
infef . APPLICATION
NOTE

AP-244

.. October 1985

.. Distributed Job Control
the Key to Increased Network

Productivity

SRIVATS SAMPATH
DSO APPLICATIONS ENGINEERING

Order Number: 231480-001
4-66

inter AP-244

INTRODUCTION

Large software projects and shorter production sched
ules generate the need for a more flexible and produc
tive development environment, which allows users full
access to all available resources.

Recognizing this need, Intel designed the Distributed
Job Control (DJe) Facility into the NDS-U system.
DJC allows currently idle networked development sys
tems to be supplied to the network as public resources.
This is essentially a remote job execution unit to which
jobs can be sent by other users on the network. Remote
job execution offers higher throughput and increased
efficiency, since more than one computer on the net
work can be controlled and used by a single user. This
ability to manipulate idle systems on a network and
convert them into productive systems for other users
directly translates into increased project productivity.

DJC consists of a set of system utilites that enable the
NDS-U system manager to more efficiently run the net
work. When all idle systems on the network are allocat
ed to other active users, the throughput and efficiency
of the network dramatically increases. The Network
Resource Manager (NRM) is the nerve center for the
distributed job control system (DJC). All jobs are
scheduled and queued by the NRM. The NRM also
coordinates job cancellation and maintains a system log
of job queue activity. DJC, with its powerful set of op
tions, positions itself as an invaluable tool for increased
network productivity.

WHY DISTRIBUTED JOB CONTROL?

The need for distributed job control (remote job execu
tion) is apparent in a networked environment where a
number of teams are working on different projects.
With DJC, all idle systems can be channeled towards
the particular time-critical project. As a result, the en
gineers have control over more than one system and
increase their efficiency and productivity.

Figure 1 shows a typical NDS-U system. This network
includes the NRM configured with two 84 MB Win
chester drives, a 600-LPM line printer, three Series IV
Microcomputer Development Systems (one of which
has four cluster boards), two Series Us with one cluster
board each, and an assortment of ICETM and
I2ICETM modules. Although the development systems

4-67

are functionally similar, they are logically different as
viewed by the NRM. Figure 2 illustrates the difference.
Two teams are working on this network. Team I is an
8-bit development team, and Team 2 is a 16-bit devel
opment team. Both teams are meeting tight deadlines
and need all the system time that they can get. One
engineer working on the 8086 project is on vacation, as
a result, one Series IV is underused. The other two Se
ries IV s do not have anything running in their back
ground. On an average of the 14 computers available to
this network, (the Series IVs being counted as two each
with foregroundlbackground capabilities), only 10 are
being used. The percentage use rate is only' 60 percent
when it should be close to 100 percent. Percentage use
rate can be defined as:

(Total Number of Nonidle Systems/Total Number of
Systems) * 100

Key-F = Series IV Foreground
B = Series IV Background
C = ISIS cluster board

231480-2

Figure 2_ Non-Idle Computers are Shown Shaded

Meanwhile, the 8-bit team is trying to meet a very tight
schedule and needs all the system time possible. This
team requires a dedicated compile engine that will free
its systems for interactive work, such as debugging and
editing. DJC can help the 8-bit team by converting the
idle machine and the backgrounds of the other two Se
ries IV systems to productive work doers. This enables
Team 1 to have all their compiles remotely executed
while they concentrate on editing and debugging other
modules. These remote execution units can serve both
teams, since the Series IV can operate in both 8-bit and
16-bit modes. This results in definite increase in overall
team and network productivity.

./>.

~

SPOOLED
LINE
PRINTER~

NRM
TERMINAL

ETHERNET CABLE

CLUSTER
WORKSTATION

UP TO TWO PERIPHERAL
ATTACHMENT SUBSYSTEMS
~~

SERIES II

Figure 1. A Typical NOS-II Network

231480-1

l

»
"U .
N
.co.
.co.

AP·244

A CLOSER LOOK AT DISTRIBUTED
JOB CONTROL

The DJC system recognizes that the network has three
types of stations: the NRM, private workstations, and
import workstations. The NRM is the nerve center of
the DJC system, and it maintains all t'he state informa
tion of remote jobs and status of workstations. A pri
vate workstation is one that can send jobs to the NRM
and have them executed at other workstations on the
network. However, it does not accept jobs from the
NRM. These are c1asified as work generators. Exam
ples of work generators are Model-800, Series II, Series
III, Series IV and ISIS clusters.

An import workstation that can accept jobs from the
NRM is called a work doer. Examples of work doers
are Model-800, Series II, Series III, Series IV and ISIS
clusters. Work generators and work doers use the same
hardware. The software executing at the workstation
determines if it is a generator or doer. The mix of gen
erators/doers may be flexibly altered through the day/
week/project to best suit the user's needs. Normally,
when a workstation is first powered up or reset, it con
figures itself as a private workstation. (The workstation
can also be configured to power up as an import sta
tion. See Appendix A).

A private workstation can be turned into a work doer
for the network withth e IMPORT command. The im
port command informs the NRM that the private
workstation is now capable of doing some type, or
types, of jobs. A station remains an import station until
the keys CONTROL and C are pressed from its key
board. If an import' station is executing a remote job
when the CONTROL and C keys are pressed, it contin
ues executing the job until the job is finished. Only
then, does it return to private workstation mode. A
Series IV stationthat supports both foreground and
background partitions can import into either fore
ground, background, or both. Thus, a physical station
can appear as two import stations to the DJC system.

DJC UTILITIES

Understanding Job Queues

Since the network consists of heterogeneous worksta
tions, some type of mechanism is needed to match the

Example:

job with the type of workstation it can execute on. This
generated the concept of a job queue. A job queue can
be envisioned as a waiting place for all work doers and
a depository for workgener ators. Job queues are creat
ed and deleted using the QUEUE utility, and their sta
tis is monitored using the SYSTAT utility. Each net
work can have up to 10 queues. The system does not
support any predefined queues. While any name may be
used, descriptive names based on the work doer's capa
bilities are recommended. 8-bit.q, 16-bit.q, and print.q
are good names, while ONE.queue and compile.queue
are not.

The system does not guarantee that a job is sent to a
queue capable of doing the job. A Series II or ISIS
cluster is only capable of doing 8-bit work. Therefore,
the work generator is responsible for ensuring that the
work doer chosen can execute the job. Multiple work
generators can export to the same queue, and more
than one work doer may import from a queue to get
jobs done quicker.

Queues are maintained using files at the NRM. The
DJC system uses these queue files to maintain job and
queue status. These files are shared files and should not '
be tampered with.

Remote Job Execution

A job is scheduled for remote execution using the EX
PORT command. An in depth discussion on the syntax
and use of job queues is discussed in Chapter 5 (DJC
Utilities). The export command must specify a job
queue capable of executing the job. Export checks if the
queue exists and displays an exception message if the
job is not queued. It also warns the user if there are no
importers (work doers) currently serving the chosen
queue. The job will wait indefinitely at the job queue
until a work doer is assigned to import from t,his queue.

The exported job may have to wait for some time before
it can be executed, since other jobs arrived at the queue
earlier might not have been executed. The' queue is a
first-in-first-out (FIFO) file.

In this way, the DJC system keeps a track of all jobs at
the queue and executes them on a FIFO basis.

QUEUE NAME: 16BIT.Q QUEUE NAME: 8BIT.Q

JOB NAME STATUS JOB NAME STATUS

FOUR.CSD WAITING PRINT.CSD WAITING
THREE.CSD WAITING LOCATE.CSD EXECUTING
TWO.CSD EXECUTING LINK.CSD DONE
ONE.CSD DONE COMPILE.CSD DONE

4-69

Ap·244

When it successful1y finds an importer for the specified
job queue, the NRM will send the job over to that sta
tion. At the station, an implicit logon takes place using
initialization options that are identical to a normal user
logon; For example, the station will take the user's
INIT.CSD file and execute it first and then execute the
job. The environment set up at the import station is
exactly as that at normal logon. The import station,
a"reincarnation" of the user who exported the job, has
access to al1 of files the user has. It looks just as if a user
is inputting information at the import station. The only
difference is that, in this case, input is from a file speci
fied by the user exporting the job.

DJC Commands

DJC system on .the NDS-II system has a number of
commands that help theuser in effectively configuring
an efficient remote job execution system. These
are:QUEUE, IMPORT, EXPORT, CANCEL, and
SYSTAT ..

Each of these commands perform unique and impor
tant tasks to make the network distributed job control
system a very productive and efficient solution.

QUEUE

QUEUE is a command for managing and displaying
job queues at the NRM. The QUEUE command dis
plays the name, number of jobs outstanding and the
number of servers. After this information is displayed,
the user is prompted to:

ADD DELETE LIST EXIT

ADD option creates new queues. Up to 10 queues
can exist at the NRM

DELETE option deletes a queue

LIST redisplays previously displayed information

EXIT terminates QUEUE

For example:

>QUEUE <cr> will bring up the fol1owing display

,NAME OF QUEUE # OF SERVERS
16BIT.Q 2
8BIT.Q 1
PRINT.Q 1

Anyone can delete these queues. Since there is no pro
tection offered, the use of the QUEUE ·command
should be restricted to a SUPERUSER. This may be
accomplished simply by removing world access rights
on QUEUE.86. However, a queue that has jobs waiting
cannot be deleted; in this example, only 8BIT.Q can be
deleted.

IMPORT

The syntax for the IMPORT command is the follow
ing:
IMPORT FROM queue ,queue ••••••• TO
BACKGROUND

where

queue is a character string up to 14
characters long, which names
the queues from which the im
port station can execute jobs.
Up to five queues may be speci
fied in the command line.

TO BACKGROUND is an option that will. execute
the job in a background mode.
This is a Series IVoption only.

The IMPORT. c()mmand declares the given worksta
tion to be a public resource on the network, converting
it from a work generator into a work doer. This public
resource can now receive jobs from the various queues
in the NRM. If the user enters the name of a queue that
does not exist at the NRM, an exception message will
be displayed. The queues are searched for jobs accord
ing to the order in which they were listed in the com
mand line (left to right). If jobs are available on any
queues, the import station starts processing them. The
importing station starts by performing an implicit log
on for the user, whose job is first at the head of the
queue. Then it processes the commands within the
command file. At the end of the command file, the
importing station logs off the user and looks for jobs
from the queues to process (left to right).

OF WAITING JOBS
1
o
2

4-70

intJ Ap·244

For example, the import station is configured to exe
cute jobs from 16bit.q, 8bit.q, and iNDXutility.q. Ini
tially, there is only one job on 8bit.q, so execution of it
commences at the import station. During theexecution
of this job, three more jobs arrive at 8bit.q and one at
16bit.q. The job on 16bit.q will be the next to execute,
since the command line in import mode is always
scanned left to right.

All output messages from the remote job, displayed on
the screen of the import station, may be put in a log file
if the LOG option is specified with the EXPORT com
mand. When a station is in import mode, no local pro
cessing is possible. To reconvert the import station back
to a private station, the user must enter CONTROL-C
by pressing both the CONTROL andC keys.

EXPORT

The syntax for the EXPORT command is the follow
ing:
EXPORT pathname [parameters] TO queue
[(LOG/NOLOG I]
where
pathname is a valid pathname for a command

file

Listing
ee86
link86

for:COMPILE.CSD
%O.e debug
%O.obj, &
C/sqmain.obj, k
C/selib.lib, &
C/small.lib, &
C/87null.lib &.
to %0.86 &
bind &
ss(staek(+800h) ,memory(+1200h))

parameters is a list of up to 10 parameters

queue is the queue to which the job is to be
sent

LOG, NOLOG specifies whether a log is to be kept of
all console activity on a mass storage
device.

The EXPORT command allows a.command file com
posed at one workstation to be executed on another
workstation. The command file must be on a public
volume, so that the import workstation can access it.
An example of a public volume is a volume resident at
the NRM and not a local mass storage device. If the
queue does not exist at the NRM, an exception message
is displayed and the job does not get queued. LOG,
NOLOG determines whether a log file is to be main
tained of all console activity, at the import station dur
ing the execution of that particular job.

The optional parameters specified in the command line
are actual parameters to be substituted for the formal
parameters embedded within the command file. In the
example below, %0 will be replaced by the name of the
source file specified in the command line. This way, one
compile command file can handle programs with differ
ent names.

In this example, the command file links, and binds a
"C" program. .

> EXPORT
> EXPORT

COMPILE (/C--SOURCE--DIR/ISTIME) TO
JOB NUMBER :0027H

16BIT.Q LOG

4-71

intJ AP·244

This will export the job to the specified queue (in this
case 16BIT.Q), print an export job number, and return
control to the user, so that he or she may continue with
productive work. Meanwhile, the import station acting
as a server for 16BIT.Q will log on as the user, process
his or her initialization file, and process the command
file COMPILE.CSD. After all commands inCOM
PILE.CS D have been processed, the import station
goes back into waiting mode and waits for other jobs to
be sent from the NRM.

CANCEL
CANCEL [BACKGROUND/REMOTE] queue
{(job name) (# job number)}

where

queue is the queue where the job has been queued
for execution

job name is the final component name of the remote
job to be cancelled

(in the previous case, the job name will be
COMPILE)

job number is the assigned value of the remote job (this
can be displayed by the SYSTAT com

. mand discussed next).

The . CANCEL cOmmand is used to cancel a back
ground or remote job. If the user wants to abort a re
mote job, the job name .and job number must be en
tered. If the job name is selected and multiple instances
of the job name are in the queue, the first one encoun
tered is deleted (this may not be the first one queued).
To avoid this, the unique name job number may be
used,

Example:
> CANCEL REMOTE l6BIT.Q . (COMPILE) will
result in
iNDX-W4l (V2.S) CANCEL VERSION V2.S
··COMPILE" CANCELLED

The job name can be substituted with thejob number.
In this case, it will be 0027H (see example under EX
PORT). Once the job is cancelled, the import station
will execute the next job in the queue it is serving. If no
jobs exist in the queue, it will.go into a waiting mode
for the next job.

SYSTAT.

The syntax for the SYSTAT command is the following:
SYSTAT [{QUEUE/MY JOB} (queuename
[•••••])] TO PATHNAME [EXPAND] [ALL]

where·

queuename(s) designates the name(s)· of the queue(s)
for which jobs are to be listed

pathname

QUEUE

MYJOB

EXPAND

designates the file where the information
. is listed .

displays information for all queues, or
for only those queues explicitly listed af
ter the queue specifier. If this option is
specified, the queuenames must be sepa
rated by commas.

parallels the queue option but lists infor
mation about jobs belonging onlyEX
PAND specifies that complete informa
tion is displayed for each job. If expand
is not specified, condensed information
will be displayed for each job ..

specifies that complete information is
displayed for each job. If expand is not
specified, condensed information will be
displayed for each job.

ALL displays appropriate information for all
jobs in the specifiedqueue(s). If ALL is
not specified, information is displayed
only for waiting or executing jobs. •

The SYSTAT command is used to display information
about the DJC subsystem to the user. There are many
options which are best discussed by examples.

Examples:
< SYSTAT < or >
SYSTAT VERSION V2.S
QUEUE # OF JOBS # OF IMPORT
NAME WAITING STATIONS
·16BIT.Q ·0 1

4-72

SBIT.Q 0 1
iNDXUTILITY.Q 1 0

This command displays the status of all queues and
information on the number of jobs waiting·and number
of import stations serving any quelie. No detailed infor
mation of actual job status is shown here.

inter

< SYSTAT QUEUE
SYSTAT VERSION V2.8

JOB STATUS FOR: 16BIT.Q

JOB NAME JOB # OWNER DATE

No jobs are waiting or executing in this queue.

JOB STATUS FOR: 8BIT.Q

JOB NAME JOB # OWNER DATE

No jobs are waiting or executing in this queue.

JOB STATUS FOR: iNDXUTILITY.Q

JOB NAME JOB # OWNER DATE

AP-244

TIME

TIME

TIME

PRINTFILE #0028 JOHN 11/30/84 16:20:22

STATUS

STATUS

STATUS

WAITING

This command lists by queue all jobs waiting in a queue. This helps in quickly determining the status of jobs
in a queue.

<SYSTAT QUEUE ALL
SYSTAT VERSION V2.8

JOB STATUS FOR: 16BIT.Q

JOB NAME JOB # OWNER DATE TIME STATUS

COMPILE #1003 SRIVAT 11/30/84 12~12 30 DONE
COMPILE #1002 SRIVAT 11/30/84 12:05 19 DONE
COMPILE #1001 SRIVAT 11/30/84 11 :30 20 DONE

JOB STATUS FOR: 8BIT.Q

JOB NAME JOB # OWNER DATE TIME STATUS

COMP #2008 WAYNE 11/28/84 18:12 30 DONE
COMP #2007 WAYNE 11/28/84 15:10 20 DONE
LINK #2006 NORI 11/27/84 10:10 23 DONE

JOB STATUS FOR: iNDXUTILITY.Q

JOB NAME JOB # OWNER DATE TIME STATUS

PRINT #2002 JOHN 11/30/84 18 10 20 WAITING
PRINT #2001 SRIVAT 11/29/84 12 10 22 DONE
PRINT #2000 WAYNE 11/29/84 10 10 10 DONE

4-73

inter AP-244

This command lists the status of all jobs done or wait
ing in the queue since the queue was created. This is
useful to the system administrator to study queue use.

This command lists the status of all of the jobs that
users have submitted. Queue mes are circular mes 256
jobs long. For example, SYSTAT will display the last
255 jobs done or waiting. If the number of jobs exceeds
256, the first entries Gobs) into the queue me are delet
ed to make room for the new entries. The expand op
tion, which displays all these jobs, is useful for system
administration purposes. Information containing aver
age wait time for each job, the average length of a job,
may be obtained. The system administrator may use
this information to install another work doer on a par
ticular job queue, thereby optimizing the system for his
or her particular environment. This queue can be delet
ed and then recreated once this information is recorded
to clear this log of queue activity.

RECOMMENDATIONS FOR AN
EFFICIENT DJC SYSTEM

The following discussion outlines recommendations for
a useful DJC system for a network. A number of con-

4-74

siderations should be made before your DJC system is
implemented on the network.

A minimum of three queues should exist at the
NRM:one queue for 8-bit work, one for 16-bitwork,
and the other an indxutility queue. Normally, one serv
er is enough to serve these queues. However, if the load
on any particular application increases, having a dedi
cated server for that queue will be more efficient.

In the example following, it is assumed that the high
16-bit workload requires a dedicated server for the 16-
bit work being done on the network. Therefore, a dedi
cated server for 16BIT.Q has been generated using the
IMPORT command. The other server imports from all
three queues. Private workstations can also be convert
ed into import stations whenever they are not being
used. The background of one of the private worksta
tions should come up in automatic import mode on
powerup. This is discussed in Appendix D.

inter Ap·244

APPENDIX A
Looping in Export Files

Often, a job needs to be run continuously to do a prede
termined task like checking mail. The versatility of the
DJC system allows the user to do this in just one sub
mit file. For example, an import station can export a
job to· itself or any other server on the network.

Example:
Mail Box(%O)
Save 1 msg.file
EXIT .
checkexlst msg.fl1e
if %status I 0 then

report YOU HAVE MAIL IN BOX %0
end
export mal1check (%0) to Indxutl1lty.q
nolog
end

This is an example of ail. export file that constantly
checks for mail in a user's box. If a mail message exists,
a message is sent to the user. Checkexist is a program
that looks for a specified file and sees the value of

4-75

%status to 1 if the file exists and 0 otherwise. Report is
a utility that sends a message to the user's console.
These utilities are explained in depth in the Application
Note AP-245:"Using Command Files to speed program
development."

The submit file is exported using the command:
EXPORT MAILCHECK(SRIVAT) TO
INDXUTILITY.Q

The import station will execute this command file and
later reexport the job back to the queue. This job will be
put at the end of the job queue behind all others waiting
at this queue. It will not totally dominate the job queue.
The only way to stop MAIL CHECK once it is running
is to use the CANCEL command. There is no limit to
the number of times an export job can be looped.

Conditional exports can also be done from within an
exported job. The IF, THEN, ELSE constructs of com
mand files are used. The above example is just one of
the different ways DJC can be used. This feature is very
useful if some remote job has to be done continuously.

AP-244

APPENDIX B
REPORT.86

Since all exported jobs are remotely executed, the only
method of monitoring their status is by using the SYS
TAT utility. The need for a more interactive status re
porter becomes more pronounced. REPORT.86 has
been designed to answer this need. REPORT is a utility

that should be included in all export files. The syntax
for REPORT is the following:

REPORT <any message>

The following command file example shows how REPORT is used:

cc86 %O.c debug
if %status < > 0 than

REPORT Error in compile of %O.c
else

Compile the program
If error in compile
Send message to user
and exit.

REPORT Successful compile.
link86 %O.obj, &
l/sqmain.obj, &

Proceeding with LINK

l/sclib.lib, &
l/small.lib, &
1/87null.lil:i &
to %0.86 &
bind &
ss(stack(+800h) ,memory(+2800h))
if %status I 0 then

REPORT Successful Link. End of Job.
Check for error in link
If no error inform user

else
REPORT Error while linking ••••• If error inform user and

and exit. end

REPORT.86 writes the message specified into the us
er's home directory in a file called REPORT.DAT. All
the messages get appended on to this file. The ISIS and
iNDX command line interpreters (CLI) have been ex
tended to check for the existence of the file
REPORT.DAT in the user's home directory. Ifthe file
exists, the contents of the file are displayed on the us
er's screen. The CLI then deletes this file. This gives the
user the ability to constantly monitor the execution of a
remote job. In the above example, if there was an error
in compilation of the program, REPORT will write the
message "Error in Compile of filesheck.c" and the re
mote job will terminate. This message will then come
up on the user's terminal anywhere on the network, and
the user can take corrective action. All messages are
held until the user returns to the command level. They
are not displayed instantaneously in the middle of an
AEDIT session, for example.

4-76

The REPORT function used throughout the submit file
will keep the user constantly informed on the success of
all required operations. This results in greater produc
tivity, since the user does not have to wait until the
whole submit file is over and then examine the log file.
The extensive use of the variable %STATUS in this
submit file requires explanation. All Intel utilities, such
as PL/M86, C86, and LINK86, exit with a UDI ,call
DQ$EXIT(O) if the operation is successful and
DQ$EXIT(n) if the operation was not successful (N is
any number). This value passed into the DQ$EXIT call
is stored in a variable called STATUS. This variable
can be accessed from any submit file. Conditional oper
ations can be done by accessing this variable.

Ap·244

APPENDIX C
CHECKTIME.C

Often, a program must be executed at a particular time.
CHECKTIME.86 is a utility that allows a program to
be executed at a particular time from within a submit
file. The concept of STATUS and looping in submit
files are used here again. This program obtains from the
user a particular time, which can be set to,be less or
greater than system time. When the defined condition is
satisfied, the program will 'exit with a return code of L
Otherwise, it will exit with a return code of O. For ex
ample, a match condition will exit with DQ$EXIT(O).
This return code is passed on to the' %STATUS vari
able that can be accessed by a submit file.

This program has been designed for doing jobs at a
particular time of day in an export file.

The syntax for CHECKTIME.86 is the following:
CHECKTIME greater 22:23:45 or
CHECKTlME greater 22:23 or
CHECKTlME greater 22 or
CHECKTIME g 22:23:45 or
CHECKTIME g 22:23 or
CHECKTlME g 22

This will return with a return code of l' if the system
time is greater than the time specified and 0 for all
other cases.

CHECKTIME less
CHECKTlME less
CHECKTlME less
CHECKTlME 1
CHECKTlME 1
CHECKTlME 1

22:23:45
22:23
22
22:23:45
22:23
22

4-77

This will return with a return code of 1 if the system
time is less than the time specified and 0 for all other
cases.

For example, backup needs to be done only at a partic
ular time, preferably during the night, when the system
load is lighter. This can be done in an export file using
the CHECKTIME.86 utility.
File: BACKUP.CSD

CHECKTlME g 22:59:00
if %STATUS = 1 then

TREE BACKUP /APS--WO/USER.DIR/
SRIVAT.DIR/" to /APS1/SRIVAT.DIR
else
EXPORT BACKUP to iNDXUTILITY.Q
end

In the above submit file, CHECKTIME compares the
given time with the system time. If a match is found, it
will exit with STATUS set to 1; otherwise it will exit
with STATUS set to O. If STATUS is set to 0, a match
has not been found and the submit file will export itself
to the queue. In this way, the jobs get stacked up on the
queue. When the CHECKTIME condition does get sat
isfied, the export file will back up all files in the volume

APS-WO/USER.DIR/SRIVAT.DIR to the /APSl/
SRIVAT.DIR.

inter AP-244

APPENDIX D
Configuring a Station to Come Up

as an IMPORT Station

A workstation (Series IV) can be configured to power
up as an import station through the SYSGEN com
mand at the NRM. SYSGEN, restricted only to the
SUPERUSER, will not allow any other user to modify
the system configuration. Invoke SYSGEN by typing:
SYSGEN

SYSGEN will then clear the screen and display all the
workstations on the network and their Ethernet ad
dresses. Select the soft key labelled "Options". Next,
select the node that has to come up as an import sta
tion. SYSGEN will then display another screen with
one of the options being: ' ,

4-78

(7) Automatic Import to , Partition. 1 , Partition 2

Select the partition needed to to come up in import
mode. Both partitions can be selected. SYSGEN will
next ask for queue names that will serve that import
station. ,List the queues (maximum of 10) and then exit
from SYSGEN. Reset the network and the Series IV
will come up as an import station on powerup. To ter
minateimport mode, do a Control-C at the import sta
tion keyboard by pressing the Control andC keys
simultaneously.

