
386 SOFTWARE TOOLS
PL/M 386 Software Package

• Systems Programming Language for
the Protected Virtual Address Mode
386

• Upward Compatible with PL/M 286,
PL/M 86, and PL/M 80 Assuring
Software Portability

C 386

• Implements Full C Language and New
Extensions

• Produces High Density Code Rivaling
Assembler

• Supports Intel Object Module Format
(OMF)

386 Relocation, Linkage and Library Tools ASM 386
• Provides System Development

Capability for High-Performance 386
Applications

• Allows Creation of Multi-User Virtual
Memory, and Memory-Protected
Systems

• Instruction Set and Assembler
Mnemonics Are Upward Compatible
with ASM 286 and ASM 86

• Type~Checking at Assembly Time Helps
Reduce Errors at Run-Time

~ f5 PROTECTED, MULTI-

/~ @ ~i '~
OPERATING SYS~EM ~ "\

SOFTWARE ,.....0:-.....,
/ TARGET

~~ SYSTEM

261637-1

Figure 1, Development Environment Tools for the 386

386 Software tools are available on industry standard hosts, including VAXIVMS, PC· DOS, and XENIX·

1·1
November 1986

Order Number: 231637·002

inter 386 Software Tools.

ASM 386
• Instruction Set and Assembler

Mnemonics Are Upward Compatible
with ASM 286 and ASM 86 .

• Powerful and Flexible Text Macro
Facility

• Type-Checking at Assembly Time Helps
Reduce Errors at Run-Time

• Structures and Records Provide
Powerful D~ta Represel"ltation

• "High-Level" Assembler Mnemonics
Silnpllfythe LanSiuage

• Supports Full Instruction Set of the
386, Including Memory Protection 'and
Numerics .

• Supports 286 Addressing Modes

ASM 386 is the "high-level" macro assembler for the 386 assembly language. ASM 386 translates symbolic
assembly language mnemonics into relocatable object code. The assembler mnemonics are a superset of
ASM 286/86/88 mnemonics; new ones have also been added to support the new 386 instriJctions. The
segmentation directives have been greatly simplified.

The 386 assembly language includes approximately 275 instruction mnemonics. From these few mnemonics
the assembler can generate over 40,000 distinct machine instructions. Therefore, the software development
task is simplified, as the programmer need' know only 275 mnemonics to generate all possible machine
instructions. ASM 386 will generate the shortest machine instruction possible (given explicit information as to
the characteristics of any forward referenced symbols).

The powerful macro facility in ASM 386 saves development and maintenance time by coding common pro
gram sequences only once. A macro substitution is made each time the sequence is to be used. This facility
also allows for conditional assembly of certain program sequences.

ASM 386 offers many features normally found only in high-level languages. The assembly language is strongly
typed, which means it performs extensive checks on the usage of variables and labels. This means that many
programming errors will be detected when the program is assembled, long before it is being debugged.

ASM 386 object modules conform to a thorough, well-defined format used by all 386 high-level languages and
utilities. This means.it is easy to call (and be called from) HLL object modules.

SUPPORT

Hotline Telephone Support, Software Performance Report.(SPR), Software Update, Technical Reports, and
Monthly Technical Ne~sletters are available.

ORDERING INFORMATION
Part Number

X286ASM386
D86ASM386

Documentation Package

Description

386 Assembler
386 Assembler

ASM 386 Assembly Language Reference Manual
ASM 386 Macro Assembler Operating Instructions for XENIX· 286 Systems
ASM 386 Pocket Reference for XENIX 286 Systems

·XENIXTM is a trademark of Microsoft.

1-2

Operating
Environment

286/310XENIX· System
PC-DOS 3.0 or greater

386 Software Tools

386 RELOCATION, LINKAGE ANDLIBRARV TOOLS
• System Development Capability for

High-Performance 386 Applications

• Allows creation of Multi-User, Virtual
Memory, and Memory-Protected
Systems

• System Utilities for Program Linkage
and System Building

• Package Supports Program
Development with ASM 386, PL/M 386,
C 386, Ada 386 and FORTRAN 386.

The 80386 is a 32-bit microprocessor system with 32-bit addressing, integrated memory protection, and
instruction pipelining for high performance. The 386 Relocation, Linkage, and Library Tools are a cohesive set
of software design aids for programming the 386 microprocessor system. The package enables system pro
grammers to design protected, mUlti-user and multi-tasking operating system software, and enables applica
tion programmers to develop tasks to run on a protected operating system.

The 386 Relocation, Linkage and Library tools include a program binder (for linking separately compiled
modules together), a system builder (for configuring protected multiple-task systems), a cross reference map
per, a program librarian, and the 287/387 support library.

APPLICATION
SOFTWARE

DEBUGGERS:
ICET,"MONITOR. ETC.

Figure 1. Development Environment Tools for the 386

1-3

261637-2

386 Software Tools

386 SYSTEM BUILDER
• Supports Complete Creation of

Protected, Multi-task Systems

• Resolves PUBLIC/EXTERNAL
. Definitions (between protection levels)

• Supports Memory Protection by
Building System Tables, Initializing
Tasks, and Assigning Protection Rights.
to Segments

• Creates a Memory Image of a 386
System for Cold-start Execution

• Target System may be Boot-Ioadable,
Programmed Into ROM, or loaded from
Mass-store.

• Generates Print File with Command
Listing and System Map

BLO 386 is the utility thatlets system programmers configure multi-tasking, protected systems from an operat
ing system and discrete tasks. The Builder generates a cold-start execution module, suitable for ROM-based
or disk-based systems.

The Builder accepts input modules from .386 translators or the 386 Binder. It also accepts a "Build File"
containing definitions and initial values for the 386 protection mechanism - descriptor tables, gates, segments,
and tasks. BL0386 generates a Loadable or bootloadable output module, as well as a print file with a detailed
map of the memory-protected system.

Using the Builder command Language, system programmers may perform the following functions:

- Assign physical addresses to segments; also set
segment access rights and limits.

- Create Call, Trap, and Interrupt "Gates" (entry
points) for inter-level program transfers.

- Make gates available to tasks; this is an easier
way to define program interfaces than using in
terface libraries.

- Support Page tables for boot files.

- Create Global (GOT), Interrupt (lOT), and any Lo-
cal (LOT) Descriptor Tables.

1-4

- Create Task State Segments and Task Gates for
multi-task applications.

- Resolve inter-module and inter-level references,
and perform type-checking.

- Automatically select required modules from li
braries.

- Configure . the memory image into partitions in
the address space.

- Selectively generate an object file and various
sections of the print file.

inter 386 Software Tools

386 BINDER
• Links Separately Compiled Program • Resolves PUBLIC/EXTERNAL Code and

Modules Into an Executable Task Data References, and Performs

• Makes the 386 Protection Mechanism Intermodule Type-Checking

Invisible to Application Programmers • Provides Print File Showing Segment

• Works with PL/M 386, C 386, FORTRAN Map, Errors and Warnings

386 and ASM 386 Object Modules • Assigns Virtual Addresses to Tasks in

• Performs Incremental Linking with the 232 Address Space

Output of Binder and Builder • Generates Linkable or Loadable Module
for Debugging

The Binder is the only utility an application programmer needs to develop and debug an individual task. Users
of the Binder need not be concerned with the architecture of the target machine, making application program
development for the 386 very simple.

BND 386 combines 386 object modules into executable tasks. In creating a task, the Binder resolves Public
and External symbol references, combines segments, and performs address fix-ups on symbolic code and
data.

The Binder takes object modules written in ASM 386, PL/M 386, C 386 and FORTRAN 386 and generates a
loadable module (for execution or debugging), or a linkable module (to be re-input to the Binder later; this is
called incremental binding). The binder accepts library modules as well, linking only those modules required to
resolve external references. BND 386 generates a print file displaying a segment map and error messages.

The Binder will be used by system programmers and application programmers. Since application programmers
need to develop software independent of any system architecture, the 386 memory protection mechanism is
"hidden" from users of the Binder. This allows application tasks to be fully debugged before becoming part of
a protected system. (A protected system may be debugged, as well.) System protection features are specified
later in the development cycle, using the 386 System Builder. It is possible to link operating system services
required by a task using either the Binder or the Builder. This flexibility adds to the ease of the 386 utilities.

1-5

inter 386 Software Tools

80287 SUPPORT LIBRARY
• Library to support floating point

arithmetic in C 386, PL/M 386, ADA 386,
ASM 386, and FORTRAN 386

• Decimal conversion module supports
binary-decimal conversions

• Supports proposed IEEE Floating POint
Standard for high accuracy and
software portability

• Common elementary function library
provides trigonometriC, logarithmic and
other useful functions

• Error-handler module simplifies floating
point error recovery

The 80287 Support Library providesC 386, PLIM 386, ADA 386, ASM 386 and FORTRAN 386 users with
numeric data processing capability. With the Library, it is easy for programs to do floating point arithmetic.
Programs can bind in library modules to do trigonometric, logarithmic and other numeric functions; and the
user is guaranteed accurate, reliable results for all appropriate inputs. Figure 1 below illustrates how the 80287
Support Library can be bound with PL/M 386 and ASM 386 user code to do this. The 80287 Support Library
supports .the Proposfild IEEE Floating Point Standard. Consequently, by using this Library, the user not only
saves software development time, but is guaranteed that the numeric software meets industry standards and
is portable-the software investment is maintained. .

The 80287 Support Library consists of the common elementary function library (CEL287.LlB), the decimal
conversion library (DC287,LlB), the error handler module (EH287.LlB) and interface libraries (80287.LlB),
(NUL287.LlB). . .

B.PLM

A.PLM

m~:tTI~~ ~~~!~:fJTHETA) REAL OOERNAL.:
ENDmqerTNH:

DECLARE (INPUT VALUE, OUTPlrr VALUE) REAL;

INPliT VAlUE"O.62;/or .. t Vlllu."/
OU'WUT VAlUE=mq.rnlH(INPUT VALUE);

6:~,501~ ;:t3!" test Input, OUTPUT VALUE Is about

D.ASM

C.ASM
~T~\:.[XTRN mu.t appear outsld. of all SECMENT~ENDS

tXTllN mqer TNH: FAR

INPUT VALUE DQ(~O.62) ;lnltlglllgtlDn r. 0 t .. t
:volut

OUTPUT VALUE DO ?

;~r;~~":~~~t~~~.dnUt~":.~:~tt~it~bLc:t~(tt
;variable.

FlO INPUT VALUE :laod tI" pcram.ter Into the 80287
:stock

~t~ OU'\P~~~AlUE ~~~ \1111" hl"p;:::I~~~~~:nt~.
:602811tock

:W1th Ih. last Input, OUTPUT VALUE II now about
;-0.55112803

ASM-386

COMPILED
SOURCE MODULES

ASSEMBLED
SOURCE MODULES

80287 SUPPORT
LIBRARY

Figure 2. Use of 80287 Support Library with PL/M 386 and ASM 386.

1-6

LINKED USER
OBJECT MODULE

231637-3

386 Software Tools

386 MAPPER
• Flexible Utility to Display Object File

Information

• MAP 386 Selectively Purges Symbols
from a Load Module .

• Provides Inter-Module Cross
Referencing for Modules Written in All
Languages

• Supports OS Information

• Mapper Allows Users to Display:
Protection Debug
Information Information
SEGMENT MODULE

TABLES NAMES
GATE PROGRAM

TABLES SYMBOLS
PUBLIC LINE

ADDRESSES NUMBERS

The cross-reference map shows references between modules, simplifying debugging. The map also lists and
controls all symbolic information in one easy-to-read place.

386 LIBRARIAN
• Fast, Easy Management of 386 Object

Module Libraries

• Only Required Modules Are Linked,
When Using the Binder or Builder

•. Librarian Allows Users to: Create
Libraries, Add Modules, Replace
Modules, Delete Modules, Copy
Modules from Another Library, Save
Library Module to Object File, Create
Backup, Display Module Information
(creation date, publics, segments)

Program libraries improve management of program modules and reduce software administrative overhead.
(386 Librarian provides efficient use of program libraries.)

SUPPORT:

Hotline Telephone Support, Software Performance Report (SPR), Software Updates, Technical Reports, and
Monthly Technical Newsletters are availabl~.

ORDERING INFORMATION:
Part Number Description

X286RLL386 386 Relocation, Linkage and Library Tools

VVSRLL386 386 Relocation, Linkage, and Library Tools

D86RLL386 386 Relocation, Linkage, and Library Tools

Documentation Package

386 Utilities User's Guide for Xenix' 286 System
386 System Builder User's Guide for Xenix· 286 System
80287 Support Library Reference Manual

'XENIX is a trademark of Microsoft.

1-7

Operating
Environment

286/310 XENIX' System

VAXIVMS 4.3 and Later

PC-DOS 3.0 or Greater

386 Software Tools

PL/M 386 SOFTWARE PACKAGE
• Systems programming language for the

protected virtual address mode 386

• Upward compatible with PL/M 286,
PL/M 86 assuring software portability

• Enchanced to support design of
protected, multi-user, multi-tasking,
virtual memory operating system
software

• Produces relocatable object code
which is linkable to object modules
generated by all other 386 language
translators

• Advanced, structured system ..
implementation language for algorithm
development

• Supports Intel Object Module Format
(OMF)

PL/M 386 is a powerful, structured, high-level system implementation language for the development of system
software for the protected virtual address mode 386. PL/M 386 has been enhanced to utilize 386 features
memory management and protection-for the implementation of mUlti-user, multi-tasking virtual memory oper
ating systems.

PL/M 386 is upward compatible with PL/M 286, PLlM 86 and PLIM 80. Existing systems software can be re
compiled with PLIM 386 to execute in protected virtual address mode on the 80386.

PL/M 386 is the. high-level alternative to assembly language programming on the 80386. For the majority of
386 system programs, PL/M 386 provides the features needed to access and to control efficiently the underly
ing 386 hardware and consequently it is the cost-effective approach to develop reliable, maintainable system
software. .

The PL/M 386 compiler has been designed to efficiently support all phases of software development. Fea
tures such as a built-in syntax checker, multiple levels of optimization, virtual symbol table and four models of
program size and memory usage for efficient code generation provide the total program development support
needed.

FEATURES

Major features of the Intel PLIM 386 compiler and
programming language include:

Structured Programming

PL/M source code is developed in a series of mod
ules, procedures, and blocks. Encouraging program
modularity in this manner makes programs more
readable, and easier to maintain and debug. The
language becomes more flexible by clearly defining
the scope of user variables (local to a private proce
dure, for example).

The use of modules and procedures to break down
a large problems leads to productive software devel
opment. The PL/M 386 implementation of block
structure allows the use of REENTRANT proce
dures, which are especially useful in system design.

1-8

Language Compatibility

PL/M 386 object modules are compatibtewith .ob
ject modules generated by all other 386 translators.
This means that PL/M programs may be linked to
programs written in any other 386 languages.

Object modules are compatible with In-Circuit Emu
lators; DEBUG compiler control provides the In-Cir;
cuit Emulators with full symbolic debugging capabili
ties.

PL/M 386 language is upward compatible with PLIM
286, PL/M 86 and PL/M 80 so that application pro
grams may be easily ported to run on the protected
mode .80386.

inter 386 Software Tools

Supports Fourteen Data Types Numerics Support

PLIM makes use of fourteen data types for various
applications. These data types range from one to
eight bytes and facilitate various arithmetic, logic,
and addressing functions:

-BIT(n): 1 to 32 bit unsigned number

-BYTE: 8 bits unsigned number

-HWORD: 16 bits unsigned number

-WORD: 32 bits unsigned number

-DWORD: 64 bits unsigned number

-OFFSET: 32 bits memory address

-CHARINT: 8 bits Signed nUl1Jber

-SHORTINT: 16 bits signed number

-INTEGER: 32 bits signed number

-LONGINT: 64 bits signed number

-REAL: 32 bits floating-point number

-SELECTOR: 16 bits segment name

-POINTER: 48 bits selector, offset

-LONG REAL: 64 bits floating-point number

Another powerful facility allows the use of BASED
variables which permit run-time mapping of variables
to memory locations. This is especially useful for
passing parameters, relative and absolute address
ing, and dynamic memory allocation.

Data Type Compatibility

PL/M 286 programs may be recompiled and retar
getted to the 386 by use of the WORD16 control.
With this control, PL/M 386 provides transparent ac
cess to the seven data types provided by PLIM 286.

Two Data Structuring Facilities

In addition to the 14 data types and based variables,
PL/M supports two powerful data structuring facili
ties. These help the user organize data into logical
groups.

- Array: Indexed list of same type data elements

- Structure: Named collection of same or different
type data elements

- Combinations of both: Arrays of structures or
structures of arrays and structures within struc
tures.

1-9

PLIM programs that use 32-bit REAL data are exe
cuted using the 80287 Numeric Data Processor for
high performance. All floating-point operations sup
ported by PL/M are executed on the 80287 accord
ing to the IEEE floating-point standard. PLIM 386
programs can use built-in functions and predefined
procedures-INIT$REAL$MATH$UNIT, SET$REAL
$MODE, GET$REAL$ERROR, SAVE$REAL$
STATUS, RESTORE$REAL$STATUS-to control
the operation of the 80287 within the scope of the
language.

Built-In Port 1/0

PLIM 386 directly supports input and output from
the 386 ports for Single BYTE, HWORD and WORD
transfers. For BLOCK transfers, PLIM 386 programs
can make calls to predefined procedures.

Interrupt Handling

PL/M 386 has the facility for generating and han
dling interrupts on the 386. A procedure may be de
fined as an interrupt handler through use of the IN
TERRUPT attribute. The compiler will then generate
code to save and restore the processor status on
each execution of the user-defined interrupt handler
routine. The PL/M statement CAUSE$INTERRUPT
allows the user to trigger a software interrupt from
within the program.

Protection Model '

PL/M 386 support the implementation of protected
operating system software by providing built-in pro
cedures and variables to access the protection
mechanism of the 386. Predefined variables
TASK$REGISTER, LOCAL$TABLE, MACHINE$
STATUS, CONTROL$REGISTER, etc.-allow'direct
access and modification of the protection system.
Untyped procedures and functions-SAVE$
GLOBAL$TABLE, RESTORE$GLOBAL$TABLE,
SAVE$INTERRUPT$TABLE, RESTORE$INTER
RUPT$TABLE, CLEAR$TASK$SWITCHED$FLAG,
GET$ACCESS$RIGHTS, GET$SEGMENT$LlMIT,
SEGMENT$READABLE, SEGMENT$WRITABLE,
ADJUST$RPL-provide all the facilities needed to
implement efficient operating system software.

386 Software Tools

Complier Controls
The PLIM 386 compiler offers controls that facilitate
such features as:
.-.:. Interface to other 386 languages

- Optir:nization
- Conditional compilation
- The inclusion of additional PL/M source-files

from disk
- Cross-reference of symbols
- Optional assembly language code in the listing

file
- The setting of overflow conditions for run-time

handling.
- WORD16/WORD32
.-.: Interface to 286 languages

Addressing Control
ThePLlM 386 compiler uses the SMALL and COM
PACT controls to generate optimum addressing in
structions for programs. Programs of any size can
be easily modularized into "subsystems" to exploit
the most· efficient memory addressing schemes.
This lowers total memory requirements a:nd im
proves run-time execution of programs.

Code Optimization
The PLiM 386 compiler offers four levels of opti
mization for significantly reducing.overall program
size .
- Combination or "folding" of constant expres

sions; and short-circuit evaluation of Boolean ex
pressions

- "Strength reductions": a shift left rather than
multiply by 2; and elimination of common subex
pressions within the same block

- Machine code optimizations; elimination of su
perfluous branches; removal of 'unreachable
code

- Optimal local register allocation ,

Error Checking
The PL/M 386 compiler has a very powerful feature
to speed up compilations: If a syntax or program er
ror is detected, the compiler will skip the code gen
eration and optimization passes. This usually yields
a 2X performance increase for compilation of pro
grams with errors.

A fully detailed and helpful set of programming and
cOmpilation error messages is provided by the com
piler and user's guide.

Cost-Effective Alternative to Assembly Language
PL/M 386 programs are code efficient. PLIM 386 combines all of the benefits of a high-level language (ease
of use, high productivity) with the ability to access the 386 architecture. Consequently, for the development of
systems software, PLIM 386 is the cost-effective alternative to assembly language programming.

Support
Hotline Telephone Support, Software Performance Report (SPR), Software Updates, Technical Reports, and
Monthly Technical Newsletters are available.

ORDERING'INFORMATION
Part Number

X286PLM386
D86PLM386

Documentation Package

Description

PL/M 386 Compiler
PL/M 386 Compiler

PL/M 386 User's Guide for Xenix· 286 System

'XENIX is a trademark of Microsoft.

Operating
Environment

XENIX· 286/310
PC-DOS 3.0 or Greater

inter 386 Software Tools

C 386
C COMPILER FOR THE 386

• Implements full C Language • Supports IEEE Floating Point Math with

• Produces High Density Code Rivaling 80287 Coprocessor

Assembler • Supports Bit Fields

• Supports Intel Object Module Format • Supports Full Standard I/O Library
(OMF) (STDIO)

• Written In C

Intel C 386 brings the full power of the C programming language to the 386 microprocessor system. Intel C386
supports the full C language as described in the Kernighan and Ritchie book, "The C Programming Lan
guage", (Prentice-Hall, 1978). Also included are the latest enhancements to the C language: structure assign
ments, functions taking structure arguments and returning structures, and the "void" and "enum" data types.

Intel C 386 Compiler Description

The C 386 compiler operates in several phases: preprocessor, parser and code generator. The preprocessor
phase interprets directives in C source code, including conditional compilations (# define). The parser phase
converts the C program into an intermediate free form and does all syntactic and semantic error checking. The
code generator phase converts the parser's output into an efficient intermediate binary code, performs con
stant· folding, .. and features an extremely efficient register allocator, ensuring high quality code. The code
generator outputs relocatable Intel Object Module Format (OMF) code, without creating an intermediate as
semblyfile. The C386 compiler eliminates common code, eliminates redundant loads and stores, and resolves
span dependencies (shortens branches) within a program.

The C 386 runtime library consists of a number of functions which the C programmer can call. The runtime
system includes the standard 1/0 library (STOIO), conversion routines, routines for manipulating strings, and
(where appropriate) routines for interfacing with the operating system.

C 386 uses Intel's Binder and Builder and generates debug records for symbols and lines on request, permit
ting access to Intel's PSCOPE Monitor/lCETM emulator to aid in program testing.

1-11

386 Software Tools

FEATURES

Preprocessor Directives
.\ " ',j

#define-defines a macro

include-includes code· outside· of the program
source file

#if-conditionally includes or excludes code

Other preprocessor directives include #undef, #if
def, #ifdef, #else, #endif, and # line.

Statements

The C language supports a variety of statements:

Conditionals: If, IF-ELSE

Loops: WHILE, DO:WHILE, FOR

Selectibnof bases: SWITCH, CASE, DEFAULT

Exit from a function: RETURN

Loop Control: CONTINUE, BREAK

·Branching: GOTO

Expressions and Operators

The C language includes a rich set of expressions
and operators.

Primary expression: invoke functions, select ele
ments from arrays, and extract fields from structures
or unions.

Arithmetic operators: add, subtract, multiply, divide,
modulus .

Relational operators: greater than, greater than or
equal, less than, less than or equal, not equal

Unary operators: indirect through a pointer, compute
an address, logical negation, ones complement, pro
vide the size in bytes of an operand.

Logical operators: AND, OR

Bitwise operators: AND, exclusive OR, inclusive OR,
bitwise complement

1-12

Data Types and Storage Classes

Data.in C is described by its type and storage class.
The type determines its representation and use, and
the storage class determines its lifetime, scope, and
storage allocation. The following data types are fully
supported by C 386.

char: an 8 bit signed integer

Int: a 32 bit signed integer

short: a 16 bit signed integer

'lcmg:a-32 bit signed integer

unsigned: a modifier for integer data types (char,
int, short, and long) which doubles the positive
range of values

float: a 32 bit floating point number which utilizes
the 80287

-double: a 64 bit floating point number

vOid:. a special type that cannot be used as an
operand in expressions; normally used for func
tions called only for effect (to prevent their use in
contexts where a value is required).

·enum: an enumerated data type

These fundamental data types may be used to cre
ate other data types including: arrays, functions,
structures, pointers, and unions.

The storage classes available in C 386 include:

register: suggests that a variable be kept in a
machine register, often enhancing code density
and speed

extern: a variable defined outside of the function
where it is declared; retaining its value through
out the entire program and accessible to other
modules

auto: a local variable, created when a block of
code is entered and discarded when the block is
exited

static: a local variable that retains its value until
the termination of the entire program

typedef: defines a new data type name from ex
isting data types

inter 386 Software Tools

BENEFITS

Faster Compilation

Intel C 386 compiles C programs substantially faster
than standard C compilers because it produces Intel
OMF code directly, eliminating the traditional inter
mediate process of generating an assembly file.

Portability of Code

Because Intel C 386 supports the STDIO and pro
duces Intel OMF code, programs developed on a
variety of machines can easily be transported to the
386.

ORDERING INFORMATION
Part Number

X286C386PP
VVS386
D86C386

Description

C 386 Compiler
C 386 Compiler
C 386 Compiler

Documentation Package
C 386 User's Guide for Xenix· 286 System

·XENIX is a trademark of Microsoft.

1-13

Full Manipulation of the 386

Intel C 386 enables the programmer to utilize fea
tures of the C language to control bit fields, pointers,
addresses and register allocation, taking full advan
tage of the fundamental concepts of the 386.

Support

Intel offers several levels of support for this product
which are explained in detail in the price list. Please
consult the price list for a description of the support
options available.

Operating
Environment

XENIX' 286/310 System
VAXIVMS 4.3 and later
PC-DOS 3.0 or greater

