
inter APPLICATION.
NOTE

. ,.

AP·245

October 1986

Using· Command Files to Speed
Program Development ,

SRIVATS SAMPATH
DSO APPLICATIONS ENGINEERING

Order Number: 231481·001
5·46

inter Ap·245

INTRODUCTION
Recently, the computer industry has leaned toward
providing a very friendly interface between human and
machine:an interface that allows the user to be more
productive in the least time possible, an interface that
gives him or her the ability to use all of the computer's
advanced features. Tools to assist the user include the
command line interpreters (CLls), HELP texts, and
command file capability.

Recognizing the need for a sophisticated human inter­
face, Intel has provided the advanced command line
interpreter and syntax driver, HELP texts, and submit
file capabilities on the Series IV Microcomputer Devel­
opment System. This application note deals with the
power and use of the Series IV command file capabili­
ties. These facilities, available only on the Series IV and
the network resource manager (NRM), represent a ma­
jor improvement over the Series II and Series III sys­
tems.

Command files are files that can be executed by the
host system. They are not programs. Typically, the
computer recognizes the keystrokes from the keyboard
and executes the operation selected. However, this be­
comes time-consuming for repetitive tasks involving
many keystrokes. Constant user interaction is needed
during the whole execution cycle, i.e., as soon as one
operation is. complete, the user has to type in the next
command. If all these commands could be put in a file,
and if the computer could read this file and execute all
commands sequentially without any user interaction,
we would have a system that drastically increases user
productivity and reduces user fatigue.

Command files may be executed using two
commands:SUBMIT and EXPORT. SUBMIT executes
the command file instantaneously, while EXPORT
sends the command file for execution at another system
at a time determined by the DJC manager. (Refer to
Application Note, AP-244, "DJC - The Key to In­
creased Network Productivity").

For example, type this at the command line:

The SUBMIT command on the Series IV allows the
user to replace commands typed in from the keyboard
with ommands from a file. The submit command redi­
rects console input to the specified file. The Series IV
also has a utility editor called BATCH that helps the
user in creating a submit file. BATCH is an editor that
incorporates within it the Series IV syntax driver. The
syntax driver is a human interface that keeps prompt­
ing the user for correct variables and options. With the
BATCH utility, a user can create a submit file with no
difficulty.

Command files can also be described as pseudopro­
gramming languages. These files can execute and per­
form logical operations, file I/O, support memory vari­
ables, looping, repeat function, and parameter passing.
These commands execute their functions in a simple
but effective way. They should be used with all other
commands for more effectiveness. Command files re­
semble a very functional interpretive language. This is a
very powerful utility on the Series IV and can be used
to perform a variety of applications without requiring
long programs to be written.

To illustrate these multiple features, this Application
Note will describe a command file called MAILMAN,
which is an internetwork mail utility. MAILMAN has
the capability to mail across multiple networks using
only existing software. The Series IV command file ca­
pability has been used extensively in this application.

COMMAND FILES AND THEIR
CONSTRUCTS
This section describes all the command file operators,
their functions and the interrelationships between
them.

The LOG Command
One of the commands often used with a submit file is
the LOG command. LOG copies all console output to
the file specified.

>LOG TEST.LOG ;also send console output to TEST.LOG
>dir /APS1/USER.DIR expanded
iNDX-W31 (V2.8) DIR V2.8
DIRECTORY OF IAPS1/JSER.DIR

FILE--NAME
JOHN.DIR
CHRIS.DIR
SRIVAT.DIR
NORI.DIR
WAYNE.DIR
WORLD.DIR
SUPERUSER.DIR

OWNER--NAMEFILE--LENGTH
JOHN 2048
CHRIS 4096
SRIVAT 2048
NORI 2048
WAYNE 4096
WORLD 2048
BRIAN 2048

44021

TYPE
DIR
DIR
DIR
DIR
DIR
DIR
DIR

OWNER--ACCESS
del dis add
del dis add
del dis add
del dis add
del dis add
del dis add
del dis add

total bytes used:
>log :bb: ;stop additional redirection to file

5-47

AP-245

The LOG file will contain the exact output of the DIR
command. We have selectively written specific data
into a file that we will use later. This feature is very
useful in command files and will be seen in MAIL­
MAN.

In any system, the ability to pass parameters or vari­
ables from one program to another is very important.
By passing parameters, a command file can be made to
do a variety of tasks. The SerieS" IV command file struc­
ture allows the passing of up to 10 parameters from the
command line. These are designated %0 through %9.

For Example:

#CC86 %0.0 debug %1

IF %status = 0 THEN

link86 %O.obj &:
l/%l.li b, &:
1/%2.lib, &:
l/bvoslb.lib, &:
1/87null.lib, &:
to %0.86 &:

bind &:
ss(staok(+800h},memory(+2800h}}
END

The user 'locally invokes this command file by typing
in:
> SUBMIT
COMPILE (CHECKEXIST, SMALL,SCLIB}

For Example:

On submitting a file TEST.CSD

> SUBMIT TEST will yield

When the command file is executed, it substitutes:

CHECKEXIST for %0

SMALL for %1

SCLIB for %2

The user can therefore, have one command file that can
be used to compile and link different sources with dif­
ferent libraries just by specifying them at the command
line level. This parameter-passing feature provides in­
creased command file versatility. Without this feature,
the user would have numerous command files, each ex­
ecuting a specific operation. This feature gives the user
substantial flexibility and helps reduce the time to de­
velop unique files for each application.

Command Line Variables

Command files also support the assignment of variables
to alphanumericstrin gs through the SET command.
SET assigns the value on the right to the variable name
on the left.

For example:
SET NAME TO %0

will set the contents of %0 passed in from the com­
mand line to the CLI variable, NAME. Any further
reference to %NAME will yield the value of %0.
%NAME will access the contents of the variable,
NAME. The Series IV CLI has an undocumented built
in command called "DUMP". DUMP aids iii debug"
ging command files. It displays all the variables in a
command file and their corresponding values.

> SET NAMEl to ""WAYNE"
> SET NAME2 to "" SRIVAT' ,
>SET NAME3 to ""JOHN"
> DUMP

;set namel to wayne
;set name2 to srivat
;set name3 to john

NAME:" "STATUS' , VALUE:'"'O"
NAME:" " NAME 1 " VALUE:" "WAYNE' ,
NAME:""NAME2" VALUE:""SRIVAT"
NAME: " "NAME3' , VALUE:""JOHN"

;show all variables and their values

EXIT COMMAND FILE /APS1/USER.DIR/SRIVAT.DIR/APNOTE.DIR/TES.CS

5-48

inter Ap·245

The system supports a predeclared variable called
STATUS, which is set by the DQ$EXIT value of a
previously executed program. For example, a successful
termination will normally set STATUS to 0, while an
error condition will return another value. For example,
consider the UDI call DQ$EXIT(V ALUE).

A dq$exit(O) will set STATUS to 0

Example:

cc86 %O.c debug

A dq$exit(l) will set STATUS to 1

The value of STATUS depends on the parameter
passed by the existing program. This tool is very useful
for conditional compiles and conditional links. The
command file can link and locate by monitoring
STATUS only if the program is compiled without any
errors.

if %status = 0 then ;link only if compile successful
link86 %O.obj, &
l/sqmain.obj, &
l/sclib.lib, &
l/small.lib, &
l/bvcslb.lib, &
1/87null.lib &
to %0.86 &
bind &
ss(stack(+800h),memory(+2800h))

end

/

The command file above will link the object files only if
the compiles are successful. This will save the time of
whole like cycle without having the correct objects.

Most Intel-supplied software, especially the translators
and utilities, use this concept. A successful program
completion will exit with STATUS set to 0, and a pro­
gram abort or termination will exit with STATUS set
to something other than O.

LOG FILE.TMP
DIR /
LOG :BB:

FLE. TMP will contain:
>dir /
iNDX-W41 (V2.8) DIR V2.8
DIRECTORY OF /
FILE--NAMELOCATION ACCESSIBILITY
APS--WO remote
Wl remote
APSO remote
APSl remote
SYS local
>log :bb:

Accessing Data Files

The file I/O capabilities of command files are very
powerful. The commands for file I/O are OPEN and
READ. For· example, consider the LOG file
FILE.TMP, generated by the sequence:

A command file is shown that accesses this LOG file to discover the volume root name for the network:
OPEN file. tmp
COUNT 14

read skip ;skip over the first 14 words of the file
end

read root
end

5-49

intJ AP-245

In a DIR / command, the first me name is the volume
root name. In this case, APS-WO is the system volume
root name and has to be assigned to some variable for
future use. The command me utility OPEN for me I/O
is used to gain access to the me FILE.TMP. The
COUNT command is 'used as a loop counter that will
loop around the number of times specified.

In this case, COUNT 14 will loop 14 times. Each time,
it will set the variable SKIP from one word in the LOG
me. A Word can be defined as a set of characters sepa­
rated by a white space. We effectively skip over one
word at a time. In this case, APS-WO is the 14th word
from the start of the me. So, the loop will skip 13 words
and then read the system volume root name into the
CLI variable ROOT. The COUNT, READ, OPEN and
SKIP commands, built into the CLI, can be used only
in submit meso The READ ROOT command will read
the 14th word into the memory variable ROOT.
%ROOT will contain the value of ROOT, which is, in
this case, APS-WO.

cc86 %O.c debug
if %status 0 than

REPORT Error in compile of %O.c
else

Only one file can be opened at a time. There is no
explicit CLOSE function. Opening another me will
close the previous one. To force the Close of a parame­
ter me, use the OPEN command on a nonexisting me.
A combination of the LOG, OPEN, READ and SKIP
commands help in doing very functional but effective
me I/O

Conditional Command File Execution

Since the Series IV command me is like a pseudo-inter­
preter, it also supports logical operations such as IF,
THEN, ELSE. The example below highlights how
these constructs can be used within a command me.

This command me compiles any C program and then
checks for a successful compile .. If the compile is suc­
cessful, the command me proceeds with linking and
binding. If the compile is not successful, the me is an
error reporter. More information on REPORT can be
obtained from AP-244, an application note on distrib­
uted job control.

;Compile the program
;If error in compile
;Send message to user

and exit.
REPORT Successful Compile. Proceeding with LINK

link86 %O.obj, &
l/sqmain.obj, &
l/sclib.lib, &
l/small.lib, &
1/87null.lib &
to %0.86 &
bind &
ss(stack(+800h) ,memory(+2800h))

if %status = 0 then ;Check for error in link

else

end

REPORT Successful Link. End of Job. ;If no error inform user

REPORT Error while linking ••••• ;If error inform userand
;and exit.

5-50

AP·245

Command File Looping

The COUNT construct is a looping control. REPEAT
is an additional construct and works in conjunction
with the WHILE and UNTIL commands. REPEAT
will loop until the condition specified by the WHILE or
UNTIL command is satisfied.

REPEAT

END

UNTIL %STATUS = 2
any operation

OR
REPEAT

END

WHILE %STATUS < > 2
any operation

These logical operators can be used in any combination
as long as the syntax is correct. Each loop should have
a: matching end statement.

MAILMAN (A BRIEF EXPLANATION)

MAILMAN is a command file that allows users on one
network to send mail to users on another network over
an Ethernet cable. The network users do not have to
distinguish or remember the USERlNRM configura­
tion. MAIL is used as normal, and MAILMAN run­
ning as a background task knows the configuration and
behaves accordingly. The MAILMAN utility uses ex­
isting software and the powerful constructs of the Series
IV command file utility to illustrate that complex prob­
lems can be solved simply.

In a typical multiple network environment, communi­
cation between users on one network with users on the
other network is very important. Since electronic mail
supports only one network, there was a need for a sys­
tem that supported mail over multiple networks. Writ­
ing a program in one of the high-level languages or
assemblers using Ethernet protocols would require sub­
stantial time for designing, developing, and debugging.

The MAILMAN utility is an example of how com­
mand files increase productivity and help solve complex
applications. MAILMAN, which uses almost all the
commands and constructs supported by command files,
will help the reader understand how command files can
be used for any particular application.

5-51

In this example two NRMs will send mail between each
other by executing the MAILMAN utility on import
stations at both ends. These import stations import
from a utility queue called iNDXUTILITY.Q. For
more information on queues and remote job execution,
refer to Application Note AP-244 titled DJC:Key to
Increasl:<l Network Productivity.

MAILMAN generates several data files using the LOG
command during execution to discover the various sys­
tem variables. It also depends on two data files called
REMOTE.USERS and LOCAL.USERS. These files
have the sameformat and are used to distinguish which
NETWORK each user is Sysgenned onto. The format
is:
Line l:NRM root volume name
Line 2:Username
Line 3:Username

Last line:blank <to signify the end of
list>

These data files should be placed in the directory:
MAIL.DIR of each system.

For example, the file LOCAL.USERS under /APS­
wO will look like:
APS--WO
SRIVAT
WAYNE
JOHN
CHRIS
<blank>

And the file REMOTE. USERS will look like:
PMO
PAUL
FRANCIS
STU
SUNIL
<blank>

Each of the REMOTE users have to be sysgenned onto .
the local network as users but without a home directo­
ry. The user MAILMAN has to be sysgenned intothe
network as a user with a home directory.

inter AP-245

MAILMAN (THE COMMAND FILE)
. ,

1 :*~.~***~*******.****~*.***~.*,***.****.*~,*~*********~*~.~~*~.~~****~,***** •• *.
2 :~ CHECKMAIL.CSD • This isa submit file .that allows multiple NRM mail. *
3 :* A detailed explanation of the .ystem requiiementsis in the CHECKMAIL.DOC*
4 :* file. CHECKMAIL allows users on one NRM'to mail messages .to users on.. *
5 :* other NRMS. Th~re is no li~[t tb the number of NRM's, but you m~st read *
6 :* the Toolbox manual or CHECKMAIL.DOC to.effect modifications for ,more than*
7 :* two NRMs. This file is set up for two NRMs only. *
8 : *1' •• ~* * **_**. *,* "!*. * **._ ••• ~ *** **.~ * **. * ** ••• * ** •••••• * *.*.* ** ** ••• ** * ** * *' *** *.*
9 :*******~~******* •• **~*.*.****~**~***********.*******. ** •••••••.••••••••• * ••••

10 : Need to know the root volume,name
11 :**.*~*.*** ••• ******.*.*******.*.* •• **************.**** •••• ***~*****.**.*****
12 log file. tmp
13dir /
14 log :bb:
IS open file.tmp
16 count 14
17 read skip
18 end
19 read root
20 open file2.tmp ; To close param.file
21 : * ** ** * * ** •• * * ** ** * ** •• * **** * *** * ** * ** * •.•• * **; •.• -••• -•.••• '.* ***' •. **,*** *' ** *** * * •.• *
22 : If the user did not supply a p,arameter use their USER .NAME
23 ;*** *******~**.*****~***~**
24 if %0 <) 1111

25 set name to %0
26 else
27 log file.tmp Who .is currently using this command file
28 id
29 log :bb:
30 open file,tmp
31 read skip~skip.skip.skip,name
32 end ..
33 :****************************~***-*~*****~***'**~*'**********~**~*******~***'.*
34 ; If the user is MAILMAN then weare in receive mode
35 : else we are in transmit mode
36 :******************************~*********,*************~*********************
37 if %name <> MAILMAN then
38 Can now check for mail
39 delete message. found
40 mail box %name
41 save 1 message. found
42 q
43 Check to see if there was a message in the mailbox
44 checkexist message. found
45 if %status = 1
46 set sent to false
47 open /%root/mail.dir/remote.users
48 Read the root volume of the remote network

,49 read rroot
50 repeat
51 while '!;sent' false

231481-1

5·52

inter AP-245

52 Read one of the remote system user names
53 read remote
54 while %remote <> ""
55 if %name = %remote then
56 open file2. tmp
57 log file.tmp
58 time
59 log :bb:
60 open file.tmp
61 count 11
62 read skip
63 end
64 read time
65 nncopy message.found to %rroot/mail.dir/%name/%time &,
66 username (mailman) password (post) nrm (0)
67 :***
68: The 'message has been forwarded to the other system,
69 remove it from the local mailbox
70 ;************.*************************************~************~***********
71 mail box %name
72 delete 1
73 e
74 set sent to true
75 end
76
77 if
78 • 'This is a
79

end

end
'!;sent = false then
local user message
Report You have mail
end

in box %name
80
81
82
83
84

. * * * * * * * * ** '* * * * * * * * * * * * ** * * *** * * * '* * * '* '* * * *. * * .. * ** * •• '. * *. **.,; * * * * .. * ** * ;"'. '* .. * * * * *
; The user MAILMAN, operate in receive mode
~***.*************~***********

85 else
86 set name to user
87 repeat
88 open /%root/mail.dir/local.users
89 Ign'ore the root name
90 read skip
91 ~kip to the user name
92 read %name
93 while %user <>
94 log file. tmp
95 ;********.***~** ****.*.***************
96: Check for 'timed' mail delivery from another' system
97 :*** ***.***************~**
98 dir /%root/mail.dir/%user for ??:??:??
99 log :BB:

100 open file. tmp
101 count 16
102 read skip
103 end
104 repeat
105 read file
106 while %file <> ""

231481-2

5-53

AP-245

107
108
109
110
111

;***kkwwwwkw*kwwkk_. _____ *
; A 'timed' message has been found, MAIL it to the appropriate user
~****************************.*~********~************* *wwwwwwwwwwwwk __ * ____ _

mail /'root/mail.dir/,user/%file' to 'user &
subject(Arrived at 'FILE and forwarded by Mailman)

112 delete /,root/mail.dir/,user/'file
113
114
115
116 end

end
set name to "skip"name"
end

i17 ;************************~**************************** wk.wwwkwww*kwk_.* ____ _
118 ; All done, reinvoke myself
119 ;**********************************~*.**************** -_._._----------------
120 e'xport /irootichecikmai~(%~) to, iNDXutility.q nolog

MAILMAN (AN IN-DEPTH LOOK)

Many comments, included to help your understanding
of the program. flow, could be edited out to speed exe­
cution. There are some concepts used in this program
that need additional explanation.

#65"

We use the NRM to NRM communications package
discussed in Application Note AP~241 (Multiple NRM
Ethernet COIlUIlunications) to communicate between
the NRMS.. If other NRMs were not on the same
Ethernet cable, we could change this line only to incor­
porate autodialing to other NRMs.

#114

"SET NAME TO "SKIP", %NAME"

As described earlier, the CLI can have only one file
open at, any time. The opening ,of. any other file will
close the previously opened file. In line #. 88, we open
the file LOCAL. USERS and skip, to the first name.
Once this user name has been established, we need to
check for mail in his or her Mail directory. This opera­
tion is done inll.nes #99 to #114. However, we now
need the name of the next user. Since we already closed
the file LOCAL.USERS,the next time lines #83
through #94 are executed, the file pointer will point to
the same n~e and will repeat the loop. By settin.g
NAME to "SKIP, %name", the next time the file is
opened, it will automatically read the second name.
The CLI variable %NAME will be "SKIP, %NAME"
and the command READ will skip one word and read
the next. The third time, NAME will be "SKIP,SKIP,
%NAME", the fourth time, "SKIP, SKIP, SKIP,
%NAME". Even though the file LOCAL.USERS is
constantly opened and closed, our file pointer is still
intact and points to the correct word.

231481-3

#120

"Export l%root/CHECKMAIL(%O) to indxutility.q
nolog"

We need this file to be executing forever:checking the
mail and sending' it to the right networks. This is an
example of looping in export files, i.e., having a remote
job run forever; For more information; refer to the Ap­
plication Note AP-244 DJC, Key to Increased Network
Productivity,

5-54

#44

CHECKEXIST.86 is a file checker. If the specified file
exists, it will exit with STATUS set to 1. Otherwise;
STATUS is set to o. This is· used to determine the exis­
tence of a file. This small utility was developed for use
within the MAILMAN package.

Example:
CHE.CKEXIST TEST.FILE will
set STATUS to 1 if TEST.FILE exists
else
set STATUS to 0

Within the MAILMAN utility, CHECKEXIST is used
to check if any mail messages exist for the user speci­
fied. Looking at the source of CHECKEXIST.C shown
in Appendix A, the concept of STATUS becomes very
clear. .

CONCLUSION

MAILMAN is an extensive example of the power of
the Series IV command file capabilities. The complete
file was developed and debugged in less than a week -
far shorter than writing an application program to talk
over Ethernet. The Series IV command file capability
enables you to build upon software you already have to
reach higher heights more quickly.

inter AP-245

APPENDIX A
(CHECKEXIST.86)

/***/
/* CHECKEXIST.C Existence checker for files. */
/* CHECKEXIST will exit with an exit code of "0" if file is not found */
/* else it will return with an exit code of 1. This will be passed */
/* into %STATUS in a command file. */
/* Syntix for CHECKEXIST.86 */
/* CHECKEXIST < filename > */
/* */
/* Example: */
/* */
/* The batch file CHECK.CSD contains these statements. */
/* CHECKEXIST My.File */
/* */
/* Submitting this batch file will set %STATUS to 0 if file does not */
/* exist and 1 if file exists. */
/* */
/* For an example of the use of this CUSP see the Mailman example for */
/* multiple network mail. */
/*** ******************1

#include <:f2:stdio.h>
#include <:f2:ctype.h>

/*** *********~********/
/* start of main routine */
/***/
main(argcl argv)

int
char

argc;
*argv[J;

FILE *fpl *fopen();

if (argc == 1)
{

}
/*
/*
if
{

}

puts("Error •• Filename not specified.");

Exit with return value 0 if file does not exist */
else exit with a 1 */
«fp = fopen(*++argvl Or"»~ == NULL)

dq$exit (0):

else
{

fclose(fp);
printf("FOUND FILE
dq$exit (1) :

%s\n",*argv);

5·55

231481-4

