intel

" APPLICATION ,_‘ZT?AP'-,121'

NOTE

- June 1981

5-504 o . 207885-0 01

Software Design and
Implementation of
Floppy Disk
Subsystems

Contents

1. INTRODUCTION

The Physical Interface Level
The Logical Interface Level
The File System Interface Level
Scope of this Note

2. DISK I/0 TECHNIQUES

FDC Data Transfer Interface
Overlapped Operations
Buffers '

3. THE 8272 FLOPPY DISK CONTROLLER

Floppy Disk Commands
Interface Registers
Command/Result Phases
Execution Phase
Multi-sector and Multi-track
Transfers
Drive Status Polling

- Command Details
Invalid Commands .

4. 8272 PHYSICAL INTERFACE
SOFTWARE

INITIALIZE$DRIVERS
EXECUTE$DOCB
FDCINT i
OUTPUT$CONTROLS$TO$SDMA
OUTPUT$COMMANDSTOSFDC
INPUT$RESULT$FROMS$FDC-
OUTPUT$BYTE$TOSFDC
INPUT$BYTE$FROMS$FDC
FDC$READY$FOR$COMMAND
FDC$READY$FOR$SRESULT
OPERATIONSCLEANSUP
Modifications for

. Polling Operation

. 5. 8272 LOGICAL I,NTERFACE

SOFTWARE

SPECIFY

" RECALIBRATE
SEEK
FORMAT
WRITE
READ)
Coping With Errors

5-505

207885-001

Contents (Continued)

6. FILE SYSTEMS

. File Allocation
The Intel File System
‘Disk File System Functions

7. KEY 8272 SOFTWARE
INTERFACING CONSIDERATIONS

- REFERENCES

APPENDIX A—8272 FDC
DEVICE DRIVER SOFTWARE

APPENDIX B—8272 FDC
EXERCISER PROGRAM

_APPENDIX C—8272 DRIVER FLOWCHARTS

5-506

207885-001

APPLICATIONS

1. Introduction

Disk interface. software is a major contributor® to the efficient and reliable
operation of a floppy disk subsystem. - This software must be a well-designed
compromise between the needs of the application software modules and the
capabilities of the floppy disk controller (FDC). In an effort to meet these
requirements, the implementation of disk interface software is often divided
into several levels of abstraction. . The purpose of this application note is
to define these software interface levels and describe the design. and imple-
mentation of a modular and flexible software driver for the 8272 FDC. This
note is a companion to AP-116, "An Intelligent Data Base System Using the
8272."

The Physical Interface Level.

The software interface level closest to the FDC hardware is referred to as the
physical interface level. At this level, interface modules (often called disk
drivers or disk handlers) communicate directly with the FDC ‘device. Disk drivers
accept floppy disk commands from other software modules, control and monitor the
FDC execution -of the commands, and finally return operational status information
(at command termination) to the requesting modules. - :

In order to perform these functions, the drivers must support the bit/byte level
FDC interface for status and data transfers. 1In addition, the drivers must field,
classify, -and service a variety of FDC interrupts. .

The Logical Interface Level

System and application software modules often specify disk operation parameters
that are not directly compatible with the FDC device. This software incompati-
bility is typically caused by one of the following: :

1. The change from an existing FDC to a functionally equivalent
design. ‘Replacing a TTL based controller with an LSI device is
an example of ‘a change that may result in software incompati-
bilities. ! - : -

2. The upgrade of an existing FDC subsystem to a higher capability
design. An expansion from a single-sided, single-density sys-
tem to a dual-sided, double-density system to increase data .
storage capacity is an example of such a system change.,

3. :The abstraction of the disk software interface to avoid redun-
dancy. Many FDC parameters (in particular the density, gap
size, number of sectors per track and number of bytes per
sector) are fixed for a floppy disk (after formatting). 1In
fact, in many systems .these parameters are never - changed during
the life of the system.

5-507) 207885-001

APPLICATIONS:

4. The requirement to support a software interface that is inde-
pendent of the type of disk attached to the system. In this
case, a system generated ("logical") disk address (drive, head,
cylinder, and sector numbers) must be mapped into a physical
floppy disk address. For example, to switch between single-
and dual-sided disks, it may be easier and more cost~effective
for the software to treat the dual-sided disk as containing
twice as many sectors per track (52) rather than as having two
sides. With this technique, accesses to sectors 1 through 26
are mapped onto head 0 while accesses to sectors 27 through 52
are mapped onto head 1.)

5. The necessity of supporting a bad track map. Since bad tracks
depend on the disk media, the bad track mapping varies from
disk to disk. In general, the system and application software
should not be concerned with calculating bad track parameters.
Instead, these software modules should refer to cylinders
logically (0 through 76). The logical interface level pro-
cedures must map these cylinders into physical cylinder posi-
tions in order to avoid the bad tracks. :
The key to logical interface software design is the mapping of the "logical disk
interface" (as seen by the application software) into the "physical disk inter-
face" (as implemented by the floppy disk drivers). This logical to physical
mapping 'is tightly coupled to system software design and the mapping serves to
isolate both applications and system software from the peculiarities of the FDC
device. Typical logical interface procedures are described in Table 1.

Thé File System Interface Level

The file system typically comprises the highest level of disk interface software
used by application programs. The file system is designed to treat the disk as
a collection of named data areas (known as files). These files are cataloged in
the disk directory. File system interfaceé software permits the creation of new
files and the deletion of existing files under software control. When a file is
created, its name and disk address are entered into the directory; when a file is
deleted, its name is removed from the directory. Application software requests
the use of a file by executing an OPEN function. Once opened, a .file is
normally reserved for use by the requesting program or task and the file cannot
be reopened by other tasks. When a task no longer needs to use an open file,
the task closes the file, releasing it for use by other tasks.

Most file systems also support a set of file attributes that can be specified
for each file. File attributes may be used to protect files (e.g., the WRITE
PROTECT attribute ensures: that an existing file cannot accidentally be over-
written) and to supply system configuration information (e.g., a FORMAT attri-
bute may specify that a file should automatically be created on a new disk
when the disk is formatted).

At the file system interface level, application programs need not be explicitly
aware of disk storage allocation techniques, block sizes, or file coding strate-
gies. Only a "file name" must be presented in order to open, read or write,

and subsequently close a file. Typical file system functions are listed in
Table 2.

5-508 ' 207885-001

APPLICATIONS

Table 1: Examples of Logical Interface Procedures

Name ‘Descriptionﬂ
v :|. FORMAT DISK Controls physical disk formatting for all tracks on a disk.
. Formatting adds FDC recognized cylinder, head, and sector

addresses as well as address marks and data synchronlzatlon
fields (gaps) to the floppy disk media.

RECALIBRATE - Moves the disk read/wrlte head to track 0 (at the outside
" edge of the disk).

SEEK Moves the disk read/write head to a specified logical
2 : cylinder. The logical and physical cylinder numbers may
be different if bad track mapplng is used

READ STATUS Indicates the status of the floppy disk drive and media. One
: important use of this procedure is to determine whether a
floppy disk is dual-sided.) .

READ SECTOR " Reads one or more complete sectors starting at a specified
disk address (drive, head, cylinder, and sector).

WRITE SECTOR Writes one or more complete sectors starting at a specified
: disk address (drive, head, cylinder, and sector).

5-509 207885-001

APPLICATIONS

Table 2: Disk File System Functions

Name Description
OPEN Prepare a file for processing. If the file is to be opened for
input and the file name is not 'found in the directory, an -error
is generated. If the file is opened for output and the file name
is not found in the directory, the file is automatically created.
CLOSE - Terminate processing of an open file. . .
READ Transfer data from an open file to memory. The READ function is
- often designed- to buffer one or more sectors of data from the disk
drive and supply this data to the requesting program, as required,
WRITE Transfer data from memory to an open file. _The WRITE function is
often designed to buffer data from the application program until
enough data is available to £ill a disk sector.)
CREATE Initialize a file and enter its name and aftributes into the
file directory.)
DELETE Remove a file from the directory and release its storage space,
RENAME Change. the name of a file in the directory.
ATTRIBUTE Change the attributes 6f a file.
LOAD Read a file of executable code into memory.
INITDISK Initialize a disk by formatting the media and establishing the

directory file, the bit map file, and other system files.

5-510 ' 207885-001

APPLICATIONS

scope of this Note

This application note directly addresses the logical and physical interface
levels. A complete 8272 driver (including interrupt service software) is
listed in Appendix A. In addition, examples of recalibrate, seek, format,
read, and write logical interface level procedures are included as part of
‘the exerciser program found in Appendix B. Wherever possible, specific
hardware configuration dependencies are parametized to provide maximum flexi-
bility without requiring major software changes.

5-511

207885-001

- APPLICATIONS

2. Dpisk I/0 Techniques

One of the most important software aspects of disk interfacing is the fixed sector

size. (Sector sizes are fixed when the disk is formatted.) Individual bytes of
disk storage cannot be read/written; 1nstead, complete sectors must be trans-
ferred between the floppy disk and system memory .

Selection of the appropfiate sector size involves a tradeoff between memory
size, disk storage efficiency, and disk transfer eff1c1ency. Basically, the
following factors must be weighed:

1. Memory size. The larger the sector size, the larger the memory
area that must be reserved for use during disk I/O transfers.-
For example, a 1K byte disk sector size requires that at least
one 1K memory block be reserved for disk I/O.

2. Disk Storage efficiency. Both very large and very small sectors
can waste disk storage space as follows. In disk file systems,
space must be allocated somewhere on the disk to link the sectors
of each file together. If most files are composed of many small

- sectors, a large amount of linkage overhead information is re-
quired. At the other extreme, when most files are smaller than a
single disk sector, a large amount ‘of space is wasted at the
-end of each sector.

3. Disk transfer efficiency. A file composed of a few large sectors
can be transferred to/from memory more efficiently (faster and
with less overhead) than a file composed of many small sectors.,

Balancing these considerations requires knowledge of the intended system appli-
cations. Typically, for general purpose systems, sector sizes from 128 bytes
to 1K bytes are used. For compatibility between single-density and double-
density recording with the 8272 floppy disk controller, 256 byte sectors or 512
byte sectors are most useful.

FDC Data Transfer Interface

Three distinct software interface techniques may be used to interface system mem-
ory to the FDC device during sector data transfers:

1. DMA - In a DMA implémentation, the software is only required
to set up the DMA controller memory address and transfer count,
and to initiate the data transfer. The DMA controller hardware
handshakes with the processor/system bus in order to perform
each data transfer.

2. Interrupt Driven - The FDC generates an interrupt when a data
byte is ready to be transferred to memory, or when a data byte
is needed from memory. It is the software's responsibility to .
perform appropriate memory reads/writes in order to transfer
data from/to the FDC upon receipt of the interrupt.

3. polling - Software responsibilities in the polling mode are
identical to the responsibilities in the interrupt driven mode.
The polling mode, however, is used when interrupt service over-
head (context switching) is too large to support the disk data

-

5-512 v 207885-001

APPLICATIONS

rate. 'In this mode, the software determines when to transfer -
data by continually polling a data request status flag in the
FDC status reglster.

The DMA mode has the advantage of permitting the processor to continue executing
instructions while a disk transfer is in progress. . (This capability is espec1ally
useful in multiprogramming environments when the operatlng system is designed to
‘permit other tasks to execute while a program is waiting for I/0.) Modes 2 and

3 are often combined and described as non-DMA operating modes. Non-DMA modes

have the advantage of significantly lower system cost, but are often perform-

ance limited for double-density systems (where data bytes must be transferred
to/from the FDC every 16 microseconds).

Overlapped Operations

Some FDC devices support simultaneous disk operations on more than one disk
drive. Normally seek and recalibrate operations can be overlapped in this
manner. Since seek operations -on most floppy drives are extremely slow, this
mode of operation can often be used by the system software to reduce overall
disk access times.

3uffers

The buffer concept is an ‘extremely important element in advanced disk I/0
strategies. A buffer is nothing more than a memory area containing the same
,amount. of data as a disk sector contains. Generally, when an appllcatlon pro-
gram requests data from a disk, the system software allocates a buffer (memory
area) and transfers the data from the appropriate-disk sector into the buffer.
The address of the buffer is then returned to the application software. In'the
same manner, after the application program has filled a buffer for output,
the buffer address is passed to the system software, which writes data from the
buffer into a disk sector. In multitasking systems, multiple buffers may be
allocated from a buffer pool. In these.systems, the disk controller is often
requested to read ahead and. fill additional data buffers while the application
. software is processing a previous buffer. Using this technigue, system software
attempts to fill buffers before .they are needed by the application programs,
- thereby eliminating program waits during I/O transfers. Figure 1 illustrates
the use of multiple buffers in a ring configuration.

5-513 207885-001

APPLICATIONS

BUFFER #4
EMPTY

BUFFER #3
EMPTY
BUFFER #2
} EMPTY
BUFFER #1
BEING
FILLED
DATA FLOW FROM DISK
INTO BUFFER
N .
DISK DISK
DRIVE ———>; SUBSYSTEM

a) The first disk read request by the application software causes the disk subsystem to begin filling
the first empty buffer. The application software must wait until the buffer is filled before it may
continue execution. - - , ' ’ :

AFN-01949A

Figure 1. Using Multiple Memory Buffers for Disk I/O

' 5-514 .) 207885-001

APPLICATIONS

" APPLICATION
' SOFT

WARE.
BUFFER #1
BEING
EMPTIED
BUFFER #4
EMPTY
. 4
BUFFER #3
. EMPTY
BUFFER #2
BEING
FILLED

DATA FLOW FROM DISK
~ INTO BUFFER

DISK

DISK
ORIVE Eaa— SUBSYSTEM

b) After the first buffer is filled, the disk system continues to tfansfer disk data into the next buffer
while the application software begins operating on the first full buffer,

AFN-01949A

‘Figure 1. Using Multiple Memory Buffers for Disk I/O (Continued)

5-515] _ 207885-001

APPLICATIONS

APPLICATION
SOFTWARE

T

BUFFER #1
BEING
EMPTIED

BUFFER.#2
FULL

'}

BUFFER #3
FULL

AN

BUFFER #4
FULL

NQ DISK TRANSFER
ACTIVE

DISK
SUBSYSTEM

c) When all empty buffers have been filled, disk activity is stépped until the application software
releases one or more buffefs for reuse.

AFN-01949A

Figure 1. Using Muitiple Memory Buffers for Disk I/O (Continued)

5-516 ' . 207885-001

APPLICATIONS

APPLICATION
SOFTWARE

1

BUFFER #2
BEING .
EMPTIED

BUFFER #3
FULL
BUFFER #4
FULL
BUFFER #1
BEING
FILLED
DATA FLOW FROM
© DISK INTO BUFFER
- DISK :
DISK
DRIVE EE— SUBSYSTEM

d) When the application software releases a buffer (for reuse), the disk subsystem begins a disk
sector read to refill the buffer. This strategy attempts to anticipate application software needs by
maintaining a sufficient number of full data buffers in order to minimize data transfer delays. If
disk data is already in memory when the application software requests it, no disk transfer delays
are incurred. : ’

AFN-01949A

Figure 1. Using Multiple Memory Buffers for Disk I/O (Continued)

5-517 ’ 207885-001

APPLICATIONS

3. THE 8272 FLOPPY DISK CONTROLLER
The 8272 is a single-chip LSI Floppy Disk Controller (FDC) that implements both
single- and double-density floppy disk storage subsystems (with up to four
-dual-sided disk drives per FDC). The 8272 supports the IBM 3740 single-density
recording format (FM) and the IBM System 34 double-density recording format
(MFM) . The 8272 accepts and executes high-level disk commands such as format
track, seek, read sector, and write sector. All data synchronization and error
checking is automatically performed by the FDC to ensure reliable data storage
and subsequent retrieval. The 8272 intérfaces to microprocessor systems with
or without Direct Memory Access (DMA) capabilities and also interfaces to a
large number of commercially available floppy disk drives.

‘Floppy Disk Commands

The 8272 executes fifteen high-level ‘disk interface commands:

Specify Write Data
Sense Drive Status Write Deleted Data
Sense Interrupt Status Read Track

Seek Read ID
Recalibrate Scan Equal)
‘Format Track Scan.High or Equal

Read Data : Scan Low or Equal
Read Deleted Data

Bach command is initiated by a multi-byte transfer from the driver software

‘to the FDC (the transferred bytes contain command and parameter information).
after complete command specification, the FDC automatically executes the
command. The command result data (after execution of the command) may réquire a
multi-byte transfer of status information back to the driver. It is con- '
venient to consider each FDC command as consisting of the following three phases:

! Command Phase: The driver transfers to-the FDC all the information
required to perform a particular disk operation. The
8272 automatically. enters the command phase after
RESET and following the completion of the result ,
'phase (if any) of a previous command.

Execution Phase: The FDC performs the operation as instructed. The
execution phase is entered immediately after the
last command parameter is written to the FDC in the

" preceding command phase. The execution phase
normally ends when the last data byte is transferred
to/from %he disk or when an error occurs.

Result Phase: "After completion of the disk operation, status and
other housekeeping information are made avail-~)
able to the driver software. After this information is
read, the FDC reenters the command phase and is ready
to accept another command.

5-518 207885-001

APPLICATIONS

Interface Registers

To support information transfer between the FDC and the system software, the
8272 contains two 8-bit registers: the Main Status Register and the Data
Register. The Main Status Register (read only) contains FDC status information
and may be accessed at any time., The Main Status Register (Table 3) provides
the system processor with the status of each disk drive, the status of the

FDC, and the status of the processor interface. The Data Register (read/write)
stores data, commands, parameters, and disk drive status information. The Data
Register is used to program the FDC during the command phase and to obtain
result information after completion of FDC operations.

In addition to the Main Status Register, the FDC contains four additional
status registers (STO, STl, ST2, and ST3). These registers are only available
during the result phase of a command. : '

Command/Result Phases

Pable 4 lists the 8272 command set. For each of the fifteen commands, command
and result phase data transfers are listed. A list of abbreviations used in
the table is given in Table 5, and the contents of the result status reglsters
(STO0- ST3) are illustrated 1n/Table 6.

The bytes of data which are sent to the 8272 by the drivers during the command
phase, and are read out of the 8272 in the result phase, must occur in the order
shown in Table 4. That is, the command code must be sent first and the other
bytes sent in the prescribed sequence. All bytes of the command and result
phases must be read/written as described. After the last byte of data in the
command phase is sent to the 8272 the execution phase automatically starts. 1In
a similar fashion, when the last byte of data is read from the 8272 in the
result phase, the result phase is automatically ended and the 8272 reenters the -
command phase.

It is important to note that during the result phase all bytes shown in Table 4
must be read. The Read Data command, for example, has seven bytes of data in the
result phase. All seven bytes must be read in order to successfully complete

the Read Data command. The 8272 will not accept a new command until all seven
bytes have been read. The number of command and result bytes varies from
command- to-command.

In order to read data from, or write data to, the Data Register during the
command and result phases, the software driver must examine the Main g;atus
Register to determine if the Data Register is available. The DIO (bit 6) and
ROM (bit 7) flags in the Main Status Register must be low and high, respective-
ly, before each byte of the command word may be written into the 8272. Many of
the commands require multiple bytes, and as a result, the Main Status Register
‘must be read prior to each byte transfer to the 8272. To read status bytes
. during the result phase, DIO and RQM in the Main Status Register must both be
high. Note, checking the Main Status Register in this manner before each byte
transfer to/from the 8272 is required only in the command and result phases,
and is NOT required during the execution phase.

5-519 207885-001

APPLICATIONS

Table 3: Main Status Register Bit Definitions

’ - —
BIT SYMBOL DESCRIPTION
” - SS—
0 DOB Disk Drive 0 Busy. Disk Drive 0 is seeking.
1 DlB Disk Drive 1 Busy. Disk Drive 1 is seeking.
2 D28 Disk Drive 2 Busy. Disk Drive 2 is seeking.
3 D3B Disk Drive 3 Busy. Disk Drive '3 is seeking.b
4 CB FDC Busy. A read or write command is in progress.
5 NDM Non-DMA Mode. The FDC is in the non-DMA mode Qhen this flag is
set (1). This flag is set only during the execution phase of
commands in the non-DMA mode. Transition of this flag to a
-zero (0) indicates that the execution phase has ended.
6 DIO Data Input/outpuf. ‘Indicates the direction of a data transfer
’ between the FDC and the Data Register. When DIO is set (1), data
is read from the Data Register by the processor; when DIO is
reset (0), -data is written from the processor to the Data Register.
7 ' ROM Request for Master{ When set (1), this flag in&icates that
the Data Register is ready to send data to, or receive data
from, the processor. . _ '
%

5-520 . : 207885-001

APPLICATIONS

Table 4: 8272 Command Set

DATA BUS

-] DATA BUS
PHASE RW rDy Dg Ds Dy D3 D Dy Dp REMARKS PHASE D; Dg D; Dy D3 D, Dy Dg |REMARKS
READ DATA READ A TRACK
Command | W MTMFMSK 0 0 1 1 0 |CommandCodes’ Command | W 0 MFMSK 0 o d 1 0 |CommandCodes
w 0 0 0 o0 0 HDSDS1DSO lw 0 0 HDS DS1 DSO
w [Sector ID inf w o Sector ID information
w H prior to C w H prior to Command
w R i w R i
w N N w N
W - EOT . w EOT
w GPL . w GPL
W DTL - w DTL _
: ! { R Data transfer
Exeution Detween ihe FOD Execution betwaen the FOD
i and the main-system.
. and the main-system FDC reads the .
Result R sTO Status inf complete track
R ST1 after Ci contents from thé
R sT2 i physical Index
R Cc mark to EOT
R H Sector ID inf
R R after command Result R sTO Status information
R N i R ST1 after Command
o — R ST2 i
READ DELETED DATA R C
Command| W |[MTMFMSK 0 1 1 ‘0 0 |CommandCodes e a Sector 1D Information
‘ w |0 o 0o o o HDsDS10S0 R N i
w (o1 Sector D information
w H =« prior to C READ ID
w : Command | W 0 1 o t 0 Command Codes
w EC1 . w 0 0 HDS DS1 DSO
w GPL
w DTL Execution The first correct ID
.) Intormation on the
Execution Data transfer track is stored in
between the FDD Data Reglster
and the main-system 9
Result R STO Status i i Result R STO Status information
R ST1 after Ci R ST1 after C
R sT2 i A §T2
R c R -C
R H Sector ID i R H Sector ID intormation
R R after Ci R R during i
R N i R N Phase
WRITE DATA FORMAT A TRACK
Command | W |MTMFM 0 0 0 1 0 1 [CommandCddes Command | W 6 1 1 0 1 [CommandCodes
w 0 0 0 .0 0 HDSODS1 DSO . w 0 0 HDS DS1 DSO
w [¢] Sector ID information w N By
w H prior to Ci w sC Sectors/Track
w R i w GPL _ ap 3
w N w D Filter Byte
w EOT _
w GPL Execution FDC formats an
w DTL entire track
Execution Data transfer Result ! STO Status information
between the main- R ST1 after C d
system and the FOD R sT2 ior
Result R STO Status inf R ¢)
R ST1 after G R H In this case, the ID
R ST2 R R i has no
R c R N
R H Sector D infy
R A after G " _ SCAN EQUAL
R N ion, Command | W MTMFMSK t 0 0 0 1 [CommandCodes
"WRITE DELETED DATA W 0 0 0 0 O HDSDS1DSO
Command | W |MTMFM 0 0 1 0 0O 1 |Command Codes w ¢ o Comorayon
w 0 0 0 0 0 HDSDS1DSO ‘ w R i
w o} Sector 1D information w N
w H prior to C w EOT
w R . w GPL
w N w STP
w EQT
w GPL Execution Data compared
w DTL between the FDD
Execution Data transfer and the maln-system
between the FOD Result R sTO Status i
and the maln-system R ST1 atter C
Result R 510 Status inf R sT2
R ST1 after G R ¢ . .
] sT2 f R H Sector 1D information
R c R R after G
R H Sector ID i R N
R R after C
R N i

Note: 1. Ag= 1 for all operations.

5-521 207885-001

VN

L - APPLICATIONS

DATA BUS DATA BUS
PHASE (RW | D; Dg Ds Dy D3 Dy Dy Dy {REMARKS -||pHASE |RW | D; Dg Dg Dy D3 D, Dy Dy |REMARKS
SCAN LOW OR EQUAL RECALIBRATE
Command | W MTMFMSK 1 1 0 0 1 Command Codes Command | W 0o 0 0 0 0 1 1 1, -| Command Codes
w 0 0 0. 0 0 HDSDS1 DSO w 0 0 0 0 0 0 0S10s80
w [Sector 1D information | Execution Head retracted to
w H prior Ci Track 0
w R ecution
w N . SENSE INTERRUPT STATUS
- o Command|W |0 0 ©0 0 1 0 0 0 |CommandCodes
‘W STP Result R STO Status information at
R . (o] the end of each seek
Execution Data compared . operation about the
. between the FOD FDC
and the main-system » SPECIFY
Result g gl? S;f'ui int i < w [o o o o o o 1 1 [CommandCodes
after
R sT2 i w [""" R |Timer settings
R H - Sector ID inf i SENSE DRIVE STATUS
R R after Ci
R N i . Command [W ¢ 0 0 0 0 1 0 0 |CommandCodes
SCAN HIGH OR EQUAL w [0 0 O HDS DSt DSO
: Result R ST3 Status information
Command | W MT MFM SK 1 1 1 0 11 Command Codes about the FDD .~
W 0O 0 0 0 O HDSDS1DSO . SEEK
w - C Sector ID inf: - - -
w H prior Ct C W, ¢ 0 0o o 1 1 1 1 Command Codes
‘x : i w 0 0 0 0 0 HOSDS!DSO '
w EoT w ¢
" o Execution Head is positioned
. over proper Cylinder
Execution’ Data on Diskette
between the FDD INVALID
and the main-syst -
Command [W | Invalid Codes Invatid C
Result R STO Status i { Codes {NoOp— FDC
R sT1 after C goes into Standby
R 8T2 i State)
R c Result R sTO ST 0=80
R H Sector ID i i - (16)
R R after C
R N i

5-522 : 207885-001

APPLICATIONS

Table 5: Command/Result Parameter Abbreviations

SYMBOL

. DESCRIPTION

'DS0,DS1

" DTL

EOT

GPL

HLT)

MT

Cylinder Address. The currently selected cylinder address (0 to 76) on
the disk. . , .
Data Pattern.- The pattern to be written in each sector data field during
formatting. ' : : .

Disk Drive Select.

S

0 Drive
1 Drive-
0 Drive
1 Drive

w N O

r

Special Sector Size. During the execution of disk read/write commands,
this parameter is used to temporarily alter the effective disk sector
size. By setting N to zero, DTL may be used to specify a sector size
from 1 to 256 bytes in length. If the actual sector (on the disk)

is larger than DTL specifies, the remainder of the actual sector is not
passed to the system during read commands; during write commands, the
remainder of the actual sector is written with all-zeroes bytes. DTL
should be set to FF hexadecimal when N is not zero. '

End of Track. The final sector number of the current track.
Gap Length. The gap 3 size. (Gap 3 is the space between sectors.)

Head Address. Selected head: ' 0 or 1 (disk side 0 or 1, respectively)
as encoded in the sector ID field. "

Head Load Time. Defines the time interval that the FDC waits after
loading the head before initiating a read or write operation. Program-
mable from 2 to 254 milliseconds (in increments of 2 ms). :

Head Unload Time. Defines the time interval from the end of the exe-
cution phase (of a read or write command) until the head is unloaded.
Programmable from 16 to 240 milliseconds (in increments of 16 ms).

MFM/FM Mode Selector. Selects MFM double-density recording mode when

" high, FM single-density mode when low.

Multi-Track Selector. When set, this flag selects the multi-track
operating mode. In this mode (used only with dual-sided disks), .

the FDC treats a complete cylinder (under both read/write head 0 and
read/write head 1) as a single track. The FDC operates as if this
expanded track started at the first sector under head 0 and ended at the
last sector under head 1. With this flag set (high), a multi-sector
read operation will automatically continue to the first sector under
head. 1 when the FDC finishes operating on the last sector under head 0.

Sector Size Code. The number of data bytes within a sector.

5-523 ‘ i , 207885001

APPLICATIONS

sC

SK

SRT

STO

ST1.

ST2
sT3

STP

Non-DMA Mode Flag. When set (1), this flag indicates that the FDC
is to operate in the non-DMA mode. In this mode, the processor
participates in each data transfer (by means of an interrupt or by
polling the ROM flag in the Main Status Reglster) When reset (0),
the FDC interfaces to a DMA controller.

Sector Address. Specifies the sector number to be read or written. In
multi~sector transfers, this parameter specifies the sector number of
the first sector to be read or written.

Number of Sectors per Track. Spe01f1es the number of sectors per track
to be initialized by the Format Track command.

Skip Flag. When this flag is set, sectors containing deleted data
address marks will automatically be skipped during the execution of
multi-sector Read Data or Scan commands. 1In the same manner, a sector
containing a data address mark will automatically be skipped during
the execution of a multl—sector Read Deleted Data command.

Step Rate Interval. Defines the time interva: between step pulses
issued by the FDC (track-to-track access time). Programmable from
1 to 16 milliseconds (in increments of 1 ms). '

Status Register 0-3. Registers within the FDC that store status infor-
mation after a command has been executed. This status information is
available to the processor during the Result Phase after command exe—
cution. These registers may only be read after a command has been
executed (in the exact order shown in Table 4 for each command).

These registers should not be confused with the Main Status Register.,
Scan Sector Increment. During Scan operations, this paraméter is

added to the current sector number in order to determine. the next
sector to be scanned.

5-524 207885-001

APPLICATIONS

Table 6: Status Register Definitions

it

. gtatus Register 0

BIT
NUMBER

SYMBOL-

DESCRIPTION

7,6

1,0

Ic

SE

H

Ds1,DS0

Interrupt Code.

00 - Normal termination of command. The specified command was
properly executed and completed without .error.

01 - Abnormal termination of command. Command execution was
started But could not be successfully completed. -

10 - Invalid command. The requested command could not be executed.

11 - Abnormal termination. During command execution, the disk‘
drive ready signal changed state.

Seek End. This flag is set (1) when the FDC has completed the
Seek command and the read/write head is positioned over the
correct cylinder.

Equipment Check Error. This flag is set (1) . if a fault signal
is received from the disk drive or if the track 0 signal is
not received from the disk drive after 77 step pulses
(Recalibrate command) .

Not Ready Error. This flag is set if a read or write command is
issued and either the drive is not ready or the command specifies
side 1 (head 1) of a single-sided qisk.

Head Address. The head address at the time of the interrupt.

Drive Select. The number'of the drive selected at the time of
the interrupt.

Status Register 1
BIT SYMBOL DESCRIPTION .
NUMBER
7. EN End of Track Error. This flag is set if the FDC attempts to
access a sector beyond the final sector of the track.
6 ﬁndefined
5 DE Data Error. Set when the FDC detects a CRC error in éither the
’ the ID field or the data field of a 'sector,
4 OR Overrun Error. Set (during data transfers) if the FDC does not °

receive DMA or processor service within the specified time
interval. '

5-525 } 207885-001

APPLICATIONS

ND

Undefined

Sector Not Found Error. This flag is set by any of the fbllow—
ing conditions.

a) The FDC cannot locate the sector specified in the Read

Data, Read Deleted Data, or Scan command. .

b) The FDC cannot locate the startlng sector specified in
the Read Track command.

c) .The FDC cannot read the ID field without error durlng
a Read ID command

Write Protect Error. This flag is set if the FDC detectsva

~write protect signal from the disk drive during the execution

of a Write Data, Write Deleted Data, or Format Track command.
e

Missing Address Mark Error. This flag is set by either of.the

following conditions:

a) The FDC cannot detect the ID address mark on the specified
track (after two rotations of the disk). .

b) The FDC cannot detect the data address mark or deleted data
address mark on the spe01f1ed track. (See also the MD bit
of Status Register 2.) ’

_Status Register 2

BIT SYMBOL DESCRIPTION
NUMBER :

7 Undefined.

6 oM Control Mark. This flag is set when the FDC encounters one of
the following conditions:

a) A deleted data address maik during the execution of a Read
Data or Scan command.
b) A data address mark during the execution of a Read Deleted
Data command.
/

5 DD Data Error. Set (1) when the FDC detects a CRC error in a
sector data field. This flag is not set when a CRC error is
detected in the ID field. ‘

4 WC Cylinder Address Error. Set when the cylinde; address from the
disk sector ID field is different from the current cylinder
address maintained within the FDC.

3 SH Scan Hit. Set during the execution of the Scan command
if the scan condition is satisfied.

2 SN Scan Not Satisfied. Set during execution of the Scan command

if the FDC cannot locate a sector on the spec1f1ed cylinder
that satisfies the scan condition.

5-526 : 207885-001

APPLICATIONS

1 BC Bad Track Error. Set when the cylinder address from the disk
sector ID field is FF hexadecimal and this cylinder address is
different from the current cylinder address maintained within
the FDC. This all "ones" cylinder number indicates a bad track
(one containing hard errors) according to the IBM soft-sectored
format specifications. :

0 MD Missing Data Address Mark Error. Set if the FDC cannot detect
a data address mark or deleted data address mark on the speci-
fied track.

Status Regiqter 3

BIT SYMBOL » DESCRIPTION
NUMBER .
"7 FT Fault. This flag indicates the status of the fault signal from
the selected disk drive. N
6 WP Write Protected. This flag indicétes the status of the write
protect signal from the selected disk drive.
5 . RDY Ready. This flag indicates the status of the ready signal from
the selected disk drive.. ;
4 .T0 Track 0. This flag indicates the status of the track 0 signal
from the selected disk drive.
3 TS Two-Sided. This flag indicates the status of the two-sided
signal from the selected disk drive.
2 H Head Address. This flag indicates the status of the side select

signal for the currently selected disk drive.

1,0 DS1,DS0| Drive Select. Indicates the currently selected disk drive
number .

5-527 - ‘) " 207885-001

APPLICATIONS

Execution Phase

All data transfers to (or from) the floppy drive occur 'during the execution
phase. The 8272 has two primary modes of operation for data transfers
(selected by the specify command) : .

. !

1) DMA mode

) 2) non-DMA mode
In the DMA mode, execution phase data transfers are handled by the DMA con-
troller hardware (invisible to the driver .software). The driver software, however,
must set all appropriate DMA controller registers prior to the beginning of the
disk operation. An interrupt is generated by the 8272 after the last data
transfer, indicating the completion of the execution phase, and the beginning of
‘the result phase. . o

In the non-DMA mode, transfer requests are indicated by generation of an interrupt
and by'activation_of the ROM flag (bit 7 in the Main Status Register}. The
interrupt signal can be used for interrupt-driven systems and ROM ‘can be used for
polled systems., The driver software must respond to the transfer request by
reading data from, or writing data to, the FDC. After completing the last
transfer, the 8272 generates an interrupt to indicate the beginning of the
result phase. 1In the non-DMA mode, the processor must activate the "terminal
‘count” (TC) signal to the FDC (normally by méans of an I/0 port) after the
" transfer request for the last data byte has been received (by the driver) and
before the appropriqte data byte has been read from (or written to) the FDC.

In either mode of operation (DMA or non-DMA), the execution phase ends when a
"terminal count" signal is sensed by the FDC, when the last sector on a track
(the EOT parameter - Table 4) has been read or written, or when an error
occurs. ‘ ' : . :)

Multi-sector and Multi-track Transfers

During disk read/write transfers (Read Data, Write Data, Read Deleted Data,

and Write Deleted Data), the FDC will continue to transfer. data from sequential
sectors until the TC input is sensed. 1In the DMA mode, the TC input is normally
set by the DMA controller. In the non-DMA mode, the processor directly controls
the FDC TC input as previously described. Once the TC input is received, the FDC
stops requesting data transfers (from the system software or DMA controller).

The FDC, however, continues to read data from, or write data to, the floppy disk
until the end of the current disk sector. During a disk read operation, the data
read from the disk (after reception of the TC input) is discarded, but the data
CRC is checked for errors; during a disk write operation, the remainder of the
sector is filled with all-zero bytes. ’

If the TC signal is not received before the last byte of the current sector has

been transferred to/from the system, the FDC increments the sector number by one
and initiates a read or write command for this new disk sector.

5-528 . 207885-001

APPLICATIONS

The FDC is also designed to operate’'in a multi-track mode for dual-sided

disks. In the multi-track mode (specified by means of the MT flag in the
command byte - Table 4) the FDC will automatically ihcrement the head address
(from 0 to 1) when the last sector (on the track under head 0) has been read or
written. Reading or writing is then continued on the first sector (sector 1)
of head 1.

prive Status Polling

After the power-on reset, the 8272 automatically enters a drive status

- polling mode. If a change in drive status is detected (all drives are assumed

" to be "not ready" at power-on), an interrupt is generated. The 8272 continues
this status polling between command executions (and between step pulses in the
Seek command). In this manner, the /8272 automatically notifies the system
software whenever a floppy disk is inserted, removed, or changed by the operator.

Command Details

During the command phase, the Main Status Register must be polled by the driver
software before each byte is written into the Data Register. The DIO (bit 6) and
ROM (bit 7) flags in the Main Status Register must be low and high, respectively,
‘before each byte of the command may ‘be written into the 8272. The beginning

of the execution phase for any of these commands will cause DIO to be set high
and RQM to be set low.

Operatlon of .the FDC commands is descrlbed in deta11 in Appllcat1on Note AP-llG, o
"An Intelligent Data Base System Using the 8272."

Invalid Commands

If an invalid (undefined) .command is sent to the FDC, the FDC will terminate
the command. No interrupt is generated by the 8272 during this condition.
Bit 6 and bit 7 (DIO and RQM) in the Main Status Register are both set indi-
cating to the processor that the 8272 is in the result phase and the contents
of sStatus Register 0 must be read. When the processor reads Status Register
0 it will find an 80H code indicating that an invalid command was received.
The driver software in Appendix B checks each requested command and will not
issue an invalid command to the 8272.

A Sense Interrupt Status command must be sent after a Seek or Recalibrate
interrupt; otherwise the FDC will consider the next command to be an invalid
command. Also, when the last "hidden" interrupt has beén serviced, further
Sense Interrupt Status commands will result in invalid command codes.

5-529 . 207885-001

APPLICATIONS

4. 8272 Physical Interface Software

PL/M software driver listings for the 8272 FDC are contained in Appendix A.
These drivers have been designed to operate in a DMA environment (as described
in Application Note AP-116, "An Intelligent Data Base System Using the 8272").
In the following paragraphs, each driver procedure is described. (A description
of the driver data base variables is given in Table 7.) In addition, the modi~
fications necessary to reconfigure the drivers for operation in a polled envir-
onment are discussed. a

INITIALIZESDRIVERS

This initialization procedure must be called before any FDC operations are
attempted. This module initializes the DRIVESREADY, DRIVE$STATUSSCHANGE,
OPERATIONSINSPROGRESS, and OPERATIONSCOMPLETE arrays as well as the)
GLOBAL$DRIVESNO variable. ' :

EXECUTES$DOCB

This procedure contains the main 8272 driver control software and handles the
execution of a complete FDC command. EXECUTESDOCB is called with two parame-
ters: a) a pointer to a disk operation control block and b) a pointer to a
result status byte. The format of the disk operation control block is illus-
trated in Figure 2 and the result status codes are described in Table 8,

Before starting the command phase for the specified disk operation, the command

is checked for validity and to determine whether the FDC is busy. (For an over-
lapped operation, if the FDC BUSY flag is set — in the Main Status Register —

the command cannot be started; non-overlapped operations cannot be started if

the FDC BUSY flag is set, if any drive is in the process of seeking/recalibrating,
or if an operation is currently in progress on the specified drive.)

After these checks are made, interrupts are disabled in order to set the
OPERATIONSINSPROGRESS flag, reset the OPERATIONSCOMPLETE flag, load a pointer
to the current operation control block into the OPERATIONSDOCB$PTR array and
set GLOBALSDRIVESNO (if a non-overlapped operation is to be started). ’

At this point, parameters from the operation control block are output to ‘the
DMA controller and the FDC command phase is initiated. After completion of the
command phase, a test is made to determine the type of result phase required
for the current operation. If no result phase is needed, control is immediate-—
ly returned to the calling program. If an immediate result phase is required,
the result bytes are input from the FDC. Otherwise, the CPU waits until the
OPERATION$COMPLETE flag is set (by the interrupt service procedure) .

Finally, if an error is detected in the :esulf status code (from the FDC), an
FDC operation error is reported to the calling program.

5-530 207885-001

.

APPLICATIONS.

Table 7:

Driver Data Base

NAME

DESCRIPTION

—

DRIVE$READY

ﬁRIVE%STAmussanNGE'
OPERATIONSDOCBS$PTR
OPERATIONS IN$PROGRESS
OPERATIONSCOMPLETE

GLOBAL$DRIVESNO

VALIDS$SCOMMAND
COMMAND $LENGTH

DRIVENOPRESENT

OVERLAP$OPERATION
NOSRESULT

IMMED$RESULT

POSSIBLESERROR

A public array containing the current "ready"
status of each drive.

A public array containing a flag for each
drive. The appropriate flag is set when-
ever the ready status of a drive changes.

An internal array of pointers to the
operation control block currently in
progress for each drive.

“An internal array used by the driver pro-

cedures to determine if a disk operation
is in progress on a given drive.

. An internal array used by the driver pro-

cedures to determine when the execution
phase of a disk operation is complete.

A data byte that records the current drive
number for non-overlapped disk operations.

A constant flag array that- indicates
whether a spec1f1ed FDC command code is
valid.

" A constant byte array specifying the number

of command/parameter bytes to be trans-
ferred to the FDC during the command phase.

A constant flag array that indicates whether
a drive number is encoded into an FDC command.

‘A constant flag arfay that indicates whether
an FDC command can be overlapped with other
commands.

A constant flag array that is used to deter-

mine when an FDC operation does not have a
result phase.

A constant flag array that indicates that an
FDC operation has a result phase beginning
immediately after the command phase is
complete.

A constant flag array that indicates if an
FDC operation should be checked for an
error status indication during the result
phase,

5-531 207885-001

APPLICATIONS

Address
Offset

0

1

10
11
12
13
14
15
16
17
18
19
20
21

22

Disk Operation
Control Block (DOCB)

DMASOP

DMASADDR

DMASADDRSEXT

" DMASCOUNT

DISK$SCOMMAND (0)

DISK$COMMAND (1)

" DISKSCOMMAND (2)

_ - | DISKscoMMAND (3)

DISK$SCOMMAND (4)

DISK$COMMAND (5)

DISK$COMMAND (6)

_DISK$COMMAND (7)

DISKSCOMMAND (8)

DISK$RESULT (0)

DISK$RESULT (1)

DISK$RESULT (2)

DISK$RESULT (3)

DISK$RESULT (4)

DISKSRESULT (5)

DISK$RESULT (6)

MIsC

AFN-01949A

Figure 2. Disk Operation Control Block (DOCB) Format -

5-532

207885-001

APPLICATIONS

Table 8: EXECUTES$DOCB Return Status Codes

Description

No errors. The specified operation was completed without error.

FDC busy. The requested operation cannot be started. This error
occurs if an attempt is made to start an operation before the
previous operation is completed.

FDC error. An error was detected by the FDC during the execution
phase of a disk operation. Additional error information is con-
tained in the result data portion of the disk operation control
block (DOCB.DISKSRESULT) as described in the 8272 data sheet.
This error occurs whenever the 8272 reports an execution phase
error (e€.9., missing address mark). ’

8272 command interface error. An 8272 interfacing error was de-
tected during the command phase. This error occurs when the command
phase of a disk operation cannot be successfully completed (e.g.,
incorrect setting of the DIO flag in the Main Status Register).

8272 result interface error. An 8272 interfacing error was-detected
during the result phase. This error occurs when the result phase

of a disk operation cannot be successfully completed (e.g., incorrect
setting of the DIO flag in the Main Status Register).

Invalid FDC Command,

5-533 . 207885-001

APPLICATIONS

FDCINT

This procedure performs all interrupt processing for the 8272 interface drivers.
Basically, two types of interrupts are generated by the 8272: (a) an interrupt
that signals the end of a command execution phase and the beginning of the re-
sult phase and (b) an interrupt that signals the completion of an overlapped -
operation or the occurrence of an unexpected event (e.g., change in the drive
"ready" status).

An interrupt of type (a) is indicated when the FDC BUSY flag is set (in the
Main Status Register). When a type (a) interrupt is sensed, the result bytes
are read from the 8272 and placed in the result portion of the disk operation
control block, the appropriate OPERATIONSCOMPLETE -flag is set, and the OPERA-
TIONSINSPROGRESS flag is reset. '

When ‘an interrupt of type (b) is indicated (FDC not busy), a sense interrupt
status command is issued (to the FDC). The upper two bits of the result status
register (Status Register Zero ~ ST0) are used to determine the cause of the
‘interrupt. The following four cases are possible: '

1) Operation Complete. An overlapped operation is complete. The
-drive number is found in the lower two bits of ST0. The ST0 data
is transferred to the active operation control block, the OPERA-
TIONSCOMPLETE flag is set, and the OPERATIONSINSPROGRESS flag is
reset, . :

2) Abnormal Termination. A disk operation has abnormally terminated.
The drive number is found in the lower two bits of ST0. The STO
~data is"transferred to the active control block; the OPERATIONSCOM-
PLETE flag is set, and the OPERATIONSIN$PROGRESS flag is reset.

3) Invalid Command. The execution of an invalid command (i.e., a
‘'sense interrupt command with no interrupt pending) has been attempt-
ed. This interrupt signals the successful completion of all interrupt
processing. ' :

4) Drive Status Change. A change has occurred in the "ready" status
of a disk-drive. The drive number is found in the lower two bits
of ST0. The DRIVESREADY flag for this disk drive is set to the
new drive "ready" status and the DRIVE$STATUSSCHANGE flag for the
drive is also set. 1In addition, if a command is currently in

-progress, the STO0 data is transferred to the active control block,
the OPERATIONSCOMPLETE flag is set, and the OPERATIONSINSPROGRESS
flag is reset. . .

After processing a type (b) interrupt, additional sense interrupt status commands
must be issued and processed until an "invalid command" result is returned from
the FDC.” This action guarantees that all "hidden" interrupts are serviced.

In addition to the major driver procedures described above, a number of support

procedures are required. These support routines are briefly described in the
following paragraphs. o

5-534 ' 207885-001

APPLICATIONS

OUTPUTSCONTROLSTODHA

This procedure outputs the DMA mode, the DMA address, and the DMA word count
to the 8237 DMA controller. In addition, the: upper four bits of the 20-bit
DMA address are output to the address extension latch Finally, the disk DMA
channel is started.

OUTPUTS$COMMANDS$TOSFDC

This software module outputs a complete disk command to the 8272 FDC. The
number of required command/parameter bytes is found in the COMMANDS$SLENGTH table.
The appropriate bytes are output one at a time (by calls to OUTPUTS$BYTESTOS$FDC)
from the command portion of the disk operation control. block.

INPUTS$RESULTSFROMSFDC o -

This procedure is used to read result phase status information from the disk
controller. At most, seven bytes are read. 1In order to read each byte, a call
is made to INPUT$BYTESFROMSFDC. When the last byte has been read, a check is
made to insure that the FDC 1s no longer busy.

OUTPUT$BYTESTOSFDC

This software is used to output a single command/parameter byte to the FDC.
This procedure waits until the FDC is ready for a command byte and then out-
puts the byte to the FDC data port.

INPUT$BYTESFROMS$FDC

This procedure inputs a single result byte from the FDC. The software waits-
until the FDC is ready to transfer a result byte and then reads the byte from
the FDC data port.) .

’

FDC$READY $FORSCOMMAND

This procedure assures, that the FDC is ready to accept a command/parameter byte
by performing. the following three steps. First, a small time interval (more

* than 20 microseconds) is inserted to assure that the RQM flag has time to become
valid (after the last byte transfer). Second, the master request flag (RQM) is
polled until it is activated by the FDC. Finally, the DIO flag is checked to
ensure that it is properly set for FDC input (from the processor).

FDC$READY $FORSRESULT)

The operation of this procedure is similar to the FDCSREADYSFORSCOMMAND with
the following exception. If the FDC BUSY flag (in the Main Status Register)
is not set, the result phase is complete and no more data is available from
the FDC. Otherwise, the procedure waits for .the RQM flag and checks the DIO
flag for FDC output (to the processor). ’ ' :

5-535 207885-001 -

APPLICATIONS

OPERATIONSCLEANSUP

This procedure is called after the execution of a disk operation that has no
result phase. OPERATIONSCLEANSUP resets the OPERATIONSINSPROGRESS flag and the
GLOBAL$DRIVESNO variable if appropriate. This procedure is also called to clean
up after~some disk operation errors.

Modifications_for‘Polling Operation

To operate in the polling mode, the following modifications should be made to
the previous routines:

1. The OUTPUT$CONTROLS$TOSDMA routine should be deleted.

2. In EXECUTESDOCB, immediately prior to WAITFOROP$COMPLETE, a
polling loop should be inserted into the code. The loop should
test the RQM'flag (in the Main Status Register). When RQM is
set, a data byte should be written to, or read from, the 8272.

The buffer address may be computed from the base address con-
tained in DOCB.DMASADDR and DOCB.DMA$ADDRSEXT. After the correct
number of bytes have been transferred, an operation complete
interrupt will be issued by the FDC. During data transfer in]
the non-DMA mode, the NON-DMA MODE flag (bit 5 of the Main Status
Register) will be set. This flag will remain set for the complete
execution phase. When the transfer is finished, the NON-DMA MODE
flag is reset and the result phase interrupt is issued by the FDC.

5-536 . ’ . 207885-001

APPLICATIONS

5. 8272 Logical Interface SOftware

appendix B of this Application Note contains a PL/M listing of an exerciser
program for the 8272 drivers. This program illustrates the design of logical
interface level procedures to specify disk parameters, recalibrate a drive,
seek td a cylinder, format a dlsk, read data, and write data.

The exerc1ser program is wr1tten to operate a standard single-sided 8" floppy
‘gisk drive in either the single- or double-density recording mode. Only the
eight parameters listed in Table 9 must be specified. All other parameters
are derived from these 8 basic variables.

pach of these logical interface procedures is described in the following para-
graphs (refer to the listing in Appendix ‘B).

SPECIFY

1 N N v
This procedure sets the FDC signal timing so that the FDC will interface
correctly to the-attached disk drive. The SPECIFY procedure requires four
parameters, the step rate (SRT), head load time (HLT), head unload time (HUT),
and the non-DMA mode flag (ND). This procedure builds a disk operation control
block (SPECIFY$DOCB) and passes the control block to the FDC driver module
(EXECUTESDOCB) for execution, (Note carefully the computation required to
transform the step rate (SRT) into the correct 8272 parameter byte.)

RECALIBRATE

This procedure causes the floppy disk read/write head to retract to track 0.
The RECALIBRATE procedure requires only one parameter — the drive number on

which the recalibrate operation is to be performed. This procedure builds a
disk operation control block (RECALIBRATE$DOCB) and passes the control block
to the FDC driver for execution. \ .

SEEK

il
This procedure causes the disk read/write head (on the selected drive)'to move
to sthe desired cylinder position. The SEEK procedure is called with three
parameters: drive number (DRV), head/side number (HD), and cylinder number
(CYL). This software module builds a disk operatlon control block (SEEK$DOCB)
that is executed by the FDC driver.

FORMAT

The FORMAT procedure is designed to initialize a complete floppy disk so that
sectors can subsequently be read and written by system and application programs.
Three parameters must be supplied to this procedure: the drive number (DRV),
the recording density (DENS), and the interleave factor (INTLVE). The FORMAT
procedure generates a data block (FMTBLK) and a disk operation control block
(FORMATSDOCB) for each track on the floppy disk (normally 77).

5-537 o o 207885-001

APPLICATIONS

‘Table 9: Basic Disk Parameters.

Name

Description
DENSITY ‘The recording mode (FM or MFM).
FILLER$BYTE The data byte to be written in all sectors dufing'
formatting.
TRACKSSPERDISK The number of leinderé on the floppy disk.
BYTESSPERSSECTOR The number of bytes in each disk sector. The
i . exerciser accepts 128, 256, and 512 in FM mode,
and 256, 512, and 1024 in MFM mode.
INTERLEAVE The sector interleave factor for each disk track.
STEP$RATE The disk drive step rate (1-16 millisecbnds).
HEADSLOADSTIME The disk drive head load time (2-254 millisecondsi.
HEADSUNLOADSTIME The head unload time (16-240 milliseconds).

. 5-538‘) 207885-001

APPLICATIONS

The format data block specifies the four gector ID field parameters’(cylinder,
head, sector, and bytes per sector) for each sector on the track. The sector
numbers need not be sequential; the interleave factor (INTLVE parameter) is used
to compute the logical to physical sector mapping.

After both the format data block and the operation control block are generated
for a given cylinder, control is passed to the 8272 drivers for execution.
After the format operation is complete, a SEEK to the next cylinder is per-
formed, a new format table is generated, and another track formatting operation
js executed by the drivers. This track formatting continues until all tracks
on the diskette are formatted.

In some systems, bad tracks must also be specified when a disk is formatted. For
these systems, the existing FORMAT procedure should be modified to format
bad tracks with a cylinder number of OFFH.

WRITE

The WRITE procedure transfers a complete sector of data to the disk drive. Five
parameters must be supplied to this software module: the drive number (DRV) ,
the cylinder number (CYL), the head/side number (HD), the sector number (SEC)
and the recording density (DENS). This procedure generates a disk operation
control block (WRITE$DOCB) from these parameters and passes the control block to
the 8272 driver for execution. When control returns to the calling program, the
-data has been transferred to disk.

READ

This procedure is identical to the WRITE procedure except the direction of data
transfer is reversed. The READ procedure transfers a sector of data from the -
floppy disk to system memory.

. Coping With Errors .
"In actual practice all logical disk interface routines would contain errér
processing mechanisms. - (Brrors have been ignored for the sake of simplicity
in the exerciser programs listed in Appendix B.) A typical error recovery
technique consists of a two-stage procedure. First, when an error is detected,
a recalibrate operation is performea followed by a retry of the failed operation.
This procedure forces the drive to seek directly to the requested cylinder (low-
ering the probability of a seek error) and attempts to perform the requested
.operation an additional time. Soft (temporary) errors caused by mechanical or
electrical interference do not normally recur during the retry operation; hard
errors (caused by media or drive failures), on the other hand, will continue
to occur during retry operations. 1If, after a number of retries (approximately
- 10), the operation continues to fail, an error message is displayed to the sys-
tem operator. This error message lists the drive number, type of operation,
and failure status (from the FDC). It is the operator's responsibility to take
additional action as required. -

5-539 ‘ 207885-001

APPLICATIONS

6. Pile Systems

The file system provides the disk I/O interface level most familiar to users

of interactive microcomputer and minicomputer systems. In a file system, all

data is stored in named disk areas called files. The user and applications
programs need not be concerned with the exact location of a file on the disk — the
disk file system automatically determines the file location from the file name.
Files may be created, read, written, modified, and finally deleted (destroyed)
when they are no longer needed. Each floppy disk typically contains a directory
that lists all the files existing on the disk. A_diréctory entry for a file
contains information such as file name, file size, ‘and the disk address (track

and sector) of the beginning of the file.

‘'File Allocation

File storage is actually allocated on the disk (by the file system) in fixed
size areas called blocks. Normally a block is the same size as a disk sector.
Files are created by finding and reserving enough unused blocks to contain the
data in the file. Two file allocation methods are currently in widespread use.
The first method allocates blocks (for a file) from a sequential pbol of unused
blocks. Thus, a file is always contained in a set of sequential blocks on the
disk. Unfortunately, as files are created, updated, and deleted, these free-
block pools become fragmented (separated from one another). When this fragmen-
tation occurs, it often becomes impossible for the file system to create a file
even though there is a sufficient number of free blocks on the disk. At this
point, special programs must be run to "squeeze" or compact the disk, in order
to re-create a ‘single contiguous free-block pool.

The second file allocation method uses a more flexible technique in which indi-
vidual data blocks may be located anywhere on the disk (with no restrictions).
With this technique, a file directory entry contains the disk address of a file
pointer block rather than the disk address of the first data block of the file.
This file pointer block contains pointers (disk addresses) for each data block
in the file. For example, the first pointer in the file pointer block contains
the track and sector address of the first data block in the file, the second
pointer contains the.disk address of the second data block, etc.

In practice, pointer blocks are usually the same size as data blocks. Therefore,
some files will require multiple pointer blocks. -‘fo accommodate this require-
ment without loss of flexibility, pointer ‘blocks .are linked together, that is,
each pointer block contains the disk address of .the following pointer block.

The last pointer block of the file is signalled by an illegal disk address

(e.g., track 0, sector 0 or track OFFH, sector OFFH).

'

5-540) 207885-001

APPLICATIONS

rThe Intel File System \

The Intel file system (described in detail in the RMX-80 Users Guide) uses
the second disk file allocation method (previously discussed). 1In order to
lower the system overhead involved in finding free data blocks, the Intel file
_system incorporates a free space management data structure known as. a bit map. -
Each disk sector is represented by a single bit in the bit map. If a bit in the
bit map is set to 1, the corresponding disk sector has been allocated. A zero
in the bit map indicates that the corresponding sector is free. With this
technique, the process of allocating or freeing a sector is accomplished by
_gimply altering the bit map.

File names consist of a basic file name (up to six characters) and -a file ex-

tension (up to three characters). The basic file name and the file extension
_are separated by a period (.). Examples of valid file names are: DRIV72.0BJ,
XX.TMP, and FILE.CS. In addition, four file attributes are supported (see
Figure 3 for attribute definitions). -
The bit map and the file directory are placed on prespecified disk tracks
(reserved for system use) beginning at track zero.

pisk File System Functions

Table 2 illustrates the typical functions implemented by a disk file system.

As an example, the disk directory function (DIR) lists disk file information on
the console display terminal. Figure 3 details the contents of a display entry
in the Intel file system. The PL/M procedure ocutlined in Figure 4 illustrates
a disk directory algorithm that displays the file name, the file attributes,
and the file size (in blocks) for each file in the directory.

5-541 ' 207885-001

,

APPLICATIONS

—_—
& & N &
& & &
é $ [fas Feo Sixe
g §/65/) 358 G398
& & S TS Ey'§
4 & © Q& K'Y
FILE NAME EXTENSION <
I I | | I] I 1 T
1 1 i [}] I I - 1
0 1] 2] 3 o] s 6 7] 8] e 10 1 12 1w 1] s
7 0
0-INVISIBLE
1-SYSTEM
2 - WRITE-PROTECT
3-
3 } (RESERVED)
6-
7- FORMAT
AFN-01949A

Directory Entry
Presence is a flag that can contain one 6f three Qalues:
000H - The file associated with this entry is present on the disk.

07FH - No file is associated with this entry; the content of the rest
'~ of the entry is undefined. The first entry with its flag set
to 07FH marks the current logical end of the directory and
directory searches stop at .this entry.

OFFH - The file named in this entry once existed on the disk but is
currently deleted. The next file added to the directory will
be placed in the first entry marked OFFH. This flag cannot,
therefore, be used to (reliably) find a file that has been
deleted. A value of OFFH should be thought of as simply marking
an open directory entry. .

File Name is a string of up to 6 non-blank ASCII characters specifying the
name of the file associated with the directory entry. If the file name is
shorter than six characters, the remaining bytes contain binary zeros. For ex-
. ample, the name ALPHA would be stored as: 414C50484100H.

Extensioen is a string of up to 3 non-blank ASCII characters that specifies an
extension to the file name. Extensions often identify the type of data in the
file such as OBJ (object module), or PIM (PL/M source module). As with the
file name, unused positions in the extension field are filled with binary zeros.

Figure 3. Intel Directory Entry Format

5-542 ' 207885-001

APPLICATIONS

Attributes are bits that identify certain characteristics of the file. A1l
bit indicates that the file has the attribute, while a 0 bit means that the file
does not have the attribute. The bit positions and their corresponding attri-
pbutes are listed below (bit 0 is the low-order or rightmost bit, bit 7 is the
leftmost bit): __— . ‘

0 Invisible. Files with this attribute are not listed by the
ISIS-II DIR command unless the I switch is used. All system
files are invisible. ‘ .

1: System. Files with this attribute are copied to the disk in
drive 1 when the S switch is specified with the ISIS-II FORMAT
command. '

2: Write-Protect. Files with this attribute cannot be opened for

output or update, nor can they be deleted or renamed.
3-6: These positions are reserved for future use.

7: Format. Files with this attribute are treated as though they
are write-protected. . In addition, these files are created on
a new diskette when the ISIS-II FORMAT command is issued. The
system files all have the FORMAT attribute and it should not
be given to any other files. ’ .-

i/ .
EOF Count contains the number of the last byte in the last data block of
the file.. If the value of this field is 080H, for example, the last byte in
the file is byte number 128 in the last data block (the last block is full). -

* Number of Data Blocks is an address variable that indicates the number of
data blocks currently used by the file. ISIS-II and the RMX/80 Disk File
system both maintain a counter called LENGTH that is the current number of
bytes in the file. This is calculated as:

((NUMBER OF DATA BLOCKS - 1) x 128 + EOF COUNT.

Header Block Pointer is the address of the file's header block. The high
byte of the field is the sector number and the low byte is the track number.
The system "finds" a disk file by searching the directory for the name and then
using the header block pointer to seek to the beginning of the file.

Figure 3. Intel Directory Entry Format (Continued)

5-543 ‘ . 207885-001

APPLICATIONS

dir: procedure(drv,dens)

declare

drv

dens
sector

i

dir$ptr
‘dir$entry

size (5)

invisible$flag
system$flag
protecteds$flag
format$flag

public;

byte,

byte,

byte,

byte,

byte,

based rdbptr structure (presence byte,
file$name (6) byte,extension(3) byte,
attribute byte,eof$count byte,

dataS$blocks address,header$ptr address),

byte,

literally ‘17,
literally “2°,
literally “4°,
literally “80H”;

/* The disk directory starts at cylinder 1, sector 2 */
call seek(drv,1,0); \
do ‘sector=2 to 26;
call read(drv,1,0,sector,dens);
do dir$ptr=0 to 112 by 4;
if dir$entry.presence=7FH then return;

if dir$entry.presence=0

then do;
do i=0 to 5; call co(dirSentry.fileSname (i)); end;

call co(period);

do i=0 to 2; call co(dirSentry.extension(i)); end;
do i=0 to 4; call .co(space); end;

call convertstosdecimal(@size,dirsentry.datasblocks);
do i=0 to 4; call co(size(i)); end;

If (dir$entry.attribute and invisible$flag)
If (dir$entry.attribute and system$flag) <> 0 then call co(’S
If (dir$entry.attribute and protected$flagqg)
If (dir$entry.attribure and format$flag) <>

end;

end;
end;

end dir;

<> 0 then call co

I
<> 0 then call co("W*);
0 then call co(“F*);

Y
A}

AFN-01949A

Figure 4. ‘Sample PL/M Directory Procedure

5-544

207885-001

APPLICATIONS

7. Key 8272 Software Interfacing Considerations.

This section contains a quick review of Key 8272 Software design features and
issues. (Most items have been mentioned in other sections of this application
note.) Before de51gn1ng 8272 software drivers, it is advisable that the infor-
mation in this section be thoroughly understood.

1. Non-DMA Data Transfers

In systems that operate without a DMA controller (in the polled or
interrupt driven mode), the system software is responsible for counting
data transfers to/from the 8272 and generating a TC signal to the FDC
when the transfer is complete.

2. processor Command/Result Phase Interface

In the command phase, the driver software must write the exact number of parameters
in the. exact order shown in Table 5. During the result phase, the driver

must read the complete result status. For example, the Format Track command
requires six command bytes and presents seven result bytes. The 8272 will not
accept a new command until all result bytes are read. Note that the number of
command and result bytes varies from command-to-command. Command and result
phases cannot be shortened. :

puring both the command and result phases, the Main Status Register must be read
by the driver before each byte of information is read from, or written to, .
the FDC Data Register. Before each command byte is written, DIO (bit 6)

must be low (indicating a data transfer from the processor) and RQM (bit 7)

must be high (indicating that the FDC is ready for data). During the result
phase, DIO must be high (indicating a data transfer to the processor) and RQM
must also be high (indicating that data is ready for the processor).

Note: After the 8272 receives a command byte, the RQM flag may remain set for.
approximately 16 microseconds (with an 8 MHz clock). The driver should not
attempt to read the Main Status Register before this time interval has '
.elapsed; otherwise, the driver may erroneously assume that the FDC is -
ready to accept the next byte.

3. Sector Sizes

The 8272 does not support 128 byte sectors in the MFM (double-density) mode.

4. Drive Status Changes

The 8272 constantly polls all drives for changes in the drive ready status.
This polling begins immediately following RESET. An interrupt is generated
every time the FDC senses a change in the drive ready status. After reset,
the FDC assumes that all drives are "not ready". 1If a drive is ready

immediately after reset, the 8272 generates a drive status change interrupt.

5-545 _207885-001

APPLICATIONS

‘5. Seek Commands

The 8272 FDC does not perform implied seeks. Before issuing a data read
or write command the read/write head must be positioned over the correct
cylinder by means of an explicit seek command.” If the head is not posit-
ioned correctly, a cylinder address error is generated.

6. Interrupt Processing . L

When the processor receives an interrupt from the FDC the FDC may be re-’
porting one of two distinct events:

a) The beginning of the result phase of a previously requested -
read, write, or scan command.

b) An asynchronous event such as a seek/recalibrate completion,
an attention, an abnormal command termlnatlon, or an invalid
command.

These two cases are distinguished by the FDC BUSY flag (bit 4) in the Main
Status Register. If the FDC BUSY flag is high, the interrupt is of type (a).
If the FDC BUSY flag is low, the interrupt was caused by an asynchronous
event (b).

A single interrupt from the FDC may signal more than one of the above events.
After receiving an interrupt, the processor must continue to issue Sense
Interrupt Status commands (and service the resulting conditions) until an
invalid command code is received.. In this manner, all "hidden" interrupts are
ferreted out and serviced. o ‘ '

7. Skip Flag (SK)

The skip flag is used during the execution of kead Data, Read Deleted Data,
- Read Track, and various Scan commands. This flag permits the FDC to skip
unwanted sectors on a disk track.)

When performing a Read Data, Read Track, or .Scan command, a high SK flag indi-
cates that the FDC. is to skip over (not transfer) any sector containing a
deleted data address mark. A low SK flag indicates that the FDC is to termi-
nate the command (after reading all the data in the sector) when a deleted
data address mark is encountered.

When performing a Read Deleted Data command, a high SK flag indicates that
sectors. containing normal data address marks are to be skipped. Note that
this is just the opposite situation from that described in the last paragraph.
When a data address mark is encountered during a Read Deleted Data command (and
the SK flag is low), the FDC terminates the command after reading all the data
in the sector.

. : 5-546 207885-001

APPLICATIONS

g. Bad Track Maintenance

The 8272 does not internally maintain bad track information. The maintenance
of this information must be performed by system software. As an example of
typical bad track operation, assume that a media test determines that track

31 and track 66 of a given floppy disk are bad. When the disk is formatted
for use, the system software formats physical track 0 as logical cylinder

0 (C=0 in the command phase parameters), physical track 1 as logical track 1
(C=1), and so on, until physical track 30 is formatted as logical cylinder

30 (C=30). Physcial track 31 is bad and should be formatted as logical
cylinder FF (indicating a bad track). Next, physical track 32 is formatted

as logical cylinder 31, and so on, until physical track 65 is formatted as
logical cylinder 64. Next, bad physical track 66 is formatted as logical
cylinder FF (another bad track marker), and physical track 67 is formatted

as logical cylinder 65. This formatting continues until the last physical
track (77) is formatted as logical cylinder 75. Normally, after this formatting
is complete, the bad track information is stored in a prespecified area on the
floppy disk (typically in a sector on track 0) so that the system will be able
to recreate the bad track information when the disk is removed from the drive
and reinserted at some later time.

To illustrate how the system software performs a transfer operation on a disk-
with bad tracks, assume that the disk drive head is positioned at track 0 and
the disk described above is loaded into the drive. 'If a command to read track
36 is issued by an application program, the system software translates this
read command into a seek to physical track 37 (since there is one bad track
between 0 and 36, namely 31) followed by a read of logical cylinder 36.

Thus, the cylinder parameter C is set to 37 for the Seek command and 36 for
the Read Sector command.

5-547 ' 207885-001

APPLICATIONS

10.

REFERENCES

Intel, "8272 Slngle/Double Dens1ty Floppy Disk Controller Data ‘Sheet,"
Intel Corporation, 1980.

Intel, "An Intelligent Data Base System Using the 8272," Intel Application
Note, AP-116, 1981.

Intel, iSBC 208 Hardware Reference Manual Manual Order No. 143078,
Intel Corporation, 1980.

Intel, RMX/80 User's Guide, Manual Order No. 9800522, Intel
Corporation, 1978

Brinch Hansen, P., Operating System Principles, Prentice-Hall, Inc.,
New Jersey, 1973.

Flores, I., Computer Software: Programming Systems for Digital Computers,
Prentice-Hall, Inc., New Jersey, 1965.

Knuth, D. E., Fundamental Algorithms; Addison-Wesley Publishing Company,
Massachusetts, 1975. ’

Shaw, A. C., The Logical De51gn of Operating Systems, Prentlce—Hall In¢.,
New Jersey, 1974.

Watson, R. W., Time Sharlng System Design Concepts, McGraw-Hill, Inc.,
New York, 1970.

zarrella, J., Operating Systems: Concepts and Principles, M1crocomputer
Applications, California, 1979.

5-548 : ’ 207885-001

APPLICATIONS

: APPENDIX A
8272 FDC DEVICE DRIVER SOF TWARE

5-549 ’ 207885-001

APPLICATIONS

PL/M-86 COMPILER

ISIS-IT PL/M-86 V1.2 COMPILATION OF MODULE DRIVERS

OBJECT MODULE PLACED IN :Fl:driv72.0BJ
plm86 :Fl:driv72.p86 DEBUG

COMPILER INVOKED BY:

8272 FLOPPY DISK CONTROLLER DEVICE DRIVERS

$title(”8272 floppy disk controller device drivers”)

$nointvector
$optimize (2)
© $large :
1 drivers: do;
2 1 declare
/* floppy disk port definitions */
fdc$status$port literally “30H”, /* 8272 status port */
fdcsdatasport literally “31H”; /* 8272 data port */
3 1 declare
/* floppy disk commands */
sense$intS$status literally “08H”;
4 1 declare
- /* interrupt definitions *x/
fdecSintSlevel literally “33”; /* fdc interrupt level */
5 1 declare
/* return status and error codes */
error literally “o0”,
ok literally “1°,
complete literally “3~,
false literally “0-°,
true literally “1-,
error$in literally “not”,
propagate$error literally “return error”,
stat$ok literally “o0”, /* fdc operation completed without errors */
stat$busy literally “1-, /* fdc is busy, operation cannpt be started */
stat$error literally “2-°, /* fdc operation error */
stat$command$error literally “3°, /* fdc not readv for command phase */
stat$resultSerror literally “4-, /* fdc not ready for result phase */
stat$invalid literally “5°; /* invalid fdc command */
6 1 declare
/* masks */
busy$mask literally “10H",
DIOSmask literally “40H",
RQM$mask literally “80H”
seek$mask literally “OFH”
result$error$mask literally “0COH”,
result$drive$mask literally “03H”,
result$ready$mask literally “08H";
7 1 declare
/* drive numbers */
maxnodrives literally “3-,
fdc$general- literally “4”;
8 1 Adeclare -
/* miscellaneous control */
any$drive$seeking literally ‘((input(fdcsstatussport) and seek$mask) <> 0)”,
command$code literally “(docb.disk$command(0) and 1FH) “,
DIOsetfor$input literally “((input (fdc$status$port) and DIO$mask)=0)“,
DIOsetfor$output literally ‘((input(fchstatussport) and DIO$mask)<>0)”, \
extract$drive$no literally ‘(docb.diskScommand(l) and O3H)”,
fde$busy literally ‘((input(fdcsstatussport) and busy$mask) <> 0)~”,
nofdcerror literally ‘possibleserror(commandScode) and ((docb.diskSresult (0)
. and resultS$error$mask) = 0)~,
waitforopScomplete literally “do while not operation$complete(drive$no); end”,
waitforRQM literally “do while (input (fdc$status$port) and ROM$mask) = 07 end;”;
9 1 declare
/* structures */
docb$type literally /* disk operation control block */
“{dmasop byte,dmas$addr word, dmas$addr$ext byte,dma$count word,
disk$command (9) byte,disk$result (7) byte,misc byte)”;
Seject
10 1 " declare

/* when set - indicates that drve status changed
/* current status of drives */

driveSstatus$change(4) byte public,
drive$ready(4) byte public:

- 5-550 207885-001

11

12

13
14
" 15

17
18

20
21
23
24

25

26

27

30
32
33

34

35

36

WwWWwWwwN

[XENEN)

APPLICATIONS

declare
operationinprogress(5) byte,
operation$complete(5) byte,
operation$docb$ptr (5) pointer,
interrupt$docb structure docbs$type,
global$drive$no byte;

declare

/* internal flags for operation with multiple drives */

/* fdc execution phase completed */

/* pointers for operations in progress */
/* temporary docb for interrupt processing */
/* drive number of non-overlapped operation

in progress - if any */

/* internal vectors that contain command operatlonal information */

no$result (32) byte

/* no result phase to command */

data(o,o0,0,1,0),

immed$result(32) byte

/* meedlate result phase for command */

data(0,0,6,0,1,0,0,0,1,0),

overlap$operat10n(32) byte

/* command permits overlapped operation of drv1es */

data(o0,0,0,0,0,0,0,1,0,0,0,0,0,0, 0 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
/* drlve number present in command information */
data¢o0,0,1,0,1,1,1,1,0,1,1,0,1%,1,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0) ,

dr1venopresent(32) byte

possibleSerror (32) byte

/* determines 1f command can return with

data(0,0,1,0,0,1,1,1,1,1,1,0,1,1, 0 1,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0),

commandSlength(BZ) byte

/* contains number of command bytes for each command */

data(o0,0,9,3,2,9,9,2,1,9,2,0,9,6,0,3,0,9,0,0,0,0,0,0,0,9,0,0,0,9,0,0) ,

valid$tommand (32) byte

/* flags 1nvalld command codes */

data(o,0,1,1,1,},1,1,1,1,1,0,2,1,0,1,0,%,0,0,0,0,¢,0,0,2,0,0,0,1,0,0} ;

Seject

/**** initialization for the 8272 fdc driver software. This procedure must
be called prior to execution of any driver software. kkkk/

initialize$drivers: procedure public;
/* initialize 8272 drivers */
declare drv$no byte;

do drv$no=0 to max$no$drives;
Adrive$ready (drv$no)=false;
drive$status$change (drvéno)=false;
operationinprogress(drv$no)=false;
operatlonScomplete(drvSno) false;

end; N

operationinprogress (fdc$general)=£false;

operation$complete (fdc$general)=false;
globals$drives$no=0;

end initialize$drivers;

/**** wait until the 8272 fdc is ready to receive command/parameter bytes
in the command phase. The 8272 is ready to receive command bytes
when the ROM flag is high and the DIO flag is low. *kkk/

fdc$ready$for$command: procedure byte;

. /* wait for valid flag settings in status register */ : .

call time(l);

/* wait for "mastez.reqﬁesth flag */
waitforSROM;

/* check data dlrectlon flag */
if DIOsetforSinput

then return ok;

else return error;

end fdc$ready$for$command;

/**** wait until the 8272 fdc is ready to return data bytes in the result
phase. The 8272 is ready to return a result byte when the RQM and DIO
flags are both high. The busy flag in the main status register will
remain set until the last data byte of the result phase has been read

by the processor. *xrx/

fdc$ready$for$result: procedure byte;

/* wait for valid settings in status register */

call time(l);

/* result phase has ended when the 8272 busy flag is reset */

if not fdc$busy
then return complete;

5-551

an error */

207885-001

' APPLICATIONS

38

41
43
44

45
46

47

49

50
51

52
53
54

55
56

58

60
61
62

63
65
66

67

69
70

NN N =

[NESEET

NN

NN

NN

[N]

/* wait for "master request” flag */
waitforROM;

/* check data direction flag */
if DIO$setSforSoutput

then return ok;

else return error;

end fdc$ready$for$result;

/***% output a sxngle command/parameter byte to the 8272 fdc. " The "datagbyte"
parameter is .the byte to be output to the fdc. *kkk/

outputSbyteStosfdc procedure (data$byte) byte;
declare datas$byte byte;

/* check to see if fdc is ready for command */
if not fdc$readvy$forS$Scommand
then propagateSerror;

output (fdcSdatasSport)=datas$byte;

return ok;
end output$bytes$tosfdc;

/**** input a single .result byte from the 8272 fdc. The "dataSbyte$ptr"
parameter is a pointer to the memory location that is to contain
the input byte. *EER/

input$bytes$from$fdc: procedure(data$byteSptr) byte;
declare data$byteSptr pointer;
declare
datas$byte based data$byte$ptr bvte,
status byte;

/* check to see if fdc is ready */
status=fdc$ready$for$result;
if error$in status

then propagate$error;

/* check for result phase complete */
if status=complete
then return complete;

datasbyte=input (fdc$dataSport);
return ok;
end input$byte$from$fdc;

$eject

/**** output the dma mode, the dma address, and the dma word count to the
8237 dma controller. Also output the high order four bits of the
address to the address extension latch. -Finally, start the disk
dma channel. The "docb$ptr" parameter is a pointer to the appropriate
disk operation control block. *hkk/

output$controls$tosdma: procedure (docb$ptr);
declare docb$ptr pointer;
declare dochb based docb$ptr structure docbtype;

declare
/* dma port definitions */ . :
dmaSupper$addr$port® literally “10H”, /* upper 4 bits of current address */
dmag$disk$addr$port literally “00H", /* current address port */
dma$diskSwordScount literally “0lH”, * /* word count port */
dma$commandSport literally “08H”, /* command port */
dmas$modeSport literally “OBH”, /* mode port */
dmas$mask$srSport literally “0AH", /* mask set/reset port */
dmagclear$ffSport literally “0CH”, . /* clear first/last flip-flop port */
dmas$master$clear$port literally “ODH”, /* dma master clear port */
dmas$maskSport literally “OFH”, /* parallel mask set port*/
dmas$disk$chanS$start literally “00H”, /* dma mask to start disk channel */

dma$extendedSwrite literally “shl(1,5)", /* extended write flag */
dmas$singleStransfer literally “shl(1,6)": /* single transfer flag */

if docb.dmaSop < 3
then do;
/* set dma mode and clear first/last flip-flop */
output (dma$mode$port)=shl (docb.dmas$op,2) or 40H;
output (dmas$clear$ff$port)=0;

- 5-652

APPLICATIONS

—
71 3
72 3
73 3
74 3
75 3
76 3
77 3
78 2
79 1
80 2
81 2
82 2
83 2
84 3
89 3
90 2
91 2
92 2
93 1
94 - 2
95 2
96 2
97 2
98 3
929 3
104 3
09 3
110 3
111 2
112 2
114 2
115 2
116 1
117 - 2
118 2
119 2

/* set dma address. */

output (dma$disk$addr$port)=1ow(docb.dmas$addr) ;
output (dmas$disk$addr$port)=high(docb.dmasaddr) ;
output (dmagupper$addr$port)=docb.dmas$addrsext;

/* output disk transfer word count to dma controller */
output(dma$d1sk$word$count) low (docb.dma$count) ;
output (dmas$disk$word$count)= hlgh(docb dma$count) ;

/* start dma channel 0 for fdc */
output (dma$mask$sr$port)=dmasdiskSchan$start;
end;

end output$controls$to$dma;

/**** output a hlgh level disk command to the 8272 fdc. The number of bytes
required for each command is contained in the "command$length" table.
The "docb$ptr" parameter is a pointer to the appropriate disk operation
control block. *kkk/

.output$command$tos$fdc: procedure(docb$ptr) byte;

declare docb$ptr pointer;

declare
docb based docb$ptr structure docbS$type,
cmd$byte$no byte;

disable;

/* output all command bytes to the fdc */
do cmds$byte$no=0 to command$length(command$code)-1;
if error$in output$bytetosfdc(doch. dlskscommand(cmd$byte$no))
then do; enable; propagate$error; end;
end;

" enable;
return ok;
end output$command$toS$fdc;

/**** jnput the result data from the 8272 fdc during the result phase (after
command execution). The "docb$ptr" parameter is a pointer to. the
appropriate disk operat1on control block. *kdw [

input$result$from$fdc: procedure(docb$ptr) byte;
declarée docb$ptr pointer;
declare
docb based docb$ptr structure docbstvpe,
result$byte$no byte,
temp byte,
status byte;

disable;

do result$byte$no=0 to 7;
status=input$byte$from$fdc (@temp);
if error$in status
then do; enable; propagate$error; end;
if status=complete
then do; enable; return ok; end;
docb. dlSkSresult(:esultsbytesno) temp;
end;

enable;
if fdec$busy
then return error;
else return ok;
end input$result$from$fdc;

/**** cleans up after the execution of a disk operation that has no result
phase. The procedure is also used after some disk operation errors.
"drv" is the drive number, and "cc" is the command code for the
disk operation. rkEx/

operation$clean$up: procedure(drv,cc);
declare (drv,cc) byte;

disable;
operationinprogress (drv)=£false;

5-553

207885-001

APPLICATIONS

120 2 if not overlap$operation (cc)
then global$drive$no=0; . :
122 2 enable;
123 2 end operation$clean$up;
Seject

/**** execute the disk operation control block specified by the pointer
parameter "docb$ptr”. The "status$ptr" parameter is .a pointer to
a byte variable ‘that is to contain the status of the requested
operation when it has been completed. Six status conditions are
possible on return: .

0 The specified operation was completed without error.
1 The fdc is busy and the requested operation cannot be started.
2 Fdc error (further information is contained in the result

storage portion of the disk operation control block - as
described in the 8272 data sheet).

3 Transfer error during output of the command bytes>to the fdc.
4 Transfer error during input of the result bytes from the fdc.
5 Invalid fdc command. kkhk/ . .
124 1 executesdochb: procedure(docb$ptr,status$pti) public;
/* execute a disk operation control block */
125 2 - .declare docb$ptr pointer, status$ptr pointer;
126 2 declare i)

- docb based docb$ptr structure docb$type,
. status based status$ptr byte,
drives$no byte;

. /* check command validity */ _
127 2 if not valid$command (command$code)
then do; status=stat$invalid; return; end;

/* determine if command has a drive number field - if not, set the drive
number for a general fdc command */

132 2 . if drivenopresent (command$code)
then drive$no=extract$drives$no;

134 2 else drive$no=fdc$general;

/* an overlapped operation can not be performed if the fdec is busy */
135 2 if overlap$operation (command$code) and fdc$busy N
then do; status=stat$busy; return; end;

/* for a non-overlapped operation, check fdc busy or any drive seeking */
140 2 ., 1if not overlap$operation (command$code) and (fdc$busy or any$drive$seeking)
then do; status=stat$busy; return; end;

/* check for;drive operation in progress - if none, set flag and start operation */
145 2 disable;

146 2 if operationinprogress(drive$no)
then do; enable; status=stat$busy; return; end; .
152 2 else operationinprogress(drive$no)=true;

/* at this point, an fdc operation is about to begin, so:
1. reset the operation complete flag
2. set the docb pointer for the current operation
3. if this is not an overlapped operation, set the global drive
number for the subsequent result phase interrupt. /

153 2 operation$complete (drive$no)=0;
154 2 operationSdochptr(drive$n0)=docb$ptr;
155 2 " if not overlap$operation (command$code)
then global$drive$no=drives$no+l;
157 2 enable;
158 2 call output$controls$tosdma (doch$ptr) ;
159 2 if error$in output$commandtofdc (docb$ptr)
then do; .
161 3 call operation$clean$up (drive$no,command$code);
162 3 status=stat$command$error;
163 3 return;
164 3 end; - >
/* return immediately if the command has no result phase or completion interrupt - specify */
165 2 if no$result (command$code) ’
" then do; .
167 3 call operationScleansupCGriveSno,commanGSCOde);
168 3 status=stat$ok;) '
169 3 return;
170 3 end;

; ' 5-554 o 207885-001

192

193
194
195

196

198
-199

202

203
204
205

206

WWWWWW

[NYNR] NOONON W o wwNWwSBaEREE W

N

N

APPLICATIONS

if immed$result (command$code) '
then do;
if error$in input$result$from$fdc(docb$ptr)
then do;
call operation$cleans$up (drive$no,command$code) ;
status=stat$resultferror;
return; .
end;
end;
else do;
waitforop$complete;
if docb.misc = error
s then do; status=stat$result$error; return; end;
end; : .

if no$fdcSerror
then status=stat$ok;
else status=stat$error;

end executesdocb;.'
Seject’

/%***x copy disk command results from the interrupt control block to the
currently active disk operation control block if a disk operation is
in progress. *kkk/ . - .

copyintresult: procedure(drv);
declare drv byte; ’
declare
i byte,
- docb$ptr pointer,
docb based docb$ptr structure docb$type;

if operationinprogress(drv)

then do;
docb$ptr=operation$docb$ptr (drv) ;
do i=1 to 6; docb.disk$result(i)=interrupt$docb.diskéresult(i); end;
docb.misc=0k; .
operationinprogress (drv)=£false;
operation$complete(drv)=true;

end;

end copyintresult;

/***% interrupt processing for 8272 fdc drivers. Basically, two types: of
interrupts are generated by the 8272: (a)when the execution phase of
an operation has been completed, an interrupt is generated to signal
the beginning of the result phase (the fdc busy flag is set
when this interrupt is received), and (b)' when an overlapped operation
is completed or an unexpected interrupt is recéived (the fdc busy flag
is not set when this interrupt is received).

When interrupt type (a) is received, the result bytes from the operation
are read from the 8272 and the operation complete flag is set.

When an interrupt of type (b) is received, the interrupt result code is
examined to determine which of the following four actions are indicated:

1. An overlapped option (recalibrate or seek) has been completed. The
result data is read from the 8272 and placed in the currently active
disk operation control block. ’

2. An abnormal termination of an operation has occurred. The result

‘data is read and placed in the currently active disk operation
control block.

3. The execution of an invalid command has been attempted. This
signals the successful completion of all interrupt processing.

4. The ready status of a drive has changed. The "drive$ready" and
"drive$ready$status™ change tables are updated. If an operation
is currently in progress on the affected drive, the result data
is placed in the currently active disk operation control block.

After an interrupt is processed, additional sense interrupt status commands
must be issued and processed until an invalid command result is returned
from the fdc. This action guarantees that all "hidden" interrupts

are serviced. LA L4 | :

5-555

APPLICATIONS.

fdcint: procedure public interrupt fdcintlevel;

207 1
208 2 declare
invalid byte,
drive$no byte,
docb$ptr pointer,
docb based docb$ptr structure docbs$type;
209 2 declare
/* interrupt port definitions */
ocw2 literally “70H”, :
nseoi literally “shl(1,5)”; .
210 2 declare
/* miscellaneous flags */ .
result$code literally ‘shr(intezruptSdocb.disksresult(0) and resultserrorSmask,G)‘,
result$drive$ready literally ‘((interzuptSdocb.diskSresult(0) and result$ready$mask) = 0)”,
extract$result$driveSno literally ‘(intetruptsdocb.diskszesult(0) and result$drive$mask)”,
endsofinterrupt literally “output(ocw2)=nseoi”;
/* if the fdc is busy when an interrupt is received, then the result
phase of the previous non-overlapped operation has begun */
211 2 if fde$busy . ’

then do;

/*_process interrupt if operation in progress */
213 3 if global$driveSno <> 0
s then do;
215 4 docb$ptr=operation$docb$ptr (global$drive$no-1);
216 4 if error$in input$resu1t$from$fdc(dochptr)
then docb.misc=error;

218 4 else docb.misc=ok; .
219 4 operationSinsprogress(globalSdrivesno—l)=false;
220 4 operationScomplete(globalsdrivesno—l)=true;
221 4 global$drive$no=0;
222 4 end;
223 3 end;

/* if the fdc is not busy, then either an overlapped operation has been
completed or an unexpected interrupt has occurred (e.g., drive status
change) */ '

224 2 else do;
225 3 invalid=false;
226 3 do while not invalid;
/* perform a sense interrupt status operation - if errors are detected,

in the actual fdec interface, interrupt processing is discontinued */
227 4 if error$in output$bytetofdc(sensesintsstatus) then go to ignore;
229 4 if error$in inputSresultSfromsfdc(@interruptsdocb) then go to. ignore;
231 4 do case result$code;

/* case 0 - operation complete */
232 5 do;
233 6 driveSno:extractsresultsdrivesno;
234 6 call copyintresult (drive$no);
235 6 end; B

/* case 1 - abnormal termination */
236 5 do;
237 6 driveSno:extractstesultSdrivesno;
238 6 call copySintsresult(driveSno);
239 6 end;

/* case 2 - invalid command */
240 5 invalid=true;

/* case 3 - drive ready change */
241 5. do;
242 6 driveSno=extractsresultsdrivesno;
243 6 call copySintsresult(driveSno);
244 6 drivesstatusschange(dzive$n0)=true;
245 6 if result$drive$ready

then drivesready(driveSno)=true;

247 6 else drivesready(drive$no)=false;
248 6 end; .
249 5 end;
250 4 end;
251 3 end;
252 2 ignore: endofihterrupt;
253 2 end fdcint;
254 1 end drivers;

5-556 207885-001

APPLICATIONS

‘ i

MODULE INFORMATION:

CODE AREA SIZE 0615H 1557D

CONSTANT AREA SIZE = 0000H oD
VARIABLE AREA SIZE = Q050H 80D
MAXIMUM STACK SIZE = 0032H 50D

564 LINES READ
0 PROGRAM ERROR(S)

END OF PL/M-86 COMPILATION

5-557 - 207885-001

APPLICATIONS

APPENDIX B |
8272 FDC EXERCISER PROGRAM

5-558°) 207885-001

APPLICATIONS

pL/M-86 COMPILER 8272 FLOPPY DISK DRIVER EXERCISE PROGRAM

151S-I1 PL/M-86 V1.2 COMPILATION OF MODULE RUN72
OBJECT MODULE PLACED IN :Fl:run72.0BJ.
COMPILER INVOKED BY: plm86 :Fl:run72.p86 DEBUG

Stitle (78272 floppy disk driver exercise program”)

$nointvector
Soptimize (2)

: $large :
1 run72: do;

2 1 ‘ declare
docbs$type literally

3 1 declare
/* 8272 fdc commands */
fm literally “0°,
mfm literally “1°,)
dma$mode literally “0°,
non$dmas$mode literally “1°,
- recalibrate$command literally “7°,
specify$command literally “3°,
read$command . literally “6°,
write$Scommand literally “5°
format$command literally “ODH”,
seek$command - literally “OFH";
4 1 declare
dmaSverify © literally “0°,
dmaSread literally “1°,
dmas$write literally “2°,
dma$noop literally “37;
5 1 declare
/* disk operation control blocks */
format$doch structure docb$type,
seek$docb structure docb$type,
recalibrate$docb structure docb$type,
specify$docb structure docb$type,
. reads$dochb structure docb$type,
writesdocb structure docb$type:;
6 1 . declare
step$rate byte,
head$load$time byte,
head$unloads$time byte,
filler$byte byte,
operation$status byte,
interleave byte,
format$gap byte, ’
read$write$gap byte,
index byte,
drive byte,
density . byte,
multitrack byte,
sector byte,
cylinder byte,
head byte, /* disk drive head */
tracksperdisk byte,
sectorspertrack byte,
bytespersector$code byte,
bytes$per§sector word; /* number of bytes in a sector on the disk */.
7 1 declare
/* read and write buffers */
£mtblk (104) . byte public,
“wrbuf (1024) byte public,
rdbuf {1024} byte public;
8 1 declare
/* disk format initialization tables */
sectrktable (3) byte data(26,15,8),
fntSgap$table (8) - byte data{lBH, 2aH, 33H,0,0, 36H 54H, 74H),
rdwrgap$table (8) * byte data(07H,0EH,1BH,0,0,0EH,1BH, 35H) ;
5-559 207885-001

\/*
“ (dmaSop byte,dma$addr word,dmag$addr$ext byte,dma$count word,
disk$command (9) byte,disk$result(7) byte,misc byte)”;

disk operation control -block */

APPLICATIONS

10
12

13
14

38

39
40

41
42
43
46

47
48

NE DN

NN N

[N

N

DRNNNN N NN

NN P

NN

& w

declare
/* external pointer tables and interrupt vector */
rdbptr (2) word external,
wrbptr (2) word external,
fbptr (2) word external,
intptr (2) word external,
intvec (80H) : word external;

execute$docb: procedure(dochptr,statusSptr) external;

declare docb$ptr pointer, statussptr ‘pointer;

end execute$docb;

initialize$drivers: procedure external;

end initializeS$drivers;

Seje

Vit

sp

ct

* specify step rate ("srt"), head load time {("hlt"), head unload time ("hut"),
and dma or non-dma operation ("nd"). Rk

ecify: procedure(srt,hlt,hut,nd);

declare (srt,hlt,hut,nd) byte;

specify$docb.dmasop=dma$noop;
specify$docb.disk$command (0) =specify$command;
specify$docb.disk$command (1)=shl{(not srt)+1,4) or shr (hut,4);
specify$docb.disk$command (2)=(hlt and OFEH) or (nd and 1):;
call executeS$docb{@specifySdochb,@operation$status)y

end specify;

Vadid

* recalibrate disk drive
8272 automatically steps out until the track 0 signal is activated
by the disk drive. kR)

recalibrate: procedure (drv);

en

Vadid

declare drv byte;

recalibrate$docb.dma$op=dma$noop;
recalibrate$docb.disk$command (0)=recalibrate$command;
recalibrate$docb.disk$command (1)=drv;

call execute$docb(@recalibrate$dochb, @operatlonsstatus),

d recalibrate;

* seek drive "drv", head (side) "ha" to cylinder "cyl". *kkk/

seek: procedure(drv,cyl,hd);

declare (drv,cyl,hd) byte;

seek$docb.dmasop=dmasnoop;
seek$docb.disk$command (0) =seek$command;
seek$docb.disk$command (1) =drv or shl(hd,2);
seekSdocb.disk$command (2)=cyl;

call execute$dochb(@seek$docb,@operation$status);

end seek;

/**** format a complete side ("head") of a single floppy disk in drive "drv". The density,
*/

(single or double) is specified by flag "dens". ik

format: procedure(drv,dens,intlve);

/*

format disk */
declare (drv,dens,intlve) byte;
declare physical$sector byte; ‘

call recalibrate(drv);
do cylinder=0 to tracksperdisk-1;
/* set sector numbers in format block to zero before computing interleave */

do physical$sector=1 to sectors$per$track; fmtblk((phy51ca1$sector 1)*4+2)=0; end;

/* physical sector 1 equals logical sector 1 */
physical$sector=1;

/* assign interleaved sectors */

do sector=1 to sectors$perS$track;
index={physical$sector-1)*4;

5-560

207885-001

APPLICATIONS

PPN

-

N WWLWwwwWwwww ww

-

NN DN DD NON D

N

write: procedure(drv,cyl,hd,sec,dens};
declare (drv,cyl,hd,sec,dens) -byte;

NRNONDNNNN NN DN

/* change sector and index if sector has already been assigned */
do while fmtblk (index+2) <> 0; index=index+4; physical$sector=physical$sector+l;

/* set cylinder, head, sector, and size code for current sector into table */
fmtblk {index)=cylinder;

fmtblk (index+1)=head;

fmtblk (index+2) =sector;

fmtblk (index+3) =bytespersector$code;

/* apdate physical sector number by interleave */
physical$sector= physical§$sector+intlve;

if physical$sector > sectors$per$track

then physical$sector=physical$sector-sectorspertrack;
end; :

/* seek to next cylinder */
call seek(drv,cylinder,head);

/* set up format control block */
format$doch.dmag$op=dmas$write;

“format$docb.dma$addr= fbptr(0)+sh1(fbptr(1) 4);

format$docb.dmas$addr$ext=0;

format$docb. dma$count—sectorspertrack*4 1;
format$docb.disk$command (0)=format$command or shl(dens,S),
format$docb.disk$command (1)=drv or shl(head,2);
format$docb.disk$command (2) =bytesSper$sector$code;
format$docb.disk$command (3) =sectorspertrack;
formatSdocb.disk$command (4) =format$gap;
format$docb.disk$command (5)=filler$byte;

call executeSdocb(@formatsdocb @operation$status};

end;

.end format;

/***% yrite sector "sec" on drive "drv" at head "hd" and cylinder "cyl"”. The

disk recording density is specified by the "dens"™ flag. Data is expected to be
in the global write buffer ("wrbuf"}. kkkk /

wrlte$docb dma$op=dma$write;

write$dochb. dmaSaddr-wrbptr(0)+sh1(wrbptr(1) 4); .
write$docbhb.dmasaddr$ext=0 '
write$docb.dma$count= bytesSperssector 1;
write$docb.disk$command (0)=write$command or shl(dens,6) or shl(multltrack 7):
write$docb.disk$command (1) =drv or shl(hd,2);
write$docb.disk$command (2)=cyl;

write$docb.disk$command (3)=hd;

write$docb.disk$command (4)=sec;

write$docb.disk$command (5) bytesSperssectorsccde-
write$docb.disk$command (6) =sectorspertrack; -
write$docb.disk$commdnd (7)=read$write$gap;

if bytespersector$code = 0

then write$docb.disk$command (8)=bytespersector;
else write$docb.disk$command (8)=0FFH;

" call execute$docb (@write$docb,@operation$status);

end write;

/**%* read sector "sec" on drive "drv" at head "hd" and cylinder "cyl". The

disk recording density is defined by the "dens" flag. Data is read into
the global read buffer ("rdbuf"). *kkk [/

read: procedure(drv,cyl,hd,sec,dens});
declare (drv,cyl,hd,sec,dens) byte;

read$docb.dmas$op=dma$read;
read$docb.dmagaddr=rdbptr (0)+shl (rdbptr (1) ,4);
reads$docb.dmas$addr$ext=0;

- read$docb.dmaScount=bytes$per$sector-1;
read$docb.disk$command (0) =read$command or shl(dens,6) or shl(multltrack 7),
read$docb.disk$command (l}=drv or shl{hd,2);
read$docb.disk$command (2} =cyl;
read$docb.disk$command (3} =hd;
read$docb.disk$command(4)=sec;
reads$docb.disk$command (5) =bytespersector$code;
read$docb.disk$command (6) =sectorspertrack;
read$docb.disk$command (7) =read$writesSgap;

end;

5-561 o 207885-001

APPLICATIONS

108 2 if bytespersector$code = 0
then read$docb. d1sk$command(8) bytespersector,
110 2 else read$docb.disk$command (8)=0FFH;
111 2 call execute$docb (@read$docb,@operation$status); ¢
112 2 end read; i
Seject S
/**%% initialize system by setting up 8237 dma controller and 8259A interrupt
controller. *kdek / :
113 1 initialize$system: procedure;
114 2 declare
/* 1/0 ports */ .
dma$disk$addr$port literally “00H”, /* current address port */
dma$d15k$word$count$port literally “0lH", /* word count port */
dmag$command$port literally “08H%, /* command port */
dmas$mode$port literally “OBH”, /* mode port */
dmas$mask$sr$port .. literally “0RH”, /* mask set/reset port */
dmas$clear$ff$port literally “OCH”, /* clear first/last flip-flop port */
dmas$master$clear$port literally “ODH”, /* dma master clear port */
dma$mask$port literally “OFH”, - /* parallel mask set port*/
dmaScl$addr$port literally “02H",
dmascl$word$count$port © literally “03H",
dma$c2$addr$port literally “04H°,
dmasc2$word$count$port literally “05H”,
dma$c3saddr$port literally “06H”,
dmas$c3s$word$count$port literally “07H",
icwl literally “70H",
icw2 literally “71H”,
icwd’ literally “71H”,
ocwl literally “71H”,
ocw2 literally “70H”,
ocw3 literally “70H;
115 2 declare
/* misc masks and 11terals */ . .
dma$extended$write literally “shl(1,5)” /* extended write flag */
dma$single$transfer literally “shl(l1,6)” /* single transfer flag */
dma$disk$mode literally “40H",
dmascl$mode . literally “41H”,
dma$c2$mode literally “42EH°,
dma$c3ismode literally “43H”,
mode$8088 : literally “17,
interrupt$base literally “20H”,
single$controller literally “shl(1,1)”,
level$sensitive literally “shl(i,3)”,
control$word$4$required literally ‘17,
base$icwl literally “10H”,
mask$all literally “OFFH’,
disk$interrupt$mask literally “17:
116 2 output (dmasmaster$clear$port)=0; /* master reset */
117 2 output (dma$mode$port) =dmasextended$write; /* set dma command mode */
/* set all dma registers to valid values */ .
118 2 output (dma$mask$port)=mask$all; /* mask all -channels */
/* set all addresses to zero */
119 2 output (dmas$clear$ff$port)=0; /* reset first/last flip-flop */
120 2 output (dmasdisk$addr$port)=0; s
121 2 output (dmas$disk$addr$port)=0;
122 2 output (dmacladdr$port)=0;
123 2 output (dma$clsaddr$port)=0;
124 2 output (dmasc2$addr$port)=0;
125 2 output (dma$c2$addr$port)=0; ~
126 2 output (dma$c3$addr$port)=0;
127 2 output (dma$c3saddr$port)=0;
/* set all word counts to valid values */ - . R
128 2 output (dmasclearffport)=0; /* reset first/last flip-flop */
129 2 . output (dmasdisk$word$count$port)=1; . -
130 2 output (dmasdisk$word$count$port)=1;
131 2 output (dmasclword$count$port)=1;
132 2 output (dmasclword$count$port)=1;
133 2 output (dmagc2$word$count$port)=1;
134 2 output (dmaSc2$word$count$port)=1;
135 2 output (dmasSc3$word$count$port)=1;
136 2 output (dmaSc3$word$count$port)=1;

5-562 207885-001

APPLICATIONS

p—
/* initialize all dma channel modes */
137 2 * output (dmas$mode$port) =dma$disk$mode;
138 2 output (dma$mode$port)=dmascl$mode;
139 2 output (dma$modeS$port)=dmasc2$mode;
140 2 output (dmas$mode$port) =dma$c3$mode;
/* initialize 8259A interrupt controller */
141 2 output (icwl)=single$controller or level$sensitive or control$word4$requ1red or base$1cwl-
142 2 output (icw2)= 1nterrupt$base-
143 2 output (icw4)=mode$8088; /* set 8088 interrupt mode */
144 2 output (ocwl)=not disk$interrupt$mask; /* mask all interrupts except disk */
14
) /* initialize interrupt vector for fdc */
145 2 intvec(40H)= intptr (0) ;
146 2 intvec (41H)=intptr (1)
147 2 end initialize$system;
Seject
/**** main program: . first format disk (all tracks on side (head) 0. ‘Then
read each sector on every track of the disk forever. ke k N
148 1 declare driveSready(4f byte external;
/* disable until interrupt vector setup and 1n1t1a11zat10n complete */
149 1 disable;
/* set initial floppy disk parameters */
150 1 density=mfm; R /* double-density */
151 1 head=0; /* single sided */
152 1 multitrack=0; . /* no multitrack operation */
153 1 filler$byte=55H; . /* for format */
154 1 tracksperdisk=77; /* normal floppy disk drive */
155 1 bytespersector=1024; /* 1024 bytes in each sector */
156 1 interleave=6; /* set track interleave factor */
157 1 step$rate=11; /* 10ms for SA8060.plus 1 for uncertainty */
158 1 heads$load$time=40; /* 40ms head load for SA800 */
159 1 head$unload$time=240; /* keep head loaded as long as possible */
/* derive dependent parameters from those above */
160 1 bytespersector$code=shr (bytes$per$sector,7); .
161 1 do index=0 to 3;
162 2 if (bytespersector$code and 1) <> 0
then do; bytespersector$code=index; go to donebec; end;
167 2 else bytespersector$code=shr (bytesSper$sector$code,l);
168 2 end;
169 1 ‘donebc:
) .sectors$pers$track=sectrktable (bytespersector$code-density);
170 1l format$gap=fmt$gap$table (shl (density,2)+bytespersector$code);
171 1 read$write$gap=rdwrgapstable (shl (density,2) +bytespersectorscode) ;
. /* initialize system and drivers */
172 1 call initialize$system;
173 1 call initialize$drivers;
/* reenable interrupts and give 8272 a chance to report on drive status
before proceedlng */
174 1 enable;
175 1 call time(10): -
/* specify disk drive parameters */
176 1 call specify(step$rate, ,head$load$time,head$unloadstime,dmas$mode);
177 1 drive=0; . /* run single disk drive #0 */
/* wait until drive ready */
178 1 do while 1;
179 2 if drive$ready(drive)
101 then go to start;
2 end;
182 1 . start:
call format(drive,density,interleave);
183 1 do while 1;
184 2 do cylinder=0 to tracksperdisk-1; -
185 3 call seek(drive,cylinder , head);
‘135 3 do sector=1 to sectorspertrack;
* set up writé buff *
187 4 / P er */

do index=0 to bytes$perS$sector-1; wrbuf (index)=index+sector+cylinder; end;

‘5-563 207885-001

APPLICATIONS

190 4 call write(drive,cylinder,head,sector ,density);
191 4 call read(drive,cylinder,head,sector,density);
/* check read buffer against write buffer */
192 4 if cmpw (@wrbuf,@rdbuf,shr (bytespersector,l)} <> OFFFFH
then halt;
194 4 end;
195 3 end;
196 2 end;
197 1 end run72;

MODULE INFORMATION:

CODE AREA SIZE 0570H 1392D

CONSTANT AREA SIZE = 0000H [)s]
VARIABLE AREA SIZE = 0907H 2311p
MAXIMUM STACK SIZE = 0022H 34D

412 LINES READ
0 PROGRAM ERROR({S)

END OF PL/M-86 COMPILATION

5-564 207885-001

APPLICATIONS

, APPENDIX C
8272 DRIVER FLOWCHARTS

5-565 o ‘ 207885-001

APPLICATIONS

~ INITIALIZESDRIVERS

B ORIVESREADY
NEXT DRIVESSTATUSSCHANGE
ZOPERATIONSINSPROGRESS
—OPERATIONSCOMPLETE

DO
DRIVE =070
MAX #

N

RESET GENERAL STATUS
—OPERATIONSINSPROGRESS
—OPERATIONSCOMPLETE

1]

ET
GLOBALSDRIVESNO

RETURN

RESI

FDCSREADY$FORSRESULT

(FDCSREADYSFORSCOMMAND) N

!

DELAY FOR >20us DELAY FOR >20us
TO PERMIT 8272 | TO PERMIT 8272
TO UPDATE . TO UPDATE
STATUS FLAGS . STATUS FLAGS

!

RaQM
FLAG SET?

RETURN
. COMPLETE

DIOFLAG
SET FOR
8272 INPUT?

RETURN ’

DIO
FLAG SET
FOR 8272
OUTPUT?

RETURN ’
(R) (RETURN)

5-566 : 207885-001

APPLICATIONS

OUTPUTSBYTESTOSFODC

CALL
FDCSREADY$FORSCOMMAND

!

FDC
READY FOR
COMMAND

RETURN
ERROR

-OUTPUT DATA
BYTE TO
8272 DATA
PORT

INPUTSBYTESSFROMSFDC

CALL
FDCSREADY$FORSCOMMAND

RESULT
ERROR
REPORTED

RESULT
PHASE
COMPLETE

RETURN .
COMPLETE

INPUT DATA
BYTE FROM
8272 DATA
PORT

!

5-567 : . 207885-001’

APPLICATIONS

C OUTPUTSCOMMANDSTOSFDC)

DISABLE
INTERRUPTS

OUTPUTSCONTROLSSTOSDMA

SET DMA MODE
CLEAR FIRST/LAST
FLIP-FLOP

!

WRI'I:rE OMA ADND;ESS
EXTENDED ADDRESS
LATCH

WRITE DATA TRANSFER
BYTE COUNT
TO 8237

!

" START DMA
CHANNEL

OUTPUT A
COMMAND

DO
0 TO COMMAND
LENGTH

ENASLE
INTERRUPTS

: RETURN

BYTE TO THE
8272

ERROR
REPORTED

5-568

!

ENABLE
INTERRUPTS

'

207885-001

, APPLICATIONS

INPUTSRESULT$FROMSFDC

DISABLE
INTERRUPTS

|
FROMOTO 7
DONE

YES 8272
BUSY?

' CALL
INPUTSBYTESFROMSFDC

{

ERROR
REPORTED?

RETURN
ERROR

NO

RETURN

ENABLE
INTERRUPTS

STORE RESULT
BYTE INTO
DISK OPERATION . -

CONTROL BLOCK
RETURN

OPERATIONSCLEANSUP

DISABLE
INTERRUPTS

!

RESET OPERATIONSINSPROGRESS
AND GLOBALSDRIVESNO

!

5-569 ‘) . 207885-001

APPLICATIONS

EXECUTESDOCB

VALID RETURN
COMMAND? INVALID STATUS .

OVERLAPPED
OPERATION
AND 8272
BUSY?

RETURN
BUSY STATUS

NON-
OVERLAPPED
OPERATION AND

(8272 BUSY OR
DRIVE SEEKING’

YES RETURN .
BUSY STATUS

DISABLE INTERRUPTS

OPERATION YES
IN PROGRESS - ENABLE INTERRUPTS ————————— RETURN
FLAG SET?) BUSY STATUS

NO

SET OPERATIONSINSPROGRESS
RESET OPERATIONSCOMPLETE
SAVE DOCB POINTER .

SET GLOBALSDRIVESNO ~

!

ENABLE INTERRUPTS -

l | | | ;

CALL
OUTPUTSCONTROLSSTOSDMA
TO SET UP 8237

!

CALL .

QUPTUTSCOMMANDSTOSFDC f
0 PERFORM 8272
COMMAND PHASE

ERROR
REPORTED IN YES
COMMAND

PHASE?

CALL
OPERATIONSCLEANSUP
BEFORE RETURN

!

5570 © 207885-001

APPLICATIONS

FDCINT

RESULT PHASE OF ASYNCHRONOUS
PREVIOUS COMMAND INTERRUPT
YES NO
RESTORE PERFORM 8272
PREVIOUSLY SAVED SENSE INTERRUPT

DOCB POINTER STATUS OPERATION

| i

CALL
INPUTSRESULTSFROMSFDC
TO PERFORM

RESULT PHASE ERROR

DETECTED

SEY ERROR
FLAG IN
DOCB

CASE
RESULT CODE
OF

OPERATION
COMPLETE
RESET OPERATIONSINSPROGRESS
SET OPERATIONSCOMPLETE
RESET GLOBALSDRIVESNO
ABNORMAL
TERMINATION

IRVALID
COMMAND

DRIVE
READY
CHANGE

SEND END OF INTERRUPT
TO 8259A

RETURN

5-571

CALL COPYSINTSRESULT
TO PUT OPERATION
RESULT INFORMATION

iNTO THE DOCB -

CALL COPYSINTSRESULT
TO PUT OPERATION
RESULT INFORMATION
INTO THE DOCB

CALL COPYSINTSRESULT
TO STORE RESULT
INFORMATION IN DOCB
(IF OPERATION IN PROGRESS)

!

SET DRIVESSTATUSSCHANGE
FLAG

SET DRIVESREADY
FLAG FOR DRIVE
BASED ON STATUS
FLAG IN STO

207885-001

APPLICATIONS

COPYSINTSRESULT

OPERATION
IN PROGRESS

RETRIEVE SAVED
DOCB POINTER

COPY RESULT

DOCB TO CALLING
DOCB:

. RESET OPERATIONSINSPROGRESS FLAG
SET OPERATIONSCOMPLETE FLAG

‘ RETURN » _

5-572 . 207885-001

~ APPLICATIONS

RESULT NO
PHASE REQ'D
FOR COMMAND

l

- - CALL
OPERATIONSCLEANSUP
BEFORE RETURN

!

IMMEDIATE
RESULT PHASE YES

NO .
REQUIRED i

CALL
INPUTSRESULTSFROMSFDC
TO COMPLETE
8272 RESULT PHASE

OPERATION
COMPLETE FLAG
SET?

!

ERROR
REPORTED
DURING RESULT

PHASE?

RETURN
RESULT ERROR STATUS CALL
- OPERATIONSCLEANSUP -
- BEFORE RETURN

{

8272

REPORTED

ERROR IN RESULT

STATUS BYTE
STO

YES

RETURN
ERROR STATUS

5-573 . . 207885-001

	APPLICATION NOTE AP-121 SOFTWARE DESIGN AND IMPLEMENTATION OF FLOPPY DISK SUBSYSTEMS
	00016077
	00016078
	00016079
	00016080
	00016081
	00016082
	00016083
	00016084
	00016085
	00016086
	00016087
	00016088
	00016089
	00016090
	00016091
	00016092
	00016093
	00016094
	00016095
	00016096
	00016097
	00016098
	00016099
	00016100
	00016101
	00016102
	00016103
	00016104
	00016105
	00016106
	00016107
	00016108
	00016109
	00016110
	00016111
	00016112
	00016113
	00016114
	00016115
	00016116
	00016117
	00016118
	00016119
	00016120
	00016121
	00016122
	00016123
	00016124
	00016125
	00016126
	00016127
	00016128
	00016129
	00016130
	00016131
	00016132
	00016133
	00016134
	00016135
	00016136
	00016137
	00016138
	00016139
	00016140
	00016141
	00016142
	00016143
	00016144
	00016145

