so that the initialization pro-
cess can continue.

The transmit command status provides network man-
agement and station diagnostic information which is
useful for the “Network Management” function of the
ISO model. The following statistics are gathered in the
interrupt routine: good__transmit__cnt, sqe__err__cnt,
defer__cnt, no__crs__cnt, underrun__cnt, max__col___
cnt. To speed up transmit interrupt processing a flag is
tested to determine whether these statistics are desired,
if not this section of code is skipped.

The sqe error requires special considerations when used
for statistic gathering or diagnostics. The sqe status bit
indicates whether the transceiver passed its self test or
not. The transceiver executes a self test after each trans-
mission. If the transceiverjs self test passed, it will acti-
vate the collision signal during the IFS time.

1-9

The sqe status bit will be set if the transceiver’s self test
passed. However if the sqe status bit is not set, the
transceiver may still have passed its self test. Several
events can prevent the sqe bit from being set. For exam-
ple, the first transmit command status after power up
will not have the sqe bit set because the sqe is always
from the previous command. Also if any collisions oc-
cur, the sqe bit might not be set. This has to do with the
timing of when the sqe signal comes from the transceiv-
er. It is possible that a JAM signal from a remote sta-
tion can overlap the sqe signal in which case the 82586
will not set the sqe status bit. Therefore the sqe error
count should only be recorded when no collisions oc-
cur.

One other situation can occur which will prevent the
SQE status bit from being set. If transmit command
reaches the maximum retry count, the next transmit
command’s SQE bit will not be set.

The final phase of interrupt command processing deter-
mines if another command is linked, and returns the
CB to the free command block list. Another command
being linked is indicated by the CB link field not being
NULL. In this case the deadman timer and the 82586’s
CU are re-started. If the CB link is NULL, there are no
further commands to execute, and begin__cbl is set to
pNULL.

3.4.4 SENDING FRAMES-SEND__FRAME (PTBD,
PADD)

Send__Frame() receives two parameters, a pointer to
the first Transmit Buffer Descriptor, and a pointer to
the destination address. There may be one or more
TBDs attached. The last TBD is indicated by its link

intel

AP-235

field being NULL and the EOF bit set. It is the respon-
sibility of the ULCS to make sure this is done before
calling Send__Frame().

Send__Frame() begins by trying to obtain a command
block. If the free command block list is empty, the send
frame function returns with a false result. It is up to the
ULCS to either continue attempting transmission or at-
tempt at a later time. The send frame function calcu-
lates the length field by summing up the TBDs actual
count field. After the length field is determined, send
frame checks to see if padding is required. If padding is
necessary, Send Frame will change the act count field
in the TBD to meet the minimum frame requirements.
This technique transmits what ever was in the buffer as
padding data. If security is an issue, the padding data in
the buffer should be changed.

SAVE POINTER IN
BEGIN_PTBD

LINK PREVIOUS
BUFFER WITH NEW ONE

&
<
A4

| P surrer witw paa |

NEED
ANOTHER
BUFFER

YES

SET EOF BIT
AND ACT. COUNT

v

SEND_FRAME (BEGIN_PTBD, PADD) |

231421-10

Figure 11. Flow Chart for Sending a Frame

3.4.5 ACCESSING TRANSMIT BUFFERS-GET_
TBD() AND PUT_TBD()

Get__Tbd() returns a pointer to a free Transmit Buffer
Descriptor, and Put__Tbd() returns one or more
linked Transmit Buffer Descriptors to the free list. The
TBD which Get__Tbd() allocates has its link pointer
set to NULL, and its EOF bit cleared. If another buffer
is needed, the link field in the old TBD must be set to
point to the new TBD. The last TBD used should have

_ its link pointer set to NULL and its EOF bit set. Figure

11 shows the flow chart of getting buffers and sending a
frame. '

Put__Tbd (ptbd) is called by the Isr__586() function
when the 82586 is done transmitting the buffers. A
pointer to the first TBD is passed to Put__Tbd().
Put__Tbd() finds the end of the list of TBDs and re-
turns them to the free buffer list.

3.4.6 MULTICAST ADDRESSES

The 82586 handler maintains a table of multicast ad-
dresses. Initially this table is empty. To enable a multi-
cast address the Add__Multicast__Address(pma) func-
tion is called; to disable a multicast address, Delete__
Multicast__ Address(pma) function is called. Both func-
tions accept a parameter which points to the multicast
address. Add and Delete functions perform linear
searches through the Multicast Address Table (MAT).

Add scans the entire MAT once to check if the address
being added is a duplicate of one already loaded. Add
will not enter a duplicate muilticast address. If there
are no duplicates Add goes to the beginning of the
MAT and looks for a free location. If it finds one, it
loads the new address into the free location and sets the
location status to INUSE. If no free locations are avail-
able, Add returns a false result.

Delete looks for a used location in the MAT. When it
finds one, it compares the address in the table with the
address passed to it. If they match, the location status is
set to FREE and a TRUE result is returned. If no
match occurs, the result returned is FALSE.

If Add or Delete change the MAT, they update the
82586 by calling Set_ Multicast__Address(). This
function executes an 82586 MC Setup command. Set__
Mulitcast__Address() uses the addresses in the MAT

. to build the MC Setup command. The MC Setup com-

mand is too big to be built from the free CBs. Free CB

intel

AP-235

command blocks are 18 bytes long, while the MC Setup
command can be up to 16,392 bytes. Therefore a sepa-
rate Multicast Address Command Block (ma__cb)
must be allocated and used. The size of the ma__cb and
MAT are determined at compile time based on the
MULTI_ADDR__CNT constant. The design exam-
ple allows up to 16 multicast addresses.

Since there is only one ma__cb, and it is not compatible
with the other CBs, it must be treated differently. Only
one ma__cb can be on the 82586 command list. The
ma__cb command word is used as a semaphore. If it is
zero, the command is available. If not, Set__Multi-
cast__Address() must wait until the ma__cb is free.
Also the interrupt routine can’t return the ma__cb to
the free CB list. It just clears the cmd field, to indicate
that ma__cb is available.

The 82586’s receiver does not have to be disabled to
execute the MC Setup command. If the 82586 is receiv-
ing while this command is accessed, the 82586 will fin-
ish reception before executing the MC Setup comand. If
the MC Setup command is executing, the 82586 auto-
matically ignores incoming frames until the MC Setup
is completed. Therefore multicast addresses can be add-
ed and deleted on the fly.

ENTER INTERFACE FUNCTION

v

| FLAGS. RESET_SEMA = 1 |

!

I EXECUTE INTERFACE FUNCTION I

| FLAGS. RESET_SEMA =0 |

NO
FLAGS. RESET_PEND =1

RESET_586 ()

&

<
\4

I RETURN I

Figure 12. Reset Semaphore

231421-11

3.4.7 RESETTING THE 82586-RESET__586()

The 82586 rarely if ever locks up in a well behaved
network; (i.e. one that obeys IEEE 802.3 specifica-
tions). The lock-ups identified were artificially created
and would normally not occur. This data link driver
has been tested in an 8 station network under various
loading conditions. No lock-ups occurred under any of
the data link drivers test conditions. However the reset
software has been tested by simulating a lockup. This
can be done by having the 82586 transmit, and dis-
abling the CTS pin for a time longer than the deadman
timer.

An 82586 deadlock is not a fatal error. The handler is
designed to recover from this problem. As mentioned
before, each time the 82586 is given a CA to begin
executing a command, a deadman timer is set. The
deadman timer is reset when a CNR interrupt is gener-
ated. If the CNR interrupt is not generated before the
deadman timer expires, the 82586 must be reset.

Resetting of the 82586 should not be done while the
handler software is executing. This could create a soft-
ware deadlock by interrupting a critical section of code
in the handler. To insure that the Reset__586() func-
tion is not executed while the handler is executing, all
of the entry points to the handler (i.e. interface func-
tions) set a semaphore flag bit called flags.reset__sema.
This flag is cleared when the interface functions are
exited.

If the Deadman timer interrupt occurs while
flags.reset__sema is set, another flag is set (flag.reset__
pend) indicating that the Reset__586() function should
be called when the interface functions are exited. How-
ever if the deadman timer interrupt occurs when
flags.reset__sema is clear, Reset__586() is called imme-
diately. Figure 12 shows the logic for entering and exit-
ing interface functions.

Reset__586() begins by disabling the 82586 interrupt,
placing the ESI in loopback, and resetting the 82586.
The reset can be a software or a hardware reset. How-
ever, there are certain lockups in the 82586 where only
a hardware reset will suffice. (The 82586 errata sheet
explicitly indicates which deadlocks require a hardware
reset.) After the reset, Reset__586() executes a Config-
ure, IA-Setup, and a MC-Setup command; the MC__

" Setup command is built from the multicast address ta-

ble (MAT). The 82586 Command Queues and Receive
Frame Queues are left untouched so that the 82586 can
continue executing where it left off before the deadlock.
This way no frames or commands are lost. This re-
quires that a separate reset CB and reset Multicast CB
is used, because other CBs already in use cannot be
disturbed.

intel

AP-235

3.5 Receive Frame Processing

The following functions are used for Receive Frame
Processing:

Recv__Int__Processing() Called by Isr___586() to re-
move FDs and RBDs from
‘the 82586’s RFA

Called by Recv__Int__Pro-
cessing(). This function re-
sides in the ULCS

Used for perfect Multicast
filtering

Returns FDs and RBDs to
the 82586’s RFA -

Recv__Frame (pfd)

Check__Multicast (pfd)

Put__Free__Rfa (pfd)

Ru__Start() Restarts the RU when in the
IDLE or No Resources

state.

- 3.5.1 RECEIVE INTERRUPT PROCESSING-
) RECV__INT_PROCESSING()

_ The Recv__Int__Processing() function is called by
Isr__586() when the FR bit in the SCB is set. The
Recv__Int__Processing() function checks whether any
FDs and RBDs on the free list have been used by the
82586. If they have, Recv__Int__ Processing() removes
the used FDs and RBDs from the free list, and passes
them to the ULCS.

The Recv__Int__Processing() function is a loop where

each pass removes a frame from the 82586’s RFA. -

When there are no more used FDs and RBDs on the
RFA, the function calls RU__Start(), then returns to
Isr__586(). The first part of the loop checks to see if
the C bit in the first FD of the free FD list is set. If the
C bit is set, the function determines if one or more
RBDs are attached. If there are RBDs attached, the
end of the RBD list is found. The last RBD’s link field
is used to update begin__rbd pointer, and then it’s set
to NULL.

After the receive frame has been delineated from the
RFA, some information about the frame is needed to
determine which function to pass it to. Since the save
bad frame configure bit is not set, the only bad frame
on the list could be an out of resource frame. An out of
resource frame is returned to the RFA by calling Put__
Free_RFA (pfd). If the flags.lpbk__mode bit is set, the
frame is given to the loopback check function. If the
destination address of the frame indicates a multicast,
the check multicast function is called. If the frame has
passed all of the above tests and still has not been re-
turned, it is passed to the Recv__Frame() function
which resides in the ULCS.

Check__Multicast (pfd) determines whether the multi-
cast address received is in the multicast address table.
This is necessary because the 82586 does not have per-

fect multicast address filtering. Check__Multicast does
a byte by byte comparison of the destination address
with the addresses in the multicast address table. If no
match occurs, it returns false, and Recv__Int__Process-
ing calls Put__Free_ RFA() to return the frame to the
RFA. If there is a match, Check__Multicast() returns
TRUE and Recv__Int__ Processing() calls Recv__
Frame(), passing the pointer to the FD of the frame
received. :

3.5.2 RETURNING FDs AND RBDs—PUT_
FREE_RFA (pfd)

Put__Free_ RFA combines Supply_ FD and Sup-
ply__RBD algorithms described in “Programming the
82586” into one function. The begin and end pointers
delineate what the CPU believes is the beginning and
end of the free list. The decision of whether to restart
the RU is made when examining both the free FD list
and the free RBD list. This is why two ru__start__flags
are used, one for the FD list and one for the RBD list.
Both flags are initialized to FALSE.

The function starts off by initializing the FD so that the
EL bit is set, the status is 0, and the FD link field is
NULL. The rbd pointer is saved before the rbd pointer
field in the FD is set to NULL. The free FD list is
examined and if it’s empty, begin—fd and end—fd are
loaded with the address of the FD being returned. In
this case the RU should not be restarted, because there
is only one FD on the free list. If the free FD list is not
empty, the FD being returned is placed on the end of
the list, the end pointer is updated, and the RU start
flag is set TRUE.

To begin the RBD list processing the end of the re-
turned RBD list is determined, and this last RBD’s EL
bit is set. If the free RBD list is empty, the returned
RBD list becomes the free RBD list. If there is more
than one RBD on the returned list, the ru start flag is
set TRUE. If the free RBD list is not empty, the re-
turned RBD list is appended on the end of the free list,
the end—rbd pointer is updated, and the ru start flag is
set TRUE. .

The last part of Put__Free_ RFA() is to determine
whether to call RU__Start(). Both ru start flags are
ANDed together, and if the result is TRUE, the Ru__
Start() function is called.

3.5.3 RESTARTING THE RECEIVE UNIT-RU_
START()

The Ru__Start() function checks two things before it
decides to restart the RU. The first thing it checks is
whether the RU is already READY. If it is, there is no
reason to restart it. If the RU is IDLE or in NO__RE-
SOURCES, then the second thing to check is whether
the first free FD on the free FD list has its C bit set. If
it does, then the RU should not be restarted. The rea-
son is that the free FD list should only contain free FDs

intel

AP-235

when the RU is started. If the C bit is set in the FD,
then not all the used FD have been removed yet. If the
RU is started when used FDs are still in the RFA, the
82586 will write over the used FDs and frames will be
lost. Therefore Ru__Start() is exited if the first FD in
the RFA has its C bit set. If the RU is not READY,
and begin__fd doesn’t point to a used FD, then the RU
is restarted.

Note that in “Programming the 82586 there are two
more conditions to be met before the RU is started: two
or more FD on the RFA, and two or more RBD on the
RFA. These conditions are checked in Put__Free__
RFA(), and Ru__Start() isn’t called unless they are
met.

4.0 LOGICAL LINK CONTROL

The IEEE 802.2 LLC function completes the Data
Link Layer of the OSI model. The LLC module in this
design example implements a class 1 level of service
which provides a connectionless datagram interface.
Several data link users or processes can run on top of
the data link layer. Each user is identified by a link
service access point (LSAP). Communication between
data link users is via LSAPs. An LSAP is an address
that identifies a specific user process or another layer

(see Figure 13). The LSAP addresses are defined as
follows:

Data Link Layer (Station Component) 00H
Transport Layer FEH
Network Management Layer 08H

User Processes multiples of 4 in the range

OCH < LSAP < FCH

Each receiving process is identified by a destination
LSAP (DSAP) and each sending process is identified
by a source LSAP (SSAP). Before a destination process
can receive a packet, its DSAP must be included in a
list of active DSAPs for the data link.

Figure 14 illustrates the relationship between the Sta-
tion Component and the SAP components. (The SAP
components are user processes.) The Station Compo-
nent receives all of the good frames from the Handler
and checks the DSAP address. If the DSAP address is
0, then the frame is addressed to the Station Compo-
nent and a Station Component Response is generated.
If the DSAP address is on the active DSAP list, then
the Station Component passes the frame to the ad-
dressed SAP. If the DSAP address is unknown, the
frame is returned to the handler.

TRANSPORT USER USER USER o0 o0
LAYER TASK TASK TASK
V' s 3
LSAP =0CH LSAP = 10H LSAP = 14H
LSAP = OFEH
v v
NETWORK DATA LINK
Vi NMF USER
LAYER INTERFACE
A } A »~
J LSAP = 08H
v Yy v

DATA LINK INTERFACE

A4

DATA LINK
CONTROLLER

T

v

NETWORK MEDIUM

231421-12

Figure 13. Data Link Interface

1-13

AP-235
SAP SAP SAP
COMPONENT COMPONENT | @ ® @ | comPONENT
#1 #N | uLcs

N

STATION COMPONENT] ~~~~~~ "~~~ " ""[1.c MODULE
HANDLER vAC
82586 | .
82501 PHYSICAL
231421-13

Figure 14. Station Component Relationship

There are 3 commands and 2 responses which the class
1 LLC layer must implement. Figure 15 shows IEEE
802.2 Class 1 commands and responses and Figure 16
shows the IEEE 802.2 Class 1 frame format.

Commands | Responses Description
Ul Unnumbered
Information
XID XID Exchange ID
TEST TEST Remote Loopback

Figure 15. IEEE 802.2 Class 1, Type 1 Commands
. and Responses

[LHEAD | DATA [TAL |
| bsAP | SSAP | CONTROL | DATA |

231421-14

Figure 16. IEEE 802.2 Class 1 Frame Format

From Figure 15 it can be seen that there are no LLC
class 1 Ul responses because information frames are not
acknowledged at the data link level. The only com-
mand frames that may require responses are XID and
TEST. If a command frame is addressed to the Station
Component, it checks the control field to see what type
of frame it is. If it’s an XID frame, the Station Compo-
" nent responds with a class 1 XID response frame. If it’s
a TEST frame, the Station Component responds with a
TEST frame, echoing back the data it received. In both
cases, the response frame is addressed to the source of
the command frame.

Any frames addressed to active SAPs are passed direct-
ly to them. The Station Component will not respond to
SAP addressed frames. Therefore it is the responsibility
of the SAPs to recognize and respond to frames ad-
dressed to them. When a SAP transmits a- frame, it
builds the IEEE 802.2 frame itself and calls the Han-
dler’s Send__Frame() function directly. The LLC
module is not used for SAP frame transmission. The
only functions which the LLC module implement are
the dynamic addition and deletion of DSAPs, multi-
plexing the frames to user SAPs, and the Station Com-
ponent command recognition and responses. This is
one implementation of the IEEE 802.2 standard. Other
implementations may have the LLC module do more
functions, such as SAP command recognitions and re-
sponses. A list of the functions included in the LLC
module is as follows:

LLC Functions + Description
Init__Llc() " Initializes the DSAP
address table and calls
Init__586()
Add__Dsap__ Add a DSAP address to

Address (dsap, pfunc) | the active list
‘| dsap - DSAP address
pfunc - pointer to the

SAP function

Delete—Dsap— Delete a DSAP address
Address (dsap) dsap - DSAP address

Recv—Frame (pfd) Receives a frame from

the 82586 Handler

pfd - Frame Descriptor

Pointer
Station—Component— | Generates a response to
Response (pfd) a frame addressed to the

Station Component
pfd - Frame Descriptor

Pointer

intel

AP-235

4.1 Adding and Deleting LSAPs

When a user process wants to add a LSAP to the active
list, the process calls Add__Dsap__Address(dsap,
pfunc). The dsap parameter is the actual DSAP ad-
dress, and the pfunc parameter is the address of the
function to be called when a frame with the associated
DSAP address is received.

The LLC module maintains a table of active dsaps
which consists of an array of structures. Each structure
contains two members: stat - indicates whether the ad-
dress is free or inuse, and (*p__sap__func)() contains
the address of the function to call. The index into the
array of structures is the DSAP address. This speeds up
processing by eliminating a linear search. Delete__
Dsap__Address (dsap) simply uses the DSAP index to
mark the stat field FREE.

5.0 APPLICATION LAYER

For most networks the application layer resides on top
of several other layers referred to here as ULCS. These
other layers in the OSI model run from the network
layer through the presentation layer. The implementa-
tion of the ULCS layers is beyond the scope of this
application note, however Intel provides these layers as
well as the data link layer with the OpenNET product
line. For the purpose of this application note the appli-
cation layer resides on top of the data link layer and its
use is to demonstrate, exercise and test the data link
layer design example.

There can be several processes sitting on top of the data
link layer. Each process appears as a SAP to the data
link. The UAP module, which implements the applica-
tion layer, is the only SAP residing on top of the data
link layer in this application example. Other SAPs
could certainly be added such as additional “connec-
tionless” terminals, a networking gateway, or a trans-
port layer, however in the interest of time this was not
done.

5.1 Application Layer Human Interface

The UAP provides a menu driven human interface via
an async terminal connected to port B on the iSBC
186/51 board. The menu of the commands is listed in
Figure 17 along with a description that follows:

Terminal Mode - implements a virtual terminal with
datagram capability (connectionless “class 1” service).
This mode can also be thought of as an async to IEEE
802.2/802.3 protocol converter.

Monitor Mode - allows the station to repeatedly trans-
mit any size frame to the cable. While in the Monitor
Mode, the terminal provides a dynamic update of 6
station related parameters.

High Speed Transmit Mode - sends frames to the cable
as fast as the software possibly can. This mode demon-
strates the throughput performance of the Data Link
Driver.

Change Transmit Statistics - When Transmit Statistics
is on several transmit statistics are gathered during
transmission. If Transmit Statistics is off, statistics are
not gathered and the program jumps over the section of
code in the interrupt routine which gathers these statis-
tics. The transmission rate is slightly increase when
Transmit Statistics is off.

Print All Counters - Provides current information on
the following counters.

Good frames transmitted:
Good frames received:

CRC errors received:
Alignment errors received:

Out of Resource frames:
Receiver overrun frames:

Each time a frame has been successfully transmitted the
Good frames transmitted count is incremented. The
same holds true for reception. CRC, Alignment, Out of
Resources, and Overrun Errors are all obtained from
the SCB. Underrun, lost CRS, SQE error, Max retry,
and Frames that deferred are all transmit statistics that
are obtained from the Transmit command status word.
82586 Reset is a count which is incremented each time
the 82586 locks up. This count has never normally been
incremented. .

T - Terminal Mode

X - High Speed Transmit Mode

P - Print All Counters

A - Add a Multicast Address

S - Change the SSAP Address

N - Change Destination Node Address
R - Re-Initialize the Data Link

M - Monitor Mode

V - Change Transmit Statistics
C - Clear All Counters

Z - Delete a Multicast Address
D - Change the DSAP Address
L - Print All Addresses

B - Change the Number Base

Figure 17. Menu of Data Link Driver Commands

intef

AP-235

Clear All Counters - Resets all of the counters. ‘

Add/Delete Multicast Address - Adds and Deletes
Multicast Addresses.

Change SSAP Address - Deletes the previous SSAP
and adds a new one to the active list. The SSAP in this
case is this stations LSAP. When a frame is received,
the DSAP address in the frame received is compared
with any active LSAPs on the list. The SSAP is also
used in the SSAP field of all transmitted frames.

Change DSAP Address - Delete the old DSAP and add
a new one. The DSAP is the address of the LSAP
which all transmit frames are sent to.

Change Destination Node Address - Address a new

node.

Print All Addresses - Display on the terminal the sta-
tion address, destination address, SSAP, DSAP, and all
multicast addresses.

Re-initialize Data Link - This causes the Data Link to
completely reinitialize itself. The 82586 is reset and

iSDM 86 Monitor, V1.0
Copyright 1983 Intel Corporation

.G D000:6

reinitialized, and the selftest diagnostic and loopback
tests are executed. The results of the diagnostics are
printed on the terminal. The possible output messages
from the 82586 selftest diagnostics are:

Passed Diagnostic Self Tests

Failed: Self Test Diagnose Command
Failed: Internal Loopback Self Test
Failed: External Loopback Self Test

Failed: External Loopback Through Transceiver Self
Test

Change Base - Allows all numbers to be displayed in
Hex or Decimal.

5.2 A Sample Session

The following text was taken directly from running the
Data Link software on a 186/51 board. It begins with
the iSDM monitor signing on and continues into exe-
cuting the Data Link Driver software.

ok 3K ok ok ok ok 3k 3K 3k ok sk ok ok ok 3 ok ok ok 3 ok 5k ok ok ok oK ok ok 3k ok oK ok ok 3 oK K 3k K ok ok ok ok ok K % ok 3R ok ok o ok ok ok ok Kok R Kok R Rk ok ok

*

*

* 82586 IEEE 802.2/802.3 Compatible Data Link Driver *
* *

%k ok ok ok ok o ok ok sk ok ok sk ok 3k ok sk ok ok sk ok ok ok ok ok sk 3 sk ok ok 3K ok R ok ok R ok R R ok 3 R ok 3 K ok 3 ok ok ok ok oK ok K ok ok R ok ok Kk koK ok

Passed Diagnostic Self Tests

Enter the Address of the Destination Node in Hex -> OOAAOOOO179E

Enter this Station's LSAP in Hex -> 20

Enter the Destination Node's LSAP in Hex -> 20

Do you want to Load any Multicast Addresses? (Y or N) -> Y

Enter' the Multicast Address in Hex -> 00AA00111111

Would you like to add another Multicast Address? (Y or N) => N

This Station's Host Address is: 00AA00001868

The Address of the Destination Node is: OOAAOOO0179E

This Station's LSAP Address is: 20

The Address of the Destination LSAP is: 20

The following Multicast Addresses are enabled: 00AA0O011l1l11l1

Inter : AP-235

Commands are:

T - Terminal Mode

X - High Speed Transmit Mode
Print All Counters

Add a Multicast Address
Change the SSAP Address

Change Destination Node Address

W o= o
1]
w = o (S Q < =
]

- Re-Initialize the Data Link

Enter a command, type H for Help -> P

- Monitor Mode

- Clear All Counters

- Change the DSAP Address
- Print All Addresses

- Change the number Base

Good frames transmitted: 24 Good frames received: 1
CRC errors received: 0 Alignment errors received: O
Out of Resource frames: 0 Receiver overrun frames: 0
82586 Reset: 0 Transmit underrun frames: O
Lost. CRS: 0 SQE errors: 9
Maximum retry: 0 Frames that deferred: 4

Enter a command, type H for Help -=> T

Would you like the local echo on? (Y or N) ==> Y
This program will now enter the terminal mode.

Press *C then CR to return back to the menu

Hello this is a test.

/*C CR */

Enter a command, type H for Help --> M

Do you want this station to transmit? (Y or N) -=-> Y
Enter the number of data bytes in the frame --> 1500

Hit any key to exit Monitor Mode.

of Good # of Good - CRC Alignment
Frames Frames Errors Errors
Transmitted Received
32 0 00000 00000
/* CR */

Enter a command, type H for Help --> X

Hit any key to exit High Speed Transmit Mode.
/" CR*/

Enter a command, type H for Help --> R
Passed Diagnostic Self Tests

No

- Change Transmit Statistics

Delete a Multicast Address

Receive

Resource Overrun

Errors

00000

Errors

00000

intel

AP-235

5.3 Terminal Mode

The Terminal mode buffers characters received from
the terminal and sends them in a frame to the cable.
When a frame is received from the cable, data is ex-
tracted and sent to the terminal. One of three events
initiate the UAP to send a frame providing there is data
to send: buffering more than 1500 bytes, receiving a
Carriage Return from the terminal, or receiving an in-
terrupt from the virtual terminal timer.

The virtual terminal timer employs timer 1 in the 80130
to cause an interrupt every .125 seconds. Each time the
interrupt occurs the software checks to see if it received
one or more characters from the terminal. If it did, then
it sends the characters in a frame.

The interface to the async terminal is a 256 byte soft-
ware FIFO. Since the terminal communication is full

duplex, there are two half duplex FIFOs: a Transmit

FIFO and a Receive FIFO. Each FIFO uses two func-
tions for I/0: Fifo__In() and Fifo__Out(). A block
diagram is displayed in Figure 18.

The serial I/0 for the async terminal interface is always
polled except in the Terminal mode where it is inter-
rupt driven. The Terminal mode begins by enabling the
8274 receive interrupt but leaves the 8274 transmit in-
terrupt disabled. This way any characters received from
the terminal will cause an interrupt. These characters
are then placed in the Transmit FIFO. The only time
the 8274 transmit interrupt is enabled is when the Re-

ceive FIFO has data in it. The receive FIFO is filled
from frames being received from the cable. Each time a
transmit interrupt occurs a byte is removed from the
Receive FIFO and written to the 8274. When the Re-
ceive FIFO empties, the 8274 transmit interrupt is dis-
abled.

The flow control implemented for the terminal inter-
face is via RTS and CTS. When the Transmit FIFO is
full, RTS goes inactive preventing further reception of
characters (see Table 1). If the Receive FIFO is full, -
receive frames are lost because there is no way for the
data link using class 1 service to communicate to the
remote station that the buffers are full. Lost receive
frames are accounted for by the Out of Resources
Frame counter.

The Async Terminal bit rate sets the throughput capa-
bility of the station in the terminal mode because the
bottle neck for this network is the RS232 interface. Us-
ing this fact a simple test was conducted to verify the
data link driver’s capability of switching between the
receiver’s No Resource state and the Ready State. For
example if station B is sending frames in the High
Speed Transmit mode to station A which is in the Ter-
minal mode, frames will be lost in station A. Under
these circumstances station A’s receiver will be switch-
ing from Ready state to- Out of Resources state. The
sum of Good frames received plus Out of Resource
frames from station A should equal Good frames trans-
mitted from station B; unless there were any underruns
or overruns.

Table 1. FIFO State Table

Function Present State Next State Action
FIFO_T_IN() EMPTY IN USE Start Filling Transmit Buffer
‘ IN USE FULL Shut Off RTS
FIFO_T_OUT() FULL IN USE Enable RTS
IN USE EMPTY Stop Filling Transmit Buffer
FIFO__R__IN() EMPTY IN USE Turn on TxInt
IN USE FULL Stop Filling FIFO from Receive Buffer
FIFO__R_OUT() FULL IN USE Start Filling FIFO from Receive Buffer
IN USE EMPTY Turn Off Txint

D —

ASYNC
TERMINAL

SEND FRAMES

RECEIVE FRAMES

231421-15

Figure 18

intel

AP-235

5.3.1 SENDING FRAMES

The Terminal Mode is entered when the Terminal__
Mode() function is called from the Menu interface.
The Terminal__Mode() function is one big loop, where
each pass sends a frame. Receiving frames in the Ter-
minal Mode is handled on an interrupt driven basis
which will be discussed next.

The loop begins by getting a TBD from the 82586 han-
dler. The first three bytes of the first buffer are loaded
with the IEEE 802.2 header information. The loop then
waits for the Transmit FIFO to become not EMPTY,
at which point a byte is removed from the Transmit
FIFO and placed in the TBD. After each byte is re-
moved from the Transmit FIFO several conditions are
tested to determine whether the frame needs to be
transmitted, or whether a new buffer must be obtained.
A frame needs to be transmitted if: a Carriage Return is
received, the maximum frame length is reached, or the
send__frame flag is set by the virtual terminal timer. A
new buffer must be obtained if none of the above is true
and the max buffer size is reached.

If a frame needs to be sent the last TBD’s EOP bit is set
and its buffer count is updated. The 82586 Handler’s
Send__Frame() function is called to transmit the
frame, and continues to be called until the function re-
turns TRUE.

The loop is repeated until a *C followed by a Carriage
Return is recieved.

5.3.2 RECEIVING FRAMES

Upon initialization the UAP module calls the Add__
Dsap__Address(dsap, pfunc) function in the LLC mod-
ule. This function adds the UAP’s LSAP to the active
list. The pfunc parameter is the address of the function
to call when a frame has been received with the UAP’s
LSAP address. This function is Recv__Data__1().
Recv__Data_ 1() looks at the control field of the
frame received and determines the action required.

The commands and responses handled by Recv__
Data__1() are the same as the Station Component’s
commands and responses given in Figure 15. One dif-
ference is that Recv__Data__1() will process a Ul
command while the Station Component will ignore a
UI command addressed to it.

Recv__Data__1() will discard any Ul frames received
unless it is in the Terminal Mode. When in the Termi-
nal Mode, Recv__Data__1() skips over the IEEE 802.2
header information and uses the length field to deter-
mine the number of bytes to place in the Receive FIFO.
Before a byte is placed in the FIFO, the FIFO status is
checked to make sure it is not full. Recv__Data__1()
will move all of the data from the frame into the Re-
ceive FIFO before returning.

When a frame is received by the 82586 handler an in-
terrupt is generated. While in the 82586 interrupt rou-
tine the receive frame is passed to the LLC layer and
then to the UAP layer where the data is placed in the
Receive FIFO by Recv__Octal__Data_ 1(). Since
Recv__Data__1() will not return until all of the data
from the frame has been moved into the Receive FIFO,
the 8274 transmit interrupt must be nested at a higher
priority than the 82586 interrupt to prevent a software
lock. For example if a frame is received which has more
than 256 bytes of data, the Receive FIFO will fill up.
The only way it can empty is if the 8274 interrupt can
nest the 82586 interrupt service routine. If the 8274
could not interrupt the 82586 ISR then the software
would be stuck in Recv__Data__1() waiting for the
FIFO to empty.

5.4 Monitor Mode

The Monitor Mode dynamically updates 6 station relat-
ed parameters on the terminal as shown below.

The Monitor__Mode() function consists of one loop.
During each pass through the loop the counters are
updated, and a frame is sent. Any size frame can be
transmitted up to a size of the maximum number of
transmit buffers available. Frame sizes less than the
minimum frame length are automatically padded by the
82586 Handler.

The data in the frames transmitted in the Monitor
Mode are loaded with all the printable ASCII charac-
ters. This way when one station is in the Monitor Mode
transmitting to another station in the Terminal Mode,
the Terminal Mode station will display a marching pat-
tern of ASCII characters.

of Good # of Good | CRC | Alignment No Receive

Frames Frames Errors Errors Resource | Overrun
Transmitted Received Errors Errors
32 0 00000 00000 00000 00000

intef

AP-235

5.5 High Speed Transmit Mode

The High Speed Transmit Mode demonstrates the
throughput performance of the 82586 Handler. The
Hs__Xmit__Mode() function operates in a tight loop
which gets a TBD, sets the EOF bit, and calls Send__
Frame(). The flow chart for this loop is shown in Fig-
ure 19.

The loop is exited when a character is received from the
~ terminal. Rather than. polling the 8274 for a receive

CHARACTER
RECEIVED
INTERRUPT

SET EOF BIT
IN TBD

| caLL senp_Frame() |

.

231421-16

Figure 19. High Speed Transmit Mode
Flow Chart

buffer full status, the 8274’s receive interrupt is used.
When the Hs__Xmit__Mode() function is entered, the
hs__stat flag is set true. If the 8274 receive interrupt
occurs, the hs__stat flag is set false. This way the loop
only has to test the hs__stat flag rather than calling
inb() function each pass through the loop to determine
whether a character has been received.

- The pérformance measured on an 8 MHz 186/51 board

is 593 frames per second. The bottle neck in the
throughput is the software and not the 82586. The size
of the buffer is not relevant to the transmit frame rate.
Whether the buffer size is 128 bytes or 1500 bytes,
linked or not, the frame rate is still the same. Therefore
assuming a 1500 byte buffer at 593 frames per second,
the effective data rate is 889,500 bytes per second.

This can easily be demonstrated by using two 186/51
boards running the Data Link software. The receiving
stations counters should be cleared then placed in the
Monitor mode. When placing it in the monitor mode,
transmission should not be enabled. When the other
station is placed in the High Speed Transmit Mode a
timer should be started. One can use a stop watch to
determine the time interval for transmission. The frame
rate is determined by dividing the number of frames
received in the Monitor station by the time interval of
transmission. : :

Inte[AP-235

APPENDIX A
COMPILING, LINKING, LOCATING, AND RUNNING THE
SOFTWARE ON THE 186/51 BOARD

WKk KKK KKK oK K KKK KK K

Instructions for using the 186/51 board
Use 27128A for no wait state operation. 27128s can be used but wait states will have to be added.

Copy HL.LBYT and LO.BYT files into EPROMs
PROMs go into U34 - HLBYT and U39 - LO.BYT on the 186/51 board

JUMPERS REQUIRED WIRE WRAP
Jumper the 186/51 board for 16K byté PROMs in U34 E36-E47 IN E43-E50 IN
and U39 Table 2-5 in 186/51 HARDWARE REFER- E39-E44 IN E46-E47 IN
ENCE MANUAL (Rev-00D E79-E45IN E90-E48 IN
186/51(ES) 186/51 (S)/186/51

E151-E152 OUT E199-E203 OUT USE SDM MONITOR
E152-E150 IN E203-E191 IN o nould h N 6

The SDM Monitor should have the 82586’s SCP
E94-E95IN E120-E119IN burned into ROM. The ISCP is located at OFFFOH.
E100-E106 IN E116-E112IN Therefore for the SCP the value in the SDM ROM
E107-E113IN E111-E107 IN should be:
E133-E134 IN E94-E93 IN ADDRESS DATA
also change interrupt priority jumpers - switch 8274 FFFF6H XXOOH
and 82586 interrupt priorities FFFFSH XXXXH
E36-E44 OUT E43-E470UT FFFFAH XXXXH
E39-E47 OUT E46-ESOOUT ~ FFFFCH FFFOH
E37-E45 OUT E44-c4gouT FFFFEH XXOOH

To run the program begin execution at 0D000:6H

1-21

mtel AP-235

I.E. G D0O00:6
GOOD LUCK!
- FEREEREREr submit file for compiling one module: RREEEE LR X
run _
cc86.86 :F6:9%0 LARGE ROM DEBUG DEFINE(DEBUG) inélude(:F6:)
exit
EREEEAR L AR submit file for linking and locating: EERERLEE
run
1ink86 :F6:assy.obj, :F6:dld.obj, :F6:llc.obj, &
:F6:iuap.obj, lclib.lib to :F6:dld.lnk segsize(stack(4000h)) notype
loc86 :F6:dld.lnk to :F6:dlé.loc&

initcode (ODOOOOH) start(begin) order(classes(data, stack, code)) &
addresses(classes(data(3000H), stack(OCBOOH), code (ODOOZ0H)))

oh86 :F6:dld.loc to :F6:dld.rom

exit

FREREREEES submit file for burning EPROMs using IPPS: RERRERRALE
ipps ‘

i 86

:F6:dld.rom (04d0000h)

to :F6:lo.byt

o< o HF N W\ =

to :F6:hi.byt

<

134

27128

c :F6:lo.byt t p

C :Fé:hi.byt t p

exit

1-22

AP-235

/PCO/USR/CHUCK/CSRC/DLD. H

* % &N

82386 S

tructures and Constants

xx%

/% general purpose constants #/

#define
Wdefine
#define
#define
#define
Wdefine
#define

INUSE o
EMPTY 1
FULL 2
FREE 1
TRUE 1
FALSE]
NULL OxFFFF

/# Define Data Structures #/

#define
#define
Wdefine
#define

typedef

RBUF_SI1ZE 128 /#
TBUF_S1ZE 128 /»
ADD_LEN &
MULTI_ADDR_CNT 16

unsigned short int u_sh

/% results from Test_Link(): lo

#define
#define
#define
#define
#define

/# Frame Commands #/
[} ¢

#define
#define
#define
#define
Wdefine

#define

#define

#define

PASSED
FAILED_DIAGNOSE
FAILED_LPBK_INTERNAL
FAILED_LPBK_EXTERNAL
FAILED_LPBK_TRANSCEIVER

0303 /%
XID OxAF /#
TEST OxE3 /+
P_F_BIT Ox10 /#
C_R_BIT 0x01 /=

DSAP_CNT 8 /#

DSAP_SHIFT 9 /%

XID_LENGTH 6 /%

receive buffer size #/
transmit buffer size »/

ort;
aded into Self_Test char #/

o
1
2
3
r

Unnumbered Information Frame &/
Exchange Identification #/
Remote Loopback Test #/
Poll/Final Bit Position #/
Command/Response bit in SSAP #/

Number of allowable DSEAPs; must be a multiple
of 2##N, and DSAP addresses assigned must be
divisible by 2##(8-N).

(i.e. the N LSBs must be 0) #/

DSAP_SHIFTS must equal B8-N #/ '

Number of Info bytes for XID Response frame #/

/% System Configuration Pointer SCP #/

struct 8CP {

u_short sysbus;
1

/# B25B6 bus width, O - 16 bits
- 8 bits #/
231421-17

1-23

Im'e[~ AP-235

/PCO/USR/CHUCK/CSRC/DLD. H

u_short junkl2)

u_short iscpl; /# lower 16 bits of iscp address #/
u_short iscphi /% upper 8 bits of iscp address #/
»

/# Intermediate System Configuration Pointer ISCP #/

struct ISCP (
u_short busy ; /#set to i by cpu before its first CA,
cleared by B2586 after reading #/
u_short offset /% offset of system control block #/
u_short basel ; /% base of system control block #/
u_short base2 ;
>

/% System Control Block SCB #/

struct SCB {
u_short stat /% Status word #/
u_short cmd; /% Command word #/
u_short cbl_offset; /# Offset of first command block in CBL #/
u_short rfa_offset; /% Offset of first frame descriptor in RFA »/

u_short /# CRC errors accumulated #/

u_short /% Alignment errors #/

u_short rsc_errs; /% Frames lost because of no Resources #/
u_short ovr_errs; /% Overrun errors #*/

b]

/% Command Block #/

struct CB (
u_short stat /% Status of Command #/
u_short cmd; /% Command #/
u_short link;. /% link field #/
u_short parml; /# Parameters #*/
u_short parm2;
u_short parm3;
u_short parm4)
u_short parmd;
u_short parmé;

X

/# Multicast Address Command Block MA_CB #/

struct MA_CB(
: u_short stat; /% Status of Command #*/
u_short cmd; /% Command #/
u_short link; /% Link field #/
u_short mc_cnt; /% Number of MC addresses %/
char mc_addrLADD_LEN#MULTI_ADDR_CNT1; /# MC address area %/
>

/% Transmit Buffer Descriptor TBD &/

struct TBD < 231421-18

1-24

lnte[AP-235

/PCO/USR/CHUCK/CSRC /l‘)LD‘ H

u_short act_cnt; /% Number of bytes in buffer #/

u_short link; /% offset to next TBD #/

u_short buft_1; /% lower 16 bits of buffer address %/
u_short buff_h; /% upper B bits of buffer address #/
struct TB #buff_ptr; /% not used by the 586: used by the

software to save address translation
routine. #/
¥

/# Transmit Buffers #/
struct TB <
char data C[TBUF_SIZE;
b3
/% Frame Descriptor FD #/

struct FD (

u_short stat; /# Status Word of FD #/

u_short el_s; /# EL and S bits #/

u_short link; /% link to next FD #/

u_short rbd_offset; /% Receive buffer descriptor offset #/

char dest_addr[ADD_LEN]; /#Destination address #/
char src_addr[ADD_LEN]; /# Source address #/
u_short length; /% Length field »/

3

/% Receive Buffer Descriptor RBD #/

struct RBD (

u_short act_cnt; /% Actual number of bytes received #/
u_short link; /% Offset to next RBD #/

u_short bufé_1; /# Lower 16 bits of buffer address #/
u_short buff_h; /% upper B bits of buffer address */
u_short size; /% size of buffer #/

struct RB #buff_ptr; /% not used by the 5B6: used by the

software to save address translation
Toutine. */
3}

/% Receive Buffers #/
struct RB <
. char datalRBUF_SIZE];

X

struct FRAME_STRUCT
<

unsigned char dsapi /% Destination Service Access Point #/
unsigned char ssap; /% Source Service Access Point #/
unsigned char cmd; /% 1SO Data Link Command %/

b 3]

/# LSAP Address Table #/
struct LAT (
char stat; /% INUSE or FREE %/

231421-19

1-25

ntel

AP-235

/PCO/USR/CHUCK/CSRC/DLD. H

int (#p_sap_~func)(); /# Pointer to LSAP function; associated

struct MAT

char stat;
char addrCADD_LENI;
i

/% general purpose flags #/

_struct FLAGS (
unsigned diag_done : 1
unsigned stat_on : ’
unsigned reset_sema: 1 ;
unsigned reset_pend: 1
unsigned lpbk_test: 1
unsigned lpbk_mode: 1 ;
b 2N

/% Qaneral purpose bits #/

#define ELBIT OxB000
#define EOFBIT 0xB000
#define SBIT 0x4000
#define IBIT 0x2000
#define CBIT 0x8000
#define BBIT 0x4000
#define OKBIT 0x2000

/% SCB patterns #/

#define CX 0x8000
#define FR 0x4000
#define CNA 0x2000
#define RNR 0x1000
#define RESET 0x0080
#define CU_START 0x0100
#define RU_START 0x0010
#define RU_ABORT 0x0040
#define CU_MASK 0x0700
#define RU_MASK 0x0070
#define RU_READY 0x0040

/% B2386 Commands #/

#define NOP 0x0000
#define IA 0x0001
#define CONFIGURE 0x0002
#define MC_SETUP 0x0003
#define TRANSMIT 0x0004
#define TDR 0x0005
#define DUMP 0x0006
#define DIAGNOSE 0x0007

/%
/%
/%

/=
%
/%

/%
/%

with dsap address #/

Multicast Address Table %/
INUSE or FREE #/
actual mc address #/

diagnose command complete #/

network diagnostic statistics on/off #/
don’t reset when this bit is set */
reset when this bit is set #/

loopback test flag #/

loopback mode on/ofé #/

231421-20

1-26

ntel AP-235

/PCO/USR/CHUCK/CSRC/DLD. H

/% B2%86 Command and Status Masks &/

#define CMD_MASK 020007
#define NOERRBIT 0x2000
#define COLLMASK Ox000F
#define DEFERMASK 0x0080
#dafine NOCRSMASK 0x0400
#define UNDERRUNMASK 0x0100
#detine SGEMASK 0x0040
#define MAXCOLMABK 0x0020

#define OUT_OF RESOURCES 0x0200

/% Configure Parameters #/

Wdefine FIFO_LIM 020800 /# use FIFO lim of 8 #/

#define BYTE_CNT 0x000B

#define SRDY 0x0040

#define SAV_BF 0x0080

#define ADDR_LEN 020600 /% address length of & bytes #/
#define AC_LOC 0x0800

#detine PREAM_LEN 022000 /% preamble length of 8 bytes #/

#define INT_LPBCK 0x4000
#detine EXT_LPBCK 0x8000

#define LIN_PRIO 020000 /% no priority #/
#define ACR 0x0000

#define BOF_MET 020080

#define IFS 0x6000 /% IFS time 9.6 usec #/
#define SLOT_TIME 0x0200 /% slot time 351.2 usec @/
#define RETRY_NUM OxF000 /% retry number 13 #/
#define PRM 020001

#define BC_DIS 020002

#define MANCHESTER Ox0004
#define TONO_CRS 0x0008
%define NCRC_INB 020010

#define CRC_16 020020

#define BT_STUFF 0x0040

Wdetfine PAD 0x0080 -

#detine CRSF 0x0000 /% no carrier sense filter #/
#define CRS_SRC 0x0800

#define CDTF 0x0000 /% no collision detect filter #/
#define CDT_SRC 0x8000

#define MIN_FRM_LEN Ox0040 /% 64 bytes #/

#define MIN_DATA_LEN MIN_FRM_LEN - 18 /% assumes Ethernet/l1EEE 802. 3
frames with & bytes of address #/
#define MAX_FRAME_SIZE 1500 - 3

231421-21

1-27

ﬁte[.+ AP-235

/PCO/USR/CHUCK/CSRC/DLD. C

/

* *

* 82586 Handler *

* *
/

/# Define constants for storage area %/

#define CB_CNT 8 /% Number of available Command Blocks #/

#define FD_CNT 16 /% Number of available Frame Descriptors #/

#define RBD_CNT 64 /# Number of available Receive Buffer descriptors #/

#define TBD_CNT 16 /% Number of available Transmit Buffer descriptors #/

/% loopback parameters passed to Configure() #/

#define INTERNAL_LOOPBACK 0x4000

#define EXTERNAL_LOOPBACK 0x8000

#define NO_LOOPBACK 0x0000

#include "dld. h"” /# 586 Data Structures #*/

/# 186 Timer Addresses ¥/

#define TIMER1_CTL OxFFSE

#define TIMER1_CNT OxFF38

#define TIMER2_CTL OxFF&b6

#define TIMER2_CNT OxFF&0

/% external functions #/

/% 1/0 %/

int inw(); /% input word : inw(address) #/

void ovtw(); /% output word: outw(address, value) #/

void init_intv())/# initialize the interrupt vector table #/

void enable(); /# enable 80186 interrupts #/

void disable(); /# disable 80186 interrupts #/

extern char #Build_Ptr();

u_short SEGMT; /% Data segment value #/

char *#pNULL; /% NULL pointer %/

/% Macro ‘type’ of definitions #/

#define CA outw(0xC8,0) /# the command to issue a Channel Attention #/ '

#define ESI_LOOPBACK outw(OxCB,0) /# put the ESI in Loopback #/
#define NO_ESI_LOOPBACK: outu(O;CB.e) /# take the ESI out of Loopback #/

#define EOI_80130 outb (OxEOQ, 0x63) /% End Of Interrupt #/
#define TIMER1_EOI_B801846 outw(OxFF22,0x04) /# EOI for Timer 1 on the 186 %/
#define TIMER1_EOI_B80130 outb(OxEOQ, Ox64) /#EOI for 186°s Timerl on the 130 #/
' 231421-22

1-28

ntel AP-235

/PCO/USR/CHUCK/CSRC/DLD. C

/unaneans mamory allocation SERENNSRSENNERRN/

int Self_Test) /% used for diagnostic purposes #/
u_short temp: /% tamporary storage #/
#define LPBK_FRAME_SIZE /% loopback frame storage #/

char lpbk OrmnIILPBK_FRAIE S1ZE1 = {
0x53, OxAA, 0x33, OxAA};

#define whoami_io_add OxO0F0 /# I/0 address of Host Address Prom %/
char whoamiCADD_LENY; /# Ram array where host address is stored #/
/# transmission statistic variables #/

unsigned long good_xmit_cnt

u_short underrun_cnt;
u_short .no_crs_cnt;
unsigned long uhr cntt
u_short _err_cnts
v_short ﬂnx col cnh
unsigned long rc:v_lrmn_cnn
u_short Teset_cnti

/# Allocate storage for structures and buffers »*/
struct FLAGS flags:

/# 386 structures #/

/# System Configuration Pointer: Rom Initialization #/
/% struct SCP scp = {0x0000,0x0000, 0x0000: Ox1FF6, O0x0000}; %/

/# struct ISCP iscp; Intermediate System Configuration Pointer b/\
struct SCB scb; /# System Control Block #/

struct CB cbI{CB_CNTI, /% Command Blocks %/
 #cb_tos, #begin_cbl, #end_cbl;
/% pointer to the beginning of the free
command block list (cb_tos) and the
beginning and end of the 82584 cbl #/

struct TBD tbdLTBD_CNTI, /% Transmit Buffer Descriptor #/
#tbd_tos; /% pointer to the free Transmit buffer
descriptors #/

struct TB tbufLTBD_CNTI1; /% Transmit Buffers #/
struct FD #dLFD_CNTJ, /% Frame Descriptors #/
#begin_f£d, ¥end_#£d; /% pointers to the beginning and end of

the free FD list #/

struct RBD rbdCRBD_CNTI, /# Receive Buffer Descriptors #/
* 231421-23

1-29

ntel AP-235

/PCO/USR/CHUCK/CSRC/DLD. €

#begin_rbd, w#end_rbds /% pointers to the beginning and the
end of the rvbd list »/
struct RB TbufCRBD_CNT) /% Receive Buffers #/ .
struct MAT matCMULTI_ADDR_CNT): /% Multicast Address Table #/
struct MA_CB ma_cb; /% Multicast Address Command Block #/

/% The following structures are used only in Reset_3B86() function %/
struct CB res_cbi /% Temporary CB for reinitializing the 3586 #/
struct MA_CB res_ma_cb: /% Temporary MA_CB for reloading Multicast #/
/% Hardware Support Functions #/
Enable_3%84_Int()
<
int ci
c = inb(OxE2); /% read the 80130 interrupt mask register #/
outb(OxE2, OxO00F7 & c); /# write to the 80130 interrupt mask register #/
>
Disable_386_Int()
< .
int ci
c = inb(OxE2);
outb(OxER2, 0x0008 | c);
3
Set_Timeout()
<
outw(TIMERLI_CNT, 0), /% Write a O to Timerl count register ¥/
outw(OxFFSE, OxE009); /# Set ENable bit in Timerl Mode/Control register %/
>
Reset_Timeout()

outw(OxFFSE, Ox6009); /% Reset ENable bit in Timerl Mode/Control register #/

Init_Timer() /% 186‘s Timer 2 is a prescaler for Timer 1. It clocks Timer 1
every 32.7 msec. The deadman timeout is set for 1.25 sec #/

<
outw(OxFF38, 0x000C); /% Set Timeri Interrupt Control register #/
outw(OxFF&2, OxFFFF); t max count register for timer2 to OFFFFH %/
outw(OxFF3A, 38); /% set max count register A for timer 1 %/
outw(OxFF&b, 0xCO01); /% Set Timer2 Mode/Control register #/
outw(OxFFSE, 0x6009); /% Set Timeri Mode/Control register #/
outw(OxFF28, (inw(OxFF2B) & OxFFEF)); /# Enable 186 Timerl interrupt #/
outb (OxE2, (inb (OxERQ) & OxO00EF)); /% enable 80130 interrupt from 80186 #/

b

/# end hardware support functions #/

Clear_Cnt()
231421-24

1-30

ntel AP-235

/PCO/USR/CHUCK/CSRC/DLD. C

scb.crc_errs = O; /% clear 586 error statistic counters #/
scb. aln_errs = 0;
scb. rsc_errs =
scb. ovr_errs =

good_xmit_cnt = O; /% init data link statistics #/
underrun_cnt = O;

no_crs_cnt = 0;

defer_cnt = O

sqe_err_cnt = O

max_col_cnt = O;

recv_frame_cnt = O

reset_cn

>
Init_9860)
<

struct ISCP #piscps
u_short i,
struct MAT #pmat;

NO_ESI_LOOPBACK; /# Done for B82301. Inactivates CRS if powered up
in loopback #/
ESI_LOOPBACK:

init_intv(); /% Initialization DLDs interrupt vectors #/
Init_Timer();

flags. reset_sema = O; /# Initialize Reset Flags #/
flags. reset_pend = O;
flags. stat_on = 1,

Disable_586_Int();

piscp = OxO000FFFO ; /# Initialize the ISCP pointers/
piscp-Dbusy = 1;

piscp-Doffset = Offset(kschb);

piscp-Dbaseil = SEGMT << 4

piscp—Cbase2 = (SEOMT >> 12) & Ox000F

pNULL = Build_Ptr(NULL); /# build a NULL pointer - 8084 Vtupo: 32 bits #/

Build_Rfa(); /% init Receive Frame Area #/
Build_Cb(); /% init Command Block list %/
ma_cb.cmd = 0 /% multicast address semaphore init #/

Clear_Cnt();
scb. stat = O;
CA; /% wait for the 586 to complete initialization #/

for (i = 0; i <= OxFFOO; i++)
231421-25

1-31

ntel AP-235

/PCD/USR/CHUCK/CSRC/DLD. C

if (scb. stat == (CX ! CNA))
break;

i# (i DOxFFOO0)
Fatal("DLD:init — Did not get an interrupt after Reset/CA\n");

/% Ack the reset Interrupt #/
scb.cmd = (CX ! CNA);

i
Wait_Scb()s
Enable_586_Int();

sch.cbl_offset = Offset(&cblO0]): /% link scb to cb and fd lists #/
sch. rfa_offset = Offset(&FdLOD);

/% move the prom bytes into whoami array »/
\

for (i = 0 i < ADD_LEN; i++)
whoamiC(ADD_LEN — 1) - i1 = inb(whoami_io_add + i#2);

/% Initialization the Multicast Address Table #/

for (pmat = &mat[0); pmat <= &mat{MULTI_ADDR_CNT =~ 11; pmat++)
pmat->stat = FREE:

Configure (INTERNAL_LOOPBACK); /% Put 386 in internal loopback #/
SetAddress(); /% Set up the station address Q) ’

/% vun diagnostics #/

Test_Link();

if (Self_Test != PASSED)
return(Self_Test):

Configure(NO_LOOPBACK); /# Caonfigure the 82386 #/

return(Self_Test);

b

Build_Rfa()

<
struct FD #pfd;
struct RBD #prbd;
struct RB *pbuf;

unsigned long badd;

/# Build a linear linked frame descriptor list #/

for (pfd = &FdL0); pfd <= &PAIFD_CNT - 11; pfd++) {
pfd->stat = pfd-Del_s = 0;

pfd->link = Offset(pfd+l);
pfd->rbd_offset = NULL,

231421-26

1-32

ntel AP-235

/PCO/USR/CHUCK/CSRC/DLD. C

end_fd = ——pfd; /% point to &FALFD_CNT - 1] #/
pfd->link = NULL; /# last £d link is NULL #/
pfd-Del_s = ELBIT; /% last fd has EL bit set #/
begin_fd = pfd = &fd[0I1; /% point to first fd #/

pfd->rbd_offset = Dd‘ésot(&rbdtoj)i /% link first fd to first rbd */

/# Build a linear linked receive buffer descriptor list #/

for (prbd = &rbdf{0), pbuf = &rbufl0l; prbd <= &rbdI[RBD_CNT - 11;
prbd++, pbuf++) {
badd = SEGMT << 4;
badd += Offset(pbuf);
prbd-Dbuff_1 = badd;
prbd-Dbuff_h = badd >> 1&;
prbd->buff_ptr = pbuf;

prbd->act_cnt = 0;
prbd-D>link = Offset(prbd + 1);
prbd->size = RBUF_SIZE;

>

end_rbd = --prbd;

prbd=>link = NULL; /% last vbd points to NULL #/
prbd->size != ELBIT; /% last rbd has el bit set #*/

begin_rbd = &rbd(0];
)
Build_Cb() /# Build a stack of free command blocks #*/
<

struct CB #pch;

struct TBD #ptbd,

struct TB #pbufi
unsigned long badd;

for (pcb = &cb[O0); pcb <= &cbICB_CNT - 11; pch++) {
pcb->stat = O;
pcb->emd = ELBIT)
pecb->link = Offset(pcb + 1);

>

==pch;

begin_cbl = end_cbl = pNULL;

pcb=>link = NULL;

cb_tos = &cb[Ol1;

/# Build a stack of transmit buffer descriptors #/

for (ptbd = &tbd[0), pbuf = &tbufl01; ptbd <= &tbd[TBD_CNT - 11;
ptbd++, pbuf++) {

ptbd-Dact_cnt = TBUF_SIZE:
ptbd->link = Offset(ptbd + 1);

badd = SEGMT << 4;
231421-27

1-33

ntel ‘ AP-235

/PCO/USR/CHUCK/CSRC/DLD. C

badd += Offset(pbuf);
ptbd=D>buff_1 = badd;
pthd=Dbuff_h = badd D> 1&;
ptbd=Dbuff_ptr = pbuf;

b

--ptbd;

ptbd->link = NULL; /% last thd link is NULL #/
tbd_tos = &tbdl{01; /» Set the Top Of the Stack #/

/# Get a Command Block from the free list #/
struct CB #Get_Cb() /% rveturn a pointer to a free command block #*/
s .
struct CB #pcb;
if (Offset(pch = cb_tos) == NULL)
return{pNULL);
cb_tos = (struct CB #) Build_Ptr(pcb-Dlink);
pcb=>link = NULL;
returnipcb);
3
/# Put a8 Command Block back onto the free list #/
Put_Cb(pch)

struct CB #pch;

<
pcb->stat = O;
pcb=>link = Offset(cb_tos);
cb_tos = pcb; .
bd .

struct TBD #Get_Tbd() /# return a pointer to a free transmit buffer
descriptor #/ -
<
struct TBD #ptbd;

flags. reset_sema = 1;

Disable_586_Int();

if ((ptbd = tbd_tos) != pNULL) {
tbd_tos = (struct TBD %) Build_Ptr(ptbd-D>link);
ptbd=-D>link = NULL;

b

Enable_586_Int();

flags. reset_sema = O;

if (flags. reset_pend == 1)
Reset_586();

return(ptbd);

Put_Tbd(ptbd)

231421-28

1-34

Inte[AP-235

/PC0O/USR/CHUCK/CBRC/DLD. C

struct TBD *ptbd;
¢ struct TBD #*p g
/= find the end of the tbd list returned., ptbd is the beginning #/
for (p = ptbd; p-Dlink != NULL; p = (struct TBD #) Build_Ptr(p-Dlink)) ;

p=-Dact_cnt = TBUF_SIZ2E: /% clear EOFBIT and update size on last tbd #/
p=>link = Offset(tbd_tos);
tbd_tos = ptbdi

SetAddress()
<

struct CB #pch;
#ifdef DEBUG

if ((pcb = QCet_Cb()) == pNULL)
Fatal("dld. c - SetAddress - couldn’t get a CB\n");

Welse
pcb = Get_Cb();
#endif /% DEBUG #/

bcopy({char #)&pcb->parmi, &whoamilOl. ADD_LEN); /# move the prom

address to IA cmd %/
pcb=>cmd = IA | ELBIT:

Issue_CU_Cmd{pch)i

Wait_Scb() /% wait for the scb command word to be clear #*/
*

u_short i, stat;
for (stat = FALSE: stat == FALSE;) {

For (i=0; i<=OxFFO0; 1++)
if (scb.cmd == Q)
break;

if (i > OxFFOO) {
Bug("DLD: Scb command not clear\n");
CA;

bd

else
stat = TRUE;

231421-29

1-35

nter AP-235

/PCO/USR/CHUCK/CSRC/DLD. C

Issue_CU_Cmd(pcb) /% Queue up a command and issuve a start CU command if no
other commands are queued %/
struct CB #pch;

{
Disable_586_Int(); .
if (begin_cbl == pNULL) { /% if the list is inactive start CU %/
begin_cbl = end_cbl = pcbh;) N
scb. cbl_offset = Offset(pcb);
Wait_Scb();
scb. cmd = CU_START;
Set_Timeout(); /% set deadman timer for CU #/
CA;
)
else {
end_cbl->link = Offset(pch);
end_cbl = pcbh;
>
Enable_586_Int();
b
Isr7()
<
outb (OxEO, 0x6&7); /% EOI 80130 %/
Isrb().
< .
Write("\nInterrupt &\n"); -
outb (OxEO, Oxé&6); /% EOI 80130 %/
>
IsrS5()
{
Write("\nInterrupt S\n");
outb (OxEOQ, 0x65); /% EOI 80130 %/
b4

/% Deadman Timer Interrupt Service Routine #/
Isrt_Timeout() /% Interrupt 4 %/
<

Reset_Timeout();
if (flags. reset_sema == 1)
flags. reset_pend = 1;
else
Reset_586();

TIMER1_EOI_80186;
TIMER1_EOI_80130;

/% Interrupt O is Uart in UAP Module #/
/% Interrupt 2 is Timer in UAP Module %/

231421-30

1-36

Inte[AP-235

/PCO/USR/CHUCK/CESRC/DLD. C
Isrl()
<

Write("\nInterrupt 1\n*);

outb(OxEO, Ox61); /# EOI 80130 #/

/# 3586 Interrupt service routine: Interrupt 3 %/

Isr_586¢()

<
u_short stat_schi
struct CB #pch;

enable(); /% nesting only the uvart interrupt #/
Wait_Scb()

sch.cmd = (stat_scb = sch.stat) & (CX | CNA ! FR ! RNR):
CA;

if (stat_scb & (FR | RNR))
Recv_Int_Processing();

if (stat_scb & CNA) { /% end of cb processing #/

Reset_Timeout(), /% clear deadman timer #/
peb = Build_Ptr(sch.cbl_offset);

#ifdef DEBUG
if (begin_cbl == pNULL)<

Bug("DLD: begin_cbl == NULL in interrupt routine\n");
return;

if ((pcb-D>stat & O0xCO00) != 0x8000)
Fatal("DLD: C bit not set or B bit set in interrupt routine\n");
Wendif /% DEBUG %/
switch (pcb->cmd & CMD_MASK) <
case TRANSMIT:
it (flags. stat_on == 1) {/# if Transmit Statistics are collected do */
/% if sqe bit = O and there were no collisions -> sqe error
this condition will occur on the first transmission if
there were no collisions, or if the previous transmit
command reached the max collision count. and the current

transmission had no collisions #/

if ((pecb-Dstat & (SGEMASK ! MAXCOLMASK ! COLLMASK)) == 0)
++sqe_err_cnt;

if (pcb-D>stat & DEFERMASK)

231421-31

1-37

ntel : ~ AP-235

/PCO/USR/CHUCK/CSRC/DLD. C

if (pcb->stat & NOERRBIT)
++good_xmit_cnt;
else {

if (pcb->stat & NOCRSMASK)
++no_crs_cnt;
if (pcb-Dstat & UNDERRUNMASK)
++underrun_cnti
if (pcb-Dstat & MAXCOLMASK)
++max_col_cnt;
b
>
if (pcb-Dparmi != NULL)
Put_Tbd(Build_Ptr(pcb-~dparml));
break:

case DIAGNOSE:

flags. diag_done = 1,

if ((pcb->stat & NOERRBIT) == 0)
Self_Test = FAILED_DIAGNOSE;:

break:

default:
’
3}

/% check to see if another command is queved #*/

if (pcb-Dlink == NULL)
begin_cbl = pNULL;

else { /% restart the CU and execute the next command on the cbl #/

begin_cbl = Build_Ptr(pcb=>1link);
scb.cbl_offset = pcb-Dlink;
Wait_Scb();

scb. cmd = CU_START:

CA;
Wait_Scb();
Set_Timeout(); /# START deadman timer #/

N ((pcb=D>cmd & CMD_MASK) == MC SETUP)
pcb->cmd = O; /% clear MC SETUP cmd word, this will implement a
lock semephore so that it won’t be reused until
it is completed #/
else
Put_Cb(pcb); /# Don‘t return MC SETUP cmd block. It’s not’
general purpose command block fram free CB list #/
>
disable(); /# disable cpu int so that the 586 isr will not nest #/
EOI_80130;

231421-32

1-38

l'lter AP-235

/PCO/USR/CHUCK/CSRC/DLD. C

Recv_Int_Processing()
<

struct FD #pfd) /% points to the Frame Descriptor #/
struct RBD *q /# points to the last rbd for the frame »/
#prbd; /# points to the first rbd for the frame #/

for (pfd = begin_fd; pfd '= pNULL; pfd = begin_¢d)
if (pfd->stat & CBIT) {
begin_fd = (struct FD #) Build_Ptr(pfd-Dlink);
prbd = (struct RBD #) Build_Ptr(pfd-drbd_offset):
if (prbd != pNULL) € /# check to see if a buffer is attached #/

#ifdef DEBUG
if (prbd != begin_rbd)
Fatal("DLD: prbd != begin_rbd in Recv_Int_Processing\n");
#endif /% DEBUG #/
for (q = prbd; (q-dact_cnt & EOFBIT) != EOFBIT: -
q = (struct RBD #) Build_Ptr(q-2>1link));

begin_rbd = (struct RBD #) Build_Ptr(q->link);
q->link = NULL;
3
if (pfd->stat & OUT_OF_RESOURCES)
Put_Free_RFA(pfd);
else {
/% if the DLD is in a loopback test, check the frame recv #/
if (flags. l1pbk_mode == 1)
Loopback_Check(pfd);
else

/# if it‘’s & multicast address check to see if it’s
in the multicast address table, if not discard the frame #/

if (((pfd-Ddest_addr{0] & O1) == 01) &% (!Check Multicast(pfd)))
Put_Free_RFA(pfd);
else
< Recv_Frame(pfd);
++recv_~frame_cnt;

bd
bd
b
else { ‘
Ru_Start(); /# I# RU has gone into no resources, restart it «/
break:
¥
bd
Loopback_Check(ptd) /% Called by Recv_Int_Processing; checks address

and data of potential loopback frame #/
struct FD #péds

struct RBD #prbdi
struct RB #pbufi

231421-33

1-39

Inte[AP-235

/PCO/USR/CHUCK/CSRC/DLD. C

if (bemp((char #) &pfd-Dsrc_addr[0), &whoami[OJ, ADD_LEN) != 0) {
Put_Free_RFA(pfd);
return;

¥ .

prbd = (struct RBD #) Build_Ptr(pfd-Drbd_offset); /# point to receive
buffer descriptor #/°

pbuf = (struct RB #) prbd-Dbuff_ptr; /# point to receive buffer #/

if ¢ becmp((char #) pbuf, &lpbk_framelO), LPBK_FRAME_SIZE) != 0) {
Put_Free _RFA(p#d);
return;

flags. l1pbk_test = 1, /# passed loopback test #/
Put_Free_RFA(pfd))
b

Check_Multicast(pfd) /% rveturns true if multicast address is in MAT #/
. struct FD %pfds
{
struct MAT #pmat;
for (pmat = &mat(Ol; pmat <= &matI{MULTI_ADDR_CNT - 11; pmat++)
i# (pmat-Dstat == INUSE &&
(becmp((char #) &pfd-Ddest_addr(0], Xpmat-Daddr[Ol, ADD_LEN) == 0))
break: -

if (pmat > &matI{MULTI_ADDR_CNT - 11)
return(FALSE);
return(TRUE);

/# Test the Link function: executes Diagnose and Loopback tests */
Test_Link()
<

Self_Test = PASSED;
Diagnose();
if (Self_Test == FAILED_DIAGNOSE)
return;
Ru_Start(); /% start up the RU for loopback tests #/
flags. lpbk_mode = 1; /# go into loopback mode %/

flags. lpbk_test = 0; /# set looback test to false %/

Send_Lpbk_Frame(); /# internal loopback test #/

if (flags. lpbk_test == 0) {
Self_Test = FAILED_LPBK_INTERNAL;
flags. 1pbk_mode = O; N
return;

b

flags. lpbk_test = O;
Configure(EXTERNAL_LOOPBACK); /% external loopback test w/ ESI in lpbk #/
Send_Lpbk_Frame())
if (Flags. 1pbk_test == 0) {
Self_Test = FAILED_LPBK_EXTERNAL:

231421-34

1-40

nte[AP-235

/PCO/USR/CHUCK/CSRC/DLD. €

flags. lpbk_mode = 0;
return;
>

flags. 1pbk_test = 0; /% external loopback test through transceiver #/
NO_ESI_LOOPBACK:
Send_Lpbk_Frame():
if (flags. lpbk_test == Q)
Self_Test = FAILED_LPBK_TRANSCEIVER:

flags. 1pbk_mode = O; /# leave loopback mode #/
>

Send_Lpbk_Frame()
{

struct TBD #*pthdi
int i

for (i = 0; i < 81 i++) (/% send lpbk frame 8 times, since it’s
best effort delivery #/

#ifdef DEBUG
if ((ptbd = Get_Tbd()) == pNULL)
Fatal("dld - Send_Lpbk_Frame - couldn’t get a TBD\n");
#else
ptbd = Get_Tbd();

#endif /# DEBUG #/

ptbd-Dact_cnt = EOFBIT ! LPBK_FRAME_SIZE;
bcopy((char #) ptbd-Dbuff_ptr, &lpbk_framel0], LPBK_FRAME_SIZE);

while(!Send_Frame(ptbd, &whoamil01));

Diagnose()
<
struct CB #pch;

#ifdef DEBUG

if ((pcb = Get_Cb()) == pNULL)

Fatal("dld - Diagnose - couldn‘t get a CB\n");
#else

pcb = Get_Cb();

#endif /# DEBUG */
flags. diag_done = 0O;
Self_Test = FALSE;
pcb—->cmd = DIAGNOSE ! ELBIT:
Issuve_CU_Cmd(pch);

while (flags. diag_done == 0) i /#* wait for Diag cmd to finish %/
231421-35

1-41

ntel AP-235

/PCO/USR/CHUCK/CSRC/DLD. C

bd

Configurel(loopflag)
u_short loopflag;

<

struct CB #pch;

#ifdef DEBUC
if ((pcb = Cet_Cb()) == pNULL)
Fatal("dld - Configure - couldn’t get a CB\n");
#else N
pch = QGet_Cb();

Wendif /% DEBUC »/

/% Ethernet default parameters #/

pcb-D>parmi = Ox080C;
pecb-Dparm2 = 0x2400 ! loopflag:
pcb=->parm3 = 0x4000;
pcb->parm4 = O0xF200;

pcb->parm5 = 0x0000;
it (loopflag == NO_LOOPBACK)
pcb=-Dparmé = 0x0040;
else
pcb=>parmé = O0x0006; /% loopback frame is less bytes than
the minimum frame length #/
peb=>cmd = CONFIQURE ! ELBIT)

Issue_CU_Cmd(pch)s
hd

/% Send a frame to the cable., pass a pointer to the destination address
and a pointer to the first transmit buffer descriptor. #/

Send_Frame(ptbd, padd) /# returns false if it can’t get a Command block #/
struct ' TBD #pthd;

char #padd;
<
struct CB #pchb;
u_short length;

flags. reset_sema = 1;

if ((pcb = Qet_Ch()) == pNULL) <«
flags. reset_sema = O;
if (flags. reset_pend == 1)
Reset_3586();
_ return(FALSE);

>
pcb-Dparml = Offset(ptbd);

231421-36

1-42

nter AP-235

/PCO/USR/CHUCK/CSRC/DLD. C

/% move destination address to command block #/
bcopy((char #)&pcb-Dparm2, (char #)padd, ADD_LEN);
/# calculate the length field by summing up all the buffers #*/

f#or (length = 0; ptbd-Dlink '= NULL; ptbd = Build_Ptr(ptbd-Dlink))
length += ptbd-Dact_cnt;

length += (ptbd-Dact_cnt & Ox3FFF)i /# add the last buffer #/
/% check to see if padding is required, do not do padding on loopback #/
/# this will not work if MIN_DATA_LEN > TBUF_SIZE #/

if ((length < MIN_DATA_LEN) &k /# assumes a 4 byte CRC »/
(bcmp (&whoami[Ol, (char #)padd. ADD_LEN) != 0))

ptbd—Dact_cnt = MIN_DATA_LEN | EOFBIT;

pcb->parm3 = length; /% length field #/
pcb~>cmd = TRANSMIT ! ELBIT:

Issue_CU_Cmd(pch);
eset_sema = O;
s.reset_pend == 1)
Reset_35B85&¢(),
return(TRUE); '

Add_Multicast_Address(pma) /# pma - pointer to multicast address #*/
char #pma; /% returning false means the Multicast address
table is full #/

struct MAT #pmat)
flags. reset_sema = 1

/% if the multicast address is a duplicate of one already in the MAT,
then return #/

for (pmat = mat; pmat <= &matCMULTI_ADDR_CNT ~ 11; pmat++)
if (pmat-Dstat == INUSE &k
(bcmp(&pmat-DaddrCO], (char #) pma, ADD_LEN) == 0)) {
return(TRUE);

for (pmat = mat; pmat <= &matIMULTI_ADDR_CNT - 12; pmat++)
if (pmat->stat == FREE) {
pmat->stat = INUSE;
bcopy(&pmat-DaddrLOl, (char #) pma, ADD_LEN))
break;

231421-37

1-43

Nte[. AP-235

/PCO/USR/CHUCK/CSRC/DLD. C

b

if (pmat > &mat{MULTI_ADDR_CNT - 11) {
flags. reset_sema = O;
if (flags. reset_pend == 1)
Reset_586(); :
return(FALSE);
>

Set_Multicast_Address();

flags. Teset_sema = O;

it (flags. reset_pend == 1)
Reset_586();

return(TRUE);

Delete_Multicast_Address(pma) /# returning false means the multicast addres
was not found #/ .

char *pmai

<

struct MAT #pmat;
flags. reset_sema = 1;

for (pmat = mat; pmat <= &mat{MULTI_ADDR_CNT ~ 1); pmat++)
if (pmat->stat == INUSE &&
(becmp(&pmat->addr[0], (char #) pma, ADD_LEN) == 0)) {
pmat->stat = FREE; .
break;
' b4

it (pmat > &matC{MULTI_ADDR_CNT - 11) {
flags. reset_sema = O;
if (flags. reset_pend == 1) '
Reset_586();
return(FALSE);

Set_Multicast_Address(); N
flags. reset_sema = O;
if (flags. reset_pend == 1)
Reset_586();
return(TRUE);
>

Set_Multicast_Address()
<

struct MAT “pmat;

struct MA_CB *pma_cb;)
v_short ii

i=0;

pma_cb = &ma_cbh;
while (pma_cb->cmd != O) ; /# if the MA_CB is inuse, wait until it’s free #/
pma_cb->link = NULL; .
231421-38

1-44

Inter AP-235

/PCO/USR/CHUCK/GBRC/DLD. €

for (pmat = mat; pmat <= &matCMULTI_ADDR_CNT = 11; pmat++)
if (pmat-Dstat == INUSE) {
bcopy(&pma_cb-Dmc_addr(il, &pmat-D>addrl0], ADD_LEN);
i += ADD_LEN;
3

pma_cb->mc_cnt = i,
pma_cb—>cmd = MC_SETUP | ELBIT:

Issue_CU_Cmd(pma_cb);

Put_Fru'jFA(pfd) /# Return Frame Descriptor and Receive Buffer
Descriptors to the Free Receive Frame Area %/

. struct FD #pfdi
< .
struct RBD #prbd, /# points to beginning of returned RBD list #/
*qQs /% points to end of returned RBD list #/
char ru_start_flag_fd, /# indicates whether to restart RU #/

ru_start_flag_rbd;

flags. reset_sema = 1,

ru_start_flag_fd = ru_start_flag_rbd = FALSE;

pfd-Del_s = ELBIT:

pfd-d>stat = 0;

prbd = (struct RBD #) Build_Ptr(pfd->rbd_offset);/# pick up the link to the rbd #/
pfd=>link = pfd-Drbd_offset = NULL;

/% Disable_3586_Int(); this command is only necessary in a multitasking
program. However in this single task environment this routine is originally
called from isr_986(), therefore interrupts are already disabled #/

if (begin_fd == pNULL)
begin_fd = end_fd = pfd;
else {
end_fd->link = Dffset(pfd)
end_fd-Jel_s = O
end_#d = péd;
ru_start_flag_fd = TRUE:
bd

if (prbd != pNULL) { /% if there is a rvbd attached to the fd then
#ind the beginning and end of the tbd list #/

for (q = prbdi q->1ink != NULL; q = Build_Ptr(q->1ink))
q-dact_cnt = O;

/% now prbd points to the beginning of the rbd list and
q points to the end of the list #/

q->size = RBUF_SIZE | ELBIT;
q->act_cnt = O

231421-39

1-45

ntel AP-235

/PCO/USR/CHUCK/CSRC/DLD. C

if (begin_vbd == pNULL) € /# if there is nothing on the list
create a new list #/

begin_rbd = prbd;
end_rbd = q; -
if (prbd !'= q)
Tu_start_flag_rbd = TRUE; /# if there is more than one rbd
returned start the RU #/

3
else {
/% if the rbd list already exists add on
the new returned rbhds */
and_rbd-Dlink = Offset(prbd);
end_rbd->size = RBUF_SIZE;
end_rbd = qi
ru_start_¢flag_rbd = TRUE;
)}

}
if (ru_start_flag_¢fd && ru_start_flag_rbd)
Ru_S8tart();

/% Enable_386_Int(); if Disable_386_Int() is used above #/

flags. reset_sema = O; N
i¢ (flags.reset_pend == 1)
Reset_58&(); f
bd
Ru_Start()
if ((sch.stat & RU_MASK) == RU_READY) /% if the RU is already ‘ready’
then return */
Teturn;
if ((begin_fd-D>stat & CBIT) == CBIT)
return;
begin_fd-D>rbd_offset = Offset(begin_rbd); /# link the beginning of the rbd
list to the first £d »/
scb. rfa_offset = Offset(begin_¢fd); .
Wait_Scb();
scb. cmd = RU_START:
CA;
bd

Software_Reset()
<

scb. cmd = RESET;
CA;

Wait_Scb()

b

Issue_Reset_Cmds()
{

Wait_Scb();
scb. cmd = CU_START)
CA;
231421-40

1-46

nte[AP-235

/PCO/UBR/CHUCK/CSRC/DLD. C

Wait_Scb()

outw(OxFF3E, 0) /% shut off timer 1 interrupt =/
outw(TIMERL_CNT, 0);
outw(OxFF3E, 0xC009); /% vse timer 1 without interrupt as a deadman #/

while ((inw(OxFF3E) & 0x0020) == 0) /# if Max Cnt bit is set before CNA
is set, 586 Cmd deadlocked #/
if ((scbh.stat & CNA) == CNA)
break;: .

i (scb.stat & CNA != CNA)
Fatal("DLD: Issue_Reset_Cmds — Command deadlock during reset procedure\n”);

Reset_Timeout();

scb.cmd = CNA; /% Acknowledge CNA interrupt #/
CA;
Wait_Sch();

/% Execute a reset, Configure, SetAddress, and MC_Setup., then restart the
Receive Unit and the Command Unit #/
Reset_3586()

<
struct MAT #pmat;
u_short i
++reset_cnt;

Disable_58&6_Int():

ESI_LOOPBACK:

Software_Reset();

scb. stat = O

CAs /# wait for the 986 to complete initialization #/
for (i = 05 i <= OxFFOO; i++)

if (sch.stat == (CX ! CNA))
break:

if (i DOxFF00)
Fatal("DLD: init — Did not get an interrupt after Software Reset\n");

/% Ack the reset Interrupt #/

Wait_Scb()
scb.cmd = (CX ! CNA);
CA;

Wait_Scb();

#ifdef DEBUC
if (begin_cbl == pNULL)
Fatal(“"DLD: begin_cbl = NULL in Reset_386");
#endif /# DEBUQ #/
231421-41

1-47

intal AP-235

/PCO/USR/CHUCK/CSRC/DLD. C

/% Configure the 5B #/
/% Ethernet default parameters; Configure is not necessary when using
default parameters #/

res_cb. link = NULL:

res_cb. parmi = 0x080C;

res_cb. parm2 = 0x2600; .
res_cb. parm3 = Ox6000; :
res_cb. parmé = OxF200;s
res_cb. parm3 = Ox0000;
_res_cb. parmé = O0x0040;
res_cb. cmd = CONFIQURE ! ELBIT:

scb.cbl_offset = Offset(&res_cb. stat),
Issue_Reset_Cmds(): .
/% Set the Individual Address */
bcopy(tchar #) &res_cb. parmi, SwhoamiCOl, ADD_LEN); /# move the prom
' address to IA cmd #/
res_cb.cmd = IA | ELBIT;
Issue_Reset_Cmds();
/# reload the multicast addresses %/

i = res_ma_cb. stat = 0
Tes_ma_cb. link = NULL;

for (pmat = &matl0); pmat <= &mat{MULTI_ADDR_CNT = 11; pmat++)
if (pmat-D>stat == INUSE) {
bcopy(&res_ma_cb. mc_addrlil, &pmat->addr(0l, ADD_LEN):
i += ADD_LEN; :
b

Tres_ma_cb.mc_cnt = i;

res_ma_cb.cmd = MC_SETUP | ELBIT)

scb.cbl_offset = Offset(&res_ma_cb. stat);

Issue_Reset_Cmds(); . |

/% Restart the Command Unit and the Receive Unit #/

flags. reset_sema = O;
flags. reset_pend = O;

ND_ESI_LOOPBACK:
Recv_Int_Processing();
scb.cbl_offset = begin_cbl;

Wait_Scb();
231421-42

1-48

nte[AP-235

/PCO/USR/CHUCK/CSRC/DLD. C

scb. cmd = CU_START:

Set_Timeovt(), /# Sat Deadman Timer #/
CA;

Enable_5B86_Int();

/% bcopy —— byte copy routine #/
bcopy(dst, src, nbytes)

char wdst, #srci

int nbytes;

while (ndbytes——) #dst++ = agrc++;

/# bcmp -—- byte compare #/
bcmp(sl, s2, nbytes)

char #s1, %82
int nbytes;
<

while (nbytes—— && #sl++ mm #g24++);
return(#--s1 - #--g2);

231421-43

1-49

nte[AP-235

/PCO/USR/CHUCK/CSRC/LLC. C

/

* *

* IEEE 802. 2 Logical Link Control Layer ®

* (Station Component) *
/

#include "dld. h"
extern char #pNULL;

extern struct TBD #Qet_Tbd();

extern char #Build_Ptr();

readonly char xid_framelXID_LENGTHI = { O, O, XID, 0x81, 0x01, 0);

/% DSAP, SSAP, XID, xid class 1 response #/ .

struct LAT latIDSAP_CNTI:
Init_Llc()
<

struct LAT #plati

for (plat = &1atl0l) plat <= &1atIDSAP_CNT - 11; plat++)
plat->stat = FREE;
return(Init_586())
3

/% Function for adding a new DSAP #/

Add_Dsap_Address(dsap, pfunc) /# DSAP must be divisible by 2##(8-N), where
2##N = DSAP_CNT. (i.e. N LSBs must be 0).
The function will return FALSE if does not
meet the above requirements, or the Lsap '
Address Table is full, or the address has
already been used. NULL DSAP address is
reserved for the Station Component #/
int dsap, (#pfunc) ()
{

struct LAT #*plat)

i# ((dsap << (B-DSAP_SHIFT) & OxOOFF) != O !! dsap == 0)
return (FALSE);

/# Check for duplicate dsaps. %/
if ((plat = %latldsap >> DSAP_SHIFT1)->stat == FREE) {
plat->stat = INUSE;
plat->p_sap_func = pfunci
return (TRUE):
b
else
return(FALSE);
3}

/% Function for deleting DSAPs #/
Delete_Dsap_Address(dsap) /# If the specified connection exists, it is severed.

If the connection does not exist, the command is ignored. #/
231421-44

1-50

/PCO/USR/CHUCK/CSRC/LLC. C

int dsap;
<

latldsap >> DSAP_SHIFT]. stat = FREE)
b

Recv_Frame(pfd)
struct FD *pfdi
{
struct RBD #prbd;
struct FRAME_STRUCT *pfui
struct LAT *plat;

prbd = (struct RBD #) Build _Ptr(pfd-O>rbd_offset):
pfs = (struct FRAME_STRUCT %) prbd-Dbuff_ptri

if (pfd-Drbd_offset != NULL) { /% There has to be a rbd attached
to the £d, or else the frame is
too short. #/
if (pfs-D>dsap == 0) { /% if the frame is addressed to the Station
Component, then a response may be rTequired #/

if (!(pfs—Dssap & C_R_BIT)) (/% if the frame received is a response,
instead of a command, then reject it.
Because this software does not implement
DUPLICATE_ADDRESS_CHECK. ~> no response
frames should be recv’d #/
Station_Component_Response(pfd);

3}
/% not addressed to Station Component, #/
/# check to see if the dsap addressed is active #/
else if ((pfs—D>dsap << (B-DSAP_SHIFT) & Ox00FF) == 0 &&
. (plat = Xlatl(pfs—->dsap) >> DSAP_SHIFT1)-D>stat == INUSE) {
(#plat-Dp_sap_func)(pfd); /% call the function associated
with the dsap received #/
returni

>
Put_Free_RFA(pfd); /# return the pfd if not given to the user saps %/

Station_Component_Response(p#d)

struct FD *pfd;

struct FRAME_STRUCT #prfs, *#ptfs;

struct TBD #ptbd, #*begin_ptbd, #*q; !
struct RBD #prbd;

prbd = (struct RBD #) Build_Ptr(pfd->rbd_offset);
prfs = (struct FRAME_STRUCT #) prbd-Dbuff _ptr;

switch (prfs=Dcmd & “P_F_BIT)
<

case X1D:
231421-45

1-51

intel

AP-235

/PCO/USR/CHU!

case

ICK/CSRC/LLC. C

while ((ptbd = Get_Tbd()) == pNULL);

ptbd-Dact_cnt = EOFBIT | XID_LENGTH:

bcopy ((char #) ptbd-Dbuff_ptr, &xid_framelOl, XID_LENGTH);
ptfs = (struct FRAME_STRUCT #) ptbd-Dbuff_ptr;

ptfs-D>cmd = prfs-Dcmd;

ptfs—-Ddsap = prfs—-D>ssap ! C_R_BIT; /# return the frame
to the sender #/

ptfs-D>ssap = O;

while(!Send_Frame(ptbd, Build_Ptr(pfd->src_addr)));

break:

TEST:

for (prbd = (struct RBD #) Build_Ptr(pfd->rbd_offset),
q = begin_ptbd = pNULL: prbd != pNULL;
4 prbd = Build_Ptr(prbd->link))

while ((ptbd = Cet_Tbd()) == pNULL),
if (q !'= pNULL)
q=->link = Offset(ptbd);
else .
begin_ptbd = ptbd;
ptbd-Dact_cnt = prbd->act_cnt;
beopy((char #) ptbd-Dbuff_ptr, (char #) prbd-2>buff_ptr,
ptbd->act_cnt & Ox3FFF);
q = pthd;
b3 -

ptfs = (struct FRAME_STRUCT #) begin_ptbd->buff ptr;
ptfs—->cmd = prfs-Dcmd;

ptfs-D>dsap = prfs-D>ssap | C_R_BIT) /# return the frame to
the sender #/

ptfs->ssap = O;

while(!Send_Frame(begin_ptbd, Build_Ptr(pfd-D>src_addr))),

break;

231421-46

1-52

ntel AP-235

/PCO/USR/CHUCK/CSRC/UAP. C

User Application Program
Async to IEEE 802.2/802.3 Protocol Converter

L I B
* % x ¥

<~

#include "d1d. h"

/# ASCII Characters #/

#define ESC Ox1B
#define LF Ox0A
#define CR 0x0D
#define BS ox08
#define BEL 0x07
#define SP . 0x20
#define DEL Ox7F
#define CTL_C 0x03

/% Hardware #/

Wdefine CH_B_CTL 0xO00DE
#define CH_A_CTL 0x00DC
#define CH_B_DAT 0Ox00DA
#define CH_A_DAT 0x00D8
#define UART_STAT_MSK 0x70

/# Interrupt cases for B274 »/
#define UART_TX_B [
#define UART_RECV_B 0x08
#define UART_RECV_ERR_B 0x0C
#define EXT_STAT_INT_B 0x04
#define EXT_STAT_INT_A Ox14

char fifo_tC256)
char fifo_r(2561;
char wralB3), wrbl5):

unsigned char in_fifo_t, out_fifo_t, in_fifo_r, out_fifo_r., actuali
u_short t_buf_stat, r_buf_stat;

char cbuflB0O1; /% Command line buffer #/

char linel813, /% Monitor Mode display line #/

unsigned char dsap, ssap, send_flag, local_echo;

char Dest_Addr[ADD_LENI];
char Multi_Addr[ADD_LENI; N

int tmstat; /# terminal mode status: for leaving terminal mode #/

int dhex, monitor_flag, hs_stat; /% flags #/
extern struct TBD #Get_Tbd();
extern char #Build_Ptr();

extern struct FLAGS flags;

extern char xid_framel);
extern char whoamill;
231421-47

1-63

ntel

AP-235

/PCD/USR/CHUCK/CSRC/UAP. C

extern
extern
extern

extern
extern
extern
extern
extern
extern
extern
extern

extern

struct MAT matll;
struct LAT latcl;
char *pNULL;

unsigned long good_xmit_cnt;

u_short underrun_cnt
u_short no_crs_cnt;
unsigned long defer_cnt;
u_short sqe_err_cnt;
u_short max_col_cnti
unsigned long recv_frame_cnt
u_short Teset_cnt;
struct SCB sch;

/% Macro ‘type’ of definitions #/

#define
#define
#define
#define
#define
Wdefine
Wdefine
Wdefine
#define
#define
#define
#define

RTS_ONB outb(CH_B_CTL,0x05); outb(CH_B_CTL, wrb[(S5)=wrb{31:0x02)
RTS_OFFB outb(CH_B_CTL, 0x05); outb(CH_B_CTL, wrb[31=wrb[51&0xFD)
RTS_ONA outb(CH_A_CTL,0x05); outb(CH_A_CTL, wralSl)=wral51i0x02)
RTS_OFFA outb(CH_A_CTL,0x05); outb(CH_A_CTL, wral5]l=wral51&0xFD)
UART_TX_DI_B outb(CH_B_CTL, 0x01); outb(CH_B_CTL, wrb{1J=wrbC11&OxFD)
UART_TX_EI_B outb(CH_B_CTL,0x01); outb(CH_B_CTL, wrb(1)=wrbl(1110x02)
UART_RX_DI_B outb(CH_B_CTL, 0x01); outb(CH_B_CTL, wrb{1J=wrb[1J&0xE7)
UART_RX_EI_B outb(CH_B_CTL,0x01); cutb(CH B _CTL,wrbf11=wrbC11!0x10)
RESET_TX_INT outb(CH_B_CTL, 0x28)

EOI_B8274 outb(CH_A_CTL,0x38) /# 8274 int is IR3 on 80130 %/
EOI_B80130_8274 outb(OxEO, 0x&0)

EOI_B0130_TIMER outb(0xEQ, 0x62)

Enable_Vart_Int()
{

int
c =

b

ci

inb(OxE2); /# read the 80130 interrupt mask register #/

Qutb (OxE2, OxOOFE & c); /# write to the 80130 interrupt mask register #/

Disable_Uart_Int()
<

int

ci

inb(OxE2))

outb (OxE2, 0x0001 | c)i

b

Enable_Timer_Int() o . .
{

int

ci

- outb(OxEA, 125);
outb (OxEA, O0x00); /% Timer 1 interrupts every . 125 sec */
send_flag = FALSE
¢ = inb(OxE2); /# read the 80130 interrupt mask register #/

outb(OXxE2, OxO0FB & c); /# write to the 80130 interrupt mask register #/

231421-48

1-54

ntel AP-235

/PCO/USR/CHUCK/CSRC/UAP. C

Disable_Timer_Int()
<
int ci

¢ = inb(OxE2);
autb (OxE2, 0x0004 | c):

b4

Co(c)
char (2]

{
while ((inb(CH_B_CTL) & 4) == 0),
outb(CH_B_DAT, c)i

Ci()

<
while ¢ (inb(CH_B_CTL) & 1) == 0);
return(inb(CH_B_DAT) & Ox7F);

3

Read(pmsg, cnt, pact)
char “pmegi
unsigned char cnt, #pact;

unsigned char i
char c, bufL2001,

for (i = c = 0 (c != CR) && (¢ != LF) && (i < 198);
c = Ci() & Ox7F
if (c == BS || ¢ == DEL) {
if (i >0 (
~--i3
Ca(BS)s Co(SP)s Co(BS):

3>
bl
else
if (c >= 8P) (
Colc)i
buffi++] = ¢;
3}
else
if ((c == CR) 1!l (c == LF)) {
bufLi++] = CRs
buffi++] = LF;
3
else Ca(BEL):

>

Co(CR): Co(LF);

if (i > cnt)
#pact = cnt;

else
#pact = i

for (i = 0) i < wpact ; i++)
#pmsg++ = buflids

231421-49

1-556

ntel AP-235

/PCO/USR/CHUCK/CBRC/UAP. C

b
Read_Char()
<
unsigned char i1

Read(&cbufCO01, 80, %actual):
i = Skip(&cbufl01);

returnicbuflil);
Write(pmsg)
char *pmsg)
<
while (#pmsg '= ‘\0‘) {
if (#pmsg == ‘\n’) : /
Co(CR);
Co(pmsg++);:
3
Fatal(pmsg) /% write a message to the screen then stop »/
char *pmsg;
<
Write("Fatal: ");
Write(pmsg);
fordii N
b

Bug(pmsg) '/# urite a message to the screen then continue #/
char *pmsgi

{
Write("Bug: “);
Write(pmsg);

Ascii_To_Char(c) /# convert ASCII-Hex to Char #/

char ci
{ -
if (0’ <= ¢) && (c <= 9’))
returni(c - ‘0’
if ((‘A’ <= c) && (c <= ‘F"))
return(c - 0x37);
if ((’a’ <= c) & (c <= ‘¢#‘))
return(c - 0x57);
return(OxFF);:
b
Lower_Case(c)
char (3]
{

if ((‘a’ <= ¢c) && (c <= "27))
return(c);

if ((‘A7 (= ¢) && (c <= “Z°))
return(c + 0x20);

return(0);

231421-50

1-56

nte[AP-235

/PCO/USR/CHUCK/CSRC/UAP. C

Char_To_Ascii(c, ch) /# convert char to ASCII-Hex #/
unsigned char c,» chil;

<
unsigned char i

i = (c & OxFO) >> 4;
it (i <100

chfO] = i + 0x30;
else

chlf0) = i + 0x37;
i = (c & OxOF)
if (1 < 10)

chf1l = i + 0x30;

hL1] = i + Ox37;
i
b

Skip(pmsg) /% skip blanks #/
char *pmsgi

<
int i

for (i = O; #pmsg == ’ ’; i++, pmsg++);
return(i);
b

Read_Int() /% Read a 16 bit Integer »/
<

u_short wd, wh, wdi, whi,
char i, done, hex, dover, haver;

for (done = FALSE: done == FALSE;) {
Read (&cbuf(0), BO, Xactual);
i = Skip(&%cbufl0l1);

for (hex = dover = hover = FALSE, wd = wh = wdl = whi = O; '
(J = Ascii_To_Char(cbuflil)) <= 15; i++) {
if (> M -
hex = TRUE;
wd = wd*10 + ;i
wh = wh#*16 + 5,
if (wd < wdl)
dover = TRUE:
if (wh < whl)
haover = TRUE;
wdl = wd;: whl = wh;

3
if (cbufli) == ‘H’ !! cbufli) == ‘h’ !} cbuflil == CR
cbuflil == LF !! cbuflil == 7 “) (
if (cbufli) == ‘H’ | cbuflil == ‘h’) ’
hex = TRUE;
1£ (hex == TRUE &% hover == FALSE)
dane TRUE;

if (hex == FALSE &% dover == FALSE)
done = TRUE;
231421-51

1-57

ntel , ‘ AP-235

/PCO/USR/CHUCK/CSRC/UAP. C

if (!done) €
Write("\n This number is too big.\n It has to be less than &5336. \n"),
Write("\n Enter number --> ");
3
2
else .
Write(" Illegal Character\n Enter a number -->");

bl

if (hex)
returniwh);

returniwd);

Int_To_Ascii(value, base, 1d, ch, width) /# convert an integer to an ASCII string #/
unsigned long value;
u_short base, width;
char chCl, 1d;

<
u_short &, i
for (i = 0) i < width) i++) {
J = value % base;
if () < 10) chlil = 5 + Ox30:
else chfil =) + 0x37;
value = valua / bases
}
for (i = width - 1; ch[i) == ‘0’ && i > 0; i--)
chlil = 1d;
chfwidthl = ‘\O’;
b .

Write_Long_Int(dw, i)
unsigned long dus
u_short i

u_short 3 ’
char chi11d;

if (dhex)
Int_To_Ascii(du, 16, ‘ ‘., &ch(0l, 8);
else
Int_To_Ascii(dw, 10, ‘ ‘, &ch[0, 10);
for (J = 0; chljyd '= ‘\O’; i-=) J++)
lineCil = chiyls
b

Write_Short_Int(w, i)
u_short w, i;

u_short i
char chl6)
unsigned long dwi

duw = wi
if (dhex)

Int_To_Ascii(dw, 16, ‘0’, &ch(0), 4);
else

231421-52

1-58

Nte[AP-235

/PCO/UBR/CHUCK/CSRC/UAP. C

Int_To_Ascii(dw, 10, ‘0’, &chC[Ol, 3
for () = 01 chb)] != *\O‘; i-=) J++)
lineCil = ch(y1s

b4
Yes()
<
char bs
for (i 4) (L
b = Read_Char();
if ((b == ‘Y’) 1| (b mm ‘y’))
return(TRUE);
if ((b =mm 'N’) i} (b == ‘n’))
return(FALBE);
Write(" Enter a Y or N ~=> ");
}
>

Read_Addr(pmsg., add, cnt) /# pmsg - pointer to the output message ¥/
/% add - pointer to the address #/
/% cnt - number of bytes in the address #/
char #pmsg, addl), cnt;

char i

for (5 i)
Write(pmsg);
Read(&cbufl0l1, 80, &actual);
for (5 = skip(&cbuflOJ), i = 01 i < 2#cnt 1 i++, J++) {
if ((’0¢ <= chuflyl) && (cbuflyl <= ’9°))
cbuflil = cbuflyl ~ ‘0"
else
if ((’A’ <= cbufl 1) &% (cbufly]) <= ‘F’))
cbuflil) = cbuflyl -~ 0x37; .
else
if ((’a’ <= cbuflyl) && (cbuflyd <= ’£°))
cbuflil = cbuflyl ~ Ox37;

else {
Write(” Illegal Character\n"):
break;
>
bd
if (i >= 2#cnt - 1)
break;:

>
for (i = 05 i <= cnt - 1) i++) s
addL(cnt — 1) - i) = cbufl2#i] << 4 | cbufl2#i + 11;
3y .

IWrite_Addr(padd: cnt)
char paddll, cnt;

{ -
unsigned char i, 3

for (5 cnt D0 cnt--) {

1-59

ntel | AP-235

/PCO/USR/CHUCK/CSRC/UAP. C

v

i = paddfcnt-1d)
Char_To_Ascii(i, &cl0)); i . B
Write(&cl01);

b

cf0) = ‘\n‘;

clid = ’\O0“;

Urite(&cf01);

b

Recv_Data_l{(pfd) /% Receives the frame from the B02.2 module #/

struct FD #*p fdi

struct FRAME_STRUCT #prfs, #ptfs;

struct TBD #ptbd, #begin_ptbd., #qi
struct RBD . wprbdi

char #prbuf;

int - cnti

prbd = (struct RBD #) Build_Ptr(pfd-Drbd_offset);
prés = (struct FRAME_STRUCT #) Build_Ptr(prbd-Dbuff ptr);

switch (prfs-dcmd & “P_F_BIT) <
case uI: .
if (monitor_flag)
break; /% Don‘t put data in fifo unless in terminal mode */
prbuf = (char #) prfs; .
prbuf += 3; /# skip over the header info and point to the data +/
cnt = 3;
pfd-Dlength —-= 3; .
for (i prbd != pNULL; cnt = O, prbuf = (char #) prbd-Dbuff_ptr){
for (i cnt < (prbd-Dact_cnt & OxO3FFF) && pfd->length > O;
ent++, prbuf++, pfd->length—-) {
while(r_buf_stat == FULL);
Fifo_R_In(#prbuf);

>
prbd = Build_Ptr(prbd-2>link);
#ifdef DEBUC . ,
if (pfd=Dlength == O && prbd != pNULL)
Fatal("Uap: Recv_Data_1(pfd) ")
#endif /+ DEBUG %/
bd

break;
case X1D-

while ((ptbd = Get_Tbd()) == pNULL);

ptbd-Dact_cnt = EOFBIT | XID_LENGTH;

bcopy ((char #) ptbd-Dbuff _ptr, Xxid_framelO], XID_LENGTH):
ptfs = (struct FRAME_STRUCT #) ptbd-Dbuff ptr;

ptfs—Dcmd = prfs—Dcmd;

ptfs—->dsap = prés->ssap | C_R_BIT; /# return the frame
. to the sender #/
ptfs—DOssap = ssapi
while(!Send_Frame(ptbd, Build_Ptr(pfd->src_addr)));
231421-54

1-60

ntel AP-235

/PCO/USR/CHUCK/CSRC/UAP. C

break;
case TEST:

for (prbd = (struct RBD #) Build_Ptr(pfd->rbd_offset),
q = begin_ptbd = pNULL; prbd != pNULL:
prbd = Build_Ptr(prbd->link)) {
while ((ptbd = Get_Tbd()) == pNULL);
i# (q !'= pNULL)
q->link = Offsetiptbd);
else
begin_ptbd = ptbd:
ptbd-Dact_cnt = prbd-Dact_cnt;:
bcopyl(char #) ptbd-Dbuff_ptr, (char %) prbd-Dbuff _ptr,
ptbd-Dact_cnt & Ox3FFF);
q = ptbd;
b

ptfs = (struct FRAME_STRUCT #) begin_ptbd->buff _ptr,
ptfs-D>cmd = prfs->cmd)

ptfs—D>dsap = prfs-Dssap ! C_R_BIT; /# return the frame to
the sender #/

ptfs-Dssap = ssap;
while('!Send_Frame(begin_ptbd, Build_Ptr(pfd-Dsrc_addr)))
break;

b
Put_Free_RFA(pfd); /% return the frame #/

Fifo_T_Qut®) /% called by main program #/
{

char ci

c = fifo_tLout_fifo_t++1)

Disable_Vart_Int():
if (out_fifo_t == in_~fifo_t) /% if the fifo is ampty %/
t_buf_stat = EMPTY; /# stop filling Transmit Buffer Descriptors »/
else /% if the fifo was full and is now draining %/
4f (t_buf_stat == FULL &% out_fifo_t — B0 == in_fifo_t) { /# turn on
the spigot #/
RTS_ONB:
t_buf_stat = INUSE;:
b
Enable_Uart_Int();
Teturn(c);

Fifo_T_In(c) /% called by Vart receive interrupt »/
char ci
{

fifo_tlin_fifo_t++] = c;
if (t_buf_stat == EMPTY)
231421-55

1-61

Inte[AP-235

/PCO/USR/CHUCK/CSRC/UAP. C

t_buf_stat = INUSE, /% start filling Transmit Buffer Descriptor #/

else /% if there are only 20 locations left, turn off the spigot #/
if (t_buf_stat == INUSE && in_fifo_t + 20 == put_fifo_t) <
RTS_OFFB;

t_buf_stat = FULL,
3
Fifo_R_Out() /% called by transmit interrupt #/
¢ char ci 4
c = fifo_rlout_fifo_r++d)

i# (out_fifo_r == in_fifo_r) /% if the fifo is empty #/
r_buf_stat = EMPTY;
else /# if the fifo was full and is now draining #/
if (r_buf_stat == FULL &% out_fifo_r - 81 == in_¢*ifo_r)
r_buf_stat = INUSE;
returnic);

Fifo_R_In(c) /% called by Recv_Dats_1() #/
char ci
<
fifo_rlin_fifo_r++l = ¢,
Disable _Uart_Int();
if (r_buf_stat == EMPTY) {
VART_TX_EI1_B;
Cot0); /% prime the interrupt #/
r_buf_stat = INUSE)

}
else /% if the buffer is full, indicate it #/
if (r_buf_stat == INUSE && in_fifo_r == out_fifo_r)
r_buf_stat = FULL,
Enable_Uart_Int();

Isr_Vart()
{

int stat;
char [

outb(CH_B_CTL, 2); /# point to RR2 in 8274 «/
switch(inb(CH_B_CTL) & Oxi1C){ /# read B274 interrupt vector and service it #/
case UART_TX_B:

1f (r_buf_stat == EMPTY) <
VART_TX_D1_B: /% if fifo is empty disable transmitter #/
REBET_TX_INT; '
y
else .
outb (CH_B_DAT., Fifo R _Out())
break:

231421-56

1-62

ntal AP-235

/PCO/USR/CHUCK/CBRC/VAP. C

case UART_RECV_ERR_B:

outb(CH_B_CTL, 1); /# point to RR1 in 8274 #/
stat = inb(CH_B_CTL):
outb(CH_B_CTL, 0x30);
if (stat & 0x0010)
Write("\nParity Error Detected\n");
if (stat & 0x0020)
Write("\nOverrun Error Detected\n");
if (stat & 0x0040)
Write("\nFraming Error Detected\n");
break;

case UART_RECV_B:
c = inb(CH_B_DAT);

i? (hs_stat == TRUE) {

hs_stat = FALSE; /+ Flag to terminate High Speed Transmit mode #/
break;
>

if (local_echo)

Colc)s /# echo the char back to the terminal, could cause

a transmit overrun if Tx interrupt is enabled #/

if (c == CTL_C)

tmstat = FALSE
alse
Fifo_T_In(c);
break:

case EXT_STAT_INT_B:

outb(CH_B_CTL, 0x10); /% reset external status interrupts #/
break:

case EXT_STAT_INT_A:
outb (CH_A_CTL, 0x10):
break;

default:
i

>
E01_80130_8274:

EOI_B8274;

b

Isr2()

<
send_flag = TRUE:
outb (OxEA, 1235);
outb(OxEA, O0x00); /# Timer 1 interrupts every . 125 sec */
outb (OxEO, Ox62); /# EOI 80130 #/

}

231421-57

1-63

nter \ AP-235

/PCO/USR/CHUCK/CSRC/UAP. C

Load_Lsap()
<
int Recv_Data_1();

for(ii)
Read_Addr (“\n\nEnter this Station’s LSAP in Hex --> ", kssap, 1)
if ('Add_Dsap_Address(ssap, Recv_Data_1)) {
Write("\n\nError: LSAP Address must be one of the following:\n")
Write(“\n 20H, 40H, 60H, BOH, AOH, COH, EOH \n");
b4 .
else break;
3
}

Load_Multicast()
{

for (45 4) (L
Read_Addr("\nEnter the Multicast Address in Hex ~-->",
&Multi_Addrl0), ADD_LEN);
if ((Multi_Addr[0l & Ox01) == 0)
Write("\nSorry, the LEB of the Multicast Address must be 1\n");
else { if ('Add_Multicast_Address(&Multi_Addr[01)) {
Write("\n\nSorry, Multicast Address Table is full!\n");

break;
>
else {
Write("\n\nWould you like to add another Multicast Address?");
Write(” (Y or N) ==> ")
if (!Yes())
breaks
b

>

Remove_Multicast()
<

for (5 5)«
Read_Addr("\nEnter the Multicast Address that you want to delete in Hex --D",
&Multi_Addr(0l, ADD_LEN);
if ((Multi_Addr[0] & 0x01) == 0) .
Write("\nBorry, the LSB of the Multicast Address must be 1\n"),
else { if ('Delete_Multicast_Address(&Multi_Addr(0])) {
© Write("\n\nSorry, that Multicast Address doesn’t exist!\n");
break;

else { .
Write("\n\nWould you like to delete another Multicast Address?");
Write(" (Y or N) ==> "),
if (!Yes))
break:

231421-58

1-64

ntal AP-235

/PCO/USR/CHUCK/CSRC/UAP. C

Print_Addresses()
{

struct MAT #*pmat;
int stat;

Write("\n This Stations Host Address is: ");
Write_Addr (&whoamiLOJ., ADD_LEN);
Write("\n The ‘Address of the Destination Node is: ")
Write_Addr(&Dest_Addr[0l, ADD_LEN);
Write("\n This Stations LSAP Address is: ")
Write_Addr(&ssap., 1);
Write("\n The Address of the Destination LSAP is: ");
Write_Addr(&dsap, 1);
stat = FALSE:
for (pmat = &matl[0)i pmat <= &matC[MULTI_ADDR_CNT - 11; pmat++)
if (pmat-Dstat == INUSE) (
stat = TRUE:
break:

b
if (stat) <
Write(“\n The following Multicast Addresses are enabled: ");
for (pmat = &mat[0l; pmat <= &matlMULTI_ADDR_CNT - 11i pmat++)
if (pmat-Dstat == INUSE) {
Write_Addr(&pmat->addr[0], ADD_LEN);
Write(" ")

b
else
Write("\n There are no Multicast Addresses enabled. \n");
3y . :

Init_DataLink()
{
int stat;

if ((stat = Init_Llc()) == PASSED)
Write("\n\nPassed Diagnostic Self Tests\n\n\n");
else
if(stat == FAILED_DIAGNOSE)
Write("\n\nFailed: Self Test Diagnose Command\n"),
else
if(stat == FAILED_LPBK_INTERNAL)
Write("\n\nFailed: Internal Loopback Self Test\n");
else
ift{stat == FAILED_LPBK_EXTERNAL)
Write("\n\nFailed: External Loopback Self Testi:n");
else
if(stat == FAILED_LPBK_TRANSCEIVER)
Write("\n\nFailed: External Loopback Through Transceiver Self Test\n");
>

Init_Uap ()
{
outb (OxEO, Ox31); /#initalize 80130 pic - ICW1I %/
outb (0xE2, 0x20); /% ICW2 #/
231421-59

1-65

ntel : AP-235

/PCO/USR/CHUCK/CSRC/UAP. C

>

outb (OxE2, 0x10): /% ICW3 &/
outb (OxE2, OxOD): /% ICHE #/
outb(OxE2, O0x10); /% 1CWb %/
outb(OxE2, OxFF); /% mask all interrupts #/

outw(OxFF20, 0x0020); /% set B0186 vactor base #/
/# Initialize the 80130 timers for Terminal Mode #/

outb (OxEE, 0x34);

outh(OxES, 0xBB):

outb(OxEB: OxOB); /% BYBTICK set for 1 msec #/

outb (OxEE, 0x70):

outb(OxEA, 125);

outb(OxEA, O0x00): /# Timer 1 interrupts every . 125 sec */

/% Initialize the 8274 #/

outb(CH_B_CTL, Ox10); outb(CH_B_CTL., 0x28); outb(CH_B_CTL., 0x30);
outb(CH_A_CTL, Ox38);

outb(CH_B_CTL, 2); outb(CH_B_CTL, wrbl2] = Ox14);

outb(CH_ B _CTL, 1); outb(CH B_CTL, wrbl1] = Ox15); N
outb(CH_B_CTL, 5); outb(CH_B_CTL, wrbC(31 = OxEA):

Write("\n\n\n\n\n\n\n\n\n\n\n\n");

Write(" \n")i
Write(" # B2%B6 IEEE B02. 2/802. 3 Compatible Data Link Driver #\n");
Write(" \n");

Write("\n\n\n\n\n\n\n");
Init_DataLink();

dhex = FALSE; !
monitor_flag = TRUE;

Read_Addr("\n\nEnter the Address of the Dcst\ination Node in Hex =-> *,
&Dest_Addr[0l, ADD_LEN);

Load_Lsap();

Read_Addr("\n\nEnter the Destination Node’s LSAP in Hex --=> ", &dsap, 1);

Write("\n\nDo you want to Load any Multicast Addresses? (Y or N) —-->");

if (Yes())
Load_Multicast();

Print_Addresses();

Terminal_Mode()
{

int frame_cnt, buf_cnt;
. struct TBD *ptbd, *q, *begin_ptbd;
char #pbué, c; '

Write("\n Would you like the local echo on? (Y or N)==D>");

if(Yes())

231421-60

1-66

ntel ‘ AP-235

/PCO/USR/CHUCK/CSRC/UAP. C

local_echo = TRUE;
else
local_echo = FALSE;

Write("\n This program will now enter the terminal mode. \n\n");
Write(”\n Press ~C then CR to return back %to the menuln\n"):

/% Initialize Fifo variables =/

out_fifo_t = in_fifo_t = out_fifo_r = in_fifo r = 0;
t_buf_stat = EMPTY: r_buf_stat = EMPTY;

EOI_B80130_8B274;
Enable_Vart_Int()
Enable_Timer_Int();
monitor_flag = FALSE;:
tmstat = TRUE:

while (tmstat) <

for (frame_cnt = O; frame_cnt < MAX_FRAME_SIZE; q = ptbd) (

while ((pthd = Get_Tbd()) == pNULL); /# get @ xmit buffer from the
data link #/

pbuf = (char %) ptbd-Dbuff_ptr; /# point to the buffer #/

buf_cnt = 0;

if (frame_cnt == 0) { /% if this is the first buffer, add on IEEE B802.2
header information #*/
begin_ptbd = ptbd;
#pbuf++ = dsapi
#pbuf++ = ssapi
#pbuf++ = UL,
buf_cnt = 3;

b

else q->link = Offset(ptbd); /# if this isn‘t the first buffer
link the previous buffer with the new one */

/% £i11 up a data link xmit buffer from async transmit fifo */

for (; buf_cnt < TBUF_SIZE &% frame_cnt < MAX_FRAME_SI1ZE;

buf_cnt++, pbuf++, frame_cnt++) {
if (frame_cnt != 0 && send_flag)
break:

while (t_buf_stat == EMPTY); /# wait until fifo has data */
if ((c = #pbuf = Fifo_T_Out()) == CR)
++buf_cnt ; ++pbuf; ++Fframe_cnti
break;
bd
3}
if (c == CR !! buf_cnt < TBUF_SIZE |! send_flag) { /# last buffer in list #/
ptbd-Dact_cnt = buf_cnt | EOFBIT;
send_flag = FALSE;
break:
3}

b4
while(!Send_Frame(begin_ptbd, &Dest_Addr[01)); /% keep trying until
successful #/

231421-61

. 1-67

nte[AP-235

/PCO/USR/CHUCK/CSRC/UAP. C

Disable _Vart_Int();
Disable_Timer_Int();
monitor_flag = TRUE;

struct TBD #Build_Frame(cnt)
u _short cnt;

u_short buf_cnt, frame_cnt, i;
struct TBD #ptbd, %#q, *begin_ptbd;
char #pbuf;

i = 0x20; frame_cnt = 0;
for (i 5 q = ptbd) &

while ((ptbd = Get_Thd()) == pNULL); /% get a xmit buffer from the '
data link %/

pbuf = (char #) pthd->hu¢6_pt‘r: /% point to the buffer w»/
buf_cnt = 0;

if (frame_cnt == 0) { /# if this is the first buffer, add on IEEE 802 2
header information %/
begin_ptbd = pthd;)
#pbuf++ = dsap
#pbuf++ = ssap;
#pbuf++ = UI;
buf_cnt = 3
}
else q->link = Dffset(ptbd); /# if this isn’t the first buffer
link the previous buffer with the new one #/
/% £il1]1 up a data link xmit buffer with ASCII characters #/
for (buf_cnt < TBUF_SIZE && cnt > O; .
i++, buf_cnt++, pbuf++, cnt--, Frame_cnt++) {
#pbuf = i;
if (i > Ox7E)
i = OxiF;
3 .
if (cnt == 0) { /% last buffer in list »/
pthd-Dact_cnt = buf_cnt | EOFBIT:
break;
bd

}
return(begin_ptbd);

Monitor_Mode()
{

u_short xmit, ent, i; .
struct TBD #Build_Frame(), #*ptbd;

Write(" Do you want this station to transmit? (Y or N) —=> ");
1f (Yes())

231421-62

1-68

nter AP-235

/PCO/USR/CHUCK/CERC/UAP. C

for (xmit = FALSE; xmit == FALSE;) {
Write("\n Enter the number of data bytes in the frame ~-=> ");
cnt = Read_Int();
if (cnt > 2043)

Write (“\n Sorry, the number has to be less than 2036!\n");
else

xmit = TRUE:

else xmit = FALSE:
Write(”"\n Hit any key to exit Monitor Mode. \n\n"),

Write(" ® of Good # of Good CRC Alignment No Receive\n”);
Write(" Frames Frames Errors Errors Resource Overruni\n");
Write(" Transmitted Received Errors Errors\n");
/% "01234567890123456789012345676890123456789012345678901234367890123456787012345678
. AXXRXXAKXXX XXXAAXXAXX xxAx xXXXX XXX% XXX
XXXXXAXX XXXXXXXX
11 25 33 44 57 71 »/

for (i = Qi i < 79 i++)
linelil = Ox20)

linel79] = CR;

1inel(BO1 = ’\O0‘;

while ((inb(CH_B_CTL) & 1) == 0) (

for (i = 0 i <725 i++)

linelil = Ox20;
Write_Long_Int(good_xmit_cnt, 11)
Write_Long_Int(recv_frame_cnt, 25)
Write_Short_Int(scb. crc_errs, 33)
Write_Short_Int(scb. aln_errs, 44);
Write_Short_Int(sch. rsc rs, 370
Write_Short_Int(sch. ovr_errs, 71);
Write(&klinelOl):
if (xmit) <

ptbd = Build_Frame(cnt),

while(!Send_Frame(ptbd, &Dest_Addr{01));

>
}
i=Cit)
>
He_Xmit_Mode()
<

struct TBD #ptbdi

Write("\n Hit any key to exit High Speed Transmit Mode.\n\n");
hs_stat = TRUE;:

EO0I_80130_8274;

Enable_Vart_Int():

/# Execute this loop until a vrecv char interrupt happends at Uart #/

231421-63

1-69

Il'lter AP-235

/PCO/USR/CHUCK/CSRC/UAP. C

while (hs_stat) { B}
while ((ptbd = Get_Tbd()) == pNULL); /# get a xmit buffer from
the data link #/
ptbd-Dact_cnt = EOFBIT; /% set the End Of Frame bit »/

while(!Send_Frame(ptbd, &Dest_Addr(0l)); /% Send Frame #/
b

fi1sable_Uart_Int();

Print_Cnt()
<

char chCi1), base, dwidth, width, i;

unsigned long temp) .
. {dhex) {
dwidth = O
width = 4
base = 16;
>
else {

base = 10;
dwidth = 10;
width = S:

Write("\n\n Good frames transmitted: “);
for (i = 1, i <= 11 - dwidth) i++)
Co(SP);
Int_To_Ascii(good_xmit_cnt, base, ‘ ‘., &chl{O0l, dwidth);
1or 1 T duidth - 13 i >=m O i--)
Colchlisl,
Write(" Good frames received: ")
for (i = 1; i <= 19 - dwidth; -4}
Co(SP); :
- Int_To_Ascii(recv_frame_cnt, base, ‘ '/, &chlOJ, dwidth)s
for (i = dwidth - 15 i D= 0; i--)
Jelehtil)
Write("\n\n CiC evrors received: “);
for (i = 1 i <= 15 = widthi i++)
Co(EP);
temp = scb.crc_errs)
Int_To_Ascii(temp, base, ‘ ‘, &ch[0), width);
enr (i = width - 1 i D= 0; i--)
Jetenlild),
Write(" ALiynment errors received: ")
for (i = 1) i <= 10 ~ wil¥h: i++)
Co(SP); . .
temp = scb. aln_errs;
-Int_To_Ascii(temp, base, ’ ’ &uht0l, width)s
for (i = width - i i »= 03 i--)
Colenriii,
< atwt"\n\n Out of Resource frames: ");
for (i = 1; i <= 12 — width; i++)
Co(8P);
temp = sch.rsc_errs) o
Int_Yo_Ascii(temp, base. ‘ °, &ch[0], width):

N

231421-64

1-70

AP-235

/PCN7YSR /CHUTA/CBRC/UAP. C

for (i = width - 13 & D= Oy i-=)
Co(chlil);

Write(" Raceiver ovarrun frame<: "1,

for (i = 1; i <= 12 - widil, a++)
Co(SP);

temp = $IL. UVT_errTs)

int_To_Ascii(temp, base, ' ‘. &ch[0), width):

for (i = width = 1; i >= 0 i--)
ColchCil);

Write("\n\n 62586 Reset: "‘-

for (i = 1; i <=27 widthi i++)
Cc(SP):

remp = reset_cnti

Int_To_Ascii(temp, base, ° ‘. &chl[O0J, width);

for (4 = width - 1, i >= 0i i~-)
Co(chlil)

Write(" Transmit undevrun frames: ");

for (i o=)0 0 = 11 - width; i++)
Co(SP);

temp = underrun_cnti

Int_To_Ascii(temp, base, * ‘, &chC[OJ, width};

for (i = width - 1; 1 >= 0; i~-="
Co(chCil):

Write("\n\n Lost CRS: ")

for i o= 15 1 <= 26 - widthi i++)
Ca(SP);

temp = no_crs_cnti

Int_To_Ascii(temp, base; ‘ ‘. &chl[0), width);

for (i = width - 1; i >= 0 i--)
CalchLil);

Write{" GGE errors: ")

ror (i = 1; i <= 28 — width; i++)
Co(SP);

temp = sqe_err_cnt;

Int_To_Ascii(temp, base, ' ‘, %ch[Ol, width):

for (i = width - 1: i >= Ui i-=)
ColchLil);

write("\n\n Maximum retry: ")

for (i = 1; i <= 21 ~ width; i++)
Co(SP);

temp = max_col_cnti

Int_To_Ascii(temp, base. ’‘ ’» &ch[0J, width);

for (i = width - 1 i >= 0) i--)
Co(chlil):

Write(" Frames that deferred: "))

for (i = 1; i <= 15 - dwidth; 1++)
Co(SP);

Int_To_Ascii(defer_cnt, base, ’ ‘. &chCOJ,

for (i = dwidth - 1; i >= 0; i-=)
Co(chlil),

>

T Print_Help()
{

Write ("\n\n Commands are:\n\n");
Write (" T - Terminal Mode

dwidth);

M - Monitor Mode\n");

231421-65

1-71

ntel

AP-235

/PCO/USR/CHUCK/CSRC/UAP. C

Write (" X - High Speed Transmit Mode
Write (" P - Print All Counters
Write (" A - Add a Multicast Address
Write (" 8 - Change the SG5AP Address
Write (" N - Change Destination Node Address
Write (" R - Re-Initialize the Data Link
¥}
Main()
<
int ci
Init_Vap();
Print_Help();
for (i) «

wroNnoc<
LI I I B)

Change Transmit Statistics\n");
Clear All Counters\n"),

De e a Multicast Address\n");
Change the DSAP Address\n");
Print All Addresses\n");:

Change the number Base\n");

Write ("\n\n Enter a command, type H for Help =-> ");

¢ = Read_Char ()
switch (Lower_Case(c)) {

case ‘h’:
Print_Help();
break

case ‘m’:
Monitor_Mode(); -
breaki

case ‘t’:
Terminal_Mode();
break;

case ‘x’:
Hs_Xmit_Mode();
break:

case ‘v’

Write("\n Transmit Statistics are now "),

if (flags. stat_on == 1)

Write("on.\n Would you like to change it ? (Y or N) ==> ");

else

Write("off. \n Would you like to change it ? (Y or N) ==> ");,

if (Yes()) €
if (flags. stat_on == 1)
flags. stat_on = O;
else flags. stat_on = 1;

break;

case ‘p’:
Print_Cnt():
break:

case ‘c’:
Clear_Cnt();
break;

case ‘a’:
Load_Multicast();
break:

case ‘z’:
Remove_Multicast();
break;

case ‘s’:

231421-66

1-72

ntel AP-235

/PCO/USR/CHUCK/CSRC/UAP. C

Delete_Dsap_Address(ssap);
Load_Lsap()i
break;
case ‘d’:
Read_Addr("\n\nEnter the Destination Node’s LSAP in Hex --2 ", &dsap, 1);
break:
case ‘n’:
Read_Addr("\n\nEnter the Address of the Destination Node in Hex —=3> ",
&Dest_Addr(01, ADD_LEN);
break;
case ‘1‘:
Print_Addresses();
break;
case ‘vt’:
Software_Reset();
Init_DataLink(),
Add_Dsap_Address(ssap, Recv_Data_1);
break;
case ‘b’:
Write("\n The current base is ");
if (dhex == TRUE)
Write("Hex. \n Would you like to change it ? (Y or N) —=3 ");
else
Write("Decimal. \n Would you like to change it ? (Y or N) —-=3> ");
if (Yes()) .
1f (dhex == TRUE) !
dhex = FALSE;
else dhex = TRUE;
b4
break;

default:
Write ("\n Unknown command\n");
break;

231421-67

1-73

ntel

AP-235

/PCO/USR/CHUCK/CERC/ABSY. ASM

name c ass! wp:ort

stack segment stack ‘stack’
stktop label word
stack ends
DLD_DATA segment public ‘DATA’
extrn SEGMT_: word } data segment address
DLD_DATA ends
UAP_DATA segment public ‘DATA’
UAP_DATA ends
DLD_CODE segment public ‘CODE’
extrn Isr_Timeout_: far, Isr_586_: far, Isr7_: far
extrn Isré_: far, IsrS_: far, Isr far
DLD_CODE ends
UAP_CODE segment public ‘CODE’
extrn Isr_Vart_: far, Isr2_:far, Main_: far
UAP_CODE ends
DQ_CODE segment public ‘CODE’
public inw_, outw_, init_intv_, enable_. disable_. Build Ptr
public Offset_, begin., inb_, outb_
argl equ CBP + &1
arg2 equ [BP + 81
assume CS:DQ@_CODE
assume DS:DLD_DATA
i+ . N
i initialization program for the 82586 data link driver
begin
sti
mov ax, DLD_DATA iget base of dgroup and
mov SEGMT_, ax ipass the segment value to the c program
mov ds, ax
call Main_ igo to the c program
hlt
' inb_ proc far
push BP
mov BP, &P
push DX
mov DX, argl
in AL, DX
pop DX
mov 5P, BP

231421-68

1-74 i

ntel ' AP-235

/PCO/USR/CHUCK/CSRC/ASSY. ASM

pop BP
Tet

inb_ endp

outb_ proc far
push BP
mov BP, SP
push DX
push AX
mov DX, argl
mov AX, arg2
out DX, AL
pop AX
pop DX
mov &P, BP
pop BP
ret

outb_ endp .

inw_ proc far
push BP
mov BP, B8P’
push DX
mov DX, argl
in AX, DX
pop 1123
mov SP, BP
pop BP
ret

inw_ endp

outw_ proc far
push BP
mov BP, 8P
push DX \
push AX
maov DX, argl
mov AX, ‘arg2
out DX, AX
pop AX
pop DX
mov SP, BP
pop BP
Tet

outw_ endp

Build_Ptr_ proc far
push BP
mov BP, SP
mov DX, DLD_DATA
mov AX, argl
mov SP, BP
pop BP
ret

Build_Ptr_ endp

Offset_ proc far

. 231421-69

1-75

ntel

AP-235

/PCO/USR/CHUCK/CSRC/ASSY. ASM

push
mov
mov
mov
pop
ret
D#fset_ endp

serve_int_isr
push
push
push
push
push
push
push
push

mov
mov
mov

call

pop
pop
pop
pop
pop
pop
pop
pop
iret
serve_int_isr

serve_int_8274
push
push
push
push
push
push
push
push

mov
mov
mov

call

pop
pop
pop
pop
pop

BP

BP, SP
AX, argl
SP, BP
BP

AX, DLD_DATA
DS, AX
ES, AX

Isr_586

AX. UAP_DATA
DS, AX
ES, AX

Isv_VUart_

231421-70

1-76

AP-235

/PCO/USR/CHUCK/CSRC/ABSY. ASM

pop cX

pap BX

pop AX

iret
serve_int_B274 endp
serve_int_timeout proc

push AX

push BX

push cX

push DX

push 81

push DI

push Ds

push ES

mov AX, DLD_DATA

mov DS, AX

mov ES, AX

call Isr_Timeout_

pop ES

pop DS

pop DI

pop 51

pop DX

pop cx

pop BX

pop AaX
serve_int_timeout endp
serve_int7_isr proc far

push AX

push BX

push cX

push DX

push 81

push DI

push D8

push ES

mov AX, DLD_DATA

mov DS, AX

mov ES, AX

call Isr7_

pop ES

pop Ds

pop DI

pop SI

pop DX

pop cX

pop BX

pop AX

far

231421-71

1-77

ntel

AP-235

/PCO/USR/CHUCK/CSRC/ASSY. ASM

iret
serve_int7_isr

serve_inté_isr
push
push
push
push
push
push
push
push

mov
mov
mov

call

pap
pop
pop
pop
pop
pop
pop
pop
iret

serve_inté_isr

serve_intS_isr
push
push
push
push
push
push
push
push

mov
mov
mov

call

pop
pop
pop
pop
pop
pop
pop
pop
iret
serve_intS_isr

endp

proc far
X

AX, DLD_DATA
DS, AX
ES, AX

Isré_

AX, DLD_DATA
DS,
ES, AX

IstS_

231421-72

1-78

AP-235

/PCO/USR/CHUCK/CSRC/ASSY. ASM

serve_int2_isr
push
push
push
push
push
push
push
push

mov
mov
mov

call

pop
pop
pop
pop
pop
pop
pop
pop
iret

serve_int2_isr

serve_intl_isr
push
push
push
push
push
push
push
push

mov
mov
mov

call

pop
pop
pop
pop
pop
pop
pop
pop
iret
serve_intl_isr

enable_ proc
st

proc far
AX
BX
CcX
DX
SI
DI
Ds
ES

AX,
DS,
ES,

UAP_DATA
AX
AX

Isr2_

far

AX,
DS,
ES,

DLD_DATA
AX
AX

Isri_

231421-73

1-79

ntel

AP-235

/PCD/USR/CHUCK/CSRC/ABSY. ASM

ret
enable_ endp

disable_
cli
Tet

disable_

init_intv_
push
push

xor
mov

i Interrupt types for the

mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov

pop

pop

ret
init_intv_

DQ_CODE ends

proc

endp

proc
DS
AX

AX, AX
DS, AX

DS: word
DS: word
DS: word
DS: word
DS: word
DS: word
DS: word
DS: word
DS: word
DS: word
DS: word
DS: word
DS: word
DS: word
DS: word
DS: word

AX
DS

endp

far

far

ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr

80h.,
a2h,
84h,
86h,
88h,
B8Ah,
8Ch,
8Eh.,
90h,
92h,
94h.,
96h,
98h,
9Ah,
9Ch,
FEh.

186/51 COMMputer

offset serve_int_B8274
DG_CODE

offset serve_intl_isr
DG_CODE

offset serve_int2_isr
D@_CODE

offset serve_int_isr
D@_CODE

offset serve_int_timeout
D@_CODE

offset serve_intS_isv
D@G_CODE

offset serve_inté_isr
DG@_CODE

offset serve_int7_isr
DQ_CODE

int
int
int

int

int
int

int

begin, ds:dld_data, ss:stack:stktop’

N o U dw N

231421-74

1-80

N ® :
Intel APPLICATION ~ AP-236
NOTE

November 1986

Implementing StarLAN with
the Intel 82588

ADI GOLBERT
DATA COMMUNICATIONS OPERATION

SHARAD GANDH]I
FIELD APPLICATIONS-EUROPE

Order Number: 231422-003
1-81

intel

AP-236

1.0 INTRODUCTION

Personal computers have become the most prolific
workstation in the office, serving a wide range of needs
such as word processing, spreadsheets, and data bases.
The need to interconnect PCs in a local environment
has clearly emerged, for purposes such as the sharing of
file, print, and communication servers; downline load-
ing of files and application programs; electronic mail;

etc. Proliferation of the PC makes it the workstation of .

choice for accessing the corporate mainframe/s; this
function can be performed much more efficiently and
economically when clusters of PCs are already inter-
connected through Local Area Networks (LANSs). Ac-
cording to market surveys, the installed base of PCs in
business environments reached about 10 million units
year-end ’85, with only a small fraction connected via
LANSs. The installed base is expected to double by
1990. There is clearly a great need for locally intercon-
‘necting these machines; furthermore, end users expect
interconnectability across vendors. Thus, there is an ur-
gent need for industry standards to promote cost effec-
tive PC LANSs.

A large number of proprietary PC LANs have become
available for the office environment over the past sever-
al years. Many of these suffer from high installed cost,
technical deficiencies, non-conformance to industry
standards, and general lack of industry backing. Star-
LAN, in Intel’s opinion, is one of the few networks
which will emerge as a standard. It utilizes a proven
network access method, it is implemented with proven
VLSI components; it is cost effective, easily installable
and reconfigurable; it is technically competent; and it
enjoys the backing of a large cross section of the indus-
try which is collaborating to develop a standard (IEEE
802.3, type 1BASES).

1.1 StarLAN

StarLAN is a 1 Mb/s network based on the CSMA/
CD access method (Carrier Sense, Multiple Access
with Collision Detection). It works over standard,
unshielded, twisted pair telephone wiring. Typically,
the wiring connects each desk to a wiring closet in a
star topology (from which the IEEE Task Force work-
ing on the standard derived the name StarLAN in
1984). In fact, telephone and StarLAN wiring can coex-
ist in the same twisted pair bundle connecting a desk to
the wiring closet. Abundant quantities of unused phone
wiring exist in most office environments, particularly in
the U.S. The StarLAN concept of wiring and network-
ing concepts was originated by AT&T Information Sys-
tems.)

1.2 The 82588

The 82588 is a single-chip LAN controller designed for
CSMA/CD networks. It integrates in one chip all func-

1-82

tions needed for such networks. Besides inplementing
the standard CSMA/CD functions like framing, defer-
ring, backing off and retrying on collisions, transmit--
ting and receiving frames, it performs data encoding
and decoding in Manshester or NRZI format, carrier
sensing and collision detection, all up to a speed of 2
Mb/s (independent of the chosen encoding scheme).
These functions make it an optimum controller for a
StarLAN node. The 82588 has a very conventional mi-
crocomputer bus interface, easing the job of interfacing
it to any processor.

1.3 Organization of the Application
Note

This application note has two objectives. One is to de-
scribe StarLAN in practical terms to prospective imple-
menters. The other is to illustrate designing with 82588,
particularly as related to StarLAN which is expected to
emerge as its largest application area.

Section 2 of this Application Note describes the Star-
LAN network, its basic components, collision detec-
tion, signal propagation and network parameters. Sec-
tions 3 and 4 describe the 82588 LAN controller and its
role in the StarLAN network. Section 5 goes into the
details of designing a StarLAN node for the IBM PC.
Section 6 describes the design of the HUB. Both these
designs have been implemented and operated in an ac-
tual StarLAN" environment. Section 7 documents the
software used to drive the :82588. It gives the actual
procedures used to do operations like, configure, trans-
mit and receive frames. It also shows how to use the
DMA controller and interrupt controller in the IBM
PC and goes into the details of doing I/0 on the PC
using DOS calls. Appendix A shows oscilloscope traces
of the signals at various points in the network. Appen-
dix B describes the multiple point extension (MPE) be-
ing considered by IEEE. Appendixes C and D talk
about advanced usages of the 82588; working with only
one DMA channel, and measuring network delays with
the 82588.

1.4 References

For additional information on the 82588, see the Intel
Microcommunications Handbook. StarLAN specifica-
tion are currently available in draft standard form
through the IEEE 802.3 Working Group.

2.0 StarLAN

StarLAN is a low cost 1 Mb/s networking solution
aimed at office automation applications. It uses a star

ntel

AP-236

topology with the nodes connected in a point-to-point
fashion to a central HUB. HUBs can be connected in a
hierarchical fashion. Up to 5 levels are supported. The
maximum distance between a node and the adjacent
HUB or between two adjacent HUBs is 800 ft. (about
250 meters) for 24 gauge wire and 600 ft. (about 200
meters) for 26 gauge wire. Maximum node-to-node dis-
tance with one HUB is 0.5 km, hence IEEE 802.3 des-
ignation of type 1BASES. 1 stands for 1 Mb/s and
BASE for baseband. (StarLAN doesn’t preclude the use
- of more than 800 ft wiring provided 6.5 dB maximum
attenuation is met, and cable propagation delay is-no
more than 4 bit times).

One of the most attractive features of StarLAN is that
it uses telephone grade twisted pair wire for the trans-
mission medium. In fact, existing installed telephone
wiring can also be used for StarLAN. Telephone wiring
is very economical to buy and install. Although use of
telephone wiring is an obvious advantage, for small
clusters of nodes, it is possible to work around the use
of building wiring.

Factors contributing to low cost are:

1) Use of telephone grade, unshielded, 24 or 26 gauge

twisted pair wire transmission media.

2) Installed base of redundant telephone wiring in most

buildings.

3) Buildings are designed for star topology wiring.

They have conduits leading to a central location.

4) Availability of low cost VLSI LAN controllers like

the 82588 for low cost applications and the 82586 for
high performance applications.

5) Off-the-shelf, Low cost RS-422, RS-485 drivers/re-
ceivers compatible with the StarLAN analog inter-
face requirements.

2.1 StarLAN Topology

StarLAN, as the name suggests, uses a star topology.
The nodes are at the extremities of a star and the cen-
tral point is called a HUB. There can be more than one
HUB in a network. The HUBs are connected in a hier-
archical fashion resembling an inverted tree, as shown
in Figure 1, where nodes are shown as PCs. The HUB
at the base (at level 3) of the tree is called the Header
Hub (HHUB) and others are called Intermediate HUBs
(IHUB). It will become apparent, later in this section,
that topologically, this entire network of nodes and
HUBs is equivalent to one where all the nodes are con-
nected to a single HUB. Also StarLAN doesn’t limit
the number of nodes or HUBS at any given level.

2.1.1 TELEPHONE NETWORK

StarLAN is structured to run parallel to the telephone
network in a building. The telephone network has, in
fact, exactly the same star topology as StarLAN. Let us
now examine how the telephone system is typically laid
out in a building in the USA. Figure 2 shows how a
typical building is wired for telephones. 24 gauge
unshielded twisted pair wires emanate from a Wiring
Closet. The wires are in bundles of 25 or 50 pairs. The
bundle is called D inside wiring (DIW). The wires in
these cables end up at modular telephone jacks in the
wall. The telephone set is either connected directly to

HUB LEVEL 3

HUB LEVEL 2

HUB LEVEL 1

*Maximum of 5 HUB levels.
*PCs or DTEs can connect directly at any level.

231422-2

Figure 1. StarLAN Topology

1-83

intal

AP-236

the jack or through an extension cable. Each telephone
generally needs one twisted pair for voice and another
for auxilliary power. Thus, each modular jack has 2
twisted pairs (4 wires) connected to it. A 25 pair DIW
cable can thus be used for up to 12 telephone connec-
tions. In most buildings, not all pairs in the bundle are
used. Typically, a cable is used for only 4 to 8 telephone
connections. This practice is followed by telephone
companies because it is cheaper to install extra wires
initially, rather than retrofitting to expand the existing
number of connections. As a result, a lot of extra, un-
used wiring exists in a building. The stretch of cable
between the wiring closet and the telephone jack is typi-
cally less than 800 ft. (250 meters). In the wiring closet
the incoming wires from the telephones are routed to
another wiring closet, a PABX or to the central office
through an interconnect matrix. Thus, the wiring closet
is a concentration point in the telephone network.
There is also a redundancy of wires between the wiring
closets. '

2.1.2 StarLAN AND THE TELEPHONE
NETWORK

StarLAN does not have to run on building wiring, but
the fact that it can significantly adds to its attractive-
ness. Figure 3 shows how StarLAN piggybacks on tele-
phone wiring. Each node needs two twisted pair wires
to connect to the HUB. The unused wires in the 25 pair
DIW cables provide an electrical path to the wiring
closet, where the HUB is located. Note that the tele-
phone and StarLAN are electrically isolated. They only
use the wires in the same bundle cable to connect to the
wiring closet. Within the wiring closet, StarLAN wires
connect to a HUB and telephone wires are routed to a
different path. Similar cable sharing can occur in con-
necting HUBs to one another. See Figure 4 for a typical
office wired for StarLAN through telephone wiring.

WIRING CLOSET

o)

B

2 TWISTED PAIRS

xR

\ BUNDLES OF /

25 = 50 PAIRS

24 GAUGE, UNSHIELDED

L\

231422-3

Figure 2. Telephone Wiring in a Building

WIRING CLOSET

2 TWISTED PAIRS
24 GAUGE, UNSHIELDED

*StarLAN uses the unused wires in existing bundles.

___ suousor S

25 - 50 PAIRS

*StarLAN and telephones share the same bundle, but are electrically isolated.

231422-4

Figure 3. Coexistence of Telephone and StarLAN

1-84

nte[AP-236

WIRING CLOSET

ROOM # 1

WIRING CLOSET

WIRING CLOSET

TELEPHONE
WIRES TO PBX

ROOM # 2

WIRING CLOSET

ROOM # 3

231422-5

Figure 4. A Typical Office Using Telephone Wiring for StarLAN

1-85

intal | AP-236

2.1.3 StarLAN AND Ethernet 4.

StarLAN and Ethernet are similar CSMA/CD net-
works. Since Ethernet has existed longer and is better
understood, a comparison of Ethernet with StarLAN is
worthwhile. 5

1. The data rate of Ethernet is 10Mb/s and that df Star-
LAN is 1 Mb/s.

2. Ethernet uses a bus topology with each node con-
nected to a coaxial cable bus via a 50 meter trans-
ceiver cable containing four shielded twisted pair
wires. StarLAN uses a star topology, with each node
connected to a central HUB by a point to point link
through two pairs of unshielded twisted pair wires.

3. Collision detection in Ethernet is done by the trans-
ceiver connected to the coaxial cable. Electrically, it = A
is done by sensing the energy level on the coax cable. 1
Collision detection in StarLAN is done in the HUB 2'
by sensing activity on more than one input line con- 3'
nected to the HUB. '

2.

In Ethernet, the presence of collision is signalled by
the transceiver to the node by a special collision de-
tect signal. In StarLAN, it is signalled by the HUB
using a special collision presence signal on the re-
ceive data line to the node.

. Ethernet cable segments are interconnected using re-

peaters in a non-hierarchical fashion so that the dis-
tance between any two nodes does not exceed 2.8
kilometers. In StarLAN, the maximum distance be-
tween any two nodes is 2.5 kilometers. - This is
achieved by wiring a maximum of five levels of
HUBs in a hierarchical fashion. -

2 Basic StarLAN Components

StarLAN network has three basic components:
StarLAN node interface

StarLAN HUB
Cable

SEGMENT 1

ETHERNET

" STARLAN

SEGMENT 2

231422-6

Figure 5. Ethernet and StarLAN Similarities

1-86

intel

AP-236

2.2.1 A StarLAN NODE INTERFACE

Figure 6 shows a typical StarLAN node interface. It
interfaces to a processor on the system side. The proc-
essor runs the networking software. The heart of the
node interface is the LAN controller which does the job
of receiving and transmitting the frames in adherence
to the IEEE 802.3 standard protocol. It maintains all
the timings—Ilike the slot time, interframe spacing
gtc.—required by the network. It performs the func-
tions of framing, deferring, backing-off, collision detec-
tion which are necessary in a CSMA/CD network. It
also does Manchester encoding of data to be transmit-
ted and clock separation—or decoding—of the Man-
chester encoded data that is received. These signals be-

fore going to the unshielded twist pair wire, may under-

go pulse shaping (optional) pulse shaping basically
slows down the fall/rise times of the signal. The pur-
pose of that is to diminish the effects of cross-talk and
radiation on adjacent pairs sharing the same bundle
(digital voice, T1 trunks, etc). The shaped signal is sent
on to the twisted pair wire through a pulse transformer
for DC isolation. The signals on the wire are thus dif-
ferential, DC isolated from the node and almost sinus-
oidal (due to shaping and the capacitance of the wire).

: NOTE:
Work done by the IEEE 802.3 committee has shown
that no slew rate control on the drivers is required.
Shaping by the transformer and the cable is sufficient
to avoid excessive EMI radiation and crosstalk.

The squelch circuit prevents idle line noise from affect-
ing the receiver circuits in the LAN controller. The
squelch circuit has a 600 mv threshold for that purpose.
Also as part of the squelch circuitry an envelope detec-
tor is implemented. Its purpose is to generate an enve-
lope of the transitions of the RXD line. Its output serve

as a carrier sense signal. The differential signal from the
HUB is received using a zero-crossing RS-422 receiver.
Output of the receiver, qualified by the squelch circuit,
is fed to the RxD pin of the LAN controller. The RxD
signal provides three kinds of information:

1) Normal received data, when receiving the frame.

2) Collision information in the form of the collision
presence signal from the HUB.

3) Carrier sense information, indicating the beginning
and the end of frame. This is useful during transmit
and receive operations.

2.2.2 StarLAN HUB

HUB is the point of concentration in StarLAN. All the
nodes transmit to the HUB and receive from the HUB.
Figure 7 shows an abstract representation of the HUB.
It has an upstream and a downstream signal processing
unit. The upstream unit has N signal inputs and 1 sig-
nal output. And the downstream unit has 1 input and
N output signals. The inputs to the upstream unit come
from the nodes or from the intermediate HUBs
(IHUBs) and its output goes to a higher level HUB.
The downstream unit is connected the other way
around; input from an upper level HUB and the out-
puts to nodes or lower level IHUBs. Physically each
input and output consist of one twisted pair wire carry-
ing a differential signal. The downstream unit essential-
ly just re-times the signal received at the input, and
sends it to all its outputs. The functions performed by
the upstream unit are:

1. Collision detection

2. Collision Presence signal generation
3. Signal Retiming

4. Jabber Function

5. Start of Idle protection timer

B
16 MHz

TELEPHONE
JACK

e T

PULSE
TRANSFORMER
PULSE
SHAPING

[]
(OPTIONAL)

8 BIT BUS
82588 TxD
CONTROL
RxD
SYS CLK >

]

SQUELCH
P
ENABLE
CIRCUITS

231422-7

Figure 6. 82588 Based StarLAN Node

1-87

AP-236

UPSTREAM LR
1
DOWNSTREAM ¢
231422-8
Figure 7. A StarLAN HUB

The collision detection in the HUB is done by sensing
the activity on the inputs. If there is activity (or tran-
sitions) on more than one input, it is assumed that more
than one node is transmitting. This is a collision. If a
collision is detected, a special signal called the Collision
Presence Signal is generated. This signal is generated
and sent out as long as activity is sensed on any of the
input lines. This signal is interpreted by every node as
an occurrence of collision. If there is activity only on
one input, that signal is re-timed—or cleaned up of any
accumulated jitter—and sent out. Figure 8 shows the
input to output relations of the HUB as a black box.

If a node transmits for too long the HUB exercises a
Jabber function to disable the node from interfering
with traffic from other nodes. There are two timers in

the HUB associated with this function and their opera-
tion'is described in section 6.

* The last function implemented by the HUB is the start

of Idle protection timer. During the end of reception,
the HUB will see a long undershoot at its input port.
This undershoot is a consequence of the transformer
discharging accumulated charge during the 2 microsec-
onds of high of the idle pattern. The HUB should im-
plement a protection mechanism to avoid the undesir-
able effects'of that undershoot.

Figure 9 shows a block diagram of the HUB. A switch
position determines whether the HUB is an IHUB or a
HHUB (Header HUB). If the HUB is an IHUB, the

" switch decouples the upstream and the downstream

units. HHUB is the highest level HUB; it has no place
to send its output signal, so it returns its output signal
(through the switch) to the outputs of the downstream
unit. There is one and only one HHUB in a StarLAN
network and it is always at the base of the tree. The
returned signal eventually reaches every node in the
network through the intermediate nodes (if any). Star-
LAN specifications do not put any restrictions on the
number of IHUBS at any level or on number of inputs
to any HUB. The number of inputs per HUB are typi-
cally 6 to 12 and is dictated by the typical size of clus-
ters in a given networking environment.

IDLE @— COLLISION PRESENCE @—
IDLE @—] HUB IDLE = HUB
IDLE — VALID IDLE o— COLLISION
. > MANCHESTER . PRESENCE
. .
VALID MANCHESTER @~ IDLE &—
VALID MANCHESTER @— COLLISION PRESENCE @—
IDLE @] HUB IDLE @~ HUB
VALID MANCHESTER @— COLLISION IDLE o COLLISION
. PRESENCE . PRESENCE
. L
IDLE o VALID MANCHESTER @—
231422-9

Figure 8. HUB as a Black Box

1-88

AP-236

COLLISION
TRANSMIT PAIR # 1

[]
CARRIER

: SENSE

+
COLL. DET. °
+
L] %
- | @— e

+
PROTECTION
TRANSMIT PAIR # N TIMER

SQUELCH
+

v ¥

HHUB

RECEIVE PAIR # 1
[]

|

—3IE]

RECEIVE PAIR # N

COLLISION
SIGNAL [
[]
e > %I -
SIGNAL i
RETIMING [
TO HIGHER
LEVEL HUB
SIGNAL é'
o «—
HoB RETIMING @l

231422-10

Figure 9. StarLAN HUB Block Diagram

2.2.3 StarLAN CABLE

Unshielded telephone grade twisted pair wires are used
to connect a node to a HUB or to connect two HUBs.
This is one of the cheapest types of wire and an impor-
tant factor in bringing down the cost of StarLAN.

Although the 24 gauge wire is used for long stretches,
the actual connection between the node and the tele-
phone jack in the wall is done using extension cable,
just like connecting a telephone to a jack. For very
short StarLAN configurations, where all the nodes and
the HUB are in the same room, the extension cable
with plugs at both ends may itself be sufficient for all
the wiring. (Extension cables must be of the twisted
pair kind, no flat cables are allowed).

The telephone twisted pair wire of 24 gauge has the
following characteristics:

Attenuation : 42.55 db/mile @ 1 MHz

DC Resistance : 823.69 Q/mile

Inductance : 0.84 mH/mile

Capacitance : 0.1 uF/mile

Impedance 1 92,69, —4 degrees @ 1 MHz

Experiments have shown that the sharing of the tele-
phone cable with other voice and data services does not
cause any mutual harm due to cross-talk and radiation,
provided every service meets the FCC limits.

Although it is outside the scope of the IEEE 802.3
1BASES5 standard, there is considerable interest -in us-
ing fiber optics and coaxial cable for node to HUB or
HUB to HUB links especially in noisy and factory envi-
ronments. Both these types of cables are particularly
suited for point-to-point connections. Even mixing of
different types of cables is possible (this kind of envi-
ronments are not precluded).

NOTE:
StarLAN IEEE 802.3 1BASES5 draft calls for a maxi-
mum attenuation of 6.5 dB between the transmitter
and the corresponding receiver at all frequencies be-
tween 500 KHz to 1 MHz. Also the maximum al-
lowed cable propagation delay is 4 microseconds.

2.3 Framing

Figure 10 shows the format of a 802.3 frame. The be-
ginning of the frame is marked by the carrier going
active and the end marked by carrier going inactive.
The preamble has a 56 bit sequence of 101010
ending in a 0. This is followed by 8 bits of start of frame
delimiter (sfd) — 10101011. These bits are transmitted
with the MSB (leftmost bit) transmitted first. Source
and destination fields are 6 bytes long. The first byte is
the least significant byte. These fields are transmitted
with LSB first. The length field is 2 bytes long and gives
the length of data in the Information field. The entire
information field is a minimum of 46 bytes and a maxi-
mum of 1500 bytes. If the data content of the Informa-

1-89

intef

AP-236

tion field is less than 46, padding bytes are used to
make the field 46 bytes long. The Length field indicates
how much real data ic in the Information field. The last
32 bits of the frame is the Frame Check Sequence
(FCS) and contains the CRC for the frame. The CRC is
calculated from the beginning of the destination ad-
dress to the end of the Information field. The generat-
ing polynomial (Autodin II) used for CRC is:

X32 + X26 + X23 + X22 4 X16 + X12 + X1 +
X10 + X8 4+ X7 + X5 + X4 + X2 + X + 1

No need for Figure N.

The frames can be directed to a specific node (LSB of
address must be 0), to a group of nodes (multicast or
gronn—I SB of address must be 1) or all nodes (broad-
cast—all address bits must be 1).

2.4 Signal Propagation and Collision

Figure 11 will be used to illustrate three typical situa-
tions in a StarLAN with two IHUBs and one HHUB.
Nodes A and B are connected to HUB1, nodes C and D
to HUB2 and node E to HUB3.

CARRIER ON

7 1 6

6

2

CARRIER OFF
MAX = 1500

MIN = 46 4

| PreamsLE | sFo [oa |'sa | Len | iNFormaTiON [Fes |

SFD = Start of Frame Delimiter

DA = Destination Address .

SA = Source Address

LEN = Length

FCS = Frame Check Sequence

All numbers indicate field length in octets.

I FRAME LENGTH ——]

MAX=1518

MIN =64 231422-11

Figure 10. Framing

1-90

nte[AP-236

231422-12

231422-13

231422-14

Situation #3. A, B & C Transmitting

HUB1, HUB2 are IHUBs

HUB3 is the HHUB

Fa, Fb, Fc—Frames from nodes A,B& C
Fx—Collision Presence Signal

Figure 11. Signal Propagation and Collisions

1-91

intel

AP-236
2.4.1 Situation #1 Backoff method Truncated binary exponential
Encodingcoiiiiiiiiil Manchester
Whenever nade A transmits a frame Fa, it will reach .)
-HUBI. If node B is silent, there is no collision. HUB1 Clock tolerance £0.01% (100 ppm)
will send Fa to HUB3 after re-timing the signal. If Maximum jitter per segment +62.5ns

nodes C, D and E are also silent, there is no collision at
HUB2 or HUB3. Since HUB3 is the HHUB, it sends
the frame Fa to HUB1, HUB2 and to node E after re-
timing. HUB1 and HUB2 send the frame Fa to nodes
A, B and C, D. Thus, Fa reaches all the nodes on the
network including the originator node A. If the signal
received by node A is a valid Manchester signal and not
the Collision Presence Signal (CPS) for the entire dura-
tion of the slot time, then the node A assumes that it
was a successful transmission.

2.4.2 Situation #2

If both nodes A and B were to transmit, HUBI will
detect it as a collision and will send signal Fx (the Colli-
sion Presence Signal) to the HUB3—Note that HUB1
does not send Fx to nodes A and B yet. HUB 3 receives
a signal from HUBI but nothing from node E or
HUB2, thus it does not detect the situation as a colli-
sion and simply re-times the signal Fx and sends it to
node E, HUB2 and HUBI. Fx ultimately reach all the
nodes. Nodes A and B detect this signal as CPS and
call it a collision.

2.4.3 Situation #3

In addition to nodes A and B, if node C were also to
transmit, the situation at HUB1 will be the same as in
situation #2. HUB2 will propagate Fc from C towards
HUB3. HUB3 now sees two of its inputs active and
hence generates its own Fx signal and sends it towards
each node.

These situations should also illustrate the point made
earlier in the chapter that, the StarLAN network, with
nodes connected to multiple HUBEs is, logically, equiva-
lent to all the nodes connected to a single HUB (Yet
there are some differences between stations connected
at different HUB levels, those are due to different de-
lays to the header hub HHUB).

2.5 StarLAN System and Network

Parameters
Preamble length (incl.sfd) 64 bits
Addresslength.. ...l 6 bytes
FCS length CRC (AutodinII) 32 bits
Maximum framelength 1518 bytes
Minimum frame length................. ... 64 bytes
Slottime...........oovvviiiiiiinan, 512 bit times
Interframe spacing. 96 bit times
Minimum jam timing 32 bit times
Maximum number of collisions 16
Backofflimit ... 10

3.0 LAN CONTROLLER FOR StarLAN

One of the attractive features of StarLAN is the avail-
ability of the 82588, a VLSI LAN controller, designed
to meet the needs of a StarLAN node. The main re-
quirements of a StarLAN node controller are:

1. IEEE 802.3 compatible CSMA/CD controller.

2. Configurable to StarLAN network and system pa-
rameters.

. Generation of all necessary clocks and timings.

. Manchester data encoding and decoding.

. Detection of the Collision Presence Signal.

. Carrier Sensing.

. Squelch or bad signal filtering.

. Fast and easy interface to the processor.

003N WU W

82588 performs all these functions in silicon, providing
a minimal hardware interface between the system proc-
essor and the StarLAN physical link. It also reduces
the software needed to run the node, since a lot of func-
tions, like deferring, back off, counting the number of
collisions etc., are done in silicon.

3.1 IEEE 802.3 Compatibility

The CSMA/CD control unit on the 82588 performs the
functions of deferring, maintaining the Interframe
Space (IFS) timing, reacting to collision by generating a
jam pattern, calculating the back-off time based on the
number of collisions and a random number, decoding
the address of the incoming frame, discarding a frame
that is too short, etc. All these are performed by the
82588 in accordance to the IEEE 802.3 standards. For
inter-operability of different nodes on the StarLAN net-
work it is very important to have the controllers strictly
adhere to the same standards.
I

3.2 Configurability of the 82588

Almost all the networking parameters are programma-
ble over a wide range. This means that the StarLAN
parameters form a subset of the total potential of the
82588. This is a major advantage for networks whose
standards are being defined and are in a flux. It is also
an advantage when carrying over the experience gained
with the component in one network to other applica-
tions, with differing parameters (leveraging the design).

The 82588 is initialized or configured to its working
environment by the CONFIGURE command. After
the execution of this command, the 82588 knows its
system and network parameters. A configure block iu

1-92 -

|ntel AP-236
memory is loaded into the 82588 by DMA. This block StarLAN
contains all the parameters to be programmed as shown Parameter Range Value
in Figgr};: lﬁ. Following isbzl). partial listdof htheSparEm;i Data encoding NRZI, Man.,
ters with the programmable range and the StarLA Diff. Man. Manch.
value: . . R

StarLAN Collision Code viol.,

Parameter - Range Value detection Bit comp. Code Viol.
Preamble length 2, 4, 8, 16 bytes 8
Address length 0 to 6 bytes 6 Beside these, there are many other options available,
CRC type 16, 32 bit 32 which may or may not apply to StarLAN:
Mimmlilm frame 6 55b 64 Data sampling rate of 8 or 16
I enfgt to2 ytes Operating in Promiscuous mode

nter riame 12 to 255 bit ti 9 Reception of Broadcast frames
si spaf:lng] t°2047 b{t t%mes 512 Internal loopback operation
NOt t:)me ¢ to 1t imes External loopback operation
um ‘er ° 0to 15 15 Transmit without CRC
retries to1> HDLC Framing
BT
BYTE 7 6 5 4 3 2 1) 0
I I | | 1 | |
0 BYTE COUNT (L.S.B)
| | | | | | |
| | I | I | 1
1 BYTE COUNT (M.S.B)
. | | |
LR | |
SERIAL SMPLG 0scC
2 | CHNG IODE RATE RANGE | FIFO ILIMIT |
| | I
3 BUFFER LENGTH
| —
EXT INT NO SRC
4| peek | esck PREA;‘ LEN ADD INS | ADD LEN |
| | 1
BOF DIF.MAN
5 METD E)I(P PR;IO /MAN | LIN PRIO |
| | | |
6 INTER FRAME SPACING
| | | | | | |
| I] | | I |
7 SLOT TIME (L)
]] | | |
| | | | |
8 RETRY NUMBER CDBBC SLOT TIME (H)
BIT NCRC TON MAN BC
9 PAD | gryer | CRCI6 INS NcRs | /NRz* DI PRM
coT CRS
10 SRC CDTF SRC CRSF
| |
11 MINIMUM FRAME LENGTH
| |]]] | |

CONFIG PARAMETER FORMAT

231422-15

Figure 12. Configuration Block

1-93

intel

AP-236

3.3 Clocks and Timers

nnnnn

The 32588 lcquucb iwu blUbl\b, Oii€ 107 the vyunuuuu of

the system interface and another for the serial side.

~Both clocks are totally asynchronous to each other.
This permits transmitting and receiving frames at data
rates that are virtually independent of the speed at
which the system interface operates.

The serial clock can be generated on chip using just an
external crystal of a value 8 or 16 times the des1red bit
rate. An external clock may also be used.

The 82588 has a set of timers to maintain various tim-
ings necessary to run the CSMA/CD control unit.
These are timings for the Slot time, Interframe spacing

time, Back off time, Number of collisions, Minimum
frame length, etc. These timers are started and stopped
oufnmnfmallu by the RI58R.

3.4 Manchester Data Encoding and
Decoding

In StarLAN the data transmitted by the node must be
encoded in Manchester format. The node should also
be able to decode Manchester encoded data when re-
ceiving a frame—a process also known as clock recov-
ery. The 82588 does the encoding and decoding of data
bits on chip for data rates up to 2 Mb/s.

Besides Manchester, the 82588 can also do encoding
and decoding in NRZI and Differential Manchester
formats. Figure 13 shows samples of encoding in

patAl 1t lol1l1lol1lololol1]

L
vz 1 I
ManchesTeR LML L LU

DIFFERENTIAL
MANCHESTER 23142216
Encoding Mid Bit Cell Bit Cell Boundary
Method Transitions Transitions
NRZ Do not exist. Identical to original data.
NRZI Do not exist. Exist only if original data
bit equals 0.
Dependent on present
encoded signal level:
toOif 1
to1if0
Manchester | Exist for every bit of Exist for consequent equal
the original data: bits of original data:
from O to 1 for 1 from1toOfori1
from 1 to O for 0 fromOto1for00
Differential Exist for every bit of Exist only if original data
Manchester | the original data. bit equals 0.
Dependent on present | Dependent on present
Encoded signal level: Encoded signal level:
to0if1 to 0if1
to1if0 to1if0

Figure 13. 82588 Data Encoding Rules

1-94

intel

AP-236

these three formats. The main advantage of NRZI over
the other two is that NRZI requires half the channel
bandwidth, for any given data rate. On the other hand,
since the NRZI signal does not have as many tran-
sitions as the other two, clock recovery from it is more
difficult. The main advantage of Differential Manches-
ter over straight Manchester is that for a signal that is
differentially driven (as in RS 422), crossing of the two
wires carrying the data does not change the data re-
ceived at the receiver. In other words, NRZI and Dif-
ferential Manchester encoding methods are polarity in-
sensitive (Even though NRZI, Differential Manchester
are polarity insensitive, the 82588 expects a high level
in the RXD line to detect carrier inactive at the end of
frames). '

3.5 Detection of the Collision
Presence Signal

In a StarLAN network, HUB informs the nodes that a
collision has occurred by sending the Collision Pres-
ence Signal (CPS) to the nodes. The CPS signal is a
special signal which contains violations in Manchester
encoding. Figure 14 shows the CPS signal. It has a 5 ms
period, looking very much like a valid Manchester sig-
nal except for missing transitions (or violations) at

periodic intervals. When the 82588 decodes this signal,
it fails to see mid-cell transitions repeatedly at intervals
of 2.5 bit times and hence calls it a code violation. The
edges of CPS are marked for illustration as a, b, c,
d, ...l Let us see how the 82588 interprets the signal if
it starts calling the edge ‘a’ as the mid-cell transition for
‘1’. Then edge at ‘b’ is ‘0’. Now the 82588 expects to see
an edge at ‘*’ but since there is none, it is a Manchester
code violation. The edge that eventually does occur at
‘d’ is then used to re-synchronize and, since it is a fall-
ing edge, it is taken as a mid-cell transition for ‘0’. The
edge at ‘e’ is for a ‘1’ and then again there is no edge at
“**. This goes on, with the 82588 flagging code violation
and re-synchronizing again every 2.5 bit times. When a
transmitting node sees this CPS signal being returned
by the HUB (instead of a valid Manchester signal it
transmitted), it assumes that a collision occurred. The
82588 has two built-in mechanisms to detect collisions.
These mechanisms are very general and can be used for
a very broad class of applications to detect collisions in
a CSMA/CD network. Using these mechanisms, the
82588 can detect collisions (two or more nodes trans-
mitting simultaneously) by just receiving the collided
signal during transmission, even if there was no HUB
generating the CPS signal.

encooing - lololtlolklulolt1lolklyl

CPS » * - .
EDGES a bec d ef g hi j kI
}«——5 ps PERIOD —»|
| 2t 1t] t=0.5us
* MISSING MID=CELL TRANSITION
emee —
DECODING :
a bec d .
0 1 »
d ef g
1.0 »
j kI m
0 1 =

231422-17

Figure 14. 82588 Decoding the Collision Presence Signal

1-95

intel

AP-236

3.5.1 COLLISION DETECTION BY CODE
VIOLATION

If during transmission, the 82588 sees a violation in the
‘encoding (Manchester, NRZI or Differential Manches-
ter) used, then it calls it a collision by aborting the
transmission and transmitting a 32 bit jam pattern. The
algorithm used to detect collisions, and to do the data
decoding, is based on finding the number of sampling
clocks between an edge to the next one. Suppose an
edge occurred at time O, the sampling instant of the
next edge determines whether it was a collision (C), a
long pulse (L)—with a nominal width of 1 bit time—,or
a short pulse (S)—nominal width of half a bit time. The
following two charts show the decoding and collision
detection algorithm for sampling rates of 8 and 16
when using Manchester encoding. The numbers at the
bottom of the line indicate sampling instances after the
occurrence of the last edge (at 0). The alphabets on the
top show what would be inferred by the 82588 if the
next edge were to be there.

Sampling rate = 8 (clock is 8x bit rate)
cCcsssLLLLLCC
I { { ! {] ! [] Il | 1 | |
I S B A B B N
01 2 3 45 6 7 8 9 1011 12 13

Collision also if:
RxD stays low for 13 samples or more
A mid cell transition is missing

Sampling rate = 16 (clock is 16x bit rate)
cccccssssscLLLLLLLLLCCCC

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Collision also if:
RxD stays low for 25 samples or more
A mid cell transition is missing

A single instance of code violation can qualify as colli-
sion. The 82588 has a parameter called collision détect
filter (CDT Filter) that can be configured from 0 to 7.
This parameter determines for how many bit times the
violation must remain active to be flagged as a collision.
For StarLAN CDT Filter must be configured to 0—
that is disabled.

3.5.2 COLLISION DETECTION BY SIGNATURE
(OR BIT) COMPARISON

This method of collision detection compares a signature
of the transmitted data with that of the data received on
the RxD pin while transmitting. Figure 15 shows a
block diagram of the logic. As the frame is transmitted
it flows through the CRC generation logic. A timer,
called the Tx slot timer, is started at the same time that
the CRC generation starts. When the count in the timer
reaches the slot time value, the current value of the
CRC generator is latched in as the transmit signature.
As the frame is returned back (through the HUB) it
flows. through the CRC checker. Another timer—Rx
slot timer—is started at the same time as the CRC
checker starts checking. When this timer reaches the
slot time value, the current value of the CRC checker is
latched in as the receive signature. If the received signa-
ture matches the transmitted one, then it is assumed
that there was no collision. Whereas, if the signatures
do not match, a collision is assumed to have occurred.

> TRANSMIT CHANNEL

COMPARE *

TRANSMITTED
FRAME——’ TX CRC
Tx SLOT o] TX SIGNATURE
TIMER i LATCH
Rx SLOT o} RX SIGNATURE
TIMER LATCH
RECEIVED
FRAME 4—7 RX CRC

4= RECEIVE CHANNEL

* MATCH = NO COLLISION
NO MATCH = COLLISION

231422-18

Figure 15. Collision Detection by Signature Comparison

1-96

intef

AP-236

Note that, even if the collision were to occur in the first
few bits of the frame, a slot time must elapse before it is
detected. In.the code violation method, collision is de-
tected within a few bit times. However, since the signa-
ture method compares the signatures, which are char-
acteristic of the frame being transmitted, it is more ro-
bust. The code violation method can be fooled by re-
turning a signal to the 82588 which is not the same as
the transmitted signal but is a valid Manchester sig-
nal—like a 1 MHz signal. Both methods can be used
simultaneously giving a combination of speed and ro-
bustness.

NOTE:

In order to reliably detect a collision using the colli-
sion by bit comparison mode, the transmitter must
still be transmitting up to the point where the receiver
has seen enough bits to complete its signature. Other-
wise, the transmitter may be done before the RX sig-
nature is completed resulting in an undetected colli-
sion. A sufficient condition to avoid this situation is to
transmit frames with a minimum length of 1.5 * slot-
time (see Figure 16).

3.5.3 ADDITIONAL COLLISION DETECTION
MECHANISM

In addition to the collision detection mechanisms de-
scribed in the preceding sections, the 82588 also flags
collision when after starting a transmission any of the
following conditions become valid:

a) Half a slot time elapses and the carrier sense of
82588 is not active.

b) Half a slot time + 16 bit times elapse and the open-
ing flag (sfd) is not detected.

c) Carrier sense goes inactive after an opening flag is
received with transmitter still active.

These mechanisms add a further robustness to the colli-
sion detection mechanism of the 82588. It is also possi-
ble to OR an externally generated collision detect signal
to the internally generated condition by bit comparison
(see Figure 17).

3.6 Carrier Sensing

A StarLAN network is considered to be busy if there
are transitions on the cable. Carrier is supposed to be
active if there are transitions. Every node controller
needs to know when the carrier is active and when not.
This is done by the carrier sensing circuitry. On the
82588 this circuit is on chip. It looks at the RxD (re-
ceive data) pin and if there are transitions, it turns on
an internal carrier sense signal. It turns off the carrier
sense signal if RxD remains in idle (high) state for 13/8
bit times. This carrier sense information is used to mark
the start of the interframe space time and the back off
time. The 82588 also defers transmission when the car-
rier sense is active.

When operating in the NRZI encoded mode, carrier
sense is turned off if RxD pin is in the idle state for 8 bit
times or more (see Figure 18). ’

82588

™

PD

RX

F'y

HEADEND
PD

CONDITION FOR RELIABLE CDBBC

TX_MIN_FRAME_LENGTH > SLOT_TIME + 2%PD
3 SLOT_TIME > 2%PD

ITX_MIN_FRAME_LENGTH > 1.5%SLOT_TIME l

231422-75

Figure 16. Limitation of CDOBBC Mechanism

1-97

AP-236

%CDT% EXTERINAL Fily

COLLISION BY

CODE VIOLATION

COLLISION BY
BIT COMPARISON

COLLISION
FILTER
A
COLLISION

COLLISION DETECTION BY BIT COMPARISON (CDBBC)
(CONFIGURE BYTE 8, BIT 3)

COLLISION DETECTION SOURCE (INTERNAL, EXTERNAL)
(CONFIGURE BYTE 10, BIT 7)

SIGNAL

CDT FILTER
(CONFIGURE BYTE 10 , BITS 4=6)

231422-76

Figure 17. Mode 0, Collision Detection

3.7 Squelching the Input

Squelch circuit is used to filter idle noise on the receiver
input. Basically two types of squelch may be used: Volt-
age and time. Voltage squelch is done to filter out sig-
nals whose strength is below a defined voltage thresh-
old (0.6 volts for StarLAN). It prevents idle line noise
from disturbing the receive circuits on the controller.
The voltage squelch circuit is placed right after the re-
ceiving pulse transformer. It enables the input to the
RxD pin of the 82588 only when the signal strength is
above the threshold.

If the signal received has the proper level but not the
proper timing, it should not bother the receiver. This is
accomplished by the time squelch circuit on the 82588.
Time squelching is essential to weed out spikes, glitches
and bad signal especially at the beginning of a frame.
The 82588 does not turn on its carrier sense (or receive
enable) signal until it receives three consecutive edges,
each separated by time periods greater than the fast
time clock high time but less than 13/8 bit-times as
shown in Figure 18. ‘ .

MANCHESTER
DATA l I | I
I - @ e
CARRIER
3
EDGES_.I
NRZI
DATA | l | I
l -— e
CARRIER
s
EDGES

L

L

13/8BTx8
25/16BTx 16

L

HIGH FOR‘—

8 BT

231422-77

Figure 18. Carrier Sensing

1-98

intel

AP-236

The carrier sense activation can be programmed for a
further delay by up to 7 bit times by a configuration
parameter called carrier sense filter.

3.8 System Bus Interface

The 82588 has a conventional bus interface making it
very easy to interface to any processor bus. Figure 19

shows that it has an 8 bit data bus, read, write, chip
select, interrupt and reset pins going to the processor
bus. It also needs an external DMA controller for data
transfer. A system clock of up to 8 MHz is needed. The
read and write access times of the 82588 are very
short—95 ns—as shown by Figure 20. This further fa-
cilitates interfacing the controller to almost any proces-
Sor.

SERIAL CLOCK
)(I/TxCI | |x2/Rxc
[RESET ———p| — RTS
po=7 <—_—> I TS | seriaL
STANDARD | ___ INTERFACE
BUS{ RD = — TxD
INTERFACE | fR ~ ———p 82588
S —> 28 FIN 4—— RxD
LINT - < PLASTIC/CERAMIC
TCLK (MODE 0) ¢ .=
) A
DRQO ¢—
DMA | DACKOQ =
INTERFACE | DRQ1 ¢—— CSMA/CD
ORET INTERFACE
| DACKT ——] ¢— COT
CLK —-———T
SYSTEM CLOCK 23142220
Figure 19. Chip Interface
READ
| 80ns
(MIN)
DACR/CS /
. 95ns
RD (MIN) {
. 55ns
(MAX)
/
DATA ¢)—
WRITE
75ns
(MIN)
DACK/CS \
_ 95ns
WR \ (MIN)
- Ons
(MIN)
DATA 1‘
231422-21

Figure 20. Access Times
1-99

intel

AP-236

The 82588 has over 50 bytes of registers, and most are
accessed only indirectly. Figure 21 shows the register
access mechanism of the 82588. It has one I/0 port and
2 DMA channei ports. These are the windows into the
82588 for the CPU and the DMA controller. An exter-
nal CPU can write into the Command register and read
from the Status registers using I/O instructions and

asserting chip select and write or read lines. Although .

there is just one I/0O port and 4 status registers, they
can be read out in a round robin fashion through the
same port as shown in Figure 22. Other registers like
the Configuration, Individual Address registers can be

accessed only through DMA. All the internal registers
can be dumped into memory by DMA using the Dump
command. The execution of some of the commands is
described in section 4. See the ¥25¥¥ Keterence Manual
for details on these commands.

3.9 Debug and Diagnostic Aids

Besides the standard functions that can be used directly
for StarLAN, the 82588 offers many debug and diag-

/ COMMAND WRITE ONLY
e

82588 REGISTER SET

1/0 PORT
| ~ | STATUS —| READ ONLY
. / A | —]
cPU
: ’ CONFIGURATION
+ \4 —
/ — 1A
DMA DMA POR .
T MULTICAST READ
WINDOWS o &
'"J;’s,;gE . WRITE
Tx CRC
Rx CRC

IMPLICIT REGISTERS
(OVER 50 BYTES)

231422-22

Figure 21. Register Access

1-100

AP-236

4 Status registers are accessed through one read port

POINTER

STATUS 0

STATUS 1

STATUS 2

—> | READ PORT |

STATUS 3

The pointer can be changed using a command or can be automatically incremented.

231422-23

READ_STATUS_588: PROCEDURE ;
OUTPUT (CS-588) = 15;
STATUS_588(0)=INPUT (CS_588) ;
STATUS_588(1)=INPUT (CS-588) ;
STATUS_588(2)=INPUT (CS_588) ;
STATUS_588 (3)=INPUT (CS_588) ;
RETURN

END READ_STATUS_588;

/* RELEASE POINTER, INITIAL = 00 */
/* REFRESH STATUS REGISTER IMAGE */
/* IN MEMORY.

READING 4 STATUS REGISTERS

/* COMMAND 15 */

Figure 22. Reading the Status Register

nostics functions. The DIAGNOSE command of the
82588 does a self-test of most of the counters and timers
in the 82588 serial unit. Using the DUMP command,
all the internal registers of the 82588 can be dumped
into the memory. The TDR command does Time Do-
main Reflectometery on the network. The 82588 has
two loopback modes of operation. In the internal loop-
back mode, the TXD line is internally connected to the
RXD one. No data appears outside the chip, and the
82588 is isolated from the link. This mode enables
checking of the receive and transmit machines without
link interference. In the external loopback mode, the
82588 becomes a full duplex device, being able to re-
ceive its own transmitted frames. In this mode data
goes through the link and all CSMA/CD mechanisms
are involved.

3.10 Jitter Performance

When the 82588 receives a frame from the HUB, the
signal has jitter. Jitter is the shifting of the edges of the .
signal from their nominal position due to the transmis-
sion over a length of cable. Many factors like, intersym-
bol interference (pulses of different widths have differ-
ent delays through the transmission media), rise and
fall times of drivers and receivers, cross talk etc., con-
tribute to the jitter. StarLAN specifies a maximum jit-
ter of £62.5 ns whenever the signal goes from a
NODE/HUB or HUB/HUB. Figure 23 shows that the
jitter tolerance of the 82588 is exactly the required

1-101

+62.5 ns at 1 Mbs for both 8X, 16X Manchester en-
coded data.

Jitter = + variation of an edge from its nominal position.
Jitter can occur on every edge.

|dw|dw| |dw|dw|
[eowy
] i [} [} i [}
]]]]
—owd toaw
! w |
231422-78
x8 x16
Manchester +e +1/16
NRZI +1/16 BT +3/32BT
(Code Violations Enabled)
NRZ| +3/16 BT +3/16 BT

(Code Violations Disabled)

Figure 23. 82588 Jitter Performance

4.0 THE 82588

This chapter describes the basic 82588 operations.
Please refer to the 82588 reference manual in Intel Mi-
crocommunications Handbook for a detailed descrip-
tion. Basic operations like transmitting a frame, receiv-
ing a frame, configuring the 82588 and dumping the
register contents are discussed here to give a feel for
how the 82588 works.

intel

AP-236

'

4.1 Transmit and Retransmit
Operations

To transmit a frame, the CPU prepares a block in the
memory called the transmit data block. As shown in
Figure 24, this block starts with a byte count field, indi-
cating how long the rest of the block is. The destination
address field contains the node address of the destina-
tion. The rest of the block contains the information or
the data field of the frame. The CPU also programs the
DMA controller with the start address of the transmit
data block. The DMA byte count must be equal to or
greater than the block length. The 82588 is then issued
a TRANSMIT command—an OUT instruction to the
command port of the 82588. The 82588 starts generat-
ing DMA requests to read in the transmit data block by
DMA. It also determines whether and how long it must
defer on the link and after that, it starts transmitting
the preamble. The 82588 constructs the frame on the
fly. It takes the destination address from the memory,
source address from its own individual address memory
(previously programmed), data field from the memory

“and the CRC, is generated on chip, at the end of the
frame.

1. Prepare Transmit Data—Block in Memory
2. Program DMA Controller

3. Issue Transmit Command on the Desired
Channel

BYTE
COUNT

DESTIN.
ADDRESS

INFORMATION

231422-25
Transmit Data Block

4. Interrupt is received on completion of com-
mand or if the command was aborted or °
there was a collision. The status bytes 1 and
2 indicate the result of the operation.

7 6 5 4 3 2 1 o
X | WRT | MAX T T T STATUS 1
oEF | BEAT | COLL NUM. OF COLLISIONS
coLL ™ LOST | LOST [UNDER
oK CRS | TS | RUN | sramus 2
231422-26

Transmit & Retransmit Results Format

Figure 24. Transmit Operation

At the conclusion of transmission the 82588 generates
an interrupt to the CPU. The CPU can then read the

status registers to find out if the transmission was suc-
cessful. If a collision occurs during transmission, the
82588 aborts transmission and generates the jam se-
quence, as required by IEEE 802.3, and informs the
CPU through interrupt and the status registers. It also
starts the back-off algorithm.

To re-attempt transmission, the CPU must reinitialize
the DMA controller 7to the start of the transmit data
block and issue a RETRANSMIT command to the
82588. When the 82588 receives the retransmit com-
mand and the back-off timer has expired, it transmits

‘again. Interrupt and the status register contents again

indicate the success or failure of the (re)transmit at-
tempt. .

The main difference between transmit and retransmit
commands is that retransmit does not clear the internal
count for the number of collisions occurred, whereas
transmit does. Moreoever, retransmit takes effect only
when the back-off timer has expired.

4.2 Configuring the 82588

To initialize the 82588 and program its network and
system parameters, a configure operation is performed.
It is very similar to the transmit operation. Instead of a
transmit data block as in transmit command, a config-
ure data block—shown in Figure 12—is prepared by
the CPU in the memory. The first two bytes of the
block specify the length of the rest of the block, which
specify the network and system parameters for the
82588. The DMA controller is then programmed by
the CPU to the beginning of this block and a CONFIG-
URE command is issued to the 82588. The 82588 reads
in the parameters by DMA and loads the parameters in
the on-chip registers.

Similarly, for programming the INDIVIDUAL AD-
DRESS and MULTICAST ADDRESSes, the DMA
controller is used to load the 82588 registers.

4.3 Frame Reception

Before enabling the 82588 for reception the CPU must
make a buffer available for the frame to be received.
The CPU must program the DMA controller with the
starting address of the buffer and then issue the RX__
ENABLE command to the 82588. When a frame ar-
rives at the RxD pin of the 82588, it starts being re- .
ceived. Only if the address in the destination address
matches either the Individual address, Multicast ad-
dress or if it is a broadcast address, is the frame deposit-
ed into memory by the 82588 using DMA. The format
of storage in the memory is shown in Figure 25. At the
end, a two byte field is attached which shows the status
of the received frame. If CRC, alignment or overrun
errors are encountered, they are reported. An inter-

1-102

AP-236
. \
1. Prepare a Buffer for Reception RECEIVED FRAME
2. Program DMA Controller DESTIN.
3. Issue Receiver Enable Command ADDRESS
When a frame is received, it is deposited in the
memory. Receive status bytes (2) are appended to
he frame in the memory, byte count written in the SOURCE
the : Y, by \ ADDRESS
status registers 1, 2, and an interrupt is generated.
SRT | NO
RECEIVE | FRM | EOF '
STATUS RCV CRC | ALG OVER INFORMATION
0.K. ERR | ERR RUN
RECEIVE
STATUS REG. 1} BYTE STATUS
STATUS REG. 2 COUNT
231422-27

Figure 25. Receive Operation (Single Buffer)

rupt from 82588 occurs when all the bytes have been
transferred to the memory. This informs the CPU that
a new frame has been received.

If the received frame has errors, the CPU must recover
(or re-use) the buffer. Note that the entire frame is de-
posited into one buffer. The 82588 when NOT config-
ured for the external loopback mode, will detect colli-
sions (code violations) during receptions. If a collision
" is detected, the reception is aborted and status updated.
CPU is then informed by an interrupt (if the collided
frame fragment is shorter than the address length, no
reception will be started), and no interrupt will happen.

4.3.1 Multiple Buffer Frame Reception

It is also possible to receive a frame into a number of
fixed size buffers. This is particularly economical if the
received frames vary widely in size. If the single buffer
scheme were used as described above, the buffer re-
quired would have to be bigger than the longest expect-
ed frame and would be very wasteful for very short
(typically acknowledge or control) frames. The multi-
ple buffer reception is illustrated in Figure 26. It uses
two DMA channels for reception.

= RECEIVED FRAME

Buffer

Pointer

Table

(Managed by CPU)

/ BUFFER 1
@BUFFER 1
@BUFFER 2
eBURFER 3| S
. BUFFER 2
.
.
@BUFFER N BUFFER 3
_ -

BUFFER N

231422-28

Figure 26. Multiple Buffer Reception '

1-103

intel

AP-236

As in single buffer reception, the one channel, say chan-
nel 0, of the DMA controller is programmed to the
start of buffer 1, and the 8258R is enabled for recention
with the chaining bit set. As soon as the first byte is
read out of the 82588 by the DMA controller and writ-
ten into the first location of buffer 1, the 82588 gener-
ates an interrupt, saying that it is filling up its last avail-
able buffer and one more buffer must be allocated. The
filling up of the buffer 1 continues. The CPU responds
to the interrupt by programming the other DMA chan-
nel—channel 1—with the start address of the second
buffer and issuing an ASSIGN ALTERNATE buffer
command with an INTACK (interrupt acknowledge).
This informs the 82588 that one more buffer is avail-
able on the other channel. When buffer 1 is filled up
(the 82588 knows the size of buffers from the configura-
tion command), the 82588 starts generating the DMA
requests on the other channel. This automatically starts
filling up buffer 2. As soon as the first byte is written
into buffer 2, the 82588 interrupts the CPU again ask-
ing for one more buffer. The CPU programs the chan-
nel 0 of the DMA controller with the start address of
buffer 3, issues an ASSIGN ..LTERNATE buffer com-
mand with INTACK. This keeps the buffer 3 ready for
the 82588. This switching of channels continues until
the entire frame is received generating an end of frame

interrupt. The CPU maintains the list of pointers to the

buffers used.

Since a new buffer is allocated at the time of filling up
of the last buffer, the 82588 automatically switches to
the new buffer to receive the next frame as soon as the
last frame is completely received. It can start receiving
the new frame almost immediately, even before the end

of frame interrupt is serviced and acknowledged by the

CPU. If a new frame comes in, and the previous frame

interrupt is not yet acknowledged, another interrupt
needed for new buffer allocation is buffered (and not
lost). As soon as the firet one ic acknowledged, the in-

terrupt line goes active again for the buffered one.

If by the time a buffer fills up no new buffer is available,
the 82588 keeps on receiving. An overrun will occur
and will be reported in the received frame status. How-

- ever, ample time is available for the allocation of a new

buffer. It is roughly equal to the time to fill up a buffer.
For 128 byte buffers it is 128 X 8 = 1024 ms or ap-
proximately 1 millisec. You get 1 ms to assign a new
buffer after getting the interrupt for it. Hence the pro-
cess of multiple buffer reception is not time critical for
the system performance.

This method of reception is particularly useful to guar-
antee the reception of back-to-back frames separated by
IFS time. This is because a new buffer is always avail-
able for the new frame after the current frame is re-
ceived.

Although both the DMA channels get used up in re-
ceiving, only one channel is kept ready for reception
and the other one can be used for other commands until
the reception starts. If an execution command like
transmit or dump command is being executed on a
channel which must be allocated for reception, the
command gets automatically aborted when the AS- .
SIGN ALTERNATE BUFFER command is issued to
the channel used for the execution command. The in-
terrupt for command abortion occurs after the end of
frame interrupt.

1-104

intel

AP-236

4.4 Memory Dump of Registers

All the 82588 internal registers can be dumped in the
memory by the DUMP command. A DMA channel is
used to transfer the register contents to the memory. It
is very similar to reception of a frame; instead of data
from the serial link, the data from the registers gets
written into the memory. This provides a software de-
bugging and diagnostic tool.

4.5 Other Operations

Other 82588 operations like DIAGNOSE, TDR,
ABORT, etc. do not require any parameter or data
transfer. They are executed by writing a command to

the 82588 command register and knowing the results (if
any) through the status registers.

5.0 StarLAN NODE FOR IBM PC

This chapter deals with the hardware—the StarLAN
board—to interface the IBM PC to a StarLAN Net-
work. This is a slave board which takes up one slot on
the I/0 channel of the IBM PC. Figure 27 shows an
abstract block diagram of the board. It requires the
IBM PC resources of the CPU, memory, DMA and
interrupt controller on the system board to run it. Such
a board has two interfaces. The IBM PC 1/0 Channel
on the system or the parallel side and the telephone
grade twisted pair wire on the serial side. Figures 28, 29
show the circuit diagram of the board.

[
16 MHz

8 BIT BUS
82588 TxD
SYSTEM
© BUS
CONTROL
RxD
SYS CLK >

puse TELEPHONE

TRANSFORMER

PULSE ° .
SHAPING g g g

3
T
|

SQUELCH
+

ENABLE
CIRCUITS

231422-29

Figure 27. 82588 Based StarLAN Node

1-105

90lL-}
gz 2.nbi4

8 | ? | 3 | s 1 4 | 3 L 2 | 1
+6U_14[¢ ?
HHZ
pIP
— osc (-8
U3
CRYSTEK
8.00NHZ
cco-018-50
24L5245
+D7 s B8
a2 2 e B cLk
A4 [>-2DE 6 pel i3
ped T e pel14 IR
a6 o *D3 4 B U3= XD o
S 373 3 B3 U3- RXD g
e Bt 2 B2 U3= 23___+5U —
as D“c +50 b1 B1 Us=
v13 c
B14 > 10RD 3 Sum
B13 [>—1O0HR 3 UNPER
?4L$32 | 37, 74L5128
l 9 2 3 +DRA1 . p1g
1 190 L:] I
Us
, 24832 w1 A
B1§ o —DACK3 s De 27, 7415125
>————“"“5 I y R s [\ 8 +DRA3 . p1g
2 VRESET 25 beser leus
£ vas ,74HCTOR L 1618 2 ‘e
A2 D—he i 3_ASHANDAB 3 Reeet 19 | i o 24LS125
S 18 Iprai. INT}26 3 o8 +1RQS > B23
A24 p>—tA2 2 uL LeUs +1RQ4
426 (>_*tAE 6 A u3 324 3
A26 4B s REQ M2ge +IRA3 O pog
A27 [>tR4 4 reayf r JUNPERS
preai[L [7415175
A31 200 _ o DREQ3LL
a1l (o *AEN EN -—use D1 1912
bD— us U3 o2
—U3 2Ins 207
7as04 B—U3= e
[3 s t Jere 294y
U2 s Lo 4e[iS
u1e = -
203 46y DCO TECHNICAL MARKETING. INTEL a
329> TS feia [ret t c13 TITLE
SN, ‘EIOuF "I;l!uF 1;.047uF T.OJ’I«F IBM PC - STARLAN - 82588
|4t <emim ¢
331
B I ? T 6 T s I 4 I 3 T

231422-79

9¢€e-dv

201-}
62 94nb14

L) I 2] s] s] 4 | 3 1 2] 1
- TXER
D
. 7415164
+sy ,RI o
2.2k
ITIR
2
l""'"—‘_""_l
| .
»IXD E. I
12§
] T |
1 \ ZE} c
c16 1 1 3 1
| PEG4382 | e
Ibp- up-
+8y “sU SpF : :
¢ rog 10, PHONE JACK #1
; 3
| 1] R4
ve~—2 ﬂ 8 100 |
- 261532 | T1 +
7415191 A ————————
R3
2.2K
12 u 88 e
s] 300
7
ue RS B
2
61532 a 308
Uy R2
2.2K
~
e TTTTTT —
| EQUATIONS !
1 TS = 1 CIAEN & IASNANDAB & A7 & 'A6 & 1AG & !A4 & 1AB) : |
| 1
| IDPORT = (1AEN & 'ASNANDAB & 'A7 & !A6 & !AS & !1A4 & AB & !TOWR D : 1
| | .
| DREQI1 = | ¢ (IREQ® & !DACKI> ® ¢ 'REGE & !DREQ1 > ® RESET > : |
I . | DCO TECHNICAL MARKETING, INTEL
| DRE@S = | ¢ C(IREQ1 & DACK3 > # C!REG1 & !DREQ3) ® RESET) : 1 A
| | TITLE
| BUSEN = BACKTI & DACKI & <! ¢ !AEN & 'ASNANDAB & 1A7 & 'A6 & !AE & !1A4X) : | IBM PC — STARLAN - 82588
| 1
e e it e ———— -t DRAWN | DES IGNER FILE
. v
BELL ADI GOLBERT NODE2 . DHS
DATE _©5-22-86 SHEET 2 OF 2

2
231422-80

9€e-dv

intel

AP-236

5.1 Interfacing to the IBM PC 1/0
Channel

IBM PC has 8 slots on the system board to allow ex-
pansion of the basic system. All of them are electrically
identical and the I/0 channel is the bus that links them
all to the 8088 system bus. The I/O channel contains
an 8 bit bidirectional data bus, 20 address lines, 6 levels
of interrupt, 3 channels of DMA control lines and other
control lines to do I/0O and memory read/write opera-
tions. Figure 30 shows the signals and the pin assign-
ment for the I/0 Channel.

Rear Panel

SIGNAL NAME SIGNAL NAME

1/0 CH CK
+D7
+D6
+D5
+D4
+D3
+D2
+D1
+D0
+1/0 CH RDY
+AEN
+A19
+A18
+A17
+A16
+A15
+A14
+A13
+A12
+A11
+A10
+A9
+A8
+A7
+A6
+AS
+A4
+A3
+A2
+A1
+A0

GND
+RESET DRV
+5v
+IRQ2
=5vDC
+DRQ2
-12v
I=CARD SLCTD
+12V
GND
=MEMW
=MEMR
=low

. =IOR
=DACK3
+DRQ3
=DACK1
+DRQ1
=DACKO
CLOCK
+IRQ6
+IRQ7
+IRQ5
+IRQ4
+IRQ3
=DACK2
+T/C
+ALE
+5vV
+0SC —
GND

COMPONENT SIDE
231422-31

to 82588 for commands and status, address 301H ac-
cesses an on board control port that enables the various
interrupt and DMA linec. Even though only two ad-
dresses are needed, the card uses all the 16 addresses
spaces from 300H to 30FH. This was done to keep sim-
plicity and minimum component count. Registers ad-
dress decoding is done using a PAL (16L8) and an ex-
ternal NAND gate (U8).

.| Hex Range Usage

000-00F DMA Chip 8237A-5

020-021 Interrupt 8259A

040-043 Timer 8253-5

060-063 PPI 8255A-5

080-083 DMA Page Registers

0AX* NMI Mask Register

0CX Reserved

0EX Reserved

200-20F - | Game Control

210-217 Expansion Unit

220-24F Reserved

278-27F Reserved

2F0-2F7 Reserved

2F8-2FF Asynchronous Communications
(Secondary)

300-31F Prototype Card

320-32F Fixed Disk

378-37F Printer

380-38C** | SDLC Communications

380-389** | Binary Synchronous Communications
(Secondary) .

3A0-3A9 Binary Synchronous Communications
(Primary)

3B0-3BF IBM Monochrome Display/Printer

3C0-3CF Reserved

3D0-3DF Color/Graphics

3E0-3E7 Reserved

3F0-3F7 Diskette

3F8-3FF Asynchronous Communications

: (Primary)

Figure 30. I/0 Channel Diagram
5.1.1 REGISTER ACCESS AND DATA BUS
INTERFACE

The CPU accesses the StarLAN adapter card through 2
1/0 address windows. Address 300H is used to access

* At power-on time, the Non Mask Interrupt into the

8088 is masked off.
This mask bit can be set and reset through
system software as follows:
Set mask: Write hex 80 to 1/0 Address hex A0
(enable NMI)
Clear mask: Write hex 00 to 1/0 Address hex AO
(disable NMI)

** SDLC Communications and Secondary Binary
Synchronous Communications cannot be used

together because their hex addresses overlap.

Figure 31. 1/0 Address Map

1-108 .

AP-236

Ad=A9 ——]
AO=—=> |ocic
u2, Us
AEN ———p]
IOW_ ——p,

The Following Specifications:
! INVERT
~ SIGNAL ACTIVE LOW
& LOGIC AND

L) CS_ (to 588)

——p LDPRT_ (to DMA, INTERRUPT enable lines)

Register Access

Format of Following Equations Will Be According To

LOGIC OR
AONANDA8 = ! (A9 & A8)
CS. = ! (!AEN & !AONANDA8S & !A7 & !A6 & !A5 & !A4 & !AO)
LDPORT. = ! (!AEN & !AONANDA8 & !A7 & !A6 & !AS & !A4 & AO & !IOWR-)
BUSEN. = DACK1. & DACK2. & (! (!AEN & !AONANDA8 & !A7 & !A6 & !A5 & !A4));

231422-56

The signal CS__ decodes address 300H, it is only active
when AEN is inactive meaning CPU and not DMA
cycles. LDPORT__ has exactly the same logic for ad-
dress 301H, but it is only active during I/O write cy-
cles. The I/0 port sitting on address 301H is write
only. The data BUS lines DO to D7 are buffered from
the 82588 'to the PC bus using an 74L.S245 transceiver
chip.

IoRD_——
DO -D7 \);
E l¢——)» TO 588
R
SEN
BUSEN 231422-57

Data Bus Interface

The Bus transceiver is enabled if: A DMA access is
taking place, or 1/O ports 300H to 30FH are being
accessed.

5.1.2 Control Port

As mentioned the StarLAN adapter port has a 4-bit

write only control port. The purpose of this port is to

selectively enable the DMA and INTERRUPT request

lines. Also it can completely disable the transmitter.
Control Port Definition

ENDRQ3 | ENINTER | TXEN |

ENDRQ1

ENDRQI1, ENDRQ2 : “1” Enable DMA requests.

ENINTER : “1” Enable INTERRUPT
request.
TXEN : “1” Enable the transmitter.

On power up all bits default to “0”.

1-109

intef

AP-236

5.1.3 CLOCK GENERATION

The 82588 requires two clocks for operation. The sys-
tem clock and the serial clock. The serial clock can be
generated on chip by putting a crystal across X1 and
X2 pins. Alternatively, an externally generated clock
‘can be fed in at pin X1 (with X2 left open). In both
cases, the frequency must be either 8 or 16 times (sam-
pling factor) the desired bit rate. For StarLAN, 8 or 16
MHz are the correct values to generate 1 Mb/s data
rate. A configuration parameter is used to tell the
82588 what the sampling factor is. An externally sup-
plied clock must have MOS levels (0.6V-3.9V). Specifi-
cations for the crystal and the circuit are shown in Fig-
ure 32.

The system clock has to be supplied externally. It can
be up to 8 MHz. This clock runs the parallel side of the
82588. Its frequency does not have any impact on the
read and write access times but on the rate at which
data can be transferred to and from the 82588 (Maxi-
mum DMA data rate is one byte every two system
clocks). This clock doesn’t require MOS levels.

The 1/0 channel of the IBM PC supplies a 4.77 MHz
signal of 33% duty cycle. This signal could be used as a
system clock. It was decided, however, to generate a
separate clock on the StarLAN board to be indepen-
dent of the I/O channel clock so that this board can
also be used in other IBM PCs and also in some other
compatibles. The 8 MHz system clock is generated us-

ing a DIP OSCILLATOR which have the required 50
ppm tolerance to meet StarLAN. This clock is convert-
ed to MOS levels by 74HCTO00 and fed into both the
system and serial clock inputs.

5.1.4 DMA INTERFACE

The 82588 requires either one or two DMA channels
for full operation. In this application, one channel is
dedicated for reception and the other is used for trans-
missions and the other commands. Use of only one
DMA channel is possible but may require more com-
plex software, also some RX frames may be lost during
switches of the DMA channel from the receiver to the
transmitter (Those frames will be recovered by higher
layers of the protocol). Also using only one DMA
channel will limit the 82588 loopback functionality. So
the recommendation is to operate with two DMA chan-
nels if available. Appendix C describes a method of op-
erating with only one DMA channel without loosing
RX frames. : \

The IBM PC system board has one 8237A DMA con-
troller. Channel O is used for doing the refresh of
DRAMSs. Channels 1, 2 and 3 are available for add-on
boards on the 1/0 Channel. The floppy disk controller
board uses the DMA channel 2 leaving exactly two
channels (1 and 3) for the 82588. The situation is worse
if the IBM PC/XT is used, since it uses channel 3 for
the Winchester hard disk leaving just the channel 1 for

Series Resonance

—No Capacitors Needed

—Doesn’t Meet StarLAN Requirements
Meeting StarLAN 100 PPM Requirements .

—Use Parallel Resonance Crystal
. —Recommended For Precise Frequencies

—Frequency Will Drift by About 400 PPM from Nominal

—82588 X-TAL Oscillator Stability =35 PPM (0-70°C)

Crystal: Load Capacitance
Shunt Capacitance = 7 pF Maximum
Series Resistance = 30Q2 Maximum
Frequency Tolerance = 50 PPM (0-70°C)

Cl,C2 — 27 pF or 39 pF, 5%

C1

:

82588

crvstaL [L

1H

231422-81

= 20 pF

Figure 32. Crystal Specifications

1-110

intel

AP-236

the 82588. On the other hand, the IBM PC/AT has 5
free DMA channels. We will assume that 8237A.DMA
channels 1 and 3 are available for the 82588 as in the
case of the IBM PC.

Since the channel O of 8237A is used to do refresh of
DRAMs all the channels should be operated in single
byte transfer mode. In this mode, after every transfer
for any channel the bus is granted to the current high-
est priority channel. In this way, no channel can hog
. the bus bandwidth and, more important, the refresh of
DRAMEs is assured every 15 microseconds since the re-
fresh channel (number 0) has the highest priority. This
mode of operation is very slow since the HOLD is

dropped by the 8237A and then asserted again after .

every transfer. Demand mode of operation is a lot more
suitable to 82588 but it cannot be used because of the
refresh requirements.

Whenever the 82588 interfaces to the 8237A in the sin-
gle transfer mode, there is a potential 8237A lock-up
problem. The 82588 may deactivate its DMA request
line (DREQ) before receiving an acknowledge from the
DMA controller. This situation may happen during
command abortions, or aborted receptions. The 8237A
under those circumstances may lock-up. In order to
solve this potential problem, an external logic must be
used to insure that DREQ to the DMA controller is
never deactivated before the acknowledge is received.
. Figure 33 shows the logic to implement this function.
This logic is implemented in the 16L8 PAL.

The 82588 DREQ lines are connected to the IBM/PC
bus through tri-state buffers which are enabled by writ-
ing to I/0 port 301H. This function enables the use of
either one or two DMA channels and also the sharing
of DMA channels with other adapter boards.

5.1.5 INTERRUPT CONTROLLER

The 82588 interrupts the CPU after the execution of a
command or on reception of a frame. It uses the 8259A
interrupt controller on the system board to interrupt
the CPU. There are 6 interrupt request lines, IRQ2 to
IRQ7, on the I/0 channel. Figure 34 shows the assign-
ment of the lines. In fact, none of the lines are com-
pletely free for use. To add any new peripheral which
uses a system board interrupt, this interrupt needs to
have the capability to share the specific line, by driving
the line with a tri-state driver. The 82588 StarLAN
adapter board can optionally drive interrupt lines
IRQ3, IRQ4 or IRQ5 (An 74LS125 driver is used).

Number Usage
NMI Parity
0 Timer
1 Keyboard
2 Reserved
3 Asynchronous Communications
(Secondary)
SDLC Communications
BSC (Secondary)
4 Asynchronous Communications
(Primary)
SDLC Communications
B BSC (Primary)
5 Fixed Disk
6 Diskette
7 Printer

Figure 34. IBM PC Hardware Interrupt Listing

588 REQ

DACK

DREQ

RESET

588 REQ I

DACK lIlIIIlIlI lI

I

DREQ I

L

231422-82

Figure 33. DMA Request Logic

1-111

intel

AP-236

5.2 Serial Link Interface -

A trminal Qénwl ANT adnmtar hansd ia rnnnantad +a tha
ca vy palar SwGlascany QGAPWIT STArG 15 TOLnlCCh WO il

twisted pair wiring using an extension cable (typically
up to 8 meters—25 ft.). See Figure 35. One end of the
cable plugs into the telephone modular jack on the Star-
LAN board and the other end into a modular jack in
the wall. The twisted pair wiring starts at the modular
jack in the wall and goes to the wiring closet. In the
wiring closet, another telephone extension cable is used
to connect to a StarLAN HUB. The transmitted signal
from the 82588 reach the on-board telephone jack
through a RS-422 driver with pulse shaping and a pulse
transformer. The received signals from the telephone
jack to the 82588 come through a pulse transformer,
squelch circuit and a receive enable circuit.

PAIR
WIRING

EXTENSION
CABLE

y

INTO IBM PC

WIRING
PANEL

| s v g e
wCcT

EXTENSION
CABLE

- IN THE WIRING CLOSET

TWISTED |

231422-33

Figure 35. Path from StarLAN Board to HUB

5.2.1 TRANSMIT PATH

The single ended tranemit cignal on the TxD nin ic
converted to a differential signal and the rise and fall
times are increased to 150 to 200 ns before feeding it to
the pulse transformer (this pulse shaping is not a re-
quirement, but proves to give good results). Am26LS30
is a RS-422 driver which converts the TxD signal to a
differential signal. It also has slew rate control pins to
increase to rise and fall times. A large rise and fall time
reduces the possibility of crosstalk, interference and ra-
diation. By the other hand a slower edge rate increases
the jitter. In the StarLAN adapter card, the first ap-
proach was used. The 26LS30 converts a square pulse
to a trapezoidal one—see Figure 36. The filtering effect
of the cable further adds to reduce the higher frequency
components from the waveform so that on the cable the
signal is almost sinusoidal. The pulse transformer is for
DC isolation. The pulse transformers from Pulse Engi-
neering—type PE 64382—was used in this design. This
is a dual transformer package which introduces an ad-
ditional rise and fall time of about 70-100 ns on the
signal, helping the former discussed waveshaping.

5.2.2 IDLE PATTERN GENERATION

StarLAN requires transmitters to generate an IDLE
pattern after the last transmitted data bit. The IDLE
pattern is defined to be a constant high level for 2-3
microseconds. The purpose of this pattern is to insure
that receivers will decode properly the last transmitted
data bits before signal decay. Currently the 82588 needs
one external component to generate the IDLE. The op-
eration principle is to have an external shift register
(74LS164) that will kind of act as an envelope detector
of the TXD line. Whenever the TXD line goes low

IDLE
GENERATION

82588

150ns
RISE/FALL
TIMES

S N

PULSE
TRANSFORMER

g IE c}m

231422-34

Figure 36. Wave Shaping

1-112

intel

AP-236

(first preamble bit), the output of the shift register
(third cell) will immediately go low, enabling the RS-
422 driver, the shift register being clocked by TCLK—
will time the duration of the TXD high times. If the
high time is more than 2 microseconds, meaning that
the 82588 has gone idle, the transmitter will be disabled
(See Figure 37). Another piece of this logic is the OR-
ing of the output of the shift register with TXEN—sig-
nal which comes from the board control port. This sig-
nal completely disables the transmitter. The other pur-
pose of this enable signal, is to make sure that after
power-up, before the 82588 is configured, the RS-422
drivers won’t be enabled (TCLK__ is not active before
the configure command). See Figures 28, 29 for the
complete circuit.

5.3 RECEIVE PATH

The signal coming from the HUB over the twisted pair
wire is received on the StarLAN board through a 100Q
line termination resistor and a pulse transformer. The
pulse transformer is of the same type as for the transmit
side and its function is dc isolation. The received signal
which is differential and almost sinusoidal is fed to the
Am26LS32 RS-422 receiver. As seen from Figure 38
the pulse transformer feeds two RS-422 receivers. The
one on the bottom is for squelch filtering and the one
above is the real receiver which does real zero crossing
detection on the signal and regenerates a square digital
waveform from the sinusoidal signal that

is received. Proper zero crossing detection is very essen-
tial; if the edges of the regenerated signal are not at zero
crossings, the resulting signal may not be a proper
Manchester encoded signal (self introduced jitter) even
if the original signal is valid Manchester. The resistors
in the lower receiver keep its -differential inputs at a
voltage difference of 600 mV. These bias resistors en-
sure that the output remains high as long as the input
signal is more than —600 mV. It is very important that
the RxD pin remains HIGH (not LOW or floating)
whenever the receive line is idle. A violation of this may
cause the 82588 to lock-up on transmitting. Remember,
that based on the signal on the RxD pin, the 82588
extracts information on the data being received, Carrier
Sense and Collision Detect. This squelch of 600 mV
keeps the idle line noise from getting to the 82588. Fig-
ure 39 shows that when the differential input of the
receiver crosses zero, a transition occurs at the output.
It also shows that if the signal strength is higher than
—600 mV, the output does not change. (This kind of
squelching is called negative squelching, and it is done
due to the fact that the preamble pattern starts with a
going low transition). Note that the differential voltage
at the upper receiver input is zero when the line is idle.
The output of the squelch goes to a pulse stretcher
which generates an envelope of the received frame. The
envelope is a receive enable signal and is used to AND
the signal from the real zero crossing receiver before
feeding it to the RxD pin of the 82588.

RS =422 ENABLE I

™0 --——---—_——L”JAN

18=22
TX = FAST CLOCKS

LAST BIT =
CELL

231422-83

Figure 37. Idle Generation

1-113

AP-236

FILTERING OF
HIGH FRFOLIFNCY NOISF

neAciven /7000
/ -

g HIGH
FREQ
FILTER

4'>QOSSING

2.2KQ

3 EDGES

CARRIER _____|

S0 = I I I

- DATA
VOLTAGE SQUELCH
(600 mV) TIME ENVELOPE
—{ IDLE CARRIER
SQUELCH DETECT
(OPTIONAL)

LU |

L
-——Il.sp.s

231422-84

Figure 38. Input Ports

DIFFERENTIAL

RECEIVER
INPUT

SQUELCH
RECEIVER
OUTPUT

ZERO CROSSING
RECEIVER OUTPUT

-200 4+
-400 +
-600 4

, 600 4+ \
400]'- j\
200 -+
mVv 0 /\\/

FILTERED-OUT
BY SQUELCH

231422-35

Figure 39. Squelch Circuit Output

1-114

intel

AP-236

5.4 80188 Interface to 82588

Although the 82588 interfaces easily to almost any
processor, no processor offers as much of the needed
functionality as the 80186 or its 8 bit cousin, the 80188.
The 80188 is 8088 object code compatible processor
with DMA, timers, interrupt controller, chip select log-
ic, wait state generator, ready logic and clock generator
functions on chip. Figure 40 shows how the 82588, in a
StarLAN environment interfaces to the 80188. It uses
the clock, chip select logic, DMA channels, interrupt
controller directly from the 80188. The interface com-
ponents between the CPU and the 82588 are totally
eliminated.

5.5 iSBX Interface to StarLAN

Figure 41 shows how to interface the 82588 in a Star-
LAN environment to the iSBX bus. It uses 2 DMA
channels—tapping the second DMA channel from a
neighboring iSBX connector. Such a board can be used
to make a StarLAN to an Ethernet or a SNA or DEC-
NET gateway when it is placed on an appropriate SBC
board. It may also be used to give a StarLAN access to
any SBC board (with an iSBX connector) independent
of the type of processor on the board.

1-115

oLt

885¢8 01 3de}Ia}u| 88108 "OF 4nbigy

8 | ? | 6 | s 4 | 3 | 2 1
- SYSTEN RESET D
ge188
4 74L574 241574 74L574
PCSZ[28 4 s o lS -3 4 Jz @
5] 1l 3T 13z
13 2 1p Y P
3 T LE 11 } T 3 T ke
RESET -
DRGO US US Us
DRQ1
INT1 [4.
AD? IDLE GENERATION
A6
ADE
AD4
aD3 olp3 c
ap2 102
ab1 2[p1
ape 2 3lpe
5 2]
CLK OUT [S6 TXC /%118
cLk[a
Icl‘lS 2 .
LAJ
U2 U3
74HCTOO
2 | va o2
PJ1 B
3 lpps upe|t
6 lpp- up-}-2
+5U PHONE JACK #1
74HCTOO X
& o ua
7415191
Sla oa
3 @B
L 1elc ac
74HCTEO o L3 ip ap
134 rco LD INTEL DCO TECHNICAL MARKETING
u4 j1e 445 v 1908 PRAIRIE CITY RD FOLSOM CA 95630
T (32 nax - A
14 TITLE
u1 80188 INTERFACE TO 82588
: DRAUN FILE
. o DESIGNED BY
CARRIER PE BELL ADI GOLBERT 168.DH6
DATE 96-11-86 [SHEET 1 OF 1
e, | ? I 6 | s 4 | 3 2 I 1.

231422-85

9¢€2-dv

FANSS

88528 O} adeIaju] Xgs! "Ly anbiy

® | 7 | 3 | 5 | 4 3 | 2 | 1
+5V +5U
o SYSTEN RESET T T D
74L574 74LS74 ?74LS74
445 o L1845 o |2 4435 a |t
14T [14T
2 1p D 2 1p
3 T be 11| 7 le 3 ke
Us l US l Us —
IDLE GENERATION
Je-27 o HD3 (D3
Je-ze o np2 —_11p2 c
Je_a1 hp1 2|p1
Je-33 B NDe___ 3[pe
22 o HESE 2
Js-22 | TRC /%1115
cLk[4
B
O.U 14 2 I -P
n:z U3 N
DIP 74HCTER g
— osc ._9__7___;_'_"4_3
CRYSTEK
cce-818-50 PJ1
B
3 _lops upsfL
6 lop- up-|2
s PHONE JACK W1
3
ve 2
*BY 26Ls32 —
7415191
A ea |3
B QB (2 SQUELCH LOGIC
l8fc ac &
5] 2eo 22 BT
s Reo ID B INTEL DCO TECHNICAL MARKETING
112 nax 1 1980 PRAIRIE CITY RD FOLSOM CA 95630 |,
— TITLE
< SBX INTERFACE TO 82588
CARRIER ENVELOPE PR DESIGNED BY FILE
SBX .DHG
BELL ADI GOLBERT
DATE 86-12-86 [SHEET 1 OF 1
8 T 7 I 3 I 3 4 I 3 2 1

231422-86

intef

AP-236

6.0 THE StarLAN HUB

The function of a StarLAN HUB is described in section
2.0. Figure 42 shows a block diagram of a HUB. It
receives signals from the nodes (or lower level HUBs)
detects if there is a collision, generates the collision
presence signal, re-times the signal and sends it out to
the higher level HUB. It also receives signals from the
higher level HUB, re-times it and sends it .to all the
nodes and lower level HUBs connected to it. If there is
no higher level HUB, a switch on the HUB routes the
upstream received signal down to all the lower nodes.
The functions performed by a HUB are:

*Receiving signals, squelch

*Carrier Sensing

*Collision Detection

*Collision Presence Signal Generation
*Signal Retiming

*Driving signals on to the cable
*Jabber Function)

*Receive protection Timer

6.1 A StarLAN Hub for the IBM/PC

Figure 43 shows the implemention of a 5/6 port HUB
for the IBM/PC.

The idea of the following design is to show a HUB that
plugs into the IBM/PC backplane. This HUB not only
gets its power from the backplane, but also enables the
host PC to be one NODE into the StarLAN network.
This embedded node scheme enables further savings
due to the fact that all the analog interface for this port
is saved (receiver, transmitter, transformer, etc).

This kind of board would suit very much a small clus-
ter topology (very typical in departments and small of-
fices) where the HUB board would be plugged into the
FILE SERVER PC (PC/XT, PC/AT).

The HUB design doesn’t implement the Jabber and the
protection timers as called by the 1BASES draft stan-
dard. Those functions are optional and were not closed
during the writing of this AP-NOTE. This HUB does
implement the RETIMING circuit which is an essen-
tial requirement of StarLAN.

‘Figures 44 to 49 show a complete set of schematics for ‘
the HUB design.

COLLISION
TRANSMIT PAIR # 1
[]
g SQUELCH
+
CARRIER
SENSE
+ i) &
coLL. DET. |_*
° +
— | JABBER
. +
PROTECTION
TRANSMIT PAIR # N Ao
RECEIVE PARR # 1 HHUB

v ¥

S

IS

.
-~

RECEIVE PAIR # N

COLLISION
SIGNAL
L]
MUX > "é —
SIGNAL >
RETIMING
TO HIGHER
LEVEL HUB
SIGNAL L4 é.
O +—
IHUB RETIMING

231422-40

Figure 42. StarLAN HUB

1-118 -

AP-236
PORT
82588 PORT 2
HUB LOGIC PORT3 [| PHONE JACKS
82588 EMBEDDED PORT PORT 4

82588 SYSTEM
INTERFACE

® Low Cost HUB, Uses IBM/PC Power Supply
* 82588, Embedded Port Savings
Transformers
422 Drivers

4/5 EXTERNAL PORTS

*** PORTS / UPPER HUB PORT

 Functional StarLAN Cluster, For Low Cost/Small Topologies

231422-87

Figure 43. IBM/PC Resident HUB

1-119

0cl-+
pv ainbiy

) | ? s | s | 4 | 3 | 2 | 1
, 261832
) s Juis€ CARRIER SENSE _Ra_o
+50 24LS161A
n +5U_o- 1@ IcET FARp-L
R1 3 _jpe ceP[2 EB g
PULSE TX R2 2.2K 3 o1 74L504
s 2 2 151 2
_& P ,26L832 STt ;g 15
"E__L_ ' L Jui>2 Q118 u?
T10 t PO - CLK nz%
1
300 RS va 93
2.2K I’Q
261532 .
Uis13 CARRIER SENSE _RB
5y 74LS161A
+BU. ET FRp-L
3 lpe cepf 7 EB
PULSE TX 2 et 74LS04
2 153 4
ST Fohs
Qi 13 u?
CIK go12 . .
11
us 3
CARRIER SENSE RC_
24LS161A E
+8U ET W 1 =
-jvo cer[2 EC g
PULSE TX A _lp1 741504
14 2 16§ s
o-BCL__ Slppe upeft 'R13 e GTe s SHia
»RC2 __ Shpp_ yp- 188 1 “E ked o113 u?
T38 CLK g2(12
PHONE JACK #3 us e3Hll
o FESET
15251932 .
U3 CARRIER SENSE RD
+5u 74LS161A
+5U ET FARp—Ll
3 o cep| 7 ED
PULSE TX 2 ey 741504
14 e | 4 2 159 8
0 “ . 47L' P3 ;:-ﬁ
1 E__Z_ Q113 u?
e = 4 _ o galiz DCO TECHNICAL MARKETING, INTEL
as|-LL
us TITLE
INPUT PAIRS
DRAHN | DESTGNER FILE
BY
BELL ADI GOLBERT HUB1.DUE
. DATE __ 83-13-86 SHEET _1 GOF &
8 T ? 6 s 1 4 I 3 2

231422-88

9¢€¢-dv

ekt

Sp aanbiy

° | 6 s | 3 | 2 | 1
74504
s
u1s
8y = "‘:z - 74504
hwz 9 8 cennz_, R
—Josc [& u1s
EF
CRYSTEK >
16 OMHZ
cce-e10-50 +5U
74LS24S 74LS74 74LS74
a2 tD? s Belll 4z als 1oz o Jo__|camnz,
A3 [>-2D6 7 B7}li2 L1 d¢E Lisde
a4 o *DE 6 Be|13 2 1p —121p
oe Bpa s ps|id 3 3 le 11 ke
=13 2 4 U3-
ped D_Donz RO U3= Ui3 l U135
A8 [>+D1 3 a2 B2 U3=
~De 2 U3-
o= il @ " oty T c
RXD RXD 4
TDTp23 _+s5U
e crsf22
-10RD S gD
B14 [»—1ORD
P13 G —IONR 3
7415125
24L832
9 s 3 +DRAL
1 8 | *DRAL 1, p1g
L JgacK - o -
741832 4
[22 IDACKT 74LS12S5
s Ju ! s [8 +DRG3 4, 516
B2 [>-tRESET 25 ReSET leU12
22 203 1618 2 e
:gi l>- ' 3 REseT s | 17 Iprae 74LS125
l 9 TLiS 18 Jpe 26 2 3 +1RGS B
26 o 2AE ° S ar o INT { >3 IRGS -, B23
7 TS| 1
26 o thE , 241532 17 oC
£ z 3 A4 REQ |
23S B un > psocas Reail — Fwe
A31 20 0 DREQ3L
A1l [>REN EN LDPRTpLA
L_us | —
741504
11 10
U7
DCO TECHNICAL MARKETING, INTEL A
TITLE
82588 INTERFACE
FILE
HUB2 . DHE
) I 3 I I i 3

231422-89

9€¢-dVv

AN
op ainbiy

COLLISION PATTERN GENERATION

24LS?4

v_2 5

Mt 4
3

Ulse

» Cc2nHzZ

1618 PAL
COLLEN|

RCUDAT|
cDT ¥ _:

NMN &

mMouOwD

|
0
"MoOwD

l

HUB COLLISION LOGIC DCO TECHNICAL MARKETING, INTEL

TITLE
HUB COLLISION LOGIC

DRAHN | DESIGNER FILE
B BE:.&;. AD]I GOLBERT HUB3.DUB

DATE 83-13-86 [SHEET _3 oF &

I ? | 6 T s | 4 | 3 2 I 1
‘ 231422-90

9€2-dv

€gL-t
Ly ainbi4

2 T 1

s | s | 4 | 3 | 2 | L
PULSE DESCRININATOR
?4L5161 74504
e RrcollE 13 12
¢ lpy
- u1s
P3_ cept? D
ET Q3
an +BV
P 74LE164 FIFO
Qo[14 t [a oa THRESHOLD DETECTOR
2 ls
023 o
e kr ap
QE
oF —
a6 245174
s FR oy b 12
u26
L 1618 Uz1
_lpD3 g
D2 OUTDAT|—2 UPDAT
FIFO = :; THRESH[LL 748174 c
7415224 FEser oparle 14fp 18
4 1 ©,
Uz1
-3 [3 oN SIN-L6
M3 Lsour ULSE RECONSTRUCTI 12l LSINAE contror PaL
? 13
L cNTTC CNT |
[1e 7415161 &
2 e gcl1s (33 —
24L e
2 308 < ey
1 juze)3 2 [
_lp3 a1
EP Q2
+su_{1@lcer a3
vz4 o 74LSE8 B
l 18] u29
7415175 7415176 27415175
74L504 4 _[pe gel_2 s by a1l? 1252 azte
2 S_lcpTIRpL ail—& azpir__{
use u27 27 027 -
?74L500
- ua1 ! 2
END OF FRAME DETECTOR
AND IDLE GENERATION DCO TECHHICAL HARKETING. INTEL
.
A
TITLE
RETIMING LOGIC (UP PATH)
DRANN | DESTGNER
BY
B BELy ADI GOLBERT
DATE __@6-11-86

231422-91

9¢e-dv

velL-t
8y a.nbi4

9€¢-dv

6 s | 4 | 3 | 2 | 1
PULSE DESCRIMINATOR
: 74LS161 74504
1 S (3
58 rco
P 1
5 o2 use
Pz cer[7 »
+su.__1@ lceT a3 +5Y
P a1 74LS164 FIF
Qe t [a oa THRESHOLD DETECTOR
EDGE DETECTOR ’-— p P
U34 ac
8 lcp ap
QE [0
oF {11 —
a6 |12 745174
) an [13 13 o2
u36
1618 U3Z
LL_lpp3 TNTEND|-L
; D2 OUTDAT “3 DOUNDAT,
FIFO 3 g; THRESH 745174 c
2415224 3 opan-L8 14y 15
4 fre S
S 1oy L 16 JTHFITO s 533
6 3 Ls1
g&’;g LSOUT PULSE RECONSTRUCTION 491 x T4
7 JonToC CNTENZ 3} CONTROL PAL
s 24LS161
15GNCK [cp TCLLS U3S . L
EE] ¢ 74LS@8 St
4 lu2s 2&
74LS174 7 |
il +5U]
+5V
032 15 74LS0S8 B
13] uz29 111 DOUNCRS -
?4LS17S 7415175 7418175 74LS175
74L504 4 [po agol_2 S by o1l 2 12[p7 o2ll@ 1303 e3llS
8] PCLR}—1L 6 11 14
use 037 [Ed 037 037 —
74L580 o
e LT ! 10
END OF FRAME DETECTOR
AND IDLE GENERATION DCO TECHNICAL MARKETING. INTEL a
TITLE
RETIHING LOGIC ¢ DOMN PATH)
DRAWN | DESIGNER FILE
. BELy ADI GOLBERT HUBS DUG
DATE __ 06-11-66 SHEET _6 OF 6
6 I s T 4 T 3 2 1

231422-92

AR
6 ainbid4

8 | ? 1 6 | s | 4 | 3
74161 16 DPSH
2 ‘;___‘:.'; T
cer[2
DD+ UD+jt |
pp- up-2—
PHONE JACK #5 u42
SH1=12 SWITCH
DIP PACKAGE
JUMPER #3
Lz Py 2
ot Lk}
SpF
s 16
. s ? L RAL
DOWNDAT B uss 14 8 3"& 14 RA2
o DOUNDAT 543 ___Ra2
261530 TX11
JUNPER 84
c§,
2
SpF
” 1 RB1
g | -
8 14 RB2
TX21
L 2
SpF .
5 |16
2 s 7 ;&_' ! RCH
uae 14 Eﬂl
8 14 RC2
261530 TX3T —
13
c
TN 2 L RD1 —
L I ,
P
s 1o e SllE 1s RD2
10
use F¥]
261530
‘2 i1 DCO TECHNICAL MARKETING, INTEL
S(F TITLE
! OUTPUT PAIRS
N | DESIGNER FILE
BELL ADI GOLBERT HUBG . DUG
- DATE ©3-13-86
8 I ? | 3 s T 4 3 2

231422-93

9ge-dv

intel

~ AP-236

6.1.1 HUB INPUT PORTS

Figure 38 shows a block diagram of an input port. Dif-.

ferently than the implementation in Figure 29 the HUB
input port is potentially more complex than the NODE
input port. The reason being that the HUB is a central
resource and much more sensitive to noise. For exam-
ple, if the NODE input port would falsely interpret
noise on an IDLE line as valid signal, the worst case
situation would be that this noise would be filtered out
by the 82588 time squelch circuitry, on the HUB by the
other hand, this false carrier sense could trigger a COL-
LISION and a good frame (on another input) potentlal-
ly discarded.

As shown in Figure 38 immediately after the termina-
tion resistor, there is a HIGH FREQUENCY FILTER
circuit. The purpose of this circuit is to eliminate high
frequency noise components keeping noise jitter into
the allocated budget (about +30 ns). A 4 MHz two
pole butterworth filter is being recommended by the
IEEE 802.3 1BASES task force (see Figure 50).

The time squelch for the NODE board is implemented
by the 82588 (see section 3.7) this circuit makes sure
that pulses that are shorter than a specified duration
will be filtered out.

The other components of the block diagram were ex- .
plained in section 3.0.

The HUB design doesn’t implement the HIGH FRE-
QUENCY FILTER and TIME SQUELCH. In the
HUB design as an output of each input port, two sig-
nals are available: Rn, En, (RA,RB...,EA,EB...).
The Rn signals are the receive data after the zero cross-
ing receivers. The En lines are CARRIER SENSE sig-
nals. The HUB design supports either 5 or 6 input
ports, dependent upon if it is configured as IHUB or
HHUB. Port RE, EE (Figure 49) is bidirectional, con-
figurable for either input or output. Port RF, EF__

the embedded 82588 port, and doesn’t require the ana-

" log circuitry (EF is inverted, being generated from the
; RTS__ signal).

56 uH
6980
CHOKE .
RXVER 150 pF
«—1

DS TWISTED
gtioa PAIR

-+ 231422-94

Figure 50. Receiver High Frequency Filter

1-126

Il'Iter AP-236

6.1.2 COLLISION DETECTION Collision Detection in the StarLAN HUB is performed
by detecting the presence of activity on more than one
input channels. This means if the signal En is active for
more than one channel, a collision is said to occur. This
translates to the PAL equations:

Rn and En signals from each channel are fed to a 16L8

PAL, where the collision detection function is per-
formed.

COLLISION DETECTION:

CDT = ! (EA&!'EB&'EC&'ED & '[EE & EF__ #

(only EA active)
'EA & EB&!EC&!ED & 'EE & EF_ # (only EB active)
'EA&'EB& EC&!ED & 'EE & EF__ # (only EC active)
'EA & 'EB&!EC& ED & 'EE& EF__ # (only ED active)
|EA & 'EB & 'EC & |ED & EE & EF__ # (only EE active)
'EA & 'EB& !EC & !ED & 'EE & !EF__ # (only EF active)

'EA & 'EB&!EC&!ED & !EE& EF__); (none of the inputs active)

COLLISION DETECTION SR-FF:

COLLEN__ = !(CDT # COLLEN); (set with collision)

COLLEN__ = ! (RESET__ # COLLEN__ #
(!CDT & 'EA & 'EB & !EC & !ED & 'EE & EF_);

(reset when all inputs inactive)
RECEIVE DATA OUTPUT:

RCVDAT = ((RA # IEA)& (RB # !EB) & (RC # IEC) &

(RD # IED) & (RE # !IEE) & (RF # EF__));

(output is high if no active input)

1-127

intel

AP-236

The COLLEN signal once triggered will stay active un-

til all inputs go quiet. This signal is used externally to -

either enable passing RCVDAT or the collision pres-
ence signal (CPS) to the retiming logic. An external
multiplexer using 3 nand gates is used for this function.
Note that in this specific implementation the CPS/
RCVDAT multiplexer is before the retiming logic,
which is different from Figure 42 diagram. StarLAN
provides enough BIT-BUDGET delay to allow the CPS
signal to be generated through the retiming FIFO. In
this HUB implementation it was decided to use this
option to make sure that the CPS startup is synchroniz-
ed with the previously transmitted bit as required by
the 1BASES draft. /

6.1.3 THE LOCAL 82588

As described before, the purpose of the local 82588 is to
enable the Host IBM/PC to also be a node into the
StarLAN network. The interface of this 82588 is exact-
ly similar to the one explained in section 5. The RTS__
signal serves as the carrier EF__ signal, and TXD as
RF signal. This local node interfaces to the HUB with-
out any analog interface which is a significant saving.

6.1.4 THE COLLISION PRESENCE SIGNAL

The Collision Presence Signal (CPS) is generated by the
HUB whenever the HUB detects a collision. It then
propagates the CPS to the higher level HUB. The CPS
signal pattern is shown in Figure 51. Whenever a Star-
LAN node receives this signal, it should be able
to detect within a very few bit times that a collision
occurred. Since the nodes detect the occurrence of a
collision by detecting violations in Manchester encod-
ing, the CPS must obviously be a signal which violates

Manchester encoding. Section 3.5 shows that the CPS
has missing mid-cell transitions occurring every two
and a half bit cells. These are detected as Manchester
code violations. Thus, the StarLAN node is presented"
with collision detection indications every two and a half
ms. This results in fast and reliable detection of colli-
sions. CPS has a period of 5 ms.

One may wonder why such a strange looking signal was
selected for CPS. The rationale is that this CPS looks
very much like a valid Manchester signal—edges are
0.5 or 1.0 microsec. apart—resulting in identical radia-
tion, cross-talk and jitter characteristics as a true Man-
chester. This also makes the re-timing logic for the sig-
nals simpler—it need not distinguish between valid
Manchester and CPS. Moreover, this signal is easy to
generate.

A few important requirements for CPS signal are: a) it
should be generated starting synchronized with the last
transmitted bit cell. CPS is allowed to start either low
or high, but no bit cell of more than 1 microsecond is
allowed (Avoid false idles, very long “low” bits). b)
once it starts, it should continue until all the input lines
to the HUB die out. Typically, when the collision oc-
curs, the multiplexor in the HUB switches from RCV
signal to the CPS. This switch is completely asynchro-
nous to the currently being transmitted data, and by
such may violate the requirement of not having bit cells
longer than 1 us. In order to avoid those long pulses,
the output of the CPS/RCVDAT multiplexer is passed
through the retiming circuitry which will correct those
long pulses to their nominal value. The reason for re-
striction b) is to ensure that the CPS is seen by all nodes
on the network since it is generated until every node
has finished generating the Jam pattern.

. *
| 2t [t] 2t | 2t |t]

sion by the DTE (82588).

Choice of Collision Presence Siglial

— Eases retiming of the signal in the HUB

lolol1lolklslolilolkl

-

j+=——5 us PERIOD —~|

* MISSING MID=CELL TRANSITION

& Collision Presence Signal (CPS) is generated by the HUB when it detects more than one input line active.
® CPS violates Manchester encoding rules—due to missing mid-cell transitions—hence is detected as a colli-

® It is a Manchester look-alike signal—édges are 0.5 or 1.0 us apart.
— Identical radiation, crosstalk and jitter characteristics

®]t is easy to generate—1.5 TTL pack, or in a PAL

* *

t=0.5us

231422-42

Figure 51. Collision Presence Signal

1-128

intel

AP-236

CPS is generated using a 4-bit shift register and a flip-
flop as shown in Figure 52. It works off a 2 MHz clock.
A closer look at the CPS waveform shows that it is
inverse symmetric within the 5 us period. The circuit is
a 5-bit shift register with a complementary feedback
from the last to the first bit. The bits remain in defined
states (01100) till collision occurs. On collision the bits
start rotating around generating the pattern of
0011011001, 0011011001, 00110 ... with each state
lasting for 0.5 us.

0 1 1 0
? ? T T COLLISION
PRESENCE
A B c D SIGNAL
Sout F—{ D o}b—o

S Loap 4'1'> c @

COLLISION T 2 MHz T
e, -

231422-43

Figure 52. Collision Presence
Signal Generation

6.1.5 SIGNAL RETIMING

Whenever the signal goes over a cable it suffers jitter.
This means that the edges are no longer separated by
the same 0.5 or 1.0 us as at the point of origin. There
are various causes of jitter. Drivers, receivers introduce
some shifting of edges because of differing rise and fall
times and thresholds. A random sequence of bits also
produces a jitter which is called intersymbol interfer-
ence, which is a consequence of different propagation
delays for different frequency harmonics in the cable.
Meaning short pulses have a longer delay than long
ones. A maximum of 62.5 ns of jitter can accumulate in
a StarLAN network from a node to a HUB or from a
"HUB to another HUB. The following values show what
are the jitter components:

Transmitter skew +10ns
Cable Intersymbol interference +9ns
Cable Reflections +8ns
Reflections due to receiver

termination mismatch +5ns
HUB fan-in, fan-out +5ns
Noise +255
Total x625ns

It is important for the signal to be cleaned up of this
jitter before it is sent on the next stretch of cable be-
cause if too much jitter accumulates, the signal is no
longer meaningful. A valid Manchester signal would, as

a result of jitter, may no longer be decodable. The pro-
cess of either re-aligning the edges or reconstructing the
signal or even re-generating the signal so that it once
again “looks new” is called re-timing. StarLAN re-
quires for the signal to be re-timed after it has travelled
on a segment of cable.-In a typical HUB two re-timing
circuits are necessary; one for the signals going up-
stream towards the higher level HUB and the other for
signals going downstream towards the nodes.

6.1.6 RETIMING CIRCUIT, THEORY OF
OPERATION

This section will discuss the principles of designing a
re-timing circuit. Figure 53 shows the block diagram of
a re-timing circuit. The data coming in is synchronized
using an 8 MHz sampling clock. Edges in the waveform
are detected doing an XOR of two consecutive samples.
A counter counts the number of 8 MHz clocks between
two edges. This gives an indication of long (6 to 10
clocks) or short (3 to 5 clocks) pulses in the received
waveform. Pulses shorter than 3 clocks are filtered out.
Every time an edge occurs, the length—(S)hort or
(L)ong—of the pulse is fed into the FIFO. Retiming of
the waveform is done by actually generating a new
waveform based on the information being pumped into
the FIFO. The signal regeneration unit reads the FIFO
and generates the output waveform out of 8 MHz clock
pulses based on what it reads, either short or longs. In
summary every time a bit is read from the fifo, it indi-
cates that a transition needs to occur, and when to fetch
the next bit. When idle the output of the retiming logic
starts with a “high” level.

FIFO Output
empty ... 1111
S 0000
S 1111
L 00000000
L 11111111

It can be seen that the output always has edges separat-
ed by 4 or 8 clock pulses—0.5 or 1.0 us. .

The FIFO is primarily needed to account for a differ-
ence of clock frequencies at the source and regeneration
end. Due to this difference, data can come in faster or
slower than the regeneration circuit expects. A 16 deep
FIFO can handle frequency deviations of up to 200
ppm for frame lengths up to 1600 bytes. The FIFO also
overcomes short term variations in edge separation. It
is essential that the FIFO fills in up to about half before
the process of regeneration is started. Thus, if the re-
generation is done at a clock slightly faster than the
source clock, there is always data in the FIFO to work
from. That is why the FIFO threshold detect logic is
necessary, which counts 8 edges and then enables the
signal regeneration logic.

1-129

intel

AP-236

Example:
Input Waveform ...11110001111000000011111111110001111100...
Input into
> : >
the FIFO v{S> <S <L> <L><8> <S>
Regenerated Output:
Output: ...111110000111100000000111111110000111 ...
FIFO:
<8> <S> <> <L> <8> <S>
INPUT N EDGE .| PuLSE wiDTH
DATA —P] SYNCHRONIZER »| DeTeCTOR ! DISCRIMINATOR
INCREMENT EDGE ‘ LOAD SHORT/LONG
8 MHz CLOCK - COUNTER v FFO 4 & INFO
FIFO
THRESHOLD FIFO
® FIFO ACCOMMODATES FOR FREQ. DETECT
DRIFTS (SPEC 100 PPM)
® MAX .DRIFT:
(1500 BYTES x 8) x 200 PPM = 2.43 BT FIFO OUTPUT
ENABLE SIGNAL X
REGENERATION SIGNAL
: REGENERATION » OUTPUT
231422-95

Figure 53. Retiming Block Diagram

6.1.7 RETIMING CIRCUIT IMPLEMENTATION

The retiming circuit implementation can be seen in Fig-
ures 47, 48. Both figures implement exactly the same
function, one for the upstream, and the other for the
downstream. The retiming circuit was implemented us-
ing about 8 SSI, MSI TTL components, one fifo chip
and one PAL. The purpose of implementing this func-
tion with discrete components was to show the imple-
mentation details. The discussion of the implementa-
tion will refer to Figure 47 for unit numbers.

The signal UPIMP which is an output of the HUB
nhultiplexing logic, is asynchronous to the local clock.
This signal is synchronized by two flip-flops and fed
into an edge generation logic (basically an XOR' gate
that compares the present sample with the previous
one). On every input transition a 125 ns pulse will be

generated at the output of the edge detector (U28). This
pulse will reset the 74LS161 counter that is responsible
for measuring pulse widths (in X8 clock increments).
The output of the pulse discriminator will reflect the
previous pulse width every time a new edge is detected.
The following events will take place on every detected
edge:
1. U26 which is the threshold detector will shift one
“1” in. The outputs of U26 will be used by the con-
trol PAL to start the reconstruction process.

2. The output of U23 which specifies the last pulse
width will be input into the control PAL for deter-
mining if it was a long or short pulse. The result of
this evaluation will be the LSIN signal which will be
loaded into the fifo (U22).

U22 is the retiming FIFO, it is 16x4 fifo, but only one
bit is necessary to store the SHORT/LONG informa-
tion.

1-130

intel

AP-236

CONTROL LOGIC PAL functions (U25):

Signals definition:

INPUTS:
PDO..PD3:

EDD

THRESH:

CNTEN:

CNTEND:

OUTDAT:

RESET__:

Outputs of the pulse descriminator, indi-
cate the width of the last measured
pulse.

Output of the edge detector, pulse of 125
ns width, indicates the occurrence of an
edge in the input data.

Output of the threshold logic, indicates
at least one bit was already received.
Output of the Threshold logic, indicates
7 bits have been loaded into the FIFO,
and that signal reconstruction can begin.
The same signal as before delayed by one
clock.

Output of the retiming logic, is feedback
into the PAL to implement a clocked
T-FF.

Resets the retiming logic.

CNTTC: Terminal count of the reconstruction
counter, indicating that reconstruction
of a new bit will get started.

OR: Output of the FIFO indicating, that the

FIFO is empty and that IDLE genera-
tion can get started.

OUTPUTS:

LDFIFO__: Loads SHORT/LONG indications into
the FIFO.

LSIN: Indicates SHORT/LONG

CNTPE_: Loads FIFO SHORT/LONG output
into the reconstruction counter.

ODAT: Together with the external U21 flip-flop
and OUTDAT implement a clocked
T-FF.

Loading the FIFO will be done every time there is an
edge, we have passed the one bit filter threshold level,
and the pulse width is longer than two 8X clocks. This
one bit threshold level serves as a time domain filter
discarding the first received preamble bit.

LDFIFO_ = ! (PD1l # PD2 # PD3) & !EDD_ & THRESH) ;

Whenever there is an edge, we are above the first received bit threshold
and the pulse widthis longer than "1" the fifo is loaded.

LSIN = ! (PD3 # (PD2 & PDO) # (PD2 & PDl));

Every pulse longer than 6 is considered to be a long pulse.

CNTPE. = ! ((CNTEN & !CNTEND) # CNITC);

The reconstruction counter is loaded in two conditions:

Whenever CNTEN comes active, meaning the FIFO threshold of seven was exceeded.
Whenever the terminal count of U24 is active meaning a new pulse is going to be reconstructed.

ODAT = !RESET_ # (!CNTPE_ &
(CNTPE_ &
(!CNTPE_ &

!OUTDAT) (A)
OUTDAT) (B)
!0R) (C)

Minterm (A) and (B) implement a T-FF, whenever CNTPE, is "low"
ODAT will toggle. The external U21 is part of this flip-flop.
Minterm (C) insures the output of the flip-flop will go inactive
"high" when the FIFO is empty. RESET, causes the output to go

"high" oninitialization.

1-131

intel

AP-236

U24 as mentioned is the reconstruction counter. This
counter is loaded by the control logic with either 8 or
12, it counts up and is reloaded on terminal count. Es-
sentially generating at the output nominal length longs
and shorts.

U22 is the retiming FIFO, and its function as men-
tioned is to accommodate frequency skews between the
incoming and outgoing signal.

U27 is the IDLE generation logic. The purpose of this
logic is to detect when the FIFO is empty, meaning that
no more data needs to be transmitted. On detection of
this event this component will generate 2 ms of IDLE
time. On the end of IDLE the whole retiming logic will
be reset.

6.1.8 DRIVER CIRCUITS

The ‘signal coming out of the RETIMING LOGIC is
fed into 26LS30s and pulse transformers to drive the
twisted pair lines (See section 5.0 for details).

6.1.9 HEADER/INTERMEDIATE HUB SWITCH

As seen on Figure 43 this hub can be configured as
either an intermediate hub, or a Header one. One of the
phone jacks, more specifically JACK #5 is either an
input port or an output one. In order to implement this
function, an 8 position DIP SWITCH (SW1) is used.
The phone jacks are marked with UD, DD notation,
meaning upstream data, and downstream data respec-
tively. As specified in the StarLAN 1BASES draft
NODES transmit data on UD pair, and HUBS on the
DD pair. Switch SW1 has the function to invert UD,
DD in PHONE JACK #5 to enable it to be either
input or output port.

6.1.10 JABBER FUNCTION

This design does not implement the jabber unit but it is
described here for completeness. IEEE 802.3 does not
mandate this feature, but it is “Strongly Recommend-
ed”. The jabber function in the HUB protects the net-
work from abnormally long transmissions by any node.

Two timers T1, T2 are used by the JABBER function.
They may be implemented either as local timers (one
for each HUB port) or as global timers shared by all
ports. After detecting an input active, timers T1, T2

will be started, and T1 will time out after 25 to 50 ms.
T2 will time-out after 51 to 100 ms. During T2 time,
after T1 expired, the HUB will send the CP-PAT-
TERN informing any jamming stations to quit their
transmissions. If on T2 time-out there are still jamming
ports, their input is going to be disabled. A disabled
port, will be reenabled whenever its input becomes
again active and the downward side is idle.

The following is an explanation of the requirement that
the downward side be idle to reenable an input port.
Consider the case of Figure 54. The figure shows a two
port HUB. Port A has two wires Ay, Aq for the up and
down paths. Port B has B, By respectively. Port C is
the output port, that broadcasts to the other HUBs
higher in the hierarchy. Consider the case as shown,
where B, and By are shorted together. Suppose the case
that port A, is active. Its signal will propagate up in the
hierarchy through C, and come down from Cgq to Aq,
and By. Due to the short between By and By the signal
will start a loop, that will first cause a collision and jam
the network forever. This kind of fault is taken care of
by the jabber circuitry. T1 and T2 will expire, causing
the jabber logic to disable By, input. Upon this disabling
By, is going to go Idle and be a candidate for future
enabling. Suppose now that A, is once again active. If
the reenable condition would not require Cyg to be
IDLE, B,, would be reenabled causing the same loop to
happen once again. Note that in this case Cyq will be
active before B, causing this port to continue to be
disabled and avoiding the jamming situation (Figure
55) gives a formal specification of the jabber function).

231422-96

Figure 54. Jabber Function

- 1132

AP-236

Power On

> JABBER IDLE

INPUT (X) = active

< Wait for input active.

3¢
JABBER WATCH

o start_jobber Time 2

INPUT (X) = Idle |

 jabber_collision

v

“probation_alternative

*INPUT(X) =idle *INPUT (X) = active

JABBER SHUTOFF

o disable_input (X)

INPUT (X) = active & INPUT(UPPER) = active INPUT(X) =idle

v
JABBER PROBATION

e disable_input (X)

Jjabber Time 1_done * INPUT (X) = active

((jabber Time 2_done + INPUT(UPPER) = idle)

+ (probation_alternative * INPUT (X) = idle)

<~ Input Is active, activate timers T1, T2,
If input goes Idle, then it was a
normal transmission. Otherwise if
Jabber Timer 1 expires, the transmission
is illegal. Start generating collision
pattern in state JABBER JAM.

< Variable probation_alternative indicates
two possible ways of implementing the function.
Implementation of either one is allowed.

Conditions for going to state JABBER SHUTOFF

-T2 expires.

~ INPUT(UPPER) = idle INPUT (X) = active
it means that the current HUB was
SHUTOFF by a higher hierarchy one.
This one will also SHUTOFF with the
purpose that a jamming input be
DISABLED at the lowest possible level.

= INPUT (X) =idle
Two alternatives are allowed :

]

[INPUT (X) = active * INPUT(UPPER) = idle

Go back to JABBER IDLE, or
go to the SHUTOFF state.

On state JABBER SHUTOFF, the

input is disabled.

Input will be reenabled if input is active,
and the upper port is quist.

231422-99

Figure 55. Jabber State Diagram

6.1.11 HUB RECEIVER PROTECTION TIMER

On the end of a transmission, during the transition
from IDLE to high impedance state, the transmitter
will exhibit an undershoot and/or ringing, as a conse-
quence of transformer discharge. This undershoot/
ringing will be transmitted to the receiver which needs
to protect itself from false carriers due to this effect.
One way of implementing this protection mechanism is
to implement a blind timer, which upon IDLE detec-
tion will “blind” the receiver for a few microseconds.

Causes of the transmitter undershoot/ringing:

1. Difference in the magnitudes of the differential out-
put voltage between the high and the low output
stages.

2. Waveform assymmetry due to transmitter jitter.

3. Transmitter and receiver inductance (transformer
L). .
4. Two to three microseconds of IDLE pattern.

All the described elements will contribute to energy
storage into the transformer inductor, which will dis-
charge during the transition of the driver to high im-
pedance.

The blinding timer is currently defined to be from 20 to
30 microseconds for the HUBs, being from 0 to 30 mi-
croseconds for the nodes (optional). The 82588 has
built-in this function. It won’t receive any frames for an
inter-frame-spacing (IFS) from the idle detection.

6.1.12 HUB RELIABILITY

Since the StarLAN HUBs form focal points in the net-
work, it is important for them to be very reliable, since
they are single points of failure which can affect a num-
ber of nodes or can even bring down the whole net-
work. StarLAN 1BASES draft requires HUBs to have
a mean time between failures (MTBF) of at least 5
years of continuous operation.

1-133

intel

AP-236

7.0 SOFTWARE DRIVER

The software needed to drive the 82588 in a StarLAN
environment is not different from that needed in a ge-
neric CSMA/CD environment. This section goes into
specific procedures used for operations like TRANS-
MIT, RECEIVE, CONFIGURE, DUMP, ADDRESS

SET-UP, etc. A special treatment will be given to inter- -

facing with the IBM PC—DMA, interrupt and 1/0.

Since all the routines were written and tried out in
PLM-86 and ASM 86, all illustrations are in these lan-
guages.

The followmg software examples are pleces of an 82588
exerciser program. This program’s main purpose was to
exercise the 82588 functionality and provide the func-
tions of traffic generation and monitoring. By such the
empha51s was on speed and accuracy of statistics gath-
ering.

7.1 Interfacing to IBM PC

The StarLAN board interfaces to the CPU, DMA con-
troller and the interrupt controller on the IBM PC sys-
tem board. The software to operate the 82588 runs on
the system board CPU. The illustrated routines in this
section show exactly how the software interface works
between the system resources on the IBM PC and the
StarLAN board.

1lds dx,STRING_POINTER
mov ah,0%h
int 21h

;9=

7.1.1 DOING 1/0 ON IBM PC

The safest way to use the PC monitor as an output
device and the keyboard as the input device is to use
them through DOS system calls. The following is a set
of routines which are handy to do most of the 1/0:

key$stat —to find out if a new key has been
pressed

keyin$noecho —to read a key from the keyboard

char$out —to display a character on the screen

msg$out —to display a character string on the
screen

line$in —to read in a character string from the

keyboard

The exact semantics and the protocol for doing these
functions through DOS system calls is shown in the
listing in Figure 56. Refer to the DOS Manual for a
more detailed description. To make a DOS system call,
register AH of 8088 is loaded with the call Function
Number and then, a software interrupt (or trap) 21 hex
is executed. Other 8088 registers are used to transfer
any parameters between DOS and the calling program.
The code is written in Assembly language for register
access. Let us see an example of the ‘msg$out’ routine:

; load pointer to string in reg. ds:dx
function number for string o/p
;s DOS System Call

These procedures are called from another module, written in a higher level language like PLM-86. The parameters

are transferred to the ASM-86 routines on the stack.
Exémples of using the 1/0 routines:

KEY_STATUS = key§stat;

NEW_KEY = keyin$noecho;

call line$in(@LINE_BUFFER) ;

call char$out (CHAR_OUT) ;

call msg$out (@ ('THIS IS A MESSAGE.$'));

/* INQUIRE KEYBOARD STATUS */
/* INPUT NEW KEY */
/* STRING INPUT *
/* TO OUTPUT CHAR_OUT ON SCREEN*/
/* OUTPUT STRING */
/* NOTE $ TERMINATOR *)

1-134

AP-236

/*

/

/* Declarations for external IBM PC I/O routines
.

*/

key$stat: procedure byte external; /* key
end key$stat;

keyinnoecho: procedure byte external;
end keyinnoecho;

/*

char$out: procedure(char) external; /* console
declare char byte;

end char$out;

msg$out: procedure(msg$ptr) external; Vad

declare msg$ptr pointer;
end msg$out;

line$in: procedure(line$ptr) external; /*

declare line$ptr pointer;
end line$in;
Assembly Language implementation of the routines

$TITLE(IBM/PC DOS CALLS PROCEDURES)

NAME DOSPROCS
DGROUP GROUP DATA
CGROUP GROUP CODE
DATA SEGMENT WORD PUBLIC ‘DATA'
DATA ENDS
DOS EQU 21H
CODE SEGMENT WORD PUBLIC ‘CODE’
ASSUME CS:CGROUP, DS : DGROUP
; CHARSOUT: PROCEDURE(CHAR) EXTERNAL;
; DECLARE CHAR BYTE;
; END CHARS$OUT;
; Outputs character to the screen.
; DOS system call 2
CHAR EQU [BP+4]
CHAROUT PROC NEAR
PUBLIC CHAROUT
PUSH BP
MOV BP,SP
MOV DL, CHAR
MOV AH,2
INT DOS
POP BP
RET 2
CHAROUT ENDP

; KEYIN$SNOECHO: PROCEDURE BYTE EXTERNAL;

; END KEYIN$NOECHO;

*/

status routine */
console input routine */

output routine */
console string output routine

console string input routine

231422-58

x-1
x-2
x-3

x-4 «--SP

; Reads character without echoing to display

KEYINNOECHO PROC NEAR
PUBLIC KEYINNOECHO
MOV AH,8
INT DOS
RET

KEYINNOECHO ENDP

Figure 7-56. I/0 Routines for IBM/PC

(DOS call 8)

(continued)
231422-59

Figure 56. 1/0 Routines for IBM/PC

1-135

ntel

AP-236

MSGS$OUT : PROCBDURE(MSGsPTR) EXTERNAL;

DECLARE MSG&PTE INTER;

END MSG$OUT

/* NOTE: MESSAGB IS TERMINATED WITH A DOLLAR SIGN */
MSGSPTR is double word pointer SEG:OFFSET

MSG_L EQU [BP+4]
MSG_H EQU [BP+6]
MSGOUT PROC NEAR
PUBLIC MSGOUT
PUSH BP
MOV BP,SP
MOV DX,MSG_L
PUSH DS
MOV AX,MSG_K
MOV DS,AX)
MOV AH,9 (DOS call 9)
INT DOS
POP DS
POP BP
RET 4
MSGOUT ENDP
; LINE$SIN: PROCEDURE(LINE$SPTR) EXTERNAL;
; DECLARE LINE$PTR POINTER;
; END LINESIN
LINE_L EQU [BP+4]
LINE_H EQU [BP+6]
LINEIN PROC NEAR
PUBLIC LINEIN
PUSH BP
MOV BP,SP
PUSH DS
MOV AX,LINE_H
MOV D§,AX
MOV DX,LINE_L
MOV AH, 1 (DOS call 10)
INT DOS
POP DS
POP BP
RET 4
LINEIN ENDP 231422-60
; KEY$STAT: PROCEDURE BYTE EXTERNAL;
; END KEY$STAT;
; Indicates vhether any keyboard key was pressed.
KEYSTAT PROC NEAR
PUBLIC KEYSTAT
MOV AH,11 (DOS call 11)
INT DOS
RET
KEYSTAT ENDP
CODE ENDS
END 231422-61

Figure 56. 1/0 Routines for IBM/PC (Continued)

7.2 Initialization and Declarations

Figure 57 shows some declarations describing what ad-
dresses the devices have and also some literals to help
understand the other routines in this section.

Figure 58 shows the initialization routines for the IBM
PC and for the 82588. It also shows some of the typical
values taken by the memory buffers for Configure,
IA__Set, Multicast and transmit buffers.

1-136

AP-236

Following are some literal declarations that are used in the procedure examples

Following are some literal declarations that are used in the
procedure examples

declare
cs_688 literally ’‘O300h’' , /* 82588 COMMAND/STATUS
brd_port literally ‘0301h’' , /* DMA/INTERUPT ENABLE PORT */
pic_mask literally ‘O21h‘’ , /* 8259A MASK REGISTER */
pic_ocw2 literally '020h’ , /* 8258A COMMAND WORD 2 */
dma_mask literally ‘Oah’ , /* 8237A MASK REGISTER */
dma_mode literally ‘Obh’ , /* 8237A MODE REGISTER */
dma_f1£ff literally ‘Och’ , /* 8237A 1ST/2ND BYTE FLOP */
dma_addr_1 literally ‘O2h’ . /* 8237A CHANNEL 1 ADDR. REG. */
dma_bc_1 literally ‘O3h° , /* 8237A CHANNEL 1 BYTE COUNT */
dma_addrh_1 literally '083h‘ , /* CHANNEL 1 PAGE REGISTER */
dma_addr_3 literally ‘O6h’ , /* 8237A CHANNEL 3 ADDR. REG. */
dma_bec_3 literally ‘O7h’ , /* 8237A CHANNEL 3 BYTE COUNT */
dma_addrh_3 literally ‘082n‘' , /* CHANNEL 3 PAGE REGISTER */
dma_on_1 literally ‘Olh’ » /* START CHANNEL 1 */
dma_on_3 literally ‘O3h’ , /* START CHANNEL 3 */
dma_off_1 literally 'O5h’ , /* STOP CHANNEL 1 */
dma_off_3 literally 'O7h’ , /* STOP CHANNEL 3 */
enable_588 literally 'Odfh’ , /* UNMASK INTERRUPT LEVEL 5 */
seoi_pico literally '0O66h’ , /* SPECIFIC EOI LEVEL 5 */
tx_dir literally ‘1 . /* MEMORY TO 82588 */
rx_dir literally ‘0’ ,» /* 82588 TO MEMORY */
dma_rx_mode_1 literally ’‘045h’ , /* RX ON CHANNEL # 1 */
dma_rx_mode_3 literally ‘O47h’ , /* RX ON CHANNEL # 3 */
dma_tx_mode_1 literally ‘049h’ , /* TX ON CHANNEL # 1 */
dma_tx_mode_3 literally 'O4bh’ , /* TX ON CHANNEL # 3
231422-62
Figure 57. Literal Declarations
Initialization Routines
Initialization routines
/* SYSTEM INITIALIZE */
sys_init: procedure;
call set$interrupt (13,intr_688); /* BASE 8, LEVEL § */
output(pic_mask) = 1nput(pic mask) and enable _588; /* ENABLE 588 INTERR. */
output(pic_ocw2) = seoi_pico; * ACKS PENDING INTERR*/
wr_ptr,rd_ptr,fifocent=0; /* RESET STATUS FIFO */
/llt‘tt!l.tllllltttltt‘t‘lttltt!ltttttttttl‘tl‘ilt!l/
/* CONVERT SEG:OFFSET FORMAT TO 20 BIT ADDRESSES */
/* FOR ALL THE BUFFERS */
/‘tlit!tt‘lt‘llt‘kl‘lt‘!tlllt‘tl‘t‘ttt.l‘lltltttt't“/
iaset_dma_addr = convert_20bit_addr(@ia_set. buff _588(0));
cnf_dma_addr = convert_20bit a,ddr(@config 88(0));
dmp_dma_addr = convert_20bit_addr(@dump_] huff 588(0));
mc_dma_addr = convert_20bit_addr(e@multicast_buff 588(0)).
tx_dma_addr = convert_20bit_addr(@tx_buffer_588(0));
do 1i=0 to 7
rx_dma. eddr(i)-convert 20bit_addr(@rx_buffer(i).buff(0));
end;
output(brd_port)=0ffh; /* ENABLE DMA AND INTERRUPT DRIVERS */
end sys_init;
82588 initialization
init_588: procedure;
config_588(00) = 10; /* TO CONFIGURE ALL 10 PARAMETERS */
config_588(01) = 00;
config 588(02 = 00001000b; /* MODE O, 8 MHZ CLOCK, 1 MB/S */
config 588(03) = buff_len/4; /* RECEIVE BUFFER LENGTH */
config_588(04) = 00100110b; /* NO LOOPBACK, ADDR LEN = 6, PREAMBLE = 8 */
config 588(05) = 00000000b; /* DIFFERENTIAL MANCHESTER = OFF ./
config_588(068) = 96; /* IFS = 96 TCLK */
config 588(07) = O; /* SLOT TIME = 512 TCLK */
config 588(08) = 11110010b; /* MAX. NO. RETRIES = 15 */
config 588(09) = 00000100b; /* MANCHESTER ENCODING */
config 588(10) = 10001000b; /* INTERNAL CRS AND CDT, CRSF = O */
config_588(11) = 64; /* MIN FRAME LENGTE = 64 BYTES = 512 BITS */ 23142263

Figure 58. Initialization Routines

1-137

intel

AP-236

ia_set_buff_588(0)
ia_set_buff_588(1)
ia_set_buff_588(2)
ia_set_buff_588(3)
ia_set_buff_588(4)
ia_set_buff_588(5)
ia_set_uff_588(6)

le_set_buff_588(7)

LIS B B B O

o

§2...
14

multicast_buff_588(00) = 12;
multicast_buff_588(01) = OOh;
multicast_buff_688(02) = 11lh;
multicast_buff_688(03) = 12h;
multicast_buff_588(04) = 13h;
multicast_buff_588(05) = 14h;
multicast_buff_688(06) = 15h;
multicast_buff_588(07) = 16h;
multicast_buff_588(08) = 21h;
multicast_buff_588(09) = 22h;

= 23h;

multicast_buff_688(10)
multicast_buff_588(11) =24h;
multicast_buff_588(12) = 25h
multicast_buff_588(13) = 26h;

tx_buffer_688(00) =
tx_buffer_588(01) =
tx_buffer_588(02) =
tx_buffer_588(03) =
tx_buffer_588(04) = 013h;

tx_buffer_588(05)
tx_buffer_588(06)
tx_buffer_588(07)

~end init_588;

tx_frame_len mod 266;
tx_frame_len / 256;
Ollh; /* INITIAL DESTINATION ADDRESS = MC(1) */

231422-64

Figure 58. Initialization Routines (Continued)

7.3 General Commands

Operations like Transmit, Receive, Configure, etc. are
done by a simple sequence of loading the DMA con-
troller with the necessary parameters and then writing
the command to the 82588.

Example: Configure Command

To configure the operating environment of the 82588.
This command must be the first one to be executed
after a RESET.

call
DMA_LOAD(1,1,12,@CONFIG_.588_ADDR) ;
output (CS_588) = 12h;

The first statement is the prologue to the configure

command to the 82588 which calls a routine to load
and initialize the DMA controller for the desired opera-
tion. This routine is described in section 7.4. The pa-
rameters for DMA__LOAD are:

first parameter = 82588 channel
number (= 1)
second parameter = direction (= 1,

memory >> 82588)
third parameter = length of DMA
transfer (= 12)

fourth parameter = pointer to a 20 bit
address of the
memory buffer
(=@CONFIG..588_ADDR)

The second statement writes 12h to the command regis-
ter of the 82588 to execute a Configure command on
channel 1.

When the command execution is complete (successfully
or not), 82588 interrupts the 8088 CPU through the
8259A, on the system board. This executes the inter-
rupt service routine, described in section 7.5, which
takes the epilogue action for the command.

Most operations are very similar in structure to Config-
ure. The 82588 Reference Manual describes them in
detail. Figure 59 shows a listing of the most commonly -
used operations like:

CONFIGURE INDIVIDUAL-ADDRESS (IA)
SET-UP

TRANSMIT MULTICAST-ADDRESS (MC)
SET-UP

DIAGNOSE RECEIVE (RCV)=-ENABLE

DUMP RECEIVE (RCV)=-DISABLE

“IDR - RECEIVE (RCV)=-STOP

RETRANSMIT READ-STATUS

1-138

AP-236

ia_set: procedure public; X /* COMMAND - 01 */
cell dma_load(cmd_channel,tx_dir,8,@iaset_dma_eddr);
/* SET DMA CHANNEL O OR 1 TO TRANSFER FROM MEMORY
TO THE 82588. iaset_dma_addr VARIABLE STORES THE
20 BIT POINTER TO THE INDIVIDUAL ADDRESS BUFFER */

if cmd_channel then output (cs_688) = 11h;
else output(es_688) = Olh;

/* EVERY COMMAND CAN BE EXECUTED IN EITHER DMA CHANNEL O OR 1.
THE VARIABLE cmd_channel INDICATES THE REQUIRED CHANNEL */

epd ia_set;

/% */

config: procedure public; /* COMMAND - 02 */
call dma_load(cmd_channel,tx_dir,12,@cnf_dma_addr);
if omd_channel then output (os_688) = 12h;
else output(os_688) = 02h;

end config;

/% %/

multicast: procedure publioc; /* COMMAND - 03 */
call dma_load(omd_channel,tx_dir,14,@mc_dma_addr);
if omd_channel then output (os_588) = 13h;
else output(os_688) = O3h;

end multicast;

/* x
transmit: procedure(buffer_len) public; /* COMMAND - 04 */
declare buffer_len word;

tx_buffer_588(00) = low(buffer_len);
tx_buffer_688(01) = high(buffer_len);

call dma_load(omd_channel,tx_dir,1636,@tx_dma_addr);

if omd_channel then outz\;t (cs5_688) = 14h;
else output(os_588) =

end transmit;

231422-65

Figure 59. General Commands

1-139

ntel

AP-236

tdr: procedure public; /* COMMAND - 0§ */

if cmd_channel then output (cs_588) = 15h;
else output(cs_588) = O5h;

end tdr;
/*

dump_588: procedure public; /* COMMAND - 06 */
call dma_load(omd_channel,rx_dir,64,@dmp_dma_addr);
if cmd_channel then output (cs_588) = 16h;
else output(cs_588) = 08h;

end dump_688; »

/%

*/

diagnose: procedure public; /* COMMAND - 07 */

i1f cmd_channel then output (cs_588) = 17h;
else output(cs_588) = O7h;

end diagnose;
/ *

rev_enable: procedure(channel,buffer_no,len) public; /* COMMAND - 08 */

declare channel byte;

declare len word;

declare buffer_no byte;

call dma_load(channel,rx_dir,len,@rx_dma_addr(buffer_no));
if rx_channel then outgut (cs_688) = 18h;

else output(cs_588) = 08h;

end rcv_enable;
/ *

rcv_disable: procedure public; /* COMMAND - 10 */

enable_rcv=0;
output(cs_588)=0ah;

end rcv_disable;

/*

rcv_stop: procedure public; /* COMMAND - 11 */

enable_rcv=0; :
output(cs_588)= Obh;

end rev_stop;
/*

retransmit: procedure public; /* COMMAND - 12 */
call dma_load(cmd_channel,tx_dir,1636,@tx_dma_addr);
if omd_channel then output (cs_588) = lch;.
.else output(cs_588) = Och;

end retransmit;

/*

abort: procedure public; /* COMMAND ~ 13 */

out{ut(os_saa)- 1dh;
call new_status(1l);

end abort;
/ *

*/

*/

*/

*/

*/

*/

reset_588: procedure public; . /* COMMAND - 14 */
enable_rcv=0;
output(cs_688) = leh;
call config;

end reset_588;

*/

231422-66

231422-67

Figure 59. General Commands (Continued)

1-140

intel

AP-236

7.4 DMA Routines

DMA__LOAD procedure is used to program the
8237A DMA controller for all the operations requiring
DMA service. It also starts or enables the programmed

the listing of this procedure. It accepts 4 parameters -
from the calling routine to decide the programming
configuration for the 8237A. The parameters for
DMA__LOAD are: Channel, direction, buff__len, and
buff__addr.

DMA channel after programming it. Figure 60 shows

Converting a pointer SEG:OFFSET to a 20 bit address

convert_20bit_addr:procedure(ptr) dword public;
declare ptr pointer,

ptr_addr pointer,

tr_20bit dword

wrd based ptr_saddr)(2) word;

ptr_addr=-@ptr;
Ptr_20bit=shl((ptr_20bit:=wrd(1)),4)+wrd(0);
return(ptr_20bit);

end convert_20bit_addr;

IBM/PC DMA loading procedure
dma_load: procedure(channel,direction,buff_len,buff_addr) reentrant public;

then output(dma_mode)=dma_rx_mode_3;
else output(dma_mode)=dme_tx_mode_3;
output(dma_addr_3) = low (wrd(0));
output(dma_addr_3) high(wrd(0));
output(dme_addrh_3) = low (wrd(1l));
output(dma_bc_3) low (buff_len);
output(dma_bc_3) high(buff_len);
ogput (dme_mask) = dma_on_3;
end;

end dma_load;

declare channel byte; /* CHANNEL %, O or 1 */
declare direction byte; /* 0=RX, 588 -> MEM; 1=~TX, MEM -> 588 */
declare buff_len word; ° /* BYTE COUNT . */
declare buff_addr pointer; /* BUFFER ADDR IN 20 BITS FORM */
declare (wrd based buff_addr)(2) word;
channel=channel and 1; /* GET LEAST SIGNIFICANT BIT */
if channel=0 then /* EXECUTE COMMAND ON CHANNEL 1 */
03
output(dme_f1ff) = O; /* CLEAR FIRST/LAST FLIP-FLOP */
if direction=0 N
then output(dma_mode)=dma_rx_mode_l; /* DIRECTION BIT, TELLS */
else output(dma_mode)=dma_tx_mode_1; /* TRANSMIT OR RECEIVE */
output(dma_addr_1) = low (wrd(0)): /* LOAD LSB ADDRESS BYTE */
output(dma_addr_1) = high(wrd(0)); /* LOAD MSB ADDRESS BYTE */
output(dma_addrh 1) = low (wrd(1l)); /* LOAD PAGE REGISTER */
output(dma_bc_1 = low (buff_len); /* LOAD LSB BYTE COUNT */
output(dma_bc_1) = high(buff_len); /* LOAD MSB BYTE COUNT */
ougput(dma_mask) = dma_on_1; /* START CHANNEL.1 */
end;
else do; /* SAME AS BEFORE FOR CHANNEL 3 */
output(dma_£1ff) = O;
if direction=0

231422-68

Figure 60. DMA Routine

1-141

intel

AP-236

- One peculiarity about this procedure is that in order to
speed up the DMA step-up, this procedure doesn’t get a
pointer to the buffer, but a pointer to a 20 bit address in
the 8237 format. The 8088/8086 architecture define
pointers as 32 bits seg:offset entities, where seg and off-
set are 16 bit operands. By the other hand the IBM/PC
uses an 8237A and a page register, requiring a memory
address to be a 20 bit entity. The process of converting
a seg:offset pointer to a 20 bit address is time

consuming and could negatively affect the performance
of the 82588 driver software. The decision was to make
the pointer/address conversions during initialization,
considering that the buffers are static in memory (es-
sentially removing this calculation from the real time .
response loops). ‘

Figure 61 is a listing of the DMA__LOAD procedure
for the 80188 or 80188 on-chip DMA controller. It has
the same caller interface as the 8237A based one.

/* To load and start the

declare dma_rx_mode

declare dma_tx_mode

do case channel and 00000001b;
do case direction and 00000001b;

output(dma_0_dpl) = wrd(0);
output(dma_0O_dph) = wrd(1);
output(dma_O_spl) = ch_a_588;
output(dma_O_sph) = 0;
output(dma_0_tc) =
output(dma_0O_cw) =

‘output(dma_0O_tc)
output(dma_0_cw)
end;

end;

dma_load: procedure(channel,direction,trans_len,buff_addr) reentrant;
80186 DMA controller for the desired operation */

literally *1010001001000000b’; /* rx channel */
/* src=10, dest=M(inc), sync=src, TC, noint, priority, byte */

literally '000011010000000b'; /* tx channel */
/* src=M(inc), dest=I0, sync=dest, TC, noint, noprior, byte */

declare channel byte; /* channel # */
declare direction byte; /* 0 = rx, 588 -> mem; 1 = tx, mem -> 588 */
declare trans_len word; /* byte count x/
declare buff_addr pointer; /* buffer pointer in 20 bit addr. form */

declare (wrd based buff_addr)(2) word;

do; /* channel O, 588 to memory */

trans_len;
dma_rx _mode or 0006h; /* Start DMA chl 0 */

trans__len;
dma_tx_mode or 0006h; /* Start DMA chl 0 */

end;

do; /* channel O, memory to 588 */
output(dma_0_dpl) = ch_a_588;
output(dma_0_dph) = 0;

output(dma_0_spl) = wrd(0);

output(dma_0O_sph) = wrd(1);

231422-69

Figure 61. 80186 DMA Routines

1-142

AP-236

do case direction and 00000001b;
do; /* channel 1, 588 to memory */
output(dma_1_dpl) = wrd(0);
output(dma_1_dph) = wrd(1);
output(dma_1_spl) = ch_b_588;
output(dma_1_sph) = O;
output(dma_1_tc) = trans_len;
output(dma_1_cw) = dma_rx_mode or 0006h; /* Start DMA chl 1 */

end;

do; /* channel 1, memory to 588 */
output(dma_1_dpl) = ch_b_588;
output(dma_1_dph) = 0;

output(dma_1_spl) = wrd(0);

output(dma_1_sph) = wrd(1);

output(dma_1_tc)
output(dma_1_cw)
end;

end;

trans_len;
dma_tx_mode or 0006h; /* Start DMA chl 1 */

end;

end dma_load;
231422-70

Figure 61. 80186 DMA Routines (Continued)

The interrupt handler will read 82588 status, and put

7.5 Interrupt Routine t
them into a 64 byte long EVENT__FIFO. Those

The interrupt service routine, ‘intr__588’, shown in
Figure 62, is invoked whenever the 82588 interrupts.
The main difficulty in designing this interrupt routine
was to speed its performance. Fast status processing
was a basic requirement to be able to handle back to
back frames.

statuses are going to be used in the main loop for updat-
ing screen counters. All the statistics are updated as fast
as possible in the interrupt handler to fulfill the back-
to-back frame processing requirement.

The interrupt handler is not reentrant, interrupts are
disabled at the beginning and reenabled on exit.

1-143

ntel

AP-236

Interrupt service routine

intr_588:procedure interrupt 13;

declare stat byte,
event byte,
1 byte,
(st0,st1,85t2,5t3) byte,
rx_st0 byte,
Trx_stl byte;

/* FOLLOWING LITERALS HAVE THE PURPOSE OF ENABLE ACTING
ON EITHER CHANNEL 1 OR 3 SELECTIVELY

declare

stop_omd_dma literally ‘if omd_channel
then output(dma_mask)=dma_off_3;
. else output(dma_mask)=-dma_off_1',
stop_rx_dma literally ‘if rx_channel
then output(dma_mask)=dma_off_3;
else output(dma mask)~-dma_off_1',

issue_rtx_cmd literally ‘if omd_channel
. then output(os_688)=1Ch;
else outgut(os _5688)=0ch’,
issue_tx_cmd 1literally ’‘if cmd_channel
then output(os_688)=14h;
else output(cs_688)=04h’;

disable; /* DISABLE INTERRUPTS
/* NO INTERR. NESTING
output(cs_588) =0fh; /* RLS 688 PTR, START O

event_fifo(wr_ptr).st0,stO=input(cs_5688); /* READ 82588 STATUS
event_fifo(wr_ptr).stl,stl=input(cs_688); /* REGISTERS, PASSING
event_fifo(wr_ptr).st2,st2=input(cs_688); /* THEM TO IN
event_fifo(wr_ptr).st3,st3=input(cs_688); /* PROGRAM ON THE FIFO

wr_ptr=(wr_ptr+l) and Ofh; /* INCREMENT FIFO
fifocnt=(fifoont+1) and th /* COUNTERS
event=st0 and Ofh; /* GET EVENT- FIELD
output(cs_5688)=80h; /* ACKNOWLEDGE 82688
. /* INTERRUPT

do case event;

ev_00: ; - /* NOP COMMAND */
ev_0l: stop_cmd_dma; /* IA_SETUP, STOP DMA */
ev_02: stop_cmd_dma; /* CONPIGU'RR STOP DMA */
ev_03: stop omd_dma,; /* MULTICAST, STOP DMA */
ev_04: do /* TRANSMIT DONE */.

stoy cnd_dma;

/* CHECK IF THERE WAS A COLLISION AND IS NOT THE
MAX COLLISION */

stat=(st2 and 10000000b) or (st1l and 00100000b);
i1f (stat=80h)

then do; /* RETRANSMIT */
call dma_load(cmd_ ohannel tx_dir,1536,0tx_dme_addr);
issue_rtx_cmd;
/* UPDATE STATISTICS */

total_tx_count=total_tx_count+l;

coll_ont(17) = coll_ont(17) + 1; /*TOTAL COLL*/

bad_tx_count = bad_tx_count + 1;

end;

else do;
1f in _loop /* EXECUTING TRANSHISSIONS IN LOOP */

n do; /* RE ISSBUE TRANSMIT COMMAND */
call dma_load(cmd_channel,tx_dir,1536,@tx_dma_addr
issue_tx_omd;
total tx_count=total_tx_count+l;

end;

if (stz and 00100000b) = O /* BAD TRANSMIT*/

then do;
bad_tx_count = bad_tx_oount + 1;
/* INCREMENT UNDERRUN COUNTER */
tmp=scr(tmp:=st2,1);
tx_under=tx_under plus 0;
/* INCREMENT LOST CTS COUNTER */
tmp=scr(tmp,1);
lost_ots=lost_ots plus O;
/* INCREMENT LOST CRS COUNTER */
tmp=sor(tmp,1);
lost_ors=1lost_ crs pl s 0;
if (stat=0AOh) INC OOLLISIONS COUNTER */
then ooll_ont(l'?) = coll_cnt(17) + 1;

end;

end;

/* INCREMENT DEFER COUNTER */
tmp=scl((tmp:=st1),1);
na tx_defer=-tx_defer plus O;
end;

*/
*/
*/

*/
*/

*/
*/
*/

*

/
*/

231422-71

231422-72

Figure 62. Interrupt Routine

1-144

AP-236

ev_05: stop_cmd_dma; /* TDR COMMAND, STOP DMA */
ev_06: stop_cmd_dma; /* DUMP COMMAND, STOP DMA */
ev_07: stop_cmd_dma; /* DIAGNOSE CMD, STOP DMA */
ev. oed /* RECEIVED FRAME */
0;
stop_rx_dma;
i=(current buff+1) and 00000111b; /* INC BUFFER NO. MOD 8%/
if enable_rov«>0 /* IF RECEIVER IS ON */
then do; /* PREPARE NEXT BUFFER */

call dma_load(rx_channel,rx_dir,1532,@rx_dma_addr(i));
i1f rx_channel then output(os 588)= 18h;

else output(cs_688)=08h

rx_buffer(i).chain_cnt=0;

end;
else oell rov_disable; /* DISABLE RECEIVER */
/* FIND ADDRESS OF END OF CURRENTLY RECEIVED BUFFER */
/* BY CALCULATING IT WITH THE 82588 BYTE COUNT REGS. */
rx_buff_off=(shl(double(st2),8) or double(stl));
/* READ STATUS BYTES FROM MEMOR */

rx_st0=-rx_buffer(current_buff).buff(rx_buff_off-2);
rx_stl-rx_buffer(current_buff).buff(rx_buff_off-1);
/* UPDATE ACTUAL BUFFER SIZE */
rx_buffer(current_buff).actual_size=rx_buff_off;
rx_buffer(current_buff).stO=-rx_st0; .
rx_buffer(ourrent_buff).stl=rx_stl;
ourrent buff=i; :

UPDATE TOTAL RECEIVED BUFFERS ./

total rcv_count=total_rov_count+l;
/* UPDATE STATISTICS */
i1f (rx_stl and 00100000b)=0
then do;
bad_rov_count=bad_rcv_count+l;
/* INCREMENT NO END OF FRAME COUNTER */

tmp=-scr(tmp:=rx_st0, 7)

no_eof=no_eof plus O

/* INCREMENT SHORT FRAHB COUNTER */
tmp-sor(tmp,1);

srt_frm=srt_frm plus O;

/* INCREMENT RX OVEF.RU'N COUNTER */
tmp=scr(tmp:=rx_stl,1);

TX_OVer=rx_over plus 0;-

/* INCREMENT ALIGNMENT ERROR COUNTER */
tmp=scr(tmp,2);

alg_err=alg_err plus O;

/* INCREMENT CRC ERROR COUNTER */
tmp=ser(tmp,1);

crc_err=-cro_err plus O;

end;

end* 231422-73

/* EV_09 REQUESTS ASSIGNMENT OF A NEW BUFFER

ev_09: call allocate_new_buffer(not(rol(st3,1)) and 00000001b).
ev_1l0: stop_rx_dma; /* RECEIVE DISABLE

ev_1l1l: stop_rx_dma; /* STOP RECEIVE ‘/
ev_12: do; /* RE-TRANSMIT DONE */

stat=(st2 and 10000000b) or (stl and 00100000b);
if (stat=80h)
then do; /* RETRANSMIT */
call dma_load(l,tx_dir,1536,@tx_dma_addr);
issue_rtx_cmd;
coll_cnt(17) = coll_cnt(17) + 1;
total_tx_count=total_tx_count+1;
bad_tx_count=-bad_tx_count +1;
end;
else do;
if 4in_loop
then do; /* LOOP RETRANSMISSIONS
call dma_load(cmd_channel,tx_dir,1636,8tx_ dma a
issue_tx_cmd;
total_tx_count=total_tx_count+l;

end;
if (stat-OAOh) /* MAX COLLISION */
then do;
coll_ont(16) = coll_cnt(16)+1;
coll_cnt(17) = coll_cnt(17)+1;
bad_tx_count=bad_tx_count +1;

end;
/* UPDATE SPECIFIC COLLISION COUNTER */
else coll_cnt(stl and Ofh)
= coll_cnt(stl and Ofh) + 1;

end;
end;
ev 13: stop cmd_dma.; /* EXECUTION ABORTED */
_14:

ev 15: stop_,cmd dma.; /* DIAGNOSE FAILED */

end;
/* ACKNOWLEDGE 8259A INTERRUPT */
output(pic_ocw2)= seoi_pico; /* SPECIFIC EOI FOR 8259 */

end intr_588;

231422-74

Figure 62. Interrupt Routine (Continued)

1-145

AP-236

~ APPENDIX A
STARLAN SIGNALS

- 1146

AP-236

231422-51

231422-52

231422-53

231422-54

231422-55

§))

(2

3

@

(5)

82588

TXD RTS

26LS30

J_S pF

5pF-E

|

24 GAUGE
800 FT TWISTED PAIR WIRE
IN 25 PAIR BUNDLE

26LS32

231422-47

1-147

Figure 63. StarLAN Signals

nte[| - AP-236

VOLTAGE RESPONSE (mV)

=500

500 1000 1500 2000
Illlllllilllll

0

-1500 =1000

=-2000

Eye Diagram (5 Bits), DIW Cable
Manchester Encoded Signal
Transmission Distance = 0.8 Kft.

Illllllllllllll

L1

0.0 0.2 : 0.4 0.6
TIME (1SEC)

0.8 . 1.0

231422-48

Figure 64. Received Signal Eye Diagram

1-148 .

intel

AP-236

APPENDIX B
802.3 1BASE5 MULTI-POINT EXTENSION (MPE)

As previously stated, one of the most important advan-
tages of StarLAN is being able to work on already in-
stalled phone wires. This advantage is considerably di-
minished in Europe where numerous constraints exist
to the using of those wires:

1. Wire belongs to local PTTs.
2. Not enough spare wires.

This same issue is raised when talking about small busi-
nesses where in a lot of cases no wiring closets and/or
spare wires are available.

In summary, in a lot of cases rewiring will be necessary,
in which case the STAR topology may not be the most
economical one.

Recently the StarLAN 802.3 1BASES task force has
been considering the extension of the StarLAN base
topology. This extension called MULTI POINT EX-
TENSION (MPE) is going to be developed to address
the previously described marketing requirements.

Currently no agreement has been reached by the
StarLAN task force on the MPE exact topology and
implementation. Multiple approaches have been pre-
sented, but no consensus met. It was decided though
that the MPE is going to be an addendum to the STAR
topology, and that its final specification will happen
after the approval of the current IBASES STAR topol-
ogy (July 1986).

1-149

0SH-1

uoisuajx3 jutodyinp "G9 ainbi4

LOWER COST.

TERMINALS ATTRACTIVE

—

HUB COST ELIMINATED

IN SMALL TOPOLOGIES.

LOWER COST PER PORT

(UP TO 8 STATIONS PER PORT)

HUB

USER INSTALLABLE
INTERCONNECT

FEWER CONNECTIONS TO

WIRING CLOSETS

THROUGH A HUB UPGRADABLE
TO THE FULL STARLAN TOPOLOGY
(2500 m. MAX END-TO-END)

h

CONNECTION OPTIONAL,
NOT NEEDED FOR SMALL
TOPOLOGIES

231422-97

P

9€2-dv

AP-236

APPENDIX C
SINGLE DMA CHANNEL INTERFACE

In a typical system, the 82588 needs 2 DMA channels
to operate in a manner that no received frames are lost
as discussed in section 5.1.3. If an existing system has
only one DMA channel available, it is still possible to
operate the 82588 in a way that no frames are lost. This
method is recommended only in situations where a sec-
ond DMA channel is impossible to get.

Figure 66 shows how the 82588 DMA logic is inter-
faced to one channel of a DMA controller. Two DRQ
lines are ORed and go to the DMA controller DRQ
line and the DACK line from the DMA controller is
connected to DACKO and DACK1 of the 82588. The
82588 is configured for multiple buffer reception
(chaining), although the entire frame is received in a
single buffer. Let us assume that channel CH-0 is used
as the first channel for reception. After the ENAble
RECeive command, CH-0 is dedicated to reception. As
long as no frame is received, the other channel, CH-1,
can be used for executing any commands like transmit,
multicast address, dump, etc., by programming the
DMA channel for the execution command. The status
register should be checked for any ongoing reception,
to avoid issuing an execution command when reception
is active.

DRQO
DRQ1 : > DRQn

DACKO.
DACK1 _J‘- DACKn
82588 DMA
CONTROLLER
231422-49

Figure 66. 82588 Using One DMA Channel

If a frame is received, an interrupt for additional buffer
occurs immediately after an address match is estab-

lished, as shown in Figure 67. After this, the received
bytes start filling up the on-chip FIFO. The 82588 acti-
vates the DRQ line after 15—FIFO LIMIT + 3 bytes
are ready for transfer in the FIFO (about 80 microsec-
onds after the interrupt). The CPU should react to the
interrupt within 80 us and disable the DMA controller.
It should also issue an ASSIGN ALTERNATE BUFF-
ER command with INTACK to abort any execution
command that may be active. The FIFO fills up in
about 160 us after interrupt. To prevent an underrun,
the CPU must reprogram the DMA controller for
frame reception and re-enable the DMA controller
within 160 us after the interrupt (time to receive about
21 bytes). No buffer switching actually takes place, al-
though the 82588 generates request for alternate buffer
every time it has no additional buffer. The CPU must
respond to these interrupts with an ASSIGN ALTER-
NATE BUFFER command with INTACK. To keep
the CPU overhead to a minimum, the buffer size must
be configured to the maximum value of 1 kbyte.

If a frame transmission starts deferring due to the re-
ception occurring just prior to an issued transmit com-
mand, the transmission can start once the link is free
after reception. A maximum of 19 bytes are transmitted
(stored in the FIFO and internal registers) followed by
a jam pattern and then an execution aborted interrupt
occurs. The aborted frame can be transmitted again.

If the transmit command is issued and the 82588 starts
transmitting just prior to receiving a frame then trans-
mit wins over receive—but this will obviously lead to a
collision.

Note that the interrupt for additional buffer is used to
abort an ongoing execution command and to program
the DMA channel for reception just when a frame is
received. This scheme imposes real time interrupt han-
dling requirements on the CPU and is recommended
only when a second DMA channel is not available.

1-151

AP-236
REQUEST ASSIGN
ALT BUFF ALT BUFF
INTERRUPT WITH INTACK

|

82588 I

INT

82588

1

DRQ

) '/— FIFO FULL

~80'uS

ADDRESS MATCH
ON FRAME
RECEPTION

| :
| o~y so;;s——-l

DMA CONTROLLER DMA CONTROLLER
MUST BE DISABLED MUST BE PROGRAMMED
PRIOR TO THIS FOR RECEPTION AND

. ENABLED PRIOR TO THIS

231422-50

Figure 67. Timing at the Beginning of Frame Reception for Single DMA Channel Operation

1-152

intel

AP-236

APPENDIX D
MEASURING NETWORK DELAYS WITH THE 82588

Knowing networks round-trip delays in local area net-
works is an important capability. The round-trip delay
very much defines the slot time parameter which by
itself has a direct relationship to network efficiency and
throughput. Very often the slot-time parameter is not
flexible, due to standards requirements. Whenever it is
flexible, optimization of this number may lead to signif-
icant improvement in network performance.

Another possible usage of the network delay knowledge
is in balancing the inter-frame -spacing (IFS) on broad-
band networks. On those networks, stations nearer to
the HEAD-END hear themselves faster than farther
ones. Effectively having a shorter IFS than stations far
from the HEAD-END. This difference causes an inba-
lance in network access time for different stations at
different distances from the HEAD-END. Knowing
the STATION/HEAD-END delay allows the user to
reprogram the 82588 IFS accordingly, and by that bal-
ance the effective IFS for all the stations.

The 82588 has an internal mechanism that allows the
user to measure this delay in BIT-TIME units. The
method is based on the fact that the 82588 when config-
ured for internal collision detection, requires that the
carrier sense be active within half a slot-time after
transmission has started. If this requirement is not ful-
filled the 82588 notifies that a collision has occurred.
Thus it is possible to configure the 82588 to different
slot time values, then transmit a long frame (of at least
half a slot-time). If the transmission succeeds, the net-
work round-trip delay is less than half the programmed
slot-time. If a collision is reported, the delay is longer.
The value of the round-trip delay can be found by re-
peating this experiment process while scanning the slot-
time configuration parameter value and searching the
threshold. A binary search algorithm is used for that
purpose. First the slot-time is configured for the maxi-
mum (2048 bits) and according if there was a collision
or not, the number changed for the next try. (See Fig-
ure 68)

1-153

Inte[AP-236

PROPAGATION DELAY

HEADEND

@0 WU N 0

RX

©® SCHEME IS BASED ON THE FACT THAT THE 82588 EXPECTS RX CARRIER
TO BE ACTIVE AFTER 1/2 SLOT TIME

Low=0
HIGH = 2048

v

SLOT_TIME = (HIGH + LOW) / 2
> CONFIGURE 82588
TRANSMIT FRAME

LOW = SLOT_TIME

v

HIGH = SLOT_TIME

v

K = APPROXIMATION FACTOR

231422-98

Figure 68. Network Delay Measurement using the 82588

1-154

®
ntel APPLICATION AP-320
NOTE

November 1988

Using the Intel 82592 to Integrate
a Low-Cost Ethernet Solution
into a PC Motherboard

MICHAEL ANZILOTTI
TECHNICAL MARKETING ENGINEER

Order Number: 290189-001
1-155 .

intel

AP-320

1.0 INTRODUCTION

During the past several years office networking has be-
come an increasingly efficient method of resource shar-
ing for companies looking to increase productivity
while reducing cost. Networking allows multiuser ac-
cess to a data base of files or programs via a network
file server; it allows sharing of expensive peripherals;
e.g., laser printers; and it offers a greater degree of data
security by centralizing the hard disk and backup facili-
ties. This type of network allows a user to concentrate
his resources; e.g., a high-capacity, high-performance
hard disk, at the network file server, allowing the other
nodes, or PC workstations, on the network to function
with limited or no mass data storage capability.

As Local Area Networks (LANs) have become more
common in the office and in industry, some clear mar-
ket development trends have emerged. Possibly the
most significant development in the LAN marketplace
is the concern for cost reduction. This need is driven by
intense competition between network vendors for mar-
ket share. Today’s LAN marketplace requires low-cost,
simple network solutions that do not sacrifice perform-
ance. Another significant development in the LAN
marketplace is the acceptance of Ethernet, or a deriva-
tive (e.g.; Cheapernet or Twisted Pair Ethernet), as the
industry standard for high-performance LANs. Be-
cause of Ethernet’s popularity, there is a great need for
cost reduction in this market. '

Personal computers (PCs) have also seen significant
changes over the past several years. PCs have become
firmly entrenched in the office. Their popularity, cou-
pled with a highly competitive market, has compelled
PC vendors to both reduce costs for their LAN solu-
tions and to attempt to distinguish their product from
the competition’s. The means of this cost reduction
-range from eliminating expensive hardware, such as
disk drives and their associated hardware, to using
highly integrated VLSI devices that implement the
functions of a PC in a combination chip set containing
several devices. Differentiation has been achieved by
integrating peripheral functions, normally contained on
an external adapter card, into the main processor
board, or motherboard, of the PC. Video Graphics Ar-
ray (VGA) and LAN connections are examples of this
strategy. '

The Intel 82592 LAN controller is uniquely suited for
integration into a PC AT style motherboard. It meets
the demands of today’s market by providing the PC
vendor (1) a means of reducing cost while maintaining
high performance, and (2) a path for differentiation. An
82592 integrated into a PC motherboard provides a
very low cost and very simple implementation because
it uses the host system’s existing resources to complete

. the LAN solution; e.g., system memory and DMA.

This leaves the 82592, the serial interface, and some
control logic as the only components required to com-
plete a motherboard LAN solution.

1.1 Objective

This Application Note presents the general concept of
integrating a Local Area Networking into a PC moth-
erboard, and how the 82592 suits this purpose. The

- design of the 82592 Embedded LAN Module, which

plugs into an Intel SYP301 motherboard (or any stan-
dard PC AT style motherboard), is explained in de-
tail—providing a demonstration of an integrated Ether-
net LAN solution.

1.2 Acknowledgements

For their contributions to this Application Note, and
for their work in developing the architecture of the
82592 Embedded LAN Module, I would like to ac-
knowledge, and thank, Uri Elzur, Dan Gavish, and
Haim Sadger, of the Intel Israel System Validation
group; and Joe Dragony, of Intel’s (Folsom) Data
Communications Focus Group.

2.0 THE EVOLUTION OF LAN
SOLUTION ARCHITECTURES

LAN solutions have undergone an evolution in archi-
tecture—from expensive and complex to more cost-effi-
cient and streamlined. A definite trend in office net-
working can be seen, as these solutions permit the host
system to perform functions that were previously in-
cluded in the LAN solution.

The first LAN solutions were usually intelligent buff-
ered adapter cards, with a CPU, large memory require-
ments (up to 512 kB), firmware, a LAN controller, and
a serial interface. As networking became more preva-
lent in the office environment—Ilinking PCs and work-
stations via Ethernet—this complex architecture
evolved into simpler and more streamlined nonintelli-
gent, buffered adapters. In this architecture the CPU is
no longer part of the LAN solution; its processing pow-
er is supplied by the host system. This architecture does
not need memory to support a local CPU. Memory is
only needed to supply a buffer space to store data be-

- fore moving it to system memory or onto the serial link.

The memory requirement for nonintelligent, buffered
architectures is typically 8 kBytes to 32 kBytes. The
firmware to boot the CPU is also no longer needed. The
evolution to a nonintelligent, buffered architecture has
resulted in significant cost savings and reduced com-
plexity.

1-156

intel

AP-320

Significant increases in speed and processing power
have been made to PCs during the past several years.
This trend to higher performance host systems has al-
lowed further streamlining of the LAN solution’s archi-
tecture, resulting in even greater cost reduction and
simplification. This is accomplished by using host sys-
tem resources whenever possible. A nonintelligent, non-
buffered architecture is the result. In this architecture,
the host system’s memory and DMA are used by the
LAN controller. The complexity associated with buff-
ered LAN solutions (e.g., supplying a dual-port arbitra-

tion scheme for local memory access by both the CPU
and the LAN controller) is reduced; this complexity is
removed from the LAN solution and returned to the
host system, which is designed for these complex tasks.
The result of this architectural optimization is a very
simple, low component count, cost-efficient solution for
a LAN connection. The 82592 Embedded LAN Mod-
ule is the realization of this optimization. The trend to
optimization of LAN architectures is shown in Figure
1. :

Intelligent Buffered Adapter

Nonintelligent Buffered Adapter

DMA and) Serial
Bus Interface Interface
LAN Memory
Controller 8 to 32 kB

0} SAON

290189-2

Serial
Controller Interface
CPU DMA
EPROM
Memory

64 10 512 kB

z

Q

<

[

(7]

-~

°

2901891

Nonintelligent Non-Buffered Architecture

Embedded Module
LAN Serial
Controller Interface

290189-3

Figure 1. Architectural Optimization of LAN Solutions

1-157

intel

AP-320

3.0 THE 82592 LAN CONTROLLER

3.1 General Features

The 82592 is a second generation, CMOS, advanced
CSMA/CD LAN controller with a 16-bit data path.
Along with'its 8-bit version, the 82590, it is the follow-
on design to the 82588 LAN controller. The 82592 is
upwards software compatible from the 82588. The
82592 has two modes of serial operation, High Speed
Mode and High Integration Mode. In High Speed
Mode (up to 20 Mb/s) the 82592 couples with the Intel
82C501 to provide an all CMOS kit for IEEE 802.3
Ethernet applications. In this mode the 82592 can also
serve as the controller for Twisted Pair Ethernet (TPE)
applications. In High Integration Mode (up to 4 Mb/s)
the 82592 performs Manchester and NRZI encoding/
decoding, collision detection, transmit clocking, and re-
ceive clock recovery on chip; in this mode it can serve
as a controller for StarLAN and other midrange LANs.

The 82592 provides several features that allow an effi-
cient system interface to a wide variety of Intel micro-
processors (e.g., iAPX 188, 186, 286, and 386) and in-
dustry standard buses (e.g., the IBM PC I/O channel
or the PS/2™ Micro Channel™). To issue a com-
mand to the 82592 (e.g.,, TRANSMIT or CONFIG-
URE) the CPU only needs to set up a block in memory
that contains the parameters to be transferred to the
82592, program the DMA controller to point to that
location and issue the proper opcode to the 82592. The
82592 and DMA controller perform the functions
needed to complete the command, with the 82592 inter-
rupting the CPU when the command is complete. The
82592 has a high-performance, 16-bit bus interface, op-
erating at up to 16 MHz. It also implements a special-
ized hardware handshake with industry standard DMA
controllers (e.g., the Intel 8237, 82380, and 82370) or
the Intel 82560. This allows for back-to-back frame re-
ception, and automatic retransmission on collision—
without CPU intervention. The 82592 FIFOs (Rx and
Tx) can have their 64 bytes divided into combinations
of 32/32, 16/48, 48/16, or 16/16.

The 82592 features a Deterministic Collision Resolu-
tion (DCR) mode. When a collision is detected while in
this mode, all nodes in a deterministic network enter
into a time-division-multiplexed algorithm where each
node has its own unique slot in which to transmit. This
ensures that the collision is resolved within a calculated
worst-case time. The 82592 also features a number of
network management and diagnostic capabilities; for
example,)

® Monitor mode
® A 24-bit timer
¢ Three 16-bit event counters

® Internal and external loopBack
® Internal register dump

e A TDR mechanism

® Internal diagnostics

For further information on the 82592, please‘refer to
the Intel Microcommunications Handbook.

3.2 Unique Features for Embedded
LAN Applications

The 82592 has several unique features that enable im-
plementing a high-performance embedded LAN solu-
tion with minimal cost and complexity.

Peripherals on a motherboard must compete for access
to the system bus. Because there is no local buffer for
intermediate buffering of data, data transfers take place
in real-time over the system bus to the system memory.
A LAN controller must have a large internal data stor-
age area to be able to wait for access to the system bus
while serial data is being received or transmitted. With-
out sufficient internal data storage, a LAN controller
cannot take advantage of the cost efficiency and sim-
plicity of a non-buffered architecture. The 82592 has a
total of 64 bytes of FIFOs. This expanded FIFO section
allows the 82592 to tolerate long system bus latencies.
For example, -during a Receive (with the Rx FIFO
length configured to 48 bytes) the 82592 can tolerate up
to 38.4 us of bus latency—the time from a DMA re-
quest to reception of a DMA Acknowledge from the
DMA controller—before the possibility of a data over-
run occurring in a 10 Mb/s Ethernet application. Once
access to the system bus has been obtained, the 82592’s
high-performance, 16-bit bus interface provides effi-
cient data transfer over the system bus, thus reducing
the bus utilization load for a LAN connection on the
host system.

The 82592 features a specialized hardware handshake
with industry standard DMA controllers. This hard-
ware handshake between the 82592 and the DMA con-
troller (on signal lines DRQ and EOP) relays the status
of a Receive or Transmit and allows for back-to-back
frame reception and automatic retransmission on colli-
sion without CPU intervention. This allows the 82592
and the DMA controller to perform these time-critical
operations in real-time without depending on the CPU
via an interrupt service routine, and without the time
delays inherent in such routines. For the 82592 Embed-
ded LAN Module, this hardware handshake is enabled
by configuring the 82592 to the Tightly Coupled Inter-
face (TCI) mode. Figure 2 shows details of the 82592’s
TCI signals. :

1-158

AP-320

Transmit/Receive Status Encoding on DRQ and EOP

DRQ EOP Status Information
0 Hi-Z Idle
1 Hi-Z DMA Transfer
0 0 Transmission or Reception Terminated OK
1 0 Transmission or Reception Aborted

Tightly Coupled Interface Timings

DRQO, /- _} \
DRQ1
YY) [+ T23 ~— Ti04 ==
DACKO,
DACK] 3§\ e
/
WR,RD \ ,
EOP i)I.‘_
— T L — T
105 106 290189-4
Symbol Parameter Min | Max | Units Notes
tos WR or RD Low to DRQO 45 ns CL = 50 pF
_ or DRQ1 Inactive
t104 WR or RD High to DRQO 25 | 65 ns | C_L=50pF
or DRQ1 Inactive
ty05 WR or RD Low to EOP Active 45 ns | Open Drain /O Pin
t106 EOP Float after DACKO 40 ns Open Drain /0 Pin
or DACK1 Inactive .

Figure 2. TCI Encoding and Timings

1-159

intel

AP-320

These three features (FIFO depth, high-performance -

bus interface, and TCI) allow the 82592 to operate suc-
cessfully in a high-performance motherboard LAN
application. The application of these features will be
discussed further in Section 4.

4.0 SYP301 INTERFACE

This section will discuss the details of the interface of
the 82592 Embedded LAN Module to the Intel
SYP301. The basic architecture will be presented, dem-
onstrating that the 82592 Embedded LAN Module is a
low-cost, low component count Ethernet solution for
networking office PCs or workstations.

The Intel SYP301 is compatible with the IBM PC
ATTM, It features an Intel 80386T™M microprocessor,
running at 16 MHz, as its CPU. Its system bus is com-
patible with the standard PC AT 1/0O-channel bus.

4.1 Basic Architecture

Figure 3 shows the basic architecture of the 82592 Em-
bedded LAN Module, and Figure 4 shows the module’s

schematics. The module consists of an 82592, two
20L10 PALs, and two 8-bit LS573 address latches that
combine to provide a 16-bit address latch. The module
contains no DMA unit or local memory.

The 82592 Embedded LAN Module is a simple; low-
cost, low component count solution because it uses the
available system resources (DMA and memory) to pro-
vide for those functions normally added to a LAN solu-
tion. Removing DMA and local memory from a LAN
solution reduces cost and complexity. Two host DMA
channels, one for receive and one for transmit, are
needed to support the module. The DMA interface
from the 82592 (through PAL B) is the standard com-
bination of DRQ, DACK and EOP. These three signals
also provide the TCI between the 82592 and the DMA
controller. The size of the memory buffer needed to
support the module depends*on the specific application
and the amount of free memory available; the buffer
size can be specified by the programmer.

LATCH

ADDRESS BUS AO=~15
DATA BUS DO~15)

LTCW

(RECEIVE)
DRQO (TRANSMIT)

DR = S TH CHANNELS)
DACK f&

EOP
INT

A\ 4

AA 4

PALB

ENLAN

iORD

82592 IOWR

PAL A

DATA BUS D0=15

290189-5

Figure 3. 82592 Embedded LAN Module Basic Architecture

1-160

19L-1

'SoieWaYydS 3NPOW NV PaPPoqW3 26528 " 2n614

sv
- . 82592
DATA 0-15 L comaseD
R1 CONTROLLER
. 4K 5v o
ADRS _0-15, A Eramr o0 0o :
- 1 19
A o PO o1 16
Az D2 10
a3 =z
A 4D 40 b3 z
A 31sp sQ D4 8
AS “lep e D5 b5 o
A6 7170 70 D6 D6 W
A7 g D7 D7 } |
8D 8Q @
e 08 <
oc D9 [F17 S
us
<
—J
[
74ALS573
A8 3 D
L AS 1 e D b ut 2 c
A10 7 lap 3aQ D RESET <
A 8 14 4Q D 42 cs1/E0Pe
£ 3 D 5Q 3 cs»
6D 6Q _ D5]
Al4 2l 70 D 28 pREQ1 -
AlS 8lgp 8a o7 27} pREQO INTRQ |41
e ; 1OWR= 2
1 R
L4 0C g ‘ 1ORD= DACK -
20L10 __20L10
A0 5 23 L 1 23
A 5 16
A 2 T4 21 MSEOPs
AS 7
X 19 IR0O10 B
y PALA PALB
AB 10WRs 1 17 DRQE
A 13 TORD+~ 16 DRQ7
i8] 22 ENLANG
17 RESET
AEN 2 13
Uz [U3 =
LATCH
DACK7»
DACKE™
)
IOWR=
™ ORD* IRZ INTEL DFG TECHNICAL MARKETING
™ RESET R ' 1900 PRAIRIE CITY RD FOLSOM CA 95630 |,
- <t TITLE
82592 EMBEDDED LAN MODULE
DRAWN DESIGNED BY FILE
gELr |PFG DESIGN ENGINEER ELMY
DATE _ 11-03-88 TSHEET 1 OF 1
8 7) I s | 4 I 3 2 T 1

290189-48

oce-dv

intel

AP-320

The two PALs (PAL A and B) provide two major junc-
tions for the module: (1) address decode (PAL A), and
(2) interpreting the TCI from the 82592 (PAL B). PAL
A decodes addresses for CS to the 82592, OE for the
address latches, and an Enable/Disable of the LAN
module. PAL B interprets the TCI of the 82592. When
PAL B detects EOP from the 82592 during recepnon of
a frame (EOP indicates the last byte of the receive
frame) it loads the memory address of the last byte of

the receive frame (the byte count) into the Address
Latch at the time it is written into memory. This allows
back-to-back frame reception without CPU interven-
tion, and will be covered in detail in Section 4.2. For
Auto-Retransmit on collision, PAL B passes the EOP
signal from the 82592 to the DMA controller, reinitial-
izing the DMA controller for retransmission. This pro-
cess will be discussed in more detail in Section 4.3. Both
sets of PAL equations are listed in Table 1.

Table 1. PAL Equations

PAL20L10 MMI—PAL A (Version 1.1)

AEN A2 RESET NC A0 IOWBAR A5 A6 A7 A8 A9 GND IORBAR 501LB Al 59CTS OE2BAR
OE1BAR LANRSTBAR NC NC ENLANBAR 592CSOBAR VCC ‘

IF (VCC) 501LB = 592CTS

IF (VCC) 592CSOBAR =

AEN o A9 » A8 @ A7 o Ag ¢ A5 @ A2 o AL o AQ o ENLANBAR

IF (VCC) OE2BAR = AEN ® A9 © A8 o A7 o AG ® A5 e A2 e Al AQ ¢ IORBAR ¢ ENLANBAR

IF (VCC) OELBAR = AEN ® A9 ® A8 ® A7 © Ag ® A5 o A2 e Al ¢ AQ ® IORBAR ® ENLANBAR

IF (VCC) LANRSTBAR =
ENLANBAR

IF (VCC) ENLANBAR =
® A0 e IOWBAR

PAL20L10 MMI—PAL B (Version 1.1)

AEN ® A9 @ A8 ® A7 ® A6 ® A5 o A2 o Al o AQ ® IOWBAR @

LANRSTBAR ® ENLANBAR + AEN © A9 @ A8 © A7 e AG © A5 e A2 e Al

592DRQ0 RESET DACK7BAR DACK6BAR 10RBAR 592DRQl 592EOPBAR ENLANBAR AEN NC
IOWBAR GND 592INT NC DRQGBAR DRQ7 DRQ6 DISDACK IRQLO NC MSEOPBAR LTCW

592DACKBAR VCC

IF (VCC) LTCW = IORBAR + S592EOPBAR + DACK7BAR

IF (ENLANBAR ¢ 592EOPBAR ® DACK6BAR) MSEOPBAR =

592EOPBAR ¢ DACK6BAR

IF (VCC) 592DACKBAR =

IF (VCC) DISDACK =

DACK6BAR ® DISDACK e ENLANBAR + DACK7BAR e ENLANBAR

IOWRBAR ® DISDACK °© RESET + 592DRQO ® DISDACK ¢ RESET

+ 592DRQO ® IOWRBAR ¢ RESET

IF (VCC) DRQ7 =
IF (VCC) DRQ6BAR =

IF (VCC) DRQ6 = DRQ6BAR

IF (ENLANBAR) IRQ1O0 =
NOTE:

592INT

592DRQl + 592EOPBAR e DACK7BAR

592DRQ0 ® RESET + DACK6BAR ® DRQEBAR ® RESET)

The suffix BAR added to the above signal names indicates an active low signal. A signal ll'l these equations with a line
drawn above it indicates this signal is to be in a low state for the equation.

1-162

intel

AP-320

4.2 Back-to-Back Frame Reception

The architecture of the 82592 Embedded LAN Module
allows it to receive back-to-back frames without CPU
intervention. It uses a contiguous Receive Frame Area
(RFA) buffer in host system memory where receive
frames can be continuously stored. This sequential stor-
age of receive frames can continue until the buffer space
is exhausted. The size of the RFA buffer can be speci-
fied by the programmer. Its size will be programmed as
the byte count of the Rx DMA channel. The Base Ad-
dress Register contents of that channel serve as the
start address of the RFA buffer. The receive frames will
be stored sequentially in the RFA buffer based on the
contents of the Current Address Register of the Rx
DMA channel. The module’s architecture, and the
82592 receive frame memory structure, allows the CPU
to recover the addresses of each Receive frame in mem-
ory for processing. The CPU can also reinitialize the
RFA buffer (by reinitializing the Rx DMA channel) as
the RFA buffer fills up and its contents are processed.
Alternatively, configuring the Rx DMA channel to
Auto-Initialize mode will allow the Rx buffer to auto-
matically wrap around, back to the beginning of the
buffer, when its end is reached. This creates a virtual
“endless” circular buffer. When using this approach,
care must be taken to avoid writing over unprocessed
Rx frames—either by the addition of a hardware Stop
Register, or by guaranteeing that the Rx frames can be
processed faster than the buffer can wrap around.

Back-to-back frame reception without CPU interven-
tion—and eventual recovery of the frames for process-
ing by the CPU—is based on PAL B’s decoding of the

15 14 13 12 11 10 9 8

TCI signals of the 82592 (PAL B loads the address
latch with the address of the last byte of the received
frame) and the structure of the received frame trans-
ferred from the 82592 to memory. Figure 5 shows the
format of an 82592 receive frame in TCI mode. After
the information fields are written to memory, the Status
and byte count of the received frame are appended to
the frame in memory. These four bytes (two bytes of
Status and two bytes of byte count) are the last four
bytes of the receive frame written to memory. The high
byte of the byte count is the last byte transferred from
the 82592 to memory. As this last byte is transferred to
memory, the 82592 asserts the EOP signal. When PAL
B detects the assertion of EOP by the 82592, it loads
the address of the last byte of the receive frame into the
Address Latch as this byte is written into memory. This
action ensures that there will always be a pointer (the
contents of the Address Latch) to the byte count of the
last frame stored in the RFA buffer in system memory.
Based on the value of the byte count, the beginning
address of the receive frame in memory can be calculat-
ed; i.e., Byte Count Address Pointer — Byte Count =
Beginning of Frame. The byte count of a previous re-
ceive frame would reside one address location before
the first byte of the current receive frame. That frame,
and any additional receive frames that may have pre-
ceded it, can have their start addresses recovered by the
same calculation used to recover the last frame re-
ceived. This process allows frames to be continually
stored in the RFA buffer without CPU intervention,
and to be recovered by the CPU for processing. Figure
6 illustrates the process of back-to-back frame recep-
tion.

6 5 4 3 2 1 0

DESTINATION ADDRESS SECOND BYTE

DESTINATION ADDRESS FIRST BYTE

| T T T T 1

DESTINATION ADDRESS LAST BYTE

SOURCE ADDRESS SECOND BYTE

SOURCE ADDRESS FIRST BYTE

SOURCE ADDRESS LAST BYTE

INFORMATION (LENGTH FIELD, HIGH)

INFORMATION (LENGTH FIELD, LOW)

INFORMATION LAST BYTE
CRCBYTE 1* CRCBYTE 0*
CRCBYTE 3* CRCBYTE 2*
SHORT | NO TOO NO NO ADD I-A Rx
X X . X X X X X x FRAME | EOF | LONG ! SFD MATCH | MATCH | CLD
Rx LEN CRC ALG OVER
X x X X X X X ‘X 0 OK ERR | ERROR | ERROR 0 RUN
X X X X X X X X BYTE COUNT LOW
X X X X X X X X BYTE COUNT HIGH

*The CRC bytes are transferred to memory only when the device is so configured
Figure 5. Receive Format for the 82592 in 16-Bit Mode (Tightly Coupled Interface Enabled)
1-163

L]
Inte[AP-320
Example No. 1 Example No. 2 Example No. 3
First Frame Second Frame nth Frame
Received Received Received
In Host Memory |. In Host Memory In Host Memory
Frame 1 Frame 1 Frame 1
" Status Status Status
[totch }—> Byte Count Byte Count Byte Count
Additional
Remainder of Frame 2 RCV Frames
RFA Buffer
290189-6 Status Frame n
W Byte Count
Status
Remainder of IMT‘———-P Byte Count
RFA Buffer
Remﬁlnder of -
290189-7 RFA Buffer
290189-8
NOTES: }
The 82592 appends the byte count to the end of each RCV frame.
PAL ‘B’ loads the latch with the memory address of the last byte of each RCV frame.
Based on latch contents and the byte count of each frame, the CPU recovers the RCV frames.

Figure 6. Back-to-Back Frame Reception

4.3 Automatic Retransmission on
Collision

Automatic retransmission on collision detection is ac-
complished by the TCI between the 82592 and the host
8237 DMA controller and requires no CPU interven-
tion. The transmit channel of the 8237 should be con-
figured for Auto-Initialize mode. The transmit block
(data to be transmitted) starts at the location pointed to
by the Base Address Register of the Tx DMA channel.
During a Transmit command, the 82592 DMA re-
quests begin at the start of the transmit block and work
sequentially through the block (by incrementing the
contents of the 8237’s Current Address Register) until
the transmission is complete. Should a collision occur,
the 82592 asserts the EOP signal and DRQ* to the
8237 (these signals pass through PAL B) causing the
8237 to auto-initialize back .to the beginning of the
transmit block (the Current Address Register is loaded
with the value in the Base ‘Address Register). Internal-

ly, the 82592 generates a Retransmit commarnd and be-
gins making DMA requests to the 8237, which is now
pointing to the beginning of the transmit block. The
82592 also enters into a back-off algorithm (counting to
a random number to resolve the collision). When the
back-off algorithm is complete, and the 82592 regains
access to the serial link, retransmission is attempted.
The 82592 will repeat this process until the retransmis-
sion is completed successfully or until the maximum
allowable number of collisions per Transmit command
is reached—at that point all retransmit attempts stop.
No CPU involvement is required to carry out a retrans-
mission. The process of automatic retransmission is
shown in Figure 7.

NOTE:
*For Auto-Initialization of the 8237, the signal DRQ
must be asserted to'the 8237 along with assertion of
EOP. With the 82380 and 82370 DMA controllers,
Auto-Initialization can be triggered by asserting the
EOP signal alone.

1-164

AP-320

Prior to Transmission
BAR = CAR

Transmit DMA Channel In
Auto-Initialize Mode

During Transmission
CAR Increments

Collision:

82592 EOP Asserted to 8237
CAR Reset to BAR

(by 8237's Auto-Initialize)

BAR = Base Address Register
CAR = Current Address Register

BAR/CAR — BAR — BAR/CAR —
Transmit Transmit Transmit
Bufferin CAR — Buffer in Buffer in
System System System
Memory Memory Memory
After Back Off the 82592

Retransmits from Beginning of
Transmit Buffer.

No CPU Intervention is
Required for Retransmission

Figure 7. Automatic Retransmission on Collision

4.4 Target Systems for Integration

The 82592 Embedded LAN Module is designed to be
implemented on an Intel SYP301 motherboard; thereby
demonstrating a low-cost LAN connection for a work-
station. The SYP301 has an IBM PC AT style bus ar-
chitecture with a 32-bit Intel 80386 as the main proces-
sor. The interface between the 82592 LAN Module and
the SYP301 is based on standard interface signals
(DRQ, DACK, EOP, IRQ, IOR, IOW, etc.) so the
basic architecture of the module can be implemented on
PC AT based systems. This design has been successful-
ly tested in PC AT style systems produced by several
manufacturers. For some PC AT based systems, and
PS/2 Micro Channel systems, the module’s design may
require some modification. IBM PC and PC XT based
systems do not have sufficient DMA bandwidth to sup-
port the non-buffered architecture of this module.

4.4.1 PC AT BASED DESIGNS

High-integration chip sets replace a large number of
discrete, VLSI, LSI, and TTL components with several
integrated VLSI devices that duplicaté a large portion
of the PC’s functionality. PC AT compatible systems
using such chip sets may lack support for the automatic
retransmission feature of the 82592 LAN Module. This
is because many manufacturers of such chip sets have
integrated the EOP function but eliminated the EOP
input. This lack of an EOP input disables auto-initiali-
zation of the DMA controller for retransmission. In

this case retransmission can be performed in one of two
ways.

e Should a collision occur while transmitting the pre-
amble, the 82592 (when configured to automatic re-
transmission mode) will automatically retransmit
without CPU intervention or auto-initialization of
the DMA. This is effective for shorter network to-
pologies where collisions are normally detected ear-
ly in the frame.

® Should a collision occur after the preamble, the
82592 will interrupt the CPU and the CPU will ini-
tiate the retransmission.

For a PC AT style architecture, logic must be imple-
mented to accommodate DRAM refresh. DRAM re-
fresh cycles typically occur at 15 ps intervals. In a stan-
dard PC AT, any DMA user should limit the time of a
DMA burst to 15 us; this is to ensure that the system
bus is free for the refresh to take place. Any designer
using burst mode DMA must consider this requirement
when implementing a design.

4.4.2 PS/2 MICRO CHANNEL ARCHITECTURE
DESIGNS |

The IBM PS/2 and other compatibles using the Micro
Channel architecture have a different host interface to
the 82592 Embedded LAN Module; however, the basic
architecture of the module is still applicable. As in the
SYP301 solution, the TCI between the 82592 and a

1-165

intel

AP-320

control PAL loads the address latch with a pointer to

the last receive frame. Based on the contents of the

latch and the 82592 receive memory structure, the
frames are recovered for processing by the CPU. The
differences between a PC AT architecture and a Micro
Channel architecture require different control signal
decoding. The Micro Channel requires a 24-bit address
latch, as opposed to a 16-bit latch in the 301, and to
acquire the system DMA it requires different arbitra-
tion logic to drive a 4-bit arbitration level on the Micro
Channel. The Micro Channel also does not have an
EOP input; therefore, auto-initialization of the Tx
DMA channel and support of automatic retransmission
without CPU intervention must be provided by using
one of the alternative methods recommended in the
previous section.

4.4.3 EMBEDDED CONTROL DESIGNS

The 82592 Embedded LAN Module architecture can
also be applied to an embedded control application that
contains some DMA functions. For an embedded appli-
cation using an 8237, 82380 or 82370 DMA controller,
the basic architecture of the 82592 Embedded LAN
Module can be used. For an interface to DMA devices
that do not feature the EOP signal 'as an input (for
example, DMA units on board a CPU), the alternative
methods for retransmission given earlier can be used.

5.0 SERIAL INTERFACE MODULE

The serial interface for the Intel SYP301 82592 Embed-
ded LAN Module is implemented as a separate module.
Since the 82592 Embedded LAN Module is intended to
be integrated into a system motherboard, implementing
the serial interface as a separate module—perhaps as a
very small PC board that plugs into a socket—allows
for easy interchangeability between different serial in-
terface media. This modularity allows the system board

- manufacturer to avoid committing his motherboard to

only one type of medium, and thus requiring a major
redesign for each different serial interface.

Modularity in the data communications field is encour-
aged by the Open Systems Interconnect (OSI) reference
model. The 82592 is designed to operate through the
lower half of the Data Link Layer (see Figure 8), imple-
menting CSMA/CD Medium Access Control and in-
terfacing directly with the Physical layer below it. By
interfacing the 82592’s standard CSMA/CD interface
signals_to a serial module (TxD, RxD, TxC, RxC,
CDT, CRS, and others) different Physical Link mod-
ules can be implemented without any change to soft-
ware. Examples of serial interface modules that could

" be interchanged by simply plugging a new module into
the motherboard are Ethernet/Cheapernet, Twisted
Pair Ethernet (TPE), StarLAN, Broadband Ethernet,
and many proprietary CSMA serial media. Figure 9
shows the schematics of an Ethernet module; and Fig-
ure 10 those of an Ethernet/Cheapernet module.

ost .
Reference Model Layers

Application

Presentation ‘ ,

Session .)

Network P i

7
6
5
4 Transport 4
3
2

Data Link Pid
1 Physical

LLC
Logical Link Control

Medium Access Control

MAC

——
W13
26628

PLS
Physical Signaling

—_—
o|npon
Bojpuy

©Dj18}u|
|oues

200189-10

Figure 8. The 82592 Embedded LAN Module Relationship to the OSI Reference Model

1-166

91|
ajnpow 6ojeuy jaulayil "6 ainby4

G s 3
Ry
20 PF _]_, Y1
c— 1
Te 20.0MHZ RS
. ;\ Y 100K
1N4148
Ve 20 PF 1 ”7 2
CR1 _]l c3 .
82C501 1.0uF TR 1 c
SERIAL R T <] Eo
INTERFACE 240 <L ! TRMT= 0| T N
3
R2 H
1[c1 2 RCV 5 E N
—2jc2 TRMT 19 240 8 E
__ RISs 15 [TEN= TRMT+ 18 RCV= 12| R c
= TXD 7 |TxD RCY 4 11| N
 TXCw 16 |TxC# RCV*[5 CP 2 E T
= RXD 9 |RxD CcLsN 12] 14 0
= RXCe B |RxC* CLSN#{ 11 CP= 9 T R
= CDT= 7]cDT* x2[13 JR3 +12V 13
~_ CRS= 6 |CRS* X1 {14 N
= 3|LPBK= 20 78 —1 2 NE]
R4
T3 1 o~ 2 22uF <L
+12V
Y
1¢5 1 c6
0.1uF ~~0.1uF
2 2

290189-46

0ze-dv

894-F
ainpoyy Bojeuy jauiadeays/iauteys3 ‘ot eanbi4

2VA12U10-5
12vDe 1 17
37| 23
3 22 SAVDC
4] 21 1 c15
' c11 5| 20
L o o1uF6 oe/me P T 0-01wF
F -01F—1 o/l 5 sAVDC
.g CONVERTER
'] =
TRMTs, 11 = 10AVDC
12 LN
1R8 ; TRMT
7R'1’2 1 ci8 1 c19 ' c20
svoc 1 2 RCV . FR0.01uF TN.22uF R .22uF
43. 2 2 2
2002 Reved 47 = Ty2
43.2 =
R10
cP R
Lan2 08 22 82502
43.2 243 16| 1N4148 1N4148
RO, e _502BUS TRMT 7| TRANSCIEVER|1: » ., 2
43.2 TRMT+ 3 | . e oR3 cR2 i
RCV : e R21
7 RCVe 10
197 2 - . 2
v [_CPw [11 1
20 PF 1yt svoc cP)] svDC
= 12vDC
Te 20.0MHZ \
P R22 u13 —
1\ 1N4148 £ 100K =
20 PF iy 2
CR4 I c22 JUMPER BLK
T~ 1.0uF E6
2 3] E
2z 417 C
240 10
82C501 _ R2 s]H O
_1fer - 1 2 PE64102 S|E N
“2jc2 TRMT 19 | 240 2 R N
TENs 15 [TENe TRMT« 18 2_ENl 12
TXD_17|TxD RCY 4 PULSE 4 0 1| N
TXCe 16 |TxCe RCVe E 2| E
RXD _ 9|RxD CLSN 12 0} TRANSFORMER[7 _E8 4] T
RXCs__8|RxCs CLSN4 g AR)
CDTe__7/CDT» X2 [13 | LR3I 4] EN I 12vDC 13
CRS+_6|CRSe X114 KR I G36 -
_3|LPBKe SERIAL [20 7‘; . S} A a1
INTERFAC ' 2 U3 220F &
vz 78
Tce v Cc23N
0.1uF AN0.1uF
2 2

290189-47

ozce-dv

|ntef | AP-320

6.6 PERFORMANCE COMPARISON

Figure 11 compares the performance of the 82592 Em-
bedded LAN Module with the PC586E nonintelligent,
buffered adapter. The PC586E is an Intel evaluation
board based on the Intel 82586 LAN Coprocessor. It
contains 16 kB of local memory, has a 16-bit bus inter-
face, and has a high-performance arbitration scheme
providing both the CPU and the 82586 LAN controller
zero wait state access to local memory. The PC586 has
been characterized in the industry as one of the highest
performance nonintelligent, buffered adapters available.

A performance comparison, using Novell’s Perform 2
utility, shows that the 82592 Embedded LAN Module,
operating as a workstation accessing a file server, out-
performs the PCS86E. For all tests the host system was
an Intel SYP301. The SYP30! was run in both stan-
dard mode, a nominal 16 MHz*, and in its reduced
speed mode, 6 MHz. In all cases the SYP301 system
DMA operates at 4 clocks per cycle at 4 MHz. The file
server was a Novell 286A, an 8 MHz, zero wait state
system, using a PC586E as the LAN adapter. The tests
recorded are for one node on the network (the worksta-

. tion under test). For write tests to the file server’s hard
disk, the performance numbers are generally the same.
This is due to limitations in accessing the file server’s
hard disk. This slow access causes a bottleneck. For the
read tests the workstations are accessing files stored in
cache memory, thus removing the bottleneck for this
test. Without this limitation, the 82592 Embedded
LAN Module accesses the file server at a higher rate
than the PCS586E: at full speed, 318 kB/s vs
282.3 kB/s; and at reduced speed, 202.8 kB/s vs
195.2 kB/s.

7.0 SOFTWARE EXAMPLES

The following examples are from a driver written for an
82592 Embedded LAN Module operating in an Intel
SYP301. The driver was written by Joe Dragony, Intel
Data Communications Technical Marketing Engineer.
The excerpts will cover (1) declarations of program
constants and variables, (2) initializing the Embedded
LAN Module hardware and buffer space, (3) assembly
and transmission of a frame, and (4) processing re-
ceived frames. A brief description of each of these pro-
cesses is followed by excerpts from the code. The driver
uses the Xerox Internetwork Packet Exchange (IPX)
protocol and serves as a software interface between the
82592 Embedded LAN Module hardware and the IPX.

Exerciser Software for the 82592 Embedded LAN
Module is also available from Intel. Detailed documen-
tation for both the exerciser program and the network
driver are available upon request from Intel.

7.1 Declarations

Table 2 shows declarations of program variables and
equates of program constants. This section is included
to help the reader understand the following program
excerpts. :

. *NOTE:
The benchmark program Landmark CPU Speed Test,
© 1986 by Landmark Software, shows an effective
throughput of 14.3 MHz for a SYP301 in standard
mode; and 5.4 MHz in reduced speed mode. ’

00AAAA
RSRIRHRXARIRK

Standard

82592 SYP301
Embeded
LAN Module

Write
Standard
Read

Reduced
Write

PC586E

u
B

Reduced
Read

NOTES:
Novell Perform 2 Version 2.3

Node System: SYP301 (One Node on Network)
Reduced Speed Mode: Equivalent to 5.4 MHz AT
Standard Mode: Equivalent to 14.3 MHz AT

301 System DMA: 4 MHz, Four Clocks per Transfer

Kilobytes per Second

File Server: 286A. 8 MHz, Zero-Wait-State with PC586E LAN Adapter

1%
350

290189-11

Figure 11. 82592 SYP301 Embedded LAN Module vs PC586E Buffered Adapter
1-169

nte[AP-320

Table 2. Declarations

$%*define (slow) local label (
Jmp short %label

$label:

) .

$*define (fastcopy) local label (
shr cx, 1
rep MOvsSw .
jnc %$label '
~ movsb
%label:
)

$*define (inc32 m) (
add word ptr $m[0], 1
adc word ptr $m[2], O
name LANOnMotherboardModule
CGroup group Code, mombo_init
assume cs: CGroup, ds: CGroup
Code segment word public ‘CODE’
public DriverSendPacket
public DriverBroadcastPacket
public DriverPoll

public LANOptionName

extrn IPXGetECB: NEAR

extrn IPXReturnECB: NEAR

extrn IPXReceivePacket: NEAR

extrn IPXReceivePacketEnabled: NEAR
extrn IPXHoldEvent: NEAR

extrn IPXServiceEvents: NEAR

extrn IPXIntervalMarker: word
extrn MaxPhysPacketSize: word
extrn ReadWriteCycles: byte

extrn IPXStartCriticalSection: NEAR
extrn . IPXEndCriticalSection: NEAR

290189-16

1-170

AP-320

Table 2. Declarations (Continued)

IR REE R R R RN

CR

LF

BAD

BPORT

IRQLOC

DMAOLOC

DMA6LOC
TransmitHardwareFailure
PacketUnDeliverable
PacketOverflow
ECBProcessing
TxTimeOutTicks

; Latch definitions
TenCentLo equ 301h
TenCentHi equ 302h

: Enables for l0cent
EnLAN equ 303h
DisLAN equ 304h

; 8259 dafinitions

InterruptControlPort
InterruptMaskPort

equ O0Dh
equ 0OAh
equ OFFh

equ 19
equ 23
equ 25
equ OFFh
aequ OFEh
equ OFDh
equ OFAh
equ 20

equ
equ

ExtralInterruptControlPort equ

EOI
; 8237 definitions

DMAcmdstat equ O0DOh

DMAreq equ 0D2h
DMAsnglmsk equ 0D4h
DMAmode equ O0D6h
DMAEE aqu 0D8h
DMAtmpclr equ 0DAh
DMAclrmsk equ ODCh
DMAallmsk equ ODEh
DMA6page equ 08%h
DMA6addr equ 0C8h
DMA6wdcount equ 0ChAh
DMA7page equ 08Ah
DMA7addr equ 0CCh
DMA7wdcount equ OCEh
DMAtx6 equ 0lAh
DMAtx7 aequ 01Bh
DMArx6 equ 006h
DMArx7 equ 007h
DMA6msk equ 006h
DMA6unmsk aqu 002h
DMA7msk equ 007h
DMA7unmsk equ 003h
DMAena equ Oh

equ

020n
O0Alh
0AOh
020h

;for secondary 8259A

;demand mode, autoinit, read transfer
;demand mode, autoinit, read transfer
;demand mode, no autoinit, write transfer
;demand mode, no autoinit, write transfer

290189-17

1-171

ntel AP-320

Table 2. Declarations (Continued)

NetWareType equ 1l111h

; 82592 Commands

C_NoP equ 00h
C_swrl equ 10h
C_SELRST ‘equ OFh
C_SwWeP0 equ Olh
C_IASET equ 0lh .
C_CONFIG equ 02h
C_MCSET equ 03h
C_TX equ 04h
C_TDR equ O05h
C_DbumMp equ 16h
C_DIAG equ 07h
C_RXENB equ 18h
C_ALTBUF equ O0Sh
C_RXDISB equ 1lah
C_STPRX equ 1Bh
C_RETX equ O0Ch
C_ABORT equ ODh
C_RST equ OEh
C_RLSPTR equ OFh
C_FIXPTR equ 1Fh
C_INTACK equ 80h

FRiiiiiiiiiiiiiiiiiiiiiiiiiiid

; Data Structures

Fiiiiiiiiiiiiiiiiiiiiiiiiiiiii

even

hardware_structure struc
io_addrl dw
io_rangel aw -~
io_addr2 dw
decode_range2 dw
mem_addrl dw
mem_rangel dw
mem_addr2 dw
mem_range2 , dw
int_usedl
int_linel
int_used2
int_line2
dma_usedl
dma_chanl
dma_used2
dma_chan2

hardware_structure ends

10 0 D D D D D) D) D e D D D

§EEEEERE

ecb_structure struc’
link dd
esr_address dd
in_use db
completion_code db

ocoocoo

290189-18

1-172 ‘

nte[AP-320

Table 2. Declarations (Continued)

socket_number
ipx_workspace
driver_workspace
immediate address
fragment_count
fragment_descriptor_list db
ecb_structure ends

dup (0)
dup (0)
dup (0)

BEE

Q

¢k

OaHOAR&O
N

dup (?)

fragment_descriptor struc
fragment_address dd ?
fragment_length dw ?

fragment_descriptor ends

rx _buf_ structure struc
rx_dest_addr db
rx_source_addr db
rx_physical length dw
rx_checksum dw
rx_length dw
rx_tran_control
rx_hdr_type
rx_dest_net
rx_dest_node
rx_dest_socket
rx_source net
rx_source_node
rx_source_socket

rx_buf_structure ends

dup (?)
dup (?)

dup (?)
dup (?)

dup (?)
dup (?)

WO BB

¢EEEEEEE

tci_status struc
status0
deadl
statusl
dead2
be_lo
dead3
bc_hi

tci_status ends

EEEEEEE

ipx header_structure struc
checksum dw
packet_length dw
transport_control db
packet_type db
destination network db
destination_node db
destination_socket dw
source_network db
source_node db
source_socket dw

ipx_header_structure ends

dup (?)
dup (?)

dup (?)
dup (?)

WO I B D W

FIIiTIiiiiiiiiiiiiiiiiiig

; Variables

IR R RN R R R R R RN

even
290189-19

1-173

ntel AP-320

Table 2. Declarations (Continued)

tx_start_time dw 0
adapter_io dw ?
config dw ?
send_list - dd 0 ;points to list of ECBs to be sent
buffer_segment dw *?
rx_ecb dd 2
tx_ecb dd 2

config block db
OFh, 00h, 48h, 80h,26h, 00h, 60h, 00h, 0F2h, 00h, 00h, 40h, OFSh, 00h, 3Fh, 87h, 0OFOh, ODFh

temp_flag db 0

int_mask_register dw ?

old _irqg vector dd ?

int_vector_addr dw ?

int_bit db ?

int_mask db ?

command_reg dw 300n ;82592 port 0 address
read_in_length dw ?

config_dmal_loc db ?

config_dmal_loc db ?

config_irq loec db ?

config bport dw ?

tx_active flag db 0

frame_status db 0

statusl0 db 0

statusll db 0

status20 db 0

status2l db 0

even

gp_buf dw 5000 dup (0) ;twice the required size
gp_length dw 1388h .

gp_buf_offset dw cgroup:gp_buf

gp_offset_adjust dw 0

gp_buf_start dw 0 ;Al-Al6 of General Purpose Buffer EA
gp_buf_page aw 0 ;Al7-A23 of General Purpose Buffer EA
tx_byte cnt dw 0 ;IPX packet length plus header length
rx_buf_start dw 0 ;Al-Al6 of General Purpose Buffer EA
rx_buf_page dw 0 ;Al7-A23 of General Purpose Buffer EA
rx buf head dw 0 ;current rx head, buffer has been flushed to
here

rx_buf_tail dw 0 ;value read from 10 cent latches
rx_buf_ptr dw 0 ;used during rx list generation
rx_buf_stop dw 0 ;point to reset the DMA controller
rx_buf_length dw 0

rx_buf_segment dw 0 ;calculated at init for use by IPXReceivePacket
curr_rx_length dw 0 . .
rx list dw 180 dup (0)

num_of_frames dw 0

reset_rx buf ~dw 0

padding dw 0

H Define Hardware Configuration

290189-20

1-174

nter AP-320

Table 2. Declarations (Continued)

ConfigurationlID db ’NetWareDriverLAN WS

SbriverConfiguration LABEL byte

reservedl db 4 dup (0)

node_addr db 6 dup (0)

reserved2 db 0 ;non-zero means is a real driver.
node_addr_type db 0 ;address is determined at initialization
max_data_size dw 1024 ;largest read data request will handle

(512, 1024, 2048, 4096)

lan_desc_offset dw LANOptionName
lan_hardware_id db 0AAh ;Bogus Type Code
transport_time dw 1 ;transport time
reserved_3 db 11 dup (0) -
major version db 01h ;Bogus version number
minor_version db 00h
£lag_bits db 0
selected configuration db 0 ;board configuration (interrupts, IO
addresses, etc.)
number of_configs db 01
config_pointers dw configuration0
LANOptionName db fIntel LAN-On-Motherboard Module’,0,’$’
configuration0 dw 300h, 16, 0, © ;10 ports and ranges
db 0
dw 0, 0
db 0
dw 0,0 ;memory decode
db OFFh, 10, 0, O ;interrupt level 10
db OFFh, 6, OFFh, 7 ;DMA channels 6 and 7
db 0,0
db IRQ 10, IO Addr = 300h, DMA 6 and 7, For Evaluation Only’, 0

SREARKKKARKRRKIRIIRIRKIRRIARKIRRKRRKKKRRRARR KRR KRR KRR KA KK
i

; Error Counters

H
TRARRKRRRKRKRKRKRRRKRKRKRRRRARIRKAKKRKAARA AR KRR IR KR AR IARK
Public DriverDiagnosticTable,DriverDiagnosticText

DriverDiagnosticTable LABEL byte

DriverDebugCount dw DriverDebugEnd-DriverDiagnosticTable
DriverVersion db 01,00
StatisticsVersion db 01,00

' TotalTxPacketCount dw 0,0
TotalRxPacketCount dw 0,0
NoECBAvailableCount dw 0
PacketTxTooBigCount dw -1 ;not used
PacketTxTooSmallCount dw -1 ;not used
PacketRxOverflowCount dw 0 .
PacketRxTooBigCount dw 0
PacketRxTooSmallCount dw 0
PacketTxMiscErrorCount dw -1 * ;not used
PacketRxMiscEr: Count dw -1 ;not used
RetryTxCount dw 0
ChecksumExroxCount dw -1 ;not used

290189-21

1-175

ntel

AP-320

Table 2. Declarations (Continued)

HardwareRxMismatchCount dw
NumbexrOfCustomVariables dw

DriverDebugEndl LABEL byte

0

(DriverDiagnosticText-DriverDebugEndl) /2

FRRFRRIIIENIiiiiiiid i iiiiiiiiiiiiyd

rx_errors dw 0
underruns dw 0
no_cts dw 0
no_crs dw 0
rx_aborts daw 0
no_590_int dw 0
false_590_int dw 0
lost_rx dw 0
stop_tx dw 0
ten_cent_latch_crash dw 0
rx _disb_failure dw 0
tx_abort_failure dw 0
rx_buff ovflw dw 0
tx_timeout dw 0
DriverDiagnosticText LABEL byte
db 'RxErrorxCount’, 0
db ! UnderrunCount’, 0
db ! LostCTSCount’, 0
db ! LostCRSCount’, 0
db ’ RxAbortCount’ , 0
db No590InterruptCount’, 0
db ‘False590InterruptCount’, 0
db ! LostOurReceiverCount’, 0
db ’QuitTransmittingCount’,0
db ! TencentLatchCrashCount’, 0
db ’RxDisableFailureCount’, 0
db ! TxWontAbort’, 0
db ‘ReceiveBufferOverflow’, 0
db ! TxTimeoutErrorCount’, 0
db 0,0

DriverDebugEnd LABEL worxd

N

290189-22

1-176

intel

AP-320

7.2 Initialization Routine

This routine, Driver Initialize, initializes the Embedded
LAN Module hardware and the system hardware need-
ed to support the module. It also sets up the system
memory structure to support the module.

\

7.2.1 HARDWARE INITIALIZATION AND 82592
CONFIGURATION

Initialization of the Embedded LAN Module hardware
begins with generating an individual address for the sta-
tion, initializing the interrupt line and interrupt vector,
and enabling the module by writing to port address
303h. After initializing the memory structure, the
82592 is directly programmed. This programming in-
cludes configuring the 82592 and initializing it with the
station’s individual address. The 82592 is configured in
two steps. The first specifies a 16-bit-wide system bus
interface by issuing a Configure command to the 82592,

with 00h as the byte count; i.e., no parameters passed to
the device. Then a second Configure command is is-
sued; it does the following.

® The 82592 is put in High Speed Mode to support
Ethernet serial bit rates.

® It is placed in TCI mode for interface to the Embed-
ded LAN Module architecture.

® All network parameters (e.g., Frame Length, Slot
Time, and Preamble Length) are set up for default
Ethernet values.

Following this initialization and configuration of the
module’s hardware, the 8259A Programmable Inter-
rupt Controller’s-interrupt line for the module is en-
abled, allowing the interrupt-driven events frame recep-
tion and completed transmission. Then a Receive En-
able command is issued to the 82592. Table 3 contains
the code for hardware initialization.

Table 3. Hardware Initialization

mombo_init segment ‘CODE’

public DriverInitialize, DriverUnHook
no_card message
config_failure message
iaset_failure message
ConfigDataUnderrunMess

Driver Initialize

; assumes:

; DS, ES are set to CGroup (== CS)

H DI points to where to stuff node address
; Interxrupts are ENABLED

entire AES system is initialized.

returns: .
H If initialization is done OK:
; AX has a 0
I If board malfunction:
;

DriverInitialize PROC NEAR
mov MaxPhysPacketSize, 1024
cli
cld
mov ax, cs
mov ds, ax
mov es, ax

H get DOS time and use for address.
mov ah, 02Ch
int 21h
mov bx, OFFSET CGroup: node_addr
mov byte ptr cgroup: [bx), 00h

" mov byte ptr cgroup:[bx+1], OAAh

mov byte ptr cgroup:[bx+2], ch
mov byte ptr cgroup: [bx+3], dl
mov byte ptr cgroup:[bx+4], dh
mov byte ptr cgroup: [bx+5], 7Eh
mov si, bx

mMmovsSw
mMOovVsSwW
sti

; initialize the configuration table

mov al,selected_configuration
cbw
shl ax,1 ; multiply by two

add ax, OFFSET CGROUP:config pointers

db CR,LF,’No adapter installed in PC$’
db CR,LF,’Configuration Failure$’

db CR,LF,’IA Setup Failure$’

db CR,LF,’'Configuration underrun$’

The Real Time Ticks variable is being set, and the

AX gets offset (in CGroup) of '$’-terminated error string

movsw ’ ;stuff address at point IPX indicated

;ax contains the offset value

290189-23

1-177

nte[AP-320

Table 3. Hardware Initialization (Continued)

mov bx,ax ' ;of the default configuration
mov bx, [bx] . ilist
mov Config, bx

mov al, [bx+DMAOLOC]

mov config_dmal_loc,al

mov al, [bx+DMA6LOC]

mov config_dmal_loc,al

mov al, [bx+IRQLOC]

mov config_irq loc,al

mov ax, [bx+BPORT]

mov command_reg, 300h

SetTheInterruptVector:
; SET UP THE INTERRUPT VECTORS
push di
mov al, config_irq_loc
mov bx, OFFSET CGroup: DriverISR
call SetInterruptVector
dai

pop

mov dx, EnLAN .

out dx, al ;enable LAN on MB module
$slow

mov dx, command_reg

mov al, C _RST

out dx, al : reset the 82592 controller

;generate 20 bit address for DMA controller from configure block location
ithis is ry to date the page register used in the PC DMA

call set_up buffers \

;set up DMA channel for configure command

xox ax, ax
out DMAff, al ;data is don't care
$slow

mov al, DMAena
out DMAcrdstat, al

mov ax, gp_buf_ start
$slow
out DMA6addr, al
mov al, ah
$slow

out DMA6addr, al
mov ax, gp_buf_page

$slow
out DMA6page, al - ;DMA page value
mov ax, 1 !
%slow
out DMA6wdcount, al ;make two transfers
mov al, ah
%slow
© out DMAéwdcount, al
mov al, DMAtx6 ;setup channel 6 for tx mode
sslow
out DMAmode, al
mov . al, DMA6unmsk

200189-24

1-178

AP-320

Table 3. Hardware Initialization (Continued)

$slow
out DMAsnglmsk, al
xor ax, ax
the
mov di, gp_buf offset ;mov zerces into the byte count field of the
stosw ;buffer to put the 82592 into 16 bit mode
stosw
$slow
mov dx, command_reg
mov al, C_CONFIG . ;configure tha 82592 for 16 bit mode
out dx, al ;issue configure command
¥slow
wide_mode_wait_loop:
xor al, al
$slow
out dx, al ;jpoint to register 0
$slow
in al, dx ;read registexr 0
and al,ODFh ;disregard exec bit
cmp al, 82h ; is configure finished?
jz do_config
loop wide_mode_wait_loop
mov ax, OFFSET CGroup: no_card message
jmp init_exit
do_config:
mov al, C_INTACK
out dx, al ;clear interrupt
xor ax, ax
$3low
out DMAff, al ;data is don’t care
mov ax, gp_buf_start
%slow
out DMA6addr, al
mov al, ah
$slow
out DMA6addr, al
mov ax, gp_buf_ page
$slow
out DMA6paga, al ;DMA page value
gslow
mov al, DMAtx6 ;setup channel 1 for tx mode
out DMAmode, al
$slow
mov ax, 8
out DMA6wdcount, al
$slow
mov al, ah
out DMA6wdcount, al
%slow
mov al, DMA6unmsk
out DMAsnglmsk, al
mov ax, ds
mov es, ax
mov si, offset cgroup:config_block
mov di, gp_buf_ offset

290189-25

1-179

el

AP-320

Table 3. Hardware Initialization (Continued)

mov
rep movsb
mov
mov
out
$slow
xor

cx, 18

dx, command reg

al, C_CONFIG ; configure the 82592
dx, al
cx, cx

config_wait_loop:

%slow
xorx
%slow
out
$slow
in
and
. cmp
jz
loop
mov
jmp

al, al
dx, al ;point to register 0
al, dx ;read register 0
al, ODFh ;discard extraneous bits
al, 82h ; is configure finished?

config done
config wait_loop
ax, OFFSET CGroup: config_ failure message
init_exit

config_done:
; clear interrupt caused by configuration

mov
out

al, C_INTACK
dx, al

; do an IA_setup

mov
mov
stosb
mov
stosb
mov
mov
rep movsb
out
$slow
mov
out
mov
$slow
out
mov
¥slow
out
$slow
mov
out
%slow
mov
out
$slow
mov

di, gp_buf_offset
al, 06h ;address byte count

al, 00h

8i, OFFSET CGROUP:node_addr
cx, SIZE node_addr

DMAfE, al ;data is don’t care
ax, gp_buf_start

DMA6addr, al

al, ah

DMA6addr, al
ax, gp_buf page

DMA6page, al ;DMA page value

al, DMAtxé ;setup channel 1 for tx mode
DMAmode, al

ax, 3
DMA6wdcount, al

al, ah
DMA6wdcount, al

al, DMA6unmsk
DMAsnglmsk, al

290189-26

1-180

AP-320

Table 3. Hardware Initialization (Continued)

mov
mov
out
xor

dx, command_reg

al, C_IASET ;set up the 82592 individual address
dx, al
ex, cx ;jex is used by the loop instruction below. this

;causes the loop to be executed 64k times max

ia_wait_loop:

xor al, al

out dx, al
¥slow

in al, dx

and al, ODFh ;jdiscard extraneous bits

cmp al, 81h ; is command £inished?

jz ia_done

loop ia_wait_loop

mov ax, OFFSET CGroup: iaset_failure_message

Jmp init_exit
ia_done:

mov al, C_INTACK

out dx, al ;clear interrupt from iaset
;initialize the receive DMA channel

xor al, al

out DMAff, al

mov ax, rx buf start ;set dma up to point to the beginning of rx buf
¥slow

out DMA7addzr, al

mov al, ah
%slow

out DMA7addr, al

mov ax, rx_buf_page ;set rx page register
%slow

out DMA7page, al

mov al, DMArx7
%slow

out DMAmode, al)

mov ax, rx buf_length ;set wordcount to proper value
$slow

out DMA7wdcount, al

mov al, ah.
%slow

out DMA7wdcount, al

mov al, dma7unmsk ;junmask receive DMA channel
%slow

out DMAsnglmsk, al
;unmask our interrupt channel

in al, InterruptMaskPort

mov bl, OFBh

and al, bl
$slow

out InterruptMaskPort, al

;enable the receiver

mov
mov
out
xor

dx, command reg ;enable receives
al, C_RXENB :

dx, al

ax, ax

200189-27

1-181

intal | AP-320

Table 3. Hardware Initialization (Continued)

mov cx, 1
init_exit:

ret
ConfigDataUnderrun:

mov ax, OFFSET CGroup: ConfigDataUnderrunMess
Jmp init_exit

IASetupDataUnderrun:

mov ax, OFFSET CGroup: IASetupDataUnde:run
Jmp init_exit

DrivaerInitialize endp

SetInterruptVector

Set the interrupt vector to the int d ’s add
save the old vector for tha unhook procedure

assumes: bx has the ISR offset
al has the IRQ level
interrupts are disabled

- SetInterruptVector PROC NEAR
H mask on the appropriate interrupt mask
push ax
xchg ax, ¢x
mov di, 1

shl dl, cl ;get the appropriate bit location

mov int_bit, dl ;set the interrupt bit variable

not dl

mov int_mask, dl ;set the interrupt mask variable

mov ax, InterruptMaskPort

mov int_mask_register, ax

pop ax

cld

cbw

xor cx, cx

mov es, cx N
add al, 68h ;adding 8 converts int number to int type, i.e.,

;int 4 = type 12, int 5 = type 13 etc.
shl ax, 1

shl ‘ax, 1 ;two shifts = mul by 4 to create offset of vector
xchg ax, di
mov int_vector_addr, di ;save this address for unhook
mov ax, es: [di] ;save old interrupt vector
mov word ptr old irq vector, ax
mov ax, es: [di] + 2
mov '~ word ptr old irq vector + 2, ax
xchg ax, bx ;bx has the ISR offset
stosw ’
mov ax, cs
290189-28
stosw '
ret

SetInterruptVector endp

290189-29

1-182

intel

AP-320

7.2.2 INITIALIZING SYSTEM MEMORY

A buffer is constructed in system memory to support
the Embedded LAN Module architecture. This buffer
is divided into a receive buffer area and a transmit/gen-
eral-purpose buffer area. This buffer (Tx/GP) is used as
the transmit buffer and as the parameter block for
82592 commands that require parameters.

The combined size of the buffer areas requested by the
program is 10 kB. The Tx/GP buffer should be at least
1200 bytes long. The Rx buffer should be at least 5 kB
long. The amount of memory requested is twice the size
of the minimum Rx buffer length because of the possi-
bility of a DMA page break occurring at some point in
the 10 kB buffer area. A page break can occur because
the SYP301 (or any PC AT based architecture) uses a
static page register to supply the upper address bits
(A17-Aj3 for a 16-bit DMA channel) during a DMA
cycle. These upper bits of the address cannot be incre-
mented. The software checks for a page break and ad-
justs the buffer size if one is found. There are three
possible page break scenarios.

® No page break occurs. The buffer size is not adjust-
ed, the Tx/GP buffer area will be in the first 1200
bytes of the 10 kB buffer, and the Rx area will use
the remainder.

® A page break occurs, and the buffer is divided so
that one fragment is smaller than 1200 bytes. This
fragment is too small to be used and both the
Tx/GP and Rx areas will be placed in the larger
segment.

® A page break occurs that divides the 10 kB buffer
into two segments both larger than 1200 bytes. The
software then places the Tx/GP area in the smaller
segment, and the Rx area in the larger.

These three scenarios are shown in Figure 12. In no
case is the Rx area less than 5 kB—half the total buffer
size. Once these calculations are made, the transmit
and receive DMA channels, along with their page regis-
ters, are programmed to point to their respective areas
in the buffer (Tx/GP and Rx). With the memory now
initialized, configuration and initialization of the 82592
can begin. '

Butter Buffer Buffer
Start gp—buf__start Start Start gp_but_start
A A A
Unusable Portion Transmit and
Transmit and (Less than General Purpose
General Purpose 1200 Bytes) Buffer Space.
Buffer Space. DMA 1200 Bytes
1200 Bytes boundary gp—buf_start
rx_buf__start B B
Transmit and
General Purpose DMA Wasted Space _buf_start
Buftfer Space. boundary
1200 Bytes
Receive Buffer =
Total Buffer Space P_buf..start c
~ 1200 Bytes c
Receive Buffer =
Receive Buffer = Total Buffer Space
rx__buf__stop Total Buffer Space -A+8B
(1200 bytes ~-A+B
from end)
Buffer x_buf__stop rx_buf__stop
End (1200 bytes (1200 bytes
from end) from end)
No DMA boundary in the buffer space.
Tx/GP buffer is located in the first 1200 Buffer Butfer
bytes. Rx buffer occupies the balance of the End End
space. DMA boundary exists in the buffer space, DMA boundary exists in the buffer space.
‘and the first fragment is to small to use (less The first section is the smallest section, so
than 1200 bytes). The buffer start point is ad- the buffer is located there. The receive buf{-
justed by adding the length of the fragment er occupies the larger section of the buffer.
to the original start point. Tx/GP buffer occu- .
pies the first 1200 bytes after thé DMA
boundary. Rx buffer occupies the balance of
the buffer space.

Figure 12. DMA Page Break Affect on Buffer Size

1-183

intel

AP-320

The Rx buffer area is implemented as a restartable lin-
ear buffer. As frames are stored in this buffer they are
processed by the IPX routine IPXReceivePacket. A
variable called RX__BUF__STOP points to a location
1200 bytes from the end of the Rx area. On reaching
(or passing) this location in the Rx area, frame recep-

receive frames are processed. After the last frames have
been processed, the receive area is reinitialized, the re-
ceive channel DMA is initialized to point back to the
beginning of the receive area, and frame reception is
reenabled. Table 4 contains the code that initializes the
buffer memory. Section 7.3 gives further information

tion is temporarily disabled, and the remainder of the on receive frame processing.

Table 4. Buffer Memory Initialization

H Set up Buffers: ! . !

; This routine generates the page and offset addresses for the 16 bit ’
H DMA. It checks for a page crossing and uses the smaller half of the

; buffer area for Tx and general purpose if a crossing is detected. If

H no crossing is detected the general purpose/transmit buffer is placed

; at the beginning of the buffer area. This routine also generates a

; segment address for the receive buffer which allows the value read

; from the "10 cent" latches to be used as read for the offset passed

H to IPXReceivePacket. This saves some arithmetic steps when tracing

; back through the rx buffer chain.

set_up buffers proc near

mov ax, offset cgroup: gp_buf
mov gp_buf_offset, ax

mov bx, cs
mov dx, cs
shr ax, 1

mov - ex, 3

shl bx, cl
rol dx, cl
and dx, 0007h
add ax, bx
ade dx, 0

mov cx, OFFFFh
sub cx, ax

;jget upper 3 bits for page register
;clear all but the lowest 3 bits

;ax contains EA of firxst location in buffer
;if addition caused a carry add it to page
;of buffer to page break

;cx contains the number of bytes to page break

cmp cx, 01388h
jb intel_ hop
jmp copaceti ;it’s cool, whole buffer space is in one page
intel hop: -
cmp cx, 0258h
ja low_ok ;low fragment is a usable size, check upper fragment

add ax, cx ;move pointer past the page break to discard fragment
sub gp_length, cx ;adjust length variable to reflect shorter length
mov gp_offset adjust, cx .

shl gp_offset_adjust, 1
mov cx, gp_offset_adjust
add gp_buf_ offset, cx

j copacetic

;convert to byte format

;adjust gp_buf starting point to reflect change
Jjop ;both buffers will be in the same page, rx buf
shortened

low_ok:
emp ex, 1130h
jb high_ok
mov gp_length, cx ;adjust length variable, discard upper buffer fragment
jmp copacetic :both buffers will be in the same page, rx buf ’
shortened

;now since both fragments are usable we have to find the
cmp c¢x, 09Céh ;actual page break. the large half will be the receive
ja rx_first ;buffer and the small half will be the gp-tx buffer.
mov gp_buf_page, dx

shl gp_buf_page, 1

high_ok:

290189-30

1-184

AP-320

Table 4. Buffer Meinory Initialization (Continued)

mov
mov
mov
add
mov
shl
shl
ade
mov
mov
shl
mov
sub
mov
mov
sub
shl
add
mov
Jmp

gp_buf_start, ax
rx_buf_start, 0000h
rx_buf_head, 0000h

dx, 1 ;next page
rx _buf_page, dx

rx_buf_page, 1

ax, 1

dx, 0

bx, cx ;save number of bytes to page break
ex, 12

dx, cl

rx_buf segment, dx

gp_length, bx

cx, gp_length

rx buf_ length, cx

cx, 258h

ex, 1

cx, ax

rx _buf_ stop, cx

buffers_set

rx_first:

mov
shl
mov
mov
shl
mov
. mov
mov
add
‘mov
shl
add
shl
mov

rx_buf_page, dx

rx_buf_page, 1

rx_buf_start, ax

rx_buf_head, ax

rx_buf_head, 1

rx_buf_length, cx
rx_buf_stop, OFBSEh ;1200 bytes from end of buffer
gp_buf_start, 0000h

dx, 1 ;/next page
gp_buf_page, dx

gp_buf_page, 1

cx, 1

cx, 1

gp_offset_adjust, cx

add gp_buf_offset, cx

sub dx, 1

shl dx, 1

shl ax, 1

adc dx, 0

mov cx, 12

shl dx, cl

mov rx_buf_segment,dx

jmp buffers_set
copacetic:

mov gp_buf_start, ax ;Al-Al6 of gp buffer, gp buffer is first

add
mov
mov
shl
sub
mov
mov
shl
mov
mov

ax, 258h ;1200 bytes for gp buffer at front of buffer space
rx buf start, ax ;rx buffer starts 1200 bytes in

rx_buf_head, ax

rx_buf_head, 1

gp_length, 258h

cx, gp_length

rx_buf_length, cx

dx, 1 ;convert segment to byte address

rx_buf_page, dx

gp_buf_page, dx

shl ax, 1 ;convert offset to byte address
ade dx, 0 ;adjust segment for shift
mov cx, 12
shl dx, cl
mov xx buf_ segment, dx ;load variable for transfers to IPX
mov cx, rx buf length
sub cx, 258h ;setup marker for low rx buffer space, >600 words
shl ecx, 1
add ax, cx
mov rx buf_stop, ax
buffers_set:
ret
set_up_buffers endp

290189-31

290189-32

1-185

intel

AP-320

7.3 Assembly and Transmission of
Frames

Frame assembly and transmission 'is accomplished by
the interaction of the software driver and IPX through
the use of IPX Event Control Blocks (ECBs). To trans-
mit a frame, a transmit ECB is prepared that contains
address information and a list of fragments in memory
containing the frame to be transmitted. This ECB is
placed in a queue for assembly and transmission of the
frame. If the queue is empty, or when the ECB reaches
the front of the queue, a routine is called that processes
the ECB for transmission. This routine determines the
length of the frame (padding the frame if necessary)
and then constructs the frame in the Tx/GP buffer

area. The construction of the frame is based on the
ECB’s address information and fragment list. The
transmit DMA channel is now initialized to point to
the beginning of the transmit frame in the Tx/GP area,
and the byte count for that channel is also initialized. A
Transmit command is now issued to the 82592. A sepa-
rate routine monitors the transmission for a time-out
error. When an interrupt from the 82592 indicates that
the transmission attempt is complete (whether success-
ful or unsuccessful), or if a time-out error has occurred,
the proper completion code is inserted into the frame’s
ECB, and the ECB is passed back to IPX. If additional
ECBs remain in the transmit queue the processing of
the next ECB will begin. Table 5 contains the code used
for assembly and transmission of frames.

Table 5. Assembly and Transmission of Frames

Driver Send Packet
Assumes

DS = CS

don’t need to save any registers

DriverBroadcastPacket:
DriverSendPacket PROC NEAR

mov cx, word ptr send list + 2
jexz AddToFrontOfList

mov di, word ptr send list

AddToListLoop:
mov ds, cx
mov cx, ds: word ptr [di].link + 2
jexz AddListEndFound
mov di, ds: word ptr [di).link
jmp AddToListLoop

AddListEndFound: :
mov es: word ptr ([si].link, cx
mov es: word ptr [si).link + 2, cx
mov ds: word ptr [di].link, si
mov ds: word ptr (di].link + 2, es
mov ax, cs
mov ds, ax

AddToFrontOfList:
mov es:word ptr{si).link, cx
mov es:word ptr(si].link + 2, cx
mov word ptr send list, si
mov word ptr send list + 2, es

; drop through to Start Send

DriverSendPacket endp

Start Send

H assumes:
H ES: SI points to the ECB to be sent.
i interrupts are disabled

start_send PROC NEAR

public start_send
cli ; disable the interrupts

ES:SI points to a fully prepared Event Control Block

Interrupts are DISABLED but may be reenabled temporarily if necessary

cli ; disable the interrupts

i search to the end of the list, and add there.

;move null pointer to newest SCB's
;1link field

;set ds back to entry condition

290189-33

1-186

AP-320

Table 5. Assembly and Transmission of Frames (Continued)

cld

; save SCB address in variable tx ecb to liberate registers

mov
mov

word ptr tx ecb, si
word ptr tx ecb + 2, es

push ds ;save ds for future use

; get IPX packet length out of the first fragment (IPX header)
1lds bx, es: dword ptr [si].fragment_descriptor_ list
mov ax, ds: [bx].packet_length
pop ds ;rastora ds to CGROUP
push ax isave length for later use in 590 length field
xchg al, ah ;byte swap for 592 length field calculation
add ax, 18 ;add in the overhead bytes DA, SA,CRC, length
mov padding, 0
cmp ax, 64
ja long_enough
mov padding, 64 ;minimum length frame
sub padding, ax ;pad length
mov ax, 64

long_enough:
sub ax, 10 ;SA and CRC are done automatically
inc ax
and al, OFEh ;€rame must be even
mov tx_byte_cnt, ax
mov di,gp_buf offset
mov bx, cs
mov es, bx

; move the byte count into the transmit buffer
stosw
; move the destination address from the tx ECB to the tx buffer

mov bx, si

lea si, [bx].immediate_address

mov ds,word ptr tx ecb + 2

movsw

movsw

movsw

mov ax,cs ; get back to the code (Dgroup) section
mov ds,ax

; now the 590 length field

pop ax
xchg ah, al
inc ax
and al, OFEh ;make sure E-Net length field is even
xchg ah, al
stosw
lds si, tx_ecb
mov ax, ds: [si].fragment count
lea bx, [si].fragment_descriptor_list
move_frag_loop:
push ds ; save the segment
mov cx, ds: (bx].fragment_length
1ds si, ds: [bx].fragment address
Ysfastcopy
pop ds ; get the segment back
add bx, 6
dec ax
jnz move_frag loop

290189-34

1-187

Inter AP-320

Table 5. Assembly and Transmission of Frames (Continued)

;start transmitting
mov cx, cs
mov ds, cx

;add any required padding
mov cx, 4 ;make sure frame ends with a NOP
add cx, padding . '
shr cx, 1
rep stosw
mov tx_active_flag, 1
xor ax, ax '
out DMAff, al ;data is don’t care, AX has been zeroed

mov ax, gp_buf_start
%slow

out DMA6addr, al
mov al, ah

$slow
out DMA6addr, al
mov ax, gp_buf_ page

$slow
out DMA6page, al ;DMA page value
$slow
° mov al, DMAtx6 . ;setup channel 1 for tx mode

out 'DMAmode, al
mov ax, tx_byte cnt

add ax, 4 ;add two for byte count, two for tx chain fetch
shr ax, 1 ;convert to word value and account for odd
adc ax, 0 ;byte DMA transfer .
out DMA6wdcount, al
$slow

mov al, ah

out DMA6wdcount, al
$slow

mov al, DMA6unmsk

out DMAsnglmsk, al

mov dx, command reg

mov al, C_TX

out dx, al .

mov ax, IPXIntervalMarker

mov tx start time, ax

%inc32 TotalTxPacketCount

ret

start_send endp

~;*k*k****k*********t*****ﬁ**ti*i***i***t*********ﬁ**ﬁ*t*********

Driverpoll

Poll the driver to see if there is anything to do

ECB with bad completion code. Check to see if frames are queued.
If they are set up ES:SI and call DriverSendPacket.

;
;
i
;
;
;
;
;
;

; Is there a transmit timeout? If so, abort transmission and return

R AKRAAAIR KKK I AR KA AR ARKARRRRRI AR AR AR A AR AR AR KRR AR AR AR ARk kk kK dkkk

;

DriverPoll PROC NEAR N)
cli
: 290189-35

1-188

nter ' AP-320

Table 5. Assembly and Transmission of Frames (Continued)

cmp tx_active_flag, 0

iz NotWaitingOnTx

mov dx, IPXIntervalMarker
sub dx, tx start_time
crmp dx, TxTimeOutTicks
jb NotTimedOutYet

; This transmit is taking too long so let’s terminate it now
; Issua an abort to tha 82592

mov dx, command reg
mov al, C_ABORT ;abort transmit
out dx, al

inc tx_timeout

les si, tx_ecb

mov es: [si].completion_code, TransmitHardwareFailure ;stuff completion
code of a failed tx

mov ax, es: word ptr [si].link

mov word ptr send_list, ax

mov ax, @s: word ptr [si].link + 2

mov word ptr send list + 2, ax

; Finish the transmit

mov es: [si].in_use, 0
call IPXHoldEvent

;make sure that execution unit didn’t lock up because of abort errata
mov dx, command reg
mov al, C_SWPl
out dx, al
mov al, C_SELRST

$slow

out dx, al

mov al, C_SWPO
$slow

out dx, al

mov al, C_RXENB
%slow

out dx, al

mov tx_active flag, 0
; See if any frames are queued

mov cx, word ptr send_list + 2
jexz queue_empty

mov es, cx

mov si, word ptr send list
call start_send

queue_empty:

NotWaitingOnTx:

NotTimedOutYet:
reat

290189-36

1-189

ntel \ AP-320

Table 5. Asserhbly and Transmission of Frames (Continued)

DriverPoll endp

JRRRIRR IR A RRRK IRk RA R AR IR IR Ak kA kR kkhkkkhkkhkhkkk ke k kA dkkkkkkkkkk

i
;
; Interrupt Procedure

;
;*ktﬁ*i*iﬂﬁtﬁ***ﬁ*ﬁ*****i**************ﬁt****if******t****ﬁit*t**
even

RxEr:o:TypeChéck :

BufferOverflow:
inc rx buff ovflw
jmp int_exit

not_590_int:
inc no_590_int
jmp int_exit

DriverISR PROC far
public DriverISR

push ax
push bx
push cx
push dx
push si
push di
push bp

push ds
push es
cld

int_poll_ loop:
cli
call IPXStartCriticalSection ;tell AES we’re busy
mov al, EOI
out InterruptControlPort, al
out ExtralnterruptControlPort, al
mov ax, cs
mov ds, ax ;DS points to C/DGroup
mov dx, command_reg
mov al, 0
out dx, al ;set status reg to point to reg 0

in al, dx
test al, 80h
jz not_590_int

and al, NOT 20h ;ignore the EXEC bit
mov ah, al ;save the status in AH
cmp ah, 0D8h ;did I receive a frame?

290189-37

1-190

nte[« AP-320

Table 5. Assembly and Transmission of Frames (Continued)

jz xcvd _packet

cmp ah, 84h . ;did I finish a transmit?
jz sent_packet_jmp
emp ah, 8Ch ;did I finish a retransmit?

jz sent_packet_jmp
inc false_590_int ;unwanted intaerrupt
jmp int_exit

sent_packet_jmp:
jmp sent_packet
sent_packet:
cli
cmp tx_active_flag, 0
jz false tx int ;shouldn’t have been transmitting
in al, dx
mov statusl0, al
%slow - A
al, dx

mov statusll, al
test statusll, 20h
jz tx_erroxr

mov al, statuslo ;extract the total number of retries from

and ax, OFh ;the status register and add to retry count

add RetryTxCount, ax

xor ax, ax ;status = 0, good transmit
FinishUpTransmit:

les si, tx_ecb

mov es: [si] .completion_coda, al

mov ax, es: word ptr ([si].link

mov word ptr send_list, ax

mov ax, es: word ptr [si].link + 2

mov word ptr send list + 2, ax

mov es: [si].in use, 0

call IPXHoldEvent

push cs

pop ds

mov c¢x, word ptr send list + 2

mov tx_active_flag, cl

jexz int_exit jmpl

mov es, cCx isegment of next SCB in list
mov s8i, word ptr send list ;offset of next SCB in list
call start_send

jmp €£inish exit

int_exit jmpl:
jmp int_exit

false_tx int:
jmp int_exit

tx_error:

test statuslO, 20h ;Max collisions??
jnz QuitTransmitting
test statusll, 0lh ;Tx underrun??

jz lost_cts
inc underruns
290189-38

lost_cts:
test statusil, 02h ;did we lose clear to send??
jz lost_cxs
inc no_cts
lost_crs:
test statusll, 04h ;did we lose carrier sense??
jz hmmm
inc no_crs
hummrom :
laes si,tx ecb
call start_send
mov al, TransmitHardwareFailure
jmp FinishUpTransmit

QuitTransmitting:
mov al, statusl0
and ax, OFh
add RetryTxCount, ax
inc stop_tx
mov al, TransmitHardwareFailure
jmp FinishUpTransmit

DriverISR endp
290189-39

1-191

intel

AP-320

7.4 Receive Frame Processing

Receive frame processing is triggered by an interrupt
from the 82592. If the status read from the 82592 by

the Interrupt Service Routine (ISR) indicates that a .

frame has been received, a jump is made to the begin-
ning of the code that services frames. The receive buffer
area is managed by using several variables. These vari-
ables are listed below. Please refer to Section 4.1 and
4.2 for a review of receive frame processing.

* RX__BUF_TAIL. Contains the contents of the
16-bit latch. They point to the byte count of the last
frame written into memory.

e RX__BUF__PTR. Keeps track of the current posi-
tion in the buffer while the CPU recovers locations
of the received frames in the buffer processing.

¢ RX_BUF__HEAD. Contains the pointer to the
byte count of the last frame that was processed by
the CPU. (This differs from rx__buf__tail, which
points to the byte count of a frame not yet process-
ed.)

¢ RX__BUF__STOP. Points to a location that is 1200
bytes from the end of the receive buffer (slightly
more than the maximum size of a frame).

After servicing a receive frame, the contents of the
16-bit latch are loaded into RX__BUF__TAIL and
RX__BUF__PTR. This value is compared with the val-
ue stored in RX__BUF__STOP to determine if most of
the buffer has been used and if the buffer must be reini-
tialized after the current receive frames have been pro-
cessed (In this case a flag called RESET__RX__BUF is

_ set to indicate that the buffer variables and receive

DMA: channel must be reinitialized before the Inter-
rupt Service Routine is exited). To process the frame or
frames received, both the byte count and status bytes of
the frame are used. If the status indicates a receive er-
ror the frame is not passed up to IPX. The byte count is
used to index back through the chain of received
frames, using RX__BUF__PTR to keep track of the
current position in the buffer. The frames are checked
for length (maximum and minimum), and a check is
also made to verify that the Ethernet and IPX length
fields agree (including provisions for padding the
Ethernet-length field). If these checks pass, the frames
are added to the list of received frames by storing their
location, length, and source address in an array of
structures called RX__LIST. When the RX__BUF__
PTR contains the same value as RX__BUF__HEAD,
all currently received frames have been processed, and
a jump is made to a label called HAND__OFF__
PACKET. In this routine the frames are handed up to
IPX, in the order they were received, using calls to the
IPX routine IPXReceivePacket. The value stored in
RX__BUF__TAIL is loaded into the RX__BUF__
HEAD variable, which now holds the address of the
last location in the receive area that was processed, and
the execution of the ISR falls through to a routine to
exit the ISR. Before exiting the ISR an Interrupt Ac-
knowledge is issued to the 82592; a check for additional
pending interrupts is made, if one is found the ISR
process is repeated; and the flag RESET__RX__BUF is
checked, if it is set the receive buffer is reinitialized.
The machine states of the previous routines are restored
to their original states, and the ISR is exited. Table 6
contains the code used for receive frame processing.

1-192

ntal AP-320

Table 6. Receive Frame Processing

PRKR AR KRR KR KKK KRR RRAARRRRRRRR A RN RRRRANNNRR R KRR RKRRARKR RN AR RRARNRRRR R KRR K

7

H
; Interrupt Procedure

H ARKNKRRKR KRR KRR AR R KRR KRR RN KRR KRR RKRRARR KRR KRR RARRARRRRR KRR KRN KRR RN KRR AR K
even

RxErrorTypeCheck:

BufferOverflow:
ine rx_buff ovflw
jmp int_exit

not_590_int:
inc no_590_int
jmp int_exit

DriverISR PROC far
public DriverISR

push ax
push bx
push cx
push dx
push si
push di
push bp

push ds
push es
cld

int_poll_loop:
cli
call IPXStartCriticalSection ;tell AES we’re busy
mov al, EOI .
out InterruptControlPort, al
out ExtralInterruptControlPort, al
mov ax, cs
mov ds, ax ;DS points to C/DGroup
mov dx, command_reg
0

mov al,

out dx, al ;set status reg to point to reg 0
$slow

in al, dx

test al, 80h
jz not_590_int

290189-40

1-193

I'Ite[| AP-320

Table 6. Receive Frame Processing (Continued)

int_poll_loop:

and al, NOT 20h ;ignore the EXEC bit
mov ah, al ;save the status in AH

cmp ah, O0D8h ;did I receive a frame?
jz recvd packet

cmp ah, 84h ;did I finish a transmit?
jz sent_packet_jmp .

cmp ah, 8Ch . ;did I finish a retransmit?

jz sent_packet_jmp
inc false_590_int ;unwanted interrupt
jmp int_exit

sent_packet_Jjmp:
jmp sent_packet
bad_xcv:

inc rx_errors
jmp RxErrorTypeCheck

int_exit_ jmp:
jmp int_exit

;When the address bytes are being read it is possible that another frame
;could come in and cause a coherency problem with the ten-cent latches.
;I am dealing with this possibility by reading TenCentHi twice and making
;sure the values match. If they don‘t the read is redone.

rcvd packet: . ‘
cli . .
mov dx, TenCentHi ;read high address byte of last frame received
in al, dx
mov ah, al ;save it in ah
mov dx, TenCentLo ;read low address byte of last frame received N
in al, dx ‘
mov rx _buf_tail, 'ax ;this is the last location containing rx data
;Read TenCentHi again to make sure it hasn’t changed.......
mov dx, TenCentHi ;read high address byte again
in al, dx .
cmp al, ah
jz addr_ok
jmp rcvd packet ;read the latches again
addr_ok:
mov ax, rx buf tail ;this is a valid address :
mov rx buf ptr, ax ;this is the last location containing rx data
cmp rx_buf_stop, ax ;is most of the buffer already used?

ja BufferOK

mov reset_rx buf, 1
BufferOK:

cmp ax, rx buf_head

ja process_new_frames

inc ten_cent_latch_crash

jmp int_exit

do_next_frame:

process_new_frames: .
mov bx, rx buf ptr ;end of current frame to process
sub bx, 6 ;sat bx up to point to beginning of the status
mov es, rx buf_segment ;this is necessary because latches hold EA not

;offset relative to CGROUP
290189-41

1-194

ntel AP-320

Table 6. Receive Frame Processing (Continued)

mov al, es:[bx].statusl

test al,20h ;test for good receive
jnz good_rx

mov cl, es:[bx]).bc_lo

mov ch, es:[bx].bc_hi ;ex has actual number of bytes read
dec cx ; toss byte count & status

and cl, Ofeh ; round up

sub bx, cx ;bx points to first location of frame

cmp rx buf head, bx
je hand off packet_jmp ;this was the first frame in the sequence
mov rx buf ptr, bx
sub rx_buf_ptr, 2
to_do_next_gframe:
do_next_frame
hand_off packet_jmp:
jmp hand off_packet

good_rx:
mov c¢l, es:[bx].bc_lo
mov ch, es:[bx].bc_hi ;cx has actual number of bytes read
mov curr_rx length, cx
dec cx ; toss byte count & status
and cl, Ofeh ; round up
sub bx, cx ;bx points to first location of frame
mov rx buf ptr, bx
sub rx buf ptr, 2 ;rx_buf ptr = last location of n-1 frame
sub cx, 14 ; sub length of 802.3 header

cmp cx, 1024 + 64

jbe not_too_big

inc PacketRxTooBigCount

jmp do_next_frame
not_too_big:

cmp c¢x, 30

jae not_too_small

inc PacketRxTooSmallCount

mp do_next_frame
not_too_small:

mov ax, es:[bx].rx length ; get IPX length
xchg al, ah

inc ax

and al, Ofeh

xchg al, ah

cmp ax, es:[bx].rx physical_ length ; same as 802.3 length ?
jne to_do_next_ frame

xchg al, ah

cmp ax, 60 - 14 ; at least min length minus header
ja len_ok ; yes, continue
mov ax, 60 - 14 ; no, round up
len_ok:
cmp ax, cx ; match physical length
jz not_inconsistent ; yes, continue
inc HardwareRxMismatchCount
jmp do_next_£frame
not_inconsistent:
T%inc32 TotalRxPacketCount ; Double Word Increment

mov ax, 12
mul num of frames

290189-42

1-195

intel | AP-320

Table 6. Receive Frame Processing (Continued)

mov di, ax
mov rx list [di], bx ;first location of ethernet frame
add rx_list [di], 14 ;first location of ipx packet
mov ax, rx buf segment
mov rx_list [di + 2], ax
mov ax, word ptr es:[bx].rx_length
' xchg al,ah X .
mov rx list [di + 4], ax
mov ax, word ptr es:[bx].rx source addr + 0
mov word ptr rx list [di + 6], ax
mov ax, word ptr es:[bx].rx source addr + 2
mov word ptr rx list [di + 8], ax
mov ax, word ptr es:[bx].rx source addr + 4
mov word ptr rx list [di + 10], ax
add num of_ frames, 1
cmp . rx _buf_head, bx
je hand off packet
cmp num of_ frames, 50
je hand_off packet
jmp do_next_frame

hand _off_packet:
mov si, rx list([di)
mov es, rx list([di + 2]
mov cx, rx list[di + 4]
lea bx, rx list[di + €]
cli
push ds
call IPXReceivePacket
pop ds
sub num of frames, 1
jz adjust_xrx _head
sub di,. 12
jmp hand_off_packet
adjust_rx head: -
mov ax, rx buf tail

add ax, 2
mov rx buf_head, ax - ;set rx buf head to new value for next receive
. ;interrupt
int_exit: .
push cs
pop ds

cmp tx active flag, 0
jnz finish_exit

verify that our receiver is still going.

mov dx, command_ reg

mov al, 60h ;point to status byte 3
out dx, al .

$slow :
in al, dx

test al, 20h
jnz £inish exit
jmp LostOurReceiver

finish_exit:
cli

290189-43

1-196

nte[AP-320

Table 6. Receive Frame Processing (Continued)

call IPXEndCriticalSection
mov dx, command_reg
mov al, C_INTACK

out dx, al ;issue interrupt acknowledge to the 590
¥slow

xor al, al

out dx, al iset status reg to point to reg 0
$slow

in al, dx

test al, 80h

jnz int_pending

cmp reset_rx buf, 1 '
jnz no_rxx buf_reset

mov al, dma7msk ;mask receive DMA channel
out DMAsnglmsk, al

¥slow
out DMAff, al ;data is don't care

mov ax, rx buf start ;set dma up to point to the beginning of rx buf
mov rx _buf head, ax

shl rx buf_head, 1

out DMA7addr, al

mov al, ah

out DMA7addr, al
mov al, DMArx7

out DMAmode, al
mov ax, rx buf_length ;set up rx buf

out DMA7wdcount, al
mov al, ah

out DMA7wdcount, al
mov dx, DMAsnglmsk
mov al, DMA7unmsk

out dx, al

mov dx, command_ reg
mov al, C_RXENB
out dx, al

mov reset_rx buf, 0

no_rx_buf_reset:
cli
call IPXServiceEvents
pop es
pop ds-
pop bp
pop di
pop si
pop dx
pop ©x
pop bx
290189-44
Pop ax
sti
iret . . t
LostOurReceiver: -

inc lost_rx

mov al, C_RXENB
mov dx, command_reg
out dx, al

jmp finish_exit

too_big:
inc PacketRxOverflowCount
jmp int_exit

int_pending:
jmp int_poll loop
290189-45

1-197

AP-320

APPENDIX A

Expanding the 82592 Embedded LAN
Module Architecture to a Low-Cost
Non-Buffered Adapter

The basic architecture of the 82592 Embedded LAN
Module can be expanded and applied to a low-cost,
non-buffered adapter. This requires adding a DMA
unit and some logic for a bus master handshake. Such
an adapter would contain no local buffer memory. Its
cost advantage would come from using existing system
memory, as the embedded module does. This adapter is
less complex than most existing designs because it does
not require arbitration logic for access to local memory.
This adapter becomes a bus master when data transfers
take place, either to the 82592 (Tx) from system memo-
ry or from the 82592 (Rx) into system memory.

The same features of the 82592 that make it successful
in embedded applications make it well-suited for non-
buffered adapters. As with the embedded module, there
is no intermediate buffering of data in a local memory,
therefore data transfers to and from system memory
take place in real time. The 82592’s large FIFO area
allows it to tolerate long system bus latencies during
memory access. The 82592’s high-performance, 16-bit
bus interface allows the adapter to efficiently transfer
data to and from system memory when it gains access
to the system bus. The TCI of the 82592 will interface
with the adapter’s control logic and DMA unit to pro-
vide back-to-back frame reception and automatic re-
transmission on collision (both without CPU interven-
tion). Figure 13 is a block diagram of the basic architec-
ture of the embedded module modified for a non-buff-
ered adapter application. The block titled “Control
PALs and Latch” together with the 82592 is the core of
the embedded module architecture. One additional
PAL (PAL C) has been added to the basic architecture
to offer more logic for decoding additional components
added to the adapter. The address latch has also been
.expanded to 24 bits. The three shaded blocks (DMA
Machine, Master Logic, and Control PALs and Latch)
show the most likely path for integration on this adapt-
er, providing a three-chip solution of ASIC, 82592, and
82C501. The 82C37 is common in many ASIC cell li-
braries, offering a migration path for this integration.

ADAPTER BLOCK DESCRIPTIONS

DMA Machine

e 8237 DMA Controller. Serves as the core for the
DMA machine. Performs addressing and control for
data transfers between the 82592 and host system
memory.

¢ 8-Bit Page Counter. Provides the addressing bits for
the upper bits of address (A17-A33).

e 8-Bit Register. Serves as the base register for the
upper bits of the Tx DMA channel for reinitializa-
tion for automatic retransmission.

o 8-Bit Multiplexer. Selects between the upper bits of
Rx- or Tx-channel DMA.

e 8-Bit Latch. Latches the upper bits of address from
the 8237 (Ag—Ajs).

Master Logic

® Master PAL. Implements a “master” handshake
with the host system bus to gain access to the bus as
a bus master.

¢ Timers (2). Controls the maximum time the adapter
can hold the bus, and the minimum time it must
wait before attempting to regain bus access.

Control PALs and Latch (Together
with 82592 and 82C501)

The basic architecture of the 82592 Embedded LAN
Module. . '

Transceivers

Used to buffer the adapter logic from the host system
bus, for drive purposes. Address consists of 24 bits; and
Data, 16 bits.

1198

AP-320

DMA Machine wR ¥R
RD RD
Ay7-23 l e
hZ] Ay-23f o 4
« 58
1. 1851 w5l
Mux ¢ ey Lo >
Zs o
24-DBIT ADDRESS N & 3 o 5 MHz D
::x /2 N
=
=
1/2 ?] Age1s ¥ - s
&3 il — .
A S5 5
—_ - ~ &4
MRD 2 18 g 2
MRW << %
{ORD =
fOWN ” 3 {ORD
fo Thoa oWk I.||]|.l
, ‘ T e
g |° DATA 0-15 " 592 501
16=BIT DATA S -
(T 3 8 7 5l | & —
MASTER 3 4 DACK % m| l B
DRQS # > > __
2 8f b, 3 DACKT, 2 DACK
P £0P DRQSO
ou A0 Master Logie DRQS1,2 DRQS1
N < EOP
,f ! Controf PALs and Lotch INT
-4 =t b ¢ ;
S 5% |—— PAL PAL ¥ 5
3 A ond € by B
(ORDY < !
INT 4=
i a] _
L1 Boot] CS
[—
ROM RD

290189-15.

Figure 13. 82592 Non-Buffered Adapter Block Diagran_\ (PC AT Version)

1-199

nte|® APPLICATION AP-274
NOTE
Nbvember 1986
Implementing
Ethernet/Cheapernet

~ with the Intel 82586

KIYOSHI NISHIDE
APPLICATIONS ENGINEER

Order Number: 292010-002
1-200

intel

AP-274

PREFACE

Intel’s three VLSI chip set, the 82586, 82501, and
82502, is a complete solution for IEEE 802.3 10M bps
LAN standards—10BASES5 (Ethernet) and 10BASE2
(Cheapernet). The 82586 is an intelligent peripheral
which completely manages the processes of transmit-
ting and receiving frames over a network under the
CSMS/CD protocol. The 82586 with its on-chip four
DMA channels offloads the host CPU of the tasks re-
lated to managing communication activities. The chip,
for example, does not depend on the host CPU for time
critical functions, such as transmissions/retransmis-
sions and receptions of frames. The 82501 is a 10 MHz
serial interface chip specially designed for the 82586.
The primary function of the 82501 is to perform Man-
chester encoding/decoding, provide 10 MHz transmit
and receive clocks to the 82586, and drive the transceiv-
er (AUI) cable in Ethernet applications. In addition,
the 82501 provides a loopback function and on-chip
watchdog timer. The 82502 is a CMOS transceiver
chip. The 82502 is the chip which actually drives the
coaxial cable used for Ethernet or Cheapernet.

This Ap Note presents a design example of a simple but
general Ethernet/Cheapernet board based on the three
chip set. The board is called LANHIB (LAN High In-
tegration Board) and uses an 80186 microprocessor as
the host CPU. The LANHIB is an independent single
board computer and requires only a power supply and
ASCII terminal. Demo software, called TSMS (Traffic
Simulator and Monitor Station) is also included in this
Ap Note. The TSMS program is a network debugger
and exercise tool used to exercise the 82586. In addi-
tion, flowcharts for troubleshooting are provided in or-
der to minimize debugging time of the LANHIB board.

1.0 INTRODUCTION

A brief overview of the CSMA/CD protocol is de-
scribed in Section 2. Ethernet and Cheapernet are also
compared in this section.

Section 3 discusses hardware of the LANHIB in detail.
This section should be helpful not only to understand
the LANHIB, but also to learn in general how a system
based on the three chip set can be put together. Since
the 82502 involves analog circuitry, an explanation on
proper layout is provided.

Demo software is presented in Section 4.0. It covers
EPROM programming procedures and three sample
sessions. Step by step operations at a terminal are illus-
trated in the figures.

Section 5 describes LANHIB troubleshooting proce-
dures. Flowcharts are used to guide troubleshooting.

Complete LANHIB schematics and parts list are found
in Appendix A. If a LANHIB is to be built, the sche-
matics and Section 5 can be submitted to an available
wire wrap facility. In parallel to board construction,
Sections 3 and 4 can be studied. A factory wire wrap
board for the LANHIB is offered at a discount price by
Augat Corporation. Please return the enclosed card for
more information.

Listing of the TSMS program and LANHIB Initializa-
tion Routine are in Appendix B. The source codes and
related files are available on a diskette by returning the
card enclosed in this design kit or through Insite (In-
tel’s Software Index and Technology Exchange Li-
brary).

2.0 ETHERNET/CHEAPERNET
OVERVIEW

2.1 CSMA/CD

Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) is a simple and efficient means of deter-
mining how a station transmits information over com-
mon medium that is shared with other stations.
CSMA/CD is the access method defined by the IEEE
802.3 standard.

Carrier Sense (CS) means that any station wishing to
transmit “listens” first. When the channel is busy (i.e.,
some other station is transmitting) the station waits
(defers) until the channel is clear before transmitting
(“listen before talk”).

Multiple Access (MA) means that any stations wishing
to transmit can do so. No central controller is needed to
decide who is able to transmit and in what order.

Collision Detection (CD) means that when the channel
is idle (no other station is transmitting) a station can
start transmitting. It is, however, possible for two or
more stations to start transmitting simultaneously caus-
ing a “collision”. In the event of a collision, the trans-
mitting stations will continue transmitting for a fixed
time to ensure that all transmitting stations detect the
collision. This is known as jamming. After the jam, the
stations stop transmitting and wait a random period of
time before retrying. The range of random wait times
increases with the number of successive collisions such
that collisions can be resolved even if a large number of
stations are colliding.

There are three significant advantages to the CSMA/
CD protocol. The first and foremost is that CSMA/CD
is a proven technology. One CSMA/CD network,
Ethernet, has been used by Xerox since 1975. Ethernet
is so well understood and accepted that IEEE adopted

1-201

intef

AP-274

it (with minor changes) as the IEEE 802.3 10Base5 (10
Mbps, Baseband, 500 meters per segment) standard.
Reliability is the second advantage to the 802.3 proto-
col. This media access method enables the network to
operate without central control or switching. Thus, if a
single station malfunctions, the rest of the network can
continue operation. Finally, since CSMA/CD networks
are passive and distributed in nature, they allow for
easy expansion. New nodes can be added at any time
without reinitializing the entire network.

2.2 Ethernet and Cheapernet

The IEEE 802.3 Type 10BASES standard (Ethernet)
has gained wide acceptance by both large and small
corporations as a high speed (10 Mbps) Local Area
Network. The Ethernet channel is a low noise, shielded
509 coaxial cable over which information is transmit-
ted at 10 million bits per second. Each segment of cable
can be up to 500 meters in length and can be connected
to longer network lengths using repeaters. Repeaters
regenerate the signal from one cable segment onto an-
other. At each end of a cable segment a terminator is

attached. This passive device provides the. proper elec-

trical termination to eliminate reflections. The trans-

ceiver transmits and receives signals on the coaxial ca-’

ble. In addition, it isolates the node from the channel so
that a failure within the node will not affect the rest of
the network. The transceiver is also responsible for de-
tecting collisions—simultaneous transmissions by two
or more stations. Ethernet transceivers are connected to
the network coaxial cable using a simple tap, and to the
station it serves via the transceiver cable which can be

IEEE 802.3 TYPE 10BASES (ETHERNET)
—ETYPE 10BASE2 (CHEAPERNET) *

TYPE 1BASE5 (STARLAN)
292010-1

Figure 1. Different Implementations of IEEE
802.3 (Note: “10BASES”, for example, implies
10 Mbps, Baseband, and 500 meters span.)

- up to 50 meters in length. The transceiver cable is made

of four individually shielded twisted pairs of wires. An
Ethernet interface at a computer (DTE), which in-
cludes a serial interface and data link controller, pro-
vides the connection to the user or server station. It also
performs frame manipulation, addressing, detecting
transmission errors, network link management, and en-
coding and decoding of the data to and from the trans-
ceiver.

The IEEE 802.3 Type 10BASE2 (Cheapernet) has the
same functional and electrical specifications as Type
10BASES (Ethernet) with only two exceptions in physi-
cal (or rather mechanical) characteristics. Cheapernet
is as'shown in Figure 1 just a different implementation
of the IEEE standard. Ethernet and Cheapernet are
both 10 million bits/second CSMA/CD LANSs and use
the identical network parameters, such as slot time =
51.2 ps. Ethernet and Cheapernet can, therefore, be
built by the same VLSI components with the same soft-
ware (Figure 2). .

The two physical differences attribute to the cost reduc-
tion purpose of Cheapernet—cheaper implementation
of Ethernet. First, the cable used in Cheapernet may be
a lower cost 5002 coaxial cable than the one for
Ethernet. The most common coaxial cable for Cheaper-
net is RGS58 which cost about $0.15/ft. A typical
Ethernet cable costs about $0.83/ft.

Second, the transceiver is integrated into the DTE in
Cheapernet. The coaxial cable physically comes to the
DTE, connects to the transceiver within the DTE, and
goes to the next DTE (see Figure 3). The kind of con-
nector used at the DTE is an off-the-shelf BNC “T”
connector. Topology is, therefore, a simple daisy chain-
ing. This cabling scheme contributes to further cost re-
duction due to omission of the Transceiver (AUI) Ca-
ble, cheaper connectors, and easier installation. The
Ethernet transceiver cable costs about $1.49/ft. More
flexible thin coaxial cables and familiar BNC “T” con-
nectors are making Cheapernet a user installable Ether-
net compatible network.

1-202

Inte[AP-274

TRANSCEIVER COAX CABLE
CABLE

ETHERNET CONTROLLER BOARD TRANSCEIVER
L

| 1
82502

o

—

292010-5
CHEAPERNET CONTROLLER BOARD RG=58
l COAXIAL CABLE
1
E O\ L .
- AEKDIEIKD| 8
- G| - -
[N
1
292010-6

Figure 2. 82586/82501/82502 in Ethernet and Cheapernet

“ CHEAPERNET
CABLE

TRANSCEIVER BOX O BNC "T"" CONNECTOR ™.%.
292010-2 / 292010-3

Figure 3. Ethernet Cabling vs Cheapernet Cabling

1-203

intel

AP-274

Table 1. Differences between Ethernet and Cheapernet

- Ethernet Cheapernet
(10BASES5) (10BASE2)
Data Rate 10 M bits/sec. 10 M bits/sec.
Baseband or Baseband Baseband
Broadband (Manchester) (Manchester)
Cable Length 500m 185m
per Segment
Nodes per Segment 100 30
Node Spacing 2.5m 0.5m
Cable Type 0.4 in diameter 509} 0.2 in diameter 502
Double Shielded Single or Double Shielded
example: example:
Ethernet Coax. RG 58 A/U or
RG 58 C/U
Transceiver Cable Yes, up to 50m No, not needed
Capacitance 4 pF 8 pF
per node .
Typical Clamp-on Tap Connector or BNC Female
Connector Type N Plug Connector Connector

Because of the lower quality cables and connectors used
in Cheapernet, there are some drawbacks. The maxi-
mum distance for one Cheapernet cable segment is only
185m (600 feet), as compared to 500m (1640 feet) for
Ethernet. The maximum number of nodes allowed for
one Cheapernet cable segment is 30. Ethernet on the
other hand allows a maximum of 100 nodes per seg-
ment. A BNC “T” connector used in Cheapernet intro-
duces more electrical discontinuity on the transmission
line than the clamp-on tap connector widely used for
Ethernet. The maximum capacitance load allowed at a

Cheapernet connection is 8 pF, while it is 4 pF for
Ethernet. These differences are summarized in Table
1.0.

Since Ethernet and Cheapernet share the same func-
tional and electrical characteristics, both may be mixed
in a network as shown in Figure 4. In this hybrid
Ethernet/Cheapernet network, it is important to keep
the network propagation delay within 46.4 us. The net-
work may be expanded as required within this round
trip propagation, delay limit. Ethernet, for example,
may serve as a backbone for Cheapernet in a hybrid
Ethernet/Cheapernet network.

DTE | CHEAPERNET
CABLE

- 1l

DTE | CHEAPERNET
CABLE

292010-4

Figure 4. Ethernet/Cheapernet Hybrid Network
1-204

5021
weibeiq %00|g GIHNV1 'S 84nbi4

CHEAPERNET
CABLE
(e.g. RGS58)

10V 5V oV

bC/DC
CONVERTER

82586
WAIT STATE
GENERATOR

A14-15 _ ADDRESS
A, BHE DECODE PAL RAMLO
s2
- RAMHI

ADDRESS
LATCH

ROMHI | | ROMLO

A1, A2

RS=232
CHANNEL A

RS=-232
CHANNEL B

™D 3
™ g
RX2 E ADDRESS BUS
RIS | - ;
»ICRS 82586 Al6-19 2
4 g R BHE Al=15
L%, oeK
— D
= 1385« Y wr
IXT=Z0 < .
-~ 4L 8
§ vy N vyv ¥V L2 <> <
&
5
AdA 4 g ROM
~ 82530
S&¢g) C a 64K BYTES
332 < B 2 ¢)
IITT WR —1—4 @
DT/R 5]
DEN o p
80186 % r
©
PCS5, PCSB, 2
E‘» DRQO, DRA, B
INTI, INTAl |
P 2
5| aD0=15 DO-D15 D0-D7
3 - DATA BUS
Do DATA TRANSCEIVER
< DELAYED WR
82501 L J
LOOPBACK A A4 80186/82530 82530 CONTROL SIGNALS
CONFIGURATION INTERFACE
PORT LOGIC

292010-7

vl2-dv

intel

AP-274

3.0 ETHERNET/CHEAPERNET NODE
DESIGN '

Details on LAN High Integration Board (LANHIB)
design are presented in this section. The LANHIB is an
82586/80186 shared bus board and can be configured
to Ethernet or Cheapernet. The 82586 is used in mini-
mum mode to reduce chip count.

The reader is advised to refer to the 80186, 82586,
82501, and 82502 data sheets. Basic understanding of
the 80186 microprocessor is assumed. Figure 5 shows
the block diagram of the LANHIB. Schematics are in
Appendix A.

82586 (Min Mode) Interface to the
80186

The 82586 can be placed in minimum mode by strap-
ping the MN/MX pin to Vcc. In the minimum mode,
the chip directly provides all bus control signals—ALE,
RD, WR, DT/R, and DEN, saving the 8288 Bus Con-
troller. The 80186, which is the only other bus master
on the shared bus, also generates these bus control sig-
nals directly. The HOLDs and HLDAs of these two
chips are connected together so that only one of the two
bus masters can exclusively drive the bus at a time un-
der the HOLD/HLDA protocol. Except for the ALE,
all bus signals including address and data lines float
when the chip does not have control of the bus. In this
design example, RDs, WRs, DT/R and DEN from the
two chips are connected together respectively. ALEs

3.1

from the two chips are connected to an OR-gate to
generate a system ALE. Multiplexed address data lines
ADO-ADI15 and address lines A15-A19 of the two
chips are also connected line by line correspondingly.

. 3.2 82586 Address Latch Interface

Figure 6 shows the timing of the address signals with
respect to the ALE signal. The ALE of the 82586 is
OR-ed with the ALE of the 80186 and the result is
connected to the latch enable inputs of Octal Transceiv-
er Latches. The latches transfer the input data to the
output as long as the latch enable is high, and captures
-the input data into the latch when the latch enable goes
low. In this timing diagram, the setup and hold times of
the input data (82586 address) required by the address
latch can be verified. Estimating 7 ns of propagation
delay in the 74532, the setup time is T38 + 7, which is
32 ns at 8 MHz. The hold time for A19 is shorter than
" the other address lines because it is valid only during
T1. The hold time for the A19 is T4 — T36 — 7, which
_is 3 ns. The hold time for the other address lines is T39
— 7, which is 38 ns. In this design, a 74F373 was cho-
sen to latch address lines A16—A19 and two 74LS373s
were used to latch address lines ADO-AD15. Required
setup and hold times of the 74F and 74LS 373s are
summerized in Table 2.

Note that address lines A16—A18 and BHE of the
82586 are not really needed to be latched. These lines
stay valid for an entire memory cycle.

2 | 13 ‘ |

SETU
74F373 AND 74LS373

| adh |
125ns
I A [—oa
)X VALID BHE, A16-A18, A20-A23
Xvaup a19 Y vaup ss
X vaLD ac-a15)|
129 0=45ns 30
0-55ns lﬂi. 0-50ns
ALE 4 | y
139
0_4;?: F"’ 45ns MIN
138
. 25ns MIN
ORED ALE 'a \
DELAY IN —] |‘+
OR GATE
<7ns@25°C
P TIME FOR HOLD TIME FOR

74F373 AND 74LS373

292010-8

Figure 6. 82586 Address Timing

1-206

intel

AP-274

Table 2. 74F and 74LS Data Setup and Hold Time Specifications at 25°C

74F373 74LS373 Unit
Min Nom Max Min Nom Max
Data Setup Time 2] 51 ns
Data Hold Time 3l 200 ns

3.3 80186 Address Latch Interface

The address latch used by the 82586 is shared by the
80186. Figure 7 shows the 80186 address line timing
with respect to the ALE. Again estimating 7 ns delay in
the 74832, the setup time for the latch is TAVAL + 7
and the hold time is TLLAX — 7. These are 37 ns and
23 ns respectively at 8 MHz. Comparing to the required
values shown in Table 2, it is quite obvious that the
setup and hold times of the latch are met by wide mar-
gins. Note that the 80186’s address lines A16-A18 and
BHE are not valid for an entire memory cycle; there-
fore, they have to be latched.

3.4 82586 Memory Interface

The 74LS373 has a delay of 18 ns for input data to
reach the output assuming the latch enable is high. A

demultiplexed valid address (output of the address
latch), therefore, becomes available after T29 + 18
measuring from the beginning of Tl (Figure 8). The
demultiplexed address remains valid until the ALE of
the next memory access becomes active. Upper address
lines, A 14 through A20, are connected to a 16L8 PAL,
which provides address decode logic for all memory
devices. The PAL truth table is in Appendix A. The
PAL has a maximum of 35 ns propagation delay, so
chip selects will become active after 55 + 18 + 35.ns
(max.) from the beginning of T1 as indicated in Figure
8. Since address decode logic is implemented by a PAL,
any memory expansion would only require a repro-
gramming of this PAL.

Two 74LS245 bus transceiver chips are controlled by
the DT/R and DEN. Output enable and disable times
of the 7418245 are 40 and 25 ns respectively. The max-
imum propagation delay when the output enable is ac-
tive is 12 ns.

- |

T2 | T3 |

74F373 AND 74LS373

TCLAY TCLAX
5-55ns "—‘ 10ns MIN
X VALID BHE, A16-A19)X
X VALID A0-A15)
TCHLH TLHLL
35ns MAX 90ns MIN []
ALE / \
TLLAX
30ns MIN
TAVAL
30ns MIN
' ORED ALE \
DELAY IN —]
OR GATE
$7ns@25°C
SETUP TIME FOR HOLD_TIME FOR

74F373 AND 74LS373
292010-9

Figure 7. 80186 Address Timing
1-207

AP-274

T4 | T | T2 | T3 | T4 | 1
Y A WY A VY A W | | Y A W |

| DELAY IN

74LS373

) {

VALID AO-A19 FROM ADDRESS LATCH

X

129 PAL DECODER
0-55ns DELAY <35 ns
CHIP SELECT FROM PAL \ Va
(‘ I:—) |eT9
20 ns MIN 10ns MIN
{ DATA mTo 82586 | X
/o-ggﬁg T42 200 ns MIN ————————>
— e
READ RD FROM 82586
T41 T44
e 122 "70-70ns T 85nsMIN ~
0-60ns o 6.{)22
ns
A T f—
R 123 T24
ov/R 0=-70ns 0=65ns
L DEN
[T31 132
0-55ns Ons MIN
DATA OUT OF 82586)————
' 123
WRITE 0=70ns T45 210ns MIN ——|
CYCLE —
WR FROM 82586
T24
0-65ns
T23 T24
0-70ns™ | O=65ns

DEN

)

292010-10

Figure 8. 82586 Memory Interface Timing

1-208

intel

AP-274
| m I 2 | T3 l T4 | 1
DELAY IN
] 74LS373
VALID AO-A19 FROM ADDRESS LATCH X
. _TCLAV PAL DECODER
5=55ns DELAY <35 ns
CHIP SELECT FROM PAL \ Va
[TOVCL | TCLDX
20ns MIN “~ 10ns MIN
{ DATA INTO 80186),
135%3,%3 TRLRH 200 ns MIN —————
READ RD FROM 80186 /
CYCLE TCLRH TRHAV
TCHCTV 10-55ns Tz: grsv MIN
10=55ns
l“m—ssns_’
-\
DT/R
TCVCTV TCVDEX
I 10-70ns 10-70ns
p— —
L DEN
[TCLDV TCLDOX
™ 10-44ns 10ns MIN
A\ DATA OUT OF 80186)__
TCVCTV
WRITE 10-70ns| TWLWH 210 ns MIN ——
CYCLE - '
WR FROM 80186
TCVCTX
5=-55ns
TCVCTV TCVCTX
10-70ns I-—> Al
— —
DEN

292010-11

Figure 9. 80186 Memory Interface Timing

1-209

intel

AP-274

Address access time is 3 X T1 — T29 — 18 — T8 —
.12 + n X T1, where n is the number of wait states. For
0 wait states operation at 8 MHz, it is 270 ns minimum.
Chip select access time is 3 X T1 — T29 — 18 — T8
— 12 + n X T1 — 35, which is 235 ns for O wait state
operation. Command access time for a read cycle is 2 X
Tl — T40 — T8 — 12 + n X TI, which is 123 ns.
Address setup time for a write cycle is T1 — T29 — 18
+ T23, which is 52 ns minimum.

To meet these timing requirements, 2764-20s must be
used for ROM. Static RAM chips, HM6264P-15; offer
very wide timing margins and were selected for this
design. :

3.5 80186 Memory Interface

Figure 9 shows the timing of the 80186 memory inter-
face. By comparing this figure to Figure 7, it is easy to
notice that the 80186 offers a little faster bus interface.
For example, TCLRL which is equivalent to T40 (0 to
95 ns) of the 82586 is specified as 10 to 70 ns. Since the
memory choice satisfies the 82586 memory timing pa-
rameters, it also satisfies the 80186 memory timing pa-
rameters.

3.6 Memory Map

With 2764-20 EPROMs and 6264P-15 SRAMs, this
board has 32 K bytes of ROM space and 16 K bytes of
RAM space. Memory map is given in Figure 10. If
27128-20 EPROMs are used, the ROM space becomes
64 K bytes.

3.7 801 86 1/0 Interface

3.7.1 82586 CHANNEL ATTENTION
GENERATION

The active low Peripheral Chip Select 0 (PCS0) was
used to generate a channel attention (CA) signal to the
82586. This way of CA generation satisfies the require-
ment that the width of a CA which must be wider than
a clock period of the system clock.

3.7.2 82586 HARDWARE RESET PORT
PCST of the 80186 will reset the 82586 if any 1/0 com-
mand is executed using this I/O chip select.

3.7.3 82530 INTERFACE

82530 interface to the 80186 was derived from the de-
sign example presented in the 82530 SCC-80186 Inter-
face Ap Brief. This document is attached to this Ap
Note as Appendix C.

OFFFFF OFFFFF
/
2 2764
PLUGGED IN
0FC000
427128
PLUGGED IN
OF7FFF
2 2764
PLUGGED IN
0F4000 i 0F0000
3FFF : ~ 3FFF ‘
16k BYTE 16k BYTE
RAM RAM
0 0 .
292010-12

Figure 10. LANHIB Memory Map

3.7.4 82501 LOOPBACK CONFIGURATION
PORT)

A 74LS74 D-type flip flop was used for this port. On
power up, it configures the 82501 to Non-Loopback
mode by providing a high level to pin 3 (LOOPBACK).
The chip select is generated from the 80186’s PCS2 and
the sychronized WR command of the 82530 interface.
The least significant bit of I/O output data becomes the
state of the 82501’s pin 3.

3.7.5 ON-BOARD INDIVIDUAL ADDRESS PORT

To provide the 82586 a hardware configured host ad-
dress, a 32x8 ROM is connected to the bus. The chip
select for this ROM is generated from the 80186’s
PCS3, so that the address for the ROM is mapped into
the I/0 space. Six or two (IEEE 802.3 specified address
lengths) consecutive I/0 reads starting from the lowest
address of ROM will transfer the board address stored
in the ROM to an IA-Setup command block of the
82586.

3.8 82586 Ready Signal Generation

82586 asynchronous ready (ARDY) signal is generated
from a shift register. The shift register provides the
82586 a “normally ready” signal. When a wait state is
needed, the ready signal is dropped to the low state. As
shown in Table 3, the 82586 can be programmed to
have O to 8 wait states by setting the DIP switch prop-
erly. Even though the on-board memory devices are

1-210

AP-274

Table 3. DIP Switch Settings for Various
Numbers of 82586 Wait States

Dip Switch Setting Number of Wait States

7 6 54 3 210 the 82586 Inserts
11 111 111 0

11 111 110 1

11 111 100 2
11111 000 3

11 11 0000 4

11 100 000 5

11 00 0 00O 6

1 0 00 0 00O 7

0 0 00O O0OOO 8

1 = Switch Open

0 = Switch Closed

fast enough for O wait states operation, this program-
mable wait state capability was added so that the effect
of wait states on the 82586 performance could be evalu-
ated.

3.9 82501 Circuits

Since the 82501 is designed to work with the 82586, no
interfacing circuits are required.

The transceiver cable side of the 82501 requires some
passive components. The receive and collision differen-
tial inputs must be terminated by 78Q0 £ 5% resistors.
Common mode voltages on these differential inputs are
established internally. 240Q *5% pull down resistors
must be connected on the TRMT and TRMT output
pins.

A 0.022 uF *10% capacitor connected between pin 1
and 2 of the 82501 is for the analog phase-locked loop.

Connected between the X1 and X2 pins is a 20 MHz
parallel resonant quartz crystal (antiresonant with 20
pF load fundamental mode). An internal divide-by-two
counter generates the 10 MHz clock. Since both Ether-
net and Cheapernet tolerate an error of only £0.01%
in bit rate, a high quality crystal is recommended. The
accuracy of a crystal should be equal to or better than
+0.002% @ 25°C and. +0.005% for 0-70°C. A
30-35 pF capacitor is connected from each crystal pin
(X1 and X2) to ground in order to adjust effective ca-
pacitance load for the crystal, which should be about
20 pF including stray capacitance.

3.10 82502 Circuits

3.10.1 ISOLATION AND POWER
REQUIREMENTS

The IEEE 802.3 standard requires an electrical isola-
tion within the transceiver (MAU). Cheapernet

(10BASE2) requires the isolation means to withstand
500V ac, rms for one minute. Ethernet (10BASES5) re-
quires 250 Vrms. This electrical isolation is normally
accomplished by transformer coupling of each signal
pair. The kind of transformers recommended for the
82502 are the pulse transformers which have a 1:1 turn
ratio and at least 50 microhenry inductance. PE64102
and PE64107 manufactured by Pulse Engineering are
found to be good selections for this purpose. The PE
64102 offers 500 Vrms isolation. The PE64107 offers
2000 Vrms isolation. Both products provide three
transformers in one package. Even though the current
Type 10BASES specification requires only 250 Vrms, it
is very common to have a higher isolation, at least 500
Vrms, in transceivers.

The standard specifies the voltage input level and maxi-
mum current allowed on the power pair of the trans-
ceiver cable. The voltage level may be between
+11.28V dc and + 15.75V dc. The maximum current
is limited to 500 mA. Since the 82502 requires + 10V
+10% and +5V +£10% as power, there has to be a
DC/DC converter. In addition the DC/DC converter
must be isolated due to the requirement described
above. The DC/DC converter should be able to supply
about 100 mA on the + 10V line and 60 mA on the 5V
line. The efficiency required in the converter is, there-
fore, ((11V X 100 mA + 5.5V X 60 mA) / ((11.28V
— 0.5A X 4Q) X 500 mA)) X 100 = 31% worst
case. 4() is the maximum round trip resistance the pow-
er pair may have. 82502’s CMOS process is the major
contributor to this low DC/DC efficiency requirement.

Since the DC/DC converter has an isolation transform-
er inside, the output voltages are all floating voltages.
The OV output of the converter, for example, has no
voltage relationship with the DTE’s ground. The Vgg
and AVgg pins of the 82502 should be connected to the
OV output of the DC/DC converter which is the
82502’s ground (reference voltage).

Both Pulse Engineering and Reliability Incorporated
produce DC/DC converters that meet the 82502’s re-
quirements. The Pulse Engineering’s part number is
PE64369 (enclosed in this design kit). The device mea-
sures about 1.5” x 1.5” x 0.5” and provides 2000 Vrms
breakdown. The Reliability’s part number is
2E12R10-5. Preliminary data sheets are available from
Reliability.

3.10.2 OTHER PASSIVE AND ACTIVE DEVICES
FOR THE 82502

A 78Q *5% resistor is required to terminate the trans-
mit pair of the Transceiver cable. The chip has an inter-
nal circuit that establishes a common mode voltage,
thus no voltage divider is required. The receive and
collision pair drivers need pull up resistors. A 43.2
+ 1% resistor must be connected from each output pin
to +5V.

1-211

intel

AP-274

A 243Q +0.5% precision resistor is required on the
REXT pin to the ground. The accuracy of this resistor
is very important since this resistor is a part of current
and voltage reference circuits in the analog sections of
the 82502.

Grounding the HBD (Heartbeat Disable) pin will allow
the chip to perform Signal Quality Error check (Heart-
beat) as required by the IEEE 802.3. The chip will
transmit the collision presence signal after each trans-
mission during Interframe Spacing (IFS) time. In a re-
peater application, this feature is disabled (HBD =
+5V). :

Diodes connected on the CXTD pin are to reduce the
capacitive loading onto the coaxial cable. One diode is
sufficient, but two will provide a protection in case one
burns out (Short Circuit). The diode should have about
2 pF shunt capacitance at Vd = OV and be able to
handle at least 100 mA when biased in forward direc-
tion. A few candidates are 1N5282, 1N3600, and
1N4150.

A 10092 fusible resistor connected on the CXRD pin is
purely for protection. It is there as a fuse, not as a
resistor. The 82502 works without this resistor. The
IEEE 802.3, however, states that “component failures
within the MAU (Media Attachment Unit or Trans-
ceiver) electronics should not prevent communication

among other MAUs on the coaxial cable.” It is recom-
mending a transceiver design that minimizes the proba-
bility of total network failure. The fusible resistor will
provide an open circuit in an event of excess current. A
short circuit from the CXRD pin to ground will not
bring down the network due to the blown fuse.

A 1 MQ resistor connected between the coaxial cable
shield and the Transceiver cable shield will provide a
static discharge path. The Ethernet coaxial cable
should also have an effective earth ground at one point
in a network as required by the standard. A 0.01 uF in
parallel to the 1 MQ resistor provides ground for RF
signals.

3.10.3 LAYOUT CONSIDERATION FOR THE
82502 CIRCUITS

It is strongly recommended that the board have a spe-
cial ground plane for the 82502 (see Figure 11). The 0OV
(reference) output of the isolated DC/DC converter
should be connected to the ground plane. The Vgg and
AVss pins of the 82502 should be connected to the
ground plane with minimum lead wires.

There should be a 0.22 wF capacitor connected between
the coaxial cable shield and ground. The signal path
from the coax. shield through the 0.22 uF capacitor to

GROUND PLANE FOR 82502

+12v +IN \SOLATED +10V
DC/DC 5V

CONVERTER
ov =N ov

vce vDD
AvCC
82502
VSs e
AVSS e

292010-13

Figure 11. Ground Plane for the 82502

1-212 ' : .

intel

AP-274

the ground should be kept as short as possible—leads of
the 0.22 wF capacitor should be as short as possible.

The path length from the CXTD pin through two di-
odes to the center conductor of the coax should also be
minimized. ’

These are recommendations which will produce a more

reliable circuit if followed carefully. Remember that the

82502 has analog circuits in it.

4.0 DEMONSTRATION SOFTWARE

The demonstration software included in this Ap Note is
called “Traffic Simulator and Monitor Station”
(TSMS) program. The TSMS program is written in
PL/M and has the following features:

1. Programmable network load generation
2. Network statistical monitoring capabilities

3. Interactive command execution of all 82586 com-
mands

4. Interactive buffer monitoring

The environment created with the TSMS program was
found to be very useful for network debugging and oth-
er individual station’s hardware and software debug-
ging. The TSMS software listing is found in Appendix
B.

NOTE:
The 82586 Date Link Driver presented in AP Note
235 also runs on the LANHIB. Please refer to the Ap
Note for detailed operations of the software.

4.1 Programming PROMs to Run the
TSMS Program

By returning the card enclosed in this kit or by contact-
ing Insite, the TSMS program and related batch files
can be obtained on a diskette. TSMS related files that
are on the diskette are:

READ.ME
TSMS.PLM
I0.PLM
INI186.PLM
LANHIB.BAT
SBC.BAT
IUPHIB.BAT
IUPSBC.BAT
HILBYT
LO.BYT
ROM.BAT

The READ.ME file contains instructions for program-
ming PROMs. HI.LBYT and LO.BYT are the files
which can be downloaded to PROMs directly. These
files are already configured for the LANHIB. The

batch file ROM.BAT invokes tlie Intel PROM Pro-
gramming Software (iPPS) under the DOS operation
system and programs two 2764 EPROMs. The Intel
Universal Programmer must be placed in ON-LINE
mode.

Other files contained in the diskette are for compiling
and locating the original TSMS program. Using these
files, the original TSMS program can be changed or can
be compiled for an iSBC 186/51. ‘TSMS.PLM’ is the
original TSMS source program. ‘10.PLM’ contains the
IO driver needed when the TSMS program is run on
the iSBC 186/51. INI186.PLM is the LANHIB initiali-
zation routine. LANHIB.BAT is the batch file that
compiles, links, and locates the TSMS program and the
LANHIB initialization routine. SBC.BAT compiles,
links, and locates the TSMS program and the IO driver
for the iSBC 186/51. IUPHIB.BAT programs two
2764s for the LANHIB. IUPSBC.BAT programs two
2764s for the iSBC 186/51.

Therefore, if the TSMS program is to be run on the
LANHIB (Demo board), steps required are:

1. C:>LANHIB
2. C:>IUPHIB

If the TSMS program is to be run on the iSBC 186/51,
steps required are:

1. C:>SBC
2. C:>IUPSBC

4.2 Capabilities and Limits of the
TSMS Program

The TSMS program initializes the LANHIB Ethernet/
Cheapernet station by executing 82586’s Diagnose,
Configure, IA-Setup, and MC-Setup commands. The
program asks a series of questions in order to set up a
linked list of these 82586 commands. After initializa-
tion is completed, the program automatically starts the
82586’s Receive Unit (monitoring capability). Trans-
missions are optional (traffic simulation capability).

The TSMS program has two modes of operation: Con-
tinuous mode and Interactive Command Execution
mode. The program automatically gets into the Contin-
uous mode after initialization. The Interactive Com-
mand Execution mode can be entered from the Contin-
uous mode. Once entered in the Continuous mode, the
software uses the format shown in Figure 12 to display
information. Detailed description of each of these fields
is as follows:

Host Address: host (station) address used in the most
recently prepared IA-Setup command. The software
simply writes the address stored in the IA-Setup com-
mand block with its least significant bit being in the
most right position. Note that if the IA-Setup com-

1-213

intel

AP-274

Host Address: 00 AA 00

Frame Length: 118 bytes

82586 Configuration Block: 08 00

of Good # of Good CRC
Frames’ Frames Errors
Transmitted Received

10130 o] 0

AhkkhRhhRhRkhRAARRhRRkokRANdN Station Configquration *uwkkrskehxhnhnakernhhss

00 18 6D
Multicast Address(es): No Multicast Addresses Defined
Destination Address: FF FF FF FF FF FF

Time Interval between Transmit Frames:
Network Percent Load generated by this station: 35.7 %

Transmit Frame Terminal Count: Not Defined

26 00 60 00 F2 00 OO0 40

khkkhkhhhhhhhhhhhhhhhhhhrrrhdh Station Activities *rkkkikkndkhhrhhkhhhhhrhhhrn

159.4 microseconds

Alignment No Receive
Errors Resource Overrun
Errors Errors
0 (V]
: . 292010-14

Figure 12. Continuous Mode Display

mand was just set up and not executed, the address

displayed in this field may not be the address stored.in .

the 82586.

Multicast Address(es): multicast addresses used in the
most recently prepared MC-Setup command. As in the
case of host address, the software simply writes the ad-
dresses stored in the MC-Setup command block. Note
that if the MC-Setup command was just set up and not
executed, the addresses displayed in this field may not
be the addresses stored in the 82586.

Destination Address: destination address stored in the
transmit command block if AL-LOC=0. If
AL-LOC=1, destination address is picked up from the
transmit buffer. The least significant bit is in the most
right position.

~Frame Length: transmit frame byte count including
destination address, source address, length, data, and
CRC field.

Time Interval Between Transmit Frames: approximate

time interval obtainable between transmit frames (Fig- '
ure 13). The number is correct if there are no other

stations transmitting on the network.

Network Percent Load Generated by This Station:
approximate network percent load that is generated by
this station (Figure 13). The number is correct if there
are no other stations transmitting on the network.

Transmit Frame Terminal Count: number of frames

this station will transmit before it stops network traffic -

load generation. If this station is transmitting indefi-
nitely, this field will be ‘Not Defined’.

82586 Configuration Block: configuration parameters
used in the most recently prepared Configure com-
mand. As in the case of IA-Setup command, the soft-

ware simply writes the parameters from the Configure
command block. The least significant byte (FIFO Lim-
it) of the configuration parameters is printed in the
most left position. ’

of Good Frames Transmitted: number of good
frames transmitted. This is a snap shot of the 32-bit
transmit frame counter. It is incremented only when
both C and OK bits of the transmit command status are
set after an execution. The counter is 32-bit wide.

of Good Frames Received: number of good frames
received. This is a snap shot of the 32-bit receive frame
counter. It is incremented only when both C and OK
bits of a receive frame descriptor status are set after a
reception. The counter is 32-bit wide.

CRC Errors: number of frames that had a CRC error.
This is a snap shot of the 16-bit CRC counter main-
tained by the 82586 in the SCB.

Alignment Errors: number of frames that had an align-
ment error. This is a snap shot of the 16-bit alignment
counter maintained by the 82586 in the SCB.

No Resource Errors: number of frames that had a no

resource error. This is a snap shot of the 16-bit no re-
source counter maintained by the 82586 in the SCB.

Receive Overrun Errors: number of frames that had a
receive overrun error. This is a snap shot of the 16-bit
receive overrun error counter maintained by the 82586
in the SCB. .

If the station is actively transmitting, # of good frames
transmitted should be incrementing. If the station is
actively receiving frames, # of good frames received
should be incrementing. In this continuous mode, a
user can see the activities of the network.

1-214

AP-274

l‘— TIME FOR ONE FRAME TRANSMISSION (X)

TIME BETWEEN
FRAMES (Y)

-]

D—C PREAMBLE, DA, SA, LENGTH, DATA, CRC)—D

Network Percent Load =

X+Y

292010-15

Figure 13. Network Percent Load

Hitting any key on the keyboard while the program is
running in the Continuous mode will exit the mode.
The program will respond with a message ‘Enter Com-
mand (H for Help) —> °. In this Interactive Com-
mand Execution mode, a user can set up any one of the
82586 action commands and/or execute any one of the
82586 SCB control commands. Setting up a Dump
command and executing a SCB Command Unit Start

command will, for example, execute the Dump com- -

mand. Display commands are also available to see the
contents of the 82586’s data structure blocks. A display
command will enable a user to see the contents of the
82586’s dump (see Section 6.3).

Typing ‘E’ after ‘Enter command (H for help) — °,
executing a SCB Command Unit Start command with a
transmit command, or executing a SCB Receive Unit
Start command will exit the Interactive Command Exe-
cution mode. The program will be back in the Continu-
ous mode. Using this Interactive: Command Execution
mode, one can, for example, reconfigure the station and
come back to the Continuous mode. Section 6 lists ac-
tual example executions of the TSMS program.

The TSMS program should be run in an 8 MHz system.
The software running at 8 MHz with a maximum of 2
wait states has been tested and verified to be able to
receive back-to-back frames separated by 9.6 microsec-
onds and still keep track of the correct number of
frames received. This capability, for example, can be
used to find out exactly how many frames a new station
in the network had transmitted.

The software does not perform extensive loopback tests
and hardware diagnostics during the. initialization. A
loopback operation can be performed interactively in
the Interactive Command Execution mode.

The software allows a user to set up only 8 multicast
addresses maximum. It is not possible with this pro-
gram to set up more than 8 multicast addresses.

The command chaining feature of the 82586 is not used
in the Interactive Command Execution mode. Each
command setup performed by a ‘S’ command after ‘En-
ter command (H for help) —> ’ sets up a command
with its EL bit set, I bit reset, and S bit reset. Diagnose,
Configure, IA-Setup, and MC-Setup commands are
chained together during the initialization routine and
executed at once with only one CA.

The software sets up 5 Receive Frame Descriptors
linked in a circular list. Therefore, a user can see only
the last 5 frames the station has received. It also sets up
5 receive buffers, each being 1514 bytes long, linked in
circle. Therefore, the 82586 never goes into the NO
RESOURCES state.

4.3 Example Executions of the TSMS
Program

This section presents three example executions of the
TSMS program. When the TSMS program needs a
command to be typed, it asks a question with ‘* —> .
Anything after * — ’ is what a user needs to type in on
the keyboard. To switch from the continuous mode to
the interactive command execution mode, type any key
on the keyboard.

4.3.1 EXAMPLE 1: EXTERNAL LOOPBACK
EXECUTION

In this example, 500 external loopback transmissions
and receptions are executed (Figure 14). In order for
the software to process each loopback properly, a large
delay was given between transmissions.

4.3.2 EXAMPLE 2: FRAME RECEPTION IN
PROMISCUOUS MODE

The 82586 is configured to receive any frame that exists
in the network (Figure 15). In this example, the station
received 100 frames.

4.3.3 EXAMPLE 3: 35.7% NETWORK TRAFFIC
LOAD GENERATION

The station is programmed to transmit 118 byte long

frames with a time interval of 159.4 microseconds in -

between (Figure 16). The network load is about 35.7
percent if no other stations are transmitting in the net-
work.

A key was hit to enter the Interactive Command Exe-
cution mode. In that mode, a Dump command was’
executed and the result was displayed. After the Dump
execution, a transmit command was set up again and
the station was put in the Continuous mode.

1-215

nte[AP-274

Traffic Simulator and Monitor Station Program

Initialization begun

Configure command is set up for default values.

Do you want to change any bytes? (Y or N) ==> Y

Enter byte number (1 = 11) ==> 4

Enter byte 4 (4H) ==> A6H

Any more bytes? (Y or N) ==> Y

Enter byte number (1 = 11) ==> 11

Enter byte 11 (BH) ==> 6

Any more bytes? (Y or N) ==> N

Configure the 586 with the prewired board address ==> N
Enter this station's address in Hex ==> 000000002200
You can enter up to 8 Multicast Addresses.

Would you like to enter a Multicast Address? (Y or N) ==> N
You entered 0 Multicast Address(es).

Would you like to transmit? . i
Enter a Y or N ==> Y
Enter a destination address in Hex ==> 000000002200

Enter TYPE ==> 0

How many bytes of transmit data?

Enter a number ==> 2

Transmit Data is continuous numbers (0, 1, 2, 3, ...)
Change any data bytes? (Y or N) ==> N

Enter a delay count ==> 10000000000

The number is too big.

It has to be less than or equal to 65535 (FFFFH).
Enter a number ==> 60000

Setup a transmit terminal count? (Y or N) ==> Y
Enter a transmit terminal count ==> 500

Destination Address: 00 00 00 00 22 00

Frame Length: 20 bytes '

Time Interval between Transmit Frames: 30.18 miliseconds
Network Percent Load generated by this station: .0 %
Transmit Frame Terminal Count: 500

Good enough? (Y or N) ==> Y

Receive Unit is active. 292010-16

Figure 14. External Loopback Execution

1-216

"ter AP-274

~-~Transmit Command Block=---
0000 at O33E

8004

FFFF

034E

2200

0000

0000

0000

Hit <CR> to countinue

transmission started!

hkkkkkhkkhkhkkkhkhkhkhkhkrkkhrok Station Configuration **xkkskdkkkkkkkkhkkkrhhrdns

Host Address: 00 00 00 00 22 00

Multicast Address(es): No Multicast Addresses Defined

Destination Address: 00 00 00 00 22 00

Frame Length: 20 bytes

Time Interval between Transmit Frames: 30.18 miliseconds

Network Percent Load generated by this station: .0 %

Transmit Frame Terminal Count: 500

82586 Configuration Block: 08 00 A6 00 60 00 F2 00 00 06

kkkkkkhkhkhkhhkhkhkhhhhhkhhkhkkhkhrkx Station Activities *rrkkkkakdkkrrdrrrhhhhhdhddn

of Good # of Good CRC Alignment No Receive
Frames Frames Errors Errors Resource overrun
Transmitted Received Errors Errors
500 500 o] o] 0 0

292010-17

Figure 14. External Loopback Execution (Continued)

1-217 ' ’

intgl AP-274

Traffic Simulator and Monitor Station Program

Initialization begun

Configure command is set up for default values.

Do you want to change any bytes? (Y or N) ==> Y

Enter byte number (1 - 11) ==> 9

Enter byte 9 (9H) ==> 1

Any more bytes? (Y or N) ==> N

Configure the 586 with the prewired board address ==> Y

You can enter up to 8 Multicast Addresses.

Would you like to enter a Multicast Address? (Y or N) ==> N
You entered 0 Multicast Address(es).

Would you like to transmit’
Enter a Y or N ==> N

Receive Unit is active.

hhhhhkhhkhhkhhRRrhhrerkrRnadd Station Configuration *kkkdkhikddhidihihidiinik
Host Address: 00 AA 00 00 18 6D '

Multicast Address(es): No Multicast Addresses Defined

82586 Configuration Block: 08 00 26 00 60 00 F2 01 00 40

khkkhhhkhhhhhhhhhhhrkhhrkdddk Station Activities *hkkkkkkkkkkhhhdhkhrhhhdhk

of Good # of Good CRC Alignment No . Receive
Frames Frames Errors Errors Resource Overrun
Transmitted Received . . Errors Errors
0 100 0 (V] 0 0

Enter command (H for help) ==> D

Command Block or Receive Area? (R or C) ==> R
Frame Descriptors:
4000 at 036C A000 at 0382 AO000 at 0398 A000 at O03AE AO000 at 03C4

0000 0000 0000 0000 0000
0382 0398 03AE 03C4 ‘ 036C
03DA 03E4 03EE 03F8 0402
2200 2200 2200 2200 2200
2200 2200 2200 2200 2200
0000 0000 0000 0000 0000

292010-18

Figure 15. Frame Reception in Promiscuous Mode

’

1-218

intal AP-274

0000 0000 0000 0000 0000

0000 0000 0000 0000 0000

0000 0000 0000 0000 0000

0000 0000 0000 0000 0000

Receive Buffer Descriptors:
C064 at O03DA C064 at 03E4 C064 at O3EE CO064 at 03F8 C064 at 0402
03E4 O3EE 03F8 0402 O03DA

040C 09F6 OFEO 15CA 1BB4

0000 0000 0000 0000 0000

05DC 05DC 05DC 05DC 05DC

Display the receive buffers? (Y or N) ==> Y

Receive Buffers:

Receive Buffer 0 :

002C:014C 00 Ol 02 03 04 05 06 07 08 09 OA OB 0OC OD OE OF
002C:015C 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
002C:016C 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
002C:017C 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
002C:018C 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
002C:019C 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D B5E S5F
002C:01AC 60 61 62 63

Hit <CR> to countinue

Receive Buffer 1 :

002C:0736 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
002C:0746 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1lE 1F
002C:0756 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
002C:0766 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
002C:0776 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
002C:0786 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
002C:0796 60 61 62 63
Hit <CR> to countinue

Receive Buffer 2 :
002C:0D20 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
002C:0D30 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1lE 1F
002C:0D40 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
002C:0D50 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
002C:0D60 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
002C:0D70 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D SE SF
002C:0D80 60 61 62 63
Hit <CR> to countinue

- Receive Buffer 3 :

002C:130A 00 01 02 03 04 O5 06 07 08 09 OA OB O0OC OD OE OF
002C:131A 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1lE 1F
002C:132A 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
002C:133A 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
002C:134A 40 41 42 43 44 45 46 47 48 49 4A 4B 4AC 4D 4E 4F
002C:135A 50 51 52 53 54 55 56 57 58 59 S5A 5B 5C 5D S5E SF
002C:136A 60 61 62 63
Hit <CR> to countinue

292010-19

Figure 15. Frame Reception in Promiscuous Mode (Continued)

1-219

nte[| AP-274

Receive Buffer 4 :

002C:18F4 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
002C:1904 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
002C:1914 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
'002C:1924 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
002C:1934 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
002C:1944 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E S5F
002C:1954 60 61 62 63

Hit <CR> to countinue

Enter command (H for help) ==> E

Khkkhkhkhhkkhkkkhhhhhhkhkkrkhk Station Cofiguration *kkkkkskkkkskkdkkdkhkhkhihikk

Host Address: 00 AA 00 00 18 6D
Multicast Address(es): No Multicast Addresses Defined
82586 Configuration Block: 08 00 26 00 60 00 F2 01 00 40

Rhkk AR RARARRERRARRRRRRRRRANRE Station Activities *hwkkkkahkhhhhdhhhhhmhhidh

of Good # of Good CRC Alignment No . Receive
Frames Frames Errors Errors Resource overrun
Transmitted Received : Errors ' Errors
0 lQO 0 o] : o] 0

: ' 292010-20°

Figure 15. Frame Reception in Promiscuous Mode (Continued)

1-220

ntel AP-274

Traffic Simulator and Monitor Station Program

Initialization begun

Configure command is set up for default values.

Do you want to change any bytes? (Y or N) ==> N

Configure the 586 with the prewired board address ==> Y

You can enter up to 8 Multicast Addresses.

Would you like to enter a Multicast Address? (Y or N) ==> N
You entered 0 Multicast Address(es).

Would you like to transmit?
Enter a Y or N ==> Y
Enter a destination address in Hex ==> FFFFFFFFFFFF

Enter TYPE ==> 0

How many bytes of transmit data?

Enter a number ==> 100

Transmit Data is continuous numbers (0, 1, 2, 3, ...)
Change any data bytes? (Y or N) ==> N

Enter a delay count ==> 0
Setup a transmit terminal count? (Y or N) ==> N

Destination Address: FF FF FF FF FF FF

Frame Length: 118 bytes

Time Interval between Transmit Frames: 159.4 microseconds
Network Percent Load generated by this station: 35.7 %
Transmit Frame Terminal Count: Not Defined

Good enough? (Y or N) ==> Y
Receive Unit is active.

-=--Transmit Command Block---

0000 at 033E

8004

FFFF

034E

FFFF .
FFFF

FFFF

0000

it <CRrR> tinue
H CR> to coun 292010-21

Figure 16. 35.7% Network Load Generation

1-221

mte_r | AP-274

transmission started!

KhkhkkhhkkAkhhkhhkkhkrdhhhhkrd Station Configuration kkkkkskddkddhdhkdkdhhhhdkk

Host Address: 00 AA 00 00 18 6D

Multicast Address(es): No Multicast Addresses Defined
Destination Address: FF FF FF FF FF FF .

Frame Length: 118 bytes

Time Interval.between Transmit Frames: 159.4 microseconds
Network Percent Load generated by this station: 35.7 %

Transmit Frame Terminal Count: Not Defined

82586 Configuration Block: 08 00 26 00 60 00 F2 00 00 40

kkhkkkhhkkkhkhhhhhkkhhhkkhrrkhkhkkrk Station Activities *hkkkkkkkhhkkkhhhkhhhkhhhhk

of Good # of Good CRC Alignment No ~ Receive
Frames Frames Errors Errors Resource ' Overrun
Transmitted Received Errors Errors

10459 0 0 0 0 0

Enter command (H for help) ==> H

" Commands are:

S - Setup CB . D - Display RFD/CB

P - Print SCB C - SCB Control CMD
L - ESI Loopback On N - ESI Loopback Off
A - Toggle Number Base

Z -~ Clear Tx Frame Counter

Y - Clear Rx Frame Counter

E - Exit to Continuous Mode

Enter command (H for help) ==> S

Enter command block type (H for help) ==> H
command block type: ‘

N - Nop . I - IA Setup

C - Configure M - MA Setup

T - Transmit R - TDR

D - Diagnose S - Dump Status

H - Print this message

Enter command block type (H for help) ==> S

Enter command (H for help) ==> C

Do you want to enter any SCB commands? (Y or N) ==> Y
Enter CUC ==> 1

Enter RES bit ==> 0

Enter RUC ==> 0
Issued Channel Attention

Enter command (H for help) ==> D

292010-22

Figure 16. 35.7% Network Load Generation (Continued)

1-222

nte[AP-274

Command Block or Receive Area? (R or C) ==> C
-=--Dump Status Command Block---
A000 at 0364
8006
FFFF
27D6

Dump Status Results
at 27D6

00 E8 3F 26 08 60 00 FA 00 00O 40 FF 6D 18 00 00
AA 00 40 20 00 00 00 00 FF FF FF FF B5 9E EE CF
62 63 3F BO 00 00 00 00 00 00 00 OO0 FF 85 08 FC
00 00 00 OO 00 OO 00 00 00 OO0 00 OO 70 03 06 00
DC 05 00 00O oOC 04 DC 05 E4 03 DA 03 DA 03 78 05
82 03 6C 03 F8 03 64 80 D6 27 E8 21 FF FF 4E 03
06 80 FF FF 64 03 00 00 D2 02 00 00 OO 00 OO0 OO0
00 00 D6 27 00 01 OO 28 00 00 00 00 30 26 00 OO
20 00 40 06 30 01 OO0 OO 90 00 10 01 00, K 00 6C 03
00 00 6A 03 OE 00 6C 28 00 OO0 74 03 00 00 00 OO

00 00 00 00 00 CO 00 0O 00 OO

Enter command (H for help) ==> S

Enter command block type (H for help) ==> T
Enter a destination address in Hex ==> FFFFFFFFFFFF

Enter TYPE ==> 0

How many bytes of transmit data?

Enter a number ==> 100

Transmit Data is continuous numbers (0, 1, 2, 3, ...)
Change any data bytes? (Y or N) ==> N

Enter a delay count ==> 0
. Setup a transmit terminal count? (Y or N) ==> N

Destination Address: FF FF FF FF FF FF

Frame Length: 118 bytes

Time Interval between Transmit Frames: 159.4 microseconds
Network Percent Load generated by this station: 35.7 %
Transmit Frame Terminal Count: Not Defined

Good enough? (Y or N) ==> Y
Enter command (H for help) ==> C

Do you want to enter any SCB commands? (Y or N) ==> Y
Enter CUC ==> 1

Enter RES bit ==> 0

Enter RUC ==> 0

Issued Channel Attention

292010-23

Figure 16. 35.7% Network Load Generation (Continued)

1-223

intel

AP-274

Host Address: 00 AA 00 00 18 6D
Multicast Address(es):
Destination Address:

Frame Length: 118 bytes

Transmit Frame Terminal Count:
82586 Configuration Block: 08

of Good # of Good CRC
Frames Frames Errors
Transmitted Received

106020 o . (]

Time Interval between Transmit Frames:
Network Percent Load generated by this station: 35.7 %
Not Defined

00 26 00 60

*kkkkkkhkhkkkhkkhkkhhkkkrkhkhdk Station Configuration *#kkkkkkdkkkkkhhkhhhihdkhks

No Multicast Addresses Defined -
FF FF FF FF FF FF

kkkhhhhhhhhhkhrkhhkhhhkhkkhrk® Station Activities *xkkkkkkkkdhhrkkhhkhhkhkhhhk

Alignment No Receive

Errors Resource Ooverrun

, Errors Errors

0 0 0)
292010-24

159.4 microseconds

00 F2 00 00 40

Figure 16. 35.7% Network Load Generation (Continued)

5.0 IN CASE OF DIFFICULTY

This section presents methods of troubleshooting (*de-
bugging”) a LANHIB board. When a LANHIB board
is powered up with the TSMS program stored in
EPROMs, it should display “TRAFFIC SIMULA-
TOR AND MONITOR STATION PROGRAM”
message on a terminal screen. If the message is not
displayed, the board has to be debugged. Section 5.1
describes basic 80186/82586 system troubleshooting
procedures. Section 5.2 is for troubleshooting 82501
and 82502 circuits. After the 80186/82586 system is
debugged, the 82501/82502 circuits have to be tested.

5.1 Troubleshooting 80186/82586
System

Shown in Figure 17 is a flow chart for troubleshooting
80186/82586 system. The procedure requires an oscil-

loscope. A logic analyzer is needed if problems appear -

to be serious. The procedures will debug the board to
the point where the 82530 is initialized properly. If the
82530 can be initialized properly, ROM and RAM in-
terfaces must be functioning. Board initialization rou-
tines (INI186.PLM) linked to the TSMS program re-
quires ROM and RAM accesses. Since the 82586
shares most of the system with the 80186, no special
debugging is required for the 82586. Wiring of all
82586 parallel signal pins should, however, be checked.

The flow chart branches to two major paths after the
first decision box. One path debugs the RS-232 channel

and the other debugs the 80186/82586 system. The
waveform of the TRXCB output of the 82530 deter-
mines which path to be taken. If the 82530 is getting
programmed properly, there should be 153.6 KHz
(1/f = 6.51 ps) clock on this output pin. If there is a
clock, the problem is probably in the RS-232 interface.
If there is no clock, then the system has to be debugged
using a loglc analyzer.

5.2 Troubleshooting 82501/82502

Circuits

If the TSMS program runs on the LANHIB but the
82586 is not able to transmit or receive, there must be a
problem in 82501/82502 circuits. The flow chart in
Figure 19 will guide troubleshooting in these circuits.
An oscilloscope is required.

The board should be configured to Cheapernet and dis-
connected from the network. Two terminators will be
required to terminate a “T” BNC connector providing
an effective load resistance of 25 to the 82502.

The 82586 must have the system and transmit clocks
running upon reset. Since the transmit clock is generat-
ed by the 82501, the 82501 transmit clock output pin
(pin 16) should be checked. The TSMS program exe-
cutes 82586’s Diagnose, Configure, IA-Setup, and MC-
Setup commands during initialization. If the 82586 has
active CRS (Carrier Sense) signal, it cannot complete
execution of these commands. The 82501 should, there-
fore, be checked if it is generating inactive CRS signal
to the 82586 after power up. The LANHIB powers up
the 82501 in non-loopback mode.

1-224

intel

AP-274

After making sure that the 82501 is generating proper
signals to the 82586, the TSMS program is restarted
with an initialization shown in Figure 20. The 82586 is
configured to EXT-LPBK =1, TONO-CRS=1, and
MIN-FRM-LEN=6. The chip is also loaded with a
destination address identical to the source address. If
there are no problems in the 82501/82502 circuits, the
station will be receiving its own transmitted frames. If
problems exist, the station will only be transmitting.

mitting regardless of the state of carrier sense. The
82501/82502 circuits can then be probed with an oscil-
loscope at the locations indicated in Figure 21. Probing
will catch problems like wiring mistakes, missing load
resistors, etc.

Once the station is debugged, it can be connected to the
network. If there is a problem in the network, the
82586’s TDR command can be used to find the location
and nature of the problem.

Since the 82586 is configured to TONO-CRS (Trans-
mission On NO Carrier Sense), the chip will keep trans-

‘ START ’

y

ves | 1S "TRAFFIC SIMULATOR AND | o
MONITOR STATION PROGRAM"
MESSAGE ON CRT?

A4 A

(HAVE AN OSCILLOSCOPE READY)
y

(START DEMO ’

YES J USING AN OSCILLOSCOPE.

SQUARE WAVE?

CHECK CLOCK WAVEFORM ON THE
TRXCB PIN(PIN 26) OF THE 82530

IS IT 153.6 KHz (1/f=6.51 usec.)

NO

(A LOGIC ANALYZER

CHECK RS=232 DRIVER &
RECEIVER CHIPS. ARE THEY
CONNECTED PROPERLY? NOTE
THAT THE 1488(75188)
REQUIRES +12V & =12V AND
THAT THE 1489(75189)
REQUIRES ONLY +5V.

v

CHECK RS=232 DCE & DTE
CONNECTIONS. THE LANHIB IS
A DCE AND AN ASCII TERMINAL
IS A DTE. ONLY PIN2(TXD),
3(RXD), AND 7(GROUND) ARE
USED.

CHECK CONFIGURATION OF THE
ASCIl TERMINAL. BAUD RATE
SHOULD BE SET TO 9600.
ALSO 8 BITS/CHAR, NO PARITY,
AND 2 STOP BITS/CHAR.

START DEMO

MAY BE REQUIRED.)
v

CHECK CLOCK WAVEFORM ON THE
FOLLOWING PINS:

1. CLKOUT PIN(PIN 56) OF 80186
THIS SHOULD BE 8 MHz 50% DUTY
CYCLE MOS CLOCK.

2. CLK PIN(PIN 32) OF 82586.

THIS CLOCK IS PROVIDED BY 80186.

3. CLK PIN(PIN 20) OF 82530.

THIS SHOULD BE 4 MHz CLOCK.

v

CHECK SIGNAL LEVELS OF THE FOLLOWING
80186 INPUT PINS.
1. RES PIN(PIN 24) SHOULD BE HIGH
AFTER POWER UP RESET.
2. NMI PIN(PIN 46) SHOULD BE LOW.
3. SRDY PIN(PIN 49) SHOULD BE HIGH.
4. ARDY PIN(PIN 55) SHOULD BE HIGH.
5. HOLD PIN(PIN 50) SHOULD BE LOW.
82586 IS NOT INITIALIZED YET.

292010-25

Figure 17. Flowchart for 80186/82586 System Troubleshooting

1-225

nte[AP-274

CONNECT A LOGIC ANALYZER ON THE
MULTIPLEXED BUS. _
1. CONNECT AD15-ADO, ALE, RD, WR, ROMHI
ROMLO, RAMHI, RAMLO, AND CS PIN(PIN 33)
OF 82530.
2. USE CLKOUT OF 80186 TO CLOCK THE G
LOGIC ANALYZER. SAMPLE DATA ON RISING '
EDGES.
3. TRIGGER THE LOGIC ANALYZER ON ALE CHECK RS=232 DRIVER &
BECOMING HIGH. RECEIVER CHIPS. ARE THEY
CONNECTED PROPERLY? NOTE
SHOWN IN FIGURE 18 IS AN EXAMPLE OF A THAT THE 1488(75188)
LOGIC ANALYZER TRACE. COMPARE WHAT'S REQUIRES +12V & =12V AND
OBTAINED TO THE ONE IN FIGURE 18. THAT THE 1489(75189)
IF DIFFERENT, POSSIBLE PROBLEMS ARE: REQUIRES ONLY +5V.
1. HIGH BYTE EPROM AND LOW BYTE EPROM
ARE SWAPPED.) t
2. ADDRESS/DATA LINES ARE NOT CONNECTED CHECK RS=232 DCE & DTE
PROPERLY. o
3. ADDRESS DECODE PAL IS NOT PROGRAMMED iogCNEEiRghLSN 1’;&:‘#2‘:"‘3":;_
PROPERLY. IS A DTE. ONLY PIN2(TXD),
ste. 3(RXD), AND 7(GROUND) ARE
l USED. '
CHECK IF 82530 IS GETTING INITIALIZED PROPERLY ‘
ON THE LOGIC ANALYZER. TRY OTHER LOGIC ' CHECK CONFIGURATION OF THE
ANALYZER TRIGGERING EVENT, e.g. CS PIN(PIN 33) ASCII TERMINAL. BAUD RATE
OF 82530 BECOMING LOW. , SHOULD BE SET TO 9600.
MAKE SURE THERE IS 153.6 KHz(1/f=6.51 usec.) ALSO 8 BITS/CHAR, NO PARITY,
SQUARE WAVE ON TRXCB(PIN 26) OF 82530. AND 2 STOP BITS/CHAR.
© oo)
292010-26 ' 292010-27

Figure 17. Flowchart for 80186/82586 System Troubleshooting (Continued)

1-226

AP-274

AD15=AD0
ALE

RD#

WR#
ROMHI#
ROMLO#
RAMHI#
RAMLO#
CS# PIN (PIN 33) OF 82530

THESE ARE MEMORY CHIP SELECTS

)
ﬂ

0097 00 41 01001111
0098 00 41 01001111
0099 00 41 01101111

TRIG 00 41 11101111 LOGIC ANALYZER IS TRIGGERED ON ALE =HI.
0101 FF FO 01001111 80186 JUMPS TO FFFOH AFTER RESET
0102 06 EA 00101111 JMP INSTRUCTION (DIRECT INTERSEGMENT)
0103 06 EA 00101111 SEGMENT OFFSET =0006H

0104 06 EA 00101111 SEGMENT SELECTOR =FFCOH

0105 06 EA 00101111 (80186 INSERTS 3 WAIT STATES BEFORE
0106 06 EA 00101111 UMCS REGISTER IS PROGRAMMED.)

0107 06 EA 11101111
0108 FF F2 01101111
0109 CO 40 00101111
0110 CO 00 00101111
0111 CO 00 00101111
0112 CO 00 00101111
0113 CO 00 00101111
0114 CO 00 11101111
0115 FF F4 01101111
0116 FF FF 00101111
0117 FF FF 00101111
0118 FF FF 00101111
0119 FF FF 00101111
0120 FF FF 00101111
0121 FF FF 11101111
0122 FF F6 01101111
0123 00 40 00101111
0124 00 00 00101111
0125 00 00 00101111
0126 00 00 00101111
0127 00 00 00101111
0128 00 00 11101111
0129 FC 06 01101111 JUMPED TO FCO6H
0130 2E FA 00101111
0131 2E FA 00101111
0132 2E FA 00101111
0133 2E FA 00101111
0134 2E FA 00101111
0135 2E FA 11101111
0136 FC 08 01101111
0137 16 8E 00101111

0138 16 8E 00101111 292010-28

Figure 18. Example of Logic Analyzer Trace.

1-227

ntel

AP-274

—

‘ START ’

v

THE BOARD IS CONFIG!

DISCONNECT COAX. PUT TERMINATORS ON
BOTH ENDS OF "T" CONNECTOR. MAKE SURE
URED TO CHEAPERNET.

v

YES

r

RUN TSMS PROGRAM. |

UPON POWER UP, DOES
82501 GENERATE:
1. 10MHz TxC AND RxC
TO 825867
2. INACTIVE CRS
TO 825867

NO

!

YES

WHEN A TRANSMISSION IS
ATTEMPTED, DOES THE TSMS'
PROGRAM DISPLAY ""NO
CARRIER SENSE" MESSAGE?

NO

A 4

A 4

A\ 4

POWER DOWN AND RE-
START TSMS PROGRAM
WITH 82586 CONFIGURED
T0:

1. EXT=-LPBK=1

2. TONO=CRS =1

3. MIN-FRM=LEN =6
EXECUTE LOOPBACKS BY
USING DESTINATION ADDR

82501/82502 CIRCUITS
MUST BE WORKING O.K.

IF THE STATION IS STILL
NOT RECEIVING, CHECK
STATION'S DESTINATION
AND SOURCE ADDRESSES,
CONFIGURATION OF 82586.

MAKE SURE THE 82501 IS
POWERED UP IN NON=-
LOOPBACK MODE.

TRANSMIT ONLY A FEW
DATA BYTES.

SAME AS SOURCE ADDR.

A 4

AN EXAMPLE EXECUTION
IS SHOWN IN FIGURE 20.

RECEIVING WHILE IT'S
A PROBLEM. PROBE
SHOWN IN FIGURE 21.

PROBLEM.

IF THE STATION IS NOT
TRANSMITTING, THERE IS
SIGNALS AT LOCATIONS

IT'S PROBABLY A WIRING

(BOARD SHOULD BE FUNCTIONAL.)

292010-29

Figure 19. Flowchart for 82501/82502 Circuits Troubleshooting

1-228

nte[AP-274

Traffic Simulator and Monitor Station Program

Initialization begun

Configure command is set up for default values.

Do you want to change any bytes? (Y or N) ==> Y

Enter byte number (1 - 11) ==> 4

Enter byte 4 (4H) ==> A6H

Any more bytes? (Y or N) ==> Y

Enter byte number (1 - 11) ==> 9

Enter byte 9 (9H) ==> 08H

Any more bytes? (Y or N) ==> Y

Enter byte number (1 - 11) ==> 11

Enter byte 11 (BH) ==> 6

Any more bytes? (Y or N) ==> N

configure the 586 with the prewired board address ==> N
Enter this station's address in Hex ==> 000000002200
You can enter up to 8 Multicast Addresses.

Would you like to enter a Multicast Address? (Y or N) ==> N
You entered 0 Multicast Address(es).

Would you like to transmit?
Enter a ¥ or N ==> Y
Enter a destination address in Hex ==> 000000002200

Enter TYPE ==> 0

How many bytes of transmit data?

Enter a number ==> 2

Transmit Data is continuous numbers (0, 1, 2, 3, ...)
Change any data bytes? (Y or N) ==> N

Enter a delay count ==> 0

Setup a transmit terminal count? (Y or N) ==> N

Destination Address: 00 00 00 00 22 00

Frame Length: 20 bytes

Time Interval between Transmit Frames: 159.4 seconds
Network Percent Load generated by this station: 11.0 %
Transmit Frame Terminal Count: Not Defined

Good enough? (Y or N) ==> Y

292010-77

Figure 20. TSMS Initialization for 82501/82502 Circuits Troubleshooting

1-229

oee-t
SUN2JID 20528/1.0528 Bulqo.d 1.2 ainb14

1 10V
+12v ISOLATED o
POWER
ov SUPPLY ki
A}
1MQ, 1/4W, 750V (MIN) j'(——-‘
W AAS ' E 0.1 uF
5 0.01 uF, 2Kk 0.1 uF
) n ! 8 9| 16 1o|
$2400-$2400 Vss AVss Ve AVge
13 2 14 500
TRMT TRMT Voo TERMINATOR
L] []
o} 7o $78a
pu—— | —
el 16 v rwT 2 2L oxof2 N CONNECTOR
ASY
It
0.22 uF
o £ 2 rxp ‘5 0.22 uF 430 =
. ot L1 P 82502 o hi2 A $ 500
e e RXC 82501 . R ” ETC 444 TERMINATOR
82586 s, " ESt 3780 3430 rusmkc
RS R I | 1/8
) \ RV RV
i _ 13
Fof ot / 45 Nep—
% 430
|28 \ 15—
12
RTS TEN CLSN f—eisn "
’ s ° o < HBD
PBK S780 $430 !
(8 P Slersn
1
2430
0.5%

LPBK COMMAND
FROM 1/0 PORT

NOTE:
Numbers are probing sequence.

292010-30

vie-dv

AP-274

APPENDIX A
LANHIB SCHEMATICS
PARTS LIST
PAL EQUATIONS
DIP SWITCH SETTINGS
WIRE WRAP SERVICES

1-231

cec-t

Parallel Resonant Crystal.
H.

PARTS LIST
HER. TFR.
REFERENCES DESCRIPTION PART NO copE | OTY.
U1 C 4S OBD
u22 C 4LS04 OBD
EERT) C 415245 | OBD
|_US C 4F 373 OBD
| _U6.U? C 4LS373 OBD
us C 80186 INT
C 2586 INT
C 6L OBD
C 415082 OBD
. _U27 C 4LS7? 4 OBD
C 4nS7? 4 OBD
U C 4LS165 OBD
Ui4 C 250 INT
U1s ulse Transformer Pack PE64102 P
U1 C 8250 INT
U17 C/DC Converter PE64369 P
uig. u29a C. 64K-Bit EPROM 2764-20 INT
| _U26 C ?4A OBD
u22. U2z C. SRAaN HM6264-15 | HIT
u24 C. 256-Bit PROM BP18S0830 | T1
|_u2s C 4AS04 OBD
u29 C 253 INT
U C 48 OBD
U C 48 OBD
U C. 1M-Bit EPROM (Optional) 7218 INT
R1-R3. R6& esistor. 18K ohm. 1/4U. SZ conL OBD
R1S. R206
R4 Resistor. 180K ohm. 1/4W. SZ COML OBD
RE Resistor. .2K _ohm, 174U, Sz conL OBD
R RE. R12 Resistor. ?8.7 ohm. 1/8W. 1% COML OBD
R9. R10@ Resistor. 240 ohm. 1/4U. SZ COML OBD
R11 Resistor. 1M ohm. 1/4U. comnL OBD
750Udc (mind). S%
R13-R16 Resistor. 43.2ohm 1/8W. 12 COML OBD 4
R17 Resistor. 108 ohm. Fusible conL RCD 1
1/84. Sz
R1 Resistor. 243 ohm. 1/8WU. ©8.5%Z CoML OBD
| R21. R22 Resistor. SK ohm. 1/4U. SZ conL OBD
RP Resistor Pack. 1K ohm. 16 pin CONnL OBD
R23-R26 Resistor. 1K ohm. 1/4U. SZ% conL OBD 4
Ci. C2 Capacitor. pF. 18BU. S% COML BD
C3 Capacitor. uF. 208y COML BD
C4. CS Capacitor. pF. 100V, 5% COML BD
c Capacitor. 822uF. Sev COML BD
C Capacitor. BuF. Seu COML BD
C11.C12 Capacitor. 8.81uF. SeV conL OBD
Ci10 Capacitor. B81uF. 2KV COML - OBD
C8. C9 Capacitor. ©.22uF. 50U COML BD
CR1 Diode 1NS14 BD
CR2. CR3 Diode . 1N5282 BD
Y1 Parallel Resonant Crustal. conL BD
161 Hz
%2 COML OBD 1

P17 +12v
P1-8
P1-3[> o +50 —<] P1-81
Pl-4[> ' P1-82
P1-5 12.2uF 22uF 1 22uF P1-83
Pi-6 [200 15V [~ 150 Pi-84
P1-1[> GND $—<]P1-75
P1-2 P1-76
P1-11 2. 2uF P1-85
P1- = P1~
1-12 200 86
-2V <] P1-79
L_ri-se
POHER SUPPLY CONNECTIONS.
NOTES: 1. THE BOARD REQUIRES +SVU, +12U, AND -12V.

MULTIBUS POHER PINS FOR THE
GROUND ARE SHOWN ABOUE .

EACH IC SHOULD HAVE A ©.1uf
POUER PIN AND GROUND PIN.

SE VUOLTAGES AND

‘CAPACITOR BETWEEN
PARTS LIST DOES
CITORS.

NOT INCLUDE DECOUPLING CAPA
nIR.
CODE MANUF ACTURE

LOCATION

INT INTEL CORPORATION

SANTA CLARA. CA

HIT HITACH AMERICA LTD.

SAN _JOSE. CA

OBD ORDER BY DESCRIPTION
CANY COMMERCIAL
CCOML> SOURCE)>

PE PULSE ENGINEERING

AN DIEGO. CA

RCD RCD COMPONENTS INC.

ANCHESTER. NH

T1 TEXAS INSTRUMENTS

ALLAS. TX

292010-78

vle-dv

gge-L

+5Y
686ARDY [P 21 N
P 3.41 RS
[} 2.2K '
SYS _CLK s2 R26
e5u INT P 2,61 | ik
RESET-U1 26
74L504 . RE
[y 38fca Lox 74F373
> 34RESET NN/ T 2 2 {10 1}z EEEFAL
3ZaRDY/SRDY 20 20 it feLekar
R 121 IS a 16 P23
Y i5]en eo) 14 -
cicoutfe Ao <] se A 15
larDY INT® LS
S g 2l pear— L
TRiNTe ars 5 so 11]e” S A1E 3 17 RARHT]
e 3 i i
E 2
.mm [4::3] I—— E1) us o oo 22
ESTLPER (P21 14 74LS373
TAROH P41 | 214 ap1s3 [1p 1a A1k
ADS
PC3E 14 AD144 |5y 20 AL4
LPs1 4 ADS ATEd 30 3a A RAMBUS (p 4]
LPel ape I [aD126 14 a0 A
DRG1_[PS) T ITINER P 2
DRGE_CP51 o ea
a4 ADS 171,y +q LS ROMBUS (p
5y a[i9_aD3 ADB 18] ap aa) —_——1
20_AD2 sori]S® P
f21an1 4
22 e T4 ue 4
AD3 415373
ZHTrRIN AD2 an73 1D 10287
THRING AD1 L ADE p 2alf 4
2 : ADE ? gn ga (6_as X
Fapas | 2p 325 as
a
b1 ab5 155y o126
b T ab214]ep eq[li5a
| aD11715p 2a f
)| AD@ 18 |gp gg[19A8
G011 i
ADBUSS L8021l oc ADDRESS
i3 t —
==2celw ::zcaz” u? (P 3.4.6.6)
7415245 74L5245
2 3
ans 2 [a; B1]le_ D8 apg 2 a1y p1 |18 Do DATA _(p 2.3.4.5.61
ADS 3 A2 B2 DS AD1 3
<> AD 4 a3 33 o) aD2 4
+5U AD a4 Ba 1 &TE
ool a0 22l o
. A6 B6 L33
2 1N914 R4 AD14 a7 B7 |12 AD6
ert 100k AD1G ag Be |l b-an7
u Lt _1pir
EX Y-S
u3

292010-79

v.le-dv

vee-t

+SY S86ARDY . (P11 -
RP1 ¥ :1; ¥
RS R10
1kOHRS : a 240 240 [:(;PX—B
2 2
C 2 P1-7 cit
165BUS 5 14]S TISR {2
— E R7 ETHCON PE6 4369 ® 1uf
X 5 L[ls +12v 1 [12u1eU3__18u2
3 e wHLZ 28 LN 210 . sula__su2] c12
1 = @ 1uF
suz - 1Y — ba |t c? 2lenp euls__GND2 e
s1 RCU T1.0uF
~——— SH/LD 2 u1?
1elisl1alisli2l11l10)s Sd CTRTRA . R11
——to 1 3
741504 < u13 RS -8 ’
1HEG
S86ALE (P11 S 8 LLE $ T
> 78 3 A LN
S¥S CLK [P1.5) u2 - TRAT - ’ @ 0tuF
82501 PE64102 w62502
L4 14)y TRMT|LS_TRNT, ! T_2[TRnT REXT] 1 L Ri8,
N vz £ f uss[®
30pF < 243
= & R12 ausg9
. £s. T 20HHZ 13 fyn < 28
TRAT |18_TRAT, ¢ |2 2 T 3 [TRAT cxtiis 1 5%
38pF "
Pr _BBETxC 6 lFxc w
5 0.22uF
o0k, ITEN
S86TxD A
{ 1 rcu s __RCUL 4 R 4| RCY uDD|14
S86SB (py; 1 [ee | A R14, \
T -023uF . -2 P
2 2 ®cu [s__RCU s : - s [RCU NC|13
SSeRt 3_IRxC :
| SSECRS 12 CLSN ? c_7lcisN cxk#
S86RxXD <D CLSN Tr1s R16, ucc|ie BNC |2
b—2seeoT —‘-vv—-‘] avcg
43.2 43.2 T
2_ILPBR TLSH 8 T 6 [CTSN HED
74L504 741574 ™ ; u16
RESET _(P1.2.51 S l> £ 2 Js als s c8
+SU1 JF : e F
De u2 2y ;8 22
3 T e
74LS02 P
ESTLPBK__(P13| 11 '3 o1 1N5222 1NS282
TATCH-EN _(PS1| 12) U11 iy 2 1y 2 XTD
. CR2 CR3
L R17. XRD
. 100
DATA
__A_U_J. »R26 (P13)

292010-80

vi2-dv

gee-t

DATA (D1S-DB) (p1.4)

ADDRESS (Al14-A1) (P1.43
. 2764-28
- 2764-20 2764-20
2764-20 ° a1 elhe o0 :_ ®lhe 0@
:g A1 01 = ! g;
CEN 2 02 -
e T o [EIey e b oo o
A6 s o5 |17 DS AE s os|1? DS}
4 A7 4 6 06 D6 : : 6 06 gg
6 A8 3 1o oo |19 D7 3 a7 07 _
":s zi rd ‘: 25 e
9
) 1 A 1hie su
1 SV) 3 :? upp| Ll _*SY A 3nyy UPPHL*
) 12 : 32 ja12
Q1426115 A13
RORLO20 Jeg — O 295 Yo iggg{:
22 —RY 22
27 IpGH 27 B8R u21
u1s u2e |
RD (P1.4.51

ROMBUS (P13

292010-81

vle-dv

9€c-t

ADDRESS _ (A13-A1)

+5U
(P11 DATA (D15-D8)
s 1
R19 R20)
10K 10K .
2 HNE264P-1 2 HHB26.4P 15 TBP185030
26 [cs> 108 s 4 26[co> to8 p7] D7 - aalta___as
2 _la12 107 4 ! 2 _la12 107 D6 § D6 < as ad)
23 la11 108 23 a11 106 i & s 63 3
- 1la1e 108 21 a1 108 D4 § D4 " a1 2
4las 104 24l0o 104 53 § D3 4 Jos a0 1
AS _25]as 103 D 25las 103 D2 § 02 3 oo
b ¢ Ao - 102 D9 3 laz 102 D1 & D1 2 1oy
87 _4 las 101 D8 4 lae 101 Do § De T loo
b 3 < AG <
| As 4 AS 2 5 .
A 3 [Y) 3 u24
A3 o5
2 2
A2 1 —a5 2
A @ lne Y] a
7
ANAT 20 A
22,
u22
RD tP1.3.53
OR (P1.5)

RAMBUS (p13

292010-82

vle-dv

Al

DATA Q?-W)
TATCH-EN (P 23 CONNECTOR
®D_cp 13 10 b
74AS04 3
RESET [P 13 1 l!> 2 RESET 82530 1488 L r
D74
p———1 DB?
74A508 vansos 2° }-2687 | pae > T1°
UR 12 b €3 _Ipps
4 24AS74 D438 | ppg o
3 a }-032_Ipps El 4o
—L 4T) D239 [pp2> o
74A504 27 (D11 |pp; D
SYS CLK & 3 3 T Le D848 | ppo U3e o
P 11 SR o
36
u2s 028 2 gg -
PTSE p 11 4 [205QP ADDRESS a2 _34]a 5
FE§E——F_|(P 135 | u26)& Y cssessies TxDB}-25. 114
e I a1 329¢ RxDB |27 124
24LS74 s Jtmr 6a CONNECTOR
3 9 e oo 8a 1
Q =3 13A 2
4 RSB 1 18A 3
+5U D 10 ROV REGR CTSH p22 1488 SA r
11] [A 30 | REV/REGE mo_g L2 | 113 |
027 2 _l1ex T 28 r
£ _l1eo 5 |
741574 24532 20 lcrLk v29 = s
4 s ols 12
+5U 1de 13) ur 11 1 14
2
’ T & U31
027
Su4-1 R23 R23
Su4-3 1K
74A574 A R24 . pog
+5Y R E DRG1 CP 13 1K
T T R2S
74Rs04 |_12]p 2 R2E5
9 8 o le 1K
sHa (1615 T T T Ts
V26 U35 1 13]12[1 1]10)
74LS74 ROY/REGE
+5Y 3 a2 S38CLK
| SNE
_fg INTAT P 13
SYS CLK [P 13 [L8
u12
R21 ; R21, +5U
6K
74RS504
INT1 P 13 12 13 r22 ; R22
U286 B SK
74AS04
DRGO [P 1) 18 i1
u2e

292010-83

vie-dv

ntef _ AP-274

OPTIONAL 1MEG (64Kx16) WORD-MIDE EPROM
ADDRESS (A16-A1) DATA (D15-DB)

ROMBUS (pi13

292010-84

Module Addr.dec
Title 'LANHIB Address Decode Logic
Kiyoshi Nishide Intel Corp. March, 1986'

"Declarations
PALL device) 'PleL8' ;
A0, Al4, Al5 pin i 1, 2, 3;
Als, Al7, Al8 ~ pin - 4, .5, 63
Al9, BHE) pin 7, 83
HLDA, S2 pin 9, 11;
RAMLO, RAMHI - pin 18, 17;
ROMLO, ROMHI pin 19, 12;
ROM pin 13;
R104 ‘ pin 16;

Equations
!ROMHI = Al5 & Al6 & Al7 & Al8 & Al9 & (HLDA # S2) & R104;

!ROMLO !A15 & Al6 & Al7 & Al8 & Al9 & (HLDA # S2) & R104;

!ROM = Al7 & Al8 & Al9 & (HLDA # S2) & !R104;

!RAMHI = !Al4 & !Al15 & !Al6 & !ALl7 & !Al8 & !Al9 & !BHE & (HLDA # S2);
{RAMLO A0 & !Al4 & !ALS & !Al6 & !AL7 & !Al8 & !A19 & (HLDA # S§2);

I

End Addr_dec

PAL Equations

1-238

intel

AP-274

DIP SWITCH SETTINGS FOR

VARIOUS OPERATIONS

sw3
“1” indicates ON (Switch is closed). 87654321
“0” indicates OFF (Switch is open). 2764-20 EPROMs OXXXXXXX
“X” indicates Don’t Care. 27210 EPROM 1 XXXXXXX
1. To configure the board to Ethernet or Cheapernet: 4. Dip Switch Setting Examples:
87?&332 1 Comment SW3 Sw4
87654321(87654321
Ethernet XX000000
. 1) To run the TSMS Program |0X111111|XXXX0010
Che\apernet XX111111 I;?r;sécggl:r: ;::Le should from the 2764-20 EPROMs
. in Cheapernet Configuration|)
2. To run the TSMS program or the Data Link Driver 2) To run the TSMS Program |0X000000|XXXX0010,
program: : from the 2764-20 EPROMSs
Sw4 in Ethernet Configuration
87654321 Comment
3) To run the TSMS Program |1X111111]XXXX0001
TSMS Program |XXXX0001|TSMS program uses or the Data Link Driver
or the 82530 in program from the 27210
Data Link Driver Asynchronous Polling EPROM in Cheapernet
Program mode. Data Link Driver Configuration
program uses the
825830 in 4) To run the TSMS Program |1X000000|XXXX0001
Asynchronous Polling or the Data Link Driver
and Vectored Interrupt program from the 27210
modes. EPROM in Ethernet
Configuration

3. To select the 2764-20 EPROMs or 27210 EPROM:

1-239

5. Dip Switch SW2 programs the number of wait states
for the 82586 (see Table 3).)

intel

AP-274

COMPANIES OFFERING WIRE WRAP SERVICES

AUGAT
Interconnection Systems Division |

40 Perry Avenue
P.O. Box 1037
Attleboro, MA 02703
(617) 222-2202

100935 South Wilcrest Drive
Houston, TX 77099
(713) 495-3100

Automation Delectronics Corporation

1650 Locust Avenue
Bohemia, NY 11716
(516) 567-7007

dataCon, Inc.

Eastern Division

60 Blanchard Road
Burlington, MA 01803
(617) 273-5800

Mid-Western Division -
502 Morse Avenue
Schaumburg, IL 60193
(312) 529-7690

Western Division

20150 Sunburst Street
Chatsworth, CA 91311-6280
(818) 700-0600

South-Western Division
1829 Monetary Lane
Carrollton, TX 75006
(214) 245-6161

European Division

In der Klinge 5

D-7100 Heilbronn, West Germany
(01731) 217 12

DATAWRAP

37 Water Street
Wakefield, MA 01880
(617) 938-8911

Elma/EMS
A Division of Sandberg Industries

Berkshire Industrial Park
Bethel, CT 06801
(203) 797-9711

1851 Reynolds Avenue
Irvine, CA 92714
(714) 261-9473

3042 Scott Boulevard
Santa Clara, CA 95054
(408) 970-8874

WRAPEX Corporation

96 Mill Street
‘Woonsocket, RI 02895
(401) 769-3805

1-240

mte[AP-274

APPENDIX B
SOFTWARE LISTINGS—TSMS PROGRAM AND
LANHIB INITIALIZATION ROUTINE

1-241

AP-274

/ e TR 22 *n/

/# ®/
/% Traffic Simulator/Monitor Station Program ¥/
44 . for 186/586 High Integration Board and */
/# iSBC 186/51 ®/
/% */
/% Ver. 1.0 December 17, 1784 */
/% . . */
/% Kiyoshi Nishide Intel Corporation #/
/% ®/

/B3 AT A 3 A A T3 I F 33 I TSI FE I U3 30 I I 3893 T3 I 33 I 66U MR

/% This software can be conditionally compiled to work on the iSBC 18&6/51 or
on the LANHIB. If ‘set(SBC1B84651)’ is added to the compiler call statement,
this source program will be compiled for the iSBC18651. #/

tsms:

d;u

declare main label public;

/# literals #/

$IF SBC18651

declare lit ‘ literally ‘literally’,
true lit ‘1’,
false 1it ‘0’,
forever lit ‘while 1’,
1SCP$LOCSLO lit ‘OFFFOH’,
ISCPS$LOCS$HI 1it ‘0’,
SCBS$BASESLO E 1it ‘0’,
SCB$BASES$HI X 1it ‘0’,
CASPORT lit ‘OCBH’,
BOARDSADDRESS$BASE 1it ‘OFOH’,
INTS$TYPES$S586 lit ‘20H’,
INTSTYPESTIMERO lit ‘30H’,
INTSCTLSTIMERO lit ‘OFF32H’,
INTS$7 lit ‘27H’,
PICSMASK$130 lit ‘OE2H’,
PICSMASKS186 1it ‘OFF28H,
ENABLE$586 lit ‘OFEH’,
ENABLE$586$186 lit ‘OEEH’,
PICSEOI®130 lit ‘OEOH’,
EQISCMDO$130 lit ‘60H‘,
EOI$CMD4$130 lit ‘64H',
PICSEQIS$186 lit 'OFF22H’,
EOISCMDO$186 1it ‘0’
PICSVTR®186 lit ‘OFF20H’,

292010-31

Traffic Simulator/Monitor Station Program

1-242

AP-274

TIMEROSCTL lit
TIMEROSCOUNT lit
MAXS$COUNTS$A lit
CA lit
ESISPORT lit
NOSLOOPBACK lit
LOOPBACK lit

$ELSE

declare lit literally
true lit
false lit
forever lit
ISCPSLOCSLO lit
1SCPSLOCSHI lit
SCB$BASESLO lit
SCB$BASES$HI lit
CASPORT lit
BOARDSADDRESS$BASE 1it
INT$TYPES$586 . lit
INT$TYPESTIMERO lit
INTSCTLS$TIMERO lit
PICSMASK$186 lit
ENABLE$586 lit
ENABLE$586%$18&6 lit
PIC$EDIS$186 lit
EOISCMDOs$186 lit
EQI$SCMD4s186 lit
TIMEROSCTL lit
TIMEROSCOUNT lit
MAX$COUNTSA 1lit
ca lit
ESI$PORT lit
NOSLOOPBACK lit
LOOPBACK lit

$ENDIF

$IF NOT SBC18651
/# System Configuration Pointer
declare scp structure

sysbus byte,
unused (5) byte,
iscpsaddr$lo word,
iscpsaddr$hi word
)

at (OFFFF&H) data (0, O,

$SENDIF

‘OFF5&H,
‘OFFSOH‘,
'OFF52H‘,
‘0,
‘OCBH’,
‘8,

‘0’

‘literally’,
‘17, :
‘0’
‘while 17,
‘O3FFBH ',
‘0’,

‘0,

‘0,
‘8000H*,
‘8180H,
‘127,
‘8,
‘OFF32H,
‘OFF28H’,
‘OEFH’,
'OEEH,
‘OFF22H ",
‘127,

‘a8,
‘OFFS6&6H ",
‘OFFS0H ",
‘OFF52H‘,
‘0,
‘8100H,
‘1%

‘0’

*/

0, 0, 0, O, ISCP$LOCSLO,

/% Intermediate System Configuration Pointer #/

ISCP$LOCSHI);

292010-32

Traffic Simulator/Monitor Station Program (Continued)

1-243

AP-274

1 declare iscp$ptr pointer,
iscp based iscp$pt
(

busy byte, /#
unused byte, /%
scb$o word, /%

scb$b (2) word /%
)i

/® System Control Block #/

1 " declare scb structure
<
status word, /
cmd word, /

‘cblsoffset word, /
rpasoffset word, /

crcserrs word, /
alnserrs word, /
rscéerrs word, /

ovrn$errs word /
)i

/# 82586 Action Commands #
/% NOP #/
1 declare nop structure
4

status word,

cmd word,
link$offset word
)i

/% Individuval Address Setu
1 declare iassetup structure
<

status word,

cmd word,
link$offset word,
iasaddress (&) byt
)i

/% Configure #/
1 declare configure structur
(

status word,

cmd word,
link$offset word,
bytescnt byte
info (11) byte

)i

T structure

set to 1 by CPU before its first CA to 5864,
cleared by 586 after reading ainfo from 1t #/
unused #/ >
offset of system control block */

base of system control block #/

cause(s) of interrupt, CU state, RU state =/
int acks, CU cmd, RESET bit, RU cmd #/

offset of first command block in CBL #/

offset of first packet descriptor in RPA %/
crc error encounterd so far #/

#* alignment errors #/

No resources %/

OVeTTUNn erTors #/

p */

292010-33

Traffic Simulator/Monitor Station Program (Continued)

1-244

AP-274

10

11

12

13

14

15

/% Multicast Address Setup #/

declare mc$setup structure
4
status word,
cmd word,
linksoffset word.
mc$bytescount word,

mcsaddress (48) byte /# only 8 MC addresses are allowed %/

Vi

/% Transmit #/

/% This transmit command is made of one transmit buffer descriptor and one

1518 bytes long buffer. #*/
declare transmit structure
¢

status word,

cmd word,
link$offset word,
bd$offset word,
dest$adr (6) byte,
type word

)i
/# Transmit Buffer Descriptor #/
declare tbd structure

¢

act$count word,

link$offset word,

ad0 word,

adl word

)i

/# Transmit Buffer #/

declare txsbuffer (1518) byte;

/# TDR #/
declare tdr structure
(

status word,

cmd word,
linksoffset word,
result word

)i

/# Diagnose #/

declare diagnose structure
(

292010-34

Traffic Simulator/Monitor Station Program (Continued)

1-245

AP-274

17

18

19

20

21

) declare status word,

status word,

cmd word,
link$offset word
)i

/% Dump Status #*/
declare dump structure
(

status word,

cmd word,
link$offset word,
bufféptr word

)i

/% Dump Area %/

declare dump$area (170) byte;

/% Frame Descriptor #/

/# Receive frame area is made of 5 RFDs,
buffers. #/

declare vfd (5) structure
(

status word,

elé$s word,
link$offset word,
bdsoffset word,
dest$adr (3) word, -
srcsadr (3) word,
type word

)i

/% Receive Buffer Descriptor #/
declare rbd (5) structure
(
act$count word,
nextbdlink word,
ad0 word,
adl word,
size word
)i
/% Receive Buffer #/
declare rbuf (5) structure
(buffer (1514) byte);

/%:-global variables #*/

S RBDs,

and 5 1514 bytes long

/% UART status #/

292010-35

Traffic Simulator/Monitor Station Program (Continued)

1-246

AP-274

22
23
24
25
26
27
28
29

30

31

32

N o

actual word,

csbuf (80) byte,
dhex byte,

ch byte at (@csbuf),
charscount byte,
receivescount dword
count dword,
preamble word,
addressslength byte,
adsloc byte,

crc byte,

goback byte,

reset byte,

delay word,
curscbsoffset word,
current$frame byte,
nostransmission byte,
stopscount dword,
stop byte,

mc$count byte,

2z byte,

y byte;

/% external procedures #/

read: procedure (a, b, ¢, d, e)
declare (a, c) word,

(b, d, e) pointer;
end read;

write: procedure (a, b, c,
declare (a, c) word,

(b, d) pointer;
end write;

csts: procedure byte external;
end cstsi
/% utility procedures #/

offset: procedure (ptr) word;

/# This procedure takes a pointer variable (selector:offset),

absolute address, suvbtracts

/% actual number of chars UART transferred #/
/% buffer for a line of chars #/
/% number base switch %/

/% counter for received frames #/

/% counter for transmitted frames %/

/% preamble length in word #/

/% address length in byte #/

/% address location control of 82086 #/
/% crc length */

/% if set, go back to Continuous Mode #/
/% reset flag #/

/% delay conunt for tranmission delay #/
/% offset of current command block */

/% offset of frame descriptor just used #/

/% transmit terminal frame count #/

external;

d) external;

calucuvlates an
the 82586 SCB offset from the absolute address,

and then returns the result as an offset value for the 82586. #/

declare (ptr, ptr$loc) pointer,
base586 dword,
w based ptr$loc

ptrs$loc = @ptr;

(2) word;

/% B2586 SCB Base Address (20-bit wide in this 1B6 based system) #/

292010-36

Traffic Simulator/Monitor Station Program (Continued)

1-247

ntel

AP-274

a3
34
3s

36

37

38

39

40

41

42

43

a4

45

47
48

49

nn

n

VL]

Nooor

-

N ARDLWRNRN N

base586 = (shl(double (iscp. sch$b(1)), 16) and OOOFOOOOH) + iscp. scb$b(0);

return low((shl(double (w(1)),

4) + w(0)) ~ base586);

end offset;

writeln: procedure (a. b, c. d)i

/% This groce'dure writes a line and put a CR/LF at the end. #/

declare (a, c) word,
(b, d) pointer;

call write(a, b, ¢, d);
call write(0, @(ODH, OAH), 2, @status);

end writeln;

cr$lf:. procedure;
/# This procedure writes a CR/LF. #/
call write (0, @(ODH, OAH), 2, @status);

end crslf;

pause: procedure;

/# This procedure breaks a program flow, and waits for a char to be typed. #/
call write(O, @(ODH, OAH, ‘Hit <CR> to countinue’), 23, @status);
call read(1, @csbuf, 80, @actual, @status);
call crs$lf;

end pause;

skip: procedure byte;

/% This procedure skips all leading blank characters and returns the first
non-blank character. #/ .

declare i byte;

i =0;

do while (c$buf(i) = * *);
i=4i+ 4

end;

return i;

end skip;

readschar: procedure byte;
292010-37

Traffic Simulator/Monitor Station Program (Continued)

1-248

AP-274

S8
59
60
61

62

63

64
&5
&7
69
70
71
72

73

74

75
76
77
78

80
82
83

84

85

86

87
89
90
91

U VNUWWRN R

N NN R

-

n

IR AR ANANANARAT SR

-

noun N

/% This procedure reads a line and returns ther first non-blank character. */
declare i word;

call read(1, @csbuf, B0, @actual, @status);

i = skip;

return(csbuf(i));

end read$char;

reads$bit: procedure byte;
/% This procedure reads a bit and Tteturns the value. */
declare b byte;

do forever;
b = reads$char;

if b = ‘1’ then return 1,
else
if b = ‘0’ then return O;
else
call write(O0, @(’ Enter a 0 or 1 ==> ‘), 20, @status);

end;

end read$bit;

yes: procedure byte
/% This procedure reads a character and determines if it is a Y(y) or N(n). */
declare b byte;

do forever;
b = read$char; ,
if (b = ‘Y’) or (b = ‘y’) then return true
else
if (b = ‘N’) or (b = ’‘n’) then return false
else

call write(O, @(ODH, OAH, ‘ Ent<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>